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Résumé 

Les céramides, dont la structure comporte une chaîne hexadecanoyle (CerC16), une 

chaîne considérée comme de longueur moyenne, sont des sphingolipides impliqués dans de 

nombreuses pathologies telles que l’obésité, le diabète, la maladie de Parkinson ainsi que 

certains types de cancer. La première partie de mon projet de M.Sc. a consisté à utiliser la 

calorimétrie différentielle à balayage (DSC de l'anglais differential scanning calorimetry) et la 

spectroscopie RMN séquentielle à l'état solide du deutérium (2H) et du 31P afin d’étudier l'impact 

du CerC16 (<20 mol%) sur le polymorphisme de la 1-palmitoyl-2-oléoyl-sn-glycéro-3-

phosphoéthanolamine (POPE). Les résultats montrent que le CerC16 a un impact majeur.  Il 

élargit la transition de phase lamellaire gel-fluide (Lβ‒Lα) et la décale vers les hautes 

températures, ce qui entraîne la création de larges régions de coexistence Lβ/Lα dans le 

diagramme de phase du système. La présence du céramide entraîne également un élargissement 

de la transition de phase Lα‒hexagonale inverse (HII) ainsi qu’une diminution de la température 

qui lui est associée. Lorsque la proportion de CerC16 dans la membrane de POPE est supérieure 

à 12-13 mol%, les deux transitions se chevauchent, ce qui entraîne la coexistence des trois 

phases. Ce chevauchement conduit à une transition de phase directe Lβ‒HII. De manière générale, 

le céramide entraîne donc une multitude d’effets sur les propriétés de la membrane lipidique, de 

la variation de sa fluidité à la modulation de son rayon spontané de courbure. 

Certains alcanes de longueurs variables ont le potentiel de favoriser la transition Lα-HII de 

différentes phosphatidyléthanolamines (PE). Dans la seconde partie de mon M.Sc., j'ai 

caractérisé les impacts du n-décane-d22 (10 mol%), un alcane à courte chaîne, sur le 
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polymorphisme de la POPE, en exploitant les mêmes techniques de spectroscopie RMN que 

précédemment. J’ai montré que, malgré une diminution significative de la température associée 

au début de transition Lα‒HII, la température de la fin de transition restait quant à elle 

sensiblement inchangée. Globalement, la transition est donc élargie. Nous proposons que les 

molécules de n-décane se localisent au niveau des bouts de chaînes acyles de la POPE en phase 

Lα, ce qui engendre des compressions et des contraintes. Il en résulte un décalage du début de 

transition Lα‒HII vers les basses températures. Lorsque la température augmente, de plus en plus 

de molécules de n-décane sont transférées vers la phase HII, ce qui réduit les contraintes sur les 

chaînes acyles de la phase Lα. Le décane comble les espaces entre les cylindres HII et favorise aussi 

de cette manière la phase non-lamellaire. 
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Abstract 

Ceramide C16 (CerC16), a mid-chain sphingolipid bearing a hexadecanoyl chain, is 

involved in several diseases such as diabetes, obesity, Parkinson, and certain type of cancers. In 

the first part of my M.Sc. project, I employed differential scanning calorimetry (DSC) and 

sequential 2H and 31P static solid-state NMR spectroscopy to study the role of CerC16 ( ≤ 20 

mol%) in modifying the polymorphism of 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (POPE). The results demonstrate that CerC16 has major impacts. It 

broadens the gel‒fluid lamellar (Lβ‒Lα) phase transition and shifts it toward higher temperatures.  

This effect leads to the creation of a wide Lβ/Lα coexistence region in the phase diagram of the 

system. CerC16 also broadens the Lα‒inverted hexagonal (HII) phase transition and shifts it 

towards lower temperatures. When CerC16 proportion in POPE bilayers is ≥ 12-13 mol%, the 

two transitions overlap, leading to a three-phase coexistence line in the phase diagram.  Such a 

phenomenon leads to a direct Lβ‒HII phase transition. Globally, CerC16 can have a wide range of 

effects on membrane properties, from varying its fluidity to modulating its curvature.  

Alkanes of various chain lengths are able to promote the Lα‒HII transition of different 

phosphatidylethanolamines (PE). In the second part of my M.Sc. thesis, I investigated the impacts 

of 10 mol% n-decane-d22, a short alkane, on the polymorphism of POPE, using sequential 2H and 

31P solid-state NMR spectroscopy. The results show that although, n-decane causes a significant 

downshift in the onset temperature of the Lα‒HII transition, it does not shift considerably the end 

of the transition.  As a consequence, a very broad Lα‒HII transition is obtained. It is inferred that 

n-decane molecules are found within the lower part of the POPE acyl chains in the Lα phase. This 
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location increases the chain packing stress and consequently, initiates the Lα‒HII transition at 

lower temperatures. Upon increasing temperature, more and more n-decane molecules are 

transferred to the HII phase; the relocation not only decreases the chain packing stress in the Lα 

phase, but also allows the decane molecules to fill the interstitial void spaces between the HII 

cylinders.  
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Chapter 1: Introduction 

1.1 How do some lipid bilayers adopt non-bilayer morphologies? 

The ability of lipids to self-assemble into dynamic microstructures is of central importance 

since living cells are highly dependent on the proper functioning of self-assembled 

microstructures such as their plasma membrane (Fig. 1.1). In water, lipid molecules gather 

together to form self-assembled microstructures because the head group and the acyl chains 

have different polarities. In fact, they arrange themselves in a way, so that the polar (hydrophilic) 

head groups are in contact with polar water molecules, and the apolar (hydrophobic) acyl chains 

are shielded in the middle of the aggregate, away from the water medium. Depending on some 

specific factors, lipid molecules can self-assemble into a variety of morphologies (different 

phases), such as gel (Lβ), liquid crystalline (Lα), or inverted hexagonal (HII) (Fig. 1.2); this 

phenomenon is called “polymorphism”. The factors influencing the morphology of the self-

assembled structures could be related to molecular features such as the bulkiness of the polar 

head group and the length of the apolar acyl chain, as well as external conditions such as 

temperature, pH, etc. The variations of these factors may cause the conversion of one phase to 

another, i.e. a phase transition. 

Cellular membranes have a highly dynamic behavior as they are in constant interactions 

with other cells, as well as the surrounding medium. They not only have to preserve their lamellar 

morphology at large scale, but also need to maintain their molecular dynamics at smaller scales 

(1, 2). To obtain a balance between the stability and dynamics of their membranes, living cells 

employ a combination of lipid species. As a comparison between different lipid species, 
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phosphatidylcholine (PC) forms stable lipid bilayers under physiological conditions. Conversely 

phosphatidylethanolamine (PE) and diacylglycerol (DAG) can exhibit both bilayer and non-bilayer 

structures under different conditions. As a consequence, their presence in PC bilayers can 

destabilize the lamellar structure (3). The presence of lipids capable of forming non-bilayer 

structures is essential in the proper functioning of cell membranes. For instance, they can 

mediate protein‒lipid interactions and modulate protein activity (4). 

 

 

Fig. 1.1: A schematic of the eukaryotic plasma membrane. The various phospholipid species are 

shown in different colors. The figure was reproduced by permission from the Nature Reviews 

Molecular Cell Biology (5). 
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Non-bilayer lipids can also modulate the local curvature of lipid bilayers (6). As an 

indication of their important role, one can imply to some microorganisms that alter the ratio 

between their bilayer and non-bilayer forming lipids as a function of the environment 

temperature (7). Besides the dynamic regulation of the bulk lipid composition, cell membranes 

display asymmetric lipid distribution between the two monolayers. For instance, in plasma 

membranes, PE and phospho-L-serine (PS), are accumulated within the monolayer in contact 

with the cytoplasm (6, 8). 

Considering a relaxed lipid bilayer at equilibrium, the balance of all the lateral forces, both 

attractive and repulsive, applied on the different parts of either of the monolayers must set the 

pressure integral on the bilayer (𝜋) to zero (Fig. 1.3). A lipid monolayer is formed of three 

different parts: the head groups, the acyl chains, and the head group/acyl chain interface.  The 

later has a very critical role since any increase in this area is energetically costly, and leads to an 

exposure of the acyl chains to water. The head groups can be affected by environment conditions 

and a change in their structure can result in perturbing the pressure profile and consequently, 

the stability of the lipid bilayer. Globally, an uneven distribution of the positive and negative 

forces applied across the different parts of a lipid bilayer leads to a nonzero integral torque (T) 

that can bend the monolayers in opposite directions. As a comparison, the entropic repulsion is 

more significant in the lipid bilayers consisted of lipids with bulky acyl chains. The strong entropic 

force then powerfully pushes the acyl chains apart resulting either the lipid monolayers to 

acquire higher degrees of curvature and eventually be separated. However, this monolayers 

separation is unfavorable from a thermodynamic point of view as it would create voids inside the 

membrane (9). 
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Fig. 1.2: Schematics of (A) gel 

(Lβ), (B) liquid crystalline (Lα), 

and (C) inverted hexagonal (HII) 

phases. 
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Therefore, the unbalance torque results in the creation of an “elastic stress” stored in the 

bilayer. This stress could be accumulated until a critical value that is intrinsic for a given bilayer 

and correlated with the shape of the constituent lipids (10). If the accumulated elastic stress 

exceeds the critical value, the two monolayers separate apart, forming non-bilayer phases such 

as hexagonal (HI), inverted hexagonal (HII), inverted micellar cubic (QII), etc. For example, it was 

shown that CerC16, a sphingolipid bearing a small head group and used in the present work, 

induce a decrease in the Lα‒HII transition temperature of 1,2-dierucoyl-sn-glycero-3-

phosphoethanolamine (DEPE) (11). 

 

Fig. 1.3: A schematic of the pressure profile (𝜋) due to the lateral forces (blue arrows) applied 

across the different parts of a relax bilayer at equilibrium. The figure was reproduced by 

permission from the Cold Spring Harbor Perspectives in Biology Journal (10). 

 

 

Another model that rationalizes the different phase behavior of various lipids is based on 

the intrinsic molecular morphology of each lipid. The shape of a lipid molecule can be 

characterized by a packing parameter, 𝑃, defined as  𝑃 = 𝑉 𝑎𝑙⁄  where 𝑉 is the specific volume 

occupied by the acyl chains, 𝑎 is the area per lipid molecule at the polar/apolar interface, and 𝑙 
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is the effective length of the acyl chains (12). The 𝑃 parameter describes the effective shape of 

the lipid molecule in fluid state: 𝑃 ≈  1 for cylinder shape molecule such as 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC), 𝑃 > 1 for cone shape lipids such as 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphoethanolamine (POPE), and 𝑃 < 1 for inverse cone shape lipids such as 

lysophosphocholine (LPC) (Fig. 1.4). In fact, one could make a bridge between the two 

abovementioned models ‒ torque model and intrinsic molecular morphology model, as 𝑃 defines 

the spontaneous curvature (SC) of a lipid monolayer (13); SC is obtained when the torque applied 

across the lipid monolayer is zero, and thus, the curvature of the lipid monolayer is imposed by 

the morphology of the constituent lipid molecules. It should be noted that in case of the 

multicomponent monolayers, the curvature is approximately the average of those of all the lipid 

constituents (14). Monolayers constructed by cylindrical lipid molecules (𝑃 ≈  1) form bilayers 

under zero SC condition. However,  lipids with 𝑃 ≠ 1 inserted in bilayers have to “reshape” into 

cylindrical morphologies. This lipids reconfiguration into cylindrical morphologies causes stress 

on the bilayers as 𝑉, the acyl chain volume of the lipids, must remain constant, and thus, the acyl 

chains have to be either stretched or squeezed.  

Globally, the P value illustrates how far a bilayer curvature diverges from the SC, or in 

other words, how strong the stored stress propels the bilayer toward non-bilayer morphologies. 

The transformation of lipid bilayer to non-bilayer morphologies is a typical example of lipid 

polymorphism (7). It should be noted that different lipid molecules with 𝑃 > 1, could make 

“inversed” non-bilayer phases of various morphologies such as HII, QII, etc. As an example, one 

could mention about the hexagonal (HI) and inversed hexagonal (HII) phases in which the 

monolayers fit into closely packed cylindrical structures. The only difference between these two 
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phases is the orientation of the molecules relative to the cylinders. In the HI phase, the acyl chains 

are toward the center of the cylinders while they point away from the cylinder center in the HII 

phase, the middle of the cylinder being filled with water. 

 

 

 

Fig. 1.4: The structure and main phase transition temperature of (A) POPC, Tm = -2.6 oC (15), (B) 

POPE, Tm = 25 oC, (C) 16:0 LPC, Tm = 3.4 oC (16), and (D) CerC16, Tm = 91 oC (17).  
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1.2 Brief introduction to the project 

My M.Sc. project is focused on two main aspects: 

 Ceramide-C16 as a versatile modulator of phosphatidylethanolamine 

polymorphism, 

 Characterization of n-decane distribution within phosphatidylethanolamine Lα/HII 

phases. 

 

1.2.1 Ceramide-C16 is a versatile modulator of phosphatidylethanolamine polymorphism 

As the first part of the project, I studied the effects of CerC16, an important sphingolipid 

involved in several diseases such as diabetes, obesity, Parkinson, etc., on the polymorphism of 

POPE membrane. It has been reported that CerC16 exhibits a Lβ‒Lα transition at ~91 oC (17), while 

POPE goes through two phase transitions: a Lβ‒Lα phase transition at ~25 oC (18), and a Lα‒HII 

phase transition at ~71 oC (19). The findings are presented in chapter 2; it corresponds to a 

publication accepted by Biophysical Journal. I employed DSC for measuring the thermal behavior 

of both pure POPE and POPE/CerC16 dispersions of various molar fractions. I also used 

sequentially 2H and 31P-NMR spectroscopy for calculating the phase distribution, as well as 

measuring the acyl chains dynamic of either the components ‒ POPE and CerC16, within various 

phases at different temperatures.  
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1.2.2 Characterization of n-decane distribution within phosphatidylethanolamine Lα/HII phases 

As the second part of the project, I studied how n-decane, a simple aliphatic chain, is 

distributed in the Lα/HII phases of POPE. The promotion of HII phase of POPE by n-decane was 

also investigated. Similar to the first part of the project, sequential 2H and 31P solid-state NMR 

spectroscopy at different temperatures was employed for measuring the phase distribution of 

both components ‒ POPE and n-decane, within either the phases at different temperatures. 

  

1.3 Techniques 

1.3.1 Differential scanning calorimetry (DSC)  

In DSC the amount of energy absorbed or released by a sample is measured with respect 

to that of a reference, providing quantitative and qualitative data on endothermic (heat 

absorption) and exothermic (heat evolution) processes. Technically, a differential method is 

applied to continuously measuring the heat flow into the sample, and equalizing the implicit heat 

gains and losses between the sample and the reference (20). Since heat flow is measured under 

constant pressure in DSC, the variation of heat flow into the sample is equivalent to enthalpy 

changes, (
𝑑𝑞

𝑑𝑡
)

𝑃
=

𝑑𝐻

𝑑𝑡
 . The Heat capacity of the sample, 𝐶𝑃, is determined as: 

𝐶𝑃 = ∆ (
𝑑𝐻

𝑑𝑇
)

𝑃
                                                                                                                                     Eq. 1.1 

By rearranging Eq. 1.1 as,  
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𝐶𝑃 = Δ (
𝑑𝐻

𝑑𝑇
)

𝑃
= ∆

𝑑𝐻

𝑑𝑡

𝑑𝑡

𝑑𝑇
= Δ (

𝑑𝑞

𝑑𝑡
)

𝑃

𝑑𝑡

𝑑𝑇
                                                                                  Eq. 1.2 

where (
𝑑𝑞

𝑑𝑡
)

𝑃
is the variation of the heat flow into the sample and  

𝑑𝑡

𝑑𝑇
 is the inverse of the 

temperature scan rate, one can plot the changes in the heat capacity of the sample versus 

temperature ‒ 𝐶𝑃 thermogram. Finally, one can calculate the total enthalpy of a phase transition 

of the sample by integrating the area under the peak of the obtained 𝐶𝑃 thermogram as, 

Δ𝐻 = ∫ 𝐶𝑃𝑑𝑇
𝑇2

𝑇1
                                                                                                                                      Eq. 1.3 

 (Fig. 1.5). The thermograms of a lipid mixture, generally much broader than those of its pure 

lipid constituents, that allows determining the phase coexistence regions. 

 

Fig. 1.5: The concentration normalized heat capacity thermogram of a pure POPE dispersion. 

Noted that the arrows presented on the thermogram indicate the beginning, 1, and the end, 2, 

of the Lβ‒Lα transition of the POPE dispersion used in measuring the integral of the thermal peak. 
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1.3.2 Solid state nuclear magnetic resonance  

Solid state nuclear magnetic resonance (NMR) spectroscopy is a useful technique 

commonly exploited in a wide range of applications, from characterizing the synthetic products 

to studying the molecular structure of some complex systems such as catalysts, polymers, and 

proteins. In a solid compound, molecules do not move as freely as they do in liquids.  

The nucleus spin number (𝐼) is the main parameter that defines the kind of coupling 

interaction that various nuclei go through with the external magnetic field. As a global 

classification based on 𝐼, different nuclei can be categorized into two groups of  𝐼 = 1 2⁄  such as 

1H and 31P, and 𝐼 > 1 2⁄  (quadrupolar nuclei) such as 2H.  Overall, there are 2𝐼 + 1 energy levels 

characterized by the nucleus spin quantum number (𝑚𝐼). While nuclei of 𝐼 = 1 2⁄  divided to two 

energy levels [𝑚𝑙 = + 1 2⁄ , − 1 2⁄ ], there are three [𝑚𝑙 = +1, 0, −1] for the nuclei of 𝐼 = 1. 

Nuclei of 𝐼 > 1 2⁄  possess non-spherical charge distributions. The charge asymmetry of the 

quadrupolar nuclei can couple with electric-field gradients, EFG. This phenomenon is responsible 

for the so-called “quadrupolar splitting” seen in the solid-state NMR spectra of the 𝐼 > 1 2⁄  

nuclei. In this project, I have performed static solid-state NMR of phosphorus (31P, 𝐼 = 1 2⁄ ), this 

nucleus being present in the polar head group of POPE, and of deuterium (2H, 𝐼 = 1), using 

perdeuterated acyl chains of either N-palmitoyl-D-erythro-sphingosine (CerC16-d31) or POPE-d31 

or n-decane-d22. The phenomena leading to the peak broadening, namely, chemical-shift 

anisotropy (CSA) and quadrupolar splitting, are presented in the next section.  
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1.3.2.1 Chemical-shift anisotropy (CSA) 

The CSA is one of the factors that has major influences on defining the broadness and shape of 

the 31P powder pattern in the solid-state NMR spectroscopy. The origin of CSA can be explained 

considering the fact that the electron cloud around such nucleus does not display a spherical 

shape. Since the electron density affects the resonance frequency of a nucleus (the chemical 

shift), the orientation of the electron cloud, and thus, the orientation of the molecule with 

respect to 𝐵0 defines the resonance frequency of a nucleus in a solid sample. The CSA of a 𝐼 =

1 2⁄  nucleus is representative of the asymmetric electron distribution around the nucleus (Fig. 

1.6A). The chemical shift anisotropy can be represented by a diagonalized tensor ‒ a 3 × 3 matrix 

with non-zero elements only on the diagonal. The highest and lowest chemical shifts are referred 

as 𝛿11 and 𝛿33 ‒ the first and third principal axis, respectively. The chemical shift value of 𝛿22 ‒ 

the one between 𝛿11 and 𝛿33, is perpendicular to both δ11 and δ33. Since numerous crystalline 

regions of random orientations are found in powders, the signal superposition of such crystalline 

regions defines a spectrum line shape schematically represented in Fig. 1.6B. 
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Fig. 1.6: (A) A schematic representation of the orientation effect of the ellipsoidal CSA principal 

values of a single nucleus of 𝐼 = 1 2⁄ . (B) The effect of random orientation of various crystalline 

regions leading to a powder pattern line shape. 
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As mentioned earlier, lipid molecules experience various motion restrictions in different 

phases. In the case of Lβ phase, the motions are highly restricted, giving rise to a wide powder 

pattern because of the limited averaging of the CSA. In Lα phase, the lipid molecules rotate fast 

(on the NMR time scale) around their main molecular axis. This rotation results in averaging the 

chemical shift tensor that is reduced to 2 components: 𝛿∥, the parallel component and 𝛿⊥, the 

perpendicular component with respect to the symmetry axis of the molecules. For liposomes in 

the Lα phase, a powder pattern typical of axial symmetry is obtained (Fig. 1.7; top). In the case of 

the HII phase, lipid molecules experience a second fast rotation: their diffusion around the main 

axis of symmetry of the HII phase cylinders. This additional motion results in further averaging of 

the chemical shift tensors and reduces the CSA by a factor -1/2 compared to that of the Lα phase 

(Fig. 1.7B). In some lipid phases, such as inverted micellar cubic (QII), there could be isotropic 

motions causing complete averaging of the CSA; a very narrow peak similar to those of liquid 

samples appeared at 𝛿𝐼𝑆𝑂. 

The 31P solid-state NMR signal of phospholipids could also be broadened because of 31P‒

1H coupling interaction as several 1H nuclei exist around the phosphorus nucleus. To eliminate 

this coupling, one needs to use a 1H decoupling technique. Although, there are various 

techniques that could be utilized to decouple 1H‒31P interactions, they are all based on the 

introduction of a radio frequency (RF) pulse at the 1H frequency. In this project, I used a low-

power decoupling method so-called “Waltz65”. The reason I chose a low-power decoupling 

technique was to avoid thermal perturbation of the sample.   
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Fig. 1.7: 31P-NMR spectra of (top) lamellar (Lα), and (bottom) inverted hexagonal (HII) phases of 

POPE. The averaged chemical shift tensors, 𝛿⊥ and 𝛿∥, are schematically presented for each 

phases. 
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1.3.2.2 Quadrupolar splitting 

Regardless of its poor abundance, but because of the valuable information that could be 

obtained from, deuterium (2H, 𝐼 = 1) has been one of the most studied quadrupolar nuclei in all 

fields (21, 22). Since 2H has a small electron cloud and a fairly low gyromagnetic ratio (~1 7⁄  of 

1H), this nucleus displays a small chemical shift of ~3‒4 ppm. However, 2H spectrum of a solid 

sample could be as wide as ~100 kHz. The origin of the 2H spectrum broadness is the quadrupolar 

interactions. As mentioned earlier, nuclei of 𝐼 = 1 such as 2H display three energy levels, 

[+1, 0, −1].  Once placed in an external magnetic field, 2H nuclei are allowed to perform two 

transitions: +1 → 0 and 0 → −1.  Taking in into account only the Zeeman interaction, the two 

transitions should involve the same amount of energy, i.e. they should occur at the same 

frequency. However, the quadrupolar interactions disturb the Zeeman energy levels, so the 

energy differences associated with the two transitions are no longer equal.  The strength of these 

interactions is described by the quadrupolar coupling constant, 𝜔𝑄, which is relative to 𝑄, the 

nuclear electric quadrupole moment of the nucleus (Fig. 1.8A). 𝑄 defines how strong a 

quadrupolar nucleus interacts with the electric field gradient. Because 2H has a relatively small 𝑄 

value (3 × 10−31 𝑚2), its 𝜔𝑄 is around 100‒300 kHz (23); as a comparison, 𝜔𝑄 of 14N is ≥ 3 MHz 

(24). 

The powder pattern of quadrupolar nuclei, depends on the asymmetry parameter, 𝜂 =

𝑉𝑥𝑥−𝑉𝑦𝑦

𝑉𝑧𝑧
 where 𝑉𝑥𝑥, 𝑉𝑦𝑦, 𝑉𝑧𝑧 are the principal components of the electric field gradient around the 

nucleus. Similar to CSA, the first-order quadrupolar coupling is dependent on the orientation of 

the molecules with respect to 𝐵0.  
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Fig. 1.8: (A) A schematic representation of the disturbance effect of the first-order quadrupolar 

coupling on the two equal Zeeman transitions of the 𝐼 = 1 nuclei of a single crystal. (B) A 2H 

quadrupolar coupling powder pattern when the asymmetry parameter, 𝜂, is zero.  
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The carbon-deuterium bonds found on a perdeuterated lipid acyl chain display an electric field 

gradient that has a cylindrical symmetry, with an axis of symmetric along the C-D bond.  Therefore 

𝑉𝑥𝑥 is equal to 𝑉𝑦𝑦, which makes 𝜂 become zero. Once  𝜂 = 0, the quadrupolar coupling of 2H 

nuclei is defined as 𝜐𝑄 =
3

4

𝑒2𝑞𝑄

ℎ
(3𝑐𝑜𝑠2𝜃 − 1), where 𝑒, 𝑞, 𝑄, and ℎ are the electron charge, the 

nucleus charge, the nucleus electric quadrupole moment, and the Planck constant, respectively. 

Therefore, 𝜐𝑄 displays an orientational dependency to 𝜃, the angle between 𝑉𝑧𝑧 and 𝐵0. 

Therefore, the resulting powder pattern is represented by a “double-horn” spectrum as shown 

in Fig. 1.8B. 

 

 

Fig. 1.9: A schematic representation of the effect of different C‒2H motions along a lipid acyl 

chain on the powder patterns. 
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It should be noted that various C‒2H bonds along to a lipid acyl chain display different 

motions dependent on how far they are positioned from the polar head group (Fig. 1.9). In other 

words, the level of restriction applied on different C‒2H bonds along to the lipid acyl chain varies 

with the most for those close to the head group to the least for the terminal methyl. This variation 

in the level of motion demonstrated by different C‒2H bonds produces a series of superimposed 

powder patterns which are more visually resolved in the case of a Lα phase spectrum (Fig. 1.10B). 

The other aspect that has significant impact on the powder patterns of a deuterated lipid acyl 

chain is the different motions that lipid molecules experience in various phases. As an example, 

lipids in an Lβ phase rotate slowly on the NMR time scale, leading to a very broad, almost 

featureless spectrum. The same molecules experience much less restriction in the Lα phase as 

they rotate rapidly around their principal axis of symmetry. In HII phase, the lipids experience a 

fast diffusion around the HII cylinders’ axes of symmetry, reducing the width of the spectrum by 

a factor of ~2 compared to that of the Lα phase (Fig. 1.10, bottom) due to an extra averaging of 

𝜃. Globally, the static 2H NMR spectrum acquisition is an advantageous technique, as it allows a 

phase identification, provides information on internal molecular motions (21, 25), and 

characterize internal molecular orientations and orders (26, 27). 
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Fig. 1.10: The 2H-NMR spectra of Lβ (A), Lα (B), and HII (C) phases of a POPE-d31/CerC16 90/10 

mol% dispersion. 
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Chapter 2: Ceramide-C16 is a versatile modulator of 

phosphatidylethanolamine polymorphism** 

2.1 Abstract 

Ceramide-C16 (CerC16) is a sphingolipid associated with several diseases like diabetes, 

obesity, Parkinson disease, and certain types of cancers. As a consequence, research efforts are 

devoted to identify the impact of CerC16 on the behavior of membranes, and to understand how 

it is involved in these diseases. In this work, we investigated the impacts of CerC16 (up to 20 

mol%) on the lipid polymorphism of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine 

(POPE), using differential scanning calorimetry, and sequential 2H and 31P solid-state NMR 

spectroscopy. A partial phase diagram is proposed. The results indicate that the presence of 

CerC16 leads to an up-shift of the temperature of the gel-to-liquid crystalline (Lβ−Lα) phase 

transition, leading to a large Lβ/Lα phase coexistence region where gel-phase domains contain 

35 mol% CerC16. It also leads to a down-shift of the temperature of the lamellar-to-inverted 

hexagonal (L−HII) phase transition of POPE. The opposite influence on the two phase transitions 

of POPE brings a three-phase coexistence line when the two transitions overlap. The resulting HII 

phase can be ceramide-enriched, coexisting with a Lα phase, or ceramide-depleted, coexisting 

with a L phase, depending on the CerC16 proportions. The uncommon capability of CerC16 to 

modulate the membrane fluidity, its curvature propensity, and the membrane interface 

properties highlights its potential as a versatile messenger in cell membrane events. 

 

** Mahmoudreza Doroudgar and Michel Lafleur. Biophysical Journal, http://dx.doi.org/10.1016/j.bpj.2017.04.047 

http://dx.doi.org/10.1016/j.bpj.2017.04.047
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2.2 Introduction 

Ceramides are bioactive sphingolipids that play an important role in cellular signaling and 

mediate several biological processes (1-9). For example, they are shown to be involved in some 

cellular events, including apoptosis (10-12), and in biological pathways leading, for example, to 

insulin resistance, and obesity (13, 14). In mammalian cell membranes, the most abundant acyl 

chains born by ceramides are saturated and contain 16 to 24 carbons (1, 15).  The ceramide 

functions are intimately associated with their acyl chain length (10, 16).  Among this family, 

ceramide with a palmitoyl chain (N-palmitoyl-D-erythro-sphingosine: CerC16) has been 

specifically shown to have a central influence in some cellular events. Because of the biological 

key roles of these molecules, it is essential to gain a detailed understanding of the modulation of 

the properties of biological membranes by ceramides; in the present work, we focussed our 

effort on characterizing the impact of CerC16 on the membrane physical properties. 

From a chemistry point of view, ceramides display a relatively small polar head group that 

has the capability of forming hydrogen bonds through both the hydroxyl groups, and the amide 

linkage. As a consequence, ceramides with saturated acyl chains exhibit a dense molecular 

packing and have relatively high gel (Lβ)-to-fluid (Lα) phase transition temperatures (Tm) in 

comparison to phospholipids (17). For instance, CerC16 undergoes a chain-melting transition at 

91 oC (18, 19). The impacts of ceramides on phospholipid bilayer properties have been recently 

reviewed (20, 21). These impacts are highly dependent on the ceramide chain length (19, 22-24). 

In general, when mixed with phospholipids, long-chain ceramides lead to an increase of the Lβ‒

Lα phase transition temperature; this shift was observed for different binary lipid mixtures 
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including 1,2-dierucoyl-sn-glycero-3-phosphoethanolamine (DEPE) (19, 25), 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) (24, 26-28), 1,2-dimyristoyl-sn-glycero-3-phosphocholine 

(DMPC) (29), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (30). Moreover, 

ceramides induce a considerable broadening of the Lβ‒Lα phase transition, a phenomenon 

observed for binary mixtures of phosphatidylcholines (PC) and of phosphatidylethanolamine (PE) 

(19, 24, 26). This effect leads to a large phase-coexistence region in the phase diagrams where 

ceramide-rich gel-phase domains are found with ceramide-depleted fluid domains (19, 24, 26). 

The strong inter-ceramide interactions have been identified as the driving force leading to the 

formation of these gel-phase ceramide-enriched domains (26). Ceramides also lead to an 

increase in chain order of fluid bilayers as reported by studies using solid-state deuterium nuclear 

magnetic resonance (2H-NMR) (22, 26, 31), and diphenylhexatriene fluorescence depolarization 

techniques (27, 28, 32). It was proposed that phase separations could also be observed at low 

temperatures, leading to the formation of two co-existing gel phases containing different 

ceramide proportions (19, 23, 26). 

In addition to their effect on lateral mixing of lipids, ceramides have been shown to have 

an impact on the polymorphic propensities and curvature properties of bilayers; this 

phenomenon can be an alternative manner to modulate membrane properties. CerC16 (19), egg-

yolk, and brain ceramides (25), bearing mainly C16 and C18 saturated chains, respectively, cause 

a decrease in the Lα-to-inverted hexagonal (HII) phase transition temperature (TH) of DEPE.  For 

example, the addition of 10 mol% CerC16 brings TH down from 66 oC for pure DEPE to 56 oC (19). 

Differential scanning calorimetry (DSC) results showed that the endotherm peak associated with 

this transition becomes broader in the presence of CerC16. The promotion of the HII phase by 
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ceramide has been associated with its small head group, and with its extensive capability of 

forming H bonds (19). Because of their opposite effects on the two transitions (increasing Tm 

while decreasing TH), ceramides can lead to an overlap of the Lβ−Lα, and the Lα−HII transitions 

(19). The presence of ceramides in bilayers formed by either PE, PC, or a mixture of both, was 

shown to induce membrane fusion and leakage; these phenomena were associated with the fact 

that ceramides could facilitate the formation of non-lamellar phases (33-36). It has also been 

proposed that ceramides promote the formation of non-lamellar intermediates because they 

display a rapid transbilayer motion (flip-flop) (37). Moreover, enzymatically produced ceramides 

cause the budding of giant unilamellar vesicles, and this formation of smaller vesicles was linked 

to the propensity of ceramides to acquire non-lamellar phases (38). Despite the fact that the 

ability of CerC16 to promote the HII phase is established, there is a limited knowledge relative to 

the molecular details of inserted CerC16 in this lipid matrix. 

In the present work, we employed DSC, and sequentially acquired 2H and 31P solid-state 

NMR techniques to study the impacts of CerC16 on the polymorphism of 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphoethanolamine (POPE). The CerC16 proportion was varied between 0 and 20 

mol%; this range covers membrane concentrations observed in physiologically relevant 

conditions – for example, ceramide content in mitochondria increases considerably during 

apoptosis and can reach 10% of total lipids (39, 40). Moreover it has been reported that 

metastable phases that are sensitive to hydration, and thermal history can be formed above 20 

mol% (26). By using CerC16 bearing a fully deuterated palmitoyl chain (N-palmitoyl-d31-D-

erythro-sphingosine: CerC16-d31), 2H NMR spectra provided a quantitative characterization of the 

phases in which CerC16 was involved as well as a description of the ceramide chain order. In 
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parallel, 31P chemical shielding anisotropy (CSA) of POPE provided a description of the phase 

behavior of the phospholipid. We carried out a sequentially acquisition of the 2H, and 31P NMR 

spectra of POPE/CerC16-d31 mixtures in defined and controlled conditions, including 

temperature. These data allowed a detailed description of the mixture phase behavior. A mirror 

sample with POPE bearing a fully deuterated palmitoyl chain (POPE-d31) was also examined, not 

only to validate the phase behavior of POPE in the mixtures, but also to compare the order of 

POPE acyl chain with that of CerC16.  

 

2.3 Materials and Methods 

2.3.1 Materials 

POPE, POPE-d31, CerC16, and CerC16-d31 were purchased from Avanti Polar Lipids, Inc. 

(Alabaster, AL, USA). All the lipids were > 99% pure, and were utilized without further purification. 

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES, > 99%), ethylenediaminetetraacetic 

acid (EDTA, > 99%), and deuterium-depleted water (≤ 1 ppm deuterium oxide) were purchased 

from Sigma-Aldrich (St. Louis. MO, USA). NaCl (high purity grade) was supplied by AMRESCO LLC 

(Solon, OH, USA). Benzene (> 99%) and methanol (HPLC grade) were acquired from EMD Millipore 

Corporation (Billerica, MA, USA) and Fisher Scientific (Fair Lawn, NJ, USA), respectively. 

 

2.3.2 Lipid Mixture Dispersions 

The lipid mixtures were prepared from organic solutions. For the DSC measurements, a 

solution of CerC16 with a known concentration was first prepared by dissolving a weighted 
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quantity of CerC16 into an exact volume of a 90/10 (v/v) benzene/methanol mixture. Binary lipid 

mixtures with the desired composition were prepared by dissolving a weighted quantity of POPE 

into the appropriate volume of the CerC16 solution. The resulting solutions were freeze-dried for 

at least 24 hours to ensure the complete solvent elimination. For the NMR samples, the binary 

lipid mixtures were prepared by dissolving the appropriate quantities of POPE, and CerC16 into 

the 90/10 (v/v) benzene/methanol mixture and by freeze-drying the solution for at least 24 hours. 

The lipid mixtures were hydrated using a HEPES buffer (20 mM HEPES, 100 mM NaCl, and 

0.05 mM EDTA, prepared in Milli-Q water), pH 7.4. For the DSC experiments, the final lipid 

concentration was 20 mM, except for the pure POPE dispersion for which the concentration was 

7.8 mM. For the NMR samples, 8 mg (14 mol) of CerC16-d31 were used for ensuring a good 

2H-NMR signal. A 200-µL aliquot of buffer was used to hydrate each sample. Thus, the final lipid 

concentration varied from 703 mM for the POPE/CerC16-d31 95/5 mixture, to 350 mM for the 

molar ratio 80/20. In the case of the POPE-d31/CerC16 90/10 dispersion, 12 mg (16 mol) POPE-

d31, 38 mg (53 mol) POPE, and 4 mg (8 mol) CerC16 were used, and the final lipid concentration 

was 384 mM. The same hydration protocol was performed for both DSC and NMR techniques: 

two heating-cooling cycles between 45 oC, and 0 oC, and a third cycle between 95 oC, and 0 oC 

were imposed on each lipid sample. 

 

2.3.3 DSC Measurements 

The DSC measurements were carried out on a VP-DSC MicroCalorimeter (MicroCal, Inc., 

Northampton, MA, USA). Three consecutive heating scans between 5, and 85 oC in the case of 

the pure POPE dispersion, and between 5, and 95 oC for the binary lipid mixtures, were carried 
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out at a heating rate of 30 oC/hour. The second and third scans provided very similar 

thermograms, and the second heating scans were selected for the analysis. 

 

2.3.4 NMR Spectroscopy 

The spectra were recorded using a Bruker Avance II 400 WB spectrometer equipped with a 

9.4 T magnet, leading to a resonance frequency of 61.43 MHz and 162.03 MHz for 2H and 31P 

nucleus, respectively. A Bruker static probe with a 5-mm coil was used. In the case of 2H 

acquisitions, five thousand scans were recorded using the quadrupolar echo pulse sequence with 

a 90o pulse of 1.7 μs, an interpulse delay of 40 μs, and a recycle time of 300 ms. For the 31P 

nucleus, a single 90o pulse of 4.05 μs, a recycle delay of 1 s, and a “Waltz65” low-power proton 

decoupling were used for recording the spectra; typically, 1500 scans were recorded. The 

sequential acquisition of 2H and 31P NMR spectra was carried out as a function of temperature, 

between 0 oC, and 65 °C. After the temperature stabilization, the signal acquisition of either 

nucleus was initiated. After the acquisition of the first spectrum, the spectrometer was then 

tuned for the signal acquisition of the other nucleus. The probe that was used presented the 

advantage of being tuned for the different nuclei without having to be removed from the magnet; 

this aspect was essential in the sequential acquisition of the NMR spectra as it kept the samples 

in the very same conditions during the data collection. At the phase transition temperatures, the 

spectrum of the first recorded nucleus was duplicated after the signal acquisition of the second 

nucleus, to validate that no significant phase evolution could be observed.  

Based on the 2H spectra, the phase distribution of CerC16 could be determined, as 

described in the Results and Discussion section. In a similar way, the 31P NMR spectra provided a 
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description of the phase distribution of POPE as discussed below. The smoothed order profiles of 

the lipid acyl chains were obtained from the dePaked (41) 2H-NMR spectra using the method 

previously described (42). 

 

 

Fig. 2.1: DSC thermograms of POPE/CerC16 dispersions: (A) 80/20, (B) 85/15, (C) 90/10, (D) 
95/05, and (E) pure POPE dispersion. To enhance the clarity, the thermograms were offset by 5 
kJ/mol/oC. 

 

 

2.4 Results and Discussion 

2.4.1 DSC Measurements 

The DSC thermograms of a pure POPE dispersion and of POPE/CerC16 dispersions of 

various compositions are shown in Fig. 2.1. POPE displayed a Lβ−Lα phase transition at 25 oC (Tm) 

whereas the Lα−HII phase transition was observed at 72 oC (TH). CerC16 disturbed significantly the 
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phase behavior of POPE, even at a molar fraction of 5 mol%. The presence of CerC16 resulted in 

two major impacts on the thermogram of a POPE dispersion: first, a broadening, and an up-shift 

in temperature of the endothermic Lβ−Lα transition peak, and second, a broadening and a down-

shift in temperature of the lamellar (L)−HII transition peak. The molar enthalpies of both phase 

transitions of pure POPE and of the investigated POPE/CerC16 dispersions are reported in Table 

2.1. On one hand, CerC16 induced a decrease in the ΔH of the Lβ−Lα transition, reducing it from 

23.9 kJ/mol for pure POPE, which is in good agreement with the literature (43), to 17.5 kJ/mol 

when the proportion of ceramide was between 5, and 20 mol%. On the other hand, CerC16 

appeared to have no considerable influence on the ΔH of the L−HII transition as the values 

obtained for the investigated ceramide contents remained around 2.2 kJ/mol, a value observed 

for pure POPE dispersions (44). These results were analogous to those reported for DEPE/CerC16 

mixtures (19), as well as for DEPE/egg-ceramides mixtures (25). 

 

Table 2.1: The Lβ−Lα, and L−HII phase transition temperatures and enthalpies of a pure POPE 

dispersion and POPE/CerC16 dispersions of various molar fractions. The ΔH values are reported 
per mole of lipids i.e. POPE+CerC16. Tm, and TH correspond to the top of the endothermic peaks. 

POPE/CerC16 (mol ratio) 
Tm 

(oC) 

ΔH (Lβ−Lα) 

(kJ/mol) 

TH 

(oC) 

ΔH (L−HII) 

(kJ/mol) 

100/00 25.6 23.9 72.4 2.2 

95/05 26.0 17.9 61.7 1.6 

90/10 26.2 17.5 58.1 1.8 

85/15 26.9 18.3 52.6 2.4 

80/20 27.4 16.9 50.8 2.4 
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2.4.2 NMR Spectroscopy 

The sequential 2H and 31P NMR spectra of POPE/CerC16-d31 dispersions of various 

compositions are shown in Figs. 2.2, and Anx 1 (Annex).  As mentioned above, 2H and 31P NMR 

spectra provided independent information about the phase characteristics of CerC16-d31 and 

POPE, respectively. For 31P NMR, the CSA is representative of the different phospholipid phases. 

For instance, at 10 oC, the 31P spectra of the lipid dispersions showed a CSA of ~69 ppm, a value 

characteristic of a gel lamellar phase. At 42 oC, the CSA was reduced to ~44 ppm and the spectra 

were typical of fluid systems (45, 46). The spectra indicated the shift of the Lβ−Lα phase transition 

towards high temperatures as the 31P-NMR spectra recorded in the Lβ/Lα coexistence region 

displayed CSA values intermediate between those observed in the pure Lβ, and the pure Lα 

phases; for example, at 42 oC, the spectrum of 20 mol% CerC16 mixture (CSA of 47 ppm) was 

broader than that of 10 mol% CerC16 dispersion (CSA of 45 ppm). 31P-NMR spectra of 

phospholipids in the HII phase display a CSA reduction by a factor of 2, and an inversion of their 

line shape because of the rapid diffusion of the lipid molecules around the cylinders (46, 47). The 

shift of the Lα‒HII phase transition towards low temperatures in the presence of CerC16 was also 

observed by 31P-NMR spectroscopy. For example, the spectrum recorded at 58 oC for the mixture 

containing 10 mol% CerC16 displayed a coexistence of the Lα, and HII patterns whereas that at 57 

oC for the mixture containing 15 mol% CerC16 was practically exclusively representative of the 

HII. For the samples containing 15, and 20 mol% CerC16, a small narrow peak at 0 ppm was 

observed at high temperatures; it could correspond to the formation of a cubic phase, or small 

lipid assemblies. This narrow component always corresponded to less than 10% of the 31P spectra  
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Fig. 2.2: The 2H (left column) and 31P (right column) NMR spectra of POPE/CerC16-d31 dispersions 
with various molar ratio: (A) 90/10, (B) 85/15, and (C) 80/20. The acquisition temperature is 
indicated on the right. The narrow peaks at 0 kHz in the 2H-NMR spectra at high temperature 
were topped to allow a good representation of the HII signal. 
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area. The formation of these structures was reversible as no such narrow component was 

observed in the spectra recorded at 25 oC after the heating run. In the case of 2H-NMR, a broad 

featureless spectrum characteristic of a gel phase (48), was obtained at 10 oC for all the lipid 

dispersions. Upon heating, there was the apparition of a pattern representative of the Lα phase. 

This pattern was composed of several overlapping powder patterns with different quadrupolar 

splittings associated with the orientational order gradient existing along the lipid perdeuterated 

acyl chain (42, 48, 49). The 2H-NMR spectra indicated a shift towards higher temperatures of the 

Lβ−Lα phase transition experienced by CerC16-d31. Several spectra were a superposition of Lβ-, 

and Lα-phase components and it was observed from those recorded at 42-47 oC that the 

proportion of the Lβ-phase component increased with increasing CerC16 content. Upon further 

heating, a profile associated with the HII phase was observed. This pattern displayed quadrupolar 

splittings reduced by a factor of more than 2 compared to that of Lα phase (50). The overall shape 

was also different to that of the Lα-phase component because the symmetry of the HII phase led 

to a more linear decrease of orientational order along the lipid chain. The spectra of all the 

dispersions at ~65-68 oC corresponded to the HII pattern. These spectra included, as for the 31P-

NMR spectra, a small narrow peak centered at 0 kHz, representative of ceramides experiencing 

isotropic motions on the NMR time scale. This component represented at the maximum 5% of 

the area. Three observations must be highlighted. First, the spectra recorded at 54-55 oC for the 

POPE/CerC16-d31 mixtures with 15, and 20 mol% CerC16 were a superposition of components 

typical of the Lβ, Lα, and HII phases, revealing the coexistence of these 3 phases. Second, the 

spectra at 58 oC of the POPE/CerC16-d31 mixtures with a molar ratio of 95/5 and 90/10 included 

Lα-, and HII-phase components whereas those of the 85/15, and 80/20 POPE/CerC16-d31 mixtures 
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at 57 oC was composed of the Lβ-, and HII-phase components. Third, all the CerC16 molecules 

were solubilized in the HII phase upon heating as inferred from the 2H-NMR spectra showing a 

single profile characteristic of the HII phase. 

We proceeded to a quantitative analysis of the spectra to determine the composition of 

the various phases. Since the lamellar, and HII phases lead to distinct 2H- and 31P-NMR signals, 

the proportion of CerC16 (bearing the deuterated chain), and POPE (bearing the phosphate-

containing head group) in each phase was inferred from the areas of the two components that 

could reproduce the experimental spectra by a linear combination. The components of the pure 

phases corresponded to experimental spectra acquired under different conditions (generally at 

a slightly different temperature and/or with a different CerC16 content). The area of the narrow 

peaks was determined directly on the spectra. In the case of 2H-NMR spectra, the Lβ, and Lα 

phases also led to 2 different profiles that could be resolved. Therefore, the distribution of 

CerC16-d31 between the different lamellar phases was inferred from the relative area of each 

component whose linear combination led to the best fit of the experimental spectra. The spectra 

typical of the pure phases were again obtained experimentally under different conditions leading 

to the presence of a single phase. The phase composition graphs of the binary lipid dispersions 

obtained from this quantitative analysis are presented in Fig. Anx 2. 

Sequential 2H- and 31P-NMR was also used to determine the phase behavior of a POPE-

d31/C16-Cer 90/10 dispersion (Fig. 2.3). The phase composition analysis from the 2H- and 31P-

NMR spectra was carried out using the approach described above; in this case, both nuclei 

probed the phase behavior of POPE in the mixture. For the L and HII phases, the 2H- and 31P-

NMR results provided a similar phase description, with an average difference of 5%. These were 



Chapter 2 

36 
 

also consistent with those provided by the 31P-NMR of the POPE/CerC16-d31 mirror sample. The 

inferred phase distribution at 57-58 oC displayed a difference of 20% between the mirror samples, 

illustrating the observation that the Lα-HII phase transition was very sensitive to the experimental 

conditions. This susceptibility also confirms that sequential NMR acquisition, as carried out in the 

present work, is essential to describe accurately the behavior of the labelled species. The 

fractions of POPE in the Lβ, and Lα phases were obtained from the 2H NMR spectra of POPE-d31, 

as described above (Fig. Anx 3).  

 

 

Fig. 2.3: The 2H (left) and 31P (right) NMR spectra of a POPE-d31/CerC16 90/10 dispersion. 

 

The combination of the NMR and DSC data led to the construction of the partial phase 

diagram of POPE/CerC16 system (Fig. 2.4). This diagram does not take into account the 

contribution of the narrow line in the NMR spectra as this was always a small component and its 

assignment could not be clearly established. The onset of the Lβ-Lα phase transition of the 

investigated POPE/CerC16 mixtures was very similar for the different proportions of CerC16, 
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suggesting the existence of a three-phase line and, consequently, a gel/gel phase coexistence 

region. The existence of ceramide-rich, and ceramide-depleted domains is also reflected by the 

solidus line that is considerably different to the one predicted from regular solution theory (51), 

(see Fig. Anx 4).  It is noteworthy that the gel-phase NMR spectra of POPE-d31/CerC16 mixtures 

at 10 oC displayed slightly more pronounced components at 20 kHz than that of POPE/CerC16-

d31 mixtures (Figs. 2.2, and 2.3), suggesting a slightly faster rotational diffusion (52). This 

observation would be compatible with POPE involved in a more dynamic gel phase than CerC16. 

The two spectra showed however a single and similar component for the CD3 signal; therefore, 

the methyl dynamics appeared to be not sufficiently different to be resolved in the spectra. A 

gel/gel phase coexistence region was also observed for DEPE/CerC16 (19), POPC/CerC16 (26), 

and PSM/CerC16 (53) phase diagrams. AFM experiments revealed the existence of two gel phases 

with distinct nanomechanical properties in PSM/CerC16 (53), and DPPC/CerC16 mixtures (54). 

Moreover 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiIC18), a 

lipophilic fluorescent probe, was found to partition differently between two gel phases.  

The DSC results indicated an upshift of the Lβ−Lα transition temperature as a function of the 

CerC16 proportion in the lipid mixture, and the NMR results showed that both lipids experienced 

this upshift. The coexistence phase regions reflect well the asymmetrical shape of the 

endotherms in the DSC thermograms. The solidus (the frontier between the Lβ, and the Lβ/Lα 

regions), and the liquidus (the frontier between the Lβ/Lα, and the Lα regions) lines could be 

determined from the 2H-NMR spectra, using the method introduced by Vist et al. (55) and 

successfully applied to N-palmitoyl-sphingomyelin (PSM)/CerC16 mixtures (53). This subtraction 

method was applied using the 2H-NMR spectra obtained from the mixtures containing 10, and 20 
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mol% CerC16-d31. The results indicated that between 30 oC and 50 oC, Lα-phase domains 

containing 5 mol% CerC16 coexisted with Lβ-phase domains that contained 30 mol% CerC16. 

The Lβ/Lα phase distributions of POPE, and of CerC16 obtained from the two series of mirror-

sample 2H-NMR spectra (Figs. 2.1, 2.2, Anx 1, Anx 2 and Anx 3) were put together to infer the 

composition of each phase, providing an alternative method to determine the solidus and the 

liquidus boundaries from a different data set. The agreement between the liquidus lines obtained 

from the spectral subtraction method (55) and from the phase distributions in the mirror samples 

was very good. The later method determined that the gel-phase domains included 40 mol% 

CerC16, a value slightly higher than that inferred from the spectral subtraction method. This 

difference is likely within the experimental error associated with the uncertainties in the 

subtraction factors, the area determinations, and the sample compositions.  

At 54‒55 oC, the coexistence of three phases (Lβ/Lα/HII) could be assessed from the 2H-NMR 

spectra. The Lβ phase appeared to involve exclusively CerC16 while the Lα, and HII phases were a 

mixture of the two lipids. Since the investigated lipid mixtures included two components (water 

was in excess in all the dispersions), a 3-phase horizontal line must be included in the phase 

diagram. This line was extended up to only 20 mol% CerC16, as we do not have sufficient 

information to describe the behavior for larger CerC16 contents. Moreover, the phase behavior 

of phospholipid bilayers containing higher CerC16 proportions is somehow controversial because 

of the presence of putative metastable phases (18, 26). The NMR results revealed that the nature 

of transition towards the HII phase was deeply affected by the CerC16 content. The lipid mixtures 

underwent a transition from Lα phase to HII phase when their CerC16 content was less than 10 

mol% whereas a Lβ phase coexisting with the HII phase was observed when the CerC16 content 
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was 15, and 20 mol%. This finding led to the inclusion of an eutectic point where Lβ, Lα, and HII 

phases should coexist.  

 

 

Fig. 2.4: The proposed partial phase diagram for POPE/CerC16 system. The brown squares define 
both the onsets and ends of the endothermic transitions obtained by DSC. The plus signs indicate 
the solidus and the liquidus lines inferred from the spectral subtraction method introduced by 
Vist et al. (55) The blue triangles indicate the solidus and liquidus lines derived from the lipid 
distributions obtained from the 2H-NMR spectral simulation of the POPE/CerC16 90/10 mirror 
samples. The blue diamond symbols define the frontiers of the Lα/HII coexistence region inferred 
from the lipid distributions obtained from the sequential 2H-, and 31P-NMR spectra of the 
POPE/CerC16-d31 90/10 mixture. The blue circles define the frontiers of the Lβ/HII coexistence 
region inferred from the lipid distributions obtained from the sequential 2H-, and 31P-NMR 
spectra of POPE/CerC16-d31 85/15, and 80/20 mixtures.  
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The compositions determined from the 2H- and 31P-NMR spectra (Figs. Anx 2 and Anx 3) 

defined the boundaries of the Lα/HII, and Lβ/HII phase co-existence regions. There is a general 

good agreement between the DSC and NMR results. Small differences in transition temperatures 

were observed, a phenomenon that could be associated with the use of deuterated CerC16 in 

the case of the NMR samples (53, 55), with the fact that NMR data were (assumed to be) acquired 

at equilibrium, with stepwise temperature increments whereas DSC data were collected during 

continuous heating, and that the sample thermal history could not be identical. The main 

discrepancy between the results obtained by the 2 techniques was related to the L‒HII phase 

transition of the mixture with 20 mol% CerC16, where 2H-NMR results indicate a co-existence of 

the Lβ and HII phases over a wider temperature range. As previously pointed out, the NMR, and 

DSC techniques do not reproduce the very same conditions and the Lα‒HII phase transition is 

particularly sensitive to such variations. 

This is, to the best of our knowledge, the first proposal of a partial phase diagram for 

POPE/CerC16 system. Some features should be compared with those previously proposed for 

systems including CerC16, and a phospholipid. The POPE/CerC16 phase diagram includes a 

relatively large Lβ/Lα phase coexistence region. The fluid domains include about 5 mol% CerC16 

while the Lβ-phase domains contain about 35 mol%. The compositions of the gel-phase domains 

are consistent with those observed for the PSM/CerC16 system (53, 56). This similar behavior 

adds to the understanding of the driving force leading to the phase separation. It has been 

proposed that the capacity of ceramide head group to make H bonds, both as an acceptor and a 

donor, leads to strong inter-ceramide interactions and promotes phase separation (53, 56, 57). 

POPE head group has also an extensive H-bond capability as a donor and an acceptor because of 
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its quaternary ammonium. Despite the H-bond capacity of POPE, a phase separation was still 

observed in the POPE/CerC16 system. It is proposed that the absence of a phosphate group, 

reducing considerably the effective size of the head group (POPE molecular area: 0.74 nm2 (58), 

CerC16 molecular area: 0.40 nm2 (30, 59)), plays a major role in the phase separation, leading to 

a closer proximity of the molecules and therefore, stronger intermolecular interactions.  

A distinctive part of the POPE/CerC16 phase diagram is the 3-phase line that leads to Lβ/HII, 

and Lα/HII phase coexistence regions. This feature is a consequence of the opposite effect of 

CerC16 on the transitions: it leads to the existence of the Lβ phase at higher temperatures, and, 

at the same time, to the formation of HII phase at lower temperatures. The overlap of the Lβ-Lα, 

and Lα-HII phase transitions was previously observed for DEPE/CerC16 system at a molar 

proportion 10 < x ≤ 20 (mol%) (19). It should be pointed out that for 10 mol% CerC16 and below, 

the HII phase, when coexisting with the Lα phase, was enriched in CerC16. It is inferred that its 

relatively small head group favored the formation of an inverted non lamellar phase. Conversely, 

for the mixtures with > 15 mol% CerC16, the HII cylinders were depleted in CerC16 relative to the 

overall content. This behavior reflected the ordering effect of this lipid and its propensities to 

form gel phase. The present work clearly establishes the Lβ-HII phase transition for mixtures 

containing ≥ 15 mol% CerC16. Such a transition was mentioned for DEPE/CerC16 system (19), 

and for partly dehydrated egg-PE (60). Recently it was shown that egg ceramide (40 to 60 mol%) 

in egg sphingomyelin would also lead to a Lβ-HII phase transition observed at high temperature 

(70 oC) (61). In POPE/CerC16 system, this transition could be associated with the fact that the 

increase in temperature leads to the disordering of CerC16 acyl chains, promoting the cone shape 
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of the lipid, and to an enhanced solubilisation of CerC16 in the existing HII phase mainly formed 

by POPE. 

The 2H-NMR spectroscopy of the mirror samples also provided the characterization of the 

dynamics of the lipid acyl chains in the POPE/CerC16 90/10 mixture. The smoothed order profiles 

of ceramide (derived from the mixture containing CerC16-d31) as well as of POPE (derived from 

the mixture containing POPE-d31) acyl chains are presented in Fig. 2.5 for the L and HII phases. 

 

Fig. 2.5: Smoothed order profiles of POPE-d31 and CerC16-d31 in the Lα (left, at 42 oC) and the HII 
(right, at 65 oC) phase. Left: POPE/CerC16-d31 90/10 (blue triangles), POPE-d31/CerC16 90/10 (red 
circles), and pure POPE-d31 (black squares). Right: POPE/CerC16-d31 80/20 (black stars), 
POPE/CerC16-d31 80/10 (blue triangles), and POPE-d31/CerC16 90/10 (red circles). 

 

The Lα order profiles of both CerC16 and POPE, typical of the liquid-lamellar phase, 

consisted of a plateau associated with the carbons near to the lipid head group, followed by a 

sharp decrease of order towards the end of the chain. The profiles revealed that in the 

POPE/CerC16 90/10 mixture, the chain order parameters of CerC16 were noticeably higher than 

those of POPE. This observation is similar with the results obtained for POPC/CerC16 mixtures 
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(26), where the palmitoyl chain of POPC was found less ordered than that of CerC16. An  

orientational order of the ceramide palmitoyl chain greater than that of PC was also deduced 

from a molecular dynamics simulation of the DMPC/CerC16 system (62).  Therefore, even though 

the binary mixtures were likely homogeneous in the L phase, the palmitoyl chain of CerC16 and 

that of the phospholipid did not have the same orientational order. It has been proposed that 

the limited molecular area associated with CerC16 would leave a limited space for chain 

conformational disordering (26). Alternatively, it may be associated with the position of the head 

group relative to the bilayer normal. It has been recently shown (64) that the orientational order 

parameters of fatty acid chains in bilayers are modulated by the protonation state of the 

carboxylic group; deprotonated acid groups are more exposed to the aqueous environment and 

this location leads to higher chain order parameters. The small head group of CerC16 combined 

with its capability of making H bonds may position this lipid head group at a higher level than PE 

head groups. This organization would lead, similar to the unprotonated fatty acid (64), to a larger 

overall orientational order.  

The presence of ceramide appears to have a limited impact on the orientational order of 

POPE acyl chain (Fig. 2.5), in contrast with its significant ordering effect on POPC acyl chain (26).  

It should be highlighted that pure POPE L-phase bilayers exhibit already a relatively high chain 

order because of the limited head group size as well as its capacity to make H bonds between 

ethanolamine group (49).  The ordering effect of CerC16 on fluid phospholipid bilayers is likely 

limited when the bilayer existing order is considerable. In fact, it has been shown that cholesterol 

has a less pronounced ordering effect on POPE than on POPC fluid bilayers (63); it appears that 

CerC16 behaves similarly. 
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The acyl chain order profiles in the HII phase have also been determined (Fig. 2.5B). As 

expected (50), the order decrease along the chain was more linear than in the case of the Lα 

phase; this was observed for the chains of both POPE, and CerC16. These 2H-NMR profiles are a 

solid evidence that the ceramide molecules were inserted in the HII cylinders. The ratios 

S(L)/S(HII) were 2.7 close to the head group and were 4.0 near the end of the palmitoyl chain; 

these values were similar for the palmitoyl chain of POPE and of CerC16. These ratios were also 

consistent with those reported for pure POPE (50). This reduction is associated with the diffusion 

of the lipid molecules around the HII cylinders, a motion that causes additional averaging of the 

quadrupolar interactions, as well as with the different lipid phase symmetry. Similar to the L 

phase, CerC16 displayed higher chain order parameters compared to those of POPE in the HII 

phase formed by the POPE/CerC16 90/10 mixture. It is unlikely that the difference in chain order 

between POPE, and CerC16 could be due to a phase separation within the HII cylinders. A position 

of CerC16 head group closer to the HII cylinder center than that of POPE head group could be the 

origin of the orientational order difference. 

 

2.5 Conclusions 

In the present work, the proposed partial phase diagram of the POPE/CerC16 system shows 

that CerC16 has a compound impact: it can act as a versatile modulator, being able to promote 

Lβ or HII phase, and to lead to ceramide-enriched (coexisting with Lα phase) or ceramide-depleted 

(coexisting with L phase) HII cylinders. In some specific conditions (in the case of POPE/CerC16 

mixture, at about 10 mol% CerC16 and 54 oC), these propensities are regulated by small changes 

in temperature and/or CerC16 proportion. It should be pointed out that these effects are 
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reported to be buffered by cholesterol. For example, the formation of ceramide-rich gel-like 

domains was hampered in the presence of cholesterol (20, 65, 66). Similarly, the gel-phase 

domains existing in phospholipid bilayers at low CerC16 contents (e.g. 5 mol% in the current 

work) were not observed when 10 mol% CerC16 were added to red blood cell (RBC) lipid extract. 

However, phase separations were observed when the CerC16 content was increased to 30 mol% 

or when the RBC lipid extract was cholesterol depleted (67). This being said, local fluctuations of 

the lipid compositions in biological membranes could lead to gel-phase domains as those 

reported in the present work. Both CerC16, and cholesterol (up to 30 mol%) (63), promote the 

formation of the HII phase. At this point, their combined effect is not established but local 

variations of these species are bound to modulate the local curvature of membranes. It is well 

established that the order of a bilayer core and the polymorphic propensities of membranes have 

a pivotal role in controlling protein activity and consequently, many cellular processes (68, 69). 

As an example, it has been shown that Bax proteins are involved in the perturbation of the 

permeability of outer mitochondrial membranes, a phenomenon associated with apoptosis. The 

pore formation associated with these proteins is modulated by the curvature properties and the 

fluidity of the membrane (70-72). The variation of CerC16 content in membranes can be a way 

to control the membrane association, and the aggregation of Bax proteins and therefore could 

play a pivotal role in the modulation of the membrane permeability and apoptosis. The fact that 

CerC16 can modulate bilayer order, curvature propensities, domain formation, and the chemistry 

of the interface suggest that it could act as a versatile messenger in cellular processes. 
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Chapter 3: Characterization of n-decane distribution within 

phosphatidylethanolamine Lα/HII phases 

3.1 Introduction 

The spontaneous curvature (SC) of a lipid membrane is expressed under zero bending 

stress condition (1). Lipids whose SC involves a non zero curvature need to modify their molecular 

morphologies to be able to build bilayers of zero curvature. This modification imposes stress on 

the bilayers. For instance, while cylindrical-shaped POPC molecules make relaxed bilayers of zero 

SC (or infinite intrinsic radius of curvature,𝑅0), cone-shaped POPE molecules need to compress 

their acyl chains to adapt cylindrical morphologies so they can form bilayers of zero curvature. 

This morphological modification stores on the bilayers “elastic free energy” that induces the 

bilayers to adapt non-bilayer HII phase at some higher temperature (71 oC in the case of POPE) in 

which the lipid molecules can retrieve their cone-shaped conformation and release the stored 

elastic free energy (1). 

The HII phase involves tightly packed cylindrical monolayers and void spaces in between. 

Since the existence of void spaces is thermodynamically unfavorable as it causes the loss of 

entropy, some phospholipids molecules have to stretch their acyl chains to fill the void spaces 

(1). Therefore, the Lα‒HII transition of POPE bilayers is dictated by the balance between the 

expression of𝑅0and the creation of interstitial voids.  

Alkanes of different chain lengths can promote the formation of HII phase and decrease 

the𝑇𝐻of various PE systems (1-5) . It has been suggested that alkanes have the capability of filling 
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the interstitial void spaces between the HII cylinders, releasing the cylinder packing stress. Chen 

et al. (6) have investigated the impacts of the chain length of various alkanes on the HII phase 

transition of DOPE. They concluded that, in the HII phase, short chain alkanes, such as decane, 

are mostly located in the phospholipid acyl chain region; therefore, they promote the Lα‒HII 

transition by decreasing𝑅0of the monolayer. However, longer chain alkanes, such as tetradecane, 

promote the Lα‒HII transition mainly by filling the interstitial spaces between the HII phase 

cylinders, and thus, releasing the intercylinder packing stress.  

As the second part of my M.Sc. project, I investigated the effects of 10 mol% n-decane, a 

short chain alkane, on the Lα‒HII transition of POPE. Similar to the first part, sequential 2H and 

31P-NMR spectroscopy was employed for quantitatively describing the molecular distribution of 

the both components. I used perdeuterated n-decane (n-decane-d22) so its distribution could be 

characterized by the 2H-NMR spectra. POPE was probed by 31P-NMR. The partitioning constant 

of n-decane between POPE Lα and HII phases was determined.  

 

3.2 Materials and Methods 

3.2.1 Materials 

N-decane-d22 (> 98 atom % D) was supplied by C/D/N ISOTOPES, Inc. (Pointe-Claire, QC, 

Canada). The other materials used in this part of the project including POPE, HEPES, EDTA, 

deuterium depleted water, NaCl, benzene, and methanol were already identified in section 2.3.1. 
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3.2.2 Lipid Mixture Dispersions 

A POPE/n-decane-d22 90/10 (mol)% mixture was prepared by directly adding 3.2 μL n-

decane-d22 to 105.9 mg POPE. The lipid dispersion was then prepared by adding ~400 µL of HEPES 

buffer (20 mM HEPES, 100 mM NaCl, and 0.05 mM EDTA, pH 7.4, prepared in deuterium depleted 

water) to the lipid mixture. The hydration method was already described in the section 2.3.2. 

After centrifugation, the excess buffer was removed and the lipid dispersion was transferred into 

a NMR sample holder. 

 

3.2.3 NMR Spectroscopy 

The sequential 2H and 31P-NMR spectroscopy of a POPE/n-decane-d22 90/10 mol% sample 

were performed using the parameters described in section 2.3.4. The 2H-NMR spectra were 

dePaked using GRAMS software and through applying the method introduced by Bloom et al. (7). 

This operation enhances the resolution of the Lα/HII components of a 2H spectrum through 

eliminating the orientational dependency of the quadrupolar couplings and leaving only a signal 

typical of an oriented sample with an orientation perpendicular to the 𝐵0 direction. The baseline 

correction and band fittings were carried out using OriginPro 9.2 software.  

 

3.3 Results and Discussions 

The 2H and 31P-NMR spectra of a POPE/n-decane-d22 90/10 mol% mixture at different 

temperatures are shown in Figure 3.1. It is observed that 10 mol% n-decane had noticeable 
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effects on the POPE phase transition. The 31P spectra clearly illustrated that the Lα‒HII transition 

was already initiated at 25 oC.  At this temperature, the CSA of the major component was 45 ppm, 

a value characteristic of a phospholipid in Lα phase (8). The spectrum acquired at 25 oC, also 

included the components of HII phase whose δ┴ component could be observed around -6 ppm. 

The HII components became more intense upon increase of temperature. The 31P spectrum at 56 

oC was characteristic of a phospholipid in HII phase as it represented a reverse line shape 

compared to that of the Lα phase, and a CSA of 21 ppm which was slightly less than the half of 

that of the Lα phase spectrum (9, 10) . Hence, at 56 oC, it was only the HII components remained 

as the spectrum, indicating that the Lα‒HII phase transition was complete. A very narrow 

component appeared ~0 ppm of the 31P spectra indicating to the presence of an isotropic phase 

in the mixture. Its intensity was however very limited (covered less than 1% of the total spectrum 

area) and was not considered in the following analysis. 

The 2H-NMR spectra were representative of the n-decane behavior within the POPE/n-

decane 90/10 mol% mixture. It should be noted that pure n-decane is in liquid state over the 

investigated temperature range of this project (25‒56 oC). Except the one acquired at 56 oC that 

included only two powder patterns, the 2H spectra included three distinct powder patterns; a 

wide powder pattern, a mid-width powder pattern, and a very narrow powder pattern; these   

could be visualized in more details on the dePaked 2H spectra (Figure 3.1, third column). At 25 

oC, the wide powder pattern had a quadrupolar splitting of 11.8 kHz, the middle one, 3.0 kHz, 

and the narrow one was so narrow that it could not be dePaked without artifacts. The Both wide 

and middle components became narrower with increasing temperature. For instance, at 47 oC, 

their widths were 8.6 kHz and 2.6 kHz, respectively.  
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Fig. 3.1: The sequentially acquired (left column) 31P- and (middle column) 2H-NMR spectra of a 

POPE/n-decane-d22 90/10 mol% dispersion. The dePaked spectra of the corresponding 2H-NMR 

spectra are presented on right column. The fitted components of the dePaked spectra are plotted 

in different colors. See the text for more details. 
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Structurally, n-decane-d22 is a simple aliphatic chain consisted of ten carbon atoms including eight 

central methylene (C2H2) and two terminal methyl (C2H3). Since all the eight C2H2 are linked to 

two other carbon groups, their motions are more restricted than those of the two terminal C2H3 

which are bounded only from one side. Therefore, the wider powder patterns were assigned to 

the eight C2H2 of n-decane-d22 in Lα phase, whereas the two terminal methyl (C2H3) contributed 

to the middle powder pattern. The mobility difference between the C2H2 and C2H3 groups was 

also observed in the 2H-NMR spectra of CerC16-d31 and POPE-d31, in Chapter 2.  The narrower 

powder patterns, the ones included two overlapped narrow powder patterns and can be 

observed on all the 2H spectrum, must be assigned to both the less restricted terminal C2H3 in Lα 

phase, and all the ten C2H2 and C2H3 groups in HII phases. In other words, one could rationalize 

that while the corresponding area of the HII phase components were increasing through increase 

of temperature, those of corresponding to the Lα phase decreased simultaneously. As also 

observed on the 31P spectra, the very narrow powder patterns around 0 kHz should be 

correspond, though beside the very less restricted parts of n-decane in HII phase, to the presence 

of n-decane in an isotropic phase. However, these two probable constituents of the narrowest 

powder patterns were not distinguishable as their relaxation time were longer than the signal 

recording time scale used in this experiment. 

Globally, the 2H spectra line shape of n-decane-d22 methylenes did not demonstrate the 

same superimposed powder patterns as those of CerC16-d31 in Chapter 2. As explained, the 

superimposed 2H powder patterns of CerC16-d31 in Lα phase were due to the orientational order 

gradients along the CerC16-d31 perdeuterated acyl chains. It has been reported that when mixed 

with different PC, short chain alkanes such as hexane are located in the middle of the bilayers in 
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Lα phase, causing an increase in their thickness (11, 12) . The authors rationalized that the alkane 

molecules were probably located in the middle of the bilayers, penetrating into the lower part of 

the acyl chains. The quadrupolar splitting of the widest powder pattern of n-decane-d22 in POPE 

Lα phase at 47 oC corresponded to that of the last C2H2 and the terminal C2H3 along the acyl chain 

in pure POPE-d31 bilayers (13). This comparison suggests that n-decane-d22 molecules were 

located in a disordered environment in Lα phase, most likely localized in the middle of POPE 

bilayers in Lα phase. Because n-decane molecules appear to be localized in the lower part of POPE 

acyl chains, they increase the total volume of the acyl chain part of the bilayers while the polar 

head group volume remains the same, inducing the cone shape. Hence, this additional “packing 

stress” initiates the Lα‒HII transition at a much lower temperature (~25 oC).  

The 2H powder patterns width of n-decane-d22 in Lα phase were ≥ 3 folds wider than those 

of the HII phase at the same temperature. As a comparison, this ratio was 2 for CerC16-d31 (in 

chapter 2).  A ratio of 2 is expected (14) and confirmed the inclusion of CerC16-d31 with POPE in 

HII phase. However, the higher Lα/HII powder pattern width ratios of n-decane-d22 infers that n-

decane-d22 molecules could not only much be localized along to the POPE acyl chains in HII phase, 

but included in an environment in which they experienced even lower degrees of restriction 

compared to those of the middle of the bilayers in Lα phase. Mixed with monomethylated 

dioleoylphosphatidylethanolamine (DOPE-Me) as the host phospholipid, Siegel et al. (15) have 

derived that , dodecane-d26 and hexadecane-d34, as two rather long chain alkanes, were totally 

located within the interstitial spaces between the HII phase cylinders. The authors’ inference was 

based on the Lα/HII powder pattern width ratios ≥ 5 for these two alkanes. Chen et al. (6) also 

concluded that long chain alkanes were mainly located between HII cylinders. In my case, the 
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abovementioned ratio ≥ 3 obtained for n-decane-d22, indicates that short chain alkanes, such as 

n-decane, could be localized somewhere between the interstitial spaces and the lower part of 

the phospholipid acyl chains in HII phase. This inference is in good agreement with the conclusion 

obtained by Chen et al. (6).  

As mentioned earlier, all the 2H and 31P-NMR spectra of the POPE/n-decane-d22 mixture, 

except those of acquired at 56 oC, consisted of overlapped Lα/HII phase components. In case of 

the 31P spectra, the subtraction method used for the analysis of the POPE/CerC16-d31 mixture 

spectra (chapter 2) was exploited for determining the distribution of POPE in either the two Lα/HII 

phases. Briefly explained, I subtracted the pure HII phase 
31P spectrum of POPE obtained at 56 oC 

from those of acquired at lower temperatures, then calculated the ratio of either the Lα/HII 

phases through measuring their corresponding areas at each temperatures. However, for two 

reasons, I was not able to use the same subtraction method in case of the 2H spectra. First, it was 

the powder pattern width variation of the HII components through increase of temperature, 

which made it almost impossible to perform a precisely subtraction of the pure HII spectrum 

acquired at 56 oC from each of those obtained at lower temperatures. The second reason was 

the lack of a pure Lα phase 2H spectrum that is required for the subtraction. Consequently, I used 

the dePaked spectra (Figure 3.1, the third column).  
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Fig. 3.2: Phase partitioning graphs of (top) n-decane-d22 and (bottom) POPE at different 

temperatures. Color guide: orange bars, green bars, and yellow bars represent Lα phase, HII 

phase, and isotropic phase, respectively.  

 

As described above, the dePaked 2H spectra of n-decane-d22 at different temperatures displayed 

three different doublets. The one with the widest splitting must correspond to the eight C2H2 of 

n-decane-d22 in Lα phase.  The intermediate one represents the superimposed components of 
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both the two terminal C2H3 in Lα phase and the eight C2H2 in HII phase. The narrowest doublets 

are associated with a component with very high degree of freedom; it could be assigned to the 

two C2H3 of decane in HII phase as well as some n-decane-d22 in an isotropic phase. 

To determine the proportion of decane in the Lα/HII phases, the doublets with the largest 

and the middle quadrupolar splittings were fitted using GaussAmp fit method. The area of the 

widest doublet corresponded to the eight C2H2 in the Lα phase.  The intermediate doublet was 

assigned to the overlapped Lα–phase C2H3 and HII–phase C2H2.  The area associated with the two 

terminal C2H3 (i.e. 6 deuteriums) in Lα phase should equal 6/16 or 0.375 of the area of the largest 

doublet (which correspond to eight C2H2 or 16 deuteriums). By subtracting this component, I was 

able to estimate the area corresponding to the eight C2H2 in HII phase.  

Knowing the phase distribution of n-decane-d22 and POPE (Figure 3.2), it is possible to 

determine the partitioning constant of n-decane-d22 between the two Lα/HII phases (K) at 

different temperatures, using Equation 3.1: 

𝐾 =
(𝑋𝑛−𝑑𝑒𝑐𝑎𝑛𝑒−𝑑22 𝑋𝑃𝑂𝑃𝐸⁄ )

𝐿𝛼

(𝑋𝑛−𝑑𝑒𝑐𝑎𝑛𝑒−𝑑22 𝑋𝑃𝑂𝑃𝐸⁄ )
𝐻𝐼𝐼

                                                                                                                 Eq. 3.1 

where X is the relative proportion of either the lipid components in different phases. The K 

constants and the proportion of POPE in HII phase were plotted versus temperature as shown in 

Figure 3.3. Except two temperature regions, the very beginning of the Lα‒HII and the one close to 

the end of the transition, in which the calculation uncertainties of K could have been high, the K 

≤ 1 at different temperatures indicates that HII phase was favoured through increase of 

temperature.  
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Fig. 3.3: The partitioning constant, K, (black squares) and POPE HII phase content (blue circles) of 

the mixture at different temperatures. The data precision is ± 0.01 for K, and ± 2% for HII 

proportion in temperature range of 30‒47 oC. 

 

Furthermore, the slightly decreasing of K as a function of temperature indicates to the sluggish 

progress of the Lα‒HII transition. Globally, there could be a balance between the two main factors 

pushing POPE bilayers to slightly accomplishing the Lα‒HII transition. In other words, while the 

packing stress over the POPE acyl chains was gradually decreasing since more and more n-decane 

molecules were transferred to HII phase, at the same time, the kinetic motion of POPE molecules 
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was progressively raising, reaching to the specific level being necessary for accomplishment of 

the Lα‒HII transition. This could justify the slow progression of the Lα‒HII transition over a broad 

range of temperature. 

It is noteworthy that when temperature raises, the lipid molecules receive some higher 

degree of freedom in HII phase ‒ faster diffusion around the HII cylinders, which consequently 

shrinks the radius of the HII cylinders, and as a result, the interstitial spaces. This may imply to an 

inconsistency with what the K constants demonstrates for the POPE/n-decane-d22 dispersion in 

this project, as the linear descending trend of K indicates to a continues transfer of n-decane-d22 

to HII phase. One inference could be explained based on the total volume of the interstitial spaces 

that can be created by a constant amount of lipid molecules in HII phase. In fact, the same amount 

of lipid molecules could create some bigger HII cylinders and interstitial spaces, or smaller, but 

more numerous cylinders and interstitial spaces. In other words, the total volume of the 

interstitial spaces could remain the same, no matter how the size of the HII cylinders changes.  

 

3.4 Conclusions 

In this part of the project, the effects of 10 mol% n-decane on the polymorphism of POPE 

was investigated. N-decane promoted remarkably the Lα‒HII transition of POPE, shifting it toward 

lower temperatures. The end point of the transition was much less affected. It led to a transition 

broadness of 30 oC. This downshifted transition is associated with the impacts of n-decane on 

the molecular packing of POPE in both Lα and HII phases. Since n-decane molecules were located 

near the end of POPE acyl chains in the lamellar phase, they caused an increase on the packing 



Chapter 3 

63 
 

stress of the bilayers. The other impact of n-decane favoring the HII phase is related to filling the 

unfavorable void spaces between the HII cylinders. Globally, the two effects of the n-decane 

molecules ‒ the high level of packing stress in Lα phase and the filled void spaces in HII phase, 

made the POPE bilayers initiate the Lα‒HII transition at a much lower temperature. The sequential 

2H and 31P solid-state NMR spectroscopy was a great approach for measuring the phase 

distribution of both n-decane-d22 and POPE in either the Lα/HII phases under the very same 

conditions.  This technique allowed to calculate the partitioning constant of the POPE/-n-decane-

d22 mixture at different temperatures.  
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4 Conclusions 

My M.Sc. project mainly focused on two subjects. In the first part, I investigated how 

CerC16 alters the polymorphism of POPE. Globally, CerC16 had two major impacts on the thermal 

behavior of POPE.  It broadened the Lβ‒Lα phase transition and shifted it towards higher 

temperatures.  It also broadened the Lα‒HII phase transition and shifted it towards lower 

temperatures. For a CerC16 content ≥ 12.5 mol%, the two phase transitions overlapped causing 

a coexistence of the three phases at 54-55 oC. The order profile of both POPE and CerC16 acyl 

chains showed that, 10 mol% CerC16 did not have significant impacts on the order parameters 

of POPE acyl chain in Lα phase. However, the order parameters of CerC16 in both Lα/HII phases 

are higher than those of POPE, a phenomenon that may be associated with a different level of 

CerC16 in the self-assembly or a smaller molecular area of this lipid. 

As the second part of the project, I studied the impacts of n-decane on the polymorphism 

of POPE. The results showed that n-decane broadened significantly the Lα‒HII phase transition of 

POPE and shifted it towards lower temperatures; 10 mol% n-decane caused the transition to 

begin at 25 oC and to end at 56 oC. N-decane alters the polymorphism of POPE, first, through 

an increase in the stored elastic stress in POPE bilayers, and second, by filling the unfavorable 

interstitial void spaces between the cylinders in HII phase, releasing the packing stress. 

I employed the sequential 2H and 31P solid-state NMR spectroscopy as the main technique 

in the both parts of the project where I recorded one after another 2H and 31P signals, under the 

very same conditions. Although there have been several studies in which the authors exploited 

the solid-state NMR spectroscopy of either 2H, or 31P, or both but separately, it was the first time, 
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to the best of my knowledge, that the two techniques were utilized in a sequential way for 

studying the polymorphism of a lipid mixture. This approach was very advantageous as it 

provided some crucial information not only about the phase behavior of the both components, 

but also about the dynamic of the perdeuterated constituents under the very same lipid-

composition and thermal conditions. A key component to setup this approach was the use of a 

probe that could be tuned for both nuclei without taking it out of the magnet. Removing the 

probe from the magnet leads to temperature variations and make it essentially impossible to 

obtain the very same conditions. The sequential acquisition of 2H and 31P spectra led to a partial 

phase diagram for the POPE/CerC16 system. 

Sequential 2H and 31P-NMR spectroscopy of lipid mixtures is a simple approach to gain 

important information about the different phase behavior of the components of the mixture at 

a specific temperature. This technique could be easily exploited to study the impacts of other 

components of biological importance on phospholipid polymorphism. As two examples, one 

could characterize the impact of peptides and local anesthetics, two membrane active agents, on 

the lipid phase behavior. Peptides consist of approximately ≤ 50 amino acids. An important group 

of peptides ‒ the cell penetrating peptides with hydrophobic structures, govern some of the most 

important activities of cell membranes, such as selective transportation of various species 

from/into the cells (1, 2). Some anesthetics attach to the sodium channel proteins within the 

neuron cell membranes, block the transmission of the nerve impulses and thus, cause the loss of 

local sensation. 2H or 31P-NMR spectroscopy have been separately utilized in several studies for 

investigating the role of these species in altering the phase behavior of cell membranes (3-9). By 
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taking advantage of sequential 2H and 31P-NMR spectroscopy, one can precisely track the effects 

of these molecules on the phase behavior of the phospholipid. 
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5 Annexes 

 

 

Fig. Anx 1: The 2H (left column) and 31P (right column) NMR spectra of POPE/CerC16-d31 95/5 

dispersion. The acquisition temperature is indicated on the right. 
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Fig. Anx 2: The phase distribution graphs derived from the 2H- (left column) and 31P- (right 

column) NMR spectra of POPE/CerC16-d31 mixtures with molar ratio of (A) 95/05, (B) 90/10, (C) 

85/15, and (D) 80/20. Blue, orange, green, and yellow represent Lβ, Lα, HII, and isotropic phases, 

respectively. 
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Fig. Anx 3: The 2H (left) and 31P (right) phase composition graphs of the POPE-d31/CerC16 90/10 

mixture. Blue, orange, green, and yellow represent Lβ, Lα, HII, and isotropic phases, respectively. 

 

 

 

 

Fig. Anx 4: Theoretical phase diagram of the POPE/CerC16 system based on regular solution 

theory.  H (POPE) = 23.9 kJ/mol; Tm (POPE)= 25.6 oC (from our thermogram); H (CerC16) = 57.7 

kJ/mol; Tm (CerC16) = 90.0 oC (1). 
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