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Résumé 

Le pulvinar, localisé dans le thalamus postérieur, établit des connections réciproques 

avec la vaste majorité des aires visuelles corticales et il est ainsi dans une position stratégique 

afin d’influencer les processus de décodage de celles-ci. Les projections du pulvinar au cortex 

visuel primaire (V1) sont considérées comme étant des projections modulatrices, qui 

modifieraient les réponses neuronales sans toutefois changer les propriétés de base des champs 

récepteurs. Dans la présente étude, nous avons étudié les réponses des neurones de V1 suite à 

l’inactivation réversible du complexe noyau latéral postérieur (LP)-pulvinar chez le chat. Des 

courbes de réponse au contraste ont été générées par la présentation de réseaux ayant plusieurs 

niveaux de contraste pendant l’inactivation du LP-pulvinar. Aucun changement n’a été 

observé concernant l’orientation préférée ou la sélectivité à la direction des neurones de V1 

lors de l’inactivation du pulvinar. Néanmoins, pour la majorité des cellules testées, l’amplitude 

de la réponse aux stimuli optimaux a été réduite. La fonction de Naka-Rushton a été appliquée 

aux courbes de réponse au contraste et l’analyse des effets de l’inactivation du pulvinar a 

montré une panoplie d’effets modulateurs : 35% des cellules ont présenté une réduction de 

leur réponse maximale, 11% ont eu une augmentation de leur C50, 6% ont montré une 

modulation de la pente et 22% des neurones ont présenté des changements dans plus d’un 

paramètre. Nos résultats suggèrent que le pulvinar module l’activité des neurones de V1 d’une 

façon dépendante du contraste et qu’il  contrôle le gain des réponses des neurones des aires 

primaires du cortex visuel. 

Mots-clés : V1, pulvinar, modulation, électrophysiologie, contraste, CRF 
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Abstract 

 

The pulvinar, which is located in the posterior thalamus, establishes reciprocal 

connections with nearly all of the visual cortical areas and is consequently in a strategic position 

to influence their stimulus decoding processes. Projections from the pulvinar to the primary 

visual cortex (V1) are thought to be modulatory, altering the response of neurons without 

changing their basic receptive field properties.  Here, we investigate this issue by studying V1 

single unit responses to sine wave gratings during the reversible inactivation of the lateral 

posterior nucleus (LP) - pulvinar complex in the cat. We also studied the contrast response 

function of V1 neurons, before and during the inactivation of the LP-pulvinar complex.  No 

change in the preferred orientation or direction selectivity of V1 neurons was observed during 

pulvinar inactivation. However, for the majority of the cells tested the response amplitude to the 

optimal stimulus was reduced.  The contrast response function of neurons was fitted with the 

Naka-Rushton function and analysis of the effects of pulvinar deactivation revealed a diverse 

set of modulations: 35% of cells had a decrease in their peak response, 11% had an increase in 

their C50, 6% showed modulations of the slope factor and 22% exhibited changes in more than 

one parameter.  Our results suggest that the pulvinar modulates activity of V1 neurons in a 

contrast dependent manner and provides gain control at lower levels of the visual cortical 

hierarchy. 

 

Keywords : V1, pulvinar, modulation, electrophysiology, contrast, CRF 
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Introduction 

The sense of vision allows animals to interpret their environment through the 

assimilation of light information.  Vision is a highly complex process especially in humans, 

where a relatively large proportion of the brain is utilized for processing visual information. 

While it is the most studied sensory modality, visual perception leaves many alluring 

mysteries to be explored.  

Researchers have been using primate and cat models to unlock the many questions of 

how vision works.  It has allowed them to deeply explore the neural circuitry, molecular 

mechanisms and visual processes.  Specifically, the cat visual cortex has been a model that has 

set the groundwork for vision science (Hubel & Wiesel, 1998) and helped paved the way for 

visual neurophysiology studies. To this day, the cat continues to be an important model for 

studying vision.  

Chapter 1 will introduce important concepts relevant to this thesis.  Chapter 2 will 

describe the methodological considerations for the animal preparation, visual stimulation, 

recording setup and data analysis. Then chapter 3 will detail the results found in this current 

study with data recorded in the LP-Pulvinar and in area 17.  Chapter 4 will consider findings 

from other studies and discuss their implications regarding the larger picture of pulvinar 

function and its role in mediating and modulating visual processes in the visual cortex.  

Finally, in the last chapter, chapter 5, we summarize the findings and discuss the implications 

for future studies.   
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Chapter 1 Background 

1.1 Introduction to the Retinogeniculate Pathway 

The decoding of visual information begins as light enters the eye and lands on the retina, 

where photoreceptors (rods and cones) transduce photon energy into ionic currents.  It is a 

process by which light is converted into electrical signals in the photosensitive cells of the 

retina.  The number of rods far exceed the number of cones, which are packed densely in the 

central area of the retina called the fovea (Goodchild, Ghosh, & Martin, 1996).  Rods are used 

for scotopic vision (vision under low light) and are very sensitive to scattered light, although 

they have low visual acuity (U. Stabell & Stabell, 1994; Wikler & Rakic, 1990).  In contrast, 

the cone system has a high visual acuity and is used for photopic vision (vision under 

illuminated conditions) and colour discrimination (Daw & Pearlman, 1969).  Following 

phototransduction, visual information is further processed through a series of synaptic 

contacts, modulated by several retinal cells, before finally exiting the posterior of the eye 

through the optic nerve towards visual neurons in the central nervous system. 
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1.2 Receptive field properties  

 One fundamental feature of visual neurons is described by its receptive field (RF).  The 

RF of a neuron is defined by the area of the sensory space in which visual stimulus will trigger 

neuronal activity.  The RF structure becomes progressively more complex as sensory 

information is moved through the visual system hierarchy, shaped by the integration of 

synapses at each level. For example, at the level of the retina, a population of bipolar cells 

connected to a single ganglion cell will shape and define the features of its RF, which is 

portrayed as a small cyclic region.  RFs also have substructures, where stimulation of different 

parts of the receptive fields will yield different responses. 

1.2.1 Structure of the Receptive Field  

The RF of ganglion cells is built from the concentric arrangement of “on” and “off” 

responsive subfields.  Cells described as “on” center cells  will yield the highest firing rate 

when light hits the center of the cells RF, but at the same time inhibited when light hits the 

outer rim (Barlow, 1953; Hubel & Wiesel, 1961; Kuffler, 1953).  Complimentary, an “off” 

center with “on” periphery RF has exactly the inverse characteristics: the ganglion cell will be 

inhibited by light at the RF centre and excited by light within the surrounding concentric area.  

Essentially, on-center cells increase firing rate to luminance increments in the RF centre and 

off-centre cells increase their firing rate to luminance decrements (darkness) in the RF centre.  

Since the surrounding peripheral area of a RF is antagonistic to the center, most ganglion cells 

respond more strongly to small spots of light that is confined to their receptive field centers 

than to either large spots that cover the centre and partial surround or to uniform illumination 

it the visual field that covers both centre and surround. 
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1.3 Organization of the Lateral Geniculate Nucleus 

When the optic nerve fibers reach the optic chiasm, their projections are divided such 

that a portion of the connections from each retina reach both hemispheres of the brain.  More 

specifically, visual information from the nasal retinas is directed to the contralateral 

hemisphere and visual information from the temporal retina is directed to the ipsilateral 

hemisphere.  Prior to reaching the cortex, a first synapse occurs in the thalamus, a major 

sensory and motor signal relay (Hale, Sefton, & Dreher, 1979; Worgotter & Koch, 1991).  A 

sub structure of the thalamus known as the lateral geniculate nucleus (LGN) receives the 

majority of retinal inputs and it modulates and relays this information out to the primary visual 

cortex, referred to as V1 in primates and area 17 and 18 in cats (Payne & Peters, 2001).  In 

addition, projections from LGN also travel directly toward higher cortical areas (Sincich, Park, 

Wohlgemuth, & Horton, 2004).   

In the cat, retinal ganglion cells (RGCs) are classified as either X- or Y- cells that 

differ in their morphology and response properties.  LGN cells receive efferents from Y-cells 

characterised by fast-conduction axons whereas X-cells have slow conducting axons 

(Humphrey, Sur, Uhlrich, & Sherman, 1985).  The cat LGN is composed of three main layers 

A, A1 and the C-complex where X- and Y- cells are uniquely distributed (Colby, 1988).  X-

cells from the contralateral eye project mainly to layer A, with Y cells diverging to layers A 

and C-complex.  Additionally, the spatial layout of ganglion cells in each retina is reflected in 

the layout of their terminating axons within LGN forming a retinotopic map within each layer 

of LGN (Sanderson, 1971).  This forms a 2D representation of the visual image formed on the 

retina in such a way that the neighbouring regions of the image are represented by 

neighbouring regions in the LGN (Payne & Lomber, 1999).   
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1.4 Organization of the Primary Visual Cortex 

As visual information continues onward to the primary visual cortex, there are two 

physiologically classified types of cells: simple and complex cells.  Hubel and Wiesel first 

discovered neurons at this level in the visual system which possess elongated RFs that would 

respond to lines or bars.  The elongated structure of the RF of simple cells allow them to 

respond preferentially to specific orientation of lines, this is called the “preferred orientation” 

(Hubel & Wiesel, 1962). This means that the cell will respond strongly to lines, bars or edges 

of a specific orientation, but not to the orthogonal orientation.   

In cat area 17, a single simple cell will integrate multiple inputs of on- and off- center 

LGN cells to create the RF structure (figure 1). Additionally, the RF of each integrated on- and 

off-centre LGN cell partially overlap and are aligned (figure 1B).  In other words, each simple 

cell sums input from LGN neurons with neighbouring RFs to build an elongated RF that is 

most responsive to elongated bars or edges (Hubel & Wiesel, 1962).  Furthermore, having 

LGN cells with varied RF sizes will define the preferred width of which simple cells will 

respond to.  A preferred width means that the cell will respond preferentially to a specific 

width of a bar or line, this is referred to as the preferred spatial frequency (SF). 

 Simple cells also innervate other neurons in the striate cortex, these cells are referred to 

as “complex cells” (Hubel & Wiesel, 1959).  Their RF is a summation and integration of the 

corresponding RFs of numerous simple cells.  Complex cells do not have a clear division of 

excitatory and inhibitory regions within their RF (figure 1C).  Much like simple cells, complex 

cells are tuned to stimuli of specific orientations.  In addition, some complex cells will 

optimally respond only to motion in a certain direction (Hammond, Andrews, & James, 1975; 



 

 16 

Hubel & Wiesel, 1959).  For example, a cell will respond with brief burst of spikes when a bar 

moves across the RF in a specific direction, referred to as the “preferred direction” (Bishop, 

Coombs, & Henry, 1971).  Additionally, complex cells will maximally respond to both white 

and black contrasts bars of a grating stimulus at the optimal orientation independent of where 

it is inside its RF (Gawne, 2000).       

Essentially, the integration of RFs of LGN cells form the RFs of simple cells, and 

further integrated to form the RFs of complex cells.  Simple and complex cells are not 

uniformly distributed within the depth of the striate cortex.  Simple cells can be found mainly 

in layer IV and VI, while complex cells are found in deeper layer V as well as superficial 

layers II and III.   

  



 

 17 

 

 

Figure 1: A schematic representation of receptive fields. A) An LGN RF with on-centre, off-

surround constructed from one or more RGCs. B) The RF of a simple cell found in V1, 

formed from the aligned RFs of LGN.  C)  The RF of a complex cell usually found in 

extrastriate areas formed by combining the RF of simple cells (Modified from Purves, 2012). 
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1.4.1 Laminar profile 

The primary visual cortex is organized into six distinct layers that differ in cell packing 

densities, cellular morphology and connections. These layers are labeled I to VI, with layer I at 

the surface and layer VI being next to the white matter.  The term supragranular layers refers 

to layers II and III while infragranular layers refer to layers V and VI.  In primates, layer IV is 

also subdivided into IVA, IVB and IVC which are referred to as the granular layers (Callaway, 

2003; Purves, 2012).   Within V1, there are anatomically distinct types of cells called spiny 

stellate cells and pyramidal cells.  Pyramidal cells are the most numerous types in the cortex 

with axons and dendrites that project throughout all cortical layers excluding layer IVC. 

Pyramidal neurons are the output cells of V1 conveying the visual information to higher 

cortical areas.  In layer IVC, there are numerous spiny stellate neurons, whose dendrites and 

axons remain in this layer to form local connections.    

 

1.4.2 Input from the Lateral Geniculate Nucleus 

LGN neurons innervate the primary visual cortex or striate area through layer IV 

(figure 2A).  The term “striate cortex” is derived from the dense stripe of myelinated axons 

that runs along layer IV where the axons from LGN terminate.  Since these axons only 

innervate the primary visual cortex, a division is noticeable by the disappearance of this stripe 

between the border of the primary visual cortex (V1) and secondary visual cortex (V2).  In the 

cat cortex, this stripe is found in area 17 and 18.  Axon terminals that end in layer IV will 

further establish connections to both the upper cortical layers II-III and the lower layers V-VI.  

The neurons in lower layers V-VI make connections to subcortical structures such as LGN and 



 

 19 

pulvinar.  Meanwhile, the upper layers II-III establishes connections with other cortical areas 

(lateral connections) (LeVay & Gilbert, 1976; Leventhal, 1979).   

 

1.4.2 Temporal and Spatial Frequency 

There are also additional qualities that help define the properties of the neurons in the 

visual cortex.   The cortex is not only considered as a form analyzer but also as a spatial 

frequency analyzer. Thus, in studies involving vision, sinusoidal drifting gratings are 

frequently used to characterized the spatial and temporal selectivity of cortical neurons 

(Enroth-Cugell & Robson, 1984).   

Visual cells in the cat respond preferentially to a specific rate or speed at which the 

stimulus moves across its RF.  Complex cells tend to prefer faster moving stimuli than simple 

cells, and will only respond to bars moving at certain speeds.  The preferred rate at which a 

stimulus is moving that will elicit a neuronal response is referred to as the “preferred temporal 

frequency” (Movshon, 1975).  The temporal frequency (TF) defines the number of cycles that 

are completed per unit of time, expressed as cycles per second or Hertz (Hz).  The majority of 

neurons in area 17 are temporally tuned to low frequencies (2 to 4 Hz), and less to higher 

frequencies (Movshon, Thompson, & Tolhurst, 1978).   

 Neurons can also be characterized by their preference to how fine or coarse the 

stimulus is presented in their RFs, referred to as “preferred spatial frequency” (Berardi, Bisti, 

Cattaneo, Fiorentini, & Maffei, 1982; Movshon et al., 1978).  For a sinusoidal grating, the 

spatial frequency (SF) is represented as the number of cycles in one degree of visual angle, 

measured in cycles per degree (cpd).  The range of the preferred spatial frequency for neurons 
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in area 17 range from 0.3 to 3 cpd.  Both simple and complex cells in area 17 are not different 

in their distributions of the preferred spatial frequency, however, complex cells are on average 

slightly less selective for spatial frequency than simple cells (Movshon et al., 1978).  

 

1.5 The Cat Visual Specificities 

 The cat visual system has many parallels to the human visual system, but also some 

differences as well. As with most predators, the eyes of cats are forward facing to allow better 

depth perception at the expense of field of view.  Compared to humans, cats have a slightly 

larger visual field (200° vs 180°) and a narrower binocular visual field (Tumosa, Tieman, & 

Hirsch, 1982).  Cats also have better scotopic vision than humans, due to their higher retinal 

rods counts (Steinberg, Reid, & Lacy, 1973).  In contrast to humans, cats have no fovea, but 

instead possess a retinal area enriched in cones called “area centralis”. The increased number 

of rods also augments their ability to detect movements at a much higher rate than humans.  

However, the increased number of rods and the associated enhancements are accompanied by 

lower visual acuity and reduced colour perception.   

 As with primates, the cat visual system follows the same retinogeniculate pathways 

(Payne & Peters, 2001).  LGN projections innervate layer IV of the primary cortex or known 

as area 17 and 18 of the cat.  This area is subdivided into two sub layers IVA and IVB as 

opposed to three layers as seen in the primate striate cortex (Payne & Peters, 2001).  Like 

primates, layer IVA is mainly composed of larger, less densely packed neurons while the 

deeper layer IVB is composed of smaller, more densely packed cells.  For this reason, the 

terms striate cortex and cat area 17/18 have become analogous of each other.  Of the visual 
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areas in the cat, area 17 is the largest, covering 300-400 mm2 of cortical surface.  This area 

accounts for 1/3 of the total surface of the visual areas (Tusa, Palmer, & Rosenquist, 1978). 

Through architectural staining and electrophysiological methods by Tusa et al. (1978), there is 

a perfect arrangement between the extent of area 17 and the retinotopic representation in the 

contralateral visual field.  This area contains the first order-transformation of the contralateral 

visual hemifield in which they are visuotopically organized. 

 

1.6 The Lateral Posterior Pulvinar Complex   

The pulvinar is a sub-nucleus of the thalamus and is positioned along the medial edge 

of the LGN.  In mammals, the relative size of the pulvinar nucleus increases with brain 

complexity occupying a large volume of the thalamus.  Although this thalamic structure has 

been identified in several species, several aspects of its function remains elusive.   

Similar to the LGN, the contralateral visual field is represented topographically in the 

pulvinar (Berson & Graybiel, 1978; Guillery, Feig, & Van Lieshout, 2001).  Each subdivisions 

within the pulvinar contain a representation of the visual space (Casanova & Savard, 1996b; 

Chalupa, 1991; Hutchins & Updyke, 1989).  In the cat model, the LP-pulvinar (also called 

pulvinar complex) consists of at least three subdivisions: the lateral and medial parts of LP 

(LPl and LPm, respectively), and the pulvinar (Hutchins & Updyke, 1989; Updyke, 1983).    
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1.6.1 A higher order thalamic nucleus 

Compared to LGN, much less is known about the circuitry of the pulvinar complex.  

Nevertheless, it has been established that it has extensive reciprocal connections with 

practically every visual cortical area (Grieve, Acuña, & Cudeiro, 2000; Shipp & Grant, 1991).  

Studies show that the pulvinar complex receives its primary visual afferents from layer V of 

neurons in the primary visual cortex, and not from the retina (Boire, Matteau, Casanova, & 

Ptito, 2004; Raczkowski & Rosenquist, 1983), whereas LGN receives its cortical afferents 

only from layer VI of the primary visual cortex and none from layer V (Abramson & Chalupa, 

1985; Gilbert & Kelly, 1975).  The pulvinar complex also sends its projections to thalamo 

recipient layer I of the striate cortex where information can travel to neurons in infragranular 

layer V (Abramson & Chalupa, 1985).  These reciprocal connections allow the pulvinar 

complex to act as an important relay in the visual pathway, handling visual information that 

have already been through some form of cortical processing at least once. For this reason, it is 

considered a higher-order nucleus as opposed to a first-order nucleus in the LGN, which 

receives its driving afferents from the retina and sends it for the first time to the cortex 

(Guillery, 1995; Sherman & Guillery, 1996).   

Since the LP-pulvinar is driven by the visual cortex, its cell properties resemble those 

of cortical rather than subcortical neurons.  Therefore, like cortical cells, LP-pulvinar cells 

have a preferred stimulus orientation and respond to complex stimuli such as global motion 

(Casanova & Savard, 1996a; 1996b).  In addition, LP-pulvinar neurons have large RF 

compared to striate cortex cells, making it suitable for the intregration of numerous inputs.  

They also respond to moving textured patterns including a subset of cells that respond to 

moving plaids with pattern-motion responses (Casanova, Merabet, Desautels, & Minville, 
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1998; 2001).  Thus,  LP-pulvinar cells are able to integrate separate motion signals into one 

coherent moving perception;  a level of computation that generally occurs in higher cortical 

areas (Grieve et al., 2000; Macchi, Bentivoglio, Minciacchi, & Molinari, 1996).  This suggests 

that the pulvinar complex may play a part in the processing of information in combination 

with cortical areas.   

 

1.6.2 Lesion studies 

  Further insight into the nature of the pulvinar complex are also revealed in lesion 

studies.  Patients with lesions to the pulvinar complex are unable to bind and integrate 

information from stimulus features (Ward, Danziger, Owen, & Rafal, 2002).  Other studies 

have also associated this area of the thalamus with a variety of other functions including visual 

salience, attention and visually guided movements (Casanova et al., 1998; Purushothaman, 

Marion, Li, & Casagrande, 2012b; Robinson & Petersen, 1992).  The varied array of functions 

that are associated with the pulvinar complex is thus logically a reflection of the extensive 

connectivity of this thalamic nucleus and its interactions with many cortical areas.  Yet, it is 

still challenging to associate an overall function to the pulvinar complex.   
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1.6.3 Drivers and Modulators 

There are two main types of inputs that carry information to cortical and thalamic 

neurons and they are referred to as driver and modulator synapses. They each possess 

distinctive characteristics and differ in function and strength of activation of the target neuron 

(Sherman & Guillery, 1998).  Between the two types, drivers possess thicker axons with larger 

terminal boutons and produce synapse that activate ionotropic receptors resulting in a rapid 

postsynaptic effect.  Inputs from these types of connections carry the main information to be 

relayed and define the fundamental pattern of activity of the recipient cell.  Axons of RGCs 

innervating the LGN are good examples of drivers.  In contrast, the thinner axons and small 

boutons of modulatory terminals activate slower metabotropic receptors, resulting in a slow 

and prolonged postsynaptic effect.  These modulatory connections can alter thalamocortical 

information without significantly influencing the general pattern of the signal.  The differences 

in function allows drivers to define the RF properties of postsynaptic cells alongside 

modulators that alter the pattern of the transmission without significantly changing the main 

RF properties.   

Fibers going from the cerebral cortex to the thalamus consists of both driver and 

modulatory connections.  Terminals of drivers in the thalamus originate from layer V 

pyramidal cells in the cortex, whereas modulator terminals typically originating form layer VI 

pyramidal cells (Sherman & Guillery, 1998).  Evidence suggests that both driver and 

modulatory corticothalamic terminals are likely to occur in all thalamic nuclei (Sherman, 

2001).  As a first order relay, the LGN possess only modulatory innervation from cortical 

areas (figure 2A)(Sherman & Guillery, 1996).  Reversible deactivation of cortical areas results 

only in subtle changes in the response properties of LGN relay cells (Geisert, Langsetmo, & 
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Spear, 1981).  On the other hand, the pulvinar complex, a higher order relay (figure 2) receives 

mainly driver afferents from layer V and projects modulatory connections back to layer I as 

illustrated in figure 2B. Inactivation of area 17 for example, results in reduced overall 

responsiveness of lateral LP without changing the response characteristics of the neuron 

(Casanova, Savard, & Darveau, 1997).  In contrast to LGN, the pulvinar complex receives its 

driving afferents from many cortical areas including area 17, but despite having more sources 

from cortical areas, the pulvinar complex has fewer synaptic driver inputs than the LGN (Van 

Horn, Erişir, & Sherman, 2000; Wang, Eisenback, & Bickford, 2002).  However, the pulvinar 

complex has a significantly higher number of modulatory inputs from cortico-thalamic 

connections than the LGN (Van Horn et al., 2000; Wang et al., 2002).  This functional 

dichotomy is characteristic of cortico-pulvinar connections, but the functional role of LP-

pulvinar is still difficult to assess. 
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Figure 2:  A. Established organization of the retino-geniculo-cortical pathway and working 

model of the pulvino-cortical pathway.  The retina projects a driver (d) input to the LGN, 

followed by d input to layer IV. B) Pulvinar exerts a modulatory (m) influence on layer I of 

V1 with reciprocal d connections. 
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1.6.4 Nature of the pathways involving the pulvinar complex 

In the classical view, visual processing has a hierarchical structure.  In the cat, visual 

information travels sequentially through about 20 visual cortices or levels of organization 

(Scannell, Blakemore, & Young, 1995).  Incoming visual information to the primary visual 

cortex from LGN will be process locally within area 17, then transferred through the hierarchy 

of cortical areas, becoming more complex as information from lower areas is integrated in 

higher areas.  RFs in higher cortical levels will code for progressively complex properties of 

the visual stimulus while also increasing in the RF size (Felleman & Van Essen, 1991).  This 

model of cortico-cortical transmission among many functionally distinct areas along the visual 

hierarchy are referred to as feedforward connections and is generally accompanied by 

reciprocal feedback projections from higher to lower areas.  However, what is not considered 

in this classical approach is an alternate pathway with feedback and feedforward connections 

present between the pulvinar complex and the visual cortices (Guillery & Sherman, 2002).  To 

uncover the role that the pulvinar complex plays in orchestrating information between the 

visual cortical areas, it is necessary to determine the distinction between drivers and modulator 

pathways in the transthalamic cortical pathways.  To stay within the scope of this study, only 

the feedforward and feedback connections between the striate cortex and the pulvinar complex 

will be discussed.  

As mentioned above, neurons in layer V of the striate cortex have axons that terminate 

in the LP-pulvinar complex. These terminations have morphological characteristics similar to 

that of retinogeniculate drivers (Bourassa & Deschenes, 1995; Ojima, Murakami, & Kishi, 

1996). Because these thalamocortical synaptic terminals are similar to retinal terminals in 

LGN, it suggests that area 17 provides a driver input to the LP-pulvinar complex (Feig & 
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Harting, 1998).  Additional evidence to support the idea of driver afferents from layer V is 

found in the fact that silencing area 17 will abolish or greatly diminish activity of cells in cat 

LPl (Casanova et al., 1997; Chalupa, 1991). 

 Next, the nature of the projections from the LP-pulvinar back to the striate cortex needs 

to be considered. The “the no-strong-loops hypothesis” states that a cortical area and a 

thalamic nucleus cannot be reciprocally connected  exclusively by driver connections, 

otherwise the cortex would go into uncontrolled oscillations (Crick & Koch, 1998). Applying 

this hypothesis would suggest that the LP-pulvinar must project a modulatory afferent to layer 

I of area 17 (figure 2B) (Abramson & Chalupa, 1985).  Contrary to this model, a recent study 

on primates demonstrate that a net inhibition in V1 occurred following lateral pulvinar 

inactivation (Purushothaman, Marion, Li, & Casagrande, 2012a).  In this study, upon 

inactivation of lateral pulvinar, the visually driven responses of V1 neurons were completely 

abolished.  This net inhibition of layer 2/3 pyramidal cells was greatest at the preferred 

orientation to drifting gratings.  Functionally, the strong impact of V1 by lateral pulvinar 

would suggest that there are driving feedback connections from the lateral pulvinar to the 

primary visual cortex, which does not support the anatomical evidence.  Pulvinar complex 

projections to layer I of the striate cortex do not show terminal bouton sizes that are typical to 

driving projections (Li, 2015).  Additionally having both feedforward and feedback 

connections that behave like drivers would put it a state of uncontrolled oscillations (Crick & 

Koch, 1998).  Taking into account the contradictions, it may be the case that other functional 

properties may influence the modulatory input of the pulvinar complex into the striate cortex.  

The transthalamic pathway via the pulvinar complex offers an alternate route for the 

transmission of information from one cortical area to another.  As a higher order thalamic 
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relay, the LP-pulvinar complex is thought to receive driver inputs from lower visual areas such 

as area 17, while providing modulatory feedback.  However, as indicated by recent work in 

primates,  it is possible that other properties may be involved in the modulation of V1 neurons.  

Contrast, is a putative mechanism in which the LP-pulvinar could be implicated on the 

modulation of cortical processing.     

 

1.7 Contrast Perception 

 Important information about the visual world includes differences in light levels or 

luminance relative to the mean.  The ability to see these luminance differences or edges is 

important for visual form processing.  The relative difference in luminance that makes an 

image distinguishable is called contrast; the greater this difference is, the greater the contrast.  

It is important to note that contrast depends on the difference in luminance from one area of 

the RF to another, and is independent on the amount of luminance (Bonds, 1991).  In fact, the 

structure of the RFs as described above is well-organized for the detection of step edges in 

luminance.  In other words, it is the contrast, and not luminance levels that is the relevant 

information that is transferred from the retina to the primary visual cortex.     

In research, contrast sensitivity is used as a metric of visual function to compare different 

experimental conditions.  The relationship between stimulus contrast and a cell’s response is 

represented by a sigmoidal shape of the contrast response function (CRF) as illustrated in 

figure 3A (Albrecht & Hamilton, 1982; Sclar, Maunsell, & Lennie, 1990).  This nonlinear 

relationship expressed as a sigmoidal function, allows us to quantify changes in the contrast 

sensitivity of V1 neuron.  In this study, we investigated the response of cells in area 17 to 
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varying contrast levels while inactivating LP.  Changes in the different parameters of CRF 

represent contrast modulations and allows us to explore the influence of LP-Pulvinar on the 

perception of contrast. 

1.8 Aim of the study and hypothesis 

 Our knowledge concerning the function of transthalamic pathways in vision remains 

rather obscure.  Given its reciprocal connectivity with visual cortical areas, the pulvinar 

complex is in a rather ideal position to relay and integrate information from lower- and higher- 

level cortical areas.          

The aim of this study is to determine functionally the nature of the projections from the 

pulvinar complex to the primary visual cortex.  We propose the hypothesis that the pulvinar 

complex provides a modulatory input to the primary visual cortex.  To test this hypothesis, 

responses of area 17 neurons to drifting gratings will be recorded before, during and after the 

reversible inactivation of LP-pulvinar. Our results support the proposed hypothesis and 

indicate that LP-pulvinar modulates the contrast response of primary visual cortex neurons 

without altering the basic RF properties. 
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Chapter 2 Methods 

2.1 Animal Preparation 

 Experiments were carried out on 8 healthy adult cats (2.5-3.5 kg) pre-medicated via 

subcutaneous injection of atropine (0.04 mg/kg) and Atravet (0.5 mg/kg).  All animals were 

treated according to the guidelines of the Canadian Council on Animal Care.  General 

anaesthesia was induced by inhalation of a 1:1 gaseous mixture consisting of oxygen and 

nitrous oxide with isoflurane.  During surgical procedures, isoflurane was maintained at 

around 2% to 3% and was then interchanged with halothane at 0.5% to 1% during neuronal 

recording to prevent the depression of visual responses (Villeneuve & Casanova, 2003).  

Before placing the animal on the stereotaxic frame, a cannulation of the cephalic vein and a 

tracheotomy was performed.  Lidocaine hydrochloride (2%) was injected subcutaneously at 

incision points.  Once placed on the stereotaxic frame, the animal was paralyzed with a 

solution of gallamine triethiodide (10 mg/kg/h) through the cannulated vein and artificially 

ventilated with a gaseous mixture of nitrous oxide (70%) and oxygen (30%).  The end-tidal 

CO2 partial pressure was monitored with a capnometer and kept constant between 35 to 40 

mmHg by adjusting the volume and rate of respiratory pump.  During the experiment, the 

animal was continually infused with 5% dextrose in a lactated Ringer solution and gallamine 

triethiodide.  Electrocardiogram (ECG) was monitored and a feed-back controlled heating pad 

is placed under the animal to maintain its core temperature at 37.5C.  Pupils were dilated 

using atropine drops (1%) and nictitating membranes were retracted with the application of 

phenylephrine hydrochloride drops (2.5%).  The eyes were protected with contact lenses of 

appropriate refractive power. 
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2.2 Histology  

Electrolytic lesions were performed at several locations along each successful 

penetration.  At the conclusion of each experiment, the animals were euthanized via 

intravenous injection of Euthanyl (0.22ml/kg) and then perfused with a phosphate buffer 

solution followed by a fixative (4% paraformaldehyde).  The brains were removed and fixed 

in a solution of buffered formalin (10%).  Coronal serial sections (40μm thick) were cut using 

a cryostat.  Half of the sections was stained for acetylcholinesterase (AChE) to identify LP-

pulvinar subdivisions and the other half was Nissl stained to locate the lesions (Casanova et 

al., 1997).  Under the microscope, each penetration was identified, and the location of neurons 

was determined in the cortex. 

 

2.3 Electrophysiological Acquisition 

To prepare for electrophysiological recordings, two craniotomies were made, one 

exposing area 17 and a second that allowed to reach the deeper structures of LGN and LP-

pulvinar.  For area 17, the craniotomy was performed at Horsley-Clark coordinates -5 to -9 

along the anterior-posterior axis and +0.5 to +3 laterally.  The craniotomy that allowed access 

to the thalamus was made at Horsley-Clark coordinates +5 to +7 along anterior-posterior axis 

and from +3 to +9.  An electrode was lowered into area 17 with an angle of approximately 35 

from the vertical axis.  Vaseline was used to create a well to surround the craniotomies and 

was filled with saline with an agar cap to prevent dehydration of the cortex.  Extracellular 

single spikes were recorded using a varnished tungsten microelectrode (H-J Winston, 

Clemons, North Carolina, USA, 2.0-3.0 MΩ).  Recordings were acquired, amplified and 
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filtered using Alphalab Pro data acquisition system (Alpha Omega Inc., V4.11, Nazareth, 

Israel).  Spike sorting and additional analysis were performed offline.  Spikes were recorded at 

a sampling rate of 25Khz and band pass filtered between 300Hz to 6Khz.  Local field 

potentials were also sampled at 800Hz and band-pass filtered from 1 to 300Hz.  

        

2.4 Area 17 recording and Visual Stimuli                

 The electrode was lowered slowly into area 17 until a visually responsive neuron is 

isolated.  For each neurons, the RF was hand mapped by using an ophthalmoscope.  All visual 

stimuli are generated with VPixx software, which was interfaced with DATAPixx (VPixx 

Technologies Inc) and were presented on a projector screen located 57cm from the eyes of the 

animal at a 60Hz refresh rate and a resolution of 1024x768 pixels.  Each eye is stimulated 

monocularly via the dominant eye while the non-dominant eye is occluded.  For each visually 

responsive cell, basic properties were measured using drifting sinewave gratings: optimal SF 

(tested between 0.05, 0.1, 0.3, 0.4, 0.8, 1.6 cpd) and TF (values tested: 0.5, 1, 2, 4, 8, 16 Hz), 

preferred orientation/direction, and CRF.  The stimulus presentation itself lasted 2s, with a 

pre-stimulus and post-stimulus period of 1s each.  The pre and post stimulations were blank 

presentations. The mean firing frequency was averaged across 6 repetitions. 

 At optimal direction, drifting sine wave gratings were presented at varying stimulus 

contrast levels to obtain a CRF.  Optimal spatial and temporal frequencies ranged from 0.2-0.4 

cpd and 2-4 Hz, respectively.  Cellular responses were measured with pseudo randomly 

changing stimulus contrast, which consisted of 7 contrast levels ranging from 3 to 100%.  The 

baseline activity was expressed as the spiking activity during the presentation of a blank 



 

 34 

stimulus with 0% contrast.  Each contrast level was repeated 8 times to create a peri-stimulus 

time histogram (PSTH) of the neuronal response.  Data acquisition was performed before, 

during, and after the inactivation of LP-Pulvinar, referred to as the control, injection, and 

recovery conditions, respectively. 

 

2.5 Simultaneous Multi-unit recording and Reversible Inactivation 

of LP-Pulvinar  

 Extracellular multi-unit recordings and injection of GABA in the LP-pulvinar were 

performed.  First, cellular recordings from the LGN was performed and, based on the 

coordinates of the receptive field, served as an anatomical reference point for targeting the LP-

pulvinar.  Using Horley-Clark coordinates +6 anterior-posterior and +9 lateral, a unipolar 

tungsten electrode was inserted.  The electrode was lowered slowly (approximately 0.1 mm/s) 

while presenting full field flashes to a depth of approximately 12-13 mm where visually 

responsive neurons were found.  The RF of LGN was mapped by hand using an 

ophthalmoscope to determine and its location in the visual space was used to infer the 

electrode position and the accuracy of the stereotaxic coordinates.  Retinal landmarks were 

determined by locating the area centralis as a reference point.  Area centralis was identified by 

shining the light from an optic fiber onto the retina and marking its silhouette that was seen on 

the screen in front of the animal.  Sub-regions of LP-pulvinar (LPl and LPm) were located 

using the known coordinates in LGN as a reference point.  Extracellular multi-unit recordings 

in the LPl were made using a custom built injectrode containing a 20mM GABA solution 

stained with Chicago Sky Blue 0.5%.  The injectrode allowed for simultaneous 
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electrophysiological recordings while delivering an inactivating agent within the same 

recording zone. See (Lai, Legault, Thomas, & Casanova, 2015) for details on the construction 

and preparation of the injectrode.          

2.6 Data Analysis 

Neuronal responses were analyzed using Matlab scripts (The MathWorks Inc, R2014b, 

Natick, Massachusetts, U.S.A). Spike detection was done using a threshold window followed 

by spike sorting via the Wavelet based Spike Classifier (WSC) method (Letelier & Weber, 

2000).  This method is based on the quantification of energy found in specific frequency bands 

at specific times during each spike profile to differentiate their features. 

The orientation tuning curves were obtained using angular steps of 30.  The response 

at each orientation was averaged over 2 seconds of drifting sine gratings at the optimal SF and 

TF for the specific neuron.  Orientation tuning curves of each neuron were fit with Gaussian 

(von Mises function) using the least squares method as follows (Gao, DeAngelis, & 

Burkhalter, 2010; Swindale, 1998): 

𝑧 = 𝐵 + 𝐴1× 𝑒𝑘1[cos (𝑥−𝜙1)−1] + 𝐴2 × 𝑒𝑘2[cos(𝑥−𝜙2)−1] 

where B is the baseline firing rate; A1 , A2 are amplitude of peaks; 𝜙1, 𝜙2are centers of the 

peak; k1 , k2 are tuning widths and 𝑒 is Euler’s constant. 

The direction selectivity of visually responsive cells was quantified by computing a 

direction index (DI): 

𝐷𝐼 = 1 −
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 − 𝑏𝑎𝑠𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑢𝑡𝑦

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 − 𝑏𝑎𝑠𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦
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Units with a DI with less than 0.5 were classified as direction selective (Gur & Snodderly, 

2007; Snodderly & Gur, 1995).  Additionally, the bandwidth for direction tuning was defined 

as the full-width at half height above of the tuning curve.   

To quantify the orientation selectivity of neurons, the circular variance index was used 

(Batschelet, 1981; Swindale, 1998).  Circular variance is a global measure that provides an 

index of orientation selectivity ranging from 0 to 1 and is calculated as follows: 

𝐶𝑉 = 1 −
| ∑ 𝑅𝑘 exp(𝑖2𝜃𝑘) |𝑘

∑ 𝑅𝑘𝑘
 

where 𝑅𝑘 is the response strength for the given direction 𝜃𝑘(in radians).  The circular variance 

averages the responses for both directions of motion at each orientation.  If the response is 

constant at all angles, then the neuron is not orientation tuned and CV = 1.  If there is an 

increased response at only a certain orientation angle, then CV = 0.  To clarify, CV is a global 

measure of the shape of the tuning curve.  

Next, to quantify the contrast sensitivity of the recorded neurons, the responses to 

varying levels of contrast were fitted using the Naka-Rushton function, which has been 

previously used to fit CRFs of neurons in the visual cortex of cats (Sclar & Freeman, 1982).  

The CRF of each cell was fitted using the following equation (Naka & Rushton, 1966; Soma, 

Shimegi, Osaki, & Sato, 2012): 

𝑅𝑚𝑎𝑥 =
𝐶𝑛

𝐶𝑛+𝐶50
𝑛  + b 

where R is the neuronal response, C is the contrast level of the sine grating stimuli, and b is 

the baseline response.  Additional parameters include the maximal response (Rmax), the 

exponent (n) and contrast at half the maximal response (C50). This function has been shown to 
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provide a reliable fit to CRFs from the cat visual cortex (Albrecht & Hamilton, 1982; Yang et 

al., 2008).  Smaller values of C50 represents a higher level of contrast sensitivity of neurons. 

The exponent (n) determines the steepness of the CRF, thus larger values translate into steeper 

slopes.  To quantify the changes in CRF, we define changes response gain as the ratio of the 

max response after LP inactivation (post Rmax) and the response before LP inactivation (post 

Rmax) and the changes in contrast gain as C50 after LP inactivation and C50 before LP 

inactivation (Kohn & Movshon, 2003).  Figure 3A illustrates a typical contrast response curve. 

Changes that can occur are discriminable based on the parameter that is affected: a peak 

response shift from Rmax (panel B), a horizontal shift from C50 (panel C), change in the slope 

from the exponential factor (panel D) and a vertical shift from baseline (panel E).  To 

determine which parameters were modulated, fitting parameters were compared from the 

control and injections conditions. 
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Figure 3:  A) V1 responses to contrast were fitted using the Naka-Rushton function, where 

Rmax is the peak response, C is the contrast of the grating, b is the baseline response, n is the 

exponent of the power function and C50 is the contrast value at ½ Rmax. B-E) Graphs 

illustrating isolated changes in the various parameters of the function. 
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 Statistical analysis was performed using the Statistical toolbox in Matlab (The 

MathWorks Inc, R2014b, Natick, Massachusetts, U.S.A).  Comparisons between CRFs for 

each condition were made using an F-test to determine if there were significant changes.  

Linear regressions were used to evaluate the correlations between individual CRF parameters 

before and after inactivation of the LP-pulvinar.  All comparisons with statistical data were 

made using the Student’s paired t-test when the data was normally distributed, otherwise the 

Wilcoxon signed rank test was used.  To evaluate the presence of sub-populations within a 

scatter plot, k-means clustering was utilized.   The Kolmogorov-Smirnov test was also used to 

test if the data was normally distributed. 

 

Chapter 3 Results 

 To examine the effects of LP-Pulvinar on area 17 neuronal responses, single and multi-

unit extracellular recordings of neuronal activity in area 17 was acquired before, during, and 

after inactivation of LP-pulvinar.  For 54 visually responsive neurons, the preferred direction, 

optimal spatial and temporal frequencies were evaluated during each condition.  Cells were 

often located between the granular and infragranular layers.  Individual visual neurons were 

isolated off-line via spike sorting.  The majority of cells recorded (70%) had a diminished 

response after LP-Pulvinar inactivation, while maintaining its orientation/direction tuning.    

 To examine the extent to which the contrast response curves were affected by LP-

Pulvinar inactivation, the CRF for cortical cells during control, injection and recovery 

conditions were obtained, fitted with the Naka-Rushton function and the best fit parameters 
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were compared.  LP-Pulvinar inactivation had diversified effects on the CRF of area 17 cells, 

often affecting more than one parameter of the Naka-Rushton function.   

 

3.1 LP-Pulvinar Responses during inactivation 

Utilizing the injectrode, LP-Pulvinar neurons whose receptive fields overlapped with 

area 17 receptive fields were isolated.  Centrally located LP-pulvinar receptive fields were 

inactivated by infusing a small volume (0.4-0.8 l) of GABA (20mM) (figure 4A).  

Histological evidence shows a bleaching of the AChE staining indicating the presence of 

GABA injection.  As shown in figure 4B, LP-pulvinar neuronal activity was greatly 

diminished during injection as compared to the post-injection recording.  Approximately 1 

hour after GABA delivery has ceased, LP-pulvinar showed an increase in neuronal activity.  

The reversible inactivation indicates that the injection did not cause damage to the local 

neurons.  
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Figure 4: Injection site verification.  For all experiments, Chicago Sky Blue Dye mixed with 

the GABA solution was used to identify the anatomical position of the injection site; shown 

here as the bleached area.  Coronal section stained for acetylcholinesterase (AChE) was used 

to delimit LPl and LPm nuclei.  B) Extracellular recordings from the LPl before (top) and 

during (middle) and 60 minutes after (bottom) GABA induced inactivation. 
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3.2 Tuning properties of area 17 neurons after LP-Pulvinar 

inactivation 

Area17 neurons with receptive fields within 1 to 4 of area centralis were sampled 

using a tungsten electrode. Upon inactivation of LP-Pulvinar, 70% of tested V1 neuronal 

responses were diminished.  An example of the visual responses from a unit in area 17 are 

shown as PSTHs and direction tuning polar plot in figure 5.  At 50% stimulus contrast, LP-

pulvinar inactivation had a suppressive effect, reducing the cellular response to a mean of 36% 

of the control response as shown in figure 5B.  The same neuron was measured approximately 

1 hour after the end of GABA injection, figure 5C shows a recovery in the spiking activity.  

For all cells tested, no difference in the preferred direction was found between control and 

injection conditions (mean DI: 0.05, p>0.05, Wilcoxon signed rank test).  Also, no changes 

were found in the polarity of the tuning profile after inactivation of LP-pulvinar (mean CVs: 

control: 0.50, injection: 0.54, p>0.05, Wilcoxon signed rank test) as illustrated in figure 5D. 
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Figure 5: A) An example of a direction tuning polar plot from a V1 neuron before injection.  

The PSTH below shows the spiking activity at the optimal direction.  B) Response from the 

same neuron following injection of GABA.  C) Data from the same neuron during recovery.  

D) A scatter plot of CV values during control and injection periods.  As illustrated, 

orientation/direction selectivity was not affected. 
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3.3 CRF changes 

LP-pulvinar inactivation affected the CRF of 45 neurons of area 17 in infragranular 

layers. Comparing control and injection conditions, it was found that 13% of the affected 

neurons (6/45) showed an predominant increase in the C50  parameter which manifests as an 

overall shift in the CRF to the right as illustrated in figure 6A.  However, not all cells 

displayed predominant change in the C50 parameter.  Across all area 17 neurons, there were 

varying degrees of C50 changes or none at all.  Figure 6B illustrates the degree of C50 changes 

across the measured population.  

LP-pulvinar inactivation had other effects on individual contrast response curves such 

as Rmax decrease (figure 7A), and an increase in the exponent parameter (figure 7B).  Neurons 

were quantitatively classified in terms of their most dominantly affected parameter.  As 

illustrated in figure 8, among the 54 recorded cells, 35% were classified as Rmax decrease, 9% 

as Rmax increase, 6% were either increase or decrease in the slope, and 11% as C50 increase, 

with 22% as mixed.  Mixed refers to cells that had multi-parametric changes and could not be 

classified since they did not have a predominantly modulated CRF parameter. 
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Figure 6: A) CRF of a cortical neuron for control, injection, and recovery conditions.  B) 

Histogram of the difference in C50 between control and injection. 

 

 

Figure 7: CRF of a cortical neuron before, during and after LP-pulvinar inactivation.  A) 

Here, the effects of LP-pulvinar inactivation were predominantly characterized by a decrease 

in the Rmax parameter. B) Here, the effects of LP-Pulvinar inactivation were characterized by 

an increase in the exponent of the function (slope),  but was also accompanied by a shift in 

C50. 
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Figure 8: Control and injection contrast response curves were statistically compared with a F-

test.  For 83% of cells, the CRF was significantly changed by LP-pulvinar inactivation.  

Further classification was performed based on the parameters of the Naka-Rushton function 

that were predominantly affected. 
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Chapter 4 Discussion 

In this study, we investigated the modulatory effects of LP-pulvinar on cat area 17 

through electrophysiological extracellular recordings.  It was found that inactivation of the LP-

pulvinar would decrease spiking activity in the striate cortex while maintaining the basic 

properties of the cell such as direction selectivity, and spatio-temporal frequency preferences.  

Further, the degree of the reduction was dependent on the changes to the specific parameters 

related to the CRF of the neuron.  We observed that weak firing rates in area 17 after LP-

pulvinar inactivation were often associated with a peak response (Rmax) decrease and/or a 

decrease in the contrast sensitivity (increased C50).  Below we consider the implications of 

these results in the context of previous literature and explore possible mechanisms. 

 

4.1 Contrast sensitivity 

Contrast sensitivity has been frequently studied in psychophysical and 

electrophysiological studies (Buracas & Boynton, 2007; Ling & Carrasco, 2006a; Martı́nez-

Trujillo & Treue, 2002; Saalmann & Kastner, 2009).  In many of these studies, the 

relationship between subject performance and contrast levels have been shown to be 

nonlinear.  Responses plotted as a function of several contrasts are typically fitted with a 

psychometric function, one of which is usually several similar to several sigmoidal functions 

(Treutwein, 1995).  Similarly, in our neurophysiological study, a sigmoidal function can be 

used to fit neural responses to changing levels of contrast providing parameters that allows us 

to quantify different properties, one of which being contrast sensitivity, a method that is used 
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in number of other neurophysiological studies(Duong & Freeman, 2008; Martı́nez-Trujillo & 

Treue, 2002; Williford & Maunsell, 2006; Yang et al., 2008).  

 In this study, the relation between contrast and neuronal responses are represented by a 

nonlinearity function, the Naka-Rushton function.  The function produces four quantifiable 

parameters, three of which are contrast dependent (C50, Rmax, n) (Ling & Carrasco, 2006a).  

Specifically, shifts in the C50 parameter corresponds to changes in “contrast gain” or contrast 

sensitivity. Additionally, modulations of Rmax correspond to the peak response (asymptotic) at 

high contrast or “response gain”.  Changes in peak response can be associated with alterations 

in firing rate of the neuron (Chirimuuta & Tolhurst, 2005).  Finally, n is the exponent 

parameter that determines the steepness of the function (slope), a parameter that is often 

disregarded in many other studies and merits consideration.  Results in the current study 

indicate that inactivation of the LP-pulvinar modulates either one of the three parameters of 

the CRF to some degree or some combination of each.  To further understand pulvinar 

complex function, we examined the impact of inactivating sub-regions of the pulvinar 

complex on cortical activity through changes in CRF. 

 

4.2 Driver and Modulator impact 

The duality of driver/modulator influence on area 17 from LP-pulvinar, plays an 

important role in determining its functional nature.  In this study, inactivation of the LP-

pulvinar produced diverse effects in the CRFs of area 17 neurons.  In all cells, where visual 

responses were recorded, area 17 cells would always retain similar direction, SF and TF tuning 

properties before, during, and after injection.  These tuning properties of the striate cortex are 
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defined by the convergent connections from the thalamus (Hubel & Wiesel, 1962; 1968).  The 

findings in the present study show that inactivation of the LP-pulvinar yielded changes in 

neuronal activity, but the tuning properties were preserved as seen for orientation tuning in 

figure 5.  The preservation of neuronal tuning properties and alteration in the contrast 

dependent responses seem to indicate that LP-pulvinar may not have the same gating 

properties as a first order thalamic nucleus such as the LGN.  In fact, the results point in the 

direction of a modulator type influence for this pulvino-cortico connection.  There were in rare 

cases in this study where certain area 17 cells (3/54) had both baseline and Rmax decrease 

during LP-pulvinar inactivation.  The combination of both these types of effects, when it is 

robust, equate to an abolishment of V1 activity, reminiscent of a driver type influence.  

The effects of LP-pulvinar inactivation have been examined in other species including 

prosimian primates (Purushothaman, Marion, Li, & Casagrande, 2012a).  The prosimian study 

observed that inactivation of the lateral pulvinar prevented V1 neurons from responding to 

visual stimulation. Consequently, those results would indicate that lateral pulvinar connections 

to V1 possess robust influences suggestive of driver type terminals.  As mentioned, this result 

is consistent with only a minority of cells measured in this study.  However, we can also 

explain the effect, in part, by the shifts in CRF of neurons in the primary visual cortex.  Since 

the result from the prosimian study was performed at a fixed contrast level of 50%, the results 

cannot account for V1 neural responses at higher contrast levels.  For this study in the cat 

model, LP-pulvinar caused shifts in the CRF of area 17 neurons while its basic firing 

properties were conserved, indicating primarily a modulatory influence.  To further examine 

the function of LP-pulvinar, we explore a possible mechanism for CRF modulation. 
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4.3 Attention as a mechanism for CRF modulation  

Although an abundance of visual stimulus reaches the retina, only a portion of the raw 

visual information is processed in the visual areas of the brain.  Attention is a mechanism 

necessary for discriminating behaviourally relevant visual information in the environment for 

processing in order to respond to the stimulus in a relevant way.  A neural coding model using 

psychophysics data has indicated that different changes in CRF parameters are correlated with 

specific types of attentional modulation (Pestilli, Ling, & Carrasco, 2009).   

Two types of attentional mechanisms have been proposed that are involved in the task 

of stimulus discrimination (Chica, Bartolomeo, & Lupiáñez, 2013).  The first is referred to as 

endogenous attention (voluntary attention) and occurs when attention is oriented to the 

relevant task of the observer.  Endogenous attention allows us to monitor information at a 

given location and this allows the focus of attention to be controlled by the demands of the 

task.  The second, exogenous attention (involuntary stimulus-driven attention) is considered to 

be reflexive and is caused by a sudden change in the periphery that grabs focus of the 

observer.  With respect to neural coding, it was found that the activation of the mechanism for 

endogenous attention had caused a leftward shift (a decrease in C50) of the CRF for area V4 

and middle temporal visual area (Ling & Carrasco, 2006b).  Interestingly, it was also found 

that the effects of exogenous attention changed both the maximal response (Rmax) and the 

contrast threshold (C50).  Their findings suggest that endogenous attention operates through 

contrast gain mechanisms, while exogenous attention is best described as mix of both contrast 

gain and response gain (Ling & Carrasco, 2006a; Pestilli, Viera, & Carrasco, 2007).      
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There is simply too much information to be managed in real time by the brain, 

consequently, attentional mechanisms have evolved to allow the brain to select a fraction of 

sensory input for processing by higher level cognitive routines.  The processing of attended 

stimulus leads to conscious awareness and voluntary actions to them, while the non-attended 

portion of the input is processed at a reduced bandwidth (Parks & Madden, 2013).  Since the 

cats in this study were anesthetised and unconscious, visual information is processed in a 

passive manner without attention.  This study has revealed that inactivation of areas in LP-

pulvinar yielded changes in the CRF of area 17 with the majority of neurons exhibiting 

changes in Rmax and C50 as shown in figure 8.  The results found here for the changes in CRF 

during LP-pulvinar inactivation can be compared to the changes caused by attention in the 

study of Ling and Carrasco (2006b), in that they both showed response gain and contrast gain 

changes.  However, here, inactivation of LP-pulvinar deceases Rmax whereas exogenous 

attention was shown to do the opposite, increase Rmax.  Similarly, a small proportion of 

neurons had an increase in C50 and endogenous attention was shown to decrease C50.  

However, it is important to note that these changes were seen in different visual areas, the 

primary visual cortex versus higher visual area V4 and MT. Here we see that the LP-pulvinar 

is also able to modulate neuronal without the presence of attention, suggesting that the LP-

pulvinar may have an important role in the global attentional network.  

There are a number of studies that show that LP-pulvinar plays an important role in 

visual attention based on its widespread connectivity with the visual cortex.  Although 

isolating a specific role that the pulvinar nucleus has in vision is currently an ongoing 

challenge, there is some evidence that the pulvinar nucleus may be important in isolating 

behaviourally relevant objects from surrounding distractors (Desimone, Wessinger, Thomas, 
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& Schneider, 1990; Martı́nez-Trujillo & Treue, 2002; Robinson & Petersen, 1992; Snow, 

Allen, Rafal, & Humphreys, 2009; Wimmer et al., 2015).  Desimone et al. (1990) 

demonstrated that the inactivation of the macaque pulvinar would manifest as impairments in 

the ability to visually discriminate stimulus from distractors.  Similarly, lesions studies in 

humans have been reported to show that subjects with pulvinar lesions due to stroke, displayed 

signs of reduced visual discrimination ability in the contralesional field in the presence of 

distractors (Snow et al., 2009).  These results indicate a functional role of the pulvinar in 

distinguishing visual targets from distractors (Robinson & Petersen, 1992).  Although, there is 

also evidence from lesion studies that do not coincide with this idea, where subjects with 

pulvinar lesions displayed no impairments in their ability to discriminate stimuli from 

distractors (Danziger, Ward, Owen, & Rafal, 2001; 2004). Whatever the mechanisms of the 

pulvinar’s influence on attention, the pulvinar contributions to the functioning of the visual 

cortex are observed through the changes in the CRF.  
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Chapter 5 Summary and Conclusions 

 The current study examined changes in CRFs of area 17 in the cat by reversibly 

inactivating LP-pulvinar.  This was performed to explore the function of LP-pulvinar on V1 

neural activity with varying contrast levels.  It was found that LP-pulvinar inactivation lead to 

changes in the CRF of neurons in the striate cortex without changing its basic properties of 

direction, spatial and temporal tuning.  The effects of LP-pulvinar inactivation effected CRF 

parameters diversely resulting in various categories of responses to different contrast levels of 

sinusoidal gratings.  The range of CRFs comprises a large portion of response gain 

modulations including increases and decreases in Rmax, contrast gain modulations in decreases 

of C50, and modulations in the slope of the curve via changes in the exponent of the function.  

Additionally, we found a portion of cells to exhibit a combination of more than one change in 

CRF parameters.  Throughout all of these cases, spontaneous activity was not altered by LP-

pulvinar inactivation which is coherent since baseline is the only parameter that is not contrast 

dependent.  These results suggest that LP-pulvinar modulates the activity of V1 neurons in a 

contrast-dependent manner.    

Although the pulvinar comlpex is slowly revealing its function within the visual 

system, much is still unanswered. Due to the extensive connectivity of LP-pulvinar to other 

cortical areas, measuring only a single cortical area prevents us from seeing more of the global 

picture, the next step would to examine the effects of LP-pulvinar inactivation while 

measuring visual responses of cells from striate and extra striate areas simultaneously.  In this 

way, we can examine how CRFs in higher areas change in relation to lower ones.  A model 

has been proposed that the pulvinar complex is necessary to transmit information concerning 
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contrast to higher cortical areas (Cortes, 2014).  In this model, cortico-cortical connections 

produce poor contrast sensitivity, however when applied to an alternate visual pathway such as 

a cortico-pulvino-cortico pathway, the output grants a higher contrast sensitivity.  

Investigating CRFs in higher cortical areas in addition to V1, would be an opportunity to 

validate experimentally this theoretical model.  Additionally, determining the laminar profile 

of effects is another important endeavour to pursue.  In the current study, the location of CRF 

effects in the layers of V1 was attained by noting the electrode depths and referring to the 

associated histology after making lesions in the recorded area.  Identifying the exact location 

of the effected neurons could be more accurate with more robust methods.  Future experiments 

using a multi-electrode linear probes will allow for the construction of a current source density 

(CSD) profile that will allow us to effectively localize CRF effects in its associated layer.  And 

finally, further analysis of the local field potentials during LP-pulvinar inactivation, would 

allow us to observe oscillatory changes and the role LP-pulvinar may have in synchronizing 

activity in multiple visual cortical areas.  
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Abstract 

Here we describe a method for the construction of a single-use “injectrode” using 

commercially accessible and affordable parts. We have developed a probing system that 

allows for the injection of a drug while recording electrophysiological signals from the 

affected neuronal population. This method provides a simple and economical alternative to 

commercial solutions.  We modified a glass pipette by combining it with a hypodermic needle 

and a silver filament. The injectrode is attached to commercial microsyringe pump[7] for drug 

delivery. This results in a technique that provides real-time pharmacodynamics feedback 

through multi-unit extracellular signals originating from the site of drug delivery. As a proof 

of concept, we recorded neuronal activity from the superior colliculus elicited by flashes of 

light in rats, concomitantly with delivery of drugs through the injectrode. The injectrode 

recording capacity permits the functional characterization of the injection site favouring 

precise control over the localization of drug delivery. Application of this method also extends 

far beyond what is demonstrated here, as the choice of chemical substance loaded into the 

injectrode is vast, including tracing markers for anatomic experiments[1].  

 

  

 

 

 

 

 

Keywords: Extracellular recordings, virtual lesions, reversible inactivation, GABA, lidocaine, 

microinjection 



 

i 

 

Introduction 

The inactivation of cortical areas and sub-cortical nuclei is important in the study of 

functional relations between various brain structures [2-4]. Recent literature has employed loss-

of-function chemical or cryogenic techniques to study the role of brain structures [2][5]. In 

regard to pharmacological microinjections, small volumes of drugs can be administered into a 

brain region at a controlled rate while minimizing the collateral damage to the surrounding 

tissue [6][7]. This technique can be used to deliver specific agonists, inverse agonists or 

antagonists to study the effect of different pharmacological targets on neuronal activity. Such 

effects can also be studied by measuring changes in neuronal responses from distant locations, 

allowing researchers to study the relationships between different cortical and subcortical 

structures. 

Here, we demonstrate the assembly of a device, the injectrode, capable of both 

recording electrophysiological signals and delivering small amounts of drugs at the target 

location. We demonstrate the capabilities of this system by injecting GABA, a common 

inhibitor of neuronal activity, in the rat superior colliculus. This region is sensitive to visual 

stimulation, which allowed us to use Visually Evoked Potentials (VEPs) to confirm injectrode 

localization. The reversibility of the inactivation was assessed by the recovery of normal 

neuronal activity following the end of GABA injection. 

The ability to monitor multi-unit activity from the injection site allows for the fine 

tuning of the injection rates and volumes needed to achieve the desired pharmacodynamic 

response. Therefore, an advantage of this technique is the potential limiting of tissue damage 

caused by microperfusion, since the smallest effective volumes are injected. The proposed 
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protocol provides a cost efficient method for generating the disposable hardware necessary for 

conducting experiments where drug delivery and local neuronal activity recording is desired.   

 

Protocol 

All procedures were performed in accordance with the directives of the Canadian Council for 

the Protection of Animals and the Ethics review board of the Université de Montréal. 

  

1. Assembly of the recording-injection pipette 

  

1.1          Pull an approximately 7 cm long glass capillary (1 mm outer diameter) using a 

vertical micropipette puller. 

  

1.2          Break the tip of the capillary and check the aperture under a light microscope. 

Confirm that the inner diameter is between 30 µm to 40 µm. 

  

1.3          Insert the silver wire into the glass capillary with approximately 1 cm protruding 

from the non-tapered end of the glass pipette. 

  

1.4          Bend the excess filament orthogonally to the glass capillary. 

  

1.5          Apply a droplet of gelatinous cyanoacrylate adhesive or other waterproof adhesive 

on the shaft of a 30G hypodermic needle. 

  

1.6          Insert a 30G hypodermic needle in the glass pipette according to the schematics 

presented in Figure 1. 

  

1.7          Add a second coating of glue to ensure a proper seal from the junction between the 

glass pipette and the hypodermic needle. 

  

1.8          Leave the pipette to dry with the tip facing upward for about 12 hours to ensure 

proper curing of the glue. The finished result is shown in Figure 2. 
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2. Animal preparation 

  

2.1          Place the rat in an anaesthesia box. 

  

2.2          Induce anaesthesia using 4% isoflurane for 5 to 10 minutes.  

  

2.3          Place the animal on a stereotaxic table with heating pad and rectal probe to maintain 

a body temperature of 37°. Use a nose cone to maintain anaesthesia with 2% isoflurane. 

Secure the rat’s head using ear bars and teeth holder. 

  

2.4          Apply a dilating eye-drop on the eyes and cover with contact lenses to prevent 

dryness. 

  

2.5          Shave the head and clean it with povidone-Iodine 10% solution. 

  

2.6          For local anaesthesia, inject 0.5 cc of 2% lidocaine under the scalp in 2-3 locations 

by lifting up the skin and inserting the tip of the needle.   

  

2.7          Confirm adequate level of anaesthesia by performing a toe pinch and observing the 

lack of movement.  In addition, monitor the heart rate to ensure that it is within normal values 

(300 to 400 beats per minute). 

  

2.8          Incise the scalp in a straight line along the median with a #10 scalpel blade to expose 

both the coronal and sagittal sutures 

  

2.9        Reveal the Lambda and Bregma points by pushing aside the tissue that is covering the 

cranium with a surgical spatula. 

  

2.10      Level the cranium so that Bregma and Lambda positions are on the same plane. 

  

2.11      To set the reference point, use a stereotaxic device with a mounted glass tube to set it 

right above Bregma. This will be the “zero” for the antero-posterior and medial-lateral 

measurements coordinates. 

  

2.12      Set the point of interest by moving the stereotaxic mount to the required coordinates, 

note the stereotaxic coordinates and draw a square around the target area that marks where the 

craniotomy will be performed. 

  

2.13      Use a surgical drill with a sterilized drill along the marked square slowly without 

pressure to slowly remove the bone material.  Be careful not to drill too long in the same area, 
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as it will produce heat and cause lesions on the cortex.  

  

2.14      When the bone delimiting the craniotomy has become sufficiently thin, carefully 

remove the cranial section with tweezers to expose the cortex. 

  

2.15      Frequently irrigate the exposed cortex with artificial cerebral spinal fluid to prevent 

tissue desiccation. 

  

2.16      Dura mater removal is unnecessary on the rat as the tip of the injectrode is sturdy 

enough to penetrate. 

  

3. Filling and mounting of the injection system 

  

3.1          Fill the 5-10 µl microsyringe by aspiration with mineral oil and carefully place it 

aside. 

  

3.2          Fill the hypodermic needle with the fixed glass pipette with a solution of Chicago 

Sky Blue (CSB) 0,5% and γ-aminobutyrique (GABA) 300 µM or a solution of lidocaine 2% 

with 0,5% CSB [9].  All solutions are diluted in saline. In the case of an abundant substance, 

the filling can be done using a regular syringe and the usual precautionary techniques to avoid 

the formation of air bubbles. In the case of more expensive substances, mineral oil can be used 

to fill the injectrode and the chemical agent can then be introduced by aspiration. As the 

density difference between mineral oil and water is relatively high, this substance is a good 

candidate for the injection of aqueous solutions. A dye can be added to confirm the separation 

between both liquids.  

  

3.3          To fill the injection pipette, fill a 1cc syringe with the solution by aspiration and then 

slowly inject the solution into the injection pipette. 

  

3.4          Pay careful attention for leaks in regions indicated in Figure 1 by swabbing these 

areas clean and observing leakages by further injecting the solution slowly with the syringe. 

  

3.5          Remove the 1cc syringe. When doing so, be sure to keep light pressure on the 

plunger so that the vacuum does not remove the solution from the injection pipette. 

  

3.6  Attach the mineral oil filled microsyringe firmly to the filled injection pipette, then 

carefully wipe away any excess solution from the assembled injectrode with gauze.  

  

3.7          Verify that the tip is not blocked by injecting a very small volume, enough to see a 
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small drop forming at the tip of the glass pipette. 

  

3.8          Mount the injectrode on the micropump system and ensure that it is well fixed 

  

3.9          Carefully position the injectrode tip at the target coordinates and lower the tip to the 

surface of the cortex. 

  

3.10      Slowly lower the injectrode using the stereotaxic apparatus to the target structure 

(superior colliculus in this case) using the appropriate anatomical coordinates. 

  

3.11      Cover the exposed cortex with warm agar to prevent tissue desiccation. 

  

4.  Injection and reversible inactivation 

  

4.1          Set the microinjection pump to inject 400 to 800 nl at 40 nl/min and press Run to 

start the injection. Note that spike rate will show reduction during the injection. In our 

experimental setup, neural activity recovered within an hour after the end of GABA delivery. 

We also want to emphasize that any calibrated mechanical device can be used to apply 

pressure on the microinjection syringe in order to conduct the injection. 

  

4.2          After acquisition of the electrophysiological data, proceed to animal euthanasia using 

a method approved by the local Animal Ethics Community. 

  

Representative Results 

The construction of the injectrode is illustrated in Figure1.  A silver wire (C) is fed 

into a glass pipette (D) with a portion of the wire bent and protruding out from the opening.  A 

30G needle (B) is attached and sealed to the opening of the glass pipette with glue.  After the 

pipette has been filled with the injection substance, a glass micro syringe (A) is attached to the 

needle. It is important that there is a good seal where the micro syringe connects with the 

needle (E) and where the silver wire protrudes from the glass pipette (F).  Figure2 shows a 

photograph of what the injectrode looks like after completing assembly.   
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VEPs were obtained in the superior colliculus following a 300ms flash to the contralateral eye 

as illustrated in Figure 3.  Upon the injection of GABA, spiking activity in response to a flash 

stimulus was suppressed. VEPs typically returned between 45 to 60 minutes after injection has 

ceased. 

  

Figure 4 illustrates the setup of the microinjection system.  The injection pump controller 

allows the user to specify the settings for injection.  A spring electrical connector connects the 

silver wire that protrudes from the glass pipette.  The connector leads to a head stage with 

ground and reference electrodes and then plugged into an amplifier.  An an alog/digital (A/D) 

interface is used to acquire the electrophysiological data, and a speaker is used for 

complementary audio monitoring of neuronal activity. 
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Figures 

 

 

Figure 1: Schematic representation of the injectrode assembly.  A micro syringe (A) is 

attached to the recording-injection pipette which consist of a 30G hypodermic needle (B) 

adhered to a silver wire (C) inside a glass pipette (D). Regions circled (E-F) highlight areas 

that may be susceptible to leaks. 
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Figure 2: A photo of the constructed pipette using a 30G needle (B), waterproof adhesive glue 

(F), a silver wire (C) and a glass pipette (D). 

 

Figure 3: An illustration of the inhibitory effect of the injection of GABA (300 µM) on multi-

unit activity in the superior colliculus, arrows indicate flash onset. Electrical signals were 

filtered using a band-pass filter set between 30 and 3,000 Hz. 
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Figure 4: Schematic representation of the complete micro-injection system. 

  

Discussion 

The proposed protocol was designed to solve the challenges arising from current 

reversible inactivation methods. Specifically, this project aimed at refining the methods used 

for chemical microinjections of substances modulating neural activity, particularly in deep 

brain structures.  A technical challenge emerging from this type of setup is the need for both 

probes to be colocalized in the same restricted space in vivo in order to derive precise 

recordings at the injection site. This issue can be overcome by using devices, such as the one 
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presented here, which are capable of both injection and recording at the same site. Alternative 

methods include the use of devices based on gas pressure pulses. Such tools have been 

available for many years, but the use of a compressible intermediate reduces the control over 

injection rates and volumes, two parameters that are important to control to insure 

reversibility. Other methods such as iontophoretic injection systems are also available, but the 

diffusion dynamics of the liquid are different versus bolus injection, reducing the potential 

range of inactivation. These methods have the advantage of having a spherical diffusion 

pattern as opposed to the elliptical pattern observed for micro-injections[7]. Hence, the choice 

of the inactivation method should be planned according to the target region and the 

experimental design. Even though commercial alternatives exist, the proposed protocol 

provides a cost efficient manner of monitoring the pharmaceutical substance delivery as well 

as allowing for a high degree of customization. Such freedom in the crafting of the injection 

device favours a large range of experimental flexibility and tuning for specific application 

contexts. 

  With regards to the proposed protocol, the critical step is the process of filling the glass 

pipette. Air bubbles should be avoided, as air compression will render the monitoring of 

injected volumes intractable. A very minimal resistance should also be felt when manually 

pushing liquid through the pipette, confirming free flow in the system. An absence of liquid 

with manual injection may indicate a leak in the system or incorrect pipette preparation 

resulting in an obstructed tip. The impedance of the pipette should also be measured in order 

to obtain the desired type electrophysiological recording (LFP, evoked potentials, multi-unit 

activity, etc.), as larger tips sizes will result in lower impedances. 

  If the injection is successful, a volume of 400 to 800 nl of the 300 μM GABA solution 



 

v 

or the 2% lidocaine solution is enough to abolish spiking activity. To have an idea of the 

injection spread in space and time, agar can be used to simulate nervous tissue. The spread of 

the injection can then be easily observed with a CSB solution. After simulations, it is essential 

to characterize injection spread histologically through the use of dyes such as CSB, by 

autoradiography using radiolabeled drugs or by using metabolic approaches such as glucose 

autoradiography as indirect proxies to measure activation or inactivation of neural activity[1]. 

  It is also important to note that fast injections (≥ 100 nl/minute) will likely result in 

lesions making full reversibility unattainable. A major advantage of the proposed protocol is 

the potential of integrating the injection system with software that would feedback-control the 

injection rate for a set neuronal activity level. Such an implementation would allow 

researchers to focus on the inactivation (or activation) parameters rather than on technical 

parameters such as injection rates or volumes while delivering only the right amount of drug 

for the considered application. This would minimize probe displacement by optimizing the 

required drug volume, allow for more time-sensitive control of the drug delivery, favour 

reproducibility and allow direct-paired comparison of data. 

  This technique combines a system for substance delivery and recording of 

electrophysiological signals.  We demonstrated its efficacy by using the recording capacity of 

our pipette to functionally locate the superior colliculus by inducing trains of multi-unit 

activity using flash stimuli[11].  During inactivation, multi-unit activity diminished and 

gradually recovered after injection offset.  Reversible inactivation techniques, such as the one 

presented here, provide considerable advantages over mechanical or chemical lesions 

techniques that provide absent or poor recovery [3].  Reversible inactivation techniques 

reinforce the statistical significance of experiments since paired comparisons are possible, [3] 
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thereby eliminating idiosyncratic differences.  We have developed a cost efficient and 

customizable technique that allows precise control over the duration of the substance delivery 

and the robust probing of a target cerebral area. 
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