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Sommaire

Les développements récents de l’économétrie de la finance ont pour base la déconverte majeure qne

les carrés des rendements sont prévisibles quoique les rendements eux-mêmes ne le soient pas. Les

célèbres modèles ARCH et GARCH introduits par Engle (1982) et Bollerslev (1986) prévoient le carré

des rendements futurs par le carré des rendements passés. Toutefois, comme l’a plus tard suggéré

Nelson (1991), le signe des rendements passés est aussi utile pour prévoir la volatilité mesurée par le

carré des rendements. Ce fait stylisé reflète une corrélation asymétrique entre rendement et volatilité

et est connu sous le nom d’effet de levier. L’effet de levier en particulier induit une asymétrie dans

la distribution des rendements de plus longue échéance qu’on appelle effet de skewness. Bien que

les premiers modèles univariés de volatilité aient connu des raffinements prenant en compte ces faits

stylisés, les effets de levier et de skewness ne sont pas conjointement modélisés dans les modèles

multivariés de volatilité. Comme généralisation du modèle de Diebold et Nerlove (1989), le modèle à

facteur de volatilité stochastique proposé par Doz et Renault (2006) offre un cadre structurel adéquat à

la modélisation multivariée de la volatilité des rendements sans exclure ni formaliser la variabilité dans

les effets de levier et de skewness. Cette thèse, à travers son premier essai propose une extension de ce

modèle à facteur en proposant des spécifications dynamiques pour les effets de levier et de skewness.

Le deuxième essai évalue les bases théoriques du test de facteurs hétéroscédastiques proposé par Engle

et Kozicki (1993) et y apporte une correction. Le troisième essai propose des méthodes de bootstrap

pour l’inférence sur la matrice de covariance réalisée de processus multivarié de diffusion à volatilité

stochastique telle qu’évaluée à partir des données de haute fréquence en finance et le quatrième essai

s’inscrit dans le cadre des développements récents des méthodes d’inférence basées sur les conditions

de moment (méthode des moments généralisée (GMM) et vraisemblance empirique).’

Dans le premier essai, nous proposons un modèle à facteur de volatilité stochastique avec effets

de levier et de skewness dynamiques pour les rendements en étendant le modèle proposé par Dos

et Renault (2006). Grâce à des conditions de moment, nous avons aussi proposé une inférence par

la méthode des moments généralisée (GMM). Une application de ce modèle aux rendements jour

naliers excédentaires de 24 indices sectoriels incluant l’indice FTSE 350 et provenant tous du marché

financier du Royaume Uni a été faite. La modélisation des effets de levier et de skewness a largement

accru l’efficacité de l’estimateur des paramètres de volatilité. Les résultats suggèrent aussi que la

‘Le deuxième essai de cette thèse a été écrit en collahoration avec Éric Renault et le troisième en collaboration avec
Silvia Gonçalves et Nour Meddahi.
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compatibilité avec l’effet de skewness fait obtenir une persistance plus faible pour la volatilité et nous

permettent également de documenter une relation entre l’effet de skewness et la volatilité.

Le deuxième essai réexamine les bases théoriques du test de facteurs hétéroscédastiques pour les

processus multivariés de rendements proposé par Engle et Kozicki (1993). Ce test est fondé sur les

conditions de moments résultant de la représentation factorielle et applique le test des restrictions

suridentifiantes du GMM (Hansen (1982)). Cet essai montre que ces conditions de moment ne garan

tissent pas les conditions d’application de la théorie de test par GMM. En particulier, l’identification

au premier ordre des paramètres n’est pas assurée. Nous proposons alors une théorie générale qui

fournit la distribution asymptotique de la statistique du test de suridentification du GMM dans un

contexte où le paramètre d’intérêt n’est pas identifiable au premier ordre mais l’est au deuxième ordre.

Cette nouvelle théorie s’applique pour corriger le test de Engle et Kozicki (1993).

Dans le troisième essai, nous proposons des méthodes de bootstrap pour la matrice de covariance

réalisée des processus multivariés de diffusion telle que mesurée sur les données de haute fréquence.

Ces méthodes s’appliquent aussi aux fonctions de cette covariance telles que la covariance réalisée, la

corrélation réalisée et le coefficient de régression réalisé. Il est à noter que le coefficient de régression

réalisé inclus des statistiques aussi pertinentes pour l’analyse financière que les bêtas introduits par le

capital asset pricing model (CAPIvI) pour évaluer le risque systématique des titres financiers.

Les méthodes de bootstrap que nous introduisons se veulent être une alternative pour l’approximation

asymptotique de Barndorff-Nielsen et Shephard (2004). Spécifiquement, nous considérons le bootstrap

i.i.d. appliqué aux vecteurs de rendements, c’est-à-dire que les données de bootstrap sont des tirages

aléatoires des rendements haute fréquence. Malgré le fait que les données de bootstrap ainsi générées ne

préservent pas le caractère hétéroscédastique des données originelles, nous montrons que cette méthode

est valide asymptotiquement. Les expériences de Monte Carlo que nous avons effectuées suggèrent que

la méthode de bootstrap que nous proposons fonctionne mieux que l’approximation asymptotique

particulièrement lorsque les données sont générées à une fréquence faible ou modérée. Toutefois, con

trairement aux résultats de la littérature du bootstrap i.i.d. pour les modèles de régression avec erreurs

hétéroscédastiques, nous montrons par des expansions d’Edgeworth que le bootstrap i.i.d. ne donne

pas lieu à des raffinements d’ordre supérieur dans notre contexte. Nous donnons une explication de

cette différence.

Le quatrième essai porte sur les développements récents des méthodes d’inférence basées sur les

conditions de moment. Cet essai propose un algorithme relativement simple permettant d’obtenir
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des estimateurs de moyenne de population de faible biais en échantillon fini grâce aux conditions de

moment suridentifiantes.

Nous considérons aussi l’estimateur de vraisemblance euclidienne à trois étapes proposé par An

toi, Bonnal et Renault (2007). Quand les conditions de moment sont bien spécifiées, cet estimateur

a un biais en échantillon fini d’ordre de grandeur aussi faible que celui de l’estimateur maximum de

vraisemblance empirique et de plus il est plus facile à calculer que ce dernier. Nous étudions cet

estimateur dans les modèles globalement mal spécifiés. Nous montrons que, même dans ces conditions

irrégulières, l’estirnateur 3S reste convergent au taux habituel (/ii, où n est la taille de l’échantillon)

et il est asymptotiquement normalement distribué.

Cet essai introduit aussi formellement l’estimateur de vraisemblance euclidienne à trois étapes

corrigé (s3S) qui est défini de façon analogue à l’estimateur 3$ mais utilise des probabilités impliquées

corrigées pour être positives. L’idée d’utiliser des probabilités impliquées corrigées dans le calcul

de l’estimateur à trois étapes a été proposée pour la première fois par Antoine, Bonnal et Renault

(2007). Cependant, leur modification n’est pas robuste à la présence d’une mauvaise spécification

des conditions de moment. Dans cet essai, nous proposons une autre modification des probabilités

impliquées qui est robuste à la mauvaise spécification des conditions de moments. Cette robustesse

est rendue possible en pondérant plus faiblement la différence entre les probabilités impliquées et leur

équivalent asymptotique qui est 1/n. Quand les modèles sont correctement spécifiés, les estimateurs

3$ et s3S sont asymptotiquement équivalents à un ordre supérieur. Dans les modèles globalement mal

spécifiés, nous montrons que l’estimateur s3S est aussi convergent au taux ..Jii et est asymptotiquernent

normalement distribué. Nous proposons aussi bien pour le 3$ que pour le s3S leur distributions

asymptotiques robustes à la mauvaise spécification des conditions de moment.

Dans cette frange de la littérature sur les estimateurs alternatifs au GMM, seul l’estimateur de

maximum de vraisemblance empirique via minimum entropie (exponentially tilted empirical likelihood)

(ETEL) proposé par Schennach (2007) a l’intérêt d’être convergent au taux usuel et asymptotiquernent

normalement distribué lorsque les conditions de moment sont mal spécifiées tout en étant équivalent

à l’ordre supérieur à l’estimateur de maximum de vraisemblance empirique lorsque les conditions de

moment sont bien spécifiées. Il importe cependant de noter que l’estirnateur ETEL est relativement

beaucoup plus difficile à calculer que les estirnateurs 3$ et s3S.

Mots clés: Modèle à facteurs, volatilité multivariée, asymétrie, GMM, sous-identification du premier

ordre, Bootstrap, volatilité réalisée, expansions d’Edgeworth, vraisemblance empirique, mispécification.
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Summary

The recent developments in financial econometrics are based on the major finding that square

returns are predictable even though returns themselves are not. The famous ARCH and GARCH

models introduced by Erigle (1982) and Bollerslev (1986) predict future square returns by past square

returns. Nevertheless, as observed by Nelson (1991), the signs of past returns are also useful to predict

volatility, as measured by the squared returns. This stylized fact provides evidence of a negative

correlation between returns and volatility and is known as the leverage effect. The leverage effect

induces a negative skew in the distribution of lower frequency returns. This is the skewness effect.

Although the first univariate volatility models have been refined to take account of these stylized facts,

the literature on multivariate volatility models has not jointly modeled the dynamics of the leverage

and skewaess effects. As a generalization of the Diebold and Nerlove’s (1989) model, the stochastic

volatility factor model proposed by Doz and Renault (2006) provides a suitable structural framework

for multivariate modeling of volatility in returns without neither precluding nor formalizing the time

variability in both skewness and leverage effects. In the first chapter of this thesis, we extend this

factor model by explicitly specifying dynamics for both skewness and leverage effects. The second

chapter discusses the theoretical foundation of the test for common heteroskedastic factors proposed

by Engle and Kozicki (1993). A correction for this test is also provided. The third chapter proposes

bootstrap methods for the realized covariance of multivariate diffusion processes defined as the sum

of the outer product of the vector of high frequency returns. The fourth chapter is related to the

recent developments of moment conditions-based inference methods (generalized method of moments

(GMM) and empiricai likelihood methods).

In the first chapter, we propose a stochastic volatility factor model with dynamic skewness aiid

leverage effects. This model is an extension of the model proposed by Doz and Renault (2006). b

the best of our knowledge, we are the first to simultaneously model the conditional skewness and

leverage effects in the context of a multivariate heteroskedastic factor model. We also provide moment

conditions that allow for inference by GMM. We apply our model to 24 daily sector index excess

returns from the United Kingdom stock market including the FTSE 350 index. The resuits show

a large efficiency gain from modeling the skewness and leverage effects along with volatility. They
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also suggest that the modeling of the conditional skewness effect yields lower volatility persistence as

already pointed out by Harvey and Siddique (1999). We also document a significant relation between

the skewness effect in returns and volatility.

The second chapter re-examines the theoretical foundations of the test for common heteroskedastic

factors for multivariate return processes proposed by Engle and Kozicki (1993). This test is based

on moment conditions resulting from the factor representation of returns and is an application of the

GMM overidentification test (Hansen (1982)). We show that these moment conditions do not satisfy

the identification conditions for the validity of the GMM test. In particular, the required first order

identification condition for the parameter of interest is violated. We propose a general theory that

provides the asymptotic distribution of the GMM overidentification test statistic when the parameters

are not identified at the first order but are identified at the second order. We apply this new theory

to correct the Engle aud Kozicki’s (1993) test.

The third chapter proposes bootstrap methods for the realized covariance of multivariate diffusion

processes defined as the sum of the outer product of the vector of high frequency returns. These

bootstrap methods can also be applied to economically meaningful fonctions of the realized covariance

matrix such as the realized covariance between two assets, the realized correlation and the realized

regression coefficients. Note that the realized regression coefficient includes as a particular case the re

alized beta. an important statistic for the financial analysis of the capital asset pricing model (CAPM).

The realized beta of an asset assesses its systernatic risk as measured by its correlation with the market

portfolio return.

The bootstrap methods we consider are an alternative inference tool to the asyrnptotic theory

recently proposed by Barndorff-Nielsen and Shephard (2004). More specifically, we consider the i.i.d.

bootstrap and show its first order asymptotic validity. Our Monte Carlo experiments suggest that the

bootstrap method we propose outperforms the asymptotic theory-based approximation of Barndorff

Nielsen and Shephard (2004), in particular when the series are not sampled too frequently. However,

and contrary to the existing results in the bootstrap literature for regression models subject to het

eroscedasticity in the error term, we show by Edgeworth expansions that the i.i.d. bootstrap is not

second order accurate. We prox4de an explanation for this difference.

The fourth chapter is related to the recent developments in the literature based on the empirical

likelihood interpretation of the GMM method. Its contribution is twofolded. First, we propose a new
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algorithm to compute estimators of population means whose small sample bias is of the sarne order

of magnitude as the empirical likelihood estimator. This algorithm is easier to implement than the

existing methods. Second, we study the asymptotic properties of the three-step Euclidean likelihood

(3$) estimator as proposed by Antoine, Bonnal and Renault (2007) under the presence of possible

misspecification in the moment conditions. As Antoine, Bonnal and Renault (2007) show, the higher

order bias of the 3$ estimator is of the same order of magnitude as that of the empirical likelihood

estimator in correctly specified models. Nevertheless, the 3$ estimator is rnuch more computationally

convenient than the empirical likelihood estimator. In this chapter, we show that in misspecified models

the 3S estimator stays v’-consistent (where n is the sample size) and is asymptotically normally

distributed. We also formally introduce the shrunk three-step Euclidean likelihood (s3S) estimator.

This estimator is a variant of the 3S estimator which is derived using the Euclidean likelihood irnplied

probabilities shrunk to be non negative. The idea of using modified Euclidean likelihood implied

probabilities that are forced to be non negative was first proposed by Antoine, Bonnal and Renault

(2007). Nevertheless their shrunk implied probabilities are flot robust to misspecification. One of our

contributions in this chapter is to proposed a further modification of the Euclidean likelihood implied

probabilities by more weakly weighting their difference with their asymptotic equivalent, l/n. This

modification appears to be crucial to get a proper behaviour of the three-step estirnator under global

misspecification. In correctly specified models, the 3$ and the s3$ estimators are asymptotically higher

order equivalent. In globally rnisspecified models, we show that the s3S estimator is also /7i-consistent

and asymptotically normally distributed. We derive the asymptotic distribution of both estimators

under the possibility of moment conditions misspecification.

In the existing literature on alternatives to the GMM estimator, only the exponentially tilted

empirical likelihood estirnator proposed by Schennach (2007) has the advantage of being /-consistent

and asyrnptotically normally distributed in misspecified models while displaying the same higher order

bias as the empirical likelihood in correctly specified models. It is worthwhile however to mention that

the three step Euclidean likelihood estimators are easier to compute than the ETEL estimator.

Key words: Factor models, multivariate volatility, asymmetry, GMM, first order underidentification,

Bootstrap, realized volatility, Edgeworth expansions, empirical likelihood, rnisspecification.
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Introduction générale

Cette thèse est composée de quatre essais et s’inscrit dans le cadre des modèles multivariés de volatilité

tout en contribuant aux développements récents de la méthode des moments généralisée.

Le premier et le troisième essais abordent des questions relatives à la modélisation de la volatilité

multivariée. Le deuxième et le quatrième essais de cette thèse ont pour thème commum le comporte

ment asymptotique dans des conditions non standard de certaines statistiques de tests et estimateurs

issus de conditions de moment.

Dans le premier essai nous proposons une extension du modèle de volatilité multivariée de Doz et

Renault (2006) qui tient explicitement en compte les dynamiques des effets de levier et de skewness

des rendements. L’effet de levier se traduit par une corrélation asymétrique entre le rendement et la

volatilité. Cet effet explique le fait stylisé que le signe des rendements passés est souvent utile pour

prévoir la volatilité mesurée par le carré des rendements, comme l’a remarqué Nelson (1991). L’effet de

levier en particulier induit une asymétrie dans la distribuition des rendements de plus longue échéance

qu’on appelle effet de skewness. Bien que les premiers modèles univariés de volatilité aient connu

des raffinements prenant en compte ces faits stylisés, les effets de levier et de skewness ne sont pas

conjointement modélisés dans les modèles multivariés de volatilité.

Le modèle à facteurs latents hétéroscédastiques proposé par Diebold et Nerlove (1989) offre une

alternative intéressante pour la modélisation multivariée de la volatilité. Ce modèle décompose chaque

rendement en une partie systématique (ou commune à tous les rendements), qui est éventuellement

source d’hétéroscédasticité, et une partie idiosyncratique. Il a le mérite de jouir d’une interprétation

structurelle. Toutefois, Diebold et Nerlove (1989) complètent la spécification de leur modèle en im

posant une distribution normale jointe au facteur et chocs idiosyncratiques. Ce choix de distribution,

en mettant la skewness des rendements à zéro, s’écarte du comportement documenté des rendements

d’actifs.

Plus récemment, Doz et Renault (2006) généralisent le modèle de Diebold et Nerlove (1989) en

spécifiant un modèle à facteurs latents de volatilité stochastique qu’ils identifient grâce à des conditions

de moment pertinentes. Ils proposent une inférence par la méthode des moments généralisée (GMM).

Le recours aux conditions de moment permet de limiter les risques de modèle relatifs à la fixation de
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tous les moments au travers d’une distribution. Les conditions de moments utilisées par Dos et Renault

(2006) permettent de capturer la dynamique dans la volatilité sans exclure ni formaliser explicitement

la variabilité dans les effets de levier et de skewness.

Dans cet essai, nous proposons des conditions de moments additionelles à celles proposées pas Dos

et Renault (2006) qui nous permettent de modéliser explicitement les effets de levier et de skewness

dynamiques pour les rendements.

Dans une première partie, nous analysons les propriétés statistiques individuelles d’un ensemble de

séries sur les rendements excédentaires journaliers d’indices sectoriels provenant du marché financier

du Royaume Uni incluant l’indice FTSE 350. Des études récentes (voir e.g. Harvey, Ruiz et Sentana

(1992) et King, Sentana et Wadbwani (2004)) utilisant des séries mensuelles proches de celles utilisées

dans cet essai supportent le modèle à facteur hétéroscédastique. Notre analyse empirique suggère

que ces rendements financiers démontrent très clairement aussi bien les phénomènes de levier que de

skewness dynamiques, confirmant les faits empiriques déjà documentés par plusieurs autres auteurs,

en particulier Nelson (1991), Hansen (1994) et Harvey et Siddique (1999).

Dans le modèle à facteur que nous proposons, le caractère hétéroscédastique des rendements est

entraîné uniquement par le facteur commun que nous supposons de dynamique de volatilité stochas

tique autorégressive (SR-SARV). Les chocs idiosyncratiques sont supposés de volatilité constante. Par

ce choix, il devient naturel de faire passer aussi bien l’effet de levier et celui de skewness par le même

facteur. La dynamique que nous spécifions pour le levier dans le facteur est analogue à la forme la plus

courante dans la littérature. Par contre, la spécification de la dynamique de skewness est déterminée

par la robustesse du modèle vis-à-vis de l’agrégation temporelle. Il ressort qu’aussi bien le levier que

la skewness dans le facteur sont une fonction affine de la volatilité. Nous montrons que notre modèle

est robuste à l’agrégation temporelle.

Nos conditions de moments permettent une inférence par la méthode des moments. Dans l’application

empirique de ce modèle à nos données, nous trouvons une efficacité plus accrue quand les effets de

skewness et de levier sont pris en compte explicitement, ce qui reflète l’importance de ces phénomènes

dans nos données. Les paramètres liant levier et volatilité d’une part et skewness et volatilité d’autre

part sont fortement significatifs. Ceci documente en particulier la relation entre skewness et volatilité

similaire au phénomène connu en finance sous le nom de volatility feedback (voir French, Schwert, et
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Stambaugh (1987)) liant rendement et volatilité. De plus, la persistance de la volatilité paraît plus

faible que ce qui s’observe habituellement dans les données journalières pour les modèles qui sont en

contradictiou avec l’effet de skewness dans les rendements. Ce dernier point confirme les faits docu

mentés par Harvey et Siddique (1999), qui ont été les premiers à observer que les modèles compatibles

avec l’effet de skewness ont un impact sur la persistance de la volatilité.

Le deuxième essai considère le test de suridentification de GMM tel que proposé par Hansen (1982).

Si les conditions de moment suridentifiantes sont valides, sous certaines conditions de régularités, la

statistique du test est asymptotiquement distribuée selon un Clii carré. Ces conditions de régularités

incluent aussi bien l’identification stricte que l’identification au premier ordre du paramètre d’intérêt.

L’identification stricte signifie que les conditions de moment déterminent une et une seule valeur du

paramètre d’intérêt et l’identification au premier ordre impose que la jacobienne des conditions de

moments évaluée à la vraie valeur est de plain rang.

Cet essai étudie la statistique du test de suridentification en relâchant la deuxième condition tout

en maintenant l’identification au second ordre, signifiant que l’expansion des conditions de moment à

l’ordre deux est suffisante pour identifier le paramètre d’intérêt. Une étude similaire a été effectuée par

Sargan (1983) pour les estimateurs de variables instrumentales (IV). Dans son étude, Sargan (1983)

s’intéresse au comportement asymtotique des estimateurs IV en cas de non identification au premier

ordre. Dans cet essai, nous nous intéressons d’une part à la vitesse de convergence de l’estimateur de

GMM en cas de déficience de rang et généralisons de ce point de vue les résultats de Sargan (1983).

D’autre part et principalement, nous nous intéressons au comportement asymptotique de la statistique

du test de suridentification de GMM dans cette condition de singularité. Il ressort de notre étude que

les paramètres qui sont identifiés au premier ordre gardent la vitesse de convergence usuelle qui est

de l’ordre de vt, T étant la taille d’échantillon, alors que les autres paramètres ont une vitesse de

convergence plus lente de l’ordre de T”4. Ces comportements atypiques ont pour effet de changer la

distribution asymptotique de la statistique du test de suridentification, qui suit un mélange de Chi

carré plutôt qu’une Chi carré.

Une deuxième contribution de cet essai est de réexaminer les bases théoriques du test de facteurs

hétéroscédastiques pour les processus multivariés de rendements proposé par Engle et Kozicki (1993).

Ce test est fondé sur les conditions de moment résultantes de la représentation factorielle et est
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une application du test des restrictions suridentifiantes de GMM. Nous montrons que les conditions

de moment d’Engle et Kozicki (1993), bien que vérifiant la condition d’identification du paramètre

d’intérêt, violent la condition d’identification au premier ordre. Par contre, l’identification au second

ordre y est assurée. Ceci nous place dans les conditions d’application de notre théorie asymptotique

qui nous permet de corriger la distribution asymptotique suggérée par Engle et Kozicki (1993). Nous

observons en outre que la distribution asymptotique de Engle et Kozicki sur rejette l’hypothèse nulle

à un taux pouvant aller jusqu’à doubler le niveau nominal du test.

Dans le troisième essai nous proposons des méthodes d’inférence de bootstrap pour la volatilité

multivariée intégrée. La volatilité multivariée intégrée est une mesure de volatilité multivariée sous

jacente à des processus multivariés de diffusion à volatilité stochastique. Un estimateur convergent de

cette mesure de volatilité est la matrice de covariance réalisée, définie comme la somme du produit

des rendements multivariés évalués à partir des données de haute fréquence. Barndorff-Nielsen et

Shephard (2004) proposent une théorie asymptotique pour la matrice de covariance réalisée. Dans ce

chapitre nous proposons une inférence par bootstrap plus exacte en échantillon fini que l’approximation

asymptotique proposée par Barndorff-Nielsen et Shephard (2004).

Avec la richesse croissante des données financières, l’utilisation de statistiques fondées sur les

données de haute fréquence ainsi que leur application en économie financière sont de plus en plus

prépondérantes. La plus connue de ces statistiques est la volatilite réalisée. Son analogue multivarié

est la matrice de covariance réalisée. Beaucoup de mesures de risque en finance sont fonctions de

la matrice de covariance réalisée. On peut citer notamment la covariance réalisée, la corrélation

réalisée ainsi que le coefficient de régression réalisé. Lorsque deux actifs sont considérés et l’un est le

rendement sur le portefeuille du marché, le coefficient de régression réalisé devient le bêta du titre.

Selon la fameuse théorie du capital asset pricing model (CAPM), le bêta mesure le risque systématique

du titre.

Malgré la popularité grandissante des statistiques sur données haute fréquence, beaucoup reste

à faire sur l’inférence pour ces statistiques. Barndorff-Nielsen et Shephard (2004) ont récemment

proposé une théorie asymptotique pour la distribution de la matrice de covariance réalisée. Leur

théorie permet de déduire les distributions asymptotiques de la covariance, de la corrélation ainsi que

la régression réalisées entre deux rendement d’actifs. Toutefois, d’après les résultats de simulations
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qu’ils ont rapportés, l’approximation asymptotique souffre d’importantes distorsions en échantillon

fini. Cette limitation est accentuée dans la pratique par le phénomène de microstructure de marchés,

qui en soi réduit la validité des statistiques si les données considérées sont sur base de fréquence trop

élevée.

Le troisième essai de cette thèse propose des méthodes de bootstrap comme alternative à la théorie

asymptotique de Barndorff-Nielsen et Shephard (2004). Nous considérons le bootstrap i.i.d. appliqué

au vecteur de rendements. Les données de bootstrap sont obtenues par tirages aléatoires des rende

ments multivariés originels.

Le bootstrap i.i.d. a été récemment proposé par Gonçalves et Meddahi (2006) dans le contexte

univarié de la volatilité réalisée. Les données de bootstrap sont indépendantes et identiquement dis

tribuées par construction et donc le bootstrap i.i.d. détruit le caractère hétéroscédastique des modèles

de volatilité stochastique. Pour le cas de la volatilité réalisée, Gonçalves et Meddahi (2006) montrent

que le taux de convergence vers zéro de l’erreur du bootstrap i.i.d. est du même ordre que le taux

de convergence de l’erreur implicite dans l’approximation asymptotique. Cependant, les simulations

de Gonçalves et Meddahi (2006) montrent que ce bootstrap est supérieure à la distribution asymp

totique même quand la volatilité est stochastique. Ils donnent une explication théorique pour cette

amélioration.

Dans cet essai, nous étendons l’analyse de Gonçalves et Meddahi (2006) au cas multivarié. Nous

considérons le bootstrap i.i.d appliqué au vecteur de rendements. Dans le contexte de la régression

réalisée, l’application du bootstrap i.i.d. au vecteur de rendements correspond à un bootstrap par

couples, tel que proposé par Freedman (1981) pour des modèles de régressions de coupes transversales.

Les résultats de Preedman (1981) et de Mammen (1993) montrent que le bootstrap par couples est non

pas seulement robuste à la présence d’hétéroscédasticité dans l’erreur de la régression, mais il est même

plus précis que la distribution asymptotique normale. Donc, le bootstrap i.i.d. paraît un candidat

naturel dans le contexte de régressions réalisées même lorsque le modèle multivarié en question est un

modèle de volatilité stochastique.

Nous montrons la validité asymptotique de bootstrap i.i.d. au premier ordre pour la matrice de

covariance réalisée ainsi que pour des fonctions de ces éléments telles que la covariance réalisée et les

coefficients de corrélation et de régression. Nos simulations montrent la supériorité remarquable du
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bootstrap sur l’approximation asymptotique, particulièrement sur les données de faible fréquence.

Nous dérivons l’expansion d’Edgeworth de la distribution de bootstrap pour la statistique de Stu

dent associée au coefficient de régression réalisé. Contrairement aux résultats de Mammen (1993),

notre analyse montre que le bootstrap par couples ne permet pas une amélioration du taux de conver

gence de l’erreur de bootstrap dans l’estimation de la distribution de la statistique par comparaison

avec l’erreur de l’approximation asymptotique. Nous conduisons une analyse détaillée du bootstrap

par couples qui nous permet d’expliquer les différences de résultats obtenues. En particulier, nous mon

trons que les scores implicites à la régression réalisée ne sont pas individuellement de moyennes nulles

(même si leur sommes demeurent de moyenne nulle). Par contre, Freedman (1981) et Mammen (1993)

dérivent leurs résultats en faisant cette hypothèse. Le fait que chaque score ne soit pas de moyenne

nulle individuellement crée un biais dans l’estimation de la variance de la régression par la méthode

de Eicker-White et explique le besoin de l’estimateur de la variance de Barndorff-Nielsen et Shephard

(2004), qui est plus sophistiqué que l’estimateur usuel de Eicker-White. Nous montrons que la variance

de bootstrap par couples coincide avec l’estimateur de Eicker-White et donc elle n’est pas robuste à

la présence d’hétéroscédasticité dans notre contexte de modèles de volatilité stochastique. Ceci con

traste avec les résultats de Friedman (1981). Par contre, les scores de la régression de bootstrap sont

individuellement de moyennes nulles et donc la statistique de bootstrap utilise l’estimateur de Eicker

Wfflte et non pas celui de Barndorff-Nielsen et Shephard (2004). Le fait que les deux statistiques,

celle de bootstrap et la statistique originelle, utilisent des estimateurs de la variance différents explique

pourquoi le bootstrap par couples ne permet pas une amélioration de l’approximation asymptotique

dans notre contexte.

Le quatrième essai se démarque des questions de volatilité multivariée et a une contribution

méthodologique plus générale. Il s’inscrit dans la littérature récente réinterprétant la méthode GMM

à travers la vraisemblance empirique.

La technique d’inférence la plus populaire pour des modèles basés sur des conditions de moment

est la méthode des moments généralisée proposée par Hansen (1982). La portée de cet outil s’explique

surtout par sa simplicité et son efficacité asymptotique. Toutefois, plusieurs études ont rapporté des

performances relativement faibles de l’approximation asymptotique du GMM en échantillon fini (voir

e.g. Altonji et Segal (1996) et Andersen et Sorensen (1996)). Depuis lors, la littérature économétrique
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a connu un développement soutenu d’estimateurs alternatifs. Comme exemple, nous pouvons citer

l’estimateur de OMIvI à mise à jour continue de Hansen Heaton et Yaron (1996), l’estimateur de max

imum de vraisemblance empirique tEL) de Qin et Lawless (1993), l’estirnateur “exponential tilting”

de Kitamura et Stutzer (1997) qui sont tous à la fois membres de la classe d’estimateurs de divergence

minimum de Corcoran (1998) et de la classe d’estimateurs de vraisemblance empirique généralisée de

Newey et Srnith (2004).

De ces estimateurs concurrents à l’estimateur de GMM, l’estimateur EL est connu comme celui

ayant un biais en échantillon fini le plus désirable (Newey et Smith(2004)). Cependant, cet estimateur

a deux défauts majeurs. En plus d’être très demandant en matière de calcul, il est aussi très instable

lorsque le processus générateur des données dévie, ne serait ce que légèrement, des conditions de mo

ment postulées par le modèle. Ceci a motivé la proposition par Schennach (2007) de l’estimateur de

maximum de vraisemblance empirique via minimum d’entropie (exponentially tilted empirical likeli

hood) (ETEL). Cet estimateur jouit du même ordre de biais en échantillon fini que l’estimateur EL

tout en restant stable en cas de mauvaise spécification des conditions de moment. Mais ETEL demeure

aussi intensif en calcul que l’estimateur EL. Antoine, Bonnal et Renault (2007) propose l’estimateur

de vraisemblance empirique euclidienne à trois étapes (3S). Cet estimateur est à la fois simple de

calcul et a le même ordre de biais en échantillon fini que l’estimateur de maximum de vraisemblance

empirique.

Une des contributions de cet essai est d’étudier l’estimateur 3S lorsque les conditions de moment

sont mal spécifiées. Il montre que même dans ces conditions non standard, l’estimateur 38 converge

à la vitesse habituelle et est asymptotiquement normalement distribué. La distribution asymptotique

de l’estimateur 3S robuste à la mauvaise spécification est aussi proposée. Cependant, l’estimateur 3S

a un défaut qui est relié à la nature des probabilités impliquées qui sont utilisées dans son calcul.

Ces probabilités impliquées sont obtenues de la vraisemblance empirique euclidienne et sont connus

comme pouvant être négatives en échantillon fini. Ceci peut être la cause de certains comportements

erratiques de l’estimateur 3S en échantillon fini comme nous l’avons observé dans nos simulations.

Pour remédier à cette limite, Antoine, Bonnal et Renault (2007) suggèrent l’utilisation des proba

bilités impliquées corrigées dans le calcul de l’estimateur 3S. Nous redéfinissons formellement l’estimateur

38 à partir des probabilités impliquées corrigées proposées par Antoine, Bonnal et Renault (2007) et
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qui sont par définition toujours positives. Nous renforçons en outre le facteur de correction de façon à

assurer à l’estimateur résultant (que nous appelons estimateur de vraisemblance empirique euclidienne

à trois étapes corrigé ou shrurik three-step Euclidian likelihood estirnator (s3S)) une convergence à la

vitesse usuelle, \/, vers une distribution asymptotique normale en cas de mauvaise spécification des

conditions de moment. Nous proposons aussi la distribution asymptotique de l’estimateur s3S robuste

à la mauvaise spécification des conditions de moment.

La deuxième contribution de cet essai est la proposition d’un algorithme simple permettant d’obtenir

des estimateurs de moyennes de population de biais en échantillon fini de même ordre que les estima

teurs de vraisemblance empirique grâce aux conditions de moment suridentifiantes.
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Chapter 1

ConditionaÏly Heteroskedastic Factor Models with
$kewness and Leverage Effects
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1 Introduction

Conditional heteroskedasticity is a well-known feature of financial returns. In addition, returns are

often characterized by the presence of skewness (i.e. returns have an asymmetric distribution) and

leverage effects (i.e. the fact that a negative shock on returus has a larger impact on volatility than

a positive shock of the same magnitude). Sec for example Nelson (1991), Glosten, Jagannathan and

Runkle (1993) and Engle and Ng (1993) for studies dodumenting the presence of leverage effects in

finaricial time series, and Ang and Chen (2002), Harvey and Siddique (1999, 2000) and Jondeau and

Rockinger (2003) for the skewness effect.

The finance literature bas recognized the importance of taking into account higher order moments

in asset pricing models. An early example is Rubinstein (1973) (sec also Kraus and Litzenberger

(1976) for an empirical implementation of Rubinstein’s (1973) model), who proposes an extension of

the capital asset pricing model (CAPM) allowing for skewness in the unconditional distribution of

returns. More recently, Harvey and Siddique (2000) extend Kraus and Litzenberger’s (1976) model to

the dynamic context by allowing third conditional moments to be time varying. The option pricing

literature bas also recognized the importance of modeling higher order moments. In particular, as

pointed out by Huli and White (1987), the misspecification of the third order conditional moment can

yield inaccurate option prices. This has motivated the development of option pricing models that take

into account the skewness effect in the underlying asset. One recent example is Christoffersen, Heston

and Jacobs (2006).

In the univariate context, Harvey and Siddique (1999) arid Jondeau and Rockinger (2003) find

that taking into account the skewness effect has an impact on the volatility persistence estimates.

More specifically, for a set of daily and monthly index returns, Harvey and Siddique (1999) estimate

univariate GARCH-type models that allow for time-varying conditional third-order moments. Their

empirical results show that the estimates of volatility persistence decline when the moUd allows for

the presence of skewness. They also find that the leverage effect tends to disappear following the

introduction of skewness. These resuits are confirmed by Jondeau and Rockinger (2003), who also

consider the effects of modeling the kurtosis in addition to the skewness effect. These studies show that

empirically it is important to model the skewness and the leverage effects when building conditional
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heteroskedastic models for asset returns.

Although the finance literature in the univariate context has recognized the importance of rnod

ding skewness and leverage effects, few attempts have been made to model both effects jointly in

the multivariate framework. This is the case in the conditionaliy heteroskedastic factor model lit

erature. In their seminal paper, Diebold and Nerlove (1989) assume conditional Gaussianity and

postulate that the common factor follows an ARCH model, therefore not allowing for the presence of

skewness nor leverage. More recently, Fiorentini, Sentana and Shephard (2004) propose a condition

ally heteroskedastic factor model that allows for a dynamic leverage eftect but impose a conditional

Gaussianity assumption that rules out the conditional skewness.

In this paper we extend the existing class of multivariate conditionally heteroskedastic factor models

by specifying simultaneousiy the skewness and the leverage effects. To the best of ouï knowledge, we

are the first to write and estimate a conditionally heteroskedastic factor model that specifies jointiy

these two effects. In our model, ail the dyriamics in moments (and cross sectional, or co-moments) of

asset returns are driven by a common latent factor. The conditional heteroskedasticity of the common

factor follows a square foot stochastic autoregressive volatility model (SR-SARV) as in Andersen

(1994), Meddahi and Renault (2004) and Doz and Renault (2006). The leverage effect is modeled as

an affine function of the conditional variance. This specification encompasses many of the existing

models in the literature (e.g. the affine process of Dai and Singleton (2000)). The skewness effect is

also modeied as an affine function of conditionai variance. We show that this specification is robust

to temporal aggregation when the leverage effect is present.

Recently, Doz and Renault (2006) (henceforth OR (2006)) study the identification and estimation

of a conditionally heteroskedastic factor model. Specifically, DR (2006) provide a set of moment

conditions that identify their factor model and allow for inference by Generalized Method of Moments

(GMM), thus avoiding restrictive distributional assumptions. Ouï model is an extension of DR’s

(2004) model that expiicitly models the skewness and the leverage effects. We foilow OR (2006) and

provide a set of moment conditions that identify the parameters of ouï extended rnodei. We conduct

a Monte Carlo experiment to investigate the finite sample properties of our estimation procedure for

several values of the volatffity persistence. We find that the method performs well in term of bias and

root mean square error (RIVISE) across our different models, except when the volatility persistence is
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very close to 011e.

We consider an empirical application of our model to a set of 24 daily stock index returns, including

the FTSE 350 stock index return and 23 sectoriai U.K. index returns. A rnonthly version of these

data has previously been modeled by Harvey, Ruiz and Sentana (1992) and Fiorentini, Sentana and

Shephard (2004) with a conditional heteroskedastic factor model. Our empirical study differs from

theirs in that we analyze daily data and we model explicitly the dynamics of conditional higher order

moments beyond the first and the second moment. For our data, we document strong evidence of

conditional heteroskedasticity, as well as conditional ieverage and skewness eftects for ail series. We

also find evidence of significant co-skewness between the sectorial indices and the FTSE 350 index.

Our empirical findings suggest the appropriateness of a conditionally heteroskedastic factor model with

asymmetries (i.e. with leverage and skewness effects). We estirnate oui model by GMM. The fact that

the volatility persistence on the factor is far away from one suggests that our procedure is vaiid in this

application, given our Monte Carlo resuits. We also estimate the DR (2006) version of our model for

which the skewness and leverage effects are not explicitly modeled. The first suggestion of our resuits

is that there may be a substantial efficiency gain when both the conditional skewness and the leverage

effects are modeled. In our case, the G)1M standard error estimates of the parameters shared by

both models drop sharply in our model compared to the DR (2006) model. Our resuits also suggest

the presence of a significant leverage effect driven by a common factor in daily UK sectorial returns,

confirming the resuits in Sentana (1995) for monthiy data. The estimates of the volatility persistence

for both our model and DR’s (2006) model are relatively low and simiiar to one another. Since

both models allow for the presence of conditionai skewness (our model explicitly models it whereas

DR (2006) does not, aithougli it does not rule it out), the low persistence in volatility we obtain

is consistent with the empirical resuits of Harvey and Siddique (1999) and Jondeau and Rockinger

(2003) for univariate GARCH-type models, namely that conditional variance is less persistent when

the conditional skewness is flot ruled out. We also document the fact that an increase in volatillty is

associated with a more negatively skewed conditional distribution for the returns.

In our framework the common factor and the volatihty for each asset are latent processes. We

therefore propose an extended Kalman filter algorithm that provides a filter for both the latent factor

and the volatility processes. Our filter algorithm is different from the ifiters proposed by Diebold
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and Nerlove (1989) and King, Sentana and Wadhwani (1994) in which the volatility process is a

deterministic function of the latent factor process. Here both the latent factor and the volatility

processes are unobserved and need to be considered as state variables. We apply our filter to the

conditionally heteroskedastic factor model with the parameters estimated by the moment conditions

given in DR (2006). We then perform some diagnostic tests on the filtered factor and volatility

processes. Based on these tests, we cannot reject the correct specification of our model for the third

conditional moments and the leverage effects. Moreover, we find that the filtered volatility process

obtained with our model parameter estimates performs better than the filtered volatility process that

relies on DR (2006) model pararneters estimates, particularly in the periods of large shocks on returns.

‘Ve explain this performance by the efficiency gain resulting from the returns’ asymmetries modeling.

The remainder of the paper is organized as follows. In Section 2, we present the surnmary statistics

for the data used in our empirical application. We also document the presence of dynamic leverage

and skewness effects in our series. Section 3 presents our conditionally heteroskedastic factor model

with skewness and leverage effects. Section 4 studies its temporal aggregation properties. Section 5

discusses the identification and estimation of the model. Section 6 contains the Monte Carlo study

whereas Section 7 contains the empirical resuits. Section 8 concludes. The extended Kalman filter

algorithm is presented in Appendix A. Appendix B contains the data description and ail the tables

with the empirical resuits. The proofs appear in Appendix C.

2 Empirical motivation

In this section we provide some empirical motivation for the need to account for asyrnmetric effects

in both the conditional distribution (conditional skewriess) and the conditional variances (leverage) of

the data used in our empirical application. Our data set consists of 25 daily UK stock market index

returns, including the FTSE 350 and 24 other sectorial indices, ail of which in the FTSE. For the

empirical application in Section 7, we restrict the set of index returns to 24. In particular, we exclude

the FTSE Ah Share ex. mv. index because it is highly correlated with the FTSE 350 (with correlation

coefficient 0.99) and including both indices could causes problems of multicollinearity. The data source

is Datastream. Appendix B contains more details on the data. The period covered is January 2, 1986

to December 30, 2004, for a total of 4863 daily observations. Only trading days are considered. For
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each index, we compute the daily log excess return, using the log return of the UK one month ban

index, the JPM UK CASH 1M, as the risk free interest rate. Appendix B contains ail the tables with

the empirical resuits in the paper.

Table 1.1 shows the correlation matrix of the 25 index excess returns we consider in this paper.

Table 1.2 gives some descriptive statistics for our data, including the sample skewness and the kurtosis

coefficients. We find that ail indices have negative unconditional skewness (ranged from -1.70 to -0.00)

except for the health sector index, which has positive skewness. However, this is not statistically

significant at the 10% level. Out of the remaining 24 indices, 11 have statistically significant negative

skewness. To test for the significance of skewness, we use a GMIVI-based test. In particular, we rely on

a Wald type test involving the difference between the sample skewness and its nuil value, appropriately

studentized. The asymptotic distribution of this test is easily obtained from the asymptotic distribu

tion of the sample mean, given the delta-method and the fact that the skewness is a smooth function

of the mean. To studentize the statistic, we follow Ang and Chen (2002) and estimate the long run

variances by the 6-lags Newey and West (1987) heteroskedasticity and autocorrelation robust estima

tor using the Bartlett kernel. The presence of skewness in the distributions of the daily excess returns

in the U.K. sectorial indices analyzed here agrees with similar evidence for other financial return se-

ries found by Harvey and Siddique (1999), Ang and Chen (2002) and Jondeau and Rockinger (2003),

arnong others. Although the results in Table 1.2 apply to excess returns, risk-free rate adjusted. we

also found evidence of skewness for the demeaned series, both adjusted for the day-of-the-week effect

and filtered by autoregressions. Because the results did not change substantially, we do not report

these results here.

The coefficient of unconditional kurtosis (which ranges from 6.72 to 18.62) is high for ah series.

Jointiy with the values obtained for the unconditional skewness coefficients, the excess kurtosis values

suggest that the normal distribution is not an appropriate description of our data, a stylized fact of

many other financial time series. The Bera-Jarque normality test for dependent data proposed by Bai

and Ng (2005) rejects the normality assumption for aH the series. To conserve space, we do not report

the resuits here. Figure 1.1 below confirms this resuit for the FTSE 350 stock index excess return. It

gives the QQ plot for this series, i.e. it plots the empirical quantiles of the FTSE 350 index excess

returns against the corresponding quantiles of the standard normal distribution. The departure from
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the normal distribution is clear and we can also notice the negative skewness of the FTSE 350 index.

Figure 1.1: Q-Q plot of the FTSE 350 index daily excess return

++ +
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Siandard Normal Quantilos

Table 1.2 also shows strong evidence of conditional heteroskedasticity as indicated by Engie’s

(1982) Lagrange multipliers tests of orders 1 and 5, denoted Eng(1) and Eng(5), respectively. The

values of these statistics correspond to TR2, where T is the sample size and R2 is the R-squared

from the regression of squared returns on a constant in addition to one and five lagged squared

return, respectively. Under the nuli hypothesis of conditional homoskedasticity, TR2 follows a chi

squared distribution with 1 and 5 degrees of freedom, respectively. The resuits indicate strong rejection

of the nuil hypothesis of conditional homoskedasticity for ail series. The Ljung-Box statistics for

autocorrelation up to order 5 and 10 (QW(5) and QW(10), respectiveiy) reveal the presence ofpotential

autocorrelation in the data. Similarly, the first order autocorrelation coefficients (5 in the table) are

statisticaliy significant for most time series, with some of the higher order autocorrelation coefficients

remaining significant for some of them. Nevertheless, their magnitude is not very large (for instance,

varies between 0.02 and 0.23).

In Table 1.3 we present the resuits of diagnostic tests for the impact of news on volatility, as

proposed by Engie and Ng (1993). These tests are the sign bias test, the negative size bias test, and

the positive size bias test. They test for the significance of inciuding the levei of past standardized

returns on the coilditional variance equation and therefore can be used to test for the presence of

leverage effects. Specifically, the sign bias test is a t-test for the significance of a dummy variable

SZ1 (that takes the value one if the innovation to returns is negative and zero otherwise) in the
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regression of squared standardized returns on S1. It checks whether volatility depends on the sign

of the past innovation to returns. The negative (positive) size bias test instead checks whether the

size of a negative (positive) return shock has an impact on volatility. We also inciude a joint test

that tests simultaneously if any of these effects is present. We performed the diagnostic tests on the

standardized index excess returns (using a GARCH(1,1) model as the nuli model under consideration

as used by Engle and Ng (1993) in some of their applications) and on a filtered version of these,

adjusted for the day-of-the-week and containing an autoregressive correction term. Since the resuits

are similar, we only report the resuits for the centered excess return series in this paper. Table 1.3

shows that the sign bias test is significant for 10 out of the 25 time series considered. Nevertheless, the

negative and the positive size bias tests are strongly significant for nearly ail indices, which translates

into significant joint tests for ail of the series we analyze. We conciude that a GARCH(1,1) model is

not a good description of volatility for the UK sectorial indices because it misses important ieverage

effects present in the data.

Our resuits so far suggest that a realistic data generating process for our data set should incorporate

both leverage and unconditional skewness effects. Next we analyze the dynamic properties of these

effects. In particular, we investigate the empirical content of two specifications for the conditionai

ieverage and skewness effects. We modei the dynamic ieverage and the skewness eftects as affine

functions of volatihty. Specifically, let denote the excess return on the index i at time t + 1

and let ii,t+1 denote the conditionai variance of ,t+2 at t + 1. Let J denote the information set

available at t. The conditional leverage effect is given by CovÇY+i, which we model

as Gov(Y,t+i, >D,t+iIJt) = lro + We test whether In 5 signfflcantly different ftom zero by

regressing e,t+i x on 1 and where ej,i is the unanticipated part of as measured by

the centered excess return —ii, and where Ê,t+i is the squared daiiy excess return at t+2, used

as a proxy’ for conditional volatility ii,t+1 of at t+ 1. Similarly, we assume that the conditional

skewness of excess returns is given by E()’+1IJt) ho + h1>l,t and test for the significance of h1 in

the regression of on 1 and

The results appear in Table 1.4. Both in and h1 are significantly different from O for ail indices.

1Even though this proxy is known to be noisy, it gives us some insights for the dynamics in the skewness and leverage
effects for our data. We vi11 complement this preliminary analysis with more sophisticated diagnostic tests for our model
in Section 7.
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Except for the Persnl. Care & Hhld. Prods and the Health sectors, the estimates of 7T1 and h1 are

negative for ail of the sectors. The 1s are ranged from -2.82 to 0.37 while the h1s are ranged from

-3.50 to 0.37. This means, for most of the indices that large increases in their volatility are associated

to significant drops in both their leverage and their conditional skewness. These resuits, in particular,

suggest that the leverage and skewness effects are time varying and their dynamics can be captured

by an affine function of voiatihty.

To provide more evidence for these dynamics, we also use the (log) high-low range-based volatility

estimator as a proxy for the conditional variance (see Parkinson (1980) and Brandt and Diebold

(2004)). We perform these regressions only for the FTSE 350 index return. The series we consider

cover the period from October 12, 1992 through October 13, 2006 for a total of 3511 daily observations.

The conditional leverage and skewness regressions give i = —0.27 and îii = —0.23, respectively. As in

the previous case, both coefficient are strongly significant with -15.99 and -13.95 as t-stat, respectively.

Next, we perform some usefui regressions to investigate the empiricai content of an asymmetric

factor model for our data2. We argue that if the data have a factor representation, the FTSE 350

index excess return should be a good proxy for this factor3. And, for such an asymmetric factor model

to hold, both the conditional leverage and the skewness effects in our series should significantly be

explained by the factor or equivaientiy by the FTSE 350 index excess return volatibty. Let Y1, denote

the FTSE 350 index excess return at time t, the conditionai variance of Yi,t+i at tiine t and

= its proxy. We test whetlier lrf,i, the siope of the regression of Ei,t+1 x Êyi,÷i on 1 and

is statistically different from zero. We also test whether hf,l, the slope of the regression of

on 1 and Ê11, is significantly different from zero.

The resuits appear in Table 1.4. Both 7rji and hfi are statistically significant for ail indices. The

estimates of these parameters lie between -2.45 and -0.94 for ir i, and between -7.73 and -0.77 for

hfi. These results suggest that the conditional leverage and skewness in the index excess returns can

also be explained by the FTSE 350 index excess return with the same qualitative interpretations as in

the last regressions. We also compute the co-skewness of of each of the index excess returns with the

FTSE 350. Table 1.4 shows the results. Ail of the co-skewnesses are negative (ranging from -0.96 and

2To the best of our knowledge, there is no test for skewness and leverage effects in the factor of a rnultivariate factor
representation.

3This is conflrmed by the higb correlation coefficient (larger than 0.90) between the flltered factor and the FTSE 350
index excess return that we obtain in our empirical application in Section 7. See Table 1.9.
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-0.13). These further investigations show evidence of potential common component in the asymmetric

behaviour of the return processes.

In the next section we will propose a conditionally heteroskedastic factor model that incorporates

dynamic conditiorfal leverage and skewness effects modeled as affine functions of volatility.

3 The model

The main goal of this section is to propose a conditionally heteroskedastic factor model with skewness

and leverage effects. To introduce some notation, we flrst present a conditionally heteroskedastic factor

model for which these effects are not explicitly present. This model was recently studied by DR (2006)

in the context of IV identification and estimation by GMM (see also Diebold and Nerlove (1989),

King, Sentana and Wadhwani (1994), and Fiorentini, Sentana and Shephard (2004) for a discussion

of conditionally heteroskedastic factor models). We will then present our model, which extends DR’s

(2006) model to include skewness and leverage dynamics.

3.1 A benchmark model

Let Y4 be a N x 1 vector of (excess) returns on N assets from time t until time t + 1, Ft+i a K x 1

vector of K unobserved common factors, and Ui a N x 1 vector of idiosyncratic shocks. DR (2006)

consider the following conditionally heteroskedastic factor model for Y1,

= ,u(Jt) + AF+1 + U+1, (1)

with
E(Ut+iJ) = O
E(F+iJt) = O
E(U+iFJ+1J) = 0 (2)
Var(U+iJ) = Q
Var(Ft+iIJt) =

where J is a nondecreasing filtration defining the relevant conditioning information set containing

the past values of Yr,r t and and Fr,r Ç t, p(Jt) is a N x 1 vector of J—adapted components

representing the risk premia, A is the N x K (N K) full column rank matrix of factor loadings,

Dt is a diagonal positive definite matrix of K time-varying factor variances, and Q is the conditional

covariance matrix of the idiosyncratic shocks U,1.
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The existing literature bas made several assumptions about OE The strict factor structures as

in Diebold and Neriove (1989), King, Sentana and Wadhwani (1994) and Fiorentini, Sentana and

Shephard (2004) impose !1 to be diagonal. The approximate factor structures as in Chamberlain and

Rothschild (1983) and DR (2006) relax this assumption, allowing for nonzero off-diagonal elements.

An advantage of the approximate factor representation is that it is preserved by portfolio formation,

differently from the strict factor representation (see Chamberlain and Rothschild (1983), DR (2006)

or Fiorentini, Sentana and Shephard (2004)).

Under (1) and (2), the conditionai variance of Y4 given the information available at time t is

given by:

E,=Var(Y+iIJt)=ADtA’+OE (3)

The decomposition in (3) shows that the conditional variance of Y is time-varying, thus explaining

why model (1) and (2) is called a conditionally heteroskedastic factor model.

For simplicity, we consider a constant risk premium for ail assets, i.e. we assume ji (Je) = t for

ail t. Following Nardari and Scruggs (2006), this restriction allows for the pricing relation z = Ar,

where r is a K x 1 vector of tirne-invariant factor risk premia. To simphfy the exposition, we also

assume a single factor representation, i.e. we wiIl let K = 1 throughout. The generalization to K > 1

is nevertheless straightforward even though the inference issues may need to be discussed. Therefore,

the modei above specializes to

= R + Àft+i + (4)

where ft+i is the single common latent factor and À is a N x 1 vector of factor loadings. The moment

conditions in (2) can be rewritten as

E(ft+iJt) = O

E(Uj+iIJt) = O

E(ft+iUt+iIJt) 0 (5)

Var(Ut÷iJt) =

Var(fj1JJj) = u?,
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implying that the conditional variance of Y given Jt is equal to

(6)

To model ?, the conditional variance of f; at time t, we follow DR (2006) and assume that

ft follows a square root-stochastic autoregressive volatility (SR-SARV(1)) model with respect to the

filtration Jt (see Andersen (1994) and Meddahi and Renault (2004) for more details on this class of

models), i.e.

ft+i =

where u, the conditional variance of ft+i, satisfies the following condition:

E(uJti)=w+7u_1, w0, y(O,l),

and where 7]t+1 is such that E(r,t+ilJt) = O and Var(t+iIJt) = 1.

Equations (4) through (5) describe the conditionally heteroskedastic model considered by DR

(2006). Our main contribution in this section is to extend this model by explicitly modeling the

skewness and the leverage effects.

3.2 The leverage effect

Fiorentini, Sentana and Shephard (2004) consider a conditionally heteroskedastic factor model that

allows for a dynamic leverage effect. Nevertheless, in their model, the leverage effect is tightly linked

to the QGARCH specification of Sentana (1995) for the conditional variance of the common factor.

Here we adopt a different approach that disentangles these two features.

Given (6), we cnn write the conditional variance of asset j at time t + 1 as

22 c
= o+ + tii,

where E+1 denotes the element (j, j) of the matrix E+y, and similarly for Çjj.

Let u,t+i be the i-th component of The conditional leverage effect at t + 1 can be expressed

as the conditional covariance between and given J, i.e.

Cov (,t+i, E,j+iIJt) = Goy (i ft+i + ui,t+i, u+’ +

= ?Cov (ft+i,u+iJt) + Gov (u,t+i,u+1IJt). (7)
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Equation (7) shows that the leverage effect for each return has two components. The first component

reflects the part of the leverage effect that ïs due to leverage in the common factor whereas the second

component is given by the conditional covariance between the idiosyncratic shock and the future

volatility of the factor. The dynamics of each component dictate the dynamics of the leverage effect.

In thîs paper we assume that the idiosyncratic shock is flot conditionally correlated with the

conditional variance of the factor. We formally state this assumption below.

AssuMPTI0N 1 The conditionat coTretation between ni,t+i and o for each asset i is zero:

Cov(uj,+y, o+1Jt) = O, i = 1, ..., N.

This assumption implies to imposing a nuil correlation between u and f+1 The following

assumption gives a model for the leverage effect for the latent factor.

AssuIPTIoN 2 Cov(fj+;, +iIJt) = iro + ir1a, for some constants ire and ir.

According to this assumption, the leverage effect for the factor is an affine function of its conditional

variance. As we will show next, this specification holds for many models in the class of SR-SARV

processes4:

ExAMPLE 1 The A1 (3)-affine famity processes5 (Dai and Singleton (2000), Singleton (2001)).

Let ft+i be defined by

ft+i a + VjE1,t+1 + UiE2,t+1 + J22 + /3VtE3,t+l, et+iIJt (O, 13)

gt+i = v + (1
— v)0 + + /3VtC3,t+i + U3E2,t+1 + U4 + VtE1,t+l,

vt+1 = + (1
— /L)Vt + i7/i5€2,+i,

where (a, j3, i, y, z, , &, , u, cr, u3, c74) E D, a conveniently restricted subset of R12. It follows that

Cov(ft+i, o?+iL1t) = —uii2(a+u 2)+uiij2u =no±ir1u.

w Var (ft+iJJt) = a + u2 + (1 + gj2 + u/3)vj. Thus, the affine process verifies Assumption 2.

4IVIany of our examples correspond to the discrete version of continuous time models used in finance.
u3ackus_Foresi_Telmer(2001) use the discrete time version of the Cox-Ingersoll-Ross’s (1985) diffusion process to

propose an affine model ofcurrency. The affine process nests the square-root process of Heston (1993) and Cox-Ingersoil
Ross (1985).
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ExAvIPLE 2 The Quadratic GARCH (QGARCH(1,1)) of Sentana (1995).

Let ft+i be given by

ft+i = utijt+i, it+iIJt’-V(0, 1),

where u is such that

= 9+/3u_1 +c(ft
_)2, (9 ) E D

It follows that

Cov(Jt+i, uj J) = —2aw?

showing that QGARCH(1,1) satisfies Assumption 2.

ExAMPLE 3 Heston-Nandi ‘s (2000) GARCH process.

Let ft+i be given by

ft+i = otijt+i, t+iIJt’.N(0, 1),

where o is defined as follows:

U+1 = W + + a(?]t
— 7Gt)2, (w, , a, 7) E D.

We can show that

Coe(ft+i, u+1IJt) = —2ryu = 7rio,

proving that this model also satisfies our Assumption 2.

ExAMPLE 4 The Inverse Gaussian GARCH(1,1) of Christoffersen, Heston and Jacobs (2006).

In the Inverse-Gaussian-GARCH(1,1) (IV-GARCH (1,1)) model proposed by Christoffersen, fies-

ton and Jacobs (2006) for a random process ft÷i (e.g. a log return process), ft-i-i is written as the sum

of a deterministic random process and an innovation which follows an Inverse Gaussian distribution.

They show that this model is embodied in the class of SR-SARV(1) models and allows for a leverage

effect of the type considered in Assumption 2. In particular, they show that Cov(f+i, u+1Jt) = 7tU

for some ir1 where o is the conditional variance of ft+i.

Given equation (7) and Assumptions 1 and 2, we can write the leverage effect for asset i as follows:

Cav O’,t+i, = ) (no + 7ricr). (8)
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3.3 The skewness effect

In this section we propose a model for the dynamics in the conditional skewness of assets returns. This

effect has ofren been ruled ont in the conditionally heteroskedastic factor literature, which typically

postulates the conditional normality of (ft+i, Uf+1)’. To the best of our knowledge, we are the first to

model this effect in the conditionally heteroskedastic factor literature.

The finance literature on univariate processes bas modeled the skewness effect by specifying con

ditional distributions which allow for time varying conditional third order moments. See for instance

Hansen (1994), Harvey and Siddique (1999) and Jondeau and Rockinger (2003). Because we would like

to avoid any distributional assumptions, we will follow an alternative approach in which the skewness

effect is specified through a conditional moment restrictions.

Without loss of generality, assume that j’(J) = p = 0. It follows that for each i 1, ..., N,

E = ÀE (f?+iiJt) + E (î4+1jJt) + 3ÀE (f?+1u,t+iIJt) + 3ÀE (f+iu+1jJ).

In order to obtaiu a simplified expressiou for E (1”3+1IJ) we make the following assumption.

Note that DR (2006) use a similar assumption (see their Assumption 3.6).

AssuMPTI0N 3 and f?+ are conditionally uncorreiated with any polynomial fnnction of i,H4 of

degree smaller than three.

Assumption 1 assumes that f?-,- is conditionally uncorrelated with Assumption 3 extends

Assumption 1 by requiring that f?+1 be also conditionally uncorrelated with Assumptions 1

and 3 are satisfied if the latent factor is conditionally independent of the idiosyncratic shocks.

By Assumption 3,

E (f?+1u,t+iIJt) = E (ft+iut+iIJt) = 0,

which implies that

E(Y+1JJ) = ÀE(fijJt) +E(u,+1Jt). (9)

As a resuit, specifying the dynamics of the third order conditional moments of the factor and of the

idiosyncratic shocks is equivalent to modeling the third order conditional moment of the excess return.

We introduce the following assumption.
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ASSuMPTI0N 4 For ail j = 1,.. . , N,

E (î4t+1J) = s, s e R.

Assumption 3 assumes that the third order conditional moment of u,+i is time-invariant. The

idiosyncratic shocks are therefore not necessarily (conditionally) Gaussian, although we assume that

their first three moments are not time varying.

To model the conditional skewness in the conditional distribution of ft+i, we make the following

assumption.

AssuMPTION 5

E (f?+iJt) = h0 + hic?, h0, h1 e R.

According to Assumption 5, the conditional skewness in ft+i is an affine function of ?, the

conditional variance of the factor. As we will prove in Proposition 4.4 below, this specification is

robust to temporal aggregation of the model when the leverage effect is specified by Assumption 2.

IVioreover, this model has good empirical support for our data, as showed by our empirical resuits in

Section 2.

The models introduced in Examples 21-24 above satisfy Assumption 5 in addition to Assumption

2. Assumptions 3-5 imply that

= Àhic? + si, (10)

with s = )4h0 + s j 1,. . . , N. Equation (10) shows on the one hand that h0 and ? i = 1,. . . , N

cannot be simultaneously identified by the third conditional moment of the returns and on the other

hand that the conditional skewness of the returns, Y,t+i : i = 1,.. . , N are affine functions of c?.

Assumptions 2 and 5 nest the standard GARCH(1,1) models allowing for the possible presence

of skewness when the standardized innovation in ft+i, flu-i, has its third order conditional moment,

E(i,+1J), proportional to 1/ct. This is the case for the standard Gaussian GARCH(1,1) model.

However, this model (possibly with skewness) does not disentangle the skewness effect from the lever-

age. In particular, if ft+i is a GARCH(1,1) process, Goy (ft+i, ?+1IJ) = aE (fl1J1). This is

rather a drawback for this class of models as pointed ont by Alami and Renault (2001). In contrast,

Assumptions 2 and 5 allow for the two effects to be independent of each other.
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3.4 Our model

The following equations summarize our conditiorially heteroskedastic factor model with asymmetries.

= + ‘\ft+i + U1 (lia)

E(ft+iIJt) =0 (iib)

E(Ut+iIJt) =0 (11e)

Var(Ut+iIJt) (iid)

E(ft+iUt+iIJt) =0 (11e)

ïï i 2
u ar t) =

E (u?+iIJt) = i—7 + yu, y (0,1) (11g)

E [(Y,+1 — t)3Jt] = hiu? + si, i = 1,..., N (11h)

Cou (ft+i,u?+iJt) =lro+lryu?. (1h)

The skewness effect depends on the parameters h1 and s, for i = 1,. . . , N, while iro and characterize

the leverage dynamics. Equation (11g) specifies the factor volatility dynamics. The SR-SARV(1) model

restricts the volatility intercept w to 1
—

y, where y is the factor conditional variance persistence, such

that Eu? = Ef? = 1. This condition fix the scale problem that may arise out from the specification in

(lia) for the factor loadings and the latent factor. However, as pointed out by DR (2006), their model

giveri by Equations (ila)-(llg) identifies ail of the parameters involved except one arbitrary factor

loading. This remark remains true in our model. The additional conditional moment restrictions we

provide by (11h) and (1h) only identify the asymmetry parameters and some factor loading ratios

which ail are identified by (iia)-(lig). We will discuss this identification problem more extensively in

Section 5.

This identification issue is the first main difference between the conditional moment restrictions

based model we have here and the parametric factor models. The conditional joint distribution

assumption for (ft+i, U’+1) in parametric models together with the factor normalization identify the

whole model up to one factor loading sign. This sign indeterminacy is solved, as proposed by Geweke

and Zhou (1996), by restricting the sign of a particular factor loading to be positive. For a more
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extensive discussion about this identification issue for parametric models, see Geweke and Zhou (1996)

and Aguilar and West (2000).

Equations (11f) through (1h) show that the common factor drives the dynamics in the conditional

variance, the conditional skewness and the conditional leverage of assets returns. In particular, as we

showed in (8), the leverage effect for asset j can be expressed6 as

I \31
‘ii,t — “

where t,t Cou D,t+iIJ) denotes the leverage effect for the asset and tt Cov (ft+i, ?+iL’t)

denotes the leverage effect for the factor. Therefore, if an asset has a positive factor loading, its leverage

effect is positively correlated with the leverage effect for the factor. Instead, a negative relationship

holds between the two leverage effects if the factor loading is negative.

We can also define the co-leverage (or transversal leverage) between two assets i and j. This is

given by tij,t Cou (Yi,t+i, ,t+ijJ). Note that the order of the arguments matters in this definition

of the co-leverage. Specifically, tij,t hit. The co-leverage measures the impact of a shock on the

return of asset j today on the volatility of asset j tomorrow. Under our assumptions, it follows that

Ïjj, Cou (yi,t+i, Et+iJ1) = Cou (i ft+i + n,t+i, À +

= Cou(ft+i, u?+IJ)

implying that

= b,t. (12)

Equation (12) shows that the co-leverage of asset i on asset j has the same sign as the leverage effect

for asset j. Thus, if asset j has a negative leverage effect, a positive shock on asset i’ s return lowers

its future volatility, which increases the confidence level in asset i’s market, which ceteris paribus,

propagates to the entire fiiiancial market. Thus, a positive shock on asset i’s return reduces future

volatility for ah other assets, including asset j.

6Richer dynamics in the returns leverage may be obtained by including more factors in the model.
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4 Temporal aggregat ion resuits

Asset returns are available at many different frequencies. For instance, financial data are often available

at the daily, weekly, or rnonthly level, flot to mention the fact that higher frequency data at the

intraday level are also increasingly available in finance. Because lower frequency returus are just a

temporal aggregation of the higher frequency returns, an internally consistent model should be robust

to temporal aggregation. Drost and Nijman (1993) show that the standard GARCH model is not

robust to temporal aggregation and propose the weak GARCH model, which is robust te temporal

aggregation. IViore recently, Meddahi and Renault (2004) propose the SR-SARV class of volatility

processes and show that these processes are closed under temporal aggregation. See also Engle aiid

Patton (2001) for a discussion of the merits of temporal aggregatiori.

In this section, we show that the conditionally heteroskedastic factor model with asymmetries we

propose in this paper is robust to temporal aggregation.

Suppose we observe returns at t 1, 2 The relevant conditioning information set at time t is

Jt, which contains the past observations dated at tiines t and before. Suppose now we observe returns

at a lower frequency, in particular we observe returns at tm intervals, where t 1,2,..., and m is the

time horizon. For example, if we move from the daily to the weekly frequency, m = 5. In this case,

the relevant conditioning information set depends on the observations dated at times tin. We will cail

this information set In order to define we need to introduce some additional notation.

In particular, following Meddahi and Renault (2004), let aiYl)m+t, t> 1, denote the

process resulting from the temporal aggregation of Y over the time horizon ra. The coefficients ai,

t = 1,. .. , m, are the aggregation coefficients. For a ftow variable such as a log return, a1 = 1, for all

t 1, . . . , ra, whereas for a stock variable we have that a1 = 1 for t = m and O otherwise. Sirnilarly, let

ajF and be the temporal aggregation analogues cf F

and Ut. Following Meddahi and Renault (2004), we define o (v7, F4, u4}, Drm; r < t),

where, for any integer T, Drm Var (FTm+lIJTm), Jrm is the same information set as Jt with t = rm

and u(X) denotes the u-algebra generated by X. Meddahi and Renault (2004) show that the SR

SARV(1) model is robust to temporal aggregation with respect to the increasing filtration

PRoPosITIoN 4.1 Let )‘ be deflned by (1) and (2). Assume has a constant conditionat mean
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i. Then the tempoTally aggregated pocess of i’ oveT the time horizon m has the fottowing

representation

(m) = (m) + A1) + (13)

such that
E = O

E F)J = O

E U(m) F(m)’ j(m)
— o 14(t+1)m (t+1)m tm —

Var U)J (Zic

V f(m) (m) — (m)ar
(t+1)m tm — tm

where D) is a diagonal matriz and (m) is a time-invariant vector equat to cli) t’.

Proposition 4.1 shows that the temporal aggregation of 1’ over the horizon m, has the same

factor representation as Y,, where the idiosyncratic shocks and the latent factors are the temporal

aggregation analogues of the higher frequency idiosyncratic shocks and factors, respectively. Hence,

if we assume that each factor, component of F, follows a SR-SARV(1) model, as in our model in

(11) for the single factor, the results in Meddahi and Renault (2004) imply that each component of

f) inherits the SR-SARV(1) dynamics. We can therefore conclude that under our assumptions the

volatility specification assumed for the factor representation of 1’ in our model in (11) is robust to

temporal aggregation.

Next we study the properties of temporal aggregation of the models assumed for the leverage and

skewness effects (Assumptions 2 and 5, respectively). For simplicity we assume a single factor model

and let , 0.

The followillg proposition is auxiliary in proving the robustness of the skewness and leverage

models to temporal aggregation. It provides some useful properties of the SR-SARV(1) process not yet

established in the literature. In particular, this proposition gives the expected value of the conditional

variance conditional on the information available at any earlier period, and it also expresses the

conditional variance of an aggregated SR-SARV(1) process in terms of the conditional variance of the

original process.

PRoPosITIoN 4.2 Let ft+i fottow a $R-SARV(1) modet with votatitity persistence and intercept pa

rameter -y and 1
— ‘y, respectivety, and with conditionat variance ?. Then, for alt t 1, we have
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that

E(Um+t_iIJtm) = 1 y11

and
ni ni(rn)2

Var(f)mjJ)) = (i
—

+ m +

The leverage effect in the aggregated return of asset i is defined as

(m) (m)2 (m)Goy
(,(t+1)m’ Gi(t+l)miJtm )

2 /m) , ni) mwhere Var “i,(t+1)mtm

Giveri Assumptiori 1, it suffices to examine the leverage effect in the factor

( (m) (m)2 (ni)
0V

(t+1)m’ (t-f1)m tm

PRoposiTioN 4.3 Let fi fotlow a SR-SARV(1) modet with voÏatitity persistence and intercept para

meteT and 1
— , Tespectzvely, and satisfying Assumption 2. It fottous that

Goy (4-?1)’ mL4)

= (ni)
+

(m)(rn)2 (m) and E R.

Proposition 4.3 shows that the leverage model assumed in Assumption 2 is robust to temporal

aggregation for the class of SR-SARV(1) processes. Similarly, we can show that the equation (12)

describing the co-leverage effect for asset i on asset j holds for the aggregated process provided As

sumption 1 is satisfied.

The next resuit establishes the robustness to temporal aggregation of the third order conditional

moment dynamics assumed in Assumption 5.

PRoPOsITIoN 4.4 Let ft+r fottow a SR-SARV(1) modet with votatitity persistence and intercept para

meter and 1
— , respectivety, and satisfyinq Assumptions 2 and 5. It fotÏows that

E [t4+)m) i] = h(m) (rn)2 + hm)

and

E [(1)) i] = hm))2 +
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fori=1,...,N andt=1,2,..., where

ni ni

= h1 z + 3n < Z a1Ù712

1=1 1<1’; 1,1’=1

h(ni)
— A(m) — h(ni) q(ni)

O — 1 1’
ni ni

A(m) Za?[ho + (1 —71’)h1] +3 x Z aja7111 [ +Ki(i
_71_1)],

1=1 1<U; 1 (‘=1

(ni)
= Àhr + s

(ni) (ni)and where S and S2 are as defined in Proposition 4.2.

Proposition 4.4 shows that the conditional third order moment dynamics postulated in Assumption

5 is robust to temporal aggregation in the set of SR-SARV(1) processes that have a conditional

leverage dynamic according to Assumption 2. In particular, the third conditional moments of excess

aggregated returns follow an affine function of volatility. Moreover, if the conditional third moment

of the underlying factor is time varying, it follows that the aggregated factor also has a dynamic

conditional third moment, given that the aggregation coefficients a, I = 1,..., in are nonnegative.

We can summarize the temporal aggregation properties of the temporally aggregated model as

follows. First, the factor representation is preserved for the aggregated model, with the same factor

loadings. Second, the aggregated factor has a leverage effect and a skewness effect whose specifications

are affine functions of its volatility, just as assumed for the original factor itself. Third, the conditional

skewness of the idiosyncratic shocks is constant if the same is true for the underlying non aggregated

shocks, as assnmed by Assumption 1. These properties, together with the property of robustness to

temporal aggregation of SR-SARV models for conditional heteroskedasticity established by Meddahi

and Renault (2004), prove that our conditionally heteroskedastic factor model with asymmetries is

robust to temporal aggregation.

5 Identification and estimation of the model

The main goal of this section is to present some valid moment conditions for our model on which we

can hase GMIvI inference. The GMM-based inference is robust to distribution misspecification and it is

also easier to perform than alternative methods often used in the conditionally heteroskedastic factor
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model literature, which also widely rely on distributional assumptions. To the best of our knowledge,

DR (2006) are the first to propose a GMM-based inference method for conditionally heteroskedastic

factor model.

Our model, as we already mentioned, is close to the DR (2006) model in that both share Equations

(iia)-(iig). Therefore, the DR (2006) moment conditions are useful here to identify ), y and 1.

However, as pointed out by DR (2006), because the factor is not observable their model is not able

to identify ah of the parameters included. The main reason is that their model specifies only the

first and second conditional moments which are to be estimated as well. Actuahly, the model is only

partiahly identified in the sense of Manski and Tamer (2002). Particularly, it identifies the whole set

of parameters as a function of one factor loading. To conduce inferences in the usual way, DR (2006)

propose two approaches. The first normalizes one factor loading and thus allows the identification of

the whole model by appropriate unconditional moment conditions. The second approach restricts the

factor’s conditional kurtosis to be time invariant and proposes a dynamic model for the conditional

variance of the factor’s conditional variance. This allows the full identification of the model through

suitable moment conditions.

Here we will follow both of these approaches to study the identification of our extended model

(Equations (lia) through (iii)).

5.1 Inference by normalization

This approach sets the factor loading of a given excess return process (we wihl consider one with a

factor loading different from 0) to an arbitrary value À. In particular, we let O <2 < Var(Yi,t). For

simplicity, we first consider the case in which p. = 0. The fohlowing moment conditions proposed by

DR (2006) characterize À. = (À2,... , Àp.j), y and a

Vec {E [(Y_1,+1 — À_1’Y1,+) )‘‘+iIJt] } = Vec [p2. — À-1’21.] (15a)

Vech {E [(1 — Jt—i]} = Vech [(1 — -y)(ÀÀ’ + )] (i5b)

where L is the usual lag operator, Y_i,t+i = (Y2,t+i,. .. ,YN,t+1), is the 1 x N-matrix equal to the

first row of Ç2, 12 is the N — 1 x N-matrix of the last N — 1 rows of 2, while Vec and Vech are the

usual vectorizing and haif-vectorizing operators.



32

In practice, instead of (iSa), we can use

Vec {E [(Y_i,+1 — )ciÀ’Yi,t+i) Yi,t+iIJt] } = Vec [Q2:N,1 —

where 22:Nj is the submatrix of Ç2 defined by its first column and its second to its last rows, to avoid

the risk of near collinearity in the resulting unconditional moment restrictions. Similarly, instead of

the Vech operator in (15h), the Diag operator is recommended when large dimensinn processes are

used. The Diag operator transforms a square matrix into a vector of its diagonal entries.

Next we extend this approach to the leverage and skewness dynamics.

The leverage in excess returns as given by (8) provides moment conditions characterizing iro and

x1. With = E(Y+iJt) and u = À2 [E (Yj2+1IJt) — !1] these moment conditions are:

E = À [rg + ir?E (Y?+1IJt)] , Vi = 1,... , N (16)

where 4 = — lrl(fln/À2) and 7r = iri/À2.

Similarly, the third conditional moment of asset excess returns as given by (10) characterizes the

skewness parameters h1, ,siv:

E = Àh?E (Y +IJ) + s, Vi = 1,... , N (17)

where h? = h1À2 and s = s —

In a more general case where z $ 0, one can note that the moment condition E(Z+iJt) = p

identifies p and therefore bas to be completed in (15) in addition to Equations (15a) and (15h).

Moreover Yt+i, Y—i,t+i and Yi,+i have to be replaced by Y+i
—

p, Y...1,,+ — p and Yi,t+i
— Pi,

respectively.

The moment conditions in Equations (16)-(17) can be written as

= O

with è = (À’1,7, Vech(fl)’)’ and 2 = (no, iri,si, , 8N, h1), where g (.) defines a smooth function.

For a Jt-measurable vector of instruments Zt including 1, this conditional moment restrictions implies:

E{zt = 0 (18)
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which, in turn, is an unconditional moment restrictions allowing for the application of Hansen’s

(1982) resuits. The following proposition suggests an instrument that could validate the application

of Hansen’s (1982) resuits.

PROPOSITION 5.1 Let Zt be an 1-vector of Jt-measurabte instruments inctuding 1 and zl,t (I 2)

stick that Goy (z1,t, u) 0. Then, foT any , the moment condition in (18) identifies 2 at the first

order i.e..

(O/O) [E{zt lias fuit cotumn rank.

The factor ft+i follows an SR-SARV(1) model and therefore its square has an ARMA representation

(Meddahi and Renault (2004)). Because .\ 0, Y has also an ARMA representation. Thus, Y is

correlated with u. Consequently, any lag of Y1 is a valid instrument that may help to first-order

identify 2 by (18).

Because the moment conditions in (15) identify at the first order (see DR (2006)) and do not

share any component of 2, we can show that, jointly, the moment conditions in (15) and (18) identify

= (, )‘ at the first order. Combining (15) and (18), the global moment condition is written as

E{gt()} = 0, (19)

for an appriate smooth function g(.).

Let XII2 = X’X, where X is a vector. If EJgt(ç)II2 < œ (which inquires I’ to have a finite sixth

moment), we can apply the results in Hansen (1982) to show that the asymptotic distribution of ,

the efficient GMM estimator of based on the moment condition (19) is given by

— ) - N (o, (D’W-’D)’)

where W limT Var gt@)/v) and D (8/6qY)E{gt(q)}.

5.2 Inference through higher order moments

The second approach proposed by DR (2006) completes their model given by equations (lla)-(llg) by

using a dynamic specification for the conditional variance of the factor’s conditional variance. With
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the additional constant conditional kurtosis assumption for the factor, DR (2006) propose moment

conditions that identify À, -y and Q.

Specifically, DR (2006) assume that the conditional variance of is a quadratic function of ?,

Var(u?+1Jt) =a+Pa?+6u. (20)

This specification nests the affine process of the conditional variance of Heston (1993) and the Ornstein

Uhlenbeck-like Levy-process of the conditional variance, as introduced by Barndorff-Nielsen and Shep

liard (2001).

In our temporal aggregation robust framework, if we complete our conditionally heteroskedastic

factor model with asymmetries given in (11) with the conditional variance specification in (20) for

the factor, it turns out that the whole framework is modified and we must re-evaluate the temporal

aggregation property of this new model. Proposition C.1 in Appendix C insures that the conditional

variance dynamic in (20) is robust to temporal aggregation in the class of the SR-SARV(1) processes.

As a consequence, the new model we obtain by completing our model in (11) by (20) is also robust to

temporal aggregation.

The following moment conditions identify À, Q, 7, a, b and c at the first order:

Vec {E [(Y_,+ — À_iÀj’Yi,t+i) ‘.iIJt] } = Vec [Q2.
— À_1ÀL’Q1.] (21a)

Vech {E [(1 — 7L)Y1Y1 Jt—ii} = Vech [(1 — )(ÀÀ’ + Q)] (21b)

E [(1
— cL)(y+1 — 6Qy?) — Jt-i] = a (21c)

where À_1 and Yi,, have the same definition as in (15), a, b and b three additional parameters and

we also assume p = 0.

Let & denote a vector containing À, Q, 7, a, b and c. We can easily verify that Proposition 5.1

holds in this framework 50 that the parameters contained in 2 are identified at the first order for any

The efficient GMM estimator of = (4, )‘ is also asymptotically normal, although this result

requires more stringent moment conditions (in particular, should have eight order finite moments).

This conditions may be less realistic for GARCH processes with high volatility persistence. For this

reason, the previous approach for identification seems more practical.

We conclude this section with some remarks. First, the number of parameters can grow very quickly

with the number of assets in the factor structure depending on the restrictions on the variance matrix
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1 of the idiosyncratic shocks. Typically, without any restriction on , the number of pararneters is

of order 0(N2) against 0(N) if we restrict this variance matrix to be diagonal. Thus, a free semi

positive definite matrix 2 is practically tractable only in the case of a reasonable number of assets

(e.g. N < 5). But, for a larger number of assets, it would be more convenient to restrict to be

diagonal or even block diagonal.

Second, the Iterated GMM inference approacli proposed by Ogaki (1993), is also useful in our

framework. Applied to otir context, the Iterated GMM consists on estimating i from (15) or (21) by

the usual GMM technique, and then plugging i in the remaining moment conditions to estimate 2

also by GMM. It has been proved (see Ogaki 1993) that the resulting estimator (, )‘ is asymp

totically normally distributed. Even though this approach involves more optimization steps than the

usual GMM, the dimension of the parameter spaces on which these optimizations are performed are

smaller than in the usual GMM. Therefore, this technique may be easier ta implernent. However, due

to its two-step approach, the Iterated GMM is less efficient than the usual GMM.

6 Monte Carlo resuits

The main goal of this section is to assess the finite sample performance of our estimation procedure for

different values of the factor volatility persistence. Because the GMM inference resuits are known ta be

sensitive ta the set of valid instruments that are used (see e.g. Andersen and Sørensen (1996)), we first

investigate the relative performance of four sets of valid instruments. We evaluate the performance

of each instrument set by the simulated bias and the root mean square error (RMSE) of parameter

estimates it provides for bath the DR (2006) model and our conditionally heteroskedastic factor

model with asyrnmetries. The best of these instrument sets is subsequently used in aur experiments

for assessing the sertsitivity of aur inference procedure ta the factor volatility persistence.

We simulate samples of three asset excess returns with nuil risk premia (z = 0) from a single factar

model. The model cansidered is the following

Y,t = Àf + i = 1,2,3,

with À = (1, 1, 1)’ and U i.i.d.V(O,wI3), where w = 0.35 and 13 is the identity matrbc af size 3.

u,t is the i-th camponent af U. In this model, the signal ta noise ratio À/w is 2.86 wfflch raughly
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matches the average signal to noise ratio we find in our empirical application in Section 7. The factor

process ft in ail our experiments has a GARCH(1,1) dynamics i.e. ft ti77t, riJ—i (0, 1) and

u? = 1 —

— 13 + af + 13?i, O <c + t3 < 1. This GARCH(1,1) process is an SR-SARV(1) process

with persistence parameter 7 = u + 3.

In the DGP 1, DGP 2, DGP 3 and DGP 4 we consider, ‘ i.i .d .J\f (0, 1) and hence, the factor is

the standard Gaussian GARCH(1,1) process.

In the DGP 1’, DGP 2’, DGP 3’ and DGP 4’, rj = (u?_1—Xt)/u_1 where XJ_y ‘—‘ Gamma(u?_i, 1).

In this case, E(fiJt) = —2u? and Cov(fj+i,u?+iIJt) = —2uu?. This simulation design fits with the

occurence of conditional skewness and conditional ieverage in

The eight experiments we conduct differ by the asymmetries occurence and also by the factor

volatihty persistence,
.

For

DGP 1 and DGP 1’: u = 0.20, 13 = 0.50; = 0.70,

DGP 2 and DGP 2’: u = 0.20, 13 = 0.60; 7 = 0.80,

DGP 3 and DGP 3’: u = 0.20, 13 = 0.70; 7 = 0.90,

DGP 4 and DGP 4’: u = 0.20, 13 = 0.75; 7 = 0.95.

= 0.70 roughiy matches the volatility persistence we get for the factor in our empirical application.

7 = 0.80 matches approximately the factor volatility persistence estimate by Fiorentini, Sentana and

Shephard (2004) for monthly U.K. index excess returns. = 0.90 and = 0.95 are the usuai range of

the standard GARCH volatiiity persistence estimate in the empirical literature for daiiy returns (see

e.g. Harvey and Siddique (1999)). We set the number of rephcations to 500, and the sample size is

T = 5000, which roughiy matches the length of the data set used in our empirical application.

We perform the inference by the normalization approach described in Section 5 and we set the

first asset factor loading to À = 1. We estimate the DR (2006) model by the moment conditions given

in equation (15) and our conditionaliy heteroskedastic factor model with asymmetries by the moment

conditions given by equations (15)-(16)-(17). The parameters of interest in the DR (2006) modei are

À2, À3, w and
.

In the DGP 1 through , 1 = s2 = 83 = s = 0, h; = O and iro = xy = O and in the

DGP 1’ through 4’, 5; = = 53 = s = 0, h1 = —2.0, xo = O and xi = —0.4. Therefore, as far as the

Monte Carlo designs are concerned, À2, À3, w, 7, s, hi, xo and xi are the only relevant parameters of
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our conditionally heteroskedastic factor model with asymmetries.

We first assess the relative performance of our estimation method for the DR (2006) model and our

extended model in terms of instruments nsed. In particular, we consider four sets of instruments: Zl,t =

(1,Y), Z2,t
=

p = 0.9), Z3,t = (1,Yj,Y_1) and Z4,t = (1,,Y?_1,Y2).

For each set of instruments, we simulate data from DGP 2 and evaluate the bias and the RMSE

for the parameter estimates in the DR (2006) model and in our model with asymmetries. Table 1.5

contains the results. In terms of bias, z3,t is the most desirable for both models among the four

instrument sets. It yields a particularly small average bias for the DR (2006) model estimates witb

respect to the other instruments which show roughly the same amount of average bias. For our

conditionally heteroskedastic factor model with asymmetries estimates, Z3j also yields the smallest

amount of average bias but the difference with Z4,t is flot noticeable. Z1,t appears to yield the largest

average bias among the four instrument sets that we compare. In terms of RMSE, z4,t is the best

instrument set for both models followed by Z3,t. These two instrument sets perform much better than

Z2,t and Z1,t. This result suggests the use of z4,t as an instrument set for our next experiments and our

empirical work.

Next, we investigate the finite sample properties of our estimation method as a function of the

volatility persistence 7 and the occnrence of asymmetries. More specifically, we consider the eight

DGPs described above (DGP 1, 2, 3, 4 and DGP 1’, 2’, 3’, 4’). Table 1.6 presents the results for

tbe DGP 1, 2, 3 and 4 in which there is no conditional asymmetry in the processes Y,t and Table

1.7 presents the resuits for DGP 1’, 2’, 3’ and 4’ in which both the conditional skewness and the

conditional leverage effects occur.

In both models, the estimates of the parameters À2, À3, and w exhibit 10w bias for all of the

DGP. These estimates also exhibit similar RMSE for the DGP 1, 2, 3 and 4. Note however that the

RMSEs obtained for our model are slightly higher than those obtained by the DR (2006) model. These

observations remain valid for the DGP 1’, 2’,and 3’. For tbe DGP 4’, the RMSEs of the estimates of

À2, À3 and w by our model are much larger than those yield by the DR (2006) model estimates.

When there is no asymmetry in the data and the factor volatility persistence is not too large (DGP

1, 2 and 3), the estimates of s, k1 ire and ir exhibit small bias but their RMSE seem to increase with

the factor the factor volatility persistence. In tbe DGP 1’, 2’ and 3’, the estimates of s and ir0 still
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yield small bias while the estimates of h1 and r1 exhibit larger bias. The RIVISEs in these DGPs aiso

seem to increase with the volatility persistence of the factor.

The largest bias and RIVISEs occur for DGP 4 and 4’ where y = 0.95 and for our model estimates.

This lack of performance of our estimation method could be viewed as a consequence of the near

integration of the volatility process. Because the pararneters h1 and 711 are both coefficients of volatility

in our model, they may not be efficiently estimated. The other parameters are therefore contaminated

and are not efficiently estimated.

This Monte Carlo experiment suggests that our inference procedure is reliable in finite samples

particularly when the volatility persistence is flot close to 1, whereas the inference could be inaccurate

for persistence values larger than 0.95. This observation seems to confirm a well known drawback of

the GMM method application in volatility literature which delivers bad resuits when the volatility

persistence is close to 1 (see e.g. Broto and Ruiz (2004)).

Z Application to daily U.K. stock market excess returns

In our empirical work, we estirnate both the conditionally heteroskedastic factor model proposed by DR

(2006) and our conditionally heteroskedastic factor model with asymmetries for stock excess returns

on 24 U.K. sectors. We use ail the series described in the Data Appendix (see Appendix B) except for

the FTSE Ail Share Ex. mv. Trusts index excess return because it exhibits a correlation of 0.99 with

the FTSE 350 index excess return (see Table 1.1 Appendix B) which is included in the models.

In both models, we consider centered excess returns and we do not estimate the conditional mean,

,u. We also restrict the variance matrix of the idiosyncratic shocks to be diagonal. with these

restrictions, the DR (2006) model has 48 pararneters while our extended model has 75 parameters. In

the estimation procedure, the FTSE 350 index excess return plays the role of Y1, and we use Z4,t as

a valid instrument set (see Section 5).

7.1 Resuits

Table 1.7 in Appendix B presents our estimation results. Even thougli the factor loadings and the

variance of the idiosyncratic shocks estimates for both models differ according to the specific return

series, their average difference across the returns are 0.0015 and 0.0090 for the factor loadings and the
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idiosyncratic shock variances, respectively.

The factor volatility persistence estimates for the two models are 0.685 for the DR (2006) model

and 0.684 for our model. Thus, explicitly modeling the asymmetries does flot seem to change the

persistence estimate. Nevertheless, the persistence we find is low with respect to what is found in

the empirical literature for daily data. Engle and Ng (1993) find a volatility persistence of 0.916 in a

standard GARCH(1,1) model for the daily return of the TOPIX index, and both Harvey, Ruiz and

Sentana (1992) and Fiorentini, Sentana and Shephard (2004) find a persistence level of about 0.80 for

the volatillty in their QGARCH(1,1) factor models for monthly U.K. stock market index returns. The

volatility of monthly returns is known to be less persistent than the volatillty of daily returns. The

main difference between these models and the models we estimate in this paper is the way in which

they treat the conditional skewness. The Harvey, Ruiz and Sentana (1992) and Fiorentini, Sentana

and Shephard (2004) models rule out the conditional skewness in the data, while the Doz and Renault

(2006) model and our model are consistent with this empirical fact. Our data seem to confirm the

findings by Harvey and Siddique (1999), who observe that taking account the skewness impacts the

persistence in the conditional variance. Our findings also suggest that not being consistent with the

presence of conditional skewness could change the inference about the conditional variance persistence.

The leverage effect parameters in our asymmetric model, ir0 and ir1 are both significant, implying

that the leverage effect in our data is time varying and can be captured by the dynamics in the factor.

Our findings confirm, for daily data, the resuit by Sentana (1995) for monthly U.K. index excess

returns, namely that there is significant leverage eftect in sectorial returns through a common factor.

See also Black (1976) and Nelson (1991). The siope k1 of the factor’s third conditional moment is

significant and negative (-6.36). This confirms a dynamic conditional skewness in our series as Harvey

and Siddique (1999, 2000) and Jondeau and Rockinger (2003) have also found for their data. Moreover,

due to the positive estimates we get for the factor loadings, the negativity of k1 implies that periods

of high volatility are followed by higher negative conditional third moments. Hence, a larger volatility

seems to announce more negatively skewed conditional distributions for the returns series that we

consider.
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7.2 Diagnostic tests

We propose an extended Kalman filter to filter simultaneously the latent factor and the conditional

variance processes using the GMM estimates of both the DR (2006) model and of our model (see

Appendix A). This algorithm circumvents the GMM procedure drawback, which does flot yield an

estimate for the factor process nor for the conditional variance process. This filter allows us to perform

some useful diagnostic tests.

Figure 1.2 shows the QQ plots of the FTSE 350 index excess return and the filtered latent factor

using the DR (2006) model parameters estimates. This ffltered factor is multiplied by the FTSE 350

factor loading .\=.35 to allow for direct comparison with the FTSE 350. It appears that the filtered

factor shows the same fat tail and asymmetry behaviour as the FTSE 350 and thus validates the

choice of an asymmetric factor representation in our model. The correlation with the FTSE 350 index

excess returu of the factor processes extracted with the DR (2006) model estirnates and our model

estimates are .932 and .911, respectively (see Table 1.9). These correlations have the same order of

magnitude as the correlations obtained by Sentana (1995) for both the QGARCH(1,1) latent factor

and the GARCH(1,1) latent factor with the FTA 500 monthly index excess return (.984 for both).

Figure 1.2; Q-Q plots of the FTSE 350 index excess return and the filtered factor by the DR (2006)
model estimates (scaled by .35)
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Figure 1.3 shows the FTSE 350 index excess returns and the filtered standard deviations processes
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Figure 1.3: Daily FTSE 350 index excess return and ffltered standard deviatïons by the DR (2006)
model and our model estimates
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with the DR (2006) model estimates and our model estimates, respectively. The volatility processes

seem to adequately follow the returns series in the sense that periods of large variations in returns

correspond to periods of large volatility. However, for extreme variation in returns, our asymmetric

model seerns to predict a larger volatility than the DR (2006) model. This is the case with the October

1987 financial crisis. For the purpose of comparison, Figure 1.4 shows the filtered standard deviation

by both models estimates and the FTSE 350 index excess returns for a two-months period around

October 1987. Specifically, we consider the period from September 1, 1987 through January 1, 1988.

When the market is srnooth, the two models predict roughly the same level of volatility. In contrast,

in periods of large shocks, our model predicts larger volatility. Yet, our model inay be more realistic.

Between October 20, 1987 and November 6, 1987, the FTSE 350 index excess return rises by 16.61%

on daily average while the in-sample forecasted standard deviation drops only by 6.89% for the DR

(2006) model and by 11.13% for our model.

We also obtain two estimates for the FTSE 350 idiosyncratic shocks processes. One is obtained

by the filtered factor from the DR (2006) model estimates (ud,t±1) and the second is from our model

1987 1990 1992 1995 1997 2000 2002 2005

Filtered conditional standard deviation by the DR model estimates

- L . - I ri.. .L
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Figure 1.4: Filtered standard deviations by the DR (2006) model and our model estimates and the
FTSE 350 index excess return. September 1, 1987 through January 1, 1988

(Uchfa,t+1). Table 1.10 shows a non significant skewness for both processes. This validates the choice of

asymmetric factor in our model. The resuits of tbe Engle Lagrange multiplier test for heteroskedasticity

are not clear. Even though the evidence of heteroskedasticity is not strong for these idiosyncratic shock

processes, homoskedasticity is hardly accepted at 2% level for both. This may suggest the inclusion

of an additional factor for heteroskedasticity and paves the way for future work.

8 Conclusion

In this paper, we extend the existing class of conditionally heteroskedastic factor models by specifying

the skewness and the leverage effects dynamics in return processes. We show that our conditionally

heteroskedastic factor model with asymmetries is robust to temporal aggregation. In addition, our

specifications are robust to any dynamics in the conditional kurtosis or even higher moments. We

also provide moment conditions allowing for GMM inference. We propose an extended Kalman filter

algorithm that filters the latent factor and the volatility processes simultaneously. Our empirical

application involves 24 index excess returns from U.K. stock market and confirms some useful results

Jan88
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in the volatility model literature. In particular, our data confirm the resuits in Harvey and Siddique

(1999, 2000) and Jondeau and Rockinger (2003) for the conditionally heteroskedastic factor model

framework. We find a lower volatility persistence for our common factor than what is obtained

commonly for daily data in models that rule out the skewness effect. Our findings also confirm, for

daily data, the resuit by Sentana (1995) for monthly U.K. index excess returns, namely that there is

significant leverage effect in sectorial returns through a common factor.

This work also helps to learn more about the relationship between asset returns’ third conditional

moment and their volatility in the presence of n leverage effect. Our empirical application suggests

that it may be beneficial to incorporate this relation for efficiency gain purposes. The filtered volatility

process obtained with our model estimates seems more realistic in period of large shocks than the fil

tered volatility obtained with the DR (2006) model estimates. Furthermore, this empirical application

also suggests that larger volatility predicts more negatively skewed conditional distributions for the

returns series.

The most immediate extension of this work that we plan for future work is the extension of the

model we propose to more than one factor. Even though a multi factor extension is straightforward,

estimation and inference are fundamental issues which need to be discussed carefully. This extension

is in particular motivated by the residual heteroskedasticity that may exist in the fitted idiosyncratic

shock process from our data. This work can also be extended to take into account the risk premium

by modeling the conditional mean of the returns as a function of volatility as Fiorentini, Sentana and

Shephard (2004) and DR (2006). As a main advantage, such an extension will make the model we

propose also consistent to the well-known volatility feedback feature that occurs in financial processes.

This extension may also be particulnrly relevant for longer horizon returns for which the risk premium

is known to matter.
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A An Extended Kalman Filter for the latent common factor and
volatility processes

The heteroskedastic factor model is defined by:

s — 2 2 t
Jt+i — JtEt+i = 1

—
+ 7t + w11 22a

= [L + Àf11 + (22h)

with: E (wt+iIJt) = E (ct+iIJt) = 0, E (u11J1) = 0, E (c±iJJt) = 1, Ver (U1+1LJ1) =

In this factor representation, both ft+i and cT?+i are unobservable; in fact, only the multivariate return
process (Yt+i) is observable. However, the latent bi-dimensional process Z, = (h, 4)’ depend nonlinearly on
its past value up to some shocks. The Extend Kalman Filter’s algorithm (see SØrensen, 1985) is an attractive
algoritbm for this framework to filter Z, from the observations provided that the parameters are lmown. Tbe
state equation is given by equations in (22a) while the measurement equation is (22b).

Still, tbe problem that occurs in a such procedure is the positivity of 4. A naive filter could lead to negative
4. For that reason, we propose to filter ZL = (ft,xt)’ and then, we can deduce 4 4; taking advantage from
the following result:

If (x11) is such that x11 /txt + vTv+i; E(vt+iJt) = 0, E(4±1J) = 1; Jt an increasing filtration
as the one introduced in the body of this paper, then (4) is an SR-SARV(1) process with persistence 7 and
intercept 1

—

with respect to J1.
Our state-space representation is:

ft+i = ct+i Xt+l = Xt + 1 — 72v1+l (23a)

Yi = i + Àf11 + U+1 (23b)

With: E(vt+iJt) = E(ct+1IJ1) = 0, E(Ut+iJ,) = 0, E(e1J,) = 1, E (4±1J1) = 1 Var(U1jJ1) =

To allow for leverage, we will set Cov(et+i,vt+iJt) = n wbere n has any negative value. In our applications,
we choose n = — .5.

For: A
= ( >) w

= ( y 72)’
H = (À0), Q

= ( ;) the Extended Kalman Filter

algorithm is the following:

________

Initial value: 2 = (0, iy, p0
= (y5 + 7)

—V 7)),

Time Update ( “Predict”)
1. Project the stete eheed: =

2. Project the error covariance ehead: P =
p1_1 + 14/1QW!

Measurement Update (“Correct”)
3. Compute Kelmen Gein: = PH’(HPH’ + Y’
4. Updete estimete with meesurement Y: î = zZ + KL(Y

—

— HzJ
5. Updete the error coverience: = — KtHP1
6. t=t+1,GoTol.

In tbis algoritbm, the parameters are considered as known. In our application, we either use the GMM
parameter estimates of the Doz and Renault (2006) model (DR) which lead to the filtered process Zdr,L or the
CMM parameter estimates of our conditionally heteroskedastic factor model with asymmetries (CHFA) which
lead to the filtered process for both the factor and volatility.

B Data Appendix and Tables

The following table presents tbe indices we use in this paper. The first index listed refers to the FTSE 350
index. All of 24 sectorial indices listed are in FTSE while 14 of them are in the FTSE 350. The sectorial
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indices which are not in FTSE 350 are the following: (-)-All Share Ex. mv. Trusts, 13- FTSE Financials,
14-Transport, 15-Speciality & Other Finc., 16-Prsnl. Care & Hhld. Prods., 17-Ceneral Industrials, 18-Ceneral
Retailers, 19-Household Goods & Text. 20-Ou & Cas, 24-Support Services.

Our Data are obtained from Datastream. With Pi,t being the index j level at day t, we obtain the daily
log-return series (in %) by: = 100 x (logp,,t — logp,,t_i). We use the log-return of the UK une month
ban index JPM UK CASH 1M (rt) as safe interest rate. The bog-excess return of the index j is Y = —

Our daiiy excess returns cover the period from January 2, 1986 through December 30, 2004. OnIy the 4863
trading days are considered.

Correspoading Cnrresponding
Number Sectorial index Number Sectorial index

1 FTSE Actuaries 350
2 Banks 13 FTSE Financials
3 Beverages 14 Transport
4 Cnstr. & Bidg. Mats. 15 Speciality & Other Finc.
5 ChemicaIs 16 Prsnl. Care & Hhld. Prods.
6 Eng. & Machinery 17 Ceneral Industrials
7 Food & Drug Retailers 18 Ceneral Retailers
8 Fond Prod. & Procr 19 Household Cnnds & Text.
9 Insurance 20 Ou & Cas

10 Life Assurance 21 Forestry & Paper
11 Investment Companies 22 Health
12 Leisure & Hotels 23 Pharm. & Biotec

- Ail Share Ex. mv. Trusts 24 Support Services
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Table 1.3: Engle and Ng Diagnostic Test for the Impact ofNews on Volatility (Engle an Ng, 1993)
This Table dispiays, for each index excess return, the diagnostic test resuits for respectively the Sign
Bias, The Negative Size Bias, the Positive Size Bias and the joint test. The volatility dynamic under
the nuli we assume is the standard Gaussian GARCH(1,1).

Diagnostic Test Resiilts
Sign Negative Positive Joint
Bias Size Bias Size Bias Test

FTSE Actuaries 350 2•18b _226b -5.03° 96.53°
Banks 1.22 -4.30° -5.45° 9409°
Beverages 1.26 -6.23° 847° 115.38°
Cnstr. & 314g. Mats. 1.62 -3.92° -3.13° 17.41°
Chemicals 1.32 2•18b -3.76° 36.09°
Eng. & Machinery 1.71° 1.92’ -4.21° 45.54°
Food & Drug Retailers 2.54 -4.22° -4.88° 37.64°
Food Prod. & Procr. 0.65 0.56 -1.74° 27.98°
Insurance 1.57 344° 3430 16.70°
Life Assurance 1.18 -3.07° -5.05° 38.56°
Investment Companies 2.65° ..443° -6.29° 48.98°
Leisure & Hoteis 1.61 -0.26 245b 30.04°
Ail Share Ex. mv. Trusts 2•22b _224b -5.03° 91.75°
FTSE Financials 2.69° -4.65° -6.16° 67.79°
Transport 232b -4.17° -5.27° 34.41°
Speciality & Other Finc. 211b -5.48° -6.49° 58.26°
Prsnl. Care & Hhld. Prods. -0.07 1.36 2,20b 14.05°
General Industrials 1.88C -3.03° -4.68° 46.04°
General Retailers 1.34 -1.88° _5.06a 56.55°
Household Goods & Text. 0.62 -3.44° -3.59° 22.86°
Qil & Gas 0.53 -0.98 -3.45° 33.14°
Forestry & Paper -0.22 -0.91 -1.79° 27.25°
Health -0.47 3.07° 2.57° 26.85°
Pharm. & Biotec 1.50 -6.85° _8.61z 223.87°
Support Services 221b -2.72° -4.17° 41.03°
Notes: , b and C denote significance at 1%, 5% and 10%, respectivety.
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Table 1.4: This Table presents, for each sectorial index and the market index FTSE 350, and î, ordinary
least square estimates ofiry and h1 respectively in the regressions E 7ro+7rit_i
andE = h0 + h1,_1. c,t

—
Yj, Y is the excess return of the index i at date

t, Y is the sample mean of the excess return of i and ii,t is the conditional variance of As
a proxy for we use the daily square excess return:

‘+•
lrf,1 and hLy, ordinary least square

estimates of lrf,1 and hf,l respectively in the regressions E ‘ITf,o + 7rf,111,t_1

and E kf,o + hf,111,t_y. Eyy, is the FTSE 350 index excess return’s conditional
variance. The proxy used for this conditional variance is Y÷1 where Yi,t÷i is the FTSE 350
index excess return. The Co-Skewness of the sectorial index excess return with the FTSE
350 index excess return Y;, is given, as in Ang and Chen (2002), by Co-Skewness(11,t, Y1,)

— E(I,))(Y1 — EY1,)2]/ [/EO1t — E(}’,))2E(Y1, — E(Yl,t))2]. The significance tests
for the Co-Skewness have been performed by Moment method-based asymptotic distribution of
sample mean and the —method.

Sector i hi 7rf,i kf,l Co-Skewness
FTSE Actuaries 350 _1.74a _3.13a 1.74a _3.13a 0.88c

Bariks -1.29” _1.64a 197a 457e -0.39
Beverages 1.26a -1.27 1.74e _4.52a -0.49
Cnstr. & Bldg. Mats. 0.41a _0.58a -1.38e’ _1.95a -0.46
Chemicals 1.26a _2.TOa 4.87a _3.40a _o.68c

Eng. & Machinery O.36a _1.66a 1.58a _4.02a _0.69c

Food & Drug Retailers 0.66a _Q99a L31a _1.76a -0.30
Food Prod. & Procr. 0.79a 1.Z8a 1.6oL 2.1sa 0.56’
Insurance o.z3a 2.sza 2.2Oa -5.06” -0.42
Life Assurance -0.82” -1.52” -1.75” -3.96” -0.36
Investment Companies -0.79” -2.96” -1.39” _2.59a 0•96b

Leisure & Hotels -0.82” -1.52” -1.76” -2.80” -0.53
Ail Share Ex. mv. ‘Trusts -1.70” -3.07” -L71” -2.98” -0.90’
FTSE Finailcials -1.09’ -2.10” -1.73” -3.16” -0.61
Transport 0.83a _2.17a -1.42” -2.20” -0.66”
Speciality & Other Finc. -0.85’ -2.12” -1.64” 3•49a o82b

Prsni. Care & Hhld. Prods. O.O6 -2.21” -1.54” 2.33a -0.30
General Industrials -1.37” -3.19” -1.75” 359(1 -0.81”
General Retailers -0.92” -2.67” -1.49” -3.25” -0.53
Household Goods & Text. -0.82” -1.14” -1.67’ -3.09” -0.81’
Ou & Gas -0.61” -0.96” -1.68” -2.44” -0.40”
Forestry & Paper -0.23” -1.70” _0.94a -0.77’ -0.13
Health 0.49” 0.37” -1.97” -3.31” -0.46
Pharrn. & Biotec _2.82a -1.59” -2.45” -7.73” -0.48
Support Services -1.52” 350” -1.86” -4.00” _0.95c

Notes: o, b and c denote significance at 1%, 5% and 10%, respectiuely.
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Table 1.5: Simulated bias, root mean square error (RMSE), median and least absolute deviation (LAD)
of GMM parameter estimates of the Doz and Renault (2006) model (DR) and of our condi
tionally heteroskeda.stic factor model with asymmetries. We report the resuits from GMM esti
mates using 4 different sets of valid instruments: zl,t (1,Y?), z2,t (1,Zip2Yi2t...i+y;p =

0.9), Z3,t (1,Y,Y_1) and Z4,t The simulated data are oh
tained from the DGP 2. The true parameter values are: (.)i,À2,À3,w,a,/3,7, s,hi,iro,ir1) =

(1,1,1,0.5,0.2,0.6,0.8,0,0,0,0). We use the moment conditions associated to the inference by nor
malization approach described in Section 5. The estimated parameters are À2, À3, W, 7 for the DR
(2006) model and À2, À3, w, n, 3, , s, h1, 7t0, 7t1 for our extended model.

Parameter
l ,t

7 0.017 0.137 0.826 0.116 0.021 0.137 0.826 0.116
À2 0.000 0.013 1.000 0.011 -0.001 0.016 0.999 0.012
À3 0.000 0.013 1.001 0.011 -0.001 0.016 0.999 0.012
w -0.002 0.005 0.348 0.004 -0.002 0.006 0.348 0.005
s - - - - 0.041 0.727 0.031 0.585

hy - - - - -0.044 0.786 -0.019 0.635
7ro - - -

- 0.021 0.456 0.016 0.312
- - -

- -0.021 0.487 -0.018 0.337

Z2,t

7 -0.018 0.110 0.801 0.056 -0.014 0.097 0.800 0.054
À2 0.000 0.013 0.999 0.010 -0.001 0.014 0.999 0.011
À3 0.000 0.013 1.000 0.011 -0.002 0.014 0.998 0.011
w -0.001 0.005 0.348 0.004 -0.002 0.005 0.348 0.004
s - - - - -0.039 0.777 -0.048 0.626

h1 - - - 0.039 0.832 0.064 0.679

lro - - - -0.001 0.302 -0.012 0.223
- -

- 0.003 0.330 0.016 0.245

Z3,t

7 -0.007 0.093 0.798 0.076 -0.005 0.096 0.801 0.077
À2 0.000 0.013 1.000 0.011 -0.001 0.019 0.999 0.015
À3 0.001 0.014 1.001 0.011 -0.001 0.020 0.998 0.015
w -0.002 0.006 0.348 0.004 -0.003 0.007 0.347 0.005
s - - - - 0.023 0.665 0.016 0.528

h1 - - - - -0.023 0.729 -0.014 0.586
lro - -

- 0.023 0.355 -0.006 0.246
- -

- -0.020 0.380 0.004 0.270

Z4,t

7 -0.015 0.078 0.793 0.062 -0.013 0.081 0.800 0.063
À2 0.001 0.014 1.000 0.011 -0.001 0.021 0.999 0.016
À3 0.001 0.014 1.001 0.011 -0.002 0.022 0.998 0.017
w -0.003 0.006 0.347 0.005 -0.004 0.007 0.346 0.005
s - - - - 0.019 0.673 -0.003 0.537

h1 - - - - -0.019 0.737 0.009 0.596
lro - - - 0.030 0.343 0.012 0.237
in - - - -0.026 0.365 0.006 0.261

Dl? (2006) Our rnodet
Bias RMSE Median LAD Bias RMSE Median LAD
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Table 1.6: Simulated Bias, root mean square error (RMSE), median and least absolute deviation (LAD)
of GMM parameter estimates cf the Doz and Renault (2006) model (DR) and cf our con
ditionally heteroskedastic factor model with asymmetries. We report the results from GMM
estimates using Z4,t as the instrument. The data are generated ac
cording to DGP 1, DGP 2, DGP 3 and DGP 4. In particular, the true parameter val
ues are: DGP 1: À2, À3, w, cl, /3, y, s, hy,iro,iry) (1,1,1, 0.35,0.2,0.50,0.70,0,0,0,0), DGP
2: (À1, À2, À3, w, cl,/3,7, s, hi,iro,iri) = (1,1,1, 0.35,0.2,0.60,0.80,0,0,0,0), DGP 3: (À1, À2, À3,
w,cl,/3,7,s,hi,lro,7r1) = (1,1,1,0.35,0.2,0.70,0.90,0,0,0,0), DGP 4: (À1, À2, À3, w, cl, /3,7, S, h1,
7r0, ir1) = (1, 1, 1, 0.35, 0.2, 0.75, 0.95, 0, 0, 0, 0). The true values cf the volatility persistence
parameter are 0.70, 0.80, 0.90 and 0.95, respectively.

DR (2006) Our modet
Bias RMSE Median LAD Bias RMSE Median LADParameter

DGP Ï

7
À2
À3
w
s

h1
ire
in

-0.024 0.095 0.678 0.075 -0.025 0.102 0.684 0.080
0.000 0.013 0.999 0.011 -0.002 0.017 0.998 0.014
0.000 0.013 0.999 0.011 -0.003 0.018 0.997 0.014

-0.003 0.006 0.347 0.005 -0.004 0.007 0.346 0.005
- - -

- 0.029 0.665 0.006 0.538
- - -

- -0.029 0.716 0.003 0.583
- - -

- 0.032 0.340 0.010 0.242
- - -

- -0.030 0.358 -0.006 0.258

DGP 2

7 -0.015 0.078 0.793 0.062 -0.013 0.081 0.800 0.063
À2 0.001 0.014 1.000 0.011 -0.001 0.021 0.999 0.016
À3 0.001 0.014 1.001 0.011 -0.002 0.022 0.998 0.017
w -0.003 0.006 0.347 0.005 -0.004 0.007 0.346 0.005
s - - - - 0.019 0.673 -0.003 0.537

h1 - - - - -0.019 0.737 0.009 0.596
ire - - - - 0.030 0.343 0.012 0.237

- - -

- -0.026 0.365 0.006 0.261

DGP 3

7 -0.011 0.060 0.894 0.047 -0.008 0.060 0.899 0.047
À2 0.002 0.015 1.001 0,012 0.002 0.035 1.003 0.024
À3 0.002 0.015 1.001 0.012 -0.001 0.033 1.001 0.024
w -0.003 0.006 0.347 0.005 -0.004 0.008 0.346 0.006
s - - - - 0.031 0.937 -0.021 0.647

h1 - - - - -0.011 0.972 0.071 0.708
ire - -

- 0.024 0.526 0.033 0.285
in1 - - - -0.013 0.483 -0.030 0.315

DGP

7 -0.016 0.054 0.942 0.040 -0.015 0.053 0.943 0.040
À2 0.002 0.017 1.002 0.013 0.003 0.047 1.004 0.034
À3 0.003 0.017 1.003 0.013 0.001 0.047 1.001 0.034
w -0,001 0.020 0,348 0.005 -0.001 0.021 0.347 0.010
s - - - - 0.431 11.604 -0.102 1.591

h1 - - - - 0.025 1.547 0.112 0.990
- - -

- -0.062 3.062 0.005 0.685
- 0.014 0.765 0.006 0.442
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Table 1.7: Simulated Bias, root mean square error (RMSE), median and least absolute deviation (LAD)
of GMM parameter estimates of the Doz and Renault (2006) model (DR) and of our condi
tionally heteroskedastic factor model with asymmetries. We report the resuits from GIvIM es
timates using Z4,t = (1, Y?,_1, Y?—2) as the instrument. The data are generated accord
ing to DGP 1’, DGP 2’, DGP 3’ and DGP 4’. In particular, the true parameter values are:
DGP 1’: À2, À3,w,a,/3,7,s, hi,fro,?rj) = (1,1, 1,0.35,0.2,0.50,0.70,0, —2.0,0, —0.4), DGP 2’:
(Ài,À2,À3,w,,/3,7,s,h1,7ro,7ri) = (1,1,1,0.35,0.2,0.60,0.80,0,—2.0,0,—0.4), DGP 3’: (Ày,À2,
À3,w, s,hy,ir0, ir1) (1, 1,1,0.35,0.2, 0.70,0.90,0, —2.0,0, —0.4), DGP 4’: (À1, À2,

-y,s,hi,iro. ir) = (1,1, 1,0.35,0.2,0.75,0.95,0, —2.0,0, —0.4). The true values of the
volatility persistence pararneter are 0.70, 0.80, 0.90 and 0.95, respectively.

DI? (2006) Our modet
Bias RMSE Medïan LAD Bias RMSE Median LADParameter

DGP 1’

-y
À2
À3
w

s
h1

711

-0.034 0.121 0.673 0.093 -0.030 0.131 0.680 0.095
0.003 0.022 1.002 0.015 -0.002 0.042 0.997 0.029
0.003 0.021 1.002 0.015 -0.004 0.038 0.999 0.027

-0.002 0.008 0.347 0.005 -0.002 0.016 0.347 0.008
- - -

- 0.022 2.666 -0.220 1.448
- - -

- 0.367 2.047 -1.430 1.443
- - -

- -0.025 0.993 -0.161 0.615
- - -

- 0.137 0.903 -0.149 0.641

DGP 2’

7 -0.025 0.101 0.786 0.075 -0.020 0.103 0.794 0.075
À2 0.003 0.020 1.000 0.015 0.000 0.043 0.999 0.031
À3 0.004 0.020 1.002 0.015 0.001 0.048 1.000 0.034
w -0.002 0.008 0.348 0.005 -0.001 0.018 0.348 0.009
s - - - - -0.048 2.822 -0.159 1.400

h1 - - - - 0.487 2.046 -1.389 1.416
7T0 - - -

- -0.065 1.156 -0.093 0.571
7r - - - - 0.153 0.804 -0.159 0.599

DGP 3’
-0.015 0.073 0.897 0.055 -0.021 0.109 0.894 0.063

À2 0.004 0.020 1.004 0.015 -0.003 0.053 1.001 0.039
À3 0.003 0.019 1.004 0.015 -0.002 0.056 0.997 0.041
w -0.002 0.007 0.348 0.005 0.003 0.064 0.347 0.017
s - - - - -0.070 3.890 -0.071 1.570

h1 - - - - 0.597 2.072 -1.346 1.416
7r0 - - - - 0.046 1.813 -0.045 0.700
7ty - - - 0.180 0.870 -0.148 0.610

DGP4’

7 -0.020 0.073 0.943 0.048 -0.027 0.110 0.940 0.056
À2 0.002 0.020 1.001 0.015 -0.005 0.136 1.000 0.055
À3 0.002 0.021 1.001 0.016 0.001 0.075 1.000 0.049
w 0.002 0.053 0.348 0.008 0.060 1.060 0.350 0.078
s - - - - 0.581 9.500 -0.090 2.712

h1 - - - - 0.651 2.679 -1.200 1.776
lro - - - 0.352 13.532 -0.090 1.663

-

- 0.304 1.067 -0.040 0.742
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Table 1.9: Descriptive statistics of the filtered factors and their correlation with the FTSE 350 index excess
return. The filtered factors are obtained by the extended Kalman filter algorithm we propose (sec
Appendix A) and we use the generalized method of moments (GMM) parameter estimates from
the Doz and Renault (2006) model (DR) and the GMM parameter estimates from our conditionally
heteroskedastic fnctor model with asymmetries.

Filtered Factor from
DR estimates our model estimates

Mean -0.006 -0.003
Standard error 1.006 1.014
Skewness -1.615 -1.333
Corr. with FTSE 350 0.932 0.911
Notes: Corp. denotes Correlotion.

Table 1.10: Descriptive statistics of the ffitered FTSE 350 index excess return idiosyncratic shocks. These
filtered idiosyncratic shocks are given by ud,+1 = Yi,,»i — O.3Sfd,t+1 and uchfo,t+1 = “1,t+1 —

O.3Sfeaft+1 where Yi,ti is the FTSE 350 index excess return, fdr,t+1 is the filtered factor using
the GMM parameter estimates from DR (2006) model and feJfo,t+1 the filtered factor using the
GMM parameter estimates from our conditionally heteroskedastic factor model with asymmetries
(CHFA). Eng(2) is the lag 2 Engle’s (1982) Lagrange multiplier test statistics for conditional
heteroskedasticity.

Udr,t+1 Ucfjfa,t1

Mean 0.002 0.009
Standard error 0.162 0.180
Skewness 0.272 [p — Value] =0.746 -0.463 [p — Value] =0.450
Corr. with FTSE 350 0.622 0.586
Eng(2) 6.616 [p — Value]=0.037 7.426 [p — Value]=0.024
QW(10) 19.998 [p — Value]=0.029 12.320 [p — Value]=0.264
Notes: Corr. denotes Correlation; QW(1O): lO-order Ljung-Box test statistic for autocorrelation.

C Proofs of Propositions

Proof of Proposition 4.1: The expression given in (13) is obvious and arises out from the sum of (1) over
the time period: r = (t — 1)m + 1 through tin with the respective aggregation coefficients a1 and ,tz(Jt) = i’
Let and be the resulting factor and the idiosyncratic shocks and let be the J,Ç
conditional variance of this factor.

D(m)
— E (F(m) (en)’ (m)N ( (en) (m)\ ( (en)’ (en)

tin
— k (t+1)en (t+1)m tin j —

l (t+1)m tin j k (t+1)en tin

On the other hand,

E (F)IJten) = E ((Z1 ajFt+j) IJt) alE (Ft+iJt)

= ZD,1aiECE(Et=+tIJt=+i_i)LJt=) = 0.
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The last equality holds by the law of iterated expectations and the last is from (2). Since j) is included in Jtm

by definition, the law of iterated expectations also applies the following way: E(XJ) = E (E(XJtmHJ,Ç?)

for any measurable X. Therefore, E (F)mJ)) = 0.

Let us consider k and k’ such that k k’.

E (F l)m(+l)mIm) = E (( lFk,tm+t) (Zi atFk’,m+j) i)

= E [Zi’;tt’=i tt’(Fk,tm+tFk’,tm+t’ + Fk’,tm+tFk,tm+l’)

+ ZiFk,tm+lFk’,tm+/J].

But, from the law of iterated expectations and (2), for t < t’,
E (Fk,tm+tfk’,tm+l’ IJtm) E (Fk,tTr,+IE (Fk’,m+l’ Jtm+t’—i) Jim) = O and in addition, as D is diagonal for ail
t from (2), E (Fk,tm+IFk’,trn+tJtTr,) E (E (Fk,tm+tFk’,tm+lIJtm+t_l) Jtm) E (Dk,k’,trn+t_lJtm) = 0.

By the law of iterated expectations as above we can deduce that E ( +1)mI +i)m4m) = O and therefore

is diagonal.

By the Iaw of iterated expectations and simple product expansion, we easily show that E (U)mJ)) o
and E (U )m)mJm) = O. On the other hand,

Var (U)IJ) = E (tZ1 iUtm+t) (Z ctUtm+t)’ i)

= E (Zi’;t,t’=i tt’(Utm+1Um+t, +

+ Utm+tUm+iJ)

For t < t’, E (Utrn+iUrn+i,Jtrri) E (Utrn+1E (Um+i,IJtm+i’_i) IJtm) = O

and E tUtm+iUm±tJtm) = E (E (Utm+tUm+tJtm+t_i) IJtm) = E (IJtm) = thus, Var (U)mJ)) =

a completing the proof of Proposition 41E

Proof of Proposition 4.2: Since (ft+i) has a SR-SARV(1) dynamic, with Vt+1 — (1
—

y) — 7G, we
have: E(vt+iIJt) O. For t 1, the first conclusion of the proposition is obvious since g IS Jtmmeasurable.
For t 2, by writing for different time and making some simple substitutions, we can write:

(1 — 7)(1 + 7 +
72 + ... + 71_2) + 7l_1gm + 71_2Vtm+1 + 7t_3v + + Vtm(_1.

By taking the expectation conditionally on Jtm and by the law of iterated expectations, we have:

E(Jn+tiIJtm) = (1 —7)(1 +7+72 + ... +7) 71lJ2

= (1—7)’’ +711Jm

= 1_71_l+7l_1U?m.

The first conclusion is then established. On the other hand,
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E ((j(m) 2(t+1)m) Jtm) = E (i(ftm+t)2IJtm),
ft (is conditionally non-autocorrelated)

=

= E(E(ft+iIJtm+ti)Jtm)

= iClE(Jm+t_iIJtm)

— 71_1) + 7’Um]

(ni) (ni) 2ijtrn)’\Since m t,r,
-measurable, E

((ft+1)rn) I trn ) —

— 71) + 7’1u2] Hence,

(m)2 / (ni) (m)’ sm) + Sm)gVar JfL+i) tm )
with Sm) =

— ‘) and sm) = Ztm 21-1

Proof of Proposition 4.3:

f (m) (m)2

Goy f(t+l)m’ J(t+l)mlJtm)

On the other hand,

(ni) (ni)2 (m)Goy (f(t+i)m’ (t+l)mtm )

a1Cov tf
(m)2

tm+1, G(t+l)mtm)

Z a1Cov (ftrn+t, sm) +

(from Proposition 4.2)

—m
= t=1 12 Cou (ftm+t ut+l)niJtm)

(rn)
Zl=la12 E(ftm+lU+y)iJtm)

s—m (ni)

= l=1 E (ftm±IE (Jt+;)mIJtm+t) Jtm)

-ni (m)
=

1S2 E (ft+t (1 — 7m-1 + 7m-l 2 ) IJtm)

,rn (m)
Ll=1 ciS2 7m—te

(ftm+tm+,LJtm)

.ni
(m)crS2 7m_tE (E (ftm+iUm+tL1tm+1—i) IJtm)
(ni)

i=i ,S2 7m-le (o + iGm+t_iIJtm)
(from Assumption 2)

Q(m)
= l=1

7m—1 ( + 1E (Gm+i yJtm) Jtm)

(m) (m)
1 + 12 Jtm, (Proposition 4h); and2 two scalars.

— (,(rn) (m)2 (m)’
— t f (ni) (m)2

‘ (m)
— E J(r+I)m(t+1)m tm ) —

(t+1)m(t+1)m tm) tm

E tt + 1m)J)].

2 (ni) t (m) (rn) (m)’\ (ni) (m) 2Since tm ‘-tm -measurable, Cou
V(t+1)ni’ °(t+1)mL’tm ) i ± t2 un and from the one to one mapping

between u and )2 from Proposition 4.2 we cari deduce that there exists two scalars rn) and m) such
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/ (ni) (m)2 Ij(m)) (m) (ni) fm)2
that Goy tfft+i)m’ (t+1)m1 tm — + 1r1 0tin

Proof of Proposition 4.4:

ti’ç(m) “

RJ(t+1m) ] = [tz1 atftm+t)]

= Z1 c4Etm(fm+t) + 3 x Z<1<1’< ataEtm(Jtm+tf?m+t,)
by the conditions in (2)

= Z1 Etrr,(fm+t) + 3 X Z1<1<1< tEtm (ftrn+tEtm+t_i(f,tm+t))

= Z1 ctEtn,(f+t) + 3 x Zi<t<t’<m tcEtm (fim+tEtm+tUm+t,_i)

= Z1 Etm(fm+t) + x i<t<t’<m tŒEt (ftm+t7t’_t_1m+t)

Z1 Etm(Etm+t_ifm+t) + 3 x Zi<i<t’<m atŒ7t’_t_1Etm(Etm+t_1(ftm+tgm+t))

zriEtm(ho +hiUm+t_i) +3 X Zcsta27h’_t_1Et (ic0 +7r1Um+t_i)

t 1 2 i

tm)J

+3 x Z1<t<l’<rn [ + (1 7t1 + 7t1?ni)]

(from proposition 4.2)

—,Tri c [h + (1 — 71_’)hy] + Z1<,<1< t7t’_1_1[o + i(1 — 71_1)]

+ [a1 Zi
71_1 + Zl<t<t’<m t7t’_2] 2

B(m)+B(m)2
— o

(m) (m) (m)’Since ?m 15 tm -measurable, the law of iterated expectations implies that E ((f(t+l)m) tm )
m)

+
p(m) 2 1 (m) )31J(rn))

— h(m) fm) (m)2
. (m) — 3(m)

— hm)s(m)By Proposition 4.2, E ((f(t+1)m I tm — o + h1 tm with h0
— o 1 and

(m) Q(m)hm) = Bm)/sm); S1 and ‘-‘2 are defined as in Proposition 4.2. In the calculations above, E1X stands for
E(XJ).

niE ((U.l)) Jtm) E [(Utm+t) Jtm] (from (2))

E [(z E(Utm+tIJtm+t_i)) JJtm]

= E [(Z1 c4s) L1tm] s] (Z cs) , (from Assumption 3)

lience,

E((U(m)

\
=s

From Assumption 3 and Equations (2),

E((

v(m) ‘t

i,(t+1)m) tni) = E (tf)m)3 + (u+l))3 tm)

ÀE((f))3IJtm)
+E((U(m)

)Jtm)i,(t+1)m
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Thus, E (ti)m)
J(rn)) À3h(m)2 + Àh0 + ) for ail j and t O

ProofofProposition 5.1: Since there isa one to one linear relationship between q52 and ç (irg, 7r?, sI,..., s), h)’,
it is sufficient to prove that (a/6’) [Ezt O gO’+i, Y+2, )] bas rank N + 3.

(8/8) [Ezt 0g(+1,+2,)Y ( ) with A(2N X 2), C(2N X N + 1) given by:

—\3Ez1 —3EztY?1+1 —Ez1 O O —À3EZtY?1+1

A
= —?,Ez1 —ÀIEztY?t+i

and c
O —Ezt .

—ÀEzt —EztY?1+i O . O —EZ —ÀEztY?t+i

We just need to show that A has rank 2 and C lias rank N + 1. Since z1 (1, Z1,t)’,

—1 0 0

n 1 •. : 3r2
/ 1 r’v2 \ — — 2 1,t+1

A — 3 ( i,t+i ,i r’ —

2 an S_1Ez1,1 Ezy,Y11+1) . . o
o ... o —1

—Ezit O ... O —À3EzY,tY?l+l

are two submatrix respectively of A and C (A3(2 x 2) and C3(N + 1 x N + 1)). Let Det(X) be the deter
minant of the matrix X. Det(A3) 8Cov(zi,t,u?) O. On the other hand, the rank of C3 is greater or
equals to N and equals N if and only in its last column belongs to the sub-space spanned by the N first
columns. This happens oniy if —À3E21+1(—Ez1,1)—3Ez1,1Y?+1 O i.-e. Cov(zi,t, u) O which is impossi

ble by assumption. Thus C3 ifofrank N+1. As a resuit the rank of (8/8’) [Ezt0g(+i, Yt+2, ç)] is N+3 O

PROPOSITION C.1 Let ft+; fottow a SR-SARV(1) modet with volatitity persistence and intercept parameteTs 7
and 1 —-y, respectivety and u Var(ft+iIJt). If there exist u, j3 and 7 E R such that:

Var(u+iIJt)=a+t3u+Su’,

then, foT alt 1 2, there exist HI, H and H E R such that

i2 i ri-l rii 2 nI 4Varu1+i_i 11 = « + “2 t + «3

Proposition C.1 shows how the conditional variance (conditionally on earlier information) of the conditional
variance of a SR-SARV(1) process is expressed in terms of the past conditional variance if this SR-SARV(1)
process has a quadratic variance of variance. Since the quadratic specification is preserved in this basic temporal
aggregation framework, it is aiso preserved in a more general temporal aggregation framework as the one we
studied in Section 4.

Proof of Proposition C.1: For t = 2, there is nothing to do from the hypothesis. For t 3, from Proposition
4.2, it is sufficient to show that E (u+,_1Jt) = 14 + 14 u + 14 u with hI, 14 and 14 E R.
Since (ft) follows a SR-SRAV(1) modei, Var(u+iIJt) a+j3u+S u implies E (u’+iIJt) = A1 +A2 u +A3 u
(A1,A2 and A3 E R). Hence, E (u+t_lJt+l_2) = A1 +A2u+i_2 +A3G+1_2.
We ‘viii get the expected result by a backward iteration of the last equality:
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= A1 + A2 E(u12jJ1) +A3 E(u,_2jJt)

i—2

= A1 + A2E,1_2 + A3 (A1 + A2 E,i_3 + A3 E(u1_3J1))

= A1(Ï + A3) + A2(E,1_2 + A3E1_3) + A E(u13J)

= A1 (1 + A3 + A + + A2) + A2 (E,2 + A3E1,13 + + A2E1,0) + Au

= A1 (1 + A3 + A + + A2) + A2 [i — 71_2 + 72u + A3(1 — + 7t3J2)

— 7t4 + 714u) + + A2u] + A1u

+A2 (1+A3 +•+A3
_71_2 (1+ + (A)2 (A)t_3))

+A27t_2 (i + +
(42

+ +
(4t_2)

u + Au

E(u÷1_1IJt) hÇ,handhERLJ
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Chapter 2

GMM Overidentificatioll Test with First Order
Underidentification
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1 Introduction

Moment condition-based models of the form E[(x, 9)] = 0, where «r, 9) is a vector-valued nonlinear

function of a random vector r and a parameter vector 9 of sise p, are very common in econometrics.

In a well specified model, there exists a true parameter value 9o lying in a parameter set e such that

E[çb(r, 9o)] = 0. The model is identified when such a parameter value is unique in e. Together with

some regularity assumptions, this identification condition guarantees the consistency of most of the

estimators proposed in the literature for the parameter vector. These estimators include the minimum

distance estimators and also the well-known generalized method of moment (GMM) estimators. While

the consistency of these estimators relies on the identification condition, their vt-consistency and

their asymptotic normality rely on the so-called rank condition. This is Rank{6E[(r, 9)]/ô9’} = p.

(See Andrews (1994).) In a moment condition-based model which is linear in the parameter, the

identification condition is equivalent to the rank condition. However, in a nonlinear model, this

equivalence no longer holds. A model nonlinear in the pararneter could satisfy the identification

condition without verifying the rank condition. Sargan (1983) refers to such a set up as first order

lack of identification or first order underidentification.

In n first order underidentified model, the usual estimators are stili consistent but higher order

expansions are needed to get identifying approximation of tbe moment conditions. In this respect,

when the moment condition model is identified, the first order underidentification context is located

between the standard usual framework and the weak identification framework as treated by Staiger

and Stock (1997) and Stock and Wrigbt (2000). Note that, in tbe case of weak identification, not

all of tbe parameters are consistently estimated. Sargan (1983) studies the instrumental variables

(IV) estimator in tbe case of first order underidentification and finds that tbe IV estimator is neither

/T-consistent nor asymptotically normally distriboted.

In bis seminal paper discussing the large sample properties of the GMM estimators, Hansen (1982)

also proposes a test for the overidentifying moment restrictions. Under the nuil of valid moment

conditions, the test statistic under some regularity conditions is asymptotically distributed as a

with a degree of freedom equai to tbe number of overidentifying moment restrictions. This nsymptotic

resuit also requires that the moment condition model is first order identified.
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This paper lias three main contributions. First, we discuss the asymptotic order of magnitude of

the minimum distance estimators in the case of first order underidentification. Our resuits rely on a

second order identification assumption for the model. This means that while there is first order lack of

identification, a second order expansion of the moment conditions is useful to get a good approximation

in the sense of parameter identification. As Sargan (1983), we derive our resuits by assuming that there

is a set of parameters with respect to which the first derivative of the moment conditions evaluated

at the true parameter value is of full rank and the set of the remaining parameters with respect to

which the first derivative is nuli. We refer to the first set of parameters as those identified as the first

order alld the second set as those non-identified at the first order. Our results generalize the resuit

by Sargan (1983) because we allow for any number of first order non-identified parameters. We find

that iiot ah of the components of the minimum distance estimator have the saine rate of consistency.

The components that estimate the parameters which are non-identified at the first order have a siower

rate of consistency. Their asymptotic order of magnitude is Op(T’/4) while the components that

estimate the parameters which are identified at the first order have the usual Op(T’/2) asymptotic

order of magnitude even though they are not asyrnptotically normally distributed.

Second, we study the asymptotic behaviour of the Hansen’s (1982) GMM overidentifying restric

tions test statistic, JT, in the context of first order underidentitifcatïon. In particular, we derive

the asymptotic distribution of this test statistic when the rank of the moment conditions’ first order

derivative is p — 1. We find that JT is no longer asymptoticahly distributed as a where H is

the number of moment restrictions. Instead, JT converges to a half and half mixture of and

XH_(p1) Obviously, the ignorance of the underidentification leads to an overrejecting test procedure.

Third, we apply this result to correct the test of common ARCH (Autoregressive conditional

beteroskedasticity) factor in asset return processes proposed by Engle and Kozicki (1993). This is a

leading test in the conditionally heteroskedastic factor models literature (Diebold and Nerlove (1989),

Engle and Susmel (1993), King, Sentana and Wadhwani (1994), Fiorentini, Sentana and $hephard

(2004) and Dos and Renault (2006)). This test translates the nuil of heteroskedasticity in the returns

driven by heteroskedastic factors in terms of moment conditions and applies the Hansen’s (1982)

J-test for overidentifying moment restrictions. We show that even though the moment conditions

on which Engle and Kozicki (1993) base their test identify the parameter of interest, they do not
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verify the first order identification condition. Therefore, the asymptotic resuits of Hansen (1982) are

not suitable for their frarnework. We show that these moment conditions satisfy the second order

identification condition that we introduce and the asymptotic distribution we derive for JT under first

order underidentification are applicable to the Engle and Kozicki’s (1993) test. Actually, the test

statistic in their test for common ARCH factor is asymptotically distributed as a mixture of two x2
instead of a as they propose. Our findings even suggest that naive a x2 application as asymptotic

distribution leads to a large overrejection which can even double the nominal size of the test.

The paper is organized as follows. In Section 2, we introduce the first and the second order

identification concepts arid we discuss how they affect the rate of convergence of the minimum distance

estimators. We derive our asymptotic resuits in Section 3. In Section 4, we apply these results to the

Engle and Kozicki (1993) test for common ARCH factor. Finally, Section 5 concludes. Ah proofs can

be found in Appendix.

Throughout the paper denotes not only the usual Euclidean norm but aiso a matrix norm:

= {Trace(AA’)}’/2. By the Cauchy-Schwarz inequality, it bas the useful property that, for any

vector x and any conformable matrix A, IAxW <

2 First order underidentification and second order identification

2.1 General framework

We consider a general minimum distance estimation problem of an unknown vector & of p parameters

given as solution of H estimating equations:

(1)

These estimating equations are assumed to identify the true unknown value & of & by to the following

assumptions:

Assumption 1 (Global Identification) p(O) = {ph(&)}1<h<H is a continnous function defined on

a compact paTameter space e C R such that for ail O in e: p(9) = O 6 60.

Assumption 1 is maintained for the sake of expositional simplicity even though it could be easily

relaxed by only assuming that & is a well-separated minimum of norm of p(&) (see Van der Vaart

(1998) page 46).
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For the purpose of minimum distance estimation, a data set of size T will give us some sample

counterparts of the estimating equations. More precisely, with time series notations, we consider that

with a sampie size T, corresponding to observations at dates t 1, 2,. . . , T and for any possible

value O of the parameters, vie have at our disposai a H-dimensionai sample-based vector 4T() =

{h,T(O)}1hH. In most cases, minimum distance estimation is akin to GMM estimation because

kT(O) is obtained as a sample mean

T(0) = (2)

In any case, we define a minimum distance estimator for a given sequence of weighting matrices.

Definition 1 A minimum distance estimator ÔT of O is defined as solution of

where is a sequence of symmetric positive definite matrices which converges when T goes to infinity

to Ç1, a positive definite matrix.

The asymptotic properties of a minimum distance estimator are classically deduced from the as

ymptotic behaviour of the sample counterpart T() of the estimating equations.

Assumption 2 (WeH-behaved moments) (a) T(0) converges in probability to p(0), uniformly in

O e e; (b) VtT(0°) converges in distribution to a normal distribution with mean O and non-singular

variance matrix E(0°).

It is well-known (see e.g. Amemiya (1989)) that Assumption 2.a implies that any minimum distance

estimator ÔT is weakly consistent for 0°. The asymptotic distribution of 0T is then usually deduced

from a Taylor expansion of the first order conditions

=0. (3)

0f course, this kind of approach is based on the maintained assumption beiow.

Assumption 3 (Differentiabiiity of estimating equations) T() and p(0) are continuously dif

ferentiable on the interior Ô of e, 0° e Ô and O(0)/60’ converges to Dp(O)/DO’, unifonnly on O e Ô.
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2.2 First order underidentification

Asymptotic normality of the minimum distance estimator ÔT is usually obtained by the joint argument

that \/(ÔT—6°) = Op(l) and then, the following first order approximation of the first order conditions

(3) is valid.

+ T)T(0°)V(0T - 00) = op(1)

which, by the above assumptions, can be rewritten

+ [(00)(O0)] V’(T — 00) = op(1) (4)

The asymptotic normal distribution of V’QT — 0°) is then deduced from (4) which characterizes

— 0°) as asymptotically linear function of the Gaussian vector T(0°). However, it is worth

reminding that the whole argument above rests upon the maintained assumption of non-singularity of

the matrix [(O0)7(60)], that is on the so-called first order identification condition

Rank(0°) =p.

The focus of our interest in this paper is a case of first order underidentification where

Rank(0°) <p.

Assumption 4A (Rank deficiency).

Rank {(0o)} = r <p.

For the sake of expositional simplicity, we even assume that

Assumption 4B (Rank deficiency for known directions). 0 = (0, 0)’ with dim 0 = r,

dim 02 =p — r such that

Rank {-(o0)} = r and -(0) = o.

Note that it is actually aiways possible to replace Assumption 4A by Assumption 43 by a change

of basis in The problem is that the required change of basis must be estimated and may hi

particular depend upon the unknown true parameter value 00 of 0. Since the focus of our interest is
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testing for overidentification, the estimation issue raised by relaxing Assumption 43 by maintaining

only the more general Assumption 4A is beyond the scope of this paper. As explained in section 3, the

difference between the two assumptions is immaterial as far as asymptotic distribution of the J-test

statistic of overidentification is concerned.

The key intuition is that, when Op(O)/DO = O, we lose the linear one-to-one asymptotic relationship

betweeri /T(6°) and /(T—O°), so that both the property v(r—O°) = Op(1) and the validity

of the Taylor expansion (4) are no longer guaranteed. We must actually consider a higher order Taylor

expansion

(6°) {vT(0) + (O°)v’(T 60)

82 “ (5)
+ T’(—0°)’ T(6O)T1/4(60) =&

1< h< H

with possibly T Op(1). The intuition behind this resuit would be the following. On the one

hand, since 6T(O°)/OO’ converges to ap(O°)/aO’ = [Op(&°)/t9&, O] we stili can take advantage of the

invertibility of {8p’(6°)/36i}{8p(û°)/80} to show that V’(O1T — O?) is Op(1), insofar as the other

terms in the expansion (5) are Op(l). On the other hand, the fact that aH of the terms in expansion

(5) and T itself are Op(1) will be compatible with T1/4(ê2T
— 0) = Op(1). Then, in the quadratic

term of expansion (5), ail of the terms will be negligible except the vector of coefficients

ml/4/Â ii0! Yh,T /r0\m1/4fiî ti0
I U27

— 172) , t )L W2T
—

UU2Ut72

h = 1,2,. . . , H. This is typically the kind of situation we want to study in this paper.

A couple of additional regularity conditions will be used to justify the argument above.

Assumption 5 (Higlier order regularity of the estimating equations) (a) V{8T(0°)/a9} =

Op(1); (b) T() and p(O) are twice continuousty differentiabte on the interior e of e and for ail

h = 1, 2,. . . , H, O2hT(9)/896O’ converges to O2p(9)/a6a6’, uniforrnty on O Ô.

Assumption 5 is an extension of the assumption that is usually made to obtain the limiting distri

bution of GMM estimators. Like Kleibergen (2005) we need in particular to complete the central limit

theorem for the moment conditions by a similar assumption about the limit behavior of the Jacobian

matrix of these moment conditions.
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Then, the above arguments lead us to the following first resuit.

PROPOSITION 2.1 If Assumptions 1-3, B and 5 hotd and Th/4(ê2T
—

= Op(1), then

— O) = O(l).

Note that the proof of Proposition 2.1 also shows that we cannot in general derive an asymptotic

normal distribution for T1/2(êyT
— O?). As already pointed out by Sargan (1983) in a particular

case, the term quadratic in T’/(2T — O) will actually contaminate the asymptotic distribution of

T’/2(Ô11
— O?).

The key point is now to explain why we expect that T’/(2T
—

O) Op(l). In the same way, in

a standard setting, it is referred to the first order identification to justify the property Th/2(êT — 00) =

Op(l), we have now to introduce the concept of second order identification.

2.3 Second order identification

As explained in the previous subsection, we have in mmd a setting wliere the second order Taylor

expansion (5) of the first order conditions subsumes in

(O°) {o° + (O°)/(Ô1’
-

O?)
1

(6)

4
—

O)’
02Ph

(O°)T1/4(Ô
—

O)] = Op(l).
2 02LO2 1<h<HJ

Since, as usual, the asymptotic probability distribution of the estimator T will be obtained by

sotving in 0T the Taylor expansion of the first order conditions, we need to introduce the following

identification assumption.

Assumption 6 (Second order identification) For any u in W and u in W we have

(0°)u+[v’ 6,(O0)v] =Q) (u=O and v=O).
2 092002 l<h<H

Note that Assumption 6 reinforces Assumption 4B. Not only the r columns of 6p(9°)/0O are

assumed to be linearly independent, to get

((O0)u=O) =(u=O)
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but in addition, we assume sorne kind of linear independence between the columns of Dp(0°)/69 and

vectors built from the second derivatives of p with respect to 92. This assumption may look a bit

ad hoc at first sight but is well suited for the examples of application we have in mmd. While an

important example will be detailed in Section 4, let us first give a simple toy example.

A toy exampl&

Assume we observe two stationary and ergodic time series, Xt and Yt, t = 1, 2,. . , T of real random

variables both with zero-mean. We want to characterize the conditional mean E[ytxt] 02x flot by

the classical orthogonality conditions but by the fact that y, is conditionally homoskedastic given xt

that is

E {(Yt — O2xt)2Ixt} =

where û is constant independent of Xt. It is natural to choose as estimating equations

p(O) = {E[(yt —02xt)2 —Oij,E[xt(yt —O2Xt)2
—

The sample counterparts are then trivial to get. Then 8p(0°)/80i = (—1, —Ext)’ = (—1,0)’ while

0p(9°)/882 = (—2E[x(yt
— 9xt)Ï, —2E[x(yt — 0xt)])’ = 0. ‘T have then typically a case of first

order underidentification. However,

—

, E4
— Ex3‘-‘2 JI<h<2

Therefore, to get second order identification, we have to check that

f—i Ex 2

O
U+

Ex
y =0)=(u=v=0).

This is clearly the case if and only if Ex 0. Then it is also easy to check that the global identi

tification assumption provided by Assumption 1 is fulfilled. We have a case of identification through

higher order moments. (See also Bonhomme and Robin (2006) for other applications of this concept.)

Let us now sketch the intuition of the reason why the second order identification assumption given

by Assumption 6 vil1 allow us to show that T’/4(02T—0) Op(i). This assumption involves a vector

[, (00)v]
802302 1<h<H

‘We thank Manuel Arellano for having suggested this toy example in a private communication.
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which is a quadratic function of y. Since ouï minimum distance estimation is defined through a

weighting matrix T, it is rather convenient to consider the rescaled vector

(v)
1/2 [‘ O2Ph

(90)v]
O&2602 1<h<H

For the same reason, we introduce the rescaled Jacobian matrix

z1 ç1/23P(8O)

By assumption, the T columns of Z1 are Ïinearly independent, which allows us to write the projection

matrix of orthogonal projection on the space spanned by the columns of Z1 as Pz1 = Z1(ZZ1)’Z.

Similarly, M1 = ‘dii
—

Pz1 denotes the orthogonal projection onto the orthogonal space.

A standard setting of first order identification would ensure, in addition to the assumption that

Z is full column ra;lk that

(Ziu + ç1/2 OP
(00)y = o) = tu = o aiid y = O).

It is worth noting that this last assumption would amount to saying that

l/28P o1’1Z11 -(û )v 711v11
2

for some positive number
.

The following lemma provides an analogous resuit about Assumption 6. Let Z1 =

t(v) = Çi/2 [v’(O2ph(O°)/8O2DO)vÏl<h<H and Mz1 = IdH — Z1(ZZ1)’Z.

Lemma 2.1 If the second ordeT identification condition given by Assumption 6 hoÏds, then there exists

a positive number such that, for att y in:

WMzi(v)W 7WvII2.

Note that the identification term for 62 is now bounded away from zero like vII2 instead of VI in

the standard setting. This is the reason why we will be only able to show that T”22T—92 Op(1)

(or T’/411Ô2T — 6 = Op(i)) instead of the standard property Th/2Wê2T
—

= Op(1).
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3 Asymptotic theory of GMM overidentification test under second
order identification

3.1 Standardization of moment conditions and parameterization of the nuil space

We are interested in the asymptotic distribution of Hansen’s J-test statistic

JT = Tmin74(9)2TT(9),

where, by Assumptions 1, 2, 3 and 4A

plimçT(O) = p(8)

V”cT(&°) - iV(O,(9°))

T
-

[E(8°)]-’
Ranky(6°) = r<p=dirn(O).

Let R2 be a (p, p — r)-matrix of rank p — r such that

8PfnOD n
)J12—U,

and R1 be a (p, r)-matrix of rank r such that R = [Ri: R2] is a non-singular matrix.

Let

ri = R’Û

and

f ,(ri) =

1 ri° = R’O°.

Then

= Et90)_1/2(90) [Ri: R2] (O0)_1/2 [(0)Ri: o].

Therefore

and

Let iT() = ‘12r(Rri). Then

JT =
77

with

Ç pbmb(ij) =

kT(ri°) - V(O,Id).
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0f course T — arg min,1 1))T(î) is flot a feasible estimator since the matrix R is unknown and

the function carmot be directly computed from data. However, for the purpose of characterizing

the asymptotic probability distribution of the J-test, it is immaterial to assume that

f =O, Z(6)=Id andthus,

= Ç’T(6) (7)
L. JT = Tmino(O)T(O) =T74()T(Ô).

For the sake of expositional simplicity, this framework will be maintained throughout this section

3 in the context of Assumptions 1 to 6. As announced in Section 2, the knowledge of the directions of

rank deficiency allows to characterize the rate of convergence of the various components of T•

PRoPosITIoN 3.1 UndeT Assumptions 1 to 6, we have

T”4(2T
—

= Op(1) and T”2(,T — O) = Op(l).

Let us remind that Proposition 3.1 is not really useful for estimation purpose since it rests upon

a rotation in the parameter space to isolate the directions of fast convergence. While a convergence

rate for 2T faster than T”4 would allow to consistently estimate these directions (see Antoine and

Renault (2007)), it may not work if the convergence rate is only The burden comes from the

fact that second order estimation errors about the direction in the parameter space, of order (T1/4)2,

will contaminate the asymptotic distribution of 1T.

However, it is worth noting that T”4 is only a lower bound for the convergence rate of 02T while

its convergence is going to be faster in some regions of the sample space. This is due to these regions

of faster convergence that the J-test statistic is going to display a non standard asymptotic behaviour

as mixture of chi-squares.

3.2 Overidentification test statistic as a mixture

Let us introduce the matrices

Z1(&) = --(O) and Z2(&) =

By assumption, Z2(O°) = O while Z,(9°) = Z, is a full-column rank matrix. We can then consider the

projection matrix

Il f T J ‘7 1 ‘7! ‘7 \ —1 ‘7!
IVIZ, = IUH ‘1j4) Li,.
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Taking into account that T’/4 (Ô2T
—

9) and T1/2(êlT
— O?) are Op(l), the proof of Proposition 3.1

gives

VÇT(6T) = MZ1./T(O°) + Mz1vZ2T — O) + op(1)

where 62T is characterized by the first order conditions

= op(1)

that is

Z(ÔT)Mz1vT(O°) + Z(T)Mz1’I(Ô2T — O) = op(1). (8)

We will show now that 2T, solution of (8), may be either such that T’/4(Ô2T
—

O) follows asymp

totically a non-degenerate solution or in contrary T1/4(ê2T
—

O) = op(l). To see this, let

MT = [a2P’(o°)M./(9o)] and fT =
ao2ao2J 1<i,j<p—r 8921

We next show that MT is positive semi definite (p.s.d) if and only if T’/(2T — 62) is asymptotically

degenerate.

If MT is p.s.d, by Equation (13),

JT — Tp(9°)Mz1T(9°) = 2T’(6°)Mz1(2T — O) + TLV(Ô2T — 6)Mz1(Ô2T — 6) + op(1).

Note that for any y E and ariy u E

= uk = VvJuk

z;rl (, Quk) = jZ vv (°)u) = v’Mv,

where

— (82p’(6°)
u

\ 2i 2j 1<i,j<p—r

Hence,

1’(O2T — 6)M1./ï(6°) = (Ô2T — 6)’MT(Ô2T — O).

Since MT is p.s.d, T’(2T — 9)M1(9°) O for any 02T.

As JT — T(O°)Mz1T(O°) <O, we necessarily have

T!(Ô2T — O)Mz1/(2T — O) = op(1).
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In other words, jv’Mz1Z(ê2—8)jj = op(l) and, therefore. by Lemma 2.1, T14(Ô2TO) = op(1).

Conversely, if MT is iiot p.s.d, there exists a unit norm sequence of random vectors ê R’ such

that

—1e MTê <O.

The necessary second order condition for an interior solution for a minirnization problem implies that

{

[a2ê - 1 a’ o
ê’

.

+ [(êT)(êT)]}êo.
3 J 1<i,j<p—r

This yields
p—r

o2(êT)
— p—r

ij 1 1

O.: (9r) +

By the usual expansions,

D°2r_O)+OptTh/2).
aooo

Therefore,

(9T)(0T) = (2T
- O(O) 82)

(Ô2T - O) + op(T’2).
o&o9 oao’

On the other hand,

o2/(êT) =

______

3966
(Mz1(O°) + Mz1(O2T — 9g)) + op(T2).

As a resuit and since ê = Op(1),

p—r p-r 2/(90) 82p(O°)
— O) + o(T-’/2)êê (9T)-(T) =

— 2) (9n
i,j=1 i,j=1

p—r 321(90) p—r
62p’(9°)P a2!(êr)

(ÔT)

=

êjêj Mz1(O0) êêj — O) + op(T-2).La
i,j=1

The last iriequality translates into

ê (M15(9) Z=1 — O)i aoao3

+ ee2T
— 90)!82P’(O°) 82p(Q°)

(2T 6) + op(T/2).
0O0O 8O,8O’

Thus

—ê’MTê Av’IIO2T — + op(l),
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for some A > O. Hence

O < —‘MTê < Av’II2T — 9II2 + op(l).

This shows that VII2T — O2 is not degenerate, thanks to the asymptotic Gaussianity of MT, and

50 is T’1(
—

Let us denote by C the part of the fundameatal space where MT is p.s.d. Remark first that fT O

is necessary for MT to 5e p.s.d. Obviously,

fT - i (o -(o0)MZ1-(90)).

Clearly, Mz1(O0) = Mz1L(ei), e1 = (1,0,.. .,0)’. Since e 0, by the proof of Lemma 2.1,

Mz1(ei) O and therefore, fr is asymptotically on degenerate,

lim Prob(C) < lim Prob(fr > 0) =
T—œ T— 2

This probability limit is also positive because the positive semi definiteness of MT amounts to

p — r inequality constraints on Mz1 v”(9°) which is asymptotically normally distributed with H — r

(>p — r) degree of freedom. In particular, for p — r 1,

lim Prob(C) = lim Prob(fT > O) =
T—oo T—oo 2

On the other hand, it is worth noting that if T’/(2T
— ) = op(l), the above expansion of the

moment conditions collapses in

= Mz1vT(O°) + op(1).

In other words

JT = T(T)T(ÔT) = T(O°)Mz1T(&°) + op(1)

is asymptotically distributed as a x,. since Mz1 is an orthogonal projection matrix on a subspace

of dimension (H — r).

The above discussion leads us to state the main resuit of this paper.

Theorem 3.1 The overidentification J-test statistic JT associated to the estimating equations

p(&) = O
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is, with pro babitity q, asymptoticatty distributed as where

f H = dimp(9)
r = Rank(6°)
q — bmT Prob (MT is p.s.d).

In partzcutar, if r p — 1, q = 1/2 and JT is asymptoticaÏty distributed as the mixture

12 12
+ XH-p+1

The discussion above makes rather clear the interpretation of Theorem 3.1. The reason why,

with probability q, the asymptotic distribution of JT is xi—r, instead of is because only the r

constraints corresponding to the range of (9°) are really binding in that case. It turns out that the

(p — r) directions in the parameter space corresponding to the nuli space of (90), when they are

estimated at a rate faster than T”4 (which is the case with probability q), do not play any more role

in the overidentification test. In this case, the asymptotic distribution of the overidentification test

statistic is as if 8 were known.

4 Application to the test for common ARCH factor

In this section, we reexamine the test for common conditionally heteroskedastic factor proposed by

Engle and Kozicki (1993). Two asset return processes are said to have a common conditionally het

eroskedastic factor if each of them is conditionally heteroskedastic and there exists a linear combination

of them which is not conditionally heteroskedastic. Engle and Kozicki (1993) propose a test for com

mon conditionally heteroskedastic factor in two steps. First, the Engle’s (1982) Lagrange multiplier

test for conditional heteroskedasticity is performed on each process and when both have evidence of

conditional heteroskedasticity, a second test is needed. At this second step, they propose a test that

investigate whether there is a linear combination of the two processes which is flot conditionally het

eroskedastic (see Engle and Kozicki (1993) and Engle and Susmel (1993)). Our point is related to this

second step test.

Let us consider the bivariate random process whose both components are conditionally het

eroskedastic. The components of share a common heteroscedastic factor if bas the following

representation

= Àf, + (9)
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where ft+i is the unobserved common conditionally heteroskedastic factor, À E R2 the vector of factor

loadings and U÷ e R2 the vector of idiosyncratic shocks.

Let J be the increasing filtration containing the available information at the date t. The practical

assumptions are

E(ft+iJt) =0 E(U+iJ) =0 Var(ft+1JJL) =? 1
E(u?) = 1 Var(Ut+iJt) = Q E(ft+iUt+iIJt) = 0. ( 0)

It is assumed, in addition, that Q is positive definite and Var(a) > 0. These assumptions imply

that any other single heteroscedastic factor decomposition of Y1 has factor loadings proportional to

À (see Dos and Renault (2006)). Then, any other single heteroscedastic factor decomposition of

such as the one given by (9)-(10) has the same ratio À2/À1.

It is worth noting that the representatiou in (9)-(10) considers, without loss of generality, that

EÇYt+1IJj) = 0. Moreover, because each component is conditionally heteroskedastic, both À1 and À2

are non zero.

When the representation in (9)-(10) is true 50 that Yi,i and Y2,i have a common heteroskedastic

factor, there exists a linear combination of these two componeats which has a time invariant conditional

variance. The second step of the test of common ÀRCH factor by Engle and Kozicki (1993) translates

this time invariance of the conditional variance in terms of moment conditions and applies the Hansen’s

(1982) test for overidentifying restrictions. Under the nuil of commoa conditionally heteroskedastic

factor in the processes, the moment conditions are valid and they apply the Hansen’s (1982) asymptotic

resuits for the J-test. The moment conditions they derive are

E { (Zt
- ) (u,t+i

-

J) } 0,

where Zt is a Jt-measnrable H size vector, u = (Y21
— OY1,)2 and û e R. The notation stands for

the sample mean of the process xt.

In the GMM estimation procedure for this moment condition model, it is the norm of the sample

covariance,

âi(Zt, 4t+) = Z —

which is minimized. Therefore, it makes sense for the pnrposes of the identification studies to focns

on the gennine population version of the estimating equations i.e. Cov(zt, ?4t+i) = O or

E {(Zt — Ezt)(u,+1 — Eu,+1)} = 0. (11)
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As stated by the next resuit, the moment conditions model in (11) identifies the true parameter

value 8o however, the first order condition is not satisfied while the model is identified at the second

order.

Theorem 4.1 Let (û) = (Zt
— Ezt)(u+1 — Eu÷1). If zt and u are stationary and, in addition,

EIlztW <oc and 0< IICov(zt, ?) II <oc then,

(j) (Identification) there exists one and onty one & E 11 satisfying the moment conditions in (11),

(ii) (First order undenidentification) E(0ç1t(Oo)/80) = 0,

(iii) (Second order identification) E(a2l(&0)/062) 0.

This resuit by its point (ii) shows that the required rank condition for the application of the

Hansen’s (1982) asymptotic resuits is violated in the Engle and Kozicki’s (1993) frarnework. On the

other hand, by (j) and (iii), the Engle and Kozicki’s (1993) moment conditions are identified and

are also identifying at the second order. This fits with our discussion in Section 3 and, instead of

being asymptotically distributed as a as suggested by Engle and Kozicki (1993), their test

statistic is asymptotically distributed as a haif and haif mixture of a and a x• As we already

mentioned, because the actual asymptotic distribution has a thicker tau than a distribution,

this asymptotic distribution proposed by Engle and Kozicki (1993) without noticing the first order

underidentification leads to an overrejecting test procedure. For a test of level ù, the asymptotic

relative rate of overrejection is given by

100 X (c’ao — i) %,

where c,H_1 is defined by Prob (i > ca,H_1) = a and co is the exact asymptotic level of the

Engle and Kozicki’s (1993) test associated to the level c given by

= Prob (Xii + > cH_1).

The following tables show the relative overrejection rate of the Engle and Kozicki’s (1993) test for

various number of included instruments. These tables display the resuits for the levels 5% and 1%,

respectively. We can report similar observation from both tables. The amount of relative overrejection
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rate is large for any number of included instruments even though it decreases with larger number of

instruments.

The minimum number of instruments allowing for overidentification corresponds to the largest

amount of overrejection rate. Almost 100% for a 5%-level test and about 130% for a 1%-level test.

This amount narrows to 26.2% for a 5%-level test and 34.0% for a 1%-level test for the case where 10

instruments are included. These tables illustrate the discrepancy between the asymptotic approxima

tion by the Engle and Kozicki (1993) test and the exact asymptotic distribution of their test statistic

as derived in this paper.

Table 2.1: Overrejection rate of the Engle and Kozicki’s (1993) test at the level c = 0.05
Number of instruments Critical value Exact asymptotic level Relative overrejection rate

H C,H_1 100 X (a’ao — 1)%
2 3.8415 0.0983 96.6%
4 7.8147 0.0743 48.6%
5 9.4877 0.0706 41.2%
6 11.0705 0.0681 36.2%
10 16.9190 0.0631 26.2%

Table 2.2: Overrejection rate of the Engle and Kozicki’s (1993) test at the level c = 0.01
Number of instruments Critical value Exact asymptotic level Relative overrejection rate

H c,jj1 100 x (c’ao — 1)%
2 6.6349 0.0231 131.0%
4 11.3449 0.0165 95.0%
5 13.2767 0.0155 55.0%
6 15.0863 0.0148 48.0%

10 21.6660 0.0134 34.0%

5 Conclusion

This paper explores for the moment condition based models the asymptotic behaviour of the minimum

distance estimators and the Hansen (1982) test for overidentifying moment restrictions statistic, JT

under nonstandard conditions. While maintaining n second order identification condition, we derive



85

the rate of consistency of the minimum distance estimators and the asymptotic distribution of JT

wben the rank condition is violated, the so-called first order underidentification. We find that the

estimators of tbe set of parameters which are identified at the first order have the usual asyrnptotic

order of magnitude while the other estimators have a larger asymptotic order of magnitude. Our

resuit generalizes the findings by Sargan (1983). We also find that there are some samples in which

the non-first-order-identified parameters estimators have the usual rate of convergence while in the

other samples, they have a siower rate of convergence. This non standard behaviour affects the

asymptotic distribution of JT• Instead of a chi-squared distribution, it is asymptotically distributed

as a haif and baif mixture of two chi-squared distributions. We apply this resuit to correct the test

for common ARCH factor proposed by Engle and Kozicki (1993) and we also evaluate the amonnt of

overrejection that it leads to without our correction.
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A Appendix: proofs

Proof of Proposition 2.1: We deduce from the expansion (5) that

—
= [(9o)1-(Oo)] {V’f’(0°) + — 9)

4 [Tu/4(ê2T — O)’ (9°)T’14 (2T
— } + op(1).

2 a02862 1<h<H

In the above expansion, v”T(O°) = Op(1) by Assumption 2, (OT(O°)/OO)v(Ô2T
—

= op(l)

since \/{OT(9°)/8&} = Op(i) and &2T — op(l). Finally, as — &), for ail h =

1,2,.. . , H, T”4 (92T — p(&0)/692O9}T1/4 (Ô2T
—

= Op(i) E

Proof of Lemma 2.1: IIMzi(v)II is an homogeneous function of degree 2 with respect to y. There

fore

IIMz1(v)II = vlI2 Mz1A &:i)

By considering

= inf WMz1A(v)II,
HvII=1

we have just to show that -y >0. By compactness, y = IIMz;A(v*)W for some v such that JJv*I = 1.

Therefore, we have just to check that (Mz1A(v) = 0) = (y = 0). That is

((v) — Zi(ZZi)’ZA(v) = o) = (y = 0).

This is a direct consequence of Assumption 6 which can be rewritten (after left muitiplication by çl/2)

(Ziu+A(v)=0)(u=0 and v=0)

Proof of Proposition 3.1: Let us consider the following two Taylor expansions

T(0T) = T(9?, 62T) + (1T, 02T)(01T -
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and

T(0,02T) = + %(0,0)(Ô2T-0) + [_y
O2hT

(62T)(62T_)]
002 2 892002 1<h<H

where, by a common abuse of notation, Ù1T E [o? Ô1T] and 92T E [o, 62T] may take different values

for different components h = 1,. , H of the above H equatïons.

Let us introduce the following notations

Z1(0) = (0)

8d’TZ2T(9) =

1T(V) = tv’o (e?, 2T)V]
1<h<H

Then, while plugging the above second Taylor expansion in the first one, we get

—

— o o o oÇbT(OT) = 5r(O ) + Z1T(O1T, 02T)(OYT — 0) + Z2T(0 )(02T
— 2) + T(O2T — 02

Therefore, the first order conditions for Oi corresponding to Equation (7) can be written

7! Â ‘z iO\ 7! iÂ /1 , rÂ iO ‘! iÂ ‘‘ rtO,iî f)O’ ‘7! /, jî 1)0 —

1TT)YT )+L11TUT)Z1TC71T, 172T) 1TU;)+L1TUT)12TU ) 2TU2)+L1TT)tITU2TU2 —

Note that, by the uniform law of large numbers (Assumption 3) and the consistency of T, the random

matrix ZT(T)Z1T(yT, 02T) converges towards the non-singular matrix

00
ao

Therefore, asymptotic behaviour in probability can be studied through the following rewriting of

the first order conditions for 61

- 0)
- [zT(êT)zlT(lT, 62T)] ‘ZT(T)

x {v T(6°) + vZ2T(6°)(Ô2T - 0) + VT(&2T -

However, since by Assumption 5 vZr(0°) = Op(1) and 92T is consistent, we can simplify this

expansion as

- 6) =
- [zTêTzlTlT 02T)]

-1

ZT(T) {(0°) + A(Ô2 - 0)} + op(1).
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For the same reason, the above expansion of T(ÔT) becomes

= + ZyT(lT, 02T)v1T - +
-

+ op(1).

Thus, by plugging the above expansion of v’(ê1r — °?) in the one of v’r(êr), we get

V’bT(6T) = MZ1T,T [T(6°) +
-

+ op(1),

where

= 1dH — Z1T(1T, 02T) [zT(ÔT)z1T(1T 92T)]’ Z1T(T).

Note that since ‘/T(°) = Op(1), we have

MzlT,Tv@T(6°) = Mz1vT(O°) +op(1),

where

Z1 = and M1 = IdH — Z1(ZZ1)’Z.

Thus

V/JT(0T) = Mz1v@(O°) + MzlT,Tv1T(Ô2T
—

&) + op(1)

and

JT = T(ÔT)T(ÔT)

= T(O°)Mz1T(O°) +T4(O°)MzlMzlT,T1T(Ô2T — O) + T(2T
— O)MlTTMzlT(O°)

+T(&2T
— O)MlTTMzlT,Tr(92T — &) + op(l)

Note that
O < T(ÔT)T(OT)=JT

min01 T(O1, O)T(û1, O) = 4.
By the standard GMM theory, 4 converges in distribution towards a Xj_r Therefore, JT is

Op(1) and thus

YT = T7%(O0)MzlMzlT,T/(ê2T
—

O) + TN(Ô2T
— 9)MlTTMzlT(9°)

(12)

+TLV(Ô2T
— 6)MlTTMzlT,r(2r —

is Op(1) since

YT JT — TI’(°)MZ1cT(°) + op(1).
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We deduce

TIIMzlT,T/T(Ô2T — )II2 Y + 2TPIMzlT(&°)IlIMz;T,TT(Ô2T
—

Since MzlT,TZ.T converges towards Mz1 and (Ô2T — O) lies in a compact set, convergence in

probability can be studied by considering

-
<MzlT,TZT(2T - -

Thus, since Mz1 is a projection matrix, we deduce

- O)2
< Y + 3T T(O°)W 2T -

Thus, by Lemma 2.1

62T - IYTI + 3T T(0°)J 1¼W O2T
- 0W2

where IW denotes the norm of the operator L(v) seen as a linear function vec(vv’). Thus

V102T
-

0W2
4IYTI

2
+ 12W

Therefore, for any positive M,

(Ô2T_û2 >M) (YT>
2M2

or
> 24WZII)

Since both YT and /T(9°) are bounded in probability, as M — co, Prob [IYTI > — o and

Prob [Too
>

—* o and thus

Prob [ — 0W2 > M]

as M-# no.

In other words

‘r’1/4i,î iO r
I U7’ — U2) = 1fF 1

We can deduce from the above expansion of v’(ÔlT — O?) that v’(ÔlT — O?) is Op(1) and

- O) = -[ZZ1]1Z1 {T(o0) + &2T
-

O)} + op(1)
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u

Proof of Theorem 3.1: Taking into account the discussion in the main text, we just have to show

that when dim 62 = 1 and T’/(2T
—

6) is asymptotically non degenerate, JT is asymptotically

To see that, note that from the expansion of the moment conditions

JT T74(T)T(ÔT)

= Tc74(9°)Mzir(6°) +2TLV(2T — 9)MZ1cIT(0°) +T’(2r — 6.)Mz1(2T—0) +op(1).

But, by t??),

TA’(2T — 0)Mz1.(2T
—

= —TL\’(Ô2T — 6)MZ1cT(6°) + op(l).

Thus,

JT = Tp(00)Mz1çT(60) + TZ’(Ô2T — 0)Mz11(0°) + op(l).

I\Ioreover, t??) also gives

— 00)2 =
— G’Mz1

(6°) + op(l).
G M1G

Thus
JT = T4(0°)Mz1cT(0°) + T(2T — 0)2G’!VIZ1T(0°) + op(1)

= T(6°)IVIZ1T(0°)
— T(°)Mz1GG’AIz1y(O°)

+ op(1).

Therefore

JT = T(0°) [IdH — P] ÇIT(0°) + op(l),

where

P = Z1(ZZ1)’Z +

is an orthogonal projection matrix on a space of dimension p = r + 1 (note that M1 G O by As

sumption 6). This proves that JT is asymptotically in this case O

Proof of Theorem 4.1: Let Oo = )2/À1. Since (—Oo 1)À = 0, from (9), we have Y2,t+i — OoYi,t+i =

— &oUi,+y. Then, (Y2,÷1
— 0oY1,+1)2 (U2,t+i — 6oUi,÷1)2. The conditional ex

pectation of is E(u0+1IJt) = 22 + 01i — 29o!12. Because this conditional expectation is

time invariant, E(u0+1Jt) = Eu0+1 so that
— Eu0t+1IJt} = 0. As zt is Jt-measurable,
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— Eu0+1]} = O or equivalently E{[zt
— — Eu0+1]} O in other words,

0 satisfies (11).

Let 0 e R such that E{[zt
— — Eu+1]} = O, or equivalently E{{zt — E(zt)][u1]} = O.

Since E(Y?1jJ) = Àa? + Ç111, E(Y?+1IJ) = + 22 and E(Y1,+1Y2,+1J) = ÀiÀ2? +

12, E{jz
—

= O cnn be written E{(z — E(zt))u?(À2 — Ài0)2} = O so that (À2 —

Ài6)2Cov(zt, u?) = O. Then O = À2/À1 = Oo• This establishes the existence and the uniqueness of Oo

as stated by (j).

Next, we show (ii),

E{a(o0)/ao} E{(zt — Ezt)[—2Y1,t+i(Y2,t+i — 0oY1,+i)]}
—2E{(zt — Ezt)(Àift+i + Ur,+i)(U2,t+y — 00U1,t+1)}

= —2E(zt — Ezt)E{(Àift+i + Ui,+i)(U2,+i — OoU1,+1)J}
—2E(z — Ezt)E {Ui,+1(U2,+i — 0oU1,+1)(J} as E(ft+iUt+i(Jt) = O

= —2E{(zt — Ez)(1l2
— 0oii)} = O.

On the other hand,

E{a2(o0)/a62} = E{(zt
— Ezt)(2Y2+1)} = 2E(z — Ezt)E(Y?t+iIJ,)

= 2E{(z
— Ezt)(Àu? + «)}

= 2ÀE{(z — Ezt)u?} = 2ÀCov(zt, ?) O.

This establishes (iii)L1
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Chapter 3

Bootstrapping ReaÏized Multivariate VoïatiÏity Measures
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1 Introduction

Realized statistics based on high frequency returns have become very popular in financial economics.

Realized volatility is perhaps the most well known example, providing a consistent estimator of the

integrated volatility under certain conditions (including the absence of microstructure noise). Its

multivariate analogue is the realized covariance matrix, defined as the sum of the outer product of the

vector of high frequency returns. Two economically interesting functions of the realized covariance

matrix are the realized correlation and the realized regression coefficients. In particular, realized

regression coefficients are obtained by regressing high ftequency returns for one asset on high frequency

returns for another asset. When one of the assets is the market portfolio, the resuit is a realized beta

coefficient. A beta coefficient measures the asset’s systematic risk as assessed by its correlation with

the market portfolio. Recent examples of papers that have obtained empirical estimates of realized

betas include Andersen, Bollerslev, Diebold and Wu (2005a, 2005b) and Viceira (2007).

Recently, Barndorff-Nielsen and Shephard (2004) (henceforth BN-S(2004)) (see also Jacod (1994)

and Jacod and Protter (1998)) have proposed an asymptotic distribution theory for realized covariation

measures based on multivariate high frequency returns. Their simulation results show that asymptotic

theory-based confidence intervals for regression and correlation coefficients between two assets returns

can be severely distorted if the sampling horizon is not small enough. To improve the finite sample

performance of their feasible asymptotic theory approach, BN-S (2004) propose the Fisher-z transfor

mation for realized correlation. This analytical transformation does not apply to realized regression

coefficients, which in particular can be negative and larger than one in absolute value.

In this paper we propose bootstrap methods for statistics based on multivariate high frequency

returns, including the realized covariance, the realized regression and the realized correlation coeffi

cients. Our aim is to improve upon the first order asymptotic theory of BN-S (2004). The bootstrap

method we consider is an i.i.d. bootstrap applied to the vector of realized returns. Gonçalves and

Meddahi (2006a) have recently applied this method to realized volatility in the univariate context.

They also proposed a wild bootstrap for realized volatility with the motivation that intraday returns

are (conditionally on the volatility path) independent but heteroskedastic when log prices are driven

by a stocha.stic volatility model. In this paper we focus only on the i.i.d. bootstrap for three reasons.
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First, the resuits in Gonçalves and Meddahi (2006a) show that the i.i.d. bootstrap dominates the

wild bootstrap in Monte Carlo simulations even when volatility is time varying. Second, the i.i.d.

bootstrap is easier to apply than the wild bootstrap: the wild bootstrap requires choosing an external

random variable used to construct the bootstrap data whereas the i.i.d. bootstrap does not involve

the choice of any tuning parameter. Third, the i.i.d. bootstrap is a natural candidate in tbe context of

realized regressions driven by heteroskedastic errors. Indeed, the i.i.d. bootstrap applied to the vector

of returns corresponds to a pairwise bootstrap, as proposed by Freedman (1981). His resuits show

that the pairwise bootstrap is robust to heteroskedasticity in the error term of cross section regression

models. Mammen (1993) shows that the pairwise bootstrap is not only first order asymptotically valid

nnder heteroskedasticity in the error term, bnt it is also second-order correct (i.e. the error incurred by

the bootstrap approximation converges more rapidly to zero than the error incurred by the standard

normal approximation).

We can summarize onr main contributions as follows. We show the first order asymptotic validity

of the i.i.d. bootstrap for estimating the distribution function of the realized covariance matrix and

smooth functions of it such as the realized covariance, the realized regression and the realized corre

lation coefficients. We assess the finite sample performance of bootstrap confidence intervals for these

three covariation measures by simulation. Our simulation resuits show that the bootstrap outperforms

the feasible first order asymptotic theory of BN-S (2004).

The ability of the bootstrap to provide higher order asymptotic refinements over the standard

normal approximation is usually established via Edgeworth expansions. In a related paper (Dovonon,

Gonçalves and Meddahi (2007)), we develop the Edgeworth expansions of the distribution of the t

statistics associated with the three covariation measures studied here. These expansions are then used

to construct analytical transformations of the raw statistics with improved finite sample properties

(in particular, we propose transformations aimed at eliminating the bias or the skewness of the trans

formed statistics). By developing similar expansions for the bootstrap statistics, we could compare

the accuracy of the bootstrap approximation with that of the normal approximation.

In this paper, we develop the Edgeworth expansion for the i.i.d. (or pairwise) bootstrap distribu

tion of the realized regression estimator. Mammen (1993) shows that the pairwise bootstrap is robust

to heteroskedasticity in the regression error and provides asyrnptotic refinements over the usual first
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order asymptotic theory in the context of standard cross section regression models subject to het

eroskedasticity of unknown form. Thus, these resuits suggest that the i.i.d. bootstrap can be second

order correct in the reaiized regression context analyzed here even under stochastic volatility. This

is flot the case for the two other statistics (covariance and correlation coefficients), where the i.i.d.

bootstrap cannot be expected to provide second order refinements due to the fact that it does not

replicate the conditional heteroskedasticity in the data. For this reason, we do not analyze the higher

order properties of the i.i.d. bootstrap for the covariance and the correlation coefficients and focus

only on the regression estimator.

Contrary to our expectations based on the existing theory for the pairwise bootstrap in the sta

tistics literature, we show that the pairwise bootstrap does not provide an asymptotic refinement

over the standard first order asymptotic theory in the context of realized regressions. We contrast

our application of the pairwise bootstrap to realized regressions with the application of the pairwise

bootstrap in standard cross section regressions. We show that there is a main difference between

these two applications, namely the fact that the score of the underlying realized regression model is

heterogeneous and does flot have mean zero (although the mean of the sum of the scores is zero). This

heterogeneity implies that the standard Eicker-White heteroskedasticity robust variance estimator is

flot consistent in the realized regression context, which justifies the need for the more involved variance

estirnator proposed by BN-S (2004). The pairwise bootstrap variance coincides with the Eicker-White

robust variance estimator and therefore it does not provide a consistent estimator of the variance of

the scaled average of the scores. This is in contrast with the resuits of Freedman (1981) and Mammen

(1993), where the score has mean zero by assumption. Nevertheless, the pairwise bootstrap is first

order asymptotically valid when applied to a bootstrap t-statistic which is studentized with a variance

estimator that is consistent for the population bootstrap variance of the scaled average of the scores.

Because the bootstrap scores have mean zero, the Eicker-White robust variance estimator can be used

for this effect. This implies that the bootstrap statistic is not of the same form as the statistic based

on the original data, which explains why we do not get second order refinements for the pairwise

bootstrap in our context.

The remainder of this paper is organized as follows. In Section 2, we introduce the setup, review

the existing first order asymptotic theory and state regularity conditions. We also present some Monte
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Carlo simulation resuits that illustrate the finite sample performance of the existing theory. In Section

3, we introduce the bootstrap methods and establish their first-order asymptotic validity for the three

statistics of interest in this paper under the regularity conditions stated in Section 2. We also compare

the finite sample performance of the bootstrap method with the existing first order asymptotic theory.

Section 4 provides a detailed study of the pairwise bootstrap for realized regressions. We first revisit the

first order asymptotic theory of the realized regression estimator, comparing the standard Eicker-White

robust variance estimator with the more involved estimator of the variance proposed by BN-S (2004).

We then contrast the theoretical properties of the pairwise bootstrap, in particular its asymptotic

variance, with the properties of the pairwise bootstrap in n standard cross section regression. We also

discuss the second order accuracy of this bootstrap method based on the Edgeworth expansion that

we deveiop here. Section 5 contains two empirical applications and Section 6 concludes. Appendix

A contains the tables and figures. Appendix B contains the proofs of resuits appearing in Section 3

whereas the proofs of results in Section 4 are collected in Appendix C.

2 Setup and first-order asymptotic theory

2.1 Setup

Let p (t), for t > 0, denote the log-price of a bivariate vector of assets1. We assume p (t) follows the

continuous stochastic volatility model given by

dp(t) = e(t)d147(t), (1)

where p(O) O and where (t) = e(t)e(t)’ denotes the spot covariance matrix. Here, W denotes a

bivariate vector standard Brownian motion and O is the instantaneous or spot covoiatility process.

As in Gonçalves and Meddahi (2006a), we suppose the absence of drift.

Following BN-S (2004), we make the following additional assumptions.

Assumption 1 0 bas elements that are ail pathwise càdiàg, the instantaneous covariance is inde

pendent of W and, for ail t < œ,

f kk() < , k = 1,2,

1For notational simplicity, we focus on the bivariate case, but the resuits could be extended to the general case in a
straightforward manner.
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where kt(t) denotes the (k, t)th element of the E(t) process.

Assumption 2 For k = 1, 2, and i = 1,. . . , 1/h, the quantities

pih

h’ I
J(i—i)h

are bounded away from O arid infinity, tiniformly in i and h.

The resuits in this paper are derived regarding the paths of as fixed. Assumption 1 rules out the

presence of leverage effects. Under these assumptions, for a given day t, where we take t = 1 without

loss of generality, we can define the vector of daily returns as y = f e(u)dw(u). Let y t Yii Y2i ),
j = 1,. . . , 1/h, (where 1/h is assumed to be an integer) be the h-horizon intraday returns on a given

day on the two assets. We can write y
= f1)h e(u)dw(u). The integrated covariance matrix of the

daily return y is given by
r’ r’

T I D(u)du= / e(u)e’(u)du,
Jo Jo

with typical element (k, t) given by Tkl f Ekl(u)du. For j = 1,. .. , 1/h, let F f,)h (u)du and

note that T = Note that conditionally on the volatility path, yj N (O, T) independently

across i. Thus the data are (conditionally on D) heterogeneous, but independent.

The parameters of interest in this paper are elements of T and smooth functions of these.

2.2 The realized covariance matrix

The realized covariance matrix is defined as the sum of the outer products of intraday returns:

1/11

f =yjy.

Conditionally on the volatility path, the theory of quadratic variation implies that

1/h 1/h 1/h

f = yy - E (yjy) = T.

f contains realized volatilities for each asset on its main diagonal and realized covolatilities between

the two assets outside the main diagonal.

Let vech (f) denote the vector that stacks the lower triangular elements of the columns of

matrix f into a vector. BN-$ (2004) (see also Jacod (1994) and Jacod and Protter (1998)) show that
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under Assumptions 1 and 2, conditionally on the volatility path,

f’ ZL.y—f01Eii(u)du ‘\
(vec (f) — vech (P)) ( Z YliY2i

— f E1 (u) du J N (0, V), (2)

\ Z/1y—foE22(u)du J
where

r1 ( 2E?1 (u) 2E11 (u) E12 (u) 2E?2 (u) “

V J 2E11 (u) E12 (u) En (n) E22 (u) + E2 (u) 2E22 (u) E12 (u) du.
° 2E2 (u) 2E22 (u) E12 (u) 2E2 (u) J

BN-S (2004) provide the following estimator of V. Let x = vech (yjy). Then, Corollary 2 of BN-S

(2004) shows that
17h 1/h—1

= zjx — (xx1 + xi+1x) - V.

As BN-S (2004) remark, ‘ is a substantially different estimator than that used by Barndorff-Nielsen

and Shephard (2002) in the univariate context, in which case letting x yj, it corresponds to

17h 17h—1

= /l1 — YY?,+1

as opposed to y, the estimator proposed by BN-S (2002). The main feature of notice is

the presence of lags of returns in the second piece. One of our contributions is to provide a new

interpretation for this estimator iII the coritext of the realized regression estimator (see Section 4.1).

2.3 The realized covariance

Let f 12 = Y1iY2i be the realized covariance between assets 1 and 2, and let P12
= f’ E12 (u) du

be the corresponding integrated covariance.

From (2), it follows that as k —* 0,

/Eï (f 12 - r12)

where

= f {En (u) E22 (u) + E?2 (u)} du (3)

is the asymptotic variance of f
.

The correspoilding feasible limit theory is

(f1 — r12)
d N (0, 1),
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where
l/a 1/h—1

= YY — YYiY2iY1,i+1Y2,i+1, (4)

is a consistent estimator of V.

2.4 The realized correlation

The realized correlation between assets 1 and 2 is given by

11h
— Zj=i YliY2i

- y

Its probability limit follows directly from the theory of quadratic variation. In particular,

1
p

— fo i2QU)dU
p

= Jf Eii(n)dnf 22(u)du

The asymptotic distribution can 5e derived by the delta method. Specifically, BN-S (2004) give the

following results. The infeasible limit theory is

- -p)
Sp,

=

where

(f1(u)duf1(u)d)_lg
(5)

with

=

f 1312 1321Vd12
=

with V defined as above and where f3k1 denotes the population regression coefficient of regressing asset

k on asset t. The corresponding feasible theory is

- -p)

=

where
=
(L yj Yj) /ip, with

1/h 1/h—1

= x— (6)

Xpi = Y2i(Yli — 1312y2i)/2 + Yli(Y2i — 1321y1i)/2,

1/h 1/h 2and 13k1 = ykiyti/ Di=1 y1, for k, t = 1,2.
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2.5 The realized regression

Suppose we regress asset 1 on asset 2 to obtain the realized regression estimator

1/h
, Y1iY2i
P12 —

‘ç’! 2
L.i=1 Y2

BN-S (Proposition 1, 2004) show that as h —* 0,

— v’(1312 - /312) d
S3,h — N(0,1),

where

V=(P22)2g12, (7)

and

912 =

d12 = (1, —/312)’

— [ f (u) E22 (u) + 2 (u) 2E22 (u) E12 (u)
12 — I ‘ 2

Jo 2E22 (u) E12 (u) 2E22 (u)

BN-S (2004) provide the following feasible theory for realized regression, which replaces Vtl with a

consistent estimator. In particular, they suggest

1/h —2

= h’, (8)

where

1/h 11h—1

= -h’ and

3i = YliY2i — /312Y2.

BN-S (2004) show that - V, and therefore it follows that

12 — /312) d N (0, 1).



103

2.6 Monte Carlo resuits for the first-order asymptotic theory

In this section we assess the finite sample performance of confidence intervals for the three covariation

measures (covariance, regression and correlation) based on the existing first order asymptotic theory.

We present resuits for two data generating processes. The first model (henceforth Design 1) is the

same as that used by BN-$ (2004). In particular, we let

dp(t) = e(t)uw(t), E(t) = e(t)e(t)’,

where

E
- (>111(t) E12(t) - (u?(t) u12(t)

E2(t) E22(t)) - ui2(t) u(t))’

and u12(t) = ui(t)u2(t)p(t).

Following BN-S (2004), we let u?(t) 5e the sum of two iincorrelated CIR processes:

2 2(1) 2(2)u1(t)=1 (t)+u1 (t).

Fors = 1,2,

= _À8(u(8)(t)
— 8)dt +

where b is the i-th component of a vector of standard Brownian motions, independent from W. We

let ) = 0.0429, j = 0.110, w = 1.346, )‘2 3.74, = 0.398, and w2 = 1.346.

Similarly to BN-S (2004), our model for u(t) is the GARCH(1,1) diffusion studied by Andersen

and Bollerslev (1998):

do(t) = —0.035(u(t) — 0.636)dt + 0.236o(t)db3(t).

The model we specify for p(t) is the same as the one proposed by BN-S(2004):

p(t) = (e21(t) — 1)/(e21(t) + 1),

where x follows the GARCH diffusion

dz(t) = —0.03(x(t) — 0.64)dt + 0.118x(t)db4(t).

Our second model (Design 2) specifies u (t) and p (t) exactly as Design 1, with the only difference

Seing in the model used to generate ? (t). In particular, for o (t) we consider the two-factor diffusion
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model studied by Chernov et al. (2003) (sec also Huang and Tauchen (2005)):

cri (t) = s-exp (—1.2 + 0.04v1 (t) + 1.5v2 (t))

dv1 (t) = —0.00137v1 (t) dt + db1 (t)

dv2 (t) = —1.386v2 (t) dt + (1 + 0.25v2 (t)) db2 (t).

This diffusion model has continuous sample paths but can imply sample paths for the price process

that look like jumps2. Although our theory does not allow for a non zero correlation between the price

process and the volatility, in our simulations, we allow for these leverage effects. In particular, we let

Corr(dWi,dbi) —0.3 and Corr(dWy,db2) = —0.3.

We study the finite sample performance of one-sided and two-sided (symmetric) confidence intervals

for each of the three measures of covariation: F12, the covariance between the returns on asset 1 and

on asset 2, /312, the population regression coefficient of the regression of Yi on Y2, and p, the correlation

coefficient between the two assets.

Let P denote any of these three parameters of interest. Similarly, let P denote the corresponding

realized estimator and let denote a consistent estimator of the variance of v’7Ô. In particular,

for 6 = F12, & = YliY2i, and V’ = Vr = ZL YY — Y1iY2iY1,i+1Y2,i+1, as defined in (4).

For P = /312, Ô p12, and =
=
(L h’, with defined in (14). For û = p, Ô

and = = y Yi)’ h’, where is defined in (6).

The lower one-sided 100(1 — ci)% level confidence interval for û based on the feasible asymptotic

theory of BN-S (2004) is given by

ICas,i_a = (—œ, & —

where za is the ci-level critical value of the standard normal distribution. The two-sided 100(1 — ci)%

level confidence interval for û is given by

IC,1_ = (Ô
— Zi_n/2, Ô + z1_12).

We present results for three nominal levels: 95% (i.e. ci = 0.05), 90% (ci = 0.10) and 99% (ci = 0.01).

We compute the actual coverage probabilities of these confidence intervals for each of the stochastic

volatility models described above. We report resuits across 10,000 replications for five different sample

2The function s-exp is the usual exponential function with a linear_growth function splined in at high values of its
argument: s-exp(x) = exp (x) if x < xo and s-exp(x) = xo — x + x2 if x > xo, with Xo = log (1.5).
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sizes: 1/k = 1152, 288, 48,24 and 12, corresponding to “1.25-minute”, “5-minute”, “15-minute”, “half

hour”, “1-hour”, and “2-hour” returns. Table 3.1 contains results for a = 0.05, for each of tbe two

designs, for both one-sided and two-sided symmetric intervals. Table 3.2 contains resuits for a = 0.10

whereas Table 3.3 refers to a = 0.01. (These tables also include results for the bootstrap method but

tbose resuits will be discussed later.)

We start with Table 3.1. For the two DGP’s, both one-sided and two-sided intervals tend to

undercover. Tbe degree of undercoverage is especially large for larger values of h, wben sampling

is not too frequent. For the covariance measure and the regression coefficient, one-sided intervals

tend to perform worse than two-sided intervals. Tbe opposite is true for tbe correlation coefficient,

which is surprising when analyzed from the viewpoint of tbe theory of Edgeworth expansions (the

analysis based on Edgeworth expansions suggests tbat tbe error of one-sided intervals is of tbe order

o (v’7) wbereas tbe error of symmetric two-sided intervals is usually of the order O (h)). For one-sided

intervals, the covariance measure is associated witb the largest distortions, followed by tbe regression

coefficient, which in turn is worse than the correlation coefficient. For two-sided intervals, tbis ranking

is cbanged, with the correlation coefficient performing worst, followed by the covariance and by tbe

regression coefficient. The degree of undercoverage can be quite substantial at the smallest sample

sizes. For instance, a lower 95% nominal level for the covariance measure between tbe two assets for

Design lis equal to 80.74% when we sample every two bours (h = 1/12). For the regression coefficient,

if is equal to 86.04% and for the correlation coefficient is is equal to 91.43%. The corresponding

coverage rates for two-sided intervals based on the BN-S asymptotics are 83.90%, 85.27% and 81.04%

for tbe covariance, the regression and the correlation coefficients, respectively. For this last measure of

dependence, we also report the coverage rates of confidence intervals based on the Fisher-z transform,

as proposed by EN-S (2004). For one-sided intervals, tbe 95% interval based on the Fisher transform

covers the correlation coefficient 90.28% percent of the time whereas for two-sided intervais, the actual

coverage rate is equal to 85.44%. Compared to the intervals based on tbe raw statistic, tbe Fisher-z

transform outperforms the raw statistic only for the two-sided intervals and not for the one-sided

interval. In both cases, however, it is clear that finite sample distortions remain for tbe Fisher-z

transform, thus motivating the use of the bootstrap and/or of alternative analytical corrections.

The resuits for Design 2 are qualitatively similar to those discussed for Design 1. Quantitatively,
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the degree of undercoverage is smaller for Design 2, which suggests that contrary to the univariate

case (see Gonçalves and Meddahi (2006a)) the asymptotic theory handies well the presence of the

two-factor diffusion model of Chernov et aI. (2003) in one of the volatility processes. The resuits for

Design 2 also suggest that the theory of BN-S (2004) is robust to the introduction of leverage effects.

Tables 3.2 and 3.3 show that the performance of the asymptotic theory of BN-S (2004) for the 90%

and 99% confidence intervals is qualitatively similar to the performance of the 95% level intervals.

3 The bootstrap

In this section we propose bootstrap methods for smooth functions of the realized covariance matrix.

The bootstrap method we consider is the i.i.d. bootstrap applied to the vector of returns.

3.1 The bootstrap realized covariance matrix

We first state the first order asymptotic vahdity of the bootstrap for the realized covariarice matrix

and smooth functions of its elements. We then specialize our resuits to the three statistics of interest:

realized covariance, realized correlation and realized regression.

Let x = vech (yiy) = t y YuY2i y )‘, and recali that

1/5

T5 Vh/2\/T(xj
— E(x)) - N(0,13),

1/5 t\ . . . . 1/5where x, = vech denotes the vectorized reahzed covanance rnatnx F
=

and

= hm5 Var (/T

We apply the i.i.d. bootstrap to z. In particular, let 4 = xi = yj Y1I,Y2I yj. )‘, where

I is i.i.d. on {1,. . . , 1/h}. Notice that this is equivalent to bootstrapping the bivariate vector of

assets returns y = (ylj, Y2i)’. Define the (scaled) vectorized bootstrap realized covariance matrix as

= VT vech (‘) vvech (fj. As usual in the bootstrap literature,

let Et (and Vart) denote the expectation (and the variance) with respect to bootstrap data,

conditional on the original data. It is easy to show that Et (/Tvech (f*))
= v”ivech (f) , and

1/5 1/5 1/5 1/5 /

V*mVar* (x) =i’xx-
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We can show that

V V + f vech (E (u)) vech(E (u))’ du
— (f vech (E (u)) du) (f vech (E (u)) du)’,

which is not equal to V (one exception is when E (u) =z E for ail u). Although V does flot consistently

estimate V, the i.i.d. bootstrap is stili asyrnptotically vahd when applied to the following studentized

statistic

T *-l/2/ET (vech (f) — vech (f)),

where
17h 1/h 17h ‘

= h’ xx’ - (4)

is a consistent estimator of V*. The following theorem states formally these resuits.

Theorem 3.1 Let Assumptions 1 and 2 hold and tet {y i = 1,.. . , 1/h} denote a set of i.i.d. boot

strap Teturns. Then, as h — 0,

a) — V - 0, in probabitity.

b) SUPx IP* (T x) — P(T x) — O in probabitity.

The proofs of ail the resuits in this section appear in Appendix B.

Several statistics of interest cari be written as smooth functions of the realized covariance matrix.

Examples include the reaiized covariance measure between two assets, the realized regressiori coeffi

cient, and the reahzed correlation coefficient. The following theorem proves that the i.i.d. bootstrap is

first order asymptotically valid when applied to smooth functions of the (appropriateiy centered and

studentized version of) the vectorized realized covariance matrix.

Let f (9) t R3 — R denote a real valued function with continuous derivatives, and iet

Vf (O)
= ( 6f/O9 8f/892 Of/8O )‘ denote its gradient. We suppose that Vf (9) is nonzero at

0o, the true value of O. The statistic of interest is defined as

(f (vech (f))
- f (vech (n))

Tf,h=

where

Vf,h = (v’f (vech (f)) Vf (vecil (f))).
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The i.i.d. bootstrap version of Tf,ft is 27h’ which replaces f with f*, with f, and e with

= (v’i (vech (f*)) TT*Vf (vech (f*)))
, which is a consistent estirnator of the bootstrap as

ymptotic variance (v’f (vech (f)) VtVf (vech (f))).

Theorem 3.2 Under the sanie conditions of Theorem 3.1, as h — 0,

sup IP* (T,h z) — P (Tp, x) — 0,

in pro babitity.

The next sections give explicitly the bootstrap statistics for the three cases of interest, namely the

covariance measure Pi2, the correlation coefficient p and the regression coefficient /3.

3.2 The bootstrap realized covariance

The bootstrap realized çovariance measure is defined as f2 = which corresponds to

taking j (vecii (t)) with f(0) = 02, with 0 = (01,02,03). Thus, the bootstrap statistic is defined as

T,h

/7 ( - f12)

where
17h 1/h 2

=hyy-

Theorem 3.2 above proves the first order asymptotic validity of the bootstrap when applied to TÇ.

3.3 The bootstrap realized correlation

The bootstrap realized correlation coefficient is defined in the same fashion as 5 but with the

bootstrap data replacing the original data, i.e.

= Zvivi

The corresponding t-statistic is given by

T*
p,h =

vP__
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where

— ff*f-*” *

p 11 22) p’

= h’x, and

= (Yi - /32Y) /2+ ( - ,) /2.

Here / denotes the bootstrap OLS regression estimator of the realized regression of y on y, for

k, t 1,2. We note that p = f (vech (P)) , with f (0)
=

Thus, the first order asymptotic validity

of the i.i.d. bootstrap for the correlation coefficient follows from Theorem 3.2.

3.4 The bootstrap realized regression

Let {y = (y,, y) : i = 1,. . . , 1/k} be an i.i.d. bootstrap sample from {yj}. The boostrap OLS

estimator that we obtain by regressing y on y is given by

* *

— Lj=i Y1Y2j
/312 — v-/h *2

(9)
L_,j=1 Y2j

The corresponding t-statistic is

T* —

vT(/2 — /312)
10J3,h

where
17k

—2
1/h

(2)h (11)

Theorem 3.2 covers the case of realized regressiori when f (0) = , with O = (Oi, 02, 03)’ by noting

that /312 = f (vech (f)).

3.5 Monte Carlo resuits for the bootstrap

Our theoretical resuits suggest the first order asymptotic validity of the i.i.d. bootstrap. Thus, we

can build confidence intervals for O using the a-percentile q of the bootstrap distribution of Th.

As previously, we let 0 denote any of the three measures of covariation, O its estimator and V0 the

corresponding variance estimator. The lower one-sided 100(1 — a)% level bootstrap confidence interval

for O is given by

= (-, -
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The bootstrap allows for two-sided symmetric and equal-tailed confidence intervals. The 100(1 —

level symmetric bootstrap confidence interval is given by

(Ô P-/2’ +P/2\/).

where p is the c-percentile of the bootstrap distribution of T6 ht The 100(1 — a)% level equal-tailed

bootstrap confidence interval is of the form

(9- O
-

We concentrate our discussion on Table 3.1, which contains resuits for 95% level confidence inter-

vals. Tables 3.2 and 3.3 contain the corresponding resuits for 90% and 99% level intervals, respectively.

Since the resuits are qualltatively similar, we do not discuss these in detail here. Our resuits suggest

that the i.i.d. bootstrap intervals outperform the asymptotic theory based intervals for the two DGP’s

and for both one-sided and two-sided intervals, for ail three measures of dependence. Symmetric

intervals are generally better than equal-tailed intervals (this is consistent with the theory based on

Edgeworth expansions) and both improve upon the first order asymptotic theory based intervals. The

gains associated with the i.i.d. bootstrap can be quite substantial, especially for the smaller sample

sizes, when distortions of the BN-S intervals are larger. For instance, for the regression coefficient, the

coverage rate for a symmetric bootstrap interval is equal to 93.48% when 1/h = 12, whereas it is equal

to 85.27% for the feasible asymptotic theory of BN-S (2004) (the corresponding equal-tailed interval

yields a coverage rate of 90.42%, better than BN-S (2004) but worse than the symmetric bootstrap

interval). The gains are especially important for the two-sided intervals for the correlation coefficient,

when the asymptotic theory of BN-S (2004) does worst. For 1/h = 12, the bootstrap symmetric

interval bas a rate of 93.69% (the equal tailed interval is in this case even better behaved, with a

rate equal to 94.60) whereas the BN-S interval based on the raw statistic has a rate of 81.04% and

the interval based on the Fisher-z transform has a rate of 85.44%. For the correlation coefficient, the

bootstrap essentially removes ail finite sample bias associated with the first order asymptotic theory

of BN-S (2004).



111

4 A detailed study of realized regressions

The realized regression estimator is one of the most popular measures of covariation between two assets.

In this section we study in more detail the application of the i.i.d. bootstrap to realized regression.

We first provide a new interpretation for the feasible approach of BN-S (2004). In particular, we

establish a link between the standard Eicker-White heteroskedasticity robust variance estimator and

the variance estimator proposed by BN-S (2004). We then exploit the special structure of the regression

model to obtain the asymptotic distribution of the bootstrap realized regression estimator. We relate

the bootstrap variance with the Eicker-White robust variance estimator. We end this section with a

discussion of the second order accuracy of the i.i.d. bootstrap in this context.

4.1 The first order asymptotic theory revisited

Given Assumptions 1 and 2, and conditionally on the volatility path, we can write

Yli /312,iY2i + fi, (12)

where independently across i = 1,.. . ,

Uj2j ‘- N(0, 4),

with f — and t312,i Here Tkt, = J(l)h kt (u) du. Thus, the regression coefficient

in the true DGP describing the relationship between Y1i and Y2j is heterogeneous (it depends on i)

and the true error term in this model is heteroskedastic.

When we regress Yli on Y2i to obtain t12, we get that

1/h 1/h
, Z=1 E (yliy2i)

— Z=l 112,i — fi2 —

P12 h — h —/J12•
E (y) 1’22

Thus, /312 does not estimate /312,j but iristead /312, which can be thought of as a weighted average of

/312,i. We can write the underlying regression model as follows:

Yli = /3i2Y2i + E, (13)

where

(/3i — /312) Y2i ± Ui.
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It follows that 6jy2j N ((/312,j — /312) Y2i, V), independently across i. Moreover, noting that E (y2j) =

o,

Cov (Y2i, E) E (Y2iEi) = (/312,j /312) = 1’12,i — /312F22,i,

which in general is not equal to zero (unless volatility is constant). However, E Y2iEi) = o,

and therefore /12 converges in probability to /312. The fact that E (y2iEi) O is crucial to understand

several properties of /312 (and of its bootstrap analogue to be defined later).

To find the asymptotic distribution of t12, we can write

(12 _/312)
= ZLY22r

= (F22)’y2e +op(l).
Zi=1 Y2i i=1

The asymptotic variance of /F/312 is thus of the usual sandwich form

V Var (i2) = (F22)’ B (F22)’,

where B = llmhO Bh, and 3h = Var Y2i6i) . Because E (Y2iCi) O, we have that

1/h 1/h

Bh Var Y2iEi) = h’ Var (Y2iEi)

1/h

= h1 (E (yje) - (E (y2iri))2)

11h 1/h

= h’ E (ye) — h’ (E (y2iEi))2 Bii
—

We can easily show that

B = li 3
= j (E?2 (u) + E,, (u) E22 (u) — 4/3,2E,2 (u) E22 (u) + 2/3?2E2 (u)) du.

It follows that

— /312) d
— N(O,1),

where V = (f22)2 B. We can contrast this resuit with Proposition 1 of BN-S (2004). It is easy to

check that g, = B.

It is helpful to contrast the BN-$ (2004) variance estimator of V (eq. (8)) with the Eicker-White

heteroskedasticity-robust variance estimator that one would typically use in a cross section regression
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context. Let ê denote the OLS residual underlying the regression model (13). Then, the Eicker-White

robust variance estimator of B is given by

11h

Ê1,, = 1r1

In contrast, noting that xj = Y2idi, BN-S (2004)’s estimator of B corresponds to

1/h 1/h—1

= > 4 —

1/h 1/h—1

= — > Êlh — Ê2h. (14)

We can see that h1Û, = Êlh—Ê2h, where Ê1,, is the usual Eicker-White robust variance estimator, and

Ê2h = k’ zZ’ Y2iêiY2,i+ldi+1. This extra term is needed to correct for the fact that E (y2jEj) O,

as we noted above. In particular, Êlh —‘ Blh and Ê2h —, B2h in probability.

4.2 First order asymptotic properties of the pairwise bootstrap

The i.i.d. bootstrap applied to the vector of returns y = (Pli, Y2i) is equivalent to the so-called pairwise

bootstrap, a popular bootstrap method in the context of cross section regression models. Freedman

(1981) proves the consistency of the pairwise bootstrap for possibly heteroskedastic regression models

when the dimension p of the regressor vector is fixed. Mammen (1993) treats the case where p —* œ

as the sample size grows to infinity. Mammen (1993) also discusses the second order accnracy of the

pairwise bootstrap in this context. His resuits specialized to the case where p is fixed show that the

pairwise bootstrap is not only first order asymptotically valid under heteroskedasticity in the error

term, but it is also second-order correct.

It is easy to check that /2 defined in (9) converges in probability (under the bootstrap probability
11h * *

measure P*) to $12
= The bootstrap analogue of the regression error e in model (13)

E çu21

is thus e = —
whereas the bootstrap OLS residuals are defined as = —

Our next Theorem provides the first order asymptotic properties of /2•

Theorem 4.1 Under the conditions of Theorem 3.1, as h —* O,

a) vi’T (ir — &2) N (o, v), in probability, where = (t22) 2B*

b) B = Var* (v’7’zL’ = h—’ zLg Bi,,.
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c) V — (T22)2 B4 V, where B4 = B + f’ (12 (u)
—

1312>22 (u))2 du.

Part (a) of Theorem 4.1 states that the bootstrap OLS estimator lias a first order asymptotic

normal distribution with mean zero and covariance matrix V,. Its proof follows from Theorem 3.2.

Parts (b) and (c) show that the pairwise bootstrap variance estimator is not consistent for V in the

general context of stochastic volatility. One exception is when volatility is constant, in which case

3*
= 3 and V V.

To understand the form of V1, note that we can write

1/h
—1

1/h

_1312) =

1/h ) p* 1/li 2 .Since
— Z= = F22, in probabihty, it follows that

“h

( 1312) = (f22)’ +Op* (1),

in probability. We can now apply a central limit theorem to v’7F yr to obtain the lirniting

normal distribution for v1i’ (/2 — /312). it follows that

/312)
d N (o, vi),

in probability, where v = (f22)2 3, with B Var4 (‘7T Part (b) of Theorem

4.1 follows easily from the properties of the i.i.d. bootstrap. In particular, we can show that

1/h 1/h

= Z Vart (yE) = Z (E* ((y.E)2)
- (E4 (yE))2)

i/h 1/h
2

1/h 1/h
2

= h2 [h Z Yi — (h Z Y2i2i) ] = h Z y1
— (Z Y2iÊ2i)

1/h

=

since V2iE2i = O by construction of 1312. Thus, the i.i.d. bootstrap variance of the scaled average

of the bootstrap scores yr is equal to Ê,, the Eicker-White heteroskedasticity robust variance

estimator of the scaled average of the scores Y2iEi.

Theorem 4.1 (part c) shows that the pairwise bootstrap does not in general consistently estimate

the asymptotic variance of 1312. An exception is when volatility is constant. This is in contrast
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with the existing resuits in the cross section regression context, where the pairwise bootstrap variance

estimator of the least squares estimator is robust to heteroskedasticity in the error term. This failure of

the pairwise bootstrap to provide a consistent estimator of the variance of /12 is related to the fact that,

as we expÏained in in the previous section, we cannot in general assume that E (y2iEi) = 0, unless for

instance when volatility is constant. When the the scores have mean zero, i.e. E (y2jEj) = 0, the Eicker

White robust variance estimator, and therefore the i.i.d. bootstrap variance estimator, are consistent

estimators of the asymptotic variance of the scaled average of the scores. Both Freedman (1981) and

Mammen (1993) make this assumption. The fact that E (Y2jEj) O creates a bias term in Ê, which

is eliminated with the variance estimator proposed by BN-S (2004) (see eq. (14)). Because B =

the i.i.d. bootstrap variance estimator is not a consistent estimator of Bh = Var (/TZZ y2iEi).

The non zero mean property of the scores in our context is crucial in understanding the differences

between the realized regression and the usual cross section regression.

The i.i.d. bootstrap is nevertheless first order asyrnptotically vaÏid when applied to the t-statistic

Th, as our Theorem 3.2 proves. This first order asymptotic validity occurs despite the fact that V,

does not consistently estimate The key aspect is that we studentize the bootstrap OLS estimator

with (defined in (11)), a consistent estimator of V, implying that the asymptotic variance of the

bootstrap t-statistic is one.

4.3 Second order asymptotic properties of the pairwise bootstrap

In this section, we study the second order accuracy of the pairwise bootstrap for realized regressions.

In particular, we compare the rates of convergence of the error of the bootstrap and the normal ap

proximation when estimating the distribution furiction of T,3,h. This is accomplished via a comparison

of the Edgeworth expansion of the distribution of T,3,h derived by Dovonon, Gonçalves and Meddahi

(2007) with the bootstrap Edgeworth expansion of T,h, which we derive here. See Gonçalves and Med

dahi (20065) and Zhang et al. (2005b) for two recent papers that have used Edgeworth expansions

for realized volatility as a means to improve upon the first order asymptotic theory.

For j = 1,3, we denote by t (T,3,h) the first and third order cumulant of T,3,h, respectively. The

second order Edgeworth expansion of the distribution of T,3,h is given by (see e.g. Hall, 1992, p. 47)

P(T,3,h <z) = (x)+ q(x)(x)+o(h),
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where for any z E R, J (z) and (z) denote the cumulative distribution function and the density

function of a standard normal random variable. The correction term q (z) is defined as

t 1
q (z) =

—
+ F3 (z2 —

where i and !3 are the coefficients of the leading terms of tri (T,h) and tr (T,3,h), respectively. In

particular, up to order 0 (v’) as li — o, tri (T,h) = Vri and tr3 (T/3,h) = V’itr3.

Given this Edgeworth expansion, the error (conditional on >) incurred by the normal approxima

tion in estimating the distribution of T,h is given by

sup P (Th z) - (z) = sup q (z) (z) + 0(h).
xER xen

Thus, sup q (z) (z)l is the contribution of order O (‘7) to the normal error.

Now consider the bootstrap. We can write a one-term Edgeworth expansion for the conditional

distribution of Th as follows

p*(h <x) = (z) + q(z)(z) + Op(h),

where q is defined as

q(x) = -(trh + h(z2
- 1)/6),

and where tr and trh are the leading terms of the first and the third order cumulants of Th. In

particular, tr (T,h) = vr and tr (T,h) = up to order O (\/7).

The bootstrap error implicit in the bootstrap approximation of P (T,h z) (conditional on D) is

given by

Pt (Th z) - P (T,h z) = (q (z) - q (z)) (z) + Op (h)

= (ptirn,oq (z) - q (z)) (z) + op ()
= _[(tr_tr1)+(tr_tr3)(x2_1)] +o()

where tr ptZmh_otrh and tr Plimh=otrh. If , = tri and tr tr3, P* (T z) —P (T,h z) =

op (/7) , and the bootstrap error is of a smaller order of magnitude than the normal error which is

equal to o (v7). If this is the case, the bootstrap is said to be second-order correct and to provide

an asymptotic refinement over the standard normal approximation.
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The following resuit gives the expressions of the leading terms of the first and third order cumulants

for the original statistic and for its bootstrap analogue. We need to introduce some notation. For

simplicity, we will henceforth write E instead of E (u).

Let

A0 j (E22E12
—

i2E2) du,

A1
= f (2 + 6E11E12E22

—
1812E2E22

—
612E2E11 + 242E12E2

—
82E2) du,

= f t2 + E1122 — 412E12E22 + 29E2) du,

4A0
H1 = , and

F22V

A1
H2

Similarly, let

= B + f (E12 — i2E22)2 du,

= A1±2 f’ (E12
—

i2 E22)3 du,

1
— r22V

H*_ 1
2

— B*3/2

In order to obtain the higher order results in this section, we add the following additional assurnp

tion. A more primitive assumption such as a multivariate analogue of Assumption V in Gonçalves

and Meddahi (2006) may be sufficient to ensure Assumption 3, but we have not yet confirmed this.

Assumption 3 Let k, t, k’, t’ = 1,2.

1/h 1
h’ kt,ik’t’,i

— f Ekl(u)Ek’j’(u)du =

and
1/h—1 1

—
f Ekt(u)Ek’tI(u)du = op().

PRoPosITIoN 4.1 Under Assumptions 1, 2 and 3,

a) i, = (H, — H2) and , = 3H, — 2H9.
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b) z(H—H) and3(H_H2j.

Part fa) of Proposition 4.1 is derived in Dovonon, Gonçalves and Meddahi (2007). (We reproduce

the proof in Appendix C for completeness.) The proof of part f b) is in Appendix C. A comparison

of the two parts reveals a disagreement between the two sets of cumulants. Notice in particular that

B B contributes to this discrepancy. B here denotes the limiting variance of the scaled average of

the scores whereas 3* denotes its bootstrap analogue. As we noted before, under general stochastic

volatility, the pairwise bootstrap does not consistently estimate B and the bias terni is exactly equal

to the difference between 3 and 3*, i.e. 3*
— 3 = f0’ (12 — /,2E22)2 du = ptimh_.oB2h, where

32h = h’ (E (y2iEi))2. An exception is when volatility is constant, where B2h = O and therefore

3*
= 3. In this case, we also have that A = A1 = A0 = 0, implying that both the bootstrap and

the normal approximations have an error of the order O (h). We need a higher order expansion to

be able to discriminate the two approximations. In the general stochastic volatility case, the pairwise

bootstrap error is of order O (), similar to the error incurred by the normal approximation.

The lack of second order refinements of the pairwise bootstrap in the context of realized regressions

is in contrast with the results available in the bootstrap literature for standard regression models (see

Mammen 1993). One explanation for this difference lies in the fact that E (y2iEj) 0, as we noted

above. This implies that T,,,h must rely on a variance estimator that contains a bias correction term,

* 1/has proposed by BN-S (2004). Instead, in the bootstrap regression, E (y2E) = h Z=1 2jEj = 0, and

therefore there is no need for the bias correction proposed by BN-S (2004). This implies that the

bootstrap t-statistic is not of the same form as T,,h, relying on a bootstrap variance estimator

that depends on an Eicker-White type variance estimator 3.

5 Empirical application

A well documented empirical fact in finance is the time variability of bonds risk, as recently documented

by Viceira (2007) for the US market. As suggested by the CAPM, the bond risk is often measured by

its beta over the return on the market portfolio. With a positive beta, bonds a.re considered as risky

as the rnarket while a bond with a negative beta could be used to hedge the market risk.

Following Merton (1980) and French, Schwert and Stambaugh (1987), Viceira (2007) studies the

bond risk for the US market by considering the 3-month (monthly) rolling realized beta as measured by
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the ratio of the realized covariance of daiiy log-returns on bonds and stocks and the realized volatiiity

of the daily log-return on stocks over the same period. Foilowing the standard practice, the number

of days in a month is normalized to 22 such that tbe 3-month realized beta is computed considering

sub-samples of 66 days. From July 1962 tbrougb December 2003, Viceira (2007) reports a strong

variability of US bond CAPM betas, which may switch sign even tbough the average over the full

sample is positive. Nevertheless, in his analysis Viceira (2007) does not discuss tbe precision of the

realized betas as a measure of the actual covariation between bonds and stock returns.

The aim of this section is to illustrate the usefulness of our approach as a method of inference

for realized covariation measures in the context of measuring the time variation of bonds risk. We

consider both the US bonds market, as in Viceira (2007), and the UK bonds market.

Our data set includes the daily 7-to-10-year rnaturity government bond index for the US and the

UK markets as released by JP IViorgan from January 2, 1986 througb August 24, 2007. As a proxy for

the US and the UK market portfolio returns, we consider the log-return on the S&P500 and the FTSE

100 indices, respectively. The S&P500 index is designed to measure performance of the broad domestic

economy through changes in the aggregate market value of 500 stocks representing ail major industries.

The FTSE 100 index is a capitalization-weighted index of the 100 most highly capitalized companies

traded on the London Stock Exchange. Both indices are commonly used in scientific researches as

well as in the finance industry as a proxy for the market portfolio. The first two series have a shorter

history and therefore constrained the sample we consider in this study.

From the estimates presented in Table 3.4 (Appendix A), the fuli-sample beta for bonds in the US

is about 0.024, slightly smailer than the UK bond beta, which is about 0.030. Both the bootstrap and

the asymptotic theory based confidence intervals dispiay support that the true values of the betas in

both countries are positive.

A doser analysis of Figures 3.1 and 3.2 shows tbat the average positivity of the betas hides

considerable time variation in both countries, a fact already documented by Viceira (2007) for the US

market. Furthermore, the betas for these two countries foflow simiiar dynamics. We can distinguish

two patterns for the 3-month betas. For the period before April 1997, the betas are mostly significantly

positive or, in few cases, non-significantiy different from 0. This period is also characterized by betas

of larger magnitude, with a maximum value of 0.500 at the end of July 1994 for the US and 0.438 in
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August 1994 for the UK. The period after April 1997 is characterized by a drop of the magnitude of

the bonds betas in both countries. They are often not significantly different from 0. For this whole

sub-period, the betas for the US and UK bonds are significantly negative only between June 2002

and July 2003, but in these cases their magnitude is small. We conclude that bonds are riskier in the

period before April 1997, while in the recent periods they appear to be non risky or at most a hedging

instrument against shocks on market portfolio returns.

A comparison of the bootstrap intervals with the intervals based cri the asymptotic thecry cf BN-S

(2004) suggests that they two types cf intervals tend to be similar, but there are instances where the

bootstrap intervals are wider than the asymptotic thecry-based intervals (see Tables 3.5 and 3.6 for a

detailed comparison of the twc types cf intervals for a selected set cf dates). This is specially true for

the first part cf the sample for the UK bond market, where the width cf the bootstrap intervals can

be much larger than the width cf the BN-S (2004) intervals. In this empirical application, the gain in

accuracy cf the bcctstrap intervals in terrns cf coverage prcbability appears te be asscciated with a

detericratien cf length cf the bcctstrap intervals.

6 Conclusion

This paper proposes bcotstrap methods for inference on measures cf multivariate volatillty such as

integrated ccvariance, integrated ccrrelaticn and integrated regressien ccefficients. We shcw the first

order asymptotic validity of a particular bootstrap scheme, the i.i.d. bootstrap applied te the vector cf

returns, for the three statistics of interest. Our simulation resuits show that the bectstrap outperforms

the feasible first order asymptotic apprcach cf BN-S(2004).

Fer the special case cf the realized regression estimatcr, our i.i.d. bootstrap correspcnds te a

pairwise bectstrap as preposed by Freedman (1981) and further studied by Mammen (1993). We

analyze the second order accuracy cf this bootstrap method and conclude that it is net second order

accurate. This centrasts with the existing literature en the pairwise bcotstrap fer cross section medels,

which shows that this method is net enly rcbust te heteroskedasticity in the errer term but it is

also second order accurate. We provide a detailed analysis cf the pairwise bootstrap in the ccntext

cf realized regressiens which allows us te highlight some key differences with respect te the usual

application cf the pairwise bootstrap in standard cross section regression models. These differences
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explain wliy the pairwise bootstrap does not provide second order refinements in this context.

An important characteristic of high frequency financial data that our theory ignores is the presence

of microstructure effects: the prices are observed with contamination errors called noise due to the

presence of bid-ask bounds, rounding errors, etc, and prices are asynchronous, i.e., the prices of two

assets are often not observed at the same time. The first problem is well addressed by the literature

in the univariate context, in particular, Zhang, Mykiand, and Ait-Sahalia (2005a), Zhang (2006), and

Barndorff-Nielsen, Hansen, Lunde and Shephard (2007) provide consistent estimators of the integrated

volatility. Likewise, Hayashi and Yoshida (2005) provide a consistent estimator of the covariation of

two assets when they are asynchronous, but their analysis rules out the presence of noise. Littie is

known when the two effects are present; see however the analysis in Zhang (2006), Griffin and Oomen

(2006) and Voev and Lunde (2007). Another feature that our theory ignores is the possible presence

of jumps and co-jumps. This is a difficuit problem that the literature has only started recently to

address (see Jacod and Todorov (2007) and Bollerslev and Todorov (2007)). The extension of our

bootstrap theory to these important problems is left for future research.

Appendix A
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Table 3.4: Fuil-sample estimates of bonds betas for the US and the UK from January 2, 1986 through
August 24, 2007

Beta BN-S 95% 2-sided CI Boot. symm. 95% CI
US

0.024 [0.010, 0.038] [0.009, 0.038]
UK

0.030 [0.016,0.045] [0.015,0.046]

Table 3.5: Divergence between BN-S
Date Beta

31-Jul-86 0.167
29-Aug-86 0.152
30-Sep-86 0.106
31-Jul-89 0.204

29-May-92 0.111
29-May-98 0.093
31-Aug-00 0.062

Appendix B

This Appendix contains the proofs of the resuits in Section 3. We first present two auxiliary lemmas.

Lemma B.1 Let Yi denote the jth component ofy. UndeT Assumptions 1 and 2, for any qi,q O
such that qi + q > o, 1-(q1+g2)/2 Zï/h y11 y22 = Op(1).

Proof of Lemma B.1. Z yl y22 < (/ yijl2ql)l/2 (Zi/h y2I22)l/2 by the Cauchy

Schwarz inequality. From Theorem 1 of BN-S (2004), = Qp(h’+Ql) and =

O(h_4+2), which proves the resuit.

Lemma B.2 Let {y : i 1,... , 1/h} denote an i.i.d. bootstrap sampte of intraday returns {y t i = 1,
1/h} and assume that Assumptions 1 and 2 hotd. Then, for k, t, k’, t’ = 1, 2, with probabitity

approaching one,

• 1/h * F 1/h
1) Z=1 YkYt — Zj=i YkiYti

and bootstrap confidence intervals for the US
BN-S Bootstrap

[0.027, 0.306] [—0.022, 0.355]
[0.015, 0.289] [—0.053, 0.357]
[0.017, 0.194] [—0.041, 0.252]
[0.036, 0.371] [—0.025, 0.432]
[0.004, 0.2 17] [—0.010, 0.231]
[0.001, 0.184] [—0.012, 0.197]
[0.002, 0.121] [—0.002, 0.126]

30-Jan-98 -0.054 [—0.101, —0.0081 [—0.111, 0.003]
27-Feb-98 -0.059 [—0.115, —0.0021 [—0.128, 0.010]
29-Dec-00 -0.055 [—0.109, —0.0001 [—0.117, 0.008]
31-May-Ol -0.055 [—0.107, —0.0041 [—0.113, 0.003]
31-Dec-03 -0.154 [—0.302, —0.005] [—0.319, 0.011]
29-Oct-04 -0.146 [—0.256, —0.036] [—0.293, 0.001]

—1 1/h * * * *

__

—1 11hn) h YkYjYk’Yj’ ,‘ “ Z1 YkiYtiYk’jYl’i•
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Q Table 3.6: Divergence between BN-$ and bootstrap confidence intervals for the UK
Date Beta BN-S Bootstrap

31-Mar-88 0.070 [0.003,0.137] [—0.010,0.150]
31-Oct-90 0.197 [0.016,0.377] [—0.175,0.568]
31-Dec-90 0.262 [0.031,0.493] [—0.446,0.970]
30-Apr-92 0.307 [0.162,0.452] [—0.151,0.764]
29-May-92 0.314 [0.173,0.454] [—0.131,0.758]
30-Jun-92 0.288 [0.125,0.4501 [—0.277,0.852]
29-Jan-93 0.129 [0.003,0.254] [—0.049,0.306]
26-Feb-93 0.131 [0.018,0.243] —0.029,0.290]
31-Mar-93 0.153 [0.046,0.259] —0.004,0.309]
31-Aug-93 0.122 [0.001,0.242] —0.025,0.268]
29-Aug-97 0.054 [0.002,0.105] —0.003,0.1111
30-Sep-97 0.132 [0.031,0.233] [—0.015,0.279]
31-Oct-97 0.109 [0.015, 0.2021 [—0.027, 0.244]

29-Jan-88 -0.092 [—0.177, —0.007] [—0.195,0.0121
31-Jan-01 -0.052 [—0.102, —0.001] [—0.111,0.008]
30-Sep-04 -0.085 [—0.156, —0.014] [—0.177, 0.008]
30-Nov-06 -0.064 [—0.122, —0.005] [—0.129, 0.0021

Proof of Lemma B.2. We show that the results hold in quadratic mean with respect to the bootstrap
measure, with probability approaching one. This ensures that the bootstrap convergence also holds

in probability. For fi), we have E*
y,jyj) = h_1E* (y1y) = h’k YkiYli = YkiYti•

Similarly,

17h

VaT* hVart (YiYTi) = h’ (E*(yiy)2 — (E*yiy)2)

17h 1/h
2 17h 1/h 2

= k1 (hfYkY1)2
— (hYkiYti) ) =

— h (YkiYti) = op(l),

17h 2 1/hgiven that Lemma B.1 implies that Zt—i(YkiYli) = Op(h) = op(1) and Zj_iYkiYti = Op(l). This
proves the resuit. The proof of (ii) follows similarly and therefore we omit the details.
Proof of Theorem 3.1. The proof of (a) follows from Lemma B.2 by noting that the elements of

are of ail of the form for k, t, k’, t’ = 1,2.
To prove (b), we first show that both Vt and Vt are non singular in large samples with probability

approaching one, as the sample size grows. The probability limit of Vt follows from Theorem 4 of
BN-S (2004) and is equal to

(3 f 1du —11 3 f 111217 — F11F + 22)du — F11F22”\

I J’(2ii>D22 + 22)du
— 2 3f >1222dn — P2F22

3f012du—F2 )
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Q
which can be written as V + V1 where

(f 1du — 1i i E11Y12du — F11F12 f E11E22du — 1li122
V1

= ft 1122du — f2 f0 1222du — T12F22

f2du—112

V is the asymptotic variance of V) x and it is pathwise symmetric positive definite by as
sumption. We show that V1 is positive semidefinite, which guarantees the positive definiteness of
V + V1. For any À E R3, by straightforward calculation,

À’V1À
=

+ À2i2(u) + À322(u))2du — (À1F’1 + À2f12 + À3F22)2 O

by the Jensen inequality. Thus, V1 is positive-semidefinite and therefore V is positive definite.
Now, let S, V*_h/2vi( 4 —

L’ x). Clearly, T = ïr*I2V*1/2$ As we just showed,

13, in probability. Thus, the proof of (b) follows ftom showing that for any À E R3 such

that À’À = 1, 511Pen IP*(L 4 x) — (x)J -* O, where 4 = (À!V*Àï/2 /ETÀI — E*(%)),

and where (z) is the standard Gaussian cumulative distribution function. Clearly, E* ) = o
and VaT* ) = i. Thus, by Katz’s (1963) Berry-Essen Bound, for some small e > O and some
constant K > O,

1/h

sup P (<) —(z) <KE*2.
xea \i=1 J i=1

Next, we show that ZLE*I%I2 = o(1). We have

1/h

E*II2 = = (À V*À)_h/2 h’2À’(4 — E* (x))2

= (4 — E (4)) I2

< IÀfV*À _(l+/2)E* À’4 2

< 22h212 IÀ!V*À_(+’2)E* xI2
i/h

=

where the first inequality follows from the C and the Jensen inequalities and the second inequality
follows from the Cauchy-Schwarz inequality and the fact that À’À = 1. We let z = (z!z)h/2 for
any vector z. It follows that x2 ZL II21+2) ZL (y, + )2(l+€/2) since x2 =

(y’j + yy + yj)2 y + + y = (yj + y)2. Thus, ixi2+ ZL( + y.)2+E. By
the Minkowski’s inequality,

1/h 1/h 1/(2+) 1/5 1/(2-j-f) 2+

2+f

< { ( IY1I4+2c) + ( Y2iI)

By Lemma B.1, = Op(h’). Therefore, = Op(h/2) = op(l).
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Proof of Theorem 3.2. Since Th - N(0, 13), by the standard delta method, T! h L N(0, 1).
Similarly, by a mean value expansion, and conditionally on the original sample,

((vec(f)) - f(vech(f))) = v’f (vech(Ê)) (vech(Ê*)
- vech(f)) + op.(1),

since Ê —±“ Ê in probability. Let

=

(f ech(Ê*)) - fQeck(Êfl)
fit—

with Vj Vtf(vech(ÊV*Vf(vech(Ê)). It follows that S.7,it
d* N (0, 1) in probability, given The

orem 3.1 (b). Next note that T = where r V7. The result follows from Polya’s

theorem (e.g. Serfiing, 1980) given that the normal distribution is continuous.
Proof of Theorem 4.1. Part (a) follows from Theorem 3.2 witb f(0) = 02/03. To derive Vj, let

ê1 = L, 02 = Lyliy2, 3 = Clearly, /312 = f(ê) and Vf(ê) = (o f - )‘.
Then is given by 113k = V’f(ê))VVf(Ô), with V = h’ zL xx — (zL xi) (zL )‘.
Straightforward calculations show that

V’f(Ô)) (h tL xx) Vf(ê) = (f22)
-2

zL yê whereas V’f(ê)) [(z x) (L xi)’] Vf(ê) =

0. Thus VÇ = (Ê22)2Z
Part (b) is proven in the text. Part (c) follows from Theorem 4 of BN-S (2004) and the fact that

/312 /312.

Appendix C

In this Appendix we prove the results appearing in Section 4. Appendix C.1 contains the proof of
the asymptotic expansions of the cumulants of T0, appearing in Proposition 4.1.(a). A number of
auxiliary lemmas are also presented and proved. Appendix C.2 contains the proof of the asymptotic
expansion of the bootstrap cumulants of of T, appearing in Proposition 4.1(b) as well as some useful
lemmas.

Note that the statistic of interest can be written as follows

T
— ‘A”(i12 /312) — y

—

=

_____________

—

____

— h
Bh )

— 11hh 1
‘here g and Bh are defined in the text, and S =

Throughout this Appendix, we use the convention that zl+1/h = O for any random variable z.

3.1 Asymptotic expansions of the cumulants of T0,

In this subsection, we first provide a set of lemmas that are useful to deriving the asymptotic expansions
of the cnmulants of T0it through order O (v’7). Next, we prove these lemmas and at the end we prove
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O
Proposition 4.1 a). We introduce the following notations.

= h’ — E (yL4))
= h (Y2i6iY2,i+lEi+1 — E (Y2iEiY2,i+1Ei+1))

1/h

Aih = h2 > (2P2, — 18/3i2P22,P2, + 24/32E2,P12, + 6P11,P22,P12, — 8/3f2P2 — 6j3i2Pii,E2)

1/h

Ah = h2 H122,2 + + + 36Fi2,i112,,32

— 2Pi2,P2+1fl2
— —

— 28F12,F22,/312 + “12,+i22,fl’2 + +

+4Fi2,Pi2,+1P22,+ifii2 + H jE22 F22 j+1fi12 + + 4112i —
F12 il2 i+1

—F2,iP12,i+1 + 8P11,P12,F22,
— nll,iP12,i+t22,i —

Similarly, let

1/h 1/h 1/h

Aàh = h’E(yej), Ah = h1ZE(yy2,j+1Ej+l), Ag = h’ZE(yj+ly2j6j),

1 / 1/h

Aoh = 4(2Ah — Ah — Agh), and recail that Bh = Var Y2iEi

Lemma C.3 Let k, t, k’, t’, k”, 1”, m, n, in’, n’, in”, n” = 1,2 and let n1, n2, n3, n4, n5 and n6, be any
non negative integers. Under Assumptions 1 and 2, and conditionally on the volatility path E,

1/h
h1@1+fl2+n3+n4+flS+fl6) pris pris f’3 E’24 E”5 ffl6

kl,i k’l’,i k’l’,i mn,i+1 m’n’,i+1 m”n”,i+1

f1 E (u)E, (u)E, (u)E(u)E, (u)E,,

as h — O.

Lemma C.4 Under Assumptions 1 and 2, and conditionally on the volatility path, as h —, O,

• Ah—sA1,forj=1,2;

1/h

• Bh = h’ Z — 4j312P22,P,2, + 252E2, + —* B;

1/h

• Ajh = 3h’ Z(P12,iP22,i — fi,2l12,) —, 3A0;

1/h

• Ah = h’ Z(r12,i+1P22,i — i3i2P22,E22,+i) —, Ao;

1/h

• Ag = h’ — /i222E22+,) — A0.
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Lemma C.5 Under Assumptions 1 and 2, and conditionalty on the votatility patk,

/ 11h

• E(Y2E)

/1/h

• E (Y2e) = hBh,
i= 1

/i/h

• E Y2iEi) h2Ah,
i= 1

/1/h

• E t Y2iEi) = 3h2B +0(h),

/1/k 1/h

• E y2ii(Ui _u+1)) = hAh,
i=1 i=1

//1/h \21/h

• E ZY2iEi) (u, — = 0(h2)
i=1 i=1

//i/h \31/h

• E t Y2iEi) (u
— uii+i)) = 3h2BhAh + 0(h3).

i=1 i=1

Lemma C.6 Under Assumptions 1 and 2, and conditionatÏy on the votatitity path,

• E(Sh)=O,

• E (s) 1,

• E (s) =

• E (s) = 3 + 0(h),

.E(

1/h

) A2
— ‘ihShv(u —u+i) —

i= 1

11h

_u+)) o (),
i1

.E(

1/h

) A1hs/iET(u
— ujj1) + 0(h).

i= 1
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Lemma C.7 Under Assumptions 1, 2 and 3, and conditionaÏty on the votatitity path,

1/h 1/h

= 3h (i + (uj — u÷1)
—

Bh2
Y2iEi) + op().

Proof of Lemma C.3. This resut follows from the boundedness 0f kk(u) and the Reimann inte
grability of E(u) for any k, t 1,2 and for any non negative integer n.
Proof of Lemma C.4. The convergence resuits foliow from Lemma C.3. To derive the expressions
of the moments, we use the fact that under our assumptions yi,.. . Y1/h are pairwise independent
and y ‘ N(O, F) with F

= f1)h (u)du. Let C be the Cholesky decomposition of Fj. Note that

yj u «-s iidN(O, 12) where 12 is the 2 x 2-identity matrix and ‘‘ expresses the equivalence in
distribution. Let Pkt,j and C’kt, be the (k, t)-tli elernent of F and C, respectiveiy. We have that

o
C

= T12, 7 ‘?2 I
\ /r V F22,

—

and Ylj C11,n1 and Y2i C21u1 + C22,u2. For the second resuit, let z = Y2iEi — E(y2E) and
note that by definition, the zs are i.i.d. with Ez O. It foliows that

2
1/h

= Var Y2iEi) = h’E ((Y2iEi — E(Y2E))) = E (z).

Now, E (z) = E (ye) — (E (y2iEi))2. Since e =
— t312Y2i, we get that

E (y2iEi) = E (Yliy2i) — /312E (y1) = —

E (yj) = E (Yi (yii — 12y2i)2) = E (yjyj) — 21312E (yiy) + /3?2E (yj).

We now use the Cholesky decomposition to get that

E (yy) E ((cll,u1)2 (C21,u1 + C22,iu2i)2) = E (C1u) + 2C21,jC22,juun2i +

+ = 2F2 + F11,F22,;

E (yijy) E ((Cii,uii) (C2i,ui + C22,iU2i)) 3C11,C1, + 3Cii,C21,C2 = 3F12,F22,; and

E (y) E ((C21,n1 + C22,u2)4) = 3C1 + + 3C2, = 3F22,, impiying that

E (y) 2F2, + Fii,F22, — 6/312F12,F22, +

Thus,
E (y) = 2F9 + 11,jF22,

— 6/i2Fi2,F22,i + 3/32F2,

and

E (z) = 2F2, + 11,jF22,j — 6/312F12,F22, + 3f32F2, — (T12, — 312F22,)2

= + F11,F22,
—

4J312F12,F22, + 2t3?2F2,

which implies 3a = (112 + Fii,F22,
— 4t312Fi2,T22, + 2/3?2F2,) proving the second

suit. The proofs of the remaining results is similar and we omit the details.



134

O
Proof of Lemma C.5. The first resuit follows by definition of /312 whereas the second resuit follows
by the definition of 13h• For the remaining resuits, write z = and note that by definition,
the zs are i.i.d. with Ez = O. Note also that = Y2jEj since by E (y2jEi) = O. For
the third resuit, note that

/l/k \ /ilk \ 1/k 1/k

E( Y2iEi) =E ( zi) = E(zjzjzk)=E(z).
\i=1 J \i=l J i,j,k=1 i=l

We now compute E (4) using the Cholesky decomposition as in the proof of Lemma C.4 to show that

E (4) h2Ak, with Aik as defined above. For the fourth resut, note that E (zL Y2iEi) =
E (4) + E (4) E (4) = 3 (L E

(4))2
+ 0(k3) and use the definition of 3k to prove

the resuit. For the fifth resuit, note that

l/k 1/k 1/k 1/k l/k

E ((Y2iEi) (u —

=
E(zu13

—

E(zn,+1) —

Useing the definitions of u and the resuit follows from simple but tedious algebra using the
Cholesky decomposition. The remaining resuits follow similarly and therefore we omit the details.
Proof of Lemma C.6. The proof follows straightforwardly by using Lemma C.5.
Proof of Lemma C.7. Using the definition of in the text, we can write

1/k

= + t —
—

2(/
— 13l2)yE)

1/k

+ (12 — 1312)2yy,+1 — (1312 — 1312)(yy2,+1Ei+1 + Y,+lY2iEi))

Adding and subtracting appropriately, it follows that

11k 11k 11k

= E(y2)2 — k’ E (Y2jEjY2,j+iEj+i) + (h_l ((Y2i6i)2 — E(Y2iEi)2))

11k 11k
— (h_1 (Y2iEiy2,i+lEi+1 — E (Y2iEiY2a+1Ei+1))) — (12 —

11k 11k

+(/12 — E(yy2,+E+1) + (t12 — 1312)k’ + Op(k),

1/k 11k 11h

= Bh + (Ey2ii)2 — E (y2iEiy2,i+lEi+;) + (n
— ui,i+i)

— (t-;2 — 1312)2Ak

— 1312)Ak + (t12 — 13l2)Agk + Op (k)
11h

2A1
11h

A2
11h

A3
11k

= Bk+(ui—u,i+1)—

—1 11k 2 2where the remainder term is of order op(vh) given that 1312 — 1312 = Op(vh), k Z=1 i2ii2,j+1 =

Op(l), and given that k’ (yE — E (yE)) = 0p(v’7) and k’ Z (Y,+lY2Ei — E (Y,+lY2i6i)) =
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Op(v’7) by a verifying a CLT condition. Note also that the last equality uses the fact that /312 — /3,2 =
11h

________

11hy2
+Op (h). By Lemma C.1, (Ey2E)2 and h—’ ri—1 n UI2iEiY2i+lEi+1) have the sarne“22

probability limit and by Assumption 3,

h—’ (Ey2)2 — plim h—’ (Ey21)2 = op (v’) and

h—’ E (y2iEjY2,i+lEi+1) — plim h—’ E (y2iEiY2,i+lŒi+1) = op ()
Therefore, h—’ (Ey2E)2 — h—’ E (y2iEiY2,i+lEi+1) = Op

Proof of Proposition 4.1 (a). Given Lemma C.7, we can write

Th Sh

(

/
4AOh

1/h -1/2

1 + (u
—

— B11F22 / Y2ii + OP())

j=1 i=1

The first and third cumulants of T,3,h are given by (see e.g., Hall, 1992, p. 42) ty(T/3,) = E(T,h) and

= E(T,,h) — 3E(T,h)E(T,,h) + 2[E(Tj,h)]3.

Our goal is to identify the terrns of order up to 0(v’7) of the asymptotic expansions of these two
cumulants. We will first provide asymptotic expansions through order 0(v”) for the first three
moments of T@,h. Note that for a given fixed value of k, a first-order Taylor expansion of f(x) =

(1 + x)_k/2 around O yields f(x) = 1 — x + 0(x2). Provided that ju — = 0p(J7),
have for any fixed integer k,

Th = s (1_ (u — ui+1) + k
2Aoh

Y2iEi) +o() = +
BhF22

For k = 1,2,3, the moments of are given by

= E(Sh) — 1E Sh(u

—ui,i+’))

+
2A

t

i/h

2Bh

E() = E ($) - 1E - u+)) +
4A0

t

i/h

V22i= 1

( i/Fi

E() = E(S)-1E
6Ao

E($).
2 3h i=1

VF22

Given Lemma C.6,

A2 2Aoh1h

_________

E(th)
2Bh’F22’

EÇt,) = 1+0(h),

E() =
— /3 x +

18A0
+ 0(h).3/2

23h

Thus

F1(T,h) =

1
+

2Aoh ) +
/ V122

1,h
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and

F3 (T,h) =
h 12A

-

+
+ o().

22

3h

By Lemma C.4, we can now show that lim10 ,çi — 1 1 4A0 “H
— 112) and limh,o 13,h =h

— 2 33/2
— 2

± 3H, — 2H2, where A0, A,, 3, H, and H2 are as defined in the text.33/2 /p22

3.2 Asymptotic expansions of the bootstrap cumulants of T,h

In this section we provide the asymptotic expansions through Op (v) of the first and third cumulants

of the bootstrap statistic T,h. Let e’ = —
t312y = with I a uniform draw from {1,... ,

and let = — /2Y/ be the bootstrap OLS residual. Note that

—1/2

_________________________

i1 Y2jEV(t2 — ,12)
— /)Efi/h * *

(h)
—2(z’ *2 Ê* -

\Blh
2i) 1h

__________________

1/h 2 2 1 1/h 2 ,2 —— where Ê,h = h’ i=1 y2, 3 = h Z=1 y2 r ,
— — 2Yiwhere $ —

Let
1/h 1/h

Aoh = h’ > YEi, Alh = h2 (Y2iEi)3,
i=1 i=1

and let 3ih
= ;— Zl/(YEt)2.

PRoPosITIoN C.1 Let y’ i.i.d. from {yi i 1,... ,1/h}. Under Assumptions 1 and 2 and
conditionaÏÏy on , as h — 0,

Alh AOh

= (22
+

2Âlh 6Âoh “
= (B1h

)+o(h) 4h±0P(h).3/2 +

Proposition C.1 is used to prove Proposition 4.1 (b). The proofs of these two propositions are
given after the following set of auxiliary lemmas, whose proofs follow the proofs of the propositions.

Lemma C.8 Let y’ ‘-S-’ i.i.d. fTom {yi : j = 1,. . . , l/h}. Under Assumptions 1 and 2, and conditionatty
on the votatitity path,

/1/h \
. E” =0,

i= 1
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/17k 2
17h

• E*
(Y2ii)2

\i1 i1

/1/k \ 17h

• E* t
E)

= h2Â
k\i=1 i=1

/l/h \ /17k 2

• E* = 3 + Qp(h3) = 3h
()2

+ Op(h3),
i=1 ) i=1

1717k ) 1/h

•
—
Ê)) = h (y2ii)3 hÂ,

i=1 i=1

/ /i/h
2’• E* (

yjE)

2

- Blh)) = (h,
i=1

/ /1/k 1/h

• E* t t —
Bib)) = 3Êlh ( (Y2ii)3) + Op(h3) 3h2ÊlhÂlh + Op (h3).

i= 1

lemma C.9 UndeT Assnmptions 1 and 2, and conditionatty on the votatitity path,

• E* (S) = O,

• E* (s*2) = 1,

•

È372’1h

• E* (s4) = 3 + Op(h),

A1,,• E*
- B;h))

=

___

• E* (S2T (È
-

Bib)) = Op

• E* (È
—

Bib)) =
A

+ Op(h).

Lemma C.1O UndeT Assumptions 1 and 2, and conditionalty on the votatility path,

17h

= B (1 +
B

— B1h — 2Âoh
vi) + op(h),

B1,, B1,,F22

in probabitity.
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T,h = S,h (i + —

— 2Âoh
yE + O (h)

-1/2

31hF22 )
Following the proof of Proposition 4.1.(a), for any fixed integer k, we have that

1/It

T=S (1_ h-Êlh)+k +Op(h)m+Op(h).
2 31h 31hF22

For k = 1,2,3, the moments of are given by

E*(,h) = 0*E(s(h - Êlh)) + E*(Sh),
2

\/F22

= 1- E* S2( - Bib)) +
2Â0 E*(S3),

Êlh t
E*() = E(S3) - *E* f*3 (Éh - +

3Â0 E*(S4).
2Êyh \/P22

Lemma C.9 implies that

E*(h)
= _1 1 Alh

+
Âoh =
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1 Alh Aoh
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V22 1h
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t 7

_____
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____
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Proof of Proposition 4.1 b). By Theorem 4 by BN-S (2004), and because /312 - /312, we have that
3* and Âo,, - 3 f (12(u)12(u) — /3l2>2(u)) du = 3A0. Similarly, we can show that

1/h 1/h

A1h = h2 (EiY2i)3 + op(1) = h2 E ((Ey2)) + Rh + Op (1),
i=1 i=1

o Proof of Proposition C.1. By Lemma C.10,

______

9Â0,,
=

A1,, - 91 A1,, +
3/2 2 Ê1,, F22

Thus

and

= E*(3,,)
-

3E*()E*(,,) + 2[E*(,,)]l
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1/hwhere Rh = h2 Z_1 (EiY2i)3 — E ((Ev2)). E (Rft) = O and by straightforward calculations,

Var
(2

V,1//z 3
L=i (Eiy2i) ) O (h) = o(1), which implies that Rh = op (1). By tedious but simple

algebra we can verify that

1/h 1/h

E ((Ey2i)) h2 ( 6F2, + 9Fii,Fi2,f22, — 36/3i2F?2T22, \
—912f11,P2, + — 152F2, )i=1 =;

By Lemma C.3, this last expression converges to

/ (62 + 9111222 — 36;2222
— 912112 + 452E122 — 1592)du =

do

proving that Alh —‘ Thus, using Proposition Cl, we get that

1 A1h Aoh ) 1
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3*3/2 22)
(H — 3H) = 3

—

1/h * *
— h’hLjy2 = oProofofLemma C.8. The first result follows by noting that E* EY2) —

by the first order OLS equations. Note in particular that E*(Ey) = O. The second result follows by
using the independence between and yr for j j and noting that
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1/h 1/h 11h
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The third resuit follows similarly. In particular,
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where we have used Lemma B.1 to obtain the order of the remainder term. For the rernaining resuits,
i/h* *note that Et (Blh) = h’ Et(Ey2) = h—’ =,(ey2)2 Êlk, which allows us to write

t * 2
— = (h’(6y2) — Et (h’(ey)2)). It follows that
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Proof of Lemma C.9. The proof follows easily from Lemma C.8.
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Proof of Lemma C.1O. Since
— /3i = Op (‘O in probability, it follows that
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By a CLT for iJ.d random variables, we can prove that
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Chapter 4

Three-$tep Euclidean LikeÏihood Estimators with
Moment Conditions Misspeciftcation
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1 Introduction

The moment-condition based infereices have been popularized by the unifying generaflzed rnethod

of moments (GMM) theory proposed by Hansen (1982). Inferences by GMM are computationally

convenient and under fairly general regularity conditions, the GMM estimators are asymptotically

normally distributed. The two-step efficient GMM estimator’s asymptotic variance ties the semi para

metric efficiency bound provided by Chamberlain (1987) and furthermore, in the case of global model

rnisspecification, Hall arid moue (2003) show that this estimator is -./-consisterit and asymptotically

normally distributed when cross sectional data are considered. In spite of these appealing properties,

several studies have reported the GMM inference’s lackluster performance in finite samples (see e.g.

Altonji and Segal (1996), Andersen and Sørensen (1996), Hall arid Horowitz (1996) and Brown and

Newey (2002)). This finite sample performance limitation paves the way for an increasing research for

alternatives to the GMM. The GMM alternative estimators include the continuously updated GMM

(CU) estimator proposed by Hansen, Heaton and Yaron (1996), the maximum empirical likelihood

estirnator (EL) proposed by Qin and Lawless (1994) and the exponential tilting estimator (ET) by

Kitamura and Stutzer (1997). These alternatives estirnators are included in bath the generalized em

pirical likelihood (GEL) class of estimators proposed by Newey and Smith (2004) and the minimum

discrepancy (MD) class of estimatars proposed by Carcaran (1998). Even thaugh they all share the

same first order asymptotic distribution, ail these GMM alternative estimators are more camputation

ally costly. The CU estimator is a solution of an optimization problem whose objective function often

possesses multiple modes (Hansen, Heaton and Yaron (1996)) making the CU estimator less desirable

(Schennach (2007)). Bath EL and ET are solutions of saddle point problems and cnn be obtained

through a grid search that involves optirnizatiori problems solving at several points in the parameter

space. When large parameter vector is considered, these saddle point problems are computationally

cumbersome.

Among these alternative estirnators, as shown by Newey and Smith (2004), the EL estimator has

the most desirable fuite sample bias property. Newey and Smith (2004) also propose a bias corrected

version of EL which is higher order efficient. These results hold in correctly specified moment condition

models. A moment condition model is globally misspecified if the true data generating process deviates
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from these moment conditions such that no values in the parameter space solves the population

moment conditions. In the case of global misspecification, the estimators listed above could behave

very differently. Schennach (2007) establishes that, when the moment condition model is not correctly

specified, the EL estimator ceases to be y’7-consistent. In contrast, the ET estimator is /i7-consistent

and asymptotically normal under global misspecification. The exponentially tilted empirical likelihood

estimator (ETEL) proposed by Schennach (2007) combines the desirable properties of both ET and EL.

The ETEL estimator has a small sample bias of the same order of magnitude as the EL estimator and

is /i7-consistent and asymptotically normally distributed even in the case of global misspecification.

Still, the ETEL estimator is as computationally costly as EL and ET.

Antoine, Bonnal and Renault (2007) propose the three-step Euclidean likelihood estimator (3S)

which is computationally less ‘demanding than both EL and ETEL with the same desirable bias prop

erty. The 3S estimator is bigher order equivalent to EL in tbe sense tbat these two estimators lie in the

same Op(rr3/2) neighbourhood of each otber. By definition, the 3S estimator solves an efficient two

step GMM first order condition-like. The particularity of this equation being that both the Jacobian

and tbe variance matrices are efficiently estimated by tbe Euclidean likelihood implied probabilities

ail evaluated at the efficient two-step GMM estimate. Even tbough tbe Euclidean likelihood implied

probabilities are asymptotically nonnegative, in finite sample they may be negative. Antoine, Bonnal

and Renault (2007) propose a sbrinkage device which yields nonnegative Euclidean likelihood implied

probabilities. Moreover, tbey suggest that tbe shrunk implied probabilities could be used to estimate

the Jacobian and the variance in the 3S estimator estimation but tbey do not conduct any specific

study on the asymptotic behaviour of tbe resulting estimator.

When these modified implied probabilities are used to estimate the Jacobian and the variance

matrices in the first order-like equation, we call the resulting estimator the shrunk tbree-step Euclidean

likelihood (s3S) estimator.

This paper makes three main contributions. First, we formally introduce the s3S estimator and

prove that it is higher order equivalent to tbe EL estimator wben the moment condition model is well

specified. In particular, we strengthen tbe shrinkage factor proposed by Antoine, Bonnal and Renault

(2007) to make the s3S estimator robust to model misspecification. Our second contribution is related

to the efficient use of the information content of overidentifying moment conditions in tbe aim to
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perform inference about population mean 7] of any integrable function g(x) of a random variable z.

Specifically, we propose a computationally less costly algorithm that yields estimates of ,j whicb are

higber order equivalent to its empirical likelihood estimate.

Let Eb(z, 9) = 0 be an overidentifying moment restrictions in wbich O is tbe parameter of interest.

Because there are more restrictions than components in 9, this moment condition is also informative

about the distribution of tbe random variable z and therefore may be useful for inference on 7]. (See

Back and Brown (1993) and Qin and Lawless (1994).) In particular, when the implied probabilities

resulting from the estimation of O are used to weight tbe tbe observations g(xj)’s, the resulting esti

mator is more efficient than the naive sample mean. We show in particular in this paper that when

tbe empirical likelihood implied probability functions are evaluated at tbe s3S estimator (and not at

the empirical likelihood estimator itself which is computationaily more costly to obtain) tbe resulting

weights can be used to construct estimator of tbe population mean î] wbicb is higber order equivalent

to its empirical likelihood estimator. We also show that tbe same quality of inference on î could be

achieved if the implied probabilities are assessed at any estimator higher order equivalent to the EL

estimator, in particular, the 3S and the ETEL estimators.

Third, we study the 3S and the s3S estimators under global misspecification in cross-sectional

data framework. Inference under misspecification is getting more and more attention in econometrics

literature. White (1982) studies the quasi maximum likelihood estimator when the distributional as

sumptions are misspecified. Hall (2000) examines the implications of model misspecification for the

heteroskedasticity and autocorrelation consistent covariance matrix estimator and the GMM overi

dentifying restrictions test. Hall and moue (2003) study the GMM estimators under global misspec

ification while Schennach (2007) analyses the EL and ETEL under global misspecification. In the

moment condition-based inference framework, the GMM overidentification test or the Sargan test for

overidentifying restrictions could reject or validate the model. In the case of rejection, if no theory is

available for inferences, empirical researchers could have to drop parsimonious, robust and competitive

models for forecasting for other less attractive models that pass ail the overidentification tests with less

predictive ability. The situation could even be more ambiguous. Hall and moue (2003) report several

empirical researches in the literature in which inference by the usual asymptotic distributions have

been performed even though the data have rejected the overidentifying restrictions. In this paper, we
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provide global misspecification robust inference for the 3$ estimator. We show that, in the case of mo

ment misspecffication, this estirnator stays /-cousistent and is asymptotically normally distributed.

We also provide a shrinkage factor that makes the s35 estimator /i-consistent and asyrnptotically

normally distributed in the case of moment misspecification. Its model misspecification robust asymp

totic distribution is also provided. This third contribution of the paper also reveals that as ETEL,

both the 3S and the s35 estimators are \/-consistent and asymptotically normally distributed under

global misspecification. Because they are iii addition easier to compute, they can be considered as two

appealing alternatives to the EL and the ETEL estimators as well.

The remainder of the paper is organized as follows. Section 2 describes the model and estimators

and gives some resuits about the higher order equivalence of the s35 estimator and the EL estimator

when moment conditions are well specified. This section also presents the algorithm that we propose

for higher order EL-equivalent inferences about population means. In Section 3 we derive asrmptotic

results for 3S and s35 under moment misspecification. Our Monte Carlo experiments are introduced

iII Section 4 followed by Section 5 which concludes. Ail proofs are gathered in the Appendix.

2 The model and estimators

The statisticai model we consider in this paper is one with finite number of moment restrictions.

To describe it, let x (j = 1,..., n) be independent realizations of a random vector z and b(x, O) a

known q-vector of functions of the data observation z and the parameter O which may lie in a compact

parameter set e C R (q p). We assume in this section that the moment restriction model is well

specified in the sense that it exists a true parameter value Oo satisfying the moment condition

E(Oo) = 0. (1)

where j5(O) O).

In such a moment condition model, the most popular estimator is the efficient two-step GMM

estimator proposed by Hansen (1982). Let (O) = b(z, O)/n, O) = b(O)(û)/n and

also, let be some first step preliminary (possibly asymptotically inefficient) GMM estimator of O.
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The efficient two-step GMM estimator is

O = argmi’(O)f’()(O).

Under some standard regularity assumptions, the two-step GMM estimator is asymptotically normally

distributed and semiparametrically efficient (Chamberlain (1987)).

To describe the CU, EL and ET estimators, it of some interest to first introduce the class of mini

mum discrepancy (MD) estimators and the class of generalized empirical likelihood (GEL) estimators

of which they are particular examples. The class of minimum discrepancy (MD) estimator was for

mulated by Corcoran (1998). Let h be a real-valued convex function of a scalar ir. The minimum

discrepancy estimator based on the discrepancy function h is

êh=argminh(7rj) subject to 7r=1 and ir’çb(O)=O.

When hQir) = —tn(nir), the corresponding estimator is known as the maximum empirical likelihood

estimator tEL) (Qin and Lawless (1994)) and h(ir) = nirtn(nir) yields the exponential tilting estimator

(ET). Since this last discrepancy function corresponds to the Kullback-Leibler Information Criterion

(KLIC), ET is also known as the KLIC estimator. When h(ir) = (1/2)[(nir)2 — 1]/n, the corresponding

estimator is known as the Euclidean empirical likelihood (EEL) estimator which also corresponds to

the continuously updating (CU) estimator proposed by Hansen, Heaton and Yaron (1996). It is worth

iloting that this quadratic discrepancy function belongs to the family of Cressie-Read power divergence

statistics introduced by Cressie and Read (1984). For À E R \ {O, 11, the power-divergence statistics

is given by hÀ(lr) = [À(À — i)j’[(nir)1 — 1]/n. The quadratic discrepancy function corresponds to

h_1.

Let (êh) (i = 1,. . . , n) be the solutions for x (j = 1, . .
,
n) for this optimization program.

(oh) (j = 1,.. . , n) are interpreted as the empirical distribution of the random variable z on the

drawn sample z (i = 1,. . . , n) and thus are called implied probabilities. They are useful to construct

more efficient empirical estimates of data generating process (see e.g. Back and Brown (1993), Qin

and Lawless (1994), Imbens, Spady and Johnson (1998) and Newey and Smith (2004)).

Newey and Smith (2004) propose the generalized empirical likelihood (GEL) class estimators. Let

p be a concave function of a scalar y defined on t9, an open interval containing zero. The GEL estimator
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based on p is

get =

EAr(O) t=i

where ÂT() = {) : 9, t 1, . . . , T}. The GEL estimators corresponding to p(v) = tn(1 —y),

p(v) = — exp y and p(v) = —v2/2 — u are the EL, ET and CU estimators, respectively. Newey

and Smith (2004) show that the MD estimator obtained from any power divergence statistics has an

equivalence in the GEL class estirnators. This resuit have been generalized by Ragusa (2005) to the

whole class of MD estimators.

Among the GEL estimators, Newey and Smith (2004) show that EL has the most desirable finite

sample bias. However, EL ceases, as shown by Schennach (2007), to be /-consistent in the case

of model misspecification. In contrast, under some regularity conditions, ET is v”ii-consistent in the

case of model misspecification (Imbens (1997)). Taking advantage from the bias interest of EL and

the robustness of ET, Schennach (2007) proposes the exponentially tilted empirical likelihood (ETEL)

estimator 6etet given by

etet = argminn1 Z((°))
t= 1

where -fr(O) (i = 1,.... n) solve

minn1 h(ir) subjecttoir(O) = O and = 1

and where ï(ir) = —tn(n7r) and h(ir) n7rtn(n7r).

Schennach (2007) shows that the ETEL estirnator has the sarne O(n) bias as EL and therefore

is better than ET in terms of finite sample bias. In addition, it also stays ‘i7-consistent in the case of

model misspecification.

More recently, Antoine, Bonnal and Renault (2007) have proposed the three-step Euclidean like

lihood (3S) estimator which is computationally less demanding than ETEL or any IVID estimator as

it involves only two quadratic optimization problems and a GMIVI first order conditiori-like resolution.

The 3S estimator is the solution of

[ [Ê (O) =0 (2)
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where is the efficient two-step GMM estimator and

ir(Û) n’ — n’(i4’(O) — (Û))’VÇj’(O)(O),

Vn(9) = (9)(j(9) - (8))’.
(3)

ir(û) (i = 1,. . . , n) are the implied probabilities yield by the quadratic discrepancy function evaluated

at 6. In Equation (3), the variance and the Jacobian ofçb(O) at 9 are estimated using ir(ê)’s as weights

and are more efficient than sample means which use uniform weights. This efficiency resuits from the

fact that the Euclidian likelihood implied probabilities provide population expectation estimates using

the overidentifying moment conditions as control variables.

However, the nonnegativity of Euclidean likelihood implied probabilities function as given by Equa

tions (3) is not guaranteed. Nonnegative implied probabilities are desirable to allow for probability

interpretation in the usual sense. In addition, they are useful in sampling methods that take advan

tage from the information content of the moment conditions (Brown and Newey (2002)). The use

of the shrinkage factor correction proposed by Antoine, Bonnal and Renault (2007) avoids negative

implied probabilities. Because both corrected and non corrected implied probabilities are higher order

asymptotically equivalent, the resulting estimators from each of them are asymptotically equivalent at

least at the first order. The corrected implied probabilities *(.) (i = 1. . . , n) are defined as convex

combination of ir(.) and the uniform weight 1/n and are nonnegative by construction

- 1 en(6) 1
lrj(&)

= 1+E(o)(&)+ 1+€n(6)
(4)

where the the shrinkage factor en(0) converges in probability to O while guaranteing the nonnegativity

of *(&) as well. Antoine, Bonnal and Renault (2007) propose as shrinkage factor

4(0) = —n min min ir(0),O . (5)
1<2< n

However, in tbe case of model misspecification that we discuss in the next section, this shrinkage

coefficient xviii diverge to inflnity (as soon as iJi(O) has an unbounded support) but with an unknown

rate. For a theoretical interest that we xviii discuss later, we propose the shrinkage factor ej0)

fn(0) = 4(0) =

e(0) has the same benefits as 4(0) in correctly specified models. One can easily verify that 4(0)

yields nonnegative corrected implied probabilities and, from Theorem 2.2 by Antoine, Bonnal and
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Renault (2007) it converges in probability to 0. Since ii(.) (i = 1,.. , n) are obtained through a

shrinkage procedure, we will cail them shrunk implied probabilities.

Referring back to the 3$ estimator as defined by Equation (2), as the optimal weights are not

guaranteed to be non-negative, this may affect the accuracy of the Jacobian or the variance estimates

and therefore make the resulting 3$ estimator behave poorly in finite sample. This motivates the

use of the shrunk implied probabilities in (2). We eau the resulting estimator the shrunk three-step

Euclidian likelihood (s3S) estimator.

By analogy to the three-step Euclidean likelihood estimator, we define the shrunk three-step Euclid

ian likelihood estimator as the solution of

[(Ô)] -‘ (9) = 0, (6)

where Ô is the efficient two-step GMM estimator.

2.1 Asymptotic higher order equivalence of the EL and the s3S estimators

Under some standard regularity conditions, Antoine, Bonnal and Renault (2007) show that the 3$

est.imator is higher order equivalent to EL. These conditions include the identification of the true

parameter value Oo by the moment restrictions in (1). This identification condition imply in particular

that the moment conditions model is well specified. Specifically, they show that Ô’ _Ôel = Op(n_3/2),

where and Ôel denote the three-step Euclidean likelihood and the empirical likelihood estimators,

respectively. As the ETEL estimator is also proven to be equivalent to EL up to Op(n’), all three

share the same O(n’) bias. The following resuit shows that the shrunk three-step Euclidean likelihood

estimator Ô3 is also higher order equivalent to the empirical likelihood estimator Ô. The following

assumptions are needed. For brevity, we ordy highlight in the text those assumptions that are relevant

to the exposition and relegate the remainder to the appendix.

Assumption 1 i) 90 is an interior point of e, a compact snbset of R?.

iij) i(.) is continuousty differentiabte in a neighborhood .iV of 00.

iii) Eb(9) = O O =

iv) Q(0o) = E’(Ûo)(0o) iS a nonszngutar rnatrzx.

y) J0 = E&b(00)/a0’ is of Tank p.
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vi) J°’’(9o)E(&) = O 9

vii) The shrzznk three-step Euctidean tiketihood estimator is weÏt defined, i.e., there is a sequence {ê1}
that sotves (6).

viii) Esupece (°)I’ < œ foT some a > 2 and Esup0 8(9)/O9’W < œ.

Assumption 1 provides sufficierit conditions for consistency and asymptotic normality of both the

efficient two-step GMM estimator & and the empirical likelihood estirnator Ôel. Assumption 1-vi) is

an identification condition irisuring the consïstency of both and

Theorem 2.1 If Assumption 1, and Assumption 9 in the appendix hotd, then & — = Op(n3/2).

The details of the proof of Theorem 2.1 are reported to the apperidix. We show that — =

o(_3/2) and deduce the stated order of magnitude by relying on the fact that — et = Op(n_3/2).

This resuit, typically shows that the shrunk three-step Euclideari likelihood estimator has the same first

order asymptotic distribution as the empirical likelihood estimator and both have the same O(n’)

bias as welÏ.

Next, we show how the closeness of 933, 9333 and O cari be exploited to make easier inferences

about population means.

2.2 Inference about population means

When moment conditions in Equation (1) overidentify the pararneter of interest, they are also informa

tive about the data generating process distribution (see Back and Brown (1993)). For any integrable

function g(x), the irnplied probabilities can be used to perform inference about r = Eg(x). Partic

ularly, for any minimum discrepancy estimator based on power divergence statistics, pd, Antoine,

Bonnal and Renault (2007) show that = Zi Pd(ÔP4H ) is an estirnator of ? more efficient than

the sample mean of g(x) which assigns uniform weighs to the observations.

Ivioreover, ) is an efficient estimator of ïj. To see this, let us consider the following augmented

moment restrictions

E(5(&), (g(Xj) — ii)’)’ = 0 (7)

and ,pd the minimum power divergence estimator of = (9!, ri’)’ based on these augmented moment

restrictions. Antoine, Bonnal and Renault (2007) show that corresponds in its n-argument to ) and
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in its 9-argument to the minimum power divergence estimator of 9, based on the non augmented

moment restrictions Eb(O) = 0. Because 1Pd is an efficient estimator, so is ) of which estimation

takes advantage from the non extended moment conditions. We extend this resuit to the wliole class

of minimum discrepancy estimators.

Let be a Minimum Discrepancy estimator based on (1) with a discrepancy function h (the

h-Minimum Discrepancy estimator) and ir’(ê,) (i 1,.. , n) its corresponding implied probabilities.

Theorem 2.2 Let 13h = (1h’,h’)F be the h-Minimum Discrepancy estimator of = (&‘,î’)’ based

on the augmented moment restrictions in Equation (7). If(.) is differentiabte on e with probabitity

one and att of the necessary conditions of LagTange Theorem for constrained optimization are futfitÏed,

then

hnh(h)g(x) and êlh=Ôk.

This resuit shows that there is no need to solve for the augmented moment conditions program

to get the k-minimum discrepancy estimator i of . Actually, one just has to get the h-minimum

discrepancy estimator of & based on (1) and the resulting implied probabilities help to compute i”

which. in turn, as a minimum discrepancy estimator, is more efficient than the sample mean as sooii

as the restrictions in (1) are overidelltifying for the true parameter value &o.

Let now be the minimum discrepancy estimator of i obtained from 1(et) (i = 1,.. , n), the

EL irnplied probabilities evaluated at the EL estimator of & by (1). It is known that will have a

more desirable higher order properties over the other i)lz in terms of bias (Newey and Srnith (2004)).

The aim of the following resuit is to provide an estimator of i comput ationally less costly than f,Cl

but higher order equivalent.

For any 9 E e, let ;t(&) be the implied probabilities obtaiued at O by the empirical likelihood

discrepancy function. Theorem 2.3 below shows that any estimator of &o which is in a Qp(n3”2)

neighborhood of êel leads to j, = t(ê)g(x) sharing with ft the same higher order bias. The

following assumption is needed.

Assumption 2 There exists u measurabte function b(x) suck that, in a neighbourhood jV of Oo and

for any k = 1,2, . .. , q, s, u = 1,2,. .
.
,p, )k(z, O)IIIg(x) <b(x), IO2bk(x, O)/a&59Ig(x) <b(x) and

E{b(x)} < œ andEI&i./’k(x,9o)/8O5g(z)W < , /k S the k-th component of’b.
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Theorem 2.3 Let Ô be any estimator of Ûo such that Ô — Op(n3/2) ami î) = Z”1 1(Ô)g).

If Assumptions J and 2 are satisfied, then ï) — = Op(n3/2).

From this resuit, either ETEL, 3S or s3S estimator will have its empirical Iikelihood implied

probabilities leading to estimate of ij that is higher order equivalent to f. The empirical likelihood

implied probabilities at O E e, ir1(Ô) (i = 1. . . , n), are given by ïr’(9) = 1/n[1 + À’i,b(O)j with

Â=arg min —log[1+À’(Ô)j/n,
ÀeA(8) i=1

see Qin and Lawless (1994).

Therefore, once the 3S or s3S estimator is computed, one can easily, by a single optimization,

get ;1(ê33) or rr(Ô) (i = 1,.. , n). ï) = L1 ird(Ô38)g(z) or ï) L1 ir1(Ô838)g(xj) are both

estimates of ,j, higher order equivalent to î)e. In this procednre, one no longer needs to solve for the

saddle point program that lead to EL or ETEL estimators to get an estimator for ij which is higher

order equivalent to the empirical likelihood estimator.

The next section studies the 3S and the s3S estimators in the case of model misspecification.

3 The limiting behaviour of the 3S and s3S estimators in misspeci
fied models

In this section, we study the behaviour of the three-step Enclidean (3S) likelihood estimator and the

shrunk three-step Euclidean likelihood (s3S) estimator in misspecified models. Following Hall (2000),

Hall and moue (2003) and Schennach (2007), we consider a moment restriction model as given in (1)

as misspecified, when there is no value of O at which the population moment condition is satisfied. In

the literature, this case is commonly referred to as non-local or global misspecification. Hall and moue

(2003) study the two-step GMM estimator under global misspecification. Specifically, when data are

independent and identically distributed, Hall and moue (2003) show that the two-step GMM estimator

is 47-consistent and asymptotically normally distributed. Our work relies on Hall and moue (2003)

results that we extend to the 3S and the s3S estimators. Certain assumptions are required to analyze

the large sample properties of these estimators. As in the last section and for brevity, we only highlight

in the text those assumptions that are relevant to the exposition and relegate the remainder to the

appendix.
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Assumption 3 z forms an i.i.d. sequence.

Let ,u(O) = Eb(x, O) and j(O) = O).

Assumption 4 j) i e — R such that ji(O) > O for att O E e.

ii) W is a positive semidefinite matrix that converges in pro babitity to the positive definite matrix of

constants W.

iii,,) (Identification) There exists o e such that Qo(0) < Qo(&) for any O e \ {0} where Qo(6) =

E(o)WEb(o).

As in Hall (2000) and Hall and moue (2003), Assumption 4-i) captures the global model misspec

ification. Assumption 4-iii) is the identification condition for a misspecified model. It states that

the GMM population objective function given by Qo(O) is minimized at only one point, 0, in the

parameter set e. 0 is often referred to as the pseudo true parameter value. In a well specified model,

O corresponds to the true parameter value Oo and Q0(00) = 0.

Let = argminoe(0)’W(&) be the GMM estimator defined by the weighting matrix W.

Under Assumptions 3, 4 and Assumption 12 given in the appendix, Lemma 1 by Hall (2000) applies

and is consistent for O. This result hicludes the two-step GMM estimator under mild further

assumptions. The problem that arises with the two-step GMM estimator is that the weighting matrix

it relies on depends on a first step GMM estimator which needs to be consistent. Usually, O is

obtained by a non random positive definite weighting matrix W’. We introduce in Appendix B the

specific regularity conditions that guarantee the consistency and asymptotic normality of and .

To describe the asymptotic behaviour of the three-step Euclidean likelihood and the shrunk three

step Euclidean likelihood estimators, we need to introduce some notation. For O E e, let

Ô(o) = Ô(O) =

= M(O) =

G(O) = E(b(0)/6O) — Cov{(O)V’(O)E(b(O)), (8’l(O)/OO)},

M(O) = Eb(0)/(O) —

ir(O), it(O) are defined as in Equations (3) and (4) and V(0) = Var((O)).
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The three-step Euclidean likelihood estimator ê is the solution of

c(ê)M(ê)’(9) = o (8)

and the shrunk three-step Eudlidean likelihood estimator Ô is the solution of

= 0, (9)

where Ô is the two-step GMM estimator. The following assumptions are necessary to show the con

sistency of Ô and Ôs38

Assumption 5 i) M(6) is nonsingîztar and for 6 E O, G(6)M(6)—’E(6) O 9 = 6.

ii) The three-step Euctidean tiketihood estimator is wett defined, i.e., there is a sequence {Ô} such

that (Ô)M(ê)—1(ê3) = O a.s.

Assumption 5_i) 15 the identification condition for rnisspecified model for the 3$ estimator problem.

Tvpically, it states that the population version of Equation (8) lias a unique solution, 6, in the

parameter set O. 0 is the pseudo true value for the three-step Euclidean likelihood estimator 3s•

Obviously 0 depends on both 9 and W. However, we vill not explicitly mention this dependence

for sake of simplicity. In the next two theorems, we assume that Assumption 4 holds for the two-step

GIVIM est imator Û.

38Theorem 3.1 If Assumptions 3-5, and Assurnpizons 12-13 in Appendix hotd, then 6 —

The shrinkage factor makes the analysis of the shrunk three-step Euclidean likelihood estima

tor more difficult in the case of misspecified model. The shrinkage factor that we use is e(0) =

—/imin{0,mini<<[1 — 0)I4’(6)(’/(O) — (0))]}. In the case of correctly specified model,

7i(00) converges to O and under some regularity assumption, e(0o) also converges to 0. However,

when the model is misspecified, (0) does not converge to O for any value of 6. For a large n,

‘ —Jmin{O,mini<<[1 — E{i(0)}V1(6)((0) — E(0))]}. For our analysis, we need to

have an insight of the order of magnitude of (Ô). Let l = infoj, J(0)V1 (6)E’çb(0), where jÇ is

closed neighbourhood of 6 included in O. We make the following assumption.

Assumption 6 i) Va, b E R, a b, Prob[t E (a, b)] O.

ii) is nonsing’utar and = O 6 = 0, for
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o E e.
iii) The shrunk three-step Euctidean tiketihood estimator is wett defined, i.e., there is a sequence

{838} such that 18(Ô)M8(ê)_(Ô838) = O as.

Assumption 6.1) allows t to lie in any interval on the real une with probability different from O.

Typically, 1 could be normally distributed. Under this assumption and some regularity conditions,

— min{O, mini<<[1 —‘7Y(O)’(9)(b(O) —())1} diverges to infinity arid the factor gives an idea

about the divergence rate of e,(ê). If Assumption 6.i) holds, ir(Ô)y ‘ yi/n, where y is

any measurable function of x. Therefore, Equation (9) is equivalent, up to some negligible terms, to

, j(O) 0. The identification condition for the

s3S estirnator given by Assumption 6.ii) is related to the population version of this last equation.

Theorem 3.2 If Assumptions 3, , 6, and Assumptions 12-13 in Appendix hotd, and that Ô —

Qp(n1’2) where Ô jS the two-step GMM estimator, then Ô

We, next provide asymptotic distribution for both the three-step Euclidean likelihood and the

shrunk three-step Euclidean likelihood estimators in misspecified models. Since these estimators rely

on the two-step GMM estirnator, the asymptotic distribution derived by Hall and moue (2003) for the

two-step GMivI in rnisspecified models are useful for our asymptotic theory. We recail their resuits

that we also specialize for our use.

3.1 Asymptotic distribution of the two-step GMM estimator in misspecified mod
els

The first step GMM estimator solves

=0, (10)

where W’ is, usually, a non-random weighting matrix. Often, in empirical works, the identity matrix

is used as weighting matrix. We treat it here as non-random. Under Assumption 3 and Assumptions

10, 12 as given in Appendix, the resuits by Hall and moue (2003) apply and — =
Qp(/2), 1

being the unique solution of the population analogue of Equation (10).

Actually, a simple Taylor expansion of the first order condition in (10) around 6 yields

0= (O)W’(O)+ ®I)J(2)(9)] (Ô-O)+Op(n’), (11)
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where I is the p z p-identity matrix and

J(2)(9) = vec ((9))

Let 1(9) Eb(9)b(&) and

J(9) = ab(o)/ao’, J(2)(9)
=

J(9) = &ii(e)/a9’, R1(o) I’(&)W’(J(&) + (i’(û)W’ ® I)Jt2)(o),

J(9) = EJ(O), H1(9) = J’(O)W’J(9) + (E((O))W’ ®

Since Ïï (9) is a quadratic function of sample mean, Ïi (9) is v-consistent for its probability limit

H’(8) meaning that ÏÏ1(9) — H1(O) = O(n/2). Therefore,

Ô — = + Op(n’). (12)

On the other hand, the two-step GMM estimator solves the first order condition

= 0, (13)

where W(O) = [Z1 (&)(&)/n]’ Ç’(9). The stochastic nature of the weighting matrix adds

a layer of complexity of the expansion of the two-step GMM estimator.

We first expand (Ô) around 6 and then we deduce an expansion of W(J). This latter, ultimately

allows to get an expansion for Ô. We have

= (&) + Rq,q
(8vec[] (9)(J - 9)) + Op(n’),

where Rk,1(X) reshapes the kt-vector X into a k z t-matrix, column-wise.

Let

=

J*
= J(91)

W’ = Ebb’ Rqq (8v[OÏ(91)[H1(91)J*tW1E])

+ Rq,q (8vC[O1 (9’)H’(9’)[(J’(9’) - J*’)WlE* + J*’wl((o)
- Efl]),

From the expression of Ô — 9 given by Equation (12) and up to some arrangements, we have

= W’ + &(9) + Op(n’).

Clearly, E(&) = O and (9)/n = Qp(n’/2). Furthermore,

W(Ô) — W = Ç’(Ô) — W = —‘(Ô)((Ô) — W’)W.
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Thus

O W() - W = +

or equivalently,

W() -W = w,j(&)+Op(n’). (14)

Thanks to Assumption 3 and Assumptions 11, 12 as given in Appendix, we can expand the first

order condition for O in (13) as follows

o = J’(o)w((o) + [J’(o)w(J)J(o) + (‘(O)w() ØI)J(2)(o)] (o) +o(n’),

Let
=

=

J = J(O),
FI(o) = J’(o)W()J(o)+Q’(o)W(J) ®I)J(2)(O),

H(O) = J’(O)WJ(O) + {E((O))W ® i}J(2)(O).

Because Ï(&) is a polynomial function of sample mean, ÏÏ(O) is “i-consistent for its probability limit

H(O) meaning that R(O) — H(O) = Op(n’/2). Therefore,

Ô — O = + Op(n’).

Thus Ô
— O can 5e written

0—0 (15)

From Equations (14) and (15), Ô
— O is asymptotically equivalent to a sample mean of centered

random vectors which are i.i.d as is x : j = 1 Assuming, as it is the case here that these vectors

have finite variance, the central limit theorem applies and /i(Ô
—

O) = Op(l) as it is asymptotically

Gaussian. This is a resuit of Hall and moue (2003).

The main reason of this usual Gaussian asymptotic behaviour of the two-step efficient GMM

estimator is the cross sectional nature of the random variables as they are assumed to be i.i.d. This

result fails down in the time series context where the lag dependence is not finite and the moment

conditions are globally misspecffled. In such a case, as shown by Hall and moue (2003) (see also Hall

(2000)), the optimal weight for the two-step efficient GMM estimator dictates its rate of convergence to

the GMM estimator which therefore may no longer be \/ii-consistent or even asymptotically Gaussian.
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3.2 Asymptotic distributions of the three-step Euclidean likelihood estimators

In this section, we derive the asymptotic distribution of botb tbe 3S and the s3S estimators under

global misspecification. We find tbat tbey are /i-consistent and are asymptotically characterized by a

normal distributiou. The asymptotic normality of the 3S estimator is not surprising as its estimating

equation is a smooth function of sample rnean and the efficient two-step GMM estimator is also

asymptotically Gaussian.

Besides, the estimating equation of the s3S estimators is not a smooth function of sample means.

This makes less apparent the reason of its asymptotic normal behaviour. Let us consider again the

shrunk implied probabilities as introduced by (4)

- 1 e(9) 1
(O)

= 1 +
(9)0) +

1 + c(O)

=

- 1 + c(O)
-

In a correctly specified model, tbe terrn (b(6) — (9))’ V;’(9)(6) correct the uniform weight

to deliver population means estimates wbich are more efficient than the sample mean by using

the information content of tbe moment conditions. e(&) adjusts for non-negative weights in finite

sample and vanishes asymptotically. However, in misspecffied models and as pointed ont by Schennach

(2007), tbis shrinkage factor does not vanish asymptotically. Nevertheless, we can see that under

mild assumptions e(9) diverge to infinity. Tbe key idea to conserve asymptotic normality for the s3S

estimator is to accelerate the divergence of this factor such that tbe discontinuous part of its estimating

equation appears negligible compared to tbe smooth part of this function. In this paper, we use

(O) =

e(9) is given by Equation (5). However, we should notice that any shrinkage factor ca,n(O) =

with a 1/2 could lead to the same resuit.

The three-step Euclidean likelihood estimator Ô3s solves (8) and, by tbe mean value expansion of

(8) around 6, we have

- 8) =

where 9e
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To show that /(ê3s

— 0) is asyrnptotically normally distributed, we just have to show that

the right hand side of the last equation properly scaled is asymptotically Gaussian and the terrn

multiplying the
—

in the left hand side is asymptotically non singular.

The following assumptions are also useful.

Assumption Z i) E Int(e).

ii) There exists a measurabtefunction b(x) such that, in a neighbourhood ofO, &J’k(x, e)/t99 <b(x),

foTattk= 1,2,...,q ands=1,2,...,p andEb(x)< oo.

iii) D G(O)]’d’(O)J(9) ZS nonsingutar.

iv) Varz3, < no, uhere z3, = {vec’J(6), [lj(6) ® vecJ(O)]’, [‘/‘(O) 0 veci/.’(O), ,b(O)]’,

Let

[L =E(O),

m =M’(9),

g =G(&),

Yin =Rp,q
(Ovec[G]

(6)(ê - O)) - g*m*Rq,q
(aveM]

()(ê -

Theorem 3.3 If Assumptions 3, 5, 8 and Assumptions 11, 12, and 13 given in appendix hotd, then

11 f212 i4

r — G(&)]rntt
- o 21 f122 23 24n

— ‘ 31 32 33 34

YinTfl*/t** 41 42 143 f244

Ô(Ô)(ê)(&)
- 1V(O,f2)

and

— **) - A/(O, D),

uhere = Df2D’ and

•Q =grnf2i1mg + f222 + 9Jflf233Tfl9 + f244 + gm.f21 + f22img — gm(f2i3 + f23i)mg

+ gmJi4 + f24img — gmf232 — f223mg + 24 + f242 — gmf234 — f243mg.

Next, we derive the asymptotic distribution of the shrunk three-step estiinator Under As

sumptions 3, 6 and Assumptions 11, 12, and 13 in Appendix. as we show in the proof of Theorem

o
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3.2,

0 1

1+e(&)

As a resuit,

=
lJF() (1/2) and (Ô)(ê)’(ê) =

Hence, s()I 8’()i338) = O = J!(ê)Ç1(ê)(ê838) +op(n/2). By a mean value expansion of

(O) around we have

- =
+

where

As for the 3S estimator, we get the asymptotic normality for the s3S estimator by establishing that

the right hand side of the last equation scaled by square root of n is asymptotically Gaussian and by

insuring that the factor of
—

is asymptotically non singular.

We make the following assumptions.

Assumption 8 i) O E Int(e).

ii) There exists a meas’uTabte functwn b(x) such that, in a neighbourhood 0f 8/)k(X, O)/86 <b(z),

forattk=1,2,...,qands=1,2,...,pandEb(x)<œ.

iii) D = is nonsingutar.

iv) Let < œ.

Let

[L =Eçb(9),

w*

j =J’(O),

Y2fl Rp,q{J2(6*)(
— 9)} — J’(&*)W’(O*)Rq,q (6)(Ô —

Theorem 3.4 If Assumptions 3, 5, 8 and Assumptions 11, 12, and 13 given in appendix hotd, then

7,’j ‘, flS fl5 OS OS
W ê) — II** 11 12 13 14

[J’(O)
— J’(O)]w5it5

- iV O, 21 22
3

( *)
— ( *)lw*ji** 31 32 33 34

Y2Twt5 1 2 3 4
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J’(Ô)Q-’(Ô)(o88) N(oM:)

and

/(ê838
— 9) -* N(o, E8),

where E8 = Dr’QDr” and

Q 8w8Qi1w8j + Q22 + j*w*Q;3w*j + Q4 + j8w8Q + Q1w8j[8 — j8w8(Q3 + Q1)w8j

+ 38W8Q;4 + Q1w8j — j8w8Q2 — Q3W8j + Q4 + Q2 — i*wJ4 — Q3w8j.

Theorems 3.3 and 3.4 show that both the three-step Euclidean and the shrunk three-step Euclidean

likelihood estimators are 1/ii-consistent and are asymptotically normally distributed in misspecified

models. Note that these resuits contain analogue resuits for correctly specified models as special cases.

In correctly specified models and for both estimators, z = O and 0 = = 6o, where Oo is the true

parameter value. In addition, D8 = D and both estimators have the same asymptotic distribution as

the efficient two-step GMM estimator. Because the asymptotic distributions they yield are also valid

in well specified models, we daim that Theorems 3.3 and 3.4 provide model misspecification robust

inference for the three-step and the shrunk three-step Euclidean likelihood estimators, respectively.

Furthermore, these resuits also show that these estimators have very interesting properties with

respect to the alternative most useful moment condition-based estimators. In well specified models,

they have the same higher order bias as the EL and ETEL estimators while in misspecified models,

they stay \/-consistent for they pseudo true values as do the ET and ETEL estimators. Moreover,

they are computationally more tractable than ail of the estimators in the class of minimum discrepancy

estimators.

4 Simulations

Throughout these Monte Carlo experiments, we compare seven alternatives moment condition based

estimators. We consider the Enchdean empiricai likehhood (EEL), the empirical hkelihood (EL), the

exponential tilting (ET), the exponentially tilted empirical likelihood (ETEL), the three-step Euclidean

likelihood (3S) and the shrunk three-step Euclidean likehhood estimators. We specifically consider

two variants of the shrunk three-step Enclidean likelihood estimator corresponding to two different

shrinkage factors. The first one is obtained with €(9) = E(&) as shrinkage factor. This estimator is
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referred to as s3SO. The second is obtained with e() = = \/7i(O), the shrinkage factor we

base our asyrnptotic theory on in Section 3. We refer to the shrunk tbree-step Euclidean likelihood

estimator yielded by this shrinkage factor as s3S.

We first compare the finite sample bias of these seven estimators. For this aim, we use the same

Monte Carlo design as Schennach (2007) which is a slightly expanded version of the Monte Carlo

design used by Hall and Horowitz (1996), Imbens, Spady and Johnson (1998) and Kitamura (2001).

The moment conditions of our Monte Carlo design are the following

E(x,9) = 0: ?I’(z,0) = [r(x,9) r(x,0)xi r(z,0)(x3 —1) ... r(z,0)xK]’,

where r(x, 0) exp(—.72 — (xi + x2)9 + 3x2) — 1. The true pararneter value Oo = 3.0 and

(xl,x2)’ JV(0,0J612) and 1ik , for k 1,... ,K.

Instead of solving the saddle point problem that yields the EEL estimator, we rather compute the

continuously updated estimator proposed by Hansen, Heaton and Yaron (1996) which is known to be

equal to the EEL estimator (see Newey and Smith (2004) and Antoine, Bonnal and Renault (2007)).

We compute the EL, ET and ETEL estimators by solving the saddle point problems that provide them

respectively and we obtain the 3$, s3SO and s3S estirnators by the three-step procedures as described

in Section 2.

We conduct this experiment with K = 4 and K = 10, respectively by replicating 10,000 samples of

size n 200. The EEL estimator algorithm fails to converge in about 3% of the simulated samples and

the 3$ estimator computation procedure fails in only 10 samples in this experiment. The cases where

the 3$ estimator fails to converge are related to the negativity of some of the implied probabilities used

for the Jacobian and the variance estimation. This confirm the lack of stability that one can suspect

for the 35 estimator in finite samples. The samples in which at least one estirnator’s computation fails

to converge have been replaced.

Table 4.1 reports the simulated bias of the estimators we consider. The 3S, s3SO and s3S estimators

behave, in terms of bias, rather like EL and ETEL confirming the resuit in the literature about the

Op(n’)-equivalence of EL, ETEL and 35 estimators and also our result about the higher order

equivalence between s3$ and EL estirnators. The EEL estimator appears to be the worst in terms of
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bias. One can also mention that the finite sample bias of ail of the estimators increase with the number

of moment conditions. The iargest increasing occurs for EEL foliowed by ET. The other estimators

that are higher order to EL have a lower increasing in their bias. The s38 even yields the lowest

increase.

Our second Monte Carlo illustration is reiated to the /_consistency resuits under misspecfflcation.

The Monte Carlo design we use is the same as the one used by Schennach (2007) to allow for direct

comparison. The moment conditions are the following

Eb(x,8)=0: iJ(x,0)=(x—& (x—O)2--1)’

where z ‘-‘s .,V(O, 1) for a correctly specified model (Modet C) and z -‘ Af(0, (0.8)2) for a misspecffled

model (Modet M).

In Model C, the true parameter value is 6c = O and in Model M, the pseudo true vaiue is O = O

for ail of the estimators we consider. We replicate 10,000 sampies of size n = 1,000 and 2,000 samples

of size n = 5, 000 for both Model C and Model M.

Table 4.1: The simulated bias of the EEL, 3$, s3S0,

EEL 3$ s3SO s3$
K = 4 0.289 0.059 0.060 0.052

K 10 0.526 0.096 0.093 0.045

s3S, EL, ETEL and ET estimators

EL ETEL ET
0.064 0.060 0.104
0.137 0.109 0.238

Table 4.2: The simulated standard deviations of EEL, 3$,
for Models C and M

s3$0, s3$, EL, ETEL and ET estimators

EEL 3$ s3S0 s3$ EL ETEL ET
n = 1,000

Modei C 0.032 0.032 0.032 0.032 0.032 0.032 0.032
Model M 0.028 0.032 0.032 0.032 0.055 0.038 0.031

n = 5,000
Model C 0.014 0.014 0.014 0.014 0.014 0.014 0.014
Model M 0.012 0.014 0.014 0.014 0.060 0.018 0.014

Table 4.2 dispiays the simulated standard errors for ail of the estimators. In the correctly specified

model, the simulated standard errors are the same for ail of the estimators. This confirms that the
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estimators have the same asymptotie distribution as predicted by the theory. The cumulative distrib

ution functions plotted by Figures 4.2 and 4.3 also confirm tifis theoretical result. For the rnisspecified

model, the simulated standard errors of the 3S and the s3S estimators shrink by approximately

from n = 1, 000 to n = 5,000 and confirm our theoretical prediction for these estimators in misspeci

fied models. Even though we do not study the behaviour of the EEL estimator in misspecified models,

our simulation results suggest that this estimator may stay /-consistent in misspecified models. The

same observation is valid for the s3SO estimator. The results for EL, ET and ETEL estimators confirm

the findings by Schennach (2007). While the simulated standard errors of ET and ETEL shrink by

approxirnately /g, the simulated standard errors of the EL estimator seern not to shrink providing

evidence against the ,,4i-consistency of the EL estimator for an asymptotic distribution in the case of

model rnisspecification.

C
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Figure 4.1: Sirnulated curnulatiee distribution function of EL, ET, ETEL, s3S, EEL, 38, s3SO estimators with
K4 andK=10,nr= 200
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Figure 4.2: Simulated cumulative distribution function of EL, ET, ETEL, s3S, EEL, 3S, s3SO estimators from
Model C (i-ii) and Model M (iii-iv), n = 1,000
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Figure 4.3: Simulated cumulative distribution f’rnction of EL, ET, ETEL, s3S, EEL, 3S, s3SO estimators from
Model C (i-ii) and Model M (iii-iv). T = 5,000
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5 Conclusion

This paper explores some properties of the computationally appealing three-step Euclidean likelihood

(3S) estimator and proposes the shrunk three-step Euclidean likelihood (s3S) estimator. In correctly

specified models, as the 3S estimator, we show that the s3S estimator is equivalent to the EL estimator

up to Op(rr’) thus they have the same higher order hias. We also provide a useful algorithm that

yields more accurate (in terms of higher order hias) population means estimates when overidentifying

moment conditions are available for the data generating process.

We also study the 3S nnd the s3S in misspecffled models. As a resuit, we provide global model

misspecification rohust asymptotic distributions for these estimators. Moreover, this study reveals

that even in misspecified models, these estimators stay /ii-consistent nnd asymptotically normally

distrihuted. These properties make both estimators two useful and particularly attractive alternatives

to the EL estimator which is not ‘Jii-consistent in misspecified models and also to the ETEL estimator

which is harder to compute.

By some Monte Carlo experiments, we evaluate the relative finite sample performance of these

estimators. These experiments suggest that the s3S estimator cnn behave hetter than the 3S estimator

particularly when not all of the implied probahilities are nonnegntive. These experiments also validate

the fact that both the 3S and the s3S estimators are fri-consistent while the EL estimator is not.

One possible development of this work that we plan for future research is to study the bias corrected

version of the 3S and the s3S estimators. Because in correctly specified models they are higher order

equivalent to the EL estimator, we cnn use the EL higher order bins derived by Newey and Smith

(2004) to correct them. This could lend to interesting discussions about their higher order efficiency.
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A Proofs of resuits in Section 2:

Assumption 9 Let

-

and jV(c) = {O: 16 — OolI <a}.
j) For soma e > 0, g, has paTtiat derivatives V,,(0) ag,,(0)/c90’ on aV(a) such that, for alt 6 > O,

lim lim Prob{ sup lVn(0) — V,,(0o)Il > 6} = 0.
0 fl00 OeN()

ii) There exists a measurabte fonction b(x) such that, in a neighbourhood of and for alt k, t, r 1,2,.. . , q,
s1,2,...,p, Ik(X,8»,L’t(X,0)1’r(x,0)I <b(x), I8k(x,O)/0Orl <b(x) andE{b(x)2} <œ.

Assumption 9-i) is an asymptotic continuity condition on the gradient of g,,. This condition is required for the
Theorem 1 by Robinson (1988) that we rely on. The point ii) of the same assumption is the usual dominance
conditions for uniform convergence.

Lemma A.1 Let h be a continuous Junction on a compact set e such that VO e e, h(O) = 0 0 00.
Let h,, be a sequet offunctions defined on e and On be a sequel of values in e such that h,,(0,,) O a.s. If

P Pup8 lIh,,(0) — h(0)II —* 0, then On Qo.

Proof: Let aV be a open neighborhood of Oo and aV’ its complement. Since h is continuous on e, it is also
continuous on e n À/ which is compact. Let e = min090e Il h(O) II. Since Il h(.) II is continuous on the compact
set 8 nN, there exists 0* e e nJv such that e = Ilh(O*)Il. Clearly, e > 0 since O 0. On the other hand,
for the uniform convergence hypothesis, with probability approaching one, lIh(OT)l( IlhT(OT) — h(OT)Il < e.
By definition of e, 0T iVe and then °T C aV

Proof of Theorem 2.1. We show that —
= Op(n—3/2) and we use the resuit by Antoine, Bonnal

and Renault (2007), namely that Ô38 — ôel = Op(n_3/2) to deduce that ês38 — Ôet = Op(n_3/2). Our proof for
— Ô838 = Op(n_3/2) relies on the resuit in Theorem 1 by Robinson (1988).

n n —1

g,,(0)
= [ 7ri()J(Ô)] [ (O)

and
n n —1

g(0) = [it(Ô)J(ê)] (O),

where J(0) = t9b(0)/80’. By definition, g(ê38) O and g,,(Ô838) = 0.
From Theorem 4.1 by Antoine, Bonnal and Renault (2007), Ô’ O + op(1). By the dominance condition in
Assumption 9-ii), ag,,(00)/O0’ Vo + op(1), where Vo is the nonsingular matrix J0’Q_1(00)J0. To apply the
Theorem 1 by Robinson (1988), we need to show that 0838 Q + op(1) before we can conclude, thanks to
Assumption 9-i), that

- s3s op(Ilg,,(ê38) - gs(Ôs3s)lI) (16)

Let us show that Ô838 = 0 + op(1). We use Lemma Al.
Since O is the two-step GMM estimator, O — 00 = Qp(n’/2) and by Antoine, Bonnal and Renault (2007) that
Prob(mini<<,,ir(O) 0) —* 1 as n —* œ. Hence, for any e> 0, there exists no O such that for any n n0,
Prob(mini<<,1ir(0) 0) 1—e i.e. Prob(e,(O) = 0) 1 — e i.e. Prob(ne(0) 0) 1 — e. In other words,
Prob(ne,() 0) —* 1 as n —* œ. Therefore,

v’7e,(0) - 0. (17)
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On the other hand, for any k = 12,... q and s =

n
8b,k = 1 8k() — 1 f(Q

n

1+c(Ô)8

andforanyk,t=1,2,...,q,

n n
1 _, n

(Ô)Vn-’(Ô)1 i() - )i,k(t,t(Ô)
i=1 — 1 + (ê) n

By our dominance conditions in Assumption 9-ii), and the resuit in Equation (17), (ê) Op(n’/2) and for
anyk,t1,2,...,qands=1,2,...,p,

n n

E-(0o) +op(1) and E,k(0o)j(0o) +op(l).
808

j=1 i=1

Therefore,
—1rn 1 rn 7

Zn ) j0’Ç1(Q)

i=1 j i=1 J
Let g(0) = Z(0o)Eçb(0). By the identification conditions by Assumption 1-vi), g(0) = O only at 0. g(0) —

g(0) Zn((0) — E,b(0)) + (Zn — Z)E(0). By the Cauchy-Schwarz inequality,

Ign(0) — g(0)I I4I SU II?7(0) — EîJ)(0)I + Zn — ZIEsup Ib(0)W.
oee oee

By Lemma 2.4 by Newey and McFadden (1994), sup00 I(0) — E’(0)II - O. Because Zn — Z O, we deduce
Pthat supoee Jgn(0) —g(0) - O. Lemma A.1 therefore, applies and Ô838 0.

As a resuit, we can apply Theorem 1 by Robinson (1988) and the asymptotic stochastic order in (16) is
valid. We have

—1

3s - 838 op { [ (ê)J(ê)] [j (Ô) (ê) (ê)]

—ilrn 1m 7 I

- L’ [ I(ês)U}
i=1 j i=1 J

—1

oP { [êJê _t(ê)J(ê)]

rn 7 trn -I—1
tn

7—1111
-L] [[iê)i(êê - I(ê)i(ê)(ê)] I(ê838)I}.

i=1 j=1 j ti=i j

Under our regularity assumptions, 7r(Ô)J() - J°. Moreover, for any k 1,2,... , q and s = 1,2,. .
.

- 8’i,k
n

- e(Ô) fi
S s i+c(ê) 1 Jj=1

E(6) ‘(ê)

=c()
1

- ‘(Ô)
1+c(0) n 803 ji=1

= Op(fl_h/l)Op(1)Qp(fl_1/2)Qp(1) op(n’).
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Thus t(ô)J,’(ê) — ir(Ô)J) = op(n).

Similarly, wïth M = i(Ô)(ê)(Ô) and NR ((Ô)(Ô), M — N Op(fl). On the
other hand, since M1 — N;’ —M;’(M — N)N;1, we deduce that M;’ — N;’ op(n). Furthermore,
because J0’l_1(90)]0 is nonsingular and, by a mean value expansion, we can easily deduce that 083s

—

Op(n_1/2) and our dominance conditions insure that (Ô53s) = O(n—/2). Therefore, Ô3 — Ôs3s = Op(n3/’).
Since, by Antoine, Bonnal and Renault (2007), Ô:3s — Op(n_3/2), we also have Ô838 — et

= Op(n’/’) fl

Proof of Theorem 2.2. Let Lo be the Lagrangian associated to the problem:

h(7c) subjectto ic = 1 ir’’1(O) = O

and ic(Ô’), .. .
, ic(Ôh) be its solution. £ h(ir) — À(ZL, ic — 1) — if (O). As the Lagrange

Theorem’s necessary conditions are fulfflled, the solution together with the Lagrange multipliers .“ and /
solves the first order conditions (in the corresponding arguments) given by:

h(x)—À—/3’(0)= 0 Vi=l, ,n.

Z1=,ici= 1

Z1,irii(0)= o

t3’Z1=,7ri(8tbz(0)/88’) O

Let us 110W consider the augrnented problem

subjectto :i icJ(0)=0 ic(g(x)—c)=0

and let L, be the associated Lagrangian and (1h, ,h(Ô1h) ,Jh(1h)) its solution. L, = Z—, /(ir1) —
ic — 1)

— if 0) — /3 ic’çb(0) and the first order conditions are:

h(x) ——if/(O) —/3(g(x)—j) O Vi= 1,. ,n.

Z=17r= 1
icb(0) = O

if Z’=i 7c(t9?/)(0)/t90’) = O
irj(g(xj)—i)= O

/3_,ic= O

Note that the last two equations in this first order condition give /i = O and ) ich1(h)g(xj) and the
solution for 0, ra,... \ and /3 solves the first three equations. With /3 = 0, these first three equations
are equivalent to (18). Because the objective function in both optimization problems are the same and do not
depend on nor ij, we deduce that both the augrnented and non-augmented optimization problems have the
same solutions in the arguments they share, i.e. 1h Ôh, ,h(Ô1h) = h(h) rlh(êlh) = rh(êlh) Since

,hQ1h)g(), we also have ) = Z1—, r(Ô”)g(xï) O

Proofof Theorem 2.3. Under Assumptions 1 and 2, by Newey and Smith (2004), êd
— O Qp(_1/2)

Since O et Qp(n_3/2) O—8e Op(n—’/’) and hy a mean value expansion around Oo, (O) = Op(n’/’)
as well ,,(Ot) = Op(n_1/2). On the other hand, for any O E e, the empirical likelihood implied probabilities
are given by

elo —.:.
1

where À is a solution of the optimization program minÀEA(O) {— L, log(1 + À’(O))/n}, Ç(O) = {)i R’

.\‘(O) > —1,V0 e}. By Lemma A2 by NeWey and Smith (2004), = O(n’/’) and À&
Op(n*’2). Moreover, since Esupoee I,(0HIa < œ, rnax,<i<nsupoee I’/’(0)I Qp(1) and therefore,
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O
ILBmaxllTsuioEe II’(9HI = op(1), for \ = On the other hand,

n n
1 1

- = [1(e) - l(oel)]g(x)

n(1 + (Ô)) - n(1 + ‘(Ô))

By some re-arrangement,

-

= - Ê 1(Ôet)
g(xj)

-
- (Ôt)

g(x)
[1 + )“b(O)][1 + et’,.(Oet)] n [1 + À’i(O)][1 + Àel’,(Qel)]

-

(i +Op(I max sup (8)ID) x (ti +Op(I max sup I(6)ID) I.(et)g(X)

- ‘ (1+ Op( max sup x (1+ Op(II I(6)ID) Q(Ô) -

As IL maxj<j<nsupoe0 Itb(9)I op(1) and iL1i maxl<i<nsupoee ,j(O)I) op(1),

- eI =(et
-

)‘(i + op(1)) (Ôel)g(x1)
- ‘(1 + op(1)) (‘(Ô) - .el))g() (19)

Let f(O, ) (O)/n(1 + À’(O)). By definition, f(Ô, ) = f(Ôel iet) 0.
By a mean value expansion,

f(Ôel, e1) f(Ô, ) + (8f(Ô, )/aoI)(ÔeI
- Ô) + (8f(Ô, )/8À1)(Âel

-

O E (Ô,Ôt) and E (,Ct). Thus,

— ) =
_(f(Ô)/6)(Ô1 Ô)

Since (8f(. )/t9À’) - !1(8) (see Newey and Smith (2004)), (8f(Ô, )/6À’) is nonsingular with probability
approaching one. For large n, we cnn write

-

= f()/I-l(of()/8/)(Ôel
- Ô)

By our dominance conditions in Assumption 2, (Ôet)g(x)/n is bounded in probability. Therefore, the
first term in the RHS of (19) has Op(n3/2) as order of magnitude as n grows.
On the other hand, by Taylor expansions, we have, with g denoting the u-th component of g,

j(Oo)gu(xj) +
- Oo) + Op(JÔ - 9oI2)

and

+
- Oo)

+ Qp(Ô&
- 9oI2).

By subtracting these equations side by side, we have

- Z ,j(Ôel)gn(Xj)/fl = Z(8z(o)/88’)gu(xj)(Ô - Ô)/n + Op(n’).

By the law of large number, (D/9O’) (Oo)g(x)/n is bounded in probability thus, Â’(l+op (1)) Rb (Ô)—
= O(n3/2). Therefore, the second term in the RHS of (19) also, has Op(n_3/2) as order ofmag

nitude as n grows. Consequently, — = Op(n3/2) U

O
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G
B Regularity conditions for the GMM estimators and

The first step GMM estimator is defined as

arg min ‘(0)W(0).

The following assumption insures the consistency and asymptotic normality of in the case of global misspeci
fication as formalized by Assumption 4-i).

Assumption 10 j) I’(0)jI > O for alt O E e.
ii, W’ is a sOmmetric positive definite matrix.
iii) There exists O. E e such that Q(O) < Q(O) for alt û E e \ {û}, uhere Q(û) = EJ(O)W1E,b(0).
iv) 0 E Int(e).
y) I’(x,.) iv twice continnousty differentiabte on Int(e) and &(., 0)/0’ and (D/Û0’)vec[8(., 9)700’] are mea
snrabte for each O E Int(e).
vi,) There exists o measurabte function b,(x) such that l)’k(x, 0)1 < bi(x), IO’k(x, 0)/09j < by(x),
lOl)’k(x, 0)/8O8O,,J < bï(x) in a neighbourhood of0, for alt k = 1,2,... q ands, n = 1,2 p and E{b(x)2} <
00.

vii) H1 (0) J’(û )W’J(0) — (E(8 )W’ 0 I)J(2) (8) iv nonsingular.
viii) Varz1, < œ, wheTe zj ((O),vec’{0i)’(0)/00’})’.

Assumptions 10-(i-iii) imply Assumption 4. Under Assumptions 3, 12 and 10-(i-iii), the resuit by Hall (2000)
implies that - O. If Assumptions 3, 12 and 10 hold, \/( — O) - jV(0,w,). One can refer to Hall and
moue (2003) for an explicit expression for w1. These conditions also imply that (0) = i(0)(0)/n is
consistent for We will explicitly assume, next that this probability limit is nonsingular. This
additional assumption guarantees the two-step GMM estirnator computation in large sample.

Assumption 11 i) Assumption 10 hotds.
ii) E{î,i’ (0) (0 ) } is nonvingular.
iii) There exists O E e vuch that Qo(0.) < Qo(O) for ail 0 E e \ {0}, where Qo(0) E,b(0)I47,1Eb(0).
iv) 9 E Int(e).
y) There exists a meavurabte function b,(x) vuch that ,bk(x,O)l < b2(x), lOPk(1,O)/OOsI < b(x),
I0’k(x,9)/80s80ul < b(x) in a neighbourhood of 0, for alt k = 1,2,... ,q and s,n = l,2,...,p and
E{b2(x)2} <œ.
vi) H(0) J’(O)WJ(0) — (Ei4(0)W’ 0I)J(’)(0) iv nonsingutar, where l’V =

viii) Varz2, < 00, where 22,j (7’ (0k), vec’ (O. )‘ (0), vec’{0i/’ (0. )/89’})’.

Assumptions 11-(i-iii) imply Assumption 4. Under Assumptions 3, 12 and 11-(i-iii), the result by Hall (2000)
dimplies that O —* O. If Assumptions 3, 12, 11 hold, \/(9 — 0) —* .,V(0,w2). One can refer to Hall and boue

(2003) for an explicit expression for w2.

C Proofs of resuits in Section 3:

Assumption 12 i,) e iv compact.
ii,) b(., 0) iv measurabte for each O E e and t’(.) iv continuons uith probabitity one on e.
iii) E [supoee lI’I’(°)Il] < 00.

Assumption 13 i) i’(x,.) iv differentiabte with probabitity one on e.
ii) There exists o measurable function b(x) such that, in a neighbourhood of O and for att k,t,r = 1,2,... ,q,

= 1,2,... ,, I1)k(X,O)/)1(X,O)î1,’r(X,O)I < b(x), lt(x,O)(Dbk(x,O)/OOs)l < b(x), l8bk(x,O)/00sl < b(x) and
E{b(x)} < 00.
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PRoPosITIoN C.1 Let J(O) ab(0)/ao’, a.() and V() Var((8)).
If Ver a < oc, Ver vecJ(8) < oc eaU V(8) is nonsinglitar, then

plimÔ(6) G(O) = EJ’(O) — Cou{(O)V’ (6)E((O)), J(Û)},
— G(9)) = Op(1),

p1im][(9) M(O) = El,b(O)çb(O) —

J(M(O) — M(O)) Op(1).

Proof of Proposition C.1. By the law of large numbers for independent and identically distributed random
vectors, V(O) is consistent for V(8) and therefore with probability one as n goes to infinity, V(O) is nonsingular.
Because a(O) is an i.i.d sequence with finite variance, the central limit theorem applies and 1{a(8) —

Ea(O)}/v’ is zero-mean asymptotically normally distributed.

(O) n(9)J(O) {l
-

((O) -))‘V1(9)(O)}J)

= (1+ {‘(9)V’(8)(O)})1 1(8) - I

We have J(O)/n — E{J(&)}]/n + E{J(Û)}.
By the central limit theorem, J(O) — E’J(O)}/n = Op(n1/2) therefore,

(1 + {‘(9)V1(8)(O)}) J(O) = (1 + {Eb’(O)V’(6)EI,b(O)})E{J(O)}
+(i + {E,b’(O)V’(O)E(O)})* L1[J(O) — E{J(9)}1

+

The (k, t)-component of L1 {‘()V,—1 (O)’ (8)}J(6)/n is i’(O)V—’ () Z= /i (9)kt (6)/n.
Let %(), (8), V, V(O) and V’ V(8).

‘V ‘jJkI(8)/n EV’E{jJkl(8)} + EV’ {,J,kt(O) - E’jJk((O)}/n + op().

Thus

- G(O)) (1+ {E”(O)V1 (O)E(O)}) [J(O) - E{J)}]/+ B(O)/ + op(1),

where B(O) is a pxq-matrix with its (k, t)-component given by E’(O)V—1 (O) Zl{j(8)Jkl(O)—E’j (0)kl(0)}
By the central limit theorem, each component of \/(‘(O)—G(O)) is asymptotically normally distributed. There
fore, /(G(O) — G(O)) Op(1). Similarly, we also have v’7(M(O) — M(8)) Op(1) D

Proof of Theorem 3.1. Under Assumption 4, the two-step GMM estimator is consistent for O and
Assumptions 12-13 allow Lemma 4.3 by Newey and McFadden (1994) to apply and (ê) 4 G(O) and 1i(ê) 4
M(O) so that Û()iL’(Ô) 4 G(O)M(O)—’.
For O E e, let h,(8) k()i(Ô)’(8) and h(O) G(O)M’(O)Ei(O). By definition, h(ô3s) = O and, by
Assumption 5 , h(O) O O Ok., for O E e. Te apply the consistency resuit by Lemma Ai, we establish the
sufficient condition given by sup0 Ihr(O) — h(O)I 4 0.

hT(O) - h(O)I )J-1(Ô)(o) -

= (ô-’(Ô) - G(O)A’I’(O)) ((O) - Eb(O))

+ (Ô(ê)7-’(ê)
- G(9.)M(8)) E(O) + G(8)M1(O)((O) -

1 (Ô) - G(O. )M’ (O) [I[(o - Eb (O) + (E(O) W]
+ IG(O) I’I(O) W ‘ W(o) — Eb (8)W.
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Clearly, supo0 IIE’(O)II Esupoce ‘(°HI <œ by Assumption 12. By the same assumption, Lemma 4.2 by

Newey and McFadden (1994) applies and 5UpOO I(6)— Eb(6)U -* O. Therefore, from Lemma Ai, we deduce

that ê3s e n

Lemma C.1 Let x,i 1,2,... ,n be an i.i.d random sampte and tet y(x,O) be a measurabte reat vatued
function ofx and O, continuons zvith probabitity one at each O E N, where N is a compact subset of e. Let O
be a random vector that ties in N with probabitity approaching one a n goes to infinity.
If Prob[inf0-y(x,O) E (a,b)] O for any e and b on the reat une such that a b, then for any M > O,
Prob{maxi<<,y(x,O) > M} —* 1 as n 00.

Proof: Because N with probability approaching one as n grows to infinity, for large n and for any
i = 1, .. , n, inf y(xj, O) < y(xj, O) with probability one. Therefore, with probability approaching ana as
n grows, maxi<j<n[infoey(xj,O)] < maxi<i<ny(xj,9). Then, for M > O, Prob{maxi<j<[info-y(xj,O)] >
M} Prob{maxi<<y(x, O) > M}. As x,i = 1,... ,n are i.i.d, so are info’y(x, O),i 1,... ,n and hence,

Probmax[infy(x,O)] >M=1—Probmax[infy(x,O)]M
tl0EJt J 11ifl6EJ’/

=1 —Prob inf y(x,O) M;Vi = 1,..
QaN

=1 {PT[iflY(x;O) <M]}.

Since Prob{inf0.y(x;,O) E (a,b)} O for any a b, O < Prob{info’y(xi,O) M} < 1. Thus,
lim {Prob{info€Ny(xi,9) M}}n = O. Thus, Prob{maxi<<y(x,O) > M} —* 1 as n — oc E

Lemma C.2 Under Assumptions 3, 6 and 13, if the GMM estimator is such that Ô — O = Op(n_h/2), then
Prob{e(Ô) > M} —* 1, for alt M > O, where c(O) = —nmin[miny<<ir(O),OJ.

Proof: By definition, c(Ô) max{maxi<j<n —n’ir(Ô); O}. As a result, {e(Ô) > M O} is equivalent to
{maxy<i<n[—Tirt(0)] > M} which, by the definition of ir(O) (see Equation (3)), is equivalent ta

{ max [{((ê) - (O))’V-’(ê)(ê)} -11> M}.
1<, <n

On the other hand, since Ô is consistent for O, by the dominance conditions in Assumption 13, i!(ê)V_1 (ê)(ê)
converges in probability ta a fixed scalar c. Then, ta complete the proof, it is sufficient ta show that:

Prob { max (ê)’(0)(0) > M} 1, VM.
1<z<n

Moreover,

(ê)v’(ê)(ê) =4(ê) [11(Ô)(Ô) - v-’(o)Eb(o)]

Because Ô is /-consistent, by Assumption 13, V’(Ô)(Ô) — V’(O)E,b(O) = Q(_h/2). By Assumption
13, EsupO€N Ib(O)I2 < oc, where N is a closed neighbourhood of O included in e. By Lemma 4 in Owen
(1990) and Lemma D.2. in Kitamura, Tripathi and Ahn (2004), (see also Lemma A.1 by Bannai and Renault
(CIRANO working paper 2004s-18) maxy<j<flsupoeN Ji(0)I = op(n1’2). Hence, for n large enough and by
Cauchy-Schwartz inequality,

(Ô) [v,1(Ô)(Ô) - V’(O)E(0)] < max sup I(O)I
‘: l1flQN

IV1(Ô)(Ô) - V’(O)Eb(O)II op(1).
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Then, (Ô) [V1()(ê)
—

V-1(O)Eb(O)] op(1) uniformly over i 1,... n. For this, it suffices to show

Q that > M} 1 as n no, for ail M. By Assumption 6, we can apply
Lemma C.1 with y(x,O) (O)V1(O)E’,(O) and the resuit foilows

Proof of Theorem 3.2. Let y(x,8) 8(O)/89 or

[
l(Ô)vi(O)11(XiO) +

______

—y(xi O)
1+r(O)

-

{((Ô) -

By Lemma 4.3 by Newey and McFadden (1994), Under some reguiarity conditions,

- V1(Ô)(ê)y(x,Ô)/n = Op(l).

Besides, Lemma C.2 insures that \/i/(1 + e(Ô)) 1/(n_h/2 + = op(1) as (Ô) diverges to infinity.
Therefore, (y(x, ) = y(x, Ô)/n + op(n_1/2). Specifically,

= ‘8 (Ô)+o(n112) and 4(ê)= ?ê)+op(nhI2).

Because Ô is Ji-consistent and by the reguiarity conditions in Assumption 13 we have

E(O)+Op(nh/2) and = E(O(O) O(h/2)•

Then,

Z(Ô) [(Ô)(Ô)] [(Ô)(ê)(Ô)] - Z(O) E(O.) [E,(O)(O)J1.

s3s P . PNext, we show that O — 6 usrng Lemma Al. We need to show that SUPQe Ih(O) — h(O)( —* 0
with h(O) Z(Ô)(O) and h(û) Z(O)Eb(O). Obviously, h(O) - h(O)J Z(ê)IW(O) - E(O)W +
lZ(O) — By the same arguments as in the proof of Theorem 3.1 we can deduce that

5UpQO Ih(O) — h(O)W -* O and therefore, Ôs3s - 0, E]

Proof of Theorem 3.3. We show that JÔ Ï—’(ê)(O) is asymptotically normally distributed. Clearly,

(ê)’(Ô)(8) =[(Ô) - Ô(O)]M-’ (Ô)(O) + Ô(O)[M’(Ô) - ?‘ (O)(O)
+ Ô(O.)Ar’(O)[(O) — Ei(O)] + [(O) — (20)

+ G(O)[KL’(O) —

where G(O) = plirnG(O) and M(O) = plim]171(O).

A Taylor expansion of f(Ô) around 0 yields

Ô(ê) Ô(O) + R{(a/8O’)[vec(O)](Ô - O)} + Op(n’).

Let z3 = ®vecJ(O)]’,[(O)

Q
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Since Varz3, < no, by Proposition Cl, (9) — G(O) = Op(n_h/2) and our dominance assumptions also

O guarantee that (O/O’)[vecG(O)] — (8/68’)[vecG(8)] op(1)

(Ô) (O) + Rp,q
(vec[G]

(O)(ê
- O)) + Op(n1). (21)

Similarly, M(9) — M(O) = Op(n1/2) and

+ Rq,q
(8UeM]

(O)(ê - Ok)) + Op(n’).

Furthermore,

and similarly,

- ‘(0) M’(O*)Rq,q (8)(ê - e.)) M’(e.) + Op(n_1). (22)

Thus, by reporting (21) and (22) in (20), we have

(ê)i[’(ê)(O..) =Yim.ti.. + g.m.[(O..) — E(O,.)] + [(O*) — G(8.)]m.ii..
(23)

— g.m.[M(6,)
— M(O.)]m.ti.. + Op(n’).

By Proposition Cl,

- G(û)) (1 ± {V’(O.).}) [J(O.) - E{J(O.)}]/+ B(O.)/± Op(1)

and

- Alto.)) = (1 + {V-’(e.).})
- E{.}1/+ B(o.)/+ op(l),

where B,(O,) is a p x q-matrix with its (k,t)-component given by

V’(O.) {i(.)J,kt(O) - Ei(O*)J,kj(O)}

and B(O.) is a q x q-matrix with its (k, t)-component given by

where . — (O.

We can easily deduce that Ô(ê)M’(Ô)(O..) is asymptotically Gaussian hy the central limit theorem.

Proof of Theorem 3.4. We show that /J’(ê)!’(ê)(&..) is asymptotically norrnally distributed. We have

J’(ê)1(ê)(o) =[J’(ê) — J’ (O,)] ‘(Ô)(O,,) + J’(o,)[’(ê) —

+ J’(O.)’(e,)[(O..) — E?,b(O,,)] + [J’(e,) —

+ J’(O.)[’(o.) —

On the other hand, by a Taylor expansion and the fact the is \/-consistent,

J’(ê) = J’(O,) + (J2(O.)(
- O.)) + Op(n’)
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and

= !2(o) + Rq,q (1 (o)( -
+ op(n’).

From the expansion of Ô — O given by Equation (15), we cari write

J’(ê)Q’(ê)(O)
— + [J’(O) —

(24)
—

— + Op(n’).

Therefore, is asymptotically Gaussian by the central limit theorem. fl
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Conclusion générale

Cette thèse étudie les modèles de volatilité multivariée ainsi que les méthodes d’inférence fondées sur

les conditions de moment.

Dans le premier essai, nous étendons le modèle à facteurs de volatilité stochastique de Doz et

Renault (2006) à la prise en compte de l’effet de levier et de l’effet de skewness conditionnels reconnus

présents dans les rendements. Nous proposons aussi des conditions de moment pour l’estimation de ce

modèle par la méthode des moments généralisée (GMM). Nous appliquons ce modèle aux rendements

journaliers excédentaires de 24 indices sectoriels du marché financier du Royaume Uni. La modélisation

des effets de levier et de skewness augmente l’efficacité de l’estimateur des paramètres de volatilité.

Les résultats suggèrent que la compatibilité avec les asymétries fait obtenir une persistance plus faible

pour la volatilité et nous permettent aussi de documenter une relation entre l’effet de skewness dans

les rendements et leur volatilité.

Le deuxième essai se rapporte aux tests de facteur hétéroscédastiques pour les processus multivariés

de rendements. Spécifiquement, le test proposé par Engle et Kozicki (1993) est fondé sur les condi

tions de moment résultant de la représentation factorielle et est une application du test des restrictions

suridentifiantes du GMM (Hansen (1982)). Cet essai montre que ces conditions de moment ne garan

tissent pas les hypothèses standard d’application de la théorie de test par GMM. Nous montrons en

particulier que l’identification au premier ordre des paramètres n’est pas assurée. Nous proposons une

théorie générale qui fournit la distribution asymptotique de la statistique du test de suridentification

du GMIVI dans une situation où les paramètres qui ne sont pas identifiables au premier ordre le sont

au deuxième ordre. Une application de cette nouvelle théorie nous permet en particulier de corriger

le test de Bugle et Kozicki (1993).

Dans le troisième essai, nous proposons des méthodes de bootstrap pour la matrice de covariance

réalisée évalué sur les données de haute fréquence. Ces méthodes s’appliquent aussi aux fonctions

de la matrice de covariance telles que la covariance réalisée, la corrélation réalisée et le coefficient de

régression réalisé. Il est à noter que le coefficient de régression réalisé inclus des statistiques aussi

pertinentes pour l’analyse financière que les bêtas introduits par la théorie du capital asset pricing

model (CAPVI) pour l’évaluation du risque systématique des titres financiers.
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C
Les méthodes de bootstrap que nous introduisons se veulent être une alternative pour l’approximation

asymptotique de Barndorff-Nielsen et Shephard (2004). Les expériences de Monte Carlo que nous ef

fectuonssuggèrent que la méthode de bootstrap que nous proposons fonctionne mieux, particulièrement

lorsque les données sont générées à une fréquence faible. Nous observons aussi à travers des développements

d’Edgeworth que le boostrap i.i.d. ne conduit pas à des raffinements d’ordre supérieur pour le coef

ficient de régression. Ceci est contraire aux résultats de Freedman (1981) et Mammen (1993), qui

ont montré que le bootstrap par couples est supérieur à la distribution asymptotique normale pour

les modèles de régression de coupes transversales avec hétéroscédasticité dans l’erreur. La raison

principale des différences obtenues réside dans la nature des scores servant à la normalisation de la

statistique de bootstrap. Dans le domaine des données en coupe instantanée qui est celui de Freedrnan

(1981) et Ivlammen (1993), aussi bien les scores de la régression originelle que ceux de la régression

de bootstrap sont d’espérance nulle. Grâce à cela, les facteurs de normalisation tendent vers la même

limite en probabilité. Ceci est crucial dans l’obtention du raffinement à l’ordre supérieur par le boot

strap. Tel n’est pas le cas dans la configuration des processus de diffusion. L’espérance du score dans

la régression originelle est non nulle tandis que l’espérance du score dans la régression de bootstrap est

nulle. Cette différence force des normalisations qui ne sont pas analogues et qui rie convergent pas non

plus en probabilité vers la même limite. Ceci s’avère coûteux pour la performance à l’ordre supérieur

du bootstrap i.i.d. et explique aussi les différences avec Freedman (1981) et Mammen (1993).

Le quatrième essai porte sur les développements récents des méthodes d’inférence basées sur les

conditions de moment. Cet essai propose un algorithme relativement simple permettant d’obtenir

des estimateurs de moyennes de population de faible biais en échantillon fini grâce aux conditions

de moment suridentifiantes. Une deuxième contribution de cet essai est de dériver les distributions

asymptotiques robustes à la mauvaise spécification des conditions de moment pour Pestimateur de

vraisemblance euclidienne à trois étapes proposé par Antoine, Bonnal et Renault (2007). Nous con

siderons aussi une variante de cet estimateur, l’estimateur de vraisemblance empirique euclidienne à

trois étapes corrigé ou “shrunk three-step Euclidian likelihood estimator”, qui utilise des probabilités

impliquées positives. Dans la littérature, seul l’estimateur de maximum de vraisemblance empirique

via minimum d’entropie (exponentially tilted empirical likelihood estimator) (ETEL) proposé par

Schennach (2007) produit des biais d’échantillon fini aussi faibles que ces deux estimateurs quand
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les conditions de moment sont bien spécifiées et converge à la vitesse usuelle vers une distribution

normale en cas de mauvaise spécification des conditions de moment. Il convient toutefois de souligner

que l’estimateur ETEL est relativement beaucoup plus difficile à calculer que les estirnateurs 3S et

s3S.


