Université de Montréal

Survey of Template-Based Code Generation

par
Lechanceux Kavuya Luhunu

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté a la Faculté des études supérieures
en vue de I’obtention du grade de Maitre es sciences (M.Sc.)
en computer science

Avril, 2017

© Lechanceux Kavuya Luhunu, 2017.

RESUME

Lautomatisation de la génération des artefacts textuels a partir des modeles est une
étape critique dans I'Ingénierie Dirigée par les Modeles (IDM). C’est une transforma-
tion de modeles utile pour générer le code source, sérialiser les modeles dans de sto-
ckages persistents, générer les rapports ou encore la documentation. Parmi les différents
paradigmes de transformation de modele-au-texte, la génération de code basée sur les
templates (TBCGQG) est la plus utilisée en IDM. La TBCG est une technique de généra-
tion qui produit du code a partir des spécifications de haut niveau appelées remplates.
Compte tenu de la diversité des outils et des approches, il est nécessaire de classifier
et de comparer les techniques de TBCG existantes afin d’apporter un soutien approprié
aux développeurs. L’ objectif de ce mémoire est de mieux comprendre les caractéristiques
des techniques de TBCG, identifier les tendances dans la recherche, et éxaminer 1’impor-
tance du role de I'IDM par rapport a cette approche. J’évalue également I’expressivité,
la performance et la mise a I’échelle des outils associ€s selon une série de modeles. Je
propose une étude systématique de cartographie de la littérature qui décrit une intéres-
sante vue d’ensemble de la TBCG et une étude comparitive des outils de la TBCG pour
mieux guider les dévloppeurs dans leur choix. Cette étude montre que les outils basés
sur les modeles offrent plus d’expressivité tandis que les outils basés sur le code sont
les plus performants. Enfin, Xtend2 offre le meilleur compromis entre I’expressivité et
la performance.

Mots clés: Ingénierie dirigée par les modéles, Génération de code, Etude systé-

matique de cartographie, Etude comparative.

ABSTRACT

A critical step in model-driven engineering (MDE) is the automatic synthesis of a
textual artifact from models. This is a very useful model transformation to generate ap-
plication code, to serialize the model in persistent storage, generate documentation or
reports. Among the various model-to-text transformation paradigms, Template-Based
Code Generation (TBCG) 1s the most popular in MDE. TBCG is a synthesis technique
that produces code from high-level specifications, called templates. It is a popular tech-
nique in MDE given that they both emphasize abstraction and automation. Given the
diversity of tools and approaches, it is necessary to classify and compare existing TBCG
techniques to provide appropriate support to developers. The goal of this thesis is to
better understand the characteristics of TBCG techniques, identify research trends, and
assess the importance of the role of MDE in this code synthesis approach. We also eval-
uate the expressiveness, performance and scalability of the associated tools based on a
range of models that implement critical patterns. To this end, we conduct a systematic
mapping study of the literature that paints an interesting overview of TBCG and a com-
parative study on TBCG tools to better guide developers in their choices. This study
shows that model-based tools offer more expressiveness whereas code-based tools per-
formed much faster. Xtend2 offers the best compromise between the expressiveness and
the performance.

Keywords: Model-driven engineering, Code generation, Systematic mapping

study, Comparative study.

CONTENTS

RESUME ii
ABSTRACT iii
CONTENTS . . iv
LIST OF TABLES e s e viii
LIST OF FIGURES e ix
LIST OF APPENDICES e xi
DEDICATION xii
ACKNOWLEDGMENTS xiii
CHAPTER 1: INTRODUCTION o .. 1
1.1 Context e 1
1.2 Problem Statement and Thesis Proposition 2
1.3 Contributions e e e 3
1.4 Outline s 3
CHAPTER 2: BACKGROUND AND STATE OF THE ART 4
2.1 Code Generation e 4
2.2 Code Generation in the Contextof MDE 5
2.3 Code Generation Techniques 6
2.4 Template-based Code Generation 7
2.5 Literature Reviews on Code Generation 8

2.6 Tools performance and metamodel pattern 11

CHAPTER 3: SYSTEMATIC MAPPING STUDY OF TBCG 12
3.1 ResearchMethods 12
3.1.1 Objectives. e 13
3.1.2 Selectionof Source L. 13

3.1.3 Screening Procedure 14

3.1.4 Classification Scheme 15

3.2 PaperSelection 18
3.2.1 PaperCollection 19

322 Secreening 19

3.2.3 Eligibility during Classification 20

33 Evolutionof TBCG 21
33.1 Generaltrend o 21

3.3.2 Publications and venues 22

3.4 Characteristics of Template-Based Code Generation 23
34.1 Templatestyle, 23

342 Inputtype 25

343 Outputtype oo e 27

34.4 Applicationscale L 28

345 Context 29

34.6 Orientationo 30

347 Applicationdomain L. 30

3.5 Relations between Characteristics 32
3.5.1 Statistical correlationso L Lo 32

3.5.2 Other interesting relations 33

3.6 Template-based Code Generation Tools 36

3.6.1 Populartools 37

3.6.2 Unspecified and othertools 39
3.63 Trendsoftoolsused 39
3.6.4 Characteristicsof tools 40
3.7 MDE and Template-based Code Generation 41
3.8 DISCUSSION L e 43
3.8.1 RQI: What are the trends in TBCG? 43
3.8.2 RQ2: What are the characteristics of TBCG approaches? 43
3.8.3 RQ3: To what extent are TBCG tools being used? 44
3.8.4 RQ4: What is the place of MDE in TBCG? 44
3.9 Threatstovalidity 45
39.1 Constructionvalidity 45
3.10 External validity o 47

CHAPTER 4: COMPARISON OF THE EXPRESSIVENESS AND PER-

4.1

4.2

43

FORMANCE OF TBCGTOOLS 48
Metamodel patterns for template implementation 48
4.1.1 Pattern 1: Navigation 49
4.1.2 Pattern 2: Variable dependency 50
4.1.3 Pattern 3: Polymorphism 51
4.14 Pattern4: Recursion, 52
4.1.5 Combination of patterns 54
Tools eXpressiveness v v v vt e e e 55
4.2.1 Code generationtools, 55
4.2.2 Pattern-based comparisonof tools 61
Tools performance, 68
43.1 Experimentsetup 68

Vi

432 Datacollection e 70

433 Results 71

4.3.4 Performance withoutrecursion 71

4.3.5 Performance withrecursion 72

43.6 Discussion 73

437 Limitations 74
CHAPTER §: CONCLUSION s 75
5.1 Summary 75
5.1.1 Systematic mapping study of TBCG 75

5.1.2 Comparison of the Expressiveness and Performance of TBCG

Tools e 76
5.2 Outlook s 76
BIBLIOGRAPHY 78

vii

3.1
3.1

4.1
4.11
4.111

IL.I
IL.IT
IL.IIT
ILIV
IL.V
I1.VI
ILVII
IL.VIII
ILIX
IL.X
IL.XI
IL.XII
IT.XTII
ILXIV
IL.XV

LIST OF TABLES

Evolution of paper corpus during the study process 18
Most popular venues 24
Classification of TBCGtools. 57

Summary of the qualitative evaluation of the tools expressiveness. 67

Characteristics of the inputmodels 69
Classification table 1-31 Ixxxii
Classification table 32-63 Ixxxiii
Classification table 64-95o .. Ixxxiv
Classification table 96127 Ixxxv
Classification table 128—-159 Ixxxvi
Classification table 160-191 Ixxxvii
Classification table part 192-223 Ixxxviii
Classification table part 224-255 Ixxxix
Classification table 256287 XcC
Classification table 288-319 Xcl
Classification table 320-351 Xcii
Classification table 352-383 Xciii
Classification table 384—415 XCiv
Classification table part 416447 XCV
Classification table 448—481 Xcvi

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12

3.13
3.14
3.15

4.1
42
43
4.4
4.5

LIST OF FIGURES

Components of TBCG

The systematic mapping process we followed
Evolution of papersinthecorpus.
Distribution of template style facet
Template style evolution
Design-time input distribution
Design-time input evolution
Distribution of output type facet
Distribution of application scale facet.
Distribution of context facet.
Distribution of application domain facet
Relation between template style (vertical) and input/output types
(horizontal)
Relation between output (vertical) and design-time input (horizon-
tal) types showing the number of papers in each intersection . . .
Tools categories
Populartools

Evolution of the MDE facet

Navigation pattern L.
Variable dependency pattern
Polymorphism pattern L.
Recursionpattern

Invoice metamodel

4.6
4.7

Tool performance for experiment A in log scale

Tool performance for experiment B in log scale

Appendix I:

Appendix II:

Appendix III:

LIST OF APPENDICES

Final corpus bibliography of the SMS . .

Classification table of the SMS

Templates of each tool for the experiments

I would like to dedicate this thesis to the peo-
ple who supported me throughout this amazing journey. To my parents, thank you for
your unconditional love and devotion. You have agreed to huge sacrifices to make this a
successful adventure and I will always be grateful for that. To my brothers and sisters,
for your prayers and advices. Your encouragements have made me stronger than you can

ever imagine. To my friends who made my daily life more enjoyable.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Prof. Eugene Syriani for
the continuous support of my study and research, for his patience, motivation, enthusi-
asm, and immense knowledge.

I thank my fellow lab-mates in GEODES Group, for the stimulating discussions and
for all the fun we have had in the last two years.

Last but not the least, I would like to thank my family: my brothers, my sisters and

my parents, for supporting me in every aspects of my life.

CHAPTER 1

INTRODUCTION

1.1 Context

Model-driven engineering (MDE) has advocated the use of model-to-text transfor-
mations as a core component of its paradigm [55]. A common workflow in MDE is to
produce a program without the need of programming. Modelers first describe a domain-
specific platform-independent model. This model is refined with platform-specific con-
cepts from the target framework of the final application. The platform-specific model
is then synthesized to the source code of the program using a dedicated M2T tool [74].
These transformations are used to generate application code, serialize models in persis-
tent storage, document, visualize or explore models.

Code generation has been around since the 1950s, taking its origin in early compil-
ers [73]. Since then, software organizations have been relying on code synthesis tech-
niques in order to reduce development time and increase productivity [52]. Automat-
ically generating code is a generic approach where the same generator can be reused
to produce many different artifacts according to the varying inputs it receives. It also
provides opportunities to detect errors in the input artifact early on before the generated
code is compiled, when the output is source code.

There are many techniques to generate code, such as programmatically, using a meta-
object protocol, or aspect-oriented programming. Since the mid-1990s,
template-based code generation (TBCG) emerged as an approach requiring less effort
for the programmers to develop code generators. Templates favor reuse following the
principle of write once, produce many. The concept was heavily used in web designer

software (such as Dreamweaver) to generate web pages and Computer Aided Software

Engineering (CASE) tools to generate source code from UML diagrams. Many devel-
opment environments started to include a template mechanism in their framework such
as Microsoft Text Template Transformation Toolkit (T4) [65] for .NET and Velocity [6]

for Apache.

1.2 Problem Statement and Thesis Proposition

The software engineering research community has focused essentially on primary
studies proposing new TBCG techniques, tools and applications. Furthermore, TBCG is
a popular M2T technique in MDE given that it emphasizes abstraction and automation.
This has led to over 70 different tools developed in the past two decades. However, there
are no instructions to guide them. As a result, MDE developers are faced with a difficult
choice when selecting the most appropriate M2T tool [74].

To overcome these issues, the developers can rely on web forums dedicated to code
generation and collect the maximum information about the tools before selecting the
best fit. However, there is a high possibility of favoring misleading informations since
the reliability of the source cannot be verified. Furthermore, the developers can simply
select the most popular tool and carry out their code generation task. However, it is
possible that the selected tool is unable to satisfy the developer’s expectations.

Therefore, our proposal is to conduct a systematic mapping study of the literature in
order to understand the trends, identify the characteristics of TBCG, assess the popularity
of existing tools, and determine the influence that MDE has had on TBCG. We are
interested in various facets of TBCG, such as characterizing of the templates, of inputs
and outputs, along with the evolution of the amount of publications using TBCG over
the past 16 years. Based on this systematic literature study, we compare the nine most
popular TBCG tools found in the literature. We perform a qualitative evaluation of their

expressiveness based on typical metamodel patterns that influence the implementation

of the templates. The expressiveness of a tool is the set of language constructs that can
be used to complete a particular task natively. This is important since, to the best of our
knowledge, there are no available metrics to assess the code generation templates. We
also evaluate the performance and scalability of these tools based on a range of models

that conform to a metamodel composed by the combination of these patterns.

1.3 Contributions

The goal of this thesis is to add valuable knowledge in the field of TBCG by studying

both the literature and the tools. The contributions of this thesis are the following:

1. A systematic mapping study of the literature to paint an interesting picture about

the trends and uses of TBCG.

2. A comparative study of TBCG tools to evaluate their expressiveness power and

test their performance.

1.4 Outline

This thesis is organized as follows. In Chapter 2, we introduce the necessary back-
ground on TBCG and discuss the related work. In Chapter 3, we describe in details our
systematic mapping study of the literature. In Chapter 4, we describe our comparative
study on TBCG tools. We present the metamodel patterns we used for this study. We
report on the expressiveness of the tools in and their performance. Finally, we conclude

in Chapter 5.

CHAPTER 2

BACKGROUND AND STATE OF THE ART

In this chapter, we review the notion of code generation and introduce TBCG. We
also briefly outline MDE principles to better understand its relationship with TBCG.
Finally we discuss related work on systematic mapping studies in general and secondary

studies about code generation.

2.1 Code Generation

In this paper, we view code generation as in automatic programming [73] rather than
compilers. The underlying principle of automatic programming is that a user defines
what he expects from the program and the program should be automatically generated
by a software without any assistance by the user. This generative approach is different
from a compiler approach.

Compilers produce code executable by a computer from a specification conforming
to a programming language, whereas automatic programming transforms user specifi-
cations into code which often conforms to a programming language. Compilers have a
phase called code generation that retrieves an abstract syntax tree produced by a parser
and translates it into machine code or bytecode executable by a virtual machine. Com-
pared to code generation as in automatic programming, compilers can be regarded as
tasks or services that are incorporated in or post-positioned to code generators [49].

As Balzer [7] states, there are many advantages to code generation. The effort of the
user is reduced as he has fewer lines to write: specifications are shorter than the program
that implements them. Specifications are easier to write and to understand for a user,

given that they are closer to the application and domain concepts. Writing specifications

is less error-prone than writing the program directly, since the expert is the one who
writes the specification rather than another programmer.

These advantages are in fact the pillar principles of MDE and domain-specific mod-
eling. Floch et al. [35] observed many similarities between MDE and compilers research
and principles. Thus, it is not surprising to see that many, though not exclusively, code
generation tools came out of the MDE community. The advantages of code generation
should be contrasted with some of its limitations. For example, there are issues related
to integration of generated code with manually written code and to evolving specifica-
tions that require to re-generate the code [80]. Sometimes, relying too much on code
generators may produce an overly general solution that may not necessarily be optimal

for a specific problem.

2.2 Code Generation in the Context of MDE

MDE is a software development approach that uses abstraction to bridge the gap
between the problem space and the software implementation [80]. To bridge the gap
between the application domain and the solution domain, MDE uses models to describe
complex systems at multiple levels of abstraction, as well as automated support for trans-
forming and analyzing models. This separation allows the description of key intellectual
assets in a way that is not coupled to specific programming languages or target platforms.

Domain-specific modeling (DSM) [42] is a branch of MDE that allows models to be
manipulated at the level of abstraction of the application domain the model is intended
for, rather than at the level of computing. In DSM, domain experts can create models
that describe some computational need using abstractions and notations that match their
own domain of expertise. Thus, end-users who do not possess the skills needed to write
computer programs using traditional languages (like Java or C++) can describe their

solution in a more familiar language.

In MDE parlance, models represent abstractions of a real system, capturing some of
its essential properties. A model conforms to a metamodel, which defines the abstract
syntax and static semantics of the modeling language. This language can either be a
domain-specific language (DSL) or a general purpose language like UML. Developers
manipulate models by means of model transformation. Transformations can have differ-
ent purposes [61], such as translating, or refining models. One particular kind of model
transformation is devoted to code generation with model-to-text transformations [27].

A common workflow in MDE is to produce a program without the need of pro-
gramming [55]. Modelers first describe the high-level level system in a computation-
independent model. This is then evolved into a domain-specific platform-independent
model. This model is in turn refined with platform-specific concepts from the target
framework of the final application. The platform-specific model is then synthesized to
the source code of the program using a dedicated model-to-text transformation tool [74].
Model-to-text transformations are used to implement code, generate documentation, se-
rialize models, or visualize and explore models. We refer to [49] for a history of code

generation and an in-depth explanation of its role in MDE.

2.3 Code Generation Techniques

As briefly outlined in [49] and in [27], there are many techniques that can be used to

generate code. We briefly outline the main ones here.

Visitor based approaches consist of programmatically traversing the internal represen-
tation of the input, while relying on an API dedicated to manipulate the input and
to write the output to a text stream. This is used in [14].

Meta-programming is a language extension approach, such as using a meta-object pro-
tocol. For example, in OpenJava [82], a Java meta-program creates a Java file,

compiles it on the fly, and loads the generated program in its own run-time.

In-line generation relies on a preprocessor that generates additional code to the exist-
ing one, such as with the C++ standard template library or C macro preprocessor

instructions. An example is available in [11].

Code annotations are added in-line to existing code and is internally transformed into
more expanded code. Examples include JavaDoc and attributes in C#. This ap-

proach is used in [26].

Template based is described below.

2.4 Template-based Code Generation

The literature agrees on a general definition of model-to-text code generation [27]
and on templates. Jorges [49] identifies three components in TBCG: the data, the tem-
plate, and the output. However, there is another component that is not mentioned which
is the meta-information the generation logic of the template relies on. Therefore, we

conducted this study according to the following notion of TBCG.

Design-time input Template
Class uses <%context class%>
name:string public class <%name %> { String id; }

A

conforms to

Template engine

ol

Figure 2.1: Components of TBCG

Runtime input Output

Person

generates | public class Person { String id; }

Figure 2.1 summarizes the main concepts of TBCG. We consider TBCG as a syn-

thesis technique that uses templates in order to produce a textual artifact, such as source

code, called the output. A template is an abstract and generalized representation of the
textual output it describes. It has a static part, text fragments that appear in the output
“as 1s”. It also has a dynamic part embedded with splices of meta-code that encode the
generation logic. Templates are executed by the template engine to compute the dynamic
part and replace meta-codes by static text according to run-time input. The design-time
input defines the meta-information which the run-time input conforms to. The dynamic
part of a template relies on the design-time input to query the run-time input by filtering
the information retrieved and performing iterative expansions on it. Therefore, TBCG
relies on a design-time input that is used to define the template and a run-time input on
which the template is applied to produce the output. For example, a TBCG engine that
takes as run-time input an XML document relies on an XML schema as design-time

input. Definition 1 summarizes our definition of TBCG.

Definition 1. A synthesis technique is a TBCG if it specifies a set of templates, assumes

a design-time input, requires run-time inputs, and produces textual output.

For example, the work in [51] generates a C# API from Ecore models using Xpand.
According to Definition 1, the templates of this TBCG example are Xpand templates,
the design-time input is the metamodel of Ecore, the run-time input is an Ecore model,

and the output is a C# project file and C# classes.

2.5 Literature Reviews on Code Generation

In evidence-based software engineering [54], a systematic literature review is a sec-
ondary study that reviews primary studies with the aim of synthesizing evidence related
to a specific research question. Several forms of systematic reviews exist depending on
the depth of reviewing primary studies and on the specificities of research questions. Un-

like conventional systematic literature reviews that attempt to answer a specific question,

a systematic mapping studies (SMS) aim at classifying and performing a thematic anal-
ysis on a topic [53]. SMS is a secondary study method that has been adapted from other
disciplines to software engineering in [15] and later evolved by Petersen et al. in [69]. A
SMS is designed to provide a wide overview of a research area, establish if research evi-
dence exists on a specific topic, and provide an indication of the quantity of the evidence
specific to the domain.

Over the years, there have been many primary studies on code generation. However,
we could not find any secondary study on TBCG explicitly. Still, the following are
closely related secondary studies.

Mehmood et al. [64] performed a SMS regarding the use of aspect-oriented modeling
for code generation, which is not based on templates. They analyzed 65 papers mainly
based on three main categories: the focus area, the type of research, and the type of
contribution. The authors concluded that this synthesis technique is still immature. The
study shows that no work has been reported to use or evaluate any of the techniques
proposed.

Gurunule et al. [44] presented a comparison of aspect orientation and MDE tech-
niques to investigate how they can each be used for code generation. The authors found
that further research in these areas can lead to significant advancements in the develop-
ment of software systems. Unlike Mehmood et al. [64], they did not follow a systematic
and repeatable process.

Dominguez et al. [29] performed a systematic literature review of studies that focus
on code generation from state machine specifications. The study is based on a set of 53
papers, which have been classified into two groups: pattern-based and not pattern-based.
The authors do not take template-based approaches into consideration.

Batot et al. [10] performed a SMS on model transformations solving a concrete prob-

lem that have been published in the literature. They analyzed 82 papers based on a clas-

sification scheme that is general to any model transformation approach, which includes
model-to-text transformations. They conclude that concrete model transformations have
been pulling out from the research literature since 2009 and are being considered as
development tasks. They also found that 22% of their corpus solve concrete problems
using refinement and code synthesis techniques. Finally, they found that research in
model transformations is heading for a more stable and grounded validation.

There are other studies that attempted to classify code generation techniques. How-
ever, they did not follow a systematic and repeatable process. For example, Czarnecki et
al. [27] proposed a feature model providing a terminology to characterize model trans-
formation approaches. They distinguished two categories for model-to-text approaches:
those that are visitor-based and those that are template-based; the latter being in line with
Definition 1. The authors found that many new approaches to model-to-model transfor-
mation have been proposed recently, but relatively little experience is available to assess
their effectiveness in practical applications.

Rose et al. [74] extended the feature model of Czarnecki et al. to focus on template-
based model-to-text transformation tools. Their classification is centered exclusively on
tool-dependent features. Their feature model has been synthesized from a comparison
of six M2T tools. They identified four mandatory features and as many optional features
divided that characterize a M2T language. Like us, their goal is to help developers
when they are faced to choose between different tools. This study is close to the work
of Czarnecki in [27] but focuses only on a feature model for M2T. In our work, we
have implemented templates for specific metamodel patterns and we discuss about the

challenges and limitations and how to remedy to these for each tool.

10

2.6 Tools performance and metamodel pattern

There have also been many studies on model transformation tools performance.
However, most of them deal with other types of model transformations and do not in-
clude M2T transformations. Still, the following are closely related works.

Bergmann et al. [13] proposed a benchmark evaluation of incremental pattern match-
ing in graph transformations. They carried out various measurements to assess the per-
formance of the incremental pattern matcher of a graph transformation tool and identified
the key areas where its performance could be increased. The difference with our study
is that we evaluate TBCG tools performance without any benchmark.

The transformation tool contest papers [48, 72, 85] investigated and compared graph
transformation tools that participated in various transformation tool contests. The goal
of this type of paper is to help the reader gain an overview of the field and its tools. The
difference with our study is that we focus on the performance of M2T tools only while
in their case they investigate other model transformation tools.

Cho et al. [25] analyzed Domain Specific Modeling Language (DSML) concrete
syntax and identified their recurring problems such as the best way to design or evolve
a base metamodel if the concrete syntax is more complex. Finally they proposed three
metamodel design patterns as initial solutions to solve those problems. The main dif-
ference with our study is that we define the patterns from the point of view of the im-
plementation of the template. We focus on the potential impact that they can have in
implementing the dynamic part of the template while Cho et al.simply focus on the
construction of metamodels using design patterns and threat them as metamodel compo-

nents.

11

CHAPTER 3
SYSTEMATIC MAPPING STUDY OF TBCG

We propose a systematic mapping study of the literature to paint an interesting pic-
ture about the trends and uses of TBCG. In this chapter, we describe the research methods
and the paper selection process. We also report the results of our study and the explain
their implications. Furthermore, we discuss about the role of MDE in TBCG, the use of

the associate tools and the trends in TBCG.

3.1 Research Methods

In order to analyze the topic of TBCG, we conducted a SMS following the process
defined by Petersen et al. in [69] and summarized in Figure 3.1. The definition of
research question is discussed in Section 3.1.1. The search conduction is described in
Section 3.1.2. We present the screening of papers in Section 3.1.3. The relevant papers
are obtained based on the criteria presented in Section 3.1.3.1 and Section 3.1.3.2. The
keywording using abstracts step is described in Section 3.1.4. The last step corresponds
to assigning a value to each facet of the classification scheme.

Process Steps
Definition of : Keywording using Data Extraction and
Screening of Papers :
Research Question> Conduct Search g s > Abstracts Mapping Process

I T R T R

Classification
Scheme

Review Scope All Papers Relevant Papers Systematic Map

Outcomes

Figure 3.1: The systematic mapping process we followed

3.1.1 Objectives

The objective of this study is to obtain an overview of the current research in the area
of TBCG and to characterize the different approaches that have been developed. We

defined four research questions to set the scope of this study:

1. What are the trends in template-based code generation? We are interested to

know how this technique has evolved over the years.

2. What are the characteristics of template-based code generation approaches?

We want to identify major characteristics of this techniques and their tendencies.

3. To what extent are template-based code generation tools being used? We are

interested in identifying popular tools and their uses.

4. What is the place of MDE in template-based code generation? We seek to
determine whether and how MDE has influenced TBCG.

3.1.2 Selection of Source

We delimited the scope of the search to be regular publications that mention TBCG
as at least one of the approaches used for code generation and published between 2000—
2016. Therefore, this includes publications where code generation is not the main con-
tribution. For example, Buchmann et al. [19] used TBCG to obtain ATL code while their
main focus was implementing a higher-order transformation. Given that not all publica-
tions have the term “code generation” in their title, we formulated a query that retrieves
publications based on their title, abstract, or full text (when available) mentioning “tem-

plate” and ‘“code generation”, their variations, and synonyms. We used the following

query:

templatex AND "code generatx" OR "code synthesix"

13

The used query was validated with a sample of 100 pre-selected papers we knew

should be included.

3.1.3 Screening Procedure

Screening is the most crucial phase in a SMS [69]. We followed a two-stage screen-
ing procedure: automatic filtering, then title and abstract screening. In order to avoid the
exclusion of papers that should be part of the final corpus, we followed a strict screening
procedure. With four reviewers at our disposal, each article is screened by at least two
reviewers independently. Two other students and I worked on a sample of 88 papers.
When both reviewers of a paper disagree upon the inclusion or exclusion of the paper,
a physical discussion is required. If the conflict is still unresolved, an additional senior
reviewer is involved in the discussion until a consensus is reached. To determine a fair
exclusion process, a senior reviewer reviews a sample of no less than 20% of the ex-
cluded papers at the end of the screening phase, to make sure that no potential paper is

missed.

3.1.3.1 Inclusion criteria

A paper is included if it explicitly indicates the use of TBCG or if it proposes a
TBCG technique. We also include papers if the name of a TBCG tool appears in the

title, abstract, or content.

3.1.3.2 Exclusion criteria

Results from the search were first filtered automatically to discard records that were
outside the scope of this study: papers not in computer science, not in the software
engineering domain, with less than two pages of length (e.g., proceedings preface), not

peer-reviewed (e.g., white papers), not written in English, or not published between the

14

years 2000 and 2016. Then, papers were excluded through manual inspection based on
the following criteria:

— No code generation. There is no code generation technique used.

— Not template-based code generation. Code generation is mentioned, but the
considered technique is not template-based according to Definition 1.

— Not a paper. This exclusion criterion spans papers that were not caught by the
automatic filtering. For example, some papers had only the abstract written in
English and the content of the paper in another language. Additionally, there were
24 papers where the full text was not accessible online.

For the first two criteria, when the abstract did not give enough details about the code

generation approach, a quick look at the full text helped clear any doubts on whether to

exclude the paper or not. Reviewers were conservative on that matter.

3.1.4 Classification Scheme

There are generally two ways to construct the classification scheme [69, 76]. One
approach consists of extracting the classification scheme by analyzing the included pa-
pers and determining the important classification properties form the abstract, keywords
or content. Alternatively, one can construct a scheme using the general knowledge of
the field. In our study, we used a hybrid approach in which we combined our general
knowledge with the information extracted from the abstracts during the screening phase.
The classification scheme is used to classify all retained papers along different facets that
are of interest in order to answer our research questions. It helps analyzing the overall
results and gives an overview of the trends and characteristics of TBCG. The facets we

classified the corpus with are the following:

Template style: We characterize the style of the templates used in code generation

approach.

15

— Predefined: This template style is reserved for approaches where the template
used for code generation is defined internally to the tool. However, a subset
of the static part of the template is customizable to vary slightly the generated
output. This is, for example, the case for common CASE tools where there is
a predefined template to synthesize a class diagram into a number of program-
ming languages. Nevertheless, the user can specify what language construct to
use for association ends with a many cardinality, such as Array or ArrayList
for Java templates.

— Output-based: This style covers templates that are syntactically based on the
actual target output. In contrast with the previous style, output-based templates
offer full control on how the code is generated, both on the static and dynamic
parts. The generation logic is typically encoded in meta-code as in the example
of Figure 2.1.

— Rule-based: In this style, templates focus on computing the dynamic part with
the static part being implicit. The template lists declarative production rules that
are applied on-demand by the template engine to obtain the final target output.
For example, this is used to render the concrete textual syntax from the abstract

syntax of a model using a grammar.

Input type: This facet consists of the design-time and runtime inputs. We characterize
the language of the design-time input that is necessary to develop templates. We
also characterize the input given to the generator during the execution of a TBCG.
Generally, the run-time input is an instance that conforms to the design-time input.
— General purpose: for generic languages reusable across different domains that

are not programming languages, such as UML. Instances of a generic language
include the Ecore model of a particular class diagram.

— Domain specific: for languages targeted for a particular domain, such as the

16

metamodel of a DSL. Instances of a DSL include a Simulink model.

— Schema: for structured data definitions, such as XML schema definition or
database schema. Instances of data that follows a well-defined structure include
XML.

— Programming language: for well-defined programming languages. The run-

time input consists of a source code.

Output type: We characterize the artifacts output by the code generator. A paper may
be classified in more than one of the following categories.
— Source code: for executable code conforming to a specific programming lan-
guage.
— Structured data: for code that is not executable, such as HTML.

— Natural language: when plain text is generated.

Tool: We capture the tool or language used for TBCG. If a tool is not clearly identified
in a paper or the TBCG is programmed directly, we classify the tool as unspeci-
fied. We consider a tool to be popular when it is used in at least 1% of the papers.

Otherwise, we classify it in the other category.

MDE: We determine whether the part of the solution where TBCG 1is applied in the
paper follows MDE techniques and principles. A good indication is if the design-

time input is a metamodel.

Context: We determine where TBCG falls in the overall transformation process of
the approach. We already presented a typical workflow in Section 2.2. Code
generation is never the first step unless it is standalone. Otherwise, it is either

used as an intermediate step or it is the last step of a transformation process.

Application scale: We characterize the scale of the artifact on which the TBCG ap-
proach is applied. We distinguish between large scale applications, small scale,

or no application when the code generation was not applied on any example.

17

Application domain: We classify the general domain TBCG has been applied on. For

example, this includes Software engineering, Embedded systems, etc.

Orientation: We distinguish industrial papers, where at least one author is affiliated

to industry, from academic papers otherwise.

Publication type: We distinguish papers published in conference proceedings, as
journal articles, or other formats such as workshop proceedings or book col-

lections.

Venue type: We classify papers based on the where they have been published. We dis-
tinguish between general software engineering venues, venues specific to MDE,

and all other venue types.

3.2 Paper Selection

Table 3.1 summarizes the flow of information through the selection process of this

study. This section explains how we obtained the final corpus of papers.

Phase Number of papers
Collection

Engineering Village 4043
Scopus 932
SpringerLink 2671
Initial corpus 5131
Screening

Excluded during screening 4553
Included 578
Classification

Excluded during classification 99
Final corpus 481

Table 3.1: Evolution of paper corpus during the study process

18

3.2.1 Paper Collection

The paper collection step was done in two phases: querying and automatic duplicates
removal. There are several online databases that index software engineering literature.
For this study, we considered three main databases to maximize coverage: ENGINEER-
ING VILLAGE !, SCOPUS 2, and SPRINGERLINK 3. The first two cover typical software
engineering editors (IEEE XPLORE, ACM DIGITAL LIBRARY, ELSEVIER). However,
from past experiences [10], they do not include all of SPRINGER publications. We used
the search string from Section 3.1.2 to retrieve all papers from these three databases.
We obtained 7 646 candidate papers that satisfy the query and the options of the search
stated in Section 3.1.3.2. We then removed automatically all duplicates using EndNote

software. This resulted in 5 131 candidate papers for the screening phase.

3.2.2 Screening

Based on the exclusion criteria stated in Section 3.1.3.2, each candidate paper was
screened by at least two reviewers to decide on its inclusion. To make the screening
phase more efficient, we used a home-made tool [76]. After all the reviewers completed
screening the papers they were assigned, the tool calculates an inter-rater agreement
coefficient. In our case, the Cohen’s Kappa coefficient was 0.813. This high value
shows that the reviewers were in almost perfect agreement.

Among the initial corpus of candidate papers, 4 556 were excluded, 551 were in-
cluded and 24 received conflicting ratings.

During the screening, the senior reviewer systematically verifies each set of 100 re-
jected papers for sanity check. A total of 7 more papers were included back hence the

rejected papers were reduced to 4 549. Almost all cases of conflicts were about a dis-

1. https://www.engineeringvillage.com/
2. https://www.scopus.com/
3. http://link.springer.com/

19

agreement on whether the code generation technique of a paper was using templates or
not. These conflicts were resolved in physical meetings and 20 of them were finally
included for a total of 578 papers and 4 553 excluded.

Among the excluded papers, 52% were rejected because no code generation was
used. We were expecting such a high rate because terms such as “templates” are used
in many other fields, like biometrics. Also, many of these papers were referring to the
C++ standard template library [60], which is not about code generation. We counted
34% papers excluded because they were not using templates. Examples of such papers
are cited in Section 2.3. Also, more than a quarter of the papers were in the compilers
or embedded system domains, where programming the code generation phase is more
complex as it requires more computations compared to using a template mechanism.
Finally, 5% of the papers were considered as not a paper. In fact, this criterion was in

place to catch papers that escaped the automatic filtering from the databases.

3.2.3 Eligibility during Classification

Once the screening phase over, we thoroughly analyzed the full text of the remaining
578 papers to classify them according to our classification scheme. Doing so allowed us
to confirm that the code generation approach was effectively template-based according
to Definition 1. We encountered papers that used multiple TBCG tools: they either
compared tools or adopted different tools for different tasks. We classified each of these
papers as a single publication, but incremented the occurrence corresponding to the tools
referred to in the paper. This is the case of [32] where the authors use Velocity and XSLT
for code generation. Velocity generates Java and SQL code, while XSLT generates the
control code.

We excluded 99 additional papers. During screening, we detected situations where

the abstract suggested the implementation of TBCG, whereas the full text proved other-

20

wise. In most of the cases, the meaning of TBCG differed from the description presented
in Section 2.4. As shown in [77] the terms template-based and generation are used in
the context of networking and distributed systems. We also encountered circumstances
where the tool mentioned in the abstract requires the explicit use of another component
to be considered as TBCG, such as Simulink TLC, as in [67].

The final corpus considered for this study contains 481 papers and it is available in

Appendix II.

3.3 Evolution of TBCG

We start with a thorough analysis of the trends in TBCG in order to answer the first

research question.

3.3.1 General trend

Figure 3.2 reports the number of papers per year, averaging around 28. The general
trend indicates that the number of publications with at least one template-based code
generation method started increasing in 2002 to reach a first local maximum in 2005
and then remained relatively constant until 2012. This increase coincides with the early
stages of MDE and the first edition of the MODELS conference, previous called UML
conference. This is a typical trend where a research community gets carried away by the
enthusiasm of a new potentially interesting domain, which leads to more publications.
However, this does not represent the most prolific period for TBCG. In fact, in 2013 we
notice a significant peak with 2.4 times the average numbers of publications observed in
the previous years. Figure 3.2 then shows a sudden decrease in 2015.

Resorting to statistical methods, the high coefficient of variability and modified
Thompson Tau test indicate that 2013 and 2015 are outliers in the range 2005-2016,

where the average is 37 papers per year. The sudden isolated peak in 2013 is the result

21

60 -

of papers

50

40

30

20

10

O T w T w T w T \ T
2000 2002 2004 2006 2008

2010 2012 2014 2016

Figure 3.2: Evolution of papers in the corpus

of a special event or popularity of TBCG. The following decrease in the amount of pa-
pers published should not be interpreted as a decline in interest in TBCG, but that some
event happened around 2013 which boosted publications, and then it went back to the
steady rate of publication as previous years. In fact, in 2016 the standard deviation is

above the average.

3.3.2 Publications and venues

We analyzed the papers based on the type of publication and the venue of their publi-
cation. MDE venues account for only 22% of the publications, so are software engineer-
ing venues, while the majority (56%) were published in other venues. Table 3.II shows
the most popular venues that have at least five papers from the final corpus. These top
venues account for just more than a quarter of the total number of publications. Among

them, MDE venues account for 60% of the papers. MODELS #, SOSYM, and ECMFA ?

4. We grouped the UML conference with MODELS.
5. We grouped the ECMDA-FA conference with ECMFA.

22

are the three most popular venues with a total of 71 publications between them. This
is very significant given that the average is only 1.67 paper per venue with a standard
deviation of 2.63. Also, 43% of venues had only one paper using TBCG, which is the
case for most of the other venues.

The peak in 2013 was mainly influenced by MDE and software engineering venues.
However the drop in 2015 is the result of an accumulation of the small variations among
the other venues. Since 2014, MDE venues account for 10—12 papers per year, while
only 67 in software engineering.

As for the publication type, conference publications have been dominating at 64%.
Journal article account for 24% of all papers. Interestingly, we notice a steady increase

in journal articles, reaching a maximum of 15 in 2016.

3.4 Characteristics of Template-Based Code Generation

We examine the characteristics of TBCG using the classification scheme presented

in Section 3.1.4.

3.4.1 Template style

4%
72% 24%
Output-based Predefined Rule-based

Figure 3.3: Distribution of template style facet

As the stacked bar chart in Figure 3.3 illustrates, the vast majority of the publications
follow the output-based style. This consists of papers like [28], where Xpand is used

to generate workflow code used to automate modeling tools. There, it is the final output

23

sonuaA seyndod 1SON :I°€ 9[qel,

O

(459

oo o0 I~ >~

I
61
9¢
9¢

Q0UAIRJUOD)
90UAIJUOD)

Q0UAIRJUOD+[BUINO[

Q0UAIJUOD)
90UAIAJUOD)
Q0UAIRJUOD)
90UAIJUOD)
Q0UAIRJUOD)
90UAIAJUOD)

[eurnof
90UAIAJUOD)

‘3u9 "JJos
RELLTQ)
‘3u9 ")Jos
REDLTQ)
JAN
heliile)
‘3ud Jos
‘3u9 "JJos
JAdN
HAN
JAdN

(aSVNY) Suwaurduyg a1emijos o0 sayoeorddy [QAON JO uonenjeaqy

(2MD]) SuLIUISUT QoAA UO 90UIOJUO)) [BUOTIBUIIU]

(2SVy) SurouiSug a1em1jos parewiony

(VT0S]) UOTIBPI[EA pUEB UOIBOYLISA ‘SPOYIQA [eulIo] JO suonedrddy Surseroad|
(a1S) SunoouiSuy a8en3ue a1eMIJOS

(vs00]) suonesrddy pue 9ouarog euoneIndwo)) U0 9OUIJUO)) [BUOIIBUIU]
(30dD) 20uanradxy 29 s1doouo)) :Surwwer3olJ SANLISUAD)

(2SLLD) SuLeauIsuy aIem}jos ul sanbruyod], [eUONBWIOJSURL], pPUB 9AIJRISUAD)
(vawo4qg) suoneorddy pue suonepunod Sur[opojp uo souaIsjuo)) ueadoing
(WASOS) SuI[opoJA SWAISAS pue aI1em}jos

(STAAOIN) SWaSAS pue saen3ue] SULIQAUISUH UALI(] [OPOIA

saded #

ad £y uonedIqN 2 INUIA

ANUAA

24

target text that drives the development of the template. This high score is expected since
output-based style is the original template style for TBCG as depicted in Figure 3.4. This
style has always been the most popular style since 2000.

The predefined style is the second most popular. Most of these papers generate code
using a CASE tool, such as [39] that uses Rhapsody to generate code to map UML2
semantics to Java code with respect to association ends. Apart from CASE Tools, we
also classified papers like [84] as predefined style since the output code is already fixed
as HTML and the programmer uses the tags to change some values based on the model.
There is no other action that can be performed to further customize the final code. Each
year, around 28% of the papers were using the predefined style, except for a peak of
39% in 2005, given the popularity of CASE tools then. We found 19 publications that
used rule-based style templates. This includes papers like [45] which generates Java
code with Stratego from a DSL. A possible explanation of such a low score is that this is
the most difficult template style to implement. It had a maximum of two papers per year

throughout the study period.

3.4.2 Input type

General purpose languages account for almost half of the design-time input of the
publications, as depicted in Figure 3.5. UML (class) diagrams, which are used as meta-
models for code generation, are the most used for 87% of these papers as in [28] where
a class diagram is provided an design-time input to generate workflow. Other general
purpose languages that were used are, for example, the architecture analysis and design
language (AADL) [18] and feature diagrams [20]. The schema category comes second
with 21% of the papers. For example, a database schema is used as input at design-
time in [59] to generate Java for a system that demonstrates that template can improve

software development. Also, an XML schema is used in [41] as design-time input to

25

of papers

50 -
40
30
20
10

0 D S e S e
2000 2002 2004 2006 2008 2010 2012 2014 2016
+Qutput-based -+Predefined -<Rule-based

Figure 3.4: Template style evolution

48% 2% 20% .

General purpose Schema
Domain specific ® Programming Language

Figure 3.5: Design-time input distribution

produce C programs in order to implement an approach that can efficiently support all
the configuration options of an application in embedded systems. DSLs are almost at
par with schemata. They have been gaining popularity and gradually reducing the gap
with general purpose languages. For example in [21], a custom language is given as
the design input in order to generate C and C++ to develop a TBCG approach dedicated
to real-time systems. The least popular design-time input type is programming lan-
guage. This includes papers like [34] where T4 is used to generate hardware description
(VHDL) code for configurable hardware. In this case, the input is another program on
which the template depends.

Over the years, the general-purpose category has dominated the input type facet,

26

of papers

30 -
25
20
15

10

5

O T T T T
2000 2002 2004 2006 2008 2010
-=General purpose *Schema

<+-Domain Specific --Programming Language

T T T T T

2012 2014 2016

Figure 3.6: Design-time input evolution

as depicted in Figure 3.6. 2003 and 2006 were the only exceptions where schema ob-
tained slightly more publications. We also notice a shift from schema to domain-specific
design-time input types. Domain-specific input started increasing in 2009 but never
reached the same level as general purpose. Programming language input maintained a
constant level, with an average of 1% per year. Interestingly, in 2011, there were more
programming languages used than DSLs.

Run-time input follows the same trend as design-time input. This is expected since

run-time input is an instance of design-time input.

3.4.3 Output type

Figure 3.7 shows the distribution of output type facet. An overwhelming majority
of the papers use TBCG to generate source code. This includes papers like [24] where

Java code is generated an adaptable access control tool for electronic medical records.

27

3%
81% 16%

Source code = Structured data ® Natural language

Figure 3.7: Distribution of output type facet

Java and C are the most targeted programming languages with respectively 69% and
19% of the time. Writing a program manually often requires proved abilities especially
with system and hardware languages, such as VHDL [17]. This is why 10% of these
papers generate low level source codes. Generation of structured data includes TBCG
of mainly XML and HTML files. For example [36] produces both HTML and XML as
parts of the web component to ease regression testing. Interestingly, we were able to find
13 papers that generate natural language text (in English). For example in [79], the
authors present an automatic technique for identifying code fragments that implement
high level abstractions of actions and expressing them as a natural language description.
In addition, we found that around 4% of the papers generate combinations of at least two
output types. This includes papers such as [86] that generate both C# and HTML from a
domain-specific model and [28] that produce Java as well as natural language text for a
system that provides workflow and automation tools for modeling.

Structured data and natural language output remained constant over the years, unlike

source code which follows the general trend.

3.4.4 Application scale

As depicted in Figure 3.8, most papers applied TBCG on large scale examples. This
result indicates that TBCG is a technique which scales with larger amounts of data.

This includes papers like [56] that uses Acceleo to generate hundreds of lines of aspect-

28

5%
63% 32%

Large scale Small scale No application

Figure 3.8: Distribution of application scale facet.

oriented programming code. Small scale obtains 32% of the papers. This is commonly
found in research papers that only need a small and simple example to illustrate their
solution. This is the case in [47] in which a small concocted example shows the gener-
ation process with the Epsilon Generation Language (EGL) [57]. No application was
used in 5% of the publications. This includes papers like [31] where authors just men-
tion that code synthesis is performed using a tool named Mako-template. Even though
the number of publications without an actual application is very low, this demonstrates
that some authors have still not adopted good practice to show an example of the imple-
mentation. This is important, especially when the TBCG approach is performed with a
newly developed tool.

While large-scale applications follow the general trend of papers, the other two cat-

egories remained constant over the years.

3.4.5 Context

68% 17% 15%

Standalone Last Intermediate

Figure 3.9: Distribution of context facet.

29

The distribution of context facet is presented in Figure 3.9. TBCG was used most of
the time standalone, such as in [84]. The other two classes last and intermediate obtain
respectively 18% and 15% of the papers. As an example, TBCG is an intermediate step
in [79] where the generated algorithm is given as one of the inputs of an extraction task.
TBCG is the last step of a process in [37] that starts with the execution of the various
tasks of an integration system and ends with the generation of the final source code.
Most papers only focus on the code generation part but this may have been a part of a

bigger project.

3.4.6 Orientation

A quarter (24%) of the papers in the corpus are authored by a researcher from indus-
try. The remaining 76% are written only by academics. This is a typical distribution
since industrials tend to not publish their work. This result shows that TBCG is used in
industry as in [51]. Industry oriented papers have gradually increased since 2003 until

they reached a peak in 2013.

3.4.7 Application domain

The tree map in Figure 3.10 highlights the fact that TBCG is used in many differ-
ent areas. Software engineering obtains more than half of the papers with 55% of the
publications. We have grouped in this category other related areas like ontologies, infor-
mation systems or software product lines. This is expected given that the goal of TBCG
is to synthesize software applications. For example, the work in [12] uses the Rational
CASE tool to generate Java programs in order to implement an approach that transforms
UML state machine to behavioral code. The next category is embedded systems which
obtains 13% of papers. Embedded systems often require low level hardware code diffi-

cult to write. Some even consider code generation to VHDL as a compilation rather than

30

S
pow-org

1008 urewop uonesrdde jo uonnqsi () ¢ N1

31

automatic programming. In this category, we found papers like [30] in which Velocity
is used to produce Verilog code to increase the speed of simulation. Web technology
related application domains account for 8% of the papers. It consists of papers like [75]
where the authors worked to enhance the development dynamic web sites. Networking
obtains 4% of the papers, such as [22] where code is generated for a telephony service
network. Compiler obtains 1% of the papers, such as [63] where a C code is gener-
ated and optimized for an Intel C compiler. It is interesting to note that several papers
were applied in domains such as bio-medicine [70], artificial intelligence [37], and
graphics [71].

We combined application domains with a single paper into the other category. This
regroups domains such as agronomy, education, and finance. It is important to mention
that the domain discussed in this category corresponds to the domain of application of

TBCG employed, which differs from the publication venue.

3.5 Relations between Characteristics

To further characterize the trends observed in Section 3.4, we identified significant

and interesting relations between the different facets of the classification scheme.

3.5.1 Statistical correlations

A Shapiro-Wilk test of each category determined that the none of them are normally
distributed. Therefore, we opted for the Spearman two-tailed test of non-parametric
correlations with a significance value of 0.05 to identify correlations between the trends
of each category. The only significantly strong correlations we found statistically are
between the two input types, and between MDE and input type.

With no surprise, the correlation between run-time and design time input is the

strongest among all, with a correlation coefficient of 0.944 and a p-value of less than

32

0.001. This concurs with the results found in Section 3.4.2. An example is when the
design-time input is UML, the run-time input is always a UML diagram as in [70]. Such
a strong relationship is also noticeable in [40] with programming languages and source
code, as well as in [37] when a schema design is used for structured data. As a result, all
run-time input categories are correlated to the same categories as for design-time input.
We will therefore treat these two facets together as input type.

There is a strong correlation of coefficient of 0.738 and a p-value of less than 0.001
between input type and MDE. As expected, more than 90% of the papers using general

purpose and domain specific inputs are follow the MDE approach.

3.5.2 Other interesting relations

We also found weak but statistically significant correlations between the remaining

facets. We discuss the result here.

3.5.2.1 Template style

Figure 3.11 shows the relationship between template style, design-time input, and
output types. We found that for the predefined templates, there are twice as many papers
that use schema input than domain specific. However, for output-based, domain specific
inputs are used slightly more often. We also notice that general purpose input is never
used with rule-based templates. The output type follows the same general distribution
regardless of the template style.

We found no rule-based style approach that has validated the TBCG component in
their paper. User studies and formal validations were only performed on approaches
using output-based templates.

All rule-based style approaches have included a sample application. Meanwhile, the

proportion of small scale was twice more important for predefined templates (51%) then

33

Design-time input type Output type

Rule-based
13 3 3 17 2
Predefined & o O o &
62 13 24 18 100 15
Outputbased | L 1 @ |
A i W I
16 27 271
=2 22 8 5@ 38 & EY
5255 5 g2 =% £85 EF
5288 3 T8 A 5 2%
Oanara «n § g g
N

Figure 3.11: Relation between template style (vertical) and input/output types (horizon-
tal)

for output-based (27%).

We found that popular tools were used twice more often on output-based templates
(58%) than on predefined templates (23%). Rule-based templates never employed a tool
that satisfied our popularity threshold, but used other tools such as Stratego.

We found that all papers using a rule-based style template do not follow an MDE ap-
proach. On the contrary, 70% of the output-based style papers and 56% of the predefined
ones follow an MDE approach.

We noted that regardless of the template style, TBCG is used in an intermediate step
or at the last step equally often.

Finally, we found that for each template style, the number of papers authored by an

industry researcher fluctuated between 22-30%.

34

3.5.2.2 Input type

Natural | |
language] T
guag 5 1 1]
Structured PN o |
data A 4 ' 4 @ A4
34 16 22 8

Source ‘ ‘*\‘ M o
code \\\ /"J \\\ - //‘ \\\ /,//'J \ 4

81 0 36

191

- O (=B <)

£ 2 s B = g0 5p

8 2 g D O = ‘g

55 3 2 5 A &

O a A7 % g

Figure 3.12: Relation between output (vertical) and design-time input (horizontal) types
showing the number of papers in each intersection

The bubble chart in Figure 3.12 illustrates the tendencies between input and output
types. It is clear that source code is the dominant generated artifact regardless of the
input type. Source code is more often generated from general purpose and domain spe-
cific inputs than from schema and programming languages. Also, the largest portion of
structured data is generated from a schema input. Finally, the most generated natural
language text is when source code is provided as input.

Moving on to input type and application scale, we found that small scales are used
40% of the time when the input is a programming language. The number of papers with

no sample application is very low (5%) regardless of the template style. Finally, 74%

35

of papers using large scale applications use a domain specific input, which is slightly
higher than those using a general purpose input with 71%.

Next, when we compared input type to validation, we found that no paper using
a DSL or a programming language used any formal method of validation. 22% of the
papers using a DSL as input used a benchmark to validate their approach, which is higher
than the 19% of the papers using general purpose languages. Also, we found that 77%

of the papers using a general purpose language as input did not validate their approach.

3.5.2.3 Output type

As we compared output type to orientation, we found that industrials generate slightly
more source code than academics: 89% vs. 80%. However, academics generate more
structured data and natural language than industrials: 18% vs. 6% and 3% vs. 1%

respectively.

3.5.2.4 Application scale

We found that 65% of the papers without application are from the academy. Between
application scale and tools, we found that 74% of the papers that make use of a popular
tool used large scale application to illustrate their approach. Also, 62% of the papers
using unpopular tools ¢ use large scale applications. Small scale is likely to be used in

unpopular tools rather than popular tools.

3.6 Template-based Code Generation Tools

Figure 3.13 shows that half of the papers used a popular TBCG tool, whereas the

other half used less popular tools (the other category), did not mention any TBCG tool,

6. Refers to the union of other and unspecified categories of the tool facet.

36

= Named MDE Unspecified
Other = Named non MDE

Figure 3.13: Tools categories

or implemented the code generation directly for the purpose of the paper. We also see

that more than half of the popular tools do not follow MDE approaches.

XSLT 12
33 Rational
10

3.6.1 Popular tools

Free Rhap
Marker S0dY Xtend
6 5 5

Figure 3.14: Popular tools

Figure 3.14 shows the distribution of popular tools used in at least 1% of the papers,
1.e., five papers. Acceleo and Xpand are the most popular with respectively 16% and
15%of the papers using them. Their popularity is probably due to their simple syntax
and ease of use [43] and the fact that they are MDE tools [51]. They both have an
OCL-like language for the dynamic part and rely on a metamodel specified in Ecore as
design-time input.

EGL also has a structure similar to the other model-based tools. It is natively inte-

37

grated with languages from the Epsilon family, thus relies on the Epsilon Object Lan-
guage for its dynamic part. MOFScript is another popular model-based tool that only
differs in syntax from the others. Xtend?2 is the least used popular model-based tool. It
is both an advanced form of Xpand and a simplified syntactical version of Java.

XSLT is the third most popular tool used. It is suitable for XML documents only.
Some use it for models represented in their XMI format, as it is the case in [3]. XSLT
follows the template and filtering strategy. It matches each tag of the input document
and applies the corresponding template.

JET [58] and Velocity [30] are used as often as each other on top of being quite
similar. The main difference is that JET uses an underlying programming language
(Java) for the dynamic part. In JET, templates are used to help developers generate a
Java class that implements the code generation.

StringTemplate [4] has its own template structure. It can be embedded into a Java
code where strings to be output are defined using templates. Note that all the tools
mentioned above use an output-based template style.

The most popular CASE tools for TBCG are Fujaba [23], Rational [16], and Rhap-
sody [8]. One of the features they offer is to generate different target languages from
individual UML elements. All CASE tools (even counting the other category) have been
used in a total of 39 papers, which puts them at par with Xpand. CASE tools are mostly
popular for design activities; code generation is only one of their many features. CASE
tools have a predefined template style.

Simulink TLC is the only rule-based tool among the most popular ones. As a rule-
based approach, it has a different structure compared to the above mentioned tools. Its
main difference is that the developer writes the directives to be followed by Simulink in
order to render the final C code from S-functions.

We notice that the most popular tools are evenly distributed between model-based

38

tools (Acceleo, Xpand) and code-based tools (JET, XSLT). Surprisingly, XSLT, which
has been around the longest, is less popular than Xpand. This is undoubtedly explained

by the advantages that MDE has to offer [7, 49].

3.6.2 Unspecified and other tools

As depicted in Figure 3.13, 27% of the papers did not specify the tool that was used,
as in [38] where the authors introduce the concept of a meta-framework to resolve issues
involved in extending the life of applications. Furthermore, 24% of the papers used
less popular tools, present in less than five papers, such as T4 [34] and Cheetah [63], a
python powered template mainly used for web developing. Like JET, Cheetah templates
generate Python classes, while T4 is integrated with .NET technology. Some CASE tools
were also in this category, such as AndroMDA [66]. Other examples of less popular tools
are Groovy template [36], Meta-Aspect-J [5], and Jinja2 [46]. The fact that new or less
popular tools are still abundantly used suggests that research in TBCG is still active with

new tools being developed or evolved.

3.6.3 Trends of tools used

Each one of these tools had a different evolution over the years. Unspecified tools
were prevailing before 2004 and then kept a constant rate of usage until a drop since
2014. We notice a similar trend for CASE tools that were the most popular in 2005
before decreasing until 2009. They only appear in at most three papers per year after
2010. The use of the most popular tool, Xpand, gradually increased since 2005 to reach
the peak in 2013 before decreasing. The other category maintained an increasing trend
until 2014. Yet, a few other popular tools appeared later on. For example, EGL started
appearing in 2008 and had its peak in 2013. Acceleo appeared a year later and was the

most popular TBCG tool in 2013-2014. Finally, MOFScript had no more than a paper

39

per year since 2005. StringTemplate and T4 were used scarcely since 2006 and 2009

respectively.

3.6.4 Characteristics of tools

We have also analyzed each popular tool with respect to the characteristics presented
in Section 3.4. As mentioned earlier, most of the popular tools implement output-based
template technique except the CASE tools which are designed following the predefined
style.

Tools such as Acceleo, Xpand, EGL, MOFScript and 97% of the CASE tools papers
are only used based on an MDE approach, given that they were created by this commu-
nity. Nevertheless, there are tools that were never used with MDE principles, like T4.
Such tools can handle a program code or a schema as metamodel but have no internal
support for modeling languages. Moreover, the programmer has to write his own stream
reader to parse the input, but they allow for a broader range of artifacts as inputs that do
not have to be modeled explicitly. A few code-based tools provide internal support for
model-based approaches. For instance, Velocity, XSLT, and StringTemplate can handle
both UML and programmed metamodel as design-time input.

A surprising result we found is that EGL is the only MDE tool that has its papers
mostly published in MDE venues like SOSYM, MODELS, and ECMFA. All the other
tools are mostly published in other venues like ICSSA, whereas software engineering
venues, like ASE or ICSE, and MDE venues account for 26-33% of the papers for each
of the rest of the MDE tools.

CASE tools, MOFScript, Velocity, and Simulink TLC mostly generate program
code. The latter is always used in the domain of embedded systems. Papers that use
StringTemplate do not include any validation process, so is Velocity in 93% of the pa-

pers using it. XSLT has been only used to generate structured data as anticipated.

40

Other tools are the most used TBCG in the industry. This is because the tool is often
internal to the company [ID:208]. Among the most popular tools, Xpand is the most in

the industry.

3.7 MDE and Template-based Code Generation

Overall, 64% of the publications followed MDE techniques and principles. For ex-
ample in [83], the authors propose a simulation environment with an architecture that
aims at integrating tools for modeling, simulation, analysis, and collaboration. As ex-
pected, most of the publications using output-based and predefined techniques are clas-
sified as model-based papers. The remaining 36% of the publications did not use MDE.
This includes all papers that use a rule-based template style as reported in Section 3.5.
For example, the authors in [20] developed a system that handles the implementation of
dependable applications and offers a better certification process for the fault-tolerance

mechanisms.

45 ~
40
35
30
25
20
15
10

5

0

2000

of papers

T T T T T T T T

2004 2006 2008 2010 2012 2014 2016

+-Using MDE --Not using MDE

2002

Figure 3.15: Evolution of the MDE facet

41

As Figure 3.15 shows, the evolution of the MDE category reveals that model-based
approach started overpassing code-based techniques in 2005, except for 2006. It in-
creased to reach a peak in 2013 and then started decreasing as the general trend of the
corpus. Overall, model-based techniques for TBCG have been dominating other tech-
niques in the past 12 years.

We also analyzed the classification of only MDE papers with respect to the charac-
teristics presented in Section 3.1. We only focus here on facets with different results
compared to the general trend of papers. We found that only half of the total number
of papers using unspecified and other tools are model-based papers. We only found one
paper that uses a programming language as design-time input with MDE [33]. This
analysis also shows that the year 2005 clearly marked the shift from schema to domain-
specific design-time inputs, as witnessed in Section 3.4.2. Thus after general purpose,
which obtains 69% of the publications, domain specific accounts for a better score of
26%, while schema obtains only 4%. With respect to the run-time category, the use of
domain-specific models increased to reach a peak in 2013. As expected, no program
code is used for MDE papers, because MDE typically does not consider them as models,
unless a metamodel of the programming language is used.

Interestingly, MDE venues are only the second most popular after other venues for
MDE approaches. Finally, MDE journal papers maintained a linear increase over the
years, while MDE conference papers had a heterogeneous evolution similar to the gen-

eral trend of papers.

42

3.8 Discussion

3.8.1 RQ1: What are the trends in TBCG?

The statistical results from this significantly large sample of papers clearly suggest
that TBCG has received sufficient attention from the research community. The commu-
nity has maintained a production rate in-line with the last 11 years average, especially
with a constant rate of appearance in journal articles. The only exceptions were a sig-
nificant boost in 2013 and a dip in 2015. The lack of retention of papers appearing in
non MDE may indicate that TBCG is now applied in development projects rather than
being a critical research problem to solve. Also, conference papers as well as venues out-
side MDE and software engineering had a significant impact on the evolution of TBCG.
Given that TBCG seems to have reached a steady publication rate since 2005, we can

expect contributions from the research community to continue in that trend.

3.8.2 RQ2: What are the characteristics of TBCG approaches?

Our classification scheme constitutes the main source to answer this question. The
results clearly indicate the preferences the research community has regarding TBCG.
Output-based templates have always been the most popular style from the beginning.
Nevertheless, there have been some attempts to propose other template styles, like the
rule-based style, but they did not catch on. Because of its simplicity to use, the pre-
defined style is probably still popular in practice, but it is less mentioned in research
papers. TBCG has been used to synthesize a variety of application code or documents.
As expected, the study shows that high-level language inputs have prevailed over any
other type. Specifically for MDE approaches to TBCG, the input to transform is mov-
ing from general purpose to domain-specific models. Academic researchers have con-

tributed most, as expected with a literature review, but we found that industry is actively

43

and continuously using TBCG as well. The study also shows that the community is
moving from large-scale applications to smaller-sized examples in research papers. This
concurs with the level of maturity of this synthesis approach. The study confirms that
the community uses TBCG to generate mainly source code. This trend is set to continue
since the automation of computerized tasks is continuing to gain ground in all fields.
Finally, TBCG has been implemented in many domains, software engineering and em-
bedded systems being the most popular, but also unexpectedly in unrelated domains,

such as bio-medicine and finance.

3.8.3 RQ3: To what extent are TBCG tools being used?

In this study, we discovered a total of 77 different tools for TBCG. Many studies
implemented code generation with a custom-made tool that was never or seldom reused.
This indicates that the development of new tools is still very active. MDE tools are the
most popular. Since the research community has favored output-based template style,
this has particularly influenced the tools implementation. This template style allows for
more fine-grained customization of the synthesis logic which seems to be what users
have favored. This particular aspect is also influencing the expansion of TBCG into
industry. Well-known tools like Acceleo, Xpand and Velocity are moving from being
simple research material to effective development resources in industry. Finally, the
study shows that there has been a shift from CASE tools to output-based tools since

2005.

3.8.4 RQ4: What is the place of MDE in TBCG?

All this analysis clearly concludes that the advent of MDE has been driving TBCG
research. In fact, MDE has led to increase the average number of publications by a factor

of four. There are many advantages to code generation, such as reduced development

44

effort, easier to write and understand domain/application concepts and less error-prone
[7]. These are, in fact, the pillar principles of MDE and domain-specific modeling [52].
Thus, it is not surprising to see that many, though not exclusively, code generation tools
came out from the MDE community. As TBCG became a commonplace in general, the
research in this area is now mostly conducted by the MDE community. Furthermore,
MDE has brought very popular tools that have encountered a great success, and they are
also contributing to the expansion of TBCG across industry. It is important to mention
that the MDE community publishes in specific venues like MODELS, SOSYM, or ECMFA
unlike other research communities where the venues are very diversified. This resulted

in three MDE venues at the top of the ranking.

3.9 Threats to validity

The results presented in this systematic mapping study have depended on many fac-

tors that could potentially limit the study.

3.9.1 Construction validity

Threats to construction validity deals with the problems related to the design of the
research method and especially to identifying relevant primary studies.

In a strict sense, our findings are valid only for our sample that we collected from
2000-2016. This leads to determine whether the primary studies used in our survey
are a good representation of the whole population. From Figure 3.2, we can observe
that our sample can be attributed as a representative sample of the whole population. In
particular, the average number of identified primary studies per year is 28 with a standard
deviation of 15.76. A more systematic selection process would have been difficult to
be exhaustive about TBCG. We selected three of the major online databases. These

databases are complementary and we are confident that they index a maximum number

45

of relevant publications. We chose to obtain the best possible coverage at the cost of
duplications.

Another potential limitation is the search query. It is difficult to encode a query that
is restrictive enough to discard unrelated publications but at the same time retrieves all
the relevant ones. In order to obtain a satisfactory balance, we included synonyms and
captured possible declinations. Our search query could suggest a restriction of the type
of output. However, the size of the final corpus we classified is about ten times larger
than other SMS related to code generation (see Section 2.5). We are therefore confident
that the final corpus is a representative subset of all relevant publications on TBCG.

Finally, given that we obtained a sufficiently large final corpus for typical SMS, we
did not perform snowballing which may have resulted in collecting additional papers

omitted by the search engines.

3.9.1.1 Internal validity

A potential limitation is related to data extraction. It is difficult to extract data from
relevant publications, especially when the quality of the paper is low, when code gen-
eration is not the primary contribution of the paper, or when critical information for the
classification is not directly available in the paper. For example in [62], the authors only
mention the name of the tool used to generate the code. In order to mitigate this threat,
we had to resort to searching for additional information about the tool: reading other
publications that use the tool, traversing the website of the tool, installing the tool, or
discussing with the tools experts.

Another possible threat is the screening of papers based on inclusion and exclusion
criteria that we defined before the study was conducted. During this process, we ex-
amined only the title, the abstract. Therefore, there is a probability that we excluded

relevant publications such as [22], that do not include any TBCG terms. In order to mit-

46

igate this threat, whenever we were unsure whether a publication should be excluded or
not we conservatively opted to include it. However, during classification when reading

the whole content of the paper, we may still have excluded it.

3.10 External validity

External threats to validity cope with problems that might arise during conclusion
generalization. The results we obtained are based on TBCG only. Even though our clas-
sification scheme includes facets like validation, orientation, application domain, that
are not related to the area, we followed a topic based classification. The core charac-
teristics of our study are strictly related to this particular code synthesis technique. We
have defined characteristics like template style and the two levels of inputs that we be-
lieve are exclusive to TBCG. Therefore, the results cannot be generalized to other code

generation techniques mentioned in Section 2.3.

3.10.0.2 Conclusion validity

Threats to conclusion validity (or reliability) deal with problems that might arise
when deriving conclusions and whether the SMS can be repeated. Our study is based on
a large number of primary studies. This helps us mitigate the potential threats related to
the conclusions of our study. A missing paper or a wrongly classified paper would have
a very low impact on the statistics compared to a smaller number of primary studies. In
addition, as a senior reviewer did a sanity check on the rejected papers, we are confident
that we did not miss a significant number of papers. Hence, the chances for wrong
conclusions are small. Replication of this study can be achieved as we provided all the
details of our research method in Section 3.1. Also, our study follows the methodology

described in [69].

47

CHAPTER 4

COMPARISON OF THE EXPRESSIVENESS AND PERFORMANCE OF
TBCG TOOLS

In this chapter, we compare the expressiveness power and performance of the nine
most popular tools spanning the different technological approaches. We also evaluate the
expressiveness based on common metamodel patterns and evaluate the performance on
a range of models that conform to a metamodel composed by the combination of these

patterns.

4.1 Metamodel patterns for template implementation

The degree of complexity of a template lies in the implementation of its dynamic
part. Templates are defined based on the design-time input: the schema of the input
or metamodel for model-based tools. To evaluate the expressiveness of TBCG tools,
we identify patterns which are common structures found in metamodels that drive the
implementation of the dynamic part of the template. We present each pattern in its
simplest generalized form of occurrence. Note that their actual use in a metamodel
may rely on one of its variants. Patterns can be combined arbitrarily to make up more
complex structures. They are described in UML class diagram notation augmented with
an annotation to identify variants.

To identify these patterns, we analyzed a plethora of metamodels that were used for
a template-based model-to-text transformation. We investigated metamodel reposito-
ries, such as the metamodel zoo from AtlanMod [2] and ReMoDD [ReM], as well as
known metamodel design patterns [25]. Additionally, we analyzed the systematic map-

ping study described in Chapter 3. We also based ourselves on industrial experiences

=)

for generating code for web applications and reporting from large metamodels of legacy
code comprising nearly 1 000 elements each [78].

The following list of patterns is meant to be minimal, not complete. All template
code snippets in this section are based on a common running example of invoice produc-

tion, for which the metamodel is depicted in Figure 4.5.

4.1.1 Pattern 1: Navigation

... elements

Context j¢&———| Target

.1‘.
=1 =
B

*as’

Figure 4.1: Navigation pattern

The simplest metamodel pattern is a navigable relation between two classes as de-
picted in Figure 4.1. From a template implementation point of view, this basic pattern is
often used to access the data of a target class related to the class of the current Context
class. For example, Listing 4.1 shows an XSLT template accessing the attributes of the

class Metadata (lines 3-5) from the Invoice class (line 2).

<xsl:template match="Model">

<xsl:for-each select="invoice">

Transaction date: <xsl:value-of select="meta/Q@date"/>
Vendor name: <xsl:value-of select="meta/@cashier"/>
</xsl:for-each>

</xsl:template>

Listing 4.1: XSLT template to access metadata of an invoice

The different variants of this pattern are circled with dotted lines. One variant de-
pends on the cardinality of the association end: either one or a list of target objects is ac-
cessible from the Context class. This influences the syntax of the access to the Target

class. Some TBCG tools treat associations (references) and compositions (containments)

49

differently. Hence another variant is based on the type of the relation. Composing this

pattern with itself allows to access multiple target classes from the Context class.

4.1.2 Pattern 2: Variable dependency

Context |i elements | _Target
X ooy

I
I
I
I
hnccccccccmcccccccnan.

Figure 4.2: Variable dependency pattern

Considering the pattern in Figure 4.2, the implementation of a template often requires
the developer to output a value that depends on variables present in other contexts. Here,
the expressiveness of the dedicated language for the dynamic part would have an impact
on the way the template is written. It is often needed to rely on external components
such as other programming languages when the dedicated language for the dynamic
part is limited. Listing 4.2 shows how calculations are implemented in Velocity. First,
the global variables are initialized (lines 1-2). Then we calculate the subtotal value
by adding the price value for each of the PricedItemn class instances (line 7). The

printed total price is calculated based on the taxRate (lines 9-10).

1 #set ($Stotal = 0)

2 #set ($Sd = "$")

3 #foreach ($item in S$invoice.items)
4 #set (Stotal = Stotal + S$item.price)
5 Name: S$item.name

6 Type: S$item.type

7 Price: S$item.price $d #end

§ Tax: $invoice.taxRate %

9 #set (Stotal = Stotal * (1 + $invoices.taxRate / 100)

0 Total: S$total $d

Listing 4.2: Velocity template to compute the total of the invoice

50

There are three variants of this pattern. One variant when the value depends on
an attribute present in the same Context class. Another variant is when parts of the
computation require data from one. The last variant is when these parts require more
related classes.

The main difference between the first two patterns is that Pattern 4.1.2 is about the
computation of values that depend on variables, whereas Pattern 4.1.1 is simply used to

output the data of a class that is not in the current Context class.

4.1.3 Pattern 3: Polymorphism

L3 "
. .

elements ;{abstract} s

Context " supsréiass

T

SubClass

Figure 4.3: Polymorphism pattern

The presence of an inheritance relation between two classes in the metamodel is
an attractive opportunity to reuse parts of a template and hence avoid code duplica-
tion. Given the pattern in Figure 4.3, the developer can implement the template for an
output based on the super class and only implement what varies for the subclass. For
example, Listing 4.3 shows an Acceleo template that implements polymorphism. The
generateItems template is called (line 3) from the Invoice context (line 2). The

template engine then executes the appropriate template based on the argument type (lines

I [template public generatelInvoice (invoice : Invoice, model : Model)]
2 [for (item : Item | invoice.items)]

51

[generateltems (item) /]
[/for]

[/template]

[template public generateltems (elements :

Name: [elements.name/]
Type: [elements.type/]

[/template]

[template public generateltems (elements :

Name: [elements.name/]
Type: [elements.type/]
Price:[elements.price/]$

[/template]

Item)]

PricedItem)]

Listing 4.3: Acceleo template for polymorphism

A variant of this pattern is when the super class is abstract: some tools do not allow

to define a template in the context of an abstract type.

4.1.4 Pattern 4: Recursion

““““

elements

Context

Figure 4.4: Recursion pattern

This pattern consists of a recursive relation of a class. From the usability point of

view, the developer can reapply the template on objects of the same type in a transparent

way. It requires the template definition block to be encapsulated within the Context

class. The source domain describes the way in which a language allows the specification

of the elements of the source model(s) on which a template will be executed [74]. It will

have an impact on how the developer writes the template.

52

)

w

[~

Listing 4.4 shows an example of recursion in Xtend2. The getCategoryLevel
definition block is called for the first time (line 2) to find the appropriate level of the
category of the invoice. Lines 11-13 depth-first searches recursively the corresponding

category among the descendants of the category reference.

def generatelnvoice (Invoice invoice, Model model) {

rrr

«getCategoryLevel (model.rootCat, invoice.category, 0, sum, invoice.taxRate)»

rrr

}

def getCategory (Category catRef, Category cat, int index, long total, int taxRate) {
e

«IF cat.name.equals (catRef.name)»

«IF index > 30»

Discount: 15%

Tax: «taxRate»%

Total: «total % (1 + taxRate / 100)»$

«ELSE»
Discount: 10%

Tax: «taxRate»%

Total: «total * (1 + taxRate / 100)»$

«ENDIE»

«ENDIE»

«FOR subCat : catRef.subs»

«generateCategory (subCat, cat, index+1l, total, taxRate)»
«ENDE'OR»

rrr

}

Listing 4.4: Xtend2 code for recursion

The only variant of this pattern is the cardinality of the association end which influ-

ences the traversal strategy (depth-first vs. breadth-first).

53

4.1.5 Combination of patterns

All the metamodels we analyzed (c.f. Section 4.1) exhibit combinations of instances
of these four patterns.. For example, the polymorphism pattern can be combined with the
navigation pattern to form a metamodel containing a super class that contains a subclass
that is linked to another class through a navigable relation. To compare the different
tools on the same example, we created a minimal class diagram that combines all four
patterns, as depicted in Figure 4.5. This will be the design-time input we will use to

specify the code generation templates.

1 : x
Model [¢——>| Invoice [¢—> {?I%sg;%t}
INVOICe i YRate : int| '€MS _
name : string
rootCat category type : string

1 1Y 1\ meta N\

Category Metadata

name : string \@m prorT— Pricedltem
ate : string

** cashier : strin price : int
subs 9

Figure 4.5: Invoice metamodel

This metamodel describes the production of invoices in a given store. The invoice
shows the purchased items and their prices which are printed within the context of the
Invoice class instance. The total price is calculated by adding the value of the attribute
price of each PricedItem class instance. In addition, the total price depends on the
taxRate and the discount rate. The discount rate is calculated depending on the depth
level of the Category class instance whereas the taxRate value is fixed. The total

price is printed along with all the other computed values in the output. In this running

54

example, all templates produce an output similar to the sample shown in Listing 4.5

rendering an invoice with three priced items and a second level discount category.

Store: FooBar

Cashier: Alice

Transaction date: Sun Aug 13 00:00:00 EDT 2017
Kok K oKk Kk Kk kK kK kK ok Kk Rk kK kK kK kK
Name: Shoes

Type: Clothing and Shoes

Price: 100$

Name: Laptop

Type: Electronics

Price: 500$

Name: Pizza

Type: Food

Price: 20$%

Kok K oKk Kk Kk kK kK kK ok Kk Kk Rk kK kK kK
Category: Student

Discount: 10%

Tax: 15%

Total: 641.17$

Listing 4.5: Sample output

4.2 Tools expressiveness

In this paper, we compare the nine most popular template-based code generation
tools for which the template follows the style of the output. The comparison of the tools
is based on a qualitative evaluation of how the developer must implement the template

corresponding to each pattern.

4.2.1 Code generation tools

We classify the tools into two groups: those that are model-based and those that are

code-based. Table 4.1 synthesizes the main characteristics of each tool. The dedicated

55

language indicates the language used to express the dynamic part of the template. The
input type is the type of design-time input accepted by the template. The source domain
is defined in Section 4.1.3. The execution mode of the template refers to the different
ways to execute the template file to produce the output. The last two columns of the table
influence the implementation strategy of templates: whether they are based on block
definition per type and whether custom functions internally defined within a template

can be invoked from templates.

4.2.1.1 Model-based tools

Model-based tools rely on a metamodel as design-time input and on current main-
stream MDE technologies. For example, all those listed rely on the Eclipse Modeling
Framework [81], where models are specified in Ecore. The source domain of the tem-
plates is therefore a metamodel element (an EClass). The template of all model-based
tools is executed through an interpreter that creates a file, writes in it the output, and

evaluates the dynamic part of the template.

4.2.1.1.1 Acceleo is a pragmatic implementation of the Object Management Group
(OMG) MOF Model to Text Language (MTL) standard [68]. An Acceleo file consists
of a set of typed definition blocks that are sections of the template where the developer
specifies how each element type visited in the model shall be rendered, as depicted in
Listing 4.3. In a sense, this follows a similar strategy to how ATL transformation rules
are specified (one per type defined in the metamodel) [50]. Dynamic parts are expressed
in the MOFM2T language, an extension of OCL with imperative expressions. Acceleo
does not support function definition, but allows for the definition of encapsulated OCL

queries.

56

'S[00) DD L JO UOHRIYISSEID [t J[quL

SR SOX paraxdiayuy JUSWIA[R TINX IUAWNOOP TINX suorssaxdxe yredX+I11SX IISX
ON ON pojaxdioug J[qeLIeA BAR[AUV 199[qo eAef o8en3ue[Sunduos poyiwir] Aedwa Iung
ndino D uny
SO ON Jo -ua3 jueisuf J[qeLIRA #)) AUy 193[qo #D #D yL
ON ON paraadioyuy J[qeLIeA BAR[AUV 109[qo eARf oFen3ue] Junduos paseq-eae[KIOO[9A
ON ON Indino eAefuny oImonis ejep Ay} Jo Jooy 199[qo eaef BAR(1Ar
“uad juels
SOK ON -ur 1o pajardiojug JUQWIS[[OPOWBIAA [opow 21007 BAB[JO UOT}ORIISQY 7puary
SOA ON pojerdiayuy JUQWI[Q [OPOWBISA [opowr 21007 1049 104
ON SOX paraxdiayuy JUSWIS[Q [OPOUIBISIA] [opowr 21007 DO panwurg puedy
ON SR pojordiojuy JUQWI[Q [OPOWBIA [opowr 21007 1D0 PopuAXe LZINHON 09[000Y
P
}oorq
Qung padAl, Ipouwr UONNIIXY UIeWop 3DIN0S ad £y ynduy agengue| pajedIPI(q s[ooy,

57

4.2.1.1.2 Xpand also relies on the element type to organize the typed definition
blocks. The dynamic language is less powerful than in Acceleo, as it relies on a lim-
ited subset of OCL, also lacking support for queries and modules. Listing 4.12 shows
an example of the syntax of Xpand. Although functions cannot be defined within Xpand
templates, it is possible to call function defined in Xtend extensions or to custom Java

code.

4.2.1.1.3 Xtend2 is a complete programming language. It relies on a DSL that is an
abstraction of Java extended with lambda expressions and templates that are ultimately
compiled to Java code. For TBCG purposes, Xpand dynamic blocks can be integrated,
as illustrated in Listing 4.4. Instead of typed definition blocks, the template is organized
in functions. A part from the interpreted mode of execution, an Xtend2 template can also
generate the output instantly as it is saved when editing in a domain-specific modeling

environment (run-time Eclipse instance).

4.2.1.1.4 EGL belongs to the family of Epsilon languages and thus relies on Ep-
silon Object Language (EOL) for the dynamic part of the templates. Unlike the other
model-based tools, an EGL template is organized exactly how the output will appear,
the dynamic part is specified in macros written in EOL. Nevertheless, functions can be

defined and invoked within the template.

4.2.1.2 Code based tools

Unlike model-based tools, the structure of the code-based tools consists of static
and dynamic parts that are mixed together without the concept of template definition
block (except for XSLT). Furthermore, the dynamic part is expressed in the underlying

programming language, e.g., manipulating the Java objects for each source domain.

58

5

6

7

8

4.2.1.2.1 Velocity is a Java-based template engine. It permits anyone to use a sim-
ple yet powerful template language to reference objects defined in Java code [6]. The
dedicated language for the dynamic part consists of a scripting language that supports
Java expressions. It requires Java objects as the input and unlike model-based tools the
reference to these Java objects need not be an element type contained in the metamodel,
1.e., the template can handle any Java variable as the source domain. Velocity templates
do not support functions calls internal to the template, but to external Java code. It is

interpreted in order to generate the output.

4.2.1.2.2 JET templates are used to generate the Java class responsible for printing
the desired output. This code is automatically generated when the template is saved. To
generate the final output, the developer needs to run this Java code. Dynamic parts are
written in Java code, as they appear almost as is in the generated code. JET requires
a single Java objects as the input that contains all the required input data as the source
domain. Listing 4.6 shows an example of a JET template that computes the total of the
invoice where the input is the argument variable. Variables are first initialized (lines
1-4) before starting the loop (lines 5—11) that iterates over each instance of the Ttem
class to get the attribute values (lines 8—10) and calculate the subtotal of the invoice (line
11). The total price is calculated based on the taxRate and the subtotal (line 13). Note
that attributes are accessed using getter functions because the design-time input used in

Listing 4.6 is the Java code generated from the Ecore model of an invoice.

<% Model model = (Model) argument; %>

<% int subtotal = 0; %>

<% Invoice invoice = model.getInvoice(); %>

<% EList<Item> items = invoice.getItems();

for (Iterator<Item> iterator = items.iterator(); iterator.hasNext ();) {
Item item = iterator.next (); %>

Name: <%= item.getName () %>

Type: <%= item.getType() %>

59

Price: <%= ((PricedItem)item).getPrice() %>

<% subtotal += ((PricedItem)item).getPrice(); %>
<%}%>
Tax: <%= invoice.getTaxRate() %>%

Total: <%= subtotal * (1 + invoice.getTaxRate() / 100) %>$

Listing 4.6: JET template to compute the total of the invoice

4.2.1.2.3 T4 templates consists of the static output text where the dynamic part is
written as a C# program. The input required is a C# object and like the previous tools,
the reference to these objects can be of any type. T4 has two modes of execution. Like
in Xtend2, it can generate the output instantly as the developer is editing the template

Also, like in JET, it automatically generates C# code that shall be executed by the
developer to produce the output. Listing 4.7 shows an example of a T4 template that
computes the total of the invoice. Here, the input is a C# reference to the invoice model
serialized in XMI. Functions can be defined and invoked in the template as it is done in

a standard C# class.

<# foreach (XElement item in invoice.Elements ("items")) {

string name = item.Attribute (XName.Get ("name")) .Value;
string type = item.Attribute (XName.Get ("type")) .Value;
string price = item.Attribute (XName.Get ("price")) .Value;
subtotal += long.Parse(price); #>

Name: <#= name #>
Type: <#= type #>

Price: <#= price #>$

<# } #>
Tax: <# invoice.Attribute ("taxRate") #>%
Total: <#= total = subtotal » (1 + long.Parse(invoice.Attribute ("taxRate")) / 100) #>$

Listing 4.7: Excerpt of T4 template

4.2.1.2.4 StringTemplate is dedicated to performing string replacements on a tex-

tual input. Several programming languages (e.g., Java, Python, JavaScript) have im-

60

plemented it. The dedicated language for the dynamic part is a very limited scripting
language that is programming language neutral. It mainly consists of the dot operator
as shown in Listing 4.8. StringTemplate requires a variable as input and, in our case,
the a Java object, since we relied on its Java implementation. To execute a template,
the developer needs to execute the enclosing Java program and the interpreter makes the

appropriate string replacement in the template.

4.2.1.2.5 XSLT is a powerful template-based engine to transform XML documents.
Being described in XML itself, it consists of a set of blocks that specify how each tag
element is rendered, such as the one in Listing 4.1. The dedicated language for the
dynamic part consists of large choice of powerful XSLT and XPath expressions. The
XSLT engine interprets the template file to generate the output by applying the template

corresponding to the XML element to match (e.g., Model on line 1).

4.2.2 Pattern-based comparison of tools

We compare the expressiveness of these TBCG tools based on the patterns introduced

in Section 4.1.

4.2.2.1 Navigation pattern

All tools successfully implement this trivial pattern, mostly through the use of the dot
operator, as shown in Listing 4.8. In XSLT, this is accomplished with the xs1:value-of

expression, as depicted in Listing 4.1.

| Transaction date: <invoice.meta.date>

2 Vendor name: <invoice.meta.vendorName>

Listing 4.8: StringTemplate code to access data from the target class

61

)

=)

However, XSLT requires a different strategy when in the presence of an associa-
tion relation (not a composition). Listing 4.9 shows how the name of the Category
associated to an Invoice is accessed. Due to the way Ecore is serialized in XMI, the
developer needs to manually compare (line 5-9) the id contained in the Invoice class
(line 3) to those of the target classes (line 4). It is only when the id matches that the

corresponding name is printed.

<xsl:template match="Model">

<xsl:for-each select="invoice">

<xsl:variable name="invoice_cat_id" select="Qcategory"/>
<xsl:for-each select="../rootCat">

<xsl:choose>

<xsl:when test="attribute::id = $invoice_cat_id">
Category: <xsl:value-of select="attribute::name"/>
</xsl:when> </xsl:choose>

</xsl:for-each>

</xsl:template>

Listing 4.9: XSLT code to access data through an association

4.2.2.2 Variable dependency pattern

We implemented this template to output and calculate the total of the invoice. As
depicted in Listing 4.10, this is possible in Acceleo thanks to the powerful OCL-like
dedicated language that provides built-in mathematical functions, such as sum() for the
collection type. XSLT provides even more built-in mathematical functions to the devel-

oper for the dynamic part.

[template public generateInvoice (invoice : Invoice, model : Model)]

[for (item : Item | invoice.items)]

[generateltems (item) /] [/for]

Tax: [invoice.taxRate/]

Total: [invoice.items.oclAsType (PricedItem) .price->sum()* (1 invoice.taxRate/100)/] $

[/template]

Listing 4.10: Acceleo code to compute the total of invoice

62

To implement this pattern, EGL, JET, Velocity, T4, and Xtend?2 rely on the use of global
variables and statement blocks, as depicted in Listings 4.2, 4.6, and 4.7. A statement
block is a statement in the dynamic part of the template that is not printed, e.g., for-loop,
if-statement or variable assignment. Note that in Xtend2, the result of the statement

blocks is also printed in the output.

/x*x In Xtend xxx*/
import InvoiceMM;
Void addPrice (PricedItem pi):

JAVA template.Utils.getSubTotal (InvoiceMM.PricedItem) ;

/*x% In Java **x/

package template;

import InvoiceMM.PricedItem;

public class Utils {

public static int subtotal = 0;

public static void getSubTotal (PricedItem item) {
subtotal += item.getPrice();

b}

Listing 4.11: Xtend and Java extension to calculate the invoice subtotal

It was not possible to implement this pattern with StringTemplate and Xpand natively.
Even though Xpand provides an OCL-like language for the dynamic part, it does not
provide any built-in mathematical function like Acceleo. We had to extend the template
with a Java program to handle the calculations. Listing 4.12 shows the invocation of
the Xtend method addprice () (line 13), which in turn invokes the appropriate Java
method get SubTotal () presented in Listing 4.11.

StringTemplate does not allow for assignments, hence such calculations cannot be
achieved. Note that it is possible to perform a simple numerical operation such as
“a+b”. However, without assignment, it is not possible to cumulate the subtotal over
every PricedItem. All functions available are dedicated to string manipulation. There-

fore, we had to first perform a model-to-model transformation to reduce the complexity

63

of the template and perform the calculations in the Java input. Then, we only pass the

computed values to the template to correctly output the invoice.

4.2.2.3 Polymorphism pattern

We noted that the main difference between tools is highlighted in the variant when an
abstract superclass is present. In Acceleo, Xpand, and Xtend2, it is mandatory to write
a template block for the super class even though its content is not printed in the output.
Listing 4.12 shows that the definition of the template block for ITtem is required, even

though only the one for PricedItem will be executed.

«DEFINE invoice FOR Invoice»

)

«EXPAND item FOREACH items»

w

«ENDDEF INE»

«DEFINE item FOR Item»

IS

5 //This is for the super abstract class: content is not printed
6 Nom: «name»

7 Type: «type»

8 «ENDDEFINE»

9 «DEFINE item FOR PricedItem»

10 Name: «name»

11 Type: «type»

12 Price: «price»

3 «addPrice ()»

14 «ENDDEF INE»

Listing 4.12: Xpand code for polymorphism

In contrast, in EGL the content of the superclass template definition block is output,
along with the content of the one for the subclass. Listing 4.13 shows that the developer
can write the common behavior inside the abstract template definition block and the

content specific to the subclasses in a different blocks, thus favoring reuse.

1 [$ for (invoice in Invoice) { %]
2 [% for (item in Item) { %]
3 Name: [%= item.name %]

64

)

Type: [%= item.type %]

[5 } %]

o
o°

% for (item in PricedItem) { %]
Price: [%= item.price %]
[% 1}
[% }

o
o

]
]

o
o

Listing 4.13: EGL template for polymorphism

In JET, Velocity, T4 and StringTemplate, no template code can be defined for abstract
classes. Thus, the developer must replicate the common template code for all possible
subclasses, unless it is encapsulated in a function. In XSLT, the developer is also re-
stricted to use the data of the subclasses, given that tags correspond to concrete elements

in the XMI document.

4.2.2.4 Recursion pattern

We implemented this pattern to obtain the depth level of the invoice Category from
the hierarchy of categories present in the model. We were only able to implement it in
EGL, Acceleo, Xtend2, and T4 thanks to the use of function or typed definition block.
Listing 4.14 shows an example of how recursion can be implemented in EGL using the

function feature.

[$for (modl in Model) { %]

[$for (invoice in Invoice) { %]

% invoice.category.getCategory (modl.rootCat, invoice.category, 0, total, invoice.
taxRate); %]

1

1

[
[

o

}
}

o

o
o

% operation Category getCategory (catRef:Category, cat:Category, index:Integer, total:
Integer, taxRate:Integer) :Integer{%]
[$ if (cat.name = catRef.name) { %]
[$ 1f (index > 30) { %]
Discount: 15%
% total = total » (1 - 15 / 100); %]

Tax: [%=taxRate%]%

65

20

21

22

23

24

[

[$ total = total * (1 + taxRate / 100); %]
Total: [%= total %1$

[5 } %]

o
o

[$ else { %]
Discount: 10%
[$ total = total * (1 - 10 / 100); %]
Tax: [%$=taxRate%]%
% total = total » (1 + taxRate / 100); %]
Total: [%= total %]$
}o%]
}o%]

for (subCat in catRef.subs) { %]

o
o

o
o\

o

o

subCat.getCategory (subCat, cat, index+l); %]
bo%l
]

o
o

o
o

Listing 4.14: EGL code for recursion

Listing 4.15 shows an example of recursion using the typed definition block feature in

Acceleo.

[template public generateInvoice (invoice:Invoice, model:Model)]

[for (cat : Category | invoice.category)]

[getCategory (model.rootCat, invoice.category, 0,invoice.items.oclAsType (Item) .price —->
sum (), invoice.taxRate) /]

[/for]

[/template]

[template public getCategory(catRef:Category, cat:Category,index:Integer,total:Integer,
taxRate:Integer)]

[if (cat.name = catRef.name)]

[if (index > 30)

Discount: 15%

Tax: [taxRate/]%

Total:[(total = (1 - 15 / 100)) * (1 + taxRate / 100)/1$

[else]

Discount: 10%

Tax: [taxRate/]%

Total: [(total %= (1 - 10 / 100)) * (1 + taxRate / 100)/1$%

[/if]

[/if]

66

18 [for (subCat : Category | cat.subs)]
19 [getCategory (subCat, cat, index+1l, total,taxRate)/]
20 [/for]

21 [/template]

Listing 4.15: Acceleo code for recursion

Listing 4.4 shows an example of recursion using the typed definition block in Xtend?2.
As for T4, the dedicated language allows to call C# functions defined in the template and
thus implement recursion.

Although Xpand supports typed definition blocks, they only take a single argument
which is a type of element in the input metamodel. Thus it is not possible to implement
this pattern.

XSLT does not implement this pattern either. Although it supports the definition of
functions, there is no trace between the argument that is passed to the function and the
variable passed in the initial invocation. Therefore, the developer can modify the value
inside the function, but cannot manipulate the input data directly from the function.

It is not possible to implement this pattern in JET, StringTemplate, and Velocity due

to the absence of typed definition block or function.

Tool Pattern 1 Pattern2 Pattern3 Pattern 4
Acceleo Complete Complete = Complete Complete
Xpand Complete Incomplete Complete Incomplete
EGL Complete Complete = Complete Complete
Xtend2 Complete Complete Complete Complete
JET Complete Complete Complete Incomplete
Velocity Complete Complete Complete Incomplete
T4 Complete Complete Complete Complete
StringTemplate Complete Incomplete Complete Incomplete
XSLT Complete Complete = Complete Incomplete

Table 4.11: Summary of the qualitative evaluation of the tools expressiveness.

67

Table 4.1 summarizes the qualitative evaluation of the tools expressiveness, showing

whether a tool successfully implemented the pattern or not.

4.3 Tools performance

We conducted an experiment to compare the performance of TBCG tools.

4.3.1 Experiment setup

For this experiment, we consider set of five scales of model sizes conforming to the
metamodel in Figure 4.5. For each scale we generated 10 input models from the meta-
model using the tool in [9]. Table 4.IIT shows the characteristics of the input models
averages per scale. The model size corresponds to the number of class instances in each
model. The second column indicates the depth level of the invoice category, effectively
counting the number of recursive calls: the value returned by, for example, Listing 4.14.
The following columns indicate the number of instances of each pattern in the input
model. The navigation pattern appears in the relations Model to Invoice, Invoice
to Metadata and Invoice to Category. The number of variable dependency pat-
tern instances is the number of PricedItem objects plus one for accessing the invoice
taxRate. The number of occurrences of the polymorphism pattern counts the number
of Pricedltem objects. Finally, the number of occurrences of the recursion pattern is the
number of Category objects less the root category.

Since the models are synthesized in Ecore, we had to convert them into a format
suitable for code-based tools. We therefore generated the models to Java objects using
Acceleo for Velocity, JET, and StringTemplate. We used the XMI version of Ecore as
runtime input for XSLT. We also opted for this solution for T4, instead of generating
C# objects directly. Otherwise this would have required to translate the Java classes

of the metamodel automatically generated by EMF into C#. Nevertheless, the runtime

68

sfopow Jndur oy} Jo sonsuedRIRY) [[I'H 2[qBL

98 9L686 LL686 € LL 000001

0L 8166 6166 € 6v 00001

v vL6 SL6 € 81 0001

9 16 6 € I 001

I 9 L € [4 01
SIOUBISUI UIdJBJ SIOUR)SUI € UI)Jed SIDULISUI T WId)JeJ SIDUBISUI | UId)ed XIpul £1033)8)) IZIS [PPOIA

69

input given to T4 remains C# objects encapsulating the XMI document. Note that we
executed Xtend?2 in its interpreted mode and T4 to output C# code that is then executed.

We automated the execution process for each tool with a Java program that loads the
required input models and runs the template engines. We launched the performance tests
on a 64-bit Windows PC equipped with 16GB of RAM and an Intel Dual Core 17-2600
CPU that clocks at 3.40GHz.

4.3.2 Data collection

We implemented the template of each TBCG tool such that the output is identical
across the tools for the same input model, as in the sample in Listing 4.5. We ran each
experiment 10 times. We collected the execution times of the template engine excluding
the time to generate the output file since writing to disk is machine dependent. We
discarded outlier values for the warm-up rounds and reported the averages, given that
the standard deviation was negligible.

As discussed in Section 4.2.2.4, it is not possible to implement the recursion pattern
in Xpand, XSLT, JET, Velocity, and StringTemplate, unless we resort to implement the
recursion outside the template in a Java program, but that would defeat the purpose of
the comparison. Nevertheless for Pattern 2, we relied on such extensions for Xpand
only to perform the calculation of the total as in Listing 4.11. Note that looping over
each PricedIten is still done in the template as in Listing 4.12. To ensure fairness
among tools, we performed two distinct experiments. In experiment A, the discount rate
is 15 if the invoice category is the root category, otherwise it is 10. In experiment B,
we determine the discount rate based on the depth level of the invoice category. The
discount rate is 15 if the depth level of the invoice category is more than 30, otherwise
it is 10. Therefore only Acceleo, EGL, Xtend2, and T4 are considered in B, whereas all

tools are considered in A.

70

4.3.3 Results

4.3.4 Performance without recursion

1E+6
1E+5
1E+4
1E+3
1E+2
1E+1

Time (ms)

-~
- Model size

- ew om oom o =
T

1E+0 % I)
1E+1 1E+2 1E+3 1E+4 1E+5
> JET =-Velocity %ST ~-Xtend2 T4 = XSLT ~-Xpand -=! EGL ==Acceleo

Figure 4.6: Tool performance for experiment A in log scale

As Figure 4.6 shows, the execution time increases with the size of the model for
all tools. In the following discussion, the numbers refer to the cumulative time to run
experiment A on all models for each tool.

Overall, JET is the fastest tool, completing the whole experiment in just 33ms. This
is expected since JET generates instantly the corresponding Java class from the template
as the developer is writing the template. Therefore, the execution time here corresponds
to executing the generated Java code that produces the output. Excluding the special
case of JET, the template engine of Velocity is the fastest with a total of 190ms. It is
followed by StringTemplate that completes the experiment in 284ms. It reaches a high
performance because templates in StringTemplate are very simple, the essential part of

the computation is performed in the enclosing Java program.

71

T4 is as efficient as JET for smaller models with fewer than 1000 objects, as they are
both executed in the same way. However, for larger models, it becomes slower than the
other two tools. Xtend2 performs better overall in only 577ms, which is faster than T4,
making it the fastest model-based tool. Sharing the same underlying architecture, Xpand
comes next with 1.4s. It is followed very closely by XSLT.

The slowest tools in this experiment are EGL followed by Acceleo, taking respec-
tively 5s and 171s to complete the test. Note that for smaller models with at most 1000
objects, EGL performs almost as fast as XSLT, but Acceleo is twice as fast. However,
their time increases exponentially for larger models.

Velocity templates execution scales remarkably well by only a factor of 15 for models
with 107 elements compared to smaller models with 103 elements. It is followed by JET,
Xtend2, StringTemplate, and XSLT with around a factor of 25. For the remaining tools,
the size of the model has a significant effect on their performance which is worsened
by a factor of 45-108. T4 and Acceleo have the worst scale factor with 140 and 955

respectively.

4.3.5 Performance with recursion

The results for experiment B, reported in Figure 4.7, show a similar trend for the four
tools concerned. The recursion pattern did not influence significantly the performance
of Acceleo and T4 (slower by 1%). However, Xtend2 performed 10% slower than for
experiment A. This is expected since, for Pattern 4, we only verify the equality of the
name of the invoice category with the root category for experiment A, while that number
is determined by the category level for experiment B (second column of Table 4.1I1I).
EGL performed 10% faster than for experiment A. This is the dedicated language EOL
supports the caching feature. The function is only executed once for each distinct Integer

and subsequent calls on the same target return the cached result [57].

72

1E+6 A

Time (ms)

1E+5
1E+4
1E+3

1E+2

1E+1
1E+0 4 & , — Modelsize
1E+1 1E+2 1E+3 1E+4 1E+5
Xtend2 T4 ~IEGL »<Acceleo

Figure 4.7: Tool performance for experiment B in log scale

4.3.6 Discussion

From the experiments we conducted, we observe that the fastest tools are code-based,
especially for bigger models with more than 1000 objects. Their dynamic language is
based on the host programming language (Java/C#) which explains their impressive per-
formance. JET is the best tool performance-wise. It generates the desired output almost
instantly irrespective of the input model. In our experiments, T4 is the only exception
since, for larger models, the XML navigation becomes an overhead compared to having
encoded model manipulations directly in C#. Xtend?2 is the fastest model-based tool and
is even faster than XSLT. It performed on average 16 times slower compared to JET.

In contrast, model-based tools are best suited for complex input data manipulations
and provide adequate support for non-trivial patterns, like recursion, within the tem-
plate. In particular, Xtend2 appears to be the most capable tool since it contains the
necessary features to successfully implement all the metamodel patterns in times similar

to code-based tools. Furthermore, a useful attribute of model-based tools is the level

73

of abstraction of the dynamic part: a modeling paradigm for model-based tools and a
programming paradigm for code-based tools. Consequently, the logic is spread across

different artifacts for code-based templates, which hampers their cohesion.

4.3.7 Limitations

The results presented in this comparative study have depended on many factors that
could potentially limit the study.

The input model of some of the code-based tools given as Java objects could have
favored their final results. As noted in Section 4.3.1, the fact that the template engines
executions and the input models are coded in Java could benefit the code-based tools
over the Model-based tools.

Although the presented patterns help highlight both the limitations and the perfor-
mance of the tools, they are not exhaustive. Hence there might be other template imple-
mentations that are not considered in this study.

The absence of an expert for each tool can also limit the findings of our study. In fact,
we are not experts in each of these tools. Therefore, there are potentially other optimiza-
tion processes that we were not aware of when implementing the different templates.
However, we believe that the templates are written from the perspective of the general

level of competence of a regular software engineer.

74

CHAPTER 5

CONCLUSION

We conclude by summarizing the contributions of this thesis and outline future work.

The work presented in this thesis makes several contributions to the field of TBCG.

5.1 Summary

A survey on template-based code generation has been missing in the literature. In
this thesis, I present a literature survey on this topic and compare existing tools to pro-
vide the necessary guidelines and insights to help developers select the most appropriate

approach and tool for their problem.

5.1.1 Systematic mapping study of TBCG

We conducted a SMS on the topic of TBCG, which has been missing in the literature.
The objectives of this study are to better understand the characteristics of TBCG tech-
niques and associated tools, identify research trends, and assess the importance of the
role that MDE plays. We have systematically scanned the published, peer-reviewed liter-
ature and studied an extensive set of 481 papers published during the period 2000-2016.
The analysis of this corpus is organized into facets of a novel classification scheme,
which is of great value to modeling and software engineering researchers who are in-
terested in painting an overview of the literature on TBCG. Our study shows that the
community has been diversely using TBCG over the past 16 years and that research and
development is still very active. TBCG has greatly benefited from MDE in 2005 and
2013 which mark the two peaks of the evolution of this area, tripling the average number

of publications. In addition, TBCG has favored a template style that is output-based and

high level modeling languages as input. TBCG is mainly used to generate source code
and has been applied in a variety of domains. The community has been favoring the
use of custom tools for code generation over popular ones. Most research using TBCG
follows an MDE approach. Furthermore, both MDE and non-MDE tools are becoming

effective development resources in industry.

5.1.2 Comparison of the Expressiveness and Performance of TBCG Tools

We presented the outcome of a comparative study on TBCG tools to evaluate their
expressiveness power and test their performance. The goal of this paper is to implement
M2T templates for specific metamodel patterns, investigate the limitations of TBCG
tools with respect to an input these patterns and determine the most capable among the
selected tools. The study is carried out based on nine most popular output-based TBCG
tools over the last two decades years.

Our study shows that model-based tools are the most capable tools since most of
them successfully implemented all the metamodel patterns. However, code-based tools
performed much faster than model-based tools. JET is the best tool performance-wise.
It generated the desired output almost instantly irrespective of the input model and failed
to implement just the recursive pattern. Xtend2 offers the best compromise between
the expressiveness and the performance. It succeeded to implement all the metamodel
patterns in a reasonable time. Finally, we found that the recursion pattern is achieved by
T4 and almost all the model-based tools, but it does not influence the overall performance

of the tools.

5.2 Outlook

This survey is an added knowledge to the software engineering research community

and practitioners. It guides them into making an informed choice of the appropriate

76

TBCG tool based on their requirements. Furthermore, it particularly benefits the re-
searchers by presenting an overview of TBCG and by highlighting the areas that require
more attention, hence guiding their future works.

As future work, we would like to revise the query to include not only “code” as the
main output, but all the other possible artifacts such as documents. We plan to identify
more patterns based on larger sets of metamodels and templates. We believe that this
will also provide a feedback on the use of our metamodel patterns. Finally, we are
investigating further criteria to compare TBCG tools, such as the elaboration of specific

metrics to further enhance the guidelines.

77

BIBLIOGRAPHY

[ReM] Remodd The Repository for Model-Driven Development.
http://www.cs.colostate.edu/remodd/v1l/content/

repository-model-driven—-development-remodd—-overview.

Accessed: 2017-03-15.

[2] (2015). The Metamodel Zoos. http://web.emn.fr/x-info/atlanmod/

index.php?title=Zoos. Accessed: 2017-03-15.

[3] Adamko, A. (2005). Modeling data-oriented web applications using uml. In EURO-
CON 2005 - The International Conference on Computer as a Tool, volume 1, pages

752-755. IEEE.

[4] Anjorin, A., Saller, K., Rose, S., and Schiirr, A. (2013). A framework for bidirec-
tional model-to-platform transformations. In 5th International Conference on Soft-
ware Language Engineering, SLE 2012, Revised Selected Papers, volume 7745 of
LNCS, pages 124—143. Springer Berlin Heidelberg.

[5] Antkiewicz, M. and Czarnecki, K. (2006). Framework-specific modeling languages
with round-trip engineering. In Model Driven Engineering Languages and Systems,

volume 4199 of LNCS, pages 692—706. Springer Berlin Heidelberg.

[6] Apache Software Foundation (2016). The Apache Velocity Projet. http://

velocity.apache.org/. Accessed: 2017-04-06.

[7] Balzer, R. (1985). A 15 Year Perspective on Automatic Programming. Transactions

on Software Engineering, 11(11):1257-1268.

[8] Basu, A. S., Lajolo, M., and Prevostini, M. (2005). A methodology for bridging the

gap between uml and codesign. In UML for SOC Design, pages 119—146. Springer
US.

[9] Batot, E. and Sahraoui, H. (2016). A Generic Framework for Model-Set Selec-
tion for the Unification of Testing and Learning MDE Tasks. In Proceedings of the
ACMY/IEEE 19th International Conference on Model Driven Engineering Languages

and Systems, pages 374-384.

[10] Batot, E., Sahraoui, H., Syriani, E., Molins, P., and Sboui, W. (2016). Systematic
mapping study of model transformations for concrete problems. In International

Conference on Model-Driven Engineering and Software Development, pages 176—

183.

[11] Beckmann, O., Houghton, A., Mellor, M., and Kelly, P. H. (2004). Runtime code
generation in C++ as a foundation for domain-specific optimisation. In Domain-
Specific Program Generation, volume 3016 of LNCS, pages 291-306. Springer Berlin
Heidelberg.

[12] Behrens, T. and Richards, S. (2000). Statelator-behavioral code generation as an
instance of a model transformation. In International Conference on Advanced Infor-
mation Systems Engineering, volume 1789 of LNCS, pages 401-416. Springer Berlin
Heidelberg.

[13] Bergmann, G., Horvith, A., Rith, 1., and Varré, D. (2008). A Benchmark Eval-
uation of Incremental Pattern Matching in Graph Transformation, pages 396-410.

Springer Berlin Heidelberg.

[14] Bonta, E. and Bernardo, M. (2009). Padl2java: A java code generator for process
algebraic architectural descriptions. In European Conference on Software Architec-

ture, pages 161-170. IEEE.

79

[15] Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M. (2007).
Lessons from applying the systematic literature review process within the software

engineering domain. Journal of systems and software, 80(4):571-583.

[16] Brown, A. W., Conallen, J., and Tropeano, D. (2005). Introduction: Models, mod-
eling, and model-driven architecture (MDA). In International Conference on Model-

Driven Software Development, pages 1-16. Springer Berlin Heidelberg.

[17] Brox, M., Sanchez-Solano, S., del Toro, E., Brox, P., and Moreno-Velo, F. J. (2013).
CAD tools for hardware implementation of embedded fuzzy systems on FPGAs.

IEEE Transactions on Industrial Informatics, 9(3):1635-1644.

[18] Brun, M., Delatour, J., and Trinquet, Y. (2008). Code generation from AADL
to a real-time operating system: An experimentation feedback on the use of model

transformation. In Engineering of Complex Computer Systems, pages 257-262. IEEE.

[19] Buchmann, T. and Schwigerl, F. (2013). Using meta-code generation to realize
higher-order model transformations. In International Joint conference on Software

Technologies, pages 536-541.

[20] Buckl, C., Knoll, A., and Schrott, G. (2005). Development of dependable real-
time systems with Zerberus. In /1th IEEE Pacific Rim International Symposium on

Dependable Computing, pages 404—408.

[21] Buckl, C., Regensburger, M., Knoll, A., and Schrott, G. (2007). Models for auto-
matic generation of safety-critical real-time systems. In Availability, Reliability and

Security, pages 580-587. IEEE.

[22] Buezas, N., Guerra, E., de Lara, J., Martin, J., Monforte, M., Mori, F., Ogallar,
E., Pérez, O., and Cuadrado, J. S. (2013). Umbra designer: Graphical modelling for

80

telephony services. In European Conference on Modelling Foundations and Applica-

tions, volume 7949 of LNCS, pages 179—-191. Springer Berlin Heidelberg.

[23] Burmester, S., Giese, H., and Schifer, W. (2005). Model-driven architecture for
hard real-time systems: From platform independent models to code. In European
Conference on Model Driven Architecture-Foundations and Applications, volume

3748 of LNCS, pages 25—40. Springer Berlin Heidelberg.

[24] Chen, K., Chang, Y.-C., and Wang, D.-W. (2010). Aspect-oriented design and im-
plementation of adaptable access control for electronic medical records. International

Journal of Medical Informatics, 79(3):181-203.

[25] Cho, H. and Gray, J. (2011). Design Patterns for Metamodels. In Proceedings of
the Compilation of the Co-located Workshops on DSM’11, TMC’11, AGERE! 2011,
AOOPES’11, NEAT’11, & VMIL’11, SPLASH *11 Workshops, pages 25-32. ACM.

[26] Cordoba, I. and de Lara, J. (2015). A modelling language for the effective design
of Java annotations. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC " 15, pages 2087-2092. ACM.

[27] Czarnecki, K. and Helsen, S. (2006). Feature-based survey of model transformation

approaches. IBM Systems Journal, 45(3):621-645.

[28] Dahman, W. and Grabowski, J. (2010). Uml-based specification and generation of
executable web services. In System Analysis and Modeling, volume 6598 of LNCS,

pages 91-107. Springer Berlin Heidelberg.

[29] Domiguez, E., Pérez, B., Rubio, A. L., and Zapata, M. A. (2012). A systematic
review of code generation proposals from state machine specifications. Information

and Software Technology, 54(10):1045-1066.

81

[30] Durand, S. H. and Bonato, V. (2012). A tool to support Bluespec SystemVerilog
coding based on UML diagrams. In Annual Conference on IEEE Industrial Electron-

ics Society, pages 4670-4675. IEEE.

[31] Ecker, W., Velten, M., Zafari, L., and Goyal, A. (2014). The metamodeling ap-
proach to system level synthesis. In Design, Automation & Test in Europe Conference

& Exhibition, pages 1-2. IEEE.

[32] Fang, M., Ying, J., and Wu, M. (2006). A template engineering based framework
for automated software development. In /0th International Conference on Computer

Supported Cooperative Work in Design, pages 1-6. IEEE.

[33] Fertalj, K., Kalpic, D., and Mornar, V. (2002). Source code generator based on
a proprietary specification language. In Hawaii International Conference on System

Sciences, volume 9. IEEE.

[34] Fischer, T., Kollner, C., Hardle, M., and Muller-Glaser, K. D. (2014). Product line
development for modular FPGA-based embedded systems. In Symposium on Rapid

System Prototyping, pages 9—-15. IEEE.

[35] Floch, A., Yuki, T., Guy, C., Derrien, S., Combemale, B., Rajopadhye, S., and
France, R. B. (2011). Model-Driven Engineering and Optimizing Compilers: A

Bridge Too Far? 1In Model Driven Engineering Languages and Systems, volume

6981 of LNCS, pages 608—622. Springer Berlin Heidelberg.

[36] Fraternali, P. and Tisi, M. (2009). A higher order generative framework for weaving
traceability links into a code generator for web application testing. In International
Conference on Web Engineering, volume 5648 of LNCS, pages 340-354. Springer
Berlin Heidelberg.

82

[37] Fu, J., Bastani, F. B., and Yen, I.-L. (2006). Automated Al planning and code
pattern based code synthesis. In International Conference on Tools with Artificial

Intelligence, pages 540-546. IEEE.

[38] Furusawa, T. (2010). Attempting to increase longevity of applications based on

new SaaS/cloud technology. Fujitsu Scientific and Technical Journal, 46:223-228.

[39] Gessenharter, D. (2008). Mapping the UML2 semantics of associations to a java
code generation model. In International Conference on Model Driven Engineering
Languages and Systems, volume 5301 of LNCS, pages 813—-827. Springer Berlin Hei-
delberg.

[40] Ghodrat, M. A., Givargis, T., and Nicolau, A. (2008). Control flow optimization in
loops using interval analysis. In International conference on Compilers, architectures

and synthesis for embedded systems, pages 157-166. ACM.

[41] Gopinath, V. S., Sprinkle, J., and Lysecky, R. (2011). Modeling of data adaptable
reconfigurable embedded systems. In International Conference and Workshops on

Engineering of Computer Based Systems, pages 276-283. IEEE.

[42] Gray,J., Tolvanen, J.-P., Kelly, S., Gokhale, A., Neema, S., and Sprinkle, J. (2007).
Handbook of Dynamic System Modeling, book section Domain-Specific Modeling,
pages 7-20. CRC Press.

[43] Guduvan, A.-R., Waeselynck, H., Wiels, V., Durrieu, G., Fusero, Y., and Schieber,
M. (2013). A meta-model for tests of avionics embedded systems. In nternational

Conference on Model-Driven Engineering and Software Development, pages 5—13.

[44] Gurunule, D. and Nashipudimath, M. (2015). A review: Analysis of aspect orienta-
tion and model driven engineering for code generation. Procedia Computer Science,

45:852-861.

83

[45] Hemel, Z., Kats, L. C., Groenewegen, D. M., and Visser, E. (2010). Code genera-
tion by model transformation: a case study in transformation modularity. Software &

Systems Modeling, 9(3):375-402.

[46] Hinkel, G., Denninger, O., Krach, S., and Groenda, H. (2016). Experiences with
model-driven engineering in neurorobotics. In /2th European Conference on Mod-
elling Foundations and Applications, ECMFA 2016, pages 217-228. Springer Inter-

national Publishing.

[47] Hoisl, B., Sobernig, S., and Strembeck, M. (2013). Higher-order rewriting of
model-to-text templates for integrating domain-specific modeling languages. In Inter-

national Conference on Model-Driven Engineering and Software Development, pages

49-61.

[48] Jakumeit, E. et al. (2014). A Survey and Comparison of Transformation Tools
Based on the Transformation Tool Contest. Science of Computer Programming, 85,

Part A:41-99.

[49] Jorges, S. (2013). Construction and Evolution of Code Generators, volume 7747,
chapter 2 The State of the Art in Code Generation, pages 11-38. Springer Berlin
Heidelberg.

[50] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008). ATL: A Model Trans-

formation Tool. Science of Computer Programming, 72(1-2):31-39.

[51] Jugel, U. and PreuBner, A. (2011). A case study on API generation. In System Anal-
ysis and Modeling: About Models, volume 6598 of LNCS, pages 156—172. Springer

Berlin Heidelberg.

[52] Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Modeling: Enabling Full

Code Generation. John Wiley & Sons.

84

[53] Kitchenham, B. A., Budgen, D., and Brereton, O. P. (2011). Using mapping studies
as the basis for further research - a participant-observer case study. Information and

Software Technology, 53(6):638—651.

[54] Kitchenham, B. A., Dyba, T., and Jorgensen, M. (2004). Evidence-Based Software
Engineering. In International Conference on Software Engineering, pages 273-281,

Washington, DC, USA. IEEE Computer Society.

[55] Kleppe, A. G., Warmer, J., and Bast, W. (2003). MDA Explained. The Model

Driven Architecture: Practice And Promise. Addison-Wesley.

[56] Kokar, M., Baclawski, K., and Gao, H. (2006). Category theory-based synthe-
sis of a higher-level fusion algorithm: an example. In International Conference on

Information Fusion, pages 1-8.

[57] Kolovos, D., Rose, L., Paige, R. F., and Garcia Dominguez, A. (2010). The Epsilon

Book. Eclipse.

[58] Kovi, A. and Varrd, D. (2007). An eclipse-based framework for ais service config-
urations. In 4th International Service Availability Symposium, ISAS, volume 4526 of

LNCS, pages 110-126. Springer Berlin Heidelberg.

[59] Li, J., Xiao, H., and Yi, D. (2012). Designing universal template for database
application system based on abstract factory. In 2012 International Conference on

Computer Science and Information Processing, CSIP, pages 1167-1170.

[60] Liu, Q. (2006). C++ techniques for high performance financial modelling. WIT

Transactions on Modelling and Simulation, 43:1-8.

[61] Lucio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G. M., Syriani,

85

E., and Wimmer, M. (2014). Model Transformation Intents and Their Properties.

Software & Systems Modeling, 15(3):685-705.

[62] Ma, M., Meissner, M., and Hedrich, L. (2012). A case study: Automatic topol-
ogy synthesis for analog circuit from an asdex specification. In Synthesis, Modeling,

Analysis and Simulation Methods and Applications to Circuit Design, pages 9—12.

IEEE.

[63] Manley, R. and Gregg, D. (2010). A program generator for intel aes-ni instructions.
In Progress in Cryptology - INDOCRYPT 2010: 11th International Conference on

Cryptology, volume 6498 of LNCS, pages 311-327. Springer Berlin Heidelberg.

[64] Mehmood, A. and Jawawi, D. N. (2013). Aspect-oriented model-driven code
generation: A systematic mapping study. [Information and Software Technology,

55(2):395-411.

[65] Microsoft (2016). Microsoft text template transformation toolkit. https:
//msdn.microsoft.com/en-us/library/bbl26445.aspx. Accessed:
2016-07-05.

[66] Muller, P.-A., Studer, P., Fondement, F., and Bézivin, J. (2005). Platform indepen-
dent web application modeling and development with Netsilon. Software & Systems

Modeling, 4(4):424-442.

[67] O’Halloran, C. (2013). Automated verification of code automatically generated

from simulink®). Automated Software Engineering, 20(2):237-264.
[68] OMG (2008). MOF Model to Text Language, v1.0.

[69] Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic Mapping

Studies in Software Engineering. In Proceedings of the 12th International Confer-

86

ence on Evaluation and Assessment in Software Engineering, volume 17 of EASE’08,

pages 68—77. British Computer Society.

[70] Phillips, J., Chilukuri, R., Fragoso, G., Warzel, D., and Covitz, P. A. (2006). The ca-
CORE software development kit: Streamlining construction of interoperable biomed-

ical information services. BMC medical informatics and decision making, 6(2):1-16.

[71] Possatto, M. A. and Lucrédio, D. (2015). Automatically propagating changes from
reference implementations to code generation templates. Information and Software

Technology, 67:65-78.

[72] Rensink, Aand Van Gorp, P. (2010). Graph Transformation Tool Contest 2008.

International Journal on Software Tools for Technology Transfer, 12(3):171-181.

[73] Rich, C. and Waters, R. C. (1988). Automatic programming: myths and prospects.
Computer, 21(8):40-51.

[74] Rose, L. M., Matragkas, N., Kolovos, D. S., and Paige, R. F. (2012). A Feature
Model for Model-to-Text Transformation Languages. In ICSE Workshop on Model-

ing in Software Engineering, pages 57-63. IEEE Press.

[75] Schattkowsky, T. and Lohmann, M. (2002). Rapid development of modular dy-
namic web sites using uml. In International Conference on the Unified Modeling

Language, volume 2460 of LNCS, pages 336-350. Springer Berlin Heidelberg.

[76] Seriai, A., Benomar, O., Cerat, B., and Sahraoui, H. (2014). Validation of software
visualization tools: A systematic mapping study. In IEEE Working Conference on

Software Visualization, VISSOFT, pages 60—69.

[77] Singh, A., Schaeffer, J., and Green, M. (1991). A template-based approach to

87

the generation of distributed applications using a network of workstations. IEEE

Transactions on Parallel and Distributed Systems, 2(1):52—-67.

[78] Sousa, V., Syriani, E., and Paquin, M. (2017). Feedback on How MDE Tools
are Used Prior to Academic Collaboration. In 32nd ACM SIGAPP Symposium On

Applied Computing.

[79] Sridhara, G., Pollock, L., and Vijay-Shanker, K. (2011). Automatically detecting
and describing high level actions within methods. In International Conference on

Software Engineering, pages 101-110. ACM.

[80] Stahl, T., Voelter, M., and Czarnecki, K. (2006). Model-Driven Software Develop-

ment — Technology, Engineering, Management. John Wiley & Sons.

[81] Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2008). EMF': Eclipse
Modeling Framework. Eclipse Series. Addison-Wesley Professional, 2nd edition edi-

tion.

[82] Tatsubori, M., Chiba, S., Killijian, M.-O., and Itano, K. (2000). OpenJava: A
Class-Based Macro System for Java. In Reflection and Software Engineering, volume

1826 of LNCS, pages 117-133. Springer.

[83] Touraille, L., Traoré, M. K., and Hill, D. R. (2011). A model-driven software en-
vironment for modeling, simulation and analysis of complex systems. In Symposium
on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, pages

229-237. Society for Computer Simulation International.

[84] Valderas, P., Pelechano, V., and Pastor, O. (2006). Towards an end-user develop-
ment approach for web engineering methods. In International Conference on Ad-

vanced Information Systems Engineering, volume 4001, pages 528-543. Springer

Berlin Heidelberg.

88

[85] Varrd, D., Asztalos, M., Bisztray, D., Boronat, A., Dang, D., Geil3, R., Greenyer,
J., Van Gorp, P., Kniemeyer, O., Narayanan, A., Rencis, E., and Weinell, E. (2008).
Transformation of UML Models to CSP: A Case Study for Graph Transformation
Tools, pages 540-565. Springer Berlin Heidelberg.

[86] Vokac, M. and Glattetre, J. M. (2005). Using a domain-specific language and
custom tools to model a multi-tier service-oriented applicationexperiences and chal-

lenges. In International Conference on Model Driven Engineering Languages and

Systems, volume 3713, pages 492-506. Springer.

89

Appendix I

Final corpus bibliography of the SMS

BIBLIOGRAPHY

[1] Ab Rahim, L. and Whittle, J. (2010). Verifying semantic conformance of state
machine-to-java code generators. In Model Driven Engineering Languages and Sys-

tems, pages 166—180.

[2] Ablonskis, L. (2010). An approach to generating program code in quickly evolving

environments. Information Systems Development, pages 259-267.

[3] Ablonskis, L. and Nemuraite, L. (2010). Discovery of model implementation pat-

terns in source code. Information Technology and Control, 39(1):68-76.

[4] Abrahao, S., Iborra, E., and Vanderdonckt, J. (2008). Usability evaluation of user
interfaces generated with a model-driven architecture tool. Maturing Usability, pages

3-32.

[5] Aceto, G., Tarsitano, G., Jaekel, F.-W., and Benguria, G. (2012). Towards mda best
practice: An innovative interpreter for smes. Enterprise Interoperability V, pages

237-246.

[6] Achilleos, A., Georgalas, N., and Yang, K. (2007). An open source domain-
specific tools framework to support model driven development of oss. Model Driven

Architecture- Foundations and Applications, pages 1-16.

[7] Achilleos, A., Kapitsaki, G. M., and Papadopoulos, G. A. (2012). A model-driven
framework for developing web service oriented applications. Current Trends in Web

Engineering, pages 181-195.

[8] Acquaviva, A., Bombieri, N., Fummi, F., and Vinco, S. (2013). Semi-automatic

generation of device drivers for rapid embedded platform development. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 32(9):1293—
1306.

[9] Adamko, A. (2005). Modeling data-oriented web applications using uml. In Com-
puter as a Tool, 2005. EUROCON 2005.The International Conference on, volume 1,
pages 752-755.

[10] Adamkd, A. (2006). Uml-based modeling of data-oriented web applications. Jour-
nal of Universal Computer Science, 12(9):1104-1117.

[11] Akehurst, D., Howells, G., and Mcdonald-Maier, K. (2007). Implementing associ-
ations: Uml 2.0 to java 5. Software & Systems Modeling, 6(1):3-35.

[12] Alloush, I., Chiprianov, V., Kermarrec, Y., and Rouvrais, S. (2012). Linking tele-
com service high-level abstract models to simulators based on model transformations:

The ims case study. Information and Communication Technologies, pages 100-111.

[13] Alloush, I., Kermarrec, Y., and Rouvrais, S. (2013a). A generalized model trans-
formation approach to link design models to network simulators: Ns-3 case study. In
International Conference on Simulation and Modeling Methodologies, Technologies

and Applications, pages 337-44.

[14] Alloush, I., Kermarrec, Y., and Rouvrais, S. (2013b). A transversal alignment
between measurements and enterprise architecture for early verification of telecom

service design. Advances in Communication Networking, pages 245-256.

[15] Alonso, D., Vicente-Chicote, C., Sanchez, P., Alvarez, B., and Losilla, F. (2007).
Automatic ada code generation using a model-driven engineering approach. Reliable

Software Technologies Ada Europe 2007, pages 168—179.

v

[16] Altiparmak, H., Tokgoz, B., Balcicek, O., Ozkaya, A., and Arslan, A. (2013).
Source code generation for large scale applications. In Technological Advances in
Electrical, Electronics and Computer Engineering (TAEECE), 2013 International
Conference on, pages 404—410.

[17] AmAlio, N., Glodt, C., Pinto, F., and Kelsen, P. (2011). Platform-variant applica-
tions from platform-independent models via templates. Electronic Notes in Theoreti-

cal Computer Science, 279(3):3-25.

[18] Amelunxen, C., Konigs, A., Rotschke, T., and Schiirr, A. (2006). Moflon: A
standard-compliant metamodeling framework with graph transformations. Model

Driven Architecture—Foundations and Applications, pages 361-375.

[19] Ammar, M., Baklouti, M., Pelcat, M., Desnos, K., and Abid, M. (2016). Automatic
Generation of S-LAM Descriptions from UML/MARTE for the DSE of Massively Par-

allel Embedded Systems, pages 195-211. Springer International Publishing.

[20] André, E., Benmoussa, M. M., and Choppy, C. (2014). Translating uml state ma-

chines to coloured petri nets using acceleo: A report. arXiv preprint arXiv:1405.1112.

[21] Andre, P., Ardourel, G., and Sunye, G. (2004). The bosco project: a jmi-compliant
template-based code generator. In JASSE, pages 157-62.

[22] Anjorin, A., Saller, K., Rose, S., and Schiirr, A. (2013). A framework for bidi-
rectional model-to-platform transformations. Software Language Engineering, pages

124-143.

[23] Antebi, O., Neubrand, M., and Puder, A. (2012). Cross-compiling android appli-
cations to windows phone 7. Mobile Computing, Applications, and Services, pages

283-302.

[24] Antkiewicz, M. and Czarnecki, K. (2006). Framework-specific modeling languages
with round-trip engineering. In Model Driven Engineering Languages and Systems,

pages 692-706.

[25] Antkiewicz, M. and Czarnecki, K. (2008). Design space of heterogeneous syn-
chronization. Generative and Transformational Techniques in Software Engineering

11, pages 3—46.

[26] Arkin, E., Tekinerdogan, B., and Imre, K. M. (2013). Model-driven approach for
supporting the mapping of parallel algorithms to parallel computing platforms. In

Model Driven Engineering Languages and Systems, pages 757-773.

[27] Arnoldus, J., Bijpost, J., and Van Den Brand, M. (2007). Repleo: A syntax-safe
template engine. In Proceedings of the 6th International Conference on Generative

Programming and Component Engineering, pages 25-32.

[28] ABmann, U., Bartho, A., Biirger, C., Cech, S., Demuth, B., Heidenreich, F., Jo-
hannes, J., Karol, S., Polowinski, J., Reimann, J., Schroeter, J., Seifert, M., Thiele,
M., Wende, C., and Wilke, C. (2014). Dropsbox: the dresden open software toolbox.
Software & Systems Modeling, 13(1):133—-169.

[29] Axelsen, H. B. (2011). Clean translation of an imperative reversible programming

language. Compiler Construction, pages 144—163.

[30] Azevedo, L., Fernandes, C. T., and Guerra, E. M. (2013). Architectural model for
generating user interfaces based on class metadata. In Computational Science and Its

Applications - ICCSA 2013, volume 7973 LNCS, pages 230-245.

[31] Backes, M., Busenius, A., and Hritcu, C. (2012). On the development and formal-
ization of an extensible code generator for real life security protocols. NASA Formal

Methods, pages 371-387.

vi

[32] Badreddin, O., Forward, A., and Lethbridge, T. C. (2014a). Exploring a model-
oriented and executable syntax for uml attributes. Software Engineering Research,

Management and Applications, pages 33-53.

[33] Badreddin, O., Forward, A., and Lethbridge, T. C. (2014b). Improving code gen-
eration for associations: Enforcing multiplicity constraints and ensuring referential

integrity. Software Engineering Research, Management and Applications, pages 129—

149.

[34] BaekGyu, K., Phan, L. T. X., Sokolsky, O., and Insup, L. (2013). Platform-
dependent code generation for embedded real-time software. In 2013 Interna-
tional Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES), 29 Sept.-4 Oct. 2013, 2013 International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems (CASES), pages 1-10. IEEE.

[35] Bagheri, H. and Sullivan, K. (2012). Pol: Specification-driven synthesis of archi-
tectural code frameworks for platform-based applications. In Proceedings of the 11th

International Conference on Generative Programming and Component Engineering,

GPCE 12, pages 93-102. ACM.

[36] Baker, P. and Jervis, C. (2007). Testing uml2.0 models using ttcn-3 and the uml2.0

testing profile. SDL 2007: Design for Dependable Systems, pages 86—100.

[37] Balderas-Contreras, T., Cumplido, R., and Rodriguez, G. (2014). Synthesizing
vhdl from activity models in uml 2. International Journal of Circuit Theory and

Applications, 42(5):542-550.

[38] Balogh, A., Bergmann, G., Csertan, G., Gonczy, L., Horvith, A., Majzik, 1., Patar-
icza, A., Polgar, B., Rath, 1., and Varré, D. e. a. (2010). Workflow-driven tool in-

vil

tegration using model transformations. Graph Transformations and Model-Driven

Engineering, pages 224-248.

[39] Balogh, A. and Varro, D. (2006). Advanced model transformation language con-
structs in the viatra2 framework. In Proceedings of the 2006 ACM Symposium on

Applied Computing, volume 2, pages 1280-1287.

[40] Banerjee, A. and Gupta, S. K. S. (2014). Model based code generation for medi-
cal cyber physical systems. In Proceedings of the 1st Workshop on Mobile Medical
Applications, MMA 14, pages 22-27. ACM.

[41] Barbier, G., Cucchi, V., and Hill, D. R. (2013). Contribution of model-driven
engineering to crop modeling. Computational Science and Its Applications ICCSA

2013, pages 253-263.

[42] Basir, N., Denney, E., and Fischer, B. (2010). Deriving safety cases for hierarchical
structure in model-based development. Computer Safety, Reliability, and Security,

pages 68—81.

[43] Basu, A. S., Lajolo, M., and Prevostini, M. (2005). A methodology for bridging

the gap between uml and codesign. UML for SOC Design, pages 119-146.

[44] Behrens, T. and Richards, S. (2000). Statelator - behavioral code generation as
an instance of a model transformation. In Wangler, B. and Bergman, L., editors,

12th International Conference on Advanced Information Systems Engineering, CAiSE

2000, volume 1789, pages 401-416. Springer Verlag.

[45] Beneken, T. S. (2005). Evolution and maintenance of mda applications. Model-

Driven Software Development, pages 269-286.

viil

[46] Bennet, A. F.,, Chua, B. S., Pflaum, B. L., Erwig, M., Fu, Z., Loft, R. D., and
Muccino, J. C. (2008). The inverse ocean modeling system. part i: Implementation.

Journal of Atmospheric and Oceanic Technology, 25(9):1608—1622.

[47] Benouda, H., Azizi, M., Esbai, R., and Moussaoui, M. (2016). MDA Approach
to Automate Code Generation for Mobile Applications, pages 241-250. Springer

Singapore.

[48] Bezati, E., Yviquel, H., Raulet, M., and Mattavelli, M. (2011). A unified hardware/-
software co-synthesis solution for signal processing systems. In 2011 Conference on
Design and Architectures for Signal and Image Processing, DASIP 2011, November
2, 2011 - November 4, 2011, Conference on Design and Architectures for Signal and
Image Processing, DASIP, pages 186—191. IEEE Computer Society.

[49] Biehl, M., El-Khoury, J., Loiret, F., and Térngren, M. (2014). On the modeling and
generation of service-oriented tool chains. Software & Systems Modeling, 13(2):461—

480.

[50] Binder, W. and Hulaas, J. (2006). Flexible and efficient measurement of dy-
namic bytecode metrics. In 5th International Conference on Generative Program-
ming and Component Engineering, GPCE’06. Co-located with the 21st International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2006, October 22, 2006 - October 26, 2006, Proceedings of the 5th
International Conference on Generative Programming and Component Engineering,

GPCE’06, pages 171-180. Association for Computing Machinery.

[51] Binnig, C. and Schmidt, A. (2002). Development of a uiml renderer for different
target languages: Experiences and design decisions. Computer-Aided Design of User

Interfaces III, pages 267-274.

1X

[52] Birken, K. (2014). Building code generators for dsls using a partial evaluator for the
xtend language. In Margaria, T. and Steffen, B., editors, 6th International Symposium
Leveraging Applications of Formal Methods, Verification and Validation. Technolo-
gies for Mastering Change, ISoLA, Proceedings, Part I, volume 8802 of LNCS, pages
407-424. Springer Berlin Heidelberg.

[53] Bocciarelli, P., D’ Ambrogio, A., Falcone, A., Garro, A., and Giglio, A. (2016). A
Model-Driven Approach to Enable the Distributed Simulation of Complex Systems,

pages 171-183. Springer International Publishing.

[54] Bochao, L. and Ohori, A. (2009). A flattening strategy for sml module compilation

and its implementation. Computer Software, 26(3):136—154.

[55] Bonichon, R., Déharbe, D., Lecomte, T., and Medeiros, V. (2015). LLVM-Based

Code Generation for B, pages 1-16. Springer International Publishing.

[56] Bork, M., Geiger, L., Schneider, C., and Zundorf, A. (2008). Towards roundtrip
engineering - a template-based reverse engineering approach. In Model Driven Ar-

chitecture - Foundations and Applications, volume 5095 LNCS, pages 33—-47.

[57] Bouaziz, R., Kallel, S., and Coulette, B. (2014). An approach for security patterns
application in component based models. Computational Science and Its Applications

- ICCSA 2014, pages 283-296.

[58] Bredenfeld, A., Ihler, E., and Vogel, O. (2000). Genvis-model-based generation
of data visualizers. In Technology of Object-Oriented Languages, 2000. TOOLS 33.

Proceedings. 33rd International Conference on, pages 396—406.

[59] Brown, A. W. (2004). Model driven architecture: Principles and practice. Software
and Systems Modeling, 3(4).

[60] Brown, A. W., Conallen, J., and Tropeano, D. (2005). Introduction: Models, mod-
eling, and model-driven architecture (mda). Model-Driven Software Development,

pages 1-16.

[61] Brox, M., Sanchez-Solano, S., Del Toro, E., Brox, P., and Moreno-Velo, F. J.
(2013). Cad tools for hardware implementation of embedded fuzzy systems on fpgas.

IEEE Transactions on Industrial Informatics, 9(3):1635-1644.

[62] Brun, M., Delatour, J., and Trinquet, Y. (2008). Code generation from aadl to a
real-time operating system: An experimentation feedback on the use of model trans-
formation. In Engineering of Complex Computer Systems, 2008. ICECCS 2008. 13th
IEEE International Conference on, pages 257-262. IEEE.

[63] Bucher, R. and Balemi, S. (2006). Rapid controller prototyping with mat-

lab/simulink and linux. Control Engineering Practice, 14(2):185-192.

[64] Buchmann, T. and Schwégerl, F. (2013). Using meta-code generation to realize
higher-order model transformations. In 8th International Conference on Software

Engineering and Applications, pages 536-541.

[65] Buckl, C., Knoll, A., and Schrott, G. (2005a). Development of dependable real-
time systems with zerberus. In Dependable Computing, 2005. Proceedings. 11th

Pacific Rim International Symposium on, pages 404—408.

[66] Buckl, C., Knoll, A., and Schrott, G. (2005b). The zerberus language: Describing
the functional model of dependable real-time systems. Dependable Computing, pages

101-120.

[67] Buckl, C., Knoll, A., and Schrott, G. (2006). Template-based development of fault-
tolerant embedded software. In International Conference on Software Engineering

Advances, pages 65-65. IEEE.

X1

[68] Buckl, C., Knoll, A., and Schrott, G. (2007a). Model-based development of fault-
tolerant embedded software. In Leveraging Applications of Formal Methods, Verifi-

cation and Validation, 2006. ISoLA 2006. Second International Symposium on, pages
103-110.

[69] Buckl, C., Regensburger, M., Knoll, A., and Schrott, G. (2007b). Models for auto-
matic generation of safety-critical real-time systems. In Availability, Reliability and
Security, 2007. ARES 2007. The Second International Conference on, pages 580-587.
IEEE.

[70] Buckl, C., Sommer, S., Scholz, A., Knoll, A., and Kemper, A. (2008). Generating
a tailored middleware for wireless sensor network applications. In Sensor Networks,
Ubiquitous and Trustworthy Computing, 2008. SUTC ’08. IEEE International Con-

ference on, pages 162—-169.

[71] Buezas, N., Guerra, E., De Lara, J., Martin, J., Monforte, M., Mori, F., Ogallar,
E., Perez, O., and Sanchez Cuadrado, J. (2013). Umbra designer: Graphical mod-
elling for telephony services. In 9th European Conference on Modelling Foundations
and Applications, ECMFA 2013, July 1, 2013 - July 1, 2013, volume 7949 LNCS of
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), pages 179—191. Springer Verlag.

[72] Bures, T., Malohlava, M., and Hnetynka, P. (2008). Using dsl for automatic genera-
tion of software connectors. In Composition-Based Software Systems, 2008. ICCBSS

2008. Seventh International Conference on, pages 138—147.

[73] Biirger, C., Karol, S., Wende, C., and ABmann, U. (2011). Reference attribute

grammars for metamodel semantics. Software Language Engineering, pages 22—41.

[74] Burmester, S., Giese, H., and Schafer, W. (2005a). Model-driven architecture for

Xii

hard real-time systems: from platform independent models to code. In Model Driven
Architecture-Foundations and Applications. First European Conference, ECMDA-FA
2005. Proceedings, 7-10 Nov. 2005, pages 25-40. Springer-Verlag.

[75] Burmester, S., Giese, H., and Tichy, M. (2005b). Model-driven development of
reconfigurable mechatronic systems with mechatronic uml. In European MDA Work-
shops: Foundations and Applications, MDAFA 2004. Revised Selected Papers, June
10, 2004 - June 11, 2004, volume 3599 of Lecture Notes in Computer Science, pages

47-61. Springer Verlag.

[76] Butt, S. A., Sayyah, P., and Lavagno, L. (2011). Model-based hardware/software
synthesis for wireless sensor network applications. In Saudi International Electronics,
Communications and Photonics Conference 2011, SIECPC, pages 269-286. IEEE

Computer Society.

[77] Campos, R. S., Campos, F. O., Gomes, J. M., de Barros Barbosa, C., Lobosco, M.,
and Dos Santos, R. W. (2013). Comparing high performance techniques for the auto-

matic generation of efficient solvers of cardiac cell models. Computing, 95(1):639—

660.

[78] Cao, Z., Dong, Y., and Wang, S. (2011). Compiler backend generation for applica-
tion specific instruction set processors. Programming Languages and Systems, pages

121-136.

[79] Cardoso, T., Barros, E., Prado, B., and Aziz, A. (2012). Communication software
synthesis from uml-esl models. In 2012 25th Symposium on Integrated Circuits and

Systems Design, SBCCI, pages 1-6. IEEE Computer Society.

[80] Carton, A., Driver, C., Jackson, A., and Clarke, S. (2009). Model-driven the-

me/uml. Transactions on Aspect-Oriented Software Development VI, pages 238-266.

Xiil

[81] Cechticky, V., Chevalley, P., Pasetti, A., and Schaufelberger, W. (2003). A genera-
tive approach to framework instantiation. Generative Programming and Component

Engineering, pages 267-286.

[82] Cechticky, V., Egli, M., Pasetti, A., Rohlik, O., and Vardanega, T. (2006). A uml2
profile for reusable and verifiable software components for real-time applications.

Reuse of Off-the-Shelf Components, pages 312—-325.

[83] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M.
(2003). Chapter 14 - tools for model-based development of web applications. In
Designing Data-Intensive Web Applications, The Morgan Kaufmann Series in Data

Management Systems, pages 499 — 517. Morgan Kaufmann.

[84] Challenger, M., Kardas, G., and Tekinerdogan, B. (2016). A systematic approach to
evaluating domain-specific modeling language environments for multi-agent systems.

Software Quality Journal, pages 1-41.

[85] Chared, Z. and Tyszberowicz, S. (2013). Projective template-based code gener-
ation. In International Conference on Advanced Information Systems Engineering,

volume 998, pages 81-87.

[86] Chen, C.Y., Shun, Y. C., Cheng, C. C., Liao, P. S., and Fang, Z. C. (2007). Matlab-
based rapid controller development platform for control applications. Proceedings of
the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering

Science, 221(11):1461-1473.

[87] Chen, K., Chang, Y.-C., and Wang, D.-W. (2010). Aspect-oriented design and im-
plementation of adaptable access control for electronic medical records. International

Journal of Medical Informatics, 79(3):181-203.

Xiv

[88] Chen, K. and Lin, C. W. (2006). An aspect-oriented approach to declarative ac-
cess control for web applications. In 8th Asia-Pacific Web Conference, APWeb 2006:
Frontiers of WWW Research and Development, volume 3841 LNCS, pages 176—188.

Springer Berlin Heidelberg, Harbin.

[89] Chen, W., Liu, S., Wei, J., and Wang, L. (2011). Automatic construction of de-
ployment descriptors for web applications. In e-Business Engineering (ICEBE), 2011

IEEE 8th International Conference on, pages 257-264.

[90] Chen, X., Liu, P, Qiu, X., Huang, H., and Duan, H. (2012). A novel approach
to automatic code generation for automatic train protection. International Journal of

Innovative Computing, Information & Control, 8(9):6329-6344.

[91] Cheng, C.-H., Geisinger, M., Ruess, H., Buckl, C., and Knoll, A. (2012). Mgsyn:
Automatic synthesis for industrial automation. In 24th International Conference on
Computer Aided Verification, CAV 2012, July 7, 2012 - July 13, 2012, volume 7358
LNCS, pages 658—664. Springer Verlag.

[92] Chevillat, C., Carrington, D., Strooper, P., Sii}, J. G., and Wildman, L. (2008).
Model-based generation of interlocking controller software from control tables.

Model Driven Architecture - Foundations and Applications, pages 349-360.

[93] Chivers, H. and Paige, R. F. (2005). Xround: Bidirectional transformations and
unifications via a reversible template language. Model Driven Architecture - Founda-

tions and Applications, pages 205-219.

[94] Choi, S.-H. (2004). Component reconfiguration tool for software product lines with

xml technology. Web Information Systems - WISE 2004, pages 572-583.

[95] Cicchetti, A., Di Ruscio, D., Iovino, L., and Pierantonio, A. (2013). Managing the

XV

evolution of data-intensive web applications by model-driven techniques. Software &

Systems Modeling, (1):53-83.

[96] Cirilo, E., Kulesza, U., Coelho, R., de Lucena, C. J., and von Staa, A. (2008).
Integrating component and product lines technologies. High Confidence Software

Reuse in Large Systems, pages 130-141.

[97] Clifton-Everest, R., McDonell, T. L., Chakravarty, M. M., and Keller, G. (2014).
Embedding foreign code. Practical Aspects of Declarative Languages, pages 136—

151.

[98] Clowes, D., Kolovos, D., Holmes, C., Rose, L., Paige, R., Johnson, J., Dawson,
R., and Probets, S. (2010). A reflective approach to model-driven web engineering.

Modelling Foundations and Applications, pages 62-73.

[99] Corre, Y., Diguet, J. P., Lagadec, L., Heller, D., and Blouin, D. (2013). Fast
template-based heterogeneous mpsoc synthesis on fpga. In Reconfigurable Comput-
ing: Architectures, Tools and Applications. 9th International Symposium (ARC 2013),

pages 154—66. Springer Verlag.

[100] Cosentino, V., Tisi, M., and Izquierdo, J. L. C. (2015). A model-driven approach
to generate external dsls from object-oriented apis. SOFSEM 2015: Theory and Prac-

tice of Computer Science, pages 423—-435.

[101] Costa, D., Noébrega, L., and Nunes, N. J. (2007). An mda approach for generat-
ing web interfaces with uml concurtasktrees and canonical abstract prototypes. Task

Models and Diagrams for Users Interface Design, pages 137-152.

[102] Cuadrado, J. S., Guerra, E., and De Lara, J. (2014). A component model for model

transformations. /IEEE Transactions on Software Engineering, 40(11):1042-1060.

XVi

[103] Cuesta, A. G., Granja, J. C., and O’Connor, R. V. (2009). A model driven ar-
chitecture approach to web development. Software and Data Technologies, pages

101-113.

[104] Cuesta, P., Gomez, A., and Gonzélez, J. C. (2008). Agent oriented software engi-

neering. Issues in Multi-Agent Systems, pages 1-31.

[105] Dagand, P.-E., Baumann, A., and Roscoe, T. (2009). Filet-o-fish: Practical and
dependable domain-specific languages for os development. In 5th Workshop on Pro-
gramming Languages and Operating Systems, PLOS, pages 35-39. Association for

Computing Machinery.

[106] Dahman, W. and Grabowski, J. (2011). Uml-based specification and generation

of executable web services. System Analysis and Modeling: About Models, pages

91-107.

[107] Danilchenko, Y. and Fox, R. (2012). Automated code generation using case-based
reasoning, routine design and template-based programming. In MAICS, pages 119—

125.

[108] Danvy, O., Grobauer, B., and Rhiger, M. (2002). A unifying approach to goal-

directed evaluation. New Generation Computing, 20(1):53-73.

[109] de la Fuente, D., Barba, J., Caba, J., Peiiil, P., Lopez, J. C., and Sanchez, P. (2016).
Building a Dynamically Reconfigurable System Through a High-Level Development

Flow, pages 51-73. Springer International Publishing.

[110] de Lara, J. and Guerra, E. (2013). From types to type requirements: Genericity

for model-driven engineering. Software and Systems Modeling, 12(3):453-474.

XVvil

[111] de Lara, J., Guerra, E., and Cuadrado, J. S. (2015). Model-driven engineer-
ing with domain-specific meta-modelling languages. Software & Systems Modeling,

14(1):429-459.

[112] Dekeyser, J.-L., Boulet, P., Marquet, P., and Meftali, S. (2005). Model driven
engineering for soc co-design. In 3rd International IEEE Northeast Workshop on
Circuits and Systems Conference, NEWCAS 2005, June 19, 2005 - June 22, 2005,
volume 2005, pages 21-25. Institute of Electrical and Electronics Engineers Com-

puter Society.

[113] Demakov, A. V. (2007). Object-oriented description of graph data structures.

Programming and Computer Software, 33(5):261-271.

[114] Denney, E. and Fischer, B. (2005). Certifiable program generation. In Generative
Programming and Component Engineering: 4th International Conference, pages 17—

28.

[115] Di Natale, M., Guo, L., Zeng, H., and Sangiovanni-Vincentelli, A. (2010). Syn-
thesis of multitask implementations of simulink models with minimum delays. /IEEE

Transactions on Industrial Informatics, 6(4):637-651.

[116] Di Natale, M., Perillo, D., Chirico, F., Sindico, A., and Sangiovanni-Vincentelli,
A. (2016). A model-based approach for the synthesis of software to firmware adapters
for use with automatically generated components. Software & Systems Modeling,

pages 1-23.

[117] Di Rocco, J., Di Ruscio, D., Iovino, L., and Pierantonio, A. (2014). Dealing with
the coupled evolution of metamodels and model-to-text transformations. In Model

Driven Engineering Languages and Systems, volume 1331, pages 22-31.

XViil

[118] Diethelm, I., Geiger, L., and Zundorf, A. (2005). Applying story driven modeling
to the paderborn shuttle system case study. In International Workshop on Scenar-
ios: Models, Transformations and Tools, volume 3466 of Lecture Notes in Computer

Science, pages 109-133. Springer Verlag.

[119] do Nascimento, F. A. M., Oliveira, M. F., and Wagner, F. R. (2012). A model-
driven engineering framework for embedded systems design. Innovations in Systems

and Software Engineering, 8(1):19-33.

[120] Do Nascimento, F. A. M., Oliveira, M. F. S., and Wagner, F. R. (2007). Modes:
Embedded systems design methodology and tools based on mde. In 4th International
Workshop on Model-Based Methodologies for Pervasive and Embedded Software,
MOMPES, pages 67-76. Inst. of Elec. and Elec. Eng. Computer Society.

[121] Dolgert, A., Gibbons, L., and Kuznetsov, V. (2008). Rapid web development

using ajax and python. Journal of Physics: Conference Series, 119(4):042011.

[122] Doroshenko, A., Zhereb, K., and Yatsenko, O. (2013). Developing and optimizing
parallel programs with algebra-algorithmic and term rewriting tools. In 9th Interna-
tional Conference on Information and Communication Technologies in Education,
Research, and Industrial Applications, ICTERI, volume 412 CCIS of Communica-

tions in Computer and Information Science, pages 70-92. Springer Verlag.

[123] Drasutis, S., Pilkauskas, V., and Rubliauskas, D. (2005). Transformation for de-
signing distributed internet information systems under model driven architecture. In-

formation Technology and Control, 34(2):102-8.

[124] Driver, C., Reilly, S., Linehan, E, a., Cahill, V., and Clarke, Siobh4, n. (2011).
Managing embedded systems complexity with aspect-oriented model-driven engi-

neering. ACM Trans. Embed. Comput. Syst., 10(2):21:1-21:26.

Xix

[125] Duma, R., Dobra, P., Trusca, M., Petreus, D., and Moga, D. (2011). Towards
a rapid control prototyping toolbox for the stellaris Im3s8000 microcontrollers. In
18th TFAC World Congress, August 28, 2011 - September 2, 2011, volume 18, pages
1965-1970. IFAC Secretariat.

[126] Duma, R., Petreus, D., Sita, V. 1., Dobra, P., and Rusu, A. (2010). Rapid control
prototyping toolbox for renesas m32¢87 microcontroller. In /7th IEEE International
Conference on Automation, Quality and Testing, Robotics, AQTR 2010, May 28, 2010
- May 30, 2010, volume 1, pages 135-140. IEEE Computer Society.

[127] Durand, S. and Bonato, V. (2012). A tool to support bluespec systemverilog
coding based on uml diagrams. In IECON 2012 - 38th Annual Conference on IEEE

Industrial Electronics Society, pages 4670—4675.

[128] Ecker, W. and Schreiner, J. (2016). Introducing model-of-things (mot) and
model-of-design (mod) for simpler and more efficient hardware generators. In 2016
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC),

pages 1-6.

[129] Ecker, W., Velten, M., Zafari, L., and Goyal, A. (2014). The metamodeling ap-
proach to system level synthesis. In [7th Design, Automation and Test in Europe,

DATE, pages 1-2. Institute of Electrical and Electronics Engineers Inc.

[130] Edmunds, A. (2014). Templates for event-b code generation. In Abstract State

Machines, Alloy, B, TLA, VDM, and Z: 4th International Conference, pages 284—289.

[131] Edwards, G., Brun, Y., and Medvidovic, N. (2012). Automated analysis and code
generation for domain-specific models. In Joint 10th Working IEEE/IFIP Conference
on Software Architecture, WICSA 2012 and 6th European Conference on Software,
ECSA 2012, pages 161-170. IEEE Computer Society.

XX

[132] Eessaar, E. (2008). On pattern-based database design and implementation. In Soft-
ware Engineering Research, Management and Applications, 2008. SERA "08. Sixth

International Conference on, pages 235-242.

[133] El Kaed, C., Denneulin, Y., Ottogalli, F.-G., and Mora, L. F. M. (2010). Combin-
ing ontology alignment with model driven engineering techniques for home devices

interoperability. Software Technologies for Embedded and Ubiquitous Systems, pages
71-82.

[134] El-Khoury, J., Ekelin, C., and Ekholm, C. (2016). Supporting the Linked Data
Approach to Maintain Coherence Across Rich EMF Models, pages 36—47. Springer

International Publishing.

[135] Eltoweissy, S. A. B. G. a. G. H. (2007). Model-based evolution of collaborative

agent-based systems. Journal of the Brazilian Computer Society, 13(4):17-38.

[136] Erdweg, S., Van Der Storm, T., Volter, M., Boersma, M., Bosman, R., Cook,
W. R., Gerritsen, A., Hulshout, A., Kelly, S., and Loh, A. e. a. (2013). The state of

the art in language workbenches. Software Language Engineering, pages 197-217.

[137] Ertl, M. A. and Gregg, D. (2002). Building an interpreter with vmgen. Compiler

Construction, pages 5-8.

[138] Estevez, E., Marcos, M., Sarachaga, 1., Lopez, F., Burgos, A., Perez, F., and Orive,
D. (2009). Model based documentation of automation applications. In Industrial
Informatics, 2009. INDIN 2009. 7th IEEE International Conference on, pages 768—
774.

[139] Estévez, E., Sanchez-Garcia, A., Gdmez-Garcia, J., Gomez-Ortega, J., and

Satorres-Martinez, S. (2016). A novel model-driven approach to support develop-

XX1

ment cycle of robotic systems. The International Journal of Advanced Manufacturing

Technology, 82(1):737-751.

[140] Estublier, J., Tonita, A. D., and Nguyen, T. (2011). Code generation for a bi-
dimensional composition mechanism. Software Engineering Techniques, pages 171—

185.

[141] Etien, A., Muller, A., Legrand, T., and Paige, R. F. (2015). Localized model trans-
formations for building large-scale transformations. Software & Systems Modeling,

14(3):1189-1213.

[142] Fang, M., Ying, J., and Wu, M. (2006). A template engineering based framework
for automated software development. In Computer Supported Cooperative Work in

Design, 2006. CSCWD ’06. 10th International Conference on, pages 1-6.

[143] Fernandez, M. R., Alonso, I. G., and Casanova, E. Z. (2016). Improving the inter-
operability in the digital home through the automatic generation of software adapters

from a sysml model. Journal of Intelligent & Robotic Systems, pages 1-11.

[144] Ferreira, J., Silva, A., and Delgado, J. (2007). Ir-case tool [information retrieval].
In Proceedings of the IASTED International Conference on Software Engineering
as part of the 25th IASTED International Multi-Conference on Applied Informatics,
pages 171-176. Acta Press.

[145] Fertalj, K., Kalpic, D., and Mornar, V. (2002). Source code generator based on a
proprietary specification language. In System Sciences, 2002. HICSS. Proceedings of

the 35th Annual Hawaii International Conference on, pages 3696-704.

[146] Fischer, B. and Visser, E. (2004). Retrofitting the autobayes program synthesis
system with concrete syntax. In International Seminar on Domain-Specific Program

Generation, volume 3016, pages 239-253. Springer Verlag.

XXil

[147] Fischer, T., Kollner, C., Hardle, M., and Muller-Glaser, K. (2014). Product line
development for modular fpga-based embedded systems. In 2014 25nd IEEE Inter-

national Symposium on Rapid System Prototyping, pages 9—15.

[148] Fleurey, F., Baudry, B., Muller, P.-A., and Le Traon, Y. (2009). Qualifying input

test data for model transformations. Software & Systems Modeling, 8(2):185-203.

[149] Fleurey, F., Breton, E., Baudry, B., Nicolas, A., and Jézéquel, J.-M. (2007).
Model-driven engineering for software migration in a large industrial context. In

Model Driven Engineering Languages and Systems, pages 482—497.

[150] Fleury, M., Downton, A., and Clark, A. (2000). Analysis prediction template
toolkit (aptt) for object-based computation. IEE Proceedings: Software, 147(2):37—
47.

[151] Floch, A., Yuki, T., Guy, C., Derrien, S., Combemale, B., Rajopadhye, S., and
France, R. B. (2011). Model-driven engineering and optimizing compilers: A bridge

too far? In Model Driven Engineering Languages and Systems, pages 608—622.

[152] Ford, R. and Riley, G. (2012). The bespoke framework generator. Earth System
Modelling - Volume 3, pages 55-67.

[153] Fraternali, P. and Tisi, M. (2009). A higher order generative framework for weav-
ing traceability links into a code generator for web application testing. 9th Interna-

tional Conference on Web Engineering, ICWE 2009, pages 340-354.

[154] Fraternali, P. and Tisi, M. (2010). Multi-level tests for model driven web applica-

tions. Web Engineering, pages 158—172.

[155] Freeman, G., Batory, D., and Lavender, G. (2008). Lifting transformational mod-

XXiil

els of product lines: A case study. In /st International Conference on Model Trans-

formations, ICMT, pages 16-30. Springer Verlag.

[156] Fu, J., Bastani, F. B., and Yen, 1. L. (2006). Automated ai planning and code
pattern based code synthesis. In I8th IEEE International Conference on Tools with
Artificial Intelligence, ICTAI 2006, October 13, 2006 - October 15, 2006, pages 540—
544. IEEE Computer Society.

[157] Fu, J., Bastani, F. B., and Yen, 1. L. (2008). Model-driven prototyping based
requirements elicitation. In 14th Monterey Workshop 2007, September 10, 2007 -
September 13, 2007, volume 5320 LNCS, pages 43-61. Springer Verlag.

[158] Furusawa, T. (2010). Attempting to increase longevity of applications based on

new saas/cloud technology. Fujitsu Scientific and Technical Journal, 46(2):223-8.

[159] Gamatie, A., Le Beux, S., Piel, E., Atitallah, R. B., Etien, A., Marquet, P., and
Dekeyser, J.-L. (2011). A model-driven design framework for massively parallel em-

bedded systems. Transactions on Embedded Computing Systems, 10(4):39:1-39:36.

[160] Garcia, E., Valero, S., and Giret, A. (2016). ROMAS-Magentix2, pages 153—-171.

Springer International Publishing.

[161] Garcia, J., Azanza, M., Irastorza, A., and Diaz, O. (2014). Testing mofscript trans-

formations with handymof. Theory and Practice of Model Transformations, pages

42-56.

[162] Garg, R. M. and Dahiya, D. (2011). An aspect oriented component based model

driven development. Software Engineering and Computer Systems, pages 502-517.

[163] Gaustad, K., Shippert, T., Ermold, B., Beus, S., Daily, J., Borsholm, A., and

XX1V

Fox, K. (2014). A scientific data processing framework for time series netcdf data.

Environmental Modelling & Software, 60:241-249.

[164] GAfbe, F., Timmermanns, T., Ney, O., and Kowalewski, S. (2016). Synthesis
tool for automation controller supervision. In 2016 13th International Workshop on

Discrete Event Systems (WODES), pages 424-431.

[165] Ge, G. and Whitehead, E. J. (2008). Rhizome: a feature modeling and generation
platform. In 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering, pages 375-378. IEEE.

[166] Gedik, B. and Andrade, H. (2012). A model-based framework for building exten-
sible, high performance stream processing middleware and programming language

for ibm infosphere streams. Software: Practice and Experience, 42(11):1363—-1391.

[167] Geiger, L. and Ziindorf, A. (2006). Developing tools with fujaba xprom. Gener-

ative and Transformational Techniques in Software Engineering, pages 344-356.

[168] Geiger, N., George, T., Hahn, M., Jubeh, R., and Ziindorf, A. (2010). Using
actions charts for reactive web application modeling. Current Trends in Web Engi-

neering, pages 49-60.

[169] Geng, P., Ouyang, M., Li, J., and Xu, L. (2012). Embedded c code generation
platform for electric vehicle controller. In 2012 International Conference on Electri-
cal Insulating Materials and Electrical Engineering, EIMEE 2012, volume 546-547,

pages 778-783. Trans Tech Publications.

[170] Geng, P., Ouyang, M., Li, J., and Xu, L. (2013). Automated code generation for
development of electric vehicle controller. Proceedings of the FISITA 2012 World

Automotive Congress, pages 459—468.

XXV

[171] George, B., Bohner, S. A., and He, N. (2006). Towards a model level debugger
for the cougaar model driven architecture system. Innovative Concepts for Autonomic

and Agent-Based Systems, pages 86-97.

[172] Gessenharter, D. (2008). Mapping the UML?2 semantics of associations to a Java

code generation model, pages 813—827. Springer.

[173] Ghodrat, M. A., Givargis, T., and Nicolau, A. (2008). Control flow optimization
in loops using interval analysis. In Embedded Systems Week 2008 - 2008 Interna-
tional Conference on Compilers, Architecture and Synthesis for Embedded Systems,
CASES’08, October 19, 2008 - October 24, 2008, pages 157-166. Association for

Computing Machinery.

[174] Giese, H. (2005). Towards the model-driven development of self-optimizing
mechatronic systems. In Dagstuhl-Workshop MBEES: Modellbasierte Entwick-
lung eingebetteter Systeme - Workshop on Model-Based Development of Embedded
Systems, MBEES 2005, January 10, 2005 - January 14, 2005, pages 11-22. TU
Clausthal.

[175] Girschick, M. (2008). Integrating template based code generation into graphical

model transformation. In Modellierung, pages 27-40.

[176] Gopinath, V., Sprinkle, J., and Lysecky, R. (2011). Modeling of data adaptable re-
configurable embedded systems. In Engineering of Computer Based Systems (ECBS),
2011 18th IEEE International Conference and Workshops on, pages 276-283.

[177] Gracanin, D., Singh, H. L., Bohner, S. A., and Hinchey, M. G. (2005). Model-
driven architecture for agent-based systems. Formal Approaches to Agent-Based Sys-

tems, pages 249-261.

XX V1

[178] Graichen, C. and D’ Amato, F. (2011). Adding code generation to develop a sim-
ulation platform. In Systems, Applications and Technology Conference (LISAT), 2011
IEEE Long Island, pages 1-6.

[179] Graw, G. and Herrmann, P. (2004). Generation and enactment of controllers for

business architectures using mda. Software Architecture, pages 148—166.

[180] Greifenberg, T., Holldobler, K., Kolassa, C., Look, M., Nazari, P. M. S., Miiller,
K., Perez, A. N., Plotnikov, D., Reiss, D., and Roth, A. e. a. (2015). Integration
of handwritten and generated object-oriented code. Model-Driven Engineering and

Software Development, pages 112—-132.

[181] Greifenberg, T., Miiller, K., Roth, A., Rumpe, B., Schulze, C., and Wortmann,
A. (2016). Modeling variability in template-based code generators for product line

engineering. arXiv preprint arXiv:1606.02903.

[182] Groce, A. and Pinto, J. (2015). A little language for testing. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 9058:204-218.

[183] Groher, I. and Voelter, M. (2009). Aspect-oriented model-driven software product
line engineering. Transactions on Aspect-Oriented Software Development VI, pages

111-152.

[184] Grow, M., Kim, D., and Kim, Y. (2004). Template-based automatic data flow code

generation for mediaprocessors. Microprocessors and Microsystems, 28(2):77-84.

[185] Grunske, L., Geiger, L., Ziindorf, A., Van Eetvelde, N., Van Gorp, P., and Varro,
D. (2005). Using graph transformation for practical model-driven software engineer-

ing. Model-Driven Software Development, pages 91-117.

XX Vil

[186] Guana, V. and Stroulia, E. (2014). Chaintracker, a model-transformation trace
analysis tool for code-generation environments. Theory and Practice of Model Trans-

formations, pages 146—153.

[187] Guduvan, A.-R., Waeselynck, H., Wiels, V., Durrieu, G., Fusero, Y., and Schieber,
M. (2013). A meta-model for tests of avionics embedded systems. In International

Conference on Model-Driven Engineering and Software Development, pages 5—13.

[188] Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schonbock, J., and Schwinger, W. (2013). Automated verification of model transfor-

mations based on visual contracts. Automated Software Engineering, 20(1):5-46.

[189] Guillou, G. and Babau, J.-P. (2016). IMOCA: A Model-Based Code Genera-
tor for the Development of Multi-platform Marine Embedded Systems, pages 67-77.

Springer International Publishing.

[190] Guo, L. and Roychoudhury, A. (2008). Debugging statecharts via model-code
traceability. Leveraging Applications of Formal Methods, Verification and Validation,

pages 292-306.

[191] Han, D., Xu, S., Chen, L., and Huang, L. (2011). Pads: A pattern-driven stencil
compiler-based tool for reuse of optimizations on gpgpus. In Parallel and Distributed

Systems (ICPADS), 2011 IEEE 17th International Conference on, pages 308-315.

[192] Hartmann, H., Keren, M., Matsinger, A., Rubin, J., Trew, T., and Yatzkar-Haham,
T. (2010). Using mda for integration of heterogeneous components in software supply

chains. Software Product Lines: Going Beyond, pages 2313-2330.

[193] Haschemi, S. and Weilleder, S. (2010). A generic approach to run mutation anal-

ysis. Testing - Practice and Research Techniques, pages 155—-164.

XXViil

[194] Hastings, S., Oster, S., Langella, S., Ervin, D., Kurc, T., and Saltz, J. (2007). In-
troduce: An open source toolkit for rapid development of strongly typed grid services.

Journal of Grid Computing, 5(4):407-427.

[195] Hatzisymeon, G., Houssos, N., Andreadis, D., and Samoladas, V. (2005). An
architecture for implementing application interoperation with heterogeneous systems.

Distributed Applications and Interoperable Systems, pages 194-205.

[196] Haubold, T., Beier, G., Golubski, W., and Herbig, N. (2010). The genesez ap-
proach to model-driven software development. Advanced Techniques in Computing

Sciences and Software Engineering, pages 395-400.

[197] Hauck, M., Kuperberg, M., Huber, N., and Reussner, R. (2014). Deriv-
ing performance-relevant infrastructure properties through model-based experiments

with ginpex. Software & Systems Modeling, 13(4):1345-1365.

[198] Haustein, S. and Pleumann, J. (2005). A model-driven runtime environment for

web applications. Software & Systems Modeling, 4(4):443—458.

[199] Hebig, R., Giese, H., Stallmann, F., and Seibel, A. (2013). On the complex nature

of mde evolution. pages 436—453.

[200] Heidenreich, F., Johannes, J., Karol, S., Seifert, M., and Wende, C. (2013).
Model-based language engineering with emftext. Generative and Transformational

Techniques in Software Engineering 1V, pages 322-345.

[201] Heidenreich, E., Johannes, J., Seifert, M., and Wende, C. (2010). Closing the gap

between modelling and java. Software Language Engineering, pages 374-383.

[202] Helman, T. and Fertalj, K. (2004). Application generator based on parameterized

XX1X

templates. In Information Technology Interfaces, 2004. 26th International Confer-

ence on, volume Vol.1, pages 151-157.

[203] Hemel, Z., Kats, L. C., Groenewegen, D. M., and Visser, E. (2010). Code genera-
tion by model transformation: a case study in transformation modularity. Software &

Systems Modeling, 9(3):375-402.

[204] Hemel, Z. and Visser, E. (2010). Pil: A platform independent language for retar-

getable dsls. Software Language Engineering, pages 224-243.

[205] Hendrikx, K., Olivie, H., and Duval, E. (2003). Generative development of object-
oriented frameworks. Technology of Object-Oriented Languages, Systems and Archi-

tectures, pages 31-43.

[206] Heradio, R., Cerrada, J. A., Lopez, J. C., and Coz, J. R. (2009). Code generation
with the exemplar flexibilization language. Electronic Notes in Theoretical Computer

Science, 238(2):25-34.

[207] Hermans, F., Pinzger, M., and Van Deursen, A. (2009). Domain-specific lan-
guages in practice: A user study on the success factors. In Model Driven Engineering

Languages and Systems, pages 423-437.

[208] Hill, J. H., Tambe, S., and Gokhale, A. (2007). Model-driven engineering for
development-time qos validation of component-based software systems. In /4th An-
nual IEEE International Conference and Workshops on the Engineering of Computer-
Based Systems, ECBS, pages 307-316. Institute of Electrical and Electronics Engi-

neers Inc.

[209] Hills, M., Klint, P., and Vinju, J. J. (2013). Meta-language support for type-safe

access to external resources. Software Language Engineering, pages 372-391.

XXX

[210] Hinkel, G., Denninger, O., Krach, S., and Groenda, H. (2016). Experiences with
Model-Driven Engineering in Neurorobotics, pages 217-228. Springer International

Publishing, Cham.

[211] Hohenstein, U. and Elsner, C. (2015). A case study on model-driven development
and aspect-oriented programming: Benefits and liabilities. Software Technologies,

pages 269-290.

[212] Hoisl, B., Sobernig, S., and Strembeck, M. (2013). Higher-order rewriting of
model-to-text templates for integrating domain-specific modeling languages. In /st

International Conference on Model-Driven Engineering and Software Development,

MODELSWARD, pages 49-61. INSTICC Press.

[213] Huang, S. S., Zook, D., and Smaragdakis, Y. (2005). Statically safe program gen-
eration with safegen. Generative Programming and Component Engineering, pages

309-326.

[214] Huang, S. S., Zook, D., and Smaragdakis, Y. (2008). Domain-specific languages
and program generation with meta-aspectj. ACM Transactions on Software Engineer-

ing and Methodology, 18(2):6.

[215] Huiqing, L. and Thompson, S. (2012). Automated api migration in a user-
extensible refactoring tool for erlang programs. In 2012 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), 3-7 Sept. 2012, pages
294-297. IEEE.

[216] Huong, P. V. and Binh, N. N. (2012). An approach to design embedded systems by
multi-objective optimization. In Advanced Technologies for Communications (ATC),

2012 International Conference on, pages 165-169.

XXX1

[217] Huy, T. D., Binh, N. T., and Ngoc, N. S. (2016). Modeling Multidimensional
Data Cubes Based on MDA (Model-Driven Architecture), pages 85-97. Springer

International Publishing.

[218] Iliasov, A. (2003). Templates-based portable just-in-time compiler. SIGPLAN
Notices, 38(8):37-43.

[219] Inostroza, P. and Van Der Storm, T. (2014). The ttc 2014 fixml case: Rascal
solution. In TCC@ STAF, volume 1305, pages 47-51.

[220] Jaber, M., Falcone, Y., Dak-Al-Bab, K., Abou-Jaoudeh, J., and El-Katerji, M.
(2016). A high-level modeling language for the efficient design, implementation, and
testing of android applications. International Journal on Software Tools for Technol-

ogy Transfer, pages 1-18.

[221] Jain, V., Kumar, A., and Panda, P. R. (2011). A sysml profile for development and
early validation of tlm 2.0 models. Modelling Foundations and Applications, pages

299-311.

[222] Janin, L. and Edwards, D. (2007). Csp transactors for asynchronous transaction
level modeling and ip reuse. In International Conference on Computational Science
and its Applications, ICCSA 2007, volume 4707 LNCS, pages 154—168. Springer
Berlin Heidelberg.

[223] Jannach, D. and Kreutler, G. (2004). A knowledge-based framework for the rapid
development of conversational recommenders. Web Information Systems - WISE

2004, pages 390-402.

[224] Janota, M., Fairmichael, F., Holub, V., Grigore, R., Charles, J., Cochran, D., and
Kiniry, J. R. (2009). Clops: A dsl for command line options. Domain-Specific Lan-
guages, pages 187-210.

XXXi1

[225] Jaouadi, 1., Ben Djemaa, R., and Ben-Abdallah, H. (2016). A model-driven de-
velopment approach for context-aware systems. Software & Systems Modeling, pages

1-27.

[226] Jayasinghe, D., Swint, G., Malkowski, S., Li, J., Wang, Q., Park, J., and Pu,
C. (2012). Expertus: A generator approach to automate performance testing in iaas
clouds. In 2012 IEEE 5th International Conference on Cloud Computing, CLOUD,

pages 115-122. IEEE Computer Society.

[227] Jhang, J., Chung, J.-Y., and Chang, C. K. (2004). Towards increasing web ap-
plication productivity. In Applied Computing 2004 - Proceedings of the 2004 ACM
Symposium on Applied Computing, March 14, 2004 - March 17, 2004, volume 2,
pages 1677-1681.

[228] Jia, L., He, X., and Dong, Y. (2012). Designing universal template for database
application system based on abstract factory. In 2012 International Conference on

Computer Science and Information Processing (CSIP), pages 1167-70. IEEE.

[229] Jia, X. and Jones, C. (2013). Cross-platform application development using axiom

as an agile model-driven approach. Software and Data Technologies, pages 36-51.

[230] Jia, X., Steele, A., Qin, L., Liu, H., and Jones, C. (2007). Executable visual

software modeling—the zoom approach. Software Quality Journal, 15(1):27-51.

[231] Jiang, L.-Y., Wang, R.-C., and Wang, H.-Y. (2006). Code generation framework
for grid development. Journal of China Universities of Posts and Telecommunica-

tions, 13(2):39-42.

[232] Johns, M. (2013). Prepared;js: Secure script-templates for javascript. Detection of

Intrusions and Malware, and Vulnerability Assessment, pages 102—121.

XXX1il

[233] Jones, C. and Jia, X. (2015). Using a domain specific language for lightweight
model-driven development. Evaluation of Novel Approaches to Software Engineer-

ing, pages 46—62.

[234] Jorges, S. (2013). Construction and evolution of code generators: A model-driven
and service-oriented approach. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

TT47:1-265.

[235] Jorges, S., Lamprecht, A.-L., Margaria, T., Naujokat, S., and Steffen, B. (2016).
Synthesis from a Practical Perspective, pages 282-302. Springer International Pub-

lishing.

[236] Jorges, S., Lamprecht, A.-L., Margaria, T., Schaefer, 1., and Steffen, B. (2012). A
constraint-based variability modeling framework. International Journal on Software

Tools for Technology Transfer, 14(5):511-530.

[237] Jorges, S., Margaria, T., and Steffen, B. (2008). Genesys: service-oriented con-
struction of property conform code generators. Innovations in Systems and Software

Engineering, 4(4):361-384.

[238] Jorges, S. and Steffen, B. (2014). Back-to-back testing of model-based code gen-
erators. Leveraging Applications of Formal Methods, Verification and Validation.

Technologies for Mastering Change, pages 425-444.

[239] Jorges, S., Steffen, B., and Margaria, T. (2011). Building code generators with
genesys: A tutorial introduction. Generative and Transformational Techniques in

Software Engineering III, pages 364—385.

[240] Jugel, U. (2010). Generating smart wrapper libraries for arbitrary apis. Software

Language Engineering, pages 354-373.

XXX1V

[241] Jugel, U. and Preucner, A. (2011). A case study on api generation. In System
Analysis and Modeling: About Models, volume 6598 LNCS, pages 156-172.

[242] Kallel, S., Charfi, A., Mezini, M., and Jmaiel, M. (2007). Combining formal
methods and aspects for specifying and enforcing architectural invariants. Coordina-

tion Models and Languages, pages 211-230.

[243] Kallel, S., Kacem, M. H., and Jmaiel, M. (2012). Modeling and enforcing invari-
ants of dynamic software architectures. Software & Systems Modeling, 11(1):127—-

149.

[244] Kallel, S., Loulou, M., Rekik, M., and Kacem, A. H. (2013). Mda-based approach
for implementing secure mobile agent systems. Agent-Oriented Software Engineering

XIII, pages 56-72.

[245] Kalnina, E. and Kalnins, A. (2009). Dsl tool development with transformations

and static mappings. Models in Software Engineering, pages 356-370.

[246] Kardas, G., Ekinci, E. E., Afsar, B., Dikenelli, O., and Topaloglu, N. Y. (2009).
Modeling tools for platform specific design of multi-agent systems. Multiagent Sys-

tem Technologies, pages 202-207.

[247] Kerer, C. and Kirda, E. (2001). Layout, content and logic separation in web
engineering. Web Engineering, pages 135-147.

[248] Kilgo, P., Syriani, E., and Anderson, M. (2012). A visual modeling language
for rdis and ros nodes using atom3. Simulation, Modeling, and Programming for

Autonomous Robots, pages 125-136.

[249] Kim, S., Kim, R. Y. C., and Park, Y. B. (2016). Software vulnerability detection

XXXV

methodology combined with static and dynamic analysis. Wireless Personal Commu-

nications, 89(3):777-793.

[250] Kim, W. Y., Son, H. S., Kim, J. S., and Kim, R. Y. C. (2011a). Adapting model
transformation approach for android smartphone application. In 3rd International
Conference on Advanced Communication and Networking, ACN, volume 199 CCIS,

pages 421-429. Springer Verlag.

[251] Kim, W. Y., Son, H. S., and Kim, R. Y. C. (2011b). Design of code template for
automatic code generation of heterogeneous smartphone application. In Advanced

Communication and Networking, volume 199 CCIS, pages 292-297.

[252] Kindler, E. (2009). Model-based software engineering and process-aware infor-
mation systems. Transactions on Petri Nets and Other Models of Concurrency 11,

pages 27-45.

[253] Klarl, A., Cichella, L., and Hennicker, R. (2015). From helena ensemble specifi-

cations to executable code. Formal Aspects of Component Software, pages 183—190.

[254] Klint, P., Van Der Storm, T., and Vinju, J. (2011). Easy meta-programming with
rascal. Generative and Transformational Techniques in Software Engineering III,

pages 222-289.

[255] Kokar, M., Baclawski, K., and Gao, H. (2006). Category theory-based synthesis
of a higher-level fusion algorithm: an example. In 2006 9th International Conference

on Information Fusion, pages 1-8.

[256] Kolassa, C., Look, M., Miiller, K., Roth, A., Rei}, D., and Rumpe, B.
(2016). Tunit-unit testing for template-based code generators. arXiv preprint

arXiv:1606.04682.

XXXV1

[257] Kolovos, D. S., Garcia-Dominguez, A., Rose, L. M., and Paige, R. F. (2015).
Eugenia: towards disciplined and automated development of gmf-based graphical

model editors. Software & Systems Modeling, pages 1-27.

[258] Kolovos, D. S., Paige, R. F., and Polack, F. A. (2005). An agile and extensible
code generation framework. Extreme Programming and Agile Processes in Software

Engineering, pages 226-229.

[259] Kovesdan, G., Asztalos, M., and Lengyel, L. (2014). Polymorphic templates a
design pattern for implementing agile model-to-text transformations. In XM 2014—

Extreme Modeling Workshop, volume 1239, pages 32—41.

[260] Ko6vi, A. and Varrd, D. (2007). An eclipse-based framework for ais service con-

figurations. Service Availability, pages 110-126.

[261] Kovse, J. and Gebauer, C. (2004). Vs-gen: A case study of a product line for
versioning systems. In 3rd International Conference on Generative Programming
and Component Engineering, GPCE 2004, October 24, 2004 - October 28, 2004,

volume 3286, pages 396—415. Springer Verlag.

[262] Krahn, H. and Rumpe, B. (2006). Techniques for lightweight generator refactor-
ing, pages 437-446. Springer.

[263] Kiikava, F.,, Collet, P., and France, R. B. (2014). Sigma: Scala internal domain-
specific languages for model manipulations. In Model Driven Engineering Languages

and Systems, pages 569-585.

[264] Kristensen, L. M. and Veiset, V. (2016). Transforming CPN Models into Code for
TinyOS: A Case Study of the RPL Protocol, pages 135-154. Springer International
Publishing.

XXX Vil

[265] Kudlur, M. and Mahlke, S. (2008). Orchestrating the execution of stream pro-
grams on multicore platforms. In 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation 2008, PLDI’08, June 7, 2007 - June 13, 2007,

pages 114—124. Association for Computing Machinery.

[266] Kulesza, R., Meira, S. R. L., Ferreira, T. P., Livio, A., Filho, G. L. S., Neto,
M. C. M., and Santos, C. A. S. (2011). A model-driven development approach to
integration of web services and interactive applications: A case study in a digital tv
platform. In /7th Brazilian Symposium on Multimedia and the Web, WebMedia 201 1,
co-located with 25th Brazilian Symposium on Database, SBBD 2011, pages 34-41.

Universidade Federal de Santa Catarina.

[267] Kulesza, U., Alves, V., Garcia, A., Neto, A. C., Cirilo, E., De Lucena, C. J., and
Borba, P. (2007). Mapping features to aspects: A model-based generative approach.

Early Aspects: Current Challenges and Future Directions, pages 155-174.

[268] Kulesza, U., Garcia, A., Lucena, C., and Alencar, P. (2005). A generative ap-
proach for multi-agent system development. Software Engineering for Multi-Agent

Systems 111.

[269] Kulkarni, V. (2013). Model driven software development. Modelling Foundations

and Applications, pages 220-235.

[270] Kulkarni, V., Barat, S., and Ramteerthkar, U. (2011). Early experience with agile
methodology in a model-driven approach. In Model Driven Engineering Languages

and Systems, pages 578-590.

[271] Kundu, D., Samanta, D., and Mall, R. (2013). Automatic code generation from

unified modelling language sequence diagrams. IET Software, 7(1):12-28.

XXXViil

[272] Lachgar, M. and Abdali, A. (2016). Modeling and generating native code for
cross-platform mobile applications using dsl. Intelligent Automation & Soft Comput-

ing, 0:1-14.

[273] Lamancha, B. P., Reales, P., Polo, M., and Caivano, D. (2011a). Model-Driven

Test Code Generation, pages 155—168. Springer.

[274] Lamancha, B. P., Usaola, M. P.,, and Velthius, M. P. (2011b). A model based test-
ing approach for model-driven development and software product lines. Evaluation

of Novel Approaches to Software Engineering, pages 193-208.

[275] Lau, K.-K. and Ukis, V. (2006). Automatic control flow generation from software

architectures. Software Composition, pages 323-338.

[276] Lee, J., Park, J., Yoo, G., and Lee, E. (2010). Goal-based automated code
generation in self-adaptive system. Journal of Computer Science and Technology,

25(6):1118-1129.

[277] Lee, K., Lee, W., Kim, J., and Chong, K. (2006). A technique for code generation
of usn applications based on nano-qplus. Computational Science - ICCS 2006, pages

902-909.

[278] Lee, W., Kim, J., and Kang, J. (2012). A framework for automated construction
of node software using low-level attributes in usn application development. Interna-

tional Journal of Software Engineering and Knowledge Engineering, 22(5):675-693.

[279] Leonard, E. I. and Heitmeyer, C. L. (2003). Program synthesis from formal re-
quirements specifications using apts. Higher-Order and Symbolic Computation, 16(1

- 2):63-92.

XXX1X

[280] Leone, S., de Spindler, A., and McLeod, D. (2013). Model-driven composition
of information systems from shared components and connectors. On the Move to

Meaningful Internet Systems: OTM 2013 Conferences, pages 204-221.

[281] Lethbridge, T. C., Abdelzad, V., Husseini Orabi, M., Husseini Orabi, A., and
Adesina, O. (2016). Merging Modeling and Programming Using Umple, pages 187—

197. Springer International Publishing.

[282] Li, D., Li, F,, Huang, X., Lai, Y., and Zheng, S. (2010). A model based integration
framework for computer numerical control system development. Robot. Comput.-

Integr. Manuf., 26(4):333-343.

[283] Li, H. and Thompson, S. (2012). A Domain-Specific Language for Scripting

Refactorings in Erlang, pages 501-515. Springer Berlin Heidelberg.

[284] Li, S., Malik, J., Liu, S., and Hemani, A. (2013). A code generation method for
system-level synthesis on asic, fpga and manycore cgra. In Ist International Work-
shop on Many-Core Embedded Systems, MES 2013, in Conjunction with the 40th
Annual IEEE/ACM International Symposium on Computer Architecture, ISCA 2013,

June 24, 2013 - June 24, 2013, pages 25-32. Association for Computing Machinery.

[285] Li, W., Lee, Y.-H., Tsai, W.-T., Xu, J., Son, Y.-S., Park, J.-H., and Moon, K.-
D. (2012). Service-oriented smart home applications: composition, code generation,

deployment, and execution. Service Oriented Computing and Applications, 6(1):65—

79.

[286] Liao, K., Kisuule, P., Ehrlinger, J., and Dai, J. (2009). Autogeneration of database
applications from xml metadata for web-based data entry. In Computer and Informa-
tion Science, 2009. ICIS 2009. Eighth IEEE/ACIS International Conference on, pages
718-723.

x1

[287] Liem, I. and Nugroho, Y. (2008). An application generator framelet. In Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-

ing, 2008. SNPD °08. Ninth ACIS International Conference on, pages 794-9.

[288] Lihatsky, I., Doroshenko, A., and Zhereb, K. (2013). A template-based method to
create efficient and customizable object-relational transformation components. Infor-

mation Systems: Methods, Models, and Applications, pages 178—184.

[289] Linaje, M., Preciado, J. C., Morales-Chaparro, R., Rodriguez-Echeverria, R., and
Séanchez-Figueroa, F. (2009). Automatic generation of rias using rux-tool and webra-

tio. Web Engineering, pages 501-504.

[290] Linehan, E. and Clarke, Siobhd, n. (2012). An aspect-oriented, model-driven

approach to functional hardware verification. J. Syst. Archit., 58(5):195-208.

[291] Lohmann, M., Sauer, S., and Schattkowsky, T. (2003). Progum-web: Tool support
for model-based development of web applications. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), volume 2863, pages 101-105. Springer Berlin Heidelberg.

[292] Lohmann, M. and Schattkowsky, T. (2002). Rapid development of modular dy-
namic web sites using uml. ?UML? 2002—The Unified Modeling Language, pages
336-350.

[293] Lopez, S. A., Bonino, D., and Corno, F. (2014). Template-based ontology pop-
ulation for smart environments configuration. Service-Oriented Computing - ICSOC

2013 Workshops, pages 271-278.

[294] Lora, M., Martinelli, F., and Fummi, F. (2015). Hardware synthesis from

software-oriented uml descriptions. In /5th International Microprocessor Test and

xli

Verification Workshop, MTV 2014, December 15, 2014 - December 16, 2014, volume
2015-April of Proceedings - International Workshop on Microprocessor Test and Ver-

ification, pages 33-38. Institute of Electrical and Electronics Engineers Inc.

[295] Lussenburg, V., Van Der Storm, T., Vinju, J., and Warmer, J. (2010). Mod4;j:
A qualitative case study of model-driven software development. In Model Driven

Engineering Languages and Systems, pages 346-360.

[296] Ma, K., Yang, B., and Wang, H. (2010). A formalizing hybrid model transforma-
tion approach for collaborative system. In Computer Supported Cooperative Work in

Design (CSCWD), 2010 14th International Conference on, pages 71-76.

[297] Ma, M., Meissner, M., and Hedrich, L. (2012). A case study: Automatic topol-
ogy synthesis for analog circuit from an asdex specification. In Synthesis, Modeling,
Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 2012

International Conference on, pages 9—12.

[298] Magdalenic, I., Radosevic, D., and Kermek, D. (2011). Implementation model of
source code generator. Journal of Communication Software & Systems, 7(2):71—

9.

[299] Mahapatra, S. (2011). Enabling modular design platforms using variants in
model-based design. In AIAA Modeling and Simulation Technologies Conference
2011, August 8, 2011 - August 11, 2011, AIAA Modeling and Simulation Technolo-
gies Conference 2011, pages 904-915. American Institute of Aeronautics and Astro-

nautics Inc.

[300] Malohlava, M., Plasil, F., Bures, T., and Hnetynka, P. (2013). Interoperable
domain-specific languages families for code generation. Software: Practice and Ex-

perience, 43(5):1-21.

xlii

[301] Manley, R. and Gregg, D. (2010). A program generator for intel aes-ni instruc-
tions. Progress in Cryptology - INDOCRYPT 2010, pages 311-327.

[302] Mao, F, Cai, X., Shen, B., Xia, Y., and Jin, B. (2016). Operational pattern based
code generation for management information system: An industrial case study. In
2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), pages 425—
430.

[303] Maoz, S. and Harel, D. (2006). From multi-modal scenarios to code: Compiling
Iscs into aspectj. In 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, Proceedings of the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, pages 219-230. Association for Computing Ma-

chinery.

[304] Maoz, S., Harel, D., and Kleinbort, A. (2011). A compiler for multimodal scenar-
10s: Transforming Iscs into aspectj. ACM Transactions on Software Engineering and

Methodology, 20(4).

[305] Marand, E. A., Marand, E. A., and Challenger, M. (2015). Dsml4cp: A domain-
specific modeling language for concurrent programming. Computer Languages, Sys-

tems & Structures, pages 319-341.

[306] Marin, M., van Deursen, A., Moonen, L., and van der Rijst, R. (2009). An inte-
grated crosscutting concern migration strategy and its semi-automated application to

jhotdraw. Automated Software Engineering, 16(2):323-356.

[307] Martins, D., Campos, F. O., Ciuffo, L. N., Oliveira, R. S., Amorim, R. M., Vieira,
V., Ebecken, N. E., Barbosa, C. B., and Dos Santos, R. W. (2007). A computational

xliii

framework for cardiac modeling based on distributed computing and web applica-
tions. High Performance Computing for Computational Science - VECPAR 2006,
pages 544-555.

[308] Matsumoto, K., Mizuno, T., and Mori, N. (2013). A model-driven development
method for applying to management information systems. Knowledge Discovery,

Knowledge Engineering and Knowledge Management, pages 197-207.

[309] Mazzeranghi, D. (2008). Panda: A pattern-based programming system for auto-

matic code generation. Journal of Object Technology, 7(4):67-99.

[310] McNaughton, M., Redford, J., Schaeffer, J., and Szafron, D. (2003). Pattern-
based ai scripting using scriptease. In 16th Conference of the Canadian Society for
Computational Studies of Intelligence, June 11, 2003 - June 13, 2003, volume 2671,

pages 35—-49. Springer Verlag.

[311] Mezini, M. and Ostermann, K. (2005). A comparison of program generation with
aspect-oriented programming. Unconventional Programming Paradigms, pages 342—

354.

[312] Miller, T., Freitas, L., Malik, P., and Utting, M. (2005). Czt support for z
extensions. In 5th International Conference on Integrated Formal Methods, IFM
2005, November 29, 2005 - December 2, 2005, volume 3771 LNCS, pages 227-245.

Springer Verlag.

[313] Mizuta, S. and Huang, R. (2005). Automation of grid service code generation with
andromda for gt3. In 19th International Conference on Advanced Information Net-
working and Applications (AINA’05) Volume 1 (AINA papers), volume vol.2, pages
417-20.

xliv

[314] Modesti, P. (2016). AnBx: Automatic Generation and Verification of Security

Protocols Implementations, pages 156—173. Springer International Publishing.

[315] Moha, N., Guéhéneuc, Y.-G., Le Meur, A.-F., and Duchien, L. (2008). A domain
analysis to specify design defects and generate detection algorithms. Fundamental

Approaches to Software Engineering, pages 276-291.

[316] Mohan, R. and Kulkarni, V. (2009). Model driven development of graphical user
interfaces for enterprise business applications - experience, lessons learnt and a way

forward. In Model Driven Engineering Languages and Systems, pages 307-321.

[317] Mohr, F. and Walther, S. (2014). Template-based generation of semantic services.

Software Reuse for Dynamic Systems in the Cloud and Beyond, pages 188-203.

[318] Mokaddem, C. e., Sahraoui, H., and Syriani, E. (2016). Towards Rule-Based
Detection of Design Patterns in Model Transformations, pages 211-225. Springer

International Publishing.

[319] Molnar, L., Pongricz, G., Enyedi, G., Kis, Z. L., Csikor, L., Juhész, F., Kérosi,
A., and Rétvari, G. (2016). Dataplane specialization for high-performance openflow
software switching. In Proceedings of the 2016 ACM SIGCOMM Conference, SIG-
COMM ’16, pages 539-552. ACM.

[320] Morales, Z., Magana, C., Aguilar, J. A., Zaldivar-Colado, A., Tripp-Barba, C.,
Misra, S., Garcia, O., and Zurita, E. (2016). A Baseline Domain Specific Lan-
guage Proposal for Model-Driven Web Engineering Code Generation, pages 50-59.

Springer International Publishing.

[321] Moreira, T. G., Wehrmeister, M. A., Pereira, C. E., Pétin, J.-F., and Levrat, E.
(2010). Generating vhdl source code from uml models of embedded systems. Dis-

tributed, Parallel and Biologically Inspired Systems, pages 125-136.

xlv

[322] Moreira de Sousa, L. and Rodrigues da Silva, A. (2016). A domain specific lan-

guage for spatial simulation scenarios. Geolnformatica, 20(1):117-149.

[323] Mitsweni, J. (2012). Exploiting uml and acceleo for developing semantic web
services. In Internet Technology And Secured Transactions, 2012 International Con-

ference for, pages 753-758.

[324] Muioz, J. and Pelechano, V. (2006). Applying software factories to pervasive sys-
tems: A platform specific framework. In 8th International Conference on Enterprise

Information Systems, ICEIS 2006, volume ISAS, pages 337-342.

[325] Mueller-Glaser, K. D., Reichmann, C., Kuehl, M., and Benz, S. (2006). Quality
assurance and certification of software modules in safety critical automotive elec-
tronic control units using a case-tool integration platform. Automotive Software -

Connected Services in Mobile Networks, pages 15-30.

[326] Muller, P.-A., Fondement, F., Fleurey, F., Hassenforder, M., Schnekenburger, R.,
Gérard, S., and Jézéquel, J.-M. (2008). Model-driven analysis and synthesis of textual
concrete syntax. Software & Systems Modeling, 7(4):423—-441.

[327] Muller, P.-A., Studer, P., Fondement, F., and Bézivin, J. (2005). Platform indepen-
dent web application modeling and development with netsilon. Software & Systems

Modeling, 4(4):424-442.

[328] Muller, T. C.-A. (2012). Exploiting model driven technology: a tale of two star-
tups. Software & Systems Modeling, 11(4):481-493.

[329] Mulo, E., Zdun, U., and Dustdar, S. (2013). Domain-specific language for event-
based compliance monitoring in process-driven soas. Service Oriented Computing

and Applications, 7(1):59-73.

xlvi

[330] Muresan, M. and Pitica, D. (2009). Simulating embedded targets for efficient
code implementation. In 2009 32nd International Spring Seminar on Electronics

Technology, pages 1-4.

[331] Naujokat, S., Traonouez, L.-M., Isberner, M., Steffen, B., and Legay, A. (2014).
Domain-specific code generator modeling: A case study for multi-faceted concurrent
systems. Leveraging Applications of Formal Methods, Verification and Validation.

Technologies for Mastering Change, pages 481-498.

[332] Naumann, U. and Utke, J. (2005). Source templates for the automatic generation
of adjoint code through static call graph reversal. In Computational Science - ICCS

2005, pages 338-46.

[333] Nazari, P. M. S., Roth, A., and Rumpe, B. (2016). An extended symbol table
infrastructure to manage the composition of output-specific generator information.

arXiv preprint arXiv:1606.00585.

[334] Nestor Ribeiro, A. and Rogério Aratjo, C. (2016). An Automated Model Based
Approach to Mobile Ul Specification and Development, pages 523-534. Springer

International Publishing.

[335] Nguyen, K. D., Sun, Z., Thiagarajan, P., and Wong, W.-F. (2005). Model-driven
soc design: The uml-systemc bridge. UML for SOC Design, pages 175-197.

[336] Nunes, 1., Cirilo, E., de Lucena, C. J., Sudeikat, J., Hahn, C., and Gomez-Sanz,
J.J. (2011). A survey on the implementation of agent oriented specifications. Agent-

Oriented Software Engineering X, pages 169-179.

[337] Nunez-Valdez, E. R., Garcia-Diaz, V., Lovelle, J. M. C., Achaerandio, Y. S.,

and Gonzélez-Crespo, R. (2016). A model-driven approach to generate and deploy

xlvii

videogames on multiple platforms. Journal of Ambient Intelligence and Humanized

Computing, pages 1-13.

[338] Ogunyomi, B., Rose, L. M., and Kolovos, D. S. (2014). On the use of signatures
for source incremental model-to-text transformation. Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 8767:84-98.

[339] Ogunyomi, B., Rose, L. M., and Kolovos, D. S. (2015). Property access traces for
source incremental model-to-text transformation. Modelling Foundations and Appli-

cations, pages 187-202.

[340] Oh, H., Dutt, N., and Ha, S. (2005). Single appearance schedule with dynamic
loop count for minimum data buffer from synchronous dataflow graphs. In Proceed-

ings of the 2005 International Conference on Compilers, Architectures and Synthesis

for Embedded Systems, CASES ’05, pages 157-165. ACM.

[341] O’Halloran, C. (2009). Guess and verify - back to the future. FM 2009: Formal
Methods, pages 23-32.

[342] Oldevik, J., Neple, T., Grgnmo, R., Aagedal, J., and Berre, A.-J. (2005). Toward
standardised model to text transformations. Model Driven Architecture - Foundations

and Applications, pages 239-253.

[343] Oppenheimer, F., Zhang, D., and Nebel, W. (2001). Modelling communication in-
terfaces with comix. Reliable SoftwareTechnologies—Ada-Europe 2001, pages 337—
348.

[344] Ortiz-Cornejo, A., Cuayahuitl, H., and Perez-Corona, C. (2006). Wisbuilder: A

framework for facilitating development of web-based information systems. In Elec-

xlviii

tronics, Communications and Computers, 2006. CONIELECOMP 2006. 16th Inter-

national Conference on, pages 46—46.

[345] Paige, R. F., Kolovos, D. S., Rose, L. M., Matragkas, N., and Williams, J. R.
(2013). Model management in the wild. Generative and Transformational Techniques

in Software Engineering 1V, pages 197-218.

[346] Palyart, M., Lugato, D., Ober, 1., and Bruel, J.-M. (2012). Mde4hpc: An approach
for using model-driven engineering in high-performance computing. SDL 2011: In-

tegrating System and Software Modeling, pages 247-261.

[347] Parr, T. (2006). Web application intel-nationalization and localization in action.
In ICWE’06: 6th International Conference on Web Engineering, July 11, 2006 - July

14, 2006, pages 64-70. Association for Computing Machinery.

[348] Pastorino, R., Cosco, F., Naets, F., Desmet, W., and Cuadrado, J. (2016). Hard
real-time multibody simulations using arm-based embedded systems. Multibody Sys-

tem Dynamics, 37(1):127-143.

[349] Pavon, J., Goémez-Sanz, J., and Fuentes, R. (2006). Model driven development
of multi-agent systems. In Rensink, A. and Warmer, J., editors, Model Driven
Architecture—Foundations and Applications: Second European Conference, ECMFA.

Proceedings, volume 4066 of LNCS, pages 284-298. Springer Berlin Heidelberg.

[350] Pekala, J. (2016). Data Transformation Using Custom Class Generator as Part
of Systems Integration in Manufacturing Company, pages 397-409. Springer Inter-

national Publishing.

[351] Pelcat, M., Aridhi, S., Piat, J., and Nezan, J.-F. (2013). Generating code from lte

models. Physical Layer Multi-Core Prototyping, pages 173—196.

xlix

[352] Perry, T., Walke, R., and Benkrid, K. (2011). An extensible code generation
framework for heterogeneous architectures based on ip-xact. In Programmable Logic

(SPL), 2011 VII Southern Conference on, pages 81-86.

[353] Pezze, M. and Wuttke, J. (2009). Automatic generation of runtime failure detec-

tors from property templates, pages 223—40. Springer-Verlag.

[354] Pezze, M. and Wauttke, J. (2016). Model-driven generation of runtime checks for
system properties. International Journal on Software Tools for Technology Transfer,

18(1):1-19.

[355] Phillips, J., Chilukuri, R., Fragoso, G., Warzel, D., and Covitz, P. A. (2006). The
cacore software development kit: Streamlining construction of interoperable biomed-

ical information services. BMC Medical Informatics and Decision Making, 6:1-16.

[356] Piel, E Marquet, P., and Dekeyser, J.-L. (2008). Model transformations for the
compilation of multi-processor systems-on-chip. Generative and Transformational

Techniques in Software Engineering I1, pages 459—473.

[357] Pinheiro, L. P., Lopes, Y. K., Leal, A. B., and Rosso, R. S. U. (2015). Nadzoru:
A software tool for supervisory control of discrete event systems. In 5th IFAC Inter-
national Workshop on Dependable Control of Discrete Systems, DCDS, volume 48 of
IFAC Proceedings Volumes (IFAC-PapersOnline), pages 182—187. IFAC Secretariat.

[358] Pokahr, A. and Braubach, L. (2009). A survey of agent-oriented development

tools. Multi-Agent Programming:, pages 289-329.

[359] Portillo, J., Casquero, O., and Marcos, M. (2005). Loose integration of cots tools
for the development of real time distributed control systems. COTS-Based Software

Systems, pages 191-200.

[360] Possatto, M. A. and Lucrédio, D. (2015). Automatically propagating changes
from reference implementations to code generation templates. Information and Soft-

ware Technology, 67:65-78.

[361] Poveda, G. and Schumann, R. (2016). An Ontology-Driven Approach for Mod-
eling a Multi-agent-Based Electricity Market, pages 27-40. Springer International
Publishing.

[362] Preschern, C., Kajtazovic, N., and Kreiner, C. (2012). Applying patterns to
model-driven development of automation systems: An industrial case study. In /7th
European Conference on Pattern Languages of Programs, EuroPLoP 2012, pages

Springer; Wiley—Blackwell. Association for Computing Machinery.

[363] Prout, A., Atlee, J. M., Day, N. A., and Shaker, P. (2008). Semantically config-
urable code generation. In Model Driven Engineering Languages and Systems, pages

705-720.

[364] Puder, A. (2012). Running android applications without a virtual machine. Mobile

Wireless Middleware, Operating Systems, and Applications, pages 121-134.

[365] Qiu, X. X. and Cheng, X. (2014). Design and implementation of a software au-
tomation development framework for management information system. In Materials

Science, Computer and Information Technology, volume 989 of Advanced Materials

Research, pages 4488-4492. Trans Tech Publications.

[366] Quintero, R., Zepeda, L., and Vega, L. (2010). Model driven software develop-
ment of applications based on web services. Computational Science and Its Applica-

tions - ICCSA 2010, pages 313-330.

[367] Radosevic, D. and Magdalenic, I. (2011). Python implementation of source code

li

generator based on dynamic frames. In MIPRO, 2011 Proceedings of the 34th Inter-

national Convention, pages 969-974.

[368] Radosevic, D., Magdalenic, I., and Orehovacki, T. (2011). Error messaging in
generative programming. In Proceedings of the 22nd Central European Conference

on Information and Intelligent Systems, pages 181-186.

[369] Rahmouni, M. and Mbarki, S. (2014). Model-driven generation: From models
to mvc2 web applications. International Journal of Software Engineering and its

Applications, 8(7):73-94.

[370] Rajkovic, P., Petkovic, 1., and Jankovic, D. (2015). Benefits of using domain
model code generation framework in medical information systems. In Fourth Work-

shop on Software Quality Analysis, Monitoring, Improvement, and Applications

SQOAMIA 2015, volume 1375, pages 45-52.

[371] Regensburger, M., Buckl, C., Knoll, A., and Schrott, G. (2007). Model based
development of safety-critical systems using template based code generation. In De-
pendable Computing, 2007. PRDC 2007. 13th Pacific Rim International Symposium

on, pages 89-92.

[372] Reis, R. (2007). Educase: automatic system for the development of educational
software. In New Horizons in Education and Eductional Technology. 6th WSEAS In-
ternational Conference on Education and Educational Technology, 21-23 Nov. 2007,

pages 292-4. WSEAS Press.

[373] Riccobene, E. and Scandurra, P. (2009). Model transformations in the upes/upsoc
development process for embedded systems. Innovations in Systems and Software

Engineering, 5(1):35-47.

li1

[374] Richmond, P. and Romano, D. (2011). Template-driven agent-based modeling
and simulation with CUDA, pages 313-324. Elsevier Inc.

[375] Riebisch, M., Philippow, L., and Gotze, M. (2003). Uml-based statistical test case
generation. Objects, Components, Architectures, Services, and Applications for a

Networked World, pages 394—411.

[376] Rios, J. L. and Machado-Piriz, F. (2007). A case study to evaluate templates
metadata for developing application families. In Advances and Innovations in Sys-

tems, Computing Sciences and Software Engineering, pages 241-246.

[377] Rodrigues, T., Delicato, F. C., Batista, T., Pires, P. F., and Pirmez, L. (2015). An
approach based on the domain perspective to develop wsan applications. Software &

Systems Modeling, pages 1-29.

[378] Rodriguez, F. T., Reina, M., Baptista, F., Usaola, M. P., and Lamancha, B. P.
(2013). Automated generation of performance test cases from functional tests for

web applications. Evaluation of Novel Approaches to Software Engineering, pages

164-173.

[379] Romaniuk, P. (2007). Translator of hierarchical state machine from uml statechart
to the event processor pattern. In Mixed Design of Integrated Circuits and Systems,

2007. MIXDES °07. 14th International Conference on, pages 684—687.

[380] Rose, L., Guerra, E., De Lara, J., Etien, A., Kolovos, D., and Paige, R.
(2013). Genericity for model management operations. Software & Systems Mod-

eling, 12(1):201-219.

[381] Rose, L. M., Paige, R. F.,, Kolovos, D. S., and Polack, F. A. (2008). The epsilon
generation language. Model Driven Architecture - Foundations and Applications,

pages 1-16.

liii

[382] Roubi, S., Erramdani, M., and Mbarki, S. (2016). Model Driven Architecture as
an Approach for Modeling and Generating Graphical User Interface, pages 651-656.

Springer International Publishing.

[383] Roychoudhury, S., Gray, J., and Jouault, F. (2011). A model-driven framework for

aspect weaver construction. Transactions on Aspect-Oriented Software Development

VIII, pages 1-45.

[384] Ruiz-Loépez, T., Rodriguez-Dominguez, C., Rodriguez, M. J., Ochoa, S. E., and
Garrido, J. L. (2013). Context-aware self-adaptations: From requirements specifica-
tion to code generation. Ubiquitous Computing and Ambient Intelligence. Context-

Awareness and Context-Driven Interaction, pages 46-53.

[385] Rutherford, M. J. and Wolf, A. L. (2003). A case for test-code generation in
model-driven systems. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume

2830, pages 377-396. Springer Netherlands.

[386] SAnchez, P., Jiménez, M., Rosique, F,, A?lvarez, B. A., and Iborra, A. A. (2011).
A framework for developing home automation systems: From requirements to code.

Journal of Systems and Software, 84(6):1008—1021.

[387] Sahai, A., Pu, C., Jung, G., Wu, Q., Yan, W., and Swint, G. S. (2005). Towards

automated deployment of built-to-order systems. Ambient Networks, pages 109-120.

[388] Sakamoto, K., Tomohiro, K., Hamura, D., Washizaki, H., and Fukazawa, Y.
(2013). Pogen: A test code generator based on template variable coverage in gray-
box integration testing for web applications. Fundamental Approaches to Software

Engineering, pages 343-358.

liv

[389] Salazar, E., Alonso, A., de Miguel, M. A., and Juan, A. (2013). A model-based
framework for developing real-time safety ada systems. Reliable Software Technolo-

gies - Ada-Europe 2013, pages 127-142.

[390] Saurabh, A., Dahiya, D., and Mohana, R. (2012). Maximizing Automatic Code
Generation: Using XML Based MDA, pages 283-293. Springer.

[391] Schaefer, J., Stynes, J., and Kroeger, R. (2008). Model-based performance instru-
mentation of distributed applications. In Distributed Applications and Interoperable

Systems, pages 210-23.

[392] Schiffelers, R. R. H., Alberts, W., and Voeten, J. P. M. (2012). Model-based
specification, analysis and synthesis of servo controllers for lithoscanners. In 67k
International Workshop on Multi-Paradigm Modeling, MPM 2012, October 1, 2012 -
October 1, 2012, Proceedings of the 6th International Workshop on Multi-Paradigm

Modeling, MPM 2012, pages 55-60. Association for Computing Machinery.

[393] Schippers, H., Gorp, P. V., and Janssens, D. (2005). Leveraging uml profiles to
generate plugins from visual model transformations. Electronic Notes in Theoretical

Computer Science, 127(3):5-16.

[394] Schloegel, K., Oglesby, D., Engstrom, E., and Bhatt, D. (2003). Composable code
generation for model-based development. Software and Compilers for Embedded

Systems, pages 211-225.

[395] Schneider, V., Deitsch, A., Dulz, W., and German, R. (2016). Combined Simula-
tion and Testing Based on Standard UML Models, pages 499-523. Springer Interna-

tional Publishing.

[396] Schoeberl, M., Brooks, C., and Lee, E. A. (2010). Code generation for embedded

Iv

java with ptolemy. Software Technologies for Embedded and Ubiquitous Systems,
pages 155-166.

[397] Schreiber, A. (2006). Automatic generation of wrapper code and test scripts for
problem solving environments. Applied Parallel Computing. State of the Art in Sci-

entific Computing, pages 680-689.

[398] Seo, Y.-J. and Song, Y.-J. (2006). A study on automatic code generation tool from
design patterns based on the xmi. In Computational Science and Its Applications -

ICCSA 2006, pages 864—72.

[399] Silaghi, R. and Strohmeier, A. (2005). Parallax—an aspect-enabled framework
for plug-in-based mda refinements towards middleware. Model-Driven Software De-

velopment, pages 239-267.

[400] Simonsen, K., Kristensen, L., and Kindler, E. (2013). Generating protocol soft-
ware from cpn models annotated with pragmatics. In Formal Methods: Foundations

and Applications, pages 227-42.

[401] Simonsen, K. I. F. (2014). Petricode: A tool for template-based code generation
from cpn models. In Software Engineering and Formal Methods, volume 8368 LNCS,
pages 151-163.

[402] Simonsen, K. I. F. and Kristensen, L. M. (2014). Implementing the websocket
protocol based on formal modelling and automated code generation. Distributed Ap-

plications and Interoperable Systems, pages 104—118.

[403] Sindico, A., Di Natale, M., and Sangiovanni-Vincentelli, A. (2012). An industrial
system engineering process integrating model driven architecture and model based

design. In Model Driven Engineering Languages and Systems, pages 810-826.

Ivi

[404] Sinha, V. S., Dhoolia, P., Mani, S., and Sinha, S. (2014). Operational abstraction
of model transforms. In 7th India Software Engineering Conference, ISEC 2014,
February 19, 2014 - February 21, 2014, ACM International Conference Proceeding

Series, pages 3:1-3:10. Association for Computing Machinery.

[405] Siret, N., Wipliez, M., Nezan, J.-F., and Rhatay, A. (2010). Hardware code
generation from dataflow programs. In 2010 Conference on Design and Architec-
tures for Signal and Image Processing, DASIP2010, October 26, 2010 - October 28,
2010, 2010 Conference on Design and Architectures for Signal and Image Processing,

DASIP2010, pages 113—-120. IEEE Computer Society.

[406] Skene, J. and Emmerich, W. (2005). Engineering runtime requirements-
monitoring systems using mda technologies. Trustworthy Global Computing, pages

319-333.

[407] Skrobo, D., Milanovic, A., and Srbljic, S. (2006). Performance evaluation of
program translation in service-oriented architectures. In International Conference
on Networking and Services 2006, ICNS, International Conference on Networking
and Services 2006, ICNS’06, pages 14—14. Inst. of Elec. and Elec. Eng. Computer

Society.

[408] Smaragdakis, Y. (2004). Program generators and the tools to make them. In Static
Analysis. 11th International Symposium, SAS 2004, Static Analysis. 11th Interna-
tional Symposium, SAS 2004. Proceedings (Lecture Notes in Comput. Sci. Vol.3148),
pages 19-20. Springer-Verlag.

[409] Spampinato, D. G. and Puschel, M. (2014). A basic linear algebra compiler.
In 12th ACM/IEEE International Symposium on Code Generation and Optimiza-
tion, CGO 2014, February 15, 2014 - February 19, 2014, Proceedings of the 12th

lvii

ACM/IEEE International Symposium on Code Generation and Optimization, CGO

2014, pages 23-32. Association for Computing Machinery.

[410] Spanoudakis, N. and Moraitis, P. (2009). Gaia agents implementation through
models transformation. Principles of Practice in Multi-Agent Systems, pages 127—

142.

[411] Sridhara, G., Pollock, L., and Vijay-Shanker, K. (2011). Automatically detect-
ing and describing high level actions within methods. In 33rd International Confer-
ence on Software Engineering, ICSE 2011, Proceedings - International Conference

on Software Engineering, pages 101-110. IEEE Computer Society.

[412] Steffen, B., Isberner, M., Naujokat, S., Margaria, T., and Geske, M. (2014).
Property-driven benchmark generation: synthesizing programs of realistic structure.

International Journal on Software Tools for Technology Transfer, 16(5):465—479.

[413] Strommer, M. and Wimmer, M. (2008). A framework for model transformation
by-example: Concepts and tool support. Objects, Components, Models and Patterns,

pages 372-391.

[414] Stroulia, E., Bazelli, B., Ng, J. W, and Ng, T. (2015). Wl++: Code generation of
multi-platform mobile clients to restful back-ends. In Mobile Software Engineering
and Systems (MOBILESoft), 2015 2nd ACM International Conference on, pages 136—
137.

[415] Sturm, T., von Voss, J., and Boger, M. (2002). Generating code from uml with
velocity templates. 2ZUML? 2002—The Unified Modeling Language, pages 150-161.

[416] Sun, K., Fryer, D., Brown, A. D., and Goel, A. (2013). Annotation for automation:

Rapid generation of file system tools. In 7th Workshop on Programming Languages

lviii

and Operating Systems, PLOS 2013 - In Conjunction with the 24th ACM Symposium
on Operating Systems Principles, SOSP 2013, November 3, 2013 - November 3, 2013,

pages 4:1-4:6. Association for Computing Machinery.

[417] Surla, B. D. and Ivanovic, D. (2012). Using templates for presenting publication
references in cris. In 11th International Conference on Current Research Information

Systems, CRIS 2012, pages 61-66. Zeithamlova Milena, ING - Agentura Action M.

[418] Swertz, M. A., Dijkstra, M., Adamusiak, T., van der Velde, J. K., Kanterakis, A.,
Roos, E. T., Lops, J., Thorisson, G. A., Arends, D., Byelas, G., Muilu, J., Brookes,
A. J., de Brock, E. O., Jansen, R. C., and Parkinson, H. (2010). The molgenis
toolkit: rapid prototyping of biosoftware at the push of a button. BMC Bioinfor-

matics, 11(suppl12):1-9.

[419] Systa, T., Koskimies, K., and Muller, H. (2001). Shimba - an environment for
reverse engineering java software systems. Software - Practice and Experience,

31(4):371-394.

[420] Taentzer, G. and Carughi, G. T. (2006). A graph-based approach to transform xml
documents. In 9th International Conference on Fundamental Approaches to Software
Engineering, FASE 2006. Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2006, March 27, 2006 - March 28, 2006, volume
3922 LNCS of Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), pages 48—62. Springer

Verlag.

[421] Taguchi, M., Suzuki, T., and Tokuda, T. (2003). A visual approach for generating

server page type web applications based on template method. In Human Centric

lix

Computing Languages and Environments, 2003. Proceedings. 2003 IEEE Symposium
on, pages 248-250.

[422] Tamayo, A., Granell, C., Diaz, L., and Huerta, J. (2014). Personalised code
generation from large schema sets for geospatial mobile applications. Computing,

96(5):355-379.

[423] Tang, P. and Moulliet, R. (2015). Automatic generation of tuners for intel concur-

rent collections programs.

[424] Tatsubori, M. and Suzumura, T. (2009). Html templates that fly a template engine
approach to automated offloading from server to client. In /8th International World
Wide Web Conference, WWW 2009, WWW’09 - Proceedings of the 18th International

World Wide Web Conference, pages 951-960. Association for Computing Machinery.

[425] Tichy, P., Kadera, P., Staron, R. J., Vrba, P., and Marik, V. (2012). Multi-agent
system design and integration via agent development environment. Engineering Ap-

plications of Artificial Intelligence, 25(4):846—852.

[426] Tonella, P. and Ricca, F. (2005). Web application slicing in presence of dynamic
code generation. Automated Software Engineering, 12(2):259-288.

[427] Topalidou-Kyniazopoulou, A., Spanoudakis, N. I., and Lagoudakis, M. G. (2013).
A case tool for robot behavior development. RoboCup 2012: Robot Soccer World Cup
XVI, pages 225-236.

[428] Topcu, O., Durak, U., Oguztiiziin, H., and Yilmaz, L. (2016). Implementation,

Integration, and Testing, pages 203—230. Springer International Publishing.

[429] Touraille, L., Traoré, M. K., and Hill, D. R. C. (2011). A model-driven software

environment for modeling, simulation and analysis of complex systems. In Proceed-

Ix

ings of the 2011 Symposium on Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium, TMS-DEVS "11, pages 229-237. Society for Computer Simulation

International.

[430] Travkin, O. and Wehrheim, H. (2016). Verification of Concurrent Programs on

Weak Memory Models, pages 3—24. Springer International Publishing.

[431] Tsai, W., Fan, C., Chen, Y., and Paul, R. (2006). A service-oriented modeling and
simulation framework for rapid development of distributed applications. Simulation

Modelling Practice and Theory, 14(6):725-739.

[432] Unsal, E. and Sevilgen, F. E. (2007). Bemga: A hla based simulation modeling
and development tool. Advances and Innovations in Systems, Computing Sciences

and Software Engineering, pages 115-119.

[433] Valderas, P., Pelechano, V., and Pastor, O. (2006). Towards an end-user develop-
ment approach for web engineering methods. In /8th International Conference on
Advanced Information Systems Engineering, CAiSE 2006, pages 528-543. Springer
Verlag.

[434] van Reeuwijk, C. (2003). Rapid and robust compiler construction using template-
based metacompilation. In /2th International Conference on Compiler Construction,
CC 2003 Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2003, volume 2622, pages 247-261. Springer Verlag.

[435] Vaupel, S., Taentzer, G., Gerlach, R., and Guckert, M. (2016). Model-driven
development of mobile applications for android and ios supporting role-based app

variability. Software & Systems Modeling, pages 1-29.

[436] Vazhenin, D., Mirenkov, N., and Vazhenin, A. (2011). Movie-based represen-

Ix1

tation of reduction operations in numerical computing. Knowledge-Based Systems,

24(7):977-988.

[437] Viana, M. C., Penteado, R. A., Do Prado, A. F., and Durelli, R. S. (2015). F3t: a
tool to support the f3 approach on the development and reuse of frameworks. Journal

of Software Engineering Research and Development, 3:1-26.

[438] Viana, M. C., Penteado, R. A. D., and Prado, A. F. (2013). Building Domain-
Specific Modeling Languages for Frameworks, pages 191-206. Springer Berlin Hei-
delberg.

[439] Vijayakumar, A., Abhishek, D., and Chandrasekaran, K. (2016). DSL Approach

for Development of Gaming Applications, pages 199-211. Springer India.

[440] Vinogradov, S., Ozhigin, A., and Ratiu, D. (2015). Modern model-based develop-
ment approach for embedded systems practical experience. In /st IEEE International
Symposium on Systems Engineering, ISSE 2015, 1st IEEE International Symposium
on Systems Engineering, ISSE 2015 - Proceedings, pages 56-59. Institute of Electri-

cal and Electronics Engineers Inc.

[441] Visser, E. (2008). Webdsl: A case study in domain-specific language engineering.
Generative and Transformational Techniques in Software Engineering I1, pages 291—

373.

[442] Voelter, M. (2010). Embedded software development with projectional language

workbenches. In Model Driven Engineering Languages and Systems, pages 32—46.

[443] Voelter, M. (2013). Language and ide modularization and composition with mps.

Generative and Transformational Techniques in Software Engineering IV, pages 383—

430.

Ixii

[444] Voelter, M., Ratiu, D., Kolb, B., and Schaetz, B. (2013). mbeddr: instantiating a
language workbench in the embedded software domain. Automated Software Engi-

neering, 20(3):339-390.

[445] Voelter, M., Salzmann, C., and Kircher, M. (2005). Model driven software de-
velopment in the context of embedded component infrastructures. Component-Based

Software Development for Embedded Systems, pages 143—163.

[446] Vokac, M. and Glattetre, J. M. (2005). Using a domain-specific language and cus-
tom tools to model a multi-tier service-oriented application - experiences and chal-
lenges. In Model Driven Engineering Languages and Systems, volume 3713 LNCS,
pages 492-506.

[447] Vollebregt, T., Kats, L. C. L., and Visser, E. (2012). Declarative specification of
template-based textual editors. In 12th Workshop on Language Descriptions, Tools,
and Applications, LDTA 2012, March 31, 2012 - April 1, 2012, Proceedings of the
12th Workshop on Language Descriptions, Tools, and Applications, LDTA 2012,

pages 8:1-8:7. Association for Computing Machinery.

[448] Walsh, J., Roche, D., and Foping, F. (2012). Nitroscript: A php template engine
for customizing of e-commerce applications. In Internet Technology And Secured

Transactions, 2012 International Conference for, pages 459—-464.

[449] Wang, G., Di Natale, M., Sangiovanni-Vincentelli, A., and Mosterman, P. J.
(2009). Automatic code generation for synchronous reactive communication. In

International Conference on Education and Social Sciences, pages 40-47.

[450] Wang, Q., Zhang, X., Zhang, Y., and Yi, Q. (2013). Augem: Automatically gen-

erate high performance dense linear algebra kernels on x86 cpus. In Proceedings of

Ixiii

the International Conference on High Performance Computing, Networking, Storage

and Analysis, pages 25:1-25:12.

[451] Wang, Y., Zhou, L., Zheng, Q., Zhang, Z., and Wu, G. (2010). An approach of
code generation based on model integrated computing. In 2010 International Confer-
ence on Computer Application and System Modeling (ICCASM 2010), volume vol.15,
pages 114-17.

[452] Wang, Z. and Chalmers, K. (2013). Evolution feature oriented model driven
product line engineering approach for synergistic and dynamic service evolution in

clouds:four kinds of schema. Procedia Computer Science, 19:889-894.

[453] Warken, M. (2008). From testing to anti-product development. [International

Journal on Software Tools for Technology Transfer, 10(4):297-307.

[454] Watanobe, Y., Mirenkov, N., and Watanabe, Y. (2012). Aida compiler: A code
synthesizer from programs in pictures. In Proceedings of the 2012 Joint International

Conference on Human-Centered Computer Environments, pages 76—83.

[455] Weber, D., Scheidgen, M., and Fischer, J. (2016). Exchanging the Target-
Language in Existing, Non-Metamodel-Based Compilers, pages 196-210. Springer

International Publishing.

[456] Weisemdller, 1., Klar, F., and Schiirr, A. (2010). 16 development of tool extensions
with moflon. Model-Based Engineering of Embedded Real-Time Systems, pages 337—
343.

[457] Welling, G. and Ott, M. (2000). Customizing idl mappings and orb protocols.
Middleware 2000, pages 396—414.

Ixiv

[458] Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., and Heldal, R. (2013).
Industrial adoption of model-driven engineering: Are the tools really the problem? In

Model Driven Engineering Languages and Systems, pages 1-17.

[459] Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., and Heldal, R. (2015). A
taxonomy of tool-related issues affecting the adoption of model-driven engineering.

Software & Systems Modeling, pages 1-19.

[460] Wimmer, M. and Burguefio, L. (2013). Testing m2t/t2m transformations. In

Model Driven Engineering Languages and Systems, pages 203-219.

[461] Winetzhammer, S. and Westfechtel, B. (2015). Staged translation of graph trans-
formation rules. Model-Driven Engineering and Software Development, pages 134—

152.

[462] Winkler, U., Fritzsche, M., Gilani, W., and Marshall, A. (2012). Bob the builder:
A fast and friendly model-to-petrinet transformer. Modelling Foundations and Appli-

cations, pages 416—427.

[463] Wu, G., Cheng, D., and Zhang, Z. (2009). A solution based on modeling and
code generation for embedded control system. Journal of Software Engineering and

Applications, 2(3):160-4.

[464] Xiaohong, L., Zhiyong, F.,, and Li, L. e. a. (2006). A template language for agent
construction. Computational Science and Its Applications - ICCSA 2006, pages 32—
38.

[465] Xue-Bin, W., yua n, W. Q., Huai-Min, W., and Dian-Xi, S. (2007). Research and
implementation of design pattern-oriented model transformation. In Computing in the
Global Information Technology, 2007. ICCGI 2007. International Multi-Conference

on, pages 24-24.

Ixv

[466] Yahya, I., Turki, S. H., Charfi, A., Kallel, S., and Bouaziz, R. (2013). An aspect-
oriented approach to enforce security properties in business processes. Service-

Oriented Computing - ICSOC 2012 Workshops, pages 344-355.

[467] Yen, L.-L., Goluguri, J., Bastani, F., Khan, L., and Linn, J. (2002). A component-
based approach for embedded software development. In Object-Oriented Real-Time
Distributed Computing, 2002. (ISORC 2002). Proceedings. Fifth IEEE International

Symposium on, pages 402—10.

[468] Yoong, L. H., Bhatti, Z. E., and Roop, P. S. (2012). Combining iec 61499 model-
based design with component-based architecture for robotics. Simulation, Modeling,

and Programming for Autonomous Robots, pages 349-360.

[469] Yu, H., Gamatié, A., Rutten, E., and Dekeyser, J.-L. (2008). Model transfor-
mations from a data parallel formalism towards synchronous languages. Embedded

Systems Specification and Design Languages, pages 183—198.

[470] Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Kato, H., and Montrieux, L. (2012). Maintain-
ing invariant traceability through bidirectional transformations. In Proceedings of the

34th International Conference on Software Engineering, pages 540-50.

[471] Yu, Y., Tun, T. T., Bandara, A. K., Zhang, T., and Nuseibeh, B. (2014). From
model-driven software development processes to problem diagnoses at runtime. In
Dagstuhl Seminar 11481 on Models@run.time, November 27, 2011 - December 2,
2011, pages 188-207. Springer Verlag.

[472] Ziaschke, T., Zimmerli, C., Leone, S., Nguyen, M. K., and Norrie, M. C. (2013).
Adaptive model-driven information systems development for object databases. Infor-

mation Systems Development, pages 513-525.

Ixvi

[473] Zhang, C., Bakshi, A., and Prasanna, V. K. (2007). Modelml: A markup language
for automatic model synthesis. In 2007 IEEE International Conference on Informa-
tion Reuse and Integration, IEEE IRI-2007, 2007 IEEE International Conference on
Information Reuse and Integration, IEEE IRI-2007, pages 317-322. Inst. of Elec. and

Elec. Eng. Computer Society.

[474] Zhang, J., Buy, U., and Liu, X. (2003). A framework for the efficient produc-
tion of web applications. In Computers and Communication, 2003. (ISCC 2003).

Proceedings. Eighth IEEE International Symposium on, pages 44-49.

[475] Zhao, Q., Amagasaki, M., lida, M., Kuga, M., and Sueyoshi, T. (2013). An
fpga design and implementation framework combined with commercial vlsi cads. In
Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), 2013 8th

International Workshop on, pages 1-7.

[476] Zheng, Y. and Taylor, R. N. (2013). A classification and rationalization of model-

based software development. Software & Systems Modeling, 12(4):669—-678.

[477] Zhou, G., Leung, M.-K., and Lee, E. A. (2007). A code generation framework
for actor-oriented models with partial evaluation. Embedded Software and Systems,

pages 193-206.

[478] Zimmermann, O., Gschwind, T., Kiister, J., Leymann, F., and Schuster, N. (2007).
Reusable architectural decision models for enterprise application development. Soft-

ware Architectures, Components, and Applications, pages 15-32.

[479] Zolotas, C., Diamantopoulos, T., Chatzidimitriou, K. C., and Symeonidis, A. L.
(2016). From requirements to source code: a model-driven engineering approach for

restful web services. Automated Software Engineering, pages 1-48.

Ixvii

[480] Zook, D., Huang, S. S., and Smaragdakis, Y. (2004). Generating aspectj programs
with meta-aspect]. In 3rd International Conference on Generative Programming and
Component Engineering, GPCE 2004, October 24, 2004 - October 28, 2004, volume
3286 of Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), pages 1-18. Springer

Verlag.

[481] Zschaler, S. and Rashid, A. (2011). Towards modular code generators using sym-
metric language-aware aspects. In Proceedings of the 1st International Workshop on

Free Composition, pages 6:1-6:5.

Ixviii

Appendix II

Classification table of the SMS

T€-1 91qe) UONRIYISSRLD :T'TI IqBL

peseg-indin oyroads urewoq ON P09 22IN0S oy1oadg urewo(q pagoadsun 7102 I
peseq-indinQ ®lRp PAIMONNS ON BIEp poInonns BUIOYOS PO €10T 0€
paseq-ony P09 22IN0S ON 9poo 201noS 93en3ue] Surwel3old pagadsun 1102 62
peseg-indin oyroads urewoq SOx 9p02 92IN0S oyroads urewo(q pogadsun 10T 8T
peseq-inding ®IEp paInoONNg ON BIEp poInjonns BWAYDS PO L00T é
peseg-indin 9soding [e1ouan) SOx 9p0d 92IN0S asodind [erousn puedx €10¢C 9T
poseg-inding oyroads urewo SOX 9po9d A2IN0S oyroadg urewo(q I4dr 8002 4
poseq-indinQ oyroads urewoq SOX 9p0o9d 2210 ogroadg urewog PO 900T T
paseq-mdinp 9p0d 90IN0S ON 9poo 201n0S a8en3ue] Jurwwer3oid ITISX 2102 €T
peseg-indin oyroads urewoq SOX 9p02 92IN0S ogyroadg urewoq Aejdwo3ums ¢10g 2
paseg-inding 9soding [erouan) SoX oFengue [eImeN asodind [erouan 09[020Vy #10T 12
poseg-indinQ asoding [e1ouan) SOX P09 22IN0S asodind [erouan nYpoO 00T 02
poeseg-inding asodind [erouan) Sox BIRp paImonns asodind [erouan 09[020Yy 910¢ 61
paugepald osodind [erouan) SOX P09 92IN0S asodind [e1ouan eqemy 900 81
peseg-indin esoding [erouan) SOx 9p0d 92IN0S asodind [erousn LYo 110T L1
peseq-inding ®IEp paInoONNg ON 9p0o9d A2IN0S BWAYDS IISX €10T 9]
poseg-indin asoding [e1ouan) SOx 9p0d 92IN0S asodind [erousn 1dIdSHOIN L00T Sl
poseg-inding oyroads urewoq SOX. 9po9d A2IN0YS oyroadg urewo(q puedX ¢10T al
peseg-indin oyroads urewoq SOx 9p0d 92IN0S oy1oadg urewoq puedX ¢10T €I
paseq-iding oyroads urewo(g S9x oFen3ue| [eImeN oy1oadg urewo(puedx 7102 71
peseg-indinQ 9soding [e1ouan) SOX 9p0d 92IN0S asodind [erouan pagoadsun 2002 I1
peseq-indinQ ®jRp pPaIMONNS SOX. BIep poInjonns BWAYDS IISX 900T 01
poeseg-indin 9sodind [erouan) SAX BIRD PAIMONNS asodind [erouan IISX S00T 6
pauygepaid 9p02 90IN0S ON 9poo 901n0S a3en3ue] Jurwwer3old LYo €10T Q
paseq-inding asodind [e1ouan SOX BIRP PAINIONNS asodind [e1ouan puedX 7102 L
poseg-inding osodind [erouan) SOx 9p0d 92IN0S asodind [erouan puedx /00T 9
paseq-inding osoding [eIoUAD) SOX BIEp poInjonns asodind erouen 09[a0Yy ZI10T S
paugepald osodind [erouan) SOx 9p0d 92IN0S asodind [erousn YO 800T ¥
pougopald osodind [eIouan) SOX. 9p0o9d A0IN0S asodind [erouen eqelng (0102 €
paugepald 9soding [e1oudn) SO 9p0d 92IN0S asodind [erouan payoadsun 0102 ré
paugepald 9sodind [erousn Sox 9p02 0IN0S asodind [erouan Aposdeqd 010¢C 1
JL)s ejdwdy, Indurswpuny HAN ndinQ ndur dwn-ugIsaq [00], JB3X JIquINU “JAY

Ixxxii

€9-T€ 21qe) UOHEIYISSE[D :II'TI S[9EL

paseq-o[ny Oyroads urewo(g SOR 9p0d 92IN0S ogoodg urewo L MUNWIS 900T €9
peseg-indin asoding [e1ouan) SOx 9p0d 90IN0S asodind [erouan) peyroadsun 800 79
paseq-o[ny Oyroads urewoq SOR 9p0d 92IN0S ogoodg urewo L YUINWIS €10T 19
pougopald osodind [erouan SOx 9p0d 90IN0S asodind [erouan reuoney SO0¢ 09
paugopard osodind [eIoUQD) SOR 9p0d 92IN0S osodind [erouan reuoney $00T 6S
paseg-indinQg ejep parmonng SR 9p0J 22IN0S BUWIAYOS PO 0002 Je
paugopald asodind [erousn SOx 9p02 90IN0S asodind [erouan poyroadsun 102 LS
paseg-indinQ 9soding [BIouUdD) SO P09 92IN0S asodiand [erouen KIIOO[RA 800T 9¢
poseq-indin) ejep parnonng ON 9p0d 22IN0S BUWIAYOS pagadsun G107 GS
paseq-indinQ P09 92IN0S ON ®lep parmonng a3ensue] Surwel3old pagadsun 6002 +S
paseg-inding osodind [erouan) SOx 9p0d 90IN0S asodind [erouan) YO 910T €S
poseq-inding oyroads urewo(q SOR 9p0d 92IN0S oyroadg urewoq puUAX #1027 S
paseg-inding oyroads urewoq SQA ®Biep paImonng oy1oadg urewo(q peyroadsun 00T IS
paseq-mdinQ 9p02 0IN0S ON ®lep panjonng oFendue] Jurwwei3orq powweidold 900C 0S
paseq-mding esodind [erousn SOX 9p0d 90IN0S asodind [erouan) 09[320V +10T 6%
paseq-mndinQ 9p0d 0IN0S ON ®iep parmonng o3endue| Sutwweidold edwo3ums [10Z QY
paseq-mding 9sodind [erousn SOA ®BIBp painionng asodind [erouan) 09[320Vy 9102 L
pauygepaid 9p0d 0IN0S ON 9poo 201noS a8en3ueT Jurwwer3old poyroadsun 8007 ot
paseg-inding 9soding [BIouUdD) SOX P09 92IN0S asodiand [erouen KIIOO[_RA S00T St
pougopard osodind [eIoUQD) SOR 9p0d 22IN0S asodind [erouan reuoney 000T b
pougopald osodind [eiouan SOX P09 22IN0S asodiand [erouen Aposdeqy S00Z t
paugopald ®lep paInonng ON 9p0d 22IN0S BUWIAYOS YO 010T w
paseq-mding 9sodind [erouan SOx 9p0d 0IN0S osodind [erouan 09[Q20VY €102 £
pauygepaid 9p0d 90IN0S SOx 9poo 901no§ a3en3ue Jurwelr3old Y0 $10T oy
paseq-mding 9sodind [erouan S9 ®Biep paImonns asodind [erouan ™0 0102 6€
peseg-indin asoding [e1ouan) SO 9p0d 90IN0S asodind [erouan) Y0 900T Q¢
poseq-inding 9soding [eIouaD) SOR 9p0d 92IN0S osodind [erouan 09[A0Y $107 L€
pougopald osodind [erouan SOX P09 92IN0S asodind [erouan) L0 L00T o¢
peseg-inding elep paInonng SOR 9p0d 92IN0S BUWIAYOS powweIis3old Z10T G¢
paseg-inding 9soding [eIoudD) ON P09 92IN0S asodiand [e1ouen poyoadsun €102 €
pougopard 9sodind [erousn SOR 9p0d 22IN0S asodind [erouan reuoney 10T €€
paugopald osodind [eiousn SOR 9p09d 92IN0S osodind [erouon euoney 10T €
31£)s gejdwdy, Indurswpuny AN ndinQ yndur swn-ugisa(q [00], JB3X JIquINU “JAY

Ixxxiii

619 21qe) UonEdYISSE[D IIT'TI A[q¥L

paseq-mding 9sodind [erouan SOx BIRp PAIMONIS asodind [erouan 09[000Yy €10T S6
paseq-indinQ eIEp paInonng ON 9p0od 92IN0S BUWAYDS I1SX +00T 6
pougopald ®lep paInonng SOX 9p0o9d A2IN0S BUWAYDS PO S00T €6
peseg-inding osodind [erouan) SOX P02 90IN0S asodind [erousn 1Ar 8002 76
paseq-mding asodind [erousn SOx 9p0J 90IN0S asodind [erouan puedx Z10C 16
paseq-indinQ eIEp paInjonng ON 9pod 90IN0S BUWAYDS I1ISX T10T 06
paseq-indin) elep pPaINONNg ON 9p0o9d 0IN0S BUWAYDS I1ISX 110T 63
paseq-inding elep paImoONng SOX P02 92IN0S ewOYOS pawweIdold 010T 88
paseq-o[ny oyroads urewoq SOR P02 90IN0S ogroadg urewoq DL UIWIS 00T L8
pauyopald ®lep paImonng ON P02 92IN0S BWAYDS pegadsun 900¢ 98
paseq-indinQ eIEp paInonng ON 9p0od 92IN0S BUIOYOS YO €10T Gs
poseg-inding oyroads urewo(q SOX 9p0o9d A0IN0S oy1oads urewo(q pegadsun 910¢ 8
paseq-indinQ eIep paInjonng ON ©Iep paImonng BUIAYOS IISX €00T €8
paseq-mding asodind [erousn SOx 9p0J 0IN0S asodind [erouan 1Ar 9002 78
paseq-inding oyroads urewo(SOX P02 92IN0S oy1oadg urewoq IISX €00T I8
paseq-mding 9soding [eIouen SOx 9p0J 90IN0S asodind [erouan puedx 600C 08
paseg-indiny asoding [e1ouan) SOX 9p0d 90IN0S asodind [erouan pagoadsun 7102 6L
paseq-mdinQ 9p0d 90IN0S ON 9pod 201n0S 93en3ue] Jurwwer3oid pagoadsun 1102 3L
poseq-inding oyroads urewo(q SOX P02 90IN0S oy1oads urewo(q peygadsun ¢10T LL
paseq-o[ny oyroads urewoq SR P02 20IN0S ogroadg urewoq DL UIWIS 10T 9L
paugopald osodind [eIouen SOX P02 92IN0S asodind [erouen eqelng <o0T Gl
paugepald esoding [erouan) SOx 9p0d 90IN0S asodind [erousn eqemy S00C ¥l
paseq-imding 9soding [eIouan SOx 9p0J 0IN0S asodind [erouan puedx 1102 €L
paseq-indinQ eIEp paInonng ON 9p0Od 92IN0S BUWIAYDS LYo 800T L
poseg-inding oyroads urewo(q SOX 9p0o9d A0IN0S oy1oads urewoq TOd €10T 1L
peseg-inding oyroads urewoq SOX 9p0d 90IN0S oy1oadg urewo(q puedx 800¢C 0L
poseq-inding oyroads urewo(q SOX. 9p0o9d A2IN0S ogroadg urewog puedX /00T 69
paseq-indinQ P09 90IN0S ON 93en3ue[[eameN oFen3ue| SurweIsold PO L00T 89
paseq-mdinQ 9p0d 0IN0S ON ©o3en3ue[[exmeN o3en3ue| SurwweI3olq YO 900T L9
paseqg-indinQ P09 92IN0S ON 9p0oo 201oS a3en3ue Suruwer3old YO S00T 99
paseq-mdinQ 9p0d 90IN0S ON 9p0oo2 901noS a3en3ue Surwwel3old LYo S00T G9
poseq-inding 9soding [eI1ouen SOX P02 92IN0S asodind [erouen 09[320Y €107 ¥9
31£)s ejdwdy, Indurswpuny HAN mdjnQ ndur dwn-ugIsaq [00], JB3X JquINU “JOY

Ixxxiv

LT1-96 21q®) UONBOYISSE[D AT'TI JIGBL

peseq-inding ®IEp paInONng ON 9p0o9d A2IN0S BWAYDS pegwadsun +10¢ 121
peseg-inding asodind [erouan) SO 9p0d 92IN0S asodind [erousn LYo 910T 971
paseq-inding osodind [eIoUALD) SOX. BIEp poInonns asodind [erouan PO 10T Gzl
peseg-indinQ 9soding [e1ouan) SOX 9p0d 92In0S asodind [erouan KDoA 2102 Tl
poseq-o[ny oyroads urewo SOX. 9p0o9d 2IN0Y§ ogroadg urewio L UIhWIS 10T €zl
paseq-o[ny oyroads urewo SOX. 9p09d 2210 ogroadg urewo L uIwiIs 0107 44!
paseg-inding 9soding [erouan) Sox 9p0d 90IN0S asodind [erouan puedx 1102 121
paseq-inding osoding [eIoUQD) SOX 9p0o9d 0IN0S asodind [erouen I1ISX S00T 0zl
poseq-o[ny ®BIEp paImonns ON 9p0o9d 22IN0YS BUIOYOS PO €10T 611
paseq-inding 9soding [e1ouan) SOX P02 92IN0S asodind [e1ouan KIDORA L00T Q11
peseq-indinQ) ®IEp PAIMONNS ON ©Iep paInjonns BUIOYOS PO 800T L1T
paseq-inding 9sodind [eIoUAD) SOX BIEp poInonns asodind erouen 09[30Y #1107 911
peseg-indin asod.ind [erouan) SOx 9p0d 92IN0S asodind [erouan 09[020Yy 910¢ Sl
poseq-o[ny oyroads urewo SOX 9p0o9d A2IN0YS ogroadg urewio L UIhWIS 010T P11
paugepald 9soding [eroudn) SOX 9p02 92IN0S asodind [erousn eqemy S00T €11
poseg-inding oyroads urewoq ON 9p0o9d 2IN0§ ogroadg urewog PO SO0T Al
poseg-indinQg ejep paImonng ON 9p09d 221IN0YS ewoyoS 9erdwarsums 00T 111
paseg-inding asodind [erouan) Sox BIRp paImonns asodind [erouan 09[020Yy 910¢ 011
pougopald osoding [eiouon SOX 9p09d A0IN0S asodind erouen ™0 SO0T 601
pauygepaid 9p0d 90IN0S ON 9poo 901n0§ 93en3ue] Jurwwer3oid payroadsun Z00Z Q01
paseq-inding ®IEp paInoONng ON 9p0o9d A0IN0S BWAYOS powwei3old 10T 101
peseg-indin 9soding [erouan) SoX oFengue[[eIMEN asodind [erousn puedx 110C 901
paugopald oyroads urewo(ON 9p0o9d A0IN0S oy1oadg urewo(q pegadsun 00T So1
peseg-indin asodind [erouan) SOx 9p0d 92IN0S asodind [erousn puedx 6002 01
pougopald osodind [eIouan) SOX. 9p0o9d A2IN0S asodind erouan PO 800T €01
peseg-indinQ 9soding [e1ouan) SOX 9p0d 92IN0S asodind [erouan payoadsun 107 201
paseg-inding asodind [erouan Sox BIRp paImonns asodind [erouan payroadsun £002 101
poseq-indinQ oyroads urewoq SOX 9p0o9d 221N0YS oy1oadg urewoq 091320y G107 001
pougopard osodind [eIouan) SOX. 9po9d 92IN0YS asodind [erousn pegwadsun ¢10T 66
peseg-inding 9sod.ind [erouan) SOX BIRp paImonns asodind [e1ouan 109 0102 36
pougapaid 9p0J 92IN0S ON 9p0o 2010 9Fen3ue] SUUWEISOI] LYo 10T L6
paseg-inding asodind [e1ouan) SOX P02 92IN0S asodind [e1ouan puedX 8002 96
J[Lys gejduwdy, ndurswpuny JAN mdjnQ ndur dw-ugIsa(q [00], JB3X JIquINU “JY

IxxxVv

6ST-8T1 2[q®) UONRIYISSEID) (AT AIqBL

paugopald osoding [eI1ouan SOX 9p0d 92IN0S osodind [erouon pogmadsun 110T 6S1
paseq-mding asodind [erouan) SO BIRp pPaImonns osodind [erouan) pued¥ 910C 8GT
paseq-mding 9soding [e1ouan) SO 9p02 0IN0S osodind [erouany 1dIOSHOIN #10T LG
pougopald 9sodind [eiouan) SOA 9p0d 90IN0S osodind [eroueny poawweidold 10T 961
pauygepaid 9p02 90IN0S ON 9poo 201n0§ afen3ue Jurwwer3old payadsun 010 GGl
pougopald 9sodind [eiouan) SOX P09 92IN0S osodind [eroueny pogroadsun 00T $G1
paugopald ®lep paImonng ON 9p0d 92IN0S BWOUOS pagradsun 900T €S
peseq-inding ejRp pPAIMONNS ON BIEp poINONIS BUWAYOS IISX 800T ST
peseq-inding oyroads urewoq SOR BIEp poINonins ogroadg urewoq PO 010T IST
poseq-inding oyroads urewo(q SOX BIEp paINonIs oyroadg urewoq PO 600T 0S1
poseq-indinQg eIEp paImONnNs ON 9p09 90IN0S BUWIAYOS IISX 710T b1
paseq-mding 9soding [e1ousn) SOx 9p02 90IN0S osodind [erouan puedx 110C Sl
peseq-indinQ eIEp paImONNs ON 9p09 90IN0S eWOYOS pogradsun 000T L¥1
paugepald 9sodind [erouan SOx BIRp PaImoNns osodind [erouany pagmadsun 600C (Tl
paseq-mding asodind [e1ouan) SOX 9p0d 90IN0S asodind [erousn) L0 L00T Syl
paseq-indinQ 9p02 0IN0S ON 9p0oo 201n0S a8en3ue Jurwwer3old Q0 $10T %l
pauygepald BIep paImonng ON 9p0d 22IN0S BUWIAYOS PO 00T 54l
peseq-indin ejep paImONNg SOX BIEp poINonins BWOUYOS pagmadsun Z00T wi
pougopald asodind [eiouan SOX P09 22IN0S osodind [erouany pagmadsun 00T 1
paseq-mding asodind [erousn) SOX 9p0d 90IN0S asodind [erouan) 09[220Vy 910¢ Al
peseq-inding ejRp pPaIMONNS SOX 9p09d 92IN0S BUWAYOS IISX 900T 6¢€1
paseq-mding esoding [e1ouan) SO 9p0d 90IN0S osodind [eroueny pagmadsun S10T]¢T
paseq-mnding asodind [erouan SOx P02 0IN0S osodind [erouany pagmadsun 10T LE1
paseq-mding asodind [erouan) SOX BIRp pPaImonns asodind [erouan ITISX 910C 9¢1
peseq-indinQ ®jep pPaIMONNS SoX o3enJue[[eInjeN BUWAYOS IISX 600T Gel
pouyopald 9p0d 92IN0S ON 9poo 901no§ a3en3ue JurwwerSold — paywadsun Z00T €1
poseq-inding oyroads urewo(q SOX 9p0d 92IN0S ogroadg urewoq PO 10T €cl1
paseq-mding osodind [e1ouan) SOA P09 90IN0S asodiand [erouen 1Al L00Z €1
paseq-mding asodind [erousn) =) 9p02 90IN0S asodind [erouan Q0 9107 1€1
peseq-inding oyroads urewo(q SOX 9p0d 92IN0S ogroadg urewo poyradsun 010T o<1
peseq-indinQ eIEp paImONNS ON BIEp paInjonng BWOUYOS pawweI3old 800T 621
poseq-inding oyroads urewo(q SOX BIEp PoINONIS oyroedg urewoq I4dr 1oz 8Z1
91£)s djejdudy, Indur swpuny HAN ndinQ yndur swn-ugisa(q [00], JBIX JoquINu °JAY

Ixxxvi

161-091 S1qe) uonedyIssel) :IATI JIqBL

peseq-inding elRp paIMONNS SOX 9p0d 92IN0S BUWIAYOS I4dr .00z 161
paseq-mding osodind [erouen SOX 9p0d 90IN0S asodind [erouan puedx (10T 061
poaugopard 9sodind [erousn SOR 9p0d 92IN0S osodind [erouan euoney (010T 681
pougopald ®lep paImonng ON 9p0d 22IN0YS BUWIOYOS poagadsun 1107 881
paseq-mding osodind [erousn SOX 9p0d 0IN0S asodind [erouan poyroadsun 8007 LS1
paseq-mding osodind [erouan SO P09 92IN0S asodind [e1ouan 09[220Vy 9[0T 981
paseq-mding osodind [erouen S9X ®Blep paImonns asodind [erouan pued¥ €10C G81
poseq-inding 9soding [eIoURD) SOR 9p09d 2IN0S 9sodind e1ouen 09[320Y €107 81
paseq-mding esodind [erouen SOx 9p0d 90IN0S asodind [e1ouan 09[220Vy +10T €81
pougopald osodind [eiouan SO P09 92IN0S 9sodind [e1ouan eqelng <00T 781
pougopard 9soding [eIOUQD) ON 9p09d 22IN0S asodmd [erousn PO $00T 181
paseq-mding osodind [erousn SOX 9p02 0IN0S asodind [erouan puedX 600C 081
paseq-o[ny 9p0d 92IN0S ON 9poo 901noS a3en3ue Jurwer3old Y0 SI10T 6L1
paseq-mding osodind [erouan SOX 9p0d 0IN0S asodind [erouan puedx 910 QLI
paseq-mding 9sodind [erouan SO P09 90IN0S asodind [erouan peyroadsun S0 LLT
paseq-mding osodind [erouan SOx 9p02 0IN0S asodind [erouan poyroadsun 007 9L1
paseq-mding osodind [erousn SO P09 92IN0S asodind [e1ouan 1Al S00T GLI
peseq-indin) elep paImONNg SOR 9p09d 22IN0S BUWIAYOS PO 110T VLT
peseq-inding elep paImONNS SOR 9p09d 92IN0S BUWIAYOS PO 110T €LT
paseq-mding esodind [erouen ON 9p0d 90IN0S asodind [e1ouan KIO0[A 910 L1
paseq-inding 9soding [eIoUdD) SOX P09 92IN0S asodind [e1ouan KIDOA. 800 IL1
pougopard 9sodind [BIOUAD) SR 9p09d 22IN0S asodmd [erousn PO S00T OLT
pauyopaid 9p02 0IN0S ON 9poo 201n0§ a8en3ueT Jurwwer3oid payroadsun 8007 691
pougopard osodind [eIoUdD) SR 9p09d 22IN0S asodmd [erouan PO 800T 891
peseq-inding elEp pPaIMONNS ON 9p0d 92IN0S BUWIAYOS I4dr 9002 191
paseq-o[ny oyroads urewoq SR 9p0d 22IN0YS ogroads urewo DL Yurnwis ¢10¢ 991
pougopald oyroads urewo(SOR 9p0d 92IN0S ogroadg urewoq PO 10T G91
pougopald osodind [eiouan SO P09 92IN0S asodind [e1ouan eqen] 0102 $91
pougepald asodind [erouan SOX 9p0d 0IN0S asodind [erouan eqemd 900 €91
peseq-inding elRp paIMmONNS SOX 9p09d A2IN0S BWOUOS pawweiSold 10T 791
poaugopard osodind [BIOUAD) ON 9p09d 22IN0S asodmd [erousn PO 800T 191
peseq-inding elep paImONNS ON 9p09d A2IN0S BUWIAYOS PO $10T 091
31£)s djejdudy, Indurswpuny HAN mndinQ yndur swn-ugIsa(q [00], JB3X JoquInu °JY

Ixxxvii

€27-T61 1ed 91qe) uoneayIssel) :[IATI JIqeL

peseq-inding ®IEp paInONng ON BIEp poInonns BWAYDS I1ISX 210T €T
peseg-inding asodind [erouan) SO 9p0d 92IN0S asodind [erousn 09[020Yy 910¢ 7T
poseg-inding oyroads urewoq SOX BIRp paIN}ONINS ogroadg urewog KIDOIA 600T 122
peseg-indinQ 9soding [e1ouan) SOX BIRp paImonns asodind [erouan powweidold 00T 022
paseq-mdinp 9p0d 90IN0S ON 9poo 201n0S a3en3ue] Jurwwer3oid pagroadsun L0002 612
poseg-indin asodind [erouan) SOX 9p0d 92In0S asodind [erouan IISX 1102 Q17
peseq-indinQ ®lEp PAIMONNS ON 9p0o9d 22IN0Y§ ewoyos edwor3ums 9107 112
paseq-inding ®IEp paImoONng SOK. 9p0o9d 0IN0S BUIOYOS PO +10T 91¢
paseq-mndinp 9p0d 90IN0S ON 9poo 901n0S 93en3ue] Jurwwer3oid pegadsun ¢00T S1e

paugopald osodind [eiouon SOX 9p09d A0IN0S asodind erouen PO 910T ¥1¢
peseq-indinQ ®BIEp paInoNng ON ©o3en3ue [einjeN BUIOYOS PO 10T €1C
paseq-mdinQ 9p0d 90IN0S ON 9poo 201n0S d3en3ue] Jurwwei3oid payroadsun 7102 71C
paseq-mndinQ 9p0d 90IN0S ON 9poo 201n0§ 93en3ue Jurwwer3oid RYO 800T 112
peseq-inding ®IEp paInONNg ON 9p0o9d A2IN0YS BUWAYDS PO S00T 012
poseq-indinQ oyroads urewoq SOX 9p0o9d 221IN0Y oy1oadg urewog TOd €10T 60T
peseq-indinQ ®lRp PaIMONNS SOX. 9po9d 32IN0S BWAYDS I1ISX S10T 80T
paseq-indinQ BIEp paInjonng SOX 9p0O9d 221N0YS BUIAYOS PO 910T LOT
peseq-indinQ ®jEp pPAIMONNS ON 9po9d 22IN0YS BUIOYOS PO 10T 90C
paseq-inding oyroads urewo(q SOX 9p0o9d A0IN0S oy1oadg urewo(q peyadsun £00T S0T
paseq-indinQ oyroads urewoq ON 9p0o9d 22IN0YS ogroadg urewo RnPO 600T 0T
poseg-inding oy1oads urewo(q SOX 9p09d 90IN0YS oy1oadg urewo(q PO 600C €0T
peseq-indinQ ®BIEp paInlonng ON 9p0o9d 22IN0Y§ BUIOYOS IISX €00T 70T
poseg-inding oyroads urewog SOX 9p0o9d A0IN0S ogroads urewoq drefdwo3ung 010¢ 102

paseq-o[ny oyroads urewoq ON 9p0o9d 221N0Y§ oyroadg urewog PO 010T 002
peseq-inding eIEp paInONnsg SOX. 9p0o9d A2IN0S BUWAYDS I1ISX +00T 661
poseq-indinQ oyroads urewoq SOX 9p0od 2210 oyroads urewoq I4Ar €102 361

pougopald oyroads urewoq SOX. 9p0o9d A2IN0S ogroads urewoq PO 010T 161

paugepald osodind [erouan) SOX 9p02 92In0S asodind [erouan reuoney €10¢ 961
paseg-inding asodind [erouan) SOx BIRp paImonns asodind [erouan payroadsun S00Z S61
peseg-inding 9sod.ind [erouan) SOX P09 92IN0S asodind [e1ouan puedx 10T 61
poseg-inding 9soding [erouan) Sox 9p0d 92IN0S asodind [erousn YO 010T €61
peseq-inding ®IEp paInoONNg ON BIEp poInjonns BWAYDS KIIOO[PA S00T 61

J[Lys gejduwdy, ndurswpuny JAN mdjnQ ndur dw-ugIsa(q [00], JB3X JIquINU “JY

Ixxxviii

$ST—e 1ed 91qe) uonedyIsse[D IIATI 2198L

paseq-mding 9sodind [erouan SOx 9p02 0IN0S osodind [erouan 10 S10T GGz
peseg-inding osodind [erouan) SOx 9p0d 90IN0S asodind [erouan) KIIOO[RA S00T ¥ST
peseq-inding ejep paInONng ON 9p0d 92IN0S BUWAYOS INIRINQRI] 9107 €67

pouyepaid 9p0d 90IN0S ON 9poo 901no§ a3en3ue Jurwer3old Y0 900T 75T
paseq-mding osodind [erousn SOx P02 0IN0S asodind [erouan YO 1102 1S2
poseq-inding oyroads urewoq SOA 9p0d 22IN0S oyroadg urewog puAX G107 0S¢
paseq-mding 9soding [eIouen SOx 9p02 90IN0S asodind [erouan 1Al 6002 612
paseg-inding asodind [e1ouan SO P09 92IN0S asodiand [erouen YO 910T T
poseg-inding 9soding [eI1ouan) SOR 9p0d 22IN0S asodind [erouan 09[e20Y 1107 LyT
poseq-inding 9soding [eI1oueD SOR 9p09d 92IN0S asodind [erouan 09[e20Y 1107 (4
peseg-inding oyroads urewoq ON ®IEp paImonng ogroadg urewoq ejdwo3ums Z10¢ St
peseq-inding ®jep paImONNg ON ®BIEp paIinonins BUWAYOS powwreIisold 100C e
paseg-inding osodind [erouan SQA ®Biep paImonns asodind [erouan) 1dIOSHOIN 600T e

paugopard osodind [eIoUdn) SOR 9p0d 92IN0S osodind [erouan PO 6002 we
paseg-inding oyroads urewo(q SR 9p0d 22IN0S oyroadg urewog 09[920Yy €107 192

poaugopard osodind [eIoUQLD) SOR 9p0d 92IN0S osodind [erouan eqelng 7102 ore

pauyopald ®lep paImonng ON 9p0d 22IN0S BUIAYOS paygadsun 2002 6€T
paseq-mding 9soding [eIouan SOx 9p0d 0IN0S asodind [erouan puedx 10T Q€T

paugopald oyroads urewoq SOR 9p09d 92IN0S oyroadg urewoq payadsun Q10T LET
poseq-inding osodind [e1ouan) SOR 9p0d 22IN0S asodind [erouan YO 910T 9€T
peseq-inding oyroads urewo(q SOR 9p09d A2IN0S oyroadg urewoq PO $10T GET
peseg-indin asoding [e1ouan) SOx 9p0d 90IN0S osodind [erouan) puedx €10C ¥€C
poseq-inding oyroads urewo(q SOR 9p0d 92IN0S ogroadg urewoq KIOOIA 210T €€T
paseg-inding oyroads urewoq ON ®IEp paImonng ogroadg urewoq ejdwo3ums 110T €T
poseq-inding oyroads urewo(q SOR 9p0d 92IN0S ogroadg urewoq KIIOO[OA 800T 1€2
paseq-indinQ oyroads urewoq SR 9p0d 22IN0S oyroadg urewog PO S10T 0€e

paugopald ®lep paInonng ON ®BIEp paIinonins BUWIAYOS LYO €10T 622
poseq-inding eIEp paIMONNS ON 9p0d 22IN0S BUIAYOS KIIOOA 900C 87T
poseq-inding oyroads urewo(q SOR 9p0d 92IN0S ogroadg urewoq LYo €10T LTT

paugopald ®Iep paImonng ON 9p09d 92IN0S BUWIAYOS PO 2102 97T

paugopard oyroads urewoq SOR 9p0d 22IN0S ogroadg urewoq pagadsun £00T GTT
peseq-inding ®lep paImoONNg ON 9p09d 92IN0S BUWIAYOS PO 00T y2T

31£)s gejdwdy, Indurswpuny AN ndinQ yndur swn-ugisa(q [00], JB3X JIquINU “JAY

Ixxxix

L8T~9SC 91qe) uonesyIsse[s XTIl 9[98L

peseg-inding ®yEp paInoONng ON 9p02 92IN0S BWAYOS PO €10T 18T
paseq-inding ®eIEp paInjonng ON 9p0d 92IN0S BUWIAYOS PO 800T 987
peseg-inding ®jep paInonng ON P02 92IN0S BUWAYOS PO 600C G8T
pauyepaid 9p0d 90IN0S ON 9poo 901noS a3en3ue Surwwel3old poyroadsun €107 +8C
peseg-inding ®jep parnonng ON P02 92IN0S BUWAYDS PO 10T €8T
paseqg-indinQ P09 20IN0S ON 9poo 201no§ a3en3ue Sutwel3old poyroadsun Z10T 782
pougopald oyroads urewoq SOX. P02 92IN0S ogroadg urewo pagradsun 0107 182
paseg-inding asodind [e1ouan SOX QP09 20IN0S asodiand [e1ouon LYo 910T 082
paseq-inding 9soding [erouon SOX. P02 90IN0S 9sodind [erouan 09[320Y €107 6LT
poseq-o[ny ®BIEp paINonIs ON 9pO2 92IN0S rWOYOS paywadsun €00T 8/C
peseg-inding osodind [erouan) SQA ®Biep paImonns osodind [eroueny pegmadsun 710T LLT
peseg-inding ®IEp paInONnsg ON P02 92IN0S rWOYOS pagwadsun 10T 9.7
peseg-inding oyroads urewoq ON 9p0d 92IN0S ogroadg urewo pagroadsun 9007 GLT
pougopald ®lep paInonng ON P02 92IN0S BWOYOS pagadsun 900T ¥LT
paseq-inding oyroads urewoq SR 9p0J 22IN0S oyroadg urewoq TOd S10T €LT
poseg-inding 9soding [e1ouen SOX. P02 92IN0S asodind [erouan TOd €10T LT
peseg-inding asodind [erouan) SOX 9p0d 20IN0S asodind [e1ouon LYo 1102 LT
paseg-inding 9soding [erouan) SOx P02 2IN0S osodind [erouen dIOSHOIN 110T 0LZ
paseq-inding oyroads urewoq SOK 9p02 92IN0S oyroadg urewoq puUAX 91027 69¢
paseq-indinQ oyroads urewoq SOX. P02 90IN0S ogroadg urewo pagroadsun #1027 89T
paugopald osodind [eiouen SOX 9p02 92IN0S osodind [erouony pogwadsun €107 19T
peseg-inding 9soding [erouan) SOx 9p02 92IN0S osodind [eroueny pogmadsun €10T 997
paseq-inding asodind [e1ousn Sox P02 0IN0S asodind [erouan L0 1102 Go7
paugepald 9soding [erouan) SOx 9p0d 92IN0S osodind [eroueny poagmadsun 10T +97
poseg-inding 9soding [e1ouaen SOX P02 92IN0S asodind [erouan I4Ar L00T €9¢
paseq-inding oyroads urewoq ON 9p0J 22IN0S oyroadg urewoq IAr <S00T 797
pauygepaid P02 0IN0S ON 9p0od 901n0S 9Fen3ue] Jurwwes3old poyroadsun 00T 192
paseq-inding oyroads urewo(SOA 9p0J 22IN0S oyroadg urewog PO 910T 097
paseq-indinQ oyroads urewoq SOX. P02 90IN0S ogroadg urewog KIDOOA 900T 6ST
paseq-inding osoding [eIoUQD) SOX P02 92IN0S osodind [erousn ™0 00T 86T
poseg-inding osodind [erouan) SOx 9p0d 92IN0S asodind [erousn) 1Ar .00z 1ST
poseg-inding oy1oads urewo(q ON 9pO2 92IN0S oyroadg urewoq PO 10T 967
J[fys ejdudy, Indurswpuny HAN ndinQ yndur swn-ugIsa(q [00], JB3X JIquINU “JY

XC

61€-88T 21qw) uoneoyIsse] 1X "I IqBL

paseq-mding 9sodind [erousn S9 elep parmonns asodind [erouan 09[220VY 9102 61¢
paseq-inding oyroads urewoq ON 9p09d 22IN0YS ogroadg urewog PO 9107 8I¢
poseq-inding 9sodind [e1ouan) SOX ®Blep paInionns osodind [erouon 09[320Y 9107 LI§
poseq-o[ny oyroads urewoq SOA ®Blep paInionng oygroads urewoq poagadsun $10T 91¢
poseq-indin 9soding [eIoUAD) SOR 9p09d 92IN0S asodind [erouan PO 600T SI¢
paseq-mding oyroads urewoq SOx 9p0d 92In0S ogroadg urewoq pawwei3old 800T y1¢
paseq-mndinQ 9p02 90IN0S ON 9poo 201n0§ a3en3ueT Jurwwer3oid ™0 9107 €I¢€
paseq-mding 9soding [e1ouan) SOA 9p0d 92In0S asodind [e1ouan KIOORA S00T 1€
poseq-indinQ eIEp paImONNS ON 9p09d 22IN0S BUWIOYOS IISX S00T 11¢€
peseq-inding oyroads urewo(q SOR 9p09d 92IN0S oyroadg urewog payadsun SO0T 01¢
pougopard oyroads urewoq ON 9p09d 22IN0S ogroadg urewo pogadsun €00T 60¢€
peseq-inding elep paIMONNS ON 9p09d 92IN0S BUWIAYOS IISX 800C 80¢
paseq-mding 9soding [erouan) SOx 9p0d 90IN0S asodind [erouan I4dr €102 LOS
poseq-inding ogroads urewo(q SOR 9p09d 92IN0S ogroadg urewog paygadsun £00T 90¢
pouyopald ®lep paImonng ON 9p0d 221N0S BUWIOYOS poayadsun 600T S0¢
poseq-inding ogroads urewoq SOR 9p09d 92IN0S ogroadg urewog puedx S10T 0§
pougopald 9soding [ei1ouan) SO P09 92IN0S asodind [e1ouan Aposdeqy 1102 €0¢
paugepald 9soding [erouan) SOx 9p0d 0IN0S asodind [erouan Aposdety 9002 720€
peseq-inding elep paImONNS ON 9p09d 92IN0S BUWIAYOS PO 9107 10€
paseq-mndinQ 9p02 92IN0S ON ®Iep painjonng o3en3ue] Jurweisolq Q0 0102 00€
peseq-inding ®lep paIMmONNS ON 9p09d 92IN0S BUWIAYOS PO €10T 662
poseq-o[ny oyroads urewoq SR 9p0d 221IN0S ogroadg urewo DL Yurnwis 110T 86T
peseq-inding elEp paIMmONNS ON 9p09d 92IN0S BUWIAYOS payadsun 110T L6T
poseq-indinQ BIEp paImONNs ON 9p09d 22IN0S BUWIOYOS PO 10T 96C
poseq-inding 9soding [eIoUAD) SOR 9p0d 92IN0S osodind [erouon PO 010T S6C
paseq-mding oyroads urewoq SOx 9p0d 92In0S oyroads urewo(q puedx (10T 62
poaugopard osodind [BIOUAD) SOR 9p0d 92IN0S asodind [erouan pagadsun S10T €67
paugopald oyroads urewoq ON ®Iep paInjonnsg oyroadg urewog poyadsun 10T 76T
paugopard osodind [BIOUAD) SOA ®Blep paInionns asodind [erouan PO €00T 162
paugopald osodind [eIousn) SO ®BJep paIn}onns 9sodind erouen payadsun Z00T 062
paseq-mding 9soding [eIouan) SOx 9p0d 90IN0S asodind [e1ouan pued¥ 710C 682
peseq-inding oyroads urewo(q SO ®BlEp paIN}onIns oyroadg urewog KIOOA 600T 887
31£)s djejdudy, Indurswpuny HAN mndinQ yndur swn-ugIsa(q [00], JB3X JoquInu °JY

xci

1$€-0T€ Q1qe) uonedyIsse[) ;XTI JqeL

peseq-inding ®IEp paInONng ON 9p0o9d A2IN0S BWAYDS IISX €10T IS¢
poseg-indin) elep paImonng ON oSen3ue[[eInjeN BUIOYOS IISX 910T 0S¢
pougopald osodind [eIouon) SOX. 9p0o9d A2IN0YS asodind [erouan pegadsun 900¢ 61€
paseqg-mndinQ 9p0d 90IN0S ON 9poo 901n0S 93en3ue] Jurwer3old nPO 910T €
peseq-indinQ ®lRp pPaIMONNS ON 9p0o9d 2IN0S ewoydS dejdwar3ums 9007 L€
peseg-indin asoding [e1ouan) SOX 9p02 92In0S asodind [erouan puedx 710T (o1 %S
paseg-inding asodind [erouan) Sox oFengue [eIneN asodind [erouen 109 €102 S€
paseq-inding ®IEp paImoONng ON BIEp poInonns BUIOYOS IISX 900C ¢
paseq-ormy 9p0d 92IN0S ON elep paxjonng oSendue] SuruweIsold PO 100T Y€
paseg-inding 9soding [eIoUdD) SOX P09 92IN0S asodind [e1ouan 1dIOSHOIN S00T we
paugepald osodind [erouan) SOx 9p0d 92IN0S asodind [erousn [euoney 600¢ 1¥€
paugepald osodind [erousn ON 9p0J 0IN0S asodind [erouan pagroadsun S00Z ors
peseg-indin 9soding [e1ouan) SQX oFengue[[eIMEN asodind [erouan 1O S10T 6€¢
paseg-inding 9sodind [erouan S9x 9Fengue [eIneN asodind [erouan 09[020Vy #10T Q¢ce
poseg-indinQ elep paImonng ON 9p0O9d 22IN0YS BUIOYOS pagmadsun 9107 LEE
pougopard osodind [eIouan) SOX. 9po9d 32IN0S asodind [erouan reuoney 1107 o¢¢
poseg-indin 9sodind [erouan) SOX 9p0d 92In0S asodind [erouan KJIIOO[BA. S00T Gee
peseq-indinQ ®jEp pPAIMONNS ON 9po9d 22IN0YS BUIOYOS KIDOOA 910 €€
paseq-inding 9sodind [eiouen SOX 9p09d 90IN0S asodind erouen INIRINRI] 910T €¢e
pougopald ®lep parmonng ON 9p0o9d 22IN0YS BUIOYOS poegmadsun S00T €€
poseg-inding oy1oads urewo(q SOX 9p0o9d A0IN0S ogroadg urewo oejdweSums 102 1€€
poseg-inding osodind [erouan) SOx 9p0d 92IN0S asodind [erousn puedx Z10C 0€¢
paseq-o[ny oyroads urewog SOX 9p0o9d A2IN0S ogroadg urewio L MUINWIS 600T 62§
poseq-indinQ oyroads urewoq SOX 9p0o9d 221N0YS ogroadg urewog IR 9007 Q7€
poseg-inding oyroads urewoq SOX. BIEp PAIN}ONINS ogroadg urewog pegadsun ¢10T LT€
paugapald osodind [eIouan SOX 9p09d 2210 9sodind [erouan [euoney 710T 9Z¢
pougopald osodind [eIoudn) SOX. 9po9d 2IN0S asodind [erouan PO 800T Gze
paugaopald osodind [e1ouan SOX. 9p09d 221IN0YS asodind [erouan PO S00T €
paseg-inding 9soding [erouan) Sox 9p0d 0IN0S asodind [erouan KIIOO[DA. 9002 €Z€
peseg-inding 9sod.ind [erouan) SOX P09 92IN0S asodind [e1ouan 09[900V 710 7€
poseg-inding asodind [erouan) Sox 9p0d 92IN0S asodind [erousn 09[020Yy 910¢ 12¢
paseg-inding asodind [e1ouan) SOX P02 92IN0S asodind [e1ouan KIDO_A 0107 0z¢€
J[Lys gejduwdy, ndurswpuny JAN mdjnQ ndur dw-ugIsa(q [00], JB3X JIquINU “JY

Xcil

£8¢—CSE 21qe) uoneoyIsse[) X T 9IqBL

paseg-inding 9sodind [erousn =) 4 9p0d 0IN0S asodind [erouan 09[200Y 910¢ €8¢
paseg-mnding osodind [e1ouan) SO 9p0d 90IN0S asodind [e1ouan O €10T 78¢
paseg-inding asodind [e1ouan Sox 9p0d 0IN0S asodind [erouan 109 800C 18¢€
poseg-mdin esodind [e1ouan) SOX 9p0d 90IN0S asodind [e1ouan KIOOPA L00T 08¢
poseq-inding osoding [eIoUAD) SOX. BIEp paInonins asodind [erouan 09[A2Y €107 6L€
poseg-mding 9sodind [e1ouan) SOX P09 92IN0S asodind [e1ouan 09[220Vy G10T 8LE
peseq-indin) ®lRp PAIMONNS ON 9p0d 22IN0S BWOUOS pagadsun 2007 LLE
pougopald osoding [eiouon SOX BIEp PoINonIs osodind [erouon poywadsun €00T 9.¢
peseg-indinQ elRp PAIMONNS ON 9p0d 22IN0S BUWIAYOS IISX 110T GLE
paseq-inding asodind [eI1ouan) SOX P09 92IN0S asodiand [erouen 09[920V 600T L€
poaugopald oyroads urewoq ON BIEp paInonins ogroadg urewoq PO L00T €LE
paseg-inding 9soding [e1ouan) =) 4 9p02 0IN0S asodind [erouan puedx 200C 7LE
pougopald ®lep paImonng ON 9p09d 221N0S BUWIOYOS PO €00T 1LE
peseq-indjnQ ®lRp PAIMONNS ON 9p0d 92IN0S BWOUOS pagmadsun 1107 0LE
paseg-mding oyroads urewoq SOX 9p0d 90IN0S ogroadg urewo pagadsun G107 69¢
paseg-inding asodind [e1ouan SOx BIRp pPaImonns asodind [erouan 14dr +10z {9¢
paseg-mndinQ P02 90IN0S ON viep parmonnS o3engue] Surwweidold payadsun 10T L9¢
paseg-inding asodind [erousn SO 9p0d 90IN0S asodind [erouan KIOOPA 0102 99¢
peseq-inding ®IRp PAIMONNS ON 9p09d A2IN0S BUWIAYOS N0 ¥10T G9¢
paseq-mdinQ 9p0d 92INOS ON 9poo 901noS a3en3ue Jurwwer3oid ITISX 27102 $9¢
paseq-indinp QP09 20IN0S ON 9poo 201no§ a3en3ue SurwerSold poyradsun 00T €9¢
paseq-mding oyroads urewoq SO 9p0d 90IN0S ogroadg urewo pagadsun 7107 79¢
paseq-inding 9sodind [erousn Sox 9p02 0IN0S asodind [erouan KIIOO[PA 9102 19¢
peseg-indinQ ®lep PAIMONNS ON 9p0d 22IN0YS BWIOYOS I4r <102 09¢
pougopald ®lep paImonng ON oSen3ue[[eIneN BWOUOS pagmadsun 5007 6S¢€
paseg-mding oyroads urewoq SOA 9p0d 90IN0S oy1oadg urewoq KIOORA 6002]G¢
peseq-indinQ ®lRp PAIMONNS ON 9p0d 92IN0S BUWIAYOS PO S10T LS€
poseg-mdin esoding [e1ouan) SOX P09 92IN0S asodind [e1ouan I1Ar 8002 9G¢
paseg-inding 9soding [e1ouan) SOX 9p0d 90IN0S asodind [erouan I4dr 9002 qdy
paseq-inding osodind [eIouan) SOX P09 92IN0S asodind [erouan) 1Ar 9102 +6¢
pougopard ®lep paImonng ON BIEp paInonis BWOUOS pagradsun 6007 €S¢
paseq-indinp QP09 20IN0S ON P02 20In0S 9Fen3ue] UrUWeIZ0ld LYO 1102 8¢
JLys gejdwdy, yndurswpuny YA mdinQ yndur swn-ugIsa(q [00], JBIX JoquINU °JAY

Xciil

STH—b8€ 21qu) uoneoyIsse[D IIX 11 AqeL

pauyopald ®lep paImonng ON 9p0d 92IN0S BUWAYOS PO S10T Sl
paseq-mding asodind [erouan) SO 9p0d 90IN0S osodind [eroueny pagmadsun 800T 1y
pougopald ®lep paImonng ON 9p0d 92IN0S BWOUYOS poyadsun 10T 8%
pouyepaid 9p02 92IN0S ON o3en3ue| [eameN oFen3ue] Surwweidold powwel3old [10T 1y
paugepald 9soding [eIouan) SO P02 90IN0S asodind [erouan Aposdeqy 600C 11¥
paugopald oyroads urewoq ON 9p0J 22IN0S oyroadg urewog PO $10T 0l
peseq-indin ejep pPaIMONNS ON 9p0d 92IN0S BUWIAYOS PO $00T 601
peseq-inding oyroads urewo(q ON 9p0J 92IN0S ogroadg urewoq payroadsun 900¢ 01
paseq-mding asodind [erousn) SO 9p0d 90IN0S asodind [erouan) KIO0[A S00T LO¥
pauygepald P02 92IN0S ON 9poo 201no§ a8en3ue Surwerdold — payadsuny 10T 901
paseq-mding asodind [erousn) SOX 9p0d 90IN0S asodind [erouan) ITISX #1102 SOv
paseq-mnding asodind [erousn SOx 9p02 90IN0S osodind [erouan 09[220Vy 7102 Y0¥
paseq-inding oyroads urewoq SOX 9p0d 22IN0S ogroadg urewo PO $10T 034
poseq-inding osoding [eIoULD) SOX 9p0d 92IN0S osodind [erouan PO $10T 0r
paseq-mding 9soding [e1ouan) SOX 9p0d 90IN0S osodind [eroueny pogradsun ¢10T 10¥%
pougopard osodind [erouan SOX 9p0d 92IN0S osodind [erouan PO SO0T 00t
pougopald asodind [eiouan SOX BIRP PaINONNS asodiand [e1ouen L0 900T 66¢€
peseq-indin ejep paIMONNSg ON 9p0d 92IN0S BUWIAYOS KIIOOA 900T 86¢
peseq-inding oyroads urewo(q ON 9p09J 92IN0S ogroadg urewo payadsun 010T L6E
paseq-mding asodind [erousn) SOX 9p0d 90IN0S asodind [erouan) 09[220Vy 910¢ 96¢
pougopald osoding [eI1ouan SOX 9p0d 92IN0S osodind [erouon poyradsun ¢00T S6¢
pougepald 9sodind [eiouan) SO 9p0d 90IN0S osodind [erouan) eqemd S00CT 6€
poseq-inding oyroads urewo(q SOX 9p0d 92IN0S ogoadg urewo poygadsun Z10T €6¢
paseq-mding esoding [e1ouan) SOX 9p0d 0IN0S asodind [erouan) pued¥ 800C 76€
pougopald ®lep paImonng ON 9p0d 92IN0S BWOUYOS poyradsun Z10T 16€
paseq-inding oyroads urewoq SOX 9p0d 22IN0S oyroadg urewog 14l 1102 06€
paseq-mding asodind [erouan SO P02 0IN0S osodind [erouany pagmadsun ¢€10C 63¢
pouyopald Blep paImonng ON BIEp paInonins BUWIAYOS PO €10T 88¢
peseq-indin elep pPaIMONNS ON 9p0d 92IN0S BUWIAYOS IISX S00T L8€
peseq-inding ejep pPaIMONNS ON BIEp poIN)oNIs BUWAYOS IISX €00T 98¢
poseq-inding asoding [erousn SOX P02 92IN0S dsodind [erouan 09[e20Y €107 G8]¢
peseq-inding osoding [eIoUD) SOX 9p0d 92IN0S asodind [erouan 09[Q20Y 110T $8¢€
91£)s djejdudy, Indur swpuny HAN ndinQ yndur swn-ugisa(q [00], JBIX JoquINu °JAY

XC1V

Ly¥—91+ 1ed 9[qe) uoneoyIssed ATX I 2[qBL

paugopald oyroads urewoq SOX ®Blep paIn}onns ogroads urewo(q payadsun Z10T LY
paseq-mding oyroads urewoq SO ®lep parmonns oy1oadg urewoq peyroadsun 00T oty
paseq-mding osodind [erouan SOX 9p02 0IN0S asodind [erouan poyroadsun €102 S
paseq-mding osodind [erousn SO P09 90IN0S asodind [e1ouan L0 €10T AT
paseg-o[ny oyroads urewo ON 9p09d 92IN0S ogroadg urewog pagadsun 010T h
paseq-mding 9soding [e1ouan) SO P09 90IN0S asodind [e1ouan pued¥X <00C W
poseq-indin ogroads urewoq SOA ®Blep paInionns ogroads urewoq pagmadsun 800T 18a%
pougopald osodind [eiouan ON P09 92IN0S asodind [e1ouan poyoadsun G107 0
paseq-mding esodind [erouen SOx 9p0d 90IN0S asodind [e1ouan pPUaIX 91027 65y
peseq-inding oyroads urewo(q SOX 9p09d A2IN0S oyroadg urewog I4dr <10z ¢
poseq-indin oyroads urewo SR 9p0d 22IN0YS ogroads urewoq Idr €102 LEY
paseq-mding asoding [e1ouan SOX 9p02 0IN0S asodind [erouan poyroadsun 1102 ocy
paseq-mding 9sodind [erouen SOx 9p0d 90IN0S asodind [erouan PUaIX 91027 Se
paugopald ®lep paImonng ON ®Iep paIinonns BWIOUOS pawweISold 900T yEP
pougopald osodind [erouan) ON P09 90IN0S asodind [erouan YO L00T ccy
pauyepaid 9p0d 90IN0S ON 9poo 201n0§ 93en3ueT Jurwwer3old poyroadsun 9002 5%
paseq-mding osodind [erousn SO ®lep parmonng asodind [e1ouan 09[220Vy 9[0T 5%
paseq-mding 9soding [eIouan SOx 9p0d 0IN0S asodind [erouan pued¥ 110C 0y
peseq-inding oyroads urewo(q SOR 9p09d 92IN0S ogroadg urewio D7LL YUINWIS 9[0T 6F
paseq-mding 9soding [eIouan SOx 9p0d 90IN0S asodind [e1ouan pued¥X €10C Ty
peseq-inding ®lRp paIMmONNS ON ®Iep paIinonis BUWIAYOS payadsun SO0T ié
pougopald ®lep paImonng ON ®Iep parnjonns BUIOYOS pogadsun Z10T (Yé
paseq-inding 9p02 0IN0S ON ®iep painjonng ofen3ue| Surwei3orq payroadsun 6002 STy
pouyepaid 9p0d 92IN0S ON 9poo 901noS a3en3ue Jurmwer3old Y0 SI10T ¥y
paugopald ®lep paImonng ON 9p0d 92IN0S BUWIAYOS INIRINRI] 10T €T
pouyopald ®lep paImonng ON ®Iep panjonns BUWIOYOS PO €00T Ty
peseq-indin ejep paImONNg ON 9p0d 92IN0S BUWIAYOS IISX 900T 129
pougopald osodind [eiouan SO P09 92IN0S asodind [e1ouan eqem 1002 0y
paseq-mding osodind [erouen SO ®Blep paImonng asodind [erouan INIBNRRI] 010T 61
poseq-inding 9sodind [e1oUD SO ®BJep paIn}onns 9sodind erouen INIBINRI] T10T QI
paseq-mndinQ 9p0d 92IN0S ON ®Iep painjonng o3en3ue] Jurwei3olq poyroadsun €107 L1y
paseq-inding 9soding [eIoUdD) SO P09 92IN0S asodind [e1ouan KIDOPA. 200 91¥

31£)s djejdudy, Indurswpuny HAN mndinQ yndur swn-ugIsa(q [00], JB3X JoquInu °JY

XCV

1878 91q®) UONLOYISSED (AX T S1qBL

paseg-inding 9soding [e1ouan) Sox 9p0d 90INOS asodind [erouan 1O 1102 18
paseg-mndinQ QP09 20IN0S ON 9p0oo 201moS a3en3ue Surwei3old nYpo 00T 08t
paseg-inding asodind [erouan) SOX ®Biep paImonns asodind [erouan 09[020Yy 910¢ 6Ly
paseg-inding osodind [e1ouan) ON QP09 20IN0S osodind [e1ouan 14Ar L00Z 8L
paseq-mdinQ 9p0d 92IN0S ON 9pod 901noS a3en3ue Surwwer3old paywadsun L00T LLY
paseq-inding 9sodind [erousn SOX ®Bjep paImonns osodind [erouen pogradsun ¢€10T 9L
pauyepaid 9p0d 92IN0S ON 9p0oo 901noS a3en3ue Surwwel3old LYo €10T Sy
peseq-indjnQ ®IRp PaIMONNS ON ®BIEp paInonns BWAYDS I1ISX L00T Ly
paugopald ®lep parmonng ON P02 92IN0S eWOYOS pagmadsun €00T CLY
paseg-inding 9sodind [erouan Sox 9p0J 90IN0S asodind [erouan 09[020Yy €10T Ly
poseg-indin 9sod.ind [erouan) SOX 9p0d 92IN0S osodind [eroueny pagmadsun $10T 1Ly
paseg-inding 9soding [erouan) Sox 9p0d 92INOS asodind [erouan 14dr 210z 0Ly
poseg-indinQ 9soding [e1ouan) SOX QP09 20IN0S asodind [erouan 1A 8002 691
paugepald 9sodind [erouan Sox 9p0d 92IN0S osodind [eroueny poyradsun 10T Q9%
peseq-indinQ ®IRp PAIMONNS ON ®BIep paInjonns rWOYOS poymadsun Z00g L9
paseq-inding oyroads urewoq Sox 9p0d 92IN0S oy1oadg urewo(q puedX ¢10T 99y
paseg-inding asodind [e1ouan SOA ®BIBp paInonns asodind [e1ouan IISX L00Z oy
paseq-o[ny BIEp paInonns ON P02 92IN0S BWOYOS pagmadsun 900T $9¥
pougopald osodind [eiouan SOX. P02 92IN0S asodind [erouan PO 600T €9t
paugepald oyroads urewoq SO 9p0d 92IN0S ogradg urewoq peyroadsun 7102 9%
paseg-inding 9sodind [erouan Sox 9p0J 0IN0S asodind [erouan puedx <S10C 19%
peseg-indinQ 9soding [e1ouan) SOX 9p0d 90IN0S osodind [eroueny 1dLOSHOIN €10T 09+
paseg-inding 9soding [erouan) Sox 9p0d 0IN0S osodind [erouen pagradsun S10T 65y
peseg-indinQ 9soding [e1ouan) SOX P02 90IN0S osodind [erouony pogmadsun €107]Gt
paseg-inding asodind [erouan) ON 9p0d 92IN0S osodind [eroueny pogradsun 00T LS
paugepald 9sodind [erouan) SOX QP09 20IN0S osodind [e1ouan eqemy 010 96t
poseg-inding asodind [erouan) SOx 9p0d 92IN0S asodind [erouen LYo 910T q<
pauygepaid P02 90IN0S ON 9p0od 900§ ofenSueT Jurwwerdol powweidold 10T St
paugopald oyroads urewoq SO ®IEp parmonng ogroads urewo@ pogroadsun) 00T €S
paseg-inding 9sodind [erousn Sox 9p0d 0IN0S osodind [erouen payradsun ¢10T ST
pauyepaid 9p0d 92IN0S ON 9p0oo 901noS a3en3ue Surwwer3old LYo €10T 1St
peseq-indjnQ ®IRp PAIMONNS SOX. 9p0o9d A2IN0S rWOYOS poywadsun 10T 0S¥
peseg-mndin oyroads urewoq SOX P02 92IN0S oyoadg urewo@ pagadsun 6002 S a%
peseq-indjnQ ®IRp PAIMONNS ON P02 92IN0S BUWAYDS PO 10T T
JL)s ejdwdy, Indurswpuny HAN mdinQ ndur own-ugIsa([00], JB3X JIquNU “JY

XCVvi

)

Appendix III

Templates of each tool for the experiments

I11.0.0.0.1 Templates for experiment A

I11.0.0.0.2 EGL The following template was executed as presented.

Store: FooBar

o\

[% var total : Integer = 0 ;]
[$for (modl in Model) { %]

[$for (invoice in modl.invoice) { %]

Cashier: [%=invoice.meta.cashier%]
Transaction date: [%$=invoice.meta.date%]

R R R o

[$for (items in invoice.items) { %]
Name: [%=items.name%]

Type: [%$=items.type%]

Price: [%$=items.price%]

[% total += items.price; %]

]

o

[

o

}

khkhkhkhkhkhkhkhkkhkkhkkhkkhkhkhkhkhkhkArrrxxx

[$ if (invoice.category.eContainer () .isTypeOf (Model)) { %]
Category: [%$=invoice.category.name%]
Discount:15%

[$ total = total » (1 - 15 / 100); %]

Tax: [%$=invoice.taxRate%]%
[$ total = total * (1 + invoice.taxRate / 100); %]

Total: [%$= total %1$

b %]

o

[

o

[$ else { %]
Category: [%$=invoice.category.name%]
Discount:10%

% total = total » (1 - 10 / 100); %]

31

32

33

34

36

23

24

25

26

27

28

Tax: [%$=invoice.taxRate%]%

[%$ total = total * (1 + invoice.taxRate / 100); %]

Total: [%= total %1$
[%}%]
[1

o
o

o
o

o
o

Listing III.1: EGL template for the experiment A

I11.0.0.0.3 Acceleo The following template was executed as presented.

[comment encoding = UTF-8 /]

[module modelTest (‘http://www.InvoiceMM.org/generate’,’http://www.eclipse.org/emf/2002/

Ecore’)]

[template public generateElement (model
[comment @main/]
[file (’"invoice.txt’, false, 'UTF-8')]

Store: FooBar

[for (invoice : invoice | self.invoice)]
[generateinvoice (invoice) /]

[/for]

[/file]

[/template]

[template public generateinvoice (invoice
[for (meta : Metadata | invoice.meta)]
[generateMetadata (meta) /]

[/for]

R I

[for (item : Item | invoice.items)]
[generatedItem(item) /]

[/for]

Ahkhkhkhkhkhkhkkhkkhkkhkkhkkhkhkhkhkhkhhdx*rx

[if (invoice.category->size() > 0)]

Category: [invoice.category.name/]

[if (invoice.category.eContainer().oclIsTypeOf (Model))]

Model)]

invoice)]

Xcviil

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

w

52

53

54

55

56

2

3

o

Discount: 15%

Tax: [invoice.taxRate/]%

Total: [(invoice.items.oclAsType (Item) .price -> sum() * (1 - 15 / 100)) * (1 + invoice.
taxRate / 100)/1$

[else]

Discount: 10%

Tax: [invoice.taxRate/]%

Total: [(invoice.items.oclAsType (Item) .price —-> sum() * (1 - 10 / 100)) *= (1 + invoice.
taxRate / 100)/1$%

[/if]

[/if]

[/template]

[template public generatedItem(elements : Item)]
Name: [elements.name/]
Type: [elements.type/]

[/template]

[template public generatedItem(elements : PricedItem)]
Name: [elements.name/]
Type: [elements.type/]

Price:[elements.price/]
[/template]

[template public generateMetadata (meta : Metadata)]
Cashier: [meta.cashier/]
Transaction date: [meta.date/]

[/template]

Listing II1.2: Acceleo template for the experiment A

I11.0.0.0.4 Xpand The following template was executed as presented, a long with

the Java and Xtend extensions.

«IMPORT InvoiceMM»

«DEFINE main FOR Model»

XCiX

30

31

32

34

35

36

37

38

39

40

41

42

«FILE "invoice.txt"»

Store: FooBar

«EXPAND invoice FOR invoice»
«ENDEILE»

«ENDDEF INE»

«DEFINE invoice FOR Invoice»
«EXPAND meta FOR meta»

Kok KKKk K K K K K K K kK kK kK K
«EXPAND item FOREACH items»
LR R S
Category: «category.name»
«IF this.category.eContainer.toString()
Discount: 15%

Tax: «taxRate»%

Total: «getTotal ()»$

«ELSE»

Discount: 10%

Tax: «taxRate»%

Total: «getTotal ()»$

«ENDIFE»

«ENDDEF INE»

«DEFINE meta FOR Metadata»
Cashier: «cashier»
Transaction date: «date»

«ENDDEFINE»

«DEFINE item FOR Item»
Nom: «name»

Type: «type»

«ENDDEF INE»

«DEFINE item FOR PricedItem»
Name: «name»

Type: «type»

Price: «price»

«addPrice () »

"Model"»

44

)

«ENDDEFINE»

Listing III.3: Xpand template for the experiment A

I11.0.0.0.5 Xtend2 The following template was executed as presented.

package template

import org.eclipse.emf.common.util.URI
import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl
import org.eclipse.emf.ecore.xmi.impl.XMIResourceFactoryImpl

import org.eclipse.emf.ecore.resource.Resource

import InvoiceMM.Model
import InvoiceMM.Invoice
import InvoiceMM.Item
import InvoiceMM.Category
import InvoiceMM.Metadata
import InvoiceMM.PricedItem

import InvoiceMM.impl.InvoiceMMPackageImpl
class MyCodeGenerator {

static long sum = 0

static long total = 0

static long subtotal = 0

def Object generate(String file) {

InvoiceMMPackageImpl.init () ;

doEMF Setup

val resourceSet = new ResourceSetImpl

val resource = resourceSet.getResource (URI.createURI (file), true)
for (content : resource.contents.filter (typeof (Model))) {

return generateCode (content)
}
}

2 def generateCode (Model model) {

rrr

Store: FooBar

ci

35

36

37

38

40

41

42

44

45

46

47

48

49

60

61

62

63

65

66

67

68

69

70

71

72

73

74

«generateinvoice (model.invoice)»

rrr

def generateinvoice (invoice invoice)
rrr

«generateMetadata (invoice.meta)»

Kk hkhkhkkkhkkhkhkhkkkkkk*k

«FOR items : invoice.items»
«generateltems (items as Item)»
«ENDEF'OR»

kkkkkkhkkhkkhkkhkkhkkhkkk*k

Category: «invoice.category.name»

«IF invoice.category.eContainer instanceof Model»

o

Discount: 15%
Subtotal after discount: «subtotal =

Tax: «invoice.taxRate»$%

Total: «total = sum * (1 + invoice.taxRate / 100)»$S

«ELSE»
Discount: 10%
Subtotal after discount: «subtotal =

Tax: «invoice.taxRate»$%

Total: «total = subtotal x (1 + invoice.taxRate / 100)»$

«ENDIE»

rrr

def generateMetadata (Metadata meta)
rr
Cashier: «meta.cashier»

Transaction date: «meta.date»

rrr

def generateltem(Item items) {
rrr
Nom: «items.name»

Type:«items.type»

rrr

{

{

(1 - 15 / 100)»$

(1 - 10 / 100)»$

cii

75

76

77

78

80

81

83

84

85

86

87

88

90

91

92

93

94

95

def generateltems (PricedItem items) {

rrr

Name: «items.name»
Type: «items.type»
Price: «items.price»

«subTotal (items) »

def static subTotal (Item item) {
sum += item.price

}

def doEMFSetup () {

// EPackage$Registry.INSTANCE.put (MyPackage.eINSTANCE.nsURI, MyPackage.eINSTANCE)

Resource$Factory.Registry.INSTANCE.extensionToFactoryMap.put ("xmi",

XMIResourceFactoryImpl);

// InvoiceMMPackage mp = InvoiceMMPackage.eINSTANCE;

}
}

Listing III.4: Xtend2 template for the experiment A

I11.0.0.0.6 JET The following template was executed as presented. The argument

that is passed to the template is the Java object model.

)

<%@ jet package="generator"

class="ModelTestJet" imports ="java.util.Iterator

org.eclipse.emf.common.util.EList
InvoiceMM.Model

InvoiceMM. Invoice

InvoiceMM. Item

InvoiceMM.PricedItem"

o
\

<% Model model = (Model) argument; %
<% long subtotal = 0; %>
<% long total = 0; %>

ciil

20

21

22

23

24

27

28

29

30

3

32

33

34

35

36

43

44

45

Store: FooBar

<% invoice invoice = model.getinvoice(); %>
Cashier: <%= invoice.getMeta () .getCashier () %>
Transaction date: <%= invoice.getMeta () .getDate () %>

AhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhAkrArArrrrrrkkkkkkk

<% EList<Item> items = invoice.getItems();

for (Iterator<Item> iterator = items.iterator(); iterator.hasNext ();)
Item item = iterator.next ();

%>

Name: <%= item.getName () %>

Type: <%= item.getType () %>

Price: <%= ((PricedItem)item).getPrice() %> CAD
<% subtotal += ((PricedItem)item).getPrice(); %>
<%}%>

R R R R R 3

<% 1if (invoice
Category: <%=
Discount: 15%

<% subtotal =

.getCategory () .eContainer () .eClass () .getName () .equals ("Model"))

invoice.getCategory () .getName () %>

subtotal %= (1 - 15 / 100); %>

Tax: <%= invoice.getTaxRate () %>%

<% total = subtotal » (1 + invoice.getTaxRate()/100); %>

Category: <%=
Discount: 10%

<% subtotal =

invoice.getCategory () .getName () %>

subtotal = (1 - 10 / 100); %>

Tax: <%= invoice.getTaxRate () %>%

<% total = subtotal * (1 + invoice.getTaxRate()/100); %>

Total: <%= total %>$

<%}%>

Listing IIL.5: JET template for the experiment A

civ

{

{

%>

25

26

27

28

2

=3

30

3

3

¥

33

I11.0.0.0.7 Velocity The following template was executed as presented. The argu-

ment that is passed to the template is the Java object invoice.

#set ($subtotal = 0)

#set (Stotal = 0)

#set ($d = "$")

FooBar

Cashier: $invoice.meta.cashier

Transaction date: $invoice.meta.date
kA hkhkhkhkkhkhhkhhkdhkhkhkhkkhkhkhkhkrhhhhhxhhdxkhkx*k

#foreach ($item in $invoice.items)
Name: $item.name

Type: $item.type

Price: $item.price $d

#set ($subtotal = S$subtotal + S$item.price)

#end

Kk Kk hk Kk hk kA kA Ak A ARk A h Ak kA d A XA KKK KKK K

#if ($invoice.category.eContainer () .eClass () .name == "Model")
Category: $invoice.category.name

Discount: 15%

#set (Ssubtotal = $subtotal * (1 - 15 / 100)
Tax: $invoice.taxRate %

#set (Stotal = S$subtotal * (1 + Sinvoice.taxRate / 100)
Total: S$total $d

#else

Category: $invoice.category.name

Discount: 10%

#set ($subtotal = $subtotal (1 - 10 / 100)
Tax: $invoice.taxRate %

#set ($total = $subtotal » (1 + $invoice.taxRate / 100)
Total: Stotal $d

#end

Listing III.6: Velocity template for the experiment A

(Y

I11.0.0.0.8 T4 The following template was executed as presented.

I <#@ template debug="true" hostspecific="false" language="C#" #>
2 <#@ assembly name="System.Core" #>

3 <#@ import namespace="System.Ling" #>

4 <#@ import namespace="System.Text" #>

5 <#@ import namespace="System.Collections.Generic" #>

6 <#@ output extension=".txt" #>

7 <#@ import namespace="System.Xml.Ling" #>

8 <#Q@ import namespace="System.IO" #>

9 <#@ assembly name="System.Xml" #>

10 <#Q@ assembly name="System.Xml.Ling" #>

11 <#@ assembly name="System" #>
13 Store: FooBar

15 <# long subtotal = 0; long total = 0;#>
16 <# XElement element = getModel();
17 string cashier = element.Element ("meta") .Attribute (XName.Get ("cashier")) .Value;

18 string date = element.Element ("meta") .Attribute (XName.Get ("date")) .Value; #>

20 Cashier: <#= cashier #>

21 Transaction date: <#= date#>

22
23 kkkkk kK k kK ok kKK ok kKK
24

25 <# foreach (XElement item in element.Elements ("items"))

26 {

27 string name = item.Attribute (XName.Get ("name")) .Value;
28 string type = item.Attribute (XName.Get ("type")) .Value;
29 string price = item.Attribute (XName.Get ("price")) .Value;

30 subtotal += long.Parse(price); #>
31 Name: <#= name #>

32 Type: <#= type #>

33 Price: <#= price #>$

34

35 <# } #>

37 kkkkhkhkkkhhhhkkkhkhkkkkk

38 <# XElement category = getCategory(); #>

cvi

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

71

<# string invoice_category = category.Attribute (XName.Get ("name")) .Value;
Category: <#= invoice_category #>

Discount: 15%

<#= subtotal = subtotal *- (1 - 15 / 100) #>

Tax: 15%

Total: <#= total = subtotal = (1 + 15 / 100) #>$

<#+

// getting all the elements from model reference
private XElement getModel ()
{
string modelpath = GetModelFilePath (fileName);
XDocument model = XDocument.Load (modelpath) ;
XElement elements = model.Element ("InvoiceMM") ;
if (elements == null)
{
Error ("No such elements");
return null;
}

return elements.Element ("invoice");

private XElement getCategory ()

{
string modelpath = GetModelFilePath (fileName) ;
XDocument model = XDocument.Load (modelpath);
XElement elements = model.Element ("InvoiceMM") ;
if (elements == null)
{
Error ("No such elements");
return null;
}

return elements.Element ("rootCat");

// getting the input model
private string GetModelFilePath (string fileName)

{

cvii

#>

78

79

80

81

82

83

84

85

86

87

88

FileInfo fi = new FileInfo ("R:\\Lechanceux\\T4\\visual studio 2012\\Projects\\

modelTest\\modelTest\\" + fileName);

string currentFolder = fi.Directory.FullName;

string mod = Path.Combine (currentFolder,
if (File.Exists (mod))

{

return mod;

}

Error ("File does not exist");

return string.Empty;

#>

fileName) ;

Listing II1.7: T4 template for the experiment A

I11.0.0.0.9 StringTemplate The following template was executed as presented. The

argument that are passed to the template are the Java objects invoice and total.

Store: fooBar
Cashier: <invoice.meta.cashier>
Transaction date: <invoice.meta.date>

Khkkhkkhkhkhkkhkhkh Kk Kk kK

<invoice.items: { item | Name: <item.name> <\n>Type:

> <\n><\n>}>
Khkkkkhkkhkkhkkhkkhkkhkkhkhk k k k k%
Category: <invoice.category.name>
Discount: 15%
Tax: <invoice.taxRate>%

Total: <total>

<item.type> <\n>Price:

Listing IIL.8: StringTemplate template for the experiment A

I11.0.0.0.10 XSLT The following template was executed as presented.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" xmlns:my="my:my">

<xsl:script implements-prefix="my"/>
<xsl:template match="/">

<!-— TODO: Auto-generated template —--—>

cviil

<item.price

20

21

22

23

24

25

26

27

28

29

30

34

35

36

37

38

39

40

4

42

43

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="TestModel">
Best Buy

<xsl:for-each select="invoice">

Cashier: <xsl:value-of select="meta/@cashier"/>

Transaction date: <xsl:value-of select="meta/@date"/>

* kK Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

<xsl:for-each select="items">

Name: <xsl:value-of select="@name"/>

Type: <xsl:value-of select="Qtype"/>

Price: <xsl:value-of select="@price"/> CAD

<xsl:text>
</xsl:text>
</xsl:for-each>

*hkkkkkkkkkkkkkkkkk*k

<xsl:variable name="invoice_cat_id" select="Q@category"/>

<xsl:for-each select="../rootCat">

<xsl:choose>

<xsl:when test="attribute::id = $invoice_cat_id">

Category: <xsl:value-of select="attribute::name"/>

</xsl:when>

</xsl:choose>

<xsl:variable name="category" select=".

<xsl:choose>
<xsl:when test="parent::category
o

Discount: 15%

Tax: 15%

Total: <xsl:value-of select="(sum(items/@price)

/>$
</xsl:when>
<xsl:otherwise>

Discount: 10%

Tax: 15%

Total: <xsl:value-of select="(sum(items/@price)

/>$
</xsl:otherwise>

</xsl:choose>

</xsl:for-each>

./rootCat"/>

parent::invoice>

cix

*

*

(1 + 15 div 100))

(1 + 15 div 100))

*

*

(1 + 15 div 100)"

(1 + 15 div 100)"

44 </xsl:template>

Listing II1.9: XSLT template for the experiment A

111.0.0.0.11 Templates for experiment B

I11.0.0.0.12 EGL The following template was executed as presented.

| Store: FooBar

2 [% var total : Integer = 0 ;

o

3 [$for (modl in Model) { %]

4 [%$for (model in Model) { %]

5 [$for (invoice in Invoice) { %]
6 Cashier: [%$=invoice.meta.cashier%]
7 Transaction date: [%$=invoice.meta.date%]

O kk ok k ok

10 [$for (items in invoice.items) { %]
11 Name: [%$=items.name%]

12 Type: [%$=items.type%]

13 Price: [%$=items.price%]

15 [% total += items.price; %]
16 [%$1%]

17 *kxkhkhkrxkhhkkkhhkkkhhkxkkkhxkk

19 Category: [%$=invoice.category.name%]

20 [$ invoice.category.getCategoryLevel (model.rootCat, invoice.category, 0, total, invoice
.taxRate); %]

]

1

o
o

21 [%}

}

o
o

22 [

23 [%$ operation Category getCategory (catRef:Category, cat:Category, index:Integer, total:
Integer, taxRate:Integer) :Integer{%]

24 [% 1f (cat.name = catRef.name) { %]

25 [% if (index > 30) { %]

26 Discount: 15%

27 [% total = total = (1 - 15 / 100); %I

28 Tax: [%$=taxRate%]%

29 [% total = total * (1 + taxRate / 100); %]

CcX

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Discount: 10%
[$ total = total * (1 - 10 / 100); %]
Tax: [%$=taxRate%]%
% total = total » (1 + taxRate / 100); %]
Total: [%= total %]$
}o%]
}o%]

o
o

o
o\

o

for (subCat in catRef.subs) { %]

o

subCat.getCategory (subCat, cat, index+l); %]
b %]
}o%]

o
o

o
o

Listing III.10: EGL template for the experiment B

I11.0.0.0.13 Acceleo The following template was executed as presented.

[comment encoding = UTF-8 /]

[module modelTest (‘http://www.InvoiceMM.org/generate’,’http://www.eclipse.org/emf/2002/

Ecore’)]

[template public generateElement (model : Model)]
[comment @main/]
[file (’'invoice.txt’, false, 'UTF-8')]

Store: FooBar

[for (invoice : invoice | self.invoice)]

[generateinvoice (invoice) /]

[/for]

[/file]

[/template]

[template public generateinvoice (invoice : invoice, model
[for (meta : Metadata | invoice.meta)]

[generateMetadata (meta) /]

[/for]

cxi

: Model)]

20

21

22

23

24

25

26

27

28

29

30

31

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

56

Khkhkhkkhkhkhkhkhkhkhkhkkhkk khkk kk kk kk k kx*x*

[for (item : Item | invoice.items)]
[generatedItem(item) /]

[/for]

Ahkhkhkhkhkhkhkhkkhkkhkkhkkhkkhkhkhkhkhhkhhrx

[for (cat : Category | invoice.category)]

[getCategoryLevel (model.rootCat, invoice.category, 0, invoice.items.oclAsType (Item) .price

-> sum(),invoice.taxRate) /]
[/for]

[/template]

[template public getCategory (catRef:Category, cat:Category,index:Integer,total:Integer,

taxRate:Integer)]
[if (cat.name = catRef.name)]
[if (index > 30)]
Discount: 15%
Tax: [taxRate/]%
Total:[(total % (1 - 15 / 100)) * (1 + taxRate / 100)/1$
[else]
Discount: 10%
Tax: [taxRate/]%
Total: [(total * (1 - 10 / 100)) * (1 + taxRate / 100)/1$
[/if]
[/if]

[for (subCat : Category | cat.subs)]
[getCategory (subCat, cat, index+l, total,taxRate)/]
[/for]

[/template]

[template public generatedItem(elements : Item)]
Name: [elements.name/]
Type: [elements.type/]

[/template]
[template public generatedItem(elements : PricedItem)]

Name: [elements.name/]

Type: [elements.type/]

cxil

62

63

64

24

25

26

27

Price: [elements.price/]

[/template]

[template public generateMetadata (meta : Metadata)]
Cashier: [meta.cashier/]
Transaction date: [meta.date/]

[/template]

Listing III.11: Acceleo template for the experiment B

I11.0.0.0.14 Xtend2 The following template was executed as presented.

package template

import org.eclipse.emf.common.util.URI

import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl

import org.eclipse.emf.ecore.xmi.impl.XMIResourceFactoryImpl

import org.eclipse.emf.ecore.resource.Resource

import InvoiceMM.Model
import InvoiceMM.Invoice
import InvoiceMM.Item
import InvoiceMM.Category
import InvoiceMM.Metadata
import InvoiceMM.PricedItem

import InvoiceMM.impl.InvoiceMMPackageImpl

class MyCodeGenerator

static long sum = 0

static long total = 0

def Object generate(String file) {

InvoiceMMPackageImpl.init () ;

doEMFSetup

val resourceSet = new ResourceSetImpl

val resource = resourceSet.getResource (URI.createURI (file),
for (content : resource.contents.filter (typeof (Model))) {

cxiil

true)

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

57

58

59

60

61

62

63

64

65

66

67

return generateCode (content)

b}

def generateCode (Model model) {
rrr
Store: FooBar

«generateinvoice (model.invoice, model)»

rrr

def generateinvoice (Invoice invoice, Model model) {
rrr

«generateMetadata (invoice.meta)»

*kkkkkkkhkkhkkhkkhkkk*k

«FOR items : invoice.items»

«generateltems (items as Item)»

«ENDFOR»

Kk hkhkhkkkkhkhkhkkkkkk*k

Category: «invoice.category.name»

«generateCategory (model.rootCat, invoice.category, 0, sum,

rrr

def getCategory (Category catRef, Category cat, int index,
e

«IF cat.name.equals (catRef.name)»

«IF index > 30»

Discount: 15%

Tax: «taxRate»%

Total: «total % (1 + taxRate / 100)»$
«ELSE»

Discount: 10%

Tax: «taxRate»%

Total: «total % (1 + taxRate / 100)»$

«ENDIE»

«ENDIE»
«FOR subCat : catRef.subs»

«generateCategory (subCat, cat, index+1l, total, taxRate)»

«ENDE'OR»

CcXiv

invoice.taxRate)»

long total,

int taxRate) {

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

def generateMetadata (Metadata meta) {

rrr

Cashier: «meta.cashier»

Transaction date: «meta.date»

rrr

def generateItem(Item items) {
rrr
Nom: «items.name»

Type:«items.type»

rrr

def generateltems (PricedItem items) {

rrr
Name: «items.name»
Type: «items.type»
Price: «items.price»

«subTotal (items) »

def static subTotal (Item item)
sum += item.price

}

def doEMFSetup() {

{

// EPackage$Registry.INSTANCE.put (MyPackage.eINSTANCE.nsURI, MyPackage.eINSTANCE)

Resource$Factory.Registry.INSTANCE.extensionToFactoryMap.put ("xmi", new

XMIResourceFactoryImpl) ;

// InvoiceMMPackage mp = InvoiceMMPackage.eINSTANCE;

b}

Listing III.12: Xtend2 template for the experiment B

CXV

20

2

22

23

24

26

27

28

2

°

30

3

32

33

34

I11.0.0.0.15 T4 The following template was executed as presented.

<#@ template debug="true" hostspecific="false"

<#Q@ assembly name="System.Core" #>

<#@ import namespace="System.Ling" #>

<#@ import namespace="System.Text" #>

<#@ import namespace="System.Collections.Generic" #>

<#@ output extension=".txt" #>

<#@ import namespace="System.Xml.Ling" #>

<#@ import namespace="System.IO" #>

<#@ assembly name="System.Xml" #>

<#@ assembly name="System.Xml.Ling" #>

<#Q@ assembly name="System" #>

Store: FooBar

<# long subtotal = 0; long total = 0;#>

<# XElement element = getModel();

string cashier = element.Element ("meta") .Attribute (XName.Get ("cashier")) .Value;
string date = element.Element ("meta") .Attribute (XName.Get ("date")) .Value; #>

Cashier: <#= cashier #>

Transaction date: <#= date#>

khkkkkkhkkhkkhkkhkkhkkhkhkhk k kk*

<# foreach (XElement item in element.Elements ("items"))

{

string name = item.Attribute (XName.Get ("name")) .Value;
string type = item.Attribute (XName.Get ("type")) .Value;
string price = item.Attribute (XName.Get ("price")) .Value;

subtotal += long.Parse(price); #>
Name: <#= name #>
Type: <#= type #>

Price: <#= price #>$

<# } #>

*kkkkkkkkkkkkkkkk*k

<# XElement category = getCategory();

#>

CXVi

language="C#"

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

<# string invoice_category = category.Attribute (XName.Get ("name")) .Value; #>
Category: <#= invoice_category #>

<# int index = getlIndex(category, "last", 0); #>

<# if (index > 30)

{ #>
Discount: 15%

<#= subtotal = subtotal * (1 - 15 / 100) #>
Tax: 15%

Total: <#= total * (1 + 15 / 100) #>$

<# } #>

<# else

{ #>
Discount: 10%

<#= subtotal = subtotal * (1 — 10 / 100) #>
Tax: 15%

Total: <#= total » (1 + 15 / 100) #>$

<#)} #>

<#+

//recursive function
private int getIndex (XElement category, string mod_cat, int index)
{
//Console.WriteLine (category.Attribute (XName.Get ("name")) .Value + " " + mod_cat);
if (category.Attribute (XName.Get ("name")) .Value.Equals (mod_cat))
{
return index;
}
foreach (XElement cat in category.Elements ("subs"))
{
getIndex (cat, mod_cat, index+l);
}
return 0;

}

// getting all the elements from model reference
private XElement getModel ()

{

string modelpath = GetModelFilePath (fileName) ;
XDocument model = XDocument.Load (modelpath) ;

XElement elements = model.Element ("InvoiceMM") ;

cxXvil

79

80

81

82

83

84

85

86

87

88

89

90

9

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

if (elements == null)

{

Error ("No such elements");

return null;

}

return elements.Element ("invoice");

}

private XElement getCategory ()

{

string modelpath = GetModelFilePath (fileName) ;
XDocument model = XDocument.Load (modelpath);
XElement elements = model.Element ("InvoiceMM") ;
if (elements == null)

{

Error ("No such elements");

return null;

}

return elements.Element ("rootCat");

}

// getting the input model

private string GetModelFilePath (string fileName)

{

FileInfo fi = new FileInfo ("R:\\Lechanceux\\T4\\visual studio 2012\\Projects\\modelTest
\\modelTest\\" + fileName);

string currentFolder = fi.Directory.FullName;

string mod = Path.Combine (currentFolder, fileName);

if (File.Exists (mod))

{

return mod;

}

Error ("File does not exist");

return string.Empty;

P>

Listing III.13: T4 template for the experiment B

CcXviil

