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Sommaire

L'objet de cette these est le traitement de contextes d application, en particulier dans le do-
maine de I"économie financiere, ol le point de vue asymptotique traditionnel peut étre trom-
peur. Chaque essai propose afors une méthode pour affiner les approximations asymptotiques
en présence d cchantillons dobservations qui. en pratique, sont toujours finis.

Le premier essai se place dans la lignée de la littérature récente sur les instruments faibles.
Nous adaptons le contexte général de la méthode des moments généralisée (GMM) afin de
lier plus spécifiquement la faible identification aux instruments, ¢ est-a-dire aux conditions
de moment. Ainsi. contrastant avec la plupart des méthodes existantes, la partition d’intérét
entre les parametres structurels fortement et laiblement identifiés n'est pas spécifiée a priori:
elle s’obtient plutét aprés une rotation dans 1'espace des paramétres. Par ailleurs, nous nous
concentrons ici sur le cas d’identification presque-laible pour lequel la déficience de rang est
atteinte a la limite a un taux de convergence plus lent que "usuel racine-T". Dans ce contexte,
les estimateurs GMM de tous les parametres convergent, i des taux possiblement plus lents
que d"habitude. Cela nous permet de valider les approches de test standard comme Wald ou
GMM-LM. De plus. nous identifions ct estimons des directions dans 1'espace des paramétres
pour lesquelles la convergence au taux racine-7 est maintenue. Ces résultats sont d'un intérét
dircct pour les applications pratiques, et ce. sans que la connaissance ou I estimation du taux
de convergence plus lent ne soit requise. Nous proposons des illustrations Monte-Carlo pour
deux modeles économétriques : le modele de régression linéaire avec variables instrumentales
a une équation ct [e modele d*évaluation d actifs CAPM avec consommation.

Le deuxieme essai complete le premier en réalisant une étude comparative de puissance pour
deux tests de la littérature GMM avee instruments (presque)-faibles : le test de score clas-
sique, valide dans le cadre du premicr cssai. et le test de Kleibergen ou score modifié. Plus



geéncralement. nous comparons deux approches : d*une part. a I'image du premier essai, spé-
cifier les problemes d'identification, via le comportement des conditions de moment, permet
d’appliguer les procédures de test standard : d"autre part, comme dans Kleibergen (2005). ne
pas préciser le cadre d’identification requiert une modification de la statistique du score,

Dans le troisieme essai, nous proposons une nouvelle méthode d'inférence. la procédure
Modified-Wald. afin de pallier au mauvais comportement (connu) des tests de Wald lorsque
I"identification n"est plus assurée i la frontiere de "espace des parametres. Nous nous concen-
trons ici sur le ratio de parametres multidimensionnel lorsque le dénominateur est proche de la
singularité. Notre méthode est basée sur la statistique de Wald : le contenu informationnel de
I"hypothese nulle d"intérét est intégré dans le calcul de sa métrique. Cette correction préserve
la tractabilité de la méthode et permet d*obtenir une région de confiance non bornée lorsque
nceessaire. La procédure de Wald standard produit habituellement une région de confiance
bornce: celie-ci est invalide pour toute taille déchantillon donnée dans la mesure ol sa pro-
babilité de couverture est nulle. La seule maniere de remédier i ce probléme est d*obtenir des
régions de confiance non bornées avee une probabilité non nulle. Une simulation compare les
propriétés d'inférence des procédures Wald et Modified-Wald avec un ratio bidimensionnel.
Nous considérons aussi le modeéle de régression linéaire avec variables instrumentales i une
¢quation lorsque les propriétés identifiantes des instruments varient.

Pour finir. contrastant avec les trois premiers essais qui restent dans le domaine de la théoric
statistique asymptotique, le quatriéme essai adople un point de vue décisionnel dans Ie do-
maine du choix de portefeuille. Un défi important associé a I"allocation de portefeuille se pro-
duit lorsque les caractéristiques (inconnues) de la distribution des rendements financiers sont
remplacés par des estimés. Cela introduit du risque dit d”estimation, crucial pour la gestion de
portefeuille. au méme titre que le risque financier traditionnel. Cet essai se concentre sur une
nouvelle mesure de performance par rapport 2 la littérature existante. Nous empruntons aux
praticiens et évaluons les différentes allocations de fonds i travers leur vraisemblance i battre
un niveau de référence donné. Ensuite, le portefeuille optimal, qui incorpore alors le risque
d’estimation, est connu explicitement et ne dépend d"aucun parametre de nuisance. Une étude
de Monte-Carlo simple compare plusicurs stratégies d”investissement de la litiérature.

Mots clés : GMM : variables instrumentales : identification (presque)-faible : test K ; test du
score: ratio de paramétres : Wald : région de confiance non bornée : théorie du portefeuille ;
risque destimation : performance de rélérence : efficacité moyenne-variance.



Summary

The objective of this thesis is to study designs. particularly in the field of financial economics,
where the asymptotic point of view may be misleading. Each essay proposes a method to re-
fine the asymptotic approximations in the presence of samples which are. in practice. always
finite.

The first essay is in line with the recent literature on weak instruments. We propose to adapt
the general framework of the Generalized Method of Moments (GMM) in order to specili-
cally relate weakness to the instruments, that is the moment conditions. As a consequence.
in contrast with most of the existing literature. the relevant partition between strongly and
weakly identified structural parameters is not specified a priori but rather achieved after a
well-suited rotation in the parameter space. In addition, we focus here on the case dubbed
nearly-weak identification where the drifting DGP introduces a limit rank deficiency reached
at a rate stower than root-T". This framework ensures that the GMM estimators of all parame-
lers are consistent but at rates which may be slower than usual. This allows us to verify the
validity of the standard testing approaches like Wald and GMM-LM tests. Moreover, we iden-
tify and estimate directions in the parameter space where root-7" convergence is maintained.
These results are all directly relevant for practical applications without requiring knowledge
or estimation of the slower rate of convergence. We provide Monte-Carlo illustrations for two
econometric models: the single-equation lincar IV model and the consumption based CAPM.

The second essay completes the first one with a comparative study of the power of two tests
proposed within the GMM literature when the identification is (nearly)-weak: the stundard
score test. valid in the framework of chapter 1. and the K-test or modified score test. In a
more general sense, we are comparing two approaches with respect to identification issucs:
on one hand. as shown in the first essay. specilying identification issues through moment



conditions allows the application of standard test procedures: on the other hand, as shown by
Kleibergen (2005). in the absence of identification issue specification a modification of the
score test statistic is required.

In the third essay. we propose a new inference method. the Modified-Wald procedure, to over-
come some issues of the well-documented poor behavior of Wald tests when identification
is lost at the frontier of the parameter space. We focus here on the multidimensional ratio of
paramcters when the denominator is close to singularity. This method is based on the Wald
statistic. The key idea consists of integrating the informational content of the null hypothesis
of interest in the computation of its metric. This correction, while preserving the computa-
tional tractability of the method. allows for unbounded confidence regions when needed. A
standard Wald test usually provides a bounded confidence region: this region is invalid for any
given sample size in the sense that its coverage probability is zero. The only way to surmount
this issue is to write confidence regions with a nonzero probability of being unbounded. A
simulation exercise compares the inference properties of the Wald and Modified-Wald pro-
cedures with a bidimensional ratio. We also consider the single-equation lincar 1V model in
cases where the identifying properties of the instruments may vary.

Finally. in contrast to the first three essays which remain in the framework of statistical
asymptotic theory. the fourth essay adopts a decisional point of view in portfolio choice.
An important challenge in portfolio allocation arises when the (true) characteristics of re-
turns distribution are replaced by estimates. This introduces estimation risk, which is a cru-
cial component of portfolio management, just like the traditional financial risk. This essay
differs from existing literature by virtue of its focus on a different measure of performance.
We borrow from practitioners and evaluate the funds allocations hased on their likelihood
of beating a benchmark. Then, the optimal portfolio which accounts for estimation risk is
known in closed-form and does not depend on any nuisance parameter. This investment rule
corresponds to a mean-variance investor with a corrected, sample-dependent risk aversion. A
simple Monte-Carlo study involving five risky assets is used to compare several investment
strategics.

Key Words: GMM: Instrumental variables: (Nearly)-weak identification; K-test: Score test:
Parameter ratio; Wald: Unbounded confidence region: Weak instruments: Portfolio theory:
Estimation risk: Benchmark performance: Mcan-variance efficiency.
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Introduction générale

Fournir de I"inférence de qualité sur les parametres d’intérét a toujours été une guestion cen-
trale en économétric. Pour ce faire. I'approche fréquentiste se base sur deux résultats es-
sentiels: la loi des grands nombres et le théoréme de la limite centrale (TLC). lls assurent
respectivement que les vraies valeurs (inconnues) des paramétres sont connues asymploti-
quement. ¢’est-d-dire quand la taille de 1'échantillon observé tend vers I'infini, et approchées
par des estimateurs asymptotiquement gaussiens. Sous des hypothéses de régularité standard,
il est communément admis que les résultats précédents sont vérifiés. Dans ces conditions.
Pinférence & partir d’une statistique de Wald est (rés prisée par les praticiens : on calcule un
estimateur de la quantité d"intérét et son comportement asymptotique est fournit par le TLC;
s'en suivent alors les lests et régions de confiance associés. Ces derniéres sont construites,
par exemple. en inversant cette statistique de Wald: cela signifie simplement que les valeurs
des parametres pour lesquelles le test n'est pas significatif sont collectées. De telles régions
sont géncralement bornées.

Plus récemment, un intérét particulier s’est fait ressentir pour fournir de I"inférence valide
lorsque I'identification des paramétres n'est plus complelement assurée. Deux situations
peuvent entrainer une perte partielle ou totale de I'identification : soit, Iidentification est
tout simplement perdue 4 la frontigre de I"espace des parametres ; soit, les conditions qui as-
surent identification du modele font défaut. Dans le premier cas. il est facile dimaginer une
transformation des paramétres qui ne serait valide que dans un sous-ensemble de "espace des
parametres d’origine : par exemple. un ratio n’est défini que lorsque le dénominateur est non
nul. Dans le second cas. on peut penser i ["un des cheval de bataille de la recherche empirigue
en économie, & savoir I"instrumentation des variables exogénes. Plus précisément. un modéle

structurel fait genéralement intervenir des variables explicatives endogénes. ¢ est-d-dire lides
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au terme d’erreur. Ceci invalide I"utilisation de la méthode des moindres carrés ordinaires ct
I"on a recours & des variables instrumentales (IV) ou instruments pour assurer |'identification
des parametres du modele et mener i bien I'inférence statistique. Les instruments sont des va-
riables auxiliaires exogénes. ou encore non corrélées avec le terme d"erreur. qui doivent étre
suffisamment pertinentes: ¢’est-a-dire suffisamment bien corrélées avec les variables expli-
catives endogenes. Lorsque cette corrélation est faible, I'identification des paramétres n’est
plus complétement assurce.

La perte particlle ou totale d’identification peut entrainer des comportements asymptotigues
inhabituels chez certaines statistiques de test. Plus généralement, les méthodes d'inférence
standard peuvent étre invalidées. Plusicurs articles ont documenté lu faible performance des
methodes et approximations asymptotiques usuclles: entre autres, Nelson et Startz (1990),
Bound, Jaeger et Baker (1995) et Staiger et Stock (1997). Plusieurs pistes de recherche ont
alors ¢t¢ envisagées dans la littérature pour fournir des méthodes d'inférence fiables.

L’économetre peut d'abord envisager une modification du cadre de travail en changeant le
scénario asymptotique. afin de pouvoir dériver le comportement asymptotigue des statistiques
de test considérées. En d autres termes. les proprictés d identification du modeéle sont mainte-
nant lices artificiellement a la taille de I"échantillon. Par exemple, dans le cadre d'un modele
structurel lincaire a équations simultances, Staiger et Stock (1997) modélisent la corrélation
entre les instruments et les variables endogenes comme inversement proportionnelle & la taille
de Iéchantillon a la puissance 1/2: cette situation est connue sous le nom didentification
faible. Plus récemment, Hahn et Kuersteiner (2002) considerent différentes puissances de la
taille de I"cchantillon qui caractérisent le degré d’identification : par exemple. I'identification
est presque-faible lorsque la puissance est strictement comprise entre 0 et 1/2.

Une autre approche consiste a modifier directement les statistiques de test existantes afin
de les rendre robustes aux différents cas d'identification. Par exemple, dans le cadre de la
méthode des moments généralisée (GMM). Kleibergen (2005) propose le test K ou test du
score modilié : I'estimateur usuel du jacobien espéré est remplacé par un estimateur qui est
asymplotiquement non corrclé avee la moyenne empirique des conditions de moment. Cette
modification rend le test robuste aux instruments faibles.

Entin. une derni¢re voie majeure de recherche se concentre sur des méthodes d'inférence



dites exactes. Elles ne s appuient ni sur une hypothese d'identification. ni sur la normalité
asymplotique des estimateurs mais plutét sur des statistiques pivotales robustes aux pro-
bl¢mes d’identification. Citons la premiere d”entre elles, la statistique de Anderson et Rubin
ou statistique AR (Anderson ct Rubin (1949)). Une démarche statistique classique consiste
alors a dériver un systéme d’inférence a partir d"une statistique pivotale. Toute la difficulté
réside dans "obtention de tels pivots.

Les quatre essais de cette thése traitent de contextes d application. en particulier dans le do-
maine de I"économie financiére, olt le point de vue asymptotique traditionnel peut &tre trom-
peur. Chaque essai propose alors une méthode pour affiner les approximations asymptotiques
en présence d'échantillons d”observations qui, en pratigue, sont toujours finis.

Le premier essai se concentre sur les problemes d'identification liés i des instruments presque-
laibles. Notre approche consiste & adapter le contexte général de la méthode des moments gé-
néraliséc (GMM) alin que la faiblesse des instruments soit en lien direct avec les conditions
de moment. Plus précisément. ces derniéres sont partitionnées suivant |'information statis-
tique qu’clles véhiculent: un groupe de conditions de moment standard associé au taux de
convergence habituel et un groupe faible associé a un taux plus lent. Les paramétres structu-
rels sont alors cstimés de maniére usuelle, mais 2 des taux de convergence possiblement plus
fents. Cest le cas. en particulicr. lorsque le parameétre d'intérét représente unc caracteristique
fine de la population qui n"est que faiblement identifiée par les observations a notre disposi-
tion: par exemple. fa caractérisation des événements rares, le prix des actifs contingents i de
tels evénements ou encore le niveau des primes associées i des risques & peine prévisibles.

Le deuxicme essai complete le premier en réalisant une étude comparative de puissance pour
deux tests proposés dans la littérature GMM avec instruments (presque)-faibles : le test de
score classique. valide dans le cadre du premier essai. et le test de Kleibergen (2005) ou
score modifié.

L'approche développée dans le troisiéme essai est plus spécifiquement adaptée au cas ou le
defaut d'identification du parametre d'intérét n"apparait qu'a la frontiere du domaine autorisé
des paramétres. Elle considere des régions de confiance potentiellement non bornées dans
certaines configurations des données d ohservation, On ne devrait pas étre surpris d obtenir

des regions non bornées lorsque qu'un parametre n'est pas ou peu identifié : en effet. celles-



ci doivent simplement étre interprétées comme un manque d'information disponible dans
I"échantillon pour fournir de I'inférence précise sur ce paramétre.

Enfin. contrastant avec les trois premiers essais qui restent dans le cadre de la théorie statis-
tique asymptotique. le quatrieme essai adopte plus explicitement un point de vue décisionnel
dans le contexte du choix de portefeuille. Le risque d’erreur statistique présent dans les mo-
ments estimés est ici considéré simultanément avec le risque financier, provenant de 1"aléa
des rendements : ceci. dans le but de proposer une gestion intégrée de ces deux risques. Tou-
tefois, notre solution passe encore par une approche en termes de test statistique et peut donce
&tre reli€e, en ce sens, a la problématique générale de la these.

La contribution détaillée de ces quatre essais est a présent développée.

Le premier essai est basé sur un article rédigé conjointement avec Eric Renault. Dans cet es-
sai, nous revisitons ["approche d’identification partielle développée par Phillips (1989), tout
en maintenant I'identification compléte de tous les parametres. mais 2 des taux potenticlle-
ment plus lents. Nous conservons la normalité asymptotique des estimateurs GMM. déduite
de I"identification de premier ordre : cependant. le jacobien espéré peut disparaitre lorsque la
taillc de I"échantillon augmente. A cet égard, nous sommes dans la lignée de la littérature ré-
cente sur les instruments faibles, qui, suivant I"approche pionniére de Staiger et Stock (1997)
et de Stock et Wright (2000), capture 1"identification faible i partir de conditions de moment
empiriques. Toutefois, nous ne spécifions pas a priori le degré d"identification (fort ou [aible)
des parametres. Nous considérons que la faiblesse doit &tre lide plus spécifiquement aux ins-
truments, c’est-a-dire aux conditions de moment qui leur sont associées. Ainsi. la partition
fort/faible des paramétres structurels ne peut étre atteinte qu'aprés une rotation adéquate dans
I'espace des paramétres.

Par ailleurs, tout comme Caner (2005). nous nous concentrons sur |"identification presque-
faible dans laquelle la déficience de rang apparait  [a limite. i un taux plus lent que racine-T.
De cette fagon. tous les parameétres sont estimés de maniére convergente, mais a des taux
possiblement plus lents que d*habitude. 1l est a noter que la déficience de rang asymptotique
considérée garantit toujours des taux de convergence au moins égaux a I’ pour tous les

estimateurs GMM. C'est un contraste important avec I"approche de Stock et Wright (2000) :



cn considérant une délicience asymptotique de rang atteinte au laux racine-T, les estimateurs
GMM ne sont méme pas convergents. Obtenir des cstimateurs GMM convergents avec des
taux bicn définis (méme s’ils sont potenticllement plus lents que la normale) nous permet de
valider les approches de test standard comme Wald ou GMM-LM de Newey et West (1987).
Par rapport a Kleibergen (2005). nous n’avons pas besoin de modifier les formules standard
pour le test LM.

Il est évident que notre approche ne vise pas a capturer des cas sévéres d'identification laible
yui se produisent méme lorsque la taille de 1'échantillon est trés grande (voir Angrist et Krue-
ger (1991)). Toutefois, elle fournit au praticien des procédures d"estimation et d'inférence qui
sont valides avec les formules standard, tout en I"avertissant que, duns certaines directions.
les taux de convergence peuvent &ure plus lents que I'usuel racine-T. Ces résultats sont appli-
qués a un modele d'équilibre général basé sur le modele d'évaluation d’actifs CAPM avee
consommation.

Le deuxiéme essai est basé sur un article rédigé conjointement avee Eric Renault. II complete
lc premier essai en réalisant une étude comparative de puissance pour deux tests proposés
dans la littérature GMM avec instruments (presque)-faibles : le test de score classigue, valide
dans le cadre du premier essai. et le test de Kleibergen ou score modifié. Plus généralement.
il s agit aussi de comparer deux approches : d’une part, 2 I'image du premicr essai, la spécifi-
cation des problemes d’identification, via le comportement des conditions de moment, offre
acces aux procédures de test standard : d"autre part, comme dans Kleibergen (2005), ne faire
aucune précision du cadre d"identification requiert une modification de la statistique du score.

Dans le troisieme essai. nous considérons Ic ratio de paramétres multidimensionnel lorsque
le dénominateur est proche de la singularité. Nous proposons une nouvelle méthode d'infé-
rence. la procédure Modified-Wald. Cette méthode est hasée sur la statistique de Wald: il
s'agit d"intégrer le contenu informationnel de I"hypothése nulle d'intérét dans le caleul de sa
métrique. Cette correction, tout en préservant la commodité des calculs, permet 1"obtention
de régions de confiance non bornées lorsque "identification n'est plus complétement assurée.
Le caractere borné des régions de confiance s'est révélé problématique depuis Dufour (1997).
Dans le contexte de la quasi-identification locale (local almost identification). Dufour (1997)

fournit des résultats sur la caractérisation des régions de confiance : sous certaines conditions



de régularité, ces régions doivent étre non hornées avec une probabilité non nulle. En parti-
culier. forsque I"identification fait défaut. ta plupart des ensembles de confiance de type Wald
ont un niveau de confiance nul car ils sont presque stirement bornés. En comparaison, notre
procédure Modified-Wald, aussi attractive du point de vue computationnel. offre a possibilité
d"obtenir des régions de confiance non bornéces si nécessaire.

Par ailleurs. lorsque I'identification fait défaut a la frontiere de I'espace des paramétres
(dans I'esprit de Dufour (1997)). nous montrons que la probabilité d’obtenir une région de
confiance non bornée atteint la borne supérieure de Dufour (1997). Lorsque les problemes
d’identification sont (artificiellement) reliés a la taille de 1'échantillon (dans "esprit du Pit-
man drift), cette probabilité depend du taux de convergence vers la non-identification. Par
exemple. avec une identification faible (taux ¢gal a racine-T). cetie probabilité est non-nulle
mais plus petite que la borne supérieure précédente. Un exercice de simulation confirme les
bonnes propriétés d'inférence de la procédure Modified-Wald par rapport a Wald avec un ra-
tio bidimensionnel.

Dans le contexte du choix de portefeuille. un défi important intervient lorsque les caractéris-
tiques (inconnues) de la distribution des rendements financiers sont remplacées par des esti-
més. Ce probleme combine donc des difficultés d’ordre statistique i un probléme d*économie
financigre classigue consistant a choisir I"allocation de fonds optimale. Dans le quatrieme es-
sai. nous adoptons un point de vue décisionnel afin de développer une régle d'investissement
qui incorpore a la fois le risque financier traditionnel et le risque d'estimation. Ce dernier
provient directement du fait que. en pratique. les échantillons sont toujours de taille finie:
ainsi, les estimés sont-ils toujours différents de leurs vraies valeurs respectives.

Pour répondre a cette question. nous nous concentrons sur une mesure de performance dif-
[érente de la littérature. Nous empruntons aux praticiens et évaluons les différentes alloca-
tions de fonds a travers leur vraisemblance 2 battre un niveau de référence. Notre objectif
est donc plus conservateur qu'une maximisation directe de la performance espérée du porte-
feuille (voir entre autres Markowitz (1959). Kan et Zhou (2006)). Toutefois, il correspond a
I"intérét dircct de plusicurs industries : par exemple. les fonds de pension se doivent de ga-
rantir un niveau minimal de performance & leurs investisseurs. Pour un niveau de référence
donné, nous déduisons une regle d'investissement explicite qui incorpore naturellement le

risque d’estimation de la moyenne et ne dépend d’aucun paramétre de nuisance. Ainsi. elle



cst directement applicable, sans recourir & aucune étape préalable sous-optimale.

Plus précisément. notre méthode de sélection de portefeuille se base sur un test unilatéral
qui assure que la performance du portefeuille est au-dessus d’un niveau de référence donné ;
ensuite, I'allocation optimale s obtient en maximisant la p-valeur associée a ce test. Clest
donc en combinant un outil statistique naturel et valide pour comparer des quantités aléatoires
(ici les performances estimées des porteleuilles)  une mesure de performance directement
construite a partir des intéréts des praticiens que nous proposons une régle d"investissement
explicite qui intégre directement I'incertitude du probleme.

Une étude Monte-Carlo simple, calibrée i partir de rendements mensucls des indices de stock
pour les pays du G5, révele le bon comportement de notre régle d'investissement en termes
de performance cspérée hors-échantillon et de stabilité dans le temps par rapport a d’autres
regles de la littérature.



Chapitre I

Efficient GMM with Nearly-Weak
Identification'

This chapter s based on a paper co-authored with Eric Renault




1 Introduction

The cornerstone of GMM estimation is a sct of population moment conditions, often deduced
from a structural econometric model. The limit distributions of GMM estimators are derived
under a central limit theorem for the moment conditions and a full rank assumption of the
expected Jacobian. The latter assumption is not implied by economic theory and many cir-
cumstances where it is rather unjustified have been documented in the literature (sec Andrews
and Stock (2005) for a recent survey).

Earlier work on the properties of GMM-based estimation and inference in the context of rank
condition failures includes Phillips (1989) and Sargan (1983). In the context of a classical
linear simultaneous equations model. Phillips (1989) considers the case of a partiallv identi-
Jfied structural equation. He notes that. in case ol rank condition failure. it is always possible
1o rotate coordinates in order Lo isolate estimable lincar combinations of the structural pa-
rameters while the remaining directions are completely unidentified. Asymptotic theory of
standard IV estimators in this context is then developed through the general framework of
limited mixed Gaussian family. This approach of partially identified models differs from
Sargan (1983) first order under-identification. While for the former there is nothing between
estimable parameters with standard root-1" consistent estimators and completely unidentified
parameters, the latter considers that asymptotic identification is still guaranteed but it only
comes from higher order terms in the Taylor expansion of first order optimality conditions of
GMM: higher order terms become crucial when first order terms vanish. They are responsible
for slower rates of convergence of GMM estimators like T''* and may lead to non-normal
asymptotic distributions like a Cauchy distribution or a mixture of normal distributions.

Our contribution in this essay is to revisit an approach of partial identification a la Phillips
(1989). while maintaining. like Sargan (1983). the complete identification of all parameters.
but at possibly slower rates. Moreover, we remain true to asymptotic normality of GMM esti-
mators deduced from first order identification but with an expected Jacobian that may vanish
when the sample size increases. In this respect, we are in the line of the recent literature on
weak instruments, which. following the seminal approach of Staiger and Stock (1997) and
Stock and Wright (2000). captures weak identification by drifting population moment condi-
tions. With respect to the existing literature. the contribution of this essay is as follows.

First. in sharp contrast with most of the recent literaturc on weak instruments. we do not spec-
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ify a priori which parameters are strongly or weakly identified. Conforming to the common
wisdom that weakness should rather be assigned to specific instruments or more generally
to some specific moment conditions, we follow Phillips (1989) to consider that the relevant
partition of the set of structural parameters between strongly and weakly identified ones can
only be achieved after a well-suited rotation in the parameter space. In nonlinear scttings, this
change of basis depends on unknown structural parameters and must itself be consistently es-
timated.

Second, like Caner (2005) (sce also Hahn and Kuersteiner {2002) for the special case of lin-
ear 2SL.S). we focus on the case dubbed neariv-weak identification, where the drifting DGP
introduces a limit rank deficiency reached at a rate slower than root-1": this allows consistent
estimation of all parameters. but at rates possibly slower than usual. 1t is then all the more
important to identify the different directions in the parameter space endowed with the ditfer-
ent rates. We consistently estimate these directions without assuming that the rates slower
than root-1" are known. We only maintain the assumption that the moment conditions re-
sponsible for approximate rank deficiency have been detected. Practically. this cither may
be thanks to prior economic knowledge (like market efficiency responsible for the weakness
of instruments built from past returns in asset pricing models) or suggested by a preliminary
study of the luck of steepness of the GMM objective function around plausible values of the
structural parameters. Note that we only consider asymptotic rank deficiency such that ail
the rates of convergence of GMM estimators. possibly slower than root-7". arc at least larger
than 7", The first order under-identification case of Sargan (1983), producing GMM esti-
mators converging at rates 7%, can then be seen as a limit case of our approach. This is in
sharp contrast with the weak instrument case a la Stock and Wright (2000) where the asymp-
totic rank deficiency is reached at a rate as fast as root-7: GMM estimators are not cven
consistent. The fact that all the GMM estimators are consisient with well-defined rates of
convergence. albeit possibly unknown and slower than root- 7", allows us to validate standard
asymptotic testing approaches like Wald test or GMM-LM test of Newey and West (1987).
In contrast with Kleibergen (2005), we do not need to modify the standard formulas for the
LM test. Moreover. our approach is more general than Kleibergen (2005) since we explicitly
take into account the possible simultancous occurrence. in a given set of moment conditions.
of heterogencous rates of convergence.

As far as technical tools for asymptotic theory are concerned, we horrow to three recent de-
velopments in econometric theory.
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First, as stressed by Stock and Wright (2000). (nearly)-weak identification in nonlinear set-
lings makes asymptotic theory more involved than in the linear case because the occurrence
of unknown parameters and observations in the moment conditions are not additively sepa-
rable. Lec’s (2004) minimum distance estimation with heterogencous rates ol convergence,
albeit nonlincar, is also kept simple by this kind of additive separability. By contrast. this
non-separability makes. in general, necessary resorting to a functional central limit theorem
applied to the GMM objective function viewed as an empirical process indexed by unknown
parameters.

Second. our approach to Wald testing with heterogencous rates of convergence must be re-
lated to the former contribution of Lee (2003). The key issue is the following: when several
directions (1o be tested) in the parameter space are estimated at slow rates. while some linear
combinations of them may be cstimated at faster rates, a perverse asymptotic singularity is
inroduced and invalidates the common delta theorem. This situation, rather similar in spirit
to cointegration, leads Lee (2005) to maintain an additional assumption for Wald testing. We
arc able to relax Lee’s (2005) condition and to confirm that the common Wald test methodol-
ogy always work, albeit with possibly nonstandard rates of convergence against sequences of
local alternatives. The trick is again to consider a convenient rotation in the parameter space.
Note that this issue makes even more important our extension of Kleibergen's (2005) setting
to allow for different rates of convergence simultaneously.

A third debt to acknowledge is with respect to Andrews (1994, 1995) MINPIN estimators'
and to Gagliardini, Gouriéroux and Renault (2005) XMM (Extended Mcthod of Moments)
estimators as well. Like them. we observe that GMM-like asymptotic variance formulas re-
main valid for strongly identified directions when slowly identified directions are estimated
at rates faster than [, Rates cven slower than that would imply a perverse contamination
of the estimators of the standard directions by poorly identified nuisance parameters. In this
respect. our approach should rather be dubbed nearly-strong ideniification. Of course, by
doing so. we may renounce to capture severe weak identification cases arising even when the
sample size is very large (sce e.g Angrist and Krueger (1991)). However, our approach pro-
vides the empirical economist with estimation and inference procedures that are valid with
the standard formulas, while warning her about raics of convergence in some specific direc-
tions that may be slower than the standard root-T. Moreover, these directions (strong and

'MINPIN estimators are defined as MINimizing a criterion function that might depend on a Preliminary
Infinite dimensional Nuisance parameter estimator.
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weak) can be disentangled and consistently estimated without modifying the overall rates of
convergence of the implied lincar combinations of structural parameters.

The chapter is organized as follows. Section 2 precisely defines our nearly-weak identifica-
tion setting and proves consistency of both point GMM estimators of structural parameters ¢/
and sct estimators, that are equivalent to LM-tests of null hypotheses # = ¢°. With nearly-
weak global identification, consistency of point estimation rests upon an empirical process
approach for the moment conditions, whereas set estimation rests upon nearly-weak local
identification. characterized in terms of the expected Jacobian of the moment conditions.
Our integrated [ramework restores the coherency between the two possible points of view
about weak identification. global and local. In section 3. we show how to disentangle and
to estimate the directions with different rates of convergence. We also prove the asymptotic
normality of well-suited linear combinations of the structural parameters. The issuc of Wald
lesting is addressed in section 4 while section 5 explicitly relates our selting to examples of
weak identification well-studied in the literature. Section 6 is devoted to a couple of Monte-
Carlo illustrations for two toys models: single-equation linear IV model and CCAPM.

All the proofs and figures are gathered in the appendix?,

2 Consistent point and set GMM estimators

This section shows that a standard GMM approach works both for consistent point and set
estimation. the latter through a score type test statistic. Typically. all the components of the
parameters ol interest are simultancously estimated and tested without a priori knowledge of
their heterogenous patters of identification.

2.1 Nearly-weak global identification

Let # be a p-dimensional parameter vector with true (unknown) value ¢/, assumed in the in-
terior of the compact parameter space ©. The true parameter value satisfics the /v cquations.

Efo (0] =0 (2.1

*Most of the theoretical results are obtained in a more general context in a technical companion paper
Antoine and Renault (2007).
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with ¢(.) some known functions. We have at our disposal a sample of size T, and we can
calculate ¢ (#) for any value of the parameter in © and forevery # = 1.--- . T

Standard GMM estimation defines its estimator 0 as follows:

Definition 2.1. Let Qr be a sequence of symmetric positive definite random matrices of size
N which converges in probability towards a positive definite matrix Q. A GMM estimator 0
of 00 is then defined as:

br = argminQr(0) where Qr(#) = Or(8)Qr0,(6) (2.2)
with o p(0) = % Z;r L\ O(0). the empirical mean of the moment restrictions.

Standard GMM asymptotic theory assumes that. for 6 # 0", ¢,(#) converges in probability
towards its nonzero expected value because of some uniform law of large numbers. We
consider here a more general situation where o7(f) may converge towards zcro even for
6 # 6". And we show how this can be interpreted as identification issues.

More precisely. we imagine that we have here two groups of moment restrictions: one stan-
dard for which the empirical counterpart converges at the standard (usual) rate of convergence
VT and a weaker one for which the empirical counterpart still converges but potentially at
a slower rate Ay, At this stage, it is essential to stress that identification is going 1o be
maintained (but through higher order asymptotic developments). More formally, we have A,
standard moment restrictions such that

VT [0(0) = ;i (0)] = Op(1) 2.3)
and ks (= K — ky) weaker moment restrictions such that

VT 5o (0) _%,)._,(0) = 0p(1) where Ar = o(VT) and Ar L (24)

with [p{(0) pL(D)] =0 & 6 =0°,

Ar measures the degree of weakness of the second group of moment restrictions. The corre-
sponding component p,(.) is squeezed to zero and Plim | (_)_,T((}): = O forall # = O. Thus,
the probability limit of o () does not allow to discriminate between 6" and any ) & 6. In
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such a context. identification is a combined property of the functions ¢, () and p(#) and the
asymptotic behavior of Ap. The maintained identification assumption is the following:

Assumption 1. (Identification)

(i) p(.) is a continuous function from a compact parameter space © _ R? into R® such that
p0)=0 <= 0=¢"
(i) The empirical process (W -r(#))y.e obevs a functional central limit theorem:

arr(”) m (())
Oyr () — 222 (0)

V()= VT = W(0)
where W(A) is a Gaussian stochastic process on © with mean zero.
(iti) Ay is a deterministic sequence of positive real munbers such that

dim Ar =00 and  lim =0

Ar

T—x T % /T
Following Stock and Wright (2000), assumption 1 reinforces the standard central limit the-
orem written for moment conditions at the true value (f = ") by maintaining a functional
central limit theorem on the whole parameter set ©. Stock and Wright (2000) use this frame-
work to address the weak identification case corresponding to Ay = 1. By contrast. as Hahn
and Kuersteiner (2002) and Caner (2005). we locus here on nearly-weak identification where
Ar goes to infinity albeit slower than vT. Note that the standard strong identification casc
corresponds to Ay = VT. The above functional central limit theorem® allows us to get a
consistent GMM estimator. even in case of nearly-weak identification®.

Theorem 2.1. (Consistency of 1)

Under assumption I, any GMM estimator Oy like (2.2) is weakly consistent.

*Note that the asymptotic normality assumption is not necessary at this stage. In general. it might be replaced
by some tightness assumption on W(.). See Antoine and Renault (2007).

A stressed by Stock and Wright (2000) the uniformiity in ) provided by the functional central limit theorem
s crucial i case of nonlinear nonseparable moment conditions. that is when the occurrences of # and the
observations in the moment conditions are not additively separable. By contrast. Hahn and Kuersteiner (2002)

thinear case) and Lee (2004) (separable case do not need to resort to a functional central limit theorem.
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Besides the fact that all the components of the parameter of interest ¢ are consistently cs-
timated, it is worth stressing another difference with Stock and Wright (2000). We do not
assume the @ priori knowledge of a partition # = (o’ ). where o is strongly identified and
1 (nearly)-weakly identified. By contrast, nearly-weak identification is produced by the rates
of convergence of the moment conditions. More preciscly, assumption 1 implies that. (or the
first set of moment conditions, we have (as for standard GMM),

() - f;[m: o ()

whereas we only have for the second set of moment conditions
VT
pa(0) = Plim ——o,7(0)
T N

It will be shown that this framework nests Stock and Wright (2000). Hahn and Kuerstciner
(2002) and Caner (2005). More precisely. a rotation in the parameter space will allow us
to identily some strongly identified dircctions and some others, only (nearly)-weakly identi-
fied. Subsection 2.2 below shows that the above rates of convergence naturally induce rates
of convergence for the Jacobian matrices. This enables us to encompass the framework of
Kleibergen (2005).

2.2 Nearly-weak local identification

As already explained. we simultancously consider two rates of convergence to characterize
the asymptotic hehavior of the sample moments o(0) and the induced singularity issues
in the sample counterparts of the estimating functions p(#). In this respect. we difter from
Sargan (1983) since we maintain the first-order identification assumption:

Assumption 2. (First-order identification)

(i) p(.) is continuously differentiable on the interior of © denoted as int( Q).
(i) 0" € inl(©).

(iii) The (I x p)-marrix [Dp(0) /O] has full column rank p for all 0 = ©.

(iv) | Qe ophoy s | e 0Y) T et
o a0 . 0 PP

7 [ o, o0 Om (o v
(v) VT[22 — 2] — 0p(1)
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The identification issue is not raised by rank deficiency of the moment conditions but by the
rates of convergence. In other words. the implicit assumption in Kleibergen (2005) (see the
proof of his thecorem 1 page 1122) that Jacobian matrices may have non-standard rates of
convergence is made explicit in our framework. Assumptions 2(iv) and (v) arc the natural
exlensions of assumption I on Jacobian matrices. Typically, Kleibergen (2005) maintains as-
sumption 2(v) through a joint asymptotic normality assumption on ¢7(6") and [0 -(0°) /0¢]
(sce his assumption 1).

While global identification (assumption 1) provides a consistent estimator of . local identi-
fication (assumption 2) provides an asymptotically consistent confidence set at level (1 — )
or. equivalently. an asymptotically consistent test at level o for any simple hypothesis
Iy - 8 = 6,°. A score test approach. as defined in Newey and West (1987). does not re-
sort to the asymptotic distributions of the estimators:

Theorem 2.2, (Score test)
The score statistic for testing H, : § = 8, is defined as

L 0or(B0)] ' 0Qy(00)

T Qr(Be) |05 (0,) ¢
T o o0

1 o0 a0

LM p(6y) =

where St is a standard consistent estimator of the long-term covariance matriz®,

Under Hy and assumptions I and 2, LMr(0y) has a \°(p) limit distribution.

In sharp contrast with Kleibergen (2005). we do not need to modify the standard score test
statistic to replace the Jacobian of the moment conditions by their projections on the orthog-
onal spacc ol the moment conditions. The reason for this maintained simplicity is that. in our
nearly-weakly identified case,

VT Jo, (1)

Ar o
has a deterministic limit which does not introduce any perverse correlations. By contrast, in
the weakly identified case considered by Kleibergen (2005) (or A = 1). the relevant limit

of the sequence of Jacobian matrices is Gaussian. In this latter case. the limiting behavior

“Note that in general f, might be different from the true (unknown) vatue of the parameter ",

“Note that a consistent estimator S of the long-term covariance matrix S(6,,) of () can be built in the
standard way (see in general Hall (2005)) from a prelinninary mefficient GMM estimator 5 of . However.
under the null. one may simply choose 6y = 0.
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of [OET(()“)/O(-)’_' is not independent of the limiting behavior of [(—QT(()“)] 50 the limiting
distribution of the GMM score test statistic depends on nuisance parameters (see Stock and
Wright (2000)). Of course, the advantage of the K-statistic proposed by Kleibergen (2003) is
to be robust in the limit case Ay = [ while, for us. Ay must always converge towards infinity
albeit possibly very slowly.

It is essential to realize that although the standard score test statistic has the common \%(p)
distribution under the null. it works rather differently. Basically.

Dby (0°) . Do (V)

2
o0 T o 23

is an asymptotically singular matrix since

- [deup (8™ ) A Opa(6Y)
> 27 - SRLACA NGRS, g
Al [ o0 A\ E o 0

The proof of theorem 2.2 shows that the standard formula is actually recovered by well-suited
matricial scalings of [0Qr(#") /00| and (2.5). The ultimate cancelation of these scalings must
not conceal that testing parameter in GMM without assuming they are strongly identified
requires a specific theory. It is in particular important to realize that both strong and (nearly)-
weak identification may show up together in a given set of moment conditions. Note that this
is immaterial as far as practical formulas for score testing are concerned. However. we show
below that it has a dramatic impact on the power against local alternatives’.

Another difference with Kleibergen (2003) is that our score test is consistent in all directions.
Actually. ignoring the limit case (A = 1) of weak identification allows us to wrile down
consistent confidence sets and score tests. In terms of local alternatives, we get consistency
at least at rate Ay thanks to the following result:

Theorem 2.3. (Rate of convergence)

Under assumptions I and 2(i) 10 (iii), we have:

I 1
Or — 0" = Op [ —
=7 ! <,\,,‘)

'Kleibergen (2005) considers a simpler setting since he does not allow for two difterent kinds of identifica-

tion (strong and weak) to be considered simuttancousty see the proof of his theorem 1), In addition. a full rank

condition seems to be implicitly mamtained in Kletbergen's proof
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In the remaining of the essay, we precisely locus on the identification of directions of local
alternatives where consistency is kept at the standard rate /7.

3 Rates of convergence and asymptotic normality

In this section. we start with a kind of rotation in the parameter space which allows us to
disentangle the rates of convergence. More precisely. some special linear combinations of
# are actually estimated at the standard rate of convergence /T, while some others are still
estimated at the slower rate A7, This is formalized by a central limit theorem which allows the
practitioner to apply the common GMM formula without knowing « priori the identification
pattern.

3.1 Separation of the rates of convergence

We face the following situation:

(i) Only &y equations (defined by p(.)) have a sample counterpart which converges at the
standard rate v/ 7. These can be used in a standard way. Unfortunately, we have in general
a reduced rank problem: [(/p,(#")/0¢'] is not full column rank. Its rank s, is strictly smaller
than p and the first set of equations cannot identify #. Intuitively. it can only identify s,
directions in the p-dimensional space of parameters.

(ii) The /-, remaining equations (defined by p.(.)) should be used to identify the remaining
s2(= p — s) directions®. However this additional identification comes at the slower rate AT.

We already have the intuition that the parameter space is going to be separated into two sub-
spaces: the first one (defined through py{.}) collects s; standard directions and the second one
(defined through p(.)) gathers the remaining (slow) directions. We now make this separation
much more precise by defining a reparametrization. Each of the above subspaces is actually
characterized as the range of a full column rank matrix: respectively the (p. s,)-matrix K9
and the (p. p — s )-matrix £,

"Recall that. by assumption. our set of moment conditions enables the idemtification of the entire vector of

parameters ¢
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Since RY characterizes the set of stow dircections, it is natural to define it via the null space of
[0, (6")/08). or. in other words. everything that is not identified in a standard way (through
() .

—— R =0 (3.1

Then these (p — »;) (slow) directions are completed with the definition of the remaining s
dircctions as follows:
R'=[R!RS] and Rank [R"] =

Then R" is a nonsingular (p. p)-matrix that can be used as a matrix of a change of basis in
[R”. More precisely. we define the new parameter as i = [R"] '0. that is

Pl
T\ ) Ip—s

We will see in the next subsection that this reparametrization precisely isolates the two rates
of convergence by defining two subsets of directions, each of them associated with a rate
of convergence. The reparametrization also shows that. in general, there is no hope to get
standard asymptotic normality of some components of the estimator 7 of #”. The reason is
simple: after a standard expansion ol the first-order conditions, 7 now appears as asymptot-
ically equivalent to some linear transformations of ¢(#) which are likely to mix up the two
rates. In other words, all components of # - might be contaminated by the slow rate of conver-
gence. Hence the main advantage of the reparametrization is precisely to separate these two
rates. In section 5.1 where we carefully compare our theory with Stock and Wright (2000),
we provide conditions under which some components of @, are (by chance) converging at
the standard rate. And this is exactly what is assumed a priori by Stock and Wright (2000)
when they separate the structural parameters into one standard-converging group and one
slower-converging onc.

The reparametrization may not be [easible in practice since the matrix R° depends on the
true unknown value of the parameter #". However, we can still deduce a feasible inference
slrategy.
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3.2 Efficient estimation

To be able to get an asymptotic normality result on the new set of parameters, we need some
technical assumptions and preliminary results. More details can be found in the technical
companion paper by Antoine and Renault (2007).

It is worth noting that, albeit with a mixture of different rates, the Jacobian matrix of moment
conditions has a consistent sample counterpart. Let us first define the following (p, p) block
diagonal scaling matrix ]\T, where Id, denotes the identity matrix of size r:

. VTId, 0
Ar =
0 Arlds,

As it can be seen in the proof of theorem 2.2, assumption 2 ensures that:

7 (g0 0
ﬁMR%; £ J° with J°= a;(;(:, ) go (3.2)
where J? is the (K, p) block diagonal matrix with its two blocks respectively defined as the
(k;, 5;) matrices [9p;(6°)/06" RY] for i = 1,2. Note that the coexistence of two rates of
convergence (A7 and v/T') implies zero north-east and south-west blocks for J°.

Moreover to derive the asymptotic distribution of the GMM estimator f7 (through well-suited
Taylor expansions of the first order conditions), the above convergence towards J° needs to
be fulfilled even when the true value 6° is replaced by some preliminary consistent estimator
0. Hence, Taylor expansions must be robust to a Ar-consistent estimator, the only rate
guaranteed by theorem 2.3. This situation is rather similar to the one studied in Andrews
(1994) for the so-called MINPIN estimator’. We do not want the slow convergence of some
directions to contaminate the standard convergence of the others (see theorem 3.1 below):
more precisely, we need to ensure that the slow rate Ar does not modify the relative orders
of magnitude of the different terms of the Taylor expansions. As Andrews (1995 p563) does
for nonparametric estimators, we basically need to assume that our nearly-weakly identified

IMINPIN estimators are estimators defined as MINimizing a criterion function that might depend on a Pre-
liminary Infinite dimensional Nuisance parameter estimator. These nuisance parameters are estimated at slower
rates and one wants to prevent their distributions to contaminate the asymptotic distribution of the parameters
of interest.
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directions are estimated at a rate faster than (7"7).""" In addition, we want as usual uniform
convergence of sample Hessian matrices. This Jeads us to maintain the following assumption:

Assumption 3. (Tavior expansions)
. A%
2l
() Jim [ ] = o0
(ii) o(8) is twice continnously differentiable on the interior of © and is such that:
VT P@ur,(6)

P P
— (0 { <h<ly ———" = Hy (0
H(0) and V1 <k <hy N 0000 H . (0)

Pouri(0)

Vs ks h

uniformly on 0 in some neighborhood of 0", for some (p. p) matricial function H, , (#) for
= 12and 1 < k <k,

While common weak identification corresponds to Ay = | and strong identification to
Ar = V/T. our approach in the rest of the essay is actually a rather nearly-strong one since
we assume Ay strictly between 71 ' and 7.V

Up 1o unusual rates of convergence, we get a standard asymplotic normality result for the
new parameter 1

Theorem 3.1. (Asvinprotic Normality)
(i) Under assumptions 1 1o 3, the GMM estimator 1 defined by (2.2) is such that:

Al (0 = 07) LN (0.1 st [0 )

(ii) Under assumptions 1 to 3, the asymptotic variance displaved in (i) is minimal'® when
the GMM estimator Or is defined with a weighting matrix Oy being a consistent estimator of
Q=[S

AR ((;T _ ()“) N ((). [Y1S ()] ')

"More details on the link between Andrews (1994, 1995) and this setting might also be found in Antoine
and Renault (2007).

"t is worth reminding that the score test derived in section 2 is valid for \p arbitrarily close to the weak
identification case.

PNote that efficiency is implicitly considered here for the given set of moment restrictions o[, ). Inn section
3.3, we study the consequences of rewriting the moment conditions.
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Note that fir = [R°] 07 can be interpreted as a consistent estimator of 71° = [R°]~1¢°. Of
course it is not feasible since R° is unknown. The issue of plugging in a consistent estimator
of R? will be addressed in section 3.4. For the moment, our focus of interest are the implied
rates of convergence for inference about §. Since

br = Rz + Ry,

a linear combination a’ GT of the estimated parameters of interest will be endowed with a \/T
rate of convergence of 7; 1 if and only if a’R) = 0, that is a belongs to the orthogonal space
of the range of RJ. By virtue of equation (3.1) the latter property means that g is spanned by
the columns of the matrix [0p}(6°)/96]. In other words, a’6 is strongly identified if and only
if it is identified by the first set of moment conditions p;(6) = 0.

As far as inference about @ is concerned, several practical implications of theorem 3.1
are worth mentioning. Up to the unknown matrix R° and the unknown rate of conver-
gence Ay (which appears in A7), a consistent estimator of the asymptotic covariance matrix

(7 [seo) ) sy

-1
[R¥]*Ar (3.3)

s O (Br) ., O (6r)
T Ar(] 1[ 56T oy

where St is a standard consistent estimator of the long-term covariance matrix'4. From
theorem 3.1, for large T, Ar[R°] (67 — 6°) behaves like a gaussian random variable with
mean zero and variance (3.3). One may be tempted to deduce that \/T(éT — 6°) behaves like
a gaussian random variable with mean 0 and variance

a0 T Hg (3.4)

) - —_ - -1

!aqu(oT) - 18¢T(9T>]
And this would give the feeling that we are back to standard GMM formulas of Hansen
(1982). As far as practical purposes are concerned, this intuition is correct: note in particular
that the knowledge of R° is not necessary to perform inference. However, from a theoretical
point of view, this is a bit misleading. First since in general all components of 6 converge

BThis directly follows from lemma B in the appendix.
'*Note that a consistent estimator of S of the long-term covariance matrix S(#°) can be built in the standard
way (see in general Hall(2005)) from a preliminary inefficient GMM estimator 6 of 6.
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asymptotic variance (3.4) is akin to refer to the inverse of an asymptotically singular matrix.
Second. for the same reason, (3.4) is not an estimator of the standard population matrix

ap' (V)
o0

1 0/)((}“)
Jo’

[S(6")) (3.5)
To conclude, if inference about # is technically more involved than one may believe at first
sight, it is actually very similar to standard GMM formulas from a pure practical point of
view. In other words, if a practitioner is not aware ol the specific framework with moment
conditions associated with several rates of convergence (coming, say. from the use of instru-
ments ol different qualities) then she can still provide reliable inference by using standard
GMM formulas. In this respect. we generalize Kleibergen's (2005) result that inference can
be performed without a priori knowledge of the identification setting. However as already
mentioned in section 2. we are more general that Kleibergen (2003) since we allow moment
conditions to display simultancously different identification patterns'®.

Finally, the standard score test defined in theorem 2.2 may be completed by a classical overi-

dentification test:

Theorem 3.2, (/-test)

. ey . . 1
Under assumptions 1 10 3. if Qr is a consistent estimator of [S(0™)] . then

. d 0
1 (JT(HI‘) — K »

3.3 Orthogonalization of the moment restrictions

In this scction. we investigate the consequences of transforming the moment restrictions to
estimate the standard and slow directions. Since we deal simultaneously with standard and
weaker moment conditions, we cannot consider any linear combination of the restrictions.
In particular, we can only consider transformations preserving the central limit theorem in

Assumption 1. and the fragile information of the weaker moment restrictions. Any valid

"*For sake of notational simplicity. we only consider in this essay one speed of nearly-weak identification A-p.
The reader interested i working with an arbitrary number of different specds might use the general framew ork
of Antoine and Renault (20071,
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transformation of the moment conditions, or transformation that does not affect the true mo-
ment conditions p;(.) and p(.), can be written as follows:

[ $rr(0°) J { $17(6°) + Hyr (6°) ]

_H - (3.6)
¢or(0°) or(6°)

for some (k1, k2)- matrix H that may depend on the sample size T and the true unknown
parameter 6°,

A linear transformation of interest in the literature is the orthogonalization: the standard
moment conditions are replaced by the residuals of their regression on the set of weaker
moment conditions. The set of the empirical mean of the moment conditions [allT a’zT]’ is
replaced by [¢ ¢%r) defined as follows:

{ Fir(@”) — Cov (VTG:2(0), VTFr (89)) [Var (VTGr(#))]” Far(6?) } -
bor(6°)
Note that we still have the same central limit theorem, only the asymptotic variance is modi-
e 52 (60) — 2 (0°)
P17 — P

VT or(6°) — 2E:05(6°)
where W(0) is a Gaussian random variable with mean zero and block diagonal matrix ¥° with
respective blocks £ = S} — $9,[S9]7159, and ©9 = S9.

= U(4°)

The following theorem compares the asymptotic variances of the estimators associated to the
original set of moment conditions 71 and to the orthogonalized one denoted as jr:

Theorem 3.3. (Orthogonalization)

Consider the new parameter 1 = [R°] 0. The two estimators obtained respectively from the
GMM estimator associated with the original set of moment conditions O and from the GMM
estimator associated with the orthogonalized set of moment conditions (3.7) O are such that:

i) The orthogonalization improves the estimation of the standard directions (in terms of
asymptotic variance matrix) ie

AVar [mr] >> AVar [fi7)

ii) The orthogonalization deteriorates the estimation of the slow directions (in terms of
asymplotic variance matrix) ie

AVar [fr] << AVar [fer]



where << and >2> denote the comparisons between matrives.

We show that the orthogalization of any valid set of moment restrictions (3.6) leads to the
same set (3.7):

Proposition 3.4. Any set of valid moment conditions like (3.6) leads to the same orthogonal-

ized set of moment conditions (3.7).

Denote by :}}' the (transformed) estimator associated to the above moment conditions (3.6).
We now show that among all the valid transformations. the orthogonalization is the best for

the standard directions and the worse the slow ones.

Corollary 3.5. Consider the new parameter j = |R"] 0. The nwo estimators obtained re-
spectively from the GMM estimator associated with the transformed set of moment conditions
(3.6) 04 and from the GMM estimator associated with the orthogonalized set of moment con-
ditions (3.7) 0 r are such that:

i) The orthogonalization is the best (valid) transformation of the moment conditions in terms

of the efficiency of the standard directions ie

AVar _-l/,"r] = AWar iy
ii) The orthogonalization is the worst (valid) transformation of the moment conditions in

terms of the efficiency of the slow directions ie

War [l/_f'T] << AVar |yl

3.4 Estimating the strongly-identified directions

In this subsection. we provide a feasible way to estimate the strongly-identified directions in
the parameter space. Recall that these directions have been identified through the lollowing
reparametrization,

I Avg

I ,
B
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where (4"6) represent the s, standard directions while ( B"0) are the weaker ones. In general,
this reparametrization is unfeasible since it depends on the unknown value of the parameter
#. To make this approach feasible. the key lemma which allows us to replace the above
directions by their estimated counterparts is the following:

Lemma 3.6. (Estimating the rotation in the parameter space)

Under assumptions 1 10 3, if the vector

VT A (()T (“)
B ((}T - o")

is asympiotically gaussian and if A and B are consistent estimators of A and B such that

“or( L) wa [5-5|-0. ()

VTA (()T - 9“)
ArB (HT - ()“)

HA A

then the vector

is asvimptotically gaussian.

In the proof of lemma 3.6. our neariv-strongly point of view is the essential key to keep the
VT convergence while relevant directions are only estimated at the slower rate Ay that is Af
is smallin front of v/T but large in front of [7°1/1].10

4 Wald testing

In this section. we focus on testing a system of ¢ restrictions about 0, say the null hypothesis
Hy : g(#) = 0. where g(.) is a function from © to R continuously differentiable on the
interior of €.

First, working under the null may conduct us to dramatically revisit the reparametrization
i = [R"] 10 defined in section 3. Typically additional information may lead us to define

' Ax already mentioned. this is very similar in spirit to MINPIN estimators of Andrews (1994, 1995).
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differently the lincar combinations of ) estimated respectively with standard and slow rates
of convergence. To circumvent this difficulty. we do not consider any constrained estimator
and we focus on Wald testing. Caner (2005) overlooks this complication and derives the
standard asymptotic equivalence results for the trinity of tests. This is because he only treats
asymptotic testing when all the parameters converge at the same speed.

Second. as already explained. the main originality of this essay is to allow for the simultanc-
ous treatment of different identification patterns. This more general point of view comes at
a price when one wants Lo test. More precisely. we may face singularity issues when some
tested restrictions estimated at the slow rate Ay can be linearly combined so as to be esti-
mated at the standard rate v'T. Lee (2005) puts forward some high level assumptions (see
his assumptions (R) and (G)) to deal with the asymptotic singularity problem. We show that
our setting allows us to perform a standard Wald test even without maintaining Lee’s (2005)
high-level assumptions.

From our discussion in sections 2 and 3, we can guess that a Wald test statistic for #,, can
actually be written with a standard formula:

~ = — 1
dy(lr) |06r(0r) (D0, (07) | 0y (0r)

" et
= T4 (0r) - S
b1 AT o0 T o o0

9(0r)
Recall the standard rank assumption ensuring that the Wald test statistic is asymptotically
chi-square with ¢ degrees of freedom:

. [e0)]
Rank [W =yq .1

for all § in the interior of O, or at least in a neighborhood of #". As well known. this condi-
tion is not really restrictive since it is akin to say that. at least locally. the ¢ restrictions under
test are lincarly independent. Unfortunately, the existence of different rates of convergence
may introduce (asymptotically) some perverse multicolincarity between the ¢ estimated con-
straints.

The counterexample below points out the key issue.

Example 4.1. (Counterexample)
Assume that we want to test Hy : g(0) = 0with ¢(0) = lg,()]1<,<, and none of the q vectors
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0g;(6°)/06, j = 1,- -, q belongs to Im[dp,(6°)/06]'". Then the extension of the standard
argument for Wald test would be to say that, under the null, )\Tg(écp) behaves asymptotically
like 8g(6°)/80' \r(Br — 6°), that is for large T, Arg(01) behaves like a gaussian

- . -1
99(6°) | 987(6°) o poy—1007(6°) | 9g'(6°)
N, o0’ 00 (") o0 00

Imagine however that for some nonzero vector q,

0g(0%) <~ 9g;(6°)
o =D g

1=1
belongs to Im[0p)(6°)/80). Then (see comments after theorem 3.1) under the null
VTo!g(67) is asymptotically gaussian and thus
Ar
VT
In other words, even if the q constraints are locally linearly independent (ie

Rank[dg(6°)/00'] = q) [)\Tg(éT)] does not behave asymptotically like a gaussian with a
non-singular variance matrix. This is the reason why deriving an asymptotically x%(q) dis-

Mrdlg(0r) = S=/Tag(6r) 5 0

tribution for the Wald test statistic is more involved than usual.

Lee (2005) avoids this kind of perverse asymptotic singularity by maintaining the following
assumption:

Lee’s (2005) assumption:

There exists a sequence of (q, q) invertible matrices Dr such that for any § € ©

dg(6°)
o9’

Plim [DT RO[Z\T]-I] = By

where By is a (q, p) deterministic finite matrix of full row rank.

Lee’s (2005) assumption clearly implies the standard rank condition (4.1). However, the
converse is not true as it can be shown from the counterexample above!®. And this is actually

'7For any (n x m)-matrix, Tm[M ] represents the subspace of R™ generated by the column vectors of M. It
is also referred to as Col{M] and Range[M).
18By contrast, in the case of only ¢ = 1 constraint, Lee’s assumption is trivially fulfilled.
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above assumption implies that, under the null, Drg(6+) behaves like D dg(6°)/00' (07— 6°)
that is like B®Ay[R"] (67 —¢"). From theorem 3.1. we know that A;[RY] !0 — () nicely
behaves as an asymptotic gaussian distribution. In other words, the matrix D provides us
with the right scaling to get asymptotic normality of Jy(6")/00'(0y — 1"). However. we can
prove that the standard practice of Wald testing is valid even without Lee’s assumption:

Theorem 4.1. (Wald test)
Under the assumptions 1 1o 3 and if 4(.) is bvice continnously differentiable, the Wald test
statistic (! for testing Hy, : 4(0) = () is asveptotically x*(y) under the null.

While a detailed proof of theorem 4.1 is provided in the appendix. it is worth explaining why
it works in spite of the alorementioned singularity problem. The key intuition is somewhat
related to the well-known phenomenon that the finite sample performance of the Wald test
depends on the way the null hypothesis is formulated'®.

Let us first imagine a fictitious situation where the range of [Jp}(6")/08| is known. Then
it is always possible to define a (4. ¢) nonsingular matrix 4 and a ¢ dimensional function
I(#) = Hq(0) 10 ensure a genuine disentangling of the strongly identified and nearly-weakly
identified directions to be tested. By genuine disentangling. we mean that for some ¢, such
that 1 < ¢, < ¢:

-for j = Lo qu: [0h,(6")/50] belongs to [m [Dp(6") /0]

for j = qu+ 1.+ Lq: [Oh,(6")/06] does not belong to 1 [0p)(6")/ 4] and no lincar
combinations of them do.

Then the perverse asymptotic singularity of example 4.1 is clearly avoided. Of course. at a
deeper level, the new restrictions /i(6) = 0 to be tested should e interpreted as a nonlinear
transformation of the initial ones ¢(#) = 0 (since the matrix H depends on ¢). It turns out
that, for all practical purposes, by fictitiously seeing M us known. the Wald test statistics
written with /i(.) or y(.} are numerically cqual. The proof of theorem 4.1 shows that this is
the key reason why standard Wald test always works (despite appearing invalid at first sight).

As far as the size of the test is concerned. the existence of the two rates of convergence does
not modify the standard Wald result. Of course. the power of the test heavily depends on the

"In some respect. our approach of nearly-weak identification complements the higher order expansions of
Phillips and Park (1988).
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strength of identification of the various constraints to test. More precisely. if. for the sake of
notational simplicity. we consider only ¢ = 1 restriction to test, we get:

Theorem 4.2, (Local alternatives)

Under assumptions [ to 3, the Wald test of Hy = ¢(8) = 0 (with 4(.) one dimensional continu-
ously differentiable) is consistent under the sequence of local alternatives Hyy : g(0)) = 1/or
if and only if either

Dg(M) apl () . .
50 Im 0 and dp = o(VT)

or

Dq(0™) [ AP 0Y)
o 200

J and Or = o(Ar)

The proof of theorem 4.2 is rather straightforward. In the line of the comments following the-
orem 3.1, a nonlinear function g(.) of 6. interpreted as {¢(6°) + 2249 (9 — g™ | is identificd
! P o

at the standard rate /T if and only if

) {Ul)’. (U“)}

o0 Jil

5 Examples

We now work out several examples to illustrate the general theory of the previous sections as
well as to shed some light on the link between our approach and Stock and Wright (2000).

5.1 Single-equation linear IV model

As alrcady mentioned, the major difference between Stock and Wright's (2000) framework
and ours lies in considering the subvector of strongly identified parameters as known a priori.
The context of the linear IV regression model sheds some light on the relationships linking the
two procedures. Consider the following single-equation linear IV model with two structural

parameters. two orthogonal instruments and no exogenous variables for convenience:
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y = ¥ g + "

(T.1) (T.2) @n (T.1) 5.1)
Y o= [NyA)] ¢ o+ v

(T.2) (T.2) (2,2) (T.2)

As commonly done in the literature the matrix of coefficients C' is artificially linked to the
sample size T in order to introduce some (ncarly)-weak identification issues. However, to
accommodate both interpretations ol the identification issues, the matrices €'y are different.
For our characterization (dircctly through the moment conditions) and for Stock and Wright's
characterization (through the parameters) we have respectively:

T T2 11 Ty mp/TA
C',;!":[ oL ] and 7" =[ v _1,\} (5.2)

T2l M)

Choosing (5 modifies the explanatory power of the second instrument .\, only. As a
result. one standard moment condition naturally emerges (associated with X|) and one less
informative (associated with X,). Inwitively. the standard restriction should identify one
standard dircction in the parameter space, which is so far unknown. On the other hand.
choosing C'2" is cquivalent to modeling #. as weakly identified. The price to pay for such
an carly knowledge is the alteration of the explanatory powers of both instruments. Typically

the moment conditions,
E [(!/1 - Y/”)-‘ ’1]
are respectively written as:
E(N ) mu() -0, + E(N7)m(09 — 6.)
™ E(NE)ma0} = 01) + F E(X3)7n(0) - 6,)
and

E(NP)mu(0) —00) + & E(X2)mu(0) - 0,)
E(X3)mau(8) = 00) + 2 BXZ)mn(0h) — 0,)

or. in a more compact way.

{ pi(01,0,) and { i (00) + s (6,)
+

(5.3)
2pR0,.0,)



for some real functions p (). pt (). miH P mS () and mSY().

2s

Jem

We now introduce our reparametrization of section 2 to identify the standard direction in the
parameter space. The derivative of the standard moment restriction is

(’) £} ()” - . . . —~ryr - - . )
J” = %,) = —l‘,() 1,.\“)1 — b()g,;\ “):| = |:—E(4\ l',)‘T“: — E(‘\ l.l)ﬂ—l'-’
Hence the null space of JJ{ is characterized by the following vector:
R= iz st where i€ R*
T

It is then completed into a legitimate matrix of change of basis R” in the parameter space R?:

. — s . 9y
R = T2} with (a.0) & R” [ umy) # ~bryps

b T
The new parameter 1) can now be defined as follows: n = [R"] 10 that is

m=—t— (71181 + w12]

amyy b

Iy = b )(}] + 4 ’))

—I:(ur.“-rhm_» plaryy +bma) 2

The standard direction is completely determined and not the weaker one. The main reason
comes from the fact that everything that is not standard is weaker: in fact. the weaker direc-
tions contaminate the standard ones. when considering a lincar combination of the two.

The above calculation shows that. strictly speaking, Stock and Wright (2000) and their linear
reinterpretation of Staiger and Stock (1997) are not nested in our setting because cach of their
moment condition contains a strong part (that only depends on a subvector of parameter) and
a weak part. Note that this setting (through the definition of the matrix 7'V} is conveniently
built so as to know a priori which subset of the parameters is strongly identified. Now. if we
pretend that we did not realize that the set of strongly identified parameter was known and
we still perform the change of variables. we get:

JV o [=7 0] hence R =[0p) with peR*
and the change of basis is defined as:

0 0
" witha #0 = 5 = !
b ~b u

RY =

As expected, we identify the strongly identified direction as being parallel o 0. This is a
nice internal consistency result of our procedure.
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5.2 Non-linear IV model

As already mentioned in the linear case. our general setting does not strictly nest Stock and
Wright (2000). However. we can show that the two procedures are relatively close to each
other. Recall first the underlying assumptions on the moment restrictions:

A

Nearly — Weak L (/)T(())] = \/_;_‘/)(H)
1
Staiger — Stock E[op(0)] = na(0)) + —=na(0)

VT
where 0, ts the a priori assumed strongly identified parameter.
Let us now derive the first-order conditions associated with our minimization problem when
the weighting matrix is chosen to be block diagonal such that Qp = diug[Qp) Qpa] with Qp,
symmetric full rank (k,. k,)-matrix, i=1,2:
win [(TJIIT(())S)-DIEIY'((}) + ‘._)’.rr(())s‘zDz‘r_"sz)]
The associated first order conditions are
—
do - (0r)
oo

Jony (lr)
00

Opio, () + Qpuoyr(fr) =0

The above first order condition can be seen as the selection of linear combinations of ¢ If
&, only depends on #, then, after imposing Ar = 1, our resulting linear combinations of the
moment restrictions correspond to the ones of Stock and Wright (2000).

Note also that the null space used to reparametrize the problem can be defined directly from
the above first order conditions after realizing that:

[a;/n.m-r)} L PA)

0
oY o !

where Q) [0p,(0")/ 0] detines the same null space as [Jp; (0)/00] since Qp; is a full rank
squared matrix.

5.3 Estimation of the rates of convergence

In some special convenicent cases (as a Monte Carlo study). it is possible to estimate the rate

of convergence of our estimators via a linear regression. The idea is to simulate the model
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for several sample sizes: for each sample size, the simulation is replicated M/ times to get M/
draws of the estimator. The Monte-Carlo distribution of the estimate can then be deduced and
its variance calculated. Finally, the regression of logarithm of the variance on the constant
regressor and the logarithm of the sample size is performed:

log(Var(0r)) = a + Jlog T + ur (5.4)

where wr is some crror term. 7 can be estimated by OLS and it gives an estimate of the
square of the convergence rate.

Scction 6 below provides some illustrations of the estimation of the ratcs of convergence.

6 Monte-Carlo Study

6.1 Single-Equation linear IV model

In our first Mente-Carlo study. our goal is to verify the finite sample relevance of our asymp-
totic theory. In particular. we usc the linear regression technique developed in section 5.3 to
estimate the rates of convergence ol the transformed parameters as well as the ones of the
original parameters. Recall first the linear model of example 1 in section 3.2:

y = Y g + 1
T.1 T.2 2,1 T.1
( ') (' ) 2.n (' ) 6.1)
) = [‘\] .\_)] C”r + [‘1 ‘—’.
(T.2) (T.2) (2.2) (T.2)
with C'p = T e and 0« p< 1/2

TR R AL
The above model is estimated for several sample sizes as well as several degrees of weakness.
We provide the results for ;i = |/5: it corresponds 1o a slow convergence rate equal to
Ar = """, as introduced in section 2. This is a strong nearly-weak identification case and
Ay satisfies assumption 3.

Generally speaking the results are pretty good and conform to the theory. The main findings
are listed here: i) The variance decreases with the sample size for the four estimators 0, 1.
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B, 1jor and 1. Moreover figure L1 plots the log-variance as a function of the log-sample
size: for the above estimators, it is a fairly straight decreasing line. This gives support to the
fact that the variance is proportional to the sample size raised at some power:

ii) We now compare the rates of convergence among the sets of parameters by studying ratios
of parameters, or specifically 1, /i), and 8,3 /0.y, From figure 1.2, the ratio of the new sct
of parameters increase with the sample size whereas the ratio of the original set of parameters
is fairly flat. This supports the fact that 7,3 converges laster than 1y, whereas #, and 6y
converge at a similar rate;

iii) Finally, we present the results of the estimation of the rates of convergence with the
linear regression technique described in section 5.3. See tables 1.2 and 1.3. According to our
asymptotic theory. we expect to find a standard rate of T2 for 17 and a slow rate equal to
I'"* for the three remaining parameters. Over the entire sample. the standard rate is relatively
well estimated. On the other hand. the slow rate is less precise and we cannot conclude to the
cquality of the rates of convergence for 1,7, 0,7 and 0,. However, when we consider only
larger sample sizes (>5000). we get closer to the expected result. Since the convergence is
slower. more data are expected to be needed to conclude.

6.2 CCAPM

In this scction. we report some Monte-Carlo evidence about the intertemporally separa-
ble consumption capital asset pricing model (CCAPM) with constant relative risk-aversion
(CRRA) preferences. The artificial data are generated in order to mimic the dynamic proper-
ties of the historical data. Hence, we can assess the empirical relevance of our general setting
in such a context.

Moment conditions
The Euler equations lead to the following moment conditions:

Elh (0T =0 with he(0) = o™ — 1

Our parameter of interest is then § = [§ 5|, with 9 the discount factor and - the preference
parameter: (1.1} denote respectively a vector of asset returns and the consumption growth
at time £, To be able to estimate this model. our A" instruments Z, = Z; include the constant
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as well as some lagged variables. We then rewrite the above moment conditions as
Ey [dn.1(0)] = Eq[hia(0) < Zy 1

Note that (o stress the potential weakness of the instruments (and as a result of the moment
function, see section 2.1). we add the subscript 7.

Data Generation:

Our Monte-Carlo design follows Tauchen (1986). Kocherlukota (1990). Hansen, Heaton and
Yaron (1996) and more recently Stock and Wright (2000). More precisely. the artificial data
are gencrated by the method discussed in Tauchen and Hussey (1991). This method fits a 16
state Marhov chain to the law of motion of the consumption and the dividend growths, so as
to approximate a beforchand calibrated gaussian VAR(1) model (see Kocherlakota (1990)).
The CCAPM-CRRA model is then used to price the stocks and the riskiree bond in each time
period, yiclding a time series of asset returns.

It is important to stress that since the data are generated from a general equilibrium model.
even the econometrician does not know whether (0. 5 ) are (ncarly)-weakly identified or not.
In a similar study. Stock and Wright (2000) impose a different treatment for the parameters §
and 4: typically. 4 is taken as strongly identified whereas ~ is not. We do not make such an
assumption. We are actually able. through a convenient reparumetrization. to identify some
dircctions of the parameter space that are strongly identified and some others that are not.

Strong and weak moment conditions:

We consider here three instruments: the constant. the centered lagged asset return and the
centered lagged consumption growth. To be able to apply our nearly-weak GMM estimation.
we need to separate the instruments (and the associated moment conditions) according to
their strength. Typically. a moment restriction Efoy(0)] is (ncarly)-weak when Elo,(0)] is
close to zero for all 6. This means that the restriction does not permit to (partially) identify 0.
Hence. we decide to evaluate each moment restriction for a grid of parameter values. If the
moment is uniformly close 10 0 then we conclude to its weakness. Note that this study can
always be performed and is not specifically related to the Monte-Carlo setting: the Monte-
Carlo setting is simply convenient to get rid of the simulation noise by averaging over the
many simulated samples.

Figure 1.3 has been built with a sample size of 100 and 2500 Monte-Carlo replications. Note
that the conclusions are not affected when larger sample sizes are considered.
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The above study clearly reveals two groups of moment restrictions: i) with the constant
instrument. the associated restriction varies quite substantially with the parameter #: ii) with
the lagged instruments. both associated restrictions remain fairly small when ¢ vary over the
grid. The sct of instruments. and accordingly of moment conditions. is then separated as

follows:
(re, " — 1)
o () = (e 1) - rL=r
o=
Accordingly.
A Opa m(t)

T
_ 1 =
or(0) = = o) with VTE[dp(0)] = ’

rl r ; | ] 011 Aarldy ()

As emphasized carlier. our Monte-Carlo study simulates a general equilibrium model. So,
even the econometrician does not know in advance which moment conditions are weak and
the level of this weakness. Hence, Ay and Ay must be chosen so as to fulfill the following
conditions, Ay = o( V). Aoy = o( A7) and A3 = o(AL}).

In their theoretical considerations (section 4.1). Stock and Wright (2000) also treat differently
the covariances of the moment conditions. The strength of the constant instrument is actually
used to provide some intuition on their identification assumptions (4 strongly identified and
7 weakly identified). However, we maintain that if ~ is weakly identified. then it affects the
covariance between r, and ¢, . and hence the identitication of § is altered too. This actually
matches some asymptotic results of Stock and Wright (2000) where the weak parameter
affects the strong one. by preventing it to converge to a standard gaussian random variable.

We now identify the strong directions in the parameter space via the reparametrization intro-
duced in section 3.

Reparametrization:
First, we define the matrix of the change of basis (or reparametrization). that enables us to
identify the standard dircctions in the parameter space. Recall that it is defined through the
null space of the following matrix,

[ 0_/)1(0“)
- o
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Straightforward calculations lead to:

[0{)1_,(())] ~ [(_)(),,(()) (()(.)L,(())] _ {I'«' s . = []

a0 o o

JP is then approximated as follows:

Jj— I (07) _
T o

1 XI: N N "”()‘U zr: <1 l:|
= ricy : recy
r r =1

o1

The null space of J{ is defined via the (2.1)-matrix R, such that.

—.I| » .
“ for any nonzero real number 1+
Ju

'l(l) [?_3 ~ 0 Ry=r I:

R, is then completed with R into the matrix RY so as to define a legitimate reparametrization.
In other words. R" is of full rank. So practically the only constraint is the following,

‘ :Il
Rl:[[lJ with i;‘-—$
)

We then get,

—vd ! wlu prd
B — « v and TR ! =
[ b vl and [R] pleady +0Jw) | —b M

And the new set of parameter is then obtained as,

i Y -
= [R(l] l() = h > _ aJn -llll._- ‘J“() + .I[g )
A T T .1,1,:)(_[)‘) +a3)

We can sce that the standard direction 4, is completely determined: that is the relative weights
on d and ~ arc known. As a convention, we normalize all vectors to unity and we also ensure
that the subspaces defined respectively by the columns of 7, and of R, are orthogonal.

Asymptotic result:

Recall first the adapted asymptotic convergence result:

[ /\|’1'('71T - '1(1’)

o ’
= V(O VS0 Ly
Aot — ’l'(_’)) :l ( J J
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We now provide some details on the calculation of the above asymptotic variance. J! is

defined as:
dp ) 1y 0
I = aor ()
0 & 1?_)

24

The approximation of /' is casily deduced from what has been done above.

By assumption .S(0") is block diagonal and defined as,

gy | Var(VTor(6%) 0
o [ 0 Var(VT o, (0")) ]

and a usual sample estimator is used.

Results:
We now provide the results of our Monte-Carlo study. Again. we consider three instruments,
the constant, the lagged asset return and the lagged consumption growth, and two sets of
parameter: set | (or model M1u as in Stock and Wright (2000)) where 0 = [.07 1.3]: set 2
(or model M1b) where 0" = [1.139 13.7]. Model M Ib has previously been found to produce
non-normal estimator distributions,

First, as we have secen in the previous section. the matrix of reparametrization is not known
(even in our Monte-Carlo setting) and it is actually data dependent. We then investigate
the variability of the true new parameter +°. We found that even with small sample size
(I' = 100). the (estimated) true new parameter is really stable and does not depend much on
the realization of the sample. For our two models. we find the following truc new parameter:

6281 —.7782

Set 1: " = [-0.1015 15715 [RY] 1= _
TTS2 0281

]: JP = [1.0321 — 1.2788)

0642 —.9979

Set2: ' = [ 13.5084 20176): |[RY ! =
09790642

} D) = [8986 — 13.9780]
To estimate our models, we use the 2-step nearly-weak GMM and we produce the estimation
results also for the intermediate [-step estimator.

Note also that the optimization resolution is not affected by the rates of convergence (A, and
Aar).
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Our findings are: i) All the estimators are consistent; ii) The variances of the estimators (for
both 77 and 67) decrease to 0 with the sample size. The direct comparison between the
variances of the parameter is not much of interest, this is rather the ratio that carries some
information; iii) According to our asymptotic results, in case of nearly-weak identification,
the asymptotic variance of the new parameter 73,7 should decrease (a lot) faster with the
sample size than the one of 7j,7. Figure 1.4 investigates this feature by plotting the evolution
of the ratio of the Monte-Carlo variance of 1o and the Monte-Carlo variance of mr with the
sample size.

For set 1, the ratio of variances is fairly constant: this suggests that the variances of both
parameter 7); and 7,7 decrease at the same speed towards 0. This actually supports previous
findings that this model presents less severe case of nonstandard behaviors. However, this
does not support our study of the strength of the moments (see figure 1.3) and the presence
of plateaus for two of them. For set 2, the ratio of 7 slightly decreases with the sample size,
while nothing like this can be observed for initial parameters. This provides some support to
our asymptotic approach even though the difference between the identification issues in the
two sets 1 and 2 is not very compelling from figure 1.4 or from the estimation of the rates
of convergence (tables 1.4 and L.5). When studying the ratios, the slope is not significantly
different from O for the new parameters and slightly positive for the original parameters.
Similarly, for set 2, all rates are also close to each other (0.48), slightly slower than for set 1
and significantly different from the usual rate 7'/2, The slope of the ratio of new parameters
is significantly positive whereas this is not the case for the original parameters.

7 Conclusion

In a GMM context, this essay proposes a general framework to account for potentially weak
instruments. In contrast with existing literature, the weakness is directly related to the mo-
ment conditions (through the instruments) and not to the parameters. More precisely, we
consider two groups of moment conditions: the standard one associated with the standard
rate of convergence v/7T and the nearly-weak one associated with the slower rate Ar. This
framework ensures that GMM estimators of all parameters are consistent, but at rates possi-
bly slower than usual. We also characterize the validity of the standard testing approaches
like Wald and GMM-LM tests. Moreover, we identify and estimate some v/7T-consistent di-
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rections in the parameter space. Such results are practically relevant since the knowledge of
the slower rate of convergence is not required.

For notational and expositional simplicity, we have chosen here to focus on two groups of
moment conditions only. The extension to considering several degrees of weakness (think of
a practitioner using several instruments of different informational qualities) is quite natural.
Antoine and Renault (2007) specifically consider multiple groups of moment conditions as-
sociated with specific rates of convergence (which may actually be faster and/or slower than
the standard rate v/'T'). Note however that they do not explicitly consider any applications to
identification issues. but rather applications in kernel. unit-root. extreme values or continuous
time environments.
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Appendix

Proofs of the main results

Proof of Theorem 2.1 (Consistency):
The consistency of the minimum distance estimator 67 is a direct implication of the identifi-
cation assumption 1 jointly with the following lemma:

Lemma A. .
ool = 0 (57 )
T

Proof of lemma A: From (2.2), the objective function is written as follows

. \I/T(H) Ar \I’T(e) _ Idy, 0
ar(0) = |12 +ﬁ(e>] o |10 + 200 wher AT—[ ! %I%J
Since fr is the minimizer of Q(.) we have in particular:

Qr(br) < Q(6°)
Vr(br) | Ar ] [Wrbr)  Ar V() ) ¥r(6°)
[ JT +\/T (HT)J Qr [7 \/T (GT)J =T \/—

Denoting dr = V.(67) QU (67) — U (6°)QrPr(6°), we get:
; / - . ! i
[ATP(HT)] Qr [ATP(GT)] +2 [ATP(HT)] Qr¥r(fr) +dr <0
Let pur be the smallest eigenvalue of Q7. The former inequality implies:
urllAzp(@r)I1* = 2l|Arp(6r)|| x Q¥ (0r)]| + dr < 0

In other words, z = || A7p(0r)]| solves the inequality:

2|| QW (6
22— 27 T(HT)”:ET-i- dr
Hr M

<0

and thus with o
QY7 (6r)|*  dr

Ap = 5
BT “T
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we have: _ Q i
v
[Qr¥r(6r)ll VA7 < zp < 180¥r(r)] +/Br
HT ur
Since 21 > Ar||pr(07)|| we want to show that zy = Op(1) thatis
Hr

which amounts to show that:
dr

.
”QT T(OT)” — Op(l) and L — Op(l)
Hr Hr
Note that since det({r) il det(2) > 0 no subsequence of Wr can converge in probability
towards zero and thus we can assume (for T sufficiently large) that p remains lower bounded
away from zero with asymptotic probability one. Therefore, we Jjust have to show that:

IQr¥7(67)|| = Op(1) and dr = Op(1)

Since trace(Qr) £t trace(§?) and the sequence trace(Qr) is upper bounded in probability,
so are all the eigenvalues of Q7. Therefore, the required boundedness in probability just
results from our assumption 1(ii) ensuring that:

sup || ¥r(0)|| = Op(1)
=0

The proof of lemma A is completed. Let us then deduce the weak consistency of fr by a
contradiction argument. If 67 is not consistent, there exists some positive € such that:

P [||9'T — 6 > e]

does not converge to zero. Then we can define a subsequence (07, )Jnen such that, for some
positive 7:
P [||0T,, — 6 > e] >n forneN

Let us denote
a= inf |p(6)| >0 by assumption 1(j)

[|6—6°(>¢
Then foralln € N:
P [lo(6r)ll > o] > 0
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When considering the identification assumption 1(iii). this last inequality contradicts lemma
A. This completes the proof of consistency. B

Proof of Theorem 2.2 (Score test):
The entire proofl is writien under the maintained null hypothesis that 6, = 0". The score

statistic can be written as follows:

_ — — | —
L dop(By) [f)w.,‘(()(,) g 10@#@,)} Doy (0)

LMp(0) = Top(0,)Sy St o)

o0 a0 T o o

('S'r 1 “’\I"r(”u )) ' S’r

Ladap(0y) | A0r(6,) : or(6,)
o' e T o

dor(0)
o’

X

s7 ' (s () )

From assumption 1(ii) S»,.' 2\11-,~((}(,) is asymptotically distributed as a gaussian process with
mean 0 and identity covariance matrix. To be able (o conclude. we only nced to find an
invertible matrix Dr and a full column rank matrix 3 such that

dbp(By) - p
o Pr— B

This would ensure that

— — o [
1200 (0y) i:(:)({)»r(()“) S_I{Jr)r((fl,):l do(0y) L

or o' o T o g T

is a full rank s idempotent matrix and this leads to the desired result. Using assumption 2(iit),
we call s the rank of [dp,(6,) /0] and (p — s,) the one of [D122(0y) /0F). Define

VT

AT

Dr=1{D, YD,

where D, and D, are respectively (p.s) and (p.p — s,) full column rank matrices such
that D}, D, = 0 and the range of D, is the range of [9p(y)/00". This ensures that Dy is
invertible for every fixed sample size 7. We now have:

- #9yp(n) VT o p(6)
o (th) Dy = D1 X e
a0 r Bopr () py VT iy ti) D
0 LNy T 2

(o)

0 Pellp,

} = B which is of full column rank p
o
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where the zero south-west and north-cast blocks of B are deduced respectively from assump-
tions 2(iv) and (v). W

Proof of Theorem 2.3 (Rate of convergence):
From lemma A ||p(07)|| = ||p(6) — A" = Op(1/Ar) and by application of the mean-
value theorem, for some 7 between 0r and 6" component by component, we get:

o)

o8’
Note that. by a common abuse of notation, we omit to stress that actually depends on the

component of p(.). The key point is that since p(.) is continuously differentiable and 0. as
fIr. converges in probability towards 0, we have:
llr) p Op(0®)

-

oo’ o

and thus:

ap(° -
/(")((1' ! (9r - 9“) T

with [l=7|] = Op(1/Ap). Since Ip(#") /08 is full column rank. we deduce that:

i Y _ ' (0°) dp(o") 10/)'(()“)"
(u, o ) _[ AN .,

also fulfills:

”()T - ()”H -0, ( : )
A

Proof of Theorem 3.1 (Asvmptotic Normalitv):

First we need a preliminary result which naturally extend the convergence towards /" in (3.2)
when the true value 6" is replaced by some preliminary consistent estimator ¢}

Lemma B. Under assumptions 1 10 3, if 03 is such that (107 = 0| = Op(1/Xy). then

Dirp(03) .~ p
ﬁ%ﬁuz\—;l L whenT — x
[
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Proof of Lemma B:

First note that
1 (0* 9¢11(87) VT 8y1(6%)
VTOLOD) pog i _ | e R GRS
ol 6¢2§9(,91) RY :\/_fa%ga(lar) RY

To get the results, we have to show the following:
BZIT(G;‘) P 8p1(90)
) Taw T aw

Ar 00 o8’
) ——a¢g9(,0T)R? Lo
. \/Ta%r(%) o P
L’U) VTRz — 0

1) From assumption 2(iv), we have: @169(,& — g”—ég‘,’—u) = op(1). The mean-value theorem
applies to the k" component of [0¢,7/86'] for 1 < k < k;. For some § between 8° and 0%,
we have:

A (Y e A

where the last equality follows from assumption 3(ii) and the assumption on 67..

11) From assumption 2(iv), we have:

Oor(6°) Opa(fo) VT 3¢y (6°) Op2(6°)
VI3 — A=y = 0p(1) = oo ag —orll)

because Ay — 0o. The mean-value theorem applies to the kth component of 8¢@,p/56' for
1 < k < ks. For some 07 between 6° and 6%, we have:

\/T 35211:(9}) _ 85211;(‘90) _ (0* _ 00)\/?3252T,k(9~T) -0 (1)
py o0’ RS T Ar 0000 °F

where the last equality follows from assumption 3(ii) and the assumption on 6.
iit) _ _
9pyr(67) _ Ar o VT 86y (6%) — op(1)
e VT =~ Ar 0@ F
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because of (ii) and Ay = o(v/T).

iv) Recall the mean-value theorem from i). For 1 < k < k, and 67 between 6° and 05,
we have:

@&1’17‘,:;(03‘) \/_a¢1Tk( %) 1 VT 8 ¢1Tk(9T)
AT oo )\T 80 AT )\T 0006

The second member of the RHS is 0p(1) because of assumptions 1(iii), 3(i1) and 3(iii) and

+ (63 — 69) —

the assumption on 67. Now we just need to show that the first member of the RHS is op(1).
Recall from assumption 2(v) that

06:7(6°) _ 9p(69)] _ VT [96:0(6°) _ 8p1(6°)] o 1
‘/T[ o6’ oo | =P =5 | oo | e =0r (57
By definition RY is such that —p—(,‘,(-e?—Rz = 0. Hence we get
VT 3617, (6°) 1
w0 (5) ot

This concludes the proof of lemma B. We now return to the proof of theorem 3.1. From the
optimization problem (2.2), the first order conditions for f1 are written as:

Opr(0r) — .
211) i 0r) = 0
A mean-value expansion yields to:

3¢T(9T)
06

S )+ 5 (50 ) =

where 07 is between 67 and 6°. Premultiplying the above equation by the non-singular matrix
TA7'R yields to an equivalent set of equations:

0 [\/TET(HO)] + JpQJr x Ap[RY) ! (éT —6°) =0
after defining:

Jr=vT Bd’géf’T)RﬂATl and Jr = ﬁ—a"’gg‘gﬂﬂ%;

From theorem 2.3 and lemma B, we can deduce that:

PlimJr = J° and PlimJy = J°
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Hence.

Jp £ Y0 nonsingular by assumption
Recall now that by assumption lii). Wr(0°) = VT [ o(0°)] converges to a normal distribu-
tion with mean 0 and variance $(6"). We then get the announced result.l

Proof of Theorem 3.2 (Overidentifving test):
A Taylor expansion of order 1 of the moment conditions gives:
= - —dop(07) _
VTorbr) = VTopt") + VT “{,’){(),T)(()T —0") + op(1)
VTor(0°) + JrAr[R) (0 = 0) + op(1)

with J; = VToop(0r) /00" ROA 1.

A Taylor expansion of the FOC gives:

— ’ — - |
_ o (. . 3 ).
Ar[R) Hor =6 = - [(\/'I’—d(”g,(fr)z?‘n\r‘) Syt (\/f()“.;g])ﬁ’“z\rl)]
C &

— ’
b - B
x (ﬁ‘)‘%)ﬁ“/\rl) SPVTop(0") + op(1)

with S a consistent estimator of the asymptotic covariance matrix of the process ¥/(4).
Combining the 2 above results leads to:

VTor(y) = VTor(0") = Jr [T r ] S T o (07) + op(1)
Usc the previous result to rewrite the criterion function:

1Qr(0r) = [VTor(ip)] si' VT (i)

_ LT 1=l . _ !
{\/T(/)T(()“ ) =y [./,;.5.;11,.] Sy ST op(0" )} 5p!
— N N ~ 10 . _
x [ﬁa)7~(11") —Jr [ /r.S'.,T‘.IT] S ST o (0 )} +op(1)
= [VTaro] si VTa )

_ - . O Tt SN —
N Ta (0S5 [./;.S; ! ./.r] T SEVTop(8") + op(1)
VTop(0°) S5 211 = A1) S AV Top(0°) + op(1)
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D - — = = ' 1. -
where S/ is such that Sy = S /2572 and M = S22y [J'TSTUT] 1.5 which
is a projection matrix, hence idempotent and of rank (K — p). The expected result follows.
[ |

Proof of Theorem 3.3 (Orthogonalization):
Recall the inverse formulae:

g1 [ ST SGP SIS ) (59 st

— P18y (S9! P!
Q! -Q 1S8%[s9!
—[S3] 1S9 Q 7 Sy (I + S5HQ SS9

with Q = 57 — S1,[S3] 193, and P = 57 — S9[S7] 159,
Recall the block-diagonality of the matrix J° (see page 15):

o= [ R > ]
0 R

Recall
AVar(ir) = [JYS 1] ' and AVar(ir) = [J%[5° 100 !

We need to compare the north-west and the south-east blocks of the above matrices.

Straightforward calculations lead to:

[Jg,[Eo] IJO]'I _ [ [1~?'1Q‘11~21j|_ 0 }

- ~ 1-1
0 [R;SQIRQ]
with Ri = %%Rl fori =1,2 and @ =S, — 51252_1521.

On the other end, we have:

JUg150 _ RILQ_IRI ) tRQQ 151255 'Ry = A B
—R38,'80Q 'Ry Ry [S;' + .55 '501Q 15128, Ry C D
with B = C.
i) We have AVar(mr) = A '+ A7'B(D—CA 'B) 'CA ! that needs to be compared
~ ~ 1
to AV ar(fir) = (RQQ ‘Rl)
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h

Note that .4 ! = (f?’l() lffl) l. Hence itis enough o study .4 'B(D —C.A'B) '¢A Y,
Recall that AVar(pr) = (D — €4 'B) 1 hence it is a positive definite matrix (sce also
ii)). Also we have B = C” and .| symmetric. Then, we can deduce that A 'B(D
CAEB) YA s positive semi-definite.

Finally, we can conclude: AVar(ny) >> AVar(mr)

i) We have AV ar(ipr) = (D - CA 'B) " that needs to be compared to AV (i) =
N 1
(R[,S_. ‘/f_,)

It is enough to compare D — C'.4 ' B with B,S,'R..
D-CA'B = RLYS,'Ry+ RYS,'S5,Q 1S, 'Ry
—R,S,18,Q 'R [1’?’,() '1?1] lR@Q HSaSy R,
The last 2 terms of the RHS can be rewritten as follows:
RyS, ' SuQ ' SuSy 'Ry — RS, 18,0 'R, [i?'lQ ’RI} RO 1SS, R,
e {Q '_Q 'R, [R',Q ‘Rl] ‘RO '}S,_,.s;,'rf_,
It is enough to study the middle matrix that appears between the brackets:
Q- Qi [RQ R ‘RO
- Q V‘-"{[-Q VR, [R'lQ g “-’1‘?1] li?’l(;) “-”}Q 1z

= Q 'V{I-X(X'X)'X'}Q 1
= QAL Q

with Q™' = Q Q12 X =Q 2R and My = [ — N(X'X) LY.
Finally. we have:
D-CA'B = SR+ (Q -’.s',,.s_,'l'?_.) My (Q 128,.8, '1?_,)
>> RS, 'Ry

becausc by definition. .M/ is a projection matrix. Hence it is positive semi-definite as well as
H' X 11 for any matrix H.
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We can then conclude: AVar(ier) << AV ar(ijyy). M

Proof of Proposition 3.4:
We consider the following set of moment conditions.

(0") DL ") + o (0)
o (0%) )\ bur(6")

ST l: G0N — py(0%)

O (0%) = 3, (6)

such that
} = ("
where W(0) is a Gaussian random variable with mean zero and variance

G SYH+ WS+ S+ HSY, 89, + 11S)
B A L SY

The above set is orthogonalized as follows:

; _ i
AT ()"-(()” —Cor \/'1'()"- "), v T(‘)’,{ (")) [Var (v T()I{(()” nl,{-(()“
Ir _ (07 17 T ! 21

()ﬁll [()”) ;j{r(()”)
with
Ofp(0") = O () + Hp(0°) = (S12+ HS2) S5 0,(0")
= 0 p(0°) + Hogp(0Y) = S108y 0up(6) — Hopypn(07)
= o r(0)
[ |

Proof of Corollary 3.5:
The proof directly follows from the results of Theorem 3.3 and Property 3.4. Wl

Proof of Lemma 3.6
In theorem 3.1, we have established that the following vector is asymptotically normally
distributed:
VT (0r = 0")
AeB (07— )
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We now show that the above convergence result is not altered when matrices A and B are
replaced by some Ar-consistent estimators, respectively A and B.

(1) Convergence of the nearly-weak directions:
A8 (0r - 6°) = \rB (b7 ~ 0°) +xr (B - B) (6r - ¢°)

e

m @)

(1) = Op(1). B is a Ap-consistent estimator of B, so clearly (1) dominates (2): this is
denoted as (2) < (1).

(ii) Convergence of the standard directions:
VTA(6-0) ='\/TA(9A—0°)+\<—T(A—A)AT (6-¢)
—_——

T

- v

oV

1 (2)
We have (1) = Op(1) and Ar(6 — 6°) = Op(1). Hence,

VT

(2) < (1) <= o

(A—A) =0p(1) <> A— A =o0p <V_T>

By assumption ”A — A” = Op(55), s0 we get:

(2)4(1)@%:0(%) < VT =0 ()2)

which corresponds to assumption 3(i). W

Proof of Theorem 4.1 (Wald test):
The proof is divided into two steps:
- step 1: we define an algebraically equivalent formulation of Hy : g(6) = 0 as Hy : h(0) =10
such that its first components are strongly identified while the remaining ones are nearly-
weakly identified without any linear combinations of the latter being strongly identified.
- step 2: we show that the Wald test statistic on H, : h(8) = 0 asymptotically converges
to the proper x2(q) distribution and that it is numerically equal to the Wald test statistic on
Hy: g(6) = 0.

- Step 1: The space of strongly identified directions to be tested is:

I°(g) = [Jm%;o)] n [ Im%gf’)]
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Denote 1(y) the dimension of 7"(¢). Then, among the y restrictions to be tested. n(y) are
strongly identified and the (¢ — 1#"(¢)) remaining ones are nearly-weakly identified.

Define ¢ vectors of R” denoted as ¢, (j = 1.+ -+ .¢) such that [J¢/(0") /00 x €))7 | is a basis
of I'(y) and [D¢'(0") /08 x )]}, 1 is a basis of

0l | dy'(0")
[I (([)] | [[!HUT:'

We can then define a new formulation of the null hypothesis /7, : g(0) =0as: Hy: h(0) =
0 where /1(8) = Hy(0) with # invertible matrix such that H’ = [/ +++ ¢,]. The two

()
formulations are algebraically equivalent since 1/(0) = 0 < ¢(#) = 0. Moreover.

. b < 1
g [o 0 3] | o
with Dy a (y.¢) invertible diagonal matrix with its first n°(g) coefficients equal to v/'7 and

the (p — 1°(y)) remaining ones equal to Ay and BY a (¢. ) matrix with full column rank.
! ! £ 4 /

- Step 2: first we show that the 2 induced Wald test statistics are numerically equal.

1

albr)

7 (9) Ty'(0r)

dy(0r) [053(07) ., dordr)] ' 0y (07)
o a0 T o O]

TH y'(0r)S H H'S Myl

— - — 1
dy(0r) | 9dr(ir) . 00,.(00)] 04 (8;)
o o T o o0

T (h)
Then we show ¢} (1) A \?(¢). First we need a preliminary result which naturally extends

the above convergence towards B” when 69 is replaced by a A p-consistent estimator 0y

O/l(()fr); I
oy [A\—l] B

Pliniy [DT

The proof is very similar to lemma B in the proof of theorem 3.1 and is not reprocuced here.
Note that the fact that ¢(.) is twice continuously differentiable is needed for this proof.



The Wald test statistic on /i(.) can be writien as follows:

1

~ _ ~ — 1
. ) Y M) | 9 (Or) o 00p(07)] o' ()
1 _ al ! . . X T 1 I . , 3
G = T [Dehin] { 0y 0 T oy op Pr( [Prion)]
1
! ()’I(()[‘) ~ 1o L. ,(‘)III((}T)
[D,h(or)} {DT o B [.l,b,r'.lr] A R Dy [DT/;((JT)]

where Jp = VT2 p0 A2V with Jp L 0 and JL8, p L g [S@EM] ' =¥,

Now from the mean-value theorem under H,, we deduce:

i _ 0"(”’;) A 0) _ “)/’(()}) 03 1] X 0] 1 0
Drh(lr) = Dre—zl> (0r = 6") = | Dy g B A R (0 07)

Oh(03)

; ny 1| F
with [I)T T R .\TJ

=B and A [R) ' (0r—0") LN (.S )

Finally we get
& (h) = [,\,‘|1?“] Y0, o“)] By(ByEBY) ‘B, {.'\-;l[?“| ‘(()T—(”)] +op(1)

Following the proof of theorem 3.2 we get the expected result.
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T | Var(ipr)  Var(ipr)  Var( 0 1)y Var(fsg)
50 1 0.0534  0.0264  0.0233  0.0081
100 | 0.0236 0.01799 0.0154  0.0056
200 | 0.0133 0.0103 0.0082 0.0037
300 | 0.0093 0.0080 0.0059 0.0030
400 | 0.0073 0.0058 0.0041 0.0024
500 | 0.0060  0.0049  0.0031  0.0021
600 | 0.0051 0.0044 0.0029 0.0019
700 | 0.0042 0.0042 0.0027 0.0018
800 | 0.0035 0.0039 0.0026 0.0017
900 | 0.0031 0.0035 0.0023 0.0015
1000 | 0.0028  0.0033  0.0022  0.0014
1500 | 0.0019 0.0023 0.0015 0.0010
2000 | 0.0014 0.0020 0.0012 0.0009
3000 | 0.0009 0.0015 0.0009 0.0007
5000 | 0.0005  0.0011 0.0006  0.0005
6000 | 0.0005 0.0010 0.0006 0.0005
7000 | 0.0004 0.0009 0.0005 0.0004
8000 | 0.0003 0.0008 0.0005 0.0004
9000 | 0.0003 0.0008 0.0004 0.0004
10000 | 0.0003 0.0007 0.0004 0.0003
11000 | 0.0002 0.0007 0.0004 0.0003
12000 | 0.0002  0.0006  0.0004  0.0003
13000 | 0.0002  0.0006  0.0003  0.0003

Table I.1: Single-equation linear IV model: Estimation results for the variance of the Monte
Carlo distributions of the new parameters 4y as well as the original one 05 for various sample
sizes.



56

Entire specter of sample sizes

3 95% Confidence Interval | Estimated rate
inr | -0.9976  -1.0111  -0.9842 0.4988
ior | -0.6806  -0.6950 -0.6663 0.3403
Gir | 07577 07808 -0.7345 0.3788
Bar | -0.6130  -0.6221 -0.6039 0.3065
Large sample sizes (>5000)
3 95% Conlfidence Interval | Estimated rate
mr | 09903 -1.0042  -0.9764 04951
it | -0.6267  -0.6692  -0.5841 0.3133
Oy | -0.6667 -0.7088 -0.6246 0.3333
for | -0.6046  -0.6411 -0.5681 0.3023

Table 1.2: Single-equation linear IV model: Estimation of the 7 coefficients in the linear

regression (5.4) and the rates of convergence of the variance series.

Entire specter of sample sizes

Estimated slope  95% Confidence Interval
Viar(far)/Var(yr) | 0.3170 0.2905 0.3435
Var(fyr)/Var(y) | 0.1447 0.1209 0.1685

Large sample sizes (>5000)

Estimated slope  95% Confidence Interval
Vear(inr)/Var(inr) | 0.3636 03114 0.4158
i 'ur(()-_,r)/‘ 'ur(()l-r) 0.0621 0.0478 0.0764

Table 1.3: Single-equation finear IV model: Estimation of the § coefficients for the ratio
series.
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Large sample sizes (>10000)

nr
mhar
hir

Osr

A
-0.9862
-0.9872
-0.9879
-0.9885

95% Cl
-1.0069  -0.9654
-1.0071  -0.9674
-1.0072  -0.9686
-1.0077  -0.9693

Rate

0.4931
0.4936
0.4940
0.4942

Slope 95% Cl
Var(ner)/Var(ir) | 00011 -0.0068  0.0046

Var(tyr)/Var(far) | 00006 00002 0.0010

Table [.4: CCAPM for set 1: i) Estimation of the 3 cocfficients in the lincar regression (5.4)

and the rates of convergence of the variance series; ii) Estimation of the .4 coefficient for the

ratio series

Large sample sizes (>10000)

mr
nr
hr
H:T

3
-0.9674
-0.9656
-0.9633
-0.9631

95% ClI
-0.9872  -0.9477
-0.9854  -0.9458
-0.9831  -0.9436
-0.9828  -0.9435

Rate

0.4837
0.4828
0.4816
0.4815

Slope 95% CI
Var(ner) Vur(i]lr)| 0.0018  0.0010 0.0027

Var(ur)/Var(flyr) | 00002 00052 0.0048

Table 1.5: CCAPM for set 2: i) Estimation of the 7 cocfficient in the lincar regression (3.4)

and the rates of convergence of the variance series: ii) Estimation of the 7 coefficient for the

ratio series
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Chapitre II

Testing parameters in GMM without
assuming that they are identified: a
comment!

I'his chapter 1s based on a paper co-authored with Eric Renault
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1 Introduction

In a recent paper published in Econometrica, Kleibergen (2005) proposes a GMM-LM based
statistic, the K statistic. It uses a modified estimator of the Jacobian, asymptotically uncor-
related with the empirical mean of the moments. This property permits to relax the full rank
assumption on the Jacobian and even allows the application of the test in case of weak instru-
ments. In this chapter, we shed some light on power calculations for the K and LM (or score)
test statistics. These calculations are produced for several identification issues, from strong
to weak, and for some mixture cases of the former.

Kleibergen (2005) starts with a joint central limit theorem on the moment conditions (6%
and their associated Jacobian [ (6°)/56':

Assumption 1. (Joint CLT from Kleibergen (2005))

ér(6°) - E[4:(6°)]

: _ o [961(6%)
VT Vec [aag_gm] B VeC[J(HO)]J with J(00)=E[ T ]

o'

Jollows an asymptotic gaussian distribution with mean 0 and variance V.

The identification is strong when J(8°) is full-column rank and weak when there exists a
deterministic matrix C such that J(6°) = % To test Hy : § = 0y, Kleibergen proposes the
K-test, robust to any case where strong identification fails!. It is a modification of the standard
GMM score test: instead of computing the LM test as a norm of [@6(5,7&(2 157‘] , [@3{5,@] is

replaced by the residual of its regression on the moment conditions. More formally, [8639(_9")]
J
is replaced by

3¢~>iT(90) 851'7‘(90) f%rr(eo) Y Y o
50, = g~ Cov VTR o VTH(60)| [Var (\/T¢(90))] (6o)
It has been shown in the literature that this correction generally provides finite sample im-
provement, without modifying the standard first-order asymptotics: see e. g. Antoine, Bonnal
and Renault (2007), Donald and Newey (2000) and Newey and Smith (2004).

!The precise identification pattern does not need to be known for the test to be valid and performed. Note
also that we distinguish between the true value of the parameter (#°) and its value under the null hypothesis
(6o).
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We want to investigate the power of the K-test and compare it to the power of the standard
score test. For this, we go one step further in the specification of the identification issues.
We think that rank deficiencies of the Jacobian must be more tightly related to the moment
conditions themselves. More precisely, we use the framework of chapter 1. Everything starts
at the moment conditions level: they are partitioned according to the information they carry,
say strong or nearly-weak. In this framework, the Jacobian naturally inherits a similar pattern,
which may explain the asymptotic rank deficiencies. Since the knowledge or the estimation
of the degree of weakness of each moment conditions is not required to perform inference,
we find that this framework is not much more involved than Kleibergen (2005). Moreover, it
helps clarifying power calculations as shown later.

The chapter is organized as follows. First, we quickly recall the framework of chapter 1.
Then, we present the power calculations of the LM and K test statistics against a sequence of
local alternatives. We also discuss testing subsets of parameters. Finally, we conclude.

All the proofs are gathered in the appendix.

2 Power against a sequence of local alternatives

2.1 Framework

In chapter 1, we proposed a framework where the moment conditions are partitioned in terms
of the information they carry. Letus consider here similarly two groups of moment conditions
and the associated central limit theorem assumption:

Assumption 2. (CLT from Chapter 1)

$1T(90) - ,01(90) d 0 .
VT Far(0%) — 2.8 S N(0,S(6°) with 0<< Ap << VT

The first group has k; standard moment conditions whereas the second one has k, weaker
moment conditions. Ar represents the degree of weakness of the second group of moment
conditions, or the speed at which the associated information disappears. This is a convenient
way to acknowledge that moment conditions may carry information of heterogeneous quality.
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Weaker moment conditions contain fragile information that needs to be preserved because it
is still relevant. We will see that, with heterogeneous quality of information, the transforma-
tion of Kleibergen may alter the asymptotic behavior of the test statistic. This is in contrast
with standard GMM.

The Jacobian matrix naturally inherits the above special design:

Assumption 3. (Assumption 2(iv) and 2(v) from Chapter 1)

oy [99108%) 8p5(87)] _ ) | 98ir(6°) VT 8y (6°)

2(iv) [ 90~ o6 ]_I;ZJZ? 56 90
' (0 /(0

2(v) VT 3(/’156(9)—3"13(:) = 0p(1)

2.2 Power of the K-test

We investigate the power of the LM and the K-test. Basically, if Hy, say § = 6, is false, we
would like to know the probability that it will be rejected. Since we work with asymptotic
distributions, for any § # 6,, the answer is 1 with a consistent test: this does not help the
comparison. Hence, instead of looking at an infinite sample, we want to find an approxima-
tion for the case of a finite (but reasonably large) sample. The classical solution is to assume
that the data-generating process is subject to a Pitman drift. More precisely, the data in a
sample of size T are generated by the model element 67 = 6, +- 3= Wwith v the direction and
dr the rate of local departure. This device of using a sequence of local alternatives will be the
basis of the following discussion of power properties of the LM and K-test. We consider the
following sequence of local alternatives:

Ho:0=0, vs Hyr:0=0D =0,+ L

or

where v is a fixed deterministic p-vector and é7 a deterministic sequence such that 1 T .
Our approach follows, for instance, Davidson (2000, chapter 12.4)%>. Note that under the

?In this paper, we do not investigate the power properties of specification tests under a sequence of local
misspecification alternatives, as done for instance in Newey (1985). Note again the distinction between the true
value of the parameter (6°) and its value under the null (6;). See also the discussion in Hall (2005, 5.3) about
the connection between a rejection of Hy and a misspecified model. These considerations are beyond the scope
of this paper.
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alternative, for each T, the true value of the parameter §7) depends on the sample size.

Let us recall first the definitions of the two test statistics, where Sy denotes a standard con-
sistent estimator of the long-term covariance matrix S(6;):

Definition 2.1. 7o test Hy : 6 = 6y, (i) the LM statistic is defined as,

LM (60) = Tr(00)Si > Ar(60) 57 * 61 (6o)

— — — =1 v A
. ~—1/2 v—108 5] 2’
with Ar(0p) = Sy /?28z(%0) [a:bg((;oo) = ¢g-9(’00)] Brbo) g 1/%'

(ii) and the K statistic is defined as,

K(60) = Tr(00)Sy * Ar(60) 7 * G (60)

with Ap(f) = 8" 25300 [2d4(0) g1 odgtoa] ! oo g/

The above definitions emphasize that the only difference between the two test statistics is
their weighting matrices, respectively Ar(8,) and AT(BO) for LM and K. The main result of
this section, theorem 2.5, compares the powers of the above test statistics against sequences
of local alternatives (when varying ér and ~, respectively the rate and the direction of local
departure). To precisely understand when and how the LM and K behave differently, we
study first the asymptotic behavior of the key elements defining them: [\/TS’}I/ 2$T(60)] ,
the corrected Jacobian and the matrices Ar(6,) and AT(HO). The following theorems collect
these results.

Theorem 2.1. (4symptotic behavior of \/TS} 1 257-(90))
Under Hip:
() Ifér =T,

VTS 3060 ~ N, 1)+ S Y%(85)c where ¢ = [’y’—apégeo) 0]

(i) If 61 = Ar,
€ ) 7 - 0 (1)

1 — '
_IfyeIm [Q%J NTSp P p(80) ~ N(0,T) = S2(Bo)c where ¢ = [0 7'3—PE,L§’°—’]
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Next, we show that the corrected Jacobian does not behave in a standard way with nearly-
weak identification.

Theorem 2.2. (Asymptotic behavior of the corrected Jacobian)
Under Hy7:

@) If or = VT

Ar Op2(80)

ﬁa(iT(eo) \/Tapé%z
o6’ 2

(ii)) If 57 = Ar and M2 >> /T (nearly-strong identification):

JF09r(00) ( VT2 )

o0’ /\T 3135?0)

(iii) If 67 = Ay and M3 << /T (nearly-weak identification):

8(57‘(90) \/Tapl—((,)o)
VT ~ 86
o' YT B(6o, )

where B(0o,) is the (ky X p)-matrix with j* column defined as
8p1(6o)

Bj = Cov (\/T—agggf""), \/:J“TpT(ao)) S~ 1(6o) < o 7 ) forj=1,---,p.

Theorem 2.3. (4dsymptotic behavior of the matrix Ar(6,))
Ar(6o) is asymprotically equivalent to the Jollowing projection (full-column rank) matrix

A(6o) = S 1,2(00)8g(;o) [89;090)8. 1(60)3,2(;/0)] ) BP;(:O)S 12 (65)

Next, we show that the weighting matrix Ar(6,) inherits the non-standard behavior of the
corrected Jacobian with nearly-weak identification, while it behaves as Ar(6o) with (nearly)-
strong identification.

Theorem 2.4. (dsymptotic behavior of the matrix Ar(6,))

() If 67 = VT, Ar(6o) is asymptotically equivalent to the projection matrix A(8,).

(i) If o7 = Ar and A3 >> VT, AT(BO) is asympiotically equivalent to the projection matrix
A(bp).
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(iii) If b7 = Ap and A& << VT:
- when N is full-column rank, flT(Bg) is asymptotically equivalent to

Ar(60) ~ S™V*(B6)N [N'S~1(60)N] ' N'S~1/2(8,)

9p1(6o)
with N = be’ and B(0o, ) has been defined in theorem 2.2
B (HOa 7)
- when N is not full-column rank, AT(HO) is not asymptotically equivalent to a projection
matrix of rank p.

The question of interest is to determine when the asymptotic equivalent matrix of Ap(6,) is
a projection matrix of rank p and when it is not. In general, we cannot answer this question.
There is at least one case where we can conclude that AT(BO) is not asymptotically equivalent
to a projection matrix. This happens when - is not spanned by the column-space’® defined by
[0p}(60) /06], that is when + is not identified by the standard group of moment conditions.
More formally,

30’1(90)} - 301(90)7

Y, ag 1 =0

’yEIm{

!

9p1(bo)
N = Bg' with Rank N < p

[N'S"!(6o)N] is not invertible
flT( 6o) is not asymptotically full-column rank, hence not

L

equivalent to a projection matrix of rank p.

We now state the main result of this chapter.

Theorem 2.5. (Power of LM and K test statistics)
(1) With strong identification (only standard moment conditions), LM (8,) and K (6,) are
asymptotically equivalent. They have the following power against local alternatives H,r at
rate 50 = V/T:

K(0o) ~ LM(60) % X3()  (under Hyr)

3Recall from Chapter 1 that the column-space defined by a matrix M is denoted as Im[M]
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,00'(60) ._\, . Op(6 8p(6
with u=7L3(0l)S 1(%)%7 and g(e,o)W#O vy

(ii) With nearly-strong identification (\2. >> \/'T), LM (6,) and K (0,) are asymptotically
equivalent. They have the following power against local alternatives H,p:
- when 67 = VT and~ € Im [0p|(6,)/86):

K(80) ~ LM(00) % x3(1) ~ (under Hyr)

with = [y 2400 O]S_l(ao){apl(etg/am] aa 2000,

- when 67 = /T and~y € Im|[dp}(80)/06)", the power is equal to the size:
K(60) ~ LM(60) = x;  (under Hir)

- when ér = Ar and v € Im [0p/(6o)/06):
K(6o) ~ LM(6y) ~ Op (%) and K(6) >0 (under H,r)
T

- when 6 = Ar and y € Im [9p)(60)/06]* :

K (o) ~ LM(60) % x2(n)  (under Hip)

8p’2(0°)]5‘1(60) l: 0 ] and 892(00)7 ;é 0

ith p=[0y-—"2—-
with 1 =107 Bpa(00) /86 o6’

06

(iii) With nearly-weak identification (\%: << /T), LM (6,) and K (6,) are not asymptotically
equivalent. LM (6o) has the same asymptotic behavior and power as in case (ii).

- when 8 = \/T: same as the similar case in (ii)

- when 07 = Ar and v € Im[0p)(60)/00): we cannot conclude about the asymptotic
behavior of flT(Ho)

- when 0r = Ar and v € Im[0p!(00)/06]": Ar(60) is not asymptotically full-column
rank, hence not asymptotically equivalent to a projection matrix of rank p.

With strong identification, both tests have power against every direction of the local alterna-
tives at the standard rate \/T. When strong identification fails, this is not the case anymore.
In particular, the framework of chapter 1 allows us to find standard directions (at rate v/T)
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against which the tests have only power equal to the size. We can also see that the tests have
some power against slower alternatives (at rate Ar): power that may depend (again) on the
direction of departure from the null hypothesis. Such a power study is only possible because
we decided to go one step further in the specification of the identification issues.

3 Testing hypotheses on subvectors

So far, we have focused on testing jointly the entire vector of the structural parameters 6.
We might also be interested in testing a subset of these parameters, say H; : § = 5, when
0 = (¢! ). To do so, Kleibergen (2005) needs an additional assumption ensuring the full
rank of the partial expected Jacobian with respect to the free parameters:

Assumption 4. (Full rank of the partial expected Jacobian from Kleibergen (2005))

b (6
7lim E [@;T#} is a continuous function of 0 and has full rank at 0 = (o, 5p)’.
—00 (84
Checking the validity of the above assumption involves several difficulties. First, of course,
0o is partially unknown under Hg. But, more generally, as mentioned p1111 in Kleibergen
(2005), "it is not always straightforward to determine the parameters for which the assump-
tion is satisfied".

However, in the framework of chapter 1, we do not meet such difficulties. After the conve-
nient reparametrization, assumption 4 naturally holds for each (new) subvector identified by
a group of moment conditions. Post-multiplying the initial Jacobian matrix by the matrix of
reparametrization allows us to reinterpret the new Jacobian matrix as in assumption 4:

[S5]-o 0 ) - [ 50

and each submatrix [0p(6y)/07;] has full column rank. In other words, testing the entire
subvector 7, or the entire subvector 7, with the standard LM procedure works without any
additional hypothesis.

Finally, note that, in general, an additional assumption is required when testing linear com-
binations of the structural parameters. This is to avoid perverse asymptotic correlations hap-
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pening because of the multiplicity of rates of convergence. See also section 4 in chapter 1 for
further details on Wald testing any transformation of the parameters.

4 Conclusion

In this chapter, we have performed a comparative power study between the standard GMM-
LM test and its correction proposed by Kleibergen (2005).

We have shown that this correction does have asymptotic consequences, especially with
heterogeneous identification patterns. Hence, we recommend carefulness, especially when
instruments of heterogeneous quality are used. Moreover, we also recommend using the
framework of chapter 1. As shown in this chapter, it is not much more involved in terms of
specifying the identification issues. In addition, not only it enables the use of (valid) standard
test procedures (like GMM-LM and Wald), but also it helps identify the directions against
which the tests have power.

In terms of testing hypothesis on subvectors, the superiority of the framework of chapter 1 is
clear. The reparametrization (see section 3 in chapter 1) precisely identifies the directions in
the parameter space for which the standard GMM-LM test can be performed. In particular,
no additional assumption on the free (remaining) parameters is required as for the K-test of
Kleibergen (2005). More generally, this framework also deals with (nonlinear) transforma-
tions of the structural parameters. This is beyond the scope of Kleibergen (2005) (see section
4 in chapter 1).
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Appendix

Proof of Theorem 2.1 (Behavior of /T S;."/ *(60) by (60)):
The application of the mean-value theorem gives:

ér(fo) = (0 — v/6r) = ¢ (6D) + %( — 6D = $.(0)) — 8‘23" %

with [ 55 ] the Jacobian matrix evaluated at a vector with each component between 6, and
6T). In addition, we have:

Var[VTér(6o)] = Var (ﬁ@(ﬂm) \/—?;ZT7)

= Var[VTép(0)] + Var <\/_88(ng 7)

~2Cov (ﬁaT(em), VT ‘?;,T = >
T
~ Var[VTep(67)]
Finally,

VTS, 1(80) = VTS /25, (00) — VTS 00r 2
T T o’ 5T

We can also deduce that under H,;*:

ﬁam(ﬂn),y
RHS(1) ~N(0,I) and RHS(2) ~ S %) | or %

AT Op2(6o)
o 00 Y
() 67 = VT:
i _ 3P1(9o),.y
VTS ?4r(60) ~ NI, 1)—3-”2<00)( " )
(i) 67 = Ap:

8p2(60)

\/_Tapl(eo),y
RHS(2) ~ S712(gy) | 2, 08
o7 1

“Note that the result for RH S(1) is a little more involved because we now deal with an element of a
triangular array. See Davidson (2000) p298 for a similar discussion and appropriate regularity conditions.
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-Ify € Im [apl(gO)] VTS:*6r(60) = Op(1) + O, (\,\/_TT) =0, ()\—\/f)

—1/2— 0
-IfyeIm [6”‘(9")] , VTS %7(60) ~ N0, 1)~ S172(6,) ( 8pa(8o) ) n

T
Proof of Theorem 2.2 (Behavior of the corrected Jacobian):
At the beginning of this proof, we treat each component of the moment conditions separately:
therefore, the index i = 1,-- -, K refers to the component and not to the group of moment
conditions as in the main text. Recall first the definition of the corrected Jacobian:

0dir(00) /=0 (o) _
vT 90; = VT—2 = 3Tg — BijVT ¢ (60)

where B;; = Cov (\/_M vT (60)) Y6o) fori=1,--- ,Kandj=1,---,p
The application of the mean-value theorem gives:

Oir(60) _ 3ir(6T) [(%w]
80, ~  066; 00 | o0

or

where [.]** denotes the Hessian evaluated at a vector whose components are between 6, and
9T). Recall also (see proof of theorem 2.1):

VTér(6) = VTér(6M) — 8¢T\/_7

o0

We deduce:

ddir(6) 0¢:r(07) 9 [06:0]™ = T) Y

vT 0, = VT 56, " o4 | o0, \/T6 — ByVTér(8) + By, 801\/_
Define first the block-diagonal matrix A (as in the proof of lemma A in chapter 1),
Id 0
Ar = k1 N and p;7 the rate of convergence associated to the 3" component,
0 ﬁ Id,,

pir = VT for 1 <é<kiand pr = Apfork, +1<:i< K.

- with assumptlon 2(iv) from chapter 1 (about the Plim of the well-scaled Jacobian) we get:
RHS(1) ~ pip22:60)

- with assumptlon 31(11) from chapter 1 (about the Plim of the well-scaled Hessian) we get:
RHS(2) ~ u,-THi% for some fixed matrix H;. This is dominated by RHS(1).

- RHS(3) ~ ByVT Arp(6T)) and p(6) = 0 under H,7-

- RHS(4) ~ ByAr 28 2




Finally,

7 (9(T) T 901(6T))
vir) - 2e ).+Bu[f “ J7

26; T 59, A 222080

e Study of the terms of the RHS:
- when p;7 = /T (ie the i-th component is strong):

/7o) _ mom6®)

_ 9pi(6o)

86, 86, i

(T) -
VT%gd | v 8gur(6)
r22f) | g 06,

- when p;7 = A7 (ie the i-th component is nearly-weak):

\/—6¢1T(90) ~ 8/%(9()) \/_6;:1;357"1) ] v
0

96 ™50,

+ Bij )\T 3p2(9(T})
a6’

*if 6 = VT
8¢1T(90) 3,01'(90)
vr o9, "M 86,

*if 67 = Ar and Ap >> VT /A7

O¢ir(6o) 9pi(o)
VT 86, Ar 80;

*if 67 = Ar and Ar << VT /Ar:

7 VT 8p1(6o
T ) o [ AT o) } )

agj 6P;{();oo )

96,
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e Extension to treat all components simultaneously: we are back to our regular formalism

where the indexes 1 and 2 refer to the groups of moment conditions.
The above calculations lead to:

ﬁ% N \/—ap’;{()?o)
6" Ar22230) + Br (65,7, 6r)
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where Br(.) is the (k; X p)-matrix with j** column defined as

SFor(to) YT Pp1lbo)
Brj = Cou(VT =252 \/T$(65))S(6) gap;‘(@u)7 forj=1,---,p.
ér 86’

To conclude:
() 07 = VT or (i) o7 = Ar and A2 >> VT~

7 9p1(6o)
ﬁ8¢T(00) N V7; (ag,)
o0’ AT pge'u

(ili) 07 = Ar and A2 << VT
JT09r(l0) (VT
ael \,\/—fB(HOa ’Y)
]

Proof of Theorem 2.3 (Asymptotic behavior of the matrix Ar(6o)):
Recall the mean-value theorem on the Jacobian:

851'7‘(90) _ . 6@T(Q(T))_ i 351'7‘ **l _3Pi(9(T))
VT = VT 00, VT35 86; | o HT g,

Ar, as defined in the proof of theorem 2.2, is invertible for any sample size T. We deduce:

~—1/21
o6’ o6 o6 o0 St

~ S—1/2(90)ap(00) l:ap’(gﬂ)s-l(eo)ap(eo):l - ap’(aﬂ)s—l/m(eo)

T —/ — -1 —
Ar(6y) = 5.7—11/23¢_T(00)AT {ATa‘ﬁT(eo)SElafﬁT(oo)AT} AT3_¢T(9_0)

06’ 06 o6’ o0

which is a projection matrix because by assumption [9p(6p)/86'] is full column-rank. W
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Proof of Theorem 2.4 (4symptotic behavior of matrix Ar(6,)):
Q) 67 = VT

~ ~ - -1 ~
5 _ a-172007(00) [ 0d7(00) & Obr(b0) 0¢r(0o) &1/
Arll) = 5075 ( 90 T o0 99 o

~ ~ ~ —1 ~
_ ), (ATaqb'T(eo)S-%law(eo) AT) 7 2 G0) g1y

90" Y, B0’ 20
) p(80) (30’ (60) 1, \OP(00)\ " Bp'(60) o1/
1/2 1 1/2

where Ar is the invertible matrix defined in the proof of theorem 2.3. The last matrix is A(8o),
a projection matrix of rank p because S~1/2(6,)9p/06" is full-column rank by assumption.

(i) 7 = Ap and A2 >> /T similar to (i).

(iii) 7 = Ar and A} << VT, we proceed as in the case (i). From theorem 2.2(iii), we have:

04r(Bo) [ 1dn 0] % Y _
o0’ 0 Apld, o B(6o,7) |

- When N is full-column rank, [N'S~!(6,)N] is full rank, hence invertible. We have:
Ar(8o) ~ S 2(8o)N [N'S 1 (6o)N] " N'S~1/2(8,)

- When N is not full-column rank, [N'S !(6)N] is not invertible. Then, [lT(Bo) is not
asymptotically equivalent to a projection matrix. W
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Proof of Theorem 2.5 (Power of LM and K test statistics):
(i) From theorems 2.3 and 2.4(i): Ar(6o) ~ Ar(6o) ~ A(6o)

= LM(6o) ~ K(60) ~ Tép(60)S " A(66)S7 /%G (60)

From theorem 2.1(i): VT:S7"*(60) ~ N(0, 1) — S=12(0,)c where ¢/ = [’y’a”'a(:")]. We
get (after applying Corollary B.3 from Gouriéroux and Monfort (1995)):

' a-1/2 1 _,00'(6o) 9p(6o)
b= ¢S (00) Al0)S P (fo)e = 5y 5 0ls (0o) 0

(if) From theorems 2.3 and 2.4(i) and (ii): A(6o) ~ Ar(60) ~ A(60) = K(6o) ~ LM (o).
- if 67 = /T, from theorem 2.1(i): VTS5 *30(60) ~ N(0, 1) — S~1/2(8y)c where ¢ =
[fy' 6—’71}9(70"—) 0] . Then the calculation is similar to (i).

067 86 007
-ifdr =Arandy € Im [%J;—”)J , from theorem 2.1(ii):
VTS G0(00) = 0p () = L) =05 (%),
Also, LM (o) > 0 as a quadratic form with a positive definite weighting matrix A(bp)

B 1
~if o7 = Apand v € I'm [6—”1;;;)] , from theorem 2.1(ii):

VTS 40(60) = N(0,1) — S~ 2(8y)c where ¢ = [O 7’%@]. Then the calculation is
similar to (i).

V] 3 ; i1 &
Note also that: v € I'm [%{g"—)} = M'y #0;and vy € Im [M] = M’y =0.

(iii) - From theorems 2.1 and 2.3, there is no distinction in the asymptotic behavior of
VTS:*$1(80) and Ar(6,) in cases where M << VT or A} >> /T. Hence, LM(6)
behaves similarly in cases (ii) and (iii).

-if 67 = /T, from theorems 2.1(1), 2.2(i) and 2.4(i), there is no distinction in the asymptotic
behavior of vVT'S; "% ¢.(66) and Ar(8o) in cases where 2. << /T or A% >> +/T. Hence,
K (o) behaves similarly as in the similar case in (ii).

-ifdr = Arandy € Im [%8(:_0)] , from theorem 2.4(iii) the asymptotic behavior of AT(BO)
is not clear. So we cannot conclude.

, L
-ifdr = Apand vy € Im [a—”13(:—°)] , from theorem 2.4(iii) and the comment following

it, Ar(6y) is not asymptotically full-column rank, hence not asymptotically equivalent to a
projection matrix of rank p. Ml
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1 Introduction

Providing reliable inference about the parameter of interest has always been a question of
interest in econometrics. Confidence regions represent a convenient way to withdraw such
information. For instance. these regions are built after inverting a Wald-type test statistic.
It simply means that one collects all the values of the parameter for which the test is not
significant. Under regularity conditions and smooth parameter functions. such confidence
regions arc bounded: intervals in the unidimensional case. and. more generally. ellipsoids.

Recently. interest has grown in providing (valid) inference when the identification of the pa-
rameter is not fully ensured. In this essay. we focus on the l[ollowing ratio of parameters
(3 ' % ). when the denominator (/4,) is close to singularity. We propose a new inference
method, the Modified-Wald procedure. This method is based on the Wald statistic. The key
idea consists in integrating the informational content of the null hypothesis of interest in the
computation of its metric. This correction, while preserving the computational tractability
of the method. allows for unbounded confidence regions when needed. Boundedness has
become an issue since Dufour (1997). In the context of local almost unidentification. Dufour
(1997) provides some results on the characterization of the confidence regions: under regu-
larity conditions. these regions should be unbounded with non-zero probability. In particular,
when identification fails, most Wald-type confidence sets have zero confidence level because
they are almost surely bounded. By contrast, inference methods based on the Likelihood-
ratio (LR) statistic do not encounter such problems.

One practical difficulty for applying LR statistics is that their calculations require both the
unconstrained and the constrained estimators. whereas Wald-type statistics only involve the
unconstrained one. This mainly explains the popularity of Wald-type inference methods,
despite some well-known and documented drawbacks. Our Modified-Wald procedure is
computationally friendly. just like the classic Wald method. and corrects for its lack of un-
boundedness. When identification fails at the frontier of the parameter space, in the spirit
of Dufour (1997). we show that the probability ol getting an unbounded confidence region
reaches the upper bound of Dufour (1997). When identification issues are (artificially) tied
to the sample size. in the spirit of the Pitman drifi. this probability depends on the rate of
convergence towards unidentification. For instance. with weak identification and a rate equal
the square-root of the sample size, this probability is non-zero but smaller than the upper
bound. Two applications help clarify these results: first, a simulation exercise is designed to
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compare the inference properties of the Wald and Modified-Wald procedures with a bidimen-
sional ratio, when identification fails at the frontier of the parameter space: second. the lincar
single-cquation instrumental variables regression model is considered, when the identitying
properties of the instruments may vary.

The remainder of this chapter is organized as follows: section 2 introduces our framework; in
section 3. the Modilied-Wald method is defined and its main properties are stated: in section
4, these methods and results are applied to (wo empirical econometric examples: a model-
free ratio of parameter and a single-equation lincar IV regression model: finally, section 5
concludes.

All the proofs and the figures are gathered in the appendix. We use the following notation
throughout the chapter: - stands tor the Kroneker product. Py = A(.V.1) "1 and \/, =

[, — Py fora full column rank (n. r)-matrix .1 (n > r) and the (1. ) identity matrix 7,,. —
indicates convergence in probability, and £ convergence in distribution.

2 Framework

Consider the {ollowing vector of parameters, ) = vecf 4y 4,|" where 3, is an invertible (r. r)-
matrix and 1, is a r-vector. We are interested in providing inference on the following ratio of
paramelers,
@y = 4" x 1y
(r.1) (ror) (r.1)
defined forall 0 € ©. © is an open subset of R? such that © ¢ {# & R? / det( 3;) # 0}, with
p=rir+1).

2.h

The transformation ¢:(.) forms a set of »* functionally independent constraints with 1 < » < p,
differentiable at all interior points of ©: the Jacobian (r. p)-matrix [Jv(#)/J¢] is assumed to
have full rank r. at lcast in an open neighborhood of ;.

"The operator vee(.) transforms a (m.n)-matrix into a (mn)-vector. The former is obtained afier stacking all
the columns of the matnix. For instance,

15 2
i A = ’ then reel M) =105 125
01
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More specifically. we are interested in building confidence regions lor the transformation ¢(.)
when 4, is (potentially) close to singularity (to be defined more precisely later). These regions
are defined as the set of the values ¢y € R" for which the null hypothesis Hy(wg) = (8 = 0y
cannot be rejected at some chosen level of confidence.

Inference is drawn from n observations of the random variable .X: it comes from a distri-
hution £ on some measurable space (Y. .4) indexed by the parameter # € ©. The data
generating process (DGP) is represented by the point 6, which is assumed to be an inner
point of the original parameter set.

Assumption 1. Given the observed data .« = (r - --.r,,) on the random variable X, 0, is an

asymptotically normal estimator of O an interior point of ©,
|, -
NG [0,, = ()(,] LN(0.5)

. . -~ 5
where the asymptotic variance of 0,,. ©y, is supposed to be known®.

The asymptotic normality of the estimator 1), is the only assumption we require here. Com-
monly. confidence regions are built after inverting a Wald-type statistic®. The associated
Wald-1ype conlfidence region is then defined as:

! q 9
CRyla) = { do f [..w,,} - u,} <, (0,) [u(a,,) . u,] < \;(,-)} (2.2)

where \}(r) denotes the (1 — a)-quantile of a Chi-square distribution with » degrees of
frecdom and X,,(6,,) is the estimated asymptotic variance of ¢(0, ) obtained by the delta-

method:
du(8,)

.00, = Zy

u'(f)
o

,
BT, (2.3)

The Wald statistic is natural and easy to implement since it does not involve the estimation
of the constrained model. or estimation under the null hypothesis H,. However, it (often)

"Note that the following theory is not affected if Xy is unknown but can be consistently estimated.

‘Note that the original Wald statistic (Wald (1949)) was defined for a parametric model M =
[/1r:0)]6 € ©} and using the Maximum Likelihood estimator. Wald-type statistics use any consistent and
asymptotically normal estimator of 6.
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yields to ellipsoidal confidence regions which are symmetric and bounded. Boundedness has
become a real issue since Dufour (1997). who shows the following necessary condition:

Theorem 2.1. (Necessity for Unboundedness from Dufour (1997))
When a locally almost unidentified parametric function has an unbounded range, under reg-
ularity conditions, any valid confidence set should have nonzero probability of being un-

bounded under any distribution compatible with the model.

A precise definition of locally almost unidentified is given in Dufour (1997). The idea is to
consider scries of parameters ¢, such that ) 6, € @V n; i) ©(6,) = vy: i) 0, converges 1o
a (discontinuity) point at the frontier of the parameter space. In such a case. note that a valid
confidence region C'R,. with level (1 — ) should be unbounded with probability as high as
(L —a)k

liminf Iy, o(0) = CR.| =1 ~a

"o~
By contrast. the Wald-type confidence region (2.2) does not generally satisfy the above nec-
essary condition. In general, £, (,,) is a symmetric positive definite matrix and docs not
depend on . In that case. C'Ryy(a) is a (bounded) ellipsoid. In particular, we can show that
even though.

Vhes By, (vd)e CRy(a)] Tl —a

we may have an invalid procedure in the sense that the infimum of its coverage probability is
null,
Y ’in(_f) Py, [0(0)y e CRy(a)] =0 (2.4

The need for unboundedness (with nonzero probability) is fairly natural. Let consider the fol-
lowing unidimensional ratio. +* = 4,/ 4,. The closer the true value of the denominator { 1, )
is to zero, the less informative the estimator { 4;,,. 1., is on the ratio 1; hence the larger the
associated confidence region should be. In the limit, when (.3, ) is arbitrary close to zero. the
confidence region should even become arbitrary large. Note that. inside the parameter space
O, there exists some parameter settings with arbitrary small | 4, 4|: allowing for unbounded
confidence regions is the only way to prevent (2.4) to happen. More intuitively. unbounded
regions should be permitted for settings where the denominator 4, is not significant.
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3 The Modified-Wald procedure

3.1 Definition

Explaining the failure of Wald-(type) procedures is not obvious. However, one could intu-
itively think that Wald statistics do not fully incorporate the information available from the
null hypothesis. We do not mean that constrained estimation should be considered here: this
would actually kill the computational advantage of our procedure. This is rather related to
what is known under the null hypothesis and what is not. or privileged directions in the pa-
rameter space. More precisely. the metric of the Wald statistic ¥, '(6) (see equation (2.3)) is
fixed with respect to the null hypothesis of interest: it is a function of the entire parameter #
and not of the parameter of interest «+(#). Practically, il we were testing /1y, © wv(0) = ",
the metric would remain numerically the same for any **. In some sense, the metric of the
Wald statistic is disconnected from the null hypothesis®. This motivates us to incorporate the
information of the null hypothesis in the calculation of this metric.

In general. () does not constitute a complete reparametrization of the problem (- < p). So,
onge cannot directly map ¢ into some function . Hence, we first need to complete this partial
reparametrization. Define the new p-vector of parameters as,
. v . o0t

0" = o with  Rank [W} =p 3.1
v(.) is a r-vector representing the constrained directions (known under /4,) and the (p — r)-
vector rec(f)) can be interpreted as the free directions (unknown under Hy). Basically. if we
were working in a parametric model. the initial model M = {f(.+10)|# = ©} is now replaced
by M = {f*(.:6")|0" € @} which is obtained after a legitimate change of parameter. Since
0* represents a legitimate reparametrization of the model. we now know that X,.(f/} can be
reexpressed as a function of ¢* only.

“This observation is refated to the work of Critchley. Marriott and Salmon (1996) in differential geometry.
They note that the Wald statistic is not a genuine geometrical object: it is neither the squared length of a vector
in a tangent space (since «(#) does not belong 1o the tangent space). nor the squared distance between two
pomts in a mamfold (since it uses a fixed metric. whereas the metric should i general vary with ). For an

introduction to these concepts, see Critchley er al. (1996) and for a more complete treatment see Amart (1990).
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The estimator &), of the vector #* naturally writes:

o= "
l‘l(‘( 7’1,,)

and its asymptolic variance is

S (01 = f)(),*,v’i)(;' ) o)) 32)
00 o SL0) Sw0) =
o A DO o DU (02)
with Zu(0)) = =5 S5
P (‘):*(3(,'(/,91,,) L dveed(3y,)
L0,) = 90 A 00
3, Yo d
S(00) = o ((}”)E”()l ur( Ii)
e o’ 2

At this stage. it is important to stress that the completion of ¢(f) is not unique. For instance.
we could decide to impose the first /- (constant) components evaluated at 8, to be orthogonal
to the (p — r) remaining ones with respect to the metric £,. As in Wald (1949). we could get
a block diagonal matrix for ¥y with ¥ ;. = (). Such a choice is always available, at lcast in a
neighborhood of #,. However. this is one choice among many and in the specific case ol the
ratio, it seems natural and more convenient to choose the reparametrization (3.1).

Now recall that. in a Wald statistic, a consistent estimator of the metric (or asymptotic vari-
ance) is only needed under /{;. We now cxploit the information of the null hypothesis to

replace ¢, by ¢, in the estimation of the metric:
V(. Ay,) isreplaced by N, (4. 4y,)

Definition 3.1. (Modified-Wald)
The Modified-Wald statistic is defined as follows:

-‘[”'n('»"()) =n [l 'n "ll] S, l(l'lh Tfln) [':u h "()]

where
Colwvo i) = -llnl ([=ed s L) S ([=uy 1] [r)l( ) (3.3)
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See the appendix for detailed calculations of £,

The Modified-Wald statistic M 117, () can actually be reexpressed as

' - Nt
MW, (vo) =n ( Foy — Hint ")) . ( —t '(,) 1] [r) S (I = l"(l) 1] Ir) ] ( oy — it '(l) (3.4)

To conclude, our convenient reparametrization enables us to separate the parameter space
into two subspaces: the first onc contains the r directions fived under the null hypothesis and
the second one collects the remaining free directions. This permits to naturally incorporate
the informational content of the null hypothesis in the estimation of the weighting matrix
and hence reduces the dimension of the nuisance parameters when calculating the metric.
Moreover, the Modified-Wald statistic (3.4) does not depend directly on the ratio. This will
lead to a valid test whatever the chosen asymptotic scenario. See section 4 lor some illus-
trations. Finally. the Modified-Wald procedure keeps the computational appeal of a classic
Wald procedure in the sense that constrained estimation is avoided.

3.2 Properties

This section collects the main thecoretical results of the essay. In particular, we show the
asymptotic equivalence between the Modified-Wald statistic and the Wald statistic. First. we
recall some definitions:

Definition 3.2. (Power function and Consistency)

Consider the following test, Iy : 0 € O(ug) vs Hy 1 0 € ©/O(vy) with Ovy) = {0 €
O/ () =y}

i) The power function of the test is the probability that the test correctly rejects the null hy-
pothesis Hy when the alternative H, is true.

i) ((14.2) in van der Vaart (1998)) A sequence of tests with power function @, (0) is asvimptot-

ically consistent at level o against the alternative v if the two properties below are satisfied:
() )" —=1v0eco/6(,

(2) limsup sup 7, (¢) < a
noex #-9(Ly

Theorem 3.1. (Asvmptotic Equivalence between Modified-Wald and Wald)
i) Under 11y, the Modified-Wald statistic and the Wald statistic are asymprtotically equiv-
alent.
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ii) Under a sequence of local alternatives Hyr : 0 € ©,(1o) with ©,(1) = {0 €
O / ¥(0) = 6o + v/5.} where «v is a fixed deterministic r-vector and §,, a deterministic
sequence such that §,, = oo, the Modified-Wald statistic and the Wald statistic are asymptot-
ically equivalent.

iii) Both associated tests are consistent.

From the above results, we can naturally define the Modified-Wald confidence region.

Corollary 3.2. (Confidence Region)
Under Hy : (0) = 1o, MW, (10) is distributed as a Chi-square with r degrees of freedom
and the associated confidence region with level (1 — ) is defined as:

CRy(a) = {0 /| MWa(to) < xa(r)}

where x%(r) denotes the (1 — «)-quantile of the Chi-square distribution with r degrees of
freedom.

We also show the validity of the Modified-Wald procedure.

Theorem 3.3. (Validity of Modified-Wald)
Jnf Py, [(0) € CRy] >0

The above result demonstrates the validity of the Modified-Wald procedure because, for
any true value of the parameter ; € O, the coverage probability is strictly positive. This is
especially true in a specific setting where the denominator gets arbitrary close to singularity.

The confidence region C' R, () defined in Corollary 3.2 can be expressed as follows:

CRy(a) = {Tﬁo ER" /n (ﬁzn - Blnﬁfo), [([=6 1 ® I) Zo (5 1] ® 1,)] !
X (an - Bhﬂ/’o) < Xi(r)} 3.5

The above expression (3.5) can be reinterpreted as the confidence region that would have
been obtained after inverting a classic Wald statistic, if performed on a linear equivalent
reformulation of the null hypothesis Hj : G — B1%6 = 0. This is actually known as the
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Fieller principle. This has been pointed out earlier by Gregory and Veall (1985): Wald
statistics are likely to be poorly approximated by standard asymptotic distributions if the
constraint function is nonlinear and nof constructed in the best way. Our context provides
a good illustration: performing Wald on Hj gives poor results whereas performing Wald on
Hj works just fine. Note that the Modified-Wald procedure is reliable in both cases.

The confidence region (3.5) is not a typical quadric region as obtained from a classic Wald
procedure. In general, it will not be possible to characterize the potential shapes of these
regions. The unidimensional case (r = 1) is treated analytically below and the bidimensional
(r = 2) is studied with Monte Carlo simulations in section 4.

In the unidimensional case, the above confidence region (3.5) can be rewritten as,

. 2
CRyfa) = {o /3 |1, - Xl

0'11:| - 2’(/)0B + C S 0} (36)

where B = 9,02, — 012x2(1)/n, C = P22, — omx2(1)/n and & = [0y5); ; is the (known)
asymptotic variance of [ﬁln ﬁZ,L]’ . In the unidimensional case, the confidence region is simply
a quadratic region. Hence, we can exhaustively describe its potential shapes:

i) an interval;

ii) the entire real line;

iii) an empty set;

iv) a disjoint union of two semi-intervals.

We can also calculate the probability of having an unbounded region. Recall that a quadratic
region like (3.6) is unbounded whenever the coefficient of 12 is negative.

Proposition 3.4. (Probability of an Unbounded Region)

/312 2 n—o00
n— <x.(1)] — 11—«
i

P (CRy(a) unbounded) = P

when the true (unknown) value of 3, is arbitrarily close to 0, that is when we consider se-
quences of true parameters converging to 0.

The region (3.5) is unbounded whenever we cannot reject the hypothesis 3; = 0. The above
probability converges to the upper bound of the necessary condition of Dufour (1997). Fi-
nally, note that the region (3.5) corresponds to the confidence region derived by Dufour
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3.3 An alternative interpretation

In this subsection. we attempt to reinterpret the rather imprecise statement when 3 is arbitrary
close 10 zero from equation (3.4). So far. in the spirit of Dufour (1997). we have considered
identification issues happening at the frontier of the parameter space. And we were able
o define a valid inference procedure, the Modified Wald test, associated with (potentially
unbounded) confidence regions. Now. we conncect the above (concrete) identification issue to
another (well-known) scenario where the parameter value is artificially linked to the sample
size (sce for instance Staiger and Stock (1997)). Following Antoine and Renault (2007). our
setup is reinterpreted as follows:

Assumption 2. (Reinterpretation of Assumption 1)

L

B R ‘. . : .
Vo ( T Lo > J*N(O.S,;) with 0 < XN#) < 1/2 and for some fixed matrix 1y,

.".Zn - ‘f‘_’ 0

This setup permits to recover a couple of interpretations of the literature on weak instruments:
i) when ’Eg(g,\(()) = 1/2. we have weak identification, as in Stock and Wright (2000): ii) when
0 < ’i)n(g,\(()‘) < 1/2. we have nearly-weak identification. as in Hahn and Kuersteiner (2002);
iii) and when (glel(f:;/\(()) = (). we have standard identilication.

The confidence region is the same as (3.6): only the interpretation of the behavior of the
parameter is altered. Let us now calculate the probability of getting an unbounded confidence

region:
P ”f:_lj’: <\ =P [\/ﬁ (/}m — ﬁ-’ﬂ.u) + AN g < ay VA1)
Since
ﬁ ( H — ”Tl(,,,ﬂ'w) = OP(U-
we get:

- Strong and Nearly-weak cases: 0 < lin(g < 1/2 P(CR(a) unbounded) =0

- Weuk case: ,1“£ =1/2 P(C' R, (o) unbounded) L1 oa

To conclude. in terms ol unbounded confidence region, the (artificial) weak identification

case replicates the behavior of the more concrete situation where we get arbitrary close to
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the frontier of the non-identification subset. To our knowledge. this is the first time such a
parallel is made.

4 (Nearly)-Weak Identification Applications

In this section. we apply the previous methods and results to (wo cconometric settings. First.
a simulation exercise is designed to compare the Wald and Modified-Wald procedures in
the bidimensional setting of section 3.2. The second application focuses on the well-known
lincar single-equation instrumental variables regression model.

4.1 Ratio of parameters

In the multidimensional case (+ > 1). the possible shapes of the confidence region (3.5)
are hard to list since it does not belong to any known class of regions. We then perform a
simulation cxercise in the bidimensional case (¢ = 2) to compare the Wald and Modified-
Wald procedures through averaged confidence regions (1o be defined) and power functions.

We consider the following random vector. as in assumption 1:
3 N d
\/ﬁ ("‘ ('[ I fzn] — "[ fo ():) = -/\f(()~ )

for some known positive-definite nonsingular matrix £; and e[ 3,4 Jag] = OO0 L 1 1]
where ) is a rcal number that depends on how close to singularity the matrix (4, ) is. Typi-
cally. we consider three cases of interest: H = 1: (.1 0.01.

Practically. we simulate a random sample of size n for the (6.1)-random vector 1ec( 1) and
we use the sample mean as a root » consistent estimator. We then use a bidimensional grid to
build a confidence region for the (2.1) ratio of parameter. « = 3, ' 4,. Comparing this region
to the one obtained by inverting the Wald-type statistic would be the result of one random
sample only. Hence. even though it would provide an easy way to compare visually the two
procedures. it might be the case that another sumple leads to a different region (different
shape and/or dilferent properties). This is the reason why we decide to produce averaged
confidence regions. or ACR. These regions are based on .}/ (usual) confidence regions. cach
of them built for M/ different samples: the ACR collects the points that appear in at least ¢%
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of the .M confidence regions. for some chosen ¢. ACR may have irregular shape but they
reflect more accurately what the procedure doces, hence permitting to compare reliably both
procedures. We consider here a sample of size 200 and 1000 replications. In addition. we also
provide some results on power [unctions. which are as well obtained through many different
samples.

First. we consider a benchmark case without identification issues where b = 1. The Wald
and Modified-Wald procedures perform pretty similarly. Sec figure (HI. 1) for the 85%-ACR
and figures (I11.6) and (111.7) for the power curves. respectively the Modified-Wald and Wald
procedures. The averaged confidence regions are bounded ellipsoid. relatively narrow and
roughly centered around the true parameter vy, = (1. 1). The power curves show a well
around the true parameter, where the power to reject the null falls below 10%. Everywhere
else. both methods have a power very close to 100%.

Second, we consider a case with mild identification issues where b = .1. The Wald and
Modified-Wald procedures do not yield anymore to similar conclusions. As for the ACR,
the Modified-Wald procedure still proposes a bounded cllipsoid but a lot larger than in the
previous case. See the 85%-ACR figure (111.2). Notice that Wald 85%-ACR is empty. In fact,
we have to go as low as ¢ = 1G% 1o get a non-empty region. See figure (I111.3) for the 15%-
ACR. The Wald procedure is pretty unstable since its output varies a lot from onc sample
to another. Moreover the scales of the regions are very different: the Wald procedure still
proposes some relatively narrow region while the Modified-Wald region has become pretty
large: this can be interpreted as a lack of information. As for the power curves, the Wald
procedure clearly over-rejects: its power does not go below 85%. This is of course directly
linked to the above averaged confidence region. In comparison. the Modified-Wald procedure
performs fairly well: it still presents the well-shape around the true value of the parameter.
with a power decreasing below 20%. Note that there is power in every direction. with a power
increasing above 90%. It is slightly asymmetric. with less power towards large values of the
first component of ¢ and low values of the second component of ¢*. Sce figures (I11.8) and
(111.9).

Finally. we consider a case with more serious identification issues where b = .01. Many of the
facts pointed out in the mild case of weak identification are now exaggerated. The Modified-
Wald procedure proposes an unbounded confidence region: the outside of an hyperboloid
which still contains the true value of the parameter. The unhoundedness of the confidence
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region allows us to conclude that the sample information is not sufficient to provide sharp
inference on the parameter of interest. See figure (111.4) for the 75%-ACR. As expected after
the above case with mild identification issues. the Wald 75%-ACR is empty. We have to go
as low as ¢ = 2% to get a non-cmpty Wald ACR. See figure (I11.3) for the 1%-ACR. As
lor the power curves. again the Wald procedure cannot discriminate much: the power does
not go below 97%. The Modified-Wald procedure proposes a butterfly-shape power, which
is natural after the hyperbolic unbounded confidence region: the power is close to 100%
outside the hyperbola (butterfly-shape) and it falls below 15% inside. Again. the shape of the
power function should be understood as a lack of sample information to discriminate among
different subsets of parameter values. See figures (111.10) and (1L 11).

4.2 Application to the Single-equation IV model

Consider the following just-identified structural model:

y = | v+ u

(n. 1) lnor B .

(i .l, n ‘f] (r.1) (n ’1) “h
} = X m + 1

(n.r) (n.r)y (r.r) (n.r)

where Y is an endogenous variable, X' a strictly exogenous (instrumental) variable, ¢ an
unknown coefficients vector and [T an unknown coefficients matrix and [ V7]" a matrix of

homoscedastic errors.

We are interested in providing inference on the structural parameter ¢+, which is identifiable
if and only if the rank of the matrix IT is full (Ranh T1 = r). A case of interest appears when
IT is (potentially) close to singularity. In the spirit of Staiger and Stock (1997). and more
recently Hahn and Kuersteiner (2002). the matrix IT is (artificially) linked to the sample size
n as follows:

1= : where (' is a fixed deterministic matrix of rank rand 0 < A\ < 1/2.
I

This framework has been referred o as valid instruments when A = 0 (IT is a full-rank
deterministic matrix). o nearly-weak instruments when 0 < X\ < 1/2. 10 weak instruments

when A = 1,2 and 0 imvalid instruments when [ = 0. Hence. this setting considers a
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sequence of models in which the moment condition £{u,Z.) depends on the sample size
n. However, this is just a convenient (artificial) device. This is related to the concept of
drifting DGP uscd to study the local asymptotic power of tests (see for instance Davidson
and MacKinnon (1993)).

The classical hypothesis associated to the study of the model (4.1) are presented next.
Assumption 3.

Ty Tt

i) l[u. V' V] Los with % = (
n

svimmetric and positive definite
Ty Ty

. . P , L .
i)y —N'X = Q svmmetric and positive definite
n

- [ oo -
iif) T.\’[u V] = W= ey, vxy] where voclex, vy ] ~ N(0.E 5 Q)
n
The well-known two-step least squares (2-SLS) estimator of « (in our just-identified case) is
defined as: ¢, = (X'Y) ' X7y, We now recall a useful result [rom Hahn and Kuersteiner
(2002). 1t justifies that the general setting of section 3 applies and, in particular, that Assump-
tion 1 is satisfied.

Proposition 4.1. (Haln and Kuersteiner (2002))
i)ForO < \ < 1/2,
TR [:r,, 1‘,,] -F;N(().S)

YN A XY
where S =a, x |plim (—) ([)[Illl —> (/)lim —)
n n n

ii) For A\ =12,

\
vec ol - Sulen))

Oy + oyt ) Q

! ¥
Ty + l'()”\ (Y + Uy Oy + 2{T--\ thy

ﬂ

where ¥ =

/\S

iii) With invalid instruments, the above result remains true after replacing C' by the null

natrix.
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Definition 4.3. (Modified-Wald)
In the context of model (4.1), the Modified-Wald statistic writes:
!
MW, (eo) =n [u,, — ('(,] L, (vn) ! [1 [ 1-”]
withS, (o) = (y — Yuoo) (y = Yeg) x V(X)) XYY

We can now state the main result of this section:

Theorem 4.2. (Modified-Wald)
Under 1y and some regularity conditions, N1V, (vy) is asvmptotically distributed as a Chi-

square with r degrees of freedom.

It is important to note that the statistic A/117,(vy) can be rewritten as tollows,
(Yoo NN XY N (y — Youy)
(!/ — 1 'n)'(!/ - Yl.-‘n)
The above expression does not depend on ( X'Y") !, This implies that the Modified-Wald pro-

MV, (vy) = n

cedure is well defined for any asymptotic scenario. strong. nearly-weak or weak instruments.
This is another sharp contrast with the Wald procedure.

The confidence region is then defined as:

C'H,/.(H') = {l/’() / n [l]/',, — l/'()] \:;1(‘/"()-/;1) [L n “():l S \:’\(’)}

where \*(r) denotes the (1 — «)-quantile of a Chi-square distribution with  degrees of
freedom. The following useflul reformulation of the confidence region,

CRu(0) = {wo/ e)Y AY vy = 2004y + ' Ay <0} with A= Py —\2(r) 1, /n

emphasizes it is a (classic) quadric confidence region. As the multidimensional extension
of the quadratic case, the region C'R,(«v) is unbounded if and only if the matrix Y71} is
negative definite. Hence. we have®:

P(CR () unbounded) = P [(PX N\l <= 0]

SRecall that for for any 2 (r.or-matrices A/ and AL, we have:

My >> Mo iff o' Myu < u'Mau forany r-vector 1
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Other methods have yiclded to a similar structure of the confidence region but with a different
matrix .1. Here are some examples:

Method Matrix A
Modified Wald Py —\3(r) 1, /n
Anderson-Rubin Py — Mo\2(r) /(0 —7)

Wang and Zivot (GMMO0) PyY (Y'PeY) WPy = LE(r)/n
Wang and Zivot (LR-LIML) | [, — MLIN L) exp\A(r) 'n] My

It is difficult to preciscly compare their associated confidence regions. However, the
Modified-Wald confidence region allows for some natural and intuitive additional results:

Proposition 4.3. (Unbounded Confidence Region in the Unidimensional case)

In the unidimensional case (1 = 1), we have:

i) ForO< X< 1/2: P(C'R,(a) unbounded) == 0
i) For\=1/2: P(CR,(a) unboundcd) == 1 — a with @ > «

ity With unidentification:  P(C'R, () unbounded) =31 — o

With strong identification, the confidence region is almost surely bounded. In the opposite
scenario, with unidentification, the probability of an unbounded confidence region converges
towards the upper bound derived by Dufour (1997) in his necessary condition (see also sec-
tion 2). Now. in the intermediate case of weak identification, this probability tends to some
real number between 0 and the upper bound. which depends on the asymptotic value of
XY/ /i See also appendix for further details. It is also interesting to point out that, in this
casc. nearly-weak identification behaves similarly to strong identification: in some sense.
necarly-weak identification is not weak enough to lead to unbounded confidence regions. This
result can actually be extended to the multidimensional case:

Proposition 4.4. (Unbounded Confidence Region in the Multidimensional case)
For) = A< 1/2: P(C'R (o) unbounded) == 0

The difference between the strong and the nearly-weak identification cases is the rate of
the above convergence: with strong instruments. the rate corresponds to the fastest available
one. (1/n): with nearly-weak instruments, this rate is only (1/n' %) and decreases with

weaker instruments,
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Finally, we might also be interested in providing inference on a subvector of the structural
parameter . Without loss of gencrality. we suppose that inference is provided about the first
m components of ¢ denoted as ,, ¢ . The classical maintained assumption in the literature is
to supposc that the remaining components (the ones not involved in H,) and denoted as ., 17)
are strongly identified. In such a context. we can show that all the previous results remain
valid when , ' arc simply replaced by their respective consistent estimators.

5 Conclusion

In this chapter. we proposed a new inference method. the Modified-Wald procedure. to pro-
vide reliable inference about a multidimensional ratio of parameters. This new method is
based on the Wald statistic and shows the same computational tractability. In addition, it
provides unbounded confidence regions when the identification fails, as suggested by Dufour
(1997). The key idea consists in integrating the informational content of the null hypothesis
of interest to compute its metric.

We have shown that the Modified-Wald statistic is asymptotically equivalent to the Wald
statistic. The associated confidence region with level o is unbounded with a probability as
high as (1-a), the upper bound suggested in Dufour (1997). These results were applied to
two examples. In the first one, a simulation exercise is designed to compare the properties
of the Wald and Modified-Wald procedures with a bidimensional ratio. Generally speaking,
the Modified-Wald behaves pretty well. When there is no identification issue. the confidence
region is as narrow as the Wald one (recall that Wald is perfectly valid in such a case). And.
when there is a serious case of identification issues. the Modified-Wald conlidence region
is unbounded, contrary to the (invalid) Wald one which remains narrow and bounded. Our
method is then able to detect insufficient sample information to provide sharp inference.
The second application focuses on the well-known linear single-cquation instrumental vari-
ables regression model. In this context, the identification issues are modeled after artificially
linking the parameter valuc to the sample size. We can distinguish between three cases of
interest depending on how fast identification is lost: i) with strong and nearly-weak identifi-
cation. the confidence region is almost surely bounded: ii) with unidentification, it is asymp-
totically unbounded with a probability equal to the upper bound: iii) with weak identification.
it is asymptotically unbounded with a smaller probability.



94

These results are promising because they build up a connection between the identification loss
at the frontier of the parameter space and its (artificial) econometric modelization through the
sample size device.
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Appendix

Proofs of the main results

Proof of Equation (3.3) (Asymptotic Variance of the Ratio):

From equation (2.3),

: (6, . O (0,

So we only need to calculate:

oy(0) _ _ oy(6) :[ op(6) 3¢(9)]
g dvec|f [ dvec(B) 0p;

It is well known that:
oY(0)

_ 1
op;
To dertve the second part of the calculation, we first recall some useful formulae®:
N OvecBTY) v o aet
I’) 3vec(ﬁ1)’ - (ﬁl ) ®ﬁl
-1
i) ag; =7 1% Br!  where t is a scalar

i) Br'fe =107 B2 = vec(I,B7 ' B2) = (B ® I )vec(B; ")

We can then derive:

-1 —1 -1
gﬁf&?ﬁ = 8gi)ce(cﬁ(lﬁ§’2) (B, ® If)aal;ii((ﬁﬁll)')
= —(B® L)) ® 6
= (BB ® B
= —(W®p")

N
dvec|By Bo)
The commas emphasize the partitioned structure of the matrix. This leads to the expected
result. l

8See for instance Abadir and Magnus (2005) chapter 13.

=[-yv'es", All=-ves', 1067 =[-¢, ]®p"

Hence,
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Proof of Theorem 3.1 (Asymptotic Equivalence between Modified-Wald and Wald).
i) and ii) Recall the following,

Wn =n (16271 - Blnd)0>/ A_l(qﬁn) (,6.2n - Bln"pO)
MWn = n (13211 - Bln"pﬂ)/A_l(wO) (BZH - Bln"po)
with A(W) = (=4’ 1] ® I,) Ss ((—4' 1] ® I,)'. Since v/ (ﬁz,t - Bmwo) = Op(1), it is
enough to show that:
AT) — A7) D0 & AT ) [Alp) = Ah)] A7 (o) S0
& A(dn) — Alo) 0
& (I — ) 012 1) S (o — ) 0] 1) L0
< (Yo — zbn)' 0] £ 0 since ¥y positive definite
The last convergence result is true both under Hy and a sequence of local alternatives.

iii) The test Hy : 1(8) = 1o vs ¥(0) # 1o can be rewritten as, Ho(1)g) : 6 € O(1h) vs 0 €
/6 (o) where B(1ho) = {0 € © / Y(0) = vo}. We need to verify the two statements of
definition 3.2ii).

- Proof of (1) (from definition 3.2 ii)):

V€O —06B(1h) m(0) =P, (n("/;n - 1/10)'2,;1(1/)0, Bin) (W, — o) > Xi(’"))
Note that:

(i — %0y (o, Bun) (B = %) = (Wb = $(0))'Sy (o, Bun) (b = 9(0)) }(0)
+ 2n(0(0) — Yo)'E, ' (Yo, Bun) (i —$(0)) }(b)
+ n(y(0) — %o)'Z (%,ﬂln)( (6) — o)

(@) = Vit —(0))'Ey (o, Brn)Vr(th — (8)) > 2'S 2

where under the data generating process with parameter § (denoted as DGP(8)), Z ~
N(0, £,) and Xy (2o, Bin) 5 Xy (o, B10) = S a symmetric positive definite matrix.

(b) = ”(1/1(9) - T/)o)lzi/_,l(iﬁo, Bln)(¢71 - '(/)(0) + Tj)n - 71)0)
= Va(8) — %0) Ty (Yo, Bin) V(s — %(6) + 9 — 1h0)
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and under DGP(0)
%" (o, Buu)v/7 (= $(0) + 1 — ) & 571 [Z + VA ($(0) — o))

and /n (¥(0) — o) =3 +o0

n—oQ

Hence we deduce that, 7,(§) — 1

- Proof of (2) (from definition 3.2 ii)):
V6 € ©(t) and fixed n, m,(0) = Py (MW, ((0)) > x2(r))

Since under Hy, MW,,(¥(9)) 4c (r) (where C(r) denotes the Chi-square distribution with
r degrees of freedom) and using the continuity of x — Py(MW,(¥(0)) < z) at all z, we
deduce that 7,,(§) = o. W

Proof of Theorem 3.3 (Validity of Modified-Wald).
Recall the following,

Py, ((0) € CRy(a))
PBO (n[B2n - Bln"/)], [([_1/}/ 1] ® Ir)zﬂ([_l/)l 1] ® 11')/]_1 [:éfln - Bm@b] S Xi(?"))

with v/nfvec(Bin — B1.0) (Ban — Ba0)]' 4 N(0, ).
Define the following matrix V = [([—¢' 1] ® I)Zg([—%' 1] ® I.)'] '. We deduce that:

n(IBZn - ﬁAlnw)IV[BZn - Bln"/)] ~ NC (7‘, )‘)

where NC(r, A) denotes the noncentral Chi-square distribution with r degrees of freedom
and noncentrality parameter A. Here, A = || 520 — G1,0%||v-

Then, inf Py, ((6) € CRy(a)) = jinf Po, (NC(r, [|B20 — Bro¥ll”) < xa(r)) >0

foce

because [|Bz0 — Auowlly = Boll3 x 1o — %% is bounded. M

Proof of Proposition 3.4 (Probability of an Unbounded Region):
Directly follows from the asymptotic normality of ;. M

Proof of Theorem 4.2 (Modified-Wald):
i) Consider the case 0 < A < 1/2, using proposition 4.1, we only need to prove that X (1)
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Now we have:

plo2 (y =1 '»'n)”(!/ - L'n)[

(y=Yu)(y—Yueo) [ /Y'XY /XX ' /XY
n T n nioA

We now recall a useful lemma from Hahn and Kuersteiner (2002):

Y X(XN'X) Ly ]!

Tolew) =

Lemma A. (Halin and Kuersteiner (2002))
For()< A< 1/2

I , 1 L
o ,\‘\) ~ QC +ml‘.\‘\ :(2C+OP(I), 3 ,\>

For A =1/2,
. ’
=XV~ QC + vy = QC + Ol

From this lemma. X'Y/n! > ~ QC' + Op(1/n'/**). By hypothesis. X'\ /n 2 Q.

Hence: |
DAY AGAY XYY p
oo et o '
(u‘ '\) ( n ) (n' ’\) e

a, can be consistently estimated under [{y by u{vg) u(dy)/n where w(e) = y — Y. So

¥, (L) is a consistent estimator of £, under 1.

ii) Consider the case A = 1/2: we can directly applied the general theory of Modified-Wald
statistic, by noting that the variance is:

SI_V(U()) = Su(lz'(h }ln) = (}u(l'ﬂ) X 111111(2 ’lnl

where 3,, = XY/ with Jirece( 3, — 4 a) S N(D.ov @ Q).
Also,

. ' L -1y

au (i) = (y—"Yuy) (y—Yey) and Q= N'X

n 1
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The Modificd-Wald statistic can then be rewritten as:

MV, () = n [L'—L'U] v l(U“) [l.'—l'()]
SOTX) XYy

auliy)

= n [(.\")’) X7y — c,'(,] (XY) Py - r'.;]
() X(N'N) "Xu(uy)
n

w(eg) uley)
d

= Z!Z, ~ Chi-square(r)

with Z, = Q' "2y,
Proof of Propositions 4.3 and 4.4 (Unbounded Confidence Region).
P(CR (a) unbounded) = POY'AY << 0) = P (Y'X(X'X) "V'Y << G (m)Y7Y)

YN /NN Y L
nl=a n nlA << \a I),IZ 2\

As mentioned in the previous proof, the LHS converges in probability towards some sym-
metric positive definite matrix C'Q)C. The RHS:

L [(NC LY (NC
n2o2N T A nA nA

i) Consider the case 0 = A < [ /2,

P(CR.(a) unbounded) = P

[EAAY 1 NV 1 V¢ 1 V'Y
= ("—C : ("t ———C —
n n + pdEeA T 12 + nifzA L -'C + nl=2
= O : +0 ! +0 !
Py P72 P 2A
Ly

because by assumption we have X/ X /n L. XV =0y =0p(1). V"V /0 L 0and
0<A<1/2.
i1) Consider A = 1/2:
Y (PX - \—(')1> Y ech o 1Py <c Wy
n n

o VX XN AY . ‘2(_))")'
Vil " v Nl
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Recall that we have: Y
- NG 4 N(QC,0v ® Q)

and (X'X)/n A (Q symmetric positive definite.

Note that we also have:
Y'Y
n

= rl IX'XI+ V' XI+ I'X'V + V'V]
n
1] ,X'X , VX XV

- [C O+ O

— 04+04+0+4+ o0y

n

+vv]

because again X'V/\/n <, N(0,0v ® Q) and so X'V /n £o.
In the unidimensional case, we have:

N
2 P(NC(1,8) < v4(1))

= l-a<l-«

Xv\? 1 >
P (CRy(a) unbounded) = P << X Y) X vv vy < \;(U)
AX

" n

where § represents the noncentrality parameter: its explicit formula is not needed here. The
last equality comes from the comparison of a non-central Chi-square distribution with a (cen-
tral) Chi-square quantile. The non-centrality parameter which shifts the distribution towards
the right is due to X'Y/\/n <5 N(QC, 0vQ).

iii) Consider the invalid instruments case: in the unidimensional case, we can produce a
similar analysis,

Xv\? )
P(CRy(e) unbounded) = P (( \/%/> X <y i vy S \;(U)

5 P(C(1) < (1)

= l—-«

where the last equality comes from the legitimate comparison of a (central) Chi-square distri-

bution with a (central) Chi-square quantile. The non-centrality parameter disappears because
we have X'Y/ /11 -5 N(0,0vQ). B
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FigureIII.1: 85%-Averaged Confidence Region when b=1 using Modified-Wald (+) and Wald

(o) procedures. Both regions are really similar and the 2 symbols cannot really be differenti-
ated.
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Figure IIL.2: 85%-Averaged Confidence Region when b=.1 using Modified-Wald (+). The
ACR is empty for Wald.
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Figure III.3: 15%-Averaged Confidence Region when b=.1 using Modified-Wald and Wald
procedures. The black area (including the white spots) represents the ACR for Modified-
Wald. The white spots (inside the black area) represent the ACR for Wald.



103

W———T— =y T T T T = T 0 o S
: ModiSed~Waid| !
] (]
(]
15}
1}
1 1
] 1
]
w0, ;
) ]
] ]
] ]
5} !
1 ]
[ !
[} []
1
oll ]
t +
] ]
' 1}
'=: )
]
1 ]
[} ]
]
.IoI i
i 1
)
15! !
I
1
L 1 1 1 1 1 1 1 1 ]
“3000 -800 -600 ~400 700 [ 200 am €00 800 1000

Figure II1.4: 75%-Averaged Confidence Region when b=.01 using Modified-Wald (+). The
ACR is empty for Wald.
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Figure IIL.5: 1%-Averaged Confidence Region when b=.01 using Modified-Wald and Wald
procedures. The black area (including the white spots) represents the ACR for Modified-
Wald. The white spots (inside the black area) represent the ACR for Wald.
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Figure 111.6: Power function when b=1 using Modified-Wald procedure.
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Figure I11.7: Power function when b=1 using Wald-type procedurc.
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Figure 111.9: Power function when b=.1 using Wald-type procedure.
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Figure I11.11: Power function when b=.01 using Wald-type procedure.



Chapitre IV

Portfolio Selection with Estimation Risk:
a Test Based Approach
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1 Introduction

An optimal portfolio is the best allocation of funds across available assets!. Of course. what
best means depends on the performance measure we use. Markowitz (1959) offers the classic
definition of portfolio efficiency: a portfolio is efficient if it has the largest expected return for
a given level of risk. For a given level of risk-aversion. this mean-variance efficiency provides
a convenient single-period framework and remains among the most important benchmark
models used by practitioners nowadays (see Meucci (2005)). In practice, however. its associ-
ated optimal investment rule depends on unknown parameters. the mean and the variance of
returns distribution. To get a feasible version of this optimal rule. Markowitz (1959) simply
replaces the unknown parameters by some estimates. Applying such a plug-in method gives
rise to several issues. First the estimation risk is overlooked: in practice samples are finite,
hence estimates are different from their respective true values. This new source of risk even
appears in well-specified parametric models and adds to the traditional financial risk>. Sec-
ond, is this feasible rule optimal? A (suboptimal} two-step approach can only he motivated
when one belicves that the estimated rule is not too far [rom the true optimal one.

In sharp contrast with existing literature, we focus on a different measure of performance. We
borrow from practitioners and evaluate different funds allocations through their likelihood of
beating a benchmark. Several industries are actually interested in such a goal: for instance.
institutional money managers, and among others the defined benefits pension plans and the
endowment plans are devoted to guarantee the (chosen) minimal performance. For a given
benchmark. we deduce a closed-form and workable optimal investment rule which naturally
incorporates the estimation risk of the mean, and does not depend on any nuisance parameter.

Hence it is directly applicable without requiring any additional (suboptimal) plug-in step.

More precisely, our portfolio selection method is based on a one-sided test ensuring that
the portfolio performance is above a given threshold: then we obtain the optimal allocation
from the maximization of the associated p-value. The specilic design of the p-value selection
method has three advantages. First. the test is a natural and valid statistical too! to compare
random quantities (here the estimated portfolio performance). Hence the uncertainty of the

problem is directly accounted for: we will sce that this is crucial to get an exact optimal

"Kan and Zhou (2006) provide an extensive study of the financial consequences of ignoring estimation risk
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investment rule. Second, maximizing the p-value increases the likelihood of our objective of
interest (here to beat the chosen benchmark). Finally the optimal investment rule belongs to
the class of two-fund investment rules. similar to the (feasible) optimal mean-variance rule:
investing in the (sample) tangency portfolio and in the riskless asset®. This investment rule
corresponds to a mean-variance investor with a corrected, sumple-dependent risk-aversion
parameter. While existing literature recommends to increase the risk-aversion parameter to
account for estimation risk, we advocate more flexibility: we may indeed decrease the risk-
aversion parameter depending on the realized sample.

Our work relates to the literature as follows. First, estimation risk in portfolio allocation
has been known for a while. One of the carliest and maybe most natural solution appears
to be Bayesian. The Bayesian approach is based on the predictive distribution introduced
by Zellner and Chetty (1965) under which expectations are now considered. It provides a
general framework where estimation risk is naturally accounted for when considering the
parameters as random variables: the posterior distribution captures their possible outcomes
and is combined to a prior model to derive the predictive distribution. The study by Bawa,
Brown and Klein (1979) surveys the early literature. and is then followed by many others. It is
not always clear how the prior model can be chosen, cven though it is based on the investor's
Kknowledge and experience: different priors may lead to contrastive investment strategies. We
only consider non-informative prior models.

More recently. some authors decided to directly focus on the expected financial loss when
the optimal investment rule is replaced by some feasible one. Duc to the complexity of the
problem, ter Horst, de Roon and Werker (2006) and Kan and Zhou (2006) restrict their atten-
tion to the class of two-lund investment rules (similar to the feasible optimal mean-variance
rule). While ter Horst ef al. (2006) ignore the estimation risk of the variance. Kan and Khou
(2006) (under the normality assumption of the returns) provide a closed-lorm solution to the
simplified problem. However, the optimal rule depends on nuisance parameters. So. in order
to implement this optimal strategy. one needs to add a suboptimal plug-in step*. The mean-

“Finis specific cla;\ain\ estment rules has already been considered in the literature: see ter Horst. de Roon
and Werker (2006) and Kan and Zhou (2006). However, here it directly follows from our portfolio selection
method (ust like the mean-variance procedure ) and not from a simplify ing assumption.

Ot course. by construction. Kan and Zhou (20061 theoretical two-fund rule outperforms any p-value invest-

ment rute. However nothing is guaranteed when one considers ats feasible version as shown in our simulation

CACTCISe
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variance framework scems to be limited. As shown by Kan and Zhou (2006). who were able
to exhibit the optimal two-fund rule while accounting for estimation risk. the outcome is not
completely satisfactory as the optimal rule is unfeasible. This more general issue arises when
one maximizes some expected quantity. This motivates our approach: we take some distance
with the traditional minimization of an expected financial loss function and maximize the
likelihood of some desirable event®.

Finally. previous studies have already focused on defeating a benchmark: see for instance
Stutzer (2003) and references therein. However. to our knowledge, this has not yet been
related to estimation risk. Moreover. these studies work in a continuous time framework: this

is definitely not our interest here.

To conclude. a simple Monte-Carlo study involving five risky assets (calibrated from monthly
unhedged returns of stock indices for the G5 countries) is used to compare eleven investment
strategies. These are compared with respect to their out-of-sample expected performances as
well as with respect to their maintcnance costs and stability over some investment horizon.
The p-value selection method performs surprisingly well considering it is not specifically
designed to maximize the mean-variance performance. Moreover, it avoids extreme positions
in the assets and remains relatively stable over time.

The remainder of the chapter is organized as follows. Section 2 solves the classical mean-
variance problem. The p-value sclection method is introduced in section 3. Section 4 reviews
some competing investment strategies. Section 5 presents the results of a simple simulation
study calibrated from real data. Section 6 concludes.

The details of the calculations are gathered in the appendix.

2 C(Classical Mean-Variance problem

This scction discusses the mean-variance problem and introduces estimation risk. Consider

an investor who chooses a portfolio among .V financial risky assets and the riskless asset. At

“Others have also departed from the classical mean-variance approach: Garlappi. Uppal and Wang (2006)
propose a sequential max-min method where the worst performance (when the unknown parameters fali into
confidence interval) is maximized with respect to the portfolio weights: Harvey. Liechty. Liechty and Muller
120041 adopt a Bayesian setting under the assumption that the returns fotlow a skew-normal distribution.



time /. denote respectively by Ry = (ryy -+ ry¢ ) and Ry, the rates of returns on the N risky
assets and the riskless asset. The vector of excess returns is defined as R, = 17, — Ryt where
¢ is the conformable vector of ones. The following standard assumption is maintained on the
probability distribution of excess returns F;:

Assumption 1. The vector of excess returns Iy is independent and identically distributed

over time. In addition, Ry is normally distributed with mean ju, and variance ¥,

At time t. the portfolio is built after investing a vector f into the risky assets and (1 — é'1) in
the riskless asset. The portfolio excess return is r/'(f) = #'R,. and its associated mean and

variance are then respectively.
pp =0 and o = 00

The vector of weights # defines the investment rule which maximizes the following mean-
variance objective function:

ad By - e 1T } .{f’ _Q,'v}
111’.’1.\{1: ri(0)] 2\ w [r, M,y = nax Y 1y _2() o
where 7 is the coefficient ol relative risk-aversion. This leads to the following optimal vector
of weights:

i
{).'-I\ ’IS” ll.lll 2.1)

In practice. the parameters yi; and ¥, are unknown: therefore the optimal mean-variance
investment rule 0y is unfeasible and cannot be calculated in practice. Markowitz (1959)
simply replaces the unknown parameters by some estimates. This casily provides a feasible
version of the above optimal rule. More precisely, for some estimates ;i and £ of the unknown
parameters jr; and ¥y, one delines the feasible (random) investment rule and its associated
(random) performance as:

1 1
Oy = ,—S Yoo oand Qfan) = II”E yL (2.2)
i

where ;2 and ¥ are. for instance. the maximum likelihood estimators,

r -
1 L1 A ,
j = T E R, and ¥ = 7 lgl(lf, — (R =) (2.3)

t=1
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Applying this plug-in method comes at a price. First. estimation risk is overlooked. In prac-
tice, the sample size is only I (finite), hence y and ¥ arc different from their respective true
values. Sccond, precisely because the feasibie rule 4,y is numerically dilferent from the
true optimal one. its optimality cannot be guaranteed. In the next section, we propose a port-
folio selection method that incorporates estimation risk and does not require any additional
(suboptimal) step.

3 Maximization of the p-value

This section introduces the p-value selection method and derives the associated optimal in-
vestment rule for a given benchmark «. In a second step. the question of the existence of an
optimal benchmark is raised.

3.1 Definition and Optimal investment rule

As cmphasized carlier, this chapter takes some distance with the classical mean-variance
framework and the common idea of minimizing some (expected) financial risk [unction.
More precisely. in sharp contrast with existing literature. we do not maximize any usual mea-
sure of portfolio performance. We rather compare available funds allocations through their
likelihood of beating the chosen benchmark. Of course. our portfolio sclection method cru-
cially depends on the benchmark. Reasonable benchmark choices yield to more conservative
objective functions than the classic maximization of the (mean-variance) performance. Our
investor is more conservative in the sense that she is not interested in achieving the maximal
performance at every period: she rather selects the investment rule that maximizes the like-
lihood of defeating the benchmark. This selection method directly accounts for the random
nature ofl the problem while being of primary concern for several industries. like institutional
moncy managers.

Our portfolio selection method is based on a one-sided test that the chosen measurce of port-
folio performance is above the given threshold. Obviously. two unknowns remain here: first
the choice of the performance measure and second the threshold. As pointed out carlier.

Markowitz’s mean-variance cfficiency is a convenient framework privileged by practitioners.
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Accordingly. we consider the following measure of portfolio performance:

)
5P 3.1)

Qlup.or) = jip —

where (j¢p. 07,) are respectively the first two moments of the probability distribution of the
portfolio. This measure of performance has mainly been chosen for comparison purposes:
our p-value selection method works with any other measure ()(.)®. Not only the test is the
natural statistical tool to compare random guantities and incorporate estimation risk, but also
it directly focuses on the well-defined objective for a portfolio manager. to beat the perfor-
mance of a benchmark index.

Formally, the null hypothesis of interest is stated as follows:
Hy: Qlup.op) > ¢ 3.2)

where ¢ is the (deterministic) performance of the (chosen) benchmark index. To construct the
associated test statistic, some assumptions are needed on the probability distribution of the
returns. Consider an investor at time 7' who has observed the .\ risky asset returns from time
t=1wl.

Assumption 2. The vectors of the N financial excess returns of interest at time t, R, =

[Fig 7] for1=1 10 T, are identically distributed and serially independent. More formally,

1) Ry~ F(jin. L) Vt=1---T where F is some smooth distribution function
whose first two moments exist

2) Ry and Ry are independent ¥ (+.1') € {1.2.--- T}/ t #+

We consider from now on the portfolio excess return 77 (#) = #'R,. Note that this only
shifts the deterministic benchmark «: only strictly positive henchmarks ¢ are now considered.
A null benchmark corresponds to the minimal acceptable performance. guaranteed when
always investing in the riskless asset. The measure of portfolio performance is then written
as:

Qe(0) = Eif(0) = 2V ar(7/'(0))

“Any performance measure works under minor assumption like assumption 2. In particular. we could think
of meorporating higher moments to account for effects of skewness. Rurtosis... This only affects the tractabihity
of the optimal investment rule when one wants 10 account for the associated estimation risk. This is indeed

related to the tasymptotic) distribution of the estimated portfolio performance (that may need to be simulated)
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and is estimated by™:

Opl0) =0'fi — g()’\:/) (3.3)
1 < L _
with i = = ; Biand £= ;(H, — )Ry =) (3.4)

The application of the vectorial central limit thecorem yields the asymptotic distribution of the
estimated performance: T [Q,»(()) — Qp((})] is asymptotically normally distributed with
mean 0 and variance Var(Qp(6)). Then, for an estimator S of its standard deviation, the test
statistic and associated p-value are defined as lollows:

s SHE

and p-value(f) —/ Jr(w)du

o0

~Qp(0) —¢
- SNVT

with f7 the density function of a student random variable with (7" — 1) degrees of frecdom.

S1(6)

Hence the maximization problem is finally stated as:
m{;’lx[p-vuluc(())] = max [SH())
A

The p-value selection method can be linked to the well-known financial risk mecasure. the
Valuc-at-Risk (VaR hereafter). Bricfly the VaR at level o represents an estimate of the level
ol loss on a portfolio which is expected to be equaled or exceeded with the given, small
probability «: risk regulations usually dictates the choice of this level of confidence. Our
selection method rather guarantees the chosen minimal level of performance with the highest
level of confidence. We think that choosing the benchmark is more inline with institutional

moncy managers concerns. See the appendix for an extended discussion.

Obviously. cstimation risk is related to the estimation of both the mean and the variance of
the portfolio. If it is commonly accepted that the estimation crror on the sample mean is
much larger than on the sample variance, recent studies suggest that it might not always be
the case: see c.g. Cho (2003) and Kan and Zhou (2006). The latter authors conclude that
this is only acceptable when .N/7T" is small: in particular there is an interactive effect between
both estimation errors. Here. to simplify the problem (and get an interpretable closed-form

investment rule). we ignore the estimation risk of the variance®. The simplified maximization

"The procedure remains similar for any other set of consistent estimates. We could even think of the sclection
problem as starting right here. with a set of estimates given by a practitioner.
"Note that. in our simulation study in section 5. the ratio N7 s kept small.
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problem is now:

0p(c) = arg max

0'i— (n/2)(0'50) — ¢
(9/)’39)1/2/\/7

where i and ¥ have been defined in equation (3.4).

Definition 3.1. Lef i and & respectively be estimators of the first two moments of the distri-
bution of the excess returns as in (3.4). Then, for a given (deterministic) benchmark c, the
optimal p-value investment rule is defined as:

2nc 1. -
0c=1/,, %! 3.5
b(c) S H 3.5)

Several comments are worth mentioning. First, the optimal p-value rule 8,(c) is random and

depends on the (chosen) estimates of the mean and variance of the excess returns distribution.
However, this random rule (3.5) is the genuine rule that solves our optimization problem.
In other words, our workable rule does not come from an additional (suboptimal) plug-in
step (see also section 4). The deep reason for this exactness lies in the definition of our
p-value selection method: the randomness of the problem precisely defines our selection
procedure. Without uncertainty, there would not be any purpose to run a test and therefore
no p-value maximization. Second, the rule (3.5) is a two-fund investment rule, just like the
(feasible) mean-variance optimization problem Oy (see equation (2.2)): both rules yield
to the same repartition of wealth among the different financial risky assets. This allows us
to reinterpret the p-value investor in terms of mean-variance behavior with a corrected risk-
aversion parameter in section 4. Finally, note that the optimal p-value investment rule works
for a given c. The next section naturally asks whether there exists an optimal benchmark or
not.

3.2 An optimal choice for the benchmark?

The above selection method depends on the choice of the benchmark c: it represents the min-
imal level of portfolio performance the investor wants to guarantee with the highest possible
level of confidence. In some sense, this benchmark is not a choice variable and we cannot
really talk about its optimality. However, it is helpful to exhibit the optimal benchmark for
comparison purposes.
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We maximize the expected performance of the portfolio associated with the optimal p-value
rule for a given henchmark:

max £ [Qp(0,(c))]

>0

The optimal benchmark ¢* reads:

)

(=)

1 )
=—x 5 where 17 = /S (3.6)

*

The optimal benchmark ¢* is clearly unfeasible since it depends on the unknown parameters
Ji0 and X,°. Interestingly, without estimation risk (or assuming we know 1, and ;). we can
check that the associated investment rule is numerically equal to the true mean-variance rule,

which is also the optimal rule in absence of estimation risk. Sce also section 4.3.

4 Theoretical comparison with existing literature

This scction is dedicated to the comparison of competing investiment strategies after introduc-
ing the useful concept of corrected risk-aversion parameter. already considered in ter Horst
et al. (2006).

4.1 Overview of some competing selection methods

This subsection briefly introduces some of the existing investment rules. In particular, we
emphasize the ditferent methodologics to account for estimation risk'".

o Mean-variance (Markowitz (1959)) (see section 2): this rule selects the portfolio with
the maximal mean-variance performance. The optimal allocation is unfeasible: it depends on
the first two unknown moments of the excess returns distribution. A simple variation, where
soime estimates (sec equation (2.3)) of the unknowns are plugged into the formula, becomes
feasible. The estimation risk is then ignored. This rule is given by:

1
O =-X '
U

UThis is not really surprising since we maximize the expected performance for a given ¢.
'See also Kan and Zhou (2006).
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o Bayesian (Bawa. Brown and Klein (1979)): the Bayesian approach maximizes the ex-
pected performance of the portfolio where the expectation is computed according to the pre-
dictive distribution of the market. In turn, this predictive distribution is built from a combina-
tion ol historical observations and the prior. Estimation risk is made explicit by considering
the unknown parameters as random variables. described by the posterior distribution. How-
ever. it is not always clear how the prior can be chosen. Under the standard assumption of
diffuse priors on both the mean and the variance of the excess returns, it can be shown that
the Bayesian optimal portfolio weights are:

1 /T—-N -2
g=-—--—1}%"
b I]( r+1 ) .

e ter Horst, de Roon and Werker (2006): the portlolio weights are chosen to minimize
the risk function based on the loss of replacing the true (unknown) mean of the portfolio by
its sample estimate. They restrict their attention to the class of two-fund rules and ignore the
estimation risk of the variance:

(}HRH' - i A—-, A l/I with 5% = ﬂ":; lfl()
I \STT T 1 0=
The resulting optimal rule #y gy is unfeasible: ~2 is then replaced by its sample counterpart
~2 = % Y. Again, optimality is not guaranteed.

o Kun and Zhou (2006): they extend the previous selection method to incorporate the
estimation risk of the variance:

”I\'Z_r=l (7 =i} '_ DT - N —1) X — - hX] ;g}
I (T —2) T+ N/T

Just like Oy < the resulting optimal rule 8, z» is unfeasible: sce appendix B for its feasible
version. They also explore the class ol three-fund investment rules by considering the sample
global mean-variance portfolio. The associated optimal rule 0, z+ is unfeasible as well: sce
also appendix B for additional details.

e Garlappi. Uppal and Wang (2006): they consider a model that allows for multi priors
and where the investor is averse to ambiguity. The standard mean-variance framework is
modified by adding a preliminary minimization step. A constraint restricts the expected

return to fall into a confidence interval around its estimated value and recognizes the
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existence of estimation risk. The minimization over the possible expected returns subject to
this constraint reflects the investor’s aversion to ambiguity. While this approach has a solid
axiomatic foundation. its sequentiality cannot be directly liked to an optimality criterion.
The optimal rule ¢,y is defined in appendix B.

The following theoretical rankings have been derived by Kan and Zhou (2006):
Onzs > Ozr >>0p >> Oy o Ongzo >> Oppye and Opzy > i

where > stands for "outperforms in terms of mean-variance performance”. We argue that
this ranking might not be guaranteed in practice (even in simple simulation frameworks where
the returns are normally distributed) when O ey« @1 70 and 0y, 4 are replaced by their fea-
sible counterparts. Kan and Zhou (2006) alrcady mentioned this issue when comparing their
(leasible) optimal two-fund rule to the one of Garlappi et al.. See also section 5.

4.2 Corrected risk-aversion parameter

Despite their differences. most of the selection methods described above yield an optimal
rule within the class of two-fund rules. just like the (feasible) Markowitz's mean-variance
approach',

According to these rules. the same repartition of wealth among the dilferent risky financial
assets is recommended: their differences lie in the share of wealth invested in risky assets
relative 10 the riskless asset. The (feasible) mean-variance rule can be reinterpreted as a
function of the risk-aversion parameter 1

l ul
(}\[\ (l]) =-¥ l/I
"
Note that [S l[l] defines how wealth is aflocated among risky assets while 1 weights the
share of wealth assigned to the risky assets: the greater 4. the lower the (global) share to the
risky asscts.

"This is espectally surprising for our p-value selection method sinee it does not come from any simphfying
assumption (as for 04, 72 and #yy ).
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We can then write cach two-fund rule as a mean-variance rule with a corrected risk aversion
parameter. In fact. any two-fund rule vector of weights €. can be rewritten as follows:

0, =01 () forsome >0 D

Therefore. the behavior of any two-fund investor can be characterized in terms of a mean-
variance associated to a new (corrected) risk-aversion parameter 7. The following corrected
risk-aversion parameters can be deduced for the two-fund rules discussed above!*:

. V4 N/T
pw = )5
!
_ S+ N/T T(T - 2)
Nnz: = 1] > X >
0 d (T—=N—-JI(T-N=-1)
T+1
= 'IT N _ 9
f/p(") =

4.3 Comparison of the reinterpreted investment rules

Our original mean-variance investor always becomes more risk-averse when applying any of
the competing rules we consider here. However, this is not true when she applies the p-value
rules: her risk-aversion parameter does not always increasc.

On one hand. the investors respectively associated with the three competing rules Og. 0511t
and 0y, z+ arc always more risk-averse than the mean-variance investor. Morcover the follow-
ing ranking can cven be observed:

Nz = Nurpw > 1 and 5 =y

Recall that #1; 2 + is nothing but 0+ where the additional estimation risk coming from the
variance is accounted for. So one could be tempted to conclude that increasing the risk-

aversion parameter is a sensible way to account for estimation risk.

“We could also consider #¢ ¢y as a iwo-fund rule with a corrected risk-aversion parameter that can be
infinite with non-zero probability.
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On the other hand. the p-value corrected risk-aversion linearly depends on the original risk-
aversion parameter: hence. the p-value investor might be characterized as a mean-variance
investor cither by increasing or decreasing the risk-aversion 5. The corrected risk-aversion
parameter can actually be rewritten as follows:

Qo
nlel = rlrv —Q( )

.
where Qifly;, ) is the performance associated to the feasible mean-variance investment rule
(see equation (2.2)). Depending on the choice of the benchmark «. one falls into one of the
following cases:

(i) ife= Q) then i, =1
iy ife > Q((;,m-) then 77, <
(i) ifc < Q(Byp) then i, > 1
Intuitively. this additional flexibility might be profitable. especially because it can be linked
to the actual sample realizations. Consider an investor who chooses a moderate benchmark
c. Assume now that. by chance. she laces a good financial environment (or a sample associ-
ated to a relatively high performance): likely ¢ < Q(#1 ) and so ij, > s Overall. the part
invested in the risky assets is going to be lower. The profitable financial conditions offer addi-
tional safety to the p-value investor: it is more likely to beat the target. On the contrary, with
a not so good financial environment, one may expect the investor to become less risk-averse,
still hoping to defeat the benchmark. Intuitively, it makes sense to incorporate the sample-
information into the decision process. The p-value selection method might also overcome the
well-known problem of the mean-variance investment rule which takes extreme positions.
The next section further investigates this.

5 Monte-Carlo study

This section presents the results of a simple Monte-Carlo study. The simulation exercise
involves five risky assets and the riskiess asset. The risky returns follow a multivariate normal
distribution and the true model parameters are calibrated from monthly unhedged returns of
stock indices for the G5 countries over the period January 1974 to December 1998. The G5



121
stock indices are the MSCI indices for France, Germany. Japan, the UK and the US as done.
for instance. in ter Horst ef al. (2006). Table 1V.1 contains the summary statistics.

A financial strategy is considered over an investment horizon T),. More precisely. at time
t = 1 investors have access to T (past) historical observations of the financial returns. These
are used to estimate the unknown parameters (typically j1; and ) required to evaluate their
investment strategy. The induced portfolio is hold for one period until ¢ = 2, whereas the
investment strategy is reevaluated using again the 7" most recent observations to build the
estimators. A new portfolio is constructed, and so on until Tj,.

We compare cleven investment strategies around two objects of interest for portfolio man-
agers. First, we compare their respective performance over the investment horizon. The per-
formance is evaluated through the expected (one-period) mean-variunce performance. Sec-
ond, we compare the stability of the investment rules as measured by the transaction costs
incurred to reallocate the portfolio at cach period.

We consider the following investment rules: (1) the mean-variance optimal rule in absence of
uncertainty ¢/y,y: (11) the feasible counterpart of (1) #1412 (2) the optimal two-fund rule 0 74t
(20) the feasible counterpart of (2) #; z4; (3) the optimal two-fund rule when the variance is
known @g s (31) the feasible counterpart of (3) fypu: (4) the Bayesian rule with diffuse
prior 5. (5) the sequential min-max rule f; -2 (6) the optimal three-fund rule 6 2,: (6f)
the feasible counterpart of (6) # z,: (7) the p-value rule for four different benchmarks. In
this convenient Monte-Carlo setup, the benchmarks can be evaluated directly with respect
to the maximal performance Q(#,,-}. Typically. we consider here ¢ = 1Q(0y4-): ¢y =
SOy ) ¢ = 9Oy ) and ¢ the optimal benchmark (according to section 3.2) which
is evaluated by simulation for cach size of the rolling window (see table IV.2). In practice,
onc can think of at least two ways to get a convenient benchmark: « might be a numecrical
target that has been decided by the board of directors: ¢ can also be based on the historical
performance of some benchmark index.

We choose 1o set the risk-aversion parameter 1 equal to 5. For cach portfolio rule ., defined
by the vector of weights 0, the associated (one-period) expected performance is evaluated as
follows'*:

EQW)) = E(0pe) ~ LE(0,540,) 5.1

"*Note that to simplify the notations we do not make explicit its dependence to the date of the investment



122

where the true moments iy and ¥, are known (but only at this stage!) in our convenient
Monte-Carlo framework: this helps isolate the elfects of estimation risk.

Most of the above rules lead to a random vector of weights .. Hence. this is not always
possible to obtain a closed-form solution for the expected performance. If so. the performance
is evaluated by averaging over many replications ol the experiment. This is the casc for the
rules (20). (31). (5). (6f) and (7). For the remaining rules. expected performances are formally
provided in appendix B.

Table 1V.3 provides the expected performances (in percentages per month) associated with
every rule for several sample sizes of the rolling window used to calculate the estimators.
Generally speaking, things get better when the sample size increases: i) the performance of
cach investment rule gets closer to the true optimal one Q{04 ): ii) the feasible rules get
closer to their theoretical counterparts - see also table 1V.4: iii) finally, the estimation risk
coming from the variance matters less when T increases. There is an additional loss of 15%
per month when using @y iy instead of 0z, for T = 120 and it drops to less than 1% when
T = 240.

Figure IV.1 provides a visual comparison of the performances of all the feasible rules, as a
function of the rolling window size. The dominance of the feasible three-fund rule is obvious.
Hence. diversification appears to matter quite a bit when accounting for estimation risk. The
p-value with a medium benchmark performs fairly well.

Figure 1V.2 provides the same information for the p-value rules compared to their assoctated
target. Note first that the rank of the expected performances is preserved: a low target is asso-
ciated to a lower expected performance. Then, except for the highest target (chosen as 90%
of the maximal theoretical performance). the minimal target is always ensured and indeed
outperformed.

The performance of the p-value investment rule is positively surprising. Recall that com-
pared to most of its competitors, it does not maximize the mean-variance performance. Of
course, its performance crucially depends on the benchmark™. However. for quite a wide
range of potential benchmarks (¢; = .035 to ¢y — 313 percentages per month) the p-value
performs quite well: the medium benchmark even outpertforms @ 4 when 17 — 00. It clearly

outperforms the mean-variance. the Bayesian and the min-max scquential investment rules.

We now compare the stability of the portfolio rules via the transaction costs incurred to real-

HSimulations with wireasonable targets. both very low and lugh. confirm this. They are not reported here.



123

locate the portfolio at cach period. This cost is the averaged amount (in arbitrary units) payed
by the investor to modify her positions. The arbitrary cost is the same for cach risky asset.
More precisely. for each rule - defined by the vector of weights 6,, at date {. the maintenance
cost is defined as follows:

T, 1 MO[T1
i
Com E Y Wy =0ile| ~ 30 [ D 1o — [ (5.2)
t=1 T I ]
where: = [1 1 --+ 1| and \/ is the number of replications.

Table IV.5 collects the average transaction costs for cach rule, over an investment horizon
T, = 00 with several rolling window sizes and 3/ = 50000 replications. Even though the
transaction costs are calculated in (5.2) in a relatively basic and crude way. several comments
are worth mentioning.

First. generally speaking. the transaction costs decrease when the size of the rolling window
increases: the estimators naturally become more accurate and stable when the sample size
increases, so do the financial positions. Only the most economical rule (f¢q-1i-) does not
satisfy this. The reason comes from its definition. Contrary to any other investment rule,
Oc;iw has a nonzero probability of entirely investing in the riskiree asset: this mechanically
lowers its maintenance cost. Note that when the sample increases (and hence the estimators
can be trusted more). the GUW-investor has higher transaction costs. meaning that she invests
more in the risky assets.

The true (unfeasible) rules (9 zs. Oprpyy . and 0 73) tend to be more economical than their
associated feasible counterparts. When the sample size increases. these rules. as well as
most of the remaining ones. get closer to cach others: this has alrecady been noticed with the
expected performance.

The p-value rules are naturally ranked as a function of their associated benchmark. More
precisely. the lowest target ¢ yields a more economical rule (¢, ). In order 1o fulfill her
objective. this investor does not need to invest as much in the risky assets.

Finally the feasible rules can be ranked from the most economical as follows (the ranking
does not depend on the size of the sample used to produce the estimators):

Oeon >> 0,(c1) >> 0p(c2) ~ Oz >> O0pz0 >> 0,(cs) ~ Oy > 0p == hp

where > stands for "more economical” and ~ for "economically equivalent”.



6 Conclusion

In this chapter we propose a new way to account for estimation risk when selecting the op-
timal portfolio. In sharp contrast with existing literature. the optimal portfolio is not defincd
as the one maximizing some mean-variance performance: we consider here a more conser-
vative definition of optimality which focuses on guaranteeing some minimal performance.
More precisely. our portfolio selection method is bused on a one-sided test ensuring that the
portfolio performance is above a given threshold. The optimal weights are then obtained
from the maximization of the p-value associated to the above test. The test provides an inte-
grated method to account for estimation risk. Moreover, after neglecting the estimation risk
of the sample variance. it leads to a closed-form investment rule which can be used without
requiring any additional (suboptimal) step.

Of course the performance of the p-value investment rule (which is not designed or meant
to achieve the maximal performance) depends on the chosen benchmark «. However. as il-
lustrated in our simple Monte-Carlo simulation study where we consider a wide range of
benchmarks. the overall performance is quite satisfactory. In particular, it performs pretty
well for relatively small samples (we believe mainly because it does not require an addi-
tional suboptimal plug-in step) and outperforms reasonable choices of targets. We find these

preliminary results really encouraging.

The great advantage ol the simple framework we consider here consists in providing closed-
form optimal investment rules, interpretable in terms of mean-variance behavior. Compared
to competing two-fund rules (e.g. Kan and Zhou (2006) and ter Horst. de Roon and Werker
(2006)). we have shown that this is not always an increase of the original risk-aversion pa-
rameter that works to account for estimation risk.

For future research. several directions might be worth examining. First. one could extend our
selection method to random targets. This would permit to track the performance of bench-
mark indices. rather than numbers that may not always be inline with the financial environ-
ment. Sccond. considering that we generally do better than the feasible optimal two-fund
rule and the very good results of the feasible three-fund rule. we may wonder how the p-
value selection method, adapted to consider three-fund investment rules. would perform: as
suggested by Kan and Zhou (2006). even more than three assets may help. Finally, recent
papers have considered the related issue of model uncertainty. In particular. Cavadini. Shuclz
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and Trojani (2001) extend the study of ter Horst, de Roon and Werker (2006) to incorporate
model risk: they use robust inference methods @ la Huber. or local deviations to the chosen
initial distribution. Of course. the interpretability of the investment rules is likely the price to
pay to consider these extensions.
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Appendix

Analogy with the Value-at-Risk

The Value-at-Risk (VaR) is a well-known financial risk measure summarizing the worst ex-
pected loss the investor is ready to accept. More precisely. the choice of u level of confidence
(1 =« is associated 1o an a-quantile or Va R(n). When X represents the financial return of
interest assumed normally distributed with mean ¢ and variance o2, we have:

PN <—VuR,) =0 & P (‘\ L ”) =0
(22

aT

~VaR, —p
bl — ) =na
o

where @(.] is the cumulative distribution function of a standard gaussian random variable.
So.

—VaR, —p — 3 ()

s VaR,=p+od ()

PN < ~VaR,)) =a
Reasonable values of o are small (and for sure < 0.5), so @ (o) < 0.

Additional results on other investment rules

These calculations were derived in Kan and Zhou (2006).

e Two-lund rule of Kan and Zhou:

. _1[ (T—A‘—U(T—x—n) )}
I\zz—'—l < (I —2) (7._,_*_!\,/,[, S

with ~* = /'S Yi. Kan and Zhou (2006) recommend the following feasible rule 0, . where

- % is replaced hy

, (T— ~\'_2).'_' N . 2(_2)\’/2(1+,:I2)—('F—‘.’)/'.’
z T TBos i (N2 (T — N)/2)




with =* = 'S i and B,(a.b) is the incomplete beta function
B.(u.b) = / [T § T L
JU0

o Three-fund rule of Kan and Zhou:

Oy l'-) SN .\.__-rT 1
[t = - | X + | —— ol
KZ3 ) [(L‘_, T X_.-T) I (l Tr N F) iy /}

with
ASNRYT
Hy Y
 (T—N—d\ (T-N-1
= () ()
= (=) S (e — )

Kan and Zhou (2006) recommend the following feasible rule (),\ 73 where g1, and ¢ are
respectively replaced by:

o
= AR
o T=N-De (V-1 N )Y | 42y (T
r T By gy (N = 1)/2(T = N +1)/2)

¢ Scquential min-max of Garlappi. Uppal and Wang:

T-1g -

L

Ocrw = I—](l

_ 22y12
where d = { L= (/%) with ¢= NF ()/(T-N)

if >
0 if Ar<e
where F, ! . is the inversc of the cumulative distribution function of a central F-distribution
with [ N. T — ') degrees of freedom and p is a probability. We use p = .99 as suggested in
Garlappi ¢t al. (20006).

e Expeccted performances of the investiment rules considered in section 5. See also Kan
and Zhou (2006) for additional details.



(1) Parameter certainty optimal: E, = ~%/(2n).
(1) Feasible counterpart of (1):

o NT(T = 2)
Uy (T N-O)T-N=-2(T—-N—1)

o T _ T(T - 2)
with l‘l = (m) |:—)_ (T_‘\' _ l)('[" — N l)

(2) Optimal 2-fund rule:

L2 T N —. N L2
E.,=—><(r, DT -N—1) L
Ty (T=2)(T-N-2) 2+ N/ T

(2D Feasible counterpart of (2): E,; must be evaluated by simulation.
(3) Optimal 2-fund rule with known variance:
7? -+ T 5 (T+ N)YT-2)

E,=1 2
ST EINT TN 2| T T-N-DT-N_1

(30) Feasible counterpart of (3): L3y must be evaluated by simulation.
(4) Bayesian with difluse priors:

s NT(T =2)(T - N —2)
My T+ AT =N = 1)(T =N 1)

I'll ll")= E
T | (T+ 1T =N =D(T-N-4)

(5) Uncertainty aversion rule: £, must be evaluated by simulation.
(6) Optimal 3-fund rule:

T, T(T=2)(T-N -2 ]

ST =N=1)(T=N=1) NIT

T (T-(T-N-2 .,_’__(‘,’-’)(.?f)

7 e

E(i

(61 Feasible counterpart of (6): [,y must be evaluated by simulation.
(7) P-value maximization given ¢: I () must be evaluated by simulation.
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Proofs of the main results

Proof of equation (3.5) 6,(c):
The first order conditions can be reinterpreted as a function of the (feasible) vector of the
mean-variance weights Oy defined in equation (2.2) as follows:

. —  0a— (n/2)(0.36,) —c.
(G — 156,),/0:56, — 2£ (1/2)020) — e

V0,58,

& [—n%6, - 050, ¥, + 229,, =0

& fi- 056, - 0;: E_:i:e,, =0

P g ) — 0?52_0:9,, -0

o X0y = [0552;; + g] 6 (A1)

Now for a given threshold ¢, we can always define a constant real number k. such that:

00 —
koxn =20 " (A.2)
0,20,
Then, substituting (A.2) into (A.1) yields to:
X Opy = Ic+l xnx6, & 6, = ! 12‘1" (A.3)
n MV — C 2 n r P — k‘c + 1/277 .

If I consider @y as a function of 77 such that 6y = (£'R)/n and 6, as a function of 7
(where 8, is the weighting vector maximizing the p-value of the test with a parameter 7 of
risk-aversion), then I get:

A _ ) 3 1
91—"(77) = Omv (77) with 7 =7 x (kc +

5) (A4)

The interpretation of 7} as a corrected parameter of risk aversion is valid if and only if &k, +
1/2 > 0. This result may appear a bit ad hoc at first because k. depends on the unknown



130

vector of weights . But from equation (A.2). we are actually able to deduce its explicit
expression as a function of known quantities only:

(A2) = 05 —c=0,50,x k. <y

Then after replacing 6, by its expression (A.3), we get:

= (ko4 1/2) = ’75” x \Lﬁ
Proof of equation (3.6) «":
Q) = ();,(4-)[1(,— _l—_)]()l',(c)fl,()r;((') = ﬂ/l’): Yo - %/7'.‘: ey

02
where ~* = ;'S ' We then maximize it with respect to ¢
uu‘\(.)xE Qrf,())]

The associated first order conditions are:

L
1 [T TS VRENT 1 |:

E = E - = = 5
\/2("'} ( Vo2 3 ‘ -27/ : [I_‘: ([!’E '-‘::n}: ‘Il)]'

The associated optimal vector of weights is the following:

<

E([:J !m>
oyl 1 l\1|

R S U A N T
‘I: ([A’S 'S::E 'll)l /-I.’,] !

52

0,(c") =

Note in particular that if j7) and ¥, were known, we would get A,(¢*) = By, which corre-
sponds to the best portfolio rule in absence of estimation risk.
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Mean | Standard deviation L300 390 511 456

France | 0.014 0.069 "’l o ﬂ)m '.{'I_’

Germany | 0.013 0.059 B,

and Py = 1 3120224

Japan | 0.011 0.067 U

UK | 0015 0.073 ..)1 '
USA | 0.012 0.044

Table IV.1: Summary statistics and matrix of correlations for the MSCI of GS countrics over
the period January 1974 to December 1998.

Size of the rolling window T |
60 120 180 240 300
Optimal benchmark «* | 0.0765 0.1415 0.1840 0.2124 ().232L

Table [V.2: Optimal benchmark ¢* (in percentages per month) for several sample sizes of
the rolling window used to calculate the estimators of the first two moments of the portfolio
distribution. ¢ has been evaluated by simulation with A/ = 50000 replications.
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Rule Sizc of the rolling window T

60 120 180 240 300
Gy 0.3503  0.3503 0.3503 0.3503 0.3503
() Oy -0.8977 -0.1667 0.0256 0.1146 0.1648
(2) Ok z2 0.0929 0.1518 0.1888 0.2141 0.2326
Q2H* Oz, | -0.0046  0.1033 0.1510 0.1832 0.2067
3)  Ouyme | 00741 0.1418 0.1816 0.2084 0.2279
30O* Oppw | -0.2577  0.0518 0.1371 0.1813 0.2090
4 g 0.0028 0.0014 0.0010 0.0007 0.0006
3Y* Ogrn | 00036 00121 0.0223 0.0356 0.0511
(6)  Onzy | 02827 03007 03074 03113 03140
ONH* Orzy | 00266 01770 0.2274 0.2530 0.2683
(7Y B,(cr) | 00835 0.1167 0.1333 0.1439 0.1509
(1 0,(e2) | 0.0690 0.1545 0.1949 0.2204 0.2374
(" 0,(¢4) | -0.0050  0.1190 0.1761 0.2117 0.2352
(7" 0,(¢*) | 0.0933 0.1564 0.1950 0.2223 0.2417

Table 1V.3: Expected performances (in percentages per month) for several sample sizes of
the rolling window used 1o calculate the required cstimators of the first two moments of
the portfolio distribution. A star (*) identifies a rule whose expected performance has been
evaluated through a simulation with 3/ = 50000 replications. For 0 2, and 0 24 we follow
the recommendations of Kan and Zhou (2006). for O¢; v we follow Garlappi et al. (2006).
The benchmarks are chosen as ¢; = 0.3503. ¢, = 1750 and ¢y = .3153: for the optimal ¢*.
see table [V.2.
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T 60 120 180 240 300
Oz | 1050 (101.3) | 32.0 (70.5) | 20.0 (56.9) | 144 (47.7) | 1.1 (41.0)
Oy | 4478 (173.6) | 63.5 (852) | 245 (60.9) | 13.0 (48.2) | 83 (40.3)
Onza 90.6  (92.4) | 41.1 (49.5)  26.0 (35.1)  18.7 (27.8) 145 (23.4)

Table IV.4: Expected performance losses (in percentages per month) when using the feasible

rule instead of its theoretical counterpart. For convenience, we also report in parentheses the

loss of using the feasible rule instead of the true optimal one 3y

Table 1V.5: Average transaction costs over an investment horizon 13, = G0.

Rule Size of the rolling window T
60 120 180 240 300
(0 Oy 0 0 0 0 0
(10 Oy | 279694 126632 8.1790 6.0430 4.7878
2y Oz 6.5508 5.1686 4.2363 3.5860 3.1047
(20 Opzy | 11.3447  6.5516 4.8417 3.9102 3.3040
3y Ouyry | 82777  5.7838 4.5618 3.7894 3.2443
(3O Oy | 18.5680  8.8222 5.9800 4.5882 3.7469
4) g 243013 11.8256 7.8175 5.8424  4.6600
5 Oean 0.5518 0.3340 0.6264 0.6942 0.7478
() Oz 3.8310  2.0374 14739 1.2097 1.0583
(6) Oxzy | 127672 6.4304 43444 33113 2.6818
(7)  Op{cy) | 46841 27357 19583 1.5330 1.2595
(7 0,(cs) | 104739 61172 4.3789 3.4278 2.8162
(7Y O,(cy) | 140521 82071 5.8749 4.5989 3.7784
(7Y Op(c*) | 69220 54983 44881 3.7747 3.2447

We consider

several rolling window sizes (1o evaluate the estimators of the first two moment of the distri-

butions of the returns) and A/ = 50000 replications.
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Conclusion générale

Dans cette thése, nous avons étudié des contextes d’application, en particulier dans le do-
maine de 1’économie financiére, ou le point de vue asymptotique traditionnel pouvait étre
trompeur. Chacun des quatre essai a alors proposé une méthode pour affiner les approxima-
tions asymptotiques en présence d’échantillons d’observations, toujours finis en pratique.

Dans le premier essai, nous avons proposé un cadre de travail général, dans un contexte
GMM, afin de tenir compte d’instruments potentiellement faibles. En contraste avec la litté-
rature existante, la faiblesse a directement été mise en relation avec les conditions de moment
(a travers les instruments) et plus seulement avec les paramétres. Plus précisément, nous
avons considéré deux groupes de conditions de moment : le groupe standard, associé au taux
de convergence usuel /T et Ie groupe faible, associé 4 un taux de convergence plus lent A7
Ce cadre garantit la convergence des estimateurs GMM de tous les paramétres, mais a des
taux possiblement plus lents que d’habitude. De plus, nous avons identifié et estimé des di-
rections dans ’espace des paramétres, qui convergent i la vitesse standard +/7. Par ailleurs,
nous avons également caractérisé la validité des approches de test standard, comme les tests
de Wald et GMM-LM. De tels résultats sont d’un intérét pratique certain, puisque la connais-
sance du taux de convergence lent n’est pas requise.

La simulation d’un mod¢le d’équilibre général CCAPM a révélé que les estimateurs GMM
convergeaient tous. De plus, dans certaines configurations des valeurs des paramétres, leurs
taux de convergence apparaissaient plus lents que le traditionnel /T, tandis qu’une combi-
naison linéaire des paramétres structurels était estimée au taux standard. Dans les modéles
plus sophistiqués que le CCAPM (par exemple, les modéles avec préférence Epstein-Zin, for-
mation d’habitude ou encore évaluation d’options), la distinction entre directions fortement
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identifiées dans 1’espace des paramétres et directions faiblement identifiées peut également
compléter notre interprétation économique du modéele.

Afin de simplifier les notations et 1’exposition, nous avons choisi de nous concentrer ici sur
deux groupes de conditions de moment, seulement. L’extension vers de multiples groupes,
et donc différents degrés de faiblesse, est naturelle : pensons, par exemple, a un praticien qui
utiliserait des instruments de différentes qualités informationnelles. Un autre document de
travail (Antoine et Renault (2007)), en préparation, considére ce probléme plus spécifique-
ment. Toutefois, aucune application reliée a des problémes d’identification n’y est envisagée ;
ce point de vue est spécifique a cet essai.

Dans le deuxiéme essai, nous avons réalisé une étude comparative de puissance entre le test
standard GMM-LM et sa correction proposée par Kleibergen (2005). Nous avons montré
que cette correction avait des conséquences asymptotiques en présence de problémes d’iden-
tification : en particulier lorsque des instruments de qualité hétérogéne sont utilisés. Nous
recommandons donc I’utilisation du cadre de travail développé dans le chapitre 1. Il n’a
pas beaucoup de conséquences en termes de spécification des problémes d’identification. De
plus, non seulement, il donne accés aux procédures de test standard, mais il permet aussi
d’identifier les directions dans I’espace des paramétres contre lesquelles les tests ont de la
puissance.

En ce qui concerne les tests sur des sous-vecteurs des paramétres, la supériorité du cadre
de travail du chapitre 1 est claire. En particulier, la reparamétrisation permet d’identifier les
directions pour lesquelles le test GMM-LM standard s’applique directement. Aucune hy-
pothése supplémentaire sur les parameétres non-testés n’est nécessaire. Pour finir, des trans-
formations (non-linéaires) générales des parameétres peuvent également &tre testées dans ce
contexte. Ceci n’est pas évoqué dans Kleibergen (2005).

Dans le troisiéme essai, nous avons proposé une nouvelle méthode d’inférence, la procé-
dure Modified-Wald, afin de fournir de ’inférence fiable sur un ratio de paramétres multi-
dimensionnel. Cette nouvelle méthode est basée sur la statistique de Wald et démontre la
méme commodité computationnelle. En plus, elle est associée a des régions de confiance
non bornées lorsque I’identification fait défaut, comme suggéré par Dufour (1997). Notre



143

idée consiste a intégrer le contenu informationnel de I’hypothése nulle dans le calcul de sa
métrique.

Nous avons montré que la statistique Modified-Wald est asymptotiquement équivalente a la
statistique de Wald. Sa région de confiance, au niveau «, est non bornée avec une probabilité
aussi élevée que (1-«), la borne supérieure déduite dans Dufour (1997). Ces résultats ont été
appliqués a deux cas d’étude. L'exercice de simulation associé 4 un ratio bidimensionnel a
révélé que la procédure Modified-Wald était capable de détecter une situation dans laquelle
I’information échantillonnale n’était pas suffisante pour fournir de 1’inférence précise. La se-
conde application, sur le modele de régression linéaire avec variables instrumentales, nous
a permis de construire un pont entre la perte d’identification a la frontiére de I’espace des
paramétres et sa modélisation économétrique (artificielle) a travers la taille de 1’échantillon.

Dans le quatriéme essai, nous avons proposé une nouvelle fagon de tenir compte du risque
d’estimation en sélectionnant le portefeuille optimal. En contraste avec la littérature existante,
le portefeuille optimal est défini de maniére plus conservative, en cherchant (seulement) a
garantir une performance minimale, et plus & maximiser la performance directement. Plus
précisément, notre méthode de sélection repose sur un test unilatéral qui assure que la per-
formance du portefeuille est au-dessus d’un seuil donné. Les poids optimaux respectifs des
actifs financiers sont alors obtenus & partir de la maximisation de la p-valeur associée a ce
test. Ce test nous a permis de définir une méthode qui intégre directement le risque d’esti-
mation. De plus, en négligeant le risque d’estimation de la variance, nous avons obtenu une
régle d’investissement explicite directement applicable.

Nos simulations ont montré que, pour des choix de référence raisonnables, la performance du
portefeuille associé a la régle d’investissement p-valeur était trés satisfaisante, surtout avec de
petits échantillons ; de plus, les colits de maintenance associés étaient généralement faibles,
ce qui témoigne de la stabilité de la régle a travers le temps.

Pour finir, plusieurs voies de recherche peuvent étre envisagées. On peut tout d’abord penser a
introduire des performances de référence aléatoires : cela permettrait de traquer directement
la performance de certains indices financiers d’intérét. On peut aussi chercher & introduire
le risque de modéle dans le choix du portefeuille optimal, a 1’image de Cavadini, Sbuelz et
Trojani (2001).



