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Résumé 

L'urbanisation rapide et les activités industrielles ont abouti à la contamination de 

l’environnement par les hydrocarbures pétroliers (HP) et les éléments traces (ET). Ces composés 

sont particulièrement toxiques en raison de leur persistance dans l'environnement, et de leurs 

effets toxicologiques sur les êtres vivants quand les concentrations de ceux-ci dépassent des 

seuils critiques. 

Les préoccupations de plus en plus croissantes sur la contamination de l'environnement 

ont favorisé le développement de plusieurs technologies de remédiation des sites contaminés 

par les approches biologiques, physico-chimiques et par l’excavation et l’entreposage. Dans 

cette thèse, des options douces d'assainissement des sols (ODA) ont été utilisées à différentes 

échelles pour la remédiation des sols contaminés par des mélanges des HP et des ET.  

Dans la première partie de ma thèse, des expériences en laboratoire ont été effectuées 

dans le but de caractériser les sols contaminés et les micro-organismes autochtones (bactéries et 

champignons) qu’ils contiennent. Malgré la contamination ancienne du sol, les résultats obtenus 

montrent des effets négatifs des contaminants sur le développement des lombrics et la biomasse 

de Lepidium sativum. En outre, une respiration élevée de microorganismes, attribuée à la 

transformation / minéralisation de la matière organique et / ou des polluants organiques a été 

observée. Cette présence de micro-organismes viables dans les sols contaminés suggère leur 

adaptation aux contaminants. Toutefois, d'autres résultats ont montré que l'exposition à long 

terme des microorganismes du sol à de fortes concentrations en HP et le type de milieu de culture 

utilisé pour l'isolation n'influencent pas la capacité des isolats microbiens à dégrader 

efficacement les HP. Cette capacité de biodégradation des HP est liée à la phylogénie des 

microorganismes.  

Dans la deuxième partie de cette thèse, les études préliminaires en serre ont été réalisées 

dans le but d’évaluer l’efficacité de phytoremédiation en utilisant Medicago sativa assistée par 

l’ajout du compost. Les résultats ont montré dans cette expérience que l’ajout du compost dans 

le sol favorise la dégradation des HP, la croissance et la survie de M. sativa, ainsi que la 

phytoextraction des ET. L’évaluation des risques résiduels après la phytoremédiation a 
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également montré un effet positif de l'amendement du sol en compost sur la croissance des 

plantes et le développement des lombrics.  

L’expérience pilote réalisée sur le terrain dans la troisième partie de ma thèse a permis 

une réduction de 80% des HP et de 20% des ET après 17 mois.  

Ma thèse a démontré que la luzerne (M. sativa) et le tournesol (Helianthus annus) sont 

des choix judicieux de plantes pour la phytodégradation des HP et pour la phytoextraction des 

ET. Les résultats qui en résultent sont utiles pour d’autres études de phytoremédiation à grande 

échelle. 

 

Mots-clés : Hydrocarbures Pétroliers, Eléments Traces, Options d'Assainissement 

Douces, Hydrocarbures Aromatiques Polycycliques, Respirométrie, Ecopile, Bactéries, 

Champignons. 
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Abstract 
The rapid urbanization and industrialization has led to an increase of disposal petroleum 

hydrocarbons (PHC) and trace elements (TE) into the environment. These pollutants are 

considered as the most toxic contaminants in the world due to their persistence in the 

environment, and the long range of toxicological effects for living beings when their 

concentrations exceed critical thresholds.  

Recent concerns regarding the environmental contamination have initiated the 

development of several remediation technologies, including physico-chemical, biological and 

Dig and Dump approaches. In my thesis, gentle soil remediation options (GRO) were 

investigated at different scales for the reclamation of PHC and TE co-contaminated soil.  

In the first part of my thesis, laboratory experiments were performed to characterize PHC 

and TE contaminated soil as well as the indigenous microorganisms (bacteria and fungi) present 

in these contaminated soils. It was found that the studied aged contaminated soil had a negative 

effect on earthworm’s development and Lepidium sativum biomass. Moreover, a high 

respiration of microorganisms attributed to the transformation/ mineralization of organic matter 

or/and organic pollutants was observed. This presence of viable microorganisms suggested an 

adaptation of microorganisms to the contaminant. Further results showed that the long-term 

exposure of soil microorganisms to high PHC concentration and the type of isolation culture 

media did not influence the ability of isolates to effectively degrade PHC. However, phylogenic 

affiliation had a strong effect on PHC biodegradation.  

In the second part of my thesis, preliminary studies in greenhouse trials were performed 

to investigate the ability of Medicago sativa assisted by compost in the greenhouse aided-

phytoremediation of PHC and TE. The results clearly showed that compost amendment into the 

soil promoted PHC degradation, M. sativa growth and survival, and phytoextraction of TE. 

Residual risk assessment after the phytoremediation trial also showed a positive effect of 

compost amendment on plant growth and earthworm development.  

Pilot-scale ecopile experiment carried out in the third part of this thesis allow a reduction 

of up to 80% of PHC and 20% of metals after 17 months.  

My thesis showed that alfalfa (M. sativa) and sunflower (Helianthus annus) plants were 

suitable for phytodegradation of PHC and phytoextraction of TE.  The outcomes of my thesis 
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can be extend to other plants and they bring a new level of understanding that can be helpful for 

further full-scale phytoremediation studies. 

 

Keywords: Petroleum Hydrocarbon, Trace Elements, Gentle Soil Remediation Options, 

Polycyclic Aromatic Hydrocarbon, Respirometry, Ecopile, Bacteria, Fungi. 
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Svensk sammanfattning 
Den snabba urbaniseringen och industrialiseringen har lett till en ökning av petroleumkolväten 

(PHC) och olika spårämnen (TE) i miljön. Dessa föroreningar anses vara de mest giftiga 

föroreningarna i världen på grund av att de stannar kvar i miljön samt att de har toxikologisk 

påverkan på levande varelser. 

 På senare tid har oron för dessa miljöföroreningar lett till utvecklingen av flera 

saneringstekniker, såsom fysiska, kemiska och biologiska metoder. I denna avhandling 

undersöktes enkla marksaneringsalternativ (GRO) på olika nivåer, för återvinning av PHC och 

TE från förorenad jord.  

 I den första delen av denna avhandling, utfördes laboratorieförsök för att karakterisera 

PHC- och TE-förorenad jord samt av de inhemska mikroorganismerna (bakterier och svampar) 

som förekommer i dessa förorenade jordar. Det konstaterades att den studerade förorenade 

jorden hade en negativ inverkan på daggmaskars utveckling och biomassan av L. sativum. 

Dessutom kunde den höga respirationen bland mikroorganismerna tillskrivas omvandlingen och 

mineraliseringen av organiskt material och/eller de organiska föroreningar som observerades. 

Denna närvaro av livsdugliga mikroorganismer antydde att mikroorganismerna anpassat sig till 

föroreningssituationen på platsen. Ytterligare resultat visade dock att den långvariga 

exponeringen av höga PHC-koncentrationer i  isolerade odlingsmedier, för mikroorganismer i 

jorden, inte påverkade förmågan för dessa att effektivt bryta ned PHC. Dock hade den 

fylogenetiska tillhörigheten en stark påverkan på bionedbrytning av PHC.  

 I den andra delen av denna avhandling genomfördes preliminära studier i växthus där 

förmågan hos M. sativa undersöktes, med hjälp av kompost, gällande den växthusstödda 

fytosaneringen av PHC och TE. Resultaten visade att inblanding av kompost i jorden främjade 

nedbrytningen av PHC, tillväxten och överlevnadsgraden av M. sativa och fytoextraktion av Pb. 

Återstående riskbedömning efter fytosaneringen visade också en positiv effekt, när komposten 

användes, på växternas tillväxt och daggmaskarnas utveckling.  

 Ett experiment med eco-bädd utfördes för den tredje delen av avhandlingen. Denna 

studie visade på en minskning på upp till 80% av PHC och 20% av metallerna.  

 Denna avhandling visar att M. sativa och H. annus var lämpliga för nedbrytning av 

PHC och fytoextraktion av Pb och Cu. 
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Resultaten från denna avhandling förväntas vara användbara för ytterligare studier av 

fytoremediering i fullskala. 

 

Nyckelord: petroleumkolväten, metaller, GRO, polycykliska aromatiska kolväten, respiration, 

eco-bädd, bakterier, svampar. 
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Chapter 1: General introduction 
Soil contamination through industrial production, human activities, improper waste 

disposal or environmental accidents has become a serious concern that threatens human health 

and ecosystems. Today, many contaminated sites are often tainted with a complex mixture of 

organic and inorganic compounds, including petroleum hydrocarbons (PHC), pesticides, trace 

elements (TE) such as lead (Pb), copper (Cu), Zinc (Zn), mercury (Hg) and cadmium (Cd). 

When they exceed certain concentrations, many of these compounds become a major concern 

for plants, animals and human beings due to their detrimental biological effects, toxicity, 

carcinogenicity, mutagenicity and teratogenicy. PHC and TE-contaminated soil may pose risks 

and hazards to humans and ecosystem through; direct ingestion, or contact with soil, the food 

chain (soil-plant-human or soil-plant-animal-human), drinking of contaminated ground water 

and reduction of land usability. The adequate protection and restoration of contaminated soils 

require their characterization and remediation. In the last decade, efforts have been made 

towards the reduction of pollutants directly at the source and the establishment of new 

environmental guidelines for contaminated site remediation. Several technologies such 

physical, chemical and biological techniques have been developed to remediate these sites. 

These technologies include the source control (in situ and ex situ treatment) and the containment 

remedies. Generally, these approaches have limitations i.e. the high costs, the applicability to 

high contaminant concentrations, the applicability to mixed wastes (organics and inorganics) 

and the irreversible changes in soil physicochemical properties. Excavation and landfill known 

‘Dig and Dump’ approach is largely utilized, although this method doesn’t remediate the soil 

but only transfers pollutants from one place to another. My thesis focuses on the remediation of 

contaminated soil using non-destructive, less disruptive to the soil and low-cost technologies. 

 

1.1 Delimitation of this thesis 

Among the different approaches to the restoration of PHC and TE-contaminated soils, 

physico-chemical methods are costly, may create further waste, and in many cases, simply 

transfer pollutants from one phase to another. In the view of these considerations, special 

attention is drawn in this thesis to the gentle soil remediation options (GRO) for the reclamation 
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of PHC and TE-contaminated soil (Fig.1.1). GRO includes in situ contaminant stabilization 

(“inactivation” using biological or chemical processes) and plant-based options (i.e. 

phytoremediation). In the current investigation, plants and their associated microorganisms such 

as fungi, bacteria have been used to degrade organic pollutants and either sequestrate or extract 

TE from soils. The focus was also given to toxicity effects posed by PHC and TE contaminated 

soils before and after treatment. 

 

 

Figure 1.1. The context of the thesis within the contaminated soil remediation strategies. 

 

1.2 Overview of the thesis 

The present thesis is the result of the collaboration/partnership between Université de 

Montréal, Canada and Linnaeus University, Sweden. My thesis started on January 2013 in the 

Biodiversity Center of the Université de Montréal, Canada as a part of the GenoRem project. 
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GenoRem project brings together researchers from several institutions and fields with the 

objective of improving and developing new green technologies for the remediation of polluted 

soils. From January 2014, the author also worked as a member of the Environmental Science 

and Engineering Group (ESEG) at Linnaeus University, Sweden. This thesis investigated the 

remediation of contaminated site in a multi-scale perspective: laboratory, greenhouse and field 

scale. The general scheme is showed in the figure 1.2. Laboratory investigations at the 

laboratory run by the Biodiversity Center have been performed to the isolation and 

characterization of microorganisms (paper II, annex 1) and to the screening of the most efficient 

microorganism for the degradation of PHC (paper III). Laboratory, greenhouse and field 

experiments that resulted in the papers I, IV and V respectively was performed at Linnaeus 

University.  

 

 

 

Figure 1.2. General scheme of the work described in the thesis. 
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1.3 Challenges and originality of the research  

Although phytoremediation is becoming increasingly popular for cleaning-up of 

contaminated soils, many challenges related to the site-specific condition, nature of pollutants, 

timeline and efficiency have not been overcome yet. Many of the polluted sites contain a 

heterogeneous and complex mixture of thousands compounds with broad physico-chemical 

characteristics, toxicity and availability levels. Site with mixed contamination pose technical 

challenges associated with the nature of pollutants plus the new problems that arise due to the 

present of two (or many) classes of contaminants with different properties (Chirakkara et al. 

2016b). The presence of both organic and inorganic compounds increases interaction effects 

that could lead to an increase or decrease the efficiency of the remediation technology. The 

presence of organic contaminants may positively or negatively affect the transport and removal 

of TE in soils while the inherent toxicity of TE can inhibit the biodegradation of organic 

contaminants by the microorganisms in soil (Chirakkara et al. 2016b). Degradation of pollutant 

mixture has been considered in many investigations where researchers used phytoremediation 

technique to treat pollutant-spiked soils (Wei and Pan 2010; Peng et al. 2009). However, by 

contrast to freshly contaminated soil, the remediation of PHC that have been present in the soil 

for aged is still difficult due to the fact that they are less available. Thus, very little is known 

about the plant metabolism pathways involved in the degradation and toxicity of these 

compounds (Chigbo and Batty 2013). In addition to the challenges related to the use of aged co-

contaminated soils in this study and the complexity of these pollutants, soil characteristics bring 

another level of complexity that has to be solved. In PHC contaminated soils, the carbon (C): 

nitrogen (N) and phosphorus (P) ratios become imbalanced due to the high input of C into the 

system, leading to N and P immobilization or depletion through microbial activity (Adam and 

Duncan 2002). Current research in phytoremediation is often requiring a high input of N into 

the soil to significantly reduce pollutant concentration. Investigation of the degradation of PHC 

by using plants adapted for nutrient acquisition (nitrogen fixation for instance) is beneficial to 

sustain phytoremediation. Choosing plant species and varieties for phytoremediation is also 

challenging because the introduction of non-native or genetically modified plants into the 

environment could be an issue (Hakeem et al. 2015). Furthermore, phytoremediation is a site-

specific process and feasibility studies are required before full-scale remediation can be applied 
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successfully. Preliminary studies in laboratory scale can be used to predict degradation rates but 

it does not reflect field conditions, therefore we should use phytoremediation as a multi-scale 

perspective. Finally, it is important to complement and integrate phytoremediation studies with 

ecotoxicological analysis taking into account the effect of bioavailable contaminants and their 

interaction. Despite to large number of articles dealing with phytoremediation, only a few papers 

have been published assessing the efficiency of phytoremediation using both chemicals and 

ecotoxicological analysis. 

1.4 Goal and objectives 

The overall aim of my thesis is to increase the scientific knowledge and develop 

sustainable solution for PHC and TE polluted soils in order to minimize the impact of these 

compound on the environment. The main focus was given on the development of in situ GRO 

as a tool to treat mixed contaminated soils at three different scales (lab, greenhouse and field 

trials). A particular attention was given to the evaluation of the toxic effects posed by these 

contaminants before and after the remediation. 

Specific objectives are to: 

1. Characterize PHC and TE contaminated soil. 

Hypothesis:  

Aged contamination with PHC and TE compounds have a toxic effect on soil 

microorganisms, earthworms and plants. 

2. Isolate, screen and select microorganisms with high potential in degradation of PHC. 

Hypotheses:  

(i) The use of selective culture media allows to isolate the most effective microorganisms 

to degrade petroleum hydrocarbons.  

(ii) The microorganisms isolated from high contaminated soils are most efficient to 

degrade PHC compared to those isolated from low contaminated soils. 

3. Study the ability of M. sativa assisted by compost in the greenhouse aided-phytoremediation 

of PHC and TE. 

Hypothesis:  

M. sativa cultivation combined with compost amendment increase PHC degradation and 

represent an advantage for reduce toxicity of contaminants in soil. 
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4. Investigate the efficiency of M. sativa co-planted with H. annuus and assisted by compost in 

field site experiment. 

Hypothesis:  

M. sativa co-planted with H. annuus increase PHC degradation and TE removal as 

compared to M. sativa monoculture. 

 

This thesis is divided in seven chapters. After this first introduction chapter, the second 

chapter covers literature review of the actual knowledge in contaminated soil remediation 

technologies and legislation. Then each of these specific objectives will be studies in the chapter 

3 to 6 respectively. The last chapter is the general discussion and conclusion. 
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Chapter 2: Literature review 

2.1 Soil environment 

Soil is the soft material that covers the surface of the earth. All soils begin with solid 

rock, which is eroded into smaller pieces by physical and chemical weathering (Parker 2009). 

Soil has a direct and practical importance for living organisms. It supports plant growth, human 

and animal life. It provides many other ecological services such as (i) food, fibre, fuel essential 

for homes and industries, (ii) biodiversity, (iii) water filtration, (iii) nutrient cycling, (iv) organic 

matter decomposition, (v) chemical buffering capacity (equilibrium between compounds 

adsorbed to soil surfaces and released into the soil solution) (Whalen and Sampedro 2010). Soil 

is a major environmental agent that interacts with chemical content in or where there are added 

according to its properties (Duffy 2011). This interaction depends on these physical, chemical 

and biological properties. 

2.1.1 Soil physical properties 

The main physical properties of soil are composition, texture, structure and permeability. 

Soil composition 

 Soil is composed of three phases: (i) solid (50% mineral particles and 5% organic 

matter); (ii) liquid (25% water) and gas (20% air)  (Paria 2008). Soil organic matter is defined 

as the plant, animal and microbial residues found in soil, both decomposed and undecomposed  

(Whalen and Sampedro 2010). Although small in amount soil organic matter plays a major role 

in soil structure as it acts as glue that binds together soil particles. 

 Soil texture 

 Soil contents particles of different sizes and characteristics. These particles are divided 

into three fractions: sand, silt and clay (Fig.2.1). Soil texture refers to the amount of these 

fractions. The spaces between soils particles are directly related to its texture and determine how 

easily substance moves through soil (Parker 2009). Sand, mainly composed of quartz and 

feldspar is relatively inert, low-nutrient, low water retention (but good drainage) and is easy to 

aerate (Duffy 2011). Particles less than 0.01mm (clays and silts) small size are called colloids 

and high chemical reactivity due to their high exchange surface (McCauley et al. 2005). Textural 
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name of soil is determined by the soil texture triangle (fig.2.2). Soils located in the middle of 

triangle are ideal for the growth of plants but have a chemical reactivity due to clay (Duffy 

2011). 

 
Figure 2.1. Soil particles classification according to the International Society of Soil Science. 
Soil consists of particles having a maximum of 2mm 

 

 

Figure 2.2. The U.S. Department of Agriculture (USDA) soil texture triangle. The percentage 

of sand, silt and clay present in the soil are determined then, these amounts are plotted on the soil triangle 

Soil structure 

 Structure refers to the arrangement of soil particles. It influences water absorption and 

air circulation. These aggregates increase stability against soil erosion, improve soil fertility and 

carbon sequestration, maintain the movement of water and porosity (McCauley et al. 2005). The 

porosity of soil is a quantity of void or pore. A desirable structure should have a high proportion 

of medium-sized aggregated and a significant number of large pores (Parker 2009).  
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 The permeability or hydraulic conductivity is the ability of soil to conduct water. A soil 

with a good structure is more permeable than soil without structure. Texture and structure are 

the main factors that influence the transport of water and contaminants in soil (Glatstein and 

Francisca 2014).  

2.1.2 Soil chemical properties  

Most chemical interactions occur on colloids soil surfaces due to their large surface 

exchange. Soil-contaminant interactions are generally made by (i) sorption, (ii) complexion and 

(iii) precipitation (Tan 2000). Complexion and precipitation are applied to inorganic 

contaminants. When TE are added to soils, some of them may chemically or physically interact 

with the natural compounds of soils, being immobilized or forming compounds that have low 

solubility (fig.2.3). Organic contaminants, such as PHC interact with the soil by sorption. 

Sorption is the process by which contaminants interact with the interface of the solid particles 

of the soil. This interaction gives rise to different physical forms which are shown in figure 2.4 

(Volkering et al. 1997). Unlike chemical adsorption occurs by chemical bonding, physical 

adsorption occurs when contaminants are attracted to the surface of soil particles. PHC are 

adsorbed physically due to forces on the hydrophobic surface. This interaction has a direct effect 

on the main soil chemical properties such the cation exchange capacity, the pH, the content of 

total and bioavailable elements, and the salinity. 

 
Figure 2.3. Dynamics of TE in soil (Gupta 2013). 
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Figure 2.4. Different physical forms of organic pollutants in soil:(I) solid particles; (II) 

liquid film; (III) adsorbed onto soil; (IV) absorbed into soil; (V) in soil macropores; 

(V) in soil micropores (Volkering et al. 1997). 

 

Cation exchange capacity 

 The cation exchange capacity (CEC) is the electrostatic capacity of the soil to fix and 

exchange positive ions on the surface (Duffy 2011). This function is provided by the colloids 

that have a predominantly negative charge, and enable them to attract cation present in the soil 

(Fig. 2.5)  (McCauley et al. 2005). The CEC depends on the amounts and kinds of clay and 

organic matter present (Parker 2009). When organic matter increases, CEC increase (Parker 

2009). 

 

 

Figure 2.5. Representation of the cation exchange capacity (McCauley et al. 2005). 

!

!
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Soil pH 

 Soil pH is a measure of hydrogen ions (H+) present in the soil (McCauley et al. 2005). 

The pH varies between 0 and 14. A large quantity H+ corresponds to a low pH and vice versa. 

Soils containing more H+ than hydroxyl ion (OH-) are acidic (pH less than 7). Neutral soils have 

pH 7 and those at above 7 are alkaline. Soil pH can affect the CEC by altering the surface charge 

of the colloids. For example, a high concentration of H+ neutralizes the negative charges of 

colloid (McCauley et al. 2005). In addition, the pH is a very important chemical property 

because it influences (i) the growth of soil organisms; (ii) the degradation of organic 

contaminants; (iii) the availability of nutrients and contaminants (Cao et al. 2009). 

 

 Total and bioavailable elements 

 In general, the study of a soil begins by determining the total elements. The composition 

of the soil depends on the rock from which it comes, but also process it has undergone over time 

(Whalen and Sampedro 2009). The constituents of the soil mineral phase can be major (e.g. 

aluminum, iron) or minor (like zinc, copper). Soil elements as contaminants are not all available. 

The available portion is a part of total soil elements involved in physico-chemical and biological 

reactions (Duffy 2011). PHC are a mix of thousands compounds that each has a different 

availability. Physico-chemical properties of the soil such as its nature or the period during which 

it is contaminated influences remained availability of elements (Chigbo and Batty 2013). 

 

 Soil salinity 

 The three main types of salts that can affect soil are saline, sodic and saline-sodic. Saline 

soils contain high amounts of soluble salts such as calcium (Ca2 +), magnesium (Mg2+), 

potassium (K+), while sodic soils are dominated by the sodium ions (Na+). The saline-sodic soils 

have both a high concentration of salts and sodium. These salts affect the structure, the porosity 

and the water content of the plant which results in the decrease of productivity (McCauley et al. 

2005).  

 All these physicochemical properties determine the activity of soil organisms. 
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2.1.1 Soil biological properties 

Soil environment is the home of many forms of life (Fig.2.6): plants (flora), animals 

(fauna) and microorganisms (microbiota) that each plays an important role. 

 
Figure 2.6 Soil organisms and their environment (Sylvia 2005). Soil organisms are divided 

into two main groups according to their size and where they live in the soil. Microorganisms such as 

bacteria, fungi are associated with clay and silt particles while soil microfauna (protists, nematodes) 

live in water films around soil particles. Soil mesofauna such as arthropods moves in soil macropores 

while soil macrofauna such as earthworms moves through soil cracks. 

 

Soil flora 

 Plants have a dominant role in soil formation. They are primary producers in terrestrial 

ecosystems (Oleszczuk 2008). They improve the structure, porosity and provide additional 

organic matter to the soil through its residue leaves and roots. Plant roots allow the movement 

!
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of water and air (Whalen and Sampedro 2009). They stabilize the ground by the formation of 

aggregates which improve the structure and porosity (Duffy 2011). The root zone is the the most 

biologically active soil region in direct contact with the roots of plants. Root exudates are a 

nutrient source for soil organisms (McCauley et al. 2005). 

 

 Soil fauna 

 Soil animals are mainly insects, nematodes, arthropods and earthworms. Earthworms are 

considered the most important because they produce channels that increase soil porosity, they 

increase the biotic activities by transforming organic matter into small fragment and in secreting 

substances rich in nutrient (McCauley et al. 2005). Animals regulate soil (i) bacterial and fungal 

population; (ii) initialize the degradation of dead plants and animals; (iii) mix soil layers and 

increase their aggregation (Whalen and Sampedro 2009). 

 

 Soil microbiota 

 It is the largest and most diverse group in the soil. Soil microbes include bacteria, archea, 

protozoa, algae, fungi and oomycetes, etc. (Sylvia 2005). Bacteria are the most diverse group of 

soil microbes. They are very important in the decomposition of organic matter, nutrients and 

processing the aggregation of small soil particles. Some bacteria such as rhizobia are studied 

because they are associated with the pulse crops and enable the nitrogen fixation. Fungi are 

numerically the most dominant soil microorganisms (Whalen and Sampedro 2009). They are 

very important in the degradation of organic matter and the stability of the aggregates. In 

general, microorganisms enhance soil structure by secreting organic compounds (mainly sugars) 

which bind together the soil particles (McCauley et al. 2005). Stimulation of soil 

microorganisms in particular by adding a nutrient source increases the hydraulic conductivity 

(Glatstein and Francisca 2014). 

All these soil physicochemical and biological properties influence the rate and fate of pollutants 

such TE and PHC. 
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2.2 Petroleum hydrocarbons in the soil 

2.2.1 Sources 

 Petroleum (also called crude oil) is a fossil fuel made naturally from the slow 

transformation remains of prehistoric plants and animals. It is a complex mixture of thousands 

compounds that can be categorized into four groups: asphaltenes (phenols, fatty acids), resins 

(pyridines, quinolines) saturates (alkanes) and aromatics (Singh 2006c; Wrenn and Venosa 

1996). Other minor compounds as TE are also present in petroleum oil. Asphaltenes unlike 

resins have the highest molecular weight and are heaviest and are the most polar constituents in 

petroleum. Hydrocarbons (compounds consisting of only carbon and hydrogen) are the most 

abundant components of petroleum (between 65 and 95% of its composition) (Fig.2.7). The 

benzene ring is the basic structure of aromatic hydrocarbons and two or more fused cycles form 

polycyclic aromatic hydrocarbons (PAH) (Haritash and Kaushik 2009). PAH are formed during 

the incomplete combustion at high temperatures (500-800°C) of the organic substances for long 

period (Haritash and Kaushik 2009; Megharaj et al. 2011). It can occur with anthropogenic 

activities such as the burning of fossil fuel or municipal solid waste incineration and also be 

produced naturally in the environment by volcanic eruptions, forest fires, or exudates from trees 

(Haritash and Kaushik 2009). Organic pollutants in the environment are mostly anthropogenic. 

Sources of these pollutants include accidental release (e.g. diesel, solvents), industrial activities 

(e.g. petrochemical, pharmaceutical), agriculture (e.g. pesticides, herbicides) and military 

activity (e.g. explosives) (Pilon-Smits and Freeman 2006). 
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Figure 2.7. Main compounds of petroleum: non-hydrocarbons and hydrocarbons. 
Hydrocarbons are the most abundant components of the crude oil: they represent between 65 and 95% 

of its composition. From Geraci and Aubin, 1988. 

 

2.2.2 Social economic interests 

 The exploitation and usage of petroleum have grown exponentially since the beginning 

of the last century. Today, it is the economic driver of many petroleum rich countries. Petroleum 

is primary used as a source of energy. It is considered the mother of all the commodities because 

it is an important raw material for wide varieties of chemical compounds like benzene (Adebayo 

and Tawabini 2013). Benzene is used in the plastics industry but also to manufacture medicines, 

rubber, lubricants, detergents, dyes and explosives. Benzene is also a source of other compounds 

such as toluene, phenol (used to make resins and adhesives), aniline, naphthalene and styrene 

(used to make polymers) (Adebayo and Tawabini 2013). Petroleum is also used as an herbicide. 
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Thus a mixture of oil fraction with low aromatic compounds are used for controlling weeds 

while the heavier fractions like diesel oil are used as total weeds killers (Adebayo and Tawabini 

2013). In addition to insecticides and pesticides, petroleum is also used in the production of 

fertilizers and ammonia in agriculture (Singh 2006c). Petroleum mulches are also used in 

agriculture to promote the favourable soil moisture and temperature and to increase the yields. 

PAH are major constituents of creosote, widely used in the world for the treatment of wood 

product (Gevao and Jones 1998). Petroleum products include diesel fuel, kerosene, that is daily 

used in the transport sector. Bitumen is largely used to prevent soil erosion and used as binder 

in road construction. 

Despite these major economic issues, oil and these derivatives, however, have negative 

effects on wildlife and human health.  

 

2.2.3 Toxicity 

Petroleum is the mixture of different chemical compound such as poly chlorinated 

biphenyl (PCB), TE, PAH which are known to pose harmful effects on the quality of life. 

Aromatics hydrocarbons are major concern because of their toxicity and tendency to 

bioaccumulation (Wrenn and Venosa 1996). This is due to the fact that they are poorly soluble 

in water but very soluble in oil and fat (Singh 2006a). Indeed, the solubility of the aromatic 

compounds in water decreases with increasing of molecular weight (Wild and Jones 1995). 

Therefore, due to their hydrophobicity, PAH remain in the aquatic environment to the surface 

of water or adsorbed to the surface of the sediment and form a reservoir (Borja et al. 2005).  

Based on the structure and mechanism of activation, many PAH exhibit mutagenic, 

tumorigenic and carcinogenic properties (Singh 2006c). In soil, they can also adhere to organic 

matter and in this case, they are not available for microorganisms, plants or leaching (Wild and 

Jones 1995). US Environment Protection Agency (EPA; www.epa.gov) provides complete 

removal of 16 specific PAH: acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, 

benzo(a)pyrene, benzo(b)fluoranthene, benzo(ghi)perylene, benzo(k)fluoranthene, chrysene, 

dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, 

phenanthrene, and pyrene (Table 2.1) listed among the 126 priority pollutants and 5 of them are 
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listed among the 25 hazardous substances thought to pose the most significant potential threat 

to human health (Pazos et al. 2010). 

 

Table2.1. Properties and chemical structures of the 16 USEPA PAH (Pazos et al. 2010). 
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Table 1 (continued). 

 
 

2.3 Trace elements in the soil 

2.3.1 Sources 

Metals are used chemically to define elements, which conduct electricity, have a metallic 

luster, are malleable and ductile, form cationic and have basic oxides (Duffus 2002). Metals are 

characterized and distinguished from nonmetals and metalloids (elements with properties 

intermediate between metals and nonmetals) by these properties, especially the temperature-

dependent conductivity (Appenroth 2010). TE refers to cationic metals and oxyanions that 

naturally occur in soils and plants in concentration less than 1g kg-1 (Appenroth 2010). In this 

definition, there is no relationship between the specific density of the elements and various 

concepts of physical chemistry commonly used for the definition of heavy metals (Duffus 2002; 

Cabral et al. 2015). The TE are natural components in soils and rock formations. Some of these 

TE like Zn, Cu, cobalt (Co), manganese (Mn) and iron (Fe) are required in small concentrations 
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by living beings (Table 2.2; Palmer and Guerinot 2009). However, other TE such as Pb, Hg, Cd 

and metalloids arsenic (As), have unknown biological role (Duffus 2002; Clemens and Ma 

2016). Soil pollution with TE results to natural processes such as volcanism or weathering of 

parent materials as well as anthropogenic activities (Mather and Pyle 2004). The latter include 

metal mining and use of industrial waste, smelting activities, combustion of coal accidental 

chemical spill, sewage sludge, pesticides, herbicides and fertilizer mostly in agriculture sector 

(Rizwan et al. 2016). The most common TE founds at contaminated sites in order of abundance 

are: Pb, chromium (Cr), As, Zn, Cd, Cu and Hg 

 

Table 2.2. Essential TE for plants (Palmer and Guerinot 2009). 

 

 

 

 

 

 

2.3.2 Social economic interests 

TE plays a vital role in living organisms. Essential TE known as micronutrients are 

required in trace amounts for normal plant and animal growth development (Rizwan et al. 2016). 

They mediate vital biochemical reactions by acting as enzyme cofactors or in the maintenance 

of functional metabolism (Palmer and Guerinot 2009; Cabral et al. 2015). For example, Fe is 

important for oxygen transport, DNA synthesis and the formation of blood; Cu is also used for 

transportation of oxygen by Fe, and the defence against free radicals while Zn play a key role 

in a host of biological processes such as the regulation of carbohydrate conversion in the body 

or the induction of the synthesis of metallothione in which is an excellent scavenger of hydroxyl 

radical (Saghiri et al. 2015a, 2015b). The five most industrial produced TE are Fe, Cu, Al, Zn 

and Pb (Wuana and Okieimen 2011). TE is a raw material in pharmaceutical preparations, 

skincare products and cosmetics, manufacture of plastic, fertilizers and pesticides. TE can 
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usually be recycled and are included in many of the everyday articles. This is due to their 

common properties such as the high electrical and thermal conductivity, the ability to be 

malleable and ductile. They are used in the transport sector to build railways or bridges and to 

produce batteries. Electrical and electronic equipment such as electrical cables, computers, 

mobile phones, is one of the largest uses of TE. However, insufficient or inappropriate disposal 

of TE could lead to potential harmful impacts on both the environment and human health 

 

2.3.3 Toxicity 

Trace element (TE) pollution has harmful effect on biological systems and does not undergo 

biodegradation. Toxic TE can be differentiated from other pollutants, since they cannot be 

biodegraded but can be accumulated in living organisms, thus causing various diseases and 

disorders even in relatively lower concentrations. They are also known to have effect on plant 

growth, ground cover and have a negative impact on soil microflora (Khan et al. 2015a). TE 

toxicity depend on the bioavailable concentrations, the speciation or chemical form of the 

element, the pH, the oxidation–reduction conditions and others factors such as the soil type 

(Swaine 2000). As, Cd, Pb, and Hg are all highly toxic to both plants and humans in their ionic 

forms. As and Hg are also toxic in their methylated forms (Kopittke et al. 2010). Whereas 

methylated As, at least in the pentavalent state, is generally considered less toxic than As(III) 

and As(V), methylated Hg is more toxic than Hg(II) for most organisms (Clemens and Ma 2016; 

Wang et al. 2012a). Plants acquire essential beneficial elements from soil but because their 

selectivity is imperfect, they also absorb elements witch have no known biological function and 

are known to be toxic at low concentrations (Peralta-Videa et al. 2009). The deficiency of 

essential elements or the accumulation of non-essential TE may cause diseases. Most of the 

reactions produced in plants stressed by TE are due to the replacement of protein cationic centers 

or the increase of reactive oxygen species (Fig. 2.8) (Peralta-Videa et al. 2009). Exposure to TE 

is mainly due to the consumption of foods or in some case water with high levels of the 

contaminant (Vázquez et al. 2015; Feng et al. 2008). The phytotoxicity of the trace metals 

followed the trend (from most to least toxic): Pb≈Hg >Cu >Cd≈As >Co≈Ni≈Zn >Mn, with 

median toxic concentrations of (µM/kg): 0.30 Pb, 0.47 Hg, 2.0 Cu, 5.0 Cd, 9.0 As, 17 Co, 19 

Ni, 25 Zn, and 46 Mn (Kopittke et al. 2010). Over the years, as a result of the high 
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industrialization elevated amounts toxic pollutant are released into the environment. Thus, few 

regulations arise for the remediation of contaminants in soils, wastes and sediments.  

 

 

Figure 2.8. TE toxicity in plants. Purple spheres indicate redox active metals and red and blue 

are redox inactive metals. The green sphere is a metal centre that is displaced by a TE (red). The affinity 

for TE will alter the activity of the protein and create imbalances and disruption that will lead to 

macromolecular damage. However the cell may adjust to the toxic metals and signal for reaction to 

prevent damage(Peralta-Videa et al. 2009). 
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2.4 Legislation 

2.4.1 Canada 

The Canadian Environmental Assessment Agency (CEAA), created in 1994 prior to the 

adoption of the Canadian Environmental Assessment Act (CEPA) in 2000, provides high-

quality environmental assessments that contribute to informed decision making, in support of 

sustainable development. The purpose of the CEPA is to prevent, reduce or control 

environmental and human health impacts of new and existing chemical substances, marine 

pollution, emissions from vehicles, engines and equipment, fuels and hazardous wastes. 

Canadian Council of Ministers of the Environment (CCME) provides guidance at the federal 

level but each province set most specific regulatory regimes for the assessment and remediation 

of contaminated land. In Québec, the new Soil Protection and Contaminated Sites 

Rehabilitation Policy is continuing the work that began in 1988 with the introduction of the 

Contaminated Sites Rehabilitation Policy. This policy contributes to the sustainable 

development of Québec society by underlying the following principles: prevention, 

rehabilitation-reclamation, polluter-pays and fairness principles. 

 

2.4.2 United States of America 

 The United States Environmental Protection Agency (USEPA) manage the remediation 

of contaminated sites, conducts environmental assessment, research program, write and enforce 

regulations based on laws passed by congress. US federal government created in 1980 the 

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also 

known as Superfund for the purpose of protecting human health and the environment. This 

program oversees the clean-up of land contaminated by hazardous waste and created a tax on 

the chemical and petroleum industries. Superfund also maintained the Comprehensive 

Environmental Response, Compensation and Liability Information System (CERCLIS). 

CERCLIC is a database containing the new contaminated sites, the current status of cleanup 

efforts or the National Priorities List (NPL) of the land eligible for federal funding to pay for 

remediation. CERCLA was amended by the Superfund Amendments and Reauthorization Act 



 

 23 

(SARA) in 1986. SARA made several important changes to the program like underlined the 

importance of permanent remedies and innovative treatment technologies; increased the focus 

on human-health problems posed by hazardous waste sites; and encouraged greater citizen 

participation in how sites are cleaned up. In 1990, one year after the Exxon Valdez ecological 

catastrophe, which spills 42 000 m3 of crude oil into Alaska, the congress passes the Pollution 

Prevention Act. In 1994 Superfund reform applied the principle of “polluter pays” wherever 

possible and collected most of fund for land reclamation from the tax on the petroleum chemical 

industries. Orphan or abandoned contaminated site are remediated by the USEPA. Today, all 

these federal laws have been complemented subsequently by State-based site contamination 

laws in most State in USA (Hasegawa et al. 2016). 

Government, industry, and the public now recognize the potential hazards that PHC and TE 

pose to the environment. In response to a growing need to address environmental contamination, 

many efforts have been undertaken to develop remediation technologies to reduce or to manage 

these contaminants in soil. 

 

2.4.3 European Union 

The European Environment Agency (EEA) oversees the site remediation EU countries. 

The EEA estimates that 250,000 sites are contaminated and more than 80,000 sites have been 

cleaned up during the last 30 years in EU countries. EU Directive 2004/35/EC establish a 

comprehensive liability regime for damage to the environment. This directive applies a "polluter 

pays" principle, according to which the polluter is responsible when environmental damage 

occurs and leaves significant discretion for implementation to the Member States. However, a 

considerable share of remediation expenditure, about 35% on average, comes from public 

budgets in EU countries when occurred and when legally responsible polluters no longer exist, 

cannot be identified, or are insolvent. In addition to this directive, several other EU directives, 

government and non-government resources exist in Europe to support the prevention and the 

remediation of contaminated lands. In Sweden, the Swedish Environmental Protection Agency 

(SEPA or Naturvårdsverket in Swedish) is a government agency responsible for environmental 

issues. This agency implemented in 1999 the environmental code and the environmental quality 

objectives for a sustainable society. This code applies the polluter pays principle and put 
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pressure on the polluters. Among the 16 environmental objectives for 2020, the most pertinent 

for contaminated soils is a non-toxic environment which aims to have an environment free from 

man-made compounds. 

 

2.5 Remediation technologies for hydrocarbons and trace elements 

contaminated soil  

Efforts have been undertaken to develop both in situ and ex situ remediation technologies 

for contaminated soil (Pazos et al. 2010). Ex situ technologies involve excavation and removal 

of contaminated soils and this is treated or buried off-site, while in situ treatments remediate 

contaminants in place and/or on site (He et al. 2015). Although less extensively, in situ 

technologies are often the preferred treatment options because they are practical, more cost-

effective and less intrusive to the environment (Cabrejo et al. 2010). The main remediation 

techniques for organic compounds in the soil are volatilization, photo-oxidation, chemical 

oxidation, adsorption on soil particles, leaching and microbial treatment (Singh 2006c; Gan et 

al. 2009). Unlike PHC, TE cannot be degraded in the environment, and therefore, remediation 

must involve either physical removal or transformation into nontoxic compounds (Wang et al. 

2012a). Methods of remediation of contaminated soil can be mainly classified in three types: 

physical, chemical and biological methods. 

2.5.1 Physical methods 

 Physical methods aim to separate contaminant from the contaminated solid by exploiting 

differences in physical characteristics between the contaminant and the native soil. 

 

Physical sorting 

Physical sorting is based on the fact that organic contaminants and few TE such as Pb 

are preferentially bound to the organic materials which are in the fine particle size fraction of 

soil (ADEME 2009). The fine fraction of the soil is then removed and treated off site.  
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Soil washing:  

Soil washing a treatment method for separating contaminants (particularly TE) from soil 

via chemical leaching, physical separation or physicochemical procedures (Dermont et al. 

2008). 

The specific application of soil washing depends on the form of TE in the waste being 

remediated. Chemical extraction is primarily applicable when target TE exist in an ionic form, 

whereas physical separation is suitable for particulate forms (Dermont et al. 2008). Physical 

separation used soil parameters such as the size, the density, and the magnetism. Solvents are 

also employed to solubilize specific contaminants (Khan et al. 2004b). Surfactants are often 

used in the case of petroleum residues (ADEME 2009). Chelators such as 

ethylenediaminetetraacetic acid (EDTA) that can form a strong complex with a variety of TE 

including alkaline-earth cations such as Al3+, Ca2+, Fe2+ and Mg2+ and target TE such as Pb,Cd, 

Ni, Zn and Mn are used in the washing of TE contaminated soil (Wang et al. 2012a). 

 

Electrochemical/electro-kinetic 

Electro-kinetic remediation consists of the controlled application of low intensity direct current 

through the soil between appropriately distributed electrodes (Pazos et al. 2010). The system 

consists of three compartments; a soil compartment placed between two electrodes (another and 

cathode) compartments. During electro-kinetic soil treatment, the electric gradient initiates 

movement of contaminants by electro-migration (charged chemical movement), electro-

osmosis (movement of fluid), electrolysis (chemical reactions due to the electric field), and 

diffusion (movement of the ionic species in the soil solution caused by concentration gradients 

formed by the electrically induced mass transport) (Moghadam et al. 2016). This technique 

initially used for remediation of TE contaminated soil, is now also applied in the remediation of 

organic species, especially water-soluble compounds (Pazos et al. 2010). Recent electro-kinetic 

remediation was combined to others treatments such as phytoremediation, soil flushing  for 

removal of PAH and TE simultaneously (Moghadam et al. 2016). 
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2.5.2 Chemical methods 

 Chemical methods aim to the immobilization, reduction of the bioavailability of the 

contaminant upon chemical reactions with (1) sulphur-containing ligands; (2) reducing agents; 

(3) adsorbing agents. 

 

Chemical oxidation and reduction 

 Oxidation is a chemical reaction in which an electron-deficient compound (oxidant) 

receives electrons from a compound, which is oxidized as well. Chemical oxidation is a 

technique to degrade aromatic compounds using oxidizing agents such as hydrogen peroxide 

(H2O2) and permanganate (MnO4
-) (ADEME 2009). In contrast, chemical reduction consists to 

make a reducing environment by adding electron sources to the soil. Some compounds are then 

degraded more easily by reducing medium (ADEME 2009). Like chemical oxidation, 

photochemical degradation happens often in the environment.  

 

 The photochemical degradation 

 Photochemical degradation is the chemical conversion of a compound under the action 

of sunlight. This transformation pathway include photodimerisation and photooxidation (de 

Bruyn et al. 2012). PAH, which strongly absorb ultraviolet rays, undergo two types of responses 

(Clark et al. 2007). In the environment, an increase temperature, oxygen concentration or time 

of exposure to radiation leads to an increase of the photochemical degradation (Clark et al. 

2007). 

   

The advantages of physico-chemical techniques are that: (1) the processes generally 

attempts to permanently remove contaminants from soil and can allow the recycling of metal in 

certain cases; (2) the processed soil can be returned to the site; and (3) the process duration is 

typically short to medium-term compared to biological methods. However, the disadvantages 

of these methods include: (1) the high consumption of energy and raw materials; (2) the greatly 

alteration of soil properties; (3) the generation of large volumetric sludge(4) the high cost, and 

in many cases these techniques transfer the pollutant from one phase to another (Haritash and 

Kaushik 2009). The excavation and subsequent disposal of contaminated soil to a landfill site is 
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linked to the migration of contaminants from landfill into an adjacent environment. An 

alternative to these techniques is the use of biological methods. 

 

2.5.3 Biological methods 

Gentle soil remediation options (GRO) are used to remove or stabilize contaminant into 

less hazardous/ non-hazardous form with less input of chemicals, energy, and time (Ali et al. 

2013; Wang et al. 2012b; Gerhardt et al. 2009; Kidd et al. 2015b). GRO encompass a number 

of technologies which include the use of plant (phyto-), fungal (myco-) or microbiologically-

based methods, with or without chemical additives, for reducing contaminant transfer to local 

receptors by in situ stabilisation (using biological or chemical processes) or extraction of 

contaminants (Cundy et al., 2013). Microorganisms are able to degrade organic compounds by 

mineralization or co-metabolism (Johnsen et al. 2006). In mineralization, microorganisms use 

pollutant as source of carbon and energy. On the other hand, co-metabolism requires a second 

substance as a source of carbon and energy to degrade the pollutant at the same time (Borja et 

al. 2005). Microorganisms are capable of more easily degrade PAH with two to three aromatic 

rings. The incomplete degradation of the more recalcitrant compounds by co-metabolism has 

the disadvantage to allow the formation of toxic metabolites (Haritash and Kaushik 2009). In 

general, use of microorganisms with different metabolic partways and through the production 

of enzymes lead to completely degrade organic compounds into H2O, CO2 (aerobic) or CH4 

(anaerobic) (Fig.2.9) (Cao et al. 2009). Bacteria oxidize aromatic compounds in order to acquire 

their atoms while fungi for their detoxification. Although, these microorganisms cannot degrade 

metals they can alter their chemical properties via different mechanisms like biosoption, 

bioleaching, biomineralization or enzyme-catalysed transformations. 

 

Bacterial metabolism 

  Bacteria extracted TE from contaminated soil by the production of mobilizing substance 

such as organic acids. These substances mobilize TE. Highly specialized bacteria like Thio-

bacillus species can also generate TE-leaching sulfuric acid from the oxidation of elemental 

sulfur. This process is also called bioleaching has been used for many centuries to leach metals 

from low-grade ores, and currently supports a lucrative market in mineral extraction. 
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Biosorption or the metabolism-independent sorption of TE to biomass is another mechanism 

used by microorganisms. This is due to the negative microorganism’s cell surface charge that 

adsorbs positive charged cationic TE.  

Indeed, microorganisms evolved a wide range of biochemical reactions to protect themselves 

from potentially toxic TE. Many of these detoxification processes involve efflux or exclusion 

of TE ions from the cell, which in some cases can result in high local concentrations of TE at 

the cell surface where they may react with biogenic ligands and precipitate. These detoxification 

processes also involve redox transformations where the solubility of TE is biologically reduced 

(bioreduction). This enzymatic reduction of TE by bacteria is catalyzed by a class of enzymes 

such as c-type cytochromes. Biomineralization based microbial induced calcite precipitation 

(MICP) as a consequence of bacterial metabolic activity is another promising method for metal 

remediation. The microorganisms secrete one or more metabolic products that react with TE 

resulting in the subsequent deposition of mineral particles. Calcite, a biomineralization product, 

can strongly adsorb on its surfaces and incorporate this TE ion into its crystal structure. 

Many bacterial genera are involved in the degradation of aromatic compounds (Cao et al. 2009).  

Usually bacteria are more efficient than other microorganisms to degrade aromatic compounds. 

Indeed, they are able to assimilate PAH as sole carbon source and energy (Singh 2006c). A 

dioxygenase is responsible for the first aerobic reaction of PAHs degradation (Haritash and 

Kaushik 2009) (Fig. 2.9). But some bacteria like Mycobacterium are able to degrade PAHs 

under the action of a cytochrome P450 monooxygenase (Cao et al. 2009). The genus of 

Pseudomonas is extensively studied because it contains species capable to effectively degrade 

a wide variety of PAH (Cao et al. 2009). The species of the genera Nocardia, Rhodococcus, and 

Alcaligenes, are also responsible for the degradation of many organic compounds. Most of these 

organisms were isolated from contaminated soil or sediments. Chronic exposure of 

microorganisms to aromatic compounds improves their degradation ability (Singh 2006c).  

 Although the bacterial metabolism degrades many aromatic compounds, it has several 

limitations. Bacterial degradation by co-metabolism often results in the accumulation of toxic 

intermediate such as chlorobenzoic acids (ACBs) (Cvancarova et al. 2012). Unlike fungi, 

bacteria need to be in contact with a sufficient amount of pollutants to initiate synthesis of 

degradation enzyme (Singh 2006c). Moreover, bacterial degrading enzymes are very specific 

and cannot degrade a large variety of compounds. Bacteria need to metabolize pollutants prior 
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degradation (because they secrete intracellular enzymes) and the rate of aromatic compounds 

absorption is slow (Cvancarova et al. 2012). Fungi that have different metabolisms to degrade 

aromatic compounds are often used with bacteria. 

 

 

Figure 2.9. Proposed partways for microbial degradation of PAHs (Haritash and 

Kaushik 2009). 

 

Fungal metabolism 

  Fungi are eukaryotic organisms able to grow on different substrates and degrade a wide 

variety of compounds (wood, plastic, textile etc.) via a process called mycodegradation (Singh 

2006c). Mycelium is fungal vegetative structure that allows regulating the nutrient and energy 

flow. It also allows metabolizing pollutants by increasing the exchange surface of the soil. The 

fungal growth is very slow and often requires a different material for the co-metabolism. Like 

for bacteria, the remediation of TE by fungi involves the change in TE speciation and mobility. 
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Few mechanisms such as (i) organic precipitation with oxalates, (ii) inorganic precipitation with 

carbonates, phosphates or hydroxides, (iii) redox immobilization, (iv) sorption at cell walls and 

associated polymeric substances, and (v) bioaccumulation allow the immobilization of TE in 

soil. However, some microorganisms may, in turn, mobilize metals through excretion of H+ and 

carboxylic (e.g., citrate) ligands and redox conversion to mobile forms (Gupta 2013). 

Numerous fungi are capable of degrading aromatic compounds. Many fungal species able to 

tolerate environmental stress as Fusarium, Penicillium, Aspergillus, Trichoderma are good 

candidates for mycoremediation. Conversely, fungi as mucorales which include Rhizopus and 

Mucor genera growing very fast but are inefficient in degradation (Singh 2006c). 

Fungi are the largest polymer plant decomposers such as lignin, cellulose and hemicellulose. 

Two main enzymatic systems allow this degradation: cytochrome P450 for non-lignonolytic 

fungi and lignonolytic system for lignolytic fungi (Haritash and Kaushik 2009). 

Dehydrogenases and oxygenases are the main degradative enzymes involved in the degradation 

of aromatic compounds by non-lignonolytic fungi (Singh 2006c). Lignolytic fungi are able to 

degrade lignin as well as different compounds that have a similar structure as PAH. This is due 

to the fact that lignonolytic fungi synthetize extracellular enzymes with very low substrate 

specificity (Haritash and Kaushik 2009; Cajthaml et al. 2006). Lignonolytic system consists of 

three main peroxidases: (i) lignin peroxidase (Lip), (ii) manganese-dependent peroxidase 

(MNP) and (iii) phenoloxidases also called versatile peroxidase (VP) including lacases and 

tyrosinases (Haritash and Kaushik 2009; Cvancarova et al. 2012). These enzymes were 

discovered in Phanerochaete chrysosporium, which is now used as model in mycoremediation 

because it is able to degrade toxic compounds more efficiently than other fungi (Singh 2006c). 

The degradation ability of other lignonolytic fungi such as Irpex lacteus, Trametes versicolor, 

Pleurotus ostreatus was also highlighted.  

Mechanism of fungal aromatic compounds degradation has many advantages compared to the 

bacterial system. Fungi are able to (i) degrade completely these compounds; (ii) secrete a non-

specific extracellular enzyme and non-dependent on pollutant concentration and (iii) to adjust 

the environment pH.  

 

Plant metabolism 

 Phytoremediation is the use of plants and their associated microorganisms, soil amendments 
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and agronomic techniques to clean up environmental contaminants (Wang et al. 2012b; 

Gerhardt et al. 2009). Plants promote dissipation of contaminants by immobilization, removal 

and promotion of organic compounds microbial degradation (Megharaj et al. 2011) (Fig.2.10). 

Some compounds are removed by the roots of plants and translocated to aboveground plant 

tissues, which are subsequently harvested (phytoextraction) (Pilon-Smits and Freeman 2006). 

Partial or complete degradation of organic contaminants by enzyme can be involves by 

phytodegradation (plant enzyme) or phytostimulation (microbial activity). In 

phytovolatilization, contaminants are uptake by plants roots and then release as volatile 

chemicals. Finally by phytostabilization, plant roots allow accumulation or precipitation of 

contaminants to prevent their mobilization (Pilon-Smits and Freeman 2006). Also plants can 

solubilize TE for uptake by decreasing pH within the rhizosphere or by various organic chelators 

(root exudates), such as carboxylates or phytosiderophores from the mugineic acid family 

(Gupta 2013). Plant rhizosphere is the soil closest to the root system. This zone plays an 

important role in organic contaminants degradation because root exudates support growth and 

metabolic activity of microbes (Johnson et al. 2005). The root plants exudates to stabilize, 

demobilize and bind the contaminants in the soil matrix, thereby reduce their bioavailability 

(Tangahu et al. 2011).  

 

 
Figure 2. 10. Overview of phytoremediation methods(Pilon-Smits and Freeman 2006). 

 

Plants act both as TE “excluders” (restrict contaminant uptake into their biomass) and 

“accumulators” (survive despite concentrating contaminants in their aerial tissues and can 
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biodegrade or biotransform the contaminants into inert forms in their tissues) (Tangahu et al. 

2011). Plants have evolved highly specific and very efficient mechanisms to uptake, translocate 

and store TE. Plant roots, aided by plant-produced chelating agents and plant-induced pH 

changes and redox reactions, are able to solubilize and take up TE from very low levels in the 

soil, even from nearly insoluble precipitates (Tangahu et al. 2011).  Following mobilization, the 

initial contact of the TE ion with root cell involves its biosorption at the cell wall via ion-

exchange and chelation at cellulose, hemicellulose, pectin, and some minor polymers (Gupta 

2013). The transport of TE into plant cell involved proton pumps, co- and antitransporters, as 

well as channels (Fig.2.11).   

 

 
Figure 2.11. Molecular determinants and mechanisms involved in metal–plant 

interaction. The metal is mobilized in the rhizosphere by secreted acidic or chelating molecules of 

both plant (root exudates) and microbial origin. The soil microflora may also trigger formation of 

organic or inorganic secondary minerals (carbonates, phosphates and hydroxides increases, oxalates), 

rendering the metal less available to plant. Endophytic bacteria inhabiting the plant mainly contribute 
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mainly by promoting plant growth (support, e.g., the acquisition of micronutrients or the production of 

plant hormones). Root-to-shoot translocation of metals, either as hydrated ions ormetal–ligand 

complexes, occurs via the xylem. Metals reaching the aboveground apoplast are than differentially 

captured in different cell types, moving also cell-to-cell through plasmodesmata(not shown). 

Transporters and transporter families involved in uptake and redistribution of metals within plant body 

and cells are indicated: ZIP zinc-regulated, iron-regulated transporter protein family; COPT copper 

transporter family (syn. CTR); HMA heavy metal ATPase of P1B-type(Gupta 2013).  

 

Physical, chemical and biological remediation techniques have been used for many years 

in order to mitigate or remove pollutants from soils. Selection of the best method for remediation 

depends on many factors such as soil characteristics, concentration of pollutants, future use of 

contaminated land, purpose of remediation, allowable amount of contaminants in the medium, 

type of pollutants, available methods, economic conditions, and time to remediate (Moghadam 

et al. 2016). Since remediation of co-contaminated soil is complex, mixing few remediation 

technologies promises to be the most effective method. However, is important to carefully 

consider the factors that may influence the remediation process. 

 

2.6 Factors influencing hydrocarbon and trace elements 

remediation 

The extent and rate of bioremediation depend on many factors which can be divided into 

three groups (i) physico-chemical factors (chemical structure, concentration of pollutants, 

physical and chemical properties of the soil); (ii) environmental conditions (temperature, pH, 

oxygen and nutrient availability); and (iii) micro-organisms (genetic composition, number and 

type of microorganisms, interactions between them (Haritash and Kaushik 2009; Singh 2006c). 

Thus, the heterogeneity of pollutants, their concentration and variety of environmental 

conditions limit the bioremediation. Few of the most important factors will be developed below. 
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2.6.1 Biological factors 

Plants and microorganisms can degrade a large variety of contaminant but native 

organisms have the high capacity of degradation. The success of the bioremediation technique 

depends upon the identification of suitable species that remove, stabilize or accumulate 

contaminant and produce large amounts of biomass (Tangahu et al. 2011). Acclimatization of 

microorganisms due to the exposition to higher levels of pollutants may result in genetic 

adaptability (Haritash and Kaushik 2009). Enzymes secreted by microorganisms influence the 

hydrocarbon biodegradation because most of them are substrate specificity and active at 

different temperatures (Haritash and Kaushik 2009). Surfactant-like compounds produced by 

some microorganisms when growing on aromatic hydrocarbons solubilize the PAH and leads 

to increase in concentration in the medium (Haritash and Kaushik 2009). It could, also at times, 

cause inhibition of the degradation process (Carmichael and Pfaender 1997).  

 

2.6.2 Physico-chemical factors 

Bioavailability of pollutant is an important factor in the bioremediation. Bioavailability 

is directly related to the balance between the amount of the pollutant adsorbed and dissolved 

organic matter. The primary soil factors controlling the potential bioavailability of TE are soil 

organic matter content, soil pH, the accessibility and character of sorption sites on soil surfaces, 

the contents of Fe and Al oxyhydroxides, clay fraction content, and the cation exchange capacity 

(Alvarez et al. 2009). As a result, the bioavailability of TE ions in soil is limited, because of 

their presence in mineral form, formation of hydrous oxides at pH >5, and strong binding to soil 

components like humic and fulvic acids (Gupta 2013). The bioavailability of organic and 

inorganic pollutants which are in prolonged contact of the soil is reduced because they are bound 

to the soil particles (Haritash and Kaushik 2009). This phenomenon called sequestration it 

mainly due to the organic matter but also to the cation exchange capacity (CEC), the micropore 

volume, the soil texture and the surface area (Chung and Alexander 2002). In the case of PAH, 

the increase of molecular weight results in the decrease of the solubility and the bioavailability 

(Haritash and Kaushik 2009). The slow rate of remediation in soil is primarily due to the slow 

rate of desorption of pollutants from the soil particles and not due to the slow rate of degradation 
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by microorganisms (Haritash and Kaushik 2009). The concentration of pollutants also modifies 

the biodegradation rate: low pollutant concentrations are insufficient to induce the synthesis of 

degradation enzymes by competent bacteria. On the other hand, high concentrations of 

compounds are toxic for organisms (Borja et al. 2005). Studies also showed that the presence 

of PAH in a mixture produces interactive effects, which can either increase or decrease the rate 

of degradation of individual PAHs. For example, the presence of phenanthrene inhibited the 

bacterial degradation of pyrene (McNally et al. 1999). Anthracene degradation by Rhodococcus 

sp., was also inhibited by the presence of fluoranthene (Dean-Ross et al. 2002). In contrast, 

pyrene and phenanthrene degradations by Pseudomonas putida strain KBM-1 were stimulated 

by phenanthrene. During they co-metabolism study,  Yuan et al. (2002) reported that the 

biodegradation is more efficient when fluorene, phenanthrene, acenaphthene, anthracene and 

pyrene are present simultaneously compares to the individual rate degradation.  

Temperature is an important environmental factor in the bioremediation of organic and 

inorganic compounds. The temperature affects the growth of plants and microorganisms as well 

as the catalytic activity of enzymes involved in the degradation of PAH. Under aerobic 

conditions, low temperatures induce a decrease in the biodegradation of PAH. This is due to the 

reduction of (i) microbial metabolism and (ii) bioavailability of the less soluble PAH (Eriksson 

et al. 2003). However, in anaerobic culture conditions, bacterial biodegradation of PAHs is 

similar in low and high temperatures(Eriksson et al. 2003). Oxygen is essential for the 

absorption of nutrient at the root zone and for aerobic oxygenation of hydrocarbons in the 

environment. The lack of oxygen limited biodegradation of PAHs with more than three rings 

(Wiegel and Wu 2000). Moreover, availability of nutrients as carbon sources in contaminated 

soil is known to enhance the rate of hydrocarbons degradation. Agronomical practices such as 

oxygen and pH adjustment, addition of chelators, fertilizers are developed to enhance 

remediation. For example, the addition of compost for example helps to enhance hydrocarbons 

degradation by providing nutrients to the microbial population, oxygen transfer, inhibit 

formation of extractable polar intermediates and enhance soil texture (Haritash and Kaushik 

2009). The pH is important for both organic and inorganic remediation because it induces a 

change in the adsorption and desorption (Borja et al. 2005). Since the bioavailability of TE in 

soils decreases above pH 5.5–6, to reduce lead uptake by plants, the pH of the soil is adjusted 

with lime to a level of 6.5 to 7.0 (Tangahu et al. 2011). 
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Preface (Chapter 3)  

Soil is an essential component of the environment. It has long been studied because it is 

the medium in which many biogeochemical cycles occur, the support of many forms of life and 

the basis of agriculture. However, the losses of contaminants during industrial and commercial 

activities and inadequate storage lead to soil contamination by toxic elements. The risks posed 

by these elements in soils generally come from the presence of more than one TE and PHC. 

Some auto scrap yards have been abandoned without any continuing management and have 

caused TE and PHC pollution in neighboring agricultural soils and crops. A crucial step in the 

remediation of these contaminated areas is their characterization. This characterization is 

essential to obtain information about the physico-chemical composition of the soil as well as the 

nature of toxic effects of TE and PHC. It is also a crucial step in the planning of any remediation 

process. This chapter focus on the physicochemical and toxicological characterization of PHC 

and TE- contaminated soil. Results of this study are expected to contribute or provide some 

insight to the planning and selection of remediation process.  
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Abstract 

Underground storage tanks used for auto oil spill waste contain many hazardous 

materials, including polycyclic aromatic hydrocarbons (PAHs) trace elements. These 

compounds pose a significant threat to the environment and affect negatively human health. 

This study was aimed at characterization of two soil samples from a former auto scrap yards in 

which oil spill tank leakage occurred. The soil samples collected from an area of 5m2 around 

the oil tank (Soil-N5 samples) were highly contaminated with petroleum hydrocarbons (PHC) 

and TE (Co and Pb) while the soil samplings at about 500 m from the tank (Soil-N500 samples) 

were contaminated with Co. The characterization of these soil samples included the analysis of 

the relevant physico-chemical soil properties as well as ecotoxicological tests with plant (seed 

germination and seedling growth of Lepidium sativum), earthworm (Eisenia fetida survival and 

development) and soil microorganisms (oxygen uptake rate in soil and aqueous suspension). 

Toxicity tests showed that contaminants had strongly negative effects on earthworm’s 

development and L. sativum shoots dry biomass in both N5 and N500. These two parameters 

were the most sensitive in reflecting toxicity of study soils. Oxygen uptake rate (OUR) in 

aqueous phase was four times higher than that of the solid phase even though a similar trend 

was observed in both phases (aqueous and solid). Moreover, microorganism’s respiration was 

high in N5 in comparison to N500 due to the mineralization of readily available OM and/or 

organic pollutants as well as the inhibitory effect of TE on soil respiration. The combination of 

chemical analyses with different toxicity tests proved to be adequate to assess the quality of 

these PHC and TE contaminated soils. 

 

 

 

KEYWORDS: Cobalt, Lead, Oxygen uptake rate (OUR), Polycyclic aromatic hydrocarbon 

(PAHs), Toxicity tests. 
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Introduction 

Petroleum hydrocarbons (PHC) and trace elements (TE) are considered as the most 

hazardous contaminants in the world due to the long range of toxicological effects for plants, 

animals and human beings (Cobbina et al. 2015; Marchand et al. 2011; Jakasa et al. 2015). 

Many polycyclic aromatic hydrocarbons (PAHs) such as benz(a)anthracene, benzo(a)pyrene 

and chrysene are toxic, carcinogenic, teratogenic and mutagenic pollutants (Masiol et al. 2012; 

Adisa et al. 2015). Some of the TE are essential for plants and animals like manganese (Mn) 

and cobalt (Co) while others like arsenic (As) and lead (Pb) are known to have no role in living 

beings and they are highly toxic (Khan et al. 2015b; Pourrut et al. 2011; Hanumanth Kumar and 

Pramoda Kumari 2015). It was found that TE cause major environmental and human health 

problems because of their trophic transfer in organisms, biomagnification in food chains and 

toxic effects on living (Song et al. 2009; Li et al. 2010a). The toxic effects of TE include growth 

retardation (Di Salvatore et al. 2008), cell plasmolysis (Basile et al. 2012), alteration of plant 

photosynthesis machinery and membrane permeability (Hanumanth Kumar and Pramoda 

Kumari 2015), neuronal degeneration in brain (Cobbina et al. 2015) and carcinogenic healthy 

risks (Bhattacharjee et al. 2013). In the view of all these considerations, the remediation of 

contaminated soils with PHC and TE has become a priority.  

Soil characterization is a crucial step in the planning of any remediation process (Mao et 

al. 2009).  It is widely known that soil characterization is measured by the determination of the 

total concentration of pollutant (Qiao et al. 2011). However, the actual risk exposures, which 

depend on the bioavailable fraction of pollutant, are more important than the total concentration. 

Different researchers highlighted the fact that toxicity is influenced by the available 

contaminants in soil which depends in turn on the soil characteristics (e.g. organic matter and 

clay content) and the contaminants residence time in soil which is often known as “ageing” 

(Marti et al. 2013; Stella et al. 2015). Therefore, it has been recommended to characterize any 

contaminated soil by combining the chemical analyses with different levels of toxicity tests 

(Eom et al. 2007; Masakorala et al. 2014; Plaza et al. 2010). Many guidelines were developed 

to find the environmental risks of contaminant by using different species at different levels of 

biological organization (Romero-Freire et al. 2015; Fernández et al. 2005). For example, soil 

organisms like the collembolans; the earthworms and the plants were used to test the toxicity of 
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contaminants in soils due to the high sensitivity of these organisms to any changes in the 

ecosystem (Masakorala et al. 2014; Eom et al. 2007). Other soil organisms were also used like 

algae and bacteria (Kaczala et al. 2011; Ding et al. 2015). Soil biological properties such as soil 

respiration have been successfully used as biological indicator of soil quality(Soler-Rovira et 

al. 2013; Plaza et al. 2010). The respirometer is a highly sensitive and non-disruptive technique 

which can generate qualitative and quantitative information on the microbial activities in 

contaminated soils (Taccari et al. 2011). But due to the fact that respirometer is expensive, 

troublesome, needs constant maintenance and frequent calibration (Barrena Gomez et al. 2006), 

earthworm and plant toxicity tests have been widely used as an alternative (Oleszczuk 2008; 

Eom et al. 2007; Li et al. 2009a; Hirano and Tamae 2011). These two methods are simple, cost 

effective and allow in situ monitoring of the soil real contaminated conditions (Hentati et al. 

2013).   

Characterization of contaminated soils with petroleum hydrocarbons and TE has been in focus 

of many researchers but most of these studies were done by physicochemical analyses (Mao et 

al. 2009; Qiao et al. 2011). Available information on both chemical and toxicological analyses 

of former yards is rare. Therefore, the goal of the present study was to characterize the PHC and 

TE-contaminated soils through the analysis of both physicochemical and eco-toxicological 

properties as an essential step for initiating a field scale remediation project. The combined 

approach should orient decision support for the selection of the most appropriate site-specific 

remediation approaches. 

Materials and Methods 

Site description and sampling 

The studied area was an auto scrap yard located in the city of Nybro, in the southestern 

part of Sweden (56°45′0” N; 15°54′0” E). The site has been used as an automobile repairing 

shop since 1984. In the yard, an underground tank was used to collect waste oils from vehicles. 

The tank’s overfilling protection system was out of order, which made large amounts of oils to 

spill down and contaminating the area around the tank. Soil samples were collected by 

excavating an area of 5m2 around the tank (Soil-N5 samples). Ten samples were randomly 

collected from a depth of 1 m to produce three independent composite samples 50 kg fresh 
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weight (FW) each. Also another 10 samples were collected from the soil at about 500 m from 

the tank (Soil-N500 samples) at a depth of 0.5 m to produce three composite samples. All 

samples were stored in plastic bags, and transported to the laboratory at Linnaeus University 

(Kalmar, Sweden). Then, the samples were immediately homogenized by manual mixing and 

sieved through an 8-mm mesh. All the samples were kept at 4 ± 1 °C between sampling and 

analysis.  

Chemical and physical characterization of soil samples  

Solid Phase 

 The studied soils were characterized for texture by using the protocol described by 

Colorado Master Gardener Notes (Whiting et al. 2011). The texture was found by measuring 

the relative proportion of sand, slit and clay(Whalen and Sampedro 2010). The soil dry weight 

(DW) was determined by taking the difference in weight for the samples before and after 

warming in a ventilated oven at 105 ± 5 °C until reaching to constant mass (ISO 11465 1993). 

Organic matter (OM) was found by determining the difference in the weight of the pre dried 

samples at 105 °C before and after 16h in a muffle furnace at the temperature of 550°C (ASTM 

D 2974, n=3)(Cheng et al. 2008). PHC concentration was measured by gas chromatography 

coupled to mass spectrometry (GC-MS) using a commercial service provided by AGAT 

Laboratories Montreal, QC, Canada. TE concentration was measured by X-Ray fluorescence 

(XRF) equipment (XRF model Olympus DS-4000, Innov-X Systems, Inc. USA). The XRF 

method was applied for fluorine and heavier elements with a typical detection limit of 0.01% 

(w/w)(Kaartinen et al. 2013). All analyses were performed in triplicates for each composite soil 

sample except for PHC concentration, which was done in duplicate. 

Aqueous Phase 

 Aqueous phase from each soil sample was extracted by mixing 100 g of air-dried 

soil with 500 ml of deionized water for 1 hour in a magnetic stirrer (Cheng et al. 2008). The 

suspensions were centrifuged twice at 16.000 x g for 15 minutes at 13°C (Avanti J-25, Beckman 

Coulter, Inc. California, USA). Dissolved oxygen (DO), pH and the electrical conductivity (EC) 

of water extracts were analysed with an HQ11d portable meter (Hach Company, USA). Total 

organic carbon (TOC) and chemical oxygen demand (COD) were analysed with Dr Lange 
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cuvette tests (Dr Bruno Lange, GmbH& CO. KG, Dusseldorf, Germany). Cuvettes were 

measured spectrophotometrically with a HACH XION 500 spectrophotometer. Lange methods 

were validated according to ISO 8466-1 (1990), DIN 32645 (1996) and DIN 38402 A51 (1986). 

All analyses were performed in triplicate for each composite soil sample. 

Ecotoxicological characterization 

Plant toxicity test 

Seed germination and seedling growth tests were conducted with the cress (Lepidium 

sadivum) based on the procedures described in the ISO 11269-2 (ISO, 1995). Seeds were 

obtained from Weibulls Seed Company (Sweden). Soils (500g FW) were placed in 0.5 L plastic 

pots while the remaining 50% of the pots was left for the water holding capacity. Fifteen cress 

seeds were sowed on the surface of each wetted soil in a greenhouse that was kept at 25 ± 2 °C, 

with a photoperiod of light to darkness of 16:8 (h) and photosynthesis active radiation of 270 

umol m-2 s-1 provided by Lu400W/PSL/T40 (LucaloxTM). The standardized field soil LUFA 2.3 

(Landwirtschaftliche Untersuchungs- und Forschungs-Anstalt, Speryer, Germany) with its 

sandy loam was used as a control soil. Deionised water was added every day (50 % water 

holding capacity). Seed germination was determined by visual seedling emergence and after 3 

days the number of germinated seeds was recorded. Then, the cress seedlings were thinned and 

only five of the most uniform plants per pot were left for further measurements of plant growth 

at the end of a 21-day period. Roots and shoots of each individual plant were harvested, washed 

with deionized water, blotted and the fresh biomass was immediately weighed. Dry biomass 

was determined after oven drying at 70°C for 48h. All experiments were carried out in triplicate 

for each composite soil sample. 

Earthworm test 

Acute toxicity test with earthworm Eisenia fetida was carried out according to the OECD 

207 – “Earthworm, Acute Toxicity Tests”. Earthworms were obtained from an earthworm-

culturing farm located in Ljungby city in Sweden. First all the earthworms were rinsed with 

distilled water, and maintained on Whatman No1 filter in the dark at room temperature for 24 h 

to void of gut contents. Ten earthworms adult (0.3± 0.05g) were washed and weighed before 

being transferred into 250 ml glass vessel containing 400 g DW of soil sample. The standardized 
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field soil LUFA 2.3 was used as a control. The experiments were carried out in triplicate for 

each composite soil sample, with loose lids placed over the test vessels. After 14 days, the 

mortality registered, the surviving worms were washed and weighed and the change in weight 

(CW, %) was determined. 

Respirometry  

Respirometric test was carried out to evaluate the toxicity of the studied soil samples 

through measuring O2 uptake rate (OUR), which is an indicative for the microorganisms 

biological activity (Paletski and Young 1995). Respirometric measurements were performed 

directly in soils according to (Sanchez Arias, Fernandez et al. 2012) and in aqueous suspension 

according to (Cantin et al. 2004). The respirometric test was done in duplicate for each 

composite soil sample at 25 °C with a residence time of 21 days using a pulse-flow headspace 

respirometer with accompanying software (PF-8000, Respirometers System and Applications, 

Fayetteville, AK, USA). The temperature was kept constant at 25 ± 1°C by using an appropriate 

water bath. Magnetic stirrers were used with an agitation speed of 200 rpm to avoid soil settling. 

Statistical analysis 

Statistical analyses were performed with GraphPad Prism (version 6.0 for mac OS, 

GraphPad Software Inc., San Diego, USA). The differences among studied soils in relation to 

their physico-chemical and eco-toxicological characteristics were verified through One-Way 

ANOVA tests. Whenever significant differences were found (p<0.05), a post hoc Tukey’s HSD 

test was used to further elucidate differences among means (p<0.05). Conditions of normality 

and homoscedasticity of data were checked in all cases. 

 

Results and Discussion 

The Soil physico-chemical properties and the total contaminants content  

The investigated soils – (N5 and N500) were characterized in terms of texture, physico-

chemical properties, TE and PHC content. As shown in table 3.1, comparing the results of the 

concentration of PHC and TE with the threshold limits established by the Swedish EPA (2009) 

and the Canadian Ministry of the Environment (2011) it was observed that the concentrations 
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of As and Pb in the soil-N5 were higher than that of the N500 and the Swedish EPA. Only the 

concentration of Co in the soil of N500 was higher than that of the N5 and the concentration in 

both soils were higher than the allowable value of the Swedish and the Canadian limits. The 

observed concentrations of TE in this current study were in agreement with previously reported 

investigations addressed to contaminated soils in auto scrap yard areas (Chicharro Martı́n et al. 

1998; Jaradat et al. 2005). The elevated concentrations of TE in this area could be attributed to 

stores of scrap iron and the activity related to them e.g. Pb from electric batteries and Co from 

car paint and motors (Jaradat et al. 2005). In addition to inorganic contaminants, Chicharro 

Martı́n et al. (1998) revealed the presence of engine oil and break liquids as the main organic 

contaminants. Here, results showed that the PHC C10-50 (alkanes), the medium (M) and the 

high (H) molecular weight PAH concentrations in soil-N5 were higher than the Swedish EPA 

values in residential soils and the Canadian ministry of the environment (Canadian Ministry of 

the Environment 2011; Swedish Environmental Protection Agency 2009).  

The results showed that there was a slight difference in the pH value between the N500 

and N5 soil, 7.1 and 6.5 respectively. The pH value of N500 soil was comparable to those 

obtained for similar areas by Jaradat et al. (2005), where the pH ranged from 7.63 to 7.73. 

However, the lower pH of N5 soil contrast with these values and also with those findings 

reported by Masakorala et al. (2014) who reported a significant pH increase in crude oil-

contaminated soil. This difference could be explained by the chemical reactions between PHC, 

TE and soil elements. As reported by Chandrasekaran and Ravisankar (2015) a reduction of the 

soil adsorptive capacity towards TE such Co and Mg usually is a result of a decrease in pH 

values. In a previous study, Chuan et al. (1996) found that the pH-dependent TE adsorption 

reaction was the main mechanism controlling the release of TE  from soils. Generally TE 

solubilities were high under slightly acidic conditions (pH = 5.0) and neutral conditions were 

not favorable for metal solubilization (Chuan et al. 1996). In the present research the pH values 

of the studied soils were almost neutral. According to Murata et al. (2003) at this pH range, the 

mobility of the most TE is low. 

 

 



 

 45 

Table 3.1. Physicochemical properties, petroleum hydrocarbons and TE content in soil-N500 

and soil-N5. Values represent the arithmetic means of the different soils with standard deviation 

(N=3 for each category except for PAH: N=4). 

  Soil-N500 Soil-N5   

 Unit Solid phase properties SLa CLb 

Texture  Sandy Loam Silt Loam   

Sand 

% 

66 ± 2 14.3 ± 0.5   

silt  22.6 ± 2.1 76 ± 1   

Clay 11.3 ± 0.6 9.6 ± 1.1   

pH (1:5,w/v)  7.1 ± 0.4 6.5 ± 0.3   

Moisture 
% 

8.2 ± 0.1 60.9 ± 0.4   

OM  9.5 ± 0.6 31.4 ± 2   

Arsenic                                                   

mg/kg 

Nd 12.3 ± 3.0 10 18 

Manganese                                               223.5 ± 9.2 378.3 ± 36.5 -  

Cobalt                                                      149 ± 28.9 92 ± 9.5 15 21 

Lead                                                         17.5 ± 0.46 195 ± 80.7 50 120 

Iron 11107 ± 691.9 11117.6 ± 8.1   

Chromium 21 ±2.6 16.6 ± 1.5 80 70 

Copper 13 ± 1 18.33 ± 2.5 80 92 

Zinc 51.3 ± 2.8 139 ± 10.3 250 290 

PHC C10-50 Nd 27066.6 ± 3625.3 3-100 10-240 

PAH-Lc                                                     Nd 2.1 ± 1.8 3 0.255 

PAH-Md                                                    Nd 7.7 ± 3.8 3 2.53 

PAH-He                                                     Nd 5.0 ± 2.4 1 5.42 

  Aqueous phasef properties  

EC us/cm 65.9 ± 2.4 133.1 ± 14.6   

DO 

mg/L 

6.6 ± 0.1 4.8 ± 0.2   

COD 234.3 ± 39.3 86100 ± 556.7   

TOC  33.2 ± 4.9 1221 ± 8.7   
aSwedish limit in sensitive land (Swedish Environmental Protection Agency (2009) 
b Canadian limit in residential/industrial land (Canadian Ministry of the Environment 2011) 
cPAH-L: naphthalene, acenaphthene and acenaphthylene 
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dPAH-M: fluorene, phenanthrene, anthracene, fluoranthene and pyrene 
ePAH-H: benzo (a) anthracene, chrysene, benzo (b) fluoranthene, benzo (k) fluoranthene,benzo (a) pyrene, dibenz 

(ah) anthracene, benzo (ghi) perylene and indeno (123cd) pyrene. 
f Water-extractable (1: 5; 25 °C); PHC C10-50, petroleum hydrocarbons C10-C50; EC, Electrical conductivity; 

DO, dissolved oxygen; COD, chemical oxygen demand; TOC, total organic carbon; Nd, not detected. 

 

 

Another parameter which significantly affect TE bioavailability is the content of OM 

through the sorption/desorption processes (Alexander 2000). The percentage of organic matter 

(OM) was higher in N5 (31.4%) compared to N500 (9.5%). As a result, with an increase in the 

OM content the sorption reactions increased and the rates of chemical release to the aqueous 

phase decreased (Stella et al. 2015). Previous authors have also reported the sorption of TE such 

as Pb to OM since its surface functional groups have high affinity (Minkina et al. 2006; Kim et 

al. 2015). The N500 texture was classified as sandy loam while the N5 was classified as silt 

loam on the basis of silt, sand and clay contents. Both sand and silt particles are considered to 

contribute little to chemical reaction due to their low solubility and lack of absorptive surface 

(Whalen and Sampedro 2010). However, silt particles abundant in N5 exhibited some plasticity, 

cohesion and adsorption. In comparison, sandy loam N500 with a small surface area and high 

porosity facilitate the passage of oxygen and water (Whalen and Sampedro 2010). As a 

consequence, the percentage of moisture was higher in N5 (60.9%) compared to N500 (8.2%). 

In addition to the soil texture, the high moisture content in N5 is characteristics of the disturbed 

soils. Sheppard et al. (2000) reported a moisture content twofold higher in TE contaminated soil 

in comparison to the uncontaminated soil and attributed this to soil compaction.  

 The results regarding water extraction from the contaminated soils showed that 

contents of dissolved oxygen (DO) were lower in N5 compared to N500 (Table 3.1) that may 

be attributed to the soil texture e.g. sandy loam N500 facilitates the passage of oxygen and water; 

but mainly to the amount of organic matter. COD, which is an indication of oxygen demand to 

oxidize chemically organic and inorganics contents, indicates the mass of oxygen consumed per 

liter (Jiang et al. 2015). This parameter and TOC are widely used as indicator of water quality 

(Kaczala et al. 2011; Svensson et al. 2015). The COD values were 86100 and 234.3 mg/L for 

N5 and N500 respectively, shown in table 1. Furthermore, the TOC results ranged between 1221 
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mg/L and 33.2 mg/L for N5 and N500 respectively, which confirmed the higher amount of 

carbon contents in the water extract. In a previous study, Liu et al. (2015) reported a high level 

of COD in the Taizi River due to the presence of high toxic organic pollutants such as PAH. 

Thus, the higher contents of COD and TOC in N5 in comparison to N500 (Table 3.1) could be 

attributed to the high amount of PHC C10-50, PAH-M and PAH-H, in N5. The EC of the water 

extract indicates the relative water-soluble salt content of the soil (Sheppard et al. 2000). The 

EC for N5 and N500 was lower that those previously found by Jaradat et al. (2005) and by 

Chicharro Martı́n et al. (1998) in the scrapyard, which may indicate lower content of soluble 

salts. 

 

Ecotoxicological analysis of soils 

Plant toxicity test  

In order to have full characterization of both studied soils (N5 and N500), the physico-

chemical analyses were complemented with eco-toxicological analyses for the aqueous and 

solid phases. Three levels of eco-toxicological analyses were conducted: plant (Lepidium 

sativum), earthworms (Eisenia fetida) and soil microorganisms. As shown in Fig.3.1 the toxicity 

results of the L. sadivum seed germination rates were 93.3%, 44.4% and 71.1% for the standard 

field soil LUFA 2.3, N500 and N5 respectively (Fig.3.1a). The germination rate in N5 had not 

significant difference in comparison to N500. However, the contaminants in the N5 soil posed 

negative effects to shoots and roots of the L. sativum (Fig.3.1b-c). The present results are in 

accordance with Oleszczuk (2008) who found that PAHs and TE did not show any significant 

adverse effect on the seed germination even though growth reduction was observed. This may 

be explained by the fact that seed coats have selective permeability meaning that pollutants may 

have inhibitory effects on root growth but the germination is not affected due to impossibilities 

of passing through the seed coats (Lin and Xing 2007).  
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Figure 3.1. Seed germination (%, a), shoot (b) and root (c) biomasses (g plant-1 DW) produced 

by Lepidium sativum after a 21-day growth in the two studied soils (N5 and N500). Mean for each 

treatment are the means of three replicates and error bars represent the standard deviations. The different letters 

above bars indicate significantly differences means according to Tukey’s HSD test (p<0.05). 

 

Since roots are the first tissue directly exposed to contaminants, the toxic effects may 

appear in roots rather than in shoots. This may explain why the roots biomass in N5 highly 

affected by the contaminants (Fig.3.1b-c). Contrariwise in N500, no significant effects were 

observed on the roots biomass but the seed germination and the shoots dry biomass were lower 

compared to the standard soil. As previously observed by Li et al. (2009a), the shoots biomass 

of  barley, oilseed rape and tomato was significantly inhibited by Co. The Co2+ is absorbed by 
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plants roots through an active transport across cell membranes (Li et al. 2009b). Toxicity 

symptoms of Co2+ in plants can be caused by competition between Co and Fe for the same 

physiological binding sites (Chatterjee and Chatterjee 2003; Sree et al. 2015). Thus, the excess 

Co in plant induced Fe deficiency symptoms e.g. chlorosis on young leaves, decrease of leaf 

biomass (Sree et al. 2015).  

 

Earthworm test 

 Additional to plant toxicity test, many studies have considered earthworms as 

one of the most important soil invertebrates because they produce channels that increase soil 

porosity, increasing the biotic activities by transforming organic matter into small fragment and 

secreting substances rich in nutrient (McCauley et al. 2005). No mortality was registered when 

earthworms (E. fetida) were exposed to standard soil, N5, and N500. As shown in Fig.3.2, high 

loss in the weight of the earthworms was observed after 14 days of exposure to both N5 and 

N500 (Fig.3.2). The loss in weight in the N5 was higher than that of the N500 by 3%. On the 

other hand, an increase in the weight of the earthworms (9.3) was observed in the standard field 

soil LUFA 2.3. In a previous study, (Luo et al. 2014) also found a significant weight loss of the 

earthworms after 28 days of exposure to Pb. 

 

 

Figure 3.2. Earthworm’s change in weight (CW%) after a 14-day growth in a standard 

uncontaminated soil and in the two studied soils (N5 and N500). Mean for each treatment are the 

means of three replicates and error bars represent the standard deviations. The different letters above bars indicate 

significantly differences means according to Tukey’s HSD test (p<0.05). 
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Respirometry test 

Like the earthworms, soil microorganisms play vital role in different processes such as 

organic matter decomposition, nutrient cycling and modification of soil physical structure (Plaza 

et al. 2010). Microbial respiration has been previously used to assess the toxicity of PHC and 

TE in soil (Montserrat et al. 2006). The results obtained during the respirometric tests with both 

soils N5 and N500 are shown in Fig. 3.3.  The variation of the oxygen uptake rates OUR in the 

aqueous phase were four times higher than that of the solid phase even though similar uptake 

patterns were observed in both phases. In the aqueous phase, OUR values were high in the 

beginning (6.7 for N500 and 7.7 mgO2/L-h for N5) and then decreased with time (Fig.3.3a). As 

previously found by (Chica et al. 2003) the oxygen uptake rate was at the maximum when the 

experiment started in aqueous suspension then decreased throughout the process due to 

respiratory activity. Respirometry data from both soils has shown the same kinetics but OUR at 

the beginning was higher in N5 (Fig.3.3b). Mukherjee et al. (2014) reported similar patterns 

when they measured microbial activity in an aged creosote-contaminated soil. They found that 

with high contaminant exposure the diversity of microorganisms decreased with increasing the 

total microbial activities in soils (Mukherjee et al. 2014). Moreover, Plaza et al. (2010) found a 

high viable microorganisms in PHC contaminated soils by two fold  than in TE contaminated 

soils when they performed ecotoxicological and microbiological characterization of soils from 

TE and PHC contaminated sites. They attributed the presence of these viable microorganisms 

to the adaptation of contaminant. This high respiration in N5 could be also due to the 

transformation/mineralization of readily OM and/or organic pollutants. The low viable 

microorganisms found in TE contaminated soils by Plaza et al. (2010) might be explained by 

the TE inhibition effect on soil respiration found by Kızılkaya et al. (2004). When TE content 

in soil increase, soil respiration decreased (Kızılkaya et al. 2004; Doelman and Haanstra 1984). 

After the first high respiration phase, a decrease of readily biodegradable substrate causes a 

decrease of OUR in both soils at different rates depending of the pollutants content. Thus, the 

respiration rate in N5 decreased faster than in N500 (Fig.3.3b).  

Previous researchers highlighted the fact that the toxicity is influenced by the availability 

of contaminant for soil organisms, which depends on the soil properties and composition (Marti 

et al. 2013). It can be clearly visible in the data presented in (Fig.3.1-3) that the results of the 
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bioassays depend on the type of soil (N5 or N500) and the sensitivity of the parameters tested 

(seed germination, plant growth, earthworm mortality or biomass production and oxygen uptake 

rate) a negative effect of organic and inorganic contamination was most clearly visible on the 

inhibition of earthworm biomass production and on shoot dry biomass. 

 

 

Figure 3.3. Oxygen uptake rate (OUR) related to microbial activity in the two studied 

soils (N5 and N500) for the aqueous phase (a) and for the solid phase (b). The values are the 

average of two replicates.  

 

Conclusion 

This study has provided physico-chemical and ecotoxicological characterization of 

contaminated soils in a former auto scrap yard with the main focus on PHC and TE (Co, As, 

Pb). This combined approach provided interesting information on the negative impact of PHC 

and TE contaminants. Results showed that microorganisms activity, E. fetida growth and shoot 

dry biomass of L. sadivum, were negatively affect by the contaminants in both N5 and N500. 

These bioassays were adequate to obtain fast answers with low costs, suggesting it should be 

used as a screening tool to assess soil contamination or its remediation. This study provides a 

comprehensive assessment of PHC and TE toxicity in a former auto scrap yard and is helpful 

for environmental management. 
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Preface (Chapter 4) 

The previous chapter showed that PHC and TE containing in the soil had a negative effect on 

earthworm’s development and L. sativum shoot dry biomass. Moreover, a high respiration of 

microorganisms attributed to the transformation/ mineralization of organic matter or/and 

organic pollutants was observed. This presence of viable microorganisms suggested an 

adaptation of microorganisms to the pollutant. Since microbial diversity and abundance can be 

reducing in contaminated environment, cultured hydrocarbon degraders can be a promising 

approach to enhancing hydrocarbon biodegradation. However, the culture and isolation of 

microorganisms indigenous from contaminated site remained unclear. In a paper II (annex1), 

nutrient-rich (standard culture media) and impoverished media, supplemented with various 

hydrocarbons form and concentration (selective culture media) were used in other to assess the 

effectiveness of culture-based methods at recovering indigenous microorganisms from PHC 

contaminated soil. One of the best approaches to restoring contaminated soil is to make use of 

microorganisms, which are able to degrade a complex mixture of recalcitrant pollutants. The 

inherent capabilities of these microorganisms depend namely on (i) the availability of chemicals 

for the biodegradation; (ii) the quantity of these microorganisms, and (iii) their activity level 

(Bidoia et al. 2010). Currently, one of the limiting factors in the bioremediation is the 

identification of microorganisms having the metabolic capacity to degrade the recalcitrant 

organic pollutants. These highly efficient inoculants could be used in situ and ex situ to 

accelerate the remediation of zones polluted with high concentrations of hydrocarbons. They 

could be also used for further functional studies to improve actual knowledge on the molecular 

mechanisms involved in the degradation of organic pollutants. Although few studies have 

isolated microorganisms from contaminated soils and screened them for hydrocarbons 

biodegradation capacity, no study has specifically investigated the importance of using selective 

instead of standard culture media for the isolation of the most effective candidates. This chapter 

compared the degradation efficiency of PHC by bacterial and fungal isolated with standard and 

selective culture media.  
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Abstract 

We investigated the potential for petroleum hydrocarbon biodegradation by 95 bacterial and 160 

fungal strains isolated from a former petrochemical plant. We tested whether soil origin, culture 

media type, and strain taxonomy influenced the degradation of added petroleum hydrocarbon 

compounds. Preliminary screening was based on two colorimetric tests using 2,6-

dichlorophenolindophenol and p-iodonitrotetrazolium indicators, to assess microbial strain 

tolerance to crude oil. Top-performing strains in these screening assays were then assessed for 

their ability to mineralize a mixture of four polycyclic aromatic hydrocarbons (PAH) for 49 

days, using GC-MS quantification. The aerobic activity of these candidate strains was also 

assessed by respirometry over the first 24 days of incubation. On average, PAH degradation by 

microbial isolates from soil that was lightly, moderately, and highly contaminated with 

petroleum was equally efficient, and the type of culture medium used did not significantly 

impact mean biodegradation. Phylogenetic affiliation had a strong and significant effect on PAH 

biodegradation. Fungal isolates belonging to the group Sordariomycetes, and bacterial isolates 

belonging to the groups Actinobacteria, Betaproteobacteria, and Gammaproteobacteria 

showed high potential for PAH degradation. Three of the strains tested by GC-MS, Rhodococcus 

sp., Trichoderma tomentosum, and Fusarium oxysporum, significantly degraded all four PAH 

compounds in the mixture compared to the control. 

 

Keywords: Bioremediation, respirometry, polycyclic aromatic hydrocarbon (PAH), Crude oil, 

colorimetric tests. 

 

  



 

 56 

Introduction 

The widespread exploitation, transportation, and consumption of crude oil has attracted 

public attention to the fate of petroleum hydrocarbon (PHC) compounds in the environment. 

Crude oil contains a complex mixture of many thousands of chemicals, including aromatics such 

as polycyclic aromatic hydrocarbon (PAH) compounds.  PAHs are of concern to human health 

and the environment, since they are highly persistent, can negatively impact soil functions, and 

pose mutagenic risks to microorganisms, plants, and animals (Williams et al. 2013; Cao et al. 

2009). Consequently, avenues for rehabilitating PHC-contaminated soils are of wide general 

interest. 

A number of technologies have been developed for the rehabilitation of PHC-

contaminated sites, including physical, chemical, and biological approaches (Gan et al. 2009; 

Rayu et al. 2012; Li et al. 2010b). Physico-chemical methods are expensive, may create further 

waste, and in many cases, simply transfer pollutants from one phase to another (Haritash and 

Kaushik 2009; Khan et al. 2004a). The use of living organisms for the rehabilitation of 

contaminated sites, also known as bioremediation, has attracted considerable research interest 

over the last decade, as a sustainable and cost-effective alternative to chemical treatment 

(Chikere et al. 2011; Kanaly and Harayama 2010). Biodegradation of PHCs by natural 

populations of bacteria and fungi is well known (Megharaj et al. 2011; Morelli et al. 2013; 

Palanisamy et al. 2014), as many microorganisms are able to use hydrocarbons as both energy 

and carbon sources (Montagnolli et al. 2015b). Through different extracellular and intracellular 

enzymatic activities reviewed by Fritsche and Hofrichter (2008), these microorganisms can 

mineralize PHCs (i.e. fully degrade them, with CO2 as an end-product). The rate and extent of 

mineralization depend of the metabolic abilities of the microorganisms (Dobler et al. 2000). 

Numerous studies have demonstrated the potential for PAH bioremediation by bacteria 

(Palanisamy et al. 2014; Khan et al. 2013; Lu et al. 2011) and fungi (Sayara et al. 2011; Isola 

et al. 2013; Morelli et al. 2013; Lee et al. 2015). However, determining the biodegradation 

potential of microorganisms remains challenging, since the most recalcitrant pollutants are 

degraded much more slowly than the more labile components. In addition to abiotic factors that 

limit complete degradation, indigenous microorganisms that can effectively tolerate and/or 

rapidly degrade PHCs may be present at very low abundance, or may only be able to degrade 
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certain compounds (Tahhan et al. 2011; Sayara et al. 2009). To overcome slow innate PHC 

biodegradation in soil, adjustments to nutrient concentrations, oxygen, pH and/or temperature 

(biostimulation), along with microbial inoculation (bioaugmentation), may be used (Sayara et 

al. 2010; Betancur-Galvis et al. 2006; Tahhan et al. 2011).  

For bioaugmentation to be efficient in practice, inoculated microorganisms must tolerate 

contaminants, efficiently degrade compounds of interest, and thrive in the target environment 

(Yao et al. 2015; Bisht et al. 2015). These microbial traits have been evaluated using culture-

based assays, molecular methods, and analytical chemistry techniques like gas chromatography 

mass spectrometry (GC-MS) (Sayara et al. 2011). Since some of these techniques are costly, 

colorimetric methods have also been used to rapidly estimate the biodegradation capacity of 

microorganisms (Montagnolli et al. 2015b; Puškárová et al. 2013). Respirometry has also been 

used as a sensitive and effective method for quantifying PHC biodegradation (Coello Oviedo et 

al. 2009; Oyelami et al. 2013), by assessing CO2 and O2 production by organisms exposed to 

PHCs (Montagnolli et al. 2015a). 

Although only a small portion of the microorganisms found in soil environments can be 

characterized through cultivation, a large number of microorganisms have been isolated from 

contaminated sites using different nutrient-rich (standard) and impoverished media, 

supplemented with various types and concentrations of PHCs (selective) (Stefani et al. 2015; 

Jacques et al. 2009). Polluted soils are of particular interest as sources for cultivation, since 

microbes in these soils are more likely to have developed multiple tolerance mechanisms, 

allowing them to survive and function effectively in the presence of PHCs (Caliz et al. 2012; 

Oriomah et al. 2014). Although bioremediation has become a crucial technology for in situ PHC 

removal, difficulties in identifying organisms that degrade high molecular weight compounds 

could limit our ability to enhance biodegradation. Current research in this area is limited by the 

identification of organisms that degrade complex aromatic structures. 

This investigation aimed to evaluate the petroleum biodegradation efficiency of 95 

bacterial and 160 fungal strains isolated from a former petrochemical plant that is highly 

petroleum-contaminated. We used screening tests based on colorimetric and quantitative 

analyses to determine the utility of these isolates in PHC biodegradation. Our specific objectives 

were to: (i) compare the potential of standard and selective media to isolate effective PHC-

degrading microorganisms, (ii) evaluate the relationship between soil contaminant 
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concentration and strain phylogeny with petroleum biodegradation efficiency, and (iii) identify 

a consortium of two to four microbial strains that could be useful for further in vitro assessments 

of hydrocarbon degradation pathways and potentially for in situ bioaugmentation.  

 

Materials and Methods 

Experimental site and isolation of microorganisms 

Bacterial and fungal strains used in this study were isolated from soil samples obtained 

at the site of a former petrochemical plant in Varennes, Quebec, Canada (45°41'56"N, 73°25'43" 

W). This site has been contaminated for the last forty years by a variety of petroleum waste 

products related to the petro-chemical industry. Experimental design and sampling, DNA 

isolation, amplification, and sequencing of microbial isolates was previously described by 

Stefani et al. (2015). Briefly, the study area of approximately 2500 m2 was divided in five plots 

of 300 m2 each. The 24 soil samples from each plot were pooled to obtain representative 

composite soil samples and analysed for F1-F4 hydrocarbons (sum of all aromatic and aliphatic 

hydrocarbon compounds with chain lengths of C10-C50) by Maxxam Analytics (Montreal, 

Quebec, Canada). Results from hydrocarbon analyses (Table 4.1) revealed an increasing 

contamination gradient from plots 1 through 5, which led us to classify the blocks into three 

discrete contaminant levels: slightly contaminated (plots SC1, SC2), contaminated (plot C3), 

and highly contaminated (plots HC4, HC5). Bacterial strains were isolated from these three 

sections on standard media (tryptic soy agar, TSA, containing 30 g L-1 of tryptic soy broth 

(TSB)) and selective media (plates containing 2- to 30-fold diluted TSB (1 to 15 g L-1) along 

with various concentrations of diesel engine oil or crude oil, or that were coated with crude oil). 

Fungal strains were isolated on standard media (potato dextrose agar, PDA, containing 24 g L-1 

of potato dextrose broth (PDB)) and selective media (plates containing 3- to 39-fold diluted 

PDA (1 to 12 g L-1 of PDB) along with various concentrations of diesel engine oil or crude oil, 

or that were coated with crude oil). Sanger sequencing data have been deposited in GenBank 

under the accession numbers KP177318-KP177405 and KP177406-KP177454 for bacteria and 

fungi, respectively (Stefani et al. 2015). 
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Selection of microorganisms and inoculum preparation 

A total of 781 bacterial strains and 279 fungal strains were isolated and sequenced from 

SC, C, and HC soils using standard and selective media. Among these isolates, 95 bacterial and 

160 fungal strains were selected for this screening test. The criteria for selecting these microbial 

isolates were: (i) they were not classified as known pathogens of humans, animals, or plants; 

and (ii) they covered an array of major groups, allowing phylogenetic comparison. Selected 

fungal isolates belonged to three major taxonomic groups: 45 Dothideomycetes, 73 

Sordariomycetes, and 42 Mucoromycotina.  Selected bacterial isolates belonged to five major 

taxonomic groups: 30 Actinobacteria, 23 Bacilli, 9 Alphaproteobacteria, 10 

Betaproteobacteria, and 23 Gammaproteobacteria.  

Before performing screening tests, bacterial and fungal cultures were grown for two 

weeks in Tryptic Soy Broth (TSB) and Potato Dextrose Broth (PDB), respectively (Table 4.1). 

Bacterial isolates were then transferred to 96-well plates containing 200 µL of TSB in each and 

incubated at 25°C under aerobic conditions in a rotary shaker adjusted to 100 rpm. At the 

exponential growth phase (optical density at 600 nm of 0.5-0.9), plates were centrifuged at 3500 

rpm for 10 min and the supernatant was removed. Bacterial pellets were rinsed with 200 µL of 

Phosphate-buffered saline (PBS) (Sigma-Aldrich, Montreal, Canada), and re-centrifuged at 

3500 rpm for 10 min. The supernatant was removed and 200 µL of minimum culture medium 

Bushnell-Haas (BH) (Table 4.1) was added to each well. The density of bacteria in each well 

was estimated by counting cells using a hemocytometer and light microscopy at 100x 

magnification.  

Fungal isolates were cultivated in 250 ml flasks filled with 100 ml of PDB and inoculated 

with a mycelium disk (5 mm diameter). Cultures were incubated at 22°C for two weeks under 

agitation at 100 rpm. Fresh mycelia were harvested using 1 µL sterile inoculation loops 

(Sarstedt, Montreal, Canada), washed with sterile deionized water, centrifuged at 3500 rpm for 

15 min, and used as described below in each test.  

 

Colorimetric screening test for fungal and bacterial isolates 

Crude oil degradation was evaluated using a technique based on the redox indicator 2,6-

dichlorophenolindophenol (DCPIP) described by Wrenn and Venosa (1996). The origin of the 

crude oil was the Gulf of Mexico (provided by Portland-Montreal Pipeline). DCPIP is an 
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enzyme-catalyzed redox electron acceptor that can be used as an indicator of microbial 

metabolism (Montagnolli et al. 2015b). Oxidation of the carbon source by microorganisms 

involves redox reactions, in which electrons are transferred to terminal electron acceptors such 

as oxygen, nitrates, and sulfates (Montagnolli et al. 2015b). Initially blue in its oxidized form, 

DCPIP is reduced by electrons abstract from the respiratory chain to a colorless liquid during 

the biodegradation process, due to a change in the molecular structure of the compound, from a 

double to a single carbon-nitrogen bond (Isola et al. 2013). Adding DCPIP to the culture 

medium allowed us to determine the ability of fungi to use PHCs as a carbon and energy source 

for growth by observing the color reduction. A colorimetric test with DCPIP was performed on 

solid oil-coated medium 0.1% PDA- 5% COM (crude oil was mixed with the medium before 

solidification, Table 4.1) containing 1g L-1 of DCPIP at pH 7. A fresh mycelium disk (5 mm 

diameter) was placed in the center of each Petri dish. Three replicates were performed for each 

isolate. Negative controls consisted of culture medium with DCPIP added, but with no fungal 

inoculation. All cultures were incubated for 15 days at 25°C. The radius of the area of 

discoloration of DCPIP was measured for each Petri dish. 

A mixture of four PAH compounds (anthracene, phenanthrene, fluorene, and pyrene) at 

0.2 g L-1 (0.05 g L-1 of each PAH) was used to evaluate the degradation efficiency of bacteria 

as described by Wrenn and Venosa (1996). This colorimetric method uses p-

iodonitrotetrazolium chloride (INT), which is oxidised by NADH in bacteria. When bacteria 

degrade hydrocarbons, INT is reduced to an insoluble red to purple compound called formazan 

(Haines et al. 1996). Thus, the INT reduction reflects the ability of bacteria to use PAHs as the 

carbon source for their growth (Haines et al. 1996).  

 The INT screening test was performed in 96-well plates. Each well contained 200 

µL of BH medium containing 106-107 bacterial cells in the exponential growth phase, and 10 

µL of the PAH mixture. This mixture is composed (per litre of culture medium) of 1g of each 

PAH compound (anthracene, phenanthrene, fluorene, and pyrene) dissolved in pentane (1:1 

w/v). Pentane quickly evaporates, leaving only the PAH compounds in each well. After 21 days 

of incubation at room temperature, 50 µL of INT was added to each well. Three replicates were 

carried out for each bacterial isolate. Negative controls consisted of a minimal BH culture 

medium with the PAH mixture added, but without bacteria. Plates were photographed, and each 

well was scanned using Image J 1.45 software to measure light intensity. The colour intensity 
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of negative controls was subtracted from the values of inoculated wells to normalize between 

plates. 

 

Quantitative screening test for fungal and bacterial isolates 

In order to identify a consortium of a few microbial strains that could be useful for 

further in vitro assessments of hydrocarbon degradation pathways and potentially for 

bioaugmentation in situ, top-performing strains belonging to each bacterial group and to the 

Sordariomycetes (Fungi) were selected for advanced screening. Sordariomycetes were 

specifically selected, since fungi belonging to this group (i) metabolized significantly more 

PAHs than the Mucoromycotina and Dothideomycetes and (ii) have often been identified as 

important PAH-degraders. Six bacterial (Achromobacter piechaudii KP177321 isolated from 

HC soil; Bacillus mycoides KP177359 isolated from C soil; Pseudomonas sp. KP177395 

isolated from HC soils; Rhodococcus sp. KP177337 isolated from C soils; Rhodococcus 

qingshengii KP177336 isolated from SC soil; Sphingomonas sp.  KP177347 isolated from SC 

soil) and two fungal (Fusarium oxysporum KP177421 isolated from HC soil; Trichoderma 

tomentosum KP177420 isolated from HC soil) strains were used for thorough quantification of 

PAH biodegradation using GC-MS to quantify remaining PAH concentrations and for analysis 

of aerobic heterotrophic microbial activity through a respirometry assay. 

 

Respirometry assay 

A respirometric test was carried out to determine the oxygen produced during the 

microbial degradation of the PAH mixture. The test was conducted using a pulse-flow 

headspace respirometer and the accompanying software (PF-8000, Respirometers System and 

Applications, Fayetteville, AK, USA). Respirometry measurements were performed in closed 

500 ml glass bottles filled with 250 ml of BH medium containing 0.05 g L-1 of the PAH mixture 

and the appropriate microbial inoculum (106-107 bacteria in exponential growth phase or a 0.5 

cm2 mat of fresh mycelium harvested from two-week old subcultures in PDB). The temperature 

was kept constant at 25 ± 1°C using a water bath. To avoid the settling of liquid samples within 

the test bottles, magnetic stirrers were used with an agitation speed of 100 rpm. The oxygen 

uptake rate (OUR) was registered every 10 minutes for 24 days. Three replicates were carried 
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out for each isolate as well as a control consisting of the culture medium with the PAH mixture 

but without microbial inoculation. 

 

GC/MS analysis 

GC-MS analysis was performed to quantify the PAH compounds before and after 

microbial degradation. The test was performed in 250 ml Erlenmeyer flasks filled with 30 ml of 

BH medium containing 0.2 g L-1 of the mixture of PAHs (0.05 g L-1 of each PAH) and microbial 

inoculum (106-107 bacteria in exponential growth phase or a 0.5 cm2 mat of fresh mycelium). 

Erlenmeyer flasks were hermetically sealed with precision seal rubber septa (Sigma-Aldrich, 

Montreal, Canada) in order to avoid evaporation. Three replicates were carried out for each 

isolate as well as a no-inoculation control. All cultures were incubated at 25°C for 7 weeks under 

100 rpm agitation. The number of bacteria in the medium at the end of the experiment was 

determined by direct counting using a hemocytometer while the dry biomass of each fungal 

isolate was determined after drying the mycelia at 60°C for 2 days. The PAH concentrations 

were quantified by GC-MS at the end of the test using a commercial service provided by AGAT 

Laboratories (Montreal, Quebec, Canada).  

Chemical properties of the culture media were also determined after centrifuging at 

16,000 x g for 15 minutes (Avanti J-25, Beckman Coulter, Inc. California, USA) at 13°C. 

Dissolved oxygen (DO), pH, and conductivity were analyzed with an HQ11d portable meter 

(Hach Company, USA). Chemical oxygen demand (COD) was analyzed using the LCK114 Dr. 

Lange’s cuvette tests (Dr. Bruno Lange, GmbH& CO. KG, Dusseldorf, Germany). Cuvettes 

were measured spectrophotometrically with a HACH XION 500 spectrophotometer. All 

analyses were performed in triplicate. 

 

Statistical analysis 

One-way ANOVAs followed by Tukey HSD post-hoc tests were performed to compare 

the means of DCPIP discoloration radius between fungal isolates or INT coloration values 

between bacterial isolates. To determine how PHC degradation was related to the isolation 

environment, we removed the effect of phylogeny by separately comparing bacterial and fungal 

groups present inside SC-C; C-HC and SC-HC soils. To assess how PHC degradation was 
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related to the phylogenetic origin of the strains, we separately compared bacterial and fungal 

groups present inside SC, C and HC soils. To determine the potential usefulness of culture 

media, we first compared bacterial and fungal groups isolated on standard and on all selective 

culture media using Student’s T-tests. Secondarily, one-way ANOVAs, followed by the Dunnett 

post-hoc tests, were used to compare differences in bacterial and fungal groups isolated on 

standard culture media (used as controls) with those isolated on selective media. One-way 

ANOVAs followed by the Dunnett post-hoc test were used to compare differences in cumulative 

microbial respiration, oxygen uptake rate, pH, DO, EC, COD, and the percentage of PAH 

compounds degraded. Fungal dry biomass and the number of bacteria in the culture medium at 

the end of the experiment were compared using Student’s T-tests and one-way ANOVAs 

followed by Tukey HSD post-hoc tests, respectively. Conditions of normality and 

homoscedasticity of the residuals were checked in all cases. Differences were considered 

statistically significant at p<0.05. Statistical analyses were performed with JMP v11.0 software 

(SAS Institute, Cary, NC) and GraphPad Prism (version 6.0 for mac OS, San Diego, USA). 

 

Results and Discussion 

Colorimetric screening of the fungal and bacterial isolates 

Effect of isolation culture media 

Significant efforts have been made to isolate organisms that degrade highly recalcitrant 

pollutants, such as PAHs (Stefani et al. 2015; Lang et al. 2016; Beškoski et al. 2012). In this 

experiment the potential usefulness of standard and selective culture media to isolate effective 

PHC-degrading microorganisms was investigated. During this colorimetric screening test, we 

observed that the color of the control without microbial inoculation remained constant, 

indicating that the dyes were not reduced abiotically or by microbiota that eventually existed in 

the oil. This shows that DCPIP discoloration and INT coloration change was reflective of 

microbial growth and activity. Figure 4.1 represents the results of fungal DCPIP decolorization 

(Fig. 4.1a-b) and bacterial INT colorization assays (Fig. 4.1c-d) according to the standard and 

selective isolation media. PHC use by fungal and bacterial isolates was equally efficient in 

standard and selective culture media, as seen in Figure 4.1a-c. By separately comparing all of 

the selective media used to isolate microorganisms, only 0.1% PDA-5% OD had a DCPIP 
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decolorization that was significantly higher than the standard PDA media (Fig. 4.1b). This result 

suggests that the use of 0.1% PDA containing 5% of diesel engine oil allowed the isolation of 

fungi that were able to metabolize some compounds of crude oil more efficiently than those 

isolated on PDA media. However, it is not possible to definitively identify the compound(s) 

used, due to the complexity of crude oil.  Palanisamy et al. (2014) evaluated the effects of 

various culture parameters, such as initial hydrocarbon concentration, on the biodegradation of 

diesel oil, and reported optimal growth by the bacterial strain Acinetobacter baumanii at an 

initial hydrocarbon concentration of 4% which is close to the concentration available in the 0.1% 

PDA-5% OD medium. 

 

Table 4.1. Polycyclic aromatic hydrocarbons (PAHs) and C10-C50 hydrocarbons recorded in 

slightly contaminated (SC; plots 1, 2), contaminated (C, plot 3), and highly contaminated (HC; 

plots 4, 5) soils. From (Stefani et al., 2015; Annex 1). 
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Figure 4.1. DCPIP decolorization area (fungal; a and b) and INT colorization values (bacteria; 

c and d) of cultures isolated on standard (tryptic soy agar, TSA for bacteria and potato dextrose 

agar, PDA for fungal) or selective culture media (TSA and PDA along with various 

concentrations of diesel engine oil (OD) or crude oil (COM), or that were coated with crude oil 

(COC)). Details on the media are available in Table 1, Table S2 and in Stefani et al. (2015). Values between 

standard and selective media were compared using a Student’s T-test (a and c); no significant difference was found 

between media at the α=0.05 level. Standard culture media were also compared to each selective media (b and d) 

using a Dunnett post-hoc test; an asterisk (*) denotes a significant difference between an isolation medium and the 

standard. The number of isolates obtained from each media type is indicated along the x-axis. Each strain was 

analyzed in triplicate and the mean was determined. Mean values represented are the averaging of number of 

isolates obtained from each medium type. Bars are standard deviations of this mean.  

 

Effect of environment  

Although microorganisms have been isolated from different environments, it is 

unknown whether isolation from soils with different concentrations of long-term PHC 

contaminants would influence the ability of isolates to effectively degrade PAHs. Figure 4.2 

shows the fungal DCPIP decolorization area (Fig. 4.2a) and bacterial INT colorization values 

(Fig. 4.2b) of isolates taken from the slightly contaminated (SC), contaminated (C), and highly 

contaminated (HC) soils. To limit the effect of phylogeny, we separately compared bacterial 
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and fungal groups present inside SC-C; C-HC and SC-HC soils. Figure 4.2 represents the result 

obtained by comparing bacterial groups present inside SC-C soils (Actinobacteria, Bacilli, 

Alphaproteobacteria, and Gammaproteobacteria) and fungal groups present inside SC-C and 

C-HC soils (Dothideomycetes, Sordariomycetes, and Mucoromycotina). Results obtained by 

comparing bacterial groups present inside SC-HC (Bacilli, Alphaproteobacteria, 

Betaproteobacteria, and Gammaproteobacteria) and C-HC soils (Bacilli, Alphaproteobacteria, 

Gammaproteobacteria) and fungal groups present inside SC-HC soils (Sordariomycetes) are 

shown in Figure S4.1 (Supporting information). 

Fungal DCPIP decolorization and bacterial INT colorization did not differ based on the 

origin of isolation, except for the fungal group Sordariomycetes, which was present in both the 

SC and HC soils (Fig. 4.2 and Fig. S4.1). This suggests that except for the fungal group 

Sordariomycetes, long-term exposure of soil microorganisms to high PHC concentrations did 

not significantly influence their biodegradation potential, at least in those microorganisms that 

we were able to isolate. As previously observed by Cruz et al. (2014), exposure of Bacillus 

subtilis to diesel, biodiesel, and petroleum over 60 days allowed selection of isolates of this 

species able to metabolize these contaminants. Patel et al. (2015) also reported that organisms 

isolated from pristine ecosystems could not use high molecular weight hydrocarbon compounds 

as carbon sources, compared to organisms isolated from polluted samples on the same media. 

They suggest that microorganisms in the polluted sediment adapted to high PAH concentrations, 

and became able to use them as carbon sources. Previous exposure to aromatic hydrocarbons 

was shown to strongly influence the type and number of hydrocarbon-degrading organisms in 

soils, which in turn, largely determined the ability of these organisms to metabolize PAH 

compounds (Zafra et al. 2015; Hong et al. 2010). Consequently, microorganisms that are 

naturally selected from PAH-contaminated soils would be more likely to survive and metabolize 

PAHs than organisms isolated from elsewhere. In contrast to this, our results suggest that 

exposure to high PAH concentrations did not generally affect the PAH degradation capacity of 

microorganisms relative to those isolated from soils with low PAH concentrations. 
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Figure 4.2. DCPIP decolorization area (fungal; a) and INT colorization values (bacteria; b) of 

cultures isolated from each of the three soil types: slightly contaminated (SC), contaminated 

(C), and highly contaminated (HC). Mean values are presented with standard deviations for bacterial groups 

present inside SC-C soils (Actinobacteria, Bacilli, Alphaproteobacteria, Betaproteobacteria, and 

Gammaproteobacteria) and fungal groups present inside SC-C and C-HC soils (Dothideomycetes, 

Sordariomycetes, and Mucoromycotina). Different letters above bars indicate significantly different means 

according to Tukey’s HSD test (p<0.05). The number of isolates obtained from each soil type is indicated along 

the x-axis. Each strain was analyzed in triplicate and the mean was determined. Mean values represented are the 

averaging of number of isolates obtained from each soil type. Bars are standard deviations of this mean. 

 

Effect of phylogenetic affiliation 

Fungal DCPIP decolorization and bacterial INT colorization, as sorted by taxonomic 

groups, are shown in Figure 4.3. This figure represents a comparison of bacterial and fungal 

groups present in the SC soil. Similar results were obtained by comparing bacterial and fungal 

groups present in the C and HC soils (data not shown). Bacterial isolates belonging to the groups 

Actinobacteria, Betaproteobacteria, and Gammaproteobacteria metabolized significantly more 

PAHs than the Bacilli and Alphaproteobacteria (Fig. 4.3b). It has been extensively reported that 

hydrocarbon contamination often increases the relative abundance of Proteobacteria 

(Jurelevicius et al. 2013; Hou et al. 2015; Stefani et al. 2015). Within the phylum 

Proteobacteria, Patel et al. (2015) outlined the prevalence of Betaproteobacteria in PAH-

contaminated sediments from a shipbreaking yard, as well as a prevalence of 

Gammaproteobacteria in pristine sediments and Alphaproteobacteria in both sediments. 

Interestingly, abundance in the environment may not always correlate with function. Hesselsoe 

et al. (2008) showed with microautoradiography that although Alphaproteobacteria were more 

abundant in a cultured consortium for diesel degradation, Betaproteobacteria represented over 
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half of radioactively labeled cells. Also, bacteria belonging to the Gammaproteobacteria such 

as Pseudomonas have often been identified as important PAH-degraders (Niepceron et al. 2013; 

Kang 2014).  

Similarly, hydrocarbon degradation by fungi depended on phylogenetic origin (Fig. 

4.3a). Fungi belonging to the group Sordariomycetes were more efficient than Mucoromycotina 

and Dothideomycetes in using crude oil as a carbon source (Fig. 4.3a). Sordariomycetes, one of 

the largest groups of Ascomycota, includes species such as Trichoderma, Hypocrea and 

Fusarium, which have been shown to be highly efficient in degrading hydrocarbon contaminants 

(Wu et al. 2010; Argumedo-Delira et al. 2012; Hong et al. 2010). 

 

 

Figure 4.3. DCPIP decolorization area (fungal; a) and INT colorization values (bacteria; b) of 

cultures isolated according the group-level taxonomic affiliation. Mean values are presented with 

standard deviations for bacterial and fungal groups obtained from the SC soil. Each strain was analyzed in triplicate 

and the mean was determined. Mean values represented are the averaging of the number of strains obtained from 

the SC soil. Bars are standard deviations of this mean. Different letters below bars indicate significantly different 

means according to Tukey’s HSD test (p<0.05). The numbers of strains belonging to each group are indicated along 

the x-axis. 

 

 

Quantitative screening test for fungal and bacterial isolates  

Respirometry  

All the eight microorganisms selected for this respirometry test showed a similar 

metabolic profile, with the highest O2 uptake occurring at 220h after the start of the incubation, 

with the exception of Sphingomonas sp., for which maximum uptake was observed 75h 
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following the beginning of the assay (Fig. 4.4). For all isolates, respirometry readings steadily 

declined after reaching maximum oxygen consumption (Fig. 4.4). There was no significant 

difference between O2 uptake over 24 days in culture media containing microorganisms or 

without microorganisms (Fig.4.4). However, 24 days after the start of the incubation, 

Sphingomonas sp. showed the lowest oxygen uptake, confirming its low growth rate, in line 

with the fact that its PAH removal efficiency was the lowest among all tested bacterial strains 

(Fig. 4.4). In contrast, Achromobacter piechaudii, Rhodococcus qingshengii, and Rhodococcus 

sp. strains had the highest oxygen uptake, which is correlated with the growth rate at the end of 

the experiment (Table 4.3). 

 

 
Figure 4.4. Oxygen uptake rate (OUR, mg O2 L-1 h-1) related to fungal (a) and bacterial (b) activity 

over 24 days of growth (n=3 for each strain, mean values are presented with standard 

deviations).  Control consists of the mixture of PAHs without microorganisms. 

 

GC/MS analysis 

Biodegradation of anthracene, phenanthrene, fluorene and pyrene by bacterial and fungal 

strains after 7 weeks of culture was confirmed by GC-MS analysis (Fig. 4.5). In the control 

treatment, we observed declines of 33.55%, 43.25%, 49.85%, 77.45% of added pyrene, 

anthracene, phenanthrene, fluorene, and pyrene, respectively (Fig. 4.5). Since the Erlenmeyer 

flasks were hermetically sealed during the incubation, this could be due to release of evaporates 

at the end of the experiment or sorption of the PAH compounds on the glass vessel, as proposed 

by Qian et al. (2011). They found a linear relationship between the sorption coefficients (Kd) of 

pyrene (9.51mL g-1), anthracene (2.88mL g-1), phenanthrene (2.13mL g-1) and fluorene (0.67mL 

g-1) on glass surfaces and the corresponding water solubility (log Sw) of -2.44 mol m−3, -1.87 
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mol m−3, -1.57 mol m−3, -1.17 mol m−3 respectively. It is clear from these data presented by 

Qian et al. (2011) that the sorption of PAH on glass surfaces decrease with increase of water 

solubility. This contrast with the results observed in the control treatment where the decline of 

PAH increase with the increase of water solubility. As reported by Howard et al. (2005) 

volatilization is the most important process affecting the fate of lower molecular weight PAH 

in the environment. Therefore, the decline of PAH observed in the control treatment in this study 

could be mainly due to release of evaporates at the beginning and at the end of the experiment. 

All of the microbial isolates had a significant positive effect on the degradation of at least one 

PAH compound. Three strains performed particularly well, significantly degrading all four PAH 

compounds in the mixture compared to the control. More than 10%, 13%, 8%, and 17% of the 

loss of anthracene, phenanthrene, fluorene, and pyrene respectively was due to Rhodococcus 

sp., Trichoderma tomentosum, and Fusarium oxysporum degradation after 49 days (Fig. 4.5). 

The percentage of PAHs removed by these three strains was significantly higher than what was 

observed in the negative control (Fig. 4.5). PAH biodegradation by Bacillus mycoides was 

similar, but this strain did not significantly degrade anthracene (Fig. 4.5). A number of bacteria 

commonly found in contaminated soils, such as Pseudomonas, Bacillus, and Rhodococcus are 

known to use a diverse array of aromatic compounds (Haritash and Kaushik 2009; Lu et al. 

2011; Guermouche M'rassi et al. 2015). Results of this GC/MS analysis carried out under 

laboratory conditions showed the bioremediation ability of Rhodococcus sp. in PHC 

degradation. It has been extensively reported that Rhodococcus is one of the most promising 

groups of organisms suitable for the biodegradation of aromatic compounds due to their capacity 

to acquire a remarkable range of diverse catabolic genes and their robust cellular 

physiology(Larkin et al. 2005; de Carvalho et al. 2014). The efficient degradation of aromatic 

compounds proceeds via multiple pathways and a wide range of dioxygenases (Martinkova et 

al. 2009). Trichoderma and Fusarium have also demonstrated their potential in the enzymatic 

degradation of organic pollutants by using cytochrome P450 (Haritash and Kaushik 2009; 

Marco-Urrea et al. 2015).  

To confirm PAH degradation by bacteria and fungi, we measured biomass production 

at the end of the experiment. The number of bacterial cells and the dry biomass of fungi in the 

culture media after 7 weeks are shown in Table 4.2. The dry biomass of both fungal strains was 

similar (p > 0.05, Table 4.2). However, the number of Achromobacter piechaudii, Rhodococcus 
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qingshengi, Rhodococcus sp., and Pseudomonas sp., cells in the culture media at the end of the 

experiment was significantly higher compared to Bacillus mycoides, and Sphingomonas sp. 

(Table 4.2). Unlike others strains, a lower number of cells/ml of Bacillus mycoides was observed 

with the PAH degradation (Table 4.2). This could be due to the inhibitory effect of PAH 

compounds or the production of toxic metabolites during the hydrocarbons degradation. As 

previously observed by Pumphrey and Madsen (2007) despite being able to use naphthalene as 

carbon and energy source, Polaromonas naphthalenivorans strain CJ2 balance naphthalene 

utilization against both direct naphthalene inhibition and formation of toxic intermediate 

metabolites.  Although the microbial PAH degradation result in the most case in the utilization 

of the contaminant for growth, Hanzel et al. (2012) pointed out the fact that microbial 

contaminant degradation act as a protective mechanism against its toxicity.  

 

 
Figure 4.5. Percentage of anthracene (a), phenanthrene (b), fluorene (c) and pyrene (d) removed 

by bacterial and fungal strains after 7 weeks of culture. The control assay consisted of a mixture of 

PAHs without microorganisms. Percentage of PAHs removed by each strain is the mean of three replicates and 
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error bars represent standard deviations. Asterisks (*) denote significant differences between the control and each 

microorganism at the 0.05 level with a Dunnett’s test.  
 

 

Table 4.2: Biomass of fungal isolates and number of bacterial cells after 7 weeks of culture in 

the BH medium containing a mixture of PAHs. Mean values are presented with standard 

deviations, n=3 for each strain. Letters indicate significant differences between each bacteria 

cell at the 0.05 level with a Tukey’s test and the dry biomass of the two fungal strains at the 0.05 

level using a Student-T-test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Many reports have also pointed out that white rot fungi have evolved to degrade 

lignocellulose using a myriad of enzymes and complex multi-enzyme systems, including 

‘‘feedback’’ type enzymes, allowing for simultaneous degradation of both lignin and cellulose 

(Leonowicz et al. 1999; Cajthaml et al. 2008; Novotny et al. 2004). This versatile, yet complex, 

machinery of enzymes can be used to attack and metabolize crude oil compounds. However, the 

fungal isolates used in our study, Trichoderma tomentosum and Fusarium oxysporum, are 

filamentous non-lignolytic fungi, whose PAH-degrading efficiency has been shown (Singh 

2006b; Jacques et al. 2008). These fungal species belong to the order Hypocreales, which is 

Fungal 
 Dry biomass ( g L−1) 

T=0 T=7 weeks 

Trichoderma tomentosum 0.006 ± 0.0 0.02 ± 0.01a 

Fusarium oxysporum 0.006 ± 0.0 0.02 ± 0.0 a 

Bacteria 
 Number of cells per ml 

T=0 T=7 weeks 

Rhodococcus sp. 3.44 ± 0.88 ×105 85.33 ± 16.42 ×106 ab 

Pseudomonas sp. 3.33 ± 0.51 ×105 145.06 ± 26.06×106 ab 

Achromobacter piechaudii 4.04 ± 0.50 ×105 220.80 ± 31.51 ×106 a 

Rhodococcus qingshengii 3.37 ± 0.23 ×105 67.13 ± 10.20 ×106 bc 

Sphingomonas sp. 3.85 ± 0.55 ×105 0.09 ± 0.02×106 d 

Bacillus mycoides 4.00 ± 0.53 ×105 6.18 ± 0.77 ×106  c 
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generally characterized by high reproductive rates and low nutritional requirements, allowing 

them to survive under adverse conditions (Argumedo-Delira et al. 2012; Zafra et al. 2015). 

Other studies have demonstrated that non-lignolytic fungi can efficiently remediate PAHs due 

to their ability to synthesize non-specific enzymes that can degrade a wide range of organic 

substrates (Hong et al. 2010; Marco-Urrea et al. 2015; Reyes-Cesar et al. 2014). The enzymatic 

versatility of Trichoderma species could explain their advantage in PAH biodegradation (Zafra 

et al. 2015). 

 

Effect of isolation media on biodegradation efficiency of the microbial isolates 

The effect of culture media on the biodegradation of PAH compounds after 7 weeks is 

shown in Table 4.3. Comparing the pH, EC, DO, and percentage of COD reduction of the culture 

media containing microorganisms with the non-inoculated control, we found that for all eight 

of the tested microorganisms, DO was significantly higher (Table 4.3). An increase of DO due 

to enhanced aerobic biodegradation of BTEX compounds (benzene, toluene, ethylbenzene and 

xylenes) by indigenous microorganisms in petroleum-hydrocarbon contaminated groundwater 

has also been observed by Chen et al. (2010). In addition to DO, COD is widely used as an 

indicator of water quality (Laohaprapanon et al. 2013; Svensson et al. 2015). There was a slight 

reduction in the COD value of culture media containing Achromobacter piechaudii, 

Rhodococcus qingshengi, Bacillus mycoides, and Sphingomonas sp. However, in the culture 

media containing Rhodococcus sp., Pseudomonas sp., Trichoderma tomentosum, and Fusarium 

oxysporum, COD reductions of 29.38%, 65.48%, 43.13%, 38.31 were observed, respectively, 

relative to the COD value of the control (mixture of PAHs without microorganism). 

Shokrollahzadeh et al. (2008) observed a COD reduction of 89% by petrochemical-degrading 

microorganisms, which mainly belonged to the genus Pseudomonas. COD, which is a proxy 

indicator of the amount of organic compounds in water, indicates the mass of oxygen consumed 

per litre (Jiang et al. 2015). The reduction of COD in the culture media containing Rhodococcus 

sp., Pseudomonas sp., Trichoderma tomentosum, and Fusarium oxysporum, confirmed the 

lower carbon content in the culture media after 7 weeks. We did not observe any significant 

difference between EC for the treatment with and without microorganisms (p > 0.05, Table 4.3), 

which indicates no change in the content of soluble salts of the culture media. Interestingly, after 

7 weeks in culture with the PAH mixture, the three strains Rhodococcus sp., Trichoderma 
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tomentosum, and Fusarium oxysporum that showed higher PAH degradation significantly 

increased the culture pH compared to controls (Table 4.3).  

 

Table 4.3: Effect of selected fungal and bacterial isolates on the chemical parameters of the BH 

medium containing a mixture of four PAHs compounds (anthracene, phenanthrene, fluorene, 

and pyrene) after 24 days of growth. 

a Microbial strains selected for the second screening test. 

DO, dissolved oxygen; EC, Electrical conductivity; COD, chemical oxygen demand. 

Mean values are presented with standard deviations, n=3 for each parameter. Asterisks (*) denote significant 

differences between the control (mixture of PAHs without microorganism) and microbial strains at the 0.05 level 

based on Dunnett’s test. 

 

Conclusion 

This investigation confirmed the biodegradation efficiency of some bacterial and fungal strains 

in PHC degradation, at least in laboratory conditions. Results of this study suggest that 

Rhodococcus sp., Trichoderma tomentosum, and Fusarium oxysporum may effectively enhance 

the biodegradation of PAH compounds. It was also found that the concentration of contaminants 

in the initial soil from which the microbes were isolated, and the type of culture medium, did 

not significantly impact the ability of microbial isolates to degrade PAH, while phylogenetic 

Microbial isolatea pH DO 

(mg L-1) 

EC 

(ms cm-1) 

COD reduction 

(%) 

Rhodococcus sp. 8.27 ± 0.54* 8.4 ± 0.17* 3.35 ± 0.02 29.38 ± 1.07 

Pseudomonas sp. 7.78 ± 0.02 8.5 ± 0.26* 3.34 ± 0.02 65.48 ± 1.79  

Achromobacter piechaudii 7.68 ± 0.14 7.16± 1* 3.31 ± 0.03 5.89 ± 0.42 

Rhodococcus qingshengii 7.38 ± 0.05 7.26 ± 0.23* 3.07 ± 0.37 6.83 ± 0.52 

Sphingomonas sp. 7.51 ± 0.16 6.5 ± 1.25* 3.34 ± 0.17 19.84 ± 0.52 

Bacillus mycoides 7.84 ± 0.12 8.16 ± 0.15* 3.35 ± 0.03 6.79 ± 0.39 

Trichoderma tomentosum 8.28 ± 0.06* 8.26 ± 0.11* 3.37 ± 0.03 43.13 ± 0.94 

Fusarium oxysporum 7.90 ± 0.17* 8.53 ± 0.15* 3.36 ± 0.02 38.31 ± 0.69 

Control  7.27 ± 0.14 1.33 ± 0.11 3.27 ± 0.02  



 

 75 

affiliation had a significant effect on biodegradation of PAH. Further studies examining the 

potential of the best-performing isolates for PAH bioremediation in situ are still needed. 
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Preface (Chapter 5) 

In the previous chapter, the biodegradation potential of bacteria and fungi was 

investigated. Results showed that the long term exposure of soil microorganisms to high PHC 

concentration and the type of isolation culture media did not influence the ability of isolates to 

effectively degrade PHC. However, phylogenic affiliation had a strong on PHC biodegradation. 

Thus in the present chapter, compost has been used as a source of microbial inoculants, nutrients 

and organic matter. The potential of phytodegradation of PHC and phytostabilization or 

phytoextraction of TE using M. sativa singly and combined with compost was examined under 

a five months’ greenhouse trial. For overcoming the low nutrient content in this aged 

contaminated soil, this leguminous plant was choosen based on its capacity to fix atmospheric 

N and to form mycorrhizae. The biomasses and ionome of M. sativa as well as the residual soil 

ecotoxicity was determined. 
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Abstract 

Several Gentle Remediation Options (GRO), e.g. plant-based options (phytoremediation), 

singly and combined with soil amendments, can be simultaneously efficient for degrading 

organic pollutants and either stabilizing or extracting trace elements (TE). Here, a 5-month 

greenhouse trial was performed to test the efficiency of Medicago sativa L., singly and 

combined with a compost addition (30% w/w), to treat soils contaminated by petroleum 

hydrocarbons (PHC), Co and Pb collected at an auto scrap yard. After five months, total soil Pb 

significantly decreased in the compost-amended soil planted with M. sativa, but not total soil 

Co. Compost incorporation into the soil promoted PHC degradation, M. sativa growth and 

survival, and shoot Pb concentrations (3.8 mg kg-1 DW). Residual risk assessment after the 

phytoremediation trial showed a positive effect of compost amendment on plant growth and 

earthworm development. The O2 uptake by soil microorganisms was lower in the compost-

amended soil, suggesting a decrease in microbial activity. This study underlined the benefits of 

the phytoremediation option based on M. sativa cultivation and compost amendment for 

remediating PHC and Pb contaminated soils. 

 

 

Keywords: Cobalt; Petroleum Hydrocarbon; Phytoremediation; Polycyclic Aromatic 

Hydrocarbon; Lead. 
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Introduction 

Auto scrap yards are used to recycle end-of-life motor vehicles worldwide. However, these 

yards are often subjected to soil contamination with hydrocarbon compounds such as motor oil 

spillage, brake pads, as well as trace elements (TE), e.g. Pb from electric batteries and Co from 

car paint and motors (Gottesfeld and Pokhrel 2011; Harper et al. 2012). Such soil contamination 

by TE and petroleum hydrocarbons (PHC) is of concern due to potential adverse effects on: a) 

soil functions and services; b) functional and structural diversity of soil microorganisms, 

animals and plant communities and; c) human health (Kidd et al. 2007; Yenn et al. 2014; Cao 

et al. 2009; Khan et al. 2015b). Many PHCs such as the 16 polycyclic aromatic hydrocarbons 

(PAHs) prioritized by the United States Environmental Protection Agency (USEPA), are toxic 

and carcinogenic pollutants (Wilson and Jones 1993; Winquist et al. 2014). Thus, the 

remediation of these pollutants is urgently needed. 

 Many in situ remediation techniques have been used for the rehabilitation of 

contaminated soils, including physical, chemical and bioremediation options (Mulligan et al. 

2001; Gan et al. 2009; Mench et al. 2010b; Vangronsveld et al. 2009). Physico-chemical 

remediation options are costly, may create further waste, and in many cases, simply transfer 

pollutants from one phase to another (Susarla et al. 2002; Pilon-Smits and Freeman 2006). GRO 

including in situ contaminant stabilization (“inactivation” using biological or chemical 

processes) and plant-based options (i.e. phytoremediation) have been alternatively used for 

remediating polluted soils (Ali et al. 2013; Wang et al. 2012b; Gerhardt et al. 2009; Kidd et al. 

2015b). Low-cost, non-destructive GRO using plants to degrade organic pollutants and either 

sequestrate or extract TE from soils, have been successfully used for different types of soils, 

climate conditions and pollutants (Doni et al. 2012; Kumar et al. 2013; Bramley-Alves et al. 

2014; Hechmi et al. 2014). However, GRO have some limitations particularly due to the long 

period required to achieve effective performance on soil remediation (many years or even 

decades are required to cleanup TE) (Rayu et al. 2012; Ali et al. 2013; Marchand et al. 2015) 

as well as pollutant localization in the soil profile vs. the root zone depth. The GRO efficiency 

depends on many complex parameters: pollutant speciation and concentration, soil properties, 

nutrient content, climate conditions, plants species and their associated microbes (Bell et al. 

2013; Gerhardt et al. 2009).  
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 Generally, industrial contaminated soils are poor in nutrients, especially nitrogen, and 

poorly drained (Benyahia and Embaby 2016b; Newman and Reynolds 2004). In this context, 

leguminous plants belonging to the Fabaceae are often appropriate for soil phytoremediation, 

because they have the potential capacity of fixing atmospheric N using their bacterial symbionts 

and are able to form mycorrhizae (Hutchinson et al. 2001; Smith and Read 2008; Marchand et 

al. 2015). Rhizobial and mycorrhizal symbioses can improve the growth of leguminous plants 

and stimulate microbial activity, enhancing therefore hydrocarbon degradation (D'orazio et al. 

2013). Of leguminous species, Medicago sativa L. is widely used for phytoremediation of 

organic (Wei and Pan 2010; Hechmi et al. 2014) and inorganic pollutants (Zaefarian et al. 2013; 

Vamerali et al. 2011; Bonfranceschi et al. 2009). This plant has a fibrous root system suitable 

for the PHC rhizodegradation (Wang et al. 2012b) and can contribute to TE phytostabilisation 

(Zribi et al. 2015). M. sativa is widely cultivated as feedstock and cover crop for its high shoot 

yield, high-quality forage and longevity (D'orazio et al. 2013; Campanelli et al. 2013). For 

overcoming the low soil fertility and improving soil phytoremediation, soil amendments 

(biostimulation) and microbial inoculants (bioaugmentation) can be used (Sayara et al. 2010). 

Compost material with different properties have been widely used in agricultural ecosystems as 

a source of nutrients and organic matter (Hamdi et al. 2012). Increasing the soil organic matter 

generally promotes soil structural stability, water holding capacity, soil porosity, and 

consequently oxygen diffusion (Hernández et al. 2015). Compost amendment can enhance the 

biodegradation of organic compounds (Park et al. 2011) and reduces the mobility of some metals 

(Ruttens et al. 2006). 

 Despite numerous investigations on the phytoremediation of PHC and TE-contaminated 

soils (Mench et al. 2010b; Gerhardt et al. 2009; Susarla et al. 2002; Kidd et al. 2015b), only 

few of them have assessed the process efficiency based on both concentration and toxicity 

reduction  (Hamdi et al. 2012; Kumpiene et al. 2014). Most of these studies focus on total and 

available pollutant concentrations; however, the relation of such concentrations and their 

biological effects is poorly addressed (Megharaj et al. 2011). Alone, chemical analyses are 

insufficient for risk assessment of contaminated soils (Fernández et al. 2005; Marti et al. 2013). 

They must be complemented with biological options integrating the effects of bioavailable 

contaminants and their interactions (Eom et al. 2007). Different international (ISO11269-2, 

OECD 207) and national (ASTM E1367-03, USEPA 2002a) standard guidelines have been 
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developed for ecotoxicological testing. These guidelines recommend assessing various living 

organisms at different levels in the trophic chain (Eom et al. 2007; Fernández et al. 2005). 

Among the terrestrial tests for assessing soil ecotoxicity, higher plants and invertebrates such as 

earthworms are frequently used (Eom et al. 2007; Luo et al. 2014; Mao et al. 2009). 

Respirometric tests were also successfully employed for quantifying the ecotoxicity of PHC- 

and TE-contaminated soils (Soler-Rovira et al. 2013; Marti et al. 2013; Taccari et al. 2011) and 

water (Coello Oviedo et al. 2009).  

 This pot study aimed to investigate the potential of M. sativa to phytoremediate a PHC 

and TE-contaminated soil, singly and in combination with a single compost amendment (30% 

w/w). M. sativa was cultivated under a greenhouse for five months on the untreated and 

compost-amended soils.  The biomasses and ionome of M. sativa roots and shoots were 

determined.  

Residual soil ecotoxicity was assessed using (1) two plant species, i.e. Lepidium sativum L. and 

Zea mays L., (2) earthworm (Eisenia fetida Savigny, 1826), and (3) soil respirometry. We 

hypothesized that both M. sativa cultivation and soil amendment with compost would promote 

PHC degradation and TE removal, thus decreasing soil toxicity. 

 

Materials and Methods 

Site and sampling procedures 

 The studied area was an auto scrap yard located in the city of Nybro, in southern Sweden 

(56°45′0” N; 15°54′0” E). This auto repair workshop goes back to 1984. An underground tank 

was used to collect waste oils and during oil drains spilled (the overfilling protection system for 

the tank has often been out of order). Contaminated soils around the tank were excavated for 

this study. Three independent composite samples (50 kg FW each, made of ten sub-samples) 

were randomly collected from sampling depths of 0.5-1 m spatially distributed around the tank. 

These samples were stored in plastic bags, and transported to the laboratory at Linnaeus 

University (Kalmar, Sweden). Thereafter, samples were immediately homogenized by manual 

mixing and sieved through an 8-mm mesh. Compost was purchased from Södra Århults Torv 

AB Sweden. It contained 55% dark sphagnum, 40% lys sphagnum and 5% zeolite. Soils and 

compost were kept at 4 ± 1 °C between sampling and analysis.  
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Chemical and physical characterization of soil samples  

Solid phase 

 The experimental set-up was a fully randomized design of four different treatments: 

untreated soil (Unt), soil amended with compost at the 30% (w/w, air-dried soil DW) rate 

(30%C), soil unamended but planted with M. sativa (MS) and soil amended with 30% C and 

planted with M. sativa (MS-30%C). The Unt treatment consisted of 5 kg of untreated soils from 

each composite while the 30% C treatment was made of 3.5 kg of untreated soils from each 

composite mixed with 1.5 kg of compost (DW/DW). Soils were placed in 12 L plastic pots (25 

cm diameter x 25 cm height) (n=3 for each treatment). 

 Prior to the experiment set up, total PHC and TE concentrations were measured using 

respectively a commercial service provided by AGAT Laboratories Montreal, QC, Canada and 

X-Ray fluorescence (XRF) equipment (XRF model Olympus DS-4000, Innov-X Systems, Inc. 

USA), in both soil treatments and in the compost (PHC n=2 and TE n=3 replicates). Total PHC 

concentrations (aliphatic hydrocarbon compounds with chain lengths of C10-C50 and 16 PAHs 

prioritized by the USEPA) were quantified by gas chromatography coupled to mass 

spectrometry (GC-MS). The 16 PAHs were classified according to the Swedish EPA (2009) in 

(i) low molecular weight PAHs (PAH-L): naphthalene, acenaphthene and acenaphthylene; in 

(ii) medium molecular weight PAHs (PAH-M): fluorene, phenanthrene, anthracene, 

fluoranthene and pyrene; and in (iii) high molecular weight PAHs (PAH-H): benzo (a) 

anthracene, chrysene, benzo (b) fluoranthene, benzo (k) fluoranthene,benzo (a) pyrene, dibenz 

(ah) anthracene, benzo (ghi) perylene and indeno (123cd) pyrene. The XRF equipment is a 

suitable portable device for detection and quantification of heavier elements with a typical 

detection limit of 0.01% (w/w) (Kaartinen et al. 2013). However, the current study focused only 

on the TEs that were found in concentrations above those established by Swedish quality 

standards: As, Co, Pb (Swedish EPA, 2009). The element Mn was also included since it has 

been extensively used as antiknock agent in petrol by the transportation sector 

(Padmavathiamma and Li 2010; Gerber et al. 2002). Certified reference material NIST 2709-

San Joaquin Soil was used to validate the results. The soil texture was determined using the 

protocol described by the Colorado Master Gardener Notes (Whiting et al. 2011). To measure 

soil pH 50 mL of milli-Q water was mixed to 10 g of air-dried soil and the mixture was allowed 

to react for 1h before measurements. Soil pH was measured with an HQ11d portable pH meter 
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(Hach Company, USA). The DW of soil samples was determined in a ventilated oven at 105 ± 

5 °C until constant mass (ISO 11465 1993). Organic matter (OM) was determined as sample 

weight loss (previously oven-dried at 105°C) upon ashing at 550°C for 16h in a muffle furnace 

(ASTM D 2974, n=3) (Cheng et al. 2008).  

Aqueous phase 

 Aqueous phase from fresh soil samples and compost was extracted using 500 mL of 

deionized water mixed to 100 g of air-dried soil and the mixture was allowed to react for 1h 

before measurements (Cheng et al. 2008). The suspensions were centrifuged twice at 16.000 x 

g for 15 minutes (Avanti J-25, Beckman Coulter, Inc. California, USA) at 13°C. Dissolved 

oxygen (DO) and electrical conductivity (EC) in water extracts were analyzed with an HQ11d 

portable meter (Hach Company, USA). Total organic carbon (TOC), soluble nitrogen (N), 

soluble phosphorus (P) and chemical oxygen demand (COD) were analyzed using Dr. Lange’s 

cuvette tests (Dr. Bruno Lange, GmbH& CO. KG, Dusseldorf, Germany). The following Dr. 

Lange kits were used: TOC LCK 387 for TOC; LCK138 for soluble N; with LCK 348, LCK350 

for soluble P and LCK114 for COD. Cuvettes were measured spectrophotometrically with a 

HACH XION 500 spectrophotometer. Lange methods were validated according to ISO 8466-1 

(1990), DIN 32645 (1996) and DIN 38402 A51 (1986). All analyses were performed in triplicate 

for each composite and compost sample. Physicochemical properties of the soils, the compost 

and water extract are listed in Table 1.  

 

Phytoremediation assay set up 

Seeds of M. sativa L. were obtained from Weibulls Seed Company, Sweden. Seeds were 

surface-sterilized in 10% (v/v) hydrogen peroxide for 10 min and then washed with distilled 

water 7 times (Wei and Pan 2010). Seeds were pre-germinated for four days (week 8) in parafilm 

covered petri dishes with Whatman No1 filter papers moisturized with distilled water (just 

enough to prevent desiccation) (Benabderrahim et al. 2011). After four days, twenty seedlings 

of uniform size were then selected and transplanted into each designated pot. To provide the 

plants with an adequate amount of water, pots were manually watered three times a week with 

deionized water (50 % water holding capacity). Growth was allowed for 5 months (week 9 to 

week 29) under greenhouse-controlled conditions: the temperature was set to 25 ± 2 °C, the 

relative air humidity to 65 ± 5%, and a photoperiod of light:darkness of 16:8 (h) was chosen. A 



 

 85 

photosynthesis active radiation of 270 µmol m-2 s-1 was provided during light hours using 

Lu400W/PSL/T40 (LucaloxTM).  

Measurement of plant growth   

 After 5 months (week 29), the survival rate of M. sativa in each pot (%SC) was recorded 

as the number of surviving plants relative to the total number of plantlets transplanted 

(Campanelli et al. 2013). M. sativa shoots were harvested, washed with deionized water and 

blotted with filter paper. Roots were harvested, cleaned with deionized water to remove soil 

particles adhering to the surface and blotted. Fresh weight (FW) of shoots and roots was 

determined. Shoots and roots were then oven dried for 48h at 80°C and their DW biomass were 

determined. Water content of plant parts (%WC) was determined by the weight loss (Novo et 

al. (2013).  

 

Measurement of trace element concentrations in plant tissues 

 The TE that were found in concentrations above the Swedish limits (Swedish EPA, 

2009) (As, Co, Pb) and Mn found in high concentration in soil treatments were analyzed in plant 

tissues using the commercial service provided by ALS laboratory Scandinavia AB, Luleå, 

Sweden. The total TE concentrations in shoot and root samples were analyzed by inductively 

coupled plasma-sector field mass spectrometry (ICP-SFMS) after microwave oven-assisted 

digestion of air-dried samples with HNO3/H2O2, following US EPA method 200.8. TE 

translocation factor (TF) from roots-to-shoot was expressed as the ratio between the shoot and 

root TE concentrations (on a dry weight basis, (Novo et al. 2013). Enrichment coefficient for 

root (ECR), an indication of the root uptake of TE was computed as the ratio between the TE 

concentration (on a dry weight basis) of plant roots and in the soil (Meeinkuirt et al. 2012). TE 

concentrations in roots and shoots of M. sativa grown in untreated soils were not determined 

due to their low biomass production. 

 

Ecotoxicological tests  

Plants  

Phytotoxicity tests were conducted on the four treatments after the 5-month phytoremediation 

trial (week 30) with two plant species which have been widely used in ecotoxicological tests 

due to their relatively high sensitivity to TE and PHC (Masakorala et al. 2013; Visioli et al. 
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2016; Gouider et al. 2010). L. sativum and Z. mays. Seed germination and seedling growth were 

performed based on the procedures described in the ISO 11269-2 (ISO, 1995). Seeds were 

obtained from Weibulls Seed Company (Sweden). Soils (500g FW) were placed in 0.5 L plastic 

pots and 15 L. sativum seeds and five Z. mays seeds were separately sowed on the surface of 

each wetted soils in a greenhouse using the same conditions as for the M. sativa growth (25 ± 2 

°C, with a photoperiod of light/darkness (h) of 16:8 and photosynthesis active radiation of 270 

µmol m-2 s-1). Deionized water was added every day (50 % water holding capacity). After 3 days 

of seed germination, L. sativum seedlings were thinned and only five of the most uniform plants 

per pot were left for further measurement of plant growth at the end of a 21-day period. Roots 

and shoots of each individual plant were harvested, washed with deionized water, blotted and 

the fresh biomass was immediately weighed. Dry biomass was determined after oven drying at 

70°C for 48h. All experiments were carried out in triplicate for each soil treatment.  

Earthworms 

 Acute toxicity test with the earthworm Eisenia fetida was carried out in parallel to plant 

testing according to the OECD 207 method, “Earthworm, Acute Toxicity Tests”. Earthworms 

were obtained from an earthworm-culturing farm located in Ljungby (Sweden). Before the 

experiment, all earthworms were rinsed with distilled water, and maintained on Whatman No1 

filter in the dark at room temperature for 24 h to allow for the voiding of gut contents. Ten adult 

earthworms (0.3 ± 0.05g) were washed and weighed before being transferred into 250 mL glass 

vessel containing the soil (400g DW) to be tested, for the four soil treatments after the 5-month 

phytoremediation trial. The standardized field soil LUFA 2.3 (Landwirtschaftliche 

Untersuchungs- und Forschungs-Anstalt, Speryer, Germany), which is a sandy loam, was used 

as an uncontaminated control soil. The experiments were carried out in triplicate for each soil 

treatment, with loose lids placed over the test vessels. After 14 days, the mortality was 

registered, the surviving worms were washed and weighed and the change in weight (CW, %) 

was determined. 

 

Respirometry 

A respirometric test was carried out for all soil treatments to measure the O2 uptake rate (OUR), 

which is a proxy of soil microbial activity (Paletski and Young 1995). It was conducted with a 

pulse-flow headspace respirometer and an accompanying software (PF-8000, Respirometers 
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System and Applications, Fayetteville, AK, USA). Respirometry measurements were performed 

according to (Sanchez Arias et al. 2012) at 25°C and a residence time of  21 days, n=2 for each 

soil sample.  

 

Statistical analysis 

Two-way ANOVAs were performed to compare differences in soil pH and EC, soil moisture 

and OM content, total soil As, Mn, Co and Pb and also DO, COD, TOC N and P in the aqueous 

soil phase among the four soil treatments. One-way ANOVAs were used to compare TE 

translocation factors and enrichment coefficients for roots in M. sativa. Additionally, differences 

in the shoot and root DW biomasses of L. sativum and Z. mays and changes in earthworm weight 

developing in soil sampled after the phytoremediation trial were compared across treatments 

using two-way ANOVAs. ANOVAs were completed by post-hoc Tukey HSD tests to assess 

multi-comparison of means between treatments. The survival rate and water content in roots and 

shoots of M. sativa, cultivated on untreated and compost-amended soils, were compared using 

a Student-T-test. Differences in TE concentrations between roots and shoots were evaluated 

using a Student-T-test for each TE. Conditions of normality and homoscedasticity of data were 

checked in all cases. Differences were considered statistically significant at p<0.05. Statistical 

analyses were performed with GraphPad Prism (version 6.0 for mac OS, San Diego, USA). 

 

Results and Discussion 

Phytoremediation of a mixed contaminated soil-using M. sativa  

Main soil contaminants were PHC (alkanes and PAHs) and TE (Co and Pb) (Table 5.1). The 

total concentrations of Co and Pb were higher when compared to the common range of 1-10 and 

10-30 mg kg-1 DW respectively (Blum et al. 2012). Furthermore, Co and Pb exceeded also the 

Swedish limits established for sensitive lands (SL), which are 15 mg and 50 mg Pb kg-1 soil DW 

of Co and Pb respectively (Swedish EPA, 2009). Surprisingly, Co concentrations in the utilized 

compost also exceeded the Swedish limits. The studied soils displayed PHC concentrations up 

to >8000 fold higher than concentrations in residential soils that is considered in Sweden as SL 

[3 to 100 mg kg-1 DW] (Swedish Environmental Protection Agency (2009) Table 5.1). Medium 

(M) and high (H) molecular weight PAH concentrations were also respectively 2 and 4 fold 
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higher than their corresponding SL values. Conversely, low (L) molecular weight PAH 

concentrations remained below their SL value (3 mg kg-1 DW, Table 5.1). PHC concentration 

has been reported to increase soil pH (Masakorala et al. 2014; Bauder et al. 2005). However in 

this study, soil pH was slightly acid probably due to chemical reactions between PHC, TE and 

soil elements as highlighted by Sun and Zhou (2007). As reported by Chandrasekaran and 

Ravisankar (2015) the soil adsorptive capacity towards TE such as Co usually decreases when 

pH is also reduced. Both soils and compost showed slightly similar acidic pH values. According 

to Kim et al. (2015) at this pH range, the mobility and the bioavailability of most TE is low. 

Another parameter that significantly affects TE bioavailability is the OM content through 

sorption/desorption processes (Alexander 2000; Minkina et al. 2006). The percentage of OM in 

the studied soils and compost varied between 30.9% and 41% (shown in Table 5.1) suggesting 

to be high enough for increased sorption processes and high rates of chemical release to the 

aqueous phase (Stella et al. 2015). Along with other physicochemical characteristics, soil texture 

can significantly affect the contaminants behaviour in contaminated soils (Khan et al. 2015b; 

Romero-Freire et al. 2015). The studied soils were classified as silt loam on the basis of silt, 

sand and clay contents (Table 5.1). Silt particles are considered to exhibit some plasticity, 

cohesion, adsorption and low porosity, which inhibited the passage of oxygen and water 

(Whalen and Sampedro 2010). As a consequence, the soils moisture content was high. In 

aqueous phase, EC, DO, TOC and COD varied widely between soils and compost (Table 5.1). 

COD, which is a proxy indicator of the amount of organic compounds in water, indicates the 

mass of oxygen consumed per liter (Jiang et al. 2015). This parameter and TOC are widely used 

as indicators of water quality (Kaczala et al. 2011; Svensson et al. 2015). The COD and TOC 

results ranged between 53200-86100 mg L-1 and 832.6-1221 mg L-1 for untreated soil and the 

compost-amended soil respectively, which confirmed the higher amount of carbon contents in 

the aqueous phase. The higher contents of COD and TOC could be also attributed to the high 

amount of PHC in studied soils. 
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Table 5.1. Physicochemical parameters and contaminant concentrations (mg kg-1) of the 

compost (C), the untreated soil (Unt) and the compost-amended soil (30%C) before the 

phytoremediation trial (n=3 for each parameters except for PHC: n=2, mean values are presented 

with standard deviations). 

 
aSwedish limit in sensitive land (Swedish Environmental Protection Agency 2009). 
b Water-extractable (1: 5; 25 °C). PHC C10-50, petroleum hydrocarbons C10-C50; EC, Electrical conductivity; 

DO, dissolved oxygen; COD, chemical oxygen demand; TOC, total organic carbon; N, soluble nitrogen and P, 

soluble phosphorus in (mg L-1). 
cPAH-L, low molecular weight PAHs: naphthalene, acenaphthene and acenaphthylene. 
dPAH-M, medium molecular weight PAHs: fluorene, phenanthrene, anthracene, fluoranthene and pyrene. 
ePAH-H, high molecular weight PAHs: benzo (a) anthracene, chrysene, benzo (b) fluoranthene, benzo (k) 

fluoranthene,benzo (a) pyrene, dibenz (ah) anthracene, benzo (ghi) perylene and indeno (123cd) pyrene. 
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 After the 5-month aided-phytoremediation trial, PHC concentrations remained steady in 

the soil planted with M. sativa as compared to the untreated one (Table 5.2). Similarly, while 

PAH (H) concentrations did not differ between both treatments, PAH (L and M) concentrations 

tended to numerically decrease in the planted soil. Rhizodegradation of high molecular weight 

PAH may be hindered due to their sorption to soil particles (D'orazio et al. 2013). This 

confirmed previous findings of Hamdi et al. (2012) and Chigbo and Batty (2013) who reported 

no degradation of PAHs (H) in their phytoremediation trials. Gartler et al. (2014) also did not 

report significant reduction of the ∑ 16 EPA PAH concentrations after a 6-month remediation 

trial using grass species and leguminous plants, including M. sativa. The lack of PHC 

degradation in our M. sativa -cultivated soils contrasts with Wei and Pan (2010) and Moubasher 

et al. (2015) reporting PHC degradation in their spiked soils. However, PHC rhizodegradation 

efficiency in aged contaminated soils is more complex and difficult to achieve compared to 

either freshly contaminated or spiked soils (Gerhardt et al. 2009). Similarly, Chigbo and Batty 

(2013) have compared the phytoremediation potential of Brassica juncea using both freshly 

spiked and aged contaminated soils: the pyrene removal was greater in freshly spiked soils than 

in aged contaminated soils. This was likely due to a lesser PAH bioavailability in aged 

contaminated soils as they were bound to the OM and sequestrated into the rhizosphere, which 

made them less assessable to microbial degradation (Alexander 2000).  
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Table 5.2: Physicochemical properties and contaminant concentrations (mg kg-1) in the 

untreated soil (Unt), the unamended soil planted with Medicago sativa (MS), the compost-

amended soil (30%C) and the compost-amended soil planted with M. sativa (MS-30%C) after 

a five-month phytoremediation trial (n=3 for each category except for PHC: n=2, mean values 

are presented with standard deviations).	The different letters stand for statistical significance 

between the modalities at the 0.05 level with a Tukey’s test. 

 
aSwedish limit in sensitive land(Swedish Environmental Protection Agency 2009) 
b Water-extractable (1: 5; 25 °C). PHC C10-50, petroleum hydrocarbons C10-C50; EC, Electrical conductivity; 

DO, dissolved oxygen; COD, chemical oxygen demand; TOC, total organic carbon; N, soluble nitrogen and P, 

soluble phosphorus in (mg L-1) 
cPAH-L: naphthalene, acenaphthene and acenaphthylene 
dPAH-M: fluorene, phenanthrene, anthracene, fluoranthene and pyrene 
ePAH-H: benzo (a) anthracene, chrysene, benzo (b) fluoranthene, benzo (k) fluoranthene,benzo (a) pyrene, dibenz 

(ah) anthracene, benzo (ghi) perylene and indeno (123cd) pyrene. 
f p value of the interaction compost*M. sativa 

 

 

M. sativa was expected to contribute to Pb and Co removal by phytoextraction after a 5-

month cultivation in the contaminated soil since it accumulated up to eight fold more Pb in its 

aerial parts at a Pb-contaminated site compared to the common values in aerial plant parts 

(Marchand et al. 2015). Our phytoremediation trial however did not lead to significant removal 

for total soil Co, As and Pb (Table 5.2), although a trend towards decreasing concentrations was 

observed. Cobalt strongly binds with PAH (Mahmoodinia et al. 2015) and may be sequestrated 
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in our soil by the high PAH amount. In addition, the soil TE content is distributed between solid 

and aqueous phase (Kim et al. 2015). The aqueous phase is hosting the most mobile and 

bioavailable TE species which is highly variable and strongly depending on environmental 

factors such as soil pH, the content of organic matter, hydroxides of Fe, Mn, and clay minerals 

(Sheoran et al. 2016; Zhang et al. 2014). In this studied soil, several variables are favor TE 

sorption and immobilization processes; the neutral soils at which the mobility of most metals is 

low (Table 5.2; (Kim et al. 2015; Sauve et al. 1998); the high content of organic matter (>24%), 

which may provide a good sorption potential to organic molecules (Minkina et al. 2006; Park et 

al. 2011); and the content of Mn (>259mg/kg dw) also indicates substantial presence of Mn 

oxides, which may scavenge Co and Pb ions from the soil solution (Jalali and Moharami 2013; 

Roulier et al. 2010). Hydrous Fe/Mn oxides may contribute to Pb and Co immobilization since 

they are a key factor involved in both Pb and Co sorption in soils (Bradl 2004; Roulier et al. 

2010). Soil Pb and As could be immobilized through sorption reactions with the soil OM fraction 

since its surface functional groups have high affinity for Pb and As (Hashimoto et al. 2011; 

Redman et al. 2002). In overall these mechanisms likely hindered efficient Pb, As and Co 

removal by M. sativa from this mixed contaminated soil.  

 

Aided-phytoremediation of a mixed contaminated soil using compost and M. sativa  

After the 5-month growth period, survival rate of M. sativa planted in the compost-amended soil 

was significantly higher than in the unamended one (Fig. 5.1a). The compost amendment 

significantly increased the water content of M. sativa shoots resulting in higher plant vigor (Fig. 

5.1b). Similar pattern was widely reported in the literature (Chen et al. 2015; Farrell and Jones 

2010). Compost application into the studied soil may have indirectly promoted plant growth 

through soil TE reactions with mineral components of the compost, the formation of stable 

complexes with organic ligands, nutrient supply and microbial inoculation (Kumpiene et al. 

2008). Brown et al. (2009) outlined that humic and fulvic acids react as ligands and form 

insoluble complexes with Pb. Trace element (e.g. Cu and Pb) interactions with soil OM may 

have reduced their leaching and bioavailability, even though the dissolved OM derived from the 

compost may sometimes increase these processes (Sauve et al. 1998).  
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Figure 5.1. Survival rate (%) and water content (%) in shoots and roots of Medicago sativa after 

a five-month growth in the untreated (Unt) and compost-amended soils (30%C) (n=3, mean 

values are presented with standard deviation). Asterisks (*) denote significant differences 

between the compost amended and the unamended treatments at the 0.05 level using a Student-

T-test. 

 

 

M. sativa cultivated in compost-amended soils numerically tended to increase PHC and 

PAH (M and H) removal as compared to other treatments (Table 5.2). Such results agreed with 

Wang et al. (2012b) who reported higher pyrene degradation in quartz sand, red soils, and 

alluvial soils spiked with pyrene, planted with ryegrass and M. sativa and amended with compost 

as compared to the unamended ones. Authors attributed this dissipation to the beneficial 

interactions between the plant rhizodeposition, microbial communities, and compost in the 

rhizosphere, turning in faster pyrene rhizodegradation. M. sativa cultivated in the compost-

amended soil significantly promoted Pb removal as compared to other treatments (Table 5.2). 

This was due to the cumulative impacts of both the dilution effect related to compost addition 

and a better Pb phytoextraction by M. sativa, which was more vigorous in the amended soil. In 

the compost-amended soil, shoot Pb concentrations of M. sativa reached up to 3.8 mg kg-1 (8 

fold higher than the common values in aerial plant parts, Cf supra). Unlike for Pb, total Co did 

not differ across treatments (Table 5.2). Cobalt concentration in the compost was close to that 

in the Unt soil, thus there was no Co dilution after compost application (Table 5.2). Beside, such 

weak Co removal matched with its low TF, ECR and concentrations in M. sativa shoots and 

roots, which were similar to the common values (Fig. 2 and Table 2, Blum et al. 2012), 

suggesting no added value of the M. sativa cultivation in the compost-amended soil in terms of 
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Co removal. The remediation of the studied soils is limited by different factors like the low TF 

and ECR of TE, the molecular weight of PAH, and the limited growing period (5 months) for 

M. sativa. As reported by Chirakkara et al. (2016a) phytoremediation is rather slow compared 

to other remediation technologies because the technique is related to the metabolic activity of 

the plant which is related to climate and seasonal cycles. Furthermore, several harvests (more 

than one year treatment) are often require for the phytoremediation (Vangronsveld et al. 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. (a) Trace element (As, Co, Mn, and Pb) concentrations (mg kg-1) in shoots and roots 

of Medicago sativa cultivated during the 5-month phytoremediation trial in the compost-

amended soil (30%C), (b) enrichment coefficient for roots (ECR) and (c) translocation factor 

(TF) (n=3, mean values are presented with standard deviation and the different letters stand for 

statistical significance between the treatments at the 0.05 level with a Tukey’s test). 

 

 

Ecotoxicological analysis of soils after the phytoremediation trial  

 L. sativum  and Z. mays  shoot and root DW biomasses after the 21-day test were similar 

in both the untreated soil and the one previously planted with M. sativa during the 

phytoremediation trial (p > 0.05, Fig. 5.3). Earthworm growth is a sensitive indicator of 

exposure to contaminants (Geissen et al. 2008). Similarly to L. sativum and Z. mays, the 
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earthworm mass gains after the 14-day growth in our soils did not significantly differ between 

the untreated soil and the one previously cultivated with M. sativa (p > 0.05, Fig. 5.4). The 

absence of pollutant (PHC) linkage breakdown in unamended soils planted with M. sativa was 

related to its low survival rate (5%). Such results agreed with slow plant growth in PHC-

contaminated soils (Peng et al. 2009). They also confirmed the negative impact of PHC (Kede 

et al. 2014) and Pb (Roy et al. 2014) on earthworms. The absence of positive effect of M. sativa–

cultivation on L. sativum, Z. mays and earthworm development could also be due to the lack of 

total soil Mn, Co, As and Pb removal by this treatment. Although Mn and Co are essential for 

plants while As and Pb are not (Hanumanth Kumar and Pramoda Kumari 2015; Pourrut et al. 

2011), previous studies showed that essential and non essential TE, when exceed the threshold 

limits can induce various morphological, physiological and biochemical dysfunctions in plants. 

Li et al. (2009a) reported significantly inhibition of the shoots biomass of  barley, oilseed rape 

and tomato by Co in concentrations ranging from 7 to 1708 mg kg-1. This toxicity symptom of 

Co2+ in plants can be caused by competition between Co and Fe for the same physiological 

binding sites (Chatterjee and Chatterjee 2003; Sree et al. 2015). Conversely, the shoot DW 

biomass of Z. mays was significantly higher in the compost-amended soil than in the unamended 

one (Fig. 6.3c). In parallel, earthworm mass gain after a 14-day growth in the compost amended 

soil was also higher compared to that for the untreated soil, and reached similar value as for the 

standard LUFA uncontaminated soil (Fig. 5.4). Such results confirmed the beneficial effect of 

compost addition to our soil. Ahmad et al. (2015) reported similar positive effect of organic 

amendments on crop growth and cadmium remediation.  
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Figure 5.3. Shoot and root biomasses (g plant-1 DW) produced by Lepidium sativum (a, b) and 

Zea mays (c, d) after a 21-day growth period in the four soils (Unt, 30%C, MS, and MS-30%C) 

resulting from the 5-month phytoremediation trial (n=3, mean values are presented with 

standard deviation and the different letters stand for statistical significance between the 

treatments at the 0.05 level with a Tukey’s test). 
 

 

 

 

 

 

 

 

 

Figure 5.4. Earthworm’s change in weight (CW%) after a 14-day growth in a standard 

uncontaminated soil and in the four studied soils (Unt, 30%C, MS, and MS-30%C) resulting 

from a 5-month phytoremediation trial (initially 10 individuals pot-1, n=3, mean values are 
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presented with standard deviation and the different letters stand for statistical significance 

between the treatments at the 0.05 level with a Tukey’s test). 

 

 

Ecotoxicological effects of TE and PHC after phytoremediation were assessed by soil 

microorganism’s respiration measurements (Fig. 5.5). The maximum initial respiration rate in 

untreated soils (3.79 mg O2/L-1 h-1 ± 0.24) was higher as compared to that of the compost-

amended soils (1.89 mg O2/L-1 h-1 ± 0.24). Mukherjee et al. (2014) reported similar pattern when 

they measured microbial activity in an aged creosote-contaminated soil. They found that the 

basal respiration rate was positively correlated with total PHC and PAH concentrations in soils. 

In contrast to the bacterial diversity, the total microbial activity increased in soils with high 

contaminant exposure (Mukherjee et al. 2014). Similar increased biological respiration was 

reported by Labud et al. (2007) in the presence of diesel and resulted from high microbial 

activity for toxicity compensations or adaptations, degradation and/or mineralization of readily 

OM and organic pollutants. But, this is not the general rule, since in earlier studies, soil 

respiration decreased with increasing soil TE content (Kızılkaya et al. 2004; Doelman and 

Haanstra 1984). Decreasing microbial respiration after compost application agreed with 

Montserrat et al. (2006) who reported that polluted-sewage sludge added to the soil first 

promoted soil respiration, then when the easily OM was exhausted, the soil respiration 

decreased. As it can be observed in Fig.5.5 when plants were added in the pots, the respiration 

rate of microorganisms in the soil is much lower than in those unplanted treatment. As 

previously observed by Wang et al. (2008) this result suggests that plant rhizosphere and the 

coercion influence of petroleum changed the species and activity of microorganisms. Here, the 

respirometry results showed different ability and behavior of the PHC-contaminated soils: 

firstly, the growth promoting effects of readily biodegradable organic compounds and secondly 

the adverse effects on respiration due to the presence of soil contaminants. 
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Figure 5.5. Oxygen uptake rate (mg O2 g-1 DW h-1; OUR) related to microbial activity in the 

untreated soil (Unt), the unamended soil planted with Medicago sativa (MS), the compost-

amended soil (30%C) and the compost-amended soil planted with M. sativa (MS-30%C) after 

a 5-month phytoremediation trial (n=2).  

 

Conclusion 

During this five-month phytoremediation trial, total soil Pb significantly decreased in the 

composted-amended soil cultivated with M. sativa. Compost addition to the soil showed positive 

effects on M. sativa growth, survival rate and shoot Pb concentrations. M. sativa cultivation 

combined with compost amendment numerically increased PHC degradation but this 

degradation rate was lower for high molecular weight PAHs. Two hypotheses are suggested: (1) 

hydrophobic compounds were strongly bound to the soil solid-phase after almost a thirty-year 

aging process and (2) the limited growing period (5 months) for M. sativa. Ecotoxicological 

tests after the phytoremediation trial showed a positive effect of compost incorporation into the 

contaminated soil (as compared on the unplanted, untreated soil) on both L. sativum growth and 

earthworm development. The O2 uptake by soil microorganisms was higher in the untreated 

soils compared to the compost-amended and/or M. sativa-planted ones, suggesting the increase 

of microbial activity by energy needs for toxicity compensation, adaptations and/or degradation 

of organics. Generally, M. sativa cultivation did not affect the plant (except for Z. mays shoots) 
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and earthworm development between unamended and compost-amended treatments, but based 

on respirometry it may decrease adverse effects on soil microbial activity in comparison to the 

unplanted treatment. Results from this greenhouse experiment favor the use of combined 

chemical and toxicological analyses for a soil-specific management of contaminated sites. 

Furthermore, the information obtained in this laboratory scale brings important information for 

further studies on pilot and even full scale. However, the process of in situ aided-

phytoremediation on such mixed contaminated soils is considerable complex due to many 

external factors. It is recommended that parameters such as different combinations 

amendment/plant species and the relevant amendment dose for reducing the pollutant linkages 

are better understood. 

 

Acknowledgment 

This work was supported by funds provided by the Industrial Development Centre in Kalmar 

County (IUC), the Regional Council of Kalmar County, Genome Quebec and Genome Canada 

who are greatly acknowledged. CH received a traveling fund from the Quebec Centre for 

Biodiversity Science (QCBS). We thank NoDesign AB for their technical support and giving us 

access to the site of study, Bernth Noren for providing useful information of the site and 

assistance on oil sampling. The authors are grateful to Dr. Michel Mench, UMR Biogeco INRA 

1202, University of Bordeaux, France for his writing assistance. We also thank two anonymous 

reviewers for their helpful comments. 

 

  



 

 100 

Preface (Chapter 6) 

In previous chapters, laboratory and greenhouse studies were performed to select the 

suitable microorganisms or/and plant and to predict the degradation rates. After five months’ 

greenhouse trial, M. sativa combined with compost promoted the degradation of PHC and the 

phytoextraction of Pb. Despite numerous studies which proposed phytoremediation as a realistic 

method to clean up contaminated soil, this technology has a number of yet unsolved problems 

and lacks credible demonstration on a field scale. Therefore, a pilot field scale phytoremediation 

experiment was carried out to investigate the efficiency of ecopiling using a M. sativa in 

monoculture and co-planting with H. annus to remediate a PHC and metals co-contaminated 

soil. The residual soil and soil leachate ecotoxicities using plants and earthworm was also 

studied.  

 

  



 

 101 

Chapter 6: Pilot scale ecopiling of a soil contaminated by 

petroleum hydrocarbons and metals 

 

Charlotte Marchand1,2, Michel Mench3, Yahya Jani2, Fabio Kaczala2, Peter 

Notini2, Mohamed Hijri1 and William Hogland2  

 

1 Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 

4101 Rue Sherbrooke Est, Montréal, Québec H1X 2B2, Canada 
2 Department of Biology & Environmental Sciences, Linnaeus University, 

Landgången 3, Kalmar SE-391 82, Sweden 
3BIOGECO, INRA, Univ. Bordeaux, 33615 Pessac, France 

 

 

 

 

This chapter was submitted to Ecological Engineering, July, 2016. It will be 

also prepared for submission to Chemosphere. 

 

 

Also, it was presented in the following conferences: 

Marchand C., Hijri M., Jani Y., Kaczala F., Hogland W. Pilot scale Ecopiling of 

petroleum hydrocarbons and trace elements contaminated soil using Medicago 

sativa & Helianthus annuus. Linnaeus ECO-TECH’ 16. Kalmar (Sweden)  



 

 102 

Abstract 

A pilot scale experiment was conducted to investigate the performance of ecopiling as a 

remediation technology for the metal phytoextraction and phytodegradation of petroleum 

hydrocarbons (PHC) in a co-contaminated soil. First, this soil was amended with compost (10% 

w/w) and used to construct passive biopiles (Unp-10%C). Then, a phyto-cap of Medicago sativa 

L. either in monoculture (MS-10%C) or co-cropped with Helianthus annuus L. as companion 

planting (MSHA-10%C) was sown on the topsoil to complete the Ecopile. Physico-chemical 

parameters and contaminants in the soil and its leachates were measured at the beginning and 

the end of the first growth season (after five months). In parallel, residual soil ecotoxicity was 

assessed using the plant species Lepidium sativum L. and the earthworm Eisenia fetida Savigny, 

1826, while the leachate ecotoxicity was assessed using Lemna minor L. After 5 months, PH 

C10-C40, PAH-L, PAH-M PAH-H, Pb and Cu concentrations in the MS-10%C soil were 

significantly reduced as compared to the Unp-10%C soil. Metal uptake by alfalfa was low but 

their translocation to shoots was high for Mn, Cr, Co and Zn (transfer factor (TF) >1), except 

for Cu and Pb. Alfalfa in monoculture reduced electrical conductivity, total organic C and Cu 

concentration in the leachate while pH and dissolved oxygen increased. Alfalfa co-planting with 

sunflower did not affect the extraction of inorganic contaminants from the soil, the PAH (M and 

H) degradation and had lower treatment performance for PH C10-C40 and PAH-L as compared 

to alfalfa monoculture. The co-planting reduced shoot and root Pb concentrations. The residual 

risk assessment after 5 months showed a positive effect of co-planting on L. sativum shoot dry 

weight (DW) yield. However, high contaminant concentrations in soil and elutriate still 

inhibited the L. sativum root DW yield, earthworm development, and L. minor growth rate. 

Generally, the ecopiling could be a promising remediation technology to mitigate pollutant 

linkages due to metals and PHC in this co-contaminated soil. 

 

Keywords: Ecopile, Phytoremediation, Toxicity test, Compost, Phytotechnologies. 
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Introduction 

Over decades, anthropogenic activities have left about 2.5 million of contaminated sites 

in European Union (EU) (European Environment Agency 2014)Most frequent contaminants in 

soils at these sites are metals (37%), mineral oil (20%) and hydrocarbons (22%) (Evangelou et 

al. 2012). Metals, e.g. Cu, Co, Pb, and Hg, and petroleum hydrocarbons (PHC), such as the 16 

polycyclic aromatic hydrocarbons (PAHs) prioritized by the United States Environmental 

Protection Agency (USEPA), are of great concern due to their persistence in the environment, 

and their potentially serious health consequences (Khan et al. 2015b; Fu et al. 2012). In Sweden, 

about 80 000 sites are potentially contaminated, due to more than two hundred years of 

industrialization, and roughly 60 000 out of these have been risk-assessed (Swedish 

Environmental Protection Agency 2016). Open dumpsites and landfills are the most widespread 

methods for municipal solid waste (MSW) disposal due to relatively low initial investments and 

operational (Kaczala et al. 2015; Xiaoli et al. 2007). The member countries of the EU have 

consequently implemented a range of legislation such as the landfill directives (Council 

Directive 1999/31/EC 1999) and the waste directives (Directive 2008/98/EC 2008) to enforce 

the remediation of contaminated land and to minimize the negative impact on the environment 

and human health. To provide alternatives to conventional methods of MSW treatment (e.g. 

disposal to landfill, isolation, soil washing, and pump-and-treat), several methods rely on the 

use of plants and associated microorganisms and have been alternatively used for remediating 

polluted soils (Marchand et al. 2016b; Nagendran et al. 2006). Gentle soil remediation options 

(GRO), including in situ contaminant stabilization (“inactivation” using biological or chemical 

processes) and plant-based options (i.e. phytomanagement) are gaining social acceptance and 

have the advantages of being non-destructive, less disruptive to the soil and low-cost (Marchand 

et al. 2016a; Cundy et al. 2013; Kumpiene et al. 2014; Cundy et al. 2016). Biopiling, also known 

as bioheaps, biocells or biomounds, is a GRO that involves the assembling of PHC contaminated 

soils into piles and stimulates the biodegradation activity of microbial populations through the 

addition of oxygen, pH and moisture level adjustment, addition of nutrients and organic matter 

(Whelan et al. 2015b; Benyahia and Embaby 2016a; Coulon et al. 2010). Compost originated 

from the organic fraction of MSW is increasingly used as soil conditioner as well as a fertilizer 

for meeting both nitrogen and organic matter addition (Cesaro et al. 2015). This stimulation of 
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microbial activity enhances organic compound degradation within the pile (Park et al. 2011). 

Therefore, many studies reported the successful use of biopiling for remediating PHC 

contaminants in soils (Gomez and Sartaj 2014; Kriipsalu and Nammari 2010; Baldan et al. 

2015). Compost amendment has been also effectively used for the phytostabilisation of metal-

contaminated soil (Ruttens et al. 2006; Park et al. 2011; Ogundiran et al. 2015), the 

rhizodegradation of PHC in contaminated soils (Zhang et al. 2012; Ghanem et al. 2013; Wang 

et al. 2012b) and remediation of metal and PHC co-contaminated soil (Marchand et al. 2016a; 

Chirakkara et al. 2016a).  

A major challenge of GRO for co-contaminated soils is the simultaneous removal or/and 

control of multiple contaminants. Therefore, a combination of different set of technologies is 

often required to achieve effective performance on soil remediation. Ecopiling process, i.e. the 

combination of phytoremediation and biopiling, was successfully used for the first time by 

Germaine et al. (2014) for remediating PHC-contaminated soils at a field scale. Ecopiling is a 

modification of conventional passive biopiling: instead of enclosing the biopile with black 

plastic, the pile is planted with suitable phytoremediation plants (Germaine et al. 2014). The 

selection of appropriate plant species is critical to optimize the phytoremediation and co-

planting are often used for a simultaneous removal of multiple contaminants (Wang et al. 2013). 

Medicago sativa (alfalfa) is widely used for phytoremediation of organic (Wei and Pan 2010; 

Hechmi et al. 2014) and inorganic pollutants (Zaefarian et al. 2013; Vamerali et al. 2011; 

Bonfranceschi et al. 2009). This plant species has a fibrous root system suitable for the PHC 

rhizodegradation (Wang et al. 2012b) and can contribute to TE phytostabilisation (Zribi et al. 

2015). Alfalfa in combination with compost was selected on the basis of previous results at 

mesoscale level (Marchand et al. 2016a). Helianthus annuus (sunflower) is also used to 

remediate metal(loid)-contaminated soils (Kolbas et al. 2011; Kidd et al. 2015a) and 

facilitation/intercropping is claimed to promote the efficiency of several phytotechnologies for 

remediating contaminated soils (Brooker et al. 2008; Wang et al. 2014; Kidd et al. 2015b). Co-

planting of alfalfa with sunflower may be a promising option to optimize the remediation of 

metal and PHC co-contaminated soils. 

This study aimed at investigating: (1) the efficiency of ecopiling using alfalfa either in 

monoculture or co-planting with sunflower to remediate a PHC and metal co-contaminated soil 

in a pilot scale plant, (2) the residual soil ecotoxicity using Lepidium sativum L. and earthworm 
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(Eisenia fetida Savigny, 1826) and (3) the residual soil leachate ecotoxicity using Lemna minor 

L.. The study also aimed to verify the hypothesis that alfalfa co-planting with sunflower would 

increase PHC degradation and metal removal as compared to alfalfa monoculture, thus 

decreasing soil and soil leachate ecotoxicity.  

  

Materials and Methods 

Site and ecopile construction 

The studied area is a 40-year old MSW landfill at Moskogen, in southern Sweden 

(56°41'26'' N; 16°10'49'' E). This landfill receives approximately 65,000 tons of wastes per year 

from three communities with a total population of 90 000 inhabitants. Among these wastes, 

3.5% are hazardous wastes including the oil-contaminated soil used in this study. The climate 

is typically inland but seasonally affected by the Baltic sea, with an annual rainfall of 650–700 

mm year–1 (30-year average 470 mm). The landfill area has a facility for treating about 150 000 

m3 year–1 of leachate. This facility, described by Thorneby et al. (2006), consists of three 

consecutive ponds and a constructed wetland used to collect and treat the water. This water was 

used in this study as well as the compost obtained from the food waste of the whole municipality. 

Contaminated soil was amended with compost at 10% (w/w, fresh soil FW).  

Nine ecopiles of 9 m2 and 0.7 m in height were constructed on May 2015 at the Moskogen 

facility (Fig. 6.1: ecopile design). The biopile was lined with a polyethylene waterproof 

membrane to prevent the leachate from draining into the ground and ensure the correct inflow-

outflow water balance. A 10 cm drainage layer made of gravels and sand was laid manually on 

the bottom. The ecotextile was placed over a 50 mm perforated drainage pipe and then ecopile 

was raised with compost-amended soil (10%C). The Ecopiles were constructed with 15o of 

inclination to allow adequate flow/drainage of leachate that was further collected in 1000 L 

underground tanks. 
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Figure 6.1: Ecopile design 

 

Experimental set up 

The experimental set-up was a full randomized design of three treatments with three 

replicates: unplanted ecopile (Unp-10%C), ecopile planted with M. sativa alone (MS-10%C) 

and ecopile co-planted with M. sativa and H. annuus (MSHA-10%C) (Fig. 6.2). Seeds of alfalfa 

and sunflower were obtained from Weibulls Seed Company, Sweden. Growth was allowed for 

5 months (week 23 to week 44). During dry days, Ecopiles were automatically irrigated every 

two days with water from the landfill leachate treatment.  
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Figure 6.2: Ecopiles (a) after construction in May 2015 and (b, c) four months later in September 

2015. 

 

Soil sampling and analysis 

On May 2015, three independent composite samples (10 kg fresh weight; FW each, made 

of ten subsamples) of the compost (C) and the untreated soil (Unt) were randomly collected 

from the storage area in the landfill. Similarly, three independent composite samples (10 kg FW 

each, made of ten subsamples) of the compost-amended soil (10%C) were randomly collected 

after the automatic mixing of the soil and compost. These samples were stored in plastic bags, 

transported to the laboratory at Linnaeus University (Kalmar, Sweden) and kept at 4 ± 1oC prior 

analyses. All analyses were performed in triplicate for each composite and compost sample. 

Total PHC concentrations (aliphatic hydrocarbon compounds with chain lengths of C10-C40 

and 16 PAHs prioritized by the USEPA) were quantified by gas chromatography coupled to 

mass spectrometry (GC-MS) using a commercial service provided by Eurofins Laboratories 

Saverne, France. The 16 PAHs were classified according to the Swedish EPA (2009) in (i) low 

a

cb
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molecular weight PAHs (PAH-L): naphthalene, acenaphthene and acenaphthylene; in (ii) 

medium molecular weight PAHs (PAH-M): fluorene, phenanthrene, anthracene, fluoranthene 

and pyrene; and in (iii) high molecular weight PAHs (PAH-H): benzo (a) anthracene, chrysene, 

benzo (b) fluoranthene, benzo (k) fluoranthene,benzo (a) pyrene, dibenz (ah) anthracene, benzo 

(ghi) perylene and indeno (123cd) pyrene. Metal concentrations were measured using X-Ray 

fluorescence (XRF) equipment (XRF model Olympus DS-4000, Innov-X Systems, Inc. USA). 

The XRF method is applicable for heavier elements with a typical detection limit of 0.01% 

(w/w) (Kaartinen et al. 2013). However, this study focused only on metals found in 

concentrations above those established by Swedish quality standards (Cu, Co, Hg and Zn) and 

the background metal concentrations in soils (Pb and Cr). Manganese and Fe were also included 

since they are key players in Zn, Cu, Pb and Co sorption in soils (Roulier et al. 2010; Jalali and 

Moharami 2013). Certified reference material NIST 2709-San Joaquin Soil was used to validate 

the results.  

The soil texture was determined using the protocol described by the Colorado Master 

Gardener Notes (Whiting et al. 2011). The dry weight (DW) of soil samples was determined in 

a ventilated oven at 105 ± 5 °C until constant mass (ISO 11465 1993). Organic matter (OM) 

was determined as sample weight loss (previously oven-dried at 105°C) upon ashing at 550°C 

for 16h in a muffle furnace (ASTM D 2974, n=6) (Marchand et al. 2016a). To measure soil pH, 

dissolved oxygen (DO) and electrical conductivity (EC) 500 mL of milli-Q water was mixed to 

100 g of air-dried soil and the mixture was allowed to react for 1h before measurements. Soil 

water extracts pH, DO and EC were measured with an HQ11d portable pH meter (Hach 

Company, USA).  

At the end of the first growing season in October (week 44), soil samples were collected 

from each ecopile with an unpainted steel spade in two soil layers: 0-20 cm (L1) and 20-50 cm 

(L2). A total of 35 individual samples per layer were taken from each ecopile. These samples 

were mixed to form 6 composite samples per layer for each ecopile. Thus, for each of the three 

treatments (Unp-10%C, MS-10%C and MSHA-10%C) there were n=18 composite samples per 

layer for the three replicates. Both PHC and metal concentrations in the soils, soil texture, soil 

moisture, OM content, and pH, DO and EC in the soil were measured in the same way as at the 

beginning of the experiment.  
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Plant growth   

After 5 months (week 44), three plants of alfalfa and all plants of sunflower at each 

ecopile were collected. Shoots were harvested, washed with deionized water and blotted with 

filter paper. Roots were harvested, cleaned with deionized water to remove soil particles 

adhering to the surface and blotted. Shoot and root FW yields were determined. Shoots and roots 

were then oven dried for 48h at 80°C and their DW biomass were determined. Water content of 

plant parts (%WC) was determined by the weight loss (Novo et al. 2013).  

 

Metal concentrations in plant parts 

Metals in the contaminated soil with concentrations exceeding the Swedish threshold 

values for residential areas and for non-sensitive land (Swedish EPA, 2009) (i.e. Cu, Co and 

Zn), the background metal concentrations in soils (i.e. Pb and Cr) and with high concentration 

in the studied soils (i.e. Mn) were analyzed in plant tissues using the commercial service 

provided by CACEN, University of Montréal Laboratories, QC, Canada. Total metal 

concentrations in shoot and root samples were analyzed by inductively coupled plasma-mass 

spectrometry (ICP-MS) after digestion of air-dried samples with HNO3, following Wilson et al. 

(2005). Translocation factor (TF) of metals from roots-to-shoot was expressed as the ratio 

between the shoot and root metal concentrations (on a dry weight basis (Novo et al. 2013). Root 

bioconcentration factor (BCF), a proxy of the root uptake of metals was computed as the ratio 

between metal concentrations (on a DW basis) in roots and the soil (Boechat et al. 2016). Shoot 

and root metal removal (mg per plant) were calculated by multiplying biomass with metal 

concentration in each plant tissues. For each element, the amounts (mg per plant) of metals taken 

up by the whole plants was expressed as the sum of shoot and root metal removals. 

 

Analysis of ecopile leachate 

Soil leachates were analyzed twice, in the month 1 and 5 of the trial. Dissolved oxygen, 

pH and EC were analyzed with an HQ11d portable meter (Hach Company, USA). Total organic 

carbon (TOC) and chemical oxygen demand (COD) were analyzed using Dr. Lange’s cuvette 

tests (Dr. Bruno Lange, GmbH& CO. KG, Dusseldorf, Germany). Cuvettes were measured 

spectrophotometrically with a HACH XION 500 spectrophotometer. Lange methods were 

validated according to ISO 8466-1 (1990), DIN 32645 (1996) and DIN 38402 A51 (1986). Total 
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metal concentrations in soil leachates were analyzed by ICP-MS using the commercial service 

provided by Eurofins Laboratories Saverne, France.  

 

Ecotoxicological tests  

Toxicity tests were conducted on soils and soil leachates at the beginning and after the 

5-month phytoremediation trial. Soil toxicity tests were conducted using the plant L. sativum 

and the earthworm E. fetida while soil leachate toxicity tests were conducted using the aquatic 

plant L. minor. These plant species and the earthworm are widely used in ecotoxicological tests 

due to their relatively high sensitivity to metals and PHC (Masakorala et al. 2013; Visioli et al. 

2016; Gouider et al. 2010). 

 

Lepidum. sativum toxicity test 

Lepidum sativum seed germination and seedling growth was performed based on the 

procedures described in the ISO 11269-2 (ISO, 1995). Seeds were obtained from Weibulls Seed 

Company (Sweden). The standardized field soil LUFA 2.3 (Landwirtschaftliche 

Untersuchungs- und Forschungs-Anstalt, Speryer, Germany), which is a sandy loam, was used 

as an uncontaminated control soil. Aliquots (500g FW) of L1 and L2 soils were placed in 0.5 L 

plastic pots and 15 L. sativum seeds were sowed on the surface of each wetted soils. Growth 

was allowed for a 21-day period under greenhouse-controlled conditions: the temperature was 

set to 25 ± 2 °C, the relative air humidity to 65 ± 5%, and a photoperiod of light:darkness of 

16:8 (h) was chosen. A photosynthesis active radiation of 80 µmol m-2 s-1 was provided during 

light hours using Lu400W/PSL/T40 (LucaloxTM). Deionized water was manually added every 

day (50 % water holding capacity), with no leaching from the potted soils. After 3 days of seed 

germination, L. sativum seedlings were thinned and only five of the most uniform plants per pot 

were left for further measurement of plant growth at harvest. Roots and shoots of each individual 

plant were harvested, washed with deionized water, blotted and the fresh biomass was 

immediately weighed. Dry biomass was determined after oven drying at 80°C for 48h. All 

experiments were carried out with six replicates for each soil treatment.  
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Eisenia fetida toxicity test  

 Acute toxicity test with E. fetida was carried out according to the OECD 207 method, 

“Earthworm, Acute Toxicity Tests”. Earthworms were obtained from an earthworm-culturing 

farm located in Ljungby (Sweden). Before the experiment, all earthworms were rinsed with 

distilled water, and maintained on Whatman No1 filter in the dark at room temperature for 24 h 

to allow for the voiding of gut contents. Ten adult earthworms (0.3 ± 0.05g) were washed and 

weighed before being transferred into 250 mL glass vessel containing the soil (400g DW) to be 

tested, for the four soil treatments after the 5-month phytoremediation trial. The standardized 

field soil LUFA 2.3 (Landwirtschaftliche Untersuchungs- und Forschungs-Anstalt, Speryer, 

Germany) was also used as an uncontaminated control soil. The experiments were carried out 

with six replicates for each soil treatment, with loose lids placed over the test vessels. After 14 

days, the mortality was registered, the surviving worms were washed and weighed and the 

change in body weight (CW, %) was determined. 

 

Lemna minor toxicity test 

The effects of ecopiling on L. minor growth were assessed using a static, non-renewal 

assay where plants were exposed to soil leachates during 21 days. To prevent changes in the 

initial composition of soil leachates, samples were tested as they were collected, i.e. without 

filtration. The L. minor population was collected from a small lake located in Ingelstorp Smedby 

in Kalmar municipality, Sweden. The test set up was established as previously reported by 

Marchand et al. (2011). In brief, duckweed fronds (2 colonies with 3 fronds and 2 colonies with 

4 fronds = 14 fronds in all), randomly selected were cultivated in 250 mL Erlenmeyer flasks 

containing 150 mL of either soil leachate from each soil treatment or the freshwater from the 

Smedby river (n=6 for each treatment). Fronds were counted after 5, 9, 13, 17 and 21 days of 

experimentation. The number of fronds has been used by Radic et al. (2010) as a relevant 

surrogate for biomass to assess the phytotoxicity of the growth media. Relative growth rate 

(RGR) was then determined using the following equation: RGR = [ln(final frond 

number) − ln(initial frond number)] / elapsed time between initial and final measurements, the 

initial number of fronds being n = 14 at the beginning of the experiment. 
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Statistical analysis 

One-way ANOVAs were performed to compare differences in total ecopile PHC, N, P, 

moisture and OM content and also DO, EC and pH in soil water extracts between the three soil 

treatments. Two-way ANOVAs were used to compare the concentration of each metal (Cr, Co, 

Cu, Pb, Zn and Mn) in M. sativa shoots and roots from the MS-10%C and MSHA-10%C 

treatments. The DW biomasses, water content and metal concentrations in roots and shoots of 

M. sativa and H. annuus were compared using a two-way ANOVAs and Student-T-test, 

respectively. Additionally, differences in metal TF and ERC for M. sativa and H. annuus as well 

as L. minor RGR, shoot and root DW biomasses of L. sativum and changes in earthworm body 

weight developing on ecopile soils after 5 months were compared across treatments using two-

way ANOVAs. ANOVAs were completed by post-hoc Tukey HSD tests to assess multi-

comparison of means between treatments. Differences in chemical parameters and metal 

concentrations of leachates were evaluated using a Student-T-test for each parameter. 

Differences were considered statistically significant at p<0.05. Statistical analyses were 

performed with GraphPad Prism (version 6.0 for mac OS, San Diego, USA). 

Results and Discussion 

Initial characterization of the soil and compost before ecopiling 

The studied soil was characterized as sandy loam texture with high total metal and PAH 

concentrations. The total average concentrations (in mg kg−1 DW) of Cu (256; 253), Co (256; 

248), Hg (14.5; 14.3) and Zn (602; 562) in Unt and Unt-10%C soils respectively exceeded the 

Swedish threshold values established for residential areas and land used for industries (Table 

6.1, Swedish EPA, 2009). The total concentrations of PHC C10-40 (alkanes) also exceeded the 

Swedish EPA threshold values (Table 6.1). Furthermore, total soil Pb and Cr were higher when 

compared to their common ranges in soils, i.e. 10-30 and 10-50 mg kg-1 DW respectively (Blum 

et al. 2012). The OM percentage, and total N and P were higher in compost compared to Unt 

and Unt-10%C (Table 6.1). Regarding the soil pore water, DO contents were lower in the Unt 

(1.15 mg L-1) and Unt-10%C (3.5 mg L-1) treatments as compared to compost (6.7 mg L-1, Table 

6.1) that may be attributed to the amount of organic compounds. The EC of the soil pore water 

indicates the relative water-soluble salt content of the soil (Sheppard et al. 2000). The EC for 

compost was lower than its values for Unt and Unt-10%C which can be an indication of lower 



 

 113 

content of soluble salts. The pH values of 6.8-6.9 denoted roughly a neutral condition of the soil 

and compost. After the addition of compost at 25, 50 and 100 Mg ha-1 (dry weight basis) into a 

metal (Cd, Cr, Cu, Ni, Pb and Zn)-contaminated soil, Alvarenga et al. (2009) reported a raise of 

the soil OM following by the increase of the soil pH and EC. However, the addition of 10% of 

compost (w/w, FW) in the Unt soil did not significantly change the soil OM, pH and EC (Table 

6.1). 

 

Table 6.1: Physicochemical parameters and contaminant concentrations (mg kg-1) of the 

compost (C), the untreated soil (Unt) and the compost-amended soil (Unp-10%C) before the 

ecopiling trial (n=9 for each parameter except for PHC: n=6, mean values are presented with 

standard deviations). Values in bold italic exceeded the Swedish threshold values established 

for residential areas and land used for industries (Swedish EPA 2009). 

 
aSwedish threshold values for residential areas (KM) and for non-sensitive land e.g. infrastructure or industries 

(MKM) (Swedish Environmental Protection Agency 2009). 
b  Background metal concentration in soils (Blum et al., 2012) 
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cPHC C10-40, petroleum hydrocarbons C10-C40. 
dPAH-L, low molecular weight PAHs: naphthalene, acenaphthene and acenaphthylene. 
ePAH-M, medium molecular weight PAHs: fluorene, phenanthrene, anthracene, fluoranthene and pyrene. 
fPAH-H, high molecular weight PAHs: benzo (a) anthracene, chrysene, benzo (b) fluoranthene, benzo (k) 

fluoranthene,benzo (a) pyrene, dibenz (ah) anthracene, benzo (ghi) perylene and indeno (123cd) pyrene. 

EC, Electrical conductivity; DO, dissolved oxygen; N, total Kjeldahl nitrogen and P, total phosphorus. 
g soil:water,1:5,w/v 

 

Ecopiling using M. sativa in monoculture 

After 5 months, the PH C10-C40, PAH-L, PAH-M and PAH-H concentrations were 

respectively reduced in average by 40%, 42%, 56% and 36% in the Unp-10%C as compared to 

the Unt-10%C soil at the beginning of the experiment (Table 6.1 and Fig. 6.3). This may be due 

to enhanced microbial activity promoting the degradation of PHC compounds after compost 

application and to potential leaching with dissolved OM. Doni et al. (2015) reported the 

effectiveness of OM (compost) application in supporting the growth and metabolic activities of 

microorganisms capable of degrading PHC. Other studies have extensively reported this 

positive influence of compost in PHC degradation (Ghanem et al. 2013; Wang et al. 2012b; 

Gandolfi et al. 2010).  

 

 
Figure 6.3: Total aliphatic hydrocarbon compounds with (a) chain lengths of C10-C40 (PH C10-

C40), (b) low molecular weight PAHs (PAH-L*), (c) medium molecular weight PAHs (PAH-
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M**) and (d) high molecular weight PAHs (PAH-H***) after five months in the unplanted ecopile 

(Unp-10%C), the ecopile planted with M. sativa (MS-10%C) and the ecopile co-planted with 

M. sativa and H. annuus (MSHA-10%C). Mean values are represented with standard deviations, 

n= 12 for each parameter. The different letters stand for statistical significance between the 

modalities at the 0.05 level with a Tukey’s test. Discontinuous line represents the concentration 

at the beginning of the experiment (Unt-10%C).  
*PAH-L: naphthalene, acenaphthene and acenaphthylene. 
**PAH-M: fluorene, phenanthrene, anthracene, fluoranthene and pyrene. 
***PAH-H: benzo (a) anthracene, chrysene, benzo (b) fluoranthene, benzo (k) fluoranthene,benzo (a) pyrene, dibenz 

(ah) anthracene, benzo (ghi) perylene and indeno (123cd) pyrene. 

 

 

After 5 months, PH C10-C40, PAH-L, PAH-M and PAH-H concentrations were 

significantly reduced in average by 20%, 18%, 40% and 38% in the MS-10%C as compared to 

the Unp-10%C (Fig. 6.3a-d). Marchand et al. (2016a) found similar results after five months for 

a greenhouse-scale aided-phytoremediation of a mixed PHC (alkanes and PAHs) and metal (Co 

and Pb) contaminated soil using compost and alfalfa. They reported that alfalfa cultivated in the 

compost-amended soil promoted Pb removal but not Co removal. These findings are in line with 

this trial using alfalfa (Fig. 6.4a-h). The decrease of total soil Pb and Cu in this study was mainly 

due to the cumulative effect of both alfalfa cultivation (which contributes to the metal removals 

from soil and the rhizodeposition) and the compost addition (which can promote soil structural 

stability, microbial activity and dissolved organic matter (DOM)). A compost amendment can 

improve soil nutrients, water provision and  favors soil porosity (Jones et al. 2016; Mench et al. 

2010a).  
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Figure 6.4: Total soil metals: (a) Mercury, (b) Chromium, (c) Cobalt, (d) Copper, (e) Lead, (f) 

Zinc, (g) Manganese and (h) Iron after five months in the unplanted ecopile (Unp-10%C), the 

ecopile planted with M. sativa (MS-10%C) and the ecopile planted with M. sativa and H. annuus 

(MSHA-10%C) in the two soil layers: 0-20 cm (L1) and 20-50 cm (L2). Mean values are 

represented with standard deviations, n= 18 for each parameter. The different letters stand for 

statistical significance between the modalities at the 0.05 level with a Tukey’s test. 

Discontinuous line represents the concentration at the beginning of the experiment (Unt-10%C). 
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Both plant species grew well in the ecopiles without any visible toxicity symptoms (Fig. 

6.2). At harvest, alfalfa biomass and water content in shoots and roots were similar in both 

planted ecopiles (Fig. 6.5). These results agreed with Jones et al. (2016) who reported that 

compost amendment improved sunflower growth in Cu-contaminated soil. After 5 months, the 

ability of alfalfa and sunflower plants to uptake metals from soil to root and translocate them to 

shoots was characterized using the BCF and the TF, respectively (Meeinkuirt et al. 2012; Novo 

et al. 2013). Metal uptake from soil by alfalfa was low as showed by all BCF values bellow 1 

(Fig. 6.6a). This may firstly result from several soil factors including the pH, the content of OM 

and Mn/Fe (hydr)oxides, which controlled metal reactions (adsorption/desorption, 

complexation, dissolution, etc.) with soil components. The pH is a crucial parameter of metal 

sorption. At soil pH 6.5-6.7 (Table 6.2), metals, e.g Co, Pb, are less soluble. Soil OM is also 

pivotal for controlling metal bioavailability. Some metals, e.g. Fe, Cu, and Pb, form strong 

organo-metallic complexes and OM content is high (>30%) in the studied soils (Table 6.1). 

Increase in soil OM after compost amendment can reduce the mobile soil Cu, Pb and Zn fraction 

(Alvarenga et al. 2009). In addition, high total soil Mn (>688 mg kg-1 dw) and Fe (>34266 mg 

kg-1 dw) suggest the presence of Mn/Fe (hydr)oxides favoring the sorption to organic molecules. 

Several metals such as Pb, Cd, and Zn are immobilized with Mn and Fe (hydr)oxides (Doni et 

al. 2015). After five months, soil chemical parameters did not differ between the MS-10%C and 

Unp-10%C soils, except EC in the soil pore water (Table 6.2). This question about the influence 

of the vegetation cover in reducing soluble salts.  

 

 
Figure 6.5: Water content (%) and shoot and root DW yields (g plant-1) of M. sativa and H. 

annuus cultivated on ecopiles planted with M. sativa (MS-10%C) and ecopiles planted with M. 
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sativa and H. annuus (MSHA-10%C). Mean values are presented with standard deviation (n=6) 

and the different letters stand for statistical significance between the treatments at the 0.05 level 

with a Tukey’s test (M. sativa) and Student-T-test (H. annuus). 

 

 

 

 
Figure 6.6: (a) Root bioconcentration factor (BCF) and (b) translocation factor (TF) of M. sativa 

and H. annuus cultivated on ecopiles planted with M. sativa (MS-10%C) and ecopiles planted 

with M. sativa and H. annuus (MSHA-10%C). Mean values are presented with standard 

deviation (n=6) and the different letters stand for statistical significance between the treatments 

at the 0.05 level with a Tukey’s test.   

 

 

 

Mn Cr Co Cu Zn Pb
0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
C
F

b b

a

b b

a

a a a
b b

a

b b

a
b

c

a

Mn Cr Co Cu Zn Pb
0.0

0.1

0.2

0.3

1

2

3

4

TF

a a

b

a
a

b

a a

b

a a a
a a

a

a
a
a

M. sativa

M. sativa
H. annuus

MSHA-10%C

MS-10%C

a

b



 

 119 

Table 6.2: Chemical parameters of the unplanted Ecopile (Unp-10%C), the Ecopile planted with 

M. sativa (MS-10%C) and the Ecopile planted with M. sativa and H. annuus (MSHA-10%C) 

after five-months (n=10 for each parameter except for pH, EC and DO: n=6, mean values are 

presented with standard deviations). The different letters stand for statistical significance 

between the modalities at the 0.05 level with a Tukey’s test. 

 soil Unp-10%C MS-10%C  MSHA5%C 

  Solid phase 

N                                                
mg kg-1 

1673 ± 155.5a 1592 ± 412.2a  1808 ± 431.6a 

P 1087 ± 166.3a 1103 ± 149.4a  1113 ± 110.5a 

Moisture 
% 

78.25 ± 3.4a 75.8 ± 1.8a 75.7± 2a 
OM  26.8 ± 4.7a 25.1 ± 4.7a 19.64 ± 4.9a 

  Soil pore water 

pH (1:1,w/v)  6.5 ± 0.1a 6.7 ± 0.0a  6.6 ± 0.0a 

EC µs cm-1 2385 ± 81.7a 1746 ± 378.8b  1710 ± 147.7b 

DO mg L-1 6.48 ± 0.7a 6.8 ± 0.2a  6.9 ± 0.2a 

EC, Electrical conductivity; DO, dissolved oxygen; N, total Kjeldahl nitrogen and P, total 

phosphorus 

 

 

Chemical parameters and total metal concentrations of leachates from Ecopiles were 

analyzed twice, after one and five months (Table 6.3). Parameters such as COD and TOC, which 

are part of the EU regulations (Directive 91/271/EEC on Urban Wastewater Treatment), are 

generally used to monitor toxic compounds in water (Aydin et al. 2015). The EC, TOC and Cu 

concentration in leachates were reduced while pH and DO increased in month 5 as compared to 

month 1 (Table 6.3). These results confirmed findings of Alvarenga et al. (2009) who showed 

a reduction of mobile Cu concentration as pH increased. Here, Mn, Co, Cr and Zn taken up by 

alfalfa were translocated to shoots as shown by their TF values >1 (Fig.6.6b), in contrast to Cu 

and Pb. Such high TF values for Mn, Co and Zn are probably due to their micronutrient role at 

low concentrations for plants growth. Shoot Cr concentration for alfalfa exceeded its common 

values (Table 6.4) (Brunner et al. 2008). This is usually observed in soil after OM amendment 

(Hattab et al. 2014). Lead concentration in alfalfa shoots was above its common values (up to 
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12.53 mg kg-1; Table 6.4) and higher than values found by Marchand et al. (2016a) for the same 

plant species growing on a soil less contaminated by Pb. 

 

 

Table 6.3: Chemical parameters and metal concentrations (µg L-1) of leachates from the landfill 

leachate treatment (WLLT), the unplanted Ecopile (Unp-10%C), the Ecopile planted with M. 

sativa (MS-10%C) and the Ecopile planted with M. sativa and H. annuus (MSHA-10%C) in 

month 1 (t1) and month 5 (t5) (n=3 for each parameter, mean values are presented with standard 

deviations). Asterisk stand for statistical significance between t1 and t5 at the 0.05 level with a 

Sidak test. 

 
aST, sampling time 

*Water from the landfill leachate treatment 

**Drinking water criteria (WHO 2011) 
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Table 6.4: Metal concentration (mg kg-1) in the shoots and roots of M. sativa and H. annuus 

grow on the Ecopile planted with M. sativa (MS-10%C) and the Ecopile planted with M. sativa 

and H. annuus (MSHA-10%C) after five-months (n=12 for each parameter except for the shoots 

of M. sativa: n=4, mean values are presented with standard deviations). The different letters 

stand for statistical significance between the modalities at the 0.05 level with a Tukey’s test (M. 

sativa) and Student-T-test (H. annuus). 

 

 
a  Common values of TE in aboveground plant parts (Blum et al., 2012) 

 

 

Ecopiling using M. sativa co-planting with H. annuus 

After 5 months, PH C10-C40 and PAH-L concentrations did not differ between 

unplanted ecopiles and the co-planted ones, but PAH (M and H) concentrations were 

significantly decreased in the co-planted ecopile (Fig. 6.3). The fates of PAH-M and H are 

mainly related to their sorption or degradation while the dominant lose mechanism for PH C10-

C40 and PAH-L is the volatilization (Howard et al. 2005; Serrano et al. 2006). Whelan et al. 

(2015a) showed that the volatilization is more pronounced in the biopile during the summertime 
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with the increase of the temperature. Here, the lack of differences in PH C10-C40 and PAH-L 

concentrations between unplanted ecopiles and the co-planted ones which could be the result of 

their similar volatilization process. Moreover, alfalfa co-planting with sunflower did not affect 

PAH (M and H) degradation but was less efficient for PH C10-C40 and PAH-L as compared to 

M. sativa in monoculture (Fig. 6.3cd, ab). This may be related to sunflower canopy which helps 

to contain easily volatile contaminants by reducing their volatilization. It may be also related to 

change in conditions or/and microbial community in their shared rhizosphere. As highlighted 

by (Ashrafi et al. 2015), rhizosphere is a competitive environment where roots of different 

adjacent plants and microorganisms compete for available resources. Under some 

circumstances, the effect of contaminant on the species' performance can be modified by the 

presence of a co-occurring species (Koelbener et al. 2008). In this study, similar to the 

monoculture, the results presented in Fig. 6.4 did not show significant reduction of the total Hg, 

Cr, Co, Zn, Mn and Fe concentrations in soils while total Pb and Cu concentrations were 

significant decreased after five months using alfalfa and sunflower as compared to the Unt10%C 

soil (Fig. 6.4a-h). Co-planting is a common agronomic practice to increase productivity and 

decrease diseases (Wang et al. 2013). We expected that the total biomass production by alfalfa 

would be increased by the use of different niches. The absence of changes in the alfalfa biomass 

and water content in shoots and roots co-planted treatment compared to alfalfa in monoculture 

indicated that sunflower did not modify its resource allocation pattern (Fig. 6.5). Shoot metals 

(Mn, Cu and Zn) removals were significantly higher in co-planting than in monoculture due to 

the high concentration of these metals in sunflower shoots (Fig. 6.7). Shoot Cu, Pb, Zn and Cr 

concentrations for sunflower exceeded their common values (Table 6.2) (Brunner et al. 2008). 

After 2 and 3 years of aided phytoextraction, Hattab-Hambli et al. (2016) also found that shoot 

Cu and Cr concentrations for sunflower exceeded their common values. The co-cropping did 

not alter the metal partitioning in alfalfa as showed by insignificant changes in BCF and TF 

values, except for Pb as its alfalfa BCF value significantly decreased in the co-planting treatment 

as compared to that in monoculture (Fig. 6.6). This result is consistent with the shoot and root 

metal concentrations of alfalfa presented in Table 6.2. Except for Pb, the metal removals in the 

co-planted treatment were not affected by the planting pattern: shoot and root Pb concentrations 

of alfalfa were significantly higher in monoculture than in co-planting (Table 6.2). However, 
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metal removals (Mn, Cr, Co, Cu, Zn and Pb ) by each alfalfa plant were similar between mono 

and co-planting treatments (Fig. 6.7).  

 

 

 
Figure 6.7: (a) Shoot metal removal (mg per plant), (b) root metal removal, and (c) metal 

removal by the whole plant of M. sativa and H. annuus cultivated on ecopiles planted with M. 

sativa (MS-10%C) and ecopiles co-planted with M. sativa and H. annuus (MSHA-10%C). Mean 

values are presented with standard deviation (n=6) and the different letters stand for statistical 

significance between the treatments at the 0.05 level with a Tukey’s test. 
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Although intercropping generally increases shoot removal in phytomanagement of 

contaminated soils, it may also change metal removal by adjacent crops (Koelbener et al. 2008; 

Ashrafi et al. 2015). For all the studied metals, sunflower BCF was significantly higher as 

compared to alfalfa in mono and co-culture (Fig. 6.6a). Both plants showed different ability for 

metals accumulation, with alfalfa better in both mono and co-culture for the allocation of Mn, 

Cr and Co to the shoots as showed by the higher TF values of these metals in alfalfa (Fig. 6.6b). 

Sunflower was more efficient to remove Mn, Cu and Zn from this contaminated soil as showed 

by the higher shoot metal removals (Fig. 6.7). Alfalfa co-planting with sunflower significantly 

reduced Mn and Pb percolation (Table 6.4). As previously found, plants and associated 

microorganisms exhibit both mobilization and immobilization effect on metals in the root zone 

depending on parameters such as the plant species, metal(loid)s and soil properties (Doni et al. 

2015; Nowack et al. 2010). 

 

 

Toxicity tests 

As organisms differ in sensitivity to various substances and earthworms and plants are pivotal 

in EU ecosystems, L. sativum and E. fetida were used for the residual risk assessment after 5 

months. Shoot DW yield of L. sativum was significantly higher for the monoculture treatment 

as compared to the untreated and the unplanted ones (Fig. 6.8a). The mixed stand of sunflower 

and alfalfa reduced the soil phytotoxicity to the highest extent as showed by the similar shoot 

DW yields of L. sativum in both co-planted and uncontaminated standard soils (Fig. 6.8a). Both 

L1 and L2 soil layers displayed similar shoot and root DW yields for L. sativum, but both root 

biomass was inhibited by all contaminated soils, with and without phytomanagement, relative 

to uncontaminated soil (Fig. 6.8a,b). Roots are directly exposed to the contaminated soils, which 

may explain their negative response as compared to shoots. Higher N and P supply (and 

therefore less need for extension of the root system) as well as high EC in the ecopile soils can 

contribute to reduce root DW yield of L. sativum.  

After 7 days and for the L1 soil layer, the mixed stand of alfalfa and sunflower best 

promoted the earthworm body weight as compared to other ecopile treatments albeit not 

significantly relative to the monoculture (Fig. 6.9). Unexpectedly, at day 14, the L1 soil 

ecotoxicity was lowest for the unplanted and the mixed stand-cultivated ecopiles. For the L2 
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soil layer at day 7, all ecopile treatments similarly decreased its toxicity for the earthworms. At 

day 14, the toxicity of the L2 soil was lower for the unplanted and monoculture treatments as 

compared to the untreated soil. As L. sativum, toxicity test with earthworms showed that these 

organisms are relevant bio-indicators of soil toxicity because of their continuous exposure to 

soil contaminants by roots and dermal contact respectively. After the 5-month trial, the residual 

soil leachate ecotoxicity based on L. minor relative growth rate (RGR) was similar for the 

monoculture and co-culture during the 21-day growth (Fig. 6.10). The leachate of both the 

monoculture and the mixed stand did not show a reduction of the toxic effect during the 21-day 

test as compared the water from the small lake located in Ingelstorp, Smedby (Fig. 6.10). This 

was consistent with the high COD and metal (Cu, Mn, Co, Pb, Zn, Cr and Fe) concentrations in 

the leachates (Table 6.4). Yu et al. (2014) reported a positive correlation between the toxicity 

indicators (Scenedesmus obliquus and Vibrio fischeri) and the COD levels of the wastewater. 

However, due to the complexity of contaminated soils and leachates, chemical parameters alone 

are not sufficient to estimate the real risks (Aydin et al. 2015).  

 

 

 
Figure 6.8: (a) Shoot and (b) root DW yields (g plant-1 DW) of Lepidium sativum cultivated (i.e. 

21-day growth period) in a standard uncontaminated soil, the untreated soil (Unt), the unplanted 

soil (Unp-10%C), the soil planted with M. sativa (MS-10%C) and the soil co-planted with M. 

sativa and H. annuus (MSHA-10%C) after 5 months of trial: 0-20 cm (L1) and 20-50 cm (L2). 

Mean values are presented with standard deviation (n=6) and the different letters stand for 

statistical significance between the treatments at the 0.05 level with a Tukey’s test).  
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Figure 6.9: Earthworm’s change in body weight (CW%) after a 14-day growth period in the 

standard uncontaminated soil, the untreated soil (Unt), the unplanted soil (Unp-10%C), the soil 

planted with M. sativa (MS-10%C) and the soil planted with M. sativa and H. annuus (MSHA-

10%C), after the 5-month trial, for both soil layers: 0-20 cm (L1) and 20-50 cm (L2). Mean 

values are presented with standard deviation (n=6) and the different letters stand for statistical 

significance between the treatments at the 0.05 level with a Tukey’s test). 

 

 

 

 
Figure 6.10: Relative growth rate (RGR) after a 5, 9, 13, 17 and 21-day growth period in the 

water from a small lake located in Ingelstorp, Smedby (Kalmar komun, Sweden), and the 

leachates from the unplanted soil (Unp-10%C), soil planted with M. sativa (MS-10%C) and soil 

planted with M. sativa and H. annuus (MSHA-10%C) after the 5-month trial (n=6, mean values 

are presented with standard deviation and the different letters stand for statistical significance 

between the treatments at the 0.05 level with a Tukey’s test). 
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Conclusion 

This pilot scale experiment was conducted for investigating the performance of ecopile 

as a remediation option for the phytoextraction of metals and phytodegradation of petroleum 

hydrocarbons (PHC) in a co-contaminated soil. The selected plant species (M. sativa and H. 

annuus) were growing on the ecopile soil, amended with compost, without visible phytotoxicity 

symptoms. The alfalfa cultivation stimulated the degradation of organic contaminants (e.g. 

PAH-M, and PAH-H); shoot metal (Pb, Cu, Mn, and Zn) removals were increased in the co-

cropping treatment as amounts were higher for sunflower than for alfalfa. Based on L. sativum 

shoot DW yield, after 5 months, phytomanaged soils were less toxic than the unplanted soil, but 

they remained ecotoxic according to L. sativum root DW yield in comparison to the 

uncontaminated soil. Further investigations will focus on testing the long term ability of 

ecopiling with alfalfa and sunflower to remediate such PHC and metal-contaminated soil. 
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Chapter 7: General highlights of the thesis and 

conclusion 

In my thesis, I focused on understanding and improving of gentle remediation 

technologies for the reclamation of contaminated soils. To achieve this goal, I integrated the 

results of soil and microorganism characterization, greenhouse and pilot field scale 

phytoremediation studies. 

 

7.1 Contaminated soil characterization 

In my work, the characterization of soils samples from a former auto scrap yards in which 

oil spill tank leakage occurred was performed. This first step aimed to understanding the 

physicochemical and biological properties of soil. It is necessary because GRO involve complex 

processes and interaction between soil particles, contaminants and biological materials. The 

investigated soils were characterized in term of physico-chemical properties, total TE and PHC 

content as well as toxicity assessment. After thirty-two years, the concentration of TE (Co and 

Pb), PHC C10-C40 (alkanes), medium (M) and high (H) molecular weight PAH in the 

investigated soils were higher than the threshold limits established by the Swedish EPA and the 

Canadian Ministry of the Environment. This result showed the potent persistence of these 

contaminant in soil. This persistence could be also related to the high percentage of OM in soil 

which favour the sorption reaction. In contrary to previous authors who reported an increase of 

pH in crude oil contaminated soil, we found an almost neutral pH in the investigated soils. We 

attributed this to the chemical interaction between PHC, TE and soil elements.  

As a consequence of the high amount of contaminant in soil, results regarding the water 

extract from those contaminated soils showed a high content of COD and TOC. These 

physicochemical analyses complemented with eco-toxicological analyses revealed a negatives 

effects of those contaminants on earthworm development and L. sativum biomass. Despite the 

decrease of the bioavailability of contaminant in soil related to the factor such as the aging 

process or the organic matter content, these results showed that the remediation of this 

contaminated soil is necessary. In contrary to seed germination, our results showed that plant 
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growth and earthworm development were suitable to assess the toxicity of PHC and TE due to 

their sensitivity for those contaminants. Thus, these bioassays were used as a screening tools to 

ass soil remediation in the next experiments. Moreover, results obtained during the respirometric 

tests showed an inhibition effect of TE and a stimulatory effect of PHC on soil respiration. This 

high respiration of microbial community in PHC contaminated soil could be attributed to the 

mineralization of OM or/and organic contaminants by the viable indigenous microbial 

community. Thus, both the stimulation and the cultured of these indigenous hydrocarbon 

degraders have been studied. 

 

7.2 Microorganisms characterization 

The cultured of hydrocarbon degraders that can be used in situ to enhance the 

bioremediation of PHC contaminated soil was study is the chapter 4. First, both nutrient-rich 

(standard media) and impoverished media supplemented with various types and concentration 

of PHC (selective media) have been used in order to isolated and to identify indigenous 

microorganisms which have the metabolic capacity to degrade PHC.  

Total of 781 bacterial strains belonging to 88 OTUs and 279 fungal strains belonging to 49 

OTUs were isolated and sequenced from slightly contaminated (SC), contaminated (C), and 

highly contaminated (HC) using seven standard and selective culture media per microbial group. 

Although cultivation allow to isolated a small proportion of microorganisms which even 

represented rare taxa in CI dataset, these microbial communities could be more efficient for the 

PHC degradation than the most abundant one. Thus screening assays were performed on 95 

bacterial and 160 fungal strains in order to evaluate their petroleum biodegradation efficiency. 

We looked at how soil contaminant concentration, stain phylogeny and isolation culture media 

related to PHC bioremediation potential. Results showed that fungal and bacterial isolated from 

soil that was lightly, moderately and highly contaminated with PHC was equally efficient and 

the type of culture medium did not impact the biodegradation. But the taxonomy had a strong 

effect on PHC biodegradation. Three strains: Trichoderma tomentosum, Fusarium oxysporum 

and Rhodococcus sp were identify due to their high efficiency to degrade PHC. Since my 

hypothesis that microorganisms indigenous from highly PHC contaminated soil would more 
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efficiently degrade PHC than those isolated from lightly contaminated soil was reject, I decided 

to focus more on the the stimulation of indigenous hydrocarbon degraders. This have been done 

in the greenhouse experiment by supplying limiting nutrients and by improving the physico-

chemical properties of the contaminated soil. 

 

7.3 Greenhouse phytoremediation 

During a 5-mounth greenhouse trial, the efficiency of M. sativa singly and combined 

with compost have been used for the degradation of organic pollutants and the phytostabilization 

or extraction of TE. M. sativa cultivated in this contaminated soil without compost did not lead 

to the rhizodegradation of high molecular weight PAH and the removal of soil Co, As, and Pb. 

In addition to the difficulty related to the use of aged co-contaminated soils and the complexity 

of these pollutants, soil characteristics such as the high content of organic matter are favor the 

the sorption to soil particles. However, aided-phytoremediation of this contaminated soil using 

compost and M. sativa promoted Pb removal, PHC degradation, plant growth and survival. We 

attributed this to the cumulative impact of the nutrient supply, the dilution effect related to 

compost addition as well as a better phytoextraction and phytodegradation by M. sativa, which 

was more vigorous in the amended soil. Ecotoxicological tests after phytoremediation also 

showed a positive compost incorporation into contaminated soil. However, the remediation in 

this study was limited by different factor like the low TF and ECR of TE, molecular weight of 

PAH and the limiting growing period (5 months). These results bring important information that 

have been used on pilot field scale experiment. 

 

7.4 Pilot field scale experiment 

A pilot field scale experiment was conducted to investigate the application of ecopile as 

suitable remediation technology for the phytoextraction of heavy metals and phytodegradation 

of petroleum hydrocarbons (PHC) in co-contaminated soil. Results presented in this thesis were 

obtained during the two growing seasons: 5 months (Paper V) and 17 months (Paper VI). 
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After 5 months, The PH C10-C40 and PAH-L concentrations did not differ between 

unplanted ecopiles and the co-planted ones, but PAH (M and H) concentrations were 

significantly decreased in the co-planted ecopile. This lack of differences could be the result of 

their similar volatilization process. Moreover, alfalfa co-planting with sunflower did not affect 

PAH (M and H) degradation but was less efficient for PH C10-C40 and PAH-L as compared to 

M. sativa in monoculture. In this study, similar to the monoculture, the results did not show 

significant reduction of the total Hg, Cr, Co, Zn, Mn and Fe concentrations in soils while total 

Pb and Cu concentrations were significant decreased after five months using alfalfa and 

sunflower. Moreover, metal uptake from soil by alfalfa was low as showed by the general BCF 

values <1. Here, Mn, Co, Cr and Zn taken up by alfalfa were translocated to shoots as shown 

by their TF values >1, in contrast to Cu and Pb. Metal removals (Mn, Cr, Co, Cu, Zn and Pb) 

by alfalfa were similar between mono and co-planting treatments. Sunflower and alfalfa showed 

different ability for metals accumulation, with alfalfa better in both mono and co-culture for the 

allocation of Mn, Cr and Co to the shoots. However, sunflower was more efficient to remove 

Mn, Cu and Zn from this contaminated soil. After 17 months, PH C10-C40, PAH-L, PAH-M 

and PAH-H concentrations were reduced in average by 80%, 60%, 50% and 40% in the study 

treatments as compared to the soil at the beginning of the experiment (Paper VI). This 

remediation process also allows the removal of 20% of the study metals after 17 Months (Paper 

VI). 

 

7.5 Conclusion 

My thesis focused on the understanding and the improving of gentle remediation 

technologies for the local treatment of polluted land, without need of transportation of the 

pollutants though the city. To achieve this goal, plants (alfalfa and sunflower) and their 

associated microbial communities have been used to remediate aged co-contaminated soils at 

different scales. The processes involved are complex and imply interactions between soil 

characteristics, plants, microorganisms and environmental factors. Major results and findings 

are presented below:  

1. The main contaminants found in the studied soils are PHC (alkanes, PAH-M and PAH-

H) and TE (Zn, Co, Cr, and Pb). (Papers I-VI) This finding are in agreement with the 
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most common environmental contaminants found at contaminated sites, in order of 

abundance. 

2. The combined approach using physico-chemical and ecotoxicological analysis allow a 

better characterization of these contaminated soil (Papers I, IV-VI). 

3. Soil microorganism’s respiration, earthworm’s development and L. sadivum growth 

were highly sensitive biological indicators of soil quality. However, the two last toxicity 

tests were more adequate to obtain fast answers with low costs. The respirometer needs 

constant maintenance and frequent calibration (Papers I, III and IV).  

4. PHC and TE containing in these soils had a negative effect on L. sativum shoot and root 

dry biomass as well as on earthworm’s development (Papers I, IV-VI). These two groups 

of contaminants have different effect on soil microorganisms: PHC increase the total 

microbial activities in soils due to the transformation/mineralization of readily organic 

pollutants while TE inhibit soil microorganism respiration. 

5. The nutrient-rich (standard culture media) and impoverished media, supplemented with 

various hydrocarbons form and concentration (selective culture media) did not influence 

the ability of microorganism isolates to effectively degrade PHC (Paper III). 

6. The long-term exposure of soil microorganisms to high PHC concentration did not also 

influence the ability of isolates to effectively degrade PHC. However, phylogenetic 

affiliation had a significant effect on the biodegradation of PHC. In laboratory 

conditions, Rhodococcus sp., Trichoderma tomentosum, and Fusarium oxysporum 

effectively enhance the biodegradation of PAH compounds (Paper III). 

7. Compost used at the rate of 10-30% (w/w, fresh soil FW) have a positive effect on M. 

sativa growth, survival rate, shoot Pb concentrations and PHC degradation due to the 

increase of microbial activity (Paper IV-V). 

8. The selected plant species (M. sativa and H. annuus) grew well on the contaminated soil, 

amended with compost, without visible phytotoxicity symptoms and modification of the 

resource allocation pattern of one plant by the other ones (Paper IV-VI). The alfalfa 

cultivation stimulated the degradation of organic contaminants (e.g. alkanes, PAH) and 

the phytoextraction of Pb and Cu. Co-planting was less efficient than alfalfa in 

monoculture regarding PH C10-C40 and PAH-L degradation but shoot metal (Pb, Cu, 

Mn, and Zn) removals were increased in the co-cropping treatment (Paper IV-VI). Both 
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plants showed different ability for metals accumulation, with alfalfa better for the 

allocation of Mn, Cr and Co to the shoots and sunflower more efficient to remove Mn, 

Cu and Zn from contaminated soil. 

9. The phytomanaged soils were less toxic than the unplanted soil, but they remained 

ecotoxic in comparison to the uncontaminated soil. The remediation of these 

contaminated soils was limited by different factors like the molecular weight of PAH, 

the metabolic activity of the plant and the limited growing period (5 months in the 

greenhouse and 5 to 17 months in the pilot field scale). 

 

 

7.6 Recommendations 

Even though phytoremediation is beneficially used for the remediation of co-contaminated 

soil as in this thesis, this technology is far from being optimize and there are still aspects to be 

improved and considered: 

1. A better attention needs to be addressed to the characterization of the soil before and 

after the phytoremediation for a better management of the environmental problems. 

2. The used of E. fetida and L. sadivum as a screening tool to assess soil contamination or 

its remediation are recommended.  

3. Compost at 10% of soil (v/v) as source of microbial inoculants can be used as source of 

microbial inoculants in alternative to the isolation, the cultivation and the 

characterization of the best performing microorganism to degrade PHC.  

4. Since the process of in situ aided-phytoremediation of mixed contaminated soils is 

complex, the investigation of parameters such as different combinations 

amendment/plant for reducing the pollutant linkages are recommended. 

5. Results presented in this thesis were obtained during the two-growing season: 5 months 

(Paper V) and 17 months (Paper VI) and several more harvests are strongly 

recommended for the fully remediation of this contaminated soil. 
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7.7 Future Research 

My overall research results can be used as ground information for further studies 

examining the long-term ability of phytoremediation with alfalfa and sunflower to remediate 

such PHC and metal-contaminated soil. The results obtained in my thesis brings important 

information and it documented that biological toxicity tests are important in soil characterization 

along with physico-chemical analyses. My thesis shed light for further studies on full scale and 

can be used to scale-up phytoremediation using different plant species. Thus, future researches 

are need and they should include long-term trials with different combinations of 

amendment/plant species for a better remediation of contaminated soil. In order to contribute to 

the sustainability of phytoremediation, a special attention should be addressed to the soft re-use 

of brownfields by the creation of public green space and the management of the generated 

biomass (reduced by compaction, composting or thermal treatments for disposal; or used to 

metals recovery).  
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