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Abstract

We model social choices as acts mapping states of nature to (public) out-
comes. A social choice function (or SCF) assigns an act to every profile of
subjective expected utility preferences over acts. A SCF is strategyproof if no
agent ever has an incentive to misrepresent her beliefs about the states of na-
ture or her valuation of the outcomes; it is ex-post efficient if the act selected
at any given preference profile picks a Pareto-efficient outcome in every state of
nature. We offer a complete characterization of all strategyproof and ex-post
efficient SCFs. The chosen act must pick the most preferred outcome of some
(possibly different) agent in every state of nature. The set of states in which
an agent’s top outcome is selected may vary with the reported belief profile;
it is the union of all the states assigned to her by a collection of bilaterally
dictatorial and bilaterally consensual assignment rules.
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1 Introduction

We address the problem of designing incentive-compatible mechanisms for making
social choices under uncertainty. Following Savage (1954), we model such choices
as acts mapping states of nature to outcomes, and we assume that agents compare
acts according to the subjective expected utility they yield. Society chooses acts
on the basis of the preferences of its members: a social choice function asks agents
to report their preferences over acts, and assigns an act to every preference profile.
Outcomes are public in nature: they are of interest to all agents. Applications range
from a democratic government choosing social policies in an uncertain environment
to a manager making investment decisions on behalf of the shareholders of the firm.
Since individual preferences are (a priori) private information, it is important that a
social choice function be incentive-compatible. This paper focuses on the property of
strategyproofness, which requires that reporting one’s true preferences be a dominant
strategy: no agent should ever have an incentive to misrepresent her beliefs or her
valuation of the outcomes. Because subjective expected utility preferences form a re-
stricted domain,' the Gibbard-Satterthwaite theorem (Gibbard (1973), Satterthwaite
(1975)) does not apply. This raises the problem of describing the set of strategyproof
social choice functions.

To the best of our knowledge, this problem has not been studied. The related
literature may be divided into three strands. The first strand belongs to the field
of statistics. It is concerned with the problem of eliciting an agent’s assessment of
the likelihood of uncertain events. The best known incentive-compatible elicitation
procedures are Savage’s (1971) proper scoring rules; see Gneiting and Raftery (2007)
for a survey of the literature on the topic. Other procedures include de Finetti’s
(1974) promissory notes method and Karni’s (2009) direct revelation mechanism.
These methods do not elicit the agent’s valuation of the outcomes and do not ad-
dress the social choice problem of selecting an act based on the preferences of several
individuals.

The second and most closely related strand studies strategyproofness in the con-
text of risk, that is, when society chooses lotteries rather than acts. The seminal
contribution is due to Gibbard (1977), who analyzes social choice rules asking agents
to report their preferences over sure outcomes only. Hylland (1980), Dutta, Peters
and Sen (2007, 2008), and Nandeibam (2013) allow agents to report full-fledged von
Neumann-Morgenstern preferences over lotteries. A central finding in this literature
is that every strategyproof and ex-post efficient social choice function is a random dic-
tatorship. Ex-post efficiency requires that the chosen lottery attaches zero probability
to every Pareto-dominated sure outcome. A random dictatorship selects each agent’s
most preferred outcome with a probability that does not depend on the reported
preference profile.

'With two states of nature and three outcomes, there are 362 880 linear preference orderings over
the 9 possible acts, of which only 96 are of the expected utility type.



Finally, let us mention that the issue of preference aggregation under uncertainty
has received a good deal of attention: see Hylland and Zeckhauser (1979), Mongin
(1995), Gilboa, Samet and Schmeidler (2004), and Gilboa, Samuelson and Schmeidler
(2014), among others. This literature, which is normative in nature, is not concerned
with the incentive-compatibility issue and is therefore only tangentially related to our
work. It shows that utilitarian aggregation of preferences is problematic; it also ques-
tions the desirability of Pareto efficiency when individual beliefs differ, and proposes
weakened versions of it.

In line with the literature on strategyproofness under risk, we restrict attention to
social choice functions that are ex-post efficient. Under uncertainty, ex-post efficiency
means that the act selected at a given preference profile should recommend a Pareto
efficient outcome in every state of nature. This does not imply that the chosen act is
Pareto efficient.

We offer a complete characterization of all strategyproof and ex-post efficient social
choice functions.

We begin by proving that every such function must be a top selection: at every
preference profile, the chosen act must pick in each state of nature the most preferred
outcome of some agent (possibly picking different agents in different states). A top
selection is fully characterized by its associated assignment rule determining in which
states of nature each agent dictates the outcome.

We then describe which assignment rules do generate strategyproof social choice
functions. Constant assignment rules are one obvious possibility; the social choice
functions they generate are analogous to the random dictatorships identified in the
literature on strategyproof choice of lotteries. But, in contrast to the findings in
that literature, there exist here more flexible rules. It turns out that if the agents’
valuations cannot be used in assigning states, their beliefs can. To some extent, the
mechanism designer can exploit the differences in subjective probabilities to make sure
that each agent selects the outcome in states that she finds relatively more likely.

This can be done in two primitive ways, which turn out to constitute the build-
ing blocks of all ex-post efficient strategyproof social choice functions. A bilaterally
dictatorial assignment rule lets one agent, say 1, choose from an exogenous menu of
events (i.e., subsets of states) the one she considers most likely — leaving the com-
plement event to some other predetermined agent, say 2. The corresponding social
choice function then picks 1’s top outcome in the event she declared most likely, and
2’s top outcome otherwise. Under a bilaterally consensual assignment rule, the state
space is exogenously partitioned into two events. The first is tentatively assigned to,
say, agent 1, and its complement is assigned to, say, 2. However, if agent 1 reports
that the second event is more likely than the first and agent 2 reports the opposite
belief, they exchange events. The social choice function picks an agent’s reported top
outcome in every state that the bilaterally consensual assignment rule has assigned
to her.

Under the basic rules described above, only two agents have a say in the final



decision. But such rules can be combined as follows (if the mechanism designer wants
all agents to affect the decision). Fix an exogenous partition of the state space into
events. For each event belonging to that partition, choose a (possibly different) pair
of agents. Use a bilaterally dictatorial or a bilaterally consensual “sub-rule” to assign
the states belonging to that event on the basis of these two agents’ conditional beliefs
over these states. Compute the overall event assigned to an agent by taking the union
of the events assigned to her by all these assignment sub-rules. Our theorem asserts
that every strategyproof and ex-post efficient social choice function is a top selection
based on a such a union of bilaterally dictatorial or bilaterally consensual assignment
sub-rules.

Two remarks are in order. The first is a point of (re)interpretation. Assignment
rules, which are mappings from profiles of beliefs into partitions of the state space,
are mathematically equivalent to rules for allocating (valuable) indivisible objects to
agents having additively separable preferences over bundles of objects.? It is easy
to see that the assignment rule associated with a strategyproof and ex-post efficient
social choice function must itself be strategyproof: by misrepresenting her beliefs,
an agent cannot obtain an event she considers more likely than the one she gets
by reporting truthfully. When there are only two agents, a social choice function is
strategyproof and ex-post efficient if and only if it is generated by a strategyproof
assignment rule. In that particular case, as a by-product, our theorem solves the
problem of characterizing all strategyproof assignment rules for allocating indivisible
objects between two agents with additively separable preferences: these rules are
precisely the constant, dictatorial, or consensual unions defined in Section 4. This
two-agent result was proved independently by Amanatadis et al. (2017), who do not
study at all the problem of choosing social outcomes under uncertainty, nor consider
n-agent assignment rules.

The second remark is technical. The set of acts is a Cartesian product, and sub-
jective expected utility preferences over acts are additively separable. It is known
that when individual preferences over a product set of social alternatives are separa-
ble and form a suitably rich domain, strategyproof social choice rules are products
of strategyproof “sub-rules” defined on the marginal profiles of preferences over the
components of the social alternatives. Le Breton and Sen (1999) offer general the-
orems of this type; earlier papers proving variants of the result include Border and
Jordan (1983), Barbera, Sonnenschein and Zhou (1991), and Barbera, Gul and Stac-
chetti (1993). This decomposition property does not hold in our setting. The reason
is that subjective expected utility preferences do not form a rich domain. Le Breton
and Sen’s (1999) richness condition requires that for any collection of admissible pref-
erences over the components of the social alternatives there exists a preference over
the social alternatives which induces marginal preferences over components coinciding

2Reinterpret states of nature as objects and observe that beliefs define additively separable “pref-
erences” over subsets of states. Pdpai (2007) studies various subclasses of n-agent strategyproof
allocation rules for arbitrary monotonic preferences.



with the ones in that collection. Since in our setting all state-contingent preferences
over outcomes induced by a subjective expected utility preference over acts are iden-
tical, Le Breton and Sen’s condition is violated. It is this lack of richness that makes
it possible to define non-decomposable rules where beliefs affect the states where an
agent’s top outcome is selected.

2 The problem

There is a finite set of agents N = {1,...,n} with n > 2, a finite set of states of
nature Q with |2 > 2, and a finite set of outcomes X with |X| > 3. Outcomes
should be interpreted as public alternatives (such as policies or allocations) that are
of interest to all agents. Subsets of ) are called events. An act is a function f € X*.
Agent i’s preference ordering »=; over acts is assumed to be of the subjective expected
utility type: there exist a valuation function v; : X — R and a subjective probability
measure p; on the set of events such that for all f,g € X%,

frige ZPi(W)Uz'(f(W)) 2 Zpi(w>vi(g(w))‘

weN weN

Note that we write w instead of {w} and i instead of {i}; we will often omit curly
brackets to alleviate notation. Of course, since the set of acts is finite, neither the
valuation function v; nor the subjective probability measure p; representing the pref-
erence ordering »=; are determined uniquely.

Throughout the paper, we assume that >=; is a linear ordering. This is a rea-
sonable assumption given that the set of acts is finite. It implies that for any
(v, pi) representing »=;, (i) v; is injective and (ii) p; is injective: for all E, E' C
pi(E) = pi(E') = E = E'. Because p;(0) = 0, it follows from (ii) that p;(w) > 0
for all w € Q. We further assume, without loss of generality, that v; is normalized:
miny v; = 0 < maxx v; = 1. We denote by V the set of normalized injective valuation
functions v; and by P the set of (necessarily positive) injective measures p;, which
we call beliefs. Formally, the domain of preferences is the set of pairs (v;,p;) that
generate a linear ordering of the set of acts, that is to say,

D= {(vi,pi) EVXP:Y pwulf(w) # Y pilw)uilg(w)),Vf,g € X% s.t. f # g} :

weN weN

A social choice function (or SCF) is a function ¢ : DV — X We denote the
ordered list ((vy,p1), ., (Un;Pn)) € DY by (v, p). In principle, our formulation allows
a SCF ¢ to choose different acts for profiles (v, p) and (v', p’) that represent the same
profile of preferences (=1, ..., %=,). Of course, the requirement of strategyproofness
defined below will rule this out. With a slight abuse of terminology, we therefore call
any (v,p) € DN a preference profile. We call v = (vy, ...,v,) € VYV a valuation profile
and p = (p1,...,pn) € PN a belief profile. For every preference profile (v, p) € DY and



every w € ), we denote by ¢(v, p;w) the outcome chosen by the act ¢(v,p) in state
w.

We emphasize that the chosen act is allowed to change when an agent’s valuation
function is replaced with another that generates the same ranking of the outcomes
but a different ordering of the acts: no information about individual preferences is a
priori discarded.

As usual, v_; € VMV and p_; € PNV denote the valuation and belief sub-profiles
obtained by deleting v; from v and p; from p, respectively. A SCF ¢ is strategyproof
if, for all i € N, all (v,p) € DV, and all (v},p}) € D,

Y piwile(v,piw)) = Y piw)uilp (vl v-), (s p-i); w)).

weN weN

This means that distorting one’s preferences —by misrepresenting one’s valuation func-
tion or one’s beliefs— is never profitable.

A SCF ¢ is ex-post efficient if for all (v,p) € DY and all w € Q, thereis no z € X
such that v;(x) > v;(¢(v,p;w)) for all i € N. In words, ex-post efficiency says that
a social outcome that all agents value less than some other outcome x should never
be picked. This requirement does not imply that the acts chosen by ¢ are (ex-ante
Pareto) efficient at all preference profiles.

The purpose of this paper is to describe the class of all strategyproof and ex-post
efficient SCF's.

3 A preliminary result: the Top Selection lemma

An assignment is an ordered list A = (Ay, ..., A,,) of subsets of © such that A;NA; =
whenever ¢ # j, and U;e yA; = ). We refer to the condition that A,, ..., A, partition 2
as feasibility. Let S denote the set of assignments. An assignment rule is a function
s : PN — & assigning to each belief profile p an assignment s(p) = (s1(p), ..., s.(p))-
We refer to s;(p), the event assigned to agent i at p, as i’s share. Note that an agent’s
share may be empty.

For all v; € V, let 7(v;) denote the unique maximizer (or top) of v; in X.

Top Selection Lemma. If a SCF ¢ is strategyproof and ex-post efficient, then there
exists a unique assignment rule s : PN — S such that, for all (v,p) € DV, w € Q,
and ¢ € N, we have

w € si(p) = ¢(v, pw) = 7(v3). (1)
We say that the assignment rule s in (1) is associated with (or generates) ¢; and
we call ¢ a top selection.

The Top Selection lemma really contains two statements. The first is that every
strategyproof and ex-post efficient SCF can only choose acts that pick in every state of
nature some agent’s top outcome. This forbids choosing acts that select “compromise



outcomes”. As an illustration, suppose that N = {1,2}, X = {a,b,c} and consider
a preference profile (v,p) such that vi(a) = va(c) = 1, vi(b) = vo(b) = .99, and
vi(c) = ve(a) = 0. The Top Selection lemma tells us that the natural compromise
outcome b cannot be picked in any state of nature at this profile. The only admissible
form of compromise (at a fixed belief profile p) consists in allowing different agents
to choose the final outcome in different states of nature. An obvious corollary is that
no strategyproof SCF is (ex-ante Pareto) efficient.

The second statement contained in the Top Selection lemma is that the set of states
in which an agent’s top outcome is selected depends only upon the profile of beliefs:
the valuation profile v is not an argument of the function s. An immediate corollary
is that a strategyproof and ex-post efficient SCF is tops-only:3 if (v,p), (v/,p) € DV
and 7(v;) = 7(v}) for all i € N, then ¢(v,p) = (v, p). The chosen act depends only
upon the belief profile and the tops of the valuation functions.

The proof of the Top Selection lemma is in Appendix A but it may be worth
sketching the main lines of the argument here. We proceed by induction. We first
show that every two-agent strategyproof and ex-post efficient SCF must be a tops-
only top selection (Lemma 4). We then focus on the case n > 3 and, making use
of the induction hypothesis, we show in Lemma 5 that a strategyproof and ex-post
efficient SCF must select top outcomes whenever two agents (or more) report the
same top. Finally, we show in Lemma 6 that under our two axioms (a) the chosen
act must select only top outcomes (for all preference profiles and in every state);
(b) the tops-only property holds: the decision must remain the same if some agents
change their valuations of any non-top outcomes. It thus follows from these results
that, at each preference profile (v, p), every strategyproof and ex-post efficient SCF
must partition the state space 2 by assigning some event s;(v,p) to each agent i.
We conclude the proof by arguing that, in fact, each agent’s share of the state space
does not vary with the valuation profile v. Three consequences of strategyproofness
(stated in Lemmas 1-3) are pervasive in the proof sketched above.

4 Statement of the theorem

The Top Selection lemma is not a characterization result yet. The SCF generated by
an assignment rule is ex-post efficient but need not be strategyproof. Our task is now
to determine which assignment rules do indeed generate a strategyproof SCF.

In order to state our main theorem, we need to extend some of our notation to
subsets of events. Fix () # Q' C Q. A belief on Q' is an injective probability measure p;
defined on 2% and the set of beliefs on € is denoted P(€'); note that P(Q2) = P. An
assignment of ' is an ordered list of non-intersecting subsets of €2’ that cover €' and
S(€2) denotes the set of assignments of '; note that S(Q2) = S. An Q'-assignment

3The cumbersome term “valuations tops-only” would be more precise: the SCFs identified in
the Top Selection lemma may certainly use more information than just the tops of the preference
orderings =1, ..., >=, in the set of acts.



rule is a function s : P(Q)N — S(Q).

If p; € P, we denote by p; | ' the conditional belief generated by p; on P (),
namely, (p; | V)(A) = p;i(A)/p;(Y) for all A C . If p € PN, we write p | Q' = (p1 |
o | ).

Three types of assignment rules will be central in our analysis: the constant,
bilaterally dictatorial, and bilaterally consensual rules. An €Y-assignment rule s is
constant if there exists an assignment A of ' such that s(p) = A for all p € P(Q)V.

A proper covering of ' is a family A of subsets of €’ such that A\ B and B\ A are
nonempty for all distinct A, B € A, UgcaA = ', and Nyecq A = 0. For any belief p;
on ', we denote by argmax p; the event maximizing p; in the family A. If i, 7 € N are

two distinct agents, a rule s is called (i, j)-dictatorial if there exists a proper covering
A of € such that s;(p) = argmaxp; and s;(p) = '\ argmaxp; for all p € P(V)N.
A A

Note that, by feasibility, s.(p) = 0 for all k # ¢, j and all p. Note also that, because A
is a proper covering of €', an (i, j)-dictatorial rule s is not constant; moreover, there
is no ordered pair (i', j') # (i, j) for which s is (¢, j’)-dictatorial. We call s bilaterally
dictatorial if it is (4, j)-dictatorial for some (unique) ordered pair of agents (i, 7).

Finally, we say that s is {4, j}-consensual if there exists a nonempty set A C
(where C denotes strict inclusion) such that

!/ 3 / /
(5:(0). 5:()) = { (@NAA) (@A) > i 4) and py(4) > (@) 4),
(A, Y\ A) otherwise.
Again, feasibility implies sx(p) = 0 for all k& # i,j and all p. We call s bilaterally
consensual if it is {4, j}-consensual for some (unique) unordered pair of agents {i,j} .

Bilaterally dictatorial and bilaterally consensual rules exploit beliefs in different
ways. The former allow the mechanism designer to extract detailed information about
the beliefs of a single agent; their range may be large. The latter have a binary range
but allow the designer to exploit differences in beliefs between agents.

An assignment rule s is a union of constant, bilaterally dictatorial, or bilaterally
consensual rules (or a C-BD-BC' union), if there is a partition {Q'}]_, of Q, and,
for each t = 1,...,T, a constant, bilaterally dictatorial, or bilaterally consensual Q¢-
assignment rule s* such that

si(p) = Uthlsi(p ‘ Qt)

for all p € PV and all i € N. Merging cells of the partition if necessary, we may assume
without loss of generality that there is at most one ¢ for which s’ is constant and, for
each ordered pair of agents (4, j), at most one ¢ for which s* is (¢, j)-dictatorial. This
is the canonical representation of a C-BD-BC union.

Theorem. A SCF ¢ is strategyproof and ex-post efficient if and only if it is a top
selection whose associated assignment rule s is a C-BD-BC union.



Note that our assumption |X| > 3 is needed for this result. When there are two
outcomes and an odd number of agents, majority voting between the two constant
acts defines a strategyproof and ex-post efficient SCF.

Remark also that a dictatorial assignment rule —which allows a single agent to
select the assignment that maximizes the subjective probability of her own share
(over the range of the rule)— does not generate a strategyproof SCF if it is not the
union of bilaterally dictatorial sub-rules. As an example, suppose that N = {1,2, 3},
Q = {wi,ws, w3}, X is arbitrary, and define the assignment rule s : PY — S by

({w1}, {wa}, {ws}) if argmaxgp; = w,
s(p1,p2,p3) = ¢ ({wa}, {ws}, {wi}) if argmaxg p; = wo,
(fws}, {wr}, {wn}) if argmaxg pr = ws.
It is easy to see that s is not a union of bilaterally dictatorial sub-rules. To see why
the top selection SCF ¢ generated by s is not strategyproof, consider a preference
profile (v,p) such that pi(w;) = .52, p1(w2) = .12, p1(ws) = .36, vi(7(v2)) = 1,
and v (7(vs)) = 0. If all agents report their preferences truthfully, the selected act
o(v,p) = (e(v,p;w1), p(v, p;wa), p(v, p;w3)) = (T(v1), 7(ve), T(v3)) yields to agent 1
an expected utility of .64. If agent 1 reports (vq, p}) with argmax, pj = ws, the selected
act (v, (P, p2,p3)) = (T(v2),7(v3),7(v1)) yields an expected utility of .88, which is
higher. A similar example can be constructed to see the importance of bilaterality
for consensual assignment rules.

5 Proof of the theorem: local bilaterality

It is easy to check that every SCF generated by a C-BD-BC union is strategyproof and
ex-post efficient. In order to prove the converse statement, given the Top Selection
lemma, it suffices to prove that the assignment rule s associated with a strategyproof
and ex-post efficient SCF ¢ is a C-BC-CD union. In the current section, we show that
s satisfies a strong incentive-compatibility property ~dubbed super-strategyproofness—
and we use this property to characterize the local behavior of s. It turns out that this
behavior is bilateral: an elementary change in an agent’s belief may only affect her
own share and that of one other agent.

Call an assignment rule s : PN — S strategyproof if p;(si(p)) > pi(si(pi, p_s)) for
alli € N, p € PV, and p, € P: no agent can increase the likelihood of the event
assigned to her by misrepresenting her belief.

For any assignment A = (A;,...,A,) € S and any M C N, write Ay = UsenrA;.
Call s super-strategyproof if p;(sar(p)) > pi(sm(pi, p—i)) for all ¢, M such that i €
M C N,all p e PV, and all p, € P: by misrepresenting her belief, an agent can never
increase the likelihood of the event assigned to any group to which she belongs.

For any w € Q and p € PV, it will be convenient to let a,(p) denote the agent to
whom s assigns w at the belief profile p, that is,

a,(p) =1 < w € si(p). (2)

9



Super-strategyproofness Lemma. The assignment rule s associated with a strat-
egyproof and ex-post efficient SCF ¢ is super-strateqyproof.

Proof. Let ¢ be a strategyproof and ex-post efficient SCF and let s be the assignment
rule associated with it through (1). Suppose, by way of contradiction, that there exist
i, M such that i € M C N, p € PV, and p, € P such that p;(sp(p}, p_i)) > pi(sm(p)).
Choose v € VN such that (v,p), (v, (p},p—;)) € DV and v;(7(v;)) = 1 for all j € M
and v;(7(v;)) = 0 for all j € N\ M. Then,

sz z pmp )aw» = sz Uz Taw ))

wes wes)

pz‘ (w)

M

Il
<
—
S
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weaw(p)eM

(
sz( Uz 7-aw p))
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= sz Upa ))7

weN

contradicting the assumption that ¢ is strategyproof. [J

Call an assignment rule s non-bossy if, for all i € N, p € PN and p; € P,
si(p) = si(pl,p—i) = s(p) = s(pl,p—;). Non-bossiness says that no agent can affect
another agent’s share without affecting her own.

Non-Bossiness Corollary. The assignment rule s associated with a strategyproof
and ez-post efficient SCF ¢ is non-bossy.

Proof. Given the super-strategyproofness lemma, it suffices to show that every
super-strategyproof assignment rule s is non-bossy. Let s be super-strategyproof and
suppose, by way of contradiction, that there exist i,j € N, p € PN and p, € P
such that s;(p) = s;(p}, p—i) and s;(p) # s;(p}, p—i). By super-strategyproofness ap-
plied to M = {i,j} and because p; is injective, p;(s;;(p)) > pi(si;(P;, p—:)), hence
pi(sj(p)) > pi(s;(p}, p—i)). Since such a strict inequality holds for every j such that
sj(p) # s;(pi, p—i), we have 1 = 3"\ pi(s;(p)) > D2 en pils;(p}, p-i)) = 1, a contra-
diction. [

We are now ready to characterize the local behavior of a super-strategyproof
assignment rule. Define H = {{A,B}:0# A,BC Qand ANB =0}, the set of
pairs of disjoint nonempty events. Two beliefs p;,¢; € P will be called {A, B}-
adjacent if

(pi(A) — pi(B))(¢i(A) — @i(B)) < 0and
(pi(C) = pi(D)(@:(C) — @i(D)) > 0for {C,D} € H\{{A,B}}.

10



We say that p;, q; are adjacent if they are {A, B}-adjacent for some {A, B} € H.

Adjacency is an ordinal property. Every belief p; € P generates a likelihood
ordering R(p;) over events defined by AR(p;)B < p;(A) > pi(B). Call two beliefs
pi, @i ordinally equivalent if R(p;) = R(q;). If p;, q; are adjacent and p) is ordinally
equivalent to p;, then p., ¢; are adjacent. Two beliefs are adjacent if the likelihood
orderings they generate differ on a single pair of disjoint nonempty events.

Example 1. Let Q = {1,2,3} and consider the simplex A depicted in Figure 1.
Every point in A implicitly defines a measure p; € P, where P denotes the closure
of P in [0, 1]29 . Every line segment corresponds to (the intersection with A of) the
hyperplane p;(A) = p;(B) generated by some pair of disjoint events {A, B} € H. Each
connected component of the complement of (the union of ) these line segments defines
a region of ordinally equivalent beliefs: the shaded area is an example. Two beliefs
are adjacent if they lie on the same side of all but one hyperplane. For instance, the
beliefs p},p?, which lie on the same side of all hyperplanes except p;({2}) = p;({3}),
are {{2},{3}}-adjacent. These beliefs generate the likelihood relations

R(p;) = {1,2,3},{1,2},{1,3},{2,3}, {1}, {2}, {3},
R(p?) = {17273}’{173}7{1’2}7{273}7{1}7{3}7{2}7

where events are listed in decreasing order of likelihood. Note that R(p}) and R(p})
disagree not only on {2} ,{3} but, as a consequence, also on {1,2},{1,3}: this does
not contradict the definition of adjacency because {1,2},{1,3} intersect.

Local Bilaterality Lemma. Let s be a super-strategyproof assignment rule. Let
{A,B} € H and let i € N, p € PN, p. € P be such that p;,p; are {A, B}-adjacent
and p;(A) > pi(B). Then, either (i) s(p) = s(pl,p_;) or (ii) there exists j € N \ i
such that

0-i) = A = si(pi,p-i) \ si(p),
si(p) = B = 5;(p)\ 8P} p-i),
sk(p) = si(p;,p-i) for all k € N\ {i,j}.

This is a complete description of the local behavior of s. By reporting a belief
adjacent to her own, an agent 7 can only change the event that is assigned to her
and one other agent j. Moreover, if the assignment is indeed modified, ¢ and j
must precisely exchange the disjoint events that have been switched in i’s likelihood
ordering.

Proof. Fix a super-strategyproof (hence also non-bossy) assignment rule s. Let
{A,B} € H and let i € N, p € PN, p} € P be such that p;, p; are {A, B}-adjacent
and p;(A) > p;(B).

Step 1. We show that for all M C N such that i € M, either (i) sy (p) = sa(p}, p—i)
or (ii) sar(p) \ sar(pf, p—i) = A and sy (pj, p-i) \ su(p) = B.
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To see this, suppose (i) fails. Define Ay = sy(p) \ sm(p),p—i) and By =
sv(Pip—i) \ sm(p). These sets are disjoint and super-strategyproofness of s implies
that both are nonempty; hence, they belong to H. Suppose, by way of contradiction,
that Ay # A or By # B. Since p;, p) are { A, B}-adjacent, their associated likelihood
orderings must agree on the ranking of Ay, By : either (a) p;(Ayr) > pi(Byr) and
Pi(Anr) > pi(Bar), or (b) pi(Anr) < pi(Bar) and pl(An) < pi(Bar). If (a) holds, then
Pi(sp(p)) > pi(sa(pl, p—i)) whereas if (b) holds, then p;(sa(ph,p—i)) > pi(sm(p)).
Each of these two inequalities contradicts super-strategyproofness.

Step 2. Applying Step 1 with M = {i}, either (i) s;(p) = s;(p}, p—:) or (ii) s;(p) \
si(ph, p—i) = A and si(pj, p—i) \ si(p) = B.

If (i) holds, non-bossiness of s implies s(p) = s(p}, p—;), and we are done.
If (ii) holds, let 7 € N \ i. Applying Step 1 with M = {4, j} = ij, we have either

(a) sij(p) = sij(pis p—i) or (b) sij(p) \ si5(pi, p—i) = A and s;5(pj, p—i) \ s;5(p) = B. If
(a) holds, then (ii) implies

sj(pyp-i) \ 85(p) = A and s;(p) \ s;(p;,p—i) = B (3)

whereas if (b) holds, (ii) implies

5i(p) = s(ph, p—i)- (4)
By feasibility, (3) can hold for at most one agent 7 € N \ i. Because of (ii), it

must hold for exactly one such agent. Since (4) holds for every other agent j € N \ 1,
the proof is complete. [

6 Proof of the theorem: the bilateral consensus
and bilateral dictatorship lemmas

The rest of the proof of the theorem consists in exploiting the Local Bilaterality
lemma to show that a super-strategyproof assignment rule is a C-BD-BC union. Fix
a super-strategyproof assignment rule s : PV — S. Let Qq, Q1, Qs denote the sets of
states whose assignment is either constant, varies with the belief of a single agent, or
with the beliefs of at least two agents. That is, using the definition of a,, in (2),

(i) we Q< a, is constant on PV,

(i) w € Q) < [there exist i € N, p € PV, and p] € P such that a,(p) # au(p}, p—s)]
and [aw(.,p,j) is constant on P for all j # i and p_; € PN\j],

(iii) w € Qy & there exist distinct agents i,5 € N, p,q € PV, and p, q; € P such
that a,(p) # au(pi, p-i) and au(q) # aw(qj, 4-;).

By definition, {2, 2,2} is a partition of Q. In particular, the definition in (iii)

allows the assignment of states in €25 to vary with the beliefs of more than two agents.

Moreover, the set of agents to whom a state in {2, may potentially be assigned is a

priori unrestricted.
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We proceed by considering the states in €25 first. We show that, in fact, these
states can only be assigned to two distinct agents, and the assignment must be based
on the beliefs of these two agents only. More specifically, states in {25 must be assigned
through bilateral consensus:

Bilateral Consensus Lemma. For ecvery w € )y there exists a unique event
EY C Qs containing w and there exists a bilaterally consensual E“-assignment rule
s* such that

si(p) N EY = s7(p | E)

for all p€ PN and i € N.

The long proof of this lemma is relegated to Appendices B and C, but here is a
quick overview. The proof is “by contagion”.

Appendix B derives a “semi-global” characterization. For any given state w € 2o,
we fix a profile 7 of beliefs over 2\ w, and we consider the sub-domain P () of all
belief profiles on {2 generating the same profile of likelihood orderings as m on the
subsets of Q \ w. Using the Local Bilaterality lemma, we show that there exist two
disjoint events A, B, whose union contains w, such that the restriction of s to AU B
coincides with a bilaterally consensual (A U B)-assignment rule on the sub-domain
PN (7).

In Appendix C, we consider every belief profile (7}, 7_;) over Q \ w such that «/ is
adjacent to m; for some agent ¢ and, in a series of “contagion lemmas”, we describe
how the behavior of the restriction of s to AU B on the sub-domain PV (7}, 7_;) is
linked to the behavior of its restriction to AU B on P¥ (7). Using the connectedness
of the set of all beliefs on Q \ w, we conclude that the restriction of s to AU B
must be bilaterally consensual on the whole domain P?. The claim follows by setting
EY=AUB.

The Bilateral Consensus lemma fully determines the behavior of s on {25. For
any two states w,w’ € {2y, since there exist a bilaterally consensual E¥-rule s and a
bilaterally consensual E'-rule s such that s;(p) NE* = s¥(p | E¥) and s;(p)NE¥" =
s<'(p | E¥) for all i € N, we must have either (i) E¥ = E* and s¥ = s, or (ii)
E“ N E¥ = (. This delivers at once the following corollary:

Bilateral Consensus Corollary. There exists a partition {Qt}tTil of Qg and, for

each t =1, ..., Ty, a bilaterally consensual Q' -assignment rule s* such that
si(p) N Q= U2 si(p | )

for all pe PN and i € N.

Next, we turn next to the assignment of the states in €2;. Let €21; be the subset of
those states in {2; whose assignment varies with the beliefs of agent 1. We show that
these states are assigned by bilateral dictatorship of agent 1.

Bilateral Dictatorship Lemma. There exist a set Ny € N \ 1, a partition
{Qil}jeNl of 1, and for each j € Ny a (1,j)-dictatorial §,-assignment rule s’
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such that . '
si(p) N Q1 = Ujen, s (p | ) (5)
for all pe PN and i € N.

The proof is in Appendix D, but let us outline it here. Consider the family of
all subsets of );; that are assigned to agent 1 at some belief profile. We begin by
showing that s1(p) N €41 maximizes p; over that family whenever p; is a so-called
)11-dominant belief —one in which only the probability differences between events in
11 are large. We then use the Local Bilaterality lemma to extend this observation to
all belief profiles p. The next and crucial step consists in proving that every state in
11 can only be allocated to a single agent other than 1. The set {2;; can therefore be
partitioned into a collection of subsets {Q]H} such that every state in 7, is allocated
to either 1 or j, and super-strategyproofness can be used to show that s;(p) N 1,
maximizes p; over the family of all subsets of Q{l that are assigned to agent 1 at some
belief profile. The argument is completed by appealing to non-bossiness.

We have stated the Bilateral Dictatorship lemma for agent 1, but a corresponding
lemma obviously holds for every agent. It now follows from these Bilateral Dictator-
ship lemmas, the Bilateral Consensus corollary, and the definition of {2y, that s is a
C-BD-BC union. Together with the Top Selection lemma, this completes the proof
of the Theorem.

7 Concluding comments

We have shown that strategyproof and ex-post efficient social choice functions are top
selections generated by assignment rules that are unions of constant, bilaterally dicta-
torial, or bilaterally consensual sub-rules. Thus, under uncertainty, strategyproofness
and ex-post efficiency are compatible with a form of consensuality that cannot be
achieved under risk. This generates efficiency gains: any random dictatorship (that
is, any SCF generated by a constant assignment rule) is Pareto-dominated by some
SCF generated by a consensual rule.
We conclude by mentioning some open problems.

(1) How should we choose between the social choice functions identified in our
theorem? Assuming a given (for instance uniform) distribution over the set of all
preference profiles, one could search for social choice functions that maximize some
measure of expected welfare —the expected sum of normalized utilities for instance. Al-
ternatively, one could proceed axiomatically and impose properties that complement
strategyproofness and ex-post efficiency. It is a corollary of our theorem, however,
that no strategyproof SCF is (ex-ante Pareto) efficient. Anonymity and neutrality
are also impossible. On the other hand, it also follows from our theorem that all
strategyproof and ex-post efficient SCFs are group-strategyproof: the members of a
group cannot all benefit from jointly misrepresenting their preferences. It would be
interesting to explore what lower bounds can be guaranteed on each agent’s welfare.
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(2) Strategyproof SCFs that are not ex-post efficient deserve to be studied. If
there is an odd number of agents, majority voting between two pre-specified acts is
clearly strategyproof. But more flexible strategyproof SCFs are possible. Partition
the state space into a collection of events. For each event specify two “sub-acts”,
that is, two mappings from that event into the set of outcomes, and apply majority
voting to choose between these two sub-acts. Let the chosen act be the concatenation
of all the chosen sub-acts. The additive separability of subjective expected utility
preferences guarantees that this SCF is strategyproof; it is also anonymous. Non-
anonymous variants of such SCFs can be defined by using a committee rule (rather
than majority voting) to decide between the two pre-specified sub-acts on each event.

(3) We conducted our analysis under the assumption that all acts are feasible.
While this unconstrained social choice framework is a natural benchmark, applica-
tions will typically require imposing constraints on the set of feasible acts. The class
of strategyproof and ex-post efficient social choice functions will generally depend in
a subtle way upon these feasibility constraints, but our results certainly provide a
good starting point for the study of any such problem. A similar generalization to
constrained sets of alternatives was successfully achieved in the literature on strat-
egyproofness on rich domains of additively separable preferences originally defined
over product sets: see in particular Barbera, Mass6 and Neme (2005) and Reffgen
and Svensson (2012).

(4) In many contexts, it will also be natural to impose restrictions on preferences.
An interesting case is that of shareholders of a firm choosing acts with monetary out-
comes —the profits to be shared. Here all agents have the same monotonic preference
ordering over outcomes but not necessarily the same valuation functions or the same
beliefs. While the unconstrained problem is uninteresting —the constant act choosing
the highest profit level in all states is dominant—, the problem of choosing acts under
constraints is entirely nontrivial.
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8 Appendix A: proof of the Top Selection lemma

We first define two consequences of strategyproofness. Given a pair (v, p;), let

EPi(f) = > pi(w)vi(f(w)) denote agent i’s expected utility associated with the act
wes

f. We say that a SCF ¢ : DY — X% is misvaluation-proof if no agent ever benefits
from distorting her valuation function (while reporting her actual belief), that is, for
alli € N, (v,p) € DY and v} € V!,

Ef: ((v,p)) = B ($((vj; v-i),p)) -

Likewise ¢ : DY — X will be called misbelief-proof if: for all i € N, (v,p) € DV

and p; € P,

EY (v, p)) = BV (8(v, (P p-i)))
This says that no agent should ever benefit from distorting her belief p; (while truth-
fully reporting v;). Obviously, just as misvaluation-proofness, misbelief-proofness is
implied by strategyproofness.

Let ¢ : DY — X% be a strategyproof and ex-post efficient SCF. Unless explicitly
specified otherwise, we assume in what follows that p € P¥ is fixed (but arbitrary),
and we write p(v) and E,, instead of the respective (v, p) and EF:. Given the fixed
p, the set of i’s admissible valuation functions is V,, := {v € V | (v;,p;) € D}; and
(with a slight abuse of notation) we write V, :=V,, x ... xV, . For any x € X and
feX? welet f¢:={we Q| f(w) =x}. Likewise, we will often write (v, p).

The preliminary result below says that, if the chosen acts at two given profiles
(v,v") disagree only in states where either a; or ay is selected, then they must coincide
as long as every agent’s ordering of a; and ay does not change from v to v'.

Lemma 1. Invariance for binary-differentiated acts
Ifa;,a9 € X and v,v' € V, are such that (vi(ay) — vi(az)) (vi(ar) — vi(az)) > 0 for all
i € N, then [p(v) = ¢*(v), Vo # a1, as] = [p(v) = (V)] .

Proof. The result follows from the fact that an agent’s preferences over binary-
differentiated acts f, f’ (that is, acts that may only differ in states where a; or as
is chosen) remain unchanged as long as her ordering of these two outcomes is the
same. 0

The Monotonicity lemma below states that, if the chosen act changes as agent i’s
reported valuation of the outcome a increases (all else equal), then the probability
assigned to this outcome a in the chosen act must increase as well.

Lemma 2. Monotonicity
Ifae X,ie N, v,weV, are such that v_; = w_;, v;(x) = w;(x) for all x # a, and
1> wvi(a) > wi(a) > 0, then [p(v) # p(w)] = [p; (¥*(v)) > pi (¢*(w))].
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Proof. Fix i,a,v,w as in the statement of Lemma 2 and suppose that p(v) = f #
vi(z), ifx#a and

g = ¢(w). Next, for any z € X and z € [0,1), let v7(z) = { s e

define the following function of z:
Agg(2) =Y pilw) [V (f (@) = v (g(w))].
weN
Factoring out z and reshuffling, one can rewrite A (z) as
Agy(2) = [pilF*) = pilg")] 2+ D pi(w)ui(f (@) = Y pilw)v

wif wég®
B

2 4

Thus, Ayg(z) = -z + [ is a linear function of z € [0,1).
i if 2 = w; . :
Moreover, observe that v; = Wi 1 @ =wia) . Therefore, misvaluation-
vy, if z =v;(a)
proofness implies: (i) Ayg(w;(a)) < 0 and (i) Asy(vi(a)) > 0. Given that Ay, is
linear and w;(a) < v;(a), we necessarily have that the slope is positive, that is to say,

a = p; (p*(v)) — pi (¥*(w)) > 0. O

The next lemma asserts the following: ceteris paribus, as an agent i’s reported
valuation of her second-best outcome ay gets infinitely close to 1 (the valuation of her
top ay), there necessarily comes a point where (i) the chosen act becomes constant
and (ii) for the two possible orders of i’s two top outcomes a; and ag, the respective
outcomes chosen must be the same in each state where a; and ay are not selected.

Lemma 3. Invariance at the bottom (with close tops)

Consider ay,as € X, with a; # ag, and fir i € N, v € V, such that v;(a;) = 1. Let
0(a1) =1 >0"(az) =1 —1/m > 0"(z) = v;(z),

oot eV, be such that{ () = 1> 0(ar) = 1 — 1jm > 0 (z) = vi(x), for

any m > mgt > 1 and any x ¢ {a1,as}. Then the following statements hold:

Z

(i) 3f,fe X% andIm € N such that: m > m = |p(0™,v_;) = f and (@™, v_;) = f|.

(it) For allz € X \ {ay,as}, we have f* = f°.

7m
7 UZ

Proof. Let a,b € X, 1 € N, v € V,, ¥
statement of Lemma 3.

€ V,, satisfy the conditions of the

i

(i) Suppose by contradiction that (i) is false. Then one of the two sequences

fm = (07 v-i), fm = @(0™, v_;) is not stationary.* Assuming without loss of
generality that f™ is not stationary, there exists a subsequence of fm (say, fmk)

such that fo, # fim, .., for all & € IN (where my increases with k). Given that

4We say that a sequence (¢, )men is stationary if there exists m € IN s.t.: m > M = @y = Gma1-
In words, a stationary sequence is one that becomes constant after a finite number of steps.
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7
comes from Lemma 2 that p;(fm,,,) > pi(fm,). Hence, for any k > 1, we may write:
a2

(1) <m () <o (i) < (i) <n (i) <

Since p; is injective, we have thus found an infinite sequence ( fmk)kzo of pairwise
distinct acts. But this is impossible because the set of acts, X%, is finite.

0, " (ag) = 1 — 1/myyq > 1 — 1/my = 9" (az) and & (z) = 0" (z) Vo # b, it
(fm

(ii) By way of contradiction, let us assume that f= # f* for some z € X\ {a1, as}.
We define two new acts g and g as follows:

(W) = fw),Yw & for U fo;
(W) = ay,Yw € fu U fo. (6)

Note that g # g because there exists z # ay, as such that fz #£ f*. Thus, since the
pair (v;, p;) defines a linear ordering over the set of acts, we must have F,, (§) # E.,(g):

Z pz +pz<fa1 fa2 Uz al 7& Z Di fx Uz )+pi(fa1 UfaQ)Ui(al)-

r#a,b r#a,b

QI W

g(w) = ay,Vw € f“l U f“?;

{ §w) = f@)Vw ¢ frufo {

Without loss of generality, suppose that E,.(§) — E,,(g) > 0. It then comes from the
above equation, and the fact that v;(a;) = 1, that

Z (pi(g") — pi(g")) vi() + ( i(fal U J?QQ) —pi(f* U fw)) >0

r#a,b

Hence, since §° = f7,Va # a1, as (g* = f*,Va # a1,ay) from Equation (6), we
have

== > (Bl = pil) @) + p(f U ) = p(Fr U ) =00 (7)

x#a,b

Consider now m > m, where m is defined in (i). Then we have fm = f and f, = f
and, given that v;(a2) =1, v/*(a1) = 1 — 1/m, it follows that

Eop(f) = Eap () = > (0ilF") = pulF7)) ()
rzeX
= 3 @il - )E) + @a(F) — pa(F))0" (an)
r#a1,a2
+Hpi(f) = pi(f*2)) 07" (az2) -
= 3 i) — pi(F)wile) + pa(F U f2) — pi(Fr U Fo2)

x#a1,a2

_%(pi(f‘”) —pi(f*™))
= e Lty - i)
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Since € > 0 from (7), and lim %(pi(f‘“) — pi(f)) = 0, there exists m* > m such
m—0o0

that %(pi(f'“l) — pi(f®)) < e, for m > m*. Hence, for all m > m* > m, we finally
get Egm ( f)— Eym(f) > 0. But this is a contradiction since, together, misvaluation-
proofness, f = f™ = (0™, v_;) and f = f,, = @(®™, v_;) (for all m > m*) imply

that we must rather have Eym(f) — Eym (f) > 0. O

Lemma 4. Top selection in the case of two agents.
Let N = {1,2}, a1,a2 € X, and v,v'€ V,. If 7(v;) = 7(v}) = a; for all i € N, then
(V) = (V) € {ar,a5}".

Proof. Fix N = {1,2}, a1,ay € X, and v,v'€ V, such that 7(v;) = 7(v)) = a; for
1 = 1,2. If a1 = a9, ex-post efficiency alone delivers the desired result. In what
follows, assume a; # as. We prove the claims below.

Claim 1. For any z,y € X, let T,y == {w € V, : wi(x) = we(y) = 1} and call
DOM.,, the subset of V containing all profiles w € T, such that any z € X \ {z,y}
is ex-post dominated by z or y. Then there exists f,, € {z,y} such that

p(w) = p(w') = fay, Yo,y € X,Yw,w' € DOM,,.

To prove Claim 1, fix z,y € X and w € DOM,, and observe that, by ex-post
efficiency, we have f,, := p(0) € {z,y}*. In addition, remark that for any agent
i € {1,2}, we have (w;(x) — w;(y))(wi(x) —wi(y)) > 0 for all w,w" € DOM,,. Thus,
Lemma 1 yields the desired result: p(w) = p(w') = fuy, for all w,w’ € DOM,,.

Note that, in particular, Claim 1 implies that p(w) = @(w') = fa e, € {a1, a9} for
all w,w" € DOM,,q,. To prove Lemma 4, it thus suffices to show that p(w) = fa,a,
for any w € Tgya, \ DOM,,4,. Let us then consider a fixed v € 75,4, \ DOM,0,-

By way of contradiction, suppose that ¢(v) # fi4,- Then there exists b €
X\ {a1,as} such that ©°(v) # 0 —otherwise, Lemma 1 would yield o(v) = fa,4,-
Moreover, by monotonicity (Lemma 2), remark that it is not restrictive to assume
that b is the second-best outcome for both players, that is,

vi(a1) = 1> wv1(b) > vi(x), Vo # ay, b; (8)
vo(az) =1 > wva(b) > ve(x), Vo # as, b.

Next, we define 93, 05" € V,, by:®

05'(ag) = 1>05(b)=1—1/m > 05" (x) = vo(x) 9)
05 (b) = 1>v5(as) =1—1/m > 03" (x) = vi(x), (10)

%Since the set of acts X is finite, note that the starting point mg? of the sequence {02} ez
can be conveniently chosen so as to have 95* € V,, for all m > mg?* (and likewise for 75").
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for any m > mg? and any = ¢ {as,b}. We then prove the additional claims below.

Claim 2. For all m > my? and u; € V,, such that (u1,05") € 74,4y, We have:

(ulvv2 ) 7é fala2 [ (SOQQ (ulﬂ@gl)) < pl(fgfag) and p2(¢a1 (ul’{};n)) < pQ(f(L1(L2):| .

Let us prove Claim 2. Consider m > mg* and u; € V,, such that (u1,05") € Taya,;
and suppose that ¢(u1,05") # faa,- Then we know from Claim 1 that (uy,05") ¢
DOM ,a,; but defining w by

{ wa(ar) =1—1/(2m) > wy(b) =1—-1/m
wy(x) = 05 (x) for all x # ay,

we get (up,ws) € DOM,,,, and hence, by Claim 1, ¢(uy,ws) = fa,a,- Observe
that wy obtains from v5" by merely raising the value of a;: thus, it follows from
monotonicity (Lemma 2) that ps(¢® (u1,05")) < pa(fil,,) = p2(¢(u1, w2)). The proof
of p1(¢®(u1,05")) < p1(f22, ) is similar and will be omitted.

aia2

Claim 3. There exists ¢* € (0,1) such that, for any u; € V,,, we have:
[U1<a1) =1>e" > ul(x)7 Vr # al] = [@(ulv@;n) = fa1a2’ Vm > mgz]

To prove Claim 3, define a := Elgl/ilcln Ip1(E) — p1(E")| and let e* = &g > 0. Let
E #E'

us fix m > mg? and u; € V! such that uj(a;) =1 > &* > uy(x) for all z # a;; and
by contradiction suppose that ¢(uy, 05") # fa,a,- Then it follows from Claim 2 that
P2 (u1,03")) < pa(fi,,) and, therefore, ¢ (uy,05") # fo1,,. Smce p1 is injective,
this means that cither pr (¢ (un, 65)) < pr(f&a,) OF Pr(" (g, 05)) > 1 (o). We
show below that either case leads to a contradiction.

Suppose first that pi (¢ (u1,05")) < p1(fi,,)- Then, recalling the definition of «,

we have pi(fg1,,) — pi1(¢® (u1,05")) > ; and one can hence write

Ey, (falll2) - Ey, (p(u1,03"))

<e*
al al ~m T ~Am
= pl( a1a2) _pl((P (uva )) + Z [pl(falaz) pl(@ (u17v2 ))] ul(x)
r#ay
> p1(faray) — P1(0™ (u1,03") Z P1(f70y) — P1L(0" (01, 05"))]
>a=c*|X]| r#a <1

> X - (|X]|-1)=¢&">0.

But this contradicts misvaluation-proofness: agent 1 will deviate from u; to u} such
that (u},03") € DOM,,q, and obtain the preferred act fy,q,.
Suppose now that p; (¢ (u1,05")) > pi(fsl,,) and consider w; € V,, such that

wi(a;) =1 > e* > wa(az) > wo(z) for all z # ay. Note that (wq,05") € DOMa,q,,
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hence, p(wy,05") = fa,a,- But then agent 1 prefers reporting u; to telling the truth
when receiving ws:

Ewl ((p(ulvﬁ;n)) - Ewl (faltm)

< *
a AT -
= pl(@ 1(U1,’U2 )) a1a2 + Z pl Ul,’U2 )) pl( alag)] wl(‘m)
rH#a]
Z g)l(goal (ul? @gl)) a1a2 _8 Z ‘pl a1a2 ((lpx(u]J /&;n))l
zazva*IXI i 5
> X - (| X]|-1)=¢">0.
This also contradicts misvaluation-proofness of ¢; and Claim 3 is shown.
To conclude the proof of Lemma 4, let us now fix u; € V,, such that
u(a) =1>¢" = > uy(z), Vo # ay; (11)

|X |
and consider the sequences defined by ¢(vy,05") and p(u,05"), for m > mg*. By

Lemma 3-(i), there exist f,, € X? and rh,, > m&? such that: o(vy,95") = f,,, for all
m > m,,. And Lemma 3-(ii) then gives

p2(90a1 (Uh@;n)) pQ(f ) p2((pa1 (Ulv@gn))v Vm > mvl' (12>

On the other hand, it follows from Claim 3 that the sequence ¢ (u,05") is constant.
Precisely, ¢(uq,05") = fa,a, for any m; and hence, applying Lemma 3-(ii), we get

pa(fit) = palfila,) = Pa(™ (w1, T5")), Vim = 1y, (13)

Next, since ¢°(v) # (), note from monotonicity (Lemma 2) that py(¢®(vy, 95') > 0
and therefore ¢(v1,95') # foya, for any m > m,,; and it then follows from Claim
2 that pa(p®(v1,05")) = pof ‘“) < pa(fil,,). Plugging this inequality in (12)-(13)
finally gives

p2( i) = P (01, 057)) < pa(p™ (wr, 05")) = pa(fila,), Vm = maz {1, } (14)

But note from (14) that the inequality pa(¢® (vy,05")) < p2(©® (uy,v5")) contradicts
Claim 1. Indeed, remark from (8), (9) and (11) that (vy, 95"), (u, 95') € DOM,,p; and
by Claim 1 we should rather have po(¢® (vy, 95")) = pa(p® (u1,05")) for any m. O

We emphasize that our proof of Lemma 4 only makes use of misvaluation-proofness
and ex-post efficiency; it does not require the full force of strategyproofness. Indeed,
up to now, we have kept the belief profile fixed.

Next, using an induction argument, we prove in Lemma 5 below that ¢ selects
only tops at each profile where two players report the same top. The statement and
proof of this result require variations of the belief profile p; we hence return to our
original notation, writing (v, p) and E¥’ rather than just p(v) and £,,.
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Lemma 5. Induction lemma

Suppose that |[N| =n > 3. Assume by induction that for all S such that |S| <n—1
every misvaluation-proof, misbelief-proof and ex-post efficient SCF ¢ : D% — X% is a
top and tops-only selection. Then, for any distinct k,1 € N and any (v,p) € DV, we
have: [r(v) = 7(v)] = (v,p) € {7(v;) : i € N}

Proof. We will prove Lemma 5 in two steps. Suppose that the conditions in the
statement are satisfied; and let us fix k,l € N such that k # [.

Step 1. For any (v,p) € DV such that v, = v; and py, = p;, we have (v, p) € {7(v;) :
i € N}, Moreover, we have p(v/,p) = ¢(v,p) for any v’ € V, such that v, = v} and

(7(vi))ien = (7(v]))ien-

Proof. Let N_; := N \ [ and consider ¢ : DN-t — X defined by:

N evN epN
V(w,q) € D™, $(w,q) :¢((w,&),(q,£¢)). (15)

l l

That is to say, ¢(w, ¢) obtains as the decision under ¢ at the profile of DV constructed
from (w, q) by assigning to agent [ the same valuation function and beliefs as agent
k. Tt is straightforward to see from its definition that ¢ is ex-post efficient (since @
is). We show next that ¢ is also misvaluation-proof and misbelief-proof.

It is easy to see from (15) that misreporting v; or p; will never benefit any agent
i € N_;\ k (it would contradict strategyproofness of ). To show that agent k €
N_; cannot profitably misreport either, pick an arbitrary pair (w,q) € DV~ and let
(wy,, q,) € D. Since @ is misvaluation-proof, agent k cannot profitably misreport wy,
when receiving (wg, qx):

g (@((wp, wi), q) = Ei’;(@((W—k,\wé/,iUé), (¢, a))) < E (o((w-k, wi, wy), (¢, ak)))

k l
(16)
Likewise, agent [ cannot profitably misreport wj when receiving (wy, i), that is,

ES: (o((wok, we, wi), (4 qr))) < By (9((w—p, wi, wi), (¢, qr)) = E3f (B(w, )  (17)

Combining (16) and (17) thus gives B (¢((w_g,wy), q) < EZ (p(w, q)), which shows
that ¢ is misvaluation proof.

Using the same procedure, we also get B (¢((w, (q-,q;))) < B (¢(w,q)); and
hence ¢ is misbelief-proof. It thus follows from the induction hypothesis in the state-
ment of Lemma 5 that ¢ is a top (and tops-only) selection. That is to say, for
any (v,p) € DV such that v, = v, and p, = p;, the following results hold: (i)
B0 p1) = p(0,p) € {r(vs),i € NI (i) G0y, p1) = 9(v',p) = p(v,p) for any
v' €V, such that v, = v] and (7(v;))ien = (7(V}))ien

Step 2. For all (v,p) € DV such that v, = v;, we have p(v,p) € {7(v;) : i € N}
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Proof. In order to complete this step, let us first state some preliminary results.

Preliminary 1. Let (u,q) € DY and suppose that z* € X satisfies u;(x*) € [0, 1), for
any i € N. Then there exists ¢, > 0 such that: (v/,q) € DV and p(v/,q) = ¢(u, q),
uy(z) = ui(x), if x # z*
|ui(27) = ui(2")| < eu

The proof of Preliminary 1 is left to the reader: it follows from the facts that (i)
the expected utility operator E¥ (-) is a continuous function of u,; and (ii) all players
have identical preferences under (u, q) and (', q) if u and " are sufficiently close (the
decision must hence be the same by misvaluation-proofness). It is important to note
that €, may vary with u, but not with p.

whenever v € VN satisfies { for each 7 € N.

Preliminary 2. Suppose that (u;, ¢;), (u;, ¢;) € D. Then there exists a finite sequence
of beliefs {¢! : t = 0,...,T} such that: (i) ¢{ = ¢ and ¢/ = ¢/; (ii) (u;, ¢!) € D, for
every t =0,...,T; forall t =0,...,T — 1, we have at most one ¢; € [¢!,¢'*"] such

The proof of Preliminary 2 is also omitted: it obtains as well from the continuity
of the expected utility function £, and the fact that the set of acts X © is finite. In
words, Preliminary 2 means that, given a fixed u;, any deviation from a belief ¢; to
another belief ¢/ can be decomposed as a sequence of deviations ¢ — ¢/™ that are

elementary in the sense that the segment [¢f, ¢'*'] contains at most one g; such that

(ui, @;) ¢ D.

Let us now proceed with the proof of Step 2. Fix (v,p) € DV such that v, = v,
and p, # p; and suppose by contradiction that f := ¢(v,p) & {7(v;) : i € N}
Using Preliminary 2,5 we will without loss of generality assume that there exists a
unique p; € [pg, pi] such that (vg, px) ¢ D.

First, let g := o(v, (p_g1, Prs Pk))s b = (v, (P—ki, 1, p1)); and remark that, for any
Py € (pk, pr), misbelief-proofness or ¢ gives

o, (P-rt, P> 1)) = (0, (P—kt, PR, 21)) = [ (18)

Indeed, note that (vg,ps) and (vg,p;) necessarily yield the same ranking of all acts
because there is no pj. € [pr, ] \ P O (P, Pr) D pi such that (vg, p)) ¢ D. Likewise,
using misbelief-proofness of ¢ (established in Step 1) yields

(v, (p—kt, i, Pr)) = (v, (D—kt, Pr, Pr)) = 9, VP" € (D> Pi) (19)
:@(U—zvzlr?—kz,pZ)) :@(U—zi;—khpk))

Second, we get from Step 1 that g = p(v, (p_ki, Pk, Pr)) = P(v_,p_1) € {7(vs),i €
N} and also h = o(v, (p_w, 0, 1)) = ¢(v_y, (p_r, m)) € {7(v;),i € N} Note

6Note from Preliminary 2 that we are ignoring here the case where there exists no px € [px, pi]
such that (vg,px) ¢ D. In this case, (vg,px) and (v, p;) generate exactly the same ranking over the
set of acts X**; and hence misbelief-proofness of ¢ trivially gives the desired contradiction. We thus
focus on the interesting case, where there exists exactly one Py € [pg, p1] such that (v, pr) ¢ D.
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that f ¢ {g,h} since both g and h are top selections (whereas f is not). Since
(v,p) = (v, (p—ki, Pr, ) obtains from (v, (p_g;, Pk, Px)) When agent [ changes her
reported belief from pj. to p;, misbelief-proofness of ¢ implies (a.1) EP*(g) > EP*(f)
and (a.2) EP'(f) > EP'(g). Doing the same for agent k, from (v, (p_u, pr, 1)) to
(v, (p-wt, p1,p1)), we may write (b.1) EFt(f) > ELt(h) and (b.2) EP (k) > EP(f).
Finally, using misbelief-proofness of ¢, which has been established in Step 1, we obtain
(c.1) EP¥(g) > EP+(h) and (c.2) EP*(g) > EP+(h) —where the equalities hold only
if g = h. We distinguish two cases below.

Suppose first that ¢ = h. Then observe that (a.1) and (b.1) above respectively
become EPF(g) > EPF(f) and EP:(f) > EP¢(g), and we obviously have a contradic-
tion.

Suppose now that g # h. Combining the intermediate value theorem with the
fact that pj, is the only belief in [py, pi] such that(vy, pr) ¢ D, we get from (a.1) and
(a.2) that ET*(g) = EP*(f). By the same token, using (c.1) and (c.2), note that we
must as well have EP*(g) = EPF(h). That is to say,

B (9) = Yuea Drw)vr(g(w)) = yeq Pr(w)ve(f (@) =: ER:(f);
B (9) = YueaPe(w)or(g(w) = 3 eq Pr(w)vr(h(w)) =: EL: ().

Given that f = p(v,p) ¢ {r(v;) : i € N} there necessarily exists (z*,w*) €

X x  such that vi(z*) € [0,1) and f(w*) = z*. Next, recall the definition of ¢,
/ _ 3 *

(in Preliminary 1) and define v € V¥ by { Zzgz):vial)li_xgj ; for all i € N.

Note from this definition of v" that v}(z) = v;(z) for all i € N and all z € {7(v;) : j €

N}. Combining that observation with the fact that g,h € {7(v;) : j € N}, we may

use (20) to write

Eff( =El(g) ==Y _ pr(w) = pr(w) = Ejr(h) = Ef;’:(h)

we) wesd
(22)
Also, since v}(z) > v;(z) for any x € X [with the strict inequality for z* € f(Q)], it
comes from (22) that

20)

(
(21)

*vk (9(w))

Zpk Zpk Zpk Epk(f)

weN weN we
(23)

Using the continuity of Ef,;j with respect to the belief p), Equation (23) implies that
there exists p; € (pk, pr) such that Ef;’: (9) < Ef;’:(f) In addition, note that (vg,p;) €
D —because of our assumption that there exists no pj, € [px, pi]\Pr such that (v, p),) ¢
D. Hence, applying Preliminary 1 also gives (v, p;) € D and

(p(vla (p*klap;pl)) = @(Ua (p*klvpzvpl)) =/, (24>

where the last equality comes from (18).

26



Finally, recalling from Step 1 that ¢ is a tops-only selection —and noting that
T(v;) = 7(v}) for all i € N, we get

@ (V' (P—kts P> pr)) = @V, p1) = P(v_i,p—1) = (v, (P—1s P Pi))- (25)

Combining (25) and (19) then gives ¢ (v', (0w, Pk, Pf)) = g = #(v, (P—k1, Pk, Pr)). But
remark that this is a contradiction to misbelief-proofness of ¢. Indeed, agent [ will
profitably deviate from (v, (p—_gi, Pk, 5)) to (V', (p—ri, Pk, 1)) since we have v, = v},
and

Eff (9) = Eff (9) < Ef;f(f) = Eff(f);
o (V' (p—w, Py D)) = 65
o (v, (p—r, 0 m1)) = [ [from (24)].

This concludes the proof of Step 2. Combining Step 1 and Step 2, we thus have
o(v,p) € {T(v;) : i € N} for all (v,p) € DV such that v, = v;. O

For the case where n = 2, the top (and tops-only) property has been shown in
Lemma 4. The following lemma states this property for n > 3.

Lemma 6. Top Selection (and tops-only) for n > 3
Let IN|=n >3, A, = (ay,...,a,) € XN and fix p € PN. If v,0' €V, are such that
7(v;)) = 7(v)) = a; for alli € N = {1,...,n}, then p(v,p) = o(v',p) € {ai,...,a,}*.

Proof. Suppose that n > 3; and fix A, = (ay,...,a,) € X and p € PV. Next,
define Ty, = {v € V, : v(a;) = 1,Vi € N} and, for any v € Tyu,, let fy =
lim (0, v_1), p). That is, f, is the value taken by the stationary sequence o((07,v_1), p)
for m large enough [recall Lemma 3-(i)]. We will prove the result by showing two
claims: (1) Jv € Ta, such that p(v,p) € {ay,...,a,}% (2) ©(v,p) = (', p) for all
v,v" € Ta,.

Claim 1. There exists v € T4, such that p(v”,p) € {a1,...,a,}*.

To prove Claim 1, we distinguish two cases. Fix any v € Ty,,.

Case 1. Suppose that ap = a; for some distinct k,l € N. Then the result of Claim 1
holds by Lemma 5.

Case 2. Suppose now that a; # a;, for any distinct ¢, 7 € N, that is, A,, consists of n
distinct tops. Take i = 1 in Lemma 3 and recall that ™ is such that 0]"(ay) =1 >
1 —1/m = v{"(a1) > v7*(z) for x # ay, as. Since 7(0}") = ay = 7(v2), we do not have
n distinct tops at (0], v_1); and it thus comes from Lemma 4 and Lemma 3-(i) that,
for m large enough, o(v7*,v_1) = f, € {ay,...,a,}*. That is to say, f* = 0, for all
z ¢ {ay,...,a,}. Moreover, Lemma 3-(ii) tells us that f* = f* for all  # ay, as.
Therefore, we have f* = f* =), for all ¢ {ay,...,a,}. That is to say, there exists
(a sufficiently large) m” € IN such that (07", v_1),p) = f, € {a1,...,a,}?. It thus
suffices to take v = (07", v_;) to see that Claim 1 is satisfied.
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Claim 2. For any v,v" € Ty, we have p(v,p) = p(v/, p).
To prove Claim 2, let us state two additional preliminaries.

Preliminary 3. Let ¢ € N and suppose that (w;,q), (w},q) € D, with 7(w;) =
7(w}). Then there exist two finite sequences w;, w?, ..., wl € V, and 2*,22,... 27 €
X \ 7(w;) such that:” (a) w! = w and w? = w'; (b) for all t = 2,...,T, and
wh(r) = wi™(z) for every z # x* and (wy, ¢;) € D.

The proof of Preliminary 3 is easy (and left to the reader). This preliminary
means that we can always find a path w}, ..., w! of valuation functions (starting at
w; and leading to w!) such that, for each ¢t = 2,... T, w! and wlt_l disagree on at
most one ! € X that is not 4’s top.

Let us introduce some notation before the next preliminary. Consider distinct
wi,ws € Q. Forany a > 0,4 € N and ¢;, ¢, € P*, we write ¢, = ¢; ® aw; © aws if, for
all w € ), we have

qi(w), if w # wy,wo,
g(w) =9 @(w)+a, ifw=uw,
gi(w) —a, if w=w,.

Preliminary 4. Suppose that (u,q) € D. Then there exists o, > 0 such that:
(u,q') € D and p(u,q) = ©(u,q) whenever ¢ € PV satisfies ¢, = ¢q_; and ¢, =
¢ B aw; © awy for some i € N, a € (0, 0) and distinct wy,wq € €2

Preliminary 4 obtains as the analog of Preliminary 1 when one slightly varies
the belief profile at (u,q). Its proof follows from the fact that the expected utility

operator Ey: is a continuous function of the belief ¢/.

We are now ready to prove Claim 2. Using Preliminary 3, it suffices to show
that, starting from a profile v € Ta,, the decision does not change if any single
agent changes her valuation of one non-top outcome. By contradiction, suppose that
h = @(v,p) # h' = (v, p) for two profiles (v,p), (v/,p) € DV such that v, = v; and,
for some i € N and a € X\ 7(v;), satisfying: (i) v", = v_;; (ii) vi(z) = vi(z) if = # a;
(iii) v{(a) > v;(a). In addition,® since the set of acts is finite, it is not restrictive to
assume that there exists at most one z € (v;(a),vj(a)) such that (v7,p;) ¢ D. Note

that, if Z indeed exists, this assumption (along with ordinality) implies

¥ ((U—ivvf*)vp> = QO((U_i,Ui),p) =h, V"€ (Ui(a)vz)' (26)

Next, remark that misvaluation-proofness of ¢ requires: (1) E”:(h') — EP:(h) < 0
when z = v;(x); and (2) EPi(h) — EP:(R') > 0 when z = vj(x). Since E”: is a
continuous function of z, we may use the intermediate value theorem to claim that

"Remark that (b) implies 7(w!) = 7(w;) = 7(w}).
vi(z), ifz#a
if x = a.

2,

8Recall from the proof of Lemma 2 that v; € V' is defined by v7(z) = {
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there exists z € (v;(2),v{(x)) such that E":(h') — EP:(h) = 0, that is to say,

Y @i (W (W) = vi (h(w)] = D pilw)[vf (h(w)) = i (' (@))],  (27)

wEeN_

where (¥, = {w € Q : v}(W(w)) > vi(h(w))} and Q" = {w € Q : V(P (w)) <
v7(h(w))}. Note that € # 0 and Q' # (. Indeed, we have p;(h'*) > p;(h*) from
Lemma 2 (monotonicity); and hence () # A'* \ h* C , UQ' . Then, assuming that
Q. # 0 (or Q. # 0), we may use (27) [and p;(w) > 0 for all w € Q)] to see that
Q. #0Q (or €, # 0) must also hold.

Next, pick any wy € € and w, € Q; and define p] = p; ® FLw; © Fw,, where
a, comes from Preliminary 4. Note from (27) that > pl(w)[v7 (R (w

2 )) = v (h(w))] >

> pi(w)[vi(h(w)) — vi(h'(w))], that is to say, Ef:é(h’) — Efj;(h) > 0. Hence, since

weN_

Ef;/ (+) is a continuous function of z, we can claim that there exists z* € (v;(a), z) such
that Efl (W) — Ef; (h) > 0. In other words, i prefers h' to h at (v, p.). But this is
a contradiction to Zmisvaluation—proofness. Indeed, observe that (v, p;) € D —since
there exists no z € (v;(a),vi(a)) \ {Z} such that (v7,p;) ¢ D. Therefore, we have
((v7",v_;),p) € DN. It then follows from Preliminary 4 that: ((vf*, i), (Ph,p—i)) €
DN and ¥ ((05*7072')7(]7;’1771’)) = go((vf*,v,i),p). Since ¥ ((Uz ) ,i),p) = h from
(26), it holds that ¢ ((vi",v—;), (p},p—;)) = h. Moreover, given that ((v],v_;),p) =
(v',p) € DY, Preliminary 4 once again gives: (v/, (p}, p_;)) € DY and o (¢v/, (p}, p_i))
o(v',p) = K. Thus, agent i can profitably manipulate ¢ at ((vi",v_;), (p},p_s)) by
misreporting (v}, p;) in order to get h’ (which she prefers to h).

Therefore, we must have o(v,p) = ¢(v',p) = ¢(",p) € {ai,...,a,}* for all
v,v" € Ta,; and Lemma 6 is proved. O

Lemmas 4 and 6 imply that, if a SCF is strategyproof and ex-post efficient, then at
each preference profile the state space must be partitioned into a collection of events
{E; € 2% : i € N} such that agent i dictates the outcome in all states w € E;. Note
that (i) some E; may be empty (ii) E; may vary if we change the beliefs p or the
valuations v —or more precisely, if we change the tops (7(vy),...,7(v,))). That is to
say, there exist functions o : DY — (29 such that, for all (v,p) € DV,

UiGNO-Z'<U7p) = (Y and ()O(U?pv w) = T(UZ') ifwe O-i(v7p)' (28>

Remark that there exist many functions o satisfying (28); but for any two of them (say,
o’ and ¢”), we must have:* o'(v,p) = ¢”(v,p) at any (v,p) € DV such that 7(v;) #
7(v;j) if @ # j. To conclude the proof of the Top Selection lemma, it just remains to
notice that there is a unique function s(p) = o*(v, p) that satisfies (28) and does not

9That is to say, o'(v,p) # o (v, p) may occur only at profiles (v,p) where some distinct agents
have the same top.
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vary with v. Since we have shown the tops-only property in Lemmas 4 and 6, we
slightly abuse notation and conveniently write ¢((a1, ..., a,),p) to refer to the chosen
act at each (v,p) € DV such that (7(v;))ien = (a1,...,a,). We then define s(p) =

o*(v,p) as follows. For any distinct a1, as € X, let s7'*%(p) = p*((a1, az, ..., az2),p).
Define s7'“%(p) in a similar way for all i # 1; and write s(p) := ‘““2( ) = (s7*%(p))ien-
We leave it to the reader to check |[by using Lemma 3-(ii) and the now established
top-and-tops-only property] that we have: (i) s“*(p) = s%%(p) = s(p), for all
ai,as,as,ay € X (a; # as and az # a4) and all p € P; (ii) ¢((@1,...,0,), p;w) = a;
if we s(p), for all p € PV and (ay,...,a,) € XV. Observing that s meets the
feasibility constraint U;ens;(p) = Q (for all p € PV) then allows to conclude. O

9 Appendix B: semi-global results

Let w € (2. This state is fixed throughout this appendix. It will be convenient to
further simplify notation as follows: we write Q instead of Q\ @, P instead of P(Q),
and a instead of ag. For any 7; € 77, define

P(m)Z{piEP:pi|SN2 %w}

This is the set of beliefs on € generating on Q a likelihood ordering that coincides
with that generated by ;.

For any two beliefs p;,q; € P, we write p; ~ ¢; if p;, ¢; are ordinally equivalent,
that is, if R(p;) = R(q;). We abuse this notation and, for any profiles p,q € PV, we
write p &~ ¢ if p; = ¢; for all « € N. We write p;Jq; if p;, ¢; are adjacent according to
the definition in Section 5. The adjacency relation J is obviously a symmetric binary
relation. If p;,q; € P C P, a J path between p; and q; in P’ is a finite sequence
pi; = (pY)L, such that p} = p;, p! = q;, p'Jp.™ fort =1,....,T — 1, and p’ € P’ for
t=1,....,T. We call P’ connected if such a J-path exists between any two beliefs in
P

Finally, define the relation J on P(m;) by
piJq; < pi, q; are {A, B} -adjacent for some {A,B} € H,w € A, and p;(A) > p;(B).

This is a sub-relation of the adjacency relation .J. Contrary to J, the relation J is not
symmetric. For an illustration, see Figure 2, where an arrow stands for J. Observe
that if two beliefs p;, ¢; € P(n,) are {A, B}-adjacent, then w € AU B : this is because
the likelihood relations generated by p;, ¢; coincide on Q. Just like J, the relation J is
ordinal: if le i, P =~ p; and ¢ ~ g;, then p! ' Jq. ¢;. All its maximal elements in P(7;) are
ordinally equivalent; any such maximal element p; is characterized by the property
that N

P (@) > pf (@), (29)
Likewise, all the minimal elements of J are ordinally equivalent and any such minimal
element p, is characterized by the property that

p; (CUw) < p; (D) whenever m;(C) < m;(D).
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Example 2. If Q = {1,2,3}, @ = 1, and m; is a belief on {2,3} generating the
ordering {2,3},{2},{3}, then any belief on {1,2,3} generating the ordering

{1,2,3},{1,2},{1,3}, {1}, {2,3} , {2} . {3}

is a mazimal element p of J on P(m;), and any belief on {1,2,3} generating the
ordering

{1,2,3},{2,3}, {1, 2}, {2}, {1, 3}, {3} , {1} .

1s a minimal element p; of J on P(m;). See again Figure 2 for an illustration.

A complete J -path in P(m;), or simply a complete path, is a finite sequence p; =
(pt)Z_; such that p} is a maximal element of J (in P(7;)), p/ is a minimal element,

plJpittfort =1,...,T — 1, and p! € P(m;) fort =1,...,T.

Observation 1. For each complete J-path p; = (PHL, in P(m), T =| {{A,B} e H
:weAUB} .

This is because any maximal and minimal elements p;, p; lie (i) on opposite sides
of every hyperplane p;(A) = p;(B) such that w € AU B, and (ii) on the same side of
every hyperplane p;(A) = p;(B) such that w ¢ AU B.

Observation 2. For each complete j—path pi in P(m;) and each t € {1,...,T — 1},
there is a unique {A!, B'} € H such that pt,pi™ are {A*, B'}-adjacent. Moreover,
{A, B}y £ {AY B} if t £ 1.

Observation 3. Each belief p; € P(m;) lies on some complete J-path in P(m;) :
there exist p; and t € {1,...,T} such that p; = pt.

The proofs of observations 2 and 3 are straightforward and left to the reader.
Lemma 7. Forall i € N, m; € 75, and p_; € PN, either (a) si(.,p_;) is constant

on P(m;), or (b) there exist disjoint sets A;(m;,p—i), Bi(mi, p—i), Ci(mi, p—i) C Q such
that @ € A;(mi, p—i), mi(Ai(mi,p—i) \ @) < m(Bi(mi, p—i)), and for all p; € P(m;),

si(pipi) = Ai(mi,pi) U Cilmi,pi)  if pi(Ai(mi, p—i)) > pi( Bimi, p—i)),
s Bi(mi, p—i) U Ci(ms, p—i) otherwise.

The inequality m;(A;(m;, p—;) \ @) < m;(B;(m;, p—;)) implies that the function s;(.,p_;)
in statement (b) is not constant: the assignment actually varies with agent ¢’s beliefs.
Proof. Let i € N, m; € ﬁ, p_; € PNV, Since 7;, p_; are fixed throughout the proof,

we omit them from our notation. It is important to keep in mind, however, that the
sets whose existence is asserted in Lemma 7 may depend on our choice of m;,p_;. Let

T=|{{A,BYeH 5 € AUB}|.

Step 1. We claim that for any complete J-path p; = (p!)L, in P(m,), one of the
following statements hold:
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(@) si(p;) = 5i(p7) = ... = si(py ),
(B) there exist dlsJo1nt sets A i(pi), Bi(p:), Ci(pi) C Qsuch that w € A;(p;), mi(Ai(pi)\
w) < m(B;(pi)), and there exists t*(p;) € {1,...,7 — 1} such that

. (30)
B,(pz) U C’Z(pz) if ¢t > t*(pl)

Ai(pi) U Ci(ps)  if £ < 17(py),
si(p;) = {
To prove this claim, fix a complete j—path p; in P(m;). For each t = 1,....T — 1,
let {A’, B'} be the unique pair in H such that pl,pitt are {A! B'}-adjacent. By
definition of J, @ € A" and pt(A") > pi(B"). By the Local Bilaterality lemma, one of
the following statements holds:

(i) si(pf) = si(pi™),
(1) s:(p}) \ s:(p;"") = A’ and s;(p;") \ si(pf) = B".

If (i) holds for t =1,...,T—1, then statement («) is true. Otherwise, let t* be the
smallest ¢t € {1,...,T — 1} such that s;(p!) # s;(p™). By (ii), s;(p!")\si(p! ™) = AY".
Since w € A", we have @ ¢ s(p’ ™). This means that statement (11) cannot hold
for any t = t* +1,...,T. Hence, s;(p!) = si(p. ™) for t = t* + 1,...,T. Defining
Az(pz) = At*, Bz(pz) = Bt*, Cz(pz) = Si(pz) \ At , We obtain (30)

Step 2. Let p;” and p; be maximal and minimal elements of J in P(m;).
If s;(p]") = si(p;), define C; = s;(p}) = s;(p; ). For any p; € P(m;) there exists

some path p; and some t € {1,...,T} such that p;, = p! (Observation 3). By Step 1,
si(pi) = s;(pt) = C;, that is, statement (a) in Lemma 7 holds.

If s;(p]") # si(p; ), we know from Step 2 that statement () holds for every com-
plete J-path p; = (p!)Z, in P(r ;). We claim that the sets A;(p;), Bi(p:), Ci(pi) do
not change with p;. To see why, let p;, q; be two paths. If A;(p;) # Ai(q;) or Ci(p;) #
Ci(ai), then s;(p;") = si(p;) = Ai(ps) U Ci(pi) # Aslai) U Ci(ar) = sila;) = si(p), a
contradiction. Thus A;(p;) = Ai(q;) and C;(p;) = C;(q,). Next, if B;(p;) # Bi(ai),
then s;(p; ) = s:(p{) = Bi(p:)) UCi(pi) = Bi(p:) UCi(a:) # Bi(a:) UCi(ai) = si(a]) =
si(p; ), again a contradiction.

Let A;, B;, C; be the sets such that A;(p;) = A;, Bi(p;) = B;, and C;(p;) = C; for
all complete J-paths p; in P(rm,). For any p; € P(m;) there exist some path p; and
some t € {1,...,T} such that p; = p’, and, by Step 1, an integer t*(p;) € {1,...,T — 1}
such that

o (p!) = { AUC it <t(p) (31)
This integer may —and typically does— change with the path p;, as Figure 2 illustrates.
If pi(A;) = pi(A;) > piB;) = pi(B;), then t < t*(p;) : otherwise (31) would

imply si(pi) = Bi U Cj, hence p(si(p;)) = pi(Ai U Ci) > pi(Bi U Ci) = pi(si(pi)),
contradicting strategyproofness. Since t < t*(p;), (31) implies s;(p;) = A; U C;.
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Likewise, if p;(A;) < pi(B;), then ¢t > t*(p;) and (31) imply s;(p;) = B; U C;. We
conclude that statement (b) in Lemma 7 holds with A;(m;, p_;) = A;, Bi(mi, p—i) = B,
and Oi(']riap—i) = Oz Il

We record below two immediate consequences of Lemma 7 that will be used later.
Corollary 1. Forall i € N, m; € P, pi, i € P(m;), and p_; € PN\,
(a) @ € si(pi, p—i) N s:(Pi, p—i) = si(pis p—i) = 8i(D}, P—i),
(b) & ¢ 5i(ps, p—i) U 54(pj, p—i) = 54(pi, p—i) = 54(p}, P—i)-
Given the other agents’ beliefs, i’s assignment is fully determined by whether it con-
tains w or not.
Corollary 2. For all i € N, m; € 75, p_i € PN\ and any mazimal and mini-
mal elements p;,p; of J in P(m), if s(.,p_;) is not constant on P(m;), then @ €
Sz<pz+7p71> \ sl(p;7p71>

We now show that the sets A;(m;,p_;), Bi(mi,p—), Ci(m;, p—;) in Lemma 7 do

not vary with p_; as long as the ordering generated on P by each p;, j € N \ 4,
remains unchanged. If 7 € PN and i € N, we write PV (1) = IenP(m) and
PN\i(W_i) = Hkyéip(ﬁk>-

Lemma 8. Forall i € N and w € PN, there exist disjoint sets Ay(r), Bi(w), Cy() C
Q such that @ € Ay(n), m(Ai(7)\@) < 7;(Bi(7)), and, for all p_; € PN\i(x_,), either
(a) si(.,p—;) is constant on P(m;), or (b) for all p; € P(m;),

o p) = 4 MOVCE i pilAidm) > pilBilr),
e B;(m) U Ci(m) otherwise.

We emphasize that Lemma 8 does not assert that s;(p;, .) is constant over PVV(7_;).

Proof. Let i € N and let 7 € PV. Define the set
PNMVi(r_;) = {p-i € PMV(n_;) : si(.,p—;) is not constant on P(m;)} . (32)

Letp_;,q; € pY \i(7r_i). By Lemma 7 —and dropping 7; from the notation— there exist
disjoint sets A;(p—;), Bi(p—:), Ci(p—;) C Q such that w € A;(p_;), m(Ai(p—;) \ W) <
WZ(BZ(])_Z», and

Ai(p—i) U Ci(p—) if pi(Ai(p—i)) > pi(Bi(p-i)),

for all p; € P(m;), si(pi,p_i) =
Y (10, s:(pi p-) {Bi(p_i)UC’i(p_i) otherwise,

(33)
and there exist disjoint sets A;(q—;), Bi(q—i), Ci(q—;) C Q such that @ € A;(q-;),
7i(Ai(g—i) \ w) < m(B;(g-i)), and

Ai(q-i) U Ci(qi) if pi(Ai(qg-i)) > pi(Bi(q-i)),

fOl“aH 167)7]'27 S; iy d—i) =
! (), o1(pir4-0) {Bi(qi)UC’i(qi) otherwise.

(34)
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We must prove that A;(p_;) = Ai(q—i), Bi(p—:;) = Bi(q—:), and C;(p_;) = Ci(q—;)-

There is obviously no loss of generality in assuming that there exists some j # 4
such that py = g for all k € N\ {4, j}. We therefore drop the beliefs of the agents
other than ¢, j from our notation. Moreover, since P(7;) is connected, there is no loss
in assuming that p;, ¢; are adjacent.

Let p/, p; be maximal and minimal elements of J in P(m;). By Corollary 2,

@ € sipfipy) \si(prpy),

@ € sipa) \sipi s 4))-

Since @ ¢ s;(p;,p;) Us;(pf,q;), Corollary 1 implies s;(p;, p;) = s;(p;,q;). By non-
bossiness, s;(p;, p;) = si(pi, q;). Since @ € s;(p;7,p;) N si(pi, q;), it follows from (34)
that

Ai(pj) U Ci(p;) = Aigy) U Ci(g).

Next, we claim that either @ € s;(p; ,p;) Ns;(p; ,q;) or w ¢ s;(p; ,p;) Us;(p; ,qj)-
Suppose, on the contrary, that, say, w € s;(p; ,p;) \ s;(p; ,¢;). Since w ¢ s;(p; ,q;),
there exists k € N\{¢, j} such that @ € s,(p; , ¢j)\sx(p; , p;)- By the Local Bilaterality
lemma, s;(p;,q;) = si(p; ,p;), that is,

Bi(pj) U Ci(p;) = Bilg;) U Ci(g)).

Since A;(p;), Bi(p;), Ci(p;) are disjoint and A;(g;), Bi(q;), Ci(g;) are disjoint, these
equalities imply A;(p;) = Ai(q;), Bi(p;) = Bi(g;), and C;i(p;) = Ci(g;). O

We are now ready to describe the structure of s on any sub-domain P (7).

Terminology. Given 7 € 75N, we say that s varies only with agent i’s beliefs (on
PN (7)) if there exists p_; € PN\V{(7_;) such that s(.,p_;) is not constant on P(7;) but
s(.,p_;) is constant on P(m;) for every j # i and every p_; € PNV (7r_;). We say that
s varies with the beliefs of agents i and j (on PN (x)) if there exist p_; € PN\(1_,)
such that s(.,p_;) is not constant on P(7;) and there exists p_; € P¥V(x_;) such
that s(.,p_;) is not constant on P(7;). We emphasize that this definition allows s to
potentially vary with the beliefs of agents other than 7, j as well.

We say that {A, B} € H cuts P(m;) if there exist p;, ¢; € P(m;) such that (p;(A) —
pi(B))(qi(A) — q;(B)) < 0. Observe that if w € A, then {A, B} cuts P(m;) if and only

Lemma 9. For every m € PN there exists a partition {A(r), B(r), Cy(r), ..., Co(m)}
of Q such that © € A(m) U B(w) and

(a) if s varies only with agent 1’s beliefs on PN(w), then {A, B} cuts P(m) and
there exists an agent i € N \ 1, say agent 2, such that for all p € PN (x),

5(p) = { (A(m) U Ci(m), B(m) U Cy(m), Cs(x), ..., Cu(m)) if pi(A(x)) > pr(B(w)),
(B(m) UCy(m), A(m)UCy(nm), Cs(m), ..., Cu(m)))  otherwise,
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(b) if s waries with the beliefs of agents 1 and 2 on PN(w), then {A, B} cuts
P(m), P(ms) and for all p € PN(x),

(A(?T) U Ol(ﬂ->’ B(ﬂ-> U 02(71-)7 03(7T)7 s On(W» Zf Y41 (A(ﬂ-» > pl(B(Tr))
s(p) = and pa(A(m)) < pa(B(m)),
(B(m) U Cy(m), A(m) U Cy(m), Cs(m),..., Cu(m))  otherwise.

Remark 1. (a) We stated Lemma 9 with reference to agents 1 and 2 for notational
convenience but of course the result holds, up to a relabeling, for any pair of agents.

(b) Statement (b) does not assume that the assignment is independent of the be-
liefs of agents 3,...,n. Rather, it is a corollary to Lemma 9 that, on PN (x), (i) the
assignment may vary with the beliefs of at most two agents and (ii) only the events
assigned to two agents may change.

Proof. Let 7 € PV. This profile is fixed throughout the proof and dropped from the
notation whenever this causes no confusion.

Step 1. Suppose first that s varies only with agent 1’s beliefs.

Recall the definition of P2 \1(7r_1) in (32). By Lemma 8, there exist disjoint sets
Al, Bl, CI such that for all p1 € P(ﬂ'l) and all p—1 € Piv\l(ﬂ',l),

Al UCl lfpl(Al) >p1(B1)7
B UC;  otherwise.

51(?1,]&1) = {

Moreover, W € Ay and 71 (A4; \ @) < m(By(w)), implying that {A;, By} cuts P(m).

Since s does not vary with the beliefs of agents 2,....,n, the above expression
must, in fact, hold for all (p;,p_1) € PN (7). Statement (a) now follows from the
Local Bilaterality lemma and non-bossiness.

Step 2. Suppose next that s varies with the beliefs of agents 1 and 2 on P ().

Since P(my), P(m2) are connected, there are adjacent beliefs py, p) € P(m), adja-
cent beliefs py, pf, € P(73), and sub-profiles p_; € PY\Y(7_1), q_o € PN'\3(1_,) such
that

s(p1,p-1) = a # o = s(p, p-1), (35)

5(q2,q-2) = B # ' = 5(¢5, q-2). (36)

Sub-step 2.1. We show that the assignment varies locally with two agents’ beliefs:
there exist two agents i,7 € N, two adjacent beliefs p;,p, € P(m;), two adjacent
beliefs p;, p; € P(n;), and a sub-profile p_;; € PN\ () such that s(p}, p;,p_ij) #
(i, Py, P—ij) # S(Di, Dy P—ij)-
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Suppose not. Then (35) implies

5(p17p;‘»p—lj) =a#ad = 3(13/1,]?;';]?—13‘)

for all j # 1 and all p); adjacent to p;. Since P(m;) is connected, it follows that

s(pr,ply) = a# o = s(p),p’y) (37)

for all p’ ; € PM\(7_y).
By the same token, (36) implies

s(q2:q"5) = @ # o' = s(g3,4",) (38)

for all ¢' , € PM\2(7r_y).
Statement (37) implies s(p1, g2, p—12) = $(p1, g5, p—12) and statement (38) implies
$(P1: G2, P-12) # $(P1, G5, P-12), a contradiction.

Sub-step 2.2. We show that there exist disjoint sets A, B, (4, ...,C,, such that
A, B#0, o€ AUB, and, for all k # 1, j,

(Siasjask)(piapﬁpfij) = (AU Cia BU Cj7 Ck)7 (39)
(54,85, 8%) (5, Pj> P—ij) = (83,55, 8k) (P}, Dj» P—ij) = (BUCy, AUC, Cy).

Since p_;; is fixed, let us drop it from the notation. By Sub-step 2.1 and Lemma
8, there exist disjoint sets A;, B;, C; and disjoint sets A;, B;, C; such that w € A;NA;,
Bia B] 7é @, and

(si(pi,p;) = A UGy, si(p;,p;) = BiUC] or [si(pi,p;) = BiUCy, si(pi,p;) = A U]
and

[5i(pi,p;) = Aj UGy, si(pi,p;) = B;UC;] or [s;(pi,p;) = B; UC;, s5(ps, p) = A; UCS].

Since w € A;NA; and s;(p;, pj) N sj(pi, p;) = 0, we need only consider three cases.
Case 1. (i) si(pi,p;) = A, UG, (ii) s;(p}, pj) = Bi UG, (ili) s(ps;, p;) = B; UC;, (iv)
sj(pi, ;) = A; UC;.

Define A = A;, B = B;, C, = si(pi,p;) for k # i,j. By the Local Bilaterality
lemma, (i), (i), and (iv) imply A; = A, B; = B, si(p;,p};) = BUC;, and si.(p;, pj) =
Cy for k #14,5.

Next, since s;(pi,p;) = AU Cy, si(pl,p;) = BUC;, and s;(p;,p;) = BUCj, the
Local Bilaterality lemma implies s;(p},p;) = AU C; and si(p}, p;) = Cy for k # 1, j,
establishing (39).

Case 2. (i) si(pi,p;) = B; UG, (i) si(p}, p;) = A UG, (ill) sj(pi, pj) = A; UC;, (iv)
sj(pi, ;) = B; U Cj.
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Define A = B;, B = Aj, Cy, = si(p;, p;) for k # 14, j. Statement (39) follows by the
same argument as in Case 1, mutatis mutandis.

Case 3. (1) Sz(pzap]) = Bz UC“ (11) Sl(p;,p]) = Az UC“ (111) $]<p7,,p]) = B] UCJ, (IV)
sj(pi, ;) = A; U ;.

This case is impossible. To see why, note first that (i), (ii), (iii), and the Local
Bilaterality lemma imply s;(p;,p;) = B; U C; whereas (i), (iii), (iv) and the Local
Bilaterality lemma imply s;(p;, p}) = B; U C;.

Since (si,55)(p},pj) = (A U Cy, By UCy) and (si, 85)(pi, pj) = (B U Cy, A; U Cy),

Lemma 3 implies that one of the following statements holds:

(Si,Sj)(PQaP}) = (AiUCi’ BjUCj)’
(si,85)(pi, ) = (BiUCi, A;UC).

In either case, the Local Bilaterality lemma requires A; = A; and B; = B;. The latter
equality implies that s;(p;, p;) N s;j(pi, ;) # 0, violating feasibility.

Sub-step 2.3. Assume from now on that @ belongs to the set A in (39). The case
where w belongs to B is identical up to a permutation of agents ¢ and j. We show
that for all (¢;,q;) € P(m;) x P(m;) and all k # 1, 7,

(55255, 58) (G52 @52 pss) = (AUC;, BUC;, Cy) if ¢;(A) > ¢;(B) and ¢;(A) < ¢;(B),
v R BUC;, AuC;, C}) otherwise.
j

(40)

Since p_;; is fixed, let us drop it again from the notation. By Sub-step 2.2 and
Lemma 8, p;(A) > p;(B) and p;(A) < p;(B), and it follows that (40) holds for the
case where ¢; = p; or ¢; = p;.

Next, for any ¢; such that ¢;(A) < ¢;(B), the fact that s;(¢;,p;) = AU C; implies
that s;(g;,.) is constant, hence, by non-bossiness, (s;, s;, sx)(¢, q;) = (BUC;, AUC},
Ch).

Similarly, for any ¢; such that ¢;(A) > ¢;(B), the fact that s,(p;,q;) = BUC;
implies that s,(., ¢;) is constant, hence, by non-bossiness, (s;, s;, sx)(¢, q;) = (BUC;,
AUC;, Cy).

Finally, for any (g;, ¢;) such that ¢;(A) > ¢;(B) and ¢;(A) < ¢;(B), the fact that
si(.,q;) and s;(., g;) are not constant, together with non-bossiness, implies (s;, s;, si)
(¢i,q;) = (AUC;, BUC,, Cy), completing the proof of (40).

Sub-step 2.4. We show that for all ¢ € PN (7) and all k # 1, j,

(AU C;, BUC;, Cy) if ¢;(A) > ¢;(B) and ¢;(A4) < ¢;(B),

Si,Sj, S =
( J k) (q) {(BUQ, AUC,, Cy) otherwise.

(41)

37



Let ¢ € PN(rm). Given Sub-step 2.3 and because each P(m;) is connected, we
may assume without loss of generality that there exists some k # ¢, j such that ¢ is
adjacent to py and ¢ = py for all k' # 4, j, k. In what follows, we drop q_;jx = p_ijk
from our notation. Suppose, by way of contradiction, that s(¢;, g;, gx) # s(¢i, ¢;, Pk)-

If (si, 85, 8%)(¢, g5, pk) = (AUC;, BUC;, Cy), non-bossiness implies sy (¢;, g5, qx) 7
sk(Qi, qj.pr). Since py,qr € P(m), the pair of events {E, E'} for which py, g, are
{E, E'}-adjacent is such that w € EU E'. Since w € AU C; = s5(q;, qj, p), we must
therefore have s;(q;, ¢;, qx) # $i(¢, g5, pr,) and Lemma 8 implies s;(g;, ¢j, qx) = BUC;.
By the Local Bilaterality lemma, s;(¢;, g, ) = si(¢i, ¢;,pr) = B U C;. This means
that s;(¢;, 45, ax) N $j(i, g5, @) # 0, contradicting feasibility.

If (s4, 85, 56)(qi 45, p6) = (BUC;, AU G}, Cy), exchanging the roles of ¢ and j in
the above argument yields the same contradiction.

Sub-step 2.5. Since s varies with the beliefs of agents 1 and 2 on PV (7), (41) must
hold with {7, j} = {1, 2}, completing the proof of statement (). O

Terminology. Given 7 € PV, a rule s of the type identified in part (a) of Lemma 9
is called (1,2)-dictatorial (with respect to {A(x), B(m)}) on PN(x) : the assignment
varies only with agent 1’s beliefs and only the events allocated to agents 1 and 2
change. For such a rule, there is no loss of generality in assuming that w € A(m): we
maintain that convention throughout.

A rule of the type identified in part (b) is called {1,2}-consensual (with respect
to {A(r), B(m)}) on PN(m). We call it (1,2)-consensual if @ € B(rw) and (2,1)-
consensual if @ € A(7): under an (i, j)-consensual rule, the “default option” assigns
state w to agent 1.

We call the sets Cy(7), ..., Cy(7) residuals.

10 Appendix C: proof of the Bilateral Consensus
lemma

10.1 Contagion results

As in Appendix B, we N remains fixed throughout this sub-section, and we keep
the notation Q = Q\ & and P = P(Q). For any fixed belief profile 7 € P, Lemma 9
describes the structure of s on the sub-domain PV (7). We will now describe how this
structure varies with m. We begin with two “contagion lemmas” and an “independence
lemma”, which link the behavior of s across “adjacent” sub-domains. These lemmas
require extending the notion of adjacency to beliefs defined over an arbitrary subset of
Q. Forany @ C Q (e.g., 0 = Q), let H(Y) = {{A4, B} : 0 # A, B C & and ANB = 0}
and say that m;, 0; € P(§Y) are {A, B}-adjacent if (m;(A) —m;(B))(0:(A) —0y(B)) < 0
and (m;(C) — m(D)) (0:(C) — 0;(D)) > 0 for all {C,D} € H(Y)\ {{4, B}}. With
a slight abuse of notation, we use J to denote the adjacency relation between beliefs
on any €. Connectedness of a subset of P(2') is defined in the obvious way.
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First, an intermediate result.

Lemma 10. Let 7 € 73N, let 01,09 € P be adjacent to my, T, respectively, and let s
be (2,1)-consensual with respect to {A, B} on PN () with residuals Cy, ..., Ch.

(a) If s is (2,1)-consensual with respect to some {A’',B'} on PN(oq,m_5), then
{A", B’} cuts P(ma) and {A, B} cuts P(o2).

(b) If s is (2,1)-consensual with respect to some {A’, B’} on PN(oy,7_1), then
{A", B'} cuts P(m) and {A, B} cuts P(oy).

Remark 2. We stated Lemma 10 for the ordered pair (2,1) for notational simplicity
only: up to a relabeling, the result applies to any ordered pair (i,j) of agents. This
comment applies also to the results below.

Proof. We only prove statement (a). Although statement (b) is not a mere permuta-
tion of statement (a) (because s is (2, 1)-consensual in both cases), its proof is almost
identical and therefore omitted. Fix 7 € PV and o9 € P adjacent to my. Suppose
s is (2, 1)-consensual with respect to {A, B} on PV (r) with residuals C, ..., C,,, and
(2,1)-consensual with respect to {A’, B’} on PN(gy,7_5) with residuals Cf, ..., C".
Fix an arbitrary sub-profile p_j5 € PY\12(7_15) and drop it from the notation. Then,
for all p = (p1,p2) € P(m) x P(m2),

(s1,52)(p1,p2) = (AUC,,BUCy)  if pr1(A) > p1(B) and pe(A) < po(B),
7 ’ (BUC,,AUCy)  otherwise,
(42)

and for all (py, ) € P(m) X P(oa),

(A"UCLB'UGG)  if pi(A) > pi(B') and ¢2(A') < g2(B'),
(s1,82)(P1,q2) = , .. , ,
(B'UC], A UCh)  otherwise,
(43)
where w € AN A, {A, B} cuts P(m),P(m2), and {A’, B’} cuts P(m),P(02). In
particular, writing A := A\ w, A’ := A"\ @, we have

o(A) < ma(B). (44)

o2(A') < 09(B'). (45)

Let pi,p3,q5 and py,p,,q, be, respectively, maximal and minimal elements of
J in, respectively, P(m), P(ms), and P(03). Let {E,E'} € () be the unique pair
of disjoint subsets of Q such that 7 and o, are {E, E'}-adjacent with, say, ma(FE) >
mo(E'). Recall that my, 5 are beliefs on Q = Q\ @; this implies that & ¢ E U E',
Observe now that pJ, ¢~ are {E, E'}-adjacent beliefs on Q: this follows directly from
the characteristic inequality (29). In contrast, ps, g5 need not be adjacent, as Figure
2 illustrates.
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We will only prove that {A’, B’} cuts P(ms); the proof that {A, B} cuts P(o2) is
the same, mutatis mutandis. Suppose, by way of contradiction, that

ma(A') > mo(B'). (46)

We first claim that for every W € EU E’,
Py |Q~q [Q (47)

where Q := Q \ @. To see why, fix disjoint events C, D C Q) and observe that

P2 (C) <py (D) & m(C\©) <m(D\w)
& 0o(C\B) < 0o(D\ D)
& ¢ (C) <gy (D).

The first equivalence holds by definition of p, . The second holds because W € F'U E’
and @ ¢ C'U D imply that {C'\ @, D \ w} differs from {E, E'}, the unique pair of
disjoints subsets of Q on which the likelihood orderings generated by m,, 09 disagree.
The third equivalence holds by definition of ¢ .

Next, let 7, be a belief on ) such that Dy | O~ a5 | Q ~ 7. We emphasize that
the belief 75 is not defined on the same event as s, 09, which are beliefs on Q. Define

P(my) = {pg EP:p | Or %2} . For every a € [0, 1], define

“qp =ap, +(1—a)g .

Observe that *qz € P(T2) N (P(02) UP(ms))) for every a € [0,1], where the upperbar
denotes the closure operator. Furthermore, because we assumed that {A’, B’} does
not cut P(ms) (i.e., (46) holds), there exists some « € [0, 1] such that

“q2 € P(0,) and “ga(A") > “qo( B'). (48)

We omit the easy proof for brevity.
Pick p; € P(m) such pi(A) > pi(B) and pi(A’) > p1(B’). By definition of ¢, and
thanks to (45), g5 (A") < g5 (B'), hence from (43),

82(p170 CI2) - 82(p17q2_) = B,UOé (49)
Choosing « such that (48) holds, (43) again implies
s2(p1," q2) = A"U Oy (50)

But since Pgy € P(p) for all § € [0,1], (49), (50), and Lemma 8, applied with Q
instead of €2, imply
s2(p1," q2) = s2(p1,py ) = A" U Gy,
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However, by definition of p, and thanks to (44), p; (A) < py (B), hence from (42),

82(p17p5) =BU 027
contradicting the previous equality since w € (A'UCY) \ (BU Cy). O

First Contagion Lemma. Let 7 € ﬁN, let 05 € P be adjacent to my, and let s be
(2, 1)-consensual with respect to {A, B} on PN (n) with residuals C4, ..., Ch,.

(a) If {A,B} cuts P(o2), then s is (2,1)-consensual with respect to {A, B} on
PN (09, 7_5).

(b) If {A, B} does not cut P(os), then s(p) = (BUCy, AU Cy,Cs,...,C,,) for all
p € PN(0a,m_2).

Remark 3. Statement (a) does not assert that the residuals C1, ..., Cl, associated with
the (2,1)-consensual rule s on PN (0q, m_3) coincide with the residuals Cy, ....,C,, on
PN() : in fact, they generally do not.

Statement (b), on the other hand, asserts that s is constant on PN (0o, 7_5) and the
residuals are the same as on PN (7): the assignment outside AU B remains constant
when 2’s beliefs switch from P(ms) to P(oz). It may be worth explaining why a C-BD-
BC union indeed possesses this property. The reason is the following. Since we have
assumed that s is (2,1)-consensual with respect to {A, B} on PN(x), we know that

{A, B} cuts P(mq), that is, mo(A) < ma(B). On the other hand, since {A, B} does not
cut P(oy), we have o3(A) > oo(B). It follows that the adjacent beliefs m, 0y must,
in fact, be {A, B}-adjacent. This means that any two beliefs py € P(ms), gz € P(02)
agree on the ranking of all events C;D C Q\ (AU B). As a result, the assignment
outside AU B remains unchanged under a C-BD-BC union.

Proof. Fix 7 € 75N, oy € P such that T, 09 are adjacent. Suppose s is (2,1)-
consensual with respect to {4, B} on PV (7) with residuals C}, ..., C,, : (42) holds for
all p € PN(m), @ € A, and {A, B} cuts P(m), i.e., (44) holds. For any k € N, let
pi,p;, denote maximal and minimal elements of J in P(r1), ¢F,¢; be maximal and
minimal elements of J in P(0), and let E, E' be the disjoint subsets of  such that
mo and g are { £, E'}-adjacent with mo(F) > mo(E’). Recall that w ¢ EU E'.

Step 1. We show that for every agent k # 2 and every k' # k, s is neither (k, k')-

dictatorial nor (k, k’)-consensual on P (gq, 7_3).

Fix k # 2, k' # k. Fix a sub-profile p_y, € PN\ (7_y.) and drop it from the
notation. Since s is (2, 1)-consensual on PV (7), we have & € so(py,p}). If s is
(k, k')-dictatorial or (k,k’)-consensual on PY(oy,7_5), then & € si(g5,p; ). These
two statements contradict the Local Bilaterality lemma because py,qy are {E, E'}-
adjacent and w ¢ F'U FE'.

Step 2. We prove statement (a).
Suppose {4, B} cuts P(03), that is,

O'Q(A) < O'Q(B). (51)
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Sub-step 2.1. We show that s varies with the beliefs of agents 1 and 2 on P (9, 7_3).

Fix a sub-profile p_i, € PV \12(7r_12) and drop it from the notation. Because
{A, B} cuts P(o3), there exist adjacent beliefs p, € P(m3) and g, € P(02) such that
Po(A) < Do(B). These beliefs are, in fact, { £, E'}-adjacent.

Choose p; € P(m;) such that p;(A) > pi(B). From (42), sa(p1,py) = AU Cy and
S2(p1,Py) = B U Cy. By the Local Bilaterality lemma,

Sg(pl,q;r> = AUCQOI'(AUCQUE/)\E,
$2(p1,Gs) = BUCyor (BUCLUE')\ E.

It follows that @ € s2(p1,q5 ) \ s2(p1,qs): s varies with agent 2’s beliefs.
Next, choose ¢; € P(m) such that ¢1(A) < ¢1(B). From (42), s2(q1,D5) = AU Ch.
By the Local Bilaterality lemma,

$2(q1,Gy) = AUCy or (AUC, UE')\ E.

Thus @ € s55(q1,qy) \ S2(p1,qy): s varies with agent 1’s beliefs.

Sub-step 2.2. Since s varies with the beliefs of agents 1 and 2 on PN (o, 7_5),
Lemma 9 and Step 1 imply that s is (2, 1)-consensual with respect to some {A’, B’} on
PN (09, m_9) with, say, residuals C1, ..., C%. Thus, (43) holds for all (p, g2) € P(my) X
P(o2), w e A', and {A’, B'} cuts P(m;), P(02). In particular, (45) holds. To complete
the proof of statement (a), it remains to prove that {A, B} = {A’, B'}.

Suppose, contrary to our claim, that {A, B} # {A’,B’}. Define the positive
numbers

b = 7r1(B)—7r1(A~),
(5/ = 771(B,)—7T1(A/>.

Assume ¢ # ¢'. This is without loss of generality: if 6 = ', simply replace m; with
an ordinally equivalent belief for which the two corresponding numbers differ. Either
0 < 6 or & < 6. We will only treat the former case; the latter is identical, mutatis
mutandis.

For each « € [0, 1], define p¢ € P(m,) by

PS(@) = a and pf(w) = (1 — a)m (w) for all w € Q.

Elementary algebra shows that p{(A) < pf(B) & «a < 1%5 and p§(A’) < p{(B') &

a < %/5/' Since § < ¢’, we have % < 1515/' Choosing 1%5 <a< %, we have
Pr(A) > pi(B) and pf(A") < pi(B). (52)
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Because of (44) and (51), there exist adjacent beliefs ps € P(m2) and ¢o € P(02)
such that pa(A) < pa(B). This is illustrated in Figure 3 with A = {1}, B = {2}; we
omit the easy proof for brevity. From this inequality, (42), and the first inequality in
(52), we obtain

so (pf, p2) = BU Cs.

From (43) and the second inequality in (52),
s2(p1,q2) = AU Cs.

It follows that w € s (pf, ¢2) \ s2 (p$, p2) , contradicting the Local Bilaterality lemma
because po, go are {E, E'}-adjacent and w ¢ F U E'.

Step 3. We prove statement (b).
Suppose {A, B} does not cut P(o3), that is,

o2(A) > 03(B). (53)

Sub-step 3.1. We prove that s is neither (2, k)-dictatorial nor (2, k)-consensual on
PN (g, 7_5) for any k # 2 .

Suppose it is.

Case 1: {A', B’} cuts P(m), that is, m(A") < me(B').

Fix a sub-profile p_g, € PN\ (7_y,) and drop it from the notation. Because of
(53), there exist adjacent p; € P(ms) and g € P(02) such that ps(A) > pe(B) and
B(A") < g(B).

Choose py € P(my) such that pp(A’) > pr(B’). From (42), w € s9(p2, pi). But since
s is (2, k)-dictatorial or (2, k)-consensual on PN (a9, 7_5), @ € s(qo, pr.), contradicting
the Local Bilaterality lemma.

Case 2: {A’, B'} does not cut P(m,), that is, my(A’) > mo(B’).

Fix a sub-profile p_» € PN\2(7_,) such that p;(A) > py(B) and pp(A") > pr(B)
(where 1 and k£ may coincide). Drop this sub-profile from the notation.

We derive a contradiction using a variant of the argument in Lemma 10. Fix
& € EUE'. As we proved in Lemma 10, there exists a belief 7, on Q\@ such that p; | O
~ ¢; | Q ~ 7, and there exists € [0,1] such that “gs := ap; + (1 — a)g; € P(o,)
and “qa(A) > “q2(B).

Since g, (A') < q5 (B') and s is (2, k)-dictatorial or (2, k)-consensual on PV (g, 7_5),

$2:(°q2) = s2(qy) =B UCY,
SQ(QQQ> = A/ U Cé

Since Pqy € P(7) for all B € [0, 1], these equalities and Lemma 8 imply
s2('q2) = sa(py) = AU,
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But (42) implies sa(p; ) = B U Cy, a contradiction.

Sub-step 3.2. Step 1, Sub-step 3.1, and Lemma 9 together imply that s is constant
on PY(oq,m_3). To complete the proof of statement (b), we need to show that the
constant assignment prescribed by s is (B U Cp, AU Cy, Cs, ..., Cy).

Fix again @ € EUE and 7 ~ p; | Q ~ ¢; | Q. Because {4, B} does not cut
P(02), there exists a € [0, 1] such that ®gs := ap; + (1 —a)g, € P(m,) and *¢2(A4) >
“q2(B). Pick p; € P(m) such p,(A) > p,(B). Fix p_1» and drop it from the notation.
From (42),

s2(Pr,' q2) = s2(py,py) = BUCY,
32(1_917QQZ) = AUC,.

Since #gy € P(7y) for all B € [0, 1], Lemma 8 implies

$2(P1,” q2) = 52(Dy, q7) = AU Cy,

hence, since s is constant on PV (09, 7_3), so(p1, q2) = AUC, for all (py, q2) € P(my) x
P(09). The claim now follows from non-bossiness. [J

Second Contagion Lemma. Let m € PN and let oy € P be adjacent to .

(a) If s is (2,1)-consensual with respect to {A, B} on PN () and {A, B} cuts P (o),
then s is (2,1)-consensual with respect to {A, B} on PN (o, m_1).

(b) If s is (2,1)-consensual or (2,1)-dictatorial with respect to {A, B} on PY(m)
and {A, B} does not cut P(o1), then s is (2,1)-dictatorial with respect to {A, B} on
PN(oy,7_1).

Remark 4. Statement (a) is not the permutation of statement (a) in the First Con-
tagion lemma because the Tule is assumed to be (2,1)-consensual in both cases.

Proof. Fix 7 € PV and oy € P adjacent to m. For any k € N, let p{,p, denote
maximal and minimal elements of J in P(mk), let ¢, q; be maximal and minimal
elements of J in P(01), and let now E, E' denote the disjoint subsets of € such that
m and oy are {F, E'}-adjacent with m(EF) > m(F’). Again, w ¢ EU E".

Step 1. We show that if s is (2, 1)-consensual or (2, 1)-dictatorial on PV (7), then
for every k # 2 and k' # k, s is neither (k, k’)-dictatorial nor (k, k’)-consensual on
PN(oy,m_4).

Fix k # 2, k¥ # k. Fix a profile p € P¥(7) such that p; = pf, p» = pg,
and pr = p; (where k may coincide with 1). Since s is (2, 1)-consensual or (2,1)-
dictatorial on PY (), we have @ € so(p). If s is (k, k)-dictatorial or (k, k")-consensual
on PN(oy,m_1), then & € s(q¢,p_1). These two statements contradict the Local
Bilaterality lemma because pf, ¢, are {E, E'}-adjacent and & ¢ EU E'.

Step 2. We show that if s is (2, 1)-consensual or (2, 1)-dictatorial on P¥(7), then s
it is not constant on PV (o, 7_1).
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Fix a sub-profile p_15 € PVM\M2(7_15) and drop it from the notation. If s is (2, 1)-
consensual or (2, 1)-dictatorial on PN (7), there exist disjoint sets A, B, Cy such that
w e A and

Sg(pii_,p;—) = AUO27
52(p;r7p5) = BUC2

and the Local Bilaterality lemma implies

solq,py) = AUCyor (AUCLUE)\ F,
s2(qi,p3) = BUCyor (BUCL,UE)\ E.

Hence, @ € s2(q;,py) \ s2(qf, py ), proving that s is not constant on PV (o, m_1).
Step 3. We prove statement (a).

Suppose s is (2, 1)-consensual with respect to { A, B} on PV (r) with, say, residuals
Ci,...,Cp, and {A, B} cuts P(oy). Fix p_1» € PVV2(7_15) and drop it from the

notation. By assumption, (42) holds for all (p1,p2) € P(m) X P(ms) and 01(A) <

O'l(B).

Sub-step 3.1. We show that s varies with agent 1’s beliefs on P¥ (o, 7_1).
Because {A, B} cuts P(o;), there exist adjacent beliefs p, € P(m;) and g, € P(01)

such that p;(A) < p;(B). These beliefs are, in fact, {E, E'}-adjacent.

Choose py € P(my) such that py(A) < pa(B). From (42), so(pi,pe) = B U Cy and
S2(Py, p2) = AU Cy. By the Local Bilaterality lemma,

so(q,p2) = BUCyor (BUCL,UE')\ E,
Sg(al,pg) == AUCQ or (AUCQUE/>\E

It follows that @ € s5(qy, p2) \ s2(qy, p2): s varies with agent 1’s beliefs.

Sub-step 3.2. By Step 1, Sub-step 3.1, and Lemma 9, s is (2, 1)-consensual on
PN (o1, 7_1) with respect to some {A’, B’} and residuals C7, ..., C". For all (¢1,p_1) €
PN(O'l,ﬂ',l),

( ) = (AUuC,BUC,Cl,....CH) if i (A') > qi(B') and pa(A') < po(BY),
MPUT (Bruc, AU Cy Ol otherwise,
(54
where w € A" and {A’, B'} cuts P(01), P(my). It remains to prove that {A’, B’} =
{A, B}.
Fix p_1p € P¥\2(1_15) and drop it from the notation. If {4’ B’} # {A, B},
define the positive numbers

6 = 7T2(B)—7T2(A’27
(5/ = TQ(B/)—TFQ(A,)
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and assume without loss of generality & # ¢'.

If 0 < ¢, there exists po € P(ms) such that pa(A) > po(B) and pe(A’) < pa(B’).
From (42), so(py, p2) = AUCy and from (54), so(q;, po) = B'UCY, contradicting the
Local Bilaterality lemma.

If 0" < 0, there exists py € P(ma) such that ps(A) < po(B) and pa(A") > pa(B’).
From (42), so(pf, p2) = BUC, and from (54), sy(q]", p2) = A’ U (Y, contradicting the
Local Bilaterality lemma again.

Step 4. We prove statement (b).

Sub-step 4.1. Suppose first that s is (2, 1)-consensual with respect to {A, B} on
PN (r) and {A, B} does not cut P (o).
By Steps 1, 2, and Lemmas 9 and 10, s is (2, 1)-dictatorial on P¥ (o, 7_;) with
respect to some {A’, B’} and residuals Cj, ..., C".. For all (q1,p_1) € PN(oy, 7 1),
{ (AUC,, B UC,Ch,...Cl)  if po(B') > pa(A),
S(ql’p_l) - / 1AL el / ; (55)
(BUC,AUuCs, Cs,...,Cl)  otherwise,
where w € A" and {A’, B’} cuts P(oq). It remains to prove that {A’, B’} = {A, B} .
If {A",B'} # {A, B}, consider again the numbers 0,9’ defined in Sub-step 3.2
and assume without loss of generality § # ¢'. Note that ' may now be negative as
{A’, B’} need no longer cut P(m). This, however, does not affect the rest of the
argument: combining (42) with (55) rather than (54) delivers the same contradiction
to the Local Bilaterality lemma.

Sub-step 4.2. Suppose next that s is (2, 1)-dictatorial with respect to {A, B} on
PN () and {A, B} does not cut P(ay).

By Steps 1, 2, and Lemma 9, s is either (2, 1)-consensual or (2, 1)-dictatorial on
PN(O'l, 7T,1).

If s is (2, 1)-consensual on PN (o, 7_1), it must be with respect to some {A’, B'} #
{A, B} since {A, B} does not cut P(oy).

Suppose first that {A’, B’} does not cut P(m) : exchanging the roles of {A, B},
{A’, B’} and 71,07 in the argument in Sub-step 4.1 leads to the conclusion that s is
(2, 1)-dictatorial with respect to {A’, B’} on P¥(r), contradicting the assumption of
the current sub-step.

Suppose next that {A’, B’} cuts P(m): exchanging the roles of {A, B}, {A’, B’}
and 7,07 in statement (a) leads to the conclusion that s is (2, 1)-consensual with
respect to {A’, B’} on PY(r), again a contradiction.

We conclude that s is (2,1)-dictatorial on P (o, 7_1). The proof that it must
in fact be (2,1)-dictatorial with respect to {A, B} proceeds in the same way as in
Sub-step 4.1. [J

Independence Lemma. Let 7 € PN, k€ N \ {1,2}, and let o, € P be adjacent
to m. If s is (2,1)-consensual with respect to {A, B} on PN(x), then s is (2,1)-
consensual with respect to {A, B} on PN (oy,7_4).
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Proof. Fix 7 € PV and suppose s is (2, 1)-consensual with respect to {A, B} on
PN (7) : there exists a partition {A, B, (4, ...,C,} of Q such that @ € A, {A, B} cuts
P(m), P(ms), and, for all p € PN (),

S(p) _ { (A U Cl, BU Cg, 03, . On) if p1<A> > pl(B) and pg(A) < p2(B)7
(BUCy,AUCy,Cs,...,C,)  otherwise.
(56)
Fix k € N\ {1,2}, say, k = 3, and let o3 € P be adjacent to ms.

By calibrating the probability assigned to w, we can find {A, B}-adjacent beliefs
p1, P, € P(m) and {A, B}-adjacent beliefs po, pl, € P(m) with, say, pi1(A) > pi(B)
and py(A) < po(B). Let p_1a3 € PN\2(q_153). This sub-profile is fixed through-
out the argument and therefore omitted from the notation. Let p3, g5 be maximal
clements of J in P(m3), P(03).

By (56),

8(p1,p2,p§_) = (A U 01, B U 02, Cg, ceey Cn),
s(p),p2,p3) = (BUC, AUCy, Cs, ..., Cy), (57)
S(pl,pé,p;) = (B U 01, A U 02, 03, ceey Cn)

Step 1. We show that there exists a partition {C1,...,C/,} of Q\ (AU B) such that

s(p1,p2.q3) = (AUCL, BUCy, Cy, ..., C}). (58)

By definition, p3,q5 are adjacent. By the Local Bilaterality lemma and the first
equality in (57), there are only three cases.
Case 1. There exists some j # 1,2,3 such that s;(p1,p2,q3) N s3(p1,p2,p3) # 0,
S3(p1)p2)Q;) N Sj(plap%pg_) 7é (2)7 and Si(plup%q;_) = Si(php%p;_) for all 4 7é j73

In this case (58) holds with C} = C; for all i # 7, 3.

Case 2. 51(p17p27Q;) N 33<p17p25p§_) 7é (Da 53(p17p27Q§,~_) N 31(P1>p2>p;,_) 7& (Da and
si(p1,p2, a3 ) = si(p1,pe,ps) for all i # 1,3.

It AZ s1(p1,p2, g5 ), then since py, pj are {A, B}-adjacent with pi(A) > pi(B), the
Local Bilaterality lemma implies s(p}, p2,q3 ) = s(p1, p2, g5 ). Comparing with (57),

s1(py,p2.g3) N B = 0 and si(p,p2,p3) N B # 0,
82(p,17p27q;_) NnB 7£ @ and Sg(pll,pZ,p;) N B = @7
s3(p},p2,q3) N A # 0 and s3(p),pe,p3) NA =0,

implying s;(p}, p2, ¢35 ) # si(Py, p2, p3) for i = 1,23, contradicting the Local Bilater-
ality lemma.
This shows that A C s;(p1, p2, g3 ). Then (58) holds with C! = C; for all i # 1, 3.

Case 3. so(p1,p2,q3) N s3(p1.p2,p5) # 0, s3(p1,p2.q5) N sa(pr,pa.py) # 0, and
Si<plap27Q;_) = Si(plap%p;—) for all ¢ # 2,3.
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If B £ s3(p1,p2, g4 ), then since ps, ph are {A, B}-adjacent with pa(A) < po(B), the
Local Bilaterality lemma implies s(p1, py, g3 ) = s(p1, p2, g5 ). Comparing with (57),

si(pr,ph.ad) N A # 0 and si(py,ph,p3) NA=0,
sa(pr,pp ad ) N A = 0 and sa(pr,ph, pd) NA#0,
s3(p1,Py,q3) N B # 0 and s3(p1,py, p3) N B =0,

implying s;(p1, Ph, @3 ) # si(p1,Ph,p3) for i = 1,2, 3, contradicting the Local Bilater-
ality lemma again.
This shows that B C sy(p1, p2, g5 ), Then (58) holds with C! = C; for all i # 2, 3.

Step 2. We show that

n

s(p1,p2,q3) = s(p1,py,q5) = (BUCL, AUC;, Cy, ..., C)). (59)

Since py,p| are {A, B}-adjacent, Step 1 and the Local Bilaterality lemma im-
ply that either (i) s(pj,p2,q5) = (AUC], BUCS, C},...,Ch) or (ii) s(p,p2,q5) =
(BUC, AU Cy,CY, ..., Cl). Statement (i) and the second statement in (57) to-
gether contradict the Local Bilaterality lemma, hence (ii) must hold. Likewise, the
third statement in (57) and the Local Bilaterality lemma imply that s(py, ph,q5) =
(BUCT, AuCs,CY, ..., Ch).

Step 3. Combining statements (58), (59), and statement (b) in Lemma 9, we obtain
that for all (¢1,q2,q3) € P(m1) x P(ma) X P(03),

(AuC,BUCy,Cs, ..., C) if ¢1(A) > ¢1(B) and ¢2(A) < ¢2(B),

s(q1,92,q3) =
(91, G2, 43) { (BUC, AUy, CY, ..., C)  otherwise.

Since p_ip3 was chosen arbitrarily in PN\'23(7_j53), this proves that s is (2,1)-
consensual with respect to {4, B} on P¥ (03, 7_3). O

Next, we derive two corollaries of the above results which link the behavior of s
across sub-domains that need not be adjacent.

First Contagion Corollary. Let m € PN et 0y € P, and let s be (2,1)-consensual
with respect to {A, B} on PN (m) with residuals Cy, ..., C,,.

(a) If {A,B} cuts P(o2), then s is (2,1)-consensual with respect to {A, B} on
PN(O'Q,W,Q).

(b) If {A, B} does not cut P(oq), then there exists a partition {C1,...,C!} of Q\
(AU B) such that s(p) = (BUC};, AUC,, C%,....,C") for all p € PN (09,7 3).

Proof. Let m € ﬁN, oy € 75, and suppose s is (2, 1)-consensual with respect to
{A, B} on P¥(r) with residuals C1, ..., C,,. Define

P, = {o2€P:0s(A) <0s(B)},
P = {o3€P:0s(A) > 0y(B)}.
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These sets partition P: oy € P, if and only if {A, B} cuts P(o,). Clearly, P, and
P_ are connected: any two beliefs in one set are linked by a J-path of adjacent beliefs
in that set. Since s is (2,1)-consensual with respect to {A, B} on PN (7), we have
Ty € P+.
Step 1. We prove statement (a).

Let 05 € Py. Let (04)Z, be a J-path in P, with 03 = m and o7 = oy. Since
s is (2, 1)-consensual with respect to {4, B} on PY (0, 7_5), repeated application of

statement (a) in the First Contagion lemma implies that s is (2, 1)-consensual with
respect to {4, B} on PV (0l 7_5) = PN (09, 7_3).

Step 2. We prove statement (b).

Call two distinct events C, D C Q adjacent in oy € P if (02(C) — 09(E))(02(D) —
o2(E)) > 0 for all E C Q different from C, D. Define

P* = {0, € P: A, B are adjacent in 0y},
B~ PP
P = PP

We will first prove that statement (b) holds if o5 € P, then show that it holds for
all o5 € P_. The argument is illustrated in Figure 4.
Sub-step 2.1. If 0, € P*, then oy is {4, B}-adjacent to some belief o, € 751 By

statement (a), s is (2, 1)-consensual with respect to { A, B} on PY (o}, 7_5). Statement
(b) now follows from statement (b) in the First Contagion lemma.

Sub-step 2.2. If o, € P_\ P*, recall first that, since {4, B} does not cut P(o,), we

have 05(A) > 02(B). Fix p = (p2,p-2) € PV (02, 7_3). Consider, for each a € (0,1),
the probability measure o defined over the subsets of €2 by

09 <Eﬂ;{> 09 (EﬂZ)

03 (E) = a——F=—+ —— =
09 (A) 09 <A>

where A = Q \ A. Each oy is a variant of the belief o5 where the probability of the

states in A relative to those outside A is modified, but the conditional beliefs on the

+(1-0) for all E C €, (60)

subsets of ]{7 as well as on the subsets of Z, are kept unchanged. If a = oy (ﬁ), then
(0% 3 3 3 — OQ(B) « P R (0% 1 3
o8 coincides with oy. If @ = Tor(B)=oa (D)’ then 0§(A) = 0§(B). This means that if «
o2(B)
N +02§g§—02(
_o2\B)
shows that ai(A) > ToaB)on D)
Write po(w) = 7 and define, for each a € (0, 1), the measure p§ over the subsets

of Q by

is sufficiently close to - ik the belief o belongs to P Elementary algebra

pS(E) =y H(EN{@}) + (1 -7) of (E N ﬁ) for all E C Q, (61)
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where 1(EFN{&}) =1if © € E and 0 otherwise.

Choose an increasing sequence of numbers «(1),...,a(T) in (0,1) such that (i)
o5 is adjacent to o5V for all t = 1,...,T — 1, (ii) o5 € P*, and (iii) 05™ = oy,
Define the J-path (o)L, in P_ by o = 02“) for t = 1 ., T. Define the associated

at)

finite sequence (p4)L_, in P by p, = p3* fort = 1,...,T. Observe that pZ = py and
pl, € P(o}) for each t, but ph, pt;rl need not be adjacent. Finally, for each t = 1,..., T,
let y} be a maximal element of J in P(ot). Observe that yb, y5™ are adjacent and
write y2 = ys.

Since y} € P(cl) and o} € P*, Sub-step 2.1 implies that there exists a partition
{C1,....,C'} of Q\ (AU B) such that s(yl,p_s) = (BUC], AU Cy,Cj,....,C"). We
will show that s(p) = s(p2,p—2) = (BUC], AU C4, CY, ..., Cl). By non-bossiness, it
suffices to prove ss(p) = AU C4.

We have
S2(Y%7p—2) =AU Cé

Proceeding now by induction, fix t € {1,...,T — 1} and suppose that
SQ(Yévp—Q) =AU Cé

Let {E", E"'} € H() be the pair of disjoint events such that o, o5 are { E", B

adjacent with of(E") > ob(E™!). Because of, o™ coincide on A as well as on A,
E'NA+0and B A A # 0.

If s5(y5™,p_2) # s2(yh p—2), the Local Bilaterality lemma implies so(y5",p_2) \
so(yh, p_2) = B Since A C so(yh, p_2), we conclude E™™ N A = (), a contradiction.
Therefore so(y5t, p_o) = AU C%, and finally

Sz(yQ,p_z) =AU Cé (62)

Next, we claim that
s2(p) = s2(p2, p—2) = AU Gy,
First, observe that since p} € P(ol) and o} € P*, we have
52(P3, p—2) = AUCy

Next, suppose, by way of contradiction, that sy(ps,p_2) = D # AU C). By Lemma
9, wé¢D.

o2(0\D) _ 2(A\D)

o(3)  ea(d)

Case 1.
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By strategyproofness, pa(sa(p2,p-2)) > p2(s2(y2, p-2)), hence by (62), p3 (D) >
pl (AU CY). Given (61), this means

(A U (J’) — oT(D)

< —7. (63)
1+ 07(D) — o (A U Cg)

From (60),

op) <A\ D) 02(Ch) — o9 (D N Z)
(3 - (3)

By assumption of Case 1, the second term of this convex combination is smaller than

the first. Since (1) < a(T), it follows that ok (AUC,) —o}(D) < oL (AUC)) — T (D),
hence from (63),

03 (AUCy) — a3 (D)) = (T) +(1—a(T))

(A U C') — ol(D)

1 +04(D) — ot (AU Cy) =

which, given (61), implies p3(D) > p3(AUC), that is, p3(sa2(g2, p—2)) > P3(s2(P3, P-2)),
contradicting strategyproofness.
o3(C\D) o2(A\D)
o2 (Z) = oa(4) B
Define C} := \ C%. Because o9 (Cf) < 09 <Z> and o9 (ﬁ) <oy (C3),

Case 2.

7 (A\D) _ a(c3\ D)
oy (CY) o2 (C3)
Notice that this is the very same inequality as the one defining Case 1 —except that
the roles of C% and A have been exchanged.
For each o € (0, 1), define the probability measure 75 over the subsets of Q by
o2 (ENCY) o2 (ENCy)

22 (1— )22 g all EC Q)
o (Cy )02«15)

T5(F) = «
and the measure r5 over the subsets of €2 by
r9(B) =~ (EN{D)) + (1 — ) 72 (E N é) for all E C Q.
These constructions are the same as in (60) and (61), except that Cj plays the role
of A.
Choose an increasing sequence a(1), ..., a(T") in (0, 1) such that (i) 7, ) i adjacent

to 75 for all ¢, (ii) 75 € P*, and (iii) 75 = 3. Define the path (7'2) " inP_ by
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7t = 75 for all ¢, and define the sequence (ry)=; in P by ry = r3" for all ¢. Finally,

for each ¢, let z5 be a maximal element of J in P(r5) and let z} = 2.
Since 75 € P*, Sub-step 2.1 implies that there exists a partition {C7,...,C"} of
Q\ (AU B) such that s(z,p_o) = (BUCY,AUCY,CY,...,C). In particular,

52(29,p-2) = AUCY.
By the same inductive argument as in Case 1, we obtain
s2(22,p-2) = AUCY.

But since both z5 and 1, are maximal elements of J in P(03), we have sa(z9,p_o) =

S2(y2, P—2), hence (62) implies

52(2271772) =AU Cé-

The proof that sy(p2, p—2) = AUCy now follows by the same argument as in Case
1, provided that we exchange the roles of A and CY. O

Second Contagion Corollary. Let 7 € ﬁN, let o1 € ﬁ, and let s be (2,1)-
consensual with respect to {A, B} on PN () with residuals C4, ..., Ch,.

(a) If {A,B} cuts P(o1), then s is (2,1)-consensual with respect to {A, B} on
PN(O'l,ﬂ',l).

(b) If {A, B} does not cut P(oy), then s is (2,1)-dictatorial with respect to {A, B}

on PN(oy,m_1).

Proof. Let 7 € PN, oy € P, and let s be (2, 1)-consensual with respect to {4, B} on
PN () with residuals C1, ..., C,,. Define Py, P_, Px, P* as in the proof of the previous

corollary. By assumption, 7 € 75+. The argument below is illustrated in Figure 5.

Step 1. To prove statement (a), let o1 € P, and let (¢7)L, be a J-path in P,
with of = m and o] = 0. Since s is (2, 1)-consensual with respect to {4, B} on
PN (of,m_1), repeated application of statement (a) in the Second Contagion lemma
implies that s is (2, 1)-consensual with respect to {A, B} on PN (o1, 7_1) = PN (01, 7_1).

Step 2. To prove statement (), we proceed again in two stages.

If o, € P, there exists a belief o] € 73* to which oy is {A B}-adjacent. By Step
1, s is (2,1)-consensual with respect to {A B} on PN(o},m_1). By statement (b)
in the Second Contagion lemma, it follows that s is (2, 1)-dictatorial with respect to
{A, B} on P¥(oy,m_1).

If o, € P_\ P, let (6¢)Z, be a J-path in P_ with o} € P* and 67 = oy. Since
s is (2,1)-dictatorial with respect to {4, B} on PY (o, 7_1), repeated application of
statement () in the Second Contagion lemma implies that s is (2, 1)-dictatorial with
respect to {4, B} on PN (ol 7_1) =PN(c}, 7). O
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10.2 Proof of the Bilateral Consensus lemma

We are finally ready to prove the Bilateral Consensus lemma. Let w € 5. This state
is again fixed throughout the sub-section, but observe that we now assume that its
assignment varies with the beliefs of at least two agents.

We must show that there exist an event E¥ C ), such that & € E¥, and a
bilaterally consensual E“-assignment rule s* such that

si(p) NE® = s%(p | E¥) for alli € N (64)

and all p € PV,
Recall the definition of ag in (2) and the notation a = ag.

Step 1. There exist 7 € PV, two distinct agents i,j € N, p,q € PN (), and
p; € P(n}), qj € P(n)) such that a(p) # a(pj, p—:) and a(q) # a(q}, q;)-

By definition of 2, there exist two agents, say 1,2, profiles p, ¢ € P¥, and beliefs
pi, ¢, € P such that

a(p) # a(py, p-1) and a(q) # a(qy, g-2)- (65)

Because P is connected, we assume without loss of generality that pq, p} are adjacent
and po, p, are adjacent. Let {F, E'} be the pair of events such that p;, p| are {E, E'}-
adjacent. By the Local Bilaterality lemma and the first inequality in (65), w € FUE’,
hence, (py(C) — p1(D))(p4(C) — pi(D)) > 0 for all distinct C, D C Q. This means
that there exists 70 € P such that p; | Q ~ p} | Q ~ 79, that is, p,p, € P(x?). By
the same token, there exists 79 € P such that p,,p} € P(x2).

To keep notation simple, suppose n = 3; the argument is easily extended to any
number of agents. Suppose first that p3 = ¢3. Dropping that belief from the notation,
(65) reads

a(p1,p2) # a(P’pPz) and a(q1, q2) # a(qi, qé)

Case 1: a(p}, q2) # a(p1,q2) # a(p1,¢5). In this case the claim is trivially true.

Case 2: (i) a(p1,¢2) = a(py, ¢2) or (i) a(p1, ¢2) = a(p1, @)

Assume (i); the argument is the same, up to a relabeling, if (ii) holds. Let (p})
be a J-path between p} = p, and p2 = ¢,. From (65) and (i), there exists an integer
t such that

T
t=1

a(p1, ph) # a(p, ph) and a(py, p5™) = a(p), p5™) (66)

Using the Local Bilaterality lemma, the same argument as in Sub-step 1.1 shows that

there exists 7 such that p, | Q ~ p5™ | Q ~ 70, that is, p4, p5™ € P(x2). Moreover,

statement (66) implies

a(p), ph) # alpy, pb) # a(p1, p5)
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or
a(py, pst) # a(pl, ph) # a(py, ph).
In either case the claim is true.

Finally, let us drop the assumption that p3 = g3. Suppose that there exist ps # ¢3
such that

6(17171727}?3) # 5(]9/1,]92,]93) and 5(Q1, q2, Q3) # 5(Q1> q;, Q3)-
and
a(p1, pa2, q3) = a(py, p2, g3) and a(qr, g2, p3) = alqu, g5, p3)-

Let (p})Z; be a J-path between pi = p3 and pl = ¢3. There exists an integer ¢ such

that
Zi(plap% pé) 7é ,d(p/bp% pg) and a(plvp?v p?l) = Zi(pllaan p?—l)' (67)

By the Local Bilaterality lemma again, there exists 7§ such that p} | O~ pitt | Q

~ 73, that is, p§, p5t' € P (7). Moreover, statement (67) implies

a(p1, pa, Py) # a(ph, p2, Ph) # a(p), p2, P5)

or
Zi(plap% p?—l) 7é a(php?? pg) 7é a(pllap% pg)

In either case the claim is again true.

Step 2. Step 1 has established that there is some 7° € PN such that s varies
with the beliefs of two distinct agents, say 1 and 2, on PV (7). By statement (b) in
Lemma 9, s is bilaterally consensual on PV (7°) and we may assume without loss of
generality (in light of Remark 2) that s is (2, 1)-consensual on that domain: there
exists a partition {A, B, Cy, ...,C,} of Q such that @ € A, {A, B} cuts P(x?), P(n9),
and for all p € PN (x9),

o(p) = { (AUC), BUCs,Ch,...;Cy)  if pr(A) > py(B) and po(A) < pa(B),

(BUC,, AUy, Cs,....,C,)  otherwise.
(68)

Define E¥ := AU B and define the bilaterally consensual E“-assignment rule s®
as follows: for all p € P(E“)N,

(A, B,0,....0) if pi(A) > pi(B) and pa(A) < pa(B),

P = { (B, A,0,....0)  otherwise.

We claim that (64) holds for all p € PV.
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By definition, statement (64) is true for all p € P¥(x?). Next, fix an arbitrary
sub-profile 7_q5 € PN\I2,
Sub-step 2.1. By repeated application of the Independence lemma, s is (2,1)-
consensual with respect to {A, B} on PN (7,79, 7_12), hence, (64) is true for all

pE PN(W?,WQ,’R'_H).

Sub-step 2.2. For any profile (m,m) € 75+ X ﬁ+, combining Sub-step 2.1 with part
(a) of the First Contagion Corollary and part (a) of the Second Contagion Corollary
shows that s is (2, 1)-consensual with respect to {4, B} on P (my, 7, m_12), hence,
(64) is true for all p € PN (71, 72, 7_12).

Sub-step 2.3. For any profile (71,03) € P, x P_, Sub-step 2.2 and part (b) of the
First Contagion Corollary imply that there is a partition {C1],...,C!} of Q\ (AU B)
such that s(p) = (BUC], AUCY, C4, ..., C!) for all p € PN (my, 09, m_12). Since {A, B}
does not cut P(o2), we have py(A) > po(B) for all py € P(09), hence (64) is true for
all p € PN(my, 09, _12).

Sub-step 2.4. For any profile (o1, 7ms) € P x 75+, Sub-step 2.2 and part (b) of
the Second Contagion Corollary imply that s is (2, 1)-dictatorial on PY (oy, 7o, 7_12).
Since {A, B} does not cut P(oy), we have p1(A) > pi(B) for all p; € P(01), hence
(64) is true for all p € PN (o, 72, T_12).

Sub-step 2.5. Consider finally a profile (o1, 09) € P xP_. By definition, O'Q(A/) >
09(B). For each a € (0,1), consider again the measure 403 defined on Q by (60).

Recall that 409 coincides with oy for a = 09(A) and observe that ,o9 € P, for any
o2(B)

generic a < 02 (B) 0D

Choose an increasing sequence of numbers a(1),...,(T) such that (i) 4@ o2 is
adjacent to 4uq1)02 for all ¢t = 1,...,7 — 1, (ii) 4q)y0o2 € ﬁ+, and (iii) o1)o2 = 0o.
Consider the J-path (¢4)Z_, in P_ defined by o = 02 fort =1,...,T.

Since o4 € 73+, Sub-step 2.3 implies that there exists a partition {C],...,C!} of
Q\ (AU B) such that s(p) = (BUC], AUC}, C},...,C") for all p € PN(oy, 08, 7_12).
The same argument as in Sub-step 2.2 of the proof of the First Contagion Corollary
then establishes that s(p) = (BUC}, AUCS, C%, ..., C!) for all p € PN (01,00, 7_19) =
PN (01,09, 7_19).

Since {A, B} does not cut P(03), we have pa(A) > po(B) for all p, € P(03), hence
(64) is true for all p € PN (oy, 09, 7_12).

Since P = U_ 5P (7;), the proof of the Bilateral Consensus lemma is complete.

O

11 Appendix D: proof of the Bilateral Dictator-
ship lemma

Let €211 be the set of states whose assignment varies only with the beliefs of agent 1,
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namely,

w € 1 & [there exist p € PV and p} € P such that a,(p) # au,(p},p—1)] and
[aw(.,p_j) is constant on P for all j # 1 and p_; € PN\j] )

To avoid triviality, assume Q17 # 0. Let @ € Q7. We must show that there exist a
set Ny C N\ 1, a partition {Qil}jeN1 of Qq3, and for each j € Ny a (1, j)-dictatorial

Q] -assignment rule s/ such that
si(p) N Q1 = Ujem st (p | 24y) (69)

for all p € PV and i € N.
Define the family

A = {ACQy:3p e PY such that s1(p) Ny = A}
= {AC Qi :3p; € P such that si(p1,p_1) Ny = Aforall p_; € pN\l} 7

where the first equality constitutes the definition and the second follows from the
definition of €2;;.

Let Q; = Q\ Q. Call a belief p; € P Qi-dominant if |pi(A) — pi(B)| >
Ip1(A") — pi(B)] for all distinct A, B C Qy; and all distinct A’, B C Qy; (or, equiv-
alently, |p1(w) — p1(w')| > pi(Qu) for all distinct w,w’ € Q7). In such a belief,
the probability differences within §2;; overwhelm the differences outside €21;. To see
that such beliefs exist, write €17 = {1,...,m} and observe that any belief p; such
that pi(1) > pi(2\ 1), p1(2) > p(2\ 12), ..., and py(m) > p(Q\ 1..m — 1), is
)y1-dominant. Let P;; denote the set of {21;-dominant beliefs.

Step 1. We show that

s1(p) N Q1 = argmax p, (70)
At

for all p = (p1, p_1) € Py x PN\
The claim is obviously true if £2;; = €2; in what follows we assume €2 # €). For
any two beliefs p1, ¢, € P and for any p_; € PV\', we claim that

1| Q1 =aq | Q] = [s1(p1,p-1) N Q1 = s1(qr,p—1) N ] (71)

To see why this is true, fix p1,q1 € P, p_1 € PV\!, and note that the definitions of
Qy and €y, for j # 1 trivially imply

s1(p1,p—1) N [Qo U Uj1 ;] = s1(qr, p—1) N [Qo U Uj1 5]

Moreover, by the Bilateral Consensus corollary, agent 1’s share of €2y is determined
by bilateral consensus, hence does not depend on her belief outside 25. Therefore,

[pl | Q1 =aq | ﬁn} = [51(p1,0-1) N Q2 = s1(q1,p-1) N ],
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and (71) follows.

Let now p = (p1,p_1) € P11 x P\ Since p_; is fixed in the argument below,
we drop it from the list of arguments of s;. Suppose, contrary to the claim, that
s1(p1) N 21 # argmax p;. Choosing ¢; € P such that si(q;) N2y = argmaxp;, we

A1 A1l
have

p1(s1(qr) N Q1) > pa(si(pr) N ).

Because p; is €21;-dominant,

p1(s1(q1) N 1) — pi(s1(p1) N Q)
> pi(s1(p1) N 1) — pi(s1(q) N Q).

Combining these inequalities yields p; (s1(q1)) > p1(s1(p1)), contradicting strategyproofness.

Step 2. We prove that (70) holds for all p € PV.

Let p = (p1,p_1) € PN and drop again p_; from the list of arguments of s;. For
each a € (0,1), define the probability measure ,p; over the subsets of {2 by
ap1(A) = QM +(1-— Q)ZM for all A C Q. (72)
p1(f1) p1(€h)
If &« = p1(Q11), then ,p; coincides with p;. If « is sufficiently close to 1, then ,p; is
Qy1-dominant. For every a, op1 | Q11 = p1 | Qi1 and op1 | Q1 = p1 | Q1.

Choose an increasing sequence of numbers «(1),...,a(7T") such that (i) o@p1 is
adjacent to uqypr for all t = 1,...,T — 1, (ii) oyp1 = p1, and (ili) oyp1 is Qu1-
dominant. Consider the J-path (p})/_; in P defined by p} =) p1 for t =1,...,T.

Let A" = s;(pt) N Qyy for t = 1,...,T. Suppose, contrary to the claim, that A! #

argmax p;. Since p? is Qy;-dominant and p? | Q1 = p; | Qu1, Step 1 implies AT =
A1

argmax p;. Let ¢ be the largest integer in {1,...,T — 1} such that A® # argmaxp;. Let
A1 A

{E!, E*'} be the pair of disjoint events such that p!,p‘™' are {E?, E**'}-adjacent
and p!(EY) > p!(E*). Because pt | Q11 = pi™ | Qi1 and p} | Qi1 = pi™ | Quy,

E'NQy # 0 and E NQy # 0.
By the Local Bilaterality lemma,

si(p}) \ s1(pi™') = E' and s1(pi™") \ s1(p}) = BT

It follows that (s1(p})\ s1(pi™)) N Q1 # 0, that is, s,(p}) N Q1 # s1(PLT) N Oy,
contradicting (71).

Step 3. We show that for all p, ¢ € Py x PN\,

[pl | QH =1 | QH] = [Sl<p) N QH = SQ(Q) N QH fOI' all 4 - N] .
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Let p,q € P11 x PN\L Since we are only concerned with the restriction of s to
11, we may assume p_; = ¢_; and omit that sub-profile from the notation. Suppose
p1| 1 =q | Q1. By Step 1,

s1(p1) N Q1 = s1(q1) NQy = ar(amaxpl. (73)

Because py,¢1 € P11, (73) and super-strategyproofness imply
si(p1) N Q1 = si(q1) N Qqy for all i € N.

Indeed, if, say, so(p1)NQ1 # s2(q1) N1, then (73) and the assumption py | Q11 = ¢y |
Qll 1mply that either (1) P1 (Slg(pl) N Qll) > p1(812(ql) N Qll) and ql(slg(pl) N Qll) >
¢1(s12(p1) N Q41), or (ii) both of these two strict inequalities are reversed. Because
p1.q1 are j3-dominant, each of (i) and (ii) violates super-strategyproofness.

Step 4. We claim that for every w € 4, there is a unique j # 1 such that a, (P11 X
P = {1,5} .

From Step 3, the assignment of all states in §2;; depends only on the conditional
beliefs of agent 1 over €2;;. We may thus drop p_; from the notation and regard s
as a function from P(£211) to S(211). By assumption, s is super-strategyproof (hence
also non-bossy) and it is not constant on P(€21).

We want to show that

s;(p1) N sg(q1) = 0 for any distinct j,k € N\ 1 (74)

and any pi,q1 € P(241). For any Q11 C 41, an Qqq-assignment rule § : P(Qll) —
S(211) will be called 1-C-BD union if it is a union of constant or bilaterally 1-
dictatorial rules on Qn, namely, if there is a partition {Qlu}le of €41 such that, for
all p; € P(Qy),

Si(p1) = Ul sk(p | Q) for all i € N, (75)

where each s' is a constant or (1,j')-dictatorial },-assignment rule. With a slight
abuse of terminology, we will call (the~restriction to P of) § a 1-C-BD union over P
if (75) is satisfied for all p; C P C P(Q41). We prove Step 4 by induction on the size
of QH.

Sub-step 4.1. Suppose that |2;;| = 2 and consider a super-strategyproof assignment
rule §: P(Qy1) — S(11). Then there exists j € N\ 1 such that §;(p) = 4, for all
p1 € P(Qq1). It follows that § is a 1-C-BD union.

Indeed, suppose that Q117 = {wy,ws} and let p; € P(Q1). If we have either 5;(p;) = ()
or §1(p1) = 1, then § is constant over P(€211) and the result of Sub-step 4.1 trivially
holds. Without loss of generality, suppose now that §;(p1) = {wi}. Then there
exists some agent j # 1 such that we € s;(p;) and obviously §1;(p1) = Q51. By
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super-strategyproofness of §, we have py(51;(p1)) > p1(51;(p1)) = p1(£11) = 1, hence,
p1(51;(p1)) = 1, for all p € P(211), meaning that § is (1, j)-dictatorial. Thus, in all
possible cases, s is a 1-C-BD union.

Suppose now that |21;] = K > 3 and assume by induction that every assignment
rule 5 : P(QH) — S(QH) such that |Q11| < K —1is a 1-C-BD union.
Recalling that the range of s1(-) is &€ = {E C Q1 : s1(p1) = FE for some p; €
P (1)}, strategyproofness of s obviously implies s1(p;) = argmaxp; for all p; €
£

P(241).

Given any w € €)j;, define the set of w-lezicographic beliefs L(w) := {p1 €
P(Qll) . p1<w1) > pl(Qll \(_U)} For any g S P(QH) U P(Qll \UJ), let £q1(W) =
{pl S L:(W) -1 ’ (Qll \w) =D | (Qll \Ld)} and, for any « (%7 1)7 define q(f’a <
L8 (w) as follows: for all W' € Qy,

vy a ifw =w,
q1 (w) = q1(w') if W 75 w.

Sub-step 4.2. Consider ¢; € Q4 such that w € s1(¢1); and suppose that p; € L9 (w).
Then we have s(p1) = s(q1)-

The proof of Sub-step 4.2. is rather straightforward, and left to the reader. It follows
from non-bossiness of s and the fact that p;(w) > 1/2 for all p; € L7 (w).

Sub-step 4.3. Fixw € Qy; and a € (3, 1). Define the mapping 5% : P(Q11\w) —
(11 \ w) as follows: (i) o851 (q1) = s1(7™) \ @; (i) o5;“(q1) = si(a), Vi # 1.
Then ,5 ¢ is an (€21 \ @)-assignment rule and a 1-C-BD union.

To prove Sub-step 4.3, note first that w € s1(p;) for all p; € L(@w). Indeed, since
the range £ of s1(+) is a proper covering of €17, there exists p; € P(Qn) such that
w € s1(p1). Therefore, if 0 ¢ s1(p1) for some p; € L(@w), we would have py(s1(p1)) >
p(w) > % > p1(s1(p1)), contradicting strategyproofness.

Building on this result, observe from (i)-(ii) above that the mapping ,5“ satisfies
the feasibility constraint. Indeed, for any ¢ € P (041 \ @)!, since ¢7** € L(@), we get
from the feasibility of s that

= ag]__ ((h)

f__/ﬁ

Uien o8 “(q1) = (s1(¢7") \@) U[Uienyi (g7 )] = Q1 \ @.
~—— T
we w

Thus, the mapping 5% is a well-defined (€ \ @)-assignment rule. Moreover, it is
super-strategyproof (because s is), and since |2;; \ @] = K — 1 < K, our induction
hypothesis implies that ,57 is a 1-C-BD union.

Sub-step 4.4. Fix @ € Qy;. The mapping 5% : L(@w) — S(24;1 \ @), defined as the
restriction of s to £L(w), is a 1-C-BD union over £(w). As a consequence, (74) must
hold for all py,q; € L(@).
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This follows from the combination of Sub-step 4.2 and Sub-step 4.3. Indeed, fix any
o> 1/2; and note from Sub-step 4.2 that, for all ¢; € L(©), we have §°(q1) = s(q1) =
s(qy"™) because ¢ € L7 (). That is to say,

Si(q) =@U o5 %(qr | (Qu\@)) and 57(q1) = o5 %(q1 | (Qu1\@)), Vi # 1 (76)

Recalling from Sub-step 4.3 that ,s is a 1-C-BD union, there exists a partition
Q... 08} of Q11 \ @ and L Ql-assignment rules s,. .., s” such that ,5;“(q; |
(1 \ @) = UL st (qr | ©,) and each s’ is constant or (1, j!)-dictatorial for some
4! # 1. Substituting this in (76) thus gives: for all ¢; € £(©) and i € N,

. UE sh(qu | 94y) ifi£1,
sila) = {azu(uflsé(qlmgl)) =1 (77)

Observe from (77) that §°j , the restriction of s to L(@) is expressed as the union of
the L + 1 sub- rules s, st L where s° is the constant (°-assignment rule which
always assigns 9, := {w} to agent 1. This concludes the proof of Sub-step 4.4.

We are now ready to proceed with the proof of Step 4. Since P(€211) is connected,
there is a J-path (pi)ZL, in P(Q4;) between any two beliefs pi,q € P(Qy). If the
length T'—1 of this path is equal to 1, then py, ¢; are adjacent and the Local Bilaterality
lemma implies s;(p1) N sk(q1) = 0 for any distinct j, k € N \ 1. Next, proceeding by
induction, we assume that (74) is true whenever p;, ¢; are connected by some J-path
of length 7" — 1 < T'— 1 (with 7' > 3) and we prove that (74) also holds for any py, ¢
that are connected by some J-path of length 7" — 1.

By contradiction, suppose that there exist w* € €y and pf,p]" € P(Q11) such
that, say, w* € so(p})Ns3(p}’) and pf, p|’ are connected by some J-path q; = (q})Z,.
Combining the Local bilaterality lemma with our induction hypothesis that (74) holds

for all py, ¢ that are connected by some J-path of length 7" < T'— 1, we obtain

w* € si(q) ')\ si(al) =ss(ai) \ ss(q] ) #0 (78)
sial 1) =sidy), Vi#1,3 (79)
53((1{71)051'(1)/1/) = (2)7 Vi # 17 3. (80>

To see why (78) holds, note that w* € s;(qi™") \ s1(q}) for some ¢t < T'— 1 would
imply a violation of our induction hypothesis on the J-path {q},...,q}}, which is of
length t — 1 < T — 1. Statement (80) holds for the same reason. Finally, (79) follows
from (78) and the Local Bilaterality lemma. In addition, observe that combining (79)
and (80) gives

si(py") Nss(pY) = si(ay) Nss(p)) = si(ar ') Nss(pf) =0, Vi# 1,3, (81)

Sub-step 4.5. There exist w3 € s1(p}") N s3(p]) and we € s1(pf) N s3(p).
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To prove Sub-step 4.5, first note that, together, w* € so(pf) N s3(p]’) and the super-

/1!

strategyproofness of s imply that p{’(sys(»]")) > p{'(sms(pf)). Thus, there exists
w € Qq1 such that

@€ sya(p]’) \ sms(p]) = sws(@i’) N ss(pl)- (82)

It thus suffices now to remark that sy\s(pi”") Ns3(py) = s1(p}") Ns3(p}). Indeed, given
that we have sy\3(p}") := Uizssi(p]’), we can write

sma(p’) Nss(py) = [s1(p1") N ss(P)] U [Uizrs (si(p)) N s3(pY))] = s1(pY) N s3(pf).
=p by (81)

Thus, @ € sps(p]") N sams(P]) = s1(p7") Ns3(py’). A symmetric argument shows that
there exists we € s1(p]) N s3(p]’); and this ends the proof of Sub-step 4.4.

Recall from what precedes that w* € so(p7) N s3(py’), ws € s1(pf’) N s3(pf) and
wy € s1(pf) N s3(pf’). The states w*, wo, w3 are thus necessarily (pairwise) distinct.
We show a few additional sub-steps below.

Fix any ¢} € L (w;) (see Figure 6) and ¢} € LPY (ws3), and define 'q}" € L(ws) by
L (ws) = ¢ (wa), ¢} (wa) = ¢} (w3) and ¢} (w) = ¢} (w),Vw # we,ws. In addition,
call 72 the probability measure over Qy; defined by:'

o2 (wa) = T2 (wa) = 1/2; and 72 (w) = 0 for all w # wa, ws.
Define the two sequences {q{" }n>m, and {G7" }m>m, as follows: for any w € €y,

1 1
@) =g+ (L= ) (83)

~m 1 t 1 w

T() = gl (- )
Figure 6 gives an illustration of the construction of the beliefs ¢7*, g™ starting from
p| € L(ws). It is important to remark that, by definition, we have ¢* € L(ws) and
cﬂ” € E(U)g).ll
Sub-step 4.6. There exist m € IN (with m > m,,m;) and A, A € S(Qy;) such
that

[m > m] = [s(¢]") = A and s(q") = A].

The proof of Sub-step 4.6 is similar to that of Lemma 3-(i), and therefore left to the
reader.

12Obviously, 72 is not an injective probability measure (i.e., 752 ¢ P(€11)); but this does not

affect the validity of our upcoming argument —which is based on the study of sequences of injective
probability measures that converge to m(2.

"There may exist only a finite number of integers m such that ¢/, g/* are not injective; and this
issue is taken care of by conveniently starting the sequence at a rank m, (or mg) that is higher than
any such integer.
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Sub-step 4.7. For any m > m, we have w* € s5(¢"); and it follows that A # A.
We showed in Sub-step 4.4 that 52, the restriction of s to £(ws), can be written as

5 Uiy si(an | Q) if i # 1,

2 = o 84
5i*(q) { wy U (Ulesé(ql | an)) ifi=1, (84)

where each s' is constant or (1, j')-dictatorial for some j' # 1. Call Q¥ the unique

event in the partition { Q, , Qb ..., Q5 } of Q; such that w* € Q¥ . Since ¢} €
={w2}

LP (wy) C L(wy), it follows from Sub-step 4.2 that w* € sy(p?) = s2(q?) = 552(¢));
and we may then conclude from (84) that j*° = 2 and s*" is (1,2)-dictatorial over
4, . We get in the same way that j** = 3 and s*% is (1,3)-dictatorial over Q5%. It thus
follows that ws,wy & Q% —obviously, w? ¢ Q%] since Q9 = {w,}. Using (84) and the
fact that s is (1,2)- dictatorial we may assert that w* € sy(qq) for any ¢; € L(w2)
such that ¢ | Q¢ = ¢f | ©4/. One can then see that w* € s3(¢*) by combining
(83) and waq, w3 ¢ QY to deduce that we indeed have: ¢ | Q% = ¢/ | Q4] for all
m > my.

We conclude the proof of Sub-step 4.7 by noting that we necessarily have A # A.
Indeed, since m > m,, we have w* € Ay = sy(¢"). Assuming that A = A would
thus give w* € Ay = Ay = 55(¢™). But this would contradict the fact that 5 is a
1—C—BD union over L(ws) (established in Sub-step 4.4), which requires (74) to hold
for ¢, ¢ € L(ws) —recall that w* € s3(q}").

Sub-step 4.8. There exist disjoint subsets B, E C Q \ {ws, w3,w*} such that

Al\A1:WQUE:A3\A3,
Al\A1:W3UE:A3\A37
Az:Al for allz;«él,?)

We start the proof of Sub-step 4.8 by noting that: 3 > 7 such that, for any {F, F'} €
Hoand sy m > i [ § F or s ¢ F] = [(67'(F) ()@ (F) - a7'(F) > 0].

This implication holds by construction since lim ¢f" = hm qi" = 752 and T2 (wo) =
m—00

me2(ws) = 1/2. In words: when m is large enough, the Segment [q7", @] cuts only
hyperplanes {F, F'} € H such that wy € F and w;y € F' (see Figure 7), and ¢}", g[* are
on the same side of all other hyperplanes.

Second, recall from (83) that ¢i* | (211 \ {we2,ws}) = ¢ | (21 \ {we,w3}) = ¢
(291 \ {w2,ws}), for any m > m. It hence follows that the set of hyperplanes of the
form {w, U E, w3 U E} is totally ordered along the segment [¢}*, "]. Calling T the
number of such hyperplanes, we may thus write

{{F.F} e H | F = wUE, F = w3UE} = {{wUEy,w3UE}, ... . {wUEp, wsUET, }},

where E' [t = 1,...,T] is the #!" hyperplane cut on the way from ¢* to ¢*. Using
this notation, we may then consider a J-path {p%}Z*! satisfying the properties: (i)
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pl = ¢, pl ™ = @ (ii) p! and pitt are {wy U B, ws U E;}-adjacent for any ¢t =

1,....T.

We conclude the proof of Sub-step 4.8 by showing that there exists a unique
t* € {1,T} such that: (a) s(p}) = s(¢/"),Vt € {1,...,t*} and (b) s(p’) = s(q"),Vt €
{t* +1,...,T 4+ 1}. First, note that the assignment may change only once along
the J-path p. Indeed, if s(p’) # s(p’ ') then we get from the Local Bilaterality
lemma that s;(p!") \ s1(p) ™) = wy U E; and (given that wy ¢ s,(p} ™)), the Local
Bilaterality lemma requires that s(p}) = s(@"),Vt € {t* +1,...,T + 1}.

Second, recall from Sub-step 4.7 (and 7 > m) that s(¢i*) = A # A = s(g").
Hence, there must indeed exist a unique t* € {1,...,T} such that s(p!) # s(p} ™).
The Local Bilaterality lemma, applied to the adjacent beliefs p!’, ptl*H, then gives
the desired result: A; \ A} = wo UE; = A3\ Ag; A]\ A = w3 U Ej. = Az )\ Ag;
A; = A;, Vi # 1,3. Recalling from Sub-step 4.7 that w* € so(¢!") = A, we obtain
that Ep, By C Q\ {ws, w3, w*}.

We are finally ready to clinch the proof of Step 4. We have shown in Sub-step
4.8 that w* € s5(q") = Ay = Ay = so( @" ). But this is a contradiction given that

P
w* € s3( ¢" ). Indeed, this violation of (74) contradicts the fact that (the restriction
to L(ws) of) s is a 1-C-BD union over £(w3) —which was established in Sub-step
4.4. Thus, it never holds that w* € s;(py) N sk(py’) for any w*, pf, p" and distinct
J,k # 1. Given that s is not constant on P(€y;), for any w € €1, we thus have,

a,(P(11)) = {1,7} for some j # 1.

Step 5. We show that for every w € €, there is a unique j # 1 such that a,(PY) =
{17}

Let w € Q1;. By Step 4, there is a unique j # 1 such that a,, (P x PV = {1, 5}.
We claim that a,(PY) = {1, 7} . Suppose, by contradiction, that there exists some
k # 1, and some p € PY such that w € si(p). Drop p_; from the notation. Consider
an Q;-dominant belief p* € P1; such that pt | Q1 = py | Qi1 and pt | Q1 = p1 | Q1.
Such a belief can be constructed by taking « close to 1 in (72). Since a, (P11 X
PN\ = {1, 5}, we have w ¢ s(p}). By Step 2, s1(p1) N Q1 = s1(p?) N Q1. By (71),
s1(p1) = s1(p}). By non-bossiness, s(p;) = s(p}), contradicting w € sg(p1) \ sk(p})
and completing Step 5.

For every j # 1, define QJ, = {weQu:a,(PY)={1,j}} . Let Ny ={j € N\1:
Q{l # (}. By definition, {Q{l 1] € Nl} is a partition of €2y;. For each j € Ny, let

={AC QJ, : 3p € PN such that s,(p) NQY, = A}
Step 6. We show that Ay is a product family. Namely, for any collection of events
{A7:j€ N},
[A7 € A, for all j € Ni] = [Ujen, A7 € Ap] .
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Suppose A7 € Al for all j € Ny and write Ny = {2,...,n1}. Call a belief p;
lexicographically (03, ..., Q1 )-dominant if |p1(A) — py(B)| > |pi(A") — p1(B)] for all
distinct A, B € @), all A/, B’ € Q\ (U,_,Q%), and all j = 2,....,n — 1. Consider a
lexicographically (02, ..., Q})-dominant belief p; such that

argmaxp, = A’
Ay
for all j = 2,....,n — 1. Fix p_; € PM\! and drop it from the notation.
Strategyproofness implies

Sl(pl) N Q%l = AQ.

This is because there is some ¢; such that s;(q;) N Q% = A% argmaxp; = A?, and p;
Al
is 2,-dominant.
Next, proceed inductively. Suppose we have shown that s;(p;) N €], = A7 for

7 =2,...,k—1. We claim that
s1(p1) N QY = A", (85)

Since A* € A%, there is some g; such that s;(q1)NQ, = A% If s1(p)NQY, = BF #£ AF,
then

p1(8{1,...,k71}(171> A (U;C:QQ{l)) = pl(U;?;lejﬁ U Bk)
< p(UZ304, U AY)
= pi(sp,. k-3 (q) N (U§:QQ{1))7

contradicting super—strategyprqofness and proving (85).
We conclude that s;(p;)N§}; = A7 for all j € Ny, which implies that s1(p;)NQ; =
UjeNlAjy hence UjENlAj € An.

Step 7. Step 6 ensures that argmaxp; = Ujen, argmax p; for all p; € P. Combining
Ay n

this with Step 2,
s1(p) N Q11 = Ujen, argmax pi
Al
for all p € PV. Defining for each j € Ny the (1, j)-dictatorial ) -assignment rule s/
by

argmax pp ifi=1,
Ay
s;(p) = N, \argmaxp,  ifi=j,
Ay
0 ifi#1,j

64



for all p € P(Q,)V, statement (69) holds for p € PV and i € N.

To complete the proof, it only remains to check that A{l is a proper covering of
QJ, for every j € Nj.

Fix j € N;. To check that UAjeA{IAj = O, fix w € QJ,. Since, by definition
of @, a,(PN) = {1,5}, there is some p € PV such that w € s;(p), hence some
Al e Al such that w € A7,

To check that A7\ B7 # () for all distinct A7, B/ € AJ,, suppose on the contrary
that A7 C B’. By Step 6, this implies that there exist A, B € A;; such that A C B.

But by definition of A;; and Step 1, there is some p such that A = argmaxp,
A1

contradicting the fact that p;(A) < p1(B).
To check that ﬂAjeA{-IAj = (), suppose on the contrary that w € ﬂAjeAjl-lAj. Then

w € s1(p) for all p € PV, contradicting the fact that a,(PY) = {1,5}. O

12 Appendix E: Figures
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Figure 1: Beliefs, likelihood orderings, and adjacency
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Figure 2: The binary relation J
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Figure 3: Illustration of the proof of the first contagion lemma
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Figure 4: Tllustration of the proof of the first contagion corollary
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Figure 5: Illustration of the proof of the second contagion corollary
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Figure 6: Construction of ¢" and ¢}".
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For m large, [¢1", "] cuts only hyperplanes of the form {w, U E, w3 U E}.
Note in this example that [¢}, ¢}"] — but not [¢}", ¢[*]- cuts {ws,w*} € H.

Figure 7: Hyperplanes cut by [¢}", 1"].
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