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Résumé 

La disponibilité des médicaments analgésiques est limitée en médecine vétérinaire féline. Le 

but de cette étude était d'investiguer les propriétés anti-nociceptiques d'une nouvelle formule de 

buprénorphine (Simbadol, 1.8 mg ml-1) et tapentadol chez les chats.  

Six chats étaient inclus dans deux études différentes, les deux étant  prospectives, 

randomisées, croisées, et aveuglées. Dans la première étude, Simbadol (1.8 mg mL-1) a été administré 

par voies sous-cutanée (SC;0.24 mg kg-1), intraveineuse (IV; 0.12 mg kg-1) et buccale (OTM; 0.12 mg 

kg-1) et les seuils thermiques ont été comparés avec ceux d'un groupe contrôle contenant de la saline 

(SAL; saline SC). Les concentrations plasmatiques de buprénorphine  et norbuprénorphine ont été 

mesurées jusqu'à 72 heures suivant chaque traitement de buprénorphine. Un modèle 

pharmacocinétique-pharmacodynamique adapté à 2 substances et 3 voies d'administration a été 

utilisé. Dans la deuxième étude, les seuils thermiques ont été comparés entre les chats recevant de la 

buprénorphine (0.02 mg kg−1, IM), un placébo (50 mg de dextrose oral) et deux doses de tapentadol 

oralement (dose réduite: 25 mg; dose élevée: 50 mg) 

L'administration sous-cutanée de Simbadol a provoqué une anti-nociception thermique de 

longue durée (≥ 24 heures). Ces effets étaient prolongés comparativement aux traitements 

intraveineux (8 heures) et buccal (12 heures). Le modèle conjoint de 

pharmacocinétique/pharmacodynamique a démontré des concentrations plasmatiques prolongée 

pour la voie sous-cutanée. Les deux doses de tapentadol ont augmenté l'antinociception thermique 

chez les chats. La dose élevée de tapentadol a produit une durée d'antinociception similaire à celle de 

la buprénorphine (2 heures) et deux fois plus longue que la dose réduite. La palatabilité de la 

médication représente une limite significative de la voie d'administration.   
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Simbadol et tapentadol produisent une antinociception thermique comparée à la saline. Des 

investigations cliniques supplémentaires seront nécessaires. 

 

Mots clés :  

Félin, douleur, analgésie, antinociception thermique, opioïde, buprenorphine, tapentadol. 
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Abstract 

 Analgesic drug availability is limited in feline practice. The aim of these studies was to 

investigate the antinociceptive properties of a novel formulation of buprenorphine (Simbadol, 1.8 mg 

ml-1) and tapentadol in cats. 

 In two separate studies, six healthy cats (each) were included in a prospective, randomised, 

blinded, crossover study. In study I, Simbadol (1.8 mg mL-1) was administered by various routes: 

subcutaneous (SC; 0.24 mg kg-1), intravenous (IV; 0.12 mg kg-1) or buccal (OTM; 0.12 mg kg-1) route of 

administration and thermal thresholds (TT) were compared with a saline group (SAL; saline SC). 

Plasma buprenorphine and norbuprenorphine concentrations were measured up to 72 hours 

following each buprenorphine treatment. A bespoke pharmacokinetic-pharmacodynamic model 

fitted data from two analytes/three routes of administration. In study II, thermal thresholds were 

compared among cats receiving buprenorphine (0.02 mg kg−1, IM), placebo (50 mg oral dextrose) and 

two doses of oral tapentadol (low-dose 25 mg; high-dose 50 mg).  

Subcutaneous administration of Simbadol provided long-lasting thermal antinociception (≥ 24 

hours). These effects are prolonged compared with the IV (8 hours) and OTM (12 hours) treatments. 

Joint pharmacokinetic-pharmacodynamic modelling demonstrated prolonged plasma concentrations 

for the SC route. Both doses of tapentadol increased thermal antinociception in cats. The high-dose of 

tapentadol produced similar duration of antinociception as intramuscular buprenorphine (2 hours) 

and twice as long as the low-dose. Palatability presented a significant limitation to the drug’s 

administration. 

Simbadol and tapentadol produced thermal antinociception when compared with saline. 

Additional investigation is necessary to determine if this translates to the clinical setting. 
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Introduction 

 The intent of this literature review is to put into perspective the current knowledge regarding 

acute pain in cats. The beginning is intended to explain practical limitations on veterinary assessments 

of pain in cats, idiosyncrasies of the species and attitudes towards pain management. Next the review 

will explore methods of pain quantification and define and explore nociceptive research. The final topic 

for revision is management of feline acute pain. Comparisons are often made to the dog as a method 

of providing context to differences observed. Ultimately the review should provide the reader an 

understanding of nociceptive studies in feline medicine providing the framework for the investigation 

of the novel treatments in this thesis. The intent of these studies is to improve the understanding and 

management of acute pain in cats. 

1. Acute pain in cats 

 Cats are the most popular household pet in Canada. There were 7 million cats living in homes 

across the country as reported by a survey in 2014 (1). Cats are less likely to have regular veterinary 

visits when compared with dogs. The same owners would pay more for life-saving procedures for dogs 

versus cats. Socioeconomic factors affected these perceptions, but better client communication was 

highlighted as essential to improving this disparity (2). When considering acute (adaptive) pain, 

perioperative or peri-procedural pain is more frequently recognised and treated compared to other 

manifestations of acute pain. Unfortunately, fewer veterinary visits result in reduced preventive 

medicine for cats increasing the likelihood of diseases which may produce pain (eg. dental disease, 

obesity-related osteoarthritis, urinary obstruction, etc.). A better understanding of nociception and 

pain states, as well as treatment modalities, is vital to this deficit. 
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1.1 Problems in recognising acute pain 

 Many characteristics exist with the cat that makes the recognition and management of pain 

problematic. The behavioural changes associated with veterinary visits has been considered a reason 

for the decreased frequency of veterinary examinations for the species. Stress and anxiety associated 

with transport, other animals in waiting areas, as well as restraint and handling during examinations 

and procedures are often manifested as avoidance or aggressive behaviours in the species. Fear is the 

most common cause of aggression in cats in the veterinary clinic setting, followed by pain (3). This 

overlap of behaviours with different causes makes clinical evaluations more complicated and difficult. 

Challenging behavioural modification techniques exist. The American Association of Feline Practitioners 

(AAFP) and International Society of Feline Medicine (ISFM) recommend the adoption of friendly 

handling techniques to minimize the impact of these behaviours (4). These recommendations extend 

beyond handling techniques and also include recommendations for clients at home before a veterinary 

visit, changes to clinic environment, and techniques for managing the return of patients to the home 

following extended hospitalisation. The impact of stress on cats adversely affects sickness-associated 

behaviours (e.g. vomiting, diarrhoea, decreased activity, enhanced pain-like behaviour, etc.) in both 

healthy and sick cats as well as their physiologic and haematologic variables (5, 6). These parameters 

are considered in unison when evaluating the health status of veterinary patients, thus differentiating 

stress and pain can be difficult. 

 Idiosyncrasies in drug metabolism have negatively impacted the availability, licensure and use 

of many analgesics. Classically, the use of non-steroidal anti-inflammatory drugs (NSAIDS) has been 

cautious due to the reduced capacity for glucuronidation (7-9). Limitations of glucuronidation also 

affect opioid analgesia. Particularly morphine, where production of the active metabolite morphine-6-

glucuronide is limited (10). The behavioural impacts of the agonists of μ-opioid receptors have also 
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been exaggerated due to initial investigations using doses above those used clinically (at present), 

producing erratic responses to stimuli and dysphoria (11). These considerations, as well as reduced 

feline pharmaceutical market demand (compared with dogs) has led to fewer approved analgesics, 

limiting available therapeutics for cats. Additionally, when a product is licensed for use in cats, it is often 

only available for single-use or short-term dosing (e.g. meloxicam in North America) requiring “off-

label” dosing for long-term usage. For dogs, this “off-label” usage of many drugs is more frequent. This 

difference is multifactorial due in part to the perceived increased risk of adverse effects in cats, and a 

greater body of clinical studies on pain management in dogs. This wealth of studies provides better 

support for unlicensed dosing regimens and therapeutics in dogs (12, 13). 

1.2. Attitudes and prevalence of analgesic administration in cats 

 Since 2000, the perceptions and attitudes pertaining to acute pain management have evolved 

considerably. In the first ten years of the millennium, the majority of surveys highlighted inadequacies 

in training and education. There were significant differences in attitudes to analgesia which varied 

geographically (or perhaps more specifically, culturally). Canadian veterinarians (n = 326) were 

surveyed in 2001 regarding their perioperative used of analgesics in dogs and cats (14). With respect 

to ovariohysterectomy, it was shown that more recent graduates, veterinarians with increased 

personal perception of pain and the presence of animal health technicians increased the likelihood of 

pain scoring and analgesic administration. Concern regarding the negative aspects (adverse effects and 

cost) of opioid administration were cited as a reason for avoidance of analgesic administration. 

Interestingly the same individuals tended to also avoid NSAIDs in the same cases. Another survey was 

conducted in 2001 of New Zealand Veterinarians (n = 320) (15). Less than half of these practitioners 

felt their knowledge was adequate for pain management. This study showed that despite procedures 

being deemed painful, routine analgesics were not always given. Across all common surgical 
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procedures, dogs received more analgesics than cats (eg. castration, where 65% of dogs and 50% of 

cats had routine analgesia). Additionally, the negative impact of adverse effects was more frequently 

considered in the selection of analgesics for cats than dogs. A Finnish study published in 2003 again 

showed that younger veterinarians (who tended to be women), as well as those who work in larger 

practices, used more analgesics than older veterinarians and those in smaller clinics (16). Veterinarians 

in this survey (n = 434) agreed that post-operative pain management was beneficial, a third of 

respondents considered that a certain degree of post-operative pain was useful for case management. 

In general, pain was more frequently treated in dogs than cats for ovariohysterectomy and castration. 

Interestingly, canine castration was deemed as painful as feline ovariohysterectomy (numerical rating 

scale, scored 6.10 and 6.14, respectively, out of 10), however, castrated dogs were more likely to 

receive analgesics. When comparing castration alone between the species, results showed less than 

10% of respondents would never give analgesics to dogs but more than 60% would not give analgesics 

to cats. The study concluded that a disparity existed in the knowledge base of these practitioners, and 

improved education was warranted. In a survey from 2007 of Brazilian veterinarians (n = 1298), it was 

found that women and younger veterinarians have increased pain recognition (17). For celiotomies, 

orchiectomies and dental procedures, cats were often regarded as having a lower pain score. The same 

veterinarians felt their knowledge was inadequate, despite having comparable or better pain 

recognition than previous studies. In these studies from the early 2000s, lack of analgesic 

administration is largely attributed to inadequate knowledge and education regarding drug 

pharmacology and adverse effects. 

 Over the last seven years, the recognition and attitudes towards acute pain management have 

improved. Limitations now seem to be less associated with just education but now also include an 

emphasis on the need for more research in the field to broaden the available knowledge. In a 2010 
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survey of veterinarians (n = 258) from Switzerland, the veterinarians responded that their justification 

for analgesic use was based principally on drug efficacy (18). Contradictorily, butorphanol and 

buprenorphine were the most common opioids used in the country, not the agonists of μ-opioid 

receptors with superior analgesic efficacy (to be discussed later). The authors suggested a weakness in 

drug pharmacology that could explain this difference. Though extensive comparisons could not be 

made due to a small number of respondents, the authors also suggested there should be an increase 

in the use of pain assessment instruments which are becoming increasingly more available. In 2012 a 

survey was performed of Canadian veterinarians in Ontario (n = 229) (19). This study found that there 

was an overall improvement in the awareness and provision of analgesics. The respondents felt their 

knowledge was sufficient. An interesting shift occurred where there was no longer a perception that 

cost of drugs or side effects were a sufficient justification for a lack of analgesic administration. In 2013, 

a survey of United Kingdom veterinarians (n = 720) showed 98% prevalence of perioperative NSAIDS 

administration for ovariohysterectomy and castration (20). Three quarters of respondents also used a 

multimodal approach (NSAID + opioid). In this study, there was no difference between year of 

graduation and analgesic administration. Orthopaedic, abdominal and dental pain were regarded as 

equal between dogs and cats. The only species difference was that neutering and ovariohysterectomy 

were considered less painful for cats than dogs, and male vets were less likely to administer NSAIDs to 

cats (94% vs 99% of women). In a survey published in 2014, attitudes towards feline pain were 

compared between veterinarians (n = 717) from New Zealand, Australia and the United Kingdom (21). 

In this study, all three countries had improved peri-operative analgesia compared with previous 

studies. Despite this, an absence of post-operative drug administration as well as follow-up (at home) 

analgesia was identified. The authors suggested that more research was required for both post-

operative drugs and analgesic timing. It seems that awareness of pain as a problem has improved 

recently, more research and dissemination of these findings to practitioners is needed. 
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1.3 Instruments for Acute Pain Assessment 

 Pain is an inherently subjective experience (22). Methods by which this experience can be 

quantified allow for better identification and even comparison of pain. These tools then can be used 

both clinically and in the research setting.  The development of a subjective instrument for the 

assessment of pain requires four steps, chronologically; item generation, readability testing, reliability 

testing, and validity testing (23). Item generation is the first step, where specific assessments or 

evaluations are considered for evaluating pain. Readability testing should evaluates wheter a tool is 

practical and simple to understand and use. Reliability testing evaluates the consistency of measures 

yielded by the items within the instrument, as well as repeated measures by the same observer, 

different observers, and the same subject over a series of evaluations (24).  The final step, validity 

testing, can be further subdivided into content, construct, and criterion validity. Content and construct 

validity evaluate the sensitivity of the items in the instrument to categorize pain states. Whereas 

criterion validity describes the correlation between an external objective measure and the scale itself 

(25). Ideally this should be a comparison to a gold-standard test, however no objective measure of pain 

has been classified as such. Cultural and lingual differences provide language specific readability, 

reliability and validity testing. The goal of clinical pain instruments is to assist veterinarians in 

determining whether or not the subject requires analgesia. Intervention thresholds are often 

determined based on a score which best separates painful animals from non-painful, ideally with the 

fewest misclassifications. There are several scales which have been developed for dogs for both acute 

and chronic pain across a number of conditions (26-31). Several of these scales have been evaluated 

and determined to be valid. There are fewer scales developed for cats limiting the available tools for 

pain identification and research (32-34). 
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 A recent review evaluated instruments available for the subjective assessment of pain in cats 

including simple descriptive scales, VAS, numerical rating scales, dynamic interactive visual analogue 

scale and multidimensional composite scales (24). At present, only two instruments have been 

evaluated for validity. The feline composite measure pain scale (rCMPS-F) was developed as a clinical 

tool and validated as such across all breeds, ages and types of acute pain in cats. The validation was 

limited to content and construct, but did not include criterion validity. The scale includes an 

intervention point when the score is greater than or equal to 4 out of a possible 16 (33). In the 

development of this scale, the authors indicated the intention to include a grimace scale in a 

subsequent revision of the instrument. The inclusion of this grimace scale has now been validated 

(CMPS-F) (34). In this validation the authors also derived and revised the intervention score (greater 

than or equal to 5 out of 20). This revised version of the rCMPS-F performed better than the original, 

misclassifying only 17.6% of painful cats compared to 26.7%. The only other validated instrument is the 

UNESP-Botucatu Multidimensional composite pain scale (UNESP-MCPS) (32). This instrument was 

developed initially in Brazilian Portuguese for the evaluation of post-operative pain following 

ovariohysterectomy (35). This instrument included similar evaluation of pain expression and 

psychomotor changes to the CMPS-F. However, it also included physiological variables (appetite and 

blood pressure) combined with the dynamic, and interactive assessment. The scale was then translated 

into English and shown to be valid, reliable and responsive in the assessment of cats following 

ovariohysterectomy (32). A responsive scale is one which is sensitive to clinically relevant change. 

Which, in this case, are the expressions, psychomotor and physiologic changes associated with pain 

(24). Both the Portuguese and English versions have intervention scores of greater or equal to 8 of a 

possible 30.  Additional translations to French and Spanish have been validated as well (36, 37). While 

this scale is perhaps better suited for the assessment of acute pain following ovariohysterectomy than 

the CMPS-F, it is limited in its application to other acute pain states. Additionally problematic is that as 
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a clinical tool the UNESP-MCPS is a more time-consuming and laborious (particularly the physiological 

variable collection) process. At present, the UNESP-MCPS is the only instrument shown to be 

qualitatively valid, reliable and sensitive (24). The inclusion of the grimace scale to the CMPS-F has 

improved the discriminatory ability of the rCMPS-F, however direct evaluation of criterion validity 

remains unreported. As a clinical tool, however, the rCMPS-F has been validated across a wider range 

of different pain types and sources (e.g. illness, surgery, emergency) making it, perhaps, more clinically 

applicable (34).  

2. Nociceptive investigation 

 Quantifying pain is essential to its investigation. By providing objective measures of pain it 

becomes possible to compare different painful conditions in terms of diagnosis, treatment and 

progression. Pain is a perception, as such its quantification is difficult, particularly in non-verbal species. 

By providing a noxious stimulus and observing the response processed by the somatosensory system, 

it is possible to investigate thermal, electrical, mechanical, and/or chemical nociception (38). 

Regardless of its intended purpose, nociceptive investigation relies on the assumption that clinical pain 

correlates to the objective measure employed and the corresponding behavioural response. 

Limitations then exist due to anatomical, physiological and behavioural considerations, weakening this 

assumption. (39-42) 

2.1 Quantitative sensory testing in people 

 Quantitative sensory testing (QST) is a widely used tool in human medicine for experimental 

and clinical research, as well as providing a bedside pain assessment (43, 44). QST assesses both static 

and dynamic measures of thermal and mechanical stimuli to evaluate the somatosensory system (44, 

45). Investigators are capable of evaluating different peripheral nociceptive pathways and nerve types 

as well as spinothalamic and lemniscal central pathways by utilizing multiple stimuli in unison (46). In 
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general, thermal stimuli rely on A-delta and C nerve fibres and the spinothalamic pathway. Mechanical 

stimuli additionally involve A-beta fibres and the lemniscal pathway. The impact of painful conditions 

and treatments on pain transduction, transmission, perception and modulation can be made by 

comparing these various nerve fibres and pathways in conjunction. These stimuli test the nociceptive 

thresholds, limit of tolerance, as well as predefined parameters in which individuals’ perception is 

evaluated. In non-verbal patients, QST is restricted to threshold testing as the expression of perception 

is limited. In these individuals the use of a proxy evaluator is required (47). A proxy evaluator interprets 

the response from an individual incapable of communicating their response directly. (43-46, 48) 

2.2 Nociception models in animals 

 The inability of animals to communicate verbally limits the evaluation of pain to proxy 

observation (38). As is the case with non-verbal humans, nociceptive testing is thus limited to threshold 

testing for which a clear behavioural and motor response is elicited. For behavioural models of 

nociception, there are several requirements of an ideal nociceptive stimulus (38). First, it should be 

specific. Input specificity deems that the stimuli must induce nociception. Output specificity determines 

that the behavioural response must be preferentially or exclusively elicited by nociceptive stimuli. Next, 

the model should be sensitive. The response must be quantifiable, and the degree of response should 

correlate with the level of stimulus. A sensitive test should be capable of differentiating 

pharmacological (or other interventional) changes (eg. different drugs, dose, route of administration, 

etc.). The model should also be valid. In this sense, the test must allow easy differentiation between 

behavioural changes associated with nociceptive stimuli, and those that are non-specific or 

pharmacologically induced. The behavioural responses should not be invoked by sham testing. The 

model should be reliable. There must be consistency of the objective measure and repeated application 

should not result in lesions which may increase or decrease the response. This can be achieved by the 
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use of cut-offs, summation, or limiting duration of noxious stimuli. Finally, the nociceptive model must 

be repeatable; results must also be reproducible in repeated investigations. 

2.3 Nociceptive tools in feline acute pain research 

Mechanical threshold testing consists of the measurement of a force required to elicit a 

behavioural response. Von Frey apparatuses can measure this force directly (SI unit: newtons). 

Alternatively pressure can be measured as a surrogate for the mechanical force. This includes pressure-

provoked threshold tools and pressure measurement mats. Finally, the response to palpation or 

orthopaedic manipulation where an observer subjectively determines whether a response is normal or 

abnormal. When using a pressure sensitive mat, two methods are used; peak vertical force 

measurement and pressure platform mat (24, 49). The assumption with mechanical thresholds is that 

when applied to painful areas (or when force is applied to a painful limb) the threshold will reduce 

compared to non-painful states. Additionally, the use of analgesics should increase threshold 

responses. Mechanical antinociception has been demonstrated following administration of opioids 

(morphine, buprenorphine, methadone, pethidine, and epidural hydromorphone), acepromazine, 

epidural tramadol, and alpha-2 agonists (medetomidine and dexmedetomidine) (50-56). Mechanical 

threshold testing is advantageous in its ability to detect painful responses. Validation has been 

performed on mechanical devices in cats (54). The problem with these devices is that there are a variety 

of available equipment and possible methods for mechanical testing, making comparisons of thresholds 

between studies problematic.  

 Electrical nociception is a stimulus which can easily be modulated and cut-off when the 

response is reached. It is limited in its utility as it is possible for the signal to stimulate multiple nerve 

types, thus reducing the nerve fibre specificity for nociception (57). Electrical stimuli are of limited use 

in conscious cats. However, they are often used in minimum alveolar concentration (MAC) studies (52, 
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58, 59). As a tool for investigating acute pain in conscious cats, electrical nociception is limited at this 

time (49). 

 Thermal nociception has been evaluated using thermal thresholds and radiant heat emitting 

mats. These both utilise a behavioural and motor response to escalating temperature to determine 

threshold response (24). The assumption with thermal testing is that analgesics will increase 

thresholds, while inflammation and/or painful states will reduce them. As a tool thermal nociceptive 

testing has been validated for use in cats for opioids (pethidine, buprenorphine, butorphanol, 

morphine, methadone) (51, 60-66). Thermal antinociception has also been demonstrated for tramadol 

and dexmedetomidine (61, 67, 68). Acepromazine did not alter thermal nociception despite increases 

in mechanical antinociception, this makes sense since acepromazine is not considered an analgesic (50). 

Like mechanical thresholds, in the absence of inflammation, thermal thresholds are insensitive to the 

use of NSAIDs (69). This limits the evaluation of NSAIDs with thermal threshold testing as it is a poor 

surrogate for inflammatory pain, a common post-operative pain source.  Thermal antinociceptive 

testing is a validated tool capable of advanced drug comparisons particularly with opioid and opioid-

like drugs. 

Benefits to the use of thermal antinociception in cats is the ability to evaluate analgesic drugs 

in a minimally invasive manner with the absence of producing a chronic pain or diseased state. This 

tool is well tolerated by free-roaming cats, which minimises the influence of restraint on behavioural 

response to the noxious stimuli (60). For the investigation of opioids, the device has been used to 

compare drugs, evaluate dose-response relationships, route of administration comparisons, 

pharmacokinetic-pharmacodynamic modelling, and ultimately determine clinical efficacy (51, 60-66). 

The device has been most frequently used for drug comparison in cross-over studies. This is possible 

since an induced disease state is not a requirement for thermal antinociceptive testing. In these 
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comparisons, increased magnitude of thermal antinociception would suggest superior analgesic effect. 

Duration of thermal antinociception would be representative of different drugs’ duration of analgesic 

effects. Presumably, if two opioids of the same class (eg. agonists of µ-opioid receptor) are 

administered at equipotent doses by the same route of administration, they should have an equivalent 

magnitude of thermal antinociception with variable duration of effect (51, 63). Dose-response 

relationships evaluate the same drug at different doses. This may be simply as a dose-finding study 

(68), a comparison of the effect of dose on antinociception (64), or evaluation of the impact of dose on 

pharmacokinetics (66). Comparing routes of administration allows for the evaluation of antinociception 

at equal or variable doses using the same drug. This would allow a better understanding of the impact 

of route on drug pharmacodynamics. This can be combined with blood sampling to determine 

pharmacokinetic variables and allow for pharmacokinetic-pharmacodynamic modelling (62, 65, 70). 

The final goal of all these experimental techniques is to determine clinical analgesia. Despite variation 

in thermal antinociception between studies, recent review articles have shown clinical dose intervals 

similar to some of these antinociceptive values (71, 72). In an attempt to refine clinical application of 

thermal antinociception, a recent article proposed that increases in mean thermal thresholds greater 

than two standard deviations above baseline thresholds may correlate with clinical analgesia (66). This 

approach appears to help diminish the impact of individual variability seen in this nociceptive model. 

Regardless of the method of evaluation or interpretation, thermal antinociceptive threshold testing 

provides a minimally invasive tool which allows for the evaluation of drug pharmacology and clinical 

analgesia (60). 

3. Management of Acute Pain 

The effective management and prevention of acute pain is essential to improve and maintain 

the welfare of veterinary patients. Appropriate pain management allows these animals to return to 
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normal function and prevent procedural or pain-associated morbidities. Balanced analgesia and 

multimodal anaesthesia are approaches which ideally target all aspects the pathway of pain 

(transduction, transmission, perception and modulation) simultaneously (73). Multimodal anaesthesia 

applies this principle to general anaesthesia whereby the combination of multiple therapies allows for 

reduction of individual treatment dosages (74). The presumption is that this will improve the beneficial 

effects of each drug while limiting their side- or adverse-effects. Balanced analgesia is the principle 

applied to the acute or post-operative period whereby combination therapies maximise analgesia while 

limiting the adverse-effects of, traditionally, single-agent opioid treatment. The foundation of a 

balanced, multimodal approach to developing an analgesic plan includes the use of; [1] Opioids, [2] 

NSAIDs, and [3] Local anaesthetics. For each class, there are considerations which may support or 

preclude the use, usually determined on a case-by-case basis. [4] Additional therapeutics may include 

agonists of the α2-adrenergic receptor, antagonists of the N-methyl-D-aspartate (NMDA) receptors, 

gabapentin, tricyclic antidepressants, and/or anticonvulsants. And finally, [5] non-pharmaceutical 

management, which ranges from bedside (or, cage-side) nursing to complimentary treatments. While 

these techniques apply to all species, the following discussion will focus, when possible, on feline-

specific management. (75, 76) 

3.1 Opioids 

At clinically effective doses, opioids are efficacious analgesics which can be used in a multitude 

of scenarios. As previously discussed, agonists of µ-opioid receptors have been historically avoided in 

cats due to the perceived risk of excitation or dysphoria (11). While favoured for use globally as the 

primary analgesic modality (with the exception of NSAIDs in the United Kingdom), limitations exist with 

some of the less potent opioids (e.g. buprenorphine, butorphanol) or opioid-like drugs (e.g. tramadol) 
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(17, 18, 21). These drugs have become popular due to their lower scheduling or perceived reduced 

adverse-effects, despite being less efficacious analgesics (13, 17, 18, 21). 

The agonists of µ-opioid receptors commonly used in veterinary practice include morphine, 

hydromorphone, oxymorphone, pethidine (meperidine), fentanyl, remifentanil, and methadone. 

Morphine is regarded as the prototypical full agonist of µ-opioid receptors, to which all others are 

compared. The study of full-µ opioids in cats dates back to the beginning of the previous century (11). 

Initially, in comparative biomedical research, the doses used far exceeded current clinical doses (e.g. 5 

mg kg-1) (11). Studies exploring the pharmacology of doses which provide clinically relevant analgesia 

with opioids has occurred predominantly in the last two decades. Morphine (0.1-0.4 mg kg-1, q 4-6 h, 

IV/IM/Epidural) is a full agonist at the µ, δ and ƙ opioid receptors (71, 75-77). Morphine has been shown 

to provide a MAC sparing effect. Initially it was reported to have a MAC sparing effect when given 

epidurally at 0.05–0.2 mg kg-1 (maximum reduction 30.8 ± 9.6%) (78). A more recent study could not 

reproduce this MAC reduction from epidurally administered morphine (79). The MAC sparing effect of 

IV morphine was demonstrated in cats with isoflurane at 1 mg kg1 (maximum reduction, 28 ± 9% at 180 

min) however, at 0.1 mg kg-1 a reduction (maximum reduction, 12 ± 4% at 60 minutes) was not clinically 

relevant (80). These three studies evaluated MAC using a tail-clamp technique making stepwise 10% 

increases or decreases in anaesthetic concentration dependent on whether or not there was 

purposeful movement. In the IV study, a ten-fold difference in dose was evaluated, it would be 

interesting to see if there is a MAC reduction at intermediate doses than those reported. This binary 

evaluation of two morphine doses does not preclude the possibility of a dose-dependent MAC sparing 

effect of morphine. Like other species, there is a risk of histamine release in cats when morphine is 

given IV which may result in vasodilation, hypotension, and/or hypersensitivity reactions. Histamine 

release is dose-dependent, when given slowly at lower doses it can be minimized. As already discussed, 
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the active metabolite, morphine-6-glucuronide is limited in its production in cats (10). As a result, the 

drug might not be as efficacious in cats as in other species. Despite this fact, morphine has been shown 

to increase TT in cats (63). Although widely available, morphine is not licensed for use in veterinary 

species. Hydromorphone (0.025-0.1 mg kg-1, q 4-6 h, IV/IM) is a semi-synthetic opioid that is used across 

North America (71, 75-77). It is a more potent agonist of µ-opioid receptors compared to morphine. 

Hyperthermia is an adverse effect seen frequently (up to 69%) and is specific to cats (81). Typically 

conservative management (active cooling with fans, cold packs, etc.) is sufficient in treating the 

hyperthermia. However, in the same study, 2 out of 49 cats required naloxone treatment to correct 

their hyperthermia (when temperature was > 41.6 °C). Oxymorphone (0.025-0.1 mg kg-1, q 4-6 h, IV/IM) 

is similar to hydromorphone in terms of potency, however it is not associated with vomiting or 

hyperthermia (76, 82, 83). Like hydromorphone, it is commonly used in North America, but 

hydromorphone is a more cost-effective analgesic than oxymorphone (84). Pethidine (3-5 mg kg-1, q 1-

2 h, IM) is a synthetic agonist of µ-opioid receptors (71, 76, 77). It is licenced, and more commonly used, 

in the United Kingdom, and parts of Europe for cats (3.3 mg kg-1, IM) (71). Its use is limited to IM 

injection, due to IV histamine release. It is an agonist of µ-opioid receptors which rarely causes 

vomiting. The drug has a rapid onset (approximately 30 minutes) and short duration of action (1 to 2 

hours), limiting its clinical utility. Fentanyl (Bolus 1-10 µg kg-1, IV; CRI 2-20 µg kg-1 h-1, IV; Patch 25 µg 

hour-1, adult > 4 kg) is a potent, short-acting synthetic agonist of µ-opioid receptors (71, 75-77). 

Fentanyl is not licensed for use in animals, in addition to being a scheduled (Canada schedule I, United 

Kingdom schedule II) drug. Scheduled drugs are those which are controlled by federal governments 

based on their likelihood for abuse and medical usage. In general schedule I drugs are the most 

controlled, with the highest likelihood for abuse and often limited medical usage. Subsequent 

classifications are less controlled. Scheduling and degree of control varies depending on 

country/governing body (85). Returning to fentanyl, the drug has been shown to be efficacious in 
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conjunction with either inhaled or intravenous anaesthetics (86). When used as a patch for cats, the 

effects are individually variable, and absorption is less consistent than in dogs. Pain assessment and 

multimodal analgesia is recommended when using transdermal patches. Remifentanil (CRI 4-18 µg kg-

1 h-1, IV) is used intraoperatively and is similar to fentanyl (71, 75-77). It is shorter-acting and does not 

require hepatic metabolism (87). This latter fact may be beneficial to not only cats with hepatic disease, 

but also healthy cats due to their unique drug metabolism (9, 10). Remifentanil also has a comparatively 

shorter context-sensitive half-life (time to reduce plasma drug concentrations by half following 

termination of a continuous rate infusion) compared with fentanyl (88). This allows the drug to be more 

rapidly titrated to effect. However, stopping the infusion requires the absence of noxious stimuli or 

alternative pain-relieving treatments as the analgesic effect of remifentanil is lost rapidly. Finally 

methadone (0.3-0.6 mg kg-1, q 4 h, IV/IM/OTM) is a synthetic agonist of µ-opioid receptors with NMDA 

receptor antagonism (71, 75-77). It is licensed for use in the United Kingdom, Italy, and a few other 

countries in Europe for cats (71). Its additional mechanisms of action show promise in the management 

of hyperalgesia, although future study is required. (12, 71, 75-77, 89, 90) 

Buprenorphine (0.01-0.24 mg kg-1, q 4-24 h, IV/IM/SC/OTM) is a highly potent, semisynthetic 

partial agonist of µ-opioid receptors (71, 72, 75, 77). Depending on the species it may have ƙ 

antagonism or even µ antagonism (at high doses) (62, 91). At low doses (0.01-0.04 mg kg-1) with low 

concentration formulations (0.3 mg ml-1), buprenorphine has been licenced widely across the USA and 

Europe (71). At these low doses, SC administration of the drug is ineffective compared to the 

IV/IM/OTM routes of administration in terms of drug absorption and analgesic effect (65). This resulted 

in the recommendation that buprenorphine should not be administered by the SC route of 

administration (65, 72, 77). However, more recently, there has been an interest in higher doses and 

increasing concentrations of buprenorphine, these high doses have demonstrated prolonged (> 24 h) 
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thermal antinociception compared to low-dose IV/IM/OTM buprenorphine administration (66).  

Recently a high-concentration formulation of buprenorphine (1.8 mg ml-1; Simbadol, Zoetis, NJ, USA) 

has been licensed for use in the United States (0.24 mg kg-1, q 24 h, SC) perioperatively for 3 days. There 

is an absence of information regarding the pharmacokinetics and pharmacodynamics of Simbadol, as 

well as the antinociceptive properties when it is given by other routes of administration. Buprenorphine 

can be used for mild to moderate pain, typically combined with a sedative (65, 67). Studies in cats have 

supported its use for more invasive procedures, such as ovariohysterectomy when combined with an 

NSAID and local anaesthesia (92). Buprenorphine has a stronger affinity for the µ-opioid receptor 

compared to morphine and other full agonists of µ-opioid receptors. This is problematic when dealing 

with breakthrough pain in patients managed with buprenorphine, as the simple addition of a more 

potent (in terms of analgesic efficacy) full agonist of µ-opioid receptors may be ineffective as 

buprenorphine’s strong receptor affinity prevents displacement with the alternative opioid (93). One 

study showed thermal antinociception was influenced by administration of buprenorphine (0.02 mg kg-

1, IV) 30 minutes after hydromorphone (0.1 mg kg-1, IV), however, it was unclear the impact on 

magnitude or duration of effect (93). Without further investigation, alternative modalities may be 

required until the end of buprenorphine’s duration of action when it is combined with other opioids. 

(71, 72, 77) 

Butorphanol (0.1-0.4 mg kg-1, q 1-2 h, IV/IM) is a synthetic opioid with mixed agonist/antagonist 

activity (71, 75-77). Like buprenorphine, its affinity and activity is species-specific for the opioid 

receptor subtypes. Butorphanol’s duration of action is shorter than buprenorphine (71, 76, 94). For cats 

undergoing ovariohysterectomy, the drug’s analgesic efficacy is less than that of buprenorphine (95). 

When butorphanol or buprenorphine are combined with an NSAID post-operative analgesia is similar 

(96). Butorphanol is a poor somatic analgesic (analgesia to the skin, superficial, and deep tissues), 
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though it does appear to provide effective visceral analgesia (analgesia of the internal organs) (12). 

Unlike full agonists of µ-opioid receptors, there is a “ceiling” effect owed to the agonist-antagonist 

mechanism, limiting its analgesic effect (94). Butorphanol provides a reliable sedation and has MAC-

sparing effects (80). It also is a potent antitussive (97). As it is a µ-antagonist, it can also be used as an 

antagonist of drugs which are agonists of the µ-opioid receptor in the case of dysphoria, 

cardiorespiratory depression or excessive sedation (e.g. with oxymorphone) (98). For cats, butorphanol 

has an important role for sedation and premedication for less invasive procedures. (12, 71, 75, 77, 97) 

In the clinical setting, there is only one opioid-like drug, tramadol (2-4 mg kg-1, q 6-8 h, 

IV/IM/PO) in use (71, 75-77). Tramadol is not licensed for use in cats, however it is licensed in a few 

European countries for dogs (71). It is a scheduled drug, III in the United Kingdom and IV in the USA 

(71). Despite this, the drug is widely used owing to its available oral formulation (in North America) and 

injectable form (South America and Europe). Palatability when given orally has been identified as being 

problematic (99). Oral formulation allows for continued analgesic treatment at home, potentially 

shortening hospitalization. Tramadol has been evaluated in a number of clinical studies. As with 

buprenorphine and butorphanol, its use as a single-agent analgesic is likely insufficient for painful 

procedures or conditions (77). When used in conjunction with NSAIDs or other modalities, it has proven 

to be beneficial (100, 101). Tramadol’s mechanism of action depends on the activation of the µ-opioid 

receptor as well as serotonin and norepinephrine reuptake inhibition. The drug does require 

metabolism for activation, which does not occur equally and reliably in all patients. Cats can produce 

the active metabolite, O-desmethyl-tramadol. Metabolism produces optical isomers. The (+) 

metabolite has increased affinity for the µ-opioid receptor and causes serotonin reuptake inhibition 

(102). The (-) isomer is responsible for norepinephrine reuptake inhibition. The production of this (-) 

isomer may be limited in cats. Individual variability in metabolism may be responsible for the 
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inconsistent analgesic effect (77, 101). Tramadol has been suggested to be a superior analgesic to 

pethidine, however this conclusion was based on its longer duration of action (2 h vs 7 h) following 

ovariohysterectomy in cats (103). There are also early studies showing a potential benefit to the use of 

tramadol in chronic pain (e.g. osteoarthritis) in cats, however further investigation is warranted. (71, 

75, 77, 100, 103) 

Tapentadol is a novel atypical opioid drug with a dual mechanism of action. The drug is an 

agonist of µ-opioid receptors and inhibits nor-epinephrine re-uptake (104). Unlike tramadol, 

tapentadol is administered in the active form and does not require hepatic metabolism for an analgesic 

effect. Tapentadol is metabolized by hepatic glucuronidation in people by uridine 5′-diphospho-

glucuronosyl transferases (UGTs) (105, 106). Tapentadol does not induce or inhibit hepatic cytochrome 

P450 enzymes (106). This is considered to be an advantage, as it can be administered to patients with 

mild to moderate renal or hepatic impairment (107). The efficacy of tapentadol is similar to that of 

morphine in the treatment of acute and chronic pain in humans (108). The similar efficacy highlights 

the importance of the nor-epinephrine re-uptake inhibition pathway since tapentadol has 18-fold lower 

affinity for the µ-opioid receptor in people compared to morphine. In veterinary medicine, many 

studies have been published on the pharmacokinetics of tapentadol in different species (109-111). In 

dogs and cats, the pharmacokinetics of tapentadol after parenteral administration have been described 

(112, 113). Bioavailability of tapentadol is low after oral administration at 4.4%, 9% and 32% in dogs, 

rats and humans, respectively (112, 114). Tapentadol has been shown to have antinociceptive effects 

in dogs (111). The analgesic and antinociceptive effects of tapentadol are unknown in cats. 

Opioids have additional effects beyond their analgesic and sedative qualities. Some qualities 

appear to be positive, these include, playfulness, purring, rolling, and kneading (i.e. euphoria) (71). 

Others may have more undesirable effects. The most important adverse effects of the opioids are 
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bradycardia and respiratory depression in conscious, sedated and anaesthetised patients (71). 

Monitoring patients receiving these drugs is important. Morphine and hydromorphone are associated 

with salivation and vomiting in cats and dogs (71). These adverse effects are reported in antinociceptive 

and clinical studies, despite not being the primary focus of investigation. Ileus following opioid 

administration appears to be limited following single-doses in healthy individuals (76). Monitoring 

gastric transit following any procedure or continued opioid use is recommended. Opioids cause 

mydriasis in the cat, this has deleterious effects on visual acuity and depth perception, which may cause 

individuals to walk into objects or startle to approaching handlers. Hyperthermia and transient 

increases in body temperature have been seen with buprenorphine, butorphanol, morphine, 

hydromorphone and alfentanil. Monitoring body temperature following the use of opioids is 

recommended. Emerging topics in opioid side effects and responses include pharmacogenomics and 

hyperalgesia/tolerance. Pharmacogenomics attempts to account for the variation in response to 

opioids and takes a genotypic and phenotypic approach to formulating an analgesic plan for an 

individual (maximizing analgesia and minimizing side-effects) (77). Hyperalgesia and tolerance are seen 

in human medicine, however the incidence in veterinary species is unknown. (71, 76, 77) 

3.2 Nonsteroidal anti-inflammatory drugs 

 NSAIDs are commonly used in cats for the prevention or treatment of acute pain associated 

with surgery, trauma or disease. Both therapeutic and toxic effects are produced by the inhibition of 

cyclooxygenase (COX) and alterations in prostaglandin production (115). An ideal NSAID should spare 

COX-1 and inhibit COX-2 to a degree for anti-inflammation and analgesia, but not entirely to interfere 

with normal physiologic processes (116). Normal COX-1 function is vital for the protection of gastric 

mucosal, platelet function and renal perfusion. Inhibition of this isoform would be deleterious to the 

gastrointestinal system, coagulation, and renal function (115). COX-2 is involved in inflammation and 
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nociception as well as normal function of the renal, nervous, and reproductive systems. Historically, 

NSAIDs were non-selective for COX isoforms. More recently emphasis has been placed on COX-2 

selectivity. While this has minimised toxicity, potential adverse effects remain (117). The ideal NSAID 

should target sites of inflammation to minimise these adverse effects and be rapidly cleared from the 

central compartment (116). This effect is due to the protein binding of NSAIDs, which is normally high. 

When the drug is delivered to the inflamed site, pH becomes more acidic. If a drug then has a low pKa, 

it will dissociate. In this active state, the drug can freely enter cells and remain in the target site (116). 

(75, 76, 115-117) 

 A wide variety of NSAIDs are marketed and available for use in veterinary medicine. For dogs, 

this availability is greater than cats. The NSAIDs commonly used for feline patients include meloxicam, 

robenacoxib, carprofen, ketoprofen and tolfenamic acid (117, 118).  These are the approved products 

for acute pain in cats in the United Kingdom. In Canada, all but carprofen is licensed as well. In the USA 

only meloxicam and robenacoxib are licensed. The provided doses are those approved for use in 

Canada, where applicable. Meloxicam (0.05-0.2 mg kg-1, q 24 h, SC/PO) is a COX-2 preferential NSAID 

(117-119). It is considered to be tissue-selective as a function of the mechanism described above (116). 

Following oral administration, meloxicam is principally metabolised by oxidation and excreted fecally 

(120). as well as being an effective analgesic in the management of  Robenacoxib (1-2.4 mg kg-1, q 24 

h, SC/PO) is a highly selective COX-2 inhibitor (117-119). It has a similar inflammatory tissue persistence 

and faster central compartment clearance when compared with meloxicam (116). In vivo meloxicam 

was shown to inhibit COX-1 for up to 24 hours, whereas robenacoxib did not (121). Despite these 

superior qualities, benefits of isoform selectivity and tissue persistence have not been shown in the cat 

(116). Carprofen (4 mg kg-1, SC/IV, not approved in Canada) is a COX-2 preferential NSAID only licensed 

for single-dose administration. Finally both ketoprofen (2 mg kg-1, q 24 h, SC/PO) and tolfenamic acid 



 

22 
 

(4 mg kg-1, q 24 h, SC/PO) are COX inhibitors which show no isoform selectivity (117-119). NSAIDs have 

been shown to be effective in the treatment of pyrexia in cats (118, 122). Their analgesic efficacy has 

been demonstrated across a wide range of procedures including ovariohysterectomy, castration, 

orthopaedic and other soft tissue surgeries (82, 116-119, 121, 123-127) 

3.3 Local Anaesthetics 

 Local anaesthesia is the sole modality capable of complete analgesia (76). Local anaesthetics 

interrupt conduction and propagation of nerve action potentials via binding of voltage-gated sodium 

channels. In addition to being effective, these methods are typically inexpensive and associated with 

minimal complications (128). Local anaesthetic techniques can range in difficulty from simple, such as 

for topical or infiltrative administrations, to advanced, where techniques may require advanced 

imaging modalities (75). Onset of action and duration of analgesia varies depending on the drug used. 

The following paragraph includes local anaesthetics commonly used in feline practice. The maximum 

dose is provided, as clinical dosage often depends on the technique utilised. A description of all the 

available techniques is beyond the scope of discussion of this review. In general, a strong knowledge of 

neuroanatomy and techniques allows practitioners the ability to either block nociception at the site of 

interest, or more proximally, preventing afferent nerve conduction. (75, 76, 128, 129) 

 Lidocaine (maximum recommended dose, 6 mg kg-1) is a fast-onset (5-10 minutes) and medium 

duration (1-3 hours) local anaesthetic (75). In other species, lidocaine may be used as an IV bolus or 

perfusion producing analgesia and sedative effects. Despite a significant reduction in MAC when used 

IV, lidocaine causes increased cardiovascular depression than an equivalent concentration of isoflurane 

in cats (130). Its use in this manner in cats is not recommended. Bupivacaine (maximum recommended 

dose, 2 mg kg-1) has a slow onset (10-20 minutes) and long duration of action (3-6 hours). Mepivacaine 

(maximum recommended dose, 3 mg kg-1) has an onset (3-10 minutes) similar to lidocaine and a 



 

23 
 

duration intermediate to the two previous (2-4 hours). Ropivacaine (maximum recommended dose, 

1.5 mg kg-1) has a similar profile for onset (15-20 minutes) and duration (1.5-6 hours) to bupivacaine, 

however, it is less potent. When used at lower concentrations, there is some evidence that ropivacaine 

may preferentially block sensory nerves and not motor nerves (131). This mechanism is not fully 

understood but possibly involves the drug’s lower lipid solubility limiting penetration of larger A-beta 

fibres. All of the drugs described are amide local anaesthetics, these are typically metabolised by 

hydroxylation, dealkylation, and methylation then excreted by the liver (75, 131, 132). 

3.4 Additional therapeutics 

 There are many remaining adjunctive drugs and classes of drugs which are used for the 

management of acute pain. Two that are commonly used with direct analgesic intent include ketamine 

and the α-2 receptor agonists. While these drugs have a direct role in antinociception and analgesia, 

when used as sole-agents their analgesia is limited. As a result, when used, these drugs should be 

combined with more efficacious analgesics.  

 Ketamine (0.5-20 mg kg-1, IV/IM or as a perfusion 1-30 µg kg-1 min-1) is a NMDA receptor 

antagonist capable of achieving a dissociative anaesthesia state and providing antihyperalgesic effect 

(75, 76). These effects are achieved via antagonism of NMDA receptors and non-NMDA glutamate 

receptors, agonism of μ-, κ-, and δ-opioid receptors (in reducing affinity) ultimately resulting in reduced 

central nervous sensitization and increasing inhibitory nerve activity (133). More recently elucidated 

mechanisms, in human medicine, include opioid potentiation, anti-inflammatory, anti-

proinflammatory, and antitumour effects (134). The clinical use of ketamine is limited due to its 

controlled status and the parenteral administration. Ketamine is most frequently used in feline practice 

in combination with diazepam (“Ket-Val”) or as an intramuscular injection combined with a sedative 

and opioid. A recent study showed significant reduction in isoflurane requirements associated with 
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ketamine (0.5 mg kg-1 bolus, and 30 µg kg-1 min-1) in combination with remifentanil (20 µg kg-1 hr-1) in 

cats undergoing ovariohysterectomy (135).  Given its analgesic characteristics, continued use in this 

manner is supported.  

 Agonists of α-2 adrenoreceptors are most frequently used for their sedative qualities, which 

work synergistically with opioids (75, 76, 136). These combinations are useful for chemical restraint or 

peri-operative analgesia. The analgesic qualities of α-2’s effect pain transmission, modulation and 

perception (137). The most commonly used α-2 agonists in feline practice are dexmedetomidine, 

medetomidine and xylazine, listed in decreasing α-2 receptor specificity. Dexmedetomidine (0.001-0.04 

mg kg-1, IV/IM) and medetomidine (0.001-0.150 mg kg-1, IV/IM) are typically used for sedation and 

restraint (75, 76, 119). Dexmedetomidine has replaced medetomidine in most countries as the α-2 

agonist of choice for this use. Xylazine (0.1-0.5 mg kg-1, IV/IM) remains licensed in Canada for use in 

dogs and cats for premedication (119, 136). It is more commonly used in the emergency setting to 

induce vomiting in cats. Alpha-2 agonists provide analgesic effects which may benefit animals in the 

acute setting, however, this effect is often shorter than the sedation produced by the drug. 

Atipamezole, and α-2 receptor antagonist, allows for reversal of the α-2 receptor agonists, providing 

added security to this class of drug (136). The deleterious effects on the cardiorespiratory system, 

profound sedation, and parenteral administration limit the use of α-2’s to the clinical setting. MK-467 

is a peripheral α-2 receptor antagonist, which has been given in combination with this class of drugs to 

mitigate the impact of α-2 agonists on the cardiovascular system (138). Their inclusion appears to 

diminish the analgesic effects of α-2 receptor agonists. 
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3.5 Non-pharmaceutical management 

 Often pharmacologic therapy is considered alone when producing an analgesic plan. Enhanced 

perioperative care and comfort includes limiting stress, gentle handling, and provision of warm and 

comfortable enclosures (75). Fluid management should be tailored to the individual, and in some 

instances requires pre- and post-operative therapy. Hydration and nutrition are also important in 

optimising healing and recovery. While these features are usually addressed in the course of surgical 

interventions, they are rarely tailored to the procedure, health status, age, and anticipated recovery 

period of the animal. In human medicine, this field, enhanced recovery programmes is extensively 

researched (139). Recovery plans are aimed at providing preoperative (patient interview and 

education, premedication selection, and determination of optimal nutrition), intraoperative (surgical 

technique, anaesthetic protocol), and post-operative (analgesic plan, nutrition, and rehabilitation) 

guidelines which are intended to reduce hospital stay, optimize comfort, and improve quality of life. 

While these principles can be translated to veterinary medicine, similar investigations should be 

undertaken to assess the impact of these variables on patient-outcome directed goals. 

 Specific non-pharmaceutical interventions have been shown to be beneficial in controlling 

pain. Cold therapy is an effective and inexpensive treatment for acute inflammatory pain. Cold retards 

cellular metabolism, and subsequently tissue damage. It also produces vasoconstriction, reducing 

oedema. Cold therapy can decrease nerve conduction, decreasing transmission of noxious stimuli 

(140). Heat has the opposite effect to cold at the cellular level. This increases circulation and cellular 

metabolism, which is beneficial in tissue healing. Heat also improves mobility, which in conjunction 

with physical rehabilitation can improve range-of-motion and return-to-function (140). Other 

physiotherapy techniques include stretching, massage and exercise. These techniques function 

similarly to heat by improving circulation and improving oxygenation and recovery. Acupuncture and 
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electroacupuncture are additional complimentary analgesic modalities. There are limited prospective, 

controlled and randomised studies available for acupuncture in cats. What is available shows increasing 

evidence supporting the mechanism of action for the technique. Needle placement is associated with 

the endogenous release of endorphins, enkephalins, and serotonin all of which produces analgesia. In 

both acute and chronic models of pain, beneficial effects have been seen in dogs (140-142). One study 

investigating laser acupuncture in cats undergoing ovariohysterectomy demonstrated a positive effect 

on patient comfort post-operatively (143). As an adjunct to multimodal analgesia, acupuncture may 

prove beneficial in the acute-pain setting. Additional ancillary techniques include transcutaneous 

electrical nerve stimulation, extracorporeal shockwave therapy, stem cell therapy, platelet-rich plasma, 

polysulfated glycosaminoglycans, and other nutraceuticals. These techniques are often utilised in the 

management of chronic pain. It is possible, however, their use following surgical intervention may be 

beneficial acutely by limiting or preventing morbidities. Further investigation of these techniques are 

warranted as their use cannot be supported or refuted based on the available literature. (75, 76, 140, 

143) 

4. Novel investigation 

 There is a need to investigate novel analgesics and treatments for the management of acute 

pain in cats. As previously discussed, historical misconceptions, unique metabolism and restricted drug 

access has limited analgesic availability in feline practice. Experiments using novel drugs or current 

drugs in a new manner need be investigated. The use of thermal threshold testing allows for a minimally 

invasive evaluation of nociception in this species. 

4.1 Objectives 

The objective of this thesis was to evaluate novel analgesic therapeutics for use in cats. 
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First there was an evaluation of the impact of route of administration on the pharmacokinetic and 

pharmacodynamics of a high-concentration formulation of buprenorphine using thermal 

antinociception in conscious cats. 

Then a novel drug, tapentadol, was evaluated after oral administration in a dose-finding study 

using thermal antinociceptive testing. 
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Abstract 

Background 

The aim of this study was to describe the joint pharmacokinetic-pharmacodynamic model and 

evaluate thermal antinociception of a high-concentration formulation of buprenorphine (Simbadol™) 

in cats. 

Methods 

Six healthy cats (4.9 ± 0.7 kg) were included in a prospective, randomized, blinded, crossover study. 

Simbadol™ (1.8 mg mL-1) was administered by the subcutaneous (SC; 0.24 mg kg-1), intravenous (IV; 

0.12 mg kg-1) or buccal (OTM; 0.12 mg kg-1) route of administration and thermal thresholds (TT) were 

compared with a saline group (SAL). Thermal threshold testing and blood sampling were performed at 

predetermined time points up to 72 hours including a placebo group. Plasma buprenorphine and 

norbuprenorphine concentrations were measured using liquid chromatography mass spectrometry. A 

bespoke bicompartmental pharmacokinetic model simultaneously fitted data from two 

analytes/three routes of administration. Temporal changes in TT were analyzed using one-way 

ANOVA followed by Dunnett’s test and treatment comparisons using two-way ANOVA with 

Bonferroni’s correction (P < 0.05). 

Results 

Thermal thresholds were significantly increased after SC, IV and OTM from 1-24 hours (except 2 

hours), 0.5-8 hours (except 6 hours), and 1-8 hours (except 6 hours), respectively, when compared 

with baseline. Thermal thresholds were significantly increased after SC (1-30 hours), IV (1-8 hours) 

and OTM (1-12 hours) when compared with SAL, but not different among buprenorphine-treated 

cats. The absolute buprenorphine clearance was 0.98 L kg-1 hour-1, volume of distribution at steady 
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state was 7.9 L kg-1 and the elimination-half-life was 12.3 hours. Bioavailability for SC and OTM was 

94% and 24%, respectively. Subcutaneous absorption was biphasic. An initial peak (0.08 hours) was 

followed by a slow (half-life 11.2 hours) and progressive (peak acceleration at 2.8 hours) uptake. 

Conclusion 

The SC administration of Simbadol™ was characterized by prolonged absorption half-life and 

sustained plasma concentrations yielding long-lasting antinociception (≥ 24 hours) when compared 

with the IV and OTM routes. 
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Introduction 

Buprenorphine is an opioid analgesic drug that is commonly administered for the treatment of 

feline perioperative pain. The use of buprenorphine in this species has been recently reviewed in both 

experimental and clinical setting (72). At standard clinical doses (0.02 mg kg-1) and concentrations (0.3 

mg mL-1), buprenorphine is poorly absorbed and has limited antinociceptive effect after subcutaneous 

(SC) administration (65).  Further investigation showed that increased doses (> 1.2 mg kg-1) 

administered by this route of administration can provide prolonged antinociception and improved 

absorption compared with standard doses (66). Simbadol™ (1.8 mg mL-1, buprenorphine hydrochloride; 

Zoetis, NJ, USA) is a FDA-approved high-concentration formulation of buprenorphine for cats. The drug 

is indicated for the control of postoperative pain and approved for subcutaneous only administration 

at 0.24 mg kg-1 every 24 hours up to three days. There is an interest in investigating the antinociceptive 

effects, pharmacokinetics (PK) and pharmacodynamics (PD) of this high-concentration of 

buprenorphine after SC, buccal or intravenous (IV) administration in conscious cats. . Using a joint PK 

model of the three routes of administration would provide more robust estimates of the PK parameters 

of Simbadol™ when compared with traditional PK methods analyzing each route of administration 

separately (144). 

The aims of this study were to 1) describe a joint PK modelling of Simbadol™ in awake cats, 2) 

evaluate the time-course of thermal antinociception in the same individuals, and 3) estimate PD 

parameters by PK-PD modeling. It was hypothesized that 1) joint PK would provide a robust method for 

understanding PK modeling, 2) Simbadol™ would produce dose-dependent thermal antinociception 

and 3) PK-PD modeling would explain how plasma concentrations of buprenorphine and thermal 

antinociception are correlated after administration of Simbadol™. This study reports joint PK modelling 

and PK-PD modelling of buprenorphine after the administration of Simbadol™. 
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Materials and Methods 

Animals 

The animal care committee of the Université de Montréal approved the study protocol (14-

Rech-1761). This study is reported according to the ARRIVE guidelines (145). 

Six healthy adult domestic short haired cats (4.9 ± 0.7 kg, four males and two females) were 

included in the study. The cats were group housed in a long-term accommodation (room) with 

temperature (20-22 °C) and humidity (40-70%) control, and according to the Canadian Council for 

Animal Care guidelines. The cats were fed a commercially available diet twice daily with ad libitum 

water. All cats were healthy based on physical examination, hematology and serum chemistry profile. 

Environmental enrichment was provided following the American Association of Feline Practitioners and 

International Society of Feline Medicine guidelines (146). During testing, cats were housed individually 

in stainless steel adjacent cages (67 x 55 x 68 cm3). Body weight was monitored on a weekly basis. Cats 

were acclimated to the testing procedures several weeks before the study began (S1 - Appendix 1). 

Experimental design 

The experimental phase was divided into two parts. 

Phase I (Thermal thresholds after saline 0.9%) - Cats were administered sterile saline 0.9% (NaCl 0.9%; 

Baxter, ON, Canada) by the subcutaneous route of administration (same volume as 0.24 mg kg-1 dose 

of Simbadol™) between the shoulder blades, and thermal thresholds (TT) were evaluated for up to 72 

hours (see time points below). Blood collection or venous catheterization was not performed on Phase 

I to avoid unnecessary stress to the cats. 

Phase II (Cross-over thermal threshold testing and blood sampling) - Phase II used a randomized, 

prospective, blinded, crossover study design with a 14-day minimum wash-out period between 

treatments. Approximately 12 hours before TT testing, a short-term catheter was introduced in the 
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cephalic vein and general anesthesia was induced and maintained using 8 mg/kg of propofol (Diprivan; 

AstraZeneca, ON, Canada) and isoflurane (Isoflurane, Aerrane; Baxter, ON, Canada) in 100% oxygen, 

respectively. A central venous catheter (Peel Away Single Lumen 19Ga, PI-1910; Mila International, KY, 

USA) was aseptically introduced in the jugular vein, sutured, and covered with light soft bandage. The 

jugular catheter was used for blood sampling throughout the study and removed after the testing 

period. The cephalic catheter was maintained in all cats until treatment administration and was used 

for administration of the test drug by the IV route when applicable. It was removed immediately after 

treatment administration. At the end of the procedure, cats were allowed to recover from anesthesia 

in a calm and quiet environment.  

Cats were randomly assigned to receive one of the following treatments: a. Simbadol™ by the 

intravenous route (IV, 0.12 mg kg-1) via cephalic catheter followed by flush with saline; b. Simbadol™ 

by the subcutaneous route (SC, 0.24 mg kg-1). The drug was injected between the shoulder blades; and 

c. Simbadol™ by the buccal route (OTM, 0.12 mg kg-1). The volume of buprenorphine was slowly 

administered into the cheek pouch using a 1mL syringe in the contralateral side to the central venous 

catheter position. Doses for the IV and OTM routes were based on previous safety and efficacy studies 

performed by the manufacturer, and clinical interest. Randomization was performed using an online 

software (www.randomization.com). Randomization and treatment administration were performed by 

two individuals who were not involved with TT testing (PS/GD). 

Measurements of thermal threshold  

Antinociception was evaluated using a wireless TT device (WTT1, Topcat Metrology Ltd, UK). 

The test has been validated in free-ranging cats (60) and several studies using the TT device and 

evaluating the antinociceptive effects of buprenorphine have been reported in the species (62, 63, 66, 

67, 70, 81, 147-150). The equipment was calibrated and maintained according to the manufacturer’s 

http://www.randomization.com/
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recommendations. The TT device is incorporated into an elasticated vest, containing a wireless 

receiver, power supply, LCD display and thermal probe which is applied around the thorax of a free 

roaming cat. An adjustable air bladder is used to maintain consistent pressure and direct contact of the 

temperature probe with the shaved lateral thorax. For each measurement, the skin temperature (ST) 

is recorded prior to thermal stimulus. For TT testing, the evaluator triggers a ramped heat stimulus (0.6 

°C second−1) using a hand-held device which is stopped once the cat exhibits a behavioral response (e.g. 

vocalization, rolling, jumping, etc.; considered the TT), or when the cut-off of 55 °C is reached. If cut-

off was reached, this value (55 °C_ was used as the TT. A single evaluator (BM) performed TT testing 

and was blinded to the treatments. Thermal threshold testing was evaluated before (baseline; time 0) 

and at 0.5, 1, 2, 4, 6, 8, 12, 24, 30, 36, 48, 60 and 72 hours after treatment administration for both 

phases. At each testing day and 30 minutes after placement of TT device, baseline values were 

determined using the mean of three recordings performed at 15-minute intervals prior to treatment.  

Any behavioral changes, adverse reactions or additional observations were recorded during 

the testing period. Oral pH was measured at baseline (pre-treatment) and at 48 hours after treatment. 

Blood sampling  

During Phase II, blood sampling was performed from the jugular vein via central venous 

catheter after 2 and 8 min of treatment administration, and after each TT testing. The volume of blood 

collected was adjusted for each individual so that less than 10% of the cat’s total blood volume was 

removed over the study period (2 mL maximum per sample). After each collection, the catheter was 

flushed with 1 mL of heparinized saline and the injection plug was changed to minimize contamination 

of subsequent sampling. Blood was transferred to K3EDTA tubes and centrifuged at 2000 g for 10 

minutes. Plasma was separated and stored at -80 °C before buprenorphine/ norbuprenorphine HPLC-

MS/MS analysis. 
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Buprenorphine and norbuprenorphine assay 

Appendix 2 (S2) provides description of the analytical method for buprenorphine and 

norbuprenorphine using high performance liquid chromatography-mass spectrometry (HPLC-MS/MS). 

The method met standards for sensitivity, linearity, precision, accuracy and stability generally accepted 

in bioanalytical chemistry (151). Limits of quantification were 0.1 to 100 ng mL-1 for buprenorphine and 

0.2 to 100 ng mL-1 for norbuprenorphine. 

Joint PK and PK-PD modeling 

Population pharmacokinetic modelling was performed with Phoenix NMLE®, version 1.3, 

Certara (Princeton, NJ, USA) installed on a Dell Precision 7510 computer (core i7). Full description of 

the joint population PK and PK-PD model is provided in Appendix 3 (S3). Briefly, a two compartmental 

model was used to simultaneously model the plasma concentration-time curves of buprenorphine and 

norbuprenorphine (formed through conversion from buprenorphine and first pass effect). The SC, IV 

and OTM administration routes were included jointly in the PK model to increase the number of degree 

of freedom. In order to explore the biphasic nature of the SC absorption, several complex candidate 

models were elaborated and compared. Estimates of PK variables were provided with inter-individual 

variability (IIV%). Population PD parameters were estimated by sequential population PK-PD modeling. 

The best PD model was selected among a series of candidate models including negative hysteresis and 

antinociceptive effects of buprenorphine with or without norbuprenorphine. 

Statistical analysis 

Prospective power analysis concluded that a sample size of six cats would be sufficient to detect 

mean temperature differences of > 3.2 °C with a power of 0.8 and an alpha level set at 0.05 based on a 

previous study (152). Statistical analyses were performed using a software (GraphPad Prism, GraphPad 

software Inc., California, USA). Thermal threshold values were used as the outcome variable for 
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comparisons. Thermal thresholds for each treatment were analyzed for temporal changes using one-

way ANOVA for repeated measures followed by the Dunnett’s test when appropriate. Treatment 

comparisons were made using two-way ANOVA followed by Bonferroni’s correction (p < 0.05). Data 

were expressed as mean ± SD.  

 

Results 

Adverse effects and behavioral changes - Adverse effects were not observed in Phase I. Overall, 

signs of euphoria (rolling, kneading with thoracic paws, meowing, and purring) and agitation were 

recorded after treatment with all routes/cats in Phase II. Vomiting and diarrhea were observed in two 

cats during the study; one in the IV group (diarrhea on day 2 and vomiting once on day 3) and one in 

the OTM group (diarrhea only on day 3). Both cats remained bright and alert and their clinical signs 

spontaneously resolved. Short-term hypersalivation was noted in two cats immediately following OTM 

treatment. Dysphoria was not observed in this study. Mean ± SD of oral pH before and after (48 hours) 

all treatments were 8.8 ± 0.4 and 8.7 ± 0.5, respectively. 

Skin temperature and thermal thresholds - Mean ± SD baseline ST for all treatments (Phase I 

and II) was 36.9 ± 0.6°C. Skin temperature (ST) was not significantly increased after IV, OTM or saline 

0.9% treatments when compared with baseline. Skin temperature was significantly increased in SC 

treatment between 60 and 720 minutes (except 120 and 360 minutes; p = 0.0001). These values were 

within normal range and hyperthermia (ST > 39.5 °C) was not observed. Skin temperature was 

significantly increased from 0 to 3600 minutes (except 1440 to 2160 minutes) after IV treatment, from 

0 to 4320 minutes (except 30 and 1800 to 3600 minutes) after SC treatment, and from 0 to 4320 

minutes (except 720 to 2160 minutes) after OTM treatment (p < 0.05) when compared with saline 0.9% 

(Table 1). 
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Mean ± SD baseline TT for all treatments (Phase I and II) was 45.3 ± 1.7°C. Thermal thresholds 

were not significantly different among IV, SC and OTM treatments. Thermal thresholds were 

significantly increased after IV treatment between 30 and 480 minutes (except 360 minutes; p < 0.001), 

after SC treatment between 60 and 1440 minutes (except 120 minutes; p < 0.001), and after OTM 

treatment between 60 and 480 minutes (except 360 minutes; p < 0.001) when compared with baseline 

values. Thermal thresholds were significantly increased after IV treatment from 30 to 480 minutes, 

after SC treatment from 60 to 1800 minutes, and after OTM from 60 to 720 minutes when compared 

with saline 0.9% (p < 0.05). Thermal thresholds did not increase after treatment with saline 0.9% (Table 

2 and Figure 1). 
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Figure 1. Thermal Threshold (mean ± SD) in cats after saline (SAL), or buprenorphine administration via the 

three treatment routes: intravenous (IV), subcutaneous (SC), and buccal (OTM).  

 

 

 

* Significant difference from saline (Two-way ANOVA). SAL (Saline SC); IV (0.12 mg kg-1 buprenorphine IV); 
SC (0.24 mg kg-1 buprenorphine SC); OTM (0.12 mg kg-1 buprenorphine buccal route of administration). 
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Blood sampling 

A central jugular catheter was removed by one cat at 24 hours after IV administration of 

Simbadol™. Figure 2 shows mean plasma concentration profiles for buprenorphine and 

norbuprenorphine (Fig 2) 

 

Figure 2. Mean plasma concentrations of buprenorphine and norbuprenorphine (± SD) in six 
conscious cats. 

 

IV (0.12 mg/kg buprenorphine IV, red triangles); SC (0.24 mg/kg buprenorphine SC, blue diamonds); 
OTM (0.12 mg/kg buprenorphine buccal route of administration, green squares); [Plasma] (Plasma 
concentration). 

 

 

Pharmacokinetic modeling and parameters 

Figure 3 shows the structure of the final population PK model for buprenorphine and 

norbuprenorphine (Fig 3). For all parameters listed below, the inter-individual variability (IIV %) is 

reported immediately following each estimate where appropriate. 
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Figure 3. Pharmacokinetic-pharmacodynamic (PK-PD) model representation for buprenorphine and 
norbuprenorphine after subcutaneous, intravenous and buccal administration in six cats. 

 

For the SC route, combined Inverse Gaussian (IG, rapid but short lasting) and Time-dependent (TD, delayed and 
progressive onset) inputs. Buprenorphine central PK parameters; clearance (CL), volume of distribution of the 
central compartment (V1), intercompartmental clearance (CL2), volume of distribution of peripheral 
compartment (V2). Norbuprenorphine central PK parameters: clearance (CLMet), volume of distribution of the 
central compartment (V1Met), intercompartmental clearance (CL2Met) and volume of distribution of the 
peripheral compartment (V2 Met). Rate constant of transformation from parent to metabolite (KaMet), first pass 
norbuprenorphine absorption rate (Kafirst-pass). PK parameters specific to OTM route: bioavailability (FOTM, 
parent and metabolite), absorption rate constant (kaOTM). PK parameters specific to SC route: bioavailability 
(FSC), proportion taken by IG input (BIO) and time-dependent delayed input (1-BIO), mean input rate time (MAT) 
was 7.21 h (3.5%) and variance of the input time (CV), maximal absorption rate constant (kaSC), time to achieve 
50% of this maximum rate (T50). 
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For buprenorphine, a model that best predicted the individual observed plasma concentrations 

after SC route (see S3 - Appendix 3), and that has been previously used for systemic absorption of local 

anesthetic after perineural administration (16), was used. This model combined Inverse Gaussian (IG, 

rapid but short duration) and Time-dependent (TD, delayed and progressive onset) inputs. The three 

routes of administration shared four central PK parameters; clearance (CL = 0.98 L kg-1 hour-1, 2.4%), 

volume of distribution of the central compartment (V1 = 0.75 L kg-1, 11.3%), intercompartmental 

clearance (CL2 = 0.70 L kg-1 hour-1, 0%) and peripheral volume of distribution (V2 = 7.15 L kg-1, 8.1%) 

with a common proportional residual error term. The total body clearance of buprenorphine was 

moderate to high according to Toutain et al. 2004 (153). Volume of distribution at steady-state (Vdss) 

was 7.89 L kg-1. The average beta elimination half-life for this bicompartmental model was 12.3 hours 

(154). 

For PK parameters, specific to the OTM treatment, the bioavailability FOTM was 23.6% (IIV 25%) 

and the absorption rate constant (kaOTM) was 1.67 hour-1 (25.1%), yielding an absorption half-life of 0.42 

hours. For the SC treatment, the total bioavailability FSC was 94% (IIV 23.4%). A proportion of 10.1% (IIV 

113%) of FSC was absorbed through early uptake (BIO = proportion taken by IG input) and the rest (1-

BIO = 89.1%) was absorbed through a time-dependent delayed input (TD).  For the IG input of the SC 

absorption, mean input rate time (MAT) was 7.21 hours (3.5%) and variance of the input time (CV) was 

5.46 (0.5%). This translated into an initial peak of plasma concentration observed at 0.08 hours (5 

minutes, at Tmax, the mode of the IG function) corresponding to 10% of the buprenorphine being rapidly 

absorbed. For the TD input, the maximal absorption rate constant (kaSC) was 0.062 hour-1 (14.9%), 

yielding a slow late absorption half-life (11.2 hours). The time to achieve 50% of this maximum rate 

(T50) was 2.8 hour (27%).  
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For norbuprenorphine, it was thought that it was exclusively generated from plasma 

buprenorphine degradation, with KaMet the irreversible conversion rate constant from the parent drug 

to its metabolite. The PK of norbuprenorphine was best described using a two compartment model for 

which four parameters common to the three administration routes could be estimated: 

norbuprenorphine clearance (CLMet = 0.42 L kg-1 hour-1, IIV 4.3%), volume of distribution of the central 

compartment (V1Met = 0.323 L kg-1, 0.1%), intercompartmental clearance (CL2 Met = 7.662 L kg-1 hour-1) 

and volume of distribution of the peripheral compartment (and V2 Met  = 4.69 L kg-1). Random effects 

for CL2 Met and V2 Met were not estimated. In a second step, a first pass effect was included in the model 

to account for the higher norbuprenorphine exposure after OTM administration when compared with 

other routes (Fig 2). The rate constant of transformation from parent to metabolite was estimated 

using the IV and SC datasets (KaMet = 0.196 hour-1, 19%) yielding a transformation half-life 3.5 hours. 

The KaMet was then fixed to allow estimation of the first pass norbuprenorphine absorption rate 

constant using full 3-routes dataset (Kafirst-pass 0.626 hour-1, 6.9%, absorption half-life 1.1 hours) and FOTM 

(parent and metabolite OTM bioavailability). The amount absorbed as norbuprenorphine via first pass 

after OTM administration contributed to approximately 1% out of the value of FOTM (23.6%). 

PK-PD modeling - Several models were evaluated (S3 - Appendix 3) and the best one was 

selected based on the Bayesian Information Criterion value and the identifiability of parameters. The 

model could reliably estimate the effect of buprenorphine but not that of norbuprenorphine. A 

hypothetical effect-compartment accounted for the delay in attaining maximal effect in relation to drug 

concentrations in the central compartment (155). The link between effect site buprenorphine 

concentration (Ce) and thermal antinociceptive effect (E) was modelled with an Emax function according 

to equation 1: 

(ܧ) ݐ݂݂ܿ݁݁ ݁ݒ݅ݐ݌݁ܿ݅ܿ݋݊݅ݐ݊ܣ = ଴ܶ +  
× ௠௔௫ܧ ௘  ௡ܥ

ହ଴   ௡ܥܧ ௘  ௡ܥ +
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where T0 is the estimated baseline thermal threshold (°C), Emax is the estimated maximal effect (°C), EC50 

is the plasma concentration achieving 50% of Emax and n is the slope parameter of the concentration 

effect curve. The transfer rate constant Ke0 was 0.52 hour-1 (IIV 0%). The estimated maximal effect Emax 

was 5.62°C (IIV 0%) over the baseline thermal threshold T0 = 46.1 (IIV 0%). Buprenorphine EC50 (potency) 

was 2.13 ng mL-1 (IIV 447%) with a slope (n) of 1.54 (91%). 
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Discussion 

Subcutaneous administration of the drug provided long-lasting thermal antinociception (≥ 24 

hours). These effects were prolonged compared with the IV (8 hours) and OTM (≥ 8 hours) treatments. 

The combined modelling approach provided a robust model to capture the complex absorption of the 

SC treatment. Despite limitations in the thermal antinociceptive model such as right censored data (due 

to the safety cut-off) and individual variability, the final PK-PD model could describe and predict the 

prolonged analgesic effects of Simbadol™ after SC administration due to is biphasic rapid and slow 

absorption kinetics. 

The duration of thermal antinociception was consistently longer in this study compared with 

traditional doses of buprenorphine, regardless of route of administration. In previous studies that 

tested thermal antinociception of buprenorphine in cats, antinociception was reported between 4 and 

12 hours following 0.01 mg kg-1 IM buprenorphine (63). Further investigation, including IV and OTM 

administration at doses of 0.01-0.02 mg kg-1 found shorter durations of antinociception (between 0.5 

to 6 hours) (62, 67, 68, 148, 149, 152). Additionally, it appeared that low dose buprenorphine 

administered SC was ineffective, with near undetectable plasma concentrations that did not provide 

thermal antinociception (152). Clinical guidelines would not recommend the SC route of administration 

for the management of pain using low doses of buprenorphine (72). In the current study, the increased 

dose of buprenorphine prolonged the duration of antinociceptive effect in all three routes of 

administration, however it is clear that the SC route of administration provided superior duration when 

compared with all others. A recent study compared thermal antinociceptive effects of buprenorphine 

using different doses (0.02-0.24 mg kg-1) and found thermal antinociception of up to 30 hours when 

0.12 mg kg-1 or more was administered (66). In the study herein, the SC administration produced 

consistent elevations in TT when compared with either baseline or placebo treatments. 
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Joint modeling provided robust estimates of the pharmacokinetic parameters of Simbadol™ for 

several reasons. Traditional methods used for pharmacokinetic modeling of buprenorphine in cats have 

studied each route of administration separately (62, 70, 152), instead of pooling data from crossover 

studies to strengthen estimation of parameters shared across routes of administration (CL, V1, CL2, 

V2). In the present study, six individuals were used in a typical cross-over design, yielding 18 related 

(six cats, three routes of administration) plasma concentration-time curves. Amalgamation of rich PK 

data from different routes in the same model using non-linear mixed effect modelling is encouraged to 

optimize data, and increase statistical power to address complex absorption or disposition kinetics 

(144). In the present study, the slow SC absorption kinetic could be unraveled due to the inclusion of 

IV data in the model (during exploratory deconvolution exercise or in the final model), which is a crucial 

requirement to study atypical drug absorption profiles (156). The slow SC absorption resulted in a 

delayed Tmax compared with the OTM route. However, the beta elimination half-life of 12.3 hours was 

still longer than the half-life of the slowest SC absorption input (11.2 hours for TD input), therefore 

ruling out a flip-flop phenomenon.  

The kinetic of norbuprenorphine followed closely the kinetic of the parent drug. Not only peak 

norbuprenorphine concentrations appeared much earlier after IV or OTM when compared with SC 

administration, but the plasma norbuprenorphine concentration-time curve also displayed double 

peaks corresponding to the one observed for buprenorphine. Hence, joint modelling of buprenorphine-

norbuprenorphine further corroborated the slow biphasic SC buprenorphine uptake using a robust 

model. 

The biphasic input model used has been reported in a previous study where a double peak 

phenomenon in the plasma concentration-time curve of ropivacaine after femoral blockade was 

observed in people (157). After a rapid short-lasting absorption from the perineural space, the 
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secondary slower input was accounted by either (i) partitioning of the drug in the surrounding tissues 

and subsequent mobilization with exercise-induced increase in perfusion or (ii) initial precipitation in 

surrounding tissues due to a low aqueous solubility and gradual re-dissolution, creating a concentration 

gradient that promotes systemic absorption (16). It is possible that a similar process occurs in the cat 

following SC administration of Simbadol™. 

The pharmacokinetic parameters estimated in the current study are similar to those reported 

in the literature (Table 3) using buprenorphine in cats (10, 62, 70, 152). Some variability exists due to 

different bioavailability particularly in routes other than IV. For example, the elimination t1/2 was longer 

in the current study, yet the clearance and VDSS are similar across studies. One potential limitation in 

the present study is the variable doses between OTM/IV and SC (0.12 mg kg-1 vs 0.24 mg kg-1). In a study 

from Taylor et al, increasing dosages of buprenorphine (0.02 to 0.24 mg kg-1 SC) revealed saturation 

kinetics (Table 4) (3). Similar clearances were observed, however the lack of IV administration in the 

latter study does not allow for an estimate of bioavailability, making VDSS comparisons difficult. Indeed, 

the elimination half-life was shorter in the current study when compared with Taylor et al. This is likely 

a result of the variable formulations used in that study, which might alter drug absorption. 
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Current literature on OTM or sublingual administration of buprenorphine has suggested that 

jugular sampling may be inappropriate for PK studies using this drug because it overestimates 

bioavailability due to sampling a vessel which drains the site of administration (158). There are two 

studies in particular in which this overestimation has been documented. One study found an F of 116% 

and the other 139% in cats (62) and horses (159), respectively. When carotid arterial, jugular venous 

and saphenous sampling sites were simultaneously compared in cats, F was reported as 32%, 47% and 

23% respectively (158). These factors were considered in the design of the current study. However, 

placing a catheter in the carotid artery three times during the study and for prolonged periods was 

found to be risky with a potential for blood sampling failure. The authors chose to place a central 

venous catheter to collect samples from a central site, rather than peripheral venous site. A pilot study 

showed that placing these catheters via the jugular site (versus medial saphenous) was both easy and 

repeatable, and the sampling port would require minimal restraint of the cats. As a further step to 

minimize overestimation, cats receiving OTM treatment would have the dose administered in the 

contralateral cheek relative to the jugular catheter. The reported bioavailability of the OTM treatment 

in the current study (F = 23.6%) is closer to that of the peripheral venous sample obtained in the 

previous study (158).  

The SC route of administration provided prolonged analgesia due to its sustained plasma 

concentrations and the relationship between plasma, effect-side concentrations and time course of 

antinociception predicted by the sequential population PK/PD model. Despite consistent thermal 

antinociception based on averaged group data, the fit of the pharmacodynamic model was less 

satisfactory on an individual basis. Great individual variability in response to thermal stimulation was 

observed, however, similar findings have been reported (16). Treatments produced significant and 

variable behavioral and TT changes that could have affected the quality of the PK/PD model fit. 
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Other limitations in the present study were the inclusion of a safety threshold that produces 

artificially truncated data. A log likelihood approach to model right censored data as proposed by Sadiq 

et al. (160) was attempted but did not allow successful modelling with Phoenix NLME. In addition, PD 

modelling has not been described for norbuprenorphine in cats. In other species, the 

norbuprenorphine is between 50 and 200-fold less potent than buprenorphine with regards to its 

respiratory depressant or antinociceptive effects (161). Multiple models including both drug and 

metabolite were attempted to evaluate the contribution of norbuprenorphine to thermal 

antinociception (S3 - Appendix 3), however the PD parameters for norbuprenorphine were not 

identified.  

Conclusion 

Subcutaneous administration of Simbadol™ (Buprenorphine HCl, 1.8 mg ml-1) provided long-

lasting thermal antinociception (≥ 24 hours) in conscious cats. These effects are prolonged compared 

with the IV (8 hours) and OTM (≥ 8 hours) treatments. Joint pharmacokinetic-pharmacodynamic 

modelling showed prolonged plasma concentrations for the SC route. Despite the difficulties with 

pharmacodynamic modelling, the final model strongly supported the long acting analgesia provided by 

the drug. Advanced mathematical modelling of pooled data from different routes or parent-metabolite 

drug combinations and different studies allows leveraging of information to improve the understanding 

of complex pharmacokinetics. 
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Appendix 1 – Acclimatization of cats 

Cats were moved daily (Monday to Friday) into the laboratory room and housed individually in the 

cages for the study. The threshold device (see section on Thermal threshold testing) was applied to the 

cats, but not tested, for one and a half hours. The cats were then allowed to rest for another half hour 

in the cage. During the second week of acclimatization (Monday-Friday), the response to thermal 

stimulation for each cat was studied every 30 minutes during a one-hour period (two readings) with 

the stimulus applied and tested. This was done to familiarize the observer (BM) with the cat’s individual 

responses. During testing and acclimatization, cats were free-ranging and unrestrained at all times. 

Water, toys and a litter box were available at all times during testing and acclimatization. Food was 

offered between testing periods. Two weeks before acclimatization, cats were visited by one observer 

(BM/GD/PS) on a daily basis (Monday-Friday) for at least 15 minutes. By the time that the study began, 

the cats had lived in the accommodation for at least one month. 
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Appendix 2 – Analytical methods for buprenorphine and norbuprenorphine 

Plasma samples were analyzed for buprenorphine and norbuprenorphine using HPLC-MS/MS (High 

Performance Liquid-chromatography tandem mass spectrometry). The drug and its metabolite were 

extracted using a liquid-liquid preparation technique. A total of 250 µL of standard solution (10.0 ng 

mL-1 2H3-norbuprenorphine and 2H4-buprenorphine) was added to 100 µL of sample. This mixture was 

alkalinized using 50 µL of 5M ammonium hydroxide in a borosilicate sample tube. The sample was then 

vortexed for five seconds. Four millilitres of ethyl acetate were added and the sample mixed again via 

rotation for 20 minutes. All samples were then centrifuged at ~3500 g for 10 minutes and the organic 

layer transferred into a new sample tube. The samples were evaporated at 50°C under a stream of 

nitrogen. The dry residues were resuspended with 100 µL of 20:80 (v/v) methanol:water solution and 

transferred into injection vials for analysis. An isocratic mobile phase was used with a Phenomenex 

PFP(2) (150 x 3 mm I.D., 3 µm) and PFP (4 x 2.0 mm) security guard cartridge operating at 50°C. The 

mobile phase consisted of acetonitrile and 1.0% (v/v) formic acid in type 1 water at a ratio of 50:50, 

respectively. The flow rate was fixed at 0.30 mL min-1 and norbuprenorphine, buprenorphine and their 

respective internal standards (2H3-norbuprenorphine and 2H4-buprenorphine) eluted at three and four 

minutes, respectively. Five µL of the extracted sample was injected and the total run time was set to 

five minutes. The mass spectrometer (MS) was interfaced with the high-performance liquid 

chromatography (HPLC) system using a pneumatic assisted heated electrospray ion source. MS 

detection was performed in positive ion mode, using selected reaction monitoring (SRM). Nitrogen was 

used for the sheath and auxiliary gases and was set at 50 and 15 arbitrary units. The HESI electrode was 

set to 3500 V. The capillary temperature was set at 350°C. Argon was used as collision gas at a pressure 

of 2.5 mTorr. Total cycle time was set at 0.25 seconds. Peak width of Q1 and Q3 were both set at 0.7 

FWHM. Analysis of the sample assay method met standards for generally accepted bioanalytical 

chemistry, as such, sample analysis was performed (151). The result was the development of a HPLC-
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MS/MS method which was validated for determination of feline plasma analysis for buprenorphine and 

norbuprenorphine. 
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Appendix 3: Population pharmacokinetic-pharmacodynamic modelling 

A classic two compartment model with first order absorption was the starting point for modelling of 

the 3 routes simultaneously. It showed acceptable fitting for the IV and OTM routes, but failed to 

capture the multiple peaks displayed on the SC plasma concentration-time curve of all cats. 

Preliminary deconvolution analysis: 

To explore the complex absorption of buprenorphine SC, a deconvolution procedure was initially 

carried out to evaluate the shape of the SC input function over time (157). The PK disposition 

parameters from the IV fitting of the present study were used for this purpose. The biphasic input 

consisted of an initial sharp burst of absorption followed by a slower release phase. Therefore, a series 

of dual input models were tested to characterise the consistent double peak phenomenon observed 

after SC administration. 

Goodness of fit: 

For each Phoenix NMLE run, goodness of fit plots were prepared (162). The nested candidate models 

were compared on the basis of their biological plausibility, prediction based diagnostics (PRED, IPRED), 

residual-type diagnostics (RES and IRES), simulation based diagnostics (stratified VPC) and numerical 

diagnostics (minimisation of the Objective Function Value (OVF)). These were statistically tested with 

the Likelihood Test Ratio (when LRT was performed, deltaOVF >6.64; P<0.01, df = 1, otherwise the Akaike 

Information Criterion (AIC) was used) as along with measures of model stability and adequacy 

(convergence, precision of the parameters estimates). 

 

Statistical description of the model: 

Inter-animal variability was characterised with the assumption individual parameters were log-

normally distributed around the population value (Eq. 1): 

௜ܲ௝ = ௝ߠ   × exp (ߟ௜௝)               (1) 

Where Pij is the j-th parameter value for individual i; θj is the typical value for the j-th parameter for the 

population; and ηij is normally distributed around 0 with a variance of ω2
j. To minimise the residual 
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variability (difference between predicted and observed values), additive and proportional error models 

were compared.  

Parameters bound between 0 and 1 (typically bioavailabilities, noted F) were expressed and estimated 

in the model after a logit transform. The typical value of F (θ_F) was then used in equation 2 to yield a 

final estimate.  

௜ܨ = ிߠ) ݐ݅݃݋݈ ݒ݊݅  ௜)     (2)ܨߟ +

Where Fi is the inverse logit of θF, the typical value of the bioavailability, and ηFi is the residual for the 

ith invidual. 

The coefficient of variation of the PK parameters were approximated as follows (Eq. 3): 

(%)ܸܥ =  ඥ݁݌ݔ (߱ଶ) − 1  × 100%       (3) 

Visual predictive checks were built to evaluate the performance of the final model by comparing the 

median of simulated (n=5000) plasma concentrations with observed data (+/- 5th and 95th percentiles). 

 

PK modelling 

Base model development for the SC administration 

First, a 2 compartment model was composed to simultaneously fit the IV and the OTM. This allowed 

estimation of the physiological PK parameters common to the three routes of administration (namely 

CL, total body clearance; V, volume of the central compartment; CL2, intercompartmental clearance 

and V2, volume of the peripheral compartment). The model also provided the OTM absorption rate 

constant (kaOTM) and absolute OTM bioavailability (FOTM). The typical value θj and individual ηij were 

fixed, thus reducing the number of parameters estimated in the complex modelling of SC absorption.  

Zhou (156) reviewed strategies to model atypical absorption profiles. Several of these models were 

tested in combination to capture the double peak phenomenon (table 1). The best model was the from 

Gaudreault et al. (157) which combined an Inverse Gaussian (IG) input function and a time dependent 

(TD) input function. 
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Table1: Comparison of rival models for SC input function in joint IV, OTM and SC buprenorphine 

model and selection of best model 

Combination for SC input 
function 

OFV (-
2LL) 

AIC Comment 

Single FO Absorption 646 680 No capture of the second peak 

Combination of two FO 
absorptions 

626 644 Double peak not captured 

Combination of two FO 
absorptions with tlag 

599 621 Can capture double peak but misfit 

Combination of two ZO  
absorptions with tlag 

630 652 Double peak not captured 

IG combined with FO 
absorptions with tlag 

512 538 Good peak captures but FO restricts flexibility in 
late phase 

Combination of two IG  644 670 Good initial peak capture but constant bias in 
late phase (prediction under-estimates 
concentrations)  

IG combined with TD 
(gamma fixed) 

498 526 Best fitting but identifiability issues and some 
peak misfits 

IG combined with TD 
(gamma = CL) 

505 531 Best model: Excellent peak capture, predictions 
slightly under-estimate concentrations 

FO: first order, ZO: zero order, IG: inverse Gaussian input function, TD: time dependent input function. 

First, a combination of two first order absorption phases were evaluated together to account for the 

final SC bioavailability (FSC). The parameter BIO (value bound between 0 and 1) defined the proportion 

of the dose mobilised by the first process and consequently the proportion of the dose mobilised by 

the second process (1-BIO). 

First order input was modelled as in equation 4: 

(ݐ)ܫ = × ݁ݏ݋ܦ × ܨ ௔݇−) ݌ݔ݁ ×   (4)     (ݐ

Second, an Inverse Gaussian distribution was evaluated to model the early and sharp peak of the 

buprenorphine input function (163). The density function of the Inverse Gaussian input can be written 

as a time-dependent function according to the following equation (Eq. 5): 

(ݐ)ܫ = ଵ ∙ ቂܨ
ெ஺்

ଶగ ×  ஼௏మ  ×  ௧య
ቃ
ଵ
ଶൗ ∙ −ቂ ݌ݔ݁ (௧ ି ெ஺்)మ

ଶ  ×  ஼௏మ  × ெ஺்  ×  ௧
ቃ    (5) 
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With the 3 following parameters estimated: mean input rate time (MAT, representing the mean of the 

distribution), the variance of the input time distribution (CV2, representing the skewness of the 

distribution) and the proportion of the SC bioavailability absorbed by this early process.  

The mode of the IG distribution (tmax) is the time at which the input rate reaches its maximum. This was 

calculated as a more informative secondary parameter in order to facilitate interpretation of the values 

of MAT and CV2 (163) (Eq 6): 

௠௔௫ݐ = ቈට1 × ܶܣܯ +  ଽ
ସ

  × ସܸܥ    −  ଷ
ଶ

  ×  ଶ ቉      (6)ܸܥ

Third, Inverse Gaussian with time dependent absorption as in equation 7: 

(ݐ)ܫ = ி . ௄௔ 

[ଵା௘
షቆ೟ ష೟ఱబ

ം ቇ
]

    (7)  

Where ka is the classic first-order absorption rate constant; t50 is the time required to achieve 50% of 

the maximal input rate; and γ is a shape parameter for the time-dependent process.  Gamma (γ) was 

approximated by the value of clearance, as performed by Gaudreault et al.(157), 

 

Pharmacodynamic modelling:  

The full PK model (metabolite and parent drug) served as base for the sequential PKPD modelling. The 

different pharmacodynamic rival models, with or without the effect of the metabolite 

(norbuprenorphine), were compared (Table 2).  

Of the four best models, none fit the data exceptionally well. The most complicated included 2 to 4 

additional parameters which provided a slightly better fit, but were less identifiable than the most 

parsimonious model. The analgesic effect of norbuprenorphine in cats is unknown, this absence likely 

impacted the final PD model. 
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Table 2: final comparison of the 4 best PD models. 

Pharmacodynamic model comparison (all 
with log normally distributed parameters 
and additive error model) 

OFV (-
2LL) 

AIC BIC #Para-
meters 

Comment 

A) Buprenorphine only: Effect 
compartment (Ke0) and Sigmoid Emax  

1881.1 1907.1 1966.8 13 Best model 

B) Buprenorphine only: Same model as 
above but inclusion of 3 equilibrations 
constants (Ke0): 1 for each route 

1872.1 1906.1 1984.3 17 3 Ke0 
physiologically 
unrealistic 

C) Buprenorphine and 
Norbuprenorphine: Effect compartment 
model with competitive agonism, 
sharing the same Emax and Ke0 but with 
constraints on relative potency 
(different EC50) 

1877.5 1907.5 1976.4 15 Better fitting 
but unrealistic 
estimates 

D) Buprenorphine and 
Norbuprenorphine: same model as 
above but allowing 2 different constants 
for effect compartment Ke0 and Ke0m 
(metabolite) 

1863.3 1897.3 1975.5 17 Unstable 
model 

-2(LL): objective function value, AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion 

Ultimately the most parsimonious model (A) was adopted based on the BIC and the conservative 

identifiability. The absence of PK/PD data after administration of norbuprenorphine only precludes 

estimation of norbuprenorphine PD parameters in a joint model when taking into account the effect 

combined antinociceptive effect of parent drug and metabolite.  

Model A is an effect compartment model with sigmoid Emax expression. In this model, a hypothetical 

pharmacodynamic compartment accounts for the delay in attaining maximal effect in relation to drug 

concentrations in the central compartment (155). The assumptions behind the effect-compartment 

model were: (i) first order processes (ke0 transfer rate constant for buprenorphine,) govern the onset 

and offset of the pharmacodynamics effect; (ii) the amount of drug in the effect compartment is 

negligible and does not affect plasma concentration, and (iii) the concentration in the effect 

compartment (Ce) and plasma are equal at steady state. 
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The link between effect site buprenorphine concentration (Ce) and plasma buprenorphine 

concentration was modelled with a differential equation (8): 

ௗ஼೐
ௗ௧

=  ݇݁଴  × ܥ)  ௘)      (8)ܥ −

Where Ke0 is the equilibration rate constant between the central and the effect compartment.  

The thermal antinociceptive effect (E) was modelled with an Emax function according to equation 9: 

(ܧ) ݐ݂݂ܿ݁݁ ݁ݒ݅ݐ݌݁ܿ݅ܿ݋݊݅ݐ݊ܣ              = ଴ܶ + ா೘ೌೣ ×஼೐  ೙

ா஼ఱబ
   ೙ା ஼೐  ೙

      (9) 

 

Where T0 is the estimated baseline thermal threshold (°C); Emax is the estimated maximal effect (°C); 

EC50 is the plasma concentration achieving 50% of Emax; and n is the slope parameter of the 

concentration-effect curve. 

LL models for right censored data 

Due to safety cut-off (55 °C ), the true TT for a number of timepoints would have been above this 

artificial limit to the nociceptive test (right censored data). Attempts to fit models which take into 

account right censored data were not successful (using log likelihood approach) This is a common 

problem in antinociception studies (160) and the implementation of this modelling approach is much 

easier in Monolix with the SAEM algorithm. 

Results and goodness of fit plots: 

The goodness of fit figures for the final PK model fitting (buprenorphine and metabolite) are included 

thereafter:  

- Fig suppl. 1: observed values vs population prediction,  

- Fig suppl. 2: observed values vs individual predictions,  

- Fig suppl. 3: conditional weighted residuals vs time after dose,  

- Fig suppl. 4: conditional weighted residuals vs population prediction,  
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- Fig suppl. 5 a. to f.: visual predictive check for buprenorphine IV (5.a), norbuprenorphine IV 

(5.b), buprenorphine OTM (5.c), norbuprenorphine OTM (5.d), buprenorphine SC (5.e), 

norbuprenorphine SC (5.f) 

The goodness of fit figures for the final PD model fitting (buprenorphine only) are included thereafter:  

- Fig suppl. 6: observed values vs population prediction,  

- Fig suppl. 7: observed values vs individual predictions,  

- Fig suppl. 8: conditional weighted residuals vs time after dose,  

- Fig suppl. 9: conditional weighted residuals vs population prediction,  

- Fig suppl. 10 a. to c.: pharmacodynamic visual predictive check for buprenorphine IV (10.a), 

OTM (5.b), buprenorphine SC (5.c) 

The average trend (50th percentile) of the data was well captured for the IV and SC initially. None of the 

models really captured the fast onset and intensity of OTM and all models tended to estimate the 

duration of analgesia beyond its real duration with SC. 

 



 

65 
 

  

Fi
g 

su
pp

l. 
1 

(o
bs

er
ve

d 
va

lu
es

 v
s p

op
ul

at
io

n 
pr

ed
ic

tio
ns

) 

Fi
g 

su
pp

l. 
2 

(o
bs

er
ve

d 
va

lu
es

 v
s i

nd
iv

id
ua

l p
re

di
ct

io
ns

) 

Le
ge

nd
: C

O
bs

_A
_I

V:
 b

up
re

no
rp

hi
ne

 a
ft

er
 IV

 a
dm

in
ist

ra
tio

n,
 C

O
bs

M
et

_A
_I

V:
 n

or
bu

pr
en

or
ph

in
e 

af
te

r I
V 

ad
m

in
ist

ra
tio

n,
 

Cc
O

bs
_B

_O
TM

: b
up

re
no

rp
hi

ne
 a

fte
r O

TM
 a

dm
in

ist
ra

tio
n,

 C
cO

bs
M

et
_B

_O
TM

: n
or

bu
pr

en
or

ph
in

e 
af

te
r O

TM
 a

dm
in

ist
ra

tio
n,

 
Cc

O
bs

_C
_S

C:
 b

up
re

no
rp

hi
ne

 a
fte

r S
C 

ad
m

in
ist

ra
tio

n,
 C

cO
bs

M
et

_C
_S

C:
 n

or
bu

pr
en

or
ph

in
e 

af
te

r S
C 

ad
m

in
ist

ra
tio

n,
 D

V 
= 

de
pe

nd
en

t 
va

ria
bl

e 
(o

bs
er

ve
d 

va
lu

e)
, P

RE
D 

= 
po

pu
la

tio
n 

pr
ed

ic
tio

ns
, I

PR
ED

 =
 in

di
vi

du
al

 p
re

di
ct

io
ns

 



 

66 
 

 

Fi
g 

su
pp

l. 
3 

(c
on

di
tio

na
l w

ei
gh

te
d 

re
sid

ua
ls 

vs
 ti

m
e 

af
te

r d
os

e)
  

 

 

Fi
g 

su
pp

l. 
4 

(c
on

di
tio

na
l w

ei
gh

te
d 

re
sid

ua
ls 

vs
 p

op
ul

at
io

n 
pr

ed
ic

tio
n)

 

 

Le
ge

nd
: C

O
bs

_A
_I

V:
 b

up
re

no
rp

hi
ne

 a
fte

r I
V 

ad
m

in
ist

ra
tio

n,
 C

O
bs

M
et

_A
_I

V:
 n

or
bu

pr
en

or
ph

in
e 

af
te

r I
V 

ad
m

in
ist

ra
tio

n,
 C

cO
bs

_B
_O

TM
: 

bu
pr

en
or

ph
in

e 
af

te
r O

TM
 a

dm
in

ist
ra

tio
n,

 C
cO

bs
M

et
_B

_O
TM

: n
or

bu
pr

en
or

ph
in

e 
af

te
r O

TM
 a

dm
in

ist
ra

tio
n,

 C
cO

bs
_C

_S
C:

 b
up

re
no

rp
hi

ne
 

af
te

r S
C 

ad
m

in
ist

ra
tio

n,
 C

cO
bs

M
et

_C
_S

C:
 n

or
bu

pr
en

or
ph

in
e 

af
te

r S
C 

ad
m

in
ist

ra
tio

n,
 C

W
RE

S 
= 

co
nd

iti
on

al
 w

ei
gh

te
d 

re
sid

ua
l, 

PR
ED

 =
 

po
pu

la
tio

n 
pr

ed
ic

tio
ns

 



 

67 
 

Fig suppl. 5a: Stratified Visual Predictive Check (buprenorphine IV PK) 

 

 

Fig suppl. 5b: Stratified Visual Predictive Check (norbuprenorphine IV PK) 
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Fig suppl. 5c: Stratified Visual Predictive Check (buprenorphine OTM PK) 

 

 

 

 

 

 

 

 

 

 

Fig suppl. 5d: Stratified Visual Predictive Check (norbuprenorphine OTM PK) 
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Fig suppl. 5e: Stratified Visual Predictive Check (buprenorphine SC PK) 

 

 

 

 

 

 

 

 

 

 

 

Fig suppl. 5f: Stratified Visual Predictive Check (norbuprenorphine SC PK) 
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- Fig suppl. 6: observed PD values vs population prediction,  

 

- Fig suppl. 7: observed PD values vs individual predictions,  
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- Fig suppl. 8: conditional weighted residuals on PD vs time after dose,  

 

- Fig suppl. 9: conditional weighted residuals on PD vs population prediction,  
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- Fig suppl 10.a: Stratified VPC: Pharmacodynamics fitting IV (DV0 = dependent variable = 

thermal threshold) 

 

 
 
 
 
 
 
 
 

 

 

- Fig suppl 10.b: Stratified VPC: Pharmacodynamics fitting OTM  

 
 
 
 
 
 
 
 
 
 
 
 
 

- Fig suppl 10.c: Stratified VPC: Pharmacodynamics fitting SC  

 
 
 
 
 

 

 

 
 

40

45

50

55

60

DV
0

0 20 40 60 80

t

ObservedQuantiles
05%
50%
95%

PredictedQuantiles
05%
50%
95%

DV vs IVAR

40

45

50

55

DV
0

0 20 40 60 80

t

ObservedQuantiles
05%
50%
95%

PredictedQuantiles
05%
50%
95%

DV vs IVAR

40

45

50

55

DV
0

0 20 40 60 80

t

ObservedQuantiles
05%
50%
95%

PredictedQuantiles
05%
50%
95%

DV vs IVAR



 

73 
 

Article 2 

 

Thermal antinociception following oral administration of tapentadol in conscious cats 

 

Graeme M Doodnaught*, Marina C Evangelista† & Paulo VM Steagall* 

*Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 

Saint-Hyacinthe, QC, Canada 

†Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of 

Sao Paulo, Sao Paulo, SP, Brazil 

 

Correspondence: Graeme Doodnaught, Département de Sciences Cliniques, Faculté de 

Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada.  

 

 

 

 

 

 

This paper is currently in press with the journal, Veterinary Anaesthesia and Analgesia. 

Article reference: VAA33 
Journal title: Veterinary Anaesthesia and Analgesia 
Corresponding author: Dr. Graeme M Doodnaught 
First author: Dr. Graeme M Doodnaught 
Accepted manuscript available online: 7-JAN-2017 
DOI information: 10.1016/j.vaa.2016.05.001 



 

74 
 

This paper has been reproduced with the explicit consent of the co-authors. 

 

Authors’ contributions 

GMD: project design, ethics preparation, thermal threshold evaluation, data acquisition, 

statistical analysis, preparation of manuscript. MCE: project preparation, treatment 

administration, data acquisition, data management, manuscript revision. PVMS: project 

design, funding, statistical analysis, manuscript revision.  

  



 

75 
 

Abstract 

 

Objective To evaluate the onset, magnitude and duration of thermal antinociception after oral 

administration of two doses of tapentadol in cats. 

Study design Prospective, randomized, blinded, experimental study. 

Animals Six healthy adult cats weighing 4.4 ± 0.4 kg. 

Methods Skin temperature (ST) and thermal threshold (TT) were evaluated using a wireless TT 

device up to 12 hours after treatment. Treatments included placebo (PBO, 50 mg dextrose 

anhydrase orally), buprenorphine (BUP, 0.02 mg kg−1) administered intramuscularly, low-dose 

tapentadol (LowTAP, 25 mg orally; mean 5.7 mg kg–1) and high-dose tapentadol (HighTAP, 50 

mg orally; mean 11.4 mg kg–1) in a blinded crossover design with 7 day intervals. Statistical 

analysis was performed using ANOVA with appropriate post hoc test (p ≤ 0.05). 

Results Salivation was observed immediately following 11 out of 12 treatments with 

tapentadol. The ST was significantly increased at various time points in the opioid treatments. 

Hyperthermia (≥ 39.5 °C) was not observed. Baseline TT was 45.4 ± 1.4°C for all treatments. 

Maximum TT values were 48.8 ± 4.8 °C at 1 hour in LowTAP, 48.5 ± 3.0 °C at 2 hours in HighTAP 

and 50.2 ± 5.3 °C at 1 hour in BUP. TT significantly increased after LowTAP at 1 hour, after 

HighTAP at 1–2 hours, and after BUP at 1–2 hours compared with baseline values. TTs were 

significantly increased in BUP at 1–2 hours compared with PBO. 

Conclusion and clinical relevance Oral administration of tapentadol increased ST and TT in 

cats. The durations of thermal antinociception were similar between HighTAP and BUP, both 



 

76 
 

of which were twice as long as that in LowTAP. Studies of different formulations may be 

necessary before tapentadol can be accepted into feline practice. 

 

Keywords analgesia, feline, opioid, pain, tapentadol. 
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Introduction 

Tapentadol is a novel atypical opioid drug with a dual mechanism of action. The drug is an 

agonist of mu-opioid receptors and inhibits nor-epinephrine re-uptake (104). Unlike tramadol, 

tapentadol is administered in the active form and does not require hepatic metabolism for an 

analgesic effect. The efficacy of tapentadol is similar to that of morphine in the treatment of 

acute and chronic pain in humans (108). Tapentadol does not induce or inhibit hepatic 

cytochrome P450 enzymes (106). This is considered to be an advantage, as it can be 

administered to patients with mild to moderate renal or hepatic impairment (107).  

In veterinary medicine, studies have been published on the pharmacokinetics of 

tapentadol in different species (109-111). In dogs and cats, the pharmacokinetics of tapentadol 

after parenteral administration have been described (112, 113); however, clinical application 

of these results is limited, as the drug is only commercially available in tablet form (107). 

Bioavailability (F) of tapentadol is low after oral administration at 4.4%, 9% and 32% in dogs, 

rats and humans, respectively (112, 114).  

Tapentadol is metabolized in humans by hepatic glucuronidation by uridine 5′-

diphospho-glucuronosyl transferases (UGTs) UGT1A9 and UGT2B7 (105, 106). The low capacity 

of glucuronidation is a well-known therapeutic issue in cats mitigated by longer dosing 

intervals and reduced dosages of therapeutics metabolized by this route. Cats have the ability 

to perform phase II glucuronidation, but a lack of specific isoenzymes limits their ability to 

metabolize certain drugs (e.g. acetaminophen). The UGT1A9 isoenzyme is absent in the cat 

and the production of UGT2B7 is limited (164).       
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Low bioavailability after oral administration of tapentadol in other species is a direct 

result of normal hepatic glucuronidation. Therefore, cats may not metabolize tapentadol in 

the same manner, and bioavailability may be increased, providing analgesic effects (112). In 

one study, longer durations of plasma concentrations of tapentadol were measured in cats 

after intravenous (IV), intramuscular (IM) and subcutaneous administration than were seen in 

other species (113). Agitation, panting and salivation were the main adverse effects after IV 

administration and are similar to those in other species (113). These differences in metabolism 

of tapentadol between cats and other species, in addition to the lack of pharmacodynamic 

studies, suggest that there is a need for a study assessing the analgesic (antinociceptive) 

properties and adverse effects of tapentadol in cats. 

The aim of this study was to evaluate the onset, magnitude and duration of thermal 

antinociception after oral administration of two doses of tapentadol in cats. We hypothesized 

that tapentadol would increase thermal thresholds (TTs) with greater effect at a higher dose 

in awake cats.  

 

Materials and methods 

The study protocol was approved by the animal care committee of the University of Montreal 

(protocol no. 15-Rech-1780). This study is reported according to the ‘Animal Research: 

Reporting of In Vivo Experiments’ (ARRIVE) guidelines (145). 

 

Animals, study design and treatments 
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Six healthy adult cats, two females and four males, weighing 4.4 ± 0.4 kg [mean ± standard 

deviation (SD)] were studied in a randomized, prospective, controlled, blinded and crossover 

study with ≥ 7 days between experiments. Cats were housed according to the Canadian Animal 

Care Council guidelines. The cats were fed a commercially available diet twice daily with ad 

libitum water. Environmental enrichment was provided following American Association of 

Feline Practitioners and International Society of Feline Medicine guidelines (146). During 

testing, cats were housed individually in adjacent cages (67 × 55 × 68 cm) in a room with light, 

temperature and humidity control. Cats were acclimated to the testing procedures several 

weeks before the study began. 

The commercial tablet form of tapentadol in its immediate-release formulation 

(Nucynta IR 50 mg tablet; Janssen, Inc., ON, Canada) was used for this study. Four treatments 

for each cat were randomized using online software (www.randomization.org): placebo (50 

mg dextrose anhydrase capsule, treatment PBO) administered orally; buprenorphine (0.02 mg 

kg−1; Vetergesic, 0.3 mg mL−1; Champion Alstoe, ON, Canada; treatment BUP) IM; low-dose 

tapentadol (mean = 5.7 mg kg–1; one-half of a 50 mg tablet; treatment LowTAP) orally; and 

high-dose tapentadol (mean = 11.4 mg kg–1; 50 mg tablet; treatment HighTAP) orally. Oral 

administration of tapentadol and placebo was performed using a commercial piller device (Pet-

Piller; Jorgensen Laboratories, Inc., CO, USA). Water (3 mL) was administered to the cats after 

oral administration of treatments using a syringe. All treatments were administered by 

individuals who were not involved with TT testing.  

 

Thermal thresholds 
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Antinociception was evaluated using a wireless thermal threshold device (WTT1; Topcat 

Metrology Ltd, UK). The device is incorporated into an elasticated vest, containing a wireless 

receiver, power supply and thermal probe. The device records skin temperature (ST). 

Afterwards, the evaluator triggers a ramped thermal stimulus (0.6 °C second−1) and it is 

stopped when the cat exhibits a nociceptive behavioral response (eg. vocalization, rolling, 

jumping) which is considered the TT, or when the cut-off temperature of 55 °C is reached. The 

device was calibrated and maintained according to the manufacturer’s recommendations. TT 

testing was evaluated before (baseline) and at 0.5, 1, 2, 3, 4, 6, 8, and 12 hours after treatment 

administration. Baseline values were determined after an acclimation period of 30 minutes 

using the mean of three recordings performed at 15 minute intervals prior to treatment. A 

single evaluator (GMD), blinded to the treatment order, performed the TT testing. 

 

Adverse effects and behavioral changes 

Any behavioral changes, adverse reactions or additional observations were recorded during 

the testing period. A five-point simple descriptive scale (0–4, where 0 is baseline normal 

behavior) was used to score behaviors observed during the testing period (Appendix 1). 

Behavior scores were recorded at each time point. 

 

Statistical analysis 

Prior to the testing phase, a prospective power analysis concluded that a sample size of six cats 

would be sufficient to detect mean temperature differences of > 3.2 °C with a power of 0.8 

and an alpha level set at 0.05 based on the results of similar studies (65). Statistical analysis 
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was performed using GraphPad Prism, Version 5.0 (GraphPad Software, Inc., CA, USA). 

Temporal changes were analyzed using one-way ANOVA for repeated measures followed by 

Dunnett’s test when appropriate. Treatment comparisons were made using two-way ANOVA 

followed by Bonferroni’s correction (p ≤ 0.05). ST and TT values (°C) were used for 

comparisons. 

Results 

There were no adverse effects recorded in PBO or BUP. Excessive salivation lasting < 20 

minutes was observed in five of six cats in LowTAP and six of six cats in HighTAP immediately 

following treatment administration. Table 1 shows the behavior scores during the study. 

Dysphoria (score 4) was not observed.. 

Baseline ST for all treatments (n = 24) was 36.3 ± 0.3 °C. ST was not significantly 

increased after PBO. ST was significantly increased at 0.5–2 hours in LowTAP (p = 0.0007), at 

0.5–8 hours (p = 0.0001) in HighTAP (except at 4 hours), and at 1 hour in BUP (p = 0.02) as 

compared with baseline (Table 2). Hyperthermia (≥ 39.5 °C) was not recorded. Significant 

differences were not detected among treatments. The peak values for each treatment were 

36.7 ± 0.3 °C at 1 hour in PBO, 37.0 ± 0.6 °C at 1 hour in BUP, 37.0 ± 0.3 °C at 0.5 hours in 

LowTAP, and 37.2 ± 0.4 °C at 0.5 hours in HighTAP. 

Baseline TT for all treatments (n = 24) was 45.4 ± 1.4 °C (Table 3). TTs did not increase 

significantly after PBO. They were significantly increased at 1–2 hours in BUP (p = 0.02), at 1 

hour in LowTAP (p = 0.05) and at 1–2 hours in HighTAP (p = 0.002) as compared with baseline. 

TTs were significantly increased in BUP at 1–2 hours (p = 0.05) as compared with PBO but there 
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were no significant differences between tapentadol treatments and placebo (Figure 1 & Table 

3). 
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Figure 1. Thermal threshold (°C; mean ± standard error) in cats after administration of placebo 

(PBO, 50 mg dextrose orally), buprenorphine (BUP, 0.02 mg kg–1 intramuscularly), low-dose 

tapentadol (LowTAP, 25 mg orally) and high-dose tapentadol (HighTAP, 50 mg orally). Baseline 

values (BL) were collected before treatment administration at T0. There were six cats in each 

treatment 

 

*Significantly different from PBO, BUP only (p ≤ 0.05). Coloured bar (Red – BUP; Green – 
LowTAP; Blue – HighTAP) Significantly different from BL (p ≤ 0.05). 
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Discussion 

The results indicate that oral administration of tapentadol evoked thermal antinociception, 

with the higher dose having a prolonged effect in cats. The LowTAP treatment increased 

thermal antinociception at 1 hour and the HighTAP increased it for up to 2 hours. Additionally, 

HighTAP had a similar duration of thermal antinociception to that of buprenorphine. However, 

tapentadol did not significantly increase TT when compared with PBO. Large standard 

deviations precluded the ability of ANOVA to detect significant differences among treatments 

when using six cats. In addition, power analysis may have overestimated the antinociceptive 

effects of tapentadol, which would explain why there was no difference between the PBO and 

tapentadol treatments. 

The thermal antinociceptive device has been validated in cats (60) and has been used 

for the study of opioid antinociception in several reports (51, 62, 63, 65, 66, 165). It has been 

proposed that duration of thermal antinociception after opioid administration is well 

correlated with clinical analgesia of the same drugs in this species (62, 63, 166). Tapentadol 

has a dual mechanism of action, and some support the nor-epinephrine re-uptake inhibition 

pathway as primarily responsible for analgesia. Thus, it is possible that TT testing is not an ideal 

model for evaluating antinociceptive effects of drugs with a dual mechanism of action. 

However, tramadol has a similar mechanism of action to tapentadol, and oral administration 

of tramadol has produced thermal antinociception in a dose-dependent manner (61). These 

findings show that TT testing can be employed in studies using drugs with dual analgesic effect. 

Nonetheless, it is clear that clinical pain is complex and that more than one type of nociceptive 
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stimulus (i.e. mechanical and thermal) should be used to evaluate analgesia comprehensively 

(69). 

The duration of thermal antinociception after IM administration of buprenorphine 

(0.01 mg kg–1) in cats was reported to be between 4 and 12 hours (63). Other studies have 

measured shorter periods of antinociception (between 1 and 5 hours) after buprenorphine 

(0.01 and 0.02 mg kg–1) (67, 68, 148-150). Consequently, a review of buprenorphine effects in 

cats highlighted the advisability of continued pain assessment after buprenorphine 

administration as a second dose of buprenorphine may be required after 4 hours (72). The 

present study is unable to determine if the duration of TT elevation in the BUP and tapentadol 

treatments will correlate with clinical effect. Therefore, a clinical trial is warranted to 

determine the analgesic effects of tapentadol in comparison with buprenorphine in cats. 

Skin temperatures were significantly increased in all opioid treatments as compared 

with baseline, but not among treatments. Administration of some opioids, including 

meperidine and hydromorphone, is followed by a significant elevation in body temperature 

(49, 114). However, hyperthermia was not observed in this study and the small but significant 

elevations in ST after tapentadol administration were considered to be of no clinical relevance. 

Euphoria, rolling and increased activity are associated with opioid treatments and may have 

contributed to the increased temperature observed in the present study. 

Tapentadol resulted in profuse salivation in 11 out of 12 cats immediately after oral 

administration of both doses (5.7 and 11.4 mg kg–1). This adverse effect was also observed 

after IV administration of 5 mg kg–1 (113). The cause of salivation is unclear but could be 

associated with the immediate-release formulation of tapentadol. People have commented 
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that tapentadol is a bitter-tasting drug. Formulations for human use typically address this 

problem by the inclusion of sweeteners to mask the taste or by providing formulations for 

alternate routes of administration (167). Cats have taste receptors capable of detecting bitter 

flavors, but they lack receptors for sweet flavors (168). Consequently, formulations with 

sweeteners intended for people may not be of benefit for oral administration in cats. Further 

study using alternate formulations or preparations should be considered, as the formulation 

used in this study may prohibit clinical use of tapentadol in cats. 

In this study, the chosen doses of tapentadol were based on the pharmacokinetics after 

parenteral administration of the drug (5 mg kg−1) in cats (113). The decision to increase the 

dose to 11.4 mg kg–1 in HighTAP was based on three main factors: 1) the low F of tapentadol 

after oral administration in other species; 2) the idiosyncrasies of feline hepatic metabolism 

and its potential impact on F, as previously discussed; and 3) the practicality of using a 

commercial formulation of tapentadol (50 mg tablet) in the study. One of the main limitations 

of the present study is the lack of pharmacokinetic data after oral administration of tapentadol 

in cats. Poor absorption of tapentadol could explain its limited antinociceptive effect and a 

pharmacokinetic study could explain how increases in doses would affect pharmacokinetic 

variables. Additionally, the metabolism of tapentadol has not been studied in cats and it is not 

clear if the low capacity for glucuronidation could indeed increase its bioavailability and 

analgesic effects in this species. 

The results of this study indicate that oral administration of both doses of tapentadol 

(5.7 and 11.4 mg kg–1) increased thermal antinociception in cats. The 2 hour duration of effect 

of the higher dose was the same as for buprenorphine (0.02 mg kg−1) and twice as long as the 
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low dose of tapentadol. Tapentadol did not significantly increase TT when compared with 

placebo, regardless of dose. Large variations were seen, and perhaps the antinociceptive 

effects of tapentadol were overestimated in the prospective power analysis.  Poor palatability 

was identified with the formulation of tapentadol used in this study. Studies of different 

formulations may be necessary before tapentadol can be accepted into feline practice. 
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Appendix 1 Behavior scoring scale  

 

Score 

 

Description 

 

0 

 

Normal cat behavior. Similar to before drug administration. 

1 Signs of sedation. Commonly observed behavior changes 

include possible ventral tail curl, sleepiness, quietness, less 

responsive to human contact and purring. 

2 Euphoria. Cats present specific behaviors such as rolling, 

playing with toys and invisible objects, purring, kneading with 

its forepaws and rubbing its head and body on the cage's door. 

The response to human contact is usually exaggerated. Some 

cats may meow. Friendly cat. Love-play bites. 

3 Signs of agitation with increased locomotor activity. Behavior 

changes include staring, hyper-responsiveness, and vocalization 

but not accompanied by aggression or clear signs of fear and 

disorientation. 

4 Dysphoria. A state of anxiety or restlessness usually 

accompanied by vocalization. Dysphoric behavior includes 

staring, agitation, and restless, pacing and sudden movements. 

Cats are hyper-responsive and become aggressive, fearful 

(“backing up into corners”) and/or disoriented. 
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Combined Discussion 

 Thermal antinociceptive investigation of a high-concentration buprenorphine and tapentadol 

yielded results of benefit to the acute management of pain in cats. Consistent thermal antinociception 

from high-concentration buprenorphine was demonstrated with all routes of administration. This is 

contrary to the previous conception that buprenorphine had a maximal or ceiling effect at lower doses. 

This assumption led to two decades of low-dose buprenorphine studies preventing advances and better 

understanding of this common drug. Thermal threshold testing also contradicted the paradigm that 

subcutaneous administration of buprenorphine is not a useful route of administration. This study 

showed that, at the doses used, the subcutaneous route of administration was superior to intravenous 

and buccal. Concurrent pharmacokinetics-pharmacodynamics provided a rationale behind this 

difference. Future investigation should include drug comparisons to quantify the magnitude of this 

effect to other opioids or formulations. 

 In both studies, dose was an important factor in the observed thermal antinociception. The 

increased buprenorphine dose yielded prolonged thermal antinociception compared to previous low-

dose studies of the same routes of administration. The most striking of these differences is that of the 

subcutaneous route of administration. Compared to a previous paper of similar design using low-dose 

buprenorphine (65), the current study not only demonstrated prolonged antinociception but also 

increased magnitude of effect for the SC route. In the tapentadol paper, comparisons were made 

between the duration of thermal antinociception of tapentadol treated groups and the buprenorphine 

(positive control) group. This was an attempt to hypothesize clinical analgesic effect of tapentadol 

extrapolating from IM buprenorphine. Since the duration of clinical analgesia (if any) of tapentadol is 

unknown in cats, comparing duration of antinociception may be a crude appraisal. As mentioned in the 

literature review, with respect to superior analgesia between tramadol and pethidine in cats 
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undergoing ovariohysterectomy (103), a better analgesic is not one that simply lasts longer. While no 

magnitude of effect (inter-treatment) differences were detected between treated groups, the increase 

in mean thermal threshold of the buprenorphine group appears greater than that of either tapentadol 

group (Figure 1, Tapentadol paper). Perhaps then, as a preliminary dose-finding study, despite 

tapentadol producing thermal antinociception at both doses administered, the dose administered did 

not optimise the magnitude or duration of thermal antinociception. While the response observed in 

the study seemed appropriate, it would be a shame if future studies did not investigate alternative 

doses in an attempt to find this balance. One could look no further than the two studies presented in 

this thesis. The magnitude of thermal antinociception is similar between all buprenorphine groups 

(mean elevations in thermal threshold to between 50 and 51 °C) despite more than a 10-times higher 

dose being used in the SC group of the Simbadol study compared to the tapentadol study (Figure 1, 

Tapentadol paper and Figure 1, Simbadol paper). The difference in buprenorphine dose between these 

two studies seems to impact the duration of mean thermal antinociception more than it does 

magnitude. Fear (of “morphine-mania”) or misconceptions about “ceiling” or maximal effects of 

buprenorphine likely delayed the investigation of increased doses and concentrations of this drug.  A 

comparision which again nearly took nearly two decades since the first thermal antinociceptive 

evaluation of buprenorphine in cats to make (63). 

 The formulation of each drug facilitated administration of the treatments given in the current 

studies. The increased concentration of the formulation of Simbadol allowed for a smaller volume of 

injection for each treatment. At the licensed dose, 0.24 mg kg-1, using low-concentrations of 

buprenorphine (0.3 mg ml-1) would require a greater volume than the high concentration formulation 

(1.8 mg ml-1) used in the current study (eg. for a 5 kg cat the volumes would be 4 ml vs. 0.67ml, 

respectively). While a complex two-phase absorption was observed when the drug was administered 
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subcutaneously in the current study, it is unclear the impact of the formulation on this mechanism. In 

Taylor et al.’s study of high-dose, a variety of buprenorphine concentrations were used (0.3 – 1.2 mg 

ml-1) (66). The study found that regardless of the concentration used, when doses were 0.12 to 0.24 mg 

kg-1, prolonged thermal antinociception (up to 30 h) was observed. It would be of interest to investigate 

whether differences exist with the higher formulation used in the present study compared to other 

commercially available concentrations. In the tapentadol study, the commercial form of the drug in an 

immediate-release format was used (50 mg Nucynta IR). As previously discussed, this was chosen as it 

is the only readily available format of the drug, making it presently available for use in veterinary 

practice. Unfortunately this formulation caused aversive behaviours in the cats, likely due to the drug’s 

bitter taste. In future study, it would likely be of benefit to encapsulate the pill used. This would prevent 

direct contact between the drug and oral mucosa, hopefully preventing the stimulation of bitter taste 

receptors. In both studies, the formulation used are commercially available. This allows for a more 

direct dissemination of the results to clinical practice. The studies here support continued clinical use 

of Simbadol at its licensed dose and route of administration. Tapentadol in its current preparation 

needs further investigation and modification of formulation/drug delivery before it can be 

recommended for clinical use. 

 There are limitations to both studies which overlap. The presence of a cut-off thermal threshold 

(55 °C) produces artificially truncated data which potentially limits the ability to make inter-treatment 

comparisons. A method of dealing with right censored data (160) was attempted in the Simbadol study, 

however it did not produce a model of better fit. The mean thermal threshold in both studies was never 

equal to the cut-off value. However revision of the raw data, not presented or discussed in either study, 

showed 25 timepoints when cats reached cut-off thermal threshold values in the Simbadol study (SC n 

= 9, IV n = 7, and OTM n = 9) and 8 in the tapentadol study (BUP n = 7, LowTAP n = 1).  It is unclear 
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whether the true thermal threshold (thermal threshold determined without safety cut-off) would be 

close to this threshold value or greatly increased from this value. In both studies no differences were 

detected between treated groups, but there remains a possibility a difference may exist. While this is 

a limitation of thermal threshold testing, it is essential to maintain a safety cut-off for both repeatability 

and for the welfare of the subjects tested. The inflammation associated with these burns would likely 

reduce thermal thresholds over time. Another limitation in both studies was the absence of 

pharmacodynamic modelling of norbuprenorphine and tapentadol. In developing the model in the 

Simbadol study, the absence of this information precluded its inclusion in the final model. When 

norbuprenorphine was included, models of better fit were not produced. Ultimately the final model 

produced may be incomplete, better understanding of the impact of norbuprenorphine on the thermal 

antinociception in cats is required to fill this gap of knowledge. In a similar manner, there is no available 

information on the pharmacodynamics of tapentadol in cats. In future study a combined 

pharmacokinetic-pharmacodynamic study should be performed to better elucidate the effects of 

tapentadol. Finally in each study only six cats were used in a cross-over manner. In both studies a pre-

emptive power analysis was used to determine the appropriate number of cats used. In the Simbadol 

study, the results when comparing thermal thresholds to baseline and placebo were both similar and 

significant. This was despite the conservative statistical test using two-way ANOVA followed by 

Bonferroni’s correction. The sample size in this study therefore seemed appropriate. In the tapentadol 

study, the same statistical tests were used. Large variation in the thermal threshold data was 

recognised as limiting comparisions in the placebo group to tapentadol-treated groups. Perhaps this is 

a result of insufficient sample size, or perhaps inappropriate statistical test. It has recently been 

suggested that linear mixed model analyses may be superior to ANOVA by reducing the frequency of 

type I errors (false positives) (169). In a thermal threshold crossover study of buprenorphine in 

American Kestrels (n = 12), a linear mixed model was able to detect that time-influenced thermal 
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antinoception over the study period, producing a type I error in the study (170). While this may simply 

be due to a flaw in thermal antinociceptive testing in the species, perhaps use of a larger population or 

a linear mixed model would have provided better insight to the results seen in the tapentadol study. 

Future studies would benefit from considering these limitations. 

  



 

97 
 

Conclusion 

 Antinociceptive studies allow for the better understanding of drugs already available, 

evaluating emerging therapeutics, and future discoveries. As was discussed in the attitudes and 

prevalence of analgesic administration, improvements have been made since 2000, but limitations now 

seem to be coming from an absence of dissemination of research findings to practitioners causing a 

deficiency in understanding the pharmacology of analgesics. While discussion and further refinement 

of instruments for the assessment of acute pain remain essential. The ultimate goal of these tools is 

developing methods of more efficiently detecting painful animals so as to be able to better treat and 

prevent pain. Detection, while important, is futile in the absence of the ability to treat pain. A specific 

shortfall discussed was the absence of post-operative drug administration and at home analgesia being 

provided to cats. Both treatments investigated in this thesis allow for either prolonged analgesia 

(Simbadol) or continued oral analgesics (tapentadol). Both of which would allow cats to return home 

faster and more comfortably. While treatments in hospital remain limited for cats (compared to dogs), 

continued pain management at home remains problematic. Simbadol is already licensed in the United 

States, and its continued use perioperatively is supported by the prolonged pharmacokinetic-

pharmacodynamic modelling provided in this thesis. Tapentadol needs further refinement and study 

before it can be used as a clinical analgesic in feline medicine, but as a first evaluation to its potential 

analgesic effects in cats, the drug shows some promise. Developing this knowledge base is essential to 

the understanding of feline clinical pain.     
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