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Résumé 

Le contraste BOLD employé dans les études d’imagerie par résonance magnétique 

fonctionnelle (IRMf) provient d’une combinaison ambigüe de changements du flux sanguin 

cérébral, du volume sanguin ainsi que du métabolisme oxydatif. Dans un contexte où les 

fonctions vasculaires ou métaboliques du cerveau ont pu être affectées, tel qu’avec l’âge ou 

certaines maladies, il est crucial d’effectuer une décomposition du signal BOLD en 

composantes physiologiquement plus spécifiques. La dernière génération de méthodes d’IRMf 

calibrée permet d’estimer à la fois le flux sanguin cérébral et le métabolisme oxydatif au 

repos. Le présent travail est basé sur une telle technique, appelée QUantitative O2 (QUO2), 

qui, via un model généralisé, prend en considération les changements du flux sanguin ainsi 

que ceux en concentrations sanguine d’O2 durant des périodes d’hypercapnie et d’hyperoxie, 

afin d’estimer, à chaque voxel, la fraction d’extraction d’oxygène et le métabolisme oxydatif 

au repos. Dans la première partie de cette thèse, le protocole d’acquisition ainsi que la 

stratégie d’analyse de l’approche QUO2 ont été revus afin d’améliorer la stabilité temporelle 

des réponses BOLD et du flux sanguin, conséquemment, afin d’accroître la fiabilité des 

paramètres estimés. Par la suite, une évaluation de la variabilité intra- et inter-sujet des 

différentes mesures QUO2 a été effectuée auprès d’un groupe de participants sains. En 

parallèle, une analyse de la sensibilité du model à différentes sources d’erreurs aléatoires 

(issues des mesures acquises) et systématiques (dues aux assomptions du model) a été réalisée. 

De plus, les impacts du niveau d’oxygène administré durant les périodes d’hyperoxie ont été 

évalués via une simulation puis expérimentalement, indiquant qu’une hyperoxie moyenne était 

bénéfique. Finalement, l’influence de la maladie d’Alzheimer sur les changements vasculaires 

et métaboliques a été explorée pour la première fois en appliquant le protocole QUO2 à une 

cohorte de patients Alzheimer et à un groupe témoin du même âge. Des différences en terme 

de flux sanguin, fraction d’oxygène extraite, métabolisme oxydatif, et taux de relaxation 

transverse R2* au repos comme en réponse à l’hypercapnie, ont été identifiées au niveau du 

voxel, ainsi qu’au niveau de régions cérébrales vulnérables à la maladie d’Alzheimer. Une 

liste de limitations accompagnées de recommandations a été dressée en ce qui a trait au temps 
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de transit différé, aux artéfacts de susceptibilité magnétique, de même qu’au défi que 

représente l’hypercapnie chez les personnes âgées ou atteintes de la maladie d’Alzheimer. 

Mots-clés : IRMf calibré, hyperoxie, hypercapnie, exactitude et précision, métabolisme 

oxydatif au repos, fraction d’extraction d’oxygène, flux sanguin cérébral, santé vasculaire et 

métabolique, maladie d’Alzheimer 
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Abstract 

The BOLD contrast employed in functional MRI studies is an ambiguous signal 

composed of changes in blood flow, blood volume and oxidative metabolism. In situations 

where the vasculature and metabolism may have been affected, such as in aging and in certain 

diseases, the dissociation of the more physiologically-specific components from the BOLD 

signal becomes crucial. The latest generation of calibrated functional MRI methods allows the 

estimation of both resting blood flow and absolute oxygen metabolism. The work presented 

here is based on one such proof-of-concept approach, dubbed QUO2, whereby taking into 

account, within a generalized model, both arbitrary changes in blood flow and blood O2 

content during a combination of hypercapnia and hyperoxia breathing manipulations, yields 

voxel-wise estimates of resting oxygen extraction fraction and oxidative metabolism. In the 

first part of this thesis, the QUO2 acquisition protocol and data analysis were revisited in order 

to enhance the temporal stability of individual blood flow and BOLD responses, consequently 

improving reliability of the model-derived estimates. Thereafter, an assessment of the within 

and between-subject variability of the optimized QUO2 measurements was performed on a 

group of healthy volunteers. In parallel, an analysis was performed of the sensitivity of the 

model to different sources of random and systematic errors, respectively due to errors in 

measurements and choice of assumed parameters values. Moreover, the various impacts of the 

oxygen concentration administered during the hyperoxia manipulation were evaluated through 

a simulation and experimentally, indicating that a mild hyperoxia was beneficial. Finally, the 

influence of Alzheimer’s disease in vascular and metabolic changes was explored for the first 

time by applying the QUO2 approach in a cohort of probable Alzheimer’s disease patients and 

age-matched control group. Voxel-wise and region-wise differences in resting blood flow, 

oxygen extraction fraction, oxidative metabolism, transverse relaxation rate constant R2* and 

R2* changes during hypercapnia were identified. A series of limitations along with 

recommended solutions was given with regards to the delayed transit time, the susceptibility 

artifacts and the challenge of performing a hypercapnia manipulation in cohorts of elderly and 

Alzheimer’s patients. 
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1. Introduction 

Alzheimer’s disease (AD) is the most common type of dementia and there is 

substantial interest in better understanding the condition to help discover new treatments. 

Candidates for the primary causal factor of the disease include: cholinergic deficits [1], beta-

amyloid (Aβ) deposition [2,3] and hyperphosphorylated tau pathology [4]. Additional factors 

that may have an important influence in the development of AD are: mitochondrial 

dysfunction [5-9] which tends to decrease the cerebral metabolic rate of O2 (CMRO2) 

consumption [10], and chronic hypoperfusion (a deficit in cerebral blood flow (CBF)) which 

could result in a lack of oxygen availability, leading to the beginning of mitochondrial failure 

[10]. Ultimately, a progressive synaptic, neuronal and axonal degeneration is observed. Given 

the above considerations, a detailed exploration of both oxidative metabolic (CMRO2) and 

vascular (CBF) dysfunction is a promising avenue to consider in order to advance preventative 

and treatment strategies of the AD. 

1.1. Positron emission tomography in AD 

 Positron emission tomography (PET) has been used to image resting oxygen 

consumption [11,12] in AD. However, imaging of CMRO2 using PET is challenging as it 

requires an on-site cyclotron for the three separate administrations of the short-lived (half-life 

of about two minutes) 15O radioactive tracers, each followed by an image acquisition of 

relatively low sensitivity [13], along with a number of arterial blood draws to measure blood 

radioactivity. Hence, this procedure is arduous for the patients and its adoption in large-scale 

research studies and clinical setting has been difficult. Despite the challenges associated with 

this approach, earlier PET studies have allowed the establishment of basic physiology 

associated with oxygen uptake deficits associated with AD. Ishii et al. observed an oxidative 

metabolism deficit in the medial temporal, lateral temporal and parietal cortices of AD relative 

to controls [14], which was later replicated [15-17], while no significant difference between 

the two groups was generally found with regards to oxygen extraction fraction (OEF) at rest. 

More recent results are in agreement with the hypothesis that oxidative metabolism may have 

a predominant role in the development of AD [18-23]. 
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In addition to imaging of CMRO2, PET is commonly used to image amyloid burden, 

regional perfusion and glucose uptake at rest (18FDG, i.e. fluorodeoxyglucose). As opposed to 

the PET measures of CMRO2, FDG-PET offers good sensitivity and spatial resolution, and 

since 18F has a relatively long half-life, there is no need for an on-site cyclotron when used in 

clinical settings. Studies have shown a coupling between cerebral perfusion, glucose 

consumption and oxygen consumption, which includes a parietotemporal pattern of reduction 

in perfusion and glucose uptake. It was also observed that a frontal deficit was either 

associated with the degree of AD progression [24], or with frontotemporal dementia [25] and 

vascular disease [15]. 

1.2. Magnetic resonance imaging in AD 

Similar to PET imaging, magnetic resonance imaging (MRI) has so far played an 

important role in the characterization of Alzheimer’s disease. Structural MRI has been used to 

provide static anatomical information.  

During a structural MRI scan, the application of an RF pulse forces protons in the brain 

tissue to align and thereafter, to revert back to their resting states following a certain 

longitudinal (T1) and transverse (T2) relaxation time. A different signal intensity is thereby 

observed across tissues and depends mainly on the amount of water in each voxel (proton 

density (PD)) as well as the longitudinal (T1-weighted) and transverse (T2-weighted) relaxation 

times, associated with each soft tissue. Hence, structural MRI offers a high spatial resolution 

view of soft tissue contrast, and is therefore well suited for the estimation of tissue damage or 

loss, an important biomarker in AD. The application of structural MRI in AD includes the 

characterization of whole-brain atrophy [26-29] or atrophy of vulnerable regions, such as the 

hippocampus [30-33] and entorhinal cortex [34], which are both part of the medial temporal 

lobe and implicated in the formation and storage of memories [35,36]. Additionally, it was 

found that the structural changes were particularly sensitive to progression from mild 

cognitive impairment (MCI), patients with early clinical signs of AD who don’t fulfill the 

criteria for dementia, to moderate stages of AD [29,37].  
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Functional MRI (fMRI) provides dynamic physiological information and includes, 

among other parameters, blood oxygen level dependent (BOLD), connectivity and blood flow 

techniques. 

The BOLD contrast mechanism results from the presence of different magnetic 

properties of oxygenated and deoxygenated hemoglobin [38]. While oxyhemoglobin (Hb) is 

diamagnetic, deoxyhemoglobin (dHb) is paramagnetic. The presence of paramagnetic dHb 

yields a decrease in the T2*-weighted signal (1/R2*) due to increased signal inhomogeneity 

resulting from dephased water spins. As arterial blood is almost fully oxygenated, the 

attenuation of the T2* signal comes from venous blood and tissue with dHb [39,40]. Following 

the elimination of all dHb, the BOLD value will be at its maximum, and will depend on the 

initial dHb concentration. During a task, blood velocity and vessel volume increase. The 

increase in perfusion exceeds that of the oxygen consumption rate, yielding a lower dHb 

concentration, and hence the BOLD increase we observe in fMRI (increase in the T2*-

weighted signal) [38,41]. 

The most common use of the BOLD technique for AD is the evaluation of functional 

responses during a memory-encoding task [42-44]. More recently, an additional fMRI 

approach was developed, that maps the resting-state network (RSN) connectivity in the brain. 

By removing the need for a task paradigm, this approach lessens the potential difficulties 

experienced by the patients and can simplify statistical analysis and interpretation of the 

results due to the large number of behavioral variables. Resting-state fMRI connectivity 

allows the study of spontaneous BOLD fluctuations over time and the identification of 

correlation patterns (or networks) between voxels. It was demonstrated that the basic brain 

networks were altered in AD compared to a cohort of healthy controls [45-47]. 

The arterial-spin-labeling (ASL) technique is a non-invasive MRI approach that, by 

labeling the blood water from the neck as it flows up toward the brain, creates a temporary 

endogenous contrast agent yielding a blood flow-dependent component in the brain’s MRI 

signal that can be isolated and quantified by subtraction of the unlabeled control images. The 

ASL technique allows the quantitative measurement of resting CBF, task-related responses, as 

well as cerebrovascular reactivity (CVR). CVR is measured under hypercapnic conditions, i.e. 

when the arterial carbon dioxide content (PaCO2) is increased, acting as a vasoactive agent 
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[48], hence increasing blood flow [49,50]. CVR is commonly expressed as the amplitude of 

CBF increase for a given increase of PaCO2. ASL was previously applied to dementia to 

assess the resting vascular component of the condition [51,52] and most consistent result was 

the blood flow decrease in the precuneus and/or posterior cingulate, as well as in the lateral 

parietal cortex. Decreased blood flow in posterior cingulate was also observed in MCI, making 

it a good candidate for early detection of the disease. These flow decreases appear to be 

coupled with metabolism decreases observed using PET [24]. Findings in the temporal lobe 

are limited due to the small number of studies providing information in that region, however, 

it was suggested that blood flow in AD was decreased in inferior-lateral temporal cortex. 

Finally, few studies have pointed towards an increase in hippocampal blood flow [53,54]. 

1.3. Calibrated MRI: task-related changes of CMRO2 

The BOLD contrast obtained from conventional fMRI suffers from being unspecific, 

since it reflects multiple physiological processes such as changes in blood flow, blood volume 

and oxidative metabolism. In situations where a cohort of homogeneous participants is 

evaluated, BOLD contrast remains a non-invasive and accessible method with good sensitivity 

for mapping task-related responses. However, when heterogeneity is suspected between two 

cohorts of a vascular or metabolic nature, the BOLD signal becomes insufficient. In 1998, the 

term “calibrated MRI” was introduced by Tim Davis, to describe a method that combined the 

BOLD and the ASL responses to a hypercapnic manipulation, in order to calibrate the BOLD 

contrast and subsequently, to determine the quantitative changes in oxygen consumption 

encountered during a specific task [55]. This calibrated MRI was later referred as 

hypercapnically calibrated fMRI. In 2007, Peter Chiarelli et al. proposed a variation of the 

Davis hypercapnia approach, by replacing the hypercapnia periods with periods of hyperoxia, 

where participants were breathing air with enriched O2 [56]. This new approach had the 

advantages of eliminating the discomfort associated with the carbon dioxide inhalation, 

excludes the possibility of CO2 impacting the metabolism and reduces the importance of ASL. 

However, this technique implicates a set of assumptions, including a constant whole brain 

oxygen extraction fraction (OEF), which can in fact vary between regions and participants in 

cases of pathology [57]. In recent years, other groups have introduced the R2’ method [58], 
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which aims to estimate the calibration parameter M without requiring a gas manipulation, and 

the General Calibrated Model (GCM), introduced by our group [59], where the BOLD 

contrast could be calibrated for any arbitrary combinations of hypercapnic and hyperoxic 

manipulation. Compared to the original hypercapnic and hyperoxic approaches, the GCM was 

found to offer a better stability in the presence of noisy CBF signals [59]. Until then, the 

quantitative MRI methods were restricted to measure fractional changes in O2 consumption 

(during a task) and were thus quantitative in relative terms only. Following the growing 

interest in the mapping of absolute baseline O2 extraction fraction and O2 consumption, novel 

MRI-based techniques were developed in this respect and are discussed next.   

1.4. Baseline CMRO2 

The quantitative BOLD (qBOLD) method, described by He and Yablonskiy, is based 

on the Gradient Echo Sampling of Spin Echo (GESSE) sequence. With the use of a 

biophysical model, this sequence allows the extraction of the venous oxygen saturation in 

extravascular tissue and the estimation of the baseline OEF [60-62]. A major drawback of the 

qBOLD method is that it depends on a large number of assumed parameters, which are 

difficult to measure directly on an individual basis.  

A second approach, dubbed QUIXOTIC (quantitative imaging of extraction of oxygen 

and tissue), uses a velocity-selective excitation scheme to isolate the venous blood 

oxygenation signal [63], from which the OEF and CMRO2 can be obtained. An important 

limitation of the QUIXOTIC method is the need to know the precise velocity range in order to 

select the blood venular signal, a range that may differ with age and disease. 

Finally, an alternative method has been suggested by Bulte et al. [64], in which the 

calibrated parameter M is determined employing the hypercapnia calibration [55] and then 

fitted in the hyperoxia calibration technique [56] to obtain the OEF. By combining the latter 

with measures of CBF and end-tidal O2, the baseline estimate of CMRO2 is retrieved. This 

method is closely related to the approach proposed by Gauthier et al., dubbed QUO2 

(Quantitative O2) [65]. However, it possesses a larger number of assumptions, which differ 

between the hypercapnia and hyperoxia calibration, hence increasing its sources of systematic 
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errors and of physiological ambiguity [59]. The QUO2 approach was the starting point of this 

thesis and is described in further details in the following section.  

1.5. QUO2: Quantitative O2 

The approach, shown in Figure 1.1, combines periods of hypercapnia (HC) and 

hyperoxia (HO) with simultaneous acquisition of BOLD and CBF using dual-echo pCASL 

[65]. Meanwhile, end-tidal respiratory gases are non-invasively sampled. The end-tidal O2, 

along with the BOLD and CBF voxel-wise responses to either one of the respiratory 

manipulation, are inputs to the GCM, yielding a functional curve of paired maximum BOLD 

increase (M) and OEF. Repeating the latter measurements under the other respiratory 

manipulation, results of an additional functional curve of dependency between M and OEF. By 

intersecting the two curves, thus solving the system of two equations, we obtain the voxel-

wise value of M and OEF. The product of resulted arterial O2 content (CAO2), approximated 

by the end-tidal O2, with resting CBF gives us the O2 delivery, which multiplied by OEF, 

yields the resting CMRO2 in micromolar units. Moreover, in addition to providing estimates of 

M, OEF and CMRO2, the QUO2 method offers vascular information such as the baseline 

blood velocity and the CO2-mediated cerebrovascular reactivity (CVR).  

   

Figure 1.1. The Quantitative O2 (QUO2) approach 
The approach combines periods of hypercapnia (HC) and hyperoxia (HO) with simultaneous 
acquisition of blood oxygen level dependent (BOLD) and cerebral blood flow (CBF) using a 
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dual-echo version of pseudo-continuous arterial spin labeling (pCASL). A Generalized 
Calibration Model (GCM) is fed with obtained measurements yielding a fully determined 
system of two equations and two unknowns: Oxygen Extraction Fraction (OEF), and 
extrapolated maximum BOLD signal increase (M). The product of resulted arterial O2 content 
(CAO2) with resting CBF gives us the O2 delivery, which multiplied by OEF, yields the 
resting cerebral metabolic rate of O2 (CMRO2) in micromolar units. 
 

The QUO2 method thus offers the possibility of employing a widely available system 

that does not imply any ionizing radiation or arterial catheterization, to help better characterize 

the vascular and metabolic burdens of disease such as AD. Another major advantage of QUO2 

fMRI over other modalities is that structural, vascular and connectivity measurements can be 

performed concurrently. Together, these allow correlation of structural and functional 

measurements within a single modality. 

1.6. The present thesis work 

Prior to the beginning of the work presented in this thesis, the initial proof-of-concept 

QUO2 had been tested in seven healthy volunteers [65], and, while it proved to produce valid 

regional and group-averaged estimates of M, OEF and CMRO2, it showed signs of instability 

and lack of solutions in individual maps. These preliminary results were encouraging, but 

further improvement, validation and evaluation of the technique were needed (Tancredi et al. 

[66,67], Chapter 2-3) prior to its application in an AD population (Chapter 4).  

The initial application of the proof-of-concept QUO2 method employed a standard 

oxygen breathing circuit, which needed to be fixed to the participant’s face using tape in order 

to avoid contamination from room air. Even with the use of tape (which could induce 

discomfort and an increased feeling of claustrophobia for certain participants), it was observed 

that the use of the standard oxygen mask yielded unstable fractional concentrations of inspired 

O2 or CO2, as well as a dependency between end-tidal measurements and the administered 

flow rate [66]. In order to increase the participant’s comfort and stability in inspired and end-

tidal values, we developed a breathing circuit, presented in Tancredi et al. [66], which was 

employed throughout the present work. The latter, by incorporating an open reservoir through 
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which the participant could breathe room air whenever the provided flow become insufficient, 

also provides, over the simple oxygen mask, additional safety to the participant.  

Thereafter, an assessment of the precision (Tancredi et al. [67], Chapter 2) and 

accuracy (Chapter 2) of QUO2 parameters was performed. Precision of the model-derived 

parameters will partly depend on the random error in the measurements of BOLD and CBF 

response to the respiratory manipulation. While previous work presented a simulation of the 

impact on M estimates of such errors in CBF measurements [59], the impact on OEF (and 

indirectly CMRO2) to errors in BOLD measurements in addition to CBF, was still to be 

evaluated and was simulated in Chapter 2. Additionally, a reproducibility study was performed 

in eight healthy volunteers to determine the regional within- and between-subject variance 

(Chapter 2). On the other hand, the accuracy of model-derived estimates is impacted by 

systematic errors due to the assumed parameters used in the model. Chapter 2 presents the 

sensitivity of the model to the QUO2 assumed parameters described next. The Grubb 

parameter (α) defines the relationship between the venous blood flow and blood volume. It 

was originally estimated to be 0.38, based on work in anesthetized monkeys [68], but was later 

found to be 0.18 in adult humans [69,70]. The latter value has been used in several studies, 

including the present work. The β parameter represents the power-law relationship between 

dHb and transverse relaxation [71]. The original estimate of 1.5 at 3 Tesla was employed 

throughout the present work although alternate interpretations have been postulated 

corresponding to a lower value of 0.91 [72]. The hemoglobin concentration in blood ([Hb]) 

was set to 15 g Hb/dl blood the group of healthy volunteers in Chapter 2 and 3 [56,73]. 

However, considering that [Hb] varies with gender and age [74-76], and that it can be easily 

determined by a simple blood draw, we measured it in our probable AD and elderly cohorts of 

Chapter 4, hence eliminating the presence of systematic errors associated with the hemoglobin 

concentration in blood. An additional assumption made throughout the present work is that 

neither hyperoxia nor hypercapnia were yielding a change in oxidative metabolism. This 

assumption remains the subject of ongoing debate [77-83] and hence, the sensitivity of the 

model to any changes in CMRO2 during either HC or HO was assessed. Finally, an assumed 

value [64,84] or the group-averaged value of blood flow changes during hyperoxia in 

calibrated fMRI is commonly employed [65,85] since its real value is often near the level of 



 

 9 

ASL noise and because the correction for changes in blood T1 during HO remains challenging. 

This latter correction will be discussed in the following section. For our younger healthy 

controls (Chapter 2 and 3), we used the individual T1-corrected CBFHO value and presented an 

evaluation of the QUO2 sensitivity to this parameter (Chapter 2). In Chapter 3, we opted for 

the use of group-averaged T1-corrected value due to a larger noise level in our patients and 

elderly cohorts data compared to our younger healthy controls. 

An additional factor that may contribute to the precision and accuracy of the QUO2 

model-derived estimates is the oxygen concentration provided during the hyperoxia 

manipulation. A maximal level, such as 100% oxygen, may diminish the error in M estimation 

by bringing the BOLD changes closer to the maximum value. However, compared to a lower 

concentration of O2, such as around 50%, the inhalation of 100% O2 may result in a larger area 

of susceptibility artifacts near the sinuses due to the increased presence of paramagnetic 

oxygen molecule [86]. Additionally, the inhalation of air enriched with O2, results in an 

increased paramagnetic O2 concentration in plasma, which shortens the arterial relaxation time 

T1 [87-89]. Since the ASL signal depends on the blood relaxation time [90], this decrease in T1 

must therefore be taken into account, otherwise the estimated response to hyperoxia will be 

overestimated. The T1-correction throughout the present thesis was performed as follows: first, 

the T1 during hyperoxia was linearly interpolated from literature values [89] based on our 

individual arterial partial pressure (PaO2). Finally, a corrective factor was applied [91,92] 

based on the adjusted T1 and the quantitative blood flow equation [93]. Hence, a higher level 

of O2 concentration during HO may necessitate a greater T1-correction, which could be prone 

to larger errors in T1-corrected CBF response estimation. Chapter 3 was dedicated to the 

exploration of the above impacts of inspired oxygen levels on the QUO2 model-derived 

estimates, in order to determine the best compromise for the concentration of inspired O2.  

Finally, we recruited 65 probable AD dementia and 65 age-matched controls in order 

to apply the enhanced QUO2 calibrated fMRI for comparison of obtained estimates. The 

application of task-related calibrated fMRI was previously seen in aging [94-96], while only 

isolated studies evaluated the absolute oxygen metabolism applying a calibrated fMRI 

approach in aging or in internal carotid artery occlusion patients [97,98]. To our knowledge, 

this is the first application of such an approach in an Alzheimer’s population, making this last 
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part of the present thesis a particularly novel contribution both in the developments of 

calibrated MRI techniques as well as in clinical and research applications in AD. Chapter 4 of 

this thesis presents the outcomes of the QUO2 application in AD.  

In summary, in order to enhance the accuracy and robustness of the model-derived 

estimates, the temporal stability of the BOLD and CBF responses to respiratory manipulation 

were enhanced through improved respiratory monitoring with a novel breathing circuit [66]. 

Thereafter, the reproducibility in grey matter of the previous measurements was evaluated in 

healthy subjects [67]. Chapter 2 presents an enhancement in the QUO2 image analysis, the 

assessment of the within- and between-subject variance of the model-derived estimates, as 

well as the evaluation of sensitivity of the model to random and systematic errors. Chapter 3 

assesses the impact of the O2 level during the hyperoxia periods on M, OEF and CMRO2. 

Finally, in Chapter 4, the QUO2 is applied in a cohort of probable AD and age-matched group 

control. 
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2.1. Preface 

Calibrated fMRI was first proposed by Davis et al. [55], who employed a hypercapnic 

respiratory manipulation along with an MRI ASL sequence and a biophysical model. This 

allowed the quantification of task-evoked fractional CMRO2. Considering the discomfort 

associated with the inhalation of air mixed with carbon dioxide, alternative techniques were 

developed. Chiarelli et al. proposed the hyperoxia calibration [56], whereas Blockley et al. 

suggested the use of the information in gradient and spin echoes to calibrate the BOLD signal 

without the need for a gas manipulation [58]. However, these two methods were found to be 

more sensitive to errors than the original hypercapnic calibration method [58]. A third method, 

the generalized calibration model (GCM), was proposed [59] that allows the calibration of the 

BOLD signal for any arbitrary combinations of hypercapnic and hyperoxic manipulations. 

This new approach was found to yield robust and accurate M maps and hence reliable 

estimations of the changes in CMRO2 during a visual task. 

The different calibrated fMRI approaches are limited by the fact that they report a 

relative change from unknown baselines, making them insufficient in situations where the 

studied groups have different baseline CMRO2, such as in aging or dementia [19,99-101]. 

Moreover, they require a task, which may be arduous for certain clinical populations. 

Therefore, several groups have developed MRI-based techniques allowing absolute 

quantification of resting CMRO2 [61-64,102-105]. One such approach, which was dubbed 

Quantitative O2 (QUO2) [65], combines two separate hypercapnia and hyperoxia 

manipulations using the GCM in order to estimate voxel-wise M and resting oxygen extraction 

fraction (OEF) values. The product of resting OEF, resting blood flow (issued from the MRI 

ASL sequence) and arterial oxygen content, yields the baseline CMRO2.  

The initial proof-of-concept for QUO2, applied in a population of healthy volunteers 

proved to yield regional and group-averaged estimates that were consistent with those of prior 

PET studies [65]. However, the voxel-wise individual maps suffered from instability and some 

voxels lacked solutions for OEF and M, while information about variance in its estimates as 

well as about its sensitivity to random and systematic errors were incomplete. Within the 

course of work of the present thesis, the first advance was achieved by the replacement of the 
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standard oxygen mask by a newly designed breathing circuit which proved to yield a better 

stability in the inspired concentration and hence in the end-tidal values [66]. This in turn led to 

a better temporal stability of the CBF and BOLD responses to the respiratory manipulations. 

Thereafter, end-tidal O2/CO2 and grey matter CBF/BOLD signals reproducibility were 

assessed, revealing generally robust and consistent measures, with blood flow response to 

hypercapnia being the most variable (CV<20%) [67].  

Here, in Chapter 2, we propose a number of improvements for QUO2 MRI image 

analysis, followed by an investigation of the within- and between-subject repeatability of 

model-derived estimates within different key regions. Finally, the sensitivity of the model to 

different sources of random and systematic errors was established. 

2.2. Abstract 

The current generation of calibrated MRI methods goes beyond simple localization of 

task-related responses to allow the mapping of resting cerebral metabolic rate of oxygen 

(CMRO2) in micromolar units and estimation of oxygen extraction fraction (OEF). Prior to the 

adoption of such techniques in neuroscience research applications, knowledge about the 

precision and accuracy of absolute estimates of CMRO2 and OEF is crucial and remains 

unexplored to this day. In this study, we addressed the question of methodological precision 

by assessing the regional inter-subject variance and intra-subject reproducibility of the BOLD 

calibration parameter M, OEF, O2 delivery and absolute CMRO2 estimates derived from a 

state-of-the-art calibrated BOLD technique, the QUantitative O2 (QUO2) approach. We 

acquired simultaneous measurements of CBF and R2* at rest and during periods of 

hypercapnia (HC) and hyperoxia (HO) on two separate scan sessions within 24 hour using a 

clinical 3 T MRI scanner. Maps of M, OEF, oxygen delivery and CMRO2, were estimated 

from the measured end-tidal O2, CBF0, CBFHC/HO and R2*HC/HO. Variability was assessed by 

computing the between-subject coefficients of variation (bwCV) and within-subject CV 

(wsCV) in seven ROIs. All tests GM-averaged values of CBF0, M, OEF, O2 delivery and 

CMRO2 were: 49.5 ± 6.4 mL/100 g/min, 4.69 ± 0.91%, 0.37 ± 0.06, 377 ± 51 µmol/100 g/min 

and 143 ± 34 µmol/100 g/min respectively. The variability of parameter estimates was found 

to be the lowest when averaged throughout all GM, with general trends toward higher CVs 
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when averaged over smaller regions. Among the MRI measurements, the most reproducible 

across scans was R2*0 (wsCVGM=0.33%) along with CBF0 (wsCVGM=3.88%) and R2*HC 

(wsCVGM=6.7%). CBFHC and R2*HO were found to have a higher intra-subject variability 

(wsCVGM=22.4% and wsCVGM=16% respectively), which is likely due to propagation of 

random measurement errors, especially for CBFHC due to the low contrast-to-noise ratio 

intrinsic to ASL. Reproducibility of the QUO2 derived estimates were computed, yielding a 

GM intra-subject reproducibility of 3.87% for O2 delivery, 16.8% for the M value, 13.6% for 

OEF and 15.2% for CMRO2. Although these results focus on the precision of the QUO2 

method, rather than the accuracy, the information will be useful for calculation of statistical 

power in future validation studies and ultimately for research applications of the method. The 

higher test-retest variability for the more extensively modeled parameters (M, OEF, and 

CMRO2) highlights the need for further improvement of acquisition methods to reduce noise 

levels. 

Key-words: Calibrated fMRI; Baseline oxidative metabolism; Reproducibility; Hypercapnia; 

Hyperoxia; de-pCASL 

2.3. Introduction 

Mapping of resting metabolism in the brain is of considerable interest for diagnostic 

and research applications. Until recently, positron emission tomography (PET) using a triple 

injection of radio-labeled O2 was the only imaging method for measuring cerebral metabolic 

rate of O2 consumption (CMRO2) [11]. The PET method requires exposure to ionizing 

radiation, arterial sampling, and access to an on-site cyclotron to produce the short-lived 15O-

labeled tracers, limitations that have led to the development of magnetic resonance imaging 

(MRI) techniques to measure O2 consumption [64,85,106]. 

The approach proposed by our team, Quantitative O2 (QUO2) MRI is based on 

respiratory calibration of the BOLD signal, in which the oxygen extraction fraction (OEF) at 

rest is determined using hypercapnia (HC) and hyperoxia (HO). During the respiratory 

manipulation, we monitor end-tidal O2 (ETO2) levels and use dual-echo ASL to measure 

BOLD and cerebral blood flow (CBF) simultaneously. ETO2, BOLD and CBF then serve as 

inputs to the generalized calibration model (GCM) described in Gauthier and Hoge [59], 
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which yields a system of two equations with solutions for the BOLD calibration parameter M, 

i.e. the maximum BOLD signal increase when venous O2 saturation approaches 100%, and 

resting OEF. Multiplication of OEF by baseline CBF and arterial O2 content (estimated from 

ETO2 monitoring and, optionally, blood testing) gives resting CMRO2 in absolute units, e.g. 

µmol/100 g/min.  

An initial proof-of-concept of the QUO2 method was presented in Gauthier and Hoge 

[65] to obtain individual and group maps of BOLD calibration parameter M, resting OEF and 

CMRO2. While valid regional and group-averaged estimates of the latter parameters were 

obtained, individual OEF maps showed signs of instability characterized by large fluctuations 

in the modeled values and a lack of solution in certain regions. The stability of individual 

solution maps generated using this method depends on accurate and robust measures of end-

tidal O2 and maps of fractional changes in BOLD and CBF during the respiratory 

manipulation. In an attempt to improve the stability and avoid circumstances where the QUO2 

model cannot be solved, we have adapted the imaging and respiratory protocols used in 

several ways. Instead of performing two separate respiratory scans for hyperoxia and 

hypercapnia, we have adopted the 18-minute respiratory sequence that alternates between 

periods of hypercapnia and hyperoxia [64] and during which the total time dedicated to each 

gas manipulation is increased compared to the original protocol, improving statistical power. 

We developed a simple breathing circuit allowing a better control over fractional 

concentration of inspired gas and thus yielding improved stability of end-tidal values 

compared with the simple oxygen masks used in our earlier studies [66]. Combining a version 

of the pseudo-continuous ASL sequence (de-pCASL), the respiratory protocol and breathing 

circuit mentioned above, we assessed the test-retest reliability in the respiratory responses and 

in CBF and BOLD responses within GM [67]. In the present study, we attempted to further 

improve the voxel-wise image quality in single-subject maps by performing an integrated 

analysis on the dual-echo pCASL data. The novel analysis strategy (further described in 

Materials and Methods) involved 1) motion correcting the interleaved echo series using the 

same transformation for the two echo times; 2) applying a more holistic general linear model 

on the motion-corrected series to extract baseline parameters and gas responses using one 

regressor per combination of echo and tag/control; 3) employing both echoes information to 
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estimate R2* rather than approximating it from the second echo; and 4) employing a more 

sophisticated approach to mitigate solution instabilities from isolated non-parenchymal voxels 

using 3D median filtering.  

The aim of this study was to assess, in a small cohort of healthy individuals, the 

variability of the optimized QUO2 measures across and within subject in different brain 

regions. These results, based on the precision of the method, will help guide future 

developments and research application of the method. The following estimates were obtained: 

BOLD calibration parameter M, OEF, O2 delivery and resting CMRO2. The impact of 

systematic and random errors on the accuracy and precision of such estimates was also 

evaluated. Furthermore, these estimates were compared with CBF and BOLD-based 

reproducibility estimates derived from the same group of subjects and same enhanced 

analysis. 

2.4. Materials and Methods 

Eight healthy adults were enrolled in this study (4 females, mean age: 30.5 ± 5.7 

years). Two participants were current smokers. None of the participants had asthma, previous 

history of cardiovascular, cerebrovascular or respiratory diseases. One participant was treated 

for hypothyroidism. All participants gave written informed consent and the project was 

approved by the Comité mixte d’éthique de la recherche du Regroupement 

Neuroimagerie/Québec. They were scanned twice (referred to as Test A and Test B), within 24 

hour, using the same imaging procedures and respiratory manipulation. To minimize effects of 

diurnal fluctuation in blood flow, all sessions was acquired between 2 PM and 6 PM [107]. 

The participants were asked to abstain from caffeine 3 hours prior to scanning.  

2.4.1. Respiratory Manipulation 

For the respiratory manipulation, we adopted the gas sequence described by Bulte et al. 

[64] with a total duration of 18 minutes. This involves two 2-min periods of hypercapnia (HC) 

and two 3-min periods of hyperoxia (HO). HC was followed by a 1-min normocapnic period 

and then the 3-min hyperoxic stimulus. HO was followed by a 3-min period of normoxia.   
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HC and HO blocks were induced by supplying participants with gas mixtures enriched 

with CO2 or O2. Participants breathed the gas mixtures through the breathing circuit developed 

in-house [66]. An automated system, also developed in-house, was used to deliver the gas 

mixtures with a reproducible time course in all scanning sessions. The system comprises 4 

flow controllers (SideTrak® 840, Sierra instruments, L. Monterey, CA, USA), a ~25 mL 

mixing chamber, a digital interface (Sierra, FloBoxTM 954) to send commands to the flow 

controllers and a laptop computer to automate the gas mixture processes and collect behavioral 

data. The system’s output is connected to the breathing circuit via 10 meters of plastic tubing 

(BIOPAC, AFT31-MRI). Three gases were input to the flow controllers: medical air, oxygen 

and a 5% CO2 and air mixture. During the hyperoxia periods, subjects breathed a mixture of 

50% pure oxygen balanced with air, yielding a fix inspired O2 concentration of 60% O2. 

Otherwise, participants were given medical air to breathe. Gas mixtures were administered at a 

rate of 20 L/min, except during transitions in inspired concentrations, during which the flow 

rate was increased to 50 L/min for 5.4 seconds in order to accelerate transitions. 

Respiratory gases were continuously monitored using the CO2100C and O2100C 

modules of a BIOPAC MP150 system (BIOPAC Systems Inc., CA, USA). Gases were 

sampled via a 10m segment of rigid tubing (AFT31-XL, from BIOPAC System Inc.) in series 

with a bacterial filter (#2200/01, GVS filter technology, LA, UK) and 1’ segment of oxygen 

tubing attached to the sampling port of the respiratory circuit. 

2.4.2. Image Acquisition 

Images were acquired on a clinical 3 T scanner (Siemens TIM TRIO, Siemens Medical 

Solutions, Erlangen, Germany) using the vendor’s 32-channel receive-only head coil. The scan 

session included a 5-minute anatomical acquisition (1 mm3 MPRAGE with TR/TE/flip angle = 

2.3 seconds/3 msec/9°, 256x240 matrix, GRAPPA factor = 2), and an 18-minute functional 

scan using a dual-echo version of pseudo-continuous ASL sequence (de-pCASL) [108] in 

order to acquire simultaneous measures of BOLD and CBF. The de-pCASL parameters were: 

TR/TE1/TE2/alpha = 4.12 seconds/8.4 msec/30 msec/90°, labeling duration = 2 seconds using 

Hanning window-shaped RF pulse with duration/space = 500 µsec/360 µsec, flip angle = 25°, 

slice-selective gradient = 6 mT/m, label offset = 100 mm below the center of image slab, 
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nominal and average post-labeling delay (PLD) = 0.9 and 1.44 seconds respectively. The 

readout consisted of a GRE-EPI with GRAPPA factor = 2, partial sampling of k-space = 7/8, 

in-plane resolution of 4.5 x 4.5 mm2, 21 slices with 4.5 mm thickness and 0.45 mm gap. 

2.4.3. Respiratory Data Analysis 

Analysis of the respiratory data was carried out using an in-house program developed 

in Matlab (MathWorks, Natick, MA, USA). An automatic extraction of the end-tidal (ET) and 

fixed-inspired (FI) points from the continuous O2 and CO2 traces was performed. It was 

observed that the filter placed in series with the sampling line added an extra resistance 

causing an effect of low-pass filtering to the respiratory waveform. This resulted in an offset 

of both the ET and FI monitored pressures, i.e. an attenuation of the peak-to-peak amplitude of 

the waveform, which was dependent on the participant’s breathing pace. Each ET point was 

corrected using the average of the differences between the observed and expected FI points 

surrounding it. ET values were also corrected to account for an expired partial pressure of 

water of 47 mmHg [109]. The resting ET and changes in ET during HC and HO periods were 

determined by applying the linear model previously described [110]. The model is composed 

of a third-degree polynomial term and four regressors to represent responses to the 

hypercapnic and hyperoxic blocks. The offset term served to estimate the baseline ET whereas 

the effect size of each response regressor yielded an estimate of the associated ET change. 

Final ETO2 change to periods of HO was obtained by averaging the two ETO2 changes to HO. 

The same method was employed to compute the final ETO2 change to periods of HC, and 

ETCO2 responses to both gases.  

The average values of ETO2 at baseline and during both respiratory stimuli were used 

to compute arterial O2 content (ml O2/ml blood) and change in the venous deoxygenated 

fraction ( [dHb]/ [dHb]0 ) as in Chiarelli et al. [56] and Gauthier et al. [85]. The latter 

quantities are integrated to obtain the BOLD calibrated value M, resting OEF and CMRO2 as 

specified below. 
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2.4.4. Imaging Data Analysis 

2.4.4.1. Preprocessing  

Analysis of functional scans was performed using in-house software implemented in C. 

The interleaved echo series was motion corrected with consecutive first and second echo 

frames sharing the same transformation matrix. The resultant series was spatially filtered 

(8mm FWHM 3D Gaussian kernel), had extra-cerebral voxels removed and was intensity 

normalized (brain mean 100). The fMRI data were then fit to a GLM to extract the label and 

control series of both echoes during baseline, hypercapnia and hyperoxia periods. The model 

used four regressors per conditions to account for both echoes label and control points, and a 

third-degree polynomial with an offset term representing signal drifts. We used a single-

gamma HRF function with 20 seconds time-to-peak and 40 seconds width, which yielded 

near-exponential transitions to account for the slow response of the arterial partial pressures to 

the inspired gas [111]. ASL (S0) and BOLD (R2* or 1/T2*) control and label series at baseline 

and during gas manipulations were computed using both echoes information. ASL flow series 

were computed from subtraction of S0 control to S0 label series, whereas BOLD series were 

isolated averaging the control and label R2* series. A 3D median filtering (radius of 1 voxel) 

was applied on the resultant maps to minimize the impact of non-parenchymal voxels such as 

those containing large blood vessels. 

The functional maps produced by the above analysis were then used to further reduce 

the impact of voxels not meeting the assumptions of the QUO2 model: Baseline T2* maps 

served to exclude voxels in regions degraded by susceptibility artifacts (lower threshold of 

30ms). Voxels in which ∆R2*HO was positive were assumed to be dominated by susceptibility 

artifacts from adjacent nasal cavity due to the paramagnetic effect of molecular O2. Additional 

voxels with positive ∆R2*HC were considered as non-parenchymal and were also excluded 

from the analysis. The ASL signal was converted into physiological units of flow (mL/100 

g/min) as in Wang et al. [93] using the constants recommended by the ISMRM Working 

Committee [112] and an adjusted PLD to account for slice acquisition time (PLD range for 21 

slices of 900-1960ms).  
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During hyperoxic manipulation, the T1 of blood is altered due to an increase in plasma 

concentration of paramagnetic O2 [89]. To account for this change in blood T1, which would 

bias our ∆%CBFHO estimation, we applied a corrective factor using the approach described in 

Chalela et al. [91] and Zaharchuk et al. [92]. The T1 of blood during hyperoxic intervals was 

estimated individually using the R1 and PaO2 relationship in rats’ blood reported in Pilkinton 

et al. [89]. 

2.4.4.2. Computation of metabolism 

For each gas challenge, the changes in the venous deoxygenated fraction, along with 

the change in BOLD (∆R2*) and CBF were used as inputs to the generalized calibration 

model (GCM) described in Gauthier et al. [59]. This yields a system of two equations with two 

unknowns: the BOLD calibration parameter M (extrapolated maximum BOLD fractional 

signal increase when venous O2 saturation approaches 100%) and OEF (the fraction of 

delivered oxygen that is consumed). Absolute CMRO2 was then determined by multiplying 

OEF by O2 delivery, computed as the product of resting CBF by arterial O2 content. In the 

absence of intersection in between the HC and HO curves, the voxel is said to have no solution 

and will later be excluded from any ROI or voxel average in M, OEF and CMRO2. Because of 

the low CNR of the ASL hyperoxic response, the GM-averaged value obtained from the post- 

T1-correction ∆%CBFHO was used as an estimate of the whole-brain post-T1-correction 

∆%CBFHO. Previous studies [56,85] also report using a whole-brain estimate of ∆%CBFHO, 

with the difference that, in the current paper, the value was computed for each participant. In 

the equation defining M (Gauthier and Hoge [59], equation 7), the parameter α, which 

expresses the relationship between changes in blood flow and blood volume, was assumed to 

be 0.18 [70] while β, defining the non-linear dependence of changes in R2* on deoxygenated 

hemoglobin, was set to 1.5 [71]. The hemoglobin concentration [Hb] was assumed to be 15 g 

Hb/dl blood, although this can be readily measured using a venous blood draw. It was also 

assumed that oxygen consumption remained constant during periods of hypercapnia and 

hyperoxia (CMRO2HC and CMRO2HO). The sensitivity of QUO2 model-derived estimates to 

the assumed parameters was also evaluated, as detailed in the section ‘Accuracy of QUO2 

model-derived estimates - sensitivity to systematic errors’.  
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2.4.4.3. Tissue segmentation  

Automated segmentation of grey matter (GM) from the anatomical scans was carried 

out using the FMRIB Software Library (FSL) [113]. Structural images were extracted from T1-

weighted scans using the brain extraction tool (FSL’s BET). Then, a binary mask delineating 

the brain was created along with a probability mask of GM employing the automated 

segmentation tool (FSL’s FAST). Both were resampled to the resolution of the functional EPI 

scans. 

2.4.4.4. Regions Of Interest 

In addition to the whole brain grey matter (GM), six ROIs in ICBM space were 

selected from OASIS-TRT-20 in three-dimensional mode [114]. The selected ROIs are located 

in parietal, occipital or temporal lobes, and are known to be implicated in conditions such as 

Alzheimer’s disease [16,115-119]. ROI’s, presented in Figure 2.1, include left and right: 

inferior parietal (IP), superior parietal (SP), precuneus (PRE), hippocampus (HIP), anterior 

(caudal and rostral) cingulate (AC) and posterior cingulate (PC). Each ROI was registered to 

the resolution of the functional EPI scans before being conjoined with the individual’s GM 

probability mask excluding voxels with a GM probability lower than 50% and non-

parenchymal voxels identified previously. The resultant ROI probability masks were used to 

perform weighted averaging of the different metrics. Voxels where no solution was found for 

M and OEF were excluded when performing the ROI analysis of M, OEF and CMRO2.  
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Figure 2.1. Regions of interest (ROIs) 
QUO2 parameters were evaluated in GM and in six ROIs selected from the OASIS-TRT-20 
atlas.  
 

2.4.4.5. Registration 

Individual BOLD, CBF, M, OEF and CMRO2 maps were non-linearly normalized to 

the ICBM152 template using the CIVET software package [120] via the CBRAIN tool [121] 

with 12 degrees of freedom using trilinear interpolation. Test A and B average maps of BOLD 

and CBF were computed as arithmetic means using in-house software. On their part, average 

maps of M, OEF and CMRO2 were obtained excluding from the average any voxels where no 

solution was found 

2.4.5. Statistical Analysis 

Within each measurement, i.e. CBF, BOLD (R2*), M, OEF and CMRO2, Test A and 

Test B were averaged and compared across ROIs, considering P < 0.05 level of significance, 

correction for multiple comparisons. 
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Statistical tests were performed on the data to ensure it satisfied the criteria for 

conducting a reproducibility analysis. For ETO2 and the other parameters listed above, the 

distribution of differences was tested for normality using the Shapiro-Wilk W-test, and the 

independence between the magnitude of differences and mean of measurements was verified 

using a rank correlation coefficient (Kendall’s τ). If the differences distribution appeared to 

deviate from a normal distribution, or if the magnitude of differences increased with the mean 

of measurements, the data were transformed on the log10 scale and the verification was 

repeated. In cases where the log10 scaled data satisfied the criteria, the reproducibility was 

assessed on these scaled values. Otherwise, assessment of reproducibility was based on the 

original values along with appropriate annotation [122-124]. Additionally, to determine 

whether there was an order effect between the two tests, we performed a two-tailed paired t-

test on each set of ROI-averaged values, considering a P < 0.05 level of significance. 

ROI-averaged reproducibility was evaluated using Matlab to compute metrics that give 

complementary information on the agreement between repeated measures and population 

variance:  

a) dSD, the standard deviation of the differences between Test A and B measurements. 

b) wsSD, the within-subject standard deviation, equals dSD/√2 considering two 

measurements. 

c) wsCV, the within-subject (or intra-subject) coefficient of variation, as used in Floyd et al. 

[123] and Chen et al. [125]. wsCV=√ [mean of the (wsSD/subject mean)2]. wsCV provides 

an unbiased reproducibility measurement expressed as a percent of the mean with a low 

wsCV indicating a high reproducibility. When data were on the log10 scale, wsCV was 

approximated by 10^(wsSD)-1 [126]. 

d) CR, the coefficient of repeatability [127] = 1.96*√2*wsSD or 1.96*dSD. CR gives an 

estimate of the range of values one would obtain in a retest measurement. Thus, 95% of 

repeated measures for the sample will lie between the interval mean differences ± CR 

(⍺=0.05).  

e) bsCV, the between-subject (or inter-subject) coefficient of variation as computed in 

Tjandra et al. [128]. bsCV = SDpooledData / meanpooledData * 100. 
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2.4.6. Accuracy of QUO2 model-derived estimates - sensitivity to 

systematic errors 

The QUO2 derived estimates accuracy rely on assumed physiological parameters such 

as α, β, [Hb], as well as assumed normalized CMRO2 changes during HC and HO. As sources 

of systematic errors, the assumed values won’t affect the reproducibility/precision analysis 

outcomes, however they can lead to individual inaccuracy of M, OEF and CMRO2. Using the 

group-averaged GM experimental Test A data, the sensitivity of QUO2 estimates to assumed 

parameters was evaluated by independent variation in α, β, [Hb], CMRO2HC and CMRO2HO. 

The values used in the previous analysis were: α=0.18, β=1.5, [Hb]=15g Hb/dl blood, while 

isometabolism during hypercapnia and hyperoxia was considered (CMRO2HC and CMRO2HO 

= 1.0). Explored ranges of α and β were respectively 0.15 to 0.45 and 1.0 to 1.5, matching 

those in Chiarelli et al. [56]. The span of [Hb], i.e. from 11 to 17 g Hb/dl blood, was chosen as 

in Mark et al. [129] to take into account differences in gender and presence of anemia or 

polycythemia [130]. Evaluated ranges of change in CMRO2 during HC and HO were 

determined as in Merola et al. [131]: i.e. a change of ± 1% in CMRO2 for 1 mmHg and 40 

mmHg change in end-tidal CO2 and O2 respectively. We also evaluated the impact of a 

maximum of 10% decrease in blood flow during HO periods, as this parameter is often 

assumed (normalized CBFHO from 0.90 to 1.0).  

2.4.7. Precision of QUO2 model-derived estimates - sensitivity to 

random errors 

Within-subject precision of the QUO2 model-based M, OEF and CMRO2 estimates can 

be affected by a certain real physiological within-subject variability as well as random errors 

in the measurement of brain’s responses to hypercapnia and hyperoxia. To evaluate the effect, 

on OEF and M precision, of such errors in measurement, we performed an error propagation 

analysis of the QUO2 model, employing Test A data. In addition to the analysis of errors in 

measured CBF during HC, also discussed in Gauthier and Hoge [59], we examined the impact 

of errors in measured R2* changes during both respiratory challenges. For each observed 

source of error, individual OEF and M values were computed based on ‘real’ GM and 

respiratory measures, with simulated error ranging from -33% to +33% added to the examined 
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source. This simulated error can be translated into coefficient of variation of the observed 

input: the CV being the percent of variability with respect to the mean value, it is lower when 

an error is added to the measurement (CV of 20% for an error of +33%) rather than subtracted 

(CV of 28% for an error of -33%). Simulated group-average M and OEF were computed from 

the individual simulated values, while the latter were compared with the ‘real’ values to 

calculate the simulated CVs with respect to the added error.  

2.5. Results 

One participant was excluded from the analysis because their CBF response to CO2 during 

Test A was found to be an outlier (value beyond twice the standard deviation). This participant 

reported a high level of anxiety during Test A due to a first MRI scan and hypercapnia 

experience.  

2.5.1. Gas manipulations 

At rest, the within- and between breathing rate coefficient of variation were 13% and 

38% respectively. The average and standard deviation of ETO2 levels in Test A and B are 

shown in Figure 2.2-A. Breathing medical air (~160 mmHg of O2) yielded average ETO2 

levels of 111 ± 6 mmHg and 110 ± 4 for the two scan time points. During hyperoxia induction, 

when participants received a gas mixture with 380 mmHg of O2, ETO2 levels increased to 370 

± 9 mmHg during Test A and 374 ± 12 mmHg during Test B. During hypercapnia periods, 

participants demonstrated a slight increase in the minute volume ventilation, which increased 

ETO2 levels in comparison to air-breathing (118 ± 4 and 117 ± 4 mmHg) despite a slightly 

lower inhaled O2 concentration (~152 mmHg). Figure 2.2-B shows the average and standard 

deviation of ETCO2 levels in Test A and B. ETCO2 levels at baseline and during hyperoxia 

were found to be similar, with 40 ± 2 mmHg and 39 ± 2 mmHg (in both tests) respectively. 

During HC, the ETCO2 levels increased to 49 ± 1 mmHg and 50 ± 2 mmHg in Test A and B 

respectively. Table 2.I shows, for both ETO2 and ETCO2 measurements, P-values of Shapiro-

Wilk W-test, Kendall’s rank coefficient and t-Student paired test, as well as wsCV and CR. 

All distributions of differences in tests were found to be normal (Shapiro-Wilk W-test, P > 

0.05) and no dependence was observed between the differences in measurements and mean of 
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measurements (Kendall’ τ, P > 0.2). Finally, no significant difference (t-Student paired test, P 

> 0.1) was found between Test A and Test B end-tidal levels, which were also reproducible 

(ETO2: CR<20 mmHG, wsCV<5%; ETCO2: CR<6 mmHG, wsCV<6%). 

      
Figure 2.2. Gas manipulations 
Test A and B end-tidal O2 and CO2 values at baseline (0), during hyperoxia (HO) and during 
hypercapnia (HC). Errors bars indicate standard deviation.  
 
 
 
 
 
 
 ETO20 ETO2HO ETO2HC ETCO20 ETCO2HO ETCO2HC 

 Test A mean ± SD 111 ± 6 370 ± 9 118 ± 4 40 ± 2 39 ± 2 49 ± 1 
 Test B mean ± SD 110 ± 4 374 ± 12 117 ± 4 40 ± 2 39 ± 2 50 ± 2 

All mean ± SD 111 ± 5 372 ± 10 118 ± 4 40 ± 2 39 ± 2 50 ± 2 
Shapiro-Wilk P=0.38 P=0.24 P=0.25 P=0.05 P=0.3 P=0.08 

Kendall’s τ P=0.38 P=0.24 P=1.00 P=0.38 P=0.56 P=0.38 
Paired t-test P=0.73 P=0.39 P=0.51 P=0.58 P=0.83 P=0.1 

CR 13 19 10 5 3 4 
wsCV 4.4% 1.9% 3.0% 5.0% 3.2% 2.6% 

Table 2.I. End-tidal measurements 
Group-averaged ± SD of end-tidal values are presented, followed by Shapiro-Wilk, Kendall’s 
τ and paired t-test P value. Coefficient of repeatability (CR) and within-subject coefficient of 
variation (wsCV) are also shown. 
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2.5.2. Exclusion of non-parenchymal or artifact voxels 

Figure 2.3 shows sagittal group-averaged maps of voxels excluded from the ROI 

analysis given that they were considered as non-parenchymal or dominated by susceptibility 

artifacts, based on individual ∆R2*HC, ∆R2*HO and T2*0. Both tests presented similar patterns 

of excluded voxels, and, as expected, the latter were mainly situated in regions adjacent to the 

nasal cavity due to the paramagnetic effect of molecular O2. In Table 2.II, we present, for each 

ROI, the group average and standard deviation of the number of voxels with GM probability 

higher than 0.5, preceding and following the exclusion process. No significant difference was 

found between Test A and Test B number of pre- and post-exclusion voxels (all P > 0.23). In 

whole GM, 24 ± 4% were excluded from the analysis. The hippocampus and the anterior 

cingulate were the most affected by the procedure, with a percentage of exclusion of 31 ± 10% 

and 30 ± 9% respectively, whereas less than 2% of voxels were excluded in the other regions.  

           

Figure 2.3. Exclusion of non-parenchymal or artifact voxels 
For both tests, voxels considered as non-parenchymal or affected by susceptibility artifacts 
based on individual ΔR2*HC, ΔR2*HO and T2*0 are shown overlapping a sagittal slice of the 
ICBM template. The latest column presents the overall excluded voxels in each test.  

 

 GM IP SP PRE HIP AC PC 
Number of voxels        pre-exclusion 

Test A mean ± SD 5676 ± 550 234 ± 33 197 ± 32 168 ± 33 79 ± 11 88 ± 21 59 ± 14 
Test B mean ± SD 5715 ± 541 226 ± 21 204 ± 20 167 ± 23 78 ± 12 88 ± 15 53 ± 10 

Paired t-test P=0.35 P=0.26 P=0.30 P=0.90 P=0.55 P=0.95  P=0.25 

Test A

Test B

R2*HC > 0 s-1 R2*HO > 0 s-1 T2*0 < 30ms all voxels
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Number of voxels        
 post-exclusion 

Test A mean ± SD 4331 ± 567 233 ± 33 193 ± 26 166 ± 32 54 ± 7 63 ± 23 59 ± 14 
Test B mean ± SD 4316 ± 561 225 ± 22 200 ± 16 167 ± 23 53 ± 10 62 ± 16 53 ± 10 

Paired t-test P=0.74 P=0.23 P=0.28 P=0.92 P=0.84 P=0.93 P=0.25 
Percent of excluded         voxels (%) 
 24 ± 4 0.58 ± 0.91 1.81 ± 2.37 0.60 ± 0.73 31 ± 10 30 ± 9 0.00 ± 0.00 
Table 2.II. Exclusion of non-parenchymal or artifact voxels 
Group-averaged ± SD of the number of voxels in each ROI are presented before and after the 
voxels exclusion procedure. Paired t-test P values between Test A and Test B number of 
voxels as well as percentage of voxels excluded are also shown. 

 

2.5.3. T1 shortening  

Estimates of arterial blood T1 during HO were found to be 1.558 ± 0.004 sec for Test A 

and 1.556 ± 0.006 sec for Test B, with no significant difference between them (paired t-test, P 

= 0.39). Computation of GM-averaged post-T1-correction ∆%CBFHO resulted in 0.4 ± 4.5% 

for Test A and -2.8 ± 3.3% for Test B. No significant difference (paired t-test, P = 0.25) was 

found between them and both were not significantly different from zero (P > 0.07). 

2.5.4. Detection rate of solutions in ROI 

The percentage of voxels where a solution was found for M and OEF were computed 

for each individual and test. The results, presented in the Table 2.III, show no significant 

difference between Test A and Test B (P > 0.21) and all detection rates were above 87% 

besides in HIP where the detection rare were 78%. These percentages are based on the number 

of voxels after exclusion of non-parenchymal and artifact voxels found in the Table 2.II.  

 GM IP SP PRE HIP AC PC 
Test A 89 ± 5 95 ± 4 97 ± 3 93 ± 9 78 ± 11 87 ± 11 100 ± 1 
Test B 88 ± 7 92 ± 10 95 ± 6 91 ± 11 78 ± 13 94 ± 5 99 ± 2 

Paired t-test P=0.86 P=0.53 P=0.56 P=0.73 P=0.99 P=0.21 P=0.25 
Table 2.III. Detection rate of solutions in ROI (%) 
Group-averaged ± SD of the percentage of voxels where a solution was found for M and OEF 
are shown in each ROI. Paired t-test P values between Test A and Test B detection rate are 
also shown. 
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2.5.5. Test and retest group-averaged metrics across ROIs 

A summary of the dual-echo pCASL and QUO2 ROI-averaged metrics is presented in 

Figure 2.4. For each combination of metric and ROI, we present the group average of Test A, 

Test B and of both tests. Resting CBF, O2 delivery and resting R2* displayed the highest 

group-averaged test-retest reproducibility. Resting R2* presented the lowest population 

variance in both tests. Resting CBF and O2 delivery, due to their direct relation, showed a 

similar pattern of values across ROIs. Similarly for M and ∆R2*HC, given that QUO2 M values 

are very sensitive to change in R2* and CBF during HC while nearly insensitive to change 

during HO (as later demonstrated in the “Precision of group GM-averaged values – sensitivity 

to random errors” section). A larger decrease in R2* (higher BOLD increase) was observed 

during HC than during HO in every ROIs. Although every metrics, but OEF, showed a certain 

tendency of heterogeneous values across ROIs, all differences were not found statistically 

significant, as presented in the following section. 
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Figure 2.4. Test and retest group-averaged metrics across ROIs 
ROI-averaged of Test A, Test B and all tests averaged are presented with standard deviation. 
 

2.5.6. Comparison of all tests averaged between ROIs 

Data from all subjects and tests were averaged and compared across ROIs. Figure 2.5 

shows where a significant difference (P < 0.05) was found between two ROIs, after correction 

for multiple comparisons. No statistical significant difference was found in fractional CBF 

change to HC across ROIs, except in the HYP, were the smallest change was found. R2* 

change to HO was found to be the smallest in AC among all ROIs except compared to HYP 

values, whereas the smallest R2* change to HC was found in HYP. Due to its low population 
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variance within ROI, resting R2* presented values generally significantly different across 

ROIs. On the contrary, OEF were found to have consistent values across ROIs (P > 0.2). 

           

Figure 2.5. Comparison of all tests averaged between ROIs  
For each metric, group average of all subjects and tests was compared across ROIs. Colors 
code for limits in P values after correction for multiple comparisons: dark blue indicates 
absence of significant difference (P > 0.05), while light blue (P < 0.05), green (P < 0.005) and 
orange (P < 0.0005) illustrate a significant difference between two ROIs (designed in the X 
and Y axis).  
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2.5.7. ROI reproducibility analysis 

In Table 2.IV, we report the reproducibility analysis of the dual-echo pCASL and 

QUO2 measurements in each ROI, more precisely, the P-value of Kendall’s τ, Shapiro-Wilk 

and paired t-test, the CR and wsCV. Shapiro-Wilk and Kendall’s τ test detected, for a certain 

combination of metric-ROI, if the distribution deviated from normality (condition a in Table 

2.IV) and if there was a dependency between the differences in measurements and the mean of 

measurements  (condition b in Table 2.IV) respectively. In all cases, a log10 transformation of 

the data resulted in the satisfaction of both conditions (reproducibility of transformed data is 

presented in boldface) except for ∆%CBFHC in AC which distribution deviated from normality 

after the transformation (reproducibility of original data is presented in italic boldface). Paired 

t-tests detected no significant difference between Test A and Test B (P > 0.07), except for %M 

in AC (P < 0.001), OEF in HIP (P < 0.03) and CMRO2 in HIP (P < 0.05). 

 GM IP SP PRE HIP AC PC 
Average volume         
Mean ± SD, cm3  
>50% prob. GM        394 ± 49 20.9 ± 2.5 17.9 ± 1.9 15.2 ± 2.4 4.9 ± 0.8 5.7 ± 1.8 5.1 ± 1.1 
∆%CBFHC        

Shapiro-Wilk P=0.56 P=0.19 P=0.04a P=0.58 P=0.78 P=0.03a P=0.007a 
Kendall’s τ P=0.77 P=0.77 P=0.14 P=0.38 P=0.24 P=0.56 P=0.24 

Paired t-test P=0.19 P=0.45 P=0.43 P=0.51 P=0.68 P=0.08 P=0.23 
CR 31.1 32.1 0.4 51.6 30.4 38.8 0.5 

wsCV 22.4% 25.9% 35.6% 35.8% 40.3% 26.5% 46.9% 
∆R2*HO        

Shapiro-Wilk P=0.21 P=0.51 P=0.02a P=0.49 P=0.65 P=0.46 P=0.93 
Kendall’s τ P=0.24 P=0.03b P=0.24 P=1.00 P=0.14 P=0.07 P=0.77 

Paired t-test P=0.08 P=0.41 P=0.18 P=0.17 P=0.20 P=0.21 P=0.22 
CR 0.15 0.21 0.17 0.18 0.15 0.12 0.17 

wsCV 16.0% 18.9% 15.3% 18.9% 19.2% 17.4% 19.3% 
∆R2*HC        

Shapiro-Wilk P=0.57 P=0.40 P=0.47 P=0.05 P=0.21 P=0.16 P=0.02a 
Kendall’s τ P=0.56 P=1.00 P=0.56 P=0.77 P=0.03b P=0.77 P=1.00 

Paired t-test P=0.49 P=0.35 P=0.13 P=0.49 P=0.12 P=0.54 P=0.37 
CR 0.14 0.17 0.16 0.18 0.18 0.19 0.08 

wsCV 6.70% 8.93% 7.43% 8.09% 16.10% 11.00% 6.93% 
CBF0 mL/100 
g/min        

Shapiro-Wilk P=0.90 P=0.25 P=0.93 P=0.07 P=0.80 P=0.45 P=0.39 
Kendall’s τ P=1.00 P=0.56 P=0.56 P=0.07 P=1.00 P=0.14 P=0.56 

Paired t-test P=0.48 P=0.66 P=0.77 P=0.37 P=0.13 P=0.50 P=0.31 
CR 5.4 5.5 7.9 7.4 6.0 9.8 10.9 

wsCV 3.88% 3.38% 6.50% 5.32% 5.23% 6.99% 7.45% 
R2*0        

Shapiro-Wilk P=0.45 P=0.10 P=0.64 P=0.19 P=0.32 P=0.46 P=0.55 
Kendall’s τ P=1.00 P=0.77 P=0.07 P=0.38 P=0.14 P=1.00 P=1.00 

Paired t-test P=0.91 P=0.07 P=0.65 P=0.42 P=0.85 P=0.36 P=0.52 
CR 0.17 0.65 0.55 0.33 0.94 0.56 0.45 

wsCV 0.33% 1.24% 1.05% 0.70% 1.54% 1.30% 0.96% 
%M        



 

 32 

Shapiro-Wilk P=0.04a P=0.31 P=0.05a P=0.91 P=0.20 P=0.08 P=0.22 
Kendall’s τ P=1.00 P=0.24 P=0.38 P=0.77 P=0.77 P=0.77 P=1.00 

Paired t-test P=0.11 P=0.19 P=0.28 P=0.23 P=0.12 P=0.0006c P=0.10 
CR 0.19 1.84 0.22 2.50 2.32 1.72 2.42 

wsCV 16.8% 16.6% 20.2% 18.1% 21.5% 16.7% 19.1% 
O2deliv 
µmol/100 g/min        

Shapiro-Wilk P=0.86 P=0.27 P=0.76 P=0.16 P=0.29 P=0.75 P=0.42 
Kendall’s τ P=1.00 P=1.00 P=0.56 P=0.14 P=1.00 P=0.24 P=0.56 

Paired t-test P=0.49 P=0.77 P=0.79 P=0.37 P=0.21 P=0.52 P=0.34 
CR 41 44 59 58 46 71 83 

wsCV 3.87% 3.63% 6.29% 5.35% 5.36% 6.75% 7.43% 
OEF        

Shapiro-Wilk P=0.12 P=0.03a P=0.75 P=0.19 P=0.32 P=0.09 P=0.21 
Kendall’s τ P=0.38 P=0.24 P=1.00 P=0.24 P=0.56 P=1.00 P=0.77 

Paired t-test P=0.15 P=0.76 P=0.41 P=0.35 P=0.02c P=0.13 P=0.37 
CR 0.14 0.16 0.16 0.16 0.12 0.21 0.26 

wsCV 13.6% 14.1% 16.5% 14.7% 14.7% 18.2% 23.0% 
CMRO2 
µmol/100 g/min        

Shapiro-Wilk P=0.47 P=0.47 P=0.58 P=0.07 P=0.55 P=0.36 P=0.26 
Kendall’s τ P=0.56 P=0.03b P=0.03b P=0.24 P=0.77 P=0.56 P=1.00 

Paired t-test P=0.15 P=0.80 P=0.51 P=0.36 P=0.05c P=0.10 P=0.30 
CR 62 0.16 0.25 80 50 88 128 

wsCV 15.2% 14.0% 23.3% 17.9% 20.6% 18.9% 26.7% 
 
Table 2.IV. Reproducibility of QUO2 measurements in different ROI 
P value of Shapiro-Wilk, Kendall’s τ, paired t-test, coefficient of repeatability (CR) and 
within-subject coefficient of variation (wsCV) are presented. When conditions described in 
footnote a or b were present, data were log10 transformed and the conditions were evaluated 
once again. If the conditions were then satisfied, the reproducibility metrics were computed 
on the transformed data (results presented in boldface). Otherwise, the reproducibility metrics 
were computed on the original data (results presented in italic boldface). 
a The distribution of difference in measurements deviated from normality.  
b A significant dependency between difference in measurements and mean of measurements 
was detected. 
c A significant difference between Test A and Test B was detected. 
 

Figure 2.6 compares individual-subject reproducibility (wsCV) with the population 

variance (bsCV) of QUO2 measurements in each ROI. Among all ROIs, the measurement that 

showed lower inter- and intra-subject variability was resting R2* (wsCV < 2%; bsCV < 

5.5%). CBF0 and O2 delivery come next, with a low individual-subject reproducibility (ROI-

averaged wsCV = 5.5%) compared to the population variance (ROI-averaged bsCV = 14.6%), 

meaning the latter cannot be explained by poor reproducibility of the technique. It is also an 

indication of reproducible estimate of arterial O2 content. ∆R2HC was also found to have a 

considerably higher intra-subject consistency than across subjects (ROI-averaged wsCV = 

9.3%; ROI-averaged bsCV = 22.3%), as opposition to ∆R2HO (ROI-averaged wsCV = 17.9%; 
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ROI-averaged bsCV = 17.5%). The highest inter- and intra-subject variability was found in 

∆%CBFHC (wsCVGM = 22.4%; wsCVallROI = [22.4%, 46.9%]; bsCVGM = 21.6%; bsCVallROI = 

[21.6%, 37.9%]). As for the QUO2 estimated measurements M, OEF and CMRO2, their wsCV 

in GM were found to be lower than 17% and they ranged from 13% to 27% across all ROIs. 

Their variability across subjects was higher by a factor of 1.3 in average across ROIs. Values 

averaged over GM were found to have the lowest inter- and intra-subject variability among 

regional averages (mean wsCV of 11.0 ± 7.4%; mean bsCV of 16.15 ± 6.55%). Variability in 

smaller regions, i.e. HIP and PC, was generally found higher, although no significant 

correlation between ROI volume and variability was found, except for resting R2* 

measurements (Pearson correlation coefficient R2=-0.76, P = 0.048).   

        

Figure 2.6. ROI analysis of within- and between-subject reproducibility 
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Within each ROI, are shown the within- and between-subject coefficient of variation 
(respectively wsCV (blue) and bsCV (red)) for each metric.  

 

Test-retest correlation plots for each metric across the different ROIs can be found in 

Figure 2.7. For each individual, Test A against Test B measurements is shown, with colors 

coding for the different ROIs. For each metric, a linear regression model with zero intercept 

was applied on the data. The computed coefficient of determination (R2) is displayed in each 

graph. In each measurement, the regression line that fit the data is shown in solid grey. Values 

lying in the vicinity of the identity line (solid black line) indicate a good reproducibility of the 

measurements. Among all quantities, resting R2*, resting CBF, O2 delivery and ∆R2*HC 

present the best reproducibility, whereas ∆%CBFHC, ∆R2*HO, %M, OEF and CMRO2 show a 

larger scattering of the data around the identity line.  
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Figure 2.7. ROI analysis of individual reproducibility - Correlation plots 
For each measurement, individual Test A against Test B ROI-averaged is plotted. Values 
close to the identity line (solid black line) indicate a good reproducibility. For each metric, a 
linear regression with zero intercept was performed on the data. The resulted coefficient of 
detection (R2) and the fit to the data (grey line) are presented.  

 

An additional illustration of reproducibility is offered by Bland-Altman plots for each 

measurement, as shown in Figure 2.8. The individual mean of measurements against the 

difference in measurements is plotted, with colors coding for the different ROIs. For each 

ROI, a solid line represents mean of difference, whereas dashed lines depict the confidence 

intervals (i.e. mean difference ± CR). We can observe a trend toward higher variability in 
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smaller regions (HIP, AC, and PC) compared to larger regions, a finding that is to be expected 

based on statistical considerations. 

. 

         

Figure 2.8. ROI analysis of individual reproducibility - Bland-Altman graphs 
For each measurement, the difference in sessions against the mean is displayed. Within each 
ROI, a solid line represents the mean difference between measurements. The dashed lines 
represent the ROI-averaged limits of agreement (mean ± 1.96 * dSD i.e. mean ± coefficient of 
repeatability (CR)) indicating that 95% of repeated measures will fall in between them.  
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2.5.8. Parametric maps 

In Figure 2.9, we show group-average Test A and B maps of the different 

measurements. One axial and one sagittal slice of the ICBM152 template are shown. The 

group-average maps generally demonstrate good qualitative agreement between test and retest, 

with the main exception being ∆%CBFHC. Figure 2.10 shows OEF and M maps in individual 

subjects, for Tests A and B, as well as group average and standard deviation maps. One axial 

slice of the ICBM152 template is shown. The subject count maps indicate, at each voxel, the 

number of subject included in the group average, given that voxels with no solution found for 

OEF and M were excluded from the average. Individual OEF and M maps generated using the 

optimized QUO2 present little random fluctuation in values and very few voxels with no 

solution. Group average maps for both parameters were qualitatively very similar in 

appearance, although differences between Tests A and B are noted in individual subjects.  
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Figure 2.9. Group maps 
For each metric, Test A and B group maps are shown in one axial and one sagittal slice. Maps 
were non-linearly registered to ICBM152 before being averaged. M, OEF and CMRO2 maps 
were averaged using an approach where non-solution voxels were excluded from the average.  
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Figure 2.10. Individual OEF and M maps 
Test A and B individual OEF and M maps are shown in one axial slice of ICBM152 template. 
Followed maps are the group average, the standard deviation, and the subject count maps. The 
latter maps indicate at each voxel the number of subjects where a solution was found for OEF 
and M, meaning they were part of the group average.  
 

2.5.9. Accuracy of group GM-averaged values - sensitivity to 

systematic errors 

Sensitivity of the model to systematic errors resulting from the assumed parameters is 

summarized in Figure 2.11. Based on our Test A group-averaged changes in ET during each 

respiratory manipulation, our evaluated ranges of percent change in metabolism were ±10% 

and ±7% in HC and HO respectively. Effects of the assumed α, β, [Hb], CMRO2HC, 

CMRO2HO and CBFHO on the HC and HO curves are presented (Figures 2.11- A1 to A6 

respectively), followed by resultant estimates of M, OEF and CMRO2 (Figures 2.11- B1, B2 

and B3 respectively). The β and CMRO2HC assumed values are the principal sources of 

variation in M, while variations in [Hb], CMRO2HO and CBFHO yield almost no change to the 

estimate. Figures 2.11- A5 and A6 show that, by not affecting the HC curve, variations in 

metabolism and blood flow during HO shift the HO curve on the nearly horizontal section of 

the HC curve, resulting in almost no alteration in M solution. The assumption of change in 

CMRO2 during HO is the principal sources of variation in OEF, especially if a decrease in 

metabolism is considered (0.93 < CMRO2HO < 1.0). Furthermore, OEF is similarly sensible to 

variation in [Hb], CMRO2HC and CBFHO, while presenting almost no change as a variation in 
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β. Both M and OEF are similarly influenced by a variation in α. The used value of 0.18 for α 

results in an M and OEF of 5.0% and 0.39 respectively, while if α is changed to the commonly 

adopted values of 0.38, the calculated M and OEF values become 5.6% and 0.44. Estimate of 

metabolism being the product of resting CBF by OEF and arterial O2 content, a certain percent 

increase/decrease in OEF leads to the same percent increase/decrease in CMRO2 with the 

exception where [Hb] is varied, given that it leads to a change in the arterial O2 content in the 

opposite direction as in OEF. 

        

Figure 2.11. Accuracy of group GM-averaged values - sensitivity to systematic errors  
Observed effects, on M, OEF and CMRO2 estimates, of the assumed QUO2 parameters, are 
summarized. Estimates were based on group-averaged Test A de-PCASL measurements in 
GM and ETO2 (‘true’ values), while the assumed parameters α, β, [Hb], normalized change in 
CMRO2 due to HC (CMRO2HC) and HO (CMRO2HO), as well as normalized change in CBF 
during HO (CBFHO) were varied independently. The HC and HO curves resulting from the 
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use of six different values of α, β, [Hb], CMRO2HC, CMRO2HO and CBFHO are presented (A1 
to A6 respectively). Each red dot represents the HC and HO curves intersection (hence one M 
and OEF solution) when either one of the extremity in the observed range is in use. The 
remaining M and OEF solutions lie on a line connecting both red dots and passing by the 
subsequent intersections. M, OEF and CMRO2 estimates are presented as a function of each 
varied parameter (B1, B2 and B3 respectively, ranges mentioned below each plot). Below the 
CBFHO range is shown the corresponding range of blood T1 during HO. The original values 
employed in this study were α = 0.18, β = 1.5, [Hb] = 15 g Hb/dl blood, CMRO2HC = 1 
(isometabolic hypercapnia), CMRO2HO = 1 (isometabolic hyperoxia), while our post-T1-
correction group-averaged normalized CBFHO in Test A was estimated to be 1 (i.e. no CBF 
change during HO). Resulted ‘true’ group-averaged Test A M, OEF and CMRO2 estimates in 
GM were 4.96%, 0.39 and 152 µmol/100 g/min respectively (shown by the blue stars).  

 

2.5.10. Precision of group GM-averaged values - sensitivity to 

random errors 

Sensitivity of M and OEF to random errors in BOLD and CBF measurements is 

summarized in Figure 2.12. Given that neither resting CBF nor arterial O2 content are varied 

here, the relative impacts of errors in BOLD and CBF responses measurements on CMRO2 

and OEF are equivalent. Therefore, estimates and variation of CMRO2 are not shown. Effect 

of errors in CBFHC, R2*HC and R2*HO on HC and HO curves are presented in Figures 2.12- 

A1, A2 and A3 respectively. Errors in CBFHC or R2*HC affect both M and OEF estimates, 

whereas errors in R2*HO, by shifting the HO curve on the nearly horizontal section of the HC 

curve, result in almost no alteration in M solution. OEF and M estimates as a function of 

percent errors or variability of measurement are shown in Figures 2.12- B1 and B2 

respectively. Figure 2.12-B1 exhibits a nearly linear increase in OEF errors as each of the 

input’s error increases. Figure 2.12-B2 presents the same observation for M estimates, with the 

exception mentioned above where errors in R2*HO have almost no noticeable effect. The 

direction of the effect on OEF and M estimates depend of the source of error: an 

underestimated R2*HC will lead to an underestimated OEF or M, whereas if overestimated, 

OEF and M will also be overestimated. On the other hand, CBFHC have the opposite effect on 

OEF and M as well as R2*HO on OEF. Figures 2.12- C1 and C2 show resulted variability of 

OEF and M estimates respectively. We observe that for the same percent error, CBFHC will 
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induce a lower variability in OEF than R2*, and a lower variability in M than R2*HC. 

However, it is known that one of the limiting factors of such calibrated MRI methods is the 

low signal-to-noise ratio of ASL measurements, which is more susceptible to induce higher 

errors than in BOLD measurements. Figure 2.12-C brings our attention to the fact that the test-

retest variability found in our experimental CBFHC (wsCV=22%) and R2*HO (wsCV=16%) 

data, likely contributed to a minimum of 10% variability in our M and OEF estimates.  

         

Figure 2.12. Precision of group GM-averaged values - sensitivity to random errors  
Observed effects, on M and OEF estimates, of error in BOLD and CBF measurements, are 
summarized. Estimates were based on group-averaged Test A de-PCASL measurements in 
GM and ETO2 (‘true’ values), while a simulated error was added to each observed input 
independently. Evaluated error ranged from -33% to 33%, which is equivalent to a maximum 
measurement CV of 28% (when underestimated) and 20% (when overestimated). The 
hypercapnia (HC) and hyperoxia (HO) curves resulting from six different errors in CBFHC, 
BOLDHC and BOLDHO are shown (A1, A2 and A3 respectively). Each red dot represents the 
HC and HO curves intersection (hence one M and OEF solution) when either one of the 
extremity in the observed range is in use. The remaining M and OEF solutions lie on a line 
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connecting both red dots and passing by the subsequent intersections. OEF and M estimates 
(B1 and B2 respectively) in addition to CV between simulated and ‘true’ OEF/M values (C1 
and C2) were computed for each source of error (colored lines). Without addition of error in 
measurements, ‘true’ group-averaged Test A M and OEF estimates were 4.96% and 0.39 
respectively (shown by the blue stars and the perforated grey lines).  

 

2.6. Discussion 

We have characterized the inter- and intra-subject variability of the estimated M, OEF 

and absolute CMRO2 derived from the optimized QUO2 approach, which is a crucial step in 

the development and clinical application of this MRI technique for the quantitative 

measurement of oxygen delivery and consumption in the human brain. A visual inspection of 

the individual maps of M and OEF revealed a larger stability of values and fewer regions with 

no solution than the individual maps presented in the initial proof-of-concept of the QUO2 

model [65]. 

We obtained physiologically plausible tests-averaged M, OEF and CMRO2 estimates in 

GM that were compared to those in literature summarized in Table 2.V. Variability among 

different studies in estimated values can arise from: the imaging technique employed, the type 

of breathing manipulations, the values of the assumed parameters, and the strategy employed 

to define the grey-matter region. Our M average of 4.69 ± 0.91% falls in the low end of 

reported values, although this may be mainly due to a more aggressive exclusion of large 

venous voxels. Our OEF and CMRO2 of 0.37 ± 0.06 and 144 ± 34 µmol/100 g/min 

respectively fall within the reported range of values. 

Study 
M  

Study OEF 
CMRO2  

(%) µmol/100 g/min 
Bulte et al. (2009)  [132] 5.3 Xu et al. (2009)  [103]  158** 
Ances et al. (2008)  [133] 5.7 Bolar et al. (2011)  [63] 0.26 ± 0.02 125 ± 15 
Gauthier and Hoge (2012)  [65] 6.0 Gauthier and Hoge (2012)  [65] 0.35 ± 0.04 145 ± 30 
Ances et al. (2009)  [96] 6.5 Lu and Ge (2008)  [102] 0.35 ± 0.06  
Mark et al. (2011)  [129] 6.5-9.7 Jain et al. (2010)  [104] 0.35 ± 0.01 123 ± 4 
Chen and Parrish (2009)  [134] 6.7 Van Zijl et al. (1998)  [139] 0.36 137 
Wise et al. (2013)  [106] 6.9-9.2 Wise et al. (2013)  [106]  0.42 - 0.50 184±45-222±82 

Chiarelli et al. (2007)  [56] 7.0 Coles et al. (2006)  [140] 0.38 ± 0.68 130 ± 24** 
Ances et al. (2009)  [96] 7.3 Leenders et al. (1990)  [100] 0.38 155*  
Bulte et al. (2012)  [64] 8.5 Bulte et al. (2012)  [64] 0.38 ± 0.14 155 ± 39 
Gauthier et al. (2011)  [135] 9.5 Bremmer et al. (2010)  [141] 0.43 ± 0.63  120 ± 8 
Lin et al. (2008)  [136] 10.5 Ibaraki et al. (2010)  [23] 0.43 137* 
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Leontiev and Buxton (2007)  [137] 11.1 Ito et al. (2004)  [142] 0.44 ± 0.06 129 ± 20 
Perthen et al. (2008)  [138] 11.6    

Table 2.V. Literature values of M, OEF and resting CMRO2 

The majority of M values were taken from Gauthier et al. [135]. All are values at 3 T, 
adjusted to TE=30ms. 
Pet studies are identified with a light grey background. 
* Extrapolated value to match our mean age of 30 years old. 
** Corrected value for the ratio of CMRO2 and mass between GM and WM [106]. 

2.6.1. Regional inter- and intra-subject reproducibility  

Our individual-subject reproducibility in every parameters was found to be lower than 

our population variance, as also reported in previous study [128,137,143], except for our CBF 

response to HC and BOLD response to HO. Inter- and intra-subject variability of QUO2 

measurements was found to be the lowest when averaged throughout all GM, with general 

trends toward higher CVs when averaged over smaller regions, a findings consistent with 

previous studies [143,144]. Based on statistical consideration, averaging an estimate across a 

relatively large region is likely to yield less variability than when averaging across a small 

section of the brain. Although we observed a certain trend toward higher variability in smaller 

regions, our results showed no significant correlation between ROI volume and variability 

except for R2* measurements. The most intra-subject reproducible measurements was CBF0, 

along with O2 delivery and R2*0. Our regional CBF0 wsCV were comparable to that reported 

by Wang et al. [144].  

To our knowledge, reproducibility of OEF and absolute CMRO2 estimated from 

combined HC and HO calibrated BOLD technique has not been characterized in studies so far 

published. On the other hand, variability of M calibration parameter and relative change in 

CMRO2 were studied. In a small area of the visual cortex, Leontiev and Buxton [137] 

evaluated the intra-subject variability in M, CBF and BOLD responses to HC employing a 

different CV computation. Adjusting our CV computation to theirs, we obtain a similar wsCV 

for M of 13% in GM (compared to 12.3%) and a lower variability in BOLDHC and CBFHC 

with 7% vs. 26.1 and 20% vs. 40.6% respectively. They reported the presence of an important 

leak in the CO2 delivery during day 2 for two of their participants, thus increasing their intra-

subject variability in BOLD and CBF responses to HC. In another study at 7 Tesla, using a 

simultaneous hypercapnia-hyperoxia (carbogen) gas-breathing challenge, Krieger et al. [143] 
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detected more intra-subject variability in their M value and BOLD changes to carbogen than 

what we found (wsCV≃34% vs. wsCV<17%) while they reported less variable CBF changes 

to carbogen than our CBF changes during HC (wsCV≃9% vs. wsCV=22%). The difference 

among variability in M, CBF and BOLD changes to gas may arise from the different choice of 

MRI acquisition and gas challenge.  

Studies employing dynamic 15O PET as a direct measure of OEF and CMRO2 have 

reported lower intra-subject variability in OEF and CMRO2. Coles et al. [140] reported a 

whole brain test-retest coefficient of variation of 4.6% and 3.7% for OEF and CMRO2 

respectively, while Bremmer et al. [141] obtained a variability of 8.8%, 9.3% and 5.3% for 

CBF0, OEF and CMRO2 in GM respectively. In our study, resting CBF in GM varied less 

(wsCV=3.9%) while OEF and CMRO2 had a higher degree of variability (13.6% and 15.2% 

respectively). Higher intra-subject variability in QUO2 estimates than PET estimates may 

arise partly from a larger noise accumulation in QUO2 techniques as an indirect measure of 

OEF and CMRO2.   

2.6.2. Accuracy of group GM-averaged values - sensitivity to 

systematic errors 

The QUO2 sensitivity to assumed physiological parameters α, β, [Hb], CMRO2HC, 

CMRO2HO and CBFHO was examined. Recently, Wise et al. employed a Bayesian estimation 

framework in order to estimate α and β [106]. Merola et al. [131] presented a simplified 

calibration model that substitute the standard α and β parameters with a single one and yielded 

improved estimates of OEF. Accuracy of estimates is likely to benefit from those calibration 

techniques where α and β are automatically estimated. Individual OEF estimates can also 

benefit from a simple blood test to determine the hemoglobin concentration. Isometabolism 

during hypercapnia and hyperoxia remains of a debate to date. Some studies suggest that 

CMRO2 does not change with HC [69,78,79] while others report an increase [80], or a 

decrease [81,82]. Similarly, heterogeneous results are found with regard to metabolism 

alteration during hyperoxia [83]. Without a clear consensus on the matter, we opted to 

preserve the assumption of no change in CMRO2 during both respiratory manipulations.  
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We have reported a certain variation in OEF (and CMRO2) as a function of reduction 

in blood flow caused by the hyperoxia manipulation. It is common to assume a fixed T1-

corrected CBFHO for every subjects, for example Bulte et al. assumed a blood flow decrease of 

4% during periods of hyperoxia at 50% O2 [64,84], or, as in the initial proof-of-concept of the 

QUO2 model, to compute the group-averaged measured CBFHO after T1-correction and use it 

for every subject. In the present study, we obtained physiologically plausible arterial blood T1 

values (1.56 sec at 60% O2, consistent with 1.49 sec at 95% O2 [145]) and post-T1-correction 

CBFHO in GM. The latter was used as an individual basis, hence capturing any intra-subject 

variation between test and re-test blood flow decrease during HO. When correcting for T1 

shortening during HO, rat blood was used as a surrogate for human blood which is justified 

since they both possess similar blood constitution, are likely to have very similar longitudinal 

relaxivity to molecular oxygen relationship and to experience similar physiological responses 

to hyperoxia.  

2.6.3. Precision of group GM-averaged values - sensitivity to random 

errors 

The error propagation analysis highlighted how the precision in QUO2 estimates was 

affected by random errors in the measurements of CBF and BOLD responses to the respiratory 

challenges. Especially, considering the same range of error, BOLD had a larger impact on 

QUO2 precision than CBF. However in practice, CBF response to HC is more challenging and 

carries a bigger uncertainty due to the low contrast-to-noise ratio. The range of error observed 

(-33% to +33%) is likely to approach the order of error in measured CBFHC while a lower 

uncertainty is expected in BOLD measurement, yielding smaller effects on QUO2 precision 

errors. It is therefore believed that the principal limitation in the QUO2 M, OEF and CMRO2 

intra-subject reproducibility remains the error in CBF responses. Although the exact 

contribution of the   measurements errors compared to the intrinsic day-to-day physiological 

variability could be further studied with a within-session test-retest reproducibility design, the 

present study offers clinically relevant assessment of variability in QUO2 measurements for 

follow-up studies. 



 

 47 

2.6.4. QUO2 qualitative individual and group maps reproducibility 

As expected, the reproducibility of QUO2 parameter estimates was generally improved 

with more extensive averaging of voxels and subjects. While group average maps 

demonstrated qualitatively good reproducibility, it was found that physiological and 

measurement noise still limits reproducibility of voxel values at the individual subject level.  

2.6.5. Potential QUO2 accuracy and precision improvement 

There are other potential avenues to improve the accuracy and precision of functional 

ASL. One strategy may include the use of a higher magnetic field, which would increase the 

SNR by increasing spin polarization and the T1 relaxation time of arterial blood. The gain in 

SNR might be partly lost due to an increase in physiological noise, however, this effect could 

be diminished by applying a denoising technique like RETROICOR [146,147]. Improved 

control for magnetization transfer effects is another mechanism for improving accuracy [148]. 

Additional approaches may also enhance accuracy and reproducibility of QUO2 

measurements by correcting for region-specific variations in tag arrival times [149-151], for 

drops in label efficiency [152,153], for partial volume [154] and hemodynamic response 

delays [155]. Benefits may also be offered by improved imaging readout methods such as the 

use of a 3D imaging readout [156], multiband excitation [157] and background suppression 

[158-160].  

Additional factors that can influence accuracy and precision of measurements in such 

calibrated approaches are the inhaled concentrations of oxygen and carbon dioxide. A higher 

O2 and CO2 concentration would yield BOLD changes closer to the M value to be 

extrapolated, reducing measurement errors. Furthermore, higher CO2 concentration would 

have the advantage of increasing the contrast-to-noise ratio due to higher CBF changes. 

However, administration of high levels of O2 and CO2 introduce potential problems: higher O2 

concentration can complicate the quantification of CBF due to blood T1 reduction and 

susceptibility artifacts in areas close to sinuses and airways, while higher levels of CO2 can 

lead to anxiety and potentially alter brain physiology in ways other than the intended 

vasodilatory effect [161,162]. Future studies should assess the effect of oxygen and carbon 

dioxide concentration in reproducibility of quantitative calibrated methods such as QUO2. An 
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investigation on the effect of O2 concentration in QUO2 estimates is presently in process, 

comparing 60% vs. 100% O2 during hyperoxia periods (manuscript in preparation).  

The imaging parameters of the de-pCASL used in the present study were adjusted to 

optimize the detection rate of CBF responses in GM while acquiring whole-brain image with a 

minimal gap between slices. In order to allow the labeled blood bolus to arrive in the tissue of 

the imaged region, a post labeling delay (PLD) is employed. In our 2D acquisition, the first 

and last slices are acquired after a delay of 900 msec and 1986 msec respectively, resulting in 

an brain-averaged PLD of 1443 msec which is shorter than that recommended in the ASL 

white paper [112]. The latter recommends a 3D readout PLD of 1800 msec for healthy 

subjects of age below 70 years old. MacIntosh et al. [149] evaluated the regional arterial 

transit time (ATT) in a cohort of healthy participants with an age range equivalent to that of 

our group. Among the temporal, parietal, frontal and occipital lobes, only the latter was 

reported to have a mean ATT (935 ± 0.108ms) slightly higher than our nominal PLD (900 

msec), but lower than the acquisition time of our second slice (953 msec). Although our 

choice of PLD might not be optimal in lower occipital region of certain healthy participants, 

we believe that in the large majority of cases, the acquired ASL signal was accurately 

reflecting CBF and that an increase in our PLD would have resulted in a loss in SNR, 

especially during hypercapnia where the ATT is known to diminish.  

Small cohort sizes like 8 have been common in recent years, particularly for complex 

fMRI protocols with greater physiological specificity than the classic BOLD contrast. 

Although our conclusion are limited by the relatively small sample size, we felt that this 

regional analysis of inter- and intra-subject variability of the QUO2 estimates in such a cohort 

remains of interest.  

In conclusion, the variability of the optimized QUO2 estimates across subjects and the 

intra-subject reproducibility of estimates in different brain regions were characterized while 

the impact of errors on the accuracy and precision of such estimates was determined. These 

results will help guide power analyses for research applications as well as future developments 

aimed at further improving the reproducibility of the QUO2 method. 
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3.1. Preface 

The precision and accuracy of QUO2 M, OEF and CMRO2 estimates may be impacted 

by the level of O2 and CO2 provided during the respective hyperoxia and hypercapnic 

manipulations. In a preliminary phase of the present thesis, different concentrations of CO2 
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were tested on a population of healthy volunteers, and it was concluded that 5% of CO2 was 

high enough to yield sufficient responses, while low enough to keep the level of comfort 

adequate for a majority of the participants (data not shown). On the other hand, the impact of 

the inspired O2 levels remained unclear. The O2 level employed in QUO2 will have a direct 

influence on the end-tidal O2, BOLD and CBF responses, in addition to potentially yielding a 

change in the O2 metabolism, although the later assumption remains a debate in the literature 

[83]. In addition to these direct effects, there are more subtle factors that may play an 

important role in the precision and accuracy of the model-derived estimates. First, a high 

concentration of O2, by bringing the BOLD response to the maximum M value, may reduce 

the error associated with the later estimate, and thus that of OEF and CMRO2. However, an 

increased amount of paramagnetic O2 in the airways may induce a larger pattern of 

susceptibility artifact, reducing the number of voxels with valid estimates. Finally, the high 

HO manipulation, by inducing a larger shortening in the arterial blood T1 [87-89], the accurate 

correction of blood changes becomes more important, potentially impacting the accuracy of 

OEF and CMRO2 as seen in Chapter 2. In the present Chapter 3, we explore these above 

impacts of the O2 concentration in calibrated fMRI, and ensure, via a simulation, that the 

QUO2 model adequately accounts for the individual effects of O2 levels on end-tidal O2, CBF 

and BOLD responses. 

3.2. Abstract  

Recent calibrated fMRI techniques using combined hypercapnia and hyperoxia allow 

the mapping of resting cerebral metabolic rate of oxygen (CMRO2) in absolute units, oxygen 

extraction fraction (OEF) and calibration parameter M (maximum BOLD). The adoption of 

such technique necessitates knowledge about the precision and accuracy of the model-derived 

parameters. One of the factors that may impact the precision and accuracy is the level of 

oxygen provided during periods of hyperoxia (HO). A high level of oxygen may bring the 

BOLD responses closer to the maximum M value, and hence reduce the error associated with 

the M interpolation. However, an increased concentration of paramagnetic oxygen in the 

inhaled air may result in a larger susceptibility area around the frontal sinuses and nasal cavity. 

Additionally, a higher O2 level may generate a larger arterial blood T1 shortening, which 
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require a bigger cerebral blood flow (CBF) T1 correction. To evaluate the impact of inspired 

oxygen levels on M, OEF and CMRO2 estimates, a cohort of six healthy adults underwent two 

different protocols: one where 60% of O2 was administered during HO (low HO or LHO) and 

one where 100% O2 was administered (high HO or HHO). The QUantitative O2 (QUO2) MRI 

approach was employed, where CBF and R2* are simultaneously acquired during periods of 

hypercapnia (HC) and hyperoxia, using a clinical 3 T scanner. Scan sessions were repeated to 

assess repeatability of results at the different O2 levels. Our T1 values during periods of 

hyperoxia were estimated based on an empirical ex-vivo relationship between T1 and the 

arterial partial pressure of O2. As expected, our T1 estimates revealed a larger T1 shortening in 

arterial blood when administering 100% O2 relative to 60% O2 (T1LHO = 1.56±0.01 sec vs. 

T1HHO = 1.47±0.01 sec, P < 4*10-13). In regard to the susceptibility artifacts, the patterns and 

number of affected voxels were comparable irrespective of the O2 concentration. Finally, the 

model-derived estimates were consistent regardless of the HO levels, indicating that the 

different effects are adequately accounted for within the model.  

Key-words: Calibrated fMRI; Cerebral oxidative metabolism; Inspired oxygen levels; T1 

shortening; Susceptibility artifacts; Repeatability; Reproducibility 

3.3. Introduction 

Recently, different groups have proposed that resting cerebral metabolic rate of O2 

consumption (CMRO2) can be imaged using gas-based fMRI techniques [64,85,106]. Our 

team presented an approach, dubbed QUantitative O2 (QUO2) based on respiratory calibration 

of the BOLD signal, using hypercapnia (HC), and hyperoxia (HO). During the gas 

manipulation, end-tidal O2 (ETO2) and CO2 (ETCO2) levels are constantly monitored and a 

dual-echo version of pseudo-continuous Arterial Spin Labeling (de-pCASL) is used to 

measure BOLD and cerebral blood flow (CBF) simultaneously. ETO2, BOLD and CBF then 

serve as inputs to the generalized calibration model (GCM) described in Gauthier and Hoge 

[59], which yields a system of two equations with solutions for the BOLD calibration 

parameter M, i.e. the maximum BOLD signal increase when venous O2 saturation approaches 

100%, and resting oxygen extraction fraction (OEF). The multiplication of OEF by baseline 

CBF and arterial O2 content (estimated from ETO2 monitoring and, optionally, blood testing) 
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gives the estimated resting CMRO2 in micromoles of oxygen extracted from the cerebral 

vasculature per minute, per 100g of tissue. 

While the initial proof-of-concept of the method produced reliable results when 

spatially averaged within the brain and over multiple subjects, it suffered from a single-subject 

instability characterized by large fluctuations in the modeled values and a considerable lack of 

solution in certain regions [85]. In order to be considered a reliable method for within-subject 

longitudinal studies, there was a need to improve the single-subject image quality. 

Additionally, prior to being able to draw conclusion about differences in resting oxidative 

metabolism between populations or between states of a disease, knowledge about the precision 

and accuracy of the model-derived estimates was crucial. The breathing circuit and image 

analysis strategy were updated in previous work [66,163]. The repeatability of the respiratory 

responses as well as CBF and BOLD responses within grey matter (GM) has also been 

assessed [67]. Finally, the question of methodological precision was evaluated by assessing 

the regional intra- and inter-subject variability of QUO2 derived estimates [163].   

The choice of O2 and CO2 concentration during respective periods of HO and HC may 

also have an impact on the accuracy and precision of QUO2 derived estimates, which remains 

to be assessed. Higher CO2 concentration would have the advantage of increasing the image 

contrast-to-noise ratio due to higher CBF responses, however it can lead to anxiety and 

potentially alter brain physiology in ways other than the intended vasodilatory effect 

[161,162]. In a preliminary phase, it was agreed that the commonly employed 5% CO2 during 

HC blocks was low enough to preserve participant’s comfort, while high enough to yield 

significant cerebrovascular responses. As for the O2 concentration, compared to slight HO 

levels (e.g. 50-60%), more extreme levels of HO may bring the BOLD responses closer to the 

maximum M value, therefore diminishing the measurement errors while increasing the SNR. 

However, due to the paramagnetic characteristic of oxygen molecule, the measured signal may 

be prone to more prominent susceptibility artifacts patterns in vulnerable regions such as the 

frontal sinuses and nasal cavity [86], thus yielding inaccurate or non-solution values in those 

regions. An additional potential impact of the O2 concentration arises when changes in blood 

flow during HO are encompassed in the model, such as in the generalized calibrated model. 

Following a low HO level, CBF responses may be smaller than the inherent noise level of 
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ASL acquisitions, making its measurement challenging. Furthermore, a decrease in CBF 

during periods of HO may reflect a combination of phenomena: a vasoconstrictive effect 

following a hyperventilation-induced decrease in ETCO2 [164], a vasoconstriction due to 

increased O2 per se, and an acceleration of arterial blood longitudinal relaxation (T1 

shortening) caused by the increase of dissolved molecular oxygen in blood plasma [87-89]. If 

not taken into account, this T1 decay in arterial blood leads to an overestimation of CBF 

decrease during HO. As a consequence of those complications, it is common to assume a 

fixed, pre-determined CBF decrease [56,64,84,165]. However, assuming a fixed CBF decrease 

contributes to the systematic errors and can affect the accuracy and repeatability of OEF and 

CMRO2 estimates as reported in Lajoie et al. [163]. Therefore, the application of a T1-

correction on the measured CBF during HO is advocated.  

Additionally, in theory, the QUO2-derived estimates should not depend on the level of 

hyperoxia induced, since the model is designed to account for this. In a previous study [163], 

the within-subject repeatability of the model-derived estimates was assessed based on very 

small variations of ETO2 during periods of 60% O2 hyperoxia. The effectiveness of the QUO2 

model to obtain reproducible M, OEF and CMRO2 despite considerable variations in 

hyperoxia ETO2 is crucial and remains to be demonstrated.  

The present study aims at exploring, in a small cohort of healthy individuals, the 

impact mentioned above, on QUO2 calibrated fMRI estimates, when providing 100% O2 

during periods of HO instead of the previously provided 60% O2, in addition to verifying the 

reproducibility of results regardless of the inspired oxygen levels.  

3.4. Materials and Methods 

From the group of eight healthy adults that underwent the 24 hour QUO2 test-retest 

study mentioned previously [163], six of them repeated the experiment, but this time, instead 

of being given 60% O2 during periods of HO (referred to as “lower HO levels protocol” 

(LHO)), the participants were given 100% O2 (“higher HO levels protocol” (HHO)). Each HO 

protocol was repeated to assess repeatability of results at the different O2 levels (referred to as 

“Test A” and “Test B”). To minimize effects of diurnal fluctuation in blood flow [107], all 

sessions were acquired between 2 PM and 6 PM. The participants were asked to abstain from 
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caffeine 3 hours prior to scanning. All participants (3 females and 3 males, mean age: 30.5 ± 

6.7 years) gave written informed consent and the project was approved by the Comité mixte 

d’éthique de la recherche du Regroupement Neuroimagerie/Québec.  

3.4.1. Respiratory Paradigm 

A gas timing schedule previously described by Bulte et al. [64], with a total duration of 

18 minutes, was applied, as in [163]. This involves two 2-min periods of hypercapnia (HC) 

and two 3-min periods of hyperoxia (HO), induced by administering gas mixtures enriched 

with CO2 and O2 respectively. Hypercapnia was followed by a 1-min normocapnic period and 

then the 3-min hyperoxic stimulus. Hyperoxia was followed by a 3-min period of normoxia. 

Periods of normocapnia and normoxia were long enough to ensure a return to baseline as 

shown by the CBF and BOLD time course in Tancredi et al, Figure 3 [67]. Participants inhaled 

the gas mixtures via a breathing circuit developed in-house [66]. During the first test-retest 

experiment [163], the hyperoxia periods were induced with the subjects breathing a mixture of 

50% pure oxygen balanced with air, yielding a fix inspired O2 concentration of 60% O2. 

During the second test-retest experiment, the participants were given 100% O2 during periods 

of HO. Otherwise participants were given medical air to breath. Respiratory gases were 

continuously monitored using the CO2100C and O2100C modules of a BIOPAC MP150 

system (BIOPAC Systems Inc., CA, USA). For additional details, see Lajoie et al. [163]. 

3.4.2. Image Acquisition 

Images were acquired on a clinical 3T MRI scanner (Siemens TIM TRIO, Siemens 

Medical Solutions, Erlangen, Germany) using the vendor’s 32-channel receive-only head coil. 

The scan session included a 5-minute anatomical acquisition (1 mm3 MPRAGE with 

TR/TE/flip angle = 2.3 seconds/3 msec/9°, 256x240 matrix, GRAPPA factor = 2), and an 18-

minute functional scan using dual-echo pseudo-continuous ASL sequence (de-pCASL) [108] 

in order to acquire simultaneous measures of BOLD and CBF. The de-pCASL parameters 

were: TR/TE1/TE2/alpha = 4.12 seconds/8.4 msec/30 msec/90°, labeling duration = 2 seconds 

using Hanning window-shaped RF pulse with duration/space = 500 µsec/360 µsec, flip angle 

= 25°, peak gradient amplitude = 6 mT/m, mean gradient amplitude = 0.6 mT/m, label offset = 
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100 mm below the center of image slab, nominal and average post-labeling delay (PLD) = 0.9 

and 1.44 seconds. The readout consisted of a GRE-EPI with GRAPPA factor = 2, partial 

sampling of k-space = 7/8, in-plane resolution of 4.5 x 4.5 mm2, 21 slices with 4.5 mm 

thickness and 0.45 mm gap. 

3.4.3. Respiratory Data Analysis 

Analysis of the respiratory data was carried out using an in-house program developed 

in Matlab (MathWorks, Natick, MA, USA), as in Lajoie et al. [163]. An automatic extraction 

of the end-tidal (ET) and end-inspiratory points from the continuous O2 and CO2 traces was 

performed. Each ET point was corrected to account for the low-pass filtering effect of the 

filter placed in series and to account for an expired partial pressure of water of 47 mmHg 

[109]. More details about the respiratory data analysis can be found in Lajoie et al. [163]. 

The average values of ETO2 at baseline and during both respiratory stimuli were used 

to compute arterial O2 content (ml O2/ml blood) and change in the venous deoxygenated 

fraction ([dHb]/[dHb]0) as in Chiarelli et al. [56] and Gauthier et al. [85]. The latter quantities 

are needed to obtain the BOLD calibrated value M, resting OEF and CMRO2 as specified 

below. 

3.4.4. Imaging Data Analysis 

3.4.4.1. Preprocessing 

Analysis of functional scans along with exclusion of artifact and non-paranchymal 

voxels were performed using in-house software implemented in C, as in Lajoie et al. [163].  

During hyperoxic manipulation, the longitudinal relaxation time (T1) of blood is altered 

due to an increase in plasma concentration of paramagnetic O2 [89]. To account for this 

change in blood T1, that bias the measured CBF changes, a corrective factor using the 

approach described in Chalela et al. [91] and Zaharchuk et al. [92] was applied. First, 

estimates of the arterial blood T1 values during hyperoxic periods were obtained based on the 

individual ETO2 measurements, used as a surrogate for arterial partial pressure of O2 (PaO2), 

along with the R1 (1/T1) and PaO2 relationship in rats’ blood reported in Pilkinton et al. [89]. 
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Depending on whether our ETO2 values were within or outside the range of values in 

Pilkinton et al’s study, the T1 values were either linearly interpolated or extrapolated. Then, 

the individual blood flow maps during HO were corrected by applying a slice-wise corrective 

factor based on the quantitative blood flow equation [93], the slice acquisition time and the 

adjusted T1 value.  

3.4.4.2. Computation of CMRO2 

MRI measures of BOLD and CBF acquired during the hypercapnic manipulation, 

along with the changes in the venous deoxygenated fraction were used as inputs to the 

generalized calibration model (GCM), described in Gauthier and Hoge [59], yielding a 

functional curve (the “HC curve”) of possible pairings of M and OEF. Repeating the 

procedure with the hyperoxia measurements yielded a second curve of possible M and OEF 

pairings (the “HO curve”). The intersection of these two curves provided the true values of M 

and OEF at each voxel. Finally, CMRO2 was determined by multiplying OEF by O2 delivery, 

computed as the product of resting CBF by arterial O2 content. Since the small regional CBF 

responses to hyperoxia are difficult to measure due to the low SNR of ASL, a uniform change 

of CBF was assumed throughout the brain, based on the cortical grey matter change after T1 

correction. Additional information about the computation of CMRO2 can be found in Lajoie et 

al. [163].  

3.4.4.3. Tissue segmentation  

Automated segmentation of GM from the anatomical scans was carried out using the 

FMRIB Software Library (FSL) [113]. Structural images were extracted from T1-weighted 

scans using the brain extraction tool (FSL’s BET). Finally, a probability mask of GM was 

created employing the automated segmentation tool (FSL’s FAST), and was resampled to the 

resolution of the functional EPI scans. 

3.4.4.4. Regions Of Interest (ROIs) 

The model-derived estimates were evaluated throughout cortical GM as well as within 

six ROIs selected from the ICBM OASIS-TRT-20 atlas [114] and presented in Lajoie et al. 

[163], Figure 1: the inferior parietal, superior parietal, precuneus, hippocampus, anterior 
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(caudal and rostral) cingulate and posterior cingulate. Each ICBM three-dimensional ROI was 

registered to the resolution of the functional EPI scans before being conjoined with the 

individual’s GM probability mask excluding voxels with a GM probability lower than 50% as 

well as non-parenchymal voxels previously identified. Additionally, voxels where the QUO2 

model could not be solved were excluded when performing the ROI analysis of M, OEF and 

CMRO2. The resultant ROI probability masks were used to perform weighted averaging of the 

different measurements and estimates. 

3.4.4.5. Registration 

Individual ∆R2*HO, M, OEF and CMRO2 maps were non-linearly registered to the 

ICBM152 template using the CIVET software package [120] via the CBRAIN tool [121] with 

12 degrees of freedom using trilinear interpolation as in Lajoie et al. [163]. Test-averaged 

maps of ∆R2*HO were computed as arithmetic means using in-house software. Averaged maps 

of M, OEF and CMRO2 were obtained excluding any voxels where the QUO2 model could not 

be solved.  

3.4.5. Analysis of sensitivity of model-derived QUO2 values to change 

in O2 concentration 

The end-tidal O2, blood flow and R2* measurements during a hyperoxia manipulation 

depend on the employed O2 concentration. It was discussed that hyperoxia may also perturb 

the metabolism [83], however, in our model, we consider HO as an isometabolism challenge 

as assumed in numerous previous calibrated BOLD studies [64,85,106]. In order to understand 

the impact of lower and higher levels of HO (respectively LHO and HHO) to QUO2, we 

performed an analysis of the sensitivity of its model-derived parameters, M, OEF and CMRO2, 

to changes in ETO2, CBF and ∆R2*. Employing the GM group-average values in Test A 

during the LHO protocol, we kept constant the parameters not influenced by the O2 

concentration, while individually varying ETO2HO, CBFHO and ∆R2*HO within their respective 

range delimited by GM group-average values in Test A under each HO protocol, to compute 

the resultant M, OEF and CMRO2. 
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3.4.6. Statistical analysis 

For each model-derived estimate (M, OEF and CMRO2), we carried out a statistical 

analysis, using Matlab, on three different combinations of tests: 1) comparing Test A and Test 

B under the LHO protocol; 2) comparing Test A and Test B under the HHO protocol; 3) 

comparing tests A between both protocols. When needed, a two-tailed paired t-test was 

performed, considering a P < 0.05 level of significance, to detect any significant difference 

between tests and protocols. Within each protocol, we also investigated any difference across 

ROIs by pooling tests values and using family-wise error (FWE) correction for multiple 

comparisons, set at P < 0.05. 

Prior to the analysis, statistical tests were performed on the data to ensure it satisfied 

the repeatability criteria: each distribution of difference between tests was evaluated for 

normality using the Shapiro-Wilk W-test, while the independence between the magnitude of 

difference and mean of measurements was verified using a rank correlation coefficient 

(Kendall’s τ). If the difference distribution appeared to deviate from a normal distribution, or 

if the magnitude of difference increased with the mean of measurements, the data were 

transformed on the log10 scale and the verification was repeated. In cases where the log10 

scaled data satisfied the criteria, the repeatability was assessed on these scaled values. 

Otherwise, assessment of repeatability was based on the original values, as done in previous 

studies [122-124].  

The next metrics were evaluated:  

a) dSD, the standard deviation of the difference between tests measurements. 

b) wsSD, the within-subject standard deviation, equals dSD/√2 considering two 

measurements. 

c) wsCV, the within-subject (or intra-subject) coefficient of variation, as used in Floyd et al. 

[123] and Chen et al. [125]. wsCV=√[mean of the (wsSD/subject mean)2]. wsCV provides 

an unbiased measure of variability expressed as a percent of the mean with a low wsCV 

indicating a high reproducibility/repeatability. When data were on the log10 scale, wsCV 

was approximated by 10^(wsSD)-1 [126]. 
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d) bsCV, the between-subject (or inter-subject) coefficient of variation as computed in 

Tjandra et al. [128]. bsCV = SDpooledData / meanpooledData * 100. 

3.5. Results 

One participant reported a high level of anxiety during Test A of the LHO protocol, 

and the measured CBF response to CO2 was found to be twice the standard deviation of the 

group mean. Data from this participant has been excluded from the present analysis (as in the 

previous related work [163]). 

3.5.1. Gas manipulation 

The test-average and standard deviation of end-tidal O2 and CO2 at baseline and during 

periods of hyperoxia are presented in Figure 3.1. No difference was found within and between 

protocols resting ETO2 (within-protocol: TestALHO = 112±7 mmHg vs. TestBLHO = 112±3 

mmHg, P = 0.88, TestAHHO = 113±7 mmHg vs. TestBHHO = 108±7 mmHg, P = 0.05 ; 

between-protocol: LHO = 112±5 mmHg vs. HHO = 111±7 mmHg, P = 0.7). Within-protocol 

ETO2HO were identical (TestALHO = 366±6 mmHg vs. TestBLHO = 371±14 mmHg, P = 0.37 ; 

TestAHHO = 656±17 mmHg vs. TestBHHO = 652±25 mmHg, P = 0.42), whereas, as expected, 

between-protocol ETO2HO were found to be significantly different (LHO = 369±10 mmHg vs. 

HHO = 654±20 mmHg, P < 6*10-12). No difference was detected in between-protocol resting 

ETCO2 (LHO = 40±2 mmHg vs. HHO = 42±2 mmHg, P = 0.3), nor within the LHO protocol 

(TestALHO = 41±2 mmHg vs. TestBLHO = 40±2 mmHg, P = 0.57). However a significant 

difference in resting ETCO2 was observed between Test A and Test B under the HHO 

protocol (TestAHHO = 43±2 mmHg vs. TestBHHO = 40±2 mmHg, P < 0.002). This difference in 

resting ETCO2 is in agreement with a lower respiratory rate during Test A compared to Test B 

(TestAHHO = 6±2 breaths per minute vs. TestBHHO = 8±1 breaths per minute, P = 0.03). The 

ETCO2 changes observed during periods of hyperoxia were found to be equivalent within 

protocol. For the LHO protocol, they were: TestALHO = -0.8±1.0 mmHg and TestBLHO = -

1.1±1.1 mmHg (P = 0.8), while for the HHO protocol they were: TestAHHO = -2.5±0.7 mmHg 

and TestBHHO = -2.4±0.7 mmHg (P = 0.5). The averaged decreases in ETCO2 were 
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significantly (P < 0.005) larger in HHO compared to LHO protocol (LHO = -1.0±1.0 mmHg 

vs. HHO = -2.4±0.7 mmHg).  

      

Figure 3.1. Gas manipulations  
For each protocol and test, the measured resting (with the subscript ‘0’) and hyperoxic (with 
the subscript ‘HO’) end-tidal O2 and CO2 are presented. Errors bars indicate standard 
deviation. A star indicates a significant difference at P < 0.05. 

 

3.5.2. Susceptibility artifacts 

Figure 3.2 shows a qualitative examination of R2* changes during periods of HO 

(∆R2*) through axial, sagittal and coronal views chosen in order to observe regions vulnerable 

to susceptibility artifacts. No masking or median filtering were performed on the functional 

maps prior to the non-linear registration to the ICBM template and maps average. The contrast 

window was chosen to facilitate the observation of increase in R2* characterized by orange 

and red colors. An overall R2* decrease (equivalent to a BOLD increase) in white and grey 

matter during HO is observed, which is more significant under the more extreme levels of HO. 

On the other hand, as a repercussion of the presence of paramagnetic oxygen molecules in 
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inhaled air, both protocols presented comparable regions of susceptibility artifacts 

characterized by positive ∆R2* in voxels surrounding the nasal cavity. Percent of voxels in 

GM characterized by this increase were found to be the same in both protocols, with 12.8% 

under the LHO protocol and 11.7% under the HHO protocol (P = 0.25), although the positive 

values were generally higher under the HHO protocol (shown by darker red color). Any voxel 

affected by the susceptibility artifacts, later results in a non-solution voxel for M, OEF and 

CMRO2, and were therefore excluded from the analysis as mentioned in the methodology 

section.  

 

Figure 3.2. Susceptibility artifacts 
For each protocol, the averaged maps of ∆R2* during HO are shown in coronal, sagittal and 
axial views, overlaying the ICBM152 template. The chosen contrast window facilitates the 
localization of voxels where an increase in R2* is observed (in orange and red). These 
increases in the transverse relaxation rate are most likely the results of susceptibility artifacts 
attributable to the presence of paramagnetic O2 in frontal sinuses and nasal cavity.  

 



 

 62 

3.5.3. T1 shortening  

A value of 1.65 sec was assumed for the normoxic arterial blood T1 [166], whereas the 

estimated blood T1 shortening was larger during the high O2 hyperoxia state than during the 

low hyperoxia challenge: T1HHO = 1.47±0.01 sec vs. T1LHO = 1.56±0.01 sec, P < 4*10-13. 

Figure 3.3 summarizes, in both protocols, the GM tests average and standard deviation of 

blood flow decrease during HO before and after correction of blood T1. While uncorrected, 

CBFHO decrease was found to be significantly larger under the HHO protocol (LHO = -

8.1±4.2 mmHg, HHO = -17.5±6.6 mmHg, P < 0.002). After T1 correction, CBFHO decreases 

were less pronounced in both protocols, and were not found significantly different from each 

other (LHO = -1.9±4.3 mmHg, HHO = -2.8±7.5 mmHg, P = 0.7) nor from zero (PLHO = 0.4, 

PHHO = 0.3). 

         

Figure 3.3. T1 shortening 
For each protocol, pre- and post-T1-correction CBF changes during HO, averaged across tests, 
are presented with the standard deviation as error bars. 
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3.5.4. Analysis of sensitivity of model-derived QUO2 values to change 

in O2 concentration 

The individual impacts of changes in ETO2HO, ∆R2*HO and ∆%CBFHO, on M and 

OEF, as a function of the HO levels are examined by numerical simulations. These changes in 

ETO2HO, ∆R2*HO and ∆%CBFHO are dependent on one another and are examined in order to 

explain the combined impact on M and OEF. Results are summarized in Figure 3.4. Figure 

3.4-A shows the displacement in the HO curves caused by the respective variation of ETO2HO, 

∆R2*HO and ∆%CBFHO, while Figure 3.4-B shows the corresponding OEF and M solutions as 

a function of the individual (colored solid lines) and combined (dashed black lines) changes. 

Since the O2 concentration solely modulates the HO curve, which is shifted on the nearly 

horizontal section of the HC curve, the changes in ETO2HO, ∆R2*HO and ∆%CBFHO, either 

individual or combined, have virtually no impact on the M estimates. With respect to OEF, the 

individual impacts appear to cancel each other out, yielding a modest combined effect. The 

same conclusion stands for CMRO2, since it is the result of multiplying OEF by two 

measurements that are independent of the hyperoxic stimulus, i.e. the resting CBF and the 

resting arterial O2 content. Therefore, in principle, one would expect M, OEF and CMRO2 to 

remain stable, regardless of the O2 concentration used to produce hyperoxia. The following 

sections explore this assumption using real values computed in different ROIs, but also on a 

voxel-wise basis. 
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Figure 3.4. Analysis of sensitivity to O2 concentration 
Observed effects, on M and OEF, of changes in ETO2, R2* and CBF following a transition 
from a low level of hyperoxia (LHO) to a higher level of hyperoxia (HHO) are summarized. 
Estimates were based on group-averaged Test A measurements during the LHO manipulation, 
while ETO2, R2* and CBF were varied independently ranging from their respective LHO 
value to their HHO value (values are specified in the legend, with the corresponding blood T1 
below CBFHO). The hypercapnia (HC) and hyperoxia (HO) curves resulting from the use of 
six different values of ETO2, R2* and CBF are presented (A). Each red dot represents the HC 
and HO curves intersection (hence one M and OEF solution) when either one of the extremity 
of the observed range is in use. The remaining M and OEF solutions lie on the colored line 
connecting both red dots. M and OEF estimates are presented as a function of the individual 
(colored solid lines) and combined (dashed black lines) effect of changes in ETO2, R2* and 
CBF (B).  

 

3.5.5. Protocol-averaged estimates in ROIs  

In Figure 3.5-A are shown the ROI-averaged M, OEF and CMRO2 in each protocol 

(red and blue bars) and over both protocols (green bars). For each combination of model-

derived estimate and ROI, we observe a good consistency between protocols with the lowest P 

values being: P = 0.17 in superior parietal for M, P = 0.37 in superior parietal for OEF and P = 
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0.06 in GM for CMRO2. Additionally, no apparent divergence was found in variance within 

each protocol. In Figure 3.5-B are shown, for each estimate, the degrees of difference between 

ROIs, when comparing the estimate averaged over both protocols and correcting for multiple 

comparisons (FWE set at P < 0.05). OEF estimates were found to be similar across ROIs, with 

the exception between hippocampus and anterior cingulate where a significant difference was 

detected (P = 0.04). Values of M and CMRO2 in hippocampus were found to be the smallest 

compared with the other ROIs, with the exception of anterior cingulate (for M) and superior 

parietal (for CMRO2).  

          

Figure 3.5. Protocol-averaged estimates in ROIs  
M, OEF and CMRO2 estimates averaged in different ROIs are compared. Figure A presents 
the ROI-averaged value and standard deviation obtained under the LHO protocol (red bar), the 
HHO protocol (blue bar) and in both protocols averaged (green bar). Figure B shows, for each 
estimate, any significant difference observed between ROIs after correcting for multiple 
comparisons (FWE, P < 0.05): dark blue indicates an absence of significant difference (P > 
0.05), while light blue (P < 0.05), green (P < 0.005) and orange (P < 0.0005) illustrate a 
significant difference between two ROIs (represented in the X and Y axis). LHO = low 
hyperoxia, HHO = high hyperoxia, GM = grey matter, IP = inferior parietal, SP = superior 
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parietal, PRE = precuneus, HIP = hippocampus, AC = anterior cingulate, PC = posterior 
cingulate. 
 

3.5.6. Within-subject variability in ROIs  

Figure 3.6 presents the within-subject coefficients of variation (wsCV) in every ROIs 

for M, OEF and CMRO2. WsCVs were computed for three combinations of tests: 1) test A vs. 

B under the LHO protocol, 2) test A vs. B under the HHO protocol, 3) tests A between both 

HO protocols. Across all ROIs, M was found to have a lower within-subject variability under 

the LHO protocol (mean wsCVLHO = 16%, mean wsCVHHO = 25%, P = 0.006). On the other 

hand, within-subject variability of OEF and CMRO2 were found unchanged regardless of the 

HO protocol (OEF: mean wsCVLHO = 15%, mean wsCVHHO = 16%, P = 0.2; CMRO2: mean 

wsCVLHO = 17%, mean wsCVHHO = 18%, P = 0.6). 

            

Figure 3.6. Within-subject variability in ROIs 
Computed within-subject CVs (wsCV) are shown for M, OEF and CMRO2 within each ROI. 
The model-derived estimates are represented by different colors, while the three combinations 
of tests are identified by distinct patterns: 1: Test A vs. B under the LHO protocol (squared 
pattern), 2: Test A vs. B under the HHO protocol (plain pattern), 3: Tests A between both HO 
protocols (striped pattern). LHO = low hyperoxia, HHO = high hyperoxia, GM = grey matter, 
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IP = inferior parietal, SP = superior parietal, PRE = precuneus, HIP = hippocampus, AC = 
anterior cingulate, PC = posterior cingulate. 

 

3.5.7. Parametric maps 

In Figure 3.7, we present, for each combination of tests (1: Test A vs. B under the LHO 

protocol, 2: Test A vs. B under the HHO protocol, 3: Tests A between both HO protocols), 

mean tests, between- and within-subject CV maps of M, OEF and CMRO2. All functional 

maps were non-linearly registered (NLreg) to the ICBM space. In addition to intrinsic 

physiological changes, errors in measurements and head movements occurring between the 

anatomical and the functional scans, a voxel-wise within-subject repeatability may be partly 

affected by random inaccuracies in registration. In order to evaluate any limitation on the 

voxel-wise repeatability caused by the registration to the ICBM space, we present the CVs 

maps for MPRAGE, and verify if any enhancement was possible thanks to the non-linearly 

registration of our maps (Figure 3.7-A), compared to the linearly registered MPRAGE (Figure 

3.7-B). All CVs maps are shown using a window level of 0-200%. At these levels, the passage 

from 20% to 30% is characterized by the transition from purple to blue, with 30% being an 

approximate upper limit for what is considered as low variability. Compared to the linearly 

registered maps (Lreg), the non-linearly registered (NLreg) MPRAGE maps presented a better 

defined grey matter region, while whole-brain between- and within-subject variability were 

found to be lower. WsCV values in NLreg were generally found to be <5% in WM, <10% in 

GM and exceptionally <20% in few small regions, whereas in Lreg wsCV, values were <10% 

in WM and GM and <20% in with few small regions. Mean maps of M, OEF and CMRO2 

(Figure 3.7- C, D, E) qualitatively exhibited an absence of dependency on the O2 protocol 

employed. CVs maps of M presented slightly less variability under the LHO than the HHO. 

All three estimates were found to have low GM within-subject variability for the three 

combinations of tests (<30%). M and CMRO2 presented a clearer distinction between the 

population variance and the within-subject variability, whereas OEF was found to have a 

lower voxel-wise between-subject variability, approaching the within-subject variability. 
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Figure 3.7. Parametric maps  
For each combination of tests (1: Test A vs. B under the LHO protocol, 2: Test A vs. B under 
the HHO protocol, 3: Tests A between both HO protocols), mean tests, between-subject CV 
and within-subject CV maps for M (C), OEF (D) and CMRO2 (E) are shown in one axial slice. 
Maps were non-linearly registered to the ICBM152 template. As a reference, the equivalent 
information is presented for MPRAGE maps non-linearly (A) and linearly registered (B) to the 
template. LHO = low hyperoxia, HHO = high hyperoxia. 
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3.6. Discussion 

Performing an analysis of individual impacts, on M and OEF, of variation in ETO2HO, 

∆R2*HO and ∆%CBFHO, we have shown how little M is affected by the O2 concentration in 

GM, and how the individual impacts on OEF were practically cancelling out, yielding a nearly 

nonexistent combined impact on OEF and therefore on CMRO2. Exploring the within-subject 

reproducibility in different ROIs as well as on a voxel-wise basis, we observed an unchanged 

reproducibility for OEF and CMRO2 regardless of differences in ETO2HO, ∆R2*HO and 

∆%CBFHO caused by a distinct O2 concentration in inhaled gas. On the other hand, the M 

within-subject repeatability was found to be slightly enhanced under the LHO protocol. No 

significant difference was found between protocol-averaged values.  

In certain situations, the differences between subjects’ brain anatomy are such that a 

linear transformation is insufficient to register their brain maps on to standard spaces. The 

local deformations produced by the non-linear registration improve the match. The 

comparison of linearly versus non-linearly registered individual MPRAGE images provides a 

qualitative example of the improvement brought by the non-linear registration. The method 

produced sharper group-averaged maps, characterized by more distinct sulci and more 

accentuated grey/white matter contrast. Quantitatively, the non-linear co-registration afforded 

lower CV values. 

The presence of paramagnetic molecular oxygen in inhaled air produces susceptibility 

artifacts. We examined regions vulnerable to those artifacts such as the frontal sinuses and 

nasal cavity of our ∆R2*HO maps. However, no evidence of enlarged patterns of susceptibility 

artifacts under inhalation of 100% O2 (HHO) compared to 60% (LHO) was found, thus 

yielding a comparable percent of non-solution voxels in GM for both protocols.  

Rather than assuming a fixed value of CBF change during HO, the individual T1-

corrected ∆%CBFHO averaged in GM was used, therefore capturing any intra-subject variation 

between Test A and Test B in blood flow during HO. Our T1 values were extrapolated from 

experimentally-determined values in animal model, which is a common practice in calibrated 
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fMRI approaches. Human blood constitution is similar to that of bovine and rat blood and is 

likely to experience comparable T1 shortening during the hyperoxia stimulus [89,167,168]. 

This is of course an assumption and represents a potential source of confounds in our blood 

flow changes calculations. 

In CBF quantification, so long as the PLD is equal to or higher than the arterial transit 

time (ATT), the exact ATT value does not matter. In our 2D acquisition, the first and last 

slices are acquired after a delay of 900 msec and 1986 msec respectively, resulting in a brain-

averaged PLD of 1443 msec. Donahue et al. [151] applied a pCASL in a cohort of healthy 

volunteers (mean age of 30 ± 4 years) and obtained a group-averaged ATT lower than 900 

msec within each lobe, including within the occipital lobe with 834 ± 29 msec. We therefore 

believe that in the large majority of cases, the acquired ASL signal was accurately reflecting 

CBF and that an increase in our PLD would have resulted in a loss in SNR, especially during 

hypercapnic where the ATT is known to diminish [151]. Additionally, the ATT increase 

during HO should be minor as our data indicates that the CBF decreases induced by 

hyperoxia, even at high O2 concentrations, are not substantial. When using a 2D acquisition in 

a population of elderly or unhealthy patients, it would be recommended to increase the PLD 

slightly while also imaging a lower number of thicker slices, as in the study De Vis et al. 

(2015) where a nominal PLD of 1550 msec and 11 slices with 7 mm slice thickness were 

employed. 

Small cohort sizes like that of the present study have been common in recent years, 

particularly for complex fMRI protocols with greater physiological specificity than the classic 

BOLD contrast. Despite the relatively small sample size, which limits confidence in the 

statistical significance of our findings, the present study provides new information on the 

impact of inspired oxygen levels on calibrated fMRI technique.  

To conclude, it was revealed that the pattern of susceptibility artifacts under hyperoxia 

was comparable regardless of the HO levels. We also demonstrated that variations in ETO2HO, 

CBFHO and R2*HO were accounted for within the QUO2 model, resulting in an unchanged 

ROI-averaged M, OEF and CMRO2 estimates. We observed that the within-subject 

repeatability was either unchanged (for OEF and CMRO2) or slightly enhanced under the 

LHO protocol (for M). In summary, the use of a higher hyperoxic challenge revealed no 
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beneficial impact on the calibrated fMRI measurements, while a reduced concentration of 60% 

O2 was shown to maintain sufficient BOLD contrast and to produce consistent model-derived 

results. 
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4.1. Preface 

In addition to being characterized by cholinergic deficits [1], deposition of beta-

amyloid (Aβ) [2,3] and tau abnormality [4], Alzheimer’s disease (AD) is believed to be related 

to vascular [169] and mitochondrial burdens [6]. Previous positron emission tomography 

(PET) studies have detected decreases in blood flow and in oxygen metabolism in AD, 

essentially in the temporal and parietal lobes [14,16,17]. The pattern of hypoperfusion and 

hypometabolism was found to differ according to the degree of AD progression [24] and 

between similar conditions such as in frontotemporal and vascular disease dementia where a 

frontal component has being observed [15,25]. Imaging of baseline CMRO2 using PET is 

arduous, as it requires three separate injections of short-lived radioactive tracers, making the 

adoption of the approach in large-scale and clinical studies difficult. The development of MRI-

based methods that allow the brain mapping of resting blood flow and of resting CMRO2 

became a promising avenue for studies where the vascular and/or the metabolic may be 

affected, such as in aging and AD. In addition to being accessible and non-invasive, the MRI-

based methods provide, within a single modality, concurrent acquisitions of different types of 

data for correlation purpose such as structural, resting-state connectivity, task-induced 

responses and cerebrovascular reactivity. Furthermore, any disease-related differences in 

quantitative MRI estimates may serve to flag bias not considered in standard qualitative 

BOLD methods. In summary, these MRI approaches may help to dissociate AD from other 

conditions such as frontotemporal dementia [25] or vascular disease [15] as well as offering 

new insight on the pathophysiology of AD that go beyond the glucose metabolism and 

amyloid deposition. The initial proof-of-concept QUO2 was enhanced and further validated as 

described in previous Chapters. Here, we present the application of the optimized QUO2 

method in a cohort of 65 recruited probable AD and 65 age-matched controls. To our 

knowledge, this is the first time that such techniques are applied in AD.  
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4.2. Abstract 

Calibrated fMRI based on arterial spin-labeling (ASL) and blood oxygen-dependent 

contrast (BOLD), combined with periods of hypercapnia and hyperoxia, can provide 

information on cerebrovascular reactivity (CVR), resting blood flow (CBF), oxygen extraction 

fraction (OEF), and resting oxidative metabolism (CMRO2). Vascular and metabolic integrity 

are believed to be affected in Alzheimer’s disease (AD), thus, the use of calibrated fMRI in 

AD may help understand the disease and monitor therapeutic responses in future clinical trials. 

In the present work, we applied a calibrated fMRI approach referred to as Quantitative O2 

(QUO2) in a cohort of probable AD dementia and age-matched control participants. The 

resulting CBF, OEF and CMRO2 values fell within the range from previous studies using 

positron emission tomography (PET) with 15O labeling. Moreover, the typical parietotemporal 

pattern of hypoperfusion and hypometabolism in AD was observed, especially in the 

precuneus, a particularly vulnerable region. We detected no deficit in frontal CBF, nor in 

whole grey matter CVR, which supports the hypothesis that the effects observed were 

associated specifically with AD rather than generalized vascular disease. Some key pitfalls 

affecting both ASL and BOLD methods were encountered, such as prolonged arterial transit 

times (particularly in the occipital lobe), the presence of susceptibility artifacts obscuring 

medial temporal regions, and the challenges associated with the hypercapnic manipulation in 

AD patients and elderly participants. The present results are encouraging and demonstrate the 

promise of calibrated fMRI measurements as potential biomarkers in AD. Although CMRO2 

can be imaged with 15O PET, the QUO2 method uses more widely available imaging 

infrastructure, avoids exposure to ionizing radiation, and integrates with other MRI-based 

measures of brain structure and function. 

Keywords:  Calibrated fMRI, Alzheimer’s disease, Cerebral blood flow, Oxidative 

metabolism, Oxygen extraction fraction, BOLD calibration constant, Cerebrovascular 

reactivity  
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4.3. Introduction 

Functional MRI (fMRI) methods, such as brain imaging based on arterial spin-labeling 

(ASL) or blood oxygenation level-dependent (BOLD) contrasts, are sensitive to cerebral blood 

flow (CBF) and the cerebral metabolic rate of oxygen (CMRO2). Calibrated fMRI exploits this 

sensitivity, using ASL and BOLD data acquired during controlled manipulations of cerebral 

physiology to compute quantitative estimates of CMRO2 and related parameters such as the 

BOLD calibration constant M [55,56,59]. 

In contemporary calibrated fMRI methods, which combine hypercapnic and hyperoxic 

manipulations, absolute measures of resting CMRO2 in addition to other physical and 

physiological variables are obtained [64,65]. These methods have the potential to provide 

distinct physiological information in conditions where cerebral blood flow and metabolism 

may be affected. Since Alzheimer’s disease (AD) is believed to be associated with both 

vascular and metabolic effects [6,169], it presents a compelling target to study using calibrated 

fMRI. The objective of the present study was to apply an approach we have previously termed 

Quantitative O2 (QUO2) [65] in cohorts of probable AD patients and age-matched controls. 

There is evidence for mitochondrial dysfunction and oxygen hypometabolism as being 

a causal factor in AD, as well as in other conditions such as Parkinson’s Disease (Bonda et al., 

2010; Coskun et al., 2011; Reddy and Beal, 2005; Silva et al., 2011; Sullivan and Brown, 

2005; Wallace, 2005). Hence, the QUO2 method allows us to study the hypothesis in which 

metabolism and vascular dysfunction appear earlier in the disease than cholinergic deficits, 

beta-amyloid deposition and hyperphosphorylated tau pathology. Moreover, the method may 

be employed to deepen our understanding of other conditions where vascular and oxygen 

metabolism may be compromised (such as in Parkinson’s Disease). Finally, the physiological 

information offered by the calibrated fMRI method may be better correlated with the clinical 

profile of AD than the other biomarker candidates. 

While CBF and CMRO2 can be quantitatively imaged using positron emission 

tomography (PET), the use of calibrated fMRI offers several unique features. First, the 

estimates of CBF and CMRO2 from calibrated fMRI are expressed within a biophysical 

framework that is directly relevant to task activation or resting-state BOLD fMRI studies that 



 

 75 

are performed in AD [42-47]. Any disease-related difference in parameter estimates from 

calibrated fMRI may thus be readily evaluated in terms of its impact on standard BOLD 

methods, which may in turn help identify (or rule out) bias associated with underlying 

physiological changes that are not accounted for in qualitative BOLD analysis. 

Calibrated fMRI also provides, either through intermediate results or incidentally, 

physiological information that is not available through other methods. The QUO2 method 

used in the present study yields estimates of resting CMRO2, oxygen extraction fraction (OEF) 

and M in addition to the transverse relaxation rate constant R2*, and CO2 cerebrovascular 

reactivity (CVR) (expressible in terms of several parameters including CBF, BOLD signal, 

and R2*). M is a sensitivity measure for BOLD fMRI, helping validating the use of the BOLD 

method as a comparative marker between two groups. R2* is a measure similar to 

susceptibility-weighted imaging (SWI), it can reflect levels of iron in the tissue as well as level 

of deoxygenated blood. OEF allows assessment of the presence of cerebral ischemia. These 

parameters are likely to be influenced by vascular function and oxygen transport, making them 

potential biomarkers of interest in AD. 

Finally, the equipment needed to perform calibrated fMRI techniques may be more 

readily available for many institutions than equipment necessary to carry out PET radiotracer 

studies, particularly with short-lived isotopes such as 15O. This would facilitate the 

implementation of multi-center research such as large-scale cohort studies or clinical drug 

trials. 

4.4.  Methodology 

4.4.1.  Participants 

A cohort of 65 individuals with mild to moderate dementia of Alzheimer’s type and 61 

age-matched controls were recruited for the present study. Recruited patients met the criteria 

for “probable AD dementia” as specified in the NIA/AA Guidelines [170] and had a Mini-

Mental State (MMSE) score between 18 and 27. All participants gave written informed 

consent and the project was approved by the Comité mixte d’éthique de la recherche du 

Regroupement Neuroimagerie/Québec. Exclusion criteria at entry included: cessation of 
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education before achieving basic literacy in native language, prior history of significant 

psychiatric or neurological illness (other than AD), significant intellectual handicap, 

undergoing current or recent (≤2 months) treatment for a significant medical condition, 

chronic obstructive pulmonary disease, history of recurrent asthma, or other significant 

respiratory disorder, comorbidity with other underlying pathologies for dementia (for AD 

cohort) and clinical history of cognitive or memory impairment (for control cohort). All 

participants were either English or French speakers and had a normal or corrected-to-normal 

hearing and vision (relevant for behavioral testing, although corrective measures were not 

required during the MRI protocol). 

From the recruited group, 31 AD and 24 control participants were not included in the 

present data analysis due to data inclusion criteria outlined in Figure 4.1, yielding a final 

dataset of 34 AD (15 males, mean age of 76.9 ± 6.5) and 37 controls (14 males, mean age of 

74.4 ± 4.6). All participants underwent a blood draw, which allowed measurement of their 

hemoglobin concentration [Hb] that was used to compute CMRO2. Participants also completed 

the Montreal Cognitive Assessment (MoCa) to ensure the absence of cognitive impairment in 

the control cohort. Control participants who scored less than 26 in the MoCa were excluded 

from the present analysis (n = 10). 

         

Figure 4.1. Participant retention  
Exclusion criteria for the Alzheimer’s patients (AD) and healthy controls cohorts. MoCa = 
Montreal Cognitive Assessment. 

 

Control AD
Recruited n=61 Recruited n=65

Drop out before the first appointment n=0

MRI incompatible n=1

MoCa score <=25/30 n=10

Drop out during neuropsychological testing n=0

Drop out during hypercapnia testing n=6

Malfunction of the respiratory monitoring system n=5

Presence of mask leakage n=2

Drop out during the imaging protocol n=0

Excluded n=24 Excluded n=31

Drop out before the first appointment n=4

MRI incompatible n=1

MoCa score <=25/30 NA

Drop out during neuropsychological testing n=1

Drop out during hypercapnia testing n=10

Malfunction of the respiratory monitoring system n=4

Presence of mask leakage n=6

Drop out during the imaging protocol n=5

Included in analysis n=37
nSite1/nSite2: 27/10

Included in analysis n=34
nSite1/nSite2: 25/9
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4.4.2.  Data Acquisition 

4.4.2.1.  Respiratory Paradigm 

A gas timing schedule previously described by Bulte et al. [64], with a total duration of 

18 minutes, was applied. This involved two 2-minute periods of hypercapnia (HC) and two 3-

minute periods of hyperoxia (HO), induced by administering gas mixtures enriched with CO2 

(5%) and O2 (50%) respectively. Hypercapnia was followed by a 1-minute normocapnic 

period while hyperoxia was followed by a 3-minute period of normoxia. Participants inhaled 

the gas mixtures via a breathing circuit developed in-house and described by Tancredi, Lajoie 

& Hoge (2014) [66]. Respiratory gases were continuously monitored using the CO2100C and 

O2100C modules of a BIOPAC MP150 system (BIOPAC Systems Inc., CA, USA). For 

additional details, see Lajoie et al. [163]. 

Prior to the imaging session, all participants underwent a hypercapnic manipulation of 

2 minutes outside of the scanner for familiarization. Thereafter, participants were interviewed 

to evaluate their level of respiratory discomfort and to confirm their willingness to continue. 

Participants who reported a significant discomfort were not invited to continue with the 

imaging session of the study (10 in the AD group, 6 in the control group). 

4.4.2.2.  Image Acquisition  

Acquisitions were performed on two different clinical 3 T scanners of identical make 

and model (Siemens TIM TRIO, Siemens Medical Solutions, Erlangen, Germany), using a 32-

channel receive-only head coil supplied with this system. It was ensured that an equal number 

of participants from each group were scanned at each site (Table 1, Pearson Chi-Square P 

value of 0.96). Hence, no adjustment for different sites was performed during the statistical 

analysis. Participants were asked not to consume caffeine or tobacco for two hours prior to 

their imaging session, to avoid confounding vasoactive effects. 

The scan session included a 5-minute anatomical acquisition (1 mm3 MPRAGE with 

TR/TE/flip angle = 2.3 seconds/3 msec/9°, 256x240 matrix, GRAPPA factor = 2), and an 18-

minute functional scan using dual-echo pseudo-continuous ASL sequence (de-pCASL) [108] 

in order to acquire simultaneous measures of BOLD and CBF. The de-pCASL parameters 
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were: TR/TE1/ TE2/alpha = 4.12 seconds/8.4 msec/30 msec/90°, labeling duration = 2 

seconds using Hanning window-shaped RF pulse with duration/space = 500 µsec/360 µsec, 

flip angle = 25°, slice-selective gradient = 6 mT/m, label offset = 100 mm below the center of 

image slab, nominal and average post-labeling delay (PLD) = 0.9 and 1.44 seconds 

respectively. The readout consisted of a GRE-EPI with GRAPPA factor = 2, partial sampling 

of k-space = 7/8, in-plane resolution of 4.5 x 4.5 mm2, 21 slices with 4.5 mm thickness and 0.5 

mm gap.  

4.4.3.  Data Analysis 

4.4.3.1.  Respiratory Data Analysis  

Analysis of the respiratory data was carried out using a custom software application 

developed in Matlab (MathWorks, Natick, MA, USA), which performed automatic 

determination of the end-expiratory (end-tidal (ET)) and end-inspiratory points from the 

continuous O2 and CO2 sampling. Each ET point was corrected to account for the low-pass 

filtering effect of the filter placed in series and to account for an expired partial pressure of 

water of 47 mmHg (Severinghaus 1989). For more details, see Lajoie et al. [163].  

The average values of ETO2 at baseline and during both respiratory stimuli were used 

to compute arterial O2 content (ml O2/ml blood) as well as the change in venous deoxygenated 

fraction ([dHb]/ [dHb]0), as detailed by Chiarelli et al. [56] and Gauthier et al. [85]. The latter 

quantities are needed to obtain the BOLD calibrated value M, resting OEF and CMRO2 as 

specified below.  

4.4.3.2.  Image Data Preprocessing 

Analysis of functional scans was performed using in-house software implemented in C 

as in Lajoie et al. [163]. The susceptibility artifacts caused by the paramagnetic molecular O2 

that was inspired, compounded by thick slices used to maximize SNR, limited the image 

quality of regions on the ventral surface of the brain and those adjacent to the nasal cavity. 

These regions were excluded from the analysis by empirically determining a threshold in the 

intensity normalized S0 (label and control averaged) that delineate them. The ASL signal was 

converted into physiological units of flow (mL/100 g/min) as in Wang et al. [93] with a blood-
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brain partition coefficient = 0.9, labeling efficiency = 0.85, blood T1 = 1.65 seconds, grey 

matter T1 = 1.4 seconds [112] and an adjusted PLD to account for slice acquisition time (PLD 

range for 21 slices of 900-1960 ms). The control S0 at baseline was used as a surrogate for the 

fully relaxed magnetization M0. In order to compensate for incomplete recovery of 

longitudinal magnetization during our TR of 4.12 seconds, a factor implicating the grey matter 

T1 value was applied to the baseline EPI estimates [112]. 

In general, the CBF response to hyperoxia is known to be small [84], but small 

regional changes are difficult to measure due to the low SNR of ASL. Because of this, a 

uniform change in CBF was assumed throughout the brain, based on averaging of global 

responses over all participants (the ultimate effect on accuracy is minimal due to the small 

effect size) [56,64,84,85]. The result of averaging all participants’ grey matter ∆%CBFHO 

corrected for blood T1 was -2%, as described next. During hyperoxic manipulation, the T1 of 

blood is altered due to an increase in plasma concentration of paramagnetic O2 [89]. To 

account for this change in blood T1, which biases the measured CBF changes, a corrective 

factor using the approach described in Chalela et al. [91] and Zaharchuk et al. [92] was 

applied. First, arterial blood T1 values during hyperoxic periods were linearly interpolated 

based on the individual ETO2 measurements, used as a surrogate for arterial partial pressure of 

O2 (PaO2), along with the R1 (1/T1) and PaO2 relationship in rats’ blood reported by Pilkinton 

et al. [89]. Then, the individual blood flow maps during hyperoxia were corrected by applying 

a slice-wise corrective factor based on the quantitative blood flow equation [93], slice 

acquisition time and adjusted T1 value.  

4.4.3.3.  Computation of CMRO2 

 For each gas challenge, the changes in the venous deoxygenated fraction, along with 

the changes in BOLD (∆R2*) and CBF were used as inputs to the generalized calibration 

model (GCM), described in Gauthier et al. [59]. This yields a system of two equations with 

two unknowns: the BOLD calibration parameter M (extrapolated maximum BOLD fractional 

signal increase when venous O2 saturation approaches 100%) and OEF (the fraction of 

delivered oxygen that is consumed). Absolute CMRO2 was then determined by multiplying 

OEF by O2 delivery, computed as the product of resting CBF by arterial O2 content. In the 
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absence of an intersection between the hypercapnia and hyperoxia curves, the voxel is 

determined to have no solution and will be excluded from any further analysis. In the equation 

defining M (Gauthier and Hoge [59], equation 7), the parameter α, which expresses the 

relationship between changes in blood flow and blood volume, was assumed to be 0.18 [70] 

while β, defining the non-linear dependence of changes in R2* on deoxygenated hemoglobin, 

was set to 1.5 [71]. The hemoglobin concentration [Hb] was measured from blood drawn from 

each participant during the scanning session. Metabolic changes associated with periods of 

hypoxia and hypercapnia remain a topic of debate [77-79,81-83]. Without a clear consensus 

on the matter, an isometabolism was assumed as in previous calibrated studies [85,94,163].   

4.4.4.  Statistical Analysis  

Regional-based analysis was performed in each individual’s original image space (i.e. 

no spatial resampling). Regions of interest (ROIs) included bilateral grey matter regions for 

each of the four lobes as defined by the ICBM152 lobes atlas [171], which was non-linearly 

registered to the ADNI template [172]: frontal, parietal, temporal and occipital, as well as two 

sub-regions known to be vulnerable to AD [173], i.e. posterior cingulate and precuneus 

defined from the OASIS-TRT-20 atlas [114]. Given the low SNR in ASL, averaging within 

lobes was a reasonable compromise in terms of specificity and sensitivity, while allowing for 

coverage of most of the data and avoided the more arbitrary definition of smaller regions. A 

region including all four lobes was also created to evaluate measurements throughout cerebral 

grey matter. A probability mask of grey matter was automatically extracted from T1-weighted 

scans using the FMRIB Software Library (FSL) [113], then resampled to the functional EPI 

scans. Each ROI was also registered to the resolution of the functional EPI scans before being 

further masked using the individual’s grey matter probability map to exclude voxels with a 

grey matter probability lower than 50%. The ROIs and grey matter probability maps were then 

used to compute weighted averages for each metric. This weighting procedure served to 

account for the partial volume effect due to the presence of a mixture of grey matter, white 

matter and cerebrospinal fluid in EPI voxels. Missing data due to differences in imaged slice 

positions, susceptibility patterns, or no-solution patterns for M and OEF, were not included in 

the average. ROI analyses between groups were performed using Matlab (Mathworks, Natick, 

MA) by applying a univariate general linear model with P < 0.05 level of significance. Since 
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age is known to be a predominant factor in cerebral hemodynamics changes [94,97], results 

were obtained with and without adjustment for age. 

A voxel-wise analysis was also performed to corroborate results of the ROI-based 

analysis. Individual maps were non-linearly registered, with 12 degrees of freedom using 

trilinear interpolation, to the ADNI atrophy-specific MRI brain template created from a subset 

of cognitively normal subjects, patients with mild cognitive impairment (MCI) and patients 

with mild AD dementia [172]. The non-linear registration was calculated using the CIVET 

software package [120] via the CBRAIN interface [121]. Brain coverage in normalized group-

average data was somewhat limited due to inter-individual differences in: 1) image volume 

coverage, 2) patterns of susceptibility artifacts, and 3) no-solution patterns for M and OEF. To 

help correct for these effects, missing data within each participant was interpolated to the 

respective group-average value and the analyzed region only included voxels where a 

minimum of 20 participants per group had a valid value. Parametric images were then tested 

for significant difference between groups by performing a grey matter voxel-wise analysis 

using SPM12, including age as a covariate. Statistical parametric maps were assessed for 

cluster-wise significance using a cluster-defining threshold of P = 0.005 (uncorrected), while 

the 0.05 FWE-corrected critical cluster size was set to a minimum of 1250 voxels (voxels of 

1x1x1mm3). If needed, the cluster size was adjusted to eliminate clusters that were not large 

enough to reach significance according to the SPM model. A toolbox for SPM was employed 

to identify the location of clusters, by calculating the percentage of cluster within each region 

(Tzourio-Mazoyer et al. 2002). The two highest percentages per cluster are reported. 

Correlations between Montreal Cognitive Assessment (MoCa) scores and our imaging 

findings in AD were tested for significance using Spearman’s rank-order correlations, with 

statistical significance set at P 0.05. Correlation with MMSE scores was not performed since 

these tests were obtained prior to the present study.  
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4.5.  Results  

4.5.1.  Participant demography 

The demographic characteristics of the participants are shown in Table 4.I. We 

obtained a very good segregation between the two groups based on their respective Montreal 

Cognitive Assessment (MoCa) score. The difference in age between our groups neared 

significance, which supports the need to correct for its effect on the different hemodynamic 

parameters. 

 Control AD P value 

Number of subjects 37 34 - 
Sites (#1/#2) 27/10 25/9 Pa = 0.96 
Gender (male/female) 14/23 15/19 Pa = 0.59 
Age (years) 74.4 ± 4.6 76.9 ± 6.5 Pb = 0.07 
Education 16.4 ± 3.5 14.6 ± 4.6c Pb = 0.09 
Mini-Mental State (MMSE)* - 23.7 ± 2.6 - 
Montreal Cognitive Assessment (MoCa)  28.5 ± 1.2 15.6 ± 5.0 Pb < 1x10-14 

Table 4.I. Demographic and clinical data for each group 
Data are means ± standard deviations. 
* Performed in AD prior to the current study; was part of the inclusion criteria  
a Pearson Chi-Square P value  
b Two-sided independent sampling Student t-test P value 
c Education information was missing in five AD patients 

4.5.2. Susceptibility Artifacts 

As expected, with the presence of paramagnetic molecular oxygen in inhaled air 

situated in the frontal sinuses and nasal cavity, the temporal lobe was the main region in which 

voxels were excluded due to susceptibility artifacts: a reduction of 4% in the number of voxels 

(having a minimal grey matter probability of 50%) was observed. The number of voxels in the 

occipital and frontal lobes reduced by less than 1%, while the parietal lobe was not affected. 

4.5.3.  Delayed Arterial Transit Time 

We compared resting CBF, OEF and CMRO2 values within the four grey matter lobes 

(Figure 4.2) with that of previous ASL [51,115] and PET studies [14,16,17,174]. Our values 

are in good general agreement with previous studies, except in the occipital lobe where our 

estimates are lower in both groups. The occipital lobe is known to be served by the posterior 
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cerebral artery, which has a substantially longer transit time [149,151,175]. Therefore we 

suspect our CBF estimates to be biased in this area only due to a short PLD. Conjointly,  

higher CBF delta percent change during hypercapnia in the occipital lobe compared with the 

other lobes was also observed and supports this theory (data not shown). This bias in resting 

CBF and in flow change to hypercapnia propagates to the model-derived M, OEF and 

CMRO2, which prevents us from making any conclusions in the occipital lobe. Therefore, we 

chose not to include the occipital lobe in subsequent analyses. 

             

Figure 4.2. Bias in occipital lobe due to delayed arterial transit time (ATT) 
Our resting CBF, OEF and CMRO2 values within each grey matter lobe are compared to those 
found in the literature. Measurements fall within the range of reported values, excepting in the 
occipital where the ATT is suspected to be longer than our time acquisition, biasing our ASL 
measurements and thus the derived-model M, OEF and CMRO2 estimates in this region. CBF0 

= the resting oxygen delivery; OEF = the oxygen extraction fraction; CMRO2 = the resting 
oxygen consumption 
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4.5.4.  Patients Versus Healthy Control Subjects  

4.5.4.1.  Respiratory Data  

Figure 4.3 shows the O2 and CO2 end-tidal values (ET) at baseline, during hyperoxia 

(HO) and hypercapnia (HC) in both groups. No significant differences in respiratory 

measurements were found between the groups (PETO2_0 = 0.5, PETO2_HO = 0.2, PETO2_HC = 0.8, 

PETCO2_0 = 1.0, PETCO2_HO = 1.0, PETCO2_HC = 0.8, adjusted for age).  

                  

Figure 4.3. Gas manipulations  

End-tidal (ET) O2 and CO2 values at baseline, during hyperoxia (HO) and during hypercapnia 
(HC) for both groups. Errors bars indicate standard deviation. 

 

4.5.4.2.  Hemoglobin concentration and T1 corrected CBF change during 

hyperoxia 

The blood test revealed no significant difference in the hemoglobin concentration 

([Hb]) between groups (P = 0.4 adjusted for age), with an average of 13.9 ± 1.4 and 13.9 ± 1.2 

gHb/dl in the patient and control cohorts respectively. Individual values of [Hb] were used in 

the QUO2 model for M, OEF, and CMRO2 estimation. Blood T1 during hyperoxia was 

estimated to be 1.593 ± 0.015 and 1.587 ± 0.011 seconds in AD and controls respectively. 

These were not significantly different (P = 0.2, adjusted for age). As a result, the grey matter 

cortical group-averaged T1-corrected CBF values during hyperoxia were -1.7 ± 10.9 and -2.6 ± 
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8.9% in AD and controls respectively, with no significant difference between them (P = 0.9, 

adjusted for age). Considering the low SNR associated with these measurements, the T1-

corrected ∆%CBFHO averaged over both groups (-2%) was employed as a fixed constant in the 

computation of the model-derived estimates (descriptions in methodology section). 

4.5.4.3.  Region-wise analysis 

Our grey matter region-wise analysis revealed a decreased CBF and CMRO2 in the 

parietal, precuneus and temporal regions of AD patients compared to age-matched controls 

(Table 4.II). Interestingly, all investigated lobes and sub-regions showed a lower resting R2* 

in AD (corresponding to a slower transverse relaxation of the MRI signal). The R2*0 in AD 

was also found significantly lower in all investigated lobes and sub-regions. During the 

hypercapnic manipulation, R2* decreased less in AD (equivalent to a lower BOLD signal 

increase), in the frontal, parietal and precuneus regions as well as the whole brain. A tendency 

for a reduced R2* decrease during hypercapnia was observed in the temporal and posterior 

cingulate cortex, although the differences were not significant after adjustment for age 

(respectively P = 0.07 and P = 0.06 respectively). Lower OEF values in the parietal, precuneus 

and the whole brain of AD were not significant after adjustment for age. No region showed a 

significant difference between groups for the M value, the R2* change during hyperoxia, and 

the CBF change during hypercapnia. Since the increase in end-tidal CO2 during hypercapnia 

was equivalent in both groups, the percent CVR was also not found to be significantly 

different. 
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Table 4.II. Region-wise analysis in grey matter with and without adjustment for age 
For each physiological variable, group average values ± standard deviation in different ROIs 
are reported, as well as Student t-test P values calculated with and without adjustment for age. 
P values where significance is reached (p < 0.05) are shown in bold. Physiological variables 
are: CBF0 (ml/100 g/min), the resting oxygen delivery; OEF, the oxygen extraction fraction; 
CMRO2 (µmol/100 g/min), the resting oxygen consumption; M (%) the maximum BOLD 
signal increase when venous O2 saturation approaches 100%; R2*0 (s-1), the transverse 

Table 4. Region-wise analysis in GM with and without adjustment for ageTable 4. Region-wise analysis in GM with and without adjustment for ageTable 4. Region-wise analysis in GM with and without adjustment for ageTable 4. Region-wise analysis in GM with and without adjustment for ageTable 4. Region-wise analysis in GM with and without adjustment for ageTable 4. Region-wise analysis in GM with and without adjustment for ageTable 4. Region-wise analysis in GM with and without adjustment for ageTable 4. Region-wise analysis in GM with and without adjustment for age

Frontal Parietal Temporal Precuneus PC Totalc

Control 39.5 ± 10.8 39.3 ± 13.1 41.2 ± 10.8 37.2 ± 14.4 43.7 ± 11.4 39.8 ± 11.2

AD 37.4 ± 9.0 32.7 ± 9.8 36.1 ± 8.3 29.2 ± 10.5 39.9 ± 8.6 35.9 ± 8.8

pa / pb 0.37/0.29 0.02/0.02 0.03/0.01 0.01/0.007 0.12/0.08 0.11/0.07

Control 0.44 ± 0.14 0.43 ± 0.14 0.43 ± 0.13 0.42 ± 0.16 0.47 ± 0.15 0.43 ± 0.13

AD 0.39 ± 0.08 0.36 ± 0.10 0.39 ± 0.10 0.34 ± 0.13 0.45 ± 0.16 0.38 ± 0.08

pa / pb 0.06/0.13 0.02/0.08 0.16/0.33 0.04/0.12 0.63/0.72 0.03/0.09

Control 125 ± 44 124 ± 48 128 ± 40 113 ± 55 144 ± 57 124 ± 42

AD 105 ± 31 89.2 ± 33.6 106 ± 32 75.6 ± 39.2 130 ± 59 99.9 ± 28.6

pa / pb 0.04/0.09 0.001/0.004 0.01/0.04 0.002/0.007 0.32/0.37 0.007/0.02

Control 5.11 ± 1.14 5.79 ± 1.95 6.59 ± 1.69 6.32 ± 2.58 6.20 ± 2.32 5.62 ± 1.33

AD 4.92 ± 1.53 5.12 ± 1.77 6.43 ± 1.39 5.35 ± 1.93 6.32 ± 3.35 5.24 ± 1.36

pa / pb 0.55/0.82 0.14/0.36 0.68/0.76 0.08/0.22 0.86/0.73 0.25/0.57

Control 18.0 ± 1.4 17.2 ± 1.5 24.9 ± 1.4 16.9 ± 1.6 16.2 ± 1.1 19.6 ± 1.3

AD 16.8 ± 1.0 15.9 ± 1.4 24.1 ± 1.4 15.7 ± 1.4 15.1 ± 1.4 18.4 ± 1.1

pa / pb 1x10-4//5x10-4 3x10-4/2x10-3 3x10-3/5x10-2 6x10-4/3x10-3 2x10-4/9x10-4 1x10-4//7x10-4

Control 53.8 ± 22.8 63.3 ± 49.7 71.8 ± 39.0 69.5 ± 59.6 37.0 ± 27.9 61.0 ± 30.9

AD 46.5 ± 23.3 62.4 ± 42.6 62.0 ± 33.0 65.3 ± 44.1 29.1 ± 24.7 54.5 ± 26.8

pa / pb 0.20/0.29 0.94/0.88 0.27/0.34 0.74/0.61 0.22/0.35 0.35/0.42

Control 4.80 ± 1.93 5.45 ± 3.66 6.32 ± 2.87 6.02 ± 4.45 3.24 ± 2.48 5.37 ± 2.31

AD 5.25 ± 5.47 6.90 ± 7.90 6.34 ± 4.10 7.15 ± 7.66 3.39 ± 4.77 5.91 ± 5.35

pa / pb 0.65/0.72 0.32/0.49 0.98/0.97 0.45/0.71 0.87/0.91 0.58/0.71

Control -0.57 ± 0.19 -0.77 ± 0.25 -0.65 ± 0.25 -0.91 ± 0.30 -0.62 ± 0.18 -0.64 ± 0.21

AD -0.43 ± 0.18 -0.62 ± 0.23 -0.51 ± 0.23 -0.73 ± 0.29 -0.50 ± 0.21 -0.50 ± 0.19

pa / pb 0.003/0.02 0.01/0.04 0.02/0.07 0.01/0.04 0.01/0.06 0.004/0.02

Control -0.15 ± 0.09 -0.25 ± 0.10 -0.18 ± 0.13 -0.28 ± 0.11 -0.24 ± 0.08 -0.19 ± 0.09

AD -0.17 ± 0.09 -0.26 ± 0.10 -0.19 ± 0.13 -0.29 ± 0.12 -0.23 ± 0.08 -0.20 ± 0.09

pa / pb 0.51/0.42 0.66/0.51 0.83/0.59 0.78/0.70 0.74/0.90 0.61/0.44
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CBF0 (ml/100 g/min), the resting oxygen delivery; OEF, the oxygen extraction fraction; CMRO2 (µmol/100 g/min), the oxygen 
consumption; M (%) the maximum BOLD signal increase when venous O2 saturation approaches 100%; R2*0 (s-1), the transverse 
relaxation rate constant; ∆%CBFHC (%), the blood flow percent change during HC; %CVR (%), the cerebrovascular reactivity in 
percent blood change to change in ETCO2;  ∆R2*HC (s-1), the R2* change during HC; ∆R2*HO (s-1), the R2* change during HO. 
Data are means ± standard deviations. P values where significance is reached (p < 0.05) are shown in bold.
a P value prior to adjustment for age. 
b P value adjusted for age. 
c Whole brain cortical GM, excluding the occipital lobe.
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relaxation rate constant; ∆%CBFHC (%), the blood flow percent change during hypercapnia; 
%CVR (%), the cerebrovascular reactivity in percent blood change to change in end-tidal 
CO2; ∆R2*HC (s-1), the R2* change during hypercapnia; ∆R2*HO (s-1), the R2* change during 
hyperoxia 
a : Two-sided independent sampling Student t-test P value, without adjustment for age 
b : Two-sided independent sampling Student t-test P value, with adjustment for age 
c : Cerebral grey matter excluding the occipital lobe 
 

4.5.4.4.  Voxel-wise analysis 

The brain volumes included in the grey matter voxel-wise analysis is shown in Figure 

4.4, overlaid on different sagittal and axial sections of the ADNI template. Given the biased 

ASL signal in the occipital lobe, this lobe was also excluded from the analysis. Clusters with 

significant differences between groups are reported in Figure 4.5 and Table 4.III. No cluster 

showed significant increases in AD relative to controls. Significant reductions in CBF were 

observed in the temporal and parietal lobes in AD, including the precuneus and posterior 

cingulate. Reductions in CMRO2 were observed in the frontal, temporal and parietal lobes, 

more specifically in the precuneus. Lower OEF and calibrated parameter M were also found in 

the parietal-precuneus, although the sizes of significant clusters were considerably smaller. 

Also observed in the region-wise analysis, resting R2* was lower in different AD brain 

regions, such as in bilateral temporal, frontal, parietal, precuneus and posterior cingulate. As 

for the change in R2* during hypercapnia, only the frontal lobe revealed a significantly 

smaller decrease in AD relative to controls. Finally, no significant group difference was found 

for ∆R2*HO, ∆%CBFHC and %CVR. 

 

Figure 4.4. Volume of the brain analyzed  
Analyzed volume (in blue) only includes voxels where a minimum of 20 participants per 
group had a valid value. Any remained missing data within the analyzed region were 
interpolated to the respective group-averaged value. Missing data are due to differences in: 1) 
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imaged slice position, 2) susceptibility patterns and 3) pattern of no-solutions across subjects. 
In the axial slices: left=left. 
 

 
Figure 4.5. Voxel-based analysis adjusted for age 
For each physiological variable, the colored regions show a significant deficit in AD (primary 
P < 0.005 and minimum cluster size of 1250 mm3, yielding a FWE cluster-corrected (P < 
0.05)). The color bar indicates Student’s t-statistic value. Statistically significant clusters are 
overlaid to different sagittal and axial sections of the ADNI template. Physiological variables 
are: CBF0, the resting oxygen delivery; OEF, the oxygen extraction fraction; CMRO2, the 
resting oxygen consumption; M, the maximum BOLD signal increase when venous O2 
saturation approaches 100%; R2*0, the transverse relaxation rate constant; ∆R2*HC, the R2* 
change during hypercapnia. In the axial slices: left=left. SC = subject control. 
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 Clusters N voxels MNI coordinates 
x,y,z mm 

Anatomical areas 
(First two containing the 
highest % of the cluster) 

% 

CBF0 1 43012 -40 -88 27 Right precuneus 23.85 
    Left postcentral 12.37 

2 10652 49 -71 39 Right superior temporal  36.97 
    Right superior parietal  20.65 
OEF 1 10176 55 -71 11 Right inferior parietal 25.30 

   Right inferior temporal 24.45 
2 4852 -67 -14 26 Left inferior parietal 45.98 

   Left superior temporal 21.91 
 3 2148 -2 -76 52 Left superior parietal 23.74 
    Left precuneus 19.69 
 4 1699 11 -42 -32 Right Cerebellum 47.32 
    Right Cerebellum 30.37 
 5 1552 -13 -40 47 Left precuneus  52.26 
    Left supplementary motor area 28.03 
CMRO2 1 95725 53 -67 -13 Right precuneus 13.16 
    Right superior parietal 8.76 
 2 2813 -55 36 8 Left inferior pars triangularis 41.41 
    Left middle frontal 7.18 
 3 4491 -25 31 56 Left superior frontal 4.24 
    Left middle frontal 3.07 
 4 8699 -29 -74 -26 Vermis 50.39 
    Left inferior temporal 29.82 
M 1 2107 8 -75 54 Right precuneus 28.14 
    Left precuneus 24.35 
 2 1799 -67 -13 33 Left supramarginal 67.54 
    Left heschl 12.51 
R2*0 1 21132 46 -9 10 Right postcentral 23.51 
    Right insula 18.90 
 2 14888 -48 6 -2 Left insula 25.91 
    Left superior temporal pole 18.48 
-∆R2*HC 1 6094 -9 39 53 Left inferior pars triangularis 35.58 
    Left middle frontal 35.12 
 2 6115 8 44 50 Right inferior pars opercularis 31.81 
    Right middle frontal 29.84 

Table 4.III. Clusters with significant difference (control > AD) adjusted for age  
For each physiological variable, significant clusters are reported. Physiological variables are: 
CBF0, the resting oxygen delivery; OEF, the oxygen extraction fraction; CMRO2, the oxygen 
consumption; M, the maximum BOLD signal increase when venous O2 saturation approaches 
100%; R2*0, the transverse relaxation rate constant; ∆R2*HC, the R2* change during 
hypercapnia. 
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4.5.4.5. Correlation between QUO2 findings and AD MoCa scores    

MoCa scores were only significantly correlated with R2*0 in the whole brain grey 

matter (occipital lobe excluded) and temporal cortex (r = 0.37, P = 0.04 ; r = 0.36, P = 0.04 

respectively) (Table 4.IV). MoCa scores correlation with R2*0 in the posterior cingulate and 

CBF0 in the precuneus approached significance (r = 0.34, P = 0.06 ; r = 0.32, P = 0.07 

respectively).  

  

 Frontal Parietal Temporal Precuneus Posterior 
cingulate Totala 

CBF0 -0.05 (0.79) 0.20 (0.28) 0.29 (0.11) 0.32 (0.07) -0.04 (0.84) 0.06 (0.75) 
OEF -0.05 (0.80) 0.12 (0.50) -0.03 (0.85) 0.12 (0.53) -0.23 (0.20) 0.04 (0.83) 
CMRO2 -0.01 (-0.94) 0.20 (0.28) 0.12 (0.50) 0.29 (0.10) -0.24 (0.19) 0.05 (0.77) 
M -0.05 (0.80) 0.06 (0.74) 0.00 (0.98) 0.15 (0.41) -0.21 (0.25) 0.02 (0.90) 
R2*0 0.25 (0.16) 0.22 (0.22) 0.36 (0.04)* 0.16 (0.39) 0.34 (0.06) 0.37 (0.04)* 
∆%CBFHC -0.14 (0.45) -0.17 (0.34) -0.14 (0.42) -0.13 (0.49) 0.08 (0.65) -0.16 (0.38) 
%CVR -0.14 (0.46) -0.18 (0.34) -0.16 (0.38) -0.12 (0.51) 0.1 (0.59) -0.21 (0.25) 
∆R2*HC 0.12 (0.51) -0.03 (0.87) 0.14 (0.45) -0.06 (0.73) -0.02 (0.93) 0.09 (0.63) 
∆R2*HO 0.09 (0.61) 0.08 (0.68) -0.04 (0.82) 0.09 (0.62) 0.01 (0.96) 0.09 (0.62) 
Table 4.IV. Correlation between physiological variables in grey matter and MoCa 
scores in AD  
Values represent the Spearman correlation coefficients (P value) between the Montreal 
Cognitive Assessment (MoCa) scores and the physiological variables in AD. Physiological 
variables are: CBF0, the resting oxygen delivery; OEF, the oxygen extraction fraction; 
CMRO2, the resting oxygen consumption; M, the maximum BOLD signal increase when 
venous O2 saturation approaches 100%; R2*0, the transverse relaxation rate constant; 
∆%CBFHC, the blood flow percent change during HC; %CVR, the cerebrovascular reactivity 
in percent blood change to change in end-tidal CO2; ∆R2*HC, the R2* change during 
hypercapnia; ∆R2*HO, the R2* change during hyperoxia. 
* P < 0.05 
a Cerebral grey matter excluding the occipital lobe 
  

4.6.  Discussion 

In this study, we investigated whether our QUO2 technique was sensitive to differences in 

vascular and metabolic function in AD. This calibrated fMRI technique has the advantage of 

providing quantitative information while being readily integrated with other MRI measures 
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(i.e. structural MRI) of proven value in AD, and may therefore offer new insights into the 

underlying mechanisms and causes of the disease.  

Although the QUO2 model-derived parameters and MoCa scores in AD were not 

significantly correlated, vascular and metabolic deficits in AD may be associated with other 

cognitive scores including: language, verbal reasoning, visuospatial function, as well as visual, 

short-term and working memory. Correlations between these neuropsychological scores and 

our imaging findings will be evaluated in a subsequent paper. 

 

4.6.1. Patients versus controls 

The hypoperfusion in AD observed in our data supports its relevance as a 

pathophysiological change in AD [10,176] and is consistent with findings from a previous 

ASL studies [51,53,54,115]. The absence of significant differences in the frontal lobe blood 

flow (39.5 ± 10.8 vs. 37.4 ± 9.0 ml/100 g/min) is consistent with an AD-like pattern, as 

opposed to vascular dementia [15]. With a power of test of 80%, our minimum detectable 

difference (MDD) in frontal lobe blood flow was 7 ml/100 g/min. Our data showed a coupled 

parietotemporal pattern of hypoperfusion and hypometabolism in AD, which corresponds to 

findings in previous PET studies [14-16], including changes in the precuneus, an area where 

blood flow and glucose use was shown to decline at a very early stage in AD 

[51,54,118,177,178]. Although the coupling of blood flow and metabolism in AD may imply 

that the CBF measurement alone is a reliable way of looking at the cerebral function, evidence 

for some decoupling was previously reported [179], hence, both measurements remain 

pertinent especially when exploring the causal factors of the disease or assessing response to 

treatment. For instance, by comparing the MRI oxygen uptake to the PET FDG glucose 

uptake, one could compute a brain glycolytic index that would flag regions where the oxygen 

metabolism, and thus indirectly the mitochondrial function, is being compromised and may 

contribute to the progression of the disease [5-9].  

Our voxel-wise analysis on OEF indicated a significant decrease in the AD cohort, 

within the parietal lobe, while our region-wise analysis reported no significant differences 

after correction for age (MDDTotal = 0.09). Results in the literature are inconsistent regarding 
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OEF with some studies failing to find a difference [17,174], others noting a decrease in the 

medial temporal [14], and still others suggesting an increase in the parietal cortex [16]. The 

coupled reduction in CBF and CMRO2 along with the absence of increased OEF tends to rule 

out chronic global cerebral ischemia in our AD patients, at least at this stage of the illness.    

A trend toward lower calibrated BOLD M values in aging has been previously 

observed [94-97], while, to our knowledge, this study represents the first determination of the 

M value in an AD cohort. The M value is determined largely by the baseline deoxyhemoglobin 

(dHb) brain content. If resting dHb content in the brain is different between two groups, 

standard BOLD measures must be interpreted with caution, since a task-related BOLD signal 

increase will depend partly on the baseline dHb. In the present study, we found few 

differences difference between groups on a voxel-wise basis and no significant difference was 

found between regions (MDDTotal = 0.9%). This finding tends to support the use of BOLD as a 

comparative biomarker between the two groups studied.    

The observed reduction in transverse relaxation rate constant in AD relative to control 

was unexpected. Iron, by its paramagnetic nature can increase the R2* effect and it is known 

to be higher in AD, most notably in sub-cortical regions and hippocampus [180], which were 

not considered in the present analysis. The presence of more brain atrophy in AD [26-29,181] 

might explain a lower R2* due to the greater inclusion of cerebrospinal fluid in our voxel-wise 

and regional analyses. In the present study, we sought to limit such partial volume errors by 

weighting our ROI-averaging with the maps of grey matter fraction determined from 

individual T1-weighted image. Otherwise, lower R2* in AD may be due to less deoxygenated 

hemoglobin or a better shim due to the grey matter being further away from scalp (due to 

atrophy).  

Another interesting finding is the absence of significant differences in percent CVR 

between our AD and control groups (MDDTotal = 1.56%). Nagata et al. [15,179] made the 

same observation while comparing the vascular reactivity to carbon dioxide inhalation 

between a group of probable AD, a group of patients with vascular dementia (VaD) and a 

group of age-matched controls. They found that while the CVR was depleted in the VaD 

group, it remained normal in the AD group. Our results are consistent with the latter finding, 

suggesting physiological changes specific to AD rather than vascular dementia. 
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4.6.2. Limitations 

Analyses were performed solely on the basis of the participant’s clinical diagnostic 

status, without taking into account the vascular density or vascular lesion burden that may play 

a role in the observed results. We will follow up on this in a subsequent paper, while taking 

into account the fluid-attenuated inversion recovery (FLAIR) and susceptibility-weighted 

imaging (SWI) scans that were acquired during the MRI session. 

During the hypercapnic testing, 10 out of 59 patients (17%) and 6 out of 60 controls 

(10%) withdrew due to the feeling of anxiety caused by the CO2 inhalation. Previous studies 

of respiratory manipulation in our research group [94,163] showed a lower rate of withdrawal 

associated with periods of hypercapnia. However, the previous study included only healthy 

participants in their sixties (64 ± 5 years) or younger (31 ± 6 years), while the present 

participants were in their seventies (group-average age of 76 ± 6 years). Younger participants 

are, understandably, more comfortable with the procedure than elderly participants and AD 

patients. It is likely that a clinical trial would experience a lower rate of dropouts among a 

cohort of mild cognitive impairment (MCI) patients than within a group of AD patients. Also, 

dropouts were apparent predominantly in the beginning of the study, decreasing from 17% of 

participants in the first half of the study to 10% of participants in the second half. As time 

passed, study coordinators got better at identifying potential participants who, by virtue of 

cognitive or other deficits), were less likely to tolerate the protocol (although this admittedly 

constitutes a selection bias). Moreover, testing protocol (which included a blood test, the 

neuropsychological battery, the hypercapnia test and MRI scan) was performed during a single 

visit. Future calibrated studies may consider planning for a separate day to perform the 

hypercapnia testing alone, thus reducing potential stress and fatigue experienced by the 

participants.  

Our cohorts’ size was also diminished due to either the presence of mask leakage or 

malfunction of the monitoring system (which affected data for 10 patients and 7 controls), 

which may be seen as problematic in the context of a trial. Malfunction of the monitoring 

system consisted of a failing O2 pump at some point during the first half of the study, and can 

be considered as an isolated event since no more difficulties were observed following its 

repair. The leaks were either due to an imperfect fit of the mask to the participant’s face, or 
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small fissures in the valves of the gas system circuit. The fissures in the valves were the result 

of a manufacturing defect in a specific batch of breathing circuits. Hence, it is unlikely that 

future clinical trials would experience the same challenge. Also, as time passed, experimenters 

became experienced at identifying leaks during the acclimation task before the imaging 

session and hence were able to fix it by either re-positioning the mask, employing skin tape to 

eliminate any remaining apertures or replacing the defective valve. Data exclusion due to 

technical challenges passed from 22% in the first half of the study to 5% in the second half.  

Although our detectable effect is limited by our final cohort sizes (AD = 34, Control = 

37), which in turn limits the statistical power, the clear segregation of the two groups based on 

their MoCa score (15/30 vs. 28/30) suggests that the observed effects are specific to AD. 

Potential confounds can be associated with the use of the same value of certain model 

parameters in both groups. Among the parameters commonly assumed in calibrated fMRI 

studies, we find the Grubb coefficient α, the parameter β, the hemoglobin concentration 

([Hb]), the change in metabolism during hypercapnia and hyperoxia (∆CMRO2HC and 

∆CMRO2HO, respectively), as well as the change in blood flow during hyperoxia (∆CBFHO, 

directly associated with the arterial blood T1 during HO). In a previous study [163], the 

sensitivity of the model-derived M, OEF and CMRO2 estimations to the above assumed 

parameters was assessed. It was shown that M was mainly affected by systematic errors in β 

and ∆CMRO2HC, while not much impacted by [Hb], ∆CMRO2HC and ∆CBFHO. On the other 

hand, OEF was mostly influenced by the assumed ∆CMRO2HO, whereas not affected much by 

errors in β. Finally, CMRO2, being the product of CBF0, OEF and arterial O2 content, was 

impacted the same as OEF for all assumed parameters, except for [Hb], which is part of the 

arterial O2 content estimation.  

In the present study, a blood test allowed the measurement of individual [Hb] and thus 

eliminated a potential source of systematic error that could have impacted OEF and CMRO2 

(Figure 11-B in Lajoie et al. [163]). No difference was found between groups and the mean 

[Hb] of 13.9 ± 1.3 gHb/dl is in agreement with literature values in aged population [75,76]. 

Concerning the change of blood flow during periods of hyperoxia, we applied, for each 

participant, a T1-correction and noted no significant difference in the resulted grey matter 

∆%CBFHO between groups. The averaged value over all participants was employed as the 
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fixed constant value of ∆%CBFHO. Finally, possible divergence of the ‘true’ values of the 

remained assumed parameters, between groups, could have induced potential errors in our 

group comparison. Future studies on Alzheimer’s disease could help answer this question by 

determining, for instance, if the metabolism of AD is differently altered during periods of 

hypercapnia, or if the vascular compliance, and thus the Grubb coefficient α that defines the 

relation between blood flow and volume, is different in AD patients.   

Our lower CBF0 and higher ∆%CBFHC found in the occipital lobe are indicative that 

for a majority of participants, our post-labeling-delay (PLD) was insufficient due to the longer 

transit time of the artery serving the occipital lobe. When quantifying the blood flow, as long 

as the PLD is equal or higher than the time taken by the blood bolus to travel from the labeled 

slice to the imaged tissue, or arterial transit time (ATT), the exact value of the latter does not 

matter since the CBF measurement will not be biased by incomplete label delivery. The ATT 

is known to lengthen with age [175,182], to vary within brain regions served by different 

major cerebral arteries [149,151,175], to differ between grey matter and white matter, and to 

decrease under hypercapnic manipulation [151]. Since the ASL signal decays rapidly with 

time, employing a PLD value high enough to overtake the ATT under all conditions, 

participants and regions, would be costly in terms of SNR. Therefore, the choice of PLD is a 

compromise between SNR, sensitivity and specificity. In this study, we opted for a moderate 

PLD ranging from 900 msec and 1986 msec (given the different slice acquisition times), 

resulting in a brain averaged PLD of 1443 msec, which is lower than the whole brain PLD of 

2000 msec later recommended by the ASL community [112]. Our decision was based on 1) 

the presence of a hypercapnic manipulation in our study, which is known to accelerate the 

blood flow and therefore to lower the ATT, 2) the loss of SNR that we would experience in 

the upper slice if increasing the whole range of PLD values and 3) the fact that our analysis 

was based on grey matter tissue for which the PCASL is less sensitive to the ATT due to the 

small difference in T1 of blood and grey matter [183]. To avoid such a bias in the occipital 

lobe associated with the imaging of blood prior to its complete delivery, one could obtain the 

individual baseline and hypercapnic ATT maps using a rapid low-resolution multi-PLD 

acquisition such as in Dai et al. [184] to compute the true CBF value. Another solution would 

be to increase the PLD, while decreasing the number of slices such that the upper slices are not 



 

 96 

affected by a low SNR due to an excessively high ASL signal decay [97,185]. The use of 

simultaneous multi-slice acquisition may also help limit T1 decay of the ASL label signal over 

the volume. 

4.7.  Conclusion 

Our project, in addition to examining pathophysiological changes in AD using 

calibrated fMRI, helped identify some key challenges related to calibrated fMRI such as  the 

choice of the post-labeling-delay parameter to limit any flow-related bias due to delayed 

arterial transit time, the presence of susceptibility artifacts, and the challenge associated with 

the hypercapnic manipulation in elderly participants, particularly those affected by dementia. 

Current challenges include: improving the characterization of vascular and metabolic burdens 

in the AD brain, along with providing additional information such as the transverse relaxation 

rate constant R2* and cerebrovascular reactivity to CO2. Future calibrated fMRI studies, in 

which the latter challenges are overcome, may provide new insights into the pathophysiology 

of AD that go beyond hyperphosphorylated tau pathology, amyloid deposition and glucose 

uptake. Moreover, calibrated fMRI may be of value in monitoring disease progression, in 

differentiating AD from vascular dementia, and for exploring mitochondrial dysfunction as a 

potential causal factor for the disease. 
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5.  General discussion 

There is an increased interest in the exploration of vascular and metabolic burden in 

Alzheimer’s disease. The recent development of calibrated fMRI approaches, such as QUO2, 

that go beyond the relative measurements of oxidative metabolism to yield absolute resting 

measurements, is of particular interest in better understanding AD and its discrimination from 

other etiologies such as vascular dementias. The absolute measurement of CMRO2 from 

calibrated fMRI techniques, rather than from PET, has the advantages that it is much more 

accessible and does not necessitate the injection of radioactive tracers. Furthermore, in 

addition to O2 delivery and consumption, the QUO2 technique provides supplementary 

physiological biomarker candidates for AD such as the transverse relaxation rate constant and 

cerebrovascular reactivity. Moreover, one could study the presence of correlations between the 

QUO2 estimates and other measurements performed concurrently within the same modality 

(for example: structural, connectivity or task-evoked measurements). Prior to applying the 

QUO2 approach to an AD population, there was a need for enhancing the quality of single-

subject QUO2 estimates, while assessing the accuracy and precision of the model-derived 

estimates. 

In order to enhance single-subject QUO2 measurements, image analysis techniques 

along with the respiratory and ASL protocol were first revisited. A novel breathing circuit 

made in-house was also introduced [66] and used throughout the present work. The resultant 

apparatus yielded precise fractional concentrations of inspired O2 and CO2, while being secure 

and easy to place and remove. The reproducibility of the respiratory trace and of the 

BOLD/ASL signals in whole-brain GM was assessed [67], revealing robust and consistent 

measures (CV < 10%), with CBF hypercapnic responses being the most variable (CV < 20%). 

Thereafter, the variability of QUO2 estimates as well as the impact of errors on their accuracy 

and precision were evaluated and presented in Chapter 2. It was shown that M, OEF and 

CMRO2 precision would particularly benefit from a reduced error in CBF hypercapnic 

response measurement. Additionally, the assumed model parameters that had the largest 
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impact on the accuracy of M were the metabolic changes during HC and the beta parameter. 

Meanwhile, for OEF and CMRO2, the greatest impact was from metabolic changes during 

both gas challenges, and the CBF hyperoxia response. In chapter 3, we compared the impact 

of employing 60% versus 100% inspired O2 on the model-derived estimates. No difference 

was found between the number of voxels affected by susceptibility artefacts and the QUO2 

model-derived estimates remained comparable regardless of the hyperoxia level. Finally, in 

chapter 4, the QUO2 method was applied in a cohort of AD patients and a group of age-

matched controls. Results revealed the typical parietotemporal pattern of hypoperfusion and 

hypometabolism in AD, along with providing additional information such as the transverse 

relaxation rate constant R2* and the cerebrovascular reactivity to CO2, making the QUO2 

approach a promising aid in the understanding, diagnosis and monitoring of the disease.  

5.1.  Future directions 

QUO2 model-derived M, OEF and CMRO2, as being estimated from BOLD and CBF 

measurements, suffer from the low intrinsic SNR of ASL measures. Additionally, small head-

motion or instability in either the control or label image may result in perfusion image errors. 

When being applied in a less compliant clinical population, such motion can become a 

significant cause of image degradation. We have compared the BOLD and ASL SNR and 

CNR of the QUO2 protocol (Table 4, Tancredi et al. [67]) and shown that our BOLD SNR 

was considerably higher than that of ASL (224±9 vs. 2.5±0.1 respectively), while the average 

CNR of BOLD hypercapnic responses were 3 times larger than that of CBF responses 

(3.9±0.3 vs. 1.32±0.06), reflecting the higher temporal stability of the BOLD signal. As a 

consequence, the within-subject variability of CBF responses was larger than that of the 

BOLD responses with a general trend for higher variability in smaller regions (Table 2.IV, 

Chapter 2). Finally, the impact of such errors in measured CBF responses on the precision of 

the model-derived estimates was shown (Figure 2.12, Chapter 2). Enhancing the robustness 

and reliability of ASL would therefore improve M, OEF and CMRO2 estimates at a single 

subject level and in small regions. Available strategies include the suppression of background 

static tissue signal [159,160], the correction of spin labeling imperfections [152] and of B0 
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field inhomogeneity [153], the elimination of physiological noise [146,186] and the 

application of improved partial volume correction [154,187]. 

While our post-labeling-delay (PLD) was optimal for a protocol which included 

periods of hypercapnia in a healthy young population (Chapter 2 and 3), our ASL data on 

elderly and Alzheimer’s patients revealed a bias in the occipital lobe, where the arterial transit 

time is known to be longer (Figure 4.3, Chapter 4). Future calibrated fMRI applications on 

such cohorts would benefit from either one of the following adjustments: 1) increasing the 

PLD to give enough time for labeled blood to enter all brain tissue [183], along with 

increasing the slice thickness, resulting in a decreased number of slices such that the SNR in 

the upper slices would not be drastically affected due to an excessively high ASL signal decay 

[97,185]; 2) using a low-resolution multi-PLD acquisition to obtain the individual arterial 

transit time maps to aid the estimation of cerebral blood flow [184].  

Throughout the present work, the ability to extract meaningful values in the inferior 

temporal lobes and anterior medial temporal lobes was limited because of proximity to air-

tissue or bone-tissue interfaces, which created susceptibility artifacts. These artifacts, found 

only in fMRI, could be one of the potential sources of divergent findings between fMRI and 

PET studies [188]. Hence, the application of advanced calibrated fMRI techniques for 

studying conditions such as in AD, would greatly benefit from reduced susceptibility artifacts 

[86] considering the presence of typical regions affected by Alzheimer’s disease, including the 

hippocampus, parahippocampus and amygdala [189-191].  

In Chapter 4, when applying the QUO2 technique in elderly and AD cohorts, we 

observed a higher incidence of participants experiencing anxiety during the 2-min hypercapnia 

acclimatization compared to previous applications of the approach on healthy younger 

participants. Our hypercapnia acclimatization session was performed immediately prior to the 

imaging session, while the participant was lying down on the MRI table, positioned outside of 

the scanner. This decision was taken in order to allow participants to experience the effects of 

hypercapnia before the added stress of being inside the MRI bore. Participants who were 

uncomfortable with hypercapnia were excluded from the experimental protocol. The 

hypercapnia session being performed on the same day as the MRI session may have increased 

in certain participants, the stress associated with experiencing for the first time both the 
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hypercapnia manipulation and MRI scan within a unique visit. To lessen to a certain degree 

this discomfort, future calibrated studies applied in elderly or patient cohorts may consider 

planning a previous visit solely dedicated to the hypercapnia acclimatization session, during 

which the participant is comfortably seated in a room other than that of the MRI scanner.

 An additional factor that reduced the statistical power of our study (Chapter 4) was the 

elimination of data with inadequate quality, which resulted primarily from a leak in the system 

circuit. This effect was either due to an imperfect fit of the mask to the participant’s face, or 

small fissures in the valves of the gas system circuit. As time passed, the experimenters were 

more capable of identifying leaks prior to the imaging session, while performing the 

hypercapnia acclimatization, and thereby able to fix it by either re-positioning the mask, 

employing skin tape (Tegaderm Film, #1626W, 3M Health Care, St-Paul, MN, USA) to 

eliminate any remaining apertures between the skin and the mask, or replacing the defective 

valve. In future studies, a particular precaution should be taken with regards to training the 

experimenters, such that situations where a leak would weaken the data quality are detected 

and corrected at the beginning of the imaging session. 

5.2.  Additional data and future analyses 

The design of the study presented in Chapter 4 included a rich array of additional data 

that remain to be analyzed. This section describes the supplementary material included in the 

acquired datasets that future studies can explore in order to deeper our knowledge about AD 

conditions.   

In addition to the hemoglobin concentration information input to the GCM model, the 

blood draw administered to our cohorts of elderly and AD patients provided supplementary 

information on blood composition, glucose levels, amyloid precursor protein (APP) and 

apolipoprotein E (APOE) type. Moreover, all participants completed a neuropsychological 

screening, assessing, in addition to the presence of cognitive impairment (Montreal Cognitive 

Assessment (MoCa)), attention and executive functions (Trail making test (A and B)), 

episodic verbal learning (California Verbal Learning Test (CVLT)) and language disturbance 

(Boston Naming Test). Furthermore, all control participants were evaluated for short-term and 

working memory (Digit span forward and backward of WAIS-III), verbal reasoning 
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(Similarities subtest of the Wechsler Adult Intelligence Scale III (WAIS-III) [192], 

visuospatial function (Hooper Visual Organization Task) and Visual memory (Visual 

reproduction of Wechsler Memory Scale (WMS)). The above neuropsychological results may 

provide further knowledge about the nature and extent of cognitive deficits observed in our 

cohorts and may be combined to our imaging findings and genetic measures to assess possible 

correlations. Among others, one could determine if the APOE type appears to influence the 

patient’s position on the AD spectrum estimated from the neuropsychological evaluation.  

During the MRI session, a high-resolution MPRAGE anatomical scan was acquired 

which served to obtain the GM probability mask and to compute the non-linear transformation 

to the ADNI template (Chapter 4). Furthermore, in conjunction with a T2/PD scan also 

acquired, it can serve to determine the volume of specific regions as well as cortical thickness, 

hence assessing the degree of regional atrophy in AD. Moreover, the MRI session included a 

fluid-attenuated inversion recovery (FLAIR) scan, which can detect white matter 

asymptomatic vascular lesions, and susceptibility-weighted imaging (SWI) scan, which can 

segment vasculature and can verify the presence of microbleeds or other vascular pathologies 

that may not be evident in the FLAIR images. Difference in vasculature across regions as well 

as vascular lesions may play a role in our findings, and should therefore be the subject to a 

subsequent study. Finally, a 10-min of resting-state pCASL was acquired, in order to map 

resting-state network (RSN) connectivity. The connectivity maps, along with the resting 

physiological data obtained in the QUO2 procedure, may reveal network disruption in AD 

dissociated from hemodynamic confounds.  

In addition to the core protocol of the study, all participants were asked if they would 

be willing to come back for a PET FDG imaging session of 1.5 hours in order to measure the 

quantitative cerebral glucose metabolism in micromolar units (CMRGlu). To this date, a sub-

set of 21 controls and 9 AD have undergone the PET FDG scans. After acquisition of a 

minimum sub-set of participants having completed both the QUO2 MRI and PET FDG 

protocols, one could compute the voxel-wise glycolytic index, which is the ratio of CMRO2 to 

CMRGlu, and test hypotheses related to mitochondrial dysfunction. A higher degree of non-

oxidative glucose metabolism seen in AD, i.e. presence of brain regions with lower glycolytic 

index, would support the hypothesis of mitochondrial dysfunction in AD. This glycolytic 
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index along with the evaluation of vascular and metabolic indices may reveal a spectrum of 

AD subtypes and serve to test hypothesis related to the primary causes of the disease. As 

discussed in the introduction of the present thesis, two possible chain of actions in the 

development of the disease may happen and be verified: a deficits in vascular function 

contributing to oxidative stress in neural tissues with normal oxidative function; or a 

mitochondrial dysfunction leading to oxidative stress despite normal vascular function.   

5.3. Conclusion 

The work of the present thesis first included improvements to the QUO2 acquisition 

protocol and analysis methods, in order to enhance the robustness and sensitivity of the 

quantitative approach. Then, a reproducibility assessment of the QUO2 measurements and 

model-derived estimates was performed, in addition to the sensitivity analysis of M, OEF and 

CMRO2 estimates to random and systematic errors. Thereafter, an evaluation of the impact of 

inspired oxygen concentration on the calibrated fMRI approach was performed, before 

applying the enhanced QUO2 to a cohort of probable Alzheimer’s disease patients. This thesis 

work has contributed to the enhancement of MRI quantitative approaches allowing the 

estimation of resting oxygen metabolism, while guiding future developments and research 

application of such techniques. Finally, the successful application of calibrated fMRI in 

Alzheimer’s disease, through the identification of some key pitfalls as well as the diffusion of 

encouraging outcomes, highlights the potential of calibrated fMRI as an additional tool for 

increasing our understanding of vascular and metabolism burdens in AD. 
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