Université de Montréal

Environnement alimentaire de consommation : développement d'un instrument de mesure et évaluation dans quatre quartiers de Montréal

par Élise Jalbert-Arsenault, Dt.P.

Département de nutrition
Faculté de médecine

Mémoire présenté
en vue de l’obtention du grade de
Maîtrise en nutrition – M.Sc. avec mémoire (2-320-1-0)

Décembre 2016

© Élise Jalbert-Arsenault, 2016
Résumé

Contexte : L'environnement alimentaire (EA) correspond à l'ensemble des conditions dans lesquelles les consommateurs se procurent et consomment des aliments. Cet environnement a le potentiel d’influencer le comportement alimentaire des individus. L’EA de consommation est peu documenté au Québec, limitant notre capacité à développer des programmes et politiques pour soutenir la saine alimentation.

Objectifs : L'objectif principal de ce projet est de développer et valider un outil d'évaluation de l'EA de consommation spécifique au contexte du Québec. L’objectif secondaire est de caractériser l’EA de consommation de quatre quartiers de Montréal.

Méthodologie : Le MEAC-S a été développé, testé pour sa fidélité et utilisé pour évaluer l’EA dans 17 supermarchés. Il mesure la variété, la longueur d’étalage, le prix et la mise en valeur des fruits et légumes (FL), croustilles, boissons gazeuses et repas prêts-à-manger, ainsi que la qualité des FL frais. La taille des commerces a été estimée à partir de la longueur d’étalage totale mesurée par commerce. Des coefficients de corrélation intra-classe ont été calculés pour évaluer la fidélité du MEAC-S et des corrélations de Spearman ont été utilisées pour explorer les associations entre les indicateurs de l’EA.

Résultats : Les coefficients de corrélation intra-classe suggèrent une bonne fidélité pour la majorité des indicateurs du MEAC-S. L’analyse descriptive des quartiers met en lumière la variabilité de la longueur d’étalage, de la variété et du prix des FL entre les supermarchés, ainsi que la mise en valeur disproportionnée des produits ultra-transformés. Le prix des produits ultra-transformés est inversement associé avec leur proéminence (p<0,005) et leur promotion (p<0,003). La taille des commerces est associée avec la promotion des produits ultra-transformés (p<0,001), mais pas des FL.

Conclusion : Cette étude suggère que l’offre alimentaire dans les supermarchés varie grandement d’un commerce à l’autre et souligne la nécessité d’utiliser un large éventail d’indicateurs pour évaluer l’EA de consommation.

Abstract

Background: The food environment can be described as a set of conditions in which food is purchased and eaten. This environment has the potential to influence individual dietary behaviours. The consumer food environment in Québec is not well documented, which impedes our ability to develop programs and policies to promote healthy diets.

Objectives: The main objective of this study was to design and validate a tool for evaluating the consumer food environment, with specific application to the Quebec context. The secondary objective was to characterize the consumer food environment in the supermarkets of four neighbourhoods of Montréal.

Methods: The MEAC-S was developed, tested for reliability and used to assess the food environment inside 17 supermarkets. Shelf length, variety, price, display counts and in-store positions of fruits and vegetables (FV) and chips, sodas and frozen entrees were measured. Quality was assessed for fresh FV. Store size was estimated using the total measured shelf length for all food categories. Intra-class correlation coefficients were calculated to test the MEAC-S for reliability and Spearman correlations were conducted between indicators of the food environment.

Results: Reliability analyses revealed satisfactory results for most indicators. Regarding the consumer food environment, the results highlight the variability in the shelf length, variety and price of FV between supermarkets and suggest a disproportionate promotion of ultra-processed food products. Price of ultra-processed food products is inversely associated with their prominence ($p<0.005$) and promotion ($p<0.003$). Store size is associated with display counts and strategic in-store positioning of ultra-processed food products ($p<0.001$), but not with FV.

Conclusion: This study suggests the in-store content greatly varies from one supermarket to another and stresses the necessity of using a comprehensive set of measures to assess the consumer food environment.

Key Words: Diet, Food Supply, Food Environment, Fruits and Vegetables, Food Processing, Marketing, Food purchase behaviour, Obesity.
Table des matières

Résumé ... ii
Abstract .. iii
Liste des tableaux ... vii
Liste des figures .. viii
Liste des sigles et abréviations ... ix
Remerciements .. x

Chapitre 1. Introduction .. 1

Chapitre 2. Recension des écrits .. 5
 2.1 – Modèle écologique de promotion de la santé ... 6
 2.2 – Définir l’environnement alimentaire .. 9
 2.2.1 – Modèle des environnements alimentaires communautaires ... 11
 2.3 – Mesure de l’environnement alimentaire ... 14
 2.3.1 – Définir le territoire .. 15
 2.3.2 – Mesure de l’environnement alimentaire communautaire ... 17
 2.3.3 – Mesure de l’environnement alimentaire de consommation ... 20
 2.3.4 – Qualité métrologique des outils de mesure ... 25
 2.3.5 – Perceptions de l’environnement alimentaire .. 27
 2.4 – Environnement alimentaire, alimentation, poids et santé ... 28
 2.4.1 – Environnement alimentaire communautaire, habitudes alimentaires et santé 28
 2.4.2 – Environnement alimentaire de consommation, habitudes alimentaires et santé 36
 2.4.3 – État des connaissances ... 45
 2.5 – Enjeux nutritionnels et alimentaires au Québec et au Canada ... 48
 2.5.1 – Exploration des enjeux par le biais du GAC ... 48
 2.5.2 – Exploration des enjeux par le biais du niveau de transformation alimentaire 51
 2.5.3 – Enjeux alimentaires et statut socioéconomique ... 52

Chapitre 3. Problématique et objectifs du mémoire ... 53
Chapitre 4. Méthodologie ... 56
 4.1 – Développement du MEAC-S .. 56
 4.1.1 – Produits alimentaires à l’étude ... 57
Chapitre 5. Résultats ...66
 5.1 - Qualité métrologique du MEAC-S66
 5.1.1 - Applicabilité ...66
 5.1.2 - Fidélité ...68
 5.2 - ARTICLE : Development, reliability and use of a food store survey to measure the supermarket food environment in a low-to-medium income area of Montréal71
Abstract ...72
Highlights ...73
Introduction ..73
Methods ..74

 Tool development ..74
 Data collection ...76
 Inter-Rater and Test-Retest Reliability77
 Statistical analysis ...77

Results ...77

 Consumer food environment ..78
 Price and prominence of ultra-processed food products78
 Consumer food environment indicators and store size79

Discussion ...79

 Strengths and limitations ..81
Conclusion ...81
Acknowledgements ..82
References ...83
Chapitre 6. Discussion ...97
6.1 – Le MEAC-S, fiabilité et pertinence dans le contexte québécois ... 98
 6.1.1 – Validité de contenu .. 98
 6.1.2 – Validité critériée ... 100
 6.1.3 – Validité de construit .. 103
6.2 – Environnement alimentaire de consommation dans les quartiers du sud-est de Montréal ... 104
 6.2.1 – Accessibilité physique aux fruits et légumes…et aux aliments ultra-transformés ... 104
 6.2.2 – Accessibilité financière aux aliments ... 106
6.3 – Forces et limites .. 108
 6.3.1 – Forces ... 108
 6.3.2 – Limites ... 110
6.4 – Implications pour la promotion de la santé et pistes de recherche 113
Chapitre 7. Conclusion .. 118
Bibliographie .. 119
ANNEXES.. xi
 Annexe A – MEAC-S : Mesure de l’environnement alimentaire de consommation dans les supermarchés .. xii
 Annexe B – Guide d’utilisation du MEAC-S ... xiii
 Annexe C – Grille pour calibrage des pas ... xxiii
 Annexe D – Pré-tests (territoire et résultats) ... xxiv
 Annexe E – Fidélité inter-évaluateur et test-retest du MEAC-S .. xxvi
Liste des tableaux

Tableau I: Indicateurs et méthodes de mesure de l'environnement alimentaire communautaire...18
Tableau II: Indicateurs et méthodes de mesures de l'environnement alimentaire de consommation...21
Tableau III: Variables et méthodes de mesure incluses dans le MEAC-S ...59
Tableau IV: Répartition des supermarchés sur le territoire à l'étude ...64
Tableau V: Fidélité inter-évaluateur et test-retest du MEAC-S par catégorie de variables...68

Article :

Table 1: Inter-Rater and Test-Retest Reliability for Consumer Food Environment Indicators Included in the MEAC-S ..89
Table 2: Descriptive Analysis of the Consumer Food Environment inside Supermarkets ..90
Table 3: Spearman Correlations between Prominence Indicators and Price of Ultra-Processed Food Products ...91
Table 4: Store Size Association with Indicators of the Consumer Food Environment ...92
Liste des figures

Figure 1 : Relation entre les facteurs individuels, sociaux et environnementaux dans la détermination des habitudes alimentaires ... 8
Figure 2 : Modèle des environnements alimentaires communautaires 11
Figure 3 : Territoire couvert par l’étude ... 63

Article :

Figure 1: MEAC-S measurements form .. 93
Figure 2: Study Area .. 94
Figure S1: Territorial Distribution of the Ratio of Variety of FV to Ultra-Processed Products ... 95
Figure S2: Territorial Distribution of the Ratio of Shelf-Length of FV to Ultra-Processed Products ... 95
Figure S3: Territorial Distribution of the Price per Portion of Fruits ... 96
Figure S4: Territorial Distribution of the Price per Portion of Vegetables ... 96
Liste des sigles et abréviations

<table>
<thead>
<tr>
<th>Sigle</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCRA</td>
<td>American Chamber of Commerce Researchers Association</td>
</tr>
<tr>
<td>DALY</td>
<td>Années de vie ajustées sur l’incapacité</td>
</tr>
<tr>
<td>DRSPM</td>
<td>Direction régionale de Santé Publique du CIUSSS Centre-Sud-de-l’Île-de-Montréal</td>
</tr>
<tr>
<td>ESCC</td>
<td>Enquête sur la Santé dans les Collectivités Canadiennes</td>
</tr>
<tr>
<td>FL</td>
<td>Fruits et légumes</td>
</tr>
<tr>
<td>FVPI</td>
<td>Fruit and Vegetable Price Index</td>
</tr>
<tr>
<td>GAC</td>
<td>Guide alimentaire canadien pour manger sainement</td>
</tr>
<tr>
<td>HDE</td>
<td>Haute densité énergétique</td>
</tr>
<tr>
<td>HEI</td>
<td>Healthy Eating Index</td>
</tr>
<tr>
<td>HFAI</td>
<td>Healthy Food Availability Index</td>
</tr>
<tr>
<td>IMC</td>
<td>Indice de masse corporelle</td>
</tr>
<tr>
<td>INSPQ</td>
<td>Institut national de santé publique du Québec</td>
</tr>
<tr>
<td>ISQ</td>
<td>Institut de la Statistique du Québec</td>
</tr>
<tr>
<td>MAPAQ</td>
<td>Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec</td>
</tr>
<tr>
<td>MEAC-S</td>
<td>Mesure de l’environnement alimentaire dans les supermarchés</td>
</tr>
<tr>
<td>MNT</td>
<td>Maladies non transmissibles</td>
</tr>
<tr>
<td>MRC</td>
<td>Municipalité régionale de comté</td>
</tr>
<tr>
<td>MSSS</td>
<td>Ministère de la Santé et des Services sociaux</td>
</tr>
<tr>
<td>NAICS</td>
<td>North American Industry Classification System</td>
</tr>
<tr>
<td>NESMS-S</td>
<td>Nutrition Environment Measures Survey in stores</td>
</tr>
<tr>
<td>OMS</td>
<td>Organisation mondiale de la santé</td>
</tr>
<tr>
<td>RFEI</td>
<td>Retail Food Environment Index</td>
</tr>
<tr>
<td>RTA</td>
<td>Région de tri d’acheminement</td>
</tr>
<tr>
<td>SIG</td>
<td>Système d’information géographique</td>
</tr>
<tr>
<td>SNAP</td>
<td>Supplemental Nutrition Assistance Program</td>
</tr>
<tr>
<td>SSE</td>
<td>Statut socioéconomique</td>
</tr>
<tr>
<td>UT</td>
<td>Ultra-transformé</td>
</tr>
<tr>
<td>WIC</td>
<td>SNAP for Women, Infants and Children</td>
</tr>
</tbody>
</table>
Remerciements

Mille projets et de longues heures de travail ont ponctué ce passage à la maîtrise. Ces trois dernières années auront été empreintes de découvertes, d'apprentissages, d'aventures et je tiens à remercier toutes les personnes qui ont contribué à les rendre excitantes et enrichissantes.

Merci à la direction de l’INSPQ d’avoir accepté de m’héberger dans vos bureaux. Merci à ma directrice, Marie-Claude, de m’y avoir reçue. Merci pour ton intelligence, ton écoute et ta patience. Merci à Gabrielle pour tes pieds, tout aussi efficaces dans un supermarché que sur un plancher de danse. Merci Marianne pour les crises cardiaques quotidiennes et ma dose mensuelle de sucre. Merci pour ton infinie connaissance du merveilleux monde de SPSS.

Merci à mes parents, pour les encouragements et le soutien. Merci aussi pour le doute, qui me pousse à aller plus loin.

Merci à mes amis, pour votre amour inconditionnel, votre enthousiasme contagieux et votre patience à toute épreuve.

Merci à l’EuroTeam, pour l’exutoire hebdomadaire, pour ces soirées à tout donner et rentrer la tête vidée.

Merci à ma femme, pour ton amour, ta folie et ta confiance inébranlable en mes capacités, surtout dans mes moments de doute.

Ce projet de recherche a reçu le soutien d’une Bourse d’études supérieures du Canada Frederick-Banting et Charles-Best, offerte par les Instituts de recherche en santé du Canada (IRSC).
Chapitre 1. Introduction

Les dernières décennies ont été témoins d’une augmentation générale du poids corporel dans la plupart des pays développés et plusieurs pays en développement (Popkin et al. 2006; Finucane et al. 2011; World Obesity Federation 2017). Le Québec n’échappe pas à cette tendance : de 1987 à 2010, on observe une augmentation de l’indice de masse corporelle (IMC) moyen de 1,8kg/m² dans la population adulte. En 23 ans, le nombre d’individus caractérisés comme obèses (IMC>30,0kg/m²) a doublé et la prévalence générale de surpoids (IMC>25,0kg/m²) dans la population adulte est passée de 34,6% à 50,5%. Les données auto-déclarées de 2010 indiquent que 34,1% de la population adulte québécoise est en situation d’embonpoint et 16,4% en situation d’obésité (Lamontagne et Hamel 2013). Le portrait chez les jeunes n’est guère plus reluisant, avec une augmentation de la prévalence du surpoids de 12,0% à 24,9% entre 1978-1979 et 2009-2013. Les données mesurées de 2009-2013 indiquent que 15,5% des jeunes de 6 à 17 ans sont en situation d’embonpoint, tandis que 9,4% sont obèses (Lamontagne et Hamel 2016).

Cette augmentation du poids dans la société ne se fait pas sans conséquence. Un IMC élevé est un facteur de risque important pour le développement de nombreuses comorbidités, telles que le diabète de type 2, les maladies cardiovasculaires, plusieurs types de cancer, des désordres musculo-squelettiques, les maladies rénales et divers troubles endocriniens (Thompson et al. 1999; WHO-FAO Expert Consultation 2003; GBD 2013 Risk Factors Collaborators et al. 2015), en plus d’être l’un des principaux facteurs de risque de mortalité précoce et d’incapacité au Canada, selon l’indice des années de vie corrigées de l’incapacité (DALY) (GBD 2013 Risk Factors Collaborators et al. 2015). Ces comorbidités imposent un lourd fardeau sanitaire et économique sur les individus qui en souffrent, leur famille et plus largement, sur la société dans laquelle ils se trouvent (Tran et al. 2013).
Deux rapports de Chantal Blouin et ses collaborateurs (Blouin et al. 2015a, 2015b) mettent en exergue le fardeau économique associé à l’obésité et à l’embonpoint au Québec. On estime à près de trois milliards de dollars les dépenses excédentaires liées aux consultations médicales, aux hospitalisations, à la prise de médicaments et à l’invalidité des individus présentant un surplus de poids, et ce, pour l’année 2011 uniquement. Ce total exclut par ailleurs les pertes de productivité, l’absentéisme et la mortalité précoce associées à l’obésité et l’embonpoint, autant d’éléments s’ajoutant à ce fardeau économique déjà imposant.

Depuis les années 1980, on assiste à un bouleversement profond des habitudes de consommation alimentaire, principalement relié à des modifications fondamentales du système alimentaire global. L’industrialisation des procédés de transformation alimentaire, la profitabilité croissante des aliments, les contextes économiques et sociaux, les politiques agricoles et la présence grandissante de multinationales sur le marché de l’alimentation façonnent l’offre alimentaire à partir de laquelle les citoyens s’approvisionnent (Glanz et al. 1998; Story et al. 2008; Swinburn et al. 2011; Moodie et al. 2013). On observe une augmentation significative de la disponibilité énergétique alimentaire par personne (Slater et al. 2009) et les aliments sont disponibles partout et à toute heure du jour et de la nuit. L’offre de plus en plus abondante de produits prêts-à-
manger, de haute densité énergétique, hautement palatables, à très faible prix et fortement publicisés accompagne une réduction du temps disponible pour la préparation des repas et une demande incessante pour des produits de commodité (Cutler et al. 2003; Popkin et al. 2006; Moubarac 2012; Monteiro et al. 2013; Moodie et al. 2013).

De plus en plus de chercheurs s’intéressent à l’environnement alimentaire afin de mieux comprendre son rôle dans le façonnement des habitudes alimentaires des consommateurs (Giskes et al. 2011; Gustafson et al. 2011a; Caspi et al. 2012b; Cobb et al. 2015a). En témoigne la soixantaine d’études publiées sur le sujet depuis 2010, seulement au Canada (Minaker et al. 2016). Malgré cette effervescence, les résultats obtenus dans les différents milieux étudiés sont souvent contradictoires et les mécanismes qui les sous-tendent sont encore à expliquer. Une meilleure connaissance du rôle de l’environnement alimentaire permettrait de soutenir le développement de politiques publiques et de mesures visant à faciliter l’adoption de comportements alimentaires sains et à limiter la prévalence de surplus de poids dans la population.

Ce projet s’insère dans cette lignée, en proposant le développement d’un outil d’évaluation de l’environnement alimentaire dans les supermarchés, l’outil Mesure de
l'environnement alimentaire de consommation dans les supermarchés (MEAC-S), suivi par la caractérisation de l'environnement alimentaire de consommation dans quatre quartiers de Montréal. La recension des écrits traitera de la littérature existante sur les environnements alimentaires dans les quartiers et dans les commerces, sur les méthodes utilisées pour les mesurer et sur leurs associations avec les comportements alimentaires des consommateurs et leur santé. Une discussion sur les enjeux alimentaires spécifiques au Québec fera également partie de cette recension. La première section de la méthodologie portera sur le développement et l'application du MEAC-S dans le contexte du projet et sera suivie par la méthode de collecte de données et d'analyse. Les résultats seront présentés en deux parties : une première sous forme classique, présentant une analyse de la fidélité inter-évaluateur et test-retest du MEAC-S et une deuxième sous forme d'un article soumis à la revue Health Promotion and Chronic Disease Prevention in Canada, portant sur la caractérisation de l’environnement alimentaire de quatre quartiers de Montréal. Les derniers chapitres discuteront finalement de la pertinence des résultats obtenus pour la promotion de la santé au Québec.
Chapitre 2. Recension des écrits

L'environnement alimentaire pourrait être défini comme l'ensemble des conditions dans lesquelles les consommateurs choisissent et consomment des aliments. Cette recension des écrits débute en situant l'étude de l'environnement alimentaire en tant qu'approche écologique de promotion de la santé. La seconde section définit plus en détail l'environnement alimentaire et ses différentes composantes et présente le Modèle des environnements alimentaires communautaires, développé par Karen Glanz et ses collaborateurs, qui sert de cadre théorique pour une majorité de chercheurs étudiant le sujet (Glanz et al. 2005). Les sections suivantes font état de la variété de méthodes utilisées pour caractériser l’environnement alimentaire et des connaissances actuelles sur ses associations avec les habitudes alimentaires et la santé des individus. La dernière section de cette recension traite finalement des principaux enjeux nutritionnels et alimentaires dans la province de Québec, qui serviront d’assise dans le développement du MEAC-S.
2.1 – Modèle écologique de promotion de la santé

L’étude de l’environnement alimentaire s’inscrit dans une approche écologique de promotion de la santé. Ce type d’approche a émergé principalement en réponse à l’avènement des maladies chroniques comme l’une des premières causes de mortalité aux États-Unis (McLeroy et al. 1988) et est basée sur la prémisses que les comportements de santé sont influencés à la fois par des facteurs individuels et interpersonnels, mais également par le contexte social et physique dans lequel ils se produisent (McLeroy et al. 1988; Diez Roux et Mair 2010). Les facteurs d’ordre social et environnemental sont considérés comme des facilitateurs ou des barrières à l’adoption de comportements sains et deviennent des leviers importants d’intervention pour améliorer ces comportements à l’échelle populationnelle (Glanz et Mullis 1988; Cohen et al. 2000).

Depuis les dernières années, les interventions ayant pour objectif d’améliorer la qualité de l’alimentation tendent donc à s’élargir pour inclure plusieurs déterminants

En ce sens, Leslie A. Lytle propose l’hypothèse selon laquelle la qualité de l’environnement alimentaire d’un individu ou d’une population influence l’importance relative des différents facteurs dans la détermination de leurs habitudes alimentaires (Lytle 2009). Dans un environnement alimentaire favorable, où une grande variété d’aliments sains sont disponibles, mis en valeur et à faible prix, les habitudes alimentaires seront davantage déterminées par des facteurs individuels et sociaux, tels que les préférences alimentaires, le temps disponible pour la préparation des repas ou encore les connaissances nutritionnelles. À l’opposé, un environnement alimentaire dans lequel les aliments sains sont peu disponibles ou très dispendieux jouera un rôle de premier plan dans la détermination des habitudes alimentaires des consommateurs y étant exposé, en limitant les options disponibles. La figure 1 à la page suivante illustre
l'importance relative des facteurs individuels, sociaux et environnementaux pour expliquer les habitudes alimentaires selon le niveau de restriction de l'environnement alimentaire.

Figure 1 : Relation entre les facteurs individuels, sociaux et environnementaux dans la détermination des habitudes alimentaires, (Lytle 2009)

![Diagram showing the proportion of variance explained for eating behaviors related to individual factors, social factors, and environmental factors depending on the level of restriction.](image)

De nombreux modèles écologiques ont vu le jour afin d’illustrer les différents facteurs intervenant dans le développement des habitudes alimentaires et du poids corporel (Glanz et Mullis 1988; Egger et Swinburn 1997; Swinburn et al. 1999; Glanz et al. 2005; Story et al. 2008; Swinburn et al. 2011). Le modèle le plus couramment utilisé pour l’étude de l’environnement alimentaire est celui développé par Karen Glanz et ses collaborateurs (Glanz et al. 2005), le *Modèle des environnements alimentaires communautaires*, décrit à la prochaine section.
2.2 – Définir l’environnement alimentaire

La notion d’environnement alimentaire englobe de nombreux concepts, qu’il importe de définir afin de partager le même langage et d’avoir une compréhension commune du sujet. Sa conceptualisation est généralement basée sur les modèles écologiques des comportements de santé. Toutefois, l’environnement alimentaire a été étudié dans une multitude de domaines différents, tels que la santé publique, l’économie ou encore la planification urbaine, ce qui explique le manque d’uniformité dans sa définition et dans les mesures créées pour l’étudier (Santé Canada 2013).

Karen Glanz, Mary Story et leurs collègues (Glanz et al. 2005; Story et al. 2008; Glanz 2009) définissent l’environnement alimentaire comme une entité complexe et multidimensionnelle, incluant tous les déterminants potentiels de l’alimentation des individus qui ne sont pas des déterminants individuels, tels que la cognition, les attitudes, les croyances et les compétences. L’alimentation faisant partie d’un système réunissant à la fois les politiques et conditions économiques régissant la production alimentaire et les pratiques de la table, en passant par la transformation et la mise en marché des aliments, l’environnement alimentaire est donc un concept beaucoup plus large que le simple cadre entourant l’humain lorsqu’il se procure ou consomme de la nourriture. En ce sens, l’Office québécois de la langue française (OQLF) propose sa définition de l’environnement alimentaire, développé en collaboration avec Anne-Marie Hamelin, de l’Université Laval (OQLF 2013) :

« Ensemble des conditions dans lesquelles une personne ou un groupe de personnes a accès aux aliments, les choisit et les consomme. Les conditions socioculturelles, économiques, politiques, géographiques et agricoles font partie de l’environnement alimentaire d’une personne ou d’un groupe de personnes. »

Considérant cette nature complexe et les nombreuses dimensions qui composent l’environnement alimentaire, certains auteurs suggèrent de le diviser en plusieurs environnements représentant les différents niveaux auxquels il opère (Swinburn et al.
Le Modèle des environnements alimentaires communautaires développé par Glanz et ses collaborateurs (Glanz et al. 2005), présenté plus en détail ci-dessous, préconise justement cette approche.

Un commentaire sur le choix des termes s'impose avant de poursuivre. Environnement nutritionnel (ou nutrition environment) représente le terme le plus fréquemment utilisé dans la littérature scientifique, par opposition au terme environnement alimentaire (ou food environment). Un flou persiste toutefois quant aux différences réelles entre ces deux dénominations et les chercheurs semblent souvent sélectionner l’une ou l’autre de façon arbitraire plutôt que sur la base d’une réflexion étymologique. Santé Canada, par exemple, distingue la surveillance alimentaire de la surveillance nutritionnelle en attribuant à la première la surveillance de l’approvisionnement et de la consommation d’aliments, et à la deuxième la surveillance de la consommation de nutriments et de l’état nutritionnel et de santé de la population (Santé Canada 2005). Considérant que l’apport en nutriments est tributaire des aliments achetés et consommés, on pourrait en extrapoler le caractère englobant de l’environnement alimentaire et observer l’environnement nutritionnel comme étant l’une de ses composantes. Par opposition, Glanz propose plutôt que l’environnement nutritionnel soit une expansion de l’environnement alimentaire, dont on aurait élargi la définition pour y inclure les organismes, programmes et activités en lien avec l’éducation nutritionnelle (Glanz 2009).

Dans le contexte de ce mémoire, le terme environnement alimentaire sera employé et défini comme la jonction entre les propositions de Santé Canada et de Karen Glanz. On considérera l’environnement alimentaire comme les conditions dans lesquelles les consommateurs s’approvisionnent et consomment des aliments, tout en excluant l’étude de programmes ou de campagnes d’éducation en lien avec la nutrition.
2.2.1 – Modèle des environnements alimentaires communautaires

Le Modèle des environnements alimentaires communautaires (figure 2) a été développé en 2005 par l'équipe de Karen Glanz, avec pour objectif d’établir un point de départ à la conceptualisation des différentes variables de l'environnement alimentaire (Glanz et al. 2005). Le modèle inclut des facteurs ayant démontré, ou que l’on suppose, avoir une influence sur les comportements alimentaires. Il a servi de base pour opérationnaliser plusieurs études portant sur l’influence de l’environnement alimentaire sur les comportements d’achat, les habitudes alimentaires et la santé.

Figure 2 : Modèle des environnements alimentaires communautaires

Figure 1
Model of Community Nutrition Environments

<table>
<thead>
<tr>
<th>Policy Variables</th>
<th>Environmental Variables</th>
<th>Individual Variables</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Nutrition Environment</td>
<td>- Type & Location of Food Outlets (stores, restaurants)</td>
<td>- Accessibility: hours of operation, drive-through</td>
<td></td>
</tr>
<tr>
<td>Organizational Nutrition Environment</td>
<td>Home</td>
<td>School</td>
<td>Work</td>
</tr>
<tr>
<td>Consumer Nutrition Environment</td>
<td>- Available healthy options</td>
<td>- Price, promotion, placement</td>
<td>- Nutrition information</td>
</tr>
<tr>
<td>Information Environment</td>
<td>Media, Advertising</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sociodemographics</td>
<td>Psychosocial Factors</td>
<td>Eating Patterns</td>
<td></td>
</tr>
</tbody>
</table>

Ce modèle écologique est composé de quatre environnements alimentaires différents, soit les environnements communautaire, de consommation, organisationnel et de l’information. La séparation entre les environnements alimentaires communautaire et de consommation est relativement récente, mais correspond aux mesures traditionnellement prises par les chercheurs dans le but d’expliquer l’environnement alimentaire (Glanz 2009). Tous ces environnements sont influencés par les politiques.
gouvernementales et l’industrie et tous affectent le comportement alimentaire des consommateurs, que ce soit directement ou indirectement, en étant modulés par certaines variables individuelles.

Les auteurs du modèle souhaitaient par ailleurs mettre l’emphase sur les environnements communautaire et de consommation, qui ont été très peu étudiés et qui méritent selon eux que l’on s’y attarde davantage, dû à leur potentiel majeur d’influence sur les comportements alimentaires et la santé (Glanz et al. 2005). De nombreuses variables et méthodes de mesure ont été utilisées pour les décrire, ce qui complexifie grandement l’analyse et l’interprétation des études qui en traitent. Ces méthodes sont décrites plus en détail à la section 2.3 de cette revue de littérature, qui porte spécifiquement sur les défis méthodologiques de l’étude des environnements alimentaires. Les environnements organisationnels et de l’information sont décrits ci-dessous, mais ne seront pas considérés dans le présent projet.

2.2.1.1 – Environnement alimentaire communautaire

L’environnement alimentaire communautaire correspond à la distribution géographique des différentes sources d’approvisionnement alimentaire, c’est-à-dire le nombre, le type, l’emplacement et l’accessibilité aux commerces alimentaires, qu’il s’agisse de détaillants (dépanneurs, épiceries, supermarchés, commerces spécialisés) ou de restaurants. L’accessibilité réfère à la capacité à accéder aux commerces, que ce soit par le biais de la voiture, du transport en commun ou de la marche. On peut aussi y inclure les heures d’opération des commerces et la présence de service à l’auto.

2.2.1.2 – Environnement alimentaire de consommation

L’environnement alimentaire de consommation caractérise l’offre alimentaire et les éléments auxquels sont exposés les consommateurs à l’intérieur ou autour des commerces alimentaires. De nombreuses dimensions doivent être prises en considération afin d’en établir un portrait juste. Les auteurs du Modèle des
environnements alimentaires communautaires y incluent la disponibilité d’aliments sains, la variété de produits offerts, leur fraîcheur, leur prix, la promotion et la mise en marché des aliments, ainsi que l’information nutritionnelle disponible. Dans le cadre de ce projet, l’environnement alimentaire de consommation sera évalué à l’intérieur des supermarchés de quatre quartiers du sud-est de Montréal.

2.2.1.3 – Environnement alimentaire organisationnel

On définit l’environnement ou les environnements organisationnels comme des endroits accessibles à un groupe restreint d’individus plutôt qu’à toute une population. On y considère par exemple les cafétérias d’école, les milieux de travail, les hôpitaux, les églises ou encore la maison. Les aliments étant maintenant disponibles dans presque tous les milieux de vie, l’énumération précédente n’est évidemment pas exhaustive. De nombreuses études ont déjà porté sur les environnements alimentaires familiaux, scolaires ou en milieu de travail (Larson et Story 2009; McKinnon et al. 2009) et plusieurs interventions ont été mises en place, dont trois dans les établissements publics au Québec, afin de les améliorer (Alméras et al. 2007; Bérubé et al. 2009; Martin et al. 2014).

2.2.1.4 – Environnement de l’information et des médias

L’environnement de l’information fait référence à la publicité et au *marketing* des produits alimentaires diffusés dans les différents médias. Sa particularité repose sur le fait qu’il peut opérer autant au niveau local que national, voire international. Cet environnement est indépendamment influencé par les politiques gouvernementales et par les grandes tendances de l’industrie alimentaire et affecte à son tour les attitudes et croyances individuelles envers certaines pratiques alimentaires ou certains aliments. Le caractère unique de cet environnement et l’importance de sa portée, que ce soit sur les adultes ou les enfants, en font un sujet d’étude particulier, qui ne sera qu’effleuré dans le présent projet.
2.3 – Mesure de l’environnement alimentaire

L’étude de l’environnement alimentaire présente un potentiel important pour l’amélioration des habitudes de vie et de la santé des individus. Afin d’en tirer profit, il importe d’établir des mesures fiables et cohérentes pour caractériser et surveiller la qualité des différents environnements alimentaires. Une surveillance efficace et adéquate permettrait entre autres de classer et comparer les secteurs selon leur niveau d’accès aux aliments, d’en faire le suivi dans le temps, d’évaluer l’impact de l’environnement alimentaire local sur l’état de santé de la population et de sélectionner des programmes et politiques publiques appropriés pour l’améliorer (Ni Mhurchu et al. 2013). Cette section de la recension des écrits a pour objectif de décrire les mesures existantes des environnements alimentaires communautaire et de consommation. La recension des mesures de l’environnement alimentaire de consommation et l’analyse de la qualité métrologique des outils existants permettront d’identifier les mesures à prioriser dans le développement du MEAC-S.

De nombreux outils et méthodologies ont été développés pour caractériser les environnements alimentaires (McKinnon et al. 2009; Charreire et al. 2010; Ohri-Vachaspati et Leviton 2010; Glanz et al. 2016). On estime que plus d’un millier de variables différentes auraient été répertoriées (Ball et al. 2006b). Les méthodes préconisées diffèrent généralement en fonction de l’objectif poursuivi et de l’instigateur du projet, qu’il s’agisse d’un chercheur, d’un organisme communautaire, d’un groupe de défense des intérêts d’une population ou encore d’un institut gouvernemental (Glanz 2009) et seront plus ou moins exhaustives selon les ressources disponibles (Ni Mhurchu et al. 2013). L’absence de standardisation entre les mesures et le large éventail de variables et d’aliments inclus rendent difficile la comparaison entre les études et la synthèse des évidences (Glanz 2009; Lytle 2009; McKinnon et al. 2009; Glanz et al. 2016). On constate par exemple que les associations entre l’accessibilité aux aliments et aux commerces et les indicateurs individuels de santé varient selon la mesure utilisée.
Cette inconsistence souligne le besoin de raffiner les méthodes de recherche (Brug et al. 2006) et appelle plusieurs chercheurs à se prononcer sur la nécessité de valider de façon robuste les méthodes de mesure utilisées (Lytle 2009; McKinnon et al. 2009; Ni Mhurchu et al. 2013; Glanz et al. 2016).

2.3.1 – Définir le territoire

Le premier défi consiste à délimiter le territoire correspondant à l’environnement alimentaire des individus. La définition même de ce qui constitue un voisinage ou un territoire adéquat varie d’un auteur à l’autre et aucun consensus ne semble établi afin de situer leurs frontières de façon appropriée (Feng et al. 2010; Mercille et al. 2012). L’intérêt de cette question s’illustre pourtant dans le besoin de rattacher l’environnement alimentaire aux pratiques d’approvisionnement et aux habitudes alimentaires des individus qui y sont exposés (Diez Roux et Mair 2010).

Les approches pour définir les découpages géographiques varient en fonction du type d’étude. Certains projets visent à caractériser un territoire administratif comme un quartier ou une ville, tandis que d’autres veulent plutôt évaluer l’environnement alimentaire d’individus ou de groupes d’individus. Dans le premier cas, le découpage du territoire permettrait de comparer les secteurs entre eux, d’évaluer la nécessité ou la portée de politiques de zonage ou encore de planifier une intervention pour améliorer l’accès aux aliments, telle que l’implantation d’un nouveau commerce. Le choix des frontières ne dépend donc pas ou peu des individus qui les fréquentent, mais plutôt de découpages d’origine administrative. Dans le deuxième cas, l’individu se trouve à être le point central d’un périmètre défini selon les caractéristiques à l’étude, qu’il s’agisse des pratiques d’approvisionnement, des habitudes alimentaires ou d’indicateurs de santé. Il est alors impératif de considérer l’environnement auquel les individus ou les groupes d’individus sont réellement exposés, indépendamment des découpages administratifs. La majorité des chercheurs ont délimité cet environnement par le biais du voisinage immédiat des individus, les associant à leur quartier, leur secteur de recensement ou leur
code postal ou encore en positionnant leur résidence ou un proxy comme le point central d’une zone tampon (Charreire et al. 2010). Les zones tampons utilisées autour de la résidence varient de moins de 100 mètres à plus de 8 kilomètres selon les contextes.

L’utilisation de telles frontières pour estimer l’environnement alimentaire auquel les individus sont exposés présuppose toutefois qu’ils s’approvisionnent à l’intérieur des limites de celles-ci. Or, plusieurs études ayant questionné les pratiques d’approvisionnement de leurs participants tendent à démontrer que peu d’entre eux répondent à ce critère (Rose et Richards 2004; Moore et al. 2008; Morland et Filomena 2008; Laska et al. 2010a; Chaix et al. 2012; Drewnowski et al. 2012; Cannuscio et al. 2013; Lear et al. 2013; Aggarwal et al. 2014; Dubowitz et al. 2015b). Une revue de la littérature récente indique également que les études utilisant des zones tampon plus étendues perçoivent davantage d’associations significatives que celles utilisant un périmètre inférieur à 1,6 kilomètres autour de la résidence, suggérant que le voisinage immédiat pourrait être de moindre importance que le milieu élargi (Cobb et al. 2015b). Une majorité des études recensées dans cette revue proviennent toutefois des États-Unis. Il serait possible qu’un constat différent émerge d’études canadiennes ou européennes.

Afin de pallier à ces limites, l’équipe de Gustafson a développé une méthodologie permettant de mesurer les espaces d’activités, ou Daily activity space (DAS). Les participants portent un appareil GPS qui cartographie l’ensemble de leurs déplacements pendant une période définie. Les auteurs définissent le DAS comme le territoire couvert par les participants, en incluant un rayon de 0,8 kilomètre autour de leurs trajets (Gustafson et al. 2013a). D’autres chercheurs ont préféré questionner directement les participants sur leurs pratiques d’approvisionnement. L’environnement alimentaire de consommation étudié correspond alors réellement à celui auquel les participants sont exposés lorsqu’ils font leurs courses (Rose et al. 2009; Ghosh-Dastidar et al. 2014).

Dans le contexte de ce mémoire, les frontières géographiques utilisées pour la caractérisation de l’environnement alimentaire dans les commerces correspondent à la
région de tri d’acheminement (RTA), soit l’entité désignée par les trois premiers caractères d’un code postal. Les RTA à l’étude, situées en milieu urbain montréalais, ont une superficie d’environ deux à trois kilomètres carrés. Les commerces évalués sont géolocalisés selon leur code postal et les variables de l’environnement alimentaire de consommation sont ensuite agrégées par RTA.

2.3.2 – Mesure de l’environnement alimentaire communautaire

L’environnement alimentaire communautaire correspond à l’environnement bâti d’un secteur. L’accès aux commerces est utilisé comme proxy pour estimer l’accès aux aliments qui y sont offerts (Charreire et al. 2010). Le développement de systèmes d’information géographique (SIG) de plus en plus sophistiqués (Longley et al. 2005; Charreire et al. 2010) a offert aux chercheurs la possibilité de géolocaliser de façon précise les commerces disponibles sur un territoire donné.

Deux approches ont principalement été utilisées pour caractériser cet environnement, soit l’analyse de la disponibilité de commerces et l’évaluation de leur accessibilité pour les consommateurs. Les principaux indicateurs utilisés par les chercheurs dans ce domaine sont présentés dans le tableau I. Les mesures de disponibilité incluent l’évaluation de la présence et du nombre de commerces dans un secteur défini, tandis que les mesures d’accessibilité évaluent principalement la distance entre la résidence et le commerce le plus près, calculée par une ligne droite (distance euclidienne) ou via le réseau routier. Certains chercheurs ont aussi développé des indicateurs relatifs tels que la proportion de commerces « sains » par rapport aux commerces alimentaires totaux dans un secteur donné ou le Retail Food Environment Index (RFEI). Le RFEI mesure le nombre de restaurants minute et de dépanneurs par rapport au nombre de supermarchés, d’épiceries et de fruiteries sur un territoire donné. Plus son score est élevé, plus les commerces « non sains » sont proéminents sur le territoire. Une étude a aussi inclus les heures d’ouverture des commerces comme indicateur d’accessibilité.
Tableau I : Indicateurs et méthodes de mesure de l’environnement alimentaire communautaire

<table>
<thead>
<tr>
<th>Indicateurs</th>
<th>Définition/précisions</th>
<th>Méthodes de mesure</th>
<th>Exemples d’études ayant utilisé ces mesures</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPONIBILITÉ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Densité ajustée per capita (gén. 1000 habs.) dans unité administrative ou rayon autour résidence</td>
<td>Clary 2014, Jones-Smith 2013, Kestens 2012, Lamichlane 2012, Moore 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Densité ajustée selon la densité de noyau (Kernel density)</td>
<td></td>
</tr>
<tr>
<td>Indicateurs</td>
<td>Définition/précisions</td>
<td>Méthodes de mesure</td>
<td>Exemples d'études ayant utilisé ces mesures (Premier auteur, année)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Proéminence</td>
<td>Évalue l'exposition concomitante à différents types de commerces ou le type de commerce dominant dans l'environnement alimentaire des consommateurs</td>
<td>% de commerces sains et non sains</td>
<td>Mercille 2012, Sturm 2005,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Retail Food Environment Index (RFEI)</td>
<td>Gustafson 2013 (DAS), Minaker 2013, Spence 2009, Stark 2013, Truong 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance via le réseau routier</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance entre un proxy de la résidence et le commerce le plus proche</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance à vol d'oiseau</td>
<td>Inagami 2006, Michimi 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distance via le réseau routier</td>
<td>Zenk 2009</td>
</tr>
<tr>
<td>Heures d'ouverture</td>
<td>Période pendant laquelle les consommateurs peuvent avoir accès à des aliments</td>
<td>Nombre d'heures d'ouverture par semaine</td>
<td>Thornton 2010</td>
</tr>
</tbody>
</table>

Toutefois, selon les bases de données utilisées, la définition des types de commerces peut varier, complexifiant les comparaisons entre les études. De plus, il est nécessaire de confirmer les données obtenues par ce type de base de données avec une enquête sur le terrain puisque de nombreux commerces ferment ou ouvrent leurs portes sans que les bases ne soient mises à jour.

2.3.3 – Mesure de l’environnement alimentaire de consommation

L’environnement alimentaire de consommation réfère à l’offre alimentaire à l’intérieur des détaillants, correspondant à ce à quoi les individus sont exposés lorsqu’ils y font leurs achats. Les approches pour le mesurer sont multiples, que ce soit par le biais d’indicateurs individuels ou d’indices composites, et nécessitent de procéder à des observations systématiques dans les commerces étudiés. Celles-ci peuvent être réalisées en utilisant des listes de contrôle ou des questionnaires pour effectuer des mesures à l’intérieur des commerces. Ces diverses méthodes sont présentées dans le tableau II.
<table>
<thead>
<tr>
<th>Indicateurs</th>
<th>Définition/précisions</th>
<th>Méthodes de mesure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESSIBILITÉ PHYSIQUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disponibilité</td>
<td>Évalue la disponibilité d'aliments, généralement des fruits et légumes ou autres aliments sains, dans les commerces</td>
<td>Présence ou absence d'aliments à partir d'une liste, généralement des fruits et légumes ou aliments de meilleures valeurs nutritives</td>
</tr>
<tr>
<td>Variété</td>
<td>Évalue le nombre de choix disponibles par catégorie d'aliments</td>
<td>Décompte du nombre de variétés totales (ex : tous les fruits et légumes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caldwell 2009, Lear 2013, Sharkey 2010</td>
</tr>
<tr>
<td>Espace d'étalage</td>
<td>Évalue l'espace occupé par diverses catégories d'aliments dans les commerces</td>
<td>Longueur d'étalage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surface d'étalage (longueur X profondeur)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caldwell 2009, Pouliot 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Longueur d'étalage X hauteur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinkeles 2009</td>
</tr>
<tr>
<td>Indicateurs</td>
<td>Définition/précisions</td>
<td>Méthodes de mesure</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>ACCESSIBILITÉ FINANCIÈRE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indice de prix des boissons gazeuses, selon les données de l’ACCRA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix de la diète</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix relatif (ex: produit d’un aliment de meilleure valeur nutritive vs sa version régulière)</td>
</tr>
<tr>
<td>QUALITÉ (FRAÎCHEUR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualité</td>
<td>Évalue la fraîcheur des fruits et légumes frais dans les commerces</td>
<td>Fraîcheur (échelle allant de 1 à 3, 4 ou 5)</td>
</tr>
<tr>
<td>INDICE COMPOSITE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEMS-S</td>
<td>Donne un score global aux commerces suite à une évaluation de divers indicateurs</td>
<td>Mesure la disponibilité et la variété de fruits, légumes et d’aliments de meilleure valeur nutritive, la fraîcheur des fruits et légumes et le prix relatif des aliments de meilleures valeurs nutritives</td>
</tr>
<tr>
<td>Indicateurs</td>
<td>Définition/précisions</td>
<td>Méthodes de mesure</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>MISE EN VALEUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publicité ou éléments promotionnels</td>
<td>Évalue la présence d'éléments promotionnels visant à attirer l'attention des consommateurs</td>
<td>Présence de publicité ou de matériel promotionnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Échantillons</td>
</tr>
<tr>
<td>Positionnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Évalue la disposition des aliments dans le commerce et le positionnement dans des emplacements stratégiques ou plus passants</td>
<td>Positionnement en bouts d'allées, près des comptoirs-caisses ou dans des îlots promotionnels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positionnement à la hauteur des bras ou des yeux</td>
</tr>
<tr>
<td>Proéminence</td>
<td>Évalue l'exposition concomitante et l'intensité de l'exposition aux diverses catégories d'aliments dans le commerce</td>
<td>Catégorie d'aliments dominant visuellement à partir de l'entrée du commerce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ratio de la longueur d'étalage p/r à la surface totale de vente ou la taille du commerce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ratio de la longueur d'étalage d'une catégorie de produit p/r à une autre (ex: ratio FL/aliments HDE)</td>
</tr>
</tbody>
</table>
2.3.3.1 – *Aliments cibles*

Les aliments ciblés dans le développement des mesures correspondent généralement à ceux recommandés par les lignes directrices des différents pays pour lesquels existe un certain consensus sur la valeur nutritive, ou encore à des aliments communément consommés ou faisant partie de paniers standardisés comme le *Thrifty Food Plan* aux États-Unis ou le *Panier à provisions nutritif* du Dispensaire diététique de Montréal (Carlson et al. 2007a; McKinnon et al. 2009; DDM 2016). Plusieurs chercheurs ont utilisé les fruits et légumes et les aliments de meilleures valeurs nutritives (i.e. réduits en gras, en sodium ou en sucre; riches en fibres) dans le développement de leurs outils, mais peu ont considéré la notion de transformation des aliments. Considérant la nature changeante des recommandations en matière d’alimentation, une certaine flexibilité est requise afin que les outils d’évaluation puissent s’adapter au fil du temps (Gustafson et al. 2011a).

2.3.3.2 – *Proéminence et mesures relatives*

Tel qu’illustré dans le tableau II, encore peu d’études utilisent des mesures relatives de l’environnement alimentaire, bien que plusieurs chercheurs en soulignent l’intérêt. Les consommateurs n’étant pas exposés à des aliments de façon individuelle, l’utilisation de mesures relatives permet de tenir compte de cette exposition concomitante aux aliments de diverses catégories et diverses valeurs nutritives (Hutchinson et al. 2012). Thomas A. Farley explique par exemple que des mesures de proéminence comme le ratio de surface d’étalage permettent de décrire « le degré avec lequel des consommateurs ne cherchant pas d’items spécifiques peuvent tout de même les remarquer en magasin »¹ (Farley et al. 2009). Ces mesures relatives pourraient donc être davantage corrélées aux pratiques alimentaires des individus que les mesures absolues (Farley et al. 2009; Clary et al. 2015; Cobb et al. 2015b).

¹ Traduction libre de Farley et al. 2009.
2.3.3.3 – Indice composite

L’offre alimentaire à l’intérieur des commerces se décompose en plusieurs indicateurs, tel qu’on peut le constater au tableau II. L’utilisation d’un seul d’entre eux néglige l’influence potentielle des autres sur le choix des consommateurs. Afin de dresser un portrait global de la qualité de l’environnement alimentaire à l’intérieur d’un commerce, quelques chercheurs ont choisi d’utiliser un score de qualité qui intègre plusieurs indicateurs. À cette fin, le Nutrition environment measures survey in stores (NEMS-S), développé par Karen Glanz et ses collaborateurs, est de très loin l’outil de mesure le plus utilisé (Glanz et al. 2007, 2016). Il permet de mesurer la disponibilité, la longueur d’étalage, la variété et le prix de divers aliments regroupés en 10 catégories : lait, fruits, légumes, bœuf haché, saucisses à hot-dog, repas congelés, pâtisseries, boissons, pains et croustilles. Le score de qualité total se situe entre 0 et 50 et des points sont attribués selon le nombre de variétés de fruits et légumes et la disponibilité d’alternatives de meilleure valeur nutritive dans les autres catégories d’aliments, selon le prix de ces alternatives santé par rapport aux versions régulières et selon la fraîcheur des fruits et légumes frais (Glanz et al. 2007). Le NEMS-S a été adapté à différents contextes, dans plusieurs pays et à d’autres types de commerces que les supermarchés (Glanz et al. 2016). D’autres outils de mesure ont également été créés dans la même perspective (Rimkus et al. 2013 ; Black et al. 2014 ; Duran et al. 2015), mais ne semblent pas avoir été utilisés dans le contexte d’études explorant les associations entre l’environnement alimentaire de consommation et les comportements de santé.

2.3.4 – Qualité métrologique des outils de mesure

La qualité métrologique d’un outil réfère à son applicabilité, sa fidélité, inter-évaluateur et test-retest, ainsi qu’à sa validité, concepts provenant du domaine de la psychométrie. L’applicabilité d’un instrument de mesure correspond à la facilité avec laquelle un outil pourra être utilisé et aux ressources nécessaires pour son application, qu’elles soient de nature technique, temporelle, humaine ou financière. La fidélité désigne la reproductibilité des résultats lorsqu’ils sont colligés par deux ou plusieurs
évaluateurs (fidélité inter-évaluateur) ou encore par un même évaluateur à des moments distincts (fidélité test-retest). Quant à la validité, on peut en considérer trois types, soit la validité de contenu, la validité de construit et la validité critériée. Elles réfèrent respectivement à la représentativité de l’outil par rapport au construit mesuré, la capacité d’un outil à se comparer à une mesure établie et la capacité d’un outil à mesurer ce qu’il est supposé mesurer (Guilford et Fruchter 1973; Lytle 2009). La validité d’un outil se rapporte au contexte dans lequel il est utilisé et aux questions auxquelles il tente de répondre. La justesse des inférences que l’on en tire en dépend. Or, peu de chercheurs évaluent et rapportent la qualité métrologique des instruments qu’ils développent (Lytle 2009; Ohri-Vachaspati et Leviton 2010; Glanz et al. 2016; Plamondon et Paquette 2016).

Une récente revue des outils de mesure existants démontre que, sur la soixantaine d’instruments étudiés, près de la moitié ont été testés pour la fidélité inter-évaluateur, huit ont été testés pour la fidélité test-retest et seulement quatre ont été évalués pour leur validité. Les notions de validité rapportées par les chercheurs à l’origine de ces quatre outils concernent la « validité de construit » et ont été déterminées grâce à la capacité des outils à prédire la consommation alimentaire ou à faire une discrimination entre les différents types de commerces ou les quartiers de niveaux socioéconomiques différents (Plamondon et Paquette 2016). Ni la validité de contenu ni la validité critériée n’ont été explicitement évaluées.

L’évaluation de la validité critériée implique l’existence d’un outil considéré comme une référence. Le NEMS-S est l’outil ayant été adapté et utilisé le plus souvent pour étudier l’environnement alimentaire de consommation (Glanz et al. 2016). Sa fidélité inter-évaluateur s’est révélée excellente (Glanz et al. 2007). Les variables et les groupes d’aliments qu’il mesure sont toutefois limités et, puisque la validité d’un outil se rapporte au contexte dans lequel il est utilisé, il apparaît risqué de le considérer comme une référence universelle. Aucun consensus n’existe aujourd’hui quant à l’existence d’un instrument de mesure pouvant représenter une telle norme à laquelle les autres outils devraient se comparer (Ni Mhurchu et al. 2013; Plamondon et Paquette 2016).
La validité d’un outil s’établit de façon progressive par l’accumulation de preuves directes ou indirectes au fil de ses utilisations et d’apports théoriques sur le concept étudié. Malgré l’affluence de nouvelles études sur l’environnement alimentaire depuis les dernières décennies, les connaissances sur l’importance relative des facteurs environnementaux influençant les comportements et la santé restent limitées et souvent contradictoires (Cobb et al. 2015b). Davantage d’études seront nécessaires afin de mieux comprendre les mécanismes liant l’environnement alimentaire aux comportements et de consolider la base théorique sur laquelle s’appuie la notion de validité.

2.3.5 – Perceptions de l’environnement alimentaire

Certains chercheurs ont préféré caractériser l’environnement alimentaire à travers les perceptions des individus, par le biais de questionnaires ou d’entrevues. Les perceptions d’accessibilité aux aliments pourraient avoir un effet médiateur entre les mesures objectives de l’environnement alimentaire et les comportements des individus (Glanz et al. 2005). Certaines études rapportent effectivement une association entre l’environnement perçu et les habitudes alimentaires ou des indicateurs de santé des individus, particulièrement chez des groupes de faible statut socioéconomique (Zenk et al. 2005a; Giskes et al. 2007; Inglis et al. 2008; Moore et al. 2008; Caldwell et al. 2009; Sharkey et al. 2010; Dean et Sharkey 2011; Caspi et al. 2012a; Gustafson et al. 2012). Les mesures des perceptions qu’ont les individus de leur environnement alimentaire ne sont toutefois pas systématiquement corrélées aux mesures objectives (Hermstad et al. 2010; Gustafson et al. 2011b; Williams et al. 2012; Minaker et al. 2013) et une étude récente n’a pas réussi à observer de façon significative cet effet médiateur des perceptions conceptualisé par Glanz et ses collègues (Minaker et al. 2013). Une limite importante des études impliquant des mesures de perception réside dans le biais de même source, suggérant que les individus qui suivent une meilleure diète sont plus à même de remarquer les aliments sains dans leur quartier (Moore et al. 2008). Dans le cadre de ce mémoire, seules des mesures objectives de l’environnement alimentaire seront colligées.
2.4 – Environnement alimentaire, alimentation, poids et santé

L'intérêt de la recherche sur les environnements alimentaires communautaires et de consommation réside dans leur potentiel d’influence sur les habitudes alimentaires et la santé des consommateurs (Lovasi et al. 2009; Giskes et al. 2011; Gustafson et al. 2011a; Caspi et al. 2012b; Odoms-Young et al. 2016). Ces environnements constituent la structure dans laquelle sont prises une grande partie des décisions reliées à l’alimentation, telles que l’achat d’aliments pour un ménage. En délimitant les choix qui s’offrent aux consommateurs, cette structure joue forcément un rôle de facilitateur ou de barrière dans leurs décisions d’acheter et de consommer certains aliments (Lytle 2009).

2.4.1 – Environnement alimentaire communautaire, habitudes alimentaires et santé

La géolocalisation des commerces permet depuis quelques décennies de faire le pont entre les caractéristiques de l’environnement alimentaire communautaire et des mesures de santé ou de comportements alimentaires (Charreire et al. 2010). Cette section présente les principaux résultats de recherche concernant la relation entre la proximité ou la densité de commerces, les habitudes alimentaires et la santé.

2.4.1.1 – Proximité des commerces

L’accessibilité physique aux aliments, et subséquemment l’achat et la consommation de ceux-ci par les consommateurs, est tributaire de l’accessibilité aux commerces. L’hypothèse testée par les chercheurs dans ce domaine veut que l’accessibilité aux commerces « sains » soit associée à une diète de meilleure qualité et à un risque inférieur d’être en surpoids ou obèse, alors que l’accessibilité aux commerces « non sains » aurait l’effet inverse.

En accord avec cette hypothèse, une enquête nationale effectuée aux États-Unis auprès de plus de 800 000 adultes révélait qu’en région métropolitaine, la distance entre
la résidence et le supermarché le plus proche était inversement associée à la consommation de fruits et légumes et positivement associée à la prévalence d’obésité (Michimi et Wimberly 2010). Des études menées en milieu urbain ont aussi observé des associations positives entre la proximité des supermarchés et la qualité de l’alimentation, notamment chez des femmes (Thornton et al. 2010), des femmes enceintes (Laraia et al. 2004) et des ménages à faible revenu (Rose et Richards 2004). La proximité des supermarchés a aussi été positivement reliée à la satisfaction à l’égard de l’accès aux fruits et légumes chez des individus de faible statut socioéconomique (Zenk et al. 2009b) et la consommation de fruits a été associée aux heures d’ouverture des commerces (Thornton et al. 2010). En milieu rural, la distance d’un supermarché a été inversement associée à la consommation de fruits et légumes chez des adultes (Dean et Sharkey 2011) et à la consommation de légumes chez des personnes âgées (Sharkey et al. 2010). Par ailleurs, l’IMC a été inversement associé à la proximité d’un supermarché (Minaker et al. 2013) et du lieu principal d’approvisionnement (Chaix et al. 2012; Ghosh-Dastidar et al. 2014; Dubowitz et al. 2015b). Dans un désert alimentaire de Pittsburgh, pour chaque mile de distance supplémentaire, les chances d’être obèse augmentaient de 5% (Ghosh-Dastidar et al. 2014).

La proximité des supermarchés semble également reliée à la qualité de la diète et au poids des enfants, mais les mécanismes sous-jacents pourraient différer de ceux observés chez les adultes. Par exemple, l’accessibilité à un supermarché a été associée à la qualité de la diète (Lamichhane et al. 2012), mais aussi à la consommation de boissons sucrées (Laska et al. 2010b). De même, la distance du supermarché le plus près de la résidence a été positivement associée au risque de surpoids (Liu et al. 2007) et à l’IMC (Carroll-Scott et al. 2013; Fiechtner et al. 2015), mais une étude menée sur des enfants obèses a plutôt observé une association inverse (Fiechtner et al. 2013). Deux mécanismes pourraient être proposés pour expliquer ces résultats divergents. D’une part, la proximité des commerces augmente la disponibilité d’aliments sains autour de la résidence et en facilite l’achat par le ou les adultes responsables dans le ménage. D’autre part, les enfants et adolescents possèdent souvent un peu d’argent, leur permettant de
s’y approvisionner sans être accompagnés de leurs parents. Or, les aliments achetés dans ces circonstances correspondent souvent à des aliments de haute densité énergétique, tels que des boissons gazeuses et des grignotines. À cet égard, la distance des commerces pourrait donc exercer un effet protecteur sur le poids des enfants (Laska et al. 2010b).

En ce qui concerne les dépanneurs, leur proximité a été associée à une diminution de 25% des chances de suivre les apports recommandés en légumes chez des adultes (Pearce et al. 2008) et inversement associée à la préférence et la consommation de fruits et légumes chez des jeunes garçons (Jago et al. 2007). Une meilleure accessibilité à ce type de commerces a aussi été associée à l’IMC et au tour de taille chez les femmes (Minaker et al. 2013) et à l’IMC chez les enfants, particulièrement ceux issus de familles à faible revenu (Fiechtner et al. 2015) ou de minorités ethniques (Jilcott et al. 2011).

À l’opposé, plusieurs chercheurs n’ont pas observé d’association entre la proximité des commerces et les habitudes alimentaires ou le poids (Pearson et al. 2005; Bodor et al. 2008; Williams et al. 2010; Block et al. 2011; Cerin et al. 2011; Gustafson et al. 2011b; Drewnowski et al. 2012; Lear et al. 2013; Aggarwal et al. 2014; Le et al. 2016) ou ont même révélé des associations inverses aux hypothèses (Wang et al. 2007; Timperio et al. 2008; Fiechtner et al. 2013; Gantner et al. 2013). Il importe toutefois de tenir compte des pratiques d’approvisionnement des consommateurs. Très peu d’individus s’approvisionnent dans le commerce le plus proche, voire dans leur secteur de recensement ou leur RTA. On a estimé que de 14 à 50% des individus seulement font leurs courses dans le supermarché le plus proche de leur résidence, une majorité d’entre eux utilisant leur voiture pour accéder au commerce de leur choix (Rose et Richards 2004; Moore et al. 2008; Morland et Filomena 2008; Chaix et al. 2012; Lear et al. 2013; Aggarwal et al. 2014; Dubowitz et al. 2015b). De plus, on a constaté que dans les grands centres urbains, plusieurs consommateurs choisiraient de s’approvisionner auprès de petites épiceries, réduisant ainsi l’importance de la proximité des supermarchés sur le développement des pratiques alimentaires (Zenk et al. 2005a; Bodor et al. 2008). Dans ces circonstances, la disponibilité, la qualité, la proéminence ou le prix des aliments dans
les commerces semblent influer autant sinon davantage sur le choix du lieu d’approvisionnement que la distance à parcourir (Casagrande et al. 2011; Chaix et al. 2012; Drewnowski et al. 2012; Cannuscio et al. 2013; Dubowitz et al. 2015b).

En résumé, l’accessibilité aux commerces, de par leur proximité ou la disponibilité de transport adéquat pour y accéder, constitue vraisemblablement une condition de base pour avoir accès aux aliments. Toutefois, la variabilité observée entre les résultats obtenus suggère l’intervention d’autres facteurs dans la relation entre l’accessibilité aux commerces et la qualité de la diète ou le poids, tels que l’intensité de l’exposition aux commerces de divers types et l’offre alimentaire à l’intérieur de ceux-ci.

2.4.1.2 – Densité de commerces

La densité de supermarchés et autres commerces « sains » autour de la résidence a été à de nombreuses reprises associée à une diète de meilleure qualité (Morland et al. 2002a; Moore et al. 2008; Gustafson et al. 2013b), notamment à une plus grande consommation de fruits et légumes (Morland et al. 2002a; Zenk et al. 2009a; Powell et Han 2011b) et à un meilleur suivi des recommandations concernant les apports en gras, particulièrement dans la population afro-américaine (Morland et al. 2002a). Elle a également été inversement associée à l’IMC et au risque de surpoids ou d’obésité dans la population adulte en général (Morland et al. 2006a; Lopez 2007; Brown et al. 2008; Morland et Evenson 2009; Rundle et al. 2009; Zick et al. 2009; Bodor et al. 2010; Cerin et al. 2011; Roth et al. 2013; Stark et al. 2013) et plus spécifiquement chez les femmes (Thornton et al. 2010), les femmes ménopausées (Dubowitz et al. 2012) et les femmes en situation de pauvreté (Powell et Han 2011a). Une telle association a aussi été observée chez des enfants et adolescents (Powell et al. 2007b; Auld et Powell 2009; Jennings et al. 2011), particulièrement chez les enfants afro-américains, chez ceux à risque de surpoids ou d’obésité (Powell et al. 2007b; Auld et Powell 2009) et chez les enfants de familles à faible revenu (Powell et Chaloupka 2009). De plus, la densité de supermarché a été positivement associée à un meilleur état de santé auto-rapporté (Brown et al. 2008) et
inversement associée à la tension artérielle diastolique (Dubowitz et al. 2012), au taux de mortalité précoce et à la prévalence de diabète de type 2 (Ahern et al. 2011).

Lorsque la densité d’épiceries est évaluée indépendamment des supermarchés, la direction des associations semble toutefois s’inverser. Une seule étude a rapporté une plus grande consommation de fruits chez des adultes ayant accès à de petites épiceries autour de leur résidence (Bodor et al. 2008). La densité d’épiceries a plutôt été inversement associée à la consommation de fruits et légumes chez les jeunes adultes (Powell et al. 2009) et positivement associé à l’IMC et à la prévalence d’obésité chez des femmes (Wang et al. 2007) et des adultes en milieu urbain (Morland et Evenson 2009; Gibson 2011; Hutchinson et al. 2012).

En ce qui concerne la densité de dépanneurs, elle a été inversement associée à la consommation de fruits et légumes chez les enfants (Timperio et al. 2008) et positivement associée à une hausse de la prévalence d’obésité et de surpoids chez les adultes (Morland et al. 2006b; Morland et Evenson 2009; Bodor et al. 2010; Prince et al. 2012) et chez les enfants et adolescents (Powell et al. 2007b; Laska et al. 2010b; Leung et al. 2011), particulièrement chez ceux de minorités ethno-culturelles ou provenant de familles à faible revenu (Galvez et al. 2009; Powell et Chaloupka 2009). De plus, une analyse de l’état de santé dans l’ensemble des États-Unis a permis d’observer une association positive entre la densité de dépanneurs par comté et la prévalence d’obésité, mais aussi le taux de mortalité et la prévalence de diabète de type 2 (Ahern et al. 2011).

Il importe également de souligner les nombreuses études qui n’ont pas observé d’association entre la densité de différents types de commerces à proximité de la résidence et la consommation de fruits et légumes (Ball et al. 2006a; Jago et al. 2007; Powell et al. 2009; Williams et al. 2010; An et Sturm 2012), la qualité de la diète (Laraia et al. 2004; Murakami et al. 2009, 2010; Boone-Heinonen et al. 2011), l’IMC ou la prévalence de surpoids ou d’obésité (Galvez et al. 2009; Gary-Webb et al. 2010; Murakami et al. 2010; Ford et Dzewaltowski 2011; Prince et al. 2012; Bader et al. 2013;

Quelques hypothèses pourraient permettre d’expliquer cette disparité entre les résultats d’une étude à l’autre. D’une part, le niveau socioéconomic des individus et des milieux et l’accès à un moyen de transport adéquat pourraient agir comme médiateurs de la relation entre la densité de commerces et les comportements alimentaires. Le niveau socioéconomic des quartiers a été à maintes reprises associé aux types de commerces qui y sont situés. Les résidents des quartiers les plus favorisés ont généralement davantage accès aux supermarchés, alors que les résidents de quartiers défavorisés ont une plus grande accessibilité aux dépanneurs, aux restaurants minute et aux petites épiceries (Chung et Myers 1999; Morland et al. 2002b; Horowitz et al. 2004; Zenk et al. 2005b; Morland et al. 2006a; Morland et Filomena 2007; Powell et al. 2007c; Franco et al. 2008; Ball et al. 2009; Larson et al. 2009; Bodor et al. 2010; Thornton et al. 2010; Black et al. 2014). À Montréal, par exemple, une étude a montré que les détaillants alimentaires situés en secteur défavorisé étaient 226% plus petits que ceux situés dans les secteurs les plus favorisés, et que la moitié d’entre eux étaient des dépanneurs (Blanchard 2012).

D’autre part, l’exposition concomitante des individus à des commerces de qualité variable pourrait également contribuer à expliquer ces écarts. Quelques études nord-américaines ont observé une association positive entre la proéminence de commerces « non sains », mesurée par le RFEI, et la prévalence d’obésité (Babey et al. 2008; Spence et al. 2009; Stark et al. 2013) et le tour de taille (Minaker et al. 2013). À l’inverse, la proportion de commerces sains a été positivement associée à la consommation de fruits et légumes (Clary et al. 2015) et inversement associée à une diète de type « western », caractérisée par une forte consommation de viande rouge et transformée, de pommes de terre, de sucreries et de grains raffinés (Mercille et al. 2012). Cette deuxième association
devient toutefois non significative sur le plan statistique lorsqu'ajustée pour les caractéristiques du voisinage. L'étude de Clary et ses collaborateurs (2015) souligne que les mesures relatives d'exposition aux commerces alimentaires ont été reliées de façon plus consistante aux habitudes alimentaires que les mesures absolues. Les auteurs suggèrent de traiter la diversité de commerces dans l’environnement des individus comme une compétition entre les différents choix alimentaires qui s’offrent à eux. L’utilisation de mesures décrivant l’accessibilité à un seul type de commerce fait fi de cette compétition et pourrait expliquer partiellement l’absence d’association entre l’accès aux commerces et les habitudes alimentaires observée dans certaines études.

2.4.1.3 – Type de commerce

De plus, si le fait de s’approvisionner dans un supermarché a été associé à la qualité de la diète et à la consommation de fruits et légumes (Rose et Richards 2004; Zenk et al. 2005a; Inagami et al. 2006), tous les supermarchés ne sont pas égaux. Ceux-ci diversifient leur offre de produits en fonction de leur emplacement géographique et de leur clientèle. Les supermarchés à escomptes offrent généralement moins de produits frais et plus de produits secs ou en conserve (Hawkes 2008) et mettent davantage en valeur les confiseries (Piacentini et al. 2000). Les individus s’approvisionnant dans ce type de supermarchés présenteraient d’ailleurs un IMC, un tour de taille et un risque d’obésité plus élevés que ceux qui font leurs courses dans des supermarchés réguliers ou hauts de gamme (Chaix et al. 2012; Drewnowski et al. 2012).

L’intérêt pour l’étude de l’environnement alimentaire communautaire se développe de façon exponentielle depuis les dernières années. Le bagage d’études publiées sur le sujet semble démontrer une tendance favorable aux hypothèses du Modèle des environnements alimentaires communautaires (Glanz et al. 2005) en ce qui a trait à la relation entre l’accessibilité aux commerces, les habitudes alimentaires et certains indicateurs de santé. Toutefois, la variété des mesures utilisées et l’hétérogénéité des milieux dans lesquels ces études sont réalisées limitent notre capacité à en tirer des conclusions claires. Par ailleurs, si l’accessibilité aux commerces représente une condition minimale pour accéder aux aliments, elle ne donne aucune indication quant à leur réelle disponibilité, leur variété, leur prix, leur qualité et leur mise en valeur. Ces indicateurs pourraient permettre de mieux comprendre comment l’accès aux commerces affecte les comportements alimentaires et la santé et plusieurs chercheurs pressent aujourd’hui la communauté scientifique à s’y intéresser davantage (Gustafson et al. 2011a; Caspi et al. 2012b; Lucan 2015; Fuller et al. 2016; Le et al. 2016).
2.4.2 – Environnement alimentaire de consommation, habitudes alimentaires et santé

Les premières études suggérant l’existence d’une association entre l’environnement alimentaire de consommation et les achats n’ont pas été conduites dans une perspective de santé publique, mais plutôt de marketing. On y observait l’influence de divers éléments du « marketing mix » sur les ventes d’aliments en supermarchés, dans le but de comprendre comment maximiser les profits. Ces études ont su démontrer le potentiel majeur de stratégies telles que l’augmentation de la surface d’étalage, le positionnement et la réduction du prix des aliments pour orienter le choix des consommateurs et augmenter les ventes (Frank et Massy 1970; Curhan 1972, 1974; Chevalier 1975; Wilkinson et al. 1982). Bien qu’ayant une visée mercantile, ces études ont vraisemblablement inspiré les chercheurs en santé publique dans le développement de leurs travaux sur l’environnement alimentaire et la santé.

Depuis les années 2000, plus d’une cinquantaine d’études basées sur des mesures de l’environnement alimentaire de consommation ont été publiées, illustrant l’intérêt grandissant pour ce sujet de recherche (Gustafson et al. 2011a). Nombre d’entre elles suggèrent l’existence d’une association significative entre divers indicateurs de la qualité de l’environnement alimentaire dans les commerces et la consommation de fruits et légumes, la qualité de la diète, le poids, l’IMC ou le tour de taille (Giskes et al. 2011; Gustafson et al. 2011a; Caspi et al. 2012b; Odoms-Young et al. 2016).

2.4.2.1 – Disponibilité, variété et surface d’étalage

La disponibilité des aliments dans l’environnement alimentaire des consommateurs constitue une condition essentielle pour que ceux-ci puissent en faire l’acquisition. Il est suggéré que la variance dans la disponibilité d’aliments d’un milieu ou d’un commerce à l’autre explique en partie la variance de leur consommation par les individus. La disponibilité de fruits et légumes dans les commerces a effectivement été associée à une plus grande consommation chez les adultes en milieu urbain (Thornton et
al. 2010; Izumi et al. 2011) et rural (Sharkey et al. 2010). La disponibilité de fruits, de légumes et d’aliments de meilleure valeur nutritive à proximité de la résidence a aussi été positivement associée à la qualité de la diète (Franco et al. 2009; Minaker et al. 2013) et inversement associée au risque de surpoids (Hosler 2009; Cerin et al. 2011).

Quelques études ont rapporté des observations contraires aux attentes, mais comportaient quelques failles méthodologiques. À Baltimore, la disponibilité d’aliments sains a été inversement associée à la qualité de la diète chez les adultes (Casagrande et al. 2011) et positivement associée à l’IMC des résidents de secteurs à prédominance caucasienne (Casagrande et al. 2011). Toutefois, 83% des participants résidant dans un secteur avec une faible disponibilité d’aliments sains ont rapporté utiliser leur voiture pour faire les courses, contrairement à 55% des résidents de secteurs avec une grande disponibilité (Casagrande et al. 2011). Dans un milieu rural de l’état de New York, la disponibilité d’aliments sains a aussi été associée au risque de surpoids et d’obésité chez des femmes enceintes (Gantner et al. 2013), mais les auteurs de l’étude soulignent que l’évaluation de l’offre d’aliments sains n’a pas tenu compte de l’offre concomitante d’aliments de haute densité énergétique, pourtant systématiquement plus élevée.

Reprenant le concept d’élasticité de la surface d’étalage étudiée par Curhan (Curhan 1972, 1974), plusieurs chercheurs ont suggéré que la variété d’aliments et la surface d’étalage qu’ils occupent dans les commerces influencent davantage les comportements que leur simple disponibilité. Des associations ont effectivement été observées entre la surface d’étalage, la variété et la consommation de fruits et légumes frais (Caldwell et al. 2009; Martin et al. 2012), entre la longueur d’étalage, la variété et la consommation de légumes (Bodor et al. 2008), entre la surface d’étalage de lait partiellement écrémé, de viande rouge et de pain de blé entier et la qualité de la diète (Cheadle et al. 1991) et entre la surface d’étalage et la consommation de lait partiellement écrémé, par opposition au lait entier (Fisher et Strogatz 1999). De telles associations ont aussi été observées avec des produits de haute densité énergétique. Une plus grande surface d’étalage de croustilles et pop corn, de biscuits et pâtisseries, de
bonbons et de boissons gazeuses a été positivement associée au poids et à l'IMC de résidents du Sud-Est de la Louisiane (Rose et al. 2009). La disponibilité relative de fruits et légumes par rapport aux aliments de haute densité énergétique a toutefois été inversement associée à la prévalence d'embonpoint et d'obésité chez ces mêmes résidents (Hutchinson et al. 2012).

À la lumière de la littérature actuelle, il semble probable que la disponibilité des aliments influence le choix des consommateurs de se les procurer et de les consommer, bien que quelques études n’aient pas observé de relation entre la disponibilité et la consommation de fruits et légumes (Edmonds et al. 2001; Zenk et al. 2009a; Gustafson et al. 2011b; Thornton et al. 2011) ou la qualité globale de la diète, l'IMC et le tour de taille (Minaker et al. 2013). Les mesures de disponibilité, de variété ou de surface d’étalage dédiées aux diverses catégories d’aliments ne sont pas toutes suffisamment sensibles pour discriminer les commerces et les secteurs selon leur offre d’aliments (Giskes et al. 2007; Blanchard 2012) et, alors que les aliments sains et les aliments de haute densité énergétique sont disponibles de façon concomitante à l’intérieur des commerces, peu de chercheurs en ont tenu compte. Ces lacunes méthodologiques limitent la capacité des chercheurs de détecter des associations entre la disponibilité d’aliments et les habitudes alimentaires des consommateurs. Par ailleurs, malgré la disponibilité des aliments, tous les individus n’ont pas les mêmes ressources pour se les procurer. Le statut socioéconomique et diverses autres caractéristiques individuelles, telles que la possession d’une voiture ou les connaissances nutritionnelles, influencent certainement la capacité de certains à sortir de leur environnement immédiat pour se procurer des aliments sains ou à faire des choix favorables dans un environnement qui l’est moins.

2.4.2.2 – Prix des aliments

La relation entre le prix des aliments et leur consommation est pour le moins mitigée selon les différents contextes des études. Le prix représente l’un des principaux déterminants des choix alimentaires (Glanz et al. 1998; Chung et Myers 1999; Yeh et al.
Une hypothèse cohérente voudrait que le prix des aliments sains, tel que les fruits et légumes, soit inversement associé à leur consommation et à la qualité de la diète (Drewnowski 2004). Quelques études appuient effectivement cette hypothèse, alors que d’autres suggèrent plutôt le contraire ou alors ne perçoivent pas de relation entre le prix des aliments, les habitudes alimentaires et le poids.

Aux États-Unis, plusieurs chercheurs ont utilisé les données de l'American Chamber of Commerce Researchers Association (ACCRA) afin d’observer les relations entre le prix des aliments, la qualité de la diète et des indicateurs de santé chez diverses populations. Différents indices découlent des données de l’ACCRA, dont le Fruit and Vegetable Price Index (FVPI), calculé annuellement dans plus de 300 villes ou régions métropolitaines américaines. Des analyses de régression multivariée intégrant des données sociodémographiques provenant d'enquêtes nationales ont permis d’observer une association inverse entre le prix et la consommation de fruits et légumes chez les enfants (Powell et al. 2007a) et les jeunes adultes (Powell et al. 2009), mais pas chez les adultes (Beydoun et al. 2008). Chez les enfants et adolescents, le FVPI a aussi été inversement associé à la consommation de fibres (Beydoun et al. 2008, 2011). De plus, les données provenant de l’ACCRA ont permis d’observer une association inverse entre le prix annuel moyen des boissons gazeuses et la consommation de ces produits, autant chez les enfants que les adolescents et les adultes. Pour chaque augmentation de 10% du prix moyen, la consommation régulière de boissons gazeuses diminuait de 3,4%, 4,6% et 4,0% respectivement et l’apport calorique en faisait autant (Wada et al. 2015).

Le FVPI a par ailleurs été positivement associé à l’IMC chez les enfants (Sturm et Datar 2005, 2008; Auld et Powell 2009; Powell et Bao 2009; Powell et Chaloupka 2009; Beydoun et al. 2011) et les adolescents (Sturm et Datar 2005, 2008; Auld et Powell 2009; Powell et Bao 2009; Powell et Chaloupka 2009), avec un effet plus important chez les enfants de famille à faible revenu (Sturm et Datar 2005, 2008; Powell et Bao 2009; Powell et Chaloupka 2009), dont la mère est peu éduquée (Sturm et Datar 2005, 2008; Powell et Bao 2009), ou chez les enfants à risque d’être en surpoids (Sturm et Datar 2005,
Deux études longitudinales ont aussi rapporté une relation robuste et positive entre le FVPI et l'augmentation de l'IMC des enfants de la maternelle à la 5e année (Sturm et Datar 2005, 2008). En ce qui concerne les adultes, Powell et Han ont observé une association positive entre le FVPI et l'IMC chez les femmes, avec un effet plus important pour les femmes de plus faible statut socioéconomique (Powell et Han 2011a).

Plusieurs études n'ont toutefois pas observé de relation entre le prix des aliments et la qualité de la diète des jeunes adultes (Powell et al. 2009) et des adolescents (Powell et Han 2011b), ou encore entre le FVPI, le prix annuel moyen des boissons gazeuses et la prévalence d'obésité chez les jeunes adultes (Han et Powell 2011). D'autres encore ont plutôt observé des associations contraires aux hypothèses, telles qu'une association positive entre le FVPI et la qualité de la diète chez les adultes (Beydoun et al. 2008). Dans le même sens, le FVPI a été inversement associé à la consommation de sodium et de sucre chez les enfants et adolescents (Beydoun et al. 2008, 2011), au risque de surpoids (Powell et al. 2007a) et à l’IMC (Beydoun et al. 2011) des adolescents et à la prévalence d’obésité et à l’IMC chez les adultes (Beydoun et al. 2008).

L'ensemble des études réalisées à l'échelle locale, pour lesquelles les prix ont été objectivement mesurés dans les commerces, n'appuient pas ou même contredisent l'hypothèse voulant que le prix des aliments sains soit inversement associé à la qualité de la diète. Aucune association n'a été observée entre le prix et la consommation de fruits, de légumes et d'aliments santé au Royaume-Uni (Pearson et al. 2005), à Détroit (Zenk et al. 2009a) ou à Brisbane, en Australie (Giskes et al. 2007). Le prix moyen des fruits et légumes a été associé à leur consommation chez les femmes (Thornton et al. 2010) et à une plus grande hausse de leur consommation par des participants à une étude d'intervention nutritionnelle (Caldwell et al. 2009). Le prix quotidien de la diète a aussi été positivement associé à la consommation de fruits et légumes (Aggarwal et al. 2014) et à la qualité de la diète (Aggarwal et al. 2011) et inversement associé à la densité énergétique de celle-ci (Aggarwal et al. 2011). De surcroît, plusieurs études ont rapporté une association inverse entre le prix des aliments et le poids. À Washington, une étude a
observé que les clients de supermarchés où le prix d’un panier d’aliments est moyen ou élevé, comparativement aux clients de supermarchés où le prix est le plus faible, avaient respectivement 23% et 62% moins de risque d’être obèses (Drewnowski et al. 2012). Des résultats semblables ont été obtenus dans un désert alimentaire de Pittsburgh (Ghosh-Dastidar et al. 2014), à Vancouver (Lear et al. 2013) et à Waterloo, où le prix des aliments a été inversement associé à l’IMC et au tour de taille des adultes (Minaker et al. 2013).

Face à ces résultats hétérogènes, certains auteurs avancent l’hypothèse selon laquelle l’association positive entre le prix et la qualité de la diète serait le reflet du coût plus élevé des aliments sains dans certains contextes et commerces (Powell et al. 2007c; Cannuscio et al. 2013; Duran et al. 2013). Le coût total de la diète des individus qui choisissent des aliments sains malgré leur prix plus élevé est inévitablement supérieur, mais ce coût reflèterait une diète de meilleure qualité. À cet égard, le coût de la diète pourrait jouer le rôle de médiateur sur le lien entre le statut socioéconomique des individus et la qualité de leur alimentation (Aggarwal et al. 2011). Le prix des aliments pourrait également être représentatif d’autres éléments de l’environnement alimentaire dans les commerces, tels que le marketing des aliments ultra-transformés, la variété et la qualité des aliments disponibles (Aggarwal et al. 2011; Ghosh-Dastidar et al. 2014).

L’effet du prix des aliments sur les habitudes alimentaires et la santé est particulièrement difficile à cerner. Les prix sont toujours évalués dans leur absolu, alors que le prix relatif pourrait être plus important pour les consommateurs. Une analyse de l’évolution des supermarchés dans le temps suggère que les consommateurs cherchent à acheter les aliments ayant la meilleure valeur pour leur prix, mais qu’ils ne connaissent généralement pas leur prix absolu. Ils procèderaient plutôt par comparaison du prix des produits entre eux ou avec le prix des mêmes produits dans les semaines précédentes pour faire un choix (Hawkes 2008).
Par ailleurs, tous les consommateurs n’ont pas le même pouvoir d’achat face à un prix uniforme. Reid et ses collègues observaient par exemple que le prix d’un panier nutritif coûtait 7% moins cher dans le quartier le plus défavorisé de Glasgow que dans le quartier le plus aisé. Il y a toutefois fort à parier que la différence de revenu entre les deux quartiers représente beaucoup plus que 7% (Reid et al. 1997). De plus, il semblerait que la sensibilité au prix des fruits et légumes soit fortement modulée par le niveau de revenu et d’éducation des individus (Powell et al. 2009). À la lumière de la littérature actuelle, il apparaît très probable que le prix des aliments ait une incidence majeure sur les choix alimentaires des consommateurs, mais les mécanismes modulant cette association diffèrent certainement d’une population et d’un milieu à l’autre.

2.4.2.3 – Mise en valeur, promotion et éducation nutritionnelle au point de vente :

L’étude du comportement des consommateurs en épicerie suggère que la promotion des aliments constitue un facteur déterminant dans la prise de décision d’achat et l’achat impulsif d’aliments (Glanz et Mullis 1988). Une étude réalisée auprès de 4200 consommateurs dans 14 villes américaines a constaté que les facteurs d’exposition à l’environnement ou au contexte, tels que le type de courses effectuées (provisions pour la semaine ou achats d’appoint), le nombre d’allées visitées ou le type d’étalages présents dans le commerce, ont joué un rôle plus important dans le processus décisionnel des consommateurs que les facteurs d’ordre individuel au moment de l’achat. Près de 60% des achats effectués en supermarché étaient non planifiés et, sans surprise, le nombre de décisions d’achat prises dans le commerce était plus élevé pour les produits situés en bouts d’allées et près des caisses que pour les produits disposés dans les allées. Par ailleurs, plus le nombre d’allées visitées par les clients était élevé et, par le fait même, la fréquence d’exposition aux produits installés en bout d’allée, plus le nombre de décisions d’achat prises dans le commerce était important (Inman et al. 2004). La file de clients en attente aux caisses a par ailleurs été qualifiée d’« auditoire captif » dû à son exposition prolongée aux publicités et aux produits sur les étalages, incitant les clients à effectuer des achats impulsifs et influençant indirectement les tendances de vente (Bennett 1998).
Malgré le potentiel majeur d'augmentation des ventes grâce au « marketing mix », peu d'études incluent des mesures de positionnement ou de mise en valeur des produits. Celles qui l'ont fait semblent pourtant confirmer les patrons décisionnels observés par Inman (Inman et al. 2004). Par exemple, Kerr et ses collègues ont observé que la disposition d'aliments de haute densité énergétique dans des emplacements proéminents du commerce tels que les îlots et les bouts d'allées, particulièrement ceux du côté des caisses, était significativement associée à l'achat de ces aliments, mais aussi inversement associée à l'achat de fruits et légumes (Kerr et al. 2012).

Quelques interventions ayant eu lieu dans des supermarchés aux États-Unis ont aussi mis en évidence l'effet de la mise en valeur des produits sur les ventes. L'augmentation de l'offre de produits de meilleure valeur nutritive, leur signalisation, l'augmentation du nombre de façades, le positionnement des produits au niveau des yeux et des bras ou à des emplacements secondaires en bouts d'allées ou sur des îlots, l'offre d'échantillons et de cartes de recettes, la publicité dans les circulaires ainsi que des visites en épiceries ont eu pour effet de faire augmenter les ventes des produits sains mis en valeur (Foster et al. 2014; Surkan et al. 2016). L'appel au sens du toucher aurait également su influencer les décisions d'achat des consommateurs. Une affiche indiquant « Feel the freshness » a été positionnée au-dessus des étalages de pêches et de nectarines et a eu pour effet d'en augmenter significativement les ventes, en encourageant les achats impulsifs (Peck et Childers 2006). Les auteurs de cette étude ont suggéré que les éléments provoquant des réactions affectives et sensorielles seraient plus susceptibles d'influencer les décisions d'achat que des éléments nécessitant un processus réflexif. Les résultats obtenus lors de ces interventions sont intéressants pour la promotion de la saine alimentation, mais pour l'instant, rien n'a indiqué que les comportements d'achat observés perdureraient dans le temps si celles-ci devenaient permanentes. Par ailleurs, la promotion des choix sains par le biais de matériel éducatif au point de vente plutôt que par des stratégies de positionnement ne semble pas avoir eu d'effet significatif sur les comportements d'achat (Cheadle et al. 1991; Mhurchu et al. 2010).
Dans une revue de l’évolution des supermarchés depuis les années 1980, Corinna Hawkes a défini la mise en place de stratégies agressives de promotion comme l’une des caractéristiques fondamentales de ce type de commerce (Hawkes 2008). La disposition des produits, la surface d’étalage et les promotions, telles que des réductions temporaires de prix, sont étudiées soigneusement de façon à optimiser les ventes de chaque catégorie de produit et à maximiser les ventes totales (Curhan 1972; Chevalier 1975; Hawkes 2008; Andreyeva et al. 2011). La disposition d’aliments de haute densité énergétique dans des emplacements stratégiques repose sur le calcul du ratio de profit par rapport à l’espace occupé par les produits (Piacentini et al. 2000). Ces produits faisant souvent l’objet d’achats impulsifs, étant hautement profitables et occupant peu d’espace, les commerçants ont tout intérêt à les disposer en bout d’allée, près des caisses et sur des îlots promotionnels afin de maximiser leurs profits. La littérature témoigne d’ailleurs de l’efficacité de telles mesures.

2.4.2.4 – Qualité globale de l’environnement alimentaire (NEMS-S):

Les sections précédentes mettent en évidence l’intérêt d’utiliser plusieurs indicateurs pour étudier la relation entre l’environnement alimentaire de consommation, les comportements alimentaires et la santé. Pourtant, assez peu d’études ont utilisé un score de qualité globale de l’environnement alimentaire tel que celui obtenu avec le NEMS-S. La majorité des résultats obtenus avec cet outil semble toutefois renforcer les associations observées en étudiant chacun des indicateurs de façon indépendante.

Le score NEMS-S dans le supermarché principal d’approvisionnement a été inversement associé au risque de consommer des boissons sucrées (Gustafson et al. 2013a) et positivement associé à la consommation de légumes et à la variété dans l’alimentation (Gustafson et al. 2013b). Une étude en milieu rural n’a pas observé d’association entre le score NEMS-S des commerces autour de la résidence et la consommation totale de gras, mais le score a été adapté pour trois catégories d’aliments seulement, soit le lait, le bœuf haché et les saucisses à hot-dog (Hermstad et al. 2010). En
ce qui concerne le poids, le score NEMS-S dans les supermarchés et épiceries à proximité de la résidence a été inversement associé au risque d’être obèse ou en surpoids chez les préadolescents (Le et al. 2016) et chez les adultes (Cerin et al. 2011). Au Paraguay, la portion « disponibilité » du NEMS-S a été inversement associée à l’IMC moyen des ménages, mais pas le score global (Gartin 2012).

2.4.3 – État des connaissances

Des études marketing aux études plus récentes sur l’environnement alimentaire, la littérature scientifique sur le sujet semble jusqu’à présent favorable au Modèle des environnements alimentaires communautaires (Glanz et al. 2005). Bien que la majorité des études soient de nature transversale et que des divergences importantes persistent quant au contexte ou aux méthodes de mesure utilisées (McKinnon et al. 2009; Ni Mhurchu et al. 2013; Glanz et al. 2016), les diverses composantes de l’environnement alimentaire étudiées semblent jouer un rôle dans le façonnement des habitudes alimentaires et de la santé des individus. L’accessibilité et l’exposition aux différents commerces alimentaires, mais surtout la disponibilité, la qualité, le prix et la mise en valeur des aliments que l’on y retrouve contribuent à déterminer leurs pratiques d’approvisionnement et subséquemment leur alimentation et leur santé.

Certains pourraient être tentés de soulever que l’offre alimentaire dans les commerces répond simplement aux demandes des consommateurs et que ceux-ci sont peu ou pas intéressés par les aliments sains. Un sondage mené en 2015 par le groupe CROP pour le compte du Programme Melior indique pourtant que plus du tiers de la population québécoise avait l’intention d’améliorer la qualité de son alimentation au cours de l’année à venir et que près de 90% des répondants affirmaient manger santé souvent ou tout le temps (Actualité Santé 2016). De plus, si la relation entre l’environnement alimentaire et les habitudes individuelles est certainement bidirectionnelle, les décisions des commerçants quant à la disponibilité, la disposition ou le prix des produits sont liées principalement au désir de gestion efficiente de la surface

Dans le cadre des modifications apportées au programme spécial SNAP pour les femmes, enfants et nourrissons (WIC) aux États-Unis (USDA 2017), les commerçants ayant l’attestation du programme ont dû procéder à des modifications dans leur offre alimentaire. Ils ont entre autres dû intégrer des fruits et légumes frais, du pain de blé entier et du lait partiellement écrémé à leur offre habituelle. Alors que les bénéficiaires du programme WIC ont initialement semblé résister à cette nouvelle offre, les commerçants ont rapporté avoir observé des modifications positives dans les choix alimentaires de leurs clients. Ils ont également constaté une hausse des achats de fruits et légumes frais et surtout, une augmentation de l’achalandage dans leur commerce (Gittelsohn 2012). Les quelques études d’intervention ayant modifié l’offre et la mise en valeur des produits sains à l’intérieur de supermarchés témoignent aussi de cette modification de la demande suivant une amélioration de l’environnement alimentaire dans le commerce (Mhurchu et al. 2010; Foster et al. 2014).

On observe inévitablement une certaine hétérogénéité dans la réponse individuelle à l’environnement alimentaire (Odoms-Young et al. 2016). Aux États-Unis principalement, les communautés noires ou de minorités ethniques et les individus de faible statut socioéconomique ou résidant dans des secteurs de faible niveau socioéconomique semblent davantage affectés par la qualité de leur environnement alimentaire immédiat (Morland et al. 2002a; Powell et al. 2007b; Babey et al. 2008; Beydoun et al. 2008; Sturm et Datar 2008; Franco et al. 2009; Powell et al. 2009; Powell et Bao 2009; Powell et Chaloupka 2009; Zenk et al. 2009a; Sharkey et al. 2010; Aggarwal et al. 2011; Powell et Han 2011b, 2011a; Wada et al. 2015). Les individus ayant accès à une voiture élargissent l’environnement alimentaire auquel ils ont accès et ont donc un meilleur contrôle sur le choix de leur lieu principal d’approvisionnement et subséquemment, sur la qualité des aliments qu’ils y achètent (Morland et al. 2002a; Powell et al. 2007b; Babey et al. 2008; Beydoun et al. 2008; Sturm et Datar 2008; Franco
2.5 – Enjeux nutritionnels et alimentaires au Québec et au Canada

Les changements structurels observés dans l’alimentation des Québécois s’inscrivent dans une tendance mondiale (Swinburn et al. 2011; Monteiro et al. 2013), mais il importe de définir les enjeux spécifiques auxquels la province fait face. On observe des modifications majeures du type d’aliments consommés et de la répartition des calories ingérées selon les groupes alimentaires. Les produits ultra-transformés occupent une part grandissante de notre assiette (Moubarac et al. 2014; Moubarac et Batal 2016), tandis que des aliments frais comme les fruits et légumes sont toujours insuffisamment consommés par les Québécois (Blanchet et al. 2009). Deux angles d’analyse nous permettent de bien comprendre l’étendue des enjeux nutritionnels et alimentaires au Québec, soit la comparaison avec les recommandations du Guide alimentaire canadien pour manger sainement (GAC) et l’analyse du niveau de transformation de nos aliments.

2.5.1 – Exploration des enjeux par le biais du GAC

Afin de permettre aux adultes canadiens de mener une vie saine et active, Santé Canada propose, par le biais du GAC, une répartition des aliments à consommer selon 4 groupes, soit les Légumes et fruits, les Produits céréaliers, les Laits et substituts et les Viandes et substituts. Toutefois, les données de l’Enquête sur la santé dans les collectivités canadiennes (ESCC) 2.2 réalisée en 2004\(^2\) ont rapporté que seulement 3% des Québécois avaient des apports correspondant aux recommandations (Blanchet et al. 2009).

2.5.1.1 – Légumes et fruits

La plus récente version du GAC, parue en 2007, recommande aux adultes canadiens de consommer de 7 à 10 portions de légumes et fruits par jour, en privilégiant les produits frais plutôt que les jus. Le guide précédent, paru en 1992, en recommandait

\(^2\) La plus récente ESCC a eu lieu en 2015. Les nouvelles données seront disponibles en 2017 seulement.
plutôt 5 à 10 par jour. Les données de l’ESCC 2.2 indiquaient qu’en 2004, les apports moyens de légumes et de fruits des adultes canadiens correspondaient tout juste au nombre minimal de portions recommandées et que 39% des adultes québécois n’atteignaient pas ce minimum (Blanchet et al. 2009). Par ailleurs, ces données incluaient les fruits et légumes frais et transformés, 44% des apports de fruits étant sous forme de jus et 9% des apports de légumes sous forme de pommes de terre frites. Le contenu important en gras et en sel des pommes de terre frites rend discutable leur catégorisation parmi les légumes, tout comme l’absence de fibres et le contenu élevé en sucres libres des jus de fruits amène plusieurs experts à repenser leur inclusion dans la catégorie des légumes et fruits (WHO 2015). En retirant ces aliments transformés, la consommation moyenne de fruits et légumes observée dans le cadre de l’ESCC 2.2 correspondait à 1,3 portion de fruits et 3,1 portions de légumes (Blanchet et al. 2009).

On constate assez aisément que cette consommation moyenne ne respecte pas les recommandations actuelles, ni même celles du GAC de 1992 alors en vigueur. De plus, les enquêtes de surveillance de la consommation ne semblent pas indiquer que les apports en fruits et légumes aient augmenté depuis 2004. Une analyse des données commerciales a démontré qu’au Québec, les ventes de fruits et légumes en volume n’ont pas augmenté entre 2006 et 2010. La part du budget alimentaire alloué aux fruits et légumes, d’environ 18%, est également restée stable pendant cette période (Blanchet et al. 2014).

2.5.1.2 – Produits laitiers, Produits céréaliers et Viandes et substituts

Parmi les autres groupes alimentaires, le groupe des produits laitiers est celui pour lequel les recommandations étaient le moins bien suivies selon l’ESCC2.2. En effet, 65,6% de la population ne consommait pas le nombre minimal de portions recommandées dans le GAC, autant dans sa version 1992 que 2007 (Blanchet et al. 2009). Les apports en calcium et vitamine D, principalement retrouvés dans les produits laitiers, étaient d’ailleurs insuffisants pour tous les groupes d’individus à l’étude, selon les recommandations de l’Institut de médecine américain (Institute of Medicine 2011).
En ce qui concerne les produits céréaliers, près des deux tiers de la population suivaient les recommandations du GAC de 1992, avec une consommation médiane de 5,7 portions (Blanchet et al. 2009). Le nombre minimal de portions recommandées étant passé de cinq à six par jour dans le GAC de 2007, on peut supposer qu’une majorité de la population répondrait toujours aux nouvelles recommandations. Toutefois, on observe que le pain blanc et les biscuits et gâteaux représentaient respectivement 20% et 14% des produits céréaliers consommés (Blanchet et al. 2009). Cette place importante qu’occupent les grains raffinés dans l’alimentation des Québécois se reflète dans les apports en fibres, qui sont inférieurs à l’apport suffisant pour l’ensemble des groupes étudiés, l’apport médian correspondant environ à la moitié des apports recommandés.

Finalement, le nombre de grammes de viandes ou de leurs substituts à consommer chaque jour est généralement bien respecté parmi la population québécoise, avec un apport médian de 187g par jour, situé pile au centre de la fourchette d’apports recommandés.

2.5.1.3 – Autres aliments

La catégorie Autres aliments regroupe des aliments de faible valeur nutritive, ne faisant pas partie des quatre groupes présentés précédemment. Parmi ceux-ci, notons les sucreries, confiseries et desserts, les boissons gazeuses et les grignotines, représentant à eux seuls près de 10% des calories consommées quotidiennement par les québécois. La veille de l’ESCC 2.2, les sucrés, confiseries et desserts avaient été consommés par 70% des adultes québécois, les boissons gazeuses par 38% et les grignotines par 17% (Blanchet et al. 2009). Cette catégorie d’aliments occupait une part importante de l’assiette des Québécois, représentant 24% des calories, 23% des glucides, 29% des lipides et 30% du sodium de la diète moyenne. La consommation de ces aliments avait d’ailleurs augmenté de 87% entre 1990 et 2004 (Blanchet et al. 2009), alors qu’elle devrait plutôt être limitée, voire évitée.
2.5.2 – Exploration des enjeux par le biais du niveau de transformation alimentaire

Une récente étude a démontré l’impact négatif de la consommation d’aliments ultra-transformés sur la qualité nutritionnelle de la diète. Au Québec, la fraction de la diète composée d’aliments ultra-transformés est 2,5 fois plus dense en énergie que la fraction composée de tous les autres groupes d’aliments, en plus de contenir significativement plus de glucides, de sucres libres et de sodium et significativement moins de fibres, de protéines et de plusieurs vitamines et minéraux. Les plus grands consommateurs de produits ultra-transformés consomment d’ailleurs significativement moins de fruits et légumes, de fibres et de protéines et plus de sucres libres que ceux qui en consomment le moins (Moubarac et Batal 2016).

Or, les aliments ultra-transformés représentaient 47% des calories consommées au Québec en 2004, alors qu’il s’agissait plutôt de 5% en 1938, 22% en 1953, 35% en 1984 et à 43% en 2001 (Moubarac et Batal 2016). La consommation d’aliments ultra-transformés atteint des niveaux similaires au Canada, représentant 48% des calories ingérées (Moubarac et Batal 2016) et plaçant le pays au deuxième rang des plus grands consommateurs de produits ultra-transformés au monde (PAHO 2015). En plus des conséquences exposées précédemment, une telle augmentation du niveau de
transformation alimentaire dans la diète modifie inévitablement la place qui est accordée aux autres groupes alimentaires qui devraient composer notre assiette.

2.5.3 – Enjeux alimentaires et statut socioéconomique

Des associations ont été observées entre les habitudes alimentaires et certaines caractéristiques socioéconomiques. Le niveau de scolarité a été associé à la consommation de fruits et légumes (Blanchet et al. 2009) et on a observé que les individus les plus scolarisés étaient les moins grands consommateurs de produits ultra-transformés (Moubarac et Batal 2016). On a aussi constaté que les personnes de plus faible revenu consommaient significativement moins de fruits et légumes que ceux dont le revenu est le plus élevé (Blanchet et al. 2009), mais le niveau de revenu n’a pas semblé associé à la consommation de produits ultra-transformés. Toutefois, les données de l’ESCC ont aussi démontré que, peu importe le niveau de scolarité ou de revenu, la consommation moyenne de fruits et légumes ne dépassait pas 6,4 portions par jour, soit légèrement sous les recommandations du GAC (Blanchet et al. 2009), et les aliments ultra-transformés fournissaient un minimum de 40% de l’apport énergétique (Moubarac et Batal 2016).

Par ailleurs, le niveau socioéconomique et l’environnement alimentaire du quartier ont été associés avec les comportements alimentaires et la santé des individus, indépendamment du statut socioéconomique individuel (Babey et al. 2008; Beydoun et al. 2008; Powell et Chaloupka 2009; Sharkey et al. 2010; Aggarwal et al. 2011) et il a été suggéré que l’accessibilité aux aliments dans un quartier contribue aux inégalités sociales de santé (Dubowitz et al. 2008).
Chapitre 3. Problématique et objectifs du mémoire

Malgré l’intérêt grandissant pour l’étude des déterminants environnementaux des comportements alimentaires, les connaissances sur l’environnement alimentaire de consommation au Québec sont encore parcellaires (Minaker et al. 2016). Des mesures de disponibilité, de longueur d’étalage et de variété ont été colligées à l’intérieur de commerces de l’île de Montréal et de la région de Québec (Bertrand et al. 2006; Pouliot 2008; Blanchard 2012; Bertrand et al. 2013) et le Dispensaire diététique de Montréal calcule trois fois par année le prix du Panier à provisions nutritif à Montréal (DDM 2016). Toutefois, aucune évaluation exhaustive de l’environnement alimentaire de consommation, incluant à la fois des mesures de disponibilité, de variété, de qualité, de prix et de mise en valeur des aliments, n’a été réalisée. Ce manque de connaissances limite notre capacité à surveiller l’évolution des environnements alimentaires dans le temps, à classifier les villes et les quartiers selon leur niveau d’accès aux aliments sains et à sélectionner de façon appropriée les programmes et politiques publiques visant à améliorer cet accès selon les besoins propres à chaque secteur (Slater et al. 2009; Ni Mhurchu et al. 2013).

Par ailleurs, peu d’instruments de mesure ont été validés et aucun ne l’a été spécifiquement pour le contexte québécois (Plamondon et Paquette 2016). De plus, aucun d’entre eux ne considère l’ensemble des facettes de l’environnement alimentaire de consommation. Aucune norme d’excellence n’a d’ailleurs été établie de façon consensuelle pour mesurer l’offre alimentaire dans les détaillants, ni pour déterminer les aliments à inclure dans cette mesure (Plamondon et Paquette 2016). Le NEMS-S a démontré à plusieurs reprises sa capacité à prédire des comportements alimentaires ou à établir une discrimination entre les types de commerces et les quartiers (Glanz et al. 2007) et il pourrait être considéré comme un instrument de référence dans les contextes où il a été validé (Glanz et al. 2016). Son contenu, visant principalement à refléter les recommandations et les pratiques alimentaires aux États-Unis, semble toutefois peu
approprié dans le contexte québécois. D’une part, la mesure de la variété de fruits et légumes, réalisée à partir d’une courte liste de 10 fruits et 10 légumes, visait à établir une distinction entre les épiceries et les dépanneurs, mais ne permet pas de faire une discrimination entre les épiceries et les supermarchés, ni entre les différents supermarchés (Blanchard 2012). D’autre part, la notion de mise en valeur des aliments n’y est pas abordée, malgré son importance dans le processus décisionnel des consommateurs en épicerie (Inman et al. 2004). Finalement, les aliments à l’étude ne permettent pas de répondre aux enjeux actuels en matière d’alimentation au Québec. Sur 11 groupes d’aliments étudiés, plus de la moitié correspondent à des aliments transformés ou ultra-transformés, dans leur version régulière ou de meilleure valeur nutritive, soit les saucisses à hot-dog, les repas congelés, les pâtisseries, les croustilles, les boissons gazeuses, les jus de fruits et le pain (Glanz et al. 2007). L’attribution de points pour la présence et le coût d’achat inférieur de ces aliments lorsqu’ils sont disponibles en version de meilleure valeur nutritive réduit les aliments à la somme de leurs nutriments et met de côté leur niveau de transformation et le contexte dans lequel ils sont consommés.

En réponse à ces constats, l’objectif principal de ce projet est de **développer et valider un outil d’évaluation de l’environnement alimentaire de consommation** adapté aux enjeux alimentaires du Québec. Développé spécifiquement pour l’étude des supermarchés, le MEAC-S :

1) permettra de discriminer les supermarchés entre eux selon la qualité de leur environnement alimentaire;
2) sera facile d’application, fiable et valide dans le contexte urbain de Montréal.

L’objectif secondaire de ce projet est de **caractériser l’environnement alimentaire de consommation** dans les supermarchés de quatre quartiers de Montréal, à l’aide du MEAC-S. La revue de la littérature scientifique permet de poser comme hypothèse que :

1) l’offre d’aliments sains tels que les fruits et légumes sera plus abondante dans les commerces à plus grande surface.
2) l’offre d’aliments ultra-transformés surpassera tout de même l’offre d’aliments sains, que ce soit en terme de quantité ou de mise en valeur, et ce, dans l’ensemble des commerces.
Chapitre 4. Méthodologie

Tel que présenté au chapitre 2, les méthodes d'évaluation de l'environnement alimentaire sont nombreuses et aucune n’a jusqu’à présent été validée dans le contexte québécois. Il a donc été jugé nécessaire de développer un nouvel outil répondant aux enjeux alimentaires de la province de façon spécifique, le MEAC-S, présenté à l’annexe A. Ce chapitre présente les principaux éléments du développement du MEAC-S, incluant les pré-tests dont il a fait l'objet et l'évaluation de sa fidélité, et décrit la collecte de données dans les quartiers de Montréal. Le détail des variables et des méthodes de mesure utilisées se trouve dans l’article présenté au chapitre 5.

4.1 – Développement du MEAC-S

Cinq critères principaux ont guidé le développement du MEAC-S et ont contribué à lui conférer sa forme finale :

1. L'outil doit permettre d'évaluer l'environnement alimentaire en fonction des enjeux nutritionnels et alimentaires du Québec ;
2. Il est nécessaire d'y intégrer plusieurs indicateurs de l'environnement alimentaire de consommation ;
3. Il doit permettre de développer des mesures relatives de disponibilité des diverses catégories d'aliments ;
4. L'évaluation doit permettre de faire une discrimination entre les supermarchés selon la qualité de leur environnement alimentaire ;
5. Les ressources nécessaires à son application doivent être minimisées et la collecte de données doit être facile et rapide à exécuter.
4.1.1 – Produits alimentaires à l’étude

Le choix des aliments étudiés s’est basé principalement sur les enjeux alimentaires actuels au Québec, décrits précédemment. Les catégories d’aliments ciblés, soient les produits ultra-transformés et les fruits et légumes, représentent des aliments dont l’aspect favorable ou défavorable à la santé obtient un certain consensus au sein de la communauté scientifique. Ces deux grandes catégories d’aliments s’illustrent donc dans le MEAC-S, en plus des produits prêts-à-manger préparés par les commerçants.

4.1.1.1 – Fruits et légumes

Les fruits et légumes ont été inclus sous toutes leurs formes, qu’ils soient frais, en conserve, congelés ou prêts-à-manger, tels que les crudités ou les salades préparées par les commerçants, afin d’illustrer toute la gamme de produits offerts aux consommateurs. Les 8 fruits et légumes les plus vendus au Québec selon des données de vente colligées par la compagnie Nielsen (Communication personnelle, Paquette MC), soit les pommes, les bananes, les fraises, les oranges, les tomates, les carottes, la laitue et les concombres, ont été sélectionnés à des fins de calcul du prix moyen pour une portion. Dû à leur popularité, on peut aussi s’attendre à ce qu’ils soient disponibles dans l’ensemble des supermarchés, facilitant la collecte de données.

4.1.1.2 – Produits prêts-à-manger préparés sur place

Les produits prêt-à-manger préparés par les commerçants forment une catégorie d’aliments au profil extrêmement variable, ne permettant pas de les catégoriser comme aliments sains avec les fruits et légumes, ni comme aliments à éviter avec les aliments ultra-transformés. Tous les produits préparés à l’intérieur des commerces sont inclus, allant de la salade de légumineuses aux frites en passant par le poulet BBQ et le bar à sandwiches.
4.1.3 – Produits ultra-transformés

Trois groupes d’aliments représentent les produits ultra-transformés, soit les croustilles et autres grignotines salées, les boissons gazeuses et eaux pétillantes sucrées ou édulcorées et les repas congelés. Ces trois catégories d’aliments sont omniprésentes dans les supermarchés du Québec et à elles seules, elles composent environ 10% des achats effectués dans les supermarchés de la province en 2013-2014 (Communication personnelle, Paquette MC). Pour chacun de ces groupes, le produit le moins cher, selon le prix par 100 grammes ou par deux litres, ainsi qu’un produit standard ont été considérés dans l’évaluation. Les produits standards utilisés étaient le format régulier (180g) de croustilles Lay’s®, le format individuel (286g) de lasagne Stouffer’s® et le format de deux litres de Coca-Cola®. Par souci de praticité et pour limiter le temps de collecte, la décision a été prise de se limiter aux trois catégories énumérées ci-haut.

4.1.2 – Variables et méthodes de mesure

Les variables ayant été retenues pour inclusion dans le MEAC-S, ainsi que les méthodes de mesure sélectionnées sont présentées dans le tableau III à la page suivante. Des précisions sur ces variables sont apportées dans l’article présenté au chapitre 5 et une description détaillée de la procédure à suivre pour recueillir des données avec le MEAC-S se trouve dans le Guide d’utilisation développé conjointement à l’outil, disponible à l’annexe B.
Tableau III : Variables et méthodes de mesure inclues dans le MEAC-S

<table>
<thead>
<tr>
<th>Variable</th>
<th>Définition</th>
<th>Méthode de mesure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESSIBILITÉ PHYSIQUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variété</td>
<td>Quantifie la variété d'options d'achat qui s'offrent aux consommateurs</td>
<td>Décompte du nombre total de variétés et de formats d'achat disponibles pour chaque catégorie d'aliment</td>
</tr>
<tr>
<td>Longueur</td>
<td>Représente la distance sur laquelle un consommateur peut être en contact avec</td>
<td>Mesure de la longueur totale sur laquelle un aliment est accessible, que ce soit sur une ou plusieurs façades d'un étalage</td>
</tr>
<tr>
<td>d'étalage</td>
<td>une catégorie d'aliments</td>
<td>Mesurée à tous les emplacements de vente d'un même aliment</td>
</tr>
<tr>
<td>Qualité</td>
<td>Représente le niveau de fraîcheur des produits disponibles</td>
<td>Évaluation visuelle, olfactive et au toucher de la fraîcheur des fruits et légumes sur une échelle de -1 à 1</td>
</tr>
<tr>
<td>ACCESSIBILITÉ FINANCIÈRE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prix</td>
<td>Estime le coût moyen des aliments pour le consommateur</td>
<td>Prix par portion pour les fruits et légumes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix pour 100g pour les repas congelés et les croustilles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix pour deux litres de boissons gazeuses</td>
</tr>
<tr>
<td>PROÉMINENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio variété</td>
<td>Quantifie l'exposition simultanée des consommateurs aux aliments favorables ou défavorables</td>
<td>Division du nombre de variétés de fruits et légumes par le nombre de variétés de plats congelés, de croustilles et de boissons gazeuses</td>
</tr>
<tr>
<td>Ratio longueur</td>
<td>Division de la longueur d'étalage associée aux fruits et légumes</td>
<td>Division de la longueur d'étalage associée aux plats congelés, de croustilles et de boissons gazeuses</td>
</tr>
<tr>
<td>d'étalage</td>
<td>et défavorables</td>
<td></td>
</tr>
<tr>
<td>MISE EN VALEUR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rappels</td>
<td>Décompte du nombre de fois où un produit est retrouvé à l'extérieur de son site principal de vente</td>
<td></td>
</tr>
<tr>
<td>Positionnement stratégique</td>
<td>Décompte du nombre de positions stratégiques (bouts d'allées, caisses, comptoir de prêt-à-manger) occupées par des fruits et légumes ou par des croustilles, boissons gazeuses et confiseries</td>
<td></td>
</tr>
<tr>
<td>Publicité</td>
<td>Décompte du nombre de matériel publicitaire (affiches, présentoirs) faisant la promotion de fruits et légumes ou d'aliments ultra-transformés</td>
<td></td>
</tr>
</tbody>
</table>

Contrairement à d'autres outils, tels que le NEMS-S, la compilation des données de toutes les variables pour déterminer un score global de qualité par commerce n’a pas été retenue pour le MEAC-S.

3 Un document utilisé pour calibrer la longueur d'un pas est disponible à l'annexe C.
4.2 – Pré-tests

Au mois de mars 2015, le MEAC-S a fait l’objet de pré-tests dans cinq commerces du quartier Villeray de Montréal afin de vérifier son applicabilité et ajuster sa forme et son contenu. Des commerces de différentes tailles ont été sélectionnés dans le but de représenter la diversité de situations dans lesquelles l’évaluation de l’environnement alimentaire pourrait être effectuée. Les visites ont été réalisées par une seule évaluateur et ont duré entre 15 et 90 minutes, pour une moyenne d’environ 45 minutes par commerce. Puisqu’aucune permission n’a été sollicitée auprès des commerçants, la collecte de données était effectuée en ayant l’outil imprimé comme une liste d’épicerie, panier au bras, et de petits achats ont été faits dans chaque commerce. Malgré ces précautions, l’évaluateur a été interpellé par des placeurs ou un gérant dans trois commerces sur cinq et la collecte a été interrompue dans l’un des commerces dû à l’interférence de placeurs. Les résultats des pré-tests sont présentés à l’annexe D.

4.2.1 – Ajustements apportés à l’outil

Les ajustements apportés au MEAC-S suite à ces pré-tests concernaient principalement le visuel du questionnaire, afin de le rendre plus pratique à utiliser lors des collectes de données. La durée d’évaluation ne dépassant pas une heure par commerce, la quantité d’informations à colliger a été jugée adéquate et réaliste.

4.2.1.1 – Mise en commun des fruits et légumes

Initialement séparés, les fruits et légumes frais ont été rassemblés en une seule et même catégorie afin de faciliter l’évaluation de la variété et de la longueur d’étalage. Effectivement, ceux-ci sont souvent entremêlés, ce qui en complexifiait le décompte.

4.2.1.2 – Restructuration de la section d’évaluation de la mise en valeur

Dans la première version du MEAC-S, la mise en valeur des aliments était évaluée de manière qualitative seulement, ne permettant pas de quantifier l’ampleur de
l’exposition aux aliments de haute densité énergétique dans le commerce. Cette portion de l’outil concernant particulièrement le positionnement stratégique en magasin a été simplifiée. Les emplacements stratégiques ont été mieux définis et des cases « à cocher » ont remplacé une section de type « commentaire » servant à noter les observations, permettant ainsi de mieux quantifier le nombre d’emplacements stratégiques occupés par des aliments ultra-transformés ou par des fruits et légumes.

4.2.1.3 – Modification des critères d’inclusion pour l’évaluation de la variété de repas congelés

La variable de variété visait initialement à inclure l’ensemble des produits congelés prêt-à-manger, tel que les repas individuels, mais aussi les repas familiaux et les produits en vrac qui emplissent la section des surgelés. Or, la diversité de produits congelés offerts a été largement sous-estimée, de même que leur étalement à toute l’étendue du commerce. De nombreuses répétitions des mêmes produits se retrouvent à plusieurs endroits dans le commerce, complexifiant la collecte de données. Afin de remédier à cette situation, dans la version finale du MEAC-S, la variété de repas congelés n’inclut que les repas congelés en portions individuelles et ceux-ci sont dénombrés uniquement à leur site principal de vente.

4.3 – Fidélité du MEAC-S

Le MEAC-S a été évalué pour sa fidélité inter-évaluateur et sa fidélité test-retest. À cette fin, six supermarchés ont fait l’objet de deux évaluations. La première, réalisée pendant la collecte de données présentée à la section suivante, a été effectuée par une évaluatrice au mois de juin 2015. La deuxième a eu lieu en novembre 2015, soit 5 mois plus tard. Elle a été effectuée par la première évaluatrice et par une collègue, toutes deux nutritionnistes, qui ont évalué les mêmes commerces dans la même journée.

La fidélité inter-évaluateur et la fidélité test-retest d’un instrument de mesure sont déterminées par des analyses statistiques de corrélation intra-classe. La fidélité
inter-évaluateur reflète la capacité d’un outil à obtenir des résultats comparables lorsqu’administré par deux évaluateurs au même moment. Pour le MEAC-S, elle a été évaluée en comparant les résultats obtenus par les deux évaluateuses lors de la deuxième période d’évaluation. La fidélité test-retest reflète plutôt la capacité d’un outil à produire des résultats cohérents dans le temps. Elle a été analysée en comparant les résultats obtenus avec le MEAC-S par la première évaluatrice lors des deux périodes d’évaluation.

4.4 – Collecte de données

La collecte de données s’est déroulée sur une période de 3 semaines pendant les mois de mai et juin 2015, à l’exception d’un commerce qui était fermé pendant cette période et qui a été visité au mois de septembre. Une seule évaluatrice a visité chacun des commerces durant leurs heures d’ouverture régulières, en privilégiant le début de journée afin d’éviter l’achalandage des clients. La durée moyenne de collecte par commerce a été de 56 minutes (minimum de 32 minutes et maximum de 75 minutes). Des permissions pour procéder à l’évaluation n’ont pas été sollicitées auprès des commerçants afin de ne pas compromettre l’inclusion de tous les supermarchés du territoire étudié dans l’évaluation. Toutes les visites ont donc été réalisées avec un panier au bras et le formulaire du MEAC-S était imprimé et plié comme une liste d’épicerie afin de ne pas attirer l’attention. De petits achats ont aussi été effectués dans chacun des commerces. Aucune perturbation par des membres du personnel n’a freiné la collecte de données dans les commerces évalués. Pour ne pas biaiser la mesure de la longueur d’étalage par le calcul du nombre de pas, les mêmes souliers ont été portés pour toutes les évaluations.

4.4.1 – Territoire à l’étude

Le territoire sélectionné pour cette étude est présenté à la figure 3. Il correspond aux quartiers Mercier Est, Mercier Ouest, Hochelaga-Maisonneuve et Centre-Sud. L’ensemble du territoire est composé de 8 RTA, correspondant aux 3 premières lettres des codes postaux H1K, H1L, H1M, H1N, H1V, H1W, H2K et H2L.
4.4.2 – Sélection des commerces évalués

L’ensemble des supermarchés situés sur le territoire des 8 RTA sélectionnés ont été visités. Ceux-ci sont définis comme appartenant à une bannière d’alimentation générant des ventes de plus de 150 millions de dollars par année (MAPAQ 2016). Au Québec, ces bannières sont Provigo, Loblaws, Maxi, IGA, Métro et Super C et sont sous la gouverne des trois grandes chaînes d’alimentation Loblaws, Sobeys et Métro (MAPAQ 2015). Certains des supermarchés évalués étaient de plus petite taille par rapport à la moyenne, mais sont tout de même considérés comme des supermarchés de par leur appartenance à ces bannières. Ils ont donc été inclus. Par ailleurs, le MEAC-S permettant
de calculer des indicateurs sous forme de ratio, ceux-ci sont peu influencés par la taille du commerce et la collecte de données peut donc facilement s'y adapter.

Les commerces ont été ciblés à partir d’une recherche sur Google Map en spécifiant le RTA et en inscrivant « Supermarché » ou « Épicerie » dans l’onglet « Recherchez à proximité ». Cette méthode a permis de trouver 57 commerces, desquels 18 étaient des supermarchés. Un repérage sur le terrain a ensuite permis de retirer 2 commerces, dont un qui avait fermé ses portes et un qui, bien qu’appartenant à la chaîne Provigo, correspondait à un dépanneur. Un commerce n’apparaissant pas dans la recherche initiale a aussi été ajouté. Au total, 17 supermarchés ont fait l’objet d’une évaluation en magasin, selon la répartition suivante :

Tableau IV : Répartition des supermarchés sur le territoire à l’étude

<table>
<thead>
<tr>
<th>Quartier</th>
<th>RTA</th>
<th>Nombre de supermarchés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercier Est</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1K</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H1L</td>
<td>3</td>
</tr>
<tr>
<td>Mercier Ouest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hochelaga-Maisonneuve</td>
<td>H1M</td>
<td>1</td>
</tr>
<tr>
<td>Mercier Est/Ouest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hochelaga-Maisonneuve</td>
<td>H1N</td>
<td>3</td>
</tr>
<tr>
<td>Hochelaga-Maisonneuve</td>
<td>H1V</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>H1W</td>
<td>3</td>
</tr>
<tr>
<td>Hochelaga-Maisonneuve</td>
<td>H2K</td>
<td>3</td>
</tr>
<tr>
<td>Centre-Sud</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H2L</td>
<td>1</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Un proxy pour estimer la taille du commerce a été calculé en additionnant l’ensemble des surfaces d’étalage mesurées dans chaque commerce.
4.5 – Analyse statistique

Puisque toutes les variables sont exprimées sur une échelle continue, les analyses de fidélité inter-évaluateur et temporelle ont été réalisées avec un modèle à effets aléatoires bidirectionnel des coefficients de corrélation intra-classe (avec concordance absolue quant au type). La mesure moyenne a été utilisée (Fleiss et Cohen 1973). Un coefficient est obtenu pour chaque variable à l’étude, sauf pour les prix des aliments, qui ont été regroupés afin de faciliter l’analyse. Un coefficient supérieur à 0,75 indique généralement un excellent accord entre les mesures ; un coefficient de 0,40 à 0,75 indique un accord moyen à bon et un coefficient inférieur à 0,40 indique un accord faible.

Les variables décrivant l’environnement alimentaire de consommation dans les commerces ne suivent pas une distribution normale. Des corrélations de Spearman ont donc été utilisées pour effectuer les analyses en lien avec le portrait de l’environnement alimentaire dans les commerces. Une valeur de p inférieure à 0,05 était considérée significative.

Toutes les données ont été analysées avec SPSS 19.0.

4.6 – Considérations éthiques

Ce projet de recherche n’ayant pas eu recours à des participants humains, l’approbation du protocole de recherche par le Comité d’éthique de la recherche de l’Université de Montréal n’a pas été nécessaire.
Chapitre 5. Résultats

Le chapitre 5 est composé de deux sections. La première, rédigée sous forme classique, traite de la qualité métrologique du MEAC-S. La deuxième prend la forme d’un article soumis à la revue *Health Promotion and Chronic Disease Prevention in Canada*. Cet article reprend quelques éléments de la qualité métrologique du MEAC-S, notamment en ce qui concerne sa fidélité, et traite de la caractérisation de l’environnement alimentaire de consommation dans les quartiers à l’étude.

5.1 – Qualité métrologique du MEAC-S

5.1.1 – Applicabilité

L’applicabilité d’un outil réfère à ce qui est réalisable dans des conditions techniques et financières définies, tel que le temps ou les ressources techniques et humaines nécessaires pour son utilisation dans divers contextes (Plamondon et Paquette 2016). La clarté et la précision d’un outil contribue aussi à en améliorer l’applicabilité, évitant toute forme d’ambiguïté lors de son utilisation par divers intervenants. L’applicabilité du MEAC-S a été évaluée à trois reprises et l’outil a été amélioré pour en arriver à la forme finale, retrouvée à l’annexe A. Une première évaluation a eu lieu dans le cadre des pré-tests réalisés deux mois avant la collecte de données et a permis d’adapter l’outil afin d’en améliorer la clarté et de faciliter la collecte de données. Le MEAC-S et son guide d’utilisation ont ensuite été révisés et ajustés pendant la collecte de données, puis lors des tests de fidélité inter-évaluateur.
Le développement du MEAC-S s’est basé sur les enjeux nutritionnels et alimentaires du Québec, ainsi que sur les aliments et catégories d’aliments communément retrouvés dans les supermarchés de la province, tel que les 8 fruits et légumes les plus vendus (Communication personnelle, Paquette MC). Les produits de marques commerciales choisis pour représenter les produits ultra-transformés sont aussi des produits communément retrouvés dans tous les supermarchés. Le choix des marques les moins chères pour représenter ces catégories de produits reposant uniquement sur le prix, cette mesure peut être prise dans tous les commerces, indépendamment de la gamme de produits offerts. Il devrait donc être possible d’utiliser le MEAC-S pour évaluer l’environnement alimentaire des supermarchés dans toutes les communautés du Québec. En ce qui concerne les variables mesurées, toutes leurs composantes sont décrites en détail dans le guide d’utilisation, présenté à l’annexe B. Ce dernier a lui aussi été amélioré suite à des discussions entre les deux évaluateuses qui ont réalisé la deuxième collecte de données. Mis à part la qualité, toutes les mesures sont de nature objective et aucune ambiguïté ne devrait subsister après une lecture attentive de ce guide. Des modifications pourraient toutefois leur être apportées en fonction de problématiques particulières locales ou régionales.

Avant de débuter l’évaluation, chaque utilisateur doit procéder à un exercice de calibrage de ses pas en suivant les indications de la grille présentée à l’annexe C. Cette grille permet de mesurer de façon standardisée la longueur des pas des évaluateurs et devrait être utilisée avant toute collecte de données. Une telle évaluation prend moins d’une heure et devrait être répétée si l’évaluateur change de souliers, ce qui pourrait avoir pour effet de modifier sa démarche ou la longueur de ses pas.

Finalement, le temps nécessaire pour réaliser une évaluation dans un supermarché est en moyenne de 56 minutes. La durée minimale a été de 32 minutes, tandis que 75 minutes ont été nécessaires dans le plus grand des supermarchés. Dans le contexte du projet actuel, les données ont été colligées sur une version imprimée de l’outil et transcrites à l’ordinateur par la suite. Certains pourraient toutefois préférer
inscrire directement les résultats sur une tablette ou un téléphone intelligent. En ce qui concerne les ressources financières, matérielles ou humaines, une seule personne est requise pour compléter l’évaluation et aucun matériel particulier n’est nécessaire, outre l’accès à un ordinateur.

5.1.2 – Fidélité

Afin d’évaluer la capacité de l’outil développé à produire des résultats cohérents dans le temps (fidélité test-retest) ou lorsqu’administré par plusieurs évaluateurs (fidélité inter-évaluateur) (Lytle 2009; Plamondon et Paquette 2016), six commerces ont fait l’objet d’une deuxième enquête. La fidélité inter-évaluateur et la fidélité test-retest ont été évaluées par une analyse statistique de corrélation intra-classe. Cette méthode statistique permet de déterminer la part de variance dite « vraie » entre les mesures des évaluateurs, soit la proportion de variance qui n’est pas attribuable à une différence significative entre les évaluateurs eux-mêmes (Fleiss et Cohen 1973). Les différents auteurs s’entendent pour indiquer qu’un coefficient supérieur à 0,75 suppose un excellent accord entre les différents évaluateurs ; un coefficient de 0,40 à 0,75 suppose un accord moyen à bon et un coefficient inférieur à 0,40 représente un accord faible. Le tableau V présente les coefficients de corrélation intra-classe (ICC) obtenus pour chaque catégorie de variables. Le détail des coefficients obtenus par variable est disponible à l’annexe E.

Tableau V : Fidélité inter-évaluateur et test-retest du MEAC-S par catégorie de variables

<table>
<thead>
<tr>
<th>Variables à l’étude</th>
<th>Inter-évaluateur ICC</th>
<th>Test retest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de sortes</td>
<td>0,888</td>
<td>0,876</td>
</tr>
<tr>
<td>Longueur d’étalage (mètres)</td>
<td>0,908</td>
<td>0,894</td>
</tr>
<tr>
<td>Nombre de rappels en magasin</td>
<td>0,951</td>
<td>0,431</td>
</tr>
<tr>
<td>Qualité</td>
<td>0,968</td>
<td>0,968</td>
</tr>
<tr>
<td>Prix</td>
<td>0,883</td>
<td>-0,036</td>
</tr>
<tr>
<td>Positionnement stratégique</td>
<td>0,845</td>
<td>0,529</td>
</tr>
<tr>
<td>MOYENNE</td>
<td>0,894</td>
<td>0,607</td>
</tr>
</tbody>
</table>
5.1.2.1 – Fidélité inter-évaluateur

Les coefficients ICC pour la fidélité inter-évaluateur vont de 0,400 à 1,000 et plus de 85% des variables étudiées ont un coefficient ICC dépassant 0,75. Parmi celles-ci, une forte majorité a un coefficient ICC supérieur à 0,9. Seulement 6 variables sur 40 ont un coefficient situé entre 0,40 et 0,75, soit la variété et la longueur d’étalage des fruits et légumes congelés, la variété de légumes en conserve, le prix pour 100g de plat congelé de la marque la moins chère et la présence de fruits et légumes dans des emplacements stratégiques. Aucune variable ne présente un coefficient ICC inférieur à 0,4. Par ailleurs, aucune catégorie de variables ne présente un coefficient ICC moyen inférieur à 0,8 et le coefficient moyen pour l’ensemble des variables observées est de 0,894, indiquant un excellent accord global entre les évaluateurs.

5.1.2.2 – Fidélité test-retest

Les coefficients ICC représentant la fidélité test-retest sont très variables, allant de 0,017 à 1,000. Plusieurs catégories de mesures présentent des coefficients moyens de faibles à modérés (nombre de rappels en magasin, produits disposés dans des emplacements stratégiques) ou encore invalides (prix), dû à un déséquilibre entre les variances intra-groupe et inter-groupe. Ces faibles coefficients ICC témoignent de la variabilité des prix et des campagnes de promotion des produits d’une saison à l’autre.

À l’inverse, des catégories de mesures moins sujettes aux changements, telles que la variété, la longueur d’étalage et la qualité des fruits et légumes présentent des coefficients ICC supérieurs à 0,85. Seules deux variables dans ces trois catégories présentent des coefficients entre 0,40 et 0,75 (variété de légumes en conserve et longueur d’étalage des fruits et légumes congelés), tandis que 90% des variables ont un coefficient ICC supérieur à 0,75, témoignant d’une forte concordance entre les résultats des deux périodes d’observation malgré la séparation temporelle.
Globalement, le coefficient ICC moyen pour évaluer la fidélité test-retest de l'ensemble des variables est de 0,607. Un plus fort accord est obtenu pour la variété, la longueur d'étalage et la qualité des produits, tandis qu'un faible accord est obtenu pour l'évaluation de la mise en marché des produits et de leur prix.
5.2 – ARTICLE: Development, reliability and use of a food store survey to measure the supermarket food environment in a low-to-medium income area of Montréal

Manuscrit accepté pour publication par la revue Health Promotion and Chronic Disease Prevention in Canada / Promotion de la santé et prévention des maladies chroniques au Canada, de l’Agence de la santé publique du Canada.

Élise Jalbert-Arsenault, DtP (1), Éric Robitaille, PhD (1,2), Marie-Claude Paquette, PhD (1,2)

Author references:
1. Université de Montréal, Montréal, Québec, Canada
2. Institut national de santé publique du Québec, Montréal, Québec, Canada

Correspondence:
Élise Jalbert-Arsenault, Université de Montréal,
Email: elise.jalbert-arsenault@umontreal.ca

Intended article type: Original article

Abstract word count: 266
Text word count: 3515
Number of tables: 4
Number of figures: 2
Development, reliability and use of a food store survey to measure the supermarket food environment in a low-to-medium income area of Montréal

Abstract

Introduction

The food environment can be seen as a promising target to improve dietary habits. This study aims to develop a comprehensive food store survey and characterize the food environment of a low-to-medium income area of Montréal, Canada.

Methods

The tool Mesure de l'environnement alimentaire du consommateur dans les supermarchés (MEAC-S), was developed and tested for reliability. It was used to assess the consumer food environment of 17 supermarkets in four neighbourhoods of Montréal. The shelf length, variety, price, display counts and in-store positions of fruits and vegetables (FV) and ultra-processed food products (UPFPs) were measured. Quality was assessed for fresh FV. Store size was estimated using the total measured shelf length for all food categories. Spearman correlations were conducted between these indicators of the food environment.

Results

Reliability analyses revealed satisfactory results for most indicators. Characterization of the food environment reveals high variability in shelf length, variety and price of FV between supermarkets and suggests a disproportionate promotion of UPFPs. Display counts of UPFPs range from 7 to 26 and they occupy 8 to 33 strategic in-store positions, whereas display counts of fresh FV exceeds one in only 2 of the 17 stores surveyed and they occupy a maximum of 2 strategic in-store positions per supermarket. Price of UPFPs is inversely associated with their prominence ($p<0.005$) and promotion ($p<0.003$). Store size is associated with display counts and strategic in-store positioning of UPFPs ($p<0.001$), but not FV, and is inversely associated with the price of sodas ($p<0.003$).

Conclusion

This study illustrates the variability of the food environment between supermarkets and underscores the importance of measuring in-store characteristics to adequately picture the consumer food environment.

Key Words

Nutrition, Food environment, Consumer food environment, Fruits and vegetables, Food processing, Food marketing, Obesity, Ultra-processed food products.
Highlights

- The MEAC-S was designed to assess and monitor the consumer food environment in Montréal, Canada, and has shown robust inter-rater reliability.
- Fruits and vegetables availability and price vary greatly among supermarkets.
- Ultra-processed food products, unlike fruits and vegetables, are highly and disproportionately promoted inside supermarkets, their promotion increasing with store size.
- When assessing the community food environment, food stores cannot be dichotomized into healthy vs. non-healthy, as this does not comprehensively capture the food environment to which consumers are exposed.

Introduction

More than half of Canadian adults are overweight (36.8%) or obese (25.1%).\(^1\) This represents a significant social and financial burden for the country, with up to 12% of total health expenditures in Canada estimated to be attributable to obesity.\(^2\) In Québec alone, the annual cost of excess weight has been estimated to be 3 billion dollars.\(^3\) Meanwhile, eating behaviours, which are considered one of the main determinants of body weight and a modifiable risk factor for the development of many non-communicable diseases,\(^4\) are not optimal in Québec. The mean consumption of fruits and vegetables (FV) in the adult population is under five portions per day.\(^5\) Recent analyses of the 2004 Canadian Community Health Survey, Cycle 2.2, Nutrition data for Québec have also reported that ultra-processed food products (UPFPs) represent almost half of calories consumed (47%).\(^6\)

The food environment has been shown to influence food choices and dietary patterns.\(^7\) Community (accessibility to different types of food stores) and consumer (what is available inside food stores) food environments have been associated with FV consumption,\(^8\)–\(^13\) diet quality,\(^8\)\(^,\)\(^11\)\(^,\)\(^14\)–\(^18\) and weight.\(^19\)–\(^25\) In Canada, the current food environment provides cheap, readily accessible, and massively marketed high energy density and UPFPs.\(^26\) In such a skewed food environment, nutrition education is most likely insufficient to improve the population’s eating habits.\(^27\)\(^,\)\(^28\) To start curbing the rise in the prevalence of obesity and related chronic diseases, changes in the food environment are essential to make the healthy choice, the easy choice.

The food environment in Canada and in Québec is currently not well documented. This scarcity of data impedes the ability to orient, develop and implement interventions and
policies that would make it conducive to healthy eating.29 A recent review by Minaker and colleagues30 particularly highlights the lack of research on the consumer food environment in Canada, with only one paper that used measures of the retail food environment to study the association between food environment and health outcomes. While store proximity or availability in one’s neighbourhood have been linked with diet quality, studies have reported inconsistent results,31 suggesting that physical accessibility alone might not be sufficient to explain dietary habits. The availability and affordability of food products inside food stores could contribute to the association between food store access, food store choice, eating behaviours and health outcomes.32,33

More than 30 different food store surveys have been identified.34 The two most frequently used surveys are the Nutrition Environment Measures Survey in Stores (NEMS-S)35 and the USDA Thrifty Food Plan.36 These tools describe the availability and price of a variety of food products. The NEMS-S also assesses produce quality. Neither of them, nor most other food store surveys,34 describe food promotion or prominence of food categories inside food stores, despite the influence of these factors on food purchasing decisions.37–40

The objectives of this study were to 1) develop a food store survey that incorporates the components of the consumer food environment as defined in the Model of community nutrition environments developed by Glanz and colleagues, including promotion and placement7 and 2) characterize the consumer food environment of a low-to-medium income area in the south-eastern part of Montréal.

Methods

Tool development

The Mesure de l'environnement alimentaire du consommateur dans les supermarchés (MEAC-S) was developed to assess the consumer food environment inside supermarkets.

Food categories. The MEAC-S includes two foods categories. Those that have been documented to be consumed in insufficient amount (FV category) and those that have been documented to be consumed in too large amount (UPFPs category) according to recommendations from Canada’s Food Guide.5,6 The FV category includes fresh, frozen, canned and ready-to-eat FV. The UPFPs category, defined as food products formulated from industrial ingredients and containing little or no whole foods,41 includes chips, soft drinks, frozen entrees and confectionerries. Theses foods were chosen as they accounted for 11% of total supermarkets sales in the province in 2013-2014 (personal communication, Paquette, M-C).
Pilot testing revealed that confectioneries were available in multiple locations within the store and often shared shelves with other food products. This placement of confectioneries precluded reliably assessing of variety and shelf length for these products. Confectioneries were thus only assessed for availability in strategic in-store positioning.

Key indicators. The MEAC-S assessed availability, affordability, prominence and promotion for both food categories inside supermarkets. Indicators included in the survey are listed and defined below.

1) **Availability** of food items was operationalized using three indicators: the variety of items in each food category, the shelf length they occupy in the supermarket and the quality of produce.

Variety was calculated by counting every available item per food category, including different sales formats, brands, flavours and types. For example, all available varieties of the same kind of fruit or vegetable were counted separately.

Shelf length was calculated using a step length method. The auditor walked in front of every shelf of food included in the tool while counting her steps, which were previously calibrated. In order to measure the accessibility of food for shoppers, audits were taken from every aisle, around island displays and near the cash registers. When a food category was available in multiple locations inside a store, the measurements for all locations were summed to obtain the total shelf length for that food category. Shelves depth and height were not measured nor accounted for. The total shelf length measured for all food groups was summed to create a proxy of store size.

Quality of produce was evaluated on a 3 points scale, from -1 to 1. It was audited separately for fruits and vegetables and was based on the auditor’s evaluation of freshness, according to their appearance, smell and ripeness level. Full criteria for freshness evaluation are provided in the MEAC-S user guide.

2) **Affordability** of food was evaluated through the price per portion for FV, price per 100g for chips and frozen entrees and price per 2 litres for soda. The price per portion for fruits and vegetables was calculated using respectively the mean price for one portion of apple, banana, strawberry and orange and the mean price for one portion of tomato, carrot, lettuce and cucumber. When more than one kind of these fruit or vegetable was available (e.g., 17 kinds of apple), the lowest regular price was selected. Promotion prices were not considered. Canada’s Food Guide served as a reference for portion size. The prices per 100g of chips and frozen entrees and per 2 litres of sodas were audited for the lowest priced product in each store, usually the private label brand. Price was also recorded for standard products that were shown to be available in every store during pilot testing. The standard product for chips was the 180g bag of Lay’s
original and the standard product for frozen entrees was the 286g Stouffer’s lasagna. The 2 litre bottle of Coke was the standard product for soft drinks.

3) **Indicators of prominence** were developed to describe the simultaneous exposure to healthy and unhealthy food products. These include the **ratio of variety** and **ratio of shelf length** of FV to UPFPs. The ratio of variety was calculated by dividing the number of products available in the FV category with the number of UPFPs available. The ratio of shelf length was obtained by dividing the total FV shelf length with the total UPFPs shelf length.

4) **Display counts** and **strategic in-store positioning** of foods were audited for FV, chips, sodas and confectioneries. Display counts represent the number of time food products were found outside their principal point of sale in the store (e.g. chips are available in many other locations inside a store other than the chips aisle). Strategic in-store positions are end of aisles, near the cash registers and in ready-to-eat displays. The number of these positions occupied by FV, chips, sodas and confectioneries was noted.

A pilot study was conducted in five food stores and the MEAC-S was adjusted to facilitate data collection. The final form is presented in Figure 1 and the complete user guide can made available upon request to the first author.

(Figure 1: MEAC-S measurement form)

Data collection

The study took place in four low-to-medium income neighbourhoods in the south-eastern part of Montréal, Canada. These neighbourhoods are divided in eight Forward Sortation Areas (FSAs). The first three positions of the postal code identify the FSA. Every supermarket in these FSAs was evaluated.

Supermarkets were selected by using a Google map search. The FSA was entered as primary term and the terms “supermarket” or “grocery store” were entered in the Local Search Engine. A total of 57 food stores were found, out of which 18 were supermarkets. In order to ensure that every supermarket would be visited, a systematic tracking of food stores was done by going through every major street in the four neighbourhoods. Two stores were not eligible for auditing as one was closed permanently and another was a convenience store. One supermarket was also added to the list, for a total of 17 supermarkets, as illustrated on figure 2.

(Figure 2: Study area)
Data were collected between May and July 2015 to avoid seasonal influences on FV availability, price and prominence.

We did not seek permission from store managers to assess the food environment inside their supermarket. Therefore, subtlety was a key component of the data collection. The MEAC-S form was printed and folded like a grocery shopping list and the auditor bought food items in every store visited to avoid unwanted attention. No intervention from store managers or employees compromised data collection.

Inter-Rater and Test-Retest Reliability

In November 2015, five months after the first assessment, two auditors reassessed six stores to evaluate the MEAC-S for inter-rater and test-retest reliability.

Statistical analysis

Intra-class correlation coefficients (ICC) were calculated with a two-way random ANOVA model assessing for absolute agreement to determine inter-rater and test-retest reliability.

Spearman correlations were conducted between price and prominence indicators, and between store size and all other food environment indicators at the store level.

All statistical analyses were performed in SPSS 19.0 (IBM, Chicago, IL, USA). A p-value inferior to .05 was considered significant.

Results

All supermarkets included in the study are chain supermarkets, with estimated annual chain sales exceeding $150 million.43

Audits lasted on average 56 minutes (32-75 minutes). Inter-rater and test-retest reliability were assessed using the ICC coefficient for each indicator. An ICC coefficient above 0.75 indicates excellent agreement and an ICC coefficient between 0.40 and 0.75 indicates medium to good agreement.44

All indicators had an ICC coefficient above 0.85 for inter-rater reliability, suggesting excellent agreement between auditors. The ICC coefficients for test-retest reliability
were lower. ICC coefficients below 0.75 were found for indicators of price (0.0), display counts (0.43) and strategic in-store positioning (0.53).

(Table 1: Inter-rater and test-retest reliability for consumer food environment indicators)

Consumer food environment

Overall availability, affordability, prominence and promotion of food items per supermarket are described in table 2.

(Table 2: Descriptive analysis of the consumer food environment inside supermarkets)

Availability of food items differed greatly among supermarkets, as illustrated by the variability in variety and shelf length indicators. Variety and shelf length ratios were calculated for each store. Ratios above 1.0 indicate greater presence of FV whereas ratios under 1.0 indicate a greater presence of ultra-processed foods. Two supermarkets had variety ratios inferior to 1.0 and five supermarkets had shelf length ratios inferior to 1.0.

Price per portion of vegetable varied more than twofold and price per portion of fruit, more than threefold from one supermarket to another.

Quality of FV did not differ significantly among supermarkets, most of them offered FV of the highest quality.

Display counts and strategic in-store positioning for UPFPs highly outnumbered those for FV. Nine stores did not have display counts or strategic in-store positioning for FV, and of the stores who did, 6 out of 8 were for canned FV. In comparison, all stores had at least 7 display counts and 8 strategic positions occupied by UPFPs (see table 2 for details).

Price and prominence of ultra-processed food products

Results showed that the price of UPFPs such as chips and soft drinks were inversely associated with their availability, prominence and promotion in the supermarket (Table 3). This association was not seen for FV (data not shown).

(Table 3: Spearman correlations between prominence indicators and price of ultra-processed food products)
Consumer food environment indicators and store size

As store size could explain some results, Spearman correlations were conducted between the store size proxy and indicators of the consumer nutrition environment inside supermarkets, excluding shelf length measurements (Table 4).

(Table 4: Store size association with indicators of consumer food environment)

It appears that store size was positively associated with UPFPs availability, display counts and strategic in-store positioning and inversely associated with the price of sodas. It was also positively correlated to FV variety and display counts, acknowledging that display counts for FV were present in only 8 supermarkets out of 17, and that most of these display counts were for canned, not fresh FV.

Discussion

This study’s first objective was to develop a tool to assess the consumer nutrition environment inside supermarkets in the province of Québec. The MEAC-S is used to audit foods that are under or over consumed in Québec, using eight indicators that reflect the consumer food environment.

Overall data suggest variability among supermarkets, particularly regarding shelf length measurements and price of FV. The price of FV varied more than twofold between supermarkets. This can result in a difference of over 30.00$ per week for a family of four according to their choice of supermarket, a considerable amount for low-income families living in the surveyed neighbourhoods.

It has previously been suggested that neighbourhood socio-economic status (SES) is associated with FV and snack foods availability inside food retailers,45,46 thus mediating the relationship between individual SES and diet quality.33 However, the available data regarding SES in our study area do not match our geographic breakdown, thus restraining the ability to analyse the consumer food environment in the different FSAs with regards to their SES. Future studies should consider using geographic boundaries allowing for adequate integration of SES information.

Our results also showed that in this sample, almost 30% of the 17 supermarkets had a shelf length ratio below 1.0, indicating prominence of UPFPs in these stores. The limited number of UPFPs included in the MEAC-S likely under estimates this percentage.
Moreover, our data suggest that larger stores have more display counts and in-store positioning of UPFPs than do smaller ones, a relationship that is not observed for FV. This result is consistent with previous research, showing that unhealthy food item promotion seems to be related to store size, whereas FV are found less frequently and in less prominent spaces, regardless of store size. A study conducted in Montréal by Blanchard also suggested that shelf space of snack foods is more extensible than shelf space of FV.

Most studies on community food environment categorize supermarkets as healthy stores. While it has been shown that they usually do have a greater availability of healthy foods at lower prices when compared to other types of stores, they also offer more UPFPs at lower prices and their in-store content may vary greatly among supermarkets. This study confirms these results and suggests that supermarkets cannot be uniformly considered healthy stores. Many authors are urging researchers to further explore the consumer nutrition environment and revise their categorization of stores as healthy or unhealthy.

In contrast, produce quality did not vary among stores. This is probably due to the highest quality standard to which chain supermarkets adhere. In this context, the assessment of produce quality might be more valuable when comparing the food environment inside different types of stores. It is also worth mentioning that in most supermarkets visited, the produce section is located at the store entrance. These choices are likely not arbitrary and may reflect the marketing practices of store owners. A US study reports that consumers that purchase food perceived as healthy, such as fresh FV, are more likely to subsequently purchase high energy density and ultra-processed products in the same store.

This study has also reported an inverse relationship between the price and prominence of UPFPs, but not of FV. Price and salience are known to have a central influence on food purchasing behaviour. Marketing research suggests that increasing the shelf space, lowering the price, and displaying products in end-of-aisle or near cash registers all lead to increasing sales of these products.

Notably, UPFPs were promoted in this way in all stores included in the study, which was not the case for FV. Strategic in-store positioning of unhealthy items not only increases the purchase of these items in percentage of total sales, but also reduces the purchase of FV. Considering the influence of promotion and prominence on sales, a promising strategy to improve the consumer nutrition environment without compromising store
profitability could be to encourage store managers, through financial incentives or regulations, to also apply this marketing mix to FV.37,39

Strengths and limitations

This study has many strengths and limitations. The MEAC-S was validated for inter-rater reliability with satisfactory ICC coefficients for all indicators, suggesting excellent agreement between raters. The ICC coefficients for test-retest reliability were somewhat less satisfactory. The production of FV being closely linked to climate and temperature, seasonal changes influence the in-store availability and price of produce which could explain the lower ICC scores. Moreover, display counts and in-store positioning of food products may not be constant over time. This might be linked with in-store positioning of food products related to seasonal particularities or holidays. To limit the influence of seasonality on ICC scores, test-retest reliability of the MEAC-S should be evaluated again using a shorter timeframe. Precautions should also be taken when using the MEAC-S to assess the food environment quality over time or when comparing stores or neighbourhoods. To maximize comparability, the assessment should be done within the same season.

Another strength of this study is its choice of indicators and measurements. The tool includes every variety for each of the food categories surveyed. A study conducted in Montréal failed to detect differences between stores by SES area while using the NEMS-S checklist for fresh FV, but detected a significant difference when using a home-made checklist of 137 fresh FV.45 While including a larger variety can be time-consuming, it could allow for a more sensitive classification of food stores with regards to FV and food products availability.

Additionally, the MEAC-S integrates measures of food prominence and promotion, such as display counts and strategic in-store positioning, which was found to be closely related to purchase behaviours.37,39 To our knowledge, this is the first study to integrate both these measurements in a food store survey. The MEAC-S also combines both absolute and relative indicators, which better illustrates the simultaneous exposure of consumers to both healthy and unhealthy food items.29,47,48

Finally, unlike the method proposed by other audit tools, indicators were not aggregated into a global quality score per supermarket. Results from different indicators did not converge and were sometimes in opposition regarding the quality of the food environment inside supermarkets (e.g. price per portion of vegetable correlated with FV prominence). Aggregation of these contrasting results would not give a complete and
accurate picture of the situation and would possibly underestimate the importance of one or many indicators in relation with consumer’s purchase behaviours or health outcomes. Moreover, all indicators of the consumer food environment may not be linked with dietary outcomes or weight in the same way and in every population subgroup.\(^{50}\) The MEAC-S, by generating data for multiple indicators, allows for analysis between each component of the consumer food environment and dietary or health outcomes.

The main limitation of the MEAC-S is the inclusion of only a limited number of food products for assessment. This limitation was intended to ensure the tool was convenient and easy to use, particularly for public health practitioners that lack both time and human resources due to budget constraints. The exclusion of UPFPs other than chips, soft drinks, frozen entrees and confectioneries likely under-estimates the prominence of this category of products in our food environment. Furthermore, the MEAC-S does not provide information regarding healthy options within these food groups or for other available food categories, such as grains and proteins.

Another important limitation of this study would be the exclusion of food stores other than supermarkets. There was a wide variety of stores in the study area, such as small grocery stores or produce stands. In Québec, these types of stores accounted for 12.2% of food purchases in 2013, while 55.2% of food were purchased in supermarkets.\(^{52}\) Therefore, excluding other types of stores may misrepresent the consumer food environment of neighbourhoods residents.\(^{29}\) However, most consumers tend to choose supermarkets as their primary food store and visit other types of stores for smaller, complimentary purchases between their main food shopping trips.\(^{17,33}\) The inclusion of every supermarket within the four neighbourhoods thus probably depicts a part of the food environment to which most of the residents are exposed.

Other limitations include the small sample of supermarkets and the urban, low-to-medium income setting in which the study was conducted, limiting the ability to generalise results to rural or higher-income areas.

Conclusion

To our knowledge, the MEAC-S is the first tool developed to assess the consumer food environment using such a broad set of measures, integrating availability and price, but also prominence and promotion indicators. Results illustrate the prominence and promotion of UPFPs over FV in the neighbourhoods surveyed and underscores the necessity to adequately picture the consumer food environment to which consumers are
exposed, breaking with the dichotomous classification of stores as healthy of unhealthy. The MEAC-S could be used to reliably characterize and monitor the consumer food environment inside supermarkets, providing much needed data to inform interventions and policies targeting the food environment to ultimately improve eating habits.

Acknowledgements

This project was in part supported by a Canada Graduate Scholarship-for Master’s Program from the Canadian Institutes of Health Research (CIHR).

References

17. Gustafson A, Christian JW, Lewis S, Moore K, Jilcott S. Food venue choice, consumer food environment, but not food venue availability within daily travel

45. Blanchard L. Disparities in the availability of fruit, vegetables and snack foods by neighborhood socioeconomic status in supermarkets and grocery stores in Montréal, Canada [Internet]. Copenhagen University & University of Sheffield; 2012. Available from: http://mph.ku.dk/uddannelsen/master/afhandlinger/mph_2012/Laurence_Blanchard.pdf

Table 1: Inter-Rater and Test-Retest Reliability for Consumer Food Environment Indicators Included in the MEAC-S

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Inter-Rater</th>
<th>Test Retest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety</td>
<td>0.888</td>
<td>0.876</td>
</tr>
<tr>
<td>Shelf Length</td>
<td>0.908</td>
<td>0.894</td>
</tr>
<tr>
<td>Display Counts</td>
<td>0.951</td>
<td>0.431</td>
</tr>
<tr>
<td>Quality</td>
<td>0.968</td>
<td>0.968</td>
</tr>
<tr>
<td>Price</td>
<td>0.883</td>
<td>-0.036</td>
</tr>
<tr>
<td>Strategic In-Store Positioning</td>
<td>0.845</td>
<td>0.529</td>
</tr>
<tr>
<td>Mean ICC for all indicators</td>
<td>0.894</td>
<td>0.607</td>
</tr>
</tbody>
</table>

ICC: Intra-class correlation coefficient
Table 2: Descriptive Analysis of the Consumer Food Environment inside Supermarkets

<table>
<thead>
<tr>
<th>Consumer Food Environment Indicators</th>
<th>Supermarkets (N=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>(min-max)</td>
</tr>
<tr>
<td>Variety</td>
<td></td>
</tr>
<tr>
<td>Fresh FV</td>
<td>221.3 (149-319)</td>
</tr>
<tr>
<td>Total FV</td>
<td>518.6 (361-757)</td>
</tr>
<tr>
<td>Ready-to-eat meals</td>
<td>79.3 (0-187)</td>
</tr>
<tr>
<td>Frozen entrees</td>
<td>134.5 (41-209)</td>
</tr>
<tr>
<td>Chips</td>
<td>235.7 (123-338)</td>
</tr>
<tr>
<td>Sodas</td>
<td>41.7 (27-50)</td>
</tr>
<tr>
<td>Ratio</td>
<td>1.28 (0.89-1.48)</td>
</tr>
<tr>
<td>Shelf length (m)</td>
<td></td>
</tr>
<tr>
<td>Fresh FV</td>
<td>89.1 (18.2-166.4)</td>
</tr>
<tr>
<td>Total FV</td>
<td>123.0 (34.8-223.4)</td>
</tr>
<tr>
<td>Ready-to-eat meals</td>
<td>11.2 (0.0-29.7)</td>
</tr>
<tr>
<td>Frozen entrees</td>
<td>46.4 (18.6-91.5)</td>
</tr>
<tr>
<td>Chips</td>
<td>39.6 (14.2-82.0)</td>
</tr>
<tr>
<td>Sodas</td>
<td>26.8 (9.5-70.9)</td>
</tr>
<tr>
<td>Ratio</td>
<td>1.2 (0.64-2.34)</td>
</tr>
<tr>
<td>Quality (-1,0,1)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.8 (-0.5-1.0)</td>
</tr>
<tr>
<td>V</td>
<td>0.9 (0.0-1.0)</td>
</tr>
<tr>
<td>Price ($)</td>
<td></td>
</tr>
<tr>
<td>F (per portion)</td>
<td>0.70 (0.43-1.22)</td>
</tr>
<tr>
<td>V (per portion)</td>
<td>0.33 (0.22-0.53)</td>
</tr>
<tr>
<td>Frozen entrees, HB (per 100g)</td>
<td>0.72 (0.47-0.93)</td>
</tr>
<tr>
<td>Stouffer’s lasagna (per 100g)</td>
<td>1.41 (1.39-1.57)</td>
</tr>
<tr>
<td>Chips, HB (per 100g)</td>
<td>0.99 (0.74-1.25)</td>
</tr>
<tr>
<td>Lay’s (per 100g)</td>
<td>1.63 (1.23-1.99)</td>
</tr>
<tr>
<td>Sodas, HB (per 2L)</td>
<td>1.32 (1.00-1.99)</td>
</tr>
<tr>
<td>Coke (per 2L)</td>
<td>2.38 (1.67-2.79)</td>
</tr>
<tr>
<td>Display Counts</td>
<td></td>
</tr>
<tr>
<td>FV</td>
<td>0.7 (0-3)</td>
</tr>
<tr>
<td>Chips</td>
<td>9.9 (4-18)</td>
</tr>
<tr>
<td>Sodas</td>
<td>5.5 (2-10)</td>
</tr>
<tr>
<td>Strategic In-Store Positionning</td>
<td></td>
</tr>
<tr>
<td>FV</td>
<td>0.5 (0-2)</td>
</tr>
<tr>
<td>Chips</td>
<td>6.9 (3-13)</td>
</tr>
<tr>
<td>Sodas</td>
<td>5.7 (2-9)</td>
</tr>
<tr>
<td>Candies</td>
<td>10.7 (3-17)</td>
</tr>
<tr>
<td>Total measured shelf length (m)</td>
<td>247.0 (88.4-455.3)</td>
</tr>
</tbody>
</table>

HB = House Brand, F = Fruits, V = Vegetables

Strategic in-store positions refer to end of aisles, cashiers and ready-to-eat displays.
Table 3: Spearman Correlations between Prominence Indicators and Price of Ultra-Processed Food Products

<table>
<thead>
<tr>
<th>Price</th>
<th>Display Counts Chips</th>
<th>Display Counts UPFPs</th>
<th>Display Counts Sodas</th>
<th>Strategic in-store positioning Chips</th>
<th>Strategic in-store positioning Sodas</th>
<th>Strategic in-store positioning UPFPs</th>
<th>Shelf length Chips</th>
<th>Shelf length sodas</th>
<th>Shelf length ratio</th>
<th>Variety sodas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chips (HB)</td>
<td>-0.690 p=0.002</td>
<td>-0.674 p=0.003</td>
<td>NS</td>
<td>-0.641 p=0.006</td>
<td>NS</td>
<td>NS</td>
<td>-0.521 p=0.032</td>
<td>-0.489 p=0.046</td>
<td>0.661 p=0.004</td>
<td>NS</td>
</tr>
<tr>
<td>Sodas (Coke)</td>
<td>-0.808 p<0.001</td>
<td>-0.865 p<0.001</td>
<td>-0.842 p<0.001</td>
<td>-0.533 p=0.028</td>
<td>-0.834 p<0.001</td>
<td>-0.804 p<0.001</td>
<td>-0.767 p=0.002</td>
<td>0.695 p=0.002</td>
<td>-0.667 p<0.003</td>
<td></td>
</tr>
</tbody>
</table>

Spearman correlations (ρ)
HB = House Brand, UPFPs = Ultra-processed food products
<table>
<thead>
<tr>
<th></th>
<th>Store size</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chips</td>
<td>0,784</td>
<td>p<0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultra-processed food products</td>
<td>0,655</td>
<td>p=0,004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display Counts</td>
<td></td>
<td>FV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chips</td>
<td>0,821</td>
<td>p<0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultra-processed food products</td>
<td>0,772</td>
<td>p<0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td></td>
<td>Sodas (Coke)</td>
<td>-0,695</td>
<td>p=0,002</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategic In-Store Positioning</td>
<td></td>
<td>Chips</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Candies</td>
<td>0,583</td>
<td>p=0,014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultra-processed food products</td>
<td>0,760</td>
<td>p<0,001</td>
<td></td>
</tr>
</tbody>
</table>

Spearman correlations (p)
F=Fruits, V=Vegetables
Figure 1: MEAC-S measurements form

| Store: ___________________________ | Address: ___________________________ |
| Evaluation date: __________________ | Duration: __________________________ |

Nudges:	UPFPs						
In-store positions	Number	Occupied by UPFPs	Sodas	Chips	Candies	FV	Promotional material
End of aisles							
Cash counters							
Ready-to-eat area							

<table>
<thead>
<tr>
<th>Food items</th>
<th>Availability</th>
<th>Price (w/ promotion)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variety</td>
<td>Shelf length (steps)</td>
<td>Per unit</td>
</tr>
</tbody>
</table>

Fruits and vegetables

Fresh fruits			
Fresh vegetables			
Apple			
Banana			
Strawberry			
Orange			
Tomato			
Carrot			
Lettuce			
Cucumber			
Potato			

Ready-to-eat FV

<table>
<thead>
<tr>
<th>Frozen</th>
<th>Fruits</th>
<th>Vegetables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cans</td>
<td>Fruits</td>
<td>Vegetables</td>
</tr>
<tr>
<td></td>
<td>Tomatoes</td>
<td></td>
</tr>
</tbody>
</table>

Ready-to-eat

Prepared by store	
Frozen entrees Format (g)	Price/unit
Cheapest brand:	
Standard product: Stouffer's individual lasagna 286g	

Ultra-processed food products

<table>
<thead>
<tr>
<th>Chips</th>
<th>Format (g)</th>
<th>Price/unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheapest brand:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard product: Lays Original, regular size 180g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soft drinks</th>
<th>Price/2L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheapest brand:</td>
<td></td>
</tr>
<tr>
<td>Standard product: Coke, 2L</td>
<td></td>
</tr>
</tbody>
</table>

Display counts (excluding principal point of sale)
Figure 2: Study Area
Figure S1: Territorial Distribution of the Ratio of Variety of FV to Ultra-Processed Products

Figure S2: Territorial Distribution of the Ratio of Shelf Length of FV to Ultra-Processed Products
Figure S3: Territorial Distribution of the Price per Portion of Fruits

Figure S4: Territorial Distribution of the Price per Portion of Vegetables
Chapitre 6. Discussion

Ce mémoire avait pour objectif principal de développer et valider un instrument de mesure de l’environnement alimentaire de consommation adapté aux enjeux nutritionnels et alimentaires du Québec. Développé à partir d’indicateurs et d’instruments de mesure existants, le MEAC-S dans sa forme finale inclut l’ensemble des dimensions de l’environnement alimentaire de consommation décrites dans le Modèle des environnements alimentaires communautaires (Glanz et al. 2005) et évalue des aliments dont la consommation est insuffisante ou supérieure aux recommandations dans la population québécoise. À notre connaissance, il s’agit du seul outil qui intègre à la fois des mesures de disponibilité, de prix, de mise en valeur et de proéminence des aliments dans les commerces. La considération du niveau de transformation des aliments constitue également une innovation importante en matière d’analyse de l’environnement alimentaire de consommation. De plus, le MEAC-S s’est montré facile et pratique à utiliser et sa fidélité inter-administrateur est excellente pour l’ensemble des variables évaluées.

La caractérisation de l’environnement alimentaire de consommation des quartiers constituait l’objectif secondaire de ce mémoire. De cette deuxième partie de la recherche ont émergé plusieurs constats intéressants. On observe tout d’abord une grande variabilité dans la qualité de l’environnement alimentaire d’un supermarché à l’autre, mais la mise en valeur des aliments ultra-transformés domine partout, particulièrement dans les plus grands commerces. Une plus grande mise en valeur des aliments ultra-transformés s’accompagne également de prix inférieurs pour ces produits. Les prochaines sections discuteront plus en détail de ces résultats et de leur pertinence pour la promotion de la santé.
6.1 – Le MEAC-S, fiabilité et pertinence dans le contexte québécois

L’instrument de mesure développé pour ce projet a démontré une excellente fidélité inter-évaluateur, avec des coefficients ICC moyens supérieurs à 0,85 pour chacun des indicateurs étudiés. Seule la présence de matériel promotionnel en lien avec la saine alimentation semble moins fiable dans l’évaluation d’un administrateur à l’autre, mais le faible coefficient ICC pour cette variable pourrait aussi être dû à la présence limitée de tels éléments dans l’environnement alimentaire des commerces. Ce constat est comparable avec des analyses semblables réalisées aux États-Unis (Cheadle et al. 1990) et au Brésil (Duran et al. 2015). La fidélité test-retest du MEAC-S s’est toutefois montrée plus variable, mais cette variabilité ne semble pas forcément reliée à sa qualité métrologique autant qu’à la position géographique du Québec et à la promotion saisonnière des aliments. Dans un contexte où la disponibilité locale des aliments suit le cours des saisons et où la mise en valeur des aliments suit les festivités du moment (ex : Noël, St-Valentin, BBQ), les indicateurs de prix et de mise en valeur des produits obtiennent des coefficients ICC moyens de faibles à modérés. Afin de limiter l’influence des changements saisonniers sur l’évaluation de la fidélité test-retest de ces indicateurs et du MEAC-S en général, deux nouvelles périodes de collecte de données pourraient être envisagées dans un délai plus court. Les indicateurs de variété et de longueur d’étalage démontrent quant à eux une excellente fidélité test-retest. Les commerçants ont depuis longtemps optimisé le ratio de profitabilité selon l’espace occupé par les aliments (Curhan 1972; Piacentini et al. 2000; Hawkes 2008; Andreyeva et al. 2011). Cet espace est donc peu sujet à changer au fil du temps, contrairement au prix et à la promotion des aliments. Pour maximiser la comparabilité entre les commerces, toutes les évaluations devraient tout de même être réalisées à l’intérieur d’une même saison.

6.1.1 – Validité de contenu

La validité de contenu informe de la représentativité de l’instrument par rapport au construit mesuré, soit l’environnement alimentaire de consommation. Afin d’être
considéré valide, l'outil doit représenter un échantillon non biaisé de l'univers possible des contenus de ce construit, soit les diverses dimensions de cet environnement. À notre connaissance, le MEAC-S est le seul instrument de mesure qui intègre l'ensemble des variables environnementales présentées dans le Modèle des environnements alimentaires communautaires, communément reconnu comme base théorique pour la majorité de la recherche qui se fait sur le sujet (Glanz et al. 2005, 2016; Plamondon et Paquette 2016). L'intégration des mesures de mise en valeur et de positionnement des aliments constitue une innovation, celles-ci étant peu utilisées par les chercheurs malgré leurs associations avec les comportements d'achat des consommateurs (Kerr et al. 2012; Foster et al. 2014; Surkan et al. 2016).

Ni Mhurchu et ses collaborateurs ont développé un cadre de référence en trois étapes pour guider le développement de mesures de l'environnement alimentaire, selon les ressources disponibles et l'objectif poursuivi (Ni Mhurchu et al. 2013). Pour une approche optimale concernant l'environnement alimentaire de consommation, ces auteurs suggèrent d'intégrer des mesures de disponibilité et de positionnement des aliments, ainsi qu'une mesure agrégée de l'espace d'étalage d'aliments sains et non sains. Avec sa pluralité d'indicateurs, le MEAC-S surpasse ces recommandations. De plus, l'utilisation de plusieurs variables pour mesurer une même dimension de l'environnement alimentaire, telles que la variété et la longueur d'étalage pour illustrer l'accessibilité physique aux aliments, ainsi que la combinaison de mesures absolues et relatives assurent une représentativité complète des contenus évalués.

Par ailleurs, contrairement au NEMS-S (Glanz et al. 2007), aucun score composite n'est proposé à partir des données obtenues pour chaque indicateur individuel. La littérature scientifique provenant de différents milieux socioéconomiques suggère que les indicateurs ayant une influence sur les comportements alimentaires et la santé varient d'un milieu à l'autre (Dubowitz et al. 2008; Gustafson et al. 2011a; Cobb et al. 2015b; Odoms-Young et al. 2016). L'agrégation de l'ensemble des indicateurs en un score total de qualité par commerce risquerait non seulement de surreprésenter un
contenu par rapport aux autres, mais pourrait également limiter la sensibilité de l’instrument face aux réalités des différents milieux.

Finalement, les aliments évalués correspondent à ceux qui ont été suggérés pour une approche étendue de l’évaluation de l’environnement alimentaire de consommation selon le cadre de référence de Ni Mhurchu et ses collaborateurs (2013). La classification des aliments selon leur niveau de transformation (Monteiro et al. 2012), plutôt que selon leur contenu en nutriments spécifiques, apparaissait plus cohérente avec les enjeux alimentaires observés dans la province (Moubarac et Batal 2016).

6.1.2 – Validité critériée

La validité critériée d’une mesure témoigne de sa corrélation avec une autre mesure, le « critère », considéré comme la mesure par excellence du même phénomène (Guilford et Fruchter 1973; Lytle 2009). Tel que mentionné précédemment, aucun instrument de mesure n’est aujourd’hui considéré comme une norme d’excellence en matière d’évaluation de l’environnement alimentaire (Plamondon et Paquette 2016). À défaut de pouvoir comparer le MEAC-S dans son ensemble à un instrument de référence, la section qui suit se penche sur chacun des indicateurs qui le composent.

Contrairement à la majorité des instruments de mesure répertoriés, le MEAC-S utilise le décompte total d’aliments disponibles par catégorie. Alors que cette méthode de mesure est certainement plus longue que le décompte d’un nombre restreint de produits, elle facilite la discrimination entre les supermarchés selon la variété d’aliments offerts. La plupart des outils évaluent cette variété à partir d’une liste à cocher, incluant généralement de 12 à 80 sortes de fruits et légumes. Si de telles listes permettent de faire une distinction entre les différents types de commerces (Glanz et al. 2007; Franco et al. 2008), elles seraient inutiles pour discriminer les supermarchés présents dans notre échantillon, la variété de fruits et légumes frais offerte dans ceux-ci oscillant entre 149 et 319 sortes. Une précédente étude réalisée à Montréal a démontré que la liste de fruits et
légumes destinée à évaluer la variété dans le NEMS-S ne permettait pas de détecter de différence entre les commerces situés dans des quartiers de niveaux socioéconomiques différents, contrairement à une liste maison composée de 135 fruits et légumes (Blanchard 2012). Des résultats semblables ont été obtenus en Australie, où les chercheurs n’ont pas pu observer d’association entre les achats de fruits et légumes et leur disponibilité dans les commerces, la liste utilisée pour évaluer cet indicateur s’étant avérée trop courte pour détecter une différence entre les commerces (Giskes et al. 2007).

Le décompte de toutes les variétés de fruits et légumes augmente toutefois le risque de compter à plusieurs reprises les mêmes items situés à plusieurs endroits dans le commerce (Thornton et al. 2010; Blanchard 2012) et d’ainsi diminuer la fidélité inter-évaluateur pour cette mesure (Cohen et al. 2007). En limitant le dénombrement des aliments à leur emplacement principal de vente, ces erreurs sont minimisées, tel qu’en témoigne la fidélité inter-évaluateur pour les variables de variété (ICC=0,888) dans le MEAC-S.

ont été utilisées pour la mesurer, via l'utilisation d'un ruban ou d'une roue à mesurer ou encore d'un odomètre. La méthode des pas, plus subtile et ne nécessitant pas de matériel supplémentaire, a été utilisée précédemment à Montréal et a permis d'observer des disparités dans l'accès aux fruits et légumes selon le niveau de défavorisation des secteurs (Bertrand et al. 2006, 2013), suggérant la validité de cette méthode dans le contexte urbain de Montréal.

L'évaluation de la fraîcheur des fruits et légumes n'a pas permis d'observer de variabilité entre les différents supermarchés à l'étude ou d'association fiable avec les achats de ces aliments, contrairement à ce qui a été précédemment observé dans le cadre d'une intervention au Colorado (Caldwell et al. 2009). L'évaluation de la fraîcheur des produits dans le cadre de cette intervention était réalisée sur une échelle à cinq niveaux, comparativement à celle du MEAC-S qui n'en compte que trois. La différence entre les résultats des deux études pourrait toutefois émaner simplement du fait que Caldwell et ses collaborateurs (2009) ont inclus plusieurs types de commerces dans leur évaluation (Horowitz et al. 2004; Connell et al. 2007), alors que la présente étude s’est limitée aux supermarchés, connus pour maintenir les plus hauts standards en matière de qualité des produits frais (Hawkes 2008). D’autres études seront nécessaires afin de déterminer la validité de cette mesure selon différents contextes.

En ce qui concerne la mesure du prix des aliments, les résultats mitigés présentés à la section 2.4.2.2 de la revue de littérature permettent difficilement de considérer comme une mesure de référence l'une ou l'autre des méthodes employées pour quantifier l'accessibilité financière aux aliments. Davantage d'études et une meilleure compréhension de la relation entre le prix des aliments et les comportements alimentaires seront nécessaires avant de déterminer la mesure appropriée pour chaque contexte. Il en va de même pour l'évaluation de la mise en valeur des aliments, encore trop peu intégrée aux outils existants pour considérer l'une des méthodes employées comme une mesure étonal.
6.1.3 – Validité de construit

La validité de construit décrit la capacité d’un outil à obtenir les résultats escomptés à partir du concept ou de l’hypothèse qu’il vise à mesurer. La caractérisation de l’environnement alimentaire dans quatre quartiers de Montréal avec le MEAC-S a effectivement permis d’observer une grande variabilité entre les supermarchés et les RTA pour une majorité des indicateurs étudiés. La mise en évidence de variations allant du simple au double pour le prix des fruits et légumes et le ratio de longueur d’étalage ou encore d’une association entre la taille des supermarchés et la promotion de produits ultra-transformés tend à démontrer la capacité du MEAC-S à discriminer les commerces selon la qualité de leur environnement alimentaire. Toutefois, pour analyser sa validité de construit, d’autres études devront évaluer sa capacité à discriminer les commerces selon le niveau socioéconomique du quartier dans lequel ils sont situés ou à prédire certains comportements alimentaires des consommateurs qui les fréquentent.

Il apparaît important de réitérer que la validité d’un outil n’est pas déterminée à un moment précis ni arrêtée dans le temps. Au contraire, elle s’établit de façon progressive par l’accumulation de preuves directes ou indirectes au fil de ses utilisations et d’apports théoriques nouveaux sur le concept étudié. Malgré l’affluence de nouvelles études sur l’environnement alimentaire depuis les dernières décennies, les connaissances sur l’importance relative des facteurs environnementaux influençant les comportements et la santé restent limitées et souvent contradictoires (Cobb et al. 2015b). Davantage d’études seront nécessaires afin de mieux comprendre les mécanismes liant l’environnement alimentaire aux comportements et de consolider la base théorique sur laquelle s’appuie la notion de validité.
6.2 – Environnement alimentaire de consommation dans les quartiers du sud-est de Montréal

6.2.1 – Accessibilité physique aux fruits et légumes...et aux aliments ultra-transformés

L’accessibilité physique aux supermarchés et aux fruits et légumes sur l’île de Montréal a été documentée à quelques reprises. Contrairement à ce que l’on peut observer aux États-Unis (Zenk et al. 2014), les commerces et les aliments sains sont accessibles dans la plupart des secteurs de la ville et la présence de déserts alimentaires ne semble pas représenter une problématique importante (Bertrand et al. 2006; Apparicio et al. 2007). Toutefois, si les fruits et légumes sont facilement accessibles pour une majorité de Montréalais, les résultats de la présente étude suggèrent qu’il en est de même pour les aliments ultra-transformés. L’espace que ces aliments occupent surpasse celui qui est dédié aux fruits et légumes dans 30% des commerces étudiés. Des résultats semblables ont été rapportés lors d’une étude dans 27 épiceries et supermarchés de secteurs favorisés et défavorisés de Montréal (Blanchard 2012) et s’apparentent à ceux d’études menées en Ontario (Winson 2004) et aux États-Unis. Parmi les études ayant mesuré la longueur d’étalage de fruits et légumes dans les commerces, celles qui ont également considéré les aliments de haute densité énergétique révèlent toutes des ratios inférieurs à 1,0, signalant la proéminence de ces aliments camelotes par rapport aux fruits et légumes frais (Connell et al. 2007; Farley et al. 2009; Rose et al. 2009; Hutchinson et al. 2012; Zenk et al. 2014). Ce ratio est inférieur à celui observé dans la présente étude, mais il faut souligner que les études américaines considèrent une plus grande variété d’aliments de haute densité énergétique, en ajoutant notamment les confiseries, les biscuits et les pâtisseries aux croustilles, boissons gazeuses et repas congelés étudiés avec le MEAC-S.

Tel que mentionné précédemment, plusieurs études soutiennent l’existence d’une association positive entre l’accessibilité physique aux fruits et légumes et l’achat ou la consommation de ces aliments (Bodor et al. 2008; Caldwell et al. 2009; Sharkey et al. 2010; Thornton et al. 2010; Izumi et al. 2011; Martin et al. 2012). Toutefois, encore peu
de chercheurs se sont intéressés à la relation entre l’accessibilité physique aux aliments de haute densité énergétique ou ultra-transformés et la consommation de ces aliments. Une étude américaine a suggéré que la longueur d’étalage de confiseries, grignotines salées, boissons gazeuses et pâtisseries serait associée à l’IMC des individus résidant à proximité du commerce (Rose et al. 2009), mais la disponibilité relative de fruits et légumes par rapport à ces aliments serait inversement reliée à la prévalence d’obésité et de surpoids (Hutchinson et al. 2012). Les indicateurs de proéminence obtenus par l’application du MEAC-S dans les supermarchés offrent une opportunité idéale pour évaluer l’existence de relations semblables dans le contexte urbain de Montréal.

L’analyse de l’environnement alimentaire des supermarchés de notre échantillon témoigne également d’une mise en valeur démesurée des aliments ultra-transformés par rapport aux fruits et légumes. Sur les 17 supermarchés évalués, seulement deux ont positionné des fruits et légumes frais hors de leur espace de vente principal, tandis que les croustilles et les boissons gazeuses sont situées en moyenne à 16 endroits différents par commerce. Ces aliments ultra-transformés occupent en moyenne 13 emplacements stratégiques par commerce, alors que des fruits et légumes, généralement en conserve, en occupent un seul, dans un supermarché sur deux. À nouveau, ces constats se comparent à ceux obtenus par Laurence Blanchard dans les supermarchés de Montréal. Elle notait alors qu’environ 10% des bouts d’allées étaient occupés par des fruits et légumes, contre 19 à 34% par des grignotines, selon le niveau de favorisation du secteur étudié. Les secteurs les moins favorisés étaient ceux où l’on retrouvait le plus de grignotines dans des emplacements stratégiques. Les étalages bordant les caisses, quant à eux, étaient de 78 à 94% occupés par des aliments de haute densité énergétique (Blanchard 2012). Une équipe de recherche a observé des résultats semblables dans les supermarchés de San Diego, en Californie, où les aliments de haute densité énergétique se situaient à 12 fois plus d’endroits que les fruits et légumes et que ces derniers n’étaient que rarement disposés dans les emplacements les plus proéminents (Kerr et al. 2012). De même, une étude menée sur des épiceries et des supermarchés de la Nouvelle-Orléans a observé que les boissons gazeuses, grignotines salées, pâtisseries et confiseries
se retrouvaient en moyenne à 80 emplacements par commerce, soit 4 fois plus que les fruits et légumes sous toutes leurs formes, et dont environ le quart se trouvait à moins d’un mètre des caisses (Miller et al. 2012).

6.2.2 – Accessibilité financière aux aliments

Plusieurs chercheurs qui s’intéressent à l’environnement alimentaire bâti évaluent sa qualité en fonction des types de commerces présents sur le territoire. L’une des prémisses sur lesquelles cette caractérisation s’appuie stipule que les supermarchés offrent la plus grande sélection de fruits et légumes au meilleur prix comparativement aux autres types de commerces (Chung et Myers 1999; Horowitz et al. 2004; Glanz et al. 2007; Cannuscio et al. 2013). Le portrait de l’environnement alimentaire dans les supermarchés d’Hochelaga-Maisonneuve, Mercier et Centre-Sud révèle toutefois une grande variabilité en ce qui a trait au prix des fruits et légumes entre les commerces. Le prix moyen par portion varie par un facteur de 2,8 pour les fruits et de 2,4 pour les légumes d’un commerce à l’autre, pouvant représenter des différences substantielles dans les dépenses alimentaires par ménage, selon le choix du lieu d’approvisionnement. Cette différence pourrait représenter un fardeau supplémentaire pour certains ménages de faible statut socioéconomique se voyant obligés de voyager davantage ou de surveiller
les promotions pour avoir accès à des fruits et légumes à prix raisonnable. À cet égard, le prix des aliments sains pourrait agir comme médiateur de la relation entre le statut socioéconomique et la qualité de l’alimentation (Beydoun et al. 2008; Aggarwal et al. 2011; Drewnowski et al. 2012). En revanche, dans les quartiers à l’étude, l’écart de prix est moindre pour les aliments ultra-transformés, particulièrement pour les produits standardisés, qui ont plutôt tendance à être vendus sensiblement au même prix dans tous les commerces.

Un constat important de la caractérisation de l’environnement alimentaire dans les commerces, discuté plus longuement dans l’article présenté au chapitre 5, est l’association inverse entre la mise en valeur des aliments ultra-transformés et leur prix. La proéminence des produits et leur faible prix sont deux des caractéristiques reconnues pour avoir le plus grand pouvoir d’influence sur les achats impulsifs (Stern 1962; Khamassi 2012). À notre connaissance toutefois, personne n’a jusqu’à présent exploré le lien entre le prix objectivement mesuré des aliments ultra-transformés dans les commerces et l’achat ou la consommation de ces aliments. D’autres études seront donc nécessaires afin de vérifier l’existence d’une telle association et son importance relative pour chaque catégorie d’aliments.
6.3 – Forces et limites

Ce projet de recherche comporte de nombreuses forces, notamment en ce qui concerne l'innovation en matière de mesure de l'environnement alimentaire de consommation, mais a également plusieurs limites. Cette section s'intéresse aux forces et aux limites du MEAC-S et de la caractérisation de l’environnement alimentaire dans les supermarchés des quatre quartiers étudiés.

6.3.1 – Forces

6.3.1.1 – Forces du MEAC-S

À notre connaissance, le MEAC-S est le premier outil à intégrer des mesures de mise en valeur des produits à des mesures d’accessibilité. Les bouts d’allées et les étalages entourant les caisses ont été considérés comme des emplacements stratégiques ayant un impact significatif sur les ventes des aliments qui y sont disposés et ce, depuis le développement des études marketing des années 1970 (Curhan 1974; Chevalier 1975;

Une grande force du MEAC-S réside dans la diversité des indicateurs qui y sont intégrés et dans leur évaluation de façon individuelle plutôt que par le biais d’un score composite. La caractérisation de l’environnement alimentaire des commerces a révélé une certaine divergence entre les résultats des différentes mesures utilisées pour en déterminer la qualité. Par exemple, un commerce pouvait offrir une vaste variété d’aliments sains, mais à un prix moyen des plus élevés parmi les commerces étudiés. L’agrégation des indicateurs en un score global pourrait sous-estimer l’importance de chacun de ces indicateurs et éventuellement leurs associations avec les comportements alimentaires et la santé des individus. La revue de la littérature souligne d’ailleurs l’existence d’associations contradictoires entre l’environnement et les comportements alimentaires d’une étude et d’un milieu à l’autre selon l’indicateur utilisé.

Finalement, la facilité d’application du MEAC-S et la courte durée de l’évaluation dans les commerces en font un instrument pratique à utiliser dans le contexte actuel dans lequel évolue la santé publique au Québec. De plus, la mesure de la longueur d’étalage par le biais du nombre de pas offre l’avantage de la subtilité, rendant possible la collecte de données dans les commerces sans avoir à demander l’approbation des propriétaires. Cette méthode de mesure pourrait facilement être modifiée dans le cadre d’autres projets de plus grande envergure. L’absence d’outil méthodologique développé et validé dans la province limitait jusqu’à présent la capacité des chercheurs, des décideurs et des praticiens à effectuer une surveillance fiable et efficace de l’accessibilité de la population aux aliments sains, ainsi qu’à mettre en place les stratégies appropriées pour corriger la situation selon les besoins (Ni Mhurchu et al. 2013). Le MEAC-S présente une excellente fidélité inter-évaluateur et plusieurs éléments suggèrent sa validité et sa capacité à discriminer les commerces selon la qualité de leur environnement alimentaire.
de consommation. Son application dans le contexte québécois constitue une importante innovation en matière d'analyse de l'environnement alimentaire.

6.3.1.2 – Forces reliées au portrait de l'environnement alimentaire de consommation

L'une des forces majeures de ce projet est l'évaluation exhaustive et systématique de l'environnement alimentaire à l'intérieur de l'ensemble des supermarchés sur le territoire étudié. Même si les sources d'approvisionnement alimentaire non traditionnelles, tel que les entrepôts, les pharmacies ou les magasins à escompte, gagnent des parts de marché depuis les dernières années (MAPAQ 2015), les supermarchés représentent généralement le lieu principal d'approvisionnement pour une majorité de la population (Cannuscio et al. 2013; Gustafson et al. 2013a; Labrecque et al. 2016). La caractérisation de l'environnement alimentaire dans l'ensemble des supermarchés de Mercier-Est, Mercier-Ouest, d'Hochelaga-Maisonneuve et de Centre-Sud offre donc un portrait représentatif d'un environnement alimentaire auquel une majorité de résidents sont exposés lorsqu'ils font leurs courses.

L'inclusion de l'ensemble des supermarchés à l'intérieur des frontières administratives des quartiers Hochelaga-Maisonneuve, Mercier-Est, Mercier-Ouest et Centre-Sud présente également un certain intérêt pour les chercheurs et les praticiens en santé publique. Un tel découpage pourrait permettre de comparer les quartiers ou les RTA entre eux, de planifier une intervention pour améliorer l'accès aux aliments ou encore de surveiller l'évolution de l'environnement alimentaire dans ces secteurs.

6.3.2 – Limites

6.3.2.1 – Limites du MEAC-S

et pâtisseries dans la catégorie des aliments de haute densité énergétique ou ultra-transformés. Ce choix a été fait afin d’assurer la praticité de l’outil et la facilité des évaluations dans les commerces, mais peut avoir pour conséquence de sous-estimer la proéminence de cette catégorie d’aliments dans l’environnement alimentaire des commerces. La mesure du prix moyen des fruits et des légumes à partir des quatre meilleurs vendeurs de ces catégories représente aussi une limite importante. Bien que ces aliments soient communément consommés dans la population en général, ils pourraient ne pas représenter des aliments courants pour certaines communautés culturelles, particulièrement à Montréal. Il en va de même pour la sélection d’aliments ultra-transformés standardisés.

En ce qui a trait aux méthodes de mesure, l’évaluation de la longueur d’étalage par la méthode des pas peut comporter une certaine marge d’erreur. Bien qu’ayant précédemment démontré sa fiabilité (Bertrand et al. 2006), cette méthode de mesure est tributaire de la constance des évaluateurs et de leur capacité à se déplacer sans trop d’obstacles dans le commerce, comparativement à l’utilisation d’une roue ou d’un ruban à mesurer.

6.3.2.2 – Limites liées au portrait de l’environnement alimentaire de consommation

Le portrait de l’environnement alimentaire de consommation a été limité exclusivement aux supermarchés, alors que l’on retrouve une soixantaine de détaillants alimentaires de tous types entre les frontières des quatre quartiers étudiés. Bien qu’une majorité de consommateurs ont pour lieu principal d’approvisionnement un
supermarché, les autres commerces contribuent à façonner le paysage alimentaire auquel ils sont exposés et servent souvent de lieu secondaire d’approvisionnement (Cerin et al. 2011; Gustafson et al. 2013a), particulièrement dans les grands centres urbains (Bodor et al. 2008). Le Marché Maisonneuve, ainsi que plusieurs fruiteries, épiceries indépendantes et commerces ethniques ouvrent sur rue dans les quartiers évalués, contribuant de façon non négligeable à l’offre de fruits et légumes frais dans ces secteurs.

Par ailleurs, plusieurs études ont rapporté des différences significatives dans la qualité de l’environnement alimentaire de consommation selon le niveau socioéconomique du quartier dans lequel ils sont situés (Chung et Myers 1999; Morland et al. 2002b; Horowitz et al. 2004; Zenk et al. 2005b; Morland et al. 2006a; Glanz et al. 2007; Morland et Filomena 2007; Franco et al. 2008; Ball et al. 2009; Cannuscio et al. 2013; Black et al. 2014; Zenk et al. 2014). À Montréal, l’étude de Laurence Blanchard révèle que la disponibilité de fruits et légumes, le ratio de surface d’étalage occupé par les divers types d’aliments et le positionnement des aliments de haute densité énergétique sont tous associés au niveau socioéconomique des quartiers (Blanchard 2012). En ce qui concerne les comportements alimentaires individuels, on constate d’une part que la qualité de l’environnement alimentaire exacerbe la relation entre le statut socioéconomique individuel et les pratiques alimentaires (Cummins et Macintyre 2006; Dubowitz et al. 2008) et d’autre part que le statut socioéconomique individuel agit comme médiateur de la relation entre l’environnement alimentaire et l’individu (Zick et al. 2009; Drewnowski et al. 2012; Gustafson et al. 2013a; Fiechtner et al. 2015). Les niveaux de défavorisation sociale et matérielle au Québec ne sont toutefois pas disponibles par RTA, unité géographique de notre étude, et ne permettent donc pas de contrôler et de stratifier nos résultats en fonction du niveau socioéconomique des quartiers. Les prochaines études devraient porter une attention particulière à la définition des frontières des secteurs étudiés, afin de pouvoir adresser ces problématiques.
6.4 – Implications pour la promotion de la santé et pistes de recherche

On sent depuis quelques années une certaine volonté politique à comprendre et intervenir sur les déterminants environnementaux de la santé et de l'alimentation, à la fois au niveau local, provincial et fédéral. Des initiatives en lien avec l'alimentation dans le Réseau québécois des Villes et Villages en santé (RQVVS 2016), la publication par le MSSSQ d'un rapport visant à rassembler les acteurs de santé publique autour d'une vision commune des environnements favorables (MSSSQ et al. 2012), la publication par Santé Canada d'un rapport répertoriant les données probantes sur l'environnement alimentaire dans les différentes communautés au pays (Santé Canada 2013), le dépôt d'un rapport sénatorial sur la problématique de l'obésité au Canada, (Ogilvie et Eggleton 2016), ainsi que la publication en 2016 et en 2017 d'éditions spéciales des revues de l'Association canadienne de santé publique et de l'Agence de la santé publique du Canada portant sur l'environnement alimentaire sont tous des éléments qui témoignent de l'intérêt des acteurs provenant de différents milieux pour l'étude et le développement des environnements alimentaires favorables à la santé. La surveillance de ces environnements et la mise en place de stratégies efficaces pour améliorer l'accès des individus aux aliments sains nécessite le support de données probantes, appuyées sur des mesures fiables et cohérentes avec leur contexte (Ni Mhurchu et al. 2013).

Le projet mené dans le cadre de ce mémoire contribue de multiples façons au développement des connaissances en matière d'environnement alimentaire de consommation dans le contexte spécifique du Québec. Le MEAC-S a été développé et validé en fonction des enjeux nutritionnels actuels dans la province (Blanchet et al. 2009; Moubarac et Batal 2016) et la diversité des indicateurs qu'il contient permet d'offrir une perspective nouvelle sur l'accessibilité physique et financière aux aliments, particulièrement sur l'exposition concomitante des individus à des aliments favorables et défavorables.
Le portrait de l’environnement alimentaire dans les supermarchés étudiés réitère la nécessité de s’intéresser à l’offre alimentaire à l’intérieur des commerces. La variabilité observée entre les supermarchés évalués au niveau de la qualité globale de leur environnement alimentaire s’ajoute aux observations d’autres chercheurs remettant en question la dichotomisation automatique entre les commerces « sains » et « non sains », utilisée dans une grande partie de la littérature scientifique sur le sujet (Gustafson et al. 2011a; Caspi et al. 2012b; Lucan 2015; Le et al. 2016). Afin de représenter de façon optimale l’accès aux aliments, une approche multidimensionnelle devrait être préconisée, combinant à la fois des mesures d’accessibilité aux commerces et des mesures de l’environnement alimentaire de consommation (Lytle 2009; Rose et al. 2010).

L'intérêt de la recherche portant sur les déterminants environnementaux de l’alimentation s’inscrit dans une volonté de comprendre et de contrer la progression du surpoids et des maladies non transmissibles dans la population, en soutenant la saine alimentation. L’une des solutions préconisées pour y arriver est l’amélioration de l’accès aux aliments favorables, se matérialisant à travers des projets d’intervention comme l’introduction d’un supermarché dans des secteurs qui en sont dépourvus (Wrigley et al. 2002; Cummins et al. 2005; Dubowitz et al. 2015a). Les études réalisées sur le territoire de l’île de Montréal et plus largement au Canada soulignent toutefois que le manque d’accessibilité aux commerces et aux aliments sains n’y représente pas une problématique majeure (Bertrand et al. 2006; Apparicio et al. 2007; Bertrand et al. 2013; Santé Canada 2013). De plus, les résultats de la présente étude mettent en évidence l’accessibilité physique et la mise en valeur démesurée des aliments ultra-transformés, ainsi que la grande variabilité du prix des fruits et légumes dans les supermarchés évalués. Dans ce contexte, des interventions visant à améliorer l’accès à des aliments sains en n’augmentant que leur disponibilité risquent d’avoir peu d’effet. Des solutions misant sur l’accessibilité financière, plutôt que seulement physique, aux aliments pourraient bénéficier davantage aux individus, particulièrement à ceux de plus faible statut socioéconomique (Mhurchu et al. 2010; Drewnowski et al. 2012). Pensons
notamment au programme WIC, aux États-Unis, qui permet à des femmes défavorisées et à risque sur le plan nutritionnel d’avoir accès à des aliments frais et sains. Les modifications récentes dans la gamme d’aliments offerts par le programme, en y intégrant entre autres des fruits et légumes frais, semblent avoir eu un effet positif sur la qualité des achats et de la diète de cette population (Gittelsohn 2012).

L’offre de produits prêts-à-manger préparés par les commerces pourrait également représenter une opportunité d’augmenter l’exposition aux fruits et légumes. Dans la plupart des supermarchés québécois, ces aliments sont positionnés au même endroit que les fruits et légumes frais ou dans une section immédiatement adjacente, impliquant que les consommateurs intéressés à s’en procurer sont davantage exposés aux fruits et légumes frais qui les entourent. Par ailleurs, dans l’échantillon de supermarchés étudiés, seuls les supermarchés à escomptes (Maxi, Super C) n’offraient aucun produit préparé sur place. Des études récentes démontraient que les clients de ce type de supermarchés présentaient un IMC et un risque d’obésité plus élevés que les clients d’autres types de supermarchés (Chaix et al. 2012; Drewnowski et al. 2012).

Des modifications majeures de l’offre alimentaire dans les commerces, telles que l’imposition d’un ratio de longueur ou de surface d’étalage, sont peu réalisables...
considérant leurs implications financières pour les commerçants. La mise en place de matériel éducatif au point de vente dans le but de modifier les habitudes d’achat des consommateurs s’est quant à elle révélée inefficace lorsqu’utilisée seule (Cheadle et al. 1991; Mhurchu et al. 2010). Afin de rendre les aliments sains plus attrayants, il pourrait être plutôt intéressant de se tourner vers des éléments du marketing mix tels que la disposition de fruits et légumes en bouts d’allées ou près des caisses. Les tactiques de placement des produits peuvent être réalisées à peu de frais et ont l’avantage de ne pas reposer sur l’intérêt des consommateurs pour la saine alimentation, comparativement à des mesures éducatives misant uniquement sur les attributs « santé » des aliments (Foster et al. 2014). De telles tactiques, tout comme des mesures incitatives faisant appel aux sens, pourraient permettre d’atteindre une plus large proportion des consommateurs (Peck et Childers 2006). L’initiative d’offrir des fruits gratuits aux enfants qui accompagnent leurs parents dans certains supermarchés Métro et IGA en est un bel exemple (Gendron 2016), ayant non seulement le potentiel de façonner le goût des enfants pour ces aliments, mais également celui de limiter leurs nombreuses demandes d’aliments de haute densité énergétique à ajouter au panier d’achats (McDermott et al. 2006).

La mise en place d’interventions et de stratégies pour améliorer les habitudes alimentaires des individus implique l’existence d’une base théorique solide et adaptée selon son contexte. Les connaissances sur l’environnement alimentaire auquel sont exposés les Montréalais et les Québécois commencent à prendre forme (Bertrand et al. 2006; Apparicio et al. 2007; Pouliot 2008; Blanchard 2012; Mercille et al. 2012; Bertrand et al. 2013). Les résultats de ce mémoire ajoutent à ce bagage plusieurs constats importants sur les dimensions d’accessibilité financière et de mise en valeur des aliments. Dans le but de confirmer les résultats obtenus, d’autres travaux devront être réalisés sur des échantillons de plus grande taille et incluant des secteurs de niveaux socioéconomiques et de degré d’urbanité diversifiés. L’inclusion de différents types de commerces permettrait également d’établir un portrait plus juste de l’environnement alimentaire auquel sont exposés les individus.
Afin de consolider et d’étendre la base théorique sur laquelle appuyer le développement de politiques publiques en matière d’accès aux aliments, d’autres travaux devront permettre de mieux conceptualiser l’exposition aux aliments et de déterminer l’importance relative des différentes dimensions de l’environnement alimentaire de consommation pour les individus (Lytle 2009). L’étude spécifique des mécanismes de causalité entre les dimensions de l’environnement alimentaire et les comportements individuels doit être supportée par l’élaboration de devis de recherche robustes, tout comme l’identification de médiateurs potentiels pour les sous-groupes qui composent la population (Fuller et al. 2016).
Chapitre 7. Conclusion

La recherche sur l’environnement alimentaire vit un moment d’effervescence au Canada. Au cours des cinq dernières années, plus d’une soixantaine d’études ont été publiées sur le sujet (Minaker et al. 2016). Le cadre théorique sur lequel s’appuient les chercheurs, les praticiens et les décideurs se construit et se solidifie au fil des études qui y ajoutent leur lot de données probantes. Malgré cet engouement, de nombreux défis restent encore à surmonter pour comprendre comment cet environnement contribue à façonner les habitudes alimentaires et la santé des individus.

Les résultats présentés dans ce mémoire mettent en lumière plusieurs constats importants qui devront être pris en considération dans la poursuite des travaux de recherche sur l’environnement alimentaire. À l’instar des observations effectuées par d’autres chercheurs américains et canadiens, ils soulignent la nécessité d’appréhender les commerces alimentaires dans leur individualité plutôt qu’en un bloc homogène. Ils remettent également en question l’amélioration de l’accessibilité physique aux aliments sains envisagée comme seule réponse à un environnement alimentaire défavorable. Le développement d’environnements favorables à la saine alimentation appelle à une diversification des cibles d’intervention et surtout, à la concertation d’acteurs des milieux académiques, politiques et communautaires.

L’instrument de mesure développé pour ce projet répond à une lacune importante en matière d’évaluation de l’environnement alimentaire dans le contexte québécois. La diversité des indicateurs qui le composent, l’intégration d’aliments dont la consommation est problématique dans la province, sa fidélité inter-évaluateur et sa validité en font un outil pertinent pouvant servir à l’évaluation et à la surveillance de l’environnement alimentaire dans les supermarchés du Québec.
Bibliographie

Babey SH, Diamant AL, Hastert TA, Harvey S, Al. E. Designed for Disease: The Link Between Local Food Environments and Obesity and Diabetes. UCLA Cent Health Policy Res [Internet]. 1 avr 2008 [cité 16 janv 2017]; Disponible à: http://escholarship.org/uc/item/7sf9t5wx

Ball K, Timperio AF, Crawford DA. Understanding environmental influences on nutrition and physical activity behaviors: where should we look and what should we count? Int J Behav Nutr Phys Act. 26 sept 2006b;3:33.

Bérubé M-P, Québec (Province), Ministère de la santé et des services sociaux. Miser sur une saine alimentation: une question de qualité : cadre de référence à l’intention des établissements du réseau de la santé et des services sociaux pour l’élaboration de politiques alimentaires adaptées. Québec: Santé et services sociaux Québec; 2009.

Blanchard L. Disparities in the availability of fruit, vegetables and snack foods by neighborhood socioeconomic status in supermarkets and grocery stores in Montréal, Canada [Internet]. Copenhagen University & University of Sheffield; 2012. Disponible à: http://mph.ku.dk/uddannelsen/master/afhandlinger/mph_2012/Laurence_Blanchard.pdf

DDM. Dispensaire diététique de Montréal [Internet]. Dispensaire diététique de Montréal. 2016 [cité 16 janv 2016]. Disponible à: http://wwwdispensaire.ca/

Government of Canada SC. CANSIM - 105-0507 - Measured adult body mass index (BMI), by age group and sex, household population aged 18 and over excluding pregnant females, Canada (excluding territories) [Internet]. 2016 [cité 28 oct 2016]. Disponible à: http://www5.statcan.gc.ca/cansim/a26?lang=eng&id=1050507

International Conference on Health Promotion. WHO | The Ottawa Charter for Health Promotion [Internet]. Ottawa: WHO; 1986 nov. Disponible à: http://www.who.int/healthpromotion/conferences/previous/ottawa/en/

Khamassi R. L’effet d’expérience en magasin sur l’achat impulsif dans un contexte de supermarché [Mémoire de maîtrise]. [Montréal, Québec]: UQAM; 2012.

Martin V, Parent M-P, Blouin M, Durand C, Québec (Province), Ministère de la famille. Gazelle et potiron: cadre de référence pour créer des environnements favorables à la saine alimentation, au jeu actif et au développement moteur en services de garde éducatifs à l’enfance [Internet]. 2014 [cité 16 janv 2017]. Disponible à: http://site.ebrary.com/id/10874163

Miller TM, Abdel-Maksoud MF, Crane LA, Marcus AC, Byers TE. Effects of social approval bias on self-reported fruit and vegetable consumption: a randomized controlled trial. Nutr J. 2008;7:18.

Ogilvie KK, Eggleton A. L’obésité au Canada, Une approche pansociétale pour un Canada en meilleure Santé. Ottawa; 2016 mars.

OQLF. La nutrition publique au menu - environnement alimentaire [Internet]. 2013 [cité 16 janv 2016]. Disponible à: https://www.oqlf.gouv.qc.ca/ressources/bibliotheque/dictionnaires/terminologie_nutrition/environnement_alimentaire.html

Paquette M-C, Bergeron P. Cadre de référence des indicateurs d’achats pour caractériser l’alimentation et l’environnement alimentaire au Québec [Internet]. Institut national de santé publique du Québec; 2016 oct p. 65. Disponible à: https://www.inspq.qc.ca/publications/2180

Peck J, Childers TL. If I touch it I have to have it: Individual and environmental influences on impulse purchasing. J Bus Res. juin 2006;59(6):765-9.

Powell LM, Han E. Adult Obesity and the Price and Availability of Food in the United States. Am J Agric Econ. 28 janv 2011a;:aaq106.

RQVVS. Réseau québécois des villes et villages en santé [Internet]. [cité 15 janv 2016]. Disponible à: http://www.rqvvs.qc.ca/

Santé Canada. La surveillance alimentaire et nutritionnelle au Canada: une analyse de la conjoncturee [Santé Canada, 2000] [Internet]. 2005 [cité 16 janv 2016]. Disponible à: http://www.hc-sc.gc.ca/fn-an/surveill/environmental_scan-fra.php#a2.1

Santé Canada. Mesure de l’environnement alimentaire au Canada. [Internet]. Canada, éditeur. 2013 [cité 16 janv 2017]. Disponible à: http://epe.lac-
Sharkey JR, Johnson CM, Dean WR. Food access and perceptions of the community and household food environment as correlates of fruit and vegetable intake among rural seniors. BMC Geriatr. 2 juin 2010;10:32.

Winson A. Bringing political economy into the debate on the obesity epidemic. Agric Hum Values. 1 janv 2004;21(4):299-312.

ANNEXES
Annexe A – MEAC-S : Mesure de l’environnement alimentaire de consommation dans les supermarchés

<table>
<thead>
<tr>
<th>Nom du commerce :</th>
<th>Adresse & code postal :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de commerce :</td>
<td>Supermarché Épicerie Épicerie indep Fruiterie Autre</td>
</tr>
<tr>
<td>Date de l'évaluation :</td>
<td>Durée :</td>
</tr>
</tbody>
</table>

Mise en valeur, nudges :

<table>
<thead>
<tr>
<th>Lieux</th>
<th>Nudges Occupés par HDE</th>
<th>Aliments HDE</th>
<th>FL</th>
<th>Matériel promo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouts d'allées</td>
<td></td>
<td>Boissons gazeuses</td>
<td>Chips</td>
<td>Bonbons</td>
</tr>
<tr>
<td>Caisse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prêt-à-manger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Catégories d'aliments

<table>
<thead>
<tr>
<th>Catégories d'aliments</th>
<th>Disponibilité</th>
<th>Prix s/promo</th>
<th>Qualité</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nbre de sortes</td>
<td>Longueur étalage (nbr pas)</td>
<td>Par unité</td>
</tr>
<tr>
<td>Fruits et légumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits frais</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Légumes frais</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pommes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bananes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraises</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oranges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carottes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laitue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concombre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pommes de terre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL Prêt-à-manger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congelé</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Légumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conserves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Légumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomates</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prêt à manger

<table>
<thead>
<tr>
<th>Cuisinés sur place</th>
<th>Nbre Indiv. + vrac</th>
<th>Longueur totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plats congelés</td>
<td>Nbre Indiv.</td>
<td>Longueur totale</td>
</tr>
<tr>
<td>Format (g)</td>
<td>Prix/unité</td>
<td>Longueur étalage (nbr pas)</td>
</tr>
<tr>
<td>Marque la moins chère :</td>
<td>Plats congelés individuels</td>
<td></td>
</tr>
<tr>
<td>Produit sélectionné :</td>
<td>Stouffer's Lasagne individuelle 286g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plats congelés - tous</td>
<td></td>
</tr>
</tbody>
</table>

Aliments de HDE

<table>
<thead>
<tr>
<th>Croustilles</th>
<th>Format (g)</th>
<th>Prix/unité</th>
<th>Nombre de rappels en magasin : (excluant leur site principal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marque la moins chère :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produit sélectionné :</td>
<td>Lays Originales, format régulier 180g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boissons gazeuses</td>
<td>Prix pour 2L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marque la moins chère :</td>
<td>Coke, 2L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produit sélectionné :</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annexe B – Guide d’utilisation du MEAC-S

Guide d’utilisation - MEAC-S

Guide d’utilisation, version finale 2016. Élise Jalbert-Arsenault, Dt.P.

<table>
<thead>
<tr>
<th>Éléments à l'évaluation</th>
<th>Précisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence d'aliments HDE dans les lieux stratégiques</td>
<td>Compter le nombre total d'emplacements stratégiques présents dans le commerce. Indiquer le nombre de ces emplacements dans lesquels il y a présence d'aliments de HDE.</td>
</tr>
<tr>
<td>Inclus:</td>
<td>Exclus:</td>
</tr>
<tr>
<td>- Bouts d'allées (correspond aux 2 bouts des étalages créant les allées centrales du commerce). Y ajouter toute section du commerce se retrouvant le long des murs externes et qui est dédiée entièrement aux aliments de HDE. (ex: petit quadrilatère rassemblant des bonbons, des croustilles, des chocolats, etc. situé sur le long du mur du fond)</td>
<td>- Rappels d'aliments en milieu d'allée</td>
</tr>
<tr>
<td>- Comptoirs caisses (nbr de caisses régulières + nbr de caisses électroniques)</td>
<td>- Rappels d'aliments à l'entrée du commerce</td>
</tr>
<tr>
<td>- Îlots ou sections de prêt-à-manger cuisiné sur place (compter chaque façade de p-à-m individuellement)</td>
<td></td>
</tr>
</tbody>
</table>

Mise en valeur des aliments, *nudges*

| Intensité de la mise en valeur dans les emplacements stratégiques | |
| Compter le nombre de fois qu'un aliment de HDE (boissons gazeuses, chips, bonbons) OU des fruits ou légumes se retrouvent dans l'un des endroits stratégiques répertoriés. ATTENTION : les emplacements stratégiques peuvent être occupés par plus d'un type d'aliments. Par exemple, un bout d'allée peut être occupé par des croustilles ET des bonbons. Noter chacun de ces aliments dans la case appropriée. |
Inclus:	**Exclus:**
- Mêmes emplacements stratégiques que la section précédente.	
- Boissons gazeuses, tous formats	
- Croustilles, popcorn, pretzels, etc., tous formats	
Matériel promotionnel

Noter toutes les formes de mise en valeur ou d'incitation à l'achat de produits de haute densité énergétique (croustilles, bonbons ou boissons gazeuses) et de fruits et légumes par le magasin. Cette mise en valeur doit être indépendante des produits eux-mêmes.

<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affiches ou banderoles</td>
<td>Visuel promotionnel inclus sur l'emballage des aliments</td>
</tr>
<tr>
<td>Présentoirs</td>
<td>- Allégations nutritionnelles sur les emballages</td>
</tr>
<tr>
<td>Information nutritionnelle offerte par le commerce, encyclopédie des aliments</td>
<td>Promotions financières de type rabais, 2 pour 1, coupons de réduction, etc.</td>
</tr>
<tr>
<td>Guides d'achats</td>
<td></td>
</tr>
<tr>
<td>Articles ou montage promotionnel pour une marque ou un type de produit</td>
<td></td>
</tr>
</tbody>
</table>

Fruits et légumes frais

Compter et noter toutes les variétés de fruits et toutes les variétés de légumes, en utilisant la définition nutritionnelle des fruits et légumes (ex: tomates, avocats, etc. avec les légumes).

S'il existe plus d'une variété et plus d'une compagnie ou producteur pour un même type de légumes ou fruits (par exemple, plusieurs variétés de pommes, plusieurs producteurs de tomates, aliments en production biologique), compter toutes les variétés pour toutes les compagnies de façon individuelle.

<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toutes les variétés d'oignon</td>
<td>Toutes les variétés de pommes de terre</td>
</tr>
<tr>
<td>Fines herbes, ail, gingembre</td>
<td>Fruits et légumes préparés</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nombre de sortes de fruits et légumes frais

S'il existe plus d'un format de vente pour un même produit (ex: paquet de 4 tomates, sacs de pommes, etc.), compter tous les formats disponibles de façon individuelle.

<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toutes les variétés d'oignon</td>
<td>Toutes les variétés de pommes de terre</td>
</tr>
<tr>
<td>Fines herbes, ail, gingembre</td>
<td>Fruits et légumes préparés</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fruits et légumes prêts-à-manger

Compter et noter toutes les variétés de fruits et légumes coupés, tranchés, parés et/ou préparés, que cette préparation soit effectuée par le magasin ou non.

<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits et légumes coupés, tranchés, râpés</td>
<td>Soupes et potages préparés sur place</td>
</tr>
<tr>
<td>Fruits et légumes congelés</td>
<td>Compter et noter toutes les variétés de fruits et légumes congelés. Comptez individuellement chaque produit pour chacune des marques de produits. Inclure la section biologique du commerce.</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Inclus:</td>
<td>Exclus:</td>
</tr>
<tr>
<td>- Emballages d'un seul type de fruit ou légume</td>
<td>- Jus ou purées de fruits congelés</td>
</tr>
<tr>
<td>- Mélanges de fruits ou de légumes (ex: légumes pour spaghetti, petits fruits, mélange de fruits tropicaux, etc.)</td>
<td>- Pommes de terre congelées</td>
</tr>
<tr>
<td>- Tout produit transformé</td>
<td>- Portions individuelles de fruits et légumes (compotes, salades de fruits, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fruits et légumes en conserves</th>
<th>Compter et noter toutes les variétés de fruits et légumes en conserve. Comptez individuellement chaque produit pour chacune des marques de produits. Si plus d'un format de vente est disponible pour un même produit, comptez chaque format individuellement. Inclure la section biologique du commerce. Comptez uniquement les produits présents dans leur point principal de vente.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclus:</td>
<td>Exclus:</td>
</tr>
<tr>
<td>- Conserves ne contenant qu'une seule sorte de fruit ou légume</td>
<td>- Portions individuelles de fruits et légumes (compotes, salades de fruits, etc.)</td>
</tr>
<tr>
<td>- Mélanges de fruits ou de légumes</td>
<td>- Condiments (cornichons, oignons marinés, aubergines marinées, tomates séchées, etc.)</td>
</tr>
<tr>
<td>- Toutes les variétés de fruits et légumes, peu importe leur liquide de trempage (eau, jus, sirop, marinade, assaisonnement)</td>
<td>- Jus de fruits ou de tomate</td>
</tr>
<tr>
<td>- Tomates entières, en dés, broyées ou en sauce, assaisonnées ou non</td>
<td>- Sauces faites de fruits (ex: sauce de canneberges)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prêt-à-manger cuisiné</th>
<th>Compter et noter toutes les variétés de repas prêt-à-manger préparés sur place, en portions individuelles</th>
</tr>
</thead>
</table>
ou en vrac (ex: salade de pâte en vrac). Compter individuellement chaque sorte pour chacun des produits disponibles (ex: toutes les sortes de sandwiches, de pâtes, de pizza, de salades, etc.).

<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Repas principaux complets (ex: lasagne, macaroni, pâté chinois, sushis, etc.)</td>
<td>- Tout ce qui est inclus dans la section "fruits et légumes prêt-à-manger"</td>
</tr>
<tr>
<td>- Tout ce qui peut constituer un repas ou une partie de repas (rouleau de printemps, doigts de poulet, poulet entier, frites, arancinis, etc.)</td>
<td>- Tous les produits de boulangerie</td>
</tr>
<tr>
<td>- Toutes les variétés de sandwiches</td>
<td>- Tous les produits de pâtisserie</td>
</tr>
<tr>
<td>- Salades composées principalement de pâtes</td>
<td>- Toutes les confiseries/bonbons/chocolats préparés sur place</td>
</tr>
<tr>
<td>- Salades composées principalement de légumineuses</td>
<td>- Toutes les viandes et volailles fraîches et tous les poissons frais coupés, tranchés, hachés ou transformés sur place (ex: saucisses de truite)</td>
</tr>
<tr>
<td>- Toutes les variétés de soups et potages</td>
<td>- Tous les fromages coupés, tranchés, fondus, etc. sur place</td>
</tr>
<tr>
<td>- Toutes les variétés de sauces préparées sur place (ex: à spaghetti)</td>
<td>- Tous les produits prêt-à-cuire (ex: brochettes, viandes et poissons marinés, etc.)</td>
</tr>
<tr>
<td>- Formats individuels ou au poids/volume</td>
<td>- Formats familiaux</td>
</tr>
</tbody>
</table>

Prêt-à-manger congelé

Compter et noter toutes les variétés de prêt-à-manger congelés en portions individuelles retrouvées à leur endroit principal de vente et dans la section biologique du commerce, si elle est distincte. NE PAS compter les produits se trouvant à d'autres endroits dans le magasin - il s'agit généralement des mêmes produits, répétés pour une promotion.

S'il existe plus d'une marque ou compagnie pour un même type de produit (ex: plusieurs marques de lasagnes individuelles), compter toutes les variétés pour toutes les compagnies de façon individuelle.

<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Tous les repas complets en portions individuelles (ex: TV Dinner, Hungry man, lunchs complets, etc.)</td>
<td>- Portions familiales</td>
</tr>
<tr>
<td>- Tous les repas principaux en portions individuelles</td>
<td>- Emballages contenant plusieurs portions d'un même aliment (ex: boîtes de pogo, croquettes, rouleaux impériaux, bâtonnets de fromage, etc.)</td>
</tr>
<tr>
<td>Croustilles</td>
<td>(ex: lasagnes, pâtés chinois, pâtes, etc.)</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>- Sandwiches ou panini congelés</td>
</tr>
<tr>
<td></td>
<td>- Pizzas, pizzas pochettes, calzones congelés; ssi emballées en portions individuelles</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compter et noter toutes les variétés de croustilles retrouvées à leur endroit principal de vente et dans la section biologique du commerce, si elle est distincte. Si des croustilles différentes se retrouvent à d'autres endroits dans le magasin, les ajouter à ce décompte. **TOUTEFOIS:** ATTENTION aux répétitions des mêmes sortes de croustilles à plusieurs endroits dans le commerce.

S'il existe plus d'une marque ou compagnie pour une même sorte de croustille (ex: plusieurs marques de croustilles au BBQ), compter toutes les variétés pour toutes les compagnies de façon individuelle.

S'il existe plus d'un format pour un même produit, compter tous les formats disponibles pour une même sorte/une même marque de croustilles. Par exemple, les croustilles Lays BBQ disponibles en formats 180, 255 et 310g valent pour 3.

Attention aux répétitions possibles d'un même aliment à plusieurs endroits dans l'étalage.

Inclus:
- Croustilles traditionnelles
- Croustilles de maïs, de riz, de légumes, etc.
- Toutes les formes de pop corn, qu'il soit prêt-à-manger ou à faire éclater
- Toutes les formes de pretzels
- Toutes les croustilles cuites au four, réduites en sodium, en gras ou comportant toute autre allégation "santé"
- Croustilles enrobées de chocolat

Exclus:
- Formats individuels se retrouvant aux comptoirs caisse ou au prêt-à-manger.
- Galettes de riz, assaisonnées ou non, de gros format

<table>
<thead>
<tr>
<th>Boissons gazeuses</th>
<th>Compter et noter toutes les variétés de boissons gazeuses retrouvées à leur endroit principal de vente. NE PAS compter les produits se trouvant à d'autres endroits dans le magasin - il s'agit généralement des mêmes produits, répétés pour mieux les mettre en valeur.</th>
</tr>
</thead>
</table>

Boissons gazeuses

Inclus:
- Croustilles traditionnelles
- Croustilles de maïs, de riz, de légumes, etc.
- Toutes les formes de pop corn, qu'il soit prêt-à-manger ou à faire éclater
- Toutes les formes de pretzels
- Toutes les croustilles cuites au four, réduites en sodium, en gras ou comportant toute autre allégation "santé"
- Croustilles enrobées de chocolat

Exclus:
- Formats individuels se retrouvant aux comptoirs caisse ou au prêt-à-manger.
- Galettes de riz, assaisonnées ou non, de gros format
S'il existe plus d'une marque ou compagnie pour une même sorte de boisson (ex: plusieurs marques de boisson style Soda), compter toutes les variétés pour toutes les compagnies de façon individuelle.

S'il existe plus d'un format de vente pour un même produit, compter chaque format de façon individuelle.

<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Boisson gazeuses traditionnelles</td>
<td>- Eaux minérales</td>
</tr>
<tr>
<td>- Boisson gazeuses "diète"</td>
<td>- Eaux pétillantes nature</td>
</tr>
<tr>
<td>- Boisson gazeuses sans caféine, sans sucre, sans calories ou comportant tout autre allégation "santé"</td>
<td>- Energy drink</td>
</tr>
<tr>
<td>- Eaux ou jus pétillants sucrés ou édulcorés.</td>
<td>- Toutes les boissons alcoolisées</td>
</tr>
<tr>
<td>- Jus ou cocktails de fruits</td>
<td>- Thés glacés</td>
</tr>
</tbody>
</table>

Cette mesure vise à objectiver le niveau d'exposition aux différents aliments en magasin, en calculant la distance sur laquelle sont disposés les aliments le long du parcours du consommateur.

Mesurer la longueur d'étalage seulement, sauf dans le cas où il y a une présentation des aliments aussi sur la largeur de l'étalage (ex: un îlot de fruits, de légumes, de croustilles, etc. où l'on retrouve des aliments présentés de tous les côtés de l'étalage). Dans ce cas, mesurer la longueur d'étalage de tous les côtés de l'îlot.

Pour chaque catégorie d'aliments, mesurer et additionner la longueur d'étalage pour chacun des sites de vente (ex: si l'on retrouve des croustilles à 4 endroits dans le magasin, mesurer la longueur pour chacun des 4 étalages et additionner les résultats pour obtenir une mesure d'exposition totale aux croustilles).

Pour les biens de la présente étude, la mesure de longueur d'étalage se fait avec la méthode des pas, présentée en annexe. Elle pourrait toutefois être réalisée avec un roue d'arpenteur-géomètre, un ruban à mesurer ou toute autre méthode.

Il est probable que des aliments d'autres catégories s'insèrent sur la longueur mesurée pour un type d'aliment (ex: des pots de chocolat parmi les fruits). Si cette intrusion cause un arrêt à l'exposition de la catégorie d'aliment pour laquelle la mesure est prise (ex: du chocolat sur toute la hauteur de l'étalage), cesser la mesure pour la distance sur laquelle on ne retrouve que l'aliment "intru". Toutefois, si cette intrusion ne freine pas l'exposition à la catégorie d'aliment (ex: quelques pots de chocolat répartis entre les fruits), ne pas considérer ces aliments "intrus" et poursuivre la mesure comme s'ils n'étaient pas présents.
Cette mesure exclut la **hauteur** et la **profondeur** de l'étalage.

<table>
<thead>
<tr>
<th>fruits et légumes, frais et prêt-à-manger</th>
<th>Mesurer et noter la longueur de tous les étalages destinés aux fruits et légumes frais et prêt-à-manger (comptoirs réfrigérés, îlots centraux, etc.).</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclus</td>
<td>exclus</td>
</tr>
<tr>
<td>Sont inclus et exclus les mêmes items que ceux énumérés à la section "Nombre de sortes".</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fruits et légumes, congelés et conserves</th>
<th>Mesurer et noter la longueur de tous les étalages destinés aux fruits et légumes congelés et en conserve (allées, îlots centraux, section régulière et biologique, etc.).</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclus</td>
<td>exclus</td>
</tr>
<tr>
<td>Sont inclus et exclus les mêmes items que ceux énumérés à la section "Nombre de sortes".</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pommes de terre</th>
<th>Mesurer et noter toute la longueur d'étalage destinée aux différentes variétés de pommes de terre et autres légumes tubercules (ex: manioc, igname, patate douce, etc.).</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclus</td>
<td>exclus</td>
</tr>
<tr>
<td>Sont inclus et exclus les mêmes items que ceux énumérés à la section "Nombre de sortes".</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>prêt-à-manger cuisiné sur place</th>
<th>Mesurer et noter la longueur de tous les étalages destinés aux plats prêt-à-manger cuisinés sur place (comptoirs réfrigérés, comptoirs avec service, etc.).</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclus</td>
<td>exclus</td>
</tr>
<tr>
<td>Sont inclus et exclus les mêmes items que ceux énumérés à la section "Nombre de sortes".</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>prêt-à-manger congelé</th>
<th>Mesurer et noter la longueur de tous les étalages destinés au prêt-à-manger congelé (congélateurs, îlots centraux, etc.). ATTENTION aux congélateurs sous forme d'îlots qui sont répartis à différents endroits dans le commerce.</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclus</td>
<td>exclus</td>
</tr>
<tr>
<td>Considérer TOUS les aliments congelés prêt-à-manger, qu'il ne suffit que de réchauffer au four ou au micro-onde, peu importe la taille de la portion.</td>
<td></td>
</tr>
<tr>
<td>- Tous les repas complets en portions individuelles et familiales (ex: TV Dinner, Hungry man, lunches complets style "boîte à lunch", etc.)</td>
<td>- Poissons, volaille ou viande congelées</td>
</tr>
<tr>
<td>- Tous les repas principaux en portions individuelles et familiales (ex: lasagnes, pâtes chinoises, pâtes, etc.)</td>
<td>- Fruits et légumes congelés</td>
</tr>
<tr>
<td>- Sandwiches ou panini congelés</td>
<td>- Desserts congelés</td>
</tr>
<tr>
<td>- Pizzas, pizzas pochettes, calzones congelés</td>
<td></td>
</tr>
</tbody>
</table>
Croustilles et boissons gazeuses

- Emballages contenant plusieurs portions d'un même aliment (ex: boîtes de pogo, croquettes, rouleaux impériaux, bâtonnets de fromage, etc.)
- Déjeuners congelés
-Entrées et hors d'œuvres congelés
- Pommes de terre/frites congelées

Mesurer et noter la longueur de tous les étalages destinés aux croustilles et aux boissons gazeuses (sites principaux de vente, bouts d'allées, comptoirs caisse, îlots promotionnels, etc.).

Porter une attention particulière aux rappels de ces produits en magasin, qui sont inclus dans la mesure, ainsi qu'à toutes les façades d'expositions pour les produits en bout d'allées.

<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sont inclus et exclus les mêmes items que ceux énumérés à la section "Nombre de sortes", à l'exception des croustilles en formats individuels retrouvés aux comptoirs caisses. Ces derniers sont inclus dans la mesure de longueur d'étalage.</td>
<td></td>
</tr>
</tbody>
</table>

Général

Sélectionner et noter le plus petit prix disponible, sans promotion pour les aliments présentés dans la liste.

Lorsque plusieurs variétés d'un même aliment sont disponibles (ex: plusieurs variétés de tomates), sélectionner le prix le moins dispendieux au poids ou à l'unité, selon le type de mise en vente.

Prix des aliments

Fruits et légumes - Prix à l'unité

L'unité correspond à la plus petite unité de vente disponible pour laquelle la vente se fait à l'unité et non pas au poids (ex: 1 orange pour 0,60$ et non pas 1 orange pour 1,99$/lb). L'unité peut représenter un seul item ou encore un emballage de plusieurs unités d'un même aliment (ex: un sac d'oranges, de carottes, etc.).

Lorsque les seuls unités de vente sont des emballages (ex: sac de carottes de 2lbs), noter le prix et la quantité pour les produits dont le prix par 100g est le moins élevé.

Fruits et légumes - Prix à la livre

Lorsque seul le prix au poids est disponible, noter le prix pour 1 livre de l'aliment présent dans la liste.

Plats congelés

Parmi les plats congelés en portions individuelles, trouver et noter le plat congelé le moins dispendieux selon le prix par 100g. Inscrire le nom complet du produit, le poids du produit et le prix unitaire.

Si tous les produits d'une même marque sont au même prix, indiquer le nom de la marque.

Noter le prix unitaire sans promotion de la Lasagne Stouffer's, en format de 286g.
<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sont inclus et exclus les mêmes items que ceux énumérés à la section "Nombre de sortes".</td>
<td></td>
</tr>
</tbody>
</table>

Croustilles

Parmi les croustilles de format régulier, trouver et noter la sorte ou la marque la moins dispendieuse selon le prix par 100g. Inscrire le nom complet du produit, le poids du produit et le prix unitaire.

Si tous les produits d'une même marque sont au même prix, indiquer le nom de la marque.

Noter le prix unitaire sans promotion des croustilles Lay's Originales, en format de 180g.

<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sont inclus et exclus les mêmes items que ceux énumérés à la section "Nombre de sortes".</td>
<td></td>
</tr>
</tbody>
</table>

Boissons gazeuses

Parmi les boissons gazeuses en format de 2 litres, trouver et noter la sorte ou la marque la moins dispendieuse. Inscrire le nom complet du produit et le prix unitaire.

Si tous les produits d'une même marque sont au même prix, indiquer le nom de la marque.

Noter le prix unitaire sans promotion du Coke, en format de 2L.

Si le Coke n'est pas disponible, noter le prix du Pepsi, pour le même format de 2L.

<table>
<thead>
<tr>
<th>Inclus:</th>
<th>Exclus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sont inclus et exclus les mêmes items que ceux énumérés à la section "Nombre de sortes".</td>
<td></td>
</tr>
</tbody>
</table>

Qualité des fruits et légumes

Ce critère vise à évaluer le niveau de fraîcheur des fruits et légumes présents dans le commerce. Porter une attention à l'aspect visuel, à la fermeté des produits, à la présence de meurtrissures, de moisissure et à l'odeur des produits.

Évaluer et noter séparément la qualité globale des fruits et des légumes présentés dans le commerce, selon les critères énumérés ci-bas. Pour ce faire, ne pas hésiter à toucher, sentir ou déplacer les produits.

Si l'on retrouve dans le commerce un étalage de fruits et légumes *moches*, ne pas considérer l'aspect visuel irrégulier de ces produits. Utiliser uniquement les critères de fraîcheur.

Si l'on retrouve dans le commerce un présentoir de produits moins frais, vendus à rabais, exclure ce présentoir de l'évaluation puisqu'il n'est pas représentatif de la qualité globale des fruits et légumes vendus par ce commerce.

1 :

Visuel: les fruits et légumes semblent visuellement frais, ne présentent pas de meurtrissures (1 ou moins par étalage) et n'ont aucune présence de moisissure. Les produits sont mûrs ou sur le point de l'être; ils n'ont pas dépassé leur stade de mûrissement idéal.

Olfactif: les fruits et légumes dégagent une odeur de produit frais. Aucune odeur de moisissure n'émane
<table>
<thead>
<tr>
<th>Grade</th>
<th>Visuel: les fruits et légumes semblent majoritairement frais, présentent peu de meurtrissures (5 ou moins par étalage) et la majorité des étalage ne contient aucun produit moisi. Les produits sont mûrs ou sur le point de l'être; peu ont dépassé leur stade de mûrissement idéal.</th>
<th>Olfactif: les fruits et légumes dégagent une odeur de produit frais ou légèrement trop mûrs.</th>
<th>Toucher: la majorité des fruits et légumes sont fermes au toucher.</th>
</tr>
</thead>
</table>
Annexe C – Grille pour calibrage des pas

Calibrage des pas

Date:
Lieu:

<table>
<thead>
<tr>
<th>Nombre de pas</th>
<th>Distance* (m)</th>
<th>Essais</th>
<th>Longueur d'un pas (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>s/sac</td>
<td>c sac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>s/sac</td>
<td>c sac</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
</tbody>
</table>

Longueur moyenne d'un pas (m) :

<table>
<thead>
<tr>
<th>s/sac</th>
<th>c sac</th>
</tr>
</thead>
<tbody>
<tr>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
</tbody>
</table>

* distance mesurée d'orteil à orteil
Annexe D – Pré-tests (territoire et résultats)

Commerces étudiés :

- 1 très gros supermarché : Provigo le Marché Jean-Talon
- 2 moyens supermarchés : Metro E. Bourdon & Fils et Supermarché IGA Déziel
- 1 épicerie de quartier : Marché Richelieu Supermarché Chauvin
- 1 fruiterie : Fruiterie Forcier
Résultats des pré-tests : Évaluation de l'environnement alimentaire dans cinq détaillants du secteur Villeray à Montréal

<table>
<thead>
<tr>
<th>Secteur à l'étude</th>
<th>Villeray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commerce</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Date de la collecte</td>
<td>25.03.2015 27.03.2015 26.03.2015 24.03.2015 26.03.2015</td>
</tr>
<tr>
<td>Type de commerce (F, E, S)</td>
<td>S F E S S</td>
</tr>
<tr>
<td>Variété</td>
<td>FL frais 158 93 72 180 127</td>
</tr>
<tr>
<td>Croustilles</td>
<td>NE 5 80 217 134</td>
</tr>
<tr>
<td>Boissons gazeuses</td>
<td>NE 0 34 44 38</td>
</tr>
<tr>
<td>Longueur d'étalage</td>
<td>Ratio FL/HDE 1,309 5,500 1,068 1,591 1,232</td>
</tr>
<tr>
<td>Nombre de rappels</td>
<td>Fruits et légumes 0 0 0 1 0</td>
</tr>
<tr>
<td>HDE</td>
<td>10 0 6 10 2</td>
</tr>
<tr>
<td>Qualité (-1, 0, 1)</td>
<td>Moyenne FL 1 0 0 1 0</td>
</tr>
<tr>
<td>Prix sans promotion</td>
<td>1 portion FL 0,28 $ 0,21 $ 0,34 $ 0,31 $ 0,23 $</td>
</tr>
<tr>
<td>1 plat congelé</td>
<td>1,99 $ NA 1,79 $ 2,99 $ 1,79 $</td>
</tr>
<tr>
<td>Croustille reg.</td>
<td>2,49 $ ND 1,49 $ 1,79 $ 1,99 $</td>
</tr>
<tr>
<td>2L b. gazeuses</td>
<td>1,29 $ NA 1,29 $ 1,29 $ 1,29 $</td>
</tr>
<tr>
<td>Mise en valeur des produits</td>
<td>Aliments de HDE Nil Présentoir Redbull Chips aux caisses</td>
</tr>
<tr>
<td>Fruits et légumes</td>
<td>Idées recettes Nil Guide étoile Nil</td>
</tr>
<tr>
<td></td>
<td>Affiches "cuisiner ensemble" NE</td>
</tr>
<tr>
<td></td>
<td>Photos recettes</td>
</tr>
</tbody>
</table>

Légende : F = fruiterie, E = Épicerie, S = Supermarché, FL = Fruits et légumes, HDE = Aliments de haute densité énergétique, NE = Non-évalué, NA = Non-applicable, ND = Non-disponible.
<table>
<thead>
<tr>
<th>Variables à l’étude</th>
<th>Inter-évaluateur ICC</th>
<th>Test-retest ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de sortes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits frais</td>
<td>0,987</td>
<td>0,96</td>
</tr>
<tr>
<td>Légumes frais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL prêt-à-manger</td>
<td>0,99</td>
<td>0,888</td>
</tr>
<tr>
<td>Fruits congelés</td>
<td>0,504</td>
<td>0,769</td>
</tr>
<tr>
<td>Légumes congelés</td>
<td>0,71</td>
<td>0,985</td>
</tr>
<tr>
<td>Fruits conserve</td>
<td>0,953</td>
<td>0,871</td>
</tr>
<tr>
<td>Légumes conserve</td>
<td>0,746</td>
<td>0,605</td>
</tr>
<tr>
<td>Tomates conserve</td>
<td>0,936</td>
<td>0,837</td>
</tr>
<tr>
<td>P-à-m cuisiné sur place</td>
<td>0,982</td>
<td>0,939</td>
</tr>
<tr>
<td>Plats congelés</td>
<td>0,992</td>
<td>0,934</td>
</tr>
<tr>
<td>Croustilles</td>
<td>0,993</td>
<td>0,976</td>
</tr>
<tr>
<td>Boissons gazeuses</td>
<td>0,971</td>
<td>ND</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,888</td>
<td>0,876</td>
</tr>
<tr>
<td>Longueur d’étalage (mètres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits frais</td>
<td>0,993</td>
<td>0,989</td>
</tr>
<tr>
<td>Légumes frais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pommes de terre</td>
<td>0,968</td>
<td>0,941</td>
</tr>
<tr>
<td>FL prêt-à-manger</td>
<td>0,974</td>
<td>0,977</td>
</tr>
<tr>
<td>Fruits congelés</td>
<td>0,529</td>
<td>0,581</td>
</tr>
<tr>
<td>Légumes congelés</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits conserve</td>
<td>0,976</td>
<td>0,911</td>
</tr>
<tr>
<td>Légumes conserve</td>
<td>0,991</td>
<td>0,953</td>
</tr>
<tr>
<td>P-à-m cuisiné sur place</td>
<td>0,921</td>
<td>0,935</td>
</tr>
<tr>
<td>Plats congelés</td>
<td>0,921</td>
<td>0,934</td>
</tr>
<tr>
<td>Croustilles</td>
<td>0,995</td>
<td>0,984</td>
</tr>
<tr>
<td>Boissons gazeuses</td>
<td>0,978</td>
<td>0,775</td>
</tr>
<tr>
<td>Plats congelés individuels</td>
<td>0,75</td>
<td>ND</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,908</td>
<td>0,894</td>
</tr>
<tr>
<td>Nombre de rappels en magasin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits et légumes</td>
<td>0,969</td>
<td>0,509</td>
</tr>
<tr>
<td>Croustilles</td>
<td>0,932</td>
<td>0,768</td>
</tr>
<tr>
<td>Boissons gazeuses</td>
<td>0,953</td>
<td>0,017</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,951</td>
<td>0,431</td>
</tr>
<tr>
<td>Qualité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualité moyenne des fruits</td>
<td>1</td>
<td>0,935</td>
</tr>
<tr>
<td>Qualité moyenne des légumes</td>
<td>0,935</td>
<td>1</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,968</td>
<td>0,968</td>
</tr>
<tr>
<td>Prix</td>
<td>Prix à la livre - Fruits et légumes</td>
<td>Prix à l'unité - Fruits et légumes</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>0,991</td>
<td>0,947</td>
</tr>
<tr>
<td></td>
<td>0,916</td>
<td>0,863</td>
</tr>
<tr>
<td>Mise en valeur</td>
<td>0,92</td>
<td>0,967</td>
</tr>
<tr>
<td></td>
<td>0,799</td>
<td>0,44</td>
</tr>
<tr>
<td></td>
<td>0,846</td>
<td>-0,089</td>
</tr>
<tr>
<td></td>
<td>0,545</td>
<td>NE</td>
</tr>
<tr>
<td></td>
<td>0,845</td>
<td>0,529</td>
</tr>
<tr>
<td>ICC Moyen global</td>
<td>0,894</td>
<td>0,607</td>
</tr>
</tbody>
</table>