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SOMMAIRE

Dans le premier chapitre de cette thèse, nous passons en revue les outils de la théorie ana-
lytique des nombres qui seront utiles pour la suite. Nous faisons aussi un survol des entiers
y−friables, c’est-à-dire des entiers dont chaque facteur premier est plus petit ou égal à y.
Au deuxième chapitre, nous présenterons des problèmes classiques de la théorie des nombres
probabiliste et donnerons un bref historique d’une classe de fonctions arithmétiques sur un
espace probabilisé.
Le problème de Erdős sur la table de multiplication demande quel est le nombre d’entiers
distincts apparaissant dans la table de multiplication N × N . L’ordre de grandeur de cette
quantité a été déterminé par Kevin Ford (2008). Dans le chapitre 3 de cette thèse, nous
étudions le nombre d’ensembles y−friables de la table de multiplication N × N . Plus con-
crètement, nous nous concentrons sur le changement du comportement de la fonction A(x, y)
par rapport au domaine de y, où A(x, y) est une fonction qui compte le nombre d’entiers
y− friables distincts et inférieurs à x qui peuvent être représentés comme le produit de deux
entiers y− friables inférieurs à

√
x.

Dans le quatrième chapitre, nous prouvons un théorème de Erdős-Kac modifié pour l’ensemble
des entiers y− friables. Si ω(n) est le nombre de facteurs premiers distincts de n, nous prou-
vons que la distribution de ω(n) est gaussienne pour un certain domaine de y en utilisant la
méthode des moments.

Mots clés: Théorie des nombres analytiques, théorie des nombres probabiliste, méthode
des moments, entiers y−friables, problème d’Erdős sur la table de multiplication, théorie de
Erdős-Kac.
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SUMMARY

The object of the first chapter of this thesis is to review the materials and tools in analytic
number theory which are used in following chapters. We also give a survey on the develop-
ment concerning the number of y−smooth integers, which are integers free of prime factors
greater than y.
In the second chapter, we shall give a brief history about a class of arithmetical functions
on a probability space and we discuss on some well-known problems in probabilistic number
theory.
We present two results in analytic and probabilistic number theory.
The Erdős multiplication table problem asks what is the number of distinct integers appearing
in the N ×N multiplication table. The order of magnitude of this quantity was determined
by Kevin Ford (2008). In chapter 3 of this thesis, we study the number of y−smooth entries
of the N × N multiplication. More concretely, we focus on the change of behaviour of the
function A(x,y) in different ranges of y, where A(x,y) is a function that counts the number
of distinct y−smooth integers less than x which can be represented as the product of two
y−smooth integers less than

√
x.

In Chapter 4, we prove an Erdős-Kac type of theorem for the set of y−smooth integers. If
ω(n) is the number of distinct prime factors of n, we prove that the distribution of ω(n) is
Gaussian for a certain range of y using method of moments.

Keywords: Analytic number theory, probabilistic number theory, method of moments,
y−smooth integers, Erdős multiplication table problem, Erdős-Kac theorem.
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Chapter 1

INTRODUCTION AND PRELIMINARIES

1.1. Notation
Analytic number theory involves estimating various quantities which are not easy to

calculate precisely. Here we present some notation that are used frequently for bounding
(estimating) functions in this thesis.
We write f(x) = O(g(x)) or f(x)� g(x) if there exists an absolute constant C such that∣∣∣f(x)

∣∣∣ ≤ Cg(x) .

Here the inequality holds either for all x for which the functions are defined, or for all
sufficiently large x (i.e. all x larger than some fixed constant), that will be clear in context.
The notation f(x) � g(x) (f is of order g), means that

f(x)� g(x) and g(x)� f(x).

If g(x) 6= 0, we write f(x) = o(g(x)) if
f(x)
g(x) → 0 as x→∞.

Also, for g(x) 6= 0 we write f(x) ∼ g(x) as x→∞, if
f(x)
g(x) → 1 as x→∞.

Finally, we will use the following notations:
R,N,C the set of real, natural and complex numbers respectively.
bxc the greatest integer ≤ x.
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dxe the smallest integer ≥ x.
(a,b) the greatest common divisor of a and b.
Re(s) the real part of s ∈ C.

1.2. Prime number theorem
The Prime Number Theorem concerns estimating the number of prime integers up to x,

namely

π(x) :=
∑
p≤x

1.

This theorem states
π(x) ∼ x

log x as x→∞.

This means that the probability that a random integer less than x is prime is about 1
log x .

Some well-known proofs of the prime number theorem are due to Atle Selberg and Paul
Erdős (1949), and a simple proof is a result of Newman [27] (1980). The most common
proofs are based on reformulating the problem in terms of better-behaved prime counting
functions that have smoother behaviour than π(x) and give an equivalent result. Here we
define two of such functions:
The first Chebyshev function ψ(x), defined by

ψ(x) :=
∑
pk≤x
p prime

log p =
∑
n≤x

Λ(n).

where Λ(n) is the Von Mangolt function, namely

Λ(n) :=

log p, if n = pk and k ≥ 1
0, otherwise.

The second Chebyshev function is defined by

θ(x) :=
∑
p≤x

log p.

We are now in the position to state the Prime Number Theorem in three equivalent classical
forms,
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Theorem 1.2.1. (Prime number theorem) There is a constant c > 0 such that

ψ(x) = x+O

(
x

exp(c
√

log x)

)
,

θ(x) = x+O

(
x

exp(c
√

log x)

)
,

and
π(x) = Li(x) +O

(
x

exp(c
√

log x)

)
,

for x ≥ 2.
The function Li(x) is the logarithmic integral

Li(x) :=
∫ x

2

du

log u.

Using integration by parts K times, one can arrive at

Li(x) = x
K∑
k=1

(k − 1)!
(log x)k +OK

(
x

(log x)K

)
.

Thus, we can deduce that

π(x) = x

log x +O

(
x

(log x)2

)
.

1.2.1. Mertens’ estimates

A second type of estimates below the level of the PNT (Prime Number Theorem) are
estimates for certain weighted sums over primes. These estimates are very strong with small
error terms, but they are not strong enough to imply the prime number theorem.
Theorem 1.2.2. (Mertens’ estimates) We have

(1) ∑
n≤x

Λ(n)
n

= log x+O(1),

(2) ∑
p≤x

log p
p

= log x+O(1),
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(3) ∑
p≤x

1
p

= log log x+ A+O

(
1

log x

)
,

and
(4) ∏

p≤x

(
1− 1

p

)
= e−γ

log x

(
1 +O

(
1

log x

))
,

where A is a constant and γ = 0.5772 . . . is the Euler’s constant defined by

γ := lim
n→∞

(
− lnn+

n∑
k=1

1
k

)
.

1.3. Euler products and Riemann’s zeta function
Definition 1.3.1. (Arithmetic and multiplicative functions) An arithmetic function is a func-
tion defined from N to C, and a multiplicative function is an arithmetic function such that

f(mn) = f(m)f(n) whenever (m,n) = 1.

It is completely multiplicative if

f(mn) = f(m)f(n) ∀m,n ∈ N.

The series defined by
F (s) :=

∞∑
n=1

f(n)
ns

is called the Dirichlet series associated with the function f , where f(n) is an arithmetic
function and s is a complex variable denoted by s = σ + it.
The most famous Dirichlet series is the Riemann zeta function ζ(s), defined by

ζ(s) :=
∞∑
n=1

1
ns
,

considered as a function on the complex variable s and continued with a simple pole at s = 1,
occupies a central role in analytic number theory. It also has a very important property that
various Dirichlet series can be expressed in terms of it.
We have a representation of any Dirichlet series associated with a multiplicative function as
an infinite product over primes, called the Euler product. If F (s) is a Dirichlet series, the



6

Euler product of F (s) is ∏
p

(
1 +

∞∑
m=1

f(pm)
pms

)
. (1.3.1)

We have
Theorem 1.3.1. (Euler product identity) Let f be a multiplicative function with the Dirichlet
series F .
i) : If F (s) converges absolutely at some point s, then the infinite product (1.3.1) converges
absolutely and is equal to F (s).
ii) : The Dirichlet series F (s) converges if and only if

∑
pm

|f(pm)|
pms

<∞.

A famous example of the Euler product is the Riemann’s zeta function ζ(s), represented
as follows

ζ(s) =
∞∑
n=1

1
ns

=
∏
p

(
1 +

∞∑
m=1

1
pms

)
=
∏
p

(
1− 1

ps

)−1

(σ > 1).

1.4. Perron’s Formula.
Here we introduce Perron’s formula. This formula plays a fundamental role in proof of

the Prime Number Theorem and estimating y−smooth integers to be defined later.
Let an be an arithmetic function, and

F (s) :=
∞∑
n=1

an
ns

be a Dirichlet series and uniformly convergent for Re(s) > σ. Now we introduce the nor-
malised summatory function

A(x) :=
∑
n<x

an + 1
2ax,

where ax = 0 if x is not an integer. Perron’s formula states

A(x) = 1
2πi

∫ κ+i∞

κ−i∞
F (s)x

s

s
ds, (1.4.1)

where x > 0 and κ > max(0,σ)).
The proof of Perron’s formula relies on the following Laplace inversion formula, achieved by
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applying the residue theorem in complex analysis:

1
2πi

∫ κ+i∞

κ−i∞

xs

s
ds =


1 if x ≥ 1,
1/2 if x = 1,
0 if 0 < x < 1.

(1.4.2)

A better version of Perron’s formula used in applications gives an explicit bound for the
contribution from the domain |τ | > T to the integral.
Theorem 1.4.1. For T ≥ 1, we have

A(x) = 1
2πi

∫ κ+iT

κ−iT
F (s)x

s

s
ds+Ok

xκ ∞∑
n=1

|an|
nκ
(
1 + T

∣∣∣ log(x/n)
∣∣∣)
 ,

where κ > max(0,σ) and x ≥ 1.

1.5. y−smooth integers
1.5.1. Rankin’s bound

An integer n is said to be y−smooth or y−friable if none of its prime factors are greater
than y. There are many publications in recent decades about y−smooth numbers. We first
define the set of y−smooth integers up to x as follows:

S(x,y) := {1 ≤ n ≤ x : P (n) ≤ y} ,

where P (n) denotes the largest prime factor of n, with the convention that P (1) = 1. We set

Ψ(x,y) :=
∣∣∣S(x,y)

∣∣∣.
A simple bound for Ψ(x,y) can be obtained by Rankin’s method. The main idea of Rankin’s

method is that for a multiplicative function f(n), we have the following explicit upper bound
for f(n)

∑
n≤x

f(n) ≤
∑
n≤x

f(n)
(
x

n

)σ
≤ xσ

∞∑
n=1

f(n)
nσ

= xσ
∏
p

(
1 + f(p)

pσ
+ f(p2)

p2σ + . . .

)
.

(1.5.1)
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Now by the definition of y−smooth integers and using the Rankin’s bound, we get

Ψ(x,y) =
∑
n≤x

P (n)≤y

1 ≤
∑
n≥1

P (n)≤y

(
x

n

)σ
= xσ

∑
n≥1

P (n)≤y

1
nσ
, (1.5.2)

where σ is a real positive number. The last sum can be bounded by

∑
n≥1

P (n)≤y

1
nσ

=
∏
p≤y

(
1− 1

pσ

)−1

� exp

∑
p≤y

1
pσ

 , (1.5.3)

since by the Taylor expansion of the logarithm, we have

log
∏
p≤y

(
1− 1

pσ

)−1

= −
∑
p≤y

log
(

1− 1
pσ

)

=
∑
p≤y

∞∑
m=1

1
mpmσ

=
∑
p≤y

1
pσ

+O(1).

Now by using the Taylor expansion of the exponential function and by the assumption that
σ ≥ 1− 1

log y , we get

exp

∑
p≤y

1
pσ

 = exp

∑
p≤y

1
p

(
1

pσ−1

) = exp

∑
p≤y

1
p

+O

(1− σ)
∑
p≤y

log p
p

 .
Taking σ = 1− 1

log y , gives

exp

∑
p≤y

1
pσ

� log y. (1.5.4)

Combining (1.5.3) with (1.5.4), one can arrive at the upper bound∑
n≥1

P (n)≤y

1
nσ
� log y. (1.5.5)

Finally, substituting (1.5.5) into (1.5.2), gives that

Ψ(x,y)� xe−u log y.

where u is defined as
u := log x

log y .
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By a more complex method, one can remove log y in the upper bound (see [31, Theorem 1,
III.5]).

1.5.2. Sieve methods

There are various other methods that have been developed by several authors for evalu-
ating Ψ(x,y). Sieve methods deal with estimates for the number of elements in a finite set A
that are not divisible by any prime p from some set P of primes. One heuristic estimate of
Ψ(x,y) can be obtained by the sieve estimate

#{n ≤ x : (n,p) = 1 ∀p ∈ P} � x
∏
p∈P

(
1− 1

p

)
, (1.5.6)

which holds for any set of primes P in [1,x1/2−ε) ( It can be found in [20].) So, by (1.5.6),
one can predict an approximation of Ψ(x,y) as follows

Ψ(x,y) � x
∏

y<p≤x

(
1− 1

p

)
= x

∏
p≤x(1− p−1)∏
p≤y(1− p−1) .

Now by Mertens’ formula we get
Ψ(x,y) � x

u
,

where u := log x
log y . But we will see that the order of magnitude of Ψ(x,y) decreases exponen-

tially in u. The reason for this difference is that (1.5.6) is true by independent assumptions
which are not satisfied if P ∩ [

√
x,x] 6= ∅. For example if p ∈ [

√
x, x] divides n, then n is not

divisible by any other prime in [
√
x, x].

Here we find an estimate for Ψ(x,y) where y takes large values compared to x. We use
induction on buc = b log x

log y c. If buc = 0, then we can write

Ψ(x,y) = bxc −# {n ≤ x : ∃p ∈ (y,x] such that p|n} , (1.5.7)

but if u < 1, then y > x, and trivially we have

Ψ(x,y) = bxc = x+O(1).

If buc = 1, then we have x1/2 < y ≤ x. Thus,
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Ψ(x,y) = bxc −
∑

y<p≤x
#{n ≤ x : p|n} = bxc −

∑
y<p≤x

bx
p
c.

Thus, by using Mertens’ estimate, we obtain

Ψ(x,y) = x(1− log u) +O

(
x

log x

)
. (1.5.8)

If buc = 2, then x1/3 < y ≤ x1/2, and we can write

Ψ(x,y) = Ψ(x,
√
x)−#

{
n ≤ x : y < P (n) ≤

√
x
}

= Ψ(x,
√
x)−

∑
y<p≤

√
x

Ψ(x/p, p). (1.5.9)

For all primes p in (y,
√
x] we have

√
x/p < p ≤ x/p as soon as x1/3 < y ≤ x1/2. So by using

the result in (1.5.8) and Mertens’ estimate, we obtain

Ψ(x,y) = x(1− log 2)−
∑

y<p≤
√
x

x

p

(
1− log

(
log(x/p)

log p

))
+O

(
x

log x

)
. (1.5.10)

Now by applying the Prime Number Theorem to the last sum, one can arrive at the following
estimate:

Ψ(x,y) = x(1− log 2) +
∫ √x
y

(
1− log

(
log x/t
log t

))
dt

t log t +O

(
x

log x

)
,

∼ xρ(u),
(1.5.11)

where
ρ(u) := 1− log u+

∫ u

2
log(v − 1)dv

v
2 ≤ u < 3.

This argument gives us the formula

Ψ(x,y) ∼ xρ(u) xε < y ≤ x, (1.5.12)

where ρ is defined by initial condition ρ(u) = 1 when 0 ≤ u ≤ 1 and the general form

ρ(u) = ρ(k)−
∫ u

k
ρ(v − 1)dv

v
(k ≤ u ≤ k + 1). (1.5.13)
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The function ρ(u) is a continuous function, called the Dickman function (1930), and
satisfies the following differential equation obtained by differentiating (1.5.13)

uρ
′(u) + ρ(u− 1) = 0 (u ≥ 1),

with the initial condition ρ(u) = 1 when 0 ≤ u ≤ 1.
Theorem 1.5.1. (Dickman’s function properties) Dickman’s function ρ(u) has the following
properties

(1)
uρ(u) =

∫ u

u−1
ρ(v)dv (u ≥ 1),

(2)
ρ(u) > 0 (u > 0),

(3)
ρ

′(u) < 0 (u > 1),

(4)
ρ(u) ≤ 1/Γ(u+ 1) (u ≥ 0),

where
Γ(z) :=

∫ ∞
0

xz−1e−xdx z ∈ C.

The above argument can be deduced from Buchstab’s identity by applying induction on
buc.
Theorem 1.5.2. (Buchstab’s identity) For x ≥ 1, z ≥ y > 0, we have

Ψ(x,y) = Ψ(x,z)−
∑

y<p≤z
Ψ(x/p,p).

The problem of finding an estimate for Ψ(x,y) sounds more complicated and hence in-
teresting when y is less than any small power of x. The question is; does (1.5.12) hold for
smaller values of y? In (1951), de Bruijn [7] obtained a uniform estimate in the form of
(1.5.12) in a wider range. The result states that

Ψ(x,y) = xρ(u)
{

1 +O

(
log(u+ 1)

log y

)}
, (1.5.14)
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holds uniformly in the range

1 ≤ u ≤ (log x)3/5−ε, that is, exp
{

(log x)5/8+ε
}
≤ y ≤ x. (1.5.15)

The range in (1.5.14) was significantly improved by Hildebrand (1986). Indeed, he ob-
tained the largest range in which Ψ(x,y) ∼ xρ(u) holds. Here we state the result in the form
of a theorem from [23].
Theorem 1.5.3. (Hildebrand) For any fixed ε > 0, the relation (1.5.14) holds uniformly in
the range

y ≥ 2, 1 ≤ u ≤ exp
{

(log y)3/5−ε
}
, that is, y ≥ exp

{
(log log x)5/3+ε

}
.

The function Ψ(x,y) behaves quite differently when y is small compared to x. In this
case, Ψ(x,y) is approximately equal to the volume of the π(y)−dimensional simplex defined
by

ti ≥ 0 (i = 1,..,π(y))
π(y)∑
i=1

ti log pi ≤ log x.

A change of variable gives us the volume of this π(y)−dimensional complex as

#

(ν1,...νπ(y)) : ν1 ≥ 0,..., νπ(y) ≥ 0 :
π(y)∑
i=1

νi ≤ 1


π(y)∏
i=1

log x
log pi

= 1
π(y)!

π(y)∏
i=1

log x
log pi

.

In 1969, Ennola [11], gave the above idea and obtained the following sharp estimate of
Ψ(x,y) for small values of y compared to log x.
Theorem 1.5.4. (Ennola) Uniformly for 2 ≤ y ≤

√
log x log log x, we have that

Ψ(x,y) = 1
π(y)!

∏
p≤y

(
log x
log p

){
1 +O

(
y2

log x log y

)}
.
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1.5.3. Saddle point method

As we mentioned in previous section, the Rankin’s method is a simple method for ap-
proximating Ψ(x,y). This method is based on the inequality

Ψ(x,y) ≤
∑
n≥1

P (n)≤y

(x/n)σ = xσ
∏
p≤y

(
1− p−σ

)−1
(σ > 0), (1.5.16)

where σ will be chosen optimally such that the minimum on the right-hand side will be
attained. With s = σ + iτ , set

ζ(s,y) =
∏
p≤y

(
1− p−s

)−1
.

Also, we define
φ(s,y) := log ζ(s,y) (σ > 0),

and φk(s,y) to be the kth partial derivative of φ(s,y) with respect to s. Thus,

φ1(s,y) = −
∑
p≤y

log p
ps − 1 .

By the Rankin’s upper bound in (1.5.16), we have

Ψ(x,y) ≤ inf
σ>0

xσζ(σ,y). (1.5.17)

This infimum will be attained at the point σ = α = α(x,y), which is the unique solution of
the following equation:

φ1(α,y) + log x = 0, that is,
∑
p≤y

log p
pα − 1 = log x. (1.5.18)

In 1986, Hildebrand and Tenenbaum [25] used the saddle point method to develop the old
result of de Bruijn for the range x ≥ y ≥ 2, and proved the following result.
Theorem 1.5.5. (Hildebrand-Tenenbaum) Uniformly for x ≥ y ≥ 2, we have

Ψ(x,y) = xαζ(α,y)
α
√

2πφ2(α,y)

{
1 +O

(
1
u

+ log y
y

)}
.
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The strategy of their proof is based on Perron’s integral (1.4.2).
For n ≤ x, we have x/n ≥ 1, and one can use the first case of Perron’s formula in (1.4.2),
and write

Ψ(x,y) =
∑
n≤x

P (n)≤y

1 =
∑
n≥1

P (n)≤y

∫
Re(s)=α

(x/n)s
s

ds+O(1)

=
∫
Re(s)=α

 ∑
n≥1

P (n)≤y

1
ns

 xs

s
ds+O(1)

=
∫
Re(s)=α

ζ(s,y)x
s

s
ds+O(1).

(1.5.19)

Hildebrand and Tenenbaum showed that the main contribution to the integral above comes
from a small neighbourhood around α, where α is the optimization point in Rankin’s bound.
They arrived at the following approximation

Ψ(x,y) = 1
2iπ

∫ α+i/ log y

α−i/ log y
ζ(s,y)x

s

s
ds+ Error, (1.5.20)

with
Error =

(
xαζ(α,y)

(
Y (ε)−1 + exp

{
−cu(log 2u)−2

}))
,

where c is a positive constant and Y (ε) = exp
{

(log y)3/2−ε
}
, for 0 ≤ ε ≤ 1. Also, developing

the Taylor series on xs/s and log
(
ζ(s,y)
ζ(α,y)

)
gives

1
2iπ

∫ α+i/ log y

α−i/ log y
ζ(s,y)x

s

s
ds = xα

2απζ(α,y)
∫ 1/ log y

−1/ log y
e−t

2φ2/2
(

1− it

α
− it3

6 φ3 + Error

)
dt

= xα

α
ζ(α,y) 1√

2πφ2
(1 + Error) ,

(1.5.21)

since ∫ +∞

−∞
e−t

2φ2/2dt =
√

2π
φ2
.

Thus, they could deduce the estimate in Theorem 1.5.5.
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Also, by using the sharp form of the Prime Number Theorem for the summand in (1.5.18),
one can arrive at the following estimate for α.

α(x,y) = log(1 + y/ log x)
log y

{
1 +O

(
log log(y + 1)

log y

)}
, (1.5.22)

uniformly in x ≥ y ≥ 2.

There is another estimate for Ψ(x,y) due to Saias in [28]. He used the saddle point method
to prove the following result with a good error term. Let

Λ(x, y) :=

x
∫∞

0 ρ(u− log t
log y )d[t]

t
x /∈ N

(1
2) (Λ(x− 0, y) + Λ(x+ 0, y)) x ∈ N.

The estimate
Ψ(x, y) = Λ(x, y)

(
1 +Oε

(
exp{− (log y)

3
5−ε}

))
(1.5.23)

holds in the range (1.5.15).

1.5.4. Local behaviour of Ψ(x,y)

Here we shall see that how the behaviour of Ψ(x,y) changes when x is replaced by cx,
where 1 ≤ c ≤ y. Hildebrand and Tenenbaum deduced the following result from Theorem
1.5.5 by changing the path of integration and replacing the saddle point α(x,y) by α′(x,y) :=
α(cx,y).
Theorem 1.5.6. (Hildebrand, Tenenbaum) We have, uniformly for x ≥ y ≥ 2 and 1 ≤ c ≤ y,

Ψ(cx,y) = Ψ(x,y)cα(x,y)
(

1 +O

(
1
u

+ log y
y

))
.

In 2005, Tenenbaum and de la Breteche studied the local behaviour of Ψ(x,y) by esti-
mating the general form

Ψm(x,y) :=
∑

n∈S(x,y)
(n,m)=1

1.

They used the saddle point method and established the following result that provides an
estimate for Ψm(x/d,y).
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Theorem 1.5.7. (Tenenbaum, de la Breteche)There exist constants b1, b2 and a function
b = b(x, y, d,m) satisfying b1 ≤ b ≤ b2, (x ≥ y ≥ 2, d ≥ 1,m ≥ 1), such that, uniformly for
0 ≤ δ ≤ 1/2, x ≥ y ≥ 2, p(m) ≤ y, w(m)�

√
y

(log y)δ and 1 ≤ d ≤ x
y
, we have

Ψm

(
x

d
, y
)

= {1 +O(hm)}
(

1− t2

u2 + ū2

)bū
gm(α)Ψ(x, y)

dα
, (1.5.24)

where ū := min{u, y
log y}, t := log d

log y , hm � h1 � 1
uy

+ t
u
, uy := ū+ log y

log(u+2) , and

gm(α) :=
∏
p|m

(
1− p−α

)
=
∑
d|m

µ(d)
dα

.

In this thesis, the case m = 1 and d ≤ y will be of special interest, and by simplifying
(1.5.24) (using the Taylor expansion of logarithmic and exponential functions), one can arrive
at an estimate as follows.
Corollary 1.5.1. Let 0 < ε < 1 and 1 ≤ d ≤ y, then the estimate

Ψ(x/d,y) =
{

1 +O

(
1
uy

+ t

u
+ t2ū

u2 + ū2

)}
Ψ(x,y)
dα

holds uniformly for x ≥ y ≥ 2.

1.5.5. Ultra-smooth integers

y−ultra-smooth or y−power-smooth integers are defined as integers whose canonical de-
composition is free of prime powers exceeding y. For example, 720 = (243251) is 5−smooth
but is not 5−power-smooth (because there are several prime powers greater than 5, like
32 = 9 � 5. It is 16−power-smooth since its greatest prime factor power is 24 = 16.
Let

vp = vp(y) :=
⌊

log y
log p

⌋
,

where p is a prime factor of n and p ≤ y. So, vp is the largest possible exponent of a prime
factor of a y−ultra-smooth integer. We note that

U(x,y) := {n ≤ x : pv||n⇒ v ≤ vp},

and set
Υ(x,y) := |U(x,y)|.
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Moreover, we define
Ny := eψ(y),

where ψ(y) := ∑
p≤y vp log p, is the Chebychev’s function. We can say that the integers

counted in Υ(x,y) are divisors of Ny, therefore

Υ(x,y) = τ(Ny) =
∏
p≤y

(1 + vp).

Tenenbaum [32] (2015) proved that the number of y−ultra-smooth integers is close to the
number of y−smooth integers when y is large compared to log x.
Theorem 1.5.8. (Tenenbaum) Let ε > 0. For x ≥ y ≥ 2, we have

Υ(x,y) = Ψ(x,y)
{

1 +O

(
u log 2u
√
y log y

)}
x ≥ y ≥ (log x)2+ε.

For smaller values of y the problem gets more complicated. However Tenenbaum obtained
the following

Υ(x,y) = xβZ(β,y)G(β√σ2)
{

1 +O
(1
u

)}
, 2 log x < ψ(y)� (log x)3,

where
Z(β,y) :=

∏
p≤y

1− p(1−νp+1)s

1− p−s Re(s) > 0,

is the Dirichlet series associated to the counting function Υ(x,y), and β = β(x,y) is the saddle
point relevant the the Perron’s integral for Υ(x,y) which a unique solution of the equation

φ1(β,y) := −Z
′(s,y)

Z(s,y) = log x,

and
σj := (−1)j−1d

j−1φ1(s,y)
dσj−1

and G(z) := e−z
2/2Φ(z) (z ∈ R),

where
Φ(z) := 1√

2π

∫ ∞
z

e−t
2/2dt (z ∈ R).
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The next corollary exhibits the behaviours of Υ(x,y) on either side of the threshold y ≈
(log x)2.
Corollary 1.5.2. (Tenenbaum) As x→∞, we have

Υ(x,y) ∼ Ψ(x,y), when y

(log x)2 →∞,

and
Υ(x,y) = o(Ψ(x,y)), when y

(log x)2 → 0.

1.6. A history of the Erdős multiplication table problem
We know that N × N multiplication table with N2 entries is a symmetric matrix such

that most entries appear twice. Now the question is that how many distinct entries appear
in this multiplication table? Let A(N) denote the number of distinct entries in a N × N

multiplication table. For example A(5) = 14 and A(10) = 42. Now the problem is to see
how the behaviour of the function A(N) changes with N2.

In 1955 and 1960, Erdős studied this problem in two papers. In 1955, Erdős [14] could
show that

A(N)
N2 → 0 as N →∞,

and conjectured that A(N) is approximately of the shape

A(N) = N2

(logN)c ,

where c is a constant.
In 1960, Erdős [12] indicated the value of c as follows

c = 1− 1 + log log 2
log 2 = 0.08607 . . . ,

and proved
A(N) = N2

(logN)c+o(1) as N →∞.

In [21], Hall and Tenenbaum improved the upper bound of A(N) as follows

A(N) ≤ c1N
2

(logN)c
√

log logN
, (1.6.1)
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In 2008, Ford showed that A(N) is of the order of magnitude

N2

(logN)c(log logN)3/2 .

Let H(x,y,z) be the number of integers n ≤ x having a divisor in the interval (y,z], for all x,
y and z. More formally

H(x,y,z) := #{n ≤ x : ∃ d|n, y < d ≤ z}.

In 1935, Besicovitch [4] studied the quantities of H(x,y,z) and proved that

lim inf
y→∞

ε(y,2y) = 0,

where
ε(y,z) := lim

x→∞

H(x,y,z)
x

.

Let A(x) be the number of integers less than x that can be represented as the product of two
integers less than

√
x. It is easy to see that the bounds for A(x) are intimately connected

with bounds for the function H(x,y,2y) via this inequality:

H

(
x

2 ,
√
x

4 ,

√
x

2

)
≤ A(x) ≤

∑
k≥0

H

(
x

2k ,
√
x

2k+1 ,

√
x

2k

)
. (1.6.2)

Hence, studying A(x) boils down to understanding H(x, y, 2y), which is slightly easier to
study. Ford [16] proved

H(x,y,2y) � x

(log x)δ(log log x)3/2 ,

and from (1.6.2) he subsequently deduced the following estimate

A(x) � x

(log x)δ(log log x)3/2 ,

But we still do not know the asymptotic estimate for A(x). It is worth mentioning that
Koukoulopoulos in his Ph.D thesis [26] extended the multiplication table problem to the
higher dimensional table.

Now we pose a question about the multiplication table for y−smooth integers; For a large
real number x, how many distinct y−smooth integers up to x can be written as the product
of two y−smooth integers less than

√
x?
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The main subject of this thesis (in Section 3) is to study the behaviour of the following
function in different ranges of y

A(x,y) :=
∣∣∣S(
√
x,y) · S(

√
x,y)

∣∣∣.
We define H(x,y; z,2z) as the number of all y−smooth integers having at least one divisor

in the given interval (z,2z]. By a simple argument one can arrive at the following inequalities,

H

(
x

2 ,y;
√
x

4 ,

√
x

2

)
≤ A(x,y) ≤

∑
k≥0

H

(
x

2k ,y;
√
x

2k+1 ,

√
x

2k

)
,

where x ≥ y > 2. One would be tempted to estimate A(x,y) by obtaining an upper and a
lower bounds for H(x,y; z,2z), but our main goal in Section 3 is to understand the behaviour
of the function A(x,y) directly instead of considering H(x,y; z,2z).

It is good to explain a connection between estimating A(x,y) and sum-product problem in
additive combinatorics. For any non-empty subset A of integers, the sum-set and product-set
of A are defined as

A · A = {a1a2 : ai ∈ A}, A+ A = {a1 + a2 : ai ∈ A}.

A famous conjecture of Erdős and Szemerédi states that the sum-set and product-set of a
finite set of integers cannot both be small, more formally

max{|A · A|, |A+ A|} �ε |A|2−ε.

With this connection to the sum-product problem, Banks and Covert [3], by invoking combi-
natorial tools, have considered the behaviour of A(x2,y) = |S(x,y) ·S(x,y)| in different ranges
of y, particularly for the cases when y is relatively small or large.

For small values of y compared to log x, they state the following result
Theorem 1.6.1. (Banks, Covert) Suppose that y ≥ 2 and y = o(log x). Then

∣∣∣S(x,y) · S(x,y)
∣∣∣ = Ψ(x,y)1+o(1).

For large values of y, they could show that the value of
∣∣∣S(x,y).S(x,y)

∣∣∣ is large
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Theorem 1.6.2. (Banks,Covert) Let y/(log x)→∞. Then∣∣∣S(x,y) · S(x,y)
∣∣∣ = Ψ(x,y)2+o(1).

For the values of y near log x they prove an estimate as follows
Theorem 1.6.3. (Banks, Covert) Suppose that y = κ log x, where κ > 0 is fixed. Then∣∣∣S(x,y) · S(x,y)

∣∣∣ = Ψ(x,y)ακ+o(1),

where
ακ = 2 log(1 + κ/2) + κ log(1 + 2/κ)

log(1 + κ) + κ log(1 + 1/κ) .



Chapter 2

PROBABILISTIC NUMBER THEORY

2.1. Additive functions in a probability space
There are various fields of application in probabilistic number theory. One of these fields

is the theory of finding the distribution of arithmetic functions. Probabilistic methods study
the normal order of an arithmetic function, and are based on considering the arithmetic
function as a random variable and excluding set of integers with zero density and studying
the more normal behaviour of the function elsewhere.
In the classical and more recent research the distribution of values of a function in number
theory is reduced to consideration of the sum

AN = 1
N

N∑
n=1

f(n),

which is the mean value of the function f(n) on the sample set {1,2,...,N}, and obtaining an
approximation for it in terms of a function of N . However the values of the function f(n)
oscillate around the mean value within a very wide range.
In this section, we will discuss the Turan-Kubilius inequality which is a helpful tool to prove
the results about the normal order of an arithmetic function. Also, we introduce the method
of moments in probability. This is a well-known method used by many number theorists. We
first need some definitions.
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Definition 2.1.1. (Additive function) The arithmetic function f(n) is additive if, for co-
prime integers u and v, we have

f(uv) = f(u) + f(v).

The arithmetic function is said to be totally additive if, for any integers u and v,

f(uv) = f(u) + f(v),

By the definition above, we have the following representation for an additive function:

f(n) =
∑
pr||n

f(pr). (2.1.1)

Definition 2.1.2. (Strongly additive function) An additive function f(n) is called strongly
additive if

f(pr) = f(p),

where r is any positive integer and p is prime.
Therefore (2.1.1) reduces to

f(n) =
∑
p|n
f(p)

for a strongly additive function, where p is prime.

Examples: The most common example for additive function is the function ω(n), defined
as the number of distinct prime factors of n. The function ω(n) is also a strongly additive
function. An example of a totally additive function is the function Ω(n), defined as the
number of prime factors of n, counted multiplicity.

Definition 2.1.3. An arithmetic function f has normal order g if g is an arithmetic function
such that, for any ε > 0, we have ∣∣∣f(n)− g(n)

∣∣∣ ≤ ε
∣∣∣g(n)

∣∣∣,
on a set of integers n ∈ N of density 1. In other words we say

f(n) = (1 + o(1)) g(n) almost everywhere.
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Definition 2.1.4. (Distribution of a function) The arithmetic function f(n) is said to have
distribution F (x) if

lim
N→+∞

1
N

∑
n≤N
f(n)<x

1 = F (x). (2.1.2)

We consider the probability space SN = (ΩN ,FN , PN), where ΩN = {1,2,...,N}, FN is the
set of all subsets of ΩN , and PN is the uniform measure on FN , then the arithmetic function
f(n) restricted to ΩN is a random variable on SN . Using this assumption we can say that
(2.1.2) is equivalent to

lim
N→∞

PN(f(n) < x) = F (x).

If f is a random variable and an arithmetic function on the sample space {1,2, . . . ,N},
the expectation and the variance of f with respect to the discrete uniform measure on
{1,2, . . . , N}, are defined by

EN [f ] := 1
N

∑
1≤n≤N

f(n),

and

VN [f ] := 1
N

∑
1≤n≤N

{f(n)− EN(f)}2 .

Moreover, the kth moment of the random variable f(n) is defined as

EN [fk] := 1
N

∑
1≤n≤N

fk(n).

Theorem 2.1.1. (Chebyshev’s inequality) Let X be a real-valued random variable with ex-
pectation E(X) and variance V(X). Then, for any a ∈ R we have

P
(∣∣∣X − E(X)

∣∣∣ ≥ a
)
≤ V(X)

a2 .
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2.2. Turan-Kubilius inequality for the variance
The Chebyshev’s inequality provides a good tool to study the normal behaviour of an

additive function. The first result of this kind was given by Hardy and Ramanujan (1917)
and prove by Turan(1934). The theorem states that for almost all n up to N , the values of
ω(n) and Ω(n) are asymptotically log logN . In fact they proved that

EN(ω(n)) = EN(Ω(n)) ∼ log logN,

and
VN(ω(n)) = VN(Ω(n)) ∼ log logN,

By Chebyshev’s inequality, one can arrive at

PN
(∣∣∣ω(n)− log logN

∣∣∣ ≥ (log logN)3/4
)
≤ 1√

log logN
.

Turan and Kubilius (1956) gave the same result for a wider class of additive functions.

Theorem 2.2.1. (Turan-Kubilius inequality) Let f be an complex valued additive function
and N ∈ N. Then

EN
(∣∣∣f − ENf

∣∣∣2)� ∑
pv≤N

∣∣∣f(pv)
∣∣∣2

pv
. (2.2.1)

Setting
AN =

∑
pv≤N

f(pv)
p

, B2
N =

∑
pv≤N

f 2(pv)
p

,

by Chebyshev’s inequality and using (2.2.1), we get

PN
(∣∣∣f(n)− AN

∣∣∣ ≥ ε(N)BN

)
≤ 1
ε2(N) . (2.2.2)

Now if BN = o(AN), then we can select ε(N) → ∞, for example ε(N) = AN
(BN )1/2 which by

(2.2.2) gives that f(n) ∼ AN for almost all n ≤ N .

In 1982, the Turan-Kubilius inequality on the sample space y−smooth integers was proved
by Alladi [1] in a wide range of y. Later on, in 1993, Xuan [33] showed the Turan-Kubilius
inequality for a wider range of y. Finally, in 2005, Tenenbaum and de la Breteche [8] gave
another proof by using the saddle point method and proved the inequality for the whole



26

range of y. Posing the quantities

Af (x,y) :=
∑

pv∈S(x,y)

f(pv)
pvα

(
1− 1

pv

)
, B2

f (x,y) :=
∑

pv∈S(x,y)

|f(pv)|2
pvα

(
1− 1

pv

)
,

and
Vf (x,y) := 1

Ψ(x,y)
∑

n∈S(x,y)

∣∣∣f(n)− Af (x,y)
∣∣∣2,

they showed the following,
Theorem 2.2.2. (Turan-Kubilius inequality for smooth integers) There exists an absolute
constant C such that the inequality

Vf (x,y) ≤ CB2
f (x,y)

holds for every additive function f , for all x and y such that x ≥ y ≥ 2.
In particular, they proved this inequality for the function ωt(n), defined as the number

of all distinct prime factors of n which are less than t, where x ≥ y ≥ t ≥ 2. By defining

M(t) :=
∑
p≤t

1
pα
,

they showed that
Aωt(x,y) = B2

f (x,y) = M(t) +O(1),

and proved the following
Corollary 2.2.1. (Tenenbaum, de la Breteche) Uniformly for x ≥ y ≥ t ≥ 2 and h > 0, we
have ∑

n∈S(x,y)

∣∣∣ωt(n)−M(t)
∣∣∣2 � Ψ(x,y)M(t). (2.2.3)

By combining the above with Chebyshev’s inequality, we have∑
n∈S(x,y)

|ωt(n)−M(t)|>h
√
M(t)

1� Ψ(x,y)
h2 . (2.2.4)

2.3. Central limit theorem and the method of moments
Here we introduce a function of great importance in the development of probabilistic

number theory, which leads to the central limit theorem that we shall see later.
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Definition 2.3.1. (Standard normal distribution) The function defined by

φ(x) = 1√
2π
e−

1
2x

2

is called the normal density function; its integral

Φ(x) = 1√
2π

∫ x

−∞
e−

1
2 t

2
dt

is the standard normal distribution function.

Now we are ready to state the central limit theorem. The central limit theorem is a
special case of the law of large numbers in probability theory.
Theorem 2.3.1. (Central Limit Thorem) If {Xk} be a sequence of mutually independent
random variables with the same probability distribution (i.i.d), suppose that µ = E[Xk] and
σ2 = V ar(Xk) exist and let SN = X1 + ...+XN . Then for every real fixed β,

PN
{
SN −Nµ
σ
√
N

< β

}
→ Φ(β).

Theorem 2.3.2. (Lindeberg-Feller theorem) If X1, X2, . . . , Xn are independent, uniformly
bounded random variables with mean 0 and finite variances σi, and if ∑n

i=1 σ
2
i diverges, then

the distribution of
∑n

i=1 Xi

(
∑n

i=1 σ
2
i )1/2 converges to the normal distribution function.

Now we introduce a useful sufficient condition for a distribution to be determined by its
moments (details can be found in [10]). In fact, we will see that if the moments of our real-
valued random variables are very close to those of the standard normal, then the distribution
of our random variables is close to the normal distribution.

Theorem 2.3.3. (General method of moments) Suppose that
∫
xkdFn(x) (kth moment of

the random variable associated with Fn ) has a limit µk for each k, and

lim
k→∞

supµ1/2k
2k /2k <∞.

Then Fn converges weakly (converges in distribution) to the unique distribution with these
moments.

In the following lemma we will see that the kth moments of the normal distribution do
not grow rapidly as k increases.
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Lemma 2.3.1. (Normal moments) For k ∈ N, let

mk := 1√
2π

∫ +∞

−∞
xke−x

2/2dx

be the kth moment of the normal distribution. Then if k is odd, then mk = 0, and if k is
even, then

mk = k!
2k/2(k/2)! .

Corollary 2.3.1. (Method of moments for normal distribution) Let {Xn} be a sequence of
real valued random variables, and suppose that for each k ∈ N, we have

E(Xk
n)→ mk as n→∞,

where mk are the moments of the standard normal distribution. Then we have convergence
in distribution

P (Xn ≤ x)→ Φ(x) as n→∞.

2.3.1. Erdős-Kac theorem

One application of the central limit theorem on additive functions is the following result
obtained by Erdős and Kac [13] (1940).
Theorem 2.3.4. (Erdős-Kac theorem) Let f be a strongly additive function. Suppose that
|f(p)| ≤ 1 for all primes p, and

∑
p≤N

f(p)2

p
→∞ (N →∞).

Then

PN

 f − EN(f)√
EN
∣∣∣f − EN(f)

∣∣∣2 ≤ x

→ Φ(x) (N →∞).

The conditions that |f(p)| ≤ 1 and that f is strongly additive can be weakened, but not
removed. The condition that ∑p≤y

f(p)2

p
→∞, or in other words that the variance of f tends

to infinity, is important to achieve a normal limit.

In particular, if f(n) = ω(n), they showed that
ω(n)− log log n√

log log n
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is asymptotically normally distributed, more formally for any real number x

lim
N→∞

PN

{∣∣∣ω(n)− log log n√
log log n

∣∣∣ < x

}
= Φ(x). (2.3.1)

For each ε > 0, we can easily show that

lim
N→∞

PN

{∣∣∣ log log n− log logN
(log logN)1/2

∣∣∣ > ε

}
= 0

So (2.3.1) is equivalent to the following statement which we prove it in this section.

lim
N→∞

PN

{∣∣∣ω(n)− log logN√
log logN

∣∣∣ < x

}
= Φ(x). (2.3.2)

The Erdős-Kac Theorem has been studied by several mathematicians using different meth-
ods. For instance, Erdős and Kac in their original proof of (2.3.1) used complicated sieve
methods. But an interesting proof of this theorem is Billingsley’s result (1969) who used the
method of moments and gave an easy demonstration of this theorem. Here we briefly explain
the key steps of Billingsley’s result, because we shall use the same method to prove a similar
result for y−smooth integers.
Let PN denote the uniform distribution on the set {1,2,...,N}, and limN→∞ PN exists. More-
over, letAp be the set of integers divisible by the prime p. Then we can say that limN→∞ PN(Ap) =
1
p
, and if p 6= q, we have

lim
N→∞

PN(Ap ∩ Aq) = 1
pq

= lim
N→∞

PN(Ap)PN(Aq).

Thus, the events are independent.
Now we are ready to prove the Erdős-Kac theorem in 5 steps:
Step (1): Let n ≤ N and 1p|n(n) = 1, if p divides n and = 0, otherwise. Then, we can
represent ω(n) as follows:

ω(n) =
∑

p prime
1p|n(n). (2.3.3)
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We shall compare the indicator function 1p|n(n) with some independent random variables
Xp’s such that for each prime p:

P (Xp = 1) = 1/p and P (Xp = 0) = 1− 1/p,

and the mean and variance of S := ∑
p≤N Xp are

EN(S) =
∑
p≤N

1/p and VN(S) =
∑
p≤N

1/p(1− 1/p)

respectively. By the Mertens’ estimate, we have

EN(S) = VN(S) = log logN +O(1).

Step (2): The key step of the proof is to show that it is unaffected if we replace ω(n)
by ωα(n), defined by

ωα(n) =
∑
p≤αN

1p|n,

where
αN := N1/ log logN .

By using the Mertens’ estimate, one can easily show that ∑
αN≤p≤N

1/p
 /(log logN)1/2 → 0 as N →∞.

Thus, ∑
αN≤p≤N

1
p

= o(
√

log logN). (2.3.4)

We have

EN(ω(n)) = EN(ωα(n)) + EN

 ∑
αN≤p≤N

1p|n

 . (2.3.5)

Now using (2.3.4), we get

EN

 ∑
αN≤p≤N

1p|n

 =
∑

αN≤p≤N

1
N

⌊
N

p

⌋
≤

∑
αN≤p≤N

1/p = o(
√

log logN).
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We deduce that it is enough to prove the Erdős-Kac theorem for ωα instead of ω, in other
words we will show that

lim
N→∞

PN

{∣∣∣ωα(n)− log logN√
log logN

∣∣∣ < x

}
= Φ(x). (2.3.6)

Step (3): We define
Sα :=

∑
p≤αN

Xp.

If bN = EN(Sα) and c2
N = VN(Sα), By Step (2), we obtain

bN = c2
N = log logN + o

(
(log logN)1/2

)
.

This means that Sα and ωα have a same mean value and variance.

Step (4): To complete the proof, it suffices to show

PN

(
ωα(n)− bN

cN
≤ x

)
→ Φ(x) as N →∞.

By Theorem (2.3.2), we have

lim
N→∞

PN

(
Sα − bN
cN

< x

)
= Φ(x),

and since |Xp| ≤ 1, the moments of Sα are bounded. Therefore, its moments tend to the
moments of the normal distribution. Consequently,

lim
n→∞

EN

[(
Sα − bN
cN

)r]
= mr r = 1,2, . . . ,

where mr is the rth moment of the normal distribution.

Step (5): If p1, . . . ,pk are all the primes satisfying p1 < · · · < pk ≤ αN . By using the
definition of Xpi (1 ≤ i ≤ k) and 1pi|n, we have

EN [Xp1 ...Xpk ] = 1
p1 . . . pk

,
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and
EN

[
1p1|n...1pk|n

]
= 1
N

⌊
N

p1 . . . pk

⌋
,

Thus,
EN [Xp1 ...Xpk ]− EN

[
1p1|n . . . 1pk|n

]
≤ 1/N (2.3.7)

We now compute the difference of the rth moment of two random variables Sα and ωα. By
using the multinomial theorem and (2.3.7), we have∣∣∣EN(Srα)− EN(ωrα)

∣∣∣ ≤ r∑
k=1

∑
ri

r!
r1!...rk!

∑
p1,...,pk≤αN

(
EN

[
Xr1
p1 ...X

rk
pk

]
− EN

[
1r1
p1|n...1

rk
pk|n

])
,

(2.3.8)

where ∑ri is over k-tuples (r1, . . . ,rk) of positive integers with r1 + . . . rk = r. So by the
multinomial theorem and (2.3.7), we have

∣∣∣EN(Srα)− EN(ωrα)
∣∣∣ ≤ 1

N

 ∑
p≤αN

1
r ≤ αrN

N
→ 0 as N →∞. (2.3.9)

Now by applying the binomial theorem and using (2.3.9), we easily get

∣∣∣EN (Sα − bN)r − EN (ωα − bN)r
∣∣∣ ≤ r∑

k=0

(
r

k

)
αkN
N
br−kN

= 1
N

(αN + bN)k → 0 (N →∞).
(2.3.10)

This is more than enough to conclude that

EN

[(
ωα − bN
cN

)r]
→ mr as N →∞,

and the desired result follows from (2.3.3).

Motivated by the Erdős-Kac theorem, Alladi [2], Hensley [22] and Hildebrand [24] studied
a type of this theorem for y−smooth integers. The problem gets more complicated, since the
behaviour of ω(n) changes in different ranges of y.

First, Hensley proved an analogue of the Erdős-Kac theorem for y−smooth integers using a
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local limit theorem i.e., an estimate for ∑
n∈S(x,y)
Ω(n)=k

1,

where u lies in the range
(log y)1/3 ≤ u ≤

√
y

2 log y .

In this direction, Alladi (1987) obtained an analogue of the Erdős-Kac theorem for the
additive function Ω(n) in the range

exp (log log x) 5
3 +ε < y ≤ x, (2.3.11)

where ε is arbitrarily small. He used the saddle point method to show that

E


Ω(n)− η(x,y)√

θ(x,y)

k
→ 1√

2π

∫ +∞

−∞
uke−u

2/2du as x→∞,

where η(x,y) and θ(x,y) are the mean value and the variance of Ω(n), in the range (2.3.11),
where n ∈ S(x,y).

In the same year, Hildebrand , by considering the characteristic function of Ω(n), could
prove that the characteristic function of Ω(n) tends to the characteristic function of a Gauss-
ian distribution as x tends to infinity. More formally, for −π ≤ θ ≤ π, we have

1
Ψ(x,y)

∑
n∈S(x,y)

eiθΩ(n) = eiθM−θ
2V/2

{
1 +O

(
1√
ū

+ |θ|
3u3

ū2

)}
+Oε

(
exp

(
−(log y) 3

2−ε
))
,

uniformly in the range
u ≥ (log y)20, (2.3.12)

where M = M(x,y) and V = V (x,y) are defined as the mean value and the variance of Ω(n)
in range (2.3.12). Then, he concluded his main theorem which says that for large values of
x the distribution of Ω(n) in the range (2.3.12) follows a Guassian distribution.

Motivated by these results, we studied the same problem by the method of moments. Al-
though this method is very interesting and simple it is not strong enough to cover the whole
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range of y in Erdős-Kac problem. However, using this method in Section 4, we will prove an
analogue of Erdős-Kac problem for y−smooth integers in a small range of y.



Chapter 3

THE Y -SMOOTH MULTIPLICATION TABLE

3.1. Introduction
The multiplication table problem involves estimating

A(x) := #{ab : a,b ≤
√
x, and a,b ∈ N}.

This interesting question, posed by Erdős, has been studied by many authors. Erdős in [14],
showed that for all ε > 0, we have

x

(log x)δ+ε ≤ A(x) ≤ x

(log x)δ−ε (x→∞), (3.1.1)

where
δ = 1− 1 + log log 2

log 2 = 0.0860 . . . . (3.1.2)

The best estimate of A(x) is a result due to Kevin Ford [16]. He proved the following estimate,
that significantly improved the order of magnitude of A(x) as follows

A(x) � x

(log x)δ(log log x)3/2 . (3.1.3)

Notation: In this chapter, we use the notation f(x) � g(x) if both f(x) � g(x) and
g(x) � f(x) hold, where f(x) � g(x) or f(x) = O(g(x)) interchangeably to mean that
|f(x)| ≤ cg(x) holds with some constant c for all x in a range which will normally be clear
from the context. Also, the notation f(x) ∼ g(x) means that f(x)/g(x)→ 1 as x→∞, and
f(x) = o(g(x)) means that f(x)/g(x)→ 0 as x→∞.
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Also, u is defined as
u := log x

log y x ≥ y ≥ 2,

and we let logk x denote the k-fold iterated logarithm, defined by log1 x := log x and
logk x = log logk−1 x, for k > 1.

Motivated by this background, in this paper we investigate the multiplication table prob-
lem for smooth integers. The set of y−smooth numbers, is defined by

S(x,y) := {n ≤ x : P (n) ≤ y},

where P (n) denotes the largest prime factor of an integer n ≥ 2, and P (1) = 1. Set

Ψ(x,y) :=
∣∣∣S(x,y)

∣∣∣.
Our main aim in this work is to study

A(x,y) := #{ab : a,b ∈ S(
√
x,y)}.

Hence computing A(x,y) is equivalent to estimating the size of S(
√
x,y) · S(

√
x,y).

A simple approximation of Ψ(x,y) proved by Canfield, Erdős and Pomerance [6] states that
for a fixed ε > 0, we have

Ψ(x,y) = xu−u(1+o(1)) as u→∞, (3.1.4)

for u ≤ y1−ε, that is y ≥ (log x)1+ε.
By estimate (3.1.4), one can see that for u large (or y small), the value of Ψ(x,y) is small.
It counts the integers having large number of prime factors. Since in this case every n has a
lot of small prime factors, we can find a and b such that n = ab and a,b ≤

√
x.

If u is small (which means that y is large), then by (3.1.4), one can deduce that the value of
Ψ(x,y) is large compared to x. In this case, S(x,y) contains integers with large prime factors
and we expect the size of S(

√
x,y) · S(

√
x,y) to be small.

It is good to mention that by a connection to sum-product problem, Banks and Covert [3]
by invoking combinatorial tools, have considered the behaviour of A(x2,y) =

∣∣∣S(x,y) ·S(x,y)
∣∣∣

in different ranges of y, particularly for the cases when y is relatively small or large. (See
Section 1 of this thesis.)



37

Here we present a simple idea to prove that A(x,y) has a same size as Ψ(x,y) when y is
small compared to log x. Let n ≤ x

y
be a y−smooth number. If n ≤

√
x then trivially we

have n ∈ A(x,y). Thus, we assume that
√
x ≤ n. Let p1 ≤ p2 ≤ · · · ≤ pk be prime factors of

n. Consider the following sequence obtained by prime factors of n:

n0 = 1, nj =
j∏
i=1

pi, 1 ≤ j ≤ k.

Since n ≥
√
x then there exists a unique integer s, with 0 ≤ s < k such that ns <

√
x ≤ ns+1.

Each prime factor of n is less than y, therefore

ns ≤
√
x ≤ ns+1 ≤ nsy.

Set d = ns, then √
x

y
≤ d ≤

√
x.

Since n ≤ x/y, then we easily conclude that
n

d
≤
√
x.

Therefore,
Ψ(x/y,y) ≤ A(x,y) ≤ Ψ(x,y),

and by a simple argument one can deduce that as x,y → ∞ then Ψ(x/y,y) ∼ Ψ(x,y) when
y = o(log x), (see Lemma 3.2.1). This argument leads us to state the following theorem.

Theorem 3.1.1. If y = o(log x) then we have

A(x,y) ∼ Ψ(x,y) as x,y →∞.

The problem gets harder, and hence, more interesting when y takes larger values compared
to log x. We shall prove the following theorem for small values of y compared to x.
Theorem 3.1.2. We have

A(x,y) ∼ Ψ(x,y) as x,y →∞,

when u and y satisfy the range

u log u
(log y log2 y log3 y)2 →∞, which implies, y ≤ exp

{
(log x)1/3

(log2 x)1/3+ε

}
, (3.1.5)
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for ε > 0 arbitrarily small.
Theorem 3.1.2 is proved in Section 3. The proof relies on some probabilistic arguments

and recent estimates for Ψ(x/p,y) where p is a prime factor of n.

If y takes values very close to x, which implies u is small compared to log log y, then we
will show the following theorem.
Theorem 3.1.3. Let ε > 0 is arbitrarily small, then we have

A(x,y) = o(Ψ(x,y)) as x,y →∞,

where u and y satisfying the range

u < (L− ε) log2 y, which implies, y ≥ exp
{

log x
(L− ε) log2 x

}
, (3.1.6)

where L := 1−log 2
log 2 .

Theorem 3.1.3 is proved in Section 4, by applying an Erdős’ idea [12], suitably modified
for y−smooth integers.

In what follows, we will give a heuristic argument that predicts the behaviour of A(x,y)
in ranges (3.1.5) and (3.1.6).
We define the function τ(n;A,B) to be the number of all divisors of n in the interval (A,B].
In other words.

τ(n;A,B) := #{d : d|n⇒ A < d ≤ B}.

Let n ∈ S((1− η)x,y) be a square-free number with k prime factors, where η → 0 as x→∞.
Assume that the set

D(n) := {log d : d|n}

is uniformly distributed in the interval [0, log n]. So

P (d ∈ (A,B)) := τ(n) logB − logA
log n , (3.1.7)

where the sample space is defined by

S := {n ≤ x : ω(n) = k} ,
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and n being chosen uniformly at random. Then by this assumption, the expected value of
the function τ(n,(1− η)

√
x,
√
x) should be

E
[
τ(n,(1− η)

√
x,
√
x)
]

= 2k log(1/(1− η))
log
√
x

� 2k
u log y . (3.1.8)

Alladi and Hildebrand in [2] and [24] showed that the normal number of prime factors of
y−smooth integers is very close to its expected value u + log2 y in different ranges of y.
Hence, from (3.1.8), we deduce that

E
[
τ(n,(1− η)

√
x,
√
x)
]
� 2u+log2 y

log y .

If 2u+log2 y/ log y → ∞, then we expect that n will have a divisor d in the interval ((1 −
η)
√
x,
√
x].

We know n ≤ (1 − η)x. Thus, n/d ≤
√
x, and we can deduce that n ∈ A(x,y), this means

that
Ψ((1− η)x,y) ≤ A(x,y).

Trivially A(x,y) ≤ Ψ(x,y). So by this argument, we obtain

A(x,y) ∼ Ψ(x,y),

when η → 0 as x→∞.

On the other hand, if 2u+log2 y/ log y → 0, then we expect that none of integers in S((1−η)x,y)
have a divisor in ((1− η)

√
x,
√
x] (except a set of measure 0), this means that

A(x,y) = o(Ψ(x,y)) as x,y →∞.

This heuristic gives an evidence for the following conjecture:

Conjecture 3.1.1. If L := 1−log 2
log 2 , then we have the following dichotomy

(1) : If u− L log2 y → +∞, which implies

y ≤ exp
{

log x
L log2 x

}
,

Then, we have
A(x,y) ∼ Ψ(x,y) as x,y →∞.
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(2) : If u− L log2 y → −∞, which implies that for small ε > 0

y ≥ exp
{

log x
(L− ε) log2 x

}
,

Then, we have
A(x,y) = o(Ψ(x,y)) as x,y →∞.

Theorem 3.1.2 and Theorem 3.1.3 are in the direction of the first case and the second
case of Conjecture (3.1.1) respectively, but the claimed ranges in the conjecture are stronger
than the claimed ranges in Theorem 3.1.2 and Theorem 3.1.3, and the reason stems from
uniformity assumption about D(n).

3.2. Preliminaries
In this section, we review some results used in the proof of our main theorems. We first

fix some notation. In this chapter ρ(u) is the Dickman-de Bruijn function, as we defined in
the introduction. By [18, 3.9] we have the following estimate for ρ(u)

ρ(u) =
(
e+ o(1)
u log u

)u
as u→∞. (3.2.1)

Theorem 3.2.1 (Hildebrand [23]). The estimate

Ψ(x,y) = xρ(u)
(

1 +Oε

(
log(u+ 1)

log y

))
(3.2.2)

holds uniformly in the range

x ≥ 3, 1 ≤ u ≤ log x
(log2 x) 5

3 +ε
, that is, y ≥ exp

(
(log2 x) 5

3 +ε
)
, (3.2.3)

where ε is any fixed positive number.
Combining (3.2.2) with the asymptotic formula (3.2.1), one can arrive at the following

simple corollary

Corollary 3.2.1. We have
Ψ(x,y) = xu−(u+o(u)),

as y and u tend to infinity, uniformly in the range (3.2.3), for any fixed ε > 0.
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We will apply this estimate in the proof of Theorem 3.1.3. However this estimate of
Ψ(x,y) is not very sharp for large values of u, for which the saddle point method is more
effective.
Let α := α(x,y) be a real number satisfying∑

p≤y

log p
pα − 1 = log x. (3.2.4)

One can show that α is unique. This function will play an essential role in this work, so we
briefly recall some fundamental facts of this function that are used frequently. By [9, Lemma
3.1] we have the following estimates for α.

α(x,y) = log (1 + y/ log x)
log y

{
1 +O

(
log2 y

log y

)}
x ≥ y ≥ 2. (3.2.5)

For any ε > 0, we have the particular cases

α(x,y) = 1− ξ(u)
log y +O

(
1

Lε(y) + 1
u(log y)2

)
if y ≥ (log x)1+ε, (3.2.6)

where
Lε(y) = exp

{
(log y)3/5−ε

}
, (3.2.7)

and ξ(t) is the unique real non-zero root of the equation

eξ(t) = 1 + tξ(t). (3.2.8)

Also for small values of y, we have

α(x,y) =
log(1 + y

log x)
log y

{
1 +O

(
1

log y

)}
if 2 ≤ y ≤ (log x)2. (3.2.9)

We now turn to another ingredient related to the behaviour of Ψ(x,y). The following
estimate is a special case of a general result of de La Breteche and Tenenbaum [9, Theorem
2.4].

Theorem 3.2.2. If d ≤ y, then uniformly for x ≥ y ≥ 2 we have

Ψ(x/d,y) =
{

1 +O

(
1
u

+ log y
y

)}
Ψ(x,y)
dα

. (3.2.10)
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We can deduce the following lemma by Theorem 3.2.2 which completes the proof of
Theorem 3.1.1
Lemma 3.2.1. If y ≥ 2 and y = o(log x), then we have

Ψ(x/y, y) ∼ Ψ(x,y) as x→∞. (3.2.11)

Proof. (i): Let y ≥ (log2 x)2 and y = o(log x). By applying (3.2.10), if d = y, we obtain

Ψ(x/y,y) = Ψ(x,y)
yα

{
1 +O

(
log y
y

)}
. (3.2.12)

By combination of the above estimate along with (3.2.9), we get

Ψ(x/y,y) = Ψ(x,y)(
1 + y

log x

)1+O( 1
log y )

{
1 +O

(
log y
y

)}
. (3.2.13)

We remark again that y = o(log x), so we obtain
1

(1 + y/ log x)1+O(1/ log y) → 1 when x→∞.

Also, we have
log y
y
→ 0 when x→∞,

since y ≥ (log2 x)2. Thus, by (3.2.13), we conclude
Ψ(x/y,y)
Ψ(x,y) → 1 when x→∞.

(ii) : Let 2 ≤ y ≤ (log2 x)2, then by recalling Ennola’s theorem 1.5.4, we get

Ψ(x/y,y) = 1
π(y)!

∏
p≤y

log x/y
log p

{
1 +O

(
y2

log x log y

)}

= 1
π(y)!

∏
p≤y

log x
log p

∏
p≤y

(
1− log y

log x

){
1 +O

(
y2

log x log y

)}

= Ψ(x,y)
(

1 +O

(
π(y) log y

log x

))

= Ψ(x,y)
(

1 +O

(
y

log x

))
,

(3.2.14)
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which gives that
Ψ(x/y,y) ∼ Ψ(x,y) as x→∞,

and this completes the proof. �

Finally, we define
θ(x,y,z) := #{n ≤ x : p|n⇒ z ≤ p ≤ y}.

This function has been studied extensively in the literature. Namely Friedlander [17] and
Saias [29, 30] gave several estimates for θ(x,y,z) in different ranges. The following theorem
is due to Saias [30, Theorem 5] which is used in Section 4.
Theorem 3.2.3. There exists a constant c > 0 such that for x ≥ y ≥ z ≥ 2 we have

θ(x,y,z) ≤ c
Ψ(x,y)
log z . (3.2.15)

3.3. Proof of Theorem 3.1.2
We begin this section by setting some notation. Let η be defined by

η := 1
log3 y

,

and set
N :=

⌊
log2 y − log η

log 2 + 2
⌋
, (3.3.1)

which play an essential role in process of the proof.
The idea of the proof of Theorem 3.1.2 is a combination of some probabilistic and combina-
torial techniques. Before going through the details, we give a sketch of proof here.
The first step of proving Theorem 3.1.2 is to study the number of all prime factors of n in
the narrow intervals

Ji :=
[
(1− κ)y1− 1

2i ,y1− 1
2i
]
, 1 ≤ i ≤ N,

of multiplicative length (1− κ)−1, where κ is defined as

κ := η

2N . (3.3.2)

Also, we define the tail interval
J∞ := [(1− κ)y,y].
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Let ωi(n) be the number of prime factors of n in Ji for each i ∈ {1,2, . . . ,N,∞}, more formally

ωi(n) := # {p|n : p ∈ Ji} . (3.3.3)

We define µi(x,y) to be the expectation of ωi(n), defined by

µi(x,y) := 1
Ψ(x,y)

∑
n∈S(x,y)

ωi(n), (3.3.4)

In Proposition 3.3.1, we will prove that for almost all y−smooth integers the value of ωi(n)
exceeds µi(x,y)/2. We establish this by applying the Chebyshev’s inequality

#{n ∈ S(x,y) : ωi(n) ≤ µi(x,y)/2}
Ψ(x,y) ≤ 4σ2

i (x,y)
µ2
i (x,y) , (3.3.5)

where
σ2
i (x,y) := 1

Ψ(x,y)
∑

n∈S(x,y)
(ωi(n)− µi(x,y))2 , (3.3.6)

is the variance of ωi(n) and i ∈ {1,2, . . . ,N,∞}. We will conclude that there is at least one
prime factor pi in each Ji for 1 ≤ i ≤ N and N prime factors q1, . . . , qN in J∞. Then by using
the product of these prime factors in Corollary 3.3.1, we will find a divisor Dj of n such that

(1− κ)NyN−j/2N ≤ Dj ≤ yN−j/2
N

,

for an integer j in {0,1, . . . 2N − 1}.
Then, we fix an integer n in S((1−η)x,y), and by defining m := n∏N

i=1 piqi
, we will easily show

that there is a divisor dj of n, such that
√
n

yN
yj/2

N

< dj <

√
n

yN
y(j+1)/2N .

Multiplying Dj and dj and using the definitions of η, κ and N , gives a new divisor d of n
that helps us to write n as the product of two divisors less than

√
x.

Before stating technical lemmas we get an estimate for the expected value of ωi(n) for all
1 ≤ i ≤ N and i =∞. By changing the order of summation in (3.3.4), we can easily see that

µi(x,y) =
∑
p∈Ji

Ψ(x/p,y)
Ψ(x,y) . (3.3.7)



45

By (3.2.10), we have the following estimate

µi(x,y) =
∑
p∈Ji

1
pα

(
1 +O

(
1
u

+ log y
y

))
, (3.3.8)

for all 1 ≤ i ≤ N and x ≥ y ≥ 2. Also, we obtain the following estimate for µi(x/q,y), where
q is a prime divisor of n.

µi(x/q,y) =
∑
p∈Ji

1
pαq

{
1 +O

(
1
uq

+ log y
y

)}
, (3.3.9)

where uq := u − log q/ log y. By substitution we obtain x/q = yuq . Set the saddle point
αq := α(x/q,y), defined as the unique real number satisfying in∑

p≤y

log p
pαq − 1 = log(x/q). (3.3.10)

We are ready to prove the following lemma that shows the difference between µi(x/q,y)
and µi(x,y) is small.
Lemma 3.3.1. Let q be a prime divisor of n ∈ S(x,y), then we have∣∣∣µi(x/q,y)− µi(x,y)

∣∣∣� µi(x,y)
u

.

Proof. We use the estimate

0 < −α′(u) := −dα(u)
du

� ū

u2 log y , (3.3.11)

established in [25, formula 6.6], where ū := min{u, y
log y}. By (3.3.11), we deduce

∣∣∣α′(u)
∣∣∣� 1

u log y . (3.3.12)

Then applying (3.3.12), gives that

α− αq ≤
∫ u

uq

∣∣∣α′(v)
∣∣∣dv � ∫ uq

u

dv

v log y

= 1
log y log

(
u

uq

)
� log q

log y log x.
(3.3.13)
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By expanding µi(x/q,y)− µi(x,y) and using (3.3.7) and (3.3.9), we get∣∣∣µi(x/q,y)− µi(x,y)
∣∣∣ =

∣∣∣ ∑
p∈Ji

(
Ψ(x/pq,y)
Ψ(x/q,y) −

Ψ(x/p,y)
Ψ(x,y)

) ∣∣∣
≤
∑
p∈Ji

1
pα

{∣∣∣pα−αq − 1
∣∣∣+O

(
1
u

+ log y
y

)}
.

(3.3.14)

By the Taylor expansion of the exponential function and invoking (3.3.13) we obtain

exp{(α− αq) log p} − 1� log p log q
log y log x. (3.3.15)

We recall that p,q ≤ y for 1 ≤ i ≤ N and i =∞. From this we infer that∣∣∣pα−αq − 1
∣∣∣� 1

u
,

this finishes the proof. �

In the following lemma we shall find an upper bound for σ2
i (x,y) (defined in (3.3.6)) for each

i ∈ {1,2, . . . , N,∞}.
Lemma 3.3.2. We have

σ2
i (x,y)� µi(x,y) + µ2

i (x,y)/u,

where i ∈ {1,2, . . . ,N,∞}.

Proof. By the definition of σ2
i (x,y) in (3.3.6), we have

σ2
i (x,y) = 1

Ψ(x,y)
∑

n∈S(x,y)

[
ω2
i (n)− 2µi(x,y)ωi(n) + µ2

i (x,y)
]
.

Using the definition of ωi(n) in (3.3.3), gives∑
n∈S(x,y)

ωi(n) =
∑

n∈S(x,y)

∑
p∈Ji

1p|n =
∑
p∈Ji

Ψ(x/p,y),

where the indicator function 1p|n is 1 or 0 according to the prime p divides n or not. By the
definition of µi(x,y) in (3.3.7), one can deduce that∑

n∈S(x,y)
ωi(n) = Ψ(x,y)µi(x,y).

By applying (3.3.7) and the equation above, we obtain
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Ψ(x,y)σ2
i (x,y) =

∑
n∈S(x,y)

[
ω2
i (n)− 2µi(x,y)ωi(n) + µ2

i (x,y)
]

=
∑

n∈S(x,y)
ω2
i (n)− 2Ψ(x,y)µ2

i (x,y) + ψ(x,y)µ2
i (x,y)

=

 ∑
p,q∈Jj
p 6=q

Ψ(x/pq,y)

−Ψ(x,y)µ2
i (x,y) +

∑
p∈Ji

Ψ(x/p,y)

:= S1 + S2,

where S1 := ∑
p,q∈Jj
p 6=q

Ψ(x/pq,y) − Ψ(x,y)µ2
i (x,y) and S2 := ∑

p∈Ji Ψ(x/p,y). We next find an

upper bound for each Si. We first consider S1, by using (3.3.7) we can get∑
p,q∈Ji
p 6=q

Ψ(x/pq,y)−Ψ(x,y)µ2
i (x,y) ≤

∑
p∈Ji

Ψ(x/p,y) (µi(x/p,y)− µi(x,y)) . (3.3.16)

By Lemma 3.3.1 and using (3.3.16), we obtain the following upper bound for S1

S1 ≤ C
Ψ(x,y)µ2

i (x,y)
u

, (3.3.17)

where C is a positive constant. It remains to estimate S2, from (3.3.7) we have

S2 = Ψ(x,y)µi(x,y).

By substituting the upper bounds for S1 and S2, we get

σ2
i (x,y) = S1 + S2

Ψ(x,y) �
(
µi(x,y) + µ2

i (x,y)
u

)
,

and the proof is complete. �

Now we give an order of magnitude for µi(x,y), where i ∈ {1,2, . . . , N,∞}
Lemma 3.3.3. We have

µi(x,y) � κ
Y 1− 1

2i

log y ,

where i ∈ {1,2, . . . , N,∞}, and
Y := y1−α.
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Proof. By the definition of each Ji, we obtain the following simple inequalities
1

yα(1−1/2i) # {p ∈ Ji} ≤
∑
p∈Ji

1
pα
≤ 1

(1− κ)yα(1−1/2i) # {p ∈ Ji} . (3.3.18)

By applying the prime number theorem, we obtain

#{p : p ∈ Ji} = π(y1−1/2i)− π((1− κ)y1−1/2i)

= y1−1/2i

log
(
y1−1/2i

) − (1− κ)y1−1/2i

log
(
(1− κ)y1−1/2i

) +O

(
y1−1/2i

log2 y

)

= y1−1/2i

(1− 1/2i) log y −
(1− κ)y1−1/2i

(1− 1/2i) log y

(
1 +O

(
log(1− κ)

log y

))

= κy1−1/2i

(1− 1/2i) log y (1 + o(1)),

(3.3.19)

The last equality is true, since the given values of κ and N in (3.3.2) and (3.3.1) imply

κ � 1/(log2 y log3 y). (3.3.20)

By substituting (3.3.19) in (3.3.18) we have

µi(x,y) � κ
Y 1−1/2i

log y , (3.3.21)

�

By the above lemmas, we are now ready for proving the following proposition.
Proposition 3.3.1. If u and y satisfy in range given in(3.1.5), we have

#
{
n ∈ S(x,y) : ωi(n) > µi(x,y)

2 ∀i ∈ {1, . . . ,N,∞}
}
∼ Ψ(x,y) as x,y →∞,

Proof. By the Chebyshev’s inequality in (3.3.5) and using the upper bound for σ2
i (x,y) in

lemma (3.3.2), we get

#
{
n ∈ S(x,y) : ωi(n) ≤ µi(x,y)

2

}
� Ψ(x,y)

(
1

µi(x,y) + 1
u

)
.
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By the above inequality, we obtain an upper bound for the following set

M := #
{
n ∈ S(x,y) : ∃i ∈ {1, . . . ,N,∞} such that ωi(n) ≤ µi(x,y)

2

}

� Ψ(x,y)
[

1
µ∞(x,y) + N

u
+

N∑
i=1

1
µi(x,y)

]
.

(3.3.22)

Our main task that finishes the proof is to find a range such that M/Ψ(x,y) tends to 0.
By using Lemma 3.3.3 and substituting the order of magnitude of µi(x,y) in (3.3.22), we get

M � Ψ(x,y)
[

log y
κY

+ N

u
+ log y

κ

N∑
i=1

1
Y 1−1/2i

]
. (3.3.23)

In what follows, we find a lower bound for Y in two different ranges of y

(i) : If y ≤ (log x)2, then by (3.2.9) α ≤ 1/2 + o(1) as y →∞. Therefore,

Y ≥ y1/2−o(1) ≥ y1/3.

By substituting this lower bound in (3.3.23) and using the precise value of N in (3.3.1), we
have

M � Ψ(x,y)
[

log y
κy1/3 + N

u
+ log y
κy1/3

N∑
i=1

y1/3(2i)
]

� Ψ(x,y)
[

log2 y

u
+ y1/6 log y

κy1/3

(
1 +O

(
Ny−1/12

))]

� Ψ(x,y) log y
κy1/6 ,

(3.3.24)

By using the asymptotic value of κ in (3.3.20), we obtain

M � Ψ(x,y) log y log2 y log3 y

y1/6 ,

and clearly we have
M = o(Ψ(x,y)) as x,y →∞,

this finishes the proof for the case y ≤ (log x)2.
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(ii) : If y ≥ (log x)2, by applying (3.2.6), we have

1− α = ξ(u)
log y +O

(
1

Lε(y) + 1
u(log y)2

)
. (3.3.25)

Using [31, Lemma 8.1], we have the following estimate of ξ

ξ(t) = log(t log t) +O

(
log2 t

log t

)
if t > 3.

Therefore,

1− α = log(u log u)
log y +O

(
log2 u

log y log u

)
,

Thus, we get

Y = u log u
[
1 +O

(
log2 u

log u

)]
� u log u.

(3.3.26)

By combining the above with the estimate in (3.3.26), and using the value of N in (3.3.1),
we get

M � Ψ(x,y)
[

log y
κu log u + N

u
+ log y
κu log u

N∑
i=1

(u log u)1/2i
]

� Ψ(x,y)
[
N

u
+ log y
κu log u

(
(u log u)1/2 + (u log u)1/22 + ...+ (u log u)1/2N

)]

� Ψ(x,y)
[
N

u
+ log y
κ(u log u)1/2

(
1 +O

(
N(u log u)−1/4

))]

� Ψ(x,y)
[

log2 y

u
+ log y
κ(u log u)1/2

]
,

(3.3.27)

By using the order of κ in (3.3.20), one can arrive at the following upper bound of M

M � Ψ(x,y) log y log2 y log3 y

(u log u)1/2 . (3.3.28)

So there exists a constant c such that for all i ∈ {1, . . . , N,∞}, we have

# {n ∈ S(x,y) : ωi(n) > µi(x,y)/2 ∀i} ≥ Ψ(x,y)
(

1− c log y log2 y log3 y

(u log u)1/2

)
, (3.3.29)
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and this finishes the proof by letting
u log u

(log y log2 y log3 y)2 →∞.

�

Corollary 3.3.1. If x and y satisfy the range (3.1.5), then almost all n in S(x,y) are divisible
by at least one prime factor pi in Ji, and N prime factors q1,..., qN in J∞. Moreover, the
product ∏N

i=1 piqi has a divisor Dj in each of intervals [(1 − κ)NyN−j/2N ,yN−j/2N ], where
j ∈ {0,1,...,2N − 1}.

Proof. The first part of Corollary is a direct conclusion of Proposition 3.3.1.
For the second part, let n be a y−smooth integer satisfying the first part of Corollary. We
fix the following divisor of n

D :=
N∏
i=1

piqi,

where pi ∈ Ji and q1,...,qN ∈ J∞.
Let j be an arbitrary integer in {0,1,...,2N − 1}. Moreover, we define

a0 := N −
N∑
i=1

ai,

where ai’s get the values 0 or 1 such that
N∑
i=1

ai
2i = j/2N . (3.3.30)

We now define the divisor of Dj of D with the following form

Dj :=
N∏
i=1

paii

a0∏
i=1

qi,

By using the bounds of pis and qis, one can get the following bounds for Dj.

(1− κ)NyN−
∑N

i=1 ai/2
i ≤ Dj ≤ yN−

∑N

i=1 ai/2
i

,

By using (3.3.30), we have

(1− κ)NyN−j/2N ≤ Dj ≤ yN−j/2
N

,

and this finishes our proof. �



52

We are ready now to prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Let n ≤ (1− η)x be a y−smooth integer with at least one prime
factor pi in each Ji , where i = 1,..,N , and N prime divisors q1,q2, ...,qN in J∞. Set

m := n∏N
i=1 piqi

.

By this definition, we get
n∏N

i=1 piqi
≥ n

y2N >
√
n,

when 4N ≤ u. Thus,
m >

√
n.

Let {rv} be the increasing sequence of prime factors of m and set dv = r1...rv.
Clearly, m has at least one divisor bigger than

√
n

yN
. We suppose that l is the smallest integer

such that dl ≥
√
n

yN
, and evidently we have

dl−1 ≤
√
n

yN
,

So, we arrive at the following bounds for dl
√
n

yN
≤ dl ≤ ydl−1 ≤

√
n

yN−1 , (3.3.31)

We pick k ∈ {0,1,2...,2N − 1} such that
√
n

yN
yk/2

N ≤ dl ≤
√
n

yN
y(k+1)/2N . (3.3.32)

By the second part of Corollary 3.3.1, for every k in {0,1,...,2N − 1} there exists a divisor Dk

such that
(1− κ)NyN−k/2N ≤ Dk ≤ yN−k/2

N

,

We define d := dlDk, we have

(1− κ)N
√
n ≤ d ≤ y1/2N√n,

By using the values of N in (3.3.1) and κ in (3.3.2), we have

e−η/2
√
n ≤ d ≤ eη/2

√
n.
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Applying the Taylor expansion for exponential functions, gives(
1− η + η2

2 +O(η3)
)1/2√

n ≤ d ≤
(

1 + η + η2

2 +O(η3)
)1/2√

n. (3.3.33)

By using the assumption n ≤ (1−η)x in the upper bound and lower bound above, we obtain

d ≤
(

1− η2

2 +O(η3)
)1/2√

x ≤
√
x,

and
n

d
≤
(

1 + η + η2

2 +O(η3)
)1/2√

n ≤
(

1− η2

2 +O(η3)
)1/2√

x ≤
√
x.

Thus, we can write n ∈ S((1 − η)x,y) as the product of two divisors less than
√
x, and we

can deduce that
Ψ ((1− η)x,y) ≤ A(x,y) ≤ Ψ(x,y),

By using (3.2.10), we have

Ψ ((1− η)x,y)
Ψ(x,y) = (1− η)α

{
1 +O

(
1
u

+ log y
y

)}
→ 1 as x,y →∞,

this finishes the proof.
�

3.4. Proof of Theorem3.1.3
In this section, we shall study the behaviour of A(x,y) for large values of y. When y takes

values very close to x, then the set of y−smooth integers contains integers having large prime
factors. As we explained in the heuristic argument, one can expect that A(x,y) = o(Ψ(x,y)).
To show this assertion, we recall the idea of Erdős used to prove the multiplication table
problem for integers up to x.
We start our argument by giving an upper bound for A∗(x), defined by

A∗(x) := #
{
ab : a,b ≤

√
x and (a,b) = 1

}
. (3.4.1)

We shall find an upper bound of A∗(x) by considering the number of prime factors of a and
b. We first define

πk(x) := #{n ≤ x : ω(n) = k}
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Therefore,

A∗(x) ≤
∑
k

min

πk(x),
k−1∑
j=1

πj(
√
x)πk−j(

√
x)


≤
∑
k

min

 cx

log x
(log2 x)k−1

(k − 1)! ,
k−1∑
j=1

c
√
x

log
√
x

(log2
√
x)j−1

(j − 1)!
c
√
x

log
√
x

(log2
√
x)k−j−1

(k − j − 1)!

 ,
(3.4.2)

where in the last inequality, we used the well-known result of Hardy and Ramanujan that
states there are absolute constants C and c such that

πk(x) ≤ cx

log x
(log2 x+ C)k−1

(k − 1)! for k = 0,1,2,.. and x ≥ 2. (3.4.3)

By simplifying the upper bound in (3.4.2) and using Stirling’s formula

n! ∼ nn+ 1
2 e−n

we obtain

A∗(x) ≤
∑
k

min

 cx

log x
(log2 x)k−1

(k − 1)! ,
4c2x

(log x)2

k−2∑
j=0

1
(k − 2)!

(
k − 2
j

)
(log2

√
x)k−2


=
∑
k

min
{

cx

log x
(log2 x)k−1

(k − 1)! ,
4c2x

(log x)2
(2 log2

√
x)k−2

(k − 2)!

}

=
∑

k≤ log2 x
log 2

4c2x

(log x)2
(2 log2

√
x)k−2

(k − 2)! +
∑

k>
log2 x
log 2

cx

log x
(log2 x)k−1

(k − 1)!

� x

(log x)1− 1+log log 2
log 2 (log2 x)1/2

→ 0 as x→∞.

(3.4.4)

We shall get the same upper bound for A(x). Let n ≤ x and there are a and b less than
√
x such that n = ab. If (a,b) = 1 then n is counted by A(x) , and if (a,b) = d > 1 then we

can write n as n = a
′
b

′
d2 such that (a′

,b
′) = 1. So, n

d2 ≤ x
d2 , and n

d2 will be counted by A( x
d2 ).

Therefore,
A(x) ≤

∑
d≤
√
x

A∗( x
d2 )� A∗(x)

By (3.4.4), we get
A(x)� x

(log x)1− 1+log log 2
log 2 (log2 x)1/2

.
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Thus,
A(x) = o(x) as x→∞.

Motivated by Erdős’ idea for the multiplication table of integers up to x, we apply a
similar method to find an upper bound for A(x,y).
The first step of proof is to study the following function which plays a crucial role in this
section. Let

Nk(x,y,z) := #{n ∈ S(x,y) : Ωz(n) = k},

where Ωz(n) is the truncated version of Ω(n), only counting divisibility by primes not ex-
ceeding z with their multiplicities. In other words

Ωz(n) :=
∑
pv ||n
p≤z

v.

In the following lemma, by using induction on k, we shall find an upper bound of type (3.4.3)
for Nk(x,y,z). The reason of applying truncation is to sieve out prime factors exceeding some
power of y which are the cause of big error terms as k increases in each step of induction.
The upper bound of Nk(x,y,z) leads us to generalize Erdős’ idea for y−smooth integers in a
certain range of y.

Lemma 3.4.1. Let u ≤ (C−ε) log log y, where C is a positive constant and ε > 0 is arbitrarily
small. Set the parameter z such that

log log z � u.

Then, there are constants A and B such that the inequality

Nk(x,y,z) ≤ AΨ(x,y)
log z

(log log z +B)k
k! (3.4.5)

holds for every integer k > 0.
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Proof. When k = 0, by (3.2.15), evidently we have

N0(x,y,z) = θ(x,y,z) ≤ c
Ψ(x,y)
log z ,

where c > 0 is a constant. When k = 1, we can represent n as n = pm, where p ≤ z and
every prime factor q of m is between z and y, then using the definition of θ(x,y,z) we have

N1(x,y,z) =
∑
p≤z

∑
m≤x/p

q|m⇒z≤q≤y

1 =
∑
p≤z

θ(x/p,y,z).

By applying the estimate (3.2.10) and (3.2.15), there is constant c such that

N1(x,y,z) ≤
∑
p≤z

cΨ(x/p,y)
log z = c

Ψ(x,y)
log z

∑
p≤z

1
pα

{
1 +O

(1
u

)}
.

For the last summand we have

∑
p≤z

1
pα

=
∑
p≤z

1
p

(
p1−α

)

=
∑
p≤z

1
p
{1 +O ((1− α) log p)} ,

(3.4.6)

since (1 − α) log p ≤ (1 − α) log z, and (1 − α) log z is bounded in our range (see (3.4.8)).
Therefore, ∑

p≤z

1
pα

= log2 z +O ((1− α) log z) , (3.4.7)

By using the estimate of α in (3.2.6) and the upper bound of z, we get

(1− α) log z � log u
log y log z � log u

log2 y
� log3 y

log2 y
, (3.4.8)

and we obtain ∑
p≤z

1
pα

= log2 z +O

(
log3 y

log2 y

)
. (3.4.9)

Thus, ∑
p≤z

1
pα

{
1 +O

(1
u

)}
= log log z +O(1), (3.4.10)
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since we have log log z � u.
Substituting (3.4.10) in the upper bound of N1(x,y,z), gives

N1(x,y,z) ≤ cΨ(x,y)
log z (log2 z +O(1)) .

We will show the lemma with A = c and B = O(1). We argue by induction: we assume
that the estimate in (3.4.5) is true for any positive integer k, we now prove it for n ∈ S(x,y)
with Ωz(n) = k + 1. There are k + 1 ways to write n as n = pm1m2 such that p ≤ z and
Ωz(m1) = k and every prime factor of m2 is greater than z. Then we have

Nk+1(x,y,z) = 1
(k + 1)

∑
p≤z

∑
m1∈S(x/(p),y)

Ωz(m1)=k
m2∈S(x/(pm1),y)

q|m2⇒q>z

1 ≤ 1
(k + 1)

∑
p≤z

∑
m1∈S(x/(p),y)

Ωz(m1)=k

1

= 1
(k + 1)

∑
p≤z

Nk(x/p, y, z)

By the assumption for Ωz(n) = k and (3.2.10), we get

Nk+1(x,y,z) ≤ A(log2 z +B)k
log z(k + 1)!

∑
p≤z

Ψ(x/p,y)

= AΨ(x,y)
log z

(log2 z +B)k
(k + 1)!

∑
p≤z

1
pα

{
1 +O

(1
u

)}
.

(3.4.11)

By applying the estimate in (3.4.10), we arrive at the following bound for Nk+1(x,y,z)

Nk+1(x,y,z) ≤ AΨ(x,y)
log z

(log2 z +B)k+1

(k + 1)! ,

so we derived our desired result. �

Proof of Theorem 3.1.3. For a small ε > 0, we set u <
(

λ
log 2 − ε

)
log2 y, where λ is a fixed

real number in the open interval (1− 2 log 2, 1− log 2).
We now set z satisfying

log log z = log 2
λ

u, (3.4.12)
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so the given ranges of u and z satisfy the conditions of Lemma 3.4.1.
By the definition of A(x,y), we have the following evident bound of A(x,y)

A(x,y) ≤
∑
k

min


∑

n∈S(x,y)
Ωz(n)=k

1,
k−1∑
j=1

∑
a∈S(

√
x,y)

Ωz(a)=j

1
∑

b∈S(
√
x,y)

Ωz(b)=k−j

1

 . (3.4.13)

We set
L = bH log2 zc,

where
H := 1− λ

log 2 .

We have 1− 2 log 2 < λ < 1− log 2. Thus, 1 < H < 2.

By using (3.4.13), we write the following bound for A(x,y)

A(x,y) ≤ # {n ∈ S(x,y) : Ωz(n) > L}+ #
{
ab : a,b ∈ S(

√
x,y),Ωz(a) + Ωz(b) ≤ L

}
=
∑
k>L

Nk(x,y,z) +
∑
k≤L

k∑
j=0

Nj(
√
x,y,z)Nk−j(

√
x,y,z).

(3.4.14)

By applying Lemma 3.4.1, we have

A(x,y)�
∑
k>L

Ψ(x,y)
log z

(log2 z + c)k
k! +

∑
k≤L

k∑
j=0

Ψ2(
√
x,y)

log2 z

(log2 z + c)j
j!

(log2 z + c)k−j
(k − j)!

=
∑
k>L

Ψ(x,y)
log z

(log2 z + c)k
k! +

∑
k≤L

Ψ2(
√
x,y)

log2 z

k∑
j=0

1
k!

(
k

j

)
(log2 z + c)k

=
∑
k>L

Ψ(x,y)
log z

(log2 z + c)k
k! +

∑
k≤L

Ψ2(
√
x,y)

log2 z

(2 log2 z + c)k
k! .

(3.4.15)

By applying the simple form of Ψ(x,y) in Corollary 3.2.1, and using the assumption (3.4.12),
we get

Ψ2(
√
x,y)

Ψ(x,y) � (log z)λ as u,y →∞. (3.4.16)
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Thus,

A(x,y)� Ψ(x,y)
log z

∑
k>L

(log2 z + c)k
k! + (log z)λΨ(x,y)

log2 z

∑
k≤L

(2 log2 z + c)k
k! . (3.4.17)

The maximum values of functions in the above summands (with respect to k) are attained
at k = blog2 zc and k = b2 log2 zc respectively. We have log log z < L < 2 log log z, so the
function in the first summation in (3.4.17) in decreasing for k > L, and by using Stirling’s
formula k! ∼ kk+ 1

2 e−k, we have

∑
k>L

(log2 z)k
k! =

∑
H log2 z<k≤e log2 z

(log2 z)k
k! +

∑
e log2 z<k≤2e log2 z

(log2 z)k
k! +

∑
k>2e log2 z

(log2 z)k
k!

� (log2 z)
((

e

H

)H log2 z

+ 1
)

� 1
(log z)H logH−H .

(3.4.18)

The function in the second summation in (3.4.17) is increasing for k ≤ L, and we have
∑
k≤L

(2 log2 z + c)k
k! � (log2 z)

(2e
H

)H log2 z

= 1
(log z)H logH−H−H log 2 (3.4.19)

Substituting the upper bounds obtained in (3.4.18) and (3.4.19) in (3.4.17), and using the
definition of H, gives

A(x,y)� Ψ(x,y)
(log z)G(H) ,

where
G(H) := 1 +H logH −H.

The function G(H) is an increasing function in the interval (1,2) with a zero at H = 1. Thus,
for any arbitrary 1− 2 log 2 < λ < 1− log 2, we have

A(x,y) = o(Ψ(x,y)) as x,y →∞,

so we obtained our desired result. �



Chapter 4

AN ERDŐS-KAC THEOREM FOR Y−SMOOTH
AND Y−ULTRA-SMOOTH INTEGERS

4.1. Introduction
For an integer n ≥ 2, let ω(n) denote the number of distinct prime divisors of n. In 1940,

Erdős and Kac [13] in their celebrated work studied the distribution of ω(n) in the interval
[2,N ]. The theorem states that for any real number x, we have

lim
N→∞

1
N

#
{
n ≤ N : ω(n)− log log n√

log log n
≤ x

}
= Φ(x). (4.1.1)

where Φ(x) is the normal distribution function defined by

Φ(x) := 1√
2π

∫ x

−∞
e−

t2
2 dt

There are several proofs of Erdős-Kac Theorem. For instance, it has been proved by Billings-
ley [5] and Granville and Soundararajan [19] using the method of moments and sieve theory.
Different variations of this theorem have been considered by several authors. In the present
note, we shall study the Erdős-Kac theorem for y−smooth numbers. Recall that

S(x, y) := {n ≤ x : P (n) ≤ y} x ≥ y ≥ 2,

is the set of y−smooth integers, where P (n) is defined as the largest prime factor of n, with
the convention P (1) = 1. Also, recall that we set

Ψ(x, y) := |S(x, y)| x ≥ y ≥ 2.
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The main goal of this result is to prove an analogue of (4.1.1) with the set S(x,y) in the
range

u = o(log log y), (4.1.2)

where, as always,
u := log x

log y .

Hildebrand [24], Alladi [2], and Hensley [22] have considered the distribution of prime
divisors of y−smooth integers in different ranges of y.
Hensley proved an Erdős-Kac type theorem when u lies in the range

(log y)1/3 ≤ u ≤
√
y

2 log y .

By using different method Alladi obtained an analogue of the Erdős-Kac Theorem for the
following range

u ≤ exp(log y)3/5−ε.

Later, Hildebrand extended previous results to include the range

y ≥ 3 u ≥ (log y)20,

which is a completion of Alladi and Hensley’s results.

Although (4.1.2) does not cover Alladi’s, Hensley’s and Hildebrand’s ranges, our applied
method is completely different and much easier than the methods used by previous authors.
Our approach is based on the method of moments as Billinglsley used in [5]. We will introduce
some approximately independent random variables, and by the Central Limit Theorem, we
shall show that this random variables have a normal distribution, then by applying method
of moments we get our desired result in (4.1.1).
The first step of the proof is to apply a truncation on number prime factors. This idea is
from original proof of Erdős-Kac Theorem [13].

For a given real number y, set

φ(y) := (log log y)
√

log log log y,
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then y
1

φ(y) is a function that helps us to sieve out all primes exceeding y
1

φ(y) , and we will show
the contribution of sieved primes is negligible in understanding the distribution of ω(n).
Before stating the main result, we begin introducing some notation. Let ω(n) is the number
of distinct prime divisors of a y−smooth number, namely

ω(n) :=
∑
p≤y

1p|n(n),

where 1p|n(n) is 1 and 0 according to the prime p divides n or not.
Let µω(x,y) be the mean value of ω(n), more formally

µω(x,y) := En∈S(x,y)[ω(n)] = 1
Ψ(x, y)

∑
n∈S(x,y)

ω(n),

and σ2
ω(x,y) is the variance of ω(n), defined by

σ2
ω(x,y) := E

[
(ω(n)− µ(x,y))2

]
.

Now we are ready to state the main theorem.
Theorem 4.1.1. For any real number z, we have

1
Ψ(x,y)#{n ∈ S(x, y) : ω(n)− log log y√

log log y
≤ z} → Φ(z) (y →∞) (4.1.3)

holds in the range (4.1.2).
Theorem 4.1.1 is proved in Section 3. The proof relies on the method of moments and

the estimate of Ψ(x/d,y)/Ψ(x,y).

Let
U(x,y) := {n ≤ x : pv||n⇒ v ≤ vp}

be the set of y−ultra-smooth integers, where

vp :=
⌊

log y
log p

⌋
.

We define
Υ(x,y) :=

∣∣∣U(x,y)
∣∣∣.

We also have the following theorem
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Theorem 4.1.2. For any real number z, we have

1
Υ(x,y)#{n ∈ U(x, y) : ω(n)− log log y√

log log y
≤ z} → Φ(z) (y →∞) (4.1.4)

holds in the range (4.1.2).
The proof of Theorem 4.1.2 relies on the method of moments and the local behaviour of

the function Υ(x,y). By recalling Theorem 1.5.8, for u = o(log log y), we have

Υ(x/d,y)
Υ(x,y) = Ψ(x/d,y)

Ψ(x,y)

{
1 +O

(
u log 2u
√
y log y

)}
,

that is
Υ(x/d,y)
Υ(x,y) ∼

Ψ(x/d,y)
Ψ(x,y) as y →∞.

Considering this relation between the local behaviour of Υ(x,y) and Ψ(x,y) gives us a similar
proof as Theorem 4.1.1, so we shall avoid proving this theorem.

4.2. Preliminaries
Here we briefly recall some standard facts from probability theory (See Feller [15] for

more details) and we shall give a few important lemmas.
Remark 4.2.1. If a random variable Dn converges to 0 in probability, particularly E{|Dn|} →
0, then a second random variable Un (on the same probability space) tend to Φ in distribution
if and only if Un +Dn → Φ in distribution.

Remark 4.2.2. If distribution function Fn satisfying
∫∞
−∞ x

kdFn(x) →
∫∞
−∞ x

kdΦ(x) as
n→∞, for k = 1, 2, ..., then Fn(x)→ Φ(x) for each x.

Remark 4.2.3. If Fn(x) → Φ(x) for each x, and if
∫∞
−∞ |x|k+εdFn(x) is bounded in n for

some positive ε, then,
∫∞
−∞ x

kdFn(x)→
∫∞
−∞ x

kdΦ(x).

Remark 4.2.4. (A special case of the central limit theorem): If X1,X2, . . . are independent
and uniformly bounded random variables with mean 0 and finite variance σ2

i and if ∑σ2
i

diverges then the distribution of
∑n

i=1 Xi

(∑n

i=1 σ
2
i )1/2 converges to the normal distribution function.



64

By recalling Theorem 1.5.1 for d ≤ y and y ≥ (log x)1+ε, we have

Ψ(x/d,y) = Ψ(x,y)
dα

{
1 +O

(
1
uy

+ log d
log x

)}
, (4.2.1)

where uy := u+ log y
log(u+2) and α = α(x,y) denotes the saddle point of the Perron’s integral for

Ψ(x,y), which is the solution of the following equation∑
p≤y

log p
pα − 1 = log x.

This function will play an important role in this work, so we briefly recall some fundamental
facts about this function. By [9, Lemma3.1], for any ε > 0, we have the following estimate
for α

α = 1− ξ(u)
log y +O

(
1

Lε(y) + 1
u(log y)2

)
if y ≥ (log x)1+ε, (4.2.2)

where ξ(u) is a unique real non-zero root of the equation

eξ = 1 + uξ,

and when u ≥ 3, we have

ξ(u) = log(u log u) +O

(
log log u

log u

)
. (4.2.3)

By [9, Lemma 4.1], we have the following important estimate
Lemma 4.2.1. (De la Breteche, Tenenbaum) For any x ≥ y ≥ 2, uniformly we have

∑
p≤y

1
pα

= log log y +
{

1 +O

(
1

log y

)}
uy

y + log x. (4.2.4)

Here we use a particular case of Lemma 4.2.1. If the range of y is restricted to log x <
y ≤ x, we get

uy

y + log x = u

(
1 +O

(
log x
y

))
,

thus, ∑
p≤y

1
pα

= log log y + u+O

(
u

log y

)
y > log x. (4.2.5)
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For 2 ≤ t ≤ y ≤ x, we define

ωt(n) := #{p : p|n, p ≤ t} =
∑
p≤t

1p|n.

By using the saddle point method, Tenenbaum and de la Breteche in [8] obtained an estimate
for the expectation and the variance of ωt(n). First, we define

M(t) = Mx,y(y) :=
∑
p≤t

1
pα
.

We state the following lemma from [8].
Lemma 4.2.2. (Tenenbaum, de la Breteche) we have uniformly for 2 ≤ t ≤ y ≤ x

µωt(x,y) = M(t) +O(1). (4.2.6)

We now study the expectation of ω(n), where n ∈ S(x,y).
Lemma 4.2.3. If u = o(log log y), then we have

µω(x,y) = log log y + o(log log y).

Proof. Let t = y in Lemma 4.2.2, then we have

µω(x,y) =
∑
p≤y

1
pα

+O(1)

By using (4.2.5), we get
µω(x,y) = log log y + u+O(1),

Now by letting u = o(log log y), we have

µω(x,y) = log log y + o(log log y),

and the proof is complete. �
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Lemma 4.2.4. If u = o(log log y) and t ≤ y1/ log u, then we have∑
p≤t

1
pα

= log log t+O(1) (4.2.7)

Proof. We have ∑
p≤t

1
pα

=
∑
p≤t

1
ppα−1 =

∑
p≤t

1
p
{1 +O ((1− α) log p)} ,

since (1 − α) log p is bounded. By the given estimate for α in (4.2.2) and using Mertens’
estimate, we obtain

∑
p≤t

1
pα

=
∑
p≤t

1
p

+O

 ξ(u)
log y

∑
p≤t

log p
p


= log log t+O

(
ξ(u)
log y log t

) (4.2.8)

By applying the estimate of ξ(u) in (4.2.3), we get our desired result. �

Here we will introduce a truncated version of ω and in the following lemma and corollary
we show that the contribution of large prime factors does not affect the expected value of
number of prime factors of n and hence the distribution of ω(n), when u is small enough.
We define

ωY (n) :=
∑
p≤Y

1p|n(y), (4.2.9)

where
Y := y

1
φ(y) , and φ(y) := (log log y)

√
log log log y.

Lemma 4.2.5. If u = o(log log y), then we have

∑
p≤Y

1
pα

= log log y +O
(
(log log log y)3/2

)
.

Proof. By Lemma 4.2.4, we have∑
p≤Y

1
pα

= log log y − log φ(y) +O(1)

= log log y + (log log log y)3/2 +O(1),
(4.2.10)
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and we have our desired result. �

Now we define
µωY (x,y) := E [ωY (n)] .

In the following lemma we will show ω(n) can be replaced by ωY (n) in the statement of
Theorem 4.1.1.
Lemma 4.2.6. Let h(n) := ω(n)− ωY (n), then we have

P
(
|h| ≤ (log log y)1/4

)
= 1− o(1),

where P denotes the probability value.

Proof. We first find an estimate for E[h], we have

E[h] = E [ω(n)− ωY (n)] = µω(x,y)− µωY (x,y).

Using Lemma 4.2.3 and 4.2.5, we get

E[h]� (log log log y)3/2 ≤ (
√

log log y). (4.2.11)

For the variance of h, using (4.2.11), we get

σ2
h(x,y) := E

[
(h− E[h])2

]
= (E[h])2 � (log log log y)3.

(4.2.12)

Now by Chebyshev’s inequality and using (4.2.12), we have

E
(
h ≥ (log log y)1/4

)
≤ P

(∣∣∣h− E[h]
∣∣∣ ≥ (log log y)1/4

)
≤ σ2

h(x,y)
(log log y)1/2 = o(1),

(4.2.13)

and we get our desired result. �

By the above Lemma and recalling Remark 4.2.1, the estimate in (4.1.4) is equivalent to the
following

1
Ψ(x,y)#{n ∈ S(x, y) : ωY (n)− log log y√

log log y
≤ z} → Φ(z) (y →∞), (4.2.14)

which we prove it in the next section.
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4.3. Proof of Theorem 4.1.1
We begin this section by setting some random variables Xp on a probability space and

one variable for each prime p, which satisfies

P (Xp = 1) =
Ψ(x

p
, y)

Ψ(x, y) , and P (Xp = 0) = 1−
Ψ(x

p
, y)

Ψ(x, y) (4.3.1)

The random variables Xp’s are independent.

Now we define the partial sum SY as follows

SY :=
∑
p≤Y

Xp,

where Y = y1/φ(y).

By the definition of Xp’s and the estimate in (4.2.1) and (4.2.5), we deduce that SY has a
mean value and variance of the order log log y in the range u = o(log log y), this means that
ωY (n) and SY have roughly the same variance and the same mean value.

In the following lemma we get an upper bound for the difference of jth moments of ωY
and SY , where j = 1,2,3, . . . .
Lemma 4.3.1. If u = o(log log y), then for any positive integer j, we have

Aj := En∈S(x,y)[ωY (n)j]− E[SjY ]� (log log y)j

u(log log y)
√

log log log y .

Proof. By the definition of ωY and SY , we have

E[ωjY (n)] = 1
Ψ(x, y)

∑
p1...pj≤Y

∑
n∈S(x,y)

1p1|n(n) . . . 1pj |n(n),

and
E[SjY ] =

∑
p1...pj≤Y

E
[
Xp1 . . . Xpj

]
.
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So for the difference of jth moment, we have

Aj =
∑

p1,...,pj≤y
1

φ(y)

 1
Ψ(x, y)

∑
n∈S(x,y)

1p1|n(n) . . . 1pj |n(n)− E[Xp1 ...Xpj ]


=
∑

p1,...,pj≤y
1

φ(y)

Ψ( x
p1...pj

, y)
Ψ(x, y) −

∏
1≤i≤j

Ψ( x
pi
, y)

Ψ(x, y)



=
∑

p1,...,pj≤y
1

φ(y)

Ψ( x
p1,...,pj

, y)
Ψ(x, y) −

∏
1≤i≤j

Ψ( x
pi
, y)

Ψ(x, y)

 .
(4.3.2)

Without loss of generality we assume that pi’s are distinct, then by using the estimate (4.2.1),
we have

Aj =
∑

p1,...,pj<y1/φ(y)

1
(p1...pj)α

{
1 +O

(
1
uy

+ log p1...pj
log x

)}

−
∑

p1,...,pj<y1/φ(y)

1
(p1...pj)α

j∏
i=1

{
1 +O

(
1
uy

+ log pi
log x

)}
.

The main terms in the above subtraction are the same and will be eliminated. Therefore,

Aj �
∑

p1,...,pj<y1/φ(y)

1
(p1...pj)α

(
1
uy

+ log p1...pj
log x

)

�
∑

p1,...,pj<y1/φ(y)

1
(p1...pj)α

(
1
uy

+ log y
φ(y) log x

)
.

(4.3.3)

If u = o(log log y), then uy ≥ log y
log log log y . So we can ignore the term 1

uy
. Thus,

Aj �
∑

p1,...,pj<y1/φ(y)

1
(p1 . . . pj)α

(
log y

φ(y) log x

)
.

We now use Lemma 4.2.5, and we get the following upper bound for each Aj

Aj �
(log log y)j

u(log log y)
√

log log log y . (4.3.4)

�
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Proof of Theorem 4.1.1. We start our proof by normalizing the random variable SY . De-
fine

S := SY − µωY (x,y)√
σ2
ωY

(x,y)
.

By recalling the central limit theorem, one can say that S has a normal distribution Φ(x),
since Xp’s are independent. We set

W := ωY (n)− µωY (x,y)√
σ2
ωY

(x,y)
.

By using the method of moments, we will show that the moments of W are very close to
those corresponding sum S and they both converge to the kth moment of normal distribution
for every positive integer k.
By the multinomial theorem, we have

∆k := E[(ωY (n)− µωY (x,y))k]− E[(SY − µωY (x,y))k]

=
k∑
j=1

(
k

j

)
(−µωY (x,y))k−j

(
E[ωY (n)j]− E[SjY ]

)
.

(4.3.5)

By combining the upper bound in (4.3.4) with (4.3.5), we arrive to the following estimate

∆k � 1
(log log y)

√
log log log y

k∑
j=1

(
k

j

)
(−µωY (x,y))k−j(log log y)j

= 1
u(log log y)

√
log log log y (log log y + µωY (x,y))k .

(4.3.6)

Now using Lemma 4.2.3, we have

∆k � (log log y)k

u(log log y)
√

log log log y .
(4.3.7)

Thus,
∆k → 0 as x,y →∞.

We showed that the difference of kth moments goes to 0 for large values of y. By the remark
(4.2.2), we conclude that two random variables S and W have a same distribution.
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By Remark 4.2.4, the random variable S has a normal distribution. It remains to show
that the moments of S are very close to those of the normal distribution.
By recalling Remark 4.2.3, we need to prove that the moment E[Sk] are bounded in n when
k increases.
In fact, we will show that for each k ∈ N

sup
n

∣∣∣E
(SY − µωY (x,y))k

(
√
σ2
ωY

(x,y))k

 ∣∣∣ <∞. (4.3.8)

To complete the proof, we define the random variables Yp = Xp − Ψ(x/p,y)
Ψ(x,y) , which are inde-

pendent.
We have

E
(
(SY − µωY (x,y))k

)
=

k∑
j=1

′∑ k!
k1!...kj!

∑
p1...pj≤y

1
φ(y)

E[Y k1
p1 ]...E[Y kj

pj
]. (4.3.9)

Where ∑′ is over j-tuple (k1,..,kj), where k1, . . . ,kj are positive integers, and k1 + ...+kj = k.
By the definition of Y ′ps, we have E[Ypj ] = 0.
To avoid zero terms, we can assume that ki > 1 for each 1 ≤ i ≤ j. Also we have |Yp| ≤ 1.
Thus,

E[Y ki
p ] ≤ E[Y 2

p ] ∀ki > 2.

Therefore, the value of inner sum in (4.3.9) is at most

∑
p1...pj≤y

1
φ(y)

E[Y k1
p1 ]...E[Y kj

pj
] ≤

 ∑
p≤y

1
φ(y)

E[Y 2
p ]


j

= σ2j(x,y).

Each ki is strictly greater than 1, and we have k1 + .. + kj = k, therefore 2j ≤ k and this
implies that

E

(SY − µωY (x,y))k(√
σ2
ωY

(x,y)
)k

 ≤ k∑
j=1

′∑ k!
k1!...kj!

,
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from which (4.3.8) follows.
We proved all necessary and sufficient conditions such that (4.2.14) and consequently (4.1.4)
are true. �
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