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Sommaire

Les développements récents de 1’économétrie de la finance ont pour base la découverte majeure que
les carrés des rendements sont prévisibles quoique les rendements eux-mémes ne le soient pas. Les
célebres modeles ARCH et GARCH introduits par Engle (1982) et Bollerslev (1986) prévoient le carré
des rendements futurs par le carré des rendements passés. Toutefois, comme 1'a plus tard suggéré
Nelson (1991), le signe des rendements passés est aussi utile pour prévoir la volatilité mesurée par le
carré des rendements. Ce fait stylisé refléte une corrélation asymétrique entre rendement et volatilité
et est connu sous le nom d’effet de levier. L’effet de levier en particulier induit une asymétrie dans
la distribution des rendements de plus longue échéance qu’on appelle effet de skewness. Bien que
les premiers modéles univariés de volatilité aient connu des raffinements prenant en compte ces faits
stylisés, les effets de levier et de skewness ne sont pas conjointement modélisés dans les modéles
multivariés de volatilité. Comme généralisation du modéle de Diebold et Nerlove (1989), le modéle &
facteur de volatilité stochastique proposé par Doz et Renault (2006) offre un cadre structurel adéquat &
la modélisation multivariée de la volatilité des rendements sans exclure ni formaliser la variabilité dans
les effets de levier et de skewness. Cette thése, & travers son premier essai propose une extension de ce
modéle & facteur en proposant des spécifications dynamiques pour les effets de levier et de skewness.
Le deuxiéme essai évalue les bases théoriques du test de facteurs hétéroscédastiques proposé par Engle
et Kozicki (1993) et y apporte une correction. Le troisidme essai propose des méthodes de bootstrap
pour l'inférence sur la matrice de covariance réalisée de processus multivarié de diffusion a volatilité
stochastique telle qu’évaluée & partir des données de haute fréquence en finance et le quatriéme essai
s’inscrit dans le cadre des développements récents des méthodes d’inférence basées sur les conditions
de moment (méthode des moments généralisée (GMM) et vraisemblance empirique).

Dans le premier essai, nous proposons un modeéle & facteur de volatilité stochastique avec effets
de levier et de skewness dynamiques pour les rendements en étendant le modéle proposé par Doz
et Renault (2006). Grace & des conditions de moment, nous avons aussi proposé une inférence par
la méthode des moments généralisée (GMM). Une application de ce modéle aux rendements jour-
naliers excédentaires de 24 indices sectoriels incluant I'indice FTSE 350 et provenant tous du marché
financier du Royaume Uni a été faite. La modélisation des effets de levier et de skewness a largement

accru l'efficacité de l’estimateur des parameétres de volatilité. Les résultats suggérent aussi que la

!Le deuxiéme essai de cette thése a été écrit en collaboration avec Eric Renault et le troisitme en collaboration avec
Silvia Gongalves et Nour Meddabhi.
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compatibilité avec |'effet de skewness fait obtenir une persistance plus faible pour la volatilité et nous
permettent également de documenter une relation entre l’effet de skewness et la volatilité.

Le deuxiéme essai réexamine les bases théoriques du test de facteurs hétéroscédastiques pour les
processus multivariés de rendements proposé par Engle et Kozicki (1993). Ce test est fondé sur les
conditions de moments résultant de la représentation factorielle et applique le test des restrictions
suridentifiantes du GMM (Hansen (1982)). Cet essai montre que ces conditions de moment ne garan-
tissent pas les conditions d’application de la théorie de test par GMM. En particulier, I'identification
au premier ordre des parameétres n’est pas assurée. Nous proposons alors une théorie générale qui
fournit la distribution asymptotique de la statistique du test de suridentification du GMM dans un
contexte oil le parametre d’intérét n’est pas identifiable au premier ordre mais 1’est au deuxiéme ordre.
Cette nouvelle théorie s’applique pour corriger le test de Engle et Kozicki (1993).

Dans le troisiéme essai, nous proposons des méthodes de bootstrap pour la matrice de covariance
réalisée des processus multivariés de diffusion telle que mesurée sur les données de haute fréquence.
Ces méthodes s’appliquent aussi aux fonctions de cette covariance telles que la covariance réalisée, la
corrélation réalisée et le coefficient de régression réalisé. Il est & noter que le coefficient de régression
réalisé inclus des statistiques aussi pertinentes pour ’analyse financiére que les bétas introduits par le
capital asset pricing model (CAPM) pour évaluer le risque systématique des titres financiers.

Les méthodes de bootstrap que nous introduisons se veulent étre une alternative pour ’approximation
asymptotique de Barndorff-Nielsen et Shephard (2004). Spécifiquement, nous considérons le bootstrap
ii.d. appliqué aux vecteurs de rendements, c’est-a-dire que les données de bootstrap sont des tirages
aléatoires des rendements haute fréquence. Malgré le fait que les données de bootstrap ainsi générées ne
préservent pas le caractere hétéroscédastique des données originelles, nous montrons que cette méthode
est valide asymptotiquement. Les expériences de Monte Carlo que nous avons effectuées suggérent que
la méthode de bootstrap que nous proposons fonctionne mieux que I’approximation asymptotique
particuliérement lorsque les données sont générées & une fréquence faible ou modérée. Toutefois, con-
trairement aux résultats de la littérature du bootstrap i.i.d. pour les modeles de régression avec erreurs
hétéroscédastiques, nous montrons par des expansions d’Edgeworth que le bootstrap i.i.d. ne donne
pas lieu & des raffinements d’ordre supérieur dans notre contexte. Nous donnons une explication de
cette différence.

Le quatriéme essai porte sur les développements récents des méthodes d’inférence basées sur les

conditions de moment. Cet essai propose un algorithme relativement simple permettant d’obtenir
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des estimateurs de moyenne de population de faible biais en échantillon fini grace aux conditions de
moment suridentifiantes.

Nous considérons aussi 1'estimateur de vraisemblance euclidienne & trois étapes proposé par An-
toine, Bonnal et Renault (2007). Quand les conditions de moment sont bien spécifiées, cet estimateur
a un biais en échantillon fini d’ordre de grandeur aussi faible que celui de I’estimateur maximum de
vraisemblance empirique et de plus il est plus facile & calculer que ce dernier. Nous étudions cet
estimateur dans les modéles globalement mal spécifiés. Nous montrons que, méme dans ces conditions
irréguliéres, 'estimateur 3S reste convergent au taux habituel (,/7, ol n est la taille de 1’échantillon)
et il est asymptotiquement normalement distribué.

Cet essai introduit aussi formellement 1’estimateur de vraisemblance euclidienne a trois étapes
corrigé (s3S) qui est défini de fagon analogue & l'estimateur 3S mais utilise des probabilités impliquées
corrigées pour étre positives. L’idée d’utiliser des probabilités impliquées corrigées dans le calcul
de 'estimateur & trois étapes a été proposée pour la premiére fois par Antoine, Bonnal et Renault
(2007). Cependant, leur modification n’est pas robuste & la présence d’une mauvaise spécification
des conditions de moment. Dans cet essai, nous proposons une autre modification des probabilités
impliquées qui est robuste & la mauvaise spécification des conditions de moments. Cette robustesse
est rendue possible en pondérant plus faiblement la différence entre les probabilités impliquées et leur
équivalent asymptotique qui est 1/n. Quand les modeles sont correctement spécifiés, les estimateurs
35S et 535 sont asymptotiquement équivalents & un ordre supérieur. Dans les modéles globalement mal
spécifiés, nous montrons que I’estimateur s3S est aussi convergent au taux /T et est asymptotiquement
normalement distribué. Nous proposons aussi bien pour le 3S que pour le s3S leur distributions
asymptotiques robustes & la mauvaise spécification des conditions de moment.

Dans cette frange de la littérature sur les estimateurs alternatifs au GMM, seul ’estimateur de
maximum de vraisemblance empirique via minimum entropie (exponentially tilted empirical likelihood)
(ETEL) proposé par Schennach (2007) a I'intérét d’étre convergent au taux usuel et asymptotiquement
normalement distribué lorsque les conditions de moment sont mal spécifiées tout en étant équivalent
a l'ordre supérieur & ’estimateur de maximum de vraisemblance empirique lorsque les conditions de
moment sont bien spécifiées. Il importe cependant de noter que I’estimateur ETEL est relativement

beaucoup plus difficile & calculer que les estimateurs 3S et s38S.

Mots clés: Modele a facteurs, volatilité multivariée, asymétrie, GMM, sous-identification du premier

ordre, Bootstrap, volatilité réalisée, expansions d’Edgeworth, vraisemblance empirique, mispécification.



Summary

The recent developments in financial econometrics are based on the major finding that square
returns are predictable even though returns themselves are not. The famous ARCH and GARCH
models introduced by Engle (1982) and Bollerslev (1986) predict future square returns by past square
returns. Nevertheless, as observed by Nelson (1991), the signs of past returns are also useful to predict
volatility, as measured by the squared returns. This stylized fact provides evidence of a negative
correlation between returns and volatility and is known as the leverage effect. The leverage effect
induces a negative skew in the distribution of lower frequency returns. This is the skewness effect.
Although the first univariate volatility models have been refined to take account of these stylized facts,
the literature on multivariate volatility models has not jointly modeled the dynamics of the leverage
and skewness effects. As a generalization of the Diebold and Nerlove’s (1989) model, the stochastic
volatility factor model proposed by Doz and Renault (2006) provides a suitable structural framework
for multivariate modeling of volatility in returns without neither precluding nor formalizing the time
variability in both skewness and leverage effects. In the first chapter of this thesis, we extend this
factor model by explicitly specifying dynamics for both skewness and leverage effects. The second
chapter discusses the theoretical foundation of the test for common heteroskedastic factors proposed
by Engle and Kozicki (1993). A correction for this test is also provided. The third chapter proposes
bootstrap methods for the realized covariance of multivariate diffusion processes defined as the sum
of the outer product of the vector of high frequency returns. The fourth chapter is related to the
recent developments of moment conditions-based inference methods (generalized method of moments
(GMM) and empirical likelihood methods).

In the first chapter, we propose a stochastic volatility factor model with dynamic skewness and
leverage effects. This model is an extension of the model proposed by Doz and Renault (2006). To
the best of our knowledge, we are the first to simultaneously model the conditional skewness and
leverage effects in the context of a multivariate heteroskedastic factor model. We also provide moment
conditions that allow for inference by GMM. We apply our model to 24 daily sector index excess
returns from the United Kingdom stock market including the FTSE 350 index. The results show

a large efficiency gain from modeling the skewness and leverage effects along with volatility. They



also suggest that the modeling of the conditional skewness effect yields lower volatility persistence as
already pointed out by Harvey and Siddique (1999). We also document a significant relation between
the skewness effect in returns and volatility.

The second chapter re-examines the theoretical foundations of the test for common heteroskedastic
factors for multivariate return processes proposed by Engle and Kozicki (1993). This test is based
on moment conditions resulting from the factor representation of returns and is an application of the
GMM overidentification test (Hansen (1982)). We show that these moment conditions do not satisfy
the identification conditions for the validity of the GMM test. In particular, the required first order
identification condition for the parameter of interest is violated. We propose a general theory that
provides the asymptotic distribution of the GMM overidentification test statistic when the parameters
are not identified at the first order but are identified at the second order. We apply this new theory
to correct the Engle and Kozicki’s (1993) test.

The third chapter proposes bootstrap methods for the realized covariance of multivariate diffusion
processes defined as the sum of the outer product of the vector of high frequency returns. These
bootstrap methods can also be applied to economically meaningful functions of the realized covariance
matrix such as the realized covariance between two assets, the realized correlation and the realized
regression coeflicients. Note that the realized regression coefficient includes as a particular case the re-
alized beta, an important statistic for the financial analysis of the capital asset pricing model (CAPM).
The realized beta of an asset assesses its systematic risk as measured by its correlation with the market
portfolio return.

The bootstrap methods we consider are an alternative inference tool to the asymptotic theory
recently proposed by Barndorff-Nielsen and Shephard (2004). More specifically, we consider the i.i.d.
bootstrap and show its first order asymptotic validity. Our Monte Carlo experiments suggest that the
bootstrap method we propose outperforms the asymptotic theory-based approximation of Barndorff-
Nielsen and Shephard (2004), in particular when the series are not sampled too frequently. However,
and contrary to the existing results in the bootstrap literature for regression models subject to het-
eroscedasticity in the error term, we show by Edgeworth expansions that the i.i.d. bootstrap is not
second order accurate. We provide an explanation for this difference.

The fourth chapter is related to the recent developments in the literature based on the empirical

likelihood interpretation of the GMM method. Its contribution is twofolded. First, we propose a new
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algorithm to compute estimators of population means whose small sample bias is of the same order
of magnitude as the empirical likelihood estimator. This algorithm is easier to implement than the
existing methods. Second, we study the asymptotic properties of the three-step Euclidean likelihood
(38) estimator as proposed by Antoine, Bonnal and Renault (2007) under the presence of possible
misspecification in the moment conditions. As Antoine, Bonnal and Renault (2007) show, the higher
order bias of the 3S estimator is of the same order of magnitude as that of the empirical likelihood
estimator in correctly specified models. Nevertheless, the 3S estimator is much more computationally
convenient than the empirical likelihood estimator. In this chapter, we show that in misspecified models
the 3S estimator stays \/n-consistent (where n is the sample size) and is asymptotically normally
distributed. We also formally introduce the shrunk three-step Euclidean likelihood (s3S) estimator.
This estimator is a variant of the 3S estimator which is derived using the Euclidean likelihood implied
probabilities shrunk to be non negative. The idea of using modified Euclidean likelihood implied
probabilities that are forced to be non negative was first proposed by Antoine, Bonnal and Renault
(2007). Nevertheless their shrunk implied probabilities are not robust to misspecification. One of our
contributions in this chapter is to proposed a further modification of the Euclidean likelihood implied
probabilities by more weakly weighting their difference with their asymptotic equivalent, 1/n. This
modification appears to be crucial to get a proper behaviour of the three-step estimator under global
misspecification. In correctly specified models, the 3S and the s3S estimators are asymptotically higher
order equivalent. In globally misspecified models, we show that the s3S estimator is also /n-consistent
and asymptotically normally distributed. We derive the asymptotic distribution of both estimators
under the possibility of moment conditions misspecification.

In the existing literature on alternatives to the GMM estimator, only the exponentially tilted
empirical likelihood estimator proposed by Schennach (2007) has the advantage of being /n-consistent
and asymptotically normally distributed in misspecified models while displaying the same higher order
bias as the empirical likelihood in correctly specified models. It is worthwhile however to mention that
the three step Euclidean likelihood estimators are easier to compute than the ETEL estimator.

Key words: Factor models, multivariate volatility, asymmetry, GMM, first order underidentification,

Bootstrap, realized volatility, Edgeworth expansions, empirical likelihood, misspecification.
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List of Tables

Sample correlation matrix of index excessreturns. . . . . . . . ... ... ..o ...
Descriptive statistics for the daily index excess returns (in %). All series start on January 2, 1986
and end on December 30, 2004. The number of observations is 4863. The sample skewness and
kurtosis are given by: Skew=zf=l (Vi - 7,-)/0’}/‘]3 /T and Kurtzzz;l [(Yie— ?i)/ayl.]4 /T,
respectively. Y; is the sample mean and a,z,‘ the sample variance of Y;. The significance tests
for the skewness are based on GMM-based asymptotic distribution of sample mean and delta
method. Eng(1l) and Eng(5) are Engle’s (1982) Lagrange Multiplier tests statistics for condi-
tional heteroskedasticity. 1 and 5 lags have been considered, respectively. p;, g2 and p3 are
the first three sample autocorrelations. QW(5) and QW(10) are the Ljung -Box statistics for
autocorrelation. . . . . .. .. L L e
Engle and Ng Diagnostic Test for the Impact of News on Volatility (Engle an
Ng, 1993) This Table displays, for each index excess return, the diagnostic test results for
respectively the Sign Bias, The Negative Size Bias, the Positive Size Bias and the joint test.
The volatility dynamic under the null we assume is the standard Gaussian GARCH(1,1). . . .
This Table presents, for each sectorial index and the market index FTSE 350, #; and ﬁl, or-
dinary least square estimates of 7, and h; respectively in the regressions E [e; ;3i; ¢ Zis0-1] =
mo + mMBiit—1 and E[€},|8i:-1] = ho + MiZise-1. € = Yip — Yy, Vi, is the excess re-
turn of the index ¢ at date ¢, Y; is the sample mean of the excess return of i and Y is
the conditional variance of Y;:.1. As a proxy for ¥;;;:, we use the daily square excess re-
turn: Y2, ,. #,1 and hj.1, ordinary least square estimates of my,1 and hy; respectively in the
regressions E[€;,X11,¢|Z11,0-1] = 750 + 771811,e-1 and E [e?_,|211,t_1] = hyo + h1B11,0-1-
i1, is the FTSE 350 index excess return’s conditional variance. The proxy used for this
conditional variance is Y., where Y,y is the FTSE 350 index excess return. The Co-
Skewness of the sectorial index excess return Y;, with the FTSE 350 index excess return Yy,
is given, as in Ang and Chen (2002), by Co-Skewness(Y;.,Y1.) = E[(Yi: — E(Y::))(Y1: —
EY1,.:)%/ [\/EWE(YM - E(YM))Z]. The significance tests for the Co-Skewness
have been performed by Moment method-based asymptotic distribution of sample mean and

the d—method. . . . . . . . . L e
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Simulated bias, root mean square error (RMSE), median and least absolute deviation (LAD) of
GMM parameter estimates of the Doz and Renault (2006) model (DR) and of our conditionally
heteroskedastic factor model with asymmetries. We report the results from GMM estimates
using 4 different sets of valid instruments: 21, = (1,Y2), 220 = (1, Y00, p'YP_141ip =
0.9), z3, = (1,Y7,Y%_1) and 24, = (1,Y2,Y?2_|,Y2_,). The simulated data are ob-
tained from the DGP 2. The true parameter values are: (A1, Az, A3,w, e, 3,7, 8,h1, 79, m) =
(1,1,1,0.5,0.2,0.6,0.8,0,0,0,0). We use the moment conditions associated to the inference by
normalization approach described in Section 5. The estimated parameters are \z, As, w, -y for
the DR (2006) model and Az, A3, w, @, B, v, s, hi, o, 71 for our extended model. . . . . . .
Simulated Bias, root mean square error (RMSE), median and least absolute deviation (LAD)
of GMM parameter estimates of the Doz and Renault (2006) model (DR) and of our con-
ditionally heteroskedastic factor model with asymmetries. We report the results from GMM
estimates using zq, = (1,Y2,Y%_|, Y% _,) as the instrument. The data are generated ac-
cording to DGP 1, DGP 2, DGP 3 and DGP 4. In particular, the true parameter values
are: DGP 1: (A1, A2, A3, w, e, 8,7, 8, h1,m,m) = (1,1, 1, 0.35,0.2,0.50,0.70,0,0,0,0), DGP 2:
(A1, 22, A3, w, @, 8,7, 8,h1,m,m) = (1,1,1, 0.35,0.2,0.60,0.80,0,0,0,0), DGP 3: (A, Az, A3,
w, o, B,7,8,h1,m,m) = (1,1,1, 0.35,0.2,0.70,0.90,0,0,0,0), DGP 4: (A1, A2, A3, w, &, 3, 7,
s, by, mo, m) = (1, 1, 1, 0.35, 0.2, 0.75, 0.95, 0, 0, 0, 0). The true values of the volatility
persistence parameter are 0.70, 0.80, 0.90 and 0.95, respectively. . . . . . .. ... ... ...
Simulated Bias, root mean square error (RMSE), median and least absolute deviation (LAD)
of GMM parameter estimates of the Doz and Renault (2006) model (DR) and of our con-
ditionally heteroskedastic factor model with asymmetries. We report the results from GMM
estimates using 24 = (1,Y3,,Y2,_;,Y?,_,) as the instrument. The data are generated ac-
cording to DGP 1’, DGP 2’, DGP 3’ and DGP 4'. In particular, the true parameter values
are: DGP 11 (A1, A2, A3,w,,08,7,s,hy,m,m) = (1,1,1,0.35,0.2,0.50,0.70,0, —2.0,0, —0.4),
DGP 2: (A1, A2, A3,w,0q,8,7,8,hy,m,m) = (1,1,1,0.35,0.2,0.60,0.80, 0, —2.0, 0, —0.4), DGP
3: (A1, A2, As,w, @, 8,7, 8, h1,m, m) = (1, 1,1,0.35,0.2, 0.70,0.90,0, —2.0,0, —0.4), DGP 4’;
(M, A2, As,w, 0,8, 7,8, h1,m0, m1) = (1,1, 1,0.35,0.2,0.75,0.95,0, —2.0,0, —0.4). The true

values of the volatility persistence parameter are 0.70, 0.80, 0.90 and 0.95, respectively. . . . .
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Introduction générale

Cette thése est composée de quatre essais et s’inscrit dans le cadre des modéles multivariés de volatilité
tout en contribuant aux développements récents de la méthode des moments généralisée.

Le premier et le troisieéme essais abordent des questions relatives & la modélisation de la volatilité
multivariée. Le deuxiéme et le quatriéme essais de cette thése ont pour théme commum le comporte-
ment asymptotique dans des conditions non standard de certaines statistiques de tests et estimateurs
issus de conditions de moment.

Dans le premier essai nous proposons une extension du modeéle de volatilité multivariée de Doz et
Renault (2006) qui tient explicitement en compte les dynamiques des effets de levier et de skewness
des rendements. L’effet de levier se traduit par une corrélation asymétrique entre le rendement et la
volatilité. Cet effet explique le fait stylisé que le signe des rendements passés est souvent utile pour
prévoir la volatilité mesurée par le carré des rendements, comme 1’a remarqué Nelson (1991). L'effet de
levier en particulier induit une asymétrie dans la distribuition des rendements de plus longue échéance
qu’on appelle effet de skewness. Bien que les premiers modeles univariés de volatilité aient connu
des raffinements prenant en compte ces faits stylisés, les effets de levier et de skewness ne sont pas
conjointement modélisés dans les modéles multivariés de volatilité.

Le modele a facteurs latents hétéroscédastiques proposé par Diebold et Nerlove (1989) offre une
alternative intéressante pour la modélisation multivariée de la volatilité. Ce modeéle décompose chaque
rendement en une partie systématique (ou commune & tous les rendements), qui est éventuellement
source d’hétéroscédasticité, et une partie idiosyncratique. Il a le mérite de jouir d’une interprétation
structurelle. Toutefois, Diebold et Nerlove (1989) complétent la spécification de leur modéle en im-
posant une distribution normale jointe au facteur et chocs idiosyncratiques. Ce choix de distribution,
en mettant la skewness des rendements & zéro, s’écarte du comportement documenté des rendements
d’actifs.

Plus récemment, Doz et Renault (2006) généralisent le modéle de Diebold et Nerlove (1989) en
spécifiant un modéle & facteurs latents de volatilité stochastique qu’ils identifient grace & des conditions
de moment pertinentes. Ils proposent une inférence par la méthode des moments généralisée (GMM).

Le recours aux conditions de moment permet de limiter les risques de modéle relatifs a la fixation de



tous les moments au travers d’une distribution. Les conditions de moments utilisées par Doz et Renault
(2006) permettent de capturer la dynamique dans la volatilité sans exclure ni formaliser explicitement
la variabilité dans les effets de levier et de skewness.

Dans cet essai, nous proposons des conditions de moments additionelles  celles proposées pas Doz
et Renault (2006) qui nous permettent de modéliser explicitement les effets de levier et de skewness
dynamiques pour les rendements.

Dans une premiere partie, nous analysons les propriétés statistiques individuelles d’un ensemble de
séries sur les rendements excédentaires journaliers d’indices sectoriels provenant du marché financier
du Royaume Uni incluant I'indice FTSE 350. Des études récentes (voir e.g. Harvey, Ruiz et Sentana
(1992) et King, Sentana et Wadhwani (2004)) utilisant des séries mensuelles proches de celles utilisées
dans cet essai supportent le modele & facteur hétéroscédastique. Notre analyse empirique suggere
que ces rendements financiers démontrent trés clairement aussi bien les phénomeénes de levier que de
skewness dynamiques, confirmant les faits empiriques déja documentés par plusieurs autres auteurs,
en particulier Nelson (1991), Hansen (1994) et Harvey et Siddique (1999).

Dans le modele a facteur que nous proposons, le caractére hétéroscédastique des rendements est
entrainé uniquement par le facteur commun que nous supposons de dynamique de volatilité stochas-
tique autorégressive (SR-SARV). Les chocs idiosyncratiques sont supposés de volatilité constante. Par
ce choix, il devient naturel de faire passer aussi bien l’effet de levier et celui de skewness par le méme
facteur. La dynamique que nous spécifions pour le levier dans le facteur est analogue & la forme la plus
courante dans la littérature. Par contre, la spécification de la dynamique de skewness est déterminée
par la robustesse du modele vis-a-vis de 1’agrégation temporelle. Il ressort qu’aussi bien le levier que
la skewness dans le facteur sont une fonction affine de la volatilité. Nous montrons que notre modele
est robuste a 'agrégation temporelle.

Nos conditions de moments permettent une inférence par la méthode des moments. Dans ’application
empirique de ce modele & nos données, nous trouvons une efficacité plus accrue quand les effets de
skewness et de levier sont pris en compte explicitement, ce qui reflete 'importance de ces phénoménes
dans nos données. Les parameétres liant levier et volatilité d’une part et skewness et volatilité d’autre
part sont fortement significatifs. Ceci documente en particulier la relation entre skewness et volatilité

similaire au phénomeéne connu en finance sous le nom de volatility feedback (voir French, Schwert, et
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Stambaugh (1987)) liant rendement et volatilité. De plus, la persistance de la volatilité parait plus
faible que ce qui s’observe habituellement dans les données journaliéres pour les modéles qui sont en
contradiction avec 'effet de skewness dans les rendements. Ce dernier point confirme les faits docu-
mentés par Harvey et Siddique (1999), qui ont été les premiers a observer que les modgles compatibles
avec ’effet de skewness ont un impact sur la persistance de la volatilité.

Le deuxitme essai considére le test de suridentification de GMM tel que proposé par Hansen (1982).
Si les conditions de moment suridentifiantes sont valides, sous certaines conditions de régularités, la
statistique du test est asymptotiquement distribuée selon un Chi carré. Ces conditions de régularités
incluent aussi bien I'identification stricte que I’identification au premier ordre du parameétre d’intérét.
L’identification stricte signifie que les conditions de moment déterminent une et une seule valeur du
parametre d’intérét et I'identification au premier ordre impose que la jacobienne des conditions de
moments évaluée a la vraie valeur est de plain rang.

Cet essai étudie la statistique du test de suridentification en relachant la deuxiéme condition tout
en maintenant 1'identification au second ordre, signifiant que ’expansion des conditions de moment &
'ordre deux est suffisante pour identifier le paramétre d’intérét. Une étude similaire a été effectuée par
Sargan (1983) pour les estimateurs de variables instrumentales (IV). Dans son étude, Sargan (1983)
s’intéresse au comportement asymtotique des estimateurs IV en cas de non identification au premier
ordre. Dans cet essai, nous nous intéressons d’une part & la vitesse de convergence de l’estimateur de
GMM en cas de déficience de rang et généralisons de ce point de vue les résultats de Sargan (1983).
D’autre part et principalement, nous nous intéressons au comportement asymptotique de la statistique
du test de suridentification de GMM dans cette condition de singularité. Il ressort de notre étude que
les parametres qui sont identifiés au premier ordre gardent la vitesse de convergence usuelle qui est
de l'ordre de /T, T étant la taille d’échantillon, alors que les autres paramétres ont une vitesse de
convergence plus lente de I'ordre de T1/4. Ces comportements atypiques ont pour effet de changer la
distribution asymptotique de la statistique du test de suridentification, qui suit un mélange de Chi
carré plutét qu’une Chi carré.

Une deuxiéme contribution de cet essai est de réexaminer les bases théoriques du test de facteurs
hétéroscédastiques pour les processus multivariés de rendements proposé par Engle et Kozicki (1993).

Ce test est fondé sur les conditions de moment résultantes de la représentation factorielle et est
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une application du test des restrictions suridentifiantes d¢ GMM. Nous montrons que les conditions
de moment d’Engle et Kozicki (1993), bien que vérifiant la condition d’identification du paramétre
d’intérét, violent la condition d’identification au premier ordre. Par contre, l'identification au second
ordre y est assurée. Ceci nous place dans les conditions d’application de notre théorie asymptotique
qui nous permet de corriger la distribution asymptotique suggérée par Engle et Kozicki (1993). Nous
observons en outre que la distribution asymptotique de Engle et Kozicki sur rejette I’hypothése nulle
4 un taux pouvant aller jusqu'a doubler le niveau nominal du test.

Dans le troisieme essai nous proposons des méthodes d’inférence de bootstrap pour la volatilité
multivariée intégrée. La volatilité multivariée intégrée est une mesure de volatilité multivariée sous-
Jjacente a des processus multivariés de diffusion & volatilité stochastique. Un estimateur convergent de
cette mesure de volatilité est la matrice de covariance réalisée, définie comme la somme du produit
des rendements multivariés évalués & partir des données de haute fréquence. Barndorff-Nielsen et
Shephard (2004) proposent une théorie asymptotique pour la matrice de covariance réalisée. Dans ce
chapitre nous proposons une inférence par bootstrap plus exacte en échantillon fini que ’approximation
asymptotique proposée par Barndorft-Nielsen et Shephard (2004).

Avec la richesse croissante des données financitres, 1'utilisation de statistiques fondées sur les
données de haute fréquence ainsi que leur application en économie financiére sont de plus en plus
prépondérantes. La plus connue de ces statistiques est la volatilite réalisée. Son analogue multivarié
est la matrice de covariance réalisée. Beaucoup de mesures de risque en finance sont fonctions de
la matrice de covariance réalisée. On peut citer notamment la covariance réalisée, la corrélation
réalisée ainsi que le coefficient de régression réalisé. Lorsque deux actifs sont considérés et 1’un est le
rendement sur le portefeuille du marché, le coefficient de régression réalisé devient le béta du titre.
Selon la fameuse théorie du capital asset pricing model (CAPM), le béta mesure le risque systématique
du titre.

Malgré la popularité grandissante des statistiques sur données haute fréquence, beaucoup reste
a faire sur 'inférence pour ces statistiques. Barndorff-Nielsen et Shephard (2004) ont récemment
proposé une théorie asymptotique pour la distribution de la matrice de covariance réalisée. Leur
théorie permet de déduire les distributions asymptotiques de la covariance, de la corrélation ainsi que

la régression réalisées entre deux rendement d’actifs. Toutefois, d’aprés les résultats de simulations



qu'’ils ont rapportés, 'approximation asymptotique souffre d’importantes distorsions en échantillon
fini. Cette limitation est accentuée dans la pratique par le phénoméne de microstructure de marchés,
qui en soi réduit la validité des statistiques si les données considérées sont sur base de fréquence trop
élevée.

Le troisiéme essai de cette thése propose des méthodes de bootstrap comme alternative & la théorie
asymptotique de Barndorff-Nielsen et Shephard (2004). Nous considérons le bootstrap i.i.d. appliqué
au vecteur de rendements. Les données de bootstrap sont obtenues par tirages aléatoires des rende-
ments multivariés originels.

Le bootstrap i.i.d. a été récemment proposé par Gongalves et Meddahi (2006) dans le contexte
univarié de la volatilité réalisée. Les données de bootstrap sont indépendantes et identiquement dis-
tribuées par construction et donc le bootstrap i.i.d. détruit le caractére hétéroscédastique des modeles
de volatilité stochastique. Pour le cas de la volatilité réalisée, Gongalves et Meddahi (2006) montrent
que le taux de convergence vers zéro de l'erreur du bootstrap i.i.d. est du méme ordre que le taux
de convergence de l'erreur implicite dans I’approximation asymptotique. Cependant, les simulations
de Gongalves et Meddahi (2006) montrent que ce bootstrap est supérieure & la distribution asymp-
totique méme quand la volatilité est stochastique. Ils donnent une explication théorique pour cette
amélioration.

Dans cet essai, nous étendons 1’analyse de Gongalves et Meddahi (2006) au cas multivarié. Nous
considérons le bootstrap i.i.d appliqué au vecteur de rendements. Dans le contexte de la régression
réalisée, I’application du bootstrap i.i.d. au vecteur de rendements correspond & un bootstrap par
couples, tel que proposé par Freedman (1981) pour des modeles de régressions de coupes transversales.
Les résultats de Freedman (1981) et de Mammen (1993) montrent que le bootstrap par couples est non
pas seulement robuste & la présence d’hétéroscédasticité dans ’erreur de la régression, mais il est méme
plus précis que la distribution asymptotique normale. Donc, le bootstrap i.i.d. parait un candidat
naturel dans le contexte de régressions réalisées méme lorsque le modéle multivarié en question est un
modele de volatilité stochastique.

Nous montrons la validité asymptotique de bootstrap i.i.d. au premier ordre pour la matrice de
covariance réalisée ainsi que pour des fonctions de ces éléments telles que la covariance réalisée et les

coefficients de corrélation et de régression. Nos simulations montrent la supériorité remarquable du



bootstrap sur ’approximation asymptotique, particuliérement sur les données de faible fréquence.

Nous dérivons ’expansion d’Edgeworth de la distribution de bootstrap pour la statistique de Stu-
dent associée au coefficient de régression réalisé. Contrairement aux résultats de Mammen (1993),
notre analyse montre que le bootstrap par couples ne permet pas une amélioration du taux de conver-
gence de l'erreur de bootstrap dans l'estimation de la distribution de la statistique par comparaison
avec ’erreur de ’approximation asymptotique. Nous conduisons une analyse détaillée du bootstrap
par couples qui nous permet d’expliquer les différences de résultats obtenues. En particulier, nous mon-
trons que les scores implicites & la régression réalisée ne sont pas individuellement de moyennes nulles
(méme si leur sommes demeurent de moyenne nulle). Par contre, Freedman (1981) et Mammen (1993)
dérivent leurs résultats en faisant cette hypothése. Le fait que chaque score ne soit pas de moyenne
nulle individuellement crée un biais dans ’estimation de la variance de la régression par la méthode
de Eicker-White et explique le besoin de l’estimateur de la variance de Barndorff-Nielsen et Shephard
(2004), qui est plus sophistiqué que ’estimateur usuel de Eicker-White. Nous montrons que la variance
de bootstrap par couples coincide avec I'estimateur de Eicker-White et donc elle n'est pas robuste &
la présence d’hétéroscédasticité dans notre contexte de modeles de volatilité stochastique. Ceci con-
traste avec les résultats de Friedman (1981). Par contre, les scores de la régression de bootstrap sont
individuellement de moyennes nulles et donc la statistique de bootstrap utilise ’estimateur de Eicker-
White et non pas celui de Barndorff-Nielsen et Shephard (2004). Le fait que les deux statistiques,
celle de bootstrap et la statistique originelle, utilisent des estimateurs de la variance différents explique
pourquoi le bootstrap par couples ne permet pas une amélioration de ’approximation asymptotique
dans notre contexte.

Le quatrieme essai se démarque des questions de volatilité multivariée et a une contribution
méthodologique plus générale. Il s’inscrit dans la littérature récente réinterprétant la méthode GMM
& travers la vraisemblance empirique.

La technique d’inférence la plus populaire pour des modeéles basés sur des conditions de moment
est la méthode des moments généralisée proposée par Hansen (1982). La portée de cet outil s’explique
surtout par sa simplicité et son efficacité asymptotique. Toutefois, plusieurs études ont rapporté des
performances relativement faibles de ’approximation asymptotique du GMM en échantillon fini (voir

e.g. Altonji et Segal (1996) et Andersen et Sgrensen (1996)). Depuis lors, la littérature économétrique



a connu un développement soutenu d’estimateurs alternatifs. Comme exemple, nous pouvons citer
l'estimateur de GMM & mise & jour continue de Hansen Heaton et Yaron (1996), l'estimateur de max-
imum de vraisemblance empirique (EL) de Qin et Lawless (1993), l’estimateur “exponential tilting”
de Kitamura et Stutzer (1997) qui sont tous & la fois membres de la classe d’estimateurs de divergence
minimum de Corcoran (1998) et de la classe d’estimateurs de vraisemblance empirique généralisée de
Newey et Smith (2004).

De ces estimateurs concurrents & ’estimateur de GMM, l’estimateur EL est connu comme celui
ayant un biais en échantillon fini le plus désirable (Newey et Smith(2004)). Cependant, cet estimateur
a deux défauts majeurs. En plus d'étre trés demandant en matiére de calcul, il est aussi trés instable
lorsque le processus générateur des données dévie, ne serait ce que légérement, des conditions de mo-
ment postulées par le modéle. Ceci a motivé la proposition par Schennach (2007) de l’estimateur de
maximum de vraisemblance empirique via minimum d’entropie (exponentially tilted empirical likeli-
hood) (ETEL). Cet estimateur jouit du méme ordre de biais en échantillon fini que l’estimateur EL
tout en restant stable en cas de mauvaise spécification des conditions de moment. Mais ETEL demeure
aussi intensif en calcul que I’estimateur EL. Antoine, Bonnal et Renault (2007) propose 'estimateur
de vraisemblance empirique euclidienne & trois étapes (3S). Cet estimateur est & la fois simple de
calcul et a le méme ordre de biais en échantillon fini que 1’estimateur de maximum de vraisemblance
empirique.

Une des contributions de cet essai est d’étudier 1’estimateur 3S lorsque les conditions de moment
sont mal spécifiées. Il montre que méme dans ces conditions non standard, ’estimateur 3S converge
& la vitesse habituelle et est asymptotiquement normalement distribué. La distribution asymptotique
de 'estimateur 3S robuste & la mauvaise spécification est aussi proposée. Cependant, I’estimateur 3S
a un défaut qui est relié & la nature des probabilités impliquées qui sont utilisées dans son calcul.
Ces probabilités impliquées sont obtenues de la vraisemblance empirique euclidienne et sont connus
comme pouvant étre négatives en échantillon fini. Ceci peut étre la cause de certains comportements
erratiques de l’estimateur 3S en échantillon fini comme nous 1’avons observé dans nos simulations.

Pour remédier & cette limite, Antoine, Bonnal et Renault (2007) suggeérent 'utilisation des proba-
bilités impliquées corrigées dans le calcul de I’estimateur 3S. Nous redéfinissons formellement ’estimateur

3S & partir des probabilités impliquées corrigées proposées par Antoine, Bonnal et Renault (2007) et
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qui sont par définition toujours positives. Nous renforgons en outre le facteur de correction de facon &
assurer a ’estimateur résultant (que nous appelons estimateur de vraisemblance empirique euclidienne
a trois étapes corrigé ou shrunk three-step Euclidian likelihood estimator (s3S)) une convergence & la
vitesse usuelle, /n, vers une distribution asymptotique normale en cas de mauvaise spécification des
conditions de moment. Nous proposons aussi la distribution asymptotique de ’estimateur s3S robuste
a la mauvaise spécification des conditions de moment.

La deuxiéme contribution de cet essai est la proposition d’un algorithme simple permettant d’obtenir
des estimateurs de moyennes de population de biais en échantillon fini de méme ordre que les estima-

teurs de vraisemblance empirique grace aux conditions de moment suridentifiantes.
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1 Introduction

Conditional heteroskedasticity is a well-known feature of financial returns. In addition, returns are
often characterized by the presence of skewness (i.e. returns have an asymmetric distribution) and
leverage effects (i.e. the fact that a negative shock on returns has a larger impact on volatility than
a positive shock of the same magnitude). See for example Nelson (1991), Glosten, Jagannathan and
Runkle (1993) and Engle and Ng (1993) for studies documenting the presence of leverage effects in
financial time series, and Ang and Chen (2002), Harvey and Siddique (1999, 2000) and Jondeau and
Rockinger (2003) for the skewness effect.

The finance literature has recognized the importance of taking into account higher order moments
in asset pricing models. An early example is Rubinstein (1973) (see also Kraus and Litzenberger
(1976) for an empirical implementation of Rubinstein’s (1973) model), who proposes an extension of
the capital asset pricing model (CAPM) allowing for skewness in the unconditional distribution of
returns. More recently, Harvey and Siddique (2000) extend Kraus and Litzenberger’s (1976) model to
the dynamic context by allowing third conditional moments to be time varying. The option pricing
literature has also recognized the importance of modeling higher order moments. In particular, as
pointed out by Hull and White (1987), the misspecification of the third order conditional moment can
yield inaccurate option prices. This has motivated the development of option pricing models that take
into account the skewness effect in the underlying asset. One recent example is Christoffersen, Heston
and Jacobs (2006).

In the univariate context, Harvey and Siddique (1999) and Jondeau and Rockinger (2003) find
that taking into account the skewness effect has an impact on the volatility persistence estimates.
More specifically, for a set of daily and monthly index returns, Harvey and Siddique (1999) estimate
univariate GARCH-type models that allow for time-varying conditional third-order moments. Their
empirical results show that the estimates of volatility persistence decline when the model allows for
the presence of skewness. They also find that the leverage effect tends to disappear following the
introduction of skewness. These results are confirmed by Jondeau and Rockinger (2003), who also
consider the effects of modeling the kurtosis in addition to the skewness effect. These studies show that

empirically it is important to model the skewness and the leverage effects when building conditional
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heteroskedastic models for asset returns.

Although the finance literature in the univariate context has recognized the importance of mod-
eling skewness and leverage effects, few attempts have been made to model both effects jointly in
the multivariate framework. This is the case in the conditionally heteroskedastic factor model lit-
erature. In their seminal paper, Diebold and Nerlove (1989) assume conditional Gaussianity and
postulate that the common factor follows an ARCH model, therefore not allowing for the presence of
skewness nor leverage. More recently, Fiorentini, Sentana and Shephard (2004) propose a condition-
ally heteroskedastic factor model that allows for a dynamic leverage effect but impose a conditional
Gaussianity assumption that rules out the conditional skewness.

In this paper we extend the existing class of multivariate conditionally heteroskedastic factor models
by specifying simultaneously the skewness and the leverage effects. To the best of our knowledge, we
are the first to write and estimate a conditionally heteroskedastic factor model that specifies jointly
these two effects. In our model, all the dynamics in moments (and cross sectional, or co-moments) of
asset returns are driven by a common latent factor. The conditional heteroskedasticity of the common
factor follows a square root stochastic autoregressive volatility model (SR-SARV) as in Andersen
(1994), Meddahi and Renault (2004) and Doz and Renault (2006). The leverage effect is modeled as
an affine function of the conditional variance. This specification encompasses many of the existing
models in the literature (e.g. the affine process of Dai and Singleton (2000)). The skewness effect is
also modeled as an affine function of conditional variance. We show that this specification is robust
to temporal aggregation when the leverage effect is present.

Recently, Doz and Renault (2006) (henceforth DR. (2006)) study the identification and estimation
of a conditionally heteroskedastic factor model. Specifically, DR (2006) provide a set of moment
conditions that identify their factor model and allow for inference by Generalized Method of Moments
(GMM), thus avoiding restrictive distributional assumptions. Our model is an extension of DR’s
(2004) model that explicitly models the skewness and the leverage effects. We follow DR (2006) and
provide a set of moment conditions that identify the parameters of our extended model. We conduct
a Monte Carlo experiment to investigate the finite sample properties of our estimation procedure for
several values of the volatility persistence. We find that the method performs well in term of bias and

root mean square error (RMSE) across our different models, except when the volatility persistence is
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very close to one.

We consider an empirical application of our model to a set of 24 daily stock index returns, including
the FTSE 350 stock index return and 23 sectorial U.K. index returns. A monthly version of these
data has previously been modeled by Harvey, Ruiz and Sentana (1992) and Fiorentini, Sentana and
Shephard (2004) with a conditional heteroskedastic factor model. Our empirical study differs from
theirs in that we analyze daily data and we model explicitly the dynamics of conditional higher order
moments beyond the first and the second moment. For our data, we document strong evidence of
conditional heteroskedasticity, as well as conditional leverage and skewness effects for all series. We
also find evidence of significant co-skewness between the sectorial indices and the FTSE 350 index.
Our empirical findings suggest the appropriateness of a conditionally heteroskedastic factor model with
asymmetries (i.e. with leverage and skewness effects). We estimate our model by GMM. The fact that
the volatility persistence on the factor is far away from one suggests that our procedure is valid in this
application, given our Monte Carlo results. We also estimate the DR (2006) version of our model for
which the skewness and leverage effects are not explicitly modeled. The first suggestion of our results
is that there may be a substantial efficiency gain when both the conditional skewness and the leverage
effects are modeled. In our case, the GMM standard error estimates of the parameters shared by
both models drop sharply in our model compared to the DR (2006) model. Our results also suggest
the presence of a significant leverage effect driven by a common factor in daily UK sectorial returns,
confirming the results in Sentana (1995) for monthly data. The estimates of the volatility persistence
for both our model and DR'’s (2006) model are relatively low and similar to one another. Since
both models allow for the presence of conditional skewness (our model explicitly models it whereas
DR (2006) does not, although it does not rule it out), the low persistence in volatility we obtain
is consistent with the empirical results of Harvey and Siddique (1999) and Jondeau and Rockinger
(2003) for univariate GARCH-type models, namely that conditional variance is less persistent when
the conditional skewness is not ruled out. We also document the fact that an increase in volatility is
associated with a more negatively skewed conditional distribution for the returns.

In our framework the common factor and the volatility for each asset are latent processes. We
therefore propose an extended Kalman filter algorithm that provides a filter for both the latent factor

and the volatility processes. Our filter algorithm is different from the filters proposed by Diebold
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and Nerlove (1989) and King, Sentana and Wadhwani (1994) in which the volatility process is a
deterministic function of the latent factor process. Here both the latent factor and the volatility
processes are unobserved and need to be considered as state variables. We apply our filter to the
conditionally heteroskedastic factor model with the parameters estimated by the moment conditions
given in DR (2006). We then perform some diagnostic tests on the filtered factor and volatility
processes. Based on these tests, we cannot reject the correct specification of our model for the third
conditional moments and the leverage effects. Moreover, we find that the filtered volatility process
obtained with our model parameter estimates performs better than the filtered volatility process that
relies on DR (2006) model parameters estimates, particularly in the periods of large shocks on returns.
We explain this performance by the efficiency gain resulting from the returns’ asymmetries modeling.

The remainder of the paper is organized as follows. In Section 2, we present the summary statistics
for the data used in our empirical application. We also document the presence of dynamic leverage
and skewness effects in our series. Section 3 presents our conditionally heteroskedastic factor model
with skewness and leverage effects. Section 4 studies its temporal aggregation properties. Section 5
discusses the identification and estimation of the model. Section 6 contains the Monte Carlo study
whereas Section 7 contains the empirical results. Section 8 concludes. The extended Kalman filter
algorithm is presented in Appendix A. Appendix B contains the data description and all the tables

with the empirical results. The proofs appear in Appendix C.
2 Empirical motivation

In this section we provide some empirical motivation for the need to account for asymmetric effects
in both the conditional distribution (conditional skewness) and the conditional variances (leverage) of
the data used in our empirical application. Qur data set consists of 25 daily UK stock market index
returns, including the FTSE 350 and 24 other sectorial indices, all of which in the FTSE. For the
empirical application in Section 7, we restrict the set of index returns to 24. In particular, we exclude
the FTSE All Share ex. inv. index because it is highly correlated with the FTSE 350 (with correlation
coefficient 0.99) and including both indices could causes problems of multicollinearity. The data source
is Datastream. Appendix B contains more details on the data. The period covered is January 2, 1986

to December 30, 2004, for a total of 4863 daily observations. Only trading days are considered. For
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each index, we compute the daily log excess return, using the log return of the UK one month loan
index, the JPM UK CASH 1M, as the risk free interest rate. Appendix B contains all the tables with
the empirical results in the paper.

Table 1.1 shows the correlation matrix of the 25 index excess returns we consider in this paper.
Table 1.2 gives some descriptive statistics for our data, including the sample skewness and the kurtosis
coefficients. We find that all indices have negative unconditional skewness (ranged from -1.70 to -0.00)
except for the health sector index, which has positive skewness. However, this is not statistically
significant at the 10% level. Out of the remaining 24 indices, 11 have statistically significant negative
skewness. To test for the significance of skewness, we use a GMM-based test. In particular, we rely on
a Wald type test involving the difference between the sample skewness and its null value, appropriately
studentized. The asymptotic distribution of this test is easily obtained from the asymptotic distribu-
tion of the sample mean, given the delta-method and the fact that the skewness is a smooth function
of the mean. To studentize the statistic, we follow Ang and Chen (2002) and estimate the long run
variances by the 6-lags Newey and West (1987) heteroskedasticity and autocorrelation robust estima-
tor using the Bartlett kernel. The presence of skewness in the distributions of the daily excess returns
in the U.K. sectorial indices analyzed here agrees with similar evidence for other financial return se-
ries found by Harvey and Siddique (1999), Ang and Chen (2002) and Jondeau and Rockinger (2003),
among others. Although the results in Table 1.2 apply to excess returns, risk-free rate adjusted, we
also found evidence of skewness for the demeaned series, both adjusted for the day-of-the-week effect
and filtered by autoregressions. Because the results did not change substantially, we do not report
these results here.

The coefficient of unconditional kurtosis (which ranges from 6.72 to 18.62) is high for all series.
Jointly with the values obtained for the unconditional skewness coefficients, the excess kurtosis values
suggest that the normal distribution is not an appropriate description of our data, a stylized fact of
many other financial time series. The Bera-Jarque normality test for dependent data proposed by Bai
and Ng (2005) rejects the normality assumption for all the series. To conserve space, we do not report
the results here. Figure 1.1 below confirms this result for the FTSE 350 stock index excess return. It
gives the QQ plot for this series, i.e. it plots the empirical quantiles of the FTSE 350 index excess

returns against the corresponding quantiles of the standard normal distribution. The departure from
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the normal distribution is clear and we can also notice the negative skewness of the FTSE 350 index.

Figure 1.1: Q-Q plot of the FTSE 350 index daily excess return
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Table 1.2 also shows strong evidence of conditional heteroskedasticity as indicated by Engle's
(1982) Lagrange multipliers tests of orders 1 and 5, denoted Eng(1) and Eng(5), respectively. The
values of these statistics correspond to TRZ2, where T is the sample size and R? is the R-squared
from the regression of squared returns on a constant in addition to one and five lagged squared
return, respectively. Under the null hypothesis of conditional homoskedasticity, TR? follows a chi-
squared distribution with 1 and 5 degrees of freedom, respectively. The results indicate strong rejection
of the null hypothesis of conditional homoskedasticity for all series. The Ljung-Box statistics for
autocorrelation up to order 5 and 10 (QW(5) and QW(10), respectively) reveal the presence of potential
autocorrelation in the data. Similarly, the first order autocorrelation coefficients (4; in the table) are
statistically significant for most time series, with some of the higher order autocorrelation coefficients
remaining significant for some of them. Nevertheless, their magnitude is not very large (for instance,
p1 varies between 0.02 and 0.23).

In Table 1.3 we present the results of diagnostic tests for the impact of news on volatility, as
proposed by Engle and Ng (1993). These tests are the sign bias test, the negative size bias test, and
the positive size bias test. They test for the significance of including the level of past standardized
returns on the conditional variance equation and therefore can be used to test for the presence of
leverage effects. Specifically, the sign bias test is a t-test for the significance of a dummy variable

S;_ (that takes the value one if the innovation to returns is negative and zero otherwise) in the
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regression of squared standardized returns on S;_,. It checks whether volatility depends on the sign
of the past innovation to returns. The negative (positive) size bias test instead checks whether the
size of a negative (positive) return shock has an impact on volatility. We also include a joint test
that tests simultaneously if any of these effects is present. We performed the diagnostic tests on the
standardized index excess returns (using a GARCH(1,1) model as the null model under consideration
as used by Engle and Ng (1993) in some of their applications) and on a filtered version of these,
adjusted for the day-of-the-week and containing an autoregressive correction term. Since the results
are similar, we only report the results for the centered excess return series in this paper. Table 1.3
shows that the sign bias test is significant for 10 out of the 25 time series considered. Nevertheless, the
negative and the positive size bias tests are strongly significant for nearly all indices, which translates
into significant joint tests for all of the series we analyze. We conclude that a GARCH(1,1) model is
not a good description of volatility for the UK sectorial indices because it misses important leverage
effects present in the data.

Our results so far suggest that a realistic data generating process for our data set should incorporate
both leverage and unconditional skewness effects. Next we analyze the dynamic properties of these
effects. In particular, we investigate the empirical content of two specifications for the conditional
leverage and skewness effects. We model the dynamic leverage and the skewness effects as affine
functions of volatility. Specifically, let Y;;11 denote the excess return on the index 7 at time ¢t + 1
and let ¥ ;41 denote the conditional variance of Y;s42 at t + 1. Let J; denote the information set
available at t. The conditional leverage effect is given by Cov(Yjt+1,Zii¢+1|Jt), which we model
as Cou(Yjt41, Biit41|Jt) = mo + mEie. We test whether m; is significantly different from zero by
regressing €; ;41 X f:ii,t+l on 1 and ﬁii,t, where €; ;11 is the unanticipated part of ¥; ; 11, as measured by
the centered excess return Y ¢4; —Y, and where flii,t“ is the squared daily excess return at ¢+ 2, used
as a proxy! for conditional volatility Yiit+1 of Yi 4o at £+ 1. Similarly, we assume that the conditional
skewness of excess returns is given by E (Y{?t +11Jt) = ho + h1Zs¢ and test for the significance of h; in
the regression of e?,t s onland f)ii,t.

The results appear in Table 1.4. Both 7; and h are significantly different from 0 for all indices.

'Even though this proxy is known to be noisy, it gives us some insights for the dynamics in the skewness and leverage
effects for our data. We will complement this preliminary analysis with more sophisticated diagnostic tests for our model
in Section 7.



17

Except for the Persnl. Care & Hhld. Prods and the Health sectors, the estimates of m; and h; are
negative for all of the sectors. The #;s are ranged from -2.82 to 0.37 while the ks are ranged from
-3.50 to 0.37. This means, for most of the indices that large increases in their volatility are associated
to significant drops in both their leverage and their conditional skewness. These results, in particular,
suggest that the leverage and skewness effects are time varying and their dynamics can be captured
by an affine function of volatility.

To provide more evidence for these dynamics, we also use the (log) high-low range-based volatility
estimator as a proxy for the conditional variance (see Parkinson (1980) and Brandt and Diebold
(2004)). We perform these regressions only for the FTSE 350 index return. The series we consider
cover the period from October 12, 1992 through October 13, 2006 for a total of 3511 daily observations.
The conditional leverage and skewness regressions give #; = —0.27 and h; = —0.23, respectively. Asin
the previous case, both coefficient are strongly significant with -15.99 and -13.95 as t-stat, respectively.

Next, we perform some useful regressions to investigate the empirical content of an asymmetric
factor model for our data?. We argue that if the data have a factor representation, the FTSE 350
index excess return should be a good proxy for this factor®. And, for such an asymmetric factor model
to hold, both the conditional leverage and the skewness effects in our series should significantly be
explained by the factor or equivalently by the FTSE 350 index excess return volatility. Let Y; ; denote
the FTSE 350 index excess return at time ¢, ¥j;, the conditional variance of Y1441 at time ¢ and
ﬁll,t = er‘:t +1 its proxy. We test whether 7y, the slope of the regression of €; 441 x 211’t+1 on 1 and
211,1: is statistically different from zero. We also test whether hy,;, the slope of the regression of e?,t 1
on 1 and ﬁll,t is significantly different from zero.

The results appear in Table 1.4. Both 74, and hy; are statistically significant for all indices. The
estimates of these parameters lie between -2.45 and -0.94 for 7, and between -7.73 and -0.77 for
hs1. These results suggest that the conditional leverage and skewness in the index excess returns can
also be explained by the FTSE 350 index excess return with the same qualitative interpretations as in
the last regressions. We also compute the co-skewness of of each of the index excess returns with the

FTSE 350. Table 1.4 shows the results. All of the co-skewnesses are negative (ranging from -0.96 and

2To the best of our knowledge, there is no test for skewness and leverage effects in the factor of a multivariate factor
representation.

3This is confirmed by the high correlation coefficient (larger than 0.90) between the filtered factor and the FTSE 350
index excess return that we obtain in our empirical application in Section 7. See Table 1.9.
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-0.13). These further investigations show evidence of potential common component in the asymmetric
behaviour of the return processes.
In the next section we will propose a conditionally heteroskedastic factor model that incorporates

dynamic conditional leverage and skewness effects modeled as affine functions of volatility.
3 The model

The main goal of this section is to propose a conditionally heteroskedastic factor model with skewness
and leverage effects. To introduce some notation, we first present a conditionally heteroskedastic factor
model for which these effects are not explicitly present. This model was recently studied by DR. (2006)
in the context of IV identification and estimation by GMM (see also Diebold and Nerlove (1989),
King, Sentana and Wadhwani (1994), and Fiorentini, Sentana and Shephard (2004) for a discussion
of conditionally heteroskedastic factor models). We will then present our model, which extends DR’s

(2006) model to include skewness and leverage dynamics.
3.1 A benchmark model

Let Y;4+1 be a N x 1 vector of (excess) returns on N assets from time ¢ until time £+ 1, Fy4; a K x 1
vector of K unobserved common factors, and U;4; a N x 1 vector of idiosyncratic shocks. DR (2006)

consider the following conditionally heteroskedastic factor model for Yy,
Yiv1 = u(Je) + AFiy1 + U, (1)

with

E (U1]Jt)
E (Fi11J%)
E (U1 F{y, | %)
Var (Ut+1|Jt) =
Var (Fy1|Jt) =

where J; is a nondecreasing filtration defining the relevant conditioning information set containing

hoooo

(2)

ty

the past values of Y;,7 < t and and F,,7 < t, u(J;) is a N x 1 vector of J;—adapted components
representing the risk premia, A is the N x K (N > K) full column rank matrix of factor loadings,
Dy is a diagonal positive definite matrix of K time-varying factor variances, and € is the conditional

covariance matrix of the idiosyncratic shocks Uy ;.
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The existing literature has made several assumptions about €. The strict factor structures as
in Diebold and Nerlove (1989), King, Sentana and Wadhwani (1994) and Fiorentini, Sentana and
Shephard (2004) impose € to be diagonal. The approximate factor structures as in Chamberlain and
Rothschild (1983) and DR (2006) relax this assumption, allowing for nonzero off-diagonal elements.
An advantage of the approximate factor representation is that it is preserved by portfolio formation,
differently from the strict factor representation (see Chamberlain and Rothschild (1983), DR (2006)
or Fiorentini, Sentana and Shephard (2004)).

Under (1) and (2), the conditional variance of Y;,; given the information available at time ¢ is
given by:

2 =Var (Yi41|Jt) = AD: A + Q. (3)

The decomposition in (3) shows that the conditional variance of Y;4; is time-varying, thus explaining
why model (1) and (2) is called a conditionally heteroskedastic factor model.

For simplicity, we consider a constant risk premium for all assets, i.e. we assume u(J;) = p for
all t. Following Nardari and Scruggs (2006), this restriction allows for the pricing relation pu = AT,
where 7 is a K x 1 vector of time-invariant factor risk premia. To simplify the exposition, we also
assume a single factor representation, i.e. we will let K = 1 throughout. The generalization to K > 1
is nevertheless straightforward even though the inference issues may need to be discussed. Therefore,
the model above specializes to

Yit1 = p+ Afte1 + U, (4)

where f;4) is the single common latent factor and A is a N x 1 vector of factor loadings. The moment

conditions in (2) can be rewritten as

E(fi41|dt) = 0

E (Ut+1|-]t) =0

Il
o

E (fer1Uia|dh)

Var (Ugy1|Jt)

(5)

Il
o]

Var (fis1|le) = of,
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implying that the conditional variance of Y;4; given J; is equal to
= Mol + Q. (6)

To model o7, the conditional variance of fi+1 at time ¢, we follow DR (2006) and assume that
ft follows a square root-stochastic autoregressive volatility (SR-SARV(1)) model with respect to the
filtration J; (see Andersen (1994) and Meddahi and Renault (2004) for more details on this class of

models), i.e.

ft+1 = o1

where o7, the conditional variance of f;,1, satisfies the following condition:
E(0}|J—1) =w+y0l,, w>0, v€(0,1),

and where 741 is such that E(m41|J;) =0 and Var(n4a|J;) = 1.
Equations (4) through (5) describe the conditionally heteroskedastic model considered by DR
(2006). Our main contribution in this section is to extend this model by explicitly modeling the

skewness and the leverage effects.
3.2 The leverage effect

Fiorentini, Sentana and Shephard (2004) consider a conditionally heteroskedastic factor model that
allows for a dynamic leverage effect. Nevertheless, in their model, the leverage effect is tightly linked
to the QGARCH specification of Sentana (1995) for the conditional variance of the common factor.
Here we adopt a different approach that disentangles these two features.

Given (6), we can write the conditional variance of asset i at time £ + 1 as
i1 = AN ozey + Qi i1=1,---,N,

where Z;; ;41 denotes the element (i, 1) of the matrix ¥;4;, and similarly for ;.
Let u;¢+1 be the i-th component of U;41. The conditional leverage effect at ¢t + 1 can be expressed

as the conditional covariance between Y; ;1 and X +41, given Ji, i.e.

Cov (Yigt1, isgraJe) = Cov (N frar + wie1, A 074y + Qul Jt)

= /\?CO’U (ft-f—la O'tz_HlJt) + )\%CO’U ('U-i,t+1, O’tz_*_llJt) . (7)
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Equation (7) shows that the leverage effect for each return has two components. The first component
reflects the part of the leverage effect that is due to leverage in the common factor whereas the second
component is given by the conditional covariance between the idiosyncratic shock and the future
volatility of the factor. The dynamics of each component dictate the dynamics of the leverage effect.

In this paper we assume that the idiosyncratic shock is not conditionally correlated with the

conditional variance of the factor. We formally state this assumption below.
AssUuMPTION 1 The conditional correlation between u;;4+1 and at2+1 for each asset i is zero:
Cov(ui,t_i.l, Ut2+1|Jt) = O, 1= 1, ey N.

This assumption implies to imposing a null correlation between u;; and ft2+1. The following

assumption gives a model for the leverage effect for the latent factor.
AsSUMPTION 2 Cou(fiy1, at2+1|Jt) = g + Mo, for some constants my and .

According to this assumption, the leverage effect for the factor is an affine function of its conditional

variance. As we will show next, this specification holds for many models in the class of SR-SARV

processes4 :

EXAMPLE 1 The A1(3)-affine family processes® (Dai and Singleton (2000), Singleton (2001)).
Let fi+1 be defined by

fr41 = Va+vier 41 + o1ny/vea i1 + 02V (2 + Buges i, €q1|Je ~ N(0, I3)
01 =0+ (1 — )0 + /(2 + Butea g1 + 030\ Us€a,t41 + 04/ F Vgerpq,

ver1 = b+ (1 — p)or + ny/vea i1,
where (o, 8,m,v,1,(,0,7,01,02,03,04) €D, a conveniently restricted subset of R'2. It follows that

Cov(fi41, 0'12+1|Jt) = —01772(01 + U%CZ) + 0’1"720't2 =7+ 7r10't2-

o? = Var (fi41|t) = a + 02¢% + (1 + 02n% + 02B)v;. Thus, the affine process verifies Assumption 2.

4Many of our examples correspond to the discrete version of continuous time models used in finance.

®Backus-Foresi-Telmer(2001) use the discrete time version of the Cox-Ingersoll-Ross's (1985) diffusion process to
propose an affine model of currency. The affine process nests the square-root process of Heston (1993) and Cox-Ingersoll-
Ross (1985).
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EXAMPLE 2 The Quadratic GARCH (QGARCH(1,1)) of Sentana (1995).
Let f;41 be given by

fir1 = oemt, Ne+1|Je ~ N (0, 1),

where o7 is such that
ot =0+Bol, +a(fi—p?, (0,6, a p) eD.
It follows that

Covlfust, oFalde) = ~200? = mo?,

showing that QGARCH(1,1) satisfies Assumption 2.
EXAMPLE 3 Heston-Nandi’s (2000) GARCH process.
Let fi41 be given by

frtrn = oemi,  mea|e~N(0, 1),
where o2 is defined as follows:
at2+1 =w+ B0 +a(np —’yat)z, (w, B, a, v) € D.
We can show that
Cov(fit1, 0241 |Jt) = —2av07 = mo},

proving that this model also satisfies our Assumption 2.
EXAMPLE 4 The Inverse Gaussian GARCH(1,1) of Christoffersen, Heston and Jacobs (2006).

In the Inverse-Gaussian-GARCH(1,1) (IV-GARCH (1,1)) model proposed by Christoffersen, Hes-
ton and Jacobs (2006) for a random process f;4+1 (e.g. a log return process), fi41 is written as the sum
of a deterministic random process and an innovation which follows an Inverse Gaussian distribution.
They show that this model is embodied in the class of SR-SARV(1) models and allows for a leverage
effect of the type considered in Assumption 2. In particular, they show that Cov(fi41, 02, ,|J;) = mo?
for some m, where o2 is the conditional variance of f;;.

Given equation (7) and Assumptions 1 and 2, we can write the leverage effect for asset i as follows:

Cov (Yit41, Sigr1lJe) = A} (mo + mi0?) . (8)
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3.3 The skewness effect

In this section we propose a model for the dynamics in the conditional skewness of assets returns. This
effect has often been ruled out in the conditionally heteroskedastic factor literature, which typically
postulates the conditional normality of (fi+1,U{,;)’". To the best of our knowledge, we are the first to
model this effect in the conditionally heteroskedastic factor literature.

The finance literature on univariate processes has modeled the skewness effect by specifying con-
ditional distributions which allow for time varying conditional third order moments. See for instance
Hansen (1994), Harvey and Siddique (1999) and Jondeau and Rockinger (2003). Because we would like
to avoid any distributional assumptions, we will follow an alternative approach in which the skewness
effect is specified through a conditional moment restrictions.

Without loss of generality, assume that p{J;) = u = 0. It follows that foreachi=1, ..., N,
E ()/z'?t+l|']t) = )‘?E (ft3+1|']t) +E (u?,t+1|~]t) + 3’\?E (ft2+1ui,t+l|Jt) +3ME (ft+1uz2,t+1|']i) .

In order to obtain a simplified expression for F (Yz?t +1|Jt), we make the following assumption.

Note that DR (2006) use a similar assumption (see their Assumption 3.6).

ASSUMPTION 3 fi+1 and fﬁl_1 are conditionally uncorrelated with any polynomial function of u;;41 of

degree smaller than three.

Assumption 1 assumes that ff+1 is conditionally uncorrelated with u;;. Assumption 3 extends
Assumption 1 by requiring that ftz+1 be also conditionally uncorrelated with u;;41. Assumptions 1
and 3 are satisfied if the latent factor is conditionally independent of the idiosyncratic shocks.

By Assumption 3,

E (fAauigalJ) = E (firrvd| ) =0,

which implies that
E (Yildt) = XE (£ ) + B (ul el Je) - )

As a result, specifying the dynamics of the third order conditional moments of the factor and of the
idiosyncratic shocks is equivalent to modeling the third order conditional moment of the excess return.

We introduce the following assumption.
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ASSUMPTION 4 Foralli=1,...,N,
E(u}inlh) =5, s?eR

Assumption 3 assumes that the third order conditional moment of w;¢4; is time-invariant. The
idiosyncratic shocks are therefore not necessarily (conditionally) Gaussian, although we assume that
their first three moments are not time varying,.

To model the conditional skewness in the conditional distribution of f;1;, we make the following

assumption.

ASSUMPTION 5

E (fts_*_llJt) =hy + hlo'tz, ho, h1 € R.

According to Assumption 5, the conditional skewness in fi+; is an affine function of o7, the
conditional variance of the factor. As we will prove in Proposition 4.4 below, this specification is
robust to temporal aggregation of the model when the leverage effect is specified by Assumption 2.
Moreover, this model has good empirical support for our data, as showed by our empirical results in
Section 2.

The models introduced in Examples 21-24 above satisfy Assumption 5 in addition to Assumption
2. Assumptions 3-5 imply that

E(Y2 1Je) = Ahiof + s, (10)

with s; = A3hg+s0:i=1,..., N. Equation (10) shows on the one hand that hg and :i=1,...,N
cannot be simultaneously identified by the third conditional moment of the returns and on the other
hand that the conditional skewness of the returns, Y; ;41 :i=1,..., N are affine functions of o2.
Assumptions 2 and 5 nest the standard GARCH(1,1) models allowing for the possible presence
of skewness when the standardized innovation in f;41, 41, has its third order conditional moment,
E(n},1|J:), proportional to 1/0;. This is the case for the standard Gaussian GARCH(1,1) model.
However, this model (possibly with skewness) does not disentangle the skewness effect from the lever-
age. In particular, if fi+1 is a GARCH(1,1) process, Cov (fi41, 021|Jt) = @ E (f$14]J:). This is
rather a drawback for this class of models as pointed out by Alami and Renault (2001). In contrast,

Assumptions 2 and 5 allow for the two effects to be independent of each other.
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3.4 Our model

The following equations summarize our conditionally heteroskedastic factor model with asymmetries.

Yiri =+ Afie1 + Ui (11a)

E(fe+1|de) =0 (11b)

EUina|dt) =0 (11c)

Var (Ug| ) = Q (11d)

E (ft+1Ut41|Je) = 0 (11e)

Var (fo|ds) = of (11f)

E(ofnld) =1=v+70f, v€(0,1) (11g)

E[(Yigr1 — p)?| %) = Ahiof +s5, i=1,...,N (11h)

Cov (fo41,07,1|Jt) = mo + maf. (11i)

The skewness effect depends on the parameters h; and s;, for7 = 1,..., N, while ng and m; characterize

the leverage dynamics. Equation (11g) specifies the factor volatility dynamics. The SR-SARV(1) model
restricts the volatility intercept w to 1 —+, where « is the factor conditional variance persistence, such
that Eo? = Ef? = 1. This condition fix the scale problem that may arise out from the specification in
(11a) for the factor loadings and the latent factor. However, as pointed out by DR (2006), their model
given by Equations (11a)-(11g) identifies all of the parameters involved except one arbitrary factor
loading. This remark remains true in our model. The additional conditional moment restrictions we
provide by (11h) and (11i) only identify the asymmetry parameters and some factor loading ratios
which all are identified by (11a)-(11g). We will discuss this identification problem more extensively in
Section 5.

This identification issue is the first main difference between the conditional moment restrictions-
based model we have here and the parametric factor models. The conditional joint distribution
assumption for (fi41,U],,) in parametric models together with the factor normalization identify the
whole model up to one factor loading sign. This sign indeterminacy is solved, as proposed by Geweke

and Zhou (1996), by restricting the sign of a particular factor loading to be positive. For a more
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extensive discussion about this identification issue for parametric models, see Geweke and Zhou (1996)

and Aguilar and West (2000).

Equations (11f) through (11i) show that the common factor drives the dynamics in the conditional
variance, the conditional skewness and the conditional leverage of assets returns. In particular, as we

showed in (8), the leverage effect for asset 4 can be expressed® as
Lig = Al

where ;s = Cov (Y; t4+1, Ziit+1]|J:) denotes the leverage effect for the asset and l; = Cov (fi11, 02, 1)
denotes the leverage effect for the factor. Therefore, if an asset has a positive factor loading, its leverage
effect is positively correlated with the leverage effect for the factor. Instead, a negative relationship
holds between the two leverage effects if the factor loading is negative.

We can also define the co-leverage (or transversal leverage) between two assets ¢ and j. This is
given by l;;: = Cov (yit+1, Xjjt+1|Ji). Note that the order of the arguments matters in this definition
of the co-leverage. Specifically, l;;; # ljit. The co-leverage measures the impact of a shock on the

return of asset i today on the volatility of asset j tomorrow. Under our assumptions, it follows that

bje = Cov(Yigs1, Sjjpr1lde) = Cov (Ni fear1 + uipa1, Af 074y + Q551 Je)

= M)} Cov (fit1, 01| J)
2
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implying that
2
Lije = A—; Liss- (12)
(3
Equation (12) shows that the co-leverage of asset ¢ on asset j has the same sign as the leverage effect
for asset i. Thus, if asset ¢ has a negative leverage effect, a positive shock on asset i’ s return lowers
its future volatility, which increases the confidence level in asset i’s market, which ceteris paribus,

propagates to the entire financial market. Thus, a positive shock on asset i’s return reduces future

volatility for all other assets, including asset j.

SRicher dynamics in the returns leverage may be obtained by including more factors in the model.
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4 Temporal aggregation results

Asset returns are available at many different frequencies. For instance, financial data are often available
at the daily, weekly, or monthly level, not to mention the fact that higher frequency data at the
intraday level are also increasingly available in finance. Because lower frequency returns are just a
temporal aggregation of the higher frequency returns, an internally consistent model should be robust
to temporal aggregation. Drost and Nijman (1993) show that the standard GARCH model is not
robust to temporal aggregation and propose the weak GARCH model, which is robust to temporal
aggregation. More recently, Meddahi and Renault (2004) propose the SR-SARV class of volatility
processes and show that these processes are closed under temporal aggregation. See also Engle and
Patton (2001) for a discussion of the merits of temporal aggregation.

In this section, we show that the conditionally heteroskedastic factor model with asymmetries we
propose in this paper is robust to temporal aggregation.

Suppose we observe returns at ¢t = 1,2,.... The relevant conditioning information set at time ¢ is
Jt, which contains the past observations dated at times ¢ and before. Suppose now we observe returns
at a lower frequency, in particular we observe returns at tm intervals, where t = 1,2, ..., and m is the
time horizon. For example, if we move from the daily to the weekly frequency, m = 5. In this case,
the relevant conditioning information set depends on the observations dated at times tm. We will call

this information set Jt(,': ). In order to define J™

wm » We need to introduce some additional notation.

In particular, following Meddahi and Renault (2004), let Ytgl”) = )% Yy 1ymts, t > 1, denote the
process resulting from the temporal aggregation of Y; over the time horizon m. The coefficients oy,
l=1,...,m, are the aggregation coefficients. For a flow variable such as a log return, o; = 1, for all
I =1,...,m, whereas for a stock variable we have that a; = 1 for [ = m and 0 otherwise. Similarly, let
Ft(,:l" ) = > 10 Ft_1ym4s and Ut(,'n” ) = > 21 Ut—1ym+: be the temporal aggregation analogues of F;
and U;. Following Meddahi and Renault (2004), we define Jt(:n" ) =g (YT(n"f),Fﬁﬂ), U Dot < t) ,
where, for any integer 7, Drrm = Var (Frm+1|Jrm), Jrm is the same information set as J; with t = Tm

and o(X) denotes the o-algebra generated by X. Meddahi and Renault (2004) show that the SR-
J(m)

tm

SARV(1) model is robust to temporal aggregation with respect to the increasing filtration

PROPOSITION 4.1 Let Y; be defined by (1) and (2). Assume Y; has a constant conditional mean
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u. Then the temporally aggregated process Yt&") of Yy over the time horizon m has the following

representation
Yo = ) + AR + UL, (13)
such that - -
E (Ui 1ym!Jom = 0
(m) (m) _
E F(tﬁ-{-l)ml']t:frll =0
(m) (m)’ (m)
E (U ym FitnmlI) = 0 (14)
Var U((t,-n{-)l)m|‘]t(rzt) = (ZZia))Q
Var (Fmynl i = D™,

where Dt(::) is a diagonal matriz and pl™) is a time-invariant vector equal to (>, o) e

Proposition 4.1 shows that Ytﬁj{‘), the temporal aggregation of Y; over the horizon m, has the same

factor representation as Yz, where the idiosyncratic shocks and the latent factors are the temporal
aggregation analogues of the higher frequency idiosyncratic shocks and factors, respectively. Hence,
if we assume that each factor, component of F;, follows a SR-SARV(1) model, as in our model in
(11) for the single factor, the results in Meddahi and Renault (2004) imply that each component of
Ft(;n) inherits the SR-SARV(1) dynamics. We can therefore conclude that under our assumptions the
volatility specification assumed for the factor representation of Y¥; in our model in (11) is robust to
temporal aggregation.

Next we study the properties of temporal aggregation of the models assumed for the leverage and
skewness effects (Assumptions 2 and 5, respectively). For simplicity we assume a single factor model
and let u = 0.

The following proposition is auxiliary in proving the robustness of the skewness and leverage
models to temporal aggregation. It provides some useful properties of the SR-SARV(1) process not yet
established in the literature. In particular, this proposition gives the expected value of the conditional
variance conditional on the information available at any earlier period, and it also expresses the
conditional variance of an aggregated SR-SARV(1) process in terms of the conditional variance of the

original process.

PROPOSITION 4.2 Let fi41 follow a SR-SARV(1) model with volatility persistence and intercept pa-

rameter v and 1 — v, respectively, and with conditional variance oZ. Then, for all | > 1, we have
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that
E(0imii1ldim) =1 =" + 47102,

and

m
of = Var(fymlin) = 3ot (1 -+ )+atm2a2 1= 5 4 s{Mo,
=1

The leverage effect in the aggregated return Y™ of asset i is defined as

i,tm

(m) (m)? (m)
Cov (Yz (t+1)m? zT;+1)m|J ™ ) )

where a( ) = Var (Yl(gil)m| (m)) .

Given Assumption 1, it suffices to examine the leverage effect in the factor
(m) (m)? ) y(m)
Cov (f(t+1)m’ (t+1)ml ) .

PROPOSITION 4.3 Let fiy1 follow a SR-SARV(1) model with volatility persistence and intercept para-

meter v and 1 — vy, respectively, and satisfying Assumption 2. It follows that

Cov ( f((tr—n}-)l)m’ gz)l)m' J(m)) (m) + W(m) Ut(;n) 71.(()m) and ng) €R

Proposition 4.3 shows that the leverage model assumed in Assumption 2 is robust to temporal
aggregation for the class of SR-SARV(1) processes. Similarly, we can show that the equation (12)
describing the co-leverage effect for asset i on asset j holds for the aggregated process provided As-
sumption 1 is satisfied.

The next result establishes the robustness to temporal aggregation of the third order conditional

moment dynamics assumed in Assumption 5.

PROPOSITION 4.4 Let fi11 follow a SR-SARV(1) model with volatility persistence and intercept para-

meter v and 1 — v, respectively, and satisfying Assumptions 2 and 5. It follows that

m 2 m
B[ () 182 = Mo 4

and

B (1) ] R 447,
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fori=1,...,N andt=1,2,..., where

m

m

r™ = |y Za?'y'_l + 3m x Z aady 2| /s,
1=1 1<l =1

h§™ = A — p{™ g

m

m
A =37 affho + (1=l +8x 3 ey o+ m(1 =27,
=1 <l Li'=1

m
i ot (3a0),
=1

and where S§m) and ng) are as defined in Proposition 4.2.

Proposition 4.4 shows that the conditional third order moment dynamics postulated in Assumption
5 is robust to temporal aggregation in the set of SR-SARV(1) processes that have a conditional
leverage dynamic according to Assumption 2. In particular, the third conditional moments of excess
aggregated returns follow an affine function of volatility. Moreover, if the conditional third moment
of the underlying factor is time varying, it follows that the aggregated factor also has a dynamic
conditional third moment, given that the aggregation coefficients oy, [ = 1, ..., m are nonnegative.

We can summarize the temporal aggregation properties of the temporally aggregated model as
follows. First, the factor representation is preserved for the aggregated model, with the same factor
loadings. Second, the aggregated factor has a leverage effect and a skewness effect whose specifications
are affine functions of its volatility, just as assumed for the original factor itself. Third, the conditional
skewness of the idiosyncratic shocks is constant if the same is true for the underlying non aggregated
shocks, as assumed by Assumption 1. These properties, together with the property of robustness to
temporal aggregation of SR-SARV models for conditional heteroskedasticity established by Meddahi
and Renault (2004), prove that our conditionally heteroskedastic factor model with asymmetries is

robust to temporal aggregation.
5 Identification and estimation of the model

The main goal of this section is to present some valid moment conditions for our model on which we
can base GMM inference. The GMM-based inference is robust to distribution misspecification and it is

also easier to perform than alternative methods often used in the conditionally heteroskedastic factor
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model literature, which also widely rely on distributional assumptions. To the best of our knowledge,
DR (2006) are the first to propose a GMM-based inference method for conditionally heteroskedastic
factor model.

Our model, as we already mentioned, is close to the DR (2006) model in that both share Equations
(11a)-(11g). Therefore, the DR (2006) moment conditions are useful here to identify A, v and Q.
However, as pointed out by DR (2006), because the factor is not observable their model is not able
to identify all of the parameters included. The main reason is that their model specifies only the
first and second conditional moments which are to be estimated as well. Actually, the model is only
partially identified in the sense of Manski and Tamer (2002). Particularly, it identifies the whole set
of parameters as a function of one factor loading. To conduce inferences in the usual way, DR (2006)
propose two approaches. The first normalizes one factor loading and thus allows the identification of
the whole model by appropriate unconditional moment conditions. The second approach restricts the
factor’s conditional kurtosis to be time invariant and proposes a dynamic model for the conditional
variance of the factor’s conditional variance. This allows the full identification of the model through
suitable moment conditions.

Here we will follow both of these approaches to study the identification of our extended model

(Equations (11a) through (11i)).

5.1 Inference by normalization

This approach sets the factor loading of a given excess return process (we will consider one with a
factor loading different from 0) to an arbitrary value ). In particular, we let 0 < A% < Var(Y1,). For

simplicity, we first consider the case in which g = 0. The following moment conditions proposed by

DR (2006) characterize A_; = (A2, -+ ,An), v and Q.

Vec{E [(Y_1,41 — Am1A7WYae1) Y| Bt } = Vee [Qa. — Ao A7 ] (15a)
Vech {E [(1 - 7L)}’t+11/t;1| Jt—l]} = Vech [(1 — 7)) + Q)] (15b)
where L is the usual lag operator, Y_1 ;41 = (Y2,641,. .., YNt41), 1. is the 1 x N-matrix equal to the

first row of Q, s, is the N — 1 x N-matrix of the last N — 1 rows of 2, while Vec and Vech are the

usual vectorizing and half-vectorizing operators.
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In practice, instead of (15a), we can use
Vec{E [(Y_1,441 — Ao1A7 1 Vie41) Yi41lJe] } = Vee [Qang — /\—1&_1911] ,

where Q.51 is the submatrix of Q defined by its first column and its second to its last rows, to avoid
the risk of near collinearity in the resulting unconditional moment restrictions. Similarly, instead of
the Vech operator in (15b), the Diag operator is recommended when large dimension processes are
used. The Diag operator transforms a square matrix into a vector of its diagonal entries.

Next we extend this approach to the leverage and skewness dynamics.

The leverage in excess returns as given by (8) provides moment conditions characterizing 7y and

7. With Ty = E(Yi?tﬂut) and o} =A% [E (Y12,t+1|~]t) — 11] , these moment conditions are:
E (Yi,t+1Yi,2t+2|Jt) = )\? ["8 + “?E (le,t+1|Jt)] y Vi=1,---,N (16)

where 79 = mg — m1(Q11/2?) and 7Y = m; /A%
Similarly, the third conditional moment of asset excess returns as given by (10) characterizes the

skewness parameters hy, s1, - ,SN:

E (Yi:,it+1|-]t) =MhE (le,t+1|']t) +si, Vi=1,---,N (17)

where A = hiA™2 and s} = s; — R A3AT2Q,.

In a more general case where y # 0, one can note that the moment condition E(Y;41]J;) = u
identifies 1 and therefore has to be completed in (15) in addition to Equations (15a) and (15b).
Moreover Y;11, Y_1 41 and Yi:41 have to be replaced by Yiy1 — p, Y_1:41 — p—1 and i1 — g,
respectively.

The moment conditions in Equations (16)-(17) can be written as

E {94, (Yi41,Yiqa, 2| 1)} =0

with ¢1 = (A\_,,v, Vech(Q)')' and ¢3 = (mo, 71,81, -+ , 5N, h1), where gy, (.) defines a smooth function.

For a Ji-measurable vector of instruments z; including 1, this conditional moment restrictions implies:

E{z ® g4, Yi+1,Yi42,¢2)} =0 (18)



o\

33

which, in turn, is an unconditional moment restrictions allowing for the application of Hansen’s
(1982) results. The following proposition suggests an instrument that could validate the application

of Hansen’s (1982) results.

PROPOSITION 5.1 Let z; be an I-vector of Ji-measurable instruments including 1 and 2 (I>2)
such that Cov (214,02) # 0. Then, for any ¢1, the moment condition in (18) identifies ¢o at the first

order t.e.:
(0/0¢%5) [E{zt ® gp, (Yit1, Yita, ¢2)}] has full column rank.

The factor f;41 follows an SR-SARV(1) model and therefore its square has an ARMA representation
(Meddahi and Renault (2004)). Because A # 0, Y7, has also an ARMA representation. Thus, YZ, is
correlated with o?. Consequently, any lag of th is a valid instrument that may help to first-order
identify ¢o by (18).

Because the moment conditions in (15) identify ¢, at the first order (see DR (2006)) and do not
share any component of ¢, we can show that, jointly, the moment conditions in (15) and (18) identify

¢ = (¢4, ¢5)’ at the first order. Combining (15) and (18), the global moment condition is written as

E{g:(¢)} =0, (19)

for an appriate smooth function g¢(.).
Let || X]|> = X'X, where X is a vector. If E||g:(¢)||?> < oo (which inquires Y; to have a finite sixth
moment), we can apply the results in Hansen (1982) to show that the asymptotic distribution of qAb,

the efficient GMM estimator of ¢ based on the moment condition (19) is given by

VT($—¢) S N (0,(D'W™'D) 1),
where W = limp_,o Var (z{:l 9:(0) NT) and D = (8/8¢')E{g:($)}.
5.2 Inference through higher order moments

The second approach proposed by DR (2006) completes their model given by equations (11a)-(11g) by

using a dynamic specification for the conditional variance of the factor’s conditional variance. With
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the additional constant conditional kurtosis assumption for the factor, DR (2006) propose moment
conditions that identify A, v and Q.

Specifically, DR (2006) assume that the conditional variance of Ut2+1 is a quadratic function of o2,
Var (0},1t) = a + Bo} + o} (20)

This specification nests the affine process of the conditional variance of Heston (1993) and the Ornstein-
Uhlenbeck-like Levy-process of the conditional variance, as introduced by Barndorff-Nielsen and Shep-
hard (2001).

In our temporal aggregation robust framework, if we complete our conditionally heteroskedastic
factor model with asymmetries given in (11) with the conditional variance specification in (20) for
the factor, it turns out that the whole framework is modified and we must re-evaluate the temporal
aggregation property of this new model. Proposition C.1 in Appendix C insures that the conditional
variance dynamic in (20) is robust to temporal aggregation in the class of the SR-SARV(1) processes.
As a consequence, the new model we obtain by completing our model in (11) by (20) is also robust to
temporal aggregation.

The following moment conditions identify A, Q, ~, a, b and ¢ at the first order:

Vec{E [(Yo1,41 — AA Yie41) Y |J] } = Vee [Q2. — A_iATI ] (21a)
Vech {E [(1 — yL)Yi1Y{11| Je-1]} = Vech [(1 — v)(AN + Q)] (21b)
E [(1 - cL) (¥l 41 — 62n13%,) — bAlyi,| Jici) = a (21c)

where A_; and Y_;; have the same definition as in (15), a, b and b three additional parameters and
we also assume p = 0.

Let ¢, denote a vector containing A, €2, v, a, b and ¢. We can easily verify that Proposition 5.1
holds in this framework so that the parameters contained in ¢ are identified at the first order for any
¢1. The efficient GMM estimator of ¢ = (¢!, ¢5)’ is also asymptotically normal, although this result
requires more stringent moment conditions (in particular, ¥; should have eight order finite moments).
This conditions may be less realistic for GARCH processes with high volatility persistence. For this
reason, the previous approach for identification seems more practical.

We conclude this section with some remarks. First, the number of parameters can grow very quickly

with the number of assets in the factor structure depending on the restrictions on the variance matrix
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€1 of the idiosyncratic shocks. Typically, without any restriction on 2, the number of parameters is
of order O(N?) against O(N) if we restrict this variance matrix to be diagonal. Thus, a free semi
positive definite matrix Q is practically tractable only in the case of a reasonable number of assets
(e.g. N < 5). But, for a larger number of assets, it would be more convenient to restrict Q to be
diagonal or even block diagonal.

Second, the Iterated GMM inference approach proposed by Ogaki (1993), is also useful in our
framework. Applied to our context, the Iterated GMM consists on estimating ¢; from (15) or (21) by
the usual GMM technique, and then plugging <131 in the remaining moment conditions to estimate ¢,
also by GMM. It has been proved (see Ogaki 1993) that the resulting estimator (¢}, #,)’ is asymp-
totically normally distributed. Even though this approach involves more optimization steps than the
usual GMM, the dimension of the parameter spaces on which these optimizations are performed are
smaller than in the usual GMM. Therefore, this technique may be easier to implement. However, due

to its two-step approach, the Iterated GMM is less efficient than the usual GMM.
6 Monte Carlo results

The main goal of this section is to assess the finite sample performance of our estimation procedure for
different values of the factor volatility persistence. Because the GMM inference results are known to be
sensitive to the set of valid instruments that are used (see e.g. Andersen and Sgrensen (1996)), we first
investigate the relative performance of four sets of valid instruments. We evaluate the performance
of each instrument set by the simulated bias and the root mean square error (RMSE) of parameter
estimates it provides for both the DR (2006) model and our conditionally heteroskedastic factor
model with asymmetries. The best of these instrument sets is subsequently used in our experiments
for assessing the sensitivity of our inference procedure to the factor volatility persistence.

We simulate samples of three asset excess returns with null risk premia (¢ = 0) from a single factor

model. The model considered is the following

)/i,tzAft'}'ui,tv 1= 112;3a

with A = (1,1,1)' and U; ~ i.i.d N(0,wl3), where w = 0.35 and I3 is the identity matrix of size 3.

u;¢ is the i-th component of U;. In this model, the signal to noise ratio A;/w is 2.86 which roughly
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matches the average signal to noise ratio we find in our empirical application in Section 7. The factor
process f; in all our experiments has a GARCH(1,1) dynamics i.e. f; = oy—1m, m|Ji—1 ~ (0,1) and
of=1-a-fB+aff+por,,0<a+p <1 This GARCH(1,1) process is an SR-SARV(1) process
with persistence parameter v = a + .

In the DGP 1, DGP 2, DGP 3 and DGP 4 we consider, n; ~ 1.1.d.N'(0,1) and hence, the factor is
the standard Gaussian GARCH(1,1) process.

Inthe DGP 1’, DGP 2’, DGP 3’ and DGP 4’, n; = (U?_I—Xt)/at_l where X;|J;—1 ~ Gamma(crf_l, 1).
In this case, E(fP,|J;) = —20% and Cov(fi41,0%,,|J;) = —2a0?. This simulation design fits with the
occurence of conditional skewness and conditional leverage in Y; ;.

The eight experiments we conduct differ by the asymmetries occurence and also by the factor

volatility persistence, v. For

DGP 1 and DGP 1: a =0.20, 8 = 0.50; v = 0.70,
DGP 2 and DGP 2’: a =0.20, § = 0.60; v = 0.80,
DGP 3 and DGP 3’ a =0.20, 8 = 0.70; v = 0.90,
DGP 4 and DGP 4": a=0.20, 8 =0.75; v = 0.95.

v = 0.70 roughly matches the volatility persistence we get for the factor in our empirical application.
v = 0.80 matches approximately the factor volatility persistence estimate by Fiorentini, Sentana and
Shephard (2004) for monthly U.K. index excess returns. v = 0.90 and v = 0.95 are the usual range of
the standard GARCH volatility persistence estimate in the empirical literature for daily returns (see
e.g. Harvey and Siddique (1999)). We set the number of replications to 500, and the sample size is
T = 5000, which roughly matches the length of the data set used in our empirical application.

We perform the inference by the normalization approach described in Section 5 and we set the
first asset factor loading to A = 1. We estimate the DR, (2006) model by the moment conditions given
in equation (15) and our conditionally heteroskedastic factor model with asymmetries by the moment
conditions given by equations (15)-(16)-(17). The parameters of interest in the DR (2006) model are
A2, A3, w and v. In the DGP 1 through 4, s; = s, = s3 =5=0, hy =0 and mg = m; = 0 and in the
DGP 1’ through 4’, 51 = 8o =s3 =s =0, hy = ~2.0, mp = 0 and 7; = —0.4. Therefore, as far as the

Monte Carlo designs are concerned, A2, A3, w, 7, s, h1, 7o and 7 are the only relevant parameters of
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our conditionally heteroskedastic factor model with asymmetries.

We first assess the relative performance of our estimation method for the DR (2006) model and our
extended model in terms of instruments used. In particular, we consider four sets of instruments: z; s =
(1vY12,t)7 220 = (1, ?21 PiY12,t—i+1? p=009), 23t = (11Y12,taY12,t—1) and z4; = (11Y12,t’Y12,t—1’le,t—2)'
For each set of instruments, we simulate data from DGP 2 and evaluate the bias and the RMSE
for the parameter estimates in the DR (2006) model and in our model with asymmetries. Table 1.5
contains the results. In terms of bias, 2z3; is the most desirable for both models among the four
instrument sets. It yields a particularly small average bias for the DR (2006) model estimates with
respect to the other instruments which show roughly the same amount of average bias. For our
conditionally heteroskedastic factor model with asymmetries estimates, z3; also yields the smallest
amount of average bias but the difference with z4; is not noticeable. 21, appears to yield the largest
average bias among the four instrument sets that we compare. In terms of RMSE, z, is the best
instrument set for both models followed by z3;. These two instrument sets perform much better than
za4 and z1¢. This result suggests the use of z4; as an instrument set for our next experiments and our
empirical work.

Next, we investigate the finite sample properties of our estimation method as a function of the
volatility persistence v and the occurence of asymmetries. More specifically, we consider the eight
DGPs described above (DGP 1, 2, 3, 4 and DGP 1’, 2’, 3, 4’). Table 1.6 presents the results for
the DGP 1, 2, 3 and 4 in which there is no conditional asymmetry in the processes Y;; and Table
1.7 presents the results for DGP 1’, 2’, 3’ and 4’ in which both the conditional skewness and the
conditional leverage effects occur.

In both models, the estimates of the parameters Ay, A3z, v and w exhibit low bias for all of the
DGP. These estimates also exhibit similar RMSE for the DGP 1, 2, 3 and 4. Note however that the
RMSEs obtained for our model are slightly higher than those obtained by the DR (2006) model. These
observations remain valid for the DGP 1°, 2’;and 3’. For the DGP 4’, the RMSEs of the estimates of
A2, A3 v and w by our model are much larger than those yield by the DR (2006) model estimates.

When there is no asymmetry in the data and the factor volatility persistence is not too large (DGP
1, 2 and 3), the estimates of s, h; mg and m; exhibit small bias but their RMSE seem to increase with

the factor the factor volatility persistence. In the DGP 1’, 2’ and 3’, the estimates of s and g still
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yield small bias while the estimates of h; and m; exhibit larger bias. The RMSEs in these DGPs also
seem to increase with the volatility persistence of the factor.

The largest bias and RMSEs occur for DGP 4 and 4’ where v = 0.95 and for our model estimates.
This lack of performance of our estimation method could be viewed as a consequence of the near-
integration of the volatility process. Because the parameters h; and m; are both coefficients of volatility
in our model, they may not be efficiently estimated. The other parameters are therefore contaminated
and are not efficiently estimated.

This Monte Carlo experiment suggests that our inference procedure is reliable in finite samples
particularly when the volatility persistence is not close to 1, whereas the inference could be inaccurate
for persistence values larger than 0.95. This observation seems to confirm a well known drawback of
the GMM method application in volatility literature which delivers bad results when the volatility

persistence is close to 1 (see e.g. Broto and Ruiz (2004)).
7 Application to daily U.K. stock market excess returns

In our empirical work, we estimate both the conditionally heteroskedastic factor model proposed by DR
(2006) and our conditionally heteroskedastic factor model with asymmetries for stock excess returns
on 24 U K. sectors. We use all the series described in the Data Appendix (see Appendix B) except for
the FTSE All Share Ex. Inv. Trusts index excess return because it exhibits a correlation of 0.99 with
the FTSE 350 index excess return (see Table 1.1 Appendix B) which is included in the models.

In both models, we consider centered excess returns and we do not estimate the conditional mean,
f. We also restrict the variance matrix Q of the idiosyncratic shocks to be diagonal. with these
restrictions, the DR (2006) model has 48 parameters while our extended model has 75 parameters. In
the estimation procedure, the FTSE 350 index excess return plays the role of Y7, and we use z4; as

a valid instrument set (see Section 5).
7.1 Results

Table 1.7 in Appendix B presents our estimation results. Even though the factor loadings and the
variance of the idiosyncratic shocks estimates for both models differ according to the specific return

series, their average difference across the returns are 0.0015 and 0.0090 for the factor loadings and the
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idiosyncratic shock variances, respectively.

The factor volatility persistence estimates for the two models are 0.685 for the DR (2006) model
and 0.684 for our model. Thus, explicitly modeling the asymmetries does not seem to change the
persistence estimate. Nevertheless, the persistence we find is low with respect to what is found in
the empirical literature for daily data. Engle and Ng (1993) find a volatility persistence of 0.916 in a
standard GARCH(1,1) model for the daily return of the TOPIX index, and both Harvey, Ruiz and
Sentana (1992) and Fiorentini, Sentana and Shephard (2004) find a persistence level of about 0.80 for
the volatility in their QGARCH(1,1) factor models for monthly U.K. stock market index returns. The
volatility of monthly returns is known to be less persistent than the volatility of daily returns. The
main difference between these models and the models we estimate in this paper is the way in which
they treat the conditional skewness. The Harvey, Ruiz and Sentana (1992) and Fiorentini, Sentana
and Shephard (2004) models rule out the conditional skewness in the data, while the Doz and Renault
(2006) model and our model are consistent with this empirical fact. Our data seem to confirm the
findings by Harvey and Siddique (1999), who observe that taking account the skewness impacts the
persistence in the conditional variance. Our findings also suggest that not being consistent with the
presence of conditional skewness could change the inference about the conditional variance persistence.

The leverage effect parameters in our asymmetric model, my and m; are both significant, implying
that the leverage effect in our data is time varying and can be captured by the dynamics in the factor.
Our findings confirm, for daily data, the result by Sentana (1995) for monthly U.K. index excess
returns, namely that there is significant leverage effect in sectorial returns through a common factor.
See also Black (1976) and Nelson (1991). The slope h; of the factor’s third conditional moment is
significant and negative (-6.36). This confirms a dynamic conditional skewness in our series as Harvey
and Siddique (1999, 2000) and Jondeau and Rockinger (2003) have also found for their data. Moreover,
due to the positive estimates we get for the factor loadings, the negativity of h; implies that periods
of high volatility are followed by higher negative conditional third moments. Hence, a larger volatility
seems to announce more negatively skewed conditional distributions for the returns series that we

consider.
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7.2 Diagnostic tests

We propose an extended Kalman filter to filter simultaneously the latent factor and the conditional
variance processes using the GMM estimates of both the DR (2006) model and of our model (see
Appendix A). This algorithm circumvents the GMM procedure drawback, which does not yield an
estimate for the factor process nor for the conditional variance process. This filter allows us to perform
some useful diagnostic tests.

Figure 1.2 shows the QQ plots of the FTSE 350 index excess return and the filtered latent factor
using the DR (2006) model parameters estimates. This filtered factor is multiplied by the FTSE 350
factor loading A=.35 to allow for direct comparison with the FTSE 350. It appears that the filtered
factor shows the same fat tail and asymmetry behaviour as the FTSE 350 and thus validates the
choice of an asymmetric factor representation in our model. The correlation with the FTSE 350 index
excess return of the factor processes extracted with the DR (2006) model estimates and our model
estimates are .932 and .911, respectively (see Table 1.9). These correlations have the same order of
magnitude as the correlations obtained by Sentana (1995) for both the QGARCH(1,1) latent factor

and the GARCH(1,1) latent factor with the FTA 500 monthly index excess return (.984 for both).

Figure 1.2: Q-Q plots of the FTSE 350 index excess return and the filtered factor by the DR (2006)
model estimates (scaled by .35)
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Figure 1.3 shows the FTSE 350 index excess returns and the filtered standard deviations processes
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Figure 1.3: Daily FTSE 350 index excess return and filtered standard deviations by the DR. (2006)
model and our model estimates

Daily FTSE350 Index Excess Return (%)
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Filtered conditional standard deviation by the DR model estimates
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Filtered conditional standard deviation by our model estimates
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with the DR (2006) model estimates and our model estimates, respectively. The volatility processes
seem to adequately follow the returns series in the sense that periods of large variations in returns
correspond to periods of large volatility. However, for extreme variation in returns, our asymmetric
model seems to predict a larger volatility than the DR, (2006) model. This is the case with the October
1987 financial crisis. For the purpose of comparison, Figure 1.4 shows the filtered standard deviation
by both models estimates and the FTSE 350 index excess returns for a two-months period around
October 1987. Specifically, we consider the period from September 1, 1987 through January 1, 1988.
When the market is smooth, the two models predict roughly the same level of volatility. In contrast,
in periods of large shocks, our model predicts larger volatility. Yet, our model may be more realistic.
Between October 20, 1987 and November 6, 1987, the FTSE 350 index excess return rises by 16.61%
on daily average while the in-sample forecasted standard deviation drops only by 6.89% for the DR
(2006) model and by 11.13% for our model.

We also obtain two estimates for the FTSE 350 idiosyncratic shocks processes. One is obtained

by the filtered factor from the DR (2006) model estimates (ugr¢+1) and the second is from our model



Figure 1.4: Filtered standard deviations by the DR (2006) model and our model estimates and the
FTSE 350 index excess return. September 1, 1987 through January 1, 1988

12 T T v

------ Filt. Stand. Dev. (asy. model)

10} . ———Filt. Stand. Dev. (DR model) |
- = FTSE350 Index Excess Return

-6 1
Sep87 Oct87 Nov87 Dec87 Jan88

(Uchfa,t+1)- Table 1.10 shows a non significant skewness for both processes. This validates the choice of
asymmetric factor in our model. The results of the Engle Lagrange multiplier test for heteroskedasticity
are not clear. Even though the evidence of heteroskedasticity is not strong for these idiosyncratic shock
processes, homoskedasticity is hardly accepted at 2% level for both. This may suggest the inclusion

of an additional factor for heteroskedasticity and paves the way for future work.
8 Conclusion

In this paper, we extend the existing class of conditionally heteroskedastic factor models by specifying
the skewness and the leverage effects dynamics in return processes. We show that our conditionally
heteroskedastic factor model with asymmetries is robust to temporal aggregation. In addition, our
specifications are robust to any dynamics in the conditional kurtosis or even higher moments. We
also provide moment conditions allowing for GMM inference. We propose an extended Kalman filter
algorithm that filters the latent factor and the volatility processes simultaneously. Our empirical

application involves 24 index excess returns from U.K. stock market and confirms some useful results
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in the volatility model literature. In particular, our data confirm the results in Harvey and Siddique
(1999, 2000) and Jondeau and Rockinger (2003) for the conditionally heteroskedastic factor model
framework. We find a lower volatility persistence for our common factor than what is obtained
commonly for daily data in models that rule out the skewness effect. Our findings also confirm, for
daily data, the result by Sentana (1995) for monthly U.K. index excess returns, namely that there is
significant leverage effect in sectorial returns through a common factor.

This work also helps to learn more about the relationship between asset returns’ third conditional
moment and their volatility in the presence of a leverage effect. Our empirical application suggests
that it may be beneficial to incorporate this relation for efficiency gain purposes. The filtered volatility
process obtained with our model estimates seems more realistic in period of large shocks than the fil-
tered volatility obtained with the DR (2006) model estimates. Furthermore, this empirical application
also suggests that larger volatility predicts more negatively skewed conditional distributions for the
returns series.

The most immediate extension of this work that we plan for future work is the extension of the
model we propose to more than one factor. Even though a multi factor extension is straightforward,
estimation and inference are fundamental issues which need to be discussed carefully. This extension
is in particular motivated by the residual heteroskedasticity that may exist in the fitted idiosyncratic
shock process from our data. This work can also be extended to take into account the risk premium
by modeling the conditional mean of the returns as a function of volatility as Fiorentini, Sentana and
Shephard (2004) and DR (2006). As a main advantage, such an extension will make the model we
propose also consistent to the well-known volatility feedback feature that occurs in financial processes.
This extension may also be particularly relevant for longer horizon returns for which the risk premium

is known to matter.
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A An Extended Kalman Filter for the latent common factor and
volatility processes

The heteroskedastic factor model is defined by:

fin=oen ol =1—7+70 +win (22a)
Yivi = p+ Afesr + Ui (22b)

with: E (wt+1|Jt) =F (6;+1|Jt) = 0, E(Ut+l|Jt) = 0, E (6?_*_1'.];) = 1, Var (Ut+1'Jt) =Q.

In this factor representation, both fi41 and o2 .1 are unobservable; in fact, only the multivariate return
process (Y;41) is observable. However, the latent bi-dimensional process Z; = (fi,02) depend nonlinearly on
its past value up to some shocks. The Extend Kalman Filter’s algorithm (see Sgrensen, 1985) is an attractive
algorithm for this framework to filter Z; from the observations provided that the parameters are known. The
state equation is given by equations in (22a) while the measurement equation is (22b).

Still, the problem that occurs in a such procedure is the positivity of o2. A naive filter could lead to negative
o2, For that reason, we propose to filter z, = (f;,;)’ and then, we can deduce o2 = z?; taking advantage from
the following result:

If (z441) is such that z,41 = /A2 + VT — Yve41; E(veg1lde) = 0, E(v},1|Jt) = 1; J; an increasing filtration
as the one introduced in the body of this paper, then (z7,,) is an SR-SARV(1) process with persistence v and
intercept 1 — v with respect to J;.

Our state-space representation is:

firn =z T = AT+ V1 -7 (23a)
Yiri=p+ Afir1 + Ui (23b)
With: E (ve41|J;) = E (€41|Jt) = 0, E (Upa}Je) =0, E (€24|J:) =1, E (v?110:) =1 Var (Uga| ;) = Q.

To allow for leverage, we will set Cov(€41,v141]J;) = @ where a has any negative value. In our applications,
we choose o = —.5.

) —
For: A= <0 0 ), W, = ( Tt 0 ), H=(\0),Q= (_15 '5), the Extended Kalman Filter

0 7 0 1-792 1
algorithm is the following:
. LE P 1 —/-5(1+7)
Initial value: z5 = (0,1), Py = (_\/5—(1:7) 14~ ),
Time Update (“Predict”)
1. Project the state ahead: zp = Az
2. Project the error covariance ahead: P = AP, A" + W,QW{
Measurement Update (“Correct”)

3. Compute Kalman Gain: Ki=P H'(HP H +Q)7!
4. Update estimate with measurement Yy: 2 =2, + Ky(Yo —p— Hz; )
5. Update the error covariance: P,=P - KHP~
6.t=t+1,GoTol.

In this algorithm, the parameters are considered as known. In our application, we either use the GMM
parameter estimates of the Doz and Renault (2006) model (DR) which lead to the filtered process 24y or the
GMM parameter estimates of our conditionally heteroskedastic factor model with asymmetries (CHFA) which
lead to the filtered process z,,, for both the factor and volatility.

B Data Appendix and Tables

The following table presents the indices we use in this paper. The first index listed refers to the FTSE 350
index. All of 24 sectorial indices listed are in FTSE while 14 of them are in the FTSE 350. The sectorial
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indices which are not in FTSE 350 are the following: (-)-All Share Ex. Inv. Trusts, 13- FTSE Financials,
14-Transport, 15-Speciality & Other Finc., 16-Prsnl. Care & Hhld. Prods., 17-General Industrials, 18-General
Retailers, 19-Household Goods & Text. 20-0il & Gas, 24-Support Services.

Our Data are obtained from Datastream. With p;, being the index i level at day ¢, we obtain the daily
log-return series i, (in %) by: r;, = 100 x (logp;: — log p;,+~1). We use the log-return of the UK one month
loan index JPM UK CASH 1M (r;) as safe interest rate. The log-excess return of the index i is Y, = r;, — 7y.
Our daily excess returns cover the period from January 2, 1986 through December 30, 2004. Only the 4863
trading days are considered.

Corresponding Corresponding
Number Sectorial index Number Sectorial index
1 FTSE Actuaries 350
2 Banks 13 FTSE Financials
3 Beverages 14 Transport
4 Cnstr. & Bldg. Mats. 15 Speciality & Other Finc.
5 Chemicals 16 Prsnl. Care & Hhld. Prods.
6 Eng. & Machinery 17  General Industrials
7 Food & Drug Retailers 18 General Retailers
8 Food Prod. & Procr 19 Household Goods & Text.
9 Insurance 20 Oil & Gas
10 Life Assurance 21 Forestry & Paper
11 Investment Companies 22 Health
12 Leisure & Hotels 23 Pharm. & Biotec
- All Share Ex. Inv. Trusts 24 Support Services
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Table 1.3: Engle and Ng Diagnostic Test for the Impact of News on Volatility (Engle an Ng, 1993)
This Table displays, for each index excess return, the diagnostic test results for respectively the Sign
Bias, The Negative Size Bias, the Positive Size Bias and the joint test. The volatility dynamic under
the null we assume is the standard Gaussian GARCH(1,1).

Diagnostic Test Results

Sign  Negative Positive Joint
Bias Size Bias Size Bias Test
FTSE Actuaries 350 2.18% -2.26° -5.03¢ 96.53%
Banks 1.22  -4.30° -5.45% 94.09°
Beverages 1.26 -6.23° -8.47¢ 115.38¢
Cnstr. & Bldg. Mats. 1.62 -3.92¢ -3.132 17.41°
Chemicals 1.32  -2.18° -3.76° 36.09°
Eng. & Machinery 1.71¢ -1.92b -4.21¢ 45.54°
Food & Drug Retailers 2.54° -4.220 -4.88¢ 37.64°
Food Prod. & Procr. 0.65 0.56 -1.74¢ 27.98%
Insurance 1.57 -3.44¢ -3.43% 16.70°
Life Assurance 1.18 -3.07° -5.052 38.56
Investment Companies 2.65% -4.43° -6.29¢ 48.98¢
Leisure & Hotels 1.61 -0.26 -2.45b 30.042
All Share Ex. Inv. Trusts 2.22b  _2.924b -5.032 91.75%
FTSE Financials 2.69% -4.65° -6.16% 67.79¢
Transport 2.326  -4.170 -5.27¢ 34.41¢
Speciality & Other Finc. 2.11% -5.482 -6.49° 58.26%
Prsnl. Care & Hhld. Prods. -0.07 1.36 2.20° 14.05°
General Industrials 1.88¢ -3.03° -4.68% 46.04¢
General Retailers 1.34 -1.88¢ -5.06% 56.55%
Household Goods & Text. 0.62 -3.44° -3.59¢ 22.86%
0Oil & Gas 0.53 -0.98 -3.45% 33.14°
Forestry & Paper -0.22  -0.91 -1.79¢ 27.25%
Health -0.47 3.07* 2.57¢ 26.85%
Pharm. & Biotec 1.50 -6.85% -8.612 223.87¢
Support Services 2216 -2.720 -4.17¢ 41.03¢

Notes: @, b and ¢ denote significance at 1%, 5% and 10%, respectively.



Table 1.4: This Table presents, for each sectorial index and the market index FTSE 350, #; and izl, ordinary

least square estimates of m; and h, respectively in the regressions E [€; ; Zii 4| Zii0—1) = mo+m1 55,01
and E [e?'t|2ii,t_1] =ho+h1Ziie1. € =Yie — Y., Y. is the excess return of the index i at date
t,Y; is the sample mean of the excess return of i and X;;; is the conditional variance of Y ;41. As
a proxy for X, ;, we use the daily square excess return: th +1- 51 and h 1, ordinary least square
estimates of 771 and hy,; respectively in the regressions E [e;;X11,4|811,6-1] = 75,0 + 75,1511,6-1
and F [e?,tiEu,t_l] = hso+ hs1211,0-1. 11, is the FTSE 350 index excess return’s conditional
variance. The proxy used for this conditional variance is Y{,,, where ¥} ,,; is the FTSE 350
index excess return. The Co-Skewness of the sectorial index excess return Y;; with the FTSE
350 index excess return Yj, is given, as in Ang and Chen (2002), by Co-Skewness(Y;;,Y1:) =

E[(Yi: - E(Yi.)) (Y, — EY1,4)2)/ [\/E(Ym —EY; ) PEMY 1, - E(Yl't))z]. The significance tests

for the Co-Skewness have been performed by Moment method-based asymptotic distribution of
sample mean and the §—method.

Sector o hy g1 hf1  Co-Skewness
FTSE Actuaries 350 -1.74% -3.13¢ -1.74* -3.13* -0.88°
Banks -1.29% -1.64% -1.97% -4.57* -0.39
Beverages -1.26% -1.27* -1.74* -4.52* -0.49
Cnstr. & Bldg. Mats. -0.41¢ -0.58* -1.38* -1.95% -0.46
Chemicals -1.26%* -2,70¢ -1.87* -3.40% -0.68°¢
Eng. & Machinery -0.36% -1.66* -1.58% -4.02% -0.69¢
Food & Drug Retailers -0.66* -0.99¢ -1.31¢ -1.76* -0.30
Food Prod. & Procr. -0.79% -1.78* -1.60°% -2.18% -0.56¢
Insurance -0.73% -2.87* -2.20% -5.06% -0.42
Life Assurance -0.82¢ -1.52% -1.75% -3.96%* -0.36
Investment Companies -0.79% -2.96% -1.39° -2.59% -0.96°
Leisure & Hotels -0.82% -1.52* -1.76% -2.80* -0.53
All Share Ex. Inv. Trusts -1.70¢ -3.07* -1.71¢ -2.98% -0.90¢
FTSE Financials -1.09* -2.10¢ -1.73% -3.16* -0.61
Transport -0.83% -2.17* -1.42% -2.20* -0.66°
Speciality & Other Finc. -0.85% -2.12% -1.64% -3.49° -0.82%
Prsnl. Care & Hhld. Prods. 0.06° -2.21° -1.54¢ -2.33% -0.30
General Industrials -1.37¢ -3.19* -1.75% -3.59¢ -0.81¢
General Retailers -0.92% -2.67% -1.49* -3.25% -0.53
Household Goods & Text. -0.82% -1.14* -1.67* -3.09* -0.81°
Oil & Gas -0.61¢ -0.96% -1.68* -2.44* -0.40¢
Forestry & Paper -0.23* -1.70* -0.94* -0.77¢ -0.13
Health 0.49* 0.37* -1.97¢ -3.312 -0.46
Pharm. & Biotec -2.82%  -1.59% -2.45% -7.73%* -0.48
Support Services -1.52¢ -3.50% -1.86% -4.00* -0.95¢

Notes: 2,  and ¢ denote significance at 1%, 5% and 10%, respectively.
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Table 1.5: Simulated bias, root mean square error (RMSE), median and least absolute deviation (LAD)
of GMM parameter estimates of the Doz and Renault (2006) model (DR) and of our condi-
tionally heteroskedastic factor model with asymmetries. We report the results from GMM esti-
mates using 4 different sets of valid instruments: 21, = (1,Y3,), 22, = (1, X 00, pYP 14150 =
0.9), z3: = (1,Y?,Y%_,) and 24, = (1,Y3,Y3_,,Y?_,). The simulated data are ob-
tained from the DGP 2. The true parameter values are: (Ay,Ag, A3,w,q,B,v, s, h1,m0,m) =
(1,1,1,0.5,0.2,0.6,0.8,0,0,0,0). We use the moment conditions associated to the inference by nor-
malization approach described in Section 5. The estimated parameters are Az, A3, w, 7y for the DR
(2006) model and Az, A3, w, o, B, 7, s, h1, 7g, ™ for our extended model.

DR (2006) Our model
Parameter Bias RMSE Median LAD Bias RMSE Median LAD
z14
¥ 0.017 0.137 0.826 0.116 0.021 0.137 0.826 0.116
Ag 0.000 0.013 1.000 0.011 -0.001 0.016 0.999 0.012
A3 0.000 0.013 1.001 0.011 -0.001 0.016 0.999 0.012
w -0.002 0.005 0.348 0.004 -0.002 0.006 0.348 0.005
S - - - - 0.041 0.727 0.031 0.585
hy - - - - -0.044 0.786  -0.019 0.635
o - - - - 0.021 0.456 0.016 0.312
m - - - - -0.021 0.487 -0.018 0.337
22
¥ -0.018 0.110 0.801 0.056 -0.014 0.097 0.800 0.054
Ao 0.000 0.013 0.999 0.010 -0.001 0.014 0.999 0.011
A3 0.000 0.013 1.000 0.011 -0.002 0.014 0.998 0.011
w -0.001  0.005 0.348 0.004 -0.002  0.005 0.348 0.004
S - - - - -0.039 0.777 -0.048 0.626
h - - - - 0.039 0.832 0.064 0.679
o - - - - -0.001 0.302 -0.012 0.223
m - - - - 0.003 0.330 0.016 0.245
Z3t
¥ -0.007 0.093 0.798 0.076 -0.005 0.096 0.801 0.077
A2 0.000 0.013 1.000 0.011 -0.001  0.019 0.999 0.015
A3 0.001 0.014 1.001 0.011 -0.001 0.020 0.998 0.015
w -0.002  0.006 0.348 0.004 -0.003  0.007 0.347 0.005
s - - - - 0.023 0.665 0.016 0.528
hi - - - - -0.023 0.729 -0.014 0.586
o - - - - 0.023 0.355 -0.006 0.246
T - - - - -0.020 0.380 0.004 0.270
Zat
¥ -0.015 0.078 0.793 0.062 -0.013 0.081 0.800 0.063
A 0.001 0.014 1.000 0.011 -0.001 0.021 0.999 0.016
A3 0.001 0.014 1.001 0.011 -0.002 0.022 0.998 0.017
w -0.003 0.006 0.347 0.005 -0.004 0.007 0.346 0.005
s - - - - 0.019 0.673 -0.003 0.537
hy - - - - -0.019 0.737 0.009 0.596
o - - - - 0.030 0.343 0.012 0.237

Ls! - - - - -0.026  0.365 0.006 0.261
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Table 1.6: Simulated Bias, root mean square error (RMSE), median and least absolute deviation (LAD)
of GMM parameter estimates of the Doz and Renault (2006) model (DR) and of our con-
ditionally heteroskedastic factor model with asymmetries. We report the results from GMM
estimates using 24, = (1,Y?,,Y?,_,,Y?_,) as the instrument. The data are generated ac-
cording to DGP 1, DGP 2, DGP 3 and DGP 4. In particular, the true parameter val-
ues are: DGP 1: (A1, A2, A3, w, e, 8,7, 8, h1,7m0,m) = (1,1,1, 0.35,0.2,0.50,0.70,0,0,0,0), DGP
2: (/\1,/\2,/\3, w,a,ﬁ,'y,s,hl,wo,m) = (1,1,1, 0.35,0.2,0.60,0.80,0,0,0,0), DGP 3: (/\1,/\2,)\3,
wya;ﬁy'Y)srhl)WO’Wl) = (11111: 0.35,0.2,0.70, 0'90)0)07070)) DGP 4: (’\1) A2, Az, w, @, 3,7, S, hl?
m, m1) = (1, 1, 1, 0.35, 0.2, 0.75, 0.95, 0, 0, 0, 0). The true values of the volatility persistence
parameter are 0.70, 0.80, 0.90 and 0.95, respectively.

DR (2006) Our model
Parameter Bias RMSE Median LAD Bias RMSE Median LAD
DGP 1
5 -0.024  0.095 0.678 0.075 -0.025  0.102 0.684 0.080
A2 0.000 0.013 0.999 0.011 -0.002 0.017 0.998 0.014
A3 0.000 0.013 0.999 0.011 -0.003 0.018 0.997 0.014
w -0.003  0.006 0.347 0.005 -0.004 0.007 0.346 0.005
s - - - - 0.029  0.665 0.006 0.538
hy - - - - -0.029  0.716 0.003 0.583
0 - - - - 0.032  0.340 0.010 0.242
m - - - - -0.030 0.358  -0.006 0.258
DGP 2
5y -0.015  0.078 0.793 0.062 -0.013  0.081 0.800 0.063
Ao 0.001 0.014 1.000 0.011 -0.001 0.021 0.999 0.016
A3 0.001 0.014 1.001 0.011 -0.002  0.022 0.998 0.017
w -0.003  0.006 0.347 0.005 -0.004  0.007 0.346 0.005
s - - - - 0.019 0.673 -0.003 0.537
hy - - - - -0.019  0.737 0.009 0.596
o - - - - 0.030 0.343 0.012 0.237
m - - - - -0.026  0.365 0.006 0.261
DGP 8
~ -0.011  0.060 0.894 0.047 -0.008  0.060 0.899 0.047
Ao 0.002 0.015 1.001 0.012 0.002 0.035 1.003 0.024
A3 0.002 0.015 1.001 0.012 -0.001  0.033 1.001 0.024
w -0.003  0.006 0.347 0.005 -0.004  0.008 0.346 0.006
s - - - - 0.031 0.937 -0.021 0.647
hy - - - - -0.011  0.972 0.071 0.708
™0 - - - - 0.024 0.526 0.033 0.285
™ - - - - -0.013 0.483 -0.030 0.315
DGP 4
¥ -0.016  0.054 0.942 0.040 -0.015  0.053 0.943 0.040
As 0.002 0.017 1.002 0.013 0.003  0.047 1.004 0.034
A3 0.003  0.017 1.003 0.013 0.001 0.047 1.001 0.034
w -0.001  0.020 0.348 0.005 -0.001  0.021 0.347 0.010
S - - - - 0.431 11.604 -0.102 1.591
hy - - - - 0.025  1.547 0.112 0.990
o - - - - -0.062  3.062 0.005 0.685

m - - - - 0.014 0.765 0.006 0.442
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Table 1.7: Simulated Bias, root mean square error (RMSE), median and least absolute deviation (LAD)
of GMM parameter estimates of the Doz and Renault (2006) model (DR) and of our condi-
tionally heteroskedastic factor model with asymmetries. We report the results from GMM es-
timates using 23, = (1,Y?,,Y?,_;,Y?_,) as the instrument. The data are generated accord-
ing to DGP 1’, DGP 2’, DGP 3’ and DGP 4’. In particular, the true parameter values are:
DGP 1% (M1, A2, As,w, @, 8,7, 8, h1,m,m) = (1,1,1,0.35,0.2,0.50,0.70,0, —2.0,0, —0.4), DGP 2’
()\1,/\2,/\3,&},0,,3,’)’,8,]11,7[‘0,71’1) = (1,1,1,0.35,0.2,0.60,0.80,0, —2.0,0,—0.4), DGP 3% (/\1,)\2,
Az,w, o,fB,7, s,h1,m, m) = (1, 1,1,0.35,0.2, 0.70,0.90,0, —2.0,0,—-0.4), DGP 4: (A1, Aq,
As,w,a, B, 7,8, h1, 7, m) = (1,1, 1,0.35,0.2,0.75,0.95,0, —2.0,0, —0.4). The true values of the
volatility persistence parameter are 0.70, 0.80, 0.90 and 0.95, respectively.

DR (2006) Our model
Parameter Bias RMSE Median LAD Bias RMSE Median LAD
DGP 1’
~ -0.034 0.121 0.673 0.093 -0.030 0.131 0.680 0.095
A2 0.003  0.022 1.002 0.015 -0.002  0.042 0.997 0.029
A3 0.003 0.021 1.002 0.015 -0.004  0.038 0.999 0.027
w -0.002  0.008 0.347 0.005 -0.002 0.016 0.347 0.008
s - - - - 0.022 2.666 -0.220 1.448
h1 - - - - 0.367  2.047 -1.430 1.443
o - - - - -0.025 0.993 -0.161 0.615
m - - - - 0.137 0.903 -0.149 0.641
DGP 2’
¥ -0.025 0.101 0.786 0.075 -0.020 0.103 0.794 0.075
Ao 0.003  0.020 1.000 0.015 0.000 0.043 0.999 0.031
A3 0.004 0.020 1.002 0.015 0.001  0.048 1.000 0.034
w -0.002  0.008 0.348 0.005 -0.001 0.018 0.348 0.009
s - - - - -0.048 2.822 -0.159 1.400
h1 - - - - 0.487 2.046 -1.389 1.416
Pt - - - - -0.065 1.156 -0.093 0.571
m - - - - 0.153 0.804 -0.159 0.599
DGP 8’
¥ -0.015  0.073 0.897 0.055 -0.021  0.109 0.894 0.063
A2 0.004  0.020 1.004 0.015 -0.003  0.053 1.001 0.039
A3 0.003 0.019 1.004 0.015 -0.002  0.056 0.997 0.041
w -0.002  0.007 0.348 0.005 0.003 0.064 0.347 0.017
s - - - - -0.070  3.890 -0.071 1.570
hy - - - - 0.597 2.072 -1.346 1.416
o - - - - 0.046 1.813 -0.045 0.700
™ - - - - 0.180 0.870 -0.148 0.610
DGP )’
vy -0.020 0.073 0.943 0.048 -0.027  0.110 0.940 0.056
Ag 0.002  0.020 1.001 0.015 -0.005  0.136 1.000 0.055
A3 0.002 0.021 1.001 0.016 0.001 0.075 1.000 0.049
w 0.002  0.053 0.348 0.008 0.060 1.060 0.350 0.078
s - - - - 0.581 9.500 -0.090 2.712
h1 - - - - 0.651 2.679 -1.200 1.776
o - - - - 0.352 13.532 -0.090 1.663

m - - - - 0.304 1.067 -0.040 0.742
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Table 1.9: Descriptive statistics of the filtered factors and their correlation with the FTSE 350 index excess
return. The filtered factors are obtained by the extended Kalman filter algorithm we propose (see
Appendix A) and we use the generalized method of moments (GMM) parameter estimates from
the Doz and Renault (2006) model (DR) and the GMM parameter estimates from our conditionally
heteroskedastic factor model with asymmetries.

Filtered Factor from :
DR estimates our model estimates

Mean -0.006 -0.003
Standard error 1.006 1.014
Skewness -1.615 -1.333
Corr. with FTSE 350 0.932 0.911

Notes: Corr. denotes Correlation.

Table 1.10: Descriptive statistics of the filtered FTSE 350 index excess return idiosyncratic shocks. These
filtered idiosyncratic shocks are given by ugrs41 = Y1041 — 0.35far141 and uenfo,e+1 = Y1041 —
0.35fchfa,t+1 Where Y7 ;4 is the FTSE 350 index excess return, fgr 41 is the filtered factor using
the GMM parameter estimates from DR (2006) model and fcpq 141 the filtered factor using the
GMM parameter estimates from our conditionally heteroskedastic factor model with asymmetries
(CHFA). Eng(2) is the lag 2 Engle’s (1982) Lagrange multiplier test statistics for conditional

heteroskedasticity.
Udr,t+1 Uchfa,t+1
Mean 0.002 0.009
Standard error 0.162 0.180
Skewness 0.272 [p — Value]|=0.746 -0.463 [p — Value]=0.450
Corr. with FTSE 350 0.622 0.586
Eng(2) 6.616 [p — Value]|=0.037 7.426 [p — Value]=0.024
QW(10) 19.998 [p — Value]=0.029 12.320 [p — Value]=0.264

Notes: Corr. denotes Correlation; QW(10): 10-order Ljung-Boxz test statistic for autocorrelation.

C Proofs of Propositions

Proof of Proposition 4.1: The expression given in (13) is obvious and arises out from the sum of (1) over

the time period: 7 = (¢ — 1)m + 1 through ¢m with the respective aggregation coeflicients ¢ and p(J;) = p.
Let (F((:i)l) m) and (U((z";)l) m) be the resulting factor and the idiosyncratic shocks and let D{™ be the J{™-
conditional variance of this factor.

(m) _ (m) (m)’ (m) (m) (m) (m)’ (m)
D = B (FDymFimlIin’) = B (Bl I) B (FEml i)

On the other hand,

E (F((!,T-ni-)l)ml‘]‘m) = E(XC2, aFimt) [Jim) = 2021 @E (Fansa| Jem)
o1 E (E (Fimttl Jim+1-1) [Jem) = 0.
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The last equality holds by the law of iterated expectations and the last is from (2). Since J,(,’n" ) is included in Jim
by definition, the law of iterated expectations also applies the following way: E(X IJt(,'nn )) =F (E(X lJtm)IJt(,'n" ))

for any measurable X. Therefore, E (F((:—'}L-)l)ml']t(:nn )> =0.

Let us consider k and k' such that k # k'

(m) (m) (m)
E (Fk,Tt+1)ka’T?(t+l)m|Jt11: )

B (1 atFiimr) (2 1Pl mat) 157 )

m
E [Eld’;l,l':l 10y (Fr tm 1 Frr tmatr + Frt tmt Fitmtr)

+ 3 azzpk,tm+tFk'.tm+l|Jz(:nn)] .
But, from the law of iterated expectations and (2), for I < U/,
E (Ftm+1Fi imav|Jim) = E (Fetm+1 E (Fir gma1| Jem+7=1) | Jtm) = 0 and in addition, as D, is diagonal for all
t from (2}, E (Fitm+1Fir tm+1Jtm) = E (B (F tm+1Fr tmt]Jtm1-1) |Jim) = E (D it tmat—1|Jem) = 0.

By the law of iterated expectations as above we can deduce that E (F,S'?t) +l)mF,£,’f‘()t +1)m|Jt(,': )) = 0 and therefore

D{™ s diagonal.
By the law of iterated expectations and simple product expansion, we easily show that E (U (m) ]Jt(,'n" )) =0

(t+1)m
and E (U((z-)l)mF((g)l)mlJt(x)) = 0. On the other hand,

Var (U((z-)l)ml']t(:nn)) = FE ((E;L AUim1) (T tUemt)’ |J:($))

m 1 !
B (Zl<l’;l,l’=l a1y (UimtUpm i + Usmat U 41)

+E;Z1 aletm+lUtIm+l|Jt(:nn))
Forl < ll, E (Uﬁm+lUt’m+l’|‘]tm) =F (Utm-HE (Ullm+l/|Jtm+l’—l) |Jtm) =0
and E (Uim+1UjmilJim) = E (E (UsmstUpp | Jemsi-1) [Jem) = E (QJim) = € thus, Var (U((ﬂ’l)mlJflI.") >
QY% o completing the proof of Proposition 4.100

Proof of Proposition 4.2: Since (fi+1) has a SR-SARV(1) dynamic, with v41 = 07, — (1 — 7) — 707, we
have: E(vi41|J:) = 0. For [ = 1, the first conclusion of the proposition is obvious since o2, is Jim,-measurable.
For | > 2, by writing v;; for different time and making some simple substitutions, we can write:

Opnti1 =1 =NA+7+7+ - +7 D) +7 0t + 7 20ma1 + Y P Vtmaz + -+ Vimapro1-
By taking the expectation conditionally on J;,, and by the law of iterated expectations, we have:
E(ofnoallim) = (=70 +7+72 4+ 72+ 0],
= (=75 +4 7,
= 1=l g yilg2
The first conclusion is then established. On the other hand,
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S E((mMim) = B (S (@funs)?em)

fi(is conditionally non-autocorrelated)
= E;ZI a?E(ffm+l|Jtm)
= YL GEE(f il Jim+i-1)|Jem)
= Y107 E(0h o1 im)

= YrLiof[1 -7+l
Since 02, is J;"'-measurable, E ((j'{“r1 )2|Jt(,'n")) =Y, a?(1—-+"1)++'"1e ]. Hence,
aiz} =Var (f((l'i)l)mut(;")) sim 4 g{mg2

with 8™ = 37 of[(1 - +*1) and S{™ = T2, oy~ O

Proof of Proposition 4.3:

I

2 2
Cov (f((:.)l)mv Ué:'.:.)l)ml']tm) E{r;l a,Cov (ftm+l: agi)l)ml']tm)

= T uCov (fums, S™ +STM02 )l Sem)
(from Proposition 4.2)

= Elfll a,Sém)Cm) (ftm+ly U(2¢+1)m|Jtm)

= 27;1 a,Sém)E (ftm+l‘7(2t+1)ml‘]tm)

= Y™ uSi™E ( fompiE (a?t+l)m|Jtm+z) |J¢m>

= YL, aSM™E (fimut (1= 7™ + 4™ 020 10) |Jim)
= I alsgm)')’m_lE (ftm+lat2m+l|Jtm)

= S, STV E (B (fim410% 11l Jim+1-1) [Jem)

= T auSTYmE (mo + m02n 41| em)
(from Assumption 2)

= Yim alsém)”Ym_l (Mo + M E (0 41—11Jem) [Jem)

1™ 4 1™ g2 | (Proposition 4.2); £{™ and 1™ two scalars.

On the other hand,
m m? | gm)) _ (m)  _(m)? | (m) (m) (m)
Cov (£{Pms Sviml i) = B (feymoiyml I} = E[B (£ mo s om ) 1]
= E[{™ +imaz, ).

Since 02, is J™-measurable, Cov (f((tri)l)m’ (t+l)m|J(,’n")) =™ 4 ™ g2

)2

04, and from the one to one mapping

between oZ,, and a§$ from Proposition 4.2 we can deduce that there exists two scalars 7r((,m) and 7r§m) such
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2
( that Cov (£ ol ) = nf™ + 2ol O

- Proof of Proposition 4.4:
3
Eim |:(f(g+1)m) :| = Eium [(Zgl alftm+l)3]

= Y10 Bem(fin) +3 % 2i<icr<m aza,z,Etm(fgmeme,)
by the conditions in (2)

= i1 G Eum(finy) +3 % Zl$l<l’5m 0] Evm (ftm+lEtm+l'—1(fl?,zmw))

= Y21 B (fim i) + 3% Ticicram UG Eom (fims1 Bem 102110 -1)

= Y11 Eun(finr) +3 % Licicr<m a0 Epm (ftm+l’7 = l”zm+l)

= Y19 Em (Etm+l—1f?m+t) +3x lel<l’5m a’a?"yll_l_lEtm (Etm+l—l(ftm+l‘7:2m+1))
= Y 1 G Eum(ho +hi1o, 1) +3x Y oo}y " B, (mo+m0oZ, 1)

= Yliaflho + (1l ="t + 410

+3 X 3 1<cicrrem aafy’ 1 [mo +m1 (1 =471 + 41" 10Z,)]
(from proposition 4.2)

= Yo} [ho+(1—7"Nh] + 3 i<icir<m ood A me + m(1 — 44 Y)
+ [hl Yo T 4 3m Y cicem alazz"Yl’_z] Oim
= B(()m) + Bgm)afm

Since o2, is Jt(m)—measurable, the law of iterated expectations implies that E (( (m) )3 |J,(,'n")) = B((,m) +

tm (t+1)m
B{™aZ,. By Proposition 42, E ((f{2)),,)° |J,(,’,'“)) = h§™ + R™o™" with h{™ = B{™ — p™ 5™ and
h{™ = B™ 15{m). g™ and 5™ are defined as in Proposition 4.2. In the calculations above, E; X stands for
E(X|Jy).

E((U}'(’;)H)m) |Jt,,,> = E[(Z0) U mu) Vim] (From (2))
= [(El 1 G EU | Femi- 1)) |Jtm]

= [(Zz 1058 1) |Jtm] =s; (E, =1 a,) (from Assumption 3)

yim (m)
E z'(r:+1)m J m ) <Z al)

From Assumption 3 and Equations (2),

E ((Yz(mnm) |J,m>

hence,

P (1) + (02m) i)
()

i
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3
Ths, 5 ((V{{2y) 1) = ™0 + 0o+ 8 (T2 o) for all i and ¢ 0

Proof of Proposition 5.1: Since there is a one to one linear relationship between ¢, and ¢3 = (73,79, s},..., s}, Y)Y,

it is sufficient to prove that (8/6(1)3') [Ez ® g(Yi41, Yit2, 99)] has rank N + 3.

(0/06% ) 1B ® (¥ian, Ve, 9] = (;} g) with A(2N x 2), C(2N x N + 1) given by:

-XEz, —MEzY?2,,, —Ezx 0 - 0 “NEaY? iy,
3\ N 3 . .
A= ~MEz  —MEaY{ andCc=| 0 ~—Ez : -MEzY?,
: 5 : - .0 :
“AvBa —AEzYin 0 ... 0 =Ez -MyEzY?,,
We just need to show that A has rank 2 and C has rank N + 1. Since z, = (1, 21,¢)’,
-1 0o -+ 0 —AaEYE:H
0 -1 . : -MEY?
A= 20  BYien ) gag, = o
= \Ez1, Ezl,tY12,¢+1 i : .. .0 :
0 .0 -1 SMVEYE
—EZl,t 0 e 0 _AaEzl,tYf_H.l

are two submatrix respectively of A and C (A4(2 x 2) and Cy(N +1 x N + 1)). Let Det(X) be the deter-
minant of the matrix X. Det(4,) = ABCo'u(zl,t,af) # 0. On the other hand, the rank of C; is greater or
equals to N and equals IV if and only in its last column belongs to the sub-space spanned by the N first
columns. This happens only if ~A\*EY{, | (=Ez,;)— X*E21,Y?,,, = 0i-e. Cov(z1,¢,07) = 0 which is impossi-

ble by assumption. Thus Cj if of rank N+1. As a result the rank of (6/6¢gl) [Ez®9(Yit1, Yisa, 83)] is N+30O

PRroOPOSITION C.1 Let fi11 follow a SR-SARV(1) model with volatility persistence and intercept parameters
and 1 — v, respectively and o2 = Var(fiy1|J:). If there ezist o, 8 and v € R such that:

Var(o}|J)) = a+Boi + 60},
then, for alll > 2, there ezist HY, H} and H} € R such that
Var(o?,_|Jt) = H + Ho? + Hi o}

Proposition C.1 shows how the conditional variance (conditionally on earlier information) of the conditional
variance of a SR-SARV(1) process is expressed in terms of the past conditional variance if this SR-SARV(1)
process has a quadratic variance of variance. Since the quadratic specification is preserved in this basic temporal
aggregation framework, it is also preserved in a more general temporal aggregation framework as the one we
studied in Section 4.

Proof of Proposition C.1: For [ = 2, there is nothing to do from the hypothesis. For [ > 3, from Proposition
4.2, it is sufficient to show that E (af,,_,|J;) = h} + hy o7 + hy o} with hl, A} and k) € R.

Since (f;) follows a SR-SRAV(1) model, Var(oZ,,|J;) = a+B o2+ of implies E (07,,|J;) = A1+ A2 0} + A3 o}
(A1,A; and A3 € R). Hence, E (0f,,_,1Jt41-2) = A1+ A2 07, + A3 0}, .

We will get the expected result by a backward iteration of the last equality:



E(ofyalJ) = Av+ Az E(0}y,_5|Jt) +A3 B(ofy, o))

=E¢1-2
= A+ AxE 2+ A3 (A1 + A2 B3 + As E(U;‘.H_sl«]t))

= A1(1+ As)+ A2(Eey—2+ AzEy -3) + A% E(021+l—3|']t)

= A (1+A3+ A3+ + A% + A2 (Byyma + A3Epyoz + -+ + AL 2B, ) + AL 1ot
= AI(1+A3+ A3+ + A7) + A [1- 72+ 97207 + A3(1 — 773 ++4307)
+AF1 - At A o) + -+ AT 207 + A o

+ A, (1+A3+---+A§‘3_71-2 (1+%1+(%1)2+m+(%1>1—3))

2 1-2
+A2'yl—2 <1 + '—:—1 + (%1) R (A‘Yl) > gtz + Aé—la?

E(of, _11J:) = Ri+hho?+hiol, hi,hbandhl € RO



Chapter 2

GMM Overidentification Test with First Order
Underidentification
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1 Introduction

Moment condition-based models of the form E{¢(z,8)] = 0, where ¢(z, ) is a vector-valued nonlinear
function of a random vector z and a parameter vector 8 of size p, are very common in econometrics.
In a well specified model, there exists a true parameter value 6 lying in a parameter set © such that
E[¢(z,60)] = 0. The model is identified when such a parameter value is unique in ©. Together with
some regularity assumptions, this identification condition guarantees the consistency of most of the
estimators proposed in the literature for the parameter vector. These estimators include the minimum
distance estimators and also the well-known generalized method of moment (GMM) estimators. While
the consistency of these estimators relies on the identification condition, their v/T-consistency and
their asymptotic normality rely on the so-called rank condition. This is Rank{0E[¢(z, 80)|/96'} = p.
(See Andrews (1994).) In a moment condition-based model which is linear in the parameter, the
identification condition is equivalent to the rank condition. However, in a nonlinear model, this
equivalence no longer holds. A model nonlinear in the parameter could satisfy the identification
condition without verifying the rank condition. Sargan (1983) refers to such a set up as first order
lack of identification or first order underidentification.

In a first order underidentified model, the usual estimators are still consistent but higher order
expansions are needed to get identifying approximation of the moment conditions. In this respect,
when the moment condition model is identified, the first order underidentification context is located
between the standard usual framework and the weak identification framework as treated by Staiger
and Stock (1997) and Stock and Wright (2000). Note that, in the case of weak identification, not
all of the parameters are consistently estimated. Sargan (1983) studies the instrumental variables
(IV) estimator in the case of first order underidentification and finds that the IV estimator is neither
v/'T-consistent nor asymptotically normally distributed.

In his seminal paper discussing the large sample properties of the GMM estimators, Hansen (1982)
also proposes a test for the overidentifying moment restrictions. Under the null of valid moment
conditions, the test statistic under some regularity conditions is asymptotically distributed as a x?
with a degree of freedom equal to the number of overidentifying moment restrictions. This asymptotic

result also requires that the moment condition model is first order identified.
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This paper has three main contributions. First, we discuss the asymptotic order of magnitude of
the minimum distance estimators in the case of first order underidentification. Our results rely on a
second order identification assumption for the model. This means that while there is first order lack of
identification, a second order expansion of the moment conditions is useful to get a good approximation
in the sense of parameter identification. As Sargan (1983), we derive our results by assuming that there
is a set of parameters with respect to which the first derivative of the moment conditions evaluated
at the true parameter value is of full rank and the set of the remaining parameters with respect to
which the first derivative is null. We refer to the first set of parameters as those identified as the first
order and the second set as those non-identified at the first order. Our results generalize the result
by Sargan (1983) because we allow for any number of first order non-identified parameters. We find
that not all of the components of the minimum distance estimator have the same rate of consistency.
The components that estimate the parameters which are non-identified at the first order have a slower
rate of consistency. Their asymptotic order of magnitude is Op(T~1/4) while the components that
estimate the parameters which are identified at the first order have the usual Op(T1/ 2) asymptotic
order of magnitude even though they are not asymptotically normally distributed.

Second, we study the asymptotic behaviour of the Hansen’s (1982) GMM overidentifying restric-
tions test statistic, Jr, in the context of first order underidentitifcation. In particular, we derive
the asymptotic distribution of this test statistic when the rank of the moment conditions’ first order
derivative is p — 1. We find that Jr is no longer asymptotically distributed as a x?,_p, where H is
the number of moment restrictions. Instead, Jr converges to a half and half mixture of x},_p and
x%_(p_l). Obviously, the ignorance of the underidentification leads to an overrejecting test procedure.

Third, we apply this result to correct the test of common ARCH (Autoregressive conditional
heteroskedasticity) factor in asset return processes proposed by Engle and Kozicki (1993). This is a
leading test in the conditionally heteroskedastic factor models literature (Diebold and Nerlove (1989),
Engle and Susmel (1993), King, Sentana and Wadhwani (1994), Fiorentini, Sentana and Shephard
(2004) and Doz and Renault (2006)). This test translates the null of heteroskedasticity in the returns
driven by heteroskedastic factors in terms of moment conditions and applies the Hansen’s (1982)
J-test for overidentifying moment restrictions. We show that even though the moment conditions

on which Engle and Kozicki (1993) base their test identify the parameter of interest, they do not
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verify the first order identification condition. Therefore, the asymptotic results of Hansen (1982) are
not suitable for their framework. We show that these moment conditions satisfy the second order
identification condition that we introduce and the asymptotic distribution we derive for Jr under first
order underidentification are applicable to the Engle and Kozicki’s (1993) test. Actually, the test
statistic in their test for common ARCH factor is asymptotically distributed as a mixture of two x?2
instead of a x? as they propose. Our findings even suggest that naive a x? application as asymptotic
distribution leads to a large overrejection which can even double the nominal size of the test.

The paper is organized as follows. In Section 2, we introduce the first and the second order
identification concepts and we discuss how they affect the rate of convergence of the minimum distance
estimators. We derive our asymptotic results in Section 3. In Section 4, we apply these results to the
Engle and Kozicki (1993) test for common ARCH factor. Finally, Section 5 concludes. All proofs can
be found in Appendix.

Throughout the paper ||.|| denotes not only the usual Euclidean norm but also a matrix norm:
|A|l = {Trace(AA’)}!/2. By the Cauchy-Schwarz inequality, it has the useful property that, for any

vector z and any conformable matrix A, ||Az| < ||A]l||lz]-
2 First order underidentification and second order identification
2.1 General framework

We consider a general minimum distance estimation problem of an unknown vector # of p parameters

given as solution of H estimating equations:

p(0) =0 (1)

These estimating equations are assumed to identify the true unknown value 8° of 8 by to the following

assumptions:

Assumption 1 (Global Identification) p(8) = {pn(8)}1<h<H is a continuous function defined on

a compact parameter space © C RP such that for all 6 in ©: p(8) =0 < 6 = 6°.

Assumption 1 is maintained for the sake of expositional simplicity even though it could be easily
relaxed by only assuming that 6y is a well-separated minimum of norm of p(#) (see Van der Vaart

(1998) page 46).
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For the purpose of minimum distance estimation, a data set of size T will give us some sample
counterparts of the estimating equations. More precisely, with time series notations, we consider that
with a sample size T, corresponding to observations at dates t = 1,2,...,T and for any possible
value @ of the parameters, we have at our disposal a H-dimensional sample-based vector ¢r(f) =
{ah,T(g)}lshs #H- In most cases, minimum distance estimation is akin to GMM estimation because

¢7(8) is obtained as a sample mean

T
- 1
¢r() = 7 > #i(0). (2)
t=1
In any case, we define a minimum distance estimator for a given sequence of weighting matrices.

Definition 1 A minimum distance estimator 67 of 8 is defined as solution of
.t -
min ¢ (6)Qrdr(6),

where Qr is a sequence of symmetric positive definite matrices which converges when T goes to infinity

to €2, a positive definite matriz.

The asymptotic properties of a minimum distance estimator are classically deduced from the as-

ymptotic behaviour of the sample counterpart ¢r(8) of the estimating equations.

Assumption 2 (Well-behaved moments) (a) ¢1(f) converges in probability to p(6), uniformly in
0 € ©; (b) VT ¢1(6°) converges in distribution to a normal distribution with mean 0 and non-singular

variance matriz ©(6°).

It is well-known (see e.g. Amemiya (1989)) that Assumption 2.a implies that any minimum distance
estimator 7 is weakly consistent for #°. The asymptotic distribution of fr is then usually deduced

from a Taylor expansion of the first order conditions

%(éT)QT\/TET(éT) = 0. (3)

Of course, this kind of approach is based on the maintained assumption below.

Assumption 3 (Differentiability of estimating equations) ¢1(8) and p(8) are continuously dif-

ferentiable on the interior © of ©, 69 € & and Bér(0)/08' converges to dp(0)/08’, uniformly on 6 € O.
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2.2 First order underidentification

Asymptotic normality of the minimum distance estimator f7 is usually obtained by the joint argument
that \/T(éT—GO) = Op(1) and then, the following first order approximation of the first order conditions
(3) is valid.

a;;T (Or)QrVTer(6%) + aad;T (0r)Qr ?;;T (6)VT(0r — 6°) = 0p(1)

which, by the above assumptions, can be rewritten
S EONTor(6%) + | S OI06") | VTor - ) = on) (@)

The asymptotic normal distribution of v/T'(f — 6°) is then deduced from (4) which characterizes
VT(fr — 6°) as asymptotically linear function of the Gaussian vector ¢7(8%). However, it is worth
reminding that the whole argument above rests upon the maintained assumption of non-singularity of

the matrix [%%(00)9%(00)], that is on the so-called first order identification condition

Rankwwo) =

The focus of our interest in this paper is a case of first order underidentification where

dp
Rankﬁwo) <p.

Assumption 4A (Rank deficiency).
9p 0
Rank {ae,(e )} =r<p.
For the sake of expositional simplicity, we even assume that

Assumption 4B (Rank deficiency for known directions). 6 = (6;,6;) with dimé, = r,

dim f#; = p — r such that
9p h0\| _ 9p o\ _
Rank{ae, (9 )}—r and 8%(0)—0

Note that it is actually always possible to replace Assumption 4A by Assumption 4B by a change
of basis in RP. The problem is that the required change of basis must be estimated and may in

particular depend upon the unknown true parameter value 8° of 4. Since the focus of our interest is
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testing for overidentification, the estimation issue raised by relaxing Assumption 4B by maintaining
only the more general Assumption 4A is beyond the scope of this paper. As explained in section 3, the
difference between the two assumptions is immaterial as far as asymptotic distribution of the J-test
statistic of overidentification is concerned.

The key intuition is that, when 9p(8)/865 = 0, we lose the linear one-to-one asymptotic relationship
between /T ¢(6°) and /T (fr —6°), so that both the property vT(fr —6°) = Op(1) and the validity
of the Taylor expansion (4) are no longer guaranteed. We must actually consider a higher order Taylor

expansion

86 00 {VTFn(e") + 2200 T~ 0%

()

+35 | T4(0r - 6% 60%; (o°)T”“(0T—0°)} =¢r
1<h<H

with possibly ér = Op(1). The intuition behind this result would be the following. On the one
hand, since 8¢ (6°)/08' converges to 9p(8°)/06' = [0p(8°)/86,,0] we still can take advantage of the
invertibility of {8p'(6°)/061}2{8p(6°)/86,} to show that v/T(f;r — 69) is Op(1), insofar as the other
terms in the expansion (5) are Op(1). On the other hand, the fact that all of the terms in expansion
(5) and &r itself are Op(1) will be compatible with T1/4(fy7 — 69) = Op(1). Then, in the quadratic

term of expansion (5), all of the terms will be negligible except the vector of coefficients

- ¢
T4 (for — 63 69255 (8°)T /4 (bor — 69),

h=1,2,...,H. This is typically the kind of situation we want to study in this paper.

A couple of additional regularity conditions will be used to justify the argument above.

Assumption 5 (Higher order regularity of the estimating equations) (a) vVT{0¢1(6°)/065} =
Op(1); (b) ¢7(6) and p(8) are twice continuously differentiable on the interior © of © and for all
h=1,2,...,H, 8¢, 1(0)/8088' converges to 8?py(8)/0008', uniformly on 6 € 6.

Assumption 5 is an extension of the assumption that is usually made to obtain the limiting distri-
bution of GMM estimators. Like Kleibergen (2005) we need in particular to complete the central limit
theorem for the moment conditions by a similar assumption about the limit behavior of the Jacobian

matrix of these moment conditions.
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Then, the above arguments lead us to the following first result.
PROPOSITION 2.1 If Assumptions 1-3, 4B and 5 hold and T'/4(yr — 62) = Op(1), then
TY2(6,r — 69) = Op(1).

Note that the proof of Proposition 2.1 also shows that we cannot in general derive an asymptotic
normal distribution for TV/2(f;r — 69). As already pointed out by Sargan (1983) in a particular
case, the term quadratic in T%/4(fyr — 69) will actually contaminate the asymptotic distribution of
T2 (6,7 — 69).

The key point is now to explain why we expect that T1/4(fyr — 69) = Op(1). In the same way, in
a standard setting, it is referred to the first order identification to justify the property T%/2(fr —6°) =

Op(1), we have now to introduce the concept of second order identification.
2.3 Second order identification

As explained in the previous subsection, we have in mind a setting where the second order Taylor

expansion (5) of the first order conditions subsumes in

60 Q {\/_ET(OO \/—(OIT - 91)

60[ ( )

(6)
+§ [T1/4(92T _ 00) 02 Ph (90)T1/4(92T _ 02):| } — OP(].).
1<h<H

06, 69’

Since, as usual, the asymptotic probability distribution of the estimator 7 will be obtained by
solving in O7 the Taylor expansion of the first order conditions, we need to introduce the following

identification assumption.
Assumption 6 (Second order identification) For any u in R™ and v in RP~" we have

9p 0 / aZPh 0 _ _ _
(80’ (0%)u+ [v 802805(0 v IShSH- =(u=0 and v=0).

Note that Assumption 6 reinforces Assumption 4B. Not only the r columns of 8p(6°)/86] are

assumed to be linearly independent, to get

(360’3 (6%)u = o) = (u=0)
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but in addition, we assume some kind of linear independence between the columns of 8p(6°)/86} and
vectors built from the second derivatives of p with respect to . This assumption may look a bit
ad hoc at first sight but is well suited for the examples of application we have in mind. While an

important example will be detailed in Section 4, let us first give a simple toy example.

A toy example!

Assume we observe two stationary and ergodic time series, z; and w3, t = 1,2,...,T of real random
variables both with zero-mean. We want to characterize the conditional mean E|[y;|z;] = 62z, not by
the classical orthogonality conditions but by the fact that ¥, is conditionally homoskedastic given z;
that is

E {(yt — 627:)% |z} = 61,

where 0; is constant independent of ;. It is natural to choose as estimating equations
p(6) = {El(ve ~ 6220) — 61], Elze(ye — 622:)° — b1:]} .

The sample counterparts are then trivial to get. Then 9p(6°)/06; = (-1, —FEx;)’ = (—1,0)’ while
8p(6°)/862 = (—2E[z¢(ys — 63x:)], —2E[z}(y: — 632¢)])" = 0. We have then typically a case of first
order underidentification. However,

62ph 0 E.’L‘2
[ a62 1<h<2 Ez}

Therefore, to get second order identification, we have to check that

([_01 ]u+[§i§]v2=0)=>(u=v=0).

This is clearly the case if and only if Ex} # 0. Then it is also easy to check that the global identi-
tification assumption provided by Assumption 1 is fulfilled. We have a case of identification through

higher order moments. (See also Bonhomme and Robin (2006) for other applications of this concept.)

Let us now sketch the intuition of the reason why the second order identification assumption given

by Assumption 6 will allow us to show that T/ 4(@2T —69) = Op(1). This assumption involves a vector

&pn
! 0
[” 50,00, )”]

1<h<H

!We thank Manuel Arellano for having suggested this toy example in a private communication.
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which is a quadratic function of v. Since our minimum distance estimation is defined through a
weighting matrix Qr, it is rather convenient to consider the rescaled vector
32
A(v) = Q2 [U'—i((ﬁ)v]

00200, 1<h<H

For the same reason, we introduce the rescaled Jacobian matrix

Op

_ql29P
H =0 a6’

(6°).

By assumption, the r columns of Z; are linearly independent, which allows us to write the projection
matrix of orthogonal projection on the space spanned by the columns of Z; as Pz, = Z1(Z{Z,) ' Z!.
Similarly, Mz, = Idy — Pz, denotes the orthogonal projection onto the orthogonal space.

A standard setting of first order identification would ensure, in addition to the assumption that

Z, is full column rank that

dp

1/29F
<Z1u +Q o]

(6% = 0) ={u=0 and v=0).
It is worth noting that this last assumption would amount to saying that

0
ulenW—"(o")v > ylo]

o6,

for some positive number +.
The following lemma provides an analogous result about Assumption 6. Let Z; = Q1/2(9p(8°)/06,),
A(v) = Q12 [v/(8%pn(6°)/862005)v) , ., oy @0nd Mz, = Idy — Z1(212,) 7 Z}.

Lemma 2.1 If the second order identification condition given by Assumption 6 holds, then there exists

a positive number v such that, for all v in RP~":
1Mz, A)|| > v]j]>.

Note that the identification term for 6 is now bounded away from zero like ||v]|? instead of ||v|| in
the standard setting. This is the reason why we will be only able to show that T/2||fyr—69||2 = Op(1)

(or T'/4||dyr — 65]| = Op(1)) instead of the standard property T/2|fyr — 63)| = Op(1).
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3 Asymptotic theory of GMM overidentification test under second
order identification

3.1 Standardization of moment conditions and parameterization of the null space
We are interested in the asymptotic distribution of Hansen’s J-test statistic
- i 3 z
Jr = Tmin ¢7(0)Qrér(8),

where, by Assumptions 1, 2, 3 and 4A

plimdr(6) = p(9)
VTr(6®) % N(0,£(6%)
or 5 [£(69)

Rankg‘%(GO) = r <p=dim(6).
Let R be a (p,p — r)-matrix of rank p — r such that

0
250 R2 =0,

and R; be a (p,r)-matrix of rank r such that R = [R;: Rp] is a non-singular matrix.

Let
n=R19
and
p(n) = %(6°)~2p(Rn)
° = R0
Then
ap 00 1[0
6—7;’,(170) ~ $(6%) 1/26—5(90)[1%1: Ro] = £(6°)~1/2 [6—5(00)121: 0].
Therefore

Let ¥r(n) = Q7 "/*¢r(Rr). Then
Jr = ngn Yr(m)¥r(n),
with

plimyr(n) = p(n)
VTPr(n®) S N(0,1d).
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Of course 77 = arg min, ¥.(n)¥r(n) is not a feasible estimator since the matrix R is unknown and
the function 7 cannot be directly computed from data. However, for the purpose of characterizing
the asymptotic probability distribution of the J-test, it is immaterial to assume that

n= 6, 3(0)=1Id and thus,
vr(n) = ér(6) o (7)
Jr = T ming ¢7.(6)$7(0) = T (0)dr(6).

For the sake of expositional simplicity, this framework will be maintained throughout this section
3 in the context of Assumptions 1 to 6. As announced in Section 2, the knowledge of the directions of

rank deficiency allows to characterize the rate of convergence of the various components of f7.
PRrOPOSITION 3.1 Under Assumptions 1 to 6, we have
TY4(@yr — 69) = Op(1) and TY2(fir — 69) = Op(1).

Let us remind that Proposition 3.1 is not really useful for estimation purpose since it rests upon
a rotation in the parameter space to isolate the directions of fast convergence. While a convergence
rate for 927‘ faster than T4 would allow to consistently estimate these directions (see Antoine and
Renault (2007)), it may not work if the convergence rate is only T*/4. The burden comes from the
fact that second order estimation errors about the direction in the parameter space, of order (Tl/ 42,
will contaminate the asymptotic distribution of élT.

However, it is worth noting that T%/4 is only a lower bound for the convergence rate of for while
its convergence is going to be faster in some regions of the sample space. This is due to these regions
of faster convergence that the J-test statistic is going to display a non standard asymptotic behaviour

as mixture of chi-squares.
3.2 Overidentification test statistic as a mixture

Let us introduce the matrices

zl(o)=§—£(e) and zz<o>=§§,2-(e).

By assumption, Z3(8°) = 0 while Z,(6°) = Z; is a full-column rank matrix. We can then consider the

projection matrix

Mz, =Idy — Z,(Z212,) 7' Z].
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Taking into account that T/4(fyr — 63) and TV/2(,1 — 69) are Op(1), the proof of Proposition 3.1
gives

VTér(0r) = Mz, VTor(6°) + Mz,VTA(Bor — 63) + 0p(1)
where é2T is characterized by the first order conditions
Z(67)VTér(b7) = 0p(1)
that is
Z4(67) Mz, VT dr(6°) + Z(67) Mz, VT A(Bor — 62) = op(1). (8)

We will show now that o, solution of (8), may be either such that T/ 4(far — 69) follows asymp-

totically a non-degenerate solution or in contrary T'/4 (6,1 — 69) = op(1). To see this, let

Po&) 1, VTHE) i

0% Mz, VTH(6°
0621002 1Sij<p-r aag, 0 MV T,

v |

We next show that Mt is positive semi definite (p.s.d) if and only if T'/4(fop — 63) is asymptotically
degenerate.

If Mt is p.s.d, by Equation (13),
— TP (6°) Mz, 6r(6°) = 2T¢' (0°) Mz, A(for — 69) + TA (bar — 63) Mz, A(bar — 63) + 0p(1).

Note that for any v € RP~" and any u € R,
_ H p pr(6%)
A = Y, (v'#:a@lv) Uug = Zk 1 Z” =1 YY) ’awfaw,-“k

- H  9%p(09) p=r . (8200,
= 201 Vi (Zk 1 30,,0,, Uk 4,j=1 Vi¥; ?5—502 o, &) = v Mu,

2 /(00
o = (3 p'(6°) )
0020025 /1 <; j<pr

where

Hence,
A'(Gyr — 03) Mz, VTP(6°) = (Bar — 63) Mr(far — 69).
Since Mr is p.s.d, TA'(far — 03) Mz, $(6°) > 0 for any bor.

As Jr — T¢H(0°Y Mz, ¢7(8°) < 0, we necessarily have
T 1

TA,(éQT - eg)leA(ézT - 03) = Op(l).
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In other words, ||vTMz, A(f2r — 63)|| = 0p(1) and, therefore, by Lemma 2.1, TY4(657 — 69) = op(1).

Conversely, if Mr is not p.s.d, there exists a unit norm sequence of random vectors € € RP~" such
that

é,MTé < 0.

The necessary second order condition for an interior solution for a minimization problem implies that

27104 . ’
é'{laazié%:)é(%)l + |5 s )]}ez 0

1<i,j<p-r
This yields
pr 2 17 p-r - -
~-a¢(9T)—A ~~6¢ R 6¢A
5 - -
”X.:l 1" 56,00, #(6r )+”Z=:1 €i aez-(oT)aoj (6r) 20

By the usual expansions,

% a%(e) Ly,
Therefore,
¢ - b ,0%24'(0) 8%9(9) , ~ _
a—(g br) ;(GT) (Bar — 63) %89%02 (bor — 63) + 0p(T71/2).

On the other hand,

82¢'(br) - » . 82 (br)

7 _ 7700 i g0 —1/2
56,00, 707) = g (M908 + Mz Albor — 6)) +on(T 717,
As a result and since € = Op(1),
p—r =
_.0¢ .~ 0O ,0%0'(68°) 8%p(6°) , _
2 e"eja%-(g )20 ¢ Z &2 (Bor — 63 62-590) a;((aol)(ng—@)%—OP(T 1/2)
i,j=1 t 4j=1 t I

p—r 271 o ) ( .
55 08 r) £ 5 (%) ,, 0) _ . 0%0(0%) o i
i]zz:l e 00:00 #or) = ijzzl € 06,00, 09; Mz,$(6") + JZ:I i€ 56,00, 06,00, Mz, A(O2r — 63) +op(T™7/7).

The last inequality translates into
— - _ - 62 7 00
DALY n.wﬁe—zle (6°) < TN &d %5 Ma, A(dar — 69)
—T - = 7] 8%p'(6°) 8%p(6°) /5 —
+ 3057 & (0ar — 09) 555 5 (Bar — 68) + 0 (T112).
Thus
—& Mré < AVT||byr — 03] + 0p(1),
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for some A > 0. Hence
0 < —& Mré < AVT||for — ) + 0p(1).
This shows that v/T||far — 63]|2 is not degenerate, thanks to the asymptotic Gaussianity of Mz, and
s0 is TY4(Byr 69).
Let us denote by C' the part of the fundamental space where Mr is p.s.d. Remark first that f7 > 0

is necessary for Mt to be p.s.d. Obviously,

d i 0 p o
o 7 (0. ZE @M ZE ).

Clearly, MZI%}(HO) = Mz, A(e1), e1 = (1,0,...,0). Since e; # 0, by the proof of Lemma 2.1,
21

Mz,A(e1) # 0 and therefore, fr is asymptotically non degenerate,
1
li b(C) < i b(fr > 0) = =.
7o, OO S T Problfr 2.0) =3

This probability limit is also positive because the positive semi definiteness of M7 amounts to
p — 7 inequality constraints on Mz, v/T$(8°) which is asymptotically normally distributed with H —r

(> p—r) degree of freedom. In particular, for p —r =1,
lim Prob(C) = lim Prob(fr >0) = E
Theo 00N T i T=Y=y

On the other hand, it is worth noting that if T7%/4(fyp — 69) = op(1), the above expansion of the

moment conditions collapses in
\/T(]BT(BAT) = Mz, \/T&T(GO) +op(1).

In other words
Jr = T¢r(6r)¢r(br) = THr(68°) Mz, ¢r(6°) + 0p(1)

is asymptotically distributed as a x%!_r since Mz, is an orthogonal projection matrix on a subspace
of dimension (H — ).

The above discussion leads us to state the main result of this paper.

Theorem 3.1 The overidentification J-test statistic Jr associated to the estimating equations

p(6) =0
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is, with probability q, asymptotically distributed as x%,_,_, where

H = dimp(8)
r = Rank$h(6°)

g = limp_ Prob(Mris p.s.d).
In particular, ifr =p—1, ¢ = 1/2 and Jp is asymptotically distributed as the mizture

1, 1o
5XH-p + 5 XH-p+1-

The discussion above makes rather clear the interpretation of Theorem 3.1. The reason why,
with probability ¢, the asymptotic distribution of Jr is x?,_r, instead of x%,_p, is because only the r
constraints corresponding to the range of %‘;—I(OO) are really binding in that case. It turns out that the
(p — r) directions in the parameter space corresponding to the null space of gél,(HO), when they are
estimated at a rate faster than T/% (which is the case with probability g), do not play any more role
in the overidentification test. In this case, the asymptotic distribution of the overidentification test

statistic is as if 8 were known.
4 Application to the test for common ARCH factor

In this section, we reexamine the test for common conditionally heteroskedastic factor proposed by
Engle and Kozicki (1993). Two asset return processes are said to have a common conditionally het-
eroskedastic factor if each of them is conditionally heteroskedastic and there exists a linear combination
of them which is not conditionally heteroskedastic. Engle and Kozicki (1993) propose a test for com-
mon conditionally heteroskedastic factor in two steps. First, the Engle’s (1982) Lagrange multiplier
test for conditional heteroskedasticity is performed on each process and when both have evidence of
conditional heteroskedasticity, a second test is needed. At this second step, they propose a test that
investigate whether there is a linear combination of the two processes which is not conditionally het-
eroskedastic (see Engle and Kozicki (1993) and Engle and Susmel (1993)). Our point is related to this
second step test.

Let us consider the bivariate random process Y;4+; whose both components are conditionally het-
eroskedastic. The components of Y;;1 share a common heteroscedastic factor if Y;41 has the following
representation

Yiv1 = Afte1 + U, (9)
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where f;41 is the unobserved common conditionally heteroskedastic factor, A € R? the vector of factor
loadings and U;+; € R? the vector of idiosyncratic shocks.

Let J; be the increasing filtration containing the available information at the date t. The practical
assumptions are

E(fialle) =0  EUld) =0  Var(fiald) =of
E(O’?) =1 Var(Ut+1|Jt) =0 E(ft+1Ut+1|-]f,) =0.

(10)
It is assumed, in addition, that Q is positive definite and Var(c?) > 0. These assumptions imply
that any other single heteroscedastic factor decomposition of Y;4; has factor loadings proportional to
A (see Doz and Renault (2006)). Then, any other single heteroscedastic factor decomposition of Y341
such as the one given by (9)-(10) has the same ratio Ag/A;.

It is worth noting that the representation in (9)-(10) considers, without loss of generality, that
E(Y;41|Jt) = 0. Moreover, because each component is conditionally heteroskedastic, both A; and A
are non Zzero.

When the representation in (9)-(10) is true so that Y} ¢41 and Y24 have a common heteroskedastic
factor, there exists a linear combination of these two components which has a time invariant conditional
variance. The second step of the test of common ARCH factor by Engle and Kozicki (1993) translates
this time invariance of the conditional variance in terms of moment conditions and applies the Hansen’s
(1982) test for overidentifying restrictions. Under the null of common conditionally heteroskedastic

factor in the processes, the moment conditions are valid and they apply the Hansen’s (1982) asymptotic

results for the J-test. The moment conditions they derive are

E {(Zt -~ Z) (u’z,t-i-l - “3)} =0,
where z; is a J;-measurable H size vector, ug,t = (Yo — 0Y1,t)2 and @ € R. The notation T stands for
the sample mean of the process x;.
In the GMM estimation procedure for this moment condition model, it is the norm of the sample
covariance,
1 T
— 9 . —
Cov(zt,ugr41) = T Z ZtUge+1 — Tzuj
t=1

which is minimized. Therefore, it makes sense for the purposes of the identification studies to focus

on the genuine population version of the estimating equations i.e. Cou(z, ug’t 41)=0or

E{(2 — Ez)(u§ 441 — Bufsi1)} = 0. (11)
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As stated by the next result, the moment conditions model in (11) identifies the true parameter
value 8y however, the first order condition is not satisfied while the model is identified at the second

order.

Theorem 4.1 Let ¢4(0) = (2 — Ez)(ug .y — Buj ). If z and o} are stationary and, in addition,

E||z|| < 0o and 0 < ||Cov(z,02)|| < oo then,

(i) (Identification) there exists one and only one 8y € R satisfying the moment conditions in (11),
(ii) (First order underidentification) E(8¢:(60)/86) =0,

(iii) (Second order identification) E(8%¢;(8)/06%) # 0.

This result by its point (ii) shows that the required rank condition for the application of the
Hansen’s (1982) asymptotic results is violated in the Engle and Kozicki’s (1993) framework. On the
other hand, by (i) and (iii), the Engle and Kozicki’s (1993) moment conditions are identified and
are also identifying at the second order. This fits with our discussion in Section 3 and, instead of
being asymptotically distributed as a x%_, as suggested by Engle and Kozicki (1993), their test
statistic is asymptotically distributed as a half and half mixture of a x%_; and a x%. As we already
mentioned, because the actual asymptotic distribution has a thicker tail than a x%{_l distribution,
this asymptotic distribution proposed by Engle and Kozicki (1993) without noticing the first order
underidentification leads to an overrejecting test procedure. For a test of level o, the asymptotic

relative rate of overrejection is given by
100 x (o™ tag — 1) %,

where cq,51 is defined by Prob (x%_; > ca,#-1) = @ and ap is the exact asymptotic level of the

Engle and Kozicki’s (1993) test associated to the level a given by

1 1
ap = Prob (EX%J—l + §X%{ > Ca,H—l) .

The following tables show the relative overrejection rate of the Engle and Kozicki’s (1993) test for
various number of included instruments. These tables display the results for the levels 5% and 1%,

respectively. We can report similar observation from both tables. The amount of relative overrejection
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rate is large for any number of included instruments even though it decreases with larger number of
instruments.

The minimum number of instruments allowing for overidentification corresponds to the largest
amount of overrejection rate. Almost 100% for a 5%-level test and about 130% for a 1%-level test.
This amount narrows to 26.2% for a 5%-level test and 34.0% for a 1%-level test for the case where 10
instruments are included. These tables illustrate the discrepancy between the asymptotic approxima-
tion by the Engle and Kozicki (1993) test and the exact asymptotic distribution of their test statistic

as derived in this paper.

Table 2.1: Overrejection rate of the Engle and Kozicki’s (1993) test at the level o = 0.05
Number of instruments Critical value Exact asymptotic level Relative overrejection rate

H Co,H—1 Qg 100 x (a'lao -1)Y%
2 3.8415 0.0983 96.6%
4 7.8147 0.0743 48.6%
5 9.4877 0.0706 41.2%
6 11.0705 0.0681 36.2%
10 16.9190 0.0631 26.2%

Table 2.2: Overrejection rate of the Engle and Kozicki’s (1993) test at the level oo = 0.01
Number of instruments Critical value Exact asymptotic level Relative overrejection rate

H Ca,H—1 o 100 x (o tag — 1)%
2 6.6349 0.0231 131.0%
4 11.3449 0.0165 95.0%
5 13.2767 0.0155 55.0%
6 15.0863 0.0148 48.0%
10 21.6660 0.0134 34.0%

5 Conclusion

This paper explores for the moment condition based models the asymptotic behaviour of the minimum
distance estimators and the Hansen (1982) test for overidentifying moment restrictions statistic, Jr

under nonstandard conditions. While maintaining a second order identification condition, we derive
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the rate of consistency of the minimum distance estimators and the asymptotic distribution of Jr
when the rank condition is violated, the so-called first order underidentification. We find that the
estimators of the set of parameters which are identified at the first order have the usual asymptotic
order of magnitude while the other estimators have a larger asymptotic order of magnitude. Our
result generalizes the findings by Sargan (1983). We also find that there are some samples in which
the non-first-order-identified parameters estimators have the usual rate of convergence while in the
other samples, they have a slower rate of convergence. This non standard behaviour affects the
asymptotic distribution of Jr. Instead of a chi-squared distribution, it is asymptotically distributed
as a half and half mixture of two chi-squared distributions. We apply this result to correct the test
for common ARCH factor proposed by Engle and Kozicki (1993) and we also evaluate the amount of

overrejection that it leads to without our correction.
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A Appendix: proofs

Proof of Proposition 2.1: We deduce from the expansion (5) that

’ -1 »y
VT(frr — ) = [g—(;;(eomg—oq(eo)] {mT(e") n Z‘Z(o")ﬁ(ézr )

A 2 ~
3 [TV40er — 68 55 0 0PI G — o9

80,561 } +op(1).

1<h<H
In the above expansion, vVT¢r(6°) = Op(1) by Assumption 2, (8¢7(6°)/865) VT (for — 63) = op(1)
since VT{0¢7(6°)/865} = Op(1) and for — 69 = op(1). Finally, as TV4(6or — 69), for all h =
1,2,...,H, TY4(6yr — 69)' {801 (6°)/8620605} T /*(for — 63) = Op(1) O

Proof of Lemma 2.1: ||Mz, A(v)| is an homogeneous function of degree 2 with respect to v. There-

Mo ()|
ol

1= int 1Mz AW)],

fore

1Mz, A()] = [lv]|?

By considering

we have just to show that ¥ > 0. By compactness, v = || Mz, A(v*)|| for some v* such that |[v*|| = 1.

Therefore, we have just to check that (Mz, A(v) =0) = (v = 0). That is
(AW) — Z1(212,)7' Z1A(v) = 0) = (v =0).
This is a direct consequence of Assumption 6 which can be rewritten (after left multiplication by Q1/2)

(Zlu+%A(v)=0>=>(u=0 and v=0)

Proof of Proposition 3.1: Let us consider the following two Taylor expansions

or(br) = ¢7(6°,bor) + o¢ (B17, bar) (b1 — 69)

zer
ET
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and

O¢r
86,

1 62‘fshT

- o A~ _ . 0 i
¢r(01,02r) = $r(6°) + 86,6,

. 17 - .
(69,62)(62r — 63) + 3 [(92T —69) (69, 021) (Bar — 93)] ,

1<h<H

where, by a common abuse of notation, 0~1T € [0(1’, élT] and ézT € [03 , ézT] may take different values
for different components h = 1,..., H of the above H equations.
Let us introduce the following notations
i
ZIT(G) = a6, (9)
Zm(0) = SF0)
_ 1 9?2 A,
AT(’U) = 3 [U’WQEL)}G_’I’L(Q?, 92'11)1)] 1<h<H .

Then, while plugging the above second Taylor expansion in the first one, we get
ér(0r) = é1(0°) + Zir(Bi7, bor) (17 — 69) + Zor(6°)(Bar — 63) + Ar(bar — 63).
Therefore, the first order conditions for #; corresponding to Equation (7) can be written
Zi1(0r)9r(8°)+ Zi1(r) Zi (Bir, b57) (G117 —69) + Z17-(b7) Zor (6°) (Bar —63) + Zi1(br) AT (820 —03) = 0,

Note that, by the uniform law of large numbers (Assumption 3) and the consistency of f7, the random

matrix Z{T(éT)ZlT(élT, ézT) converges towards the non-singular matrix
90" o 9p 0
E— i .
[ 06, (%) Ec’)&'l @)

Therefore, asymptotic behaviour in probability can be studied through the following rewriting of

the first order conditions for 6;
. R - . -1 R
VT(ir —6)) = — [Z{T(GT)ZIT(OIT,GH)] Zyr(67)
x {VTér(8°) + VT Zr(6°)(Bar — 6) + VT Ar(Bar — 69)}

However, since by Assumption 5 VT Zor(6°) = Op(1) and for is consistent, we can simplify this

expansion as

VT(bir — 69) = — [ZiT(éT)ZlT(élT, é2T)] - Z17(br) {\/Td_;T(GO) + VT A7 (for - 93)} +op(1).
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For the same reason, the above expansion of &T(ér) becomes
VTér(0r) = VTér(6°) + Zir(bir, bar) VT (b1 — 69) + VT AT(far ~ 63) + 0p(1).
Thus, by plugging the above expansion of \/T(élT — 69) in the one of \/T(ﬁT(éT), we get
VTér(br) = M,z [VTér(6°) + VTAr(far — 69)] +0p(1),

where

. . | .
Mz, .1 = Idyg — Zy7(617, 621) [Z{T((?T)Z1T(91T, 92T)] Zy(b7).

Note that since vT'¢r(8°) = Op(1), we have

Mz, VT ér(8°) = Mz, VTr(6°) + 0p(1),

where
Z = g—(;jl(o") and Mz, = Idy — Z\(Z12:)71Z;.
Thus
VTér(br) = Mz, VTér(0°) + Mz, 7VT Ax(for — 63) + 0p(1)
and

Jr = Té(br)ér(fr)
= T@r(0°) Mz, ¢1(6°) + THp(6°) Mz, Mz, ;. 7 AT(bor — 69) + TAL(Bor — 0)My Mz, é7(6°)

+TAp(bor — 09) My, 1+ Mz, TAT(Bor — 63) + 0p(1)

Note that .
0 < T¢r(br)or(d7) =Jr

IN

ming, T¢7.(61,63)¢r(61,63) = J3.
By the standard GMM theory, J? converges in distribution towards a xi,_r. Therefore, Jr is

Op(1) and thus

Yr = T¢p(6°) Mz, Mz, mA(for — 63) + TA (Qor — 03) MY Mz, é7(6°)
(12)
+T A (6o — 63)My, . +Mz,7, 1A (821 — 63)

is Op(1) since

Yr = Jr — T¢7(6°) Mz,67(6°) + 0p(1).
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We deduce
T|| Mz, 0 A (Bar — 09)|? < |Yr| + 2T|| Mz, $7(6%) ||| Mz,p AT (b2 — 62)]).

Since Mz, . TAr converges towards Mz A and (627 — 03) lies in a compact set, convergence in

probability can be studied by considering
1 A 0 i 0 3 A 0
bt it 8] < i 6~ 8]
Thus, since Mz, is a projection matrix, we deduce
T 5. oy |I? 2 (g0 5. _ g0
7 | Mz80r - 08)|” < 1¥rl+ 3T | 62(6%) | | AGar - 69)].
Thus, by Lemma 2.1
27 11 A 4 - N 2
L= o — 68| < vl + 37 || 1l | — o8]

where |[A| denotes the norm of the operator A(v) seen as a linear function vec(vv'). Thus

i ooll? 4|Yr| LAY /s o0
ﬁ“()ﬁ 92” SVZ\/THézT—93H2+ 72 ” T¢T(9)H

Therefore, for any positive M,

(v lber =8 > ) = (21> 5 or [T > )

Since both Y7 and vT¢r(6°) are bounded in probability, as M — oo, Prob [|YT| > 7%] — 0 and
Prob [“\/Tq_bT(GO)” > 5}?{%”] — 0 and thus
Prob [\/T”éz’r - 08”2 > M] -0

as M — oo.
In other words

T4 (for — 63) = Op(1).

We can deduce from the above expansion of vVT'(f,7 — 69) that vT(f17 — 69) is Op(1) and

V(b - 8) = =121 2172, {VTdr(6°) + VT A bor - 09)} +op(1)
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Proof of Theorem 3.1: Taking into account the discussion in the main text, we just have to show
that when dim 6, = 1 and T/ 4(()2T —69) is asymptotically non degenerate, Jr is asymptotically X%{ -
To see that, note that from the expansion of the moment conditions

Jr = Té(6r)ér(br)

T ¢ (8°) Mz, o1 (8°) + 2T A (Bor — 09) Mz, o1(8°) + TA' (Bor — 09) Mz, A(far — 63) + 0p(1).

But, by (?7),
TA' (a7 — 63) Mz, A(bor — 03) = —TA'(Bor — 09) Mz, 7(6°) + op(1).

Thus,

Jr = Tep(6°) Mz, ¢7(8°) + TA' (o — 63) Mz, $7(8°) + 0p(1).

Moreover, (?7) also gives

A G'M -
012 Z 0
_ =_— 4“1 1).
\/T(HZT 92) G,MZlG\/T¢T(0 ) + OP( )
Thus B _ . B
Jr = T¢,T(00)MZI ¢T(90) + T(OQT - gg)ZGIMZI ¢T(00) + OP(l)
= TP (6°)Mz,dr(6°) - T ITHnI ) | op1),
Therefore
Jr = Tdr(0°) [Idy — P] ¢7(6°) + 0p(1),
where
_ (Mz,G)(Mz,G)
P=2Z(212))"'z; + cl;'MZIGI

is an orthogonal projection matrix on a space of dimension p = r + 1 (note that Mz G # 0 by As-

sumption 6). This proves that Jr is asymptotically X?{_p in this case []

Proof of Theorem 4.1: Let § = A2/A;. Since (—6p 1)A =0, from (9), we have Y241 — 6pY1441 =
Us 1 — OoUse+1. Then, ufzio,t-f-l = (},2,t+1 - 90Yl,t+1)2 = (U2,t+l — 90U1,t+1)2. The conditional ex-
pectation of ugn,t 4118 E(ugo,t +11Jt) = Qa2 + 63011 — 260Q12. Because this conditional expectation is

time invariant, B(ug, ;,|Jt) = Euj ., so that E{u} ,., — Euj ,.;|J;} =0. As z is J;-measurable,
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E{zuf 141 — Bud ;41]} = 0 or equivalently E{[z; — E(2))[u§, 141 — Euj, 141]} = 0 in other words,
o satisfies (11).

Let 6 € R such that E{{z — E(zt)][uglt_k1 - Eu(z,’tﬂ]} =0, or equivalently F{[z; — E(zt)][u5,t+l]} =0.
Since E(Y?,|J) = Mo? + Qu, E(Y22_HI|J¢) = Ao? + Q2 and E(Y1i11Yori1]dt) = Adeo? +
Qu2, E{[z — E(2)][uf,4;]} = 0 can be written E{(2; — E(z))o?(A2 — M16)?} = 0 so that (A —
A10)2Cov(z;,02) = 0. Then 6 = /A1 = 6. This establishes the existence and the uniqueness of 8,
as stated by (i).

Next, we show (ii),

E{0¢:(60)/00} = E{(zt — E2z)[—2Y1441(Ya 41 — oY1 041)]}
= —2E{(2t — Ez)(Mfeq1 + Urg41) (U g1 — OoUr 41)}
—2E(zt — Ez) E {(Mfee1 + Ure41) (U2,041 — 00Ut t41)]J2 }
—2E(zt — Ez)E {Ur,141(Uzt+1 — OoUre41)| e} as E(fiy1Uss1|Je) =0
-—2E{(zt - Ezt)(ng - 00911)} =0.

Il

On the other hand,

E{0%¢1(00)/06%} = E{(2 — E2)(2Y{11)} = 2E(2 — Ez)E(Y2, 11| )
= 2E{(2: — Ez)(M\20} + Q11)}
= 2X2E{(z — E2t)0?} = 2A3Cov(z;,0}) #0.

This establishes (iii}]
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Chapter 3

Bootstrapping Realized Multivariate Volatility Measures
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1 Introduction

Realized statistics based on high frequency returns have become very popular in financial economics.
Realized volatility is perhaps the most well known example, providing a consistent estimator of the
integrated volatility under certain conditions (including the absence of microstructure noise). Its
multivariate analogue is the realized covariance matrix, defined as the sum of the outer product of the
vector of high frequency returns. Two economically interesting functions of the realized covariance
matrix are the realized correlation and the realized regression coefficients. In particular, realized
regression coeflicients are obtained by regressing high frequency returns for one asset on high frequency
returns for another asset. When one of the assets is the market portfolio, the result is a realized beta
coefficient. A beta coefficient measures the asset’s systematic risk as assessed by its correlation with
the market portfolio. Recent examples of papers that have obtained empirical estimates of realized
betas include Andersen, Bollerslev, Diebold and Wu (2005a, 2005b) and Viceira (2007).

Recently, Barndorff-Nielsen and Shephard (2004) (henceforth BN-S(2004)) (see also Jacod (1994)
and Jacod and Protter (1998)) have proposed an asymptotic distribution theory for realized covariation
measures based on multivariate high frequency returns. Their simulation results show that asymptotic
theory-based confidence intervals for regression and correlation coefficients between two assets returns
can be severely distorted if the sampling horizon is not small enough. To improve the finite sample
performance of their feasible asymptotic theory approach, BN-S (2004) propose the Fisher-z transfor-
mation for realized correlation. This analytical transformation does not apply to realized regression
coefficients, which in particular can be negative and larger than one in absolute value.

In this paper we propose bootstrap methods for statistics based on multivariate high frequency
returns, including the realized covariance, the realized regression and the realized correlation coeffi-
cients. Our aim is to improve upon the first order asymptotic theory of BN-S (2004). The bootstrap
method we consider is an i.i.d. bootstrap applied to the vector of realized returns. Gongalves and
Meddahi (2006a) have recently applied this method to realized volatility in the univariate context.
They also proposed a wild bootstrap for realized volatility with the motivation that intraday returns
are (conditionally on the volatility path) independent but heteroskedastic when log prices are driven

by a stochastic volatility model. In this paper we focus only on the i.i.d. bootstrap for three reasons.
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First, the results in Gongalves and Meddahi (2006a) show that the i.i.d. bootstrap dominates the
wild bootstrap in Monte Carlo simulations even when volatility is time varying. Second, the i.i.d.
bootstrap is easier to apply than the wild bootstrap: the wild bootstrap requires choosing an external
random variable used to construct the bootstrap data whereas the i.i.d. bootstrap does not involve
the choice of any tuning parameter. Third, the i.i.d. bootstrap is a natural candidate in the context of
realized regressions driven by heteroskedastic errors. Indeed, the i.i.d. bootstrap applied to the vector
of returns corresponds to a pairwise bootstrap, as proposed by Freedman (1981). His results show
that the pairwise bootstrap is robust to heteroskedasticity in the error term of cross section regression
models. Mammen (1993) shows that the pairwise bootstrap is not only first order asymptotically valid
under heteroskedasticity in the error term, but it is also second-order correct (i.e. the error incurred by
the bootstrap approximation converges more rapidly to zero than the error incurred by the standard
normal approximation).

We can summarize our main contributions as follows. We show the first order asymptotic validity
of the i.i.d. bootstrap for estimating the distribution function of the realized covariance matrix and
smooth functions of it such as the realized covariance, the realized regression and the realized corre-
lation coefficients. We assess the finite sample performance of bootstrap confidence intervals for these
three covariation measures by simulation. Qur simulation results show that the bootstrap outperforms
the feasible first order asymptotic theory of BN-S (2004).

The ability of the bootstrap to provide higher order asymptotic refinements over the standard
normal approximation is usually established via Edgeworth expansions. In a related paper (Dovonon,
Gongalves and Meddahi (2007)), we develop the Edgeworth expansions of the distribution of the t-
statistics associated with the three covariation measures studied here. These expansions are then used
to construct. analytical transformations of the raw statistics with improved finite sample properties
(in particular, we propose transformations aimed at eliminating the bias or the skewness of the trans-
formed statistics). By developing similar expansions for the bootstrap statistics, we could compare
the accuracy of the bootstrap approximation with that of the normal approximation.

In this paper, we develop the Edgeworth expansion for the i.i.d. (or pairwise) bootstrap distribu-
tion of the realized regression estimator. Mammen (1993) shows that the pairwise bootstrap is robust

to heteroskedasticity in the regression error and provides asymptotic refinements over the usual first
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order asymptotic theory in the context of standard cross section regression models subject to het-
eroskedasticity of unknown form. Thus, these results suggest that the i.i.d. bootstrap can be second
order correct in the realized regression context analyzed here even under stochastic volatility. This
is not the case for the two other statistics (covariance and correlation coefficients), where the i.i.d.
bootstrap cannot be expected to provide second order refinements due to the fact that it does not
replicate the conditional heteroskedasticity in the data. For this reason, we do not analyze the higher
order properties of the i.i.d. bootstrap for the covariance and the correlation coefficients and focus
only on the regression estimator.

Contrary to our expectations based on the existing theory for the pairwise bootstrap in the sta-
tistics literature, we show that the pairwise bootstrap does not provide an asymptotic refinement
over the standard first order asymptotic theory in the context of realized regressions. We contrast
our application of the pairwise bootstrap to realized regressions with the application of the pairwise
bootstrap in standard cross section regressions. We show that there is a main difference between
these two applications, namely the fact that the score of the underlying realized regression model is
heterogeneous and does not have mean zero (although the mean of the sum of the scores is zero). This
heterogeneity implies that the standard Eicker-White heteroskedasticity robust variance estimator is
not consistent in the realized regression context, which justifies the need for the more involved variance
estimator proposed by BN-S (2004). The pairwise bootstrap variance coincides with the Eicker-White
robust variance estimator and therefore it does not provide a consistent estimator of the variance of
the scaled average of the scores. This is in contrast with the results of Freedman (1981) and Mammen
(1993), where the score has mean zero by assumption. Nevertheless, the pairwise bootstrap is first
order asymptotically valid when applied to a bootstrap t-statistic which is studentized with a variance
estimator that is consistent for the population bootstrap variance of the scaled average of the scores.
Because the bootstrap scores have mean zero, the Eicker-White robust variance estimator can be used
for this effect. This implies that the bootstrap statistic is not of the same form as the statistic based
on the original data, which explains why we do not get second order refinements for the pairwise
bootstrap in our context.

The remainder of this paper is organized as follows. In Section 2, we introduce the setup, review

the existing first order asymptotic theory and state regularity conditions. We also present some Monte
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Carlo simulation results that illustrate the finite sample performance of the existing theory. In Section
3, we introduce the bootstrap methods and establish their first-order asymptotic validity for the three
statistics of interest in this paper under the regularity conditions stated in Section 2. We also compare
the finite sample performance of the bootstrap method with the existing first order asymptotic theory.
Section 4 provides a detailed study of the pairwise bootstrap for realized regressions. We first revisit the
first order asymptotic theory of the realized regression estimator, comparing the standard Eicker-White
robust variance estimator with the more involved estimator of the variance proposed by BN-S (2004).
We then contrast the theoretical properties of the pairwise bootstrap, in particular its asymptotic
variance, with the properties of the pairwise bootstrap in a standard cross section regression. We also
discuss the second order accuracy of this bootstrap method based on the Edgeworth expansion that
we develop here. Section 5 contains two empirical applications and Section 6 concludes. Appendix
A contains the tables and figures. Appendix B contains the proofs of results appearing in Section 3

whereas the proofs of results in Section 4 are collected in Appendix C.

2 Setup and first-order asymptotic theory

2.1 Setup

Let p(t), for t > 0, denote the log-price of a bivariate vector of assets!. We assume p(t) follows the

continuous stochastic volatility model given by
dp(t) = O(t)dW (¢), (1)

where p(0) = 0 and where £(t) = ©(t)O(t)’ denotes the spot covariance matrix. Here, W denotes a
bivariate vector standard Brownian motion and © is the instantaneous or spot covolatility process.
As in Gongalves and Meddahi (2006a), we suppose the absence of drift.

Following BN-S (2004), we make the following additional assumptions.

Assumption 1 O has elements that are all pathwise cadlag, the instantaneous covariance % is inde-

pendent of W and, for all ¢ < oo,

t
/ Yer(u)du < 00, k=1,2,
0

For notational simplicity, we focus on the bivariate case, but the results could be extended to the general case in a
straightforward manner.
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where ¥y (t) denotes the (k,[)th element of the X(¢) process.

Assumption 2 For k =1,2, and i =1,...,1/h, the quantities
ih
h! Ekk(u)du
(i=1)h

are bounded away from 0 and infinity, uniformly in 7 and h.

The results in this paper are derived regarding the paths of ¥ as fixed. Assumption 1 rules out the
presence of leverage effects. Under these assumptions, for a given day ¢, where we take £ = 1 without
loss of generality, we can define the vector of daily returns as y = fol O(u)dW (u). Let v} = ( yui 2 ),
i=1,...,1/h, (where 1/h is assumed to be an integer) be the h-horizon intraday returns on a given
day on the two assets. We can write y; = f(iih_l)h O(u)dW (u). The integrated covariance matrix of the
daily return y is given by

r= /0 ' S(u)du = /O 0w (W,
with typical element (k,!) given by Ty, = fol Yu(u)du. Fori=1,...,1/h, let T; = f(iz.h_l)h ¥ (u)du and
note that I' = zjﬁ; T';. Note that conditionally on the volatility path, y; ~ N (0,T;) independently
across 1. Thus the data are (conditionally on ¥) heterogeneous, but independent.

The parameters of interest in this paper are elements of I" and smooth functions of these.

2.2 The realized covariance matrix

The realized covariance matrix is defined as the sum of the outer products of intraday returns:

1/h

I'=Y v
i=1

Conditionally on the volatility path, the theory of quadratic variation implies that

1/h R 1/h 1/h
I=) wyi>> E(wyl)=)> =TI
i=1 i=1 =1

I’ contains realized volatilities for each asset on its main diagonal and realized covolatilities between
the two assets outside the main diagonal.
Let vech (f‘) denote the vector that stacks the lower triangular elements of the columns of the

matrix " into a vector. BN-S (2004) (see also Jacod (1994) and Jacod and Protter (1998)) show that
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under Assumptions 1 and 2, conditionally on the volatility path,
) leli/’ll Yii — fol T (u) du
Vi1 (vech (r) — vech (I‘)) =Vr 1| nV i - fo Sewde | 2IN@OV), (2
1/h
2111 y2z fo o (u du

(u) 2511 (u) L1z (u) 253, (v)
V= / 2211 (u) P12 (u) St (u) Top (u) + 52 (u) 2590 (u) Dz (w) § du
2 () 2592 (u) T12 (u) 253, (v)
BN-S (2004) provide the following estimator of V. Let z; = vech (y;y;). Then, Corollary 2 of BN-S

where

(2004) shows that

1/h R
V=hnrt! 213112; — Eh_l Z (.’Ei.’L‘;;_‘_l + £L‘,'+1.'L'£) L V.
i=1 i=1

As BN-S (2004) remark, V is a substantially different estimator than that used by Barndorff-Nielsen
and Shephard (2002) in the univariate context, in which case letting z; = y2,, it corresponds to
1/h 1/h—1
V=nt Zyﬁ ~-h! Z Yii¥i it
i=1 i=1
as opposed to %ZK’{ Yi;» the estimator proposed by BN-S (2002). The main feature of notice is
the presence of lags of returns in the second piece. One of our contributions is to provide a new

interpretation for this estimator in the context of the realized regression estimator (see Section 4.1).
2.3 The realized covariance

Let f‘lg = Z:f{ Y1:Y2; be the realized covariance between assets 1 and 2, and let 13 = fol 212 (u) du
be the corresponding integrated covariance.
From (2), it follows that as h — 0,
Vh-! (fIZ - F12)

Srp= v % N(0,1),

where
Vr‘—/ {211 (u) T2 (u) + 3 2(u}du (3)
is the asymptotic variance of I';.
The corresponding feasible limit theory is
VhT (f'lz - 1"12)
Ve

Trp = -4 N(0,1),
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where
1/h 1/h—1
Vr=h! Z yi-y%,- -h7! Z Y1iY2iY1,5+1Y2,i+1, (4)

is a consistent estimator of V.
2.4 The realized correlation

The realized correlation between assets 1 and 2 is given by
p= Z:ﬁ Y1y )
VEL S,
Its probability limit follows directly from the theory of quadratic variation. In particular,
fol T12(u)du
\/fol Ell(u)du\/fol Zzz(u)du.
The asymptotic distribution can be derived by the delta method. Specifically, BN-S (2004) give the

~ P
p—p

following results. The infeasible limit theory is

Sy = Vh=1(p - p)
phsE ——F—=
VVe
where
1 1 -1
v, = ( /0 11 (w)du /0 )322(u)du) 9 (5)
with

9o = d,12Vd12’

_ Bz Bor\'’
d12 = ( 2 11, 9 3

with V defined as above and where 8i; denotes the population regression coefficient of regressing asset

k on asset [. The corresponding feasible theory is

- 1/h 1/h -1,
where V, = (2141 y%i 2141 ygi) h 19m with

1/h 1/h—1

gp = Zl‘fn - Z LpiTp,i+1 (6)
=1 =1
Toi = Y2i(y1i — Br2y2:)/2 + y1i(y2i — Ba1y1i)/2,

and B = SH " yrivn/ Zzlf{ yZ, for k,1=1,2.
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2.5 The realized regression

Suppose we regress asset 1 on asset 2 to obtain the realized regression estimator

1/h
Bra = Ziil Y1iY2i
12 = l/h Py .

2 ik Vs
BN-S (Proposition 1, 2004) show that as h — 0,

Vh=1(12 - Bra)

Spp= -4 N (0,1),
V'Vs
where
Vs = (T2) "> gu2, )
and
g12 = dpU12di2

diz = (1,-P2)

_ 1 E (u) 222 (u) -+ 22 (u) 2222 (u) 2 2 (u)
v = [ { Y 0 (0) Bz (u) 252, (1) }d“'

BN-S (2004) provide the following feasible theory for realized regression, which replaces Vg with a

consistent estimator. In particular, they suggest

1/h -2
Ve= (> ud| h g (8)
i=1

where
1/h 1/h—1
dg = Z:z:%i— Z TgiTgi+1, and
i=1 i=1
Ipi = yuyzi—ﬁlzy%i-

BN-S (2004) show that Vg i Vj, and therefore it follows that
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2.6 Monte Carlo results for the first-order asymptotic theory

In this section we assess the finite sample performance of confidence intervals for the three covariation
measures (covariance, regression and correlation) based on the existing first order asymptotic theory.
We present results for two data generating processes. The first model (henceforth Design 1) is the

same as that used by BN-S (2004). In particular, we let

where

and o12(t) = o1(t)oa(t)p(t).

Following BN-S (2004), we let o2(t) be the sum of two uncorrelated CIR. processes:
2 2(2
of (1) = o1V (0) + 01 1),

For s =1,2,
do®(t) = =X, (029(t) — £,)dt + weo (™ () v/ Nadbs(2),

where b; is the i-th component of a vector of standard Brownian motions, independent from W. We
let A\; =0.0429, & =0.110, w; =1.346, X =3.74, & =0.398, and we = 1.346.
Similarly to BN-S (2004), our model for o2(¢) is the GARCH(1,1) diffusion studied by Andersen

and Bollerslev (1998):
do(t) = —0.035(c2(t) — 0.636)dt + 0.236073 (t)dbs(t).
The model we specify for p(t) is the same as the one proposed by BN-S(2004):
p(t) = (50 — 1) /(%) 1. 1),

where z follows the GARCH diffusion

dz(t) = —0.03(z(t) — 0.64)dt -+ 0.118z(t)dba(t).

Our second model (Design 2) specifies o2 (t) and p () exactly as Design 1, with the only difference

being in the model used to generate o? (t). In particular, for o2 () we consider the two-factor diffusion
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model studied by Chernov et al. (2003) (see also Huang and Tauchen (2005)):

o1(t) = s-exp(—1.2+0.04v; (t) + 1.5v2 (t))
dvy (t) = —0.00137v; (t) dt + db; (t)

dvy (t) = —1.386ug (t) dt + (1 + 0.25vs (£)) dba (¢).

This diffusion model has continuous sample paths but can imply sample paths for the price process
that look like jumps?. Although our theory does not allow for a non zero correlation between the price
process and the volatility, in our simulations, we allow for these leverage effects. In particular, we let
Corr(dWi,dby) = —0.3 and Corr(dWh,dbz) = —0.3.

We study the finite sample performance of one-sided and two-sided (symmetric) confidence intervals
for each of the three measures of covariation: I'js, the covariance between the returns on asset 1 and
on asset 2, 12, the population regression coefficient of the regression of y; on ys3, and p, the correlation
coefficient between the two assets.

Let # denote any of these three parameters of interest. Similarly, let § denote the corresponding
realized estimator and let Vg denote a consistent estimator of the variance of VA=14. In particular,
for § =Tyq, 6 = ZJL’{ Y1iy2i, and Vp = Vp = Z,IQ VY3 — E:i'{_l Y1iY2:Y1,i+1Y2,i+1, as defined in (4).
For § = Pra, § = Pra, and Vy = Vg = (lei’{ y%l) - h~1gg, with gg defined in (14). For 8 = p, = j,
and Vp =V, = (Z:Q v Sk ygi)_l h=1§,, where §, is defined in (6).

The lower one-sided 100(1 — )% level confidence interval for # based on the feasible asymptotic

theory of BN-S (2004) is given by

ICI(:'le)as,l—a = (—oo,é - Zq V h%),

where z, is the a-level critical value of the standard normal distribution. The two-sided 100(1 — a)%

level confidence interval for 8 is given by

Icge)as,l—a = (é — 21-a/2/ hVO, é + Z21-a/2 \/ th)

We present results for three nominal levels: 95% (i.e. a = 0.05), 90% (o = 0.10) and 99% (o = 0.01).
We compute the actual coverage probabilities of these confidence intervals for each of the stochastic

volatility models described above. We report results across 10,000 replications for five different sample

2The function s-exp is the usual exponential function with a linear growth function splined in at high values of its

argument: s-exp(z) = exp (z) if z < zo and s-exp(z) = %%ﬁl zo — z2 + 22 if £ > zo, with zg = log (1.5).
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sizes: 1/h = 1152,288, 48,24 and 12, corresponding to “1.25-minute”, “5-minute”, “15-minute”, “half-
hour”, “l-hour”, and “2-hour” returns. Table 3.1 contains results for & = 0.05, for each of the two
designs, for both one-sided and two-sided symmetric intervals. Table 3.2 contains results for o = 0.10
whereas Table 3.3 refers to a = 0.01. (These tables also include results for the bootstrap method but
those results will be discussed later.)

We start with Table 3.1. For the two DGP’s, both one-sided and two-sided intervals tend to
undercover. The degree of undercoverage is especially large for larger values of h, when sampling
is not too frequent. For the covariance measure and the regression coefficient, one-sided intervals
tend to perform worse than two-sided intervals. The opposite is true for the correlation coefficient,
which is surprising when analyzed from the viewpoint of the theory of Edgeworth expansions (the
analysis based on Edgeworth expansions suggests that the error of one-sided intervals is of the order
0 (\/ﬁ) whereas the error of symmetric two-sided intervals is usually of the order O (h)). For one-sided
intervals, the covariance measure is associated with the largest distortions, followed by the regression
coefficient, which in turn is worse than the correlation coefficient. For two-sided intervals, this ranking
is changed, with the correlation coefficient performing worst, followed by the covariance and by the
regression coefficient. The degree of undercoverage can be quite substantial at the smallest sample
sizes. For instance, a lower 95% nominal level for the covariance measure between the two assets for
Design 1 is equal to 80.74% when we sample every two hours (h = 1/12). For the regression coefficient,
it is equal to 86.04% and for the correlation coefficient is is equal to 91.43%. The corresponding
coverage rates for two-sided intervals based on the BN-S asymptotics are 83.90%, 85.27% and 81.04%
for the covariance, the regression and the correlation coefficients, respectively. For this last measure of
dependence, we also report the coverage rates of confidence intervals based on the Fisher-z transform,
as proposed by BN-S (2004). For one-sided intervals, the 95% interval based on the Fisher transform
covers the correlation coeflicient 90.28% percent of the time whereas for two-sided intervals, the actual
coverage rate is equal to 85.44%. Compared to the intervals based on the raw statistic, the Fisher-z
transform outperforms the raw statistic only for the two-sided intervals and not for the one-sided
interval. In both cases, however, it is clear that finite sample distortions remain for the Fisher-z
transform, thus motivating the use of the bootstrap and/or of alternative analytical corrections.

The results for Design 2 are qualitatively similar to those discussed for Design 1. Quantitatively,
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the degree of undercoverage is smaller for Design 2, which suggests that contrary to the univariate
case (see Gongalves and Meddahi (2006a)) the asymptotic theory handles well the presence of the
two-factor diffusion model of Chernov et al. (2003) in one of the volatility processes. The results for
Design 2 also suggest that the theory of BN-S (2004) is robust to the introduction of leverage effects.

Tables 3.2 and 3.3 show that the performance of the asymptotic theory of BN-S (2004) for the 90%

and 99% confidence intervals is qualitatively similar to the performance of the 95% level intervals.
3 The bootstrap

In this section we propose bootstrap methods for smooth functions of the realized covariance matrix.

The bootstrap method we consider is the i.i.d. bootstrap applied to the vector of returns.
3.1 The bootstrap realized covariance matrix

We first state the first order asymptotic validity of the bootstrap for the realized covariance matrix
and smooth functions of its elements. We then specialize our results to the three statistics of interest:
realized covariance, realized correlation and realized regression.
Let z; = vech (yiy!) = ( v% wuyx w3 ), and recall that
1/h

1/%/_2 z:)) 5 N (0,I5),

where Zzli'{ z; = vech (f‘) denotes the vectorized realized covariance matrix I' = 2211’{ iy, and

= limp_,o Var (\/_ Zl/h )

We apply the i.i.d. bootstrap to z;. In particular, let = = zj, = ( yf,' Y1LY2I, y%,l )', where
I; is iid. on {1,...,1/h}. Notice that this is equivalent to bootstrapping the bivariate vector of
assets returns y; = (y11,%2:) . Define the (scaled) vectorized bootstrap realized covariance matrix as
vh-1 Zl/h = vh1 Z /" vech (yryl) = Vh~Tvech (f‘*) As usual in the bootstrap literature,
we let E* (and Var*) denote the expectation (and the variance) with respect to bootstrap data,

conditional on the original data. It is easy to show that E* (\/ h—lvech (f‘*)) = vVh~lvech (f‘) , and

1/h 1/h 1/h 1/h d

V*=Var* \/h‘lzm’{ =h‘12ziz§— in in
i=1 i=1 i=1 i=1
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We can show that

!

v Py /01 vech (Z (u)) vech (= (u)) du — (/01 vech (X (u)) du) (/01 vech (X (u))du) ,

which is not equal to V' (one exception is when ¥ (u) = ¥ for all u). Although V* does not consistently
estimate V, the i.i.d. bootstrap is still asymptotically valid when applied to the following studentized

statistic

Ty = Vr12/p-1 (vech (f‘*) — vech (f‘)) ,

1/n 1/h v\
Vr=hn"t Zx:‘m:’ - (Z:rf) (Zz:)
i=1 =1 ) \i=1

is a consistent estimator of V*. The following theorem states formally these results.

where

Theorem 3.1 Let Assumptions 1 and 2 hold and let {y} :i=1,...,1/h} denote a set of i.i.d. boot-

strap returns. Then, as h — 0,
a) ve—v+E& 0, in probability.
b) sup; |P* (T < z) — P (Ty < z)| — 0 in probability.

The proofs of all the results in this section appear in Appendix B.

Several statistics of interest can be written as smooth functions of the realized covariance matrix.
Examples include the realized covariance measure between two assets, the realized regression coeffi-
cient, and the realized correlation coefficient. The following theorem proves that the i.i.d. bootstrap is
first order asymptotically valid when applied to smooth functions of the (appropriately centered and
studentized version of ) the vectorized realized covariance matrix.

Let f () : R? — R denote a real valued function with continuous derivatives, and let
Vf(0) = (0f/081 Of/86 8f/885 ) denote its gradient. We suppose that V£ () is nonzero at

8o, the true value of §. The statistic of interest is defined as

I = h-1 (f (vech (f‘)) — f (vech (I‘))),

| Vv
Vi = (V' (vech (£)) V V£ (vech (t))-

where
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The i.i.d. bootstrap version of Ty, is T;,h, which replaces I with ™, I with I, and Vf with
V;‘ = (V' i (vech (f‘*)) Vv f (vech (f‘*))) , which is a consistent estimator of the bootstrap as-
ymptotic variance V; = (V' f (vech (f‘)) V*vf ('vech (f‘)))

Theorem 3.2 Under the same conditions of Theorem 3.1, as h — 0,
sup |P* (T}, < z) = P(Typ < )| — 0,
z
in probability.
The next sections give explicitly the bootstrap statistics for the three cases of interest, namely the

covariance measure I'1p, the correlation coeflicient p and the regression coefficient 3.

3.2 The bootstrap realized covariance

1/h

The bootstrap realized covariance measure is defined as ', = > it Yi:vs,, which corresponds to

taking f (vech (I")) with f (6) = 0y, with § = (61,62, 63). Thus, the bootstrap statistic is defined as
A%

1/h 1/h
VE=htY uitu? - | D vt
i=1 i=1

where
2

Theorem 3.2 above proves the first order asymptotic validity of the bootstrap when applied to TF,h‘
3.3 The bootstrap realized correlation

The bootstrap realized correlation coefficient §* is defined in the same fashion as p but with the

bootstrap data replacing the original data, i.e.

5t = 2 Yii¥% )
OMLERVOM 5

The corresponding t-statistic is given by

. _ VR —p)

ph =
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where

>

Al -1 4
* * * *
p = ( 11F22) Bj,

= h‘IZx;?, and

H* 'uu;’
|

i = Y% (yfz' - ﬂ;ﬂ/;i) /2 + 45 (y;i - ﬂ;ly:i) /2.

Here B;[ denotes the bootstrap OLS regression estimator of the realized regression of y} on y, for
k,l =1,2. We note that p = f (vech (I')), with f (8) = %. Thus, the first order asymptotic validity

of the i.i.d. bootstrap for the correlation coefficient follows from Theorem 3.2.
3.4 The bootstrap realized regression

Let {y; = (y};,¥5;):¢=1,...,1/h} be an i.i.d. bootstrap sample from {y;}. The boostrap OLS

estimator that we obtain by regressing y}; on ¥, is given by

1/h | %, %
Ziil Y1:Y2i 9
1/h N ( )

Z / *2

i=1Y2i

5f2 =

The corresponding t-statistic is

Vv h_l(gfz - Bl2)

TB*,hE " ’ (10)
VVs
where
1/h -2 1/h L
U= ) Y wkat= (%) B (11)
=1 =1

Theorem 3.2 covers the case of realized regression when f(6) = gg, with 8 = (81, 82,63)" by noting
that ,Blz =f (vech (f‘))
3.5 Monte Carlo results for the bootstrap

Our theoretical results suggest the first order asymptotic validity of the i.i.d. bootstrap. Thus, we
can build confidence intervals for 6 using the a-percentile g} of the bootstrap distribution of g h-
As previously, we let 8 denote any of the three measures of covariation, 8 its estimator and Ve the
corresponding variance estimator. The lower one-sided 100(1 — )% level bootstrap confidence interval

for @ is given by
16 = (~00,0 — g1/ AVR).
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The bootstrap allows for two-sided symmetric and equal-tailed confidence intervals. The 100(1 — a)%

level symmetric bootstrap confidence interval is given by

6- Pi—a/2V hVp, 0 +Pi_as2V hVp).

where pj, is the a-percentile of the bootstrap distribution of |Tj,|. The 100(1 — @)% level equal-tailed

bootstrap confidence interval is of the form

(é - qr_a/z V hVa,é - QZ/Q V hf/e)

We concentrate our discussion on Table 3.1, which contains results for 95% level confidence inter-
vals. Tables 3.2 and 3.3 contain the corresponding results for 90% and 99% level intervals, respectively.
Since the results are qualitatively similar, we do not discuss these in detail here. Our results suggest
that the i.i.d. bootstrap intervals outperform the asymptotic theory based intervals for the two DGP’s
and for both one-sided and two-sided intervals, for all three measures of dependence. Symmetric
intervals are generally better than equal-tailed intervals (this is consistent with the theory based on
Edgeworth expansions) and both improve upon the first order asymptotic theory based intervals. The
gains associated with the i.i.d. bootstrap can be quite substantial, especially for the smaller sample
sizes, when distortions of the BN-S intervals are larger. For instance, for the regression coefficient, the
coverage rate for a symmetric bootstrap interval is equal to 93.48% when 1/h = 12, whereas it is equal
to 85.27% for the feasible asymptotic theory of BN-S (2004) (the corresponding equal-tailed interval
yields a coverage rate of 90.42%, better than BN-S (2004) but worse than the symmetric bootstrap
interval). The gains are especially important for the two-sided intervals for the correlation coefficient,
when the asymptotic theory of BN-S (2004) does worst. For 1/h = 12, the bootstrap symmetric
interval has a rate of 93.69% (the equal tailed interval is in this case even better behaved, with a
rate equal to 94.60) whereas the BN-S interval based on the raw statistic has a rate of 81.04% and
the interval based on the Fisher-z transform has a rate of 85.44%. For the correlation coefficient, the
bootstrap essentially removes all finite sample bias associated with the first order asymptotic theory

of BN-S (2004).
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4 A detailed study of realized regressions

The realized regression estimator is one of the most popular measures of covariation between two assets.
In this section we study in more detail the application of the i.i.d. bootstrap to realized regression.
We first provide a new interpretation for the feasible approach of BN-S (2004). In particular, we
establish a link between the standard Eicker-White heteroskedasticity robust variance estimator and
the variance estimator proposed by BN-S (2004). We then exploit the special structure of the regression
model to obtain the asymptotic distribution of the bootstrap realized regression estimator. We relate
the bootstrap variance with the Eicker-White robust variance estimator. We end this section with a

discussion of the second order accuracy of the i.i.d. bootstrap in this context.
4.1 The first order asymptotic theory revisited

Given Assumptions 1 and 2, and conditionally on the volatility path, we can write
Y1i = Br2,i¥2i + Wi, (12)
where independently across i = 1,...,h7 1,
uslyi ~ N (0, V),
r}

with V; =Ty, — T;::’ and fi2; = EZ: Here I'yy; = f(iz.h_l) » Lkt () du. Thus, the regression coefficient

in the true DGP describing the relationship between y;; and yo; is heterogeneous (it depends on 1)
and the true error term in this model is heteroskedastic.

When we regress y1; on yg; to obtain Blg, we get that

s p SN E (yuys) A Thay Ty _ 5
ﬁlZ_> l/h. P 1/h —1_‘—'22= 12.
YL E (y2i) >it1Ta2s

Thus, Blg does not estimate fB12; but instead S12, which can be thought of as a weighted average of

B12;. We can write the underlying regression model as follows:

Y1 = Prayei + &, (13)

where

€ = (B2, — P12) yoi + us.
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It follows that &;|y2; ~ N ((B12,; — P12) ¥2i, Vi), independently across i. Moreover, noting that E (yg;) =
0,

Cov (y2i,€:) = E (y2i&:) = (Br2,s — Pr2) T2z = T12s — Pral'224,

which in general is not equal to zero (unless volatility is constant). However, E (Z:g{ ygiei) =0,
and therefore ,312 converges in probability to S12. The fact that E (y2e;) # 0 is crucial to understand
several properties of b1z (and of its bootstrap analogue to be defined later).

To find the asymptotic distribution of B2, we can write

(7 VRIS s . L.
h~1 (ﬂlz - ﬂw) = %?& = (T22) ' VA1) " yaies +0p (1).
i=1Y2i i=1

The asymptotic variance of vVA=1f3;2 is thus of the usual sandwich form

Va=Var (V h_lﬁm) = (Ta2) ' B(T2)"",

where B = limy_,g By, and By, = Var {Vh~15 .7 yzze1 . Because FE (y2;¢;) # 0, we have that
i= 1

1/h 1/h
Bn = T ( \/Fzym‘fi) =h"! ZVar (ya:&i)
i=1 i=1
1/h
= A Z ( (y3:£7) E(yZz‘Ei))2)
1/h 1/h
= h7! Z E (y%i &) ! Z (y2:€:))° = Bin — Bop.

We can easily show that

1
B = flil—% Bh = /(; (2%2 (’U.) + 211 (’U.) 222 (u) — 4ﬁ12212 (’U,) 222 (’U.) + 2ﬂ%2232 (u)) du.

It follows that
o= VA2 ~— B12)
] ’Vﬂ

where Vg = (T'22) 2 B. We can contrast this result with Proposition 1 of BN-S (2004). It is easy to

-4 N(0,1),

check that g1» = B.
It is helpful to contrast the BN-S (2004) variance estimator of V3 (eq. (8)) with the Eicker-White

heteroskedasticity-robust variance estimator that one would typically use in a cross section regression
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context. Let £; denote the OLS residual underlying the regression model (13). Then, the Eicker-White

robust variance estimator of B is given by

1/h

» -1 § : 2 22
Blh =h 'y%Ei .
i=1

In contrast, noting that xg; = y2;€;, BN-S (2004)’s estimator of B corresponds to

1/h 1/h—1
hlge = K1Y 2d -kt > zpmpin
i=1 i=1
1/h 1/h—1
= K'Y U5l —h Y ymiéininiéinn = Bin — Bon. (14)
i= i=1

We can see that h~! s = Blh—th, where Blh is the usual Eicker-White robust variance estimator, and
-1 Z:f;_l y2:€iY2,i+1€i+1. This extra term is needed to correct for the fact that F (yq¢;) # 0,

as we noted above. In particular, élh — Byp, and By, — By, in probability.
4.2 First order asymptotic properties of the pairwise bootstrap

The i.i.d. bootstrap applied to the vector of returns y; = (y1;, y2:)' is equivalent to the so-called pairwise
bootstrap, a popular bootstrap method in the context of cross section regression models. Freedman
(1981) proves the consistency of the pairwise bootstrap for possibly heteroskedastic regression models
when the dimension p of the regressor vector is fixed. Mammen (1993) treats the case where p — oo
as the sample size grows to infinity. Mammen (1993) also discusses the second order accuracy of the
pairwise bootstrap in this context. His results specialized to the case where p is fixed show that the
pairwise bootstrap is not only first order asymptotically valid under heteroskedasticity in the error
term, but it is also second-order correct.

It is easy to check that [ifz defined in (9) converges in probability (under the bootstrap probability
measure P*) to Biz = —-:/l'}l,l—z"y"’)'z The bootstrap analogue of the regression error €; in model (13)

is thus €f = y}; — B12y3;, whereas the bootstrap OLS residuals are defined as € =yt — Byl

Our next Theorem provides the first order asymptotic properties of Bﬁ

Theorem 4.1 Under the conditions of Theorem 8.1, as h — 0,

a) Vvh-1 (ﬂ‘i«z _ 312) NG (0, VE), in probability, where Vl; = (f‘gg) B;.

* * — h — 22 __
b) B =Var (Vh 1211111/% 1) =h Ifo'Iyzz? Blh-
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c) Vj —F (T22) 2 B* # Vj, where B* = B + [ (Z12 (u) — fr2Tas (u))? du.

Part (a) of Theorem 4.1 states that the bootstrap OLS estimator has a first order asymptotic
normal distribution with mean zero and covariance matrix V3. Its proof follows from Theorem 3.2.
Parts (b) and (c) show that the pairwise bootstrap variance estimator is not consistent for V3 in the
general context of stochastic volatility. One exception is when volatility is constant, in which case
B* = Band V; -F Vj.

To understand the form of V[;‘, note that we can write

1/h -1 1/h

vh-1 (sz - Bl2) = Z Yar \/thZy;iE:'
i=1 i=1

Since Zg’; ys2 P Zl/ h y3; = 'y, in probability, it follows that

i=1
_ /
Vh-1T (sz - ,312) = (f‘zz) ' \/Fli’fyﬁiff +op- (1),
i=1

1/h

in probability. We can now apply a central limit theorem to vVA=13".”7 y3.€* to obtain the limiting

normal distribution for v h~1 (sz - Blg). It follows that
Vh-1 (B;Z - Bl?) _’d‘ N (0, Vﬂ*) )
. s A\ 72 . 1/h
in probability, where Vj = (Fzz) By, with B} = Var* (\/ h=13.70 yglef) Part (b) of Theorem

4.1 follows easily from the properties of the i.i.d. bootstrap. In particular, we can show that

1/h 1/h
B = h'Y o Vart (i) = b7 Y (B ((whied)?) — (B* (used)?)
=1 i=1
1/h 1/h 2 1/h 1/h 2
= R RY uaEl — [ R wmn | | =AY vdeR - [ D vt
=1 i=1 =1 i=1
1/h

-1 2 2
= h E:yZiEi’
i=1

since E:f{ y2:€2; = 0 by construction of Blg. Thus, the i.i.d. bootstrap variance of the scaled average

of the bootstrap scores y3;e; is equal to By, the Eicker-White heteroskedasticity robust variance
estimator of the scaled average of the scores yg;¢;.
Theorem 4.1 (part c) shows that the pairwise bootstrap does not in general consistently estimate

the asymptotic variance of Bi2. An exception is when volatility is constant. This is in contrast
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with the existing results in the cross section regression context, where the pairwise bootstrap variance
estimator of the least squares estimator is robust to heteroskedasticity in the error term. This failure of
the pairwise bootstrap to provide a consistent estimator of the variance of Blg is related to the fact that,
as we explained in in the previous section, we cannot in general assume that E (yo;¢;) = 0, unless for
instance when volatility is constant. When the the scores have mean zero, i.e. E (y2;¢;) = 0, the Eicker-
White robust variance estimator, and therefore the i.i.d. bootstrap variance estimator, are consistent
estimators of the asymptotic variance of the scaled average of the scores. Both Freedman (1981) and
Mammen (1993) make this assumption. The fact that E (yp;€;) # 0 creates a bias term in By, which
is eliminated with the variance estimator proposed by BN-S (2004) (see eq. (14)). Because B}, = B,
the i.i.d. bootstrap variance estimator is not a consistent estimator of B, = Var (\/F ZZIQ yZiEi).
The non zero mean property of the scores in our context is crucial in understanding the differences
between the realized regression and the usual cross section regression.

The i.i.d. bootstrap is nevertheless first order asymptotically valid when applied to the ¢-statistic
Th, as our Theorem 3.2 proves. This first order asymptotic validity occurs despite the fact that Vs
does not consistently estimate V3. The key aspect is that we studentize the bootstrap OLS estimator
with Vﬂ* (defined in (11)), a consistent estimator of Vg, implying that the asymptotic variance of the

bootstrap t-statistic is one.
4.3 Second order asymptotic properties of the pairwise bootstrap

In this section, we study the second order accuracy of the pairwise bootstrap for realized regressions.
In particular, we compare the rates of convergence of the error of the bootstrap and the normal ap-
proximation when estimating the distribution function of T ;. This is accomplished via a comparison
of the Edgeworth expansion of the distribution of T derived by Dovonon, Gongalves and Meddahi
(2007) with the bootstrap Edgeworth expansion of T}y, which we derive here. See Gongalves and Med-
dahi (2006b) and Zhang et al. (2005b) for two recent papers that have used Edgeworth expansions
for realized volatility as a means to improve upon the first order asymptotic theory.

For i = 1,3, we denote by &; (T ) the first and third order cumulant of Ty s, respectively. The

second order Edgeworth expansion of the distribution of Ty, is given by (see e.g. Hall, 1992, p. 47)

P(Tpn < 2) = @ (z) + Vhy () $(2) + 0 (h),
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where for any z € R, ®(x) and ¢ (z) denote the cumulative distribution function and the density

function of a standard normal random variable. The correction term g (z) is defined as

1
q(z) = — (fﬁl + k3 («* ~ 1)) :
where k1 and k3 are the coefficients of the leading terms of 1 (Tss) and 3 (Tj), respectively. In
particular, up to order O (\/ﬁ), as h — 0, k1 (Tp) = Vhiy and k3 (Tpn) = Vhks.
Given this Edgeworth expansion, the error (conditional on ¥) incurred by the normal approxima-

tion in estimating the distribution of Tg, is given by
sup |P(Tgp < x) — @ (2)] = \/ﬁsuglq(z) ¢ (z)|+ O (h).
z€ z€

Thus, sup,cg | (z) ¢ (z)| is the contribution of order O (\/ﬁ) to the normal error.
Now consider the bootstrap. We can write a one-term Edgeworth expansion for the conditional

distribution of Tj ,, as follows
P*(Tj < ) = ®(z) + Vha; (2)9(=) + Op(h),

where ¢} is defined as
6i(z) = — (K] p + K3 4(2* — 1)/6),
and where 7, and k3, are the leading terms of the first and the third order cumulants of T ,. In
particular, &} (Tﬁ,h) = \/En},h and K3 (Tg’h) = \/En};,h, up to order O (\/ﬁ)
The bootstrap error implicit in the bootstrap approximation of P (T < z) (conditional on X) is

given by

P (T <z)—P(Tgn<z) = Vh (g}(z) —q(z))¢(z) +Op(h)
= Vh(plimp-og; () —4(2)) ¢ (<) + op (V)
= —vh (n}—n1)+%(n§—;~z3) (:1:2—1)} +op (\/ﬁ),

where k7 = plimp_.ok7] , and k3 = plimp_ok;} . If K] = k1 and k3 = k3, P* ( Bh < z) —P(Tpp<z)=
op (\/ﬁ) , and the bootstrap error is of a smaller order of magnitude than the normal error which is
equal to O (\/ﬁ) If this is the case, the bootstrap is said to be second-order correct and to provide

an asymptotic refinement over the standard normal approximation.
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— The following result gives the expressions of the leading terms of the first and third order cumulants

= for the original statistic and for its bootstrap analogue. We need to introduce some notation. For

simplicity, we will henceforth write X instead of ¥ (u).

Let

Ao

A

B

H,

H,

Similarly, let

1
/ (Z22%12 — B12E5) du,
0

1
/ (22?2 + 6211219590 — 18ﬂ12)3%2222 - 6ﬂ12252211 + 24ﬂf22122%2 - 8ﬂ%2232) du,
0

1
/ (T2 + 11802 — 4812% 1250 + 2855%,) du,
0

1
B* = B+/ (Z12 — P12T22)* du,
0

1
Al = A+ 2/ (Z12 — BraZ)? du,
0

44,
Hf = ,
! TyoVB*
N Aj
H2 = B*3/2 )

In order to obtain the higher order results in this section, we add the following additional assump-

tion. A more primitive assumption such as a multivariate analogue of Assumption V in Gongalves

and Meddahi (2006) may be sufficient to ensure Assumption 3, but we have not yet confirmed this.

Assumption 3 Let k, [, k', I' =1,2.

and

1/h

1
Rty T e — / Zwi(w) By (u)du = op(Vh),
0

i=1

1/h~1 .
A7t 3" ThaThowien — /0 Tt (u) S (w)du = op(Vh).

i=1

PROPOSITION 4.1 Under Assumptions 1, 2 and 3,

a) K1 = % (H1 - Hg) and K3 =3H1 —2H2.
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* 3 * * * * *
b) ki =7 (H] — H;) and «3 =3(3H7 - H;).

Part (a) of Proposition 4.1 is derived in Dovonon, Gongalves and Meddahi (2007). (We reproduce
the proof in Appendix C for completeness.) The proof of part (b) is in Appendix C. A comparison
of the two parts reveals a disagreement between the two sets of cumulants. Notice in particular that
B # B* contributes to this discrepancy. B here denotes the limiting variance of the scaled average of
the scores whereas B* denotes its bootstrap analogue. As we noted before, under general stochastic
volatility, the pairwise bootstrap does not consistently estimate B and the bias term is exactly equal
to the difference between B and B*, ie. B*— B = fol (Z12 — ﬂ12222)2 du = plimy_,oBaon, where
Bop =h71 Zji’l‘ (E (yz,-si))2 . An exception is when volatility is constant, where By, = 0 and therefore
B* = B. In this case, we also have that A} = A; = Ap = 0, implying that both the bootstrap and
the normal approximations have an error of the order O (k). We need a higher order expansion to
be able to discriminate the two approximations. In the general stochastic volatility case, the pairwise
bootstrap error is of order O (\/E), similar to the error incurred by the normal approximation.

The lack of second order refinements of the pairwise bootstrap in the context of realized regressions
is in contrast with the results available in the bootstrap literature for standard regression models (see
Mammen 1993). One explanation for this difference lies in the fact that E (ys¢;) # 0, as we noted
above. This implies that Tjg 5, must rely on a variance estimator that contains a bias correction term,
as proposed by BN-§ (2004). Instead, in the bootstrap regression, E* (y3.,c}) = h Z}L’{ yoi€; = 0, and
therefore there is no need for the bias correction proposed by BN-S (2004). This implies that the
bootstrap t-statistic T[’;’h is not of the same form as T, relying on a bootstrap variance estimator

V[;" that depends on an Eicker-White type variance estimator B{h.
5 Empirical application

A well documented empirical fact in finance is the time variability of bonds risk, as recently documented
by Viceira (2007) for the US market. As suggested by the CAPM, the bond risk is often measured by
its beta over the return on the market portfolio. With a positive beta, bonds are considered as risky
as the market while a bond with a negative beta could be used to hedge the market risk.

Following Merton (1980) and French, Schwert and Stambaugh (1987), Viceira (2007) studies the

bond risk for the US market by considering the 3-month (monthly) rolling realized beta as measured by
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the ratio of the realized covariance of daily log-returns on bonds and stocks and the realized volatility
of the daily log-return on stocks over the same period. Following the standard practice, the number
of days in a month is normalized to 22 such that the 3-month realized beta is computed considering
sub-samples of 66 days. From July 1962 through December 2003, Viceira (2007) reports a strong
variability of US bond CAPM betas, which may switch sign even though the average over the full
sample is positive. Nevertheless, in his analysis Viceira (2007) does not discuss the precision of the
realized betas as a measure of the actual covariation between bonds and stock returns.

The aim of this section is to illustrate the usefulness of our approach as a method of inference
for realized covariation measures in the context of measuring the time variation of bonds risk. We
consider both the US bonds market, as in Viceira (2007), and the UK bonds market.

Our data set includes the daily 7-to-10-year maturity government bond index for the US and the
UK markets as released by JP Morgan from January 2, 1986 through August 24, 2007. As a proxy for
the US and the UK market portfolio returns, we consider the log-return on the S&P500 and the FTSE
100 indices, respectively. The S&P500 index is designed to measure performance of the broad domestic
economy through changes in the aggregate market value of 500 stocks representing all major industries.
The FTSE 100 index is a capitalization-weighted index of the 100 most highly capitalized companies
traded on the London Stock Exchange. Both indices are commonly used in scientific researches as
well as in the finance industry as a proxy for the market portfolio. The first two series have a shorter
history and therefore constrained the sample we consider in this study.

From the estimates presented in Table 3.4 (Appendix A), the full-sample beta for bonds in the US
is about 0.024, slightly smaller than the UK bond beta, which is about 0.030. Both the bootstrap and
the asymptotic theory based confidence intervals display support that the true values of the betas in
both countries are positive.

A closer analysis of Figures 3.1 and 3.2 shows that the average positivity of the betas hides
considerable time variation in both countries, a fact already documented by Viceira (2007) for the US
market. Furthermore, the betas for these two countries follow similar dynamics. We can distinguish
two patterns for the 3-month betas. For the period before April 1997, the betas are mostly significantly
positive or, in few cases, non-significantly different from 0. This period is also characterized by betas

of larger magnitude, with a maximum value of 0.500 at the end of July 1994 for the US and 0.438 in
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August 1994 for the UK. The period after April 1997 is characterized by a drop of the magnitude of
the bonds betas in both countries. They are often not significantly different from 0. For this whole
sub-period, the betas for the US and UK bonds are significantly negative only between June 2002
and July 2003, but in these cases their magnitude is small. We conclude that bonds are riskier in the
period before April 1997, while in the recent periods they appear to be non risky or at most a hedging
instrument against shocks on market portfolio returns.

A comparison of the bootstrap intervals with the intervals based on the asymptotic theory of BN-S
(2004) suggests that they two types of intervals tend to be similar, but there are instances where the
bootstrap intervals are wider than the asymptotic theory-based intervals (see Tables 3.5 and 3.6 for a
detailed comparison of the two types of intervals for a selected set of dates). This is specially true for
the first part of the sample for the UK bond market, where the width of the bootstrap intervals can
be much larger than the width of the BN-S (2004) intervals. In this empirical application, the gain in
accuracy of the bootstrap intervals in terms of coverage probability appears to be associated with a

deterioration of length of the bootstrap intervals.

6 Conclusion

This paper proposes bootstrap methods for inference on measures of multivariate volatility such as
integrated covariance, integrated correlation and integrated regression coefficients. We show the first
order asymptotic validity of a particular bootstrap scheme, the i.i.d. bootstrap applied to the vector of
returns, for the three statistics of interest. Our simulation results show that the bootstrap outperforms
the feasible first order asymptotic approach of BN-S(2004).

For the special case of the realized regression estimator, our i.i.d. bootstrap corresponds to a
pairwise bootstrap as proposed by Freedman (1981) and further studied by Mammen (1993). We
analyze the second order accuracy of this bootstrap method and conclude that it is not second order
accurate. This contrasts with the existing literature on the pairwise bootstrap for cross section models,
which shows that this method is not only robust to heteroskedasticity in the error term but it is
also second order accurate. We provide a detailed analysis of the pairwise bootstrap in the context
of realized regressions which allows us to highlight some key differences with respect to the usual

application of the pairwise bootstrap in standard cross section regression models. These differences
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explain why the pairwise bootstrap does not provide second order refinements in this context.

An important characteristic of high frequency financial data that our theory ignores is the presence
of microstructure effects: the prices are observed with contamination errors called noise due to the
presence of bid-ask bounds, rounding errors, etc, and prices are asynchronous, i.e., the prices of two
assets are often not observed at the same time. The first problem is well addressed by the literature
in the univariate context, in particular, Zhang, Mykland, and Ait-Sahalia (2005a), Zhang (2006), and
Barndorff-Nielsen, Hansen, Lunde and Shephard (2007) provide consistent estimators of the integrated
volatility. Likewise, Hayashi and Yoshida (2005) provide a consistent estimator of the covariation of
two assets when they are asynchronous, but their analysis rules out the presence of noise. Little is
known when the two effects are present; see however the analysis in Zhang (2006), Griffin and Oomen
(2006) and Voev and Lunde (2007). Another feature that our theory ignores is the possible presence
of jumps and co-jumps. This is a difficult problem that the literature has only started recently to
address (see Jacod and Todorov (2007) and Bollerslev and Todorov (2007)). The extension of our

bootstrap theory to these important problems is left for future research.

Appendix A
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Table 3.4: Full-sample estimates of bonds betas for the US and the UK from January 2, 1986 through

August 24, 2007

Beta BN-S 95% 2-sided CI Boot. symm. 95% CI
Us

0.024 [0.010,0.038] [0.009, 0.038]
UK

0.030 [0.016,0.045] [0.015, 0.046]

Table 3.5: Divergence between BN-S and bootstrap confidence intervals for the US

Date Beta BN-S Bootstrap
31-Jul-86  0.167 [0.027,0.306] [—0.022,0.355]
29-Aug-86 0.152  [0.015,0.289]  [—0.053,0.357]
30-Sep-86 0.106  [0.017,0.194]  [-0.041,0.252]
31-Jul-89  0.204 [0.036,0.371] [—0.025,0.432]
29-May-92 0.111  [0.004,0.217]  [—0.010,0.231]
29-May-98 0.093  [0.001,0.184]  [—0.012,0.197]
31-Aug-00 0.062  [0.002,0.121]  [—0.002,0.126]

30-Jan-98 -0.054 [—0.101,—0.008] [-0.111,0.003]
27-Feb-98 -0.059 [—0.115,—0.002] [—0.128,0.010]
29-Dec-00 -0.055 [—0.109,—0.000] [—0.117,0.008]
31-May-01 -0.055 [—0.107,-0.004] [—0.113,0.003]
31-Dec-03 -0.154 [—0.302,—0.005] [—0.319,0.011]
29-Oct-04 -0.146 [—0.256,-0.036] [—0.293,0.001]

Appendix B
This Appendix contains the proofs of the results in Section 3. We first present two auxiliary lemmas.
Lemma B.1 Let y;; denote the jth component of y;. Under Assumptions 1 and 2, for any q1,g2 >0

such that g1 + gz > 0, hl~(01142)/2 lei’{ [Y14]% |y2:|% = Op(1).

1/2 1/2
Proof of Lemma B.1. 1% |y;[ |y < (Ezlfll |yli|2q1) (Ezli'll |y2i|2qz) by the Cauchy-
Schwarz inequality. From Theorem 1 of BN-S (2004), Z,li'{ [y1:|29 = Op(h~1%91) and leg{ yo:|292 =
Op(h~1%9%2), which proves the result.

Lemma B.2 Let {yf:i=1,...,1/h} denote an i.i.d. bootstrap sample of intraday returns {y; : i = 1,
...,1/h} and assume that Assumptions 1 and 2 hold. Then, for k, I, k', ! = 1,2, with probability
approaching one,

. 1/h P* <1/h
i) 2141 Yk — Ziil Ykilli-

.o _ 1/h o » % P, _ 1/h
i) A S gyt B S iy
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Table 3.6: Divergence between BN-S and bootstrap confidence intervals for the UK

Date Beta BN-S Bootstrap
31-Mar-88 0.070 [0.003,0.137] (—0.010,0.150]
31-Oct-90 0.197 [0.016,0.377] [—0.175, 0.568]
31-Dec-90  0.262 [0.031,0.493] [—0.446,0.970]
30-Apr-92  0.307 {0.162,0.452] [—0.151,0.764]
29-May-92 0.314 [0.173,0.454] [—0.131,0.758]
30-Jun-92  0.288 [0.125, 0.450] [-0.277,0.852]
29-Jan-93  0.129 [0.003,0.254] [—0.049, 0.306]
26-Feb-93 0.131 [0.018,0.243] [—0.029, 0.290]
31-Mar-93 0.153 [0.046, 0.259] [~0.004, 0.309]
31-Aug-93  0.122 [0.001,0.242] [—0.025,0.268]
29-Aug-97 0.054 [0.002,0.105] [—0.003,0.111]
30-Sep-97  0.132 [0.031,0.233] [—0.015,0.279]
31-Oct-97 0.109 [0.015, 0.202] [—0.027,0.244]
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29-Jan-88 -0.092 [—0.177,—0.007) [-0.195,0.012]
31-Jan-01 -0.052 [—0.102,—0.001] [—0.111,0.008]
30-Sep-04 -0.085 [—0.156,—0.014] [—0.177,0.008]
30-Nov-06 -0.064 [—0.122,—0.005] [—0.129,0.002]

Proof of Lemma B.2. We show that the results hold in quadratic mean with respect to the bootstrap
measure, with probability approaching one. This ensures that the bootstrap convergence also holds
. - . h - - 1/h 1/h

in probability. For (i), we have E* (Ezlil y,’;zyl*z) = h71E* (yuh) = 1A Ziil Ykl = Ziil Yrilli-
Similarly,

1/h
Var* (Z y?éz-yi';-) =h"War* (yhwh) = B (B (wiavit)® — (B*viavi)?)

i=1
1/h 1/h 2 1/h 1/h 2
=R R () — [ B vkivs = (ki) — k| D vk | =op (1),
i=1 i=1 i=1 i=1

given that Lemma B.1 implies that Egﬁ(ykiyli)z = Op(h) = op(1) and lei'{ YriYi; = Op(1). This
proves the result. The proof of (ii) follows similarly and therefore we omit the details.
Proof of Theorem 3.1. The proof of (a) follows from Lemma B.2 by noting that the elements of
z;z;’ are of all of the form y},y}y5. ¥ for k,1, K,'=1,2.

To prove (b), we first show that both V* and V* are non singular in large samples with probability
approaching one, as the sample size grows. The probability limit of V* follows from Theorem 4 of

BN-S (2004) and is equal to

3f,Shdu—T% 3 [ SuSidu—Tulie [} (SuSee +25%)du — [T
fol (Z11222 + 22%2)(111, - F%Q 3 fol Ellzzzzdu —T'12T9s ,
3 fo B3pdu — T3,
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which can be written as V + V; where

fO led'u, F11 fO 211212du I‘uI‘12 fO Ellzgzdu Fllrzg
Vi= fo T1Zodu —T%, fo Y12¥00du — T'12l22
fo Thadu —T%,
V is the asymptotic variance of VA1 Zzl / ’ll z; and it is pathwise symmetric positive definite by as-
sumption. We show that V; is positive semidefinite, which guarantees the positive definiteness of
V + V4. For any A € R3, by straightforward calculation,

1
MV = / (MZn(u) + AXia(u) + /\3222(u))2du — (MT 4+ Al + /\3F22)2 >0
0

by the Jensen inequality. Thus, V1 1s p051t1ve-sem1deﬁmte and therefore V* is positive definite.

Now, let S; = V*~1/2y/h~ (Z1 1T — Z z;). Clearly, Tp = V*"/*V*1/28 . As we just showed,
vty B I3, in probability. Thus, the proof of (b) follows from showing that for any A € R3 such
that MA = 1, sup,cg |P*(Zl/'ll z; < z) - ®(z)| £ 0, where &= (WV*A)T2 Vh=IN(z} / *S z})),
1/h -

¥1=0

i=1T§

and Var* (Zl/ h "*) = 1. Thus, by Katz’s (1963) Berry-Essen Bound, for some small € > 0 and some

and where ®(z) is the standard Gaussian cumulative distribution function. Clearly, E* (Z

i=1T;

constant K > 0,

1/h 1/h
sup |P* (Z:z; < :1:) —®(z)| < K ) E*|z;|*
zeR i=1 i=1

Next, we show that Z:Q E*|Z}|?€ = 0p(1). We have

1/h

ZE*I"* e o= hTEYNE [P =R E e

WV T2 B2\ (g3 — EB* (2}))

hLR= A2\ AT RHOR BN (2t — E* (21)) 2T
22+eh—(2+e/2)|,\'V*,\|—(1+5/2)E*|)\':,;*1‘|2+e

IA A

22+eh—(2+5/2)|/\/Vx/\|—(l+5/2)E*|xiz|2+e
1/h

22+5h—1—-e/2|AIV*A|—(1+5/2) Z |1'i|2+e,
=1

where the first inequality follows from the C, and the Jensen inequalities and the second inequality
follows from the Cauchy-Schwarz inequality and the fact that A’A = 1. We let |2| = (z'z)l/ % for

any vector z. It follows that 2111’{ |z;|2Fe = Zzli'{ |z; |20 +e/2) < Zl/h (v + 21)2(1+€/2), since |z;|? =

2 1/h 1/h
(vl + vhvh + )" < wl + 20kl + vh = (W3 +13)” . Thus, )70 |l < T03(0% + 13 By
the Minkowski’s inequality,

1/h 1/h 1/(2+e) 1/h 1/(2+e)
Z |$i12+e < (Z |y1i|4+2€> + (Z |’y2i|4+2€)
=1 i=1 i=1

By Lemma B.1, $"1/% |z;|2+¢ = Op(h!*¢). Therefore, "1 E*|5:[2+¢ = Op(he/?) = op(1).
i=1 T;

2+¢€
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Proof of Theorem 3.2. Since T}, LA N(0,I3), by the standard delta method, Ty, 4, N(0,1).
Similarly, by a mean value expansion, and conditionally on the original sample,

Vi1 (f(vech(f‘*)) f(vech(T ))) Vh-1v'f (vech( )) (vech(f‘*) - vech(f‘)) + op-(1),
since I™* - I'in probability. Let
o vhT ( F(vech(f™)) — f(vech(f‘)))
fh = \/‘7 )
f

with V* V' f (vech(D))V*V f(vech(l)). It follows that S* " N (0,1) in probability, given The-
fh

orem 3.1 (b). Next note that Tf), = 1/‘7_ S% » where Vf —F V¢. The result follows from Polya’s
f )

theorem (e.g. Serfling, 1980) given that the normal distribution is continuous.
Proof of Theorem 4.1. Part (a) follows from Theorem 3.2 with f(f) = 62/83. To derive V3, let

N - ~ - ~ A !
b1 = Sili vk b2 = Sillvivar, 6 = il o3 Clearly, o = £(0) and VF(B) = (0 £ -3 ).
Then Vj is given by V§ = V'f())V*Vf(d), with V* = A1 S 4 z.a — (z‘/’; z,) (zl/’; 1)'.
Straightforward calculations show that

N “ N -2 ~ n
V@) (il m'.) Vi) = (F22) il 13,82 whereas V'£(6) [(Zii'{ =) (Tih =) ] V() =

0. Thus Vj = (f‘gg) El_l Y2, E2.
_ Part (b) is proven in the text. Part (c) follows from Theorem 4 of BN-S (2004) and the fact that
Bz =F Bra.

Appendix C

In this Appendix we prove the results appearing in Section 4. Appendix C.1 contains the proof of
the asymptotic expansions of the cumulants of T appearing in Proposition 4.1.(a). A number of
auxiliary lemmas are also presented and proved. Appendix C.2 contains the proof of the asymptotic
expansion of the bootstrap cumulants of of Tﬁ,h appearing in Proposition 4.1.(b) as well as some useful
lemmas.

Note that the statistic of interest can be written as follows

, Vh1(b12 — ﬂ12) _ vh! Z:ﬁ Ya2igi _ S, (h_lﬁﬁ)_m

i=1 Y2;

— 1/h
where gg and B}, are defined in the text, and Sp = Lauyz—'s'

Throughout this Appendix, we use the convention that z;,; /n =0 for any random variable z.
3.1 Asymptotic expansions of the cumulants of Tj)

In this subsection, we first provide a set of lemmas that are useful to deriving the asymptotic expansions
of the cumulants of T, through order O (\/i_z) Next, we prove these lemmas and at the end we prove
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Proposition 4.1 a). We introduce the following notations.

ui = h7(v3e] — E (v3:67))
Uigrr = R (y2€iyoir1€i+1 — E (Y2i€it2it16i41))
1/h
A}h = h7? Z 21-‘12 i 18012I'2 1F12 it 24ﬂf21-‘%2,ir12,i + 601,22, T2, — Sﬂf2rg2,i - Gﬂlzrll,irgz,i)
=1
1/h

A3 = K77 Z(—mrgz,z’ﬁ?z +2022,3%0 141852 + 2059, 2214187 + 36T12,:05, ;67

—2T12,i+11% 1832 — 212,19 118% — 40123022, T'22,1418% — 4T12,3+1T22,i022,i418%
—8F11,iF%2,iﬂ12 - 28F%2,1F22,iﬁ12 +T %2,”11“22,1'512 + 41212541 022,:612 + F%zliFZZ,i+1ﬂ12
+4T12,iL 1241022041612 + T11ilo2:02241812 + TineaTo2,iT22,i01812 + 4T ; — T2l 54y
—Ffz,irlz,iﬂ + 8l11,ilM12,022s — Ti1il12641 022, — Ti1i41l12,022,i41)-

Similarly, let

1/h 1/h 1/h
Ay = RTVYCE@WE), A =hT') E@wnincin), Af =k B e,
i=1 i=1 i=1
. 1/h
Ao = Z(2A(1)h — A%, — A3}), and recall that B, = Var [ Vh~! Z Y2iEi
i=1

Lemma C.3 Let k, LK I',k",l",m,n,m',n’,m",n" = 1,2 and let ny, na, n3, n4, ns and ng, be any
non negative integers. Under Assumptions 1 and 2, and conditionally on the volatility path X,
1/h
1—(n1+n2+na+tng+ns+
h (Ranztnatnatns nG)ZI‘;clllzrz’gl’ F;cl?l’ 1]‘—‘;471 1.+1F71:1 'n’ 2+1I‘nf”n”,z'+1
i=1

1
. /o S () 02, (w) 59, () £ (W) E5 (), (u)du,
as h — 0.
Lemma C.4 Under Assumptions 1 and 2, and conditionally on the volatility path, as h — 0,

° A{h — Ay, forj=1,2;

1/h

Bp=h"! Z (T12,s — 4B12T'22,: T124 + 25?21"%2,1- +T'11,T22:) — B;
=1

1/h
Ag, =371 Z(Flz,ifzz,i — B12T'%,;) — 3Aq;
i=1
1/h

Afp =71 (Tizi41 224 — Bral22,T22i41) — Ao;
i=1

1/h

Ay =R (T12:T22,i41 — Brala2,:T22i11) — Ao
i=1



N

Lemma C.5 Under Assumptions 1 and 2, and conditionally on the volatility path,

1/h
e B yuei | =0,
=1

1/h
e I ZyZiEi = hBj,
im1

1/h 3

o F Zygifi = h2A{h,
=1

1/h 4

o E|) yues | =3K2B;+0(h),
=1

1/h 1/h

1=1 =1

i=1

1/h 21/
o E Z Y2€; Z(Ui — Usit1)
i=1

i=1

1/h 3 /n
o E[ D wuiei | D (wi—uiin1)
i=1

o E Z'ym‘si Z(Ui - ui,i+1)) = hA%h,

):o(hz),

) = 3h2B A%, + O(h3).

Lemma C.6 Under Assumptions 1 and 2, and conditionally on the volatility path,

o E(Sy) =0,

e E(S}) =1,
B(s}) = VAL

PR R

E (S) =3+ O(h),

1/h
e E| Spvh! Z(ui —Uig41) | =

i=1

1/h

o F Sﬁ\/FZ(ul — ui,i+1) =0 (\/ﬁ) y

=1

1/h

o K Sg\/ h-1 Z(ui — ui,i+1) =3
i=1

132



™

133

Lemma C.7 Under Assumptions 1, 2 and 8, and conditionally on the volatility path,

1/h 1/h
hlgs =By |1+ B D (s — uiie) Bhr Zy2,e, +o0p(Vh).
=1

Proof of Lemma C.3. This result follows from the boundedness of £ (u) and the Reimann inte-
grability of £F,(u) for any &,/ = 1,2 and for any non negative integer n;.

Proof of Lemma C.4. The convergence results follow from Lemma C.3. To derive the expressions
of the moments, we use the fact that under our assumptions y,...,; /h are pairwise independent

and yi ~ N(0,T;) with I'; = f(z R (u)du. Let C; be the Cholesky decomposition of I';. Note that

Ui 4 Ciug: u; ~ 1idN (0, I;) where I, is the 2 x 2-identity matrix and X expresses the equivalence in
distribution. Let I'y;; and Cj;; be the (k,!)-th element of I'; and C;, respectively. We have that

Vg 0

T 2
Ci Ci2, Mos |0

Tog; —
VAR 224 7 T,

and yy; 4 Ciiu1; and yo; < Co1,5u1; + Coz5ug;. For the second result, let z; = yo6; — E(y2:€:) and
note that by definition, the z}s are i.i.d. with Ez; = 0. It follows that

2

1/h 1/h 1/h
By, =Var | VAl Zyzisi =hlE Z(yzié‘i — E(yzes)) | =h71 ZE (212
i=1 i=1 i=1

Now, E (zf) =F (y%ielz) —(E (ygisi))2. Since €; = y1; — B12y2:, we get that
E(yne:) = E(yuyz) — P2E (v%) = T2 — Br2la2,
E (?J%zf? ) = E (y%z (y1i — ,312y2i)2) =F (ygiy%i) —2012E (yliygi) + :szE (ygi) .

We now use the Cholesky decomposition to get that

E(yyl) = E ((Cu,iuli)2 (Ca1,5u1; + C22,iu2i)2) = E (C} ul;) (C& jul; + 2C21,iCon suriun; + Cop jud;)

= 30?1,;'0221,1 + 0121,1'0222,1‘ = 2F%2,z' +T'11,:092,4;
E(yuys) = E ((Cll,iuli) (Cor5u1s + C22,iu2i)3) =3C11,C31; + 3C11,iC21,iC3 ; = 312,055 and
E (ygi) = E ((Czl,iuu + Ca2 iUZi)4) = 3C§1 i+ 60%1 ,-0222,,- + 3C§2,,~ = 3Il2;, implying that
E(y5e3) = 2%, it T2 — 681271222 + 3ﬁ12F22 i
Thus,
E (y3e2) = 2T'%,; + 11,022 — 6812012, 20,5 + 365 %61
and

E(2}) = 2T%;+TnTa2s — 68121222, + 3505, — (T124 — Bralaz)’
= T +T11ila2i — 4812l 12, 20 + 26515, 5,

which implies By, = h~! Zl/h ( 12, + T11,l22, — 4P12T 12,0205 + 262,12, 1) , proving the second re-
sult. The proofs of the remaining results is similar and we omit the details.
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Proof of Lemma C.5. The first result follows by definition of 3;2 whereas the second result follows
by the definition of By. For the remaining results, write z; = yo;6;— F(yo;€;) and note that by definition,
the z/s are i.i.d. with Ez; = 0. Note also that Zl/h = Elli’l' y2:€; since by Z}L’} E (yaie;) = 0. For
the thlrd result, note that

1/h 3 e \3 1/h
E Zy%ei =FK (Z z; = z E (ZiZjZk) = ZE (213
i=1 i=1 i=1

i,5,k=1
We now compute ( ) using the Cholesky decomposition as in the proof of Lemma C.4 to show that
4
Zjﬁ*{ E (2}) = h?A},, with Al, as defined above. For the fourth result, note that E (Ziil ygiei) =

2
sV E (z)+3, ., E()E ( ) =3 (Zl/h (zf)) +O(h3) and use the definition of B}, to prove
the result For the fifth result, note that

1/h 1/h 1/h 1/h 1/h
Z Y2i€4 Z ui,i-{-l) = Z E(Ziuz Z E zzuz z+1) - Z E z1+l'U'z z+1)
=1

i=1 i=1

Useing the definitions of u; and u;;+1, the result follows from simple but tedious algebra using the
Cholesky decomposition. The remaining results follow similarly and therefore we omit the details.
Proof of Lemma C.6. The proof follows straightforwardly by using Lemma C.5.

Proof of Lemma C.7. Using the definition of gz in the text, we can write

1/h

hlgp = RNy (y%ief + (br2 — Br2)?ys; — 2(Br2 — IBIZ)ygiEi)
i=1
1/h ) )
Ry (y2iy2,i+15i5i+1 + (12 — Br2)* 393,01 — (12 — Br2) (Waiva,it16i41 + y%,H.lyziEi)) :
=1

Adding and subtracting appropriately, it follows that

1/h 1/h 1/h
hlgg = RV E(yne)? —h7Y | E(ynepivigin) + | h” Z (y2i€:)® — E(yzes)?)

i=1 =1

1/h 1/h
- (h_l Z (y2u€iy2,it16i+1 — E (y2i5iy2,i+15i+l))) (Biz — Br2)h ™! Z E(2y3;e:)

=1 i=1
1/h 1/h
+(Br2 — Bi2)h ™Y E(hvzirigint) + (Brz — Bi2)h ™'Y | E(y3i1vmie) + Op(h),
i=1 =1
1/h 1/h 1/h
= Bp+h! Z (Bygies)® — b1 z E (y2i€iy2i1€i41) + Z (ui — wizg1) — (Br2 — Pr12)245,
i=1 =1 =1
+(Br2 — Pr2) A2y, + (bra — ﬂlz)A on +Op (h)
1/h 4L W 42 Mn 4, 1/h
= Bp+ Z (uz U 1.+1 Oh Z Y2:€; + Oh Z Y2i€&q + Z Y2:€; + op ( )

=1
where the remainder term is of order op(v/h) given that 812 — fi2 = Op(VR), h Z:ﬁ Y2 ye i1 =
Op(1), and given that A1 Zl/h (v3iei — E (y3e:)) = Op(vh) and b1 El/h <y2 i1y2i€i — E (yg,i+1y2i6i)) =
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Op(\/_ ) by a verifying a CLT condition. Note also that the last equa.lity uses the fact that Blg — B2 =

1/h
—EPZZ&—}-O (h).ByLemma C.1, h~! 21/ h (Eyzzez) and h7! E E (y2i€:Y2,i+1€i+1) have the same
probability limit and by Assumption 3,

ht El/h (Byaies)® — plim b= 31 (Bymies)? = op (\/ﬁ) and
- Zi: E (y2u€iy2,i+1€i+1) — plim A1 Zl/h E (y2i€iy2,i+1€i+1) = op

Therefore, A1 3% (Eygie;)® — b1 S E (yaieiynivi€iv1) = op (\/_ )
Proof of Proposition 4.1 (a). Given Lemma C.7, we can write

L n 1/h -1/2
Tﬁ,h=Sh 1+§;Z( 'U»“+1 +Op .

=1

The first and third cumulants of T , are given by (see e.g., Hall, 1992, p. 42) x1(T5) = E(Tp) and
k3(Tpn) = E(T§ 1) — 3E(T44)E(Tp,p) + 21E(Tp 0))*.

Our goal is to identify the terms of order up to O(\/i_z) of the asymptotic expansions of these two
cumulants. We will first provide asymptotic expansions through order O(v/h) for the first three
moments of Tg . Note that for a given fixed value of k, a first-order Taylor expansion of f(z) =
(14 z)7*/2 around 0 yields f(z) =1 — k2 + O(z?). Provided that Z:i’ll(u, —uiiy1) = Op(Vh), we
have for any fixed integer k,

k VR A 2Aqh h .
Tin =5k [1-Vh3 D (ui — uigpr) + \/EthFm Vh=1Y "yaie: | +o(Vh) = Tf + o(Vh).
i=1

2 By A

For k = 1,2, 3, the moments of T}’f are given by

1/h
. 11 240
E(Ty) = E(Sh)—vVhzoE [ SaVATY (ui—wiz1) | + Vi—e2— E(S?),
(Th) (Sh) 2B, ( h ;( u;, +1)) JBiTo E(Sy)
1 i 4A
P2y 2y _ h_— 2. /h—1 g _0h prgd
E(T}) = E(S}) - Vhg-B|Sivh g(uz wii1) | + VA= E(S),
S 64
E(T®) = E(S -—\/_ E S3Vh- - Ui +VE——=2_E(S}.
(Th) E( h) h ; Uii+1) VBil2s E(Sy)
Given Lemma C.6,
- 1 A? 24
E(Ty) = —Vhee Tt 4200
(Th) 2By, /B, VBil22
E(T?) = 14+0(hn),
E(T?) = hA———\/_Bx i +\/_ 18 Ao + O(h).

3/2 2By, v B vBplay
Thus

1 A? 24
k1(Tgp) = Vh | -0t 4 2200 4 5(VR),
1( ﬂ,h) JBh\/EL- \/B_hr22J ( )

=K1,k
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and
Al 3 A? 124
k3 (Tap)=Vh| Sl - = Tdh 4 200 | o0 /R).
2 Tow) =V | oz = B, B T VBT | T
=ran
By Lemma C.4, we can now show that limp, g k1,5, = —%B—f;}#%ﬁ‘i—z =1 (H, — Hy) and limp_g k3 =
—2;’},}5 + 3%“}?2—2 = 3H; — 2H,, where Ay, A;, B, H, and H, are as defined in the text.

3.2 Asymptotic expansions of the bootstrap cumulants of T5h

In this section we provide the asymptotic expansions through Op (\/ﬁ) of the first and third cumulants

of the bootstrap statistic TE,h- Let f = y; — ﬁny;i = €y, with I; a uniform draw from {1,...,n},
and let &7 = yj; - Bi‘zy;i be the bootstrap OLS residual. Note that

VE(By —Bro) _ VRIS iLivsel _ , (Biy
1/h  «2 -2 % B B* o
\/(Zi=1 "J2i) Bl vV 7lh

. .

VRTT MR A 1/h A2 B 1/h | 42 a2 o A
_ 21 Y3:€7 _ -1 2 22 _ p-1 _ _
where Sp = » where Bip = b7 3 ;01 y5,65, By, = R 000565, €8 = vt — Biavss-

Ton=

VBun
Let
1/h 1/h
A =071y, An=hT") (yaid)’,
i=1 i=1

and let B}, = h™! Zl/h(ygief)z.

i=1

PRroOPOSITION C.1 Let yf ~ t.id. from {y; : i = 1,...,1/h}. Under Assumptions 1 and 2 and
conditionally on T, as h — 0,

A A
nI(Tg,h) = Vvh|- Aé'}2+ Oh Eﬁn‘{,h,
2By, Blhf‘zz

. J

24 6A
k3(Thn) = VR| - A3}’2‘+ =" | +0p(h) = Vhr}), + Op(h).
Blh Blhrzg

N

Proposition C.1 is used to prove Proposition 4.1 (b). The proofs of these two propositions are
given after the following set of auxiliary lemmas, whose proofs follow the proofs of the propositions.

Lemma C.8 Lety; ~i.i.d. from{y;:i=1,...,1/h}. Under Assumptions 1 and 2, and conditionally
on the volatility path,

1/h
o E* ZySiE:‘ =0,
=1



2

1/h 1/h
o B*| D whel | = (yuéi)® = hBu,
i=1 i=1
1/h 3 im
o B[ Y ynel | = (yuéi)®=hAy,
i=1 i=1
1/h 4 1/h 2 )
o B' | Y ounel | =3 D (wud)?| +O0p(h%)=3h% (Bu) +O0p(h%),
=1 i=1

=1

1/h 2
* E” ((Z y%iff) (Bin — Blh)) =Op (hz) )
i=1

1/h 1/h
* E” Zy21, & | (Bi — Buw) | =h™! Z(y%éi)a = hdip,

Lemma C.9 Under Assumptions 1 and 2, and conditionally on the volatility path,
o B*(S}) =0,
. B (S -1,

[ ]
&
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g

[ ]
&

SiVRT(By - Bu)) = A=,

[ ]
&

Lemma C.10 Under Assumptions 1 and 2, and conditionally on the volatility path,

1/h
~ ~ B Blh 2th
Bl =By, |1+ =& E: + Op-
th lh( B erzz v P (),

in probability.
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3
1/h 1/h

E* ( (Z y;is-;) (Bih —~ Blh)) =3B (Z (y2z‘éi)3) +Op(h®) = 3h?BipA1n + Op (B°) .
=1 =1
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Proof of Proposition C.1. By Lemma C.10,

By — B 240 L s
Thn =S5, [1+ 2 ——th _ 220k Ya:e; + Op-(h) .
g g B Biplan & Z u

Following the proof of Proposition 4.1.(a), for any fixed integer k, we have that

kvh A N
T,:;:s;,*( sz—(Blh Blh)+\/_k % Vh- Zyzm)+op() T35 + Op(h).

Bipl'a

For k = 1,2, 3, the moments of Th are given by

- o - A
B T3) = 0= Vhy=—B" (VAT (Bis - Bu)) + Vi—22— (57,
Bin Binla
- 1 = . 24
E*(Tzh) = 1~x/EB—E* (s;;WF (Bin— Bun)) + VA—2—E*(57),
1h Biplas
*(T* 1/ % s, 3A * *

h Binl'a
Lemma C.9 implies that

N i A
E*(Tg,h_) — \/_1 1 Alh AOh =\/E<_l Alh + Oh )

~3/2 —
2 By, BypTag

E* (Tjn) = 1+0p(h),

. 1 A A 7A A
E*(Tfn) = \/ﬁA”‘ VS S e | S —5 73 T O—— |
Bl BipT'n

Thus
* [k ® (rfx 1 A h AOh *
Nl(TB,h) = E (Tﬂ,h) = \/E —_= A31/2 + = N = \/EK'I,}I.’
lh Bthgg
and

K3(T5p) = E*(Tgn) — 3B (T5,) B (T5,) + 2B (T,))°

= VR|-TAwm g Awm ) g —%14;/’;+ fl"’ﬁ +0p (h)
B Bin Biypla2

Proof of Proposition 4.1 b). By Theorem 4 by BN-S (2004), and because f12 i P12, we have that
B il B*, and A, £ 3f01 (Elg(u))]lg(u) - ﬁ122§2(u)) du = 3Ag. Similarly, we can show that
1/h 1/h
A =172 " (eiy)® + 0p(1 2ZE(Ezy2z )+Rh+OP(1)1

=1
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where Ry, = h=2 21/ h (eiygi)a - FE ((eiygi)3). E (Ry,) =0 and by straightforward calculations,
Var (h_2 Zi=1 (esy2:) ) = O(h) = o(1), which implies that R, = op(1). By tedious but simple
algebra we can verify that

1/h

1/h
_ _ 603, ; + 9F11 ;T12,iT22, — 360122 ;o0
h 2 E Eil2% 3 =h 2 ( 12,4 g 12,4 .
; (( i) ) ; —9B12T'11,:T%0; + 456512, T3 — 156513, ;

By Lemma C.3, this last expression converges to

3 4

1
/0 (633, + 911 Z1280 — 3681253, 522 — 961251152, + 45651052, — 156553, )du = DRt

proving that A;, —F %A’{ Thus, using Proposition C.1, we get that

. , 1 Ay Agp, 1347 34 3( 44 A 3
=pl —= =—_-2 4 " = — =-(H{ - H).
p hm nl,h p 1m ( 2 Bf’/LZ + Blhfzz 2 B*3/2 + ’—B*I‘22 4 ’_B*Fzz B"‘3/2 4 (Hl H2)

Similarly,

3 A3 34 3%3 3
: x 2411 0 _ * *
plimss, = <_2B*3/2 @Fn) ( 2 Hi- 3H2) =3 (EHl - Hz) .

Proof of Lemma C.8. The first result follows by noting that E* (Z: / i{ :yzz) =h"th Zz_ €y =0

by the first order OLS equations. Note in particular that E*(e}y3;) = 0. The second result follows by
using the independence between y3.eF and y3;€; for i # j and noting that

1/h 2 1/h 1/h
E* (Z E??/Si) =Y E*(elysevs;) = > E*(elyn)’ = > (éiyei)? = hBu.
i=1

ij=1 i=1 i=1

The third result follows similarly. In particular,

1/h 3 am 1/h
E* | Y ety ZE* (€5y5:)° = D _(Giye)® = W2 Ay,
=1

=1

Similarly,

1/h 4 1/h 1/h
E Y eun| = E* D (e5w3)*+3 D (13 (Eus;)’
i=1 i=1

i#£51,5=1
1/h 1/h
= Y E'eu) 43 Y. E'(e]vs) Er(cjus,)’
i 1#j1,7=1
1/h 1/h 2 am
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=1 i=1 =1

1/h 2
=3 (Z(éiy%)z) + Op(h) = 3h?By, + Op (R),
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where we have used Lemma B.1 to obtain the order of the remainder term. For the remaining results,

note that E* (B’l' ) = h~ 121/}1 E* (e
By = Bun = il (b7 efusi)?

1/h i )
E* ( (Z E;-'y;i) (B - Blh))
i=1

Next,

1/h 2 ) X 1/h
E* ((Z e’{ygi) (th - Bm)) ZE* ( £rys)”
i=1

Finally,

1/h 8 i )
(£ 4] -
=1

y5)? = h! Zl/ h (iy2)? = Bin, which allows us to write

— E* (h™(elys;)?)). It follows that
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1/h 1/h
Op(h®) + 37" Y "(ém)® Y (yz)® + Op(hY)
3B1nh* Ay + Op (B%) .

Proof of Lemma C.9. The proof follows easily from Lemma C.8.
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Proof of Lemma C.10. Since B* — Blg = Op- (VR), in probability, it follows that
12

1/h 1/h
Fy* - *2 Ax? - 2/ % A *
Bi, = h ! Zy% & =h ! ZyZi (v1: — ﬂf2y2i)2
i=1 i=1
1/h 1/h
- *2 7 % A * Fk A - *3 A *
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i=1 i=1
1/h 1/h « 1/h
- *2 A * i=1Y2i€i ; — 3 Ak
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i=1 22 i=1

By a CLT for i.i.d random variables, we can prove that

1/h 1/h
KUY s (vt — Bravs)® — 1Y vEi (v — Praye)® = Op-(VR),
i=1 =1
1/k 1/h
- 3 A L * - P
KUY i (uli — Buaws) — b7 udi(vii — Braym) = Op-(Vh), and
i=1 i=1

I3, —Ty = Op-(Vh),

in probability. Adding and subtracting appropriately gives the result.
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1 Introduction

The moment-condition based inferences have been popularized by the unifying generalized method
of moments (GMM) theory proposed by Hansen (1982). Inferences by GMM are computationally
convenient and under fairly general regularity conditions, the GMM estimators are asymptotically
normally distributed. The two-step efficient GMM estimator’s asymptotic variance ties the semi para-
metric efficiency bound provided by Chamberlain (1987) and furthermore, in the case of global model
misspecification, Hall and Inoue (2003) show that this estimator is \/n-consistent and asymptotically
normally distributed when cross sectional data are considered. In spite of these appealing properties,
several studies have reported the GMM inference’s lackluster performance in finite samples (see e.g.
Altonji and Segal (1996), Andersen and Sgrensen (1996), Hall and Horowitz (1996) and Brown and
Newey (2002)). This finite sample performance limitation paves the way for an increasing research for
alternatives to the GMM. The GMM alternative estimators include the continuously updated GMM
(CU) estimator proposed by Hansen, Heaton and Yaron (1996), the maximum empirical likelihood
estimator (EL) proposed by Qin and Lawless (1994) and the exponential tilting estimator (ET) by
Kitamura and Stutzer (1997). These alternatives estimators are included in both the generalized em-
pirical likelihood (GEL) class of estimators proposed by Newey and Smith (2004) and the minimum
discrepancy (MD) class of estimators proposed by Corcoran (1998). Even though they all share the
same first order asymptotic distribution, all these GMM alternative estimators are more computation-
ally costly. The CU estimator is a solution of an optimization problem whose objective function often
possesses multiple modes (Hansen, Heaton and Yaron (1996)) making the CU estimator less desirable
(Schennach (2007)). Both EL and ET are solutions of saddle point problems and can be obtained
through a grid search that involves optimization problems solving at several points in the parameter
space. When large parameter vector is considered, these saddle point problems are computationally
cumbersome.

Among these alternative estimators, as shown by Newey and Smith (2004), the EL estimator has
the most desirable finite sample bias property. Newey and Smith (2004) also propose a bias corrected
version of EL which is higher order efficient. These results hold in correctly specified moment condition

models. A moment condition model is globally misspecified if the true data generating process deviates
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from these moment conditions such that no values in the parameter space solves the population
moment conditions. In the case of global misspecification, the estimators listed above could behave
very differently. Schennach (2007) establishes that, when the moment condition model is not correctly
specified, the EL estimator ceases to be y/n-consistent. In contrast, the ET estimator is \/n-consistent
and asymptotically normal under global misspecification. The exponentially tilted empirical likelihood
estimator (ETEL) proposed by Schennach (2007) combines the desirable properties of both ET and EL.
The ETEL estimator has a small sample bias of the same order of magnitude as the EL estimator and
is v/n-consistent and asymptotically normally distributed even in the case of global misspecification.
Still, the ETEL estimator is as computationally costly as EL and ET.

Antoine, Bonnal and Renault (2007) propose the three-step Euclidean likelihood estimator (3S)
which is computationally less 'demanding than both EL and ETEL with the same desirable bias prop-
erty. The 3S estimator is higher order equivalent to EL in the sense that these two estimators lie in the
same Op(n~3/2) neighbourhood of each other. By definition, the 3S estimator solves an efficient two-
step GMM first order condition-like. The particularity of this equation being that both the Jacobian
and the variance matrices are efficiently estimated by the Euclidean likelihood implied probabilities
all evaluated at the efficient two-step GMM estimate. Even though the Euclidean likelihood implied
probabilities are asymptotically nonnegative, in finite sample they may be negative. Antoine, Bonnal
and Renault (2007) propose a shrinkage device which yields nonnegative Euclidean likelihood implied
probabilities. Moreover, they suggest that the shrunk implied probabilities could be used to estimate
the Jacobian and the variance in the 3S estimator estimation but they do not conduct any specific
study on the asymptotic behaviour of the resulting estimator.

When these modified implied probabilities are used to estimate the Jacobian and the variance
matrices in the first order-like equation, we call the resulting estimator the shrunk three-step Euclidean
likelihood (s3S) estimator.

This paper makes three main contributions. First, we formally introduce the s3S estimator and
prove that it is higher order equivalent to the EL estimator when the moment condition model is well
specified. In particular, we strengthen the shrinkage factor proposed by Antoine, Bonnal and Renault
(2007) to make the s3S estimator robust to model misspecification. Qur second contribution is related

to the efficient use of the information content of overidentifying moment conditions in the aim to
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perform inference about population mean 7 of any integrable function g(z) of a random variable z.
Specifically, we propose a computationally less costly algorithm that yields estimates of 77 which are
higher order equivalent to its empirical likelihood estimate.

Let Ey(z;,0) = 0 be an overidentifying moment restrictions in which 4 is the parameter of interest.
Because there are more restrictions than components in #, this moment condition is also informative
about the distribution of the random variable z and therefore may be useful for inference on 7. (See
Back and Brown (1993) and Qin and Lawless (1994).) In particular, when the implied probabilities
resulting from the estimation of 6 are used to weight the the observations g(z;)'s, the resulting esti-
mator is more efficient than the naive sample mean. We show in particular in this paper that when
the empirical likelihood implied probability functions are evaluated at the s3S estimator (and not at
the empirical likelihood estimator itself which is computationally more costly to obtain) the resulting
weights can be used to construct estimator of the population mean 1 which is higher order equivalent
to its empirical likelihood estimator. We also show that the same quality of inference on 7 could be
achieved if the implied probabilities are assessed at any estimator higher order equivalent to the EL
estimator, in particular, the 3S and the ETEL estimators.

Third, we study the 3S and the s3S estimators under global misspecification in cross-sectional
data framework. Inference under misspecification is getting more and more attention in econometrics
literature. White (1982) studies the quasi maximum likelihood estimator when the distributional as-
sumptions are misspecified. Hall (2000) examines the implications of model misspecification for the
heteroskedasticity and autocorrelation consistent covariance matrix estimator and the GMM overi-
dentifying restrictions test. Hall and Inoue (2003) study the GMM estimators under global misspec-
ification while Schennach (2007) analyzes the EL and ETEL under global misspecification. In the
moment condition-based inference framework, the GMM overidentification test or the Sargan test for
overidentifying restrictions could reject or validate the model. In the case of rejection, if no theory is
available for inferences, empirical researchers could have to drop parsimonious, robust and competitive
models for forecasting for other less attractive models that pass all the overidentification tests with less
predictive ability. The situation could even be more ambiguous. Hall and Inoue (2003) report several
empirical researches in the literature in which inference by the usual asymptotic distributions have

been performed even though the data have rejected the overidentifying restrictions. In this paper, we



. ¥
4 \
f

148

provide global misspecification robust inference for the 3S estimator. We show that, in the case of mo-
ment misspecification, this estimator stays y/n-consistent and is asymptotically normally distributed.
We also provide a shrinkage factor that makes the s3S estimator \/n-consistent and asymptotically
normally distributed in the case of moment misspecification. Its model misspecification robust asymp-
totic distribution is also provided. This third contribution of the paper also reveals that as ETEL,
both the 3S and the s3S estimators are /n-consistent and asymptotically normally distributed under
global misspecification. Because they are in addition easier to compute, they can be considered as two
appealing alternatives to the EL and the ETEL estimators as well.

The remainder of the paper is organized as follows. Section 2 describes the model and estimators
and gives some results about the higher order equivalence of the s3S estimator and the EL estimator
when moment conditions are well specified. This section also presents the algorithm that we propose
for higher order EL-equivalent inferences about population means. In Section 3 we derive asymptotic
results for 3S and s3S under moment misspecification. Qur Monte Carlo experiments are introduced

in Section 4 followed by Section 5 which concludes. All proofs are gathered in the Appendix.
2 The model and estimators

The statistical model we consider in this paper is one with finite number of moment restrictions.
To describe it, let x; (i = 1,..., n) be independent realizations of a random vector z and ¥(z, ) a
known g-vector of functions of the data observation z and the parameter # which may lie in a compact
parameter set © C RP (¢ > p). We assume in this section that the moment restriction model is well

specified in the sense that it exists a true parameter value 8y satisfying the moment condition

E;(60) = 0. (1)

where ¥;(6) = ¥(z;, 6).
In such a moment condition model, the most popular estimator is the efficient two-step GMM
estimator proposed by Hansen (1982). Let ¢(0) = Y- ; ¥(zi,0)/n, Qn(8) = S0, ¥:(8)¥(8)/n and

also, let 4 be some first step preliminary (possibly asymptotically inefficient) GMM estimator of 4.
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The efficient two-step GMM estimator is
5 . = 1,8\
0 = argmin (9)Q2;" (9)(9)-

Under some standard regularity assumptions, the two-step GMM estimator is asymptotically normally
distributed and semiparametrically efficient (Chamberlain (1987)).

To describe the CU, EL and ET estimators, it of some interest to first introduce the class of mini-
mum discrepancy (MD) estimators and the class of generalized empirical likelihood (GEL) estimators
of which they are particular examples. The class of minimum discrepancy (MD) estimator was for-
mulated by Corcoran (1998). Let h be a real-valued convex function of a scalar #. The minimum

discrepancy estimator based on the discrepancy function h is

n n n
6" = arg 51,1;111; h(m;), subject to ;m =1 and ;mzpi(a) =0.
When h(7) = —In(nw), the corresponding estimator is known as the maximum empirical likelihood
estimator (EL) (Qin and Lawless (1994)) and h(m) = nwin(nn) yields the exponential tilting estimator
(ET). Since this last discrepancy function corresponds to the Kullback-Leibler Information Criterion
(KLIC), ET is also known as the KLIC estimator. When h(r) = (1/2)[(n7)2 —1]/n, the corresponding
estimator is known as the Euclidean empirical likelihood (EEL) estimator which also corresponds to
the continuously updating (CU) estimator proposed by Hansen, Heaton and Yaron (1996). It is worth
noting that this quadratic discrepancy function belongs to the family of Cressie-Read power divergence

statistics introduced by Cressie and Read (1984). For A € R\ {0,1}, the power-divergence statistics

is given by hy(m) = [A(A — 1)]7}[(nm)1=* — 1]/n. The quadratic discrepancy function corresponds to

h_1.

Let ﬁi(éh) (i = 1,...,n) be the solutions for m; (i = 1,...,n) for this optimization program.
#(6") (i = 1,...,n) are interpreted as the empirical distribution of the random variable z on the
drawn sample z; (i = 1,...,n) and thus are called implied probabilities. They are useful to construct

more efficient empirical estimates of data generating process (see e.g. Back and Brown (1993), Qin
and Lawless (1994), Imbens, Spady and Johnson (1998) and Newey and Smith (2004)).
Newey and Smith (2004) propose the generalized empirical likelihood (GEL) class estimators. Let

p be a concave function of a scalar v defined on 1, an open interval containing zero. The GEL estimator
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based on p is

T
6% = min sup Zp(/\'iﬁt(g)),
AEAT(0) t=1

where A7 (6) = {A: Ny(8) €9,t =1,...,T}. The GEL estimators corresponding to p(v) = In(1 —v),
p(v) = —expv and p(v) = —v?/2 — v are the EL, ET and CU estimators, respectively. Newey
and Smith (2004) show that the MD estimator obtained from any power divergence statistics has an
equivalence in the GEL class estimators. This result have been generalized by Ragusa (2005) to the
whole class of MD estimators.

Among the GEL estimators, Newey and Smith (2004) show that EL has the most desirable finite
sample bias. However, EL ceases, as shown by Schennach (2007), to be y/n-consistent in the case
of model misspecification. In contrast, under some regularity conditions, ET is \/n-consistent in the
case of model misspecification (Imbens (1997)). Taking advantage from the bias interest of EL and
the robustness of ET, Schennach (2007) proposes the exponentially tilted empirical likelihood (ETEL)

estimator §¢¢! given by
n

petel . -1 Tra
6 = argminn ; h(#:(6)),
where #;(6) (i =1,...,n) solve
n n n
min n~! Z h(m;) subjectto Z mi(0) =0 and Z m=1

,
! i=1 i=1 i=1

and where h(m) = —In(n7) and h(r) = nrin(nn).

Schennach (2007) shows that the ETEL estimator has the same O(n~!) bias as EL and therefore
is better than ET in terms of finite sample bias. In addition, it also stays y/n-consistent in the case of
model misspecification.

More recently, Antoine, Bonnal and Renault (2007) have proposed the three-step Euclidean like-
lihood (3S) estimator which is computationally less demanding than ETEL or any MD estimator as
it involves only two quadratic optimization problems and a GMM first order condition-like resolution.

The 3S estimator is the solution of

n o n R . . -1 n
[Z m(é)%w)} [Z m(o)wi(e)w;w)] > wi(6) =0 (2)
=1 i=1 i=1
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where § is the efficient two-step GMM estimator and

mi(0) = n™! —n71(%:(8) — 9(6))' Vi (8)%(6),

Val®) =m0 0)((0) - B0))' ®)
t=1

m;(0) (1 =1,...,n) are the implied probabilities yield by the quadratic discrepancy function evaluated
at 6. In Equation (3), the variance and the Jacobian of 1;(8) at 8, are estimated using m;(§)’s as weights
and are more efficient than sample means which use uniform weights. This efficiency results from the
fact that the Euclidian likelihood implied probabilities provide population expectation estimates using
the overidentifying moment conditions as control variables.

However, the nonnegativity of Euclidean likelihood implied probabilities function as given by Equa-
tions (3) is not guaranteed. Nonnegative implied probabilities are desirable to allow for probability
interpretation in the usual sense. In addition, they are useful in sampling methods that take advan-
tage from the information content of the moment conditions (Brown and Newey (2002)). The use
of the shrinkage factor correction proposed by Antoine, Bonnal and Renault (2007) avoids negative
implied probabilities. Because both corrected and non corrected implied probabilities are higher order
asymptotically equivalent, the resulting estimators from each of them are asymptotically equivalent at
least at the first order. The corrected implied probabilities #;(.) (i = 1,...,n) are defined as convex

combination of m;(.) and the uniform weight 1/n and are nonnegative by construction

1 en(0) 1

7?1.(0) = 1 +€n(0)7r1(0) + 1 +€n(9):’:"—

(4)

where the the shrinkage factor €,(6) converges in probability to 0 while guaranteing the nonnegativity

of 7;(f) as well. Antoine, Bonnal and Renault (2007) propose as shrinkage factor

€2(8) = —n min [ min 7r,~(0),0] . (5)

1<i<n

However, in the case of model misspecification that we discuss in the next section, this shrinkage
coefficient will diverge to infinity (as soon as v;(8) has an unbounded support) but with an unknown

rate. For a theoretical interest that we will discuss later, we propose the shrinkage factor €l (8)

enl(6) = €b(6) = VR (6).

0

€(6) has the same benefits as €5(8) in correctly specified models. One can easily verify that e1(6)

yields nonnegative corrected implied probabilities and, from Theorem 2.2 by Antoine, Bonnal and
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Renault (2007) it converges in probability to 0. Since 7;(.) ( = 1,...,n) are obtained through a
shrinkage procedure, we will call them shrunk implied probabilities.

Referring back to the 3S estimator as defined by Equation (2), as the optimal weights are not
guaranteed to be non-negative, this may affect the accuracy of the Jacobian or the variance estimates
and therefore make the resulting 3S estimator behave poorly in finite sample. This motivates the
use of the shrunk implied probabilities in (2). We call the resulting estimator the shrunk three-step
Euclidian likelihood (s3S) estimator.

By analogy to the three-step Euclidean likelihood estimator, we define the shrunk three-step Euclid-

ian likelihood estimator as the solution of

-1
n O n o . n
[Z 7:(6) 8?’ (9)] {Z 7ri(9)1/1i(9)¢i(9)} > %i(8) =0, (6)
i=1 i=1 i=1
where § is the efficient two-step GMM estimator.

2.1 Asymptotic higher order equivalence of the EL and the s3S estimators

Under some standard regularity conditions, Antoine, Bonnal and Renault (2007) show that the 3S
estimator is higher order equivalent to EL. These conditions include the identification of the true
parameter value §y by the moment restrictions in (1). This identification condition imply in particular
that the moment conditions model is well specified. Specifically, they show that g3 —gel = 0 p(n=3/2),
where 6% and 6 denote the three-step Euclidean likelihood and the empirical likelihood estimators,
respectively. As the ETEL estimator is also proven to be equivalent to EL up to Op(n™!), all three
share the same O(n~!) bias. The following result shows that the shrunk three-step Euclidean likelihood
estimator 6% is also higher order equivalent to the empirical likelihood estimator §¢. The following
assumptions are needed. For brevity, we only highlight in the text those assumptions that are relevant

to the exposition and relegate the remainder to the appendix.

Assumption 1 i) 8y is an interior point of ©, a compact subset of RP.
i) ¥i(.) is continuously differentiable in a neighborhood N of 6g.

iii) Ev;(0) =0 & 6 = 6.

i) Q(6o) = Evi(00)¥i(0o) is a nonsingular matriz.

v) JO = E0vyy(60)/08' is of rank p.
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vi) JO'Q71(6p) Ev;(6) = 0 = 6 = 6.
vii) The shrunk three-step Euclidean likelihood estimator is well defined, i.e., there is a sequence {é;’le}
that solves (6).

viit) Esupgeg [19:(0)]|* < 0o for some a > 2 and E supgep ||01:(6)/0¢'|| < oo.

Assumption 1 provides sufficient conditions for consistency and asymptotic normality of both the
efficient two-step GMM estimator § and the empirical likelihood estimator 6. Assumption 1-vi) is

an identification condition insuring the consistency of both §3¢ and §93.
Theorem 2.1 If Assumption 1, and Assumption 9 in the appendiz hold, then §%3° — ¢ = Op(n=3/2).

The details of the proof of Theorem 2.1 are reported to the appendix. We show that 43¢ — §3 =
Op(n~%?) and deduce the stated order of magnitude by relying on the fact that §3¢ —§¢! = Op(n=3/2).
This result, typically shows that the shrunk three-step Euclidean likelihood estimator has the same first
order asymptotic distribution as the empirical likelihood estimator and both have the same O(n~1)
bias as well.

Next, we show how the closeness of 93", 63 and 6¢ can be exploited to make easier inferences

about population means.
2.2 Inference about population means

When moment conditions in Equation (1) overidentify the parameter of interest, they are also informa-
tive about the data generating process distribution (see Back and Brown (1993)). For any integrable
function g(z), the implied probabilities can be used to perform inference about n = Eg(x). Partic-
ularly, for any minimum discrepancy estimator based on power divergence statistics, épd, Antoine,
Bonnal and Renault (2007) show that 7 =Y, wfd (§P4)g(z;) is an estimator of 7 more efficient than
the sample mean of g(z) which assigns uniform weighs to the observations.

Moreover, 7 is an efficient estimator of 7. To see this, let us consider the following augmented

moment restrictions
E({(0), (9(z:) —n)') =0 (M

and 47 the minimum power divergence estimator of § = (6',1") based on these augmented moment

restrictions. Antoine, Bonnal and Renault (2007) show that i corresponds in its n-argument to 7 and
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in its #-argument to the minimum power divergence estimator of 8, 7%, based on the non augmented
moment restrictions E4;(8) = 0. Because 3P is an efficient estimator, so is 7} of which estimation
takes advantage from the non extended moment conditions. We extend this result to the whole class
of minimum discrepancy estimators.

Let " be a Minimum Discrepancy estimator based on (1) with a discrepancy function h (the

h-Minimum Discrepancy estimator) and w:‘(éh) (i =1,...,n) its corresponding implied probabilities.

Theorem 2.2 Let " = (élh',ﬁh')' be the h-Minimum Discrepancy estimator of 8 = (8',7') based
on the augmented moment restrictions in Equation (7). If ¥;(.) is differentiable on © with probability
one and all of the necessary conditions of Lagrange Theorem for constrained optimization are fulfilled,
then

n
P = wa’(éh)g(xi) and 4" =gh.
i=1

This result shows that there is no need to solve for the augmented moment conditions program
to get the hA-minimum discrepancy estimator 7" of . Actually, one just has to get the h-minimum
discrepancy estimator of § based on (1) and the resulting implied probabilities help to compute #"
which, in turn, as a minimum discrepancy estimator, is more efficient than the sample mean as soon
as the restrictions in (1) are overidentifying for the true parameter value 6j.

Let now 7 be the minimum discrepancy estimator of 7 obtained from w¢(§¢!) (i = 1,...,n), the
EL implied probabilities evaluated at the EL estimator of by (1). It is known that 7€ will have a
more desirable higher order properties over the other /" in terms of bias (Newey and Smith (2004)).

The aim of the following result is to provide an estimator of 77 computationally less costly than 7€
but higher order equivalent.

For any 6 € ©, let m§!(f) be the implied probabilities obtained at 8 by the empirical likelihood
discrepancy function. Theorem 2.3 below shows that any estimator § of 6y which is in a Op(n=3/2)
neighborhood of §¢ leads to 4 = 3., 7% (6)g(z;) sharing with 7% the same higher order bias. The

following assumption is needed.

Assumption 2 There exists a measurable function b(x) such that, in a neighbourhood N of 8y and
foranyk=1,2,...,q, s,u=1,2,...,p, |Yr(z,0)||g(z)|| < b(z), |6%¢xr(z,8)/000.||9(z)| < b(z) and
E{b(z)} < 0o and E||8¢x(z,00)/88s|(|g(z)|| < oo, 1. is the k-th component of ;.
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Theorem 2.3 Let § be any estimator of 8 such that 6 — §¢ = Op(n=%?) and 4 = 37, 7%(0)g(z;).

i=1"1

If Assumptions 1 and 2 are satisfied, then fj — 7i¢ = Op(n‘3/2).

From this result, either ETEL, 3S or s3S estimator will have its empirical likelihood implied
probabilities leading to estimate of 7 that is higher order equivalent to 7¢!. The empirical likelihood
implied probabilities at § € ©, 7e() (i =1,...,n), are given by w¢(6) = 1/n[1 + Ni(6)] with

n
A =arg min — Zlog[l + X(0))/n,
AeA(f)

i=1
see Qin and Lawless (1994).

Therefore, once the 3S or s3S estimator is computed, one can easily, by a single optimization,
get m(0%%) or wHB) (i = 1,...,m). 7 = S, wE(0%)g(as) or f = T, weH(@+3%)g(:) are both
estimates of 7, higher order equivalent to #°. In this procedure, one no longer needs to solve for the
saddle point program that lead to EL or ETEL estimators to get an estimator for 7 which is higher

order equivalent to the empirical likelihood estimator.

The next section studies the 3S and the s3S estimators in the case of model misspecification.

3 The limiting behaviour of the 3S and s3S estimators in misspeci-
fied models

In this section, we study the behaviour of the three-step Euclidean (3S) likelihood estimator and the
shrunk three-step Euclidean likelihood (s3S) estimator in misspecified models. Following Hall (2000),
Hall and Inoue (2003) and Schennach (2007), we consider a moment restriction model as given in (1)
as misspecified, when there is no value of # at which the population moment condition is satisfied. In
the literature, this case is commonly referred to as non-local or global misspecification. Hall and Inoue
(2003) study the two-step GMM estimator under global misspecification. Specifically, when data are
independent and identically distributed, Hall and Inoue (2003) show that the two-step GMM estimator
is y/n-consistent and asymptotically normally distributed. Our work relies on Hall and Inoue (2003)
results that we extend to the 3S and the s3S estimators. Certain assumptions are required to analyze
the large sample properties of these estimators. As in the last section and for brevity, we only highlight
in the text those assumptions that are relevant to the exposition and relegate the remainder to the

appendix.
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Assumption 3 z; forms an i.i.d. sequence.
Let p(6) = Ev(z;,0) and ¥;(0) = (s, 0).

Assumption 4 i) u : © — R? such that ||u(6)|| > 0 for all 6 € ©.

it) Wy, is a positive semidefinite matriz that converges in probability to the positive definite matriz of
constants W.

1) (Identification) There exists 0, € © such that Qo(6s) < Qo(6) for any 0 € ©\ {6.} where Qo(d) =
Ei(0)W Ey;(6).

As in Hall (2000) and Hall and Inoue (2003), Assumption 4-i) captures the global model misspec-
ification. Assumption 4-iii) is the identification condition for a misspecified model. It states that
the GMM population objective function given by Qo(6) is minimized at only one point, 6., in the
parameter set ©. 0, is often referred to as the pseudo true parameter value. In a well specified model,
6. corresponds to the true parameter value 6y and Qo(g) = 0.

Let § = argmingee ¥(0) W,1(8) be the GMM estimator defined by the weighting matrix W,,.
Under Assumptions 3, 4 and Assumption 12 given in the appendix, Lemma 1 by Hall (2000) applies
and @ is consistent for f,. This result includes the two-step GMM estimator § under mild further
assumptions. The problem that arises with the two-step GMM estimator is that the weighting matrix
it relies on depends on a first step GMM estimator § which needs to be consistent. Usually, 8 is
obtained by a non random positive definite weighting matrix W!. We introduce in Appendix B the
specific regularity conditions that guarantee the consistency and asymptotic normality of 6 and 6.

To describe the asymptotic behaviour of the three-step Euclidean likelihood and the shrunk three-

step Euclidean likelihood estimators, we need to introduce some notation. For 8 € ©, let

G(O) = Xiim(0){0vi(6)/08}, G(6) = i m(0){0¢i(0)/06},
M) = YLim(@)w(0)i6), M) = i m(0)v(0)¥i0),
G(6) = E(0v;(6)/096) — Cov{y;(0)V 1 () E(:i(6)), (8¢:(6)/06)},
M) = Epi(0)%;(0) — Cov{yi(0)V~1(0)E(y:(6)), v:(0)%i(6)}

m;(8), 7:(6) are defined as in Equations (3) and (4) and V(8) = Var(¥;(8)).
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The three-step Euclidean likelihood estimator §3¢ is the solution of

G(6)M(©6)"'9(6) =0 (8)

and the shrunk three-step Euclidean likelihood estimator §°3° is the solution of

G*(6)M*(0)'4(6) = 0, (9)

where 8 is the two-step GMM estimator. The following assumptions are necessary to show the con-

sistency of 63 and §s3.

Assumption 5 i) M(6,) is nonsingular and for 8 € ©, G(0,)M(0.) " Ey;(8) =0 & 6 = 4,,.
i) The three-step Euclidean likelihood estimator is well defined, i.e., there is a sequence {§3° 12, such

that G() M (6)~29(6%) = 0 a.s.

Assumption 5-i) is the identification condition for misspecified model for the 3S estimator problem.
Typically, it states that the population version of Equation (8) has a unique solution, 8,,, in the
parameter set ©. ., is the pseudo true value for the three-step Euclidean likelihood estimator §34.
Obviously .. depends on both 8, and W. However, we will not explicitly mention this dependence
for sake of simplicity. In the next two theorems, we assume that Assumption 4 holds for the two-step

GMM estimator §.
Theorem 3.1 If Assumptions 3-5, and Assumptions 12-13 in Appendiz hold, then 63 Eif Orx.

The shrinkage factor makes the analysis of the shrunk three-step Euclidean likelihood estima-
tor more difficult in the case of misspecified model. The shrinkage factor that we use is €.(f) =

n
—v/nmin{0, minj<i<n[l — ¥'(0)V,71(0)(4:(8) — ¥(0))]}. In the case of correctly specified model,
¥(8o) converges to 0 and under some regularity assumption, €L(6p) also converges to 0. However,
when the model is misspecified, )(f) does not converge to 0 for any value of §. For a large n,
€e1(8) & —y/nmin{0, minj<;<n(l — E{y(8)}V1(8)(w:(0) — Evs(6))]}. For our analysis, we need to
have an insight of the order of magnitude of €.(§). Let l; = infge 7. YI(O)V~1(0)Eys(6), where N, is

closed neighbourhood of 8, included in ®. We make the following assumption.

Assumption 6 i) Va,b € R, a # b, Prob[l; € (a,b)] #0.
i) E{1i(6.)%}(6«)} is nonsingular and E[0v](04)/00][Evi(0.)¥:(0.)] 1E¥i(8) = 0 & 0 = 6., for
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feo.
i1) The shrunk three-step Euclidean likelihood estimator is well defined, i.c., there is a sequence

053510 such that G*(6)M*(6)~19(6%3%) = 0 a.s.
n Jn=1

Assumption 6.i) allows I; to lie in any interval on the real line with probability different from 0.
Typically, l; could be normally distributed. Under this assumption and some regularity conditions,
— min{0, min; <;<nf1 — ' (6)V,71(6) (x:(6) — ¥())]} diverges to infinity and the factor /1 gives an idea
about the divergence rate of €.(f). If Assumption 6.i) holds, o mi(f)y; 2 Yo 1 ¥i/n, where y; is
any measurable function of x;. Therefore, Equation (9) is equivalent, up to some negligible terms, to
(11 {0v:(0)/06'} /n) (X {i(B)wi(8)} /)"t ™, 4:(8) = 0. The identification condition for the

s3S estimator given by Assumption 6.ii) is related to the population version of this last equation.

Theorem 3.2 If Assumptions 3, 4, 6, and Assumptions 12-13 in Appendiz hold, and that § — 6, =

Op(n_l/ 2), where 0 is the two-step GMM estimator, then gs3s £, Oss.

We, next provide asymptotic distribution for both the three-step BEuclidean likelihood and the
shrunk three-step Euclidean likelihood estimators in misspecified models. Since these estimators rely
on the two-step GMM estimator, the asymptotic distribution derived by Hall and Inoue (2003) for the
two-step GMM in misspecified models are useful for our asymptotic theory. We recall their results

that we also specialize for our use.

3.1 Asymptotic distribution of the two-step GMM estimator in misspecified mod-
els

The first step GMM estimator 8 solves
—= (O)W'9(8) =0, (10)

where W1 is, usually, a non-random weighting matrix. Often, in empirical works, the identity matrix
is used as weighting matrix. We treat it here as non-random. Under Assumption 3 and Assumptions
10, 12 as given in Appendix, the results by Hall and Inoue (2003) apply and 6 — 1 = Op(n=1/2), 61
being the unique solution of the population analogue of Equation (10).

Actually, a simple Taylor expansion of the first order condition in (10) around ! yields

0= 2 @ywrgeen) + |22 etyw 22 oty + (@ otyw @Ip)f‘”(oi)} (663 +0p(n™Y), (11)
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where I, is the p x p-identity matrix and

J@6) = aé;,vec ( 5 (0))

Let Q(6

~—

= Ey(6)¥(6) and

J(6) = Op(0)/00, JD(6) = E[(0/06)vec(dvi(9)/08')],

J6) = 04(6)/00, (o) = JOWIE)+ @ OW! @L)I0),
J6) = EKE),  H©) = JOWI0)+(EWO)W! ©L)ID0).

Since H1(8) is a quadratic function of sample mean, H,(6) is \/n-consistent for its probability limit

H; () meaning that H,(6) — H;(f) = Op(n~/2). Therefore,
6 -6, = —H{'(6,) T (0.)W'P(6)) + Op(n™?). (12)
On the other hand, the two-step GMM estimator solves the first order condition

T (O)Wa(0)P(8) =0, (13)

where Wy(0) = [Y0; ¥:(0)%5(6)/n]~! = Q;1(6). The stochastic nature of the weighting matrix adds
a layer of complexity of the expansion of the two-step GMM estimator.
We first expand ,(6) around 8! and then we deduce an expansion of W, (6). This latter, ultimately

allows to get an expansion for . We have

() = 0n(61) + R 25t 00 - 61)) + Or(n™),

where Ry ;(X) reshapes the kl-vector X into a k x [-matrix, column-wise.

Let
v o= ¥i(6)),
J* = J(6s),

Wl = Byt — Ry, (25380l H 6) 7 W BY))
G(02) = Vivi — Q61 + Roq (25920 HT 01)(T'(61) — YW Byt + VW ((6}) — Byy)])
€wi(0}) = —WE&(ODHW.

From the expression of § — 6! given by Equation (12) and up to some arrangements, we have
(@) =W+ - Z& ) +Op(n7h).
Clearly, E¢;(6) =0 and > -, &(68)/n = Op(n~1/2). Furthermore,

Wa(f) - W = Q71(8) - W = -0 (6)((8) - W)W
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Thus
Wal) =W = = izj;{—wsiwi)W} +Op(n™")
or equivalently, ) .
Wal@) =W = 13 us(dl) + Op(a™) (19

Thanks to Assumption 3 and Assumptions 11, 12 as given in Appendix, we can expand the first

order condition for § in (13) as follows

0= J'(8)Wn(0)P(6s) + [j’(o,)wn(é)j(a*) + (¥ (6:)Wa(6) ® Ip)j(z)(é’*)] (0 - 6.) + Op(n7Y),

Let
1/}*11 = d)i(g*)a
e = Evu,
T, = J(.),

H) = JO)WaB)J(0)+ (W (0)Wa(d) ® I,)TP(8),
H(f) = J(O)WJI0)+{E@0)W @ L}J? ().

Because H () is a polynomial function of sample mean, H(6,) is /n-consistent for its probability limit

H(6.) meaning that H(,) — H(f.) = Op(n~1/2). Therefore,
0 — 0, = —H1(0.)J (6.)W,,(6)%(6.) + Op(n7h).
Thus § — 8, can be written
6= 0. = —H 0T (62) = JIWpe + L Wa(6) — Wlns + LIW[P(6,) — ]} + Op(n™").  (15)

From Equations (14) and (15), § — 6, is asymptotically equivalent to a sample mean of centered
random vectors which are i.i.d asis z; : i = 1,.... Assuming, as it is the case here that these vectors
have finite variance, the central limit theorem applies and \/ﬁ(é —6.) = Op(1) as it is asymptotically
Gaussian. This is a result of Hall and Inoue (2003).

The main reason of this usual Gaussian asymptotic behaviour of the two-step efficient GMM
estimator is the cross sectional nature of the random variables as they are assumed to be i.i.d. This
result falls down in the time series context where the lag dependence is not finite and the moment
conditions are globally misspecified. In such a case, as shown by Hall and Inoue (2003) (see also Hall
(2000)), the optimal weight for the two-step efficient GMM estimator dictates its rate of convergence to

the GMM estimator which therefore may no longer be y/n-consistent or even asymptotically Gaussian.
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3.2 Asymptotic distributions of the three-step Euclidean likelihood estimators

In this section, we derive the asymptotic distribution of both the 3S and the s3S estimators under
global misspecification. We find that they are /n-consistent and are asymptotically characterized by a
normal distribution. The asymptotic normality of the 3S estimator is not surprising as its estimating
equation is a smooth function of sample mean and the efficient two-step GMM estimator is also
asymptotically Gaussian.

Besides, the estimating equation of the s3S estimators is not a smooth function of sample means.
This makes less apparent the reason of its asymptotic normal behaviour. Let us consider again the

shrunk implied probabilities as introduced by (4)

7(6) = g0+ 0

14 Gn(e)
1 1 1 - "y— 7
= T Tre @ a (KO — %) VO30

In a correctly specified model, the term % (y;(6) — &i(G))IVn‘l(G)qﬁ(G) correct the uniform weight
% to deliver population means estimates which are more efficient than the sample mean by using
the information content of the moment conditions. €,(#) adjusts for non-negative weights in finite
sample and vanishes asymptotically. However, in misspecified models and as pointed out by Schennach
(2007), this shrinkage factor does not vanish asymptotically. Nevertheless, we can see that under
mild assumptions €,(#) diverge to infinity. The key idea to conserve asymptotic normality for the s3S

estimator is to accelerate the divergence of this factor such that the discontinuous part of its estimating

equation appears negligible compared to the smooth part of this function. In this paper, we use

en(8) = Vnen(6),

0

€n(0) is given by Equation (5). However, we should notice that any shrinkage factor €, (6) = n%e3(6)

with @ > 1/2 could lead to the same result.

The three-step Euclidean likelihood estimator §3¢ solves (8) and, by the mean value expansion of

(8) around 6.., we have

where 6 € (6%, 6,.).
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To show that \/5(93’ — 0..) is asymptotically normally distributed, we just have to show that
the right hand side of the last equation properly scaled is asymptotically Gaussian and the term
multiplying the 63 — 9, in the left hand side is asymptotically non singular.

The following assumptions are also useful.

Assumption 7 i) 0.. € Int(O).

ii) There ezists a measurable function b(zx) such that, in a neighbourhood of 0., |0k (z,0)/00s| < b(z),
forallk=1,2,...,g and s =1,2,...,p and Eb(z) < oo.

1) Dy = G(6.)M~1(0.)J (644) is nonsingular.

i) Varzz; < oo, where z3; = {vec'Ji(6x), [1:(0+) ® veci(6,)], [¥i(6x) ® vec;(84), ¥i(6.)], ¥i(0ux)} .

Let
teaw =E;(044),
m. =M71(8,),
g+ =G(6.),

},1" =R1’:‘I (&};—ZEG](H*)(OA - 9*)) - g*m*Rq,q (a—v%#(g*)(é - 9*)) .

Theorem 3.3 If Assumptions 3, 5, 8 and Assumptions 11, 12, and 13 given in appendiz hold, then

C P(0ar) = s Qi D2 3z Qg
[G(0.) — G(6.)]mapins | d N Qo1 Q22 oz Qg
g 0, ,
vn [M(6.) — MO mapian | 31 Q32 33 a4
YinMfiss Qg Qa2 Q3 Quy

and
V(0% - 8..) S N(0,5),
where £ = D71Q, DY and
Qe =g.mQu1mag, + Q22 + gumaQ3smags + Qaa + gemaQi2 + Qo1ma gl — gama (a3 + Qa1)magl
+ gxmaQ14 + Quimag, — guma Q32 — Qaamug + Qog + Q2 — gemaQ3q — Quamagl.

Next, we derive the asymptotic distribution of the shrunk three-step estimator 6933, Under As-

sumptions 3, 6 and Assumptions 11, 12, and 13 in Appendix, as we show in the proof of Theorem
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3.2,
1 ~1/2
— =0
1+ €1(6) P )
As a result,
n

S w(B)0) = = 3" JH(0) + op(n?) and ACTGTG sz 8) + op(n~172),
=1

i=1 =1
Hence, Gs(8)M*" (6)%(6°%) = 0 = J(§)Q;1(6)9(8°3*) + op(n~1/2). By a mean value expansion of

%(6) around 6,., we have
T (0)9;1(6)J(0)(8°% = b.0) = =T ()2 (B)P(8.s) + 0p(n7112),

where § € (%%, 6,,).

As for the 3S estimator, we get the asymptotic normality for the s3S estimator by establishing that
the right hand side of the last equation scaled by square root of n is asymptotically Gaussian and by
insuring that the factor of §%3¢ — 4,, is asymptotically non singular.

We make the following assumptions.

Assumption 8 i) .. € Int(©).

ii) There exists a measurable function b(z) such that, in a neighbourhood of 8.x, |0k (z,0)/805| < b(z),
forallk=1,2,...,g and s =1,2,...,p and Eb(z) < 0o

i) DS = J'(6.)Q271(0,)J (0..) is nonsingular.

w) Let Var (vec' J;(0.), vec [¥;(8.)0:(8.)], ¥i(6sx)) < o0

Let
Losx =E;(0xx),
w, =0714,),
e =J'(8),

Vin =g {1P(0.)(0 = 0.0} = T 01970 )Roq (e 0000 -0.)).

Theorem 3.4 If Assumptions 8, 5, 8 and Assumptions 11, 12, and 13 given in appendiz hold, then

B '(/_)(0**)_ﬂ** Qil Qi2 Q‘;3 Qi‘l
[(T'(8s) — J'(0x)]wiptus | d Q5 Q% Q35 Q5

n N 0, ’
V| 0n(00) = 8 wntine | 5%, 0 9
}IQTU-’*/J'** QZI QZ'Z 923 Qi‘l
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VrJ 0)7 )(0.) S N(0,22)
and
VR(0% — 0.) 5 N(0,2°),
where ¥ = D3 lQin_ll and
O =hew1wiy + D3y + fewiQigwady + Qg + Jawc s + D10y — Juwa (3 + QF1)wndy
+ Jews iy + QG1wady — JawnQ3y — Bawady + Doy + Uy — Jewa 23y — Qfzwnil.

Theorems 3.3 and 3.4 show that both the three-step Euclidean and the shrunk three-step Euclidean
likelihood estimators are y/n-consistent and are asymptotically normally distributed in misspecified
models. Note that these results contain analogue results for correctly specified models as special cases.
In correctly specified models and for both estimators, u.. = 0 and 8, = 0.. = g, where 6 is the true
parameter value. In addition, D, = D? and both estimators have the same asymptotic distribution as
the efficient two-step GMM estimator. Because the asymptotic distributions they yield are also valid
in well specified models, we claim that Theorems 3.3 and 3.4 provide model misspecification robust
inference for the three-step and the shrunk three-step Euclidean likelihood estimators, respectively.

Furthermore, these results also show that these estimators have very interesting properties with
respect to the alternative most useful moment condition-based estimators. In well specified models,
they have the same higher order bias as the EL and ETEL estimators while in misspecified models,
they stay \/n-consistent for they pseudo true values as do the ET and ETEL estimators. Moreover,
they are computationally more tractable than all of the estimators in the class of minimum discrepancy

estimators.
4 Simulations

Throughout these Monte Carlo experiments, we compare seven alternatives moment condition based
estimators. We consider the Euclidean empirical likelihood (EEL), the empirical likelihood (EL), the
exponential tilting (ET'), the exponentially tilted empirical likelihood (ETEL), the three-step Euclidean
likelihood (3S) and the shrunk three-step Euclidean likelihood estimators. We specifically consider
two variants of the shrunk three-step Euclidean likelihood estimator corresponding to two different

shrinkage factors. The first one is obtained with €,(8) = €2(8) as shrinkage factor. This estimator is
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referred to as s350. The second is obtained with €,(0) = €.(8) = /nel(8), the shrinkage factor we
base our asymptotic theory on in Section 3. We refer to the shrunk three-step Euclidean likelihood
estimator yielded by this shrinkage factor as s38S.

We first compare the finite sample bias of these seven estimators. For this aim, we use the same
Monte Carlo design as Schennach (2007) which is a slightly expanded version of the Monte Carlo
design used by Hall and Horowitz (1996), Imbens, Spady and Johnson (1998) and Kitamura (2001).

The moment conditions of our Monte Carlo design are the following
Ep(z;,0) =0: (z;,0) = [r(zi,0) r(zi,0)za r(z6,0)(xiz—1) ... 7(z:5,0)zik],

where r(z;,0) = exp(—.72 — (z;1 + zi2)0 + 3zi2) — 1. The true parameter value 6y = 3.0 and
(Ta1,z:2) ~ N(0,0.1612) and zy ~ x3, for k=1,...,K.

Instead of solving the saddle point problem that yields the EEL estimator, we rather compute the
continuously updated estimator proposed by Hansen, Heaton and Yaron (1996) which is known to be
equal to the EEL estimator (see Newey and Smith (2004) and Antoine, Bonnal and Renault (2007)).
We compute the EL, ET and ETEL estimators by solving the saddle point problems that provide them
respectively and we obtain the 3S, s350 and s3S estimators by the three-step procedures as described
in Section 2.

We conduct this experiment with K = 4 and K = 10, respectively by replicating 10,000 samples of
size n = 200. The EEL estimator algorithm fails to converge in about 3% of the simulated samples and
the 3S estimator computation procedure fails in only 10 samples in this experiment. The cases where
the 3S estimator fails to converge are related to the negativity of some of the implied probabilities used
for the Jacobian and the variance estimation. This confirm the lack of stability that one can suspect
for the 3S estimator in finite samples. The samples in which at least one estimator’s computation fails
to converge have been replaced.

Table 4.1 reports the simulated bias of the estimators we consider. The 38, s3S0 and s3S estimators
behave, in terms of bias, rather like EL and ETEL confirming the result in the literature about the
Op(n~')-equivalence of EL, ETEL and 3S estimators and also our result about the higher order

equivalence between s3S and EL estimators. The EEL estimator appears to be the worst in terms of
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bias. One can also mention that the finite sample bias of all of the estimators increase with the number
of moment conditions. The largest increasing occurs for EEL followed by ET. The other estimators
that are higher order to EL have a lower increasing in their bias. The s3S even yields the lowest
increase.

Our second Monte Carlo illustration is related to the v/n-consistency results under misspecification.
The Monte Carlo design we use is the same as the one used by Schennach (2007) to allow for direct

comparison. The moment conditions are the following
EY(zi,0) =0: P(z4,0)=(z;—0 (z;—0)>—1)

where z; ~ N(0, 1) for a correctly specified model (Model C) and z; ~ N(0, (0.8)2) for a misspecified
model (Model M).

In Model C, the true parameter value is g = 0 and in Model M, the pseudo true value is #, = 0
for all of the estimators we consider. We replicate 10,000 samples of size n = 1,000 and 2,000 samples

of size n = 5,000 for both Model C and Model M.

Table 4.1: The simulated bias of the EEL, 3S, 53S0, s3S, EL, ETEL and ET estimators

EEL 38 s3S0  s3S EL ETEL ET
K=4 0289 0.059 0.060 0.052 0.064 0.060 0.104
K =10 0.526 0.096 0.093 0.045 0.137 0.109 0.238

Table 4.2: The simulated standard deviations of EEL, 3S, 53S0, s3S, EL, ETEL and ET estimators
for Models C and M

EEL 35S s350 s3S EL ETEL ET

n = 1,000
Model C 0.032 0.032 0.032 0.032 0.032 0.032 0.032
Model M 0.028 0.032 0.032 0.032 0.055 0.038 0.031
n = 5,000
Model C 0.014 0.014 0.014 0.014 0.014 0.014 0.014
Model M 0.012 0.014 0.014 0.014 0.060 0.018 0.014

Table 4.2 displays the simulated standard errors for all of the estimators. In the correctly specified

model, the simulated standard errors are the same for all of the estimators. This confirms that the
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estimators have the same asymptotic distribution as predicted by the theory. The cumulative distrib-
ution functions plotted by Figures 4.2 and 4.3 also confirm this theoretical result. For the misspecified
model, the simulated standard errors of the 3S and the s3S estimators shrink by approximately v/5
from n = 1,000 to n = 5,000 and confirm our theoretical prediction for these estimators in misspeci-
fied models. Even though we do not study the behaviour of the EEL estimator in misspecified models,
our simulation results suggest that this estimator may stay \/n-consistent in misspecified models. The
same observation is valid for the s3S0 estimator. The results for EL, ET and ETEL estimators confirm
the findings by Schennach (2007). While the simulated standard errors of ET and ETEL shrink by
approximately v/5, the simulated standard errors of the EL estimator seem not to shrink providing
evidence against the \/n-consistency of the EL estimator for an asymptotic distribution in the case of

model misspecification.
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Figure 4.1: Simulated cumulative distribution function of EL, ET, ETEL, s3S, EEL, 38, s3S0 estimators with
K =4and K =10, n =200
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Figure 4.2: Simulated cumulative distribution function of EL, ET, ETEL, s3S, EEL, 38, s3S0 estimators from

Model C (i-ii) and Model M (iii-iv). n = 1,000
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Figure 4.3: Simulated cumulative distribution function of EL, ET, ETEL, s3S, EEL, 3S, s3S0 estimators from
Model C (i-ii) and Model M (iii-iv). T = 5,000
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5 Conclusion

This paper explores some properties of the computationally appealing three-step Euclidean likelihood
(3S) estimator and proposes the shrunk three-step Euclidean likelihood (s3S) estimator. In correctly
specified models, as the 3S estimator, we show that the s3S estimator is equivalent to the EL estimator
up to Op(n~!) thus they have the same higher order bias. We also provide a useful algorithm that
yields more accurate (in terms of higher order bias) population means estimates when overidentifying
moment conditions are available for the data generating process.

We also study the 3S and the s3S in misspecified models. As a result, we provide global model
misspecification robust asymptotic distributions for these estimators. Moreover, this study reveals
that even in misspecified models, these estimators stay /n-consistent and asymptotically normally
distributed. These properties make both estimators two useful and particularly attractive alternatives
to the EL estimator which is not \/n-consistent in misspecified models and also to the ETEL estimator
which is harder to compute.

By some Monte Carlo experiments, we evaluate the relative finite sample performance of these
estimators. These experiments suggest that the s3S estimator can behave better than the 3S estimator
particularly when not all of the implied probabilities are nonnegative. These experiments also validate
the fact that both the 3S and the s3S estimators are \/n-consistent while the EL estimator is not.

One possible development of this work that we plan for future research is to study the bias corrected
version of the 3S and the s3S estimators. Because in correctly specified models they are higher order
equivalent to the EL estimator, we can use the EL higher order bias derived by Newey and Smith

(2004) to correct them. This could lead to interesting discussions about their higher order efficiency.
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A Proofs of results in Section 2:

Assumption 9 Let
—{Zm )(O%i(0)/00)HD_ mi(O)e: (0 (6)} 4 (6)
i=1

and N(e) = {0: |0 — 6o|| < €}.
i) For some € > 0, g, has partial derivatives D,,(8) = 8g,(0)/88' on N(e€) such that, for all 6 > 0,

lm(l) lim Prob{ sup ||Dn(8) — D, (6p)| > 6} =0.
e 0EN (€)

i) There ezists a measurable function b(z) such that, in a neighbourhood of 8y and for all k,l,7 =1,2,...,q,
s=12,...,p, |¢k($79)¢l($,9)¢r($>9)| < b(SL‘), |a¢k($,9)/39rf < b(IL‘) and E{b(z)z} < 00.

Assumption 9-1) is an asymptotic continuity condition on the gradient of g,,. This condition is required for the
Theorem 1 by Robinson (1988) that we rely on. The point ii) of the same assumption is the usual dominance
conditions for uniform convergence.

Lemma A.1 Let h be a continuous function on a compact set © such that V8 € ©, h(f) = 0 & 6 = 6,.
Let hy, be a sequel of functions defined on © and 6, be a sequel of values in © such that h,(6,) -

SUPgeo ||ha(8) — R(8)|| 5 0, then 6, 5 6.

Proof: Let N be a open neighborhood of 8y and N° its complement. Since h is continuous on O, it is also
continuous on © NN which is compact. Let € = mingeconae ||R(8)||. Since ||A(.)|| is continuous on the compact
set © NN, there exists §* € © N N° such that € = ||h(6*)||. Clearly, ¢ > 0 since §* # 6. On the other hand,
for the uniform convergence hypothesis, with probability approaching one, ||h(d7)| = ||hr(67) — h(f7)| < .
By definition of €, 67 ¢ N and then §7 € N O

Proof of Theorem 2.1. We show that §3¢ — 53 = Op(n=3/2) and we use the result by Antoine, Bonnal
and Renault (2007), namely that 3¢ — §¢! = Op(n=3/2) to deduce that §%3¢ — §° = Op(n=3/2). Our proof for
§3s — %35 = Op(n=%/2) relies on the result in Theorem 1 by Robinson (1988).

[me )0 ][Zm é)] ¥(0)
and .
_ [Ziri(é) HZW, é)] 50,

where J;(6) = dv;(0)/00’. By definition, g, (%) = 0 and g2(§3) = 0.
From Theorem 4.1 by Antoine, Bonnal and Renault (2007), §3¢ = 6y + 0p(1). By the dominance condition in
Assumption 9-ii), 8g,(60)/88' = Dy + 0p(1), where Dy is the nonsingular matrix J%Q=1(6y)J°. To apply the
Theorem 1 by Robinson (1988), we need to show that §%3% = 6, + op(1) before we can conclude, thanks to
Assumption 9-i), that

6% — 0% = Op(llgn(6°*) ~ g2 (6. (16)
Let us show that §°3% = 6y + 0p(1). We use Lemma A.1.
Since 6 is the two-step GMM estimator, § — 6 = Op(n=1/2) and by Antoine, Bonnal and Renault (2007) that
Prob(min;i<i<n wi(é) >0) - 1 as n — oco. Hence, for any € > 0, there exists ng > 0 such that for any n > ng,
Prob(minj<i<n i (6) > 0) > 1 — € i.e. Prob(e2(d) = 0) > 1 — ¢ i.e. Prob(ne?(f) = 0) > 1 — ¢. In other words,
Prob(ne,(f) = 0) — 1 as n — oo. Therefore,

Vel 0) 5 0. (17)
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On the other hand, for any k =1,2,...,gand s =1,2,...,p,

= 3¢zk N IR 777 NN R i 7Ok s
g - ; 50, O~ Trag? OO0 g(wiw) —9(0) 5=
and for any k,l=1,2,...,q,
Zm OV NG Zm Vi1 (8 - (9)&’(0)‘/;1( )= Z(wz( ) = (8))s, (B):,1(B).
1:1

By our dominance conditions in Assumption 9-ii), and the result in Equation (17), %(6) = Op(n~1/2) and for
any k,l=1,2,...,qand s =1,2,...,p,

> () (0) = BREE @) +0p(1) and 3 Tk O0ua(D) = B Go i (0o) + 0p(1).

i=1 =1
Therefore,

n =1
Z Hzm )i (B ¢1(9)] £ Z(80) = IV 27 (60).

i=1

Let g(6) = Z(60)Ev:(0). By the identification conditions by Assumption 1-vi), g(6) = 0 only at fy. gn(8) —
9(8) = Zn((0) — Evi(8)) + (Zn — Z)Ex:(6). By the Cauchy-Schwarz inequality,

llgn () — 9(O) < [|Znl sup I1%(8) — Evu(0)] + 1|25 — ZIIEzlelg A

By Lemma 2.4 by Newey and McFadden (1994), supyce |[¥(6) — Ev;(0)|| £ 0. Because Z, -z 5 0, we deduce
that supgeg |92 (8) — 9(6)|| £0. Lemma A.1 therefore, applies and §53¢ £ 8.

As a result, we can apply Theorem 1 by Robinson (1988) and the asymptotic stochastic order in (16) is
valid. We have

éSs _ 9333 SOP {

n n -1
[Ssao) [zméwew;(é)]
i= i=1
n n -1
. [_Z m(@)J;(m] [z m<é>¢,~(é>¢;(é>]

i=1

Iliﬁ(é””)ll}

[z #0)716) - zmém(é)} [z mém(éw;(é)]

i=1
n ) -1 n -1
- [Z wi(O)J{(o)J HZ 7ri(9)¢i(9)1/)£(9)] - [Z 7'ri(9)¢i(9)¢§(9)] J
i=1 i=1 i=1
Under our regularity assumptions, 3 i, nn(é)J,- (é) K ) Moreover, for any k =1,2,...,gand s =1,2,...,p,

n . ) . 1/4 n ) . n
Zm Pt g me)a;”,;"(o)= li"ffzé) [%Za;’;-"w)—z YORAEC )]

|I1/7(9”3’)II} :

i=1 i=1 i=1
erll(é) 8¢zk

- 1+e},() (0 Z[w, (e)]

_ 1) I a‘d’zk

=l 51 TN [ Z[Ua (0)]

= op(n~?)0p(1)0p(n~1/%)0p(1 )TOP( ).
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Thus 7, 7:(0)J1(6) — Sr., m(8)J1(0) = op(n~Y).

Similarly, with M, = 37, fri(é)w,(é)w,(é) and N, = 30, mi(0)9:(0)9:(6), My, — N,, = op(n=1). On the
other hand, since M;;! — N;' = —M;Y(M, — N,)N; !, we deduce that M,7! ~ N;! = op(n~!). Furthermore,
because J%'Q~1(8y)J° is nonsingular and, by a mean value expansion, we can easily deduce that §%3¢ — §, =
Op(n~'/2) and our dominance conditions insure that $(§%3%) = Op(n~1/2). Therefore, §3¢ — §935 = Op(n=3/2).
Since, by Antoine, Bonnal and Renault (2007), §3° — §¢ = Op(n=3/2), we also have §%3¢ — §°! = Op(n=3/2) O

Proof of Theorem 2.2. Let £y be the Lagrangian associated to the problem:

n n n
. "rlx’un’"" ' h(m;) subjectto Zﬂ’i =1 Zwiwi(a) =0

i=1 i=1 i=1
and %, 7#(6"), ..., k(") be its solution. Lo = Y7 A(m;) — A(X™, m — 1) — B/ "™, 9:(6). As the Lagrange
Theorem’s necessary conditions are fulfilled, the solution together with the Lagrange multipliers A* and 3"
solves the first order conditions (in the corresponding arguments) given by:

ha(m) - A=B':0)= 0 Vi=1, ,n
Ez— E‘.‘Z:(W; : é (18)
B Y mi(8y:(6)/06')= 0

Let us now consider the augmented problem

n n n n
min Z h(m;) subject to Z"Ti =1 Zﬂﬂﬁi(a) =0 Z"Ti(g(xi) -n)=0
3 i=1 i=1 i=1

8,1,71,...,n i

and let £; be the associated Lagrangian and (4%, x}h(g'*), ..., w1k (§1h)) its solution. L£; = ST, h(m,) —
A mi— 1) = ¥i(8) — B Y7, mivn(0) and the first order conditions are:

hy(m:) — A= B'9:(6) — B (g(xi)n— n) =
E?—l Will}’;il(es =

g Z,_ mi(0¢:(8)/06") =

E i=1 7rz(g(ml) 77) =

ﬂl Zz 1T =

Note that the last two equations in this first order condition give 8; = 0 and # = ppis l7r1h(0”')g(:1:,) and the
solution for 4, my,...,m,, A and S solves the first three equations. With $8; = 0, these first three equations
are equivalent to (18). Because the objective function in both optimization problems are the same and do not
depend on B nor 7, we deduce that both the augmented and non- augmented optxmlzatlon problems have the
same solutions in the arguments they share, i.e. 01" = gk, wIh(@Gh) = 7h(gh), ..., wih(G'") = nh(§'h). Since

i = i, mi*(0")g(x:), we also have 7 = 31, 7 (8*)g(;) O

Proof of Theorem 2.3. Under Assumptions 1 and 2, by Newey and Smith (2004), 8¢ — 6, = Op(n=1/2).
Since § — §° = Op(n=3/2), 6 — §y = Op(n~/2) and by a mean value expansion around o, P(#) = Op(n=1/2)
as well as (8¢} = Op(n~1/2). On the other hand, for any § € O, the empirical likelihood implied probabilities
are given by

Vi=1,---,n.

OO OO ~=O

() = = ——
! nl+ Ngi(6)’
where Ag is a solution of the optimization program min,_, , {~ Yo log(l + Nep;(8))/n}, A(f) = {A e Re:

N;() > —1,v8 € ©}. By Lemma A2 by Newey and Smith (2004), ) = A; = Op(n ‘1/2) and Jet = Ajer =
Op(n~'/?). Moreover, since Esupgeg [|[%:(6)||* < 00, maxi<i<n Supgee ||¢z( )l = Op(n'/) and therefore,
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| All max1 <i<n supgee l|9:(8) = 0p(1), for X = A, A¢. On the other hand,

_ qel < el(g _7re gel ) — - 1 _ 1 .
;[7& (0) 0 )]g(l‘;) 12 [Tl(l +/\"l/)l( )) 17,(1 +:\el’¢1(éel))] g(zz)
By some re-arrangement,
A npel _yel 3 Il = (éel) . "Il = 'wi(é)_"/)i(éd) .
L X T S TR P o e ez

=t =3 (1+ O (131 max, sup I ) x 11+ Op(1A%1 max. sup @) & Zw ()9(a:)

Y s ) lel l - el
A (1+0p(||f\ll lrg%xnsglglwt(e)ll)) X (1+OP(”)‘ I ;08X sup lly: (6 II)) n; —9i(6%))g(z1)-

As || M| max; <i<n subgee [[:(8)| = 0p(1) and [|A¢]| max;<icn supgee [0:(0)l)) = 0p(1),

n

7 — 7 =(J\e'—:\)'(1+0P(1))%Z¢,~(ée') (z:) = N(1+0p(1 Zw,é — :(0°))g(;). (19)

i=1 i=1

2

:l'—'

Let f(8,)) = Y1, %:(8)/n(1 + N;(8)). By definition, f(6,}) = f(6¢, ) =0
By a mean value expansion,

S, 3 = f(6,3) + (3£ (6,1)/00")(6* — 0) + (3(8,)/0N) (3! - ),
6 € (6,0%) and X € (), A¢!). Thus,

(8£(8,\)/0X) (A = X) = —(81(8, X)/86")(6* - 6).

Since (8f(0,))/8)) 5 Q(6,) (see Newey and Smith (2004)), (8f(d,X)/8X') is nonsingular with probability
approaching one. For large n, we can write

S = X = —[(9F(8,3)/0X)] 1 (01 (8,1)/00') (6% ~ §) = Op(n~/?).

By our dominance conditions in Assumption 2, Y7 | i ( 0‘”)9(1:,) /n is bounded in probability. Therefore, the
first term in the RHS of (19) has Op(n~3/2) as order of magnitude as n grows.
On the other hand, by Taylor expansions, we have, with g, denoting the u-th component of g,

=3 i @gal@) = = > pu(0)gulz) + = > (095(00)/08)gu(z)(@  B0) + Op (10 - 8ol
i=1 i=l

i=1
and

1< 1 i
~ Z i) gu(z:) = Zwl (60)gulz:) + — Z 81 (60)/06")gu(z:) (8% — o) + Op(||6°" — 6o]).
i=1 1=1

n

By subtractmg these equations sxde by side, we have

Zwt )Gu(z:)/n — Zwt 061 )gu(z:)/n = 2(31!1: (60)/ 06’ )gu(ml)(A - éel)/n + OP(n_l)'

1=1 i=1 i=1
By the law of large number, 37, (9%:/06')(60) g (x:)/n is bounded in probability thus, X (140p(1)) 1, [1:(6)—
%i(8%)]g(z;) = Op(n=3/2). Therefore, the second term in the RHS of (19) also, has Op(n~3/2) as order of mag-
nitude as n grows. Consequently, 7 — ¢ = Op(n~3/2) 0
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~ A

B Regularity conditions for the GMM estimators 6 and 6

The first step GMM estimator § is defined as

arg min ' (8)W'9(0).

The following assumption insures the consistency and asymptotic normality of § in the case of global misspeci-
fication as formalized by Assumption 4-i).

Assumption 10 i) ||u(8)|| > 0 for all 8 € O.

i) W1 is a symmetric positive definite matriz.

ii) There exists 0, € © such that Q}(6}) < Q3(9) for all 8 € ©\ {61}, where QL(8) = Ei(0)W Ey;(6).

iv) 81 € Int(O).

v) ¥(z,.) is twice continuously differentiable on Int(©) and 8¢(.,0)/80' and (8/88')vec|0y(.,0)/66'] are mea-
surable for each 0 € Int(O).

vi) There exists a measurable function by (z) such that {Yi(z,0)| < bi(z), |OYx(z,8)/86| < b1 (z),
[0%(z,0)/80500,| < b1(x) in a neighbourhood of 81, for allk =1,2,...,q and s,u=1,2,...,p and E{b(z)?} <
00.

vii) H1(0}) = J'(01)WJ(8)) — (Eyi(01)W! ® I,)JD(6}) is nonsingular.

viii) Varzy; < oo, where z1,; = (Y}(61), vec'{8v:(6})/06'}).

Assumptions 10-(i-iii) imply Assumption 4. Under Assumptions 3, 12 and 10-(i-iii), the result by Hall (2000)

implies that 8 L 6}. If Assumptions 3, 12 and 10 hold, \/n(f — 61) LN (0,w1). One can refer to Hall and
Inoue (2003) for an explicit expression for w;. These conditions also imply that Q,(§) = 37, ¥:(8)¥(8)/n is
consistent for Ev;(61)y.(61). We will explicitly assume, next that this probability limit is nonsingular. This
additional assumption guarantees the two-step GMM estimator computation in large sample.

Assumption 11 i) Assumption 10 holds.

i) E{,(61)¢!(61)} is nonsingular.

iii) There exists 0, € © such that Qo(0.) < Qo(0) for all 8 € ©\ {0.}, where Qo) = Evl ()W, E;(0).

) 0, € Int(0).

v) There exists a measurable function by(x) such that |¢k(z,0)| < ba(z), |OYr(z,8)/08,| < ba(z),
|8%%i(x,0)/80,00,) < ba(z) in a neighbourhood of 6., for all k = 1,2,...,q and s,u = 1,2,...,p and
E{ba(z)?} < 0.

vi) H(0,) = J'(8.)WJ(6.) — (E¢}(0.)W' ® I,)J(8.) is nonsingular, where W = {E;(61)}(61)} 1.

viti) Varzz; < oo, where z3; = (Yi(6.), vec'v;(01)wi(6}), vec' {8:(8.)/86'})".

Assumptions 11-(i-iii) imply Assumption 4. Under Assumptions 3, 12 and 11-(i-iii), the result by Hall (2000)

implies that § 5 ,. If Assumptions 3, 12, 11 hold, v/n(f — 6.) LN (0,w2). One can refer to Hall and Inoue
(2003) for an explicit expression for ws.

C Proofs of results in Section 3:

Assumption 12 i) © is compact.
1) ¥(.,0) is measurable for each 6 € © and ¥;(.) is continuous with probability one on ©.
iii) E [supgee [1%i(0)|]] < oo.

Assumption 13 i) ¥(z,.) is differentiable with probability one on ©.

it) There exists a measurable function b(z) such that, in a neighbourhood of 0. and for all k,l,7 =1,2,...,q,
s =1,2,...,p, [Yu(z,0)du(z,0)r(z,0)| < b(z), [i(z,0)(0vk(z,0)/005)| < b(z), |0¢k(z,0)/80s| < b(z) and
E{b(z)} < oo.
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PROPOSITION C.1 Let Ji(8) = 0v;(0)/00', a.(0) = :(0)@(vec',(0)y'(8),vec' J,(8)), and V (8) = Var(:(0)).
If Vara; < oo, VarvecJ;(6) < co and V(8) is nonsingular, then

plimG(6) = G(6) = EJI(6) — Cou{w}(6)V 1 (0)E(w:(9)), J(0)},

VR(G(6) — G(9)) = Op(1),

plimM (6) = M(0) = Evi(0)y{(8) — Cov{9{(0)V 1 (6) E(:(6)), %:(8)9i(6)},

VR(M(8) — M(6)) = Op(1).
Proof of Proposition C.1. By the law of large numbers for independent and identically distributed random
vectors, V,,(0) is consistent for V(#) and therefore with probability one as n goes to infinity, V;,(6) is nonsmgular

Because a;(#) is an ii.d sequence with finite variance, the central limit theorem applies and Y {ai(0) -
Ea;(0)}/+/n is zero-mean asymptotically normally distributed.

Zm 6)J1(0 2{1— (%:(6) — BO) Vi (0)6(0)} JL(6)

i=1

= (1+{&'(0)V;71(6)%(8) ZJ' 8) - Z{&’(e)v,:‘(O)wi(o)}J:(o).
i=l

We have 3, Ji(6)/n = 321, [Ji(6) — E{J(0)}]/n + E{J{(6)}.
By the central limit theorem, Y i, [J/(6) — E{J!(8)}]/n = Op(n~'/2) therefore,

1L+ {' OV OO} iy JH0) = 1+ {Ey'(O)V- (9)E¢( )})E{J'( )}
+HL+{BY'(O)V 1O EY(0) )7 Xin1 [Ji(0) — E{T}(O)}] + 0p(5)-

The (k, £)-component of Y7, {(4(6)V, (6)w:(6 )}J'(9>/n is 9 (0) Vi (6) Sy $:(0)] g (6) /.
Let v = $(9), % = i(6), Vs = V() and V=1 = V-1(9).

PV id] g (8)/n = EYV T E{:J] 4 (8)} + BV 12{1/)1 L 11(8) — B, }/n+op(%).
i=1
Thus

V(G(8) - G(6)) = (1 + {EY (O)V T (O)EH(0)}) Y _[Ji(6) — E{J(6)}]/v/n + Bn(6)/ v+ 0p(1),
i=1
where B, (6) is a px g-matrix with its (&, {)-component given by E’(6)V ~1(8) -0, {1:(0)J 1, (6)—E:(0)J; 1,(6)}-
By the central limit theorem, each component of \/n(G(8)—G(8)) is asymptotically normally distributed. There-
fore, /n(G(6) — G(0)) = Op(1). Similarly, we also have \/n(M(8) — M(8)) = Op(1) [J

Proof of Theorem 3.1. Under Assumption 4, the two-step GMM estimator § is con51stent for 4, and

Assumptions 12-13 allow Lernma 4.3 by Newey and McFadden (1994) to apply and G(6) £ G(6.) and M () £
M(8.) so that G() M~ (0) G(0,)M(6,)~ 1.

For 6 € ©, let ho(6) = K()M(8)~'¢(8) and h(6) = G(6.)M~1(6.)Ev;(8). By definition, h,(63) = 0 and, by

Assumption 5, h(6) = 0 & 6 = 4., for 8 € ©. To apply the consistency result by Lemma A.1, we establish the

sufficient condition given by supgcg [|AT(8) — R(8)|| £o.

Ik (6) ~ h(6)]l = |G (é)8 0r960) - (0.>M-1(0.>Ewi(o)|{
=l (c‘: 0.)M71(6.)) (@(6) - E:(6))
+ (C@mr6) - .)M-l(o*)) B (6) + G(0.)M ™ (0.)(B(0) - Ev:(0))

<||e@nr=1@) - G M~ @.)|| [1F0) - Bwi @)l + 1B 0)1]
+1CENM O B(O) - Bus O)]-




178

Clearly, supgeg || Evi(0)]| < Esupgeg [|9i(0)|| < co by Assumption 12. By the same assumption, Lemma 4.2 by
Newey and McFadden (1994) applies and supgeg ||¥(8) — Ev:(6) || 5o Therefore, from Lemma A.1, we deduce
that §3¢ 5 9,, O

Lemma C.1 Let z;,¢ = 1,2,...,n be an i.i.d random sample and let y(x;,0) be a measurable real valued
function of x; and 4, contmuous wzth probability one at each § € N, where N is a compact subset of ©. Let 0
be a random vector that lies in N with probability approaching one a n goes to infinity.

If Problinfge i y(zi,8) € (a,b)] # O for any a and b on the real line such that a # b, then for any M > 0,
Prob{maxi<i<n y(zi,0) > M} = 1 as n — co.

Proof: Because § € N with probability approaching one as n grows to infinity, for large n and for any
i=1,...,n, infoe v y(z:,0) < y(z;,0) with probability one. Therefore, with probability approaching one as
7 grows, max;<i<n[infoece y(zi,#)] < maxicicn y(zi,8). Then, for M > 0, Prob{max;<i<n[infse 7 y(zi,0)] >
M} < Prob{max;<i<n¥(zi,0) > M}. Asz;,i=1,...,n are i.i.d, so are infgc 7 y(7:,6),i = 1,...,n and hence,

Prob{ max [] [mf y(zi,0)] > M} =1 — Prob {1?%3%[021{71/(2,-,9)] < M}

—1—Prob{1nfy(x,,G)SM;Vizl,...,n}
n
=1— < Pr[inf Hh<M .
{ rlinf y(z1,0) < ]}

Since Prob{infycry(1,0) € (a,b)} # O for any a # b, 0 < Prob{infycy y(z1,6) < M} < 1. Thus,
limy, oo {Prob{infsc v y(z1,60) < M}}" = 0. Thus, Prob{max;<i<s y(zi,8) > M} - 1l asn — oo O

Lemma C.2 Under Assumptions 3, 6 and 13, if the GMM estimator 6 is such that § — 0, = Op(n~Y/2), then
Prob{e%(d) > M} — 1, for all M > 0, where ¢2(f) = —n min[min; <;<, m(8),0].

Proof: By definition, &(6) = max{max; <i<n, —1m;(6);0}. As a result, {¢2(d) > M > 0} is equivalent to
{max;<i<n|-Tm(§)] > M} which, by the definition of m;(6) (see Equation (3)), is equivalent to

{ e K@ - 50 v @0} - 11> e}

1<i<

On the other hand, since  is consistent for 6., by the dominance conditions in Assumption 13, %' (8)V,=1(8)%(6)
converges in probability to a fixed scalar ¢. Then, to complete the proof, it is sufficient to show that:

Prob{ max i (6)V,71 (6)9(0) > M} —~1, VM.

1<i<n

Moreover,

WOV OFO) = wiO) [V O@) - v 0.)Bwi(6.)] + vl OV T 0.)Evi 0.).

Because § is \/n-consistent, by Assumption 13, V,"}(8)%(8) — V=1(6.)Ey;(6.) = Op(n=1/2). By Assumption
13, E'supge . [1%i(8)|1? < oo, where N, is a closed neighbourhood of 6. included in ©. By Lemma 4 in Owen
(1990) and Lemma D.2. in Kitamura, Tripathi and Ahn (2004), (see also Lemma A.1 by Bonnal and Renault
(CIRANO working paper 2004s-18) max;<i<n Supge. ||¥i(8)|| = op(n!/?). Hence, for n large enough and by
Cauchy-Schwartz inequality,

vi(0) [V 0)0) - V= 0.)Ei(0.)]| <= max sup Iw:(0)]

T). 1<1<n9 eN.

x V||V (B)9(0) = V= (0.) B (0.)]] = op(1).
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Then, ¥/(d) [ ~1(@)(6) — ‘1(0,)E1/J,-(0.)] = op(1) uniformly over i = 1,...,n. For this, it suffices to show

that Prob{max;<;<n 1,[)§(0)V 1(0,)Ev;(0.) > M} — 1 as n — oo, for all M. By Assumption 6, we can apply
Lemma C.1 with y(z;,8) = ¥{(0)V ~1(0.)Ev;(6.) and the result follows O]

Proof of Theorem 3.2. Let y(z;,8) = 8v}(0)/00 or :(6)i(6).

_1 . LN B — GOV BV bl
= Zy( zi,0 1+Elw)n:l{(wt(f?) HOYVi OB O}y, 0).

By Lemma 4.3 by Newey and McFa.dden (1994), Under some regularity conditions,

Z{(¢, —9(0))' Vi 1 (0)d(0)y(z:,0)/n = Op(2).

Besides, Lemma C.2 insures that /n/(1 + en(G)) = 1/(n"Y2 + &(4)) = op(1) as 2(d) diverges to infinity.
Therefore, Y1, 7:(8)y(x:,8) = 1, y(x:,0)/n + 0p(n~1/2). Specifically,

ﬁl(@)%(é) = %Za_w,(é)%-o;) 1/2 and Zw, Zdh +0P( —1/2).

Ziri(é)%‘gf 6) = E%ﬁ'( )+ Op(n~Y2) and ZW, (6)91(0) = Ev;(8.)%1(8.) + Op(n~1/2).
i=1
Then,
n ’ -1 '
Zn(é) = [Zm aw ] [ZT(‘ :l 5 Z(0.) = 31/) )[E¢t 1/)1 (6.) ]_
i=1

Next, we show that §%3¢ 5 ¢,, using Lemma A.1. We need to show that supgcg |[An(8) — R(8) Lo
with hn(0) = Zn(0)¥(0) and h(6) = Z(6,)Ev;(6). Obviously, [|ha(6) — ()|l < [IZ.(O)II¥(8) — Ev:(0)]] +
1Zn(0) — Z(8.)||E%i(9)]. By the same arguments as in the proof of Theorem 3.1 we can deduce that
Supgee ||Bn(8) — h(8)|| 5 0 and therefore, 853 5 6,, O

Proof of Theorem 3.3. We show that /nG(6)M ~1()%(6..) is asymptotically normally distributed. Clearly,

GO M~ () (b..) =[G(0) - (0* ]M O ( o) + G(0.)[M™1(8) — M (6.)](b..)
+G(6.)M [z/: o) Ew, o ]+[G (6.) G(e,)]M—l(o,)Ez/),(o..) (20)
+G(6.)[M~ 1(9 0.0 Ei(6.4),

where G(#) = plimG(8) and M (#) = plimM (6).
A Taylor expansion of G(6) around 6, yields
G(6) = G(6.) + Ry o {(8/86")[vecG(8.)](6 — 6.)} + Op(n™).
Let 23, = {vec'Ji(6.), [¥:(6.) ® vecs(6.)]', [ (6+) ® vecs(8.), %7 (64)]', i (6s4)} -
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Since Varz ; < oo, by Proposition C.1, G(6.) — G(6.) = Op(n~/2) and our dominance assumptions also
guarantee that (8/06’)[vecG (6.)] — (8/68")] 'vecG «)] = op(1) thus

Glb) = G0.) + R (250 21(0.)0 - 0.)) + Op(a ™) 1)

Similarly, M(0) — M(8) = Op(n=1/2) and

M(8) = M(0.) + R, (3”2‘;[,1\4] (8.)(6 - 0.)) +0p(n71).

Furthermore,
M7H0.) = M7 (6,) = =M~} (8.)(M(6.) = M(8.))M~1(8.) = —M~1(6.)(M(6.) — M(6.))M~1(6,) + Op(n~?)

and similarly,

dvec[M]

B0) = M0 =~ 0)R (2o

(6.0 - 0.)) M71(0.) + On(a™) (22)
Thus, by reporting (21) and (22) in (20), we have

COYM 7} (0)P(64r) =Yintuttus + gurma [$(0un) — Etpy(B0a)] + [G(60.) — G(0.)[ Mt

] N (23)
= GuTMy [M(gt) = M(G.)]m.p.. + OP(TL 1).

By Proposition C.1,
VR(G(6,) — G(6.)) = (1 + {© V™ (0, }) D [JH(0.) — B{J}(6.)}]/v/n + BL(8.)/v/n + 0p(1)
i=1

and

V(M (8.) = M(6.)) = 1+ {p V71001 1) Y [whuithls — E{utli}]/ vV + B2(8.)/ vV + 0p(1),

i=1

where B}(6.) is a p x g-matrix with its (k,!)-component given by

“H0.) Y {i(0.) T 1a(8) — Epi(8.) 7, 11(6)}

i=1

and B2(4.) is a g x g-matrix with its (k,!)-component given by

10, g,
i=1

where ¢in = {Whiathis kVunt — Ehi(04)hin khin,}-
We can easily deduce that +/nG(8)M ~1(8)%(f..) is asymptotically Gaussian by the central limit theorem. O

Proof of Theorem 3.4. We show that \/nJ’ (é)Q‘l(é)IZ(B..) is asymptotically normally distributed. We have

T 6)271 (0)9(6..) =['(6) — J'(6.)107" (B)%(6..) + J'(6.)[05 (0] (0.0)
+J'(6.) nl(fh [1!1 we) = Egi(0.)] + [J'( 0-)—J' I (8.)Exbi(6s.)
+J7'(6.)[9277(8.) — Q7 (6.)] E9i(6.a).

On the other hand, by a Taylor expansion and the fact the 8 is \/n-consistent,

J'(0) = J'(6.) + Ry (JP(8.)(6 - 0.)) + Op(n7)
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and

dvec(0)

Onl) = 0 (0.) + Roq (2

A0 —o.)) +O0p(n~h).

From the expansion of § — 6, given by Equation (15), we can write

T ()27 0)P(0us) =Yontstan + jata[$(Bus) = Expi(B0n)] + [T (62) — J' (00w pine
= Jowe[Qn(04) — QO)wstas + Op(n).

Therefore, /nJ'(§)Q~1(6)%(6..) is asymptotically Gaussian by the central limit theorem. O
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Conclusion générale

Cette thése étudie les modeles de volatilité multivariée ainsi que les méthodes d’inférence fondées sur
les conditions de moment.

Dans le premier essai, nous étendons le modele & facteurs de volatilité stochastique de Doz et
Renault (2006) & la prise en compte de I'effet de levier et de 1’effet de skewness conditionnels reconnus
présents dans les rendements. Nous proposons aussi des conditions de moment pour I’estimation de ce
modele par la méthode des moments généralisée (GMM). Nous appliquons ce modéle aux rendements
journaliers excédentaires de 24 indices sectoriels du marché financier du Royaume Uni. La modélisation
des effets de levier et de skewness augmente l'efficacité de 'estimateur des parametres de volatilité.
Les résultats suggérent que la compatibilité avec les asymétries fait obtenir une persistance plus faible
pour la volatilité et nous permettent aussi de documenter une relation entre ’effet de skewness dans
les rendements et leur volatilité.

Le deuxiéme essai se rapporte aux tests de facteur hétéroscédastiques pour les processus multivariés
de rendements. Spécifiquement, le test proposé par Engle et Kozicki (1993) est fondé sur les condi-
tions de moment résultant de la représentation factorielle et est une application du test des restrictions
suridentifiantes du GMM (Hansen (1982)). Cet essai montre que ces conditions de moment ne garan-
tissent pas les hypothéses standard d’application de la théorie de test par GMM. Nous montrons en
particulier que 'identification au premier ordre des paramétres n’est pas assurée. Nous proposons une
théorie générale qui fournit la distribution asymptotique de la statistique du test de suridentification
du GMM dans une situation ol les paramétres qui ne sont pas identifiables au premier ordre le sont
au deuxiéme ordre. Une application de cette nouvelle théorie nous permet en particulier de corriger
le test de Engle et Kozicki (1993).

Dans le troisiéme essai, nous proposons des méthodes de bootstrap pour la matrice de covariance
réalisée évalué sur les données de haute fréquence. Ces méthodes s’appliquent aussi aux fonctions
de la matrice de covariance telles que la covariance réalisée, la corrélation réalisée et le coefficient de
régression réalisé. Il est & noter que le coefficient de régression réalisé inclus des statistiques aussi
pertinentes pour l’analyse financiére que les bétas introduits par la théorie du capital asset pricing

model (CAPM) pour ’évaluation du risque systématique des titres financiers.
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Les méthodes de bootstrap que nous introduisons se veulent étre une alternative pour I’approximation
asymptotique de Barndorfl-Nielsen et Shephard (2004). Les expériences de Monte Carlo que nous ef-
fectuonssuggérent que la méthode de bootstrap que nous proposons fonctionne mieux, particuliérement
lorsque les données sont générées & une fréquence faible. Nous observons aussi & travers des développements
d’Edgeworth que le boostrap i.i.d. ne conduit pas & des raffinements d’ordre supérieur pour le coef-
ficient de régression. Ceci est contraire aux résultats de Freedman (1981) et Mammen (1993), qui
ont montré que le bootstrap par couples est supérieur A la distribution asymptotique normale pour
les modeles de régression de coupes transversales avec hétéroscédasticité dans lerreur. La raison
principale des différences obtenues réside dans la nature des scores servant & la normalisation de la
statistique de bootstrap. Dans le domaine des données en coupe instantanée qui est celui de Freedman
(1981) et Mammen (1993), aussi bien les scores de la régression originelle que ceux de la régression
de bootstrap sont d’espérance nulle. Grace & cela, les facteurs de normalisation tendent vers la méme
limite en probabilité. Ceci est crucial dans 'obtention du raffinement a ’ordre supérieur par le boot-
strap. Tel n’est pas le cas dans la configuration des processus de diffusion. L’espérance du score dans
la régression originelle est non nulle tandis que l’espérance du score dans la régression de bootstrap est
nulle. Cette différence force des normalisations qui ne sont pas analogues et qui ne convergent pas non
plus en probabilité vers la méme limite. Ceci s’avére coliteux pour la performance & 1’ordre supérieur
du bootstrap i.i.d. et explique aussi les différences avec Freedman (1981) et Mammen (1993).

Le quatrieme essai porte sur les développements récents des méthodes d’inférence basées sur les
conditions de moment. Cet essai propose un algorithme relativement simple permettant d’obtenir
des estimateurs de moyennes de population de faible biais en échantillon fini grace aux conditions
de moment suridentifiantes. Une deuxiéme contribution de cet essai est de dériver les distributions
asymptotiques robustes & la mauvaise spécification des conditions de moment pour I’estimateur de
vraisemblance euclidienne & trois étapes proposé par Antoine, Bonnal et Renault (2007). Nous con-
siderons aussi une variante de cet estimateur, ’estimateur de vraisemblance empirique euclidienne &
trois étapes corrigé ou “shrunk three-step Euclidian likelihood estimator”, qui utilise des probabilités
impliquées positives. Dans la littérature, seul I’estimateur de maximum de vraisemblance empirique
via minimum d’entropie (exponentially tilted empirical likelihood estimator) (ETEL) proposé par

Schennach (2007) produit des biais d’échantillon fini aussi faibles que ces deux estimateurs quand
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les conditions de moment sont bien spécifiées et converge & la vitesse usuelle vers une distribution
normale en cas de mauvaise spécification des conditions de moment. Il convient toutefois de souligner
que l'estimateur ETEL est relativement beaucoup plus difficile & calculer que les estimateurs 3S et

s3S.



