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RÉSUMÉ

Dans le domaine de la logistique, de nombreux problèmes pratiques peuvent être

formulés comme le problème de tournées de véhicules (PTV). Dans son image la plus

large, le PTV vise à concevoir un ensemble d’itinéraires de collecte ou de livraison des

marchandises à travers un ensemble de clients avec des coûts minimaux. Dans le PTV dé-

terministe, tous les paramètres du problème sont supposés connus au préalable. Dans de

nombreuses variantes de la vie réelle du PTV, cependant, ils impliquent diverses sources

d’aléatoire. Le PTV traite du caractère aléatoire inhérent aux demandes, présence des

clients, temps de parcours ou temps de service. Les PTV, dans lesquels un ou plusieurs

paramètres sont stochastiques, sont appelés des problèmes stochastiques de tournées de

véhicules (PSTV).

Dans cette dissertation, nous étudions spécifiquement le problème de tournées de

véhicules avec les demandes stochastiques (PTVDS). Dans cette variante de PSTV, les

demandes des clients ne sont connues qu’en arrivant à l’emplacement du client et sont

définies par des distributions de probabilité. Dans ce contexte, le véhicule qui exécute

une route planifiée peut ne pas répondre à un client, lorsque la demande observée dé-

passe la capacité résiduelle du véhicule. Ces événements sont appelés les échecs de l’iti-

néraire ; dans ce cas, l’itinéraire planifié devient non-réalisable. Il existe deux approches

face aux échecs de l’itinéraire. Au client où l’échec s’est produit, on peut récupérer la

realisabilite en exécutant un aller-retour vers le dépôt, pour remplir la capacité du véhi-

cule et compléter le service. En prévision des échecs d’itinéraire, on peut exécuter des

retours préventifs lorsque la capacité résiduelle est inférieure à une valeur seuil. Toutes

les décisions supplémentaires, qui sont sous la forme de retours au dépôt dans le contexte

PTVDS, sont appelées des actions de recours. Pour modéliser le PTVDS, une politique

de recours, régissant l’exécution des actions de recours, doit être conçue.

L’objectif de cette dissertation est d’élaborer des politiques de recours rentables, dans

lesquelles les conventions opérationnelles fixes peuvent régir l’exécution des actions de

recours. Nous fournissons un cadre général pour classer les conventions opérationnelles

fixes pour être utilisées dans le cadre PTVDS. Dans cette classification, les conventions



opérationnelles fixes peuvent être regroupées dans (i) les politiques basées sur le vo-

lume, (ii) les politiques basées sur le risque et (iii) les politiques basées sur le distance.

Les politiques hybrides, dans lesquelles plusieurs règles fixes sont incorporées, peuvent

être envisagées. Dans la première partie de cette thèse, nous proposons une politique

fixe basée sur les règles, par laquelle l’exécution des retours préventifs est régie par les

seuils prédéfinis. Nous proposons notamment trois politiques basées sur le volume qui

tiennent compte de la capacité du véhicule, de la demande attendue du prochain client

et de la demande attendue des clients non visités. La méthode “Integer L-Shaped" est

réaménagée pour résoudre le PTVDS selon la politique basée sur les règles.

Dans la deuxième partie, nous proposons une politique de recours hybride, qui com-

bine le risque d’échec et de distance à parcourir en une seule règle de recours, régissant

l’exécution des recours. Nous proposons d’abord une mesure de risque pour contrôler le

risque d’échec au prochain client. Lorsque le risque d’échec n’est ni trop élevé ni trop

bas, nous utilisons une mesure de distance, ce qui compare le coût de retour préventif

avec les coûts d’échecs futurs.

Dans la dernière partie de cette thèse, nous développons une méthodologie de solu-

tion exacte pour résoudre le VRPSD dans le cadre d’une politique de restockage opti-

male. La politique de restockage optimale résulte d’un ensemble de seuils spécifiques au

client, de sorte que le coût de recours prévu soit réduit au minimum.

Mots clés : Problème de tournées de véhicules avec les demandes stochastiques,

recours, politique basée sur les règles, hybride, politique de restockage optimale,

méthodologie de solution exacte.
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ABSTRACT

In the field of logistics, many practical problems can be formulated as the vehicle

routing problem (VRP). In its broadest picture, the VRP aims at designing a set of ve-

hicle routes to pickup or delivery goods through a set of customers with the minimum

costs. In the deterministic VRP, all problem parameters are assumed known beforehand.

The VRPs in real-life applications, however, involve various sources of uncertainty. Un-

certainty is appeared in several parameters of the VRPs like demands, customer, service

or traveling times. The VRPs in which one or more parameters appear to be uncertain

are called stochastic VRPs (SVRPs).

In this dissertation, we examine vehicle routing problem with stochastic demands

(VRPSD). In this variant of SVRPs, the customer demands are only known upon arriv-

ing at the customer location and are defined through probability distributions. In this

setting, the vehicle executing a planned route may fail to service a customer, whenever

the observed demand exceeds the residual capacity of the vehicle. Such occurrences are

called route failures; in this case the planned route becomes infeasible. There are two

approaches when facing route failures. At the customer where the failure occurred, one

can recover routing feasibility by executing back-and-forth trips to the depot to replenish

the vehicle capacity and complete the service. In anticipation of route failures, one can

perform preventive returns whenever the residual capacity falls below a threshold value.

All the extra decisions, which are in the form of return trips to the depot in the VRPSD

context, preserving routing feasibility are called recourse actions. To model the VRPSD,

a recourse policy, governing the execution of such recourse actions, must be designed.

The goal of this dissertation is to develop cost-effective recourse policies, in which the

fixed operational conventions can govern the execution of recourse actions.

In the first part of this dissertation, we propose a fixed rule-based policy, by which the

execution of preventive returns is governed through the preset thresholds. We particu-

larly introduce three volume based policies which consider the vehicle capacity, expected

demand of the next customer and the expected demand of the remaining unvisited cus-

tomers. Then, the Integer L-shaped algorithm is redeveloped to solve the VRPSD under



the rule-based policy. The contribution with regard to this study has been submitted to

the Journal of Transportation Science.

In the second part, we propose a hybrid recourse policy, which combines the risk

of failure and distances-to-travel into a single recourse rule, governing the execution of

recourse actions. We employ a risk measure to control the risk of failure at the next

customer. When the risk of failure is neither too high nor too low, we apply a dis-

tance measure, which compares the preventive return cost with future failures cost. The

contribution with regard to this study has been submitted to the EURO Journal on Trans-

portation and Logistics.

In the last part of this dissertation, we develop an exact solution methodology to solve

the VRPSD under an optimal restocking policy. The optimal restocking policy derives

a set of customer-specific thresholds such that the expected recourse cost is minimized.

The contribution with regard to this study will be submitted to the European Journal of

Operational Research.

Keywords: Vehicle routing problem with stochastic demands, recourse, rule-

based policy, hybrid, optimal restocking policy, exact method.
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CHAPTER 1

INTRODUCTION

Combinatorial optimization is one of the most important fields that is shared by op-

erations research and computer science disciplines. One of the classic combinatorial

optimization problems that has received considerable interest since it’s been introduced

by Dantzig and Ramser [15], is the Vehicle Routing Problem (VRP). The Mathemati-

cal model discussed by Dantzig and Ramser [15] is a generalization of the Traveling

Salesman Problem (TSP), see Flood [18]. It should be noted that the VRP is an NP-

hard problem, because it generalizes the TSP, e.g., see Gutin and Punnen [26] for the

complexity of TSP.

The VRP aims at planning a set of routes with the minimum travel cost for a fleet

of identical vehicles, dispatching from a depot location to visit a set of customers (each

customer exactly once) with deterministic demands, in order to pickup or delivery. Tech-

nological advances in the power of current computer systems enable researchers to solve

more complex problems in term of size of VRP instances. In addition, the significant

advances in the modeling of problems and the need to explicitly consider more realistic

aspects of real-life problems, like time constraints, multi compartment services, simulta-

neous pickup and delivery, etc., encourage researchers to develop sophisticated solution

methods to treat recent variants of VRP, see e.g., Toth and Vigo [55] for a thorough

exposition in the progress of modeling frameworks and solution approaches.

In the Deterministic VRP, all parameters associated to the activities, services, and re-

sources are fully known beforehand. In real life problems, however, the VRP is subject

of various sources of uncertainty which may be appeared in demands, travel and ser-

vice times. The VRPs in which one deals with some sources of stochasticity are called

Stochastic VRPs (SVRPs). In the stochastic environment, one may use the determin-

istic approximated models in which the existing source of uncertainty is replaced by a

roughly estimation or forecast; for instance one can replaces the stochastic demand of a

customer by the expected demand. These approximated models generally produce bad



quality solutions which become inefficient in the execution time; unexpected extra costs

will be incurred by stochastic events, e.g., see Louveaux [36] for the discussion of advan-

tages of using the stochastic models. Therefore, there is an apparent need to propose and

develop: (i) stochastic optimization models that explicitly consider stochasticity using

random variables, and (ii) solution methodologies to solve such stochastic optimization

models, efficiently.

This dissertation deals with a variant of SVRPs, called the VRP with Stochastic De-

mands (VRPSD), in which the customer demands are stochastic and are only known

as probability distributions, beforehand. In this research, the stochastic demands fol-

low general discrete distributions. In the context of VRPSD, a planned route may fail

and become infeasible, i.e., when the vehicle executing the route visits a customer with

an excessive demand, i.e., a route failure is occurred. In a failure event the service

is interrupted and route becomes infeasible. There are two ways to deal with demand

uncertainty in the VRPSD. One can construct feasible routing decisions such that the

maximum demand of customers can be serviced by the fleet of vehicles. However, in

practice, this approach may result in inefficient routes. As an alternative approach to

tackle stochasticity, one can construct routes in such a way that the vehicles, executing

the route and confronting various demand observations, are able to make corrective de-

cisions, which preserve route feasibility, when facing route failures. In this approach,

the vehicle may perform corrective extra return trips as the recourse actions which entail

additional costs called recourse costs. Depending on how routing and recourse deci-

sions are made, and how stochastic demands are observed, there are two main paradigm

to model the VRPSD, see Gendreau et al. [22]. In the first approach, called the a pri-

ori optimization approach, one can partition the overall decision making process into

two stages; in the first stage one can construct the routing decisions; and when demand

uncertainty reveals itself in the execution of routing decisions in the second stage, the

vehicle preserves route feasibility whenever it is needed by executing return trips to the

depot. As an alternative, in the re-optimization approach one generally makes routing

and recourse decisions (which customer is potentially the next customer to proceed and

what recourse action must be taken before visiting the next customer) at each customer
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such that the optimal cost-to-go is minimized. In the rest of this dissertation, we model

the VRPSD under the a priori optimization approach by which a first-stage routing deci-

sions is obtained beforehand.

There are two approaches to deal with route failures. One can recover routing fea-

sibility by executing a Back-Forth (BF) trip to the depot to replenish the capacity, as a

reactive recourse action, once a failure event is occurred at a specific customer. After

replenishing the capacity at the depot, the vehicle completes the service at the customer

at where the failure occurred, and continues the service for the remaining unvisited cus-

tomers. In anticipation of potential failures at the next customer or following customers,

one can alternatively prescribe a Preventive Restocking (PR) trip in a proactive fashion.

In such a case, instead of visiting the next customer, the vehicle with a low-stock ca-

pacity replenishes the vehicle capacity at the depot and then visits the next customer. It

should be noted that if the residual capacity of the vehicle and the observed demand are

equal, an exact stockout is occurred. In such a case, the vehicle after serving the current

customer may perform restocking trip to replenish the vehicle capacity.

To formulate the VRPSD, a recourse policy, which governs how recourse decisions

(by means of a set of predetermined recourse actions) are taken when facing stochastic

events, must be determined. In this dissertation we model the VRPSD using the a priori

optimization modeling paradigm proposed by Dror et al. [17] and Bertsimas et al. [4].

In such setting, a set of vehicle routes must be planned to be executed in a long planning

horizon. Depending on how the various decisions (both routing and recourse) are made

in the VRPSD (i.e., either statically or dynamically), the solution approaches proposed

for the problem can be classified as in Table 1.I.

Considering the stochastic nature of the problem, the vehicle may fail to service

customers repeatedly. From the customer’s perspective, two consecutive visits to ful-

fill demands causes disturbance. Therefore, route failures can significantly interrupt the

service resulting in unsatisfactory, lengthen the planned routes, and cause arrival time

consistency issues. The aim of this dissertation is to propose various new efficient re-

course policies which incorporate PR trips in order to reduce the risk of observing route

failures.
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In the following, we briefly discuss existing recourse policies, their advantages and

related drawbacks. The most studied recourse policy in the context of the VRPSD is the

Classical Recourse which consists of following the planned route until a route failure

is observed. The vehicle partially fulfils the demand of customer at a failure event and

the driver retrieves routing feasibility by solely executing BF trips. In such a way, the

classical recourse policy causes split services at the failure events that results in cus-

tomer unsatisfactory, a serious “drawback” in a managerial perspective. On the other

hand, the classical policy performs the least expected number of recourse actions that

can be accounted as an “advantage”. Given a routing decision, to obtain a set of opti-

mal (i.e., entailing the least expected recourse cost) recourse decisions, one can perform

recourse actions using an Optimal Restocking Policy in the VRPSD context. The opti-

mal restocking policy employs a dynamic programming approach to schedule BF and

PR trips based on customer-specific thresholds. After serving a specific customer, if the

residual capacity of the vehicle is less than a specific value i.e., customer-specific thresh-

old, which is computed by the dynamic programming approach, the vehicle prescribes a

PR trip. It should be noted that the optimal policy is route-dependent, thus, any changes

in the routing decision makes an optimal policy generally suboptimal. Then, the opti-

mal customer-specific thresholds cannot be modified or controlled by a transportation

company through operational conventions, which is a “drawback” in a managerial per-

spective. In addition, there is a “lack of an exact solution approach” to optimally obtain

both routing and recourse decisions. Then, designing an exact method that efficiently

results in optimal decisions in the context of VRPSD is mainly of interest.

This dissertation consists of three papers, concerning the development of recourse

policies for the VRPSD that are suitable in managerial settings as well as exact solution

approaches to solve VRPSD instances efficiently. Dealing with unexpected events in

the uncertain environments, transportation companies set fixed operational conventions

to simplify their operations and to achieve a high level of routing consistency. Such

operational conventions, varying by the type of service level which are aimed by the

transportation companies, can be translated to the fixed rules for performing recourse

actions. Then, our main goal is to design recourse policies which are able to prescribe a
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set of predetermined recourse actions based on fixed rules.

1.1 Problem Statement

In this dissertation, we model the VRPSD using the a priori optimization paradigm,

by which the problem is formulated as a two-stage stochastic integer program with re-

course. In this manner, overall decision making process is decomposed into two mutu-

ally exclusive stages. In the first-stage, the routing decisions are taken. Then, stochas-

ticity reveals itself in the execution of routing decisions. The second stage consists of

making recourse decisions according to a selected recourse policy, which maps a set of

pre-determined recourse actions to the customers scheduled along the route. Given a re-

course policy employed to perform recourse actions, solving the VRPSD exactly results

in an optimal routing decision with the minimum total cost, including routing cost and

associated expected recourse cost.

In practice, transportation companies, executing routing decisions on a daily basis

repeatedly, need to properly select cost-effective recourse policies. Moreover, setting

fixed operational rules to perform recourse actions are desired to preserve operational

consistency.

In this dissertation, we discuss and explore efficient recourse policies which do not

suffer from the above-mentioned drawbacks. To avoid the drawback (e.g., service inter-

ruptions leading to customer dissatisfaction) of classical recourse policy, one can spec-

ify a minimum service level, to be provided by the decision maker, in the form of the

customer-specific thresholds. In this manner, the vehicle visits a customer only if it can

fulfil at least the predetermined minimum service level. To provide the service level, the

vehicle must execute a PR trip, whenever it is needed. However, an important question

that remains unanswered is how can proactive recourse actions be implemented in the

static decision environment defined in the a priori approach? To handle this question we

propose two families of recourse policy including the fixed rule-based and hybrid ones

for the VRPSD. As such, static operational rules streamline the operations in a manner

that greatly simplifies policies.
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In the following, we first provide a general framework to classify the static opera-

tional rules that may be applied in the VRPSD context. The proposed taxonomy groups

the possible policies in three general classes: (i) volume-based policies, (ii) risk-based

policies and (iii) distance-based policies. Hybrid policies which consider several opera-

tional rules can also be envisioned in a practical setting. These policies (i.e., fixed rule-

based and hybrid ones) are discussed in subsections §1.1.1 and §1.1.2. Furthermore, the

VRPSD under an optimal restocking policy is also discussed in §1.1.3.

1.1.1 Volume-Based Rules

In the first problem of this dissertation, we focus on the VRPSD under the volume-

based recourse policies. We are interested in controlling recourse actions based on the

fixed volume-based operational conventions. It should be noted that we need to translate

these conventions to the fixed operational rules which enable us implementing preventive

recourse actions. The problem is how to define the considered operational rules and

show how these operational rules can be employed using a fixed threshold-based policy

to govern the recourse actions.

Transportation companies can then adjust the customer-specific thresholds which

reflect company’s operational policies allowing them to control the risk of encounter-

ing failures. To execute volume-based policies we need to define the customer-specific

thresholds as a function of the capacity of the vehicle or the demands of the customers.

A schematic example of a threshold-based policy is shown in Figure 1.1. As shown in

Figure 1.1, the recourse policy can be implemented efficiently by a driver using a Daily

log-trip sheet. In this manner, the vehicle after serving the j customer with q units of

residual capacity less than threshold value θij performs a preventive return.
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DEPOT −
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Figure 1.1 – The vehicle is executing a PR trip to provide the customer-specific threshold.

1.1.2 Risk-Distance Based Rules

In the second problem, we study the VRPSD under a hybrid recourse policy. We aim

to establish a unified recourse decision making process which incorporates two mea-

sures including risk of failure and distances-to-travel enabling us to prescribe PR trips.

We design a risk measure which computes the risk of failure at the next customer and

compares it with predetermined thresholds. Transportation companies can control the

risk of failure according to these thresholds and prescribe preventive returns whenever

the risk of failure is too high. When the risk of failure is neither too high for performing

a PR trip nor to low for proceeding the planned route, we implement a distance-based

measure. We then implement a distance measure which compares the PR trip cost at the

current customer with the average cost of future BF trips. Then, we aim to integrate this

hybrid recourse in an exact solution approach for the VRPSD.

1.1.3 Optimal Rules

In the third problem of this dissertation, we study the VRPSD under an optimal

restocking policy. The optimal restocking recourse strategy is early proposed in 1980.

Under such recourse policy, a set of optimal customer-specific thresholds are obtained
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such that the recourse cost will be minimized. In this setting, the vehicle after serving

a specific customer with the residual capacity less than the associated threshold must

perform a preventive return. The optimal restocking policy has been only integrated

in the heuristic and metaheuristic solution methods which result in a pair of suboptimal

routing and recourse decisions. In this part of dissertation, we aim at solving the VRPSD

under an optimal restocking policy exactly.

1.1.4 Solution Method

The broadest problem investigated in this dissertation is to develop solution method-

ologies for tackling the VRPSD under various recourse policies proposed in this re-

search. In this dissertation we adopt the integer L-shaped algorithm which is initially

developed to solve two-stage stochastic integer programs with recourse(first-stage vari-

ables are binary). The integer L-shaped algorithm as a general branch-and-cut (B&C)

procedure is then employed to solve the multi-VRPSD. As a general B&C procedure, the

algorithm adds the violated constrained which are initially relaxed and achieves integral-

ity by branching scheme. Furthermore, the expected recourse cost function is replaced

by a nonnegative variable and initially bounded from below. Since the exact solution

framework only can improve the overall upper bound by computing the recourse cost of

integer solution, other types of valid inequalities, by which the expected recourse cost

can be efficiently bounded, are introduced. Such valid inequalities enhance the efficiency

of the integer L-shaped algorithm by providing various bounding schemes for fractional

solutions with certain structures. In order to use these type of valid inequalities, a valid

lower bound for the expected recourse cost of fractional solutions under the proposed re-

course policies must be computed. To our best knowledge, computing such valid lower

bounds, when customer demands are discrete, is only restricted to the single-VRPSD

with restricted number of failures.
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1.2 Thesis Contributions

The author of this thesis conducted the research proposed in Chapters 3, 4, and 5.

He wrote the code, implemented and tested the models and the algorithms, and analysed

output data. Michel Gendreau,Walter Rei, and Ola Jabali supervised the thesis, proposed

the general orientation, helped with the design of the numerical experiments, discussed

the results and commented on the three manuscripts at all stages.

The main contributions of this dissertation are as follows in details:

— We present a general framework to classify recourse policies.

— We introduce a new family of recourse policies as rule-based recourse policies

and propose three different volume-based rules to prescribe recourse actions.

— We adapt the integer L-shaped algorithm to solve the VRPSD under rule-based

recourse policies. To do so, we develop several lower bounding procedures to

enhance the efficiency of the algorithm.

— We conduct an extensive computational study using a large set of randomly gen-

erated instances, to illustrate the performance of our algorithm under rule-based

policies.

— We present a new family of recourse polices as mixed recourses. We define a

unified decision rule consisting of a risk measure that computes the probabilities

of failure at the next or following customers and a distance measure that specifies

whether prescribing a PR trip is more benefited or not.

— We adapt the integer L-shaped algorithm to solve the VRPSD under a mixed

policy and provide lower bounding techniques which speed up the overall branch-

and-cut procedure.

— We redevelop the integer L-shaped algorithm to solve the VRPSD under an opti-

mal restocking policy, exactly.

— To enhance the efficiency of the integer L-shaped algorithm, various lower bound

improving techniques are established.

— A general lower bound which approximates the expected recourse function is

determined.
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Our contributions, based on how routing and recourse decisions are made, are summa-

rized in Table 1.I and are specified by the italics.

Table 1.I – Classification of the solution approaches for the VRPSD.

Recourse Decisions

Routing Static Dynamic

Static a priori (BF), rule-based(BF/PR), hybrid(BF/PR) optimal restocking(BF/PR)

Dynamic —- reoptimization(BF/PR)

1.3 Thesis Organization

This dissertation addresses the VRPSD under various recourse policies. This disser-

tation is made of six chapters three of which correspond to articles submitted to scientific

journals. Because of that Chapters 3-5 reproduce the exact format of articles that sub-

mitted. In particular, they include abstracts, separate references and appendices. Chapter

3 presents A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic De-

mands which has been submitted to the Journal of Transportation Science. Chapter

4 presents A Hybrid Recourse Policy for the Vehicle Routing Problem with Stochastic

Demands which has been submitted to the EURO Journal on Transportation and Logis-

tics. Chapter 5 presents An Optimal Restocking Recourse Policy for the Vehicle Routing

Problem with Stochastic Demands which has been submitted to the European Journal of

Operational Research. We already have provided the general introduction and problem

statement in the Chapter 1. The Chapter 2 covers the literature review of the VRPSD

including existing modeling paradigms and solution frameworks, which have been pre-

sented in the previous works.

In Chapter 3, we present the first paper of this dissertation. This chapter addresses

the problem stated in Section 1.1.1 in which we introduce a rule-based recourse policy.

An exact solution methodology is then developed to solve the VRPSD under a rule-based

recourse policy. Finally, the performance of the proposed methodology is investigated

10



by an extensive numerical experiments in the same Chapter.

In Chapter 4, forming the second paper, the aim is to introduce a hybrid recourse

policy as stated in Section 1.1.2. We combine two new measures including the risk of

failure and the distances-to-travel into a single recourse decision rule. Moreover, an

exact solution methodology is developed to solve the VRPSD under this hybrid recourse

policy. We finish the chapter by presenting the numerical experiments and the evaluation

of the proposed algorithm.

Chapter 5, which stands as the third paper of this dissertation, is devoted to the

study of the VRPSD under an optimal restocking policy, as stated in Section 1.1.3. The

integer L-shaped algorithm which enhanced by lower bounding schemes is proposed to

optimally solve the VRPSD under an optimal restocking policy. The performance of the

proposed method is then investigated by an extensive numerical experiments.

Finally, Chapter 6 provides conclusions as well as the future research avenues.
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CHAPTER 2

LITERATURE REVIEW

The Vehicle Routing Problem (VRP), introduced in the seminal paper of Dantzig and

Ramser [15], is one of the most studied combinatorial optimization problems in the field

of operations research. The classical VRP aims at designing a set of vehicle-routes, with

minimum travelled-cost through a set of geographically dispersed locations, which start

and end at a single depot location to deliver or pickup goods. In the deterministic ver-

sion of the problem, which has been widely studied, all problem parameters are known

precisely and each customer must be visited exactly once (see Toth and Vigo [55] for a

thorough exposition of the problem and its main variants).

In reality, however, routing problems have to deal with several sources of uncer-

tainty: demands, travel and service times, customer presence, etc. Routing problems in

which some parameters are uncertain are called Stochastic VRPs (SVRPs). Although,

deterministic approximation models can be solved as proxies for SVRP models, such

approximations generally lead to bad quality solutions, see Louveaux [36]. Therefore,

there is a need to develop specialized stochastic optimization paradigms that explicitly

model random variables. While they have received much less attention than determinis-

tic VRPs, SVRPs have been investigated by several authors; see Gendreau et al. [22] for

a survey of the SVRP literature. In this thesis, we focus on the variant of the problem

in which customer demands are uncertain, being only specified through probability dis-

tributions. In this variant which is called the Vehicle Routing Problem with Stochastic

Demands (VRPSD), customer demands can be observed upon arrival at the customer

location.

We will use the following notation to model the VRPSD. We denote by G = (V , E) a

complete undirected graph, which consists of a set of vertices denoted by V = {v1, v2, . . . , vn}
and a set of edges denoted by E = {(vi, vj)|vi, vj ∈ V , i < j}. We present the de-

pot by vertex v1, where a fleet of m identical vehicles with a capacity of Q is based.

Let vertex vi (for i = 2, . . . , n) represents the ith customer with stochastic demand



ξi, which follows a discrete probability distribution with a finite support defined as

{ξ1
i , ξ2

i , . . . , ξ l
i , . . . , ξsi

i }. We denote by pl
i the probability of observing the lth demand

level (i.e., value ξ l
i), i.e., P[ξi = ξ l

i ] = pl
i . We define matrix C = (cij) as the symmetric

distance matrix, in which each cij is associated to the length of (vi, vj) ∈ E .

DEPOT

1

1

1

ξi
route failure

restocking

Figure 2.1 – VRPSD under a set of predefined recourse actions

In presence of demand stochasticity, a planned route may fail at a specific customer

where the observed demand exceeds the residual capacity of the vehicle. In such a case, a

route failure is occurred, called by Dror and Trudeau [16]. Then, a recourse action must

be taken to preserve route feasibility, thus entailing extra costs. These recourse actions

can either be reactive (i.e., to be performed once after a route failure occurred) or proac-

tive (i.e., in anticipation of future failures taking place along the route). As a reactive

recourse action, the vehicle executes a back-and-forth (BF) trip to the depot, to refill its

capacity for completing the service where the failure is occurred. In the case of an exact

stockout, in which the observed demand turns out the exact value of the residual capac-

ity (is the case only having discrete distributions), the vehicle performs a restocking trip;

the vehicle replenishes the capacity at the depot and then proceeds to the next customer,

see Gendreau et al. [20] and Hjorring and Holt [27]. In order to maintain route feasi-

bility, the vehicle prescribe preventive restocking (PR) trips, when the residual capacity
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becomes too low, see Yee and Golden [58] and Yang et al. [57]. PR trips are considered

as proactive recourse actions, because the vehicle preventively returns to the depot be-

fore an actual failure occurs. To model the VRPSD illustrated in Figure 2.1, one must

determine a unified decision rule, called recourse policy, which governs the prescription

of a set of pre-determined recourse actions. We refer to the modeling paradigm in the

context of the VRPSD as: how the overall decisions, routing and recourse ones, are taken

through the information revelation, see Table 1.I. There are four modeling paradigms to

model the VRPSD as the a priori optimization, re-optimization, chance constraints and

robust optimization approaches, which are elaborated in the Sections §2.1, §2.2, §2.3

and §2.4, respectively. We then study various aspects including formulations, recourse

policies, and exact and heuristic solution methods.

2.1 A Priori Optimization

In the a priori optimization approach, originally proposed by Dror et al. [17] and

further investigated Bertsimas et al. [4], one decomposes the VRPSD decisions into two

sets, where routing and recourse decisions must be taken before and after the demand

realizations, respectively. In such a way, the first-stage is equivalent to find a set of a

priori routes, while certain demands are not yet known. When uncertainty reveals it-

self in the execution of the planned route and the vehicle realizes the actual demands,

the second-stage problem includes finding a set of recourse actions preserving routing

feasibility with minimum expected recourse-cost. Overall, the aim in the a priori opti-

mization approach is to find a routing decision which incurs the least total routing and

expected recourse costs. In more technical terms, we model the VRPSD by an a priori

approach as a two-stage Stochastic Program with Recourse (SPR).

In this section, we start with the two-stage stochastic programming with fixed re-
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course presented in Birge and Louveaux [9] as follows,

min
x

ctx +Q(x)

s.t. Ax = b,

x ≥ 0,

(First-Stage)

where

Q(x) = Eξ [Q(x, ξ(ω))]

Q(x, ξ(ω)) = min
y
{q(ω)ty|Wy = h(ω)− T(ω)x, y ≥ 0}

(Second-Stage)

The first-stage problem (First-Stage) is established by the decision vector x ∈ Rn1 ,

the cost vector c ∈ Rn1 , right-hand-side b ∈ Rm1 , and technology matrix A ∈ Rm1×n1 .

Moreover, Ax = b and x ≥ 0 express the constraints and restrictions in (First-Stage)

which must be satisfied by each feasible decision x. Suppose that the feasible first-stage

decision x is given. In the second-stage, the stochasticity ω ∈ Ω becomes known.

In this dissertation, we assume that the stochastic variables follow general discrete dis-

tributions. Although we represent a two-stage stochastic program with fixed recourse

here, the source of stochasticity in the VRPSD is only in right-hand-side, customers de-

mand, known by discrete probability distributions beforehand. The second-stage prob-

lem (Second-Stage) is established by the decision vector y ∈ Rn2 , the cost vector

q(ω) ∈ Rn2 , right-hand-side h(ω) ∈ Rm2 , and technology matrices T(ω) ∈ Rm2×n1

and W ∈ Rm2×n2 associated to x and y variables, respectively. For the second-stage

problem, each realization ω ∈ Ω generates known vectors and matrices q(ω), h(ω),

and T(ω). The stochastic vector ξ(ω) includes all stochastic sources, q(ω), h(ω), and

T1(ω), . . . , Tm2(ω), totally with N = n2 + m2 + m2× n1 components. Then, for each

realization ω the second stage consists of finding the optimal recourse/corrective deci-

sion vector y which minimizes the objective functionQ(x, ξ(ω)). Finally,Q(x) can be

computed by taking expectation of Q(x, ξ(ω)) with respect to ξ. We should note that

ξ has a finite support set Ξ ⊆ RN, where N is the size of vector ξ(ω) such that the
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probability over support set Ξ is one.

One can model the VRPSD using a two-stage stochastic integer program with re-

course (TS-SIPR) under the a priori optimization approach, see Dror et al. [17] and

Gendreau et al. [22] for a detailed exposition of modeling frameworks. Based on the

principles of the a priori optimization approach, the routing decisions denoted by de-

cision vector x are taken in the first stage. In such a way, each routing decision x in

the VRPSD formulation 2.1-2.7 consists of m vehicle routes, each serviced by a vehicle

with Q units of capacity, where route r can be represented as follows,

~v = (v1 = vr1 , vr2 , . . . , vri , vrj , . . . , vrt , vrt+1 = v1). (a priori route)

For each pair of successive customers vri and vrj in ~v, xij takes one; otherwise zero.

As presented in Gendreau et al. [20] and Laporte et al. [35], the TS-SIPR model for the

VRPSD can be formulated as follows:

minimize
x ∑

i<j
cijxij +Q(x) (2.1)

subject to
n

∑
j=2

x1j = 2m, (2.2)

∑
i<k

xik + ∑
k<j

xkj = 2, k = 2, . . . , n (2.3)

∑
vi ,vj∈S

xij ≤ |S| −
⌈∑vi∈S E(ξi)

Q

⌉
, (S ⊂ V \ {v1}; 2 ≤ |S| ≤ n− 2)

(2.4)

0 ≤ xij ≤ 1, 2 ≤ i < j < n (2.5)

0 ≤ x1j ≤ 2, j = 2, . . . , n (2.6)

x = (xij), integer. (2.7)

The objective function of the first-stage consists of the distances traveled by the fleet

of vehicles i.e., ∑
i<j

cijxij. Constraints (2.2) are the degree constraints and establish m
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vehicle-routes that start and end at the depot; Constraints (2.3) are the flow constraints

which ensure that each customer is visited exactly once; Constraints (2.4) stand as both

subtour elimination and capacity constraints, which remove both subtours, and infeasible

routes with an excessive expected demand. Constraints (2.4) also implies that for the a

priori route~v the total expected demand of the route does not exceed the vehicle capacity.

Constraints (2.5-2.7) impose the necessary bounds and integrality restrictions on the

decision variables. The objective function (2.1) minimizes the total cost including the

routing (i.e., first-stage) cost, and the expected recourse (i.e., second-stage) cost Q(x).

In the a priori optimization paradigm, the vehicle realizes actual demands upon arriving

at the customer location. Given the vehicle route ~v, the vehicle executing ~v may fail

to complete the service at a specific customer, at which the observed demand exceeds

the residual capacity of the vehicle. Such an occurrence is called route failure and the

route becomes infeasible. Then the vehicle must perform recourse/corrective actions

to preserve route feasibility. The recourse actions we study in this dissertation are in

the form of return trips to the depot. The second-stage problem Q(x) then consists

of finding a set of recourse actions by means of returning trips which minimizes the

expected recourse costs.

Dror and Trudeau [16] show that when customer demands are independent, Q(x)

can be computed separately for each routes. Moreover, the expected recourse cost of the

a priori route ~v depends on which orientation the route is executed. We then denote by

Qk,δ the expected recourse cost of the kth a priori route in the orientation δ (δ = 1, 2)

and we have,

Q(x) =
m

∑
k=1

min{Qk,1,Qk,2}. (2.8)

The kth a priori route ~v will be executed under a given recourse policy in both directions

to obtain the minimum expected recourse cost, as presented by function (2.8). Finally,

the specific recourse policy to compute Qk,. is the subject of the following Section.

17



2.1.1 Recourse Policies

In this part, we briefly study the various recourse strategies proposed in the literature.

A recourse policy can be defined as a plan to prescribe a set of predetermined recourse

actions. The set of predetermined recourse actions typically vary with applications. Two

main recourse policies proposed for the VRPSD are represented in Sections §2.1.1.1 and

§2.1.1.2.

2.1.1.1 Classical Recourse Policy

Dror and Trudeau in [16] propose the classical recourse function (2.9), which con-

siders the impact of both (i) the location of a route failure, and (ii) the direction of

the planned route on the expected recourse cost. The classical recourse policy con-

sists of following the planned route until it fails due to an excessive observed demand

at a specific customer. The classical recourse policy performs only BF trips along the

a priori route (in the case of continuous distributions like Normal, Poisson, etc, i.e.,

the distributions with accumulative property 1). For the kth a priori route ~v = (v1 =

vi1 , vi2 , . . . , vij , . . . , vit , vit+1 = v1) being executed by a vehicle with capacity Q, the

recourse function to compute the expected recourse cost in the first direction can be

presented as:

Qk,1 =
t

∑
j=2

j−1

∑
l=1

P(
j−1

∑
s=2

ξis ≤ lQ <
j

∑
s=2

ξis)2c1,ij ,

Qk,1 =
t

∑
j=2

j−1

∑
l=1

[
Fj−1(lQ)− Fj(lQ)

]
2c1,ij ,

(2.9)

where, c1,ij is the distance between the jth customer and the depot and the probability

of lth failure at the jth customer, denoted by Fj−1(lQ)− Fj(lQ), can be computed by

1. The sum of several identical independent and Ψ distributed random variables is also a random
variable with Ψ distribution i.e., ξi ∼ Ψ then ∑i ξi ∼ Ψ
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using the cumulative probability Fj(lQ) as follows,

Fj(lQ) = P(
j

∑
s=2

ξis ≤ lQ)

Fj−1(lQ)− Fj(lQ) = P(
j−1

∑
s=2

ξis ≤ lQ <
j

∑
s=2

ξis).

(2.10)

In (2.10), the cumulative probability Fj(lQ) expresses the probability of not having lth

failure at the jth customer. Teodorović and Pavković [54] also model the recourse func-

tion (2.9) for the VRPSD in which all customer demands follow uniform distributions.

Gendreau et al. [20] tailor the classical recourse policy for the discrete demand dis-

tributions. In this setting if the observed demand and residual capacity are the same

(which is called an exact stockout), then the vehicle executes a restocking trip, see also

Hjorring and Holt [27]. It should be noted that the recourse policy proposed in Gendreau

et al. [20] has presented for the VRP with stochastic demands and customers (VRPSDC).

Therefore, the classical recourse policy when executing both BF and restocking trips can

be presented as follows,

Qk,1 =
t

∑
j=2

j−1

∑
l=1

P(
j−1

∑
s=2

ξis < lQ <
j

∑
s=2

ξis)2c1,ij

+
t

∑
j=2

j−1

∑
l=1

P(
j−1

∑
s=2

ξis < lQ =
j

∑
s=2

ξis)(c1,ij + c1,ij+1 − cij ,ij+1)

(2.11)

where we denote by P(∑
j−1
s=2 ξis < lQ = ∑

j
s=2 ξis) the probability of having an exact

stockout at the jth customer as the lth replenishment decision and we denote by c1,ij +

c1,ij+1 − cij ,ij+1 the restocking trip cost at the jth customer.

2.1.1.2 Optimal Recourse Policy

An optimal restocking policy, as an optimal operating strategy in the context of the

VRPSD, is proposed by Yee and Golden [58]. Under such a recourse policy, the ve-

hicle prescribes PR trips as well as BF trips. In this policy, the proceeding cost-to-go
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(the cost incurred by proceeding the planned route to the next customer) is compared

with the case that the vehicle resumes the service after performing a PR trip at the cur-

rent customer. The policy uses this comparison to take optimal actions, which then

minimize the expected recourse cost. The optimal restocking policy results in a set of

optimal customer-specific thresholds, see Yee and Golden [58] and Yang et al. [57]. If

the residual capacity after serving the customer is high enough (i.e., greater or equal to

the threshold), then the vehicle proceeds directly to the next customer, otherwise, the

vehicle must prescribe a PR trip. The optimal policy can be presented as follows,

Fij(q) = min



Hij ,ij+1(q) : cij ,ij+1+ ∑
l:ξ l

ij+1
≤q

Fij+1(q− ξ l
ij+1

)pl
ij+1

+

∑
l:ξk

ij+1
>q

[b + 2c1,ij+1 + Fij+1(Q + q− ξ l
ij+1

)]pl
ij+1

,

H′ij ,ij+1
(q) : c1,ij + c1,ij+1 +

sij+1

∑
l=1

Fij+1(Q− ξ l
ij+1

)pl
ij+1

,

(2.12)

where Hij ,ij+1(q) and H′ij ,ij+1
(q) express the total costs associated to the proceeding and

restocking decisions after serving the ij
th customer, respectively and Fij(q) represents

the optimal expected cost-to-go after serving the jth customer with q units of residual

capacity onboard. The first term in (2.12) expresses the expected cost of proceeding to

the j + 1th customer consisting of the routing cost from the jth customer to the j + 1th

customer, the expected cost of serving j + 1th customer, and the expected cost of failures

at the j + 1th customer. The second term in (2.12) represents the cost of PR trip from the

jth customer to the j + 1th customer and serving the j + 1th customer with full capacity

of the vehicle. The optimal policy takes the optimal action between proceeding and

replenishing by choosing the action which incurs the minimum optimal cost-to-go. Yang

et al. [57] compute the optimal policy for a single route with up to 15 customers. It is

shown that there is a single route which always is as economical as multiple routes (i.e.,

the execution of several routes in a row under an optimal restocking policy is at least as

beneficial as executing each route under the optimal policy separately. Bianchi et al. [7]

improve the computational performance presented by Yang et al. [57] by implementing
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hybrid metaheuristics for the VRPSD. The local search procedures (i.e., exploring the

neighbors) are further improved by using the deterministic information (length of the

TSP tour).

2.1.1.3 Miscellaneous Recourse Policies

There are a few more recourse policies that are proposed in the literature. Dror and

Trudeau [16] present an adaptation of the classical recourse policy, in which after the

occurrence of the first failure, all unvisited customers are penalized by BF trips. This

recourse policy highly penalizes route failures. A paired locally coordinated recourse

strategy is proposed by Ak and Erera [1]. In this recourse strategy, a set of a priori

routes are generated in the first stage and then are paired. In each pair, one a priori tour

is labeled as type (I), and the other is labeled as type (II) (the a priori tours that are not

paired will be considered as type (II)). When the vehicle executing a type I fails, it leaves

the unvisited customers to the vehicle performing the paired route, type II, which is set

to perform BF trips. Chepuri and Homem-De-Mello [12] propose a recourse strategy in

which the vehicle takes no action after the first failure. Then, the route will be penalized

with a penalization of customers at which the service is incomplete as well as unvisited

customers. Juan et al. [29] introduce a safety stock approach for the the VRPSD. In this

approach, a certain amount of surplus vehicle capacity is considered as a safety stock or

buffer to be used in failure events.

2.1.2 Solution Methods

Various approaches have been proposed to solve the VRPSD. Some of these ap-

proaches are developed to solve the deterministic counterparts of the VRPSD (e.g.,

chance-constrained programming (CCP) models or robust counterpart of the VRPSD

which both are elaborated latter) that are not the subject of this review. We then restrict

ourselves to the VRPSD which are modeled through stochastic optimization models (in

this section, TS-SIPR). Here, we try to cover almost all of the solution methods that are

proposed to tackle the VRPSD. The presented dichotomy is further portrayed between
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exact methods on one side and heuristic and metaheuristic frameworks on the other side.

2.1.2.1 Exact Solution Methods: Integer L-shaped Algorithm

The Integer L-shaped algorithm is devised by Laporte and Louveaux [34] to solve

stochastic integer programs with complete recourse. The Integer L-shaped algorithm

also stands as an integer extension of the L-shaped algorithm of Van Slyke and Wets

[56] for continuous variables. The L-shaped algorithm of Van Slyke and Wets [56] is

a Benders decomposition methodology (Benders [3]) tailored for stochastic programs

with the L-shaped form. Here, we use the notation used in Laporte and Louveaux [34]

to present the TS-SIPR as follows

minimize
x

ctx + Q(x) (2.13)

subject to Ax = b, (2.14)

x ∈ X (2.15)

where, Q(x) in objective function (2.13) expresses the second-stage problem, and Con-

straints x ∈ X consists of various complex constraints Dx ≥ d and other restrictions

(e.g., in the VRPSD stands also for subtour elimination constraints) as well as integrality

requirements. In the Integer L-shaped algorithm as branch-and-cut (B&C) procedure, a

master problem here denoted by current problem (CP) is initially established by relax-

ing complex and integrality requirements x ∈ X, and replacing the expected recourse

function Q(x) with Θ, which will be bounded from below by a general lower bound L.

Then, CP0 can be presented by (2.16) such that (2.14), (2.20), and (2.21) hold. For a
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given stage of the algorithm, we consider the following model,

CP : minimize
x,Θ

ctx + Θ (2.16)

subject to Ax = b, (2.14)

Dkx ≥ dk, k = 1, . . . , s (2.17)

D′kx + Θ ≥ d′k, k = 1, . . . , s′ (2.18)

Ekx + Θ ≥ ek, k = 1, . . . , t (2.19)

Θ ≥ L, (2.20)

x continuous (2.21)

Feasibility constraints (2.17) in the form of Dkx ≥ dk will be added to the relaxation (be-

cause they are relaxed in CP0) to preserve the feasibility requirements (in the VRPSD

context, constraints (2.17) stands for subtour elimination constraints (2.4)). The algo-

rithm adds constraints (2.19), called optimality cuts, as an extra step added to the overall

B&C procedure. An optimality cut removes the integer(integrality requirement is de-

rived by branching) solution with an excessive expected recourse cost. Gendreau et al.

[20] propose a type of optimality cuts (2.19) which also bound the expected recourse

cost for multi-VRPSD in the form of,

Θ ≥ Θr

(
∑

ij∈Sr

xij − (|Sr| − 1)

)
, (2.22)

where, Sr represents the set of active arcs in the rth integer feasible solution in the multi-

VRPSD, Θr represents the expected recourse cost of current integer feasible solution,

and a planned route in the multi-VRPSD consists of |Sr| = n − m − 1 arcs (n is the

number of arcs and m is the number of vehicles). Laporte and Louveaux [33] propose an

alternative optimality cut (2.23) to avoid numerical problems reported by Séguin [50],

∑
1≤i≤j
xr

ij=1

xij ≤ ∑
1≤i≤j

xr
ij − 1, (2.23)
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where the left-hand-side of (2.23) consists of a summation of all nonzero variables in

the current solution and the right-hand-side is a constant one less than the value of the

nonzero variables in the current solution. Therefore, the current solution does not satisfy

in optimality cuts (2.23) and will be removed. Optimality cuts (2.23) removes an integer

feasible point with an excessive expected recourse cost, while the subtree of this integer

solution may contain better solutions(the subproblem obtained by adding the optimality

cut will be added to the pendant subproblems to search for such solution if any exists).

We note that optimality cuts are active only for one integer solution. Various valid in-

equalities as constraints (2.18) are being added to the CP relaxations in order to enhance

overall B&C procedure (lower bounding functionals (LBFs) stands for these constraints

in this context). Constraints (2.18) will be added to the fractional solutions in order to

approximate the expected recourse cost from below. These valid inequalities improve

the efficiency of the L-shaped method, since they are active in more than one feasible

integer solution, compared with optimality cuts.

Adding lower bounding functionals is proposed by Hjorring and Holt [27] through

introducing the concept of partial routes for the single-VRPSD. The original optimality

cuts of Laporte and Louveaux [34] are modified by Hjorring and Holt [27] as,

Θ ≥ (Θr − L)

(
( ∑

ij∈Sr

xij − (n− 1))/2

)
+ L, ∀r = 1, . . . , R (2.24)

where, Sr consists of indices of rth routing decision and |Sr| = n + 1 in the single-

VRPSD and Θr presents the expected recourse cost of the planned route r 2. Then,

a partial route p is defined as presented in Figure 2.2. Each partial route h consists

of sequenced and unsequenced set of vertices. Two sets of sequenced vertices called

Sh = {v1, . . . , vsh} and Th = {v1, . . . , vth}, and the unsequenced set of vertices called

Uh are defined such that Sh ∩Uh = {vsh}, Th ∩Uh = {vth}, and Sh ∩ Th = {v1}.
2. for justification: we know that ∑ij∈Sr xij = n + 1 then (∑ij∈Sr xij − (n− 1))/2 = 1. Therefore,

(2.24) reduces to Θ ≥ Θr only for the route r and it reduces to Θ ≥ L otherwise.
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v1

v2

v3

vsh vth
Sh Th

Uh

Figure 2.2 – Concept of partial route presented by [27].

Then, for partial route p, LBF cuts in the form of (2.25) are proposed by Hjorring

and Holt [27] as,

Θ ≥ (Θp − L)

 ∑
ij∈Sp

xij − (|Sp| − 1)

+ L, (2.25)

where Sp is the set of indices associated to the sequenced customers, i.e., the members

of Sh and Th and ∑ij∈Sp xij = |Sp|. Then, the LBF cuts (2.25) sets a valid lower bound

Θ ≥ Θp for all integer feasible solutions which can potentially emerged from partial

route h by sequencing the customers in unstructured set Uh.

Constraint (2.21) sets an initial lower bound for the expected recourse cost, where L

is defined by

L ≤ min
x
{Q(x)|(2.14), (2.15)} .

Using the general lower bound L, we initially bound Q(x) from CP0 enhancing the ef-

ficiency of the algorithm by tightening the optimality gap. Using the fact that one can

construct m artificial clusters in the multi-VRPSD in such a way that the m nearest cus-

tomers to the depot are associated to each cluster, the expected cost under the classical

recourse over such clustering presents a valid general lower bound L, presented by La-

porte and Louveaux [33]. An improved version of this bound is presented by Laporte

et al. [35]. Overall, the computation of L is only presented for the multi-VRPSD under

classical recourse, where the demand distribution are normal or Poisson. The Integer
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L-shaped algorithm can be expressed through the following pseudocode.

Integer L-shaped Algorithm

Step 1. Select one pendant node from the list pendant node(a list of relaxation prob-

lems(i.e., CPν) which are not explored yet); if none exists, stop.

Step 2. Set ν := ν + 1; solve the current problem. If the current problem has no

feasible solution, fathom the current node; go to Step 1. Otherwise, let (xν, Θν)

be an optimal solution.

Step 3. Check for any relaxed constraint violation. If one exists, add feasibility cut

(2.17) and update s := s + 1), add valid inequalities (2.18) and update s′ :=

s′ + 1), and return to Step 2. If cxν + Θν > z̄, fathom the current problem and

return to Step 1.

Step 4. Check for integrality restrictions. If one is violated, create two new branches

following the usual branch and cut procedure; append the new nodes to the list

of pendant nodes; return to Step 1.

Step 5. Compute Q(xν) and zν = cxν + Q(xν). If zν < z̄, then update z̄.

Step 6. If Θν ≥ Q(xν), then fathom the current node and return to Step 1. Oth-

erwise impose one optimality cut (2.19), update t := t + 1 and return to Step

2.

In this algorithm, k′, h′ and f ′ are the active index sets if one exists to generate new

Constraints (2.17), (2.18) and (2.19).

The concept of partial routes is further developed by Jabali et al. [28] by generalizing

various structures as shown in Figure 2.3. In such a way, the traditional structure pro-

posed by Hjorring and Holt [27] denoted by α topology in Figure 3.3a is extended to β

and γ topologies as shown in Figures 3.3b and 3.3c. In this setting, a partial route with β

topology consists of several sequenced and unsequenced structures, alternatively. Also,

a partial route with γ topology consists of several unstructured components.

26



(a) α-routes

(b) β-routes

(c) γ-routes

Figure 2.3 – General topologies for partial routes proposed by Jabali et al. [28].

The LBF cuts is then proposed (2.26)

Θ ≥ (Θp − L)

(
r

∑
h=1

Wh(x)− (r− 1)

)
+ L, (2.26)

where, the new lower bounding functional Wh(x) consists of both variables associated

to the sequenced and unsequenced sets, see Jabali et al. [28] for more details about the

definition of Wh(x) and LBF cuts (2.26). We should note that Θp and L are computed

by proposed principles of Laporte et al. [35]. Using LBF cuts (2.26) the efficiency of

the Integer L-shaped algorithm is improved by providing several bounding procedures

to bound the expected recourse cost at fractional solutions which represent α, β, and γ

topologies.
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Finally, we note that the use of LBF cuts to solve the VRPSD in which customer

demands follow discrete distributions are only restricted to the single-VRPSD with re-

stricted number of failures as proposed initially by Hjorring and Holt [27].

2.1.2.2 Exact Solution Methods: Column Generation-Based Algorithm

Dantzig-Wolfe decomposition is applied to partition VRPSD into a set partitioning

master problem and a shortest path subproblem by Christiansen and Lysgaard [13] as

follows,
minimize ∑

r
crxr

subject to ∑
r

αirxr = 1, ∀i ∈ V \ {v1}

xr ∈ {0, 1}, r: elementary route

(2.27)

where, αir takes value 1 only if the ith customer is sequenced on the rth route and cr ex-

press the total expected costs of the rth route. The pricing subproblem is established by

constructing an extended graph as follows: (i) Q copies of each customer are generated

to present the range of demand realizations for each customer, (ii) Q copies of the depot

location where the routes end and a single depot location where all routes start are gen-

erated, and (iii) given an origin customer all arcs provided that the cumulative demand

at the destination customer is less than and equal Q, are added and all paths will end at

the depot location with their cumulative demand. Then, the subproblem is modeled as a

shortest path problem. The auxiliary graph of subproblem is represented by Figure 2.4.

All arcs, with the property that the expected demand of customers as the origin and des-

tination of the arc is less than vehicle capacity, are added. Moreover, the subproblems

can be expressed as a shortest path problem through paths which satisfy the capacity

constraint. The authors show that the probability of failure at a specific customer only

depends on the cumulative demand and is independent of distributed demands on the

route up to the customer. By doing so, an adopted version of classical recourse which

only prescribes BF trips is employed to compute the cost of BF trips. Gauvin et al.

[19] use the most recent techniques for solving the column generation subproblem and

improve the result presented by Christiansen and Lysgaard [13], by means of optimally
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solved instances and computational time.
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Figure 2.4 – The graph established for subproblem

2.1.2.3 Heuristic and Metaheuristic Solution Methodologies

In this section, we study heuristic and metaheuristic procedures proposed for the

VRPSD. Since heuristic and metaheuristic procedures apply various improvement searches

through neighbors of current solution, the major task in these solution methods is repeat-

edly computing the expected recourse cost. However, the evaluation of an intractable

objective function turns the overall scheme inefficient, see Campbell and Thomas [10]

for more details discussing challenges and advances in the a priori routing. To overcome

such intractability, approximations and proxies can be employed to search for improve-

ments, resulting in suboptimality.

Stewart and Golden [52] partition their proposed solution methodologies into two

categories, where either the VRPSD is reduced to deterministic VRP (in the case of CCP

models) and existing VRP heuristics are used, or the VRP heuristics (e.g., Clark-Wright

saving heuristic [14]) are adapted as (2.28) to solve the VRPSD (in the case of Penalty

models). Numerical experiments are conducted on multi-VRPSD with 50-75 customers

and adapted savings algorithm is compared with a solution methodology based on the

Lagrangian relaxation.

sij = c0i + c0j − cij + λPi + λPj − λPij. (2.28)
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Dror and Trudeau [16] introduce an exact computation to compute the expected recourse

cost of an a priori route under the classical recourse. The authors then propose a mod-

ified version of Clark-Wright saving heuristic in which the traditional routing cost is

replaced by expected recourse cost of the route that is exactly computed. Teodorović

and Pavković [54] present a Simulated Annealing technique to solve the VRPSD un-

der classical recourse, in which the demand of customers follows uniform distribution.

Then, the cumulative demand distribution is approximated by normal distribution to eas-

ily compute the probability of failure.

Gendreau et al. [21] present a tabu search heuristic TABUSTOCH for the VRPSDC.

In this tabu algorithm, a penalized objective function which penalizes infeasible routes

(i.e., a solution that does not contain exactly m routes) to evaluate moves in tabu search

is modeled. The original objective function is replaced by an easily computed proxy to

evaluate a set of neighbors. A set of neighbours are generated based on displacement of

randomly selected customers for each solution. Finally, the random tabu durations are

used to restrict the reinsertion or displacement of each vertex.

Yang et al. [57] present two local search heuristics using the well-known route-first

cluster-second and cluster-first route-second algorithms to solve the VRPSD. In the first

approach, a routing decision through all of the customers is initially made, and then

the computation of expected recourse cost dynamically partitions into several clusters

based an upper bound on expected recourse cost. In the second approach, a circle cov-

ering method is used to find potential seed points; next the seed points will be ranked by

their distances from the depot location; finally an approximated insertion cost is used

to find routing through the best clusters. The feasible solutions obtained by above-

mentioned procedures are further improved by repeatedly using inter-route and intra-

route exchanges.

Bianchi et al. [8] compare several metaheuristic solution approaches to solve VRPSD.

To search through feasible set, the authors proposed two approximation methods to eval-

uate the cost of removing and reinserting a sequence of customers, providing new neigh-

bors, in order to improve the current solution. In the first method which is based on the

computation of expected cost in the VRPSD, an approximated cost of a remove-reinsert
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move, considering the recourse cost, is computed (e.g., see Yang et al. [57]). In the sec-

ond method, the total approximated cost of a remove-reinsert move can be easily com-

puted by the exact value of such moves, which are used in the case of the TSP. Finally, a

randomized farthest insertion algorithm is used to compare the performance of proposed

heuristics. Overall, proposed metaheuristics present better performance in comparison

to local searches of Yang et al. [57], by resolving computational burden reported in the

latter paper.

Rei et al. [43] propose local branching solution technique for the single-VRPSD.

In this solution technique, an integer number to present the Hamming distance from

a reference solution, which can potentially be the optimal solution of CP, is used to

partition the solution space into two subregions namely (i) left that contains feasible

solutions that present a distance equal or less than the given, and (ii) right that contains

feasible solutions further than the given distance. Then, this theory is used to alternate

the concept of partial routes proposed by [27] which bounds the recourse costs from

below.

Rei et al. [44] present a hybrid Monte Carlo local branching technique to solve the

single-VRPSD. Such a hybrid heuristic evaluates several given subproblems and their

associated solutions to obtain an approximated new incumbent using Monte Carlo sam-

pling approach. The new incumbent is then used in the local branching procedure to

recursively generate above-mentioned subproblems.

2.2 Reoptimization Approach

Dror et al. [17] in their seminal paper propose an alternative modeling framework to

model the VRPSD. The authors model the VRPSD as a Markov Decision Process (MDP)

in which the state of the system is defined by vector s = (j, q, di2 , . . . , dij , . . . , dit),

where j ∈ {vi1 , vi2 , . . . , vit} expresses the current location of the vehicle, q = 0, 1, . . . , Q

represent the residual capacity of the vehicle before starting the service at the location j,

and values dij ∈ {?, 0, 1, . . . , Q} for all j = 2, . . . , t express the demand of jth customer

that is not fulfilled yet and ? represents the state of unvisited customers. The initial state
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is at the depot at which all customers are unvisited, and the final state is also at the depot

location at which all demand values dij are at zero level (i.e., all of the demands are met).

No solution method is provided by the authors.

The MDP modeling approach further investigated by Secomandi [48], Secomandi

and Margot [49] and Novoa and Storer [42]. In this manner, the VRPSD is modeled

as a stochastic shortest path problem (SSPP), in which the states are being absorbed

at a terminal state with no cost (here, returning to the depot after service completion).

The objective is to find a set of optimal controls, each consisting of a pair of customer

and action which determines optimally which customer will be the next customer in the

system and what action needs to be selected for this transition either proceed directly,

or by a replenishment decision, to minimize the overall costs. In this setting, the state

space of the problem is intractable. Then, the VRPSD modeled as SSPP is investigated in

single vehicle case. Rollout algorithm to approximate the optimal cost-to-go functions

is then employed to approximate optimal controls. Recently, Secomandi and Margot

[49] further improve the rollout policy using a partial reoptimization technique, in which

the size of state space is profoundly reduced by implying pre-defined partial orderings

through the set of customers.

2.3 Chance Constraint Programming

Chance-Constrained Programming (CCP) approach is proposed by Charnes and Cooper

[11] to tackle Stochastic Programming (SP). In this approach, a set of probabilistic or

chance constraints are set to deal with stochasticity, by restricting the probability of

stochastic events to be less than a preset value. Such probabilistic constraints will be

transformed to deterministic counterparts.

Stewart and Golden [52] examine a CCP model for the VRPSD shown in the CCP

model presented below(here, we present the model for the single-VRPSD case). In

this CCP model, ∑i,j ξixij expresses the distribution of demand for a single route in

the single-VRPSD and cij represents the travelling cost between customer vi and cus-

tomer vj. Then, the probabilistic constraint restricts optimization over feasible routes
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with a failure probability less than α. Under certain assumptions, i.e., (i) the stochas-

tic demands ξi are independent; (ii) ξi’s have accumulative property; (iii) the stochastic

demands ξi have the same ratio of σ2
i

µi
= z, the following CCP model can be trans-

formed to a deterministic counterpart, which then can be solved using existing solu-

tion methods tailored for deterministic problems (e.g., see Dror et al. [17] for more

details in translating the CCP model to its deterministic counterparts). Using Theo-

rem 1 on page 378 of Stewart and Golden [52], the probabilistic constraints can be

replaced by the nonlinear deterministic counterpart ∑i,j µixij + τ(∑i,j σ2
i x2

ij)
1/2 ≤ Q in

which P[
∑i,j ξixij−∑i,j µixij

(∑i,j σ2
i x2

ij)
1/2 ≤ τ] = 1− α. Finally, this constraints can be replaced by

∑i,j µixij ≤ Q̄ where Q̄ = [2Q + τ2z− (τ4z2 + 4Qτ2z)1/2]/2.

minimize ∑
i,j

cij[xij

subject to P( ∑
i,j

ξi [xij ≤ Q) ≥ 1− α,

x = [xij] ∈ STSP,

(CCP)

Stewart and Golden [52] also propose two penalized models in which the probabilistic

constraint is relaxed as follows,

minimize ∑
ij

cij[xij + Penalty

subject to x = [xij] ∈ STSP,
(Penalty)

In the first model, the objective function is penalized by an expected failure cost using

fixed penalty coefficient λ,

Penalty = λP(∑
i,j

ξi[xij > Q).

In the second model, an expectation of expected excess is used to penalize the objective

function by

Penalty = ∑
l>0

lP(∑
i,j

ξi[xij −Q = l),
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where l stands for excess values.

Overall, the CCP approaches translate the VRPSD to the approximated deterministic

counterparts. In such a way, the proper extra costs associated to the failure events and the

location of failure are being neglected. Dror et al. [17] restrict the occurrence of route

failures in a different fashion. The VRPD is modeled as follows,

minimize ∑
i,j

cij [xij

subject to ∑
i∈S,j/∈S

[xij ≥ Vα(S), S ⊆ V, |S| ≥ 2

x = [xij] ∈ STSP,

(CCP2)

where, Vα(S) is the minimum number of vehicles needed to complete the service cus-

tomers of S such that the probability of route failure in S does not exceed α, or, satisfying

following condition,

P(∑
i∈S

ξi > Vα(S)Q) ≤ α, (2.29)

and Vα(S) = d zα(∑i∈S σ2
i )

1/2+∑i∈S µi
Q e in which, zα is the order α fractile of the standard

normal distribution of the ∑i∈S ξi and each ξi follow normal distribution. All models

presented in this section can be solved by means of solution methods which are devel-

oped to tackle the deterministic VRP.

2.4 Robust Optimization Approach

The robust optimization is an alternative framework to model uncertainty in the un-

certain linear optimization problems defined by Ben-Tal et al. [2] (we use the same no-

tations presented by authors) as,

{min
x
{cTx + d|Ax ≤ b}}(c;d;A;b)∈U .

In this setting, the goal is to minimize the min
x
{cTx+ d|Ax ≤ b} such that (c; d; A; b) ∈

U , where U expresses the uncertainty set. We assume that the uncertainty set U can be

parametrized in an affine fashion as follows,
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U =


 cT d

A b

 =

 cT
0 d0

A0 b0

+
L

∑
l=1

zl

 cT
l dl

Al bl

 : z ∈ Z


A robust feasible solution x is a solution that fulfills all copies as Ax ≤ b ∀(c; d; A; b) ∈
U . Given a decision vector x, the robust value ĉ(x) of the objective function in the

uncertain linear optimization is defined as ĉ(x) = sup
(c;d;A;b)∈U

{cTx + d}.

Then, the robust optimization counterpart of a linear optimization problem can be

established by presenting a collection (i.e., multiple copies) of the original uncertain

linear optimization problem, while each copy is associated to a realization of stochastic

parameters varying in a given bounded uncertain data set presented by,

min
x

{
ĉ(x) = sup

(c;d;A;b)∈U
{cTx + d} : Ax ≤ b ∀(c; d; A; b) ∈ U

}

Equivalently, the robust version of the two-stage stochastic program presented in the

section §2.1 can be presented as follows,

min
x

max
ξ∈Ξ

ctx +Q(x, ξ)

s.t. Ax = b,

x ≥ 0,

(Robust Two-Stage Stochastic Program)

The only existing research that studies the VRPSD modeled by robust optimization

approach is presented by Sungur et al. [53]. In this modeling approach the authors first

replace the subtour elimination constraints (2.4) by the Miller-Tucker-Zemlin (MTZ)

version (Miller et al. [41]). Then, MTZ constraints will be replaced by a bounded uncer-

tainty data set. Sungur et al. [53] then show that the resulted model can be reduced to the

model only considering the MTZ capacity constraints with the worst-case demand real-

izations. Since the latter model results in the a priori routes that never fail, no recourse

cost function is formulated.

Gounaris et al. [25] also tackle the robust VRP (RVRP) under demand uncertainty.
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The authors develop robust rounded capacity inequalities which can be efficiently sep-

arated using a separation procedure tailored for two classes of demand distributions.

An exact B&C procedure employs the mentioned separation procedure to solve RVRP

efficiently.

Solano Charris [51] studies the RVRP with uncertain travel costs and bi-objective

RVRP with uncertain demands and travel times. Genetic algorithm and local search-

based metaheuristics are developed to tackle the first problem. Then, the genetic algo-

rithms developed for the first problem are adapted to solve the second problem.
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Abstract

In this paper we consider the vehicle routing problem with stochastic demands (VRPSD). We consider that
customer demands are only revealed when a vehicle arrives at customer locations. Failures occur whenever the
residual capacity of the vehicle is insufficient to serve the observed demand of a customer. Such failures entail
that recourse actions be taken to recover route feasibility. These recourse actions usually take the form of return
trips to the depot, which can be either done in a reactive or proactive fashion. Over the years, there have been
various policies defined to perform these recourse actions in either a static or a dynamic setting. In the present
paper, we propose policies that better reflect the fixed operational rules that can be observed in practice, and
that also enable implementing preventive recourse actions. We define the considered operational rules and show
how, for a planned route, these operational rules can be implemented using a fixed threshold-based policy to
govern the recourse actions. An exact solution algorithm is developed to solve the VRPSD under the considered
policies. Finally, we conduct an extensive computational study, which shows that significantly better solutions
can be obtained when using the proposed policies compared to solving the problem under the classical recourse
definition.

Keywords:threshold-based recourse policies; operational rules; vehicle routing problem with stochastic de-
mands; partial routes; Integer L-shaped algorithm; lower bounding functionals
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3.1 Introduction

Since the seminal paper of Dantzig and Ramser [15], thousands of papers have been

published on the vehicle routing problem (VRP), which is central to distribution activi-

ties. In its simplest version, the VRP consists in designing a set of routes, starting and

ending at a given depot location, to serve a set of customers with known demands by

a fleet of identical vehicles of finite capacity, with the objective of minimizing the total

distance traveled. In the deterministic version of the problem, which has been widely

studied, all problem parameters are known precisely and each customer must be visited

exactly once (see Toth and Vigo [55] for a thorough overview of the problem and its main

variants). In reality, however, routing problems involve several sources of uncertainty:

demands, travel and service times, etc. Routing problems in which some parameters are

uncertain are called Stochastic VRPs (SVRPs). Although, deterministic approximation

models can be solved as proxies for SVRP models, such approximations generally lead

to arbitrarily bad solutions, see Louveaux [36]. Therefore, there is a need to develop spe-

cialized optimization models that explicitly account for the stochastic nature of VRPs.

While they have received much less attention than deterministic VRPs, SVRPs have

nonetheless been investigated by several authors; see Gendreau et al. [22] for a survey

of the SVRP literature.

In this paper, we focus on a variant of the SVRP in which customer demands are

uncertain. In this variant, which is called the vehicle routing problem with stochastic de-

mands (VRPSD), the demand of each customer is assumed to follow a known, customer-

specific probability distribution. It is further assumed that each customer’s demand is

revealed upon the arrival of a vehicle at its location. When demands are stochastic, one

could obviously plan routes in such a way that they can handle the maximum possible de-

mand of each customer assigned to it, but in almost all cases, this is extremely inefficient

and often times infeasible in terms of the available number of vehicles. To circumvent

this difficulty, optimization approaches relying on different modeling paradigms have

been proposed (see Gendreau et al. [22] for a thorough discussion of these paradigms).

In this paper, we adopt the a priori optimization paradigm, originally proposed by Bert-
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simas et al. [4]. In this approach, the problem is decomposed into two stages, as in

two-stage stochastic programming with recourse. In the first-stage, an a priori solution

(i.e., a complete set of routes as in a deterministic VRP) is planned. Then, in the second-

stage, this first-stage solution is “executed", i.e., each route is followed and the actual

values of the uncertain parameters (the customer demands in the case of VRPSD) are

gradually revealed.

In the second-stage of the problem, failures may be observed when a route is exe-

cuted. Such failures occur when the vehicle performing the route arrives at a customer’s

location without sufficient residual capacity to service the observed demand. These oc-

currences are simply referred to as route failures, see Dror and Trudeau [16]. To recover

route feasibility, recourse actions must be taken. As presented in Gendreau et al. [22],

various studies have been conducted to formulate and assess the efficiency of the possi-

ble recourse actions that can be applied to the VRPSD.

In the present paper, we focus on the recourse actions that can be implemented in-

dependently by the vehicles performing the routes determined in the first-stage of the

problem. These recourse actions can either be reactive (i.e., implemented only after a

route failure occurs) or proactive (i.e., made in anticipation of possible failures that could

take place along the route). A reactive recourse action takes the form of a back-and-forth

(BF) trip to the depot, where the vehicle is able to restock and then serve the remaining

demand at the customer location where the failure occurred. Following a BF trip, the

vehicle simply proceeds to the next scheduled customer on the route. In the case of an

exact stockout, where the revealed demand matches exactly the residual capacity of the

vehicle, a restocking trip is performed, entailing that the vehicle visits the depot before

proceeding to the next customer along the route, see Gendreau et al. [20] and Hjorring

and Holt [27]. In an effort to simplify the presentation of the concepts proposed in this

paper, we will refer to BF trips as all reactive recourse actions taken following route

failures, be it as the consequence of insufficient residual capacity or an exact stockout.

Finally, to avoid route failures, a vehicle may execute a preventive restocking (PR) trip

whenever its residual capacity becomes too low, see Yee and Golden [58] and Yang

et al. [57]. Considering that such recourse actions are applied before an actual failure is
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observed, they are regarded as being proactive.

To formulate the VRPSD, a policy, which governs how the recourse actions are ap-

plied, must be determined. While a wide variety of recourse policies can be envisioned

(see ? ]), research has been performed primarily on two categories of recourse actions.

In the case where only reactive recourse actions are considered, the classical recourse

policy is used to model the VRPSD. Following this policy each route is executed until

it either fails or faces an exact stockout, at which point an appropriate reactive recourse

action is implemented. Several authors have considered this policy and proposed exact

solution procedures (e.g., Laporte et al. [35], Christiansen and Lysgaard [13], Gauvin

et al. [19], and Jabali et al. [28]) and heuristics (e.g., Gendreau et al. [21], Rei et al.

[44], and Mendoza and Villegas [39]) to solve the resulting model. As an alternative to

the classical recourse policy for the VRPSD, Yang et al. [57] showed that an optimal

restocking policy can be derived for a given route using dynamic programming. Such a

policy takes the form of customer-specific thresholds that, when compared to the resid-

ual capacity of the vehicle leaving the customers along the route, specify when a PR trip

should be performed. Thus, in Yang et al. [57], given a route, these customer-specific

thresholds are optimized to yield the minimum route cost. It should be noted that, in

this case, BF trips are still implemented when failures occur. However, by applying PR

trips, the risk of observing route failures is reduced. This approach to formulate the

VRPSD coupled with suitable heuristics or metaheuristics to design the a priori routes,

was shown to yield more cost-effective solutions, see Bertsimas et al. [5], Yang et al.

[57] and Bianchi [6].

The use of both the classical recourse or the optimal restocking policies implies that,

in the first-stage of the model, the routing decisions be made statically (i.e., a set of a

priori fixed routes are obtained). However, both the routing and recourse decisions (i.e.,

BF and PR trips) can also be made dynamically. In this case, the VRPSD is formulated

using the reoptimization approach, see Secomandi [48], Novoa and Storer [42] and Seco-

mandi and Margot [49]. It should be noted that, if reoptimization is applied, the VRPSD

is no longer formulated as a two-stage stochastic model. Instead, it can be expressed as

a Markov Decision Process, see Dror et al. [17], or it can be modelled as a stochastic
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shortest path problem, as detailed in Secomandi [47].

As a formulation paradigm applied to the VRPSD, the a priori approach is applicable

in cases where an organization facing the problem aims to achieve a high level of consis-

tency in its routing operations. Hence, a set of fixed a priori routes are determined, which

can then be easily repeated on a daily basis. While the classical recourse policy meets

these criteria, its implementation is likely to be costly. The optimal restocking policy

provides a better theoretical alternative, however its solution is challenging. Existing

heuristics for this policy may exactly evaluate the recourse cost of a given route, how-

ever the overall quality of the solutions is not guaranteed. Moreover, many companies

employ preset operational conventions when operating in uncertain environments. These

are translated into preset rules, which streamline the operations in a manner that greatly

simplifies recourse policies. Preset rules can be implemented as a set of fixed rule-based

policies. Therefore, we propose a fixed rule-based policy for the VRPSD, according to

which the PR trips are governed by preset rules which establish customer-specific thresh-

olds. A detailed motivation for the use of rule-based policies in the VRPSD is provided

in Section 3.2.

In the present paper, we introduce the concept of a rule-based recourse policy for

the VRPSD and provide its formulation. We propose an exact solution algorithm for

a particular family of volume rule-based recourse policies. We note that to-date exact

algorithms for the VRPSD have only been proposed for the VRPSD with classical re-

course (e.g., see Gauvin et al. [19] and Jabali et al. [28] for recent studies). Finally, by

performing an extensive computational study, we demonstrate that significantly better

solutions can be obtained using the proposed policies when compared to the classical

recourse one, while remaining cost-effective with regards to optimal restocking.

The remainder of this paper is organized as follows. Section §3.2 discusses general

motivations for using rule-based policies in the context of VRPSD. Section §3.3 lays out

the model using a rule-based recourse, then three volume-based rules are defined. Sec-

tion §3.4 is devoted to presenting an exact solution methodology to solve the VRPSD

under these rules. Various lower bounding procedures are developed to enhance the ef-

ficiency of the proposed algorithm. Section §3.5 is dedicated to numerical results and
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compares rule-based policies in different aspects. Section §3.6 summarizes the contri-

bution of the paper and points out some future work.

3.2 Motivation for Rule-Based Policies

In this section, we present the general ideas and observations that warranted the

present work. As we will detail, the proposed rule-based recourse approach for the

VRPSD is motivated by both practical and methodological considerations. In recent

years, the concept of consistency in VRPs has been proposed to improve the overall

quality of the service that companies provide to their customers. As presented in [30],

there are three dimensions to consistency in the VRP context: 1) arrival time consis-

tency (i.e., customers are visited at approximately the same time whenever deliveries, or

pickups, are performed); 2) person-oriented consistency (i.e., customers are assigned to

specific drivers that perform the services whenever they are required); 3) delivery con-

sistency (i.e., the actual quantities that are delivered, or collected, reflect the demands of

the customers). In the VRPSD literature delivery consistency is predominantly ensured.

However, depending on which modelling paradigm is adopted, the first two consistency

dimensions may not be guaranteed. In the previously discussed reoptimization paradigm

both the routing and the recourse decisions are made dynamically. Therefore, time con-

sistency is not guaranteed. Moreover, person-oriented consistency, may not be enforced

if the customers are not clustered and assigned to drivers beforehand.

The a priori paradigm for the VRPSD is a suitable strategy for practical settings

where consistency is an important factor. This paradigm guarantees delivery consis-

tency. Moreover, the assumption that vehicles independently perform routes entails that

person-oriented consistency is preserved. By allowing PR trips to be performed as part

of the recourse decisions, one can further reduce the risk of observing costly failures

that significantly lengthen the actual routes that are performed, thus causing arrival time

consistency issues.

Using optimal restocking policies for the VRPSD entails using customer-specific

thresholds, which are optimized as function of a route. This leaves little control for
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companies to systematically adjust the customer-specific thresholds. As such, optimal

restocking may not reflect a company’s operational policies and does not allow it to

control the risk of encountering failures. To govern when PR trips are applied, companies

may consider a specific set of controllable preset rules to perform the PR trips, e.g.,

executing a PR trip once the available vehicle capacity is below a preset percentage of its

total capacity. Such fixed rules are defined to reflect the overall operational conventions

of a company, they preserve consistency and simplify the implementation of the routing

plan. As we will detail in the present paper, the ruled-based recourse approach that is

developed offers an efficient way to both formulate and apply such fixed rules in the

context of the VRPSD.

There are also methodological considerations that motivate the use of the proposed

ruled-based recourse. Under the classical recourse policy, the problem of finding a set

of a priori routes for the VRPSD is already a complex combinatorial problem (i.e., NP-

hard). When PR trips are introduced in the definition of the recourse, this complexity

is only compounded. As reported in Yang et al. [57], solving the dynamic program to

obtain an optimal restocking policy for a given route, becomes numerically intractable

for routes involving more than 15 customers, which considerably limits the applicability

of this approach to practical settings. Therefore, as previously mentioned, the solution

methodologies that have been proposed in this case have been either heuristics or meta-

heuristics that involve the use of an approximation cost function to evaluate the solutions.

In the case of Yang et al. [57] two heuristics were proposed for the VRPSD with PR trips.

The numerical tests performed in Bianchi [6] show that, when designing solution

approaches for the VRPSD with PR trips being included as possible recourse actions, it

is clearly preferable to approximate the cost of solutions when the available solution time

for the problem is restricted. Good results are obtainable even when the approximation

used is based on a function that does not explicitly consider the recourse cost. It was

further observed in Rei et al. [44] that, when solving the VRPSD under the classical

recourse policy, with the exception of extreme cases where failures are observed at each

customer along a route, the a priori routing cost of the optimal solution clearly outweighs

the recourse cost (e.g., the relative weight of the recourse cost being approximately 5% of
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the total cost for a subset of instances that were described as challenging to solve, see Rei

et al. [44]). Therefore, when assessing the overall effort needed to solve the VRPSD, an

important part of this effort should be devoted to finding good a priori routes. This being

said, the stochastic nature of the problem cannot be simply ignored (i.e., the recourse

cost remains appreciable). This is especially true in a context where VRP consistency is

promoted by repeatedly applying the same a priori solution and, consequently, incurring

the recourse cost each time the solution is used. Hence, there is a need to develop

numerically efficient approximation functions for the recourse cost.

The general rule-based recourse approach that is proposed also serves this method-

ological purpose. Any ruled-based recourse, specified on a particular set of fixed rules,

defines an upper bound on the recourse cost associated to the optimal restocking policy.

Therefore, it can be used as a proxy to evaluate the cost of the a priori solutions in an

overall solution process for the VRPSD. In the present paper, we will show that it can be

effectively used to develop an efficient exact algorithm for the VRPSD.

3.3 A Rule-Based Recourse A Priori Model for the VRPSD

This section is dedicated to the presentation of the overall formulation applied to

the VRPSD. Therefore, we first recall the a priori model that is used (Subsection 3.3.1).

We then detail the recourse function defined to measure the expected routing costs in-

volved in performing both the BF and PR trips in the second-stage following a fixed

rule-based recourse policy. Thus, for a given a priori route and its policy, we show how

the associated recourse cost can be efficiently computed using a recursive function (Sub-

section 3.3.2). Finally, we introduce a general class of volume-based recourse policies

for the VRPSD (Subsection 3.3.3).

3.3.1 A Priori Model

Let G = (V , E) be a complete undirected graph, where V = {v1, v2, . . . , vn} is the

set of vertices and E = {(vi, vj)|vi, vj ∈ V , i < j} is the set of edges. Vertex v1 is the

depot, where a fleet of m vehicles of capacity Q is based. Let vertex vi (i = 2, . . . , n)
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represent a customer whose demand ξi follows a discrete probability distribution with a

finite support defined as {ξ1
i , ξ2

i , . . . , ξ l
i , . . . , ξsi

i }. We denote by pl
i the probability that

the lth demand level (i.e., value ξ l
i) occurs for ξi, i.e., P[ξi = ξ l

i ] = pl
i . Let cij denote

the distance associated to edge (vi, vj).

As in Laporte et al. [35], we assume that the expected demand of an a priori route

does not exceed the vehicle capacity. The a priori model for the VRPSD can then be

formulated as follows (we use here the original notation defined by Laporte et al. [35]):

minimize
x ∑

i<j
cijxij +Q(x) (3.1)

subject to
n

∑
j=2

x1j = 2m, (3.2)

∑
i<k

xik + ∑
k<j

xkj = 2, k = 2, . . . , n (3.3)

∑
vi ,vj∈S

xij ≤ |S| −
⌈∑vi∈S E(ξi)

Q

⌉
, (S ⊂ V \ {v1}; 2 ≤ |S| ≤ n− 2)

(3.4)

0 ≤ xij ≤ 1, 2 ≤ i < j < n (3.5)

0 ≤ x1j ≤ 2, j = 2, . . . , n (3.6)

x = (xij), integer (3.7)

where,

Q(x) =
m

∑
k=1

min{Qk,1,Qk,2}. (3.8)

Function Qk,ρ defines the expected recourse cost of the kth vehicle-route when per-

formed according to orientation ρ (ρ = 1, 2). As described in Dror and Trudeau [16],

the expected recourse cost of a route varies according to its orientation. Therefore, for

each route in the a priori solution a specific orientation must be selected. As indicated in

function (4.8), each route is evaluated using the two orientations and the one that mini-
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mizes the expected recourse cost is chosen. The specific computation ofQk,ρ will be the

subject of Subsection 3.3.2.

As for the overall formulation, the objective function (3.1) is defined as the total

expected distance traveled by the vehicles (i.e., the sum of the distance traveled in per-

forming the a priori routes and the expected distance traveled in performing the recourse

actions considered). Constraints (3.2) and (3.3) define the structure of the a priori routes:

each route starts and ends at the depot and each customer must be visited once. Inequal-

ities (3.4) are the subtour elimination constraints, which also guarantee that the total

expected demand of each route does not exceed a vehicle’s capacity. Finally, constraints

(3.5), (3.6) and (3.7) impose the necessary bounds and integrality restrictions on the

decision variables.

3.3.2 The Recourse Function

In this subsection, we present the recourse function that is used for the VRPSD.

Considering the set of a priori routes R, let us first consider an a priori route i ∈ R

expressed as vector ~v = (v1 = vi1 , vi2 , . . . , vit , vit+1 = v1). In addition, let us define

vector ~θ = (θi2 , . . . , θit), where 0 ≤ θij ≤ Q for j = 2, . . . , t, as the rule-based

recourse policy associated with route ~v. The process by which policy ~θ is obtained will

be the subject of the next subsection. For now, we simply assume that such a policy is

given. The values in ~θ are the residual capacity thresholds that specify when a vehicle

performing ~v should carry out a PR trip. Therefore, when the vehicle leaves a scheduled

customer vij in~v (i.e., after serving its demand ξij), it will perform a PR trip if its residual

capacity is strictly below value θij , as illustrated in Figure 3.1. Considering that vit is

the last visited customer on route ~v, value θit is simply set to zero. A numerical example

of a threshold-based policy for route ~v is provided in Figure 3.1. In addition, as shown

in the figure, a Daily log-trip sheet can be used to efficiently implement and record the

necessary recourse actions (both the BF and PR trips) by the driver performing route ~v

and to note the total distance traveled by the vehicle (i.e., the Mileage entry).
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DEPOT

vi2

vi3

vij

vij+1

vij+2

vit−1

vit

q

q−
ξ

ij

(a)

Daily log-trip sheet

Cust. # Thresh Rec. Act.

DEPOT −
vi2 5
vi3 10
...

...
vij θij PR trip

vij+1 θij+1

...
...

vit−1 8
vit 0

DEPOT −
Mileage

(b)

Figure 3.1 – The vehicle is executing a PR trip to provide the customer-specific threshold.

When the vehicle performing ~v arrives at a customer vij with a residual capacity

of q, there are three mutually exclusive cases that can be observed. First, the demand

realization of ξij exceeds value q (i.e., q− ξij < 0), which implies that a route failure

occurs at vij . In this case, the vehicle completes the service at the customer, via a split

delivery, by performing a BF trip. It should be noted that this first case is independent of

the threshold value of the considered customer (i.e., θij). Second, the demand realization

of ξij does not exceed value q but 0 ≤ q− ξij < θij . In this case, when q− ξij = 0,

an exact stockout is observed, thus requiring a reactive recourse action (i.e., a BF trip).

However, given the specific nature of this failure, the observed demand can still be served

completely upon the arrival of the vehicle at the customer’s location (i.e., a split delivery

is not necessary). Therefore, following the return to the depot to restock, the vehicle

proceeds to the next customer along the route (i.e., vij+1). When 0 < q − ξij < θij ,

no failure is observed. However, the residual capacity of the vehicle, upon completion

of the service of ξij , falls below the threshold value θij . Thus, a PR trip is performed

and the route is resumed. Third, the demand realization of ξij does not exceed q and

the difference between the two values is greater than θij (i.e., q − ξij ≥ θij). In this

case, once the service of the demand is done, the vehicle directly proceeds to the next

customer along the route (i.e., vij+1).
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It should be noted that, whenever a route failure occurs the overall service at the

customer is split. In turn, this entails that the loading/unloading process is duplicated and

additional delays (e.g., stemming from the BF trips and the interruption of the service)

are observed. It is assumed that such disruptions at a customer location generate an

additional cost. This cost is defined as value b, and was also assumed by Yang et al.

[57].

We now develop the recourse function that is used in model (3.1)-(3.7). For a given

route ~v and its associated policy ~θ, let us first define function Fij(q) as the expected

recourse cost of completing route ~v starting from vertex vij (for j = 1, . . . , t + 1) as-

suming that the vehicle arrives at the customer’s location with a residual capacity of q

(where θij−1 ≤ q ≤ Q). In view of the three cases previously described, function Fij(q)

is computed by applying the following recursive equation:

Fij(q) =



Fij+1(q) if j = 1

∑
s:ξs

ij
>q

(
b + 2c1ij + Fij+1(Q + q− ξs

ij
)
)

ps
ij
+

∑
s:q−θij

<ξs
ij
≤q

(
c1ij + c1ij+1 − cijij+1 + Fij+1(Q)

)
ps

ij
+

∑
s:ξs

ij
≤q−θij

Fij+1(q− ξs
ij
)ps

ij
if j = 2, . . . , t

0 if j = t + 1.
(3.9)

Given equation (3.9) and assuming that the kth vehicle performs route ~v, the expected

recourse cost of the route can now be computed for the first orientation (i.e., ρ = 1) as

follows:

Qk,1 = Fi1(Q). (3.10)

Finally, to evaluate the expected recourse cost of the route for the second orientation (i.e.,

Qk,2), one simply needs to reverse the order of the vertices of ~v and reapply function

(3.10).
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3.3.3 Volume Based Recourse Policies for the VRPSD

In Subsection 3.3.2, we presented how the recourse function can be efficiently com-

puted using the recursive equation (3.9). However, to evaluate (3.10) for a given route~v,

one first needs to determine its associated rule-based recourse policy ~θ. Therefore, we

now describe how such policies can be derived on the basis of a set of fixed operational

rules that are prescribed by the company tasked with solving the VRPSD. In particular

we consider a family of three volume-based policies.

Volume-based policies define the thresholds as a function of the demands of the

customers or the capacity of the vehicles performing the routes. For a given route,

such policies can implement straightforward operational rules that set the thresholds

as a percentage of either the capacity of the vehicle, or, estimates obtained for the de-

mands of the customers scheduled on the route. Given an a priori route i defined as

~v = (v1 = vi1 , vi2 , . . . , vit , vit+1 = v1), three such policies are proposed. Let functions

πp = ~v → ~θ (for p = 1, 2, 3), define them. The first policy π1 applies the following

operational rule: PR trips occur whenever the residual capacity of the vehicle performing

the route falls below a preset percentage δ ∈ [0, 1] of its total capacity Q. In this case, the

thresholds are all set to the same value: π1(~v) = (θi2 = δQ, . . . , θij = δQ, . . . , θit =

0). This policy has the advantage of being straightforward to implement and allows

an organization to easily adjust the operational rule to either be more conservative (i.e.,

higher values of δ, which tend to increase the number of PR trips performed) or less so

(i.e., lower values of δ, which tend to decrease the number of PR trips performed).

In contrast with π1, policies π2 and π3 tailor the threshold values according to the

customers scheduled on a route. This is done by first generating point estimates for the

demands. In the present case, the point estimates considered are the expected demand

values: E(ξi), for i = 1, . . . , n. This being said, any demand estimates can be used

to define π2 and π3. The second policy π2 then applies the following operational rule:

when leaving a customer vij , that is scheduled on route ~v, a PR trip is performed if

the residual capacity of the vehicle is less than ηE(ξij+1), where η ∈
0,

Q

E(ξij+1)

.
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Therefore, the threshold value for a specific customer is set according to the demand

estimate of the customer that immediately follows him in the sequence specified by

the route ~v: π2(~v) = (θi2 = ηE(ξi3), . . . , θij = ηE(ξij+1), . . . , θit = 0). As it is

stated, policy π2 computes the thresholds by applying a preset value η for all customers.

However, this need not be the case and different values can also be applied to further

tailor the thresholds for the customers. For example, based on the available information

regarding the distributions of the demands, a company may adjust its operational rule by

doing the following: increase the value η for a customer whose demand variance is high

(i.e., thus being more conservative with respect to its recourse actions) and perform the

reverse for a case where the variance is low (i.e., thus being less conservative with respect

to the recourse actions). In an effort to simplify the analysis of the proposed policies, a

single value will be used to perform the numerical experiments in Section 3.5.

Finally, the third policy π3 applies the following operational rule: when leaving a

customer vij , that is scheduled on route ~v, a PR trip is performed if the residual capacity

of the vehicle is less than λ ∑it
r=ij+1

E(ξr), where λ ∈
0,

Q

∑it
r=ij+1

E(ξr)

. Similar to

π2, demand estimates are again used to compute π3. However, the demand estimates of

all remaining customers along the route are used here to define the value of a specific

threshold: π3(~v) = (θi2 = λ ∑it
r=i3

E(ξr), . . . , θij = λ ∑it
r=ij+1

E(ξr), . . . , θit = 0).

Once more, it should be noted that a single fixed preset value λ is used to define π3.

However, different values can again be used in the operational rule, in this case, such

values need to be set according to the subsequences of customers scheduled in ~v. As

previously stated, a single value will be applied here to simplify the numerical analysis

of the policies.

3.4 The Solution Method

To solve model (3.1)-(3.7), defined under policies π1, π2 and π3, we apply the In-

teger L-shaped algorithm, which has been shown to efficiently solve the VRPSD under

the classical recourse policy (see [20], [35] and [28]). This algorithm, which is based on
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the branch-and-cut paradigm, applies an exhaustive search of the first-stage decisional

space while generating cuts that either enforce first-stage feasibility requirements to ob-

tain the a priori routes (i.e., subtour elimination and capacity constraints), or, provide a

lower bound on the recourse cost for both feasible and partial routes through the use of

lower bounding functional (LBF) cuts. In order to present how this solution approach

applies to the present model, we recall the general principles of the Integer L-shaped

algorithm (Subsection 3.4.1), and the definition of partial routes and the lower bound-

ing functional cuts (Subsection 3.4.2). We then develop lower bounding strategies that

enable the application of the LBF cuts for the present problem (Section 3.4.3).

3.4.1 The Integer L-shaped Algorithm

Model (3.1)-(3.7) cannot be efficiently solved directly given the extremely large

number of constraints involved in eliminating all possible subtours from the considered

feasible set of routes and enforcing the capacity restrictions imposed (i.e., constraint set

(3.4)). We recall that the computation of the recourse cost for a given route was dis-

cussed in section 3.3.2. To efficiently solve the model, the Integer L-shaped algorithm,

which was originally proposed by [34], applies a branch-and-cut strategy. This strategy

entails the relaxation of the integrality constraints imposed on the decision variables, the

subtour elimination and capacity restrictions, and the replacement of the recourse cost

Q(x) by a valid lower bound Θ. Therefore, at a given iteration ν, the algorithm solves
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the following current problem (CPν):

CPν : min
x,Θ

∑
i<j

cijxij + Θ (3.11)

subject to (3.2), (3.3), (3.5), (3.6),

∑
vi ,vj∈Sk

xij ≤ |Sk| −
⌈∑vi∈Sk E(ξi)

Q

⌉
∀k ∈ STν−1, Sk ⊂ V \ {v1}, 2 ≤ |Sk| ≤ n− 2,

(3.12)

L + (Θq
p − L)

(
∑

h∈PRq
Wh

p (x)− |PRq|+ 1

)
≤ Θ ∀q ∈ PSν−1, p ∈ {α, β, γ},

(3.13)

L ≤ Θ (3.14)

∑
1≤i≤j
x f

ij=1

xij ≤ ∑
1≤i≤j

x f
ij − 1 ∀ f ∈ OCν−1.

(3.15)

Let (xν, Θν) define the solution obtained for CPν. The first-stage solution xν is

feasible for the original constraint sets (3.2), (3.3), (3.5) and (3.6). Thus, each route

starts and ends at the depot, each customer is visited once and the necessary bounds are

imposed on the first-stage variables. Let STν−1 be an index set for all the subsets of

vertices previously identified (i.e., throughout the first ν− 1 iterations of the algorithm)

and used to produce the cuts in (3.12). Thus, the routes defined by xν are also feasible

for a subset of subtour elimination or capacity constraints, which are included in the cut

set (3.12).

As for value Θν, it defines a lower bound associated with the current first-stage

solution xν (which may or may not be feasible). Value Θν is determined according

to the LBF cuts that have been added to CPν, constraints (3.13), and a general lower

bound L that is valid over all feasible first-stage solutions, constraint (3.14). As will be

detailed in Sections 3.4.2, the LBF cuts are defined according to general partial routes

identified in partial solutions. We define PSν−1 as an index set for the partial solutions
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identified in the first ν− 1 iterations of the algorithm. Furthermore, for a given partial

solution q ∈ PSν−1, let h ∈ PRq be the set of partial routes contained in solution q (see

Section 3.4.2). Lastly, we consider three topologies p ∈ {α, β, γ} for a general partial

route, each yielding a valid lower bound Θq
p for all first-stage solutions.

Finally, constraint set (3.15) includes identified optimality cuts. Set OCν−1 includes

an index for each feasible first-stage solution identified in the first ν − 1 iterations.

Therefore, for each f ∈ OCν−1, a cut of type (3.15) is included in CPν to eliminate

the feasible solution from further consideration.

The cut identification strategy applied at iteration ν then proceeds by first attempting

to find violated subtour elimination and capacity constraints in solution xν. This is done

by applying the separation heuristic procedures developed by [38] to identify these vio-

lated constraints. If such a constraint is identified, it is then added to the current problem

and STν = STν−1 ∪ {k′}, where k′ is the index associated with the subset of vertices

defining the cut. In addition, a search for violated LBF cuts is also performed on solution

xν. To do so, the exact separation procedure developed by [28] is applied to first search

for general partial routes present in xν. Let h′ ∈ PRν be the general partial routes identi-

fied. A violated LBF cut is then obtained for p ∈ {α, β, γ} whenever Θν
p > Θν. In such

a case, the cut is added to the current problem and PSν is updated accordingly. When all

of these separation procedures fail to identify violated cuts, a feasibility test is applied on

solution xν. If the current solution is feasible, let f ′ be its associated index, an optimality

cut is then added to the current problem and OCν = OCν−1 ∪ { f ′}. Finally, the Integer

L-shaped algorithm embeds this cut identification strategy in a branching procedure that

terminates when optimality is established (see [28] for further details).

3.4.2 Lower Bounding Functionals

The LBFs (3.13) are generated based on general partial routes. These were initially

proposed by Hjorring and Holt [27] for the single-VRPSD, where a partial route was

defined by a set of sequenced customers connected to a set of unsequenced customers

that is connected to a set of sequenced customers. This structure was employed for the

multi-VRPSD by Laporte et al. [35]. The concept of partial routes was further elaborated
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by Jabali et al. [28], who treated partial routes as an alternating succession of sequenced

sets and non-sequenced sets of customers. According to this definition, three topologies

of LBFs were identified, one of which corresponds to the initial partial route defined by

Hjorring and Holt [27]. In this paper, we employ the LBFs proposed by Jabali et al. [28].

In what follows, we define the LBFs using the notation proposed by Jabali et al. [28], we

then present the bounds used for the VRPSD under the policies π1, π2 and π3.

General partial routes are identified based on partial solutions (i.e., solutions which

do not yet include m feasible routes) of the CPν, solution xν. An illustration of a general

partial route can be found in Figure (3.2), where the depot is duplicated for convenience.

Let Ḡν be the graph induced by the nonzero variables of the solution to CPν. A general

partial route includes two types of components: 1) Chains, whose vertex sets are called

chain vertex sets (CVSs), in which the vertices of a chain are connected to each other

by edges (vi, vj), i.e., xν
ij = 1 in Ḡν; 2) Unstructured components, whose vertex set are

called unstructured vertex sets (UVSs). A chain is connected to a UVS by an articulation

vertex. As previously mentioned, the exact separation procedure proposed by Jabali et al.

[28] is used in this paper to detect such partial routes. For h ∈ PRν, let κ denote the

Unstructured
component

Unstructured
component

Chain Chain Chain

Figure 3.2 – A general partial route h composed of sequenced and unsequenced sets.

number of chains and κ − 1 denote the number of UVSs in partial route h. We denote

by St
h = {vt

h1
, . . . , vt

hl
} the tth chain in partial route h, where vt

hk
is the kth vertex in St

h,

and hl is the number of vertices in St
h. Therefore,

∑
(vi ,vj)∈St

h

xν
ij = |St

h| − 1, ∀t = 1, . . . , κ. (3.16)
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Let Ut
h be the tth UVS in partial route h. Then,

∑
vi ,vj∈Ut

h

xν
ij = |Ut

h| − 1, ∀t = 1, . . . , κ − 1. (3.17)

A UVS is preceded by a chain and proceeded by another. Therefore,

∑
vj∈Ut

h

xν
ht

l ,j
= 1, ∀t ≤ κ − 1, (3.18)

and

∑
vj∈Ut−1

h

xν
ht

1,j = 1, ∀t ≥ 2 (3.19)

The interest to generalize the structure of a partial route h is motivated by the fact that

each chain may be viewed as a special case of a UVS, and each articulation vertex can

be assumed as a single-CVS. Based on these observations, three partial route topologies

were derived.

Figure (3.3a) shows an example of an α-route topology, where the first and last chains

are viewed as CVSs, while the intermediate component containing multiple chains and

UVSs is viewed as a single-UVS. This case corresponds to the partial route topology

proposed by Hjorring and Holt [27]. Figure (3.3b) illustrates the case of a β-route topol-

ogy, where the actual alternation of CVSs and UVSs is maintained. Figure (3.3c) shows

an example of a γ-route topology, where each chain is viewed as a UVS and articulation

vertices are viewed as single-CVSs.

We now present the definition of the functional Wh
p (x), which is stated in equation

(3.20), and recall its purpose in the LBF cuts, i.e., constraints (3.13). Finally, in Sec-

tion 3.4.3 we develop lower bounding strategies to obtain the values Θq
p, tailored to the

recourse cost defined according to policies π1, π2 and π3.

Given a general partial route h, the choice of a topology p ∈ {α, β, γ} defines the

specific succession of CVSs and UVSs that are used to produce the LBF cut. Specifically,

a topology fixes the vertices that are included in sets St
h, for t = 1, . . . , κ, and Ut

h, for

t = 1, . . . , κ − 1. The functional Wh
p (x), introduced by Jabali et al. [28], is defined as
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follows,

Wh
p (x) =

κ

∑
t=1

∑
(vi ,vj)∈St

h
vi 6=v1

3xij + ∑
(v1,vj)∈S1

h

x1j + ∑
(v1,vj)∈Sκ

h

x1j +
κ−1

∑
t=1

∑
vi ,vj∈Ut

h

3xij (3.20)

+
κ−1

∑
t=1

∑
vj∈Ut

h
vt

hl
6=v1

3xht
l j +

κ

∑
t=2

∑
vj∈Ut−1

h
vt

h1
6=v1

3xht
1 j + ∑

vj∈U1
h

v1
hl
=v1

xh1
l j + ∑

vj∈Ub−1
h

vκ
h1
=v1

vκ−1
h1
6=v1

xhκ
1 j

− (3|Rh| − 5).

We refer the reader to Jabali et al. [28] for the proof of validity of equation (3.20) as

a component of the LBF cut (3.13). We simply summarize that, for a given topology

p, if a solution x follows the succession of CVSs and UVSs prescribed for the general

partial route h, then Wh
p (x) = 1, otherwise Wh

p (x) ≤ 0. Therefore, considering a partial

solution q, ∑
h∈PRq

Wh
p (x) = |PRq| if and only if x follows the succession of CVSs and

UVSs prescribed for all the partial routes included in PRq. This entails that Θq
p ≤ Θ.

3.4.3 Bounding the Recourse Cost

Considering a specific partial solution q that includes a partial route h ∈ PRq, in the

present section, we describe the computation of Θqh
p , which is the lower bound associated

to h when topology p ∈ {α, β, γ} is applied to generate an LBF cut (3.13). Moreover,

the bound Θq
p, which is included in (3.13), is fixed to the sum of the lower bounds

associated with the different partial routes associated with q, i.e., Θq
p = ∑

h∈PRq
Θqh

p . In the

following, to alleviate the notation, we will drop the index q and simply refer to the lower

bound Θh
p (i.e., a partial route is always associated with a partial solution). Furthermore,

we focus on deriving value Θh
α (i.e., the specific topology p = α). This is motivated by

the fact that the computation of Θh
α can be easily generalized to evaluate both Θh

β and

Θh
γ, considering that topologies β and γ can be viewed as containing successive α-route
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v1
h1

v1
hl

v2
h1

v2
hl

(a) α-routes

v1
h1

v1
hl

v2
h1

v2
hl

(b) β-routes

(c) γ-routes

Figure 3.3 – Partial route topologies.

structures. We next present the strategy to compute Θh
α under the first two policies (i.e.,

π1 and π2), which can be done in a unified way. We then conclude the present subsection

by detailing the specificities of evaluating Θh
α when the third policy is applied (i.e., π3).

Bounding the Policies π1 and π2

Let h be a partial route that is assumed to follow topology α. We denote the ordered

vertex sets in chain S1
h and S2

h as {v1
h1

, . . . , v1
|S1

h|
} and {v2

h1
, . . . , v2

|S2
h|
}, respectively. We

recall that in topology α there is a single UVS, i.e., U1
h . Partial route h can then be

represented as follows (v1 = v1
h1

, . . . , v1
|S1

h|
, U1

h , v2
h1

, . . . , v2
|S2

h|
= v1). Let l = |U1

h |, for

the sake of simplifying the subsequent recursion formulas, we redefine the partial route
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h, in similar terms as route i, as follows

h = (v1 = vi1 , . . . , vij−l , {viu1
, viu2

, . . . , viul
}, vij+1 , . . . , vit+1 = v1),

where the articulation vertices v1
|S1

h|
and v2

|S2
h|

are now denoted by vij−l and vij+1 , respec-

tively. Using partial route h, we define an artificial route h̃ as follows,

h̃ = (v1 = vi1 , . . . , vij−l , ij−l+1 , ij−l+2 , . . . , ij , vij+1 , . . . , vit+1 = v1), (3.21)

where each possible ordering of the l unsequenced customers included in U1
h can be as-

signed to the positions ij−l+1 , . . . , ij . In what follows, we refer to ij as the jth position

in artificial route h̃, and we develop a bounding procedure for h̃ which essentially bounds

positions ij−l+1 , . . . , ij .

To introduce the notation used to derive the proposed lower bounding procedure, let

us recall that function Fij(.), as previously defined in (3.9), provides the exact computa-

tion of the expected recourse cost onward from the jth customer when both customers jth

and j + 1th are known, e.g., for two consecutive customers in a chain. In what follows,

we primarily reconstruct recursive formula (3.9) in a manner that yields a bound on the

unsequenced customers in U1
h . Let F̃ij(.) represent an absolute lower bound for the ex-

pected recourse cost of the jth position of artificial route h̃. Let F̂ij(.)|ij :=ue
be the lower

bound for a specific unsequenced customer vue ∈ U1
h that would be assigned to the jth

position of the artificial route h̃.

Considering a sequenced route, we introduce a bounding structure in Lemma 3.4.1

for F̂ik(.)|ik :=ue
, which is constructed based on the knowledge of the absolute bounds on

customer k, i.e. F̃ik(.), for k > j. We then develop the bounding structure proposed in

Lemma 3.4.1 to bound artificial route h̃. This is done in two main steps, in Lemma 3.4.2

an absolute lower bound on the expected recourse cost for the jth position in the artificial

route is established. This is then recursively embedded in Lemma 3.4.3 to obtain bounds

for positions j− l + 1 ≤ k < j in artificial route h̃.

We begin by showing how a valid lower bound can be computed for a feasible route
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~v = (v1 = vi1 , vi2 , . . . , vik , vik+1 , . . . , vit , vit+1 = v1) under policies π1 and π2. We

recall that π1(~v) = (θi2 = δQ, . . . , θij = δQ, . . . , θit = 0) and π2(~v) = (θi2 =

ηE(ξi3), . . . , θij = ηE(ξij+1), . . . , θit = 0). By defining the minimum and maximum

threshold values of the route ~v as θ~v = min{θi2 , . . . , θik , θik+1 , . . . , θit−1} and θ~v =

max{θi2 , . . . , θik , θik+1 , . . . , θit−1}, respectively, then the following result stands.

Lemma 3.4.1. Let q denote the residual capacity of the vehicle upon arriving at vik . Let

F̂ik(q) =



F̃ik+1(q) if k = 1

∑
s:ξs

ik
>q

(
b + 2c1ik + F̃ik+1(Q + q− ξs

ik)
)

ps
ik+

∑
s:q−θ~v<ξs

ik
≤q

(
c̃ik + F̃ik+1(Q)

)
ps

ik+

∑
s:ξs

ik
≤q−θ~v

F̃ik+1(q− ξs
ik)ps

ik if k = 2, . . . , t

0 if k = t + 1,

(3.22)

where c̃ik = min
a=k+1,...,t

{c1,ik + c1,ia − cik ,ia} and F̃ik+1(.) ≤ Fik+1(.), then F̂ik(q) ≤ Fik(q)

for all q.

Proof. We recall Fik(q) from (3.9) as

Fik(q) =



Fik+1(q) if k = 1

∑
s:ξs

ik
>q

(
b + 2c1ik + Fik+1(Q + q− ξs

ik)
)

ps
ik+

∑
s:q−θik

<ξs
ik
≤q

(
c1ik + c1ik+1 − cikik+1 + Fik+1(Q)

)
ps

ik+

∑
s:ξs

ik
≤q−θik

Fik+1(q− ξs
ik)ps

ik if k = 2, . . . , t

0 if k = t + 1.

Since each term in F̂ik(q) is a direct lower bound value for its counterpart term in the
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Fik(q) then F̂ik(q) ≤ Fik(q).

It should first be noted that h̃ includes two sequenced parts (i.e., chains S1
h and S2

h).

Therefore, for all possible values q, the onward expected recourse cost after the jth posi-

tion can be computed exactly using (3.9) (i.e., F̃ik(q) = Fik(q) for j < k ≤ t + 1). We

now present a lower bound on the onward recourse cost for the jth position in h̃.

Lemma 3.4.2. A lower bound on the expected recourse cost for the jth position in the

artificial route h̃ can be defined as follows:

F̃ij(q) = min
vue∈U1

h

Fij(q)|ij :=ue
∀q (3.23)

where Fij(q)|ij :=ue
is computed by assigning vue ∈ U1

h at the jth position in h̃, and then

applying the recourse function (3.9).

Proof. Since the jth position is unsequenced in h̃, and considering that it can potentially

be assigned to each vue ∈ U1
h , a valid lower bound for the onward expected recourse

cost at the jth position is obtained by minimizing the recourse cost over U1
h for each q.

Then, F̃ij(.) ≤ Fij(.)|ij :=ue
is implied by the definitions.

By embedding Lemma 3.4.2 within Lemma 3.4.1, a valid lower bound can be derived

for the positions not yet sequenced in h̃, i.e., ( ij−l+1 , ij−l+2 , . . . , ij−1). Therefore, at

the j− 1th position, Lemma 3.4.2 is used to obtain a lower bound for each vue ∈ U1
h .

This process is then sequentially applied to bound the remaining positions.

Lemma 3.4.3. A lower bound for the expected recourse cost at kth position of artificial

route h̃ for j− l + 1 ≤ k < j can be computed as follows:

F̃ik(q) = min
vue∈U1

h

F̂ik(q)|ik :=ue
∀q, (3.24)
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in which F̂ik(q)|ik :=ue
is defined as

F̂ik(q)|ik :=ue
=



∑
s:ξs

ue>q

(
b + 2c1ue + F̃ik+1(Q + q− ξs

ue)
)

ps
ue+

∑
s:q−θU1

h
<ξs

ue≤q

(
c̃ue + F̃ik+1(Q)

)
ps

ue+

∑
s:ξs

ue≤q−θU1
h

F̃ik+1(q− ξs
ik)ps

ue

(3.25)

where, θU1
h
= min

vue∈U1
h

θue , θU1
h
= max

vue∈U1
h

θue and

c̃ue = min
vue′∈U1

h :vue′ 6=vue

{c1,ue + c1ue′ − cue ,ue′}

defines the minimum PR trip cost that can be done from vue within U1
h , given F̃ik+1(q), . . . , F̃ij(q),

∀q.

Proof. Let us consider position ij−1, where the valid lower bound F̃ij(.) is assumed

known, considering Lemma 3.4.2. Let

F̂ij−1(q)|ij−1:=ue
=



∑
s:ξs

ue>q

(
b + 2c1ue + F̃ij(Q + q− ξs

ue)
)

ps
ue+

∑
s:q−θU1

h
<ξs

ue≤q

(
c̃ue + F̃ij(Q)

)
ps

ue+

∑
s:ξs

ue≤q−θU1
h

F̃ij(q− ξs
ik)ps

ue

define the intermediate lower bound for the onward expected recourse cost at posi-

tion ij−1 if customer vue is placed there (see Lemma 3.4.1). By defining F̃ij−1(q) =

min
vue∈U1

h

F̂ij−1(q)|ij−1:=ue
, value F̃ij−1(q) clearly defines a lower bound for Fij−1(q). Fur-

thermore, this result holds for all positions k, where j− l + 1 ≤ k < j− 1.

For the ij−l
th customer (i.e., articulation vertex in S1

h), a lower bound for the expected
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recourse cost can be computed as follows:

F̃ij−l(q) = F̂ij−l(q) ∀q,

where

F̂ij−l(q) =



∑
s:ξs

ij−l
>q

(
b + 2c1ij−l + F̃ij−l+1(Q + q− ξs

ij−l
)
)

ps
ij−l

+

∑
s:q−θU1

h
<ξs

ij−l
≤q

(
c̃ij−l + F̃ij−l+1(Q)

)
ps

ij−l
+

∑
s:ξs

ij−l
≤q−θU1

h

F̃ij−l+1(q− ξs
ik)ps

ij−l

(3.26)

given that F̃ij−l+1(q) for all q is computed using Lemma 3.4.3 and where c̃ij−l =

min
vue∈U1

h

{c1,ij−l + c1,ue − cij−l ,ue} defines the minimum PR trip cost that could be incurred

from vij−l into U1
h .

Finally, for the remaining portion of the artificial route h̃, i.e., vi1 , . . . , vij−l−1 , we

note that the recourse function (3.9) can be used to successively compute Fij−l−1(.),. . . ,

Fi1(.) (i.e., F̃ik(q) = Fik(q) for 1 < k ≤ j − l − 1). Then F̃i1(Q) = Q̃k,1
h̃

, can be

used to complete the computation of the lower bound value. As for obtaining value

Q̃k,2
h̃

, we simply reverse the artificial route and apply the same computation. Therefore,

Θh
α = min{Q̃k,1

h̃
, Q̃k,2

h̃
} results in a lower bound value for recourse cost for the partial

route h.

Bounding the Policy π3

In the case of policy π3, the computation of the recourse cost for the artificial route h̃

remains unchanged with the exception of the threshold values used (i.e., θU1
h

and θU1
h

in Lemma 3.4.3). These threshold values now need to be determined according to the

specific positions associated with U1
h . Let us define θk

U1
h

and θ
k
U1

h
as the aforementioned

threshold values associated with position k, for j− l + 1 ≤ k < j. To express these

values, we define 1st, 2nd, . . . , l − 1th minimum and maximum expected demands asso-

ciated with the customers included in U1
h as follows,:
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y1 =
vue∈U1

h

E(ξvue ), y2 =
vue∈U1

h\{vuy1
}

E(ξvue ), . . . , yl−1 =
vue∈U1

h\{vuy1
,...,vuyl−2

}
E(ξvue )

z1 =
vue∈U1

h

E(ξvue ), z2 =
vue∈U1

h\{vuz1
}

E(ξvue ), . . . , zl−1 =
vue∈U1

h\{vuz1
,...,vuzl−2

}
E(ξvue )

Let us recall that policy π3 is defined as π3(~v) = (θi2 = λ ∑it
r=i3

E(ξr), . . . , θij =

λ ∑it
r=ij+1

E(ξr), . . . , θit = 0) for a given route ~v = (v1 = vi1 , vi2 , . . . , vit , vit+1 = v1).

Considering that the artificial route

h̃ = (v1 = vi1 , . . . , vij−l , ij−l+1 , ij−l+2 , . . . , ij , vij+1 , . . . , vit+1 = v1),

is unsequenced from the j− l + 1th position up to the jth position, we set values θk
U1

h

and θ
k
U1

h
, for j− l + 1 ≤ k < j as follows

θk
U1

h
= λ

( j−k

∑
a=1

E(ξya) +
it

∑
r=ij+1

E(ξr)
)
, θ

k
U1

h
= λ

( j−k

∑
a=1

E(ξza) +
it

∑
r=ij+1

E(ξr)
)
.

Finally, to compute F̂ij−l(q) using (3.26), under policy π3, values θmin
U1

h
and θmax

U1
h

are

simply set to

θmin
U1

h
= θmax

U1
h

= λ
(
∑

vue∈U1
h

E(ξvue ) +
it

∑
r=ij+1

E(ξr)
)
.

We have presented the computation of the bounds associated with Θh
α. This compu-

tation is generalized, to both Θh
β and Θh

γ, as these can be viewed as successive α-route

structures.

3.5 Numerical Results

In this section, we present extensive computational experiments conducted to assess

the effectiveness of the solution method, as well as the quality of the three rule-based re-

courses proposed. In the set of instances designed for these numerical experiments both
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customer locations and the demand distribution functions are randomly generated. In

each instance, a set of n vertices including the depot and n− 1 customers as {v1, . . . , vn}
are scattered in a square of [0, 100]2 according to a continuous uniform distribution. For

each pair vi and vj, the traveling cost cij is then set to the nearest integer associated to

the Euclidean distance between the two vertices. It should also be noted that the cost

value b is defined as the average distance to the depot when considering all customers

(i.e., b = ∑
i=2,...,n

ci1/(n− 1)). As previously defined, b is incurred whenever a failure

occurs when applying a route to represent the cost associated with the added disturbance

from the customer’s perspective of having its demand serviced on two consecutive visits.

Such a cost can be adjusted to reflect the overall quality of service that a transportation

company is interested in offering to its customers. As for the specific choice of the value

b that is considered, the motivation was to ensure that it scales (i.e., defined on com-

parable units of measurement) to the overall costs used in the objective function of the

VRPSD, which depends of the travel cost.

Three demand ranges [1, 5], [6, 10], and [11, 15] are selected to present low, medium,

and high demand customers. Each customer vi ∈ {v2, . . . , vn} is then assigned to one of

these three ranges with equiprobability. Next, five demand realizations based on the as-

signed ranges are generated for each customer vi and the probabilities {0.1, 0.2, 0.4, 0.2, 0.1}
are associated to each value within the specific interval. The filling coefficient and vehi-

cle capacity are defined through the function f̄ = ∑n
i=2 E(ξi)

mQ , where m is the number of

homogeneous vehicles with capacity Q. Four filling coefficients f̄ = 0.90, 0.92, 0.94, and 0.96

are used to compute Q, where m = 2, 3, and 4. The computational study is performed

on a set of 11 possible pairs of (n, m) as indicated in Table (3.I). For each pair, 10 in-

stances are randomly generated (providing 110 base instances). Considering the four

filling coefficients for each pair of (n, m), a total of 440 instances are thus generated.

Three volume rule-based policies are examined in this paper. As stated in §3.3.3, let

us recall that policy π1 is based on a preset percentage δ of the capacity of the vehicles,

while policies π2 and π3 are defined according to fixed coefficients (i.e., η and λ for

π2 and π3, respectively) applied to either the expected demand of the subsequent cus-

tomer along the considered route (i.e., policy π2), or, the total expected demands of the
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remaining customers sequenced on the considered route (i.e., policy π3). It should be

noted that these policies, more precisely their preset coefficients, need to be tuned and

calibrated carefully by decision makers facing the problems. These threshold policies

govern how return trips to the depot are performed and can be used to formulate varying

levels of risk aversion from the decision maker’s perspective. As an overall principle, by

increasing the preset coefficients under the different policies, vehicles will perform PR

trips more often and less failures are expected to be observed, while a reduction in the

coefficient values would have the reverse effect (i.e., a higher risk of observing failures).

To perform a thorough numerical analysis, three preset values for each policy are

selected: δ = 0.02, 0.03, 0.05, η = 0.80, 1.00, 1.25, and λ = 0.80, 0.90, 1.00. These

values where chosen to enable a proper calibration of the policies to be performed and

to assess the impact of using different threshold levels. Therefore, for each considered

policy, a median value was first selected: δ = 0.03 for π1, η = 1.00 for π2 and λ =

0.90 for π3, which defines the benchmark in each case. Two alternate values were then

defined for each policy to represent a more risk averse operational rule set with respect

to the occurrence of route failures (i.e., δ = 0.05, η = 1.25 and λ = 1.00) and a less risk

averse approach (i.e., δ = 0.02, η = 0.80 and λ = 0.80). To summarize the numerical

experiments conducted, each instance is solved under the three policies that are applied

using each preset value, thus a total of 3, 960 runs are performed.

The Integer L-shaped algorithm was programmed in C++ using ILOG CPLEX 12.6.

The subtour elimination and capacity constraints (3.4) are generated using the CVRPSEP

package of [38] and the branching procedure, which is used for the L-shaped algorithm,

is implemented using the OOBB package developed by [24]. We use three topologies

p ∈ {α, β, γ} for generating general partial route cuts. All experiments were conducted

on a cluster of 27 machines each having two Intel(R) Xeon(R) X5675 3.07 GHz pro-

cessors with 96 GB of RAM running on Linux. Each machine has 12 cores and each

experiment was run using a single thread. An optimality gap of 0.01% was imposed as

well as a maximum CPU run time of 10 hours on all runs. Therefore, if the algorithm

reaches the maximum allotted time without finding a solution within the desired gap, the

best integer feasible solution found is simply reported.

66



The obtained results are analyzed in the next two subsections. In Subsection 3.5.1,

the three proposed policies are evaluated in terms of the computational effort needed

to solve the VRPSD when each of them is used to define the recourse cost. While in

Subsection 3.5.2, a solution cost assessment is conducted for the proposed policies.

3.5.1 Computational Policy Analysis

The results obtained for all numerical experiments are summarized in Tables 3.II,

3.III, and 3.IV, each table corresponds to the results of a single policy. These results

are aggregated according to the pair (n, m) and the filling coefficient f̄ defining the

instances, as well as the preset values associated with the policies (i.e., δ, η and λ for

π1, π2 and π3, respectively). Results are reported as follows: 1) the “Solved” columns

presents the number of instances (out of ten for each aggregated category) that were

solved to optimality by the Integer L-shaped algorithm; 2) the “Time” columns refer

to the average running times in seconds that were needed by the algorithm to solve

those instances to optimality; 3) the “Gap” columns present the average optimality gap

obtained by the algorithm over all instances solved (i.e., both those solve optimally and

those for which only a feasible solution was obtained).

When analyzing the results in Tables 3.II, 3.III, and 3.IV, one first observes the gen-

eral trend that was previously reported by Gendreau et al. [20], Laporte et al. [35], and

Jabali et al. [28] regarding the overall complexity related to solving the VRPSD. There-

fore, regardless of the specific policy used, the complexity of solving the problem tends

to increase as the number of customers, number of vehicles, and the filling coefficients

increase. This trend is illustrated via both the number of instances solved to optimality

that tend to decrease as the values of the instances parameters (n, m) and f̄ increase, and

the running times which tend to increase as the value f̄ increases for fixed values for the

pair (n, m).

Next, we analyze how the algorithm performs when solving the VRPSD under the

three rule-based policies proposed. As reported in Tables 3.II, 3.III, and 3.IV, on a

total of 1,320 runs (which were performed using each considered policy), the Integer

L-shaped algorithm obtained optimal solutions in 655 runs using π1, 683 runs using π2
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Table 3.I – Combinations of parameters to generate instances

n m f̄

20 2 0.90, 0.92, 0.94, 0.96
30 2 0.90, 0.92, 0.94, 0.96
40 2, 3, 4 0.90, 0.92, 0.94, 0.96
50 2, 3, 4 0.90, 0.92, 0.94, 0.96
60 2, 3, 4 0.90, 0.92, 0.94, 0.96

Table 3.II – Result of running the fixed policy π1.

n m δ f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap

20 2 0.02 0.90 10 22.10 0.00% 0.92 10 15.50 0.00% 0.94 10 18.40 0.00% 0.96 9 705.56 0.11%
20 2 0.03 0.90 10 12.20 0.00% 0.92 10 13.50 0.00% 0.94 10 15.10 0.00% 0.96 9 503.11 0.08%
20 2 0.05 0.90 10 13.80 0.00% 0.92 10 14.00 0.00% 0.94 10 15.40 0.00% 0.96 9 539.33 0.08%
30 2 0.02 0.90 10 20.20 0.00% 0.92 9 481.22 0.04% 0.94 10 2405.00 0.00% 0.96 9 2771.22 0.16%
30 2 0.03 0.90 10 23.20 0.00% 0.92 9 407.56 0.13% 0.94 10 5407.10 0.00% 0.96 9 2432.44 0.16%
30 2 0.05 0.90 10 17.90 0.00% 0.92 9 412.89 0.16% 0.94 9 2415.22 0.07% 0.96 7 5183.57 0.40%
40 2 0.02 0.90 10 21.70 0.00% 0.92 10 98.80 0.00% 0.94 10 61.80 0.00% 0.96 7 2516.57 0.10%
40 2 0.03 0.90 10 17.60 0.00% 0.92 10 86.90 0.00% 0.94 10 40.60 0.00% 0.96 7 3391.57 0.09%
40 2 0.05 0.90 10 13.70 0.00% 0.92 10 90.40 0.00% 0.94 10 20.40 0.00% 0.96 8 1026.62 0.09%
40 3 0.02 0.90 6 1258.33 0.27% 0.92 7 8256.43 1.29% 0.94 3 3788.00 1.06% 0.96 2.43%
40 3 0.03 0.90 6 1349.83 0.24% 0.92 6 3011.33 1.15% 0.94 3 5173.00 0.95% 0.96 2.43%
40 3 0.05 0.90 7 7175.29 0.29% 0.92 6 589.00 1.20% 0.94 3 11622.33 0.97% 0.96 2.55%
40 4 0.02 0.90 1 32151.00 2.61% 0.92 6.47% 0.94 4.38% 0.96 7.51%
40 4 0.03 0.90 1 19318.00 2.57% 0.92 6.06% 0.94 4.42% 0.96 7.02%
40 4 0.05 0.90 2.98% 0.92 6.89% 0.94 4.37% 0.96 7.28%
50 2 0.02 0.90 10 13.90 0.00% 0.92 9 2896.11 0.16% 0.94 10 123.00 0.00% 0.96 5 6185.40 0.32%
50 2 0.03 0.90 10 18.30 0.00% 0.92 9 3735.44 0.17% 0.94 10 112.10 0.00% 0.96 5 4966.80 0.33%
50 2 0.05 0.90 10 608.20 0.00% 0.92 8 110.00 0.19% 0.94 10 3282.60 0.00% 0.96 5 2819.20 0.40%
50 3 0.02 0.90 6 4342.17 1.09% 0.92 4 3233.50 0.88% 0.94 3 1926.67 1.02% 0.96 2.24%
50 3 0.03 0.90 6 4729.00 1.07% 0.92 4 3155.00 1.24% 0.94 3 1582.00 1.04% 0.96 2.16%
50 3 0.05 0.90 6 3547.17 1.10% 0.92 3 2296.00 1.07% 0.94 3 1080.00 1.03% 0.96 2.60%
50 4 0.02 0.90 2 2308.00 4.93% 0.92 1 12705.00 3.37% 0.94 2.83% 0.96 5.12%
50 4 0.03 0.90 2 1902.00 4.57% 0.92 1 12989.00 3.44% 0.94 3.16% 0.96 5.04%
50 4 0.05 0.90 2 7105.00 4.89% 0.92 1 15156.00 3.88% 0.94 3.31% 0.96 5.27%
60 2 0.02 0.90 10 1819.40 0.00% 0.92 8 26.38 0.05% 0.94 8 2549.50 0.10% 0.96 6 4313.17 0.12%
60 2 0.03 0.90 10 1558.70 0.00% 0.92 8 71.75 0.03% 0.94 9 4669.67 0.09% 0.96 6 6953.00 0.06%
60 2 0.05 0.90 10 1566.90 0.00% 0.92 8 50.50 0.07% 0.94 9 2291.00 0.09% 0.96 6 888.33 0.16%
60 3 0.02 0.90 3 2592.67 1.05% 0.92 2 6797.00 3.25% 0.94 3 18900.33 2.16% 0.96 1 196.00 2.77%
60 3 0.03 0.90 3 5301.33 1.18% 0.92 2 14896.50 3.14% 0.94 1 168.00 2.23% 0.96 3.40%
60 3 0.05 0.90 2 182.00 1.11% 0.92 1 429.00 3.04% 0.94 1 119.00 2.44% 0.96 3.38%
60 4 0.02 0.90 1 24866.00 2.66% 0.92 3.41% 0.94 4.40% 0.96 5.30%
60 4 0.03 0.90 2.69% 0.92 3.43% 0.94 4.33% 0.96 5.35%
60 4 0.05 0.90 3.14% 0.92 3.70% 0.94 4.14% 0.96 5.02%

Average 1578.80 2.56% 1560.94 3.86% 2097.01 3.24% 2698.15 5.30%

Total 204 175 168 108
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Table 3.III – Result of running the fixed policy π2.

n m η f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap

20 2 0.80 0.90 10 12.50 0.00% 0.92 10 16.00 0.00% 0.94 10 5.40 0.00% 0.96 10 263.20 0.00%
20 2 1.00 0.90 10 10.50 0.00% 0.92 10 12.50 0.00% 0.94 10 2.00 0.00% 0.96 10 13.40 0.00%
20 2 1.25 0.90 10 18.50 0.00% 0.92 10 28.50 0.00% 0.94 10 19.60 0.00% 0.96 10 59.50 0.00%
30 2 0.80 0.90 10 101.40 0.00% 0.92 9 3962.00 0.07% 0.94 10 1973.00 0.00% 0.96 8 646.75 0.22%
30 2 1.00 0.90 10 42.20 0.00% 0.92 9 3565.33 0.05% 0.94 10 890.70 0.00% 0.96 8 248.62 0.18%
30 2 1.25 0.90 10 193.60 0.00% 0.92 8 1.75 0.07% 0.94 9 3965.56 0.01% 0.96 8 1566.62 0.23%
40 2 0.80 0.90 10 32.70 0.00% 0.92 10 71.60 0.00% 0.94 10 26.80 0.00% 0.96 9 1671.78 0.04%
40 2 1.00 0.90 10 23.70 0.00% 0.92 10 34.60 0.00% 0.94 10 14.50 0.00% 0.96 10 1770.90 0.00%
40 2 1.25 0.90 10 41.50 0.00% 0.92 10 88.20 0.00% 0.94 10 55.90 0.00% 0.96 9 3170.89 0.07%
40 3 0.80 0.90 5 447.60 0.50% 0.92 7 3180.86 0.58% 0.94 5 9071.80 0.46% 0.96 1 10428.00 1.78%
40 3 1.00 0.90 6 4727.50 0.41% 0.92 7 908.00 0.49% 0.94 4 1945.25 0.86% 0.96 2 7175.00 1.39%
40 3 1.25 0.90 5 434.60 0.60% 0.92 5 4056.20 0.85% 0.94 3 6334.67 1.10% 0.96 1 1861.00 2.00%
40 4 0.80 0.90 2.47% 0.92 4.28% 0.94 3.81% 0.96 5.71%
40 4 1.00 0.90 2.37% 0.92 4.32% 0.94 3.02% 0.96 4.79%
40 4 1.25 0.90 3.08% 0.92 4.76% 0.94 4.74% 0.96 6.86%
50 2 0.80 0.90 10 113.50 0.00% 0.92 9 2252.00 0.00% 0.94 10 181.40 0.00% 0.96 7 7895.00 0.16%
50 2 1.00 0.90 10 124.40 0.00% 0.92 8 649.50 0.20% 0.94 10 86.40 0.00% 0.96 7 925.71 0.18%
50 2 1.25 0.90 10 84.40 0.00% 0.92 8 1980.50 0.20% 0.94 10 163.40 0.00% 0.96 7 2676.86 0.31%
50 3 0.80 0.90 4 1308.75 1.11% 0.92 4 4384.50 1.03% 0.94 3 1300.33 1.05% 0.96 1 2567.00 1.79%
50 3 1.00 0.90 5 3981.00 1.06% 0.92 5 5882.60 0.57% 0.94 4 8905.00 0.77% 0.96 1 127.00 1.39%
50 3 1.25 0.90 4 3068.00 1.16% 0.92 5 8601.00 0.86% 0.94 4 8774.00 1.13% 0.96 1 349.00 1.84%
50 4 0.80 0.90 2 124.00 4.31% 0.92 2 11846.50 2.77% 0.94 2.27% 0.96 3.89%
50 4 1.00 0.90 2 85.50 3.99% 0.92 2 7662.00 2.89% 0.94 2.01% 0.96 3.53%
50 4 1.25 0.90 2 164.00 4.97% 0.92 2 17078.50 3.33% 0.94 2.76% 0.96 4.46%
60 2 0.80 0.90 10 1561.70 0.00% 0.92 9 1438.22 0.06% 0.94 7 486.71 0.09% 0.96 7 5270.29 0.14%
60 2 1.00 0.90 10 1035.50 0.00% 0.92 9 1047.22 0.02% 0.94 8 3190.88 0.06% 0.96 8 3104.75 0.13%
60 2 1.25 0.90 10 1813.00 0.00% 0.92 9 961.89 0.06% 0.94 8 4489.38 0.10% 0.96 7 3242.14 0.21%
60 3 0.80 0.90 4 5910.00 0.89% 0.92 1 407.00 2.55% 0.94 2 12122.50 2.01% 0.96 1 2326.00 2.59%
60 3 1.00 0.90 3 2109.00 0.89% 0.92 2 597.00 2.29% 0.94 2 4097.00 1.90% 0.96 2 4511.50 2.22%
60 3 1.25 0.90 4 3508.25 0.92% 0.92 1 224.00 2.97% 0.94 1 967.00 2.21% 0.96 1 581.00 2.66%
60 4 0.80 0.90 2.30% 0.92 2.90% 0.94 3.75% 0.96 4.06%
60 4 1.00 0.90 2.21% 0.92 2.41% 0.94 3.38% 0.96 3.75%
60 4 1.25 0.90 2.57% 0.92 2.92% 0.94 4.43% 0.96 4.70%

Average 852.17 2.39% 1969.43 2.90% 1852.34 2.80% 2138.75 4.08%

Total 196 181 170 136

Table 3.IV – Result of running the fixed policy π3.

n m λ f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap f̄ Solved Time(s) Gap

20 2 0.80 0.90 10 14.80 0.00% 0.92 10 18.40 0.00% 0.94 10 8.30 0.00% 0.96 9 1147.00 0.17%
20 2 0.90 0.90 10 31.30 0.00% 0.92 10 25.50 0.00% 0.94 10 74.90 0.00% 0.96 7 330.14 0.63%
20 2 1.00 0.90 10 195.40 0.00% 0.92 10 35.60 0.00% 0.94 9 260.11 0.00% 0.96 5 8180.20 1.24%
30 2 0.80 0.90 10 19.40 0.00% 0.92 9 508.56 0.04% 0.94 10 1235.90 0.00% 0.96 8 3460.38 0.27%
30 2 0.90 0.90 10 24.00 0.00% 0.92 9 482.00 0.15% 0.94 10 3835.10 0.00% 0.96 5 1732.80 0.79%
30 2 1.00 0.90 10 228.90 0.00% 0.92 9 529.11 0.16% 0.94 9 5148.00 0.05% 0.96 3 1992.67 1.73%
40 2 0.80 0.90 10 11.70 0.00% 0.92 10 202.30 0.00% 0.94 10 66.90 0.00% 0.96 9 4205.78 0.04%
40 2 0.90 0.90 10 26.90 0.00% 0.92 10 269.90 0.00% 0.94 10 106.30 0.00% 0.96 5 11483.60 0.23%
40 2 1.00 0.90 10 584.30 0.00% 0.92 10 703.40 0.00% 0.94 9 727.78 0.00% 0.96 1 2025.00 1.20%
40 3 0.80 0.90 5 2571.60 0.22% 0.92 6 3434.67 1.35% 0.94 2 8629.50 1.75% 0.96 2.96%
40 3 0.90 0.90 6 2744.50 0.31% 0.92 6 3604.50 1.31% 0.94 2 16319.00 2.83% 0.96 4.17%
40 3 1.00 0.90 6 4285.17 0.42% 0.92 6 6498.17 1.69% 0.94 1 5093.00 3.81% 0.96 7.14%
40 4 0.80 0.90 1 14852.00 3.91% 0.92 7.34% 0.94 4.70% 0.96 7.86%
40 4 0.90 0.90 5.09% 0.92 8.99% 0.94 5.67% 0.96 9.64%
40 4 1.00 0.90 6.46% 0.92 10.32% 0.94 7.60% 0.96 11.78%
50 2 0.80 0.90 10 1515.90 0.00% 0.92 8 1761.12 0.17% 0.94 10 312.10 0.00% 0.96 5 4882.80 0.31%
50 2 0.90 0.90 10 935.20 0.00% 0.92 7 135.71 0.19% 0.94 9 554.11 0.04% 0.96 2 781.00 0.53%
50 2 1.00 0.90 10 2957.20 0.00% 0.92 8 3506.00 0.17% 0.94 9 7396.44 0.06% 0.96 1.40%
50 3 0.80 0.90 6 3488.67 1.10% 0.92 4 4239.50 1.38% 0.94 3 2491.33 0.87% 0.96 3.45%
50 3 0.90 0.90 5 6659.20 1.17% 0.92 3 2304.67 1.46% 0.94 3 6620.33 1.43% 0.96 4.66%
50 3 1.00 0.90 6 8170.00 1.18% 0.92 3 9284.33 1.67% 0.94 1 26215.00 1.67% 0.96 7.46%
50 4 0.80 0.90 2 4060.00 4.74% 0.92 1 10983.00 5.94% 0.94 4.28% 0.96 5.59%
50 4 0.90 0.90 2 2043.50 5.41% 0.92 1 16596.00 7.68% 0.94 5.22% 0.96 7.23%
50 4 1.00 0.90 2 1767.00 6.29% 0.92 1 23014.00 8.74% 0.94 7.12% 0.96 10.88%
60 2 0.80 0.90 10 1667.60 0.00% 0.92 9 2333.11 0.05% 0.94 9 3909.44 0.07% 0.96 5 4470.40 0.19%
60 2 0.90 0.90 10 1579.70 0.00% 0.92 8 358.25 0.05% 0.94 9 7823.11 0.10% 0.96 3 6583.33 0.42%
60 2 1.00 0.90 10 2323.80 0.00% 0.92 8 627.25 0.06% 0.94 6 160.83 0.11% 0.96 1.21%
60 3 0.80 0.90 4 4117.50 1.02% 0.92 1 1145.00 3.01% 0.94 2 18532.50 2.60% 0.96 3.50%
60 3 0.90 0.90 4 10966.50 1.22% 0.92 2 17711.00 3.51% 0.94 1 3175.00 3.06% 0.96 4.28%
60 3 1.00 0.90 2 8169.50 1.81% 0.92 1 14206.00 4.84% 0.94 1 14036.00 4.04% 0.96 6.08%
60 4 0.80 0.90 2.68% 0.92 3.49% 0.94 4.78% 0.96 6.01%
60 4 0.90 0.90 3.38% 0.92 4.34% 0.94 6.04% 0.96 7.61%
60 4 1.00 0.90 4.20% 0.92 5.68% 0.94 8.22% 0.96 9.56%

Average 1923.95 3.37% 1955.95 5.59% 2919.66 5.07% 3899.00 8.68%

Total 201 170 155 67
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and 593 runs using π3. From these results, it clearly appears that the Integer L-shaped al-

gorithm is most efficient when solving the VRPSD under policy π2. Furthermore, with

the exception of the instances where f̄ = 0.92, the use of policy π2 also enables the

smallest weighted average running times to be obtained when applying the algorithm

i.e., 852.17 seconds, 1,852.34 seconds and 2,138.75 seconds for the instances where

f̄ = 0.90, f̄ = 0.94 and f̄ = 0.96, respectively. In the case of the instances where

f̄ = 0.92, policy π1 allows the Integer L-shaped algorithm to be more computationally

efficient (i.e., a weighted average of 1 560.94 seconds was obtained using π1, compared

to 1 969.43 seconds using π2). However, when comparing policies using the compu-

tation times obtained by the algorithm, it is important to note that the reported results

are not perfectly comparable considering that they are not necessarily based on runs per-

formed on the same instances. For example, the weighted average obtained for policy

π1 on the instances where f̄ = 0.92 is based on less instances solved to optimality when

compared to π2 (i.e., 175 instances in the case of π1 versus 181 instances in the case of

π2). This being said, what these results show is again the trend that the Integer L-shaped

algorithm is most efficient under policy π2 to solve the VRPSD.

Finally, when considering the average gaps obtained when applying the different

policies, the use of π2 provides again the best results. For the different filling coefficient

values defining the considered instances (i.e., f̄ = 0.90, 0.92, 0.94 and 0.96), the aver-

age gaps obtained overall runs are respectively: 2.56%, 3.86%, 3.24% and 5.30% when

applying π1; 2.39%, 2.90%, 2.80% and 4.08% when applying π2; and 3.37%, 5.59%,

5.07% and 8.68% when applying π3. Therefore, one can conclude that the overall nu-

merical complexity of solving the VRPSD using the Integer L-shaped algorithm seems

easiest using π2, followed by π1 and π3. In addition, policy π3 appears as the most

challenging to apply when considering all previously analyzed metrics.

3.5.2 Solution Cost Assessment

In this subsection, we analyze how the three proposed policies perform in terms of

reducing the costs associated with the vehicle routes. Given that a company may choose

to use any of the policies based on the specific operational rules that are applied to
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perform the routes, it is important to note that our aim here is not necessarily to identify

which policy is best overall. Instead, we will analyze the quality of the solutions obtained

using π1, π2 and π3 by evaluating them under both the classical recourse and the optimal

restocking policies. By doing so, for the solutions obtained, we will assess how π1, π2

and π3 1) reduce the number of failures when compared to applying the routes using the

classical recourse policy and 2) approximate the optimal restocking cost.

Therefore, when solving the instances using the three proposed policies, we first

consider only those runs where optimal solutions were found. The routes associated

with these optimal solutions are then alternatively evaluated using both the classical

recourse and optimal restocking policies, the latter was computed similar to Bertsimas

et al. [5]. Also, results will be grouped according to the filling rate f̄ of the instances,

which is a problem dimension that clearly impacts the numerical challenges involved

in solving the instances. In Table 3.V, we first report the ratios obtained between the

expected number of BF trips that are performed when the routes are conducted under the

classical recourse policy (i.e., EBFc) with respect to when they are performed under the

proposed rule-based policies (i.e., EBFr).

As shown in Table 3.V, compared to the classical recourse policy, the use of π1,

π2 and π3 clearly reduces the expected number of BF trips that are performed when

applying the routes. Given the practical high costs that may be associated with the dis-

turbances related to route failures, the proposed policies offer a clear advantage over the

myopic classical recourse policy. In addition, when analyzing the results obtained for

π1 and π2, one sees how the use of more risk-averse preset values can further reduce

the expected number of performed BF trips. A significant reduction is observed when

π2 is applied using η = 1.25 in which case the average ratios increase by an order of

magnitude. Regarding policy π3, the obtained results seem to contradict these obser-

vations. However, this can be explained by the fact that, for a given instance type (i.e.,

for fixed parameters n, m and f̄ ), the value to which λ is fixed greatly influences the

number of instances solved to optimality. From Table 3.IV, one observes the trend that

the VRPSD becomes significantly harder to solve as the value λ is increased when ap-

plying π3. Therefore, in this case, the average ratios are computed using the solutions
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obtained on noticeably different sets of instances which, in turn, can explain the differing

observations.

The final step in our overall analysis is to assess how policies π1, π2 and π3 impact

the solution costs. In Table 3.VI, for those instances solved to optimality, the average

relative differences are reported between the solution costs obtained by using the rule-

based policies and both the classical recourse (i.e., the Savings columns) and the optimal

restocking policies (i.e., the Deviations columns). Therefore, the Savings values indicate

the relative reductions in terms of solution cost that are obtained when the routes are

applied using the proposed rule-based policies, when compared to the classical recourse

policy. As for the Deviations values, they represent the gap between the solution cost

evaluated using the rule-based policies and the optimal restocking policy on the same

routes. It should be noted that, for a given route, the optimal restocking cost defines a

lower bound over all possible policies.

When analyzing these results, one first notices that the values obtained are relatively

small. This can be explained by the fact that the policies are being evaluated on the same

routes coupled with the fact that the value b is not severely penalizing route failures.

This being said, with the exception of π3 on three distinct instance categories (i.e., when

solving the f̄ = 0.90 instances with λ = 1.00 and the f̄ = 0.96 instances with λ = 0.90

and λ = 1.00), all ruled-based policies when applied on the obtained routes provide a

cost reduction (or are equivalent) when compared to the classical recourse policy. The

best savings are obtained for π2 on the f̄ = 0.96 instances. Furthermore, the observed

savings tend to increase as the value of f̄ increases also. This is to be expected given the

positive correlation that exists between the expected number of failures and the overall

filling coefficient of instances. Regarding policy π3, the three observed exceptions may

be explained by an overly risk-averse implementation of the policy which occurs by

fixing the preset value to λ = 0.90 and λ = 1.00. Considering that these runs produce

savings that are extremely small when compared to other policy runs, one can infer that

the number of PR trips that are performed in an effort to reduce the number of failures,

in these cases, does not seem to provide an added overall cost advantage.

Finally, when comparing the proposed policies to the optimal restocking one, it can
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Table 3.V – The ratio EBFc
EBFr

π preset f̄ = 0.90 f̄ = 0.92 f̄ = 0.94 f̄ = 0.96

π1

δ = 0.02 1.63 1.54 1.83 1.44
δ = 0.03 3.75 1.50 1.97 2.03
δ = 0.05 5.04 2.33 3.48 3.28

π2

η = 0.80 2.31 2.27 2.16 2.25
η = 1.00 4.19 4.93 4.53 5.37
η = 1.25 35.55 27.95 40.96 44.76

π3

λ = 0.80 25.97 6.89 10.12 3.56
λ = 0.90 13.95 2.71 7.36 2.58
λ = 1.00 13.75 6.16 6.52 1.35

be observed that the relative differences are quite small. Policy π2 appears as the best

to approximate the optimal restocking cost for the considered solutions. Specifically,

when the policy is applied with its preset value fixed to η = 1.00, the average devia-

tions vary between 0.01% and 0.08%. Therefore, such a policy provides a very good

approximation for the optimal restocking cost. Furthermore, when compared to both π1

and π3, when π2 is applied on instances for increasing values of f̄ , one observes an

increase in the deviation values (i.e., a deterioration of the approximation) but at much

less pronounced rate. Comparatively, π3 appears as the worst policy to approximate the

optimal restocking cost. However, this can again be explained by the overly risk-averse

implementations of the policy.

3.6 Conclusions

In this paper, we introduce a new type of recourse policies for the VRPSD, that are

based on the use of a set of fixed operational rules, specifying when both PR and BF

trips need to be performed. Given a route, such policies can be expressed as a set of

thresholds, associated with each customer scheduled along the route, that define when

PR trips need to be performed. We also show how the recourse cost of routes can be

efficiently computed using a recursive function based on the obtained thresholds. Finally,

we propose an exact solution method, using the Integer L-shaped algorithm, to solve the
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Table 3.VI – Savings and Deviations.

f̄ = 0.90 f̄ = 0.92 f̄ = 0.94 f̄ = 0.96
π preset Savings Deviations Savings Deviations Savings Deviations Savings Deviations

π1

δ = 0.02 0.04% 0.07% 0.06% 0.13% 0.11% 0.34% 0.35% 0.86%
δ = 0.03 0.08% 0.05% 0.04% 0.11% 0.13% 0.34% 0.46% 0.73%
δ = 0.05 0.00% 0.12% 0.05% 0.13% 0.16% 0.38% 0.43% 0.81%

π2

η = 0.80 0.11% 0.04% 0.19% 0.09% 0.35% 0.18% 0.81% 0.45%
η = 1.00 0.18% 0.01% 0.39% 0.01% 0.61% 0.03% 1.29% 0.08%
η = 1.25 0.07% 0.05% 0.09% 0.14% 0.47% 0.25% 1.05% 0.38%

π3

λ = 0.80 0.05% 0.06% 0.08% 0.42% 0.22% 0.25% 0.50% 0.68%
λ = 0.90 0.00% 0.09% 0.00% 0.46% 0.02% 0.34% −0.02% 1.27%
λ = 1.00 −0.04% 0.10% 0.06% 0.48% 0.27% 0.60% −1.57% 3.14%

considered problem. With our solution method, problems with up to 60 customers and a

fleet of four vehicles are solved to optimality.

Through our extensive numerical experiments, we show that the defined ruled-based

policies outperform the classical policy in terms of reducing the number of failures oc-

curring when implementing routes and their associated costs. Furthermore, it is also

observed that the overall cost of the routes, when computed using an optimal restock-

ing policy, remain close to the cost originally obtained using the ruled-based policies.

Clearly demonstrating that the proposed policies also define a good approximation to

the optimal one. Finally, the proposed solution method is numerically shown to be effi-

cient to tackle a wide range of problems of varying size and for different filling rates.

The present paper has defined a series of interesting avenues of research. Namely,

other families of rule-based policies can be defined. These should capture other opera-

tional rules likely to be used in practice.
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Abstract

In this paper we propose a new recourse policy for the vehicle routing problem with stochastic demands (VRPSD).
In this routing problem customer demands are characterized by known probability distributions. The objective of
the problem is to plan routes minimizing the travel cost and the expect recourse cost. The latter cost is a result of
a predetermined recourse policy designed to handle route failures. In the relevant literature there are three types
of recourse policies i) classical, where stock outs at customers are handled by return trips to the depot ii) optimal
restocking, where preventive restocking trips to the depot are performed based on optimized customer-specific
thresholds, and stock outs are handled by return trips to the depot iii) rule-based policies, where preventive
restocking trips are performed based on thresholds established by preset rules, and stock outs are handled by
performing return trips to the depot. The latter policy enables a company to define its recourse policy based
on its operational conventions. We first propose a taxonomy that groups rules-based policies into three classes.
We then propose the first hybrid recourse policy, which simultaneously combines two of these classes, namely
risk and distance. We propose an exact solution algorithm for the VRPSD with this hybrid recourse policy.
We conduct a broad range of computational experiments. For certain experimental configurations, the exact
algorithm solves to optimality up to 79 percent of the instances. Furthermore, the algorithm is able to solve
instances with up to 60 customers. Compared to the classical recourse policy, on average, our hybrid policy
results in a lower number of expected failures. Finally, we show that when the optimal routes of the hybrid
policy are operated under the classical policy they produce higher expected recourse costs on average. However,
operating the same routes under the optimal restocking policy yields an average marginal cost difference with
respect to our hybrid policy.

Keywords: Hybrid recourse policy; Preventive restocking; Operational rules; Vehicle routing problem with
stochastic demands; Partial routes; L-shaped algorithm; Lower bounding functionals
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4.1 Introduction.

The extensively-studied vehicle routing problem (VRP) aims to route a set of homo-

geneous vehicles with limited capacity to serve the demand of a set of customers. The

objective of the VRP is to minimize the total distance driven by the vehicles such that

each vehicle starts and ends its route at a given depot, each customer must be visited once

by a single vehicle, and the total demand of a route does not exceed the vehicle capacity.

In an attempt to capture more realistic features, a number of variants of the VRP have

been proposed (see Toth and Vigo [55] for an extensive review). One particular draw-

back of the VRP lies in the assumption that all problem parameters are deterministic. In

reality, several parameters such as customer demands or travel time are stochastic. Mod-

elling the VRP while using deterministic approximation of stochastic parameters, e.g.,

using the mean value as an approximation, may result in arbitrarily bad-quality solutions

(Louveaux [36]). Therefore, an ever growing class of problems, referred to as stochas-

tic vehicle routing problem (SVRP), has been receiving increasing attention (Gendreau

et al. [23]). Modelling stochasticity in practice implies that a sufficient amount of data

is gathered to describe the probability distribution of uncertain parameters. The ever

growing availability of data enables practitioners to construct and validate such proba-

bility distributions, thus the study of SVRP is rather timely. While different modelling

paradigms exist for handling the SVRP, their guiding principle is to capitalize upon the

knowledge of the distribution functions that define stochastic parameters in order to pro-

duce solutions that are more suitable for the stochastic environment.

In this paper we study the vehicle routing with stochastic demands (VRPSD), in

which the demand of each customer follows a customer-specific probability distribution.

Moreover, we assume that the precise demand value of a customer is only revealed when

it is first visited by a vehicle. The VRPSD can be observed in a number of realistic

applications, such as in home oil delivery (Chepuri and Homem-De-Mello [12]), garbage

collection (Yang et al. [57]) and the collection of money from banks (Lambert et al. [31]).

Several modelling paradigms have been proposed for the VRPSD, see Gendreau et al.

[22] for an extensive review. In this paper we use the a priori modelling paradigm,
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which was originally put forward by Bertsimas et al. [4]. In the context of VRPSD, the

a priori paradigm decomposes the problem into two stages. The first-stage consists of

determining a set of planned a priori vehicle routes, without the knowledge of the precise

demand values of the customers. These values are revealed in the second-stage when

routes are performed. Due to the stochastic nature of the demands, an a priori route may

fail at a specific customer if its revealed demand exceeds the residual vehicle capacity,

i.e., the remaining capacity of the vehicle upon arriving to the customer location. In

such cases, a route failure happens (Dror and Trudeau [16]) and is handled by recourse

actions stemming from a recourse policy.

Two main recourse actions for the VRPSD are found in the literature. In the first,

one can recover routing feasibility through the use of a reactive replenishment trip to

the depot after a failure is observed. Namely, in the case that the residual capacity is

less than the observed customer demand, the vehicle performs a back-and-forth (BF)

trip to the depot, where the vehicle is replenished and returns to the customer location

where the failure occurred, and if possible continues visiting customers in the order

of the planned route. In the case that the residual capacity is precisely equal to the

observed customer demand, and this customer is not the last customer on the planned

route, the vehicle performs a restocking trip (RT) to the depot and then proceeds to

unvisited customers in the order of the planned route, see Gendreau et al. [20], Hjorring

and Holt [27]. In the second type of recourse action, one anticipates route failures and

may execute a proactive replenishment trip to the depot before an actual route failure

occurs. In this case, the vehicle executes a preventive restocking (PR) trip, i.e., returns

to the depot with residual capacity and once replenished continues visiting customers in

the order of the planned route. PR helps in avoiding costly failures as shown by Yee

and Golden [58] and Yang et al. [57]. Both these recourse actions operate on each route

independently, implying that a vehicle designated to serving a route in the first-stage is

exclusively serving the customers included in the route during the second-stage. Thus,

these recourse actions preserve person-oriented consistency, which entails that customers

are served by a specific driver whenever service is required ([30]).

The a priori formulation for the VRPSD works with a predetermined recourse policy,
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which dictates when recourse actions are performed. There are three types of recourse

policies used in this context. The classical recourse, according to which a route failure

or an exact stock out trigger a BF or RT (when needed), respectively. This purely re-

active policy is the most studied version of the VRPSD (Gendreau et al. [22]). Several

exact algorithms have been proposed for the VRPSD with the classical recourse. Gen-

dreau et al. [20], Laporte et al. [35], and Jabali et al. [28] use the L-shaped algorithm

while, Christiansen and Lysgaard [13] and Gauvin et al. [19] use column generation ap-

proaches. Heuristic algorithms were also proposed for this problem, e.g., Gendreau et al.

[21], Rei et al. [44], and [40].

The second type of recourse policy is the optimal restocking policy, which employs

PR and BF actions. Given a planned route, this policy computes optimal customer-

specific thresholds based on which a vehicle performs PR trips. Specifically, when the

residual capacity is less than the customer’s threshold but greater or equal to the cus-

tomer’s demand, a PR trip is performed. In the case that the customer’s demand exceeds

vehicle residual capacity a BF trip is performed. The optimal restocking policy was first

proposed by Yee and Golden [58]. Several heuristic algorithms are proposed for this pol-

icy. A cyclic heuristic (Bertsimas et al. [5]), a local search heuristic (Yang et al. [57]),

and a metaheuristic (Bianchi et al. [7]).

The third recourse policy is the rule-based recourse policy, which was recently

coined by Salavati-Khoshghalb et al. [45]. Similar to the optimal restocking policy, PR

and BF actions are performed. However, the former is governed by a family of restocking

rules based on volume related measures. Within this family, three rule-based restocking

policies are introduced: residual vehicle capacity, expected demand of the next customer,

and expected demands of unvisited customers. These policies operate with preset rules

that determine the customer thresholds for performing PR trips. For example, the first

rule-based restocking policy requires a PR trip to be preformed whenever the residual

capacity of the vehicle falls below a certain percentage of its total capacity. An exact

algorithm capable of handling the three rule-based policies was developed.

It is worth noting that more intricate recourse policies such as route reoptimization

([49]) have been proposed in the literature. From a cost perspective, reoptimizing rout-
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ing decisions as stochastic information is revealed is a better theoretical alternative to

the three previously discussed policies. However, solving the VRPSD with reoptimiza-

tion is challenging. The heuristic described in Secomandi and Margot [49] has been

implemented for the single vehicle case only. Moreover, reoptimizing routing implies

that customers are not served by the same drivers consistently, the actual arrival time at a

customer location may be very variable. To this end, we argue that the a priori paradigm

fits practical contexts where one seeks to design a tactical set of fixed routes, which are

minimally altered on a daily basis. Such tactical routes are suitable when preserving con-

sistency in routing operations is desired (see Salavati-Khoshghalb et al. [45] for further

motivation).

Transportation companies often use operational conventions when dealing with un-

certainty. Rule-based policies facilitate in reflecting such conventions in a routing envi-

ronment, which is not necessarily the case in the optimal restocking policy (see Salavati-

Khoshghalb et al. [45] for a general motivation for rule-based policies). Furthermore,

rule-based policies allow companies to control the risk of encountering failures, and thus

better tailor recourse actions to customer service conventions.

We first propose a taxonomy that groups rule-based policies into three classes. We

then introduce a hybrid recourse policy, which combines rules from two of these classes.

In particular, this hybrid policy triggers replenishment decisions based on risk and dis-

tance measures. For a given route, the risk measure computes the risk of failure at the

next customer. This is compared with predetermined thresholds corresponding to a min-

imum restocking threshold and a maximum proceeding threshold. If the risk of failure is

greater than the former threshold, then the vehicle executes a PR trip, and if the risk of

failure is less than the latter threshold, then the vehicle proceeds with the planned route.

In all other cases, (i.e., where the risk of failure is between the maximum proceeding

threshold and the minimum restocking threshold) we employ a distance measure, which

compares the cost of a PR trip at the current customer with the average cost of future

failures resulting from BF trips. For simplicity, in what follows we refer to the hybrid

risk-and-distance policy as the hybrid policy. We develop an exact algorithm to solve the

VRPSD with the hybrid recourse policy. Furthermore, extensive numerical experiments

80



are performed, in which we demonstrate the effectiveness of the solution algorithm and

compare the hybrid recourse policy with other recourse policies.

The remainder of this paper is organized as follows. In Section §4.2 we present the

VRPSD model, provide a taxonomy for rule-based recourse policies, and present our

hybrid recourse policy. We elaborate the exact solution algorithm in Section §4.3. Nu-

merical experiments are presented in Section §4.4. Finally, we present our conclusions

and future research directions in Section §4.5.

4.2 The vehicle routing problem with stochastic demands and a hybrid recourse

policy

In section §4.2.1, we present the two-stage stochastic programming formulation for

the VRPSD, initially proposed by Laporte et al. [35]. We then present a concise taxon-

omy for the rule-based policies in Section §4.2.2. Based on this taxonomy we elaborate

the proposed hybrid recourse policy in Section §4.2.3.

4.2.1 The a priori model for the VRPSD

In this section we present the a priori model for the VRPSD using the original no-

tation defined by Laporte et al. [35]. Let G = (V , E) be a complete undirected graph,

where V = {v1, v2, . . . , vn} is the set of vertices and E = {(vi, vj)|vi, vj ∈ V , i < j} is

the edge set. The cost of travelling along edge (vi, vj) is denoted by cij. The depot is de-

noted by v1 and the set of customers is V \ {v1}. There are m vehicles at the depot, each

of which has a capacity of Q. The demand of a customer vi is ξi and is assumed to fol-

low a discrete probability distribution with a finite support defined as {ξ1
i , ξ2

i , . . . , ξsi

i },
where values are indicated by increasing order, ξ1

i > 0 and ξsi

i < Q. Let pl
i denote the

probability that the realized demand at customer vi is ξ l
i .

The decision variable xij (i < j) is an integer equal to the number of times edge

(vi, vj) appears in the first-stage solution, i.e., xij must be interpreted as xji for i > j.

The variable x1j may take the values {0, 1, 2}, where x1j = 2 expresses a route visiting

a single customer. The variable xij is binary when i, j > 1. As in Laporte et al. [35]
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and Jabali et al. [28], we assume that the expected demand of an a priori route does not

exceed the vehicle capacity. This assumption forbids the generation of routes that are

likely to systematically fail. Furthermore, let Q(x) denote the expected second stage

cost of solution x. The a priori model for the VRPSD can be formulated as follows:

minimize
x ∑

i<j
cijxij +Q(x) (4.1)

subject to
n

∑
j=2

x1j = 2m, (4.2)

∑
i<k

xik + ∑
k<j

xkj = 2, k = 2, . . . , n (4.3)

∑
vi ,vj∈S

xij ≤ |S| −
⌈∑vi∈S E(ξi)

Q

⌉
, (S ⊂ V \ {v1}; 2 ≤ |S| ≤ n− 2)

(4.4)

0 ≤ xij ≤ 1, 2 ≤ i < j < n (4.5)

0 ≤ x1j ≤ 2, j = 2, . . . , n (4.6)

x = (xij), integer (4.7)

The objective function (4.1) consists of minimizing the first-stage cost and the second-

stage cost. The former is the cost of the a priori routes, while the latter is their associated

recourse cost. Constraints (4.2) and (4.3) establish the degree of the vertices. Con-

straints (4.4) eliminate subtours, and ensure that the total expected demand of each route

is less or equal to Q. Finally, constraints (4.5), (4.6) and (4.7) define the domains of the

decision variables.

Given that the considered recourse actions are performed independently by the ve-

hicle performing the a priori route, Q(x) is separable with respect to the routes. The

expected recourse cost of a route varies according to its orientation. Therefore, for each

route in the a priori solution a specific orientation must be determined. LetQr,δ be the ex-

pected recourse cost of the rth vehicle-route when performed in orientation δ (δ = 1, 2).

Thus,
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Q(x) =
m

∑
r=1

min{Qr,1,Qr,2}. (4.8)

The computation of Qr,δ is elaborated in section §4.2.3.

4.2.2 A taxonomy for rule based policies

The use of rule-based policies in VRPSD implies that recourse actions are taken

based on a set of preset rules. These rules establish customer specific thresholds that

govern when a PR trip is executed. We now describe how such policies can be derived

on the basis of a set of fixed operational rules that are prescribed by the company tasked

with solving the VRPSD. To do so, we present a concise taxonomy for the considered

policies and then clearly define the hybrid policy considered in the present paper.

We propose a taxonomy that groups the possible policies in three general classes: (i)

volume-based policies, (ii) risk-based policies and (iii) distance-based policies. Volume-

based policies define the thresholds as a function of the demands of the customers or the

capacity of the vehicles performing the routes. For a given route, such policies can

implement straightforward operational rules that set the thresholds as a percentage of ei-

ther the capacity of the vehicle, or, estimates obtained for the demands of the customers

scheduled on the route. Alternatively, risk-based policies derive the thresholds on the

basis of the probability of failure at the next or at the following customers along the

considered route. In this case, a company can use the available knowledge regarding

the distributions of the demands of its customers to evaluate the risk of observing fail-

ures when performing a route. Risk-based policies can then apply operational rules that

express varying levels of risk aversion with regards to route failures. Such rules would

call for a PR trip to be performed whenever the probability of failure exceeds a predeter-

mined level. Distance-based policies consider the distance between the customers and

the depot to obtain the thresholds. The general principle being applied here is that it is

preferable to carry out a PR trip from a customer located close to the depot than to risk a

failure at a more distant one. Finally, hybrid policies can also be defined by combining
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the previous ones.

In this paper, we employ a hybrid risk-and-distance-based policy to govern recourse

actions. Therefore, we propose the first hybrid recourse policy that combines two classes

of policies. Our policy uses post-realization information, i.e., the residual capacity after

serving a customer, to determine recourse actions which, in return are used to compute

the expected recourse cost. In what follows, we present our hybrid rule-based recourse

policy and the exact computation of its expected recourse cost.

4.2.3 A Hybrid Recourse Policy for the VRPSD

Given a route one can measure the risk of route failure at the next customer. In this

context, we identify three categories of action. If the risk is too high, the vehicle executes

a PR trip, and respectively if the failure risk is too low, then the vehicle proceeds to the

unvisited customers. For intermediate cases, we combine the defined risk measure with a

distance-based measure, according to which a PR trip is performed if deemed beneficial.

We now formulate the risk and distance based measures. We recall that the recourse

cost Q(x) is computed independently for each given route. Given an a priori route

r = (v1 = vr1 , vr2 , . . . , vrl−1 , vrl = v1), let the vehicle residual capacity upon arrival at

the jth customer be q and let ξrj be the observed demand. The post realization residual

capacity is q̃ = q − ξrj , given that ξrj follows a discrete probability distribution, two

cases may occur q̃ = q − ξrj ≤ 0, or q̃ ≥ 1. If vrj+1 6= v1 and q̃ = 0, a RT trip is

performed, where the vehicle replenishes at the depot and goes to vrj+1 . When q̃ < 0 the

vehicle performs a BF trip to the jth. In this situation, the service of the customer is split,

and the overhead of the unloading process is duplicated causing delays and disruptions at

the customer location. Therefore, similar to Yang et al. [57], we attribute a penalty cost b

to a BF trip. For the case where q̃ ≥ 1, a decision pertaining to whether a PR trip should

be performed, or not, is taken. To take this decision, we defined a risk measure, which is

the probability of failure at the subsequent customer and is computed as follows,

P[ξrj+1 > q̃] = ∑
l:ξ l

rj+1
>q̃

pl
rj+1

(4.9)
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where, the right-hand-side of equation (4.9) computes the total probability of failure

events at the next customer vrj+1 .

Recourse actions are taken based on a comparison of the resulting risk measure in

equation (4.9) with thresholds θ and θ̄. Where θ is the maximum proceeding threshold,

and θ̄ is the minimum restocking threshold. If P[ξrj+1 > q̃] ≤ θ we proceed with the

planned route, and if vrj+1 6= v1 and P[ξrj+1 > q̃] ≥ θ̄ we perform a PR trip. The

former case corresponds to having high residual capacity, thus yielding low probability

of failure at the next customer, whereas the latter corresponds to the situation of low

residual capacity thus yielding high probability of failure at the next customer. If θ <

P[ξrj+1 > q̃] < θ̄ the risk of failure is neither too low nor too high. In this case,

we employ a distance-based measure in order to determine whether to perform a PR

trip. The distance-based measure is based on the expected failure cost at all subsequent

customers in the route. Let urj be the set of subsequent customers to the jth customer

in route r, i.e., urj = {vrj+1, . . . , vrl−1}. The distance-based measure is defined as

p∗rj
(q̃)(2c̄rj + b), and is computed as follows,

c̄rj =

∑
k∈urj

c1k

|urj |

and

p∗rj
(q̃) = P[ ∑

k∈urj

ξk > q̃].

The value 2c̄rj + b is the average failure cost incurred by unvisited customers in urj , and

p∗rj
(q̃) is the probability of failure, while serving customers in urj with q̃ units of the

residual capacity.

Given the residual capacity q̃ at the jth customer in route r, we introduce the Boolean

variable DPrj(q̃) as follows,

DPrj(q̃) :=

True if c1rj + c1rj+1 < crjrj+1 + (2c̄rj + b)p∗rj
(q̃)

False otherwise
(4.10)
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In the case that DPrj(q̃) is True a PR trip is performed, otherwise the vehicle proceeds to

the subsequent customer. Let QR
rj

denote the set of residual capacities at the jth customer

in route r for which a PR trip is performed. Furthermore, let QP
rj

denote the set of residual

capacities at the jth customer in route r for which the vehicle proceeds with the planned

route. We now define the hybrid policy, which establishes the decision of whether to

perform a PR trip or proceed to with the planned route. The hybrid policy is defined as

follows,

QR
rj
=
{

q̃ ∈ {0, 1, . . . , Q}|P[ξrj+1 > q̃] ≥ θ̄
}⋃

(4.11){
q̃ ∈ {0, 1, . . . , Q}|θ < P[ξrj+1 > q̃] < θ̄ ∧DPrj(q̃)

}
and

QP
rj
=
{

q̃ ∈ {1, . . . , Q}|P[ξrj+1 > q̃] ≤ θ
}⋃

(4.12){
q̃ ∈ {1, . . . , Q}|θ < P[ξrj+1 > q̃] < θ̄ ∧DPrj(q̃)

}
.

Where DPrj(q̃) is defined as the complement of DPrj(q̃). Therefore, QR
rj

and QP
rj

are two

mutually exclusive subsets.

The expected recourse cost upon arrival at the jth customer in route r with q units of

residual capacity is Frj(q). Fpost
rj (q̃) is the recourse cost after the demand realization at

rj. Therefore,

Frj(q) = Eξrj

[
Fpost

rj (q̃)
]
∀q̃ = q− ξrj , (4.13)

where ξrj ∈ {ξ1
rj

, ξ2
rj

, . . . , ξ l
rj

, . . . , ξsrj
rj
}. Following the definition of our hybrid recourse

policy, Fpost
rj (q̃) can be expressed as follows.
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Fpost
rj (q̃) =


b + 2c1rj + Frj+1(Q + q̃) if q̃ < 0 (4.14a)

c1rj + c1rj+1 − crjrj+1 + Frj+1(Q) if q̃ ∈ QR
rj

(4.14b)

Frj+1(q̃) if q̃ ∈ QP
rj

(4.14c)

Using the equations (4.13), (4.14a), (4.14b), and (4.14c), the expected recourse cost in

the first direction (i.e., δ = 1) is as follows,

Qr,1 = Fr1(Q). (4.15)

Where Fr1(Q) is the expected recourse cost of route r, in which the vehicle starts from

depot with a full capacity Q, and is computed recursively. Finally, to evaluate the ex-

pected recourse cost of the route for the second orientation (i.e.,Qr,2), one simply needs

to reverse the order of the vertices of the route and reapply the logic of equation (4.15).

4.3 The Integer L-shaped Algorithm

We use the integer L-shaped algorithm for solving the vehicle routing problem with

stochastic demands under the hybrid recourse policy, which was described in the previ-

ous section. The integer L-shaped algorithm was first proposed by Laporte and Louveaux

[34] to solve stochastic programs with binary first-stage variables. This algorithm is an

extension of the L-shaped algorithm proposed by Van Slyke and Wets [56] for continues

stochastic programs, which itself was based on the application of Benders decomposi-

tion to stochastic programming, see Benders [3]. In Section §4.3.1 we briefly present the

integer L-shaped algorithm. Similar to Jabali et al. [28], we use a series of lower bound-

ing functionals (LBFs) based on general partial routes. In section §4.3.2 we present the

concept of general partial routes and we present the structure of the LBFs. We note that

section §4.3.2 is largely based on Jabali et al. [28], and is presented in this paper for

the sake of completeness. In section §4.3.3 we develop bounds specific to our hybrid

recourse policy, which are used in the LBFs.
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4.3.1 A Brief Description of Integer L-shaped Algorithm

The integer L-shaped algorithm for the VRPSD uses a branch-and-cut scheme, ac-

cording to which constraints (4.4) and (4.7) are relaxed, the recourse function Q(x) is

replaced by a variable Θ, and a general lower bounding constraint (4.16) is applied. Let

L denote a general lower-bound value for Q(x), and x is a feasible solution. Then, the

initial current problem at iteration ν = 0 is as follows,

CP0 : min
x,Θ

∑
i<j

cijxij + Θ (4.1)

subject to
n

∑
j=2

x1j = 2m, (4.2)

∑
i<k

xik + ∑
k<j

xkj = 2, k = 2, . . . , n (4.3)

0 ≤ xij ≤ 1, 2 ≤ i < j < n (4.5)

0 ≤ x1j ≤ 2, j = 2, . . . , n (4.6)

L ≤ Θ. (4.16)

The algorithm proceeds by adding three types of constraints until optimality is guaran-

teed: (i) violated constraints (4.4) are gradually added when detected; (ii) valid inequal-

ities

L + (Θp − L)W(x) ≤ Θ, ∀p = {α, β}, x is a partial solution (4.17)

which are elaborated in Section §4.3.3, are added when encountered; and (iii) optimality

cuts

∑
1≤i≤j
xν

ij=1

xij ≤ ∑
1≤i≤j

xν
ij − 1, (4.18)

are added when a feasible integer solution is found to eliminate it from further consider-
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ation. We note that the integrality constraints are guaranteed via the branching process.

We provide a detailed description of the algorithm in the Appendix (??).

The integer L-shaped algorithm was first used by Gendreau et al. [20] to solve the

VRP with stochastic demands and customers. Generating all optimality cuts may re-

sult in an enumerative process, because each optimality cut solely excludes an integer

solution. To counter this effect, researchers have proposed LBF cuts that operate on a

large portion of the solution space. Hjorring and Holt [27] proposed LBFs based on

partial routes for the single-vehicle routing problem with stochastic demand. LBFs for

the multi-VRPSD were proposed by Laporte et al. [35]. Jabali et al. [28] generalized the

structure of partial routes to generate several families of LBFs. It is worth noting that

since Laporte et al. [35] and Jabali et al. [28] used LBFs for the VRPSD with classical

recourse, the bound Θp was computed in all cases as defined in Hjorring and Holt [27].

In this paper, we use the LBFs of Jabali et al. [28] for the VRPSD and develop a specific

bound Θp that is applicable for the proposed hybrid policy.

4.3.2 General Partial Routes

LBFs (4.17) are generated based on partial routes stemming from fractional solu-

tions. In what follows, we define the LBFs using the notation proposed by Jabali et al.

[28]. An illustration of a general partial route can be found in Figure (4.1), where the

depot is duplicated for presentation convenience. We define Ḡν as the induced graph by

the nonzero variables in the solution of the current problem. We detect partial routes

using the exact separation procedure proposed by Jabali et al. [28]. A general partial

route is an alternating sequence of the following two components:

1. Chains whose vertex set is called chain vertex sets (CVSs). The vertices of a

chain are connected to each other by edges (vi, vj), for which xij = 1 in Ḡν.

2. Unstructured components whose vertex set are called unstructured vertex sets

(UVSs).

Each UVS is preceded by a chain and proceeded by another. Each chain is connected

to at least one UVS via an articulation vertex. In a partial route h, we define ρ as the
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Unstructured
component

Unstructured
component

Chain Chain Chain

Figure 4.1 – A general partial route h composed of sequenced and unsequenced sets.

number of chains and ρ − 1 as the number of UVSs. Let St
h = {vt

h1
, . . . , vt

hl
} be the

tth chain in partial route h. Therefore, ∑(vi ,vj)∈St
h

xij = |St
h| − 1, ∀t = 1, . . . , ρ. Let

Ut
h be the tth UVS in partial route h, then ∑vi ,vj∈Ut

h
xij = |Ut

h| − 1, ∀t = 1, . . . , ρ− 1.

Ensuring the connectivity of a UVS to the preceding and subsequent chain implies that

∑vj∈Ut
h

xht
l j = 1, ∀t ≤ ρ− 1 and ∑vj∈Ut−1

h
xht

1 j = 1, ∀t ≥ 2, respectively.

We use two types of partial routes, these are shown Figure (4.2). These types are

emerging from the original partial route shown in Figure (4.1), they are denoted by α

and β and they are depicted in Figures (4.2a) and (4.2b), respectively. An α-route corre-

sponds to the initial partial route proposed by Hjorring and Holt [27]. The β-route was

proposed by Jabali et al. [28]. This type of partial route maintains the exact alternation

of CVSs and UVSs.

The functional Wh(x) in LBFs (4.17) was introduced by Jabali et al. [28] for gener-

alized partial routes shown in Figure (4.2), and is defined as follows,

Wh(x) =
b

∑
t=1

∑
(vi ,vj)∈St

h
vi 6=v1

3xij + ∑
(v1,vj)∈S1

h

x1j + ∑
(v1,vj)∈Sb

h

x1j +
b−1

∑
t=1

∑
vi ,vj∈Ut

h

3xij (4.19)

+
b−1

∑
t=1

∑
vj∈Ut

h
vt

hl
6=v1

3xht
l j +

b

∑
t=2

∑
vj∈Ut−1

h
vt

h1
6=v1

3xht
1 j + ∑

vj∈U1
h

v1
hl
=v1

xh1
l j + ∑

vj∈Ub−1
h

vb
h1
=v1

vb−1
h1
6=v1

xhb
1 j

− (3|Rh| − 5)

The proof of validity of equation (4.17) can be found in Jabali et al. [28]. In the coming
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v1
h1

v1
hl

v2
h1

v2
hl

(a) α-routes

v1
h1

v1
hl

v2
h1

v2
hl

(b) β-routes

Figure 4.2 – Generalized partial routes redefined by different views from Figure (4.1).

section we develop the bound Θp for the VRPSD with the hybrid policy.

4.3.3 Bounding the Recourse Cost

We now describe the computation of Θh
p, which is the lower bound associated with

partial route h of type p ∈ {α, β}. In what follows, we derive the bound for Θh
α. This

derivation can then be generalized to the computation of Θh
β, since this follows a topol-

ogy containing successive α-route structures.

Let h be a partial route that follows the α topology. Then, one can define h in the

following way

h = (v1 = v1
h1

, . . . , v1
h|S1

h |
, U1

h , v2
h1

, . . . , v2
h|S2

h |
= v1),

where U1
h = {vu1 , vu2 , . . . , vul} and v1

h|S1
h |

and v2
h1

are the articulation vertices that

connect chains S1
h and S2

h to U1
h . For the sake of simplicity, we redefine the partial route

h as

h = (v1 = vr1 , . . . , vrj−l , {vu1 , vu2 , . . . , vul}, vrj+1 , . . . , vrt+1 = v1),

where the articulation vertices are relabeled as vrj−l and vrj+1 . Based on partial route h,
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we define an artificial route h̃ as follows,

h̃ = (v1 = vr1 , . . . , vrj−l , rj−l+1 , rj−l+2 , . . . , rj , vrj+1 , . . . , vrt+1 = v1), (4.20)

where rj is the jth position in the artificial route h̃. Positions rj−l+1 , . . . , rj could

contain any possible permutation of customers in U1
h . We develop a bounding procedure

for the artificial route h̃ which bounds for all possible assignment of customers in U1
h .

We recall that the expected recourse cost upon arrival at the kth customer in r with q

units of residual capacity is computed as follows,

Frk(q) = Eξrk

[
Fpost

rk (q− ξrj)
]
= Eξrk

[
Fpost

rk (q̃)
]
, ∀q̃ = q− ξrk . (4.13)

For the sake of simplicity, we use the notation Frk(.) as defined in (4.23) when-

ever it can be exactly applied (namely in the chain the positions of h̃). Therefore,

Frt+1(q),. . . ,Frj+1(q) for all q can be exactly computed by recourse function (4.23). Con-

sidering positions k = j− l + 1 and k = j, we denote by F̃rk(q) as the lower bound on

the expected recourse cost at the kth position in artificial route h with q units of residual

capacity. In Lemma 4.3.1 we bound the onward recourse cost from the jth customer,

which can potentially be any of the unsequenced customers in U1
h . In Lemma 4.3.2 we

then bound the onward recourse cost from the j− l + 1th customer. We recall that

Frj(q) = Eξrj

[
Fpost

rj (q− ξrj)
]
= Eξrj

[
Fpost

rj (q̃)
]
, ∀q̃ = q− ξrj . (4.13)

Lemma 4.3.1. A lower bound on the expected recourse cost at the jth customer for each

q follows:

F̃rj(q) = min
vue∈U1

h

Frj(q)|rj :=ue
, (4.21)

where Frj(q)|rj :=ue
can be computed by accounting for vue as the jth customer in the

recourse function (4.13).

Proof. Since the jth customer is unsequenced, it can potentially be any vue ∈ U1
h . We
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bound the onward expected recourse cost at the jth customer by minimizing the recourse

cost over the unsequenced set for each q. Then, F̃rj(.) ≤ Frj(.)|rj :=ue
by definition.

Lemma 4.3.2. The lower bound on F̃rj−l+1(.) for each q can be directly obtained as

follows

F̃rj−l+1(q) = min
U⊂U1

h :|U|=|U1
h |−1

∏
vue∈U

plmin

ue . F̃rj(q), (4.22)

where, plmin

i = min{p1
i , . . . , pξsi

i
i }.

Proof. By definition, min
U⊂U1

h :|U|=|U1
h |−1

∏
vue∈U

plmin

ue is a lower bound on the probability

of the stochastic events that occur at the j− 1th customer. Since F̃rj(q) is lower bound

on the expected recourse cost at the jth customer (as shown in Lemma 4.3.1), Equation

(4.22) is a lower bound on the excepted recourse cost of the j− l + 1th.

Using the bounds specified in Lemma 4.3.1 and Lemma 4.3.2, the recourse function

(4.23) can be slightly modified to compute Fpost
rj−l (q̃) can be expressed as follows.

Fpost
rj−l (q̃) =


b + 2c1rj−l + F̃rj−l+1(Q + q̃) if q̃ < 0

c̃rj−l + F̃rj−l+1(Q) if q̃ ∈ QR
rj

F̃rj−l+1(q̃) if q̃ ∈ QP
rj

,

where, c̃rj−l = minimum
vue∈U1

h

{c1,rj−l + c1,ue − crj−l ,ue}. The above computation enables

the computation of Frj−l(.) by equation (4.13). The excepted recourse cost of the re-

maining positions can therefore be successively computed as Frj−l−2(.), . . . , Fr1(.) using

recourse function (4.23). Ultimately Fr1(Q) bounds the expected recourse cost of arti-

ficial route h. This bound is computed for both orientations of the partial route and the

minimum value is assumed to be the lower bound Θh
α. We recall that the mechanism for

computing Θh
α is reapplied to compute Θh

β, where the latter is treated as a succession of
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α-route structures. In the LBF cuts (4.17) the bound Θp is decomposed by partial routes

(or routes) as Θp =
m

∑
r=1

Θr
p, where p = {α, β}.

4.4 Numerical Experiments

The first aim of this section is to demonstrate the effectiveness of the solution algo-

rithm on a large set of experiments. The second aim is to verify the added value of using

the proposed hybrid policy when compared to other polices. In what follows, we detail

the instance generation, the performance of the algorithm is verified in Section 4.4.1,

while a comparison with the other policies is performed in Section 4.4.2.

We use the instances of Salavati-Khoshghalb et al. [45], for completeness we briefly

describe the instance generation procedure. For each instance, a set of V = {v1, . . . , vn}
(where v1 is the depot) is generated in a [0, 100]2 square following a continuous uniform

distribution. The travel costs are then set to the nearest integer associated to the Eu-

clidean distance between two vertices. Each customer is randomly (with equal prob-

ability) selected to have low, medium, or high demand. These three classifications

correspond to ranges [1, 5], [6, 10], and [11, 15], respectively. For the selected range,

the demand realizations are randomly generated for each customer with probabilities

{0.1, 0.2, 0.4, 0.2, 0.1}, corresponding to the five values in the range. We consider 11

pairs of (n, m) as indicated in Table 4.I, we recall that m denotes the number of vehi-

cles. Four fill rate coefficients are considered for each of the 11 combinations, where the

fill rate is computed as f̄ = ∑n
i=2 E(ξi)

mQ . The capacity of each vehicle Q is inferred from

f̄ . The cost b is set to ∑
i=2,...,n

ci1/(n − 1), which is the average distance to the depot

when considering all customers. Furthermore, L is set to zero. For each combination in

Table 4.I, ten instances were generated, thus yielding a total of 440 instances.
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Table 4.I – Combinations of parameters to generate instances.

n m f̄

20 2 0.90, 0.92, 0.94, 0.96

30 2 0.90, 0.92, 0.94, 0.96

40 2, 3, 4 0.90, 0.92, 0.94, 0.96

50 2, 3, 4 0.90, 0.92, 0.94, 0.96

60 2, 3, 4 0.90, 0.92, 0.94, 0.96

We chose five pairs of values for the maximum proceeding threshold θ and the min-

imum restocking threshold θ̄. Each pair {θ, θ̄} is chosen as {0.5− λ, 0.5 + λ}, where

λ takes one of the following values {0.05, 0.15, 0.25, 0.35, 0.45}. Thus, the following

five pairs are used {θ, θ̄}: {0.45, 0.55}, {0.35, 0.65}, {0.25, 0.75}, {0.15, 0.85}, and

{0.05, 0.95}. Each instance is solved considering each of the five pairs, thus yielding a

total of 2200 experiments.

The algorithm is coded in C++ using ILOG CPLEX 12.6. All experiments were

performed, using a single thread, on a cluster of 27 computers, each of which having

12 cores, two Intel(R) Xeon(R) X5675 3.07 GHz processors and 96 GB of RAM. The

branching was managed by the OOBB package of [24]. The separation problem of

constraints (4.4) is solved using the CVRPSEP package of [38]. The maximum CPU

time limit is set to 10 hours and the optimality gap was set to 0.01%.

4.4.1 Results for the hybrid recourse policy

The performance of the exact algorithm for the hybrid policy is presented in Ta-

bles 4.II-4.VI with the five pairs of values {θ, θ̄}, each corresponding to a table. Column

“solved" expresses the number of optimally solved instances (out of ten), column “Run

(sec)" reports the average run time of those solved instances and column “Gap" reports

the average gap on all instances.

The total number of optimally solved instances for each of the five pairs of {θ, θ̄} are

281, 283, 282, 279 and 279, out of 440. Overall our algorithm solved between 60.2% and
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64.3% of the instances to optimality. These results are rather competitive for the SVRP

literature, see Gendreau et al. [22] for further details. The weighted average time (in

seconds) to solve an instance to optimality for the four f̄ values are: 1332.29, 1274.63,

1549.79, and 1205.95. The total average gaps over the four f̄ values are computed for

each pair of {θ,θ̄} are 0.50%, 0.50%, 0.53%, 0.55% and 0.55%.

Considering a fill rate of 0.90 and the five pairs of {θ, θ̄}, Tables 4.II-4.VI show that

our algorithm was able to solve between 84 and 87 instances (from the total of 110).

Instances with up to 60 nodes are solved to optimality. Considering a fill rate of 0.96 and

the five pairs of {θ, θ̄}, our algorithm was able to solve between 37 and 42 instances.

However, the overall obtained gaps are relatively small, with the largest average gap

being 1.38%, as reported in Table 4.VI .

The results in Tables 4.II-4.VI also indicate that the problems become harder to solve

with the increase in fill rate, number of vehicle and number of nodes. These results are

consistent with the findings of both Laporte et al. [35] and Jabali et al. [28]. Finally, the

number of solved instances to optimality varies only slightly over the pairs of {θ, θ̄}.
Thus, indicating that the proposed algorithm remains robust even when the values defin-

ing the policy vary.

Table 4.II – Hybrid policy with {θ,θ̄}={0.45, 0.55}

n m f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap

20 2 0.90 10 0.80 0.00% 0.92 10 1.40 0.00% 0.94 10 0.50 0.00% 0.96 10 52.10 0.00%

30 2 0.90 10 0.10 0.00% 0.92 10 19.90 0.00% 0.94 10 60.60 0.00% 0.96 8 3065.00 0.12%

40 2 0.90 10 1.20 0.00% 0.92 10 2.60 0.00% 0.94 10 5.60 0.00% 0.96 6 90.17 0.13%

40 3 0.90 10 2023.80 0.01% 0.92 8 216.38 0.20% 0.94 8 2416.38 0.06% 0.96 5 14046.40 1.10%

40 4 0.90 5 1434.20 0.70% 0.92 2 15054.50 2.08% 0.94 1 2600.00 1.63% 0.96 4.28%

50 2 0.90 10 3.40 0.00% 0.92 10 78.20 0.00% 0.94 10 11.00 0.01% 0.96 4 222.25 0.11%

50 3 0.90 9 2998.56 0.22% 0.92 7 5886.29 0.56% 0.94 10 1501.30 0.01% 0.96 1 5.00 2.10%

50 4 0.90 2 1.00 0.63% 0.92 2 16666.50 1.02% 0.94 2 3369.50 1.80% 0.96 3.00%

60 2 0.90 10 488.40 0.00% 0.92 10 8.80 0.00% 0.94 9 701.78 0.02% 0.96 7 427.14 0.02%

60 3 0.90 7 707.71 0.35% 0.92 7 700.29 0.57% 0.94 5 3051.60 0.63% 0.96 1 19738.00 0.57%

60 4 0.90 2 345.00 1.30% 0.92 1 6554.00 1.36% 0.94 2 2491.00 1.30% 0.96 3.99%

Average 764.48 0.21% 1544.70 0.39% 922.29 0.36% 2843.71 1.03%

Total 85 77 77 42
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Table 4.III – Hybrid policy with {θ,θ̄}={0.35, 0.65}

n m f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap

20 2 0.90 10 0.70 0.00% 0.92 10 1.20 0.00% 0.94 10 0.50 0.00% 0.96 10 47.50 0.00%

30 2 0.90 10 0.10 0.00% 0.92 10 16.10 0.00% 0.94 10 48.40 0.00% 0.96 8 2994.00 0.11%

40 2 0.90 10 1.20 0.00% 0.92 10 2.20 0.00% 0.94 10 4.70 0.00% 0.96 6 81.00 0.12%

40 3 0.90 10 1918.50 0.01% 0.92 8 172.88 0.19% 0.94 8 2015.62 0.06% 0.96 5 10656.40 1.07%

40 4 0.90 5 1594.80 0.68% 0.92 2 10777.50 1.97% 0.94 1 1714.00 1.58% 0.96 4.20%

50 2 0.90 10 3.10 0.00% 0.92 10 65.70 0.00% 0.94 10 10.20 0.01% 0.96 4 195.75 0.09%

50 3 0.90 9 1785.67 0.21% 0.92 7 4983.00 0.53% 0.94 10 1253.00 0.01% 0.96 1 5.00 2.02%

50 4 0.90 3 8875.33 0.59% 0.92 2 14213.00 1.01% 0.94 2 3069.50 1.76% 0.96 2.99%

60 2 0.90 10 355.40 0.00% 0.92 10 8.20 0.00% 0.94 9 701.67 0.01% 0.96 7 363.29 0.01%

60 3 0.90 8 4653.50 0.27% 0.92 7 589.86 0.48% 0.94 5 2505.40 1.19% 0.96 1 11834.00 0.54%

60 4 0.90 2 321.00 1.20% 0.92 1 4914.00 1.30% 0.94 2 1909.50 1.29% 0.96 4.03%

Average 1279.67 0.20% 1249.64 0.37% 776.71 0.39% 2222.86 1.01%

Total 87 77 77 42

Table 4.IV – Hybrid policy with {θ,θ̄}={0.25, 0.75}

n m f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap

20 2 0.90 10 0.90 0.00% 0.92 10 2.40 0.00% 0.94 10 0.60 0.00% 0.96 10 83.30 0.01%

30 2 0.90 10 0.10 0.00% 0.92 10 16.40 0.00% 0.94 10 106.10 0.00% 0.96 8 3101.12 0.14%

40 2 0.90 10 1.00 0.00% 0.92 10 2.50 0.00% 0.94 10 5.20 0.00% 0.96 6 69.33 0.11%

40 3 0.90 10 2429.60 0.01% 0.92 8 219.88 0.21% 0.94 8 2437.38 0.06% 0.96 5 11274.80 1.14%

40 4 0.90 5 1965.80 0.86% 0.92 1 28952.00 2.29% 0.94 1 10841.00 1.77% 0.96 4.63%

50 2 0.90 10 2.90 0.00% 0.92 10 124.20 0.00% 0.94 10 11.40 0.01% 0.96 5 6864.60 0.06%

50 3 0.90 9 2404.11 0.18% 0.92 7 4533.00 0.47% 0.94 10 1114.60 0.01% 0.96 1 3.00 2.04%

50 4 0.90 3 11876.67 0.68% 0.92 1 405.00 1.10% 0.94 2 6434.50 1.90% 0.96 3.28%

60 2 0.90 10 363.30 0.00% 0.92 10 7.40 0.00% 0.94 9 703.11 0.01% 0.96 7 305.71 0.02%

60 3 0.90 8 4368.12 0.27% 0.92 7 625.29 0.50% 0.94 5 7206.20 1.20% 0.96 1 13311.00 0.51%

60 4 0.90 2 293.00 1.46% 0.92 1 4882.00 1.41% 0.94 2 1322.00 1.35% 0.96 4.27%

Average 1501.21 0.23% 981.80 0.40% 1306.38 0.42% 3074.63 1.08%

Total 87 75 77 43

Table 4.V – Hybrid policy with {θ,θ̄}={0.15, 0.85}

n m f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap

20 2 0.90 10 1.00 0.00% 0.92 10 2.40 0.00% 0.94 10 0.60 0.00% 0.96 10 77.40 0.01%

30 2 0.90 10 0.10 0.00% 0.92 10 15.80 0.00% 0.94 10 96.40 0.00% 0.96 8 2707.62 0.14%

40 2 0.90 10 1.10 0.00% 0.92 10 2.60 0.00% 0.94 10 5.20 0.00% 0.96 6 67.83 0.11%

40 3 0.90 10 2176.10 0.01% 0.92 8 208.75 0.22% 0.94 8 2210.50 0.06% 0.96 5 11499.40 1.14%

40 4 0.90 5 1898.60 0.87% 0.92 1 25147.00 2.31% 0.94 1 11220.00 1.79% 0.96 4.66%

50 2 0.90 10 3.20 0.00% 0.92 10 103.60 0.00% 0.94 10 11.30 0.01% 0.96 4 227.00 0.09%

50 3 0.90 9 2711.22 0.22% 0.92 7 4878.43 0.47% 0.94 10 1194.90 0.01% 0.96 1 4.00 2.09%

50 4 0.90 3 10126.33 0.61% 0.92 1 388.00 1.12% 0.94 2 7366.50 1.92% 0.96 3.29%

60 2 0.90 10 364.50 0.00% 0.92 10 7.80 0.00% 0.94 9 592.78 0.02% 0.96 7 270.43 0.02%

60 3 0.90 7 448.14 0.29% 0.92 7 589.00 0.58% 0.94 4 2182.00 1.21% 0.96 1 14918.00 0.53%

60 4 0.90 2 297.50 1.53% 0.92 1 5012.00 1.71% 0.94 2 1168.50 1.38% 0.96 4.46%

Average 1086.80 0.24% 957.48 0.43% 962.12 0.43% 2334.81 1.10%

Total 86 75 76 42
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Table 4.VI – Hybrid policy with {θ,θ̄}={0.05, 0.95}

n m f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap f̄ solved Run(sec) Gap

20 2 0.90 10 1.70 0.00% 0.92 10 10.00 0.00% 0.94 10 2.70 0.00% 0.96 10 895.00 0.01%

30 2 0.90 10 0.30 0.00% 0.92 10 16.50 0.00% 0.94 10 3397.10 0.00% 0.96 7 2708.00 0.26%

40 2 0.90 10 1.90 0.00% 0.92 10 3.20 0.00% 0.94 10 7.20 0.00% 0.96 6 126.67 0.18%

40 3 0.90 9 2530.44 0.05% 0.92 8 920.62 0.32% 0.94 6 7261.67 0.17% 0.96 2 14351.50 1.73%

40 4 0.90 5 11628.40 1.22% 0.92 1 16149.00 3.36% 0.94 2.84% 0.96 5.85%

50 2 0.90 10 2.90 0.00% 0.92 10 559.50 0.00% 0.94 10 16.00 0.00% 0.96 4 2173.25 0.17%

50 3 0.90 9 2998.11 0.22% 0.92 6 4342.33 0.53% 0.94 9 2128.78 0.04% 0.96 1 6.00 2.42%

50 4 0.90 2 2.00 1.03% 0.92 1 4991.00 1.54% 0.94 2.50% 0.96 4.18%

60 2 0.90 10 422.80 0.00% 0.92 10 8.40 0.00% 0.94 9 571.89 0.02% 0.96 7 380.71 0.06%

60 3 0.90 7 1149.00 0.32% 0.92 7 1277.00 0.56% 0.94 4 5015.25 1.40% 0.96 0.72%

60 4 0.90 2 778.50 1.54% 0.92 1 12358.00 2.17% 0.94 2 16931.50 1.65% 0.96 5.16%

Average 1449.99 0.29% 1105.84 0.57% 2229.00 0.58% 1857.65 1.38%

Total 84 74 70 37

4.4.2 Recourse cost analysis

The objective of this section is to analyze the hybrid risk-and-distance-based policy

with respect to other policies. To do so, we focus the analyses on the instances solved

to optimality. We initially compare our policy with the classical one by evaluating the

routes associated with the solutions obtained using the hybrid policy under the classical

policy.

We first compare the expected number of recourse actions taken in the classical re-

course policy when compared with its counterpart (i.e., the hybrid policy). We recall that

the recourse actions in the classical recourse policy are back-and-forth trips and restock-

ing trips. Based on the results obtained when applying the classical policy, we computed

the expected number of back-and-forth trips EBFc and the expected number of restock-

ing trips ERc. Thus, the total expected number of recourse actions when applying the

classical recourse policy to the considered routes is expressed as EBFc + ERc. As for

the hybrid policy, the recourse actions are back-and-forth trips and preventive restocking

trips. As previously mentioned, in this policy, an exact stock out triggering a restocking

trip is considered as a preventive restocking trip. Therefore, for the hybrid policy, we

computed the expected number of back-and-forth trips EBFh and the expected number

of preventive restocking trips EPRh. Thus, the total expected number of recourse actions

in the hybrid recourse policy is expressed as EBFh + EPRh.

In Table 4.VII, we report the average ratio between expected number of recourse ac-
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tions between the hybrid policy and the classical policy. We observe that the expected

number of recourse actions is higher for the hybrid policy, when compared to the clas-

sical policy. This tendency increases with {θ, θ̄} and is relatively consistent through the

varying values of f̄ . These results could be interpreted by the hybrid policy being more

risk averse than the classical one, and thus prescribes more recourse actions. However,

as we will see next, the expected number of BF trips are reduced when using the hybrid

policy. Moreover, the final analysis of this section shows that the hybrid policy yields

less costly solutions, when compared to the classical policy.

Table 4.VII – The ratio
EBFc + EPRc

EBFh + ERh

f̄

(θ-θ̄) 0.90 0.92 0.94 0.96

0.45− 0.55 88.45% 88.31% 88.29% 88.86%

0.35− 0.65 88.74% 88.31% 88.29% 88.86%

0.25− 0.75 65.23% 65.07% 65.87% 68.87%

0.15− 0.85 65.24% 65.07% 65.87% 68.75%

0.05− 0.95 43.25% 42.90% 45.30% 50.18%

We now focus on the expected number of back-and-forth trips performed by the

hybrid policy and the classical policy, i.e., EBFh and EBFc. This analysis is important

since back-and-forth trips imply a disruption at the customer location, thus EBFh and

EBFc reflect a measure of customer service. In Table 4.VIII, we report the ratio between

EBFc and EBFh. We clearly observe that this ratio is largely impacted by the values

defining the hybrid policy {θ, θ̄}. We note that the last line of the table is empty since no

BF trips are preformed under the hybrid policy with {θ, θ̄} = {0.05, 0.95}. This large

interval implies that resulting policy is rather conservative.
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Table 4.VIII – The ratio EBFc
EBFh

θ-θ̄ f̄ = 0.90 f̄ = 0.92 f̄ = 0.94 f̄ = 0.96

0.45− 0.55 3.49 3.72 3.85 4.54

0.35− 0.65 3.50 3.72 3.85 4.54

0.25− 0.75 10.46 11.43 11.78 14.47

0.15− 0.85 10.47 11.43 11.79 14.37

0.05− 0.95 — — — —

As observed from the previous analysis, preventive returns in the hybrid recourse

policies hedge the occurrence of route failures. However, this could result in extra re-

course cost being incurred. In order to evaluate the quality of the rule-based policies

presented in this paper in terms of the incurred recourse cost, the optimal solutions ob-

tained with the hybrid policy are priced under both the classical and optimal restocking

policies. Let x denote the optimal solution obtained with the hybrid policy, the first stage

cost is cx, let Qh(x), Qc(x), and Qo(x) express the expected recourse cost of x with

the hybrid, classical and optimal restocking policies, respectively. Where Qo(x) was

computed using a similar approach as the one presented in Bertsimas et al. [5]. Two

cost measures are used to assess the results obtained, “Savings” = Qc(x)−Qh(x)
cx+Qc(x) and

“Deviations” = Qh(x)−Qo(x)
cx+Qo(x) .

Table 4.IX summarizes the average results on the savings and the deviations. The

values in this table are generally low. This is to be expected since, in the VRPSD, the

first stage cost tends to dominate the recourse cost. Such observations are consistent with

the findings reported in the VRPSD literature (e.g., Bianchi [6] and Rei et al. [44]). We

note that the hybrid policy yields a positive average savings on all entries of the table.

The maximum average saving is 1.19% for the combination of {θ, θ̄} = {0.25, 0.75}
with f̄ = 0.96. The savings tend to increase with the fill rate, this can be explained by

the reduction of the expected number of failures observed in Table 4.VIII.

Comparing the costs of the hybrid policy with those of the optimal restocking policy

we observe that the deviations are rather small. Thus implying that for the considered
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routes, the use of the hybrid policy scales well compared to the optimal restocking one.

Overall, for the considered routes, one can conclude that the opportunity loss of not

implementing the optimal policy is very low. Furthermore, the hybrid policy seems to

provide a very good approximation of the optimal one.

Table 4.IX – Savings and Deviations.

f̄ = 0.90 f̄ = 0.92 f̄ = 0.94 f̄ = 0.96

θ-θ̄ Savings Deviations Savings Deviations Savings Deviations Savings Deviations

0.45− 0.55 0.13% 0.01% 0.19% 0.01% 0.39% 0.02% 0.47% 0.02%

0.35− 0.65 0.13% 0.01% 0.19% 0.01% 0.39% 0.02% 0.47% 0.02%

0.25− 0.75 0.11% 0.02% 0.18% 0.02% 0.37% 0.04% 1.19% 0.07%

0.15− 0.85 0.11% 0.02% 0.18% 0.02% 0.37% 0.04% 1.19% 0.07%

0.05− 0.95 0.03% 0.08% 0.08% 0.09% 0.22% 0.20% 0.95% 0.35%

4.5 Conclusions

In this paper, we have defined a general taxonomy to classify rule-based recourse

policies for the VRPSD. According to this taxonomy, rule-based polices are cast into

three general classes. We introduced the first hybrid policy, which simultaneously com-

bines two of these classes, namely risk and distance. We modelled the VRPSD with

the hybrid risk-and-distance-based policy and derived the computations of the result-

ing recourse cost. Furthermore, we proposed an exact solution algorithm, for which we

developed bounds that are used in the LBFs.

The exact algorithm was able to solve a large number of instances to optimality,

especially for low fill rates. For example, considering a fill rate of 0.90 with {θ, θ̄} =

{0.35, 0.65}, up to 79% of the instances were solved to optimality. The algorithm also

scales well in terms of the sizes of the instances, it solved to optimality instances with

up to 60 nodes. Furthermore, the average observed optimality gaps are rather low.

Through our experimental study, we observed that the expected number of failures

are noticeably lower when applying the hybrid policy compared to the classical policy.

These results indicate the superiority of the hybrid policy in terms of customer service.

We further observed that the optimal solutions of the hybrid policy yield cost savings
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when compared to the classical policy. Finally, we also showed that the cost offset of the

optimal restocking policy compared to the hybrid one is rather small.

Appendix

The Integer L-shaped Algorithm

We briefly describe here the Integer L-shaped algorithm (0). As a branch-and-cut algo-

rithm, first, we state the initial current problem (CP) with relaxing the capacity / subtour-

elimination constraints (4.4), and integrality constraints (4.7).

The integer L-shaped algorithm (0) in Step 0 sets the iteration index, the overall up-

per bound, and pushes the initial CP as the first pendant node. In Step 1, the algorithm

checks the pendant list for any pendant node available, if not applicable then stop. In

Step 2, the algorithm solves the pendant CP optimally. The algorithm checks for any

violation of capacity constraints (4.4) in Step 3, and generates in case associated con-

straints, and adds the updated subproblem to the pendant list. In addition, the associated

LBFs will be added to improve the lower bound of expected recourse cost.

Also, the algorithm checks integrality constraints (4.7) in Step 4. If the optimal

solution is non-integer, then branching procedure adds new updated CPs to the pendant

list. Otherwise, an integer solution is obtained, and the algorithm computes the expected

recourse cost of optimal routing solution. Since an integer solution is obtained, the

algorithm checks to update the overall upper bound in Step 5. Then, the algorithm

checks for an excessive expected recourse cost to add optimality cuts in in Step 6.

1: . state initial CP with the constraints: 4.2, 4.3, 4.5, 4.6, and L ≤ Θ.

2: . Step 0: set iteration index and initial upper bound

3: ν← 0

4: z̄← +∞

5: push the initial CP in the list of pendant nodes, listPN .

6: . Step 1: check search tree for a pendant node

7: if listPN is empty then

8: STOP

9: end if

10: . Step 2: increase iteration index, and solve CP optimally
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11: ν← ν + 1

12: let (xν, Θν) is the optimal solution of CP

13: . Step 3: check for any violation of (4.4).

14: if There are any such violated constraint then

15: generate associated cuts and LBFs and add them to CP

16: go to Step 2

17: else if cxν + Θν ≥ z̄ then

18: fathom the current node

19: go to Step 1

20: end if

21: . Step 4: check for any integrity violation.

22: if there are any such violated constraints then

23: generate the branching subproblems and append to pendant list listPN

24: go to Step 2

25: end if

26: . Step 5: check for a new integer incumbent.

27: compute Q(xν)

28: zν ← cxν +Q(xν)

29: if zν < z̄ then

30: z̄← zν

31: end if

32: . Step 6: check for optimality cuts.

33: if Θν ≥ Q(xν) then

34: fathom the current node

35: go to Step 1

36: else

37: add an optimality cut

∑
1≤i≤j
xν

ij=1

xij ≤ ∑
1≤i≤j

xν
ij − 1 (4.24)

38: end if
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Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport (CIRRELT), C.P. 6128, succ.
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Abstract

This paper examines the Vehicle Routing Problem with Stochastic Demands (VRPSD), in which the actual
demand of customers can only be realized upon arriving at the customer location. Under demand uncertainty,
a planned route may fail at a specific customer when the observed demand exceeds the residual capacity. There
are two ways to face such failure events, at which the vehicle can either execute a return trip to the depot at
the failure location and refill the capacity and complete the split service, or in anticipation of potential failures
perform a preventive return whenever the residual capacity falls below a threshold; overall, these return trips
are called recourse actions. In the context of VRPSD, a recourse policy which schedules various recourse actions
based on the visits planned beforehand on the route must be designed. An optimal recourse policy prescribes
the cost-effective returns based on a set of optimal customer-specific thresholds. We propose an exact solution
method to solve the multi-VRPSD under an optimal restocking policy. The integer L-shaped algorithm is
adapted to solve the VRPSD in a branch-and-cut framework. To enhance the efficiency of presented algorithm,
several lower bounding schemes are redeveloped by approximating the expected recourse cost.

Keywords: vehicle routing problem; stochastic demands; optimal policy; restocking; partial routes; L-
shaped algorithm; lower bounding functionals.
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5.1 Introduction

Following the seminal paper of Dantzig and Ramser [15], the Vehicle Routing Prob-

lem (VRP) has been the subject of considerable research efforts over the last decades,

see Laporte [32]. The aim in VRP is to find a set of routes serving all customers in a

govern set at a minimal cost (the least travel cost, minimum number of vehicles, etc.).

The routes should start and end at the depot, and are designed to be performed by a fleet

of vehicles with homogeneous capacity. In the deterministic version of VRP in which

all problem parameters are known precisely, each customer is only visited once by one

vehicle.

In real-life problems, however, various parameters of the VRP can be uncertain. Un-

certainty is more likely to appear in demands, travel and service times, and customer

presence. It is usually dealt with by using probability distributions to describe the un-

certain parameters, which are then stochastic. The VRPs in which some parameters are

stochastic are called Stochastic VRPs (SVRPs). Although SVRPs have received much

less attention in comparison to the deterministic VRP, several efforts have been devoted

to investigate various versions of the SVRP; for a thorough exposition of the SVRP con-

text, we refer the reader to Gendreau et al. [22]. One way to deal with stochastic parame-

ters in stochastic routing models is to use their deterministic approximated counterparts,

in which the stochastic parameters are roughly replaced by their forecasted equivalents.

Such models can sometimes lead to arbitrarily bad quality solutions at execution time

when stochasticity reveals itself, see Louveaux [36]. Thus, there is a need to model

SVRPs using specialized optimization frameworks in which stochastic parameters are

explicitly modeled through random variables.

In this paper, we are mainly interested in the Vehicle Routing Problem with Stochas-

tic Demands (VRPSD), where customer demands are only known through probability

distributions. In this context, it is common to assume that the actual demand of each

customer can only be observed upon arriving at its location. Because of that, a planned

route may fail at a customer when the demand exceeds the residual capacity on the ve-

hicle. This occurrence is called a route failure. To prevent failures and complete the
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service after a route failure has occurred, extra decisions, called recourse actions, must

be taken and associated travel costs, called recourse costs, need to be incurred. The ob-

jective in the VRPSD is to minimize the total driven distance, which consists of routing

(i.e., preliminary plans) costs and recourse costs.

It is important to note that the general context of the VRPSD can be tackled in variety

of ways. One thus usually refers to modeling paradigms to formalize the problem and

the way in which it is solved. Dror et al. [17] describe several of these paradigms for the

VRPSD. One of them is the so-called a priori optimization approach, which was exten-

sively discussed in Bertsimas et al. [4]; another is the reoptimization approach; further

details can be found in Gendreau et al. [22]. These modeling paradigms either separate

or unify the process of making routing and recourse decisions, where information, here,

stochastic demands, are revealed at once or in a stepwise manner, respectively. In the a

priori optimization approach, one decomposes the overall decision making process into

two sets of mutually exclusive decisions as routing and recourse decisions, thus mod-

eling the VRPSD as a two-stage stochastic integer program with recourse (see, ? ] for

a comprehensive coverage of stochastic programming). In this approach, the first stage

consists of finding a set of a priori routes while the demands are not known yet with cer-

tainty. Once stochasticity reveals itself, the second stage consists of planning/obtaining

a set of recourse decisions in the execution of each a priori route. The a priori optimiza-

tion approach is a particularly suitable paradigm to model the VRPSD when the aim is

to execute a route repeatedly over a long horizon. In the reoptimization approach, after

the demand of each customer has been observed and served, the remaining portion of

the vehicle route is conceptually reoptimized-by choosing the first customer to visit next

and by deciding if a visit to the depot to replenish vehicle capacity should be performed

first; see Secomandi [48] and Secomandi and Margot [49] for applications in which route

reoptimization is allowed.

As mentioned before, under the a priori optimization approach for the VRPSD, a set

of planned routes is determined in the first stage based on probabilistic information. To

tackle the second-stage, a recourse policy must be designed. Such a policy corresponds

to a set of predetermined rules to derive recourse decisions based on the residual capacity
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of the vehicle as well as the visits that are scheduled along the route. A recourse policy

then provides the driver with a full prescription to react to incoming situations. Several

recourse policies have been proposed. In the classical recourse policy, the driver follows

the planned route until the vehicle capacity is depleted. Whenever the demand of a

specific customer exceeds the residual capacity of the vehicle, the vehicle must execute

a back-forth (BF) trip to the depot to replenish the capacity in order to complete the

service. If the observed demand turns out to be equal to the residual capacity, the vehicle

performs a restocking trip to the depot and then continues to the next customer. This

classical policy was introduced by Dror and Trudeau [16] and implemented by Gendreau

et al. [20], Hjorring and Holt [27], Laporte et al. [35], Rei et al. [44] and Jabali et al. [28].

As an alternative, one could apply an optimal restocking policy in which, the driver also

prescribes preventive return (PR) trips to the depot in anticipation of potential failures

whenever the residual capacity falls below a threshold value. In the optimal restocking

policy, the vehicle prescribes PR trips in addition to BF trips such that the total expected

cost is minimized, thus obtaining optimal customer-specific thresholds. This policy was

introduced by Yee and Golden [58] and implemented by Yang et al. [57] and Bianchi

et al. [7]. One also can consider rule based policies introduced by Salavati-Khoshghalb

et al. [45], in which customer-specific thresholds are established in accordance with

various operational rules. Salavati-Khoshghalb et al. [46] proposed a hybrid recourse

policy, which combines two operational measures in order to prescribe PR trips.

To tackle the VRPSD modeled under the a priori paradigm, several exact, heuristic,

and metaheuristic algorithms have been proposed; see for more details Gendreau et al.

[22]. Two exact solution techniques have been used in this context. The Integer L-

shaped algorithm and the column generation approach. The Integer L-shaped algorithm

was adapted for the VRPSD by Gendreau et al. [20], Hjorring and Holt [27], Laporte

et al. [35], and Jabali et al. [28]. The column generation approach was applied to the

VRPSD by Christiansen and Lysgaard [13], as well as by Gauvin et al. [19]. All of these

papers implemented the classical recourse policy. More recently, Salavati-Khoshghalb

et al. [45] and Salavati-Khoshghalb et al. [46] have extended the Integer L-shaped algo-

rithm to consider PR trips for rule-based policies. However, there are few research stud-
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ies devoted to present and examine the optimal restocking policy. Yee and Golden [58]

defined the optimal restocking recourse strategy, under which a set of optimal threshold-

based recourse decisions including BF and PR trips can be obtained for given planned

routes. Such an optimal restocking policy has been integrated in heuristic and meta-

heuristic solution procedures to solve the VRPSD by Yang et al. [57] and Bianchi et al.

[7]. Generally, these heuristic procedures result in overall sub-optimal pair of routing

and recourse decisions.

Recently, Louveaux and Salazar-González [37] have integrated the optimal restock-

ing policy in the a priori optimization solution approach to model the VRPSD. They

propose an implementation of the L-shaped method to solve exactly the resulting prob-

lem. It should be noted that, while this paper provides bounding procedures applicable

to instances in which customer demand distributions are not identical, much of the work

focuses on the case where all customers have identical demand distributions and all their

computational results cover only this case.

The purpose of this paper is to propose an exact algorithm to solve the VRPSD under

an optimal restocking recourse policy, thus yielding solutions that are optimal both with

respect to routing decisions and restocking ones. The proposed algorithm is an adapta-

tion of the L-shaped method that uses various bound improvement procedures to achieve

an effective performance. Furthermore, our approach allows for the consideration of

different demand distributions for the customers in a computationally effective way, as

long as they are discrete and with finite support, as shown by the numerical results that

we report.

The remainder of this paper is organized as follows. Section §5.2 lays out the VRPSD

model under the a priori approach with an optimal restocking policy. We devote Section

§5.3 to propose an exact method, for solving the VRPSD under an optimal restocking

policy, enhanced by various lower bounding schemes. Section §5.4 presents the results

of a computational study to examine the performance of the proposed exact method.

Section §5.5 proposes some conclusions and future research directions.
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5.2 Optimal Restocking Recourse Policy Under the A Priori Approach

In Section §5.2.1, we first present the Vehicle Routing Problem with Stochastic De-

mands (VRPSD) modeled under the a priori optimization approach. To model the re-

course problem, we recall the optimal restocking policy resulting in a set of optimal

recourse decisions in §5.2.2.

5.2.1 VRPSD Formulation Under an A Priori Approach

This section revisits the VRPSD formulation presented by Gendreau et al. [20] and

Laporte et al. [35]. Let G = (V , E) be a complete undirected graph, where V = {v1,

v2, . . . , vn} is the set of vertices and E = {(vi, vj)|vi, vj ∈ V , i < j} is the set of

edges. Vertex v1 is the depot, where a fleet of m vehicles each having capacity Q is

initially located. Each vertex vi (i = 2, . . . , n) represents a customer whose stochastic

demand ξi follows a discrete probability distribution with a finite support, defined as the

ordered set {ξ1
i , ξ2

i , . . . , ξ l
i , . . . , ξsi

i }, where ξsi

i ≤ Q. We denote by pl
i , the probability

of observing the lth demand level, i.e., P[ξi = ξ l
i ] = pl

i . The traveling cost along an arc

(vi, vj) ∈ E is denoted by cij, where the cost matrix C = (cij) is symmetric and satisfies

the triangle inequality.

To formulate the VRPSD, we first recall the a priori optimization approach by Bert-

simas et al. [4]. As previously mentioned, the first stage consists of making classical

VRP routing decisions with probabilistic information about the stochastic demands. The

decision variable xij (i < j) denotes the number of times edge (vi, vj) is traversed in the

first-stage.

Given the notation devised previously in Gendreau et al. [20] and Laporte et al. [35],
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the a priori model for the VRPSD is formulated as follows:

minimize
x ∑

i<j
cijxij +Q(x) (5.1)

subject to
n

∑
j=2

x1j = 2m, (5.2)

∑
i<k

xik + ∑
k<j

xkj = 2, k = 2, . . . , n (5.3)

∑
vi ,vj∈S

xij ≤ |S| −
⌈∑vi∈S E(ξi)

Q

⌉
, (S ⊂ V \ {v1}; 2 ≤ |S| ≤ n− 2)

(5.4)

0 ≤ xij ≤ 1, 2 ≤ i < j < n (5.5)

0 ≤ x1j ≤ 2, j = 2, . . . , n (5.6)

x = (xij), integer (5.7)

In this formulation, constraints (5.2) ensure that exactly m vehicle routes that start and

end at the depot are established; constraints (5.3) ensure that each customer is connected

to two other vertices; constraints (5.4) stand simultaneously as subtour elimination con-

straints and capacity constraints, which remove both subtours, and infeasible routes with

an excessive expected demand. Then, the first-stage traveling costs are incurred in the

objective function (5.1) as ∑i<j cijxij.

Let us now suppose that an a priori routing solution x in model (5.1)-(5.7) is given.

In the presence of demand stochasticity, however, an a priori route may fail at a specific

customer at which the observed demand exceeds the residual capacity of the vehicle.

Then, a recourse or corrective decision must be taken to either regain (i.e., in a reactive

fashion) or preserve (i.e., in a proactive fashion) routing feasibility. In the context of the

VRPSD, the recourse decisions are in the form of return trips to depot, but these trips

entail extra costs. Then, the expected cost of the recourse actions that are taken given the

routing solution x under a given policy is represented by Q(x) in the objective function

(5.1).
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Dror and Trudeau [16] have shown that, for route-based recourse policies,Q(x) can

be decomposed by route. They also showed that the expected cost of recourse actions

for a route depends on its orientation, i.e., in which direction it is executed. Thus, the

expected recourse cost for routing solution x can be computed as (5.19), where Qr,δ

denotes the expected recourse cost of the rth a priori route in the orientation δ = 1, 2.

Q(x) =
m

∑
r=1

min{Qr,1,Qr,2}. (5.8)

Computing Qr,δ for δ = 1, 2 under an optimal restocking policy, thus obtaining a set of

optimal recourse decisions for the rth a priori route, is the subject of the next subsection.

5.2.2 The Optimal Restocking Policy

In this section we recall the optimal restocking policy, devised by Yee and Golden

[58] for the VRPSD. Let us first consider an a priori route expressed as vector~v = (v1 =

vi1 , vi2 , . . . , vit , vit+1 = v1). An optimal restocking policy is a sequential decision rule

that determines whether the vehicle after serving a specific customer with an arbitrary

residual capacity onboard proceeds according to the planned route or performs a PR trip

first. More precisely, let us assume that after serving the ij
th customer of the route, the

residual capacity of the vehicle is equal to q units. If the vehicle proceeds to the following

customer (i.e., ij+1), then it must attempt to satisfy the stochastic demand ξij+1 . When

q ≥ ξij+1 service is completed with a nonnegative residual capacity of q− ξij+1 , and one

must again decide whether the vehicle should proceed or replenish the vehicle capacity

first. If q < ξij+1 , then a route failure occurs and the vehicle must perform a BF trip

(at the cost of 2c1,ij+1) before completing the service of customer ij+1 with a residual

capacity equal to Q + q − ξij+1 . It should be noted that we also consider a fixed cost

b for each route failure as Yang et al. [57]; this penalizes the disruption at a customer

location caused by the second vehicle visit. On the other hand, the vehicle can replenish

its capacity by performing a PR trip in order to avoid potential route failures, before

starting the service at the ij+1
th customer. After replenishing the vehicle capacity at the

cost of c1,ij + c1,ij+1 − cij ,ij+1 , the vehicle can fulfill all demand observations of customer
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ij+1 since Q ≥ ξij+1 , and then will decide whether to serve the following customer ij+2

with a residual capacity equal to Q− ξij+1 , or perform a PR trip.

Let Fij(q) be the optimal onward recourse cost-to-go after serving the ij
th, and re-

maining with a residual capacity of q. Then, the optimal expected recourse cost of the a

priori route ~v can be expressed by using the following Bellman equation,

Fij(q) = min



Hij ,ij+1(q) : ∑
k:ξk

ij+1
≤q

Fij+1(q− ξk
ij+1

)pk
ij+1

+

∑
k:ξk

ij+1
>q

[b + 2c1,ij+1 + Fij+1(Q + q− ξk
ij+1

)]pk
ij+1

,

H′ij ,ij+1
(q) : c1,ij + c1,ij+1 − cij ,ij+1 +

si

∑
k=1

Fij+1(Q− ξk
ij+1

)pk
ij+1

(5.9)

where, Hij ,ij+1(q) and H′ij ,ij+1
(q) express the total costs associated to the proceeding

and restocking decisions after serving the ij
th customer, respectively. This computation

differs from the formula given by Yang et al. [57], since it only considers the recourse

cost and not the total cost of the route. Using equation (5.9), we have Fit+1(.) = 0

since after serving the last customer the expected recourse cost is equal to zero. We note

that Fij(q) is an optimal policy only if Fij+1(.), Fij+2(.), . . . , Fit(.) are already optimally

given. Furthermore, let ~θ∗ = (θ∗i1 , θ∗i2 , . . . , θ∗ij
, . . . , θ∗it) be the optimal restocking policy

threshold vector. Since Fij(q) is monotonically non-increasing with respect to q, θ∗ij
=

min{q|Hij ,ij+1(q) ≤ H′ij ,ij+1
(q)} (for further details see, e.g., Yee and Golden [58] and

Yang et al. [57]). Based on θ∗ij
computed by the latter equation, the optimal decision at

the ij
th customer is either replenishing the vehicle capacity for q < θ∗ij

or proceeding to

the next customer whenever q ≥ θ∗ij
.

Given equation (5.9) and assuming that the rth vehicle performs the a priori route,

its expected recourse cost can then be computed for the first orientation (i.e., δ = 1) as

follows,

Qr,1 = Fi1(Q). (5.10)

To compute the expected recourse cost of the route for the second orientation (i.e.,Qr,2),
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we reapply function (5.10) to the reverse of the a priori route ~v.

5.3 An Integer L-shaped Algorithm to Solve the VRPSD under an Optimal Re-

stocking Policy

In this section, we adapt the Integer L-shaped algorithm to exactly solve the VRPSD

under an optimal restocking recourse policy. The Integer L-shaped algorithm is proposed

by Laporte and Louveaux [34] to tackle two-stage stochastic integer program with re-

course. It stands as a general branch-and-cut (B&C) procedure in which, feasibility cuts

and branching are employed to obtain integer first-stage solutions. A feasible integer

solution with an excessive expected recourse cost is removed by adding optimality cuts.

The optimality cuts which are originally developed by Laporte and Louveaux [34], adjust

a lower bound for Q(x) at each feasible integer solution using its combinatorial struc-

ture locally. However, the Integer L-shaped algorithm solely relying on optimality cuts

may turn to an implicit enumeration procedure of feasible integer solutions. Therefore,

there is a need to provide lower bounding procedures enhancing the B&C procedure.

Such lower bound improving procedures were first proposed by Hjorring and Holt

[27] (for the VRPSD with classical recourse) via the concept of partial routes, which are

feasible fractional solutions with certain structures. These new valid inequalities called

lower bounding functional (LBF) cuts improve lower bounds for several integer feasible

solutions. However, some restrictive assumptions are made: 1) all customers demands

are discrete, independent and uniformly distributed and 2) a maximum of one failure can

occur within the fractional structure. The concept of partial routes was then developed

by Laporte et al. [35] for multi-VRPSD, where customer demands follow continuous dis-

tributions. Jabali et al. [28] generalize the concept of partial routes proposed by Hjorring

and Holt [27] through defining various structures, thus improving global lower bound

for many fractional feasible solutions.

In this section we apply LBF cuts of Jabali et al. [28] to the case of optimal restocking

policy when customers demand are defined through arbitrary discrete distributions. The

LBF cuts of Jabali et al. [28] are only applied to the case where customer demands are
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Normal distributions. To do so, we provide several approximation schemes to compute

valid lower bounds for the expected recourse cost of partial routes under an optimal

restocking policy. In subsection §5.3.1, we first revisit the Integer L-shaped algorithm.

Then, in subsection §5.3.2 we present a lower bounding scheme to approximate Q(x),

where x contains partial routes of Jabali et al. [28]. In subsection §5.3.3, we provide a

general lower bound L where L ≤ Q(x) and x satisfies (5.2)-(5.7).

5.3.1 The Integer L-Shaped Algorithm

In this section we describe the Integer L-shaped employed to optimally solve the

VRPSD in a general B&C procedure. In this B&C procedure a master problem, called

current problem (CP) is established by relaxing capacity and subtour elimination con-

straints as well as the integrality requirements. The expected recourse function Q(x)

is replaced by the continuous variable Θ and is initially bounded from below by a gen-

eral lower bound L using (5.14). The first current problem CP0 can be presented by

(5.11), (5.2), (5.3),(5.5), (5.6), and (5.14). At an arbitrary iteration ν, CPν is shown in

the following model,

CPν : min
x,Θ

∑
i<j

cijxij + Θ (5.11)

subject to (5.2), (5.3), (5.5), (5.6),

∑
vi ,vj∈Sk

xij ≤ |Sk| −
⌈∑vi∈Sk E(ξi)

Q

⌉
∀k ∈ STν−1, Sk ⊂ V \ {v1}, 2 ≤ |Sk| ≤ n− 2,

(5.12)

L + (Θq
p − L)

(
∑

h∈PRq
Wh

p (x)− |PRq|+ 1

)
≤ Θ ∀q ∈ PSν−1, p ∈ {α, β, γ},

(5.13)

L ≤ Θ (5.14)

∑
1≤i≤j
x f

ij=1

xij ≤ ∑
1≤i≤j

x f
ij − 1 ∀ f ∈ OCν−1, (5.15)

where, constraints (5.12), (5.13), and (5.15) respectively are subtour elimination and
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capacity constraints, LBF cuts, and optimality cuts. At each iteration ν, an optimal so-

lution (xν, Θν) is obtained by solving CPν. Violated capacity and subtour elimination

constraints (5.12) are added to CPν until no more violated cuts are detected. We denote

by {k′} the index set associated to the subsets of vertices violating (5.12) at iteration ν.

We also denote by STν−1 the set of index sets of the vertices violating (5.12) in the first

ν− 1 iterations. Then, at iteration ν we set STν = STν−1 ∪ {k′}. The separation pro-

cedure is performed by the CVRP package of [38]. When no violated constraint (5.12)

is detected, the lower bounding cuts (5.13) are added to strength the overall bounding

scheme. An exact separation procedure developed by Jabali et al. [28] detects partial

solutions within xν. We denote by {q′} the index set associated to partial solutions

identified in iteration ν. We also denote by PSν−1 the set of index sets of the partial

solutions detected to add (5.13) in the first ν− 1 iterations. Then, at iteration ν we set

PSν = PSν−1 ∪ {q′}. Each partial solution contains a set of partial routes, here at

iteration ν denoted by h′ including various structures α, β, and γ proposed by Jabali

et al. [28]. The expected recourse cost associated to each structure p ∈ {α, β, γ} is

computed as Θq′
p using the procedure presented in subsection §5.3.2. We also denote by

PRν−1 the set of partial routes detected in the first ν− 1 iterations. Then, at iteration ν

we set PRν = PRν−1 ∪ {h′}. The branching scheme obtains integrality requirements

whenever needed. At integer feasible solutions, Q(xν) is computed to update the upper

bound,. In the case of Θν < Q(xν), an optimality cut (5.15) is added to CPν. We

denote by { f ′} the index set of xν when an optimality cut is added. We also denote by

OCν−1 the set of index sets of vertices associated to the optimality cuts detected in the

first ν− 1 iterations. Then, at iteration ν we set OCν = OCν−1 ∪ { f ′}.

5.3.2 Approximating an Optimal Restocking Policy

Here, we present the bounding procedures to approximate the expected recourse cost

of partial solutions. At an arbitrary iteration ν, we assume that partial solutions within xν

are detected, here denoted by q, using the exact procedure proposed by Jabali et al. [28].

We note that Θq
p in (5.13) is set as the sum of the lower bounds of the various partial
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routes (or routes) included in q and can be computed by Θq
p = ∑

h∈PRq
Θqh

p . We then drop

the index q in Θqh
p and present it by Θh

p. In this section, we describe an approximation

technique to compute Θh
p in order to add LBF cuts (5.13). In (5.13), Θh

p presents a valid

lower bound for the expected recourse cost of partial route h with an arbitrary structure

p ∈ {α, β, γ}. In what follows, we only derive Θν
α. The approximating technique can

then be applied to compute Θh
β and Θh

γ because β and γ topologies can be viewed as

successions of the α topology.

Let h ∈ PRν be a partial route with the α topology. Generally, a partial route consists

of an alternation of chains and unstructured components. The vertices of a chain are

connected in the support graph at iteration ν (denoted by Ḡν); xν
ij = 1 in Ḡν then there is

an edge (vi, vj). The vertex set of a chain is called chain vertex set (CVS). The vertex set

of each unstructured components is called unstructured vertex set (UVS). Each UVS lies

between two chains and connected to them at articulation vertices. Partial route h with

α topology consists of two chains S1
h = {v1

h1
, . . . , v1

|S1
h|
} and S2

h = {v2
h1

, . . . , v2
|S2

h|
} and

one unstructured set U1
h as h = (v1 = v1

h1
, . . . , v1

|S1
h|

, U1
h , v2

h1
, . . . , v2

|S2
h|
= v1), where

U1
h = {vu1 , vu2 , . . . , vul}; v1

|S1
h|

and v2
h1

are articulation vertices which connect chains

S1
h and S2

h to U1
h , respectively.

For the sake of simplicity, we redefine the partial route h, in similar terms as a route,

as follows

h = (v1 = vi1 , . . . , vij−l , {vu1 , vu2 , . . . , vul}, vij+1 , . . . , vit+1 = v1),

where the articulation vertices v1
|S1

h|
and v2

h1
are denoted by vij−l and vij+1 , respectively.

We define an artificial route h̃ associated to the partial route h as follows,

h̃ = (v1 = vi1 , . . . , vij−l , ij−l+1 , ij−l+2 , . . . , ij , vij+1 , . . . , vit+1 = v1), (5.16)

where each ordering of l unsequenced customers in U1
h can be assigned to the positions

ij−l+1 , . . . , ij . In what follows, we refer to ij as the ij
th position in the artificial route

h̃. Then, we develop a bounding procedure for the artificial route h̃.
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Approximation:

To compute a valid lower bound for the expected recourse cost, we need to provide some

additional notations. Let s = (ia, q) denote the state of the system (i.e., the vehicle)

after serving the ia
th customer of the a priori route ~v = (v1 = vi1 , vi2 , . . . , vij−l , . . . , via ,

via+1 , . . . , vij+1 , . . . , vit , vit+1 = v1) with q units of the residual capacity onboard, as in

the Bellman equation (5.9). When performing the a priori route ~v (or more generally

for two successive customers in a chain), the system will make a transition from state

s = (ia, q) to some state s′ = (ia+1, q′). Furthermore, one can easily determine all

possible values of q′ and use them to compute Fia(q). When dealing with artificial route

h̃, things are not as easy, since the customers between vij−l and vij+1 are not known

exactly. In that portion of the artificial route, we must associate pseudo states which are

associated not with specific customers, but rather to positions in the route. Thus, we let

s = ( ia , q) represent the state of the system after serving the (still unknown) customer

in the ia
th position of the artificial route.

In the following, we present a successive approximation scheme that computes a

valid lower bound for the optimal cost-to-go value function for pseudo state s, denoted

by F̃ia(s = ( ia , q)). Based on the Bellman’s principle of optimality, we also suppose

that the optimal (or, a valid lower bound) cost-to-go value function F̃ia+1(s
′ = ( ia+1 , q′))

has been determined beforehand, for all s′ = ( ia+1 , q′). Let us now define the auxiliary

value F̂ia(s = ( ia , q), s′ = (vu1 , q′)), which corresponds to a conditional lower bound

on the optimal cost-to-go value function, if we assume that customer vu1 ∈ U1
h occupies

the ia+1
th position (i.e., ia+1 := vu1 in s′). We can then write
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F̂ia(s = ( ia , q), s′ = (vu1 , q′)) =

= min



∑
k:ξk

u1≤q

F̃ia+1(s
′ = (vu1 , q′ := q− ξk

u1
))pk

u1
+

∑
k:ξk

u1>q

[b + 2c1,u1 + F̃ia+1(s
′ = (vu1 , q′ := Q + q− ξk

u1
))]pk

u1
,

c1,ia + c1,u1 − cik ,u1 +

su1

∑
k=1

F̃ia+1(s
′ = (vu1 , q′ := Q− ξk

u1
))pk

u1
.

(5.17)

To compute F̂ia(s = ( ik , q), s′ = (vu1 , q′)) in (5.17), the PR trip travel cost is re-

placed by a lower bound minimum
vue∈U1

h :vue 6=vu1

{c1,ue + c1,u1− cue ,u1}. To determine an uncondi-

tional lower bound on F̃ia(s = ( ia , q)), we simply take the minimum of the conditional

lower bounds, i.e., we set

F̃ia(s = ( ia , q)) = min
vue∈U1

h

F̂ia(s = ( ia , q), s′ = (vue , q′)). (5.18)

There are two boundary cases which differ from the situation presented above. The

first case arises when we start the approximation scheme, where s = ( ij , q) and s′ =

(vij+1 , q′). In this case, we can compute directly the unconditional lower bound on the

optimal cost-to-go value function. The PR trip cost can be obtained by minimum
vue∈U1

h

{c1,ue +

c1,ij+1 − cue ,ij+1}. The second case arises in the last step of overall scheme, where

s = (vij−l , q) and s′ = ( ij−l+1 , q′). In this case, the PR trip costs for each vu1 in

F̂ij−l(s = (vij−l , q), s′ = ( ij−l+1 := vu1 , q′)) can be computed as c1,u1 + c1,ij−l − cij−l ,u1 .

The latter boundary case will result in an unconditional bound F̃ij−l(s = (ij−l , q)).

It should be noted that the the optimal cost-to-go functions Fij+1(.), Fij+2(.), . . . ,

Fit(.) can be exactly computed by the Bellman equation (5.9). Then, the bounding pro-

cedure described above provides an unconditional lower bound on F̃ij−l(s = (ij−l , q))

∀q. Next, the unconditional lower bound F̃ij−l(s = (ij−l , q)) can be applied in (5.9) to

successively compute unconditional lower bounds F̃ij−l−1(.), F̃ij−l−2(.), . . . , F̃i1(.). We

set F̃i1(Q) as the valid lower bound for the expected recourse cost of artificial route h̃
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in the first direction and denote it by F̃1
i1
(Q). By reversing h̃ and applying the bound-

ing procedure we will obtain a valid lower bound for the second direction, denoted by

F̃2
i1
(Q). We then set

Θh
α = min{F̃1

i1(Q), F̃2
i1(Q)} (5.19)

where, Θh
α is a valid lower bound for the expected recourse cost of partial route h, de-

tected in the partial solutions q within optimal first-stage solution xν at iteration ν. More-

over, we note that partial routes with β and γ topologies consist of several partial routes

with α topology and we can apply the same procedure to compute Θh
β and Θh

γ. Finally,

we set Θq
p = ∑

h∈PRq
Θh

p for p ∈ {α, β, γ} to be used in LBF cuts (5.13).

5.3.3 General Lower Bound

In this subsection, we propose a procedure to obtain a general lower bound L to be

used in constraints (5.13) and (5.14). As defined by Laporte and Louveaux [34], the

expected recourse cost associated to the feasible solution xL with minimum expected

recourse cost corresponds to a general lower bound. Laporte and Louveaux [33] were

the first authors to present a general lower bound for the VRPSD under the classical

recourse. The quality of the general lower bound presented in Laporte and Louveaux

[33] is further improved by Laporte et al. [35]. Suppose that ~v1, ~v2, . . . , ~vm are the

vehicle routes contained in xL. Using the notation of Laporte and Louveaux [34],

L = Q(xL) ≤ min
x
{Q(x)|(5.2)− (5.6)} =

m

∑
k=1

min{Qk,1(~vk),Qk,2(~vk)}. (5.20)

For computing L in (5.20), we assume that: the vehicle route denoted by ~v12 is obtained

by concatenating~v2 after~v1; vl1 and v f 2 present the last customer in~v1, and the first cus-

tomer in~v2, respectively; F~v
1

v1
(Q) and F~v

2
v1
(Q) are the expected recourse costs associated

to ~v1 and ~v2, respectively; F̄~v
12

vl1
(.) and F~v

12
vl1

(.) are the expected recourse costs from the

depot to vl1 and expected cost-to-go from vl1 to the depot going through~v2, respectively;

and pq
vl1

is the probability of having q units of residual capacity after serving customer
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vl1 .

The expected recourse cost of ~v12 in the first direction can be computed as follows,

F~v
12

v1
(Q) = ∑

q

{
F̄~v

12

vl1
(q) + F~v

12

vl1
(q)
}

pq
vl1

. (5.21)

By definition, we have

F~v
12

vl1
(q) = min



∑
k:ξk

v
f 2≤q

F~v
12

v f 2
(q− ξk

v f 2
)pk

v f 2
+

∑
k:ξk

v
f 2 >q

[b + 2c1,v f 2 + F~v
12

v f 2
(Q + q− ξk

v f 2
)]pk

v f 2
,

c1,vl1
+ c1,v f 2 − cvl1 ,v f 2 +

sv
f 2

∑
k=1

F~v
12

v f 2
(Q− ξk

v f 2
)pk

v f 2
.

(5.22)

We also have F~v
12

vl1
(q) ≤ c1,vl1

+ c1,v f 2 − cvl1 ,v f 2 +

sv
f 2

∑
k=1

F~v
12

v f 2
(Q− ξk

v f 2
)pk

v f 2
which cou-

pled with (5.21) results in

F~v
12

v1
(Q) ≤∑

q

{
F̄~v

12

vl1
(q) + c1,vl1

+ c1,v f 2 − cvl1 ,v f 2 +

sv
f 2

∑
k=1

F~v
12

v f 2
(Q− ξk

v f 2
)pk

v f 2

}
pq

vl1
.

(5.23)

Assuming that~v12 is equivalent to the concatenation of~v1 and~v2, the relation (5.23) can

further yield

F~v
12

v1
(Q) ≤ c1,vl1

+ c1,v f 2 − cvl1
+ F~v

1

v1
(Q) + F~v

2

v1
(Q),

where, the first term in (5.23) is equivalent to F~v
1

v1
(Q) in the backward fashion and the

last term in (5.23) is equivalent to F~v
2

v1
(Q) in the forward fashion.

We perform the same procedure to concatenate the remaining routes ~v3,. . . , ~vm to
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~v12 and conclude that:

F~v
1...m

v1
(Q) ≤

m−1

∑
k=1

ck
PR +

m

∑
k=1

F~v
k

v1
(Q) (5.24)

where ~v1...m is obtained by the successive concatenation of all routes and ck
PR denotes

the kth least PR trip cost.

The desired L can be obtained by bounding ∑m
k=1 F~v

k
v1
(Q). However, the vehicle

routes ~v1, ~v2, . . . , ~vm, as well as ~v1...m are not known, but we can use the fact that the

route~v1...m in the left-hand-side of (5.24) consists of all customers. To calculate a general

lower bound L∗ ≤ L, we can approximate the left-hand-side of (5.24) by constructing a

large unstructured set UL = V \ {v1}. Then, one can reduce the problem of finding a

valid lower bound for UL to computing the minimum expected recourse cost F̃ l̃z
v1(Q) of

artificial routes l̃z for z = 2, . . . , n, which are obtained by only fixing the last customer

before returning to the depot vz, i.e.,

l̃z = (v1 = vi1 , i2 , i3 , . . . , it−1 , vz, vit+1 = v1). (5.25)

This is done exactly as in §5.3.2. Finally, a general lower bound L∗ can be computed as

L∗ = min
z:2,...,n

F̃ l̃z
v1
(Q)−

m−1

∑
k=1

ck
PR. (5.26)

5.4 Numerical Results

In this section, we evaluate the quality of the proposed Integer L-shaped algorithm by

conducting computational experiments of instances. Overall, we present the numerical

result for three sets of instances.

Symmetric Instances: In the first set of instances (which is made up of the instances of

Salavati-Khoshghalb et al. [45]), customer locations and demands are randomly gener-

ated. We generated instances consisting of a set of n vertices as {v1, . . . , vn}, in which

v1 represents the depot and n− 1 customers and all vertices are randomly scattered in
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[0, 100]2 according to a continuous uniform distribution. In the first set, each customer is

randomly (i.e., with equal probability) assigned to one of the three demand ranges [1, 5],

[6, 10], [11, 15] and then five realizations in each range are observed accordingly to the

probabilities {0.1, 0.2, 0.4, 0.2, 0.1}.
Asymmetric Instances: In the second set of instances, customer locations are the same

as symmetric instances. Each customer is randomly (i.e., with equal probability) as-

signed to one of the five demand ranges [1, 5], [6, 10], [11, 15], [4, 7], and [9, 12]. Each

of the first three demand ranges has five possible demand values, the occurrence of each

which (in ascending order) is expressed with the following probabilities {0.1, 0.2, 0.4,

0.2, 0.1}. Each of the last two demand ranges has four possible demand values, the

occurrence of each which (in ascending order) is expressed with the following probabil-

ities {0.4, 0.3, 0.2, 0.1}.
In what follows, all settings are considered in both symmetric and asymmetric in-

stances. The traveling cost cij is set as the Euclidean distance between each pair vi and

vj and rounded to the nearest integer. The filling coefficient f̄ is equal to ∑n
i=2 E(ξi)

mQ . Four

filling coefficients f̄ = 0.90, 0.92, 0.94, and 0.96 are considered. The capacity of each

vehicle is directly inferred from f̄ . We consider 11 combinations of (n, m) for each of

the four filling coefficients, as detailed in Table 5.I. We generated 10 instances for each

entry of the table. Thus, our generated test bed contains 440 instances, overall 880 runs

for symmetric and asymmetric instances.

Table 5.I – Combinations of parameters to generate instances.

n m f̄

20 2 0.90, 0.92, 0.94, 0.96

30 2 0.90, 0.92, 0.94, 0.96

40 2, 3, 4 0.90, 0.92, 0.94, 0.96

50 2, 3, 4 0.90, 0.92, 0.94, 0.96

60 2, 3, 4 0.90, 0.92, 0.94, 0.96

In our computational result, a fixed cost denoted by b = ∑
i=2,...,n

ci1/(n− 1) is in-
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curred when experiencing route failures. We recall that b primarily penalizes disruption

at a customer location caused by the second vehicle visit.

The Integer L-shaped algorithm and the bounding scheme are coded in C++ using

ILOG CPLEX 12.6. The subtour elimination and capacity constraints (5.4) are identi-

fied using the CVRPSEP package of Lysgaard et al. [38]. The general branch-and-cut

framework as the Integer L-shaped algorithm is implemented using the OOBB package

developed by Gendron et al. [24]. Computational experiments were conducted on a clus-

ter of 27 machines, each having two Intel(R) Xeon(R) X5675 3.07 GHz processors with

12 cores and 96 GB of RAM running Linux. An integer feasible solution with a relative

optimality gap less than 0.01% is assumed optimal. Also, a maximum CPU run time of

10 hours is imposed on all runs. If the maximum allotted time is reached, we then report

the best integer solution obtained.

The Instances Generated by Louveaux and Salazar-González [37]: The instances of

Louveaux and Salazar-González [37] are selected from benchmark instances E031-09h,

E051-05e, E076-07s, and E101-08e, see http://neo.lcc.uma.es/vrp/

vrp-instances/. However, the expected demand of all customers is set to µ = 5.

Parameter K denotes the number of possible demand realizations for each customer, for

each instance a single value of K is applied to all customers. Namely, K = 3 or K = 9.

Then, for all j ∈ V \ {v1} and k = 1, . . . , K, stochastic demands are generated by

ξk
j = µ− bK/2c+ k− 1. The probability of each demand realization ξk

j is then com-

puted by pk
j = k/dK/2e2 for k < dK/2e2 and pk

j = (K− k + 1)/dK/2e2 otherwise.

The number of vehicle denoted by m is set to 2 and 3. The vehicle capacity is obtained

by Q = max{d(nµ)/(m f̄ )e; dn/meµ} in which the filling rates f̄ = 0.90, 0.95 are

considered for m = 2 and in the case of m = 3 the filling rates f̄ = 0.85, 0.90. Also,

Louveaux and Salazar-González [37] a fixed cost of ∆ = 0, 10, 100 as loading/unloading

cost is considered for both BF and PR trips. In our recourse function, we denote by b a

fixed cost as the customer unsatisfactory in the failure events.

In subsection 5.4.1, the performance of the Integer L-shaped algorithm as an exact

solution method is evaluated in terms of various quality measures. We further compare

the results of our optimal restocking policy with by pricing the optimal solutions under
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the classical policy. In subsection 5.4.2, based on the identical instances generated by

Louveaux and Salazar-González [37] a separate set of experiments was made to compare

the performance of the Integer L-shaped algorithm implemented in this paper.

5.4.1 Quality of the Integer L-Shaped Algorithm: Symmetric and Asymmetric

Instances

We now present the computational result, expressing the performance of the pro-

posed exact algorithm in Tables 5.II and 5.IV for symmetric and asymmetric instances.

The conducted experiments are aggregated according to the pair (n, m) and the filling

coefficient f̄ . Tables 5.II and 5.IV contains the following notations: 1) the “Solved”

columns present the number of instances (out of ten for each aggregated category) that

were solved to optimality by the algorithm; 2) columns present the number of instances

(out of ten for each aggregated category) that were solved with an optimality gap ≤ 1%;

3) the “Run(sec)” columns refer to the average running times in seconds that were needed

by the algorithm to solve those instances to optimality; 4) the “Gap” columns present

the average optimality gap obtained by the algorithm over all instances solved (i.e., both

those solve optimally and those for which only a feasible solution was obtained).

By analyzing the computational results in Tables 5.II and 5.IV, we observe similar

trends that were reported by Gendreau et al. [20], Laporte et al. [35], and Jabali et al.

[28] for the classical recourse policy. These trends indicate that an increase in the fill-

ing rate and/or the number of vehicles results in a reduction of the optimally solved

instances, an increase in the running time to solve instances optimally, and an increase

in the optimality gap, which all together present an increase in the overall complexity

of the VRPSD instances. Moreover, when compared to the filling rate, the number of

vehicles seems to have a more substantial impact on the complexity of the instances. As

reported in Tables 5.II and 5.IV, the Integer L-shaped algorithm implemented in this pa-

per optimally solves 227 and 242 each out of 440 runs from symmetric and asymmetric

instances, respectively; these correspond to 51.6% and 55.0% of the generated instances.

The overall average optimality gaps are 0.83% and 0.80%, respectively. Moreover, the

proposed algorithm solves 285 and 297 runs with an optimality gap ≤ 1% of symmetric
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and asymmetric instances, respectively.

In order to qualify the magnitude of savings obtained by performing the optimal

restocking policy, we execute the optimal solutions under the classical recourse. Ta-

bles 5.III and 5.V illustrate the comparisons of two recourse policies with respect to the

total cost denoted by “Sav1”= Qclass.(x)−Qopt(x)
cx+Qclass.(x) × 100 and recourse cost as “Sav2”=

Qclass.(x)−Qopt(x)
Qclass.(x) × 100. The weighted average savings in terms of “Sav1” are 0.65%

and 0.61% for symmetric and assymetric instances, respectively. In terms of “Sav2”, the

weighted average savings are 49.46% and 48.70%, respectively.

Also, in order to qualify the magnitude of savings obtained by performing the opti-

mal restocking policy we compare the total cost of the optimal solutions obtained under

optimal restocking policy with optimal solutions under both the best rule-based policy

presented by Salavati-Khoshghalb et al. [45] and the best hybrid policy recourse pre-

sented by in Salavati-Khoshghalb et al. [46].

Tables 5.VI and 5.VII express the latter comparisons with respect to the total cost

as “Sav3”=
Qrule.(x∗rule)−Qopt(x∗opt)

cx∗rule+Qrule(x∗rule)
× 100 and “Sav4”=

Qhybrid(x∗hybrid)−Qopt(x∗opt)

cx∗hybrid+Qhybrid(x∗hybrid)
× 100,

respectively. In Sav3 and Sav4, x∗opt, x∗rule, and x∗hybrid are optimal routing decisions

obtained by solving the VRPSD instances under optimal restocking policy, best rule-

based and hybrid recourse policies, respectively. As presented in Tables 5.VI and 5.VII,

the best rule-based policy shows less deviation from optimal restocking policy.

Table 5.VI – Average savings vs rule-based recourse ηξ̄ij+1 for η = 1, with respect to
total cost.

n m f̄ Sav3 f̄ Sav3 f̄ Sav3 f̄ Sav3

20 2 0.90 0.056% 0.92 0.034% 0.94 0.083% 0.96 0.153%
30 2 0.90 0.015% 0.92 0.007% 0.94 0.042% 0.96 0.100%
40 2 0.90 0.004% 0.92 0.005% 0.94 0.033% 0.96 0.088%
40 3 0.90 0.016% 0.92 0.009% 0.94 0.018% 0.96 0.068%
40 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
50 2 0.90 0.006% 0.92 0.011% 0.94 0.019% 0.96 0.075%
50 3 0.90 0.010% 0.92 0.011% 0.94 0.015% 0.96 0.089%
50 4 0.90 0.000% 0.92 0.006% 0.94 0.000% 0.96 0.000%
60 2 0.90 0.007% 0.92 0.011% 0.94 0.015% 0.96 0.057%
60 3 0.90 0.001% 0.92 0.028% 0.94 0.001% 0.96 0.033%
60 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%

Average 0.015% 0.013% 0.034% 0.096%
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Table 5.VII – Average savings vs hybrid recourse policy for {θ,θ̄}={0.35, 0.65}, with
respect to total cost.

n m f̄ Sav4 f̄ Sav4 f̄ Sav4 f̄ Sav4

20 2 0.90 0.119% 0.92 0.165% 0.94 0.809% 0.96 1.259%
30 2 0.90 0.041% 0.92 0.007% 0.94 0.153% 0.96 3.076%
40 2 0.90 0.004% 0.92 0.141% 0.94 0.499% 0.96 0.397%
40 3 0.90 0.016% 0.92 0.076% 0.94 0.501% 0.96 0.954%
40 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%
50 2 0.90 0.032% 0.92 0.074% 0.94 0.296% 0.96 0.854%
50 3 0.90 0.010% 0.92 0.011% 0.94 0.734% 0.96 0.741%
50 4 0.90 0.052% 0.92 0.006% 0.94 0.000% 0.96 0.000%
60 2 0.90 0.027% 0.92 0.057% 0.94 0.030% 0.96 0.679%
60 3 0.90 0.001% 0.92 0.028% 0.94 0.001% 0.96 0.000%
60 4 0.90 0.000% 0.92 0.000% 0.94 0.000% 0.96 0.000%

Average 0.039% 0.086% 0.378% 1.296%

5.4.2 The instances Generated by Louveaux and Salazar-González [37]

We have compared the solutions that we obtain with those of Louveaux and Salazar-

González [37] for the instances that both methods are able to solve. This comparison

confirmed that our method provides valid results. Regarding computational times, Lou-

veaux and Salazar-González’s implementation seems to be more effective than ours: if

one accounts for differences between the machine that they have used and ours, their

code runs faster and it is able to solve to optimality more instances than our algorithm

for a given CPU time allowance. This result is not surprising given the fact that their

approach uses specialized procedures for instances with identical demand distributions,

which is not the case of our method. Moreover, it is observed from Tables 5.VIII-5.X

that LBF cuts developed in this paper can significantly reduce the number of branch-and-

cut nodes explored by the Integer L-shaped algorithm. The number of B&C nodes ex-

plored in the proposed method in this paper is much smaller than Louveaux and Salazar-

González’s implementation, in which their B&C procedure turns to an enumeration.

5.5 Conclusions

In this paper, we develop an exact solution methodology to solve the VRPSD un-

der an optimal restocking policy. To do so, the Integer L-shaped algorithm is adapted.

To enhance the efficiency of the Integer L-shaped algorithm, various lower bounding

schemes are redeveloped. The key element for successfully employing such bounding

procedures is to provide effective lower approximation of the expected recourse cost of

128



Ta
bl

e
5.

V
II

I–
L

ou
ve

au
x

an
d

Sa
la

za
r-

G
on

zá
le

z
[3

7]
w

ith
∆
=

0.

In
st

an
ce

O
ur

re
su

lt
L

ou
ve

au
x

an
d

Sa
la

za
r-

G
on

zá
le

z
[3

7]
In

st
an

ce
V

eh
.

f̄
Sc

en
.

N
od

e
R

un
(m

in
)

G
ap

R
ou

tin
g

R
ec

ou
rs

e
O

pt
R

es
to

ck
C

la
ss

ic
al

L
N

od
e

R
ou

tin
g

R
ec

ou
rs

e
G

ap
R

un
(m

in
)

L

E
03

1-
09

h
2

0.
90

3
12

0.
00

0.
00

33
2

0.
75

29
89

33
2.

75
29

89
33

2.
77

36
60

0.
00

00
00

32
5

33
2

0.
75

30
0

0.
00

0.
00

00
E

03
1-

09
h

2
0.

95
3

11
5

0.
00

0.
00

33
4

1.
29

55
51

33
5.

29
55

51
33

5.
38

26
49

0.
00

00
00

20
35

33
4

1.
29

56
0

0.
02

0.
00

00
E

03
1-

09
h

2
0.

90
9

24
47

0.
17

0.
00

33
4

3.
67

38
48

33
7.

67
38

48
33

7.
81

34
96

0.
00

00
00

36
32

33
4

3.
67

38
0

0.
04

0.
00

00
E

03
1-

09
h

2
0.

95
9

11
92

3
6.

28
0.

00
33

4
10

.5
25

12
0

34
4.

52
51

20
34

5.
23

59
35

0.
00

00
00

36
65

4
33

4
10

.5
25

1
0

1.
30

0.
00

00
E

03
1-

09
h

3
0.

85
3

30
5

0.
03

0.
00

35
8

0.
94

72
37

35
8.

94
72

37
35

8.
99

69
60

0.
00

00
00

17
95

0
35

8
0.

94
72

0
0.

28
0.

00
00

E
03

1-
09

h
3

0.
90

3
33

03
0.

90
0.

00
36

4
0.

06
55

44
36

4.
06

55
44

36
4.

06
69

98
0.

00
00

00
94

51
8

36
4

0.
06

55
0

4.
07

0.
00

00
E

03
1-

09
h

3
0.

85
9

22
82

5
21

.0
8

0.
00

36
1

6.
15

52
14

36
7.

15
52

14
36

7.
34

38
69

0.
00

00
00

24
80

44
36

1
6.

15
52

0
18

.1
7

0.
00

00
E

03
1-

09
h

3
0.

90
9

92
23

7
5h

.
0.

64
36

1
11

.7
83

91
8

37
2.

78
39

18
37

3.
18

45
93

0.
00

00
00

60
40

22
36

3
10

.1
29

4
2.

32
5

5
h.

0.
00

00

E
05

1-
05

e
2

0.
90

3
13

0.
00

0.
00

44
1

0.
00

02
34

44
1.

00
02

34
44

1.
00

02
39

0.
00

00
00

32
60

44
1

0.
00

02
0

0.
06

0.
00

00
E

05
1-

05
e

2
0.

95
3

13
9

0.
01

0.
00

44
1

0.
31

12
64

44
1.

31
12

64
44

1.
33

03
15

0.
00

00
00

38
89

44
1

0.
31

13
0

0.
10

0.
00

00
E

05
1-

05
e

2
0.

90
9

39
67

1.
29

0.
00

44
1

2.
00

60
72

44
3.

00
60

72
44

3.
08

95
29

0.
00

00
00

10
70

9
44

1
2.

00
61

0
0.

30
0.

00
00

E
05

1-
05

e
2

0.
95

9
51

29
2

5h
.

0.
59

44
1

7.
08

25
80

44
8.

08
25

80
44

8.
50

14
97

0.
00

00
00

31
47

98
44

1
7.

08
26

0.
13

0
5

h.
0.

00
00

E
05

1-
05

e
3

0.
85

3
17

0.
01

0.
00

45
9

0.
00

23
88

45
9.

00
23

88
45

9.
00

23
88

0.
00

00
00

65
57

45
9

0.
00

00
0

0.
16

0.
00

00
E

05
1-

05
e

3
0.

90
3

7
0.

01
0.

00
45

9
0.

04
90

98
45

9.
04

90
98

45
9.

04
98

96
0.

00
00

00
34

49
45

9
0.

04
91

0
0.

07
0.

00
00

E
05

1-
05

e
3

0.
85

9
14

89
2.

44
0.

00
45

9
1.

55
03

20
46

0.
55

03
20

46
0.

57
29

87
0.

00
00

00
22

52
5

45
9

1.
55

03
0

0.
62

0.
00

00
E

05
1-

05
e

3
0.

90
9

80
27

9
5h

.
0.

21
46

0
5.

62
90

06
46

5.
62

90
06

46
5.

72
71

64
0.

00
00

00
30

32
97

46
0

5.
62

90
0

72
.4

4
0.

00
00

E
07

6-
07

s
2

0.
90

3
1

0.
00

0.
00

54
9

0.
00

45
28

54
9.

00
55

28
54

9.
00

55
29

0.
00

00
00

75
7

54
9

0.
00

45
0

0.
03

0.
00

00
E

07
6-

07
s

2
0.

95
3

18
7

0.
06

0.
00

55
0

0.
16

38
82

55
0.

16
38

82
55

0.
16

50
34

0.
00

00
00

78
69

55
0

0.
16

39
0

0.
34

0.
00

00
E

07
6-

07
s

2
0.

90
9

89
7

0.
27

0.
00

55
0

0.
81

50
11

55
0.

81
50

11
55

0.
84

16
49

0.
00

00
00

85
22

55
0

0.
81

50
0

0.
27

0.
00

00
E

07
6-

07
s

2
0.

95
9

47
26

7
5h

.
0.

35
55

0
4.

79
99

20
55

4.
79

99
20

55
5.

00
66

49
0.

00
00

00
42

56
13

55
0

4.
79

99
0

25
2.

76
0.

00
00

E
07

6-
07

s
3

0.
85

3
25

1
0.

65
0.

00
56

7
0.

12
59

34
56

7.
12

59
34

56
7.

13
44

89
0.

00
00

00
43

34
3

56
7

0.
12

59
0

2.
75

0.
00

00
E

07
6-

07
s

3
0.

90
3

40
33

27
.5

9
0.

00
56

8
1.

26
60

42
56

9.
26

60
42

56
9.

37
48

59
0.

00
00

00
21

35
46

56
8

1.
26

60
0

36
.1

4
0.

00
00

E
07

6-
07

s
3

0.
85

9
22

87
0

5h
.

0.
14

56
8

1.
95

21
44

56
9.

95
21

44
57

0.
00

10
57

0.
00

00
00

44
07

21
56

8
1.

95
21

0
10

7.
42

0.
00

00
E

07
6-

07
s

3
0.

90
9

20
03

9
5h

.
0.

50
57

0
3.

24
99

67
57

3.
24

99
67

57
3.

32
84

32
0.

00
00

00
57

90
00

57
1

3.
30

77
1.

02
9

5
h.

0.
00

00

E
10

1-
08

e
2

0.
90

3
1

0.
00

0.
00

64
0

0.
00

10
00

64
0.

00
10

00
64

0.
00

10
03

0.
00

00
00

28
19

64
0

0.
00

10
0

0.
19

0.
00

00
E

10
1-

08
e

2
0.

95
3

46
52

5
5h

.
0.

07
64

0
1.

73
16

16
64

1.
73

16
16

64
1.

80
80

65
0.

00
00

00
83

76
5

64
0

1.
73

16
0

29
.3

2
0.

00
00

E
10

1-
08

e
2

0.
90

9
44

92
9

16
9.

55
0.

00
64

0
1.

30
40

19
64

1.
30

40
19

64
1.

45
32

31
0.

00
00

00
34

43
6

64
0

1.
30

40
0

13
.0

5
0.

00
00

E
10

1-
08

e
2

0.
95

9
26

23
7

5h
.

0.
83

64
0

6.
11

90
62

64
6.

11
90

62
64

6.
95

91
41

0.
00

00
00

17
26

19
64

0
6.

11
91

0.
85

1
5

h.
0.

00
00

E
10

1-
08

e
3

0.
85

3
20

36
9.

40
0.

00
65

5
0.

35
42

29
65

5.
35

42
29

65
5.

35
54

47
0.

00
00

00
90

25
65

5
0.

35
42

0
0.

98
0.

00
00

E
10

1-
08

e
3

0.
90

3
26

41
8

5h
.

0.
05

65
7

1.
29

68
78

65
8.

29
68

78
65

8.
38

80
05

0.
00

00
00

40
44

2
65

7
1.

29
69

0
9.

07
0.

00
00

E
10

1-
08

e
3

0.
85

9
84

83
5h

.
0.

59
65

5
4.

48
31

87
65

9.
48

31
87

65
9.

52
71

52
0.

00
00

00
29

29
28

65
7

1.
98

41
0

10
5.

42
0.

00
00

E
10

1-
08

e
3

0.
90

9
81

72
5h

.
1.

36
65

7
9.

55
47

38
66

6.
55

47
38

66
6.

88
64

76
0.

00
00

00
26

73
10

65
8

9.
55

47
1.

54
5

5
h.

0.
00

00

129



Ta
bl

e
5.

IX
–

L
ou

ve
au

x
an

d
Sa

la
za

r-
G

on
zá

le
z

[3
7]

w
ith

∆
=

10
.

In
st

an
ce

O
ur

re
su

lt
L

ou
ve

au
x

an
d

Sa
la

za
r-

G
on

zá
le

z
[3

7]
In

st
an

ce
V

eh
.

f̄
Sc

en
.

N
od

e
R

un
(m

in
)

G
ap

R
ou

tin
g

R
ec

ou
rs

e
O

pt
R

es
to

ck
C

la
ss

ic
al

L
N

od
e

R
ou

tin
g

R
ec

ou
rs

e
G

ap
R

un
(m

in
)

L

E
03

1-
09

h
2

0.
90

3
34

0.
00

0.
00

33
2

1.
30

39
10

33
3.

30
39

10
33

3.
85

02
96

0.
00

09
12

50
1

33
2

1.
30

39
0

0.
01

0.
00

29
E

03
1-

09
h

2
0.

95
3

99
0.

00
0.

00
33

4
2.

28
29

22
33

6.
28

29
22

33
7.

38
75

34
1.

08
04

02
15

86
33

4
2.

28
29

0
0.

02
0.

88
86

E
03

1-
09

h
2

0.
90

9
27

57
0.

15
0.

00
33

4
5.

91
99

55
33

9.
91

99
55

34
0.

55
08

42
1.

60
09

99
39

52
33

4
5.

92
00

0
0.

04
1.

98
88

E
03

1-
09

h
2

0.
95

9
24

16
9

12
.7

1
0.

00
33

4
16

.2
59

29
2

35
0.

25
92

92
35

1.
76

39
99

4.
64

87
80

59
41

3
33

4
16

.2
59

3
0

3.
29

5.
06

61
E

03
1-

09
h

3
0.

85
3

33
3

0.
03

0.
00

35
8

1.
21

15
86

35
9.

21
15

86
35

9.
66

61
62

0.
00

00
00

21
18

4
35

8
1.

21
16

0
0.

26
0.

00
00

E
03

1-
09

h
3

0.
90

3
32

55
0.

66
0.

00
36

4
0.

10
47

80
36

4.
10

47
80

36
4.

24
42

67
0.

01
72

50
74

04
2

36
4

0.
10

48
0

2.
99

0.
03

48
E

03
1-

09
h

3
0.

85
9

46
75

5
30

.5
5

0.
00

36
4

5.
73

26
63

36
9.

73
26

63
37

0.
51

97
72

0.
86

54
68

40
05

31
36

4
5.

73
27

0
79

.7
9

1.
80

20
E

03
1-

09
h

3
0.

90
9

97
78

1
5h

.
1.

18
36

4
13

.6
07

13
2

37
7.

60
71

32
37

9.
14

09
90

2.
81

07
05

59
47

58
36

3
16

.1
50

0
3.

16
9

5
h.

4.
13

32

E
05

1-
05

e
2

0.
90

3
13

0.
00

0.
00

44
1

0.
00

04
72

44
1.

00
04

72
44

1.
00

11
41

0.
00

00
05

29
38

44
1

0.
00

05
0

0.
05

0.
00

02
E

05
1-

05
e

2
0.

95
3

21
9

0.
03

0.
00

44
1

0.
63

96
56

44
1.

63
96

56
44

1.
97

94
02

0.
15

95
10

30
67

44
1

0.
63

97
0

0.
06

0.
29

56
E

05
1-

05
e

2
0.

90
9

12
39

1
5.

22
0.

00
44

1
3.

49
10

32
44

4.
49

10
32

44
4.

86
34

69
0.

61
26

93
13

34
7

44
1

3.
49

10
0

0.
40

1.
32

56
E

05
1-

05
e

2
0.

95
9

51
15

0
5h

.
1.

35
44

1
11

.6
58

75
7

45
2.

65
87

57
45

3.
66

84
52

2.
81

33
72

37
14

15
44

1
11

.6
58

8
0.

49
4

5
h.

4.
08

84
E

05
1-

05
e

3
0.

85
3

17
0.

00
0.

00
45

9
0.

00
83

54
45

9.
00

83
54

45
9.

02
20

57
0.

00
00

00
74

75
45

9
0.

00
00

0
0.

19
0.

00
00

E
05

1-
05

e
3

0.
90

3
13

0.
00

0.
00

45
9

0.
07

84
49

45
9.

07
84

49
45

9.
14

03
21

0.
00

00
62

62
98

45
9

0.
07

84
0

0.
14

0.
02

64
E

05
1-

05
e

3
0.

85
9

52
3

0.
33

0.
00

45
9

2.
40

93
84

46
1.

40
93

84
46

1.
68

94
72

0.
06

18
17

12
58

1
45

9
2.

40
94

0
0.

43
0.

77
01

E
05

1-
05

e
3

0.
90

9
48

01
5

5h
.

0.
89

45
9

12
.8

00
60

8
47

1.
80

06
08

47
2.

85
60

52
0.

92
13

62
39

28
22

46
0

9.
13

29
0

10
6.

49
3.

14
60

E
07

6-
07

s
2

0.
90

3
1

0.
00

0.
00

54
9

0.
00

90
33

54
9.

01
00

33
54

9.
01

56
84

0.
00

00
00

82
9

54
9

0.
00

90
0

0.
03

0.
00

00
E

07
6-

07
s

2
0.

95
3

35
0

0.
16

0.
00

55
0

0.
42

37
25

55
0.

42
37

25
55

0.
60

51
26

0.
02

27
05

63
34

55
0

0.
42

37
0

0.
28

0.
23

39
E

07
6-

07
s

2
0.

90
9

44
37

2.
54

0.
00

55
0

1.
60

30
81

55
1.

60
30

81
55

1.
77

55
32

0.
19

72
13

84
55

55
0

1.
60

31
0

0.
29

0.
70

90
E

07
6-

07
s

2
0.

95
9

47
14

4
5h

.
0.

89
55

0
8.

59
55

11
55

8.
59

55
11

55
9.

24
84

49
2.

08
17

61
91

13
6

55
0

8.
59

55
0

20
.4

3
3.

41
47

E
07

6-
07

s
3

0.
85

3
13

70
2.

04
0.

00
56

8
0.

00
18

91
56

8.
00

18
91

56
8.

00
37

28
0.

00
00

00
47

44
0

56
7

0.
23

71
0

2.
92

0.
00

00
E

07
6-

07
s

3
0.

90
3

12
73

0
5h

.
0.

24
57

0
1.

79
42

71
57

1.
79

42
71

57
2.

39
74

56
0.

00
00

00
35

33
64

57
0

0.
06

26
0

58
.7

8
0.

00
03

E
07

6-
07

s
3

0.
85

9
19

50
0

5h
.

0.
35

57
0

2.
24

71
97

57
2.

24
71

97
57

2.
46

13
63

0.
00

59
96

67
39

40
57

1
0.

92
62

0.
52

3
5

h.
0.

24
83

E
07

6-
07

s
3

0.
90

9
17

77
8

5h
.

0.
92

57
1

5.
21

39
97

57
6.

21
39

97
57

6.
69

35
52

0.
42

01
90

55
96

95
57

1
5.

21
40

1.
06

6
5

h.
1.

98
84

E
10

1-
08

e
2

0.
90

3
1

0.
00

0.
00

64
0

0.
00

22
35

64
0.

00
22

35
64

0.
00

36
75

0.
00

00
00

28
85

64
0

0.
00

22
0

0.
23

0.
00

00
E

10
1-

08
e

2
0.

95
3

30
17

2
5h

.
0.

36
64

3
0.

54
86

75
64

3.
54

86
75

64
3.

71
54

40
0.

00
28

74
21

75
05

64
3

0.
54

87
0.

32
9

5
h.

0.
03

17
E

10
1-

08
e

2
0.

90
9

52
05

2
5h

.
0.

14
64

0
2.

33
36

38
64

2.
33

36
38

64
2.

61
27

66
0.

07
42

50
11

01
06

64
0

2.
33

36
0

44
.3

4
0.

39
34

E
10

1-
08

e
2

0.
95

9
15

48
1

5h
.

1.
36

64
0

10
.2

94
42

6
65

0.
29

44
26

65
1.

45
08

81
1.

46
49

95
16

37
76

64
0

10
.2

94
4

1.
08

3
5

h.
2.

75
07

E
10

1-
08

e
3

0.
85

3
26

9
1.

93
0.

00
65

5
0.

77
74

60
65

5.
77

84
60

65
6.

03
33

73
0.

00
00

00
10

22
9

65
5

0.
77

75
0

0.
75

0.
00

00
E

10
1-

08
e

3
0.

90
3

32
17

21
.5

8
0.

00
65

7
1.

92
16

98
65

8.
92

16
98

65
9.

36
11

85
0.

00
00

00
90

33
5

65
7

1.
92

17
0

17
.5

2
0.

00
02

E
10

1-
08

e
3

0.
85

9
10

89
8

5h
.

0.
41

65
5

7.
29

54
04

66
2.

29
68

62
66

2.
63

56
69

0.
00

04
58

47
19

52
65

7
2.

80
75

0.
16

2
5

h.
0.

12
18

E
10

1-
08

e
3

0.
90

9
11

67
2

5h
.

1.
49

65
7

13
.3

27
25

6
67

0.
32

72
56

67
1.

04
90

59
0.

11
54

45
23

95
45

66
8

4.
02

20
2.

03
9

5
h.

1.
25

79

130



Ta
bl

e
5.

X
–

L
ou

ve
au

x
an

d
Sa

la
za

r-
G

on
zá

le
z

[3
7]

w
ith

∆
=

10
0.

In
st

an
ce

O
ur

re
su

lt
L

ou
ve

au
x

an
d

Sa
la

za
r-

G
on

zá
le

z
[3

7]
In

st
an

ce
V

eh
.

f̄
Sc

en
.

N
od

e
R

un
(m

in
)

G
ap

R
ou

tin
g

R
ec

ou
rs

e
O

pt
R

es
to

ck
C

la
ss

ic
al

L
N

od
e

R
ou

tin
g

R
ec

ou
rs

e
G

ap
R

un
(m

in
)

L

E
03

1-
09

h
2

0.
90

3
16

9
0.

01
0.

00
33

4
0.

03
69

72
33

4.
03

69
72

33
4.

14
76

39
0.

00
39

98
66

9
33

4
0.

03
70

0
0.

01
0.

03
22

E
03

1-
09

h
2

0.
95

3
32

65
0.

37
0.

00
33

4
11

.1
69

26
6

34
5.

16
92

66
35

5.
43

14
92

5.
19

04
93

11
29

33
4

11
.1

69
3

0
0.

01
9.

77
50

E
03

1-
09

h
2

0.
90

9
59

51
1

5h
.

3.
04

33
4

25
.8

55
21

8
35

9.
85

52
18

36
5.

18
69

55
8.

59
82

36
49

89
33

4
25

.8
55

2
0

0.
06

21
.8

76
7

E
03

1-
09

h
2

0.
95

9
74

43
6

5h
.

9.
75

33
4

67
.1

20
80

8
40

1.
12

08
08

41
0.

51
65

74
30

.9
96

01
7

46
71

6
33

4
67

.1
20

8
0

2.
18

55
.7

27
2

E
03

1-
09

h
3

0.
85

3
14

71
0.

23
0.

00
35

8
3.

57
32

17
36

1.
57

32
17

36
5.

68
89

88
0.

00
00

02
52

46
7

35
8

3.
57

32
0

1.
63

0.
00

03
E

03
1-

09
h

3
0.

90
3

38
21

1.
13

0.
00

36
4

0.
45

26
52

36
4.

45
26

52
36

5.
83

96
87

0.
05

04
83

10
10

55
36

4
0.

45
27

0
6.

67
0.

38
27

E
03

1-
09

h
3

0.
85

9
12

71
77

5h
.

3.
74

36
4

23
.8

23
04

3
38

7.
82

30
43

39
4.

81
30

32
3.

14
38

72
54

13
83

36
4

23
.8

23
0

0
15

8.
13

19
.8

21
5

E
03

1-
09

h
3

0.
90

9
78

78
9

5h
.

9.
58

36
6

54
.2

63
84

0
42

0.
26

38
40

43
2.

48
94

93
12

.2
49

43
0

57
50

50
36

4
55

.1
38

4
2.

57
0

5
h.

45
.4

65
5

E
05

1-
05

e
2

0.
90

3
17

0.
00

0.
00

44
1

0.
00

26
20

44
1.

00
26

20
44

1.
00

92
60

0.
00

00
26

27
33

44
1

0.
00

26
0

0.
06

0.
00

24
E

05
1-

05
e

2
0.

95
3

14
76

6
25

.3
4

0.
00

44
1

3.
59

51
78

44
4.

59
51

78
44

7.
82

11
80

0.
71

23
59

28
52

44
1

3.
59

52
0

0.
07

3.
25

11
E

05
1-

05
e

2
0.

90
9

46
24

1
5h

.
2.

29
44

1
16

.7
60

80
8

45
7.

76
08

08
46

0.
82

89
23

3.
38

38
76

14
09

5
44

1
16

.7
60

8
0

0.
43

14
.5

81
5

E
05

1-
05

e
2

0.
95

9
26

84
9

5h
.

7.
07

44
2

51
.9

76
87

8
49

3.
97

68
78

50
0.

61
44

72
18

.7
81

66
3

36
81

84
44

1
52

.5
86

1
0.

53
0

5
h.

44
.9

72
3

E
05

1-
05

e
3

0.
85

3
20

0.
01

0.
00

45
9

0.
06

20
53

45
9.

06
20

53
45

9.
19

90
85

0.
00

00
00

87
71

45
9

0.
00

00
0

0.
32

0.
00

00
E

05
1-

05
e

3
0.

90
3

10
7

0.
03

0.
00

45
9

0.
34

26
15

45
9.

34
26

15
45

9.
95

41
43

0.
00

02
71

87
10

45
9

0.
34

26
0

0.
22

0.
29

06
E

05
1-

05
e

3
0.

85
9

49
37

7
5h

.
1.

66
46

5
9.

69
13

21
47

4.
69

13
21

47
7.

30
49

68
0.

23
23

76
20

15
8

45
9

10
.1

14
8

0
0.

97
8.

47
06

E
05

1-
05

e
3

0.
90

9
27

17
1

5h
.

7.
54

46
5

40
.3

33
81

6
50

5.
33

38
16

51
2.

78
14

98
3.

92
05

72
37

56
07

46
0

40
.6

00
2

0
11

7.
98

34
.6

05
5

E
07

6-
07

s
2

0.
90

3
1

0.
00

0.
00

54
9

0.
04

95
78

54
9.

05
05

78
54

9.
10

70
86

0.
00

00
00

14
33

54
9

0.
04

96
0

0.
06

0.
00

02
E

07
6-

07
s

2
0.

95
3

25
00

5
19

7.
20

0.
00

55
0

2.
76

23
14

55
2.

76
23

14
55

4.
56

59
50

0.
12

90
71

43
44

55
0

2.
76

23
0

0.
17

2.
57

24
E

07
6-

07
s

2
0.

90
9

32
91

4
5h

.
0.

96
55

0
8.

69
57

14
55

8.
69

57
14

56
0.

18
04

79
1.

16
26

83
17

35
5

55
0

8.
69

57
0

0.
91

7.
79

89
E

07
6-

07
s

2
0.

95
9

20
33

2
5h

.
5.

28
55

1
43

.7
66

93
8

59
4.

76
69

38
59

9.
33

77
53

14
.3

37
21

7
20

79
55

7
43

.2
13

2
0

0.
09

37
.5

62
1

E
07

6-
07

s
3

0.
85

3
14

17
3.

89
0.

00
56

7
1.

23
80

07
56

8.
23

80
07

56
9.

33
68

37
0.

00
00

00
90

18
8

56
8

0.
00

98
0

9.
19

0.
00

00
E

07
6-

07
s

3
0.

90
3

15
75

9
5h

.
0.

69
57

4
0.

43
49

85
57

4.
43

49
85

57
4.

92
81

42
0.

00
00

00
47

22
68

57
0

0.
41

41
0

18
9.

78
0.

00
35

E
07

6-
07

s
3

0.
85

9
23

60
1

5h
.

1.
37

57
3

5.
34

75
27

57
8.

34
75

27
57

9.
54

53
48

0.
02

95
57

58
35

00
57

1
3.

08
01

0.
49

6
5

h.
2.

73
16

E
07

6-
07

s
3

0.
90

9
15

35
5

5h
.

5.
61

57
4

31
.4

93
58

6
60

5.
49

35
86

61
0.

69
25

94
2.

00
62

43
31

37
69

57
9

25
.1

06
1

2.
68

7
5

h.
21

.8
72

2

E
10

1-
08

e
2

0.
90

3
1

0.
00

0.
00

64
0

0.
01

33
55

64
0.

01
33

55
64

0.
02

77
18

0.
00

00
00

12
96

64
0

0.
01

34
0

0.
10

0.
00

00
E

10
1-

08
e

2
0.

95
3

16
93

4
5h

.
0.

66
64

5
0.

38
41

35
64

5.
38

41
35

64
5.

69
61

59
0.

01
82

00
17

60
70

64
5

0.
38

41
0.

65
7

5
h.

0.
34

82
E

10
1-

08
e

2
0.

90
9

20
99

5
5h

.
1.

32
64

3
6.

56
08

91
64

9.
56

08
91

65
0.

55
99

98
0.

48
17

34
18

48
80

64
3

6.
56

09
0.

65
4

5
h.

4.
32

75
E

10
1-

08
e

2
0.

95
9

13
66

5
5h

.
4.

65
64

4
38

.2
62

38
8

68
2.

26
23

88
68

6.
04

81
97

10
.5

11
74

8
18

62
10

64
5

35
.4

93
5

1.
46

7
5

h.
30

.2
57

5
E

10
1-

08
e

3
0.

85
3

16
05

5
5h

.
0.

01
65

5
4.

58
65

34
65

9.
58

75
34

66
2.

12
57

02
0.

00
00

00
10

12
56

65
7

0.
00

16
0

45
.6

8
0.

00
00

E
10

1-
08

e
3

0.
90

3
18

44
4

5h
.

0.
55

66
3

0.
34

00
71

66
3.

34
00

71
66

3.
64

46
77

0.
00

00
00

33
47

97
66

1
0.

64
16

0.
33

3
5

h.
0.

00
22

E
10

1-
08

e
3

0.
85

9
13

54
4

5h
.

2.
33

66
4

11
.5

04
96

7
67

5.
50

49
67

67
7.

37
84

63
0.

00
26

95
21

72
34

65
9

16
.5

43
7

2.
87

3
5

h.
1.

33
99

E
10

1-
08

e
3

0.
90

9
13

78
6

5h
.

5.
85

66
0

41
.6

96
02

8
70

1.
69

60
28

70
5.

59
74

80
0.

63
01

27
14

50
40

68
2

16
.3

24
4

4.
21

1
5

h.
13

.8
36

8

131



partial routes. In addition, a general lower bound enhancing the Integer L-shaped al-

gorithm is developed. Using the exact method proposed in this paper, we are able to

optimally solve problems with up to 60 customers and a fleet of four vehicles. It should

be noted that the proposed exact method for the first time is able to solve the VRPSD

instances in which customer demands can follow arbitrary discrete distributions.

The numerical results conducted in this paper show that the resulting routes from

the optimal restocking policy yield a reasonable amount of savings, when compared to

executing the classical policy on the same routes.

The present paper provides a standard procedure to bound the recourse costs asso-

ciated with the optimal recourse policy in the context of the VRPSD. The bounding

procedure proposed in this paper can be further applied to approximate optimal policies

in different contexts like stochastic inventory routing problem which opens different re-

search avenues.
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CHAPTER 6

CONCLUSION

Vehicle routing problem with stochastic demands refers to pickup/delivery routing

problems at operational level of a transportation company. In this variant of the classical

vehicle routing problem, customer demands are only known through probability distri-

butions. In this setting, the actual demand of each customer is revealed upon arriving at

the customer’s location. Therefore, the vehicle, executing a planned route obtained by

forecasted values associated to the probability distributions here the expected demand of

customers, may fail to complete the service a specific customer at which the observed

demand exceeds the residual capacity of the vehicle. This is called route failure. Then,

corrective, i.e., recourse actions must be taken to regain routing feasibility. In the con-

text of VRPSD, recourse actions are in the form of returning trips to the depot location

in order to replenish the vehicle capacity. To regain routing feasibility where a route fail-

ure occurred, the vehicle can perform a back-and-forth trip to the depot, then completes

the service and continues to the next customer. In an anticipation of future failures, the

vehicle can execute a preventive return whenever the residual capacity after serving the

current customer falls below a threshold value. To model the problem, a recourse pol-

icy which is a full prescription to execute a set of determined recourse actions must be

designed.

The efficiency of a recourse policy depends on several criteria as stated in the follow-

ing points; 1) flexibility to perform diverse recourse actions, 2) diversity in operational

and governing rules to perform recourse actions, 3) simplicity to understand and ex-

ecute for the drivers, 4) preserving customer satisfactory, etc. In its broadest picture,

this dissertation considers the mentioned points to design efficient and practical recourse

policies.

The first paper focused on designing recourse policies which implement proactive

recourse actions in the static fashion. We particularly introduced the concept of a rule-

based recourse policy for the VRPSD and provided its formulation. The rule-based



policy is defined through the thresholds based on 1) the vehicle capacity, 2) the expected

demand of next customer, and 3) the total expected demand of unvisited customers. We

note that we were the first to develop an exact solution method (the integer L-shaped al-

gorithm) to solve the VRPSD under the volume rule-based recourse policies. To enhance

the efficiency of the proposed algorithm, we developed various bounding procedures to

improve the global lower bounding schemes. Our numerical experiments showed that the

proposed volume-based policies outperform the classical policy, in reducing the number

of route failures and the total costs. The proposed solution approach was able to effi-

ciently solve a wide range of problems, with varying size and different filling rates.

The second part of this dissertation devoted to introduce a mixed recourse policy, for

the first time, in the context of the VRPSD. Such mixed recourse policy combines the risk

of failure and the distances to travel to govern the execution of recourse actions. Using

the proposed risk measure, the driver replenishes the vehicle capacity, before visiting the

next customer, only if the risk of the route failure is more than a preset risk threshold.

Also, the driver will proceed the planned route whenever the risk of failure at the next

customer is too low. Otherwise, when the risk of failure is neither too high nor too

low, we employ a distance measure. We redeveloped the integer L-shaped algorithm

to solve the VRPSD under the mixed recourse policy. To assess the effectiveness of

the proposed method as well as the quality of the mixed recourse policy, we conducted

an extensive computational experiments. We observed that our solution method is able

to solve problems with up to 60 customers and a fleet of four vehicles to optimality.

Moreover, the result clearly showed that the mixed policy presented in the second paper

reduces the expected number of route failures.

The third part of this dissertation examined the optimal restocking policy in the

VRPSD context. We modeled the underlying multi-VRPSD under an optimal restocking

policy. We then proposed an an exact algorithm to solve the VRPSD, thus resulting in

solutions that are optimal with respect to routing and restocking decisions. A successive

approximation scheme, employed in the L-shaped algorithm, is devised to approximate

the expected recourse cost under an optimal restocking policy. Then, a valid general

lower bound is established to further enhance the overall branch-and-cut procedure. The
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numerical experiments showed that solving the VRPSD under the optimal restocking

policy provides significant improvements in the total cost comparing with the classical

recourse.

The integer L-shaped algorithm as a general B&C procedure must employ bounding

procedures to tighten the optimality gap. The optimality gap in VRPSD is inherently

wider than CVRP because of expected recourse cost incurred in the objective function

in the VRPSD. It should be noted that the expected recourse cost is only bounded by the

general lower bound. Then, the integer L-shaped algorithm can turn to an enumeration

procedures. Therefore, there is a need to provide various bounding procedures helping

to efficiently exploit quality solutions by tightening the optimality gap. In general we

developed several bounding procedures which enhance the integer L-shaped algorithm

when tackling the VRPSD under various recourse policies. To our best knowledge,

approximating the expected recourse cost when customer demands follow general dis-

crete distributions and presenting a general lower bound to initially bound the recourse

function is proposed for the first time. It should be noted that LBF cuts are the only

constraints which enable us to tighten the optimality gap and avoid enumeration.

6.1 Future works and perspectives

We conclude this dissertation by drawing avenues for future researches. Future stud-

ies can be grouped in the three following directions:

1. As mentioned in Chapter 1, in the present research we aimed at designing effi-

cient recourse policies to solve underling VRPSD instances exactly. Although

the integer L-shaped algorithm redeveloped in this paper is able to optimally

solve instances up to 60 customers being served by 4 vehicles and 100 customers

with 3 vehicles, designing sophisticated heuristics and meta-heuristics solution

framework to tackle larger problems is of interest. It should be noted that few re-

search works are provided to solve the multi-VRPSD using heuristics and meta-

heuristics solution techniques.

2. Overall, three recourse policies are examined in this research associated to the
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VRPSD context. Using various recourse policies examined in the current re-

search, further work can aim at designing efficient recourse policies for several

stochastic optimization problems like the VRP with stochastic travel and service

times, VRP with stochastic demands and customers, multi-compartment VRPSD,

stochastic inventory problems, etc.

3. In this dissertation, various bounding procedures by approximating (providing

valid lower bounds) the expected recourse cost are proposed. The quality of

LBF cuts profoundly depend on the mentioned valid lower bounds. Although

by improving the quality of such valid lower bounds the quality of LBF cuts

will be improved, the efficiency of overall B&C can be decreased. The further

investigation can be focused on the tradeoff between the quality of LBF cuts and

the efficiency of the integer L-shaped algorithm.

4. In this dissertation we developed specific approximation techniques to compute

various valid lower bounds of the expected recourse cost associated to the solu-

tions with certain structures. Such approximation techniques can be applied to

approximate various recourse policies in different fields of research in order to

provide valid lower bounds which speedup the tightening the optimality gap.
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Appendix I

Performance of All Three Papers

The Table I.I present overall performance of all three papers in the dissertation, con-

taining the following notations: 1) the “opt. sol.” columns present the percentage of

instances that were solved to optimality in each policy; 2) the “time” columns refer to

the average running times in seconds that were needed by the algorithm to solve one

instance to optimality; 3) the “gap” columns present the average optimality gap obtained

by the algorithm over all instances solved for each policy.
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