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Résumé 

 Récemment, des analyses dans divers organismes eucaryotes ont révélé que l'ensemble 

du génome est transcrit et produit en plus des ARNs messagers, une grande variété d’ARNs 

non codants de différentes longueurs. Les ARNs non codants de plus de 200 nucleotides, 

classés comme longs ARNs non codants (LARNnc), représentent la classe la plus abondante 

de transcripts non codants. Les études des fonctions des LARNnc suggèrent que beaucoup 

d'entre eux seraient impliqués  dans la régulation de la transcription. L'objectif de ma thèse de 

doctorat était d'élucider les mécanismes de la régulation transcriptionnelle médiée par des 

LARNnc dans différents systèmes eucaryotes. 

Dans mon premier projet, j'ai étudié le rôle d'un long ARN non codant antisens dans la 

régulation transcriptionnelle du gène PHO84, codant un transporteur de phosphate à haute 

affinité, chez S. cerevisiae. Des études antérieures ont montré que la suppression d’une 

proteine de l’exosome Rrp6 entraîne une augmentation de l'expression antisens et la répression 

de PHO84. Il a été suggéré que la perte de Rrp6 entraîne une stabilisation antisens au locus 

PHO84, entraînant le recrutement de l'histone de-acétylase Hda1 et la répression de PHO84. 

Cependant, le mécanisme par lequel Rrp6p régule la transcription de PHO84 n’était pas 

connu. En combinant des méthodes à l’échelle de cellule unique, des approches biochimiques 

et génétiques, nous avons montré que les niveaux d'ARN antisens sont régulés principalement 

lors de l'élongation par le complexe Nrd1-Nab3-Sen1, qui nécessite Rrp6 pour un recrutement 

efficace à l`extrémité 3`de PHO84. De plus, nous révélons l'expression anticorrelé du sens et 

de l'antisens, En résumé, nos données suggèrent que la transcription antisens régule le seuil 

d'activation du promoteur PHO84. 

Dans mon second projet, j'ai étudié les rôles des ARNs dérivés des amplificateurs 

(ARNa) dans la regulation de la transcription. En utilisant les cellules de cancer du sein MCF7 

comme système modèle, nous avons cherché à déterminer comment les ARNa induits par 

l'oestrogène (E2) participent à la régulation de la transcription médiée par le recepteur 

d’oestrogène (ERα) au niveau de l'allèle unique. À l'aide de l’hybridation fluorescente à 

l’échelle de molécule unique (smFISH), nous avons révélé qu`après induction d'E2, les ARNa 
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sont induits avec une cinétique similaire à celle des ARNm cibles, sont localisés 

exclusivement dans le noyau, principalement associés à la chromatine, et sont moins 

abondants que les ARNm. De manière surprenante, nous avons constaté que les ARNa sont 

rarement co-transcrits avec leurs loci cibles, indiquant que la transcription active des gènes ne 

nécessite pas la synthèse continue ou l'accumulation d'ARNa sur l'amplificateur. En outre, en 

utilisant des mesures de la distance à sous-diffraction, nous avons démontré que la co-

transcription des ARNa et des ARNm se produit rarement dans une boucle amplificateur-

promoteur. De plus, nous avons révélé que la transcription basale d'ARNa n'exige pas ERα ou 

l'histone méthyltransférase MLL1 qui active l'amplificateur par la mono-méthylation H3K4. 

Dans l'ensemble, nos résultats ont montré que les ARNa peuvent jouer un rôle lors de 

l'activation du promoteur, mais ne sont pas nécessaires pour maintenir la transcription de 

l'ARNm ou pour stabiliser les interactions amplificateur-promoteur. 

Mots clés: long ARN non-codant, transcription, smFISH, S.cerevisiae, PHO84, ARN antisens, 

MCF7, ERα, ARN amplificateur, MLL1 
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Abstract  

Transcription is the initial step in gene expression and is subject to extensive 

regulation. Recently, analyses in diverse eukaryotes have revealed that in addition to protein 

coding genes, transcription occurs throughout the noncoding genome, producing non-coding 

RNAs of various lengths. Non-coding RNAs longer than 200 nucleotides, classified as long 

non-coding RNAs (lncRNAs), represent the most abundant class of non-coding transcripts, 

whose functions however are poorly understood. Recent studies suggest that many lncRNAs 

might have roles in transcription regulation. The goal of my PhD thesis was to elucidate the 

mechanisms of lncRNA mediated transcription regulation in different eukaryotic systems.  

For my first project, I investigated the role of an antisense long noncoding RNA in	

transcription regulation of the	 high-affinity phosphate transporter gene PHO84	 in the 

unicellular eukaryote	 S. cerevisiae. Previous studies showed that deletion of the nuclear 

exosome component Rrp6 results in increased antisense expression and repression of PHO84. 

It was suggested that the loss of Rrp6 results in antisense stabilization at the PHO84 locus, 

leading to recruitment of the histone de-acetylase Hda1 and repression of PHO84. However, 

most of the mechanistic details of how Rrp6p functions in regulating PHO84 transcription 

were not understood. Combining single cell methods with biochemical and genetic 

approaches, we showed that antisense RNA levels are regulated primarily during 

transcriptional elongation by the Nrd1-Nab3-Sen1 complex, which requires Rrp6 for efficient 

recruitment to the 3’end of PHO84. Furthermore, we reveal anti-correlated expression of sense 

and antisense, which have distinct modes of transcription. In summary, our data suggest a 

model whereby antisense transcriptional read-through into the PHO84 promoter regulates the 

activation threshold of the gene.  

For my second project, I investigated the roles of enhancer derived RNAs (eRNAs). 

eRNAs are lncRNAs transcribed from enhancers that have been suggested to regulate 

transcription through different mechanisms, including enhancer-promoter looping, RNA 

polymerase elongation, and chromatin remodeling. However, no coherent model of eRNA 

function has yet emerged. Using MCF7 breast cancer cells as a model system, we sought to 
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determine how estrogen (E2) induced eRNAs participate in estrogen receptor alpha (ERα) 

mediated transcription regulation at the single allele level. Using single molecule fluorescent 

in situ hybridization (smFISH), we revealed that upon E2 induction eRNAs are induced with 

similar kinetics as target mRNAs, but are localized exclusively in the nucleus, mostly 

chromatin associated, and are less abundant than mRNAs. Surprisingly, we found that eRNAs 

are rarely co-transcribed with their target loci, indicating that active gene transcription does 

not require the continuous synthesis or accumulation of eRNAs at the enhancer. Furthermore, 

using sub-diffraction-limit distance measurements, we demonstrated that co-transcription of 

eRNAs and mRNAs rarely occurs within a closed enhancer-promoter loop. Moreover, we 

revealed that basal eRNA transcription does not require ERα or the histone methyltransferase 

MLL1, which activates the enhancer through H3K4 mono-methylation. Altogether, our 

findings showed that eRNAs may play a role during promoter activation, but are not required 

to sustain mRNA transcription or stabilize enhancer-promoter looping interactions. 

Keywords: long non-coding RNA, transcription, smFISH, S.cerevisiae, PHO84, antisense 

RNA, MCF7, ERα, enhancer RNA, MLL1 
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1.1 Foreword 

The central dogma of molecular biology proposes that a gene, the DNA sequence that 

encodes the blueprint for protein synthesis, is the most fundamental unit of heritable 

information. According to this conventional view, biological information is decoded through a 

linear process, whereby a gene is first transcribed into a messenger RNA, which is then 

translated into a protein 1. Unexpectedly, studies within the last decade have found that at least 

three quarters of the human genome is transcribed, far exceeding the 1-2% of the human 

genome that is known to encode proteins 2–4. This discovery challenged the long held notion 

depicting most non-coding regions as “junk” DNA because of their lack of protein coding 

potential. A myriad of transcriptome analyses following these initial studies revealed that all 

eukaryotes express a large ensemble of non-coding RNAs (ncRNAs) of various lengths.	 In 

addition to the well-defined classes of non-coding RNAs such as rRNAs, tRNAs, miRNAs, 

snRNAs, and snoRNAs, the subclass referred to as long non-coding RNAs (lncRNAs), 

consisting of ncRNAs longer than 200 nucleotides, represents the most abundant class of 

ncRNAs; whose function(s) however remain largely elusive. Various studies demonstrated 

that lncRNAs are often expressed in a cell type specific manner, implying that at least some of 

them might play a role in cellular differentiation or in regulating gene expression in response 

to cell type specific signalling pathways 2,3,5,6. However, it is currently unknown what fraction 

of lncRNAs is functional, what their function is, and whether many might simply be by-

products of ‘transcription noise’ 5–8. Furthermore, biological complexity was shown to 

strongly correlate with the relative size of the noncoding genome rather than the number of 

protein-coding genes, suggesting that the noncoding fraction of the genome might play an 

important role in regulating eukaryotic development 9. Therefore, understanding the role of 

lncRNAs is one of the most daunting yet exciting goals of biological research in the post-

genomic era.  

 

1.2 Chromatin remodeling and transcription initiation 

The expansion of eukaryotic genomes during evolution has necessitated extensive 

DNA condensation. DNA compaction is facilitated by the binding of histone proteins to DNA, 
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resulting in the packaging of DNA into nucleosomes, often found in a “beads on a string” 

conformation where 146 nt of DNA is wrapped around a histone octamer consisting of 2 

copies of the 4 core histone proteins histone H2A, H2B, H3 and H4 10. In eukaryotic 

chromatin, nucleosomes often occupy defined positions on DNA and occlude underlying 

regulatory sequences, such as transcription factor binding sites, from being accessed by the 

transcriptional machinery. To modulate DNA accessibility, eukaryotic organisms have 

evolved chromatin remodeling enzymes that rely on the energy of ATP to shift or evict 

nucleosomes from regulatory regions to allow access to the transcriptional machinery 11. 

Transcription initiation is therefore a highly regulated multi-step process that involves the 

interaction of different protein complexes, including transcription factors, histone modifiers, 

and chromatin remodelers.  

 

1.2.1 Nucleosome dynamics on regulatory regions in S.cerevisiae  

 The yeast S.cerevisiae has been a valuable model system to study the role of 

nucleosome remodeling in transcription regulation, demonstrating how signal-dependent loss 

or acquisition of histones at specific TF binding sites activates or represses transcription, 

respectively. Notably, the PHO5 gene, which is induced in response to changing 

concentrations of extracellular phosphate, has been extensively studied as a model gene to 

investigate the role of signal-dependent nucleosome remodeling in transcription regulation 12–

16. PHO5 encodes an acid phosphatase and is a member of the PHO family of genes, which 

are activated by the transcription factor Pho4p during inorganic phosphate starvation.  

Pho4p localization and activity is regulated in response to the concentration of 

extracellular phosphate by the Pho80-Pho85 cyclin-CDK (cyclin dependent kinase) complex 
17. When cells are grown in a phosphate-rich medium, Pho4p is phosphorylated by Pho80-

Pho85 and localized predominantly in the cytoplasm. Conversely, when cells are starved for 

phosphate, Pho4p is dephosphorylated and imported into the nucleus, where it is fully active. 

It was later shown that transcription activation by Pho4p is fine-tuned in response to varying 

concentrations of phosphate through intermediate levels of phosphorylation 18. Furthermore, 

Springer and colleagues showed that a partially phosphorylated isoform of Pho4p is localized 
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in the nucleus and can activate a subset of phosphate-responsive genes when cells are grown 

in intermediate-phosphate conditions.  

An early study on the PHO5 promoter demonstrated that gene induction during 

phosphate starvation results in the disruption of well-positioned nucleosomes on the promoter 
12. It was later shown that transcription activation by Pho4p induces the displacement of 

histones from regions containing Pho4p binding sites 13.  Similarly, using a Δpho80 mutant 

strain, in which dephosphorylated Pho4p localizes constitutively in the nucleus irrespective of 

phosphate levels, showed that transcription activation by Pho4p leads to a complete loss of 

nucleosomes on the PHO5 promoter, recapitulating the disruption of chromatin that occurs  in 

wild type cells in response to phosphate depletion 14. Therefore, transcription factors can 

mediate chromatin accessibility by disrupting the nucleosome structure on target promoters.  

 In addition to transcription factors, chromatin accessibility is also modulated by 

histone acetyltransferases and chromatin remodeling complexes. Histone acetyltransferases 

neutralize positively charged amino acids on histones, such as lysine, by adding an acetyl 

group, which weakens interactions between histones and the negatively charged backbone of 

DNA, making regulatory sequences more accessible. Chromatin remodeling complexes, such 

as the SWI/SNF complex in yeast, utilize the energy of ATP to shift or evict nucleosomes 

from regulatory sequences.  

A study by Reinke and colleagues revealed the importance of the SWI/SNF chromatin 

remodeling complex in PHO5 activation by demonstrating that the mutant strain Δsnf2 , which 

lacks the Snf2p component of SWI/SNF, shows delayed histone removal from the PHO5 

promoter during phosphate starvation. Moreover, they observed that histones on the PHO5 

promoter were hyper-acetylated prior to nucleosome loss, demonstrating a mechanistic link 

between histone acetylation and histone eviction. Interestingly, histone acetylation by the 

SAGA complex was previously shown to modulate the rate of chromatin remodeling and gene 

activation from the PHO5 promoter 19. SAGA also plays a distinct role in recruiting the TATA 

box binding protein (TBP), a component of the pre-initiation complex (PIC), onto the PHO5 

promoter TATA box motif , a core promoter sequence that has been evolutionarily conserved 

in eukaryotes 20. Furthermore, SAGA activity was shown to be dependent on Pho4p. 

Altogether, studies on transcription using PHO5 as a model demonstrate that transcription 
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factors work in concert with the PIC, as well as chromatin modifying and remodeling enzymes 

to evict nucleosomes from gene regulatory regions in a timely manner to activate transcription 

in response to extracellular signals. Conversely, it was shown that nucleosomes are re-

assembled on the promoter by the SWI/SNF chromatin remodeling complex during re-

repression of PHO5 16. Therefore, histones can be evicted or re-assembled on regulatory 

regions in a dynamic manner to regulate transcription in response to specific signals.  

Genome-wide analysis of histone dynamics in yeast has shown that histones are stably 

associated with genomic DNA within coding regions but rapidly dissociate and are replaced 

by new histones on promoters 21. The dynamic turnover of histones occurred predominantly on 

promoters containing TATA box motifs recognized by SAGA/TBP. Intriguingly, another 

study on the dynamics of TBP binding across the yeast genome showed rapid turnover of TBP 

on SAGA/TBP bound promoters 22. Surprisingly, only 10-20% of yeast genes contain TATA 

box motifs. These genes are rapidly activated in response to metabolic stress, as opposed to 

the majority of yeast genes that are TATA-less, which are mainly housekeeping genes that are 

constitutively expressed to maintain homeostasis. The rapid turnover of both TBP and histones 

on SAGA/TBP activated promoters may reflect a dynamic exchange between transcription 

factors and nucleosomes, which bind competitively on promoters, to maintain them in a 

transcriptionally active or inactive state, respectively.  

 

1.2.2 Intercellular variability in gene expression 

Gene expression is an inherently probabilistic process, as it is mediated by chemical 

reactions that rely on the availability of molecules which are present in small copy number and 

are diffusing in the nucleus (transcription factors, RNA polymerases, nucleotides, etc.). It has 

been shown that a genetically identical population of cells can show substantial intercellular 

variability in expression due to random fluctuations in the extrinsic factors mentioned above 

as well as intrinsic noise in promoter activity 23–27.   

A study by Raser and O’Shea measured the intrinsic fluctuations in promoter 

activation using dual fluorescent protein reporters that monitored the expression of two alleles 

of the PHO5 locus in a diploid yeast strain, and constructed a model of stochastic gene 

expression 23. Their model predicts 3 different kinetic mechanisms of promoter activation, two 
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of which describe a 2 state model of expression, whereby the promoter remains inactive for 

most of the time and is activated infrequently in a random manner. Interestingly, although 

promoter activation is infrequent, every time the promoter is active, transcription can be re-

initiated in rapid succession, possibly due to the stability of transcription factor-DNA 

interaction which may evict nucleosomes completely and facilitate the recruitment of multiple 

RNA polymerases. The two cases of this stochastic model both contribute to a large variability 

in mRNA levels within the population. In the first case, the activated promoter is very stable 

due to strong transcription factor-DNA interactions. Indeed, a subsequent study showed that a 

strong TBP-TATA box scaffold promotes strong “bursting” expression, whereby RNA pol II 

rapidly re-initiates transcription when the promoter is active, resulting in high variability in 

mRNA expression 28. Mutations to the TATA box significantly reduced gene expression 

variability. The second case of stochastic activation described by Raser and O’Shea 

corresponds to a weaker “bursting” model caused by an active promoter state that is unstable, 

possibly due to nucleosome translocation on the promoter which might disassociate the TBP. 

Therefore, although this model is consistent with bursting expression, there are fewer 

transcription initiation events generated per burst, due to inefficient nucleosome remodeling 

by the PIC. The third kinetic mechanism of promoter activation described by Raser and 

O’Shea corresponds to a one state model of gene expression, whereby the promoter is always 

ON, allowing frequent activation. However, every time the promoter is activated, it does not 

result in efficient transcription, possibly due to inefficient binding of transcription factors. 

Consequently, gene expression does not occur in discontinuous bursts, but continuously, 

whereby only a fraction of transcription factor binding events on a continually accessible 

promoter will lead to transcription initiation. Therefore, in this model, single uncoordinated 

transcription initiation events are evenly distributed over time, producing little variability in 

expression within a population, allowing cells to maintain constant mRNA levels.  

 

1.2.3 Nucleosome positioning on TATA-less vs TATA box-containing promoters 

The inefficiency of transcription initiation in the one state model of expression may 

result from chromatin being in a partially accessible state that is intermediate between the 

nucleosome architectures of the ON and OFF states in the 2-state model. Interestingly, a 
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genome wide study on PIC assembly on yeast promoters characterized the differences in 

nucleosome architecture between TATA-box containing promoters and TATA-less promoters, 

which may explain why SAGA/TBP bound promoters would favor a bursting mode of 

expression, whereas TATA-less promoters would favor a continuous mode of expression 29 

(see Figure 1-1). They show that TBP binds to the TATA-box motif significantly upstream of 

the transcription start site (TSS) within a large nucleosome free region that allows RNA pol II 

to scan a sufficient distance before initiating transcription. This increases the probability that 

every polymerase recruited by SAGA/TBP will successfully initiate transcription, resulting in 

bursting. Conversely, on TATA-less promoters, TBP is recruited to TATA-like motifs by 

transcription factor TFIID within close proximity to the TSS. In contrast to the dynamic 

exchange between histones and TBP on TATA-box promoters, TBP and histones do not 

compete for DNA access on TATA-less promoters, as TFIID/TBP was shown to cooperatively 

assemble with the +1 nucleosome flanking the TSS. The +1 nucleosome appears to restrict 

scanning by RNA pol II. Therefore, although the nucleosome architecture on TATA-less 

promoters never occludes binding of TBP, histones are not completely evicted by TBP, which 

impedes RNA pol II scanning, and reduces the probability that every RNA pol II recruited by 

TBP will successfully initiate transcription. Therefore TATA-less housekeeping genes may 

favor a continuous mode of expression, where the promoter is activated frequently, but 

transcription initiation is inefficient.   
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Figure 1-1: TATA box vs TATA-less promoters  

 

1.2.4 Single molecule studies of transcription kinetics 

It was previously shown  that TATA-less housekeeping genes and TATA box-

containing genes are regulated by alternative modes of expression 27. Using single molecule 

RNA fluorescent in situ hybridization (smFISH), Zenklusen and colleagues were able to 

quantify the absolute number of mRNAs per cell and monitor the transcriptional status of 

active alleles27. They showed that TATA-less housekeeping genes show little variability in 

mRNA numbers per cell and nascent transcripts per active allele. Conversely, the SAGA 

dependent PDR5 gene showed high variability in number of mRNAs per cell and nascent 

transcripts per active allele. Simulations based on a stochastic mathematical model of gene 

activation and inactivation allowed them to distinguish between “bursting” and “constitutive” 

modes of expression (see Figure 1-2). The SAGA dependent TATA box-containing PDR5 

gene was expressed in a bursting mode, characterized by infrequent ON states that rapidly 

generate multiple transcripts, whereas the TATA-less genes were expressed in a “constitutive” 

mode from a promoter that is always ON, characterized by single uncoordinated transcription 

initiation events distributed in time. The bursting and constitutive modes of gene expression 
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might represent different biological strategies for survival. Whereas housekeeping genes 

would favor constitutive expression to maintain constant mRNA levels, genes that respond to 

fluctuating environmental conditions would favor transcriptional bursting in order to quickly 

reach the threshold of protein levels that is required to adapt to the novel stress. Interestingly, 

transcriptional bursting has also been described in mammalian cells using RNA FISH and 

stochastic modeling of gene activation and inactivation 26. The rationale for bursting 

transcription may be very different in multicellular organisms vs unicellular organisms like 

yeast. While single celled organisms may utilize bursting to respond efficiently to an 

unpredictable environment, multicellular organisms may use bursting to achieve differential 

cellular function and behavior within relatively homogenous environments 26. Bursting may 

also allow cells to rapidly respond to spatio-temporal cues during development to initiate cell 

fate specification. Altogether, single cell studies have shown that gene expression is not a 

deterministic process, but occurs stochastically due to the limited availability of molecules 

implicated in the transcription process, which results in variable expression levels in 

genetically identical populations of cells.  

 

 

Figure 1-2: Constitutive vs bursting transcription  
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1.3 Transcription, termination, and degradation of non-coding RNAs 

1.3.1 ncRNA transcription in S. cerevisiae  

 

Similar to the tight regulation of transcription of protein-coding genes, non-coding 

RNA transcription appears to be extensively regulated, occurring from specific regulatory 

regions that were mapped in different eukaryotic genomes 30,31. Interestingly, transcriptome 

studies in S. cerevisiae, which has a far more compact genome than mammalian cells, reveal a 

highly complex regulatory landscape, where transcription initiates bi-directionally from 

accessible chromatin in nucleosome depleted regions (NDRs) upstream and downstream of 

protein-coding genes 32,33 (see Figure 1-3). Distinct transcription pre-initiation complexes 

(PICs) bind within NDRs in opposite orientations, to initiate mRNA and divergent ncRNA 

transcription, respectively 29. Since ncRNA transcription units often converge with protein-

coding genes, mechanisms have evolved that induce premature transcription termination of 

ncRNAs to prevent transcriptional noise from interfering with gene expression. 

 

Figure 1-3: Bi-directional transcription from nucleosome-depleted regions 

(NDRs) in S.cerevisiae 
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1.3.1.1 Nrd1-Nab3-Sen1 mediated transcription termination of small ncRNAs 

In S. cerevisiae, RNA pol II transcription termination occurs through at least two 

distinct mechanisms 30. mRNA transcription is terminated by cleavage and polyadenylation 

mediated by the CPF/CF complex, whereas small noncoding RNAs such as sno/snRNAs are 

terminated by the Nrd1/Nab3/Sen1 complex (see Figure 1-4). The Nrd1 complex recognizes 

sequence elements within sno/snRNAs and interacts with the RNA pol II c-terminal domain 

(CTD) to prevent transcriptional read-through of these noncoding RNAs into adjacent protein-

coding genes by a polyadenylation independent mechanism 34. Nrd1-Nab3-Sen1 and Pol II 

CTD mutants accumulate read-through snoRNA transcripts. Transcription termination is 

coupled to 3’end maturation of snoRNAs via cleavage by the endonuclease Rnt1, which is 

functionally analogous to 3’end cleavage of mRNAs by the CPF/CF complex. CPF/CF 

components were also shown to interact with the RNA pol II CTD, indicating that the 

termination of both mRNAs and sno/snRNAs requires the physical association of termination 

factors with the transcriptional machinery. However, whereas CPF/CF components interact 

with the elongating isoform of pol II phosphorylated at Ser2 in the CTD heptad repeat domain, 

the Nrd1 complex interacts with the transcription initiation isoform of RNA pol II 

phosphorylated at Ser5 35. Therefore the Nrd1 and CPF/CF complexes act at different stages 

during the transcription cycle of RNA pol II, whereby Nrd1 is recruited to nascent transcripts 

at an early step of transcription  to inhibit elongation on Nrd1 regulated genes.  
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Figure 1-4: Nrd1-Nab3-Sen1 vs cleavage and polyadenylation mediated termination 

Intriguingly, Nrd1 does not only act on ncRNAs, but has also been implicated in the 

regulation of a small set of protein coding genes 36. The best studied example is the auto-

regulation of  its own mRNA through a cis element within its 5’UTR that is homologous to the 

Nrd1 responsive element in the snoRNA SNR13 34.  In the temperature sensitive nrd1, nab3, 

and sen3 mutants, NRD1 mRNA levels are increased, suggesting that the Nrd1 complex can 

regulate the expression of its own transcript by modulating pol II elongation into the Nrd1 

coding region.  Nrd1 has also been implicated in the regulation of the RPL9B gene in response 

to a high copy number of the Rpl9 protein, encoded by RPL9B 37. However, in contrast to 

Nrd1 mRNA regulation, RPL9B mRNA regulation occurs at the post-elongation stage.  When 

Rpl9 is present in excess, it binds to an RNA hairpin motif in the 3’UTR near the polyA site, 
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which favours the use of downstream Nrd1 and Nab3 binding sites for alternative transcription 

termination by the Nrd1 complex to downregulate RPL9B mRNA levels.  

Intriguingly, recent in vivo crosslinking approaches to identify Nrd1 and Nab3 binding 

sites revealed binding to many more mRNAs, identifying association to 20-30% of protein-

coding transcripts in S.cerevisiae 36.  Most binding sites are localized at the 5’end of mRNAs, 

suggesting that they might mediate early termination at these genes. Furthermore, Nrd1 and 

Nab3 were also shown to bind throughout the coding region and 3’UTRs, suggesting that the 

Nrd1-Nab3-Sen1 complex might also be implicated in the alternative termination of mRNAs, 

possibly to downregulate their expression under certain conditions.  

1.3.1.2 Coupling of ncRNA termination and degradation by Nrd1 and the nuclear 

exosome 

In addition to promoting transcription  termination  and 3’end formation, the Nrd1 

complex is also linked to RNA degradation by the nuclear exosome, an RNA surveillance 

complex that is implicated in the turnover of aberrant RNAs 38.  Proteomics analysis showed 

that Nrd1 is found in a complex with the nuclear exosome component Rrp6p 38. Furthermore, 

in vitro RNA degradation assays using reporter constructs containing Nrd1 binding sites and 

purified RNA exosome from either a wild-type or nrd1 mutant strains that lack an RNA-

recognition motif (RRM) showed reduced exosome activity of the nrd1 purified exosomes.  

Adding recombinant Nrd1 stimulated exosome-mediated degradation in both wild-type and 

mutant strains suggesting that Nrd1 recruits the exosome to its target substrates to induce RNA 

degradation. Consistent with such a model, mutagenesis of Nrd1 binding sites in the 5’UTR of 

NRD1 mRNA made it more resistant to degradation suggesting that Nrd1 auto-regulates its 

own expression level by coupling transcription termination to exosome-mediated decay. 

Similarly, Gudipati et al., showed that the Nrd1 terminated RPL9B transcript was destabilized 

by the nuclear exosome 37. However, the relationship between the RNA exosome and Nrd1 

seems complex and not only linked to degradation. Studies from Vasiljeva and Buratowski 

demonstrated that the exosome also plays a role in transcription termination and 3’processing 

of snoRNAs, as both nrd1 and Δrrp6 mutants show extended read-through transcription of 
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snoRNAs. In the context of 3’processing, Nrd1 may stimulate trimming of 3’ UTR sequences 

by the nuclear exosome, without leading to complete 3’-5’ degradation. Therefore, Nrd1 can 

recruit the exosome to nascent RNAs and target them towards a degradative or 3’ processing 

pathway. Transcription termination by the Nrd1 complex has also been linked to the 

degradation of a class of non-coding transcripts in S. cerevisiae called cryptic unstable 

transcripts (CUTs) 39,40. CUTs are transcribed from nucleosome depleted regions (NDRs) 

within intergenic and intragenic sequences both in sense and antisense to protein coding genes, 

and accumulate in strains depleted of the nuclear exosome component Rrp6p. 32,33. As their 

transcriptional units often overlap with protein coding genes, mechanisms have evolved which 

prevent transcriptional read-through of these cryptic messages, which are subsequently 

targeted for rapid turnover. Furthermore, the degradation of CUTs was shown to be dependent 

on an alternative polyadenylation pathway involving the polyA polymerase Trf4 from  the 

TRAMP complex 41. Regulation of CUT transcription and turnover was extensively studied 

for the CUT NEL025c.  NEL025c is present in two forms, a short form with heterogeneous 

3’ends, and a long form. Both forms are only detectable in TRAMP/exosome mutants, with 

the short transcripts being vastly more abundant. While the long form remains polyadenylated 

in the Δtrf4 mutant, the short form is non-polyadenylated and is produced through early 

transcription termination by the Nrd1 complex 39 . Mutagenesis of Nrd1 and Nab3 recognition 

sites and depletion of Nrd1p and Nab3p result in transcriptional read-through into the longer 

form, which is then polyadenylated by the canonical mRNA polyA polymerase Pap1p to 

produce a stable RNA that is not susceptible to exosome mediated degradation. Furthermore, 

the Nrd1 terminated short transcripts get targeted for degradation by the TRAMP/exosome 

complex. Similar results have been reported for other inter- and intragenic CUTs 40. Together 

with previous proteomic analysis identifying components of the TRAMP complex to 

physically interact with Nrd1 and the exosome, these observations further emphasized that 

transcription termination of cryptic transcripts triggers their rapid turnover through a non-

canonical polyadenylation pathway and the nuclear exosome  38.  

Interestingly, there is a class of ncRNAs that is less susceptible to exosome mediated 

degradation than CUTs, referred to as stable unannotated transcripts (SUTs) 33. SUTs are 

capped and polyadenlylated and shown to be destabilized by the cytoplasmic mRNA decay 
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machinery through decapping and degradation by the 5’-3’ exonuclease Xrn1p 42,43. Therefore, 

ncRNAs in S. cerevisiae can be processed by different regulatory pathways. This diversity in 

ncRNA processing mechanisms has been further expanded in higher eukaryotes where 

additional classes of ncRNAs are transcribed throughout the genome, in part from distal 

regulatory elements in intergenic regions. 

1.3.2 ncRNA transcription from regulatory sequences in mammalian cells 

In mammalian cells, RNA pol II and GTFs (general transcription factors) are not only 

recruited to promoters, but also to intergenic and intragenic regulatory sequences, often, but 

not always,  corresponding to tissue-specific enhancers 44. Enhancers and promoters share 

common transcription factor binding motifs and show similar patterns of bi-directional 

transcription, which initiates from the nucleosome boundaries of open chromatin regions 45,46 

(see Figure 1-5). Bi-directionally transcribed regulatory regions express different types of 

RNAs with variable stabilities 47. Canonical promoters typically produce bi-directionally or 

uni-directionally stable transcripts. These transcripts include protein coding mRNAs as well as 

long intergenic non-coding RNAs (lincRNAs). PROMPTs (promoter upstream transcripts) are 

unstable lncRNAs that are transcribed in antisense upstream of protein-coding genes, and are 

susceptible to early transcription termination 48–50. Enhancers typically produce bi-

directionally unstable enhancer RNAs whose short half-lives appears to be correlated with 

early termination similar to PROMPTs 45. Interestingly, enhancers can occasionally produce 

unidirectional stable enhancer RNAs that are polyadenylated, which are often 

indistinguishable from lincRNAs. Unidirectional stable enhancer RNAs and lincRNAs are 

transcribed from loci that harbor the histone modifications H3K4me3/H3K36me3, which 

correspond respectively to the epigenetic signatures of transcription initiation and elongation 

that are also found on protein coding genes 51. Therefore, despite the absence of open reading 

frames (ORFs), some lncRNA loci possess similar chromatin features as protein coding genes. 
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Figure 1-5: Bi-directional transcription from enhancers and promoters 

 

1.3.2.1 Transcription termination and degradation of PROMPTs and enhancer 

RNAs 

How transcription of promoter and enhancer derived ncRNAs is terminated is still not 

fully understood. Some studies suggest that PROMPTs and enhancer RNAs may undergo 

premature transcription termination via similar mechanisms, mediated by the enrichment of 

early poly A signals which are absent in protein coding genes 45,47. Protein coding genes are 

enriched in 5’ splice sites close to the transcription start site that promote efficient splicing and 

productive Pol II elongation, which are followed by canonical polyA signals downstream that 

confer termination and are required for mRNA stability 52. PROMPTs that are transcribed in 

antisense upstream of mRNA TSSs are enriched for polyA signals close to the TSS compared 

to their protein-coding counterparts 50,52. Mutagenesis of these early polyA sites in PROMPTs 

induces transcriptional read-through and makes them less susceptible to nuclear exosome 
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mediated decay. Therefore, polyA signals proximal to PROMPT TSSs link PROMPT 

termination to degradation, which enforces promoter orientation towards protein coding genes, 

even though transcription initiates bi-directionally.  

A specific complex called the nuclear exosome targeting complex (NEXT) was shown 

be implicated in the degradation of PROMPTs, targeting newly synthesized RNAs towards 

early degradation by the exosome 53. Using iCLIP to map the genome-wide RNA targets of 

RBM7, the RNA binding component of NEXT, the authors discovered a correlation between 

RBM7 enrichment on eRNAs and PROMPTS and their sensitivity to exosome mediated 

degradation. Interestingly, PROMPTs were more efficiently stabilized than eRNAs in cells 

that were depleted of NEXT and exosome components. Depletion of CBC (cap binding 

complex) components decreased RBM7 binding on candidate PROMPTs, suggesting that 

NEXT may be recruited to newly synthesized PROMPTs by interacting with the cap structure, 

in particular since a physical link between the CBC and NEXT has been reported previously 
54. As eRNAs were also shown to be capped using CAGE-seq, their degradation may also be 

coupled to termination by the CBC-NEXT complex 55. However, since RBM7 binds slightly 

less efficiently to eRNAs, as detected by iCLIP, and eRNAs are also less stabilized than 

PROMPTs upon exosome depletion, eRNA transcription termination and decay may require 

distinct factors that recognize specific motifs on nascent eRNAs, which are absent in 

PROMPTs.   

Interestingly, the noncanonical polyadenylation pathway for CUT degradation in S. 

cerevisiae bears resemblance to the early polyA signals that link transcription termination of 

mammalian PROMPTs to their decay. Also, a study by Vasiljeva and Buratowski showed that 

the yeast cap binding proteins Cbp80p and Cbp20p co-purify with Nrd1p 38. Therefore, the 

Nrd1-Nab3-Sen1 complex may play a role similar to the NEXT complex in mammalian cells, 

which was shown to physically link the cap structure with the exosome to target newly 

synthesized noncoding transcripts such as PROMPTs for rapid decay. Therefore, the 

mechanistic coupling of transcription termination and RNA degradation may have evolved 

early on to regulate both the size and abundance of ncRNAs, possibly to ensure that they do 

not intervene in the normal gene expression program. Nonetheless, even though many 

ncRNAs might be by-products of transcriptional noise, in part due to random collisions of 
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RNA pol II with accessible chromatin, others have been co-opted by natural selection to 

perform regulatory functions.  

1.4 Evolution and functions of lncRNAs 

In contrast to protein-coding mRNAs, the overwhelming majority of long non-coding 

RNAs are expressed at low levels; with many of them expressed at a single copy per cell 2. 

Also, whereas many protein-coding mRNAs are constitutively expressed across cell types, 

lncRNAs show higher variability in expression and are often expressed in a cell type specific 

manner 2,3. Cellular fractionation assays also showed that lncRNAs are predominantly 

enriched in the nuclear fraction, showing an inverse localization pattern to that of mRNAs, 

which are mainly cytoplasmic. This was confirmed by a recent imaging study that used single 

molecule FISH to investigate lncRNA localization and expression at the single molecule level, 

monitoring expression of different lncRNAs in different cell lines. This study revealed that 

lncRNAs are heterogeneous in their cellular localization, describing different localization 

patterns including lncRNAs that assemble into sub-nuclear foci, as well as  predominantly 

cytoplasmic localization similar to mRNAs 56. These observations suggest that lncRNAs 

function at different stages of gene regulation. 

 

1.4.1 Evolutionary conservation and structural features of lncRNAs 

Interestingly, long intergenic noncoding RNAs (lincRNAs) are often capped, spliced, 

and polyadenylated, showing similar transcriptional processing mechanisms as mRNAs. 

Largely based on these observations, one model proposes an evolutionary explanation of the 

origin of lincRNAs whereby many lincRNA genes may have started as protein-coding genes, 

but have gradually had their open reading frames (ORFs) eroded through mutations, and were 

later co-opted for non-coding functions 7. Conversely, many lincRNA genes may serve as raw 

substrates for natural selection to evolve into de novo protein coding sequences. There is little 

evidence for evolutionary conservation of most lncRNAs, either at the level of primary 

sequence or secondary structure, which makes them a highly diverse class of RNAs with 

potentially heterogeneous functions, as opposed to highly conserved small non coding RNAs, 
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such as microRNAs, sn/snoRNAs, rRNAs and tRNAs, whose functions are narrowly defined 
7.  

One could postulate that lncRNAs should theoretically possess more conserved 

secondary structures than mRNAs, as they are predicted to have specific catalytic roles, 

whereas mRNAs merely encode information, which only requires the conservation of primary 

sequence. Surprisingly, RNA folding computational algorithms predict that lncRNAs would 

possess similar fractions of base-paired nucleotides as mRNAs, suggesting that lncRNAs are 

not more prone to form secondary structure than mRNAs 57. In the absence of primary 

sequence conservation or secondary structure, it is also possible that the process of lncRNA 

transcription itself has a function in gene regulation, whereas the RNA molecule itself is 

inconsequential. While estimates from the ENCODE consortium reveal that ~75% of the 

human genome is transcribed, a smaller fraction of 62% shows evidence of processed 

transcripts. Therefore, there is a substantial fraction of the genome that shows transcriptional 

activity, but no clear evidence of post-transcriptional processing. In such cases, the process of 

transcription on noncoding regions may induce local changes to chromatin to modulate gene 

expression. This mechanism of regulation in cis might increase the cell’s flexibility in 

responding to stimuli as it circumvents the time-consuming process of translating and 

importing transcription factors, which then need to scan the genome for their target regulatory 

sequences  58.  

Despite the paucity of evolutionarily conserved consensus sequences, there is strong 

evidence that at least some lncRNAs are functional in a transcription independent manner, and 

that their functions are conserved across species. Most well-characterized lncRNAs are 

implicated in the regulation of transcription by recruiting chromatin modifying enzymes to 

target genomic loci, or in the organization of sub-nuclear domains that function in mRNA 

processing 7,58–60. Furthermore, there are examples of long noncoding RNAs that are exported 

to the cytoplasm where they regulate the stability or translational efficiency of target mRNAs 
61–64. These examples show that in addition to the high diversity of ncRNA sequence, there 

might be many functional classes, whose common mechanistic principles still have to be 

determined. 
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1.4.2 Model LncRNAs and functional principles 

In addition to the process of noncoding transcription regulating local changes to 

chromatin, lncRNAs can also act as guides to recruit chromatin modifying factors both in cis 

and in trans (see Figure 1-6). There are a few well-studied lncRNAs whose characterization 

has been particularly useful in establishing general models of lncRNA function. Canonical 

examples include Xist, which is implicated in mammalian X-chromosome inactivation, and 

HOTAIR, a lncRNA expressed from the HOXC locus, which is involved in anterior-posterior 

axis specification during development. Xist and HOTAIR act as guides that recruit the 

polycomb repressor complex PRC2, which deposits the repressive tri-methylation mark on 

histone H3K27 (H3K27me3) to inhibit transcription. Whereas Xist functions in cis, spreading 

along the entire X chromosome, HOTAIR can act in trans, as it was shown to recruit PRC2 to 

loci on multiple chromosomes 65. Whether these lncRNAs act in cis or in trans, their essential 

role is to specify the genomic address code of chromatin modifying enzymes, which then 

regulate transcription of the target sequence.   
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Figure 1-6: General principles of lncRNA function 

Many other PRC2 recruiting lncRNAs have been identified in diverse cell types, 

showing that targeted epigenetic repression of transcription by lncRNAs is a common 
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regulatory mechanism 66,67. LncRNAs may also act in a modular fashion, whereby distinct 

motifs within the RNA bind to different factors to regulate multiple enzymatic processes on 

chromatin 58. For example, HOTAIR also recruits the LSD1 complex to demethylate H3K4, 

thereby removing an active histone mark while simultaneously depositing the repressive 

H3K27me3 mark via PRC2 68. Therefore, lncRNAs can potentially act as modular scaffolds to 

concentrate multiple factors on target genomic loci, which have distinct, but complementary 

roles. Other well characterized lncRNAs that might act in such a modular fashion are 

MALAT1 and NEAT1, which organize the structure of speckles and paraspeckles, 

respectively 69–71. Speckles are sub-nuclear domains that contain mRNA splicing factors, 

whereas paraspeckles contain factors that are involved in mRNA editing. Interestingly, 

although MALAT1 is not well conserved at the primary sequence level, it was shown that 

other functional properties may be preserved in highly disparate eukaryotic organisms. For 

example, MALAT1 in zebrafish shares many features with its mammalian counterpart, such as 

high expression, lack of introns, a similar size of 7 kb, and a shared 3’end sequence, despite 

overall lack of sequence homology 7.  Interestingly, Xist shows very little sequence 

conservation among mammals, with a few ancient conserved motifs interspersed with species-

specific sequences 72. These findings reinforce the need to consider features other than primary 

sequence conservation to better elucidate lncRNA function. As imaging analyses and high-

throughput sequencing studies have characterized a vast repertoire of lncRNAs that are 

enriched in the nucleus, there are many candidates awaiting further investigation, which may 

utilize the functional principles outlined above to regulate eukaryotic transcription or novel 

ones that remain to be discovered. 
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1.5 Mechanistic studies of ncRNA mediated transcription regulation in 

S.cerevisiae 

 
The extensive convergence of ncRNA transcription with protein-coding genes in 

S.cerevisiae has stimulated investigation into the regulatory function of ncRNAs 32,33. Various 

single locus studies have revealed distinct modes of gene  regulation by ncRNAs, including 

start site selection dependent regulation, transcriptional interference, and targeted histone 

modification 30,31,73 (see Figure 1-7).  

 

Figure 1-7: Different mechanisms of transcription regulation by ncRNAs in 

S.cerevisiae 
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1.5.1 Start site selection dependent regulation  

The mechanism of start site selection dependent regulation does not implicate the 

ncRNA directly in gene regulation, as the ncRNA is simply a by-product of a pre-initiation 

complex that is recruited to an alternate start site upstream of the mRNA start site under 

repressing conditions. Kuehner and Brow described such a mechanism in the regulation of 

IMD2, a gene that encodes inosine monophosphate dehydrogenase (IMPDH), which catalyzes 

the first step in GTP synthesis74. When GTP concentration is sufficient, RNA pol II initiates 

transcription from a start site upstream of the IMD2 start site. Alternately, when GTP is 

deficient, RNA pol II initiates transcription from the IMD2 start site. In this specific context, 

RNA pol II appears to act directly as a metabolic sensor, sensing GTP levels and responding 

appropriately to regulate IMD2. The ncRNA produced from the upstream site is a cryptic 

transcript, which itself has no function, and is terminated before the IMD2 mRNA start site. 

This mechanism differs markedly from transcriptional interference, in which the process of 

ncRNA transcription directly obstructs activation from the mRNA TSS.  

 

1.5.2 Transcriptional interference  

Another mode of regulation is by ‘transcriptional interference’, whereby ncRNA 

transcription can impede transcription factor access to promoters, as described for FLO11 75. 

FLO11 is regulated by an intricate toggle switch between two ncRNAs, ICR1 and PWR1, 

which have opposing roles in the activation of the gene. ICR1 is transcribed upstream of 

FLO11, activated by the transcription factor Sfl1. ICR1 transcription across the FLO11 

promoter blocks its access to transcriptional activators, thereby repressing FLO11. PWR1 is 

transcribed upstream of FLO11 as well, but in antisense to ICR1. PWR1 is activated by the 

transcription factor Flo8, and interferes with the transcription of ICR1. It induces histone 

deacetylation by Rpd3L, preventing binding of Sfl1, and thereby inhibits ICR1 transcription. 

This relieves promoter occlusion of FLO11, reverting it to its transcriptionally active state. 

Transcriptional interference was also initially suggested for the regulation of SER3 by the 

upstream noncoding transcript SRG1 76,77. SER3 encodes a phosphoglycerate dehydrogenase 
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that catalyzes a step in serine biosynthesis. When serine is abundant, the gene is repressed by 

the upstream noncoding RNA SRG1. SRG1 initiates from its own TATA box motif, and was 

shown to be activated by the transcription factor Cha4 which recruits the SAGA and Swi/Snf 

chromatin remodelers in response to high serine levels. It was proposed that SRG1 

transcription across the SER3 promoter inhibits binding of transcriptional activators, therefore 

repressing SER3. The model of SER3 regulation was further refined in a subsequent study 

which showed that transcriptional interference did not play a direct role in SER3 repression 78. 

It was demonstrated that SRG1 transcription induces nucleosome assembly across the SER3 

promoter, which maintains a repressive chromatin structure.  

1.5.3 ncRNA mediated gene activation through nucleosome remodeling 

While non-coding RNA transcription may repress gene expression by inducing 

nucleosome assembly on the promoter, it may also activate gene expression by evicting 

nucleosomes from a promoter. Uhler et. al described such a mechanism of regulation for 

PHO5, showing that an antisense ncRNA transcribed from the 3' end of the PHO5 gene evicts 

nucleosomes around the PHO5 promoter, increasing accessibility to PHO5 transcriptional 

activators, thereby enhancing PHO5 activation 79. However, anti-sense transcription mediated 

gene activation, as shown for PHO5, may be a rare phenomenon, as most genes that express 

AS RNAs are transcriptionally repressed 32,33. 

1.5.4 Antisense RNA mediated gene repression through targeted histone 

modifications 

Gene repression by anti-sense transcription has been described for the GAL10 and 

PHO84 loci. The GAL10 gene is involved in galactose metabolism and is strongly induced by 

galactose, but repressed by glucose. Houseley and colleagues showed that glucose repression 

is mediated by an antisense lncRNA transcribed from the 3' end of the GAL10 gene80. The 

GAL10 antisense RNA recruits the histone methyltransferase Set2, which methylates lysine 36 

on histone H3 across the GAL10 locus, which then induces histone de-acetylation by Rpd3S, 

thereby repressing GAL10 when cells are grown in glucose. The GAL10 antisense ncRNA is 

activated by the transcription factor Reb1 which binds to the 3' end of GAL10.  
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The PHO84 gene, which encodes a high affinity phosphate transporter,  was shown to 

be repressed by an antisense lncRNA initiated from the PHO84 3’ UTR 81. This antisense 

transcript was expressed at very low steady state levels in a wild type strain. Deletion of the 

RNA exosome component RRP6 results in increased antisense expression, which represses 

PHO84 mRNA expression. Repression requires targeted histone de-acetylation at the PHO84 

promoter by Hda1, which was proposed to be recruited by PHO84 antisense RNAs that 

accumulate at the PHO84 locus upon stabilization after Rrp6 deletion (see Figure 1-8). 

However, many mechanistic details of this process were still unknown, including how Rrp6 

participates in this process. The first part of my PhD thesis focused on using single cell and 

single molecule assays, in combination with biochemical and genetic tools to further dissect 

the mechanism of antisense RNA mediated regulation of PHO84.  

The second part of my PhD focused on a different class of lncRNAs called enhancer 

RNAs (eRNAs), transcribed from mammalian regulatory elements called enhancers, as briefly 

described in a previous section. Specifically, I focused on eRNAs implicated in estrogen (E2) 

regulated transcription in breast cancer cells. The following sections will describe the 

regulation of the E2 signaling pathway, as well as general features of enhancers, chromatin 

topology in higher eukaryotes, and current models of eRNA function.  
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Figure 1-8: PHO84 AS RNA represses PHO84 by recruiting the histone de-acetylase 

Hda1  

  

 

 

 

 

 

 

 

 



28	
	

1.6 ERα mediated transcription regulation in breast cancer cells 

1.6.1 Mechanism of action of ER alpha 

Estrogen (E2) plays an important role in the normal growth of breast epithelial tissue as 

well as in breast cancer progression. Its mechanism of action is mediated primarily by the 

nuclear estrogen receptor ERα, which binds to cognate estrogen response element (ERE) 

sequences as a homodimer, and recruits co-factors to activate or repress transcription in 

response to E2 82,83.  Genome-wide analyses on ERα and RNA pol II occupancy in response to 

E2 have shown that RNA pol II is recruited to promoter proximal regions of target genes, 

while ERα is primarily recruited to one or more distal cis regulatory sequences 84,85. 

Interestingly, while ERα binds directly to EREs in the context of E2 activated genes, it is 

mostly recruited indirectly by other co-factors such as AP-1 in the context of E2 repressed 

genes. Many ERα binding sites coincide with Forkhead motifs recognized by the pioneer 

factor FOXA1, which remodels chromatin and recruits ERα upon E2 treatment. It was 

previously shown that knockdown of FOXA1 inhibits ERα recruitment and target gene 

expression 86. The anti-estrogen compounds Tamoxifen and Fulvestrant (ICI 182 780) used in 

breast cancer therapy, which inhibit co-activator recruitment and ERα binding, respectively, 

repress gene expression by reducing the efficiency of RNA pol II recruitment on promoters 85. 

Therefore, the E2 responsive gene expression program mediated by ERα is modulated 

primarily at the level of transcription initiation.  

1.6.2 The kinetics of E2 induction 

ERα was shown to promote a rapid, extensive, and transient transcriptional response 

upon E2 treatment, activating protein-coding as well as non-coding regions 87. In this study, 

Hah and colleagues used GRO-seq to directly monitor the transcriptional activity of RNA 

polymerases at high resolution during early time points in order to measure the immediate 

cellular response to E2. In addition to demonstrating extensive upregulation of different 

classes of coding and non-coding transcripts synthesized by all three RNA polymerases, they 

show that the transcriptional response is rapid and transient, with many genes showing peak 
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transcription at 10 min or 40 min during an E2 time course, and returning to basal expression 

levels after 160 min. Interestingly, approximately half of the genes that show peak 

transcriptional activity at 10 or 40 min have TSSs for mRNA coding genes located within less 

than 10 kb from the ERα binding site, suggesting that transcribed regions proximal to 

ERα binding sites tend to show an immediate early response. Using GRO-seq also allowed 

them to measure RNA pol II dynamics during the E2 time course. They showed an increase in 

RNA pol II loading on TSSs, which is indicative of RNA polymerases being recruited at a 

faster rate than they are being released into the body of the gene. Therefore, the immediate 

regulatory effect of ERα binding is on the rate of transcription initiation by RNA pol II, rather 

than the rate at which RNA pol II transitions into an elongation competent isoform. These 

results corroborate with the effects of anti-estrogen compounds on RNA pol II recruitment to 

promoters.   

1.6.3 Epigenetic modification of ER alpha responsive enhancers 

ERα-bound distal cis regulatory sequences are mostly intergenic enhancer elements 

that are epigenetically marked by H3K4me1 and H3K27ac 88. The deposition of H3K4me1, 

which is a canonical feature of active enhancers, is mediated primarily by the MLL family of 

histone methyltransferases. There are six well-characterized MLL histone methyl transferases: 

Set1A, Set1B, and MLL1-4 89,90. Notably, MLLs 1-4 have been implicated in depositing 

H3K4me1/2 on enhancers 91,92.  Depletion of MLL4 results in a significant decrease in 

H3K27ac levels on enhancers, as well as diminished recruitment of RNA Pol II  and mediator, 

a protein complex that stabilizes interactions between transcription factors and RNA pol II92. 

These results establish MLL H3K4 methyltransferases as key players in enhancer activation. 

However, only MLL1/2 have been shown to interact with ERα by co-IP and to regulate 

estrogen-responsive gene expression programs 93,94. These interactions may occur directly 

through a nuclear receptor binding domain within MLL1/2 or they could be mediated by other 

co-factors, such as Menin 93,94. 
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1.6.4 The role of MLL1 in enhancer activation 

 It was previously shown that the ERα co-factor FOXA1 requires the presence of 

H3K4me1 to bind to its target enhancers 95. Recent studies have demonstrated that MLL1 is 

required for the deposition of H3K4me1 on the TFF1 enhancer and that depletion of MLL1 

inhibits the recruitment of FOXA1 and ER alpha,  thereby repressing target gene expression 
96,97. The mechanism by which MLL1 is recruited to target enhancers in response to estrogen 

treatment is currently unknown.  It was shown that the CpG binding protein CGBP binds to 

MLL1 and that knockdown of CGBP leads to a decrease in the level of MLL1 recruited to the 

HOXA7 promoter as well as a decrease in the level of H3K4 methylation and gene expression 
98. Additionally, MLL1 was shown to bind directly to a CpG-rich region within the TFF1 

enhancer 97 . It was demonstrated by an in vitro binding assay that MLL1 binds to the CpG 

rich region of the TFF1 enhancer when it is unmethylated, as methylation by the CpG specific 

DNA methyltransferase M.Sss1 inhibits MLL1 recruitment (Jeong et al 2014). Interestingly, it 

was shown that cell type specific CpG rich glucocorticoid receptor (GR) bound enhancers are 

made partially accessible by CpG demethylation, which might “pre-program” these enhancers 

for activity 99. Therefore, CpG de-methylation of ERα target enhancers may represent the 

initial step in creating a partially accessible enhancer region to recruit MLL1, which then 

stimulates the recruitment of downstream factors that further remodel chromatin to activate 

transcription.  

1.7 Enhancer function, chromatin topology, and transcriptional dynamics 

1.7.1 Features of enhancers 

Cellular differentiation during eukaryotic development requires precisely orchestrated 

spatiotemporal patterns of gene expression 100,101. This regulation is mediated by enhancers 

which respond to tissue-specific signaling pathways. Typically located in non-coding 

intergenic DNA, enhancers contain binding sites for transcription factors, which they can 

bring into proximity towards gene promoters by a DNA looping process. How enhancers 

achieve this precise looping interaction with promoters has not been clearly elucidated, but 
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specific protein complexes such as cohesin and mediator are known to stabilize these long 

range chromatin interactions and facilitate RNA pol II recruitment to activate gene 

transcription in a cell type specific manner 101,102. Tissue-specific enhancer-promoter 

interactions mediated by cohesin have been extensively mapped throughout the genome 103.  

Enhancers also possess an open chromatin conformation which increases accessibility to 

transcription factors and RNA pol II. Genome wide analyses of epigenetic modifications have 

also shown that active enhancers are associated with distinct chromatin marks. Active 

enhancers are acetylated on H3K27 (H3K27ac) and mono-methylated on H3K4 (H3K4me1), 

which distinguishes them from active promoters, which are enriched in H3K4 trimethylation 

(H3K4me3). Enhancers are also bound by the transcriptional co-activators p300 and CREB 

binding protein (CBP), which are histone acetyltransferases, and are able to recruit RNA pol 

II.  These features have been instrumental in the prediction and discovery of novel enhancer 

sequences throughout the genome. 

1.7.2 Topologically associated domains 

DNA is not randomly distributed in the nucleus. DNA FISH has revealed that 

individual chromosomes in G1 are not spread throughout the nucleus but preferentially occupy 

particular regions called chromosome territories 104. Furthermore, more recent studies show 

that mammalian genomic DNA is further compacted into ‘chromosome neighborhoods’ called 

topologically associated domains (TADs), defined by regions of DNA within which physical 

interactions occur relatively frequently. TADs are largely cell type invariant, which confine 

enhancers and target promoters within higher order chromatin structures in the nucleus 105,106 

(see Figure 1-9). These domains are separated by boundary elements which are bound by 

CTCF, a protein that plays a crucial role in establishing the architecture of the genome. A 

study by Lupiáñez and colleagues demonstrated that the boundary elements that segregate 

individual TADs are indispensable for normal gene expression regulation and development in 

humans and mice 107. They investigated large scale genomic deletions and inversions 

overlapping two adjacent TADs that cause significant aberrations in human limb development. 

They showed that disrupting the boundary element between the two independent TADs caused 

pathological re-wiring of enhancer-promoter interactions. Enhancers from one TAD interacted 

inappropriately with promoters from the adjacent TAD inducing aberrant expression of those 
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genes. Altogether, this study suggests that TADs are stable structures conserved across species, 

and play a fundamental role in preventing aberrant enhancer-promoter interactions.   

 

Figure 1-9: Topologically associated domains (TADs) regulate the specificity of 

enhancer-promoter interactions 

 

1.7.3 Signal dependent enhancer-promoter looping interactions 

Enhancer-promoter interactions can be induced by transcription factors in response to 

specific signals. For example, it has been shown using different chromosome conformation 

capture assays (ChIA-PET, 3C, etc) that ER alpha maintains long range chromatin interactions 

between distal regulatory elements and promoters 108,109. Fullwood et al demonstrated that 

most ERα-bound chromatin interactions are intra-chromosomal and occur within a genomic 

distance of 100 kb 109. Interestingly, complex interaction hubs, where multiple enhancer-
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promoter loops cluster together, show strong enrichment of RNA pol II on target promoters 

and high occupancy of the ERα co-factor FOXA1 on ERα-bound enhancers. Therefore, 

multiple genes that are involved in the same regulatory pathway may be activated within 

higher-order chromatin structures assembled by transcription factors  that sequester regulatory 

elements and transcriptional machinery within sub-nuclear domains. Interestingly, a study by 

Ghavi-helm et al on developmental enhancers in Drosophila using 4C-seq showed a 3D 

chromatin topology analogous to that in humans, characterized by similar enhancer-to-

promoter contact ratios 110. Therefore, although the Drosophila genome is compact, with a 

noncoding fraction that is an order of magnitude smaller than that in humans, it shows similar 

levels of long range chromatin connectivity, suggesting that higher-order chromatin 

organization may have evolved early during eukaryotic evolution to ensure functional 

interactions between regulatory elements and genes and proper spatio-temporal control of 

gene expression. Interestingly, they also show that enhancer-promoter loops are pre-formed 

and remain relatively stable during development prior to gene activation and that RNA pol II 

remains associated with promoters in a paused state. Therefore, at least some stable long range 

chromatin interactions between enhancers and promoters may poise promoters for rapid 

activation in response to the appropriate developmental signaling pathways, which will then 

trigger the release of paused polymerases to activate transcription.  

1.7.4 Dynamic changes in chromatin conformation  

Long range genomic interaction profiles determined using chromatin conformation 

assays represent average measurements from cell populations, which do not necessarily imply 

stable loops, as chromatin fibers may adopt variable conformations in individual cells rather 

than forming static structures. Instead of forming a stable loop, an enhancer may interact 

transiently with its target promoter in response to a regulatory signal. Interestingly, simulation 

of intra-TAD chromatin fiber configurations using predictive polymer modeling suggests that 

chromatin fibers adopt various conformations, resulting in a broad range of distances between 

two loci on the same fiber, which was validated by 3D DNA FISH  111 (see Figure 1-10). Their 

modeling predicts that when two loci on an individual chromatin fiber are closer than 80 nm, 

they have the possibility to physically interact. Furthermore, using RNA FISH combined with 
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DNA FISH and super-resolution microscopy, they showed that an antisense RNA called Tsix, 

which represses Xist expression,  is more strongly transcribed on the allele that physically 

interacts with the Tsix regulatory elements due to a more compact chromatin conformation. 

Therefore, transcription is regulated by the dynamic intra-TAD conformational changes that 

modulate interactions between regulatory sequences and their target promoters. Similarly, 3D 

DNA FISH showed that in the developing mouse embryo the Shh gene co-localizes with its 

enhancer ZRS within 200 nm specifically in tissues where the gene is expressed 112. However, 

even in tissues where the gene is not expressed, Shh and ZRS reside within the same TAD and 

are proximal, with a median distance of 220-345 nm between Shh and ZRS in most tissues and 

developmental stages analyzed. Thus, TADs may harbor flexible chromatin fiber 

conformations that facilitate enhancer-promoter contacts to allow efficient activation of target 

gene transcription in response to developmental signals. 

 

Figure 1-10: Variable chromatin fiber conformations within TADs 
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1.7.5 Transcriptional bursting 

 Although chromatin is packaged into stable TADs that maintain regulatory sequences 

in proximity to their target promoters, this does not necessarily ensure that gene expression 

will be a deterministic process. Previous work has shown that even though protein levels are 

stabilized in a genetically identical population of mammalian cells, transcription activation on 

individual alleles occurs largely at random, mostly due to intrinsic noise in the activity of the 

promoter, which stochastically switches between an active and an inactive state 26. This results 

in discontinuous “bursting” transcription characterized by an ON state when RNA 

polymerases initiate multiple rounds of transcription in rapid succession, followed by a 

refractory OFF state, when transcription is completely abolished. Using RNA FISH, Raj and 

colleagues demonstrated that stochastic gene activation results in highly variable expression 

levels within a population of cells, whereby a fraction of cells accumulate a disproportionately 

high number of mRNAs due to the presence of “bursting” alleles with multiple nascent 

transcripts. Intriguingly, although modulating the concentrations of transcription factors or the 

number of transcription factor binding sites affected the burst size, i.e, number of nascent 

transcripts generated on an allele during an individual burst, the frequency at which the 

promoter was activated remained constant. Therefore, the frequency at which a promoter 

“bursts” is primarily due to intrinsic features of the promoter, such as the rate of chromatin 

remodeling, rather than extrinsic noise arising from the variable concentrations of transcription 

factors or the availability of RNA pol II. Interestingly, they also demonstrated that the 

variability in mRNA expression of rpb1, the largest subunit of RNA pol II, did not correlate 

with the variability in expression of the reporter genes under investigation. Therefore, 

although rpb1 is transcribed in bursts, these bursts do not correlate with those of the target 

genes which depend on RNA pol II for transcription. Although it seems counter-intuitive that 

an essential gene such as rpb1 would be activated stochastically, slow protein degradation 

would maintain similar RNA pol II levels within a cell population, as RNA polymerases 

produced from new “bursts” would contribute to the pool of polymerases available from 

previous “bursts”. 
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1.7.6 Enhancer-promoter interactions and transcriptional bursting 

 Recent studies have shown that enhancers regulate gene expression levels by 

controlling the bursting frequency of their target promoters 113,114. In  a study by Fukaya et al, a 

reporter gene linked to different developmental enhancers was used to monitor transcriptional 

activity in live Drosophila embryos during nuclear cycle 14, the 1 hour interval prior to the 

onset of gastrulation when the fate map of the adult fly is established by the localized 

expression of patterning genes113. The reporter gene was tagged with a series of MS2 stem 

loops, which allowed the visualization of nascent RNAs in live cells using the MCP-GFP 

fusion proteins and the trajectory of the MS2 signal was recorded to measure different 

parameters of transcription. These measurements showed that the total transcriptional output 

of the reporter varies significantly when linked to different enhancers, and that this variability 

is correlated with burst frequency, but not the amplitude or duration of an individual burst, 

which remain largely invariant. Interestingly, the spatially restricted expression of patterning 

genes is also modulated by bursting frequency, as cells where the genes are active show a 

higher frequency of bursts. Furthermore, they demonstrated that introducing an insulator DNA 

sequence which selectively blocks interaction between an enhancer and a target promoter does 

not completely abolish reporter expression but reduces the frequency of bursts. These data 

suggest that chromatin topology is not static, and that an enhancer can dynamically re-position 

itself in proximity to its target promoter to activate transcriptional bursts. The insulator DNA 

may reduce bursting frequency by decreasing the probability of enhancer-promoter contacts.  

Bartman and colleagues further showed that the role of enhancer-promoter contact is to 

modulate bursting frequency of the target locus 114. They investigated the role of the β-globin 

enhancer in regulating the bursting parameters of the target β-globin gene during murine and 

human erythroid maturation. Using single molecule RNA FISH, they found that both the burst 

fraction, corresponding to the number of transcriptionally active alleles per cell, and burst size, 

corresponding to the number of nascent RNAs per allele, increased during erythroid 

maturation. However, the increase in burst size was more modest than the increase in burst 

fraction, implying that the β-globin enhancer may primarily regulate frequency of promoter 

activation rather than pol II density on an individual allele. In accordance with these results, 

targeted deletion of the β-globin enhancer reduced burst fraction more strongly than burst size. 
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In order to determine which bursting parameter is specifically regulated by enhancer-promoter 

looping, independently of other enhancer functions, they artificially forced enhancer-promoter 

contacts by tethering the β-globin enhancer to its target promoter. Forced chromatin looping 

increased the burst fraction, but not burst size, further validating that enhancer-promoter 

contacts modulate bursting frequency rather than the transcriptional output per individual 

burst. Interestingly, it was also shown that two target loci of the β-globin enhancer, β-globin 

and γ-globin, are not simultaneously transcribed at the single-allele level, even though their 

expression is correlated at the single cell level. This finding favors a promoter competition 

model, whereby the enhancer dynamically switches between two target promoters, resulting in 

uncoordinated onset of bursting on both genes. Intriguingly, the study by Fukaya et al showed 

synchronized bursting of two reporter loci tagged with MS2 and PP7 stem loops, respectively, 

that were positioned equidistantly to the enhancer. Perhaps, in this artificial reporter construct, 

the enhancer switched between the two promoters at much faster rate than that which would 

occur on endogenous loci, making the onset of bursting indistinguishable between the two 

reporters. Interestingly, an asymmetric dual reporter setup, whereby the PP7 reporter was 

positioned closer to the enhancer than the MS2 reporter, corroborates with a promoter 

competition model, as the PP7 reporter bursts more frequently than the MS2 reporter in this 

scenario. Altogether, these studies demonstrate that the bursting frequency of target genes is 

modulated by the frequency of enhancer-promoter looping interactions. 

1.8 Enhancer RNAs 

1.8.1 High-throughput studies of enhancer RNA transcription 

 Recent studies have discovered that in addition to being associated with specific 

epigenetic marks and transcription factors, enhancers are also actively transcribed in a tissue 

specific manner in response to signaling pathways, adding an additional layer of complexity to 

enhancer function 115–121. A study by Kim et al in 2010 was among the first to characterize 

enhancer transcription on a genome wide scale. In this study they investigated transcriptional 

activation in mouse cortical neurons upon membrane depolarization by exposure to elevated 

potassium chloride 122. Upon stimulation, the authors detected increased CBP binding to 
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H3K4me1 marked enhancers, which led to pol II recruitment and initiation of bidirectional 

transcription of non-polyadenylated enhancer RNAs (eRNAs). eRNA synthesis correlated with 

an increase in mRNA synthesis from neighboring genes, indicating that eRNA transcription 

marks active enhancers engaged in activating proximal target genes. Similarly, a study in 2011 

by Wang et al in prostate cancer cells showed that depletion of the androgen receptor (AR) co-

factor FOXA1 resulted in the alternative binding of AR to de novo enhancers, which activated 

a new transcription program that was associated with increased tumor progression 123. The 

androgen receptor induced bidirectional eRNA transcription, which correlated with increased 

mRNA levels from target genes. Furthermore, De Santa et al 2010 investigated genome wide 

pol II recruitment in macrophages activated by endotoxin and discovered that upon 

stimulation, most of the extragenic pol II peaks coincided with enhancers 124. These enhancers 

are transcribed into eRNAs that are induced early on during stimulation, followed by 

downstream mRNA expression. eRNA transcription also lead to histone acetylation upstream 

of the target gene, potentially increasing chromatin accessibility to pol II at the TSS of the 

gene.  

Following these initial studies describing transcription at enhancers, Zhu et al. showed 

that transcription at enhancers is a more robust predictor of enhancer activity than enhancer-

specific histone marks, many of which are found on enhancers that are functionally inactive 
125. Intriguingly, the peak regions of eRNA transcription have been shown to converge with 

regions of high H3K4me1/2, suggesting a functional link between eRNA transcription and 

deposition of active histone marks on enhancers 91. Such a model is further supported by the 

finding that the inhibition of eRNA synthesis by the transcription elongation inhibitor 

Flavopiridol reduces H3K4me2 levels on enhancers. Interestingly, the histone 

methyltransferase MLL was previously shown to interact and co-localize with RNA pol II on a 

subset of actively transcribed loci 126. Therefore, RNA pol II elongation on enhancers may 

promote the recruitment of MLL, which is further substantiated by the correlation between 

eRNA transcript length and the spread of H3K4 methylation from the core enhancer.  

A role for eRNAs in regulating transcription was further supported by a study in 

macrophages studying the nuclear receptors Rev Erb α and Rev Erb β that repress target genes 

by binding to distal enhancers and inhibit eRNA transcription 127. The authors found that 
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targeted degradation of eRNAs transcribed from negatively regulated by Rev-Erbs enhancers 

reduced the expression of target genes, suggesting a functional role of eRNAs transcription 

regulation of target genes. They also showed that both the core transcription factor binding site 

on the enhancer and the sequences encoding eRNAs are required for robust promoter 

activation. Altogether, these studies support the idea that eRNA synthesis is an important 

component of enhancer function.  

1.8.2 Models of eRNA function 

 Although several genome wide studies have observed correlations between eRNA and 

mRNA transcription, the mechanisms by which eRNAs activate target genes have yet to be 

fully elucidated. Three main lines of thought pertaining to the potential role of eRNAs have 

emerged in the last few years: i) The process of eRNA transcription through the enhancer 

region, but not eRNAs as functional RNAs, could play a role in chromatin remodeling, 

thereby stimulating transcription, and ii) eRNAs are functional molecules recruiting and/or 

binding various factors required for enhancer mediated transcription, acting in cis or trans and 

either stabilizing enhancer-promoter looping interactions, regulating the RNA pol II 

transcription cycle or regulating chromatin accessibility at promoters 51 (see Figure 1-11). iii) 

eRNAs could have no function in regulating transcription but represent transcriptional noise 

due to either random pol II collisions with the open and accessible chromatin regions of 

enhancers and/or as a consequence of transcription factor binding to enhancers. The following 

sections will discuss these different models. 
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Figure 1-11: eRNA mechanisms of action 

1.8.2.1 Regulation of chromatin accessibility at promoters.  

A study investigating a gene regulatory network during skeletal muscle cell 

differentiation explored the role of eRNAs in activating master regulators of the myogenic 

program 128. They demonstrated that the myogenic transcription factors MyoD and MyoG 

predominantly bind to enhancer sequences throughout the genome and that two different 

eRNAs transcribed within a large enhancer domain activate MyoD and MyoG transcription, 

respectively, resulting in a feed-forward loop. When these eRNAs were depleted, chromatin 

accessibility was reduced at the MyoD and MyoG promoters and this was paralleled with 

lower pol II occupancy at promoters, suggesting that eRNAs are implicated in remodeling 

chromatin at their target promoters, allowing pol II to access the promoter and initiate 

transcription of the target gene.  
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1.8.2.2 Regulation of enhancer-promoter looping 

One prominent model for the role of eRNAs in transcription implicates eRNAs in 

mediating enhancer-promoter looping interactions 88,129,130. In an initial study, Lai et al. 

characterized the function of enhancer-like RNAs referred to as ncRNA-activating (ncRNA-

a)129. They demonstrated that these RNAs co-purify with the mediator complex and are 

required for enhancer-promoter looping.  Furthermore, eRNAs were shown to stimulate the 

kinase activity of the mediator which phosphorylates histone H3 serine 10 on the target 

promoter required to activate transcription, suggesting a role of these RNAs in regulating 

chromatin architecture and transcription activation. Similarly, a study on androgen receptor 

(AR) induced transcription in prostate cancer cells shows that AR induced eRNAs facilitating 

the assembly of the AR-mediator complexes and stimulate enhancer-promoter looping 130.  

Furthermore, Li et al investigated estrogen (E2) induced eRNAs in MCF7 breast 

cancer cells, showing that eRNA interaction with cohesin promotes enhance-promoter 

communication 88. Exposure of MCF7 cells to E2 induces the binding of estrogen receptor 

alpha (ER alpha) to estrogen responsive enhancer sequences and results in the bidirectional 

transcription of eRNAs at these enhancers. eRNA transcription further correlates with an 

increase of mRNA transcription at  target genes. Furthermore, RIP-qPCR experiments showed 

that eRNAs associate with the cohesin complex, which has been described previously to co-

occupy ER alpha binding sites and to be implicated in enhancer promoter communication 
102,131,132 . Knocking down components of cohesin resulted in decreased enhancer-promoter 

looping, and knocking down eRNAs inhibited recruitment of cohesin to enhancer sequences 

suggesting that E2 induced eRNAs may promote looping by recruiting cohesin. Surprisingly, a 

study investigating E2 induced transcription in MCF7 cells showed that inhibiting eRNA 

transcription elongation by DRB does not affect enhancer-promoter looping nor epigenetic 

modifications on enhancers, suggesting that eRNA synthesis is dispensable for the formation 

of an active enhancer-promoter complex 133. The role of eRNAs in recruiting/stabilizing 

cohesin therefore still needs to be determined.  

Li et al further investigated whether eRNA transcripts per se can activate gene 

transcription by tethering a sense eRNA transcribed from the enhancer targeting the FOXC1 
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gene to a luciferase reporter plasmid via the BoxB tethering system. Tethering of FOXC1 

sense eRNA increased luciferase expression, showing that eRNA sequences themselves are 

functional independently of the process of enhancer transcription. This result is consistent with 

the findings of another study investigating eRNAs transcribed from p53 bound enhancers, in 

which tethering of an eRNA to a luciferase reporter plasmid using an MS2 based tethering 

system activated luciferase expression 134. These eRNAs were shown to enhance transcription 

of target genes, and were required for p53 dependent cell cycle arrest. Furthermore, the 

authors suggested that since long range enhancer-promoter interactions were not p53 

dependent, p53 induced eRNAs might act on pre-assembled enhancer-promoter complexes. 

Therefore, whether eRNAs initiate chromatin looping or simply stabilize pre-existing 

enhancer-promoter interactions is subject to debate 119. 

1.8.2.3 Regulation of the RNA pol II transcription cycle 

 In addition to the studies implicating eRNAs in facilitating enhancer-promoter looping 

through scaffolding large protein complexes such as mediator or cohesin, other studies suggest 

that eRNAs activate the transcription cycle by promoting pol II elongation on target genes 
135,136. Using cultured cortical neurons as a model system, Schaukowitch and colleagues 

showed that eRNA knockdown does not affect enhancer-promoter looping but diminishes the 

release of the negative elongation factor (NELF) from target promoters. Therefore, in their 

system, in the absence of eRNAs, RNA pol II remains in a paused state on target promoters 

due to continued association with NELF. Furthermore, they showed that eRNAs interact with 

NELF, acting as a decoy to release it from paused pol II, and thereby stimulating productive 

elongation on the target gene. Interestingly, they also show that eRNAs are synthesized prior 

to gene activation, and are very unstable, having a half-life of less than 7.5 min. Therefore, 

their data suggests that eRNAs accumulate transiently on pre-established enhancer-promoter 

loops, are rapidly degraded following NELF release, preventing their diffusion and therefore 

likely restrict their activity to function in cis. Interestingly, eRNAs induced in macrophages are 

also transcribed prior to target gene induction, and were shown to have a similar short half-life 

less than 7.5 min 124.  
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High-throughput CAGE analysis in several human and mouse cell lines upon induction 

with different stimuli shows that eRNA transcription generally represents the immediate early 

response during cellular differentiation and activation followed by successive waves of 

transcriptional activation on target promoters 137. Therefore, eRNA downregulation prior to pol 

II elongation on target genes may be a common regulatory pathway in different cell types. 

However, it was also shown that transcription elongation on both enhancers and promoters 

may be regulated by the same mechanism 138,139. These studies showed that the Bromodomain-

containing protein 4 (BRD4) is recruited onto acetylated histones on both enhancers and 

promoters during gene activation. BRD4 was shown to promote RNA pol II elongation on 

both enhancers and target genes, to synthesize eRNAs and mRNAs, respectively. The 

coordinated transcription regulation of eRNAs and mRNAs by BRD4 implies that eRNA 

expression may be temporally coupled with mRNA expression in certain contexts, instead of 

being downregulated prior to gene activation.  

Interestingly, a recent study in prostate cancer cells showed that instead of acting as a 

decoy for NELF, eRNAs may also regulate pol II elongation on target genes by stimulating the 

activity of the positive transcription elongation factor pTEFb 136. It was shown that a specific 

class of androgen receptor regulated eRNAs activate pTEFb, which phosphorylates Ser2 on 

pol II, resulting in transcription elongation on target genes, and increased cell growth. TALEN 

mediated gene editing revealed that a specific hairpin forming sequence within the eRNAs, 

which is similar to the HIV RNA TAR-L motif, and bound by CYCLIN T1, is required for 

pTEFb activation and target gene transcription. Whether eRNAs in other cell types possess 

similarly structured functional motifs is currently unknown.  

 1.8.3 Transcription termination and processing of eRNAs 

Little is known about how transcription of eRNAs is terminated and whether it is 

coupled with 3’end processing, contributing to the lack of understanding of what constitutes a 

functional eRNA transcript. Transcriptome analyses in multiple human cell lines and primary 

tissues using CAGE have shown that eRNAs are capped, unspliced, and initiate bi-

directionally from precisely mapped transcription start sites (TSSs) that delineate the 

boundaries of nucleosome-depleted core enhancers 55. eRNAs have a median length of 300-
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400 nucleotides, however, transcription termination sites (TTSs) have not been clearly defined. 

It is therefore not known whether eRNAs consist of a heterogeneous population of eRNAs of 

different lengths, or conversely a homogenous species with a uniform length. A recent study 

showed that eRNA function is contingent on transcription termination by the integrator 

complex 140. Integrator was initially characterized as a metazoan-specific multi-protein 

complex that interacts with the CTD of RNA pol II to promote 3’ processing of snRNAs 141. 

Abrogation of integrator components resulted in the accumulation of extended primary 

transcripts due to defects in 3’ end maturation of snRNAs and transcribed enhancers similarly 

show extended transcription at enhancers. This phenotype is reminiscent of the accumulation 

of read-through sn/snoRNA transcripts in S.cerevisiae cells depleted of the components of the 

Nrd1-Nab3-Sen1 complex, which also binds to the CTD of RNA pol II to facilitate 3’end 

maturation of small RNAs 34. Integrator was also shown to play diverse roles in gene 

expression regulation, notably in RNA pol II pause release and elongation on protein coding 

genes 142–145.  

In a first study linking integrator to eRNA transcription termination, Lai et al showed 

increased recruitment of the integrator complex to enhancers in HeLa cells upon epidermal 

growth factor (EGF) stimulation 140. Surprisingly, depletion of integrator components 

decreased eRNA induction, as well as enhancer-promoter looping and target gene activation, 

but resulted in the accumulation of extended eRNA transcripts that are mostly polyadenylated 

and associated with RNA pol II. This corroborates with a previous study which showed that 

the loss of 3’end cleavage activity of the integrator resulted in increased levels of 

polyadenylated snRNA transcripts 146. Therefore, this study proposed a model whereby 3’end 

cleavage by the integrator would terminate transcription and release eRNAs from RNA pol II. 

eRNAs released from RNA pol II by the integrator would then represent the functionally 

active transcripts with defined 5’ and 3’ ends. Supporting this, Northern blot analyses in 

several studies have shown that eRNAs migrate as single bands, suggesting that most eRNAs 

are uniform in length 130,134,147. Intriguingly, expressing a catalytic mutant of the integrator 

subunit INTS11 that is defective in 3’processing led to decreased induction of both eRNAs 

and target mRNAs. Therefore, 3’processing of eRNAs by the integrator is somehow linked to 

their transcription, although the mechanistic basis of these findings remain unclear. Therefore, 
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the regulation of transcription termination of eRNAs may play an important role in eRNA 

function. However, whether other factors apart from the integrator are implicated in this 

process needs further investigation. 

 

1.9 Objectives of Thesis 
 

Transcription is the first step in gene expression and subject to extensive regulation. 

Many factors are implicated in transcription regulation, including transcription factors and 

chromatin remodelers, required to regulate promoter accessibility and recruitment of RNA 

polymerase, many of them well characterized. In recent years, lncRNAs emerged as new 

regulators of gene activation, but mechanistic understanding of the roles of lncRNAs is largely 

lacking. LncRNAs have the potential to regulate transcription in many different ways, and the 

sheer number and diversity of lncRNAs indicates that no uniform mechanism likely exists. 

Therefore, one of the most exciting questions of the post-genomic era is to decipher the roles 

of lncRNAs in regulating gene expression.  

The general aim of my PhD thesis was to investigate distinct classes of lncRNAs in 

different eukaryotes, to elucidate their roles in transcription regulation and to characterize the 

factors that control their biogenesis. In particular, I combined high resolution microscopy tools 

with genetic and biochemical approaches to study lncRNA mediated gene regulation from a 

single cell and single molecule perspective. Historically, studies on transcription have relied 

on isolating RNA from large numbers of cells, and therefore could only describe the ensemble 

behavior of a population. However, individual cells within a population respond differentially 

to signaling pathways due to the probabilistic nature of the chemical processes that mediate 

transcription, resulting in intercellular variability in gene expression. Therefore, to glean novel 

insights into the mechanisms by which lncRNAs regulate gene transcription, my studies have 

a strong emphasis on using single molecule approaches to quantitatively measure gene activity 

at specific target loci in single cells. In this thesis, I present two studies where I investigated 

the roles of two different classes of lncRNAs in gene activation, using the yeast S. cerevisiae 

as well as human breast cancer cells as model systems. 
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1.10  Figure Legends 

Figure 1-1: TATA box vs. TATA-less promoters29 

This figure illustrates differences in nucleosome architecture and transcription start site 

position between TATA box and TATA-less promoters  

Figure 1-2: Constitutive vs bursting transcription27 

a. Stochastic model of gene activation and inactivation 

b. Plots showing transcription initiation events over time for constitutive and bursting 

transcription  

Figure 1-3: Bi-directional transcription from nucleosome-depleted regions (NDRs)  

                    in S.cerevisiae 

This figure illustrates the recruitment of pre-initiation complexes to nucleosome-free regions 

upstream and downstream of protein-coding genes in S.cerevisiae. 

Figure 1-4: Nrd1-Nab3-Sen1 vs cleavage and polyadenylation mediated termination30 

 

a. Nrd1-Nab3-Sen1 mediated termination of small ncRNAs  

b. Termination by the canonical cleavage and polyadenylation complex  

 

Figure 1-5: Bi-directional transcription from enhancers and promoters148 

This figure depicts the chromatin architecture and regulation of bi-directional transcription 

from enhancers and promoters. 

 

Figure 1-6: General principles of lncRNA function59 

A summary of the different modes of lncRNA mediated regulation, in which the RNAs can act 

as guides to recruit transcription co-factors, or the process of lncRNA transcription can change 

the local chromatin environment. 
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Figure 1-7: Different mechanisms of transcription regulation by ncRNAs in S.cerevisiae31 

This figure depicts transcription regulatory mechanisms that have been identified for genes in 

yeast. The top image shows regulation by transcriptional interference, in which the 

transcription of an ncRNA through a gene promoter prevents binding of transcription factors. 

The image in the middle shows regulation by start site selection, in which an ncRNA is 

produced as a by-product of alternate transcription initiation upstream of the mRNA 

transcription start site. The bottom image shows regulation by targeted histone modification, 

in which an ncRNA serves as a guide to recruit chromatin modifying complexes.  

Figure 1-8: PHO84 AS RNA represses PHO84 by recruiting the histone de-acetylase 

Hda181 

An early model of PHO84 regulation by antisense RNA which proposes that antisense RNAs 

stabilize upon Rrp6 deletion and accumulate at the PHO84 locus, recruiting the histone de-

acetylase Hda1 to the promoter to repress transcription.  

Figure 1-9: Topologically associated domains (TADs) regulate the specificity of enhancer- 

                    promoter interactions149    
 
This figure illustrates the organization of genomes in higher eukaryotes into discrete 

neighbourhoods called topologically associated domains (TADs), which are mostly cell type 

invariant. TADs compartmentalize enhancers with their target promoters and are segregated 

from each other by defined boundary elements.  
 
Figure 1-10: Variable chromatin fiber conformations within TADs111 
 
This diagram shows different intra-TAD chromatin fiber conformations predicted using 

simulations based on polymer physics. These different conformations lead to dynamic 

interactions between different genomic regions. 
 
Figure 1-11: eRNA mechanisms of action148 
 
A summary of the suggested mechanisms of eRNA mediated transcription regulation, which 

focus on 3 main roles: enhancer-promoter looping, RNA pol II transition, and chromatin 

remodeling.  



	
	

 

2 Bimodal expression of PHO84 is modulated by early termination of 

antisense transcription
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 2.1 Aims of article 1 

For my first project, I investigated a lncRNA transcribed in antisense to the yeast gene 

PHO84, which encodes a high affinity phosphate transporter. Previous studies had shown that 

deletion of Rrp6, a component of the nuclear RNA surveillance machinery, results in 

increased antisense expression and a decrease in PHO84 expression. This led to a model that 

suggested that PHO84AS RNAs are stabilized in the absence of Rrp6 and accumulate at the 

PHO84 locus, recruiting the histone de-acetylase Hda1 at the PHO84 promoter to suppress 

PHO84 transcription. However, many mechanistic details on how anti-sense mediated 

transcriptional repression is achieved were missing. Following up on these studies, we further 

elucidated the mechanisms of AS RNA biogenesis and function in repressing PHO84 

expression. The results of this study were published in Nature Structural and Molecular 

Biology in July 2013 where I was shared first author (Castelnuovo et al, “Bimodal expression 

of PHO84 is modulated by early termination of antisense transcription”. Nat Struct Mol Biol. 

20(7):851-8)).  
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2.2 Article 1  

Bimodal expression of PHO84 is modulated by early termination of antisense 

transcription 

Castelnuovo, Manuele1,3, Rahman, Samir2,3, Guffanti, Elisa1,3, Infantino, Valentina1, Stutz, 

Françoise1,4 and Zenklusen, Daniel 2,4 

 

1 Department of Cell Biology and National Center of Competence in Research “Frontiers in 

Genetics”, University of Geneva, Switzerland. 

2 Département de Biochimie, Université de Montréal, Canada 

 

3 Equal contribution 

4 Corresponding authors 

 

E-mail: francoise.stutz@unige.ch daniel.r.zenklusen@umontreal.ca 

 

 

 

 

Keywords: yeast, single molecule FISH, antisense RNA, Rrp6, Nrd1-Nab3-Sen1, 

transcription termination, antisense 3’end processing, PHO84 regulation. 

 



51	
	

2.2.1 Abstract	

Many S. cerevisiae genes encode antisense transcripts, some of which are unstable and 

degraded by the exosome component Rrp6. Loss of Rrp6 results in the accumulation of long 

PHO84 antisense RNAs and repression of sense transcription through PHO84 promoter 

deacetylation. We used single molecule resolution fluorescent in situ hybridization (smFISH) 

to investigate antisense-mediated transcription regulation. We show that PHO84 antisense 

RNA acts as a bimodal switch, in which continuous low frequency antisense transcription 

represses sense expression within individual cells. Surprisingly, antisense RNAs do not 

accumulate at the PHO84 gene but are exported to the cytoplasm. Furthermore, rather than 

stabilizing PHO84 antisense RNA, the loss of Rrp6 favours its elongation by reducing early 

transcription termination by Nrd1-Nab3-Sen1. These observations suggest that PHO84 

silencing results from antisense transcription through the promoter rather than the static 

accumulation of antisense RNAs at the repressed gene.  
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2.2.2  Introduction 

 Genome-wide pervasive transcription has been reported in many eukaryotic organisms, 

producing hundreds of non protein-coding RNAs (ncRNAs). Even the small yeast genome 

encodes many intergenic, promoter-associated and antisense transcripts, some stable and 

others rapidly degraded and hence called cryptic unstable transcripts (CUTs) 1-3. The 

degradation of these 200-600 bases long CUTs is in great part mediated by Rrp6, a 3’-5’ 

exonuclease belonging to the nuclear exosome 4,5. Exosome-mediated degradation is assisted 

by TRAMP, a surveillance complex containing the non-canonical polyA polymerase Trf4, 

while mRNAs are polyadenylated by Pap1, resulting in stable and export competent mRNPs 
4,6-9.  

 The Nrd1-Nab3-Sen1 (NNS) complex mediates transcription termination of CUTs, 

snRNA, snoRNAs, and some mRNAs 7,10-13. It is recruited to the 5’end of most RNA 

polymerase II (RNAPII) transcription units through interaction of Nrd1 with the Ser5/Ser7 

phosphorylated RNAPII C-terminal domain (CTD) 14-16. Transcription termination by NNS 

depends on the abundance of specific Nrd1 and Nab3 binding motifs on the nascent RNA and 

occurs primarily on short transcripts as the recruitment of NNS decreases towards the 3’end of 

long transcription units. Consistent with the physical interactions between the NNS, TRAMP 

and exosome complexes, CUT degradation has been directly linked to NNS-mediated early 

termination 4,7,10,11.  

	 Genome-wide studies indicate that numerous genes produce upstream tandem or 

antisense transcripts 17,18, a fraction of which may function in gene regulation 19. Transcription 

of an upstream tandem ncRNA was proposed to interfere with the expression of the SER3 20,21, 

URA2 22, FLO11 23 and IME1 24 genes through various mechanisms, including co-

transcriptional chromatin modifications, that establish histone repositioning and a repressive 

chromatin state blocking access to transcription factors. While the RME2 antisense RNA was 

proposed to repress the meiotic regulator IME4 gene via transcription interference 25,26, 

antisense RNA transcription may also affect sense expression by influencing the epigenetic 

state of chromatin. Indeed, antisense RNA transcription originating within GAL10 and running 

into the divergent GAL1 gene in glucose deposits H3K4-me2/3 and H3K36-me3 by the Set1 
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and Set2 histone methyl transferases respectively. These marks signal the recruitment of the 

Rpd3S histone deacetylase (HDAC) attenuating GAL1 gene expression 27,28. H3K4me2 

deposited by Set1 during noncoding transcription was also implicated in repression by 

signaling the recruitment of the Rpd3L and Set3 histone deacetylases to specific gene 

promoters 24,29,30.  

	 	Our earlier studies focused on the PHO84 gene encoding a high-affinity phosphate 

transporter. PHO84 transcription is induced by the activator Pho4 imported into the nucleus 

upon phosphate starvation 31. The activation threshold of the PHO84 promoter depends on the 

nuclear concentration of Pho4 and the accessibility of the Pho4 binding sites 32,33. PHO84 

mRNA is weakly expressed in standard yeast media containing intermediate phosphate levels. 

In these conditions, PHO84 also produces two antisense transcripts (PHO84 AS) starting at its 

3’ end and extending into the PHO84 promoter. Loss of Rrp6 increases PHO84 AS levels and 

this accumulation is paralleled by the recruitment of the Hda1/2/3 histone deacetylase 

(HDAC) complex over the locus, histone deacetylation at the promoter and transcriptional 

repression. We proposed that stabilization and accumulation of antisense RNAs at the PHO84 

gene might facilitate Hda1 recruitment maintaining repression of sense transcription 34.  

 To further elucidate the mechanism of antisense-mediated transcription regulation, we 

used single molecule fluorescent in situ hybridization (smFISH) to detect individual sense and 

antisense RNAs 35-37. We show that the presence of PHO84 sense and antisense transcripts in 

single cells is strongly anti-correlated, suggesting a switch-like regulation mechanism. Our 

data provide evidence that Rrp6 does not degrade full-length antisense transcripts, but 

prevents antisense transcription elongation by favoring early termination by Nrd1-Nab3-Sen1, 

while the H3K4 methyl transferase Set1 may antagonize this event. These observations 

suggest that antisense-mediated silencing is regulated, at least in part, through transcription 

attenuation and that PHO84 repression results from antisense transcription through the 

promoter, followed by rapid export of antisense RNA into the cytoplasm.	
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2.2.3  Results 
	

Bimodal expression of PHO84 sense and antisense transcripts  
	

We have suggested that PHO84 AS RNAs might stably associate, possibly in multiple 

copies, with the PHO84 gene to help efficient recruitment of chromatin modifiers. Such a 

process would require only a single initial burst of antisense transcription to establish silencing 

of sense. Conflicting with such a model, Northern blot analysis of PHO84 sense and antisense 

expression shows that low levels of antisense RNA can be detected in wild-type cells under 

conditions where PHO84 sense is transcribed, indicating that very low expression of antisense 

might not be sufficient to repress sense transcription (Fig. 2.1a). Alternatively, low level of 

PHO84 AS RNA expression in wild-type cells may continuously fine-tune PHO84 sense 

expression, a process that may be regulated by Rrp6. However, different levels of antisense 

expression in wild-type versus Δrrp6 cells may also reflect different subclasses of cells in a 

population that express either PHO84 sense or antisense. Different models can therefore be 

suggested for how antisense-mediated silencing of the PHO84 gene is established. Either the 

regulation occurs by a graded response, where increasing antisense levels lead to decreasing 

levels of sense transcription, or by a switch-like mechanism, where low level of antisense 

expression in a single cell is sufficient to down-regulate sense transcription (Fig. 2.1b).  

To detect single RNA molecules, we designed smFISH probes targeted to the 5’ region 

of sense and antisense PHO84 transcripts. Probes were labeled with fluorescent dyes allowing 

to distinguish sense and antisense transcripts and hybridized to fixed yeast cells, followed by 

image acquisition. We first localized PHO84 transcripts in wild-type cells under conditions 

where both sense and antisense RNAs are detected by Northern blotting (Fig. 2.1a). While 

both PHO84 sense and antisense RNAs can be detected in wild-type cells (Fig. 2.1c), they are 

never co-expressed (Fig. 2.1d), suggesting that antisense-mediated repression of PHO84 

operates through a switch-like rather than a graded process. Consistent with the role of Rrp6 in 

modulating sense repression through antisense RNA, the fraction of cells expressing antisense 
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increases (from 28 to 55%) in a Δrrp6 strain, whereas the percentage of sense expressing cells 

decreases (Fig. 2.1c, 2.1d and 2.1e).  

At the single cell level, sense expression is much higher than antisense: large numbers of 

PHO84 mRNAs are detected within individual cells suggesting that PHO84 transcription 

occurs in strong bursts when repression is overcome. In contrast, PHO84 AS expression levels 

are very low in individual wild-type cells, with most cells expressing no or only a single 

antisense RNA molecule. In the Δrrp6 strain, antisense levels are higher and more cells 

express PHO84 AS, however most cells still only contain 1-3 antisense RNA molecules and a 

substantial fraction of cells (40%) shows no signal (Fig. 2.1c, 2.1d and 2.1e). Double negative 

cells are not due to inability to detect RNAs in these cells, as double staining for the 

constitutively expressed MDN1 RNAs shows expression of MDN1 in all cells (Supplementary 

Fig. 1a). Thus, very low antisense expression appears sufficient to exert a repressive effect on 

PHO84 transcription in individual cells. Unexpectedly, we did not observe a significant 

accumulation of antisense RNA in the nucleus (Fig. 2.2) as most antisense RNAs detected in 

wild-type and Δrrp6 cells are found in the cytoplasm, suggesting that PHO84 AS RNAs, like 

mRNAs, do not remain associated with the PHO84 gene but are rapidly exported.  

PHO84 antisense RNAs do not accumulate at the PHO84 locus 

 The fraction of antisense RNA molecules detected in the nucleus can represent 

nascent RNAs associated with the transcription machinery, RNAs diffusing in the 

nucleoplasm on their way to the cytoplasm, or antisense RNAs associated with the PHO84 

gene in a transcription independent manner. To distinguish between these possibilities, we 

further characterized the nuclear PHO84 AS RNA signal. The quantitative nature of smFISH 

allows defining how many RNAs are present in a single RNA spot and we have shown that 

cytoplasmic mRNA spots have a uniform signal intensity representing single mRNAs 36,38. 

Nuclear signals often show higher intensities as they represent sites of active transcription 

where multiple nascent mRNAs are associated with a gene. The frequency and number of 

nascent mRNAs detected for a specific gene depend on its transcription rate and length. If 

antisense RNAs accumulate in multiple copies at the PHO84 gene, higher intensity nuclear 

signals compared to cytoplasmic signals should be detected. Furthermore, if antisense RNAs 
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stay associated at the gene for long periods of time, most cells with no sense expression should 

show a nuclear antisense signal. As shown in Figures 2.2a and 2.2b, nuclear signals 

corresponding to multiple nascent mRNAs are detected on the long, constitutively transcribed 

MDN1 gene, however most nuclear PHO84 AS RNA signals show the same intensity as single 

cytoplasmic antisense molecules, indicating that antisense transcripts do not accumulate at the 

PHO84 gene. Furthermore, only 13% of WT and 20% of Δrrp6 cells show nuclear signal, 

inconsistent with a model where antisense RNAs stay associated with the gene locus for a long 

time (Fig. 2.2c).  

It is likely that most nuclear AS signals with an intensity of a single RNA represent 

nascent rather than freely diffusing nucleoplasmic antisense RNAs. Indeed, nuclear PHO84 

AS signals, like nascent PHO84 mRNA signals are always located at the nuclear periphery, 

consistent with the subtelomeric position of PHO84 on chromosome XIII locating the gene 

close to the nuclear periphery (Supplementary Fig. 1b). Furthermore, our earlier studies 

showed that mRNAs are rarely detected in the nucleoplasm except at the site of transcription, 

suggesting that mRNA export is fast, probably occurring within seconds after release from the 

site of transcription 36,39. If PHO84 AS RNAs transcribed at a low frequency behave like 

mRNAs, detecting antisense RNAs within the nucleus is likely a rare event, except when they 

are nascent. Thus, nuclear PHO84 AS RNAs are likely to be nascent and to behave like 

mRNAs that rapidly dissociate from the locus after synthesis. These observations suggest that 

antisense transcription rather than antisense RNA accumulation at the gene may mediate 

PHO84 gene silencing. 	

PHO84 antisense RNAs behave like mRNAs 

To confirm that antisense transcripts behave like mRNAs, we first monitored antisense 

RNA distribution in a mutant for the poly(A) polymerase Pap1. mRNA cleavage and 

polyadenylation occurs co-transcriptionally and is required for nuclear export. The pap1-1 and 

pap1-1Δrrp6 temperature sensitive strains were grown at 25oC and shifted to 37oC before 

fixation. After a 1h heat-shock, pap1-1 cells accumulate antisense RNAs in the nucleus and 

fewer transcripts are observed in the cytoplasm, a phenotype that was more pronounced in 

pap1-1Δrrp6 (Fig. 2.3a and 2.3b). Antisense RNAs do not accumulate in one spot but 
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distribute throughout the nucleus, with a tendency to localize within the nucleolus 

(Supplementary Fig. 2a). The higher accumulation in pap1-1 Δrrp6 compared to pap1-1 

suggests that antisense RNAs are degraded by Rrp6 when not polyadenylated by Pap1 and/or 

that a higher number of antisense RNAs is expressed in a pap1-1 Δrrp6 background (Fig. 2.3b, 

and see below). Loss of the non-canonical polyA polymerases Trf4 and Trf5 did not reduce 

the amounts of polyadenylated PHO84 AS RNAs, confirming their polyadenylation by Pap1 

(Fig. 2.3c). Notably, shifting pap1-1 Δrrp6 double, but not pap1-1 single mutant cells to 37°C 

results in the accumulation of an elongated polyadenylated antisense RNA (Supplementary 

Fig. 2b). Together, these analyses suggest that when Pap1 is inactive, a single long antisense 

transcript is produced that remains in the nucleus and is degraded by Rrp6, presumably 

following polyadenylation by the non-canonical Trf4/5 polyA polymerase as a result of 

nuclear surveillance 40. Thus the classical cleavage and polyadenylation machinery is required 

for 3’end processing and export of PHO84 AS RNA confirming that these long ncRNAs 

behave like mRNAs. Accordingly, their nuclear export is mediated by the general mRNA 

export receptor Mex67, since PHO84 AS transcripts accumulate in the nuclei of the mex67-5 

and even more in the mex67-5Δrrp6 conditional mutants when shifted to 37°C (Supplementary 

Fig. 3a and 3b). Moreover, the number of cytoplasmic PHO84 AS RNAs greatly increases in 

Δxrn1 cells indicating that, like mRNAs, they undergo 5’ to 3’ exonucleolytic degradation in 

this compartment (Supplementary Fig. 3c).  

Antisense RNA at PHO84 gene requires active transcription 

A feature of bona fide mRNAs is their rapid dissociation from the gene after 

transcription termination; nascent mRNA detection therefore requires ongoing transcription. 

To define whether detection of nuclear antisense RNAs requires transcription, we determined 

PHO84 AS localization and abundance in the rpb1-1 strain, containing a temperature sensitive 

mutation in the major RNAPII subunit 41. To test the efficiency of transcription shutoff we 

simultaneously monitored MDN1 mRNA distribution. Figure 2.4 shows that after 5 min at 

37oC, most cells have lost nuclear MDN1 signal and mRNA abundance further declines over 

time, consistent with transcription shutoff. Similarly, nuclear PHO84 AS signal is quickly lost 

and cytoplasmic RNA numbers subsequently decrease. Thus, ongoing transcription is required 
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to detect nuclear antisense RNA further indicating that PHO84 AS RNA does not stay 

associated with the PHO84 gene. The observation that the number of cells with antisense 

RNA increases in Δrrp6 (Fig. 2.1d) and that antisense transcription rather than accumulation is 

required to mediate sense silencing (Fig. 2.1 and 2.2) suggest that loss of Rrp6 does not 

primarily affect antisense RNA stability, but may also influence its transcription.  

To compare PHO84 AS RNA turnover in wild-type and Δrrp6 cells, we measured 

antisense levels at various times following inhibition of RNAPII transcription with 

phenanthroline (Fig. 2.5a) 42. Surprisingly, PHO84 AS RNA decays at a similar rate in both 

strains with a half-life of 11.4 min in wild-type and 12 min in Δrrp6 cells (See Methods). In 

contrast, the half-life increased to 27.3 min in the Δxrn1 strain, confirming 5’ to 3’ antisense 

RNA degradation in the cytoplasm as revealed by smFISH (Supplementary Fig. 3c). Since 

loss of Rrp6 does not substantially increase PHO84 AS RNA half-life, these results indicate 

that the elevated levels of antisense RNA in Δrrp6 (Fig. 2.5b) are due to increased antisense 

RNA production rather than stability.  

Loss of Rrp6 increases antisense transcription 

Increased PHO84 AS transcription in Δrrp6 predicts a higher number of nascent 

antisense RNAs in this strain versus wild type. Indeed, besides an increased number of both 

antisense producing cells and antisense RNA molecules per cell (Fig. 2.1e), more Δrrp6 cells 

(20%) show nascent antisense RNAs compared to wild type (13%) consistent with higher 

transcription frequency in Δrrp6 (Fig. 2.2c).  

One hallmark of active transcription is K4 methylation on histone H3 by Set1, the only 

yeast H3K4 histone methyl transferase recruited to the 5’ end of transcription units 43,44. Most 

active genes show peaks of H3K4 trimethylation at the 5’end, di-methylation in the middle 

and monomethylation at the 3’end. We postulated that if loss of Rrp6 increases antisense 

transcription, Set1 dependent H3K4me3 should increase over the PHO84 3’ end in Δrrp6 

versus wild type. We performed chromatin immunoprecipitation (ChIP) of tri- and 

dimethylated H3K4 in wild-type and Δrrp6 cells also devoid of the transcription factor Pho4, 

completely abrogating sense transcription (Fig. 2.5c). In this setup H3K4 methylation derives 
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only from antisense transcription. Interestingly, we observe that the H3K4me3 and H3K4me2 

peaks respectively at the 3’ end and middle regions of PHO84 are substantially increased upon 

loss of Rrp6. As a control, the ACT1 gene showed the expected high level of H3K4me3 at its 

5’ end with no enrichment at the 3’ end, consistent with the absence of antisense transcription 

on this gene. Due to the low antisense transcription frequency, RNAPII is barely detectable at 

the 3’end of PHO84 in a Δpho4 strain, yet the levels slightly increase in Δrrp6Δpho4 (data not 

shown). The more efficient detection of H3K4 methylation suggests persistence of this histone 

mark between transcription events. These observations support the view that loss of Rrp6 

increases antisense transcription.  

PHO84 antisense elongation is regulated by the NNS complex 

To investigate how loss of Rrp6 may increase transcription, we explored the physical 

and functional links of Rrp6 with the Nrd1-Nab3-Sen1 and TRAMP complexes 4,7,11. 

Transcription termination by NNS is stimulated by Nrd1 and Nab3 binding motifs on the 

nascent RNA. Interestingly, several potential Nrd1-Nab3 binding sites are present within the 

5’ end of PHO84 AS RNA (Fig. 2.6a and Supplementary Fig. 4). Furthermore, transcriptome-

wide analyses of Nrd1-Nab3 bound RNA sequences revealed association with the 5’ end of 

many antisense transcripts, including PHO84 AS RNA, suggesting that these ncRNAs 

undergo early transcription termination 45,46. Accordingly, depletion of the essential Nrd1 

protein using the glucose repressible GAL1 promoter leads to increased PHO84 AS levels in 

wild-type cells and this effect is even more pronounced in Δrrp6 (Fig. 2.6b). Moreover, a 

modified PHO84 gene in which a number of putative Nrd1-Nab3 binding sites at the 5’ end of 

the antisense RNA have been mutagenized, produces more antisense transcripts both in wild-

type and Δrrp6 cells. The relatively modest effect of the cis-mutations may be due to only 

partial removal of potential NNS binding sites to maintain the PHO84 open reading frame 

intact (Supplementary Fig. 4). These observations confirm the role of Nrd1/Nab3/Sen1 in 

PHO84 AS transcription attenuation. 
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Rrp6 and Set1 have opposite effects on early termination  

To address whether absence of Rrp6 might increase antisense transcription elongation 

by affecting optimal NNS function, we monitored Nrd1 association with the 3’ end of the 

PHO84 gene by ChIP in wild-type or Δrrp6 cells (Fig. 2.6c). While loss of Rrp6 does not 

affect Nrd1 protein levels, we observed a large decrease in Nrd1 binding at the PHO84 3’ end 

in Δrrp6, suggesting that loss of Rrp6 may affect early termination by lowering the association 

of Nrd1-Nab3-Sen1. The additive effect on antisense RNA production of Δrrp6 and Nrd1 

depletion or Nrd1-Nab3 binding site mutagenesis (Fig. 2.6b and Supplementary Fig. 4b), 

situations that weaken but do not eliminate Nrd1-Nab3-Sen1 function, supports the notion that 

NNS and Rrp6 act in the same pathway.  

Interestingly, Nrd1 association with the PHO84 3’ end was slightly enhanced in Δset1, 

suggesting that in contrast to Δrrp6, loss of Set1 may increase early termination (Fig. 2.6c). A 

recent study similarly reported elevated Nrd1 binding in Δset1 and correlated this phenotype 

with increased Ser5 phosphorylated RNAPII CTD, the mark implicated in NNS recruitment 
16,47. This is also in agreement with our earlier data showing reduced PHO84 AS RNA 

production in Δset1 48. Accordingly, smFISH analyses indicate reduced antisense expression 

in Δset1 and restoration of antisense RNA levels in Δset1Δrrp6 (Supplementary Fig. 5). Taken 

together, the data suggest that Rrp6 and Set1 have antagonistic effects in the regulation of 

antisense RNA production by respectively facilitating and interfering with early transcription 

termination by Nrd1-Nab3-Sen1.  

2.2.4  Discussion 

 Expanding on an extensive list of cis- and trans-acting factors, recent studies have 

established ncRNAs as additional players in controlling the regulated expression of protein 

coding genes. Transcription regulation by ncRNAs is achieved by multiple ways, however in-

depth mechanistic understanding is still missing. Our detailed analyses of PHO84 cis-acting 

antisense RNAs at a single cell and single molecule level indicate that low frequency antisense 

transcription, but not the antisense RNA itself, contributes to PHO84 gene repression. 
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 Our earlier studies showed that an extra PHO84 gene copy induces repression of both 

the transgene and the endogenous copy, and suggested that PHO84 AS RNAs may participate 

in a still poorly defined mechanism of silencing in trans independent of Hda1/2/3 and 

therefore distinct from silencing in cis 48. Based on the rapid export of antisense RNAs 

revealed by smFISH, it seems unlikely that antisense RNAs act in trans by diffusing from one 

gene copy to the other, unless the two genes undergo pairing. The primarily cytoplasmic 

localization of PHO84 AS RNAs suggests they are more likely to act in trans through an 

indirect mechanism. These possibilities should be investigated in the future.  

smFISH reveals distinct sense and antisense expression modes 

 The single molecule microscopy approach revealed critical parameters on PHO84 

regulation that could not be obtained using classical ensemble measurements (Fig. 2.1). First, 

we showed that antisense-mediated regulation does not generate a gradual decrease of sense 

transcription but modulates the threshold of the PHO84 activation switch. Second, smFISH 

revealed that sense and antisense expression are achieved through different modes, PHO84 

mRNA being transcribed in bursts that lead to a strong accumulation in a fraction of cells, 

whereas antisense RNA is transcribed constantly at a very low rate in most cells not 

expressing PHO84 mRNA. Third, the ability to localize individual RNAs within different 

cellular compartments showed that PHO84 AS RNA behaves like an mRNA that dissociates 

from the gene locus after polyadenylation by Pap1, leaves the nucleus using the canonical 

Mex67-dependent mRNA export pathway, and is eliminated by the cytoplasmic Xrn1-

dependent RNA degradation machinery.  

Loss of Rrp6 favours antisense transcription elongation 

Consistent with the increased levels of antisense RNA observed in Δrrp6 through 

classical RNA analyses (Fig 1a), smFISH revealed more antisense RNA molecules per cell as 

well as an increased number of cells with antisense RNA compared to wild type (Fig. 2.1d and 

2.1e). Our observations indicate that loss of Rrp6 does not result in nuclear stabilization of 

full-length antisense RNAs but rather promotes antisense transcription followed by rapid 

export. First, although the number of cells showing nascent transcripts is increased in Δrrp6, 
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more than one molecule is rarely observed at the transcription site; moreover this nuclear 

signal is strictly dependent on ongoing transcription both in wild type and Δrrp6 indicating 

that once made, antisense transcripts don’t remain at the gene (Fig. 2.2, 2.3 and 2.4). Second, 

the antisense RNA turnover rate is comparable in wild-type and Δrrp6 strains, supporting the 

view that the increased steady state levels in Δrrp6 are due to enhanced antisense RNA 

production (Fig. 2.5a and 2.5b). Finally, H3K4 tri- and di-methylation at the 3’ end and middle 

region of PHO84 are higher in the absence of Rrp6 consistent with increased antisense 

transcription (Fig. 2.5c). Combining mean transcript values and half-life data (Fig. 2.1 and 

2.5) indicates a PHO84 AS RNA transcription frequency of only 1 and 3 RNAs per hour in 

wild-type and Δrrp6 cells respectively (Supplementary Table 1). These numbers are consistent 

with the incidence of nascent transcripts, another measure for transcription frequency. In 

Δrrp6, 20% of cells show a nuclear PHO84 AS signal (Fig. 2.2c), suggesting that a cell 

contains a nascent mRNA 20% of the time, i.e. for 12 min every hour. Assuming transcription 

of antisense RNA occurs at a rate similar to other low frequency transcribed genes (0.8kb/min) 

and termination/transcript release is a rate-limiting step as suggested for mRNAs, transcription 

of the 2.3kb antisense RNA takes almost 4 minutes to complete 36. This fits well with a 

transcription frequency of 3 PHO84 AS RNAs per hour, as a nascent antisense signal would 

be detected 3 times per hour for 4 min. Consistent with this finding, pap1-1 Δrrp6 cells 

accumulate on average 3.7 AS RNAs after 1 hour heat shock (Fig. 2.3b). These data indicate 

that continuous but low frequency antisense RNA transcription occurs in cells not expressing 

sense.   

Rrp6 and Set1 influence antisense early termination by Nrd1  

 Antisense RNA transcription frequency is increased in Δrrp6 compared to wild-type 

and accompanied by a higher fraction of cells with a repressed PHO84 gene. Regulating 

antisense transcription frequency could therefore be a way to modulate the strength of 

repression. Transcription frequency of PHO84 AS RNA appears to be controlled both at the 

level of initiation and through the regulation of elongation and termination efficiency of a 

short transcript by the NNS complex. It is unclear what controls initiation; the presence of a 

NFR in the 3’UTR of the PHO84 gene may be sufficient to allow low frequency transcription 
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of antisense RNA 18. This ‘default’ antisense transcription may be further controlled by the 

NNS termination pathway. Indeed, mutagenesis of Nrd1-Nab3 binding motifs or Nrd1 

depletion results in increased antisense levels. Moreover the association of Nrd1 with the 

PHO84 3’ end is strongly reduced in Δrrp6 suggesting that Rrp6 may contribute to antisense 

early termination by favouring stable NNS complex association (Fig. 2.6). Notably, as recently 

observed 47, Set1 has opposite effects since its loss increases Nrd1 binding (Fig. 2.6c), 

suggesting that Set1 and/or H3K4 methylation may interfere with early termination efficiency. 

These observations are consistent with the positive effect of Set1 and H3K4 trimethylation on 

antisense RNA production at PHO84 and other antisense-producing genes 48,49. Interestingly, 

both gene-specific and genome-wide studies suggest that TRAMP and exosome components 

are required for snRNA/snoRNA transcription termination by Nrd1 and loss of Trf4 was 

shown to reduce Nrd1 binding to snRNA genes 50,51. Together with our results, these 

observations support the view that both TRAMP and Rrp6 may more generally contribute to 

efficient NNS-dependent transcription termination. Since the activity of both Nrd1 and Rrp6 is 

regulated in different physiological conditions 52,53, genes like PHO84 may be controlled in 

part through modulation of antisense transcription elongation.  

A novel view on antisense-mediated gene repression  

 Our data show that PHO84 transcription is regulated by a sensitive on-off switch 

where sense transcription is either completely turned off or strongly induced once the 

repression is overcome. The activation threshold of Pho4 regulated genes is defined both by 

the nuclear concentration of the Pho4 transcription factor and accessibility of Pho4 binding 

sites 32. Antisense transcription may ensure that PHO84 transcription is activated only in 

presence of a strong enough stimulus either by reducing Pho4 accessibility through promoter 

nucleosome rearrangement, and/or, as shown previously, by placing repressive histone marks 
34. Antisense transcription is not able to establish stable repressive marks, as cells rapidly 

induce PHO84 sense expression when shifted from high phosphate, a condition where 

antisense RNA is abundant, to low phosphate medium (Supplementary Fig. 6). Antisense 

transcription might therefore act as a buffer, protecting cells from responding to weak signals.  
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H3K4 di-methylation deposited by Set1 during noncoding RNA transcription has been 

implicated in gene repression 49,54 by recruiting the histone deacetylases Set3 and Rpd3L at 

promoter regions 24,29,55. Notably, we observed that in addition to Hda1, PHO84 antisense-

dependent repression similarly depends on Set1 and Rpd3L (J. Zaugg, M. C., N. Luscombe 

and F. Stutz, unpublished). Thus, besides promoting antisense production, Set1-dependent 

H3K4 methylation deposited during antisense transcription may also contribute to PHO84 

gene repression by enhancing HDAC recruitment to the sense promoter.  

Recent global studies show that many chromatin regulators, including Set1, barely 

affect steady state gene expression, but are required for rapid transcriptional responses to 

environmental stresses. Many of these highly regulated genes are associated with distal or 

antisense ncRNA transcription 29,30,49. Consistently, our large-scale search for PHO84-like 

genes, i.e. repressed by antisense transcription in Δrrp6 in a process dependent on Set1 and the 

HDACs Rpd3 and Hda1, identified highly regulated TATA-box containing genes (J. Zaugg, 

M. C., N. Luscombe and F. Stutz unpublished). These genes are frequently expressed in 

transcription bursts and their promoters undergo important chromatin rearrangements upon 

activation or repression, as described for PHO84 32,33. Thus, a larger picture emerges 

suggesting that the role of noncoding transcription may be to reinforce the rapid on-off switch 

of highly regulated genes by promoting the formation of repressive chromatin. This process 

occurs in wild-type cells and is enhanced in Δrrp6. Further studies will address how, following 

a sense transcription burst, low rate antisense transcription contributes to efficient nucleosome 

reassembly at the promoter preventing inappropriate transcription factor binding and firing of 

sense transcription.  

2.2.5 Materials and Methods 
	

Strains, media and culture conditions. 

The yeast strains used in this study are listed in Supplementary Table 2. Yeast strains were 

streaked on YEPD plates at 25 °C. Liquid cultures were inoculated with cells taken from 
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plates and grown at 25 °C for 16–24 h under exponential growth conditions (OD600 < 0.8) in 

YEPD or synthetic complete (SC) minimal medium. 

Fluorescent in situ hybridization. 

Fluorescent in situ hybridization procedure. Twenty-nucleotide-long DNA oligonucleotides 

containing a single 3′ amine were labeled post-synthesis with amine-reactive fluorescent 

dyes and hybridized to paraformaldehyde-fixed yeast cells as described in refs. 36 and 37. 

Images were acquired using epifluorescence microscopy, and three-dimensional data sets were 

reduced to two-dimensional data sets for image analysis. Cell segmentation, single-RNA 

counting and quantification of nascent transcripts were done as described in ref. 36. 

Probe design and labeling. Twenty-nucleotide-long DNA oligonucleotide probes were 

designed using the online software Stellaris Probe Designer version 2.0 at the Biosearch 

Technologies website. Probes typically have a 50% GC content; however, GC content can 

range from 40% to 55% (for probe sequences see Supplementary Table 2). Probes were 

synthetized containing a single 3′ amine that can be coupled to an amine-reactive fluorescent 

dye. For a typical labeling reaction, 20 µg of pooled probes (31 for PHO84 antisense, 30 

for PHO84 sense and 48 probes for MDN1) were lyophilized, resuspended in labeling buffer 

(0.1 M sodium bicarbonate, pH 9.0) and mixed with a single reactive dye pack of amine-

reactive dye (DyLight amine-reactive dyes: DyLight 550 (#62263), DyLight 594 (#46413) and 

DyLight 650 (#62266) (Thermo Scientific)). The reaction was carried out overnight in the 

dark at room temperature. Labeled probes were purified using the Quiagen QIAquick 

Nucleotide Removal columns (Qiagen #28304) according to the manufacturer's instructions. 

Probe concentration and labeling efficiency were measured using NanoPhotometer Pearl 

(Implen) and calculated as described in ref. 38. Probes were stored at −20 °C in the dark. 

Cell fixation, preparation, storage and hybridization. Cells were grown in SD complete and 

2% glucose at 25 °C overnight to mid-log phase (OD600 = 0.6–0.8) and fixed by adding 

paraformaldehyde (Electron Microscopy Science #15714) to a final concentration of 4% for 

45 min at room temperature. Cells were subsequently washed 3× with 10 ml of Buffer B (1.2 

M sorbitol, 100 mM KHPO4, pH 7.5) and stored overnight at 4 °C in Buffer B. Cell walls were 
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then digested with lyticase (Sigma #L2524, dissolved in 1× PBS to 25,000 U/ml. Stored at 

−20 °C). Digested cells were plated on poly-L-lysine–treated coverslips and stored in 

70% ethanol at −20 °C in 12-well cell culture plates. Cells can be stored in 70% ethanol for 

several months before hybridization. For hybridization, cells were removed from 70% ethanol, 

washed twice with 2× saline sodium citrate (SSC) and hydrated in 10% formamide/2× SSC. 

Labeled probes were resuspended in 10% (v/v) formamide, 2× SSC, 1 mg ml−1 BSA, 10 mM 

ribonucleoside vanadyl complex (NEB #S1402S), 5 mM NaHPO4, pH7.5, 0.5 mg 

ml−1 Escherichia coli tRNA and 0.5 mg ml−1 single-stranded DNA and hybridized overnight at 

37 °C. Cells were then washed in 10% formamide/2× SSC at 37 °C for 1 h, followed by a 

quick wash in 1× PBS at room temperature. The coverslips were quickly dried in 

100% ethanol and mounted on glass slides using Prolong Gold with DAPI mounting medium 

(Invitrogen #P36935). For a more detailed protocol, see refs. 36 and 38. 

Image acquisition and analysis. Images were acquired using an epifluorescence microscope, 

either a Nikon E800 upright microscope equipped with a Photometrics CoolSNAP HQ (CCD) 

camera or a Zeiss Axio Observer Z1 inverse microscope with a Zeiss AxioCam MRm camera, 

using 100× oil-objective and specific filter cubes (Chroma Filters 31000 (DAPI), 41001 

(fluorescein isothiocyanate (FITC)), SP-102v1 (Cy3/DyLight550), SP-103v1 

(Cy3.5/DyLight594) and CP-104 (Cy5/DyLight650) (Chroma Technology)) corresponding to 

the excitation and emission spectra of the smFISH probes used. Three-dimensional image data 

sets were acquired, with 200 mn z stacks covering the entire depth of cells. The z stacks were 

projected onto a two-dimensional plane by applying a maximum projection using ImageJ. 

RNA signals were detected and quantified using a spot-detection algorithm fitting a two-

dimensional Gaussian mask implemented with custom-made software for the IDL platform 

(ITT Visual Information Solutions); cell and nuclear segmentation as well as quantification of 

nascent RNAs were performed all as described in ref. 36. For all quantifications, data from at 

least three different experiments were analyzed, each containing >100 cells. 

Plasmid constructions. 

The PHO84 plasmid with the mutated Nrd1 and Nab3 motifs was obtained by first cloning 

the PHO84 wild-type gene (from −1,000 bp to +350 bp) as a SalI fragment into pUC18 to 



67	
	

create pFS3594. A BglII-Nde1 DNA fragment spanning the PHO84 3′ end and downstream 

vector sequences was synthesized by mutagenizing the putative Nrd1 and Nab3 binding motifs 

encoded within the PHO84 3′ end on the antisense strand. The wild-type BglII-Nde1 

fragment of pFS3521 was replaced by the synthetic mutant fragment to create pFS3644. Both 

the wild-type and mutant PHO84 were subcloned into YCpLac111 as SalI fragments to 

generate pFS3521 and pFS3625, respectively. 

Northern blot analysis and RT-qPCR. 

Total RNA was prepared and analyzed by northern blotting using standard methods as 

described in ref. 34. For RT-qPCR quantifications, total RNA was treated with DNase 

(Ambion) to remove genomic DNA contamination. cDNAs of sense or antisense RNAs were 

generated by SuperScript II reverse transcriptase (Invitrogen) with 1 µg of DNase-treated total 

RNA using gene- and strand-specific primers. cDNAs were quantified by RT-qPCR (Bio-

Rad). The same amplicon was used to quantify sense and antisense cDNA. The sequences of 

all the primers are listed in Supplementary Table 2. 

Chromatin immunoprecipitation. 

ChIPs were performed essentially as described previously34. Yeast strains were grown to 

OD600= 0.8 in YEPD medium at 25 °C and cross-linked for 10 min by the addition 

of formaldehyde to a final concentration of 1.2%. Cross-linked and sonicated chromatin 

extracts from 1.5 mg of Bradford-quantified proteins were immunoprecipitated overnight in 

the presence of protein G Sepharose (Amersham, Pharmacia) with 5 µl of antibody 

against H3K4me3 (Abcam 8580), H3K4me2 (Abcam 32356), H3 (Abcam 1791, clone Y47) 

or HA epitope (Covance monoclonal antibody HA.11, clone 16B12) for the Nrd1–HA tagged 

strains. All immunoprecipitations were repeated at least three times with different chromatin 

extracts from independent cultures. Immunoprecipitated DNA was purified and quantified by 

qPCR with the primers listed in Supplementary Table 2 and expressed as the percent of input 

DNA or percent of input DNA normalized to H3. 
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Determination of decay rates. 

Cells were grown to OD600 = 0.8 in YEPD medium. At T = 0, 100 µg/ml of 1,10-

phenanthroline (Sigma) was added to the culture (as described in ref. 42 and references 

therein). Samples were taken at different time points and analyzed for their RNA expression 

by RT-qPCR as described above. 

Half-lives were calculated by the equation t1/2 = 0.693/k, in which k is the rate constant for 

mRNA decay. Values of each time point are normalized for internal variations 

with SCR1 RNA, a control that is still stable at the 30-min time point. 
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2.2.9 Figure legends 

Figure 2-1: PHO84 sense and antisense expression are anti-correlated.  

(a) Deletion of RRP6 increases expression of PHO84 antisense RNA. Northern blot (left) and 

RT-qPCR (right) analyses in WT and ∆rrp6. Error bars reflect standard deviations of an 

average from 3 independent experiments. (b) Two possible models for antisense-mediated 

gene silencing. In a graded response, gradual accumulation of PHO84 AS RNAs leads to a 

gradual reduction in sense levels (Top left), whereas in a bimodal response, sense and 

antisense expression are anti-correlated (Top right). Changes in PHO84 mRNA and antisense 

levels over time are represented as green and red lines respectively. Lower panels show 

PHO84 sense expression resulting from graded or bimodal regulation at the single cell level. 

(c) Bimodal expression of PHO84 sense and antisense RNAs. smFISH detects PHO84 sense 

(green) and antisense RNAs (red) in individual WT and ∆rrp6 cells. Nuclear DNA was stained 

using DAPI (blue), cellular outlines were visualized using DIC optics and the scale bar is 

5µm. FISH probes positions are drawn at the top. (d) Less cells express PHO84 sense in 

∆rrp6. Frequency distribution of PHO84 sense and AS expression in individual cells from (c). 

(e) Deletion of RRP6 results in higher level of PHO84 AS RNA in single cells. Frequency 

distribution of the number of PHO84 AS RNAs per cell in WT and ∆rrp6. Error bars in (d) 

and (e) reflect standard deviations of an average of three independent experiments. 

Figure 2-2: PHO84 antisense RNAs do not accumulate at the PHO84 locus.  

(a) PHO84 AS RNAs are exported to the cytoplasm. smFISH for MDN1 mRNA (green) and 

PHO84 AS RNA (red) in WT and ∆rrp6 cells. Scale bar is 5µm. The cartoon on the left 

illustrates the detection of nascent and cytoplasmic RNAs. (b) PHO84 AS RNAs do not 

accumulate at the PHO84 gene locus. Frequency distribution of the number of nascent RNAs 

for MDN1 (WT only) and PHO84 AS RNAs in WT and ∆rrp6. (c) Deletion of RRP6 leads to 

a higher frequency of cells showing nascent PHO84 AS RNAs. Frequency distribution of cells 

containing nascent (nuclear) PHO84 AS RNAs in WT and ∆rrp6.	Error bars in (b) and (c) 

reflect standard deviations of an average of three independent experiments. 



75	
	

Figure 2-3: PHO84 antisense RNAs are polyadenylated by Pap1.  

(a) Inactivation of Pap1 leads to nuclear accumulation of PHO84 AS RNAs. smFISH using 

probes against PHO84 AS RNAs (red) in pap1-1 and pap1-1Δrrp6 cells grown at 25oC and 

either directly fixed or shifted to 37oC for 1 hour prior to fixation. Nuclear DNA was stained 

using DAPI (blue), cellular outlines were visualized using DIC optics and the scale bar is 

5µm.  (b) pap1-1Δrrp6 cells accumulate high numbers of PHO84 AS RNA in the nucleus. 

Frequency distribution of the number of PHO84 AS RNAs detected by smFISH in pap1-1 and 

pap1-1Δrrp6 cells after 1 hour shift to 37oC. (c) PHO84 AS RNAs polyadenylation requires 

Pap1. Northern blot membranes with oligo dT purified total RNA were hybridized with 

PHO84 AS specific probes. Strains were exponentially grown in SC medium 2% glucose 

(Glu; lanes 1-4) or 2% galactose (Gal; lane 5) followed by 20h in 2% glucose (Glu; lane 6) to 

deplete Trf5 as indicated. ACT1 and TRF4 mRNA specific probes were used to control for 

loading and TRF4 deletion. 

Figure 2-4: PHO84 antisense nuclear detection needs ongoing transcription.  

smFISH detecting MDN1 mRNA (green) and PHO84 AS RNA (red) in rpb1-1 and rpb1-

1Δrrp6 cells grown at 25oC and shifted to 37oC for 5, 10 and 20 min prior to fixation. Nuclear 

DNA was stained using DAPI (blue), cellular outlines were visualized using DIC optics and 

the scale bar is 5µm. 

Figure 2-5: Effect of Δrrp6 on antisense RNA half-life and transcription.  

(a) Deletion of RRP6 does not alter PHO84 AS RNA half-life. RT-PCR analysis measuring 

PHO84 AS RNA decay rates in WT, Δrrp6 and Δxrn1 after transcription shut off by adding 

100 µg/ml 1,10-Phenantroline to the medium. PHO84 AS RNA levels were normalized to 

SCR1 RNA, stable at 30 min. Data are expressed as a percentage of the amounts present 

before addition of the inhibitor. Error bars represent standard deviations for three independent 

experiments. (b) PHO84 AS RNA levels are elevated in a Δrrp6 and Δxrn1. Antisense RNA 

levels were measured by RT-qPCR and expressed relative to the levels in WT that were set to 

1. Error bars reflect standard deviations of an average obtained from three independent 

experiments. (c) Higher levels of H3K4 tri- and di-methylation at the 3’ end of PHO84 in 
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Δrrp6. Chromatin immunoprecipitation (ChIP) analysis of H3K4 tri- (top) and di-methylation 

(bottom) at the PHO84 locus. ChIP with anti-H3K4me3, anti-H3K4me2 or anti-H3 antibodies 

from Δpho4, Δpho4Δrrp6, Δpho4Δset1 and Δpho4Δrrp6Δset1 strains. DNA quantified by real-

time PCR with primers specific for the 5’, middle and 3’ regions of PHO84 and ACT1 (as 

indicated on top). H3K4me2/3 values were normalized to H3 values and the highest value was 

arbitrarily set to 1. Error bars reflect standard deviations of an average obtained from three 

independent experiments. Comparison of the mean differences was analysed by the Student-t 

test. P values <0.05 are indicated by (*).	

Figure 2-6: PHO84 antisense transcription is attenuated by NNS.  

(a) NNS terminates short PHO84 AS transcripts. Cartoon illustrating the role of NNS in 

PHO84 AS transcription. Short antisense RNAs (red line) previously shown to be 

polyadenylated by Trf4 and degraded by Rrp6 1 are proposed here to be terminated at Nrd1-

Nab3 motifs (blue bars) by the NNS complex, while the long read-through antisense 

transcripts (green lines) are subjected to 3’end cleavage and polyadenylation by Pap1 before 

export into the cytoplasm. (b) Depletion of Nrd1 increases PHO84 AS RNA levels. PHO84 

AS RNA levels were measured using RT-qPCR  after in GAL-Nrd1 and GAL-Nrd1 ∆rrp6 

strains grown in medium containing 2% galactose (Gal) or shifted for 7h in 2% glucose (Glu) 

to deplete Nrd1. Error bars reflect standard deviations of an average from 3 independent 

experiments. Comparison of the mean differences was analysed by the Student-t test. Stars 

indicate the level of significance: p value <0.01 (**). The value of GAL-Nrd1 (Glu 7h) was 

arbitrarily set to 1. (c) Deletion of RRP6 reduces Nrd1 recruitment. ChIP analysis of Nrd1-HA 

binding at PHO84 3’ end quantified by qPCR and expressed as % of input. Three biological 

and two technical repeats were analysed, error bars reflect standard errors. Comparison of the 

mean differences was analysed by the Student-t test. Stars indicate the level of significance: p 

value <0.01 (**). The small panel shows Western blot analysis of Nrd1 protein levels in the 

strains used for the ChIP. Ssn6 was used as normalization control.  
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2.2.10 Figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: PHO84 sense and antisense expression are anti-correlated 
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Figure 2-2: PHO84 antisense RNAs do not accumulate at the PHO84 locus 
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Figure 2-3: PHO84 antisense RNAs are polyadenylated by Pap1 
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Figure 2-4: PHO84 antisense nuclear detection needs ongoing transcription 
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Figure 2-5: Effect of Δrrp6 on antisense RNA half-life and transcription 
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Figure 2-6: PHO84 antisense transcription is attenuated by NNS 
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2.2.11 Supplementary data  
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Supplementary table 2: Strains, primers, and smFISH probes used in this study 

STRAINS USED IN THIS 
STUDY 

  
    Code Name Genotype Reference 

  
  

  
W303 
background 

  
  

FSY1742 WT MATa ade2 his3 leu2 trp1 ura3   

FSY3117 Δrrp6  MATa ade2 his3 leu2 trp1 ura3 Δrrp6::Kanr 
Camblong et al., 
2007 43 

FSY3518 Δhda2 MATa ade2 his3 leu2 trp1 ura3 Δhda2::TRP1 
Camblong et al., 
2007 43  

FSY3018 Δhda2Δrrp6  
MATa ade2 his3 leu2 trp1 ura3 Δrrp6::Kanr 
Δhda2::TRP1 this study 

FSY3517 Δset1 MATa ade2 his3 leu2 trp1 ura3 Δset1::TRP1 this study 

FSY3833 Δset1Δrrp6  
MATa ade2 his3 leu2 trp1 ura3 Δrrp6::Kanr 
Δset1::TRP1 this study 

FSY1982 mex67-5 MATa ade2 his3 leu2 trp1 ura3 mex67-5 integrated 
Jimeno et al., 
2002 59 

FSY1985 mex67-5 Δrrp6  
MATa ade2 his3 leu2 trp1 ura3 mex67-5 integrated 
Δrrp6::Kanr this study 

FSY2078 Δxrn1 MATa ade2 his3 leu2 trp1 ura3 Δxrn1::RP1 Jensen T.H. lab 
FSY1968 pap1-1 MATa ade2 his3 leu2 trp1 ura3 pap1-1  Jensen T.H. lab  

FSY1988 pap1-1 Δrrp6 MATa ade2 his3 leu2 trp1 ura3 pap1-1 Δrrp6::Kanr  Libri D. lab 

FSY4838 pap1-1 Δtrf4 MATa ade2 his3 leu2 trp1 ura3 pap1-1 Δtrf4:: Libri D. lab 

FSY4275 GAL-NRD1 MATa ade2 his3 leu2 trp1 ura3 HisMX6-pGAL-NRD1 
Thiebaut et al., 
2006 8 

FSY4282 GAL-NRD1 Δrrp6 
MATa ade2 his3 leu2 trp1 ura3 HisMX6-pGAL-NRD1 
Δrrp6::Kanr 

Thiebaut et al., 
2006 8 

FSY2527 Δpho4 MATa ade2 his3 leu2 trp1 ura3  Δpho4::Kanr this study 

FSY3313 Δpho4Δrrp6 
MATa ade2 his3 leu2 trp1 ura3  Δpho4::Kanr 
Δrrp6::TRP1 this study 

FSY4265 Δpho4Δset1 
MATa ade2 his3 leu2 trp1 ura3  Δpho4::Kanr 
Δset1::HIS3 this study 

FSY4266 Δpho4Δset1Δrrp6 
MATa ade2 his3 leu2 trp1 ura3  Δpho4::Kanr 
Δset1::HIS3 Δrrp6::TRP1 this study 

FSY4911 NRD1-HA Δpho4 
MATa ade2 his3 leu2 trp1 ura3 NRD1-HA-HIS3 
Δpho4::Kanr this study 

FSY4918 
NRD1-HA Δpho4 
Δrrp6 

MATa ade2 his3 leu2 trp1 ura3 NRD1-HA-HIS3 
Δpho4::Kanr Δrrp6::TRP1 this study 

FSY4912 
NRD1-HA  Δpho4 
Δset1 

MATa ade2 his3 leu2 trp1 ura3 NRD1-HA-HIS3 
Δpho4::Kanr Δset1::TRP1  this study 

FSY4841 rpb1-1 MATa ade2 his3 leu2 trp1 ura3 rpb1-1 Libri D. lab 

FSY4842 rpb1-1 Δrrp6 MATa ade2 his3 leu2 trp1 ura3 rpb1-1 Δrrp6::URA3 Libri D. lab 

FSY3799 Δpho84  MATa ade2 his3 leu2 trp1 ura3  Δpho84::Kanr  
Camblong et al., 
2009 58 

FSY3811 Δpho84 Δrrp6 
MATa ade2 his3 leu2 trp1 ura3  Δpho4::Kanr 
Δrrp6::TRP1 

Camblong et al., 
2009 58 
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BY4741 
background       

FSY3158 WT MATa his3 leu2 lys2 ura3 Euroscarf 

FSY4747 Δrrp6 MATa his3 leu2 lys2 ura3 Δrrp6::NatMX 
Houseley J. & Tollervey D. 
(2006) 60 

FSY3182  Δtrf4 MATa ade2 his3 leu2 ura3 Δtrf4::Kanr  " 

FSY4748 Δtrf4Δrrp6 
MATa ade2 his3 leu2 ura3 Δtrf4::Kanr 
Δrrp6::NatMX " 

FSY4749 
Δtrf4 GAL-
TRF5 

MATa ade2 his3 leu2 ura3 Δtrf4::Kanr HisMX6-
pGAL-3HA::trf5 " 

 

PRIMERS USED IN THIS STUDY 

 

Code Name Sequence 

  
 

  
OFS1741 ACT1 F Mid 5'-TTCCAGCCTTCTACGTTTCCATC-3' 
OFS1742 ACT1 R Mid 5'-CGTGAGGTAGAGAGAAACCAGC-3' 
OFS735 ACT1 F 3' 5'-TACTCCGTCTGGATTGGTGGTT-3' 
OFS736 ACT1 R 3' 5'-GGTGAACGATAGATGGACCACTT-3' 
OFS737 ACT1 F 5' 5'-TGGTATGTTCTAGCGCTTGCAC-3' 
OFS738 ACT1 R 5' 5'-GTCAATATAGGAGGTTATGGGAGAGTG-3' 

OFS1077 PHO84 F 3' 5'-GAAATTAACGAGCTATACCACGATGAAATC-3' 

OFS1078 PHO84 R 3' 5'-CATGTTGAAGTTGAGATGGGCTGG-3' 

OFS1158 PHO84 F M 5'-CTGCCGCACAAGAACAAGATGG-3' 

OFS1159 PHO84 F M 5'-TTTGGAGGATGATTGTCAAGAGATTCG-3' 

OFS1075 PHO84 F 5' 5'-CCGTCAATAAAGATACTATTCATGTTGCTG-3' 

OFS1076 PHO84 F 5' 5'-AAAATCATTCAAATGGTTGTGGAAGGC-3' 

OFS1717 SCR1 F 5'-AACCGTCTTTCCTCCGTCGTAA-3' 

OFS1718 SCR1 R 5'-CTACCTTGCCGCACCAGACA-3' 

OFS1249 PHO84 -1000 SalI F 5'-GGGGGGGGGGGTCGACCGAGAGTGATAAAGAAGAGGCGGT-3' 

OFS1363 PHO84 +355 Sal1 R 5'-GGGGGGGGGGGTCGACGTCTCAAGTCGCTTGCTTAGTCGA-3' 
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smFISH probes used in this study 
 

  
  

PHO84 mRNA, PHO84 AS and MDN1 probes were labeled in a single position with eigther Dylight 549 or DyLight 594 

ITS2-1 probe was labeled in 3 positions with cy5 (Zenklusen et al., 2008). Labeled positions are shown in bold. 

 

PHO84 sense PHO84 AS ITS2-1 MDN1 

  
  

  
ccttcggtaaggtgtt
cttt 

cccatctcaacttcaac
atg 

GAT ATG CTT AAG TTC AGC GGG TAC TCC TAC 
CTG ATT TGA GGT C  

cagagggaaaagca
gaattg 

aaatggttgtggaag
gccat 

ctgctacgctaaacttc
aga 

 

ttgttgctaaagtgga
aggg 

cttctttccagaggatc
ttc 

gctataccacgatgaa
atcg 

 

cggctatgtagtatag
ttcc 

aaaccttcgtcatcga
tgga 

ccttgttgatcccaga
aact 

 

gaaaacatgaccagt
gatgg 

ggtcttaacttgttgcc
aac 

gccttattcatgttgtt
ggg 

 

caacgtgccactatct
ctaa 

aaaccaacaccagca
atgga 

gttacctcacgtcatg
gaaa 

 

ggcattgcaacggga
aatat 

ggacatcatagtgat
accca 

aactgtgctagagac
ggtaa 

 

gaatccttttgtgtgga
tgg 

atactaccgtgccagt
aaac 

tttgggtactctaatcg
acc 

 

ggttgaatgaagcgt
gcaaa 

acaaggtttgacttgg
acct 

gtgccattattgcaca
aacc 

 

ccaacaatgaatcgc
gtgat 

ccaacagaagtggaa
acctt 

tttctgctgcatctggt
aag 

 

tccagaatcgccctca
aaat 

gcagaatggtacaga
caatc 

tacagatctactgctc
atgg 

 

gttcgaggaagctgt
aatca 

cccatgacaatacggt
agaa 

aacttcggtccaaaca
caac 

 

gcacatctcttagcttc
gtt 

ggtagtggcaaattc
agaag 

catcatcttgaccgctt
tgt 

 

gaacactgggtagttt
agag 

ttagcaaagacagca
cccat 

tcattacctggttactg
ggt 

 

cctgaggctcaataat
gaag 

tgataccaccggaga
tttga 

ctgctgtcggtaatct
gatt 

 

attgacgcgaccttag
tact 

tttgcgtattctagttc
gcc 

cgggttgagtttaaac
agtg 

 

tttgtcgtggatagtgt
gga 

aaacatgccaaccct
agaac 

gctggttcatggtttac
ctt 

 

ggacaaaggttaatg
ggtag 

ccaacttagcgttaac
atcc 

gtcaatggaagtacg
gtaag 

 

cgaagagaggaaac
cgtttt 

cactggtgtcgtgaat
tttc 

ccaaaggcttcgttca
aaga 

 

ccgcttttccaatgag
catt 

attgtcaagagattcg
acgg 

ggtttggaaagagctt
ctac 

 

gagtcatggcaaccc
atata 

cagcagtacctagca
aaatc 

cagtgatgaagacat
ggcaa 

 

ggcatcagtttgttcac
cta 

cccgtagaaagcaac
atcta 

cacaagaacaagatg
gcgaa 

 

caccagaggtataag
tacca 

ggtttgcagaataac
agcac 

taagttggaacttgct
gctg 

 

acaccagctctccatt
caaa 

tttttggaaccggcat
aacc 

atccttattgggttggg
tac 

 

tacccatctcccttcttt
ga 

atcgacagtgaagac
ggata 

aaggcttgtgaccaa
atgtg 

 

cgcgcttttctaaaag
cgat 

accgatgacacagaa
caaag 

gctgaatgtgatgcta
gatg 

 

tcctctggatggaatg
gtta 
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caccaagtttatggta
tgcg 

ctcttatcttggttgctg
ct 

 

catttgcagcctttaca
gtc 

taaagagccaacaga
ccatg 

aaatggagaggtgcc
atcat 

 

cgctaggttcctctaat
tca 

ccaggaacaataaag
gtggt 

gtgactacccactatct
tct 

 

ggttggtcaaaatgg
gaaac 

gtaacgagttgggaa
acact 

cctgctattaacttcgt
tgc 

 

cccccttgttcaatgaa
atg 

  
gcaaaccactgttgct
catt 

 

ctaacctttcgcacag
ctta 

  
  

caggtttgttgatgcc
attg 

  
  

cgtagacagaagact
ggatt 

  
  

tgaattctccaatagc
gcca 

  
  

ctcgccgattgcttgta
taa 

  
  

ccttgaggaagcaat
gtcta 

  
  

ggcacatgttgggtca
aaaa 

  
  

gcgaacaatgtgctgt
tcat 

  
  

ccgactagtaaaaca
ggttc 

  
  

tgaacgactgtagtttt
ccc 

  
  

ccaagaagatcacca
gtttc 

  
  

gcatcttgtgaaacttc
tcg 

  
  

gtacgcttcgttccaa
agtt 

  
  

cagcccatttgtcaag
taac 

  
  

cctcaaacttcttcact
gag 

  
  

ccctcgacaaaattga
agac 

  
  

gccctgatagtctttac
caa 

      
ttcatcgagcaatagc
cact 

  



	
	

3 Single-cell profiling reveals that eRNA accumulation at enhancer-

promoter loops is not required to sustain transcription 
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3.1 Aims of article 2 

For a second project, I was keen to expand my experimental expertise to work with 

higher eukaryotic systems and simultaneously immerse myself in the much more complex 

world of lncRNA mediated transcription regulation in a disease relevant model system. I was 

particularly interested in enhancer RNAs (eRNAs), a newly discovered class of lncRNAs 

transcribed from mammalian enhancers, which are regulatory sequences that activate gene 

transcription across large genomic distances in response to cell type specific signals. eRNA 

expression occurs genome-wide in diverse cell types and is correlated with target gene 

activation. Several studies had implicated eRNAs in various roles, including increasing 

chromatin accessibility at promoters, regulating enhancer-promoter looping interactions, and 

facilitating RNA pol II elongation on target loci, but no concerted model for eRNA function 

had emerged. To study eRNA function, we chose estrogen induced eRNAs in the MCF7 breast 

cancer cells as a model system. In particular, we wanted to determine whether transcription 

initiation from active promoters is coupled with eRNA expression on individual alleles, 

whether eRNAs stabilize enhancer-promoter interaction, and also characterize the pioneer 

factors that condition enhancers to become transcriptionally active. The results of this study 

were published online in Nucleic Acids Research in December 2016 (Rahman et al, “Single-

cell profiling reveals that eRNA accumulation at enhancer-promoter loops is not required to 

sustain transcription”).   	
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3.2.1  Abstract  
 

Enhancers are intergenic DNA elements that regulate the transcription of target genes 

in response to signaling pathways by interacting with promoters over large genomic distances. 

Recent studies have revealed that enhancers are bi-directionally transcribed into enhancer 

RNAs (eRNAs). Using single-molecule fluorescence in situ hybridization (smFISH), we 

investigated the eRNA-mediated regulation of transcription during estrogen induction in 

MCF-7 cells. We demonstrate that eRNAs are localized exclusively in the nucleus and are 

induced with similar kinetics as target mRNAs. However, eRNAs are mostly nascent at 

enhancers and their steady-state levels remain lower than those of their cognate mRNAs. 

Surprisingly, at the single-allele level, eRNAs are rarely co-expressed with their target loci, 

demonstrating that active gene transcription does not require the continuous transcription of 

eRNAs or their accumulation at enhancers. When co-expressed, sub-diffraction distance 

measurements between nascent mRNA and eRNA signals reveal that co-transcription of 

eRNAs and mRNAs rarely occurs within closed enhancer-promoter loops. Lastly, basal eRNA 

transcription at enhancers, but not E2-induced transcription, is maintained upon depletion of 

MLL1 and ERα, suggesting some degree of chromatin accessibility prior to signal-dependent 

activation of transcription. Together, our findings suggest that eRNA accumulation at 

enhancer-promoter loops is not required to sustain target gene transcription.  

 

 

 

Key words: transcription, enhancers, eRNAs, smRNA FISH, enhancer-promoter looping 
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3.2.2  Introduction  

Enhancers are intergenic DNA elements that regulate the transcription of target genes 

by interacting with promoters over large genomic distances (1-3). They contain binding sites 

for transcription factors, which promote RNA polymerase II (RNAPII) recruitment and 

transcription activation (4). Enhancers carry unique epigenetic marks that distinguish them 

from promoters, including monomethylated Lysine 4 of Histone H3 (H3K4me1) and 

acetylated Lysine 27 of Histone H3 (H3K27ac) (5,6). In addition, these regulatory elements 

have an open chromatin conformation, which increases accessibility to transcription factors 

and to RNAPII (7). Several genome-wide studies have shown that enhancers are transcribed 

into long noncoding RNAs in a tissue-specific manner in response to extracellular signals. For 

example, stimulation of cortical neurons via membrane depolarization was shown to induce 

the recruitment of RNAPII to enhancers and the initiation of bi-directional transcription of 

noncoding RNAs, termed enhancer RNAs (eRNAs) (8). Importantly, eRNA expression 

positively correlated with increased mRNA expression from proximal target genes, suggesting 

that eRNA transcription marks active enhancers. Although genome-wide studies in other cell 

types have also established a correlation between eRNA and target mRNA expression, whether 

there is a unified mechanism by which eRNAs regulate their target genes remains unclear (8-

17).  

Since long non-coding RNAs are more functionally diverse than other classes of 

ncRNAs, such as microRNAs, rRNAs, and tRNAs, they are thought to be under lower 

selective constraints (18). Although enhancers possess conserved transcription factor binding 

sites, enhancer-derived transcripts often lack conserved motifs or secondary structures that 

could provide a hint for a unified mechanism of action (7). Similarly, little is known about 

eRNA biogenesis. Most eRNAs are capped, unspliced and non-polyadenylated with a median 

length of approximately 350 nucleotides (19). Recent studies showed that the RNAPII-

associated integrator complex mediates transcription termination at enhancers, and that 

3’cleavage of eRNAs by the integrator complex is required for their function (20). 

Interestingly, several experimentally validated eRNAs were detected as distinct bands in 

Northern blot analyses, further corroborating the idea that eRNA transcription is terminated in 

a uniform manner (16,21,22). In addition, ChromRNA-seq analyses have suggested that 
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eRNAs are enriched in the chromatin fraction (20). Collectively, these observations indicate 

that eRNAs act as processed transcripts in cis on their target loci. Supporting this idea, 

tethering of eRNAs to luciferase reporter plasmids enhanced promoter activity (15,16). 

However, it cannot be excluded that enhancer transcription rather than the eRNA transcript per 

se is required for enhancer function. 

 

While the features that constitute a functional eRNA molecule are currently unknown, 

several studies have implicated eRNAs in different steps of transcription regulation, including 

the modulation of chromatin accessibility at promoters and the release of the negative 

elongation factor NELF (11,23,24). In particular, eRNAs have been suggested to mediate 

looping interactions between enhancers and promoters of target genes by facilitating the 

recruitment of specific factors known to stabilize long-range chromatin interactions, including 

cohesin and the mediator complex (15,21,25). However, treatment with flavopiridol to block 

eRNA transcription did not affect chromatin looping at the P2RY2 and GREB1 loci upon E2 

stimulation of MCF-7 cells (14). Furthermore, eRNA inhibition affected neither enhancer-

specific epigenetic modifications nor the recruitment of transcriptional regulators, suggesting 

that eRNA synthesis is not required for the assembly of enhancer-promoter complexes (14).  

Interestingly, a recent study has shown that eRNAs bind to the transcription factor Yin Yang 1 

(YY1), and that this interaction can enhance the recruitment of this transcription factor to 

enhancers (26). Whether transcription factor trapping by eRNAs is a widespread mechanism 

of gene expression regulation remains to be investigated. Therefore, while several different 

studies suggest that eRNAs are likely to be implicated in regulating target gene transcription, 

the mechanistic details of eRNA function remain unclear.  

 

One difficulty in studying induced transcriptional responses is that different cells and 

even different alleles within a cell may not show the same induction kinetics upon stimulation, 

due to the stochastic nature of many cellular processes (27,28). Different studies have shown 

that eRNA transcription precedes the peak of mRNA transcription (9,11). In addition, 

transcription often occurs in short bursts, where individual alleles switch between active and 

inactive states (27,29-31). Observing such behavior, therefore, requires monitoring the 

transcriptional response at the single-cell and single-allele level. Most previous studies 
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investigating eRNA function used ensemble measurements of cell populations, and were thus 

unable to provide spatial or allele-specific information regarding eRNA and target mRNA 

transcription (14,15). In particular, whether eRNAs are required for every round of 

transcription initiation, and whether they modulate transcription bursts is still unknown. 

To investigate the role of eRNAs in transcription, we characterized the spatiotemporal 

expression of these noncoding transcripts in individual cells using single-molecule resolution 

fluorescence in situ hybridization (smFISH). Specifically, we used ERα positive MCF-7 breast 

cancer cells as a model system to study eRNA-mediated transcriptional programs during 

estrogen induction. Estrogen binds directly to the nuclear receptor ERα, which is recruited to 

estrogen response elements (EREs) as a homodimer and regulates target gene transcription by 

recruiting transcriptional cofactors (32,33). ERα binding to chromatin is facilitated by the 

pioneer factor FOXA1, which itself is recruited at H3K4me1 marks deposited by the histone 

methyltransferase MLL1 on the enhancer regions of target genes (34,35). While the 

mechanism whereby MLL1 recognizes its target loci is presently unknown, roles for the CpG 

Binding protein CGBP, the transcription factor YY1, and the core subunit of the SWI-SNF 

complex hSNF5 have been suggested (36-38). 

Here we monitored the expression and localization of eRNAs derived from the 

enhancers of the FOXC1 and P2RY2 loci, as well as the expression of their cognate mRNAs 

over a time course of estrogen induction in individual MCF-7 cells by smFISH. In the 

uninduced state, FOXC1 and P2RY2 eRNAs were expressed at low levels, independently of 

MLL1 and ERα. Estrogen treatment induced the transcription of eRNAs and target mRNAs 

with similar kinetics, and required both chromatin modification by MLL1 and ERα 

recruitment. However, co-expression of eRNAs and mRNAs at individual alleles was 

infrequent, and did not correlate with bursting mRNA transcription. Furthermore, distance 

measurements between eRNA and nascent mRNA signals at co-expressing alleles, revealed 

infrequent co-localization within closed enhancer-promoter loops. Taken together, our data 

suggest that ongoing eRNA transcription is neither required to stabilize chromatin loops, nor 

to sustain continuous transcription from target alleles. 
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3.2.3 Results  

eRNAs and target mRNAs are co-induced upon E2 treatment in MCF-7 cells 

To examine the role of eRNAs in modulating transcription at the single-cell level, we 

examined their spatial expression patterns in MCF-7 breast cancer cells over a time course of 

17β-estradiol (E2) induction using smFISH. This technique uniquely allows the simultaneous 

localization of eRNAs and target mRNAs in individual cells and at individual alleles with 

single-molecule resolution (29,41). Specifically, we examined the E2-induced FOXC1 and 

P2RY2 loci as model genes. Genome-wide studies have shown previously that the FOXC1 and 

P2RY2 enhancers are transcribed into eRNAs in a hormone-dependent manner (14,15). The 

FOXC1 gene encodes a single exon of 3.4 kilobase-pairs (kbps) and its expression is regulated 

by a single E2-responsive enhancer, located 26 kb downstream of its transcription termination 

site. The P2RY2 gene is 18 kb-long and its expression is regulated by an E2 responsive 

enhancer located 22 kb upstream of its transcription start site (TSS). The FOXC1 enhancer is 

bi-directionally transcribed, producing sense and anti-sense eRNAs (Figure 3.1A). We 

designed oligonucleotide probes against both target mRNAs and eRNAs (based on GRO-seq 

data published by Li et al., 2013), which we hybridized to paraformaldehyde-fixed MCF-7 

cells at different time points of E2 induction. Addition of E2 results in a transient 

transcriptional response that peaks at 40 minutes (13); we therefore analyzed eRNA and 

mRNA expression at 0, 20, 40 and 60 minutes after E2 treatment.  As shown in Figure 3.1B, 

FOXC1 and P2RY2 mRNAs were expressed at a low level in uninduced cells. Upon E2 

induction, bright spots representing active sites of transcription, consisting of multiple nascent 

mRNAs, were detected within the nuclei of single cells. Since MCF-7 cells are triploid for the 

FOXC1 and P2RY2 genes, 3 to 6 transcription sites were observed in interphase and dividing 

cells, respectively.  

Analysis of the bi-directionally transcribed FOXC1 eRNAs showed similar induction 

kinetics as the target mRNAs, but different localization patterns. In uninduced cells, FOXC1 

eRNAs were detected in the nucleus and were expressed at low levels (Figure 3.1B). Even 

though 38.2% of the cells expressed anti-sense and 23.5% expressed sense FOXC1 eRNAs, 

only a single eRNA spot was detected in the majority of these cells (Figure 3.1C). Upon E2 

induction, eRNA and target mRNA expression increased in parallel, with 62.5% of the cells 
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expressing anti-sense and 55.8% expressing sense FOXC1 eRNAs at 40 min of treatment. 

Notably, the fraction of cells expressing more than one eRNA increased three fold compared 

to the uninduced state. Importantly, the number of eRNA spots rarely exceeded the number of 

alleles in either interphase or dividing cells (Figure 3.1C). A similar pattern of expression was 

observed for the P2RY2 sense eRNA and its cognate mRNA.  

Since enhancer elements recruit many proteins, including transcriptional co-activators 

and RNAPII, eRNAs could be incorporated into large complexes and become inaccessible to 

the RNA FISH probes.  To address this point, we carried out protease treatment prior to probe 

hybridization as described previously by Buxbaum et al., but found similar levels of eRNA 

expression in the presence and absence of protease digestion (42). Specifically, we observed 

comparable numbers of FOXC1 AS eRNAs per cell with or without pepsin treatment 

(Supplementary Figure S1A). Likewise, we found that the intensities of single FOXC1 AS 

eRNA spots did not change, suggesting that probe accessibility to the target is not obscured by 

eRNA incorporation into protein complexes (Supplementary Figure S1B). In addition, 

quantification of eRNA and mRNA fold induction levels in response to estrogen treatment by 

RT-qPCR was consistent with smFISH measurements, implying that eRNA and mRNA 

detection by smFISH is efficient (Supplementary Figure S2). Furthermore, in the presence of 

RNAse A, neither FOXC1 mRNAs nor AS eRNAs were detected, validating that the signals 

observed by smFISH are specific to RNA (Supplementary Figure S3).   

In summary, our time course analysis revealed that eRNA transcripts are nuclear and 

induced with similar kinetics as the target mRNA. Combined with previous findings showing 

that eRNAs have a short half-life of about 7 minutes, and act in cis, these observations provide 

evidence that most eRNAs detected by smFISH are nascent and are mostly restricted to the 

enhancer from which they are transcribed (11,24).  
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Induction of eRNA and target mRNA transcription requires ERα and MLL1 

As shown in Figure 3.1, low levels of eRNA expression were detectable at estrogen-

responsive enhancers even in uninduced cells. This could be due to hormone-independent 

activation of ERα or to continuous basal transcription of the enhancer prior to ERα 

recruitment. In the latter case, low levels of eRNA transcription could be implicated in 

chromatin remodeling, thereby facilitating ERα accessibility once the cells are exposed to 

estrogen. To distinguish between these possibilities, we pre-treated the cells prior to the 

addition of E2 with either Tamoxifen, a drug that blocks estrogen receptor function by 

inhibiting E2 binding, or with ICI 182,780 (ICI), which induces ERα degradation (43-45). 

Both drugs effectively abolished the induction of FOXC1 and P2RY2 mRNA, as shown by the 

lack of bursting transcription upon E2 treatment following the addition of either inhibitor 

(Figure 3.2A and 3.2B, and Supplementary Figure S4A and S4B). Similarly, eRNA induction 

was inhibited by both Tamoxifen and ICI (Figure 3.2A and 3.2B, and Supplementary Figure 

S4A and S4B). However, basal eRNA expression was unaffected by ICI 182,780 treatment, 

suggesting that the low level of eRNA transcription observed at these enhancers in uninduced 

cells is independent of ERα. This observation further raises the possibility that low-level 

eRNA transcription primes enhancers to respond rapidly to environmental stimuli.  

 

	 Since ERα inhibition did not attenuate the basal level of eRNA expression, we 

investigated whether upstream factors are required to activate eRNA transcription. As noted 

above, the histone methyltransferase MLL1 deposits the H3K4me1 mark on enhancer regions, 

which recruits the pioneering factor FOXA1, and subsequently, ERα (34). Thus, we examined 

whether siRNA-mediated MLL1 knockdown affects basal eRNA transcription. We found 

similar basal levels of P2RY2 eRNA transcription in the absence of E2 in MLL1-depleted 

cells and in the non-specific siRNA control (Figure 3.3A and 3.3B). Therefore, low basal 

eRNA transcription may occur prior to chromatin remodeling and participate in the 

recruitment of MLL1 (46,47).  

 In contrast to the basal level of eRNA transcription, P2RY2 eRNA induction was 

significantly reduced upon E2 treatment in MLL1-depleted cells compared to the non-specific 

siRNA control (Figure 3.3B), and paralleled a decrease in the number of transcriptionally 
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active P2RY2 loci (Figure 3.3B). Consistent with these observations, ChIP analysis revealed a 

ten-fold decrease in ERα binding to the P2RY2 and FOXC1 enhancers upon E2 induction in 

MLL1-depleted cells compared to the control (Figure 3.3C, Supplementary Figure S5A). 

Furthermore, MLL1 knockdown resulted in a two-fold decrease in the level of H3K4me1 at 

these regulatory elements both in the presence and in the absence of E2 induction (Figure 

3.3C, Supplementary Figure S5A). Taken together, these findings corroborate the RNA FISH 

results showing that MLL1 depletion inhibits both eRNA and target mRNA induction (Figure 

3.3A and 3.3B), and suggest that MLL1-dependent deposition of H3K4me1 and the 

recruitment of ERα are required for the induction of eRNA transcription. 	

eRNA- mRNA co-expression is infrequent and is not required to maintain transcription 

Previous studies have suggested that eRNAs facilitate transcription by stabilizing 

enhancer-promoter interactions (15,21,25). These interactions could persist for the duration of 

a single initiation event or for the entire length of the transcriptional response. If eRNA 

transcription or accumulation at a specific allele were required for enhancer-promoter 

communication or for maintaining transcription, frequent co-localization of eRNAs at active 

alleles should be observed. To test this hypothesis, we determined whether the simultaneous 

induction of eRNAs and target mRNAs is coordinated at individual alleles, and measured the 

frequency of eRNA and nascent mRNA signal co-localization. To identify FOXC1 

transcription sites (TSs), we determined the position and intensity of mRNA signals, and 

clustered them into low and high intensity groups, with the low intensity spots representing 

single mRNAs. Nuclear spots of greater than 1.5 times the intensity of the mean value of 

single mRNAs were scored as transcription sites, assuming that actively transcribed loci 

contain multiple nascent mRNAs due to transcription bursting (27,29,30,48). Since the P2RY2 

gene contains several short exons at the 5’ end that are too short for smFISH probe design, we 

used the first intron region to detect the nascent mRNA, and applied a similar spot-clustering 

algorithm to locate the transcription sites (Supplementary Figure S6A). We then measured the 

frequency of co-localization of actively transcribing alleles with eRNAs (Fig. 3.4A) and vice 

versa (Fig. 3.4B). Specifically, co-localization was defined by the presence of an eRNA within 

a 400 nm radius from the center of the TS signal.  This cutoff was selected to include open 

enhancer-promoter configurations, but to exclude signals from neighboring alleles, which are 
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separated by more than 1um, as determined from distance measurements between active 

P2RY2 transcription sites (Supplementary Figure S6B).  

As shown in Figure 3.4A, FOXC1 eRNA–TS co-localization was infrequent before E2 

treatment, with only 4% of transcription sites co-localizing with an eRNA. FOXC1 eRNA–TS 

co-localization increased to 27% at 40 minutes of E2 treatment. While E2 induction 

significantly increased the proportion of FOXC1 eRNA-TS co-localization (Fisher’s exact test; 

p<0.0001), the majority of transcription sites did not have an associated eRNA. As noted in 

Figure 3.1C, the fraction of cells expressing more than one eRNA increased three-fold at 40 

min of E2 treatment compared to the uninduced state. Additionally, there was a five-fold 

increase in the fraction of cells with more than one active transcription site at 40 min of E2 

treatment compared to the uninduced state. Despite this increase in the numbers of eRNAs and 

transcription sites detected per cell, the majority of TSs did not co-localize with eRNAs, 

indicating that mRNA transcription does not require the simultaneous expression of eRNAs. 

Triple co-localization of FOXC1 mRNA, antisense and sense eRNA was present at only 2% of 

active transcription sites at 40 min of E2 induction, further suggesting that simultaneous 

transcription of sense and anti-sense eRNAs is rare at active TSs.  

 

Although the low frequency of eRNA-mRNA co-expression at individual alleles 

suggests that eRNAs are not required for sustained transcription, eRNAs could influence the 

magnitude of the transcription output. To determine whether eRNAs modulate transcription 

strength, we correlated the presence or absence of eRNAs at the TS with the RNAPII density 

on the target gene. As shown in Figure 3.4C, in uninduced cells, basal FOXC1 expression 

averaged 2-3 transcripts per TS and occurred primarily from alleles that had no associated 

eRNAs. During peak induction, both FOXC1 and P2RY2 showed strong bursting transcription, 

independent of the presence of eRNAs; however, for the FOXC1 gene, there was a small but 

significant increase in the number of nascent RNAs per transcription site at active alleles that 

co-localized with eRNAs compared to those that did not (Figure 3.4C). Furthermore, 

comparisons of mRNA signal intensities at transcription sites before and after E2 treatment 

showed that the RNAPII density along the gene increased over time (Supplementary Figure 

S7). In contrast, although the proportion of cells transcribing eRNAs increased with induction, 
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the eRNA signal intensities did not change (Supplementary Figure S7). This observation 

suggests that compared to mRNA, eRNA transcription initiation occurs at a lower frequency, 

and that eRNAs do not accumulate at enhancers in high numbers.  

 

mRNA-eRNA co-transcription rarely occurs within a closed enhancer-promoter loop 

conformation  

Chromosome conformation capture (3C) analyses conducted in the presence or 

absence of enhancer-derived transcripts proposed that eRNAs mediate enhancer-promoter 

interactions (15,21,25). Such interactions are thought to be maintained by large protein 

complexes, containing cohesin, the mediator complex and other co-factors, and are thought to 

occur within 10-100nm (49,50). Although these distances are below the 200 nm resolution 

limit of conventional light microscopy, signals within this range can be localized at higher 

spatial resolution by 2D Gaussian fitting (40). Using the coordinates of eRNA and mRNA 

transcription site signals as markers of enhancers and genes, respectively, we assessed whether 

transcribed enhancers interact with active genes. To achieve this, we first determined the 

minimal distance at which we could resolve co-localizing signals using a P2RY2 intron probe 

labeled with two different colors (Figure 3.5A). After pixel shift correction, signals identifying 

the same intron were co-localized within 63 nm (Figure 3.5A). We then measured pairwise 

eRNA-nascent mRNA distances among co-expressing alleles at 40 min of E2 induction. At 

this time point, 29% of anti-sense and 19% of sense FOXC1 eRNA-mRNA co-expressing 

alleles showed a separation of 100nm or less (Figure 3.5B). These data show that the small 

percentage of active transcription sites that co-express eRNAs are infrequently transcribed 

within a closed enhancer-promoter loop. Furthermore, these observations suggest that looping 

interactions are either transient or that eRNAs are preferentially transcribed before enhancer-

promoter loops are established (Figure 3.5C).  

 

3.2.4 Discussion 

	 	Our study reveals important insights into eRNA expression that are unique to the use 

of single-cell approaches, and complements previous investigations of eRNA function that 
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have largely relied on ensemble measurements. Population-level studies are limited in their 

ability to reveal the differential behavior of cells within a population, and cannot distinguish 

whether individual alleles show alternate transcriptional activity. Therefore, such studies 

typically report average expression profiles that are limited in their scope to accurately 

describe what occurs in individual cells and at individual alleles. Transcriptional responses 

induced by external stimuli have been shown to be particularly noisy, as gene activation 

depends on a cascade of events, such as signal sensing, transcription factor binding and 

chromatin remodeling (27,29). Our analysis of E2-mediated transcription kinetics, previously 

described as a strong and synchronous transcriptional response, showed highly variable 

induction in individual cells, both for mRNA and eRNA expression. Even at the peak of E2 

induction (40 min), one third of all the cells did not exhibit strong FOXC1 and P2RY2 mRNA 

transcription, suggesting that only a fraction of the cells respond to the stimulus at any given 

time. Furthermore, individual active alleles showed variable transcriptional strength, as 

measured by the number of nascent mRNAs, consistent with a bursting expression pattern. 

	 Interestingly, although the eRNA and mRNA transcription frequencies increase over 

the time course of E2 induction, we did not observe an increase in eRNA signal intensity at 

individual alleles as observed for mRNAs (Supplementary Figure S7). Typically, an increase 

in transcription initiation frequency results in the association of multiple nascent RNAs with a 

locus. The ability to detect nascent mRNAs by smFISH depends not only on the initiation 

frequency, but also on the length of the gene, on the elongation velocity, and on the kinetics of 

release of an RNA from chromatin. Although eRNA transcription units are shorter than those 

of mRNAs, strong transcriptional bursting at enhancers should result in an increase in eRNA 

signal intensity, which was not observed over the entire time course examined. Furthermore, if 

eRNAs were infrequently initiated and released shortly after transcription termination, 

smFISH probes would hybridize to partially transcribed eRNAs, yielding signals of variable 

intensities. Northern blot analyses have demonstrated that these transcripts are detected as 

bands of discrete size, which correlate well with the uniform eRNA intensities measured by 

smFISH and imply that most eRNAs are present as fully synthesized transcripts of defined 

length (16,21,22). Additionally, fractionation experiments revealed that eRNAs are mainly 

chromatin-associated, consistent with our findings that the number of eRNA signals rarely 
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exceed the number of alleles in individual nuclei. Together, these lines of evidence indicate 

that eRNA transcription is infrequent and that eRNA release from chromatin is slow.   

	 Various functions have been ascribed to eRNAs during the transcription cycle. For 

instance, eRNAs are thought to facilitate the transition of paused RNAPII into productive 

elongation by mediating the release of the negative elongation factor NELF (24). If eRNAs 

were required for RNAPII pause release at target alleles, we would predict to observe 

comparable frequencies of eRNA and mRNA expression, since every cycle of mRNA 

transcription would require an eRNA to act as a decoy for NELF. The low transcription 

frequency of eRNAs observed at the FOXC1 and P2RY2 enhancers, however, does not favor 

such a model, at least for the genes investigated here.  

	 Alternatively, several studies have proposed a role for eRNAs in facilitating or 

stabilizing enhancer promoter loops through interactions with cohesin and the mediator 

complex (15,21,25). Specifically, knockdown of different eRNAs were shown to reduce 

enhancer-promoter contacts in 3C assays. One limitation of 3C analysis is the inability to 

determine whether there is heterogeneity in enhancer-promoter interactions at individual 

alleles within a population. DNA FISH studies have reported both transient and stable 

interactions between regulatory regions and promoters, depending on the system investigated 

(50,51). In favor of stable looping, FRAP analysis of cohesin sub-complexes in G1 measured 

chromatin-bound residence times of about 24 min (52). Although it is not clear whether 

cohesin-stabilized enhancer-promoter interactions have a similar duration, this data suggest 

that such interactions could persist for many minutes (52). Our measurements of eRNA and 

mRNA co-expression at individual alleles revealed two interesting features: (i) that co-

expressing alleles are rare, and (ii) that co-expression infrequently occurs in a closed 

enhancer-promoter configuration. One interpretation of this observation is that enhancer-

promoter interactions are dynamic. Recent studies show compartmentalization of genes and 

their regulatory regions in topologically associating domains (TADs), which position 

enhancers and promoters in proximity. Thus, TADs are thought to facilitate contacts between 

regulatory regions and target gene promoters, and to circumvent the need for stable loops 

(49,50). Alternatively, the infrequent co-expression of eRNAs and mRNAs in a closed-loop 

configuration could indicate that eRNA transcription precedes looping or that eRNA 
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transcription is mostly inhibited in the closed loop configuration (Figure 3.5C). Positioning of 

ERa, co-activators, the mediator complex and the basal transcription machinery in a closed 

loop configuration could indeed facilitate mRNA over eRNA transcription. Therefore, while 

the accumulation of eRNAs at active enhancers is unlikely to be required to stabilize 

enhancer-promoter loops, eRNA transcription may, nonetheless, initiate this communication, 

which promotes target gene activation.  

Lastly, our data show that eRNA transcription at the FOXC1 and P2RY2 enhancers 

occurs at a basal level even in the absence of MLL1 and ERα. An additional role of eRNAs in 

mediating enhancer-promoter communication suggests that the process of transcription at 

enhancers modifies chromatin, thereby facilitating the binding of transcription factors and co-

activators (46). Such low-level transcription at enhancers could maintain this regulatory region 

in an open chromatin state, and allow cells to respond rapidly to E2 stimulation. In support of 

this idea, we found that knockdown of MLL1 reduced both the level of H3K4me1 and the 

binding of ERα to FOXC1 and P2RY2 enhancers. Enhancer-mediated gene activation may be 

characterized by a feed-forward loop, whereby basal eRNA transcription facilitates 

recruitment of TFs and co-regulators, which then further remodel chromatin and increase the 

frequency of eRNA and mRNA transcription initiation. Understanding how eRNAs and TFs 

act either jointly or independently to stimulate transcription will require targeted deletion of 

different enhancer regions to alter eRNA structure or abolish eRNA expression, while 

maintaining the binding of ERα. 

In conclusion, our smFISH analysis of eRNA and mRNA expression patterns over a 

time course of estrogen induction showed that the majority of eRNAs are not co-localized with 

active mRNA transcription sites, and vice versa, implying that eRNA and mRNA transcription 

is rarely coupled on individual alleles. The lack of co-localization of eRNAs with a TS may 

reflect an early stage of transcription initiation, when the enhancer is primed for activating 

target gene expression. This observation is consistent with previous studies showing that the 

onset of eRNA transcription precedes target gene activation (9,11). Reciprocally, the absence 

of eRNAs at TSs indicates that eRNAs are not required to sustain bursting transcription. 

Furthermore, the lack of accumulation of eRNAs at enhancers upon E2 induction suggests that 
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transcription of these noncoding RNAs is initiated at low frequency, and that eRNAs act 

transiently during the early stages of activation, possibly to alter the local chromatin 

environment, facilitate transcription factor access or to initiate enhancer-promoter 

communication. Notably, alleles that co-express eRNAs and mRNAs show a broad 

distribution of enhancer-promoter configurations, in which eRNAs are rarely transcribed 

within distances compatible with direct interactions. This suggests that while eRNAs may 

initiate enhancer-promoter communication, their transcription is mostly repressed once 

looping interactions are established. Elucidating the dynamics of enhancer-promoter 

interactions in the presence or absence of eRNAs will require live cell analyses at high spatial 

and temporal resolution.  
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3.2.5 Materials and Methods 

 
Reagents 17β-estradiol (E2) (E1024) and the antiestrogens (Z)-4 Hydroxytamoxifen (H7904) 

and ICI 182,780 (I4409) were purchased from Sigma. Cells were pretreated with the 

antiestrogens (100 nM) for 3 hours prior to E2 induction (5 nM) for 40 min in the absence of 

the antiestrogens.  
MCF-7 cell culture The MCF-7 cell line was maintained in α-minimal Eagle’s medium (α-

MEM) (Wisent, St-Bruno, QC, Canada) supplemented with 10% fetal bovine serum (FBS) 

(Invitrogen, 10437028) as described previously (39). The cells were attached to poly-L-Lysine 

(Sigma, P8920) coated coverslips in regular media. Three days prior to induction, the cells 

were washed twice with PBS, and the media was changed to phenol red–free Dulbecco’s 

modified Eagle’s medium (DMEM) (Wisent), supplemented with 10% charcoal-treated FBS 

(Invitrogen, 12676029), 1% sodium pyruvate and 1% L-glutamine (Wisent). The cells were 

induced with 17β-estradiol (E2) at 100 nM final concentration (except for the ERα inhibition 

experiments, where the E2 concentration was lowered to 5 nM) for the indicated lengths of 

time. Validated MLL1 and non-specific (NS) siRNAs were transfected at 50 nM final 

concentration using Lipofectamine RNAiMax (Invitrogen, 13778100) according to the 

manufacturer’s instructions. Twenty-four hours after transfection, the media was replaced with 

supplemented phenol red-free DMEM. Estrogen treatments were initiated 48 hours later (a 

total of 72 hours post siRNA transfection). All experiments represent 2-3 independent 

biological replicates.  

smRNA FISH Custom DNA probe sets were designed using Stellaris® Probe Designer, 

synthetized by Biosearch Technologies containing a 3’ amine reactive group, and labeled with 

Cy5 (GEPA25001), Cy3 (GEPA23001), or Cy3.5 (GEPA23501) from Sigma or their DyLight 

(Thermo Scientific) equivalents DyLight 650 (62266), DyLight 550 (62263), DyLight 594 

(46413). Probe sequences are shown in Supplementary Table S1. For smRNA FISH, the cells 

were briefly washed with 1xPBS, fixed with 4% paraformaldehyde (pH 7.2) for 10 minutes at 

room temperature, washed three times with 1xPBS, and stored overnight in 70% ethanol at -

20oC. Prior to hybridization, the cells were air-dried and rehydrated in 10% formamide/2xSSC 

for 10 min at room temperature. The cells were hybridized with 10-20 ng of each probe plus 
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40 ug ssDNA/tRNA mix resuspended in the hybridization solution (10% dextran sulfate/10% 

formamide/2xSSC/2 mM VRC/0.1 mg/ml BSA) for 3 hours in the dark at 37oC. Two post-

hybridization washes were carried out at 37oC with 10% formamide/2xSSC for 30 min each. 

Samples were then rinsed with 1xPBS and mounted with ProLong Gold antifade reagent with 

DAPI (P36935, Invitrogen). Images were acquired with a 63x NA 1.4 oil objective on a Zeiss 

Axioimager Z2 equipped with an AxioCam mRm CCD camera and the following filter sets: 

Zeiss 488050-9901-000 (Cy5), Chroma SP102 v1 (Cy3), Chroma SP103 v2 (Cy3.5), Zeiss 

488049-9901-000 (DAPI).  

Protease and RNase A treatments For protease treatment, prior to smFISH probe 

hybridization, fixed cells were rehydrated in 1xPBS and treated with 1 mg/ml Pepsin in 10 

mM HCl, at 37oC, for 1 min. Enzyme activity was inhibited with 0.1 M Glycine in 1xPBS, pH 

7.2 for 10 min. For RNAse treatment, fixed cells were treated with 0.1 mg/ml RNase A for 1 

hour at 37oC. The cells were washed three times with 1xPBS, pre-incubated in 10% 

Formamide/2xSSC, and hybridized with the indicated probes as described above. 

Immunofluorescence Cells stored in 70% ethanol were air-dried and rinsed with 1xPBS for 5 

min. This was followed by permeabilization with 0.5% Triton x-100/1xPBS for 10 min at RT. 

Cells were then washed 3 times with 1xPBS before proceeding with the smFISH protocol as 

described above. After smFISH hybridization, the cells were washed 3 times with 1xPBS and 

blocked with 4% BSA (Ambion/Life Technologies molecular biology grade BSA Catalog # 

AM2616) in 1xPBS for 10 min at RT. Cells were then incubated with the rabbit polyclonal 

anti-MLL-C (EMD Millipore, ABE240) antibody (diluted 1:100 in 1%BSA/1xPBS) for 1 hour 

at RT. After the primary antibody incubation, cells were washed three times with 1xPBS for 5 

min. This was followed by incubation with the secondary anti-rabbit-Alexa 488 antibody 

(diluted 1:500 in 1%BSA/1xPBS) for 1 hr at RT in the dark. Cells were then washed 3 times 

with 1xPBS for 5 min and mounted on slides with Prolong Gold antifade reagent containing 

DAPI.  

 Image processing and spot detection For image analysis, 3D datasets were reduced to 2D 

data using maximum projections in Fiji. Spot detection was done by 2D Gaussian fitting as 

described previously (29,40). To correct for pixel shifts between channels, TetraSpec beads 

(Invitrogen T-7279) were imaged in all the channels and their position was determined by 2D 

Gaussian fitting. Relative pixel shifts were used to align channels after image acquisition and 
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spot detection using a custom script in MATLAB R2013a(8.1.0.604) (The Mathworks, Inc.). 

The mRNA channel was used as a reference to correct eRNA positions relative to their target 

mRNAs. 

RNA quantification and distance measurements Nuclear masks were created in Fiji after 

manual segmentation of DAPI stained nuclei. Assignment of eRNA and mRNA signals within 

the nuclear masks was done using custom scripts in MATLAB. Detection of mRNA 

transcription sites was done in two steps: (i) computing Is, and (ii) locating transcription sites 

by searching for nuclear spots with at least n * Is intensity, where n=1.5. To determine the 

intensity of a single mRNA, mRNA spots were clustered into different classes using ck-means, 

based on intensity. For FOXCI mRNA signals, the single mRNA intensity was calculated by 

computing the mean intensity of spots outside the nuclear boundary that belong to the low 

intensity group (with cytoplasmic mRNAs corresponding to single mRNAs). For P2RY2 

intron signals, the single RNA intensity was calculated by computing the mean intensity of the 

nuclear intron spots in the low intensity group. To measure the distance between mRNA 

transcription sites and eRNAs, we searched for co-localizations occurring within a 400 nm 

radius around each mRNA transcription site. When eRNAs were detected within that window, 

we measured the 2D Euclidian distance between the centroids of the eRNAs and mRNAs, as 

calculated above. Distances between active transcription sites were measured using Volocity 

6.0 (PerkinElmer).  

RTq-PCR Total RNA was harvested in TRIzol Reagent (ThermoFisher Scientific, 15596026) 

and cDNA synthesis was carried out with random hexamers using SuperScript II Reverse 

Transcriptase (ThermoFisher Scientific, 18064014) according to the manufacturer’s 

instructions. The RTq-PCR assay was performed in duplicate on a LightCycler 480 System 

(Roche Life Science) using SYBR Green. The ΔCT (delta threshold cycle) method was used 

for quantification and transcript levels were normalized to GAPDH.  RT-qPCR primers are 

listed in Supplementary Table S2. 

Chromatin Immunoprecipitation For ChIP, the cells were seeded at a density of 

1.66x106 cells per 10 cm dish in phenol red-free DMEM media supplemented with 10% 

charcoal-stripped serum and transfected 24 hr after seeding with 50 nM siRNAs using 

siLentFect Lipid Reagent (BioRad, 170-3361) according to manufacturer’s instructions. The 

next day, media was replaced with supplemented phenol red-free DMEM. The cells were 
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induced for 40 min with 100 nM estradiol 72 hrs post-transfection and harvested for ChIP. 

Briefly, the cells were crosslinked with 1% formaldehyde for 10min at room temperature. The 

crosslinking reaction was quenched with 0.15 M glycine for 5 min and the cells were washed 

twice with ice-cold PBS and harvested. The cell pellets were resuspended in lysis buffer (5 

mM PIPES pH8, 85 mM KCl, 0.5% NP40), supplemented with a mix of protease and 

phosphatase inhibitors. Following centrifugation, nuclei were resuspended in nuclear lysis 

buffer (50 mM Tris pH8.1, 10 mM EDTA pH8, 1% SDS), supplemented with a mix of 

protease and phosphatase inhibitors, sonicated with a Bioruptor (Diagenode) at medium power 

for 4 rounds of 8 min with 30 sec intervals between pulses. The DNA was quantified and 50 

ug of each sample was diluted 20 times in dilution buffer (0.01% SDS, 1.1% Triton X-100, 

1.2mM EDTA, 16.7 mM Tris pH8.1, 167 mM NaCl), and incubated overnight at 4°C with 4 

µg of one of the following antibodies: ERα (Santa Cruz, sc-543), H3K4me (abcam, ab8895), 

Rabbit IgG (Jackson ImmunoResearch, 011-000-003). The complexes were 

immunoprecipitated for 2 hrs at 4°C with 40 µL of a 1:1 mix of Dynabeads A and G (Life 

technologies). The beads were washed twice with dialysis buffer (2 mM EDTA pH8, 50 mM 

Tris pH8.1, 0.2% Sarkosyl) for 15 min with rotation at room temperature and 4 times with 

wash buffer (0.5 M LiCl, 1% NP40, 1% sodium deoxycholate, 33.2 mM Tris pH8.1). The 

crosslinking was reversed and the DNA was eluted by heating the beads for 30min at 65°C in 

elution buffer (50 mM NaHCO3, 1% SDS). Proteins were digested with Proteinase K 

(ThermoScientific, EO0491) and the DNA was purified on EZ-10 columns (BioBasic). The 

abundance of the immunoprecipitated DNA fragments was quantified by real time qPCR on a 

LightCycler 480 System (Roche Life Science) using SYBR Green. ChIP results were analysed 

by the Percent Input Method. The knockdown efficiency was assessed by Western Blotting 

with the MLL-C antibody (Millipore, ABE240), using β-actin  (Sigma, A5441) as a loading 

control. The qPCR primers and siRNAs used in the ChIP experiments are listed in 

Supplementary Table S2. 

 
Statistical analysis K-sample permutation tests were used to analyze the number of nascent 

transcripts per allele over the time course of E2 induction. The Fisher's exact test was used to 

compare the proportions of eRNAs that were co-localized and non co-localized with active 
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TSs. P values were corrected for multiple comparisons using the Holm-Bonferroni method, 

and a threshold of p<0.05 was used throughout.  
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3.2.9	Figure legends 

 
Figure 3-1. eRNAs are low-abundance nuclear transcripts that are induced with similar 

kinetics as their target genes. A. Diagram of the genomic organization of the FOXC1 and 

P2RY2 loci. B. smFISH showing the expression and localization of FOXC1 (left) and P2RY2 

(right) eRNAs and mRNAs before and after 40 min of E2 induction in MCF-7 cells. Arrows 

indicate different eRNA and transcription site configurations. C. Frequency distributions of 

FOXC1 (left panels) and P2RY2 (right panels) eRNA and active mRNA transcription sites 

during E2 induction. Representative data of three independent experiments; n = 100 cells per 

time point.  

Figure 3-2. Induction of FOXC1 eRNA and mRNA transcription requires ERα.  A. 

FOXC1 eRNA and mRNA expression in the presence or absence of a 3 h pre-treatment with 

Tamoxifen (100 nM) or ICI (100 nM) followed by E2 induction (5 nM) for 40 minutes. B. 

Quantification of data from (A). Frequency distributions of FOXC1 antisense eRNAs and 

nascent FOXC1 transcripts, representative of two independent experiments; n = 70-200 cells 

for each condition.  

Figure 3-3. MLL1 is required for E2-induced eRNA transcription. 

A. smFISH analysis for P2RY2 sense eRNA and mRNA combined with MLL1 

immunofluorescence in MLL1-depleted or non-specific siRNA-treated cells before and after 

E2 induction. B. Frequency distribution of P2RY2 sense eRNAs and mRNA in MLL1-

depleted or non-specific siRNA-treated cells before and after E2 induction. Data are 

representative of 4 independent experiments; n = 160-200 cells for each condition. C. ChIP 

analysis for H3K4me1 (left) and ERα (right) presence at the P2RY2 enhancer in MLL1-

depleted or non-specific siRNA-treated cells in the presence or absence of E2 treatment; n=2 

independent experiments; error bars indicate SD.  

Figure 3-4. Simultaneous expression of eRNAs and mRNAs is infrequent in single cells 

and is not required to maintain transcription. A. Frequency of co-localization between 

FOXC1 (top panel) and P2RY2 (bottom panel) mRNA transcription sites and their cognate 

eRNAs using the transcription site as a reference. eRNA-mRNA transcription site co-
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localization was scored within a 400 nm radius.  B. Frequency of co-localization of eRNAs 

with mRNA transcription sites using the eRNA signal as a reference. Panels A and B indicate 

the mean and SD from 3 independent experiments. C. Quantification of the relationship 

between eRNA-transcription site co-localization and the RNAPII density on individual alleles. 

Outlines represent the relative density of data points. Data was pooled from three independent 

experiments; active transcription sites from n = 300 cells per time point were analyzed. 

Figure 3-5. eRNA-mRNA co-expressing alleles are infrequently found in a closed 

enhancer-promoter loop configuration. A. Determination of the upper limit of co-

localization detection (63 nm) using smFISH probes spanning the P2RY2 5’intron labeled in 

two different colors and 2D Gaussian fitting. B. Frequency distribution plots displaying the 

distances between mRNA transcription sites and nascent eRNAs within a 400 nm radius (red) 

overlaid with the localization precision plot (green) shown in (A.). The data represents the 40 

min E2 induction point combined from 3 independent experiments. C. Cartoon illustrating the 

spatial organization of nascent eRNAs relative to the transcription site. Three different 

scenarios of eRNA and target mRNA co-expression are observed at single alleles. (i) 

Simultaneous eRNA and mRNA transcription consistent with a closed enhancer-promoter 

loop conformation; least frequent. (ii) Simultaneous eRNA and mRNA transcription in an 

open enhancer-promoter loop conformation and (iii) mRNA transcription from alleles that are 

not co-expressed with an eRNA; most prevalent. Factors involved in enhancer-promoter 

communication are shown schematically. 
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3.2.10	Figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: eRNAs are low-abundance nuclear transcripts that are induced with similar 
kinetics as their target genes                      
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Figure 3-2: Induction of FOXC1 eRNA and mRNA transcription requires ERα 
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Figure 3-3: MLL1 is required for E2-induced eRNA transcription 
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Figure 3-4: Simultaneous expression of eRNAs and mRNAs is infrequent in single cells 
and is not required to maintain transcription 
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Figure 3-5: eRNA-mRNA co-expressing alleles are infrequently found in a closed 
enhancer-promoter loop configuration 
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3.2.11	Supplemental figures and tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure S1: Protease digestion to determine the efficiency of eRNA 
detection by smFISH   
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Supplemental Figure S2: RT-qPCR quantification of eRNA and mRNA expression in 
E2-stimulated MCF7 cells   
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Supplemental Figure S3: RNAse A treatment to validate smFISH signal detection   
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Supplemental Figure S4: Induction of P2RY2 eRNA and mRNA transcription requires 
ERα  
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Supplemental Figure S5: ChIP qPCR analysis of ERα and H3K4me1 levels on the 
FOXC1 enhancer   
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Supplemental Figure S6: Transcription site detection   
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Supplemental Figure S7: Analysis of eRNA and TS intensity changes during E2 
induction   
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Supplemental table S1: List of smFISH probes used in this study 

FOXC1	probes	
	 	 	

	 	 	 	FOXC1	sense	eRNA		
	

FOXC1	AS	eRNA		
	

	 	 	 	FOXC1e_S_1	 ttgagcagcagaatggagcg	 FOXC1e_AS_1	 actcagaaagtgccatggag	
FOXC1e_S_2	 cctgactgctggaggtaatg	 FOXC1e_AS_2	 tggagagaaatatgccctgc	
FOXC1e_S_3	 aatcatccgagagacgcgag	 FOXC1e_AS_3	 atgtcactgtcacgttagtg	
FOXC1e_S_4	 caggaggctgaccaatattt	 FOXC1e_AS_4	 ttgtgttcctcagggacaat	
FOXC1e_S_5	 cagggcagaccccaaatatc	 FOXC1e_AS_5	 ggatgtaattcaggggctag	
FOXC1e_S_6	 aagtcagagagatgcgtggg	 FOXC1e_AS_6	 ctgagacatgctgtcattca	
FOXC1e_S_7	 ccgcttcacctttcatgaag	 FOXC1e_AS_7	 gactggactcattttgggac	
FOXC1e_S_8	 aagaagtgtgccgagttgtt	 FOXC1e_AS_8	 aaactggtggctactcacat	
FOXC1e_S_9	 tagtgtgcttccactgtttg	 FOXC1e_AS_9	 tgcagatggtcttaggagtt	
FOXC1e_S_10	 ttcttcggggttctgagaac	 FOXC1e_AS_10	 ggtgctcattagaccctttg	
FOXC1e_S_11	 aggagcaggtgaaacgaggg	 FOXC1e_AS_11	 cctgtatatatttcttcctc	
FOXC1e_S_12	 taggaaaggacaggggcatc	 FOXC1e_AS_12	 tctggcttcctcaggaaaga	
FOXC1e_S_13	 aaaggagagtgctacgcagg	 FOXC1e_AS_13	 ctccacagctgtgagaatta	
FOXC1e_S_14	 caagtgagcgaggacaggat	 FOXC1e_AS_14	 cagggaagctgttacaggtg	
FOXC1e_S_15	 tagtttctgaagagcagggt	 FOXC1e_AS_15	 agaaaccctgaagtccagag	
FOXC1e_S_16	 agagaattgaggcttgctgc	 FOXC1e_AS_16	 taaagcttgaggtggaggga	
FOXC1e_S_17	 gatggaaactgcccagattt	 FOXC1e_AS_17	 gttatgattgacagtggggg	
FOXC1e_S_18	 ggggtaggtttaaagacgga	 FOXC1e_AS_18	 caacacggtactgtttaggc	
FOXC1e_S_19	 gagcaacagttatagaacct	 FOXC1e_AS_19	 tccagagcacatggaatgtg	
FOXC1e_S_20	 ttttctccctgacaaaacca	 FOXC1e_AS_20	 ttataaacagcagggcaggc	
FOXC1e_S_21	 ggtggagattttgaaggaga	 FOXC1e_AS_21	 cccgttttggagagaataca	
FOXC1e_S_22	 caggttgaccttcaccttag	 FOXC1e_AS_22	 cgtggaacatgctggatgtg	
FOXC1e_S_23	 ttctccaacctagaggacaa	 FOXC1e_AS_23	 tctttaagtgttggccactc	
FOXC1e_S_24	 taaggactcaggacgatggt	 FOXC1e_AS_24	 acacctgcaggtgtgttatg	
FOXC1e_S_25	 attactccacgtctgttatg	 FOXC1e_AS_25	 tagattcaccacgtttgagg	
FOXC1e_S_26	 agaagccatcatgaagcagg	 FOXC1e_AS_26	 ggtcacagagacttaggttg	
FOXC1e_S_27	 cacctgtgctattcacaaag	 FOXC1e_AS_27	 tggagaagcacatgggattt	
FOXC1e_S_28	 tggagagacagaccgtccag	 FOXC1e_AS_28	 ttcttcactgaaactgtgcc	
FOXC1e_S_29	 atcctgatcttcctgttgga	 FOXC1e_AS_29	 gacagcctggaatatgcttc	

	 	
FOXC1e_AS_30	 ctcttcagttctagcaatct	

	 	
FOXC1e_AS_31	 agaaggatgtaccagtccat	

	 	
FOXC1e_AS_32	 acagtcagtgacggctctac	

	 	
FOXC1e_AS_33	 aaatcagtgcctgatgttgg	

	 	
FOXC1e_AS_34	 cctgttgaatgatatcgacc	

	 	
FOXC1e_AS_35	 cctaggttccatgatgtata	
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FOXC1e_AS_36	 tgccacttacttcctggatg	

	 	
FOXC1e_AS_37	 acagatccaagctgaattcc	

 

FOXC1	mRNA		
	

	 	FOXC1_1	 atggtgatgagcgcgatgta	
FOXC1_2	 taccgttctcggtcttgatg	
FOXC1_3	 atgatgttgtccacgctgaa	
FOXC1_4	 cttgcaggttgcagtggtag	
FOXC1_5	 tgaccggaggcagagagtag	
FOXC1_6	 gactcagggacgacgagctg	
FOXC1_7	 ctctgtgactcgaacatctc	
FOXC1_8	 cactggagagttgttcaagc	
FOXC1_9	 atttgacagctactattccc	
FOXC1_10	 gtacagagactggctggaag	
FOXC1_11	 tagacgaaagctccggacgt	
FOXC1_12	 gtgtgtcaaaacttgctaca	
FOXC1_13	 tcgatttagttcggctttga	
FOXC1_14	 ttagcttttcctgctttggg	
FOXC1_15	 gattttgccttgatgggttc	
FOXC1_16	 cgctggtgtggtgaatattc	
FOXC1_17	 gctggtgagctgaatttttg	
FOXC1_18	 atagagttttcttcgtgctg	
FOXC1_19	 gtggctctgaattaatcggt	
FOXC1_20	 tatctggagtaacactgtcc	
FOXC1_21	 atatcttacaggtgagaggc	
FOXC1_22	 ctcccttcaacataggataa	
FOXC1_23	 gcgactttcataaacgggga	
FOXC1_24	 ggaacactttctggcgtttg	
FOXC1_25	 caggcaatttaacgtcaggt	
FOXC1_26	 ataggtctcattcaaactga	
FOXC1_27	 gctctattaaagtatccaga	
FOXC1_28	 tagcctcaaagcaagctgac	
FOXC1_29	 acgtatttgtttatatgcca	
FOXC1_30	 ccgaatcatggactgtcatt	
FOXC1_31	 ggctgattcatgggcttaaa	
FOXC1_32	 aggcatcaccgtggtaagac	
FOXC1_33	 tttatctgtgcatatctggc	
FOXC1_34	 gcactgcaattttatatgga	
FOXC1_35	 tggctcacagggatgtataa	
FOXC1_36	 cttccttcttgttattgctt	
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FOXC1_37	 caaaatgttctgctcctctc	
FOXC1_38	 gattgtcccctaggtttaac	
FOXC1_39	 tacaaaagggggagggccaa	
FOXC1_40	 tttattacatttcctgggtt	
FOXC1_41	 atctccccaaagtctgattg	
FOXC1_42	 gtgttgcctctagataggag	
FOXC1_43	 agcaacagcaattactgctt	

 

P2RY2	probes	
	 	 	

	 	 	 	P2RY2	sense	eRNA		
	

P2RY2	5'intron	
	

	 	 	 	P2RY2e_S_1	 cactcaaggtcttgtgcatg	 P2RY2_intron_1	 acattaccaatggtaggtgg	
P2RY2e_S_2	 tgaggagactgtcacagagg	 P2RY2_intron_2	 gcaccatttgccagattaaa	
P2RY2e_S_3	 acttgactcagacagttact	 P2RY2_intron_3	 aataaacttgcctgggtctc	
P2RY2e_S_4	 acaatggatttgcctatggc	 P2RY2_intron_4	 acccactttgataaccagat	
P2RY2e_S_5	 agcagggggagaggaaagga	 P2RY2_intron_5	 cactgttctggcaaactgtg	
P2RY2e_S_6	 agagaactggctggatcttg	 P2RY2_intron_6	 ctgcacttggcaatacttga	
P2RY2e_S_7	 gatacagaagccagcaaaga	 P2RY2_intron_7	 ttgacatcacaaatgccctg	
P2RY2e_S_8	 ccaaagccacaagtccatta	 P2RY2_intron_8	 caaacaactcctgggacagt	
P2RY2e_S_9	 ctgcagggaaatggcacctg	 P2RY2_intron_9	 aaaagtgtttggccaagggg	
P2RY2e_S_10	 gagctgataagaagtccaca	 P2RY2_intron_10	 atgagatcaattgcaggtcc	
P2RY2e_S_11	 ctcctgtcaaaactcttgga	 P2RY2_intron_11	 gcaggaactggtcattcaac	
P2RY2e_S_12	 ggactttaaacagggcttca	 P2RY2_intron_12	 tgcaggatcttacttgttct	
P2RY2e_S_13	 gtgaaactccactagaagac	 P2RY2_intron_13	 ttggtagtcatttctgaggg	
P2RY2e_S_14	 agctggcataaccagaaaat	 P2RY2_intron_14	 ctacaagtgtcacattcctc	
P2RY2e_S_15	 tggcaatgaccttggaacca	 P2RY2_intron_15	 ccatgttctcttatagtctt	
P2RY2e_S_16	 agctctgcccatgaactaag	 P2RY2_intron_16	 taacaagcacaatcccttgc	
P2RY2e_S_17	 caccaagcatgccaaaggtc	 P2RY2_intron_17	 cagggcagaattcaaactcc	
P2RY2e_S_18	 gacagacctgggaacctgag	 P2RY2_intron_18	 atcagcagttgggtaatctg	
P2RY2e_S_19	 atggacaggccctagaagac	 P2RY2_intron_19	 gatcaacaaggcatctctgg	
P2RY2e_S_20	 ttttgccactgtgaacactg	 P2RY2_intron_20	 cctacagaaagcagtttggg	
P2RY2e_S_21	 gtttgcatgtgctgttgttg	 P2RY2_intron_21	 aggacaaccaagaggaggtg	
P2RY2e_S_22	 taaaaccctcctaccttttg	 P2RY2_intron_22	 tatcagggcccagtaataag	
P2RY2e_S_23	 ataaacaacgctgttccagc	 P2RY2_intron_23	 ctggatgagtacagaggtca	
P2RY2e_S_24	 ttatctaaagtccgtgttct	 P2RY2_intron_24	 cagaaccaactatggcactc	
P2RY2e_S_25	 aattctgctctcctcaaagt	 P2RY2_intron_25	 tactcatcttggaccaggaa	
P2RY2e_S_26	 ccacatcatcaaccatcata	 P2RY2_intron_26	 agagggtcaaggagttgttc	
P2RY2e_S_27	 actatcaagaatcactacct	 P2RY2_intron_27	 tgacagtgacaaggtaccag	
P2RY2e_S_28	 tcagtggtgagactccataa	 P2RY2_intron_28	 aaatcacattcccaggaacc	
P2RY2e_S_29	 tccctgggtaaggaaaacta	 P2RY2_intron_29	 gggtctggattcagagtaat	
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P2RY2e_S_30	 tatccccagagagatatatc	 P2RY2_intron_30	 ttttgagattctcagagcca	
P2RY2e_S_31	 gtgacctacaaacctactgt	 P2RY2_intron_31	 aggctgtgtttcttcaattc	
P2RY2e_S_32	 ctcttcttgactctctttat	 P2RY2_intron_32	 tctcgcagtctaattccaag	
P2RY2e_S_33	 tacccataggacatatttcc	 P2RY2_intron_33	 catcaaccaggaaccacatg	
P2RY2e_S_34	 cttgtctccataatcaaact	 P2RY2_intron_34	 caaggtggaaagggggatga	
P2RY2e_S_35	 taattcttttgtgtctctga	 P2RY2_intron_35	 aaattcaggagcccatgaca	
P2RY2e_S_36	 caggtcaagtgggagaactc	 P2RY2_intron_36	 ctgtcacaacagggagacac	
P2RY2e_S_37	 atgattaccttgtgctagga	 P2RY2_intron_37	 ttggcgctagcaaatcatga	
P2RY2e_S_38	 gccattttggggaatcatat	 P2RY2_intron_38	 gctacagagacatgctacta	

	 	
P2RY2_intron_39	 tattgtcagtgtgggtttga	

	 	
P2RY2_intron_40	 taacctcagatgctatcagc	

	 	
P2RY2_intron_41	 cggtctgaggaaatggctaa	

	 	
P2RY2_intron_42	 caggctgaggagcttagaag	

	 	
P2RY2_intron_43	 ttcacaaaggttgccacatc	

	 	
P2RY2_intron_44	 acaggaaggtcacaaccaga	

	 	
P2RY2_intron_45	 cgcaggaattatgggaaggg	

	 	
P2RY2_intron_46	 tggggttatctcaggaagac	

	 	
P2RY2_intron_47	 gcaggtaaagaaggcatgga	

	 	
P2RY2_intron_48	 tcattgagggggcaagagag	

 

P2RY2	3'exon	
	

	 	P2RY2_exon_1	 cattgatggtgtcattccag	
P2RY2_exon_2	 ttgaagtcctcgttgaagcg	
P2RY2_exon_3	 caagaagatgtagagcgcca	
P2RY2_exon_4	 gacgcattccaggtcttgag	
P2RY2_exon_5	 gccaggtggaacatatatgt	
P2RY2_exon_6	 cgcatacagtgcatcagaca	
P2RY2_exon_7	 gtagtaatagaccagcagcg	
P2RY2_exon_8	 tagaagaggaagcgcaccag	
P2RY2_exon_9	 gatgctgcagtaaaggttgg	
P2RY2_exon_10	 cgctgatgcaggtgaggaag	
P2RY2_exon_11	 gagcgcagaggtcgtaagac	
P2RY2_exon_12	 gctggtggtgacaaagtaga	
P2RY2_exon_13	 acgaagcggctgaagagctc	
P2RY2_exon_14	 cagcatgactgagctgtagg	
P2RY2_exon_15	 aaggatgacggcaaagggca	
P2RY2_exon_16	 gagccatgagcacgtaacag	
P2RY2_exon_17	 tggaatggcaggaagcagag	
P2RY2_exon_18	 agcggaaggagtagtagagg	
P2RY2_exon_19	 taaccttgtaggccatgttg	
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P2RY2_exon_20	 tcaaggcaactgttagcact	
P2RY2_exon_21	 cagccaggaagtagagcacg	
P2RY2_exon_22	 atctcgggcaaagcgtacga	
P2RY2_exon_23	 atgtcagttctgtcggatct	
P2RY2_exon_24	 caacacatcttctatcctct	
P2RY2_exon_25	 gaatgtccttagtgttctcg	

 

Supplemental table S2: List of qPCR primers and siRNAs used in this study 

RT-qPCR	Primers	

	 	 	 	
	 	 	 	 	FOXC1	sense	eRNA	 5’-CATGAAAGGTGAAGCGGAAATAC-3’	(forward)	

	

5’-	TGAAGGAGCAGGTGAAACG	-3’	(reverse)	

	 	 	 	 	FOXC1	AS	eRNA	 5’-CTGAGGAACACAAGACTAGCC-3’	(forward)	

	

5’-	ACTGGACTCATTTTGGGACATC-3’	(reverse)	

	 	 	 	 	FOXC1	mRNA	 5’-AGTCAGCTTGCTTTGAGGCTA-3’ (forward) 

	

5’-	AGGCATCACCGTGGTAAGAC	-3’	(reverse)	

	 	 	 	 	P2RY2	sense	eRNA	 5’-AGCTTCTGGTTCCAAGGTCA-3’ (forward) 

	

5’-	CATGTGCTGTTGTTGCTGTG-3’ (reverse)	 

	 	 	 	 	P2RY2	intron	 5’-ACTGCTCTGACCATGACCTC-3’	(forward)	

	

5’-TGACACTGCTTGGTAGGGAG-3’	(reverse)	

	 	 	 	 	GAPDH	mRNA	 5’-GTTTTTCTAGACGGCAGGTCA-3’	(forward)	

	

5-	AACATCATCCCTGCCTCTACT-3’		(reverse)	
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ChIP-qPCR	Primers	

	 	 	 	 	P2RY2e_ChIP	 5'-CCATCAAAGCTGTTGCTTCT-3'	(forward)	

	

5'-CCAGGATAGTGCCAGTGAAC-3'	(reverse)		

	 	 	 	 	FOXC1e_ChIP	 5'-CTGAGGAACACAAGACTAGCC-3'	(forward)	

	

5'-ACTGGACTCATTTTGGGACATC-3'	(reverse)	

	 	 	 	 	siRNAs	

	 	 	 	
	 	 	 	 	MLL1		 5'-GAUUCGAACACCCAGUUAUdTdT-3'	(sense)	

	

5'-AUAACUGGGUGUUCGAAUCdTdT-3'	(anti-sense)	

	 	 	 	 	NS	 5'-UUCUCCGAACGUGUCACGUdTdT-3'	(sense)	

	

5'-ACGUGACACGUUCGGAGAAdTdT-3'	(anti-sense)	
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3.2.12 Supplemental figure legends	

	

Supplemental Figure S1: Protease digestion to determine the efficiency of eRNA 

detection by smFISH.		

A.  Frequency distributions of FOXC1 AS eRNAs in pepsin-treated and untreated MCF7 cells 

induced with 100 nM E2 for 40min, n=120-140 cells. B. Frequency distributions of FOXC1 

AS eRNA signal intensities in pepsin-treated and untreated MCF7 cells induced with 100nM 

E2 for 40 min; n=120-140 cells. 

Supplemental Figure S2: RT-qPCR quantification of eRNA and mRNA expression in 

E2-stimulated MCF7 cells. 

A. RT-qPCR analysis of the fold change in expression of FOXC1 (left) or P2RY2 (right) 

eRNA and mRNA relative to GAPDH in MCF-7 cells in response to E2 treatment for 40 min; 

n=2; error bars indicate SEM. B. Comparison of RT-qPCR and smFISH measurements of 

FOXC1 and P2RY2 eRNAs.  

Supplemental Figure S3: RNAse A treatment to validate smFISH signal detection. 

Representative images show FOXC1 AS eRNA and mRNA signals in MCF7 cells that were 

either left untreated or treated with 0.1 mg/ml of RNAse A in 2xSSC for 1 h at 37oC. 

Supplemental Figure S4: Induction of P2RY2 eRNA and mRNA transcription requires 

ERα.  

 

A. P2RY2 eRNA and mRNA expression in the presence or absence of a 3 hour pre-treatment 

with Tamoxifen (100 nM) or ICI (100 nM) followed by E2 induction (5 nM) for 40 min. B. 

Quantification of data from (A). Frequency distributions of P2RY2 sense eRNAs and nascent 

P2RY2 transcripts, representative of 2 independent experiments, n=70-200 cells for each 

condition.  

Supplemental Figure S5: ChIP qPCR analysis of ERα and H3K4me1 levels on the 

FOXC1 enhancer.  
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A. ChIP analysis for H3K4me1 (left) and ERα (right) in MLL1-depleted or non-specific 

siRNA-treated cells in the presence or absence of E2 treatment; n=2 independent experiments; 

error bars indicate SD B. Quantification of the MLL1 knockdown efficiency by Western 

Blotting.  

Supplemental Figure S6: Transcription site detection.  

A. mRNA spots were localized by 2D Gaussian fitting and clustered into a high-intensity or a 

low-intensity group. The mean value of the low-intensity group was considered to correspond 

to the intensity of a single RNA signal, which was used to quantify the number of nascent 

transcripts per active allele. In the diagram, spots marked by yellow crosses correspond to 

P2RY2 transcription sites (left). Frequency distributions of P2RY2 intron signal intensities in 

the high and low-intensity clusters from a representative field of 40 min E2-induced MCF-7 

cells (right). B. 2D distance measurements between active transcription sites in E2 treated 

MCF-7 cells; n=93 alleles.  

 

Supplemental Figure S7: Analysis of eRNA and TS intensity changes during E2 

induction.  

Frequency distributions of FOXC1 and P2RY2 eRNA and TS signal intensities (a.u.) in 

uninduced and in 40 min E2-induced MCF-7 cells. Signal intensity values were pooled from 3 

time course experiments. 
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4.1 General goals of thesis 

Deep sequencing methods have led to the discovery of a vast number of long non-

coding RNAs in eukaryotes, of which very few have been functionally characterized. The 

general goals of my PhD thesis were to elucidate the roles of different classes of lncRNAs in 

transcription regulation and to discover the key factors implicated in their biogenesis. To 

achieve these goals, I had focused my studies on two distinct classes of lncRNAs in yeast and 

mammalian cells as model systems, using single molecule quantitative microscopy in 

combination with genetic and biochemical approaches to glean novel mechanistic insights. In 

this discussion, I will elaborate on the findings of these two studies separately, discussing 

them within the broader context of recent literature.  

 

4.2 Article 1: Bimodal expression of PHO84 is modulated by early 
termination of antisense transcription  
 
4.2.1 Objectives and summary of results 

 For my first project, I investigated a mechanism of ncRNA mediated transcription 

regulation in the simple eukaryote S. cerevisiae. S. cerevisiae is an important model organism 

for studying the fundamental mechanisms of gene regulation and has been used extensively to 

study different aspects of transcription. In contrast to mammalian genomes, the S. cerevisiae 

genome is very gene dense and regulatory elements are most often limited to gene promoters, 

suggesting less complex regulatory mechanisms than in higher eukaryotes. Despite this, S. 

cerevisiae expresses many different classes of ncRNAs and serves as an important model to 

study how ncRNAs participate in transcription regulation. In the first part of my thesis, I 

investigated the role of a class of lncRNAs that are initiated in the 3’ UTR of protein coding 

genes and transcribed in anti-sense to coding regions.  In particular, I focused on a lncRNA 

that is transcribed in antisense to the yeast gene PHO84, which encodes a high affinity 

phosphate transporter. This lncRNA had been studied previously and serves as a model gene 

to study anti-sense transcription in S. cerevisiae, but much of the mechanistic detail of how it 

functions in regulating PHO84 transcription was still not understood. One interesting feature 

of the previous studies was that depleting Rrp6p, a component of the nuclear exosome, 
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resulted in an increased expression of the anti-sense RNA that was paralleled with a decrease 

in PHO84 expression. This led to the hypothesis that PHO84AS RNAs stabilize in the absence 

of an active nuclear exosome, allowing the accumulation of these lncRNAs at the PHO84 

locus by an unknown mechanism, and resulting in the recruitment of the histone de-acetylase 

Hda1 to the PHO84 promoter, leading to repression of PHO84 transcription. Based on the 

model proposed in these early studies, we further elucidated the mechanisms of biogenesis and 

function of this AS RNA to enhance our understanding of its regulatory function, and possible 

mechanisms of AS mediated gene regulation in general.  

 

Our study, published in the paper entitled "Bimodal expression of PHO84 is modulated 

by early termination of antisense transcription” challenged the previous model, and revealed a 

more complex regulation of PHO84 regulation than previously anticipated. We first showed 

that AS RNAs levels are regulated primarily at the level of transcriptional elongation by the 

Nrd1-Nab3-Sen1 complex, which requires Rrp6 for efficient recruitment to the 3’end of 

PHO84. The loss of Rrp6 attenuates the activity of Nrd1 and results in increased AS 

transcriptional read-through into the PHO84 promoter which leads to the silencing of PHO84 

transcription. Thus, we reveal a bi-modal pattern of expression, where cells that express AS do 

not express PHO84, and vice versa. Furthermore, we could demonstrate that while PHO84 is 

expressed in strong bursts in only a small fraction of cells, AS RNA is expressed continuously 

at low frequency maintaining the PHO84 promoter silent in most cells until the inducing 

signal of phosphate starvation reaches a critical threshold. Upon induction however, sense 

transcription becomes dominant, as we rapidly detect a synchronous expression of PHO84 in 

the entire population, and PHO84AS is completely repressed. In the following sections I will 

discuss different aspects of PHO84 regulation and anti-sense RNA mediated gene regulation 

in S. cerevisiae in general. 

 

4.2.2 Bi-modal switch vs dose-dependent regulation of gene transcription 

Our investigation of PHO84 regulation by AS RNA was in part motivated by specific 

mechanistic questions, which were not addressable by previous studies due to the technical 

limitations of the experiments conducted. A previous study from Camblong and colleagues 
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used northern blot analysis to show that deletion of the nuclear exosome component Rrp6 

results in an increase in AS RNA expression, leading to complete suppression of PHO84. 

Intriguingly, wild type cells express both PHO84 mRNA and AS RNA. We surmised that this 

could represent a population where sense and AS RNAs are expressed simultaneously in 

individual cells, or a population that consists of two discrete classes of cells, those that express 

sense or those that express AS. Since classical biochemical assays like northern blots produce 

ensemble measurements of RNAs that have been isolated from cell populations, they cannot 

distinguish between the two scenarios described above. If the first scenario is true, the 

complete suppression of PHO84 in Δrrp6 cells may be a cumulative effect of the 

accumulation of AS RNAs, which gradually tune down the transcriptional output of the gene 

over time. Thus, there may be a spectrum of different expression levels of both sense and AS 

in individual cells. Conversely, if the second scenario holds true, in which cells either express 

sense or AS, PHO84 repression by AS RNA is likely to occur in a binary switch-like manner, 

as opposed to the first scenario.  

 

To address these mechanistic questions, we investigated PHO84 regulation using 

smFISH, which allowed us to localize and quantify single transcripts for both PHO84 mRNA 

and AS RNA simultaneously in individual cells. Our results revealed a bi-modal expression 

pattern, cells expressing AS RNA do not express PHO84 mRNA and vice versa. Also, in 

contrast to previous models suggesting the accumulation of AS RNAs at sites of transcription, 

we did not detect PHO84 AS RNA accumulation transcription sites, but showed that most 

PHO84 AS RNAs were localized in the cytoplasm, suggesting rapid release of these RNAs 

after synthesis and nuclear export, similar to mRNAs. In addition, PHO84 mRNA and AS 

RNA were transcribed by different modes of transcription. Cells expressing PHO84 mRNA 

showed high levels of cytoplasmic PHO84 mRNAs, as well as strong signals at the site of 

transcription corresponding to multiple nascent transcripts, characteristic  of a bursting 

transcription pattern, characterized by frequent transcription re-initiation events during short 

active periods of promoter ON times 26,27. Conversely, the AS RNA is expressed at lower 

steady-state levels, with small numbers of cytoplasmic RNAs (1-2), and transcription foci that 

rarely show more than one nascent transcript per allele. Therefore, PHO84 AS RNA shows a 

constitutive expression pattern, that can be the result of a promoter that is always on, but 
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where transcription is initiated infrequently through single, uncorrelated initiation events 27. 

Intriguingly, the Δrrp6 strain showed a 2-fold increase in the percentage of cells expressing 

AS RNA, with higher number of RNA per cell (2-3), and a nearly 2-fold decrease in 

percentage of cells expressing sense. These results revealed that a greater fraction of cells 

were switching off the PHO84 promoter in response to increased numbers of AS RNA in 

Δrrp6, which could be caused by an increase in AS RNA stability due to the role of Rrp6 in 

non-coding RNA degradation, or an increase in AS RNA transcription frequency.  

 

Various studies have made use of single cell approaches to elucidate mechanisms of 

lncRNA mediated transcription regulation in yeast, and revealed different expression patterns 

of lncRNAs. Bi-modal expression, as shown for the PHO84 mRNA and AS RNA, or a 

heterogeneous pattern of co-expression of lncRNA and mRNA 150,151. smFISH has been used 

to investigate the regulatory circuit on the FLO11 promoter that is mediated by a toggle switch 

between two lncRNAs, PWR1 and ICR1, which either activate or repress FLO11 transcription 
150. The toggle switch is modulated by competition between the transcription factors Flo8p and 

Sfl1p, which activate the transcription programs for PWR1 and ICR1, respectively, on 

opposite strands.  Flo8p activates transcription of PWR1, which interferes in cis with ICR1 

transcription, thereby activating FLO11.  During FLO11 activation, Cti6p, a component of the 

HDAC Rpd3, maintains a repressive chromatin state at the Sfl1 binding site, inhibiting its 

recruitment, and thereby repressing ICR1 transcription. PWR1 and ICR1 expression is 

mutually exclusive, and ICR1 expression is mostly anti-correlated with FLO11 in single cells, 

whereas PWR1 is co-transcribed with FLO11. In wild type cells, FLO11 shows 3 modes of 

expression: silent, basal (<5), and active (>5). Intriguingly, depletion of Flo8p or Cti6p, which 

results in de-repression of ICR1, does not completely silence FLO11 in all cells, but reduces 

expression in most cells to a basal level. Conversely, depleting Sfl1p significantly increases 

the transcriptional output of FLO11, with 98% of cells expressing at an active, rather than 

basal level, containing an average of 36 transcripts per cell. Overall, this suggests that the 

toggle switch between PWR1 and ICR1 at the FLO11 promoter regulates the transition from a 

basal transcriptional state to a highly active state. Such a bi-modal expression pattern between 

the repressive lncRNA ICR1 and the target FLO11 mRNA is analogous to our findings, but 
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whereas FLO11 is expressed in 70% of cells, PHO84 is only expressed in 20% of wild type 

cells in conditions of intermediate phosphate levels. Therefore, PHO84 may be more 

efficiently silenced by AS RNA. Since PHO84 contains a TATA box promoter, which is 

regulated by the SAGA complex, the mechanism of transcriptional activation would follow a 2 

state bursting model, whereby the promoter remains silent most of the time and infrequently 

transitions to a highly active state. Our data suggests that the AS RNA expression level is 

negatively correlated with the frequency of PHO84 promoter activation.  

 

In contrast to PHO84 and FLO11 regulation by lncRNAs, regulation of the yeast 

sporulation-inducing genes IME1 and IME4 does not result in a bi-modal expression pattern 

(Van Werven et al., 2012). Sporulation is required for gametogenesis in diploid cells, but is 

repressed in haploid cells. The lncRNA IRT1, which is transcribed in sense from the promoter 

of IME1, represses IME1 in haploid cells by recruiting the Set2 histone methyltransferase and 

the HDAC Set3. Therefore, regulation of IME1 recapitulates similar epigenetic mechanisms of 

gene regulation as described for PHO84. However, the kinetics of IME1 regulation by IRT1 in 

single cells is not consistent with a bi-modal switch, but a dose-dependent graded response. 

When haploid cells are transferred to a sporulation inducing medium, most cells express IME1 

at low levels. Gradually, over the time course of sporulation, IRT1 levels increase and IME1 

levels decrease, with cells harboring intermediate levels of both IRT1 and IME1 transcripts 

between 0.5-1 h post-sporulation. After 4 h in sporulation medium, haploid cells completely 

repress IME1, and accumulate large numbers of IRT1 RNAs. IRT1 transcription foci increase 

in size over time, indicating an increase in transcription initiation frequency, which gradually 

represses IME1 transcription. Since haploid cells need to repress sporulation inducing genes to 

maintain their viability, it would not be advantageous to regulate IME1 through a bi-modal 

switch, as cells would be able to rapidly re-activate IME1. Therefore, a gradual increase in 

IRT1 transcription over time may help to establish a stable repressive chromatin state that is 

less easily reversible than a bi-modal promoter that allows rapid switching between an active 

and inactive state.  

Altogether, these studies show how lncRNA mediated transcription regulation is 

achieved using different strategies and shows the power of single cell imaging to glean 

insights into the mechanisms of lncRNA mediated transcription regulation. Despite the 
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similarities in the epigenetic machinery that participate in the lncRNA mediated repression of 

target loci, such as the recruitment of histone modifying complexes, whether suppression 

occurs gradually or in a switch-like manner seems to depend on the function of the regulated 

gene.  Genes that regulate processes that determine cellular identity, such as sporulation-

inducing genes, which need to induce stable phenotypes, depend on gradual repression over 

time, which may induce the acquisition of a stable repressive chromatin state. This would 

prevent rapid re-activation of the gene, which might be lethal in the wrong environmental 

conditions. Conversely, genes that respond to fluctuations in environmental nutrient levels, 

such as PHO84, would favor a more flexible mechanism of regulation that allows rapid 

activation and inactivation.  

 

4.2.3 Antisense RNA regulates PHO84 activation by transcriptional read-through 

into the promoter  

An important question that emerged during our study is whether regulation of the 

PHO84 transcription-on switch is mediated by AS transcriptional read-through into the 

PHO84 promoter rather than accumulation of AS RNAs at the locus, as previously suggested. 

Our smFISH data showed no AS RNA accumulation at the locus, but we detected in increase 

in AS RNAs in the cytoplasm upon RRP6 deletion. Furthermore, RNA half-life measurements 

showed that the deletion in RRP6 did not alter the stability of the PHO84 AS RNA. This 

allowed us to postulate that Rrp6p may regulate the frequency at which the AS RNA is 

transcribed rather than its stability and suggested an additional role for RRP6 to its well 

characterized role in RNA processing and degradation. This hypothesis was supported by 

previous studies showing that Rrp6p interacts with the Nrd1-Nab3-Sen1 complex in the 

context of transcription termination and 3’processing of small ncRNAs such as sno/snRNAs 
38. 

  Our results also demonstrated that the previous model suggesting AS RNA 

accumulation at the PHO84 locus, caused by stabilization upon Rrp6p depletion, is an unlikely 

mechanism by which AS RNA expression regulates PHO84. Several lines of evidence support 

this argument. Firstly, we detect most AS RNAs in the cytoplasm in Δrrp6 cells. Although 

there is an increase from 12% of cells with nascent AS RNA in wild type to 20% in Δrrp6, 
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indicating an increase in transcription in Δrrp6, the relatively low fraction of cells with an AS 

RNA at the site of transcription suggests that AS RNA is not retained at the locus post-

transcriptionally. Furthermore, most nascent AS RNA signals detected in Δrrp6 correspond to 

a single AS transcript, similar to what is observed in wild type cells, arguing against an 

accumulation of AS RNAs over the PHO84 locus. In addition, to determine if the nuclear AS 

RNA signal persists once transcription is abolished, we performed a transcription inhibition 

experiment in which the temperature sensitive RNAPII mutant rpb1-1 was fixed at different 

time points after heat shock. We observed rapid disappearance of the nuclear AS RNA signal 

after transcription inhibition, comparable to what we observed for nascent transcripts of the 

protein coding MDN1 gene (see Figure 2-4). Therefore, similar to an mRNA, the PHO84 AS 

RNA is rapidly released from the locus post-transcription and exported to the cytoplasm. Our 

observations in the temperature sensitive mRNA polyA polymerase mutant pap1-1 and the 

Δxrn1 mutant further showed that the AS RNA requires polyadenylation to be competent for 

export, and that once it is exported to the cytoplasm, it is degraded by the 5'-3' mRNA 

exonuclease Xrn1p, which requires de-capping. Therefore, the AS RNA is capped and 

polyadenylated, recapitulating the bona fide features of an mRNA. Interestingly, a genome 

wide study investigating the turnover of AS lncRNAs in S.cerevisiae revealed that many are 

stabilized in a xrn1 deletion background, suggesting that AS lncRNAs are often metabolized 

like mRNAs despite the lack of conserved open reading frames (ORFs) 43. Since our data 

showed that PHO84 AS RNA is processed like an mRNA and therefore not retained at the 

locus, it seemed unlikely that degradation of full length AS RNAs by the nuclear exosome at 

their site of transcription would constitute a major part of the metabolic pathway of PHO84 

AS. Therefore, we then determined whether Rrp6p plays any role in PHO84 AS RNA 

stability.  

  To determine the relative contributions of Rrp6p and Xrn1p to AS RNA degradation, 

we measured the differences in AS RNA half-lives in these mutants compared to wild type by 

measuring residual RNA levels at different time points after inhibiting transcription with the 

metal-ion chelator 1,10-Phenanthroline. Interestingly, while the AS RNA half-life is increased 

to 27.3 min in Δxrn1, the half-lives in wild type and Δrrp6 had similar values of 11.4 min and 

12 min, respectively. Therefore, PHO84 AS RNA is primarily degraded in the cytoplasm by 
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Xrn1p, whereas Rrp6 plays no role in AS RNA turnover. This led us to hypothesize that Rrp6p 

may regulate the frequency of AS RNA transcription. It was already established that Rrp6 

interacts with the Nrd1-Nab3-Sen1 complex to terminate transcription of sn/snoRNAs 38. 

Also, PAR-CLiP analysis showed that the Nrd1-Nab3-Sen1 complex binds to AS transcripts 

throughout the yeast genome, including PHO84 AS RNA 152, and we identified Nrd1 and 

Nab3 binding motifs at the 3’end of PHO84. Altogether, these findings implied a general role 

for Nrd1-Nab3-Sen1 in transcription termination of AS RNAs.  

Investigating the role of the Nrd1 complex in PHO84 regulation, we revealed that 

depletion of Nrd1 under the glucose repressible GAL1 promoter led to an increase in AS RNA 

expression, which was further enhanced in Δrrp6. Mutagenesis of the Nrd1 and Nab3 motifs 

led to a more modest increase in AS RNA expression, possibly due to only partial removal of 

the Nrd1-Nab3-Sen1 recognition sites. Since Rrp6 interacts with Nrd1-Nab3-Sen1, we 

inferred that this interaction may stabilize the occupancy of the Nrd1-Nab3-Sen1 complex on 

the 3’end of PHO84, thereby increasing the efficiency of AS RNA transcription termination. 

Accordingly, ChIP analysis showed a significant decrease in Nrd1 binding on the 3’end of 

PHO84 upon Rrp6 deletion. Altogether, our results demonstrated that Rrp6p plays a role in 

regulating transcription elongation of AS RNA, possibly by facilitating the recruitment of 

Nrd1 to the 3’ end of PHO84.  

Intriguingly, following our work, a genome wide study showed using RNA seq and 

RNA pol II ChIP that Rrp6 deletion increases transcriptional read-through of RNAs that are 

targeted by Nrd1-Nab3-Sen1, showing a general role for Rrp6 in facilitating Nrd1-Nab3-Sen1 

mediated termination 153. Furthermore, a follow up study by Castelnuovo and colleagues 

demonstrated that the mechanism identified in our study is widespread in the yeast genome. 

Many PHO84-like, TATA box regulated genes express anti-sense RNAs from their 3’ UTRs 

and those AS RNAs undergo weak termination by Nrd1-Nab3-Sen1, due to a relatively low 

density of Nrd1 and Nab3 motifs at the 3’ ends 154. Regulating AS transcription by Nrd1-

Nab3-Sen1 might therefore be a widespread mechanism to allow cells to fine tune the 

expression of target genes in response to extracellular signals. Allowing transcription to 

initiate continuously from the accessible 3’UTR of the gene by selecting for weak 

transcription termination would permit AS transcription to read through the sense promoter at 
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a frequency high enough to keep the gene repressed unless the inducing signal reaches a 

critical threshold. Alternatively, Nrd1 termination at specific 3’UTRs might be actively 

regulated, for example by regulating the recruitment of Nrd1. Future studies will show 

whether such gene specific regulation of Nrd1 and/or Rrp6 activity exists.  

4.2.4 Role of Set1 in antisense RNA mediated gene repression 

In addition to the role for Rrp6p in the early termination of AS transcription, our work 

also identified the histone methyltransferase Set1p as a positive regulator of AS RNA 

transcription. It has long been established that Set1p deposits the H3K4me3 mark on 

transcriptionally active genes 155. H3K4me3 is localized to the 5’region of active genes where 

Set1p is recruited co-transcriptionally by  RNA pol II whose CTD is phosphorylated on Ser5, 

but not Ser2 156. Interestingly, H3K4me3 persists for a long period of time after the 

inactivation of transcription and dissociation of Set1, returning to near background levels after 

5 h, implying that this epigenetic mark retains a molecular memory of previous transcription 

events. It has also been shown that deposition of H3K4me3 by Set1p is required for efficient 

gene activation 157,158.  

Intriguingly, our data showed an increase in H3K4me3 at the 3’end of PHO84 in a 

Δrrp6 strain, suggesting that the increase in AS RNA expression upon Rrp6p deletion could be 

correlated with Set1p mediated deposition of H3K4me3 on the site of AS transcription 

initiation. Accordingly, we hypothesized that if Set1p promotes AS transcription by depositing 

the H3K4me3 mark on the 3’end of PHO84, it will produce an antagonistic effect on PHO84 

activation relative to Rrp6p, which facilitates PHO84 activation by preventing AS 

transcription elongation through the promoter. Our smFISH data in a Δset1 strain shows a 

modest 10% decrease in the fraction of cells expressing PHO84AS, and a decrease in AS 

RNAs per cell, and a 20% increase in the fraction of cells expressing PHO84. Conversely, 

deleting Rrp6 in a Δset1 background reverts AS expression levels to near wild type levels, and 

decreases the fraction of cells expressing PHO84. Therefore, Set1p may promote AS 

transcription, whereas Rrp6p acts downstream by regulating elongation via its interaction with 

Nrd1. Thus, Rrp6p and Set1p play opposing roles in modulating the frequency of PHO84 

activation. Interestingly, the Δset1 strain shows a modest increase in Nrd1 occupancy on the 
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3’end of PHO84, suggesting that Set1p may antagonize Rrp6p dependent Nrd1 recruitment. 

Since Set1p is known to interact with the CTD of RNAPII phosphorylated at Ser5, similar to 

Nrd1, it may competitively inhibit Nrd1 recruitment to the RNAPII CTD, thereby favoring AS 

transcription elongation. However, this mechanism does not exclude a direct role for Set1p in 

promoting AS transcription, mediated by the deposition of H3K4me3 on the 3’end of PHO84.   

Interestingly, following up on our study it was shown that Set1p is required for the 

transcription of AS RNAs, whereas expression of most protein-coding genes is unaffected 

upon Set1 deletion 154. Genes with high density of Nrd1-Nab3-Sen1 binding sites that 

efficiently induce Nrd1 mediated termination express AS RNAs with low transcriptional read-

through into gene promoters, which therefore do not induce strong repression.  These AS 

transcripts that are subject to efficient Nrd1 termination are more strongly dependent on Set1p 

for their production than AS RNAs that are weakly terminated by Nrd1, as the latter show a 

modest decrease in transcription upon Set1p deletion, corroborating with our results for 

PHO84 AS. Therefore, AS RNAs expressed from PHO84- like genes may be regulated 

primarily by Rrp6 during transcription elongation, whereas Set1p plays a minor role in 

modulating the frequency of AS initiation.  

Intriguingly, results from a previous study on the role of Set1p in gene repression 

corroborate with the findings by Castelnuovo and colleagues 159. Margaritis et al., show that 

Set1p is not required for the activation of most protein-coding genes, but a subset of genes is 

de-repressed upon Set1 deletion. These specific genes are repressed by Set1p through two 

distinct mechanisms of H3K4 methylation. Set1p deposits H3K4me3 at the 3’end of these 

genes to promote AS transcription, but also deposits H3K4me2 within the body of the genes, 

which is required for full repression. Interestingly, we showed by ChIP that there is an 

increase in H3K4me2 within the body of PHO84 in Δrrp6. Therefore, Set1p may act either 

upstream of Rrp6p to promote AS transcription through H3K4me3 or downstream by 

depositing H3K4me2 within the gene body in a transcription elongation dependent manner. 

Since there are many genes in S.Cerevisiae similar to PHO84 that are induced by metabolic 

stress, the mechanisms by which Rrp6p and Set1p regulate gene activation through the 

modulation of AS RNA transcription, as revealed by our study, may be broadly applicable 

across the yeast genome.   
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 Recent studies also showed that AS transcription is ubiquitous across the yeast 

genome, and that many AS RNAs are regulated by Rrp6p and require the histone modifiers 

Hda1 and Set1 to induce gene repression, similar to PHO84 154. Tiling array analysis of the AS 

transcriptome in S.Cerevisiae revealed that AS RNAs can be clustered into different classes 

based on their ability to repress sense gene expression upon accumulation in a Δrrp6 

background, and whether this repression is HDAC (Histone de-acetylase) or histone 

methyltransferase dependent 154. Genes that are suppressed by AS RNA accumulation upon 

depletion of Rrp6p fall into two categories, those that remain suppressed upon deletion of 

HDACs and the H3K4 methyltransferase Set1p, and those that are de-repressed. Therefore, the 

genes in the latter group require extensive histone modification coupled to AS expression to 

induce efficient repression. These genes are similar to PHO84, as they are regulated by TATA 

box promoters, which have a closed nucleosomal architecture in repressive conditions, and 

therefore require extensive chromatin remodeling to induce expression.  Their analysis showed 

extensive AS transcriptional read-through into TATA box regulated genes. Since this class of 

genes requires HDACs and the histone methyltransferase activity of Set1 for efficient 

repression, histone modification may consolidate a repressive chromatin structure that is 

initially induced by AS read-through into the TATA box promoter.   

 

4.2.5 The role of antisense transcription in nucleosome remodeling and regulation of 

transcriptional bursting  

 The nucleosome architecture of the PHO84 upstream activating sequence (UAS) 

provides hints on how continuous AS RNA transcription may inhibit the PHO84 promoter 

from bursting sporadically under repressive conditions, and yet allow the flexibility to respond 

rapidly during induction. The PHO84 UAS contains 4 binding sites for the transcription factor 

Pho4p, the two internal sites being high affinity binding sites, and the 2 peripheral binding 

sites having low affinity for Pho4p 160. The two peripheral Pho4 binding sites are occluded by 

nucleosomes in repressive conditions, but evicted by Pho4p and the SWI/SNF chromatin 

remodeling complex during inorganic phosphate starvation, allowing full activation of 

PHO84. It has been shown that the nucleosomes occluding the peripheral Pho4p binding sites 
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differ markedly in their requirements for active chromatin remodeling, due to intrinsic 

differences in the strength of nucleosome-DNA interactions 160. The downstream nucleosome 

closer to the TATA box element is less dependent on active remodeling by the SWI/SNF 

complex, as it is less stably positioned on the Pho4p activation site. Intriguingly, full 

activation of the PHO84 promoter requires eviction of the downstream nucleosome rather than 

the upstream one. Therefore, the kinetics of PHO84 transcription is controlled by the 

positioning of this nucleosome, which has an inherently unstable interaction with DNA. 

Therefore, PHO84 may be activated sporadically, which endows individual cells the plasticity 

to respond rapidly to changes in phosphate levels in the environment. Nevertheless, the 

sensitivity of the promoter may have to be regulated so that most cells in the population do not 

respond inappropriately in the absence of the inducing signal. Thus, low frequency but 

continuous AS transcription of may reduce the frequency of sporadic PHO84 activation by 

stabilizing the nucleosome architecture on the UAS and promoter. 

The repressive chromatin structure on the PHO84 UAS established as a result of AS 

transcription may be short-lived due to thermodynamically unstable nucleosome-DNA 

interactions. Therefore, the chromatin state and position might have to be re-established 

frequently by de-novo AS transcription (see below). Interestingly, PHO84 mRNA 

transcription is dominant over AS transcription. When cells are transferred to a phosphate 

depleted medium, the entire population expresses only PHO84 sense within 1-2 hours of 

induction (see Supplementary figure 6 in Chapter 2). Therefore, under inducing conditions, 

single cells rapidly switch to sense expression, as the promoter becomes remodeled and 

accessible to Pho4p binding and efficient re-initiation by RNAPII. Therefore, while the 

PHO84 promoter structure is flexible enough to respond rapidly to induction under phosphate-

rich repressive conditions, continuous AS transcriptional read-through appears to lower the 

probability of sporadic activation of PHO84. After the duration of the PHO84 burst, AS 

transcription may be re-initiated and RNA pol II elongation through the gene promoter may 

facilitate nucleosome re-assembly to reset the transcription-off switch. In Δrrp6 cells, Nrd1 

mediated early termination of AS RNA is compromised, which allows more frequent RNA pol 

II elongation events through the PHO84 UAS. If RNA pol II elongation is coupled to 

nucleosome positioning and HDAC recruitment, then the increase in AS transcription 
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frequency in Δrrp6 cells may stabilize the repressive chromatin structure on PHO84, thereby 

decreasing the frequency of activation of the transcription on-switch. 

Genes repressed by AS RNAs in an HDAC dependent manner, similar to PHO84, are 

enriched for TATA box promoters that are strongly occluded by nucleosomes. During 

activation, these genes are transcribed in bursts through the co-operative action of 

transcription factors and chromatin remodeling complexes which evict nucleosomes to 

activate the transcription on-switch. A potential role of low frequency AS transcription across 

the promoters of these genes may consist in re-positioning nucleosomes to prevent the binding 

of transcription factors and therefore increase the threshold of the transcription on-switch 154. 

Nucleosome re-assembly may be achieved by histone chaperones, proteins that bind histones 

and regulate nucleosome assembly, which interact with the RNA pol II CTD during 

elongation. Interestingly, it was shown that the histone chaperone Spt6, involved in the 

maintenance of chromatin structure, is recruited to elongating RNA pol II in an HDAC 

dependent manner 161. In addition to promoting the recruitment of histone chaperones to 

facilitate nucleosome re-positioning during AS transcription across the promoter, HDACs may 

also act downstream to consolidate the repressive chromatin structure 154. Therefore, one of 

the roles of AS transcription may be to fine tune the transcription on-switch of strongly 

bursting TATA box genes by modulating nucleosome assembly on the promoter. 

It is not known what factors are required to recruit RNA polymerase to the 3’ UTR of 

PHO84 to initiate AS RNA transcription in phosphate rich conditions. Transcription of the 

GAL10 AS RNA had previously been shown to be regulated by the transcription factor Reb1 
80. The PHO84 3’UTR contains a binding site for Reb1, however deleting the Reb1 motif does 

not affect PHO84AS transcription, and multiple cryptic elements within the accessible 3’UTR 

were shown to promote AS transcription 81. Therefore, whether RNAPII can initiate 

transcription from the 3’end of PHO84 without a specific activator, possibly due to a exposed 

cryptic TATA box, or whether a specific TF is required for PHO84 AS transcription remains 

to be determined.  
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4.2.6 How frequently do antisense RNAs need to be transcribed to modulate gene 

activation in response to extracellular signals?  

 We showed that PHO84 AS RNA is expressed constitutively at low levels. Combining 

AS RNA half-life measurements with quantification of the average steady state number of AS 

RNAs per cell by smFISH showed that wild type cells transcribe 1.31 PHO84 AS RNAs/hour. 

Δrrp6 cells show a two-fold increase in transcription frequency (see Supplementary table 1 

in Chapter 2). This suggests that a two-fold increase in AS transcription frequency is 

sufficient to raise the threshold of PHO84 activation by about two-fold as measured by the 

two-fold decrease in the percentage of cells that express PHO84 mRNA in Δrrp6 (see Figure 

4-1). Interestingly, the GAL10AS RNA was estimated to be transcribed at a frequency of 1 

RNA/50 min, similar to PHO84AS in wild type 80.  Therefore, GAL10AS and PHO84AS, 

which both regulate their target genes via similar HDAC dependent epigenetic mechanisms, 

also have similar rates of synthesis. This low frequency continuous transcription may be 

sufficient to induce a repressive chromatin structure that is flexible, but stable enough so that it 

does not require a high rate of AS RNA synthesis to be maintained.  

Recent studies investigating the regulation of the GAL1-GAL10 promoter showed that 

transcription of GAL10 AS RNA prevents leaky activation in repressive conditions 162. They 

used a dual PP7/MS2 labeling approach to simultaneously visualize transcription of GAL10AS 

and GAL10 mRNA, respectively. A nuclease deficient version of the Cas9 protein, dCas9, 

was recruited specifically to the strand expressing GAL10AS to induce a CRISPR mediated 

block in AS RNA transcription. The CRISPR block of GAL10AS increased the sensitivity of 

the GAL10 promoter, whereby it was activated more frequently in glucose-rich repressive 

conditions. The increase in transcriptional leakage from the GAL1-GAL10 shared promoter 

resulted in a fitness defect, as cells were utilizing galactose, a less efficient source of carbon 

than glucose, even when glucose was abundant. Interestingly, the CRISPR block of GAL10AS 

in inducing conditions showed no effect on bursting frequency of GAL10. In galactose-rich 

inducing conditions, the GAL1-GAL10 shared promoter may be continually accessible and 

dominant over GAL10AS transcription. Therefore GAL10AS transcription is merely spurious 

instead of functional in inducing conditions. These findings corroborate well with the results 
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from our PHO84 study. During induction upon phosphate starvation, we detect a synchronous 

response in the cell population, since all cells switch to PHO84 mRNA expression. In this 

context, PHO84 AS RNA may be inconsequential, as the nuclear concentration of the 

transcription factor Pho4p may be sufficiently high to overcome the nucleosome barrier on the 

PHO84 UAS. In addition, RNA pol II elongation on the sense strand may recruit histone 

chaperones to re-assemble nucleosomes on the 3’UTR, thereby repressing AS RNA 

transcription.  

Interestingly, although the kinase Pho85p phosphorylates Pho4p to prevent nuclear 

import in phosphate rich media, partially phosphorylated Pho4p can localize in the nucleus 

under intermediate phosphate conditions and activate a subset of target genes 18. Under these 

conditions, Pho4p binds differentially to phosphate-responsive promoters. Intriguingly, 

partially phosphorylated Pho4p binds efficiently to the PHO84 promoter to activate its 

transcription, while it does not efficiently bind to or activate PHO5. This difference in 

promoter sensitivity can be attributed to the fact that the PHO5 promoter exposes low affinity 

Pho4p binding sites in the repressed state, whereas the PHO84 promoter exposes high affinity 

binding sites 163. Therefore, although the nuclear concentration of Pho4p under intermediate 

phosphate conditions is lower than during phosphate starvation, Pho4p binds more strongly to 

the PHO84 promoter than on PHO5. Since PHO84 encodes a high affinity phosphate 

transporter that is localized in the cytoplasmic membrane, it plays an early role during the 

phosphate starvation response by importing phosphate into the cell when environmental 

phosphate levels decrease. Therefore, there may have been selective pressure on PHO84 to 

maintain high affinity transcription factor binding sites, resulting in a highly sensitive 

promoter that is rapidly inducible. Nonetheless, since the nuclear concentration of Pho4p in 

non-inducing conditions is lower than during phosphate starvation, Pho4p may be less 

efficient in circumventing the activation threshold that is established by continuous AS 

transcription across the PHO84 UAS, resulting in complete repression of the PHO84 promoter 

in the majority of cells.  

The live cell study of GAL10 regulation by GAL10AS using the PP7/MS2 dual labeling 

approach showed that GAL10AS is present at the transcription site for only 90s. Given a 

RNAPII elongation rate of 2kb/min, it would take 50-100s to transcribe GAL10AS 164. 
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Therefore, GAL10AS is only detectable at the transcription site during synthesis, implying that 

GAL10AS acts by transcription, not through the post-transcriptional accumulation of RNAs at 

the locus. These findings corroborate with the results from our PHO84 study, whereby 

inhibition of RNA pol II revealed that the detection of nuclear PHO84AS requires continuous 

transcription. Therefore, continuous low-frequency transcription of AS lncRNA may be a 

common regulatory mechanism in yeast to fine tune stress-inducible genes to respond 

appropriately to environmental signals. Future live cell imaging studies on other PHO84-like 

genes, combined with biochemical experiments to investigate changes in nucleosome 

architecture, will reveal further mechanistic insights on AS lncRNA mediated regulation of 

transcription.  

4.3 Article 2: Single-cell profiling reveals that eRNA accumulation at 
enhancer-promoter loops is not required to sustain transcription 

4.3.1 Objectives and summary of results 

 While completing the study on AS RNA mediated gene regulation in yeast, I became 

intrigued by the emerging field of ncRNAs in higher eukaryotes, where the noncoding genome 

vastly eclipses the exome in size. Similar to yeast, many different classes of ncRNAs had been 

identified through next generation sequencing approaches, but the role of most of these 

ncRNAs remains to be elucidated. In particular, I became interested in a specific class of 

recently discovered ncRNAs expressed from enhancer elements named enhancer RNAs 

(eRNAs). eRNAs are transcribed bi-directionally from enhancers, the distal transcription 

regulatory elements required for metazoan development and most cell-type specific 

transcription in higher eukaryotes, but that are absent in single celled eukaryotes. Studies in 

different cell types suggested eRNAs to be implicated in gene activation, but no concerted 

model for eRNA function seemed to emerge. Rather, different mechanistic models were 

suggested, including roles in chromatin accessibility, enhancer-promoter looping, and the 

RNA pol II transcription cycle, and these models were met with skepticism by some scientists 

in the field who held that eRNAs might simply be a byproduct of TF binding to enhancers and 

serve no active role in gene regulation 88,135,165. My goal was to apply and expand the single 

cell and single molecule approaches I had established during my studies in yeast, to test 
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different models of how eRNAs participate in transcription regulation, with the goal to reveal 

general principles of eRNA function. 

At the time I became interested in eRNAs in early 2013, studies investigating eRNAs 

mostly applied ensemble measurements from cell populations and therefore were unable to 

monitor transcriptional activity in a single cell context, nor on individual alleles, leaving 

fundamental questions of eRNA function unanswered, that we were eager to address. Notably, 

although GRO-seq analysis shows a genome wide correlation in the upregulation of eRNA 

and mRNA transcription, this does not necessarily imply that eRNA transcription is tightly 

coordinated with every cycle of transcription initiation from the target promoter. Furthermore, 

chromatin conformation capture assays that implicate a role for eRNAs in chromatin looping 

describe a statistical mean of different possible conformations, obscuring the dynamic 

behavior of individual chromatin fibers. This suggests that enhancers which transcribe eRNAs 

may not necessarily trigger looping in a deterministic fashion. Therefore, our primary 

objectives were to determine if eRNA and mRNA transcription is tightly coordinated in 

response to external stimuli in the context of single cells and single alleles, and if eRNAs 

induce and possibly stabilize enhancer-promoter loops. To achieve this, we applied the single 

molecule imaging tools established during the PHO84 project, expanded them to use sub-

diffraction resolution distance measurements to allow visualizing and quantify transcriptional 

activity at a single locus, as well as to measure the proximity of transcribing enhancers and 

their target promoters at high spatial resolution. 

In light of the objectives outlined above, we choose the estrogen induced transcription 

response as a model system. eRNAs were previously shown to be induced by estrogen (E2) at 

ERα bound enhancers in the MCF7 breast cancer cell line, which presented itself as an ideal 

experimental system due to its rapidly inducible, strong transcriptional response in the 

presence of E2 88,133 87. Furthermore, results from a study by Li and colleagues suggested a 

putative role for some eRNAs in recruiting cohesin to maintain enhancer-promoter looping 

interactions 88. Moreover, in vitro assays tethering eRNAs to a luciferase reporter plasmid 

resulted in enhanced luciferase expression, suggesting that eRNA molecules are able to 

activate transcription in a manner that is independent of their synthesis. Among the eRNAs 

whose expression most strongly correlated with target mRNA expression were eRNAs 
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transcribed from the enhancers of the FOXC1 and P2RY2 genes. Furthermore, these eRNAs 

were previously investigated for their roles in transcriptional activation and/or enhancer-

promoter looping 88,133. Therefore, FOXC1 and P2RY2 served as our model genes for our 

single molecule study.  

Using single cell and single molecule assays, we were able to reveal important aspects 

of eRNA expression and function. We found that during a time course of E2 induction, 

enhancers and promoters activate transcription with similar kinetics in single cells, as 

observed by the correlated increase in nascent eRNA signals and numbers of active 

transcription sites for the target loci FOXC1 and P2RY2. However, while the target gene 

shows a pattern of expression upon induction that is indicative of transcriptional bursting, as 

shown by the large variability in the number of nascent transcripts per active site, we do not 

detect an accumulation of eRNAs at enhancers, implying that eRNA transcription is initiated 

at a lower frequency. Moreover, most active transcription sites for both FOXC1 and P2RY2 

(approximately 75%) do not co-express eRNAs, implying that while eRNAs may be 

implicated in promoter activation, they are not required for every cycle of RNA pol II 

transcription initiation once the promoter is active. Interestingly, we also showed through sub-

diffraction-limit measurements of distances between nascent eRNAs and mRNA transcription 

sites, that co-expressed eRNAs are rarely found within a distance that is compatible with 

enhancer-promoter looping interactions, as previously predicted from polymer modeling. 

Therefore, while eRNAs may initiate the looping process, once an enhancer-promoter loop is 

established, eRNA synthesis may be mostly repressed and not required to sustain transcription 

from the target promoter. Furthermore, we show that depleting the estrogen receptor ERα and 

the histone methyltransferase MLL1, which is known to poise enhancers for subsequent 

activation, abrogates E2 dependent induction of eRNA transcription, with negligible effects on 

basal eRNA transcription. Therefore, eRNA transcription may play a very early role in the 

gene activation pathway by pre-programming the enhancer for activity.  
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4.3.2 The kinetics of transcriptional activation from enhancers and promoters in single 

cells during E2 induction 

 Our investigation of the role of E2 induced eRNAs in transcription regulation is, to our 

knowledge, the first to investigate eRNA-mRNA co-expression patterns at the single cell level 

and at a single molecule resolution. It was previously shown that E2 induction produces a 

transient transcriptional response that peaks at 40 min 87. Our E2 time course shows basal 

transcriptional activity on the candidate loci FOXC1 and P2RY2 and their respective enhancers 

prior to E2 treatment. Prior to E2 treatment, mRNA transcription sites are rare, of low 

intensity and show little variability in transcriptional output. eRNAs are far less abundant, 

most cells showing only a single nuclear eRNA FISH signal. Since eRNAs are thought to act 

in cis and have short half-lives, most eRNAs detected are therefore likely nascent transcripts 
124,135. eRNA transcription is considered to be the most robust predictor of enhancer activity 
125. Therefore, detecting a single eRNA spot in most cells, may suggest that a small fraction of 

alleles harboring the enhancer locus is in an active state prior to E2 stimulation. Upon 40 min 

E2 induction, there is a 3-fold increase in the number of cells with more than 1 eRNA, 

consistent with transcriptional activation of multiple enhancer loci. The number of eRNAs 

detected per nucleus (3-6) is consistent with the haplotype of MCF7 cells, which are triploid, 

and therefore have 3-6 alleles, depending on the cell cycle stage. Concurrently, we detect an 

increase in the number of active mRNA transcription sites, indicative of promoter activation 

from multiple alleles. The mRNA transcription foci increase in size, corresponding to the 

accumulation of multiple nascent transcripts, and show large variability in transcriptional 

output, consistent with transcriptional bursting 26,166. Interestingly, even though there is an 

increase in the number of eRNAs per cell during peak induction, the eRNA spot intensities 

remain the same as seen in untreated MCF7 cells, and show little variability across the 

population. This suggests that relative to the frequency of mRNA transcription initiation from 

the target promoter, eRNA transcription does not initiate in a bursting mode, and that there is 

no local accumulation of multiple eRNA transcripts at enhancers.    

It is well established that enhancers and promoters share common architectural 

features, such as core transcription factor binding motifs and well positioned nucleosomes 
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flanking bi-directional initiation sites. Therefore, transcription activation from an enhancer 

may be mechanistically analogous to promoter activation. Thus, the frequency of ERα 

mediated enhancer and promoter activation may be very similar, leading to the correlated 

increase in the number of transcriptionally active enhancers and promoters. However, once 

transcription is activated, the frequency of individual cycles of RNA pol II initiation and 

elongation may differ between an enhancer and promoter. Protein-coding sequences are 

enriched in U1 snRNP 5’ splice sites that promote efficient RNA pol II elongation. Therefore, 

if transcription is re-initiated frequently during a burst, we expect a broad range of fluorescent 

signal intensities at the transcription foci corresponding to nascent mRNAs of different 

lengths. Conversely, eRNA sequences are not enriched in U1 snRNP 5’splice sites, but often 

contain early polyA signals that prevent productive elongation. Furthermore, if inefficient 

elongation of eRNAs is coupled with a low frequency of re-initiation, it would be unlikely to 

detect multiple elongating polymerases on the enhancer from temporally clustered cycles of 

transcription. This might explain why fluorescent signal intensities of eRNAs do not vary 

between active alleles, even during induction.  

Many of the eRNAs detected during peak induction may correspond to processed 

RNAs, that are retained for a short time on chromatin after transcription termination. eRNAs 

were shown to be terminated by the RNA pol II associated Integrator complex to produce 

chromatin associated processed transcripts 140.Processing of eRNAs by the Integrator complex 

was  correlated with increased transcription on the target locus. Furthermore, several studies 

show that eRNAs have a defined length, indicative of uniform 3’ends 134,147,167. Taken together 

with the observation that we detect eRNA signals with uniform intensities, this may imply that 

eRNA function in stimulating mRNA transcription does not require frequent transcription of 

eRNAs or the accumulation of multiple nascent eRNA transcripts, but rather retention of 

uniformly sized single eRNAs on chromatin. 

4.3.3 The roles of eRNA transcription in regulating chromatin accessibility  

 Our observation of basal eRNA transcription from a fraction of alleles in the absence 

of E2 led us to investigate the factors that maintain enhancer transcription prior to signal-

dependent activation. Initially, we examined whether basal transcription of an enhancer prior 
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to E2 signaling occurs independently of ERα, or if it is mediated by ERα that retains the 

capacity to bind to its target enhancer in the absence of E2. To distinguish between these two 

possibilities, we treated cells with the anti-estrogen Tamoxifen, which prevents E2 binding 

and recruits transcriptional co-repressors without affecting ERα binding to the ERE. 

Alternatively, we treated cells with ICI 182,170, an anti-estrogen that prevents dimerization of 

the ERα homodimer, reducing its affinity for the ERE, and inducing ERα degradation upon 

prolonged treatment 168.  As expected, cells pre-treated with Tamoxifen or ICI 182,170 before 

E2 induction do not show a change in expression upon stimulation, as measured from the 

number of nascent transcripts per active mRNA transcription site, as inhibition of 

ERα diminishes RNAPII recruitment on promoters 85. However, the frequency of eRNA 

expression in cells pre-treated with ICI 182,170 does not decrease in either the percentage of 

cells expressing eRNAs or number of eRNAs detected per cell prior to E2 induction, even 

though induced eRNA transcription in response to E2 is significantly reduced. This was 

observed after a prolonged 3 hour treatment with ICI 182,170 prior to E2 induction, which 

leads to complete ERα degradation. This observation led us to postulate that other factors 

recruited to enhancers prior to ERα are required to activate basal eRNA transcription.  

It is well established that ERα recruitment requires the pioneer chromatin remodeling 

factor FOXA1 86. It has also been shown that FOXA1 binds specifically to H3K4me1 

modified enhancer chromatin throughout the genome 95. Studies on the model E2 induced 

gene TFF1 in MCF7 cells have previously shown that the histone methyltransferase MLL1 

deposits the H3K4me1 mark on the TFF1 enhancer, which is subsequently required to recruit 

FOXA1 and ERα to activate gene transcription 96,97. Since H3K4me1 is a signature of an 

active enhancer, we speculated that MLL1 may deposit the active H3K4me1 on our candidate 

E2 responsive enhancers to activate basal eRNA transcription. However, our MLL1 

knockdown experiments show similar results as the ERα depletion experiments. Basal eRNA 

transcription does not decrease upon depletion of MLL1, even though we detect a two-fold 

decrease in H3K4me1 enrichment and ten-fold decrease in ERα recruitment on the P2RY2 

enhancer. MLL1 depletion inhibits eRNA induction, as well as promoter activation, as we 

detect fewer active P2RY2 transcription sites in cells depleted of MLL1. Therefore, H3K4me1 
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deposition by MLL1 may condition the enhancer to respond to estrogen and activate 

transcription, but is not required for basal eRNA transcription. 

H3K4me1 is often present on enhancers prior to nucleosome depletion, H3K27 

acetylation, and enhancer activation 169. Developmental enhancers that are pre-marked by 

H3K4me1 and H3K27me3 are considered to be poised, but inactive 170. Conversely, enhancers 

that are enriched in H3K4me1 and H3K27ac are active, and show preferential association with 

RNA pol II relative to poised enhancers. Therefore, while MLL1 is not required for basal 

transcriptional activity on the enhancer, it may facilitate induced eRNA transcription by 

poising the enhancer through H3K4 monomethylation. FOXA1 may then recognize the 

H3K4me1 mark and recruit ERα, which activates eRNA transcription. Subsequently, induced 

eRNA transcription can facilitate the transition of the enhancer from a poised to an active state 

(see Figure 4-2). 

Interestingly, recent studies have assigned eRNAs a role in modulating chromatin 

accessibility by affecting histone acetylation levels on both enhancers and promoters 147,171. A 

study by Pnueli and colleagues showed that eRNA knockdown inhibits the interaction of the 

Cga gene, which encodes the α-subunit of the hormone gonadotropin, with its regulatory 

enhancer and decreases H3K27ac levels on both the enhancer and promoter, leading to 

decreased mRNA expression. Interestingly, the H3K7ac mark on the enhancer is replaced by 

the repressive H3K27me3 mark upon eRNA knockdown. Therefore, the eRNA molecule itself 

can induce H3K27ac on the enhancer to maintain enhancer accessibility and function.  

Furthermore, a very recent study by Bose and colleagues that was published after our 

paper revealed that the histone acetyltransferase CBP interacts with eRNAs in a non-sequence 

specific manner. Using PAR-CLiP and ChIP-seq analysis they showed that CBP binds to 

eRNAs transcribed from enhancers to which CBP is recruited. Furthermore, the interaction of 

eRNAs with a specific regulatory region within the histone acetyltransferase (HAT) domain of 

CBP was shown to enhance histone acetylation in vitro, and knockdown of eRNAs leads to 

reduced H3K27ac on the respective enhancer and target promoter, resulting in decreased 

mRNA transcription. Interestingly, CBP recruitment is not affected by eRNA knockdown. 

Therefore, while the eRNA molecule itself may not be implicated in CBP recruitment, the 
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process of transcription on the enhancer may maintain an accessible region to help recruit 

CBP, which then binds to the nascent eRNA transcript to stimulate histone acetylation at the 

enhancer. As CBP also interacts with RNA pol II, deposition of H3K27ac can also be 

mediated by the process of transcription on the enhancer, whereby CBP would translocate 

with the elongating polymerase to extend H3K27ac across the enhancer.   

Intriguingly, it was shown that in addition to inhibiting enhancer-promoter looping, 

knockdown of eRNAs diminishes the recruitment of RNA pol II and the histone 

acetyltransferase p300 on the enhancer and promoter of the antisense lncRNA that represses 

the DHRS4 gene cluster 172. Therefore, when the enhancer and promoter are brought into 

proximity during eRNA transcription, the eRNA may serve as a molecular bridge that delivers 

histone acetyltransferases, such as p300 or CBP, from the enhancer to the promoter, thereby 

specifically increasing chromatin accessibility at the target locus, which increases the 

efficiency of RNA pol II recruitment. However, basal eRNA transcription may initiate at a 

frequency that is too low to stimulate histone acetylation and de novo recruitment of RNA 

polymerases on the promoter. Our IF and smFISH data show that cells in which MLL1 has 

been depleted harbor weaker transcription foci for P2RY2, suggesting that MLL1 can 

indirectly affect the RNA pol II density on the target promoter by modulating the rate of 

eRNA synthesis. The role of MLL1 may consist in priming the enhancer to respond to signal 

dependent transcription factors to increase the frequency of eRNA transcription initiation. 

When eRNAs are synthesized at a higher frequency, they may enhance the histone acetylase 

activity of CBP, as the increased local concentration of eRNAs on chromatin may increase 

their affinity towards CBP. In addition, if the enhancer and promoter are rendered more 

accessible by histone acetylation, this may also facilitate recruitment of cohesin and mediator 

to stabilize enhancer-promoter looping interactions.  

The observation that basal eRNA transcription is ongoing upon depletion of MLL1 

suggests that there is some degree of chromatin accessibility on the enhancer prior to the 

downstream recruitment of chromatin remodelers. It was shown that MLL1 binds to an 

accessible CpG element within the TFF1 enhancer  97. The binding of MLL1 requires de-

methylation of the CpG element. MLL1 was also shown to be recruited to CpG rich regions by 

the CpG binding protein 98. Interestingly, CpG elements that are minimally accessible are also 
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present in Glucocorticoid receptor target enhancers, which are active in a tissue specific 

manner 99. It was shown that the accessibility of CpG sequences on these enhancers relies on 

prior CpG demethylation, which may commission the enhancers for activation. It will be 

interesting for future investigation to determine if basal eRNA transcription maintains open 

chromatin on enhancers by regulating DNA methylation on CpG elements. This may be a 

plausible mechanism by which eRNAs increase enhancer sensitivity to signaling pathways. It 

was shown that the antisense lncRNA TARID induces DNA demethylation on a CpG element 

in the promoter of TCF21, thereby activating the gene 173 . If CpG elements are a common 

feature in enhancers, as they are in promoters, then eRNAs can potentially induce DNA de-

methylation on CpG sequences to make them more accessible to histone methyltransferases 

like MLL1, which can then initiate the cascade of events that are required for gene induction.   

Although our data show that H3K4me1 deposition on enhancers by MLL1 can 

facilitate eRNA induction in response to E2, it has also been demonstrated that eRNA 

transcription may be implicated in recruiting MLL1 and depositing H3K4me1/2 on enhancers 
91. The study by Kaikkonen and colleagues showed that the spread of H3K4me1/2 from the 

core enhancer overlaps with the spread of the eRNA GRO-seq signal, and that deposition of 

H3K4me1/2 depends on MLL1-4. They also show that inhibition of transcription, but not 

knockdown of the eRNAs, reduces H3K4me2 levels on enhancers. Therefore, deposition of 

active histone methylation marks by MLL1 is most likely mediated by enhancer transcription, 

rather than the eRNA molecule itself. This corroborates with another study which showed that 

MLL1 can interact with RNAPII on a subset of transcribed regions within the genome 126. 

Therefore, the process of transcription on the enhancer could recruit MLL1, which then 

translocates with the elongating RNA pol II to deposit the H3K4me1/2 mark across the 

enhancer. This, in turn, increases chromatin accessibility at enhancers by recruiting FOXA1 

and ERα, which increases the frequency of eRNA transcription initiation.  

Interestingly, deposition of H3K4me1 by MLL1 was shown to stabilize the binding of 

the histone acetyltransferase TIP60, showing a tight functional link between histone 

methylation and histone acetylation 174. A study by Jeong and colleagues also showed that 

MLL1 recruitment is enhanced by the SWI/SNF chromatin remodeling complex, which itself 
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is recruited by ERα. It was also shown in a recent study that the ERα co-factor FOXA1 

recruits the histone methyltransferase MLL3 to direct H3K4 mono-methylation 175.  

Furthermore, the study by Kaikkonen and colleagues proposes a model whereby eRNA 

transcription and MLL1 recruitment occur downstream of transcription factor binding and 

histone acetylation. Altogether, these findings demonstrate that there is no consistent linear 

sequence of events that defines the process of enhancer activation. Therefore, enhancer 

activation may rather be the cumulative effect of a network of interactions between 

transcription factors, histone modifiers, and eRNAs, which can associate with each other at 

different time points to stimulate a feed forward cycle. 

4.3.4 Transcription initiation from the target promoter does not require eRNA co-

expression 

Observing a concurrent increase in the number of eRNAs and the number of mRNA 

transcription sites in single cells upon E2 induction prompted us to investigate how frequently 

a transcriptionally active allele would co-express eRNAs from its respective enhancer, i.e. to 

determine the degree of spatio-temporal co-ordination of eRNA and mRNA transcription 

across all active alleles. To calculate the frequency of eRNA-mRNA co-expression it was 

essential to assign a nascent eRNA to its target locus by considering the physical distance 

between enhancer and promoter. Recent studies have revealed that enhancers and their target 

promoters are compartmentalized within higher-order chromatin structures referred to as 

topologically associated domains (TADs) 105. Furthermore, simulation of  intra-TAD 

chromatin fiber conformations using the principles of polymer physics predicts that chromatin 

fibers will not form static loops, but may adopt many different conformations, resulting in a 

broad range of distances between regulatory elements and promoters, which was validated by 

DNA FISH  111. Accordingly, we devised a program that assigns a nascent eRNA to its target 

promoter by searching for the most proximal eRNA within a specific radius from the center of 

an mRNA transcription site. Such a search should accommodate all possible chromatin fiber 

conformations, including direct enhancer-promoter looping interactions (10-100 nm), as well 

as non-closed loop configurations. We assigned a radius of 400 nm from a transcription site as 

our threshold for classifying eRNAs as co-expressed, which is a close approximation to the 
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upper limit of enhancer-promoter distances as determined from previous DNA FISH 

measurements 111,112.  

Using these tools, we determined the frequency of eRNA-mRNA co-expression during 

the time course of E2 treatment. Surprisingly, our data revealed that during peak induction at 

40 min E2 treatment, 75% of FOXC1 transcription sites do not co-express an eRNA. The 25% 

of transcription sites that co-express eRNA mostly show co-expression of either sense or AS 

eRNA, but only rarely both, indicating that eRNA transcription does not initiate in both 

orientations simultaneously. It has been proposed that nucleosome depleted core enhancer 

elements may be too small to accommodate two pre-initiation complexes simultaneously 45. 

Therefore, at any given time, a single PIC may initiate transcription randomly in one direction 

or the other.  Our analysis of eRNA-mRNA co-expression for P2RY2 showed similar patterns 

as FOXC1, whereby at least 75% of P2RY2 transcription sites during peak induction show no 

co-expression of eRNAs. Although we showed a statistically significant increase in co-

expression during 40 min E2 treatment relative no E2 treatment, it is evident that the 

overwhelming majority of active alleles do not require continued eRNA synthesis and/or 

eRNA accumulation on enhancers to sustain transcription.  

We further showed that eRNA co-expression has a negligible effect on RNAPII 

density at transcriptionally active alleles. For P2RY2, there was no statistical difference in the 

number of nascent transcripts per active transcription site among the alleles that co-express 

eRNA compared to those that do not. Although we detected a small, statistically significant, 

difference in the number of nascent transcripts per FOXC1 transcription site at active alleles 

co-expressing eRNA during peak induction, many alleles for both FOXC1 and P2RY2 do not 

co-express eRNA but show a high RNAPII density. Therefore, our findings do not corroborate 

strongly with models that implicate eRNAs in the RNA pol II transcription cycle where every 

instance of RNA pol II pause release on the target locus requires an eRNA. A study by Zhao 

and colleagues on a specific class of androgen receptor (AR) induced eRNAs showed that 

these eRNAs recruit and activate the positive transcription elongation factor pTEFb to 

phosphorylate Ser2 on the RNA pol II CTD, thereby promoting productive elongation on the 

target gene. These eRNAs contain an HIV-1 TAR RNA like motif that forms a hairpin loop, 

which is requires for pTEFb activation. In this scenario, in which eRNAs possess structural 
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features that may be required to bind to pTEFb and stimulate its catalytic activity during every 

cycle of RNA pol II pause release, we would expect to observe an accumulation of eRNAs at 

mRNA transcription foci in much higher numbers. As stated previously, we never observe 

eRNAs accumulating at enhancers, irrespective of the transcriptional output from target 

promoters, which suggests that every cycle of RNA pol II release on the target locus is 

unlikely to be coupled with eRNA synthesis. Moreover, we do not detect the hairpin forming 

sequence that was identified for some AR induced eRNAs in the ΕRα induced eRNAs 

analyzed in our study, suggesting mechanistic differences between distinct classes of eRNAs. 

Furthermore, whether structural features such as hairpin loops are unique to certain kinds of 

eRNAs or universal is not yet known, and needs further investigation.  

Another study by Schaukowitch and colleagues showed that eRNAs can bind to the 

negative elongation factor NELF to act as a decoy to prevent NELF association with RNA pol 

II 135. Their model suggests that eRNAs accumulate to release NELF, thereby promoting RNA 

pol II elongation on the target gene.  They also show that eRNAs have short have-lives and are 

downregulated prior to mRNA induction.  Their results corroborate with GRO-seq analyses in 

many cell types which show that eRNA transcription represents an immediate early response 

that precedes successive waves of transcriptional activation from genes 137. Our results also 

suggest that eRNA transcription may represent an immediate early response that subsides once 

transcription is induced from the target locus, as not only do we detect a low fraction of 

mRNA transcription sites that co-express eRNAs, but a similarly low fraction of eRNAs that 

are associated with transcriptionally active alleles. The non-mRNA co-expressing eRNAs may 

represent early activated enhancers that have yet to induce transcription from their target loci. 

However, as we do not detect accumulation of eRNAs, the model which suggests that eRNAs 

accumulate locally to release NELF is unlikely to explain our results, unless the accumulation 

is very transient and is followed by rapid destablization of eRNAs. The E2 induced eRNAs 

investigated in our study may act transiently during their synthesis to activate the target 

promoter, which can then initiate multiple cycles of transcription in the absence of continued 

eRNA synthesis. 
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4.3.5  The role of eRNAs in regulating transcriptional bursting frequency  

Our data showed an increase in variability in the transcriptional response of individual 

alleles upon E2 induction, indicative of gene bursting as described previously 26,166. Recently, 

there has been considerable interest in characterizing the specific tunable properties of 

bursting that are regulated by enhancers, including two single cell studies that investigated the 

specific parameters of bursting fine-tuned by enhancer-promoter interactions. 113,114. A study 

by Fukaya and colleagues linked PP7 and MS2 live cell RNA imaging reporters to 

developmental enhancers to track the trajectory of transcriptional activation in single cells in 

developing Drosophila embryos 113. They showed that different developmental enhancers 

change the bursting frequency of the reporter, but do not change the burst amplitude or burst 

duration during an individual burst. Similarly, a study by Bartman and colleagues showed 

using smFISH that forced enhancer-promoter looping through a Zinc finger protein based 

tethering system does not influence burst size, i.e, number of nascent transcripts per active 

allele, but increases the burst fraction, i.e. number of transcriptionally active alleles 114. Burst 

fraction is an approximate measure of the frequency at which a promoter is activated. Our 

study corroborates well with these recent findings. We show that the increase in the number of 

transcriptionally active enhancers is correlated with the increase in number of mRNA 

transcription sites during the time course of E2 treatment, but that the RNAPII density on 

individual alleles is not strongly correlated with continued eRNA synthesis or accumulation of 

eRNAs on enhancers. Therefore, while eRNAs may activate the enhancer to stimulate a 

transcriptional burst from the target locus, they might play a less important role in fine tuning 

burst amplitude or duration.  

Our data also show that gene transcription is not completely off in the uninduced state, 

as we detect weakly transcribing alleles in the absence of E2. Therefore, bursting in this 

context does not necessarily correspond to a binary switch from an OFF state to an ON state, 

but may represent a modulation of the rate of transcription initiation. Intriguingly, a recent live 

cell study demonstrates that transcriptional bursting does not necessarily imply a 2 state model 

of stochastic gene activation and inactivation in which the gene infrequently switches on from 

a completely repressed state, but may fit a continuum model, in which the promoter shows a 

spectrum of different levels of transcriptional activity 176. The 2-state model presupposes that 
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the gene is either OFF, when the probability of transcription initiation is zero, or that the gene 

is ON, when transcription initiates at a constant frequency. Addressing the limitations of 

previous smFISH studies in their ability to elucidate the full dynamic range of transcriptional 

activity, Corrigan and colleagues found that their simulations of gene bursting fit a continuum 

model, whereby fluctuations in transcription initiation rate over short timescales can produce a 

spectrum of transcription states interspersed with periods of inactivity. Therefore, an active 

enhancer may enable its target promoter to access high amplitude transcription states by 

modulating changes in the rate of transcription initiation rather than activating a promoter 

from a completely repressed state. As discussed previously, eRNA transcription may convert 

an enhancer from a poised state to an active state through histone acetylation. It was also 

shown that histone acetylation on the enhancer induces histone acetylation on the target 

promoter. Therefore, increasing the frequency of enhancer activation during induction may 

increase the probability that the target gene will access high amplitude transcription states by 

increasing chromatin accessibility at the promoter. The duration or amplitude of these bursting 

states may be mostly independent of eRNA synthesis. Future live cell experiments using dual 

PP7/MS2 reporters to monitor transcription simultaneously from the enhancer and promoter 

will help to determine whether or not this is true.  

4.3.6 eRNAs and enhancer-promoter looping 

Functional studies in breast and prostate cancer cell lines have shown that eRNAs 

associate with cohesin or mediator, and that this association is required to maintain looping, as 

shown by 3C (Chromosome Conformation Capture)  analysis on candidate genes  88,167. One 

of key questions of our study was whether transcriptionally active enhancers form stable 

looping interactions with their target loci, mediated by eRNAs, or if the data previously 

acquired using 3C simply represents a cumulative average of variable enhancer-promoter 

conformations. We surmised that if eRNAs were required to stabilize looping interactions, we 

would frequently detect nascent eRNA signal within a distance from the active promoter 

which corresponds to a cross-linked enhancer-promoter interaction, as predicted from polymer 

modeling of chromatin fiber conformations. While smFISH does not allow the detection of all 

enhancer-promoter interactions within a cell, as it requires mRNA and eRNA co-expression, 

we can nonetheless measure the frequency of interaction between an enhancer and promoter 
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that are both transcriptionally active, assuming, that most detected eRNAs are nascent 

transcripts localized at the enhancer.  

Our analysis showed, for both FOXC1 and P2RY2, that eRNA-mRNA transcription 

site distances spans a range of distances that tails off at 300-400 nm, corroborating with 

distances between regulatory elements and target genes within their respective TADs, 

measured previously by DNA FISH 111,112. This suggests that the eRNAs detected using 

smFISH are most likely nascent/enhancer associated and therefore provide a reasonable 

approximation of the location of the enhancer with respect to its target promoter.  Simulations 

of intra-TAD chromatin fiber conformations by polymer modeling predict that two regions on 

an individual chromatin fiber would be cross-linked when closer than 80 nm, most likely by 

protein complexes such as mediator or cohesin. Therefore, we sought to quantify the relative 

fraction of eRNA-mRNA co-expressing alleles in which eRNA-TS distances would fall within 

this range, to determine how frequently transcriptionally active enhancers interact with their 

target promoters within a closed loop configuration.  

Intriguingly, only about a quarter of eRNA-mRNA co-expressing alleles show eRNA-

TS distances less than 100 nm. This suggests enhancer-promoter interactions to be dynamic 

rather than forming stable closed loops, at least for those enhancers that are detectable through 

eRNA transcription. If most enhancers and promoters in metazoan genomes are brought into 

proximity by sequestration within TADs, this may circumvent the need for stable loops, as 

chromatin fibers within TADs are predicted to be flexible, therefore facilitating frequent 

enhancer-promoter contacts in response to signaling pathways. The enhancer-promoter 

interaction may occur for a length of time that is sufficient to enable the target promoter to 

access a high activity transcription state, as described by the continuum model of bursting, but 

need not be maintained to sustain multiple cycles of transcription on the target locus. 

Furthermore, if eRNA transcription is the most robust signature of enhancer activity, we can 

speculate that most transcriptionally active alleles that do not co-express eRNAs are associated 

with enhancers that have been temporarily de-activated before the next gene burst. Thus, 

eRNA transcription may play an early transient role in establishing a permissive chromatin 

structure at the promoter to activate the burst, after which the eRNA itself becomes 

dispensable.  
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Due to the flexibility of chromatin fibers, enhancers might come into contact with 

promoters through stochastic collisions, a process which might not require eRNAs per se. 

However, the increase in eRNA transcription frequency will establish a more permissive 

chromatin environment on the enhancer, as well as the promoter, during instances when the 

promoter transiently contacts the enhancer.  The simultaneous increase in chromatin 

accessibility on both the enhancer and promoter may enable complexes such as mediator and 

cohesin to bind more efficiently and sustain closed loop configurations for longer periods 

relative to the uninduced state. Perhaps, this may generate more frequent bursts, as it was 

shown by Bartman and colleagues that forced chromatin looping can increase the burst 

fraction 114. Interestingly, Fukaya and colleagues show that inserting an insulator sequence 

between a reporter and enhancer reduces the frequency of bursting 113. Thus, reducing the 

probability of enhancer-promoter contact may also decrease bursting frequency. Therefore, 

instead of sustaining the enhancer-promoter loop, eRNAs could also initiate the looping 

process, thereby increasing the frequency of enhancer-promoter contact during induction 

relative to the sporadic collisions that may occur prior to induction.  This model better fits our 

data, as we do not detect most eRNAs within distances corresponding to cross-linked 

enhancer-promoter interactions, suggesting that they may not be required once the closed loop 

is established. 

We do not know the enhancer-promoter configuration for the transcriptionally active 

alleles that do not co-express eRNAs, or vice versa for the eRNAs that do not co-express 

mRNAs. For future experiments, high resolution DNA FISH should be combined with 

smFISH to elucidate the functional link between eRNA transcription and enhancer-promoter 

looping. Furthermore, a CRISPR/Cas9 based strategy could be implemented to target dCas9 

fused fluorescent proteins on both the core enhancer element and the promoter, while 

introducing PP7/MS2 repeats to monitor eRNA and mRNA transcription. This will allow 

determining if eRNA transcription regulates the lifetime of enhancer-promoter loops, and 

whether this would selectively modulate different parameters of gene bursting. However, this 

will be technically challenging as it requires the use of multiple fluorescent labels with non-

overlapping spectra as well as imaging at high spatio-temporal resolution and sensitivity to 

obtain results that are interpretable in a meaningful way.  
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4.3.7 Perspectives for future research  

One of the fundamental questions regarding the role of eRNAs in transcription 

regulation that has been at the forefront of many discussions in recent years is whether the 

eRNA molecule itself has an actual function or whether it is just a transcriptional by-product, 

whereby the process of RNA pol II elongation at the enhancer is what is required for enhancer 

function, making the eRNA itself dispensable.  Various observations suggest that the eRNA 

molecule is important for enhancer function. First, it was shown that eRNAs may be 

functional in transcription activation independently of their synthesis, as tethering eRNAs to 

luciferase reporter plasmids increases expression 88,134. Second, eRNAs were shown to 

undergo transcription termination by the RNA pol II associated Integrator complex, and 

disruption of this process alters enhancer function, suggesting that specific processing of 

eRNAs is required for enhancer function 140. Third, RIP-qPCR assays on components of 

cohesin and mediator, two major complexes that are implicated in the formation of enhancer-

promoter loops, show enrichment of eRNAs 88,129. Altogether, these studies compel us to 

further characterize eRNAs from an RNA centric perspective, including interrogating whether 

eRNAs are generally terminated and/or processed in a uniform fashion, and whether they 

possess motifs and/or secondary structures that allow them to bind and regulate transcription 

co-factors. To achieve this, a next step will require mechanistic studies including proteomic 

analyses using approaches such as ChIRP-MS (Chromatin isolation by RNA purification with 

mass spectrometry) to determine if eRNAs recruit specific factors to enhancers 177. In addition, 

assays such as iCLIP-seq on factors associated with active enhancers, such as mediator and 

cohesin or the histone acetyltransferases CBP/p300, can be used to determine if they bind to 

functional motifs within eRNAs 178. Furthermore, deletion of potential motifs using 

CRISPR/Cas9 will validate the functional relevance of sequences within the eRNA transcripts. 

Moreover, chemical probing methods such as SHAPE can be used to map the secondary 

structure of eRNAs. SHAPE has been used recently to determine the in vitro secondary 

structure of the mouse lncRNA Braveheart, which specifies the cardiomyocyte lineage during 

development, demonstrating the utility of this approach 179. Altogether, such studies will help 

to better understand the role of eRNA sequence in eRNA function. 
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Recent high-throughput studies have shown that most lincRNAs are processed co-

transcriptionally in a different manner than mRNAs, expanding our knowledge of the 

biochemical properties that distinguish lncRNAs from mRNAs 180,181. The primary 

distinguishing feature is the lack of efficient splicing in lincRNAs. Furthermore, Schlackow 

and colleagues show that lincRNAs are prematurely terminated and destabilized by the nuclear 

exosome 181. These findings corroborate with earlier studies which have shown that although 

regulatory elements such as enhancers and promoters share a common architecture of 

transcription initiation, there are motifs downstream of transcription start sites which 

distinguish the fates of lncRNAs from mRNAs 45,50. Notably, eRNAs and PROMPTs lack the 

U1 snRNP 5’splice sites that promote efficient splicing and elongation on protein coding 

sequences, but harbor early polA signals that induce premature termination. It was shown that 

PROMPT degradation by the nuclear exosome requires early polyA mediated termination 50. 

Interestingly, PROMPTs and eRNAs are both stabilized upon depletion of the components the 

nuclear exosome and the nuclear exosome targeting complex (NEXT), whose RNA binding 

component RBM7 binds to lncRNAs. 53. This finding suggests that the exosome is recruited to 

distinct classes of lncRNAs in a targeted manner. eRNAs expressed from super-enhancer 

regions were also shown to stabilize in exosome knockout mutants 182. Whether eRNA 

degradation by the exosome is coupled to early polyA signal mediated termination, similar to 

PROMPTs, or occurs through a different mechanism is yet to be determined. It will be 

interesting to determine the role of the exosome in eRNA metabolism.  

 Another important question that emerges from these studies is whether the regulatory 

roles of eRNAs and other classes of lncRNAs depend on processes associated specifically to 

their production, including synthesis and co-transcriptional processing, rather than sequence 

specificity within the mature transcripts themselves. It was recently shown that lncRNAs that 

act locally on neighboring genes do not mediate their function through specific sequences 

within the transcripts but require their respective promoters or promoter-proximal processing 

mechanisms to regulate transcription of their target genes 183. The lincRNA blustr in mouse, 

which activates the neighboring gene Sfmbt2, requires the U1 snRNP 5’splice site within its 

first intron, in addition to its promoter, to activate transcription. Conversely, inserting an early 

polyA signal to terminate transcription reduced target gene expression, whereas inserting 
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polyA signals downstream to increase the length of transcriptional read-through increased 

expression. Since the deletion of introns and exons within the blustr had no effect on target 

expression, the regulatory mechanism is clearly mediated by non-sequence specific promoter-

proximal processing steps that affect transcription elongation. It will be interesting to see 

whether such principles can be applied to other classes of lincRNAs. 

Intriguingly, as eRNAs are enriched in early polyA signals and not 5’splice sites, their 

regulatory capacity may be dependent on early termination. Supporting this idea, depleting 

Integrator components results in increased transcriptional read-through of eRNAs, which then 

fails to stimulate target gene expression 140. Therefore, altering properties of eRNA 

processing/termination will be important to understand the role of processing in eRNA 

function. One way to achieve this would be to introduce a 5’splice site into the eRNA 

sequence using CRISPR/Cas9, and determine if this targeted modification affects the 

processing and function of the eRNA. Alternatively, the eRNA sequence could be exchanged 

with the target mRNA sequence so that the mRNA is under the regulation of the core enhancer 

and the eRNA is under the regulation of the core promoter. smFISH can then be used to 

determine if the altered genomic context results in the mRNA behaving like an eRNA, and 

vice versa. This would confirm that the core regulatory element takes precedence over 

downstream sequence specificity in defining the processing and function of the transcript. 

Conversely, if mRNA and eRNA behavior are unaltered in their new genomic context, this 

would suggest that the functionality of the transcript is defined by some element within itself 

rather than the sequence of the core regulatory element driving its production.  

Alternatively, instead of introducing genetic perturbations, eRNA synthesis can be 

inhibited using CRISPR interference, blocking RNA pol II elongation by recruiting dCas9 

downstream of the transcription initiation site. CRISPR interference has been used 

successfully in recent studies to inhibit transcription of the GAL10 antisense RNA in 

S.Cerevisiae and the ncRNAs Rox1 and Rox2, which are involved in sex dosage 

compensation in D.melanogaster 162,184. Furthermore, a chimeric sgRNA-eRNA construct can 

be tethered to the enhancer while applying CRISPR interference to determine if the eRNA can 

act in trans when its endogenous synthesis is abolished. Altogether, such studies will be 

essential to better understand the role of eRNAs in enhancer function.  
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4.4 Concluding remarks 

The focus of my thesis was to elucidate the roles of different classes of long non-coding 

RNAs in eukaryotic transcription regulation. In the studies presented here we combined 

quantitative single molecule resolution microscopy with genetic and biochemical approaches 

to reveal novel mechanistic aspects of transcription regulation by long non-coding RNAs. 

My first project demonstrated that continuous low frequency transcription of an antisense 

long noncoding RNA represses transcription activation of the S.cerevisiae phosphate 

transporter gene PHO84 through a bimodal switch mechanism. My data, together with more 

recent studies expanding on our observations, demonstrate that regulation of non-coding RNA 

transcription initiating continuously from open chromatin regions, may allow cells to integrate 

fluctuating environmental signals to control gene activity in a switch-like manner as an 

adaptive response. This mechanism of gene regulation would act locally on proximal 

promoters in a rapid and economical manner through chromatin modifying factors associated 

with elongating RNA pol II, circumventing the slow and energy-intensive process of 

synthesizing trans-regulatory proteins and targeting them to specific gene regulatory 

sequences. Since antisense noncoding RNAs are also expressed in metazoans, it will be 

interesting for future investigation to determine if such bimodal switches can also be applied 

to antisense RNA regulated genes in multicellular eukaryotes. 

   

For the second project, I investigated enhancer RNAs, a class of lncRNAs expressed 

from enhancers. The findings of this study have allowed us to infer potential transcription 

regulatory mechanisms mediated by eRNAs that challenge some of the previous models of 

eRNA function.  Importantly, the results from our work suggest a model whereby the process 

of eRNA transcription may increase chromatin accessibility at the promoter to activate 

transcriptional bursting, but which does not require eRNA co-expression to sustain  

transcription on  target loci. We also discovered that transcriptionally active enhancers rarely 

engage in closed loop interactions with their target promoters, suggesting that eRNAs are 

unlikely to stabilize enhancer-promoter interaction, but may initiate looping prior to promoter 

activation.  
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In summary, both of my PhD projects share a common theme where we show that low 

frequency noncoding RNA transcription through regulatory regions can fine-tune promoter 

activity in cis, and that this activity is highly variable within the cell population. My work has 

provided valuable new mechanistic insights on how lncRNAs participate in transcription 

regulation at the single cell level and lays the foundations for future studies that will further 

enhance our understanding of non-coding RNA function.    

 
4.5 Figure legends 
 
Figure 4-1: Transcriptional bursting of PHO84 is regulated by continuous antisense  

                     transcription 

 
a. Diagram showing alternate transcription between sense and AS in wild type cells 

grown in intermediate phosphate media. Sense transcription occurs in discrete bursts, 

characterized by frequent re-initation and accumulation of RNAs during the ON 

period. AS transcription occurs continuously as single initiation events distributed in 

time, occasionally transcribing through the PHO84 UAS, due to weak termination by 

Nrd1-Nab3-Sen1. The nucleosome shown in red is inherently unstable and occludes 

Pho4p binding site D, which is close to the TATA box and the primary regulator of 

PHO84 activation. 

b. Diagram showing alternate transcription between sense and AS in Δrrp6 cells. In 

Δrrp6 there is an approximate 2-fold increase in the number of AS transcription cycles 

that read through the PHO84 UAS, resulting in a 2-fold decrease in PHO84 bursting 

frequency. The nucleosome shown in orange might be positioned more stably relative 

to wild type, due to more frequent nucleosome remodeling events coupled to HDAC 

recruitment. 

c. Wild type cells in phosphate depleted media do not follow a 2-state ON/OFF model, 

but continuously transcribe PHO84 due to complete remodeling of the UAS and 

promoter. AS transcription is completely abolished in inducing conditions. 
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Figure 4-2: The role of MLL1 and eRNA transcription in regulating enhancer  

                    accessibility and promoter activation 

 

a. MLL1 methylates H3K4 on enhancers that are transcribed at a basal level.  

b. FOXA1 binds to H3K4me1/2 modified enhancers 

c. FOXA1 remodels chromatin and recruits E2 conjugated ERα to the estrogen response 

element (ERE), which then recruits RNA pol II to induce bi-directional eRNA 

transcription. The increase in eRNA transcription frequency makes chromatin more 

accessible on the enhancer and promoter, thereby activating bursting transcription of 

target mRNAs. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 



179	
	

 

4.6 Figures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Transcriptional bursting of PHO84 is regulated by continuous antisense  

                     transcription 
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Figure 4-2: The role of MLL1 and eRNA transcription in regulating enhancer  

                    accessibility and promoter activation 
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