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RÉSUMÉ 
Dans le cerveau, les astrocytes sont les cellules gliales les plus abondantes et elles jouent 

divers rôles, y compris le maintien des synapses tripartites et la régulation du débit sanguin 

cérébral (DSC). Le monoxyde d’azote (NO) est une molécule de signal endogène qui a un 

impact sur la régulation de l'activité synaptique et du DSC. Des études antérieures ont démontré 

que le NO est produit dans les cellules endothéliales et les neurones par la synthase du monoxyde 

d’azote endothéliale (eNOS) et neuronale (nNOS), respectivement. Cependant, la source de 

production de NO dans les astrocytes reste incertaine. Par conséquent, nous proposons que la 

voie de signalisation NOS constitutive puisse coexister dans les astrocytes et puisse être activée 

par différents neurotransmetteurs. L'objectif de cette thèse est d'identifier les sources et les 

activateurs de la production de NO dans les astrocytes corticaux de la souris. 

L'identification des isoformes constitutives de NOS effectuée au moyen de la microscopie 

électronique et d'immunohistochimie a révélé l’expression des eNOS et nNOS dans les 

astrocytes. Des préparations de culture d'astrocytes et de tranches de cerveau marquées avec du 

diacétate de 4-amino-5-méthylamino-2',7'-difluorescéine (DAF-FM), un indicateur de NO 

perméable aux cellules qui devient imperméable une fois à l’intérieur ont été réalisées. Cette 

fonctionnalité a été mise à profit pour évaluer la production de NO exclusivement dans les 

astrocytes en utilisant la microscopie confocale à uni- et multi-photons. De plus, des agonistes 

cholinergiques ou glutamatergiques qui ont la capacité d’augmenter la concentration de Ca2+ 

intracellulaire peuvent induire une production du NO in vitro et ex vivo dans les astrocytes, qui 

est supprimée en présence de l'inhibiteur de NOS non sélectif, L-NG -Nitro-arginine. Fait 

intéressant, la réponse NO à l’acétylcholine était absente chez les souris eNOS-/-, tandis que 

l'acide trans-1-aminocyclopentane-1,3-dicarboxylique (t-ACPD) a peu affecté la production de 

NO chez les souris nNOS-/-. Ces résultats impliquent que les eNOS et nNOS astrocytaires 

peuvent être déclenchés par des cascades d'activation distinctes (cholinergique et 

glutamatergique métabotrope). En outre, les études sur la mobilisation cytosolique du Ca2+ 

indiquent l'importance du réticulum endoplasmique comme réservoir de Ca2+ pour la production 

de NO, et suggèrent aussi une voie de signalisation astrocytaire qui, une fois activée par le t-

ACPD, provoque l'efflux de Ca2+ médié par le récepteur à la ryanodine, qui à son tour active les 

nNOS adjacents et conduit à la production de NO. Par ailleurs, la superfusion de préparations 
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in vitro et ex vivo avec du N-Méthyl-D-aspartate (NMDA) a provoqué une augmentation du NO 

tant dans les souris eNOS-/- que nNOS-/-, ce qui indique l'implication des eNOS et nNOS 

astrocytaires. La production de NO a été atténuée par l'inhibition du complexe PSD-95 / nNOS 

ce qui suggère que le récepteur NMDA astrocytaire rend fonctionnelle la cassette de 

signalisation NR2B/PSD-95/nNOS. 

En conclusion, nos résultats démontrent que : i) les astrocytes corticaux expriment à la fois 

eNOS et nNOS; ii) la nNOS cytosolique colocalise avec les récepteurs 2 et 3 de la ryanodine, 

alors que les nNOS membranaires colocalisent avec le récepteur NMDA contenant le NR2B; 

iii) la stimulation neuronale a la capacité d'induire la production de NO par les eNOS et nNOS 

astrocytaires par des voies de signalisation différentes; iv) l'activation des nNOS cytosoliques 

nécessite une activation des récepteurs à la ryanodine. Collectivement, ces données suggèrent 

une production de NO compartimentée et spécifique après une stimulation neuronale 

probablement dans le but de réguler finement et de façon polarisée les fonctions astrocytaires. 

Ce travail fournit un nouvel aperçu des conséquences physiologiques pour les fonctions 

neuronales et vasculaires et améliore notre compréhension de la fonction NO astrocytaire dans 

le cerveau. 

 

Mots-clés : monoxide d’azote, synthase du monoxyde d’azote endothéliale, synthase du 

monoxyde d’azote neuronale, astrocyte, pieds astrocytaires, microdomains, cholinergique, 

glutamatergique, cortex somatosensoriel  
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SUMMARY 
       In the brain, astrocytes are the most abundant glial cells and play various roles including 

maintenance of tripartite synapses and regulation of CBF. An endogenous signal molecule that 

has a potential to have an effect on regulation of both synaptic activity and CBF is nitric oxide 

(NO). Previous studies have demonstrated that NO is produced in endothelial cells and neurons 

by endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS), 

respectively. However, the source of NO production in astrocyte remains uncertain. Therefore, 

we propose that constitutive NOS signalling pathways may exist in astrocyte and can be 

activated by different neurotransmitters. The aim of this thesis is to identify the sources and 

activators of NO production in mouse cortical astrocytes.  

       Identification of constitutive NOS isoforms done by means of electron microscopy and 

immunohistochemistry revealed the expression of both eNOS and nNOS in astrocytes. All 

preparations were performed in astrocyte cultures and brain slice preparations labeled with 4-

amino-5-methylamino-2',7'-difluorescein (DAF-FM) diacetate, a cell-permeant NO indicator 

that becomes cell-impermeable once inside cells. Therefore, I took advantage of this feature to 

evaluate NO production exclusively in astrocytes using single and multi-photon confocal 

microscopy. We then tested whether cholinergic and glutamatergic agonists that have the 

capacity to increase intracellular Ca2+ concentration can induce an increase in astrocytic NO. 

Both in vitro and ex vivo, NO production levels indicate that cholinergic and glutamatergic 

stimulations can induce astrocytic NO increases, which was abolished by the non-selective NOS 

inhibitor L- NG -Nitro-arginine. Moreover, the NO response to ACh was absent in eNOS-/- mice, 

while trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) barely affected NO 

production in nNOS-/- mice. These results imply that astrocytic eNOS and nNOS can be 

triggered discretely by distinct activation cascades (cholinergic and metabotropic glutamatergic). 

Furthermore, studies on cytosolic Ca2+ mobilization point out the importance of the endoplasmic 

reticulum (ER) Ca2+ as key in the mechanism of NO production, and suggests a signalling 

pathway that t-ACPD causes IP3Rs to elicit RyRs-mediated Ca2+ efflux, which in turn, activates 

adjacent nNOS and leads to NO production. Furthermore, superfusion of in vitro and ex vivo 

preparations with N-Methyl-D-aspartate (NMDA) evoked an increase in NO in eNOS-/- and 

nNOS-/- mice. The NO production was attenuated through removal of PSD-95/nNOS complex. 
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This result posits that astrocytic NMDA receptor may comprise the functional NR2B/PSD-

95/nNOS signalling cassette.  

       In conclusion, our findings demonstrate that: i) cortical astrocytes express both eNOS and 

nNOS; ii) nNOS colocalizes with ryanodine receptor 2 and 3, whereas membrane nNOS 

colocalizes with NR2B-containing NMDA receptor; iii) neuronal stimulation has the capacity 

of inducing eNOS- and nNOS-produced NO in astrocytes via different activation signalling; iv) 

activation of cytosolic nNOS requires the activation of ryanodine receptors. Collectively, these 

data suggest a compartmentalized and specific NO production following neuronal stimulation 

probably for a fine and polarized regulation of astrocytic functions. This work provides new 

insight into physiological consequences for neuronal and vascular functions and ameliorates our 

understanding of astrocytic NO function in the brain. 

 

Key words: nitric oxide, endothelial nitric oxide synthase, neuronal nitric oxide synthase, 

astrocyte, astrocytic endfoot, microdomains, cholinergic, glutamatergic, somatosensory cortex 
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1.  Astrocytes in the brain: not only the supporting cells 
In the brain, there are three main cell types: neurons, glia and vascular cells. Neurons, are 

the predominant signalling units in the nervous system. Glia was named by Dr. Rudolf Virchow 

according to the Greek word “γλια” (means glue in English) (Verkhratsky and Butt, 2007).  

On the basis of glial development in the brain, glial cells are divided into two types by the 

origins: microglia derived from peripheral macrophages and macroglia derived from neurogenic 

ectoderm (Kandel et al., 2000). Furthermore, macroglia in the brain usually are usually 

subdivided into three main types (Figure 1-1): astrocytes (also called astroglia), 

oligodendrocytes and ependymal cells. With the evolution of the nervous system outnumbered 

glial cells were found in advanced animals, which were underestimated as basic supporting cells 

in the brain for a fairly long time. However, the novel prevailing view in the role of glia approves 

much closer but intricate interactions between glial cells and neurons as well as blood vessels. 

Therefore, the core subject of my study is astrocyte and I introduce detailed information on 

astrocytes in this chapter. Moreover, although there are many types of astrocytes found in the 

retina and different part of the central nervous system, this thesis will focus on the cortical ones. 

 
       By means of immunohistochemistry in the human brain, 80 % of glia are identified as 
astrocytes, the number of oligodendrocytes, ependymal cells and microglia is of approximately 
5 %, 5 % and 10 %, respectively.  
 

1.1 Definition and general distribution 
In the central nervous system (CNS), about 80 % of glial cells are astrocytes (Verkhratsky 

and Butt, 2007), which leads to an extensive distribution throughout the whole brain from grey 

matter to white matter and the development of different functional properties of astrocytes in 

different brain regions.  

Figure 1-1 Percentages of different subtypes of glia in the human brain 
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The etymology of the word “astrocyte” comes from Greek words “astron” and “kyttaron”, 

indicating a kind of cell types with star-like appearance. Indeed, most astrocytes in grey matter 

present stellate (or protoplasmic) shape, with many thin and fine processes originating around 

the cell body, while the morphology in white matter is rather fibrous shape with thin but long 

processes (Redwine and Evans, 2002). Up to now there is no clear, consistent description to 

define subtypes of astrocyte yet, because of no exact specific marker. They are defined in 

functions of their morphology and distribution.  

 
1.2 Astrocytes specific features  

In light of the heterogenetic characteristics, astrocytes display several specific properties 

that distinguish them from other brain cells. In this section, I present two main astrocytic 

characteristics. 

First, to support stellate and fibrous shape, astrocyte expresses a distinctive cytoskeleton 

protein to form intermediate filament (IF) - glial fibrillary acidic protein (GFAP) – which is 

deemed as a specific marker for immunostaining to distinguish from other cells such as 

microglia and neurons. Pathophysiologically, over expression of GFAP in astrocytes in situ is 

regarded as a hallmark of reactive astrocytosis and injury status of brain. Nevertheless, it is 

important to note that there are many limitations of GFAP as a marker of astrocyte, i) it is 

reported that only 20 % of astrocytes in the mature cortex and hippocampus in vivo are GFAP-

positive, as the rest of astrocytes produce undetectable GFAP but glutamine synthetase and 

S100b (Norenberg, 1979; Feoli et al., 2008; Sofroniew and Vinters, 2010), which are not 

entirely exclusive to astrocytes; ii) GFAP immunostaining does not describe the whole territory 

of one astrocyte especially in those fine and remote processes, compared to other staining 

techniques like Golgi labeling, the expression of reporter proteins such as GFP or β-

galactosidase or filling with fluorescent dyes (Bushong et al., 2002; Sofroniew and Vinters, 

2010). However, the considerable investigations of GFAP in the CNS make applications of 

GFAP on immunohistochemistry and western blot more accessible for astrocyte labeling. To 

label living astrocytes, sulforhodamine 101 (SR101), a red fluorescent marker selectively traces 

astrocytes for imaging studies, which was used in our ex vivo studies. 

The second but crucial feature of astrocytes is that they are not electrically excitable cells 

in terms of action potential such as in neurons. They rather convert external signals into 
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intracellular Ca2+ waves in response to neuronal stimulation. It is important to recognize that 

changes in intracellular Ca2+ levels enable astrocytes to establish astrocyte networks and tight 

intercellular communications both for synaptic transmissions and neurovascular coupling. Thus 

the mechanisms associated to Ca2+ waves in astrocytes seem to be central to understand how 

astrocytes respond to neuronal activity. Correspondingly, progressively emerging studies are 

unfolding the map of Ca2+ signalling in astrocytes. Detailed functions and mechanisms will be 

presented in section 3. 

 

1.3 Classification and location 
As mentioned, astrocytes are classified as stellate (or protoplasmic) astrocytes in grey 

matter and fibrous astrocytes in white matter by means of cellular morphology in the brain. 

Notably, there is a third subgroup of astrocytes existing the immature brain, termed radial glia, 

which are bipolar cells and extend two sets of processes arisen from the soma, one to pial surface 

and one terminated at the ventricular exterior. This subgroup is recognized as stem cells that 

give rise to neurons, astrocytes and oligodendrocytes during the developing CNS. Nonetheless, 

radial glia are also thought to exist in the mature brain in the form of tanycytes around the 

ventricles, Müller cells in the retina and Bergmann cells in the cerebellum (Lewis and Ebling, 

2017). 

During the development of the brain, astrocytes develop diverse morphologies once 

migrating out of the germinal zones (Redwine and Evans, 2002). Previous studies further 

identified three subtypes in the rodent cerebral cortex where astrocytes display distinctive 

morphologies and complex functions (Liu et al., 2013; Verkhratsky and Nedergaard, 2016; 

Vasile et al., 2017). i) Surface astrocytes (also called interlaminar astrocytes in the human brain) 

are located in cortical layer I. Their endfeet form continuous superficial glial limitans on the 

surface of pial vessels, but rarely contact neurons. ii) Protoplasmic astrocytes extending 

numerous fine processes are located in cortical layers II to IV and serve the most contacts with 

synapses as well as cerebral vasculature. iii) Few polarized astrocytes situate deeply in layer V 

and VI and stretch one or two very long processes upward till cortical layer III. These unipolar 

cells display rare contact with the vasculature and sparse coverage of neuropils. Moreover, there 

are another two subtypes of cortical astrocytes exclusively in the brains of human and higher-

order primates (Figure 1-2). One is interlaminar astrocytes located in cortical layer I form pial 
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glia limitans and extend their longest processes to layer III or IV. They display similar features 

to surface astrocytes in the rodent brain. The second is varicose projection astrocytes located in 

layer V and VI. They extend few branches covering vessels and neuropils.  

 

       On account of the difference in astrocyte (A) morphology, protoplasmic-like astrocytes are 
found in grey matter, and fibrous-like astrocytes are in white matter. To further understand 
astrocyte distribution from cortical layer I to layer VI, a piece of coronal section of the cerebral 
cortex is analyzed, showing interlaminar astrocytes, protoplasmic astrocytes, varicose 
projection astrocytes and polarized astrocytes, respectively. 
 

In view of the contacts with cerebral vasculature and neuropils, we decide to choose the 

subjects of our ex vivo study - perivascular astrocytic endfeet from layers III to V of the mouse 

cerebral cortex, where it comprises most contacts with the vasculature walls and ensures the 

solely cellular source - protoplasmic astrocytes. This one of a kind architecture allows direct 

modulation of vascular tone by perivascular astrocytes-derived vasoactive factors. Considering 

the central position between neurons and blood vessels, perivascular astrocytes play vital roles 

in modulation of local blood flow in response to neuronal activity (MacVicar and Newman, 

2015). Meanwhile, the area of astrocytic endfoot is fairly large, allowing imaging especially 

with two-photon confocal microscopy to identify and record changes in astrocytic endfeet ex 

vivo at morphological, spatial and temporal levels. Therefore, astrocytic endfoot was selected in 

Figure 1-2 A schematic representation of astrocyte distribution in the human brain 
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ex vivo studies to better understand responses of perivascular astrocytes 

 
1.4 Functional roles of astrocytes in the brain 
       Far more than supporting cells, astrocytes play multiples roles in the brain. Key aspects of 

astrocyte function are described as follows: 

1)    During the early brain development, elongated radial glial cells are transformed from 

neuroepithelial cells. They have two main processes, one reaches the pial side and the 

other ends at the ventricular region. The pluripotent radial glia is regarded as precursor 

that has direct or indirect possibility to differentiate into neurons or macroglia. In the 

cortex, it is clear that radial glial cells form scaffold structure and give guidance for 

migration of neuronal precursors. Afterwards radial glia cells release multiple molecular 

factors to guide axon extension and assist with synapses formation and development 

(Sofroniew and Vinters, 2010). In addition, they also promote the formation and 

organization of the white matter and regulate vascularization in the cerebral cortex 

(Barry et al., 2014). In the mature brain, certain astrocytes in the hippocampus and in the 

subventricular zone have been identified as progenitor cells of neurons and astrocytes, 

though it is still under debate that in the adult brain tanycytes, Müller cells and Bergmann 

cells solely preserve the morphology of radial glia but not the stem cell capability.  

2)    Production of growth factors. Astrocytes secrete various growth factors upon neuronal 

damage or during synaptic ensembles. Throughout the embryonic and postnatal periods, 

astrocytes release synaptogenic molecules, such as cholesterol, thrombospondins and 

transforming growth factor (TGF) β1, which assist synaptic formation and remodelling 

(Diniz et al., 2012) and control synapse elimination by upregulating C1q expression and 

its complement cascade (Clarke and Barres, 2013). Production of astrocyte-derived 

growth factors in the mature brain is affected by aging, degeneration and injury. For 

instance, excess TGFβ production in astrocytes and neurons was triggered by obesity 

and aging, leading to inflammation and increased tissue degradation (Yan et al., 2014). 

When brain tissue suffers ischemia and hypoxia, astrocyte-produced erythropoietin, 

insulin-like growth factor (IGF) 1 as well as vascular endothelial growth factor (VEGF) 

are enhanced (Larpthaveesarp et al., 2015). Moreover, pathological astrocytes 

particularly form glial scars and reactive gliosis around lesions in the brain to prevent 
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inflammation and damage spread by secreting endothelin and VEGF (Burda and 

Sofroniew, 2014). 

3)    Interface between meninges and parenchyma. Surface astrocytes in the cerebral cortex 

and Begmann cells in the cerebellar cortex extend numerous endfeet toward the pial 

surface and form continuous superficial glia limitans. This unique structure, in part, 

isolates the brain parenchyma from the subarachnoid tissue. Under pathological 

conditions, incomplete glia limitans accompanied with neuronal loss was observed in 

Alzheimer’s brain (Sofroniew and Vinters, 2010). Furthermore, surface astrocytes 

mediate the propagation of intra-cortical interactions, which are not only across the 

entire surface of glia limitans but go deep into the grey matter until cortical layer IV.  

4)    Contributions to the blood-brain barrier (BBB). All capillaries in the CNS are 

impermeable for big molecules, such as harmful substances and most medicines, owing 

to lack of fenestra. Generally, the principal BBB components comprise endothelial cells 

that form tight junctions, few vascular smooth muscle cells, pericytes and astrocytes 

(Daneman and Prat, 2015). Astrocytes are widely applied to induce formation of in vitro 

BBB. Paradoxically, in vivo evidence found that in the early brain development 

functional BBB appears before astrocyte generation and encirclement of blood vessels, 

suggesting that astrocyte does not take part in the initial formation of the BBB. However, 

astrocyte-secreted bioactive factors play crucial roles in maintenance and modulation of 

the BBB functions, for instance, astrocyte-secreted laminin was found to maintain the 

BBB integrity on the surface of blood vessels (Yao et al., 2014). Therefore, astrocyte is 

an important mediator, which assists endothelial cells to form tight junctions and 

maintains the BBB functions.  

5)    Contributions to brain energy. The energy utilization of neurons is very high, and nearly 

80 % of brain energy goes to synaptic and action potentials, whereas the rest fuels glial 

cells-based activities such as glutamine synthesis which requires glutamate and ATP 

(Magistretti and Allaman, 2015). It is well established that glucose is the main source of 

brain energy and is imported from the blood supply through glucose transporters (GLUT) 

1 in endothelial cells. After uptake by neurons via GLUT3, glucose is metabolized 

through active tricarboxylic acid (TCA) cycle and oxidative phosphorylation, which 

provide bulks of energy in the form of adenosine triphosphate (ATP). Alternatively, it 
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enters astrocyte through GLUT1 and is predominantly converted into lactate through the 

aerobic glycolysis pathway. Released lactates can be further uptaken by neurons and 

oxidized to yield ATP. Besides, astrocytes in the adult brain exclusively store glycogen 

which is a storage form of glucose. Hence, when glucose supply cannot meet energy 

requirements, glycogenolysis is stimulated in astrocytes to maintain axon activation, or 

in pathology, to prevent hypoglycemic neural injury (Brown and Ransom, 2007). It is 

also noteworthy that in the injured brain, reactive astrocytes downregulate glutamine 

synthase activity to decrease energy demands and save ATP, thereby further reducing 

adjacent synaptic currents (Burda and Sofroniew, 2014). Collectively, astrocyte acts as 

a warehouse of energy sources in the brain metabolism. 

6)    Astrocyte develops high-efficient uptake system of neurotransmitters, such as glutamate 

and gamma-aminobutyric acid (GABA). This function enhances signalling efficiency 

and accuracy during synaptic transmission, since the neurotransmitters removed into 

astrocytes have no effects on other cells and then are stored either for energy source or 

for neurotransmitter circulation. Astrocytes structurally extend perineuronal processes 

terminating to neuronal synapses, thus forming tripartite synapses, which comprise 

presynaptic terminal, postsynaptic terminal and the enclosed astrocytes. In addition, high 

levels of neurotransmitter transporters are clustered predominantly around perineuronal 

astrocytic membrane. In the modulation system of extracellular glutamate, slowly 

desensitizing metabotropic glutamate receptors (mGluR), a group of high-affinity 

glutamate transporters, are located at the areas close to synaptic cleft, while at the further 

distance astrocytic membrane enriches ionotropic glutamate receptors (iGluR), which 

are fast desensitizing but display low affinity for glutamate. In addition, a novel 

mechanism that was recently found in astrocytes to limit glutamate spillover from the 

cleft. Increased glutamate levels at synaptic cleft could recruit glutamate transporter 1 

(GLT-1) membrane diffusion (Murphy-Royal et al., 2015) depending on the activity of 

astrocytes as well as neurons. Since glutamate is unable to penetrate into the BBB, all 

brain cells have to take the strategy to maximize utilization of glutamate. Therefore, a 

part of glutamates is converted into glutamine by glutamine synthase exclusively 

expressed in astrocytes. Released glutamine is taken up either by glutamatergic neurons 

or GABAergic neurons and further partakes to the synthesis of glutamate or GABA 



 

 24 

(Schousboe et al., 2014).  

7)    To maintain extracellular ion and water homeostasis, astrocyte develops high-sensitive 

modulation system for ions such as potassium. Normally, extracellular K+ concentration 

can be raised from 3 mM at the resting level to approximately 12 mM when nerve cells 

are firing. Those extra ions will be redistributed later by astrocytes through two means. 

One is local transportation, which is mediated mostly by individual astrocyte via Na+/K+ 

pumps and Na+/K+/Cl- transporters. Meanwhile, extracellular H2O accompanied with K+ 

movement also crosses into astrocytes and causes cell swelling, signifying a limitation 

of this mechanism. Hence, the second pathway termed spatial K+ buffering allows loads 

of K+ to be expelled to low-concentrated K+ areas via astrocyte networks. This process 

recruits astrocytic gap junctions, the inward rectifying K+ channels - Kir 4.1 ensuring 

mildly inward and outward movement of K+, as well as water channels aquaporin 4 

(AQP4), which are enriched along perivascular astrocytes to regulate fluid volume. 

Notably, this spatial transportation not only contributes to maintenance of synaptic 

activity and protection of membrane potentials of neurons and astrocytes, but also 

removes both K+ and H2O into the blood. Besides, endfeet were found to be associated 

with the vascular outcome by releasing K+ at perivascular side via big-conductance 

potassium (BK) channels (Girouard et al., 2010).  

8)   Bordering on the area of surface astrocytes in the grey matter, endfeet emanated from 

protoplasmic astrocytes are involved in regulation of cerebral blood flow (CBF) by 

contacting with blood vessels and releasing vasoactive factors. Prior studies have 

showed that in response to neuronal activity perivascular astrocytes produce and release 

diverse vasoactive factors derived from arachidonic acids (AA), which in turn modulate 

vascular tone. This real-time linkage is termed neurovascular coupling (NVC) and 

address brain activity and interpret neuroimaging data. 

 

1.5 Ion channels, gap junctions and membrane receptors 
In light of multiple tasks that astrocytes execute in the brain, a great variety of ion channels 

are expressed to regulate intra- and extracellular ion levels and maintain the high negative 

resting membrane potential in the range from -80 to -90 mV (Verkhratsky and Butt, 2007). 
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Furthermore, extensive intercellular interactions are established through gap junctions and 

membrane receptors. Those membrane structures contribute to the functional and informational 

integration of astrocytes within brain networks. 

 

1.5.1	Ion	channels	

Unlike neurons, astrocytes have two distinctive features in ion distributions. One is the 

exclusive K+ conductance that drives astrocytic resting membrane potential towards a very 

highly negative potential, approximately -90 mV. The other is the unusual high concentrations 

of chloride ions (~ 40 mM) in the astrocytic cytosol (Verkhratsky and Butt, 2007). In terms of 

these knowledges, the major ion channels in astrocytes are introduced as follows: 

 

1.5.1.1	K+	channels	

Given the importance in the resting membrane potential, potassium channels have been well 

demonstrated as the most abundant channels in astrocytes. Biophysically, they are divided into 

four classes: inward rectifier K+ channels (Kirs), two-pore K+ channels, outward rectifier K+ 

channels and Ca2+-dependent K+ channels (KCas). 

 
1) Kirs, are responsible for hyperpolarized resting membrane potentials via favoring large 

K+ influx into the cell. It is observed that high density of Kirs, the Kir 4.1 subtype in particular, 

preferentially situated along the fine astrocytic processes facing neuronal synapses and at 

astrocytic endfeet enwrapping blood vessels (Verkhratsky and Steinhäuser, 2000). Astrocyte 

also expresses Kir 2.0, Kir 5.1 and ATP-dependent Kirs (Kir 6.1 and Kir 6.2). (Olsen et al., 2015). 

In the early studies, the heterogeneous expression of Kir channels in astrocytes was thought to 

serve the primary function in uptake and redistribution of extracellular K+, termed spatial K+ 

buffering. To date, investigations have demonstrated other facets of astrocytic Kirs functions. In 

genetic models, Kir 4.1 is associated with brain maturation and the prevention of epilepsy (Olsen 

et al., 2015). Kir 5.1 forms heterometric channels with Kir 4.1 and AQP4 in favor of regulating 

brain volume and chemoreception due to its sensitivity to alkaline conditions (Seifert et al., 

2016). Upregulation of Kir 6.2 was observed in reactive astrocytes in Alzheimer’s disease (AD) 

(Griffith et al., 2016).  

2) Astrocytic two-pore K+ (K2P) channels, consisting of TASK-1, TWIK-1and TREK-1/2 
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channels, function like Kirs and have the capability of setting the resting membrane potential 

close to the K+ equilibrium potential (EK). Though K2P channels are involved in ion/water 

homeostasis and gliotransmitter release (Seifert et al., 2016), their functional impact remains to 

be unraveled.  

3) outward rectifier K+ channels, include rapidly inactivating A-type channels (KAs) and 

delayed rectifier K+ channels (Kdrs). Patch-clamp studies showed that those voltage-gated 

channels are predominants in immature astrocytes. In neurons, KAs and Kdrs are responsible for 

repolarizing the action potential via K+ efflux, whereas in astrocytes, they play important roles 

in improvement of voltage control in astrocytic proliferation and regulation of astrocytic Ca2+ 

influx (Wu et al., 2015). 

4) KCas, are activated by an increase in intracellular Ca2+, which in turn, leads to the K+ 

influx. KCas are classified into three subfamilies depending on the biophysical properties: small-

conductance K+ channels (SK), intermediate-conductance K+ channels (IK) and BK channels. 

Both mRNA and protein expressions of IK channel are barely present in astrocytes in  

physiological conditions (Weaver et al., 2006). Despite slight subunit SK2 proteins were 

detected in astrocytes, the contribution of astrocytic SK channels to NVC remains a 

controversial issue at present (Weaver et al., 2006; Seifert et al., 2016). Unlike SK and IK 

channels which are voltage insensitive, BK channels are gated by both Ca2+ and the 

transmembrane voltage. High density of BK channels are resided in the cytoplasmic membrane 

of astrocytic endfeet facing blood vessels, presenting a non-uniformed distribution. Such 

properties underlie the implication of astrocytic endfeet BK channels in NVC. Once activated 

by neuronal activity via intracellular Ca2+ waves, astrocytic BK channels are functionally 

coupled with K+ channels such as Kirs in the membrane of vascular smooth muscle cell (VSMC) 

and modulate the membrane potential of VSMCs, thereby leading to vasodilation. 

 

1.5.1.2	Ca2+	channels	

Astrocytes have many channels and receptors that allow for increases in internal Ca2+ 

concentration. Astrocytes, especially immature astrocytes, possess L-type and T-type Ca2+ 

channels. The former is high-voltage activated, while the latter is low-voltage gated. Activation 

of astrocytic Ca2+ channels induces a large Ca2+ influx up to 1 µM. Nonetheless, those channels 
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are absent in some cerebellar astrocytes and Bergmann cells. Partially due to these anatomical 

findings, studies on L- and T-type channels in astrocytes are not as prevalent as other channels 

concerning Ca2+. Though recent evidence reported that GABA activates astrocyte-like cells in 

subventricular zone by triggering Ca2+ influx through L-type and T-type Ca2+ channels (Young 

et al., 2010), L-type Ca2+ channels are prone to be involved in pathological response. For 

example, glial scars were found to overexpress L-type channels, which can be activated by the 

heme oxygenase-1 (HO-1) / carbon monoxide (CO) pathway after stroke (Verkhratsky and 

Steinhäuser, 2000; Choi et al., 2016).  

The main sources of Ca2+ increases in astrocytes has been attributed to releases from 

internal stores. This signal occurs upon activation of Gq GPCRs and the phospholipase C (PLC).   

PLC breaks down PIP2 into diacylglycerol (DAG) and inositol triphosphate (IP3), which can 

activate the IP3 receptor (IP3R) on the endoplasmic reticulum (ER) to release Ca2+ (Hatton and 

Parpura, 2004). The other Ca2+ compartment in the ER is activated by the ryanodine receptor 

(RyR).  

The phospholipase C pathway is also linked to transient receptor potential channels 

(TRPCs), which are non-selective Ca2+ channel. These channels can be activated by a second 

messenger induced by depletion of internal Ca2+ stores following activation of Gq GPCRs or by 

binding of IP3 itself. The other product of the PLC pathway, DAG, also can open these channels. 

Blocking channels (TRPC1 in particular) in cultured astrocytes led to reduced Ca2+ signaling 

(Achour et al., 2010). TRPCs can also activate store operated Ca2+ entry in the absence of PLC 

activation (Achour et al., 2010). 

 
1.5.1.3	Cl-	channels	

       Astrocyte is a natural Cl- pool in the brain by largely transporting chloride ions via 

Na+/K+/2Cl- cotransporters. The intracellular concentration of chloride in vitro is in the range of 

29 mM to 46 mM. Considering the roles that astrocytic K+ channels play, cytosolic Cl- levels 

potentially contribute to K+ buffering and astrocytic volume (Verkhratsky and Steinhäuser, 

2000). So far, three groups of chloride channels have been identified in astrocytes, including 

voltage-gated Cl- channels, Ca2+-activated Cl- channels and volume-activated Cl- channels. In 

addition to these three groups, increasing investigations imply that some astrocytic membrane 

proteins also function as Cl- channels. For instance, excitatory amino acid transporter 1 (EAAT1) 
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was found to remove extracellular glutamate and mediate Cl--selective conductance at the same 

time (Gonzalez-Suarez et al., 2017). It is likely that chloride not only participates in regulation 

of cell volume and K+ redistribution but links to glutamatergic synaptic transmission. 

 

1.5.2	Gap	junctions	

Gap-junctional couplings enable astrocytes to form extensive homocellular and 

heterocellular networks. Their spatial properties determine the strength and the spreading 

distance of astrocytic signal propagations. In addition, the strength correlates with the 

morphology alteration of local astrocytes as well as changes in temperature.  

Between cytoplasmic membranes from two adjacent cells, two connexons align with each 

other forming one functional gap junction. Each connexon consists of 6 subunits, termed 

connexins (Cx), which form a pore allowing ions, water and several macromolecules (< ~ 1.2 

kDa), such as second messengers ATP and ADP, to permeate and enter into homocellular or 

heterocellular cytosol (Giaume and Naus, 2013). Thus, gap junctions provide a direct pathway 

for cell-to-cell communication. By contrast, single connexon in the cytoplasmic membrane 

disconnecting with another connexon functions as a connexon hemichannel, which directly 

mediates exchanges of ions, metabolites and gliotransmitters with extracellular space. Recent 

research suggested that astrocytic connexon hemichannels are implicated in shaping excitatory 

synaptic transmission (Olsen et al., 2015). 

Four-transmembrane connexin is named on the basis of the difference in molecular weight 

ranging from 26 to 62 kDa (Verkhratsky and Butt, 2007), for example, a 26-kDa connexin is 

called Cx26. Astrocytes, especially processes and endfeet encasing blood vessels, express the 

highest densities of Cx30 and Cx43. Their distributions are dynamic and non-uniformed. Indeed,  

gap junction coupling can be detected in the hippocampus right after the birth and reaches adult 

levels by the middle of the second postnatal week (Konietzko and Müller, 1994; Schools et al., 

2006), whereas dynamic changes of astrocyte coupling could also occur after connexin 

phosphorylation (Márquez-Rosado et al., 2012). Astrocytic connexins selectively allow 

discrimination of signal spreads within disparate astrocyte networks, contributing to fine 

regulation of synaptic plasticity and energy supply. Additionally, Cx30/Cx43 facilitates BBB 

functions and has a tight interaction at the surface between astrocytic endfeet and cerebral 
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vasculature (Watanabe et al., 2016). 

 

1.5.3	Membrane	receptors	

Astrocytes, alike neurons, are endowed with all major membrane receptors. Their 

expression differs during the development of the brain as well as under pathological conditions 

and exhibits spatial heterogeneities at subcellular and regional levels.  

Astrocytic membrane receptors, due to their differences in structure and biophysical 

property, are classified into two species: ionotropic and metabotropic receptors. The former 

assembles ion-permeable channel directly allowing in and out movement of ions; while the latter 

forms several transmembrane domains and its intracellular part is coupled to various guanosine 

triphosphate (GTP) proteins, also termed G proteins, which in turn, induce second messengers 

entailing a much wider range of response. Furthermore, astrocytic membrane receptors are far 

more diverse than previously thought. They are further grouped on the basis of their ligand types, 

comprising amino acids (e.g. glutamate, glycine, histamine), peptides (e.g. vasoactive intestinal 

polypeptide), acetylcholine (ACh), purine nucleotides (e.g. adenosine, ATP), active factors (e.g. 

angiotensin, bradykinin, endothelin), hormones (e.g. adrenaline), cytokine, chemokine. Hence, 

in the present text, I describe several classic receptor types in astrocytes from the cerebral cortex 

where my study was instigated. 

 
1.5.3.1	Glutamatergic	receptors	

Glutamate is the major excitatory amino acid in the brain. Astrocytes correspondingly 

express various glutamatergic receptors (Figure 1-3A) including iGluRs and mGluRs, which are 

similar to neurons.  

iGluRs are ligand-activated ion channels. According to the discovery of selective agonists, 

iGluRs consist of three types of receptors: NMDA, AMPA and kainate (KA) receptors.  

1) NMDA receptors, seven subunits of which are currently identified in the rodent and 

human astrocytes, including NR1, NR2A/B/C/D, NR3A/B (Lee et al., 2010). As a 

heterotetramer receptor, its activation requires two NR2-binding agonists (glutamate, NMDA 

or endogenous neurotoxin quinolinic acid) and two NR1-binding coagonists (glycine or D-

serine), allowing K+ efflux and Na+/Ca2+ influx. Importantly, extracellular Mg2+ is a natural 

channel blocker of NMDA receptor inside its ion channel, and can be repelled when the receptor 
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is activated. Unlike neuronal NMDA receptor, many studies found that astrocytic NMDA 

receptor displayed a weak Mg2+ block, and therefore has the potential to be active at the resting 

membrane potential. Indeed, significant blockade of Ca2+ influx was monitored in brain slices 

only when the concentration of Mg2+ in buffer reached 10 mM (Maneshi et al., 2017). Those 

findings point out structural and pharmacological differences of astrocytic NMDA receptors 

compared to the neuronal ones (Palygin et al., 2011).  

Compared to AMPA receptors and Kainate receptors, which have lower Ca2+ permeability 

and rapid desensitization, NMDA receptor is high permeable to Ca2+ and exhibits rare 

desensitization following intense inputs. The intracellular domain of NMDA receptor connects 

several enzymes, for instance, Ca2+/calmodulin-dependent protein kinase II (CaMKII), PSD-95 

(postsynaptic density protein 95) and proto-oncogene tyrosine-protein kinase (Fyn) via the NR2 

subunit, and protein kinase A (PKA) and C (PKC) via the NR1 subunit. It should be noted that 

many psychoactive drugs such as anaesthetics are antagonists, which partially or fully impair 

NMDA receptor activity either by binding at the surface or situating inside the ion channel. For 

instance, pre-treatment of brain slice with the non-competitive antagonist of NMDA receptor 

MK-801, also known as dizocilpine, resulted in a full Ca2+ blockade of neuronal NMDA 

receptor (Brancaccio et al., 2017). 

2) AMPA receptors, can be selectively activated by the artificial glutamate analog AMPA 

and induce a weak Ca2+ flow in astrocytes, leading to membrane depolarization. AMPA receptor 

possess four subunits: GluR1, GluR2, GluR3 and GluR4. These subunits form an ion channel 

permeable to Na+, K+ and Ca2+. The subunit GluR2 plays a key role in determination of Ca2+ 

permeability. Additionally, each subunit has a ligand binding site at the surface membrane, 

while in the intracellular space it links to kinases such as CaMKII and PKC via PDZ domains. 

AMPA receptors are widely distributed in the cerebral cells, particularly in protoplasmic 

astrocytes, but the expression of GluR2 and GluR3 is much lower compared to those in synapses 

of the CA1 region (Haglerød et al., 2017). It suggests a heterogeneity of subunits distribution. 

For instance, GluR4 subunit is enriched in the cerebral cortex. Also, either the presence or lack 

of GluR2 have been observed in astrocytes from the olfactory bulb (Droste et al., 2017). Notably, 

dysfunction of AMPA receptors underlies stroke, epilepsy and other neurodegenerative diseases 

(Chang et al., 2012). 

3) KA receptors, can be fully activated by kainate and contain five subunits GluR5, GluR6, 
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GluR7, KA1 and KA2. It should be note that kainate is also a partial agonist of AMPA receptor, 

explaining the reason that AMPA/KA receptors are usually referred together. Even though few 

investigations reported functions of KA receptors in astrocytes, immunostaining confirmed that 

hippocampal astrocytes express subunit KA2 in the cytosol and the membrane (Matschke et al., 

2015), and an upregulation of all KA receptors subunits was detected in reactive astrocytes 

(Vargas et al., 2013; Crepel and Mulle, 2015). Experimental studies demonstrated, that in a 

stressful state, activation of few KA2 in astrocytes may affect gene expression and turn down 

some metabolic action (Matschke et al., 2015). 

The other large group of glutamatergic receptors is mGluRs, which consist of seven-

transmembrane receptors coupled to G proteins at the intracellular surface. mGluRs in the brain 

are mainly responsible for modulatory action of glutamate. To date eight members of mGluRs 

have been identified, mGluR1~mGluR8, which are further categorized into three subgroups 

based on their intracellular signalling cascades. 

1) Group I mGluRs, the only subgroup of mGluRs is coupled to phospholipase C (PLC) by Gq 

proteins and has the capacity to raise intracellular Ca2+. It consists of mGluR1 and mGluR5. The 

distribution of the latter is very abundant in astrocytes, but the expression is influenced by age 

(Sun et al., 2013). Interestingly, emerging studies provided the information that astrocytic 

mGluR5 was upregulated in the early period following ischemia injury, peripheral nerve damage, 

and neuropathic pain (Dzamba et al., 2015; Kim et al., 2016; Kim et al., 2017). Those re-

emerged mGluR5 may result in synaptic remodeling and modulation of circuit plasticity. 

Physiologically, cortical and hippocampal astrocytes express mGluR5, but the number of which 

is much less than that of mGluR3 (Sun et al., 2013; Kim et al., 2016). 

2) Group II mGluRs, comprising mGluR2 and mGluR3. Group II is coupled to the inhibition of 

adenylate cyclase (AC) via G0/G11 proteins. mGluR3 is the second prevalent mGluRs in 

astrocytes. Sun et al. specified that mGluR3 but not mGluR5 was exclusively expressed in adult 

cortical astrocytes of the mouse and human brain (Sun et al., 2013). Investigations on astrocytic 

mGluRs found that they can function by linking to other intracellular cascades than the PLC- 

inositol 1,4,5-trisphosphate (IP3) signalling pathway.  

3) Group III mGluRs, subtypes of mGluR4, mGluR6~mGluR8 belong to group III and share 

similar mode of action to group II, regulating intracellular cyclic adenosine monophosphate 
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(cAMP) levels. Up to now, there is no evidence with regard to the expression of group III in 

astrocytes in the brain. 

 
1.5.3.2	Cholinergic	receptors	

       ACh acts as a neurotransmitter for somatic and autonomic motor neurons. Most cholinergic 

neurons are located in the basal forebrain and the mid-brain and project upwards into the 

cerebral cortex, consequently leading to the enhancement of cortical responses to neuronal 

inputs. Cholinergic receptors (Figure 1-3B) are grouped into muscarinic cholinoreceptors 

(mAChRs) and nicotinic cholinoreceptors (nAChRs). Previous immunological studies have 

found that in the cerebral cortex protoplasmic astrocytes in situ especially express both mAChRs 

and nAChRs. 

1) mAChRs, are metabotropic receptors coupled to G proteins and have five subtypes 

M1~M5. Experimental studies discovered that M1, M3 and M5 receptors are coupled to PLC 

and lead to an increase in intracellular Ca2+, while M2 and M4 are coupled to ACs to suppress 

cAMP levels. Studies in vivo have showed that expression levels of mAChRs changes in 

response to neuronal activity and under pathological conditions, mostly resulting in the 

upregulation of mAChRs. It is likely a compensatory response, because activation of mAChRs 

is coupled to an increase in astrocytic Ca2+ levels, which further advances neuronal functions in 

attention, learning and  memory (Hirase et al., 2014; Woehrling et al., 2015). 

2) nAChRs, are ionotropic receptors permeable to Na+, K+ and Ca2+, and their binding sites 

show a high affinity for nicotine. Nine subunits of nAChRs are identified, α2~α7 and β2~β4. 

Subunit α7 expression is extensively distributed in the brain, such as in astrocytes, where it is 

involved in synaptic transmission. In brains from Alzheimer’s patients, amyloid-β is associated 

to upregulation of nAChRs containing the α7 subunits in astrocytes, whereas, in an AD mouse 

model, an increase in astrocytic Ca2+ through α7-containing nAChRs (Pirttimaki et al., 2013; 

Dineley et al., 2015). Such abnormal expression of nAChRs subunits including α4, α7 and β2 

in the cerebral cortex, are deemed as therapeutic targets for schizophrenia and autism. 

 
1.5.3.3	Purinergic	receptors	

Although, not extensively studied in the present thesis, purinergic receptors are described 

here due to their importance in astrocytic Ca2+ regulation so that possible interactions with this 
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pathway has to be kept in mind. In the cerebrum, astrocytes are the main cellular source of 

purine. Purinergic receptors (Figure 1-3C) are classified into P1 and P2 receptors on the basis 

of the ligand types. 

1) P1 receptors, G protein-linked receptors, are grouped into three subclasses A1, A2 and A3 

receptors. A1 receptor has the capacity of reducing cAMP production, but activation of A2 

receptor increases cAMP production via activation of Gs protein. A2 receptors can be further 

categorized into two subclasses A2A and A2B. It was found that astrocytic A2A receptor is 

associated with glutamatergic function by regulation of GLT-1 activity (Matos et al., 2015). 

Activation of A3 receptor increases PLC activity but reduces AC activity, resulting in 

attenuation of cAMP production. Low expression of A3 mRNA was detected in the CNS, but it 

seems to play a neuroprotective role in mouse astrocytes (Borea et al., 2015). Additionally, A3 

receptor is the only subtype of P1 receptors recognized as a potential target for therapy due to 

the overexpression in inflammatory cells. 

2) P2 receptors are further divided into P2X and P2Y receptors. P2X is an ATP-gated 

ionotropic receptor allowing K+ efflux and Na+/Ca2+ influx. It contains seven members, 

P2X1~P2X7. Each member displays different sensitivity to ATP, and both P2X1 and P2X5 

receptors are the most sensitive P2X ones. Astrocytic functional P2X1, P2X5 and P2X7 receptors 

were observed in astrocytes (Verkhratsky and Burnstock, 2014). Unlike P2X1 and P2X5 

receptors, P2X7 receptor is insensitive to ATP and requires millimolar concentrations of ATP 

for its activation. Importantly, astrocytic P2X receptor comprising P2X1, P2X5 and P2X7 

subunits has the capability of sensing ATP from nanomolar to millimolar concentrations and 

ensures the regulation of purinergic transmission in a wide-ranging but fine manner. 

P2Y receptor is coupled to G proteins in the intracellular space and links to the PLC enzyme 

in particular. It has eight subtypes, including P2Y1, P2Y2, P2Y4, P2Y6, P2Y11~P2Y14. Once 

activated by extracellular nucleotides, P2Y1/2/4/6/11 receptor coupled to Gq/G11 proteins can 

increase PLC activity and lead to IP3-mediated Ca2+ waves, whereas P2Y12/13/14 receptor is 

coupled to Gi protein which suppresses AC activity. Recent evidence of the cortex revealed a 

dynamic metabolism that neurons could ask astrocytes for supplies such as growth factors by 

releasing nucleotides instead of glutamate, which in turn, to stimulate adjacent astrocytic P2X 

and P2Y receptors (Vignoli and Canossa, 2017). Astrocytes can also participate to neuronal 

plasticity through a wide variety of signalling complexes.  
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Illustrations represent the architecture and biophysic properties of iGluRs (NMDA receptor and 

AMPA receptor) and mGluRs (A), nicotinic and muscarinic cholinergic receptors (B) and 

subgroups of purinergic receptors (i.e. P2X, P2Y, P1) (C). 

 

 
 

Figure 1-3 Schematic diagram of the structural complex of glutamate receptors, cholinergic 
receptors and purinergic receptors 
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2.    Effects of major primary messengers on astrocytes  
Neurotransmitters are the primary messengers of all the brain cells, controlling whole-brain 

communication. There is a great range of neurotransmitters in the body, comprising inhibitory 

transmitters such as GABA, and excitatory transmitters, e.g. glutamate, dopamine, 

norepinephrine, etc. They can be further grouped on the basis of their composition, i.e. amino 

acids, peptides, amines, purines, cholines, gasotransmitters, etc. For the purpose of this thesis, 

only effects of glutamate, acetylcholine, purine nucleotides will be discussed due to their shared 

capability of eliciting oscillatory increase in intracellular Ca2+. 

 

2.1 Glutamate 
Glutamate is the most abundant excitatory neurotransmitter in the brain, acting on both 

ionotropic and metabotropic receptors. In the 1930s, high concentrations of glutamate were 

firstly found in the brain (Marmiroli and Cavaletti, 2012), with the highest concentration 

detected in the cerebral cortex. Since the BBB is impermeable to glutamate, all glutamates in 

the brain are produced by neurons and macroglia via TCA cycles (Schousboe et al., 2014). Apart 

from the glutamate snatched by neuronal receptors at the synaptic membrane, the rest is taken 

up by surrounding astrocytes via relative receptors and transporters. Here, the effects induced 

by activation of astrocytic glutamate receptors on astrocytes is presented. 

 

2.1.1	Effects	of	iGluRs	activation	

       In previous decades, the functional existence of iGluRs in astrocytes was a matter of debate, 

and then with the development of techniques, it is general believed that astrocytes do express 

functional iGluRs which shed light on a great variety of physiological and pathological 

processes (Hoft et al., 2014). Although the results on astrocytes are not fruitful, emerging 

investigations are unfolding the map of iGluRs signalling pathway. 

 

2.1.1.1	NMDA	receptor	

Most findings in the field of iGluRs focus on neurons, particularly for the NMDA receptor. 

In adult human astrocytes, all subunits forming functional NMDA receptors was identified (Lee 

et al., 2010), but most astrocytic NMDA receptors in the mouse cortex comprise two NR1, one 



 

 36 

NR2C/2D and one NR3, presenting a fairly low sensitivity to Mg2+ (Palygin et al., 2011). 

Furthermore, the classic co-agonists of NMDA receptor, glycine and D-serine, cannot potentiate 

the activation of NMDA receptors in cortical astrocytes (Palygin et al., 2011).  

The primary function of astrocytic NMDA receptor is to achieve intracellular Ca2+ elevation, 

leading to the release of gliotransmitters such as glutamate and ATP. Once activated by high-

doses of NMDA (100 µM), NMDA receptors induce significant Ca2+ efflux from astrocytic ER, 

but are suppressed later by the tyrosine kinases acting on subunits of NR1 and NR2A/2B 

subunits. Meanwhile, the uptake of free cytosolic Ca2+ by mitochondria causes a decrease of its 

membrane potential in cultured rat cortical astrocytes (Montes de Oca Balderas and Aguilera, 

2015). In addition, subtle but persistent PLC-PKCδ-dependent NMDA signalling evoked release 

of Ca2+ from astrocytic ER in a Ca2+-independent manner. The consequence of activation of 

NMDA receptors caused release of glutathione (GSH) precursors via activation of p35/cyclin-

dependent kinase 5 (Cdk5)-mediated nuclear factor-erythroid 2-released factor 2 (Nrf2) 

phosphorylation (Jimenez-Blasco et al., 2015). This finding demonstrated an antioxidant role of 

NMDA receptor in astrocytes, since GSH precursors sustain neuronal survival. Furthermore, it 

supports the idea that activation of NMDA receptor also stimulates the corresponding kinases 

and phosphatases binding to its intracellular domains, termed metabotropic-like signalling, 

which subsequently trigger Ca2+ efflux from ER (Marmiroli and Cavaletti, 2012; Jimenez-

Blasco et al., 2015; Montes de Oca Balderas and Aguilera, 2015). Indeed, MK-801 blocked the 

ion channel of NMDA receptor but activated its metabotropic signalling, when hippocampal 

astrocytes were repeatedly treated with MK-801. The signalling enhanced phosphorylation of 

the MAPK kinase (MEK)-MAPK pathway and the PI3K-Akt-glycogen synthase kinase (GSK)-

3β pathway, leading to upregulation of BDNF and TrkB (Yu et al., 2015).  

As a results of NMDA receptor activation in astrocytes, not only are the neuroprotective 

factors enhanced, but all subunits of NMDA receptor are upregulated in response to pathological 

insult. For instance, in the post-ischemic astrocytes, all subunits were upregulated, and specific 

upregulation of either NR2 or NR3A contributed to suppression of intracellular Ca2+ rises 

(Dzamba et al., 2015; Suhs et al., 2016). Interestingly, when astrocytes undergo excitotoxicity, 

activation of NMDA receptor may induce cell dysfunction and death. A prior study found that 

cortical astrocytes overexposed to glutamate both in vitro and in vivo caused excessive 

activation of astrocytic NMDA receptors, which suppressed Kir4.1 expression and induced cell 



 

 37 

dysfunction (Obara-Michlewska et al., 2015). In addition, endogenous excitotoxins such as 

microglia-produced quinolinic acid binding to NMDA receptor resulted in astrocyte death (Lee 

et al., 2010). Therefore, memantine, an antagonist possessing a much higher affinity for 

astrocytic NMDA receptor than neuronal NMDA receptor, is used to treat AD patients in clinics, 

partially weakening the glial pathology induced by quinolinic acid and decreasing astrocyte-

secreted cytokines (Palygin et al., 2011; Suhs et al., 2016). 

 

2.1.1.2	AMPA	receptor	

       Previous studies have noted that the distribution of AMPA receptor is very much 

heterogeneous. AMPA receptors are localized abundantly in somatosensory cortical astrocytes 

and olfactory bulb astrocytes, partially in thalamic astrocytes, but undetectably in the CA1 

region of the hippocampus (Hoft et al., 2014; Dzamba et al., 2015; Droste et al., 2017). 

Moreover, the heterogeneous distribution is presented at the subunit scale. For example, a recent 

study found that astrocytes in the olfactory bulb expressed AMPA receptors both containing and 

lacking GluR2, an AMPA receptor subunit responsible for Ca2+ permeability (Droste et al., 

2017). These anatomical features are tightly linked to AMPA receptor functions such as 

modulation of energy supply and release of gliotransmitters, contributing to neuronal 

development. 

       Traditionally, Ca2+ permeability plays a key role in AMPA receptor-mediated neuron-glia 

interaction. Activation of astrocytic AMPA receptor causes an increase in intracellular Ca2+ 

arising from Ca2+ influx through AMPA receptor and ER Ca2+ efflux. This mechanism renders 

astrocytic AMPA receptor to be a sensor of axonal activity. Droste et al. (2017) found that Ca2+ 

transients in astrocytes evoked by activation of AMPA receptor depends principally on the 

concentration of extracellular Ca2+, and then a weak Ca2+ efflux comes out of intracellular stores. 

Under pathological conditions, Ca2+ influx through astrocytic AMPA receptor is enhanced as 

well. For instance, cerebral artery occlusion upregulated all subunits of AMPA receptor in 

reactive astrocytes other than GluR2, the subunit limiting Ca2+ permeability (Dzamba et al., 

2015). Collectively, astrocytic AMPA receptor requires higher Ca2+ permeability in response to 

pathologic insult. 
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2.1.1.3	KA	receptor	

KA receptor, located in the hippocampus, is considered to act as a sensor for excessive 

glutamate in the extracellular space. Since it is a nonselective cation channel partially permeable 

to Ca2+, the modulatory mechanisms of KA receptor can be stimulated, i) through Ca2+ influx 

which could further potentiate release of gliotransmitters, such as glutamate and ATP, ii) via 

amplification of Na+ signals leading to activation of astrocytic Na+/K+/ATPase (Vargas et al., 

2013). Nonetheless, under physiological conditions, hippocampal KA receptors were observed 

mainly in NG2 glial cells, a subgroup of glia specifically expressing chondroitin sulphate 

proteoglycan, in contrast to mature astrocytes (Vargas et al., 2013; Wang et al., 2016). After 

epilepsy or ischemia, however, KA receptor subunits, including KA1, KA2, GluR5 and GluR6, 

were all upregulated in hippocampal astrocytes (Vargas et al., 2013; Matschke et al., 2015).  It 

is suggested that KA receptor is an active player in the pathologies of epilepsy and ischemia. 

However, Mastschke et al. deemed that dynamic expression of KA receptor in astrocytes 

contributes to neuroprotective mechanisms. This negative feedback mechanism is activated 

under pathologic conditions due to upregulation of N-myc downstream-regulated genes 

(NDRGs) proteins. Thus, serum- and glucocorticoid-inducible kinase (SGK) 1 phosphorylates 

overexpressed NDRGs at the site of Thr330, directly inhibiting KA2 expression in a dose-

dependent manner and resulting in decreased number of functional KA receptors in astrocytes 

(Matschke et al., 2015). Therefore, KA receptor seems to play important roles in 

pathophysiological situations by way of dynamic expression.  

 

2.1.2	Effects	of	mGluRs	activation	

mGluRs are a class of G protein-coupled receptors capable of evoking both metabolic and 

electrical cascades when activated in astrocytes. Considering the prevalent studies of astrocytes 

on mGluRs, only the effects of astrocytic mGluRs group I and group II on astrocytes will be 

presented. 

 

2.1.2.1	mGluRs	group	I	

Activation of group I receptors in astrocytes triggers numerous intracellular signalling 

pathways. Coupled to PLCβ via Gq/G11 proteins, astrocytic mGluRs group I receptors 
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predominantly promote the production of IP3, which leads to Ca2+ spikes by binding to IP3 

receptor in endoplasmic reticulum (ER) membrane (Niswender and Conn, 2010). This signalling 

constitutes the underlying mechanism of the interaction between mGluRs group I and mAChRs 

in astrocytes, the activity of which depends on a novel effect in astrocytes, termed priming effect, 

which can be provoked by repetitive application of glutamate or trans-1-aminocyclopentane-

1,3-dicarboxylic acid (t-ACPD), an agonist of group I/II receptors (Pasti et al., 1997; Dupont et 

al., 2011; Croft et al., 2015). The priming effect is elicited initially by a low frequency of Ca2+ 

oscillation arising from ER, and then Ca2+ oscillation is altered at a higher frequency by 

increasing either the intensity or the frequency of applied stimuli. The consequence of this effect 

potentiates astrocytic response to glutamate in a very long-lasting manner (for review in (Croft 

et al., 2015)).  

The Ca2+ oscillation at a higher frequency, meanwhile, stimulates other Ca2+-dependent 

signalling or Ca2+-activated proteins. Indeed, studies investigating NVC showed that increased 

astrocytic Ca2+ in perivascular astrocytes evokes vasodilation of neighboring cerebral arterioles 

by secreting epoxyeicosatrienoic acids (EETs), an astrocyte-produced vasodilator. A recent 

study, however, unexpectedly detected mRNA and protein expressions of cytochrome P450 

family (CYP) 4A ω-hydroxylase in rat brain astrocytes (Gebremedhin et al., 2016). This enzyme 

isoform catalyzes ω-hydroxylation of arachidonic acid to 20-Hydroxy-5, 8, 11, 14-

eicosatetraenoic acid (20-HETE), a vasoconstrictor usually produced in VSMCs. Consequently, 

augmentation of 20-HETE secretion in rat astrocytes was uncovered following the application 

of an agonist of mGluRs group I, RS-3,5-dihydroxyphenylglycine (DHPG). Unlike EETs that 

are endogenous vasodilators and activate astrocytic KCa channel currents, 20-HETE causes 

vasoconstriction and inhibits KCa channel opening in astrocytes. Therefore, as a result of 

integrating intracellular Ca2+ events, astrocytes could modulate vascular tone by vasodilation or 

vasoconstriction. In addition to contributing to intracellular Ca2+ signals, group I receptors 

interact with other astrocytic membrane channels such as by activating K+ channels via Go or 

Gq protein, resulting in membrane depolarization or down-regulation of Kir4.1 channels 

expression in retinal astrocytes (Hansson et al., 2000; Ji et al., 2012).  

Though as yet no evidence of mGluR1 expression in astrocytes has been discovered, plenty 

of investigations have found that mGluR5 executes multiple tasks in astrocytes. Most 

importantly, with respect to group I receptors, neuroprotective roles in astrocytes are likely 
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played by mGluR5, significant upregulation of which was identified in reactive astrocytes after 

multiple sclerosis, post ischemia and neuropathic pain (Aronica et al., 2015; Dzamba et al., 2015; 

Kim et al., 2016). However, functional effects of upregulated mGluR5 vary according to 

physiologically or pathologically circumstances. On the other hand, activity of membrane-

bound receptors can be modulated dynamically in different ways by intracellular kinases. In 

response to a long-lasting activation by DHPG, PKA and PKC phosphorylated astrocytic 

mGluR5, inducing the internalization of mGluR5 (Lee et al., 2008; Uematsu et al., 2015). 

Likewise, G-protein-coupled receptor protein kinase 2 also regulated the desensitization and 

endocytosis of mGluR5 via phosphorylation of Thr840 site on the C-terminus. The purpose of 

the two pathways is to modulate mGluR5 activity on the astrocytic membrane. However, 

mGluRs are the key sensors and modulators of extracellular glutamates for astrocytes under 

pathological conditions. Therefore, a novel pathway exists to rescue receptor activity. In 

addition, mGluR5 is temporarily inactivated by reversible phosphorylation of the C-terminus of 

mGluR5 at Ser839 by PKCε via astrocytic Ca2+ oscillation (Lee et al., 2008; Bradley and 

Challiss, 2011; Vergouts et al., 2017). This transient modulation avoids the desensitization of 

mGluR5 and conserves intracellular Ca2+ oscillation, contributing to the following 

neuroprotective actions of astrocytes. 

Notably, recent investigations show that significant mGluR5s are expressed either in 

reactive astrocytes or immature astrocytes. Once activated, mGluR5 has the capacity to i) 

upregulate glutamate transporters to improve glutamate uptake; ii) enhance releases of 

gliotransmitters and neurotropic factors, i.e. ATP, D-serine and thrombospondin 1, to 

reconstruct synaptic wiring; iii) mediate astrocytic processes mobility in the form of filopodia; 

iv) regulate astrocyte proliferation; and v) take part to inflammatory responses (Lavialle et al., 

2011; Aronica et al., 2015; Dzamba et al., 2015; Kim et al., 2016). Sun et al. reported that 

mGluR5 levels in astrocytes were undetectable in adult brain of mouse and human (Sun et al., 

2013). Despite the possibility that upregulated astrocytic mGluR5 functions in 

pathophysiological conditions, it should be note that electronic microscopy detected few 

mGluR5 receptors on astrocytic membrane (Sun et al., 2013; Kim et al., 2016). Collectively, 

these reports suggest that the primary role of astrocytic mGluR5 is to maintain cellular 

stabilization and restoration. 
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2.1.2.2	mGluRs	group	II	

Studies investigating mGluR group II receptors have discovered the intracellular coupling 

to ACs, as well as astrocytic group II receptors link to L-type voltage-dependent Ca2+ channels. 

Activation of group II receptors evoked a lasting depression on neurotransmitter-elicited Ca2+ 

rises such as serotonin and kainate, or induced by high K+ concentration via blockage of L-type 

Ca2+ channels (Haak et al., 1997; Marmiroli and Cavaletti, 2012). In contrast to group I receptors, 

which induce elevated intracellular Ca2+, group II receptors in astrocytes promote 

neuroprotective actions by suppressing Ca2+ rises, leading to: i) enhanced glutamate reuptake 

by upregulation glutamate transporters; ii) facilitated release of TGF-β via mitogen-activated 

protein kinase (MAPK)- phosphoinositide 3-kinase (PI3K) pathway, and iii) promotion of 

autocrine effects to resist against oxidative stress via, for example, promotion of cysteine uptake 

and suppression of inducible nitric oxide synthase (iNOS) expression (Aronica et al., 2000; 

Aronica et al., 2003; TANG and Kalivas, 2003; Yao et al., 2005; Durand et al., 2010; Aronica 

et al., 2015). 

Interestingly, growth factors always upregulate astrocytic mGluRs but downregulate 

neuronal mGluRs. To date, it is found two new mechanisms were proposed to explain this dual 

effect. One is the desensitization of receptors that are phosphorylated by different kinases 

(Vergouts et al., 2017), where G-protein-coupled receptor protein kinase 2 and PKC act on 

astrocytic mGluR3 and neuronal mGluR4 respectively. The second mechanism relies on the 

kinase structure. For example, neurons express full length of tropomyosin receptor kinase B 

(TrkB), which down-regulates group II receptors in response to brain-derived neurotrophic 

factor (BDNF) stimulation. Nonetheless, this cascade is absent in astrocytes which expressed 

incomplete TrkB lacking the Shc-binding site (Suzuki et al., 2017). 

       mGluR group II receptors comprise two subtypes: mGluR2 and mGluR3, both of which 

perform distinct functional roles in astrocytes. 

1) mGluR2: Though there is a lack of studies investigating astrocytic mGluR2, a recent 

study on the somatosensory ventrobasal thalamic nucleus has revealed a novel astrocyte-based 

mechanism underlying the tone of thalamic sensory transmission. Activation of astrocytic 

mGluR2 evoked a surge in intracellular Ca2+ exclusively in astrocytes, while the increase in 

Ca2+ cannot be detected in response to neuronal mGluR2 activation (Copeland et al., 2017). 

Consequently, these data suggest that mGluR2 has similar action to group I receptors. 
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2) mGluR3: Some characteristics of mGluR3 are reportedly similar to mGluR5. mGluR3 

mediated glutamate-elicited movement of filopodia, can be desensitized by the same kinase G-

protein-coupled receptor protein kinase 2, and was upregulated after epilepsy, cerebral injury, 

chronic inflammation and multiple sclerosis (Lavialle et al., 2011; Aronica et al., 2015; Vergouts 

et al., 2017). However, under physiological conditions, hippocampal astrocytes particularly 

express mGluRs instead of iGluRs, showing high levels of mGluR3 and few mGluR2 (Wang et 

al., 2016). Once stimulated, astrocytic mGluR3 initiates upregulation of TWIK-1 channels on 

the plasma membrane via the Rab-dependent endosome recycling pathway, resulting in 

enhanced glutamate-glutamine cycle. In reactive astrocytes, mGluR3 exhibited resistance to 

iNOS-produced NO toxicity through cAMP level reduction, PI3K/Akt pathway activation and 

stimulation of the communication between p65 and nuclear factor (NF)-κB (Aronica et al., 2000; 

Durand et al., 2010; Durand et al., 2011). In the presence of cytokine interleukin (IL)-1β, 

activation of mGluR3 was found to regulate astrocytic immune response by facilitating the 

release of IL-6 (Aronica et al., 2015). 

 

2.2 Acetylcholine 
The basal forebrain including the nucleus basalis and the nucleus of the diagonal band of 

Broca is the primary cholinergic input to cortex. Once stimulated, cholinergic neurons in the 

basal forebrain secret original source of ACh across distinct cortical layers towards specific 

targets, i.e. astrocytes, blood vessels, inhibitory interneurons and pyramidal neurons. To 

synthesize ACh, choline acetyltransferase (ChAT) in cholinergic neurons relocates an acetyl 

group from acetyl coenzyme A towards choline. Then the modulatory activity of ACh is 

mediated by nAChR and mAChR. Cholinergic neurons contribute to improve learning and 

memory processes in the hippocampus and forming cortical circuits. Consequently, most studies 

on cholinergic receptors are concentrating on relevant functional changes resulting from AD 

with respect to inflammation and cognition. 

 

2.2.1	Effects	of	mAChRs	activation	

mAChRs are a class of G-protein coupled receptors highly located at layer II to VI of the 

cortex and hippocampus, implicated in learning and memory (Huang and Thathiah, 2015). The 
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basal forebrain-induced activation of astrocytes modulates cortical and hippocampal circuits 

exclusively through astrocytic mAChRs via IP3R2–mediated Ca2+ release (Takata et al., 2011; 

Hassanpoor et al., 2014; Sugihara et al., 2016). A similar mechanism was also found in the 

hippocampus ex vivo by electrical stimulating alveus input (Perea and Araque, 2005). 

Subsequently, increased Ca2+ in astrocytes leads to gliotransmitter release, such as ATP and 

glutamate, resulting in synchronization of neuronal firing, as well as integration of astrocytic 

Ca2+ signals (Hassanpoor et al., 2014). Recent findings suggest that integrated Ca2+ response to 

mAChRs and mGluRs in single astrocyte could potentiate and propagate θ wave and eventually 

contribute to forming spatial memory (Hassanpoor et al., 2014; Croft et al., 2015). However, 

this complex integration of Ca2+ contributes to slow timescale of astrocytes to consolidate the 

phenomenon, whereas inhibitory neurons involved in learning encodes faster response (Butts et 

al., 2007; Chen et al., 2012). 

Some other studies found that mAChRs also mediate cholinergic activation of astrocytes. 

Carbamylcholine, an agonist of M3 receptor, was found to activate cortical and hippocampal 

astrocytes (Guizzetti et al., 2011). The activation of M3 by carbamylcholine in retinal astrocyte 

cultures, raises IL-4 levels (Granja et al., 2015).  

 

2.2.2	Effects	of	nAChRs	activation	

Accumulating evidence indicate that nAChR can modulate release of multiple 

neurotransmitters and modify long-term plasticity. A recent investigation presented that 

activation of astrocytic α7 nAChRs recruited neuronal AMPA receptors toward synaptic zone 

in hippocampus (Wang et al., 2013). It seems that recruited synaptic receptors were silent before, 

suggesting an enhancing synaptic plasticity induced by astrocytic nAChRs. Importantly, in 

response to the volume transmission of cholinergic signalling in the cortex and hippocampus, 

they found that astrocyte-mediated recruitment exclusively promoted the maturation of 

functional glutamatergic circuits containing PSD-95 synapses. α7 nAChRs are highly permeable 

to Ca2+ (Wang et al., 2013; Dineley et al., 2015). In AD brain, amyloid-β interacts with astrocytic 

α7 AChR resulting in activation of astrocytes, glutamate release and notable potentiation of Ca2+ 

in a much higher frequency compared to physiological astrocytes (Shen and Yakel, 2012). 

However, in contrast to the response of interneurons to the treatment of choline in CA1 region 
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ex vivo, α7 nAChR in astrocytes triggers smaller response amplitude of Ca2+ increases (Shen 

and Yakel, 2012). 

Our current knowledge of astrocytic nAChRs focus on two subtypes, α4β2 nAChR and α7 

nAChRs, which are both interlinked with inflammatory and immune pathology induced by AD 

and other neuropsychiatric disorders. Activation of both receptors in astrocytes leads to 

increased intracellular Ca2+ levels and upregulated glial-derived neurotrophic factor (GDNF) 

which further inhibits microglia activation (Takarada et al., 2012). However, α7 nAChRs are 

down-regulated in neurons but are significantly upregulated in astrocytes of the AD 

hippocampus, whereas expression of α4 nAChRs was found to be stable in AD patients (Chu et 

al., 2005; Yu et al., 2005; Kamynina et al., 2013). Thereby, it has been well demonstrated that 

activation of astrocytic α7 receptors alone is able to generate several anti-inflammatory 

responses as well. For instance, once activated, levels of astrocyte-released inflammatory factors, 

such as IL-6 and tumor necrosis factor α (TNF-α), were reduced in hippocampus in vitro (Zhu 

et al., 2016). Structural studies have shown that nAChR agonists like nicotine reduced, but α7 

(179-190) epitope binding to part of the ACh binding site in astrocytic nAChR stimulated IL-6 

production. It is indicated that α7 nAChR-mediated inflammation is modulated in an ion-

independent manner (Kalashnyk et al., 2014). By contrast, another report working on human 

astrocyte cultures believed that α7 nAChRs stimulated prostaglandin E2 (PGE2) release inhibits 

astrocyte-released cytokines including IL-6 and TNF-α, in the presence of a high concentrations 

of nicotine (100 µM), via cyclooxygenase 2 (COX-2)-dependent signalling (Revathikumar et 

al., 2016). 

 

2.3 Purinergic substances 
The ligands of purinergic receptors include ATP, ADP and adenosine. ATP, with glutamate, 

is the most abundant excitatory neurotransmitters in the brain and can be further metabolized 

into ADP, AMP, etc. Mediation of intercellular communications occur via ATP released from 

astrocyte either through channels or by exocytosis. Once released, ATP binds to corresponding 

P2 receptors present in astrocytes, neurons, microglia and oligodendrocytes. Adenosine, a 

metabolite of ATP, functions as a neurotransmitter as well as a modulator in the CNS by 

activating P1 receptors.  



 

 45 

 

2.3.1	Effects	of	P1	activation		

2.3.1.1	A1	receptors		

A1 receptors are highly expressed in the cortex, hippocampus and cerebellum. Increasing 

experimental evidence show that A1 receptors in astrocytes display neuroprotective effects. 

Activation of A1 receptors in normal astrocytes elicited a fast glutamate release and opened 

adjacent TREK-1 channels (Woo et al., 2012). However, in vitro activation of overexpressed 

A1 receptors under pathological conditions may promote glutamate uptake into astrocytes 

through inhibition of AC activity leading to reduced levels of extracellular glutamate and 

elevated mRNA expression of excitatory amino acid transporters (EAAT) 2 (Wu et al., 2011). 

In response to cell apoptosis induced by ischemic damage, A1 receptors regulate the 

phosphorylation activity of Bad, c-Jun N-terminal kinases (JNK) and p38 by PI3K/Akt 

signalling as well as extracellular signal-regulated kinases (ERK)/MAPK signalling, which 

contributed to enhancement of cell survival. (Ciccarelli et al., 2007). 

 

2.3.1.2	A2	receptors		

A2A receptors have a fairly low distribution in the cortex and the hippocampus but are 

found mainly in the striatum, while A2B receptors as well as A3 receptors are rare in the brain. 

Though lowly expressed, A2A receptors play key roles in cognition maintenance. Knockout 

astrocytic A2A receptors facilitated upregulation of GLT-1 in astrocytes as well as NR2B-

containing NMDA receptors in neurons, impacting on glutamatergic circuits and reducing 

working memory (Matos et al., 2015). Importantly, these few A2A receptors in the cortex likely 

stimulate opposite modulations on cognition, because procognitive effects were observed by 

either depressing neuronal A2A receptors or deleting of astrocytic A2A receptors. 

 

2.3.1.3	A3	receptors	

In spite of rare studies on astrocytic A3 receptor, it is suggested to be functionally distinct 

from A1 and A2 receptors in this cell types. For example, in the presence of ATP-elicited Ca2+ 

signals in astrocytes in vitro, a previous study found that activation of astrocytic A1 receptors 

attenuated the Ca2+ responses and activation of A2B receptors potentiated the Ca2+ peak value; 
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however, no change was observed on the Ca2+ plateau when stimulating A3 receptors (Alloisio 

et al., 2004). 

 

2.3.2 Effects of P2 activation 

Astrocytes express both P2X and P2Y receptors, but the detailed subgroups of each are 

debatable. In general, activation of astrocytic P2 receptors has influence over three aspects. First, 

increased Ca2+ mobilization is triggered in single astrocyte or through the astrocytic networks; 

second, P2-induced release of gliotransmitter impacts neighbouring cells; third, astrocytes under 

pathological conditions turn to be hyperactive, accompanied by enhanced intracellular responses 

and activated microglia. 

 

2.3.2.1	P2X7	receptors	

Only high concentrations of ATP (mM) can activate astrocytic P2X7 receptors which are 

involved in neuron-glia interaction. For example, activation of P2X7 receptors was found to 

contribute to D-serine release through pannexin-1 of P2X7-pannexin-1 complex via Ca2+-

independent PKC signalling in rat astrocyte cultures (Pan et al., 2015). It may further bind to 

NMDA receptors located at the synaptic membrane and potentiate neuronal circuits. Unlike 

neuronal P2X7, cortical astrocytes are thought to express a different splice variant of the P2X7 

receptor, which is constitutively activated ex vivo under the non-stimulated resting states 

(Kamatsuka et al., 2014). Likewise, in mild ischemia, hypoxia inducible factor (HIF)-1α levels 

display long-lasting upregulation in astrocytes in a hypoxia-independent but P2X7- receptor-

dependent manner, whereas neurons demand pre-treatment with hypoxia (Hirayama and 

Koizumi, 2017). The two functional differences between neuronal and astrocytic P2X7 

receptors contribute to the essential roles of astrocytic P2X7 receptors in the maintenance of 

brain homeostasis. 

 

2.3.2.2	P2Y	receptors	

Recent findings show that P2Y receptors contribute to physiological activity of astrocytes. 

The activation of subtypes of P2Y receptors in astrocytes (i.e. P2Y1, P2Y2 and P2Y4) caused 

GABAB receptors activation by phosphorylation, via P2Y receptor-CaM kinase kinase-5' 
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adenosine monophosphate- activated protein kinase (AMPK) signalling pathway (Terunuma et 

al., 2015). Additionally, P2Y1 receptors were found to activate PLC signalling but suppress the 

conductance of Kir channels, resulting in extension of astrocytic processes in hippocampal 

astrocyte cultures (Chisari et al., 2016). In the presence of pathological conditions such as 

oxidative stress, astrocytic P2Y receptors exhibit antioxidant defence by reducing reactive 

oxygen species (ROS) production, raising levels of glutathione and cAMP as well as inducing 

expression of antioxidant genes via PKA signalling (Förster and Reiser, 2016).  

 

3.  Intracellular modulation － second messenger Ca2+ signals 

       Whilst astrocytic membrane receptors are activated, channels in the plasma and organelle 

membranes are opened and locked, intracellular proteins are phosphorylated and 

dephosphorylated, second messengers are triggered and genes are transcribed. Unlike neurons, 

astrocytes do not generate action potentials but respond to neuronal signals in the form of Ca2+ 

waves in a complex spatiotemporal pattern. Therefore, Ca2+ is not only a ubiquitous second 

messenger in astrocytes, but also a pivotal transmitter mediating astrocyte process and response. 

Ca2+ signals restricted to distinct astrocyte compartments can be elicited by different stimuli, 

and the increased Ca2+ microdomains are evoked from either extracellular space or internal 

storage. Thus, the present section addresses the modulation of intracellular Ca2+ in astrocytes. 

  

3.1 External Ca2+ source - extracellular space  
Since Ca2+ microdomains in astrocytes are isolated functionally, Ca2+ increases in 

microdomains do not necessarily correlate with Ca2+ measured in the soma. Furthermore, 

several lines of evidence found that these microdomains mostly occurred beneath the plasma 

membrane (Shigetomi et al., 2010; Rungta et al., 2016; Agarwal et al., 2017). Thus, the source 

of Ca2+ microdomains may be mainly the extracellular space via membrane ionotropic receptors 

and ion channels.  

Once activated, transmembrane proteins permeable to Ca2+ ions in the plasma membrane 

have the capacity of allowing external Ca2+ influx, including ion channels (e. g. iGluRs, nAChRs 

and P2Xs, as stated above), Ca2+ transporters (e.g. Ca2+-ATPase, Na+/Ca2+ exchangers), voltage-

dependent Ca2+ channels, transient receptor potential channels (e.g. TRPA1, TRPV4) and store-
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operated Ca2+ channels (e.g. Orai families). Real-time imaging in the somata of astrocytes 

displayed that Ca2+ influx from extracellular fluid increased intracellular Ca2+ concentration 

much more rapidly than Ca2+ efflux from intracellular stores (Srinivasan et al., 2015; Bazargani 

and Attwell, 2016). Thus, in spite of the undefined relationship between membrane receptor-

mediated Ca2+ influx and internal Ca2+ signals, increasing experimental investigations on 

astrocytic Ca2+ signals are unveiling detailed molecular and functional mechanisms of their 

interplay. 

 

3.2 Internal Ca2+ sources 
Intracellular Ca2+ stores are key sources of Ca2+ for generating and prolonging Ca2+ 

signalling in astrocytes. Previous reports recognized that localized Ca2+ signals displayed 

distinctive properties in astrocytic compartments, specifically, the soma, thick processes, fine 

processes and endfeet (Shigetomi et al., 2013; Stobart et al., 2016). Then, a thorough analysis 

of Ca2+ transients in the astrocyte pointed out that mitochondria in astrocytes were responsible 

for intracellular Ca2+ transients singularly in fine processes (Agarwal et al., 2017). This data 

implies that intracellular Ca2+ signals can be compartmentalized by different internal sources 

including ER, mitochondria as well as other cellular organelles and are then encoded into spatial 

extent of astrocyte modulation. 

 

3.2.1	Endoplasmic	reticulum	

ER is the main source of Ca2+ within astrocytes and contains the highest concentration 

(micromolar) of Ca2+, compared to the cytosol as well as mitochondria (Shigetomi et al., 2016). 

ER Ca2+ is evoked through ryanodine (RyR) and IP3 (IP3R) receptors stimulation, while the 

uptake of Ca2+ by ER is performed by sarco/endoplasmic reticulum Ca2+-ATPase (SERCA).   

 

3.2.1.1	IP3Rs	

Activation of IP3R evokes the release of Ca2+ from ER. This ionotropic receptor has three 

isoforms, i.e. type 1 IP3R, type 2 IP3R and type 3 IP3R. The major isoform in neurons is IP3R1, 

whereas astrocytes are rich in IP3R2. A recent research found three isoforms that co-existed in 

hippocampal astrocytes and contribute to Ca2+ signalling, leading to regulation of 
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gliotransmission and synaptic plasticity (Sherwood et al., 2017). This study indicated that IP3R2 

induced the largest spatial propagation of Ca2+, whereas much less IP3R1 and IP3R3 were 

expressed and generated relatively localized, mono-phasic Ca2+ events to regulate confined 

astrocytic responses. Numerous studies discovered that global Ca2+ propagation was triggered 

in multiple modes, i) via IP3R-meidated Ca2+ efflux from intracellular Ca2+ stores, which was 

further enhanced by Ca2+-induced Ca2+ release at neighbouring IP3Rs (Stavermann et al., 2015); 

ii) via TRPV4 channels from extracellular Ca2+ source, which was boosted by IP3R-induced 

Ca2+ signals (Dunn. K et al., 2013); iii) by coordination between IP3R-mediated Ca2+ efflux from 

ER and Ca2+ influx through store-operated Ca2+ channels (Orai1 and Orai2) in the plasma 

membrane (Sakuragi et al., 2017). The determination of downstream functional consequences 

and impacts neuronal plasticity relies on the method of Ca2+ release. 

Considering that IP3 is the endogenous ligand of IP3R, activation of G-protein coupled 

receptors such as metabotropic receptors could indirectly facilitate IP3R activity by activating 

PLC, an enzyme producing IP3 via Gq/G11, resulting in increased IP3 levels and Ca2+ levels in 

the cytosol. Nevertheless, in ex vivo studies on the hippocampus of IP3R2-/- mice, Ca2+ 

oscillations occurred as usual and were not changed in both the soma and in astrocytic processes 

(Srinivasan et al., 2015; Rungta et al., 2016). Moreover, Ca2+ oscillations were enhanced in fine 

processes when G-protein coupled receptors were activated by endothelin, signifying that Ca2+ 

oscillations in astrocytic processes were IP3R2-independent (Srinivasan et al., 2015). Further in 

vivo studies showed similar negative results as well. Full knockout IP3R2 had no effect on 

astrocytic IP3/Ca2+ signalling, astrocyte responses as a whole, or functional hyperemia response 

in visual cortex (Bonder and McCarthy, 2014; Stobart et al., 2016). In a novel animal model 

with IP3R2s knockout in over 80 % astrocytes, McCarthy et al. revealed no detectable behavioral 

changes (Petravicz et al., 2014).  

However, another study of a transgenic animal model demonstrating accelerated IP3 

metabolism in astrocytes resulting in attenuated cytosolic IP3 levels exhibited increased REM 

sleep and enhanced θ wave (Foley et al., 2017). Meanwhile, Rungta et al. (2016) found that it 

was extracellular Ca2+ that induced Ca2+ fluctuations in fine astrocytic processes in the 

hippocampus of IP3R2-/- mice. Taking these controversial data together, it brings us to question 

why the effect of IP3R signalling in astrocytes of intact brain is attenuated and whether astrocytic 

IP3R signalling plays a major role in neuronal networks.  
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Instead of the genetic approach, heparin was used as an antagonist of IP3R in the earlier 

periods. Since it displays low affinity, lack of selectivity and impermeability to cell membrane, 

new highly selective antagonists have been developed to overcome all those deficits, including 

Xestospongin C and 2-aminoethoxydiphenyl borate (2-APB, 100 µM) (Gafni et al., 1997; 

Drumm et al., 2015). 

 

3.2.1.2	RyRs	

The importance of RyR is initially recognized in the excitation-contraction coupling of 

muscle cells, where L-type Ca2+ channels in the plasma membrane is stimulated and results in 

activation of surrounding RyRs (i.e. RyR2, RyR3), inciting a rapid release of Ca2+ from 

sarcoplasmic reticulum into the cytosol and causes contraction (Xu et al., 1998). Three isoforms 

of RyR mediating release of Ca2+ from ER stores are identified in vertebrates: RyR1, RyR2 and 

RyR3. Although RyR3 is the main isoform in the brain, studies showed that RyR1s were 

enriched in Purkinje cells of the cerebellum, while astrocytes were rich in RyR2s which are 

upregulated in response to hypoxic/reperfusion injury (Kesherwani and Agrawal, 2012; Márkus 

et al., 2016). Intriguingly, more than one RyR isoform can be expressed in one cell. Studies 

found that one interstitial cell of Cajal possessed RyR2 and 3, while one specialized optic nerve 

head astrocyte expressed all three isoforms of RyRs (Drumm et al., 2015; Kaja et al., 2015).  

Based on the analysis of cloned sequences of RyRs and IP3Rs, these two receptors share 

approximately 35 % identical sequence. Furthermore, the evolutionary analysis pointed out the 

possibility that N-terminal domain of IP3Rs were evolved from a lower order RyRs. The size of 

the primary sequences of RyRs is twice as big as that of IP3Rs (Amador et al., 2013) and it is 

hinted that the excess spaces may be reserved for binding small active molecules as regulators 

of RyRs. Indeed, a review from Kushnir et al. indicated ions (such as Mg2+) and proteins (e.g. 

CaM, PKA, CaMKII) regulated activity of RyRs (Kushnir et al., 2010). However, despite a 

pivotal role in Ca2+ signalling mediated by IP3Rs, much less is known about the expression and 

functional role of RyRs. Since RyRs were found to generate Ca2+ nanodomains in neurons 

(Johenning et al., 2015), the functional property of RyRs was deemed to initiate amplification 

of intracellular Ca2+ signals by Ca2+-induced Ca2+ release in astrocytes (Earley et al., 2005; 

Drumm et al., 2015; Kaja et al., 2015). In contrast, other investigations displayed that RyRs in 
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astrocytes were associated with local physiological response other than contribution to global 

Ca2+ propagation, which was executed by IP3Rs (Straub et al., 2006; Dunn. K et al., 2013; 

Drumm et al., 2015; Stavermann et al., 2015). For example, an in vitro study investigating 

pharmacological blockage or knockout of RyR3 reported that blockade of RyR3 activity 

significantly reduced astrocyte migration, thus implicating RyR3 in the control of astrocyte 

mobility (Matyash et al., 2001).  

The pharmacological toolbox for studying RyRs are many small molecular compounds, 

such as heparin, caffeine and ryanodine. To date, it is widely accepted that ryanodine acts as an 

agonist of RyR below 10 µM and an antagonist of RyR at concentrations above 100 µM 

(Chiarella et al., 2004; Thomas and Williams, 2012). 

 

3.2.1.3	Ca2+	crosstalk	between	RyR	and	IP3R	

Although RyR and IP3R bind to different ligands, Ca2+ has the capability to activate both 

receptors due to an underlying mechanism termed Ca2+-induced Ca2+ release. Indeed, it is found 

that activation of metabotropic-like NMDA receptor in astrocytes cause an increase in 

intracellular Ca2+ levels by activation of both IP3Rs and RyRs (Montes de Oca Balderas and 

Aguilera, 2015). Nevertheless, it is disputable which receptor initiates the Ca2+-induced Ca2+ 

release. For instance, localized Ca2+ transients were triggered by RyR-mediated Ca2+ efflux, 

which further activated ambient IP3Rs, resulting in strong Ca2+ wave propagated along the cell 

(Drumm et al., 2015). In contrast, Kaja et al. (2015) found that RyR-mediated Ca2+ efflux 

contributed to amplification of Ca2+ signals generated by either extracellular Ca2+ influx or IP3R-

released Ca2+ sparks. Briefly, Ca2+ crosstalk between RyR and IP3R fine-tunes modulation of 

cellular responses, adding to the complexity of intracellular Ca2+ signals regulation. 

 

3.2.1.4	SERCAs	

       ER storage refilling of Ca2+ is dependent upon the uptake by SERCAs on the ER membrane. 

To be specific, SERCA consumes ATP and pumps Ca2+ against the gradient into ER, 

maintaining a quite low level of Ca2+ in the cytosol. Thus, blockade of SERCA either by 

cyclopiazonic acid (CPA) or by thapsigargin decreased Ca2+ levels within astrocytic ER and 

induced Ca2+ influx through store-operated Ca2+ channels in the plasma membrane (Kovacs et 
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al., 2005; Morita and Kudo, 2010). However, immediately following the traumatic brain injury, 

a drop of approximately 50 % in intracellular ATP levels occurred in astrocytes and inhibited 

SERCA activity leading to depletion of ER Ca2+ stores (Ahmed et al., 2000). Thereafter, 

endogenous growth factors (e.g. BDNF) promoted SERCA expression, SERCA-2b subtype in 

particular, resulting in increased Ca2+ oscillation in astrocytes (Morita and Kudo, 2010). Notably, 

this study also showed through western blot analysis that SERCA-2b was the only subtype 

expressed in astrocytes. Given that SERCA-2b displays highest affinity for Ca2+ but minimum 

capacity of Ca2+ transport, the highly sensitive SERCA-2b upregulates intracellular Ca2+ 

oscillation in astrocytes, contributing to the regulation of glutamate release in developing and 

pathologic brain. 

 

3.2.2	Mitochondria		
In addition to the metabolic functions, mitochondria are an underestimated large Ca2+ 

reservoir which store and release Ca2+ through the mitochondrial Ca2+ uniporter (MCU), the 

mitochondrial permeability transition pore (mPTP), the mitochondrial Na+/Ca2+ (mNCX) and 

the H+/Ca2+ (mHCX) exchangers.  

1) MCU: It is a non-selective channel with high affinity for Ca2+. Usually MCU is 

inactivated at rest, due to the Ca2+ concentration inside the mitochondria being high relative to 

the cytosol. Only when cytosolic Ca2+ is elevated, the mitochondrial membrane potential will 

drive the uptake of Ca2+ across the inner mitochondrial membrane through MCU.  

2) mNCX: mNCX, is also known as NCLX, since it especially mediates Li+ flux instead of 

Na+ flux, differentiating it from the other NCXs in the plasma membrane. Astrocytic 

mitochondria are enriched with mNCX, which extrudes Ca2+ in a Na+-dependent or Na+-

independent manner.  

Synaptic mNCX is mainly responsible for regulating intracellular Ca2+ signals, leading to 

modulation of synaptic plasticity. Unlike neuronal mNCX, astrocytic mNCX has dual capacities 

of i) promoting mitochondrial Ca2+ shuttling, thus further enhancing production of ATP, 

resulting in regulation of astrocyte proliferation and migration; ii) facilitating the regulation of 

Ca2+ influx from extracellular space via store-operated Ca2+ entry (SOCE) in the vicinity of 

exocytosis areas (Parnis et al., 2013). Afterwards, Ca2+ transients enhanced by mNCX 
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participate in controlling slow cellular processes, e.g. release of glutamate and synaptic 

transmission. The findings suggest a strong mNCX-meditated crosstalk between mitochondria 

and the plasma membrane in astrocytes.  

However, the mitochondria-ER interaction mediated by mNCX is relatively weak (Parnis 

et al., 2013). This could be explained by: i) the fact that mNCX in astrocytes neither was 

involved in SERCA-mediated refilling of ER Ca2+ storage nor partook in ER-dependent release 

of Ca2+; ii) there was insignificant contribution of mNCX-dependent Ca2+ efflux to global Ca2+ 

propagation through astrocyte networks. 

3) mHCX:  Little is known about the properties of mHCX in astrocytes. In general, mHCX 

mediates Ca2+ efflux as same as mNCX. However, in rat myometrium, one study found that 

mitochondria accumulated Ca2+ through mHCX even though the mitochondrial membrane 

potential was depolarized (Babich et al., 2010).  

4) mPTP: When both mNCX and mHCX operate at full capacity, mPTP facilitates the efflux 

of overloaded Ca2+ from the mitochondrion in high-conductance mode. This fast process 

protects mitochondria from toxic Ca2+ levels and maintains Ca2+ homeostasis. Its transient 

openings may be involved in many cellular processes and responses (Agarwal et al., 2017). For 

instance, mPTP was opening when high oxidative phosphorylation occurred, and the 

corresponding Ca2+ efflux was further enhanced by production of mitochondrial superoxide 

such as ROS (Agarwal et al., 2017). Meanwhile, neuronal activity could raise intracellular Ca2+ 

levels in astrocytes in a mitochondria-dependent manner via mPTP-mediated Ca2+ waves, rather 

than ER Ca2+ stores (Srinivasan et al., 2015; Agarwal et al., 2017). This mPTP-dependent Ca2+ 

signalling was found mostly in astrocytic processes. By contrast, the openings of mPTP is 

prolonged and implicated in osmotic swelling, apoptosis and necrosis. 

Mitochondria are distributed everywhere in astrocytes, some are located in proximity to the 

plasma membrane, some are close to ER/SR, and some within astrocytic processes (Jackson and 

Robinson, 2015; Agarwal et al., 2017). Study indicated that periodical release of Ca2+ from 

mitochondria was independent, which was not interfered either by IP3R2-mediated Ca2+ signals 

or by membrane receptors-mediated Ca2+ transients (Agarwal et al., 2017). This feature 

contributes to mitochondrial functional roles: producing ATP and shaping Ca2+ signals.  

In neurons, distributions of mitochondria are partially regulated by protein Miro, while in 

astrocytes Miro dynamically carries mitochondrion along cytoskeleton toward areas of elevated 
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activity. Since activation of Miro requires Ca2+, mitochondrial trafficking is coupled to basal 

intracellular Ca2+ levels. In other words, mitochondrial effect on Ca2+ dynamics relies on its 

subcellular location where contains enough Ca2+ ions to activate Miro activity (Jackson and 

Robinson, 2015). Thereafter, increased mitochondrial Ca2+ shuttling is tied to ATP production, 

which subsequently regulates correlated ATP-dependent cellular processes. For example, 

mitochondrial Ca2+ transients regulated glutamate uptake by providing energy to Na+/K+ 

ATPase coupled to GLT-1 in the plasma membrane (Harris et al., 2012). In addition, 

mitochondria-mediated Ca2+ release underlying the Ca2+-machinery interplay with ER likely 

partakes in intracellular Ca2+ events by coupling with SERCA and Ca2+ ATPases in the 

membrane (from a review in (Takeuchi et al., 2015)). Jointly, these results hint the importance 

of mitochondrial Ca2+ shuttling through modulating distinct cellular functions. 

 
3.2.3	Others	

Intracellular Ca2+ are stored in the Golgi and acidic organelles. The uptake of Ca2+ in the 

Golgi is mainly by Ca2+-ATPase, and the extrusion of Ca2+ is mediated by Na+/Ca2+ exchanger. 

Nonetheless, little is known about the effect of Ca2+ signalling on Golgi. 

The lysosome, one of the acidic organelles in the cell, serves as a Ca2+ storage in astrocytes. 

Indeed, since astrocytes synthesize several lipids including cholesterol in the brain, lipid 

homeostasis in astrocytes affected lysosomal Ca2+ storage either through increasing Ca2+ storage 

or through causing Ca2+ release (Vienken et al., 2017). In addition to intracellular lipid levels, a 

previous study found that glutamate-activated mGluRs enhanced nicotinic acid adenine 

dinucleotide phosphate (NAADP) levels, which bound to NAADP receptors on lysosomal 

membrane, thus resulting in release of lysosomal Ca2+ (Pandey et al., 2009). 

  

4.    Roles of nitric oxide: a second messenger and a neurotransmitter 
The 1998 Nobel Prize in physiology or medicine has put NO under the spotlight and 

awarded to Robert F. Furchgott, Louis J. Ignarro and Ferid Murad for discovering vasodilatory 

role of NO in the cardiovascular system. In the following years, more and more functional 

properties of NO have been discovered, focusing mainly on three facets. First is the 

improvement on cardiovascular health. It has been revealed that in response to multiple stimuli 
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(e.g. ACh, nitroglycerine, shear stress) endothelial cells produced NO, which travels into 

vascular smooth muscle cells and induces vasodilation (Ignarro et al., 1987; Morales-Ruiz et 

al., 1996; Murohara et al., 1996). Second, NO acts in physiological conditions as an intercellular 

messenger inside brain cells, while pathological conditions cause NO to function as an 

endotoxin and an inflammatory mediator implicated in neurotoxicity. The third feature 

identified is the immunological function of NO. Macrophage-derived NO diffuses into adjacent 

cells, leading to events such as cell apoptosis or inhibition of cell proliferation. In the present 

section, I present reports regarding NO production and NO signalling as well as probable 

functions. 

 

4.1 Intracellular sources of nitric oxide 
In the body, gaseous NO is produced by NO synthase (NOS) which catalyzes the oxygen-

dependent formation of NO in the reaction:  

 

                                          [BH4, Heme, FMN, FAD, CaM (Ca2+)]  

O2 + 2 NADPH +L-arginine                      NOS         NO + 2 NAD+ + L-citrulline 

 

In order to ensure the efficiency of the reaction, activation of NOS demands four cofactors: 

tetrahydrobiopterin (BH4), heme, flavin mononucleotide (FMN) and flavin adenine 

dinucleotide (FAD), as well as one co-agonist, the Ca2+-bound CaM. Initially, FAD located at 

the reductase domain transfers two electrons from two nicotinamide adenine dinucleotide 

phosphates (NADPH), and then FMN accepts one electron and turns into the input state to lock 

the electron. With the help of CaM binding to both heme and FMN, the input state FMN 

transforms into the output state and passes the electron to the oxidase domain of heme, which 

contains BH4 and enzymatic substrates, O2 and L-arginine (Smith et al., 2013). It is important 

to note that: i) CaM-mediated electron transfer is a rate-limiting step during the reaction; ii) in 

the case of heme being dissociated, the final product would be nitrate rather than NO; iii) if 

either L-arginine is insufficient or BH4 is dissociated, the outcome would be superoxide anions 

leading to the production of peroxynitrite. 

On the other hand, NO is a type of free radicals capable of directly interacting with HS-
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group proteins by covalent modification of sulfhydryl residues forming S-nitrosothiols (ONS-

group), termed S-nitrosylation. Since the protein S-nitrosylation occurs quickly and reversibly, 

S-nitrosylated proteins can be deemed as an intracellular storage of NO, releasing NO under 

certain conditions (Stamler et al., 1992).  

 

4.2 Nitric oxide probes  
NO is a gaseous chemical signal in the cell, allowing only real-time imaging as a direct 

approach of observing its distribution. It is noteworthy that NO has many characteristics making 

it difficult to be labeled as well as be traced. First, NO is short-lived, the half-life of which 

depends on the concentration. Though NO can sustain from seconds to tens of seconds, 

unexpectedly, the lower the concentration of NO is, the longer the NO effect lasts. Second, NO 

is not stable in the cell and functions in the form of NO-related species, such as NO•, NO+, NO-, 

NO2
-, NO3

-, N2O3 and ONOO-. Notably, some of these species belong to ROS family, for 

example, NO•, NO+ and ONOO-. Third, NO is a cell-permeable molecule, indicating that it can 

travel across many cell membranes including the plasma and organelle membranes rapidly. This 

feature leads to the difficulty of identifying the NO source. 

In 1998, Kojima et al. developed a series of diaminofluorescein (DAF), making it feasible 

to label and trace NO. In particular, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-

FM) diacetate is an innovator of DAF family for the bio-imaging of NO and is widely applied 

for tracing and qualitatively assessing cellular NO production. However, these series of 

fluorescent probes have some notable defects need to be noticed. As indicated, DAFs react with 

NO+ equivalents other than NO itself (Kojima et al., 1999). Furthermore, intensity of the 

fluorescence remains when NO disappears (Namin et al., 2003). DAF-FM diacetate is a reliable 

NO indicator in living preparations due to three reasons: i) Cell-permeant DAF-FM diacetate is 

deacetylated rapidly into water-soluble but cell-impermeable DAF-FM by cytosolic esterases 

(Kojima et al., 1999), ii) Once reacting with NO derivatives, weakly fluorescent DAF-FM 

irreversibly transforms into a complex releasing constant fluorescence (Namin et al., 2003), iii) 

The lowest NO concentration that DAF-FM can detect is approximately 3 nM (Kojima et al., 

1999), indicating the highest sensitization of NO. Overall, DAF-FM can provide a semi 

quantitative information about how much NO is produced when a single cell receives a stimulus. 
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4.3 Isoforms of NOS  
The product of gene translation of NOS is an inactive monomer containing a reductase 

domain and an oxidase domain (Ratovitski et al., 1999). When two monomers interact, they 

construct one active homodimer named NOS. Three isoforms of NOS have been identified in 

mammals, including endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS 

(iNOS). Despite being named according to the tissue in which they were primarily recognized, 

all of three enzymes are distributed widely in other cell types.   

 

4.3.1	Endothelial	NOS	

Organization of the enzymatic domain:  

In each monomer, the oxidase domain is found close to the N-terminal and contains the 

BH4 domian, the heme domain and the CaM binding site, which links the oxidase and the 

reductase domains. At the C-terminal of monomer, the reductase domain contains the FMN 

domain, which directly connects with the CaM binding site, then the following sequences are 

the FAD and the NADPH domains (Smith et al., 2013).  

For example, in one monomer:    
 
N-[Heme domain] - [CaM binding site] - [FMN domain]-[FAD domain]-[NADPH domain]-C 

 

   Oxidative domain                                                              Reductase domain 

 
CaM effect on eNOS:  

      CaM structurally consists of two granular lobes, N- and C- lobes, which are joined by one 

α-helix (Babu et al., 1985). To activate eNOS, CaM reversibly binds with the CaM binding site 

of eNOS. Prior study indicated that activation of eNOS requires full lobes of CaM, whereas 

iNOS only needed the N-lobe CaM (Piazza et al., 2012). They also pointed out that 

phosphorylation of CaM at the site of Tyr99 specifically facilitated activity of eNOS. These 

features highlight the importance of CaM in activation of eNOS. 

Potential cell type containing eNOS in the brain:  

       i) Endothelial cells; ii) astrocytes (Wiencken and Casagrande, 1999); iii) CA1 pyramidal 

neurons (O'dell et al., 1994).  
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eNOS compartmentalization: 

       Caveolae, a subtype of lipid rafts in the membrane, holds various concentrated signal 

molecules, i.e. lipids and proteins. Caveolin (Cav) -1, Cav-2 and Cav-3 are the main components 

of caveolae membrane fractions and mediate “scaffolded” domains. Immunostaining studies 

revealed that eNOS was colocalized with Cav-1 in endothelial cells, while eNOS-Cav-3 were 

identified in cardiomyocytes. Furthermore, subcellular localization of eNOS was found in the 

Golgi complex membrane in addition to the plasma membrane (Feron et al., 1996; García-

Cardeña et al., 1996; Massion et al., 2004). Interestingly, not all eNOS are located in caveolae. 

Some studies found that eNOS was enriched in other rafts (e.g. PI(4, 5)P2-containing rafts) 

during cell migration (Bulotta et al., 2006). 

 

4.3.2	Neuronal	NOS	

Organization of the enzymatic domain:  

       The domain organization of nNOS is similar to that of eNOS; however, the molecular 

weight of nNOS is greater than that of eNOS, denoting the extra portion located in the N-

terminal of nNOS. Another distinction is that, the heme binding to nNOS carries Fe(II), while 

in eNOS it contains ferric oxide (also called Fe(III)). 

CaM effect on nNOS:  

       Full-length CaM (N- and C-lobes) reversibly binds to nNOS. Scientific evidence suggests 

that CaM may activate nNOS by two means. One is the destabilization of combination between 

FMN and electron, leading to transfer of one electron from FMN towards Heme. The second is 

stabilization of interplay between the FMN domain and the Heme domain (Smith et al., 2013). 

Potential cell types containing nNOS in the brain:  

       i) neurons, such as interneurons in the hippocampus and the neocortex (Tricoire and Vitalis, 

2012); ii) VSMCs in the brain have the potential to express nNOS due to the identification of 

nNOS in the VSMCs of neointima, media and adventitia (Talukder et al., 2004; Nakata et al., 

2007). Furthermore, cortical arterial VSMCs are formed through the extension of media of 

artery and could be one of the cellular sources of NO in the brain. iii) astrocytes, an objective of 

this dissertation.  

nNOS compartmentalization:  
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       nNOS is colocalized with caveolin-1 and caveolin-3 in skeletal muscle cells (Venema et al., 

1997) and located in the sarcolemma via PDZ domain (Kai Y. Xu, 1999). In cardiomyocytes, 

nNOS is co-immunoprecipitated with RyRs in the SR (Barouch et al., 2002). In neuronal post-

synaptic dendrites, nNOS is coupled with PSD-93 and PSD-95 via PDZ domain. Moreover, 

PSD-95 is further linked to NMDA receptor, the activation of which causes nNOS-derived NO 

(Brenman et al., 1996b; Brenman et al., 1996a).  

nNOS variants: 

In 1993, a study of the nervous system initially discovered a different nNOS mRNA, named 

nNOS-2 (Ogura et al., 1993). In the following years, accumulating investigations identified 

novel nNOS variants in the body. nNOSµ expression was initially reported in skeletal and 

cardiac muscles (Silvagno et al., 1996), whereas nNOSγ was detected only in muscle cells and 

displayed a fairly weak activity compared to nNOS (Brenman et al., 1996b). Next, nNOSβ was 

found in the brain (Brenman et al., 1997). Particularly, nNOSα was expressed in a wide range 

of tissues, such as brain, heart, liver and kidney (Elfering et al., 2002). Catalytic activity 

(excluding nNOSγ) is similar across nNOS variants. 

 

4.3.3	Inducible	NOS	

iNOS is not expressed in physiological cells, but it can be induced under the stimulation of 

cytokines or other factors. Once expressed, iNOS is activated constantly in a Ca2+-independent 

manner. Interestingly, iNOS contains high concentrations of hydrophobic residues in relation to 

eNOS or nNOS, resulting in the strongly irreversible interaction between iNOS and the N-lobe 

of CaM (Piazza et al., 2012; Smith et al., 2013).  

 

4.3.4	Other	NOS	isoforms	

1) NOS in red blood cells is thought as an eNOS-like NOS (Kleinbongard et al., 2006). 

2) Mitochondrial NOS is considered to have two classes, one is specific mitochondrial NOS 

and has extensive distribution, the other is a subtype of nNOSα and also distributed widely in 

tissues, such as liver, heart and brain (Elfering et al., 2002; Dedkova and Blatter, 2009). 
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4.4 Second messenger and neurotransmitter  
NO is a double-edged sword, i.e. it plays protective roles in low levels but becomes an 

endogenous toxin produced by either overactivated eNOS and/or nNOS or iNOS. Following 

production, NO diffuses into adjacent cells and reacts as a free radical with multiple substances, 

including oxygen, transition metals, free superoxide anion and chemical groups in proteins, 

resulting in production of NO metabolites (e.g. NO-, NO+, ONOO-). Hence, NO functions as a 

second messenger inside of cells and a neurotransmitter outside of cells.  

 

4.4.1	Cellular	metabolism	of	NO		

Once produced in cells, NO immediately receives one electron from either oxygen or 

transient metals (e.g. iron in the heme, copper in the superoxide dismutase), and then becomes 

NO•, which acts as an endogenous second messenger in cells and reacts with oxygen or 

superoxide immediately. The consequence of these reactions generates nitrosothiols and series 

of reactive nitrogen species (RNS). The latter either function like ROS or interact with other 

chemical groups such as thiols and cysteine by S-nitrosylation in the form of NO•, regulating 

NO-mediated signalling cascades inside of cells. 

 

S-nitrosylation:                                  NO• + HS-                 ONS- 

Production of RNS:                           NO• + O2           N2O3  

                                                    NO• + O2
•-                  ONOO- 

                                                    ONOO- + H+                 ONOOH    

                                                    ONOOH           NO3   or   ONOOH           •OH + •NO2 

 

4.4.2	Functional	properties	of	NO	

NO is a critical signalling molecule for various physiological processes in the body, 

contributing mainly to two aspects in the brain (Figure 1-4), regulation of contraction of muscle 

cells as well as involvement in the CNS, via S-nitrosylation and RNS reaction. 

 

4.4.2.1	Regulation	of	cerebral	blood	flow	

Cerebral blood flow (CBF) is one parameter to evaluate the regional blood volume flowing 
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through the brain within one unit of time. In the brain, local increased neuronal activity calls for 

an increase in neighboring CBF, thereby leading to a metabolic balance between supply and 

demand. Artery and arteriole consisting of endothelial cells (ECs) and vascular smooth muscle 

cells (VSMCs) are responsible for the supply of blood that has a high oxygen content. It has 

been well demonstrated that the endogenous vasodilator NO is able to regulate CBF (for a 

review (Toda et al., 2009)).  

eNOS in ECs preferentially binds to caveolin-1 in microdomains of caveolae-associated 

membrane (Feron et al., 1996). Once activated by factors, such as ACh and sheer stress, NO can 

either goes into blood to inhibit platelet aggregation and adhesion (Radomski et al., 1987), or 

crosses into VSMCs causing vasodilation. 

In VSMCs, activation of soluble guanylyl cyclase (sGC) by binding NO to the cofactor 

heme facilitated production of cyclic guanosine monophosphate (cGMP) (Brophy et al., 1997). 

Increased cGMPs further reduced contractile force via activation of MLC20 phosphatase (MLCP) 

which dephosphorylated the regulatory 20-kDa myosin light chain (MLC20) (Lee et al., 1997). 

In addition to the cGMP-dependent pathway, cardiomyocyte-derived NO at the sarcolemma also 

regulated vascular constriction in a cGMP-independent manner. NO reversibly activates RyRs 

activity by poly S-nitrosylation to enhance the sensitivity of cardiac muscles to Ca2+ 

(Stoyanovsky et al., 1997; Xu et al., 1998). Furthermore, NO has capacity to inhibit the 

enzymatic activity of CYP 4A which is expressed in VSMCs and produce the vasoconstrictor 

20-HETE (Sun et al., 1998; Oyekan et al., 1999). Collectively, NO regulates muscle 

vasocontraction by either cGMP-dependent or -independent pathways (Figure 1-4). 

 

4.4.2.2	NO	roles	in	the	tripartite	synapse	

       Under physiological conditions, NO functions via S-nitrosylation to regulate Ca2+-

independent synaptic vesicle release and levels of multiple neurotransmitters in the CNS 

(Meffert et al., 1994). A recent study identified all protein S-nitrosocysteine sites in mouse brain 

and found that NO modulates glutamate concentration through different ways. For instance, 

extracellular glutamate levels could be raised by inactivating EAAT2 via NO-mediated S-

nitrosylation at Cys373 and Cys562.  Intracellular glutamate levels were affected by inhibition of 

glutamate dehydrogenase and activation of glutamine synthetase (Raju et al., 2016). Not only 
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levels of glutamate, NO also promotes production of catecholamines (e.g. dopamine). During 

the post-translational modification, evidence indicated that nitration and S-glutathionylation 

inactivated tyrosine hydroxylase, which is responsible for the rate-limiting reaction of 

catacholamines production. Contrarily, NO-mediated S-nitrosylation increased the activity, 

leading to an increase in catacholamines (Wang et al., 2017b). 

Oxidative stress can be induced by metal interaction by way of iron and/or copper chelation. 

Indeed, one study induced abnormal metal reactions in the brain using magnetic fields at 

extremely low frequencies. These reactions resulted in increased RNS formation by transient 

metal-activated NOS and S-nitrosylated proteins, the structural and functional alternations of 

which were related to aging-like symptoms (Selaković et al., 2013). Furthermore, in early 

oxidative stress, RNS altered normal conformation of p53 into unfolded form which cannot bind 

DNA (Buizza et al., 2012). Neuronal NMDA receptor is functional coupled to PSD-95/nNOS 

complex in the plasma membrane. In response to ischemia, overactivated NMDA receptors 

stimulated PSD-95/nNOS complex, resulting in high levels of NO and the NMDA receptor-

induced toxicity (Sattler et al., 1999; Aarts et al., 2002). However, instead of worsening 

oxidative stress, nitrite-released NO could directly alleviate hypoxia by inhibition of HIF-α 

(Burnley-Hall et al., 2017). 

Under pathological situations, excessive NO via S-nitrosylation affects function of critical 

proteins in neurons. For instance, S-nitrosylated Cdk5 induced over-phosphorylation of tau 

protein in AD, while S-nitrosylation of ubiquitin C-terminal hydrolase-1 promotes amyloid and 

amorphous protein aggregates with regard to AD and Parkinson’s disease (Kumar et al., 2017; 

Wang et al., 2017a). Indirectly, NO assists endothelin-1-mediated neuronal degeneration by 

increasing Akt tyrosine nitration (Antoni et al., 2017). Concurrently, neurons, astrocytes and 

endothelium may overexpress endothelin-1, which upregulated iNOS levels but down-regulated 

nNOS levels, resulting in an increased NO-induced toxicity. Collectively, NO-mediated 

signalling contributes to regulation of synaptic transmission and CBF in the CNS and may be 

involved in the pathophysiology of neurodegenerative diseases. 
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5.    Experimental hypotheses and objectives of the thesis 
In the brain, astrocytes are no longer considered as supporting cells. They perform critical 

functions, including maintenance of synaptic plasticity and regulation of cerebrovascular 

coupling, under resting and active conditions. In response to neuronal signals, astrocytes 

generate a wide range of responses on the basis of intracellular Ca2+ events, which translate 

neuronal activity. It is clear that one main underlying mechanism by which astrocytes modulate 

local neuronal transmission and CBF is the release of gliotransmitters (e.g. glutamate, ATP). An 

importance potential gliotransmitter is NO which is a powerful vasodilator and a crucial 

neuromodulator. However, the mechanisms by which astrocyte can produce NO under 

physiological conditions is unclear. 

 We hypothesize that astrocytes can express functional constitutive eNOS and/or nNOS, 

which produces NO in response to neuronal activity. 

The primary objectives of this thesis are: i) to identify the subtype of constitutive NOS in 

astrocytes, ii) to test whether isolated astrocytes can produce NO upon various cholinergic and 

glutamatergic pharmacological stimulations, iii) to determinate the polarity and microdomains 

of NO production in acute brain slices where astrocytes are polarized 

Figure 1-4 Potential roles of NO in astrocytic process and endfoot 



 

 

 
 
 
 
 

CHAPTER 2 
 
 
 
 
 
 
 
 
 
 
 
 

METHODOLOGY 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 65 

Animals  

       All C57BL/6J mice, eNOS-/- mice and nNOS-/- mice were purchased from the Jackson 

Laboratory. All experimental protocols were approved by the animal ethics committees (CDEA) 

of the Université de Montréal. Mice were reproduced and bred with standard lab chow and water 

ad libitum in the Université de Montréal, which strictly conducted in accordance with the 

guidelines of the Canadian Council on Animal Care. Genotyping the offspring of KO nNOS 

mice was followed from the guidelines of the Jackson Laboratory. Only male homozygotes were 

used in the studies, and the wild-type (WT) controls were C57BL/6J mice.  

 

Purified astrocyte culture  

       Dissociated cell cultures were obtained from cortical layers of postnatal day 0 to day 3 

mouse pups. Primary astrocyte cultures were plated onto glass coverslips to form monolayer as 

described previously (Fasano et al., 2008). After 5 to 7 days, over 98 % GFAP+ astrocytes 

reached confluency and were identified by loading with sulforhodamine 101 (SR101, 100 µM; 

Sigma), a red fluorescent marker of astrocyte. 

 

Acute brain slice preparation  

       Male mouse at 10-12 weeks was decapitated after anesthesia of overdosed isoflurane. 

Notably, mouse was decapitated immediately to alleviate effect of anesthetic on brain Ca2+ 

signalling (Stobart et al., 2016).  Then brain was removed into iced aCSF (4 ℃) as soon as 

possible, containing 125 mM NaCl, 3 mM KCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 2 mM 

CaCl2, 1 mM MgCl2, 4 mM glucose, and 400 µM L-ascorbic acid (Girouard et al., 2010). 

Coronal brain slices (180 µm) of mouse somatosensory cortex were prepared at the level 

between bregma 0.26 mm and bregma 1.18 mm using a vibratome (Leica VT1000S) (Paxinos 

and Franklin, 2004). After sectioning, brain slices were temporarily stored into aCSF at room 

temperature (RT), equilibrated with 5% CO2 carbogen. 

 
Dye loading  

       Astrocyte cultures were rinsed with HEPES buffer (pH 7.3), containing 118 mM NaCl, 4.69 

mM KCl, 4.2 mM NaHCO3, 1.18 mM KH2PO4, 1.29 mM CaCl2, 1.18 mM MgSO4·7H2O, 10 

mM D-Glucose, 10 mM Hepes, and were loaded with a fluorescent nitric oxide indicator, 4-
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Amino-5-methylamino-2 ′ ,7 ′ -difluorofluorescein diacetate (DAF-FM diacetate, 10 µM; 

Invitrogen) and/or SR101 (100 µM; Sigma) for 45 min at RT. Brain slices were incubated with 

DAF-FM diacetate (10 µM) and/or SR101 (100 µM) for 60 min at 28 ℃, well-shaking and 

equilibrated with 5% CO2 carbogen. After loading the dye, subjects were rinsed and placed in 

HEPES buffer and aCSF respectively until used.  

       To avoid intereference from S-nitrosothiol-released NO, N- ethylmaleimide (NEM, 200 µM) 

was pre-incubated with brain slices for 10 min to deplete -SH groups (Chvanov M et al., 2006). 

       To study the responses of eNOS and nNOS to t-ACPD, L-NNA (L-NG-Nitroarginine, 100 

µM; Cayman) a non-selective competitive inhibitor of nitric oxide synthase (NOS) was pre-

incubated with brain sections for 15 min; the selective inhibitor of nNOS, NPLA (Nω-propyl-L-

arginine, 10 µM; Tocris) and the inhibitor of eNOS, L-NIO (N5-(1-iminoethyl)-L-ornithine, 10 

µM; Tocris) were employed and pre-incubated with brain slices of WT, KO eNOS and KO 

nNOS mice for 25 min.  

       To assess the involvement of intracellular Ca2+ in astrocytic endfeet, BAPTA-AM, an 

intracellular calcium chelator (50 µM; Sigma) was pre-treated. CPA (cyclopiazonic acid, 30 µM; 

Millipore) was to deplete entire Ca2+ store in endfeet ER (endoplasmic reticulum), high-dose 

ryanodine (Ry, 100 µM; Tocris, abcam) was to block ryanodine receptor (RyR), Ry 2 µM was 

to active RyR, and 2-aminoethoxydiphenyl borate (2-APB, 100 µM; abcam) as well as 

xestospongin C (XeC, 20 µM; abcam) was to inhibit the activity of IP3 (inositol 1, 4, 5-

triphosphate) receptor (Gafni et al., 1997). Except 2 µM Ry, the other four reagents were 

pretreated with subjects for 25 min. 

       To verify whether astrocytes has the functional structure of NMDAR-PSD-95- nNOS, we 

bath applied an inhibitor of NR2B subunit, Ro25-6981(3 µM, 20-30 min pre-treatment), or a 

peptide Tat-NR2Bct (YGRKKRRQRRRKLSSIESDV, 20 µM, 20 min pre-treatment), which is 

an inhibitor of PSD-95 domain and breaks the linkage between NMDA receptor and nNOS 

(control group was applied an inactive peptide S-Tat-NR2Bct-AA, 

YGRKKRRQRRRKLSSIEADA, 20 µM, pre-treatment for 20 min) (Girouard et al., 2009). 
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Imaging of electron microscopy  

       WT and knockout adult mice (3 months) were anesthetized deeply by an i.p. injection of 

100 mg/kg sodium pentobarbital. Mice were perfused with 5-10 mL of heparin-saline, 40 mL 

of 3.75% acrolein in 2 % PFA (paraformaldehyde) solution in 0.1 M PBS (phosphate buffer 

solution, pH 7.4) followed by 200 mL of 2 % PFA in 0.1 M PBS. Coronal sections (40 µM) 

from the sensorimotor cortex were prepared using a vibratome (Leica Microsystems ®, 

Bannockburn, IL, USA), then were incubated in 1 % borohydride solution for 30 min, freeze-

thawed and incubated in 0.1 % BSA (bovine serum albumin) solution in 0.1 M tris-saline (TS) 

buffer. Rabbit polyclonal antisera against eNOS (No. PA1-037) and nNOS (No. 61-7000) was 

purchased from Invitrogen (Camarillo, CA). The antiserum did not exhibit any cross-reactivity 

with the related eNOS/nNOS or iNOS proteins. Negative controls were previously performed 

on nNOS-/- and eNOS-/- brain slices with nNOS and eNOS antibody for specificity. Primary 

antisera 1:1000 was incubated with brain sections overnight at room temperature. Rinse several 

times in TS, then transferred into donkey anti-rabbit immunogold IgG, 1:50 for 2 hours. 

Incubation with 2 % gluataraldehyde in 0.01 M PBS for 10 min to fix the golden particles, then 

the antibody examination was detected by Ted Pella Silver IntensEM kit, 7 min at room 

temperature for intensification. Sections were postfixed in 2 % osmium tetroxide in 0.1 M PB, 

dehydrated and flat-embedded in EPON (EM Bed-812, Electron Microscopy Sciences, Fort 

Washington, PA, USA) between two pieces of Aclar plastic (Allied Signal, Pottsville, PA, USA).  

       Sections were examined using a H7000 Hitachi transmission electron microscope. An 

average of 2 samples per animal covering an area of at least 200 µm2 per animal were examined, 

and each case generated about 50 images of magnifications ranging from 7,000X to 40,000X. 

A total area of 15,469 µm2 was examined in 3 wild type and 3 knockout mice. 

 
Imaging and identification of arteriole ex vivo  

       Astrocytic endfeet that enwrapped arterioles (regions of interest, ROIs) were selected and 

imaged for ex vivo studies. Parenchymal arterioles were identified in two ways, one is following 

the connections back to pial arteries, the other is verifying the thickness of vascular wall (around 

5 µm) that encircled with a continuous smooth muscle layer. More detailed information on 

identification of arterioles have been demonstrated previously (Girouard et al., 2010). 
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Image acquisition  

       All in vitro and ex vivo living studies were performed on Olympus Fluoview FV1000 

confocal microscope using a 40X water immersion objective (60X oil immersion objective was 

used for immunohistrochemistry study). Individual coverslip of astrocyte cultures was 

transferred into a chamber perfusing continuous HEPES buffer at RT, on the stage of confocal 

microscopy (Olympus BX61WI). DAF-FM (Figure 2-1a) and SR101 were excited by 488 nm 

laser and 543 nm laser of single photon, respectively. Individual brain slice was placed into 

another perfusion chamber, and was superfused with carbogenated aCSF continuously 

maintained at 32-35 ℃. Ex vivo data was collected by two-photon microscopy. The regions of 

interest are cortical layers III to V at S1 and S2 of primary somatosensory cortex, where cortical 

astrocyte Ca2+ signalling occurs in response to sensory stimulation (Paxinos and Franklin, 2004; 

Kim et al., 2016; Stobart et al., 2016). DAF-FM was excited at 765 nm wavelength, and 

astrocytic endfeet loaded with SR101 were identified at 820 nm wavelength.  

       ROIs were scanned by Z-stack images. XY time series in vitro were recorded for 10 minutes. 

0 min was defined when the first Z-stack images were recorded before stimulation. Then the 

rest ten Z-stack images were taken right after every minute until 10-minute perfusion with 

freshly prepared stimulus (acetylcholine, 10 µM, Sigma; or t-ACPD, 100 µM, Tocris; or NMDA, 

40 µM, Biomol; or AMPA 40 µM, Tocris; or ATP, 100 µM, Sigma). The same definition was 

applied on ex vivo scanning, five time points of Z-stack images were recorded at every 2.5 

minutes and until 10-min stimulation. All images were taken based on the frame size of 512 × 

512 pixels, at 20 or 40 µs/pixel. 

 

Verification of the NO marker DAF-FM 

To test the efficiency of DAF-FM diacetate to detect NO in our preparations, astrocytes 

cultures were incubated in the presence of a NO donor, sodium nitroprusside (SNP), which 

releases NO inside living cells (Figure 2-1b). The increased fluorescence was observed 

immediately following application of 100 µM SNP (Figure 2-1c). Hence, the data provided that 

DAF-FM worked very well in our experimental conditions and can detect concentrations as low 

as 3 nM (Kojima et al., 1999). 
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ATP is an important gliotransmitter partaking in Ca2+ signalling in astrocytes. Notably, a 

recent study found that ATP has the capacity of increasing intracellular Ca2+ in astrocytes and 

increasing intracellular DAF-FM intensity (Li NZ et al., 2003). After application of ATP in our 

experimental setting, fluorescent intensity of DAF-FM increased significantly in astrocyte 

cultures (Figure 2-2), whereas the increase was prevented by pretreatment with L-NNA (100 

µM, 15 min), a non-selective NOS inhibitor. The data implied that i) our experimental condition 

was able to detect DAF-FM fluorescence and its changes upon positive (ATP) and negative (L-

NNA) stimulation; ii) astrocytes in vitro express functional NOS which produce NO for 

approximately 21.8 % in response to stimulation of ATP (100 µM).  

 
Immunohistochemistry  

Immunohistochemistry (IHC) staining was performed on frozen sections from male mice 

at age 9-14 weeks (C56BL/6J mice and ChAT(BAC)-eGFP mice; Jackson Laboratory), 

anesthetized by sodium pentobarbital (100 mg/kg, i.p.) and intracardiac perfused with saline 

(pre-cooled at 4 ℃). The brain was rapidly removed on aluminium foil upon dry ice for 20 min, 

and stored at -80 ℃ until used. Sections (30 µm) were cut in the cryostat (Leica CM1850 UV) 

at -22 ℃, then mounted onto Superfrost Plus microscope slides (Fisher Science) and placed into 

a slide warmer pre-warmed at 60 ℃ for 10 min, stored at -20 ℃ until used (available within 2-

3 month). Slides were dried for 20 min at RT and fixed with 95 % ethanol (pre-cooled at -20 ℃) 

for 10 min at 4 ℃, then rinsed three times with PBS, 5 min each and blocked with 5 % normal 

goat serum in PBS (pH 7.4) for 60 min, at RT.  

Slides were incubated with primary antibody, i) eNOS (1:100; BD Bioscience) or nNOS 

(1:400, BD Bioscience); ii) caveolin-1 or -3 (Cav-1 or Cav-3) (1:1000; Thermo Fisher); iii) 

polyclonal anti-RyR antibody, RyR2 or RyR3, (1:1000, Millipore); iv) polyclonal anti-NR2B 

antibody (1: 500; Thermo Fisher)) overnight, at 4 ℃. After rinse with tris-buffered saline (TBST, 

contained 0.2 % Triton X-100, 0.025 % Tween 20) three times, 5 min per rinse, second antibody 

of Alexa 488, Alexa 546 and Alexa 647 (1:500; Invitrogen) were applied for 60 min at RT. 

Rinse another three times with TBST, 5 min per rinse. In the end, GFAP (conjugated with Cy3, 

1:800; Millipore) was incubated separately overnight at 4 ℃. Last, slides were rinsed with TBST 
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three times and immersed into sudan black B solution (0.3 % in 70 % ethanol; Bioshop) to 

reduce autofluorescence for 15 min at RT. Slides were rinsed three times in TBST and two times 

in PBS. Then they were dried and coverslipped with Fluoromount-G (SouthernBiotech). 

Negative controls were performed with no antibody, primary antibody only and secondary 

antibody only, respectively.  

Images were acquired under the single photon with 488 nm, 543 nm and 633 nm lasers, 

equipped with 60X oil immersion objective. ii) Cholinergic colocalization: Slides were dried 

for 20 min at RT and fixed with 4 % paraformaldehyde (PFA) (pH 7.4, pre-cooled at 4 ℃) for 

8 min at 4 ℃, and rinsed with PBS three times, 5 min each and blocked with 5 % normal goat 

serum in PBS for 60 min at RT. Primary antibody of eNOS (1:100) was applied onto sections 

for 24 h, at 4 ℃. Rinse three times with TBST, 5 min each. Alexa 647 secondary antibody 

(1:500; Invitrogen) was incubated for 1 h, at RT, and rinse with TBST three times. Slides then 

incubated with GFAP (1:800) overnight at 4 ℃. Rinse three times with TBST, 5 min per time. 

Dry slides at RT for 20 min and added Fluoromount-G. Negative controls were performed with 

no antibody, primary antibody only and secondary antibody only, respectively. Images were 

acquired under the single photon with 488 nm, 543 nm and 633 nm lasers, equipped with 60X 

oil immersion objective. 

 

Analysis of hot spots of nitric oxide ex vivo 

       Fluorescent intensity of NO is analyzed by using background-subtracted ΔF/F0 = (Fn-F0)/F0, 

where Fn is the fluorescence intensity at frame n and F0 is the baseline of DAF-FM fluorescence 

calculated from the average of several frames right before stimulation (Li et al., 2003). ROIs are 

selected randomly (Ito et al., 2010) and covered the whole cell (Li et al., 2003). However, in ex 

vivo potency assay, the approach that assessed the intensity of whole astrocytic endfoot was not 

effective and accurate enough to evaluate the capacity of NO production. Because NO in 

astrocytes acts as a gaseous neurotransmitter and diffuses radially into low concentration areas, 

and may effuse through NO permeable openings such as Connexin 43-formed hemichannel 

(Figueroa et al., 2013) and aquaporin-1 water channel (Herrera et al., 2006) into neighboring 

cells. Theoretically, release of NO release is likely in the form of hot spot. Namely, the highest 
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concentration of NO is in the core of one hot spot. Once activated, those hot spots comprising 

NOS or thiol peptides generate NO at discrete compartmentalized areas. 

       Thus, we herein propose a new model - hot spots of nitric oxide - to analyze changes in 

patterns of NO production in astrocyte endfeet by counting up the total number and mean of hot 

spots intensity. Examined through surface plots of astrocyte endfeet, we decided to define the 

size of one ROI as 1.03 µm × 1.33 µm (or 5 × 6 pixels), which is large enough to overlay the 

entire dimension of one hot spot of NO. All data are based on the values obtained from inner 

core of hot spots where contains the highest fluorescent intensity of DAF-FM.  

 

Data analysis.  

For all experiments, images were recorded by Olympus confocal software (FV10-ASW Ver. 

03.01) and ROIs were randomly selected. Fluorescent intensity of DAF-FM and surface plots 

of astrocytic endfoot were obtained by ImageJ software. All statistical tests were carried out 

using GraphPad Prism 6.0. Data were presented as mean ± S.E.M. Two groups comparisons 

were analyzed by two-tailed Student’s t-test. Multi-comparisons were appropriately subjected 

to one-way or two-way ANOVA followed by Bonferroni post-hoc tests as indicated. Statistical 

significance was considered as if p < 0.05. 
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Examples of fluorescent images showing i) autofluorescence (a, white arrow) in wild-type (WT) 

astrocyte cultures without applying DAF-FM (a NO marker), ii) fluorescence of DAF-FM (b, 

white arrow), and iii) increased DAF-FM fluorescence (c) when applying SNP (a NO donor), 

using single photon microscopy (400X). White arrows indicate cytosolic NO and new NO 

produced by SNP.  

Time courses of DAF-FM intensity in purified WT astrocyte cultures during 10-min perfusion 

with ATP (100 µM, n=59 cells for ATP treatment from 3 WT pups). ***p < 0.001, two-way 

ANOVA with Bonferroni post-hoc test. The three curves showed a significant enhancement of 

DAF-FM intensities upon applications of neurotransmitters. Meanwhile, the responses were 

eliminated by pretreatment with a non-selective NOS inhibitor, L-NNA (100 µM, 15 min). 

 

 
 
 
 
 

Figure 2-1 The validation of the technique indicating nitric oxide in living astrocytes 

Figure 2-2 ATP stimulates NO production in cortical astrocyte cultures 
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Introduction 
       Astrocytes are the most abundant cells in the brain and play diverse roles including tripartite 

synapses and regulation of CBF. One messenger that could potentially be involved in the 

regulation of both synaptic activity and CBF is nitric oxide (NO). However, the mechanism by 

which NO can be produced in astrocytes remains unknown. Since Ca2+-dependent eNOS in 

endothelial cells can be activated by cholinergic stimulation and the ensuing Ca2+ increase, we 

emitted the hypothesis that a similar mechanism may exist in astrocytes in proximity to 

cholinergic neurons. In cortical astrocytic cultures and acute brain slices from C57BL/6, eNOS-

/- and nNOS-/- mice, respectively, NO production was evaluated using DAF-FM diacetate under 

confocal microscopy.  
 

Results 
ACh induces eNOS-dependent NO production in astrocyte cultures 

       Previous studies found that ACh trigger intracellular Ca2+ elevation via muscarinic and/or 

nicotinic acetylcholine receptors (mAChR/nAChR) in the heart (Massion et al., 2003) and brain 

(Dajas-Bailador and Wonnacott, 2004), resulting in activation of Ca2+-dependent eNOS (Feron 

et al., 1997; Massion et al., 2003; Krieg et al., 2005). Indeed, it was found that cytosolic Ca2+ 

activates Akt, which in turn, raises eNOS activity and induces formation of microdomain of 

mAChR-eNOS complex (Danson et al., 2005; Krieg et al., 2005). Thus, in our purified cortical 

astrocyte cultures, NO production was evaluated by assessing DAF-FM intensity (Figure 3-1, n 

= 3 pups, 68 cells for WT, 82 cells for nNOS-/- and 73 cells for eNOS-/-). Increased NO 

production (21.8 %) was evoked during 10-min perfusion with ACh (10 µM) in wild type (WT) 

group (Figure 3-1B, n=3; ***p < 0.001), a small but reliable elevation (11.8 %) was displayed 

in nNOS-/- group (Figure 3-1B, n=3; *p < 0.05; two-way ANOVA with Bonferroni post-hoc 

test), while no increase was observed in eNOS-/- astrocytes. Nevertheless, NO production in 

response to ACh was blocked by 15-min pre-treatment with L-NNA (100 µM), indicating that 

this response is NOS-dependent (Figure 3-1B). Notably, NO intensity was not enhanced in 

eNOS-/- group, but over 20 % increases occurred in WT group and approximately 10 % increases 

occurred in nNOS-/- group (Figure 3-1B). Taken together, our data suggested that ACh-induced 
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NO production in cortical astrocyte cultures mainly relies on eNOS signalling, which is in 

accordance with findings in cardiac myocytes (Feron et al., 1997). 

 

eNOS in cortical astrocytes is predominantly around neurons  

Immunoperoxidase labeling of NOS in sensory-motor cortex confirmed the expression of 

both eNOS and nNOS in astrocytes under physiological conditions (Figure 3-2A, data of nNOS 

are not shown). To demonstrate the specificity of antibodies, immunolabeling of eNOS and 

nNOS was tested on eNOS-/- and nNOS-/- mice respectively. Expressions of both eNOS and 

nNOS in astrocytes were first identified and quantified using electron microscopy within 96 

profiles (Figure 3-2B, n=3 WT mice). 71 ± 5 % of eNOS was distributed in perineuronal 

processes, whereas 29 ± 5 % were in peri-vascular endfeet (Figure 3-2B, t-test, ***p < 0.001). 

The data of eNOS distribution in astrocytes performed a preferential distribution in perineuronal 

processes.  

Previous reports in cardiac myocytes found a functional coupling between release of ACh 

from parasympathetic input and postsynaptic activation of eNOS (Massion et al., 2005). The 

eNOS-dependent ACh evoked NO production in astrocyte cultures suggests a spatial proximity 

between cholinergic neurons and astrocytic eNOS. This spatial connection between cholinergic 

inputs and astrocytic eNOS was assessed by dual immunofluorescence staining in ChAT-eGFP 

mice, which express enhanced green fluorescent protein in choline acetyltransferase-containing 

neurons (Figure 3-3a, e, h). Indeed, images of dual staining showed that astrocytic eNOS express 

close to cholinergic neurons (Figure 3-3, e-h), in contrast to the vasculature (Figure 3-3, b-d). It 

is suggested a potential spatial coupling between astrocytic eNOS and cholinergic neurons. 

Collectively, these results support the hypothesis that eNOS is not only located in astrocytes but 

tend to be distributed spatially in the vicinity of cholinergic neurons rather than the vasculature. 

This distribution may have functional connection with cholinergic inputs. 

 

eNOS colocalizes with caveolin-1 and -3 in cortical astrocytes 

Plenty of studies implied that eNOS was compartmentalized within caveolae, via 

colocalization with caveolins, for instance, caveolin-1 (Cav-1) in endothelial cells and caveolin-

3 (Cav-3) in cardiomyocytes (Feron et al., 1996; Xu et al., 1999; Paton. et al., 2002; Massion et 

al., 2004). In the brain, Cav-3 was identified in rat astrocytes (Ikezu et al., 1998), while Cav-1 
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is abundant in reactive astrocytes as well as in cerebral endothelial cells (Badaut et al., 2015). 

To verify whether eNOS in astrocytes colocalizes with Cav-1 or -3, triple immunostaining was 

performed on slices from mouse somatosensory cortex. Cav-1 and -3 were both found in 

astrocytes and colocalized with eNOS in the somatosensory cortex (Figure 3-4). 

 

ACh influences changes in patterns of hot spots of NO in endfeet of perivascular 

astrocytes 

To determine ex vivo impact of ACh on NO production in astrocytes, we bath applied ACh 

(10 µM) for 10 min upon acute brain slice preparations. Meanwhile, to analyze changes in 

localized NO intensity in response to ACh, we used an analysis model - hot spot similar to the 

one used for subcellular analysis of Ca2+ spikes (Frick A et al., 2001). Thus, a color scale was 

used and hot spots were illustrated with reddish peak in surface plot of astrocyte endfoot (Figure 

3-5A). Changes in the total number and average intensity of these hot spots were obtained during 

10-min superfusion with ACh (Figure 3-5). In ex vivo study (Figure 3-5B), astrocytic endfeet 

enwrapping parenchymal arterioles were selected as regions of interest (ROIs) in the 

somatosensory cortex (detailed information was described in methodology).  

 NO production increased in response to ACh. There was no significance on the total 

number of hot spots between WT (8.00 ± 1.53) and nNOS-/- (7.67 ± 1.20) /eNOS-/- (8.00 ± 2.00) 

groups (n=3 mice; Figure 3-6a). Meanwhile, NO intensity was reduced dramatically in eNOS-/-

(11.5 %) and nNOS-/- (11.1 %), compared to WT group (22.0 %) (n=3 mice, **p < 0.01, ***p 

< 0.001; one-way ANOVA with Bonferroni post hoc tests).  

Since NO pools were already present in the preparation before ACh stimulation, they were 

eliminated by N-ethylmaleimide (NEM, 200 µM, pre-treated for 10 min), a thiol pool remover. 

There was no significant difference in the number of hot spots between WT and nNOS-/- groups 

(Figure 3-6b, n=3 mice, 4.67 ± 0.33 vs. 4.67 ± 0.33), while in eNOS-/-, no new hot spot was 

induced in response to ACh (Figure 3-6b). To further test the output of NOS and nitrosothiol 

pool, we analyzed the response strength of each hot spot in astrocytic endfoot. Again, there was 

undetectable NO production upon ACh stimulation in eNOS-/- while both WT and nNOS-/- 

groups produced NO at similar level, 0.198 ± 0.033 vs. 0.185 ± 0.040 (ΔF/F0).  
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Discussion 
       Our present work focuses on ACh-induced NO release from astrocytes in an eNOS-

dependent manner. By means of one and two-photon confocal microscopy as well as electron 

microscopy, our novel findings suggest: (i) superfusion with ACh raised NO levels in isolated 

astrocytes in vitro and in brain slices ex vivo via eNOS-mediated signalling; (ii) eNOS docks 

within astrocytic processes around cholinergic neurons rather than the vasculature; (iii) 

astrocytic eNOS was localized within caveolae containing Cav-1 and -3; (iv) upon ACh 

stimulation, both cytosolic nitrosothiol pool and astrocytic eNOS contributed to an increase in 

endfoot NO intensity. 

 

eNOS distribution in astrocytes 

In accord with our electron microscopy data and immunostaining images, perineuronal 

astrocytes expressed higher density of eNOS compared to perivascular astrocytic endfeet. The 

proximity of astrocytic eNOS with cholinergic neurons is coherent with the model of cholinergic 

volume transmission. In the cortex, ACh diffuses mainly through volume-transmission model, 

instead of synaptic transmission pathway (for a review (Hirase et al., 2014)), since cholinergic 

neurons display few dendritic spines and branches in cerebral cortex (Umbriaco et al., 1995). 

Thus, within approachable distance, cholinergic neuron-released ACh has a potential to induce 

an increase in eNOS activity in adjacent astrocytes. Similarly, eNOS in cardiomyocytes is 

activated by ACh through M2 receptors. In these cells M2 receptors are translocated to 

eNOS/Cav-3 and form the mAChR-eNOS complex essential for regulation of Ca2+ influx in 

caveolae ((Feron et al., 1997) ((Paton. et al., 2002), for a review). This dynamic translocation of 

mAChR into caveolae indicates that cholinergic stimulation is functionally coupled to eNOS 

and its localization. 

 

Caveolae microdomains in NO production 

In astrocytes, eNOS colocalizes with Cav-1 and -3. This is supported by previous data 

which clearly illustrated that astrocytic eNOS colocalizes with Cav-1 and -3 in rat brain slice 

(Badaut et al., 2015). The association between eNOS and Cav-1 and -3 is well known in 

cardiomyocytes (Feron et al., 1996; García-Cardeña et al., 1996; Massion et al., 2004). Although 
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predominant in endothelial cells, Cav-1 is also present in astrocytes (Cameron et al., 1997), 

whereas brain Cav-3 has been largely described in astrocytes (Virgintino et al., 2002; Shin et 

al., 2005). Caveolae compartmentation of eNOS plays a paradoxical role both inhibiting basal 

eNOS activity by the enzyme (Feron et al., 1998) or ensuring the efficient activation of the 

enzyme upon agonist stimulation (Feron et al., 1997; Feron et al., 1999).  

With regard to the colocalization between eNOS and Cav-1, it should be noted that it is 

possible that the Cav-1 colocalized with eNOS is from the vasculature instead of astrocytic 

endfoot, since Cav-1 is the predominant isoform expressed in endothelial cells. However, our 

advanced single photon confocal and specific antibodies could markedly reduce this possibility. 

 

Associations between S-nitrosothiol pool and NO 

In addition to NOS, S-nitrosothiols possibly act as a form of NO storage and transport. S-

nitrosylation is an important post-translational modulation of proteins and plays key roles in the 

control of protein functions and related signalling cascades (Kumar et al., 2017). Depletion of 

the S-nitrosothiol pools with NEM demonstrated the importance of eNOS in the ACh-dependent 

NO production. With regard to S-nitrosothiol pool, a prior study pointed out that ACh induced 

NO released from S-nitrosothiol pool in a Ca2+-dependent manner (Chvanov M et al., 2006).  

 

Potential sources of artifacts 

In brain slices superfused with ACh, and changes in NO were obtained from perivascular 

astrocytic endfoot. In this case, it is possible that neurons were activated by ACh and released 

active factors such as glutamate and ATP, which in turn triggered perivascular astrocytes and 

resulted in an increase in NO. Additionally, stimulated astrocytes can, in turn, release 

gliotransmitters (e.g. glutamate, D-serine) to have effects on surrounding astrocytic 

compartments. However, a significant increase in NO was observed in WT and nNOS-/- 

astrocyte cultures but not eNOS-/- cultures, implying that in vitro astrocytes have the capacity to 

produce NO in response to ACh. Moreover, ACh did not induce new NO production in eNOS-

/- astrocytic endfoot when S-nitrosothiols were depleted, suggesting that this NO pool is the 

consequence of eNOS probably from neighboring endothelial cells. Last but not least, to try to 

suppress active factors released from neurons and astrocytes themselves, tetrodotoxin and 

inhibitors like SNARE inhibitors (e.g. botulinum toxins), are both required during ex vivo 
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experiments. Tetrodotoxin is specific to inhibit voltage-gated Na+ channels to deplete action 

potential, while SNARE inhibitors can prevent intracellular vesicle fusion and exocytosis. 

 

In summary, the present study pointed out that astrocytes express eNOS, and characterized 

anatomical and pharmacological facets of astrocytic eNOS. Spatially, eNOS colocalizes with 

caveolin-1 and -3, and is mainly localized within perineuronal astrocytes. Pharmacologically, 

cholinergic stimulation specifically induces an increase in NO production in an eNOS-

dependent manner. Besides, we found that S-nitrosothiols, a storage of intracellular NO, could 

release NO upon ACh stimulation. Therefore, our findings provide a novel understanding of 

astrocyte-derived NO, which may play key roles in enhancement of cortical plasticity and, by 

extension, multiple pathological processes, such as Alzheimer’s disease. 

 



 

 80 

Figures 

A. Examples of pseudocolor images shows that intensity of DAF-FM was increased in WT and 

nNOS-/- astrocytes (white arrows) after 5 and 10 min perfusion with 10 µM ACh, whereas the 

increase was attenuated in eNOS-/- astrocytes. Meanwhile, pretreatment with 100 µM L-NNA 

(NOS inhibitor) in WT astrocytes inhibited the response to ACh as well. Scale bar＝50 µm. B. 

Time courses of changes in DAF-FM intensity upon perfusion with 10 µM ACh in WT (n=3; 

***p < 0.001), KO nNOS groups (n=3; *p < 0.05; two-way ANOVA with Bonferroni post-hoc 

test) and KO eNOS. Error bars indicate mean ± S.E.M. 

 
 

Figure 3-1 ACh stimulates an eNOS-dependent NO production in cortical astrocyte 
cultures 
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A. Electron microscopic images of astrocytes in mouse sensory-motor cortex. eNOS labeled by 

immunoperoxidase (black arrows), located within peri-neuronal (left) and peri-vascular (right) 

astrocytic processes (A) which are near unlabeled axon terminals (ut), spines (s) and unlabeled 

dendrites (ud). Scale bar = 500 nm. B. Bar graph shows eNOS is abundantly expressed in 

astrocytes, and the distribution of eNOS is higher in peri-neuronal than in peri-vascular 

astrocytic processes. Data were obtained from 6 vibratome sections (n=3 WT mice; ***p < 

0.001; t-test). Error bars indicate mean ± S.E.M. 

 

 

Figure 3-2 Astrocytic eNOS in WT mice exists alongside neurons rather than cerebral 
vasculature 
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Dual immunostaining of ChAT-eGFP mouse brain (a) suggested that astrocytic eNOS were 

prone to be located within astrocytic processes in the vicinity of areas of cholinergic neurons 

(e-h) but not that of vessels (b-d). Higher magnification images of region 1 (green) and region 

2 (red) showed that the more astrocytes were close to cholinergic neurons (e-h), higher 

intensities of eNOS were expressed, but this phenomenon was not observed at the areas of 

vessels (e-g). Astrocytes (cyan) were labeled by GFAP antibody conjugated with Cy3 (c, f), 

eNOS (red) were detected by Alexa Fluor 488 anti-mouse for total eNOS (d, g), cholinergic 

neurons (green) were identified by transgenic green fluorescent protein (GFP) (h). White 

arrows indicate dual colocalization of eNOS and GFAP. Scale bar = 20 𝜇m (a), 10 µm (b-h). 

 

Figure 3-3 Spatial connection between astrocytic eNOS and cholinergic neurons 
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Immunofluorescence detection was carried out using Alexa Fluor 488 anti-mouse for total 

eNOS (green), Cy3 anti-mouse for GFAP (orange) and Alexa Fluor 647 anti-rabbit for Cav-1 

(a-e) (cyan) and Cav-3 (f-j) (cyan). Scale bar=20 µm (a, f). Higher magnification images of the 

square areas (red) are shown on the right (b-e, g-j). Arrows (white) indicate triple colocalization. 

Triple staining (e) for eNOS (b), Cav-1 (c) and GFAP (d) represents colocalization of astrocytic 

eNOS and Cav-1 in one endfoot. The other triple staining (j) for eNOS (g), Cav-3 (h) and GFAP 

(i) represents colocalization of astrocytic eNOS and Cav-3 in one astrocytic process. Scale bar=5 

µm (b-e, g-j). 

 
 
 

Figure 3-4 Colocalization of astrocytic eNOS and caveolin-1/caveolin-3 of somatosensory 
cortex 
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A. Examples of surface plots in one astrocyte endfoot with 3D pseudocolor graphs illustrating 

changes in DAF-FM intensity. The x and y coordinates on surface plots represent pixels of the 

surface plot. The height and the color indicate pixel intensity. Hot spot is defined as each 

reddish peak. Intensity of hot spots (red arrows) was enhanced in response to 10-min ACh (10 

µM) stimulation but was attenuated by pretreatment with L-NNA (b). The data also indicated 

that intensity was rarely changed by perfusion with aCSF (c). B. Example of images show one 

arteriole in an acute brain slice loaded with SR101 (red, an astrocyte marker) and DAF-FM 

(green), under the differential interference contrast (DIC) and fluorescent imaging. After 

merged, the images show that regions preferentially loaded with DAF-FM and analyzed were 

perivascular astrocytic endfeet (white arrows). Scale bar = 10 µm. 

Figure 3-5 Identification of hot spots in astrocytic endfoot ex vivo 
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After 10-min ACh superfusion, endfeet did not display any difference on the total number of 

hot spots between WT, and eNOS-/- and nNOS-/- groups (a). Nonetheless, the amplitude of the 

response to ACh in WT endfeet was significantly stronger than for KO eNOS and KO nNOS 

groups (**p < 0.01 vs. WT group, ***p < 0.001 vs. WT group; one-way ANOVA with 

Bonferroni post hoc tests) (c). In the presence of NEM (a thiol pool remover, 200 𝜇M), 

however, ACh did not induce new hot spots in KO eNOS endfeet. No significant difference 

was found between WT and KO nNOS groups in neither the total number (b) nor response 

strength (d) of hot spots.  

 

 
 
 
 

Figure 3-6 Determination of hot spots coming from eNOS, nNOS and S-nitrosothiol pool in 
astrocytic endfoot 
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Introduction 
       In the brain, astrocytes play a key role for the support of neuronal metabolism and 

maintenance of extracellular glutamate homeostasis. Glutamate is the most abundant 

neurotransmitter in the brain. Thus, to sense dynamic neuronal activity, astrocytes express 

considerable glutamatergic receptors, including NMDA receptors, AMPA/KA receptors, group 

I mGluRs and group II mGluRs (Porter and McCarthy, 1995; Silva et al., 1999). Once activated, 

these glutamatergic receptors regulate astrocytic Ca2+ dynamic and activate corresponding 

signalling pathways. One of the potential signaling pathway is the one of the nitric oxide 

synthase (NOS). In astrocytes, the presence of either eNOS and nNOS have been demonstrated 

(Gabbott and Bacon, 1996; Wiencken and Casagrande, 1999; Iwase et al., 2000; Adachi et al., 

2010). However, the mechanisms by which constitutive NOS are activated in astrocytes under 

physiological conditions remain unknown. Both constitutive NOS requires the Ca2+-calmodulin 

complex to be activated suggesting that any mechanism that increases intracellular Ca2+ 

concentrations may potentially activate one of the constitutive NOS. Interestingly, eNOS and 

nNOS had been associated to different cellular localizations suggesting that each NOS is 

associated to a specific pathway. Because of the well-known association between glutamatergic 

receptors (Christopherson et al., 1999; Ouardouz et al., 2009) and nNOS in neurons and the 

importance of this enzyme in synaptic signaling events, the objective of the present study is to 

determine the association between glutamatergic stimulation and astrocytic NO production from 

nNOS.  

 

Results  

We previously demonstrated that both eNOS and nNOS are expressed in astrocytes and 

glutamate induces an increase in NO intensity in astrocyte cultures by measures of DAF-FM 

(NO probe) intensity (Figure 4-2A). We consequently hypothesized that each NOS is activated 

by a different pathway in different compartment of the astrocytes 

 
Subcellular distributions of nNOS in astrocytes and neurons of the sensorimotor cortex of 

WT mice 

To assess the ultrastructural distribution of nNOS, immunogold labeling of nNOS was 

performed on sensorimotor cortex of WT mouse. The specificity of the nNOS antiserum in brain 
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slice was verified in nNOS-/- mice (data not shown). Analysis of electron microscopy images 

showed a high level of nNOS in perineuronal astrocytes (56 ± 9 % profiles) compared to neurons 

and perivascular astrocytes (Figure 4-1C, 32 ± 11 % and 12 ± 4 % profiles, ***p<0.001, One-

way ANOVA with Bonferroni post hoc test). The results were obtained from the sensorimotor 

cortex from 3 mice where 168 profiles were collected and calculated (Figure 4-1).  

Furthermore, a quantitative analysis of nNOS density in different subcellular compartments 

(average number of gold particles/cell or compartment, n=3 WT mice, Figure 4-1D) presented 

that in either astrocytes or neurons, the highest density of nNOS were found in the cytosol. 

Cytosolic nNOS particles/profile in perineuronal astrocytes constitute 29.0 ± 4.6 (n=14 profiles); 

in neurons, 42.0 ± 7.0 in the soma (n=17 profiles), while 7.6 ± 1.4 localized in the dendrites (n= 

10 profiles). Then, the second highest density of nNOS was in the nucleus, 13.0 ± 8.0 

particles/profile in the nucleus of perineuronal astrocytes (n=4 profiles), whereas 9.5 ± 3.0 were 

in the nucleus of neurons (n=13 profiles). Only few nNOS particles were seen in the plasma 

membrane (Figure 4-1D). 1.6 ± 0.4 nNOS particles/profile in the membrane of perineuronal 

astrocytes (n=5 profiles). In neurons, 0.8 ± 0.4 nNOS particles/profile were observed in the 

membrane of the soma (n=9 profiles), and 1.0 ± 0.0 were in the membrane of dendrites (n= 4 

profiles). Pre-vascular astrocytes showed the lowest distribution (12.0 ± 4.0 nNOS 

particles/profiles) and densities (9.6 ± 3.4, n=7 profiles) of nNOS. This large distribution of 

nNOS in astrocytes may have potential role in cellular communication and maintain 

physiological functions in the brain. 

 
nNOS-dependent NO production is triggered by t-ACPD in in vitro and ex vivo astrocytes 

We determined the effect of distinct glutamatergic receptors activation such as mGluRs, 

NMDA and AMPA receptors on NO levels. The specific group I/II mGluRs agonist, t-ACPD, 

was bath-applied as were glutamate (Figure 4-2A) and its analogues NMDA (shown in next 

chapter) and AMPA (Figure 4-2B) to selectively activate NMDA and AMPA receptors. 

Activation of these receptors all induced an increase in astrocytic NO. To determine the 

specificity of each constitutive NOS for each receptor, changes in astrocytic NO was assessed 

for 10 minutes in cortical astrocyte cultures of WT, eNOS-/- and nNOS-/- mice. The treatment of 

t-ACPD (100 μM) for 10 minutes did not alter NO levels specifically in nNOS-/- astrocyte 

cultures (n=81 cells in 3 pups), whereas a significant increase in NO was observed in WT 
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(13.9 %) and eNOS-/- (12.8 %) groups (Figure 4-3A, n=60 cells for 3 WT pups, n=66 cells for 

3 eNOS-/- pups; *p < 0.05, ***p < 0.001). Pre-treatment with L-NNA (L-N-Nitro-arginine), a 

non-selective NOS inhibitor, eliminated t-ACPD-induced NO elevation, in agreement with a 

NOS role in producing NO. Next, to examine the responses of astrocytes to t-ACPD within the 

neurovascular unit, astrocytes of the somatosensory cortex were chosen as ex vivo study subjects 

(detailed information was stated in methodology), due to endfeet-derived NO potentially has 

effect on vascular response. In accordance with in vitro data, superfusion of brain slices with t-

ACPD (100 μM) elevated NO levels in WT (12.4 %) (n=6 mice, **p < 0.01) and eNOS-/- mice 

(9.0 %) (n=3 mice, *p < 0.05). However, the NO increases were absent in nNOS-/- mice (Figure 

4-3A, n=3 mice).  

Our prior ex vivo study suggested a compartmentalization of eNOS-produced NO. We thus 

postulated that a similar pattern may exist in nNOS-produced NO. Analysis of NO hot spots 

was performed in cortical astrocytes. As indicated in image of Figure 4-3B, one yellow/reddish 

peak is deemed as one NO hot spot. X/Y axis displays scale of the surface of astrocytic endfoot, 

while Z-axis indicates NO intensity. Meanwhile, the size of our regions of interest shown in 

Figure 4-3C (a black rectangle) is approximately 5×6 pixels. In accordance with data on isolated 

astrocytes (Figure 4-3A), the total number of hot spots and mean intensity of hot spots were all 

significantly reduced in astrocytes from nNOS-/- mice (Figure 4-3B, n=3 mice per group, 

*p<0.05), whereas eNOS-/- mice presented insignificant difference from WT group. These 

results revealed that in response to t-ACPD, nNOS compartmentally produced NO in astrocytes.  

To further demonstrate that the NO response is dependent on nNOS, the nNOS inhibitor 

NPLA (10 μM) prevented the NO production in response to t-ACPD (Figure 4-3D, **p<0.01 

from t-ACPD group) similarly to the L-NNA-treated group (*p<0.05 from t-ACPD group). 

However, the eNOS inhibitor L-NIO (10 μM) did not attenuate the NO increase. Jointly, these 

results suggest that t-ACPD exclusively stimulated nNOS-produced NO in a 

compartmentalization manner. 

 

nNOS colocalizes with RyR2 and RyR3 in perineuronal and perivascular astrocytes 

       mGluRs are known to induce Ca2+ release from the ER. In addition, since data revealed by 

electron microscopy showed the highest density of nNOS in the cytosol and that nNOS in 
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cardiomyocytes is tightly associated with RyRs (Matyash et al., 2001; Liu and Huang, 2008), 

we performed immunofluorescence staining of RyRs and nNOS in cortical astrocytes. Despite 

subtypes 2 and 3 of RyRs have been found to be expressed in astrocytes (Matyash et al., 2001; 

Kesherwani and Agrawal, 2012; Kaja et al., 2015), the distribution of RyRs in cortical astrocytes 

remains unknown. Analysis of the immunofluorescent images revealed that RyR2 (Figure 4-4, 

A-B) as well as RyR3 (Figure 4-4, C-D) are expressed in both perineuronal astrocytes (Figure 

4A, 4C) and endfeet (Figure 4B, 4D). Moreover, nNOS was found to colocalized with RyR 2 

and 3 (white arrows) in the somata and processes.  

 

Activation of RyR facilitates nNOS activity and evokes an increase in endfoot NO 

Since astrocytic nNOS has close anatomical connection with RyR2 and RyR3, we sought 

to test whether in astrocytic endfoot mobilization of ER Ca2+ is fundamental to raise the nNOS-

dependent NO levels evoked by t-ACPD. t-ACPD-induced changes in NO was abolished by 

pre-treatment with BAPTA-AM (Ca2+ chelator, 50 µM, 40 min), which is in line with enzyme 

kinetics depending on Ca2+ (Figure 4-5A). Then ER receptors and enzymes responsible for ER 

Ca2+ regulation were inhibited by pre-treatment with different inhibitors, including CPA 

(SERCA inhibitor which decreases the ER Ca2+ pool, 30 µM, 20 min), Ry (which act as a RyR 

inhibitor at 100 µM, 20 min), X-C (xestospongin C, blocker of IP3 receptor, 20 µM, 15 min, 

data are not shown) and 2-APB (blocker of IP3 receptor, 100 µM, 25 min), respectively. NO 

production was attenuated in all conditions suggesting that elevation of intracellular NO relies 

on ER Ca2+ mobilization (Figure 4-5A, n=4 mice, ***p<0.001).  

To further understand effects of ER receptors, we used ryanodine (Ry in 2 µM) to 

selectively activate RyRs (for a review in (Thomas and Williams, 2012)). Strikingly, activation 

of RyRs alone evoked an increase in endfoot NO (6.0 %, not significant vs. t-ACPD group) 

(Figure 4-5B). In the presence of t-ACPD, the increased response remained when 2-APB 

blocked IP3Rs and Ry activated RyRs (6.3 %), whereas it was suppressed when either IP3Rs or 

RyRs were blocked. Next, we investigated whether activation of RyRs induced nNOS-derived 

NO. In the presence of t-ACPD, pre-treatment of brain slices with NPLA (10 μM, 20 min) but 

not L-NIO (4.3 %) (10 μM, 20 min) abolished RyRs-mediated elevation of NO (Figure 4-5B, n 

= 5 mice, *p<0.05, **p<0.01). Data showed that only astrocytic nNOS was activated by t-ACPD. 

Collectively, our results suggested a potential signalling pathway to activate nNOS in astrocytic 
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endfeet (Figure 4-5C). That is, t-ACPD-induced activation of IP3R triggers RyRs activity via 

Ca2+-induced Ca2+ release, and then RyR-mediated Ca2+ efflux stimulates nNOS activity, 

resulting in an increase in endfeet NO levels. 

 

Discussion 
In the present study, we have demonstrated that, i) among glutamatergic receptor agonists, 

t-ACPD is the only one to specifically induce nNOS-dependent NO production in astrocytes; ii) 

subcellular localization of nNOS shows a colocalization with RyR2 and RyR3; iii) t-ACPD 

leads to activation of nNOS which depends on IP3R/RyR-mediated Ca2+ mobilization. These 

anatomical and pharmacological evidences suggest a tight structural association between nNOS 

and RyRs in astrocytes specifically activated by metabotropic glutamate receptors. 

 

Subcellular distribution of nNOS in perivascular astrocytes 

Although, nNOS are classically associated to neurons, immunogold identification of nNOS 

in mice revealed a higher density of nNOS in astrocytes than in neurons. Interestingly, most of 

nNOS was found in the cytosol followed by nucleus and the plasma membrane, and this 

distribution was similar in neurons and astrocytes. These results are consistent with the findings 

that brain nNOS exists in particulate and soluble forms (Hecker et al., 1994) and that it is mainly 

distributed in the cytosol far from membranes in a patch-like form (Rothe et al., 1998). Nuclear 

localization of nNOS has also been previously observed in cultured astrocytes of rats (Yuan et 

al., 2004). The subcellular localization of nNOS in the cell may contribute to its diverse 

functions. 

 

NO production induced by glutamatergic activation 

       In neurons, the association between glutamatergic receptors and nNOS is well recognized 

(Christopherson et al., 1999; Ouardouz et al., 2009). Using specific glutamatergic receptor 

agonists in conjunction with eNOS-/- and nNOS-/- mice, we demonstrated for the first time that 

the selective group I/II metabotropic receptor agonist, t-ACPD, specifically induces nNOS-

dependent NO production. t-ACPD is known to trigger a rise in intracellular Ca2+ concentration 

through inositol 1,4,5-triphosphate (IP3Rs) and ryanodine receptors (RyRs) in the ER (Straub et 
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al., 2006; Panatier and Robitaille, 2016). In cardiomyocytes, nNOS associates with molecules 

that regulate Ca2+ at the ER level, including SERCA (Burkard et al., 2007) and RyR (Jian et al., 

2014). 

 

Functional link between IP3Rs, RyRs and nNOS in astrocytes 

All subtypes of RyR are expressed in the brain, which include RyR1, RyR2 and RyR3 

(Kushnir et al., 2010). We found that both RyR2 and RyR3 are expressed in cortical astrocytes 

in agreement with previous studies (Matyash et al., 2001; Kesherwani and Agrawal, 2012). We 

then tested the functional link between IP3Rs and RyRs with nNOS during t-ACPD stimulation 

using 2-APB and ryanodine. 2-APB acts as a blocker of both IP3Rs and TRP channels (Bootman 

et al., 2002; Drumm et al., 2015). It is well established that ryanodine activates the RyRs at <10 

µM, while it irreversibly inhibits channel opening at higher concentrations >100 µM (Chiarella 

et al., 2004; Thomas and Williams, 2012). Interestingly, both IP3Rs and RyRs inhibition 

prevented NO increase in response to t-ACPD, while RyRs activation in the absence of t-ACPD 

increased NO production. These results suggest that activation of nNOS requires both IP3Rs and 

RyRs activity. RyRs activation was probably evoked by Ca2+ crosstalk between IP3Rs and RyRs 

via an underlying mechanism termed Ca2+-induced Ca2+ release.  

In addition to regulation of Ca2+ flux, RyRs are considered as redox sensors in cells. Their 

proximity with nNOS provides a potential mechanism by which RyRs regulate cytosolic redox 

processes by means of regulation of NO production.  

 

Potential sources of artifacts 

During the superfusion of brain slice, t-ACPD may also activate neuronal mGluRs, leading 

to the release of factors such as glutamate. It is general proposed that t-ACPD activates 

astrocytic mGluR5 and induces an increase in Ca2+ via activation of PLC, which produces IP3 

in the cytosol (for a review (Panatier and Robitaille, 2016)). However, the fact that the results 

present similar profiles in isolated astrocytes compared to brain slices strongly suggest an 

astrocytic specific stimulation of mGluRs. Nonetheless, emerging findings revealed low levels 

of mGluR5 expression in physiological adult astrocytes (Sun et al., 2013; Kim et al., 2016). It 

is possible that mGluR5 distributes in astrocytes in a polarized manner due to mGluRs are 

deemed to sense extracellular glutamate levels (Lavialle et al., 2011). Further immuno-
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fluorescent staining need to be done to demonstrate mGluR5 distribution especially on 

astrocytes. However, effect of other group I/II mGluRs such as mGluR3 cannot be excluded in 

the study. Thus, it is necessary to apply the mGluR3 inhibitor (LY341495) or antagonists such 

as (S)-α-ethylglutamic acid and β-NAAG. The interest of using t-ACPD in the current study is 

to study the nNOS specific pathway in response to a glutamatergic agonist. A further study may 

focus on the subtype of mGluRs evoked by t-ACPD. Furthermore, t-ACPD-activated astrocytes 

also were able to produce and release gliotransmitters (e.g. glutamate). In that cases, further 

studies need to repeat and abolish neuronal action potential (by tetrodotoxin) as well as 

exocytosis (by botulinum toxins) before starting the stimulation. 

 

In conclusion, the results of this study show that cortical astrocytes express nNOS. 

Perfusion with t-ACPD specifically induces nNOS-dependent NO production in astrocytes. 

Subcellularly, astrocytic nNOS colocalizes with RyR2 and RyR3. Pharmacologically, t-ACPD 

triggers IP3Rs activity, which stimulate RyRs and thus resulting in nNOS-produced NO 

production. The finding of this novel IP3R/RyR/nNOS signalling in astrocytes may provide 

means for better understanding of NVC. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 94 

Figures 

Electron micrographs showing nNOS immunogold labeling (A-B, black dots) in dendrites 

(encircled, nNOS D), astrocytic processes (squares, nNOS A) and perineuronal astrocytic soma 

(triangles, nNOS A) in sensorimotor cortex of WT mice. m: mitochondria; ER: endoplasmic 

reticulum. C, Distributions of nNOS immunolabeling in perineuronal astrocytes, perivascular 

astrocytes and neurons (n=168 profiles, 3 WT mice), ***p<0.001, One-way ANOVA with 

Bonferroni post-hoc test. D, Densities of nNOS immunolabeling in neuronal and perineuronal 

astrocyte compartments as well as perivascular astrocytes (average number of gold particles/cell 

or compartment, 3 WT mice). Cyto: cytosol, Mem: membrane, Nu: nucleus. Scale bar = 500 

nm. Data are shown as mean ± S.E.M. 

Figure 4-1 Subcellular distribution of nNOS in astrocytes and neurons of the 
sensorimotor cortex 
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A. Time courses of DAF-FM intensity in purified WT astrocyte cultures during 10-min 
perfusion with glutamate (100 µM, n=67 cells from 3 WT pups). **p < 0.05, two-way ANOVA 
with Bonferroni post-hoc test. B. Time courses of changes in DAF-FM intensity after 
superfusion with 30 μM AMPA in WT, eNOS-/- and nNOS-/- astrocyte cultures and perivascular 
astrocytic endfeet in brain slices, respectively (n=3 pups/adult mice; *p < 0.05, **p < 0.01; two-
way ANOVA with Bonferroni post-hoc test). The increased response was prevented by pre-
treatment with L-NNA (a non-selective NOS inhibitor, 100 μM, 15 min). Error bars indicate 
mean ± S.E.M. 

Figure 4-2 Glutamate and its analogue induced NO formation in cortical astrocytes 



 

 96 

 

 

 
 

 

 
 
 

Figure 4-3 Increased NO production in astrocytes elicited by t-ACPD in both purified 
cultures and acute brain slices 
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Figure 4-3. A, Time courses of DAF-FM (NO marker) intensities in purified astrocyte cultures 

and perivascular astrocytic endfeet in brain slices respectively, during 10-min perfusion with t-

ACPD (100 μM) in WT (n=60 cells from 3 pups, n=6 mice), eNOS-/- (n=66 cells from 3 pups, 

n=3 mice) and nNOS-/- mice. Excluding nNOS-/- mice (n=81 cells from 3 pups, n=3 mice); *p < 

0.05, **p < 0.01, ***p < 0.001, two-way ANOVA with Bonferroni post-hoc test. In a different 

group, increased DAF-FM intensity was prevented after pretreatment with the non-selective 

NOS inhibitor, L-NNA (100 μM, 15 min). B, Summary data showing changes in hot spots 

intensity for astrocytic NO from WT, eNOS-/- and nNOS-/- mice (n=3 mice for eNOS-/- and 

nNOS-/-, n=6 mice for WT), during 10-min ex vivo imaging. An example of surface plot in 

astrocytic endfoot (left) showing one hot spot (reddish peak). X and Y axis display scales of the 

surface, while Z-axis and pseudocolor indicate NO intensity. In response to t-ACPD, both the 

number and the average intensity of hot spots in astrocytic endfeet were notably reduced in 

nNOS-/- but not in eNOS-/- mice (*p<0.05, one-way ANOVA with Bonferroni post-hoc test). 

Reductions are also observed but not significantly in eNOS-/- mice, suggesting that activation of 

endfoot nNOS caused increased NO. C, Pseudocolor images of astrocytic endfeet enwrapping 

parenchymal arteriole ex vivo. Increased NO (white arrows) was induced in different areas of 

endfeet. A black rectangle in left image showed the size of one hot spot, which is 5×6 pixels. 

Scale bar = 10 μm. D, t-ACPD induced an increase in endfoot NO intensity was blocked by the 

pretreatment with L-NNA (100 μM, 15 min) or the selective nNOS inhibitor, NPLA (10 μM, 

20 min). But NO intensity did not change in the presence of the eNOS inhibitor, L-NIO (10 μM, 

20 min). *p<0.05, **p<0.01, n.s., not significant vs t-ACPD group, one-way ANOVA with 

Bonferroni post-hoc test. Data are shown as mean ± S.E.M. 
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Data of triple immunostaining depict that nNOS (green) not only colocalizes (white arrows) 

with RyR2 (cyan) in perineuronal (A) and perivascular astrocytes (B), but also colocalizes (white 

arrows) with RyR3 (cyan) in perineuronal (C) and perivascular astrocytes (D). GFAP (orange) 

is a marker of astrocyte. scale bar = 10 μm for A; scale bar = 20 μm for B, C, D; scale bar = 5 

μm for higher magnification images. 

 

Figure 4-4 Colocalization between nNOS and RyR2 and 3 in astrocytes of the 
somatosensory cortex 
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Figure 4-5 RyRs activation promotes nNOS activity and leads to an increase in NO 
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Figure 4-5. A, t-ACPD-induced (100 μM, 10 min) increase in NO was blocked by pre-

treatment with L-NNA (NOS blocker, 100 μM, 15 min), BAPTA (Ca2+ chelator, 50 μM, 40 

min), CPA (SERCA inhibitor, 30 μM, 20 min), ryanodine (Ry, a RyR inhibitor in 100 μM, 20 

min), or 2-APB (IP3R blocker, 100 μM, 15 min). n=4 WT mice, ***p<0.001 vs. t-ACPD 

group, one-way ANOVA with Bonferroni post-hoc test. B, Changes in NO intensity in 

response to t-ACPD (100 μM) in the presence of Ry in 2 μM (agonist of RyR), 10 μM L-NIO 

(20 min pretreatment, an eNOS inhibitor), NPLA (10 μM, 20 min pretreatment, a nNOS 

inhibitor). n=5 mice, *p<0.05, **p<0.01, n.s., not significant, one-way ANOVA with 

Bonferroni post-hoc test. Data are shown as mean ± S.E.M. C, A schematic diagram showing 

t-ACPD-elicited stimulation of IP3Rs triggers RyRs via Ca2+-induced Ca2+ release, which 

further activates adjacent nNOS in the ER, leading to an increase in endfoot NO. 
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Associations between NMDA receptor and 
constitutive NOS in astrocytes  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 102 

Introduction 
Neuronal NMDA receptor (NMDAR) is an iGluR, mediating postsynaptic signal 

transmission. The intracellular domain of NMDAR via scaffolding PSD protein is functionally 

tethered to various kinases and enzymes, especially nNOS capable of producing NO in response 

to NMDAR activation. It has been discovered that the second PDZ motif of PSD-95 connects 

carboxyl terminus of NR2B subunit to a PDZ motif of N-terminal domain of nNOS, leading to 

the formation of the NMDAR/PSD-95/nNOS signalling cassette (Brenman et al., 1996b; Sattler 

et al., 1999). Investigations on astrocytic NMDAR have led to the discovery of multiple features 

that differ from neuronal NMDAR. First, NMDA receptors located in cortical astrocytes show 

a weak sensitivity to Mg2+. Second, all subunits forming functional NMDA receptors have been 

identified in adult human astrocytes (Lee et al., 2010), but most astrocytic NMDA receptors in 

the cortex display low expression of NR2B and high densities of NR2C and NR2D, presenting 

a fairly low permeability to Ca2+. Third, the classic co-agonists of NMDA receptor, glycine and 

D-serine, cannot potentiate the activation of NMDA receptors in cortical astrocytes (Palygin et 

al., 2011).  

The primary function of astrocytic NMDA receptor is to induce an increase in intracellular 

Ca2+ via its ion channel, leading to the release of gliotransmitters such as glutamate and ATP. 

Notably, astrocytic NMDAR also displays metabotropic-like signalling, resulting in stimulation 

of NMDAR-coupled kinases and phosphatases as well as release of Ca2+ from ER (Marmiroli 

and Cavaletti, 2012; Jimenez-Blasco et al., 2015; Montes de Oca Balderas and Aguilera, 2015). 

We previously demonstrated that cortical astrocytes express eNOS and nNOS. However, the 

relationships between astrocytic NMDAR and constitutive NOS (eNOS and nNOS) had never 

been studied. We sought to identify the source of NO produced by activation of astrocytic 

NMDAR, and the anatomical relationship between NMDAR and constitutive NOS. 

 

Results 
NMDA induces NO increase through both eNOS and nNOS in astrocytes 

In the presence of NMDA, intracellular NO intensity increased in cultured WT astrocytes 

(17.8 %) (Figure 5-1A). To understand the source of NO production induced by NMDA, we 

applied NMDA (40 µM) for 10 min to stimulate astrocyte cultures and astrocytic endfeet of WT, 
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eNOS-/- and nNOS-/- mice (n=3 pups/adult mice, *p < 0.05, **p < 0.01, ***p < 0.001), 

respectively (Figure 5-1A). Increased DAF-FM fluorescent intensity was significantly detected 

in both in vitro (16.8 % for eNOS-/- and 8.8 % for nNOS-/-) and ex vivo preparations (16.9 % for 

WT, 11.2 % for eNOS-/-, 12.3 % for nNOS-/-), but was abolished by pre-treatment with the non-

selective NOS inhibitor, L-NNA (100 μM, 15 min). NO production was lower in eNOS-/- and 

nNOS-/- mice compared to their control. Then NO production was further analysed by counting 

the number of hot spots and their maximal intensity (Figure 5-1B). Compared to WT mice, the 

total number and mean intensity of endfoot hot spots were both reduced significantly in eNOS-

/- and nNOS-/- mice (*p<0.05, **p<0.01, one-way ANOVA with Bonferroni post-hoc test). 

Altogether, those data indicated that both eNOS- and nNOS contribute to the increase in 

intracellular NO evoked by NMDA. 

 

Astrocytic NMDA receptor is functional coupled to nNOS via NR2B/PSD-95 complex 

Neuronal NR2B subunit binds to PSD-95, a scaffolding protein tethering intracellular 

complexes, such as the NR2B/PSD-95/nNOS complex, which produces neuronal NO upon 

NMDAR activation (Sattler et al., 1999). To determine whether this complex is existed and 

functions in astrocytes, immunofluorescent labeling for NR2B, nNOS and GFAP was applied 

on brain slice preparations. As indicated in Figure 5-2A (white arrow), astrocytic NR2B 

colocalized with nNOS. Next, we used a peptide Tat to uncouple NR2B from PSD-95/nNOS 

proteins. The scrambled peptide S-Tat served as control. In Tat-treated group, NO production 

was significant lower (4.2 %) after 10-min exposure with NMDA (40 µM, n=3 mice, *p<0.05), 

compared to the scrambled S-Tat (10.0 %) (Figure 5-2B, not significant vs. 11.6 % of treatment 

with NMDA only). To investigate whether the NO increase is dependent on the NR2B subunit, 

slices were pretreated with Ro25-6981 (25 min). In the presence of Ro25-6981 (3 µM), the 

increase in NO induced by NMDA (40 µM) was attenuated (3.5 %) (n=3 mice, *p<0.05, 

**p<0.01). Collectively, our data suggest that NR2B-containing NMDAR was anatomically and 

functional coupled to nNOS via PSD-95 protein.  
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NR2B-containing NMDA receptor is compartmentalized within caveolae comprising both 

caveolin-1 and -3 

Previous investigations in neurons showed that caveolin-1 (Cav-1) was essential for 

NMDAR-mediated signal transduction (Head et al., 2008). Surprisingly, our triple staining 

images in astrocytes revealed that NR2B-NMDARs colocalizes with Cav-1 and -3.  

 

Discussion  

Neuronal NMDAR-nNOS signalling has been investigated under both physiological and 

pathological conditions. However, little is known about the relationships between astrocytic 

NMDAR and eNOS/nNOS. Our findings provide several clues about astrocytic NMDAR: i) 

activation of NMDAR potentially induces both eNOS- and nNOS-derived NO production in 

astrocytes; ii) NR2B, a NMDAR subunit, is functionally coupled to nNOS in astrocytes via 

PSD-95 protein; iii) the NR2B subunit colocalized with caveolae membrane containing either 

Cav-1 or -3. 

 

NO sources upon NMDA activation  

Based on our results (Figure 5-1), an increase in NO was observed in eNOS-/- and nNOS-/-. 

It indicates that both eNOS and nNOS are involved in NO production in response to NMDA. 

NMDA-nNOS pathway has been extensively demonstrated in many cell types such as neurons 

and kidney cells (Sattler et al., 1999; Tian et al., 2008). The NMDA-eNOS association had been 

shown in brain-derived endothelial cell, pyramidal neurons and A549 lung cancer cells (Kano 

et al., 1998; Scott et al., 2007; Li et al., 2011; LeMaistre et al., 2012). Those prior findings are 

consistent with our observations in astrocytes and suggest that these observations do not 

correspond to compensatory effects of the knockout.  

 

NR2B/nNOS signalling in astrocytes 

Seven subunits of NMDA receptor has been identified, including NR1, NR2A, NR2B, 

NR2C, NR2D, NR3A and NR3B. It is noteworthy that neuronal NR2B subunit is known to be 

linked to NO production via the PSD-95/nNOS complex. Our anatomical results showed low 

expression of astrocytic NR2B in the somatosensory cortex (Figure 5-2A and Figure 5-3), 
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relative to what had been demonstrated in neurons of the prefrontal cortex (Hu et al., 2010). 

Indeed, the transcription level of NR2B mRNA in astrocytes is much lower than other subunits, 

and only a small subpopulation of NMDARs in astrocytes is inhibited by selective NR2B 

antagonist (Lalo et al., 2006; Montes de Oca Balderas and Aguilera, 2015).  

Like neurons, our study found that astrocytes express functional NR2B/PSD-95/nNOS 

complex (Sattler et al., 1999). In the presence of the specific NMDA-NR2B antagonist, Ro25-

6981, less NO was produced in response to NMDA (Figure 5-2B). This pointed out the 

importance of NR2B in NMDA-induced NO production in astrocytes. In addition, the reduction 

of NO production by the Tat peptide suggest that nNOS is attached to the NR2B subunit through 

the PSD-95 protein. However, on the basis of the staining data (Figure 5-2A), not all nNOS 

were colocalized with NR2B. Indeed, our previous studies (Figure 4-3) showed colocalization 

between RyRs and nNOS in the astrocytic ER. Therefore, the immunostaining data indicated 

that astrocytic nNOS was localized in both plasma and the ER membranes. 

 

NMDA/caveolin colocalization in astrocytes 

Caveolae, 50–100 nm vesicular invaginations of the cell plasma membrane, have emerged 

as the site of the important events at the plasma membrane such as vesicular trafficking as well 

as signal transduction (Frank et al., 2001). We demonstrated that the colocalization between 

Cav-1 or -3 with NR2B in astrocytes of the somatosensory cortex. Neurons express Cav-1 and 

-3. Recent study of neuronal caveolins revealed that Cav-1 colocalizes with NMDAR to 

facilitate of Src and ERK1/2 phosphorylation in response to NMDA, hence contributing to 

NMDAR-mediated signalling (Head et al., 2008). The PSD-95 PDZ domains facilitate 

interactions between nNOS and the NMDA receptor, leading to S-nitrosylation of the NR1 and 

NR2A subunits of the NMDA receptor. 

Furthermore, elevated NO partook in modulation of target proteins via S-nitrosylation 

(Wynia-Smith and Smith, 2017). This result, combined with the recent findings, suggest that the 

post-translational modulation of NMDAR-mediated signalling may occur and involve in two 

underlying mechanisms: Cav-1-assisted phosphorylation and NO-mediated S-nitrosylation.  

Our prior findings detected that astrocytic eNOS colocalizes with Cav-1 and -3. Future 

studies are required to determine the possibility that NMDA-eNOS association may occur 

within these caveolin membrane domains. 
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NMDA-eNOS signaling in astrocytes  

Although ex vivo preparations were stimulated by bath-application of NMDA, the NO 

increase in astrocytes could be potentially induced by factors such as ACh released from 

NMDA-activated neurons (Buchholzer and Klein, 2002) or gliotransmitters secreted from 

NMDA-activated astrocytes. Nonetheless, significant NO increases were observed in our 

purified astrocyte cultures (approximately 98 %), which rarely contained cell types other than 

astrocytes. Still, to obtain accurate data, eliminating action potential and preventing 

neurotransmitter exocytosis are necessary for a deeper understanding of the mechanisms. For 

instance, using tetrodotoxin and SNARE inhibitors such as tetanus toxin can achieve our goal. 

 

In conclusion, the current study revealed that i) NR2B, a NMDAR subunit, colocalizes with 

caveolin -1 and -3 in the astrocytic membrane; ii) NR2B also colocalizes with astrocytic nNOS; 

iii) NMDA induces an increase in NO production in astrocytes by activation of both eNOS and 

nNOS; iv) astrocytes express functional complex of NR2B/PSD-95/nNOS. Such findings add 

more knowledge regarding the astrocytic NMDA receptor-mediated functions, which may help 

to better understand NMDA receptor-induced neuroprotection and toxicity under pathological 

conditions.  

 

 

 

 

 

 

 

 

 

 

 



 

 107 

Figures 
 

A. Time courses of changes in DAF-FM intensity after superfusion with 40 μM NMDA in WT, 

eNOS-/- and nNOS-/- astrocyte cultures and perivascular astrocytic endfeet in brain slices, 

respectively (n=3 pups/adult mice; *p < 0.05, **p < 0.01, ***p < 0.001; two-way ANOVA with 

Bonferroni post-hoc test). The increased response was prevented by pre-treatment with L-NNA 

(a non-selective NOS inhibitor, 100 μM, 15 min). Error bars indicate mean ± S.E.M. B. 

Summary of ex vivo data showing changes in the number and intensity of NO hot spots in 

astrocytic endfeet from WT, KO eNOS and KO nNOS mice (n=3 mice per group) respectively. 

In response to 10-min NMDA, patterns of hot spots including the total number and response 

strength were evidently reduced in perivascular astrocytic endfeet of knockout groups, 

compared with the WT group (*p<0.05, **p<0.01, one-way ANOVA with Bonferroni post-hoc 

test). The in vitro and ex vivo data of astrocytes suggest the activation of both eNOS and nNOS 

in response to NMDA. 

Figure 5-1 NMDA induced both eNOS and nNOS-dependent NO formation in cortical 
astrocytes 

B A 
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A. Images depict the colocalization (white arrows indicated) between nNOS (green) and NR2B 

(cyan, a NMDA receptor subunit) in astrocytes (orange, GFAP). scale bar = 20 μm for the left 

image; scale bar = 5 μm for higher magnification images. B. NMDA-induced (40 μM) increase 

in endfoot NO was attenuated by the NR2B-NMDA specific antagonist Ro25-6981 (25 min 

pretreatment with 3 μM,) or by breaking the linkage between NR2B and PSD-95/nNOS 

complex using the Tat a peptide (20 μM, 30 min pretreatment). The elevated response was 

unaffected by the control scrambled Tat (S-Tat, 20 μM, 30 min pretreatment) which has no 

effects on the PDZ-linking domain between NR2B and PSD-95/nNOS. n=3 mice; n.s., not 

significant, *p<0.05, **p<0.01, one-way ANOVA with Bonferroni post-hoc test. 

Figure 5-2 Colocalization of nNOS, NR2B and astrocytes in the somatosensory cortex 

B 

A 
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White arrows represent the colocalization between NR2B (green, a NMDA receptor subunit) 

and Caveolin (Cav)-1 or -3 (Cav-1 for A or Cav-3 for B, cyan) in astrocytes (orange, GFAP). 

scale bar = 20 μm for A and B; scale bar = 5 μm for higher magnification images. 

 

 

 

 

 

Figure 5-3 Colocalization of NR2B, caveolins and astrocytes in the somatosensory cortex 
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       To our knowledge, this is the first evidence that the two constitutive NOSs (eNOS and 

nNOS) co-exist in mouse cortical astrocytes and contribute to NO production in response to 

multiple neurotransmitters, including acetylcholine and distinct glutamate analogues. General 

associations between our results are further discussed in this section. 

 

NO production monitoring 

DAF-FM is a sensitive NO indicator for living cells and can detect NO at concentrations as 

low as 3 nM (Kojima et al., 1999). The fluorescence signal of DAF-FM is very low. Once 

reacted with NO, a covalent and stable DAF-FM/NO complex is formed and releases 

fluorescence at 515 nm wavelength for a quite long period. The fluorescent intensity begins to 

reduce at about 98 %, 63 % and 28 % after 1, 2 and 3 hours, respectively (Kojima et al., 1999). 

In addition, the laser seems to induce a certain level of photobleaching since there is a slight 

continuous decrease of fluorescence all along DAF-FM monitoring as demonstrated in our 

results. To prevent significant fluorescence quenching, each brain slice was excited less than 30 

minutes under the confocal microscopy during the experiment. Theoretically, once attached to 

DAF-FM, NO could not perform biological functions so that we could not study NO biological 

effects while monitoring its production with this dye. However, the aim of our study is to 

evaluate the physiological capability of astrocytes to produce NO in response to distinct stimuli. 

Considering the properties that it cannot induce neurotoxic and does not react with reactive 

oxidative species, DAF-FM is an appropriate NO indicator in our studies compared to other 

fluorescent NO-indicators such as rhodamine fluorophore (for a review in (Sharma, 2012)). 

 

Responses of astrocyte cultures 

       Purified astrocyte cultures were obtained from cortical layers of postnatal day 0 to day 3 

mouse pups. Cultured astrocytes are immature cells, which may express receptors differently 

than in mature cells. This feature may blur identification of certain receptors in adult 

preparations. For example, mGluR5 expression decreases with age and turns to be undetectable 

in adult mice, while mGluR3 displays a stable expression in astrocytes at all developmental 

periods (Sun et al., 2013). Furthermore, unlike astrocyte in situ, isolated astrocyte does not live 

in the in situ environment and loses cellular polarization as well as original phenotype. Indeed, 

previous investigation observed changes in RNA transcription between in vitro and in vivo 
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models (Richey et al., 1987). However, response of pure in vitro preparations can exclude 

interference from other cell types such as neurons.  

 

Analysis model of NO - hot spot 
       NO is a gaseous signal and diffuses rapidly and radially into surrounding areas of low NO 

concentrations. In astrocytes, it is likely that eNOS and nNOS exhibit compartmentalized 

expression in astrocytes. Therefore, NO production was analyzed in the form of hot spot. To be 

specific, the highest concentration of NO is in the core of one hot spot probably at the level of 

NOS localization. Thus, once activated, NOS generate NO in compartmentalized areas. Then, 

changes in hot spots were recorded and analyzed on the basis as ΔF/F0 = (Fn - F0) / F0, where Fn 

is the fluorescence intensity at frame n and F0 is the baseline of DAF-FM intensity. Two 

parameters of hot spot were further calculated, the total number of new hot spots and mean 

intensity of those hot spots. Collectively, this analysis model ensures two aspects of our 

investigation: i) NO is exclusively generated inside astrocyte, and ii) compartmentalized 

production of NO.  

 
The involvement of S-nitrosothiol pools in the NO production 

S-nitrosothiol pools formed through NO-protein interaction are considered as intracellular 

NO storages, which can redistribute and release NO. SH-groups of cysteine residues are feasible 

to be either reversibly S-nitrosylated into SNO-groups or irreversibly oxidized and form 

disulfide bonds. To conduct the S-nitrosylation, only ionisable cysteines and cysteines in 

hydrophobic microenvironment are able to react with NO, S-nitrosoglutathione (GSNO) and 

N2O3, etc.  

Up to date, nearly 100 proteins are identified as S-nitrosylation targets. Here I describe four 

important proteins that have previously been demonstrated to be important targets. i）NF-κB, 

which is predominantly activated under oxidative stress situations. Experimental studies 

revealed that NO targets its p50 subunit and cysteine 62 (Matthews et al., 1992; Hayashi et al., 

1993). ii) Hypoxia-inducible factors (HIF), NO inhibits its activation in the early stage of 

hypoxia (Sogawa et al., 1998). iii) RyRs, NO regulates its channel activity via poly-S-

nitrosylation (Xu et al., 1998). That is, low concentration of NO activates RyRs, while high level 

suppresses RyRs activity. This regulatory mechanism implies a tight NO-Ca2+ crosstalk in the 
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cell, since we found that RyRs are associated to specific activation of astrocytic nNOS. iv) eNOS 

and nNOS, which produce NO locally regulates themselves (Erwin et al., 2005; Erwin et al., 

2006). Importantly, prior investigations discovered that subcellular compartmentalization is a 

key feature of S-nitrosylation. Certain proteins physically interact with eNOS or nNOS, such as 

mitochondrial procaspase-3 (Matsumoto et al., 2003), since local regulation of these 

compartmentalized proteins requires a high concentration of NO. Indeed, scientific studies 

found that eNOS-derived NO locally S-nitrosylates proteins at the Golgi apparatus, the site for 

post translational modulation (Iwakiri et al., 2006).  

Under pathological conditions, iNOS-induced S-nitrosylation displays unlimited 

subcellular localization due to the high amount of NO produced by iNOS (Nathan and Shiloh, 

2000). In addition, glutathione (GSH) is the most abundant thiols in the cell. It should be noted 

that GSNO formation consumes reduced GSH, resulting in redox-dependent signalling pathway 

and inducing nitrosative stress (Calabrese et al., 2003). Changes in oxidant/antioxidant balance 

is further associated with the neuropathological processes, such as Alzheimer’s disease and 

stroke. 

In the present studies, a NO increase in response to Ach in eNOS-/- mice was observed in 

brain slices but not in isolated astrocytes. However, the NO increase observed in brain slices 

was abolished when ex vivo preparations were pretreated with the thiol pool remover NEM. The 

data of hot spots indicate that these NO hot spots were released from S-nitrosothiols. These 

results suggest that NO coming from other cell types can participate in forming S-nitrosothiol 

pools in astrocytes. Though cellular thiol pools in vivo are quite few, most of them are large 

molecular mass (Mr > 5000), the NO released from which can bind to GSH and hence form 

GSNO (Liu et al., 2001). Chvanov et al. showed that approximately 3 µM thiol pools belong to 

the small molecular weight S-nitrosothiols, which are denitrosylated in response to ACh 

stimulation (Chvanov M et al., 2006). This reaction relies on calpain protein and is modulated 

by Ca2+ (Chvanov M et al., 2006). These findings suggest that fine regulation of NO production 

is executed at several levels and contributes to physiological and pathological processes. 

 

The presence of cholinergic receptors in astrocytes 

Immunological investigations have identified both mAChRs and nAChRs in protoplasmic 

astrocytes of the cerebral cortex in situ. Though endothelial cells (M2 and 5) and VSMCs (M1, 
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2, 3, and 5) express mAChRs (Elhusseiny et al., 1999), it is found that human astrocytes express 

all subgroups of mAChRs, M1 - 5 mAChRs (Elhusseiny et al., 1999; Shelton and McCarthy, 

2000). Moreover, the expression of α7-containing nAChRs is extensively distributed in 

astrocytes, where it is involved in synaptic transmission (Pirttimaki et al., 2013). Altogether, 

this suggests that ACh is capable to activate both mAChRs and nAChRs in astrocytes and hence 

leading to an increase in NO. A further study is required to investigate which subtype of 

cholinergic receptor predominantly participates in this response. 

 

mGluRs expression in astrocytes 

Emerging studies has previously demonstrated that astrocytes express numerous mGluR5 

in either immature or reactive status (Sun et al., 2013; Kim et al., 2016), while adult astrocytes 

express abundant mGluR3 and few mGluR2 and 5 (Sun et al., 2013; Wang et al., 2016; Copeland 

et al., 2017). mGluR4 and 8 were found on the reactive astrocytes localized around sclerosis 

lesions (Geurts et al., 2005). Therefore, it seems that the other mGluRs, including mGluR1, 4, 

6, 7 and 8, are absent in mouse astrocytes under physiological states (Ferraguti et al., 2001; Sun 

et al., 2013).  

Unlike mGluR5, which is functionally linked to PLC activity, leading to an increase in IP3 

and IP3R-mediated Ca2+ efflux, activation of group II and III mGluRs decreases AC activity, 

which further inhibits downstream voltage-dependent Ca2+ channels and reduces NOS activity 

in astrocytes (Durand et al., 2010; Marmiroli and Cavaletti, 2012). Besides, activation of 

mGluR2 and mGluR3 decreases release of glutamate (Moghaddam and Adams, 1998). In our 

studies, t-ACPD, an agonist of group I and II mGluRs, was found to trigger a rise in NO in 

astrocytes. Furthermore, our results on isolated astrocytes strongly suggest that only astrocytic 

mGluR5 has the capacity for activating constitutive NOS and inducing NO production in 

response to t-ACPD stimulation. Though mGluR5 expression is fairly low in adult astrocytes, 

previous studies have not detected the subcellular distribution of mGluR5, which may display a 

polarized distribution at perivascular endfeet similar to AQP4, either (Cruz et al., 2013) or at 

the terminus of perineuronal processes (Ricci et al., 2009). A specific immunofluorescent 

staining of different astrocytic mGluRs in adult brain slices is necessary, especially in 

perivascular endfeet and close to synapses.  
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iGluRs-induced NO production 
Superfusion with NMDA induced an increase in astrocyte NO from both eNOS and nNOS. 

Likewise, in the presence of AMPA, an increase in NO was observed in eNOS-/- and nNOS-/- 

astrocytes. These data imply that activation of iGluRs (NMDA or AMPA receptors) could elicit 

both eNOS- and nNOS-dependent NO in astrocytes. In fact, activation of iGluRs increases 

intracellular Ca2+ concentration, which could further activate Ca2+-dependent constitutive NOS 

(eNOS and nNOS). In the present work, we found that astrocytic NMDA receptor was 

functionally associated with nNOS and eNOS. This could be attributed to either an increase in 

intracellular Ca2+ or a metabotropic-like effect. Indeed, previous studies found that astrocytic 

NMDA receptor functioned in a Ca2+ flux-independent manner via multiple proteins such as 

nNOS coupled to the NMDA receptor intracellular domain (Montes de Oca Balderas and 

Aguilera, 2015).  

A similar underlying mechanism may exist for AMPA receptor, which contains PDZ 

domains interacting with kinases (e.g. CaMKII, PKC and PKA) and has the capacity to elevate 

of intracellular Ca2+ level (for a review in (Henley and Wilkinson, 2013)). Thus, exposure to 

AMPA activates nNOS and contributes to the formation of reactive nitrogen species (RNS) in 

neurons (Joshi et al., 2015). Increased NO, in turn, can upregulate AMPA receptor subunits by 

either NO-induced S-nitrosylation or NO/cGMP signalling pathway (Huang et al., 2005). In 

addition, phosphorylation of nNOS at the S1412 regulates AMPA receptor trafficking via NO 

(Rameau et al., 2007). However, suppression of AMPA receptors was found to lead to 

upregulation of nNOS expression (Baader and Schilling, 1996). These regulatory mechanisms 

indicate a bidirectional coupling between AMPA receptor and nNOS and may provide a basis 

of understanding roles of astrocytic eNOS/nNOS upon AMPA stimulation. 

 

NO effects on Ca2+ signalling 
All agonist that triggered NO production in the present studies have the capacity to induce 

an increase in intracellular Ca2+. Thus, a rise in NO could serve to prolong Ca2+ signalling effects 

via cGMP- and RyR-mediated  pathways (Willmott et al., 2000). NO can also upregulate the 

release of ATP and glutamate from astrocytes and neurons (McNaught and Brown, 1998; Bal-

Price et al., 2002). Thus, NO-mediated release of ATP and glutamate can, in turn, induce and 
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amplify the Ca2+ increases in astrocytes and neighboring cells, such as neurons, VSMCs and 

endothelial cells, which express purinergic and glutamatergic receptors (Krizbai et al., 1998; 

Eltzschig et al., 2006; Taurin et al., 2008). This leads to a potential NO generation and a long 

lasting Ca2+ response to mGluRs activation (Pasti et al., 1995). Altogether, these results indicate 

the existence of crosstalk between Ca2+ and NO in these cells, and suggest that a mechanism by 

which local neuronal activity synchronizes and controls ambient microenvironment in the brain. 

It is noteworthy that in astrocytes NO is able to mediate cytokine-enhanced release of glutamate 

and inhibit glutamate uptake, contributing to the considerably extracellular glutamate levels and 

neuronal death (Ida et al., 2008). 

 

The role of NO in NVC  
Many research groups that have specifically inhibited eNOS and nNOS to assess the roles 

in the NVC response to NO found that NO acts as a vasodilator probably derived from 

endothelial cells and neurons, respectively (Ignarro et al., 1987; Rungta and Charpak, 2016). 

Indeed, Mishra et al. concluded that arteriole vasodilation in the cortex is likely mediated by 

neuron-derived NO, which may affect diverse targets such as membrane channels and signalling 

pathways (Mishra et al., 2016). However, little is known about the capacity of astrocytic endfeet 

to produce NO and the role of astrocyte-derived NO in NVC. To bridge this biological gap, we 

conducted experiments in isolated and ex vivo astrocytes. Our study showed that astrocytes 

produce NO upon distinct cholinergic and glutamatergic stimulations. 

This present work sheds a new light on the map of CBF regulation and enriches theoretical 

basis of NVC. In response to neuronal activity, astrocyte-derived NO is a potential signalling 

molecule involving in CBF regulation in the brain. NO contributions to vasodilation targets 

multiple proteins. Diffused NO activates soluble GC and results in an increase in cGMP, which 

further attenuates contraction of VSMCs through a cGMP-dependent pathway (Lau et al., 1998; 

Bolz et al., 2003). NO also decreases CYP 4A ω-hydroxylase activity to suppress generation of 

the vascular constrictor 20-HETE (Sun et al., 1998; Oyekan et al., 1999; Mulligan and MacVicar, 

2004). Furthermore, NO could S-nitrosylate protein cysteines by means of the post-translational 

modulation to enhance vasodilatory effect. Experimental evidence shows that both vascular 

KATP channels (Thomas and Victor, 1997) and RyRs reversibly interact with NO by S-
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nitrosylation to attenuate vasoconstriction (Stoyanovsky et al., 1997; Xu et al., 1998). In 

addition to regulation of vasodilation, endothelium-derived NO affects astrocytic metabolism 

reversibly in the nanomolar concentration range by depleting intracellular glucose and 

producing lactate (Martín et al., 2017).  

 
The interaction between NO and neurons 

Neurons such as pyramidal neurons in the hippocampus can express not only nNOS but 

eNOS, (O'dell et al., 1994; Tricoire and Vitalis, 2012). Endogenous NO play crucial roles in 

modulation of neuronal plasticity mainly through two pathways, one is dependent on cGMP-

mediated cascades such as modulation of ion channels (Erdemli and Krnjević, 1995; Zulazmi et 

al., 2017) and neuronal receptors (Cabrera-Pastor et al., 2016); and the other is dependent on 

nitrosylation (Dejanovic and Schwarz, 2014) and RNS-induced (Banerjee et al., 2015) 

signalling pathways independently of cGMP, such as facilitation of axon pruning (Rabinovich 

et al., 2016).  

In the early developing neurons, NO can regulate neuronal transcription by control of the 

CREB DNA binding (Riccio et al., 2006). Under physiological conditions, NO influences 

synaptic transmission and promotes synaptic plasticity. For instance, hippocampal long-term 

potentiation is modulated by NO/cGMP signalling via control of L-type voltage-gated Ca2+ 

channels opening (Pigott and Garthwaite, 2016). Besides, NO can regulate neuron-released 

neurotransmitters such as GABA (Tarasenko et al., 2014) and ACh (Prast et al., 1994). Notably, 

NO exhibits a biphasic effect on glutamate release. It can either facilitate the learning process 

via inducing glutamate release from hippocampal dentate gyrus neurons (Wang et al., 2014) or 

directly inhibit synaptic secretion of glutamate (Kamisaki et al., 1995). Considering that ACh 

and glutamate analogues induced an increase in astrocytic NO in our experiments, a tight 

interplay between astrocytes and neurons via complex coupling mechanisms most probably 

involve NO. However, NO acts as a neuronal stressor if high NO concentrations are available.  

On the other hand, our electron microscopy data revealed that both astrocytic eNOS and 

nNOS display preferential distribution in astrocytic processes but not endfeet. Since astrocytic 

cNOS expression locates closer to areas of stimulation rather than areas of effect, it suggests 

three functional roles: i) astrocyte-derived NO may play more important roles in maintaining 

and modulating neuronal plasticity; ii) the fewer cNOS in endfeet is capable to produce enough 
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NO to participate in local CBF regulation; iii) higher densities of cNOS located in astrocytic 

processes can produce NO at high concentrations which may not only be available to have 

impacts on ambient neuronal compartments but also can reach to and have effects on 

neighboring vessels. 

Taken together, these findings point out that NO is an important modulator of neuronal 

functions via cGMP-dependent and -independent pathways. Astrocyte-derived NO can further 

assist and contribute to a fine-tuned modulation of physiological and pathological processes in 

neurons. 

 
Clinical application  

NO is implicated in pathological processes, such as NMDAR-mediated toxicity, astrocyte 

death and convulsive action (Aarts et al., 2002; Durand et al., 2010; Javadian et al., 2016). 

Animal experimental studies discovered that NOS inhibitors such as L-NNA and 7- 

nitroindazole exhibit pro- and anticonvulsive properties in seizure models (Javadian et al., 2016). 

However, alternation of expression of the eNOS and nNOS proteins is inconsistent under 

pathological conditions. For example, the total level of eNOS in the frontal cortex of 

schizophrenia mice was found to be reduced, whereas no changes were found in nNOS protein 

expression (Liu et al., 2016). On the contrary, astrocytic eNOS was markedly upregulated in the 

brain of patients with sporadic AD (Lüth et al., 2001). These findings add complexity to the 

understanding of the roles of eNOS and nNOS in the brain, and also imply that both eNOS and 

nNOS may partake in different stages of pathological processes.  

Knowing the presence of eNOS and nNOS in astrocytes and their interactions with 

glutamatergic receptors increases our awareness about many potential side effects of drugs 

acting on these pathways. For example, NA-1, a PSD-95 inhibitor under the Phase III clinical 

trial, perturbs the connection between neuronal NR2B and PSD-95/nNOS complex and reduces 

stroke damage (Cook et al., 2012). This novel drug acts as a neuroprotectant and is promising 

for treatment of acute ischemic stroke. In the present ex vivo study on astrocytic NMDAR, the 

PSD-95 inhibitor decreased NMDA-induced increase in endfoot NO. It would be interesting to 

understand the contribution of astrocytic nNOS in the effect of treatment with the PSD-95 

inhibitor affects astrocytic-derived NO after stroke and the pathophysiological consequences. 
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Perspective 
To extend our present works in this dissertation, the following investigations are planned in 

the future. 

1) To understand the biological effects of astrocytic eNOS and nNOS separately, specific 

deletion or inhibition of astrocytic eNOS and/or nNOS is required, especially for the study of 

its contributions to NVC. Astrocytic specific deletion of caveolins or other NOS-associated 

proteins would also give further insight on the specific regulatory mechanisms of NO production. 

2) To further demonstrate spatial coupling between astrocytic eNOS and cholinergic neurons, 

multiple types of neurons should be considered, such as dopamine neurons, glutamatergic 

neurons and GABAergic neurons. It would also be interesting to specifically activate cholinergic 

neurons and to study its biological effects (ex: vascular tone) while astrocytic eNOS is 

specifically inhibited or not. Moreover, we will identify and further activate astrocytic 

cholinergic receptors and transporters in astrocytes. 

3) To better understand response of astrocyte-derived NO, neuronal-released active factors 

should be excluded using tetrodotoxin and SNARE inhibitors. This would eliminate action 

potentials and inhibit formation of vesicle containing factors (e.g. glutamate) respectively.  

4) To further identify the anatomical and functional link between NMDA receptor and eNOS in 

astrocytes.  
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CHAPTER 7 
 

 

 

 

 

 

 

 

GENERAL CONCLUSIONS 
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In this dissertation, we identified polarized subcellular distribution and colocalization of 

eNOS and nNOS in astrocytes, and demonstrated possible signalling pathway that evoke eNOS- 

and nNOS-dependent NO production. The following discoveries are concluded from the present 

work in detail: 

1)  Astrocytes in situ expressed eNOS and nNOS. Astrocytic processes contained higher 

density of both eNOS and nNOS in comparison to astrocytic endfeet. 

2) eNOS expression in astrocytes was compartmentalized with caveolin-1 and -3. In astrocytes, 

eNOS-dependent NO was produced upon cholinergic stimulation. 

3) The nNOS density was found to be less in the plasma membrane. Thus, a portion of nNOS 

was colocalized with RyR2 and RyR3, and another portion was colocalized with NMDAR 

in astrocytic plasma membrane via NR2B/PSD-95 complex. 

4) t-ACPD evoked NO production which is entirely nNOS-dependent while other 

glutamatergic agonists were eliciting both eNOS and nNOS dependent NO production. 

5) t-ACPD induced NO production from astrocytes is dependent on RyR-mediated Ca2+ influx 

signalling, which was possibly activated by IP3R-mediated Ca2+ via Ca2+-induced Ca2+ 

release. 

6) Astrocytic membrane nNOS was functionally coupled to the NR2B/PSD-95 complex. In 

addition, astrocytic NR2B was colocalized with caveolin-1 and caveolin-3, suggesting a 

potential link between NR2B-containing NMDAR and eNOS. 

 

       Therefore, our findings suggest that astrocytes produce eNOS- and nNOS-derived NO in 

response to cholinergic and glutamatergic stimulations. This increased endfoot NO may further 

have an impact on adjacent vascular response and contribute to neurovascular coupling. 
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