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Résumé 

Les transporteurs membranaires sont des éléments importants dans le devenir, l’efficacité, et la 

toxicité du médicament. Ils influencent la pharmacocinétique et la pharmacodynamie de ces 

derniers. Plusieurs interactions médicamenteuses observées cliniquement sont attribuables à la 

fois aux enzymes responsables du métabolisme des médicaments et aux transporteurs 

membranaires. Il est connu qu’une variabilité existe entre différents individus dans la réponse 

à un médicament et les polymorphismes génétiques retrouvés dans les gènes codant pour les 

transporteurs membranaires peuvent partiellement expliquer cette variabilité.  

 

OATP1A2 est un transporteur membranaire exprimé sur des organes importants, comme le 

cerveau et le rein. Plusieurs médicaments utilisés en clinique sont des substrats d’OATP1A2 et 

l’expression localisée de ce transporteur suggère un rôle important dans le devenir du 

médicament. Donc, mon projet de doctorat consistait à caractériser l’activité d’OATP1A2 en 

relation avec ses substrats et inhibiteurs, et de plus, à évaluer l’impact de différents variants 

génétiques d’OATP1A2 sur leur transport.  

 

Dans le premier article, la rosuvastatine a été utilisée comme substrat-type pour étudier le 

transport d’OATP1A2. Les expériences ont été menées en introduisant la rosuvastatine en 

compétition avec différent β-bloqueurs, une classe de médicaments rapportée dans la 

littérature comme substrats d’OATP1A2. Parmi les β-bloqueurs évalués, le carvédilol était 

l’inhibiteur le plus puissant. Dans la deuxième partie de l’étude, des médicaments ayant une 

structure similaire au carvédilol, tels que les antidépresseurs tricycliques, ont été évalués quant 

à leur potentiel d’inhibition sur OATP1A2. Une relation structure-activité a été définie à l’aide 

de ces données. Nous avons démontré que des composés tricycliques avec une courte chaîne 

aliphatique pouvaient inhiber OATP1A2.  
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Dans le deuxième article, OATP1A2 a été étudié en considérant son expression et son rôle au 

sein de la barrière hémato-encéphalique (BHE). Des études précédentes ont démontré 

qu’OATP1A2 est exprimé sur la membrane luminale des cellules endothéliales formant la 

BHE. Nos données démontrent que les triptans, une classe de médicaments couramment 

utilisées pour traiter la crise migraineuse, sont des substrats d’OATP1A2 et que les composés 

tricycliques identifiés comme inhibiteurs d’OATP1A2 dans nos études précédentes peuvent 

inhiber le transport des triptans par OATP1A2. Ces résultats sont importants puisque: 1) il a 

été suggéré que les triptans peuvent agir au niveau du système nerveux central en se liant aux 

récepteurs trouvés sur les neurones centraux; 2) comme les triptans sont des molécules 

hydrophiles, un mécanisme de transport facilité est nécessaire pour qu’ils pénètrent la BHE et 

OATP1A2 pourrait être l’élément clé; 3) l’inhibition d’OATP1A2 par les composés 

tricycliques pourrait limiter l’accès des triptans à leur site d’action. 

 

Le troisième article caractérise l’activité associée à deux variants génétiques d’OATP1A2 

(OATP1A2*2 et *3). Leur capacité à transporter les triptans et leur potentiel d’inhibition par 

les médicaments tricycliques ont été évalués. Des résultats supplémentaires caractérisant 

OATP1A2, mais sans liens directs avec les trois articles, seront présentés en annexe.  

 

Dans l’ensemble, les résultats présentés dans cette thèse servent à caractériser le transporteur 

membranaire OATP1A2 en relation avec ses substrats et inhibiteurs, et en fonction de ses 

variants génétiques.  

 

Mots-clés : Transporteurs de médicaments, OATP1A2, interactions médicamenteuses, 

triptans, barrière hémato-encéphalique, rosuvastatine, antidépresseurs tricycliques, carvédilol, 

polymorphisme d’un seul nucléotide. 
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Abstract 

Drug transporters are important determinants in drug disposition, efficacy, and toxicity. They 

influence the pharmacokinetics and pharmacodynamics of drugs. Several clinically-observed 

drug-drug interactions are mediated through drug metabolizing enzymes and drug transporters. 

It is well known that there is an interindividual variability in the response to medications and 

polymorphisms found in genes encoding for drug transporters partially account for it.  

 

OATP1A2 is a membrane drug transporter expressed on important organs, such as the brain 

and the kidney. A wide spectrum of drugs used in the clinic are substrates of OATP1A2. Its 

localisation suggests an essential role in drug disposition. Thus, my PhD project consisted of 

characterizing the activity of OATP1A2 in regards to its substrates, inhibitors, and different 

protein variants due to genetic polymorphisms.  

 

In the first article, rosuvastatin was used as the probe substrate to study OATP1A2 transport 

activity. Experiments were conducted by putting rosuvastatin in competition with different β-

blockers, a class of drugs known in the literature to be transported by OATP1A2. One of the 

drugs evaluated, carvedilol, inhibited OATP1A2 with much more potency than the others. In 

the second part of the study, drugs with a structure similar to carvedilol, such as tricyclic 

antidepressants, were tested for their potential to inhibit OATP1A2. A structure-activity 

relationship was defined using the data. It was demonstrated that drugs composed of a tricyclic 

ring with a short aliphatic amine chain were potent OATP1A2 inhibitors. 

 

In the second article presented, OATP1A2 was studied in the context of its localization at the 

blood-brain barrier (BBB). OATP1A2 expression at the luminal membrane of the endothelial 

cells making up the BBB was demonstrated in the literature. Our article showed that triptans, a 

class of commonly used anti-migraine drugs, were OATP1A2 substrates. The tricyclic drugs 

previously evaluated were shown to potently inhibit triptan transport through OATP1A2. 
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These findings are important for three reasons: 1) it has been postulated that triptans may act 

at the central nervous system by binding to receptors found on central neurons; 2) as triptans 

are hydrophilic molecules, a facilitated transport mechanism is required for them to penetrate 

the BBB and OATP1A2 may be the key player; and 3) the inhibition of OATP1A2 by the 

tricyclic drugs may limit the entrance of triptans to their site of action.  

 

The third article characterized the transport activity of two OATP1A2 protein variants 

(OATP1A2*2 and *3). Their capacities to transport triptans and their potential of being 

inhibited by tricyclic drugs were evaluated. Additional data characterizing OATP1A2 but 

considered out of the scope of the three articles will be presented in appendices. 

 

In overall, the central theme of this thesis looks into the characterization of the OATP1A2 

membrane drug transporter in regards to its substrates, inhibitors, and proteins variants.  

 

Keywords: Drug transporters, OATP1A2, drug-drug interactions, triptans, blood-brain barrier, 

rosuvastatin, tricyclic antidepressants, carvedilol, single-nucleotide polymorphisms. 
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Preface 

As we are coming to understand that a drug’s pharmacokinetic and pharmacodynamic profile 

depends not only on drug metabolizing enzymes but also on its interaction with specific drug 

transporters in the body, we are moving forward into a new era in drug development where 

smarter and more specific strategies will be developed. Indeed, research in the drug transporter 

field will help us understand how to specifically target a drug to its active site, ameliorating its 

pharmacokinetic profile, increasing efficacy, reducing toxicity and adverse events.  

 

Characterizing drug transporters will help in understanding the interindividual variability in 

the response to drugs. Single nucleotide polymorphisms and drug-drug interactions mediated 

via transporters may modify the pharmacokinetic profile of drugs; thus, modifying the drug 

response. More and more examples of variability in drug disposition due to the activity of drug 

transporters are being demonstrated in the literature. To move forward in understanding drug 

response variability mediated by drug transporters, it is crucial to investigate the fundamental 

characteristics of known drug transporters. The work presented in this thesis aimed at 

characterizing the OATP1A2 drug transporter.  

 

My thesis will first introduce the broad family of transporters, and then it will focus on the 

OATP1A2 drug transporter. Its potential role at the blood-brain barrier will be presented. The 

concept of how drug-drug interactions and single-nucleotide polymorphisms found in drug 

transporters influence the intervindividual variability in the response to drugs will be 

presented. The second section contains three scientific articles representing the work done 

during my doctorate. For each article, the study objectives will be listed, followed by a short 

introduction, then the article will be presented and discussed. Additional data generated 

following the theme of this thesis but considered out of the scope of the three articles will be 

presented in appendices.  
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The first two articles characterize the OATP1A2 transporter in regards to its various substrates 

and inhibitors. The second article places OATP1A2 in the context of the blood-brain barrier 

and CNS-active drugs were evaluated. The articles are: 1) Effects of β-blockers and tricyclic 

antidepressants on the activity of human organic anion transporting polypeptide 1A2 

(OATP1A2) and 2) Effects of tricyclic compounds on the transport of anti-migraine triptans 

through human organic anion transporting polypeptide 1A2 (OATP1A2). The third article 

investigates two common protein variants of OATP1A2 for their transport activity: Impact of 

single nucleotide polymorphisms found in human organic anion transporting polypeptide 1A2 

(OATP1A2) on the transport of triptans. 

 

Finally, my thesis ends with an overall discussion on the future directions to take in 

understanding the role of OATP1A2 at the blood-brain barrier and wraps up with a short 

conclusion. 
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SECTION 1: INTRODUCTION 

 



 

2 

 

1.1 TRANSPORTERS 

1.1.1 GENERAL INTRODUCTION 

Transporters are transmembrane proteins that span biological membranes and mediate the 

translocation of substrates across membranes. At the plasma membrane, they control the 

uptake or efflux of endogenous compounds (sugars, amino acids, nucleotides, and ions) and 

xenobiotics in and out of the cells. On membranes forming subcellular organelles, they 

regulate entrance of substrates into organelles. They are classified into two superfamilies: 1) 

solute carrier (SLC) and 2) ATP-binding cassette (ABC). In humans, the SLC superfamily is 

composed of 395 members divided into 52 families (SLC1 – SLC52) based on the number of 

α-helices and sequence homology (Table 1) [1]. SLCs that function by moving solutes down 

their concentration gradient across membranes using the electrochemical potential difference 

as the driving force are classified as facilitated transporters. SLCs transporting substrates 

against their concentration gradient using the ion gradient, such as sodium or proton, 

generated by ATP-dependent pumps are classified as secondary-active transporters. SLCs 

using the gradient generated by secondary-active transporters to function are classified as 

tertiary-active transporters. The ABC superfamily is composed of 49 members divided into 

seven families (ABCA – ABCG) (Table 2). ABC transporters use the energy of adenosine 

triphosphate (ATP) hydrolysis to move molecules against their concentration gradient and 

they are also classified as active transporters.  
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Table 1: List of the 52 SLC families.  

The total numbers of members in each family classified in 2004 and in 2013 are shown on the 

right. The families known to transport drugs are shown in boxes.  Table adapted from Hediger 

et al. (Mol Aspects Med 2013). 

The HGNC Solute Carrier Family Series Total 2004 Total 2013 

SLC1: The high affinity glutamate and neutral amino acid transporter family 7 7 

SLC2: The facilitative GLUT transporter family 14 14 

SLC3: The heavy subunits of the heteromeric amino acid transporters 2 2 

SLC4: The bicarbonate transporter family 10 10 

SLC5: The sodium glucose cotransporter family 8 12 

SLC6: The sodium- and chloride-dependent neurotransmitter transporter family 16 21 

SLC7: The cationic amino acid transporter/glycoprotein-associated amino-acid transporter family  14 14 

SLC8: The Na+/Ca2+ exchanger family  3 3 

SLC9: The Na+/ H+ exchanger family 8 13 

SLC10: The sodium bile salt cotransport family 6 7 

SLC11: The proton coupled metal ion transporter family 2 2 

SLC12: The electroneutral cation-Cl cotransporter family 9 9 

SLC13: The human Na+-sulfate/carboxylate cotransporter family 5 5 

SLC14: The urea transporter family 2 2 

SLC15: The proton oligopeptide cotransporter family 4 5 

SLC16: The monocarboxylate transporter family 14 14 

SLC17: The vesicular glutamate transporter family 8 9 

SLC18: The vesicular amine transporter family 3 4 

SLC19: The folate/thiamine transporter family 3 3 

SLC20: The type III Na+-phosphate cotransporter family 2 2 

SLC21/SLCO: The organic anion transporting family 11 12 

SLC22: The organic cation/anion/zwitterion transporter family 18 23 

SLC23: The Na+-dependent ascorbic acid transporter family 4 4 

SLC24: The Na+/(Ca2+–K+) exchanger family 5 6 

SLC25: The mitochondrial carrier family 27 53 

SLC26: The multifunctional anion exchanger family 10 11 

SLC27: The fatty acid transport protein family 6 6 

SLC28: The Na+-coupled nucleoside transport family 3 3 

SLC29: The facilitative nucleoside transporter family 4 4 

SLC30: The zinc efflux family 9 10 

SLC31: The copper transporter family 2 2 

SLC32: The vesicular inhibitory amino acid transporter family 1 1 

SLC33: The Acetyl-CoA transporter family 1 1 

SLC34: The type II Na+-phosphate cotransporter family 3 3 

SLC35: The nucleoside-sugar transporter family 17 30 
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SLC36: The proton-coupled amino acid transporter family 4 4 

SLC37: The sugar-phosphate/phosphate exchanger family 4 4 

SLC38: The System A & N, sodium-coupled neutral amino acid transporter family 6 11 

SLC39: The metal ion transporter family 14 14 

SLC40: The basolateral iron transporter family 1 1 

SLC41: The MgtE-like magnesium transporter family 3 3 

SLC42: The Rh ammonium transporter family (pending) 3 3 

SLC43: Na+-independent, system-L like amino acid transporter family 2 3 

SLC44: Choline-like transporter family  5 

SLC45: Putative sugar transporter family  4 

SLC46: Folate transporter family  3 

SLC47: Multidrug and Toxin Extrusion (MATE) family  2 

SLC48: Heme transporter family  1 

SLC49: FLVCR-related transporter family  4 

SLC50: Sugar efflux transporters  1 

SLC51: Transporters of steroid-derived molecules  2 

SLC52: Riboflavin transporter family  3 

Total 298 395 

 

Table 2: List of ABC families.  

The total numbers of members in each family are shown on the right. The families known to 

transport drugs are shown in boxes. Table adapted from Vasiliou et al. (Hum. Genomics 

2009). 

Subfamily name Aliases Number of genes 

ABCA ABC1 12 

ABCB MDR 11 

ABCC MRP 13 

ABCD ALD 4 

ABCE OABP 1 

ABCF GGN20 3 

ABCG White 5 

Total  49 
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As the transporter field is continuously growing, the gene nomenclature system was developed 

and approved by the HUGO Gene Nomenclature Committee to facilitate gene classification 

[2]. The SLCs genes are named using the root symbol SLC, followed by a numeral to indicate 

the family (e.g., SLC1, solute carrier family 1), followed by a letter to indicate the subfamily 

(e.g. SLC1A), and ending with a number to indicate the individual transporter gene (e.g. 

SLC1A1). SLC transporters are classified in the same family based on their biochemical 

function and when their amino acid sequence has at least 20% identity [3]. The SLC21 family 

is an exception to this classification method because this research field has evolved rapidly. 

Hagenbuch and Meier have developed an updated evolutionary-based nomenclature system in 

order to accommodate a species-independent classification system with less ambiguity [4]. 

SLC21 is replaced by the root symbol SLCO (Slco for other animal species) followed by a 

number, a letter (capital for human genes and small letter for other animal species), and 

another number to designate the family, subfamily, and individual transporter gene, 

respectively (e.g. SLCO1A2 for humans and Slco1a2 for animals). Members with more than 

40% amino acid sequence identity are grouped into the same family and those with more than 

60% amino acid sequence identity are grouped into the same subfamily.  

 

Whereas for ABC genes, the nomenclature is based on divergent evolution from a common 

ancestor and sequence similarity [5]. Family members share 30-50% sequence homologies [6]. 

They are named by the root symbol ABC, followed by a letter (A to G) to designate the family, 

and a number to designate individual members [2]. In general, the ABC transporter consists of 

two nucleotide binding domains (NBDs), also known as ATP binding cassettes, and two 

transmembrane domains (TMDs) [5]. In order to power translocation of substrates against 

their gradient, the two NBDs have to work together to bind and hydrolyse ATP molecules. 

Several highly conserved motifs, crucial for the ATPase activity, are found in the NBD: 

Walker A and Walker B sequences, the ABC signature motif, the H loop and the Q loop. The 

TMD, made up of several hydrophobic α-helices, is responsible for substrate recognition and 

translocation. Some ABC proteins (e.g. BCRP) are considered as “half-transporters” as their 

gene encode a single NBD and a single TMD. To gain functionality, the protein subunits need 

to homodimerize, heterodimerize or oligomerize.  
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1.1.2 DRUG TRANSPORTERS 

Drug transporters are important determinants in drug absorption, distribution, organ-specific 

targeting, metabolism, excretion, efficacy, and toxicity. It is evident that drug transporters 

influence the pharmacokinetics and pharmacodynamics of a drug. Among the growing 

numbers of transporters, only a few members, organized in 13 families (Table 3), have been 

identified as essential in drug disposition [7].  

 

Table 3: List of transporters involved in the disposition of drugs.  

Table adapted from You & Morris (2014). 

Gene family Gene name Protein name 
SLC22 SLC22A1 OCT1 
 SLC22A2 OCT2 
 SLC22A3 OCT3 
 SLC22A4 OCTN1 
 SLC22A5 OCTN2 
 SLC22A21 OCTN3 
 SLC22A16 CT2 
 SLC22A6 OAT1 
 SLC22A7 OAT2 
 SLC22A8 OAT3 
 SLC22A11 OAT4 
 SLC22A10 OAT5 
 SLC22A20 OAT6 
 SLC22A12 URAT1 
SLC21/SLCO SLCO1A2 OATP1A2 
 SLCO1B1 OATP1B1 
 SLCO1B3 OATP1B3 
 SLCO1C1 OATP1C1 
 SLCO2A1 OATP2A1 
 SLCO2B1 OATP2B1 
 SLCO3A1 OATP3A1 
 SLCO4A1 OATP4A1 
 SLCO4C1 OATP4C1 
 SLCO5A1 OATP5A1 
 SLCO6A1 OATP6A1 
SLC15 SLC15A1 PEPT1 
 SLC15A2 PEPT2 
 SLC15A4 PHT1 



 

7 

 

 SLC15A3 PHT2 
SLC16 SLC16A1 MCT1 
 SLC16A7 MCT2 
 SLC16A8 MCT3 
 SLC16A3 MCT4 
SLC5 SLC5A8 SMCT1 
 SLC5A12 SMCT2 
SLC28 SLC28A1 CNT1 
 SLC28A2 CNT2 
 SLC28A3 CNT3 
SLC29 SLC29A1 ENT1 
 SLC29A2 ENT2 
 SLC29A3 ENT3 
 SLC29A4 ENT4 
SLC47 SLC47A1 MATE1 
 SLC47A2 MATE2 
SLC51 SLC51A OST-α 
 SLC51B OST-β 
SLC10 SLC10A1 NTCP 
 SLC10A2 ASBT 
ABCB ABCB1 MDR1/P-gp 
 ABCB11 BSEP 
ABCC ABCC1 MRP1 
 ABCC2 MRP2 
 ABCC3 MRP3 
 ABCC4 MRP4 
 ABCC5 MRP5 
 ABCC6 MRP6 
 ABCC10 MRP7 
 ABCC11 MRP8 
 ABCC12 MRP9 
ABCG ABCG2 BCRP/ABCG2 

 

While drug transporters are found on every tissue of the human body, they are particularly 

highly expressed on the epithelia of tissues functioning as barriers for drug entry such as the 

intestine, liver, kidney, blood-brain barrier (BBB), and placenta. This expression pattern 

corresponds well to their function as cells gatekeepers. Epithelial cells are typically polarized 

into apical and basolateral membranes. For example, the brain capillary endothelial cells that 

make up the BBB are polarized into apical/luminal and basolateral membranes which 

correspond to the side facing the blood and the central-nervous system (CNS), respectively. 

The expression pattern of drug transporters usually differs on the two membranes. The 

polarization is essential for directing substrates towards the same direction. In addition, their 



 

8 

 

presence on plasma membranes of epithelial cells can cause variability in drug concentrations 

between the plasma and the target organ. 

 

Drug transporters represent one of the rate-limiting steps in drug disposition. In drug 

development, studies have predominantly focused on transporters expressed on the intestine, 

liver, kidney, and BBB as they are the most common sites of drug-drug interactions [8]. 

 

Irregularity in transporter expression and activity may lead to inter-individual variability in the 

response to drugs. Drug-drug interactions (DDIs) and genetic polymorphisms on drug 

transporters can contribute to this variability. Due to the emerging role that transporters play in 

DDIs, experts from academia, industry, and the US Food and Drug Administration (FDA) 

were united to form the International Transporter Consortium (ITC) in 2007. Their mission is 

to determine which transporter is clinically important in DDIs, establish standardized 

protocols for the in vitro and in vivo study of DDIs, and establish a consensus on current 

knowledge of clinically relevant drug transporters [9]. They generate decision trees that guide 

industry into when to perform clinical studies for DDI with new molecular entities. Up to now, 

the ITC suggested that substrates of multidrug resistance protein 1 (MDR1; also known as P-

glycoprotein (P-gp) or ABCB1), organic anion-transporting polypeptide 1B1 (OATP1B1), 

organic anion-transporting polypeptide 1B3 (OATP1B3), organic anion transporter 1 (OAT1), 

organic anion transporter 3 (OAT3), organic cation transporter 2 (OCT2), breast cancer 

resistance protein (BCRP; also known as ABCG2) should be evaluated further. These 

recommendations are based on the observation that clinically significant interactions were 

observed with drugs that are substrates of these transporters. This list will most likely expand 

as more studies are being done in the field of transporter related DDI.  

1.1.3 ENDOGENOUS ROLES OF DRUG TRANSPORTERS 

Transporters perform many physiological roles as they have endogenous substrates, such as 

metabolites, nutrients, antioxidants, gastrointestinal microbiome products, bile salts, neuro-

active molecules, hormones and signalling molecules [10]. Some transporters are key players 
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in certain metabolic processes, such that sequence variants in the genes encoding these 

transporters can lead to diseases. For example, ABCC2 (MRP2) located on the hepatocyte 

canalicular membrane is the main efflux transporter for the elimination of bilirubin conjugates 

into the bile [7]. Mutations that abolish the cell surface expression or activity of ABCC2 lead 

to Dubin-Johnson syndrome which is characterized by a dark liver and an increase in 

conjugated bilirubin in the blood [11, 12]. OATP1B1 and OATP1B3 transporters, located on 

the sinusoidal membrane of hepatocytes, are responsible for the uptake of conjugated bilirubin 

from the blood. Mutations causing complete loss of both transporters result in Rotor 

syndrome, a rare benign autosomal recessive disease, characterized by conjugated 

hyperbilirubinaemia and jaundice [13]. In contrast to patients with Dubin-Johnson syndrome, 

patients with Rotor syndrome do not have a pigmented liver because the conjugated bilirubin 

cannot re-enter the hepatocyte through OATP1B1 nor OATP1B3 [14].  

 

Drug transporters are also implicated in other diseases and their expression is altered in 

various diseased states. For example, several members of the OATPs are up- or downregulated 

in different cancers and it has been suggested that their expression state might affect cancer 

development [15]. SLCO1A2 mRNA expression is upregulated 8 times in breast cancerous 

tissue compared to adjacent normal tissue [16]. OATP1A2 protein expression has been 

confirmed in breast carcinoma cells from patients but not in nonneoplastic epithelial cells, 

stroma, or adipocytes adjacent to the tumour [17]. It has been suggested that OATP1A2 on 

breast cancer cells contribute to the hormone-induced progression of breast cancer since 

steroid hormones are substrates of this transporter. Some ABC transporters are also 

overexpressed in tumors, and they may contribute to resistance to chemotherapy. In fact, 

repeated administration of anti-cancer drugs is associated with chemotherapy resistance and 

treatment failure [18]. Once drug resistance has developed, the tumor is typically cross-

resistant to multiple drugs even if their structures are unrelated. Overexpression of ABC 

transporters, such as P-gp/MDR1, BCRP/ABCG2, and members of the MRP, contributing to 

pumping drugs out of the cancerous cells is the main reason for multi-drug resistance [19].  
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1.2 OATP1A2 

1.2.1 OATP1A2 CHARACTERISTICS 

OATP1A2 (previously known as OATP-A, OATP1, and OATP) is a member of the 

SLC21/SCLO family. It is made up of 12 transmembrane domains with a large fifth 

extracellular loop and both the C- and N-termini oriented towards the cytoplasmic space. N-

glycosylation sites, important for targeting the protein to the plasma membrane, are found in 

extracellular loops 2 and 5 [20]. OATP1A2 exists in unglycosylated and several glycosylated 

forms and molecular weights between 60 and 150 kDa have been found [21-23]. The OATP 

proteins are distinguished by their signature amino acid sequence (D-X-RW-(I,V)-GAWW-X-

G-(F,L)-L) which is found between extracellular loop 3 and the transmembrane domain 6 for 

OATP1A2 [24]. Transport through OATP1A2 is considered to be bidirectional as it moves 

substrates down its gradient across the membrane regardless of the orientation. It has been 

suggested that the OATPs function like a rocker-switch type of mechanism to translocate 

substrates through a central pore [25]. The mechanism of transport is recognized to be sodium-

independent but the driving force is still unknown. 

 

OATP1A2 mRNA expression is nearly ubiquitous. It has been detected at various expression 

levels in the human lung, brain, intracranial artery, optic nerve, retina, spinal cord, prostate, 

testis, lymph node, pituitary gland, duodenum, esophagus, kidney, liver, spleen, tonsil, [26-

28]. However, mRNA is not necessarily representative of protein expression. OATP1A2 

protein expression, confirmed by either immunofluorescence or Western blot, is found on the 

luminal membrane of the brain capillary endothelial cells which make up the blood-brain 

barrier, apical membranes of cholangiocytes in the liver, apical membrane of the distal 

nephrons in the kidney, the apical membrane of enterocytes in the duodenum, apical cell 

layers of the urothelium, placenta, red blood cells, brain neurons, and retina [2, 21-23, 27, 29-

31].  
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A lot of attention has been drawn to OATP1A2 due to its postulated location on the intestine 

and its possible role in mediating drug absorption. Many food-drug interactions were 

attributed to the inhibition of intestinal OATP1A2 by flavonoids found in fruits and 

vegetables. It has been demonstrated that fexofenadine bioavailability is decreased when co-

administered with fruit juices (grapefruit, apple, orange) in healthy volunteers and in vitro data 

supports the role of OATP1A2 in mediating this interaction [29, 32, 33]. Misaka et al. 

demonstrated that green tea reduced plasma concentrations of the β-blocker nadolol and their 

findings are also supported by in vitro results [34, 35]. However, all this excitement has 

declined lately because recent studies could not detect OATP1A2 in the intestine by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) nor the mRNA transcript [36, 37]. 

Thus, OATP1A2 expression in the small intestine remains controversial. The previously 

observed food-drug interaction may be attributed to the inhibition of another intestinal 

transporter, such as OATP2B1. Indeed, grapefruit juice, orange juice, and their constituents 

can also inhibit OATP2B1 [38].  

 

OATP1A2 transports a wide spectrum of substrates including endogenous molecules, 

xenobiotics, and clinically relevant drugs. A list of currently known OATP1A2 substrates and 

inhibitors classified into categories is presented in Table 4.  

 

Table 4: List of OATP1A2 substrates and inhibitors.  

Adapted from Franke et al. (Pharmacogenomics 2009) [39]. 

Category Substrates Inhibitors Reference 

Bile salts Taurocholate, cholate, 

glycocholate, 

taurochenodeoxycholic acid 

(TCDCA), 

tauroursodeoxycholic acid 

 [28, 40] 
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(TUDCA) 

Hormones Estrone-3-sulfate (E3S), 

estradiol 17β-glucuronide 

(E217βG), 

dehydroepiandrosterone 

(DHEAS), triiodothyronine 

(T3), thyroxine (T4), 

Steroid hormones [23, 40, 41] 

Peptides Deltorphin II, [D-

Pen2,5]enkephalin (DPDPE), 

BQ-123, substance P, 

vasoactive intestinal peptide 

 [21, 30, 40] 

Organic 

anions 

Bromosulfophthalein (BSP), 

sodium fluorescein, all-

trans-retinol 

 [2, 28, 40, 42] 

Organic 

cations 

N-methyl-quinine, N-

methyl-quinidine, APD-

ajmalinium,  

 [43] 

Drugs Imatinib, quinine, 

fexofenadine, methotrexate, 

atorvastatin, pitavastatin, 

pravastatin, rosuvastatin, 

rocuronium, celiprolol, 

acebutolol, atenolol, 

nadolol, sotalol, labetalol, 

EDDP, docetaxel, 

mirabegron, glibenclamide, 

triptans (almotriptan, 

eletriptan, frovatriptan, 

rizatriptan, sumatriptan, 

zolmitriptan), aliskiren, 

Chloroquine, 

hydroxychloroquine, 

multikinase inhibitors 

(lapatinib, bosutinib, 

cediranib, afatinib, erlotinib, 

foretanib, gefitinib, 

nilotinib, pelitinib, sunitinib, 

vandetanib), rifampicin, 

clarithromycin, everolimus, 

sirolimus, tacrolimus, 

cyclosporine 

[26, 27, 31, 41, 

43-63] 
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tebipenem pivoxil, 

levofloxacin, trospium 

chloride, doxorubicin 

Toxins Ouabain, microcystin  [40, 64] 

Eicosanoids Prostaglandin E2 (PGE2)  [40] 

Flavonoids  Naringin, hesperidin, 

apigenin, kaempferol, 

quercetin, epicatechin 

gallate, epigallocatechin 

gallate  

[29, 34, 35, 65] 

 

OATP1A2 activity is modulated by different proteins. The chaperon proteins PDZK1 and 

NHERF1 enhance OATP1A2 stability at the plasma membrane and decrease the transporter 

internalization [66]. Post-translational modifications of OATP1A2 regulate its activity. 

Phosphorylation by protein kinase C or casein kinase 2 increases OATP1A2 internalization 

through clathrin mediated endocytosis [67, 68]. Five putative N-glycosylation sites were 

identified in OATP1A2 and such modification targets the transporter to the plasma membrane 

[23]. The transporter is also regulated at the transcriptional level. It has been shown that the 

vitamin D receptor and the xenobiotic sensor pregnane X receptor (PXR) upregulate the 

transcription of SLCO1A2 gene [16, 69].  

 

Several animal transporters share a certain degree of homology with the human OATP1A2. 

Bovine Oatp1a2 share 83% homology with its human counterpart but the bovine protein 

differs with its 11 predicted transmembrane domains and multiple binding sites [70-72]. Five 

rat proteins (Oatp1a1, Oatp1a3, Oatp1a4, Oatp1a5, and Oatp1a6) share between 66-72% 

homology with OATP1A2. The pattern of expression differs among the five members. Four 

mouse proteins (Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1a6) share between 66-73% homology 

with OATP1A2 and their pattern of expression is also variable. Multiple members are found in 

the rodent due to gene duplication. Pig Oatp1a2 (84% homology) contains 12 transmembrane 
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domains and its mRNA has been found in the liver, brain, and intestine [73, 74]. Dog Oatp1a2 

share 87% homology with OATP1A2 and its mRNA has been found in the liver and kidney 

[73]. Rodents are not considered good animal models for the study of the OATP1A2 

transporter due to the multiplicity in protein members and their low sequence homology. 

Further studies are needed to determine if other animals are more representative.  

 

1.2.2 OATP1A2 AT THE BLOOD-BRAIN BARRIER 

The brain is separated from the circulating blood by the BBB and from the cerebrospinal fluid 

by the choroid plexus. This delimitation is important to protect the brain from potentially 

harmful agents, regulate ions level, confine central neurotransmitters, prevent leakage of 

plasma proteins, and tightly control nutrients and metabolites essential for the brain [75]. The 

BBB is formed by the endothelial cells lining the brain microvessels. The surface area formed 

by the BBB represents a vast interface for exchange and is in average between 12 and 18 m2 in 

adults [76]. The structure of the endothelial cells is maintained by astrocytes feet and 

pericytes. The particularity with these endothelial cells is the organization of the proteins in 

the tight junctional complexes found between the cells that maintains the BBB “tightness” and 

integrity. The tight junctions prevent paracellular diffusion of ions and macromolecules 

between endothelial cells. The effectiveness of the tight junctions results in a high 

transendothelial electrical resistance of the BBB (1500 to 2000 Ω · cm2) [77]. Under 

physiological conditions, the BBB is almost impermeable to endogenous and exogenous 

substances. 

 

The BBB tightly controls the access of substances to the brain in order to maintain a stable 

environment for the CNS. Specific receptors, ions channels, and transporters are expressed to 

regulate the entrance of nutrients. Several mechanisms of transport exist for molecules to cross 

the BBB: cell migration, passive diffusion, carrier-mediated efflux, carrier-mediated influx, 

receptor-mediated transcytosis, and adsorptive-mediated transcytosis (Figure 1). Lipid-soluble 

molecules and certain gases (oxygen and carbon dioxide) can diffuse passively through the 
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BBB. Substrates attempting to cross the BBB can be pumped out of the endothelial cells by 

the ABC transporters located on the luminal membrane. In contrast, SLC transporters may 

move substrates from the circulating blood into the CNS. Many vital molecules, such as 

glucose, amino acids and nucleosides, are directed to the brain through the SLC transporters. 

Several macromolecules, such as transferrin and insulin, bind to cell surface receptors and are 

taken up in the cells by endocytosis [78, 79]. Positively charge proteins, such as albumin and 

the SynB5 peptide, can also be transported by vesicles but in a non-specific and non-receptor 

mediated manner. The cationic macromolecules adsorb to the endothelial cell surface and 

induce endocytosis. The endocytosed macromolecules then move through the cell before being 

release at the abluminal membrane [80, 81]. Mononuclear leukocytes, monocytes and 

macrophages are able to cross the BBB by a process of diapedesis directly through the 

endothelial cells [82].  

 

 

Figure 1: Different routes of transport across the BBB.  

Adapted from Abbott et al. (Neurobiology of Disease 2010)[75]. 
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Several CNS diseases, such as multiple sclerosis and Alzheimer’s disease, may involve the 

disruption of the BBB [83, 84]. The tight junctions between endothelial cells are affected and 

the expression of transporters and enzymes may be modified. Consequently, the entry of 

immune cells, endogenous molecules, and xenobiotics is facilitated.  

 

Targeting the CNS in drug therapy is challenging due to the limited permeation of the BBB 

and the blood-cerebrospinal fluid barrier. The level of difficulty is increased when the drug 

target is within cellular compartments of the brain parenchyma (i.e., astrocytes, microglia, 

oligodendrocytes, and neurons). Accessibility of pharmaceuticals to the brain is therefore 

highly dependent on influx and efflux transporters.  

 

Drug transporters found on the luminal membrane of the BBB are potential entry sites for 

drugs or toxins. Those found on both the luminal and abluminal membranes may allow a 

direct flow of their substances from the blood to the CNS. Drug transporters detected at the 

human BBB are listed in Table 5.  

 

Table 5: Expression of drug transporters at the human blood-brain barrier.  

Adapted from Stieger et al. (Clin Pharmacokinet 2015) [85]. 

Transporter Gene Protein expression confirmed 

OATP1A2 SLCO1A2 [21, 23, 30, 86] 

OATP1C1 SLCO1C1 [87] 

OATP2B1 SLCO2B1 [30] 

OCT1 SLC22A1 [88] 

OCT2 SLC22A2 [88] 

OCT3 SLC22A3 [89] 

OCTN2 SLC22A5 [90] 

ENT1 SLC29A1 [91] 
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MATE1 SLC47A1 [89] 

MCT1 SLC16A1 [92] 

BCRP/ABCG2 ABCG2 [91] 

MDR1/P-gp MDR1 [91] 

MRP1 ABCC1 [93] 

MRP4 ABCC4 [91, 93] 

MRP5 ABCC5 [93] 

 

Toxins may also gain access to the brain through drug transporters. For example, 126 patients 

undergoing haemodialysis in Brazil developed symptoms of acute neurotoxicity and subacute 

hepatotoxicity following the use of water from a lake with cyanobacteria overgrowth [94]. 

Among these patients, 60 subsequently died. Microcystins, a class of toxins produced by 

cyanobacteria, were detected in the patients’ serum, dialysis filters, and water-treatment 

column. It was later demonstrated that microcystins are transported in oocytes by OATP1B1, 

OATP1B3, and OATP1A2 [64]. OATP1B1 and OATP1B3, found on the sinusoidal 

membrane of hepatocytes, may be responsible for the hepatotoxicity; whereas, OATP1A2 may 

play a role in neurotoxicity. Microcystins caused damage to oocytes but only in the presence 

of OATP1A2. In addition, neurons in the brain express OATP1A2 [30]. As a result, 

microcystins are able to exert their toxicity in neurons after crossing the BBB.  

 

In terms of normal physiology, drug transporters are also implicated in the passage of 

endogenous compounds and removal of neurotoxins to and from the brain, respectively. 

Thyroid hormones play a pivotal role in the development and differentiation of the brain as 

well as the maintenance and metabolic regulation of the adult CNS [95]. Triiodothyronine (T3) 

and thyroxine (T4) are substrates of OATP1C1 and OATP1A2 and they might access the brain 

through one of these routes [40]. Monocarboxylate transporter 1 (MCT1) may be involved in 

bringing lactate and ketone bodies (β-hydroxybutyrate and acetoacetate) to the brain to use as 

energy substrates when the level of glucose is reduced, such as conditions of prolonged 

starvation, diabetes, or under hypoglycaemia [96].  



 

18 

 

 

The numerous ABC transporters found at the luminal side of the BBB play a neuro-protective 

role. This is exemplified in a phase I clinical trial where PSC 833, a second-generation MDR1 

inhibitor, was given concomitantly with etoposide, an anticancer drug. Severe ataxia was 

observed in patients who received the highest doses of PSC 833 [97]. This adverse event was 

attributed to a higher permeation of etoposide to the brain caused by the inhibition of MDR1 

efflux by PSC 833. While ABC transporters protect the brain from potential neurotoxins, they 

also represent a considerable challenge for the delivery of CNS-active drugs to their target 

site. Consequently, the development of drugs treating brain diseases such as brain tumors and 

bacterial or viral infections has been severely hindered. 

 

On the other hand, SLC transporters at the BBB may have an opposite role. OATP1A2 

expression on the luminal membrane of the endothelial cells suggests an important function of 

this transporter on brain penetration of drugs. Deltorphin II and [D-penicillamine2,5]enkephalin 

(DPDPE) are δ-opioid receptor agonists that have previously been considered as potential 

central analgesics in humans [98]. To cause analgesia, they need to reach the δ-opioid receptor 

located within the CNS. Since they are peptides, they don’t easily penetrate the BBB. 

Nonetheless, they have been found to enter the animal brain in a saturable manner, suggesting 

the involvement of a transporter [99-101]. They have been found to be OATP1A2 substrates 

and it has been suggested that deltorphin II and DPDPE can cross the human BBB using 

OATP1A2 [21].  

 

Triptans (e.g. almotriptan, eletriptan, frovatriptan, naratriptan, rizatriptan, sumatriptan, and 

zolmitriptan) are commonly used anti-migraine medications that are believe to act at the CNS. 

All triptans, with the exception of eletriptan, are hydrophilic; thus, limiting their penetration to 

the brain by passive diffusion. Studies have found that zolmitriptan is not only capable of 

crossing the human BBB but it can also bind to its target receptor at the CNS [102, 103]. 

OATP1A2 has been suggested as a key player in triptans distribution to the brain as they are 

substrates [55].  
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In conclusion, the expression of different drug transporters at the brain suggests a highly 

coordinated and regulated environment for the permeation of xenobiotics to the brain. It is 

becoming more and more recognized that drug transporters at the BBB play a crucial role in 

the pharmacokinetic and pharmacodynamic profiles of a drug. Therefore, it is important to 

understand the molecular properties of drug transporters expressed at the BBB in the 

development of CNS-active drugs in order to optimize their concentrations and effects at the 

target site.  

 

1.3 INTERINDIVIDUAL VARIABILITY IN RESPONSE 

TO DRUGS 

A major setback in treating patients suitably in the clinic is the impact of interindividual 

variability in the response to medications. This heterogeneity in drug response influences the 

efficacy, safety and toxicity of the medication. The origin of the variability is multifactorial 

and comprises of genetic, environmental (dietary constituents), physiological (age and 

gender), epigenetic, and pathological factors.  

 

Adverse reactions to drugs is an important public health concern. Conclusions from a meta-

analysis revealed that the incidence of suffering from an adverse reaction (including non-

serious, serious, and fatal reactions) related to a medication is around 15.1% in hospitalized 

patients and that adverse drug reactions is the 4th cause of mortality in the United States [104, 

105]. In addition, an estimate of 6.5% of hospital admission is related to adverse drug 

reactions [106]. At the other end of the spectrum, there are patients who do not benefit from a 

medication due to a lack of efficacy. In 1969, the FDA initiated a post-marketing surveillance 

system on drug safety. They revealed that the most common undesirable side effect 

encountered until 2002 is the lack of drug efficacy [107].  
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For those reasons, it is crucial to understand the underlying influences on the response to drugs 

in order to improve their safety and efficacy profile. The concept of personalized medicine is 

born from these efforts. Personalized medicine is an emerging approach for treating diseases 

that takes into accounts the patient’s genetic background, environmental influences, and 

lifestyle. More broadly, it can be defined as the tailoring of medical treatment to the individual 

characteristics, needs and preference during all stages of care, including prevention, diagnosis, 

treatment and follow up [108].  

 

The next two sections introduce how drug transporters are involved in the interindividual 

variability in the response to drugs.  

 

1.3.1 DRUG-DRUG INTERACTIONS 

Drug-drug interactions (DDIs) can result when one drug alters the pharmacokinetic of another 

drug or its metabolites. The additive pharmacodynamic effect of multiple drugs can also lead 

to a DDI. The underlying mechanisms of a DDI affecting the pharmacokinetic of a drug are 

caused by either inhibition or induction of drug metabolizing enzymes [e.g. cytochromes P450 

(CYP450)] or drug transporters. Dietary supplements and some foods may alter drug 

metabolism and/or transport. The result of those interactions is a sudden alteration in 

metabolism or transport in individuals who otherwise would have tolerated a particular dose of 

that drug. The known safety and efficacy of that drug is changed.  

 

The desirable and undesirable effects of a drug are related to its concentration at various sites 

of action, which is usually related to the blood or tissue concentration of the drug. The blood 

and tissue concentrations are determined by the drug’s absorption, distribution, metabolism, 

and excretion (ADME). DDIs related to metabolism are well-recognized but effects related to 

transporters are being documented with increasing frequency and are, therefore, important to 

consider in drug development. Transporters can affect the safety and efficacy profile of a drug 

by affecting the concentration of a drug or its metabolites in various tissues. 
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Several DDIs of clinical significance with mechanisms attributed to the inhibition or induction 

of transporters have been reported in the literature over the years. A few examples are listed in 

Table 6 [7, 109].  

 

Table 6: Transporter mediated drug-drug interactions observed in clinical studies 

Transporter Perpetrator 

drug / 

compound 

Victim drug Pharmacokinetic effect of victim 

drug 

Reference 

OATP1A2/

OATP2B1 

(intestinal) 

Grapefruit 

juice (6’,7’-

Dihydroxyberg

amottin, 

bergamottin) 

Fexofenadine p.o. ↓AUC, Cmax [29, 32, 

33, 38] 

Orange 

(hesperidin, 

tangeritin, 

nobiletin) and 

apple juice 

(quercetin, 

kaempferol) 

Aliskiren p.o. ↓AUC, Cmax [110] 

OATP1B1 

(hepatic) 

Gemfibrozil Pravastatin p.o. ↑AUC, Cmax; ↓CLr [111] 

Cyclosporine Pravastatin p.o. ↑AUC, Cmax [112, 

113] 

Cyclosporine Rosuvastatin p.o. ↑AUC, Cmax [114] 

OAT1/ 

OAT3 

(renal) 

Probenecid Furosemide p.o. ↑AUC, Cmax, T½, Tmax; 

↓CLt, CLr, CLnr 

iv. ↑AUC, T½; ↓CLt, CLr 

[115-117] 

Probenecid Methotrexate iv. ↑Cserum, T½ [118] 

OCT2 Cimetidine Metformin p.o. ↑AUC, Cmax; ↓CLr [119] 
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(renal) Cimetidine Ranitidine p.o. ↑AUC, T½; ↓CLr [120] 

Cimetidine Dofetilide p.o. ↑AUC, Cmax, T½;  

↓CLt, CLr, CLnr 

[121] 

Cimetidine Pindolol p.o. ↑AUC, Cmax; ↓CLr [122] 

Trimethoprim Procainamide p.o. ↑AUC; ↓CLt, CLr [123] 

ABCB1 

(P-gp) 

(intestinal) 

St-John’s wort 

(hypericin, 

pseudohyperici

n)  [inducer] 

Digoxin p.o. ↓ AUC, Cmax, Ctrough [124] 

Quinidine Digoxin iv. ↑ T½, Cserum;  

↓CLt, CLr, CLnr 

[125, 

126] 

Clarithromycin Digoxin p.o. ↑AUC, Cmax, T½; ↓CLrng [127] 

Ritonavir Digoxin iv. ↑AUC, Vd, T½;  

↓CLt, CLr, CLnr 

[128] 

ABCG2 

(BCRP) 

(intestinal) 

Omeprazole/ 

pantoprazole 

Methotrexate p.o. ↑AUC, Cmax; ↓CLr [129, 

130] 

Elacridar Topotecan p.o. ↑AUC, Cmax, F [131] 

↑: Increased; ↓: Decreased; AUC: area under the plasma/serum concentration time curve; 

CLnr: Nonrenal clearance; CLr: Renal clearance; CLrng: Renal nonglomerular clearance; CLt: 

Total clearance; Cmax: Maximal plasma/serum concentration; Cserum: Serum concentration; 

Ctrough: Minimum plasma/serum concentration during steady state; F: Bioavailability; iv.: 

Intravenous administration of drug; p.o.: Oral administration of drug; T½: Plasma/serum 

concentration half-life; Vd: Volume of distribution. 

 

Although an interaction is observable when fexofenadine is administered concomitantly with 

fruit juices, it is not likely to be mediated by OATP1A2 as previously considered. As 

mentioned earlier, the interaction may be mediated by OATP2B1 instead. OATP2B1 is found 

in the intestine and is also capable of transporting fexofenadine [36, 132]. 
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DDIs are not always as straightforward as the examples listed above. Sometimes, multiple 

mechanisms are involved, such that multiple enzymes and/or transporters are implicated. 

Other times, when a cocktail of medication is given, more than one drug may inhibit the same 

enzyme or transporter. As the transporter field is a relatively new but rapidly evolving field, 

other less characterized transporters may also be involved in mediating DDIs. 

 

Transporter-mediated DDIs have the potential to seriously influence drug efficacy and 

toxicity. Understanding DDIs will help us better prescribe medications and make a better use 

of our resources available. For instance, it can help in adjusting the dosage, determine if 

additional therapeutic monitoring if required, and establishing contraindication to concomitant 

use. Extensive research has led to contraindicating the consumption of grapefruit juice and 

orange juice with certain medications as described on the drug’s label (e.g. fexofenadine). 

Dosage adjustments were done following the description of a clinically significant DDI 

between the two HIV protease inhibitors, ritonavir and saquinavir. Coadministration of 

ritonavir with saquinavir increased saquinavir bioavailability dramatically without affecting 

the pharmacokinetics of ritonavir [133]. As a result, ritonavir is now used as a booster to 

increase the bioavailability of other protease inhibitors instead of being used alone.  

 

1.3.2 SINGLE-NUCLEOTIDE POLYMORPHISMS 

Another factor leading to interindividual differences in the response to drugs is found in the 

genes encoding drug transporters. These genes are polymorphic; as a result, their protein 

expression level and transport efficiency is variable.   

 

A single-nucleotide polymorphism (SNP) is a genetic variation where a single nucleotide is 

altered. SNPs are the most common type of genetic variations [134]. For a variation to be 

defined as a polymorphism, it has to occur at a frequency higher than 1% in the population. 

Most SNPs do not affect an individual health and normal development. Yet, some SNPs have 

been found to play a role in an individual’s response to certain drugs, response to 

environmental factors, and susceptibility of developing particular diseases [134]. 
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Polymorphisms found in the genes implicated in the pharmacodynamics and especially the 

pharmacokinetics of a drug are responsible for 50% of the variability observed in drug 

responses [135].  

 

Pharmacogenomics, also interchangeably referred to pharmacogenetics, is the field of study 

that concentrate on understanding how genes affect an individual’s response to medications. 

By understanding how genetic variations influence the drug’s pharmacokinetics, the drug’s 

dosage can be tailored in advance to each patient in order to improve efficacy and safety. 

However, not all drugs will benefit from such optimisation process. The cost-efficiency of 

genotyping is not recognized for drugs with a large therapeutic window, good safety profile, 

and those where multiples genes are implicated in their pharmacokinetics. Drugs with a 

narrow therapeutic index are most likely to profit from this approach. In recent years, 

pharmacogenomic tests have become available but their usage remained limited. The main 

reason is the lack of scientific proof in the improvement of patients’ care with genotyping 

[136]. In spite of this setback, this field is still in its early stages and additional unknown 

cofactors may have influenced the output. Further studies are necessary to determine which 

drug can profit from genotyping.  

 

Two approaches are used to investigate the importance of genetic variations in drug response. 

The phenotype-to-genotype approach associates an observable drug response to a gene and 

polymorphisms in that gene. The genotype-to-phenotype approach examines all naturally 

occurring polymorphisms of that gene before conducting functional in vitro experiments 

and/or clinical assessments. The second method is most frequently used for drug transporters. 

For example, the ABCB1 variants, 267G>T/A and 3435C>T, were first characterized in vitro 

before being associated with drug pharmacokinetics, response, and toxicity [7]. Unfortunately, 

genotype-to-phenotype studies have been less successful at identifying polymorphisms that 

result in substantial clinical effects. This could be explained by the overlap in drug 

transporters substrates and the complexity of a drug response which is likely to involve 

multiples genes.  
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Many SNPs found in drug transporter genes have been reported in the public database 

Pharmacogenetics Knowledge Base (PharmGKB), which documents genotypic and 

phenotypic pharmacogenetic data (www.pharmgkb.org). Nonsynonymous SNPs found in the 

coding region can influence transporter function. SNPs found in untranslated regions may 

influence mRNA stability and translation, while SNPs found in the promoter may influence 

transcription and gene/protein expression.  

 

In 2003, a study screened 24 drug transporters genes for polymorphisms in exonic and 

flanking intronic regions in 247 DNA samples from an ethnically diverse population (100 

European Americans, 100 African Americans, 30 Asians, 10 Mexicans, and 7 Pacific 

Islanders) and made several interesting observations [137]. The number of synonymous 

(silent) and nonsynonymous (resulting in an amino acid change) SNPs identified was similar 

(175 and 155, respectively). However, genetic variation was three- to fourfold more frequent 

at synonymous positions than at nonsynonymous position. It is suggestive of a selective 

pressure to suppress major changes in transporter function. Also, more SNPs were found in the 

loop domains than in the transmembrane regions. Similar to other studies, genetic variations 

differ across ethnic groups. Among the 680 SNPs identified, 421 were population-specific and 

were mostly found at low frequency.  

 

Functional analysis of nonsynonymous variants has been investigated mostly using in vitro 

heterologous expression systems. One very peculiar observation is that the polymorphism 

affecting the transporter activity is substrate dependent. In other words, the same variant may 

have enhanced activity with certain substrates but reduced transport for others. Furthermore, in 

vitro findings are not always correlated with clinical data. Consequently, providing in vitro as 

well as clinical evidences should be stressed when establishing an association between a 

genotype and its effects on drug disposition.  
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There are cases where in vitro findings have been validated with clinical data. ABCB1 and 

ABCG2 are efflux transporters expressed in the intestine and they are implicated in limiting 

drug absorption. When their activity is modified by a SNP, it is reasonable to suppose that the 

bioavailability of drugs transported by ABCB1 or ABCG2 is also affected. ABCB1 A893S 

and A893T variants showed increased transport of fexofenadine in membrane vesicles 

preparation from cells expressing those variants [138]. These two variants are thus 

hyperfunctional compared to the wild-type. Subjects with the ABCB1 2677G>T and 2677G>A 

genotypes, leading to the A893S and A893T variants, have a decreased plasma exposure after 

a single dose administration of fexofenadine [139, 140]. In addition, in vitro experiments 

demonstrated that cells expressing the ABCG2 Q141K variant have increased intracellular 

levels of topotecan compared to ABCG2 wild-type [141]. The Q141K variant is thus 

hypofunctional. In the same study, patients who are heterozyogous for ABCG2 421C>A, the 

SNP that gives rise to the Q141K variant, have an increased bioavailability compared to 

patients with the ABCG2 421CC genotype when topotecan is administered orally. 

Furthermore, the OATP1B1 V174A variant membrane expression is reduced compared to the 

wild-type [142]. OATP1B1 is expressed exclusively on the sinusoidal membrane of 

hepatocytes and it is implicated in the uptake of drugs from the blood into the liver. In the 

clinic, subjects heterozygous for SLCO1B1 521T>C have an increased exposure to pravastatin 

than subjects with the SLCO1B1 521TT genotype and homozygous subjects have an even 

higher exposure to pravastatin than heterozygous subjects [143].  

 

Several nonsynonymous SNPs have been identified in the SLCO1A2 gene from a collection of 

ethnically diverse genomic DNA samples and a few variant proteins have been characterized 

in vitro using overexpression systems (Table 7).  
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Table 7: List of nonsynonymous SLCO1A2 genetic polymorphisms.  

Nucleotide 

position 

BP 

change 

AA 

position 

AA 

change 

Effects of the transporter activity 

38 T>C 13 I>T ↔ for E3S, Deltorphin II, DPDPE [23] 

↑ for E3S and methotrexate [44] 

382 A>T 128 N>Y ↔ for E3S, Deltorphin II, DPDPE [23] 

↔ for E3S and methotrexate [44] 

404 A>T 135 N>I ↓ for E3S, Deltorphin II, DPDPE [23] 

↔ for E3S and methotrexate [44] 

502 C>T 168 R>C ↓ for E3S and methotrexate [44] 

516 A>C 172 E>D ↓ for E3S, Deltorphin II, DPDPE [23] 

↓ for E3S and methotrexate [44] 

550 G>A 184 E>K ↓ for E3S, imatinib, methotrexate [144] 

553 G>A 185 D>N ↓ for E3S, imatinib, methotrexate [144] 

559 G>A 187 A>Y ↓ for Deltorphin II; ↔ for E3S and 

DPDPE [23] 

↔ for E3S and methotrexate [44] 

763 G>A 255 V>I ↔ for E3S, imatinib, methotrexate [144] 

775 A>C 259 T>P ↓ for E3S, imatinib, methotrexate [144] 

830 C>A 277 T>N ↔ for E3S and methotrexate [44] 

833 A>− 278 N>del ↓ for E3S and methotrexate [44] 

841 A>G 281 I>V ↔ for E3S and methotrexate [44] 

862 G>A 288 D>N ↓ for E3S, imatinib, methotrexate [144] 

968 T>C 323 L>P ↔ for E3S and methotrexate [44] 

1063 A>G 355 I>V ↔ for E3S and methotrexate [44] 

2003 C>G 668 T>S ↔ for E3S, Deltorphin II, DPDPE [23] 

↔ for E3S and methotrexate [44] 

BP: base pair; AA: amino acid; DPDPE: Deltorphin II, [D-Pen2,5]enkephalin; E3S: estrone-3-

sulfate; ↔: unchanged function; ↑: increased function; ↓: decreased function; −: deletion 
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Since OATP1A2 is found on organs important in drug disposition, such as the BBB and the 

kidney, it is of interest to investigate this transporter further. In addition, OATP1A2 is 

expressed on different cell types and transports a broad spectrum of substrates, rendering it a 

good candidate for the distribution of drugs in organs. It must be remembered that the efficacy 

of drugs with intracellular target sites is related to their ability to penetrate their target organ.  

 

1.4 Rationale, Hypothesis, and Objectives 

PK and PD concepts were initially developed assuming that the free concentration of a drug 

freely distributes across cell membranes and that equilibrium was reached across all tissues. 

The discovery of influx and efflux drug transporters with substrate specificity and selectivity 

expressed on all tissues is modifying these PK/PD concepts. Drug transporters are becoming 

increasingly recognized as important determinants in drug disposition, efficacy, and toxicity. 

Previous sections illustrate the role they play in interindividual variability in the response to 

drugs by demonstrating variable activity when carrying a SNP and by mediating DDIs. 

 

OATP1A2 is a membrane drug transporter expressed on important organs, such as the brain 

and the kidney. Its localisation suggests an essential role in drug disposition such that a DDI or 

genetic variability may affect the local concentrations of the drug and ultimately the PD 

effects may be modified. Previous studies, assuming the localisation of OATP1A2 in the small 

intestine, demonstrated that OATP1A2’s activity in transporting drugs used in the clinic is 

modifiable by flavonoids found in fruit juices and green tea. These studies put in evidence 

OATP1A2’s potential for being inhibited. Although OATP1A2’s intestinal expression is 

controversial, its expression on the luminal membrane of the endothelial cells forming the 

BBB is well established. A wide spectrum of drugs used in the clinic are substrates of 

OATP1A2 and some of these drugs may depend on OATP1A2 to reach their site of action 

(e.g. hydrophilic anti-migraine triptan drugs crossing the BBB to reach their receptors in the 

brain). 
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This leads us to propose the following central hypothesis: OATP1A2 is a key determinant in 

drug concentrations for organs in which they are expressed and thus, may be essential for drug 

PD effects. 

 

The primary objectives of my PhD project consist of:  

1. Characterizing the transport activity of OATP1A2 in regards to its substrates and 

inhibitors. 

a. Characterizing the HEK293-OATP1A2 and the HEK293-VC cells using 

rosuvastatin as the probe substrate. 

b. Identifying subsequent OATP1A2 substrates and inhibitors using rosuvastatin 

as the probe substrate in competition experiments. 

2. Characterizing the activity of different OATP1A2 protein variants due to genetic 

polymorphisms. 

 

Data obtained from the first objective of the project defined a structure-activity relationship 

where drugs composed of a tricyclic ring with a short aliphatic amine chain are potent 

OATP1A2 inhibitors. This leads to a second more specific hypothesis: tricyclic compounds, 

such as tricyclic antidepressant drugs, may block OATP1A2 located at the BBB; thus 

preventing the passage of CNS-active hydrophilic drugs depending on OATP1A2 to reach 

their site of action. 

 

Triptans are commonly used in the treatment of acute migraine attacks. It has been postulated 

that triptans may act at the central nervous system by binding to receptors found on central 

neurons. As these molecules are hydrophilic, facilitated transport is required for their passage 

across the BBB and OATP1A2 may be the key player. Although triptans are successful in 

treating migraine attacks, a proportion of patients fail to respond to their action. We believe 

that certain cases of non-responder may be explained by the failure of the drug in penetrating 
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the brain. The two factors potentially involved in restricting triptans access to the brain are 

DDIs through OATP1A2 or genetic variability affecting the activity of the transporter. 

 

The objectives of the second hypothesis consist of: 

1. Characterizing the transport of hydrophilic anti-migraine triptan drugs through 

OATP1A2. 

2. Characterizing the potential for tricyclic compounds to inhibit triptans transport via 

OATP1A2.  

3. Characterizing the potential for tricyclic compounds to inhibit triptans transport via 

OATP1A2 at clinically significant concentrations. 

4. Characterizing the transport of triptans through OATP1A2 genetic variants. 

5. Characterizing the potential for tricyclic compounds to inhibit triptans transport 

through OATP1A2 genetic variants. 

 

Compounds with a tricyclic chain and aliphatic amine chain, such as tricyclic antidepressants 

and the β-blocker carvedilol, are expected to inhibit the transport of triptans through 

OATP1A2 at high potency. The inhibition is still expected with the most potent inhibitors at 

concentrations observed in the clinic. The relevance of such an interaction is that the 

concentration of the victim drug might fall below its therapeutic window in the brain. 

Consequently, the antimigraine activity may be abolished.  

 

There are several lines of evidence supporting a mechanism of action of triptans in the CNS: 

1) 5-HT1B and 5-HT1D receptors proteins, the receptors to which triptans bind to, are found on 

trigeminal sensory neurons; 2) activation of the trigeminal nucleus neurons by electrical 

stimulation is inhibited after administration of a triptan in animal models; 3) some patients 

experience CNS adverse events related to triptans; 4) studies using positron emission 

tomography (PET) show that zolmitriptan can penetrate the brain at therapeutic doses and can 
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bind to their receptors located in the CNS [102, 103, 145-150]. As the triptans mechanism of 

action may reside centrally, the characterization of OATP1A2 transport activity and its 

potential for being inhibited should be investigated.  

 

The co-prescription of a triptan with a tricyclic antidepressant is not unusual. Migraine is often 

diagnosed in patients with mood disorders, such as depression, anxiety, panic disorder, and 

bipolar disorder [151, 152]. As a result, treatments for both conditions are commonly 

prescribed. Tricyclic antidepressants are not only prescribed for depression but also for other 

off-label uses such as obsessive-compulsive disorder, panic disorder, chronic pain, insomnia, 

premenstrual symptoms and bulimia. In addition, β-blockers and antidepressants, especially 

amitriptyline, are occasionally prescribed for the prevention of migraine attacks [153].  

 

The next two sections present the work accomplished throughout my doctoral studies. The 

work introduced is to characterize the OATP1A2 transporter in relation to its substrates and 

inhibitors. In addition, pharmacogenomic studies with its two most common variant proteins 

will be presented. First, three manuscripts will be presented. Then, experiments not included 

in the manuscripts but still following the theme of the thesis will be presented.
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SECTION 2: MANUSCRIPTS 
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SECTION 2.1 

 

ARTICLE #1 

 

Effects of β-blockers and tricyclic antidepressants on the activity 

of human organic anion transporting polypeptide 1A2 (OATP1A2) 



 

34 

 

2.1.1 OBJECTIVES 

The primary objective of the first article was to characterize OATP1A2 for its substrates and 

inhibitors. The secondary objective was to establish a correlation between the structure of the 

drugs evaluated and their potential to inhibit OATP1A2.  

 

2.1.2 INTRODUCTION 

Choosing an appropriate in vitro method to study drug transporters is important for 

reproducibility purposes. Different in vitro models have been developed to study OATP1A2 

transport. Transient models have been used such as Xenopus Laevis oocytes injected with the 

complementary RNA, transiently transfected HeLa cells, and HEK293 cells transduced with 

baculoviruses genetically modified to contain the OATP1A2 gene [46, 49, 55]. Xenopus 

Laevis oocytes can efficiently translate exogenous mRNA into proteins, very few endogenous 

membrane transporters are expressed on their surface, and since they are very large in size 

they can be used as a single cell model. However, the protein expression is transient, the 

oocytes have a limited lifespan, and the system is low-throughput. Transiently transfected cells 

are easy to work with and very high levels of expression can be achieved dependent on the 

type of transfection reagent. However, transfection efficiency is variable from one experiment 

to another, the system stability is limited to a few days, and transfection reagents are 

expensive at large scale. The baculovirus system is high-throughput, it allows the recombinant 

protein expression level to be modulated, it is relatively simple to use, and a broad range of 

cell lines and primary cells can be transduced. Although the baculovirus system offers many 

advantages, large quantities of virus are needed for scaling up and transduction of the cells is 

required before every assay, adding an extra step which results in additional days to the 

experiment. A HEK293 cell line stably overexpressing OATP1A2 was developed and used for 

the study of food-drug interactions [65]. The advantages of a stable model include 

reproducibility, possibility for high-throughput screening, and ease of use once the cell line 

has been established. For these reasons, a HEK293 cell line overexpressing OATP1A2 was 

used as in vitro model in all experiments presented in this thesis. The HEK293-OATP1A2 and 
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HEK293-VC cells were kindly provided by Dr. Markus Keiser and Dr. Werner Siegmund 

(Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University 

Medicine Greifswald, Felix-Hausdorff-Str. 3, D-17487 Greifswald, Germany). The cell lines 

were previously characterized for their expression, localization, and function of OATP1A2 

[65]. 

 

β-blockers have been shown to be transported by OATP1A2 in a Xenopus Laevis oocyte 

model. We wanted to first confirm these substrates in our HEK293 cell model. The most 

straightforward method to determine if a compound interacts with the transporter was to 

perform competition experiments. The test compound was placed in competition with a probe 

substrate, which was monitored for uptake in the HEK293 cells. When the transport of the 

probe substrate was diminished, it was an indication that the test compound was either a 

substrate or inhibitor of OATP1A2. The HMG-CoA reductase inhibitor, rosuvastatin, was 

chosen as a probe substrate for OATP1A2. Therefore, an analytical method sensitive enough 

to quantify intracellular rosuvastatin concentrations was also developed in this article.  

 

2.1.3 ARTICLE 

The authors’ specific contributions in this article were as follow: 

• Participated in research design: Jennifer Lu, Veronique Michaud, Jacques Turgeon 

• Conducted experiments: Jennifer Lu, Liliam Gabriela Guilarte Moya, Henry Leung 

• Contributed new reagents or analytic tools: Fleur Gaudette 

• Performed data analysis: Jennifer Lu, Fleur Gaudette 

• Wrote or contributed to the writing of the manuscript: Jennifer Lu, Veronique 

Michaud, Jacques Turgeon 
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Abstract 

OATP1A2, a membrane drug-transporter expressed on important organs (such as the brain, 

kidney and intestine) may be a key element in the disposition of drugs. Previous studies 

demonstrated that it could transport a broad spectrum of substrates including endogenous 

molecules and clinically relevant drugs such as several β-blockers and HMG-CoA reductase 

inhibitors. The primary objective of this study was to investigate OATP1A2 transport activity 

using rosuvastatin as a probe-substrate and to evaluate competitive inhibition of its transport 

by β-blockers. Rosuvastatin transport was saturable with a Km of 60.2 µM. With the exception 

of carvedilol (IC50 of 3.2 µM), all other β-blockers evaluated had a small or insignificant effect 

on OATP1A2-mediated uptake of rosuvastatin. Carvedilol differs from the other β-blockers by 

its tricyclic moiety in its chemical structure. As a secondary objective, the transport of a series 

of tricyclic compounds by OATP1A2 and their potential for rosuvastatin transport inhibition 

were evaluated. Tricyclic compounds were not OATP1A2 substrates. On the other hand, 

tricyclic compounds with a short aliphatic amine chain inhibited OATP1A2-mediated 

rosuvastatin transport. Our data suggest that these drugs may modulate the transport of 

OATP1A2 substrates and may affect drug actions.  
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Introduction 

OATP1A2 is a membrane drug transporter expressed on organs important for drug disposition. 

The mRNA expression is found the highest in the brain, followed by the kidney, liver, lung, 

and the testes (Kullak-Ublick et al., 1995). OATP1A2 protein is found on the luminal 

membrane of the brain capillary endothelial cells which make up the blood-brain barrier, 

apical membranes of cholangiocytes in the liver, apical membrane of the distal nephrons in the 

kidney, and the apical membrane of enterocytes in the duodenum (Gao et al., 2000; Lee et al., 

2005; Glaeser et al., 2007). OATP1A2 expression in the small intestine is controversial as 

recent studies could not detect its presence in the entire intestine (Groer et al., 2013; Drozdzik 

et al., 2014). Due to its location, the following roles have been attributed to OATP1A2: 

distribution of substrates to the brain, reabsorption of substrates excreted in the bile, 

reabsorption or secretion of xenobiotics into urine, and oral absorption of xenobiotics. 

 

OATP1A2 transports various endogenous molecules such as bile salts and hormones 

(triiodothyronine, thyroxine, and steroid conjugates) (Kullak-Ublick et al., 1995; Kullak-

Ublick et al., 1998; Fujiwara et al., 2001; Lee et al., 2005). Based on the endogenous 

substrates it transports and its localization, it has been proposed that OATP1A2 may be 

involved in the regulation of several physiological processes. For instance, it may be 

implicated in the delivery of thyroid hormones to the brain and the kidney as well as removal 

of thyroid hormones from the periphery (Hagenbuch, 2007). In addition, it may play a role in 

bile acids transport as a study has shown that OATP1A2 mRNA is upregulated in patients 

with cholestatic liver disease (Kullak-Ublick et al., 1997). 
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OATP1A2 can also transport several exogenous substances including peptide agonists of the 

σ-opioid receptor and bromosulfophthalein (Kullak-Ublick et al., 1995; Gao et al., 2000). 

Several clinically important drugs such as fexofenadine, imatinib, methotrexate, pravastatin, 

and rosuvastatin are also transported by OATP1A2 (Cvetkovic et al., 1999; Badagnani et al., 

2006; Ho et al., 2006; Hu et al., 2008; Shirasaka et al., 2010). Rosuvastatin is a hydrophilic 

molecule and therefore, depends on transporters to move across the plasma membrane. 

Rosuvastatin has high affinity for OATP transporters as its Km was determined to be 2.6 µM, 

4.0 µM, 9.8 µM, 2.4 µM for OATP1A2, OATP1B1, OATP1B3, and OATP2B1, respectively 

(Ho et al., 2006). Finally, OATP1A2 is inhibited by various flavonoids, such as naringin, 

apigenin, kaempferol, quercetin, and several flavonoids found in green tea (Bailey et al., 2007; 

Mandery et al., 2010; Roth et al., 2011; Misaka et al., 2014). 

 

Flavonoids are found in vegetables, fruits, and plants; thus, pharmacokinetic studies using 

flavonoids focused on intestinal interactions. Bailey et al. have demonstrated that ingestion of 

fexofenadine and a solution of naringin decreased fexofenadine maximum plasma 

concentration (Cmax) and the area under the plasma concentration-time curve (AUC) (Bailey et 

al., 2007). Misaka et al. have shown that green tea decreased nadolol Cmax and AUC (Misaka 

et al., 2014). However, these interactions assume that OATP1A2 is an intestinal uptake 

transporter in the human intestine. 
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Single nucleotide polymorphisms (SNPs) in the gene encoding OATP1A2, SLCO1A2, 

resulting in impaired cell surface expression and reduced OATP1A2 activity have been 

discovered in healthy individuals (Lee et al., 2005; Badagnani et al., 2006; Laitinen and 

Niemi, 2011). This suggests that OATP1A2 may not play a fundamental role in physiological 

functions but it may act as a secondary transporter for endogenous molecules. However, there 

is evidence that OATP1A2 may be important in drug disposition as Yamakawa et al. 

demonstrated that imatinib clearance is affected in chronic myeloid leukemia patients with the 

SLCO1A2 –361G>A genotype (Yamakawa et al., 2011). 

 

A previous study has proposed that several β-blockers are OATP1A2 substrates (Kato et al., 

2009). Initially, their study aimed at determining the transporters involved in the 

gastrointestinal absorption of celiprolol as to understand the food-drug interaction induced by 

citrus juices using an animal model. They demonstrated an increase in plasma concentrations 

of celiprolol in mdr1a/b-/- mice compared to wild-type mice. Using isolated tissues of the 

mouse small intestine, they demonstrated competitive inhibition between celiprolol and 

bromosulfophthalein for transport from the apical to basal side. Their results suggested the 

involvement of P-glycoprotein and an influx transporter in the absorption of celiprolol. 

Subsequently, using Xenopus Laevis oocytes the uptake transporter involved was shown to be 

OATP1A2. In addition, they tested several other β-blockers and showed that acebutolol, 

atenolol, nadolol, sotalol, and labetalol are OATP1A2 substrates. More recently, a study has 

also shown that nadolol is transported by OATP1A2 in HEK293 cells stably expressing the 

transporter (Misaka et al., 2014). 
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Considering OATP1A2 location on important organs involved in drug disposition (such as the 

brain), it is of interest to investigate this transporter further. Based on current knowledge, the 

primary objectives of this study were 1) to assess rosuvastatin as a probe-substrate for 

OATP1A2; and 2) to determine whether there is competition between rosuvastatin and β-

blockers for transport through OATP1A2. Considering the results obtained throughout the 

course of our studies, secondary objectives were 1) to evaluate the transport of different 

tricyclic compounds through OATP1A2; and 2) to determine whether there is competition 

between rosuvastatin and tricyclic compounds for transport through OATP1A2. Experiments 

were conducted using a HEK293 cell line stably overexpressing OATP1A2. This in vitro 

model was used since it offers many advantages over transient models such as stable 

expression, possibility for high-throughput screening, and ease of use once the cell line has 

been established. 



 

44 

 

Materials and Methods 

Materials 

Acebutolol hydrochloride, alprenolol tartrate salt, amitriptyline hydrochloride, atenolol, 

carbamazepine, carbazole, chlorpromazine hydrochloride, clomipramine hydrochloride, 

desipramine hydrochloride, imipramine hydrochloride, metoprolol tartrate salt, nadolol, 

naproxen, nortriptyline hydrochloride, phenothiazine, propranolol hydrochloride, timolol 

maleate salt, trimipramine maleate salt were purchased from Sigma-Aldrich (St-Louis, MO, 

USA). Carazolol hydrochloride, carvedilol, celiprolol hydrochloride, doxepin hydrochloride, 

rosuvastatin calcium salt were purchased from Toronto Research Chemicals (Toronto, ON, 

Canada). Sotalol hydrochloride was a gift from Bristol-Myers Squibb (Montreal, Canada). All 

chemicals and solvent were obtained from Sigma-Aldrich, Fisher Scientific (Fair Lawn, NJ, 

USA) or J.T. Baker (Center Valley, PA, USA).  

Cell culture 

HEK293-OATP1A2 and HEK293-VC cells were kindly provided by Dr. Markus Keiser and 

Dr. Werner Siegmund (Department of Clinical Pharmacology, Center of Drug Absorption and 

Transport, University Medicine Greifswald, Felix-Hausdorff-Str. 3, D-17487 Greifswald, 

Germany). The cells were cultured in minimum essential medium eagle’s (EMEM) containing 

10% fetal bovine serum, 1X nonessential amino acids and 1X sodium pyruvate at 37°C and 

5% CO2. Cell culture media and supplements were purchased from Multicell Wisent Inc (St-

Jean-Baptiste, QC, Canada); whereas, fetal bovine serum was obtained from HyClone Thermo 

Scientific (Logan, UT, USA). 
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Uptake assays and competition assays 

HEK293-OATP1A2 and HEK293-VC cells were seeded in tissue culture plates (6-well or 12-

well) previously treated with poly-L-lysine (Sigma-Aldrich). The number of cells seeded in 6-

well plates was 1.5 x 106 cells/well and 7.5 x 105 cells/well in 12-well plates. After 24 h, the 

culture media was removed and the cells were pre-incubated with warm transport buffer 

(142 mM NaCl, 5 mM KCl, 1 mM K2HPO4, 1.2 mM MgSO4, 1.5 mM CaCl2, 5 mM glucose, 

and 12.5 mM HEPES, pH 7.3) at 37°C for 5 min. Following the pre-incubation period, the 

cells were incubated with transport buffer containing rosuvastatin in the presence or absence 

of an inhibitor at 37°C for 2 min. After incubation, the cells were washed twice with 

phosphate-buffer saline (PBS) containing 10% acetonitrile followed by a final wash with PBS. 

Rosuvastatin transport (60 µM) at different time points was done in 6-well plates by 

incubating HEK293-OATP1A2 and HEK293-VC cells. The Km and Vmax of rosuvastatin 

transport through OATP1A2 was determined by incubating HEK293-OATP1A2 and 

HEK293-VC cells in 6-well plates with rosuvastatin at concentrations ranging from 10 µM to 

250 µM. To determine whether a compound can block OATP1A2, HEK293-OATP1A2 and 

HEK293-VC cells were co-incubated in 12-well plates with rosuvastatin (150 µM), which was 

used as the probe-substrate, in the absence or presence of different β-blockers (1.5 – 100 µM) 

or different tricyclic compounds (12.5 nM – 250 µM). A concentration of 150 µM rosuvastatin 

(3-times Km value) was selected in order to saturate the OATP1A2 transporter with the probe-

substrate. The inhibitory constant (Ki) of the tricyclic drugs for OATP1A2 was determined by 

incubating HEK293-OATP1A2 and HEK293-VC cells in 6-well plates with various 

concentrations of rosuvastatin (25 – 250 µM) in the absence or presence of the tricyclic drugs 
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(0.5 - 50 µM). Uptake of carvedilol was assessed in 12-well plates at a concentration of 2 µM 

for 2 min at 37°C. The pre-incubation and washing steps are the same as for rosuvastatin.  

The protein concentration was measured in three wells of cells lyzed with 1% SDS + 0.2 N 

NaOH using the Pierce BCA Protein Assay Kit from Thermo Scientific (Rockford, IL, USA). 

Quantification of rosuvastatin by HPLC-UV 

The quantity of rosuvastatin transported in the cells was measured by HPLC with UV 

detection. The instrumentation consisted of a SpectraSystem P4000 pump, a SpectraSystem 

AS3000 autosampler, a Finnigan SpectraSystem UV6000 ultraviolet detector and a 

SpectraSystem SN4000 System Controller from Thermo Electron Corporation (San Jose, CA, 

USA). The ChromQuest Version 4.2.34 software was used for data acquisition. The samples 

were separated on a Phenomenex Luna 5u C8 column (150 mm x 4.6 mm 5 µM; Phenomenex, 

CA, USA). The mobile phase consisted of a mixture containing 10 mM ammonium formate 

pH 3 and acetonitrile (57:43 v/v). The flow rate was set at 1.2 ml/min and the column was 

heated at 40°C. Naproxen was used as the internal standard. The retention times of 

rosuvastatin and naproxen were 4.8 and 6.1 min., respectively. The peaks were monitored at a 

wavelength of 243 nm. The lowest limit of quantification was 25 ng/ml. The calibration curve 

was linear between 25 ng/ml to 25 000 ng/ml (r2 of 0.996). The interday coefficient of 

variation (CV) for the calibration curve using four levels of quality controls (25, 100, 2 500, 

and 25 000ng/ml) ranged between 3.9 and 7.8%. The interday accuracy ranged between 94.4 

and 98.4%. The intraday CV for the four levels of quality control ranged between 1.1 and 

13.6%. The intraday accuracy ranged between 84.5 and 101.4 %. 

After the final wash with PBS, the samples were processed as follow; the cells were lyzed 

with methanol containing naproxen (100 ng/ml). The cell lysate was transferred to a 1.7 mL 
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microtube and the samples were spun down at max speed for 10 min at room temperature. The 

supernatant was transferred to a culture borosilicate glass tube, evaporated to dryness, and 

reconstituted in 100 µl of 10 mM ammonium formate pH 3 and acetonitrile (57:43 v/v). A 

volume of 20 µl per sample was injected.  

Quantification of carvedilol by HPLC-fluorescence 

The same system was used for the quantification of carvedilol than for rosuvastatin except for 

the detector which was a SpectraSystem FL3000 ultraviolet detector from Thermo Electron 

Corporation (San Jose, CA, USA). The samples were separated on an Eclipse XDB-C8 

column (150 mm x 4.6 mm 5 µM; Agilent, USA). The mobile phase consisted of a mixture of 

50 mM potassium phosphate monobasic pH 3.5 and acetonitrile (60:40 v/v). The flow rate was 

set at 1.0 ml/min and the column was heated at 50°C. Propranolol was used as the internal 

standard. The retention times of carvedilol and propranolol were 2.9 and 2.2 min., 

respectively. The excitation and emission wavelength were 242 nm and 344 nm, respectively. 

After the final wash in PBS, the samples were processed similarly to the rosuvastatin samples 

with the following exceptions: the cells were lyzed with methanol containing propranolol 

(200 ng/ml) and the samples were reconstituted in 500 µl of 50 mM potassium phosphate 

monobasic pH 3.5. The lowest limit of quantification was 50 ng/ml. The calibration curve was 

linear over a concentration range of 50 ng/ml to 2000 ng/ml (r2 of 0.998). The interday 

coefficient of variation (CV) for the calibration curve using four levels of quality controls (50, 

80, 200, 2000 ng/ml) ranged between 3.9% and 8.2%. The interday accuracy ranged between 

95.3 and 99.3%. The intraday CV for the four levels of quality control ranged between 3.0 and 

10.3%. The intraday accuracy ranged between 91.4 and 103.3%. 
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Data analysis 

The net transport of rosuvastatin through OATP1A2 was calculated by subtracting the value in 

VC cells from the value in OATP1A2 cells. Data were analyzed using GraphPad Prism5 (La 

Jolla, CA). Each data point is expressed as the mean ± S.D. Km and Vmax were calculated by 

fitting the data to the Michaelis-Menten equation. IC50 values were calculated by fitting the 

data to the log(inhibitor) vs. response equation and the range given represents the 95% 

confidence interval. Transport inhibitions of different concentrations of rosuvastatin by 

increasing concentrations of inhibitors were plotted in a Dixon plot. Linear regression was 

used to fit each set of data and the intercept of all lines represents the - Ki. The Ki was 

accurately calculated by the equations:  

𝑦𝑦 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 × �
𝑥𝑥

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑥𝑥
� 

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐾𝐾𝑚𝑚 × �1 +
𝑙𝑙
𝐾𝐾𝑖𝑖
� 

An initial value of 1.0 was set for all parameters. The rule for initial value for Km was set to 

*XMID and Vmax was set to *YMAX. A shared value for all data sets was set as default 

constraint for Km, Ki, and Vmax and a constant data set (=column title) was set for the 

parameter l.  
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Results 

Transport of rosuvastatin through OATP1A2 

Rosuvastatin transport via OATP1A2 was characterized using a HEK293 cell model stably 

expressing this transporter. Transport during different time-points demonstrated that 

rosuvastatin uptake was linear between 1 and 10 min (Figure 1A). An incubation time of 2 

min was chosen for all experiments as it remains in the linear range. Overall, the transport 

activity varied from 1395 pmol/mg protein/min to 8056 pmol/mg protein/min over a range of 

concentrations of 10 μM to 250 μM of rosuvastatin. A saturable transport was observed with a 

Km of 60.2 ± 6.0 µM, the Vmax was 9741 ± 543 pmol/mg protein/min, and the intrinsic 

clearance was 161.8 µl/mg protein/min (Figure 1B). 

Effect of β-blockers on rosuvastatin uptake through OATP1A2 

To determine whether β-blockers are OATP1A2 inhibitors, competition studies were 

performed using rosuvastatin as probe-substrate (Figure 2). Carvedilol was the only β-blocker 

able to fully inhibit OATP1A2-mediated uptake of rosuvastatin and it was the most potent 

inhibitor with an IC50 of 3.2 µM. Metoprolol, propranolol, acebutolol, alprenolol, celiprolol, 

nadolol, and timolol had a small effect on OATP1A2-mediated uptake of rosuvastatin. Given 

that complete inhibition could not be achieved by these β-blockers at the concentrations tested, 

the IC50 could not be calculated appropriately. Sotalol and atenolol demonstrated no 

significant effect on rosuvastatin uptake.  

Effect of tricyclic compounds on rosuvastatin uptake through OATP1A2 

By observing the structures of all β-blockers tested, it can be noticed that carvedilol differs 

from the others by the presence of a tricyclic moiety in its structure (Figure 3 and 

Supplemental Figure 1A). Inhibition studies were performed with compounds with a similar 
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structure using rosuvastatin as the probe-substrate to determine whether the tricyclic ring is 

responsible for carvedilol strong inhibitory effect on OATP1A2 (Figure 3, Table 1, 

Supplemental Figures 1B and 2). Carazolol exerted the strongest inhibition with an IC50 of 

3.7 µM.  The inhibition potencies were followed by clomipramine (IC50 = 8.2 µM), 

amitriptyline (IC50 = 11.7 µM), chlorpromazine (IC50 = 12.0 µM), doxepin (IC50 = 12.1 µM), 

trimipramine (IC50 = 15.0 µM), imipramine (IC50 = 16.9 µM), nortriptyline (IC50 = 25.0 µM), 

and desipramine (IC50 = 37.0 µM). Carbamazepine, carbazole, and phenothiazine exerted no 

significant effect on OATP1A2-mediated uptake of rosuvastatin.  

Transport of tricyclic compounds through OATP1A2 

Comparison between structures of the compounds that inhibited OATP1A2 and those that 

exerted no effect reveals that a molecule composed of a tricyclic ring with a short aliphatic 

amine chain is able to inhibit OATP1A2 activity. As several tricyclic drugs inhibited 

rosuvastatin uptake, it was relevant to determine if they are also substrates of OATP1A2. 

Analytical methods were developed for each drug and transport assays were conducted. Given 

carvedilol showed the strongest inhibitory effect on rosuvastatin transport, it was the first 

tricyclic drug assessed. Incubation of carvedilol with HEK293-OATP1A2 and HEK293-VC 

showed no difference in intracellular concentrations of carvedilol between the two cell lines 

(Figure 4). Thus, carvedilol is not a substrate of OATP1A2 but an inhibitor. Other tricyclic 

drugs such as amitriptyline, doxepin, trimipramine, and imipramine were also evaluated but it 

was found that none of the drugs were OATP1A2 substrates. Only the results for carvedilol 

are presented as an example since all graphs were similar.  
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Determination of inhibition constant of tricyclic compounds 

The inhibitory constant (Ki) of previously identified inhibitors for OATP1A2 transport were 

determined using rosuvastatin as a probe-substrate. A Dixon plot was drawn for each inhibitor 

and the Ki was calculated (Table 2, Figure 5, Supplemental Figure 3). Carvedilol showed the 

lowest Ki value (1.1 µM) implying it as the strongest inhibitor evaluated. The inhibition 

potencies were followed by trimipramine (2.8 µM), carazolol (3.2 µM), clomipramine (3.3 

µM), imipramine (3.5 µM), amitriptyline (3.7 µM), doxepin (4.7 µM), chlorpromazine (5.3 

µM), desipramine (8.4 µM), and nortriptyline (12.0 µM).  
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Discussion 

A method to study drug-drug interactions between substrates of OATP1A2 using rosuvastatin 

as a probe substrate was developed and validated. Inhibition studies between the probe-

substrate and different β-blockers demonstrated that carvedilol was the most potent inhibitor. 

The other β-blockers evaluated had little or no significant effects. Furthermore, a structure-

activity relationship established from the tricyclic compounds evaluated demonstrated that the 

transport activity of OATP1A2 was inhibited by compounds composed of a tricyclic ring and 

a short aliphatic amine chain. These compounds were not found to be transported by 

OATP1A2. 

 

The Km of rosuvastatin for OATP1A2 in this study was determined as 60.2 µM, which is 

higher than the previously published Km (2.6 µM) (Ho et al., 2006). Our results also show a 

superior efficiency (Vmax/Km) of 161.8 compared to 1 µl/mg protein/min (Ho et al., 2006). 

This discrepancy may be explained by the different in vitro models employed. Ho et al. used 

transiently transfected HeLa cells while a HEK293-OATP1A2 stable cell line was used in this 

study. The major setback with transiently transfected cells is the lack of reproducibility from 

one experiment to another. Variability may even arise within a single experiment from one 

well of transfected cells to another. A stable cell line offers uniformity within a cell population 

and simplicity once the cell line has been developed. Due to these advantages, a stable cell line 

was used in this study. 
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The β-blockers evaluated, with the exception of carvedilol, were not able to compete with 

rosuvastatin for OATP1A2 transport. These results imply that they are either not substrates of 

OATP1A2 as previously reported or they have a weaker affinity for the transporter than 

rosuvastatin. A Km of 84.3 µM for nadolol has been reported, which supports the second 

explanation (Misaka et al., 2014). It remains to be determined for the other β-blockers. 

Carvedilol blocked OATP1A2-mediated uptake of rosuvastatin very efficiently without being 

transported by it. Other compounds evaluated with a similar structure also blocked OATP1A2-

mediated uptake of rosuvastatin. These results suggest that compounds composed of a tricyclic 

ring and a short aliphatic amine chain could potentially block the transport of OATP1A2 

substrates. Based on this structure-relationship finding, tricyclic antidepressants have been 

selected to further investigate OATP1A2 uptake and transport inhibition. Our results observed 

with the tricyclic antidepressants strongly suggest that these structural features appear to be 

determinant for the inhibition of OATP1A2 but not to mediate substrate uptake transport. 

 

Drug-drug interaction studies involving the transporter have mainly focused on drug 

absorption since OATP1A2 expression has previously been detected at the duodenum by 

immunohistochemistry (Glaeser et al., 2007). Several publications demonstrated that fruit 

juices and green tea decreased the bioavailability of OATP1A2 substrates (Dresser et al., 

2005; Bailey et al., 2007; Glaeser et al., 2007; Rebello et al., 2012; Misaka et al., 2014). 

However, other publications failed to prove in human an interaction demonstrated in a cell 

model (Eechoute et al., 2011). In addition, Misaka et al. showed that green tea decreased the 

Cmax and AUC of nadolol and their results suggest that the interaction is in part mediated by 

OATP1A2 (Misaka et al., 2014). In contrast, grapefruit juice, an established inhibitor of 
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OATP1A2, did not have the same effect on nadolol (Misaka et al., 2013). A recent study 

looking at influx and efflux drug transporters in the small intestine using the LC-MS/MS 

demonstrated that OATP1A2 was not expressed in any segment of the intestine and other 

influx transporters, such as OATP2B1, PEPT1 and OCT1, may be implicated in the absorption 

of drugs instead (Groer et al., 2013; Drozdzik et al., 2014). This may explain the inconsistency 

in studies where in vivo and in vitro data do not corroborate and conflicting results among 

different clinical studies using the same inhibitor. 

 

As OATP1A2 is expressed on the luminal membrane of endothelial cells from the blood-brain 

barrier, it may potentially be involved in the distribution of drugs to the brain. Tricyclic 

antidepressants must cross the blood-brain barrier to reach their site of action and we showed 

that these drugs are inhibitors of OATP1A2. It could be speculated that the co-administration 

of a tricyclic antidepressant with a CNS drug substrate for OATP1A2 may lead to a drug-drug 

interaction when both drugs meet at the blood-brain barrier. It could result into a loss in 

efficacy by limiting their penetration to the brain. Cheng et al. conducted a structure-activity 

relationship study using triptan structural analogs and demonstrated that an amine atom was 

necessary for efficient uptake through OATP1A2 and that the uptake rate was the highest for 

tertiary amine followed by secondary then primary amine (Cheng et al., 2012). Likewise, 

tricyclic antidepressants, which are also CNS active drugs, share some general similarities 

with triptans and β-blockers including an amine residue within their structure, a tricyclic ring 

and a short aliphatic chain. 
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Taken together, the data in this study showed that compounds composed of a tricyclic ring 

with a short aliphatic amine chain inhibited OATP1A2 activity. Tricyclic antidepressants are a 

class of medication with such structure and we demonstrated their strong inhibition on 

OATP1A2-mediated transport of rosuvastatin. Such an interaction may potentially be 

significant for CNS-active drugs that use OATP1A2 to cross the blood-brain barrier. Future 

work needs to be done to assess whether OATP1A2-mediated transport of CNS-active drugs 

can be blocked by tricyclic antidepressants. As well, the clinical relevance of such an 

interaction needs to be investigated further. 
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Figure Legends 

 

Fig. 1. OATP1A2-mediated transport of rosuvastatin. (A) Uptake of 60 µM rosuvastatin in 

HEK293-OATP1A2 and HEK293-VC cells was assessed for 1, 2, 3, 5, and 10 min at 37°C (B) 

Uptake of rosuvastatin (10, 25, 50, 75, 100, and 250 µM) in HEK293-OATP1A2 and 

HEK293-VC cells was assessed for 2 min at 37°C. The quantity of intracellular rosuvastatin 

was normalized to protein content. To obtain the net transport, values measured in the VC 

cells were subtracted from the values measured in OATP1A2-expressed cells. Km and Vmax 

were calculated by fitting the data to the Michaelis-Menten equation. Each point represents the 

mean ± S.D. of triplicate from a single experiment.   

 

Fig. 2. Inhibition of OATP1A2-mediated transport of rosuvastatin by different β-

blockers. HEK293-OATP1A2 and HEK293-VC cells were coincubated with rosuvastatin 

(150 µM) and different β-blockers (1.5 – 100 µM; up to 200 µM for carvedilol) for 2 min at 

37°C. The quantity of intracellular rosuvastatin measured was normalized to protein content. 

To obtain the net transport, values measured in the VC cells were subtracted from the values 

measured in OATP1A2-expressed cells. IC50 values were calculated by fitting the data to the 

log(inhibitor) vs. response equation in GraphPad Prism. (A) (●) metoprolol; (■) propranolol; 

(▲) acebutolol; (B) (●) alprenolol; (■) celiprolol; (▲) nadolol; (C) (●) timolol; (■) atenolol; 

(▲) sotalol; (D) (●) carvedilol. Each point represents the mean ± S.D. of triplicate from a 

single experiment. The values in parentheses represent the 95% confidence interval. 
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Fig. 3. Chemical structures of compounds evaluated. Structure of carvedilol, carbazole, 

amitriptyline, propranolol and the list of structurally similar compounds evaluated.  

 

Fig. 4. Intracellular concentrations of carvedilol. HEK293-OATP1A2 and HEK293-VC 

cells were incubated in a solution of 2 µM carvedilol for 2 min at 37°C. The quantity of 

intracellular carvedilol was normalized to protein content. Each column represents the mean ± 

S.D. of triplicate from a single experiment. 

 

Fig. 5. Dixon plot of inhibition of OATP1A2-mediated transport of rosuvastatin by 

carvedilol. HEK293-OATP1A2 and HEK293-VC cells were coincubated with rosuvastatin 

(25, 50, 100, 250 µM) and carvedilol (0.5 – 10 µM) for 2 min at 37°C. The quantity of 

intracellular rosuvastatin was normalized to protein content. To obtain the net transport, values 

measured in the VC cells were subtracted from the values measured in OATP1A2-expressed 

cells. The x-axis represents the concentration of the inhibitor and the y-axis represents the 

reciprocal velocity (1/V). Linear regression was used to fit each set of data and the intercept of 

all lines represents the - Ki. The Ki was accurately calculated in GraphPad Prism. (●) 25 µM 

rosuvastatin; (■) 50 µM rosuvastatin; (▲) 100 µM rosuvastatin; (▼) 250 µM rosuvastatin. The 

values in parentheses represent the 95% confidence interval. 
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Table 1. IC50 values from the inhibition of rosuvastatin uptake through OATP1A2 by 

different tricyclic compounds. The values in parentheses represent the 95% confidence 

interval (See also Supplemental Figure 2). 

Compound IC50 (µM) 

amitriptyline 11.7 (9.1 - 15.0) 

carazolol 3.7 (2.9 – 4.8) 

carvedilol 3.2 (2.7 – 3.9) 

chlorpromazine 12.0 (7.5 – 19.2) 

clomipramine 8.2 (5.2 – 13.0) 

desipramine 37.0 (22.3 – 61.4) 

doxepin 12.1 (7.1 – 20.6) 

imipramine 16.9 (13.2 – 21.6) 

nortriptyline 25.0 (13.2 – 47.6) 

trimipramine 15.0 (8.1 – 27.8) 

carbamazepine No effect 

carbazole No effect 

phenothiazine No effect 
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Table 2. Ki values from the inhibition of rosuvastatin uptake through OATP1A2 by 

different tricyclic compounds. The values in parentheses represent the 95% confidence 

interval (See also Supplemental Figure 3). 

Compound Ki (µM) 

amitriptyline 3.7 (2.9 – 4.6) 

carazolol 3.2 (2.2 – 4.1) 

carvedilol 1.1 (0.9 – 1.3) 

chlorpromazine 5.3 (4.4 – 6.1) 

clomipramine 3.3 (2.7 – 3.9) 

desipramine 8.4 (6.7 – 10.0) 

doxepin 4.7 (3.6 – 5.8) 

imipramine 3.5 (2.5 – 4.5) 

nortriptyline 12.0 (9.0 – 15.0) 

trimipramine 2.8 (2.1 – 3.5) 
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Supplemental Figure 1. Structures of (A) different β-blockers tested and (B) different 

tricyclic compounds tested. 
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Supplemental Figure 2. Inhibition of OATP1A2-mediated transport of rosuvastatin by 

different tricyclic compounds. HEK293-OATP1A2 and HEK293-VC cells were coincubated 

with rosuvastatin (150 µM) and different tricyclic compounds (12.5 nM – 250 µM) for 2 min 

at 37°C. The quantity of intracellular rosuvastatin was normalized to protein content. To 

obtain the net transport, values measured in the VC cells were subtracted from the values 

measured in OATP1A2-expressed cells. IC50 values were calculated by fitting the data to the 
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log(inhibitor) vs. response equation in GraphPad Prism. (A) carazolol; (B) amitriptyline; (C) 

chlorpromazine; (D) clomipramine; (E) desipramine; (F) doxepin; (G) imipramine; (H) 

nortriptyline; (I) trimipramine; (J) carbamazepine; (K) carbazole; and (L) phenothiazine. Each 

point represents the mean ± S.D. of triplicate from a single experiment. The values in 

parentheses represent the 95% confidence interval. 
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Supplemental Figure 3. Dixon plots of inhibition of OATP1A2-mediated transport of 

rosuvastatin by different tricyclic compounds. HEK293-OATP1A2 and HEK293-VC cells 

were coincubated with rosuvastatin (25, 50, 100, 250 µM) and different tricyclic drugs (0.5 – 

50 µM) for 2 min at 37°C. The quantity of intracellular rosuvastatin was normalized to protein 

content. To obtain the net transport, values measured in the VC cells were subtracted from the 

values measured in OATP1A2-expressed cells. The x-axis represents the concentration of the 

inhibitor and the y-axis represents the reciprocal velocity (1/V). Linear regression was used to 

fit each set of data and the intercept of all lines represents the - Ki. The Ki was accurately 

calculated in GraphPad Prism. (●) 25 µM rosuvastatin; (■) 50 µM rosuvastatin; (▲) 100 µM 

rosuvastatin; (▼) 250 µM rosuvastatin. (A) carazolol; (B) amitriptyline; (C) chlorpromazine; 

(D) clomipramine; (E) desipramine; (F) doxepin; (G) imipramine; (H) nortriptyline; and (I) 

trimipramine. The values in parentheses represent the 95% confidence interval. 
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2.1.4 DISCUSSION 

A method to study DDIs between substrates and inhibitors of OATP1A2 using rosuvastatin as 

a probe substrate was developed and validated. Competition between rosuvastatin and 

different β-blockers for transport through OATP1A2 demonstrated that carvedilol was the 

most potent inhibitor. Further investigations using drugs with a structure similar to carvedilol 

were tested for their potential to inhibit OATP1A2. A structure-activity relationship was 

defined using the data. It was demonstrated that drugs composed of a tricyclic ring with a 

short aliphatic amine chain were potent OATP1A2 inhibitors. These drugs were not 

transported by OATP1A2, indicating that they were solely inhibitors.  

 

As discussed in the article and in the introduction of my thesis, a lot of attention was drawn to 

OATP1A2 because it was thought to mediate DDI in the intestine. This was later challenged 

by several groups when its presence could not be detected in the intestine using a more 

sensitive protein quantification method [36, 37]. Other intestinal uptake transporters, such as 

OATP2B1, are believed to mediate the observed effects. A recent DDI study assessed the 

coadministration of rosuvastatin with ronacaleret, a drug previously under development for the 

treatment of osteoporosis [154]. Rosuvastatin Cmax decreased by 33% and the AUC 

decreased by 50% in the presence of ronacaleret compared to administration of rosuvastatin 

alone. In vitro data demonstrated that this interaction can be mediated by OATP2B1. 

Furthermore, studies in individuals carrying the OATP2B1 1457C>T reduced function variant 

allele showed decreased exposure to fexofenadine and celiprolol after oral administration 

[155, 156]. These findings are indicative of an important role for OATP2B1 in oral absorption 

of clinically relevant drugs.  

 

Although OATP1A2 is not expressed in the intestine, its presence at the BBB is well 

established. The second article presented will study OATP1A2 in this context. 
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SECTION 2.2 

 

ARTICLE #2 

 

Effects of tricyclic compounds on the transport of anti-migraine 

triptans through human organic anion transporting polypeptide 

1A2 (OATP1A2) 
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2.2.1 OBJECTIVES 

The first objective was to characterize the uptake of different triptans through OATP1A2. The 

second objective was to determine whether the tricyclic drugs evaluated in the first article 

inhibited OATP1A2-mediated transport of triptans. The third objective was to repeat the 

inhibition studies using clinically relevant drug concentrations. 

 

2.2.2 INTRODUCTION 

As presented in the introduction of my thesis, the BBB is well known for its role in protecting 

the brain from external aggressions, including pathogens, toxins, the majority of endogenous 

substances, and clinically relevant drugs. Yet, some drugs are able to penetrate the brain as 

demonstrated by their ability to exert a positive pharmacological effect when their site of action 

is located at the CNS and other drugs are associated to neurological adverse events. Drug 

transporters may be the gateway across the BBB for those pharmaceuticals. Efflux transporters 

may limit the entrance of drugs and influx transporters may facilitate their penetration to the 

brain. OATP1A2 expression at the human BBB is well established. Previous 

immunofluorescence studies demonstrated its presence at the luminal membrane of endothelial 

cells making up the BBB [21, 23, 30, 86]. This localisation strongly suggests a role for 

OATP1A2 in mediating the entrance of drugs to the CNS.  

 

Most drugs capable of penetrating the BBB are small and lipid soluble [157, 158]. A 

compound’s lipophilicity or membrane permeability is characterized by its logP value. LogP 

refers to the partition coefficient of the compound between two immiscible phases at 

equilibrium, which are usually n-octanol and water. It’s a measure of the ratio of the 

concentrations of the non-ionized compound between these two phases as shown by the 

following formula: 

logP = log ( 
[solute]non-ionized in n-octanol ) [solute]non-ionized in water 
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A logP value above 1 is characteristic of a molecule more soluble in octanol (more lipophilic); 

whereas, a logP value below 1 is characteristic of a molecule more soluble in water (more 

hydrophilic). The distribution coefficient (logD) value is another measure of permeability of a 

drug and it takes into account ionized and non-ionized forms of the molecule as shown in the 

following formula: 

logD = log ( 
[solute]non-ionized in n-octanol +  [solute]ionized in n-octanol ) [solute]non-ionized in water     +  [solute]ionized in water 

 

Given that the ionization state of a molecule varies with the pH, the logD value also varies 

accordingly. The logD value is more relevant when studying the permeability of a drug under 

physiological conditions.  

 

Triptans, a class of medications commonly used in treating acute migraine attacks, are believe to 

act at both peripheral and central sites. In order for triptans to access their central targets, they 

need to cross the BBB. Compared to most CNS-active drugs, triptans have poor passive 

permeability and are unlikely to cross by passive diffusion [159]. The logD values at pH 7.4 are -

2.1, +0.5, -1.0, -0.2, -0.7, -1.5, and -1.0 for almotriptan, eletriptan, frovatriptan, naratriptan, 

rizatriptan, sumatriptan, and zolmitriptan, respectively [160]. Based on their logD value, 

eletriptan appears to be able to enter the BBB by passive diffusion. The more hydrophilic triptans 

may enter by facilitated transport and OATP1A2 offers an interesting access point.  

 

2.2.3 ARTICLE 

The authors’ specific contributions were as follow: 

• Participated in research design: Jennifer Lu, Veronique Michaud, Jacques Turgeon 

• Conducted experiments: Jennifer Lu 

• Contributed new reagents or analytic tools: Jennifer Lu, Alexia Grangeon, Fleur Gaudette 

• Performed data analysis: Jennifer Lu, Fleur Gaudette 
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• Wrote or contributed to the writing of the manuscript: Jennifer Lu, Veronique Michaud, 

Jacques Turgeon 
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Abstract 

OATP1A2 is a membrane drug-transporter expressed at the human blood-brain barrier (BBB) 

that may potentially mediate penetration of drugs in the brain. Triptans, hydrophilic antimigraine 

drugs, are substrates of OATP1A2. It is believed that triptans should cross the BBB to reach their 

site of action. Thus, OATP1A2 can limit brain penetration of triptans and may consequently 

influence their antimigraine drug action. We have previously demonstrated that compounds 

composed of a tricyclic ring with a short aliphatic amine chain, such as tricyclic antidepressants 

and carvedilol, inhibited OATP1A2-mediated rosuvastatin uptake. The main objective of this 

study was to determine whether triptans transport via OATP1A2 is affected by tricyclic 

compounds. First, we confirmed that triptans were substrates of OATP1A2 but not OATP2B1 

using HEK293 stable cell lines. The tricyclic drugs evaluated were able to inhibit OATP1A2-

mediated uptake of triptans. Carvedilol was the most potent inhibitor. Potential inhibition was 

assessed with a range of total plasma concentrations of the drugs. Carvedilol and nortriptyline 

lowered the uptake of both almotriptan and zolmitriptan whereas clomipramine diminished the 

uptake of almotriptan only. Our data suggest that these three drugs may limit the penetration of 

triptans to the brain by modulating OATP1A2 transport at clinically relevant concentrations.  

 

Keywords: Drug transporter, OATP1A2, drug-drug interaction, triptans, blood-brain barrier 

Abbreviations: CNS, central nervous system; HEK, human embryonic kidney; OATP, organic 

anion transporting polypeptide; PBS, phosphate-buffered saline. 
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Introduction 

Migraines are an important cause of disability in Canada, affecting 8.3% of the population (2.7 

millions) [1]. Triptan drugs are typically used in the treatment of acute migraine attacks. Triptans 

are selective agonists of the serotonin receptors 5-HT1B and 5-HT1D located on smooth muscle 

cells of intracranial and extracerebral blood vessels as well as on trigeminal sensory neurons [2-

4]. Their mechanisms of action are believed to imply inhibition of activated trigeminal neurons, 

inhibition of neuropeptides release, interruption of pain transmission, and perhaps selective 

vasoconstriction of cranial blood vessels [5]. It appears that triptans are required to cross the 

blood-brain barrier (BBB) to reach their target site in the central nervous system (CNS). 

However, these drugs are hydrophilic, limiting their penetration through the BBB. Thus, 

transport mechanisms must exist to facilitate their entrance into the brain. Many membrane drug 

transporters are expressed at the BBB to limit or facilitate the access of drugs to the brain. 

Among those involved in drug influx, OATP1A2 and OATP2B1 proteins are expressed on the 

luminal membrane of the endothelial cells making up the BBB [6-9]. Their physiological roles at 

the BBB may implicate the distribution of thyroid hormones (triiodothyronine and thyroxine) to 

the CNS by OATP1A2 and the transport of conjugated neuroactive steroids (pregnenolone 

sulfate and dehydroepiandrosterone-3-sulfate) to the brain by OATP2B1 [10,11].  

 

OATP1A2 and OATP2B1 transport a wide spectrum of endogenous compounds and xenobiotics 

while having overlapping substrate selectivity. Recently, a study screened 36 CNS-active drugs 

for transport through OATP1A2 and has shown that triptans are OATP1A2 substrates [12]. 

Using triptan structural analogs, a structure-activity relationship was established where an amine 

residue was essential for transport through OATP1A2 and the uptake rate was the highest for 
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tertiary amine followed by secondary and then primary amines. These findings are interesting as 

it would suggest that OATP1A2 may facilitate permeation of triptans to the brain.  

 

We have previously demonstrated that the transport of rosuvastatin through OATP1A2 can be 

inhibited by compounds composed of a tricyclic ring and a short aliphatic amine chain, such as 

tricyclic antidepressants and carvedilol [13]. The objectives of this study were to 1) confirm 

triptans as OATP1A2 substrates in our human embryonic kidney (HEK293)-OATP1A2 stable 

cell line; 2) determine whether triptans are OATP2B1 substrates using a HEK293-OATP2B1 

stable cell line; 3) determine whether compounds composed of a tricyclic ring and a short 

aliphatic amine chain inhibit the transport of triptans through OATP1A2; and 4) determine 

whether tricyclic compounds can inhibit OATP1A2-mediated uptake of triptans at total plasma 

concentrations. The consequence of such an interaction in humans would be a diminishment or 

abolishment in antimigraine efficiency by a limited delivery of triptans into the brain. 
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Materials and Methods 

Reagents 

Amitriptyline hydrochloride, carbamazepine, carbazole, chlorpromazine hydrochloride, 

clomipramine hydrochloride, desipramine hydrochloride, imipramine hydrochloride, naratriptan 

hydrochloride, nortriptyline hydrochloride, phenothiazine, rizatriptan benzoate, sumatriptan 

succinate, trimipramine maleate salt, zolmitriptan were purchased from Sigma-Aldrich (St-Louis, 

MO, USA). Almotriptan hydrochloride, carazolol hydrochloride, carvedilol, doxepin 

hydrochloride, eletriptan hydrobromide were purchased from Toronto Research Chemicals 

(Toronto, ON, Canada). All chemicals and solvents were obtained from Sigma-Aldrich, Fisher 

Scientific (Fair Lawn, NJ, USA) or J.T. Baker (Center Valley, PA, USA).  

Cell culture 

HEK293-OATP1A2, HEK293-OATP2B1, and HEK293-VC cells were kindly provided by Dr. 

Markus Keiser and Dr. Werner Siegmund (Department of Clinical Pharmacology, Center of 

Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany). The 

cells were cultured in minimum essential medium supplemented with 10% fetal bovine serum, 

1x nonessential amino acids, and 1x sodium pyruvate at 37°C and 5% CO2. Cell culture media 

and supplements were purchased from Multicell Wisent Inc. (St-Jean-Baptiste, QC, Canada); 

whereas, fetal bovine serum was obtained from HyClone Thermo Scientific (Logan, UT, USA). 

Uptake assays and competition assays 

Reproducibility of our HEK293-OATP1A2 cell model was assessed with 2-3 different cell 

batches and comparable Km values were obtained. The uptake assays were performed as 

previously described [13]. Briefly, tissue culture plates (6-well or 12-well) were first treated with 

poly-L-lysine (Sigma-Aldrich, St-Louis, MO, USA) before seeding the HEK293-OATP1A2, 
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HEK293-OATP2B1, and HEK293-VC cells. The number of cells seeded in 6-well and 12-well 

plates was 1.5 x 106 cells/well and 7.5 x 105 cells/well, respectively. After 24 hours, the culture 

media was replaced with warm transport buffer (142 mM NaCl, 5 mM KCl, 1 mM K2HPO4, 1.2 

mM MgSO4, 1.5 mM CaCl2, 5 mM glucose, and 12.5 mM HEPES, pH 7.3) and pre-incubated at 

37°C for 5 minutes. Following the pre-incubation period, the cells were incubated with warm 

transport buffer containing the substrate in the presence or absence of an inhibitor at 37°C. After 

incubation, the cells were washed twice with phosphate-buffered saline (PBS) containing 10% 

acetonitrile followed by a final wash with PBS.  

Time-dependent uptake experiments through OATP1A2 were done in six-well plates by 

incubating HEK293-OATP1A2 and HEK293-VC cells with drugs at determined Km, i.e. 

almotriptan (5 µM), eletriptan (1 µM), naratriptan (20 µM), rizatriptan (43 µM), sumatriptan (94 

µM), or zolmitriptan (21 µM). The Km and Vmax of the different triptans transport through 

OATP1A2 was determined by incubating HEK293-OATP1A2 and HEK293-VC cells in six-well 

plates with almotriptan (0.375 to 25 µM), eletriptan (0.125 to 5 µM), naratriptan (0.625 to 100 

µM), rizatriptan (0.75 to 250 µM), sumatriptan (1.5 to 500 µM), and zolmitriptan (0.75 to 250 

µM). To determine whether a compound can block OATP1A2-mediated transport of triptans, 

HEK293-OATP1A2 and HEK293-VC cells were seeded in 12-well plates and co-incubated with 

almotriptan (15 µM), eletriptan (3 µM), naratriptan (60 µM), rizatriptan (130 µM), sumatriptan 

(300 µM), or zolmitriptan (65 µM) in the absence or presence of different tricyclic compounds 

(0.15–150 µM). In the inhibition studies, a concentration of triptan at three times the Km value 

was selected in order to saturate the OATP1A2 transporter with the substrate. An incubation time 

of 2 minutes was chosen for almotriptan, naratriptan, rizatriptan, sumatriptan, and zolmitriptan; 

whereas 1 minute was chosen for eletriptan. Time-dependent uptake of triptans at clinically 
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relevant concentrations was done in six-well plates by incubating HEK293-OATP1A2 and 

HEK293-VC cells with almotriptan (50 ng/mL) or zolmitriptan (3 ng/mL). To determine whether 

clinically relevant concentrations of tricyclic compounds can inhibit OATP1A2-mediated 

transport of triptans, HEK293-OATP1A2 and HEK293-VC cells were seeded in six-well plates 

and co-incubated with either almotriptan (50 ng/mL) or zolmitriptan (3 ng/mL) for 1 or 2 

minutes, respectively, in the absence or presence of different tricyclic compounds (10 – 200 

ng/mL).  

To determine whether triptans are transported by OATP2B1, HEK293-OATP2B1 and HEK293-

VC cells were seeded in six-well plates and incubated with almotriptan (5 and 25 µM), eletriptan 

(1 and 3.75 µM), naratriptan (20 and 60 µM), rizatriptan (40 and 120 µM), sumatriptan (100 and 

300 µM), or zolmitriptan (21 and 65 µM). The concentrations chosen for each substrate 

correspond to its Km and 3-times Km value determined in HEK293-OATP1A2 cells. 

The protein concentration was measured using the Pierce BCA protein assay kit from Thermo 

Scientific (Rockford, IL, USA). Three wells of each cell line were lyzed with 1% SDS + 0.2 N 

NaOH and the average value was used to normalize intracellular triptan concentrations.  

Quantification of Triptans by High-Performance Liquid Chromatography-UV 

The quantity of triptans transported in the cells was measured by high performance liquid 

chromatography with UV detection. The instrumentation consisted of a SpectraSystem P4000 

pump, SpectraSystem AS3000 autosampler, Finnigan SpectraSystem UV6000 ultraviolet 

detector and SpectraSystem SN4000 system controller from Thermo Electron Corporation (San 

Jose, CA, USA). ChromQuest Version 4.2.34 software was used for data acquisition (Thermo 

Electron Corporation). The samples were separated on a Phenomenex Luna 3µm PFP(2) column 
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(150 x 4.6 mm, 3µM; Phenomenex, Torrance, CA, USA). Table 1 summarizes the details for 

each method.  

Since the cell lysate affected the absorbance of the analytes, calibration curves and quality 

controls samples were prepared in the cell lysate. Linear regressions (weighted 1/concentration) 

were judged to produce the best fit for the concentration-detector relationship for all triptans.  

The coefficients of correlation (r2) were greater than 0.997 for all compounds in all batches. The 

reproducibility of each method was evaluated by analyzing six replicates of lysate samples 

fortified at LLOQ, low, mid and high concentrations in three individual runs. Precisions were 

better than 11.3% and accuracies were in the 96.0 - 110% range. The inter- and intra-batch 

precision and accuracy statistical results for all compounds are shown in Table 2.  

After the final wash with PBS, the samples were processed as previously described [13]. Briefly, 

the cells were lyzed with methanol containing the IS (100 ng/ml). The cell lysate was transferred 

to a 1.7 mL microtube and the samples were spun down at maximum speed for 10 minutes at 

room temperature. The supernatant was transferred to a culture borosilicate glass tube, 

evaporated to dryness, and reconstituted in 100 µl of reconstitution solution. The reconstitution 

solution consisted of a mixture of ddH2O and methanol in the following proportions: almotriptan 

(70:30 v/v), eletriptan (50:50 v/v), naratriptan (70:30 v/v), rizatriptan (70:30 v/v), sumatriptan 

(70:30 v/v), and zolmitriptan (70:30 v/v). A volume of 20 µl per sample was injected.  

Quantification of Almotriptan and Zolmitriptan by Liquid Chromatography-Tandem Mass 

Spectrometry 

The quantity of almotriptan and zolmitriptan transported in the cells when incubated at clinically 

relevant concentrations was measured by liquid chromatography-tandem mass spectrometry. The 

instrumentation consisted of a TSQ Quantiva Triple Quadrupole mass spectrometer interfaced 
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with an Ultimate 3000XRS UHPLC system using pneumatic assisted heated electrospray ion 

source from Thermo Scientific (San Jose, CA, USA). Xcalibur 3.0.63 software was used for data 

acquisition and analysis (San Jose, CA, USA). The samples were separated on a Phenomenex 

Luna PFP(2) column (150 x 3.0 mm, 3µM; Phenomenex, Torrance, CA, USA) coupled with a 

Phenomenex PFP security guard cartridge (4 x 2.0 mm; Phenomenex, Torrance, CA, USA). The 

mobile phase consisted of 10 mM ammonium formate, pH 3, and acetonitrile in the following 

proportions: almotriptan (70:30 v/v) and zolmitriptan (80:20 v/v). The flow rate was set at 0.3 

ml/min and the column was heated at 40°C for almotriptan. The flow rate was set at 0.4 ml/min 

and the column was heated at 50°C for zolmitriptan. 2H6-almotriptan and 2H6-zolmitriptan were 

used as IS and the retention times are 4.4 and 2.8 minutes for almotriptan and zolmitriptan, 

respectively. MS detection was performed in positive ion mode, using selected reaction 

monitoring. The precursor-ion reactions for the analytes were set at 336.2 → 291.1 for 

almotriptan and 288.3 → 167.1 for zolmitriptan. 

The analytical range was set at 37.5 to 25,000 pg/ml for almotriptan and set at 75.0 to 25,000 

pg/ml for zolmitriptan. A linear regression (weighted 1/concentration) was judged to produce the 

best fit for the concentration-detector relationship for almotriptan and zolmitriptan. The r2 was 

greater than 0.998 for almotriptan and 0.996 for zolmitriptan. The reproducibility of the method 

was evaluated by analyzing three replicates of lysate samples fortified at low, mid and high 

concentrations in three individual runs. Precisions were better than 13% and accuracies were in 

the 92 -103% range. The intra and inter batch precision and accuracy statistical results are shown 

in Supplemental Table 1. 

After the final wash with PBS, the samples were processed as follows. The cells were lyzed with 

1 ml methanol containing the IS (2 ng/ml 2H6-almotriptan or 0.5 ng/ml 2H6-zolmitriptan). The 
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cell lysate was transferred to a 1.7 ml microtube and the samples were spun down at maximum 

speed for 10 minutes at room temperature. The supernatant was transferred to a culture 

borosilicate glass tube, evaporated to dryness at 10 psi with N2 at 40°C, and reconstituted in 200 

µl of reconstitution solution. The reconstitution solution consisted of a mixture of 10 mM 

ammonium formate, pH 3, and methanol (70:30 v/v) for almotriptan and H2O and methanol 

(95:5 v/v) for zolmitriptan. A volume of 10 µl per sample for almotriptan and 5 µl per sample for 

zolmitriptan was injected.  

Data analysis 

The net transport of triptan through OATP1A2 was calculated by subtracting the value in the VC 

cells from the value in the OATP1A2 cells. Data were analyzed using GraphPad Prism 5 

(GraphPad Software, La Jolla, CA, USA). Each data point is expressed as the mean ± S.D. Km 

and Vmax were calculated by fitting the data to the Michaelis-Menten equation. IC50 values were 

calculated by fitting the data to the log(inhibitor) versus response equation, and the range given 

represents the 95% confidence interval. 
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Results 

Transport of Triptans through OATP1A2 

A cell model stably expressing OATP1A2 in HEK293 cells was used to study OATP1A2-

mediated transport of the different triptans. Time-dependent uptake was assessed up to 60 

minutes with the exception of eletriptan, up to 15 minutes, due to its higher lipophilicity 

compared to other triptans (Fig. 1). All triptans evaluated showed time-dependent saturable 

transport by OATP1A2. An incubation time of 2 minutes was chosen for further experiments 

with almotriptan, naratriptan, rizatriptan, sumatriptan, and zolmitriptan and 1 minute was chosen 

for eletriptan as these time-points remain in their linear range. All triptans evaluated also showed 

concentration-dependent saturable transport via OATP1A2 (Fig. 2; Table 3). Eletriptan showed 

the highest affinity for OATP1A2 and sumatriptan has the lowest affinity as the Km were 

calculated to be 0.8 ± 0.2 µM and 94.5 ± 9.9 µM, respectively. OATP1A2 transport velocity was 

the lowest for almotriptan and the highest was observed with sumatriptan as the Vmax were 1265 

± 54.4 pmol/mg protein per minute and 8072 ± 300.2 pmol/mg protein per minute, respectively. 

The intrinsic clearance (CLint) was the lowest for sumatriptan (85.4 µl/mg protein per minute) 

and the highest for eletriptan (2042.5 µl/mg protein per minute).  

Transport of Triptans through OATP2B1 

Transport of triptans through OATP2B1 was evaluated, using a HEK293 cell model stably 

expressing this transporter, as OATP2B1 is also found at the BBB and has overlapping substrates 

with OATP1A2. Two concentrations of each triptan were assessed. The concentrations chosen 

for each substrate correspond to its Km and 3-times Km value determined for OATP1A2. A 

slightly greater intracellular concentration of eletriptan and sumatriptan was observed in 

HEK293-OATP2B1 cells compared to HEK293-VC cells (Fig. 3). No transport by OATP2B1 
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was noticed when incubations were performed with almotriptan, naratriptan, rizatriptan, and 

zolmitriptan. The small difference, less than 21%, observed between the two cell lines with 

eletriptan and sumatriptan was considered non-significant and likely due to the variability of 

experiments.  

Effect of Tricyclic Compounds on OATP1A2-mediated Uptake of Triptans 

To determine whether compounds composed of a tricyclic ring and a short aliphatic amine chain 

inhibit OATP1A2-mediated uptake of triptans, competition studies were performed 

(Supplemental Figs. 1, 2, 3, and 4; Table 4). Carvedilol showed the strongest inhibition on the 

uptake of all six triptans with an IC50 of 0.5, 0.7, 2.1, 2.2, 3.5, and 3.8 µM for eletriptan, 

almotriptan, sumatriptan, zolmitriptan, rizatriptan, and naratriptan, respectively. Carazolol was 

the second strongest inhibitor with an IC50 of 1.6, 4.6, and 5.5 µM for almotriptan, zolmitriptan, 

and naratriptan, respectively. Amitriptyline, chlorpromazine, clomipramine, desipramine, 

doxepin, imipramine, nortriptyline, and trimipramine demonstrated slightly lower inhibition 

potencies than carvedilol and carazolol. Carbamazepine, carbazole, and phenothiazine exerted no 

significant effect on the transport of almotriptan, naratriptan, and zolmitriptan.  

Studies in the range of total plasma concentrations 

As the IC50 studies were carried out with the concentration of substrates at saturation, it does not 

reflect the interaction at the blood-brain barrier in clinical settings. Thus, a study using range of 

total plasma concentrations of triptans and inhibitors were carried out with almotriptan and 

zolmitrptan. These two triptans were selected based on their greater hydrophilic profile in the 

cell model used. In Canada, almotriptan is typically given in a 12.5 mg dose tablet and 

zolmitriptan is typically given in a 2.5 mg dose tablet, 2.5 to 5 mg dose nasal spray or 2.5 mg 

dose orally disintegrating tablet [14]. Pharmacokinetic studies have shown that a single dose of 
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almotriptan results in a Cmax of 50 ng/mL and a single dose of zolmitriptan in any of the dosage 

forms corresponds to a Cmax of 3-7 ng/mL [15-19]. 

 

Time-dependent uptake of almotriptan and zolmitriptan was re-assessed as lower concentrations 

might affect the kinetics. Almotriptan (50 ng/mL) and zolmitriptan (3 ng/mL) showed a time-

dependent saturable transport with a similar profile as when incubated at Km (Fig. 4A and 5A). 

An incubation time of 1 and 2 minutes was chosen for the competition experiments for 

almotriptan and zolmitriptan, respectively. The concentrations of inhibitors correspond to the 

plasma concentrations measured at half Cmax, Cmax, and 2-times Cmax for a given dose. The 

reported peak plasma concentrations (Cmax) after an oral dose are:  33.5 ng/ml for amitriptyline 

50 mg ; 35 ng/ml for carvedilol 12.5 mg ; 50 ng/ml for chlorpromazine 100 mg ; 63 ng/ml for 

clomipramine 25 mg ; 18 ng/ml for desipramine 50 mg ; 25 ng/ml for doxepin 75 mg ; 63 ng/ml 

for imipramine 100 mg; 50-150 ng/ml for nortriptyline 25-50 mg; and 22 ng/ml for trimipramine 

75 mg [20-28]. Among the inhibitors evaluated, carvedilol and nortriptyline lowered the uptake 

of both almotriptan and zolmitriptan whereas clomipramine diminished the uptake of almotriptan 

only. The other tricyclic compounds had no significant effects on OATP1A2-mediated uptake of 

almotriptan and zolmitriptan at clinically relevant concentrations.  
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Discussion 

Using stable cell lines overexpressing selected transporters, we confirmed that triptans are 

substrates for OATP1A2 but not OATP2B1. Inhibition studies demonstrated that compounds 

composed of a tricyclic ring and a short aliphatic amine chain inhibited OATP1A2-mediated 

uptake of triptans. The IC50 values of the inhibitors determined in this study followed the same 

pattern as those previously published when using rosuvastatin as the probe substrate for 

OATP1A2 [13]. Carvedilol and carazolol were the strongest inhibitors followed by amitriptyline, 

chlorpromazine, clomipramine, desipramine, doxepin, imipramine, nortriptyline, and 

trimipramine. Inhibition studies conducted in the range of total plasma concentrations showed 

that carvedilol, clomipramine and nortriptyline were able to diminish the transport of triptans 

through OATP1A2.  

 

The Km values of almotriptan, eletriptan and zolmitriptan for OATP1A2 determined in this study 

(5.1, 0.8, and 21.4 µM, respectively) are in line with those previously published (4.8, 1.3, and 

15.1 µM, respectively) [12]. However, the Km values of rizatriptan and sumatriptan are higher in 

this study (42.9 and 94.5 versus 6.0 and 27.0 µM). The drug’s solubility in the solvent used to 

dissolve or the incubation buffer may account for this discrepancy. In fact, when a drug is 

incompletely dissolved, the shape of the Km Vmax curve is changed when compared to the 

situation where the drug is completely dissolved at all concentrations. The Vmax values for the 

substrates are higher in this study. This variability may be explained by the differences in the in 

vitro model used: the quantity of OATP1A2 protein expressed at the cell surface, the quantity of 

functional proteins expressed, or the quantity of transporters exposed to the media and available 

for drug uptake. Although the CLint values (Vmax/Km) are different in the two studies, they both 
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follow the same order of magnitude: eletriptan > zolmitriptan > almotriptan > rizatriptan > 

sumatriptan. Naratriptan could not be compared as the previous publication did not assess it.  

 

There are evidences supporting a mechanism of action in the CNS for triptans in addition to their 

peripheral effects: 1) 5-HT1B and 5-HT1D receptors proteins are found on trigeminal sensory 

neurons; and 2) activation of the trigeminal nucleus neurons by electrical stimulation is inhibited 

after administration of a triptan in animal models [2,3,29-31]. CNS adverse events, such as 

dizziness, vertigo, and ataxia are indirect indications that triptans have the potential to access the 

brain [32]. Using positron emission tomography (PET), two studies demonstrated that 

zolmitriptan can penetrate the brain at therapeutic doses and can bind to their receptors located in 

the CNS [33,34]. As triptans are hydrophilic, thus cannot cross the blood-brain barrier by passive 

diffusion, OATP1A2 may play a role in facilitating the transport of triptans to their site of action. 

Our data suggest that the co-administration of carvedilol, clomipramine, or nortriptyline with a 

triptan may limit the entrance of triptans to the CNS by inhibiting OATP1A2. The drug 

concentration might fall below its therapeutic window in the brain. Consequently, the 

antimigraine activity may be abolished.  

 

Of interest, one third of migraineurs receiving triptan therapy do not achieve headache relief and 

the most common reason for the discontinuation of these medications is the lack efficacy 

[32,35,36]. With the purpose of understanding the causes behind this lack of efficacy, a few 

studies have looked at polymorphisms found in genes involved in the pharmacokinetic and 

pharmacodynamic response to triptans. Associations have been reported for the genes encoding 

the serotonin transporter, monoamine oxidase A, and CYP1A2 [37]. Polymorphisms in the gene 
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encoding for OATP1A2 and their ability to transport triptans should also be investigated. 

However, pharmacogenomics alone may not explain the lack of efficacy of triptans in all non-

responders. Drug-drug interactions may explain inter-subject variability in antimigraine efficacy 

for cases where gene polymorphisms are not involved. Interestingly, migraine is often diagnosed 

in patients with mood disorders, such as depression, anxiety, panic disorder, and bipolar disorder 

[38,39]. As a result, treatments for both conditions are commonly prescribed. Tricyclic 

antidepressants are not only prescribed for depression but also for other off-label uses such as 

obsessive-compulsive disorder, panic disorder, chronic pain, insomnia, premenstrual symptoms 

and bulimia. In addition, β-blockers and antidepressants, especially amitriptyline, are 

occasionally prescribed for the prevention of migraine attacks [40]. These observations indicate 

that the co-prescription of a triptan with a tricyclic antidepressant is not unusual.  

 

Taken together, we demonstrated that compounds composed of a tricyclic ring and a short 

aliphatic amine chain inhibited the OATP1A2-mediated uptake of triptans. Our data suggest that 

carvedilol, clomipramine, and nortriptyline may limit the penetration of triptans to the brain by 

modulating OATP1A2 transport. Although an in vitro cell model permits to study the transport 

of a drug through a specific transporter, this experimental model is also associated with 

limitations when extrapolating in vitro findings to in vivo settings. Thus, emphasizing the need to 

confirm these results in humans. Indeed, the impact of concomitant administration of triptans 

with a potent OATP1A2 inhibitor on their antimigraine efficiency needs to be investigated 

further in clinical studies. 
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Table 1: HPLC-UV quantification methods details 

 Almotriptan Eletriptan Naratriptan 

Buffer 10 mM AF pH3.0 10 mM AF pH3.0 10 mM AF pH3.0 

Solvent Methanol Methanol Methanol 

% Buffer/Solvent 65/35 48/52 68/32 

Run time (min) 22 30 20 

Flow (ml/min) 0.5 0.5 0.5 

Wavelength (nm) 283 272 284 

Temperature (°C) 40 50 40 

tR (min) 19.0 15.7 18.1 

tR IS (min) 15.2 (IS: naratriptan) 27.5 (IS: doxepin) 8.8 (IS: sumatriptan) 

 

 Rizatriptan Sumatriptan Zolmitriptan 

Buffer 10 mM AF pH3.0 10 mM AF pH3.0 10 mM AF pH3.0 

Solvent Methanol Methanol Methanol 

% Buffer/Solvent 71/29 68/32 80/20 

Run time (min) 21 20 24 

Flow (ml/min) 0.5 0.5 0.5 

Wavelength (nm) 282 283 283 

Temperature (°C) 50 40 50 

tR (min) 9.0 8.9 21.7 

tR IS (min) 17.9 (IS: naratriptan) 18.5 (IS: naratriptan) 17.8 (IS: rizatriptan) 

AF: ammonium formate; tR: retention time; IS: internal standard 
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Table 2: Validation of HPLC-UV quantification methods of triptans 

Compound 
Concentration Intra (n=6) Inter (n=18) 

 (ng/mL) Mean ± SD 
(ng/mL) 

CV 
(%) 

Nominal 
(%) 

Mean ± SD 
(ng/mL) 

CV 
(%) 

Nominal 
(%) 

                        

Almotriptan 

25.0 22.0 ± 4.5 20.0 -11.9 23.9 ± 2.7 11.3 -4.5 
100 97.5 ± 2.8 3.0 -7.0 96.1 ± 3.4 3.5 -3.9 
500 484 ± 9.7 2.0 -3.2 494 ± 12.9 2.6 -1.2 

5000 5229 ± 77.7 1.5 4.6 5102 ± 124 2.4 2.0 

                       

Eletriptan 

100 106 ± 14.4 13.5 14.8 111 ± 9.0 8.1 11.1 
250 268 ± 10.0 3.7 7.0 258 ± 9.3 3.6 3.4 
500 508 ± 16.3 3.2 -2.1 496 ± 16.0 3.2 -0.8 

5000 5326 ± 163 3.1 6.5 5123 ± 188 3.7 2.5 
            

Naratriptan 

50.0 54.9 ± 2.4 4.4 15.8 55.0 ± 2.4 4.4 10.0 
100 103 ± 5.8 5.6 4.8 104 ± 3.9 3.8 4.0 
500 491 ± 20.6 4.2 -5.4 480 ± 15.8 3.3 -4.0 

5000 5162 ± 170 3.3 3.2 5089 ± 130 2.6 1.8 

               
    

Rizatriptan 

25.0 27.5 ± 0.9 3.4 12.2 26.8 ± 1.6 6.2 7.1 
100 98.5 ± 3.7 3.7 -1.7 99.2 ± 2.7 2.8 -0.8 
500 510 ± 10.5 2.1 -6.5 484 ± 21.0 4.3 -3.1 

5000 5173 ± 97.3 1.9 3.4 5024 ± 130 2.6 0.5 

                       

Sumatriptan 

25.0 26.0 ± 2.0 7.5 13.8 26.6 ± 2.0 7.4 6.3 
100 103 ± 2.9 2.8 -5.2 99.2 ± 4.2 4.2 -0.8 
500 498 ± 15.0 3.0 -3.9 490 ± 14.4 2.9 -2.1 

2500 2480 ± 93.0 3.8 -2.2 2480 ± 70.4 2.8 -0.8 

                       

Zolmitriptan 

50.0 47.0 ± 2.9 6.1 8.7 51.5 ± 4.2 8.1 3.0 
100 103 ± 9.4 9.2 5.7 102 ± 7.0 6.8 2.3 
500 498 ± 12.8 2.6 3.8 492 ± 11.8 2.4 -1.5 

5000 5113 ± 110 2.2 2.3 5052 ± 91.9 1.8 1.0 

                       
SD: standard deviation; CV: coefficient of variation 
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Table 3. Km, Vmax and CLint values for the transport of triptans through OATP1A2. The 

values were calculated by fitting the data to the Michaelis-Menten equation (± S.D.). CLint was 

calculated by dividing the Vmax by Km. (See also Fig. 2.) 

 

Km (µM) 

Vmax  

(pmol/mg protein per 

minute) 

CLint  

(µl/mg protein per 

minute) 

Almotriptan 5.1 ± 0.6 1265 ± 54 248 

Eletriptan 0.8 ± 0.2 1634 ± 93 2042 

Naratriptan 20.3 ± 1.0 3871 ± 70 191 

Rizatriptan 42.9 ± 5.7 4798 ± 234 112 

Sumatriptan 94.5 ± 9.9 8072 ± 300 85 

Zolmitriptan 21.4 ± 1.4 5764 ± 110 269 

 

 

Table 4. IC50 values from the inhibition of triptans uptake through OATP1A2 by different 

tricyclic compounds. The values in parentheses represent the 95% confidence interval (see also 

Supplemental Fig. 1, 2, 3, and 4).  

 Almotriptan Naratriptan Zolmitriptan 

Inhibitors µM 

Amitriptyline 4.6 (2.4−8.9) 13.2 (7.2−24.2) 6.4 (4.0−10.1) 

Carazolol 1.6 (0.9−2.8) 5.5 (3.3−9.2) 4.6 (3.1−6.8) 

Carvedilol 0.7 (0.3−1.4) 3.8 (3.0−4.8) 2.2 (1.6−2.9) 

Chlorpromazine 8.7 (4.9−15.6) 20.3 (12.1−34.1) 16.9 (10.2−27.8) 
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Clomipramine 6.1 (3.7−10.2) 19.6 (11.4−33.9) 13.5 (8.8−20.9) 

Desipramine 16.2 (7.5−35.0) 19.8 (11.1−35.3) 18.4 (12.1−28.1) 

Doxepin 2.5 (1.7−3.9) 12.9 (8.4−19.8) 6.8 (2.9−16.1) 

Imipramine 4.3 (2.8−6.7) 7.4 (3.2−17.1) 10.3 (4.7−22.4) 

Nortriptyline 4.5 (2.6−7.8) 19.1 (6.8−53.7) 13.0 (9.4−17.9) 

Trimipramine 7.6 (3.5−16.4) 20.0 (12.2−32.6) 13.6 (9.4−19.7) 

Carbamazepine No effect No effect No effect 

Carbazole No effect No effect No effect 

Phenothiazine No effect No effect No effect 

 

 Eletriptan Rizatriptan Sumatriptan 

Inhibitors µM 

Amitriptyline N/A 12.6 (6.8−23.4) 9.5 (5.2−17.4) 

Carvedilol 0.5 (0.2−1.6) 3.5 (2.2−5.6) 2.1 (1.2−3.6) 

Doxepin N/A 4.8 (2.2−10.8) 5.9 (3.4−10.2) 

Imipramine 11.1 (2.7−46.1) N/A N/A 

Nortriptyline 81.0 (9.9−662.2) N/A N/A 

N/A: Not available (The inhibition assay was not evaluated) 
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Figure Legends 

Fig. 1. Time-dependent OATP1A2-mediated transport of triptans. Uptake of triptans at 37°C 

in HEK293-OATP1A2 and HEK293-VC cells was conducted as follows. (A) 5 µM almotriptan 

uptake was assessed for 0.5, 0.75, 1, 2, 3, 5, 10, 20, 30, and 60 minutes. (B) 1 µM eletriptan 

uptake was assessed for 1, 3, 5, 10, 15, and 30 seconds followed by 1, 2, 3, 4, 5, 10, and 15 

minutes. (C) 20 µM naratriptan uptake was assessed for 0.5, 0.75, 1, 2, 3, 5, 10, 20, 30, and 60 

minutes. (D) 43µM rizatriptan uptake was assessed for 1, 3, 5, 10, 15, and 30 seconds followed 

by 1, 2, 3, 4, 5, 15, 30, and 60 minutes. (E) 94 µM sumatriptan uptake was assessed for 0.5, 0.75, 

1, 2, 3, 5, 10, 20, 30, and 60 minutes. (F) 21 µM zolmitriptan uptake was assessed for 0.5, 0.75, 

1, 2, 3, 5, 10, 20, 30, and 60 minutes. The quantity of intracellular triptan was normalized to 

protein content. The net transport was calculated by subtracting the values measured in the VC 

cells from the values measured in OATP1A2 cells. Each point represents the mean ± S.D. of 

triplicate from a single experiment.  

 

Fig. 2. Km and Vmax of OATP1A2-mediated transport of triptans. Uptake of (A) almotriptan 

(0.375, 0.75, 1.5, 3, 6.25, 12.5, and 25 µM); (B) eletriptan (0.125, 0.25, 0.5, 1, 2, 3, 4, and 5 

µM); (C) naratriptan (0.625, 1.25, 2.5, 5, 7.5, 15, 25, 50, and 100 µM); (D) rizatriptan (0.75, 1.5, 

3, 7.5, 15, 30, 62.5, 125, and 250 µM); (E) sumatriptan (1.5, 3, 7.5, 15, 30, 62.5, 125, 250, and 

500 µM); and (F) zolmitriptan (0.75, 1.5, 3, 7.5, 15, 30, 62.5, 125, and 250 µM) was assessed at 

37°C in HEK293-OATP1A2 and HEK293-VC cells. The transport was assessed for 2 minutes 

for all triptans except for eletriptan which was assessed for 1 minute. The quantity of 

intracellular triptan was normalized to protein content. The net transport was calculated by 

subtracting the values measured in the VC cells from the values measured in OATP1A2 cells.  
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Km and Vmax were calculated by fitting the data to the Michaelis-Menten equation. Each point 

represents the mean ± S.D. of triplicate from a single experiment.  

 

Fig. 3. OATP2B1-mediated transport of triptans. Uptake of (A) almotriptan (5 and 25 µM); 

(B) eletriptan (1 and 3.75 µM); (C) naratriptan (20 and 60 µM); (D) rizatriptan (40 and 120 µM); 

(E) sumatriptan (100 and 300 µM); and (F) zolmitriptan (21 and 65 µM) was assessed at 37°C in 

HEK293-OATP2B1 and HEK293-VC cells. The transport was assessed for 2 minutes for all 

triptans except for eletriptan which was assessed for 1 minute. The quantity of intracellular 

triptan was normalized to protein content. Each point represents the mean ± S.D. of triplicate 

from a single experiment. 

 

Fig. 4. Inhibition of OATP1A2-mediated transport of almotriptan by various tricyclic 

compounds at range of total plasma concentrations of the drugs. (A) The uptake of 

almotriptan (50 ng/ml) was assessed for 0.5, 0.75, 1, 2, 3, 4, 5, and 10 minutes at 37°C in 

HEK293-OATP1A2 and HEK293-VC cells. (B) HEK293-OATP1A2 and HEK293-VC cells 

were coincubated with almotriptan (50 ng/ml) and different tricyclic compounds (10 – 200 

ng/ml) for 1 min at 37°C. The quantity of intracellular almotriptan was normalized to protein 

content. To obtain the net transport, values measured in the VC cells were subtracted from the 

values measured in OATP1A2-expressed cells. Each point represents the mean ± S.D. of 

triplicate from a single experiment. 

 

Fig. 5. Inhibition of OATP1A2-mediated transport of zolmitriptan by various tricyclic 

compounds at range of total plasma concentrations of the drugs. (A) The uptake of 
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zolmitriptan (3 ng/ml) was assessed for 0.5, 0.75, 1, 2, 3, 5, 10, and 20 minutes at 37°C in 

HEK293-OATP1A2 and HEK293-VC cells. (B) HEK293-OATP1A2 and HEK293-VC cells 

were coincubated with zolmitriptan (3 ng/ml) and different tricyclic compounds (10 – 200 ng/ml) 

for 2 min at 37°C. The quantity of intracellular zolmitriptan was normalized to protein content. 

To obtain the net transport, values measured in the VC cells were subtracted from the values 

measured in OATP1A2-expressed cells. Each point represents the mean ± S.D. of triplicate from 

a single experiment. 
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Supplemental Table 1: Validation of LC-MS/MS quantification methods of triptans 

Compound 
Concentration Intra (n=3) Inter (n=9) 

(pg/mL) Mean ± SD  
(pg/mL) 

CV 
(%) 

Nominal 
(%) 

Mean ± SD  
(pg/mL) 

CV 
(%) 

Nominal 
(%) 

                        

Almotriptan 
75.0 72.4 ± 3.7 5.1 -3.5 76.2 ± 9.9 13.0 1.5 
1250 1203 ± 28 2.3 -3.8 1189 ± 32 2.7 -4.9 
15000 15424 ± 382 2.5 2.8 15013 ± 470 3.1 0.1 

            
Zolmitriptan 

300 275 ± 2.9 1.1 -8.4 282.8 ± 11.3 4.0 -5.7 
5000 4633 ± 234 5.1 -7.3 4814 ± 225 4.7 -3.7 
20000 19322 ± 57 0.3 -3.4 20045 ± 790 3.9 0.2 

                        
              

     SD: standard deviation; CV: coefficient of variation 
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Supplemental Figure 1. Inhibition of OATP1A2-mediated transport of almotriptan by 

different tricyclic compounds. HEK293-OATP1A2 and HEK293-VC cells were coincubated 

with almotriptan (15 µM) and different tricyclic compounds (150 nM – 150 µM) for 2 min at 

37°C. The quantity of intracellular almotriptan was normalized to protein content. To obtain 

the net transport, values measured in the VC cells were subtracted from the values measured in 

OATP1A2-expressed cells. IC50 values were calculated by fitting the data to the log(inhibitor) 

vs. response equation in GraphPad Prism. Each point represents the mean ± S.D. of triplicate 

from a single experiment. The values in parentheses represent the 95% confidence interval. 
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Supplemental Figure 2. Inhibition of OATP1A2-mediated transport of naratriptan by 

different tricyclic compounds. HEK293-OATP1A2 and HEK293-VC cells were coincubated 

with naratriptan (60 µM) and different tricyclic compounds (150 nM – 150 µM) for 2 min at 

37°C. The quantity of intracellular naratriptan was normalized to protein content. To obtain 

the net transport, values measured in the VC cells were subtracted from the values measured in 

OATP1A2-expressed cells. IC50 values were calculated by fitting the data to the log(inhibitor) 

vs. response equation in GraphPad Prism. Each point represents the mean ± S.D. of triplicate 

from a single experiment. The values in parentheses represent the 95% confidence interval. 
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Supplemental Figure 3. Inhibition of OATP1A2-mediated transport of zolmitriptan by 

different tricyclic compounds. HEK293-OATP1A2 and HEK293-VC cells were coincubated 

with zolmitriptan (65 µM) and different tricyclic compounds (150 nM – 150 µM) for 2 min at 

37°C. The quantity of intracellular zolmitriptan was normalized to protein content. To obtain 

the net transport, values measured in the VC cells were subtracted from the values measured in 

OATP1A2-expressed cells. IC50 values were calculated by fitting the data to the log(inhibitor) 

vs. response equation in GraphPad Prism. Each point represents the mean ± S.D. of triplicate 

from a single experiment. The values in parentheses represent the 95% confidence interval. 
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Supplemental Figure 4. Inhibition of OATP1A2-mediated transport of eletriptan, 

rizatriptan and sumatriptan by different tricyclic compounds. HEK293-OATP1A2 and 

HEK293-VC cells were coincubated with eletriptan (3 µM), rizatriptan (130 µM) or 

sumatriptan (300 µM) and different tricyclic compounds (150 nM – 150 µM). The incubation 

time for eletriptan was 1 min; whereas, rizatriptan and sumatriptan were incubated for 2 min at 

37°C. The quantity of intracellular triptan was normalized to protein content. To obtain the net 

transport, values measured in the VC cells were subtracted from the values measured in 

OATP1A2-expressed cells. IC50 values were calculated by fitting the data to the log(inhibitor) 
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vs. response equation in GraphPad Prism. Each point represents the mean ± S.D. of triplicate 

from a single experiment. The values in parentheses represent the 95% confidence interval. 
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2.2.4 DISCUSSION 

The transport of six triptans (almotriptan, eletriptan, naratriptan, rizatriptan, sumatriptan, and 

zolmitriptan) through OATP1A2 was characterized. Frovatriptan was not easily accessible and 

was not evaluated in this study. The tricyclic compounds evaluated in the previous article 

inhibited OATP1A2-mediated triptans uptake. At total plasma concentrations of the drugs, 

DDIs were still observed between a few substrate and inhibitor combinations. As mentioned in 

the article, there are evidences in the literature supporting the entrance of triptans to the brain. 

Our data suggest that the hydrophilic triptans may use OATP1A2 to cross the BBB. 

 

As mentioned earlier, eletriptan’s logD value at physiological pH predicts its passage to the 

brain by passive diffusion. However, eletriptan is a substrate of P-gp, an efflux transporter 

highly expressed on the apical membrane of the BBB. In vitro studies using polarized cells 

overexpressing P-gp on the apical membrane showed that the rate of transport of eletriptan 

from the basolateral to apical side is greater than the rate of transport from the apical to 

basolateral. In addition, animal studies showed that Mdr1a+/+ mice have a 40-fold reduction in 

brain exposure to eletriptan than Mdr1a-/- mice [161]. This is a clear indication of eletriptan 

efflux from the BBB by P-gp. As exemplified with eletriptan, designing small lipophilic 

molecules do not guarantee transport to the CNS as they are also good substrates for P-gp 

[162].  

 

Efflux transporters (P-gp, BCRP, MRP1, MRP4, and MRP5) play an important role in limiting 

the entrance of drugs to the brain. Owing to the fact that they transport an exceptionally wide 

range of structurally diverse substrates together, it is believed that very few drugs bypass their 

surveillance, contributing to the difficulty in targeting the CNS in drug development. Studies 

in epileptic patients refractory to anti-epileptic drugs showed that they have markedly 

increased level of P-gp and/or MRP1 at the brain [163]. Other studies demonstrated a link 

between ABCB1 polymorphisms and the response to anti-epileptic drugs [164]. These are clear 

evidences on the function of efflux transporters at the BBB.  
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The BBB is a complex regulatory interface that serves as obstacle to external aggressions. It is 

believed that the barrier could somehow be circumvented by exploiting influx transporters for 

drug delivery [157]. An endogenous substrate uptake rate across the BBB through a 

transporter is approximately 10 times greater than by passive diffusion [165]. Thus, exploiting 

transporters in drug development offers high uptake rates and specific targeting of drugs to 

inaccessible regions, such as the CNS [157]. To go forward in this direction, further 

characterization of influx drug transporters expressed at the BBB is needed. An important 

aspect involves understanding how genetic variability in the genes encoding for drug 

transporters plays a role in causing interindividual variability in drug response. The next 

article will characterize two protein variants of OATP1A2.  
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SECTION 2.3 

 

ARTICLE #3 

 

Impact of single nucleotide polymorphisms found in human 

organic anion transporting polypeptide 1A2 (OATP1A2) on 

triptans transport 
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2.3.1 OBJECTIVES 

The objectives were to characterize the transport of triptans through two OATP1A2 proteins 

variants (OATP1A2*2 and *3) and to determine whether the tricyclic compounds maintained 

their inhibition on the variants.  

 

2.3.2 INTRODUCTION 

As presented in the introduction on my thesis, interindividual variability in drug response is a big 

challenge in the clinic. DDIs and SNPs found in genes encoding for drug transporters may affect 

the pharmacokinetics of a drug. The two previous articles demonstrated instances of DDIs 

affecting the uptake of rosuvastatin and triptans through OATP1A2. The third article evaluated 

the activity of two OATP1A2 protein variants, *2 (T38C, I13T) and *3 (A516C, E172D), found 

at more than 1% in allelic frequency in the population [23, 44, 166, 167].  

 

Given that OATP1A2 may be involved in the penetration of hydrophilic triptans across the BBB, 

genetic variants influencing OATP1A2’s activity may also interfere with the distribution of 

triptans to the brain and ultimately the anti-migraine effect is affected. In addition, as the effect 

of a polymorphism on the transporter is substrate-dependant, it may also be inhibitor-dependent. 

Thus, the tricyclic drugs that inhibited wild-type OATP1A2 were evaluated. 

 

2.3.3 ARTICLE 

The authors’ specific contributions were as follow: 

• Participated in research design: Jennifer Lu, Veronique Michaud, Jacques Turgeon 

• Conducted experiments: Jennifer Lu 

• Contributed new reagents or analytic tools: Jennifer Lu, Fleur Gaudette 

• Performed data analysis: Jennifer Lu, Fleur Gaudette 
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• Wrote or contributed to the writing of the manuscript: Jennifer Lu, Veronique Michaud, 

Jacques Turgeon 
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Abstract 

Migraines are an important cause of disability. Triptan drugs have been successful in treating 

acute migraine attacks. However, a significant proportion of patients fail to respond to triptans. 

This failure is partially explained by single nucleotide polymorphisms (SNPs) found in the genes 

associated to the neurotransmitter system and drug metabolism. As these drugs are believed to 

act at the central nervous system (CNS) as well as at the periphery, an additional mechanism for 

response failure may be provided by their inability to cross to the blood-brain barrier (BBB). 

Triptans are hydrophilic molecules and require facilitated transport to cross the BBB. Previous 

studies demonstrated triptans as substrates of OATP1A2, a drug transporter located at the BBB, 

suggesting a potential role in the entry of drugs to the CNS. Several genetic variants are known 

to affect OATP1A2 activity. The main objective of this study was to characterize triptans 

transport via the protein variants OATP1A2*2 (T38C, I13T) and *3 (A516C, E172D). First, the 

variants activity was evaluated with the prototypical substrate estrone-3-sulfate. The Km for each 

triptan was comparable between the wild-type (WT) and the variants with the exception of 

sumatriptan. The rate of transport and the intrinsic clearance for a specific substrate was variable 

between WT, *2, and *3. The tricyclic compounds, previously determined as OATP1A2 

inhibitors, inhibited the uptake of triptans through *2 and *3 with the same potency as the WT. 

Our data suggest that genetic polymorphisms in the SLCO1A2 gene may provide an additional 

explanation to the lack of triptan efficacy observed in unresponsive patients. 
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Introduction 

Triptans are a class of medication commonly used in the abortive treatment of acute migraine 

attacks. A meta-analysis study compared 133 randomized controlled trials to demonstrate that 42 

– 76% of patients achieved headache relief within two hours following the administration of a 

triptan (Cameron et al., 2015). Despite their rate of success, a proportion of migraineurs fail to 

reach headache relief. In clinical practice, more than one third of triptan users discontinue these 

drugs and the main reason is the failure to relief pain (Holland et al., 2013; Wells et al., 2014). 

The lack of efficacy in triptan treatment may be in part explained by polymorphisms found in the 

genes involved in the pharmacological response to triptans. Up to now, studies have concentrated 

on genes associated to the neurotransmitter system and drug metabolism. Studies have found 

associations with an altered response to triptans and single nucleotide polymorphisms (SNPs) in 

the genes encoding the serotonin transporter, monoamine oxidase A, and CYP1A2 (Gentile et 

al., 2010; Terrazzino et al., 2010).  

 

Another reason for triptan failure may be attributed to the drug’s inability to reach its site of 

action located at the central nervous system (CNS). As they are hydrophilic, drug transporters are 

needed to facilitate their entrance into the brain. Previous studies suggested that OATP1A2 may 

be responsible for their permeation as it is located at the blood-brain barrier (BBB) and triptans 

are substrates of this transporter (Bronger et al., 2005; Cheng et al., 2012; Gao et al., 2000; Gao 

et al., 2014; Lee et al., 2005). Genetic variations in the SLCO1A2 gene (encoding the OATP1A2 

protein) modifying the transporter activity or its level of expression at the cell surface may affect 

the passage of triptans across the BBB. Several synonymous and non-synonymous SNPs have 

been identified and characterized in the literature. The variants OATP1A2*2 (T38C, I13T) and 
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*3 (A516C, E172D) are found at high allelic frequency (>1%) in the population (Badagnani et 

al., 2006; Boso et al., 2014; Laitinen and Niemi, 2011; Lee et al., 2005). Ethnical differences 

exist for these two variants as they are most frequently observed in European-Americans, 

followed by Hispanics and African-Americans but undetected in Asian-Americans. In vitro 

evaluations generated inconsistent data on OATP1A2*2 activity. Lee et al. reported the uptake 

of estrone-3-sulfate, deltorphin II, and [D-Pen2,5]Enkephalin (DPDPE) to be unchanged in 

OATP1A2*2 but Badagnani et al. reported increased transport of estrone-3-sulfate and 

methotrexate (Badagnani et al., 2006; Lee et al., 2005). OATP1A2*3 transport activity with all 

substrates evaluated was reduced in both studies and this decrease was attributed to its lower 

trafficking to the cell surface.  

 

In addition to SNPs, drug-drug interactions via OATP1A2 may modulate the transport of triptans 

across the BBB. We have previously demonstrated that compounds composed of a tricyclic ring 

and a short aliphatic amine chain, such as carvedilol and tricyclic antidepressants, inhibit the 

transport of our probe drug, rosuvastatin, through OATP1A2 (Lu et al., 2015). We have also 

established that the transport of triptans through OATP1A2 is inhibited by these compounds (Lu 

et al., 2016).  

 

Since genetic variation may play an important role in interindividual variation in triptans 

disposition and response, the transport of these drugs through OATP1A2*2 and *3 variants were 

investigated further. The objectives of this study were to: 1) determine whether the transport 

kinetics of our probe drug, rosuvastatin, in OATP1A2*2 and *3 differs from the wild-type (WT), 

2) determine whether the transport of triptans is affected in OATP1A2*2 and *3 variants, and 3) 
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determine whether the inhibition of rosuvastatin and triptans uptake by different tricyclic 

compounds is maintained in the variants. 
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Materials and Methods 

Reagents 

Amitriptyline hydrochloride, estrone-3-sulfate potassium salt, naproxen, naratriptan 

hydrochloride, rizatriptan benzoate, sumatriptan succinate, zolmitriptan were purchased from 

Sigma-Aldrich (St-Louis, MO, USA). Almotriptan hydrochloride, carvedilol, doxepin 

hydrochloride, eletriptan hydrobromide, rosuvastatin calcium salt were purchased from Toronto 

Research Chemicals (Toronto, ON, Canada). [3H]Estrone-3-sulfate, ammonium salt (45.6 

µCi/nmol) was purchased from PerkinElmer Life Sciences (Boston, MA, USA). All chemicals 

and solvents were obtained from Sigma-Aldrich, Fisher Scientific (Fair Lawn, NJ, USA) or J.T. 

Baker (Center Valley, PA, USA). 

Cell culture 

HEK293-OATP1A2 WT, HEK293-OATP1A2*2, HEK293-OATP1A2*3, and HEK293-VC 

cells were kindly provided by Dr. Markus Keiser and Dr. Werner Siegmund (Department of 

Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine 

Greifswald, Greifswald, Germany). Cell passage was done with 0.25% trypsin/EDTA. The cells 

were cultured in minimum essential medium with Earle’s salts and L-Glutamine supplemented 

with 10% fetal bovine serum, 1x nonessential amino acids, and 1 mM sodium pyruvate. They 

were maintained in a 37°C and 5% CO2 incubator. Cell culture media, trysin/EDTA, and 

supplements were purchased from Multicell Wisent Inc. (St-Jean-Baptiste, QC, Canada). 

Uptake assays and competition assays 

The transport (Km Vmax and IC50) of triptans and rosuvastatin was assessed as previously 

described (Lu et al., 2015). Briefly, HEK293-OATP1A2 WT, *2, *3 and HEK293-VC cells were 

seeded in poly-L-lysine (Sigma-Aldrich) treated tissue culture plates one day before the 
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experiment. On the experiment day, the culture media was removed and the cells were pre-

incubated with warm transport buffer at 37°C for 5 minutes. Transport was initiated at 37°C by 

replacing the buffer with a solution of substrate diluted in transport buffer. In the IC50 studies, the 

replacement solution contained a mix of substrate and inhibitor in transport buffer. After the 

incubation period, the cells were washed twice with cold phosphate-buffered saline (PBS) 

containing 10% acetonitrile followed by a final wash with cold PBS. 

Transport kinetics of the six triptans and rosuvastatin through OATP1A2 variants was 

determined by incubating HEK293-OATP1A2 WT, *2, *3 and HEK293-VC cells in six-well 

plates with almotriptan (0.375, 0.75, 1.5, 3, 6.25, 12.5, and 25 µM), eletriptan (0.25, 0.5, 1, 2, 3, 

4, and 5 µM), naratriptan (2.5, 5, 7.5, 15, 25, 50, and 100 µM), rizatriptan (3, 7.5, 15, 30, 62.5, 

125, and 250 µM), sumatriptan (7.5, 15, 30, 62.5, 125, 250, and 500 µM), zolmitriptan (3, 7.5, 

15, 30, 62.5, 125, and 250 µM), and rosuvastatin (7.5, 15, 30, 62.5, 125, and 250 µM). Inhibition 

studies were conducted by co-incubating HEK293-OATP1A2 WT, *2, *3 and HEK293-VC cells 

with almotriptan (15 µM), naratriptan (60 µM), zolmitriptan (65 µM) or rosuvastatin (150 µM) 

in the absence or presence of different tricyclic compounds (0.15–150 µM). In order to saturate 

the transporter with the substrate, the concentrations of triptans selected equal to three times their 

Km value determined in HEK293-OATP1A2 WT cells. The transport of estrone-3-sulfate was 

assessed in a similar fashion as the other substrates. With the following exceptions: the cells (1.2 

x 106 cells/plate) were seeded in 35 mm poly-L-lysine treated culture plates and incubated with 

estrone-3-sulfate (2.5, 5, 10, 20, 40, 80, and 160 µM). A mix of 11 nM [3H]estrone-3-sulfate (0.5 

µCi/ml) and various concentrations of nonradiolabeled estrone-3-sulfate was used in the 

incubation. An incubation time of 2 minutes was chosen for almotriptan, estrone-3-sulfate, 
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naratriptan, rizatriptan, rosuvastatin, sumatriptan, and zolmitriptan; whereas 1 minute was chosen 

for eletriptan as these time-points remained within the linear range of their uptake curve.  

To measure the protein concentration, three extra wells or plates of each cell line was prepared. 

They were lyzed with 1% SDS + 0.2 N NaOH and the Pierce BCA protein assay kit from 

Thermo Scientific (Rockford, IL, USA) was used to measure the protein concentration. The 

average value was used to normalize intracellular concentrations of substrates. 

Quantification of Triptans and Rosuvastatin by High-Performance Liquid Chromatography-

UV 

The quantity of triptans and rosuvastatin transported in the cells was measured by high 

performance liquid chromatography with UV detection (HPLC-UV). The sample processing 

methods and HPLC-UV detection methods have been previously described (Lu et al., 2016; Lu 

et al., 2015).  

Quantification of Radiolabeled Estrone-3-Sulfate 

After the final wash in PBS, the estrone-3-sulfate samples were processed differently than the 

other substrates. The cells were lyzed with 0.5 ml of 1% SDS + 0.2 N NaOH and the lysate was 

homogenized with a 27G x ½” needle coupled to a 1 ml syringe. A volume of 0.4 ml cell lysate 

was mixed in 5 ml of liquid scintillation cocktail from MP Biomedicals (Solon, OH, USA). The 

samples were analyzed using a Tri-Carb® 2100TR liquid scintillation counter from PerkinElmer 

Life Sciences (Boston, MA, USA).  

Data analysis 

The net transport of substrate through OATP1A2 variants was calculated by subtracting the 

value in the VC cells from the value in the OATP1A2 WT, *2, or *3 cells. Data were analyzed 

using GraphPad Prism 5 (GraphPad Software, La Jolla, CA). Each data point is expressed as the 
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mean ± S.D. Km and Vmax were calculated by fitting the data to the Michaelis-Menten equation. 

IC50 values were calculated by fitting the data to the log(inhibitor) versus response equation, and 

the range given represents the 95% confidence interval. 
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Results 

Transport of Triptans and Rosuvastatin through OATP1A2 WT, *2, and *3 

First, to assess how the transport activity found in HEK293 cell lines stably expressing 

OATP1A2*2 and *3 compares to the WT, the cells were incubated with the prototypical 

substrate estrone-3-sulfate. The transport kinetic of OATP1A2*2 is similar to the WT; whereas, 

*3 is diminished compared to the WT (Supplemental Figure 1 and Supplemental Table 1). The 

uptake in both variants was saturable, indicating that the transporter is functional. Then, we 

determined whether the transport kinetics of triptans and rosuvastatin is altered in OATP1A2*2 

and *3. All seven substrates demonstrated concentration-dependent saturable transport via 

OATP1A2 WT, *2, and *3 (Figure 1 and Table 1). The Km for each substrate was comparable 

between the WT and the variants with the exception of sumatriptan, where the Km was higher in 

the *2 and *3 than the WT. The rate of transport for all substrates was either unchanged or 

decreased in the variants compared to the WT with the exception of eletriptan, where *3 was 

higher than the WT and *2. The Vmax of eletriptan, sumatriptan, and rosuvastatin transport 

through OATP1A2*2 was unchanged but it was reduced for almotriptan, naratriptan, rizatriptan, 

and zolmitriptan. The rate of transport via OATP1A2*3 was unchanged for almotriptan and 

rosuvastatin, reduced for naratriptan, rizatriptan, sumatriptan, and zolmitriptan, and surprisingly 

increased for eletriptan. The intrinsic clearance (CLint) of almotriptan, rizatriptan, sumatriptan, 

and zolmitriptan was reduced in the variants; whereas, it was unchanged for naratriptan. The 

CLint of eletriptan through OATP1A2*2 was higher than the WT but OATP1A2*3 was lower. 
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Effect of Tricyclic Compounds on OATP1A2 WT, *2, *3-mediated Uptake of Triptans 

To determine whether compounds composed of a tricyclic ring and a short aliphatic amine chain 

inhibit uptake of triptans through the two variants, competition studies were performed (Table 2 

and Supplemental Figure 2). The three inhibitors tested inhibited the uptake of almotriptan, 

naratriptan, zolmitriptan, and rosuvastatin through OATP1A2 WT, *2, and *3. The IC50 values 

are consistent between the WT and the two variants for a given inhibitor and substrate. As 

expected, carvedilol showed the strongest inhibition on the uptake of the four substrates. 
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Discussion 

Drug transporters are important determinants in drug absorption, distribution, elimination, 

efficacy and toxicity. The numerous drug transporters expressed at the BBB are responsible for 

limiting or facilitating the entrance of xenobiotics to the brain. Up to now, most studies focused 

on efflux transporters at the BBB as they are believed to contribute to the failure of many CNS-

active drugs. Recently, we came to appreciate the role of influx transporters at the BBB in drug 

delivery (Urquhart and Kim, 2009). Notably, OATP1A2 is expressed on the luminal membrane 

of the endothelial cells constituting the BBB and transports a broad spectrum of substrates. We 

believe that OATP1A2 is involved in the transport of triptans to its site of action at the CNS.  

 

A SNP modifying the activity of a drug transporter implicated in the fate of a medication can 

lead to changes in the drug’s pharmacokinetics and pharmacodynamics. Consequently, we 

characterized the transport activity of two variants of the OATP1A2 protein, *2 (T38C, I13T) 

and *3 (A516C, E172D), for their uptake of the anti-migraine drugs triptans. The affinity (Km) of 

each substrate does not differ much between the WT and its two variants, with the exception of 

sumatriptan. It suggests that the binding site of these substrates, except for sumatriptan, is not 

affected by the mutations and that sumatriptan may bind differently to OATP1A2 than the other 

triptans. By comparing to our previous results, the Km values are consistent but not the Vmax 

values (Lu et al., 2016). The cells batch-to-batch variability in the level of transporter expression 

accounts for the Vmax differences.  
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Previous studies showed that OATP1A2*2 transport activity is either unchanged or increased 

compared to the WT. However, we observed either a decrease or unchanged in transport 

depending on the substrate. The literature reported a decrease in OATP1A2*3 activity, which is 

not consistently observed with all substrates evaluated in this study. Yet, the uptake of the 

prototypical substrate, estrone-3-sulfate, was unchanged in *2 and decreased in *3, which is in 

line with the data published by Lee et al (2005). How the variant affects the transporter activity 

seems to be substrate-dependent. The CLint values seem to indicate a reduced clearance of 

almotriptan, eletriptan (*3 only), rizatriptan, sumatriptan and zolmitriptan through the variants. 

The IC50 values do not vary between the WT, *2, and *3 for a given substrate and a given 

inhibitor; suggesting that the mutations do not change the inhibitors binding site on the 

transporter.  

 

In vivo assessment of OATP1A2 function has unfortunately yield a negative correlation between 

drug response and the *2 and *3 variants. SLCO1A2 genotype did not correlate with plasma 

concentrations of lopinavir in HIV patients (Hartkoorn et al., 2010). In addition, steady-state 

plasma concentrations of imatinib is not affected in cancer patients with the SLCO1A2-516A>C 

genotype even if in vitro data showed a clear abolition in transport (Eechoute et al., 2011). This 

discrepancy may be explained by incorrect assumptions on OATP1A2’s location as the 

hypothesis was based on its presence in the intestine. Later studies could not detect OATP1A2 in 

the intestine.  
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Taken together, our data suggest that individuals with the OATP1A2*2 and *3 variants may 

have a reduced capacity in directing most triptan drugs across the BBB. By limiting their 

transport to the CNS, we can speculate that the response to triptan treatment in migraine may be 

diminished or even abolished. The clinical significance of these variants in their role regarding 

triptan failure needs to be investigated. 
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Figure Legends 

Figure 1. Transport of triptans and rosuvastatin through OATP1A2 variants. Uptake of (A) 

almotriptan (0.375 to 25 µM), (B) eletriptan (0.25 to 5 µM), (C) naratriptan (2.5 to 100 µM), (D) 

rizatriptan (3.0 to 250 µM), (E) sumatriptan (7.5 to 500 µM), (F) zolmitriptan (3.0 to 250 µM), 

and (G) rosuvastatin (7.5 to 250 µM) was assessed at 37°C. The transport was assayed for 2 

minutes for all substrates except for eletriptan which was assayed for 1 minute. The intracellular 

quantity of substrate was normalized to protein content. The net transport was calculated by 

subtracting the values measured in the VC cells from the values measured in OATP1A2 WT, *2, 

and *3 expressing cells. Each point represents the mean ± S.D. of triplicate from a single 

experiment. Each experiment was performed twice.  
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Table 1. Km, Vmax, and CLint values of different substrates uptake through OATP1A2 WT, 

*2, and *3. The values were calculated by fitting the data to the Michaelis-Menten equation 

using GraphPad Prism 5 (± standard error mean). 

  Km  

(µM) 

Vmax  

(pmol/mg proteins per minute) 

CLint  

(µl/mg proteins per minute) 

Almotriptan 

WT 4.1 ± 0.9 801.2 ± 62.3 195.4 ± 45.5 

*2 4.6 ± 0.9 638.1 ± 41.9 138.7 ± 28.6 

*3 5.5 ± 1.2 809.7 ± 62.4 147.2 ± 34.1 

Eletriptan 

WT 0.4 ± 0.2 266.5 ± 38.8 666.2 ± 347.0 

*2 0.4 ± 0.3 298.4 ± 51.3 746.0 ± 574.0 

*3 1.1 ± 0.6 561.0 ± 93.5 510.0 ± 290.9 

Naratriptan 

WT 21.5 ± 1.3 4318 ± 99.1 200.8 ± 13.0 

*2 15.2 ± 1.6 3052 ± 104.9 200.8 ± 22.2 

*3 17.3 ± 1.2 3579 ± 87.6 206.9 ± 15.2 

Rizatriptan 

WT 27.6 ± 4.4 1904 ± 98.4 69.0 ± 11.6 

*2 21.9 ± 4.8 1426 ± 89.5 65.1 ± 14.8 

*3 32.1 ± 8.4 1691 ± 140.9 52.7 ± 14.5 

Sumatriptan 

WT 101.4 ± 13.3 5071 ± 240.9 50.0 ± 7.0 

*2 233.4 ± 54.4 5594 ± 646.8 24.0 ± 6.2 

*3 163.2 ± 30.4 3418 ± 266.9 20.9 ± 4.2 

Zolmitriptan 
WT 33.8 ± 3.6 6648 ± 231.5 196.7 ± 22.0 

*2 45.7 ± 8.2 5612 ± 355.6 122.8 ± 23.4 
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*3 36.8 ± 3.7 3784 ± 126.2 102.8 ± 10.9 

Rosuvastatin 

WT 51.4 ± 20.0 3164 ± 452.8 61.6 ± 25.5 

*2 50.4 ± 13.5 2630 ± 252.6 52.2 ± 14.8 

*3 85.5 ± 38.6 2895 ± 554.2 33.8 ± 16.6 
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Table 2. IC50 values from the inhibition of triptans and rosuvastatin uptake through 

OATP1A2 WT, *2, and *3 by different tricyclic compounds. IC50 values were calculated by 

fitting the data to the log(inhibitor) versus response equation in GraphPad Prism 5. The values in 

parentheses represent the 95% confidence interval (see also Supplemental Figure 2). 

  IC50 (µM) 

  Amitriptyline Carvedilol Doxepin 

Almotriptan 

WT 3.7 (2.4 – 5.8) 1.0 (0.7 – 1.7) 2.2 (1.2 – 4.0) 

*2 3.9 (1.8 – 8.5) 0.7 (0.4 – 1.3) 3.8 (1.7 – 8.6) 

*3 11.2 (3.0 – 41.5) 1.7 (1.0 – 2.7) 4.5 (2.2 – 9.2) 

Naratriptan 

WT 11.8 (8.5 – 16.4) 3.2 (2.6 – 4.1) 14.9 (9.4 – 23.5) 

*2 14.8 (9.4 – 23.4) 3.0 (1.9 – 4.8) 13.5 (9.6 – 19.1) 

*3 11.4 (5.8 – 22.7) 4.2 (2.5 – 7.1) 13.4 (7.6 – 23.8) 

Zolmitriptan 

WT 9.8 (7.6 – 12.7) 2.4 (2.0 – 2.9) 9.5 (7.2 – 12.5) 

*2 7.6 (5.6 – 10.5) 2.5 (1.7 – 3.5) 8.8 (5.5 – 14.2) 

*3 14.0 (11.6 – 17.0) 2.9 (1.9 – 4.3) 9.1 (5.8 – 14.3) 

Rosuvastatin 

WT 7.7 (4.6 – 12.8) 4.1 (2.6 – 6.4) 16.8 (8.4 – 33.5) 

*2 8.2 (5.2 – 12.8) 3.8 (2.3 – 6.2) 12.5 (5.6 – 27.8) 

*3 1.8 (0.4 – 7.2) 9.0 (4.4 – 18.5) 19.2 (7.4 – 49.7) 
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Figure 1 
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Supplemental Figure 1. Uptake of estrone-3-sulfate through OATP1A2 variants. Uptake 

of estrone-3-sulfate (2.5 to 160 µM) was assessed for 2 min at 37°C. The quantity of 

intracellular estrone-3-sulfate was normalized to protein content. To obtain the net transport, 

values measured in the VC cells were subtracted from the values measured in OATP1A2 

variants-expressing cells. Each point represents the mean ± S.D. of triplicate from a single 

experiment. 
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Supplemental Table 1. Km, Vmax, and CLint values of estrone-3-sulfate uptake through 

OATP1A2 WT, *2, and *3. The values were calculated by fitting the data to the Michaelis-

Menten equation using GraphPad Prism 5 (± standard error mean).  

 

  Km  

(µM) 

Vmax  

(pmol/mg proteins/minute) 

CLint  

(µl/mg proteins/minute) 

Estrone-3-

sulfate 

WT 18.8 ± 2.6 22.2 ± 1.0 1.2 

*2 33.6 ± 9.8 24.7 ± 2.6 0.7 

*3 24.2 ± 8.0 11.8 ± 1.3 0.5 
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Supplemental Figure 2. Inhibition of almotriptan, naratriptan, zolmitriptan, and 

rosuvastatin transport via OATP1A2 variants by amitriptyline, carvedilol, and doxepin. 

Inhibition of almotriptan (15 µM), naratriptan (60 µM), zolmitriptan (65 µM), and 

rosuvastatin (150 µM) by different tricyclic compounds (150 nM – 150 µM) was assessed for 

2 min at 37°C. The intracellular quantity of substrate was normalized to protein content. To 

obtain the net transport, values measured in the VC cells were subtracted from the values 

measured in the transporter expressing cells. Each point represents the mean ± S.D. of 

triplicate from a single experiment. 
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2.3.4 DISCUSSION 

The effect of the two genetic polymorphisms studied on the activity of OATP1A2 was 

substrate-dependant. On the other hand, the inhibitors potency did not differ between the wild-

type, *2, and *3 for a given substrate. The data suggest that the transport of several triptans to 

the CNS may be limited through the variants. 

 

Genetic polymorphisms found in the SLCO1A2 gene have been associated to variability in 

drug disposition. The clearance of the anti-cancer drug imatinib is higher in patients with the 

SLCO1A2 - 361G>A genotype (p=0.005) and lower in patients with the SLCO1A2 - 1105G>A 

and the SLCO1A2 - 1032G>A genotype (p=0.075) [168]. Thus, further evaluation of 

OATP1A2 involvement in drug disposition and the effect of SNPs found in SLCO1A2 is 

warranted.  
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SECTION 3: CONCLUSION 
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3. CONCLUSION 

The extent to which a drug is able to exert its therapeutic effects depends on the drug 

concentration accumulating within its site of action. Drug transporters are the gatekeepers that 

may facilitate or hinder the entry of drugs into the tissue. It is easy to conceive that factors 

influencing the drug transporters activity, such as interactions with concomitant medications 

and polymorphisms in the genes encoding drug transporters, may alter drug disposition and 

thus affecting its therapeutic and toxic effects. Therefore, it is important to characterize the 

transporters known to be involved in drug disposition. 

 

In this thesis, the membrane drug transporter OATP1A2 was characterized in regards to its 

substrates, inhibitors, and proteins variants. We demonstrated that compounds composed of a 

tricyclic ring and a short aliphatic amine chain, such as carvedilol and tricyclic anti-

depressants, were potent OATP1A2 inhibitors. To the best of our knowledge, this has not been 

reported in the literature before. Triptans were confirmed as OATP1A2 substrates and tricyclic 

drugs inhibited their uptake. Furthermore, competition experiments at concentrations observed 

in patients treated with these drugs showed that the inhibition of almotriptan and zolmitriptan 

uptake is maintained with carvedilol and nortriptyline; whereas, clomipramine inhibited only 

the transport of almotriptan. Finally, there appeared to be a substrate-dependant effect from 

the two OATP1A2 protein variants studied. 

 

A previous study, using Xenopus laevis oocytes, demonstrated that several β-blockers were 

OATP1A2 substrates [49]. In our studies, we found that most β-blockers evaluated were weak 

competitors for rosuvastatin uptake, indicating that they are either not transported by 

OATP1A2, as previously reported, or they have a weaker affinity than rosuvastatin. Similar 

experiments were repeated with triptans and also concluded β-blockers as weak competitors 

for triptans uptake (Table 8, Figure 2, Figure 3, and Figure 4). The second explanation is more 

plausible as a Km of 84.3 µM for nadolol was reported by Misaka et al., whereas a Km of 60.2, 
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5.1, 20.3, and 21.4 µM was reported for rosuvastatin, almotriptan, naratriptan, and 

zolmitriptan, respectively [34].  

 

Additionally, rifampicin, also known as rifampin, inhibited the uptake of triptans through 

OATP1A2 (Table 8, Figure 2, Figure 3, and Figure 4). This is interesting because rifampicin is 

used as first-line therapy to treat CNS tuberculosis and its logD value at pH7.4 is below 1.0 

[169, 170]. Rifampicin has been shown to distribute to the cerebrospinal fluid, a surrogate 

marker for the penetration of drugs to the CNS [171, 172]. Our data suggest that OATP1A2 

may potentially mediate the uptake of hydrophilic rifampicin across the BBB. It would be 

interesting to determine whether rifampicin is an OATP1A2 substrate.  

 

Furthermore, we found that tricyclic antidepressants were not substrates of OATP1A2, which 

is also in line with the literature [55]. These drugs are relatively lipophilic; therefore, they do 

not require a transporter to cross the BBB. They can nonetheless interact with transporters to 

inhibit them as shown by our data. Triptans were found to be substrates of OATP1A2, in line 

with data published by Cheng et al [55]. 

 

We found that the effect from the genetic polymorphisms on OATP1A2 transport was 

substrate-dependent. Other transporters also exhibit substrate specific effects with 

nonsynonymous SNPs. For example, the transport of estrone-3-sulfate and estradiol 17β-

glucuronide through OATP1B1 *5 (T521C, V174A) is not affected; whereas, it is decreased 

with pravastatin, atorvastatin [173, 174]. OCTN1 (C1672T, L503F) showed enhanced function 

with tetrabutylammonium, tetraethylammonium, and tetrapentylammonium, but reduced 

function with carnitine, choline, cimetidine, lidocaine, N-methylnicotinamide, and verapamil 

[175]. The two polymorphisms evaluated in OATP1A2 were not related to changes in 

substrate affinity; thus, the substrate binding site is not affected. Since a variant may show 

functional effects only with specific substrates, it emphasizes the need to evaluate the variant 

with specific substrates instead of drawing a general conclusion with probe-substrates when 

characterizing the transporter.  
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In vitro cell models for the study of drug transporter offer several advantages: the effect 

observed is attributable to the overexpressed transporter when a proper control is used, the 

experimental set-up can be controlled, the simplicity of their use, and the absence of specific 

probe substrates and inhibitors does not prevent their evaluation. Despite their advantages, the 

main limitation with in vitro cells models is the difficulty in extrapolating the findings to in 

vivo settings. Conclusions drawn from in vitro models, whether they are overexpression cell 

models, vesicular membrane preparations, or polarized Caco-2 cells, always need to be 

confirmed in humans.  

 

A limitation with conducting a conventional ADME study to test drug disposition is where the 

drug can be sampled. The commonly used measurements are blood draws, total urine and 

feces collection. This does not allow us to study drug distribution to specific tissues and 

organs and whether the drug is directed to its postulated site of action or not. A drug’s profile 

in tissue concentrations may differ from its profile in blood and rapid equilibrium in the body 

cannot be assumed. Therefore, a drug’s response cannot simply be predicted based on its 

concentration-time profile in plasma. Lately, several sophisticated noninvasive in vivo imaging 

techniques have been employed to study how efficiently drugs reach their target organs, their 

retention, their distribution in the organ, to predict adverse drug reactions, and to study DDIs 

[176, 177]. Positron-emission tomography (PET), single-photon emission computed 

tomography (SPECT), and magnetic resonance imaging (MRI) are imaging techniques used in 

the drug development field. PET offers the advantage over other imaging techniques of using 

customizable radiolabeled molecules as isotopes (11C, 13N, 15O, and 18F) are directly 

introduced in the drug structure. Immediately following intravenous injection of the 

radiolabeled drug, its distribution throughout the body can be monitored by a PET scanner. 

Imaging studies will also help in understanding the in vivo effects of genetic polymorphisms 

on drug transporters and provide insights into interindividual variability in the response to 

drugs.  
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As discussed earlier, there are situations where a DDI has been observed in vitro as well as in 

vivo but the effect observed is not necessarily attributed to the transporter studied. For 

example, the grapefruit juice and fexofenadine interaction in the intestine is now known to not 

implicate OATP1A2. Conventional approaches to study DDIs in vivo do not allow us to pin 

point the effect to a transporter in particular. Also, DDIs can become quite complex when 

multiple transporters are involved and when there is interplay with CYP450 enzymes. To 

improve this field, better and more standardized in vitro methods to assess and predict DDIs 

through transporters will need to be developed. The difficulty in studying drug transporters 

arises from the lack of specific and even selective probe substrates and inhibitors. Future work 

is needed in finding proper probe molecules. We also need to move towards imaging 

techniques to have a clear image of how and where the DDIs occur in humans. 

 

Unfortunately, no animal has yet proven to be a good model for the study of the human 

OATP1A2. Rat Oatp1a4, which has 72% homology with OATP1A2, is expressed at the BBB 

but it does not transport triptans [178]. In vitro models of the BBB, such as freshly isolated 

mouse brain microvascular endothelial cells and animal or human immortalized endothelial 

cell lines, can give us insights into drug transport to the brain [179, 180]. The major difficulty 

in investigating drug transport using these models is that they do not necessarily reflect the 

human BBB. The specific structure of the BBB owing to the presence of astrocytes, the 

proteins making up the tight junctions, the numerous receptors and transporters expressed 

render the in vitro replication very challenging. The main disadvantages encountered with 

primary cells include the low yield, high batch-to-batch variability, and low-throughput; 

whereas immortalized cell lines are not restrictive enough for permeability studies and they do 

not maintain transporter and enzymatic functions [179]. 

 

A certain percentage of migraineur fail to obtain relief even when triptan drugs are used 

properly. Studies conducted on genes involved in the pharmacokinetics and 

pharmacodynamics response to triptans reported associations with the serotonin transporter, 

monoamine oxidase A, and CYP1A2 in a number of refractory patients [181]. It is possible 
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that other cases may be explained by the inability of the triptan drugs to reach their site of 

action at the CNS due to either DDIs or SNPs in the drug transporters involved in triptan 

disposition. 

 

Future studies would ultimately involve testing whether triptans can cross the BBB when 

coadministered with either carvedilol or a tricyclic antidepressant and evaluating whether 

subjects with polymorphisms in the SLCO1A2 gene have an altered distribution of triptans to 

the brain. These studies would typically be done by PET using a radiolabeled triptan and 

following its distribution from the blood to the brain. As previously discussed, the in vitro 

findings may not be reflected in vivo. In this specific study, we may not observe an DDI in 

vivo as sumatriptan, naratriptan, rizatriptan, and zolmitriptan are also substrates of the organic 

cation transporter 1 (OCT1), a transporter equally expressed at the BBB [85, 182]. It would be 

interesting to determine whether the tricyclic compounds inhibit OCT1.  

 

In overall, the data presented in this thesis helped characterize the OATP1A2 drug transporter. 

As we recently came to appreciate the role OATP1A2 may play in transporting CNS-active 

drugs through the BBB, investigating this transporter further can help us exploit OATP1A2 for 

drug delivery to the brain. The impermeability of the BBB makes drug targeting to the brain 

very difficult. Many drugs developed to act at the brain fail to get on the market because they 

do not produce a desirable effect. As mentioned previously, designing drugs to be more 

lipophilic renders them good substrate for P-gp. An interesting alternative would be to exploit 

influx transporters, such as OATP1A2, for drug delivery.  
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Objective 

The objective is to present additional data mentioned in the overall discussion characterizing 

OATP1A2 that do not integrate into the theme of the three articles presented previously.  

 

Introduction 

Other drugs (β-blockers and rifampicin) were tested in competition with almotriptan, 

naratriptan, and zolmitriptan for transport through OATP1A2.  

 

Material and Methods 

The material and experimental methods are the same as outlined in the articles. 

 

Results 

Table 8: IC50 values from the inhibition of almotriptan, naratriptan, and 

zolmitriptan uptake through OATP1A2 by various compounds 

The values in parentheses represent the 95% confidence interval (see also Figure 2, Figure 

3, and Figure 4. 

 Almotriptan Naratriptan Zolmitriptan 

Inhibitors IC50 (µM) 

Acebutolol 87.1 (32.6 – 232.8) > 150 70.3 (28.8 – 171.5) 

Alprenolol 26.4 (11.1 – 62.8) 79.3 (22.4 – 280.5) 145.2 (45.8 – 460.2) 

Atenolol No effect No effect No effect 

Celiprolol 27.8 (7.9 – 97.7) > 150 76.4 (38.7 – 150.7) 

Metoprolol 76.1 (10.9 – 532.3) 137.2 (21.9 – 859.2) > 150 

Nadolol 46.5 (4.6 – 467.6) No effect > 150 

Propranolol 16.2 (8.5 – 31.2) 91.0 (37.5 – 221.0) 44.7 (23.8 – 84.0) 
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Rifampicin 30.2 (11.8 – 77.4) 78.6 (39.6 – 156.3) 35.7 (16.7 – 76.3) 

Sotalol No effect No effect No effect 

Talinolol 22.0 (8.2 – 58.6) 75.7 (32.6 – 175.6) 38.9 (22.0 – 68.8) 

Timolol 53.9 (14.2 – 204.4) 118.5 (23.4 – 599.3) > 150 
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Figure 2: Inhibition of OATP1A2-mediated transport of almotriptan by different 

compounds.  
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HEK293-OATP1A2 and HEK293-VC cells were coincubated with almotriptan (15 µM) and 

different tricyclic compounds (150 nM – 150 µM) for 2 min at 37°C. The quantity of 

intracellular almotriptan was normalized to protein content. To obtain the net transport, values 

measured in the VC cells were subtracted from the values measured in OATP1A2-expressed 

cells. IC50 values were calculated by fitting the data to the log(inhibitor) vs. response equation 

in GraphPad Prism. Each point represents the mean ± S.D. of triplicate from a single 

experiment. 
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Figure 3: Inhibition of OATP1A2-mediated transport of naratriptan by different 

compounds. 
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HEK293-OATP1A2 and HEK293-VC cells were coincubated with naratriptan (60 µM) and 

different tricyclic compounds (150 nM – 150 µM) for 2 min at 37°C. The quantity of 

intracellular naratriptan was normalized to protein content. To obtain the net transport, values 

measured in the VC cells were subtracted from the values measured in OATP1A2-expressed 

cells. IC50 values were calculated by fitting the data to the log(inhibitor) vs. response equation 

in GraphPad Prism. Each point represents the mean ± S.D. of triplicate from a single 

experiment. 
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Figure 4: Inhibition of OATP1A2-mediated transport of zolmitriptan by different 

compounds. 
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HEK293-OATP1A2 and HEK293-VC cells were coincubated with zolmitriptan (65 µM) and 

different tricyclic compounds (150 nM – 150 µM) for 2 min at 37°C. The quantity of 

intracellular zolmitriptan was normalized to protein content. To obtain the net transport, values 

measured in the VC cells were subtracted from the values measured in OATP1A2-expressed 

cells. IC50 values were calculated by fitting the data to the log(inhibitor) vs. response equation 

in GraphPad Prism. Each point represents the mean ± S.D. of triplicate from a single 

experiment. 


