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RESUME

Lautomatisation de la génération des artefacts textuels a partir des modeles est une
étape critique dans I'Ingénierie Dirigée par les Modeles (IDM). C’est une transforma-
tion de modeles utile pour générer le code source, sérialiser les modeles dans de sto-
ckages persistents, générer les rapports ou encore la documentation. Parmi les différents
paradigmes de transformation de modele-au-texte, la génération de code basée sur les
templates (TBCGQG) est la plus utilisée en IDM. La TBCG est une technique de généra-
tion qui produit du code a partir des spécifications de haut niveau appelées remplates.
Compte tenu de la diversité des outils et des approches, il est nécessaire de classifier
et de comparer les techniques de TBCG existantes afin d’apporter un soutien approprié
aux développeurs. L’ objectif de ce mémoire est de mieux comprendre les caractéristiques
des techniques de TBCG, identifier les tendances dans la recherche, et éxaminer 1’impor-
tance du role de I'IDM par rapport a cette approche. J’évalue également I’expressivité,
la performance et la mise a I’échelle des outils associ€s selon une série de modeles. Je
propose une étude systématique de cartographie de la littérature qui décrit une intéres-
sante vue d’ensemble de la TBCG et une étude comparitive des outils de la TBCG pour
mieux guider les dévloppeurs dans leur choix. Cette étude montre que les outils basés
sur les modeles offrent plus d’expressivité tandis que les outils basés sur le code sont
les plus performants. Enfin, Xtend2 offre le meilleur compromis entre I’expressivité et
la performance.

Mots clés: Ingénierie dirigée par les modéles, Génération de code, Etude systé-

matique de cartographie, Etude comparative.



ABSTRACT

A critical step in model-driven engineering (MDE) is the automatic synthesis of a
textual artifact from models. This is a very useful model transformation to generate ap-
plication code, to serialize the model in persistent storage, generate documentation or
reports. Among the various model-to-text transformation paradigms, Template-Based
Code Generation (TBCG) 1s the most popular in MDE. TBCG is a synthesis technique
that produces code from high-level specifications, called templates. It is a popular tech-
nique in MDE given that they both emphasize abstraction and automation. Given the
diversity of tools and approaches, it is necessary to classify and compare existing TBCG
techniques to provide appropriate support to developers. The goal of this thesis is to
better understand the characteristics of TBCG techniques, identify research trends, and
assess the importance of the role of MDE in this code synthesis approach. We also eval-
uate the expressiveness, performance and scalability of the associated tools based on a
range of models that implement critical patterns. To this end, we conduct a systematic
mapping study of the literature that paints an interesting overview of TBCG and a com-
parative study on TBCG tools to better guide developers in their choices. This study
shows that model-based tools offer more expressiveness whereas code-based tools per-
formed much faster. Xtend2 offers the best compromise between the expressiveness and
the performance.

Keywords: Model-driven engineering, Code generation, Systematic mapping

study, Comparative study.
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CHAPTER 1

INTRODUCTION

1.1 Context

Model-driven engineering (MDE) has advocated the use of model-to-text transfor-
mations as a core component of its paradigm [55]. A common workflow in MDE is to
produce a program without the need of programming. Modelers first describe a domain-
specific platform-independent model. This model is refined with platform-specific con-
cepts from the target framework of the final application. The platform-specific model
is then synthesized to the source code of the program using a dedicated M2T tool [74].
These transformations are used to generate application code, serialize models in persis-
tent storage, document, visualize or explore models.

Code generation has been around since the 1950s, taking its origin in early compil-
ers [73]. Since then, software organizations have been relying on code synthesis tech-
niques in order to reduce development time and increase productivity [52]. Automat-
ically generating code is a generic approach where the same generator can be reused
to produce many different artifacts according to the varying inputs it receives. It also
provides opportunities to detect errors in the input artifact early on before the generated
code is compiled, when the output is source code.

There are many techniques to generate code, such as programmatically, using a meta-
object protocol, or aspect-oriented programming. Since the mid-1990s,
template-based code generation (TBCG) emerged as an approach requiring less effort
for the programmers to develop code generators. Templates favor reuse following the
principle of write once, produce many. The concept was heavily used in web designer

software (such as Dreamweaver) to generate web pages and Computer Aided Software



Engineering (CASE) tools to generate source code from UML diagrams. Many devel-
opment environments started to include a template mechanism in their framework such
as Microsoft Text Template Transformation Toolkit (T4) [65] for .NET and Velocity [6]

for Apache.

1.2 Problem Statement and Thesis Proposition

The software engineering research community has focused essentially on primary
studies proposing new TBCG techniques, tools and applications. Furthermore, TBCG is
a popular M2T technique in MDE given that it emphasizes abstraction and automation.
This has led to over 70 different tools developed in the past two decades. However, there
are no instructions to guide them. As a result, MDE developers are faced with a difficult
choice when selecting the most appropriate M2T tool [74].

To overcome these issues, the developers can rely on web forums dedicated to code
generation and collect the maximum information about the tools before selecting the
best fit. However, there is a high possibility of favoring misleading informations since
the reliability of the source cannot be verified. Furthermore, the developers can simply
select the most popular tool and carry out their code generation task. However, it is
possible that the selected tool is unable to satisfy the developer’s expectations.

Therefore, our proposal is to conduct a systematic mapping study of the literature in
order to understand the trends, identify the characteristics of TBCG, assess the popularity
of existing tools, and determine the influence that MDE has had on TBCG. We are
interested in various facets of TBCG, such as characterizing of the templates, of inputs
and outputs, along with the evolution of the amount of publications using TBCG over
the past 16 years. Based on this systematic literature study, we compare the nine most
popular TBCG tools found in the literature. We perform a qualitative evaluation of their

expressiveness based on typical metamodel patterns that influence the implementation



of the templates. The expressiveness of a tool is the set of language constructs that can
be used to complete a particular task natively. This is important since, to the best of our
knowledge, there are no available metrics to assess the code generation templates. We
also evaluate the performance and scalability of these tools based on a range of models

that conform to a metamodel composed by the combination of these patterns.

1.3 Contributions

The goal of this thesis is to add valuable knowledge in the field of TBCG by studying

both the literature and the tools. The contributions of this thesis are the following:

1. A systematic mapping study of the literature to paint an interesting picture about

the trends and uses of TBCG.

2. A comparative study of TBCG tools to evaluate their expressiveness power and

test their performance.

1.4 Outline

This thesis is organized as follows. In Chapter 2, we introduce the necessary back-
ground on TBCG and discuss the related work. In Chapter 3, we describe in details our
systematic mapping study of the literature. In Chapter 4, we describe our comparative
study on TBCG tools. We present the metamodel patterns we used for this study. We
report on the expressiveness of the tools in and their performance. Finally, we conclude

in Chapter 5.



CHAPTER 2

BACKGROUND AND STATE OF THE ART

In this chapter, we review the notion of code generation and introduce TBCG. We
also briefly outline MDE principles to better understand its relationship with TBCG.
Finally we discuss related work on systematic mapping studies in general and secondary

studies about code generation.

2.1 Code Generation

In this paper, we view code generation as in automatic programming [73] rather than
compilers. The underlying principle of automatic programming is that a user defines
what he expects from the program and the program should be automatically generated
by a software without any assistance by the user. This generative approach is different
from a compiler approach.

Compilers produce code executable by a computer from a specification conforming
to a programming language, whereas automatic programming transforms user specifi-
cations into code which often conforms to a programming language. Compilers have a
phase called code generation that retrieves an abstract syntax tree produced by a parser
and translates it into machine code or bytecode executable by a virtual machine. Com-
pared to code generation as in automatic programming, compilers can be regarded as
tasks or services that are incorporated in or post-positioned to code generators [49].

As Balzer [7] states, there are many advantages to code generation. The effort of the
user is reduced as he has fewer lines to write: specifications are shorter than the program
that implements them. Specifications are easier to write and to understand for a user,

given that they are closer to the application and domain concepts. Writing specifications



is less error-prone than writing the program directly, since the expert is the one who
writes the specification rather than another programmer.

These advantages are in fact the pillar principles of MDE and domain-specific mod-
eling. Floch et al. [35] observed many similarities between MDE and compilers research
and principles. Thus, it is not surprising to see that many, though not exclusively, code
generation tools came out of the MDE community. The advantages of code generation
should be contrasted with some of its limitations. For example, there are issues related
to integration of generated code with manually written code and to evolving specifica-
tions that require to re-generate the code [80]. Sometimes, relying too much on code
generators may produce an overly general solution that may not necessarily be optimal

for a specific problem.

2.2 Code Generation in the Context of MDE

MDE is a software development approach that uses abstraction to bridge the gap
between the problem space and the software implementation [80]. To bridge the gap
between the application domain and the solution domain, MDE uses models to describe
complex systems at multiple levels of abstraction, as well as automated support for trans-
forming and analyzing models. This separation allows the description of key intellectual
assets in a way that is not coupled to specific programming languages or target platforms.

Domain-specific modeling (DSM) [42] is a branch of MDE that allows models to be
manipulated at the level of abstraction of the application domain the model is intended
for, rather than at the level of computing. In DSM, domain experts can create models
that describe some computational need using abstractions and notations that match their
own domain of expertise. Thus, end-users who do not possess the skills needed to write
computer programs using traditional languages (like Java or C++) can describe their

solution in a more familiar language.



In MDE parlance, models represent abstractions of a real system, capturing some of
its essential properties. A model conforms to a metamodel, which defines the abstract
syntax and static semantics of the modeling language. This language can either be a
domain-specific language (DSL) or a general purpose language like UML. Developers
manipulate models by means of model transformation. Transformations can have differ-
ent purposes [61], such as translating, or refining models. One particular kind of model
transformation is devoted to code generation with model-to-text transformations [27].

A common workflow in MDE is to produce a program without the need of pro-
gramming [55]. Modelers first describe the high-level level system in a computation-
independent model. This is then evolved into a domain-specific platform-independent
model. This model is in turn refined with platform-specific concepts from the target
framework of the final application. The platform-specific model is then synthesized to
the source code of the program using a dedicated model-to-text transformation tool [74].
Model-to-text transformations are used to implement code, generate documentation, se-
rialize models, or visualize and explore models. We refer to [49] for a history of code

generation and an in-depth explanation of its role in MDE.

2.3 Code Generation Techniques

As briefly outlined in [49] and in [27], there are many techniques that can be used to

generate code. We briefly outline the main ones here.

Visitor based approaches consist of programmatically traversing the internal represen-
tation of the input, while relying on an API dedicated to manipulate the input and
to write the output to a text stream. This is used in [14].

Meta-programming is a language extension approach, such as using a meta-object pro-
tocol. For example, in OpenJava [82], a Java meta-program creates a Java file,

compiles it on the fly, and loads the generated program in its own run-time.



In-line generation relies on a preprocessor that generates additional code to the exist-
ing one, such as with the C++ standard template library or C macro preprocessor

instructions. An example is available in [11].

Code annotations are added in-line to existing code and is internally transformed into
more expanded code. Examples include JavaDoc and attributes in C#. This ap-

proach is used in [26].

Template based is described below.

2.4 Template-based Code Generation

The literature agrees on a general definition of model-to-text code generation [27]
and on templates. Jorges [49] identifies three components in TBCG: the data, the tem-
plate, and the output. However, there is another component that is not mentioned which
is the meta-information the generation logic of the template relies on. Therefore, we

conducted this study according to the following notion of TBCG.

Design-time input Template
Class uses <%context class%>
name:string public class <%name %> { String id; }

A

conforms to

Template engine

ol

Figure 2.1: Components of TBCG

Runtime input Output

Person

generates | public class Person { String id; }

Figure 2.1 summarizes the main concepts of TBCG. We consider TBCG as a syn-

thesis technique that uses templates in order to produce a textual artifact, such as source



code, called the output. A template is an abstract and generalized representation of the
textual output it describes. It has a static part, text fragments that appear in the output
“as 1s”. It also has a dynamic part embedded with splices of meta-code that encode the
generation logic. Templates are executed by the template engine to compute the dynamic
part and replace meta-codes by static text according to run-time input. The design-time
input defines the meta-information which the run-time input conforms to. The dynamic
part of a template relies on the design-time input to query the run-time input by filtering
the information retrieved and performing iterative expansions on it. Therefore, TBCG
relies on a design-time input that is used to define the template and a run-time input on
which the template is applied to produce the output. For example, a TBCG engine that
takes as run-time input an XML document relies on an XML schema as design-time

input. Definition 1 summarizes our definition of TBCG.

Definition 1. A synthesis technique is a TBCG if it specifies a set of templates, assumes

a design-time input, requires run-time inputs, and produces textual output.

For example, the work in [51] generates a C# API from Ecore models using Xpand.
According to Definition 1, the templates of this TBCG example are Xpand templates,
the design-time input is the metamodel of Ecore, the run-time input is an Ecore model,

and the output is a C# project file and C# classes.

2.5 Literature Reviews on Code Generation

In evidence-based software engineering [54], a systematic literature review is a sec-
ondary study that reviews primary studies with the aim of synthesizing evidence related
to a specific research question. Several forms of systematic reviews exist depending on
the depth of reviewing primary studies and on the specificities of research questions. Un-

like conventional systematic literature reviews that attempt to answer a specific question,



a systematic mapping studies (SMS) aim at classifying and performing a thematic anal-
ysis on a topic [53]. SMS is a secondary study method that has been adapted from other
disciplines to software engineering in [15] and later evolved by Petersen et al. in [69]. A
SMS is designed to provide a wide overview of a research area, establish if research evi-
dence exists on a specific topic, and provide an indication of the quantity of the evidence
specific to the domain.

Over the years, there have been many primary studies on code generation. However,
we could not find any secondary study on TBCG explicitly. Still, the following are
closely related secondary studies.

Mehmood et al. [64] performed a SMS regarding the use of aspect-oriented modeling
for code generation, which is not based on templates. They analyzed 65 papers mainly
based on three main categories: the focus area, the type of research, and the type of
contribution. The authors concluded that this synthesis technique is still immature. The
study shows that no work has been reported to use or evaluate any of the techniques
proposed.

Gurunule et al. [44] presented a comparison of aspect orientation and MDE tech-
niques to investigate how they can each be used for code generation. The authors found
that further research in these areas can lead to significant advancements in the develop-
ment of software systems. Unlike Mehmood et al. [64], they did not follow a systematic
and repeatable process.

Dominguez et al. [29] performed a systematic literature review of studies that focus
on code generation from state machine specifications. The study is based on a set of 53
papers, which have been classified into two groups: pattern-based and not pattern-based.
The authors do not take template-based approaches into consideration.

Batot et al. [10] performed a SMS on model transformations solving a concrete prob-

lem that have been published in the literature. They analyzed 82 papers based on a clas-



sification scheme that is general to any model transformation approach, which includes
model-to-text transformations. They conclude that concrete model transformations have
been pulling out from the research literature since 2009 and are being considered as
development tasks. They also found that 22% of their corpus solve concrete problems
using refinement and code synthesis techniques. Finally, they found that research in
model transformations is heading for a more stable and grounded validation.

There are other studies that attempted to classify code generation techniques. How-
ever, they did not follow a systematic and repeatable process. For example, Czarnecki et
al. [27] proposed a feature model providing a terminology to characterize model trans-
formation approaches. They distinguished two categories for model-to-text approaches:
those that are visitor-based and those that are template-based; the latter being in line with
Definition 1. The authors found that many new approaches to model-to-model transfor-
mation have been proposed recently, but relatively little experience is available to assess
their effectiveness in practical applications.

Rose et al. [74] extended the feature model of Czarnecki et al. to focus on template-
based model-to-text transformation tools. Their classification is centered exclusively on
tool-dependent features. Their feature model has been synthesized from a comparison
of six M2T tools. They identified four mandatory features and as many optional features
divided that characterize a M2T language. Like us, their goal is to help developers
when they are faced to choose between different tools. This study is close to the work
of Czarnecki in [27] but focuses only on a feature model for M2T. In our work, we
have implemented templates for specific metamodel patterns and we discuss about the

challenges and limitations and how to remedy to these for each tool.

10



2.6 Tools performance and metamodel pattern

There have also been many studies on model transformation tools performance.
However, most of them deal with other types of model transformations and do not in-
clude M2T transformations. Still, the following are closely related works.

Bergmann et al. [13] proposed a benchmark evaluation of incremental pattern match-
ing in graph transformations. They carried out various measurements to assess the per-
formance of the incremental pattern matcher of a graph transformation tool and identified
the key areas where its performance could be increased. The difference with our study
is that we evaluate TBCG tools performance without any benchmark.

The transformation tool contest papers [48, 72, 85] investigated and compared graph
transformation tools that participated in various transformation tool contests. The goal
of this type of paper is to help the reader gain an overview of the field and its tools. The
difference with our study is that we focus on the performance of M2T tools only while
in their case they investigate other model transformation tools.

Cho et al. [25] analyzed Domain Specific Modeling Language (DSML) concrete
syntax and identified their recurring problems such as the best way to design or evolve
a base metamodel if the concrete syntax is more complex. Finally they proposed three
metamodel design patterns as initial solutions to solve those problems. The main dif-
ference with our study is that we define the patterns from the point of view of the im-
plementation of the template. We focus on the potential impact that they can have in
implementing the dynamic part of the template while Cho et al.simply focus on the
construction of metamodels using design patterns and threat them as metamodel compo-

nents.
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CHAPTER 3
SYSTEMATIC MAPPING STUDY OF TBCG

We propose a systematic mapping study of the literature to paint an interesting pic-
ture about the trends and uses of TBCG. In this chapter, we describe the research methods
and the paper selection process. We also report the results of our study and the explain
their implications. Furthermore, we discuss about the role of MDE in TBCG, the use of

the associate tools and the trends in TBCG.

3.1 Research Methods

In order to analyze the topic of TBCG, we conducted a SMS following the process
defined by Petersen et al. in [69] and summarized in Figure 3.1. The definition of
research question is discussed in Section 3.1.1. The search conduction is described in
Section 3.1.2. We present the screening of papers in Section 3.1.3. The relevant papers
are obtained based on the criteria presented in Section 3.1.3.1 and Section 3.1.3.2. The
keywording using abstracts step is described in Section 3.1.4. The last step corresponds
to assigning a value to each facet of the classification scheme.

Process Steps
Definition of : Keywording using Data Extraction and
Screening of Papers :
Research Question> Conduct Search g s > Abstracts Mapping Process

I T R T R

Classification
Scheme

Review Scope All Papers Relevant Papers Systematic Map

Outcomes

Figure 3.1: The systematic mapping process we followed



3.1.1 Objectives

The objective of this study is to obtain an overview of the current research in the area
of TBCG and to characterize the different approaches that have been developed. We

defined four research questions to set the scope of this study:

1. What are the trends in template-based code generation? We are interested to

know how this technique has evolved over the years.

2. What are the characteristics of template-based code generation approaches?

We want to identify major characteristics of this techniques and their tendencies.

3. To what extent are template-based code generation tools being used? We are

interested in identifying popular tools and their uses.

4. What is the place of MDE in template-based code generation? We seek to
determine whether and how MDE has influenced TBCG.

3.1.2 Selection of Source

We delimited the scope of the search to be regular publications that mention TBCG
as at least one of the approaches used for code generation and published between 2000—
2016. Therefore, this includes publications where code generation is not the main con-
tribution. For example, Buchmann et al. [19] used TBCG to obtain ATL code while their
main focus was implementing a higher-order transformation. Given that not all publica-
tions have the term “code generation” in their title, we formulated a query that retrieves
publications based on their title, abstract, or full text (when available) mentioning “tem-

plate” and ‘“code generation”, their variations, and synonyms. We used the following

query:

templatex AND "code generatx" OR "code synthesix"
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The used query was validated with a sample of 100 pre-selected papers we knew

should be included.

3.1.3 Screening Procedure

Screening is the most crucial phase in a SMS [69]. We followed a two-stage screen-
ing procedure: automatic filtering, then title and abstract screening. In order to avoid the
exclusion of papers that should be part of the final corpus, we followed a strict screening
procedure. With four reviewers at our disposal, each article is screened by at least two
reviewers independently. Two other students and I worked on a sample of 88 papers.
When both reviewers of a paper disagree upon the inclusion or exclusion of the paper,
a physical discussion is required. If the conflict is still unresolved, an additional senior
reviewer is involved in the discussion until a consensus is reached. To determine a fair
exclusion process, a senior reviewer reviews a sample of no less than 20% of the ex-
cluded papers at the end of the screening phase, to make sure that no potential paper is

missed.

3.1.3.1 Inclusion criteria

A paper is included if it explicitly indicates the use of TBCG or if it proposes a
TBCG technique. We also include papers if the name of a TBCG tool appears in the

title, abstract, or content.

3.1.3.2 Exclusion criteria

Results from the search were first filtered automatically to discard records that were
outside the scope of this study: papers not in computer science, not in the software
engineering domain, with less than two pages of length (e.g., proceedings preface), not

peer-reviewed (e.g., white papers), not written in English, or not published between the
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years 2000 and 2016. Then, papers were excluded through manual inspection based on
the following criteria:

— No code generation. There is no code generation technique used.

— Not template-based code generation. Code generation is mentioned, but the
considered technique is not template-based according to Definition 1.

— Not a paper. This exclusion criterion spans papers that were not caught by the
automatic filtering. For example, some papers had only the abstract written in
English and the content of the paper in another language. Additionally, there were
24 papers where the full text was not accessible online.

For the first two criteria, when the abstract did not give enough details about the code

generation approach, a quick look at the full text helped clear any doubts on whether to

exclude the paper or not. Reviewers were conservative on that matter.

3.1.4 Classification Scheme

There are generally two ways to construct the classification scheme [69, 76]. One
approach consists of extracting the classification scheme by analyzing the included pa-
pers and determining the important classification properties form the abstract, keywords
or content. Alternatively, one can construct a scheme using the general knowledge of
the field. In our study, we used a hybrid approach in which we combined our general
knowledge with the information extracted from the abstracts during the screening phase.
The classification scheme is used to classify all retained papers along different facets that
are of interest in order to answer our research questions. It helps analyzing the overall
results and gives an overview of the trends and characteristics of TBCG. The facets we

classified the corpus with are the following:

Template style: We characterize the style of the templates used in code generation

approach.
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— Predefined: This template style is reserved for approaches where the template
used for code generation is defined internally to the tool. However, a subset
of the static part of the template is customizable to vary slightly the generated
output. This is, for example, the case for common CASE tools where there is
a predefined template to synthesize a class diagram into a number of program-
ming languages. Nevertheless, the user can specify what language construct to
use for association ends with a many cardinality, such as Array or ArrayList
for Java templates.

— Output-based: This style covers templates that are syntactically based on the
actual target output. In contrast with the previous style, output-based templates
offer full control on how the code is generated, both on the static and dynamic
parts. The generation logic is typically encoded in meta-code as in the example
of Figure 2.1.

— Rule-based: In this style, templates focus on computing the dynamic part with
the static part being implicit. The template lists declarative production rules that
are applied on-demand by the template engine to obtain the final target output.
For example, this is used to render the concrete textual syntax from the abstract

syntax of a model using a grammar.

Input type: This facet consists of the design-time and runtime inputs. We characterize
the language of the design-time input that is necessary to develop templates. We
also characterize the input given to the generator during the execution of a TBCG.
Generally, the run-time input is an instance that conforms to the design-time input.
— General purpose: for generic languages reusable across different domains that

are not programming languages, such as UML. Instances of a generic language
include the Ecore model of a particular class diagram.

— Domain specific: for languages targeted for a particular domain, such as the
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metamodel of a DSL. Instances of a DSL include a Simulink model.

— Schema: for structured data definitions, such as XML schema definition or
database schema. Instances of data that follows a well-defined structure include
XML.

— Programming language: for well-defined programming languages. The run-

time input consists of a source code.

Output type: We characterize the artifacts output by the code generator. A paper may
be classified in more than one of the following categories.
— Source code: for executable code conforming to a specific programming lan-
guage.
— Structured data: for code that is not executable, such as HTML.

— Natural language: when plain text is generated.

Tool: We capture the tool or language used for TBCG. If a tool is not clearly identified
in a paper or the TBCG is programmed directly, we classify the tool as unspeci-
fied. We consider a tool to be popular when it is used in at least 1% of the papers.

Otherwise, we classify it in the other category.

MDE: We determine whether the part of the solution where TBCG 1is applied in the
paper follows MDE techniques and principles. A good indication is if the design-

time input is a metamodel.

Context: We determine where TBCG falls in the overall transformation process of
the approach. We already presented a typical workflow in Section 2.2. Code
generation is never the first step unless it is standalone. Otherwise, it is either

used as an intermediate step or it is the last step of a transformation process.

Application scale: We characterize the scale of the artifact on which the TBCG ap-
proach is applied. We distinguish between large scale applications, small scale,

or no application when the code generation was not applied on any example.
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Application domain: We classify the general domain TBCG has been applied on. For

example, this includes Software engineering, Embedded systems, etc.

Orientation: We distinguish industrial papers, where at least one author is affiliated

to industry, from academic papers otherwise.

Publication type: We distinguish papers published in conference proceedings, as
journal articles, or other formats such as workshop proceedings or book col-

lections.

Venue type: We classify papers based on the where they have been published. We dis-
tinguish between general software engineering venues, venues specific to MDE,

and all other venue types.

3.2 Paper Selection

Table 3.1 summarizes the flow of information through the selection process of this

study. This section explains how we obtained the final corpus of papers.

Phase Number of papers
Collection

Engineering Village 4043
Scopus 932
SpringerLink 2671
Initial corpus 5131
Screening

Excluded during screening 4553
Included 578
Classification

Excluded during classification 99
Final corpus 481

Table 3.1: Evolution of paper corpus during the study process
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3.2.1 Paper Collection

The paper collection step was done in two phases: querying and automatic duplicates
removal. There are several online databases that index software engineering literature.
For this study, we considered three main databases to maximize coverage: ENGINEER-
ING VILLAGE !, SCOPUS 2, and SPRINGERLINK 3. The first two cover typical software
engineering editors (IEEE XPLORE, ACM DIGITAL LIBRARY, ELSEVIER). However,
from past experiences [10], they do not include all of SPRINGER publications. We used
the search string from Section 3.1.2 to retrieve all papers from these three databases.
We obtained 7 646 candidate papers that satisfy the query and the options of the search
stated in Section 3.1.3.2. We then removed automatically all duplicates using EndNote

software. This resulted in 5 131 candidate papers for the screening phase.

3.2.2 Screening

Based on the exclusion criteria stated in Section 3.1.3.2, each candidate paper was
screened by at least two reviewers to decide on its inclusion. To make the screening
phase more efficient, we used a home-made tool [76]. After all the reviewers completed
screening the papers they were assigned, the tool calculates an inter-rater agreement
coefficient. In our case, the Cohen’s Kappa coefficient was 0.813. This high value
shows that the reviewers were in almost perfect agreement.

Among the initial corpus of candidate papers, 4 556 were excluded, 551 were in-
cluded and 24 received conflicting ratings.

During the screening, the senior reviewer systematically verifies each set of 100 re-
jected papers for sanity check. A total of 7 more papers were included back hence the

rejected papers were reduced to 4 549. Almost all cases of conflicts were about a dis-

1. https://www.engineeringvillage.com/
2. https://www.scopus.com/
3. http://link.springer.com/
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agreement on whether the code generation technique of a paper was using templates or
not. These conflicts were resolved in physical meetings and 20 of them were finally
included for a total of 578 papers and 4 553 excluded.

Among the excluded papers, 52% were rejected because no code generation was
used. We were expecting such a high rate because terms such as “templates” are used
in many other fields, like biometrics. Also, many of these papers were referring to the
C++ standard template library [60], which is not about code generation. We counted
34% papers excluded because they were not using templates. Examples of such papers
are cited in Section 2.3. Also, more than a quarter of the papers were in the compilers
or embedded system domains, where programming the code generation phase is more
complex as it requires more computations compared to using a template mechanism.
Finally, 5% of the papers were considered as not a paper. In fact, this criterion was in

place to catch papers that escaped the automatic filtering from the databases.

3.2.3 Eligibility during Classification

Once the screening phase over, we thoroughly analyzed the full text of the remaining
578 papers to classify them according to our classification scheme. Doing so allowed us
to confirm that the code generation approach was effectively template-based according
to Definition 1. We encountered papers that used multiple TBCG tools: they either
compared tools or adopted different tools for different tasks. We classified each of these
papers as a single publication, but incremented the occurrence corresponding to the tools
referred to in the paper. This is the case of [32] where the authors use Velocity and XSLT
for code generation. Velocity generates Java and SQL code, while XSLT generates the
control code.

We excluded 99 additional papers. During screening, we detected situations where

the abstract suggested the implementation of TBCG, whereas the full text proved other-
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wise. In most of the cases, the meaning of TBCG differed from the description presented
in Section 2.4. As shown in [77] the terms template-based and generation are used in
the context of networking and distributed systems. We also encountered circumstances
where the tool mentioned in the abstract requires the explicit use of another component
to be considered as TBCG, such as Simulink TLC, as in [67].

The final corpus considered for this study contains 481 papers and it is available in

Appendix II.

3.3 Evolution of TBCG

We start with a thorough analysis of the trends in TBCG in order to answer the first

research question.

3.3.1 General trend

Figure 3.2 reports the number of papers per year, averaging around 28. The general
trend indicates that the number of publications with at least one template-based code
generation method started increasing in 2002 to reach a first local maximum in 2005
and then remained relatively constant until 2012. This increase coincides with the early
stages of MDE and the first edition of the MODELS conference, previous called UML
conference. This is a typical trend where a research community gets carried away by the
enthusiasm of a new potentially interesting domain, which leads to more publications.
However, this does not represent the most prolific period for TBCG. In fact, in 2013 we
notice a significant peak with 2.4 times the average numbers of publications observed in
the previous years. Figure 3.2 then shows a sudden decrease in 2015.

Resorting to statistical methods, the high coefficient of variability and modified
Thompson Tau test indicate that 2013 and 2015 are outliers in the range 2005-2016,

where the average is 37 papers per year. The sudden isolated peak in 2013 is the result
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Figure 3.2: Evolution of papers in the corpus

of a special event or popularity of TBCG. The following decrease in the amount of pa-
pers published should not be interpreted as a decline in interest in TBCG, but that some
event happened around 2013 which boosted publications, and then it went back to the
steady rate of publication as previous years. In fact, in 2016 the standard deviation is

above the average.

3.3.2 Publications and venues

We analyzed the papers based on the type of publication and the venue of their publi-
cation. MDE venues account for only 22% of the publications, so are software engineer-
ing venues, while the majority (56%) were published in other venues. Table 3.II shows
the most popular venues that have at least five papers from the final corpus. These top
venues account for just more than a quarter of the total number of publications. Among

them, MDE venues account for 60% of the papers. MODELS #, SOSYM, and ECMFA ?

4. We grouped the UML conference with MODELS.
5. We grouped the ECMDA-FA conference with ECMFA.
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are the three most popular venues with a total of 71 publications between them. This
is very significant given that the average is only 1.67 paper per venue with a standard
deviation of 2.63. Also, 43% of venues had only one paper using TBCG, which is the
case for most of the other venues.

The peak in 2013 was mainly influenced by MDE and software engineering venues.
However the drop in 2015 is the result of an accumulation of the small variations among
the other venues. Since 2014, MDE venues account for 10—12 papers per year, while
only 67 in software engineering.

As for the publication type, conference publications have been dominating at 64%.
Journal article account for 24% of all papers. Interestingly, we notice a steady increase

in journal articles, reaching a maximum of 15 in 2016.

3.4 Characteristics of Template-Based Code Generation

We examine the characteristics of TBCG using the classification scheme presented

in Section 3.1.4.

3.4.1 Template style

4%
72% 24%
Output-based Predefined Rule-based

Figure 3.3: Distribution of template style facet

As the stacked bar chart in Figure 3.3 illustrates, the vast majority of the publications
follow the output-based style. This consists of papers like [28], where Xpand is used

to generate workflow code used to automate modeling tools. There, it is the final output
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target text that drives the development of the template. This high score is expected since
output-based style is the original template style for TBCG as depicted in Figure 3.4. This
style has always been the most popular style since 2000.

The predefined style is the second most popular. Most of these papers generate code
using a CASE tool, such as [39] that uses Rhapsody to generate code to map UML2
semantics to Java code with respect to association ends. Apart from CASE Tools, we
also classified papers like [84] as predefined style since the output code is already fixed
as HTML and the programmer uses the tags to change some values based on the model.
There is no other action that can be performed to further customize the final code. Each
year, around 28% of the papers were using the predefined style, except for a peak of
39% in 2005, given the popularity of CASE tools then. We found 19 publications that
used rule-based style templates. This includes papers like [45] which generates Java
code with Stratego from a DSL. A possible explanation of such a low score is that this is
the most difficult template style to implement. It had a maximum of two papers per year

throughout the study period.

3.4.2 Input type

General purpose languages account for almost half of the design-time input of the
publications, as depicted in Figure 3.5. UML (class) diagrams, which are used as meta-
models for code generation, are the most used for 87% of these papers as in [28] where
a class diagram is provided an design-time input to generate workflow. Other general
purpose languages that were used are, for example, the architecture analysis and design
language (AADL) [18] and feature diagrams [20]. The schema category comes second
with 21% of the papers. For example, a database schema is used as input at design-
time in [59] to generate Java for a system that demonstrates that template can improve

software development. Also, an XML schema is used in [41] as design-time input to
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48% 2%  20% .

General purpose Schema
Domain specific ® Programming Language

Figure 3.5: Design-time input distribution

produce C programs in order to implement an approach that can efficiently support all
the configuration options of an application in embedded systems. DSLs are almost at
par with schemata. They have been gaining popularity and gradually reducing the gap
with general purpose languages. For example in [21], a custom language is given as
the design input in order to generate C and C++ to develop a TBCG approach dedicated
to real-time systems. The least popular design-time input type is programming lan-
guage. This includes papers like [34] where T4 is used to generate hardware description
(VHDL) code for configurable hardware. In this case, the input is another program on
which the template depends.

Over the years, the general-purpose category has dominated the input type facet,
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Figure 3.6: Design-time input evolution

as depicted in Figure 3.6. 2003 and 2006 were the only exceptions where schema ob-
tained slightly more publications. We also notice a shift from schema to domain-specific
design-time input types. Domain-specific input started increasing in 2009 but never
reached the same level as general purpose. Programming language input maintained a
constant level, with an average of 1% per year. Interestingly, in 2011, there were more
programming languages used than DSLs.

Run-time input follows the same trend as design-time input. This is expected since

run-time input is an instance of design-time input.

3.4.3 Output type

Figure 3.7 shows the distribution of output type facet. An overwhelming majority
of the papers use TBCG to generate source code. This includes papers like [24] where

Java code is generated an adaptable access control tool for electronic medical records.
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Figure 3.7: Distribution of output type facet

Java and C are the most targeted programming languages with respectively 69% and
19% of the time. Writing a program manually often requires proved abilities especially
with system and hardware languages, such as VHDL [17]. This is why 10% of these
papers generate low level source codes. Generation of structured data includes TBCG
of mainly XML and HTML files. For example [36] produces both HTML and XML as
parts of the web component to ease regression testing. Interestingly, we were able to find
13 papers that generate natural language text (in English). For example in [79], the
authors present an automatic technique for identifying code fragments that implement
high level abstractions of actions and expressing them as a natural language description.
In addition, we found that around 4% of the papers generate combinations of at least two
output types. This includes papers such as [86] that generate both C# and HTML from a
domain-specific model and [28] that produce Java as well as natural language text for a
system that provides workflow and automation tools for modeling.

Structured data and natural language output remained constant over the years, unlike

source code which follows the general trend.

3.4.4 Application scale

As depicted in Figure 3.8, most papers applied TBCG on large scale examples. This
result indicates that TBCG is a technique which scales with larger amounts of data.

This includes papers like [56] that uses Acceleo to generate hundreds of lines of aspect-
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Figure 3.8: Distribution of application scale facet.

oriented programming code. Small scale obtains 32% of the papers. This is commonly
found in research papers that only need a small and simple example to illustrate their
solution. This is the case in [47] in which a small concocted example shows the gener-
ation process with the Epsilon Generation Language (EGL) [57]. No application was
used in 5% of the publications. This includes papers like [31] where authors just men-
tion that code synthesis is performed using a tool named Mako-template. Even though
the number of publications without an actual application is very low, this demonstrates
that some authors have still not adopted good practice to show an example of the imple-
mentation. This is important, especially when the TBCG approach is performed with a
newly developed tool.

While large-scale applications follow the general trend of papers, the other two cat-

egories remained constant over the years.

3.4.5 Context

68% 17% 15%

Standalone Last Intermediate

Figure 3.9: Distribution of context facet.
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The distribution of context facet is presented in Figure 3.9. TBCG was used most of
the time standalone, such as in [84]. The other two classes last and intermediate obtain
respectively 18% and 15% of the papers. As an example, TBCG is an intermediate step
in [79] where the generated algorithm is given as one of the inputs of an extraction task.
TBCG is the last step of a process in [37] that starts with the execution of the various
tasks of an integration system and ends with the generation of the final source code.
Most papers only focus on the code generation part but this may have been a part of a

bigger project.

3.4.6 Orientation

A quarter (24%) of the papers in the corpus are authored by a researcher from indus-
try. The remaining 76% are written only by academics. This is a typical distribution
since industrials tend to not publish their work. This result shows that TBCG is used in
industry as in [51]. Industry oriented papers have gradually increased since 2003 until

they reached a peak in 2013.

3.4.7 Application domain

The tree map in Figure 3.10 highlights the fact that TBCG is used in many differ-
ent areas. Software engineering obtains more than half of the papers with 55% of the
publications. We have grouped in this category other related areas like ontologies, infor-
mation systems or software product lines. This is expected given that the goal of TBCG
is to synthesize software applications. For example, the work in [12] uses the Rational
CASE tool to generate Java programs in order to implement an approach that transforms
UML state machine to behavioral code. The next category is embedded systems which
obtains 13% of papers. Embedded systems often require low level hardware code diffi-

cult to write. Some even consider code generation to VHDL as a compilation rather than
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automatic programming. In this category, we found papers like [30] in which Velocity
is used to produce Verilog code to increase the speed of simulation. Web technology
related application domains account for 8% of the papers. It consists of papers like [75]
where the authors worked to enhance the development dynamic web sites. Networking
obtains 4% of the papers, such as [22] where code is generated for a telephony service
network. Compiler obtains 1% of the papers, such as [63] where a C code is gener-
ated and optimized for an Intel C compiler. It is interesting to note that several papers
were applied in domains such as bio-medicine [70], artificial intelligence [37], and
graphics [71].

We combined application domains with a single paper into the other category. This
regroups domains such as agronomy, education, and finance. It is important to mention
that the domain discussed in this category corresponds to the domain of application of

TBCG employed, which differs from the publication venue.

3.5 Relations between Characteristics

To further characterize the trends observed in Section 3.4, we identified significant

and interesting relations between the different facets of the classification scheme.

3.5.1 Statistical correlations

A Shapiro-Wilk test of each category determined that the none of them are normally
distributed. Therefore, we opted for the Spearman two-tailed test of non-parametric
correlations with a significance value of 0.05 to identify correlations between the trends
of each category. The only significantly strong correlations we found statistically are
between the two input types, and between MDE and input type.

With no surprise, the correlation between run-time and design time input is the

strongest among all, with a correlation coefficient of 0.944 and a p-value of less than
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0.001. This concurs with the results found in Section 3.4.2. An example is when the
design-time input is UML, the run-time input is always a UML diagram as in [70]. Such
a strong relationship is also noticeable in [40] with programming languages and source
code, as well as in [37] when a schema design is used for structured data. As a result, all
run-time input categories are correlated to the same categories as for design-time input.
We will therefore treat these two facets together as input type.

There is a strong correlation of coefficient of 0.738 and a p-value of less than 0.001
between input type and MDE. As expected, more than 90% of the papers using general

purpose and domain specific inputs are follow the MDE approach.

3.5.2 Other interesting relations

We also found weak but statistically significant correlations between the remaining

facets. We discuss the result here.

3.5.2.1 Template style

Figure 3.11 shows the relationship between template style, design-time input, and
output types. We found that for the predefined templates, there are twice as many papers
that use schema input than domain specific. However, for output-based, domain specific
inputs are used slightly more often. We also notice that general purpose input is never
used with rule-based templates. The output type follows the same general distribution
regardless of the template style.

We found no rule-based style approach that has validated the TBCG component in
their paper. User studies and formal validations were only performed on approaches
using output-based templates.

All rule-based style approaches have included a sample application. Meanwhile, the

proportion of small scale was twice more important for predefined templates (51%) then
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Figure 3.11: Relation between template style (vertical) and input/output types (horizon-
tal)

for output-based (27%).

We found that popular tools were used twice more often on output-based templates
(58%) than on predefined templates (23%). Rule-based templates never employed a tool
that satisfied our popularity threshold, but used other tools such as Stratego.

We found that all papers using a rule-based style template do not follow an MDE ap-
proach. On the contrary, 70% of the output-based style papers and 56% of the predefined
ones follow an MDE approach.

We noted that regardless of the template style, TBCG is used in an intermediate step
or at the last step equally often.

Finally, we found that for each template style, the number of papers authored by an

industry researcher fluctuated between 22-30%.
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3.5.2.2 Input type
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Figure 3.12: Relation between output (vertical) and design-time input (horizontal) types
showing the number of papers in each intersection

The bubble chart in Figure 3.12 illustrates the tendencies between input and output
types. It is clear that source code is the dominant generated artifact regardless of the
input type. Source code is more often generated from general purpose and domain spe-
cific inputs than from schema and programming languages. Also, the largest portion of
structured data is generated from a schema input. Finally, the most generated natural
language text is when source code is provided as input.

Moving on to input type and application scale, we found that small scales are used
40% of the time when the input is a programming language. The number of papers with

no sample application is very low (5%) regardless of the template style. Finally, 74%
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of papers using large scale applications use a domain specific input, which is slightly
higher than those using a general purpose input with 71%.

Next, when we compared input type to validation, we found that no paper using
a DSL or a programming language used any formal method of validation. 22% of the
papers using a DSL as input used a benchmark to validate their approach, which is higher
than the 19% of the papers using general purpose languages. Also, we found that 77%

of the papers using a general purpose language as input did not validate their approach.

3.5.2.3 Output type

As we compared output type to orientation, we found that industrials generate slightly
more source code than academics: 89% vs. 80%. However, academics generate more
structured data and natural language than industrials: 18% vs. 6% and 3% vs. 1%

respectively.

3.5.2.4 Application scale

We found that 65% of the papers without application are from the academy. Between
application scale and tools, we found that 74% of the papers that make use of a popular
tool used large scale application to illustrate their approach. Also, 62% of the papers
using unpopular tools ¢ use large scale applications. Small scale is likely to be used in

unpopular tools rather than popular tools.

3.6 Template-based Code Generation Tools

Figure 3.13 shows that half of the papers used a popular TBCG tool, whereas the

other half used less popular tools (the other category), did not mention any TBCG tool,

6. Refers to the union of other and unspecified categories of the tool facet.
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Figure 3.13: Tools categories

or implemented the code generation directly for the purpose of the paper. We also see

that more than half of the popular tools do not follow MDE approaches.
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3.6.1 Popular tools
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Figure 3.14: Popular tools

Figure 3.14 shows the distribution of popular tools used in at least 1% of the papers,
1.e., five papers. Acceleo and Xpand are the most popular with respectively 16% and
15%of the papers using them. Their popularity is probably due to their simple syntax
and ease of use [43] and the fact that they are MDE tools [51]. They both have an
OCL-like language for the dynamic part and rely on a metamodel specified in Ecore as
design-time input.

EGL also has a structure similar to the other model-based tools. It is natively inte-
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grated with languages from the Epsilon family, thus relies on the Epsilon Object Lan-
guage for its dynamic part. MOFScript is another popular model-based tool that only
differs in syntax from the others. Xtend?2 is the least used popular model-based tool. It
is both an advanced form of Xpand and a simplified syntactical version of Java.

XSLT is the third most popular tool used. It is suitable for XML documents only.
Some use it for models represented in their XMI format, as it is the case in [3]. XSLT
follows the template and filtering strategy. It matches each tag of the input document
and applies the corresponding template.

JET [58] and Velocity [30] are used as often as each other on top of being quite
similar. The main difference is that JET uses an underlying programming language
(Java) for the dynamic part. In JET, templates are used to help developers generate a
Java class that implements the code generation.

StringTemplate [4] has its own template structure. It can be embedded into a Java
code where strings to be output are defined using templates. Note that all the tools
mentioned above use an output-based template style.

The most popular CASE tools for TBCG are Fujaba [23], Rational [16], and Rhap-
sody [8]. One of the features they offer is to generate different target languages from
individual UML elements. All CASE tools (even counting the other category) have been
used in a total of 39 papers, which puts them at par with Xpand. CASE tools are mostly
popular for design activities; code generation is only one of their many features. CASE
tools have a predefined template style.

Simulink TLC is the only rule-based tool among the most popular ones. As a rule-
based approach, it has a different structure compared to the above mentioned tools. Its
main difference is that the developer writes the directives to be followed by Simulink in
order to render the final C code from S-functions.

We notice that the most popular tools are evenly distributed between model-based
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tools (Acceleo, Xpand) and code-based tools (JET, XSLT). Surprisingly, XSLT, which
has been around the longest, is less popular than Xpand. This is undoubtedly explained

by the advantages that MDE has to offer [7, 49].

3.6.2 Unspecified and other tools

As depicted in Figure 3.13, 27% of the papers did not specify the tool that was used,
as in [38] where the authors introduce the concept of a meta-framework to resolve issues
involved in extending the life of applications. Furthermore, 24% of the papers used
less popular tools, present in less than five papers, such as T4 [34] and Cheetah [63], a
python powered template mainly used for web developing. Like JET, Cheetah templates
generate Python classes, while T4 is integrated with .NET technology. Some CASE tools
were also in this category, such as AndroMDA [66]. Other examples of less popular tools
are Groovy template [36], Meta-Aspect-J [5], and Jinja2 [46]. The fact that new or less
popular tools are still abundantly used suggests that research in TBCG is still active with

new tools being developed or evolved.

3.6.3 Trends of tools used

Each one of these tools had a different evolution over the years. Unspecified tools
were prevailing before 2004 and then kept a constant rate of usage until a drop since
2014. We notice a similar trend for CASE tools that were the most popular in 2005
before decreasing until 2009. They only appear in at most three papers per year after
2010. The use of the most popular tool, Xpand, gradually increased since 2005 to reach
the peak in 2013 before decreasing. The other category maintained an increasing trend
until 2014. Yet, a few other popular tools appeared later on. For example, EGL started
appearing in 2008 and had its peak in 2013. Acceleo appeared a year later and was the

most popular TBCG tool in 2013-2014. Finally, MOFScript had no more than a paper
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per year since 2005. StringTemplate and T4 were used scarcely since 2006 and 2009

respectively.

3.6.4 Characteristics of tools

We have also analyzed each popular tool with respect to the characteristics presented
in Section 3.4. As mentioned earlier, most of the popular tools implement output-based
template technique except the CASE tools which are designed following the predefined
style.

Tools such as Acceleo, Xpand, EGL, MOFScript and 97% of the CASE tools papers
are only used based on an MDE approach, given that they were created by this commu-
nity. Nevertheless, there are tools that were never used with MDE principles, like T4.
Such tools can handle a program code or a schema as metamodel but have no internal
support for modeling languages. Moreover, the programmer has to write his own stream
reader to parse the input, but they allow for a broader range of artifacts as inputs that do
not have to be modeled explicitly. A few code-based tools provide internal support for
model-based approaches. For instance, Velocity, XSLT, and StringTemplate can handle
both UML and programmed metamodel as design-time input.

A surprising result we found is that EGL is the only MDE tool that has its papers
mostly published in MDE venues like SOSYM, MODELS, and ECMFA. All the other
tools are mostly published in other venues like ICSSA, whereas software engineering
venues, like ASE or ICSE, and MDE venues account for 26-33% of the papers for each
of the rest of the MDE tools.

CASE tools, MOFScript, Velocity, and Simulink TLC mostly generate program
code. The latter is always used in the domain of embedded systems. Papers that use
StringTemplate do not include any validation process, so is Velocity in 93% of the pa-

pers using it. XSLT has been only used to generate structured data as anticipated.
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Other tools are the most used TBCG in the industry. This is because the tool is often
internal to the company [ID:208]. Among the most popular tools, Xpand is the most in

the industry.

3.7 MDE and Template-based Code Generation

Overall, 64% of the publications followed MDE techniques and principles. For ex-
ample in [83], the authors propose a simulation environment with an architecture that
aims at integrating tools for modeling, simulation, analysis, and collaboration. As ex-
pected, most of the publications using output-based and predefined techniques are clas-
sified as model-based papers. The remaining 36% of the publications did not use MDE.
This includes all papers that use a rule-based template style as reported in Section 3.5.
For example, the authors in [20] developed a system that handles the implementation of
dependable applications and offers a better certification process for the fault-tolerance

mechanisms.
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Figure 3.15: Evolution of the MDE facet
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As Figure 3.15 shows, the evolution of the MDE category reveals that model-based
approach started overpassing code-based techniques in 2005, except for 2006. It in-
creased to reach a peak in 2013 and then started decreasing as the general trend of the
corpus. Overall, model-based techniques for TBCG have been dominating other tech-
niques in the past 12 years.

We also analyzed the classification of only MDE papers with respect to the charac-
teristics presented in Section 3.1. We only focus here on facets with different results
compared to the general trend of papers. We found that only half of the total number
of papers using unspecified and other tools are model-based papers. We only found one
paper that uses a programming language as design-time input with MDE [33]. This
analysis also shows that the year 2005 clearly marked the shift from schema to domain-
specific design-time inputs, as witnessed in Section 3.4.2. Thus after general purpose,
which obtains 69% of the publications, domain specific accounts for a better score of
26%, while schema obtains only 4%. With respect to the run-time category, the use of
domain-specific models increased to reach a peak in 2013. As expected, no program
code is used for MDE papers, because MDE typically does not consider them as models,
unless a metamodel of the programming language is used.

Interestingly, MDE venues are only the second most popular after other venues for
MDE approaches. Finally, MDE journal papers maintained a linear increase over the
years, while MDE conference papers had a heterogeneous evolution similar to the gen-

eral trend of papers.
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3.8 Discussion

3.8.1 RQ1: What are the trends in TBCG?

The statistical results from this significantly large sample of papers clearly suggest
that TBCG has received sufficient attention from the research community. The commu-
nity has maintained a production rate in-line with the last 11 years average, especially
with a constant rate of appearance in journal articles. The only exceptions were a sig-
nificant boost in 2013 and a dip in 2015. The lack of retention of papers appearing in
non MDE may indicate that TBCG is now applied in development projects rather than
being a critical research problem to solve. Also, conference papers as well as venues out-
side MDE and software engineering had a significant impact on the evolution of TBCG.
Given that TBCG seems to have reached a steady publication rate since 2005, we can

expect contributions from the research community to continue in that trend.

3.8.2 RQ2: What are the characteristics of TBCG approaches?

Our classification scheme constitutes the main source to answer this question. The
results clearly indicate the preferences the research community has regarding TBCG.
Output-based templates have always been the most popular style from the beginning.
Nevertheless, there have been some attempts to propose other template styles, like the
rule-based style, but they did not catch on. Because of its simplicity to use, the pre-
defined style is probably still popular in practice, but it is less mentioned in research
papers. TBCG has been used to synthesize a variety of application code or documents.
As expected, the study shows that high-level language inputs have prevailed over any
other type. Specifically for MDE approaches to TBCG, the input to transform is mov-
ing from general purpose to domain-specific models. Academic researchers have con-

tributed most, as expected with a literature review, but we found that industry is actively
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and continuously using TBCG as well. The study also shows that the community is
moving from large-scale applications to smaller-sized examples in research papers. This
concurs with the level of maturity of this synthesis approach. The study confirms that
the community uses TBCG to generate mainly source code. This trend is set to continue
since the automation of computerized tasks is continuing to gain ground in all fields.
Finally, TBCG has been implemented in many domains, software engineering and em-
bedded systems being the most popular, but also unexpectedly in unrelated domains,

such as bio-medicine and finance.

3.8.3 RQ3: To what extent are TBCG tools being used?

In this study, we discovered a total of 77 different tools for TBCG. Many studies
implemented code generation with a custom-made tool that was never or seldom reused.
This indicates that the development of new tools is still very active. MDE tools are the
most popular. Since the research community has favored output-based template style,
this has particularly influenced the tools implementation. This template style allows for
more fine-grained customization of the synthesis logic which seems to be what users
have favored. This particular aspect is also influencing the expansion of TBCG into
industry. Well-known tools like Acceleo, Xpand and Velocity are moving from being
simple research material to effective development resources in industry. Finally, the
study shows that there has been a shift from CASE tools to output-based tools since

2005.

3.8.4 RQ4: What is the place of MDE in TBCG?

All this analysis clearly concludes that the advent of MDE has been driving TBCG
research. In fact, MDE has led to increase the average number of publications by a factor

of four. There are many advantages to code generation, such as reduced development

44



effort, easier to write and understand domain/application concepts and less error-prone
[7]. These are, in fact, the pillar principles of MDE and domain-specific modeling [52].
Thus, it is not surprising to see that many, though not exclusively, code generation tools
came out from the MDE community. As TBCG became a commonplace in general, the
research in this area is now mostly conducted by the MDE community. Furthermore,
MDE has brought very popular tools that have encountered a great success, and they are
also contributing to the expansion of TBCG across industry. It is important to mention
that the MDE community publishes in specific venues like MODELS, SOSYM, or ECMFA
unlike other research communities where the venues are very diversified. This resulted

in three MDE venues at the top of the ranking.

3.9 Threats to validity

The results presented in this systematic mapping study have depended on many fac-

tors that could potentially limit the study.

3.9.1 Construction validity

Threats to construction validity deals with the problems related to the design of the
research method and especially to identifying relevant primary studies.

In a strict sense, our findings are valid only for our sample that we collected from
2000-2016. This leads to determine whether the primary studies used in our survey
are a good representation of the whole population. From Figure 3.2, we can observe
that our sample can be attributed as a representative sample of the whole population. In
particular, the average number of identified primary studies per year is 28 with a standard
deviation of 15.76. A more systematic selection process would have been difficult to
be exhaustive about TBCG. We selected three of the major online databases. These

databases are complementary and we are confident that they index a maximum number
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of relevant publications. We chose to obtain the best possible coverage at the cost of
duplications.

Another potential limitation is the search query. It is difficult to encode a query that
is restrictive enough to discard unrelated publications but at the same time retrieves all
the relevant ones. In order to obtain a satisfactory balance, we included synonyms and
captured possible declinations. Our search query could suggest a restriction of the type
of output. However, the size of the final corpus we classified is about ten times larger
than other SMS related to code generation (see Section 2.5). We are therefore confident
that the final corpus is a representative subset of all relevant publications on TBCG.

Finally, given that we obtained a sufficiently large final corpus for typical SMS, we
did not perform snowballing which may have resulted in collecting additional papers

omitted by the search engines.

3.9.1.1 Internal validity

A potential limitation is related to data extraction. It is difficult to extract data from
relevant publications, especially when the quality of the paper is low, when code gen-
eration is not the primary contribution of the paper, or when critical information for the
classification is not directly available in the paper. For example in [62], the authors only
mention the name of the tool used to generate the code. In order to mitigate this threat,
we had to resort to searching for additional information about the tool: reading other
publications that use the tool, traversing the website of the tool, installing the tool, or
discussing with the tools experts.

Another possible threat is the screening of papers based on inclusion and exclusion
criteria that we defined before the study was conducted. During this process, we ex-
amined only the title, the abstract. Therefore, there is a probability that we excluded

relevant publications such as [22], that do not include any TBCG terms. In order to mit-
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igate this threat, whenever we were unsure whether a publication should be excluded or
not we conservatively opted to include it. However, during classification when reading

the whole content of the paper, we may still have excluded it.

3.10 External validity

External threats to validity cope with problems that might arise during conclusion
generalization. The results we obtained are based on TBCG only. Even though our clas-
sification scheme includes facets like validation, orientation, application domain, that
are not related to the area, we followed a topic based classification. The core charac-
teristics of our study are strictly related to this particular code synthesis technique. We
have defined characteristics like template style and the two levels of inputs that we be-
lieve are exclusive to TBCG. Therefore, the results cannot be generalized to other code

generation techniques mentioned in Section 2.3.

3.10.0.2 Conclusion validity

Threats to conclusion validity (or reliability) deal with problems that might arise
when deriving conclusions and whether the SMS can be repeated. Our study is based on
a large number of primary studies. This helps us mitigate the potential threats related to
the conclusions of our study. A missing paper or a wrongly classified paper would have
a very low impact on the statistics compared to a smaller number of primary studies. In
addition, as a senior reviewer did a sanity check on the rejected papers, we are confident
that we did not miss a significant number of papers. Hence, the chances for wrong
conclusions are small. Replication of this study can be achieved as we provided all the
details of our research method in Section 3.1. Also, our study follows the methodology

described in [69].
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CHAPTER 4

COMPARISON OF THE EXPRESSIVENESS AND PERFORMANCE OF
TBCG TOOLS

In this chapter, we compare the expressiveness power and performance of the nine
most popular tools spanning the different technological approaches. We also evaluate the
expressiveness based on common metamodel patterns and evaluate the performance on
a range of models that conform to a metamodel composed by the combination of these

patterns.

4.1 Metamodel patterns for template implementation

The degree of complexity of a template lies in the implementation of its dynamic
part. Templates are defined based on the design-time input: the schema of the input
or metamodel for model-based tools. To evaluate the expressiveness of TBCG tools,
we identify patterns which are common structures found in metamodels that drive the
implementation of the dynamic part of the template. We present each pattern in its
simplest generalized form of occurrence. Note that their actual use in a metamodel
may rely on one of its variants. Patterns can be combined arbitrarily to make up more
complex structures. They are described in UML class diagram notation augmented with
an annotation to identify variants.

To identify these patterns, we analyzed a plethora of metamodels that were used for
a template-based model-to-text transformation. We investigated metamodel reposito-
ries, such as the metamodel zoo from AtlanMod [2] and ReMoDD [ReM], as well as
known metamodel design patterns [25]. Additionally, we analyzed the systematic map-

ping study described in Chapter 3. We also based ourselves on industrial experiences
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for generating code for web applications and reporting from large metamodels of legacy
code comprising nearly 1 000 elements each [78].

The following list of patterns is meant to be minimal, not complete. All template
code snippets in this section are based on a common running example of invoice produc-

tion, for which the metamodel is depicted in Figure 4.5.

4.1.1 Pattern 1: Navigation

... elements

Context j¢&———| Target
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Figure 4.1: Navigation pattern

The simplest metamodel pattern is a navigable relation between two classes as de-
picted in Figure 4.1. From a template implementation point of view, this basic pattern is
often used to access the data of a target class related to the class of the current Context
class. For example, Listing 4.1 shows an XSLT template accessing the attributes of the

class Metadata (lines 3-5) from the Invoice class (line 2).

<xsl:template match="Model">

<xsl:for-each select="invoice">

Transaction date: <xsl:value-of select="meta/Q@date"/>
Vendor name: <xsl:value-of select="meta/@cashier"/>
</xsl:for-each>

</xsl:template>

Listing 4.1: XSLT template to access metadata of an invoice

The different variants of this pattern are circled with dotted lines. One variant de-
pends on the cardinality of the association end: either one or a list of target objects is ac-
cessible from the Context class. This influences the syntax of the access to the Target

class. Some TBCG tools treat associations (references) and compositions (containments)
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differently. Hence another variant is based on the type of the relation. Composing this

pattern with itself allows to access multiple target classes from the Context class.

4.1.2 Pattern 2: Variable dependency

Context |i elements | _Target
X ooy

I
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I
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Figure 4.2: Variable dependency pattern

Considering the pattern in Figure 4.2, the implementation of a template often requires
the developer to output a value that depends on variables present in other contexts. Here,
the expressiveness of the dedicated language for the dynamic part would have an impact
on the way the template is written. It is often needed to rely on external components
such as other programming languages when the dedicated language for the dynamic
part is limited. Listing 4.2 shows how calculations are implemented in Velocity. First,
the global variables are initialized (lines 1-2). Then we calculate the subtotal value
by adding the price value for each of the PricedItemn class instances (line 7). The

printed total price is calculated based on the taxRate (lines 9-10).

1 #set ($Stotal = 0)

2 #set ($Sd = "$")

3 #foreach ($item in S$invoice.items)
4 #set (Stotal = Stotal + S$item.price)
5 Name: S$item.name

6 Type: S$item.type

7 Price: S$item.price $d #end

§ Tax: $invoice.taxRate %

9 #set (Stotal = Stotal * (1 + $invoices.taxRate / 100)

0 Total: S$total $d

Listing 4.2: Velocity template to compute the total of the invoice
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There are three variants of this pattern. One variant when the value depends on
an attribute present in the same Context class. Another variant is when parts of the
computation require data from one. The last variant is when these parts require more
related classes.

The main difference between the first two patterns is that Pattern 4.1.2 is about the
computation of values that depend on variables, whereas Pattern 4.1.1 is simply used to

output the data of a class that is not in the current Context class.

4.1.3 Pattern 3: Polymorphism
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Figure 4.3: Polymorphism pattern

The presence of an inheritance relation between two classes in the metamodel is
an attractive opportunity to reuse parts of a template and hence avoid code duplica-
tion. Given the pattern in Figure 4.3, the developer can implement the template for an
output based on the super class and only implement what varies for the subclass. For
example, Listing 4.3 shows an Acceleo template that implements polymorphism. The
generateItems template is called (line 3) from the Invoice context (line 2). The

template engine then executes the appropriate template based on the argument type (lines

I [template public generatelInvoice (invoice : Invoice, model : Model)]
2 [for (item : Item | invoice.items) ]
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[generateltems (item) /]
[/for]

[/template]

[template public generateltems (elements :

Name: [elements.name/]
Type: [elements.type/]

[/template]

[template public generateltems (elements :

Name: [elements.name/]
Type: [elements.type/]
Price:[elements.price/]$

[/template]

Item) ]

PricedItem) ]

Listing 4.3: Acceleo template for polymorphism

A variant of this pattern is when the super class is abstract: some tools do not allow

to define a template in the context of an abstract type.

4.1.4 Pattern 4: Recursion
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Figure 4.4: Recursion pattern

This pattern consists of a recursive relation of a class. From the usability point of

view, the developer can reapply the template on objects of the same type in a transparent

way. It requires the template definition block to be encapsulated within the Context

class. The source domain describes the way in which a language allows the specification

of the elements of the source model(s) on which a template will be executed [74]. It will

have an impact on how the developer writes the template.
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Listing 4.4 shows an example of recursion in Xtend2. The getCategoryLevel
definition block is called for the first time (line 2) to find the appropriate level of the
category of the invoice. Lines 11-13 depth-first searches recursively the corresponding

category among the descendants of the category reference.

def generatelnvoice (Invoice invoice, Model model) {

rrr

«getCategoryLevel (model.rootCat, invoice.category, 0, sum, invoice.taxRate)»

rrr

}

def getCategory (Category catRef, Category cat, int index, long total, int taxRate) {
e

«IF cat.name.equals (catRef.name)»

«IF index > 30»

Discount: 15%

Tax: «taxRate»%

Total: «total % (1 + taxRate / 100)»$

«ELSE»
Discount: 10%

Tax: «taxRate»%

Total: «total * (1 + taxRate / 100)»$

«ENDIE»

«ENDIE»

«FOR subCat : catRef.subs»

«generateCategory (subCat, cat, index+1l, total, taxRate)»
«ENDE'OR»

rrr

}

Listing 4.4: Xtend2 code for recursion

The only variant of this pattern is the cardinality of the association end which influ-

ences the traversal strategy (depth-first vs. breadth-first).
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4.1.5 Combination of patterns

All the metamodels we analyzed (c.f. Section 4.1) exhibit combinations of instances
of these four patterns.. For example, the polymorphism pattern can be combined with the
navigation pattern to form a metamodel containing a super class that contains a subclass
that is linked to another class through a navigable relation. To compare the different
tools on the same example, we created a minimal class diagram that combines all four
patterns, as depicted in Figure 4.5. This will be the design-time input we will use to

specify the code generation templates.

1 : x
Model [¢——>| Invoice [¢—> {?I%sg;%t}
INVOICe i YRate : int|  '€MS _
name : string
rootCat category type : string

1 1Y 1\ meta N\

Category Metadata

name : string \@m prorT— Pricedltem
ate : string

** cashier : strin price : int
subs 9

Figure 4.5: Invoice metamodel

This metamodel describes the production of invoices in a given store. The invoice
shows the purchased items and their prices which are printed within the context of the
Invoice class instance. The total price is calculated by adding the value of the attribute
price of each PricedItem class instance. In addition, the total price depends on the
taxRate and the discount rate. The discount rate is calculated depending on the depth
level of the Category class instance whereas the taxRate value is fixed. The total

price is printed along with all the other computed values in the output. In this running

54



example, all templates produce an output similar to the sample shown in Listing 4.5

rendering an invoice with three priced items and a second level discount category.

Store: FooBar

Cashier: Alice

Transaction date: Sun Aug 13 00:00:00 EDT 2017
Kok K oKk Kk Kk kK kK kK ok Kk Rk kK kK kK kK
Name: Shoes

Type: Clothing and Shoes

Price: 100$

Name: Laptop

Type: Electronics

Price: 500$

Name: Pizza

Type: Food

Price: 20$%

Kok K oKk Kk Kk kK kK kK ok Kk Kk Rk kK kK kK
Category: Student

Discount: 10%

Tax: 15%

Total: 641.17$

Listing 4.5: Sample output

4.2 Tools expressiveness

In this paper, we compare the nine most popular template-based code generation
tools for which the template follows the style of the output. The comparison of the tools
is based on a qualitative evaluation of how the developer must implement the template

corresponding to each pattern.

4.2.1 Code generation tools

We classify the tools into two groups: those that are model-based and those that are

code-based. Table 4.1 synthesizes the main characteristics of each tool. The dedicated
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language indicates the language used to express the dynamic part of the template. The
input type is the type of design-time input accepted by the template. The source domain
is defined in Section 4.1.3. The execution mode of the template refers to the different
ways to execute the template file to produce the output. The last two columns of the table
influence the implementation strategy of templates: whether they are based on block
definition per type and whether custom functions internally defined within a template

can be invoked from templates.

4.2.1.1 Model-based tools

Model-based tools rely on a metamodel as design-time input and on current main-
stream MDE technologies. For example, all those listed rely on the Eclipse Modeling
Framework [81], where models are specified in Ecore. The source domain of the tem-
plates is therefore a metamodel element (an EClass). The template of all model-based
tools is executed through an interpreter that creates a file, writes in it the output, and

evaluates the dynamic part of the template.

4.2.1.1.1 Acceleo is a pragmatic implementation of the Object Management Group
(OMG) MOF Model to Text Language (MTL) standard [68]. An Acceleo file consists
of a set of typed definition blocks that are sections of the template where the developer
specifies how each element type visited in the model shall be rendered, as depicted in
Listing 4.3. In a sense, this follows a similar strategy to how ATL transformation rules
are specified (one per type defined in the metamodel) [50]. Dynamic parts are expressed
in the MOFM2T language, an extension of OCL with imperative expressions. Acceleo
does not support function definition, but allows for the definition of encapsulated OCL

queries.
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4.2.1.1.2 Xpand also relies on the element type to organize the typed definition
blocks. The dynamic language is less powerful than in Acceleo, as it relies on a lim-
ited subset of OCL, also lacking support for queries and modules. Listing 4.12 shows
an example of the syntax of Xpand. Although functions cannot be defined within Xpand
templates, it is possible to call function defined in Xtend extensions or to custom Java

code.

4.2.1.1.3 Xtend2 is a complete programming language. It relies on a DSL that is an
abstraction of Java extended with lambda expressions and templates that are ultimately
compiled to Java code. For TBCG purposes, Xpand dynamic blocks can be integrated,
as illustrated in Listing 4.4. Instead of typed definition blocks, the template is organized
in functions. A part from the interpreted mode of execution, an Xtend2 template can also
generate the output instantly as it is saved when editing in a domain-specific modeling

environment (run-time Eclipse instance).

4.2.1.1.4 EGL belongs to the family of Epsilon languages and thus relies on Ep-
silon Object Language (EOL) for the dynamic part of the templates. Unlike the other
model-based tools, an EGL template is organized exactly how the output will appear,
the dynamic part is specified in macros written in EOL. Nevertheless, functions can be

defined and invoked within the template.

4.2.1.2 Code based tools

Unlike model-based tools, the structure of the code-based tools consists of static
and dynamic parts that are mixed together without the concept of template definition
block (except for XSLT). Furthermore, the dynamic part is expressed in the underlying

programming language, e.g., manipulating the Java objects for each source domain.
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6

7

8

4.2.1.2.1 Velocity is a Java-based template engine. It permits anyone to use a sim-
ple yet powerful template language to reference objects defined in Java code [6]. The
dedicated language for the dynamic part consists of a scripting language that supports
Java expressions. It requires Java objects as the input and unlike model-based tools the
reference to these Java objects need not be an element type contained in the metamodel,
1.e., the template can handle any Java variable as the source domain. Velocity templates
do not support functions calls internal to the template, but to external Java code. It is

interpreted in order to generate the output.

4.2.1.2.2 JET templates are used to generate the Java class responsible for printing
the desired output. This code is automatically generated when the template is saved. To
generate the final output, the developer needs to run this Java code. Dynamic parts are
written in Java code, as they appear almost as is in the generated code. JET requires
a single Java objects as the input that contains all the required input data as the source
domain. Listing 4.6 shows an example of a JET template that computes the total of the
invoice where the input is the argument variable. Variables are first initialized (lines
1-4) before starting the loop (lines 5—11) that iterates over each instance of the Ttem
class to get the attribute values (lines 8—10) and calculate the subtotal of the invoice (line
11). The total price is calculated based on the taxRate and the subtotal (line 13). Note
that attributes are accessed using getter functions because the design-time input used in

Listing 4.6 is the Java code generated from the Ecore model of an invoice.

<% Model model = (Model) argument; %>

<% int subtotal = 0; %>

<% Invoice invoice = model.getInvoice(); %>

<% EList<Item> items = invoice.getItems();

for (Iterator<Item> iterator = items.iterator(); iterator.hasNext ();) {
Item item = iterator.next (); %>

Name: <%= item.getName () %>

Type: <%= item.getType() %>
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Price: <%= ((PricedItem)item).getPrice() %>

<% subtotal += ((PricedItem)item).getPrice(); %>
<%}%>
Tax: <%= invoice.getTaxRate() %>%

Total: <%= subtotal * (1 + invoice.getTaxRate() / 100) %>$

Listing 4.6: JET template to compute the total of the invoice

4.2.1.2.3 T4 templates consists of the static output text where the dynamic part is
written as a C# program. The input required is a C# object and like the previous tools,
the reference to these objects can be of any type. T4 has two modes of execution. Like
in Xtend2, it can generate the output instantly as the developer is editing the template

Also, like in JET, it automatically generates C# code that shall be executed by the
developer to produce the output. Listing 4.7 shows an example of a T4 template that
computes the total of the invoice. Here, the input is a C# reference to the invoice model
serialized in XMI. Functions can be defined and invoked in the template as it is done in

a standard C# class.

<# foreach (XElement item in invoice.Elements ("items")) {

string name = item.Attribute (XName.Get ("name")) .Value;
string type = item.Attribute (XName.Get ("type")) .Value;
string price = item.Attribute (XName.Get ("price")) .Value;
subtotal += long.Parse(price); #>

Name: <#= name #>
Type: <#= type #>

Price: <#= price #>$

<# } #>
Tax: <# invoice.Attribute ("taxRate") #>%
Total: <#= total = subtotal » (1 + long.Parse(invoice.Attribute ("taxRate")) / 100) #>$

Listing 4.7: Excerpt of T4 template

4.2.1.2.4 StringTemplate is dedicated to performing string replacements on a tex-

tual input. Several programming languages (e.g., Java, Python, JavaScript) have im-
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plemented it. The dedicated language for the dynamic part is a very limited scripting
language that is programming language neutral. It mainly consists of the dot operator
as shown in Listing 4.8. StringTemplate requires a variable as input and, in our case,
the a Java object, since we relied on its Java implementation. To execute a template,
the developer needs to execute the enclosing Java program and the interpreter makes the

appropriate string replacement in the template.

4.2.1.2.5 XSLT is a powerful template-based engine to transform XML documents.
Being described in XML itself, it consists of a set of blocks that specify how each tag
element is rendered, such as the one in Listing 4.1. The dedicated language for the
dynamic part consists of large choice of powerful XSLT and XPath expressions. The
XSLT engine interprets the template file to generate the output by applying the template

corresponding to the XML element to match (e.g., Model on line 1).

4.2.2 Pattern-based comparison of tools

We compare the expressiveness of these TBCG tools based on the patterns introduced

in Section 4.1.

4.2.2.1 Navigation pattern

All tools successfully implement this trivial pattern, mostly through the use of the dot
operator, as shown in Listing 4.8. In XSLT, this is accomplished with the xs1:value-of

expression, as depicted in Listing 4.1.

| Transaction date: <invoice.meta.date>

2 Vendor name: <invoice.meta.vendorName>

Listing 4.8: StringTemplate code to access data from the target class
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However, XSLT requires a different strategy when in the presence of an associa-
tion relation (not a composition). Listing 4.9 shows how the name of the Category
associated to an Invoice is accessed. Due to the way Ecore is serialized in XMI, the
developer needs to manually compare (line 5-9) the id contained in the Invoice class
(line 3) to those of the target classes (line 4). It is only when the id matches that the

corresponding name is printed.

<xsl:template match="Model">

<xsl:for-each select="invoice">

<xsl:variable name="invoice_cat_id" select="Qcategory"/>
<xsl:for-each select="../rootCat">

<xsl:choose>

<xsl:when test="attribute::id = $invoice_cat_id">
Category: <xsl:value-of select="attribute::name"/>
</xsl:when> </xsl:choose>

</xsl:for-each>

</xsl:template>

Listing 4.9: XSLT code to access data through an association

4.2.2.2 Variable dependency pattern

We implemented this template to output and calculate the total of the invoice. As
depicted in Listing 4.10, this is possible in Acceleo thanks to the powerful OCL-like
dedicated language that provides built-in mathematical functions, such as sum() for the
collection type. XSLT provides even more built-in mathematical functions to the devel-

oper for the dynamic part.

[template public generateInvoice (invoice : Invoice, model : Model)]

[for (item : Item | invoice.items) ]

[generateltems (item) /] [/for]

Tax: [invoice.taxRate/]

Total: [invoice.items.oclAsType (PricedItem) .price->sum()* (1 invoice.taxRate/100)/] $

[/template]

Listing 4.10: Acceleo code to compute the total of invoice
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To implement this pattern, EGL, JET, Velocity, T4, and Xtend?2 rely on the use of global
variables and statement blocks, as depicted in Listings 4.2, 4.6, and 4.7. A statement
block is a statement in the dynamic part of the template that is not printed, e.g., for-loop,
if-statement or variable assignment. Note that in Xtend2, the result of the statement

blocks is also printed in the output.

/x*x In Xtend xxx*/
import InvoiceMM;
Void addPrice (PricedItem pi):

JAVA template.Utils.getSubTotal (InvoiceMM.PricedItem) ;

/*x% In Java **x/

package template;

import InvoiceMM.PricedItem;

public class Utils {

public static int subtotal = 0;

public static void getSubTotal (PricedItem item) {
subtotal += item.getPrice();

b}

Listing 4.11: Xtend and Java extension to calculate the invoice subtotal

It was not possible to implement this pattern with StringTemplate and Xpand natively.
Even though Xpand provides an OCL-like language for the dynamic part, it does not
provide any built-in mathematical function like Acceleo. We had to extend the template
with a Java program to handle the calculations. Listing 4.12 shows the invocation of
the Xtend method addprice () (line 13), which in turn invokes the appropriate Java
method get SubTotal () presented in Listing 4.11.

StringTemplate does not allow for assignments, hence such calculations cannot be
achieved. Note that it is possible to perform a simple numerical operation such as
“a+b”. However, without assignment, it is not possible to cumulate the subtotal over
every PricedItem. All functions available are dedicated to string manipulation. There-

fore, we had to first perform a model-to-model transformation to reduce the complexity
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of the template and perform the calculations in the Java input. Then, we only pass the

computed values to the template to correctly output the invoice.

4.2.2.3 Polymorphism pattern

We noted that the main difference between tools is highlighted in the variant when an
abstract superclass is present. In Acceleo, Xpand, and Xtend2, it is mandatory to write
a template block for the super class even though its content is not printed in the output.
Listing 4.12 shows that the definition of the template block for ITtem is required, even

though only the one for PricedItem will be executed.

«DEFINE invoice FOR Invoice»

)

«EXPAND item FOREACH items»

w

«ENDDEF INE»

«DEFINE item FOR Item»

IS

5 //This is for the super abstract class: content is not printed
6 Nom: «name»

7 Type: «type»

8 «ENDDEFINE»

9 «DEFINE item FOR PricedItem»

10 Name: «name»

11 Type: «type»

12 Price: «price»

3 «addPrice ()»

14 «ENDDEF INE»

Listing 4.12: Xpand code for polymorphism

In contrast, in EGL the content of the superclass template definition block is output,
along with the content of the one for the subclass. Listing 4.13 shows that the developer
can write the common behavior inside the abstract template definition block and the

content specific to the subclasses in a different blocks, thus favoring reuse.

1 [$ for (invoice in Invoice) { %]
2 [% for (item in Item) { %]
3 Name: [%= item.name %]
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)

Type: [%= item.type %]

[5 } %]

o
o°

% for (item in PricedItem) { %]
Price: [%= item.price %]
[% 1}
[% }

o
o

]
]

o
o

Listing 4.13: EGL template for polymorphism

In JET, Velocity, T4 and StringTemplate, no template code can be defined for abstract
classes. Thus, the developer must replicate the common template code for all possible
subclasses, unless it is encapsulated in a function. In XSLT, the developer is also re-
stricted to use the data of the subclasses, given that tags correspond to concrete elements

in the XMI document.

4.2.2.4 Recursion pattern

We implemented this pattern to obtain the depth level of the invoice Category from
the hierarchy of categories present in the model. We were only able to implement it in
EGL, Acceleo, Xtend2, and T4 thanks to the use of function or typed definition block.
Listing 4.14 shows an example of how recursion can be implemented in EGL using the

function feature.

[$for (modl in Model) { %]

[$for (invoice in Invoice) { %]

% invoice.category.getCategory (modl.rootCat, invoice.category, 0, total, invoice.
taxRate); %]

1

1

[
[

o

}
}

o

o
o

% operation Category getCategory (catRef:Category, cat:Category, index:Integer, total:
Integer, taxRate:Integer) :Integer{%]
[$ if (cat.name = catRef.name) { %]
[$ 1f (index > 30) { %]
Discount: 15%
% total = total » (1 - 15 / 100); %]

Tax: [%=taxRate%]%
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20

21

22

23

24

[

[$ total = total * (1 + taxRate / 100); %]
Total: [%= total %1$

[5 } %]

o
o

[$ else { %]
Discount: 10%
[$ total = total * (1 - 10 / 100); %]
Tax: [%$=taxRate%]%
% total = total » (1 + taxRate / 100); %]
Total: [%= total %]$
}o%]
}o%]

for (subCat in catRef.subs) { %]

o
o

o
o\

o

o

subCat.getCategory (subCat, cat, index+l); %]
bo%l
]

o
o

o
o

Listing 4.14: EGL code for recursion

Listing 4.15 shows an example of recursion using the typed definition block feature in

Acceleo.

[template public generateInvoice (invoice:Invoice, model:Model) ]

[for (cat : Category | invoice.category)]

[getCategory (model.rootCat, invoice.category, 0,invoice.items.oclAsType (Item) .price —->
sum (), invoice.taxRate) /]

[/for]

[/template]

[template public getCategory(catRef:Category, cat:Category,index:Integer,total:Integer,
taxRate:Integer) ]

[if (cat.name = catRef.name)]

[if (index > 30)

Discount: 15%

Tax: [taxRate/]%

Total:[(total = (1 - 15 / 100)) * (1 + taxRate / 100)/1$

[else]

Discount: 10%

Tax: [taxRate/]%

Total: [(total %= (1 - 10 / 100)) * (1 + taxRate / 100)/1$%

[/if]

[/if]
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18 [for (subCat : Category | cat.subs)]
19 [getCategory (subCat, cat, index+1l, total,taxRate)/]
20 [/for]

21 [/template]

Listing 4.15: Acceleo code for recursion

Listing 4.4 shows an example of recursion using the typed definition block in Xtend?2.
As for T4, the dedicated language allows to call C# functions defined in the template and
thus implement recursion.

Although Xpand supports typed definition blocks, they only take a single argument
which is a type of element in the input metamodel. Thus it is not possible to implement
this pattern.

XSLT does not implement this pattern either. Although it supports the definition of
functions, there is no trace between the argument that is passed to the function and the
variable passed in the initial invocation. Therefore, the developer can modify the value
inside the function, but cannot manipulate the input data directly from the function.

It is not possible to implement this pattern in JET, StringTemplate, and Velocity due

to the absence of typed definition block or function.

Tool Pattern 1 Pattern2  Pattern3 Pattern 4
Acceleo Complete Complete = Complete Complete
Xpand Complete Incomplete Complete Incomplete
EGL Complete Complete = Complete Complete
Xtend2 Complete Complete  Complete Complete
JET Complete Complete  Complete Incomplete
Velocity Complete Complete  Complete Incomplete
T4 Complete Complete  Complete Complete
StringTemplate Complete Incomplete Complete Incomplete
XSLT Complete Complete = Complete Incomplete

Table 4.11: Summary of the qualitative evaluation of the tools expressiveness.
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Table 4.1 summarizes the qualitative evaluation of the tools expressiveness, showing

whether a tool successfully implemented the pattern or not.

4.3 Tools performance

We conducted an experiment to compare the performance of TBCG tools.

4.3.1 Experiment setup

For this experiment, we consider set of five scales of model sizes conforming to the
metamodel in Figure 4.5. For each scale we generated 10 input models from the meta-
model using the tool in [9]. Table 4.IIT shows the characteristics of the input models
averages per scale. The model size corresponds to the number of class instances in each
model. The second column indicates the depth level of the invoice category, effectively
counting the number of recursive calls: the value returned by, for example, Listing 4.14.
The following columns indicate the number of instances of each pattern in the input
model. The navigation pattern appears in the relations Model to Invoice, Invoice
to Metadata and Invoice to Category. The number of variable dependency pat-
tern instances is the number of PricedItem objects plus one for accessing the invoice
taxRate. The number of occurrences of the polymorphism pattern counts the number
of Pricedltem objects. Finally, the number of occurrences of the recursion pattern is the
number of Category objects less the root category.

Since the models are synthesized in Ecore, we had to convert them into a format
suitable for code-based tools. We therefore generated the models to Java objects using
Acceleo for Velocity, JET, and StringTemplate. We used the XMI version of Ecore as
runtime input for XSLT. We also opted for this solution for T4, instead of generating
C# objects directly. Otherwise this would have required to translate the Java classes

of the metamodel automatically generated by EMF into C#. Nevertheless, the runtime
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input given to T4 remains C# objects encapsulating the XMI document. Note that we
executed Xtend?2 in its interpreted mode and T4 to output C# code that is then executed.

We automated the execution process for each tool with a Java program that loads the
required input models and runs the template engines. We launched the performance tests
on a 64-bit Windows PC equipped with 16GB of RAM and an Intel Dual Core 17-2600
CPU that clocks at 3.40GHz.

4.3.2 Data collection

We implemented the template of each TBCG tool such that the output is identical
across the tools for the same input model, as in the sample in Listing 4.5. We ran each
experiment 10 times. We collected the execution times of the template engine excluding
the time to generate the output file since writing to disk is machine dependent. We
discarded outlier values for the warm-up rounds and reported the averages, given that
the standard deviation was negligible.

As discussed in Section 4.2.2.4, it is not possible to implement the recursion pattern
in Xpand, XSLT, JET, Velocity, and StringTemplate, unless we resort to implement the
recursion outside the template in a Java program, but that would defeat the purpose of
the comparison. Nevertheless for Pattern 2, we relied on such extensions for Xpand
only to perform the calculation of the total as in Listing 4.11. Note that looping over
each PricedIten is still done in the template as in Listing 4.12. To ensure fairness
among tools, we performed two distinct experiments. In experiment A, the discount rate
is 15 if the invoice category is the root category, otherwise it is 10. In experiment B,
we determine the discount rate based on the depth level of the invoice category. The
discount rate is 15 if the depth level of the invoice category is more than 30, otherwise
it is 10. Therefore only Acceleo, EGL, Xtend2, and T4 are considered in B, whereas all

tools are considered in A.
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4.3.3 Results

4.3.4 Performance without recursion

1E+6
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1E+2
1E+1

Time (ms)
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Figure 4.6: Tool performance for experiment A in log scale

As Figure 4.6 shows, the execution time increases with the size of the model for
all tools. In the following discussion, the numbers refer to the cumulative time to run
experiment A on all models for each tool.

Overall, JET is the fastest tool, completing the whole experiment in just 33ms. This
is expected since JET generates instantly the corresponding Java class from the template
as the developer is writing the template. Therefore, the execution time here corresponds
to executing the generated Java code that produces the output. Excluding the special
case of JET, the template engine of Velocity is the fastest with a total of 190ms. It is
followed by StringTemplate that completes the experiment in 284ms. It reaches a high
performance because templates in StringTemplate are very simple, the essential part of

the computation is performed in the enclosing Java program.
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T4 is as efficient as JET for smaller models with fewer than 1000 objects, as they are
both executed in the same way. However, for larger models, it becomes slower than the
other two tools. Xtend2 performs better overall in only 577ms, which is faster than T4,
making it the fastest model-based tool. Sharing the same underlying architecture, Xpand
comes next with 1.4s. It is followed very closely by XSLT.

The slowest tools in this experiment are EGL followed by Acceleo, taking respec-
tively 5s and 171s to complete the test. Note that for smaller models with at most 1000
objects, EGL performs almost as fast as XSLT, but Acceleo is twice as fast. However,
their time increases exponentially for larger models.

Velocity templates execution scales remarkably well by only a factor of 15 for models
with 107 elements compared to smaller models with 103 elements. It is followed by JET,
Xtend2, StringTemplate, and XSLT with around a factor of 25. For the remaining tools,
the size of the model has a significant effect on their performance which is worsened
by a factor of 45-108. T4 and Acceleo have the worst scale factor with 140 and 955

respectively.

4.3.5 Performance with recursion

The results for experiment B, reported in Figure 4.7, show a similar trend for the four
tools concerned. The recursion pattern did not influence significantly the performance
of Acceleo and T4 (slower by 1%). However, Xtend2 performed 10% slower than for
experiment A. This is expected since, for Pattern 4, we only verify the equality of the
name of the invoice category with the root category for experiment A, while that number
is determined by the category level for experiment B (second column of Table 4.1I1I).
EGL performed 10% faster than for experiment A. This is the dedicated language EOL
supports the caching feature. The function is only executed once for each distinct Integer

and subsequent calls on the same target return the cached result [57].
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Figure 4.7: Tool performance for experiment B in log scale

4.3.6 Discussion

From the experiments we conducted, we observe that the fastest tools are code-based,
especially for bigger models with more than 1000 objects. Their dynamic language is
based on the host programming language (Java/C#) which explains their impressive per-
formance. JET is the best tool performance-wise. It generates the desired output almost
instantly irrespective of the input model. In our experiments, T4 is the only exception
since, for larger models, the XML navigation becomes an overhead compared to having
encoded model manipulations directly in C#. Xtend?2 is the fastest model-based tool and
is even faster than XSLT. It performed on average 16 times slower compared to JET.

In contrast, model-based tools are best suited for complex input data manipulations
and provide adequate support for non-trivial patterns, like recursion, within the tem-
plate. In particular, Xtend2 appears to be the most capable tool since it contains the
necessary features to successfully implement all the metamodel patterns in times similar

to code-based tools. Furthermore, a useful attribute of model-based tools is the level
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of abstraction of the dynamic part: a modeling paradigm for model-based tools and a
programming paradigm for code-based tools. Consequently, the logic is spread across

different artifacts for code-based templates, which hampers their cohesion.

4.3.7 Limitations

The results presented in this comparative study have depended on many factors that
could potentially limit the study.

The input model of some of the code-based tools given as Java objects could have
favored their final results. As noted in Section 4.3.1, the fact that the template engines
executions and the input models are coded in Java could benefit the code-based tools
over the Model-based tools.

Although the presented patterns help highlight both the limitations and the perfor-
mance of the tools, they are not exhaustive. Hence there might be other template imple-
mentations that are not considered in this study.

The absence of an expert for each tool can also limit the findings of our study. In fact,
we are not experts in each of these tools. Therefore, there are potentially other optimiza-
tion processes that we were not aware of when implementing the different templates.
However, we believe that the templates are written from the perspective of the general

level of competence of a regular software engineer.
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CHAPTER 5

CONCLUSION

We conclude by summarizing the contributions of this thesis and outline future work.

The work presented in this thesis makes several contributions to the field of TBCG.

5.1 Summary

A survey on template-based code generation has been missing in the literature. In
this thesis, I present a literature survey on this topic and compare existing tools to pro-
vide the necessary guidelines and insights to help developers select the most appropriate

approach and tool for their problem.

5.1.1 Systematic mapping study of TBCG

We conducted a SMS on the topic of TBCG, which has been missing in the literature.
The objectives of this study are to better understand the characteristics of TBCG tech-
niques and associated tools, identify research trends, and assess the importance of the
role that MDE plays. We have systematically scanned the published, peer-reviewed liter-
ature and studied an extensive set of 481 papers published during the period 2000-2016.
The analysis of this corpus is organized into facets of a novel classification scheme,
which is of great value to modeling and software engineering researchers who are in-
terested in painting an overview of the literature on TBCG. Our study shows that the
community has been diversely using TBCG over the past 16 years and that research and
development is still very active. TBCG has greatly benefited from MDE in 2005 and
2013 which mark the two peaks of the evolution of this area, tripling the average number

of publications. In addition, TBCG has favored a template style that is output-based and



high level modeling languages as input. TBCG is mainly used to generate source code
and has been applied in a variety of domains. The community has been favoring the
use of custom tools for code generation over popular ones. Most research using TBCG
follows an MDE approach. Furthermore, both MDE and non-MDE tools are becoming

effective development resources in industry.

5.1.2 Comparison of the Expressiveness and Performance of TBCG Tools

We presented the outcome of a comparative study on TBCG tools to evaluate their
expressiveness power and test their performance. The goal of this paper is to implement
M2T templates for specific metamodel patterns, investigate the limitations of TBCG
tools with respect to an input these patterns and determine the most capable among the
selected tools. The study is carried out based on nine most popular output-based TBCG
tools over the last two decades years.

Our study shows that model-based tools are the most capable tools since most of
them successfully implemented all the metamodel patterns. However, code-based tools
performed much faster than model-based tools. JET is the best tool performance-wise.
It generated the desired output almost instantly irrespective of the input model and failed
to implement just the recursive pattern. Xtend2 offers the best compromise between
the expressiveness and the performance. It succeeded to implement all the metamodel
patterns in a reasonable time. Finally, we found that the recursion pattern is achieved by
T4 and almost all the model-based tools, but it does not influence the overall performance

of the tools.

5.2 Outlook

This survey is an added knowledge to the software engineering research community

and practitioners. It guides them into making an informed choice of the appropriate
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TBCG tool based on their requirements. Furthermore, it particularly benefits the re-
searchers by presenting an overview of TBCG and by highlighting the areas that require
more attention, hence guiding their future works.

As future work, we would like to revise the query to include not only “code” as the
main output, but all the other possible artifacts such as documents. We plan to identify
more patterns based on larger sets of metamodels and templates. We believe that this
will also provide a feedback on the use of our metamodel patterns. Finally, we are
investigating further criteria to compare TBCG tools, such as the elaboration of specific

metrics to further enhance the guidelines.
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Appendix III

Templates of each tool for the experiments

I11.0.0.0.1 Templates for experiment A

I11.0.0.0.2 EGL The following template was executed as presented.

Store: FooBar

o\

[% var total : Integer = 0 ; ]
[$for (modl in Model) { %]

[$for (invoice in modl.invoice) { %]

Cashier: [%=invoice.meta.cashier%]
Transaction date: [%$=invoice.meta.date%]

R R R o

[$for (items in invoice.items) { %]
Name: [%=items.name%]

Type: [%$=items.type%]

Price: [%$=items.price%]

[% total += items.price; %]

]

o

[

o

}

khkhkhkhkhkhkhkhkkhkkhkkhkkhkhkhkhkhkhkArrrxxx

[$ if (invoice.category.eContainer () .isTypeOf (Model)) { %]
Category: [%$=invoice.category.name%]
Discount:15%

[$ total = total » (1 - 15 / 100); %]

Tax: [%$=invoice.taxRate%]%
[$ total = total * (1 + invoice.taxRate / 100); %]

Total: [%$= total %1$

b %]

o

[

o

[$ else { %]
Category: [%$=invoice.category.name%]
Discount:10%

% total = total » (1 - 10 / 100); %]
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Tax: [%$=invoice.taxRate%]%

[%$ total = total * (1 + invoice.taxRate / 100); %]

Total: [%= total %1$
[%}%]
[ 1

o
o

o
o

o
o

Listing III.1: EGL template for the experiment A

I11.0.0.0.3 Acceleo The following template was executed as presented.

[comment encoding = UTF-8 /]

[module modelTest (‘http://www.InvoiceMM.org/generate’,’http://www.eclipse.org/emf/2002/

Ecore’) ]

[template public generateElement (model
[comment @main/]
[file (’"invoice.txt’, false, 'UTF-8')]

Store: FooBar

[for (invoice : invoice | self.invoice)]
[generateinvoice (invoice) /]

[/for]

[/file]

[/template]

[template public generateinvoice (invoice
[for (meta : Metadata | invoice.meta) ]
[generateMetadata (meta) /]

[/for]

R I

[for (item : Item | invoice.items)]
[generatedItem(item) /]

[/for]

Ahkhkhkhkhkhkhkkhkkhkkhkkhkkhkhkhkhkhkhhdx*rx

[if (invoice.category->size() > 0)]

Category: [invoice.category.name/ ]

[if (invoice.category.eContainer().oclIsTypeOf (Model)) ]

Model) ]

invoice) ]

Xcviil
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41

42

43

44

45

46

47

48

49

w

52

53

54

55

56

2

3

o

Discount: 15%

Tax: [invoice.taxRate/]%

Total: [ (invoice.items.oclAsType (Item) .price -> sum() * (1 - 15 / 100)) * (1 + invoice.
taxRate / 100)/1$

[else]

Discount: 10%

Tax: [invoice.taxRate/]%

Total: [(invoice.items.oclAsType (Item) .price —-> sum() * (1 - 10 / 100)) *= (1 + invoice.
taxRate / 100)/1$%

[/if]

[/if]

[/template]

[template public generatedItem(elements : Item)]
Name: [elements.name/]
Type: [elements.type/]

[/template]

[template public generatedItem(elements : PricedItem) ]
Name: [elements.name/]
Type: [elements.type/]

Price:[elements.price/]
[/template]

[template public generateMetadata (meta : Metadata) ]
Cashier: [meta.cashier/]
Transaction date: [meta.date/]

[/template]

Listing II1.2: Acceleo template for the experiment A

I11.0.0.0.4 Xpand The following template was executed as presented, a long with

the Java and Xtend extensions.

«IMPORT InvoiceMM»

«DEFINE main FOR Model»

XCiX
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«FILE "invoice.txt"»

Store: FooBar

«EXPAND invoice FOR invoice»
«ENDEILE»

«ENDDEF INE»

«DEFINE invoice FOR Invoice»
«EXPAND meta FOR meta»

Kok KKKk K K K K K K K kK kK kK K
«EXPAND item FOREACH items»
LR R S
Category: «category.name»
«IF this.category.eContainer.toString()
Discount: 15%

Tax: «taxRate»%

Total: «getTotal ()»$

«ELSE»

Discount: 10%

Tax: «taxRate»%

Total: «getTotal ()»$

«ENDIFE»

«ENDDEF INE»

«DEFINE meta FOR Metadata»
Cashier: «cashier»
Transaction date: «date»

«ENDDEFINE»

«DEFINE item FOR Item»
Nom: «name»

Type: «type»

«ENDDEF INE»

«DEFINE item FOR PricedItem»
Name: «name»

Type: «type»

Price: «price»

«addPrice () »

"Model"»



44

)

«ENDDEFINE»

Listing III.3: Xpand template for the experiment A

I11.0.0.0.5 Xtend2 The following template was executed as presented.

package template

import org.eclipse.emf.common.util.URI
import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl
import org.eclipse.emf.ecore.xmi.impl.XMIResourceFactoryImpl

import org.eclipse.emf.ecore.resource.Resource

import InvoiceMM.Model
import InvoiceMM.Invoice
import InvoiceMM.Item
import InvoiceMM.Category
import InvoiceMM.Metadata
import InvoiceMM.PricedItem

import InvoiceMM.impl.InvoiceMMPackageImpl
class MyCodeGenerator {

static long sum = 0

static long total = 0

static long subtotal = 0

def Object generate(String file) {

InvoiceMMPackageImpl.init () ;

doEMF Setup

val resourceSet = new ResourceSetImpl

val resource = resourceSet.getResource (URI.createURI (file), true)
for (content : resource.contents.filter (typeof (Model))) {

return generateCode (content)
}
}

2 def generateCode (Model model) {

rrr

Store: FooBar

ci
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«generateinvoice (model.invoice)»

rrr

def generateinvoice (invoice invoice)
rrr

«generateMetadata (invoice.meta)»

Kk hkhkhkkkhkkhkhkhkkkkkk*k

«FOR items : invoice.items»
«generateltems (items as Item)»
«ENDEF'OR»

kkkkkkhkkhkkhkkhkkhkkhkkk*k

Category: «invoice.category.name»

«IF invoice.category.eContainer instanceof Model»

o

Discount: 15%
Subtotal after discount: «subtotal =

Tax: «invoice.taxRate»$%

Total: «total = sum * (1 + invoice.taxRate / 100)»$S

«ELSE»
Discount: 10%
Subtotal after discount: «subtotal =

Tax: «invoice.taxRate»$%

Total: «total = subtotal x (1 + invoice.taxRate / 100)»$

«ENDIE»

rrr

def generateMetadata (Metadata meta)
rr
Cashier: «meta.cashier»

Transaction date: «meta.date»

rrr

def generateltem(Item items) {
rrr
Nom: «items.name»

Type:«items.type»

rrr

{

{

(1 - 15 / 100)»$

(1 - 10 / 100)»$

cii
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def generateltems (PricedItem items) {

rrr

Name: «items.name»
Type: «items.type»
Price: «items.price»

«subTotal (items) »

def static subTotal (Item item) {
sum += item.price

}

def doEMFSetup () {

// EPackage$Registry.INSTANCE.put (MyPackage.eINSTANCE.nsURI, MyPackage.eINSTANCE)

Resource$Factory.Registry.INSTANCE.extensionToFactoryMap.put ("xmi",

XMIResourceFactoryImpl);

// InvoiceMMPackage mp = InvoiceMMPackage.eINSTANCE;

}
}

Listing III.4: Xtend2 template for the experiment A

I11.0.0.0.6 JET The following template was executed as presented. The argument

that is passed to the template is the Java object model.

)

<%@ jet package="generator"

class="ModelTestJet" imports ="java.util.Iterator

org.eclipse.emf.common.util.EList
InvoiceMM.Model

InvoiceMM. Invoice

InvoiceMM. Item

InvoiceMM.PricedItem"

o
\

<% Model model = (Model) argument; %
<% long subtotal = 0; %>
<% long total = 0; %>

ciil
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Store: FooBar

<% invoice invoice = model.getinvoice(); %>
Cashier: <%= invoice.getMeta () .getCashier () %>
Transaction date: <%= invoice.getMeta () .getDate () %>

AhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhAkrArArrrrrrkkkkkkk

<% EList<Item> items = invoice.getItems();

for (Iterator<Item> iterator = items.iterator(); iterator.hasNext ();)
Item item = iterator.next ();

%>

Name: <%= item.getName () %>

Type: <%= item.getType () %>

Price: <%= ((PricedItem)item).getPrice() %> CAD
<% subtotal += ((PricedItem)item).getPrice(); %>
<%}%>

R R R R R 3

<% 1if (invoice
Category: <%=
Discount: 15%

<% subtotal =

.getCategory () .eContainer () .eClass () .getName () .equals ("Model"))

invoice.getCategory () .getName () %>

subtotal %= (1 - 15 / 100); %>

Tax: <%= invoice.getTaxRate () %>%

<% total = subtotal » (1 + invoice.getTaxRate()/100); %>

Category: <%=
Discount: 10%

<% subtotal =

invoice.getCategory () .getName () %>

subtotal = (1 - 10 / 100); %>

Tax: <%= invoice.getTaxRate () %>%

<% total = subtotal * (1 + invoice.getTaxRate()/100); %>

Total: <%= total %>$

<%}%>

Listing IIL.5: JET template for the experiment A

civ

{

{

%>
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I11.0.0.0.7 Velocity The following template was executed as presented. The argu-

ment that is passed to the template is the Java object invoice.

#set ($subtotal = 0 )

#set (Stotal = 0)

#set ($d = "$")

FooBar

Cashier: $invoice.meta.cashier

Transaction date: $invoice.meta.date
kA hkhkhkhkkhkhhkhhkdhkhkhkhkkhkhkhkhkrhhhhhxhhdxkhkx*k

#foreach ($item in $invoice.items)
Name: $item.name

Type: $item.type

Price: $item.price $d

#set ($subtotal = S$subtotal + S$item.price)

#end

Kk Kk hk Kk hk kA kA Ak A ARk A h Ak kA d A XA KKK KKK K

#if ($invoice.category.eContainer () .eClass () .name == "Model")
Category: $invoice.category.name

Discount: 15%

#set (Ssubtotal = $subtotal * (1 - 15 / 100)
Tax: $invoice.taxRate %

#set (Stotal = S$subtotal * (1 + Sinvoice.taxRate / 100)
Total: S$total $d

#else

Category: $invoice.category.name

Discount: 10%

#set ($subtotal = $subtotal (1 - 10 / 100)
Tax: $invoice.taxRate %

#set ($total = $subtotal » (1 + $invoice.taxRate / 100)
Total: Stotal $d

#end

Listing III.6: Velocity template for the experiment A

(Y



I11.0.0.0.8 T4 The following template was executed as presented.

I <#@ template debug="true" hostspecific="false" language="C#" #>
2 <#@ assembly name="System.Core" #>

3 <#@ import namespace="System.Ling" #>

4 <#@ import namespace="System.Text" #>

5 <#@ import namespace="System.Collections.Generic" #>

6 <#@ output extension=".txt" #>

7 <#@ import namespace="System.Xml.Ling" #>

8 <#Q@ import namespace="System.IO" #>

9 <#@ assembly name="System.Xml" #>

10 <#Q@ assembly name="System.Xml.Ling" #>

11 <#@ assembly name="System" #>
13 Store: FooBar

15 <# long subtotal = 0; long total = 0;#>
16 <# XElement element = getModel();
17 string cashier = element.Element ("meta") .Attribute (XName.Get ("cashier")) .Value;

18 string date = element.Element ("meta") .Attribute (XName.Get ("date")) .Value; #>

20 Cashier: <#= cashier #>

21 Transaction date: <#= date#>

22
23 kkkkk kK k kK ok kKK ok kKK
24

25 <# foreach (XElement item in element.Elements ("items"))

26 {

27 string name = item.Attribute (XName.Get ("name")) .Value;
28 string type = item.Attribute (XName.Get ("type")) .Value;
29 string price = item.Attribute (XName.Get ("price")) .Value;

30 subtotal += long.Parse(price); #>
31 Name: <#= name #>

32 Type: <#= type #>

33  Price: <#= price #>$

34

35 <# } #>

37 kkkkhkhkkkhhhhkkkhkhkkkkk

38 <# XElement category = getCategory(); #>

cvi
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<# string invoice_category = category.Attribute (XName.Get ("name")) .Value;
Category: <#= invoice_category #>

Discount: 15%

<#= subtotal = subtotal *- (1 - 15 / 100) #>

Tax: 15%

Total: <#= total = subtotal = (1 + 15 / 100) #>$

<#+

// getting all the elements from model reference
private XElement getModel ()
{
string modelpath = GetModelFilePath (fileName);
XDocument model = XDocument.Load (modelpath) ;
XElement elements = model.Element ("InvoiceMM") ;
if (elements == null)
{
Error ("No such elements");
return null;
}

return elements.Element ("invoice");

private XElement getCategory ()

{
string modelpath = GetModelFilePath (fileName) ;
XDocument model = XDocument.Load (modelpath);
XElement elements = model.Element ("InvoiceMM") ;
if (elements == null)
{
Error ("No such elements");
return null;
}

return elements.Element ("rootCat");

// getting the input model
private string GetModelFilePath (string fileName)

{

cvii

#>
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FileInfo fi = new FileInfo ("R:\\Lechanceux\\T4\\visual studio 2012\\Projects\\

modelTest\\modelTest\\" + fileName);

string currentFolder = fi.Directory.FullName;

string mod = Path.Combine (currentFolder,
if (File.Exists (mod))

{

return mod;

}

Error ("File does not exist");

return string.Empty;

#>

fileName) ;

Listing II1.7: T4 template for the experiment A

I11.0.0.0.9 StringTemplate The following template was executed as presented. The

argument that are passed to the template are the Java objects invoice and total.

Store: fooBar
Cashier: <invoice.meta.cashier>
Transaction date: <invoice.meta.date>

Khkkhkkhkhkhkkhkhkh Kk Kk kK

<invoice.items: { item | Name: <item.name> <\n>Type:

> <\n><\n>}>
Khkkkkhkkhkkhkkhkkhkkhkkhkhk k k k k%
Category: <invoice.category.name>
Discount: 15%
Tax: <invoice.taxRate>%

Total: <total>

<item.type> <\n>Price:

Listing IIL.8: StringTemplate template for the experiment A

I11.0.0.0.10 XSLT The following template was executed as presented.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" xmlns:my="my:my">

<xsl:script implements-prefix="my"/>
<xsl:template match="/">

<!-— TODO: Auto-generated template —--—>

cviil
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<xsl:apply-templates/>

</xsl:template>

<xsl:template match="TestModel">
Best Buy

<xsl:for-each select="invoice">

Cashier: <xsl:value-of select="meta/@cashier"/>

Transaction date: <xsl:value-of select="meta/@date"/>

* kK Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

<xsl:for-each select="items">

Name: <xsl:value-of select="@name"/>

Type: <xsl:value-of select="Qtype"/>

Price: <xsl:value-of select="@price"/> CAD

<xsl:text>&#xa;</xsl:text>
</xsl:for-each>

*hkkkkkkkkkkkkkkkkk*k

<xsl:variable name="invoice_cat_id" select="Q@category"/>

<xsl:for-each select="../rootCat">

<xsl:choose>

<xsl:when test="attribute::id = $invoice_cat_id">

Category: <xsl:value-of select="attribute::name"/>

</xsl:when>

</xsl:choose>

<xsl:variable name="category" select=".

<xsl:choose>
<xsl:when test="parent::category
o

Discount: 15%

Tax: 15%

Total: <xsl:value-of select="(sum(items/@price)

/>$
</xsl:when>
<xsl:otherwise>

Discount: 10%

Tax: 15%

Total: <xsl:value-of select="(sum(items/@price)

/>$
</xsl:otherwise>

</xsl:choose>

</xsl:for-each>

./rootCat"/>

parent::invoice>

cix

*

*

(1 + 15 div 100))

(1 + 15 div 100))

*

*

(1 + 15 div 100)"

(1 + 15 div 100)"



44 </xsl:template>

Listing II1.9: XSLT template for the experiment A

111.0.0.0.11 Templates for experiment B

I11.0.0.0.12 EGL The following template was executed as presented.

| Store: FooBar

2 [% var total : Integer = 0 ;

o

3 [$for (modl in Model) { %]

4 [%$for (model in Model) { %]

5 [$for (invoice in Invoice) { %]
6 Cashier: [%$=invoice.meta.cashier%]
7 Transaction date: [%$=invoice.meta.date%]

O kk ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

10 [$for (items in invoice.items) { %]
11 Name: [%$=items.name%]

12 Type: [%$=items.type%]

13 Price: [%$=items.price%]

15 [% total += items.price; %]
16 [%$1%]

17 *kxkhkhkrxkhhkkkhhkkkhhkxkkkhxkk

19 Category: [%$=invoice.category.name%]

20 [$ invoice.category.getCategoryLevel (model.rootCat, invoice.category, 0, total, invoice
.taxRate); %]

]

1

o
o

21 [%}

}

o
o

22 [

23 [%$ operation Category getCategory (catRef:Category, cat:Category, index:Integer, total:
Integer, taxRate:Integer) :Integer{%]

24 [% 1f (cat.name = catRef.name) { %]

25 [% if (index > 30) { %]

26 Discount: 15%

27 [% total = total = (1 - 15 / 100); %I

28 Tax: [%$=taxRate%]%

29 [% total = total * (1 + taxRate / 100); %]

CcX
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Discount: 10%
[$ total = total * (1 - 10 / 100); %]
Tax: [%$=taxRate%]%
% total = total » (1 + taxRate / 100); %]
Total: [%= total %]$
}o%]
}o%]

o
o

o
o\

o

for (subCat in catRef.subs) { %]

o

subCat.getCategory (subCat, cat, index+l); %]
b %]
}o%]

o
o

o
o

Listing III.10: EGL template for the experiment B

I11.0.0.0.13  Acceleo The following template was executed as presented.

[comment encoding = UTF-8 /]

[module modelTest (‘http://www.InvoiceMM.org/generate’,’http://www.eclipse.org/emf/2002/

Ecore’) ]

[template public generateElement (model : Model) ]
[comment @main/]
[file (’'invoice.txt’, false, 'UTF-8')]

Store: FooBar

[for (invoice : invoice | self.invoice)]

[generateinvoice (invoice) /]

[/for]

[/file]

[/template]

[template public generateinvoice (invoice : invoice, model
[for (meta : Metadata | invoice.meta) ]

[generateMetadata (meta) /]

[/for]

cxi
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Khkhkhkkhkhkhkhkhkhkhkhkkhkk khkk kk kk kk k kx*x*

[for (item : Item | invoice.items) ]
[generatedItem(item) /]

[/for]

Ahkhkhkhkhkhkhkhkkhkkhkkhkkhkkhkhkhkhkhhkhhrx

[for (cat : Category | invoice.category)]

[getCategoryLevel (model.rootCat, invoice.category, 0, invoice.items.oclAsType (Item) .price

-> sum(),invoice.taxRate) /]
[/for]

[/template]

[template public getCategory (catRef:Category, cat:Category,index:Integer,total:Integer,

taxRate:Integer) ]
[if (cat.name = catRef.name) ]
[if (index > 30)]
Discount: 15%
Tax: [taxRate/]%
Total:[(total % (1 - 15 / 100)) * (1 + taxRate / 100)/1$
[else]
Discount: 10%
Tax: [taxRate/]%
Total: [(total * (1 - 10 / 100)) * (1 + taxRate / 100)/1$
[/if]
[/if]

[for (subCat : Category | cat.subs)]
[getCategory (subCat, cat, index+l, total,taxRate)/]
[/for]

[/template]

[template public generatedItem(elements : Item)]
Name: [elements.name/]
Type: [elements.type/]

[/template]
[template public generatedItem(elements : PricedItem) ]

Name: [elements.name/]

Type: [elements.type/]

cxil
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Price: [elements.price/]

[/template]

[template public generateMetadata (meta : Metadata) ]
Cashier: [meta.cashier/]
Transaction date: [meta.date/]

[/template]

Listing III.11: Acceleo template for the experiment B

I11.0.0.0.14 Xtend2 The following template was executed as presented.

package template

import org.eclipse.emf.common.util.URI

import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl

import org.eclipse.emf.ecore.xmi.impl.XMIResourceFactoryImpl

import org.eclipse.emf.ecore.resource.Resource

import InvoiceMM.Model
import InvoiceMM.Invoice
import InvoiceMM.Item
import InvoiceMM.Category
import InvoiceMM.Metadata
import InvoiceMM.PricedItem

import InvoiceMM.impl.InvoiceMMPackageImpl

class MyCodeGenerator

static long sum = 0

static long total = 0

def Object generate(String file) {

InvoiceMMPackageImpl.init () ;

doEMFSetup

val resourceSet = new ResourceSetImpl

val resource = resourceSet.getResource (URI.createURI (file),
for (content : resource.contents.filter (typeof (Model))) {

cxiil
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return generateCode (content)

b}

def generateCode (Model model) {
rrr
Store: FooBar

«generateinvoice (model.invoice, model)»

rrr

def generateinvoice (Invoice invoice, Model model) {
rrr

«generateMetadata (invoice.meta)»

*kkkkkkkhkkhkkhkkhkkk*k

«FOR items : invoice.items»

«generateltems (items as Item)»

«ENDFOR»

Kk hkhkhkkkkhkhkhkkkkkk*k

Category: «invoice.category.name»

«generateCategory (model.rootCat, invoice.category, 0, sum,

rrr

def getCategory (Category catRef, Category cat, int index,
e

«IF cat.name.equals (catRef.name)»

«IF index > 30»

Discount: 15%

Tax: «taxRate»%

Total: «total % (1 + taxRate / 100)»$
«ELSE»

Discount: 10%

Tax: «taxRate»%

Total: «total % (1 + taxRate / 100)»$

«ENDIE»

«ENDIE»
«FOR subCat : catRef.subs»

«generateCategory (subCat, cat, index+1l, total, taxRate)»

«ENDE'OR»

CcXiv

invoice.taxRate)»

long total,

int taxRate) {
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def generateMetadata (Metadata meta) {

rrr

Cashier: «meta.cashier»

Transaction date: «meta.date»

rrr

def generateItem(Item items) {
rrr
Nom: «items.name»

Type:«items.type»

rrr

def generateltems (PricedItem items) {

rrr
Name: «items.name»
Type: «items.type»
Price: «items.price»

«subTotal (items) »

def static subTotal (Item item)
sum += item.price

}

def doEMFSetup() {

{

// EPackage$Registry.INSTANCE.put (MyPackage.eINSTANCE.nsURI, MyPackage.eINSTANCE)

Resource$Factory.Registry.INSTANCE.extensionToFactoryMap.put ("xmi", new

XMIResourceFactoryImpl) ;

// InvoiceMMPackage mp = InvoiceMMPackage.eINSTANCE;

b}

Listing III.12: Xtend2 template for the experiment B
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I11.0.0.0.15 T4 The following template was executed as presented.

<#@ template debug="true" hostspecific="false"

<#Q@ assembly name="System.Core" #>

<#@ import namespace="System.Ling" #>

<#@ import namespace="System.Text" #>

<#@ import namespace="System.Collections.Generic" #>

<#@ output extension=".txt" #>

<#@ import namespace="System.Xml.Ling" #>

<#@ import namespace="System.IO" #>

<#@ assembly name="System.Xml" #>

<#@ assembly name="System.Xml.Ling" #>

<#Q@ assembly name="System" #>

Store: FooBar

<# long subtotal = 0; long total = 0;#>

<# XElement element = getModel();

string cashier = element.Element ("meta") .Attribute (XName.Get ("cashier")) .Value;
string date = element.Element ("meta") .Attribute (XName.Get ("date")) .Value; #>

Cashier: <#= cashier #>

Transaction date: <#= date#>

khkkkkkhkkhkkhkkhkkhkkhkhkhk k kk*

<# foreach (XElement item in element.Elements ("items"))

{

string name = item.Attribute (XName.Get ("name")) .Value;
string type = item.Attribute (XName.Get ("type")) .Value;
string price = item.Attribute (XName.Get ("price")) .Value;

subtotal += long.Parse(price); #>
Name: <#= name #>
Type: <#= type #>

Price: <#= price #>$

<# } #>

*kkkkkkkkkkkkkkkk*k

<# XElement category = getCategory();

#>

CXVi
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<# string invoice_category = category.Attribute (XName.Get ("name")) .Value; #>
Category: <#= invoice_category #>

<# int index = getlIndex(category, "last", 0); #>

<# if (index > 30)

{ #>
Discount: 15%

<#= subtotal = subtotal * (1 - 15 / 100) #>
Tax: 15%

Total: <#= total * (1 + 15 / 100) #>$

<# } #>

<# else

{ #>
Discount: 10%

<#= subtotal = subtotal * (1 — 10 / 100) #>
Tax: 15%

Total: <#= total » (1 + 15 / 100) #>$

<# )} #>

<#+

//recursive function
private int getIndex (XElement category, string mod_cat, int index)
{
//Console.WriteLine (category.Attribute (XName.Get ("name")) .Value + " " + mod_cat);
if (category.Attribute (XName.Get ("name")) .Value.Equals (mod_cat))
{
return index;
}
foreach (XElement cat in category.Elements ("subs"))
{
getIndex (cat, mod_cat, index+l);
}
return 0;

}

// getting all the elements from model reference
private XElement getModel ()

{

string modelpath = GetModelFilePath (fileName) ;
XDocument model = XDocument.Load (modelpath) ;

XElement elements = model.Element ("InvoiceMM") ;

cxXvil
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if (elements == null)

{

Error ("No such elements");

return null;

}

return elements.Element ("invoice");

}

private XElement getCategory ()

{

string modelpath = GetModelFilePath (fileName) ;
XDocument model = XDocument.Load (modelpath);
XElement elements = model.Element ("InvoiceMM") ;
if (elements == null)

{

Error ("No such elements");

return null;

}

return elements.Element ("rootCat");

}

// getting the input model

private string GetModelFilePath (string fileName)

{

FileInfo fi = new FileInfo ("R:\\Lechanceux\\T4\\visual studio 2012\\Projects\\modelTest
\\modelTest\\" + fileName);

string currentFolder = fi.Directory.FullName;

string mod = Path.Combine (currentFolder, fileName);

if (File.Exists (mod))

{

return mod;

}

Error ("File does not exist");

return string.Empty;

P>

Listing III.13: T4 template for the experiment B
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