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Abstract

In most economic applications, externalities prevail: the worth of a coalition depends

on how the other players are organized. We show that there is a unique natural way

of extending the nucleolus from (coalitional) games without externalities to games with

externalities. This is in contrast to the Shapley value and the core for which many different

extensions have been proposed.
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1 Introduction

There is an abundance of economic situations where the worth of a coalition depends on how the

other players are organized. In such situations a game with externalities associates with each

coalition and each possible partition of the other players a worth of that (embedded) coalition.

The literature on coalitional games with externalities is still relatively limited compared to the

solid foundations of the theory of games without externalities.

For classic coalitional games, the most important set-valued solution concept is the core and

the two most important single-valued solution concepts are the Shapley value and the nucleolus.
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under grants MTM2014-53395-C3-2-P and ECO2014-52340-P and from Generalitat de Catalunya under grant

2014SGR40. The second author acknowledges financial support from the SSHRC (Canada) and the FRQSC

(Québec).
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For both the core and the Shapley value many different extensions were proposed to games

with externalities. For instance, for the core the recursive approach by Kóczy (2007) and the

expectation formation approach by Bloch and Van den Nouweland (2014) and for the Shapley

value the average approach by Macho-Stadler et al. (2007), the marginality approach by de

Clippel and Serrano (2008), and the utilization of reduction and consistency by Dutta et al.

(2010). All these contributions provide families of extensions. To date, an extension of the

nucleolus is missing in the literature.

We provide a natural extension of the nucleolus from coalitional games without externalities

to games with externalities: for each embedded coalition consisting of the coalition and partition

of the other players, we measure the excess of this embedded coalition as the difference between

the worth of the embedded coalition minus what the coalition gets in the allocation (which

equals the sum of the allotments of the players in the coalition). For each allocation, then

we rearrange the excesses of all embedded coalitions in non-increasing order. The nucleolus

is then simply the set of allocations which lexicographically minimize the rearranged excesses

of all embedded coalitions. We show that (i) the nucleolus is unique and (ii) the nucleolus

of a game with externalities coincides with nucleolus of the following associated game without

externalities: for each coalition we take the maximal worth among all possible organizations

of the other players. Indeed, Fact (ii) is our key contribution. In the spirit of de Clippel and

Serrano (2008), we have a unique “externality free” extension of the nucleolus.

We also present an axiomatic characterization of the new solution concept. Indeed, we can

adapt the properties used by Sobolev (1975) in the well known characterization the prenucleolus,

namely anonymity, covariance and the reduced game property, to games with externalities quite

naturally. The reduced game property shapes a consistency principle and is of paramount

importance in our result. Such a principle states that in the event that some agents leave the

game with the proposed payoffs and the remaining agents renegotiate the sharing in a reduced

game, the payoffs do not change. We consider two natural ways to extend the Davis and Maschler

reduced game to our framework. The first and more naive is a classic coalitional game without

externalities that enables us to characterize the nucleolus. The second inherits the externalities

of the underlying game and yields a weaker property. Recently, Abe (2017) proposed other

alternatives to extend consistency properties to games with externalities, among them we can

find two extensions of the Davis and Maschler reduced game property. The key difference of our

approach is that the reduced game we consider only depends on the payoff and the coalition of

agents that leave and does not assume the formation of any coalition structure.
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We proceed as follows. In Section 2 we introduce games with externalities, we extend the

nucleolus from classic games to games with externalities, and we show that it is a well defined

point-valued solution concept. In Section 3 we present our main result, an axiomatic charac-

terization of the nucleolus. We also provide some intermediate results like the characterization

by means of balanced collections and the coincidence with the nucleolus of an associated game

without externalities. Section 4 concludes presenting other interesting properties of the nucleo-

lus.

2 Preliminaries

Let N stand for the infinite set of potential players and let N ⊂ N be a finite set of players.

The set of partitions of N is denoted by P(N).1 An embedded coalition of N is a pair (S, P )

where S ⊆ N and P ∈ P(N \ S). We denote by ECN the set of all embedded coalitions of N .

A coalitional game with externalities (or for short, game) is a pair (N, v) consisting of a finite

set of players N ⊂ N and a partition function v : ECN → R, satisfying v(∅, P ) = 0, for every

P ∈ P(N). The set of all games is denoted by G. Given (N, v) ∈ G, we say that (N, v) is a

coalitional game without externalities if for all (S, P ), (S,Q) ∈ ECN , v(S, P ) = v(S,Q). In this

case we may simply write v(S). The set of all coalitional games without externalities is denoted

by CG.

Our purpose is to propose a point-valued solution concept for coalitional games with ex-

ternalities. Given a game (N, v) ∈ G, (i) an allocation for (N, v) is a vector x = (xi)i∈N ∈

RN and (ii) X(N, v) denotes the set of all efficient allocations for (N, v), i.e., X(N, v) ={
x ∈ RN : x(N) =

∑
i∈N xi = v(N, ∅)

}
.2 Given a game (N, v) ∈ G, an embedded coalition

(S, P ) ∈ ECN , and an efficient allocation x ∈ X(N, v), the excess of (S, P ) at x is defined

by

e(S, P, x, v) = v(S, P )− x(S).

The excess of an embedded coalition, (S, P ), at x measures the dissatisfaction of coalition S if

the worth of the grand coalition is divided according to x and players are arranged according to

P ∪ {S}. Define c(n) =
∣∣ECN ∣∣, with n = |N |. Let e(x, v) ∈ Rc(n) denote the vector of excesses

at x in v, i.e., e(x, v) = (e(S, P, x, v))(S,P )∈ECN . For a given (N, v) ∈ G and x ∈ X(N, v), we are

1By convenience, let ∅ be the only partition in P(∅).
2We denote by RN , the |N |-dimensional Euclidean space, with coordinates indexed by the elements of N . For

every x ∈ RN and S ⊆ N , x(S) =
∑

i∈S xi.

3



going to build a vector with all the excesses e(x, v) arranged in non-increasing order. Then, the

vector of ordered excesses is defined as follows:3

θ(x, v) ∈ Rc(n) , where ∪c(n)i=1 {θi(x, v)} = ∪c(n)i=1 {ei(x, v)} and

θ1(x, v) ≥ θ2(x, v) ≥ · · · ≥ θc(n)(x, v).

Let Rm≥ denote the set of all vectors x ∈ Rm such that x1 ≥ x2 ≥ · · · ≥ xm, i.e. the

coordinates of x are arranged in non-increasing order. Let - denote the lexicographical ordering

on Rm≥ : for all x, y ∈ Rm≥ , x - y, with means that either x = y or there is 1 ≤ t ≤ m, such that

xi = yi for every 1 ≤ i < t and xt < yt. We write x ≺ y if x - y and y 6- x.

Definition 1. The nucleolus of a game with externalities is the set of efficient allocations which

lexicographically minimize the ordered vector of excesses:

η(N, v) = {x ∈ X(N, v) : θ(x, v) - θ(y, v) for all y ∈ X(N, v)} .

The first step is to show that the nucleolus is a well defined solution. Let H ⊆ G. Formally,

a (single-valued) solution on H is a mapping f that assigning allocation f(N, v) ∈ RN for every

game (N, v) ∈ H.

The second step will relate the nucleolus of games with externalities to the classical pre-

nucleolus of a particular game without externalities. The latter is a well known solution on CG

that we denote by η∗ and can be defined for every (N, v) ∈ CG by η∗(N, v) = η(N, v) (where

we use the first step, or simply η∗ is the restriction of η to CG). This result is one of our key

insights: the nucleolus of a partition function form game is uniquely defined and given by the

nucleolus of its associated “externality-free” max-game where for any coalition S its worth is

equal to the maximum of the worths v(S, P ) where P is any possible organization of the other

players. Formally, for any (N, v) ∈ G, let (N, vmax) ∈ CG be defined by for all S ⊆ N ,

vmax(S) = max {v(S, P ) : P ∈ P(N \ S)} .

The following is our first main result.

Theorem 1. (i) The nucleolus is a (single-valued) solution on G.

(ii) For all (N, v) ∈ G, we have η(N, v) = η∗(N, vmax).

Proof. (i): This proof is an adaptation of the original proof by Schmeidler (1969).

3Here identical numbers appear multiple times, i.e. we could have {2, 2, 2, 1, 1, 0, . . .}.
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Let (N, v) ∈ G. First, given y ∈ X(N, v) let α(y) = max
{
e(S, P, y, v) : (S, P ) ∈ ECN

}
. Let

α = min{α(y) : y ∈ X(N, v)}. Define

Y0 =
{
x ∈ X(N, v) : e(S, P, x, v) ≤ α : for every (S, P ) ∈ ECN

}
.

Clearly, η(N, v) = {x ∈ Y0 : θ(x, v) - θ(y, v), for every y ∈ Y0}. It is also easy to see that Y0 is

a non-empty, compact, and convex polytope.

Second, let (S, P ) ∈ ECN . Then e(S, P, x, v) is a continuous function of x. Let m = |ECN |,

note that θi(x, v) can be defined for every i ∈ {1, . . . ,m} by

θi(x, v) =
{

max {min {e(S, P, x, v) : (S, P ) ∈ D}} : D ⊆ ECN such that |D| = i
}
.

Therefore, for every i ∈ {1, . . . ,m}, θi(x, v) is a continuous function on x.

Third, for every i ∈ {1, . . . ,m}, we define

Yi = {x ∈ Yi−1 : θi(x, v) ≤ θi(y, v) for all y ∈ Yi−1} .

Since Y0 is a non-empty, compact, and convex polytope and θi(x, v) is continuous on x for

every i ∈ {1, . . . ,m}, every Yi is a non-empty, compact, and convex subpolytope of Yi−1. Since,

Ym = η(N, v), we have shown η(N, v) 6= ∅.

Forth, let δ : Rm → Rm be the function whose output has the same coordinates as the input

vector but in non-increasing order. For instance, δ
(

(e(S, P, x, v))(S,P )∈ECN
)

= θ(x, v), for every

x ∈ X(N, v). It is easy to observe that for every z1, z2 ∈ Rm, δ(z1 + z2) - δ(z1) + δ(z2), and

that δ(z1 + z2) = δ(z1) + δ(z2) if and only if the ith highest coordinates of both z1 and z2 are

in the same positions for every i ∈ {1, . . . ,m}.

Fifth, let x, y ∈ X(N, v) be such that x, y ∈ η(N, v). In particular, θ(x, v) = θ(y, v) and

θ(x, v) + θ(y, v) = 2θ(x, v). On the other hand,

2θ

(
1

2
(x+ y), v

)
= θ(x+ y, v) = δ

(
(e(S, P, x+ y, v))(S,P )∈ECN

)
.

Then, using the forth point above, 2θ
(
1
2 (x+ y), v

)
- 2θ(x, v). But since x ∈ η(N, v), it

must be that θ
(
1
2 (x+ y), v

)
= θ(x, v). Using again the forth point, it must be that vectors(

(e(S, P, x, v))(S,P )∈ECN
)

and
(

(e(S, P, y, v))(S,P )∈ECN
)

have the ith highest coordinate in the

same position for every i ∈ {1, . . . ,m}. Finally, using again that θ(x, v) = θ(y, v) we get x = y

and the proof of (i) concludes.

(ii): In order to (ii), we extend Property I of Kohlberg (1971) to our setting.
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Definition 2. Let (N, v) ∈ G. For every x ∈ X(N, v) and α ∈ R, define

A(α, x, v) = {S ⊆ N : e(S, P, x, v) ≥ α, for some P ∈ P(N \ S)} .

An efficient allocation x ∈ X(N, v) is said to have Property I with respect to (N, v) if the

following condition is satisfied for every α ∈ R where A(α, x, v) 6= ∅: If y ∈ RN is such that

y(N) = 0 and y(S) ≥ 0 for every S ∈ A(α, x, v), then y(S) = 0 for every S ∈ A(α, x, v).

Lemma 1. Let (N, v) ∈ G and x ∈ X(N, v). Then x = η(N, v) if and only if x has Property I

with respect to (N, v).

Proof. This proof is an adaptation of the original proof by Kohlberg (1971).

Necessity: Let (N, v) ∈ G and x = η(N, v). Let α ∈ R be such that A(α, x, v) 6= ∅ and

y ∈ RN such that y(N) = 0 and y(S) ≥ 0 for every S ∈ A(α, x, v). We denote by B(α, x, v) the

set of embedded coalitions whose excesses at x are no less than α, i.e., B(α, x, v) = {(S, P ) ∈

ECN : e(S, P, x, v) ≥ α}. Note that B(α, x, v) contains the embedded coalitions whose excesses

at x are the first coordinates of θ(x, v). Define zε = x+εy, where ε > 0. Note that zε ∈ X(N, v).

We choose ε∗ > 0 such that for every (S, P ) ∈ B(α, x, v) and every (T,Q) /∈ B(α, x, v),

e(S, P, zε∗ , v) > e(T,Q, zε∗ , v). (1)

In other words, we choose ε∗ > 0 in such a way that the excesses of the embedded coalitions in

B(α, x, v) are in the first positions of θ(zε∗ , v). Next, for every (S, P ) ∈ B(α, x, v),

e(S, P, zε∗ , v) ≤ e(S, P, x, v), (2)

because y(S) ≥ 0 for every S ∈ A(α, x, v) and (S, P ) ∈ B(α, x, v) implies S ∈ A(α, x, v).

Finally, suppose that x does not have Property I, i.e., there is S ∈ A(α, x, v) such that

y(S) > 0. Then, by (1) and (2), θ(zε∗ , v) ≺ θ(x, v) which contradicts our assumption.

Sufficiency: Let (N, v) ∈ G and x ∈ X(N, v) be a vector that has Property I w.r.t (N, v). Let

α1 > · · · > αp be such that
{
e(S, P, x, v) : (S, P ) ∈ ECN

}
= {α1, . . . , αp}. Next, let z = η(N, v)

and y = z − x. We have to show that y is the null vector. We proceed by induction on

i = 1, . . . ,m and show that y(S) = 0 for every S ∈ A(αi, x, v). Clearly, y ∈ RN with y(N) = 0.

Let S ∈ A(α1, x, v), i.e., there is P ∈ P(N \ S) such that e(S, P, x, v) = α1. Then,

y(S) = e(S, P, x, v)− e(S, P, z, v) ≤ 0,

where the inequality holds because θ(z, v) - θ(x, v). Since, x has Property I, y(S) = 0. Suppose

now that y(S) = 0 for every S ∈ A(αi, x, v) for some i ∈ {1, . . . , p− 1}. Let S ∈ A(αi+1, x, v) \
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A(αi, x, v), i.e., there is P ∈ P(N \ S) such that e(S, P, x, v) = αi+1. Then,

y(S) = e(S, P, x, v)− e(S, P, z, v) ≤ 0,

where the inequality holds by the induction hypothesis and the fact that θ(z, v) - θ(x, v). Since,

x has Property I, y(S) = 0 and the proof concludes. �

For (ii), given (N, v) ∈ G, we have to show η(N, v) = η∗(N, vmax). Let x ∈ X(N, v) and

α ∈ R. By definition, we can write A(α, x, v) = {S ⊆ N : vmax(S)− x(S) ≥ α}. Then, the

result follows directly from Lemma 1 and the characterization of the pre-nucleolus of a charac-

teristic function game by Kohlberg (1971). �

3 Characterization

The purpose of this section is to present our second main result, namely an axiomatic charac-

terization of the solution introduced above.

The first property we would like to impose on a solution is the classic anonymity, stated in

the general form taking into account that the games we consider have a player set belonging to

an infinite universe of potential players.

Anonymity: A solution f is anonymous if for every (N, v) ∈ G and every injection π : N → N ,

f(π(N), πv) = π (f(N, v)) ,

where (π(N), πv) ∈ G is defined for every (S, P ) ∈ ECπ(N), by v(S, P ) = πv(π(S), π(P )) with

π(P ) = {π(T ) : T ∈ P}.

In words, anonymity states that relabeling of players should not affect the solution.

The next property is a natural generalization from cooperative game theory to our setting

of games with externalities.

Covariance: A solution f is covariant if for every (N, v) ∈ G, α > 0, and β ∈ RN ,

f(N,αv + β) = αf(N, v) + β,
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where (N,αv + β) ∈ G is defined for every (S, P ) ∈ ECN , by (αv + β)(S, P ) = αv(S, P ) + β(S).

Note that covariance entails linearity of an arbitrary game with an inessential game.

Next, we present the most important property of our paper which states that a solution

should not be affected if a coalition renegotiates the sharing in a particular subgame. Given

(N, v) ∈ G, ∅ 6= S ⊆ N , and x ∈ RN . The reduced game with respect to S and x is denoted by

(S, vS,x) ∈ CG and is defined for every T ⊆ S by

vS,x(T ) =


0 if T = ∅,

v(N)− x(N \ S) if T = S,

max
{
v(R,Q)− x(R \ T ) : (R,Q) ∈ ECN and R ∩ S = T

}
otherwise.

The idea behind the above reduced game is that if agents in N \ S leave the game with the

payoff proposed by x, the remaining agents interact in a new coalitional game without external-

ities. In the latter game, the worth of the grand coalition, S, is determined by the remainder

v(N)−x(N \S) and every other coalition T 6= ∅ assesses its worth by taking the maximum over

all possible embedded coalitions obtained when some agents in N \S may join coalition T . Note

that this coincides with the Davis and Maschler (1965) reduced game with the exception that

instead the worth a bare coalition, say R, we consider the worth of every embedded coalition of

the type (R,Q).

Reduced Game Property: A solution f satisfies the reduced game property if for all (N, v) ∈

G, all ∅ 6= S ⊆ N , and all i ∈ S (where x = f(N, v)), we have

xi = fi (S, vS,x) .

If a solution fulfills the reduced game property, then the payoffs remain unaffected when

agents in a coalition renegotiate in the reduced game.

Theorem 2. The nucleolus, η, is the only solution on G satisfying anonymity, covariance, and

the reduced game property.

Before we continue, it is helpful to recall the characterization of η∗ by Sobolev (1975). In

order to present it, we can consider variants of the three properties we have introduced above

that only apply to games without externalities. That is, let anonymity∗, covariance∗, and the

reduced game property∗ be the restrictions of anonymity, covariance, and the reduced game

property to solutions on CG, respectively.
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Theorem 3. (Sobolev, 1975) The pre-nucleolus, η∗, is the only solution on CG satisfying

anonymity∗, covariance∗, and the reduced game property∗.

We are now in the position to show our characterization result.

Proof of Theorem 2.

Existence: Using Theorem 1 (ii) and Theorem 3 we get the existence from the following

observations. Let (N, v) ∈ G. First, for every injection π : N → N , π(vmax) = (πv)max. Second,

for every α > 0 and β ∈ RN , (αv + β)max = αvmax + β. Third, if x = η(N, v) and ∅ 6= S ⊆ N ,

then (vS,x)
max

= (vmax)S,x.

Uniqueness: Let (N, v) ∈ G and f be a solution on G satisfying the three properties. If

x = f(N, v), then from the definition of the reduced game it follows that for every (S, P ) ∈ ECN ,

vN,x(S, P ) = vmax(S). Then, by the reduced game property

f(N, v) = f(N, vN,v) = f(N, vmax).

Finally, using Theorem 3 and the fact that (N, vmax) ∈ CG,

f(N, vmax) = η∗(N, vmax) = η(N, v),

where the last equality follows from Theorem 1 (ii). �

Remark 1. If the grand coalition is efficient, i.e., for every P ∈ P(N), v(N, ∅) ≥
∑
S∈P v(S, P \

S), then the nucleolus allocates the worth of the grand coalition to all players. If the grand

coalition is not efficient, then we could pick one of the efficient partitions, define a game within

each of its coalitions and use the solution to obtain a sharing of the worth of each of these

embedded coalitions.

4 Discussion

In this section we discuss another interesting property of the nucleolus and its relation to different

notions of the core introduced in the literature.

It could be reasonable to define a reduced game which inherits externalities from the original

game. Formally, given (N, v) ∈ G, ∅ 6= S ⊆ N , and x ∈ RN . The reduced game with externalities
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with respect to S and x is denoted by (S,wS,x) ∈ G and is defined for every (T, P ) ∈ ECS by4

wS,x(T, P ) =


0 if T = ∅,

v(N)− x(N \ S) if T = S,

max
{
v(R,Q)− x(R \ T ) : (R,Q) ∈ ECN , R ∩ S = T,Q ∩ S = P

}
otherwise.

The idea behind the above reduced game is that when N \ S leave the game with the pay-

off proposed by x, the remaining agents interact in a new coalitional game with externalities.

In the latter game, the worth of the grand coaltion, (S, ∅), is determined by the remainder

v(N) − x(N \ S). Otherwise, in the event that coalition structure P ∪ {T} emerges, coalition

T assesses its worth by taking the maximum over all possible ways in which some agents in

N \ S may join T and some others may form new coalitions or join any of the coalitions in

the structure, assuming that agents that join coalition T are paid according to x. The above

reduced game yields another version of the well known reduced game property.

Weak Reduced Game Property: A solution f satisfies the weak reduced game property if

for all (N, v) ∈ G, all ∅ 6= S ⊆ N , and all i ∈ S (where x = f(N, v)), we have

xi = fi (S,wS,x) .

It is easy to see how the above property also generalizes the reduced game property, in-

troduced for point-valued solutions by Sobolev (1975). Indeed, the two versions of the reduced

game property proposed here coincide for coalitional games without externalities. The difference

between the two properties is the fact that the former is not affected by the externalities of the

original game because it takes the maximum over all possible partitions while the latter takes

the maximum only among those partitions that are consistent with the coalitional organization

of the players in the reduced game.

Proposition 1. The nucleolus satisfies the weak reduced game property.

Proof. Let (N, v) ∈ G, x = η(N, v), and ∅ 6= S ⊆ N . Using the definition of both reduced

games, we can write for every T ⊆ S,

(wS,x)
max

(T ) = vS,x(T ). (3)

Then, by Theorem 1 (ii), for every i ∈ S

ηi (S,wS,x) = ηi (S, (wS,x)
max

) = ηi (S, vS,x) = xi,

4Given (R,Q) ∈ ECN , let Q ∩ S = {U ∩ S : U ∈ P}.
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where the second equality holds by (3) and the third is because the nucleolus satisfies the re-

duced game property (Theorem 2). �

Whether we can weaken the reduced game property of our characterization result in this

direction is still an open question.

It is also straightforward to see how we can recover one of the auxiliary results of Sobolev

(1975) to the framework of games with externalities, namely that covariance and the reduced

game with externalities property imply efficiency.

Proposition 2. Let f be a solution satisfying covariance and the reduced game with externalities

property. Then, for every (N, v) ∈ G, f(N, v) ∈ X(N, v).

Proof. This proof is an adaptation of the original proof by Sobolev (1975).

First of all, we show the result for one-person games. Let ({i}, v) ∈ G. If v = 0, i.e., v({i}) =

0, by covariance f({i}, v) = f({i}, 2v) = 2f({i}, v). Which implies f({i}, v) = 0. Otherwise,

let v 6= 0. Again by covariance, f({i}, v) = f({i}, 0 + v({i})) = f({i}, 0) + v({i}) = v({i}).

Next, let (N, v) ∈ G with |N | ≥ 2 and x = f(N, v). Take i ∈ N , as we have just shown

f({i}, v{i},x) ∈ X({i}, v{i},x), that is

fi({i}, v{i},x) = v{i},x({i}) = v(N, ∅)− x(N \ {i}),

where the second equality follows from the definition of the reduced game. Finally, since f

satisfies the reduced game with externalities property,

xi = fi({i}, w{i},x) = v(N, ∅)− x(N \ {i}),

which means that x(N) = v(N). �

Another well-known property of the prenucleolus of coalitional games without externalities is

that whenever non-empty it always lies within the core. It is interesting to analyze the behavior

of the nucleolus as introduced here with respect to different notions of the core proposed in the

literature. A way to pin down a particular core in the presence of externalities is to anticipate the

coalitional reaction of the deviating players. This is precisely the approach of Bloch and Van den

Nouweland (2014) where a large class of core notions are studied in a common framework.

Formally, an expectation formation rule is a mapping, f , that associates to every S ⊆ N a

partition of N \S, i.e., for every S ⊆ N , f(S, v) ∈ P(N \S).5 Then, the core of (N, v) ∈ G with

5Recall that for simplicity, we assume that the grand coalition is the most efficient arrangement of any set of

players.
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respect to the expectation formation rule f is defined by

Cf (N, v) = {x ∈ X(N, v) : x(S) ≥ v (S, f(S, v)) ∀S ⊆ N} .

The optimistic rule, fo, originally proposed by Shenoy (1979) selects for every coalition, the

most favorable partition, i.e., for every (N, v) ∈ G and S ⊆ N , fo(S, v) = arg max
P∈P(N\S)

v(S, P ).

The core with respect to the optimistic rule is called the optimistic core.

Proposition 3. Regarded that the optimistic core is non-empty, the nucleolus is in the core of

the game with respect to any expectation formation rule.

Proof. Let (N, v) ∈ G. Note that, for every S ⊆ N , v(S, f(S)) = vmax(S). That is, the opti-

mistic core is the core of the coalitional game without externalities (N, vmax). Then, by Theorem

1 (ii) and the well-known fact that the prenuclolus of a game without externalities lies in the

core whenever non-empty, we have that η(N, v) ∈ Cfo(N, v). Finally, since the optimistic core is

contained in every other core (Bloch and Van den Nouweland, 2014) we get the desired result. �

A natural follow up question is whether the nucleolus is in the core of any expectation

formation rule whenever non-empty. We show by a counter-example that the answer is negative.

Example 1. Let N = {1, 2, 3} and (N, v) ∈ G be defined by6

v(1; 2, 3) = 0 v(1; 23) = 1 v(12; 3) = 2

v(2; 1, 3) = 0 v(2; 13) = 1 v(13; 2) = 1 v(N ; ∅) = 2

v(3; 1, 2) = 2 v(3; 12) = 0 v(23; 1) = 1

and let also the expectation formation rule be such that, f(1) = 23, f(2) = 13, and f(3) = 12.

That is, according to f each coalition expect the rest of agents to form a one coalition partition.

Then it is easy to see that

Cf (N, v) = {(1, 1, 0)}.

However, using Theorem 1 (ii) we can easily compute the nucleolus

η(N, v) =

(
3

4
,

3

4
,

1

2

)
.

Still, one could wonder whether there is a necessary and sufficient condition on the expec-

tation formation rule that guarantees the nucleolus to be a core allocation (with respect to

the expectation formation rule) whenever non-empty. This is another open question for future

research.
6For the sake of clarity we omit brackets and only use commas between coalitions.

12



References

Abe, T. (2017). Consistency and the core in games with externalities. International Journal of

Game Theory.

Bloch, F. and Van den Nouweland, A. (2014). Expectation formation rules and the core of

partition function games. Games and Economic Behavior, 88:339–353.

Davis, M. and Maschler, M. (1965). The kernel of a cooperative game. Naval Research Logistics,

12:223–259.

de Clippel, G. and Serrano, R. (2008). Marginal contributions and externalities in the value.

Econometrica, 76:1413–1436.

Dutta, B., Ehlers, L., and Kar, A. (2010). Externalities, potential, value and consistency. Journal

of Economic Theory, 145:2380–2411.
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