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ABSTRACT 

Pigs exposed to GP5 protein of PRRSV by means of DNA immunization develop specific neutralizing 

and protecting antibodies. Herein, we report on the consequences of codon bias, and on the favorable 

outcome of the systematic replacement of native codons of PRRSV ORF5 gene with codons chosen to 

reflect more closely the codon preference of highly expressed mammalian genes. Therefore, a synthetic 

PRRSV ORF5 gene (synORF5) was constructed in which 134 nucleotide substitutions were made in 

comparison to wild-type gene (wtORF5), such that 59% (119) of wild-type codons were replaced with 

known preferable codons in mammalian cells. In vitro expression in mammalian cells of synORF5 was 

considerably increased comparatively to wtORF5, following infection with tetracycline inducible 

replication-defective human adenoviral vectors (hAdVs). After challenge inoculation, SPF pigs vaccinated 

twice with recombinant hAdV/synORF5 developed earlier and higher antibody titers, including virus 

neutralizing antibodies to GP5 than pigs vaccinated with hAdV/wtORF5. Data obtained from animal 

inoculation studies suggest direct correlation between expression levels of immunogenic structural viral 

proteins and immune response. 
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INTRODUCTION 

Porcine reproductive and respiratory syndrome virus (PRRSV) was first isolated in the early 1990s and 

belongs to the Arteriviridae viral family in the genus Arterivirus, order Nidovirales [1]. The viral genome 

consists of a positive single-stranded RNA molecule of approximately 15 kb in length, composed of nine 

open reading frames [2-4]. The ORFs 5 to 7 encode the three major structural proteins of virions which are 

the envelope glycoprotein GP5 (25-26 kDa), the non-glycosylated membrane protein M (18-19 kDa) and the 

nucleocapsid protein N (14-15 kDa) [5]. These PRRSV structural proteins are closely associated, GP5 and M 

proteins being associated in the form of heterodimers [5]. 

Circulating antibodies in PRRSV-infected pigs responsible for viral neutralization in cell cultures 

are mainly directed against GP5 [6]. Immunization of mice with Escherichia coli-expressed GST-ORF5 

recombinant fusion protein, as well as with purified PRRSV, induced specific anti-GP5 neutralizing 

monoclonal antibodies [7]. Furthermore, genetic immunization of pigs with plasmidic DNA expressing 

the ORF5 gene triggered the production of transient and low titers of neutralizing antibodies to PRRSV 

and conferred protection against development of clinical disease and lung lesions but were not sufficient 

to inhibit virus persistence and shedding in the respiratory tract of PRRSV challenged pigs [8]. On the 

other hand, when the E. coli-expressed GST-ORF5 recombinant fusion protein was used as immunogen 

prior to challenge with pathogenic virus, the disease was more severe, despite the development of high 

titers of non-neutralizing antibodies to GP5 thus suggesting the involvement of a possible antibody-

dependent enhancement phenomenon [8]. These findings suggest also that the amounts of GP5 

synthesized in the infected cells, as well as conformation of the protein which may be influenced by the 

type of oligosaccharide side chains present on the molecule, are apparently crucial to trigger an effective 

humoral immune response to PRRSV. Since a correlation may exist amongst protection, clinical course of 

the disease, and seroneutralizing antibody titers [9,10], the present study was designed to increase the 

efficacy of genetic immunization against antigenic determinants of GP5. 

Live human adenovirus type 5 vector (hAdV) has been shown to be an excellent delivery system for 

vaccine immunogens [11]. Both replication-defective and replication-competent hAdV have been used as 
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efficient recombinant vaccines [12] but for biosafety consideration, a replication-defective hAdV is 

considered to be more suitable for vaccine development. Even if E1 deleted hAdV is unable to replicate in 

vivo, it is able to induce a protective immune response in different species including swine [13]. A 

synthetic ORF5 gene (synORF5) was then generated in which codon usage was optimized for expression 

in mammalian cells as previously reported for HIV gp120 [14]. It was demonstrated that synORF5 gene 

carried by a tetracycline-controlled hAdV is expressed at higher levels than that of the wild-type ORF5 

gene (wtORF5) and triggers production of higher titers of neutralizing antibodies which appeared earlier 

in sera of challenged pigs. This suggests that efficacy of DNA vaccines or recombinant viral vaccines 

may be improved by optimization of translational process of the GP5 protein of PRRSV. 
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MATERIAL AND METHODS 

 

Viruses and cells. 

The Québec cytopathogenic IAF-Klop strain of PRRSV was propagated in MARC-145 cells, as 

previously described [15]. Ad/CMVlacZ [16], a replication-defective E1- and E3-deleted hAdV5, as well as 

generated hAdVs, were propagated in 293 cells (ATCC CRL-1573) to permit replication of replication-

defective hAdVs. AdCMV/tTA permits the constitutive expression of the tetracycline transactivator (tTA) in 

infected cells using the constitutive CMV immediate-early promoter/enhancer. The tTA is essential to allow 

expression in hAdV-infected cells of the transgenes which have been cloned downstream and under the 

control of the tetracycline-regulatable (TR5) promoter. Doxycycline, an analogue of tetracycline, was used at 

a concentration of 1 µg/ml to inhibit the transgene expression in hAdV-infected cells [16]. The 293 Tet-On 

cells (Clontech Inc., Palo Alto, CA) are 293 transformed cells that constitutively express the reverse 

tetracycline transactivator (rtTA). These cells were cultivated in the presence of 1 µg/ml of doxycycline to 

enhance expression of the transgene placed under the control of the TR5 promoter [16]. 

 

Antiserum. 

Rabbit monospecific hyperimmune serum (α5) to E. coli-expressed ORF5 product of the IAF-Klop 

PRRSV reference strain was obtained from previous studies [5]. 

 

Construction of PRRSV synthetic ORF5 gene. 

The codons most frequently used by mammalian cells were used to construct a synthetic ORF5 

(synORF5) gene according to Haas et al., (1996) [17]. The DNA template used to construct synORF5 was 

based on the ORF5 sequence of the IAF-Klop strain of PRRSV (Genbank accession number U64928). 

The synORF5 gene was assembled by single overlap PCR, as described by Holler et al., (1993) [18]. 

 

Generation of recombinant replication-defective hAdVs. 
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The synORF5 and wtORF5 genes were inserted in the Bgl II site of the adenovirus transfer vectors 

pAdTR5/DC/GFPq so they would be under the control of the TR5 promoter [16]. To facilitate screening and 

selection of the recombinant hAdVs, the shuttle vector used in these experiments, contains the green 

fluorescent protein (GFPq) reporter gene downstream the multiple cloning site under the control of an IRES 

[19].The recombinant plasmids were rescued into the genome of Ad/CMVlacZ, a replication-defective E1- 

and E3-deleted hAdVs, by homologous recombination in 293 cells, as described elsewhere [15]. The GP5-

expressing hAdVs (hAdV/wtORF5 and hAdV/synORF5) were subjected to three consecutive rounds of 

plaque purification, then selected viral clones were amplified as previously described [15]. Infectivity titers 

of the hAdVs were determined by calculation of the plaque forming units (PFU/ml) on 293 cell monolayers, 

as previously described [15]. 

 

Indirect Immunofluorescence assay. 

The indirect immunofluorescence (IIF) assay was used to detect the expression of the GP5 in hAdVs 

MARC-145 infected cells. Following an incubation period of 24 and 48 h post-infection, those hAdVs 

infected cells were fixed with a 80% cold acetone solution for 20 min at 4 oC and the IIF was done using a 

1/200 dilution of the α5 serum as previously described [20]. 

 

Western blotting experiments. 

Sucrose gradient purified-PRRSV was prepared in LB-2 lysis buffer [5], denatured by boiling in the 

presence of 5% (V/V) β-mercaptoethanol, subjected to 12% SDS-PAGE and electrotransferred onto 

nitrocellulose membranes as previously described [5,20]. Reactivity of pig sera (dilution 1/50) was tested and 

the α5 serum was used as a positive control. 

 

Metabolic labeling and immunoprecipitation of PRRSV native or recombinant proteins. 

Radiolabeling with [35S]methionine (specific activity of 1,120 Ci/mmole, Amersham Biosciences, 

Baie d’Urfé, Québec, Canada) of viral proteins synthesized in PRRSV-infected MARC-145 cells, as well 
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as recombinant proteins synthesized in 293 Tet-On cells infected with hAdVs, was carried out essentially 

as previously described [15]. Aliquots of 107 cpm of clarified radiolabeled lysates of PRRSV-infected, 

hAdVs-infected or mock-infected cells were incubated with α5 serum and processed as previously 

described [15]. 

 

Animal group description and immunization schedule. 

Nine crossbred F1 (Landrace x Yorkshire) castrated specific pathogen-free (SPF) piglets of 4 to 5 

weeks of age were randomly divided into one control group and two experimental groups (3 

piglets/group). The animals were fed with commercial feed (without tetracycline supplement) and water 

ad libitum. Piglets were given two injections of different mixtures of hAdVs, 32 days apart. Each pig of 

the first group received 100 µl of a suspension containing 109 PFU of hAdV/wtORF5 mixed with 5 X 109 

PFU of AdCMV/tTA. Each pig of the second group received a suspension mix of 100 µl of 109 PFU of 

hAdV/synORF5 and 5 X 109 PFU of AdCMV/tTA. The third group which was used as the control group 

was given a volume of 100 µl of a suspension containing 5 X 10 9 PFU of AdCMV/tTA alone. These 

different viral suspensions were prepared in PBS containing 0,02% of the poloxamer SP1017 [21]. The 

viral suspensions were injected intradermally under the right ear using a 30-gauge needle. The animals 

were challenged intranasally at day 60 with a dose of 105 TCID50 of the IAF-Klop strain of PRRSV in 5 

ml of clarified cell culture supernatant fluid. Pigs were bled at days 0, 10 and 21 post-challenge. 

 

Virus neutralization and serological tests. 

Pig sera were tested for the presence of anti-GP5 specific antibodies by virus neutralization (VN), 

IIF, ELISA and WB tests. The VN tests were performed in triplicates with 100 TCID50 of the virus/well 

as previously described [22]. To monitor humoral immune response following challenging of vaccinated 

pigs, an IIF using PRRSV infected MARC-145 cells as well as a competitive ELISA for detection of 

antibodies to PRRSV using recombinant E. coli-expressed N protein as antigen and a commercial indirect 

ELISA (IDEXX) for detection of anti-PRRSV antibodies were used as previously described [23].
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RESULTS 

 

Construction of a synthetic ORF5 gene based on optimal codon usage. 

The synORF5 sequence contains a total of 134 nt substitutions compared to the wtORF5, resulting 

in an overall 77,8 % (469/603) identity at the nt level, but deduced aa sequences from both wtORF5 and 

synORF5 are 100 % identical (data not shown). Thus, a new gene coding for the major GP5 envelope 

glycoprotein of a North American PRRSV, the IAF-Klop strain, was successfully created, to which 

EMBL/Genbank accession number AY184209 has been assigned. 

 

Generation of recombinant replication-defective adenoviral vectors. 

Our previous results indicate that to be able to obtain replication-defective hAdVs expressing the 

ORF5 gene, the ORF5 expression has to be regulated because the GP5 induced cell death by apoptosis and 

appeared highly toxic per se and subsequently prevent the construction of recombinant hAdV [15]. This is 

why a regulatable promoter has been used for the construction of hAdVs. Notheworthy, coinfection of the 

tTA expressing hAdV (AdCMV/tTA) with hAdVs expressing the ORF5 under the control of the TR5 

promoter (hAdV/wtORF5 or hAdV/synORF5) was essential for efficient expression of the PRRSV 

recombinant protein in MARC-145 cells, as well as in 293 cells. 

 

Expression level of the wtORF5 and synORF5. 

Following infection at a moi of 100 PFU per cell, until 70 h pi, the intensity of the reporter protein 

(GFP) fluorescence was higher in cells infected with rec hAdVs expressing the synORF5 gene than those 

expressing the wtORF5 gene (data not shown). In agreement with the above findings, expression of the 

GP5 was also higher in MARC-145 cells infected with hAdV/synORF5 than those infected with 

hAdV/wtORF5, the intensity of the cytoplasmic fluorescence obtained by IIF using the α5 antibodies 

being optimal at 48 h pi (figure 1). Accordingly, a significant higher cellular destruction was observed in 

MARC-145 cells following infection with hAdV/synORF5 due to the higher expression level of the GP5 
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(data not shown). Since MARC-145 cells are not permissive to replication of deficient (E1 deleted) 

recombinant hAdVs, this level of cellular degeneration was rather attributed to the toxicity of the GP5. 

In order to correlate data obtained by IIF with levels of GP5 synthesis, RIPA experiments were 

conducted with lysates of 293 rtTA cells infected with either hAdV/wtORF5 or hAdV/synORF5. As 

shown in figure 2a and b, immunoprecipitation of cell lysates revealed after 48 h pi an increased 

expression of GP5 in hAdV/synORF5-infected cells in comparison to the level of GP5 synthesized in 

hAdV/wtORF5-infected cells. Densitometry analysis allowed us to determine that the amounts of GP5 

synthesized in hAdV/synORF5-infected 293 rtTA cells or MARC-145 cells corresponded to an increase 

of 6 to 11 times the amount of the same protein synthesized in hAdV/wtORF5-infected cells. In figure 2a, 

where the same amounts of cell lysates were used, hAdV/synORF5-infected 293 rtTA cells synthesized 

11 times more GP5 than hAdV/wtORF5-infected cells. Whereas in figure 2b, the amount of GP5 

synthesized in hAdV/synORF5 was 6 times the amount synthesized in hAdV/wtORF5-infected cells, 

considering that the immunoprecipitation assay was done with 3 times more (in cpm) of hAdV/wtORF5-

infected cell lysates. 

 

Antibody response induced in pigs immunized with hAdV/wtORF5 or hAdV/synORF5. 

Following two intradermal injections of the mixture of AdCMV/tTA and hAdV/wtORF5, or the 

mixture of AdCMV/tTA and hAdV/synORF5, none of the vaccinated piglets has developed significant 

antibody titers as revealed either by ELISA IDEXX (data not shown), IIF (significant titers > 16) or VN 

(significant titers > 8) (table 1). Furthermore, reactivity to the native GP5 viral protein could not be 

demonstrated by Western blotting (WB). Nervertheless, a good antibody immune response, as detected by 

IIF, could be observed against the hAdV vectors following the first immunization (data not shown). 

However, following challenge with a low dose of virulent virus given intranasally 28 days after the 

booster dose, the three pigs vaccinated with hAdV/synORF5 and AdCMV/tTA developed significant 

antibody titers to the native viral GP5 protein 10 days post-challenge, as demonstrated by, IIF, VN 

(table1), WB (figure 3) and indirect ELISA (data not shown). On the other hand, pigs that have been 
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vaccinated either with hAdV/wtORF5 and AdCMV/tTA, or with the AdCMV/tTA vector alone developed 

a significant antibody response 10 days post-challenge by IIF and indirect ELISA, but failed to develop 

significant VN antibody titers at that time (table 1). In the case of the hAdV/wtORF5, a weak reaction to 

the GP5 protein was demonstrated by WB only 21 days post-challenge. Therefore only the pigs that had 

been vaccinated with the hAdV/synORF5 rapidly developed VN antibody titers of 128-256 following 

challenge (figure 3 and table 1). Also, all hAdV vaccinated groups developed viremia (as tested by RT-

PCR) at day 10 post-challenge and one pig in each group still had viremia at day 21 post-challenge (data 

not shown). 
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DISCUSSION 

 

We believe that the increase of gene level expression observed in the case of synORF5 compared to the 

wtORF5 is most likely a purely translational effect, as previously described with HIV-1 [14,17], but still to 

be proven. Overall, the nt sequence of the synORF5 showed 78 % identity with the wtORF5 nt sequence of 

the IAF-Klop strain and as 57 % nt identity with the reference European LV strain in comparison to 63% nt 

identity between the wtORF5 of IAF-Klop strain and LV strain. Nevertheless, deduced aa sequences from 

both wtORF5 and synORF5 genes of the North American IAF-Klop strain were 100% identical, but 

displayed only 52 % identity with that of the European strain. 

The data presented here clearly support that codon usage can play an important role in determining the 

expression efficiency in a mammalian cell context as previously described [24]. Also, in regards of 

improving the immune response, the vaccination of pigs with non-replicative and inducible hAdVs carrying 

synthetic ORF5 gene with optimized codon usage at least resulted in the establishment of an enhanced 

immunological memory to antigenic determinants of GP5, including those involved in the production of 

neutralizing antibodies. Indeed, following challenge, the hAdV/synORF5-vaccinated pigs developed a higher 

specific humoral immune response against GP5, including VN antibodies, than any other vaccinated pigs. 

Also, the humoral immune response was detected much earlier, being as soon as 10 days post-challenge, 

indicating that they underwent an earlier anamnestic immune response. The VN antibodies response detected 

at 10 days post-challenge was the specific consequence of prior immunization with hAdV/synORF5 since 

normally, VN antibodies are detected after only 3 to 4 weeks in SPF pigs experimentally- or naturally-

infected with PRRSV [10,20]. The higher reactivity to GP5, as well as the higher VN activity of pigs sera that 

have been vaccinated either with hAdV/wtORF5 or hAdV/synORF5 is in agreement with previous findings 

indicating that GP5 is the primary structural glycoprotein of PRRSV involved in virus neutralization activity 

[6,7,25]. Even if high titers of VN antibodies appeared at day 10 post-challenge, the viremia could not be 
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prevented (data not shown) as previously observed [10,26,27]. Nevertheless, one report has demonstrated the 

protective effect of neutralizing antibodies and their potential to prevent viremia [9]. 

One explanation for the absence of specific immune response prior to challenge inoculation may be 

the fact that two recombinant hAdVs have to be injected to assure the expression of the transgene. In vivo, 

there is no guaranty that the same cell can be infected by the two hAdVs, thereby reducing the transgene 

expression compared to the experiments conducted with cell cultures. 

A possible explanation for the enhanced immune response in challenged pigs might be the increase in 

CpG motifs in the synthetic gene that was administered [28] which however appears to be less important than 

in the case of the syngp120 previously described for HIV-1 [14]. In the last few years, several groups have 

demonstrated that DNA containing unmethylated CpG motifs is more efficient to trigger B-cell activation 

[29,30] and also contribute to the immunogenicity of gene vaccines [28,31]. 

Additional experiments are needed to determine if DNA immunisation with synORF5 also improves 

the cellular immune response, as described earlier for HIV-1 [14]. Further improvement might also be 

achieved with cytokine or cytokine-plasmid adjuvants [32-34]. Alternatively, it might be useful to increase 

the number of potential epitopes by coinjection of DNA plasmids carrying other PRRSV genes, since it has 

been previously described that epitopes of the GP4 of European strains are also involved in virus 

neutralisation [35], and that the M protein is the one mainly involved in the cellular immune response or 

cellular hypersensibility [36]. Moreover, expression of the two major envelope proteins of EAV as 

heterodimers was found recently necessary for induction of neutralizing antibodies in mice and horses 

immunized with recombinant Venezuelan equine encephalitis virus replicon particles [37,38], but this 

remains to be demonstrated in the case of PRRSV. Nevertheless, our major goal in the very near future is the 

generation of a hAdV carrying both the synORF5 gene of PRRSV under the control of an inducible promotor 

for control of the toxicity and the transactivator gene to eliminate the need of using two hAdVs, as described 

in the present study, and subsequently will improve the transgene expression in vivo. 
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FIGURES LEGENDS 

 

Fig. 1. Expression of the GP5 protein in hAdVs MARC-145 infected cells. MARC-145 cell monolayers 

were co-infected with AdCMV/tTA alone or with hAdV/wtORF5, or with hAdV/synORF5 at a 

moi of 100 PFU for each viruses. For the detection of the GP5 expression, cells were fixed with 

cold acetone and washed twice with PBS, to eliminate spontaneous GFPq fluorescence, after 24 

and 48 h pi. Expression of GP5 of PRRSV was confirmed by specific IIF following incubation in 

the presence of the α5 serum. 

 

Fig. 2. Radioimmunoprecipitation of GP5 protein from lysates of 293 Tet-On cells infected with either 

hAdV/wtORF5 or hAdV/synORF5 at a moi of 1 PFU for each viruses. The immune complexes 

obtained after incubation of different amounts of total cell lysates in cpm (ratio of 1:1:1 (A) or 

3:1:1 (B) as indicated, 1 = 107 cpm) with α5 serum were processed as previously described [15]. 

After 48 h pi, immunoprecipitation of cell lysates revealed an increased expression of GP5 in cell 

cultures that have been infected with hAdV/synORF5 (lane synORF5), in comparison to the 

level of GP5 synthesized in cell cultures infected with hAdV/wtORF5 (lane wtORF5). The major 

structural proteins of the PRRSV (N, M and GP5), with Mr of 14, 19 and 24-26 kDa, could be 

immunoprecipitated from lysates of PRRSV-infected cells (lane PRRSV), with no reactivity 

with lysate of mock-infected cells (mock). 14C-radiolabelled molecular weight size standards (in 

kDa) were migrated in lane ladder. 

 

Fig. 3. Increased anti-GP5 humoral immune response of challenged pigs immunized with synORF5 as 

revealed by Western blot. Four to five -week-old SPF pigs were injected intradermally twice at 

32 day-interval with either AdCMV5/tTA alone (tTA), a 1:5 mixture of hAdV/wtORF5 + 

AdCMV/tTA (wtORF5) or a 1:5 mixture of hAdV/synORF5 + AdCMV/tTA (synORF5), as 

described in the materials and methods section. They were challenged intranasally four weeks 

after the boosted injection with 105 TCID50 of the homologous IAF-Klop strain of PRRSV. 

Western blot strips were prepared using sucrose-gradient purified PRRSV (IAF-Klop strain) as 

antigen. The reactivity profiles of pig sera collected 10 days and 21 days post-challenge are 

illustrated in A and B, respectively. The positive control (+) corresponds to the reactivity of the 

α5 serum with the sucrose gradient purified virus. 
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