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Résumé 

Le criblage par siRNA de 49 protéines de l'hôte qui sont incorporées dans les particules 

matures du virus herpès simplex de type 1 (VHS-1) a révélé l'importance d'au moins 15 d’entre 

elle pour infectivité du virus (Stegen, C et al. 2013). Parmi celle-ci figure la protéine humaine 

DDX3X, qui est une ARN hélicase ATP-dépendante. Cette protéine multifonctionnelle participe 

à différents stages de l'expression génique, tels que la transcription, la maturation et le transport 

d'ARNm ainsi que la traduction. DDX3X est impliquée dans la réplication de plusieurs virus 

tels que le Virus de l’immunodéficience humaine de type 1 (VIH-1), l'hépatite B (VHB), le virus 

de la vaccine (VACV) et le virus de l'hépatite C (VHC). Le rôle exact de DDX3X dans le cycle 

de réplication du VHS-1 est toutefois inconnu. Ce mémoire consiste en l’étude détaillée de 

l'interaction de DDX3X avec le virus. De manière surprenante, tant l’inhibition que la 

surexpression de DDX3X réduit de manière significative l'infectivité du VHS-1. Fait 

intéressant, lorsque nous avons restauré la déplétion de DDX3X par une construction résistante 

aux ARNi utilisés, le virus pouvait de nouveau infecter les cellules efficacement, indiquant que 

le virus est sensible aux quantités de cette protéine de son hôte. Nos résultats indiquent de plus 

que le virus modifie la localisation de DDX3X et cause son agrégation tôt dès les premiers temps 

de l'infection. Cependant, le virus ne modifie pas les niveaux cellulaires de DDX3X dans deux 

des trois lignées cellulaires examinées. Nous avons également pu établir que cette protéine n'a 

pas d'effet sur l'entrée du VHS-1, suggérant qu’elle agit à un stade ultérieure de l’infection. En 

examinant cette relation plus en détail, nos résultats ont démontré que l’inhibition ou la 

surexpression de DDX3X inhibent toutes deux la production de nouvelles particules virales en 

réduisant l'expression des diverses classes cinétiques des protéines virales et ce au niveau de  

leur transcription. Malgré le rôle connu DDX3X dans la stimulation de la réponse immunitaire 

innée et la production d’interférons de type I, l’impact de DDX3X sur la réplication du VHS-1 

est ici indépendante de cette fonction. Ces travaux démontrent donc une nouvelle voie d’action 

de DDX3X sur les virus en agissant directement sur la transcription de gènes viraux et la 

réplication du génome d’un virus à ADN. En comprenant mieux cette interactions hôte-

pathogène, il est maintenant envisageable de concevoir des nouvelles approches thérapeutiques 

contre ce virus. 
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Abstract 

 siRNA screening of 49 host proteins that are known to be incorporated in the mature 

virions of herpes simplex virus type 1 (HSV-1) revealed the importance of at least 15 cellular 

proteins for viral infectivity (Stegen, C et al. 2013). Among these, was the human protein 

DDX3X, a DEAD-box ATP-dependent RNA helicase. This multifunctional protein participates 

in different stages of gene expression such as mRNA transcription, maturation, mRNA export 

and translation. DDX3X has been shown to be involved in the replication of several viruses such 

as human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV) vaccinia virus 

(VACV) and hepatitis C virus (HCV). The exact role of DDX3X in HSV-1 replication cycle is 

not known. Here we sought to find the detailed interaction between DDX3X with HSV-1. 

Surprisingly, the down-regulation as well as overexpression of DDX3X, significantly reduced 

the infectivity of HSV-1, indicating that the virus is sensitive to the precise levels of DDX3X. 

Accordingly, when we rescued DDX3X back to its normal cellular levels by sequential 

transfection of DDX3X siRNA and siRNA resistant DDX3X plasmid, the virus was able to 

infect cells efficiently compare to wild-type conditions. Furthermore, the virus changes the 

localization of DDX3X and causes its aggregation at early times in the infection. However, the 

virus does not change the cellular levels of DDX3X in at least two of three different cell lines 

tested. Using a luciferase assay we were able to establish that this protein has no effect on the 

entry of HSV-1. In fact, depleting or overexpressing DDX3X impaired the production on newly 

assembled viral particles by blocking the expression of all classes of viral proteins at the 

transcription level. Despite the known role of DDX3X in the stimulation of innate immune 

response and interferon type I production, DDX3X appears to act on HSV-1 replication 

independently of this pathway. This highlights a novel route of action of DDX3X by acting at 

the transcription level and the consequent genome replication of a DNA virus. By better 

understanding such pathogen interactions, it might now be possible to design novel therapeutic 

approaches. 

Keywords: Herpes simplex virus type 1, DDX3X, viral gene expression, siRNA, protein 

overexpression and depletion 
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Chapter 1. Introduction 

1.1.  General 

1.1.1. Definition and Discovery of HSV-1 

In the ancient Greece, the term “herpes” was used to define lesions that appeared to 

“crawl” along the skin (1). Herpes characteristic sores have been prevalent enough in history to 

find their way in Shakespeare’s play, Romeo and Juliet where he writes “O’er ladies lips, who 

straight on kisses dream, which oft the angry Mab with blisters plague” (Act I, Scene IV) (2). 

However, it was not until the early 20th century, that the viral etiology of the lesions was 

described by Lowenstein, when he showed the virus to be transferred from human skin to rabbit 

corneas (3).  

 

1.1.2. Herpesvirus Classification 

Herpesviruses are a family of ubiquitous, enveloped, large DNA viruses that concertedly 

cause infection in a wide host range. Three families comprise the herpesvirales order: 

Herpesviridae, the herpesviruses of reptiles, birds, and mammals; Alloherpesviridae, the 

Herpesviruses of amphibians and fishes and Malacoherpesvirdae, the herpesviruses of bivalves 

(4, 5). The Herpesviridae family, based on host/cell tropism, multiplication speed and clinical 

aspects of disease, is further classified into three subfamilies, alpha-, beta- and gamma-. Nine 

herpesviruses have been recognized to primarily infect humans up to now, with members in 

each of the subfamilies: the alphaherpesviruses include the genera Simplexvirus (HSV-1 and 

HSV-2) and Varicellovirus (VZV); betahepesviruses, the genera Roseolovirus (HHV-6 and 

HHV-7) and Cytomegalovirus (HCMV); and gammaherpesviruses, the genera Rhadinovirus 

(KSHV) and Lymphocryptovirus (EBV). Herpes simplex virus 1, or HSV-1, is the prototypical 

alphaherpesvirus with a broad host range, rapid life cycle and the ability to establish latency in 

neurons of the peripheral nervous system (1, 6).    
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1.2. Herpes Simplex Virus Properties 

1.2.1. Transmission and Epidemiology 

Herpes simplex viruses can be readily transmitted through close contact, establishing a 

lifelong infection throughout which infected carriers, even in the absence of clinical symptoms 

are capable of shedding transmissible virus (7). HSV-1 is typically acquired early during 

childhood through direct contact of mucosal membranes or abraded skin with oral lesions. Virus 

stays dormant in the sensory ganglion’s nucleus and may occasionally reactivate where newly 

produced virions travel back to mucosal sites or skin, ending in an active epithelial infection and 

disease reoccurrence (8).  

HSV-1 infections are very common as 45% to 98% of the human population is estimated 

to be seropositive. Several demographic factors determines HSV-1 prevalence including 

geographic location, age and socioeconomic status, seroprevalance increasing with age and 

lower socioeconomic status (9). Interestingly, some studies estimate over 100% seroprevalence 

for herpes simplex viruses in the developing countries (10). This could raise serious problems 

in areas with a high prevalence of endemic human immunodeficiency virus (HIV), since the 

likelihood of HIV transmission and infection could increase in the presence of genital herpes 

(HSV- 1 and 2) infection (11-13).  

 

1.2.2. Pathology and impact on human health 

HSV-1 infections range in the severity from mostly mild or asymptomatic to life 

threatening (14). It is of note that albeit the common association of HSV-1 with orofacial lesions 

(herpes labialis) and HSV-2 with genital ulcers (herpes genitalis), both can invade either 

mucosal surfaces (1). Infections can also be manifested on widespread regions of the skin 

(herpes gladiatorum). These episodes of infection can be frequent, disfiguring and painful in the 

immunocompromised individuals, such as those with underlying diseases or undergoing 

immunosuppressive therapy (15). Several factors have been documented that might reactivate 

the virus from latency, resulting in the mentioned recurring episodes. These include exposure to 

stimuli, such as psychological stress (16), menstruation (17), ultraviolent light, and fever (18). 
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Organ transplant recipients often experience a progressive disease in which lesions are spread 

out to the esophagus, respiratory tract or gastrointestinal tract and these patients are typically 

resistant to antiviral therapies like acyclovir (19, 20). 

Additional fatal and severe conditions are observed in HSV-1 infections despite the 

availability of antiviral medications. Nearly 10% of total acute encephalitis cases are due to 

Herpes simplex infections, HSV-1 being the recurrent cause of sporadic fatal encephalitis (21-

23). For many years the origin of these infections within the central nervous system (CNS) has 

been a topic of interest, and it seems that primary infections and recurring infections equally  

contribute to encephalitis cases (24). The mortality rate, despite the availability of antiviral 

treatments such as acyclovir, remains at 20-30%. Furthermore, the majority of surviving patients 

experience a reduced quality of life, due to the fact that only in 2.5% of all patients’ neurological 

function return to normal after recovery (25). Despite the rare intrusion of the virus in the CNS, 

the cost of encephalitis-associated hospitalization in the U.S. was about $2.0 billion in 2010 

(26). Additionally, herpetic eye infection can lead to recurrent corneal infections known as 

herpetic keratitis or keratoconjunctivitis, which is the major cause of infectious corneal 

blindness in the developed countries (27). Corneal transplant is the only available treatment for 

this complication, yet due to the persistence of virus in the sensory ganglia, patients remain 

susceptible to recurrent infection (28). Lastly, neonatal HSV-1 transmission, which happens 

mostly when a pregnant woman acquires a primary infection in her third trimester, is frequently 

lethal in neonates (29, 30). This type of infection can be either intrapartum or postnatal, and 

cause diseases associated with the eyes, mouth and skin. Neonates are susceptible to a 

disseminated infection as well, which targets several organs like, lungs, liver central nervous 

system or adrenal glands. In the 60-75% cases of disseminated infections infants can also 

develop encephalitis (31). Where there is no antiviral therapy, 50% of surviving neonates with 

disseminated infection or encephalitis have lasting effects including learning disabilities, 

psychomotor retardation or vision impairment (32).  
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1.3. Herpes Simplex Virion 

1.3.1. Viral Composition 

The enveloped HSV-1 virion has an average diameter of 186 nm and is amongst the 

largest and most complex human viruses that have been identified (33, 34). The envelope of 

HSV-1 is derived from host cellular membranes, such as the trans-Golgi network (TGN), and it 

is decorated with spikes of embedded viral glycoproteins (1, 35-37). HSV-1 virions contain 13 

distinct viral glycoproteins which help the attachment and entry of the virus. The tegument layer 

underneath the envelope is an asymmetrical, non-structured protein layer that carries at least 23 

viral proteins, including transactivator proteins such VP16, ICP0 and ICP4 and the virion host 

shutoff (VHS) protein, as well as a number of other proteins that facilitate productive infection 

of permissive cells (38).  Surprisingly, 49 cellular proteins are also found in the tegument layer, 

however their importance for the virus is still unknown (39). The well-structured, icosahedral 

(T=16 symmetry) viral capsid that lies within the tegument, is approximately 125 nm in diameter 

and contains 162 capsomeres (40, 41). Finally, HSV-1’s genomic material is encompassed by 

the capsid and consists of a single molecule of approximately 150 kbp of double stranded (ds) 

DNA (Fig 1.1). Furthermore, contrary to other DNA viruses, like papillomaviruses or 

polyomaviruses, herpesvirus genomes are not associated with nucleosome proteins or 

significant amounts of any other DNA-binding proteins during latency (42-44). Instead, HSV-

1 recruits the anionic polyamine spermine to balance the negative charge of the DNA phosphate 

backbone within the virion (45, 46). 
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Figure 1.1. HSV-1 virion composition.   

Electron cryo-tomographic visualization of virions; i) Central slice through each reconstructed 

volume (the tomogram), ii) cut-away views of surface renderings where distinct structural 

entities are represented by different colours (243). iii) Schematic representation. The virus is 

surrounded by an envelope membrane (c; dark blue in section ii) decorated with a number of 

different glycoprotein spikes (d; yellow in section ii), encompassing the proteinaceous tegument 

layer (b; orange in section ii) and the off-centre icosahedral capsid (a; in section ii) containing 

the genomic.  Electron micrographs (panels i and ii) adapted from: Grünewald K, and Cyrklaff 

M; Curr Opin Microbiol. 2006 Aug;9(4):437-42. (47).  

 

1.3.2. Genome Organization 

The double stranded genomic DNA of HSV-1 is formed of two covalently linked regions 

called the unique long (UL) and unique short (Us) segments which are flanked by inverted long 

(RL) and short repeat (RS) regions, respectively. These segments are joined with a variable 

number of repeated a sequences (48). A number of genes, including ICP34.5, ICP0 and the 

LAT, are located within these repeat regions and are thus carried as two copies within the 

genome (Fig 1.2). Although, methylation of the HSV-1 DNA has not been detected and likely 

does not affect viral replication, its genome have about 68% GC content, with many potential 

CpG motifs for DNA methylation (49-51).  
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Figure 1.2. HSV-1 genome organization.  

Linear dsDNA of HSV-1 is composed of two unique sequences, the unique long (UL) and 

unique short (Us) segments, each coding diverse viral proteins (UL1-UL56, US1-US11) which 

are flanked by inverted repeat elements (TRL and IRL; IRS and TRS), some of which also code 

for additional viral proteins. Adapted form: Simonato M, et al; Trends Neurosci. 2000 

May;23(5):183-90. (52). 

 

 

HSV-1’s genomic DNA contains a total of 94 open reading frames (ORF), from which 

a pool of at least 75 distinct genes are known to be expressed. Among these genes are a set of 

40 genes called “core genes” which are commonly present in all herpesviruses. Four capsid 

proteins, six DNA replication proteins, seven DNA packaging proteins, four envelope 

glycoproteins along many other proteins are translated from core genes. Other unconserved 

HSV-1 genes can be further categorized in essential and accessory genes (Table 1.1). Despite 

the necessity of all the HSV-1 accessory genes for replication and propagation in vivo, almost 

half of them are not required for replication in cell cultures (53, 54). Table 1.1 summarizes all 

identified HSV-1 genes, their regulation, products and proposed functions. 
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Table 1.1. HSV-1 genes, their protein products, expression kinetics (three classes of HSV-1 
genes, i.e.; immediate early (α), eraly (β), true late (γ1) or leaky late (γ2)) and suggested 
functions.  .   

CORE GENES 
Capsid Assembly 

Gene Protein Regulation Proposed Function 
UL18 VP23 γ1 

 
Forms triplex with VP19c 

UL19 VP5 γ1 
 

Major capsid protein 

UL26 VP24  &  
VP21 

γ Serine protease ( UL26 self-cleavage 
results in VP24 and VP21) 

UL26.5 VP22a γ Scaffolding protein, cleaved from the 
capsid following the packaging of DNA 

UL35* VP26 γ2 
 

Placed on the tips of the capsid hexons 

UL38 VP19c γ2 
 

Member of the intercapsomeric triplex 

DNA replication 
UL5 DNA 

helicase 
(HP1) 

 
β 

 Member of DNA primase/helicase 
complex 

UL8 HP3 β Member of DNA primase/helicase 
complex 

UL29 SSB 
(ICP8) 

β ssDNA-binding protein 

UL30 POL β 
 

Catalytic subunit of DNA polymerase 

UL42 PPS β 
 

Accessory subunit of DNA polymerase 

UL52 HP2 β Member of DNA primase/helicase 
complex 

DNA cleavage/packaging 
UL6 PORT γ Capsid-associated, a subunit of the 

portal complex 
UL15 TER1 γ 

 
DNA terminase activity 

UL17 CTTP γ Associated with B and C capsids(coded 
in the intron of UL15) 

UL25 PCP γ2 Seals capsids after DNA packaging? 
UL28 TER2 γ 

 
pac-motif-specific DNA-binding 
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UL32 CTNP γ2 
 

Essential for correct localisation of 
capsids? 

Nucleic acid metabolism 
UL2* UNG β 

 
Uracil DNA glycosylase 

UL12* NUC β Alkaline nuclease, takes part in in viral 
DNA processing 

UL39* RR1 β Ribonucleotide reductase large subunit, 
protein kinase activity 

UL50* dUTPase β  
 

Deoxyuridine triphosphatase 

Envelope glycoprotein 
UL1 gL γ In complex with gH, involved in entry, 

egress and cell-to-cell spread 
UL10* gM, γ2 

 
cell-to-cell spread 

UL22 gH γ2  
 

In complex with gL, involved in entry, 
egress and cell-to-cell spread 

UL27 gB γ1  
 

Forms a dimer, essential for entry 

Others 
UL7* EEP γ1  

 
Intracellular capsid- associated with, 

DNA packaging? 
UL11* CETP γ1 

 
Myristoylated virion protein, takes part 

in egress 
UL13* VPK γ1  

 
Tegument protein with protein kinase 

activity 
UL14* ECP γ 2 

 
Tegument protein with molecular 

chaperone function 
UL16* CETPbp γ 1 

 
Tegument protein, coded in the intron of 

UL15, DNA packaging? 
UL24* pUL24 γ1 Virion protein, nonglycosylated 

membrane-associated protein 
UL31* pUL31 

(NELP) 
γ 2  

 
Interacts with UL34,nuclear matrix-

binding protein 
UL34* pUL34 

(NEMP) 
γ1 Type II membrane protein associated 

with the inner nuclear membrane 
UL36  ICP1/2 

(LTP) 
γ2 largest tegument protein, involved in 

both uncoating and egress 
UL37 LTPbp γ1 UL37 Tegument protein with nuclear 

export signal, involved in egress 
UL49.5* 

 
 

gN γ2 Small membrane-associated protein, in 
complex with gM stimulates membrane 

fusion (55) 
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UL51* CEF1 γ1  
 

Palmitoylated virion protein, associated 
with the Golgi 

UL54 ICP27 
(MRE) 

α 
 

Regulation of gene expression at 
posttranscriptional level 

NON-CORE GENES 
None-core essential genes 

UL9 ORI-B β  
 

Replication origin-binding protein 

UL48 VP16 γ1 UL48 VP16, tegument protein 
stimulating immediate early gene 

expression 
RS1 ICP4 α Major regulatory protein 
US6 gD γ1  

 
Required for entry, binds to herpesvirus 

entry mediator (HveA) 
Non-core accessory genes 

RL1* ICP34.5 γ 1  
 

Modulates protein synthesis by binding 
to protein phosphatase 1ɑ 

RL2* ICP0 α Promiscuous transactivator with E3 
ubiquitin ligase domains 

UL3* pUL3 γ2 Nuclear phosphoprotein, nucleolar 
localisation when expressed alone 

UL4* pUL4 γ2 Nuclear protein, colocalised with UL3 
and ICP22 

UL20* pUL20 γ1  
 

Involved in egress 

UL21* CEF2 γ1  
 

Tegument protein, associated with 
microtubules 

UL23* TK β thymidine kinase, selective activation of 
acyclovir and ganciclovir 

UL40* RR2 β  
 

Ribonucleotide reductase small subunit 

UL41* VHS γ1  
 

Virion host shutoff protein, involved in 
mRNA degradation 

UL43* NEMP γ1  
 

Membrane-associated protein 

UL44 gC γ 2  
 

Takes part in adsorption, C3b-binding 
activity 

UL45*  pUL45 γ 2  
 

Type II membrane protein 

UL46* VP11/12 γ 1  
 

Interacts with UL48 (VP16) 

UL47* VP13/14, γ 1  
 

Tegument protein that enhances 
immediate early gene expression 

UL49* 
 

VP22 γ 1 
 

Tegument protein involved in 
intercellular trafficking 
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UL53* gK γ1  Viral egress, many syncytial mutations 
UL55* pUL55 γ 2 

 
Nuclear protein, nuclear matrix-binding 

protein 
UL56*  pUL56 γ 2 Type II membrane protein, associated 

with the Golgi and early endosome 
US1* ICP22 α  

 
Stimulates the expression of late genes 

US2* pUS2 γ 2  
 

Virion protein, interacts with 
cytokeratin 

US3* US3 PK γ 1  
 

protein kinase with antiapoptotic 
activity 

US4* gG, γ 1  
 

Envelope protein, involved in entry and 
egress 

US5* gJ γ  
 

Envelope protein, involved in protection 
from Fas-mediated apoptosis 

US7* gI γ 1  
 

Forms a complex with gE, cell-to-cell 
spread 

US8* gE γ 1  
 

Forms a complex with gI, Fc receptor 
activity, cell-to-cell spread 

US8.5* pUS8.5 γ 1  
 

Localised in the nucleoli of infected 
cells 

US9* pUS9 γ  
 

Type II membrane protein, anterograde 
transport of envelope glycoprotein? 

US10* pUS10 γ 1  
 

Tegument protein, tightly associated 
with capsids 

US11*  pUS11 γ 2  
 

Tegument protein, RNA-binding 
activity, intercellular trafficking activity 

US12* TAPbp α  
 

TAP-binding protein, involved in MHC 
class I downregulation 

Stars show the genes that are dispensable for replication in vitro. The table has been 

adapted from (Nishiyama. Rev. Med. Virol. 2004; 14: 33–46.) (53) and 

(http://people.virginia.edu/~jcb2g/background_genome.html) 
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1.4. HSV-1 Life Cycle 

1.4.1. Lytic Replication 

1.4.1.1. Viral Entry 

The viral life cycle starts through attachment and entry of an infectious virion into a permissive 

host cell. Since, infection with HSV-1 begins at the mucosal epithelium or through a break in 

the skin, entry happens at these sites (1); However, HSV-1 penetrates most vertebrate’s cell 

lines in vitro (54). Depending on the cell type, HSV-1 enters cells at a neutral pH through fusing 

with the plasma membrane or by endocytosis in either a pH-dependent or a pH independent 

manner. For example, in Vero cells the entry happens at a neutral pH; however, in HeLa and 

CHO-K1 cells, viral entry occurs through a pH-dependent endocytosis (55) while in C10 murine 

melanoma cells through pH independent endocytosis (56).  This flexibility might ensure the 

productive infection in various cell lines (57). Interestingly low pH has no impact on the function 

of any HSV-1 glycoproteins except for minor changes in gB’s conformation (58, 59). The 

complex entry process of herpesviruses comprises distinct steps: 1) attachment to the cell 

surface (tethering), 2) interaction with a unique entry receptor (Fig 1.3A), 3) internalization, and 

4) membrane fusion (Fig 1.3B). Several viral envelope glycoproteins with specific roles in one 

or several steps are required for successful entry. Viral entry begins with an initial binding of 

the virus to ubiquitous heparan sulfate present on most cells (Fig 1.3A; dashed arrows). 

Although the viral glycoproteins mediating this process are dispensable for entry, this initial 

interaction tethers the virus to the cell membrane, thus favoring an encounter with a less 

accessible entry receptor (Fig 1.3A; solid arrows). Tethering of HSV-1 to the cell surface is 

mediated by gC binding to heparin sulfate and chondroitin sulfate proteoglycans (HSPG and 

CSPG) and, where gC is absent, gB can play the same role (60, 61). Following tethering, gD 

interacts with a cellular receptor, nectin-1 and activates the viral fusion machinery (62). Two 

other receptors are also capable of binding to gD and mediate entry: HVEM (herpesvirus entry 

mediator), a member of the tumor necrosis factor (TNF) receptor family (63) and a 3-O-

sulfotransferases (3-O-STs) modified heparan sulfate (HS) (64). Activation of the fusion 

machinery that is constituted of gB and gH/gL (65) leads to fusion of viral envelope with plasma 

membrane or endocytosis to release the tegument and nucleocapsid into the cytoplasm (66, 67). 
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It is noteworthy that recruiting a definite entry receptor accomplishes two important goals: 

target-cell specificity and the activation of the fusion machinery only in close proximity of the 

virion to the cell membrane (56). After the virus has entered the cell, due to the high density of 

the cytoplasm and the distance between the port of entry and the nucleus, the virus actively 

transports its nucleocapsid on cellular microtubules (57) toward the nuclear pore complex (NPC) 

where it injects the naked viral genome inside the nucleus (58). Once in the nucleus, the linear 

viral genome circularizes rapidly (59, 60). 

 

                             

Figure 1.3. HSV-1 Entry.  

A) Schematic illustration of HSV-1 glycoproteins and their known cellular receptors. Adapted 

from: Krummenacher C, et al; Adv Exp Med Biol. 2013; 790:178-95. (56). B) Fusion 

procedure : 1) Resting HSV-1 glycoproteins (pre-fusion form), gD is a dimeric molecule, spots 

close to its carboxyl termini (yellow) block the receptor-binding site. 2) After gD binds to 
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HVEM, the amino terminus of gD (blue) creates a loop and relocate the gD C terminus which 

contains the pro-fusion domain (yellow). The gB trimer also binds to a receptor and the gH–gL 

heterodimer may bind to a cellular receptor. 3) gD pro-fusion domains can interact with gH–gL 

and gB, and gH–gL and gB may interact with each other after gD receptor binding. 4) These 

interactions stimulate gB to insert its fusion loops (yellow shades) into the cell membrane and 

fold into its post-fusion form to mediate fusion. Adapted from: Connolly SA, et al; Nat Rev 

Microbiol. 2011 May;9(5):369-81. 

 

1.4.1.2. Viral Gene Expression 

The host cell RNA polymerase II (RNAPII) transcribes viral genes in an ordered cascade 

of viral gene products that is regulated by viral factors (61, 62). During productive infection at 

least three kinetic classes of genes are expressed, namely α- or immediate-early (IE) genes, β- 

or early (E) genes, and γ- or late (L) genes (63, 64) (Fig 1.4). The IE genes are those with the 

ability to be expressed prior to de novo viral protein synthesis. Yet, the activation of these genes 

is mediated by the late viral VP16 protein that enters the cells along with the incoming virions 

(65). The multiprotein activator complex composed of VP16, host cell factor 1 (HCF-1) and 

octamer-binding protein 1 (OCT1) binds target viral sequences within IE gene promoters to 

stimulate them through recruitment of additional cellular transcription factors, including TFIIA, 

TFIIB, TFIID, TFIIE, TFIIF, and TFIIH (66, 67). ICP0, ICP4, ICP22, ICP27, ICP47 and pUS1.5 

proteins are encoded from IE genes (Table 1.1). Between 2 and 6 hours post infection (hpi), IE 

proteins reach their maximal levels (63). These proteins, particularly ICP4, are essential for the 

activation of E genes and progression of the viral lytic cycle (68, 69). Among early gene 

products are those required for viral DNA replication (70, 71). Late genes are transcribed once 

the DNA replication is initiated, and their products include proteins that are necessary for 

assembly of infectious progeny virions. The late genes are further grouped into true-late (γ1) 

and leaky-late (γ2). While, prior DNA replication is absolutely essential for the expression  of 

the γ1 group, the γ2 genes are readily at detectable levels before DNA synthesis (1). 
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1.4.1.3. Viral Replication 

Viral DNA synthesis, which begins as early proteins accumulate, typically happens 

around 6-10 hpi (72). Upon viral DNA synthesis, viral genome relocates to reorganized nuclear 

domain 10 (ND10) (73). ND10s are nuclear structures that comprise over 150 constituents (74). 

These compartments are involved in several pathways, including cell cycle arrest (75), gene 

regulation (76), DNA repair (77), apoptosis (78), oncogenesis (79) and anti-viral defense (80). 

While it is known that ICP0 degrades ND10 to inhibit the interferon response, it is not clear why 

viral DNA is found in the vicinity of ND10 (81). As DNA synthesis progresses, replication 

compartments are formed that ultimately fill the nucleus and marginalize cellular chromatin 

(82). 

Seven early viral proteins are essential for DNA replication (83). DNA synthesis begins 

with binding of pUL9 and ICP8 to one of three origins of replication that result in dsDNA 

distortion. More precisely, pUL9 helps the DNA bending at the origin of replication so the viral 

polymerase can act on short sections of single-stranded DNA (ssDNA) and ICP8 along with 

pUL9 to stimulate helicase activity. ICP8 also binds to ssDNA at the replication fork to protect 

it. This event leads to the exposure of a small portion of ssDNA that can be further unwound by 

the helicase primase complex (84). The helicase-primase complex is composed of pUL5, pUL8 

and pUL52 and unwinds double-stranded DNA, generates primers for lagging strand synthesis, 

and facilitates the interactions between additional viral proteins involved in the viral replication 

(72). The pUL30/pUL42 polymerase complex is the last to arrive at the site of replication, where 

new genomes are synthesized via theta replication resulting in a rolling circle strategy(85). 

pUL30, which has 3’-5’ exonuclease activity and vast substrate affinity, is the catalytic subunit 

of DNA polymerase (86). pUL42, the processivity unit of DNA polymerase, “slides” on DNA 

and assures the association of pUL30 to the viral genome. This process eventually generates 

head-to-tail concatemers (87).  

Since most of the adult human cells are not actively dividing and require low levels of 

deoxynucleotide triphosphates (dNTPs), HSV-1 has evolved to deal with this issue by encoding 

five metabolic enzymes that can increase nucleotide synthesis, including; thymidine kinase 

(pUL23), dUTPase (pUL50), ribonucleotide reductase (pUL39 and pUL40), uracil DNA 

glycosylase (pUL2) and alkaline nuclease (pUL12) (1).  
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1.4.1.4. Viral Assembly and Egress 

As mentioned earlier, late proteins have structural functions and help the assembly of 

new capsids. Since capsids are assembled in the infected cell nucleus, all components need to 

be transported there whether by nuclear localization signal (NLS) or by piggy backing on 

proteins that contain such signals (88 126). The first step of capsid assembly is the interaction 

of VP5 and the pre-formed triplex proteins VP19C-VP23 along with the scaffolding protein, 

pre-VP22a to give rise to spherical procapsids (89, 90). Next, proteolytic degradation of the 

scaffold gives a stable, icosahedral, mature capsid (91) and viral DNA is concomitantly inserted 

to the capsid in an energy-dependent fashion (92).  

Mature nucleocapsids need to exit the nucleus. The most widely-accepted model for 

capsid egress and maturation is envelopment/de-envelopment/re-envelopment pathway, through 

which capsid first acquires an envelope by budding across the inner nuclear membrane. Capsids 

then fuse with the outer nuclear membrane and lose this primary envelope and end up "naked" 

in the cytoplasm of the host cell. Tegument proteins associate with the viral capsid in different 

cellular compartments such as nucleus, the cytoplasm, and the site of final envelopment, 

however a clear picture of tegumentation sequence is still lacking (93-98). The capsids actively 

transit to the final assembly/envelopment site. Although under debate, most of the studies hint 

at the trans-Golgi network (TGN) as the final envelopment site (95). Once at this site, the 

tegument-coated capsids bind to glycoprotein-dense regions of the TGN, thus virus acquires its 

final envelope (98-100). This step is followed by the budding of enveloped particles into the 

secondary TGN-derived vesicles, a process that depends on several glycoproteins, including gD 

and the inner tegument proteins like pUL37. Afterwards, protein kinase D (PKD), a cellular 

protein, mediates fission at TGN (101-103). TGN derived vesicles containing mature virions 

then travel to the plasma membrane, a route that depends on cell protein, Myosin Va (104). 

Finally, the vesicles reach plasma membrane and release their cargo via exocytosis (104, 105) 

(Fig 1.4). 
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Figure 1.4. HSV-1 gene expression, assembly, transport and egress. 

 Adapted from: Henaff D, et al; Traffic. 2012 Nov;13(11):1443-9. (95) and Simonato M, et al; 

Trends Neurosci. 2000 May;23(5):183-90. (52). 

 

1.4.2. Latent Infection 

Lytic and latent cycles differ drastically in the pattern of viral gene expression and the 

outcome of infection. Latency is marked by the presence of the viral genomes in neurons of the 

peripheral nervous system (PNS) without the significant production of infectious progeny (1).  

1.4.2.1. Establishment and Maintenance of Latency 

After the primary infection of HSV-1 in epithelium, viral particles can spread to 

innervating sensory neurons of lips, gingiva and eyes that are in contact with the infected 

epithelium (106). Viral nucleocapsids reach the neuronal cell body/soma within a ganglion by 

fusing at the axonal termini and retrograde transport along the axons (107, 108). Establishment 

of latency in trigeminal ganglia can occur with or without lytic replication in the ganglia (109). 
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Inducing factors of particular gene transcription during latency are not well understood. 

However, it has been shown that VP16 and other outer tegument proteins are transported 

independently of viral nucleocapsids along the axons and is unable to reach the soma (67), thus 

viral gene transcription cannot be initiated  and virus enters the latency programs. Based on 

these findings, a recent study by injecting viral particles containing VP16, either directly to the 

soma or axons, shows that virus direct entry to the soma favors the productive infection (110). 

Upon the injection of viral genome into the neuron’s nucleus, it rapidly becomes 

circularized and incorporates histones (111). During latency, viral transcription is limited to a 

number of sites, resulting in the generation of the latency-associated transcript (LAT) that can 

be processed into a stable intron and numerous viral micro RNAs (miRNAs) (112, 113). While 

LAT is not necessary for latency establishment, maintenance, or reactivation (114), it has a 

profound impact on these phases likely through interfering with other viral transcripts owing to 

the LAT-encoded miRNAs (115-117). miRNAs are short noncoding RNAs that are encoded by 

eukaryotic cells as well as various viral pathogens. (118, 119). Despite the extensive efforts, the 

function of the most of HSV-1 miRNAs have not yet been fully elucidated. However, they likely 

have a role in maintenance of latency and escaping the host immune response (119), as it has 

been shown that some HSV-1 miRNAs down-regulate the expression of IE genes such as ICP4, 

ICP0 or ICP34.5 (120, 121).  

While lytic gene transcription during latency is repressed, recent advances in techniques 

detecting transcripts at the single-cell level propose that majority of infected neurons initially 

undergo a lytic gene transcription (122), and that lytic transcription happens in most of the 

latently infected LAT-expressing neurons (123). Although, there is no direct evidence indicating 

translation of lytic transcripts during latency, existence of stimulated, virus-specific CD8+ T 

cells within the latently infected sensory neurons supports the idea that at least some lytic 

proteins are expressed during this period (124-126). 

 

1.4.2.2. Reactivation from Latency 

A wide range of stimuli such as neuronal damage or stress can wake up the virus from 

latency. This periodical reactivation can occur throughout the host’s life. Since LAT-negative 
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viruses reactivate less efficiently from neurons, it suggests that LATs mediate reactivation (127-

130). Nonetheless, their role in reactivation is not known. The level of LATs and viral miRNAs 

declines during reactivation, at the same time lytic gene transcripts accumulate, ultimately 

leading to viral productive replication (131-133). Next, virions or virion components are 

anterogradely transported down neuronal axons, and the infectious particles are released at the 

axonal termini (134, 135). At this site, virus can access permissive peripheral tissue, typically 

proximate to the site of primary infection thus being able to resume lytic replication. Clinically, 

reactivation is important because it can result in painful recurrent lesions, blindness upon ocular 

reactivation, and transmission to new susceptible individuals (1).  

 

1.5. HSV-1 incorporates host proteins  

The majority of enveloped viruses tend to incorporate host cellular proteins. Although 

the role of all of these proteins has not been fully elucidated, it is clear that viruses highjack 

these molecules to favor their replication (136). HSV-1 as an enveloped virus is not an exception 

and a recent study from our lab has demonstrated that approximately 49 distinct cellular proteins 

with a wide range of functions are incorporated into mature HSV-1 virions (39).  Later on, we 

evaluated whether these proteins have a significant impact on HSV-1 yields using small 

interfering RNAs (siRNA) technology. This screen revealed 15 that of these proteins are critical 

for viral propagation in cell culture. The ATP-dependent RNA helicase DDX3X is an interesting 

and top scoring candidate among them (137). 

 

1.6. DEAD-Box proteins 

The family of DEAD box proteins was first described in 1989 (138), and belongs to the 

RNA helicase superfamily 2 (139). DEAD-box proteins engage in the unwinding of double-

stranded RNA molecules and the remodeling of RNA-protein interactions in an ATP-dependent 

fashion. These proteins are found in the majority of organisms and play central roles in almost 

all aspects of RNA metabolism including pre-mRNA splicing, transcription, RNA export, 

ribosome biogenesis, RNA decay and translation (140). DEAD-box RNA helicases comprise a 
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cluster of 9 conserved motifs placed in the center of the proteins that span a region of nearly 400 

amino acids (Fig 1.5A). However, their N- and C termini are highly variable in both length and 

sequence, are likely involved in the interactions with substrate and cellular factors and dictate 

subcellular localization of the proteins (141). The majority of DEAD-box protein domains are 

involved in ATP metabolism: First, a Q motif takes part in modulation of ATP binding and 

hydrolysis as well as RNA substrate affinity (142, 143). Second, motif I, also known as the 

Walker A motif (Walker et al., 1982), is required for ATPase and helicase activities. Third, the 

term “DEAD-box” emerges from motif II, also known as the Walker B motif (144) is also 

involved in ATP-binding and/or ATP hydrolysis (144, 145). Forth, motif III is suggested to link 

ATPase and helicase activities (145). Fifth, motif IV is a poorly studied DEAD-box protein 

motif and no definite function has been assigned to this region (141). Finally, motif V is likely 

to be an RNA binding motif (146) and motif VI is essential for RNA binding and ATP hydrolysis 

(147). 

 

1.6.1. DDX3 

One of the members of the DEAD-box RNA helicase family is DDX3. Two functional 

genes of the DDX3 family exists in the human genome (148). Thus, there is a DDX3 gene 

located on the X chromosome, termed DDX3X (Uniprot.org O00571; DDX3X_HUMAN) (149) 

while its homolog (91 % amino-acid identity) DDX3Y is placed on the Y chromosome 

(Uniprot.org O15523; DDX3Y_HUMAN) (150). Despite the expression of DDX3X gene across 

a wide range of human tissues, DDX3Y is only expressed in the male germ line (151). Known 

DDX3 orthologues include mouse PL10 (152) and mDEAD3 (153), Xenopus An3 (154), yeast 

Ded1p (155) and Drosophila Belle (156). ATPase and helicase activities of DDX3 have been 

demonstrated experimentally since its labeling as a putative RNA helicase (Fig 1.5B). DDX3 

has been defined as a helicase with “relaxed steroselectivity” as it can be activated by several 

ribo- and deoxynucleic acids (157, 158). Although, the exact roles of DDX3 remains ambiguous, 

it has been implicated in various cellular processes such as nucleo-cytoplasmic RNA shuttling, 

RNA transport, splicing, translation, tumorigenesis, IFN induction and apoptosis. Interestingly, 
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DDX3 has been shown to be involved in the replication of both RNA and DNA based viruses 

(159). The following sections will briefly go through the literature available on DDX3 to date. 

 

 

 

Figure 1.5. Dead-box proteins map.  

A) Schematic illustration of conserved motifs of DEAD-box proteins, flanked by variable N- 

and C-termini. Boxes contain the amino acid sequence of each motif, x is representative of any 

amino acid. Suggested function of these motifs are shown in the image. Adapted from: Rocak S 

& Linder P; Nat Rev Mol Cell Biol. 2004 Mar;5(3):232-41. (140). B) Map of DDX3 protein, 

recognized motifs and their position on the protein are indicated (Uniprot.org O00571 

(DDX3X_HUMAN)). 
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1.6.2. Cellular Localization of DDX3  

The intracellular distribution of DDX3 has been reported to be predominantly in 

cytoplasmic granules by most studies (157, 158, 160-163). Furthermore, DDX3 has been 

demonstrated to constantly shuttle between the cytoplasm and nucleus through binding to the 

export shuttling protein CRM1 (Chromosome maintenance region 1). Treating the cells with the 

CRM1 inhibitor Leptomycin B (LMB) drives DDX3 accumulation in the nucleus (158, 163). 

This extensive nuclear export of DDX3 may be the very reason that most studies report DDX3 

as a cytoplasmic protein. However, two studies have also showed partial nuclear localization of 

DDX3 (158, 164).  

 

1.6.3. DDX3 in Splicing and RNA Transport 

Based on sequence analyses, DDX3 bears a C-terminal (amino acids 582-632) 

arginine/serine rich RS-domain consisting of 7 serine-arginine or arginine-serine dipeptides, 

identical to that of other splicing factors (164). Nuclear-bound DDX3 has been found in 

spliceosomes in HeLa cells, in association with core proteins of exon junction complex (EJC) 

(165). This protein has also been spotted in messenger ribonucleoprotein particles (mRNP) 

along with spliced mRNAs (166). The minimal effect of DDX3 knockdown on splicing events 

(161), suggests that DDX3 rather partners with RNPs after splicing to exert functions such as 

RNA export and may not have an active role in splicing. In line with this hypothesis, DDX3 

physically interacts with NXF1 as well as CRM1, proteins that are associated with mRNA 

export (158, 167). Although, the association of DDX3 to these export factors has been shown 

to be important for the export of some cellular and viral mRNAs (158, 168, 169), its depletion 

had no impact on the nuclear export of poly(A) + mRNA or a β-globin reporter gene (160, 161). 

This observation suggests that DDX3 is rather involved in the export of specific mRNAs and 

not the bulk mRNA (170). Furthermore, DDX3 has been characterized as a component of 

kinesin granules that help the transport of RNA in neurons. However, DDX3 knockdown 

showed very small effect on the RNA transport(171). 
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1.6.4. DDX3 and Apoptosis 

Apoptosis can be either intrinsic (mitochondrial) or extrinsic (death receptors). However, 

there is a significant crosstalk between these two pathways, eventually resulting in the 

stimulation of effector molecules such as caspase 3, caspase 7, or PARP (159). DDX3 is among 

the TRAIL-R2 (death receptor) associated proteins, some treatments induce the dissociation of 

DDX3 from TRAIL-R2 signal transduction and this dissociation seems to   modulates death 

signals (172). DDX3 also forms a death antagonizing signaling complex with Glycogen 

synthase kinase-3 (GSK3) and apoptosis protein-1 (cIAP-1) that are known to stall apoptosis 

(173, 174). Cleavage of DDX3 and cIAP-1, along with inactivation of GSK3, stimulates the 

apoptotic pathway (175). Finally, DDX3 has been linked to p53-dependent apoptosis, however 

there are some contradicting results regarding this interaction. The p53 protein responds 

differentially with respect to the type of tissue and stress agent (176) so this might be the reason 

for variable data available concerning the DDX3 and p53 (159).  

 

1.6.5. DDX3 and Antiviral Immune Response 

DDX3 is amongst the proteins that can sense viral RNA or DNA inside the cytoplasm 

and induce the expression of IFN-β (177). Two related kinases, IKK-ε and TBK1, act under the 

TLR-induced signaling pathway and induce the IFN-β gene expression through phosphorylation 

and activation of IRF-3 and-7 (178). DDX3 has been shown to act on this pathway at several 

levels: i) Upstream of IKKε/TBK1, i.e. DDX3, itself senses viral RNA or regulates the 

expression of a viral RNA sensor, interferon-induced protein kinase (PACT), resulting in the 

activation of mitochondrial antiviral-signaling protein (MAVS) which in turn causes IRF3/7 

phosphorylation and IFN-β expression (167, 179). ii) DDX3 can partner with IKKε and TBK1 

(71, 163, 180, 181). In this scenario, DDX3 binds to IKKε and causes its autophosphorylation, 

then IKKε phosphorylates DDX3 that successively causes the phosphorylation of IRF3 (180). 

iii) Downstream of IKKε/TBK1, i.e. DDX3 upon phosphorylation by TBK1, directly binds to 

the  promoter enhancing region of IFN-β in an ATPase- and helicase-independent manner and 

activates the expression of IFN-β (181, 182).  
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1.6.6. DDX3 and Protein expression 

Interaction of DDX3 with 80S ribosomes and eukaryotic initiation factors points at the 

likelihood of its participation in translation initiation (168, 181). Although the role of DDX3 in 

promoter regulation of proteins such as IFN-β, E-cadherin and p21 has been shown (170, 182, 

183), its knockdown has no impact on general protein expression (167, 184, 185). These 

observations propose that RNA type and specific co-factors determine DDX3 functionality 

(166). Furthermore, DDX3 physically interacts (co-immunoprecipitation) with various 

components of cap-dependent translation initiation such as eIF4E, eIF3, PABP1 and Ezrin (185) 

and it has been suggested that DDX3 mediates the translation of specific mRNA’s with complex 

5’-UTR’s through the destabilization of complex RNA structures (186). 

 

1.6.7. DDX3 an Stress response 

Stress granules (SGs) are cytoplasmic non-translating messenger ribonucleoproteins 

(mRNPs) that promote mRNA decay. These foci are observed upon a wide range of 

environmental factors such as oxidative stress, hyperosmolarity, UV irradiation, heat shock and 

viral infections (181). DDX3 has been recognized as one of the components of these 

aggregations and facilitates their assembly in an ATP-independent fashion (182, 183). In 

addition, DDX3 is able to rescue the effect of Gle1A knockdown which is a determinant part of 

stress granules (184).   

1.6.8. DDX3 and Tumorigenesis 

Depending on the cell type and the nature of manipulation of DDX3 in different studies, 

results regarding the contribution of DDX3 in tumorigenesis is somewhat contradictory and 

represent DDX3 as both oncogene and tumor suppressor (166). The present section will try to 

summarize the available data on the matter. Tumor hypoxia is one of the results of tumor 

progression (181). Hypoxia inducible factor-1 (HIF-1) is a transcription factor that help cells 

surviving hypoxia (182). DDX3 promoter contains several HIF-1 responsive elements (HRE). 
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Upon hypoxia HIF-1 binds to these sites and induces DDX3 expression (183). DDX3 also 

contribute to cell cycle progression likely through the regulation of cyclin D1 and cyclin E1 

mRNA translation (166). However, some groups have reported that DDX3 actually arrests the 

cell cycle via the modulation of p53-DDX3-p21 (184-186). Furthermore, DDX3 has been 

identified as a regulator of Wnt/β-catenin transduction cascade (187) that is involved in the 

emergence of several complications such as colon cancer, melanoma and medulloblastoma 

(188). 

 

1.6.9. DDX3 and Viral pathogens 

1.6.9.1. RNA viruses 

Two individual publications in 1999, showed the interaction of hepatitis C virus (HCV) 
core protein and DDX3 by yeast two-hybrid technology (164, 183). This provided the 

groundwork for future studies regarding the role of DDX3 in viral replication. They also noticed 

the aggregation of DDX3 in specific spots throughout the cytoplasm in the presence of core 

protein, pointing to the fact that virus likely targets a cytoplasmic function of DDX3 (183). 

These spots were later shown to be the so called stress granules (184).  Unfortunately, the 

literature dealing with the role of DDX3 in HCV life cycle is somehow unclear, some proving 

DDX3 to be necessary for viral replication, others showing the protein to be dispensable for the 

replication of HCV. One study has shown that, association of core protein with DDX3, arrests 

the capped translation (cellular mRNA translation) but no the uncapped translation (HCV 

translation events), probably killing the competition for the resources in favor of the viral 

translation (162). In order to identify the extent of host-pathogen relationship, a group used a 

systematic RNA interference (RNAi) screen and targeted 62 cellular genes in cells infected with 

HCV. Interestingly, silencing DDX3 resulted in significant inhibition of viral release and 

replication (185). Later on, a study showed that the interaction of DDX3 and HCV core protein 

is essential for proper RNA replication when they observed that DDX3 knockdown ends in the 

impaired accumulation of HCV RNAs (186). In another study, it was shown that this DDX3-

core interaction might be essential for the virus, since the core protein by binding DDX3, might 

prevent it from activating the interferon response (167). On the other hand, a mutation of the 
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HCV core protein that abrogates the DDX3-core interaction, indicated that the interaction of 

DDX3 and the viral core protein is not necessary for DDX3 function in viral RNA replication 

(187). However, use a different HCV genotype by another group, found the DDX3 and core 

protein interaction to be essential for viral replication (188).   

Upon the entry of human immunodeficiency virus type-1 (HIV-1) into cells, viral 

RNA is converted to DNA in the cytoplasm, which is then translocated to the host’s nucleus to 

be integrated in the cell genome. At this stage, viral mRNAs are transcribed using cellular 

factors. These mRNAs can be categorized in three distinct groups, including the ones that are 

multiply spliced, unspliced and partially spliced mRNAs. These mRNAs must reach the 

cytoplasm to be further processed. The intron-containing species (unspliced and partially 

spliced) require the viral protein Rev for their transport to the cytoplasm. HIV-1 Rev can shuttle 

between the nucleus and cytoplasm (189) and it interacts with cellular nuclear export protein 

CRM1 (chromosome region maintenance 1) to exert its function (190). DDX3 knockdown from 

cells aborts Rev/CRM1 dependent RNA export, thus defining it as a determinant factor in HIV-

1 life cycle. Interestingly, DDX3 regulates HIV-1 RNA export in a helicase/ATPase-dependent 

manner (158).  

Japanese encephalitis virus (JEV) is an ssRNA mosquito-borne flavivirus. This virus 

encodes 3 structural proteins and 7 non-structural (NS) proteins. Among the NS proteins are 

viral serine protease (NS2B-NS3) and methyltransferase/RNA polymerase (NS5) that is crucial 

for viral genome replication (191). DDX3 knockdown significantly impairs JEV replication by 

interacting with JEV NS3 and NS5 to regulate viral protein expression in a helicase-dependent 

manner (192). Dengue virus (DENV) and west Nile virus (WNV) are two other flaviviruses 

whose replication might be regulated by DDX3 in the same manner as JEV (193, 194). 

Norovirus belongs to the Caliciviridae family and is a small plus-strand RNA virus 

(195). DDX3 has been found in association with the norovirus genomic RNA through 

riboproteomics (196). DDX3 appears in aggregated spots as mentioned in the case of some other 

viruses. Moreover, DDX3 knockdown results in drastic reduction of viral NS7 polymerase and 

genomic material (196).  
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Influenza A as a member of Orthomyxoviridae family is a segmented ssRNA virus 

(197). It has been speculated that the viral proteins NS1 and nucleoprotein (NP) are involved in 

the inhibition of SG formation (198, 199). As DDX3 physically interacts with both proteins, this 

interaction might explain the anti-SG behavior of these proteins (200).  

 

1.6.9.2. DNA viruses 

Hepatitis B virus (HBV), as a member of hepadnavirus family, contains a relaxed 

circular partially double stranded DNA (rcDNA). During the viral replication, HBV polymerase 

(pol) repairs the rcDNA into covalently closed circular DNA (cccDNA) within the host nucleus. 

The virus then utilizes this cccDNA as a template for its gene transcription by the host RNA 

polymerase II. Among the generated viral RNAs, pregenomic RNA (pgRNA) is packaged into 

newly formed capsids along with the HBV pol.  The viral polymerase then reverse transcribes 

the pgRNA back to rcDNA (201). It has been shown that DDX3 is incorporated to HBV 

nucleocapsids and interacts with the viral pol to hamper reverse transcription in an ATPase-

dependent fashion. Moreover, DDX3 overexpression was able to reduce viral yields in a dose-

dependent manner (202). In some HBV-induced HCC (hepatocellular carcinoma) cases, DDX3 

is down-regulated likely as a viral strategy to counteract DDX3 effects and promote its 

propagation (203). Interestingly, the HBV pol breaks the interaction between and DDX3 and 

IKKϵ to inhibit IFNβ induction (204, 205). This type of interaction makes it complicated to 

target DDX3, since pol-DDX3 blockage can result in both positive (release of HBV pol) and 

negative (IFN stimulation) effects on virus (206). 

Vaccinia virus (VACV) is a dsDNA virus belonging to the family of poxvirus. VACV 

express numerous proteins such as K7 that can antagonize the host immune system (207). The 

K7 protein can form a complex with DDX3 by binding to its N-terminal region, more 

specifically amino acids 61 and 90, to evade innate immune responses (163, 208).  

Human cytomegalovirus (HCMV), as mentioned earlier is a member of Herpesviridae 

family. A group conducted an unbiased proteomics approach to identify host proteins that might 

be involved in post-transcriptional regulation of HCMV mRNAs and they noticed that HCMV 

infection alters the level and activity of DDX3 (209). Although, this finding suggests a role for 
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DDX3 in HCMV RNA metabolism, further investigation is needed to elucidate this host-

pathogen interaction. 

Overall, it appears that DDX3 contributes in the life cycle of both RNA and DNA 

viruses. Although, the interplay between and viruses is not fully understood and sometimes even 

varies for a single virus from one study to another, there are number of findings that seem to 

follow one of two patterns. One is the necessity of DDX3 for the viral replication through its 

interaction with key viral factors. These interactions, depending on the virus, can impact viral 

RNA metabolism at the level of transcription, translation or RNA export. Another one, is the 

effort of several viruses in antagonizing DDX3 activity in the stimulation of interferon response. 
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Chapter 2. Results 

2.1. Aims of project 

As mentioned earlier, our findings indicated that 15 of the virus-incorporated host 

proteins are required for HSV-1 efficient replication. Among them, DDX3X particularly 

interested us, since it has been involved in the replication of many other viral pathogens and 

proved to be our strongest hit. Therefore, we sought to investigate the relationship between 

HSV-1 and this host protein and elucidate in more details on the role of DDX3X in HSV-1 life 

cycle by studying: i) The cellular distribution of DDX3X in the context of infection, to see 

whether virus drives any changes in the localization of this protein and if this localization is 

associated to a specific cellular compartment at different time points during the infection. ii) 
The effect of HSV-1 infection on the expression of DDX3X in different cell types.  iii) The 

impact of DDX3X overexpression on viral yields using titration assay. iv) How does the 

overexpression or depletion of this protein affects viral gene expression at both RNA and protein 

levels. v) Whether DDX3X as a protein that modulates IFN-β response, controls the virus 

through the stimulation of IFN expression. 

2.2. Comments on the text 

Results section contains the full text of the article “The ATP-dependent RNA Helicase 

DDX3X modulates Herpes Simplex Virus Type 1 Gene Expression” by Bita Khadivjam that 

was submitted to PLoS Pathogens on 15 July, 2016. However, minor changes have been made 

to the manuscript to fulfil the requirements of this memoir. 

2.3. Author’s contributions 

Bita Khadivjam: Contributed to the writing of the article as well as the design, analysis and 

mounting of most experiments (Figures 2.2-2.6, 2.10 and 2.14 - preparation of samples for RT-

qPCR in Figures 2.11-2.13) 

Camile Stegen: Designed and analysed some experiments (Figures 2.1 and 2.8-2.9) 

Marc-Aurèle Hogue Racine: Designed and analysed the HSV-1 entry assay (Figure 2.7) 
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Nabil El Bilali: Designed and analysed the RT-qPCR assays (Figures 2.11-2.13) 

Katinka Döhner and Beate Sodeik: Generated the HSV-1(17+)Lox-Luc viral strain and 

criticized the manuscript 

Roger Lippé: Created the project and supervised, designed and analyzed experiments and wrote 

the article 
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Abstract 

The human protein DDX3X is a DEAD-box ATP-dependent RNA helicase that regulates 

transcription, mRNA maturation, mRNA export and translation. DDX3X concomitantly 

modulates the replication of several RNA viruses and promotes innate immunity. We previously 

showed that herpes simplex virus type 1 (HSV-1), a human DNA virus, incorporates DDX3X 

into its mature particles and that DDX3X is required for optimal HSV-1 infectivity. The present 

work focuses on this host-pathogen relationship. The data reveal a dependence between viral 

propagation and optimal DDX3X protein levels while the virus caused DDX3X aggregation. 

Surprisingly, DDX3X from incoming viral particles was not required for the early stages of 

HSV-1 entry but rather the protein controlled the assembly of novel viral particles. This 

appeared largely independent of the previously reported capacity of DDX3X to stimulate 

interferon type I production. Instead, DDX3X acted by disturbing viral gene transcription and 

thus subsequent genome duplication. This suggests DDX3X can impact DNA viruses such as 

HSV-1 by an interferon-independent pathway.  
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Author Summary 

It is well established that viruses can incorporate in their mature particles proteins from 

their hosts. For instance, we previously reported the identification of up to 49 cellular proteins 

in Herpes simplex virus type I extracellular virions, many of which affect viral propagation. 

This includes DDX3X, a protein modulating RNA metabolism, RNA-based viruses and innate 

immunity but whose role in the spread of the virus was unclear. The present data explore this 

host-pathogen relationship and show a dependence of the virus on the right levels of DDX3X. 

An in-depth analysis revealed that DDX3X acted on viral gene transcription and that this was 

independent of its ability to stimulate the interferon pathway. These findings hint at a novel 

mechanism whereby DDX3X interacts with the genome of a DNA-based virus. This thus 

extends the already long list of activities attributed to this cellular protein and the range of 

viruses it can act upon.   
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Introduction 

The human DDX3 protein is a member of a large family of DEAD-box ATP-dependent 

RNA helicases. In humans, it is encoded by the X (DDX3X) and Y (DDX3Y) chromosomes, 

albeit the latter is restricted to testis [1]. It participates in different stages of cellular gene 

expression, such as transcription, mRNA maturation, mRNA export and translation [2]. Given 

these crucial roles in RNA biology, several RNA viruses interact with DDX3X, often with 

important consequences for viral replication. This includes hepatitis C virus (HCV), novorirus, 

West Nile virus and Japanese encephalitis virus [3-7]. This is also the case for HIV and hepatitis 

B virus (HBV), a peculiar DNA virus that relies on an RNA template and reversed transcription 

to replicate its genome [8, 9]. In parallel, DDX3X also contributes to innate immunity against 

these viruses. DDX3X thus stimulates interferon type I production through binding IKK (I-

kappa-B kinase epsilon) and TBK1 (tank-binding kinase 1), leading to IRF3 phosphorylation 

and activation [10, 11]. These findings position DDX3X as a critical player for the replication 

and immunity against RNA-based viruses. However, its role is not restricted to these viruses 

since it also impacts innate immunity against DNA viruses. For instance, the HBV viral 

polymerase competitively binds IKKε and blocks its ability to interact with DDX3X, thus 

faltering interferon production to the benefit of the virus [12]. Similarly, the vaccinia virus 

(VACV) K7 protein binds and sequesters DDX3X and prevents its interaction with the above 

kinases, once again blocking interferon activation to favor viral propagation [13]. DDX3X is 

thus an important mediator of host-pathogen interactions that acts via multiple and likely parallel 

routes on many RNA and at least two distinct DNA viruses. We thus hypothesized that DDX3X 

partly modulate viral expansion by interferon-independent routes.  

Herpes simplex virus type 1 (HSV-1) is a ubiquitous human pathogen that is dormant in 

80-90% of the population but causes clinical symptoms in roughly a third of humans. It is 

primarily associated with cold sores but is also responsible for severe infections in both 

immunocompetent and immunodeficient individuals [14]. Replication of herpesviruses occurs 

in the cell nucleus, where they efficiently take over the host gene expression machinery during 

an active infection. Three classes of HSV-1 genes, namely the immediate early (IE), early (E), 

and late (L) genes are transcribed in a sequential manner by the cellular RNA polymerase II and 

a collection of transcriptional and translational cellular factors [15]. This gene expression 
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cascade is stimulated by ICP0, ICP4 and VP16, three tegument components present in mature 

viral particles that promptly act as transactivators following viral entry in the cell [16-20]. Thus, 

as for other viruses, HSV-1 gene expression is clearly dependent on both viral and host proteins.  

Past studies from our laboratory revealed that HSV-1 incorporates DDX3X into its 

mature particles [16]. Most interestingly, depleting either the viral or the cellular pool of 

DDX3X significantly impairs HSV-1 infectivity [21]. However, as the exact function of 

DDX3X for the HSV-1 replication cycle is not clear, we opted to examine more closely the 

nature of this host-pathogen interaction. The present data reaffirm with multiple assays the 

implication of DDX3X on the propagation of HSV-1. They also reveal that the portion of 

DDX3X present in the incoming virions is not required for the early stages of HSV-1 entry, 

pointing to a downstream effect, albeit this function could still technically be undertaken by the 

cellular pool of DDX3X. However, depletion of DDX3X from the cell impacted viral particle 

assembly and intracellular and extracellular viral yields. Interestingly, either reducing or 

overexpressing the cellular pool of DDX3X both negatively impacted HSV-1 protein 

expression. This dependency of the virus on DDX3X protein levels was corroborated in rescue 

experiments with siDDX3X depleted cells that concomitantly expressed a siRNA-resistant 

DDX3X construct. At the mechanistic level, DDX3X was found to modulate the transcription 

of immediate-early, early and late genes, including the aforementioned viral transactivating 

proteins ICP0, ICP4 and VP16. This appeared independent of the ability of DDX3X to promote 

interferon β production. We conclude that DDX3X modulates HSV-1 yields by a novel 

mechanism implicating viral gene transcription independently of the interferon pathway. 
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Results 

DDX3X is required for optimal viral yields 

We previously reported by proteomics that HSV-1 incorporates the host protein DDX3X in 

mature virions [16] and that both the cellular and virion-incorporated pools of DDX3X influence 

viral yields [21]. To independently validate the role of the cellular DDX3X in viral replication, 

we resorted to the BHK21-derived tsET24 cell line, which harbors a temperature-sensitive 

DDX3X inactive at 39,5oC but functional at 34oC [22]. Infection of the tsET24 and parental 

BHK21 cell lines with wild type HSV-1 showed that viral output was strongly reduced at the 

non-permissive temperature in the tsET24 cell line but not affected in the parental cell line (fig. 

1). This ruled out nonspecific off-targets that are possible with siRNA reagents and confirmed 

that DDX3X is indeed a modulator of the HSV-1 life cycle. 

 

HSV-1 yields are sensitive to DDX3X levels 

Given that viral yields were lowered upon depletion of the host protein DDX3X, we probed 

whether overexpression of the protein would have the opposite effect on HSV-1. An initial 

examination by immunofluorescence microscopy indicated that overexpression did not 

influence the subcellular localization of DDX3X and that the level of exogenous DDX3X was 

in general similar to its endogenous counterpart (fig. S1). Thus cells were first transfected with 

wild type DDX3X then infected and extracellular virus production measured by plaque assay. 

Unexpectedly, an excess of DDX3X also perturbed the release of mature virions (fig. 2A). This 

suggested that optimal viral replication required a carefully controlled level of DDX3X. To 

examine this issue at the single-cell level, we monitored viral propagation by fluorescence 

microscopy (fig. 2B). Interestingly, all cells overexpressing DDX3X appeared uninfected, while 

viral gene expression and cytopathic effects were readily detectable in all untransfected cells. 

Thus HSV-1 propagation seemed to depend on a critical level of DDX3X in the cells.  

To better define the relationship between DDX3X and the infection, we opted to rescue 

DDX3X in siRNA depleted cells. To this end, we first determined which of the 4 siRNA 

targeting DDX3X worked best (fig. S2) and generated a DDX3X mutant resistant to this specific 
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siRNA. We then treated cells with this unique siRNA to reduce endogenous DDX3X levels and 

rescued them with the above siRNA resistant DDX3X construct. Cells were subsequently 

infected with HSV-1 K26GFP and the presence of DDX3X and virus monitored by fluorescence 

microscopy and quantified. Note that the exogenous DDX3X was expressed at similar levels as 

its endogenous counterpart and thus doubled the total DDX3X in the absence of siRNA 

(compare GS-DDX3X and no transfection in Fig 3A and B). The results also revealed that, as 

expected, silencing DDX3X significantly reduced both DDX3X and GFP expression (fig. 3A, 

B). In agreement with our previous findings, overexpression of DDX3X nearly abolished HSV-

1 production. Rescuing the depleted cells with exogenous DDX3X restored the infection up to 

63% compared to the untransfected cells (fig. 3A, B). Thus the virus appeared sensitive to the 

levels of DDX3X. 

 

The virus functionally interacts with endogenous DDX3X 

To understand the role of DDX3X in the viral life cycle, we next examined whether the 

virus influenced DDX3X levels. To this end, we probed DDX3X expression by Western blotting 

in three cell lines commonly used to study HSV-1, namely HeLa, 143B and Vero cells. HSV-1 

infection had no impact on DDX3X protein levels in HeLa and Vero cells, but reduced them by 

half in 143B cells (Fig. 4). We also examined whether the virus altered the subcellular 

localization of DDX3X. As shown in figure 5 (left panels), endogenous DDX3X was primarily 

found in cytoplasmic granules in uninfected cells. Attempts to identify these granules with a 

panoply of markers unfortunately failed to unambiguously identify them. In agreement with 

previous studies, some DDX3X could also be detected in the nucleus (see insets), consistent 

with its shuffling across the nuclear envelopes [23, 24]. Upon infection, DDX3X levels were 

once again unaffected in HeLa and Vero cells but reduced in 143B cells as reported above. 

However, DDX3X was somewhat aggregated in all three cell lines (fig. 5A, compare left and 

right panels). Furthermore, the GFP tagged viral particles often but not always co-localized with 

DDX3X in the cytoplasm (fig. 5B), in agreement with the incorporation of this cellular protein 

in mature virions [21]. A time course revealed that DDX3X started to aggregate between 3 and 

6 hours post-infection and this intensified with time (fig. 6). As noted above, DDX3X 
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occasionally colocalized with the viral marker used to identify infected cells. Altogether, we 

conclude that the viral particles functionally interacted with DDX3X during the infection. 

 

DDX3X down regulation alters novel viral particle assembly 

A number of scenarios may justify the presence of a host protein in mature virions. One is 

that it might be needed immediately after cell entry to initiate an infection. A second one would 

be boosting viral replication post-entry. A third one is that DDX3X virion incorporation may be 

a bystander effect of a previously occurring interaction taking place during viral particle 

assembly or transport towards the cell periphery. Note that these options are not mutually 

exclusive. To address the first of these scenarios, we directly probed whether the virion-

associated pool of DDX3X is required for viral entry. To this end, we used a viral strain that 

encodes a luciferase under a constitutive CMV immediate early promoter [25]. We thus infected 

cells with the above virus, wild type virus (i.e. without the luciferase cassette) or no virus at all 

(mock infection). To specifically probe the role of DDX3X during entry, we additionally 

infected the cells with the luciferase coding virus depleted for DDX3X, or as a control, depleted 

for VP16 [21]. To synchronize the infection, viral adsorption was performed at 4°C for an hour 

and the cells subsequently transferred to 37°C for an additional hour. Some control cells were 

alternatively maintained at 4°C throughout the experiment to prevent viral entry. Entry of the 

virus into the cells was then measured with a commercial luciferase kit (see materials and 

methods). Not surprisingly, viruses devoid of the luciferase gene, mock-infected cells or the 

luciferase-coding virus incubated at 4°C all gave background signals (fig. 7). In contrast, 

incubation of the untreated luciferase-positive virus at 37°C gave a strong signal, which was 

arbitrarily set to 100%. Infection by VP16 or DDX3X depleted luciferase-positive virions gave 

very similar strong signals, indicating their presence in the mature virus was not essential for 

this early phase of the infection. This also suggested that the CMV immediate early promoter 

driving the luciferase is insensitive to VP16. Altogether, this suggested DDX3X acted 

downstream of viral entry. 
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DDX3X modulates viral gene expression 

Given the reduced production of viral particles upon DDX3X depletion and that DDX3X 

is a known modulator of host gene transcription and translation, we wondered if DDX3X could 

also regulate viral gene expression. To address this, we probed representative candidates of the 

three viral kinetics classes, namely ICP0 and ICP4 (immediate early proteins), ICP8 and pUL23 

(early proteins) and VP16 and pUL31 (late proteins) under normal, reduced (siDDX3X) or 

enhanced (DDX3X overexpression) conditions. A 9 hour midpoint was chosen since it is an 

intermediate time when both early and late viral proteins are detectable. Both DDX3 conditions 

negatively affected the expression of all classes of viral proteins, including once again VP16 

(fig. 10A). Quantification of several independent experiments, which were normalized against 

a γ-tubulin loading control, confirmed these findings (fig. 10B). To evaluate if the reduced 

protein levels were the consequence of reduced transcription, the samples were further analyzed 

by quantitative RT-PCR. The data showed that most of the viral gene transcripts were negatively 

impacted by both reduced and overabundant DDX3X (fig. 11), albeit slightly less than the 

corresponding protein levels (Table 1). Although, one might be concerned that WB is not as 

quantitative as RT-PCR technique. Our attempt to measure the linearity of WB results obtained 

by ChemiDoc system (Boi-Rad) indicated that these results are perfectly linear (R2=0.99) for 

tested proteins, DDX3X and γ-Tubulin (fig S4). However, knowing this, we still cannot rule out 

the fact that RT-qPCR is more quantitative and Table 2.1 remains a modest comparison. 

 

DDX3X’s effect on the virus is independent of interferon β production 

Given the role of DDX3X in innate immunity (see introduction), we probed by qRT-PCR 

the impact of DDX3X modulation on interferon type 1 production using interferon β as a gauge. 

As reported elsewhere [10], depleting endogenous DDX3X had no effect on the already low 

level of interferon β mRNA in uninfected cells, while DDX3X overexpression strongly 

stimulated its expression (fig. 12). Meanwhile, interferon β production was slightly increased 

by the virus compared to mock treated cells but this was not statistically meaningful, perhaps 

consistent with the ability of the virus to counteract this innate response. Similarly, depleting 

the endogenous DDX3X or overproducing in infected cells it did not have any major impact on 
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interferon β levels (fig. 12). Thus, as previously documented by others, DDX3X positively 

promoted interferon β levels in uninfected cells but had limited effect in HSV-1 infected cells. 

Thus the well-known DDX3X ability to modulate the interferon type 1 pathway did not appear 

to play a critical role, since both DDX3X knockdown or overexpression reduced viral gene 

transcription. This suggested that DDX3X may act on viral propagation by an interferon 

independent pathway. 

To independently evaluate whether DDX3X significantly impacted HSV-1 propagation via 

innate immunity, we opted to measure viral genome copies by qPCR under normal, depleted or 

overexpressed DDX3X conditions. The data illustrated that viral genome duplication was 

strongly inhibited in both cases (fig. 13), in agreement with the scenario where DDX3X acted 

on the virus independently of its ability to modulate interferon β production. To finally confirm 

this hypothesis, we resorted to a well-characterized DDX3X point mutant (K230A) that 

abolishes its ATPase - and consequently helicase - activities without perturbing its ability to 

modulate the interferon pathway [8, 10, 13]. Our rationale was that if DDX3X primarily acted 

via the interferon type I pathway, the mutant should behave like wild type DDX3X and block 

viral propagation but if the ATPase activity is the main driver, the mutant would be dead and 

allow the virus to replicate normally. As seen in fig. 14, the data confirmed the impact of wild 

type DDX3X overexpression on viral release, while the K230A mutant was completely inactive 

despite being normally expressed (fig. S3). This indicated that DDX3X acted on the virus via 

its ATPase/helicase activities independently of the interferon pathway.   
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Figure 2.1. DDX3X is necessary for HSV-1 replication.  

The DDX3X thermosensitive tsET24 and parental BHK21 cell lines were incubated for 24 hours 

prior to infection at the permissive (34oC) or non-permissive (39.5oC) temperature and infected 

with HSV-1 K26GFP (MOI of 5) for an additional 24 hours at that same temperature. 

Afterwards, supernatants were collected and titrated on Vero cells. Titers were normalized to 

the mean value obtained with samples infected at 34°C (arbitrarily set to 100%). They represent 

the averages of 2 independent experiments, each titrated in duplicates. The error bars represent 

the standard deviations to the means. 

 



 

41 

 

           
 

      Figure 2.2. DDX3X overexpression hampers viral infection. 

 A) Effect of DDX3X overexpression on HSV-1 infectivity. Hela cells grown in 6-well 

plates were either mock treated or transfected with exogenous DDX3X for 24 hours and 

then infected with wild-type HSV-1 at a MOI of 5 for 18 hours. Supernatants, containing 

extracellular viruses, were then collected and titrated on Vero cells. Data represents the 

pool of 5 individual experiments. Bilateral Student’s T-tests (with standard deviations 
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shown) were performed to detect significant hits compared to the transfection agent only 

control. (***: p<0.001). B) Cells overexpressing DDX3X are refractory to the 
infection. HeLa cells grown on coverslips were either mock treated or transfected with 

exogenous DDX3X as above and infected with HSV-1 K26GP for another 18 hours prior 

to fixation and examination by fluorescence microscopy. The red signal depicts both 

endogenous and exogenous levels of DDX3X, while the green signal represents the virus. 

The data shown is representative of at least 3 individual experiments. Scale bar: 10 µm. 
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Figure 2.3. Normal levels of DDX3X best support HSV-1 propagation.  

A) Hela cells grown on coverslips were sequentially mock transfected or treated with 

siDDX3Xa in the presence or absence of a plasmid coding for the siRNA resistant DDX3X 

mutant for 48 hours. All but the mock infected samples were subsequently infected at a MOI of 

5 with HSV-1 K26GP (green signal) for 18 hours. The cells were finally fixed and reacted with 

primary antibodies against DDX3X and appropriate secondary antibody, which detects both 
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endogenous and exogenous DDX3X (red signal), while nuclei were labeled with Hoechst (blue 

signal). Samples were analyzed by fluorescence microscopy. B) Fluorescence intensities 

(Relative Units) were quantified for 100 cells using Image J. Scale bar: 10 µm. The data is 

representative of 3 independent experiments. Bars indicate the means and error bars the standard 

deviation to the mean (bilateral Student T-tests). 

 

 
 

 

 
 

Fig 2.4. Impact of HSV-1 on endogenous DDX3X cellular levels.  

Hela, Vero and 143B cells were seeded in 10 cm plates 24 hours prior to infection. Cells were 

then either mock treated or infected with wild-type HSV-1 at a MOI of 5 for 18 hours. Total cell 

lysates were then collected and DDX3X cellular levels probed by Western blotting. γ-Tubulin 

was used as a loading control. Numbers below the blots indicate the average levels of DDX3X, 

normalized for γ-tubulin, from 5 independent experiments.  
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Figure 2.5. Endogenous DDX3X subcellular localization.  

A) Hela, Vero and 143B cells were seeded on coverslips 24 hours prior to infection. Cells were 

then either mock infected or inoculated with HSV-1 K26GFP (green) at a MOI of 5 for 18 hours. 

Cells were then fixed, permeabilized, and immunostained with an antibody specific for DDX3X 
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(red) and the nuclei stained with Hoechst (blue). Cells were finally analyzed by confocal laser 

scanning microscopy. B) Close up view in the cytoplasm of infected HeLa cells. Scale bar: 10 

µm. Results are representative of 3 independent experiments. 
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Figure 2.6. Time course of DDX3X aggregation. 

Hela cells grown on coverslips were infected with wild-type HSV-1 for 3, 6, 9 and 24 hours. 

Cells were fixed at the indicated time points and reacted with antibodies against endogenous 

DDX3X (red) or ICP4 (to delineate infected cells; green), while nuclei were labeled with 
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Hoechst (blue). Samples were analyzed by confocal laser scanning microscopy. Scale bar: 20 

µm. These results are representative of 2 individual experiments. 

 

 

 
 

Figure 2.7. Virion-associated DDX3X has no effect on HSV-1 Entry.  

143B cells pre-seeded in 24-well plates were mock-infected or infected at a MOI of 30 for 1 

hour at 4oC with various HSV-1 viruses as indicated below each bar. These included wild type 

HSV-1 (luciferase-negative) and untreated, DDX3X or VP16 depleted HSV-1(17+)Lox-Luc 

viruses. To enable viral entry, the cells were then incubated at 37oC for another hour and 

subsequently lysed at room temperature for 30 minutes in the presence of luciferin and energy. 

As a control, one sample was left at 4°C throughout the experiment to prevent viral entry. 

Samples were then transferred to 96-well plates and analyzed with a luminometer. Values 

represent the mean RLU (relative light units) from 5 independent experiments and error bars 
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depict the standard deviation to the means. Stars indicate the results of bilateral Student’s T-

tests (***: p<0.001). 

 

 

 
 
Figure 2.8. Impact of DDX3X knockdown on intracellular virions.  

143B cells were transfected with siRNA pools targeting DDX3X or VP16 and infected with 

K26GFP at a MOI of 5. Cells were collected and lysed and viruses were titrated on Vero cells. 

The error bars show the standard deviations of the means of two independent experiments. 

Bilateral Student’s T tests were performed to detect significant hits compared to the transfection 

agent only control (***: p<0.001). 

 

 

 



 

50 

 

 
 
Figure 2.9. Inhibition of DDX3X reduced viral particle assembly. 

143B cells were mock infected, mock transfected, treated with non-Targeting siRNA or with 

pooled siRNAs against DDX3X or VP16 as indicated. All but the mock infected samples were 

incubated with HSV-1 K26GFP (green signal) at a MOI of 5 for 18 hours. The cells were fixed 
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and the nuclei stained with Hoechst 33342 (blue).  Right panels are enlargements of the indicated 

sections present in the left panels. Scale bars: 10 µm. 
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 Figure 2.10. Effect of depletion or overexpression of DDX3X on HSV-1 gene 
expression. 

 A) Hela cells seeded in 6-well plates were transfected for 48 hours either with pooled siRNA 

against DDX3X and/or a plasmid coding for siRNA resistant DDX3X. They were subsequently 

infected at a MOI of 5 with wild-type HSV-1 and harvested at 9 hpi and lysed. Twenty 

micrograms of the lysates were directly loaded onto SDS-PAGE gels and analyzed by Western 

blotting. γ--tubulin was used as the loading control (top panels). B) Protein expression was 

evaluated and normalized to γ-tubulin and compared to the values obtained for infected but non-

transfected cells (bottom panel). The reported values represent the average of two experiments. 

The error bars indicate standard deviations of the means. Bilateral Student’s T tests were 

performed (*: p<0.05; **: p<0.01; ***: p<0.001). Note that throughout this study, Western blots 

were quantified on a ChemiDoc MP system with a 4 orders of magnitude dynamic range, not 

film which has a poor linearity. 
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Figure 2.11. Impact of DDX3X on viral gene transcription.  

HeLa cells were seeded in 6-wells and transfected for 48 hours either with siDDX3Xa or a 

siRNA resistant DDX3X plasmid. Following 8 hours of infection with wild type virus at MOI 

of 5, total RNA was collected and reverse transcribed into cDNA. Expression levels of 

immediate-early (α), early (β) or late (γ) viral genes were analyzed by RT-qPCR. Values 

represent the averages of 2 experiments. All the values were normalized on GAPDH. Bilateral 

Student’s T tests were performed to detect significant hits compared to the transfection agent 

only control arbitrarily set at 100% (*: p<0.05 and **: p<0.01). 
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Table 2.1. Effect of DDX3X depletion or overexpression on HSV-1 gene expression. 

 

Impact of DDX3X on viral gene transcription. Stars indicate the significant difference 

between mRNA and protein levels in 2 independent experiments based on bilateral Student’s T 

test (+/- standard deviations to the means). P-values. (*: p<0.05 and ***: p<0.001). 

 

 Depletion   Overexpression  
Gene protein mRNA 

level 
protein 

level 
Gene protein mRNA 

level 
protein 

level 
RL2 ICP0 * 72 % ± 10 36 % ± 2 RL2 ICP0 47 % ± 29 12 % ± 9 
RS1 ICP4 *** 71 % ± 7 18 % ± 0.6 RS1 ICP4 * 48 % ± 14 8 % ± 4 
UL29 ICP8 65 % ± 4 52 % ± 6 UL29 ICP8 43 % ± 15 28 % ± 5 
UL23 TK 69 % ± 10 44 % ± 14 UL23 TK * 58 % ± 12 9 % ± 2 
UL31 pUL31 71 % ± 7 39 % ± 13 UL31 pUL31 48 % ± 14 11 % ± 0.04 
UL48 VP16 * 58 % ± 7 22 % ± 1 UL48 VP16 * 41 % ± 10 1 % ± 1 
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Figure 2.12. IFN transcription levels.  

HeLa cells grown in 6-wells were transfected for 48 hours either with siDDX3Xa and/or a 

siRNA resistant DDX3X plasmid. Cells were either mock treated or subsequently infected with 

wild type virus for 8 hours at MOI of 5. Total RNA was collected and IFN-β mRNA measured 

by RT-qPCR. Data represent the average of 2 independent experiments. Bilateral Student’s T 

tests were performed to detect significant hits compared to the transfection agent only control 

(RU: Relative units; NS: non-significant; ***: p<0.001). 
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Figure 2.13. Viral genome copies upon siDDX3X or overexpression.  

HeLa cells seeded in 6-wells were transfected for 48 hours either with siDDX3Xa and/or a 

siRNA resistant DDX3X plasmid. Cells were then infected with wild type virus for 8 hours at 

MOI of 5. Total DNA was then collected and viral genome copy numbers were measured by 

qPCR. Data represent the average of 2 experiments. Bilateral Student’s T tests were performed 

to detect significant hits compared to the transfection agent only control (*: p<0.05). 
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Figure 2.14. Overexpression of ATPase/helicase inactive but interferon competent 
DDX3X mutant has no impact on viral propagation.   

Hela cells grown in 6-well plates were either mock treated or transfected for 24 hours with 

exogenous wild type DDX3X or the ATPase/helicase deficient but interferon competent K230A 

mutant. They were then infected with wild-type HSV-1 for 18 hours with a MOI of 5. 

Extracellular viruses in the supernatant, were then collected and titrated on Vero cells. Data 

represents the pool of 5 individual experiments. Statistical significance was assessed based on 

P-values. (**: p<0.01 and ***: p<0.001). 
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Discussion 

The DDX3X RNA helicase modulates HSV-1 propagation 

The present data, along with our past findings [21], indicate that depletion of DDX3X either 

in cells or in HSV-1 mature viral particles led to a significant reduction of infectious HSV-1 

particles. Two independent data sets confirmed that this was specific and not the results of off-

target effects associated with RNA interference. First, viral yields were significantly rescued by 

a siRNA-resistant DDX3X construct (fig. 3). Secondly, orthogonal validation of the results with 

the tsET24 cell line, where DDX3X is non-functional at the restrictive temperature, further 

proved that the phenotypes were directly imputable to DDX3X (fig. 1). We thus conclude that 

DDX3X is required for optimal HSV-1 propagation.  

Despite the positive implication of DDX3X in viral yields, we unexpectedly found that 

overexpression of DDX3X also reduced virus production (fig. 2-3). This was corroborated by 

the fact that we only detected HSV-1 K26GFP expression in 0.9% of the cells overexpressing 

DDX3X (fig. 2). This inhibition notably required the ATPase and helicase activities of DDX3X 

(fig. 14). Though initially counter-intuitive, this apparent contradiction is not unusual and has 

indeed been reported for hepatitis B and C viruses [9, 26]. We thus presume that reduced or 

overabundant DDX3X levels exert their effect by distinct mechanisms and postulate that 

DDX3X indeed positively modulates viral proliferation when rate limiting or in normal 

amounts. In contrast, overabundant functional DDX3X likely titers out one or a few of its 

molecular partners and drowns the endogenous DDX3X machinery. This is in line with our 

inability to generate cell lines stably overexpressing DDX3X (data not shown). In this context, 

it is worth noting that HSV-1 did not alter the DDX3X protein levels in HeLa and Vero cells 

(fig. 4) and thus ensured the presence of appropriate levels of DDX3X. Why the virus reduced 

DDX3X protein levels to a significant extent in 143B remains a mystery though. Nonetheless, 

our working hypothesis is supported by our rescue experiments whereby transfection of 

siDDX3X-resistant exogenous DDX3X in siDDX3X treated cells partially rescued both normal 

levels of DDX3X and viral output (fig. 3). Thus DDX3X appears as an important host 

interacting partner for HSV-1. 
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DDX3X acts on HSV-1 gene expression 

Distinct non-exclusive scenarios could justify the presence of DDX3X in mature HSV-1 

particles. First, the virion-associated DDX3X may be required to initiate an efficient infection. 

However, this was not the case as viral entry was unperturbed by the depletion of this cellular 

protein within the viral particles prior to the entry assay (fig. 7). It remains possible though that 

the cellular pool of DDX3X may accomplish this task. Second, DDX3X incorporation in mature 

virions could also be the consequence of a prior interaction between the host protein and 

structural components of the virus and thus merely reflect past role(s) or simply a sticky protein. 

Although we cannot formally rule out this second option, it is clear that DDX3X plays an active 

role in the assembly of novel viral particles by regulating the transcription of viral genes (fig. 

11). Given the stronger impact of DDX3X on viral protein levels than transcription (Table 1), it 

is conceivable that DDX3X also acts on other steps of viral gene expression, namely mRNA 

transport, stability or translation or even viral protein stability. On the other hand, the more 

pronounced effect of DDX3X on protein levels may simply be the consequence of the relative 

abundance of viral transcripts, albeit this is hard to directly correlate [27]. We conclude that 

DDX3X unambiguously modulates HSV-1 gene transcription with potential impacts of other 

steps of gene expression. The presence of DDX3X in other mature extracellular herpesviruses, 

including HSV-1, PRV and HCMV [28] suggests this could be true for other viruses. One major 

outstanding question is why these viruses bother incorporating DDX3X in their viral particles.   

 

Mechanism of DDX3X action 

 Whether DDX3X directly acts on various viral genes or indirectly via a few select 

molecules is unclear. Thus far, DDX3X was shown to bind to the interferon β and the tumor 

suppressor p21 promoters, thus suggesting a direct role as a transcription co-factor [10, 29]. 

However precise binding motifs have yet to be identified.  

An intriguing scenario is the positive role that DDX3X plays in innate immunity upon 

TBK1 and IKKε binding and IRF3 activation [10, 13, 30]. As expected, modulating DDX3X 

levels did alter interferon production in uninfected cells but had minimal impacts in infected 

cells (fig. 12), likely owing to the well documented ability of the virus to circumvent this 
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pathway [31]. Since either increasing or decreasing DDX3X levels negatively altered viral 

output (fig. 1-3, 8-10), transcripts (fig. 11 and Table 1) and genome copies (fig. 13), this 

suggested that DDX3X acted on the virus independently of the interferon pathway. Supporting 

this model is that the K230A DDX3X mutant, devoid of its ATPase and helicase activities but 

still able to stimulate interferon production [10, 13], was completely dead in our hands and failed 

to limit HSV-1 propagation (fig. 14). So, we conclude that DDX3X most likely modulate HSV-

1 gene transcription in an interferon-independent manner. 

 

DDX3X is a key player for both RNA and DNA viruses 

DDX3X is a multifunctional cellular protein that interacts with viruses at several levels. 

Much of the current literature focuses on RNA viruses given the RNA helicase activity of 

DDX3X. Not surprisingly, it was found to promote genome duplication of many of those viruses 

[32]. However, DDX3X binds TBK1/IKKε, which both stimulates IRF3 activation and 

interferon type I production thereby stimulating an anti-viral state [10, 11]. DDX3X thus has 

dual functions that can either facilitate or hamper viruses. Interestingly, this later property is not 

limited to RNA viruses, but operates with vaccinia virus and hepatitis B virus, two DNA viruses 

[12, 13]. DDX3X thus influences viral outcome both via innate immunity and RNA viral gene 

duplication. The present study further suggests that DDX3X also acts on DNA viruses by a third 

mechanism, namely by modulating viral gene expression. 
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Materials and Methods 

Cells, Viruses and Plasmids. Hela (ATCC CCL-2), Vero (ATCC CCL-81), 143B 

tk- (ATCC CRL-8303), tsET24 and BHK21 cells were grown in DMEM (Dulbecco's Modified 

Eagle Medium) supplemented with 2 mM L- glutamine in 5% CO2 and either 10% FBS (fetal 

bovine serum) or 5% bovine growth serum (BGS). 143B cells were also supplemented with 15 

µg/ml 5-bromo-2 deoxyuridine (BrdU, Sigma) except prior to transfection and infection. The 

tsET24 thermosensitive and parental BHK21 cell lines (a kind gift from Dr Takeshi Sekiguchi, 

Kyushu University; [22]) were passaged at the permissive temperature of 34°C. 

HSV-1 K26GFP (strain KOS; provided by Prashant Desai, Johns Hopkins University) [33]) 

is a fluorescent virus tagging the minor VP26 capsid component. Wild-type HSV-1 strain F was 

obtained from the American Type Culture Collection (ATCC VR-735). The HSV-1(17+)Lox-

Luc viral strain is derived from strain 17+ and encodes a luciferase gene under the constitutive 

immediate early CMV promoter positioned between the UL55 and UL56 HSV-1 genes [25]. 

All viruses were propagated on BHK cells and titrated on Vero cells as previously described 

[34].  

The pGS-TAP-tagged DDX3X (DDX3X fused to protein G and streptavidin binding 

peptide), pSG-N-4xHA-TEV-N-term DDX3X (HA tagged DDX3X) and pSG-N-4xHA-TEV-

N-term K230A (defective mutant) eukaryotic expression plasmids were a kind gift from Dr G. 

Superti-Furga (Research Center for Molecular Medecine; [10]). A siRNA-resistant plasmid was 

derived from pGS-TAP-tagged DDX3X using QuikChange II XL Site-Directed Mutagenesis 

Kit (Agilent Technologies) using forward primer 5'-

GGAAAGAGGAAAGATTGGATTAGACTTTTGTAAGTATCTGGTCCTGGATGAAGC

TG ATCGGATGTTGGATATGGG-3' and reverse primer 5'- 

CCCCATATCCAACATCCGATCAGCTTCATCCAGGACCAGATACTTACAAAAGTCT

AATCCAATCTTTCCTCTTTCC-3’, as per manufacturer’s instructions, where bold sequences 

indicate the silent point mutations.  

Antibodies. Primary antibodies were as follows: the anti-human DDX3 rabbit R648 

polyclonal serum was a kind gift from Dr A. Patel (University of Glasgow Centre for Virus 

Research; [35]). Viral antibodies were generously provided by several laboratories and used at 
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the indicated dilutions for Western blotting: VP16 (Dr Helena Browne), TK (Dr James R 

Smiley) and pUL31 (Dr Joel D. Baines). All other antibodies were purchased from commercial 

vendors, including anti-VP5 (Cedarlane), γ-tubulin (Sigma-Aldrich), ICP4, ICP8 and ICP0 (all 

three from Abcam). All secondary antibodies were purchased from Molecular probes.  

Fluorescence microscopy. Hela, Vero or 143B cells were seeded overnight on coverslips 

in 24 well plates at a concentration of 1.5×104 cells/well. Cells were mock treated or infected 

with HSV-1 K26GFP at a multiplicity of infection (MOI) of 5. After a one hour adsorption at 

37°C, cells were washed twice in phosphate-buffered saline (PBS), fresh medium was added 

and the cells incubated for another 18 hours prior to fixation and permeabilization with 3% 

paraformaldehyde and 0.1% Triton X-100. The cells were then incubated with a rabbit anti-

DDX3X antibody for one hour and further incubated for 45 minutes with a goat anti-rabbit 

antibody coupled to Alexa Fluor 568 (Molecular Probes). The samples were finally stained with 

Hoechst 33342 (Sigma-Aldrich) and examined on an Axiophot epifluorescence or LSM700 

confocal microscope (Zeiss). Fluorescent intensities were calculated by image J by subtracting 

the background signal then divided this net signal by the cell.   

Western blotting. Hela, Vero or 143B were mock treated or infected with wild type HSV-

1 at a MOI of 5 and collected 18 hours later by scraping them in lysis buffer (10 mM Tris pH 

7.4, 150 mM NaCl, 2 mM MgCl2, 5 mM DTT, 1 mM EDTA, 1% Igepal and a cocktail of 

protease inhibitors). After a centrifugation of 5 min at 4oC and 500xg, cell pellets were 

resuspended in lysis buffer and incubated on ice for 1 hour. Then they were passed through 27G 

1/2 needles 3 times and treated with DNase for 30 minutes at 37oC (500 U/ml, Roche). Cell 

debris were removed by a 2500xg spin of 10 minutes and cell lysates collected. Samples 

(typically 20 µg) were loaded on 8% acrylamide SDS-PAGE gels in protein sample buffer (50 

mM Tris-HCl, pH 6.8, 2% SDS, 0.1% bromophenol blue, 10% glycerol and 2% β-

mercaptoethanol). Proteins were then transferred to polyvinylidene difluoride (PVDF) 

membranes, which were then incubated for 1 hour in blocking buffer (5% nonfat dry milk, 13.7 

mM NaCl, 0.27 mM KCl, 0.2 mM KH2PO4, 1 mM Na2HPO4, and 0.1% Tween 20). The 

membranes were ultimately reacted with antibodies as indicated in each figure legend. When 

indicated, protein expression levels were quantified with a ChemiDoc MP System (Bio-Rad), 

which has a 4 orders of magnitude dynamic range, and Image lab version 5.0 software (Biorad).  
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Thermosensitive DDX3X. Thermosensitive tsET24 and parental BHK21 cells were plated 

in 6-well plates and incubated at the permissive temperature of 34°C or the non-permissive 

temperature of 39.5°C for 24 hours. The cells were then mock treated or infected with HSV-1 

K26GFP at a MOI of 5 at 34°C or 39.5°C. Cells and supernatants were collected at 24 hours 

post-infection (hpi) and HSV-1 production titrated on Vero cells by plaque assays. 

DDX3X Overexpression. Hela cells were seeded on coverslips in 24 well plates at a 

concentration of 2.0×104 cells/well. The next day, cells were transfected for 24 hours with 0.5 

µg/well of pGS-TAP-tagged DDX3X using the lipoD293 (SignaGen). Cells were subsequently 

infected for a further 18 hours with wild type HSV-1 K26GPF at a MOI of 5. The samples were 

finally fixed and permeabilized as described above and observed on an Axiophot 

epifluorescence microscope (Zeiss). To measure the impact of DDX3X overexpression on viral 

yields, Hela cells were seeded at a concentration of 5.5×105 cells/well in 6 well plates and 

transfected with pSG-N-4xHA-TEV-N-term DDX3X or pSG-N-4xHA-TEV-N-term K230A 

for 24 hours with 4 µg/well of DDX3X constructs. Cells were then infected for a further 18 

hours with wild type HSV-1 at a MOI of 5. Supernatants, containing extracellular viruses were 

collected and titrated on Vero cells.  

RNA interference. siRNA against human DDX3X were either used as a SMARTpool of 4 

siRNA (Dharmacon) or individually tested as indicated in the respective figure legends. These 

siRNA were: siDDX3Xa: GCAAATACTTGGTGTTAGA, siDDX3Xb: 

ACATTGAGCTTACTCGTTA, siDDX3Xc: CTATATTCCTCCTCATTTA and siDDX3Xd: 

GGTATTAGCACCAACGAGA). 25 nM of siRNA was transfected into 143B or Hela cells 

using either Pepmute (Signagen) or lipofectamine 2000 (Thermofisher) for 48 hours.  

Generation of depleted virions. To produce depleted virions, 1x106 cells 143B cells were 

seeded in 10 cm dishes for 24 hours. These cells were then either transfected or mock treated 

for 48 hours with 25 nM of siRNA against DDX3X, VP16 or scVP16 (scrambled) [21] using 

lipofectamine 2000 (Invitrogen). Cells were then infected for another 24 hours with HSV-

1(17+)Lox-Luc or wild type virus at a MOI of 5. In order to separate the intra- from extracellular 

virions, the tissue culture medium was first removed and cells scraped, centrifuged at 250g for 

5 minutes at 4oC and resuspended in 100 mM MNT (30 mM morpholinoethanesulfonic acid, 

100 mM NaCl and 20 mM Tris, pH 7.4). Meanwhile, the extracellular medium was concentrated 
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at 40,000g for 40 minutes at 4oC and viral pellets resuspended in the above buffer. All viruses 

were then titrated on Vero cells.  

DDX3X Rescue. Hela cells were seeded on coverslips at a concentration of 

2.0×104 cells/well. Cells were transfected for 24 hours with 25 nM of siRNA against DDX3X 

(siDDX3Xa) or with transfection agent only as control. Cells were then transfected a second 

time with a siRNA-resistant DDX3X construct using lipoD293 for a further 24 hours. They were 

finally infected with HSV-1 K26GFP at a MOI of 5 for 18 hours. The cells were then fixed and 

permeabilized as described above and examined with an Axiophot epifluorescence microscope. 

Quantification of fluorescence signals was done with Image J (version 1.48) and values 

normalized per cell areas. 

Entry assay. 143B cells were seeded in 24-well plates 24 hours before infection at a 

concentration of 1 x105 cells/well. Cells were inoculated with wild type HSV-1, untreated HSV-

1(17+)Lox-Luc, depleted viruses (see above) or as control no virus at all under conditions that 

enable the virus to bind the cells but not penetrate them (MOI of 30, 4oC, 1 hour). Samples were 

then shifted to 37oC for another 1 hour and lysed for 30 minutes at room temperature with 100 

µl/well of lysis buffer from the firefly luciferase assay kit (Biotium). Samples were then 

transferred to 96-well plates and analyzed by LUMIstar Galaxy luminometer (BMG Labtech). 

Luminescence was quantified using LUMIstar Galaxy software version 4.30-0. 

RT-qPCR. Following DDX3X depletion or overexpression (see above), Hela cells were 

infected with wild type HSV-1 for 8 hours. Total RNA was extracted using SV Total RNA 

Isolation System (Promega). The RNA was then reverse transcribed with a High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems) according to the manufacturer's 

instructions. The cDNA was then analysed by quantitative PCR using a LightCycler 480 

(Roche). Viral (ICP0, ICP4, UL23, ICP8, VP16 and UL31) or cellular genes (DDX3X and IFN-

β) were quantified using the standard curve method and normalized to an endogenous control 

(GAPDH). All PCR reactions were performed using SybrGreen (Molecular Probes) and primers 

as indicated in Table 2. 
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Table 2.2. PCR primers 

 

Viral gene copies. DDX3X was either depleted or overexpressed in Hela cells as detailed 

above. Cell were then infected with wild type HSV-1 for 8 hours. Total DNA was purified from 

each condition using GenElute Mammalian Genomic DNA Miniprep Kits (Sigma) as per 

manufacturer's instructions. For the qPCR analysis, gB specific primers (Table 2) were used 

with the above SybrGreen assay using GAPDH as the internal control. 

Statistical analysis. Virus titers, protein abundance, fluorescence and flow cytometry data 

were normalized to the values obtained for the controls as mentioned in each figure legend and 

analyzed with bilateral Student’s T tests using GraphPad Prism version 5 (GraphPad Software). 
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Supplementary Data 

 
 
 

 
Figure S1. Overexpressed DDX3X co-localizes with endogenous DDX3X. 

 Hela cells grown on coverslips were mock treated or transfected with pSG-N-4xHA-TEV-N-

term DDX3X for 24 hours. Cells were fixed and reacted with antibodies against total DDX3X 

(red) or HA specific antibodies to detect exogenous DDX3X (green). Nuclei were labeled with 

Hoechst (blue). Samples were analyzed by confocal laser scanning microscopy. Scale bar: 10 

µm. These results are representative of 3 individual experiments. 
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Figure S2. RNA interference efficiency.  

HeLa cells seeded in 24 wells were individually transfected for 48 hours with each of the 

different siRNAs against DDX3X (a, b, c and d) that are present in the SMARTpool. Cell lysates 

were collected and Western blotting was done as described before. Values represent the amounts 

with respect to the untransfected control. The data is representative of 2 individual experiments.  

 

 
 

Figure S3. The K230A DDX3X mutant is expressed at similar levels than wild-type.  

Hela cells grown on coverslips were mock treated or transfected with pSG-N-4xHA-TEV-N-

term K230A for 24 hours. Cells were fixed and labeled with antibodies against total DDX3X 

(red) or HA specific antibodies to detect mutant DDX3X (green). Nuclei were labeled with 

Hoechst (blue). Samples were analyzed using confocal laser scanning microscopy. Scale bar: 

10 µm. Images are representative of 3 individual experiments. 
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Figure S4. The linearity of WB results using ChemiDoc MP System (Bio-Rad).  

Hela cells were seeded in 10 cm petri dish for 24 hours, cell lysate were then collected using 3 

cycles of freeze and thaw. Different amounts of cell lysate were load on a SDS-PAGE in 

duplicates to exclude the potential loading errors. Western blotting was done using DDX3X or 

γ-Tubulin antibodies. Linearity of the results was assayed by measuring the signal intensity of 

each point (mean of the duplicates). R squares were measured using GraphPad Prism 6. 
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Chapter 3. Discussion 

3.1. DDX3X is a determinant host factor in various viral life 
cycles 

The host-pathogen interactome has become the topic of interest for many studies in the 

recent years and is constantly evolving. Pathogens as parasites have adapted countless strategies 

to recruit their host’s cellular machinery and evade their immune defense (210). These strategies 

create high complexity to eliminate these foreign agents. Therefore, by better understanding 

proteins like DDX3X that interact with wide spectrum of viruses from several families, we will 

be well-equipped to target many pathogens all at once.  

Shortly after the discovery of the DEAD-box protein DDX3X (159), it was revealed that 

this protein is associated with viral replication using HCV (174, 185). In fact, the majority of 

DDX3X cellular functions have been discovered in the context of infection (168, 171, 173, 185, 

206, 228, 236-239).  Although DDX3X, as a RNA-helicase has been mostly associated with 

RNA viruses, its contribution is not only limited to these pathogens and it has been demonstrated 

to play essential roles in the replication of DNA viruses such as HBV (205-207), VACV (173, 

211) and HCMV (212).  

HSV-1, like many other enveloped viruses highjacks several host factors. Our 

comprehensive characterization of HSV-1 mature virions, identified DDX3X among 49 other 

cellular proteins (39). Further screening established the requirement of DDX3X for HSV-1 

infectivity, as the depletion of DDX3X from either viral or cellular pools drastically reduced 

viral yields (137). These results, along with the fact that many other pathogens manipulate 

DDX3X, made this host factor a very interesting target for us. Most importantly, the use of a 

temperature sensitive species of DDX3X and rescue with a siRNA resistant DDX3X clone 

proved our siRNA screen results to be perfectly valid and not just an off-target effect (Fig 2.1 

and 2.3).  
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3.2.  It is all about DDX3X levels 

Since DDX3X knockdown has a negative impact on HSV-1 infectivity (137), we 

reasoned that overexpression of this protein would conversely favor viral replication. However, 

to our surprise, the overexpression of DDX3X almost killed (~80% inhibition) the HSV-1 

infection (Fig 2.2A). This was also validated at the single-cell level by immunofluorescence 

(Fig 2.2A), where no sign of infection was found upon DDX3X overexpression. These 

observations prompted us to rescue DDX3X cellular levels by using a siRNA resistant DDX3X 

plasmid. Co-transfecting cells with this DNA construct and siDDX3X restored the infection up 

to 70%, where single transfection with either plasmid or siRNA hampered viral replication, as 

expected (Fig 2.3). This experiment validated our hypothesis that endogenous levels of DDX3X 

is highly important for efficient HSV-1 propagation. Indeed, this is not the first time that specific 

levels of DDX3X seem to be critical for viruses. For example; overexpression of DDX3X has 

been shown to inhibit HBV in a dose-dependent manner (202) and it has been suggested that 

norovirus alters DDX3X levels upon infection (196). Furthermore, HSV-1 does not affect the 

cellular expression of DDX3X in HeLa or Vero cells, but surprisingly down-regulates it by 50% 

in 143B cells (Fig 2.4). 143B cells are osteosarcoma cells and some studies have shown that 

these cells are very sensitive to interferon expression, which blocks their growth (211, 212). In 

contrast, Vero cells do not express any interferons type 1, because they lack interferon genes 

(213-215) and for HeLa cells the induction of IFN type I, seems to have no particular effect on 

cell proliferation. As mentioned earlier, DDX3X is an interferon type I stimulator molecule 

(181), therefore one tempting explanation is that the virus alters the expression of DDX3X in 

143B cells so that the cells stay viable for its propagation. Further evidence for this claim comes 

from experiments where we tried to overexpress DDX3X in 143B cells but we faced a drastic 

cell loss shortly after transfection (data not shown). Finally, preliminary western blot 

quantification of HeLa cells depleted for or overexpressing DDX3X in the context of HSV-1 

infection for different times (3, 6, 9 and 18 hpi) suggested that the virus tries to rescue DDX3X 

protein levels back to its normal preinfection cellular levels (data not shown). However, this 

will need further validation to draw a conclusion.  
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3.3. DDX3X and HSV-1 Interplay 

3.3.1. DDX3X redistribution upon infection  

Viral pathogens tend to redistribute proteins upon infection to either take advantage of 

the protein or inhibit its negative effects on the viral. Our results initially indicated that HSV-1 

is affected by DDX3X but the question remained, whether the virus changes the cellular location 

of DDX3X. Therefore, we investigated the distribution of DDX3X in the HSV-1 infected cells 

versus mock cells in 3 different cell lines (Fig 2.5A). This showed us that virus displaces 

DDX3X in a cell-type independent manner.  

Tracking of a protein during infection can reveal the moment where protein localization 

is affected by a virus. Interestingly, close monitoring of DDX3X during the HSV-1 infection 

suggests it may change location on numerous occasions. For instance, DDX3X appears to be 

predominantly cytoplasmic early on (Fig 3.1; panel 3 hpi blow up), similar to the normal cellular 

localization of the protein. Interestingly, somewhere between 3 and 6 hpi, DDX3X migrates 

from the cytoplasm to the nucleus (Fig 3.1; panel 6 hpi blow up). However, the protein is again 

mostly cytoplasmic later on (Fig 3.1; panel 9 hpi blow up). It is of note that at this time point 

(Fig 3.2), DDX3X shows a peculiar distribution which resembles a lot to the localization of 

actively translating ribosomes in HeLa cells (216). Although, this is a tempting assumption, we 

will need to validate the colocalization of DDX3X with a ribosomal marker at this time point. 

Very late during the infection (Fig 3.1; panel 24 hpi blow up), DDX3X is aggregated in the 

cytoplasm, aggregates that colocalize with the virus (Fig 2.5B), possibly reflecting the 

incorporation of DDX3X into mature HSV-1 virions. 
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Figure 3.1. Closer look at DDX3X distribution during HSV-1 infection 

DDX3X localization at different time points during HSV-1 was isolated from figure 2.6 and 

some blow ups where added to emphasize on the location of DDX3X at each time point. N: 

nucleus, C: cytoplasm.  

 

 

Figure 3.2. Actively translating ribosomes.  

Hela cells were treated with puromycin (PMY) to freeze the translation elongation              

(ribopuromycylation method (RPM)). This method is able to capture the actively translating 

ribosomes. Ribosome are labeled with antibodies against large ribosome subunit acidic P 

proteins and observed under the confocal microscope. The figure is adapted from: David, A. et 

al; Methods Mol Biol. 2015; 1228:133-42. (217). 
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3.3.2. HSV-1 gene expression is affected by DDX3X 

In the search of the mechanism behind the impaired infectivity of HSV-1 that results 

from the imbalanced levels of DDX3X, we discovered the importance of DDX3X in viral gene 

transcription (Fig 2.11). This is in line with the temporary relocation of DDX3X to the nucleus 

that was discussed in the previous section.  As DDX3X has been shown to regulate transcription 

of some genes such as E-cadherin and p21 by directly binding to their promoters (170, 182, 

183), it is possible that that its effect on viral transcription is also through the direct interaction 

with viral promoters. However, this effect can also be through interactions with cellular 

transcription factors (218) or viral transactivator proteins like VP16, ICP0 and ICP4.  

By comparing the WB results (Fig. 2.10) and RT-qPCR data (Fig. 2.11), we noticed that 

the alteration of DDX3X expression might inhibit the gene translation more profoundly than 

transcription of some viral genes (Table 2.1).  This raises the possibility that DDX3X, in case 

of these viral genes, contributes to viral mRNA translation independent of transcription as well 

as the other aspects of RNA metabolism such as splicing, RNA export and RNA or protein 

stability. DDX3X, like all the other RNA helicase can directly unwind/rearrange RNA strands 

or cause the disassociation of RNA from RNPs, therefore contributing to the stability of RNA 

structures (140). To this end, it seems logical to assume DDX3X can be involved in the 

posttranscriptional events of HSV-1 mRNA metabolism. Interestingly, DDX3X has been linked 

to the inhibition of cap-dependent translation (219). Thereby, given the stronger impact of 

DDX3X overexpression on viral protein translation (Fig 2.10 and table 2.1), it is possible that 

too much DDX3X suppress viral translation through this route. On the other hand, DDX3X 

helps the assembly of ribosomal subunits. Therefore, DDX3X knockdown could also negatively 

affect viral gene translation at this level. It is noteworthy that the ribosomal-like localization of 

DDX3X at 9 hpi (Fig 3.1 and 3.2) is in line with the time point where we see major translation 

of viral proteins.  It is thus possible that DDX3X acts on HSV-1 gene expression at multiple 

levels.  

Given that both the depletion and overexpression of DDX3X have similar effects on 

viral gene expression (Fig 2.10-2.11), we should not forget that DDX3X is an ambivalent 

protein, i.e. stimulating some pathways and inhibiting others. Therefore we cannot rule out the 

likelihood of two or even more mode of action in the modulation of HSV-1. For example, the 
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lack of sufficient amounts of DDX3X could impacts the assembly of ribosomal subunits (220), 

while excess of DDX3X might block the cap-dependent translation (221) or another important 

factor for the viral gene expression. Only further work will clarify these aspects.  

3.3.3. Could DDX3X contribute to viral entry? 

To this day, DDX3X has not been associated with any entry events. Since HSV-1 mature 

particles incorporate DDX3X, it seemed logical that virus would recruit this protein late during 

the infection to promote subsequent entry of the newly made viral particles. Surprisingly, 

depleting DDX3X from mature virions had no effect on viral entry (Fig 2.7). However, we 

cannot neglect the possible role of cellular pool of DDX3X in the viral entry and it will be 

interesting to probe a null DDX3X cell line with the depleted virus. Alternatively, it is possible 

that the presence of DDX3X in viral particles is just the remnant of an interaction of DDX3X 

with viral proteins during other stages of the infection or even that DDX3X is simply a sticky 

protein. 

3.3.4. DDX3X is not acting through the interferon pathway 

Since DDX3X is an active modulator of interferon response (150, 155, 156, 167, 179, 

181), its up-regulation strongly induces the expression of IFN-β. However, it has been shown 

that many viruses, such as HBV and poxvirus, can evade this negative impact of DDX3X (202, 

208). Not surprisingly, we found that HSV-1 can also efficiently shut off this response (Fig 

2.12), which is in line with reported ability of HSV-1 in suppressing immune responses. 

Therefore, the normal propagation of the viral particles observed in the presence of the ATPase 

and helicase deficient DDX3X mutant (K230A), which can still stimulate IFN-β production (Fig 

2.14) and form stress granules (176), strongly suggests that DDX3X does not modulate HSV-1 

transcription through the IFN-β response but rather directly on viral transcription.  
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Chapter 4. Conclusion and Perspectives 

It is fascinating how HSV-1 is able to suppress the DDX3X induced immune response 

and instead use the protein to its advantage. The goal of this project was to understand how 

DDX3X can impact HSV-1 replication. What we have found is that viral gene expression 

strongly depends on the proper amounts of DDX3X. One would imagine that since knockdown 

of DDX3X blocks the HSV-1 replication, its up-regulation would favor the infection. However 

our experiments showed that these interactions are not black and white and the right amount of 

DDX3X is absolutely essential for HSV-1 replication.  

 Another interesting observation in this study is the dynamic redistribution of DDX3X 

in the course of infection. At the beginning of the infection, DDX3X is substantially observed 

in the cytoplasm, but then relocates towards the nucleus, where it might help viral gene 

transcription. Later during the infection, DDX3X is again mostly observed in the cytoplasm. At 

this time, the distribution of DDX3X resembles that of ribosomes, supporting the potential 

contribution of this protein in viral protein translation. 

Although, the present project took us one step forward in understanding the molecular 

basis of interaction of HSV-1 with DDX3X, many questions remain unanswered. Firstly, our 

previous works revealed that HSV-1 incorporates DDX3X and this viral pool of DDX3X is as 

important for the viral replication as the cellular pool of the protein (39, 137). However, our 

assays indicated that this viral pool of DDX3X has no impact on the early stages of the 

replication, i.e. viral entry. Therefore it will be very interesting to figure out why the virus 

bothers to incorporate this host protein into its mature particles and whether the cellular pool of 

DDX3X is important for viral entry. Unraveling these physical interactions will guide us toward 

the precise mechanisms that DDX3X control viral replication. Moreover, it will be interesting 

to examine the viral assembly in depth while depleting or overexpressing DDX3X using 

transmitting electron microscopy (TEM). Another aspect of DDX3X-HSV-1 interaction that 

needs more clarification is to distinguish between the effect of DDX3X on transcription, post-

transcription, translation or post-translation events of the virus. For example, the effect of 

DDX3X depletion or overexpression on HSV-1 mRNA decay can be studied. Finally, we have 

to develop a better understanding of how HSV-1 is capable of escaping DDX3 stimulated 
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immune response, this will be possible through the recognition of viral partners of DDX3X and 

whether they block the DDX3X domains that are essential for the stimulation of interferon 

response or simply the comparison.  Finding these interacting partners will also help us to 

decipher the exact role of DDX3X in the viral mRNA translation. 
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