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Résumé: La dépression majeure peut être très dommageable pour le 8% des Nord-Américains 

qui en souffriront au moins une fois durant leur vie. Les traitements actuels de la dépression 

ont été créés grâce à la compréhension de l'hypothèse de la monoamine; où les transporteurs 

de la sérotonine ou les enzymes sont bloqués ou inhibés afin de maintenir le neurotransmetteur 

(NT) dans la fente synaptique. Sur une période de plusieurs semaines, cette augmentation de 

NT encourage la plasticité synaptique, ce qui augmente la sensibilité de réponse de 5-HT dans 

la fente synaptique. Cette forme de traitement est efficace chez 40% des patients, tandis que 

les 60% restants ont une réponse partielle ou  nulle. Dans les modèles de dépression chez la 

souris des changements dans les niveaux de phosphorylation de CREB sont corrélés aux effets 

antidépresseurs (AD). Dans le cas RS67333, des effets AD apparaissent après 2 à 3 jours de 

traitement. Les effets anti-anhédoniques sont démontrés par la réponse au traitement. RS67333 

est un agoniste spécifique du récepteur 5-HT4, un récepteur couplé à la protéine G (GPCR) qui 

est généralement situé, après synapses, dans les régions du système limbique. Il existe d'autres 

ligands qui sont également spécifiques au récepteur 5-HT4: 5-HT, Zacopride, Prucalopride et 

ML10302, mais les mêmes effets anti-anhédoniques constatés lors de RS67333 n’ont pas été 

observés. Comment RS67333 est-il différent des autres en termes de signalisation? Nous 

avons utilisé le transfert d’énergie par résonnance de bioluminescence (BRET) pour étudier les 

interactions 5-HT4R avec les sous-unités, α β γ de la protéine G et nous avons comparé ces 

associations avec d'autres agonistes connus de 5-HT4. Nous avons constaté que RS67333 est 

un agoniste partiel et qu’il active un changement conformationnel de la protéine Gαs, mais 

n’active pas un changement conformationnel de la protéine Gαo. Prucaloride, 5-HT et 

Zacopride induisent aussi un changement de conformation du complexe Gαs, mais pas 

ML10302. Pour la formation de Gαo, Prucalopride, ML10302 et 5-HT agissent comme des 

agonistes, mais pas zacopride ni RS67333. Nous avons utilisé un test de dosage immuno-

enzymatique sur support solide (ELISA) pour mesurer l’intériorisation induite par les ligands 

pour étudier la régulation des récepteurs. Nous avons constaté que RS67333 et ML10302 

n’induisent pas l'internalisation du récepteur, tandis que zacopride, prucalopride et 5-HT sont 

très efficaces. L'efficacité sous-optimale des ADs actuels met l’accent sur la nécessité de 

développer des médicaments avec d'autres mécanismes d'action. RS67333 a des effets 

persistants anti-anhédoniques après une courte période de temps, et d'autres études de ses 

propriétés de signalisation pourraient donner lieu à une nouvelle génération d’antidépresseurs 
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rapides de longue durée d’action. 

Mots-clés: 5-HT, RS 67333, BRET, AD, antidépresseur, CREB, anhédonie, zacopride, 

prucalopride, ML 10302, GPCR, récepteur 5-HT4, sélectivité fonctionnelle.  
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Abstract: Major Depression can be very damaging on the 8% of North Americans that will 

have it at least once within their lifetime. Current treatments of depression have been 

developed through the understanding of the monoamine hypothesis; whereby serotonin (5-HT) 

transporters or enzymes are blocked or inhibited in order to maintain the neurotransmitter in 

the synaptic cleft. Over a period of several weeks this increase in NT induces synaptic 

plasticity which increases the response sensitivity of 5-HT in the synaptic cleft. This form of 

treatment is effective on 40% of patients, while the remaining 60% have partial or no 

response. In mouse models of depression, changes in phosphorylation levels of CREB 

correlated to antidepressants (AD) effects. In the case of RS67333 AD effects appear within 2-

3 days of treatment. The response can be evidenced as anti- anhedonic. RS67333 is specific 

agonist for 5-HT4 receptor, a G protein coupled receptor (GPCR) that is typically located post 

synaptically, in limbic regions. There are other ligands that are also specific to receptor 5-HT4: 

5-HT, Zacopride, prucalopride and ML10302, but have not been observed to have the same 

anti-anhedonia effects of RS67333. How does RS67333 differ from the others in terms of 

signaling? We used bioluminescence resonance energy transfer (BRET) to study the 

interactions of 5-HT4R with the α β γ subunits of the G protein and we compared these 

associations with other known 5-HT4 agonists. We found that RS67333 was a partial agonist 

and activated a conformational change of the Gαs protein but did not activate a conformational 

change of Gαo protein. Prucaloride, 5-HT and Zacopride also induced a conformational change 

of the Gαs complex but not ML10302. For the formation of Gαo, Prucalorpide, ML10302 and 

5-HT acted as agonists, but not Zacopride. We used an ELISA assay to measure ligand 

induced internalization to study receptor regulation. We found that RS67333 and ML10302 

did not induce receptor internalization, while Zacopride, Prucalopride and 5-HT  were very 

effective. The suboptimal efficacy of current ADs stresses the need to develop drugs with 

other mechanisms of action. RS67333 has persistent anti-anhedonia effects after a short period 

of time and further studies of its signalling properties may open up a new generation of fast 

and long acting antidepressants. 

Keywords: 5-HT, RS67333, BRET, AD, antidepressant, pCREB, anhedonia, Zacopride, 

prucalopride, ML10302, GPCR, 5-HT4  receptor, functional selectivity. 

  



6 
 

Table of contents 

Introduction………………………………………………17 

1. Socio-economics of depression……………………………………………………17 

2. Symptoms…………………………………………………………………………17 

2.1. Current Treatments………………………...…………………………………18 

3. Depression hypotheses…………………………………………….………………19 

3.1. Monoamine hypothesis……………………………………………….………19 

3.2. Neurotrophic hypothesis………………………………………………...……20 

3.3. New pathophysiology…………………………………………...……………20 

3.4. 5-HTR G-protein coupled receptors…………………………………….……21 

4. 5-HT4 receptors……………………………………………………………………22 

4.1. Locations and agonists……………………………………………….………22 

4.2. 5-HT4R and depression research………………………..……………………23 

5. G-proteins…………………………………………………………………………25 

5.1. G-proteins and GPCR………………………………………...………………25 

5.2. Gα subunit……………………………………………………………………27 

5.3. Gβγ subunits…………………………………………………………………29 

6. The cAMP pathway………………………………………………………………30 

6.1. Secondary cascade……………………………………………………………30 

6.2. Downstream targets…………………………………………………………..30 

6.2.1. CREB………………………………………………………………….30 

6.2.1.1. CREB and plasticity…………………………………………...30 

6.2.1.2. CREB and antidepressant treatment…………………………..31 

6.2.2. BDNF………………………………………………………………….32 

6.2.2.1. BDNF-mediated neural regulation….…………………………32 

6.2.2.2. BDNF and depression…………………………………………33 

7. Regulation and desensitization……………………………………………………33 

7.1. GRK…………………………………………………………………………..33 



7 
 

7.2. Arrestins………………………………………………………………………35 

8. Hypothesis of work………………………………………………………………..36 

9. Goal of project…………………………………………………………………….36 

Methods and Materials…………………………………….37 

1. pCREB Measurements in striatum and nucleus accumbens in OBX versus sham 

rats………………………………………………………………………………....37 

1.1. Olfactory bulb ablation……………………………………………………….37 

1.2. Preparation of brain samples.………………………………………………....37 

1.3. Membrane preparation……………………………………………………..…38 

1.4. Preparation of SDS-PAGE…………………………………………………...38 

1.5. Western blot analysis………………………………………………………....38 

2. BRET Comparisons between RS67333, 5-HT and other ligands………………....39 

2.1. Cell culture……………………………………………………………………39 

2.1.1. Cell line 5-HT4b………………………………………………………..39 

2.1.2. Transfection of HEK 293 immortal cell line….…………………….…39 

2.2. BRET….……………………………………………………………………....40 

2.2.1. DNA constructs……………………………………………………..…40 

2.2.2. BRET analysis………………………………….……………………...40 

2.2.3. BRET theory…………………………………………………………..41 

3. Ligand induced internalization studies…………………………………………....41 

3.1. ELISA assays of cell internalization………………………………………….41 

3.2. 5-HT4 receptor ligands……………………………………….….……………42 

4. Statistical analysis…………………………………………………………………42 

Presentation and analysis of results……………………….44 

1. Olfactory Bulbectomy and and pCREB in striatum and nucleus accumbens….…44 

1.1. Sucrose intake changes in pCREB……………………………………...……44 

1.2. Rats treated with RS67333 had increase in pCREB……..……………...……44 

1.3. Rationale for Bioluminescence resonance energy transfer experiments…..…47 

2. Comparison of 5-HT4  receptor ligands in their ability to activate cAMP……...…47 



8 
 

2.1. Bioluminescence resonance energy transfer (BRET) ………………..………47 

2.1.1. 5-HT4 receptor  ligands dose response………………….………..……48 

2.2. Gαs……………………………………………………………………………48 

2.2.1. EMax and EC50  …………………………………………………...……48 

2.3. Gαo……………………………………………………………………………51 

2.3.1. EMax and EC50…………………………………………………….……51 

3. 5-HT4R ligand induced internalization……………………………………………51 

4. 5-HT4R ligand profiles……………………………………….……………………55 

Discussion………………………………………………….57 

Conclusion…………………………………………………61 

References………………………………………………….62 

  



9 
 

List of tables 

Table I. Emax  and EC50 values obtained from dose response curves generated of 5-HT4 receptor 

ligands as measured by a BRET through αsRlucII/γ2GFP
10

 interaction………………………50 

Table II. Emax  and EC50 values obtained from dose response curves generated of 5-HT4 

receptor ligands as measured by a BRET through αo/γ2 interaction…………………………..53 

Table III. Emax and EC50 values obtained fom dose response curves generated by 5-HT4 ligands 

as measured by ELISA through internalization of 5-HT4B receptors……………………… 55  

Table IV. The 5-HT4 receptor ligands profiles………………………………………………..56 

  



10 
 

List of figures 

Figure 1. The normal processes of 5-HT and noradrenaline neurotransmission…………...…19 

Figure 2. Activity-dependent BDNF hypothesis of depression……………………………….21 

Figure 3. The mechanism of action of specific 5-HT re-uptake inhibitors……………………23 

Figure 4. Distribution of 5-HT4 receptors in the brain………………………………………..24 

Figure 5. G-protein-coupled receptor (GPCR)-mediated G-protein activation……………….25 

Figure 6. Heterotrimeric G-protein activation in the context of GPCR signaling…………….26 

Figure 7. cAMP stimulates CREB phosphorylation…………………………………………..27 

Figure 8. Diversity of G-protein-coupled receptor signalling………………………………...28 

Figure 9. Regulation of cAMP response element-binding protein by drugs of abuse………...31 

Figure 10. G-protein-coupled receptor (GPCR) desensitization, internalization and down-

regulation……………………………………………………………………………………...34 

Figure 11. β-Arrestin-dependent internalization of GPCRs…………………………………..36 

Figure 12. Effect of selective 5-HT4 receptor ligand RS67333 on the activation of CREB in rat 

striatum, assessed by measuring phospho-CREB (pCREB) immunoreactivity………………45 

Figure 13. Effect of selective 5-HT4 receptor ligand RS67333 on the activation of CREB in rat 

nucleus accumbens, assessed by measuring phosphoCREB (pCREB) immunoreactivity……46 

Figure 14. Dose response of 5-HT4  receptor ligands as measured by a BRET-based 

conformational biosensor monitoring αs/γ2 interaction………………………………………..49 

Figure 15. Dose response of 5-HT4 ligands as measured by a BRET-based conformational 

biosensor monitoring αo/γ2 interaction………………………………………………………52 



11 
 

Figure 16. Dose response of 5-HT4 receptor ligands  induced internalization of 5-HT4b 

receptors as measured by ELISA  assay………………………………………………………54 

  



12 
 

List of abbreviations 

5-HT : 5-Hydroxytryptamine (serotonin) 

5-HT4a and 5-HT4b : Serotonin receptor type 4a and 4b 

AC : Adenylate Cyclase 

AP: Action potential 

AP2 : Adaptor complex 2 

ATP : Adenine Triphosphate 

BRET : Transfert d’énergie par résonnance de bioluminescence 

BSA : Bovine Serum Albumin 

C : Carboxyl  

Ca
2+

 : calcium ion 

CaMKII : Calcium/calmodulin-dependent protein kinase II  

cAMP :Cyclic Adenine Monophosphate 

cGMP : Cyclic Guanosine monophosphate 

CREB : cAMP response element-binding protein 

DAG : Diacylglycerol 

DAMGO: [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enképhaline 

DG: Dentate gyrus 

DMEM : Dulbecco’s modified Eagle’s medium 

DPDPE : [D-pénicillamine
2
, D-pénicillamine

5
]-enképhaline 

EDTA : Ethylenediaminetetraacetic acid 

ELISA : enzyme-linked immunosorbent assay  

Emax : Maximal Effect 

ERK : Extracellular signal-regulated Kinases 



13 
 

G -protein: protein activated by GTPase 

GABA : gamma-Aminobutyric acid 

GASP : GPCR associated sorting protein 

GDP : Guanosine diphosphate 

GFP :  Green Fluorescent Protein 

GPCR :G Protein Coupled Receptors 

GRK : G protein coupled receptor kinase 

GTP : Guanosine triphosphate 

GTPase : Enzyme hydrolyzes GTP 

HEK-293 : Human Embyonic Kidney 293 

HA : Human influenza hemagglutinin 

IM : Intramuscular 

IP3 : Inositol-1,4,5-triphosphate 

LTP : Long term Potentiation 

MAPK : Mitogen activated protein kinases 

Mg2+ Ion magnesium 

N : Amino 

Na+ : Ion sodique 

nm : Nanometer 

nM : Nanomolar 

NMDA :N-Methyl-D-aspartic acid 

OR = Olfactory bulbectomy operation and RS67333 treatment 

OV =Olfactory bulbectomy operation and vehicle treatment 

OBX = Olfactory Bulbectomy 



14 
 

PBS : Phosphate-Buffered Saline 

PEI : Polyethylenimine 

PFA : Paraformaldehyde 

PKA : cAMP-dependent protein kinase 

PRU: Prucalopride 

PTX : Pertussis Toxin 

RlucII:  Luciferase from Renilla II 

SR= Sham operation and RS673333 treatment 

SV= Sham operation and vehicle treatment 

VTA : Ventral Tegmental Area 

ZAC: Zacopride 

β2AR : β-2 adrenergic receptor  

βarr : βarrestin 

μM : Micromolar 

 

  



15 
 

To my family and friends for their unceasing support 

  



16 
 

Acknowledgements 

First and foremost I would like to give a big thank you to Graciela Piñeyro, my thesis 

supervisor, and to my co-supervisor, Sandra Boye. They have been very supportive and 

encouraging even when I run off to join a circus in some country in South America, Europe or 

Asia. My lab manager Derek Robertson, for being incredibly resourceful, intuitive and an 

encompassing understanding of science. He was also gracious enough to go through many of 

the first drafts of this memoire. My lab mate Johannie Charbonneau that also suffered through 

several of my first drafts. My lab mates Iness Charfi, Hanieh Bagheri, Karim Nagi for being 

willing to help whenever needed or to end a transfection. 

None of this would be possible if it weren’t for my loving parents. Who despite not having a 

background in science, gave me valuable input for  putting this together and help connect 

ideas together. My brother who was a big help in giving me guidance throughout my work in 

the lab, course work and life. 

My friends Mark and Roxanna, who were there for me without hesitation when I asked them 

for help in submitting my thesis  

I would also like to thank Dr. René Cardinal, Dr. Pierre André Lavoie, Dr. Audrey Claing, and 

Dr. Guy Rousseau for taking the time out of their busy schedules to review my work. 

Thank you, 

Giacomo Trottier 

  



17 
 

Introduction 

1. Socio-economics of depression 

The World Health Organization (WHO) has estimated that Major Depressive Disorder (MDD) 

will be the leading cause of disability by the year 2030 (WHO 2016). If true, this will have 

major impacts on the delivery of heath care services, and even the economy as a whole. 

Already mental disorders are the greatest cause of severe functional impairment (42%) 

compared to chronic physical disorders (24%)(Druss, Hwang et al. 2009). Mental disorders 

also have lower rates of treatment success (21.4%) compared to chronic physical disorders 

(58.2%). A further consideration is that physical disorders affect work or home functions, 

whereas mental disorders are commonly most disruptive to social interactions and close 

relationships. A depressed individual has a greater need of social support, but tragically, 

instead of fostering support, mental disorders  often disrupt family stability and contribute to 

the breakdown of relationships, including causing separation or divorce (WHO 2016).  

A 5 year study of 2334 participants over 5 years with an annual family income greater than 

$25,000 USD found that 33% of families with a depressed individual had a family member 

become newly unemployed compared to 21% of non-depressed families (Whooley, Kiefe et 

al. 2002). After correcting for confounding factors the association remained highly significant 

at 17% for depressed families and 7% for non-depressed. The remaining depressed employees 

that manage to keep their jobs on average lose an estimated 27 days of a year or 

~$4400/individual and $36.6 billion dollars US on account of absenteeism and presenteeism 

(Broadhead, Blazer et al. 1990; Kessler, Merikangas et al. 2008). (Absenteeism is missed work 

days whereas presenteeism is being present at work, but with a significant decrease in 

productivity.) 

2. Symptoms 

MDD is a disease of mental health that’s characterized by a persistent low mood, low self-

esteem. The primary symptom of MDD is anhedonia: a lack of the capacity to experience 

pleasure. Sufferers of depression feel sadness, emptiness, experience excessive feelings of 

guilt and/or have suicidal thoughts that may be acted on. It affects women more than men and 
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most often occurs in the fourth decade of life (Kessler, Merikangas et al. 2008). A major 

depressive episode can be triggered by a variety of factors such as chronic stress, isolation, 

family loss, failing a class, physical or emotional abuse, or job loss. These episodes typically 

average 6 months during the otherwise active years of an adult life, resulting in less effective 

work and more days off. Depression is a burden on the person, the family, the work, and the 

economy. Those that have suffered already one episode of depression have increased risk of 

suffering again (Burcusa and Iacono 2007). 

To make matters worse, depressed individuals are twice as likely to die from other causes 

(1.9x for men and 2.1x for women)(Osby, Brandt et al. 2001). These include having twice the 

risk of coronary heart disease, increased risk of cardiovascular death and stroke (Barth, 

Schumacher et al. 2004). Depressed men are 21 times more likely to commit suicide than there 

non-depressed counterparts, while depressed woman are 27x more likely to do so (Osby, 

Brandt et al. 2001). There are 120 million persons with MDD worldwide (WHO 2016) and 

depression has a recurrence of 85% over 15 years (ten Doesschate, Bockting et al. 2010). 

2.1. Current Treatments 

MDD is currently resistant to treatment, and remission is rarely accompanied by a total 

disappearance of all symptoms. In general, cognitive impairment and social dysfunction still 

persist despite treatment with anti-depressants (AD) . The lack of success through AD 

treatment can be attributed to a lack of progress in the identification of pharmacological 

targets. Today’s AD targets are similar to those of 50 years ago. Almost all AD drugs act 

through the serotonergic and/or noradrenergic neurotransmitter systems, and more recently, 

the dopaminergic system. Treatment efficacy only improves depressive symptoms on two-

thirds of those diagnosed with MDD (Nelson 1999). Even if effective, current AD drugs take 

3-4 weeks before clinical efficacy can be observed. Nestler and others have postulated that the 

lag period for their clinical effects is due to the longer time necessary for lasting neuroplastic 

changes in selective brain regions (Nestler, Barrot et al. 2002).  
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3. Depression hypotheses 

3.1. Monoamine Hypothesis 

The mechanisms of depression are not fully understood, and one prominent hypothesis is 

that it is caused by a monoamine deficiency in the brain. This hypothesis was developed 

by Schildkraut, following the work by Selikoff and Robitzek (Crane 1956)  with the drug 

iproniazid  on tuberculosis patient when they found that their patients were “dancing in the  

Figure 1. The normal processes of 5-HT 

and noradrenaline neurotransmission. 

When a nerve impulse arrives at a 5-HT or 

noradrenaline nerve terminal the neurotransmitter 

is released from the synaptic vesicle into the 

synaptic cleft. Neurotransmitter molecules bind to 

their specific receptors on the post-synaptic 

membrane and the nerve impulse is propagated or 

inhibited, depending on the receptor type. 5-HT 

and noradrenaline molecules are then released from 

their receptors and taken back into the nerve 

terminal via either the 5-HT or noradrenaline re-

uptake transporters. 5-HT and noradrenaline are 

degraded by monamine oxidase and catechol-O-

methyl transferase, these enzymes are found in 

both the synaptic cleft and in the nerve terminal. 

(Rang HP 2001). 

 

halls tho’ there were holes in their lungs” following several months of treatment with the drug 

(Schildkraut 1965; Sandler 1990; López-Muñoz, Alamo et al. 1998). The monoamine 

hypothesis was put forward some 50 years ago and proposes that the underlying 

neuroanatomical basis for depression is the deficiency of central noradrenergic and/or 

serotonergic systems (Figure 1) (Schildkraut 1965). Targeting these systems had a tendency in 

some cases to restore normal function to otherwise depressed patients (Lopes Rocha, 

Fuzikawa et al. 2013). While an increase in monoamines is rapidly observed following an 

acute AD treatment, symptoms only appear to be eliminated after 2 to 4 weeks of chronic 

treatment (French, Krauss et al. 2013).  The Monoamine hypothesis does not provide an 

adequate explanation for this latency nor does it explain the pathophysiology of depression. 

This understanding of depression implies a simple explanation for MDD despite the brain’s 
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complicated machinery, describing MDD as the result of an ‘imbalance. But there is a chasm 

of understanding between treatment and clinical efficacy, yet drugs have been developed only 

addressing this initial step. They’ve been developed to increase serotonin in the synaptic gap 

through methods of blocking reuptake receptors or degradation machinery. These drugs fail to 

reconcile the objective of increased serotonin in this gap or account for the variety of systems 

in the brain and how they are affected and how it alleviates symptoms of depression.  Drugs 

developed based solely on the monoamine hypothesis do not adequately treat depression 

(Belmaker and Agam 2008).  

3.2. Neurotrophic hypothesis 

More recently, there has been mounting evidence that depression is a result of a dysregulation 

of neurogenesis (Massart, Mongeau et al. 2012). In a depressed patient, there is a reduction of 

hippocampus size and these patients show greater activity in the atrophy of neurons 

(Sivakumar, Kalmady et al. 2015). Research into animal models of depression, as well as 

human patients treated with ADs, began to exhibit AD effects and had increased neurogenesis 

in specific regions of the brain (Duman and Monteggia 2006; Krishnan and Nestler 2008; 

Castrén and Rantamäki 2010). In the areas of the brain specific to behaviour, such as the 

prefrontal cortex, and the hippocampus (Duman, Heninger et al. 1997). AD treatment has been 

shown to promote neurogenesis and synaptogenesis in these systems (Czeh and Di Benedetto 

2013). Serotonin level is positively correlated with hippocampal neurogenesis (Brezun and 

Daszuta 2000; Banasr, Hery et al. 2004) and the stimulation of several serotonergic receptors 

(Radley and Jacobs 2002; Lucas, Rymar et al. 2007). These increases are crucial for the 

proliferation, differentiation and survival of new hippocampal neurons (Brezun and Daszuta 

2000; Kulkarni, Jha et al. 2002; Santarelli, Saxe et al. 2003; Banasr, Hery et al. 2004; Banasr, 

Soumier et al. 2006; Lucas, Rymar et al. 2007).  

3.3. New Pathophysiology 

Research efforts have tried to identify molecules and pathways that might be relevant to 

synaptic plasticity. Several secondary, tertiary, and quaternary messenger cascades have been 

postulated to occur in response to AD therapy. Neurotrophic factors such as Brain Derived 

Neutrophic Factor (BDNF) have been found to be essential in these cascades (Figure 2). 
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Antidepressant treatment increases the expression of BDNF in the Hippocampus and 

Prefrontal cortex (Drevets, Price et al. 2008; MacQueen, Yucel et al. 2008). Exposure to 

repeated stress causes atrophy of neurons in the hippocampus and prefrontal cortex as well as 

a loss of glia, necessary for the maintenance and supply of nutrients and oxygen to the neurons 

(Ogundele, Omoaghe et al. 2014). BDNF is primarily under the control of cyclic Adenine 

monophosphate (cAMP) Response Element (CRE), suggesting a putative role for the 

transcription factor CREB as the source of BDNF’s activity-dependent effects. Serotonin 

receptors (5-HTR) are G protein coupled receptors (GPCR) and some of which act directly on 

cAMP production in the hippocampus and prefrontal cortex.  Thus, targeting 5-HTRs that 

have specific pathway in certain regions of the brain may be a more effective in the treatment 

of MDD. 

3.4. 5-HTR G-protein coupled receptors 

There are 14 receptors specific for serotonin (Palacios 2015). They are labeled 5-HT1 to 5-HT7 

and have as many as five isoforms. Receptor 5-HT1 has five isoforms  that vary in abundance 

 

Figure 2. Activity-dependent BDNF hypothesis of depression.  

Increased neuronal activity, induced by an enriched environment (e.g., physical exercise, mental stimulation 

with learning exercise and sensory input, and social interactions) and/or medication up-regulates BDNF 

expression in the hippocampus and cortex. This, in turn, increases neuronal activity and this positive 

feedback loop can maintain an active mind state. In contrast, any disruption in BDNF expression, caused by 

epigenetic regulation processes, stress, and/or reduced neuronal activity, would lead to decreases in neuronal 

activity and activity-driven BDNF expression. This vicious cycle of decreased neuronal activity and reduced 

BDNF expression may cause depression (Sakata 2014) 
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and activity all over the body.  The receptor 5-HT1A is an isoform that has been implicated in 

the modulation of mood and anxiety related behaviours. 5-HT1a knock out mice are insensitive 

to the behavioural effects of chronic fluoxetine suggesting that activation of 5-HT1a receptors 

is also a critical component in the mechanism of  Selective Serotonin Reuptake Inhibitors 

(SSRI) (Figure 3) (Santarelli, Saxe et al. 2003).  The 5-HT1B  receptor’s function  varies in 

function  depending on its location. In the frontal cortex it will act as a postsynaptic receptor, 

inhibiting the release of dopamine.  But in the striatum and basal ganglia, it functions as an 

autoreceptor inhibiting the release of serotonin (Breuer, Groenink et al. 2007). 5-HT1D 

receptors act as autoreceptors in the dorsal raphe nuclei, but are also found in the heart where 

they modulate the release of serotonin (van der Stelt, Breuer et al. 2005). In the Central 

Nervous System (CNS), 5-HT1D receptors are involved in locomotion and anxiety (Breuer, 

Groenink et al. 2007).   The function of the 5-HT1E receptors is unknown due to lack of 

selective pharmacological tools and permissive animal models.  It is hypothesized that the 5-

HT1E  is involved  in the regulation of memory due to its high abundance in the frontal cortex 

and hippocampus as well as its high degree of conservative genetic sequence (Chambliss, Van 

Hoomissen et al. 2004; Breuer, Groenink et al. 2007).  5-HT1F receptor distribution in the 

brain appears to be limited but detected in the uterus and in coronary arteries suggesting a 

possible role in vascular contraction (Pierce and Lefkowitz 2001) and has been targeted in the 

treatment of migraines (Neitzel 2010). With the exception of 5-HT3 receptor that 

homopenteramizes to form a ligand gated ion channel (Niesler 2011), all 5-HTRs are GPCR  

that activate intracellular secondary messengers which cascade to produce an excitatory or 

inhibitory response (Qi, Xia et al. 2014).  

 

4. 5-HT4 receptors 

4.1. Location and agonists 

5-HT 4 receptors are located in the heart, alimentary tract, adrenal and in the central nervous 

system structures such as the putamen, caudate nucleus, nucleus accumbens and substantia 

nigra (Figure 4). They are post synaptic receptors with growing evidence that activation of 5-

HT4 receptors is necessary for the treatment of depression (Mendez-David, David et al. 2014). 

There are already agonists on the market specific to this receptor (Zacopride and Prucalopride) 
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Figure 3. The mechanism of action of specific 5-HT re-uptake inhibitors. 

 The selective 5-HT re-uptake inhibitors (SSRIs) are thought to restore the levels of 5-HT in the synaptic cleft 

by binding at the 5-HT re-uptake transporter preventing the re-uptake and subsequent degradation of 5-HT. 

This re-uptake blockade leads to the accumulation of 5-HT in the synaptic cleft and the concentration of 5-HT 

returns to within the normal range. This action of SSRIs is thought to contribute to the alleviation of the 

symptoms of depression. In the presence of the SSRI, small amounts of 5-HT continue to be degraded in the 

synaptic cleft by monoamine oxidase and other machinery.(Rang HP 2001) 

and others currently under study (ML10302 and RS67333) (Lefebvre, Contesse et al. 1993; 

Briejer, Bosmans et al. 2001; Godínez-Chaparro, Barragán-Iglesias et al. 2011). Zacopride is 

primarily an anxiolytic but has antiemetic and pro-respiratory effects. Prucalopride is used for 

the treatment of impaired gastric motility. ML10302 is a partial agonist for receptor 5-HT4 that 

may have pro-nociceptive effects (Godínez-Chaparro, Barragán-Iglesias et al. 2011). RS67333 

is a partial agonist for receptor 5-HT4 and has been shown to have AD effects in mouse 

models of induced depression (Lucas, Rymar et al. 2007). These AD effects are observable 

after 2-3 days of treatment compared to the typical 3-4 week treatments needed of traditional 

ADs (Lucas, Rymar et al. 2007).  

4.2. 5-HT4R and depression research 

A recent study by Mendez et al. (2014) highlighted the importance of the 5-HT4 receptor in 

AD treatment (Mendez-David, David et al. 2014). Using a mouse model of depression induced 

through low doses of corticosteroids over the course of 4 weeks, a known means of inducing a 
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Figure 4.  Distribution of 5-HT4 receptors in the brain. 

The 5-HT4 receptor subtype is coupled to a G-protein that stimulates the intracellular messenger adenylate 

cyclase that, in turn, regulates neurotransmission. In the human brain, a high density of 5-HT4 receptors has 

been identified in the striato-nigral system, notably in the caudate nucleus, lenticular nucleus (putamen and 

globus pallidus) and the substantia nigra. Lower levels of expression of the 5-HT4 receptor have been shown in 

the hippocampus and the frontal cortex.(Waeber, Sebben et al. 1993; Domenech, Beleta et al. 1994; Reynolds, 

Mason et al. 1995) 

 
depressive/anxious state. The mice were then treated with fluoxetine and RS67333 as well as 

the 5-HT4 antagonist GR125487. The anxiolytic-like effect of fluoxetine and RS67333 was 

completely abolished by treatment with the antagonist GR125487. Without the 5-HT4 

antagonist GR125487, the anxiety phenotype that was induced was reversed by fluoxetine and 

RS67333. This emphasizes the importance of the 5-HT4 receptor for the treatment of 

depression.  The 5-HT4 receptor is important because its activation facilitates the maturation of 

newborn neurons in the adult hippocampus (Mendez-David, David et al. 2014). Chronic 

fluoxetine exposure resulted in an increase in the number of dividing neural precursors in the 

subgranular zone of the dentate gyrus (DG) (David, Samuels et al. 2009; Rainer, Xia et al. 

2012). RS67333 also increased the number of neural precursors in the subgranular zone, but to 

a lesser extent, 50% vs 170%. The antagonist GR125487 partially blocked this effect during 

fluoxetine exposure and completely blocked this effect with RS67333 exposure. A 7-day 

treatment of RS67333 produced anxiolytic and AD effects in many behavioural tests. The 

results suggest that the anxiolytic effect of RS67333 has a faster onset than fluoxetine and 
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Figure 5. G-protein-coupled receptor (GPCR)-mediated G-protein activation. 

 In the inactive state, G-proteins exist in the form of an αβγ heterotrimer, with the Gα subunit bound to GDP. 

Upon receptor activation, either by the binding of agonist or constitutively, the receptor changes to an active 

conformation (green), thereby activating G-proteins by promoting the exchange of GDP for GTP. The Gα-

GTP and Gβγ dimer functionally dissociate from one another and the receptor and are free to modulate 

downstream effectors. The cycle concludes when the GTPase activity of the Gα subunit hydrolyses GTP to 

GDP, allowing the Gα subunit to return to its resting confirmation and reassociate with Gβγ.(Smith, Sim‐
Selley et al. 2010) 

 

does not require hippocampal neurogenesis. Zacopride, Prucalopride, RS67333, and ML10302 

are all specific for the 5-HT4 receptor, but only RS67333 is functionally selective towards 

producing AD effects. How does the functional selectivity of RS67333 relate to the activation 

of the G proteins α, β and γ.  

 

5. G-Proteins 

5.1. G-proteins and GPCR 

G-proteins are specialized proteins with the ability to bind the nucleotide guanosine 

diphosphate (GDP) and guanosine triphosphate (GTP).  They consist of three subunits α, β, 

and γ. The α and γ subunits are attached to the plasma membrane by lipid anchors. The G 

protein α subunit will bind either GTP if active or GDP if inactive (Figure 5).  In the absence 

of a signal, GDP is attached to the α subunit and the G-protein-GDP complex binds to a 

nearby GPCR. Upon ligand activation, a change in the conformation of the GPCR activates 

the G protein and GTP physically replaces GDP bound to the α subunit. Binding of GTP to the 

α subunit dissociates the G protein into two parts: α bound to GTP and β-γ complex. These 

complexes are no longer bound to the GPCR, but remain bound to the lipid anchor. They are 
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Figure 6. Heterotrimeric G-protein activation in the context of GPCR signaling. 

Whenever a G protein is active, both its GTP-bound α subunit and its β-γ dimer can relay messages in the cell 

by interacting with other membrane proteins involved in signal transduction. Specific targets for activated G 

proteins include various enzymes that produce second messengers, as well as certain ion channels that allow 

ions to act as second messengers. Some G proteins stimulate the activity of these targets, whereas others are 

inhibitory. Vertebrate genomes contain multiple genes that encode the α, β, and γ subunits of G proteins. The 

many different subunits encoded by these genes combine in multiple ways to produce a diverse family of G 

proteins. In this diagram of G-protein-coupled receptor activation, the α, β, and γ subunits are shown with 

distinct relationships to the plasma membrane. After exchange of GDP with GTP on the α subunit, both the α 

subunit and the β-γ complex may interact with other molecules to promote signaling cascades. Note that both 

the α subunit and the β-γ complex remain tethered to the plasma membrane while they are activated. These 

activated subunits can act on ion channels in the cell membrane, as well as cellular enzymes and second 

messenger molecules that travel around the cell (Neitzel 2010).  

 

able to diffuse laterally to interact with other membrane proteins. The GTP bound α subunit 

remains active as long as GTP is bound. When GTP is hydrolyzed back to GDP, the subunits 

reform to the inactive heterotrimer and associate again with an inactive GPCR (Figure 6). 

Both complexes in the activated G protein can relay messages in the cell by interacting with 

other membrane proteins involved in signal transduction.  Targets for activated G proteins 
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Figure 7. | cAMP stimulates CREB phosphorylation.  

The binding of ligand to GPCRs that are linked to the stimulatory G proteins, which are comprised of α-, β- and 

γ-subunits, leads to the activation of AC, which catalyzes the synthesis of cyclic AMP. Increases in cellular 

cAMP stimulate protein kinase A (PKA) signalling. cAMP binds to the regulatory (R) subunits of PKA, 

thereby promoting their dissociation from the catalytic subunits. The liberated catalytic subunits enter the 

nucleus by passive diffusion and phosphorylate the cAMP-responsive element (CRE)-binding protein (CREB) 

at Ser133. Phosphorylated CREB promotes target gene expression at promoters containing CREs. (Altarejos 

and Montminy 2011) 

 

include various enzymes to produce secondary messengers, as well as specific ion channels 

that allow ions to act as second messengers.  Some G proteins have stimulatory effects and 

others have inhibitory effects (Tuteja 2009).  When 5-HT4 receptor is ligand stimulated, the 

activated GTP bound α subunit diffuses laterally until it interacts with and activates Adenylate 

Cyclase (AC). AC is a membrane bound enzyme that dephosphorylates ATP to cyclic AMP 

(Figure 7). cAMP regulation is directly associated with BDNF levels. There are several 

ligands for 5-HT4R, and one called RS67333 is able to produce AD effects in a short 

timeframe.  

5.2. Gα subunit 

The α subunit has four main families, αs, αi/o αq/11, and α12/13 (Figure 8) (Brandt and Ross 

1985). To date there are 21 different α subtypes of α (Strathmann and Simon 1991; Baltoumas, 

Theodoropoulou et al. 2013). In terms of cAMP signaling, the α subunit can be stimulatory 

(αs) and cause an increase in cellular levels of cAMP (Lania, Mantovani et al. 2012) or can 

also inhibit (αi/o) and decrease cellular levels of cAMP (Roberts and Waelbroeck 2004).  The  
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Figure 8. Diversity of G-protein-coupled receptor signalling 

Various ligands use GPCRs to stimulate membrane, cytoplasmic and nuclear targets. GPCRs interact with 

heterotrimeric G proteins composed of α, β and γ subunits that are GDP bound in the resting state. Agonist 

binding triggers a conformational change in the receptor, which catalyses the dissociation of GDP from the α 

subunit followed by GTP-binding to Gα and the dissociation of Gα from Gβγ subunits 1. The α subunits of G 

proteins are divided into four subfamilies: Gαs, Gαi, Gαq and Gα12, and a single GPCR can couple to either 

one or more families of Gα proteins. Each G protein activates several downstream effectors 2. Typically Gαs 

stimulates adenylyl cyclase and increases levels of cyclic AMP (cAMP), whereas Gαi inhibits adenylyl 

cyclase and lowers cAMP levels, and members of the Gαq family bind to and activate phospholipase C 

(PLC), which cleaves phosphatidylinositol bisphosphate (PIP2) into diacylglycerol and inositol triphosphate 

(IP3). The Gβ subunits and Gγ subunits function as a dimer to activate many signalling molecules, including 

phospholipases, ion channels and lipid kinases. Besides the regulation of these classical second-messenger 

generating systems, Gβγ subunits and Gα subunits such as Gα12 and Gαq can also control the activity of key 

intracellular signal-transducing molecules, including small GTP-binding proteins of the Ras and Rho 

families and members of the mitogen-activated protein kinase (MAPK) family of serine-threonine kinases. 

Ultimately, the integration of the functional activity of the G-protein-regulated signalling networks control 

many cellular functions. (Dorsam and Gutkind 2007) 

 G αq/11 family increases cellular levels of inositol triphosphate (IP3) and diacylglycerol (DAG). 

The G α12/13 are involved in the Rho family GTPases signaling involving the control of cell 

cytoskeleton remodeling and cell migration. Each GPCR complexes with unique Gα subunits 

from one of the four major classes of α subunits, and each class consists of multiple subtypes. 
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For the 5-HT receptors the αs is specific in its interaction with 5-HT4,  5-HT6, and 5-HT7 

receptors.  The αi/o interacts with receptors 5-HT1 and 5-HT5. The 5-HT2 receptor mainly 

interacts with subunit G αq/11 . The G α12/13 has not been observed interacting with any 5-HT 

receptor. The general structure of these α subunit consists of two domains: a GTP binding 

domain and a helical insertion domain subunit. The α subunit is activated by GTP binding and 

dissociates from the G protein complex. When GTP is hydrolyzed back to GDP, the subunits 

reform to the inactive α-β-γ-GDP heterotrimer and associate again with the GPCR. 

5.3. Gβγ subunits 

Gβγ has a wide range of actions having a ‘hot spot’ motif that is key for protein-protein 

reactions.  When Gβγ is in complex with Gα it acts as a negative regulator by increasing Gα’s 

affinity for GDP. When the G protein is in complex with GDP it is in its inactive state 

(Wettschureck and Offermanns 2005). There are five different subtypes of β and twelve 

subtypes of γ discovered so far and they pair for a variety of βx γy (Akgoz, Kalyanaraman et al. 

2004) . It is also noteworthy that certain β subunits will prefer certain γ subunits. Gβγ is 

required for nuclear exchange (Fung 1983; Florio and Sternweis 1989). Gβγ might also be 

necessary for α to engage plasma membrane (Sternweis 1986). As well as placing the α 

subunit into the right orientation and conformation to interact with the receptor, the α subunit 

is in a distinct orientation when unbounded (Lambright, Noel et al. 1994; Mixon, Lee et al. 

1995; Lambright, Sondek et al. 1996). The general structure of the β subunit is 4 stranded β 

sheets forming each of the 7 blades of a propeller. The β propeller interacts with the α helix of 

the N terminal on Gα, inducing a conformational change upon the binding and interacting of 

GTP with the β propeller (Gaudet, Bohm et al. 1996; Sondek, Bohm et al. 1996; Lodowski, 

Pitcher et al. 2003). Gβγ does not cause significant conformation change upon G-protein 

activation with regards to downstream effects (Lucas, Rymar et al. 2007). Gβγ has an 

important role in desensitization and internalization of receptors. In the case of the muscarinic-

3 GPCR, a disruption on the 3
rd

 intracellular loop containing a binding site for Gβγ, did not 

affect downstream signaling, but it did inhibit receptor desensitization. This suggest that Gβγ 

binding to this loop facilitates the recruitment of G protein coupled receptor kinases (GRK) to 

the active form of the receptor (Wu, Bogatkevich et al. 2000). It is not yet known where on the 

receptor or which GRKs interact with the 5-HT4 receptor to be desensitized (Nedi, White et al. 
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2011). But a continual activation will result in increased concentration of intracellular cAMP 

by adenylate cyclase (AC). 

6. The cAMP pathway 

6.1. Secondary cascade 

cAMP is produced when the G protein subunit Gαs  is activated by the receptor and binds to 

and activates the integral membrane protein AC. AC catalyzes the cyclization of ATP, losing 2 

phosphate groups in the process. cAMP production will activate Protein Kinase A (PKA), 

cyclic nucleotide-gated ion channels (Kaupp and Seifert 2002), domain-containing proteins, as 

well as exchange proteins activated by cAMP. PKA is a dimer that is made up of a regulatory 

unit and a catalytic unit. cAMP binds to the regulatory unit of PKA, releasing the catalytic unit 

and allowing it to pass through the nuclear membrane (Figure 7). When in the nucleus, one of 

the PKAs roles is to recruit other transcription factors coactivators to bind the cAMP Response 

Element Binding (CREB) promoter region and activate transcription dependent (Kriisa, 

Sinijärv et al. 2015).  CREB transcription directly affects the levels of expression of 

neurotrophin BDNF, which has a significant role in neurogenesis (Tao, Finkbeiner et al. 

1998).  

6.2.  Downstream targets 

6.2.1. CREB 

CREB is a cellular transcription factor that sequences of DNA in the nucleus, modulating the 

transcription of downstream genes (Montminy and Bilezikjian 1987). CREB regulates genes 

such as c-fos (Sassone-Corsi 1988), BDNF (Nibuya, Nestler et al. 1996), tyrosine hydroxylase 

(McMahon and Sabban 1992), and various neuropeptides (Andrisani and Dixon 1990; 

Hawley, Scheibe et al. 1992; Barthel and Loeffler 1993). Many of the genes it regulates are 

involved in long-term memory formation, long-term potentiation and reward.  

6.2.1.1. CREB and plasticity 

CREB is necessary for neuronal plasticity and long-term potentiation but is not limited to 

neurons and is found in many different organs (Carlezon, Duman et al. 2005). CREB has an 

important role in drug/reward addiction and has been mechanistically linked to behavioural 
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Figure 9. Regulation of cAMP response element-binding protein by drugs of abuse. 

The figure shows a dopamine (DA)-containing neuron from the ventral tegmental area (VTA) that innervates 

a class of GABA-containing projection neurons in the nucleus accumbens (NAc) that express dynorphin 

(DYN). DYN acts as a negative feedback mechanism in this circuit. DYN released from the terminals of 

neurons from the NAc acts on kappa opioid peptide (κ) receptors on nerve terminals and cell bodies of DA-

containing neurons and inhibits their activity. Chronic exposure to either cocaine or opiates and, possibly, 

other drugs of abuse upregulates this negative feedback loop by upregulating the cAMP pathway, which 

activates CREB and induces the formation of DYN.(Nestler 2004)  

 changes in drug addiction (Figure 9) (DiRocco, Scheiner et al. 2009; Nazarian, Sun et al. 

2009; Wang, Ghezzi et al. 2009). Many drugs of abuse lead to changes in expression of 

endogenous BDNF (Barker, Taylor et al. 2014) and c-fos (Wright, Hollis et al. 2015). 

Evidence is growing that low levels of CREB in parts of the brain are associated with 

depression, and increases of CREB have been associated with AD treatment (Gass and Riva 

2007). CREB is modulated by serotonin and noradrenalin binding to GPCRs activating the 

cAMP pathway (Gaven, Pellissier et al. 2013), and dysfunction in these receptors has been 

implicated in MDD (Krishnan and Nestler 2008).  

6.2.1.2. CREB and antidepressant treatment 

CREB is thought to play an important role in AD treatment because of its role in learning-

related synaptic plasticity, neuronal plasticity, long-term memory formation and 

neuroprotective properties (Nair and Vaidya 2006; Tardito, Perez et al. 2006; Gass and Riva 

2007) . The expression and activity of CREB are increased in chronic but not acute treatment 

with AD rodent models and in the human postmortem brain (Nibuya, Nestler et al. 1996; 

Dowlatshahi, MacQueen et al. 1998; Malberg, Eisch et al. 2000; Thome, Sakai et al. 2000). 

Some researchers have reported no change or even a decrease in CREB protein following AD 
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treatment (Blom, Tascedda et al. 2002; Laifenfeld, Karry et al. 2005). This supports the idea 

that ADs affect CREB differently and in different regions of the brain. Targeted treatment 

would enable memory formation in regions of the brain that form happy memories, and reduce 

memory formation in regions of the brain for fear (Frechilla, Otano et al. 1998; Manier, 

Shelton et al. 2002; Laifenfeld, Karry et al. 2005; Berton and Nestler 2006; Yu and Chen 

2011). Expression manipulation studies have associated increased PKA and CREB activity in  

the amygdala with anxiogenic and depressive-like behaviours (Wallace, Stellitano et al. 2004; 

Keil, Briassoulis et al. 2012). In a study by Carlezon et al (2006), CREB appeared to affect 

behaviour differently depending on where it was expressed (Nestler and Carlezon 2006). In 

viral expression of a dominant negative form of CREB, mCREB had a pro-depressant effect 

when localized in the hippocampus, and an AD effect when localized in the amygdala or 

nucleus accumbens (Chen, Shirayama et al. 2001; Pliakas, Carlson et al. 2001; Wallace, 

Stellitano et al. 2004). CREB regulates BDNF which plays a significant role in neurogenesis, 

synaptogenesis and depression. 

6.2.2. BDNF 

6.2.2.1. BDNF-mediated Neural regulation 

BDNF regulates neuronal structure and function (Schinder and Poo 2000; Tyler, Alonso et al. 

2002). It is critical for synaptic plasticity and memory processing (Alonso, Vianna et al. 2002; 

Tyler, Alonso et al. 2002; Yamada and Nabeshima 2003; Bekinschtein, Cammarota et al. 

2007). BDNF induces and is sufficient for long-term potentiation in the hippocampus (Kang, 

Welcher et al. 1997; Patterson, Pittenger et al. 2001; Pang, Teng et al. 2004; Pastalkova, 

Serrano et al. 2006). Physical and social stresses lead to decreased levels of BDNF in the 

hippocampus and prefrontal cortex (Duman and Monteggia 2006; Krishnan and Nestler 2008; 

Castrén and Rantamäki 2010). AD Treatment increases the expression of BDNF in the 

hippocampus and prefrontal cortex. This upregulation is only observed in chronic and not 

acute administration of different ADs (Duman and Monteggia 2006; Sen, Duman et al. 2008; 

Bocchio-Chiavetto, Bagnardi et al. 2010). Depression results in neuronal atrophy and 

decreased neurogenesis (Taylor, McQuoid et al. 2014). Treating with ADs blocks and can 

reverse this neurotrophic deficit, reversing the atrophy and cell loss (Duman, Heninger et al. 

1997; Duman and Monteggia 2006). Certain regions of the brain vary in respect to BDNF 



33 
 

levels.  An increase in BDNF in the hippocampus has AD effects, while in the nucleus 

accumbens or amygdala BDNF effects may be pro-depressive (Duman and Monteggia 2006; 

Krishnan and Nestler 2008).  

6.2.2.2. BDNF and depression 

Though BDNF depletion may not be sufficient to cause depressive behavior, an absence of it 

in specific regions of the brain may increase susceptibility to becoming depressed under 

stressful conditions. A study by Ibarguen-Vargas et al (2009) made use of a mouse model that 

had heterozygous deletions of BDNF and expressing approximately half the normal levels of 

BDNF. Under baseline conditions these mice were non symptomatic, but upon exposure to 

stress, they more readily exhibited depressive symptoms (Duman, Russell et al. 2007; 

Ibarguen-Vargas, Surget et al. 2009). Different types of acute and chronic physical and social 

stress also decrease neurogenesis while chronic AD treatment increases neurogenesis. As 

described in figure 2, the expression of BDNF has a positive feedback loop both for positive 

effects and negative effects. Exercise and social interactions both short term and long term 

lead to an increase in BDNF (Szuhany, Bugatti et al. 2015). Expression of BDNF has been 

linked to increased happiness (Castren 2014),  neuronal activity, neurogenesis (Jeong, Kim et 

al. 2014) and synaptic plasticity. These in turn are linked to increased social interaction 

(Hsiao, Hung et al. 2014). On the other hand, a lack of physical exercise, or increases in stress 

may lead to a decrease in neuronal activity.  A decrease in neuronal activity may lead to 

atrophy and apoptosis, decreasing BDNF expression, potential increasing stress levels (Ieraci, 

Mallei et al. 2015) and continuing the cycle.  

An effective AD would increase the expression of pCREB and BDNF in specific regions of 

the brain related to reward and motivation. This effect would be rapid, sustainable and would 

not overstimulate the receptors enough to cause desensitization. 

7. Regulation and desensitization 

7.1. GRK 

GRKs are a family of protein kinases that regulate GPCRs .There are seven mammalian GRKs 

grouped into three subfamilies: GRK1 comprising of GRK1 (rhodopsin kinase) and GRK7 
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Figure 10. G-protein-coupled receptor (GPCR) desensitization, internalization and down-

regulation.  

Upon activation of the GPCR, GPCR kinase (GRK) phosphorylates the receptor, generally on C-terminal 

Ser/Thr residues. Once phosphorylated, β-arrestin can bind to the GPCR, desensitizing the receptor and 

causing the receptor to internalize via clathrin-coated pits. Once internalized, GPCRs may be recycled back 

to the cell surface following dephosphorylation in acidified endosomal compartments. Alternatively, GPCRs 

can be trafficked to lysosomes and degraded (down-regulation), a process that is facilitated by GPCR-

associated sorting protein (GASP)(Smith, Sim‐Selley et al. 2010). 

 

(cone kinase), GRK2 comprising of GRK2 and 3, and GRK4 comprising of GRK4,5 and 6 

(Premont, Macrae et al. 1999).  The first 20 amino acids of GRKs are highly conserved and 

are critical for GPCR and phospholipid-stimulated autophosphorylation. They have a 

multidomain structure comprised of three functional domains, a central catalytic domain,  an  

amino-terminal regulator of G protein signalling homology,  and a carboxyl-terminal 

membrane targeting domain (Pronin and Benovic 1997; Lodowski, Pitcher et al. 2003; 

Tesmer, Kawano et al. 2005). GRKs will phosphorylate serine and/or threonine residues on 

the third intracellular loop and carboxyl-terminal tail domains of agonist activated receptors. 

Phosphorylation is a necessary step for the termination of an active signal from GPCR, but it 

on its own is insufficient to mediate the desensitization of many GPCRs (figure 10). The 

phosphorylation converts it into a target of high affinity binding of arrestin proteins and 
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phosphorylated GPCRs facilitates the uncoupling of the receptor from the heterotrimeric G 

proteins.       

7.2. Arrestins 

There are four different subtypes of arrestin proteins in mammals, named Arrestin 1, βarrestin, 

βarrestin2, and Arrestin4. They primarily participate in agonist mediated desensitization of 

GPCR, causing specific dampening of cellular response to stimuli such as hormones, sensory 

signals and in our case neurotransmitters.  GRK mediated phosphorylation promotes the 

binding of βarrestins 1 and 2 which function as endocytic adaptor proteins that facilitate the 

targeting of receptors for clathrin mediated endocytosis (Figure 11) (Ferguson, Zhang et al. 

1996; Goodman Jr, Krupnick et al. 1996). βarrestin and βarrestin2 were named for their ability 

to sterically hinder the G protein coupling of agonist-activated GPCR, resulting in receptor 

desensitization. They also function to activate signaling cascades independent of G protein 

activation. Serving as multiprotein scaffolds, they bring elements of specific signaling 

pathways into close proximity of the GPCR and of the cell membrane, where many of the 

secondary messengers of G proteins are generated.  βarrestins bring components of the 

clathrin-coated pit machinery, thus stabilizing the association with clathrin-coated pits 

(Laporte, Oakley et al. 2000). The pits invaginate and are released into the cytosol as free 

clathrin coated vesicles. This step requires the activity of dynamin to pinch off the clathrin-

coated vesicle from the plasma membrane (Laporte, Oakley et al. 2000). Following vesicle 

scission, all components must be disassembled so that the clathrin-coated vesicle can fuse with 

an early endosome. This early endosome controls the activity and the destinations of proteins 

in the compartment. These endosomes are a key point for sorting receptors which can be 

directed to late endosome or lysosomes for degradation or  recycling back to the cell surface 

(Mellman 1996).  
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Figure 11. β-Arrestin-dependent internalization of GPCRs. 

 After agonist (A) binding to G-protein-coupled receptors (GPCRs), GPCR kinases (GRK) phosphorylate 

residues in the third intracellular loop and carboxyl tail of GPCRs, leading to the recruitment of beta-arrestins 

(betaARR). The beta-arrestins recruit clathrin and the AP-2 complex, which target GPCRs for clathrin-

mediated endocytosis (Pierce and Lefkowitz 2001). 

 
 

8. Hypothesis of work 

Ligands that activate receptor 5HT4 induce conformational changes that differ in the 

recruitment of G protein αs and αo. This functional selectivity may account for RS67333’s 

antidepressant implications. 

9. Goal of project 

Different agonists that activate the same GPCR are in some cases capable of producing 

different response profiles through activation of different types of G proteins (Urban, Clarke et 

al. 2007). Functional selectivity is thought to be due to the stabilization of different 

conformations of GPCR by agonists leading to activation of different sets of responses (Perez 

and Karnik 2005; Urban, Clarke et al. 2007). To this end different agonists could also lead to 

different mechanisms of desensitization, as each agonist-induced GPCR conformation could 

possess different affinities for regulatory proteins such as GRKs and arrestins.  RS67333 is a 

5-HT4 agonist that has lasting AD effects in a short time (Mnie-Filali, Amraei et al. 2010; 

Vilaró and Piñeyro 2010). Our objective is to profile five 5-HT4 agonists: Zacopride, 

Prucalopride,  ML10302, RS67333 and Serotonin. We will be profiling them with respect to 

the cAMP pathway, measuring conformational changes in Gαs and Gαo,  with the BRET 

technique, measuring desensitization with ELISA, and measuring changes in pCREB in the 

nucleus accumbens and striatum when treated with RS67333. 
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Materials and Methods 

1. pCREB Measurements in striatum and nucleus accumbens in OBX versus sham rats 

1.1. Olfactory bulb ablation 

Rats were anesthetized with a mixture of isoflurane (3– 3.5%) and oxygen (Breuer, Groenink 

et al. 2007) and mounted onto a stereotaxic apparatus. An incision was made on the scalp and 

a rectangular hole was drilled on the portion of the skull overlying the olfactory bulbs. The 

caudal end of the bulbs was then severed from the rostral pole of prefrontal cortex with a 

microknife; physical transection of the junction between these two structures precluded 

distortion to the prefrontal cortex during removal of the olfactory bulbs by suction (van der 

Stelt, Breuer et al. 2005). The resultant cavity was then filled with sterile hemostatic sponge 

and the wound was closed with sterile suture (van der Stelt, Breuer et al. 2005; Breuer, 

Groenink et al. 2007). Sham-operated (SHAM) rats were treated similarly, with the exception 

that their brain remained intact. Following surgery, all rats were housed singly and allowed a 

minimum of 10 days to recover prior to the start of behavioral testing. Each brain was 

inspected at the time of sacrifice; bulbectomies were considered successful only if less than 

30% of the bulbs remained intact (van Riezen, Schnieden et al. 1977; Chambliss, Van 

Hoomissen et al. 2004). 

1.2. Preparation of brain samples 

Following the removal of residual bulb in the rats, striata and nucleus accumbens were 

dissected on ice. Dissection and determination of CREB activity was performed using the 

methods described by Lucas et al. (Lucas, Rymar et al. 2007). Isolated striata, including the 

ventral striatum (1-2 mg wet tissue/100 μl) were homogenized in buffer containing 5 mM 

Tris-HCl, pH 7.4, 2 mM EDTA, and protease inhibitors (5  g/ml leupeptin, 5  g/ml soybean 

trypsin inhibitor, and 10  g/ml benzamidine (Lucas, Rymar et al. 2007). After homogenization, 

Triton X-100 was added at a final concentration of 1% (v/v) and the mixture was agitated (4° 

C, 1.5 h) followed by centrifugation  (4°C, 15,000xg, 25 min).  The resulting pellet was 

suspended in sample buffer at a final concentration of 10 μg protein/μl.  
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1.3. Membrane Preparation 

Membranes were prepared as described previously (Rousseau, Nantel et al. 1996). Briefly, 

washed tissues were then lysed on ice with a Branson sonifier 250 VWR scientific (ten 1-

second bursts at maximum speed). Lysates were then heat shocked for 5 min at 95 °C, cooled 

on ice, followed by centrifugation at 500g for 5 min at 4°C, and the resulting supernatant was 

centrifuged at 45,000g for 20 min at 4°C. The resulting pellet was resuspended in binding 

buffer (75 mM Tris-HCl, pH 7.4, 12.5 mM MgCl2, 2 mM EDTA, and protease inhibitors as 

indicated above) and immediately used in binding assays or for gel electrophoresis. Protein 

concentration was determined using the Bio-Rad DC Protein Assay Kit (Richmond, CA) and 

300 μg of protein was used. For SDS-polyacrylamide gel electrophoresis, membrane protein 

samples were denatured in sample buffer (62.5 mM Tris-HCl, 5% SDS, 50 mM dithiothreitol 

(DTT), 10% glycerol, 0.05% bromophenol blue) and separated on a 10% Sodium Dodecyl 

Sulfate-polyacrylamide gel (SDS-PAGE) using a GE healthcare Rainbow
TM

 Molecular weight 

marker as the ladder . 

1.4. Preparation of SDS-PAGE  

There are two types of gel: running gel and stacking gel. The running gel is made 3.97 ml of 

H2O,  3.33 ml of  Acryl-bisacryl,  2.5 ml of Tris 1.5M pH 8.8, 100  μL  of 10% Sodium 

dodecyl sulfate (SDS), 100  μL  of ammonium persulfate and lastly 5  μL of 

Tetramethylethylenediamine (TEMED). The stacking gel has a slightly different blend, still 

using all the same ingredients except with a change to Tris 0.5 M pH 6.8. Stacking gel uses 

2.38 ml H2O, 500 μl of acryl-bisacryl, 500 μl of Tris 0.5M pH6.8, 38 μl of  10% SDS, 38 μl of 

10% APS, and 4 μl of TEMED.  

1.5. Western blot analysis 

The samples were sonicated and immediately boiled for 5 min before being inserted into gels 

(SDS-PAGE). A running buffer of 30 mM Tris base, 50 mM glycine, and 3 mM SDS was 

used. The gels were run at 170V for 2 hours. The proteins resolved in SDS-PAGE were 

transferred from gels onto nitrocellulose in a transfer buffer solution of 0.025M Tris base, 0.19 

M glycine, 10% methanol, via a current (50 mA, overnight, Bio-Rad).  The phosphorylated 
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form of CREB (pCREB) was detected by probing membranes with an mouse anti-pCREB 

monoclonal antibody (1: 100; sigma) followed by secondary antimouse (1:5000; Sigma). Total 

CREB content was determined after stripping by using a 1:5000 dilution of anti-CREB 

polyclonal antibody (Cell Signaling Technology) followed secondary anti-rabbit  horseradish 

peroxidase (HRP)-conjugated IgG  antibodies (1:10000; Amersham). Protein content was 

revealed by chemiluminescence detection reagents (Amersham ECL select).The density of 

each band was quantified using the ImageJ software (National Institutes of Health, USA). The 

results were expressed as the pCREB/total-CREB ratio. The activation of CREB in striatum 

and Nucleus Accumbens tissue was assessed by measuring phospho-CREB (pCREB) 

immunoreactivity. CREB phosphorylation was normalized according to the amount of protein 

present in each sampled by expressing the data as a ratio of pCREB over total CREB 

immunocreactivity. 

2. BRET Comparisons between RS67333, 5-HT and other ligands 

2.1. Cell Culture  

2.1.1. Cell line 5-HT4b  

Stable cell lines were produced using lipofectamine (Invitrogen) to transfect 4 μg of  

DNA/100 mm petridish followed by selection with Geneticin (500 μg/ml). Cells containing 

the 5-HT4B receptor would have resistance to the antibiotic G418.  The 5-HT4B stable cells   

were used for internalization experiments and kept stable with typical DMEM media with 

10% FBS, penicillin, streptomycin and G418.  

2.1.2. Transfection of HEK 293 immortal cell line 

HEK293 cells were cultured in DMEM (Dulbecco's Modified Eagle Medium) supplemented 

with 10% FBS, and penicillin 1000 Units/ml and 1mg/ml Streptomycin (Wisent. Inc.) at 37°C, 

in 5% CO2 and 100% humidity. Aliquots of 3.5 x 10
6
 cells were seeded into 10-cm dishes to 

optimize transfections conditions. Aliquots of 3.5 x 10
6
 cells were incubated overnight. 

Transient transfection were performed the following day with polyethylenimine (PEI)  in 

DMEM media (Pei: Polysciences) at a DNA/PEI ration of 1:2. The DNA to study the 

conformational changes in αs and γ2 were 0.4 μg of αs67RlucII, 4 μg of γ2GFP
10

, 4 μg of β1 

and 8 μg of HA-5-HT4B. The DNA to study the conformational changes in αo and γ2 were 0.35 
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μg of αo90RlucII, 3 μg of  γ2GFP
10

, 3 μg of β1 and 10 μg of HA-5-HT4B.. They were incubated 

for 3 hours and the transfection was stopped by removing media and replacing with the same 

growth media used previously. They were then incubated for 2 nights and were then ready for 

experiments using Bioluminescence resonance energy transfer (BRET).  

2.2. BRET  

2.2.1. DNA constructs  

The plasmids encoding the Green Fluorescent Protein (GFP
10

) fused at the N terminus of the 

human Gγ2 were obtained by subcloning the human Gγ2 coding sequences into GFP vectors 

(Gales, Van Durm et al. 2006).  Recombinant plasmids encoding for αsRlucII were prepared as 

previously described (Audet, Gales et al. 2008), to insert the coding sequence of humanized 

Renilla luciferase (Rluc; PerkinElmer Life Science) into the coding sequence of human Gαs   at  

Ser
67

.  They were donated to us as a gift from the Michel Bouvier’s laboratory. The vector 

encoding human influenza hemagglutinin (HA) fused in frame at the N terminus of human 5-

HT4B have been previously described (Breit, Gagnidze et al. 2006).  

2.2.2. BRET Analysis 

Gα and Gγ2 were tagged with Rluciferase II  at the 67
th

 amino acid and with GFP10 at the N 

terminus. Forty eight hours after transfection, cells were washed twice and mechanically 

detached with phosphate buffered saline (PBS) and centrifuged 5 min at 300g, followed by 

resuspension in PBS. Treatments and BRET protocols were based on a previously established 

protocol that was optimized for assessing in vivo ligand effects on receptor interaction with 

heterotrimeric G proteins (Gales, Van Durm et al. 2006; Rebois, Robitaille et al. 2006). Cells 

were briefly kept on ice until immediately prior to reading. They were then distributed into a 

96-well microplate (white optiplate; PerkinElmer Life Sciences) at a concentration of 1.5 μg 

protein/well, which allowed us to achieve luminescence levels suitable for BRET readings 

using different constructs. The Rluc coelenterazine substrate DeepBlueC (PerkinElmer Life 

Sciences) was added for a final concentration of 5 μM. Readings were taken 10 min after 

coelanterazine addition, using the Mithras LB 940 multimode microplate reader that allows 

the sequential integration of the signals detected in the 400 nm and 515 nm windows using 

filters with the appropriate band pass (chroma). The BRET2 signal was determined by 
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calculating the ratio of the light emitted by GFP10 (515nm) over the light emitted by the 

RlucII (400nm) at the detection wavelength of the filters. BRET2 values were corrected by 

subtracting the BRET background signal measured from the Rluc-tagged construct alone, from 

the BRET signal detected in cells co-expressing both Rluc and GFP (net BRET).  

2.2.3. BRET theory 

BRET makes use of the naturally occurring phenomenon  luciferase to excite the fluorescently 

bound proteins and measure the non-radiative transfer of energy between a luminescent donor 

and a fluorescent acceptor (Angers, Salahpour et al. 2000). In BRET2 assays, Rluc catalyses 

the oxidation of cell permeable coelenterazine (Deepblue C) resulting in luminescent 

emissions within the excitation wavelength of GFP (Bertrand, Parent et al. 2002). Because the 

efficacy of the energy transfer varies inversely with the sixth power of distance, fluorescence 

emission by GFP will only take place if donor excitation occurs in close proximity of the 

acceptor (100 Angstroms). This property may be exploited to monitor interactions between 

different types of cellular proteins (Milligan and Bouvier 2005; Marullo and Bouvier 2007) 

provided that the proteins of interest are tagged with donor/acceptor pairs. Changes in the 

BRET ratio implies movement of the donor and acceptor protein in relation to each other, and 

can only be observed if proteins are within 20Å of each other (Altenbach, Oh et al. 2001). 

3. Ligand Induced internalization studies 

3.1. ELISA assays of cell internalization 

For quantification of receptor internalization, enzyme linked immunosorbent assays (ELISA) 

were performed. Cells stably expressing the 5-HT4B  receptor were plated out at 200,000 cells 

per well of a 24 well tissue culture dish previously coated with 0.1 mg/ml poly-l-lysine and 

incubated in DMEM 10%FBS with G418. After 24 hours the cells were serum-deprived and 

incubated at 37°C overnight.    The cells were then incubated for 90 min at 37°C under the 

conditions of agonist stimulation (serotonin, RS67333, Zacopride, Prucalopride and 

ML10302) at various concentrations.  Stimulation was stopped by removing the media and 

fixing the cells with 3% paraformyladehyde/PBS for 15 min on ice. The cells were then 

washed two times with PBS-CM (1 mM MgCl2, 1 mM M CaCl2) on ice. Non-specific binding 

was blocked with PBS-CM/BSA (1%) for 30 min at room temperature. The primary antibody 
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(monoclonal mouse anti-HA) was added at a dilution of 1/3000 in PBS/BSA for 1 hour at 

room temperature/ two washes of PBS followed.  Incubation with HRP linked anti-Mouse IgG 

diluted to 1/5000 for 30 min. The cells were then washed twice with PBS-CM and 200μl of 

HRP o-phenylelediamine dihydroschloride (sigma FASTTM OPD) colorimetric alkaline 

phosphatase substrate was added. When the adequate color change was reached, coloration 

was stopped by adding 50μl HCl 3N and 200μl samples were taken for colorimetric readings. 

The optical density was measured at 492 nm in a 96-well microplate (Victor3 Plate reader; 

Perkin Elmer) The optical density (OD) corresponds to the signal generated by receptors 

bound on the cell surface. The quantity of receptors internalized immediately after the 

exposition to the drugs was calculated by using the OD in the presence  and  absence of drugs. 

The results express the percentage of receptor present at the surface in a ratio 

:
ODbasal−ODstimulated

ODbasal
∗ 100% , where OD

basal
 and OD

stimulated 
were the optical densities of the 

receptors in absence or in presence of respective agonist at different concentrations.  The value 

obtained correspond to the results of internalization in percentage of the receptors on the 

surface with treatment. The results of different treatments are compared to the normalization 

of internalization induced by 5-HT. 

3.2. 5-HT4  receptor ligands 

We used 5-HT, a ubiquitous endogenous neurotransmitter ligand important in learning, mood, 

and sleep (Portas, Bjorvatn et al. 2000; Harvey 2003; Ruhé, Mason et al. 2007). Zacopride is 

an exogenous ligand that is an antagonist of the 5HT3 receptor (Smith, Sancilio et al. 1988) 

and an agonist for the 5-HT4 receptor (Lefebvre, Contesse et al. 1993). Prucalopride, an 

exogenous ligand, is an agonist for the  5-HT4 receptor (Briejer, Bosmans et al. 2001). 

ML10302, an exogenous ligand, may be a partial agonist for the 5-HT4 receptor. Finally,  

RS67333 is an exogenous ligand that acts on the 5-HT4 receptor as an agonist (Lamirault and 

Simon 2001). 

4. Statistical analysis 

All statistical analyses were performed using Graphpad 6 (Prism) software package. 

Means of two experimental conditions run in parallel were analyzed by means of paired, 
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two-tailed Student’s t tests. Multiple comparisons were done by means of ANOVA-two 

way analysis. After establishing significance for different factors and interactions, posthoc 

tests were carried out to further establish the source of differences. When all conditions 

were compared among each other the test used was Tukey’s; when selected conditions 

were compared the test used was Sidak’s. The effects of drug concentrations were 

established using Dunnet’s test to compare responses obtained in the presence of ligand to 

responses obtained in its absence.    
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Results 

1. Olfatory Bulbectomy and pCREB in striatum and nucleus accumbens 

Our aim in this part of the project was to determine whether normalization of Olfactory 

Bulbectomy (OBX)-induced anhedonia by RS67333 administration is accompanied by 

modulation of pCREB in reward relevant sites. It has previously been shown that OBX- 

induced anhedonia is associated with dysregulation in brain levels of the phosphorylated form 

of CREB (pCREB) (Romeas, Morissette et al. 2009).  Indeed, this transcription factor is 

expressed in reward sites of the brain, in healthy individuals, and is necessary for neuronal 

plasticity, and where it modulates hedonic responses (Carlezon, Duman et al. 2005; Nestler 

and Carlezon 2006) .   

1.1. Sucrose intake and changes in pCREB 

Changes in CREB in the striatum and the accumbens have been correlated with sucrose intake 

and decreased reward by morphine and cocaine (Carlezon, Thome et al. 1998; Pliakas, Carlson 

et al. 2001; Barrot, Olivier et al. 2002). We used western blot analysis to determine the effects 

of RS67333 on the pCREB/TCREB ratio inside the striatum and nucleus accumbens, a brain 

structure directly involved in reward processing.  The effects of RS67333 were assessed in 

two different groups of rats: i) rats that were subject to OBX and ii) rats that were subject to a 

sham operation. Results from these experiments are shown in Figure 12 and 13. 

1.2. Rats treated with RS67333 had increase in pCREB 

 In keeping with previous reports (Lucas, Rymar et al. 2007), pCREB appeared as an 

immunoreactive band at 46 kDa.  A band corresponding to the total amount of CREB was 

present in the sample and was observed at a similar molecular weight. Quantification of 

corresponding pCREB/tCREB ratios for different treatments are shown in Figure12A and 

indicate that exposure to RS67333 enhanced the proportion of CREB in its phosphorylated 

state within the striatum of OBX treated rats. The ratios in the striatum were 0.91 ± 0.04 for 

SHAM animals treated with vehicle and 0.97 ± 0.08 for SHAMs treated with RS67333. For 

animals that had undergone ablation of OBX and were treated with vehicle the pCREB/tCREB  
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Figure 12. Effect of selective 5-HT4 receptor ligand RS67333 on the activation of CREB 

in rat striatum, assessed by measuring phospho-CREB (pCREB) immunoreactivity.  

pCREB levels were assessed by western blot analysis carried out in striatal samples of the indicated groups of 

animals:  Sham operated +Vehicle treatment (SV), Sham operated +RS67333 treatment (SR), OBX operated 

+Vehicle treatment (OV) and OBX operated +RS67333 treatment (OR). The sacrifice of rats occurred on the last 

day of a 7 day treatment regimen. (A) Representative samples of pCREB and totalCREB immunoreactivity from 

each group. Samples were obtained from the same blot and spliced in order to remove molecular weight markers. 

Bands appeared at ~ 46 kDa. (B) Here, we estimated activity from the ratio between the phosphorylated form and 

total CREB protein present in each sample (pCREB/totalCREB). Ratios were used in order to normalize 

phosphorylation to the amount of protein present in each sample. Bars representing mean ± s.e.m of 

pCREB/CREB ratios. Ratios were compared by 2 way anova which showed an effect of treatment (p=0.0190) no 

effect of lesion (p=0.0842), and no interaction (p=0.0880). The effect of treatment accounted for 16.5% of the 

total variance.  A post hoc Sidak test allowed comparison of control versus treatment in the sham and lesion 

groups showing an effect of RS67333 in the latter group (p<0.05).  
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B 

pCREB 

totalCREB 

Sham+ Vehicle  

Sham+RS67333 
OBX +Vehicle 

OBX +RS6733 

Sham+Vehicle (SV) =9 

Sham+RS67333 (SR) = 9  

OBX+Vehicle (OV) = 8 

OBX+RS67333 (OR) = 7 
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 Figure 13. Effect of selective 5-HT4 receptor ligand RS67333 on the activation of CREB 

in rat nucleus accumbens, assessed by measuring phosphoCREB (pCREB) 

immunoreactivity. 

pCREB levels assessed by western blot analysis carried out in nucleus accumbens samples of the indicated 

groups of animals. (A) Representative samples of pCREB and totalCREB immunoreactivity from each group. 

Samples were obtained from the same blot and spliced in order to remove molecular weight markers. Bands 

appeared at ~ 46 kDa. (B) ) Here, we estimated activity from the ratio between the phosphorylated form and total 

CREB protein present in each sample (pCREB/totalCREB). Ratios were used in order to normalize 

phosphorylation to the amount of protein present in each sample. Bars representing mean ± s.e.m of 

pCREB/CREB ratios. Ratios were compared by 2 way anova which showed an interaction effect (p<0.0001) no 

effect of lesion (p=0.9192), and no effect of drug (p=0.9856). The interaction effect accounted for 45.9% of the 

total variance.  A post hoc Sidak test allowed comparison of control versus treatment in the sham and lesion 

groups showing an effect of RS67333 in the both groups (p<0.01).  
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ratio was 0.90 ± 0.04 and for OBX rats that had received RS67333 the ratio was 1.27 ± 0.13. 

A post hoc sidak test values indicated that treatment with RS67333 significantly increased this 

ratio in OBX (p <0.005) but not control animals (Figure 12B). The ratios in the accumbens 

were 0.95 ±0.04 for SHAM animals treated with vehicle and 0.57 ± 0.06 for SHAM animals 

treated with RS67333. These values indicated that RS67333 significantly decreased this ratio 

in SHAM (p<0.005). For OBX animals that were treated with vehicle the pCREB/TCREB 

ratio was 0.56 ± 0.09 and for OBX rats that had received RS67333 the ratio was 0.94 ± 0.15. 

These values indicated that RS67333 significantly increased this ratio in OBX (p <0.0001) but 

not control animals (Figure 13B). 

1.3. Rationale for Bioluminescence resonance energy transfer experiments (BRET) 

RS67333 seems to produce a biphasic effect in some cases; meaning it has the ability to 

increase or decrease phosphorylation of CREB. Therefore, it stands to reason that it has the 

ability to increase or reduce signaling though the cAMP pathway. In order to address this 

question, we looked at the first step in the activation of the cAMP pathway which is the 

activation of the Gαs and Gαo protein. We chose to look at the activation of Gαs and Gαo. We 

chose Gαo because this is the G protein most abundant in the Central Nervous System (CNS) 

that inhibits AC (Strittmatter, Valenzuela et al. 1990).  To measure these interactions we used 

Bioluminescence Resonance Energy Transfer (BRET) to compare different ligands.  

2. Comparison of 5-HT4  receptor ligands in their ability to activate cAMP 

2.1. Bioluminescence resonance energy transfer (BRET)  

Bioluminescence resonance energy transfer (BRET) enables us to measure changes in protein 

to protein interactions, and we used this technology to characterize initial steps in the cAMP 

pathway.  5-HT4 receptors interact with and activate Gαs and Gαo. When Gαs is activated, it 

binds to and activates adenylyl cyclase which converts adenine triphosphate (ATP) into cAMP 

(Kammer 1988). When Gαo is activated, it mainly inhibits AC activity.  Here we used a BRET 

biosensor in which the donor luciferase is placed at position 67 on αs (αs67RlucII) or at 

position 90 for αo (αo90RlucII), and the acceptor GFP
10

 is placed at the N-terminus of Gγ2 

(γ2GFP
10

).  Since Gαs and Gαo act in opposition, we wanted to measure the conformational 

changes of the Gαβγ in response to the signal activated receptor 5-HT4. In basal conditions, 
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Gαs or Gαo and Gβγ form a complex in which the donor and the acceptor are located close 

enough to one another generating a basal BRET signal. During activation, Gαs will have a 

conformational change relative to Gβγ and increase the BRET signal. In the case of Gαo the 

conformational change relative to Gβγ will result in a decreased BRET signal.  The Gα 

subunits are between 350 and 400 amino acids (Strathmann and Simon 1990). The difference 

in position of the placement of RlucII between Gαs and Gαo is only 23 amino acids. But in a 

quaternary structure the residues positions, and thus the position of RLucII are in different 

environments and distance relative to the γ2GFP
10

 complex. The ligand-activated signal 

induces a conformational change in this quaternary resulting in changes to the BRET signal.   

We took advantage of these properties to determine the ability of 5-HT4 receptor agonists to 

activate αs and αo. 

2.1.1. 5-HT4 receptor  ligands dose response 

5-HT4 receptor agonists were tested at concentrations from 1 nM to 10 μM for a 2 minute 

exposure, sufficient for evaluation of conformational rearrangements within the Gαβγ  

complex (Audet, Gales et al. 2008). We compared the BRET signal of the endogenous ligand, 

5-HT, to the exogenous ligands:  RS67333, Zacopride, Prucalopride and ML10302 that are 

known agonists for the 5-HT4 receptor. Dose response curves for these different ligands are 

shown in Figure 14 and 15;  they indicate that these drugs differ in their ability to activate the 

Gαs, Gαo protein. These values were obtained by attributing 100%  for  Gαs and -100% for Gαo 

to the greatest concentration (10
-4

 M) measured of the endogenous ligand, 5-HT.  The -100% 

for Gαo was attributed because the ligand induced conformational change resulted in a 

decreased BRET signal from basal conditions. 

2.2. Gαs 

2.2.1. EMax and EC50   

5-HT behaved as a full agonist for Gαs producing the greatest Emax. Standardizing 5-HT’s 

maximal effect to 100% we determined the Emax values of the other agonists. To standardize 

each experiment, given that 5-HT is the endogenous ligand, the delta net BRET value at it’s 

highest concentration (10
-4  

[M]) was given the value of 5-HT. Results were analyzed by 

nonlinear regression three parameter analysis agonist vs. response. The Emax of 5-HT was 93.2  
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Figure 14. Dose response of 5-HT4  receptor ligands as measured by a BRET-based 

conformational biosensor monitoring αs/γ2 interaction. 

HEK293 cells are transfected with 0.4 μg of αs67RlucII, 4 μg of γ2GFP
10

,4 μg of β1 and 8 μg of HA-5-HT4B and 

exposed to agonist for 2 minutes before taking BRET measurements. (A) The Net BRET signal change of the 

interaction with 5-HT. The complex thus formed increased BRET signal under basal conditions. Results were 

compared by means of paired, two tailed Student’s t test with a significant difference of p=0.0003.(B) Results 

represent change with respect to Basal BRET (0.113 ±0.002) and correspond to the mean ± SEM of 7 

independent experiments. Curves were compared by means of 2 way ANOVA which indicated an effect of drug 

of 35.0 % (p<0.0001), a concentration effect of 33.7% (p<0.0001) and an interaction of 16.1% (p<0.0001).  

Posthoc analysis by using Sidak comparison test indicated that RS67333, Zacopride, prucalopride and ML10302 

were all different from the endogenous ligand 5-HT (p<0.0001);  Prucalopride was different from RS67333 

(p<0.05) and ML10302 (p<0.0001) and Zacopride was different from ML10302 (p<0.0001). The effect of 

concentration was analyzed using Dunnett’s test to compare the response in the absence of ligand to responses 

obtained at difference concentrations. Statistical significance is shown on graph. 

  

A 

B 
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Table I. Emax  and EC50 values obtained from dose response curves generated of 5-HT4 

receptor ligands as measured by a BRET through αsRlucII/γ2GFP
10

 interaction (figure 

14B) 

 
EC50(nM) ± s. e. m. Emax± s. e. m. 

5-HT 34.6 ± 2.5  0.0411 ± 0.003 

Zacopride 272 ± 3.8
 

0.0248 ± 0.003 
 

Prucalopride 93.3 ± 3.6  
 

0.0235 ± 0.002 
 

RS67333 23.6 ± 4.2 
 

0.0203± 0.006
 

ML10302 n/a n/a 

  

A 1-way anova determined overall significant variation across EC50 for the different ligands with a p<0.0001. 

Post hoc Sidak multiple comparison test allowed us to establish the following rank order: the EC50 value for 

Zacopride was significantly higher than for Prucalopride (p<0.0001), that of prucalopride was significantly 

higher than that of RS67333(p<0.0001) but not different from that of 5-HT, which in turn did not differ from that 

of RS67333. A 1-way anova determined overall significant variation across Emax for the different ligands with a 

p<0.0001. Post hoc Sidak multiple comparison test allowed us to establish the following rank order: the Emax 

value for 5-HT was significantly higher than for RS67333 (p<0.01) and Zacopride (p<0.05), that of zacopride did 

not significantly differ from prucalopride and RS67333.  

 ± 2.5, Zacopride 48.4% ± 3.2, Prucalopride 47.3% ± 3.6, RS67333 15.6% ± 3.2, and 

ML10302 which was negligible. Gαs activation is critical for the activation of AC, the  

membrane bound protein that hydrolyzes ATP to produce cAMP.  Gαs conformation is 

maximally effected by 5-HT.   The EC50 values for 5-HT, RS67333,  Prucalopride, Zacopride 

and ML10302 are as follows: 34.6 nM ± 2.5 , 23.6 ± 4.2  nM, 93.3 ± 3.6  nM, 272 ± 4 nM, and 

not significant for ML10302 respectively.  RS67333 requires less drug to reach it’s EC50. 

Having said that, RS67333 had an EMax of 16% of what the endogenous ligand, 5-HT, obtains. 

Prucalopride and Zacopride require 3x and 9x of their respective drug compared to 5-HT to 

reach their EC50 and their Emax are 47% and 48% respectively. ML10302 did not significantly 

change from basal conditions. Using Sidaks multiple comparison test for the Emax values we 

established the following rank order of efficacies in the activation of αs: 5-HT>Zacopride = 

Prucalopride> RS67333>ML10302 (p < 0.0001). In terms of potency in the activation of αs, 

using Sidak’s multiple comparison test with the EC50 results, we establish a rank order of 5-
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HT = RS67333 > Prucalopride > Zacopride > ML10302 (p < 0.0001).Taken together this data 

indicates that RS67333,Zacopride, and Prucalopride behave as  partial agonists in the 

activation of Gαs. 5-HT as the endogenous ligand behaves a full agonist, and has a similar 

potency to RS67333. ML10302 has negligible efficacy as an agonist for Gαs.  

2.3. Gαo 

2.3.1. EMax and EC50 

5-HT behaved also as a full agonist for Gαo producing the greatest Emax. Standardizing the 

maximal effect to -100% we determined the Emax values of the other agonists. The Emax of 5-

HT was -102.3% ±  6.2,  Prucalopride -57.7% ±6.2,  ML10302 -49.5% ± 7.0. Zacopride and 

RS67333 are equally ineffective at activating αo producing a negligible response. The EC50 

values for 5-HT, Prucalopride, ML10302, Zacopride and RS67333 are as follows: 185 ± 8.0 

nM, 29.6 ± 9 nM, 1288 ± 12 nM , Zacopride and RS67333 did not significantly differ from 

basal conditions. Using Sidaks multiple comparison tests for the Emax values we established 

the following rank order of efficacies in the activation of αo: 5-HT>Prucalopride≥ML10302. 

There’s a significant difference (p<0.01) between 5-HT and Prucalopride, and an even 

stronger significant difference between 5-HT and ML10302 (p<0.005), but  no significant 

difference between Prucalopride and ML10302. In terms of potency in the activation of αo, 

using Tukey multiple comparison tests of the EC50 results, we establish a rank order of  

Prucalopride> 5-HT >ML10302 (p<0.0001). 

The results for RS67333 and Zacopride are very similar. Both are able to activate the αs G 

protein that is the first step in the cAMP pathway leading to the augmentation of CREB and 

they both inadequately activate αo, which is significant for the inhibition cAMP pathway. 5-

HT, as expected, significantly activates both αo  and αs. ML10302 appears to weakly activate 

αo and not significantly activate αs. Prucalopride acts similarly to 5-HT activating both αs and 

αo but to a lesser extent.   

3. 5-HT4R ligand-induced internalization 

RS67333 when tested in vivo showed no tolerance during short or long treatment.(Vilaró and 

Piñeyro 2010). Tolerance is when a subject’s reaction to a specific drug and concentration of 
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Figure 15 .Dose response of 5-HT4 ligands as measured by a BRET-based conformational 

biosensor monitoring αio/γ2 interaction.  

HEK293 cells are transfected with 0.35 μg of αoi90RlucII, 3 μg of  γ2GFP
10

, 3 μg of β1 and 10 μg of HA-5-HT4B 

and exposed agonist for 2 min before taking BRET measurements. (A) The Net BRET signal change of the 

interaction with 5-HT. The complex formed has and increased BRET signal under basal conditions. Results were 

compared by means of unpaired, two tailed Student’s t test with a significant difference of p=0.0491.(B) Results 

represent change with respect to Basal BRET (0.643 ±0.02) and correspond to the mean ± SEM of 10 

independent experiments. Curves were compared by means of 2 way ANOVA which indicated an effect of drug 

of 18.7 % (p<0.0001), a concentration effect of 8.3% (p<0.0001) and an interaction of 19.8% (p<0.0001).  

Posthoc analysis by using Sidak comparison test indicated that RS67333 and zacopride were different from the 

endogenous ligand 5-HT (p<0.0001). The effect of concentration was further analyzed using Dunnett’s test to 

compare the response in the absence of ligand to responses obtained at difference concentrations. Statistical 

significance is shown on graph. 

A 

B 
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Table II. Emax  and EC50 values obtained from dose response curves generated of 5-HT4 

ligands as measured by a BRET through αo/γ2 interaction (figure 15B) 

 
EC50(nM) ± s.e.m. Emax ± s.e.m 

5-HT 185.0 ± 7.9  -0.0308 ±0.002 

Prucalopride 29.6 ± 9.0 -0.0228 ± 0.002 

ML10302 1288 ± 11.5
 

-0.0160 ±0.003 
 

Zacopride N/A
 

N/A
 

RS67333 N/A N/A 

A 1-way anova determined overall significant variation across EC50 for the different ligands with a p<0.0001. 

Post hoc Sidak multiple comparison test allowed us to establish the following rank order: the EC50 value for 

ML10302 was significantly higher than for 5-HT (p<0.0001), that of 5-HT was significantly higher than that of 

Prucalopride (p<0.0001). A 1-way anova determined overall significant variation across Emax for the different 

ligands with a p<0.0001. Post hoc Sidak multiple comparison test allowed us to establish the following rank 

order: the Emax value for 5-HT was significantly higher than for ML10302 (p<0.01), that of prucalopride did not 

significantly differ from ML10302 and 5-HT.  

the drug is reduced followed by repeated use, requiring an increase in concentration to achieve 

the desired effect.  In terms of pharmacodynamics, this could be caused by a reduction of 

receptors that respond to the specific drug or agonist, or receptor desensitization in which the 

ion current through an open channel decreases. A risk of long term exposure to a GPCR 

agonist is desensitization via receptor phosphorylation and endocytosis (Johnson 2006). 

Endocytosis is a form of active transportation by which a cell transports receptors, antibodies, 

molecules   into the cell via pinocytosis or phagocytosis (Silverstein, Steinman et al. 1977).  

Endocytosis can be a part of the process of activation of desensitization of a receptor 

(Whistler, Chuang et al. 1999; Martini and Whistler 2007). We want to look at receptor 

endocytosis in response to RS67333 and compare it to other agonists with the purpose of 

understanding why RS6733 does not produce tolerance (Vilaró and Piñeyro 2010). To address 

this issue, we treated cells with different agonists for a period of 60 min at concentrations 

ranging from 10
-10

 to 10
-4 

M (figure 16). We saw that 5-HT induced the most sequestration of 

the 5-HT-4b receptor which corresponded to the sequestration of 37.5 % ± 2.5% membrane 
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receptors. In order to compare agonists internalization, all other ligands were normalized with 

respect to 5-  

  

Figure 16. Dose response of 5-HT4 receptor ligands induced internalization of 5-HT4b 

receptors as measured by ELISA assay.  

This graph represents internalization of the receptors after 60 min exposure to indicated concentrations of ligand. 

They represent mean ± s.e.m. of 7 experiments and are normalized by attributing the highest concentration used 

of 5-HT (10
-4 

M) as 100%. Curves were compared by means of 2 way ANOVA which indicated an effect of drug 

of 26.1 % (p<0.0001), a concentration effect of 29.6% (p<0.0001) and an interaction of 19.5% (p<0.0001).  

Posthoc analysis by using Sidak comparison test indicated that RS67333 and ML10302 were different from the 

endogenous ligand 5-HT (p<0.0001);  Prucalopride and Zacopride were different from RS67333 and ML10302 

(p<0.01). The effect of concentration was further analyzed using Dunnett’s test to compare the response in the 

absence of ligand to responses obtained at difference concentrations. Statistical significance is shown on graph. 

HT. Hence, 5-HT displayed an Emax of 105.0 ± 4.4, Zacopride of 87.5 ± 7.0, Prucalopride of  

82.6 ± 6.3, RS67333 and ML10302 had negligible internalization.  As can be seen 5-HT, 

Zacopride and Prucalopride  produced  a maximum of 5-HT4b receptor internalization.  While 

RS67333 and ML10302 had negligible internalization. Except for RS67333 all drug profiles in 
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internalization resemble those observed for αo but are quite distinct from those involving αo 

activation. 

 

Table III. Emax and EC50 values obtained from dose response curves generated by 5-HT4 

ligands as measured by ELISA through internalization of 5-HT4B receptors (figure 16)   

 EC50(nM)+ s.e.m Emax (%) + s.e.m. 

5-HT 76.2  ±  5.8 37.5± 2.5 

Zacopride 684 ± 8.1  33.1 ± 3.0 

Prucalopride 651 ± 10.1 28.7 ± 3.1  

RS67333  N/A N/A 

ML10302 N/A N/A 

A 1-way anova determined that there were significant differences between the EC50  results between each ligand 

with a p<0.0001. Values were extracted by curve fitting of the curves in fig 16B. Post hoc Sidak multiple 

comparison test allowed us to establish the following rank order: the EC50 value for Zacopride  was significantly 

higher than for Prucalopride (p<0.05), that of  Prucalopride was significantly higher than that of 5-HT 

(p<0.0001). A 1-way anova determined overall significant variation across Emax for the different ligands with a 

p<0.0001. Post hoc Sidak multiple comparison test allowed us to establish the following rank order: the Emax 

value for 5-HT was significantly higher than for Zacopride (p<0.01), that of Zacopride did not significantly differ 

from Prucalopride.  

4. 5-HT4R ligand profiles 

As can be seen in table IV no two drugs resemble each other in  their signaling profile pointing 

to unprecedented signaling diversity amongst 5-HT4 receptor agonists. ML10302 is a partial 

agonist for Gαo, but not for Gαs and does not induce receptor internalization. RS67333 is a 

partial agonist for Gαs but not for Gαo  and does not induce receptor internalization. 

Prucalopride is a partial agonist for Gαs, Gαo, and induces receptor internalization. Zacopride 

is a partial agonist for Gαs but not Gαo and induces receptor internalization. While 5-HT is a 

full agonist and induces maximal conformational change of the Gαs and Gαo as well as 

inducing maximal receptor internalization.  
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Table IV. The 5-HT4 receptor ligands profiles summarized from results of BRET 

measurements of Gαs and Gαo  as well as internalization experiments by ELISA. 

 ML10302 RS67333 Prucalopride Zacopride 5-HT 

Gαs –* ○ ○ ○ ●*** 

Gαo ○** – ○ – ● 

Internalization – – ○ ○ ● 

5-HT4  receptor profiles of obtained data. 

 * –  = Negligible response, **○ = Partial agonist , ***● = Full Agonist,   – = No response 

  



57 
 

Discussion 

In this study we showed that 7 days of treatment with RS67333 reduced CREB activity in 

ventral striatum of control rats but increased pCREB levels in ventral and dorsal striatum of 

OBX rats.  We then used cultured cells transfected with bioluminescent proteins to compare 

RS67333 to other agonists in their ability to activate Gαs and Gαo proteins (BRET) and induce 

internalization, concluding that 5-HT4 receptor respond to agonists in a ligand-specific 

manner. 

Modulation of striatal CREB activity 

The ability of RS67333 to influence CREB levels was studied in dorsal and ventral striatum in 

control rats and OBX rats. Our interest in RS67333 biochemical response in these structures 

comes from observations that RS673333 has rapid AD effect evidenced by anti-anhedonic 

actions in the OBX model (Lucas, Rymar et al. 2007). The striatum is a key player in reward 

response (Delgado 2007). While the ventral striatum is predominantly involved in emotional 

responses to stimuli (Cardinal, Parkinson et al. 2002).  The dorsal striatum is involved in the 

motor control of the responses (Balleine, Delgado et al. 2007). The phosphorylation state of 

CREB is crucial in the context of evaluating the antidepressant properties (Chen, Shirayama et 

al. 2001). We started by determining how OBX affects the pCREB levels in the striatum,  a 

region that is known to express high levels of 5-HT4Rs and mediates normal hedonic 

responses (Nestler and Carlezon 2006). Anhedonia is one of the central symptoms of 

depression and RS67333 has been shown to reverse this anhedonia in depression-like states 

caused by olfactory bulbectomy (Leonard 1984). Hence, we started by evaluating whether 

OBX changed pCREB within the striatum, a brain structure that is directly involved in 

mediating reward response.  RS67333 administration to control rats reduced pCREB levels in 

ventral striatum leaving dorsal striatum unchanged, suggesting regional differences in 

response to the drug. On the other hand, RS67333 administration for only 3 days significantly 

increased the pCREB/tCREB ratio in striatum of OBX rats whose anhedonic state had been 

successfully treated with RS67333 (Lucas, Rymar et al. 2007).  A possible explanation for 

these observations is that changes in CREB activity may not be involved in promoting 

anhedonic behaviour but could contribute to its reversal during antidepressant response. 
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Response to the RS67333 in OBX rats was observed both in ventral striatum and dorsal 

striatum. The fact that the RS67333 response in ventral striatum resembled that of OBX in 

sham rats and reverted OBX actions in lesioned rats clearly shows a state-dependent effect of 

RS67333. Similarly the RS67333 response in the dorsal striatum was also distinct in sham and 

OBX.  In this case, RS67333 could behave as an agonist, but when 5-HT levels are normal 

RS67333 could compete with the endogenous NTs. A precedent in the literature for this type 

of behaviour is aripiprazole: a partial D2 agonist that in the brain has biphasic effect.  It is an 

agonist when DA levels are low but blocker when DA levels are high. It is an antipsychotic 

drug (Stahl 2001). The only way this explanation could be valid would be if RS67333 were a 

partial agonist. So we compared RS67333 efficacy to induce signalling to the efficacy of other 

agonists. We chose αs and αo because they are the 1
st
 step in the cascade to pCREB. 

G protein activation by 5-HT4R agonists 

The Gαs protein is the first relay point from the 5-HT4R’s to the cAMP signalling pathway 

which is involved in the activation of pCREB though the activation of PKA. Activation of the 

G protein was assessed in vivo in real time by means of a conformational biosensor of trimeric 

G protein activation (Gales, Rebois et al. 2005; Gales, Van Durm et al. 2006; Audet, Gales et 

al. 2008).  Comparing the parameters of the different dose response curves by means of 

simultaneous curve fitting indicated that 5-HT was the most efficacious agonist producing the 

largest maximal effect. Any non-negligible change in delta net BRET, is indicative of a 

conformational change. BRET measures energy transfer; a conformational change resulting in 

the fluorescent proteins being in closer proximity would increase the delta net BRET signal; a 

conformational change  where the fluorescent proteins are moved away from each other or 

blocked by the tertiary structure is also indicative of a conformational change that is 

measureable. Measuring Gαs and Gαo it is not surprising to see that the endogenous 5-HT, has 

the greatest delta net BRET and is a full agonist in both assays. If we take a look at the 

summary table (table IV) we can see that RS67333 behaved as partial agonist in αs activation 

but produced no significant effect with a αo biosensor. This observation is consistent with our 

hypothesis that RS67333 could work to enhance or inhibit the system according to 5-HT 

endogenous levels. If we now compare RS67333 to other ligands taking the endogenous 

ligand 5-HT as standard: all synthetic ligands have partial efficacy in either promoting 
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activation of αs or αi. An interesting observation is that there are not two ligands with similar 

signaling profile. ML10302 has no efficacy to engage αs and has similar Emax as Prucalopride 

in αi. Prucalopride is similarly and partially efficacious in both α signaling pathways. Its 

efficacy is indistinguishable from Zacopride for αs; which in turn displays no efficacy for αi.  

This drug behaviour which shows ligand specific response in different signaling pathways is 

the hallmark of functional selectivity (Kenakin 2011). An interesting observation is that 

RS67333 follows ML10302’s dose response curve for αi activation except for the highest 

concentration. This bizarre behaviour of RS67333 was consistently repeated in each 

experiment as shown by small s.e.m. of this point. A plausible explanation is that at this high 

concentration RS67333 preferentially engages the endogenous αs protein, rather than the αo-

RlucII90γ2GFP
10

 biosensor. In keeping with this reasoning, ML10302 which has no efficacy 

with αs produces a full curve for αo as do 5-HT and prucalopride which both are more 

efficacious than RS67333 in both assays. Among all drugs ML10302 resembles RS67333 in 

its weak signaling responses. If partial agonism is the signaling property that makes RS67333 

an effective AD we would expect ML1032 to have at least some of RS67333’s in vivo 

responses. It is also worth noting that Zacopride and RS67333 activate Gαs similarly and also 

fail to significantly activate Gαo. The differences between these two drugs lies in their abilities 

to cause receptor internalization, since Zacopride activates internalization of the receptor. In 

the case of treatment of depression, it would be undesirable for receptors that produce AD 

effects to be internalized. Zacopride is already available and is used as an anxiolytic; anxiety 

having many parallels, and co-occuring with depression with a high frequency (Rice, van den 

Bree et al. 2004). RS67333 could be the longer lasting version of Zacopride that treats 

prolonged anxious/depressive symptoms. 

5-HT4 receptor agonists effects on 5-HT4 receptor internalization 

Endocytosis is a form of active transport of molecules, particles and receptors from outside the 

cell to inside the cell. When a receptor has a ligand bound that is eliciting an ongoing signal, 

the receptor may be signaled to undergo endocytosis. When this happens G-protein Receptor 

kinases are activated and will phosphorylate the cytosol tail of the receptor. The 

phosphorylation of this tail attracts β arrestins which will start the invagination process of the 

receptor and signal clathrins to start forming clathrin coats. This pocket in the cell membrane 
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requires the protein dynamin to reform and bind the end of the membrane back together to 

form the endosome containing the receptor. This endosome can be recycled back to the cell 

membrane at varying speeds.  

Internalization is an important aspect of receptor tolerance.  When a receptor is continuously 

stimulated it may lead to prolonged desensitization if the receptor is sent for degradation or to 

resensitization if the receptor is recycled to the membrane. Internalization without recycling 

has been associated with analgesic tolerance to delta opioid agonist (Audet, Charfi et al. 

2012). Similarly, lack or poor internalization of μ-opioid receptor by morphine is also 

associated with tolerance due to lack of resensitization (Bohn, Gainetdinov et al. 2000; Groer, 

Schmid et al. 2011).  Given the nature of depression and its chronic condition, a drug that may 

induce tolerance is undesirable. RS67333 and ML10302 displayed no internalization: while 

the other three agonists produced significant sequestration. In the literature daily treatment 

over 21 days of zacopride showed a down-regulation of 5-HT4 receptors in striatum and 

hippocampus.  The most feasible explanation indicates that this down-regulation reflects 

internalization and/or increased degradation as a consequence of prolonged exposure (Vidal, 

Valdizán et al. 2010). In terms for 5-HT4R occupancy, prucalopride was found to bind 

relatively weakly compared to RS67333. A study by Nirogi et al. of rat striatal 5-HT4R 

occupancy found that an intravenous dose of 10mg/kg of RS67333 was necessary for 100% 

occupancy, while prucalopride maximum occupancy was 75% with a dose of 50 mg/kg.  

Plasma concentration of 50 ng/ml of RS67333 was required for 100% occupancy, 

prucalopride reached 75% occupancy when concentration was 5000 ng/ml (Nirogi, Kandikere 

et al. 2013). We observed that RS67333 produced no tolerance after three weeks so in this 

case lack of internalization may contribute to RS67333’s prolonged response. 
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Conclusion 

In summary, we have tested five agonists in a) the main signaling pathway that control CREB 

activity, b) in a regulatory response that leads to tolerance and c) we have assessed the ability 

of RS67333 to modulate CREB activity in relation with its anti-anhedonic effects. The data 

obtained are consistent with the notion that RS67333 stimulates CREB activity via αs 

activation and that it does so with less internalization as compared to agonists of similar 

efficacy to activate αs (eg: Zacopride, Prucalopride). It would now be of interest to pursue the 

question of how this drug resembles and differ with respect to AD effects particularly the 

reversal of OBX-mediated anhedonia. Under this model, the best AD agonist would be region 

and receptor specific. The agonist would not overstimulate the receptor and not block the 

endogenous ligand.  
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