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RESUME EN FRANÇAIS ET MOTS CLES FRANÇAIS 

La métastase et la chimiorésistance sont les principales causes de mortalité chez les patients 

atteints d’un cancer. La compréhension des mécanismes moléculaires régissant ces deux 

processus devient donc un domaine de recherche important pour la conception de nouvelles 

stratégies thérapeutiques. Dans ma thèse, je me concentre sur la compréhension du rôle du 

facteur d’initiation de la traduction chez les eucaryotes 4E (eIF4E) dans l’invasion du cancer, et 

je décris un nouveau mécanisme de résistance que nous avons découvert en étudiant le 

développement de la résistance à un inhibiteur connu d’eIF4E, la ribavirine. 

eIF4E est un puissant oncogène qui est connu pour être élevé dans une multitude de cancers 

comprenant entre autres les sous-types M4 / M5 de la leucémie myéloïde aiguë (AML). Il 

fonctionne dans la traduction et l'exportation nucléocytoplasmique d'ARNm en se liant à la 

coiffe m7G des ARNm possédant des codes USER spécifiques dans leur région UTR 5' et/ou 3'. 

En reconnaissant ces codes USER, le complexe dans lequel se trouve eIF4E régule de manière 

coordonnée l'expression de gènes essentiels à la croissance, à la prolifération et à la survie, et 

ainsi, eIF4E a été placée en tant que nœud central d'un régulon d'ARN régissant la prolifération. 

En analysant les voies dans lesquelles l’export est régulé de façon coordonnée par eIF4E et les 

effets physiologiques qui en découlent, j'ai trouvé un enrichissement de la voie biosynthétique 

de l'acide hyaluronique (HA) et de son principal récepteur CD44 qui sont des médiateurs clés 

connus des métastases cancéreuses. J’ai également démontré que l'élévation d’eIF4E modifie la 

surface des cellules cancéreuses en les recouvrant de protrusions riches en HA de type 

microvillus et enrichies d'armes de destruction métastatique. Heureusement, en dégradant le 

manteau HA ou en utilisant des inhibiteurs de CD44 en combinaison avec la ribavirine, nous 

pouvons alors nous défendre. 

Compte tenu de l'avantage prolifératif que confère la surexpression d’eIF4E, il est devenu un 

talon d'Achille attrayant pour le traitement de cancers ayant un niveau élevé d'eIF4E. En effet, 

lors d'un essai clinique de phase II parmi des patients atteints de leucémie myéloïde aiguë M4 / 

M5 réfractaire et récidivante, la ribavirine a conduit au ciblage d'eIF4E et a donné lieu à des 

réponses cliniques significatives, incluant des réponses complètes ou partielles. Cependant, tel 

qu’attendu lors d’un traitement monothérapique, les patients ayant répondu finissent par 

développer une résistance au médicament. Mon analyse a révélé que cette résistance est due à 
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un mécanisme nouveau caractérisé par l'élévation du facteur de transcription Sonic Hedgehog 

GLI1 qui conduit à la glucuronidation du médicament et donc à la perte de l'interaction entre la 

drogue et sa cible. Heureusement, ce mécanisme peut être inversé en utilisant des inhibiteurs de 

la voie Hedgehog. 

En conclusion, ces découvertes fournissent de nouvelles cibles thérapeutiques pour le traitement 

des cellules cancéreuses agressives et résistantes. 

Mots clés : eIF4E, Cancer, Résistance multi-drogue, Invasion, GLI1, UGT1A, Acide 

Hyaluronique, CD44 
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RESUME EN ANGLAIS ET MOTS CLES ANGLAIS 

Metastasis and chemoresistance are the leading cause of mortality among cancer patients. The 

discovery of molecular mechanisms governing these two processes is becoming an important 

area of research for the design of novel therapeutic strategies. In my thesis, I focus on 

understanding the role of the eukaryotic translation initiation factor 4E (eIF4E) in cancer 

invasion and describe a novel mechanism of resistance that we discovered while studying the 

development of resistance to a known eIF4E inhibitor, ribavirin.  

eIF4E is a potent oncogene that is known to be elevated in a multitude of cancers including 

M4/M5 subtypes of acute myeloid leukemia (AML). It functions in mRNA translation and 

nucleocytoplasmic export by binding to the m7G cap of mRNAs possessing specific USER 

codes in their 5’ and/or 3’ UTRs. By recognizing these USER codes, eIF4E complex 

coordinately regulates the expression of genes essential for growth, proliferation and survival 

and as such has been placed as a central node of an RNA regulon governing proliferation. When 

analyzing which pathways have their export coordinately regulated by eIF4E and what 

physiological effects arise from it, I found an enrichment in the hyaluronic acid (HA) 

biosynthetic pathway as well as its major receptor CD44 which are known key mediators of 

cancer metastasis. I demonstrate that eIF4E elevation changes the surface of cancer cells sugar-

coating them with HA-rich microvillus-like protrusions that are enriched with weapons of 

metastatic destruction.  Luckily, through degrading the HA-coat or using inhibitors of CD44 in 

combination with ribavirin we can strike back.  

Given the proliferative advantage that eIF4E overexpression conveys, this rendered it as an 

attractive Achilles heel for the treatment of cancers where eIF4E levels are high. Indeed, in a 

phase II clinical trial in refractory and relapsed poor prognosis M4/M5 AML patients, ribavirin 

led to eIF4E targeting and resulted in significant clinical responses including complete and 

partial remissions. However, as it is expected for monotherapy treatment, all responding patients 

eventually developed resistance to the drug. My analysis revealed that resistance is due to a 

novel mechanism characterized by elevation of the Sonic Hedgehog transcription factor GLI1 

which leads to drug glucuronidation and the subsequent loss of drug-to-target interaction. 

Fortunately, this mechanism can be reversed using Hedgehog pathway inhibitors. 
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Taken together, these findings provide novel therapeutic venues for the treatment of aggressive 

and resistant cancer cells. 

Keywords: eIF4E, Cancer, Multidrug Resistance, Invasion, GLI1, UGT1A, Hyaluronic acid, 

CD44 
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It was probably 2,500 years BC when the first evidence of cancer had been documented in The 

Papyrus of Edwin Smith, “a bulging tumour in the breast… like touching a ball of wrappings”. 

Discussing treatment, the ancient scribe noted: “There is none” (1). From the fire drill and natural 

remedies recommended by ancient Egyptian medicine to our era’s most recent concepts of 

“magic bullet” and “molecular-targeted therapies” (2), the cancer matrix remains unlocked. Even 

though targeted therapy has achieved encouraging results in the treatment of specific types of 

neoplasms, primary or acquired resistance to chemotherapeutics as well as metastasis of cancer 

cells remain as two of the main causes of failure in the treatment of patients. It might be that our 

failure to eradicate most tumours is as fundamental as our lack of understanding to their origin. 

Had it been the consequence of multicellularity and longer lifespans, then how come not all 

whales have cancer- given that the more cells we have and the longer we live the higher the risk 

of developing tumours- a question raised by Peto R. and his colleagues back in 1975 (3). Peto’s 

Paradox depicts that no correlation exists between body size and age with increased cancer risk; 

rather it is the mere fact that age equals duration of exposure to carcinogenic stimuli. Since then, 

resolving Peto’s Paradox has become the focus for many researchers, as it might hold the key 

to curing or even preventing cancer. Perhaps evolution of these large organisms had selected for 

intrinsic cancer suppression mechanisms, such as decreased rates of somatic mutations, 

redundancy of tumour suppressor genes, shorter telomeres, the presence of hypertumours that 

grow on and destroy their parent tumour, more efficient immune system and suppression of 

inflammation, higher resistance to oncogenic viruses, …etc. (4-6). Which of these mechanisms, 

if any, is/are likely to contribute to the observed suppression remains elusive (3). What is clear 

is that resolving this paradox might direct towards a better understanding of the molecular 

mechanisms governing cancer drug resistance and metastasis. 

The new era of targeted therapy has proven that the complexity of human cancers can be broken 

down by targeting a single hijacked oncogene, a phenomenon referred to as “oncogene 

addiction”. This phenomenon allowed initial steps towards a breakthrough in the treatment of 

tumour cells without affecting their normal counterparts. In my thesis, I aim at understanding 

the oncogenic dependency of cancer cells on the roles of a protein known as the eukaryotic 

translation initiation factor 4E (eIF4E) for their survival and metastasis. I demonstrate how 

eIF4E changes the surface of tumour cells arming them with microvillus-like protrusions that 
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are enriched with molecules required for invasion, including Hyaluronic acid (HA), CD44, and 

matrix metalloproteinases, among others. Results from this study provide first evidence of an 

oncogene that post-transcriptionally regulates the biosynthesis of HA to harness its oncogenic 

potential. It also suggests that direct targeting of HA-positive tumour cells with available FDA-

approved Hyaluronidases could be a valuable addition to treatment regimens for high-eIF4E, 

and potentially other cancers. In another chapter, I discuss the serendipitous discovery of a novel 

multidrug resistance mechanism while investigating the molecular underpinnings of the 

development of resistance to a given eIF4E inhibitor, Ribavirin. I show that elevation of the 

Sonic Hedgehog transcription factor GLI1 correlates with increased drug glucuronidation which 

in turn disrupts drug-to-target interaction. Fortunately, I further demonstrate that this mechanism 

can be reversed using FDA approved Sonic Hedgehog signalling pathway inhibitors. 
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1.1 The eukaryotic translation initiation factor 4E: a multifaceted protein 

In response to environmental signals, cells regulate gene expression and protein synthesis in a 

coordinated fashion. Compared to corn and fruit fly, the human genome encodes approximately 

the same or nearly twice the number of genes, respectively. In addition, it has become 

increasingly clear that the majority of eukaryotic proteins function in different cellular 

processes. This multitasking phenomenon suggests that, as the number of genes does not 

proportionally increase with size and complexity of organisms, the eukaryotic regulatory 

mechanisms therefore act to diversify the proteome by shuffling the limited number of genes to 

use them in multiple combinations. Indeed, many eukaryotic proteins have been shown to 

multitask as components of different cellular complexes, the roles of which might differ with 

subcellular localization. This multitasking phenomenon holds true for the eukaryotic translation 

initiation factor 4E (eIF4E), which is traditionally known for its function in translation initiation 

of 5’-capped mRNA in the cytoplasm (7-9). Recent studies have highlighted a novel role of eIF4E 

in the nucleus where it regulates mRNA export (Figure 1). Accordingly, eIF4E provides an 

example of a factor that differentially regulates coordinated gene expression patterns. 

Figure 1: eIF4E 

regulates mRNA 

translation and 

mRNA export. 

Cytoplasmic eIF4E 

regulates the 

translation of 

mRNAs possessing 

highly structured 

GC rich 5’UTRs 

such as ODC, PIM-

1, c-Myc, and 

VEGF. Nuclear 

eIF4E mediates the export of mRNA molecules containing a unique ~ 50 nucleotides sequence 

element known as eIF4E-senstivity element (4E-SE), including Cyclin D1, ODC and c-Myc. 
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1.1.1 Cytoplasmic eIF4E: Initiates mRNA translation 

In 1976, Witold Filipowicz discovered eIF4E as a cap binding protein involved in cytoplasmic 

mRNA translation (10, 11). Here, eIF4E binds the 7-methyl guanosine dinucleotide cap structure 

m7GpppN (where N is any nucleotide) located on the 5’ end of mRNA (10, 12-14). Consequently, 

protein synthesis commences. Sensitivity of given mRNAs to eIF4E’s translational activity does 

not only rely on the binding of eIF4E to the m7G cap (8, 10, 13, 15). Overexpression studies have 

shown that eIF4E does not lead to global increase in protein expression (12, 16). Analyses 

indicated that only a given subset of mRNAs possessing highly structured GC rich 5’UTRs have 

their translation regulated by eIF4E (8, 10, 13, 15). These mRNAs usually encode for growth and 

survival factors. Thus when overexpressed, eIF4E disproportionally and dramatically induces 

the translation of mRNAs encoding for cancer-related proteins that control cell proliferation (8, 

13).  

1.1.2 Cap-Dependent Eukaryotic Translation Initiation 

mRNA translation is the process in which mRNA molecules are decoded to produce specific 

sequences of amino acids, or proteins (17-19). It proceeds in three stages: initiation, elongation 

and termination; with initiation being the rate-limiting step and as such is subject to tight control 
(20-23). Translation initiation consists of the recruitment of ribosomes to target mRNA. At least 

two different mechanisms of ribosome binding have been identified in eukaryotic cells: the cap-

dependent and the cap-independent scanning (21, 24, 25). In this thesis, I focus on the eukaryotic 

translation initiation factor 4E which is an inherent component of the cap-dependent translation 

initiation. eIF4E mediates binding of the 40S ribosomal subunit to the 5’end of capped mRNAs 

in the cytoplasm (18, 20, 21, 23). Together with eIF4A (an RNA-dependent ATPase/ATP-dependent 

RNA helicase) and eIF4G (a high molecular weight scaffold protein that binds eIF4E and 

eIF4A) it forms the eukaryotic translation initiation factor 4F (eIF4F) (18, 20, 21, 23). Through 

interaction of eIF4G with the 40S ribosomal binding factor eIF3 and the poly(A)-binding 

protein, the eIF4F complex forms a critical link between mRNAs and ribosomes (18, 20, 21, 23). 

Given that expression of the various eIF4F factors in most cells is readily different, with eIF4E 

being the least abundant, formation of the aforementioned link therefore relies on the availability 

of latter (19, 26, 27). A family of small translation repressor molecules known as eIF4E-binding 
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proteins (4E-BPs) have been shown to interact with eIF4E and modulate the assembly of eIF4F 
(28-30). Binding of 4E-BPs to eIF4E is modulated by phosphorylation (17, 31, 32). In the presence of 

hormonal or nutritional stimuli, 4E-BPs are hyperphosphorylated and do not interact with eIF4E 

allowing for protein synthesis to occur. On the contrary, environmental or nutritional stress elicit 

hypophosphorylation of 4E-BPs which can now bind strongly to eIF4E thus rendering it 

unavailable for initiation of mRNA translation. In addition to regulation by signalling pathways 

via 4E-BPs, eIF4E expression and activity is controlled by transcriptional and 

posttranscriptional mechanisms, which will be discussed in this chapter. 

1.1.3 Nuclear eIF4E: mediates mRNA export 

Discovery of the role of eIF4E in catalyzing nucleocytoplasmic export of mRNA has been a 

major advance. Up to 68% of eIF4E is found in the nucleus of most eukaryotic cell types either 

in distinct mulitprotein structures known as eIF4E nuclear bodies (NBs) or distributed 

throughout the nucleoplasm (33, 34). Electron microscopy studies in Saccharomyces cerevisiae, 

and later on in Drosophila melanogaster S2 cells and Xenopus laevis embryos, also showed 

nuclear eIF4E localization (35-37); suggesting that nuclear eIF4E is conserved across eukaryotes.  

eIF4E-dependent mRNA export was first reported by Rousseau et al. where eIF4E 

overexpression increased nucleocytoplasmic export but not translation of cyclin D1 (38). Later 

studies showed that treatment of eIF4E nuclear bodies with cap but not RNases results in 

complete release of eIF4E and dispersal of these bodies (39). As such, similar to its cytoplasmic 

counterpart, nuclear eIF4E also binds the m7G cap and that the cap, but not the mRNA per se, 

is essential for nuclear localization and function of eIF4E (35). However, cap binding is not the 

sole determinant of mRNA export mediated through eIF4E; as indicated by the increased export 

of cyclin D1 but not the housekeeping mRNAs (such as GAPDH) following eIF4E 

overexpression (38, 40, 41). Mapping of the 3’ and 5’-UTRs identified that the basis for this 

discriminatory interaction is an approximately 50-nucleotide sequence in the 3’-UTR, which is 

referred to as eIF4E sensitivity element (4E-SE) (40). Further, differential display analysis of 

nuclear eIF4E-associated mRNAs following immunoprecipitation of endogenous eIF4E from 

nuclear lysates, revealed that among the hundreds of mRNAs many of the identified genes are 

involved in cell cycle progression and survival, including c-Myc, cyclin E1, Mdm2 and NBS1 
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(41). Accordingly, in addition to its role in regulating translation initiation, eIF4E-mediated 

nuclear export of a specific subset of mRNA also contributes to oncogenesiss.  

The functions of eIF4E in mRNA export and translation appear to be decoupled as they rely on 

different USER codes, i.e. mRNAs require both the 3’ 4E-SE and the 5’ USER code to be 

modulated by eIF4E at both levels (12, 41). For instance, some mRNAs are said to be export targets 

only (such as cyclinD1), others are translational targets (such as VEGF), and in some cases, 

mRNAs could possess both USER codes and thus have their export and translation regulated by 

eIF4E (such as ODC, c-Myc and Pim-1) (12, 41). According to the RNA regulon model, gene 

expression is combinatorial, i.e. related to the different USER codes found in a given mRNA (42, 

43). Therefore, through promotion of mRNA export and translation, the eIF4E regulon provides 

a coordinated and combinatorial way for the cell to more finely tune gene expression. It is one 

of the earliest examples of an RNA regulon which through coordinately modulating 

proliferation and survival signal gene expression networks is positioned to directly impact 

human diseases, including oncogenic transformation; necessitating tight control over its 

expression and activity. 

1.1.4 eIF4E dependent mRNA export goes through a pathway distinct from bulk mRNA 
export 

The molecular basis for the mRNA nuclear export function of eIF4E is less well understood 

than its role in translation. eIF4E only associates with its target mRNAs post-splicing and the 

eIF4E-4E-SE RNA complexes are found in the soluble export competent fraction within the 

nucleus. While the majority of messenger ribonucleoproteins (mRNPs) exit the nucleus using 

bulk mRNA export pathway, catalyzed by TAP/NXF1 factors, eIF4E mRNPs do not (41, 44). 

Treatment of cells with leptomycin B, a specific inhibitor of the nuclear pore receptor 

chromosome region maintenance 1 (CRM1), inhibited the export of these mRNAs; indicating, 

that eIF4E-dependent mRNA export is CRM1 dependent (Figure 2) (41, 44). Recently, our lab 

identified the leucine-rich pentatricopeptide repeat protein C (LRPPPC) as platform for the 

assembly of eIF4E, 4E-SE mRNA, and CRM1 (44). Following release of mRNA cargo in the 

cytoplasm, cap-free eIF4E and 4E-SE-free LRPPRC are recycled back in to the nucleus via 

Importin 8, a member of the karyopherin family of transporters (unpulished data). Interestingly, 
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the fact that both LRPPRC and eIF4E use Importin 8 to re-enter the nucleus suggests that their 

import could be coordinated in a way to increase the efficiency of future export cycles. The 

molecular mechanisms underlying eIF4E-mediated mRNA export and the specific composition 

of the eIF4E mRNA export complex are becoming increasingly clear. As such, LRPPRC could 

be one of several assembly platform proteins involved in the selective export of mRNA 

subgroups whose expression could be context/cell type specific. Further, a better understanding 

of the physiological role of the eIF4E-4E-SE RNA complexes is an important area of future 

work.  

 

Figure 2: Model for the eIF4E-dependent mRNA export and re-entry of the machinery via 

importin 8. LRPPRC binds to both eIF4E and 4ESE RNA using distinct N- and C-terminal 

motifs, and binds CRM1 supporting transit though the nuclear pore complex (NPC). Once the 

complex arrives at the cytoplasmic side and after the dissociation of 4ESE RNA cargoes, eIF4E 

and LRPPRC return to the nucleus via Importin 8. Here, Importin 8 only binds cap-free 
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eIF4Eand RNA-free LRPPRC thereby reducing futile export cycles. (Taken from Volpon L. et 

al. RNA 2016) 

1.1.5 eIF4E mRNP traversing the nuclear pore complex 

In addition to LRPPRC, eIF4E export mRNPs contain some factors shared with the bulk export 

pathway, including UAP56, hnRNPA1, and DDX3 (44-46). Also, in the nucleus CRM1 binds its 

cargo in the presence of the GTP-bound form of Ran. Accordingly, as the CRM1-Ran GTP-

eIF4E mRNP complexes are formed, these are targeted to traverse the nuclear pore complex 

(NPC) by virtue of the transport receptor interaction with specific NPC-proteins lining the 

central transport channel, namely Nucleoporins (Nups) (45, 47). Reaching the cytoplasmic face of 

NPCs, loading and release of the CRM1-cargo complexes occurs by either one of two 

mechanisms; (1) docking of the CRM1-cargo complex on cytoplasmic fibrils mainly composed 

of Nup358 proteins anchored to the NPC via two nucleoproteins Nup88 and Nup214; thus 

sequestering the CRM1-cargo complex; or (2) binding of CRM1-cargo complexes to a soluble 

form of nucleoporins known as RanBP1 which provides a fast release mechanism (13, 45). Either 

way, association is then followed by the recruitment of Ran GTPase-activating protein 

(RanGAP) enabling GTP hydrolysis by Ran (13, 45). Once this step is completed, CRM1-cargo 

complexes dissociate, permitting the RNA to enter the cytoplasm and the export factors to be 

recycled back to the nucleus (13, 45, 47). Note that, in nuclear import, RanGTP acts as a dissociation 

factor since import factors cannot bind both cargo and RanGTP simultaneously (13, 45, 47). Hence, 

RanGTP gradient across the nuclear envelope results in the activation several proteins including 

the cytoplasmic GTPase-activating protein RanGAP, and is considered the major driving force 

for nuclear transport in both directions (47, 48). Importantly, endogenous 4E-SE mRNAs could be 

targets of both bulk and eIF4E-dependent processes, where 3’-UTRs can be 1000s of 

nucleotides in length and contain many USER codes (41). Thus, eIF4E competes with bulk 

mRNA export pathway to enhance preferentially the export of specific subset of transcripts (13, 

45, 46).   

 

 



10 
 

1.1.6 eIF4E remodels the nuclear pore 

The loading and release options that CRM1 has at the cytoplasmic face of the NPC question 

whether the link between eIF4E’s transforming ability and its mRNA export activity is due to 

the favoring of RanBP1-mediated fast release over the rate limiting RanBP2-mediated process; 

and whether eIF4E could be driving this preference. Consequently, would eIF4E upregulation 

alter the expression and/or localization of NPC components. 

Indeed, work presented by Culjkovic B. et al. revealed that eIF4E overexpression correlates with 

changes in the composition of the cytoplasmic face of the NPC (13, 47). The authors identified 

RanBP1 but not RanBP2 as a direct export target of eIF4E. As such, the expression of these two 

proteins is inversely correlated following eIF4E overexpression. While RanBP1 levels are 

upregulated, eIF4E overexpression indirectly decreases RanBP2 proteins; with the remaining 

RanBP2 being more dispersed throughout the nucleoplasm. Further, the RanBP2 partner, 

Nup214, is not a direct eIF4E target but its localization is also altered from rim-concentrated to 

a more dispersed form throughout the nucleoplasm. Accordingly, these results indicate that 

eIF4E overexpression does favor a RanBP1 release pathway which enables enhanced mRNA 

export by promoting release and/or recycling of export complexes. This is consistent with data 

showing that RanBP2 hypomorph mice, which have genetically lower RanBP2 levels, do not 

have bulk mRNA export defects but have increased export of specific mRNAs.  

Interestingly, eIF4E overexpression may not only change the CRM1-mediated export of 4E-SE 

mRNAs, but it can also alter the export of a subset of mRNAs using bulk export pathway 

(mediated by TAP/NXF1) (13, 47). This occurs via upregulating the expression of DDX19 and its 

cofactor Gle1 which catalyze the loading and release step of the TAP/NXF1 pathway.  These 

data indicate the presence of a cross talk between RNA export pathways or that the helicase 

activity of DDX19 is required for remodeling 4E-SE export RNPs. On the other hand, both 

DDX19 and Gle1 have been shown to play independent roles in the initiation and termination 

steps of translation of certain mRNAs, indicating that eIF4E can impact on translation in an 

indirect way, in addition to its direct effects (13, 47). Thus, eIF4E not only is exported by CRM1 

via its interactions with LPRPRC, but also modulates proteins acting in the CRM1 pathway to 

likely maximize its mRNA export potential. 
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In conclusion, these observations indicate that eIF4E has the capacity to alter the composition 

of NPC in favor of increasing its mRNA export and oncogenic activities. 

1.2 eIF4E is regulated at multiple levels 

Clearly, eukaryotic cells evolved means to regulate different nodes in RNA regulons in order to 

alter gene expression and prevent deleterious outcomes. Studies aiming to identify regulators of 

eIF4E expression and activity are still ongoing and regulation can be divided into four levels: 

transcriptional regulation and regulation through mRNA stability, protein interactions and post-

translational modifications (Figure 3).  

1.2.1 Regulation of eIF4E transcription (Myc, NF-kB) 

Dysregulation of eIF4E in cancer is correlated with increased RNA and protein levels (~ 3-to 

10-fold in M4/M5 AML specimens relative to normal samples). While c-Myc has long been 

thought as the sole transcriptional regulator of eIF4E (49-51), recent studies are unveiling novel 

mediators. Analysis of eIF4E promoter demonstrates enrichment with binding sites for various 

transcription factors including NF-κB, PU.1, NFAT, GATA, STAT, PAX and SP1 (52-54). For 

instance, NF-κB has four putative binding sites (termed κB 1 to 4) in eIF4E promoter (52). These 

sites are occupied by a heterodimer comprising two members of the NF- κB family, namely 

cRel and p65. Binding results in the recruitment of p300 and phosphorylated RNA polymerase 

II to the κB sites and the coding region, respectively, thus marking transcription activation (52). 

This is consistent with the presence of more NF-κB complexes on eIF4E promoter in primary 

M4/M5 myeloid samples as compared to normal primary hematopoietic cells and other myeloid 

subtypes (52). As such, genetic and pharmacological inhibition of NF-κB in this population 

abrogates eIF4E transcription resulting in downregulation of eIF4E targets (52). Interestingly, 

there is a significant overlap between eIF4E target genes and those of NF-κB (such as c-Myc 

and cyclin D1) which suggests that these two pathways cooperate forming a nexus between 

transcriptional and posttranscriptional gene expression networks to drive proliferation (Hariri, 

F unpublished data). Consequently, targeting both nodes, i.e. eIF4E and NF-κB, could have 

significant clinical utility in cancer patients where both proteins are elevated. 
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1.2.2 Regulation of eIF4E mRNA stability 

Independent of the transcript levels, eIF4E expression is also regulated post-transcriptionally. 

The 3’UTR of eIF4E mRNA contains three AU rich elements (AREs) that dictate binding of 

competing proteins, HuR and p42 AUF1, to enhance or reduce eIF4E transcript stability, 

respectively (44). As such, HuR is found to be elevated in cancers with high eIF4E levels and its 

knockdown is associated with downregulation of eIF4E (44). 

1.2.3 Regulation of eIF4E activity by protein interactions 

eIF4E is subject to additional level of regulation where its activity is tightly controlled via 

inhibitory or activating binding partners. So far, four classes of direct binding partners have 

been identified: 

i. Proteins containing conserved eIF4E binding site, such as 4E-BPs, eIF4G, HOXA9 

and PRH/Hex (14, 35). These proteins share a short conserved amino acid motif 

YXXXXLϕ, where X is any residue and ϕ is a hydrophobic amino acid.  As a result, 

their binding to eIF4E is said to be competitive to inhibit or enhance its mRNA export 

and/or translation activity.  More than 200 homeodomain proteins containing this 

consensus binding motif have been identified; suggesting a redundancy in eIF4E 

regulators as 4E-BP knockout mice, for instance, were not more prone to developing 

cancers than their normal counterparts.  

ii. RING domain containing proteins including PML, Z-protein, and HHAR1 (55). This 

class of binding partners lacks the eIF4E binding motif but possess a RING domain 

instead. Direct binding of these proteins via the RING domain to eIF4E reduces its 

affinity to the m7G cap (~ 100 fold by PML and Z-protein). 

iii. Amphipathic helix strategy used by VpG proteins (56, 57). Binding of VpG to eIF4E also 

reduces its affinity to the m7G cap but the mechanism by which it does that is still not 

known.  

iv. Importin 8 binding to eIF4E at its cap-binding site (48). This binding selects only RNA-

free eIF4E for nuclear entry and represents a new class of interacting partners. 

In addition to the aforementioned regulatory modes, novel structural and biochemical functions 

of an eIF4E family member, eIF4E3, implicating it as a repressor of eIF4E activity via an mRNA 
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competition mechanism has been identified (58-60). Here, eIF4E3 competes for the same mRNA 

pools through a novel cap binding activity which inhibits expression of both mRNA export and 

translation targets of eIF4E.  

1.2.4 Regulation of eIF4E activity by post-translational modifications 

Lastly, regulation of eIF4E activity also occurs via post-translational modifications, including 

phosphorylation, sumolyation and ubiquitination (61-65). While phosphorylation has been 

implicated in enhanced eIF4E-mediated mRNA export and increased cell transformation 

capacity, the role of ubiquitination and sumolyation on eIF4E activity is still ambiguous.  

 

Figure 3: eIF4E is regulated at multiple levels. (A) Regulation of mRNA stability via HuR 

and AUF proteins which bind to AU rich elements (AREs) in the 3’UTR of the eIF4E transcript 

(B) Regulation of eIF4E activity through protein-protein interactions. For instance, HOXA9 

promotes the export and translation functions of eIF4E, while PML and PRH negatively regulate 

eIF4E-mediated mRNA export (C) Regulation by post-translational modifications including 

phosphorylation, sumolyation and ubiquitination. 
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1.3 Dysregulation of eIF4E levels in Cancer 

Aberrant regulation of eIF4E expression and/or activity has been linked to malignancies as well 

as cell transformation. The pro-survival properties of eIF4E have been underscored by various 

evidence. For instance, its overexpression blocks apoptosis upon serum starvation, inhibits c-

Myc-driven apoptosis, promotes DNA synthesis, decreases cell cycle transit time and represses 

differentiation (41, 66-68). Of which, downregulation of eIF4E reverts these phenotypes. Further, 

moderate overexpression of eIF4E results in increased production of growth factors that are 

essential for malignant transformation (10, 69). And high eIF4E levels have been correlated with 

oncogenic transformation in cell lines, cancers in animal models and poor prognosis in several 

human cancers (10, 69). Approximately 30% of human cancers including: breast, prostate, lung, 

colon, squamous head and neck carcinoma, Hodgkin and non-Hodgkin lymphomas, as well as 

M4 and M5 subtypes of acute myeloid leukaemia (AML), have high eIF4E expression (10, 69, 70).  

1.3.1 Acute Myeloid Leukemia (AML) 

Acute myeloid leukemia is a hematologic malignancy characterized by aberrant proliferation of 

immature cells (myeloblasts) of the myeloid lineage. It is a particularly challenging malignancy 

since the majority of patients diagnosed are older than 60 years of age and often cannot receive 

intensive chemotherapy (70, 71). The overall survival of such patients has been estimated to be 

around 4 months, with a five-year survival rate of less than 10%, highlighting the need for new 

treatments and increasing the interest in developing them (71-73). 

1.3.2 The French-American-British classification of AML 

According the French-American-British (FAB) system, AML is subdivided into 9 distinct types 

based on the cell of origin and its level of maturity (74, 75). It includes: M0 (undifferentiated acute 

myeloblastic leukemia), M1 (Acute myeloblastic leukemia with minimal maturation), M2 

(Acute myeloblastic leukemia with maturation), M3 (Acute promyelocytic leukemia (APL)), 

M4 (Acute myelomonocytic leukemia), M4eos (Acute myelomonocytic leukemia with 

eosinophilia) M5a (Acute monoblastic leukemia), M5b (Acute monocytic leukemia), M6 (Acute 

erythroid leukemia) and M7 (Acute megakaryoblastic leukemia).  
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1.3.3 The World Health Organization (WHO) classification of AML 

A new classification for hematopoietic and lymphoid malignancies has been published recently 

by the World Health Organization (WHO) (76, 77). This new system classifies AML into three 

clinical prognosis groups based on not only morphologic findings but also on available clinical 

features, and genetic, biologic and immunophenotypic data. These subgroups include: (1) AML 

with recurrent genetic abnormalities, (2) AML with multilineage dysplasia, and (3) AML and 

MDS (myelodysplastic syndrome), therapy related.  

1.3.4 AML: Aberrant eIF4E expression and activity  

eIF4E levels are upregulated in various genetically distinct leukemias (10, 69). Strikingly, eIF4E 

overexpression is observed in M4/M5 poor prognosis AML but not in most M1/M2 specimens 

examined (78). Inline with this observation, inhibition of eIF4E using low concentrations (10 

times less than physiological levels) of the m7G cap physical mimic, Ribavirin, leads to growth 

inhibition in M4/M5 but not normal or M1/M2 AML specimens which are inhibited at much 

higher levels (78, 79). Interestingly, not only the levels of eIF4E are upregulated in M4/M5 AML 

cells but also its nuclear localization is predominantly augmented (47, 48, 71, 73). This correlates 

with increased eIF4E-dependent mRNA export (40, 69, 79). Accordingly, both the mRNA export 

and translation initiation activities are required for eIF4E-mediated malignant transformation. 

And these findings suggest that AML cells have developed an oncogenic dependency to eIF4E 

for their proliferation and survival.  

 

1.4 Targeting eIF4E with Ribavirin in Cancer 

Collectively, targeting eIF4E should have a major impact on tumorigenesis and cancer 

progression and as such has derived interest in identifying therapeutic agents that could directly 

or indirectly target its aberrant activation. Indeed, several preclinical and clinical methods have 

been defined including (i) anti-sense oligos targeting eIF4E in xenograft models (80-82), (ii) 

synthetic peptides inhibiting the interaction of eIF4E with proteins involved in translation, such 

as eIF4G using 4EGI-1 to block formation of the eIF4F complex in T-cell leukemia and non-

small-cell lung cancer cells (83), (iii) suicide gene therapy characterized by fusing a complex 

5’UTR upstream of the toxic thymidine kinase (TK) gene as a way to promote its expression in 
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eIF4E overexpressing cells in mouse xenograft models (84), and (iv) using a cap mimetic, known 

as Ribavirin (71, 73, 79, 85, 86). 

1.4.1 Ribavirin suppresses eIF4E mediated transformation by physical mimicry of m7G cap 

Ribavirin (RBV) is an FDA approved antiviral drug used for the treatment of patients with 

hepatitis C virus (71, 73, 79). It belongs to a family of nucleoside drugs and has a structure that is 

closely related to guanosine. RBV is imported into cells using the equilibrative nucleoside 

transporter 1 (ENT1) which mediates facilitated bidirectional diffusion of nucleosides across 

cell membranes. In order to stay in the cell, ribavirin is phosphorylated in a three-steps reaction 

to its major intracellular metabolite, ribavirin- 5’-triphosphate (RTP); where the rate-limiting 

enzyme is adenosine kinase (ADK) catalyzing step one (87). In vitro biophysical assays identified 

RTP as a physical mimic of m7G cap and ultimately as a direct inhibitor of eIF4E (79, 86).  

Direct binding of RTP to eIF4E has been shown by fluorescence, circular dichroism, mass 

spectrometry, nuclear magnetic resonance (NMR) and cap chromatography with affinities for 

eIF4E similar to that of cap (79, 86). 1H-15N chemical shift mapping studies at low eIF4E and 

RTP concentrations are consistent with the high affinity binding previously reported. Chemical 

shift perturbations indicate that binding is located around the m7G cap binding site, which is 

consistent with the model that RTP competes for m7G cap binding.  Further evidence for this is 

supported by the W56A cap-binding mutant which reduces RTP affinity for eIF4E by ~ 15-fold 

similar to the effects for cap; additionally, amide chemical shifts for W56A eIF4E mutant are 

not perturbed upon addition of RTP, indicating loss of interaction. Similar to m7G cap, RTP 

binding perturbs peaks at the dorsal surface: although different residues are perturbed. Whether 

RTP binding can affect proteins binding at the dorsal surface different to m7G cap has to be 

determined but these data suggest this is possible. Finally, although NMR data indicate binding 

is close to the m7G cap binding site: it is likely not identical. Other binding sites in the eIF4E 

cap binding site have recently been exploited by structure based drug design efforts. These 

indicate that there are sites deeper in the cap binding pocket available for binding. Unfortunately, 

efforts to solve the eIF4E-RTP structure are hindered by the concentration dependence in this 

interaction. Both X-ray and NMR techniques require high eIF4E/RTP concentrations, yet NMR 

data indicate that only at lower concentrations the high affinity complex can be observed. 
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In living cells, immunoprecipitation studies show that 3H-ribaivirin directly binds eIF4E in 

treated cells versus IgG controls  (69, 87). Note that low micromolar levels of RTP are readily 

achievable intracellularly which is within the range for its dissociation constant for eIF4E and 

achievable clinically. Further, treatment is associated with reduced association of endogenous 

eIF4E with its mRNA export targets in nuclear lysates (79). These experiments strongly suggest 

that ribavirin directly binds eIF4E, in or near the cap-binding site, successfully competing for 

cap binding in vitro and in living cells. Effects of ribavirin treatment are similar to those 

observed by genetic knockdown of eIF4E. Phenotypically, it impedes growth of eIF4E 

dependent xenografts, impairs growth of eIF4E mediated foci formation and eIF4E mediated 

apoptotic rescue of serum-deprived fibroblasts  and leads to cell cycle arrest, rather than 

apoptosis, at least in the contexts examined thus far (71, 73, 79, 85, 88). At the molecular level, 

inhibition of eIF4E with ribavirin correlates with reduced expression of eIF4E target genes, re-

localization of nuclear eIF4E to the cytoplasm and inhibition of the nuclear functions of eIF4E 
(35, 71, 79). Biochemically, ribavirin reduces the translation efficiency of transcripts that are 

enhanced by eIF4E such as VEGF and ODC and inhibits eIF4E dependent nuclear mRNA 

export (71, 79, 87, 88).  

Treatment of M4/M5 AML specimens with 1-10 µM ribavirin leads to significant impairment 

of colony growth in methylcellulose (79, 85). Importantly, ribavirin, at this concentration range, 

does not substantially affect the growth of normal CD34+ cells or blasts isolated from M1/M2 

AML patients which had normal eIF4E levels as verified by western and/or RNA analysis. 

Ribavirin affects growth of these latter groups only in the 100+ micromolar range (79). These 

studies strongly suggest that M4/M5 AML specimens have developed an oncogene addiction 

to, or dependency on, eIF4E. This is consistent with findings that prostate cancer cells with 

elevated eIF4E were more sensitive to knockdown of eIF4E than normal cells (81). 

1.4.2 Ribavirin treatment targets eIF4E and leads to clinical benefit in poor prognosis AML 
patients 

Ribavirin treatment beneficially impacted M4/M5 AML patients in clinical trials. A phase II 

clinical trial was carried out to monitor the response to ribavirin monotherapy in refractory and 

relapsed patients as well as patients unable to undergo traditional chemotherapy regimens (71). 
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In this trial, ribavirin achieved significant clinical responses including one complete remission, 

two partial remissions, two blast responses and four stable diseases out of 11 evaluable patients. 

No therapy related toxicities were observed for any patients in the trial, even after 9 months of 

treatment (71). Molecularly, beside dramatic re-localization of eIF4E to the cytoplasm in 

specimens from patients that responded, striking reduction in eIF4E mRNA and protein levels 

after 28 days are observed. Both reduction of eIF4E and its re-localization led to a phenotype 

nearly indistinguishable from normal cells (in terms of eIF4E) (71). Continuous culturing of FaDu 

or THP-1 cell lines in ribavirin for over 200 days does not lead to any reduction in eIF4E levels 
(87) nor was this observed in shorter treatment times in cell lines tested. Thus, the reduction of 

eIF4E is surprising but likely yields unexpected clinical benefit. Further, substantial reduction 

in cyclin D1 and NBS1 proteins levels, reduced phospho-Akt levels, as well as inhibition of 

NBS1 and cyclin D1 mRNA export in specimens from responding patients is observed, which 

is consistent with inhibition of eIF4E activity and reduction in its levels. In summary, ribavirin 

targets eIF4E within the first 28 days of treatment and this correlates with clinical response. 

1.4.3 Ribavirin combination therapy for AML treatment 

Although substantial clinical benefit to ribavirin monotherapy is observed in patients; it is 

important to increase the frequency and duration of clinical responses. Accordingly, 

combination of ribavirin with known chemotherapy regimens is examined. Results of this trial 

are presented in chapter four of this thesis. In vitro studies of combination therapies suggest 

that ribavirin will cooperate with a wide variety of commonly used agents (85). Thus, ribavirin 

may become a commonly added adjuvant to many treatment regimens.  

1.5 Ribavirin resistance and non-responding patients 

Unfortunately, despite the significant clinical responses that ribavirin has achieved in poor 

prognosis M4/M5 AML patients, loss of clinical response around 4 months of treatment was 

observed for most of the patients (with the exception of one patient which continued to respond 

for 9 months). As such, one of the aims of my thesis was to investigate the molecular 

mechanism(s) underlying ribavirin resistance. This work is presented in details in chapter 

three. Briefly, we have identified a novel mechanism of resistance whereby upregulation of the 

Sonic Hedgehog transcription factor GLI1 results in increased glucuronidation of ribavirin 
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which consequently can no longer bind eIF4E. We provide evidence that this mechanism of 

resistance can be reversed using the FDA approved inhibitor of the Sonic Hedgehog pathway, 

GDC-0449 (also know as Vismodegib).  Ribavirin and GDC-0449 combination is currently 

being tested in a phase I clinical trial in M4/M5 AML patients. 

More insights about the mechanisms of cancer drug resistance are provided in chapter two. 

1.5.1 The Hedgehog Signalling Pathway in Cancer Treatment Resistance 

The Hedgehog (HH) signalling pathway is evolutionary conserved from insects to vertebrates 
(89).  It is considered as a key regulator of embryonic development and is required for cell 

proliferation, differentiation, tissue patterning, maintenance of stem cells, and tissue repair and 

regeneration (90, 91). However, it has a second-much darker side. It promotes growth and 

proliferation of tumour cells. Aberrant HH activity is reported in various types of human cancers 

including, brain, breast, lung, colon, prostate, pancreas, skin, melanoma, lymphoma and 

leukemia (90, 92).  

1.5.1.1 Molecular Mechanism: 

Canonical HH signalling is a complex pathway involving a multitude of factors. However, the 

key core players are few, including Hedgehog secretory glycoproteins (HH), PATCHED 

(PTCH) a 12-transmembrane receptor protein, SMOOTHENED (SMO) a serpentine 

transmembrane signal transducer, and the glioma-associated GLI family of transcription factors 
(90, 91, 93-95). Vertebrates express three HH homologues, Desert Hh (Dhh), Sonic Hh (Shh) and 

Indian Hh (Ihh) (89, 90). All three of which activate the same signalling pathway yet their 

expression is tissue-specific, with Shh being more broadly expressed than Ihh and Dhh (89, 90). 

In the absence of secreted Hh glycoproteins, PTCH binds to and inhibit the activity of SMO 

thus repressing signal transduction. Upon binding of Hh ligand to its PTCH receptor, SMO 

repression is alleviated triggering the release of cytoplasmic GLI transcription factors from the 

repressive grip of the negative regulator Suppressor of Fused (SUFU) and their activation 

through sequential phosphorylation by various kinases. As a result, activated GLI proteins 

translocate into the nucleus where they induce or repress transcription of target genes. At least 

three GLI proteins exist in vertebrates (93, 95). While GLI-1 and GLI-2 act primarily as activators 
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(with GLI-1 being a stronger activator than GLI-2 which in turn enhances the transcriptional 

activity of GLI-1), GLI-3 can undergo proteolysis to function as a transcriptional repressor. As 

such, the ratio of GLI activator to repressor is critical for the final transcription process (91, 92, 94, 

96). Further, Hh signalling undergoes both positive and negative autoregulatory feedback loops 

through controlling the expression of its core components, GLI and PTCH, respectively.  

Termination of HH signalling follows the proteasome-mediated degradation of activated GLI-

proteins. Several studies showed that degradation could be achieved by three independent 

ubiquitin pathways: cullin 1 (CUL1) mediated β–TrCP E3 ubiquitin ligase, CUL3/SPOP and 

Numb/Itch mediated ubiquitination (97). Canonical GLI target genes include, cyclin D1 (involved 

in cell cycle), vascular endothelial growth factor (VEGF) (involved in angiogenesis), SNAIL 

(involved in epithelial-mesenchymal transition (EMT) in cancer invasion) and Bcl2 (anti-

apoptosis pathway) (90, 93, 96).  

Further, non-canonical or oncogene-driven HH signalling pathway have been described. These 

pathways bypass the requirement of HH proteins and rely on major human oncogenes (e.g. EGF, 

AKT, and RAS), tumour suppressors (e.g. p53 and PTEN) or chromosomal translocation gene 

fusion products (e.g. EWS-FLI1) to regulate GLI activity (98).  

1.5.1.2 HH signalling in cancer 

HH signalling is central to various types of human cancers. In addition, increasing evidence 

indicates the importance of HH signalling in regulating cancer treatment resistance (99, 100). For 

instance, GLI-1 overexpression is correlated with glioma recurrence after chemotherapy with 

Vincristine, VP16, ACNU and CDDP (100). In addition, GLI-1 overexpression disrupts the 

activation of genotoxin-driven ATR-Chk1 checkpoint signal transduction pathway which 

regulate apoptosis, cell cycle progression and DNA repair (101). Further, constitutive activation 

of the HH pathway in AML, and other cancers, stimulates the expression of multidrug resistant 

transporter system (MDR) which results in enhanced drug efflux from cancer cells (99, 100, 102). 

The reason underlying the importance of HH signalling in cancer is not trivial but could 

explained by the basic role of this pathway in controlling stemness and multipotency or as a 

consequence of the GLI code integrating HH and non-HH signals (90, 103, 104). Four basic models 

have been proposed for the activation of HH signalling pathway in cancer (90, 103, 104). 
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-Type I-Ligand independent constitutive activation of HH signalling: includes  

(i) Loss-of-function mutation of negative regulators of HH signalling, such as loss f 

function and/or loss of heterozygosity of PTCH, loss of function mutation of SUFU and 

mis-sense mutation of GLI3. 

(ii) Gain-of-mutation or amplification of activators, such as amplification of GLI-1 and 

GLI-2, and activating mutation of SMO. 

-Type II-Ligand dependent autocrine activation of HH signalling: characterized by increased 

expression of HH proteins triggering auto-activation of HH pathway. 

-Type III-Ligand dependent paracrine activation of HH signalling: characterized by increased 

secretion of HH proteins by tumour cells to induce signalling in neighboring stromal cells which 

in turn secrete factors essential for tumour growth including VEGF, Insulin-growth factor 2 

(IGF2) and Wnt. Type III can also be reversed paracrine whereby stromal cells Hh ligands to 

activate tumours cells. 

-Type IV-Cancer stem model: characterized by elevated HH signalling in a subpopulation of 

tumour cells known as cancer stem cells possessing a self-renewal ability. 

Recent clinical studies indicate that targeting HH signalling pathway with small molecule 

inhibitors can have far-reaching implications in HH-dependent tumours. To date, inhibitors of 

HH (e.g. Robotnikinin), SMO (e.g. GDC-0449) and GLI proteins (e.g. GANT-61) have been 

the major focus of chemotherapies that target HH pathway-dependent cancers. For instance, 

phase I clinical studies of GDC-0449 in patients with basal cell carcinoma and medulloblastoma 

have highlighted significant response. And given its specificity for the HH pathway and its low 

toxicity, GDC-0449 is currently being evaluated in a phase II clinical trial for the treatment of 

solid tumours and may also be used in combination treatment with conventional chemotherapy 

or with inhibitors of activated oncogenes driving GLI activity. 
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1.5.2 Glucuronidation mediated by UGT enzymes 

Glucuronidation is a major phase II detoxification reaction responsible for the inactivation of 

endogenous molecules and xenobiotics including therapeutic drugs (105, 106). It was originally 

discovered in hepatic cells but evidence demonstrate that most human tissues express the 

enzymes catalyzing this process, known as UDP-glucuronosyltransferases (UGTs) (107, 108). 

Namely, UGTs mediate transfer of glucuronic acid (GA) from the cofactor uridine 5’-

diphosphoglucuronic acid (UDPGA) to the nucleophilic part of the drug (including amine, 

carbonyl, carboxyl, sulfuryl and hydroxyl groups) thus rendering it more hydrophilic. The most 

common glucuronidation reactions consist of N- and O-linked glucuronidation through 

conjugation of phenols, carboxylic acid, aliphatic alcohols, thiols and amines. Consequently, 

the resulting metabolites are excreted via anion transporters (105, 106). However, efflux is not the 

only fate of glucuronides. For instance, glucuronidation has been shown to alter targeting (105, 

109).  

Eukaryotes have evolved to express four subfamilies of UGT enzymes, UGT1A, UGT2, UGT3 

and UGT8. While UGT2 subfamily primarily conjugates endogenous compounds, UGT1A 

mainly metabolizes exogenous ones. Glucuronidation by UGT3 and UGT8 does not appear to 

contribute to drug inactivation (110, 111). Accordingly, the major focus of this thesis is the UGT1A 

subfamily. We have identified that GLI-1-mediated glucuronidation of Ribavirin, among others, 

is namely catalyzed by UGT1A enzymes. 

UGT1A subfamily includes nine functional isoforms (UGT1A1 and UGT1A3-10) encoded by 

a single gene locus comprising 5 exons; with exon 1 encoding the variable N-terminal substrate 

binding domain and exons 2-5 coding for the common C-terminal UDPGA binding domain (106, 

110, 111). Recently, a novel UGT1A isoform known as UGT1A_i2 has been identified as an 

alternative splice product of exon 5 (112, 113). The resulting protein is truncated and inactive but 

is demonstrated to interact with and inhibit the activity of UGTs. Given the highly divergent N-

terminal domain, substrate specificity varies among the different isoforms; with some accepting 

a wide variety of structurally unrelated substrates, while others having strict specificity (112, 113). 

Predominantly, UGTs are localized to the ER membrane, with few reports demonstrating its 

localization to the nuclear envelope (114). Synthesized as pre-proteins possessing endoplasmic 
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reticulum (ER) signal peptide sequence, UGT enzymes are embedded in the ER membrane via 

a single transmembrane spanning domain located near the C-terminus which in turn protrudes 

into the cytosol while the N-terminal domain extends in the lumen of the ER. It has been 

postulated that UGTs function as homo/hetero- dimers/tetramers in the ER (115, 116). But in the 

absence of pure full length active proteins, and the lack of structural information regarding the 

amino-terminal domain and the binding of UDPGA to the C-terminus, validation of the 

oligomerization phenomenon is hindered. Expression of UGTs is controlled by several 

transcription factors (e.g. hepatic nuclear factors, HNF1α and HNF4α) and ligand-activated 

nuclear receptors in response to endo- and xenobiotics (e.g. aryl hydrocarbon receptor, AhR, the 

constitutive androstane receptor, CAR, and the peroxisome proliferation-activated receptor, 

PPARγ) (106, 110, 111).  

1.5.2.1 UGTs in Carcinogenesis 

The role of UGT enzymes in cancer is discussed in details in chapter five. 

 

1.6 eIF4E in cancer invasion and metastasis  

eIF4E overexpression and activity promotes metastasis and increased tumour invasion (85, 117, 

118). For instance, high eIF4E levels are observed in vascularized malignant ductules of invasive 

breast carcinomas and are predictive of increased recurrence in head and neck squamous cell 

tumours (85, 117-120). Further, eIF4E levels are correlated with increased number of tumours, 

invasion and metastases in xenograft mouse models. Consequently, knockdown of eIF4E or its 

pharmacological inhibition with ribavirin is shown to reduce breast cancer cell migration and 

metastasis (118).  

The role of eIF4E in tumour metastasis has so far been linked with increased expression and 

activity of the extracellular matrix (ECM) degrading enzymes, matrix metalloproteinases 

(MMP)-3 and MMP-9, and the angiogenesis promoting factor, vascular endothelial growth 

factor (VEGF) (118, 119). However, reduction in MMPs and VEGF expression and activity 

following treatment with ribavirin is only partly responsible for the observed decrease in the 

invasiveness of high eIF4E cancer cells; suggesting that modulation of additional factors is 
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required. In an attempt to identify proteins associated with the metastatic phenotype of such 

tumours, I (or we) identified that eIF4E coordinately modulates the expression of several 

enzymes involved in the synthesis of Hyaluronic Acid (HA) and its major receptor CD44. 

Increased HA and CD44 levels are associated with malignant phenotype and poor prognosis in 

several types of cancers. Results of this part of my thesis are discussed in details in Chapter 

eight. 

1.6.1 The metastatic cascade: 

Escape of malignant cells from primary tumour sites and lodgement at distant secondary organs 

is a complex multistep process involving: (i) angiogenesis of the tumour (ii) detachment of 

neoplastic cells from primary tumour (iii) local invasion of the ECM (iv) intravasation into 

lymphatic or blood vessels (v) survival of cells in circulation (vi) extravasation from vasculature 

into secondary organ tissue (vii) invasion of ECM and finally (viii) colonization and growth of 

secondary tumour (121, 122). During this process only a few cells have the potential to become 

motile and of those that do only a small number (less than 0.1%) can give rise to secondary 

tumours. These cells often show resistance to adverse conditions (surveillance by the immune 

system, nutrient shortage, tumour hypoxia as well as chemo- and radio-therapies) and must have 

the ability to self-renew and differentiate in order to produce secondary tumours (121, 122).  

Successful metastasis relies on the formation of a series of interactions between the cancer cell 

and its surroundings necessary for motility. Accordingly, cancer cells must undergo a process 

known as epithelial-to-mesenchymal transition (EMT) whereby the activation of multiple 

interconnected transcription factor networks (including Wnt, Notch, Sonic Hedgehog and NF-

κB) leads to altered expression of proteins that are part of the ECM, secreted in the ECM or cell 

surface receptors required for invasion (121, 122). 

1.6.2 Hyaluronic Acid is required for EMT of cancer cells 

The glycosaminoglycan (GAG) hyaluronic acid, also known as hyaluronan, is a major 

constituent of the pericellular and extracellular matrix in most mammalian tissues (123, 124).  It 

regulates various cellular processes including embryonic development, tissue homeostasis, 

wound healing and inflammation and promotes tumour growth, invasion and EMT (123, 124). In 
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cancer, increased HA levels are correlated with formation of less dense matrices to facilitate 

invasion and promote angiogenesis and it has been predicted to mediate the assembly of 

protective coating for cancer cells to help evade chemotherapeutic and cytotoxic agents. Further, 

HA levels are elevated in highly metastatic and poor prognosis tumours (124-126).  

1.6.2.1 HA structure and synthesis 

HA is a large unbranched negatively charged polysaccharide composed of repeating 

disaccharide units (2,000-25,000), glucuronic acid and N-acetylglucosmaine [-β(1,4)-GlcUA-

β(1,3)-GlcNAc-]n. Unlike other GAGs which are synthesized as proteoglycans in the 

endoplasmic reticulum and Golgi apparatus, HA synthesis is catalyzed by one of three multipass 

transmembrane proteins, hyaluronan synthases (HAS1, HAS2 and HAS3) located in the plasma 

membrane (124). As a result, HA is extruded on the cell surface or into the ECM while its being 

synthesized. HA chain length is associated with differential functions where shorter chains are 

primarily synthesized by HAS3, which we show is an eIF4E target whereas HAS1 and HAS2 

are not. These shorter forms of HA are associated with malignant phenotypes. Experimental 

overexpression of HAS enzymes causes increased tumour growth in mouse xenograft of 

prostate, breast and colon carcinomas and its knockdown with antisense mRNAs reverses this 

phenotype (127, 128). Further, HA is cleaved by hyaluronidases (six isoforms exist in humans) 

which have been suggested to act as tumour suppressors; whereby increased expression inhibits 

tumour growth in colon and breast xenografts (129-131). These data strongly support the 

requirement of elevated levels of short-chain HA for tumour progression.  

1.6.2.2 HA-induced signal transduction 

HA exerts its effects through binding to specific cell surface receptors, namely CD44, thus 

triggering downstream signal transduction cascades essential for EMT (124). Together high levels 

of HA and its receptors are linked to cancers of circulating cells and those of solid tumours (124).  

CD44 is a multistructural and multifunctional cell surface glycoprotein involved in mediating 

cell-to-cell or cell-to-ECM communication (38, 132, 133). It is encoded by a single gene locus 

comprising 20 exons and contains an ectodomain (encoded by exons 1-17), a transmembrane 

domain (encoded by exon 18) and a cytoplasmic domain (encoded by exons 19 & 20). As a 
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result of alternative splicing and N- or O-linked glycosylation, a large array of CD44 isoforms 

(more than 20) exists ranging in size from 80 to 200 KDa. The smallest isoform, known as 

standard CD44 (CD44s), 80 KDa in size, is the most widely spread isoform where its expressed 

on the surface of most vertebrate cells, including hematopoietic stem and progenitor cells. 

Expression of CD44 variant isoforms is controlled by tissue- and environmental-specific factors 

as well as oncogenic pathways which can regulate alternative splicing of CD44 (38, 132, 133).  

Binding of HA to the amino-terminal HA binding site located in the ectodomain of CD44 

triggers three major molecular events that regulate migration and invasion of cancer cells. First, 

it is reported that in response to HA binding, CD44’s cytoplasmic tail interacts with several 

regulatory and adaptor molecules in a cell context-dependent manner, including SRC, RHO 

GTPases, GAB1, and the cytoskeletal ERM proteins (ankyrin and ezrin, radixin and moesin); 

thus activating downstream singling cascades favoring motility (132-134). For instance, interaction 

of CD44 with ERM proteins, which are known to regulate cell shape and migration, links the 

plasma membrane to the actin cytoskeleton which is an essential step for migration. Second, 

following HA binding, the ‘spliced-in’ regions of CD44 are shown to form specialized platforms 

for the recruitment of ligands essential for various signalling events, such as matrix 

metalloproteinases (MM9 and MMP7), osteopontin and fibroblast growth factors (135-138). While 

recruitment of MMP9 is required for degrading the ECM, MMP7 binding suppresses apoptosis 

through activating ERBB4 (also known as HER4) receptor tyrosine kinase pathway that signals 

for cell survival (138). In addition, interaction of CD44 with osteopontin is shown to promote 

survival (132, 133). Third, binding of HA to CD44 is linked to CD44 oligomerization and 

association with lipid rafts known as glycolipid-enriched microdomains (GEMs) (139). 

Oligomerization is thought to occur via a short motif composed of 23 hydrophobic residues and 

1 cysteine amino acid located within the transmembrane domain of CD44 (132).  The GEM 

association of CD44 oligomers is required for activation of the aforementioned CD44-mediated 

downstream signalling and has been also linked to the function of CD44 as a coreceptor. Here, 

CD44 binds and activates several growth factor receptors essential for invasion, including the 

epidermal growth factor receptor, EGFR, Grb2, and p185Her2, c-Met, ErbB, TGFβ receptors 1 

and 2, and VEGF-2 (38, 132, 133). 
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1.6.2.3 HA mediates that formation of cell surface protrusions 

Consistent with the observed oligomerization of CD44 receptors and the enrichment of proteins 

and co-receptors essential for the invasion process at the plasma membrane following activation 

by HA binding, studies have shown that increased expression of endogenous and exogenous 

HAS3 induces the growth of microvillus-like cell surface protrusions (127, 128). These protrusions 

do not require attachment to a given substratum but rather utilize HA coat as an extracellular 

scaffold mediating cell growth, invasion and metastasis. Evidence show that despite the 

presence of CD44 in HAS3-induced protrusions, inhibition of CD44 activity with blocking 

antibodies or siRNA-mediated knockdown of CD44 does not affect the formation of these 

protrusions; suggesting that this particular activity is CD44 independent. It is noteworthy that 

neither CD44 nor HA alone can induce cell migration; rather an interaction between the two is 

necessary to activate this process (140). Also, loss of CD44 activity or expression has been shown 

to reduce cancer cell invasion in in vitro matrigel assays and animal models (141-143). These data 

indicate that CD44-HA dependent and/or independent functions are essential for downstream 

signalling post-protrusion formation (described in the previous section 1.6.2.2). Thus, 

identifying factors regulating HA synthesis and CD44 expression could provide a therapeutic 

means to prevent cancer cell metastasis.   
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Hypotheses and Aims 
� Project I (Chapter 2-7): 

-Title: The Sonic Hedgehog Factor GLI1 Imparts Drug Resistance through Inducible    

Glucuronidation 

 

-Hypothesis: The sonic hedgehog transcription factor GLI1 drives laboratory and clinical 

resistance to ribavirin by altering gene expression leading to chemical modification of ribavirin 

thereby blocking its interaction with eIF4E 

 

-Aim 1: Assess the role of Gli-1 in conferring resistance to ribavirin 

-Aim 2: Assess the role of UGT1A family depletion in conferring resistance to ribavirin 

-Aim 3: Determine the fate of ribavirin in resistant cells 

 

� Project II (Chapter 8):  

-Title: The eukaryotic translation initiation factor eIF4E drives production of hyaluronan 

-Hypothesis: eIF4E impacts invasion and metastasis by reshaping the surface of migrating cells 

through regulating the synthesis of hyaluronic acid and the expression of its receptor CD44 

 

-Aim 1: Investigate the role of eIF4E in the synthesis of hyaluronic acid and its receptor 

CD44 and assess its effects on protrusion formation and tumour invasion 

-Aim 2: Examine the effects of eIF4E dependent alterations of HA and CD44 synthesis on AML 

cell lines with dysregulated eIF4E (THP-1 and MonoMac-6)  

-Aim 3: Examine the effects of eIF4E dependent alterations of HA and CD44 synthesis on 

metastasis of breast cancer cell lines in mouse models 
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Synopsis: Despite many recent successes in the treatment of cancer, development of 

chemoresistance in many of the initially responding patients, and primary resistance in others, 

remains a major impediment in therapy development. In this chapter, I present data supporting 

the discovery of a novel multidrug resistance mechanism: Gli1 dependent drug glucuronidation; 

and a means of overcoming this impediment using inhibitors of the Sonic Hedgehog pathway. 
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Synopsis: The role of eIF4E in cancer invasion and metastasis has been so far correlated with 

its ability to increase expression and activity of matrix degrading enzymes and factors essential 

for angiogenesis. In this chapter, I present data supporting the role of eIF4E in cancer cell 

motility by reshaping the surface of cancer cells, producing microvillus-like protrusions, 

through coordinately regulating the biosynthesis of Hyaluronic acid and its major receptor 

CD44. These findings offer a rationale for potentially inhibiting tumour cell metastasis through 

the combinatorial inhibition of eIF4E and the use of HA degrading enzymes, Hyaluronidases. 
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Abstract 

Aggressive cancers invade neighbouring tissues eventually leading to colonization in remote 

sites of the body.  Tumour cells often undergo alterations to facilitate invasion and metastases. 

Here, we show that the eukaryotic translation initiation factor eIF4E initiates a post-

transcriptional programme that fundamentally alters the cell surface architecture. Specifically, 

eIF4E drives biosynthesis of the glycosaminoglycan hyaluronan (HA) leading to the acquisition 

of both an HA surface coat and cell surface protrusions. Although HA is a major component of 

the extracellular matrix, we show that HA on the surface of tumour cells is required for eIF4E-

mediated invasion. eIF4E also drives production of HA associated factors e.g. CD44 which arms 

the HA coat and protrusions subsequently promoting invasion. Targeting eIF4E in mouse 

models correlates with reduced HA levels, and reduced tumour and metastatic burden. In 

summary, we demonstrate for the first time that HA biosynthesis can be harnessed by an 

oncoprotein to drive its malignant phenotype. 
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Introduction 

The tumour microenvironment plays important roles in cancer, providing a niche for the 

preferential survival and proliferation of tumour cells. A major component of this structure is 

the glycosaminoglycan hyaluronan (HA). HA is composed of repeating disaccharides units of 

UDP-Glucuronic Acid and UDP-N-Acetyl Glucosamine. HA is synthesized by hyaluronic acid 

synthases (HAS), which are single transmembrane proteins localized to the inner-face of the 

plasma membrane (1, 2).  HA chain length can be associated with differential functions including 

regulation of various cellular processes such as embryonic development, tissue homeostasis, 

wound healing and inflammation and when dysregulated can promote EMT, tumour growth, 

and invasion (3, 4). Shorter chains are primarily synthesized by HAS3 (5, 6). These shorter forms 

of HA are often associated with malignant phenotypes (7-9). Experimental overexpression of 

HAS enzymes causes increased tumour growth in mouse xenograft models of prostate, breast 

and colon carcinomas while its knockdown reverses this phenotype (1, 10). Further, HA is cleaved 

by hyaluronidases (six isoforms exist in humans) which have been suggested to act as tumour 

suppressors; whereby increased expression inhibits tumour growth in colon and breast 

xenografts (11-13). Increased HA levels are correlated with formation of less dense matrices to 

facilitate invasion and promote angiogenesis. Elevated levels of HA in the stroma around 

tumours is associated with poor outcome (14, 15). In addition to surrounding tumours in some 

cases HA can coat the surface of tumour cells with HA-based protrusions radiating from the cell 

surface (16, 17). Indeed, overexpression of HAS3 alone is sufficient to induce the formation of an 

HA coat with microvillus-like protrusions on the cell surface. The major HA receptor CD44 is 

found to co-localize with these surface HA coats, but is not required for their formation. The 

number of cancer cell types with cell-surface HA is not yet known, and the extent to which cell-

associated HA also plays physiological roles in cancer is an important open question in the field.  

 

Despite the wealth of knowledge relating HA to malignancy, there is virtually no information 

regarding how HA levels become elevated in cancer and further, there is no understanding of 

what conditions drive production of cell-surface associated HA. Indeed, the levels of mRNAs 

encoding the enzymes in the biosynthetic pathways can be poor predictors of HA production 
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(18). For instance in endometrial and ovarian carcinomas, RNA levels of HAS enzymes do not 

predict elevated HA levels in these specimens (18, 19). These data suggest that this pathway is not 

always under direct transcriptional control and begs the question how else is HA production 

regulated. In this study, we demonstrate that the production of HA and its related downstream 

effectors are coordinately controlled post-transcriptionally by the eukaryotic translation 

initiation factor eIF4E. eIF4E is highly expressed in many cancers and this correlates with 

increased invasion, metastases and poor prognosis (20-24). In early-stage clinical trials, eIF4E 

targeting with ribavirin led to objective responses including remissions in some acute myeloid 

leukemia (AML) patients (25-29). In mouse models, eIF4E overexpression is sufficient to drive 

tumour formation  (30-32).   At the biochemical level, eIF4E modulates expression of selected 

transcripts through its roles in nuclear mRNA export and translation. Both of these functions 

contribute to its oncogenic potential (21, 33, 34). eIF4E-target transcripts are the downstream 

effectors of its physiological effects. Here we identified the enzymes encoding the HA 

biosynthetic pathway, HAS3, CD44 and associated factors as eIF4E target transcripts. We 

demonstrated that this pathway was required for eIF4E to mediate its oncogenic activities.   

 

Results and Discussion 

We set out to identify mRNA target transcripts which could encode proteins that were 

downstream effectors of the oncogenic activities of eIF4E. To identify these mRNAs, we took 

advantage of a fundamental difference in the RNA-binding properties of eIF4E between cellular 

compartments. In the cytoplasm eIF4E binds all capped-RNAs regardless of whether it increases 

their translation efficiency (26, 27, 35, 36). However, in the nucleus, eIF4E binds transcripts that are 

functional export targets (26, 27). Given these considerations, we reasoned that identification of 

eIF4E-bound transcripts in the nucleus would provide a straightforward strategy for the 

discovery of downstream factors that execute its biological effects.  These included enzymes 

involved in HA biosynthesis (see below). 

 

We identified eIF4E-bound RNAs using an RNA immunoprecipitation (RIP) strategy. Nuclear 

lysates from osteosarcoma U2Os cells were immunoprecipitated with anti-eIF4E antibodies, 
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and results were compared to IgG controls (Fig. 1b and Supp. Fig. 1a, b). To ensure these 

interactions were functional, we also monitored the mRNA export of candidate transcripts as a 

function of eIF4E overexpression by monitoring RNA content in nuclear and cytoplasmic 

compartments. In both experiments, RNAs were detected by quantitative reverse transcription 

PCR methods (RT-qPCR). Fractionation quality was assessed using U6snRNA and tRNAlys for 

nuclear and cytoplasmic fractions respectively. Preliminary studies using genome-wide screens 

of our nuclear eIF4E RIPs provided evidence that factors involved in HA biosynthesis were 

targets (Fig. 1a). Using RT-qPCR, we determined that the transcripts encoding most of these 

enzymes bound eIF4E in nuclear RIPs with enrichments ranging from 2.5-15 fold (Fig. 1b). 

These targets include hyaluronan synthase 3 (HAS3; 2.6 fold), as well as many of the enzymes 

involved in generating the UDP-Glucuronic acid and UDP-N-Acetyl Glucosamine precursors 

including hexokinase 1 (HK, ~15 fold), and phosphoglucomutase (PGM5, ~11 fold), amongst 

others (Fig. 1a). Nuclear mRNA export assays indicated that these mRNA-eIF4E interactions 

were functional since we observed increased mRNA export 2 to 8-fold upon eIF4E 

overexpression relative to vector controls depending on the transcript monitored (Fig. 1c). The 

only transcript which was bound to eIF4E in the nucleus but was not an export target in these 

cells encoded glucose phosphoisomerase (GPI).  In addition to the HA biosynthetic machinery, 

other eIF4E targets identified in our RIP and fractionation studies included downstream 

effectors of HA e.g.  CD44 as well as its signalling partners e.g. Ezrin and MMP9 (Fig. 1b and 

c) (37). Total levels for target RNAs were not affected by eIF4E overexpression confirming that 

these effects were post-transcriptional (Supp. Fig. 1c). Negative controls RNAs such as 

GADPH, Hsp90 and β-Tubulin were not in the immunoprecipitations and were not modulated 

at the export level (Fig. 1b, c). For comparison, we used the S53A eIF4E mutant which is 

deficient in mRNA export and transformation but active in translation (34, 38).  As expected, the 

S53A eIF4E mutant did not promote export of any of these mRNAs (Fig. 1c). 

 

Consistent with our above findings, eIF4E overexpression led to increased protein levels of the 

relevant enzymes, including HAS3, HK, GFPT1, GNPNAT1, UAP1, UGDH, as well as 

downstream effectors of HA function such as CD44 and Ezrin, relative to vector controls (Fig. 

1d and Supp. Fig. 1d).  Available antibodies for PGM5, UGP2 and GPI were not of sufficient 
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quality to assess the respective protein levels.  The positive controls Mcl1 and c-Myc were 

elevated in eIF4E overexpressing cells relative to vector controls, as expected (Fig. 1d and Supp. 

Fig. 1d). Although the S53A eIF4E mutant did not export the corresponding transcripts, a 

modest increase relative to vector controls was observed at the protein level for a few of the 

members of the HA pathway e.g.  HAS3, CD44, HK, UAP1 suggesting that these enzymes were 

also translation targets of eIF4E (Fig. 1d and Supp. Fig. 1d). c-Myc is elevated in S53A eIF4E 

cells relative to vector controls, consistent with the fact that it is both an mRNA export and 

translation target (27, 39).  Notably, the changes induced by S53A eIF4E were substantially less 

than those observed for wildtype eIF4E for all cases, consistent with the role of RNA export in 

their expression.  Thus, eIF4E increases levels of the enzymes in the HA biosynthetic pathway 

and downstream effectors of HA signalling (e.g. CD44 and Ezrin) through increased mRNA 

export and for some of these targets, also via elevated translation.   

 

Next, we determined whether eIF4E overexpression drove production of HA. To address this, 

we monitored HA levels in eIF4E, eIF4E S53A and vector control U2OS cells using biotinylated 

HA binding protein (HABP) with streptavidin-FITC and confocal microscopy. HA levels were 

substantially elevated in eIF4E overexpressing cells relative to vector controls or S53A eIF4E 

cells (Fig. 2a). Strikingly, HA was not extruded into the media, but rather coated the cell surface 

and formed short, filamentous protrusions radiating from the surface coat in the eIF4E 

overexpressing cells (Fig. 2a, b). Enzymatic depletion of HA with Streptomyces hyaluronidase 

(HAse) virtually eliminated the HA signal indicating that the staining was specific and 

suggesting that the structures were HA-dependent (Fig. 2a). Our findings are consistent with 

studies which used HAS3 overexpression to artificially induce HA production (1) where the 

protrusions were too narrow (120-130 nm) to be seen by light microscopy but were readily 

detectable using fluorescent HABP conjugates. We used fluorescence assisted carbohydrate 

electrophoresis (FACE) to independently validate elevated HA production (Fig. 2c and Supp. 

Fig. 1e). We observe a ~3-fold increase in HA levels in eIF4E-overexpressing cells relative to 

vector controls. HA levels in S53A-eIF4E cells were much lower than eIF4E overexpressing 

cells, and only modestly elevated relative to vector controls consistent with the mutant’s modest 

effects on the HA biosynthetic enzymes.  Further, removal of extracellular glucose led to 
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reduction of HA signalling consistent with the use of glucose as the major metabolic precursor 

in this pathway (Supp. Fig 1g-h). Thus, eIF4E overexpression induced HA production, and was 

found associated with cells, coating the surface and forming protrusions.  eIF4E required its 

mRNA export activity for HA production and this was likely augmented by its translation 

activity. 

 

We hypothesized that HA levels would be repressed by inhibition of eIF4E. eIF4E-

overexpressing cells were treated with either RNAi to eIF4E or with a pharmacological 

inhibitor, ribavirin (Fig. 2c, d). Ribavirin directly binds eIF4E and inhibits its mRNA export and 

translation functions (23, 25-27). We observed a reduction in HA to background levels via confocal 

microscopy using either ribavirin treatment or RNAi knockdown of eIF4E.  Using FACE, we 

similarly observed a ~9-fold reduction in HA levels for both eIF4E knockdown relative to 

control RNAi and ~2.5-fold for ribavirin treated versus untreated cells (Fig. 2c and Supp. Fig. 

1f).   Thus, eIF4E is necessary for HA production in these cells. 

 

We extended our studies to assess whether eIF4E drives HA production in cellular contexts 

characterized by naturally-occurring elevation of eIF4E e.g. acute myeloid leukemia (AML) and 

breast cancer (20, 23, 40, 41). First, we examined the MM6 AML cell line which is characterized by 

elevated nuclear eIF4E levels, and thus with increased mRNA export activity for eIF4E targets 

(Figure 3a-e and Supp. Fig. 2a-c). Using nuclear RIPs and mRNA export assays, we found that 

all mRNAs for the HA biosynthesis machinery including HAS3 and CD44 are eIF4E export 

targets in this cell type (Figure 3a-c).  These targets included transcripts encoding GPI, which 

was not an export target in U2Os cells. This suggests that the ability to promote HA production 

in these cells might be even more potent. We also note diversity in terms of the enzyme family 

members associated with eIF4E in MM6 cells versus eIF4E-overexpressing U2Os cells. For 

instance, transcripts encoding PGM5 which were eIF4E targets in U2Os cells, were not well 

expressed in MM6 cells. Instead, eIF4E bound to and exported PGM1 mRNAs. Importantly, 

these conservative substitutions in enzyme content still led to increased HA biosynthesis as 

observed by FACE and HABP staining (Fig. 3d). Similar to U2Os cells, the surface of MM6 
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cells was characterized by HA coats.  We also found in MM6 cells that eIF4E targeting with 

ribavirin reduced the mRNA export of the corresponding HA enzymes and CD44 from 2-9 fold 

depending on the mRNA monitored (Fig 3b). Ribavirin did not alter total mRNA levels 

consistent with this being a post-transcriptional effect (Supp. Fig. 2b).   Consistently, ribavirin 

treatment dramatically lowered protein levels for the representative members of the HA 

biosynthetic machinery examined: HAS3, HK, UGDH as well as CD44 (Fig. 3c). HA staining 

was reduced to background levels by ribavirin or HAse treatment as observed by HABP staining 

and confocal microscopy (Fig.3d). We paralleled these studies in primary high-eIF4E AML 

specimens and also in CD34+ bone marrow specimens isolated from healthy volunteers (Fig 3e-

f). Consistent with the MM6 cells, 9/9 high-eIF4E AML specimens had HA coats and 

protrusions with HA staining 4-10 fold higher than the 5 normal human CD34+ specimens 

which all showed only background HA staining, similar to intensities observed in vector 

controls U2Os cells (Fig. 2a). These findings suggest that the HA coat is specific to the 

malignant state and not a general feature of blood cells (Fig 3e-f). These findings point to new 

functionalities for HA in leukemia cells, where it was previously thought HA only played a role 

in the bone marrow stroma and not on the leukemia cells themselves.  Next we examined another 

high-eIF4E context, the breast cancer cell line 66cl4. These cells had highly elevated nuclear 

eIF4E, and also had readily visible HA-surface coats and protrusions as observed by confocal 

microscopy (Fig. 3g). Ribavirin treatment reduced HAS3 and CD44 levels relative to untreated 

controls as well as dramatically reduced HA levels (Fig. 3g). Furthermore, we observed by in 

situ translation studies using fluorescence non-canonical amino-acid tagging (FUNCAT), that 

there could be active translation down the length of the protrusions in eIF4E-overexpressing and 

66cl4 cells (Supp. Fig. 3a-b). These translation foci are cyclohexamide dependent validating 

them as sites of ongoing translation (Supp. Fig 3a-b). We postulate that eIF4E could be involved 

in localized protein synthesis to spatially couple translation of relevant HA enzymes with HA 

biosynthesis. In all, our studies demonstrate that eIF4E controls HA biosynthesis at both the 

mRNA export and translation level thereby coordinately driving HA production.  

 

eIF4E plays well-established roles in invasion, migration and metastasis. We hypothesized that 

eIF4E co-opted HA synthesis to execute these activities.  Starting with invasion, we observed 
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that eIF4E-overexpressing cells invaded matrigel 4-fold better than vector controls (Fig. 4a, b 

and Supp. Fig. 4a-b and e-f). By contrast, the S53A eIF4E mutant increased invasion by only 

50% relative to vector controls consistent with its more modest effects on HA production by 

FACE (Supp. Fig. 4e-f and Supp. Fig 1e). In both eIF4E overexpressing and vector control cells, 

RNAi to eIF4E or ribavirin treatment reduced invasion by ~2.5-fold consistent with the 

significant reduction in HA levels (Fig. 2c and Supp. Fig. 4e-f).  To determine the relevance of 

HA production specifically to eIF4E mediated invasion, we used RNAi to knockdown HAS3 in 

eIF4E overexpressing and vector cells (Fig. 4a and Supp. Fig. 4a-b). We focused on HAS3 since 

this is the last step in the biosynthetic pathway of HA and its inhibition specifically impairs HA 

synthesis whereas other enzymes in this pathway also participate in unrelated processes. We 

observed that RNAi to HAS3 reduced the invasion activity of eIF4E by ~5-fold in eIF4E 

overexpressing cells (to levels of RNAi controls) and 2.5-fold in vector controls where the 

effects of endogenous eIF4E are likely being targeted.  HAS3 knockdown did not affect eIF4E 

levels as observed by Western blot (Fig. 4d). Furthermore, confocal microscopy experiments 

revealed that RNAi to HAS3 decreased HA levels to background consistent with its baseline 

invasion activity (Fig. 4c). FACE studies also revealed that HAS3 knockdown lowered HA 

levels by ~9-fold relative to RNAi controls (Fig. 2c and Supp. Fig. 1f). Strikingly, eIF4E 

knockdown and HAS3 knockdown similarly reduced HA to background levels. 

 

We explored the efficacy of HAse treatment for the invasion activity of eIF4E (Fig. 4 e & f). 

Given the length of time between HAse treatment and re-emergence of HA in eIF4E-

overexpressing cells was 12 hours (Supp. Fig. 4h), we treated cells with HAse every 8 hours to 

ensure HA was depleted during the course of the experiments. We observed that HAse treatment 

reduced invasion by 40% relative to untreated controls. For comparison, ribavirin decreased 

invasion by 60% consistent with its reduction of HA to background levels.  Strikingly, the 

combination of ribavirin and HAse reduced invasion by 80% (Fig. 4e-f and Supp. Fig. 4c-d). 

Importantly, ribavirin affects multiple eIF4E target pathways, not only HA biosynthesis, and 

thus its effects are expected to be greater than HAse alone. We extended these studies to monitor 

the role HA production played in the migration activity of eIF4E in wound healing assays. As 

expected, we observed increased migration in eIF4E-overoxpressing cells relative to vector 
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control (Fig. 4g, h). Knockdown of HAS3 reduced eIF4E-dependent migration by ~ 4-fold while 

treatment with HAse reduced it by almost 2-fold indicating this was also an HA dependent 

phenomenon. 

 

We extended the above studies to examine the role of HA in eIF4E-mediated metastasis in vivo. 

Previously, we demonstrated that ribavirin treatment reduced metastasis by 3-fold in an eIF4E-

dependent pulmonary metastatic mouse model using 66cl4 cells (23). Above, we demonstrated 

that eIF4E drives HA production in these cells and that ribavirin repressed HAS3 and HA 

production (Fig. 3).  Here, we investigated whether inhibition of eIF4E activity correlated not 

only with reduced lung metastases but also with lower HA levels (Fig. 5). Serial formalin-fixed 

sections of tumor bearing lungs, from control and ribavirin treated animals, were stained for 

HA, and hematoxylin (Fig. 5a). Staining intensity and area were quantified using Visiomorph.  

Tumours from 10 animals for treated and 9 in the untreated groups were analyzed. Strikingly, 

we observed a 50% decrease in HA levels in the lungs of ribavirin-treated mice relative to 

controls (Fig. 5a-b). HA surrounded tumour cells indicating that HA was adjacent to and/or on 

the surface of these cells. As expected, HA was also found in normal tissues, consistent with its 

major structural role in the microenvironment. HAse treatment of serial sections indicated that 

the HA staining observed is specific (Fig. 5a). Thus, we demonstrate that eIF4E targeting leads 

to reduced HA levels and decreased metastasis in vivo. 

 

Next, we examined whether CD44, as a representative downstream effector of the HA-network, 

was also required for eIF4E-mediated invasion (Fig. 1 b-d). eIF4E overexpression led to highly 

elevated CD44 protein levels (Fig. 1d) and CD44 coated the surface (Supp. Fig. 5a). Indeed, 

CD44 and HA co-localized on the cell surface (Supp. Fig. 5). These studies are similar to those 

showing that CD44 bound HA on the surface of HAS3 overexpressing cells (1). Inhibition of 

CD44 with RNAi or independently with CD44 blocking antibodies (mAb A3D8) reduced 

eIF4E-mediated invasion by ~4-fold for RNAi and ~3-fold for mAb A3D8 treatment (Supp. 

Fig. 5 b-c & f-g). The similarity for the reduction induced by CD44 inhibition, knockdown of 

HAS3 or ribavirin treatment suggests that CD44 plays an important role in this process. 
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Significantly, modulation of CD44 did not alter HA status, as seen by HABP-staining confocal 

microscopy (Supp. Fig. 5e). Thus, although HA is essential for eIF4E-mediated invasion, its co-

factors CD44 and perhaps others, are likely also required for this activity. This suggests that the 

HA coat and/or protrusions need to be armed with CD44 to support the invasion potential of 

eIF4E overexpressing cells. Further in high-eIF4E cells, HA is likely directly binding CD44 to 

activate this signalling pathways in neighbouring cells and/or in its own cells leading to 

autocrine stimulation. In either case, these would stimulate cellular signalling cascades that 

drive the oncogenic phenotype.  

 

Conclusions 

Our studies demonstrate that the entire HA-network is subjected to coordinated post-

transcriptional control by eIF4E. These findings have several mechanistic and clinical 

implications. For instance, factors that modulate the levels, localization, or phosphorylation of 

eIF4E are positioned to profoundly affect HA production and the global activity of the HA 

network. Indeed, targeting eIF4E with RNAi knockdown or ribavirin treatment reduced HA 

levels as effectively as direct targeting with HAse. We note that eIF4E drove the production of 

cell-associated HA which in turn, fundamentally modified the cell-surface architecture 

facilitating invasion and metastases. Thus eIF4E may specifically drive an oncogenic HA-

programme, in contrast to typical situations where this large glycosaminoglycan is extruded into 

the matrix. It is not yet known if the ability to modulate HA is a property unique to eIF4E, or if 

other oncoproteins initiate a similar programme.  

Materials and Methods 

Reagents and Constructs: pcDNA-2Flag-eIF4E wild-type and S53A mutant constructs were 

previously described (13-14). Ribavirin was purchased from Kemprotec (CAS 36791-04-5). 

AMAC (2-aminoacridone) from Molecular probes (A-6289). Sodium Cyanoborohydride from 

Sigma Aldrich (15,615-9). Chondroitinase ABC from Proteus Vulgaris from Sigma Aldrich 

(CAT# C3667-10UN). 40% Acrylamide/Bis Solution, 37.5:1 from BioRad technologies (Cat# 

1610148).  
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Antibodies for immunoblotting: Mouse monoclonal anti-eIF4E (BD PharMingen, 610270) or 

Rabbit monoclonal anti-eIF4E (Millipore, 04-347) for Western Blot analysis. Rabbit anti-eIF4E 

for RNA immunoprecipitation (MBL international, RN001P). Mouse monoclonal anti-CD44 

blocking antibody A3D8 (Novus Biologicals, NB600-1457). Mouse monoclonal anti-CD44 

antibody (156-3C11) for Western Blot and Confocal Analysis (Cell Signalling, 3570). Rabbit 

polyclonal anti-HAS3 antibody (Abcam, ab154104). Rabbit polyclonal anti-

phosphoglucomutase 5 (Abgent, AI14638). Rabbit polyclonal anti-Glucose 6 phosphate 

isomerase antibody [EPR11663(B)] (Abgent, AW5240-U400). Rabbit polyclonal anti-UDP 

glucose dehydrogenase antibody (Abgent, AP12613b). Mouse monoclonal anti-GFPT1 

antibody [EPR4854] (Abgent, AO2212a). Rabbit polyclonal anti-GNPNAT1 antibody 

(GeneTex, GTX122246). Rabbit monoclonal anti-UAP1 antibody [EPR10259] (Abcam, 

ab155287). Mouse monoclonal anti-β-actin (Sigma Aldrich, A5441). Mouse monoclonal anti-

α-tubulin (Sigma Aldrich, T5168). Rabbit polyclonal anti-Mcl-I (S-19) (Santa Cruz, sc-819). 

Mouse monoclonal anti-c-Myc (9E10) (Santa Cruz, sc-40). Mouse monoclonal anti-HSP90α/β 

(F-8) (Santa Cruz, sc-13119). Rabbit polyclonal anti-Lamin A (C-terminal) (Sigma Aldrich, 

L1293). Rabbit polyclonal anti-Pol II N-20 (Santa Cruz, sc-889). Rabbit polyclonal anti-

GAPDH (FL-335) (Santa Cruz, sc-25778).  

Cell Culture and Transfection: U2Os cells (ATCC) were maintained in 5% CO2 at 37°C in 

Dulbecco's modified Eagle's medium (DMEM) (Gibco BRL) supplemented with 10% fetal 

bovine serum (FBS) and 1% penicillin-streptomycin (Invitrogen). MM6 cells (ATCC TIB202) 

and 66cl4 (obtained from Dr. Wilson H. Miller, Lady Davis Institute, Montreal, QC, Canada) 

were maintained in RPMI 1640 (Invitrogen) supplemented with 10% heat-inactivated FBS and 

1% penicillin-streptomycin. All cell lines (resistant and parental) were routinely checked to 

ensure there was no mycoplasma contamination using MycoAlert Mycoplasma Detection kit 

(Lonza, LT07-418). Transfections for stable cell lines were performed using Trans IT-LT1 

Transfection Reagent (Mirus) as specified by the manufacturer, and selected in G418-containing 

medium (1 mg/mL) for eIF4E stable overexpressing cell lines. For eIF4E, HAS3 or CD44 

knockdowns, U2Os cells were transfected with Lipofectamine 2000 and 20-40 nM siRNA 

duplex according to the manufacturer's instructions. For siHAS3 two sequences were used such 
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that the total amount of the siRNA mix is equal to 40 nM. Cells were analyzed 96 h after 

transfection. List of siRNA purchased: 

 

siRNA Catalog # 

siRNA duplex_eIF4E (Mouse) IDT Technologies 

MMU.RNAI.N0007917.1.1 

MMU.RNAI.N007917.1.2 

siRNA duplex _eIF4E (Human) IDT Technologies 

sense (CUGCGUCAAGCAAUCGAGAUUUGGG) 

antisense (CCCAAAUCUCGAUUGCUUGACGCAGUC) 

siRNA duplex _HAS3 IDT Technologies 

HSC.RNAI.N138612.12.5 

HSC.RNAI.N005329.12.3 

siRNA duplex _CD44 Qiagen 

FlexiTube siRNA Hs CD44 Cat# S100299705  

siRNA duplex _Luciferase IDT Technologies 

sense (CACGUACGCGGAAUACUUCGAAATG) 

antisense (CAUUUCGAAGUAUUCCGCGUACGUGUU) 

 

Cellular Fractionation and Export Assay: Fractionation protocol was followed as previously 

described. About 3 x 107 cells were collected and washed twice in ice cold PBS (1,200 rpm/3-

5 min) and then re-suspended with slow pipetting in 1 ml of lysis buffer B (10 mM Tris pH 8.4, 

140 mM NaCl, 1.5 mM MgCl2, 0.5% (v/v) NP-40, 1 mM DTT and 100 U/ml RNase Inhibitors). 

The lysate was centrifuged at 1000 g for 3 min at 4°C and supernatant (cytoplasmic fraction) 

was transferred into a fresh microtube. The pellet (nuclear fraction) was resuspended in 1 ml of 

lysis buffer B, transferred to round bottom, polypropylene tube and 1/10 volume (100 µL) of 

detergent stock (3.3% (w/v) Sodium Deoxycholate, 6.6% (v/v) Tween 40 in DEPC H20) was 

added with slow vortexing (to prevent the nuclei from clumping) and incubated on ice for 5 min. 

The suspension was transferred to a microtube and centrifuged at 1,000 g for 3 min at 4°C. 

Supernatant (post-nuclear fraction) was transferred to a fresh tube and the pellet-nuclear fraction 
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was rinsed in 1 ml of lysis buffer B and centrifuged at 1,000 g for 3 min at 4°C. The nuclei, 

present in the pellet, were re-suspended in 100 µL of lysis buffer B and sonicated. The 

postnuclear and cytoplasmic fractions were combined. The RNA was extracted from the 

different fractions by adding TRIzol reagent (Invitrogen) and processed according to the 

manufacturer’s instructions. 

RNA Immunoprecipitation (RIP): RIP from nuclear fractions of cells was performed as 

previously described (14). Briefly, 1 mg of nuclear lysate was used for RIP with 7 μg anti-eIF4E 

antibody (MBL RN001P) or control immunoglobulin G (rabbit, Millipore). After incubation, 

complexes were eluted by boiling in tris(hydroxymethyl)aminomethane (Tris) EDTA 

containing 1% (w/v) sodium dodecyl sulfate and 12% (v/v) β-mercaptoethanol. RNA were 

isolated using TRIzol reagent and isolated using Direct-zol RNA Miniprep Kit (Zymo 

Research). RNA samples (TurboDNase, Ambion) were reversed transcribed using SuperScript 

VILO cDNA synthesis kit (for RIP experiments) or M-MLV reverse transcription (Invitrogen). 

Reverse transcription and Quantitative PCR: DNAse treated RNA samples (TurboDNase, 

Ambion) were reverse transcribed using M-MLV reverse transcriptase (Invitrogen). QPCR 

analyses were performed using SensiFast Sybr Lo-Rox Mix (Bioline) in AB Viia7 thermal 

cycler using the relative standard curve method (Applied Biosystems User Bulletin #2). All 

conditions were described previously. Primers list includes: 

Name Sequence 

CD44   Sense CGGCTCCTGTTAAATGGTATCT 

Antisense TCTGCTTTGTGGTCTGAGAAG 

HAS3  Sense CAGGAGGACCCTGACTACTT 

Antisense GTGGAAGATGTCCAGCATGTA 

Hexokinase 1 Sense GAAGATGGTCAGTGGCATGTA 

Antisense GGTGATCCGCCCTTCAAATA 

GPI  Sense TCTATGCTCCCTCTGTGTTAGA 
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Antisense CTCCTCCGTGGCATCTTTATT 

UGDH  Sense GTGCCCATGCTGTTGTTATTT 

Antisense CGCCGTCCATCGAAGATAAA 

UAP1  Sense GCAGTGCTACAAGGGATCAA 

Antisense CCACCAGCTAGAAGAAGAACTG 

PGM5  Sense TGATCTCCGAATCGACCTATCT 

Antisense ATATCCACTGGGTCCACTATCT 

GNPNAT1 Sense CCCAACACATCCTGGAGAAG 

Antisense CTCTGTTAGCTGACCCAATACC 

GNPT1/GFAT Sense ACTTTGATGGGTCTTCGTTACT 

Antisense  ACAATCTGTCTCCCGTGATATG 

Actin B Sense GCATGGAGTCCTGTGGCATCCACG 

Antisense GGTGTAACGCAACTAAGTCATAG 

GAPDH Sense GAAGGTGAAGGTCGGAGTC 

Antisense GAAGATGGTGATGGGATTTC 

 

MCL1  Sense TTTCAGCGACGGCGTAACAAACTG 

Antisense TGGTTCGATGCAGCTTTCTTGGT 

U6  Sense CGCTTCGGCAGCACATATAC 

Antisense AAAATATGGAACGCTTCACGA 

tRNALys Sense GCCCGGATAGCTCAGT 

Antisense CGCCCAACGTGGGGC T 
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Western Blot Analysis: Western analysis was performed as described previously (18) with a 

modified lysis buffer (40 mM Hepes, pH 7.5, 120 mM NaCl, 1 mM EDTA, 10 mM β-

glycerophosphate, 50 mM NaF, 0.5 μM NaVO3, and 1% (v/v) Triton X-100 supplemented with 

complete protease inhibitors [all were purchased from Sigma-Aldrich]). In addition, blots were 

blocked in 5% (w/v) milk in TBS–Tween 20. Primary antibodies were diluted in 5% milk. 

Glucose levels: U2Os cells overexpressing 2Flag-eIF4E or 2Flag-vector control were plated at 

1 million cells per well of a 6-well plate. On the next day, cells were starved in DMEM + 0.5% 

(v/v) FBS + 1% (v/v) Pen/Strep for 16 hours at 37 ºC, 5% CO2.  Following starvation, media 

was replaced with low glucose DMEM (Life technologies, Cat# 11885-084) + 1 g/L D-(+)-

Glucose (Sigma Aldrich, Cat# G8644) + 10% (v/v) FBS +1% (v/v) Pen/Strep. Glucose levels 

were measured at indicated time points using Clarity Plus Blood Glucose Monitoring Kit (Cat# 

DTG-GL-15PROMO). 

HA synthesis growing conditions per cell line: (A) For U2Os or 66cl4 cell lines: Cells were 

seeded at a density of 80,000 cell per well of 4-well glass Millicell EZ-Slide (Millipore, 

PEZGS0416) overnight in complete growth media, DMEM or RPMI 1640 respectively. 24 hrs 

post-seeding, cells were starved in media containing 0.5% (v/v) FBS + 1% (v/v) Pen/Strep. 16 

hrs later, media was replaced with either DMEM/RPMI 1640 containing a total of 2 g/L glucose 

as follows: for U2Os cells low glucose DMEM + 1 g/L D-(+)-Glucose + 10% (v/v) FBS + 1% 

(v/v) Pen/Strep was used; and for 66cl4 RPMI 1640 + 1 g/L D-(+)-Glucose + 10% (v/v) FBS + 

(v/v)  1% Pen/Strep. Cells were incubated for 12 hrs at 37 ºC 5% CO2 and then prepared for 

immunofluorescence staining. (B) For MM6, cells were grown overnight at 1 million cells/ml 

in RPMI 1640 containing 10% (v/v) FBS and 1% (v/v) Pen/Strep. On the next day, cells were 

washed two times with 1x PBS (Wisent Biologicals, Cat# 311-010-CL) and resuspended in 

RPMI 1640 containing a total of 2 g/L glucose + 10% FBS +1% Pen/Strep and incubated at 

37ºC 5% CO2 for 4 hours after which prepared for fluorescence staining. CD34+ cells were 

purchased from ATCC and primary high-eIF4E AML samples were obtained from our phase I 

clinical trial of ribavirin and low-dose cytarabine (16). 

Hyaluronidase treatment: One hour prior to the end of the 12 or 4 hrs incubation of U20s, 

66cl4 or MM6 cells, respectively, in media containing 2 g/L glucose, cells where treated with 
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Hyaluronidase from Streptomyces Hyalurolyticus (Sigma Aldrich, Cat# H1136) at 12 units/ml/1 

million cell and incubated at 37ºC 5% CO2 for 1 hour. Hyaluronidase preparation: 1 Ampule 

(equivalent to 300 units) was resuspended at 1 unit/µl in the following buffer (20 mM sodium 

phosphate buffer, pH 7.0, with 77 mM sodium chloride and 0.1 mg/ml BSA at 1 mg/ml), 

incubated at room temperature for 10 minutes and then aliquoted and stored at -80 ºC. After 

Immunofluorescence, fluorescence and laser-scanning confocal microscopy: For HA 

staining biotinylated Hyaluronic acid binding protein (from Bovine Nasal Cartilage, Millipore, 

Cat# 385911) resuspended in 100 µl water: glycerol (50:50) (v/v) was used. Fluorescence 

staining was carried out as described (PEG Protocol Cleveland Clinic). Briefly, following 

incubation with media containing 2 g/L glucose and treatment with Hyaluronidase, cells were 

washed 3 times with complete growth media followed by 3 washes with 1 x PBS. Slides were 

then air-dried for 15 minutes and fixed with 4% Paraformaldehyde (32% solution from Electron 

Microscopy Sciences, Cat# 15714) prepared in 1x PBS for 10 minutes at room temperature. 

After fixation, slides were air-dried and stained right away. Note that slides can be stored at 4ºC 

for few days, however longer term storing at 4ºC or -20ºC is not recommended as HA staining 

is lost due oxidative or mechanical breakdown of HA chains. For staining, slides were blocked 

for 1 hour at room temperature in blocking solution (10% (v/v) FBS + 0.2% (v/v) Triton-X-100 

in 1x PBS) and incubated with HABP (1:100 dilution in blocking solution) overnight at 4ºC; 

followed by 3 washes in blocking solution (5 minutes each). Slides were then incubated with 

FITC or Texas Red conjugated Streptavidin (Vector Laboratories, Cat# SA-1200) (1:500 

dilution in blocking solution) for 1 hour at room temperature; washed 4 times with 1x PBS (pH 

7.4) and mounted in Vectashield with DAPI (Vector laboratories, Cat# H-1200). For CD44 

staining: mouse anti-CD44 (A3D8 or 156-3C11) was used at 1:500 dilution in blocking buffer, 

respectively. Secondary anti-mouse FITC antibody (Jackson Laboratories) was used at 1:500 

dilution. Incubations with primary antibodies were carried out overnight at 4ºC and incubations 

with secondary antibodies were done for 1 hour at room temperature.  

Analysis was carried out using a laser-scanning confocal microscope (LSM700 META; Carl 

Zeiss, Inc.), exciting 405 and 543nm or 488nm with a 63x objective, 2x digital zoom (where 

indicated), and numerical aperture of 1.4. Channels were detected separately, with no cross talk 

observed. Confocal micrographs represent single sections through the plane of the cell. Images 
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were obtained from ZEN software (Carl Zeiss, Inc) and displayed using Adobe Photoshop CS6 

(Adobe). 

Ribavirin treatment: Treatment of U2Os, MM6 and 66cl4 cells with ribavirin was carried out 

as follows. For U2Os and 66cl4 cell lines: cells were seeded at 0.7 million (Untreated) or 1.4 

million cells (Ribavirin treated) per 10 cm plate. 20 µM ribavirin was used to treat cells for 48 

or 96 hrs (for 96 hrs treatments, ribavirin is replenished every 24 or 48 hrs). For MM6 cells were 

treated with 5µM ribavirin at 0.5 million/ml (Untreated) or 1 million/ml (Ribavirin treated) cell 

density, and ribavirin was replenished every 24 hrs for 48 or 96 hrs. 

In vitro fluoroblok Matrigel invasion assay: Fluoroblok Invasion assays were performed 

according to manufacturer instructions (Ref1: Automated, Kinetic Imaging of Cell Migration 

and Invasion Assays using Corning FluoroBlok™ Permeable Supports. Brad Larson et al. 

BioTek 2014. Ref2: An in vitro FluoroBlok Tumour Invasion Assay. Jeff Partridge et al. BD 

Biosciences. JOVE 2009 DOI: doi:10.3791/1475). Briefly, fluoroblok 24-well inserts with 8-

micron pore size PET membrane (Corning Ct # 351152) were precoated with 1 µg/µl Matrigel 

matrix basement membrane (BD Biosciences Cat # 356237) diluted in serum free DMEM media 

for 24 hr at 37 °C. Cells were harvested, centrifuged, rinsed three times with serum free media 

and suspended at a density of 1 x 105 cells/ 300 µl in culture media containing 0.5% (v/v) FBS. 

Cells were then plated on Matrigel coated and uncoated inserts and 750 µl of culture media 

containing 10% (v/v) FBS was added to the lower compartment of the chamber. Chambers were 

incubated at 37°C for 48 hrs. After invasion period, cells were labeled with DilC12(3) 

perchlorate, ultra-pure (Enzo Life Sciences, Cat # ENZ-52206) diluted at 1:2000 in culture 

media for 10 minutes at 37°C followed by 15-minute incubation at 4°C. After washing, 

fluorescence of invaded and migrated cells was measured at wavelengths of 549/565 nm 

(Ex/Em) on a bottom-reading fluorescent plate reader and images were taken using an inverted 

fluoresce microscope to verify results. Data is expressed according to the following equation:  

 

% invasion=   Mean RFU of cells invaded through matrigel coated inserts towards chemoattractant 

Mean RFU of cells migrated though uncoated inserts towards chemoattractant 
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In vitro Scratch Assay: U2Os cells overexpressing 2Flag-eIF4E or vector control subjected to 

HAS3 knockdown for 72 hrs were seeded in Millicell EZ slide (4-well glass) at 80,000 cell per 

well diluted in DMEM containing 10 % (v/v) FBS+1% (v/v) Pen/Step. On the next day, cells 

were starved in DMEM containing 0.5% (v/v) FBS +1% (v/v) Pen/Strep for 16 hrs. Following 

incubation, a scratch was made in the cell layer using a 1 ml tip. Cells were then washed with 

PBS to remove floating cells and fresh DMEM-low glucose media containing 10% (v/v) FBS + 

1% (v/v) Pen/Strep + 1 g/l glucose was added (total glucose concentration is 2 g/l). For the HAse 

treatment conditions, 12 units/ml of Streptomyces Hyaluronidase was added per well following 

media change. Pictures of the scratches were taken at the time of the scratching and after 16 hrs. 

The area not filled with cells was quantified using TScratch software (available from 

Computational Science and Engineering lab at ETH University, Zurich, Switzerland).  

Fluorophore-Assisted Carbohydrate Electrophoresis (FACE): U2Os cells were seeded at 1 

million cells/well of a 6-well plate and incubated at 37ºC 5% CO2 overnight. 24 hrs after, cells 

were starved in DMEM containing 0.5% (v/v) FBS + 1% (v/v) Pen/Strep for 16 hrs. Media was 

then replaced with low glucose DMEM + 1 g/L glucose + 10% (v/v) FBS + 1% (v/v) Pen/Strep 

and incubated for 12 hrs at 37ºC, 5% CO2. Following incubation, samples were prepared for 

FACE analysis as previously described (PEG protocol Cleveland Clinic). Briefly, media was 

collected and cells were washed 3 times with 1x PBS. Media and cells were treated with 1x 

Proteinase K (from Tritirachium album, Sigma Aldrich, Cat# P2308) for 2 hours at 60ºC 

followed by precipitation and treatment with Hylauronidase and Chondroitinase ABC. Samples 

were finally lyophilized, resuspended in AMAC solution and separated on acrylamide gels as 

described. Fluorescence detection of AMAC derivatives was achieved with GelDoc system. 

DNA was quantified using Quant-iT PicoGreen dsDNA assay kit (ThermoFisher, P11496).  

Histochemistry staining: Tumour blocks of mouse mammary tumours and lung metastases of 

published data (6) were analyzed for HA staining as a function of ribavirin treatment from 10 

ribavirin and 10 control animals. A total of 3 × 4 μm serial step sections were prepared and 

stained for each mouse for HABP and H&E. Batch analysis of 10 selected areas of 5.8 × 10−2 

mm2 (2.4 × 105 pixels) were run. Percent positive nuclei per section were determined by 

addition of areas until the average percent positive nuclei for one section did not change. One 
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tumour section per animal was analyzed, and at least three areas of healthy tissue were taken 

into consideration for the percent positive nuclei result. 

In situ Protein Synthesis Assay: We used Click-iT HPG Alexa Four 488 (Thermo Fisher 

Scientific, Catalog number C10428) according to the manufacturer’s instructions. Briefly, cells 

pretreated with 20 µM Ribavirin for 48 hours were seeded in Millicell EZ slide (4-well glass) at 

80,000 cell per well diluted in DMEM containing 10 % (v/v) FBS+1% (v/v) Pen/Step. On the 

next day, cells were starved in DMEM containing 0.5% (v/v) FBS +1% (v/v) Pen/Strep for 16 

hrs. Following starvation, media was replaced with fresh DMEM-low glucose containing 10% 

(v/v) FBS + 1% (v/v) Pen/Strep + 1 g/l glucose was added (total glucose concentration is 2 g/l) 

and cells were incubated for 12 hours to allow synthesis of HA. After incubation, cells were 

incubated with HPG for 1 hour in methionine free RPMI  1640 + 10% (v/v) FBS +1% (v/v) P/S 

+1 g/l glucose. Cells were then washed with PBS and fixed with 3.7% formaldehyde for 15 min 

at room temperature and permeabilized with 0.5% (v/v) Triton X-100. Incorporation of HPG 

was detected using Click-iT Cell Reaction Buffer Kit according to the manufacturer's 

instructions. Confocal analysis was used to assess in situ protein synthesis. 
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Figure 1: eIF4E regulates the expression of HA synthesizing enzymes and HA receptor 

CD44. (A) HA biosynthesis pathway. (B) RT-qPCR of HA synthesizing enzymes and its 

receptor CD44 following RNA immunoprecipitation (RIP) of nuclear eIF4E in U2Os 2Flag-

eIF4E cells using rabbit anti-eIF4E antibody. Data are normalized to IgG control and presented 

as fold change. c-Myc and Mcl-1 are eIF4Es and thus serve as positive controls while GAPDH 

and 18S rRNA served as negative controls. (C) RT-qPCR of HA synthesizing enzymes in 

cytoplasmic versus nuclear fractions of U2Os cells overexpressing 2Flag-eIF4E (2F4E), S53A 

mutant (2FS53A) or vector control (2Fvect). Data are normalized to vector control. c-Myc and 

Mcl-1 served as known eIF4E targets while GAPDH, Hsp90 and β-Tubulin served as negative 

controls. (D) Western blot of HAS3 and CD44 as a function of eIF4E or S53A mutant 

overexpression. Mcl-1 served as positive eIF4E target control. Actin was used as a loading 

control. HK: Hexokinase; HAS3: Hyaluronan Synthase 3; PGM5: Phosphoglucomutase 5; 

UGP2: UDP glucose pyrophosphorylase; UGDH: UDP glucose dehydrogenase; GFPT1: 

Glutamine fructose 6 phospho transaminase; GNPNAT1: Glucosamine phosphate N-

acetyltransferase; UAP1: UDP N-acetyl pyrophosphorylase; GPI: Glucose-6-phosphate 

isomerase; CD44: HA receptor; MMP9: Matrix Metalloproteinase 9. For bar graphs, the average 

+/- standard deviation are shown. Experiments were carried out in triplicate, at least three 

independent times.  
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Figure 2: eIF4E overexpression correlates with increased HA synthesis. (A) Fluorescence 

staining of HA (in green) using biotinylated HA binding protein with streptavidin-FITC in U2Os 

cells overexpressing eIF4E, S53A mutant or vector control in the presence or absence of 

Streptomyces Hyaluronidase treatment. DAPI is in blue. Note cell surface expression of HA in 

response to eIF4E overexpression. All confocal settings are identical between specimens and 

thus lower signal is indicative of less HA. A ×40 objective with no digital zoom was used. (B) 

2x digital zoom in confocal images of HA from part (A). (C) Quantification of fluorophore-

assisted carbohydrate electrophoresis (FACE) gels (Sup Fig 1 e&f) for HA levels in U2Os cells 

expressing eIF4E, S53A mutant or vector control, and U2Os cells overexpressing eIF4E 

following HAS3/eIF4E knockdown or pharmacological inhibition with ribavirin. (D) 
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Fluorescence staining of HA (in green) following siRNA to eIF4E or ribavirin treatment in 

U2Os cells overexpressing eIF4E. DAPI is in blue. A ×63 objective with no digital zoom used. 

For bar graphs, the mean +/- SD are shown. Experiments were carried out in triplicate, at least 

three independent times. **P < 0.01, ***P < 0.001 (Student’s t-test). 

 

 

Figure 3: eIF4E elevates HA in cancer cell lines and primary specimens. (A) RT-qPCR of 

HA synthesizing enzymes and its receptor CD44 following RNA immunoprecipitation of 

nuclear eIF4E in MM-6 cells using rabbit eIF4E antibody. Data are presented as fold change 

relative to IgG controls. c-Myc and Mcl-1 served as endogenous eIF4E targets while GAPDH, 

β-Tubulin and 18SrRNA served as a negative control. (B) RT-qPCR of HA synthesizing 

enzymes in cytoplasmic versus nuclear fractions of MM-6 cells treated with Ribavirin. Data are 

normalized to untreated control. Error bars are averages ± S.D. c-Myc and Mcl-1 served as 

known eIF4E targets while GAPDH, β-Tubulin, RPIIa and Survivin served as negative control. 
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(C) Western blot of HA synthesizing enzymes and CD44 as a function of Ribavirin treatment 

in MM-6 cell line. Mcl-1 served as endogenous eIF4E target while Hsp90 served as a loading 

control. (D) Fluorescence staining of HA (in red) in MM-6 cell lines treated with Ribavirin (Rib) 

versus untreated (UN) in the presence or absence of Hyaluronidase treatment. DAPI is in blue. 

A ×63 objective with no digital zoom is used. (E) Fluorescence staining of HA (in red) in 

Normal human CD34+ specimen compared with leukemic cells from M5 AML Patient. (F) 

Quantification of HA fluorescence staining in M4/M5 AML patients using ZEN software. HA 

signal intensity is presented as the geometric means of the HA signal in 100 cell normalized to 

that of Normal human CD34+ specimen. (G) Fluorescence staining of HA (in green) in 66cl4 

cells in the presence or absence of Hyaluronidase or Ribavirin treatment. DAPI is in blue. A 

×63 objective with no digital zoom used. (H) Western blot control of HAS3 and CD44 as a 

function of ribaivirin treatment in 66cl4 cell line. Mcl-1 served as endogenous eIF4E target 

while ActinB served as loading control. Experiments were carried out in triplicate, at least three 

independent times. For bar graphs, the mean +/- standard deviation are shown. *P < 0.05 

(Student’s t-test). 
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Figure 4: Surface HA is required for eIF4E-mediated invasion and migration of cancer 

cells.  (A-B) Cell invasion through matrigel assessed following siRNA-mediated knockdown of 

HAS3 or scrambled control (Luciferase (siLuc)) in U2Os cells overexpressing eIF4E or vector. 

Invasion is measured as the percentage of fluorescence staining intensity in matrigel coated 

inserts versus that of the control inserts. (C) Fluorescence staining of HA (in green) following 

siRNA to HAS3. DAPI is in blue. A ×40 objective with no digital zoom used. (D) Western blot 

to demonstrate knockdown efficiency of HAS3. Tubulin served as loading control. (E-F) Cell 

invasion through matrigel assessed in U2Os cells overexpressing eIF4E following treatment 

with Ribavirin and/or Hyaluronidase. Invasion is measured as in 0. (G-H) Cell migration across 

a scratch assessed in U2Os cells overexpression eIF4E or vector control following knockdown 

of HAS3 or treatment with Streptomyces Hyaluronidase. Migration is measured as the 

percentage of the area not filled with cells at t=16hrs normalized to that of the t=0hr time point. 

For bar graphs, the mean +/- standard deviation are shown. Experiments were carried out in 

triplicate, at least three independent times. **P < 0.01, ***P < 0.001 (Student’s t-test). 
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Figure 5: HA biosynthesis is required for eIF4E-mediated lung metastasis in mice. (A) 

Histochemical staining of HA using biotinylated HABP in metastatic mouse tumours. (B) 

Quantification from Visiomorph. For bar graphs, the mean +/- standard deviation are shown. 

*P < 0.05 (Student’s t-test). 
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Supplementary Figures 

 

Supplementary Figure 1: eIF4E regulates HA synthesis. (A) Control Western blot for cellular 

fractionation corresponding to eIF4E RIP shown in Figure 1B. Lamin and Pol II are used as 

nuclear markers while GAPDH, β-Tubulin and MEK are used as cytoplasmic markers. (B) 

Semi-qPCR for tRNAlys and U6 snRNA as control for the cytoplasmic and nuclear fractions, 

respectively, corresponding to the export assay shown in Figure 1C. (C) RT-qPCR of total 

mRNA levels corresponding to mRNA export assay shown in Figure 1C. (D) Western blot of 

HA synthesizing enzymes as a function of eIF4E or S53A mutant overexpression. cMyc served 

as positive eIF4E target control. Actin was used a loading control. (E-F) Fluorophore-assisted 

carbohydrate electrophoresis gels corresponding to bar graph presented in Figure 2 c. (G) 

Glucose levels were measured in mg/dl using Clarity Plus Blood Glucose Monitoring Kit in 
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Vector or eIF4E U2Os cells as a function of time (in hours). Experiments were carried out in 

triplicate, at least three independent times. (H) Fluorescence staining of HA (in green) of U2Os 

cells overexpressing eIF4E collected at different time points following media change (to DMEM 

containing 2 g/l glucose). DAPI is in blue. A ×40 objective with no digital zoom used. 

Experiments were carried out in triplicate, at least three independent times. For bar graphs, the 

mean +/- standard deviation are shown.  

 

Supplemental Figure 2: eIF4E elevates HA in cancer cell lines and primary specimens. (A) 

Control Western blot for cellular fractionation corresponding to eIF4E RIP. Lamin and Pol II 

are used as nuclear markers while Raf1 is used as cytoplasmic marker. (B) RT-qPCR of total 

mRNA levels corresponding to mRNA export assay (C) Semi-qPCR for tRNAlys and U6 

snRNA served as controls for the cytoplasmic and nuclear fractions, respectively. 
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Supplementary Figure 3: eIF4E concentrates in HA rich protrusions and correlates with 

sites of active translation. (A-B) Fluorescence staining of Click_iT HPG Alexa Flour 488 in 

66cl4 or U2Os cells overexpressing eIF4E cells, respectively, following treatment with 20 µM 

Ribavirin versus untreated control. Cyclohexamide treatment is used as a negative control. A 

x40 or 63 objectives is used. Experiments were carried out in triplicate, at least three 

independent times. 
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Supplementary Figure 4: Surface HA is required for eIF4E-mediated invasiveness of 

cancer cells. (A-D) Control inserts for Matrigel invasion assays shown in Figures 3a and e. (E-

F) In vitro Matrigel invasion assay following siRNA mediated knockdown of eIF4E in U2Os 

cells overexpressing eIF4E, S53A mutant or vector control. (G) Control inserts for invasion 

assays shown in parts E and F. (H) Fluorescence staining of HA (in green) in U2Os cells 

overexpressing eIF4E collected at different time points following HAse treatment. DAPI is in 

blue. A ×40 objective with no digital zoom used. Experiments were carried out in triplicate, at 

least three independent times. For bar graphs, the mean +/- standard deviation are shown. 

**P < 0.01, ***P < 0.001 (Student’s t-test). 
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Supplemental Figure 5: CD44 is required for the invasion of eIF4E cells. (A) 

Immunofluorescence staining of CD44 (in green) following siRNA-mediated knockdown of 

CD44 in U2Os cells overexpressing eIF4E or vector control. DAPI is in blue. A ×40 objective 

with no digital zoom used. (B-C) Cell invasion through matrigel assessed following siRNA-

mediated knockdown of CD44 in U2Os cells overexpressing eIF4E or vector control. siRNA 

against Luciferase was used as a control. Invasion was measured as a percentage of fluorescence 

staining intensity of matrigel coated inserts normalized to control inserts. (D) Western blot 
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control to assess knockdown efficiency of CD44. (E) Fluorescence staining of HA (in green) 

following siRNA to CD44 versus scrambled control in U2Os cells overexpressing eIF4E. DAPI 

is in blue. A ×63 objective with no digital zoom used. (F-G) Control inserts for Matrigel invasion 

assays shown in part (B). (H-I) Cell invasion through matrigel assessed following treatment with 

anti-CD44 blocking antibody (A3D8) known to bind the HA-binding domain of CD44. Invasion 

is measured as percentage of fluorescence staining intensity of matrigel coated inserts 

normalized to control inserts. (J-K) Control inserts for Matrigel invasion assays shown in part 

(H-I). For bar graphs, the mean +/- standard deviation are shown. Experiments were carried out 

in triplicate, at least three independent times. **P < 0.01, ***P < 0.001 (Student’s t-test).  
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Published Manuscript in Blood 2015 :blood-2015-05-645069; doi:10.1182/blood-2015-05-
645069 

 

Synopsis: 

eIF4E is overexpressed in Diffuse Large B Cell Lymphoma (DLBCL), including the most 

aggressive subtypes. Its activity in driving the mRNA export and translation of known driver 

oncogenes (BCL6, BCL2, MYC) is maintained through binding to Hsp90. Accordingly, co-

inhibition of these two binding partners with known pharmacological inhibitors induces tumor 

regression in cell line and patient-derived tumorgrafts and sets the stage for a new antilymphoma 

therapeutic strategy. 

 

Contribution: 
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M.G., P.G., M.L., R.M. and G.I. Prepared and provided reagents: T.T. and G.C. Supervised 

research and designed experiments: A.M, O.E, K.L.B.B. and L.C. Wrote the manuscript: 

B.C.K., T.F., A.M, K.L.B.B. and L.C  
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Published Manuscript in Biochem Biophys Res Commun. 2013 May 10;434(3):614-9. doi: 
10.1016/j.bbrc.2013.03.125. Epub 2013 Apr 10. 

 

Synopsis: 

To date, ribavirin is the only direct inhibitor of eIF4E to reach clinical trials. However, the 

structural changes induced in eIF4E by binding of RTP (the active metabolite of ribavirin, 

ribavirin triphosphate) are unknown. Our NMR studies indicate RTP binds eIF4E in the m7G 

cap binding pocket and revealed an unexpected concentration dependence on RTP affinity for 

eIF4E.  
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and designed experiments: K.L.B.B. Wrote the manuscript: L.V., M.O. and K.L.L.B 
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Supplementary Materials 

Conformational changes induced in the eukaryotic translation initiation 

factor eIF4E by a clinically relevant inhibitor, ribavirin triphosphate 

Laurent Volpona,†, Michael J. Osbornea,†, Hiba Zahreddinea, Andrea A. Romeob and Katherine L.B. 

Bordena,* 

aInstitute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université 

de Montréal, Pavilion Marcelle-Coutu, Chemin Polytechnique, Montreal, Qc, H3T 1J4, Canada. 

bAegera Therapeutics (Pharmascience Inc.), 810 Chemin du golf, Verdun (Montreal), Qc, H3E 1A8, Canada. 

Materials and Methods 

1.  Materials 

GTP and m7GTP were purchased from Sigma and RTP was synthesized from Ribavirin (Kemoprotec) 

as described by Kimoto [1]. 31P NMR and mass spectrometry experiments indicated the RTP was intact 

and in the triphosphate form. 

2. eIF4E purification and characterization 

Human eIF4E was purified using the established procedure of elution with m7G (a cap analogue) 

from a cap affinity column followed by extensive dialysis and ion exchange chromatography to remove 

the remaining cap [2]. To ensure our samples were free of m7G, we compared the 1H-15N HSQC spectra 

obtained from this method with human apo eIF4E produced using a His tag. Differences were observed 

only at the N-terminus because of differences in the sequence due to cloning (Supplementary Fig. 1A). 

This is also supported by our recent crystal structure of apo eIF4E form purified using the cap affinity 

chromatography protocol [3]. Next, we looked at the aggregation state of eIF4E over our experimental 

concentration range and no obvious change in the apo-eIF4E 1H-15N HSQC spectra could be detected 

(Supplementary Fig. 1B). 

3. CD spectroscopy 

CD studies were carried out on a JASCO 810 spectropolarimeter using a 0.1 cm cuvette at 20°C. 

Buffer and nucleotide absorbance were subtracted out. Experiments were performed at pH 7.5, 150 mM 

NaCl, 10 mM sodium phosphate and 20°C with ~2 �M eIF4E conditions based on our previous 

fluorescence and cap chromatography studies with ribavirin [4,5]. Protein concentration was estimated 

by UV-Vis absorption spectroscopy (� = 52940 M-1cm-1) to be 2 �M and samples with approximately 
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20-fold molar excess of the different nucleotide triphosphates were incubated for 30 minutes before data 

acquisition. 

4. NMR spectroscopy 
1H-15N HSQC spectra were collected in 10 mM sodium phosphate, 150 mM NaCl, pH 7.5 and 20°C 

on a 600 MHz Varian Inova spectrometer. Experiments were processed with NMRPipe [6] and analyzed 

using Sparky [7]. Chemical shift perturbations were weighted by calculating the average chemical shift 

differences, �av(NH), using the equation �av(NH) = [(��H
2 + (��N/5)2)/2]1/2, where ��H and ��N are the 

differences between free and bound chemical shifts [8]. Translation diffusion experiments were 

performed using the stimulated echo with bipolar gradient pulses [9] and Watergate for solvent 

suppression. 

5.  FPLC experiment 

Samples were applied to a Superdex 75pg (Pharmacia) equilibrated with 50mM phosphate pH 7.5, 

100mM NaCl, 50 �M TCEP, and were eluted in the same buffer at 1 ml.min-1, under a pressure of 0.35 

MPa at 4°C. The column was standardized by eluting a series of marker proteins of known molecular 

mass and calculating the partition coefficient. 

6.  ITC  

ITC was performed with a VP-ITC instrument from Microcal, Inc. at 20oC. The eIF4E sample and 

the m7GTP were in 10 mM sodium phosphate, 150 mM NaCl, pH 7.4. 

7. AUC experiments 

AUC experiments were performed at 20°C using a Beckman Coulter XL-I analytical 

ultracentrifuge. All experiments were performed in dual-sector, charcoal-filled Epon centerpieces that 

had been filled with 390 �l of sample in the sample sector and 400 �l of buffer (10 mM sodium 

phosphate, 150 mM NaCl, pH 7.4, 100 �M TCEP) without proteins in the reference sector. Assembled 

cells (one per sample) were loaded into a four-hole An60Ti rotor. AUC data were collected at 30,000 

rpm in absorbance mode at 280 nm. Three different eIF4E concentrations (2, 10 and 20 �M) were 

analyzed from the same stock eIF4E sample. Data were analysed using SEDNTERP and SEDFIT 

[10,11]. Sedimentation profiles were obtained by fitting the absorbance data to the continuous c(s) or 

c(M) models, affording estimates of the sedimentation coefficient and molecular weight. 

8. Mass spectroscopy 

Hydrophilic chromatography was used in conjunction with mass spectrometry. The system used was 

an Agilent 1100 HPLC coupled to an Agilent MSD Trap SL, with an ESI source. The autosampler system 
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was kept at 4°C. The HPLC column was an Inertsil HILIC, 150 x 4.6 mm, 5 µm and the chromatography 

was obtained using solvent A (2 mM ammonium formate in water, pH 3.2) and solvent B (100% 

acetonitrile). The injection volume was 50 µl and the flow rate 1 ml/min. The column compartment was 

heated at 30°C. The initial gradient was 95% B and 5% A which changed during a 30 min course to 5% 

B and 95% A followed by 6 min equilibration at 95 % B and 5 % A. The total run time of the gradient 

was 36 min. The ESI source of the coupled MS ion-trap was set in positive mode, the nitrogen drying 

gas flow at 12 ml/min, the nebulizer pressure at 55 PSI and the temperature of the capillary at 350°C 

with a voltage of 4500 V. The mass analyzer was set to scan from 50 to 1500 m/z. 

9. Detection of the RTP in human cells 

The head and neck carcinoma cell FaDu (obtained from the ATCC) was treated with 0.7 �M 3H 

ribavirin for 8 hours, the maximal uptake of ribavirin. Cells were lysed and immediately 

immunoprecipitated with an anti-eIF4E antibody (Sigma Aldrich) or immunoglobulin IgG as a negative 

control as described [12]. 3H ribavirin content was determined by scintillation counting. 

Supplementary Figures 

 

Supplementary Figure 1. (A). 1H-15N HSQC spectra of human eIF4E purified either by nickel agarose 

chromatography (red) or by cap chromatography (green). (B) 1H-15N HSQC spectra of the apo-eIF4E 

corresponding to the low (red) and high (blue) concentrated samples. 
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Supplementary Figure 2. NMR analysis of the low and high micromolar eIF4E-RTP complex. (A) 

Regions highlighting specific residues of 1H-15N HSQC spectra of apo eIF4E W56A (red) with ~20-fold 

molar excess of RTP (green). (B) 1H-15N HSQC spectra of 50 �M eIF4E W56A (red) as a function of 

increasing concentration of RTP (up to 1:60; green). (C) Per-residue line broadening upon binding of 

RTP with eIF4E (2-5 �M) at ratio 1:20. Positive (white) and negative (gold) bars are representative of 
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residues that broaden, and/or shift relative to apo eIF4E, respectively. Black is unknown due to spectral 

overlap. (D) Per-residue chemical shift perturbations upon binding of RTP with eIF4E (50 �M) at a ratio 

of 1:50. 

 

Supplementary Figure 3. Comparison of the residues affected on the dorsal surface in the RTP 

and m7GTP eIF4E complexes. (A). Selected regions of 1H-15N HSQC spectra centered on specific 

residues located on the dorsal surface of eIF4E. The apo eIF4E (red) is superposed with either ~20-fold 

molar excess of RTP (green) or m7GTP (blue). (B) Position of the different residues shown in (A) are 

represented on the eIF4E structure. 
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Supplementary Figure 4. The concentration dependence of eIF4E and its cap ligand. (A) FPLC 

elution profile of eIF4E at different concentrations. The peaks at 43 and 63 ml correspond to the void 

volume and the monomeric form of eIF4E (~25kDa), respectively. All four profiles were standardized 

to the highest peak at 63ml (1000 mAU). (B) Plot of the dissociation constants for the eIF4E / m7GTP 

complex obtained by ITC at indicated eIF4E concentrations. (C) Translation diffusion experiments 

calculated at different apo eIF4E concentrations. The calculated diffusion coefficients Ds are 0.56.10-6 ± 

2.6.10-11, 0.65.10-6 ± 2.7.10-11 and 0.72.10-6 ± 6.1.10-11 cm2/s for eIF4E samples at 503, 104 and 20 �M, 

respectively. 

 

This experiment is representative of three independent experiments each carried out in triplicate. 3H 

ribavirin enrichment in IgG controls is arbitrarily set to 1. Error bars represent standard deviations. 
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CHAPTER 11 

Discussion and Perspectives 
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DISCUSSION 

The tale of cancer treatment and its relapse remains a major challenge in medical oncology. 

Since Richard Nixon, the former U.S. president, has declared the “War on Cancer” almost 40 

years ago (1), moderate progress has been made in improving the survival rates of patients. This 

impediment is, in part, due to our constant search for novel Achilles heels and finding ways to 

target them while undermining two important aspects that if were addressed in parallel will most 

likely lead to the development of most efficacious therapies. Cancer invasion and treatment 

evasion remain to date the major cause of cancer related mortality among patients.  

Cancer Treatment Escape and Evasion 

The development of longstanding anti-cancer therapeutics is constantly hindered by the 

development of primary or acquired multidrug resistance. Mechanisms by which cancer cells 

circumvent treatment can be generally divided into three categories: impaired drug net uptake 

(due to either enhanced efflux or decreased uptake), mutation of drug targets or compensatory 

genetic rewiring of relevant pathways (2). In my thesis, I present a fourth model “inducible drug 

glucuronidation”. Here, cancer cells hijack UGT1A enzymes to chemically modify drugs and 

block drug-target interactions.  

While earlier studies investigating the role of UGTs in malignancy were focused on the effects 

of loss of UGTs and the accompanying deficiency in xenobiotics clearance, this is the first report 

to demonstrate that UGTs can be upregulated in an inducible-manner. Supporting our model, 

two subsequent studies have been published, since, showing a direct correlation between UGT 

expression and activity with the development of resistance to HDAC and Hsp90 inhibitors in 

CLL and colorectal cancer cell lines, respectively (3, 4). As such, induced drug glucuronidation 

could be extended to other types of cancers; an interesting future perspective that can be 

addressed using tissue microarrays on large databank of patients to detect the commonality of 

this resistance mechanism in different cancer types and stages. 

Understanding the mechanism(s) regulating inducible glucuronidation is essential for 

developing means to target UGTs and reverse the phenotype. In the AML case presented in my 

thesis, increased expression of GLI1 leads to elevation of UGTs. The mechanism by which GLI1 
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controls UGT1A expression does not appear to be at the transcriptional level, given the 

disconnect between UGT1A protein and mRNA levels. Treatment of resistant cell lines with the 

proteasome inhibitor MG132, indicates the GLI1 increases UGT1A protein stability. It is 

therefore plausible that GLI1 proteins indirectly either (i) decrease UGT1A turnover through 

downregulation of specific protein ligases, (ii) induce some posttranslational modifications or 

(iii) increase UGT1A ER-retention. Preliminary data from antibody arrays in GLI1 

overexpressing cells predict GLI1-mediated increase of ER-retention as a possible mechanism. 

Hence, identifying factors mediating the link between GLI1 and UGT1A could serve as an 

alternative therapeutic modality to using GLI1 inhibitors as a means to revert resistance.  

In addition to GLI1 dysregulation, it seems likely that other pathways can lead to UGT 

dysregulation in cancer. These include, DNA methylation, transcriptional regulation, 

phosphorylation, histone modification, microRNA regulation as well as alternative splicing. An 

interesting recent discovery revealed the presence of a novel class of human UGTs encoded by 

the same genetic loci but instead of possessing the common C-terminus exon 5a, utilize a shorter 

exon 5b which leads to premature translation termination. The resulting truncated UGT proteins, 

coined UGT_i2s, lack glucuronidation activity but act in a dominant-negative capacity possibly 

through forming inactive heteromeric complexes with full length UGT isoforms thus reducing 

enzymatic activity (5, 6). Accordingly, understanding the mechanisms of regulation of UGT and 

UGT_i2s might provide a means for many possible therapeutic strategies, beyond the GLI1 

model, to decrease or increase the expression of these enzymes, respectively. Such studies 

should include monitoring UGT protein levels and identifying which of the UGTs are 

dysregulated in various types of cancers.  

Another effective strategy for reversing GLI1-dependent glucuronidation resistance is perhaps 

identifying inhibitors for UGT1A enzymes that are directly responsible for glucuronidation. 

This can be achieved by screening UGT1A enzymes against fragment libraries using NMR 

techniques. Screening of fragment libraries is a relatively new screening technique that has been 

successful in generating clinical compounds, even for difficult drug targets. In this technique 

small molecules (typically < 300 Da) are screened against a target protein, multiple hits are 

typically identified and linked together to form a strong specific inhibitor. Critically fragments 

are chosen with good drug-like properties, such as solubility, PK and toxicity profiles which are 
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often exhibited in the final drug. Since initial hits are expected to be weak, NMR has been the 

technique of choice for screening. After initial hits have been identified, their binding site on 

the UGT1A protein is assessed via competition experiments with known substrate binders and 

binders at the cofactor site. Alternatively, expressing the N- and C-terminal domains separately 

or using well known mutants known to be important for substrate or cofactor binding can be 

tested. Identified hits are collated based on affinity and/or tested in microsome assays for 

glucuronidation of ribavirin. An offshoot of this analysis is discovery of unique mechanisms for 

each glucuronidation target. In the absence of structure for the full-length UGT1A enzyme, 

interligand NOE’s between bound molecules can be assessed to help guide linking strategies for 

stronger binders. Additionally, the UGT1A enzyme of interest will be modeled based on 

homologous plant and yeast structures to aid in drug design (there are examples of this in the 

literature). 

An important feature of drug resistance is that development of resistance to one drug can lead 

to resistance to others. Given the broad range of substrates recognized by UGT enzymes, 

inducible drug glucuronidation could potentially target a wide variety of chemically distinct 

drugs. To determine which FDA approved drugs are potential clients for this resistance 

mechanism, high-throughput screening of cells overexpressing GLI1 can be established. Our 

preliminary results reveal a list of approximately 130 compounds whose inhibition of cell 

growth was impaired following GLI1 upregulation. Amongst, were drugs that are used as 

standards in the treatment of cancer, including Methotrexate, Floxuridine, and Idarubicin.  

Validation of these hits, followed by mass spectrometry analysis to determine if the drugs get 

glucuronidated or whether multiple forms of GLI1-dependent drug resistance occurs still needs 

to be done. As a control, treatment with Vismodegib and other GLI1 inhibitors will be useful to 

assess if resistance to these drugs can be reversed. Interestingly, preliminary analysis of the drug 

screen also revealed a list of approximately 23 compounds reverting drug resistance. Most of 

these drugs belong to a family of ATP synthesis inhibitors, including Gossypol, Aurovertin B, 

and Quinidine sulfate. Even though validation of this list still needs to be established, and thus 

could provide an alternative therapeutic venue to overcome GLI1 mediated drug resistance, a 

study aimed at understanding the sensitivity of GLI1 overexpressing cells to ATP inhibition 

would be of great value.  
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Beside glucuronidation, phase II drug metabolism includes other biotransformation reactions 

that serve to detoxify drugs. These conjugation reactions include, sulfation, acetylation, 

methylation and glutathione addition, among others. A recent study revealed a correlation 

between elevated glutathione levels and the inactivation and subsequent resistance to seven 

platinum drugs; indicating that similar to glucuronidation, other drug modifications could also 

be exploited by cancer cells to evade treatment. As such, phase II machinery needs to be 

characterized in cancer patients, particularly at resistance, as this might aid in impeding cancer 

and improving survival rates for patients.  

My work demonstrates that resistance to a given therapeutic agent does not mean the end of our 

war against cancer, but rather the beginning a new battle where collateral hypersensitivity to 

alternative drugs can be exploited, only if we stand our grounds and strike back. It further 

demonstrates a new form of drug resistance “inducible drug modification” that should be taken 

into account not only during initial drug development but also upon resistance; turning around 

the one favorited hallmark of cancer cells “survival of the fittest” into our own advantage.   

Cancer Invasion and Metastasis: Spawning Pioneer Cells in the Strive for Survival 

From the cancer principle “survival of the fittest” comes the 6th hallmark defined by local 

invasion and distant metastasis, “a growing tumour will eventually spawn pioneer cells; these 

move out of the original clump of mutant cells to invade…” by Buddhini Samarasinghe. 

Over the past two decades, the mechanism(s) regulating invasion and metastasis are becoming 

increasingly evident. It is now believed that in favor of motility, cancer cells genetically rewire 

to hijack and activate an important developmental program, the EMT, used in normal embryonic 

development and in response to inflammation (7, 8). During EMT, a set of pleiotropically acting 

transcription factors orchestrates the expression of molecules used to alter the shape of cancer 

cells, change cell polarity, loosen cell adhesion junctions, and degrade the ECM (7, 8). One of the 

known migratory events in EMT is characterized by the production of CD44 on the surface of 

cancer cells to aid their movement on stromal or endothelial hyaluronic acid chains (9-11). The 

findings I present in chapter 8, alter this long-held dogma of CD44-assisted cancer cell migration 

on HA chains. Instead, I show that cancer cells per se express short chains of HA that form 



185 
 

microvillus-like surface protrusions which recruit CD44, among other receptors. These 

architectural changes are not observable by light microscopy because the HA filaments are too 

narrow, and thus these alterations have gone undetected for decades. I show the surprising 

finding that HA on the surface of tumour cells is required for eIF4E-mediated invasion. 

Specifically, eIF4E engages a post-transcriptional programme that drives the production of HA 

leading to the acquisition of an HA surface coat and cell surface protrusions. These studies 

demonstrate for the first time that HA biosynthesis and related structural changes can be 

harnessed by an oncoprotein to drive its malignant phenotype. Further, these findings alter the 

usual conception of glucose derivatives changing the metabolism of cancer cells to depict them 

as building blocks used to construct extracellular structures armed with factors that increase the 

metastatic phenotype. 

Interestingly, the data presented in chapter 8 indicate that eIF4E might be a key regulator of 

HA-rich microvilli, beyond regulation of HA enzymes and CD44. Our RIP and export assays 

indicate that in addition to HA synthesizing enzymes and CD44, matrix metalloproteinases 

(including MMP9 and MMP2), collagenases, as well as ERM proteins (namely Ezrin) are 

potential targets of eIF4E. These findings support a model whereby HAS3 overexpression on 

the surface of cancer cells catalyzes the synthesis of HA which in turn coats the surface and 

mediates the formation of microvillus-like protrusions. Concomitantly, the microvilli-recruited 

CD44, on one hand, forms a scaffold for the binding of active MMPs that aid motility through 

proteolysis of the ECM, and on the other hand, interacts with cytoplasmic ERM proteins linking 

the plasma membrane with the actin cytoskeleton. It is noteworthy that neither CD44 nor HA 

alone can induce cell migration; rather an interaction between the two is necessary to activate 

this process. Also, despite the presence of CD44 in HAS3-induced protrusions, inhibition of 

CD44 activity with blocking antibodies or siRNA-mediated knockdown of CD44 does not affect 

the formation of these protrusions; suggesting that this particular activity is CD44 independent. 

These data indicate that CD44-HA dependent and/or independent functions are essential for 

downstream signalling post-protrusion formation. Subsequent studies focused on determining 

the composition of eIF4E-induced HA-rich protrusions would be of great interest as this will 

provide more profound mechanistic insights into the process of invasion and metastasis and 

ultimately aid the development of therapeutic means to prevent it.   
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Data shown in chapter 8 demonstrate, for the first time, that leukemic cells can also be sugar-

coated (the presence of protrusions still needs to be assessed). If the expression of surface 

protrusions represents a means by which carcinoma cells locally invade the ECM, then what are 

the implications of having an HA-coat, and perhaps the associated microvillus-like protrusions, 

on the surface of AML cells? Throughout their lifespan, leukemic cells can circulate and take 

up residence in organs such as the liver and spleen, however, the vast majority are found in bone 

marrow (BM) niches where interactions with various BM cells provide them with factors 

favouring their survival. Bone homing of AML cells has been shown to rely on leukemic CD44-

endothelial HA interaction to mediate the rolling of these cells on the endothelial wall (9, 12-14). I 

propose that the HA rich protrusions on the surface of leukemic cells are required for the homing 

process post-extravasation. It is plausible that once inside the bone marrow, AML cells use their 

HA coats/protrusions to invade through ECM towards the niche where they can hide and escape 

treatment.  This proposition can support the development of ribavirin resistant eIF4E AML cells 

discussed in chapter 3. Alternatively, the HA-CD44 interaction in AML can also play a role in 

cell-cell communication between cancer cells or cancer cells with BM cells in favor of survival 

or might mediate bone marrow exit of AML cells (a topic that, to date, is still largely uncovered). 

Accordingly, assessing the role of the HA coat in AML biology needs to be assessed by using 

mouse xenograft models. 

Would HA-rich surface protrusions contribute to the release of microvesicles prior to the 

spawning of pioneer cells from the primary tumour? Recent evidence has shown that cancer 

cells can produce nano-sized vesicles termed “microvesicles” that carry cargo necessary for 

multiple aspects of cancer development including invasion, metastasis and enhancing drug-

resistance potential (15, 16). This cargo consists of DNA, mRNAs, microRNAs, proteins and lipids 

that can be delivered to local as well as distant cells (15, 16). One of the interesting features of 

these microvesicles is depicted during metastasis whereby their migration to pre-metastatic sites 

creates an ideal milieu in which primary tumour cells can now grow (17-19). As such, the shedding 

of such microvesicles from the HA rich protrusions presented on the surface of eIF4E 

overexpressing cells to aid metastasis might be a logical choice for these cells during late stages 

of their development. Indeed, preliminary data of HA immunofluorescence staining in eIF4E 

overexpressing cells shows the secretion of these microvesicles between cells. Further, it is 
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shown that in various types of cancers, production of interleukin 10 (IL-10) by monocytes is 

induced by low molecular weight HA located in tumour-derived microvesicles (15). As such, 

characterizing the type of microvesicles produced following eIF4E overexpression as well as 

identifying their composition and their role in determining subsequent organotropic metastasis 

could be used to predict metastatic propensity as well as organ-specific metastasis.  

In conclusion, HA-rich protrusions on the surface of AML and carcinoma cells could serve a 

dual role mediating cancer invasion and treatment evasion. Accordingly, eIF4E overexpression 

provides AML cells with a proliferative as well as survival advantage placing eIF4E not only as 

a central node of an RNA regulon that governs cellular proliferation but also as a central node 

of a second RNA regulon, a “Sugar Regulon”, governing invasion; where eIF4E regulates the 

expression of HA biosynthesis as well as microvilli-based factors essential for invasion. A better 

understanding of the mechanisms underlying bone marrow homing of eIF4E high AML cells is 

required to develop better treatment options. Here, I present the use of a clinically available HA 

degrading enzyme, Hyaluronidase, to augment the cytotoxic effects of ribavirin on AML and 

carcinoma models. Indeed, the design of future clinical trials combining ribavirin and 

Hyaluronidases are currently in progress. 
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Conclusion 

Cancer invasion and treatment evasion remain to date the two leading cause of cancer related 

mortalities among patients. Studies focused on understanding the molecular mechanisms 

governing these two processes will aid in the development of targeted therapeutics. The case 

presented in this thesis, demonstrates an example of how this can be accomplished. The data 

presented herein, illustrate how cancer cells develop oncogenic dependency on the roles of 

eIF4E for their invasion and treatment escape and also presents ways to overcome these 

phenotypes clinically. While cancer treatment escape can be established via inducible drug 

glucuronidation, and its invasion through presentation of surface sugar coats containing 

weapons of metastatic destruction, using combinations of clinically available inhibitors to 

synthetically eradicate tumor cells provides rays of hope for improving the survival rates of 

these patients. 
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