Étude de la distribution taxonomique du système de double hérédité uniparentale des mitochondries

Par
Arthur Gusman

Département de sciences biologiques
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade M. Sc.
en Sciences biologiques

Août, 2016

© Arthur Gusman, 2016
Résumé

La mitochondrie est un organite intracellulaire permettant la production d’énergie nécessaire à la survie de la cellule. Sa singularité passe par le fait qu’elle possède son propre génome (ADN mitochondrial ou ADNmt) distinct du génome nucléaire (ADNnu). Aussi, contrairement à l’ADNnu qui est transmis par les deux parents, l’ADNmt est lui hérité seulement par la mère chez les animaux. Exceptionnellement, un seul système connu va à l’encontre de cette « loi » d’hérédité. Il s’agit du système de double hérédité uniparentale (Doubly Uniparental Inheritance ou DUI) retrouvé chez plusieurs espèces de bivalves. Les espèces concernées possèdent ainsi 2 lignées d’ADNmt distinctes : une d’origine paternelle (ADNmt M) transmise seulement de pères en fils, et une d’origine maternelle (ADNmt F) transmise par la mère à la fois aux filles et fils. L’hypothèse privilégiée pour expliquer le maintien du système DUI au cours de l’évolution l’engage dans la détermination sexuelle chez les bivalves mais la vérification de cette hypothèse repose entre-autre sur une étude plus élargie de différents systèmes DUI. Jusqu’à maintenant, le DUI a été trouvée chez 46 espèces de bivalves, mais sa distribution chez ce groupe est certainement plus vaste étant donné le nombre d’espèces vivantes estimé à >20000. L’objectif de ce projet est d’étudier (et d’élargir) la distribution taxonomique du système DUI au sein du groupe des mollusques afin d’obtenir les prérequis indispensables à une meilleure compréhension de sa fonction mais également pour en retracer l’origine. Les résultats suggèrent l’absence du système DUI chez cinq espèces de gastéropodes et confirmer sa découverte chez deux nouvelles espèces et familles de bivalves [i.e. Scrobicularia plana (Semelidae) et Yoldia hyperborea (Yoldiidae)]. En s’appuyant sur les résultats phylogénétiques, nous favorisons l’hypothèse d’une origine unique pour ce système. Finalement, la nouvelle distribution taxonomique proposée ici confirme la présence du système DUI chez 103 espèces de bivalves appartenant à 12 familles.

Mots-clés : Mitochondrie, ADN mitochondrial, Double hérédité uniparentale, Bivalves, Taxonomie, Phylogénie, Scrobicularia plana, Yoldia hyperborea.
Abstract

Mitochondria are semi-independent organelles, mostly known for their role in energy production necessary for cell survival. Several characteristics make them unique: they have their own genome, the mitochondrial DNA (mtDNA), and contrary to the nuclear genome (nuDNA), they are inherited uniparentally by Strict Maternal Inheritance (SMI) in animal species. exceptionally, one model of mitochondrial inheritance found in some Bivalvia goes against the rule of SMI. It is called the Doubly Uniparental Inheritance (DUI) system. The species concerned possess two distinct mitochondrial lineages: one transmitted by the male (M mtDNA) to his sons only, and the other by the female to both sons and daughters. The most likely hypothesis to explain the retention of the DUI system in evolution involves him in sexual determination in bivalves but a widened study on different DUI systems is needed to verify this hypothesis. Until now, the DUI system has been described in 46 bivalve species but its distribution in this group might be broader given the total number of living species estimated to >20000. This project aimed to study (and broaden) taxonomic distribution of DUI within mollusks as a necessary prerequisite to a better understanding of its function and its origin. The results suggest the absence of DUI in five gastropods species and confirm its discovery in two new bivalves species and families [i.e. Scrobicularia plana (Semelidae) and Yoldia hyperborea (Yoldiidae)]. Based on phylogenetic data, we favor the hypothesis of a single origin of DUI. Finally, the new taxonomy proposed here confirms the presence of the DUI system in 103 bivalves species belonging to 12 families.

Keywords: Mitochondria, Mitochondrial DNA, Doubly Uniparental Inheritance, Bivalves, Taxonomy, Phylogeny, Scrobicularia plana, Yoldia hyperborea
Table des matières

Résumé ... ii
Abstract ... iii
Table des matières ... iv
Liste des tableaux .. vi
Liste des figures ... vii
Liste des sigles et abréviations ... viii
Remerciements .. ix

1. INTRODUCTION .. 1

1.1. La mitochondrie ... 2
 1.1.1. Origine des mitochondries ... 2
 1.1.2. Fonctions mitochondriales : entre survie et mort cellulaire 3
 1.1.3. L’ADN mitochondrial chez les métazoaires .. 4
 1.1.4. La communication mito-nucléaire .. 7
 1.1.5. Hérédité maternelle de l’ADNmt : une règle universelle ? 9

1.2. Le système de double hérédité uniparentale ... 10
 1.2.1. Le modèle DUI : l’exception à la règle ... 10
 1.2.2. Biologie élémentaire des bivalves : taxonomie, phylogénie et anatomie .. 14
 1.2.3. Distribution taxonomique du système DUI .. 16
 1.2.4. La question de l’origine du DUI .. 17

1.3. Objectifs et hypothèses ... 19

2. Article 1: No evidence of sex-linked heteroplasmy and doubly uniparental inheritance of mtDNA in five gastropod species ... 21
 2.1. Introduction ... 22
 2.2. Materials & Methods ... 23
Liste des tableaux

Tableau I. Caractéristiques du génome mitochondrial chez différentes espèces 5
Table II. Number of DNA sequences for each species and each mitochondrial gene 26
Table III. Complete phylogenetic dataset used for phylogenetic reconstruction 35
Table IV. Number of sequences obtained for each mitochondrial genes and species 38
Table V. The complete list of species with DUI known to date 39
Tableau VI. Tableau complet des espèces testées dans le cadre de ce projet de maîtrise. 57
Table SI. Nucleotide Pairwise-distance for each marker and species xii
Table SII. Amino acid Pairwise-distance for each marker and species xii
Table SIII. List of the best fitting-models for the nucleotide phylogenetic analyses according to BIC value ... xiii
Liste des figures

Figure 1. Génome mitochondrial typique chez les métazoaires.. 6
Figure 2. Les 5 complexes du système de phosphorylation oxydative (OXPHOS)................ 7
Figure 3. La double transmission uniparentale de l’ADNmt chez les bivalves...................... 12
Figure 4. Relations phylogénétiques des bivalves selon Plazzi et al. (2011) basées sur une analyse bayésienne de 4 marqueurs mitochondriaux (ARNr 12S, ARNr 16S, cox1, cytb)... 16
Figure 5. Les trois phylogénies possibles des génomes mitochondriaux mâles et femelles pour deux taxons... 18
Figure 6. Gastropod species used in this study.. 23
Figure 7. Bayesian inference majority-rule tree of bivalve mitochondrial cox1 partial sequences based on an analysis using the GTR+I+G model. ... 48
Figure 8. Bayesian inference majority-rule tree of Unionoida bivalve male mitochondrial cox1 partial sequences based on an analysis using the GTR+I+G model......................... 49
Figure 9. Bayesian inference majority-rule tree of Unionoida bivalve Female mitochondrial cox1 partial sequences based on an analysis using the GTR+I+G model.. 50
Figure 10. Bayesian inference majority-rule tree of Mytiloida, Nuculanoida and Veneroida bivalve mitochondrial cox1 partial sequences based on an analysis using the GTR+I+G model.. 51
Figure S1. Les relations phylogénétiques chez les bivalves proposées par différents auteurs.. xv
Figure S2. Anatomie interne des bivalves.. xvi
Figure S3. Maximum Likelihood Phylogenetic tree of bivalve mitochondrial cox1 partial sequences based on an analysis using the GTR+I+G model... xvii
Figure S4. Maximum parsimony 50% majority-rule consensus tree obtained from cox1 gene partial sequences.. xviii
Figure S5. Phylogenetic tree based on cox1 partial sequences of Scrobicularia plana.... xix
Figure S6. Phylogenetic tree based on cox1 partial sequences of Yoldia hyperborea.... xx
Figure S7. Liste complète des séquences obtenues dans le cadre de ce projet de maîtrise.. lvii
Liste des sigles et abréviations

<table>
<thead>
<tr>
<th>Sigle</th>
<th>Explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN</td>
<td>Acide Désoxyribonucléique</td>
</tr>
<tr>
<td>ADNmt</td>
<td>ADN mitochondrial</td>
</tr>
<tr>
<td>ARN</td>
<td>Acide ribonucléique</td>
</tr>
<tr>
<td>ATP</td>
<td>Adénosine triphosphate</td>
</tr>
<tr>
<td>BI</td>
<td>Bayesian inference</td>
</tr>
<tr>
<td>BIC</td>
<td>BI criterion</td>
</tr>
<tr>
<td>Cox1</td>
<td>Sous-unité du cytochrome c oxydase</td>
</tr>
<tr>
<td>Cytb</td>
<td>Cytochrome b</td>
</tr>
<tr>
<td>dNTP</td>
<td>Désoxyribonucléotides</td>
</tr>
<tr>
<td>DUI</td>
<td>Double hérédité uniparentale (Doubly Uniparental Inheritance)</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum likelihood</td>
</tr>
<tr>
<td>MP</td>
<td>Maximum parsimony</td>
</tr>
<tr>
<td>N</td>
<td>Taille de l’échantillon</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramme</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adénine dinucléotide</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frames</td>
</tr>
<tr>
<td>OXPHOS</td>
<td>Système de phosphorylation oxydative</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain reaction</td>
</tr>
<tr>
<td>Sp.</td>
<td>Espèce</td>
</tr>
<tr>
<td>SMI</td>
<td>Hérédité strictement maternelle</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>μl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>ARNr 12S</td>
<td>ARN ribosomique codant pour la petite sous-unité mitochondriale</td>
</tr>
<tr>
<td>ARNr 16S</td>
<td>ARN ribosomique codant pour la grande sous-unité mitochondriale</td>
</tr>
<tr>
<td>ARNr 18S</td>
<td>ARN ribosomique codant pour la petite sous-unité nucléaire</td>
</tr>
<tr>
<td>ARNr 28S</td>
<td>ARN ribosomique codant pour la grande sous-unité nucléaire</td>
</tr>
</tbody>
</table>
Remerciements

La réalisation de ce mémoire a été rendu possible grâce au concours de plusieurs personnes envers lesquelles je voudrais témoigner toute ma reconnaissance.

Pour commencer, évidemment, je voudrais adresser mes plus grands remerciements à ma directrice de recherche, Sophie Breton, sans qui rien n’aurait été possible au cours de ses deux dernières années. Merci pour ton soutien sans faille, grâce à toi j’ai pu remplir un de mes objectifs de vie, à savoir laisser une trace écrite de mon vivant. Merci pour ton enthousiasme quotidien que ce soit à l’université ou en dehors, cela m’a permis du prendre du plaisir à faire mon travail. Enfin, merci pour ta disponibilité et ton efficacité dans tous ce qui concernait les expériences en laboratoire, les conférences et les articles. Félicitations à toi dans ta gestion du laboratoire dans son ensemble et je reste persuadé que tu deviendras une très grande chercheuse.

Merci également à mes trois co-directeurs de recherche, Christiane Hudon, Marco Passamonti et Donald Stewart pour votre aide respective sur les articles scientifiques.

Vient ensuite tous les membres du laboratoire avec qui j’ai partagé ses deux dernières années : Claudia, Lucie, Karim, Joël et Ariane. Votre présence était indispensable à la bonne cohésion du groupe. Merci à toi Davide pour tes conseils judicieux concernant les articles écrits. Enfin, je voudrais adresser une mention spéciale à trois de mes collègues. Ioana tout d’abord, je te dois énormément, tu m’as formé sur tout ce que je devais savoir et faire dans le laboratoire, et de la bonne manière. Ensuite, mon italien préféré après Marco Verratti, Stefano, je veux te remercier de ta joie de vivre quotidienne qui est contagieuse, des repas et des bières partagées, en espérant que ce ne soit pas les derniers. Finalement, Charlotte, ma fidèle compagne de laboratoire/cubicule, je n’aurais pas pu espérer mieux comme collègue ces deux dernières années. Je me souviendrai toujours des congrès passé ensemble et des différentes soirées. Garde de ton sourire permanent et tout ira bien pour toi j’en suis sûr. Un grand merci à vous tous !
Je tiens également à remercier le département de Sciences Biologiques de l’Université, en particulier tous les gens qui travaillent au secrétariat et également le laboratoire du Dr Bernard Angers qui faisait en sorte que le sous-sol ne soit jamais silencieux.

Un grand merci à la famille pour votre soutien même si vous ne comprenez rien à ce que je fais. Merci pour les skypes dominicaux les parents et surtout toi ma belle Mimi. Je remercie mes frères aussi, je ne sais pas trop pour quelles raisons par contre. Merci à tous mes meilleurs amis pour les vacances passées ensemble, le fameux adage de Booba s’applique à vous, « je n’ai que des frères, je n’ai pas d’ami ». Merci aussi à ceux qui partagent mon quotidien de ces dernières années, mes colocataires Axel et Brams, puis ma copine évidemment, ma Rillette. Finissons avec les gens que je ne connais pas mais qui m’ont diverti tous au long de ces deux années : l’équipe du PSG, Damu the Fudgemunk, Pete Rock, Dvořák, Chopin, Andrés et Move D pour ne citer qu’eux.

À toutes ces personnes, et celles que j’ai dû oublié dans ce chapitre, mille mercis.
1. INTRODUCTION
11. La mitochondrie

1.1.1. Origine des mitochondries

Le plus vieux microfossile eucaryote retrouvé jusqu’à aujourd’hui remonte à 1,45 milliards d’années (Martin et Mentel, 2010). Étant donné la coïncidence entre la naissance des eucaryotes et celle des mitochondries, cette date peut être vue comme l’âge minimum des mitochondries (Embley et Martin, 2006). Les analyses phylogénétiques basées sur les séquences des gènes mitochondriaux de la sous-unité 1 de la cytochrome c oxidase et du cytochrome b confirment également que les mitochondries ancestrales auraient divergé des bactéries il y a ≈1,5 Ga (Sichertz-Ponten et al. 1998). La phylogénie s’est également avérée être un outil précieux pour déterminer le plus proche parent des mitochondries. En se basant sur des séquences protéiques et d’ARN ribosomal (ARNr) du génome mitochondrial, les reconstructions phylogénétiques ont placé l’ancêtre des mitochondries dans la subdivision des α-protéobactéries, plus précisément dans la famille des Rickettsiaceae (Gray, 1998; Gray et al. 1999; Lang et al. 1999; Gray et al. 2001). Cette famille de parasites
intracellulaires obligatoires regroupe entre autre l’espèce *R. prowazekii* responsable du typhus. Le destin évolutionnaire de l’ancêtre de cette bactérie et de ses espèces sœurs nous offre ainsi une des plus grandes ironies de la biologie évolutive. D’un côté, cet ancêtre est à l’origine de l’un des plus grands fléaux affectant l’humain (Typhus + fièvre boutonneuse). De l’autre côté, il a participé à un évènement crucial dans l’évolution de la vie sur terre, l’apparition des mitochondries.

1.1.2. *Fonctions mitochondriales : entre survie et mort cellulaire*

L’attention portée aux mitochondries est justifiée par la multitude de rôles qu’elles assument dans les cellules. En effet, les mitochondries sont impliquées dans la synthèse d’hormones stéroïdiennes, l’homéostasie ionique (Ca$^{2+}$, Na$^+$, K$^+$), la signalisation cellulaire, la différenciation cellulaire et la mort cellulaire programmée ou apoptose (Scheffler, 2008). Paradoxalement, si l'on considère leur implication dans l'apoptose, la fonction principale des mitochondries est d’assurer la survie cellulaire en participant à 95% de la production d’énergie sous forme d’ATP grâce au système de phosphorylation oxydative (OXPHOS) et au cycle de Krebs (Scheffler, 2008). Les 5% restants sont synthétisés lors de la glycolyse. L’hydrolyse de l’ATP en ADP + Pi (Phosphate inorganique) va fournir l’énergie nécessaire aux réactions chimiques du métabolisme (e.g. contractions musculaires, transport ionique, synthèses protéique et nucléotidique, polymérisation des filaments d’actine, etc.). Le revers de la médaille à exercer toutes ces fonctions tient au fait
que les mitochondries sont impliquées dans diverses pathologies à la fois communes et même fatales pour certaines. Jusqu’à présent, plus d’une centaine de maladies mitochondriales, ou d’origines mitochondriales, ont été recensées chez l’humain (Taylor et Turnbull, 2005). Parmi les plus connues on compte le diabète, le cancer, les ischémies cardiaques et cérébrales ou encore des maladies neurodégénératives (e.g. Alzheimer et Parkinson). De ce fait, les mitochondries se placent comme une cible pharmacologique de première importance. À l’origine de ces maladies se trouve la plupart du temps une cause génétique. Ces mutations peuvent affecter à la fois les gènes nucléaires codant pour des protéines mitochondriales ou directement le génome mitochondrial (e.g. Mutation A3243G responsable du syndrome MELAS) (Majamaa, 1997). Une production excessive de radicaux libres oxygénés par la mitochondrie favorise également la naissance de ces maladies (Chinnery, 2014).

1.1.3. L’ADN mitochondrial chez les métazoaires

La singularité des mitochondries se retrouve dans le fait qu’elles sont les seules organelles cellulaires, à part le noyau, à posséder leur propre génome, l’ADN mitochondrial (ADNmt) (Boore, 1999). Ce génome est souvent présent en milliers de copies à l’intérieur d’une cellule animale. Cependant, en fonction de la demande en énergie et du type de tissu, ce nombre peut varier grandement : on estime à 7000 le nombre de molécules d’ADNmt dans les cellules du myocarde et à 3500 dans les cellules des muscles squelettiques, tandis que les cellules du foie, des reins et des poumons peuvent en contenir entre 500 et 2000 copies (Miller et al. 2003; D’Erchia et al. 2014). Cette différence de contenu en ADN mitochondrial est également responsable d’une expression génique variable entre les types cellulaires. Comprendre les mécanismes sous-jacents à cette différence de distribution, de réplication et d’expression est de nos jours une priorité médicale dans la lutte contre les cancers (Guantes et al. 2015). Si le génome mitochondrial se distingue par plusieurs aspects du génome nucléaire (e.g. nombre de copies par cellule et taille du génome), une différence notable se retrouve dans les codes génétiques (Boore et al. 1999). Par exemple, chez les mammifères le codon AGA qui code pour l’arginine dans le noyau se retrouve être un codon STOP dans la mitochondrie. Au total, 11 codes génétiques mitochondriaux
différents ont été répertoriés dans le règne du vivant (Petoukhov, 2009).

Entre ces différents règnes (Protista, Fungi, Plantae, Animalia), le génome mitochondrial présente des variations importantes au niveau de sa structure, de sa taille et de sa capacité codante (Tableau I). En revanche, à l’intérieur de chacun de ses groupes, la molécule d’ADNmt est nettement plus conservé. Chez les métazoaires, notre groupe d’intérêt pour cette étude, l’ADNmt se présente en règle générale sous la forme d’une molécule circulaire, double brin, avec une région de contrôle non codante, la « D-loop », contenant l’origine de réplication ainsi que les promoteurs de transcription (Shadel et Clayton, 1997). Les autres portions non codantes sont les régions intergéniques, très courtes, tandis que les introns sont inexistants (Boore, 1999). Ce génome s’étend en moyenne sur 15 000 à 20 000 paires de base et encode les mêmes 37 gènes : 22 ARN de transfert (ARNt), 2 ARN ribosomaux (ARNr) et 13 protéines impliquées dans le système OXPHOS (Figure 1) ; les gènes *nd1-6* et *nd4L* codent pour des protéines du complexe de la NADH déshydrogénase, le gène *cytb* pour une protéine du complexe de l’ubiquinol-cytochrome *c* oxydoréductase, les gènes *cox1-3* pour des protéines du complexe de la cytochrome *c* oxydase et enfin les gènes *atp6* et *atp8* pour des protéines du complexe de l’ATP synthase (Boore, 1999). Les exceptions à ce portrait typique du génome mitochondrial chez les espèces animales ont récemment été revues par Breton et al. (2014).

Tableau I. Caractéristiques du génome mitochondrial chez différentes espèces.

<table>
<thead>
<tr>
<th>Règne</th>
<th>Espèce</th>
<th>Taille de l’ADNmt</th>
<th>Nombre de gènes codés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protista</td>
<td>Paramecium tetraurelia</td>
<td>40 kb</td>
<td>50</td>
</tr>
<tr>
<td>Fungi</td>
<td>Schizophyllum commune</td>
<td>49, 7 kb</td>
<td>40</td>
</tr>
<tr>
<td>Plantae</td>
<td>Arabidopsis thaliana</td>
<td>367 kb</td>
<td>60</td>
</tr>
<tr>
<td>Animalia</td>
<td>Homo sapiens</td>
<td>16, 5 kb</td>
<td>37</td>
</tr>
</tbody>
</table>
Figure 1. Génome mitochondrial typique chez les métazoaires. Figure tirée Chial et Craig, 2008.

Par exemple, la taille du génome mitochondrial peut aller d’un peu plus de 10kb chez le cténophore *Mnemiopsis leidyi* (Pett et al. 2011) à plus de 46kb chez le bivalve *Scapharca broughtonii* (Liu et al. 2013). Les différences de taille des ADNmt chez les animaux sont principalement dues :

(i) aux variations de longueur de la région de contrôle D-loop,

(ii) au nombre de séquences dupliquées présentes dans le génome et

des protéines ont récemment été découverts à l’intérieur de l’ARNr 16S, de l’ARNr 12S et sur le brin inverse de coxl, soient les gènes humanine, MOTS-c et gau, respectivement (Lee et al. 2013; Capt et al 2015; Lee et al. 2015). Aux vues des variabilités du contenu génétique il semble évident que les génomes mitochondriaux ont subi une évolution propre aux espèces qu’ils « habitent ». Par la présence du génome mitochondrial, la cellule animale apparaît donc comme une chimère génétique dont l’intégrité dépend de l’association de deux organites ayant leur propre génome.

Figure 2. Les 5 complexes du système de phosphorylation oxydative (OXPHOS). En rouge sont représentées les sous-unités codées par le génome mitochondrial et en bleu celles codées par le génome nucléaire. Figure tirée de Rand et al. 2004.

1.1.4. **La communication mito-nucléaire**

La mitochondrie est qualifiée d’organite semi-autonome. Derrière ce « semi » se cache le concept de communication mito-nucléaire. En effet, avec seulement 13 gènes codant pour des protéines, la mitochondrie ne peut pas assurer seule le fonctionnement du système OXPHOS et encore moins le poids de son propre métabolisme. L’aide du génome nucléaire est indispensable, par exemple, sur les 89 sous-unités entrant dans la composition des
complexes enzymatiques du système OXPHOS, 76 sont d’origine nucléaire (Rand et al. 2004) (Figure 2). L’ADNnu est également responsable de la production de la totalité des enzymes de la matrice mitochondriale, notamment celles du cycle de Krebs, et de tous les facteurs impliqués dans les autres fonctions mitochondriales (Rand et al. 2004). Chez l’humain, on estime que sur les quelques 1050 protéines retrouvées à l’intérieur d’une mitochondrie, 98% d’entre elles sont codées par le génome nucléaire (Pfanner et Wiedemann, 2002). Autrement dit, l’activité des mitochondries dépend donc de l’expression coordonnée de deux systèmes génétiques séparés spatialement, le génome nucléaire et le génome mitochondrial (Blier et al. 2006).

Ces deux génomes sont contraints à co-évoluer et communiquer pour maintenir une fonction mitochondriale optimale sur le long terme (Blier et al. 2006). Advenant qu’un des deux génomes évoluerait de façon indépendante, la nature des interactions n’en serait que perturbée, on parle alors d’incompatibilité mito-nucléaire. Les études avec des cybrides (fusion entre des cellules nucléées dépourvues de mitochondries et d’autres cellules énucléées avec des mitochondries divergentes des mitochondries natives) ont permis d’illustrer ce phénomène. Par exemple, en créant des cybrides xenomitochondriaux, soit des lignées cellulaires mélangeant « noyau et cytoplasme humain » et « mitochondries de gorille », Antoni Barrientos et son équipe ont observé une diminution de 40% de la consommation d’oxygène par le complexe I par rapport à une cellule humaine « normale » (Barrientos et al. 1998). Des résultats similaires ont été obtenus en prenant comme modèle d’étude différentes espèces de muridés (McKenzie et al. 2003). En introduisant le génome mitochondrial de six espèces (Mus spretus, Mus caroli, Mus dunni, Mus pahari, Otomys irroratus et Rattus norvegicus) dans des cellules de l’espèce modèle Mus musculus dont on avait retiré les mitochondries, les auteurs ont observé un déclin de l’activité des complexes I, III et IV du système OXPHOS. Ils ont également remarqué que le déclin de l'activité est proportionnel à l'éloignement phylogénétique. Dans le même ordre d’idée, l’analyse comparée de séquences mitochondriales et de séquences nucléaires impliquées dans le métabolisme mitochondrial a permis d’observer une accélération parallèle du taux de substitutions entre les 2 génomes pour maintenir une cohésion fonctionnelle (Wu et al. 2000).

Pour illustrer le concept de communication mito-nucléaire, les études génomiques
des mitochondries de la levure *Saccharomyces cerevisiae* se sont avérées extrêmement pertinentes. Plusieurs équipes de chercheurs se sont dédiées à la création d’une collection presque complète de levures « mutantes délétées » (5943 lignées mutantes) pour lesquelles un seul gène nucléaire avait été enlevé (Winzeler et *al.* 1999). Spécifiquement, chaque gène nucléaire a été remplacé de façon à ce toute délétion causant un dysfonctionnement mitochondrial empêchera la levure de croître sur un milieu contenant un substrat non-fermentable comme le lactate. En se basant sur cette technique les chercheurs ont pu identifier 466 gènes nucléaires dont les délétions altèrent la fonction mitochondriale chez la levure *S. cerevisiae* (Steinmetz et *al.* 2002). Pour appliquer ces découvertes aux troubles mitochondriaux chez l’humain, les gènes orthologues ont été identifiés et liés aux maladies héréditaires associées (Steinmetz et *al.* 2002).

1.1.5. *Hérédité maternelle de l’ADNmt : une règle universelle ?*

Une des particularités du génome mitochondrial réside dans son mode d’hérédité qui, contrairement à l’ADN nucléaire, est strictement maternelle (Strict Maternal Inheritance ou SMI) (Birky, 1995). On parle donc d’hérédité non mendélienne dans le cas de l’ADN mitochondrial. Ce mode d’hérédité est la caractéristique commune à la quasi-totalité des taxons eucaryotes, incluant les algues, les mousses (bryophytes), les champignons, les fougères (gymnospermes), les plantes supérieures et les animaux (Birky, 1995). L’absence de transmission de l’ADNmt paternel est expliquée par l’élimination de ces derniers en deux étapes : (1) le nombre de nucléoides mitochondriaux (ADNmt + protéines associées) va diminuer progressivement au cours de la spermatogénèse puis (2) les mitochondries et/ou l’ADNmt des spermatozoïdes seront dégradés par divers mécanismes juste après la fécondation (Nishimura et *al.* 2006). Chez l’humain par exemple, l’action combinée d’un marquage à l’ubiquitine et une dégradation par le protéasome sont responsables de cette dégradation (Taylor et Rutter, 2011). Cependant, une multitude de mécanismes assurant la transmission strictement maternelle des mitochondries existent en fonction de l’espèce concernée (Sato et Sato, 2013). Le processus d’élminuation des mitochondries paternelles n’est cependant pas infaillible. Il arrive que dans certaines situations l’ADNmt paternel passe entre les mailles du filet, on parle alors de « fuite du génome paternel » (*paternal escape*).
leakage). Ce phénomène a été observé chez les nématodes (Lunt et Hyman, 1997), les arthropodes (Meusel et Mortitz, 1993), ainsi que les vertébrés (Kvist et al. 2003; Zhao et al. 2004), mais cela reste une exception.

Les raisons évolutives liées à la quasi-universalité de l’hérédité uniparentale des mitochondries restent encore floues mais certaines hypothèses ont déjà été proposées. Dans un premier cas, il a été proposé que le système SMI aurait évolué pour limiter la propagation de mutations délétères (Sato et Sato, 2013). Par exemple, en cas de mutation pathologique, seule la lignée paternelle serait amenée à l’extinction et non la population entière (Birky, 1995). La deuxième hypothèse serait directement en lien avec la communication mito-nucléaire. En dégradant ainsi les mitochondries issues du spermatozoïde lors de la fertilisation de l’œuf, la SMI assure que les mitochondries de chaque cellule d’un organisme possèdent un même et unique génome mitochondrial, une situation nommée homoplasmie (par opposition à hétéroplasmie, où un organisme possède plusieurs génomes mitochondriaux génétiquement différents). Avec un seul type d’ADNmt, la cellule évite un conflit inter-génomique dans l’association entre les protéines codées par l’ADNnu et l’ADNmt pour les fonctions mitochondriales. D’un point de vue évolutif, la SMI permettrait donc de faciliter la communication mito-nucléaire (Breton et al. 2011a).

Ce système d’hérédité a longtemps été considéré comme la règle universelle au sein du règne du vivant, mais c’était sans compter sur les bivalves qui ont bouleversé à eux seuls la vision de l’hérédité mitochondriale !

12. Le système de double hérédité uniparentale

1.2.1. Le modèle DUI : l’exception à la règle

En opposition au mode de transmission strictement maternel de l’ADNmt, certaines espèces de bivalves ont développé un système atypique et unique, le système de double hérédité uniparentale des mitochondries (*Doubly uniparental Inheritance* ou DUI) (Hoeh et al. 1991; Zouros et al. 1992, 1994a, b). Ce système a d’abord été découvert chez la moule bleue *Mytilus edulis* au début des années 1990 (Hoeh et al. 1991). Depuis, il a été observé
chez plusieurs espèces de moules marines (Bivalvia : Mytiloida), de palourdes marines (Bivalvia : Veneroida), de moules d’eau douce (Bivalvia : Unionoida) et de protobranche (Bivalvia : Protobranchia) (Theologidis et al. 2008 ; Boyle et Etter, 2013). Les espèces possédant ce système se retrouvent avec deux lignées d’ADNmt d’origines distinctes : une transmise par la femelle à ses filles (lignée maternelle ou ADNmt F) et l’autre par le mâle à ses fils (lignée paternelle ou ADNmt M) (Zouros et al. 1994b). Au stade embryonnaire, les mitochondries présentent deux schémas de répartition caractéristique du sexe à venir de la progéniture : chez l’embryon destiné à devenir mâle, les mitochondries paternelles tendent à s’agrégner dans un seul blastomère qui formera la future lignée germinale mâle, tandis que chez les futures femelles, les mitochondries paternelles sont éliminées ou dispersées aléatoirement et « diluées » dans la masse de mitochondries maternelles (Sutherland et al. 1998; Cao et al. 2004). En résultante, un mâle mature est hétéroplasmique, avec un ADNmt F dans ses tissus somatiques (pied, branchies, manteau, muscle, etc.) et un ADNmt M dans ses spermatozoïdes (dans la gonade) tandis que la femelle reste homoplasmique (Dalziel et Stewart, 2002) (Figure 3). Toutefois, le génome mâle peut être retrouvé occasionnellement dans les tissus somatiques mâles et femelles à très faibles concentrations (Garrido-Ramos et al. 1998). En opposition à une logique de communication mito-nucléaire facilitée qui voudrait que ces deux génomes soient identiques, ils présentent des divergences de séquence nucléotidique conséquentes. La divergence moyenne avoisine les 20%, avec une valeur minimale de 8% chez la palourde Arctica islandica (Déglétagne et al. 2016) et une valeur maximale record de >40% chez la moule d’eau douce Inversidens japonensis (Theologidis et al. 2008 ; Doucet-Beaupré et al. 2010). Une telle divergence est le résultat d’une évolution moléculaire rapide et indépendante des deux génomes, particulièrement pour le génome paternel qui serait soumis à une faible pression sélective étant donné que son action serait limitée au tissu gonadique (Stewart et al. 1996).
Les génomes mitochondriaux des bivalves avec DUI sont eux aussi uniques en leur genre. Tandis que le nombre de gènes mitochondriaux chez les espèces animales en général est quasi-invariant avec 37 gènes (Gissi et al. 2008), les espèces avec DUI possèdent des gènes supplémentaires. Par exemple, chez la moule marine *Musculista senhousia* et la palourde *Venerupis philipinarum*, le gène de la sous-unité 2 de la cytochrome *c* oxydase (*cox2*) et l’ARNt pour la méthionine sont dupliqués dans le génome femelle et dans le génome mâle, respectivement (Passamonti et al. 2011; Ghiselli et al. 2013). Chez toutes les espèces de moules d’eau douce, le gène *cox2* de l’ADNmt mâle seulement, présente une extension à son extrémité 3’ (Chapman et al. 2008). Les génomes des espèces avec DUI sont aussi caractérisés par la présence de plusieurs cadres de lectures (ORFs) conservés entre les espèces et dont les fonctions restent encore indéterminées (Zouros, 2013). Il est important de noter que la divergence de séquence entre les ADNmt F et M peut aussi être faible. Deux raisons potentielles sont, d’une part, l’homogénéisation par recombinaison comme chez la moule *Mytilus galloprovincialis* (Ladoukakis et Zouros, 2001) et d’autre part, la « masculinisation » du génome femelle (Sanko et Burzynski, 2014). Ce phénomène de masculinisation consiste au remplacement du génome M à l’intérieur de
la gonade par le génome F qui sera ensuite transmis par le spermatozoïde. Ce génome « masculinisé » jouerait ainsi le rôle du génome mâle tout en restaurant à zéro la divergence de séquence entre les génomes mâles et femelles.

La question principale soulevée par le système DUI est comment un système qui favorise l’hétéroplasmie mitochondriale au profit de l’homoplasmie arrive-t-il à se maintenir au cours de l’évolution ? En effet, on sait que chez l’humain, une hétéroplasmie mitochondriale impliquant par exemple une molécule d’ADNmt qui contient une simple substitution d’une paire de base peut aboutir à des situations pathologiques. Chez les espèces avec DUI, les individus mâles sont hétéroplasmiques pour des ADNmt qui peuvent présenter des divergences de séquences de 40%, soit littéralement la divergence entre une mitochondrie humaine et celle d’une drosophile. Autrement dit, quelle peut être la fonction du système DUI ? Si certaines caractéristiques essentielles de ce système sont connues (ex. lignées d’ADNmt F et M distinctes, hétéroplasmie chez les mâles, évolution moléculaire rapide des génomes, perte du DUI chez les espèces hermaphrodites, etc.), jusqu’à présent ses mécanismes sous-jacents et sa fonction réelle demeurent toujours un mystère. Deux principales hypothèses, non exclusives, ont été formulées pour expliquer le maintien du système DUI d’un point de vue évolutif : (i) les deux génomes mitochondriaux sont impliqués dans la détermination du sexe (Breton et al. 2011a; Ghiselli et al. 2012), et (ii) l’ADNmt mâle participe à des fonctions spécifiques et nécessaires aux spermatozoïdes (Everett et al. 2004).

Cependant, aucune de ces hypothèses n’a pu être clairement vérifiée jusqu’à maintenant. Si l’on veut pouvoir faire des inférences à propos de son mécanisme d’action et de son rôle évolutif, il est crucial de mener les études du système DUI sur deux niveaux : d’un point de vue moléculaire en s’intéressant aux génomes mitochondriaux (et nucléaires) et à leur expression (e.g. transcriptomique, qPCR, etc.) chez des espèces proches parentes avec DUI versus SMI, et d’un point de vue taxonomique en recherchant et étudiant de nouveaux systèmes DUI présents dans des familles de bivalves jusque-là non étudiées. La seconde perspective d’étude est celle utilisée pour ce projet de maîtrise.
1.2.2. Biologie élémentaire des bivalves: taxonomie, phylogénie et anatomie

La maîtrise des principes de base de la biologie des bivalves est nécessaire pour comprendre les différentes étapes qui composent ce projet. Le présent chapitre n’est pas un écrit détaillé de la biologie des bivalves, mais plutôt un résumé d’informations pertinentes à ce projet concernant leur taxonomie et anatomie.

Les bivalves appartiennent à l’embranchement des mollusques. Ce phylum est divisé en 6 classes : les polyplacophores, les chaetodermomophes, les céphalopodes (e.g. calamar, pieuvres, seiches, etc.), les scaphopodes, les bivalves (e.g. huître, pétoncle, palourde, moule, etc.), et enfin les gastéropodes (e.g. escargots, limaces) (Kocot et al. 2011). Comme en témoigne les fossiles retrouvés, les bivalves sont apparus durant le Cambrien soit il y a plus de 530 millions d’années (Campbell et Reece, 2001). Il aura cependant fallu attendre l’extinction Permien-Trias (250 millions d’années) pour que ce groupe connaisse une véritable radiation évolutive (Sharma et al. 2013). Aujourd’hui le nombre d’espèces vivantes de bivalves est estimé à ≈25,000 (www.bivatol.org), ce qui en fait le deuxième groupe le plus diversifié au sein des mollusques, après les gastéropodes.

Jusqu’à maintenant, aucun véritable consensus n’a été obtenu concernant la taxonomie des bivalves (Sharma et al. 2013) (Fig. S1). L’apparition des techniques de phylogénie moléculaire au début des années 2000 a tout de même permis de les classer selon des relations de parenté fidèles, à quelques exceptions près. Pour des raisons de clarté toutes les références taxonomiques présentées dans ce travail seront basées sur les travaux proposés par Plazzi et al. (2011) (Fig 4.). En utilisant les séquences ADN de quatre gènes mitochondriaux, à savoir les gènes cox1, cytB, rrnL et rrnS, Plazzi et al. (2011) ont classé les bivalves en 5 sous-classes (Protobranchia, Palaeoheterodonta, Anomalodesmata, Heterodonta et Pteriomorphia), 15 ordres (Arcoïda, Cardioïda, Carditoida, Myoida, Mytiloida, Nuculanoida, Nuculoida, Ostreoida, Pectinoida, Pholadomyoida, Pterioida, Solemyoida, Tellinoida, Unionoida et Veneroida) et 112 familles. Les Protobranchia sont considérés comme les bivalves les plus primitifs (Sharma et al. 2013). Ce sont les seuls dont les branches n’interviennent pas dans le mode de nutrition et se limite à la respiration. La sous-classe des Palaeoheterodonta, les moules d’eau douce, est considérée comme la plus basale à l’intérieur des eulamellibranches (Palaeoheterodonta + Pteriomorphia +
Anomalodesmata + Heterodonta. La sous-classe des Anomalodesmata représente le premier point de discorde dans cette taxonomie. Certains experts persistent à penser qu'elle doit être considérée comme une sous-classe distincte, tandis que d'autres traitent ce taxon comme un ordre à part appartenant à la sous-classe des Heterodonta. Enfin, les sous-classes des Pteriomorphia et Heterodonta, en plus de se distinguer par leur biodiversité, sont probablement celles détenant le poids économique le plus important puisqu’elles regroupent à elles seules les moules marines (Bivalvia : Mytilidae), les huîtres (Bivalvia : Osteroidae), les pétoncles (Bivalvia : Pectinidae) et les palourdes (Bivalvia : Veneroidae).

Le second point de discorde dans la phylogénie des bivalves concerne la super-famille des Nuculanoida. Certaines études la place dans les Pteriomorphia (Giribet et Distel, 2003; Plazzi et al. 2011), tandis que d’autres affirment que qu’elle appartient au Protobranchia (Cope, 1997; Carter et al. 2011; Gonzalez et al. 2015).

L’anatomie externe des bivalves étant sans intérêt majeur pour cette étude seule l’anatomie interne sera décrite (Fig. S2). Le « corps » des bivalves est enveloppé dans un repli tégumentaire, le manteau, doublé à l’extérieur par la coquille (Helm et al. 2004). Outre la sécrétion des valves qui constitue la fonction principale du manteau, ce dernier assure aussi une fonction sensorielle et initie la fermeture des valves en réponse aux divers stress environnementaux (Helm et al. 2004). Les muscles adducteurs sont situés aux extrémités postérieures et antérieures de l’animal et servent essentiellement à l’ouverture et la fermeture des valves (Gosling, 2002). Certaines familles possèdent cependant un seul muscle central dont la fonction reste la même. C’est le cas de la famille des pétoncles (Bivalvia : Pectinida) (Shemway, 2016) dont le muscle, plus communément appelé noix de st-jacques, fait également le bonheur des fines bouches. Les branchies, ou cténidies, consistent en deux grands organes organisés en feuillets qui vont servir à la fois à la respiration et à la nutrition (sauf pour les protobranches) (Gosling, 2002). La masse viscérale occupe à elle seule la moitié de la place réservée aux organes (Morton, 1960). Elle comprend les intestins, l’œsophage et même les déchets produits. On retrouve à sa base le pied, dont la fonction majeure sert à s’enfouir dans le substrat (Yonge et Thompson, 1976). Enfin les gonades, le plus important pour notre étude puisqu’elles contiennent le génome paternel en cas de présence du DUI, sont généralement situées dans la masse viscérale (Yonge et Thompson, 1976), sauf pour certaines moules marines, dont Mytilus
edulis, où les gonades sont associées au manteau (Mikhailov et al. 1995). L’isolation des gonades représente ainsi une étape difficile à effectuer avec rigueur puisque sujette à contamination par d’autres tissus somatiques (e.g. intestins).

Figure 4. Relations phylogénétiques des bivalves selon Plazzi et al. (2011) basées sur une analyse bayésienne de 4 marqueurs mitochondriaux (ARNr 12S, ARNr 16S, cox1, cytb). De gauche à droite sont représentées les super-familles (-ea), ordres (-ida) et sous-classes (-a). Les astérisques indiquent les ordres pour lesquelles le système DUI a été détecté avec le nombre d’espèces associées entre parenthèses. Mise à part l’ordre des Nuculoida qui reste non étudié jusqu’à présent, chaque ordre a été testé pour la présence du système de double hérédité uniparentale. Figure tirée de Plazzi et al. 2011.

1.2.3. Distribution taxonomique du système DUI

Jusqu’à maintenant, le système DUI a été découvert chez plus d’une quarantaine d’espèces de bivalves (Theologidis et al. 2008; Déglétagne et al. 2016). Ces espèces sont réparties
dans 4 sous-classes (i.e. Palaeoheterodonta, Heterodonta, Pteriomorpha, Protobranchia), 4 ordres et 9 familles dont les moules marines (Mytiloida : Mytilidae) (Zouros et al. 1994a), les palourdes marines (Veneroida : Veneridae, Solenidae, Semelidae et Donacidae) (Theologidis et al. 2008), les moules d’eau douce (Unionoida : Unionidae, Margaritiferidae et Hydriidae) (Hoeh et al. 2002 ; Mock et al. 2004), et les protobranches (Nuculanoida : Nuculanidae) (Boyle et Etter, 2013) (Voir Figure 4). Récemment, une équipe de chercheurs a pu observer une corrélation stricte entre la perte du système DUI et la présence d’hermaphrodisme (Breton et al. 2011a). Ce fut le premier élément suggérant que le DUI serait impliqué dans la détermination sexuelle ou du moins dans le maintien de sexes séparés.

La distribution sporadique du système DUI souligne, en partie, la difficulté d’illustrer sa présence. Basé sur le fait qu’il comprend deux lignées d’ADNmt distinctes avec une distribution tissulaire différente chez les mâles et les femelles, le système DUI devrait être facile à détecter. Actuellement en effet, la technique de détection du DUI la plus utilisée consiste simplement en l’amplification et le séquençage des deux génomes M et F des gonades et tissus somatiques chez des individus mâles (e.g. Plazzi et al. 2015 ; Dégletagne et al. 2016). Par contre, comme les deux génomes sont hautement divergents, les amorces d’ADN qui reconnaissent les séquences d’un génome peuvent très bien échouer à le faire pour l’autre (Zouros, 2013). À l’inverse, il est aussi possible que les deux génomes ne soient pas « assez » divergents dû à l’homogénéisation par recombinaison ou par le phénomène de « masculinisation » du génome femelle pour que l’on passe à côté de ce système. Les risques de faux négatifs sont donc à prendre en compte dans la détection du DUI. Pour lever toute incertitude sur la présence du DUI, une autre technique, plus couteuse et plus compliquée, serait d’observer in vivo le comportement des mitochondries lors de la formation de l’embryon pour voir si celles-ci s’agrégent (mâles) ou non (femelles) dans un blastomère au stade 4 cellules comme c’est le cas chez les espèces avec DUI (Zouros, 2013; Dégletagne et al. 2016).

1.2.4. La question de l’origine du DUI

Approfondir notre connaissance de la distribution taxonomique du système DUI est avant
toute une priorité pour pouvoir s’attaquer à la question de son origine. Actuellement, deux théories s’opposent à ce propos, à savoir celle d’une origine unique suivie de la perte du système chez plusieurs lignées de bivalves et celle d’origines multiples et indépendantes (Zouros, 2013). Pour éclairer cette question la phylogénie s’est imposée comme l’outil de réponse par excellence. Pour deux espèces avec la DUI, les 4 génomes mitochondriaux pourront se regrouper de trois différentes manières : (i) les deux génomes F pourraient former un taxon et les deux génomes M un autre distinct (patron genre-dépendant), (ii) les génomes M et F de chaque espèce pourraient former un taxon (patron espèce-dépendant), (iii) ou le regroupement pourrait être aléatoire (patron mixte) (Theologidis et al. 2008). Le premier patron est en accord avec une origine unique puisqu’il implique que la transmission du génome paternel aurait précédé la spéciation des deux espèces à l’inverse du patron espèce-dépendant qui soutient pour sa part des origines multiples (Theologidis et al. 2008).

Figure 5. Les trois phylogénies possibles des génomes mitochondriaux mâles et femelles pour deux taxons. Figure tirée de Theologidis et al. 2008.

Les premières études réalisées à ce sujet ont illustré la présence de différents patrons phylogénétiques en fonction du groupe taxonomique concerné. À l’intérieur des moules marines (Mytilidae) on retrouve deux patrons différents, le patron genre-dépendant pour le complexe d’espèces *Mytilus* et le patron espèce-dépendant pour le reste des espèces présentes dans ce groupe. Chez les palourdes (Veneridae) et les protobranches
(Nuculanidae) c’est le patron espèce-dépendant qui domine alors que chez les moules d’eau douce il s’agit du patron genre-dépendant (Doucet-Beaupré et al. 2010; Theologidis et al. 2008 ; Boyle et Etter, 2013). D’après ces résultats l’origine unique ne peut s’expliquer que si elle est combinée avec la théorie de la « masculinisation » des génomes femelles (Zouros, 2013). En effet, en restaurant la divergence génétique à zéro entre les génomes mâles et femelles, ces deux derniers auront une distance évolutionnaire biaisée tout comme le patron phylogénétique affiché (espèce-dépendant). Compte tenu de la singularité du système DUI, symbolisé par sa complexité moléculaire et métabolique, l’hypothèse d’une origine unique est aujourd’hui la plus favorisée. Si tel est le cas, il serait alors pertinent de déterminer quelle raison aurait entrainer la perte de la DUI dans certaines lignées de bivalves. L’hypothèse d’origines multiples est-elle en accord avec les phylogénies obtenues. Cependant, cela n’explique pas pourquoi seulement les espèces de moules d’eau douce ont une origine unique à la base de leur ordre. Les recherches récentes sur les ORFs surnuméraires trouvés dans les génomes mitochondriaux de ces espèces suggèrent une origine virale possible pour ces séquences (Milani et al. 2014). Si, comme le supposent certains auteurs, ces séquences jouent un rôle dans le maintien de la DUI, alors l’idée d’origines multiples deviendrait beaucoup plus plausible (Milani et al. 2014).

Tout comme pour la question entourant sa fonction, des recherches supplémentaires sur la distribution taxonomique du système DUI dans des familles où aucune investigation n’a encore été faite semblent indispensables afin de faire des inférences à propos de son origine, unique ou multiple. Aujourd’hui encore, nous ne savons pas si le système DUI est restreint au groupe des bivalves. Partir à sa recherche dans d’autres groupes de mollusques reviendrait à acheter un ticket de loterie : peu de chances pour une grande récompense, ce qui illustre parfaitement le principe même de la recherche scientifique.

1.3. Objectifs et hypothèses

L’objectif principal du projet est d’évaluer la distribution taxonomique du système DUI chez les mollusques, spécifiquement chez des groupes/familles pour lesquelles sa présence n’a jamais été testée. En corroborant nos résultats à une revue exhaustive de la littérature nous pourrons obtenir l’image la plus complète de la répartition de la DUI jusqu’à présent.
Avec seulement 40 espèces testées positives sur ≈25,000 pour la présence de ce système, notre hypothèse nous conduit logiquement à penser que la DUI est beaucoup plus répandu que ce que l’on connait pour le moment.

À cet objectif principal s’accorde un sous-objectif, à savoir déterminer si le système est apparu une seule fois ou à de multiples reprises au cours de l’évolution des bivalves. Étant donné l’unicité que représente la DUI, nous orientons notre hypothèse vers une origine unique associée à la naissance du groupe des bivalves. Si tel est le cas, le système DUI serait apparu il y a environ 530 millions d’années (Sharma et al. 2013).

Afin de répondre à ces deux objectifs, les marqueurs d’ADN mitochondriaux maternel et paternel (gènes coxl et rrnL) de 22 espèces de mollusques (ex extractions d’ADN de tissus somatiques et de gonades) ont été amplifiés par PCR, purifiés et séquencés à l’aide d’un séquenceur d’ADN automatique (Génome Québec). Différentes analyses phylogénétiques (bayésienne, parcimonie, vraisemblance) ont par la suite été utilisées pour tester les hypothèses concernant la ou les origines de la DUI. Ces données sont un prérequis indispensable pour une meilleure compréhension de la fonction du système DUI.
2. Article 1: No evidence of sex-linked heteroplasmy and doubly uniparental inheritance of mtDNA in five gastropod species

Article accepted in *Journal of Molluscan Studies: Oxford Press*

This submission is intended as Research Notes Arthur Gusman¹, Claudia Azuelos¹, Sophie Breton¹,*

¹*Department of Biological Sciences, Université de Montréal, 90 Avenue Vincent d’Indy, Montréal, Qc, Canada H2V 2S9*

Corresponding author: Sophie Breton, Département de Sciences Biologiques, Université de Montréal, Montréal, QC H3C 3J7, Canada, 514-343-7460 (tel), Email: s.breton@umontreal.ca
2.1. **Introduction**

Mitochondria are organelles that contain their own genetic material (mitochondrial DNA or mtDNA), which is usually strictly maternally inherited in animals (Strict Maternal Inheritance or SMI) (Birky, 2001). One animal group diverges from the SMI rule, i.e. bivalve molluscs with their Doubly Uniparental Inheritance (DUI) system (see Breton et al. 2007; Ghiselli and Passamonti, 2009; Zouros, 2013 for reviews). DUI is an mtDNA inheritance system where females transmit their “F mtDNA” to all offspring, and males transmit their highly divergent “M mtDNA” to only their sons. Usually, females contain and express the F mtDNA in all their tissues, whereas males contain and express the F mtDNA in their soma, and the M mtDNA in their gametes (Breton et al. 2007; Passamonti and Ghiselli, 2009; Zouros, 2013). The levels of DNA divergence between F and M mtDNAs in male bivalves vary among species, with about 8% in the veneroid *Arctica islandica* (uncorrected nucleotide p-distance for *cytb*; Dégletagne et al. 2016) to >40% in freshwater mussels (uncorrected nucleotide p-distance for all protein-coding genes except *atp8*; Doucet-Beaupré et al. 2010), and these levels are often greater than the amount of divergence experimentally induced to impair the mitochondrial function in model systems for the study of mito-nuclear coevolution (Breton et al. 2007). Bivalves are thus unique in that they possess two very different sets of mt-encoded proteins “forced” to work in concert with proteins coded by a single nuclear genome. One of the leading hypotheses to explain the origin and maintenance of this unusual mtDNA transmission system in bivalves is that the F and M mtDNAs would be key elements of the sex determination system, as heteromorphic sex chromosomes are absent in this taxa (e.g. Breton et al. 2011; Breton et al. 2014; Breton and Stewart, 2015). However, the link between DUI and sex determination still remain to be elucidated.

So far, DUI has been found in 101 bivalve species belonging to the four orders Mytiloida, Nuculanoida, Unionoida and Veneroida, and to the 10 families (out of ~105; www.bivatol.org) Arcticaeae, Donacidae, Hyriidae, Mactridae, Margaritiferidae, Mytilidae, Nuculanidae, Solenidae, Unionidae, Veneridae (Breton et al. 2007; Passamonti and Ghiselli, 2009; Doucet-Beaupré et al. 2010; Zouros, 2013; Boyle and Etter, 2013; Plazzi, 2015). DUI could also be present in other molluscan taxa (e.g. Parakatselaki et al.
2015), but this remains to be demonstrated. Recently, Parakatselaki et al. (2015) used these two main criteria, i.e. presence of gonochorism and sex bias, to investigate whether DUI exists outside bivalves, specifically in gastropods, the closest molluscan class to bivalves. Although their results suggested that the mtDNA in the common pet apple snail *Pomacea diffusa* is maternally transmitted, the authors proposed that their pipeline could be adopted for the search of DUI in other animals (Parakatselaki et al. 2015).

Following this proposed pipeline, we searched for DUI in five gonochoric gastropod species for which biases in sex ratio have been reported (i.e. the common periwinkle *Littorina littorea* [Lambert et al. 2012]; the common dogwhelk *Nucella lapillus* [Crothers, 1985]; the freshwater snail *Viviparus ater* [Brown et al. 1989]; the northern moonsnail *Lunatia heros* [biased sex ratios have been reported in the closely-related moonsnail species *Neverita lewisii* [Bernard, 1986]; and the limpet *Tectura testudinalis* [biased sex ratios have been reported in several limpet species; [Branch, 1981]) (Fig. 6).

![Figure 6. Gastropod species used in this study.](image)

Figure 6. Gastropod species used in this study. (a) *Tectura testudinalis* (Patellogastropoda: Lottiidae) (b) *Lunatia heros* (Caenogastropoda: Naticidae) (c) *Littorina littorea* (Caenogastropoda: Littorinidae) (d) *Nucella lapillus* (Caenogastropoda: Muricidae) (e) *Viviparus ater* (Caenogastropoda: Viviparidae).

2.2. Materials & Methods

Littorina littorea, Nucella lapillus and Tectura testudinalis were collected in Rivière Madeleine (49.3028° N, 65.3812° W, Québec, Canada) and *Lunatia heros* in Carleton-sur-mer (48.1781° N, 66.1666° W, Québec, Canada) in 2012, 2013 and 2014. *Viviparus ater* was collected in Lac Saint-Pierre (46.2044° N, 72.8284° W, Québec, Canada) in 2013.
Specimens were either kept alive (*L. littorea, L. heros, N. lapillus* and *T. testudinalis*) or preserved in 95% ethanol (all species) until use.

Fresh or preserved specimens were sexed under the microscope, and four males and four females were used per species, except for *N. lapillus* and *L. heros* for which only three males and four females, and three males and two females were unambiguously sexed, respectively. For each individual, total genomic DNA was isolated from the foot and the gonad with the QIAGEN DNeasy tissue kit (QIAGEN Inc., Valencia, CA) using the animal tissue protocol. Two mitochondrial regions were amplified: a 637-nt fragment from the protein-coding gene *cox1* using the primers LCO1490 and HCO2198 (Folmer et al. 1994), and a ~580-nt fragment from the rRNA gene 16S using the primers 16Sar and 16Sbr (Palumbi et al. 1991). PCR amplifications were performed in 50 µl volume containing ~20 ng of total DNA, 0.4 µM of each primer, 1X QIAGEN PCR Buffer, 2.5 mM MgCl₂, 200 µM of each dNTP, and 2.5 U QIAGEN Taq DNA polymerase (QIAGEN Inc.). The thermal cycling parameters were as follows: 5 min at 94 °C then 35 cycles of (94 °C for 15 s; 45 °C for 30 s; 72 °C for 60 s), with a final extension step of 10 min at 72 °C. The PCR products were purified using a QIAquick PCR purification kit according to supplier’s (QIAGEN Inc.) instructions. The purified PCR products were sequenced at the Sequencing Platform of McGill University (Montréal, Canada). Sequences were aligned with ClustalW (Thompson et al. 2002). BLAST analyses (Altschul et al. 1990) confirmed the identifications at the species level.

2.3. Results/Discussion

As stated by Parakatselaki et al. (2015), two main features are expected from mtDNA sequences of species with DUI: (i) the divergence between sequences from male and female gonads should be higher than the divergence among sequences from gonads of the same sex, and (ii) distinct sequences should be found in somatic versus gonad tissues only in males. The authors did not observe these features in the common pet apple snail *Pomacea diffusa* after having sequenced three females and four males, the foot and the gonad provided identical sequences for each individual (Parakatselaki et al. 2015).
the same approach, i.e. with two sequences for each individual, one from the foot and one from the gonad, a total of 128 sequences were obtained for this study (Table II). As in *Pomacea diffusa* (Parakatselaki et al. 2015), we recovered the same haplotype from somatic and gonadal tissues for both mitochondrial regions in each gastropod species (Table II). Therefore, we must conclude that we do not have any evidence of sex-linked heteroplasmy in these five species. In some cases, however, different haplotypes were found in the population sampled (i.e. for *cox1* in *T. testudinalis* [2 nt different between both haplotypes] and for *16S* in *L. littorea* [1 nt different between both haplotypes] and *N. lapillus* [3 nt different between both haplotypes]), but none of our individual was heteroplasmic, meaning that the sequences obtained for each gene/tissue were identical, and different haplotypes were also found in females and males. Although further work trying to unveil rare heteroplasmic variants by molecular cloning could strengthen our results, all the sequences obtained for each gene/tissue/sex/species were identical and no double peaks were observed in the chromatograms, suggesting the absence of heteroplasm in the tissues tested (Table II).

Theoretically, the absence of DUI in a species can be unambiguously demonstrated when (i) the mtDNAs from uncontaminated collection of eggs and sperm from several individuals are shown to be the same, and (ii) when newly fertilized eggs from several females are all shown to have dispersed pattern of sperm mitochondria in blastomeres. Indeed, in species with DUI, sperm mitochondria are dispersed in blastomeres only in female embryos, whereas in male embryos, sperm mitochondria remain grouped together in a single blastomere that will give rise to the germline (Cao et al. 2004; Milani et al. 2012). In practice, most studies used PCR-based analyses to prove or refute the presence of DUI by respectively showing the consistent coexistence of distinct mtDNA forms only in males (and only in male gonads versus male somatic and female tissues) or not (e.g. Parakatselaki et al. 2015; Plazzi, 2015; Plazzi et al. 2015; Vargas et al. 2015; Dégletagne et al. 2016). While the presence of DUI is relatively easy to prove using this approach, e.g. occasional heteroplasmy in species with maternal inheritance of mtDNA is typically present in one or several tissues in a non-consistent way and in both sexes, the absence of DUI is much more difficult to establish for at least two reasons: (i) the possible preferential annealing of the PCR primers with only the maternal mtDNA (e.g. Saavedra et al. 1997;
Theologidis et al., 2007), and (ii) the possibility that the paternal mtDNA would be indistinguishable from the maternal mtDNA because of an invasion of the paternal transmission route by the latter, which would therefore be inherited through the sperm (Zouros, 2013). In the first case, the problem can be overcome by targeting more than one mitochondrial region/gene and by using several pairs of primers designed in conserved mtDNA regions to be able to amplify these regions from both closely- and distantly-related organisms, thus decreasing considerably the probability that the paternal genome will be missed (Parakatselaki et al. 2015). This approach has been used in the present study. Regarding the second situation, which has been called a masculinization event after its discovery in marine mussels *Mytilus* spp., we agree with Parakatselaki et al. (2015) that this possibility is extremely low because the phenomenon is very rare (Ladoukakis et al. 2002) and the probability that it happened in our five gastropod species is almost null. Additionally, masculinized mt genomes in sperm are usually quite different (3% DNA divergence, evolutionary distances [Tamura-Nei model] for cox1) from the mtDNA present in somatic tissues (Hoeh et al. 1996, 1997). In our study, the sequences recovered from the gonadal and somatic tissues were all identical, suggesting an absence of DUI.

Table II. Number of DNA sequences for each species and each mitochondrial gene. Two sequences were obtained for each individual (from foot and gonad tissues). Number of individuals is indicated in parentheses. For *V. ater*, it was only possible to sequence the 16S fragment since cox1 could not be amplified. Male and female haplotypes are counted together.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of sequences</th>
<th>Haplotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cox1</td>
<td>16S</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Littorina littorea</td>
<td>8(4)</td>
<td>8(4)</td>
</tr>
<tr>
<td>Lunatia heros</td>
<td>4(2)</td>
<td>6(3)</td>
</tr>
<tr>
<td>Nucella lapillus</td>
<td>8(4)</td>
<td>6(3)</td>
</tr>
<tr>
<td>Tectura testudinalis</td>
<td>8(4)</td>
<td>8(4)</td>
</tr>
<tr>
<td>Viviparus ater</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
DUI has been hypothesized to be involved in sex determination, explaining its long-term persistence in bivalves, as heteromorphic sex chromosomes are absent in these taxa (e.g. Breton et al. 2011; Breton et al. 2014; Breton and Stewart, 2015). If this hypothesis is true, then the occurrence of sex chromosomes in gastropods (reviewed in Thiriot-Quiévreux, 2003) could explain the absence of DUI in this group. To our knowledge, the presence of sex chromosomes has been confirmed in Littorina spp. and Viviparus ater (Thiriot-Quiévreux, 2003).

Otherwise, all DUI species for which the complete F and M mitochondrial genomes have been sequenced possess at least one of these features: (i) additional sex-specific, functional open reading frames (ORFs) in the F and M mtDNAs (e.g. Breton et al. 2011; Milani et al. 2013; Milani et al. 2014; Minoiu et al. 2016), (ii) a duplication or an extension of the cox2 gene (Doucet-Beaupré et al. 2010; Passamonti et al. 2011; Bettinazzi et al. 2016), and/or (iii) a highly modified version of the ATP8 gene (e.g. Breton et al. 2010), which does not possess the MPQL amino acid signature conserved at the N-terminus of metazoan ATP8 (Gissi et al. 2008). To our knowledge, mitochondrial genomes in gastropods are all of relatively reduced size (13-15 kb) with only one exception, Lottia digitalis, which possesses 2 large non-coding regions and an mtDNA of 26 kb (Grande et al. 2008; White et al. 2011), and they all consist of 13 protein-coding genes, without additional ORFs, duplicated genes or gene extension, and with a “typical” ATP8 protein (Grande et al. 2008; White et al. 2011). If for some reasons the deviations observed in bivalve mtDNAs are a consequence of DUI, then maybe these features should be taken into account when searching for DUI in other animals. Such studies are underway in our laboratory.

Given the impossibility to demonstrate sex-linked heteroplasmy in some gastropod species so far, currently there is no evidence for DUI in this class and we therefore must keep considering this unusual phenomenon as restricted to bivalves.

ACKNOWLEDGEMENTS
We would like to thank Amélie Genovese, Antonia Cattaneo and Christiane Hudon for providing us with samples. We would also like to thank three anonymous reviewers for
insightful comments on the manuscript. This work was supported by the National Sciences and Engineering Research Council (NSERC) (grant no RGPI1N/435656-2013 to S.B.). Arthur Gusman was financially supported by the Groupe de Recherche Interuniversitaire en Limnologie et en environnement aquatique (GRIL).
3. Article 2: Pursuing the quest for a better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA

Article submitted in *PeerJ*
This submission is intended as a research article
Arthur Gusman¹, Sophia Lecomte², Donald T. Stewart³, Marco Passamonti⁴, Sophie Breton¹,*

¹Department of Biological Sciences, Université de Montréal, 90 Avenue Vincent d’Indy, Montréal, Qc, Canada H2V 2S9
²Department of Biological Sciences, Université de Strasbourg, 4 rue Blaise Pascal, 67081, Strasbourg, France
³Department of Biology, Acadia University, Wolfville, NS B4P 2R6 Canada
⁴Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Via Selmi 3, 40126, Bologna, Italy

*Corresponding author: Sophie Breton, Département de Sciences Biologiques, Université de Montréal, Montréal, QC H3C 3J7, Canada, 514-343-7460 (tel), Email: s.breton@umontreal.ca
3.1. Abstract

There is only one known exception to strict maternal inheritance of mitochondrial DNA (mtDNA) in the animal kingdom: a system named doubly uniparental inheritance (DUI), which is found in several bivalve species. Why and how such a radically different system of mitochondrial transmission evolved in bivalve remains obscure. Obtaining a more complete taxonomic distribution of DUI in the Bivalvia may help to better understand its origin and function. We tested for the presence of DUI in four bivalve species and observed sex-linked heteroplasmy (thus the possible presence of DUI) in two of them, i.e. the nuculanoid *Yoldia hyperborea* (Gould, 1841) and the veneroid *Scrobicularia plana* (Da Costa, 1778), increasing the number of families in which DUI has been found by two. An update on the taxonomic distribution of DUI in the Bivalvia is also presented.

3.2. Introduction

Strict maternal inheritance (SMI) is considered to be the paradigm for mitochondrial DNA (mtDNA) transmission in animal species (Birky, 2001). One exception is found in bivalve mollusces, which possess a unique mode of mtDNA transmission named doubly uniparental inheritance (DUI) (Hoeh and Blakley, 1991; Skibinski et al. 1994; Zouros et al. 1994a; Zouros et al. 1994b). DUI is characterized by the presence of two distinct sex-associated mitochondrial lineages: the female type (F mtDNA), which is transmitted through the eggs to all offspring, and the male type (M mtDNA) which is present in sperm, enters all eggs at the time of fertilization, but is only retained and transmitted through male offspring. In adults, the F-type mtDNA is predominant in all tissues of both sexes, except in the male gonad where the M-type mtDNA prevails; although some exceptions have been documented, adult females are essentially homoplasmic and adult males are heteroplasmic (reviewed in Breton et al. 2007; Passamonti and Ghiselli, 2009; Zouros, 2013). The stability of this system of heredity across evolutionary time in several orders of bivalves has produced highly divergent F and M mtDNAs: the mean nucleotide difference between both genomes is around 20% in many marine taxa (orders Mytiloida and Veneroida) and can reach >50% in freshwater mussels (order Unionoida) (Breton et al. 2007; Doucet-
beaupré et al. 2010). Although some major features of DUI are quite well known – for example species with DUI show strong sex biases in offspring towards one or the other sex following parental crosses (e.g. Kenchington et al. 2002; Kenchington et al. 2009), both F and M lineages show rapid molecular evolution compared to other animals, the M mtDNA usually evolves faster than the F mtDNA, M mitochondria show sex-specific behavior in newly formed zygotes, and novel mtDNA-encoded protein-coding genes have been found in species with DUI (Breton et al. 2007; Passamonti and Ghiselli, 2009; Zouros, 2013; Breton et al. 2014) – the main function of this peculiar system of mtDNA transmission still remains undetermined. Sustained by the correlation between DUI and gonochorism (and the absence of DUI and hermaphroditism), one main hypothesis suggests a link between this model of heredity and the maintenance of separate sexes (Breton et al. 2011).

During the last decade, DUI has been described as a phenomenon that occurs in approximately 40 bivalve species (e.g. Walker et al. 2006; Theologidis et al. 2008; Doucet-Beaupré et al. 2010; Dégletagne et al. 2016). Considering the great deal of new literature on DUI that has been published in the last few years, the number of species with DUI must be updated. Moreover, with ~25,000 species of bivalves (www.bivatol.org), DUI is likely very widespread in this class and it might be found in other molluscan groups as well (e.g. Parakatselaki et al. 2015). A broad mitochondrial survey of bivalves and other mollusc species is crucial to gauge the prevalence of DUI across molluscs and to evaluate its origin. To date, the vast majority of species with DUI that have been reported belong to the bivalve order Unionoida (families Hyriidae, Magaritiferidae, Unionidae) mostly because the PCR-based method used to detect DUI in this group, which is based on amplifying the cox2 extension specific to unionoid male mtDNAs (Curole and Kocher, 2002), is simple and effective (Walker et al. 2006). The other groups in which species with DUI have been found are the orders Mytiloida (family Mytilidae) (Hoeh et al. 1991; Skibinski et al. 1994; Zouros et al. 1994a; Zouros et al. 1994b), Veneroida (families Arcticidae, Donacidae, Mactridae, Solenidae, Veneridae) (Theologidis et al. 2008; Plazzi, 2015; Dégletagne et al. 2016), and Nuculanoida (family Nuculanidae), an order belonging to the most basal protobranch bivalve lineage (Boyle and Etter, 2013). It is still unsettled whether DUI has a single origin followed by its loss in several bivalve lineages or whether it has multiple and independent origins (Hoeh et al. 1996; Theologidis et al. 2008; Zouros, 2013; Milani et al. 2014). To
disentangle these two possibilities, we must expand taxonomic sampling in a comprehensive manner.

The detection of DUI can be made by illustrating the presence of heteroplasm in a male individual, specifically by retrieving different mitochondrial haplotypes from the male gonad and somatic tissues (the haplotype from male somatic tissues should be identical or more similar to the haplotype observed in female gonad and somatic tissues). Such an approach has already been successfully implemented in several previous DUI studies (e.g. Passamonti and Scali, 2001; Theologidis et al. 2008; Boyle and Etter, 2013; Plazzi et al. 2014; Plazzi, 2015; Vargas et al. 2015; Dégletagne et al. 2016). In the present study, we use this approach to test for the presence of DUI in four bivalve species and we observe sex-linked heteroplasmy (thus the possible presence of DUI) in two of them, i.e. the nuculanoid Yoldia hyperborea (Gould, 1841) and the veneroid Scrobicularia plana (Da Costa, 1778), increasing the number of families in which DUI has been found by two. An update on the taxonomic distribution of DUI in the Bivalvia is also presented.

3.3. Materials and Methods

3.3.1. Specimen’s collection

Mature specimens of Cerastoderma edule (Linnaeus, 1758), Musculus discors (Linnaeus, 1758) and Yoldia hyperborea (Gould, 1841) were collected in the Baffin Sea (76°20’50 N, 77°35’86 W) in August 2013. Scrobicularia plana (Da Costa, 1778) samples were directly sent from the French National Museum of National History to our laboratory. All specimens were conserved in 95% ethanol. To identify sex-biased heteroplasm, each individual was sexed by inspecting the gonads under a light microscope (100X) for the presence of eggs or sperm, and only individuals unambiguously sexed were kept for the present study. Dissections were carried on each individual to obtain somatic tissues (i.e. gills) and female or male gonad for DNA extractions (see below). The number of specimens analyzed for each species were as follows: 3 males and 3 females for C. edule, 7 males and 7 females for both S. plana and Y. hyperborea, and 3 males and 8 females for M. discors.
3.3.2. DNA extraction, Polymerase Chain Reaction Amplification and Sequencing

Total genomic DNA was extracted separately from gonad tissue and from gill tissue with a Qiagen DNeasy Blood & Tissue Kit (QIAGEN Inc., Valencia, CA) using the animal tissue protocol. The quality and quantity of DNA, respectively, were assessed by electrophoresis on 1% agarose gels and with a BioDrop µLITE spectrophotometer. Before PCR amplifications, all samples were treated using OneStep™ PCR Inhibitor Removal Kit (Zymo Research, Irvine, CA) according to the manufacturer’s protocol. For all species, partial sequence amplification of cytochrome oxidase subunit 1 (cox1) and large subunit ribosomal RNA (rrnL or 16S) were carried out in 50 µl volumes comprising 5.0 µl 10X Taq buffer, 1.0 µl dNTP mix (10mM), 2.0 µl of each forward and reverse primer [10 µM; LCO1490 and HCO2198 for cox1 (Folmer et al. 1994), and 16Sar and 16Sbr for rrnL (Palumbi et al. 1991)], 0.25 µl Taq DNA Polymerase (5U/µl; Bio Basic Inc. Markham, Ontario), 2 µl of DNA extract (100 ng/ul), and ddH2O up to 50 µl. Reactions were performed on a TProfessional Basic Thermocycler with the following PCR amplification conditions: initial denaturation at 95°C for 2 min, followed by 35 cycles of 95°C for 20 sec, 44°C for 40 sec and 72°C for 40 sec, followed by a final extension step at 72°C for 5 min. Resulting PCR products were visualized on 1% agarose gels under UV light with SYBR green dye (Life Technologies), and purified with the Qiagen QIAquick PCR Purification Kit according to the manufacturer’s protocol. The purified PCR products were sequenced at the Genome Quebec Innovation Centre (McGill University), using the Applied Biosystem’s 3730xl DNA Analyzer technology.

3.3.3. DNA Cloning and Sequencing

Examination of chromatograms revealed the presence of multiple sequencing peaks only in male gonad tissues of S. plana and Y. hyperborea, suggesting co-amplification of two different mtDNA types. The amplified products of male gonads for these two species were thus cloned using the PGEM-T Easy vector (Promega, Madison, WI) to confirm the presence of F and M genomes. Recombinant clones were sent to the Genome Quebec Innovation Centre to be sequenced on both strands using the primers pUC20 (5’-GTTTTCCAGTCACGAC-3’) and pUC2 (5’-GAGCGGATAACAAATTCAC-3’).
3.3.4. Sequence Analysis

Cox1 and rrnL sequences were edited and aligned using MEGA 6 (version6.06; Tamura et al. 2013). Amino acid sequences were deduced using the invertebrate mitochondrial genetic code. Calculations of nucleotide and amino acid p-distances for both cox1 and rrnL were performed with MEGA 6 (with 1000 bootstrap replicates) (version6.06; Tamura et al. 2013).

Following a similar approach than Dégletagne et al. (2016) to look for the presence of two intraspecific “F and M” clades in S. plana and Y. hyperborea, maximum likelihood (using RAxML version 8.2.8; Stamakis, 2014) with bootstrap analyses (1,000 replicates) and Bayesian phylogenies (using MrBayes v3.2.6; Huelsenbeck and Ronquist, 2001, 2005; Ronquist et al. 2012) were performed on cox1 nucleotide sequences of both species with Soletellina virescens (Bivalvia, Veneridae, Genbank accession number: JN859944) and Yoldia eightsii (Bivalvia, Nuculanida, Genbank accession number: KJ571167) as outgroups for S. plana and Y. hyperborea, respectively (i.e. closest sequences according to BLAST search). Bayesian Information Criterion (BIC) (Schwartz, 1978) implemented in PartitionFinder (v1.1.1; Lanfear et al. 2012) was used to estimates the best-fitting models of evolution. Figtree (v1.4.2; Morariu et al. 2008) was used to edit the phylogenetic trees.

Given that evidence of DUI was detected (i.e. two distinct, intraspecific putative M and F mtDNA genomes) only for S. plana and Y hyperborea (see Results and Discussion below), only these two species were included in our expanded phylogenetic analyses designed to verify molecular relationships among DUI species in general. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian phylogenies were thus performed on F and M cox1 nucleotide and amino acid sequences from all DUI species known to date and Octopus vulgaris (Mollusca: Octopoda) and Aplysia californica (Mollusca: Gastropoda) were used as outgroup taxa. F and M cox1 sequences other than those obtained in the present study for S. plana and Y. hyperborea were retrieved from Genbank; the complete phylogenetic dataset is shown in Table III. Cox1 sequences were aligned using MEGA 6 (version6.06; Tamura et al. 2013) and the best-fitting models of DNA evolution were selected using PartitionFinder (v1.1.1; Lanfear et al. 2012) according to BIC values (Schwartz, 1978). Best models were applied whenever possible. Data were
partitioned according to nucleotide position and gaps were treated as missing data.

ML analyses were conducted with RAxML (version 8.2.8; Stamatakis, 2014). A non-parametric bootstrap (Felsenstein, 1985) analysis was performed, using 1000 bootstrap replicates and 20 ML searches, to assess nodal support for both trees. Outgroups were set to be paraphyletic to the monophyletic ingroup. MP analyses were carried out using PAUP software (v 4.0a147; Swofford, 2001). To optimize the chance of having the best topology, 100 random stepwise additions under tree-bisection reconnection branch swapping were applied (Bogan and Hoeh, 2000). Reliability of the internal nodes was evaluated by 1000 pseudoreplicates using the heuristic search algorithm. Bayesian analyses were conducted using MrBayes (v3.2.6; Huelsenbeck and Ronquist, 2001, 2005; Ronquist et al. 2012). Each analysis consisted of two independent runs of 4 MC\(^3\) chains that were run for 10 000 000 generations. Convergence was estimated through the log likelihood value of trees, potential scale reduction factor (PSRF) and standard deviation of average split frequencies sampled every 1000 generations (Gelman and Rubin, 1992). Trees were sampled every 100 generations and a majority-rule consensus tree was computed after discarding the first 25% as burn-in. Fidelity of the topology was evaluated with the posterior probabilities from the consensus tree. All phylogenetic trees were edited for easier readability using FigTree (v1.4.2; Morariu et al. 2008).

Table III. Complete phylogenetic dataset used for phylogenetic reconstruction. GenBank accession numbers of sequences are listed in the last two columns. Sequences obtained for the present study are indicated in bold while others were retrieved from GenBank.

<table>
<thead>
<tr>
<th>Species</th>
<th>Authority</th>
<th>M cox1</th>
<th>F cox1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinonaias ligamentina</td>
<td>(Lamarck, 1819)</td>
<td>AF406796</td>
<td>AF231730</td>
</tr>
<tr>
<td>Amblema plicata</td>
<td>(Say, 1817)</td>
<td>EF033295</td>
<td>EF033258</td>
</tr>
<tr>
<td>Anodonta californiensis</td>
<td>(Lea, 1852)</td>
<td>AY493507</td>
<td>AY493462</td>
</tr>
<tr>
<td>Anodonta oregonensis</td>
<td>(Lea, 1838)</td>
<td>AY493504</td>
<td>AY493480</td>
</tr>
<tr>
<td>Anodonta wahlamatensis</td>
<td>(Lea, 1838)</td>
<td>AY493493</td>
<td>AY493467</td>
</tr>
<tr>
<td>Anodonta woodiana</td>
<td>(Lea, 1834)</td>
<td>EF440350</td>
<td>HQ283346</td>
</tr>
<tr>
<td>Aplysia californica</td>
<td>(Cooper, 1863)</td>
<td>N/A</td>
<td>NC005827</td>
</tr>
<tr>
<td>Brachidontes exustus</td>
<td>(Linnaeus, 1758)</td>
<td>AY621946</td>
<td>NC024882</td>
</tr>
</tbody>
</table>
Brachidontes pharaonis (Fischer, 1870) DQ836012 DQ836013
Brachidontes variabilis (Krauss 1848) DQ836020 DQ836019
Cumberlandia monodonta (Say, 1829) AY785397 KF647529
Cyrtonaias tampicoensis (Lea, 1838) EF033299 EF033259
Fusconaia flavo (Rafinesques, 1820) EF033307 EF033261
Glebula rotundata (Lamarck, 1819) EF033304 EF033264
Graptacme eborea (Conrad, 1846) N/A AY260825
Hamiot subangulata (Lea, 1840) EF033305 EF033266
Echyridella menziesii (Gray, 1843) AF406802 AF231747
Hyriopsis cumingii (Lea, 1852) KC150028 HM347668
Unio japanensis (Lea, 1859) AB055624 AB055625
Lamprotula leai (Griffith, 1833) KC847114 JQ691662
Lamprotula tortuosa (Lea, 1865) KC441487 KC109779
Lampsilis hydiana (Lea, 1838) EF033298 EF033270
Lampsilis ovata (Say, 1817) EF033303 EF033262
Lampsilis siliquoidea (Barnes, 1823) KC408795 KC408768
Lampsilis straminea (Conrad, 1834) EF033297 EF033271
Lampsilis teres (Rafinesque, 1820) AF406794 KT285644
Lemiox rimosus (Rafinesque, 1831) EF033302 EF033256
Ligumia recta (Lamarck, 1819) AF406795 KC291717
Margaretifera margaritifera (Linnaeus, 1758) AY785399 KC429108
Meretrix Lamarckii (Deshayes, 1853) KP244452 KP244451
Musculista senhousia (Benson, 1842) AY570050 AY570041
Myella charuana (Soot-Ryen, 1955) JQ685159 JQ685156
Mytilus californianus (Conrad, 1837) JX486123 JX486124
Mytilus edulis (Linnaeus, 1758) AY484747 HM489873
Mytilus galloprovincialis (Lamarck, 1819) AY363687 AY497292
Mytilus trossulus (Gould, 1850) GQ438250 AY823625
Obliquaria reflexa (Rafinesque, 1820) EF033292 EF033254
Obovaria olivaria (Rafinesque, 1820) EF033306 EF033267
Octopus vulgaris (Cuvier, 1797) N/A AB191269
Pleurobema sintoxia (Rafinesque, 1820) EF033290 EF033252
Pleurobema sintonixia (Rafinesque, 1820) EF033291 EF033253
Potamilus purpuratus (Lamarck, 1819) AF406797 AF406804
Pseudocardium sachalinense (Schrenck, 1862) KJ650517 KJ650515
Ptychobranchus fasciolaris (Rafinesque, 1820) EF033301 EF033265
Pyganodon fragilis (Lamarck, 1819) AF406800 AF406805
Pyganodon grandis (Sav, 1829) FJ809755 FJ809754
Quadrula quadrula (Rafinesque, 1820) FJ809751 FJ809750
Quadrula refulgens (Lea, 1868) EF033309 EF033269
Scrobicularia plana (Da Costa, 1778) KX447424 KX447420
Solenaia carinatus (Heude, 1877) KC848655 KC848654
Toxolasma glans (Lea, 1840) EF033293 EF033255
Unio crassus (Philipson, 1788) EU548052| KJ525915
Unio pictorum (Linnaeus, 1758) EU548055 HM014133
Unio tumidus (Philipson, 1788) EU548054 KC703957
Utterbackia peninsularis (Bogan & Hoeh, 1995) HM856635 HM856636
Venerupis philippinarum (Adams, 1850) AB065374 AB065375
Venustaconcha ellipsiformis (Conrad, 1836) FJ809752 FJ809753
Yoldia hyperborea (Gould, 1841) KX447428 KX447425

3.4. Results

3.4.1. Genetic distances

For this study, 4 new species were tested for the presence of DUI and a total number of 77 sequences were obtained: the number of sequences and haplotypes for each species and for each marker are listed in Table IV. Different haplotypes were found for C. edule (rrnL), M. discors (rrnL), S. plana (cox1) and Y. hyperborea (cox1) (Table IV). All mtDNA sequences are available via GenBank under accession numbers KX44710-28. In C. edule cases, we were able to amplify both rrnL and cox1 genes, while for the other species only one could be amplified. Number of haplotypes indicated regroup both F and M types. Sequences with the same haplotype were deposited only once.

Intragnroups (female and male) and intergroups (female versus male) nucleotide and amino acid p-distances are shown for each species in Table SI and SII. For C. edule and M. discors, the p-distances between female and male sequences are always intermediate to the within group p-distances. However, a different situation is observed for Y. hyperborea and S. plana, in which between groups p-distances are significantly higher than within group p-distances. Specifically, for Y. hyperborea cox1 sequences, intragroup p-distances are low, i.e. 0.0014 for female sequences and 0.0000 for male sequences, with standard errors of ± 0.0008 and ± 0.0000, respectively, whereas the between group p-distance is significantly higher with a value of 0.0596 ± 0.0079 (amino acid p-distance is 0.0454
± 0.0124). The same observation can be made for *S. plana cox1* sequences: within group
p-distances are 0.0067 ± 0.0034 and 0.0020 ± 0.0014, for female and male sequences respectively, whereas the between group *p*-distance value is 0.0965 ± 0.0074 (amino acid
p-distance is 0.0659 ± 0.0100).

Table IV. Number of sequences obtained for each mitochondrial genes and species. Genbank accession numbers are listed. Gi: Gills; Go: Gonads.

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequences</th>
<th></th>
<th></th>
<th></th>
<th>Haplotypes</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cox1</td>
<td>rrnL</td>
<td></td>
<td></td>
<td>count</td>
<td>Genbank IDs</td>
<td>count</td>
<td>Genbank IDs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerastoderma edule</td>
<td>2/1</td>
<td>0/3</td>
<td>3/2</td>
<td>3/2</td>
<td>1</td>
<td>KX447419</td>
<td>3</td>
<td>KX447410-12</td>
<td></td>
</tr>
<tr>
<td>Musculus discors</td>
<td>0</td>
<td>0</td>
<td>4/7</td>
<td>1/3</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Scrobicularia plana</td>
<td>3/3</td>
<td>5/6</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>KX447420-24</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Yoldia hyperborea</td>
<td>7/4</td>
<td>7/7</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>KX447425-28</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

3.4.2. Phylogenetic analyses for *Scrobicularia plana* and *Yoldia hyperborea*

Phylogenetic analyses of partially sequenced *S. plana cox1* and *Y. hyperborea cox1* sequences were conducted using the HKY + G model (Hasegawa et al. 1985). Based on high bootstraps and posterior probability values, female and male haplotypes were clustered into two well-separated and well-supported clades in both species (Supplementary Figures S3 and S4).

3.4.3. Taxonomic distribution of DUI

Genetic distances and phylogenetic analyses provide evidence for sex-associated mitochondrial heteroplasmy in *Scrobicularia plana* (Bivalvia: Semelidae) and *Yoldia hyperborea* (Bivalvia: Yoldiidae), raising the total of bivalve families in which DUI has been discovered to 12 (Hoeh et al. 2002; Theologidis et al. 2008; Boyle and Etter, 2013;
Plazzi, 2015; Dégletagne et al. 2016). We also report apparent absence of DUI in two species (C. edule and M. Discors); nucleotide sequences from gonadal and somatic tissues were identical both in females and males and we did not notice any correlation between tissue type and unsuccessful amplifications. Even with those data, however, confirming the absence of DUI remains difficult (see Discussion). The list of the 103 bivalve species in which DUI has been found to date is presented in Table V. Evidence for DUI is reported in the literature for 96 species (and for 2 species in the present study). For the other five species, the evidence is based on sequences derived from male and female gonads and retrieved from GenBank (Okazaki, M., Shikatani, M., Nishida, M., & Ueshima, R., unpublished data). These sequences all show strong nucleotide divergence between mitochondrial gene sequences obtained from male and female individuals, with F to M type p-distances ranging from 10% to 30%.

Table V. The complete list of species with DUI known to date. The taxonomic affiliation is made according to Giribet and Wheeler (2002). Information about the presence of DUI was done according to the references listed in the last column. Data from GenBank; accession numbers: L. grayana: AB040829-30, S. grandis: AB064983-5, D. faba and D. cuneatus: AB040481_45, C. sinensis: AB040833.

<table>
<thead>
<tr>
<th>Superfamily/Family</th>
<th>Species</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unionoidea/Unionidae</td>
<td>Actinonaias ligamentina</td>
<td>Hoeh et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Amblema plicata</td>
<td>Curole and Kocher (2005)</td>
</tr>
<tr>
<td></td>
<td>Anodonta anatina</td>
<td>Soroka (2008)¹</td>
</tr>
<tr>
<td></td>
<td>Anodonta arcaeformis</td>
<td>Soroka (2010)</td>
</tr>
<tr>
<td></td>
<td>Anodonta californensis</td>
<td>Mock et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>Anodonta implicata</td>
<td>Curole and Kocher (2002)</td>
</tr>
<tr>
<td></td>
<td>Anodonta oregonensis</td>
<td>Mock et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>Anodonta wahlamatensis</td>
<td>Soroka (2005)²</td>
</tr>
<tr>
<td></td>
<td>Anodonta woodiana</td>
<td>Walker et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Cyprogenia alberti</td>
<td>Hoeh et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Cyrtonaias tampicoensis</td>
<td>Walker et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Dromus dromas</td>
<td>Walker et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Ellipsaria lineolata</td>
<td>Walker et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Elliptio dilitata</td>
<td>Walker et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Epioblasma brevidens</td>
<td>Walker et al. (2006)</td>
</tr>
</tbody>
</table>
Glebula rotundata
Goniadea angulata
Hamiota subangulata
Hyriopsis cumingii
Hyriopsis schlegelii
Inversidens japonensis
Lamprotula leai
Lamprotula tortuosa
Potamilus purpuratus
Lampsilis cardium
Lampsilis hydiana
Lampsilis ovata
Lampsilis powelli
Lampsilis reeveiana
Lampsilis siliquoidea
Lampsilis streckeri
Lampsilis straminea
Lampsilis teres
Lancasteria grayana
Lasmigona complanata
Lasmigona costata
Lemioxia rimosus
Leptodea fragilis
Leptodea leptodon
Ligumia recta
Margaritifera marrianae
Medionidus conradicus
Obliquaria reflexa
Obovaria olivaria
Plectomerus dombeyanus
Pleurobema sintoxia
Popenaias popeii
Potamilus alatus
Potamilus capax
Potamilus ohiensis
Pseudodon vondenbuschianus
Ptychobranchus fasciolare
Pyganodon fragilis
Pyganodon grandis
<table>
<thead>
<tr>
<th>Genus/Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusconaia flava</td>
<td>Hoeh et al. (1996)</td>
</tr>
<tr>
<td>Quadrula quadrula</td>
<td>Curole and Kocher (2002)</td>
</tr>
<tr>
<td>Quadrula refulgens</td>
<td>Curole and Kocher (2002)</td>
</tr>
<tr>
<td>Solenaia carinatus</td>
<td>Huang et al. (2013)</td>
</tr>
<tr>
<td>Strophitus undulatus</td>
<td>Stewart et al. (2013)</td>
</tr>
<tr>
<td>Toxolasma glans</td>
<td>Stewart et al. (2013)</td>
</tr>
<tr>
<td>Toxolasma lividus</td>
<td>Stewart et al. (2013)</td>
</tr>
<tr>
<td>Toxolasma minor</td>
<td>Stewart et al. (2013)</td>
</tr>
<tr>
<td>Toxolasma paulus</td>
<td>Stewart et al. (2013)</td>
</tr>
<tr>
<td>Truncilla truncate</td>
<td>Walker et al. (2006)</td>
</tr>
<tr>
<td>Unio crassus</td>
<td>Soroka (2010)</td>
</tr>
<tr>
<td>Unio delphius</td>
<td>Machordom et al. (2015)</td>
</tr>
<tr>
<td>Unio pictorum</td>
<td>Soroka (2010)</td>
</tr>
<tr>
<td>Unio tumidus</td>
<td>Soroka (2010)</td>
</tr>
<tr>
<td>Utterbackia peggvae</td>
<td>Breton et al. (2011)</td>
</tr>
<tr>
<td>Utterbackia peninsularis</td>
<td>Breton et al. (2011)</td>
</tr>
<tr>
<td>Venustaconcha ellipsiformis</td>
<td>Chakrabarti et al. (2006)</td>
</tr>
<tr>
<td>Villosa lienosa</td>
<td>Curole and Kocher (2005)</td>
</tr>
<tr>
<td>Villosa villosa</td>
<td>Walker et al. (2006)</td>
</tr>
<tr>
<td>Cumberlandia monodonta</td>
<td>Breton et al. (2011)</td>
</tr>
<tr>
<td>Dahurinaia dahurica</td>
<td>Walker et al. (2006)</td>
</tr>
<tr>
<td>Margaritifera hembeli</td>
<td>Curole and Kocher (2005)</td>
</tr>
<tr>
<td>Margaritifera</td>
<td>Hoeh et al. (2002)</td>
</tr>
<tr>
<td>Margaritifera margaritifera</td>
<td>Hoeh et al. (2002)</td>
</tr>
<tr>
<td>Hyridella menziesi</td>
<td>Hoeh et al. (2002)</td>
</tr>
<tr>
<td>Neotrigonia margaritacea</td>
<td>Hoeh et al. (2002)</td>
</tr>
<tr>
<td>Brachidontes exustus</td>
<td>Lee and O’Foighil (2004)</td>
</tr>
<tr>
<td>Brachidontes pharaonis</td>
<td>Lee and O’Foighil (2004)</td>
</tr>
<tr>
<td>Brachidontes variabilis</td>
<td>Sirna Terranova et al. (2007)</td>
</tr>
<tr>
<td>Geukensia demissa</td>
<td>Hoeh et al. (1996)</td>
</tr>
<tr>
<td>Musculista senhousia</td>
<td>Passamonti (2007)</td>
</tr>
<tr>
<td>Mytella charuana</td>
<td>Alves et al. (2011)</td>
</tr>
<tr>
<td>Mytilus californianus</td>
<td>Beagley et al. 1997</td>
</tr>
<tr>
<td>Mytilus coruscus</td>
<td>Breton et al. (2011)^2</td>
</tr>
<tr>
<td>Mytilus edulis</td>
<td>Zouros et al. (1994)</td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>Quesada et al. (1996)</td>
</tr>
<tr>
<td>Mytilus trossulus</td>
<td>Zouros et al. (1994)</td>
</tr>
<tr>
<td>Perumytilus purpuratus</td>
<td>Vargas et al. (2015)</td>
</tr>
<tr>
<td>Arctica islandica</td>
<td>Dégletagne et al. (2015)</td>
</tr>
</tbody>
</table>
Mactroidea/Mactridae | *Pseudocardium sachalinense* | Plazzi (2015)
Solenoidae/Solenidae | *Solen grandis* | Genbank
Tellinoidea/Donacidae | *Donax cuneatus* | Genbank
 | *Donax faba* | Genbank
 | *Donax trunculus* | Theologidis et al. (2008)
Tellinoidea/Semelidae | *Scrobicularia plana* | Present study
Veneroida/Veneridae | *Cyclina sinensis* | Genbank
 | *Venerus philippinarum* | Passamonti and Scali (2001)
 | *Meretrix Lamarckii* | Plazzi et al. (2015)
Nuculanoidea/Nuculanidae | *Ledella sublevis* | Boyle and Etter (2013)
 | *Ledella ultima* | Boyle and Etter (2013)
Nuculanoidea/Yoldiidae | *Yoldia hyperborea* | Present study

3.4.4. Phylogenetic analyses

A total of 608 *cox1* nucleotide sequences were aligned for a total of 114 operational taxonomic units (OTUs) for phylogenetic analyses. GTR+I+G (Tavaré, 1986) was selected as the best-fitting model of evolution for nucleotides (Table SIII). The majority rule nucleotide-based BI tree was favored as our best tree obtained for this study (Fig. 7). It shows strong topology similarity with both MP and ML trees (Supplementary Figures S5 and S6).

Main features of the BI tree (Fig. 7) are as follows: (1) pteriomorph (Mytiloida) + *Yoldia hyperborea* (PP = 0.80) and heterodont bivalves (Veneroida) (PP = 0.99) are reciprocally monophyletic with palaeoheterodont (Unionoida) bivalves being the sister group to these clades (PP = 0.86); (2) the order Veneroida is well resolved with 3 nodes (PP = 1.00) separating each superfamily: Veneroidea, Tellinoidea and Mactroidea; (3) in both F and M clusters of the order Unionoida, the superfamily Hyrioidea represented by *H. menziesi* is a positioned as a well separated sister group (PP = 1.00) to the Unionoidea superfamily (Note: within the Unionoidea, the separation between the two families Margaritiferidae and Unionidae is also apparent and well supported only in the M cluster [PP = 0.93]); (4) the F and M clades are reciprocally monophyletic only in unionoids and *Mytilus* spp., i.e. the F sequences of different species cluster together as do the M
sequences, all the other species exhibit a phylogenetic pattern where F and M sequences clusters are distinct from one another but are nonetheless sister groups; and (5) branch lengths indicate a higher substitution rate for the M genomes relative to that of the F genomes for almost all species.

3.5. Discussion

3.5.1. Evidence for DUI in Scrobicularia plana and Yoldia hyperborea

Both p-distance and phylogenetic analyses indicate the coexistence of sex-linked F and M mitochondrial lineages in S. plana and Y. hyperborea (Fig. 7; Table SI; Supplementary Figures S5 and S6). As mentioned earlier, the strategy of searching for sex-biased heteroplasmy of mitochondrial gene sequences as a means for detecting DUI has been successfully employed in other bivalve species (e.g. Boyle and Etter, 2013; Vargas et al. 2015; Dégletagne et al. 2016). DUI can also be detected by in vivo localization of male mitochondria in embryos: an aggregate pattern of M-type mitochondria only into the male germline during early embryonic stages is typical of DUI species (Cao et al. 2004; Obata and Komaru, 2005; Cogswell et al. 2006; Milani et al. 2012). The percentage of nucleotide divergence between the F and M cox1 sequences for both of these species, i.e. 33.4% for S. plana and 13% for Y. hyperborea, is within the range of what has been found for other bivalves with DUI (e.g. 8% in the veneroid Artica islandica [Dégletagne et al. 2016], 17% in the nuculanoid Ledella sublevis [Boyle and Etter, 2013]; 24% in the mytiloid Mytilus edulis [Breton et al. 2006], and 50% in the unionoid Inversidens japonensis [Doucet-Beaupré et al. 2010]).

The discovery of DUI in Y. hyperborea provides the first example of this unusual system of mitochondrial DNA transmission in the family Yoldiidae, and the third case for the order Nuculanoida (subclass Protobranchia; Boyle and Etter, 2013). Protobranchia being the most basal lineage within the Bivalvia (Giribet and Wheeler, 2002; Smith et al. 2011), this result suggests that the origin of DUI is older than the birth of the autolamellibranchiata (Theologidis et al. 2008; Doucet-Beaupré et al. 2010; Boyle and Etter, 2013). However, of the three protobranch orders, only the Nuculanoida, has been
reported to exhibit DUI (Boyle and Etter, 2013), and the phylogenetic status of this order is still being questioned. Recent phylogenetic studies suggest that the Nuculanoida is not a member of the basal protobranch group, which includes Nuculoida and Solemyoida, but instead is associated with the Pteriomorpha (Wilson et al. 2010; Plazzi et al. 2011; Breton et al. unpublished). The presence of DUI in protobranchs thus remains an open question until the publication of a well-supported and robust phylogeny of bivalves showing the monophyly of the traditional clade Protobranchia (i.e. Solemyoida + Nuculoida + Nuculanoida) and/or until the discovery of DUI in nuculoid or solemyoid bivalves.

The peppery furrow shell Scrobicularia plana belongs to the order Veneroida. It is the first reported species with DUI from the family Semelidae, raising the total number of veneroid families in which DUI has been discovered to six (Theologidis et al. 2008; Plazzi, 2015; Dégletagne et al. 2016; present study). Apart from providing new insights into the taxonomic distribution of DUI, S. plana may play a key role for better understanding the hypothesized role of DUI in sex determination (e.g. Breton et al. 2007; Breton et al. 2011a; Breton et al. 2014; Breton and Stewart, 2015; Mitchell et al. 2016). Indeed, an “intersex” condition, i.e. the appearance of oocytes in male gonads following endocrine disruption, has been reported in S. plana and is associated with differentially expressed mitochondrial transcripts in males exhibiting intersex compared to “normal” males (Chesman and Langston, 2006). Specifically, using a suppressive subtractive hybridization approach, Ciocan et al. (2012) were able to determine that several mitochondrial mRNA transcripts were down-regulated in clam intersex samples (i.e. cox1, cytb, nad1, nad2, nad3, nad4). Interestingly, we observed that the down-regulated cox1 sequence identified by Ciocan et al. (2012) was identical to the male cox1 sequences from our study, indicating that the down-regulation of male mitochondrial sequences is associated with the appearance of female characteristics in male gonads in this species. These results provide more evidence for a link between DUI and sex determination or differentiation. It is noteworthy that the intersex has been shown to be a widespread phenomenon in bivalves, including in species with DUI (e.g. R. philippinarum [Lee et al. 2010] and M. galloprovincialis [Ortiz-Zarragoitia and Cajaraville, 2010]).
3.5.2. Taxonomic distribution of DUI in bivalves: an update

Including the two species in the present study, DUI has been reported to date in 103 bivalve species belonging to four subclasses (Heterodonta, Palaeoheterodonta, Pteriomorphia, Protobranchia [but see above comments regarding the questionable inclusion of Nuculanoida within the Protobranchia]), four orders (Mytiloida, Nuculanoida, Unionoida, Veneroida), nine superfamilies (Arcticoidea, Hyrioidea, Mactroidea, Mytiloidea, Nuculanoidea, Solenoidea, Tellinoidea, Unionoidea, Veneroidea) and twelve families (Arcticidae, Donacidae, Hyriidae, Mactridae Margaritiferidae, Mytilidae, Nuculanidae, Semelidae, Solenidae, Unionidae Veneridae, Yoldiidae) (Table V and Fig. 7). However, DUI is certainly more widespread in the Bivalvia given that its detection remains difficult; the higher rate of molecular evolution of M type mitochondrial genomes may make it less likely that “universal” mitochondrial primers will anneal to and amplify the M type (Theologidis et al. 2008; Zouros, 2013). In addition, the process of mitochondrial genome “masculinization,” i.e. when an F genome invades the male route of transmission, can also make the paternally-transmitted genome almost indistinguishable from the maternally-transmitted one (Stewart et al. 2009; Theologidis et al. 2008; Zouros, 2013). Additional studies of bivalves and other mollusc species will significantly contribute to better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA.

3.5.3. Phylogenetic analyses and the origin of DUI

As for other veneroid and nuculanoid species (e.g. Theologidis et al. 2008), the sex-linked mtDNA sequences of S. plana and Y. hyperborean, respectively, exhibit a phylogenetic pattern in which the F and M mtDNA sequences are different from one another but yet cluster together in a monophyletic group (Fig. 7). Such a pattern can also be seen in the order Mytiloida (Fig. 7), except for the Mytilus species complex, which is in agreement with previous studies (e.g. Doucet-Beaupré et al. 2010). Conversely, the observed F/M phylogeny of unionoids contrasts with the patterns observed in the mytiloids, nuculanoids and veneroids. In unionoids, all of the F sequences cluster together and all of the M
genomes cluster together such that the F sequences form a monophyletic clade and the M sequences form a monophyletic clade. Similar results from Doucet-Beaupré et al. 2010 suggest that distinct M and F lineages have been maintained for at least 200 million year for Unionoidea. The observed phylogenetic pattern of the unionoids could be related to the absence of a masculinization event in this group for over 200 million years (Hoeh et al. 2002). One hypothesis explaining why F-to-M masculinization events do not occur in freshwater mussels involves the cox2 extension present only in the M genome (Curole and Kocher, 2002). If this extension is essential for the function or transmission of the M genome (Curole and Kocher, 2002; Chakrabarti et al. 2006, 2007) then masculinization events are no longer possible in this group, unless F genomes are able to obtain, by recombination, those male-specific elements necessary for being paternally transmitted (Stewart et al. 2009; Doucet-Beaupré et al. 2010). The M genome is considered as a “nearly selfish” element in the sense that it does fulfill its function only if this work cannot be done by the F genome. In other words, paternally-transmitted mt genomes only perform male specific functions. This restricted functionality of the M mtDNA to male gonad tissue is one factor that may explain why the M genome usually evolves faster than the F genome in species with DUI, i.e. because of relaxed selective constraints (Stewart et al. 1996; Zouros, 2000; Passamonti et al. 2003). The other hypotheses that have been proposed to explain the higher rate of evolution of the M genome include (i) a higher number of male germ line mitotic divisions preceding gametogenesis compared to the female germ line (Selwood, 1968; Zwaan and Mathieu, 1992; Stewart et al. 1996), (ii) a greater degree of oxidative damage in metabolically active sperm relative to eggs (Stewart et al. 1996; Zouros, 2013) and/or (iii) a smaller effective population size of male mitochondria compared to female mitochondria (Stewart et al. 1996; Zouros, 2013).

As for other recent morphological and molecular studies based on mtDNA and nuclear sequences (Giribet and Wheeler, 2002; Giribet and Distel, 2003; Bieler and Mikkelsen, 2006; Plazzi and Passamonti, 2010; Plazzi et al. 2011; Breton et al. unpublished), our results support a more derived Nuculanoida clustering with Pteriomorphia instead of a basal position of Nuculanoida + Opponobranchia (=Protobranchia). Therefore, the question about the origin of DUI in the branch leading to the Autolamellibranchia about 460 millions years old ago (Little and Vrijenhoek, 2003) or
much earlier, perhaps in the early Cambrian (Boyle and Etter, 2013), still remains open. The taxonomic position of *Y. hyperborea* and other members of the order Nuculanoida should be tested using an expanded data set. A robust bivalve phylogeny, as well as a much more accurate understanding of the taxonomic distribution of DUI, is needed to allow a rigorous evaluation of a single vs. multiple origins of DUI.

The phylogeny obtained clearly show the split between M and F types at the base of the Unionoida, and one split for each species exhibiting a taxon-specific pattern (Figure 7). Taken at face value, this pattern implies a large number of independent origins of DUI. Given the rare molecular and developmental complexity associated to the DUI system, this hypothesis seems unlikely but cannot be completely rejected yet (Zouros, 2013). The opposite hypothesis of a single origin of DUI can only be true if associated with masculinization events along each branch of the phylogenetic tree of the Bivalvia where F and M types are each other’s closest relatives. Because masculinization events restore nucleotide divergence between F and M mtDNAs to zero for most of the genes in each of the sex-associated genome (except for key sperm transmission elements; see below), this phenomenon could explain the F/M phylogenetic patterns of mytiloids, nuculanoids and veneroids. As a consequence of the many similarities found among the distantly-related DUI species (e.g. sex ratio bias, mitochondria’s behavior in the newly formed zygotes, rates of evolution of the two genomes), and because of the complexity of the DUI system, we favor the hypothesis of a single origin of DUI with repeated masculinization events. Such masculinization events have already been clearly demonstrated in *Mytilus* (reviewed in Stewart et al. 2009; Zouros, 2013), and evidence suggests that mitochondrial recombination and acquisition of key elements of the evolutionarily older M mt genome (i.e. sperm transmission elements) are necessary for a F genome to be transmitted via sperm (e.g. Stewart et al. 2009; Zouros, 2013; Kyriakou et al. 2015).
Figure 7. Bayesian inference majority-rule tree of bivalve mitochondrial cox1 partial sequences based on an analysis using the GTR+I+G model. Number at each node indicates nodal support. Boxes indicate to which order every species belongs prior to genetic analyses. *: Nuculanoida. ML and MP phylogenetic trees are shown in Supplementary Materials (Fig. S3, S4).
Figure 8. Bayesian inference majority-rule tree of Unionoida bivalve male mitochondrial cox1 partial sequences based on an analysis using the GTR+I+G model. Number at each node indicates nodal support. *: Nuculanoida. ML and MP phylogenetic trees are shown in Supplementary Materials (Fig. S3, S4).
Figure 9. Bayesian inference majority-rule tree of Unionoida bivalve Female mitochondrial cox1 partial sequences based on an analysis using the GTR+I+G model. Number at each node indicates nodal support. *: Nuculanoida. ML and MP phylogenetic trees are shown in Supplementary Materials (Fig. S3, S4).
Figure 10. Bayesian inference majority-rule tree of Mytiloida, Nuculanoida and Veneroida bivalve mitochondrial cox1 partial sequences based on an analysis using the GTR+I+G model. Number at each node indicates nodal support. *: Nuculanoida. ML and MP phylogenetic trees are shown in Supplementary Materials (Fig. S3, S4).

To conclude, our study presents evidence for the existence of DUI in the nuculanoid species *Yoldia hyperborea* and the veneroid species *Scrobicularia plana*. Because the taxonomic position of *Y. hyperborea* and its order Nuculanoida has been debated over the years and still remain uncertain, the question about the origin of DUI during the Cambrian or before is still unresolved. A much more accurate understanding of the taxonomic
distribution of DUI across the Bivalvia would allow confirming the single or multiple origins of this unusual system of mitochondrial heredity. Testing for its presence in all bivalve superfamilies, especially the one not studied yet (e.g. Solemyoidea, Lucinoidea, Carditoidea), is the only way to make a definitive statement.

Acknowledgements

We would like to thank Cindy Grant and Françoise Denis for providing us the samples, and El-Amine Mimouni for his assistance with the phylogenetic analysis. This work was supported by funding from the Natural Sciences and Engineering Research Council of Canada (grant no., RGPIN/435656-2013 to S.B. and grant no., RGPIN/217175-2013 to D.T.S.). A.G. was financially supported by the Groupe de Recherche Interuniversitaire en Limnologie et en environnement aquatique (GRIL) and by the Faculté des Études Supérieures et Postdoctorales (FESP) of the University of Montreal.
4. DISCUSSION
La détection du système DUI

L’objectif principal de ce projet était d’évaluer la distribution taxonomique du système DUI chez les mollusques, spécifiquement chez des groupes/familles pour lesquels sa présence n’a jamais été testée. Pour y parvenir, 17 espèces de bivalves et 5 espèces de gastéropodes ont été étudiées (Tableau VI). Sur ces 22 espèces, 13 n’ont pas pu faire l’objet d’un article scientifique à cause de l’ambiguïté rencontrée lors de la détermination du sexe. Pour pouvoir bien distinguer les mâles (spermatozoïdes) des femelles (ovaire) au microscope, les espèces doivent avoir atteint la maturité sexuelle et être en période de reproduction (Helm et al. 2004). Chez la plupart des bivalves cette maturité sexuelle dépend à la fois de l’âge, de la taille ou de la distribution géographique (Helm et al. 2004). De telles conditions n’ont donc probablement pas été réunies lors de l’échantillonnage. Cependant, nous avons pu obtenir et identifier des individus mâles et femelles pour 5 espèces de bivalves et 5 espèces de gastéropodes. Sur ces cinq espèces de bivalves, la palourde, *Arctica islandica* (Bivalvia : Arcticidae), a été testée positive pour la présence de la DUI durant le cours de ce projet par l’équipe de Déglagne et al. (2016). Cette découverte s’avère d’autant plus pertinente étant donné que cette espèce est connue pour détenir le record de longévité au sein du règne animal (Butler et al. 2013). En utilisant les anneaux de croissance présents sur la surface externe de la coquille, l’âge d’un individu échantillonné au large des côtes islandaises a été évalué à 507 ans (Butler et al. 2013). Ming, du nom de la dynastie chinoise sous laquelle ce spécimen serait né en 1492, aurait surely pu vivre plus longtemps si les chercheurs ne l’avaient pas tué en essayant de l’ouvrir.

Outre *Arctica islandica*, ce projet a permis la découverte de la DUI chez deux nouvelles espèces et familles de bivalves, soient *Yoldia hyperborea* (Bivalvia : Yoldiidæ) et *Scrobicularia plana* (Bivalvia : Semelidæ), ainsi que de fortement suggérer l’absence du système DUI chez les gastéropodes. Les répercussions associées sur l’origine et la fonction de ce mode d’hérité sont également intéressantes. *Y. hyperborea* qui appartient aux protobranches (Sharma et al. 2013) confirme qu’en cas d’origine unique, celle-ci remonterait à la naissance du groupe des bivalves (quoique la position phylogénétique du groupe des nuculanidés auquel appartient *Y. hyperborea* demeure encore controversée; Plazzi et al. 2011). *S. plana* est elle capable de se mettre à produire simultanément des œufs
et des spermatozoïdes au cours de sa vie (Chesman et Langston, 2006). En approfondissant les recherches sur l’expression des génomes mitochondriaux mâles et femelles lors de ce processus, nous pourrions apporter de grandes évidences quant à l’implication de la DUI dans le maintien des sexes séparés (e.g. Breton et al. 2007; Breton et al. 2011a; Breton et al. 2014; Breton et Stewart, 2015). Ces deux découvertes, associées à une revue exhaustive de la littérature, nous ont permis d’établir une toute nouvelle liste des espèces possédant le système DUI. Ce mode d’hérédité unique aux bivalves est en réalité présent chez 103 espèces appartenant à 4 sous-classes (Heterodonta, Palaeoheterodonta, Protopharmacria, Pteriormorphia), 4 ordres (Mytilida, Nuculanida, Unionoida, Veneroida) et 12 familles (Arcticidae, Donacidae, Hyriidae, Mactridae Margaritiferidae, Mytilidae, Nuculanidae, Semelidae, Solenidae, Unionidae Veneridae, Yoldiidae) (Table III). L’objectif d’obtenir une taxonomie complète de la DUI ne sera probablement jamais atteint étant donné le nombre d’espèces vivantes de bivalves estimé à environ 25 000 (www.bivatol.org). Une possibilité serait de réduire l’échelle d’une telle étude au rang taxonomique de la famille, avec quelques espèces représentatives de chaque famille. C’est ce qui a été fait chez les moules d’eau douces. Sur les 7 familles présentes dans cet ordre, quatre ont été testées positives pour la présence de ce système (i.e. Trigoniidae, Unionidae, Hyriidae et Margaritiferidae) alors que les trois autres (i.e. Etheriidae, Iridinidae, Mycetopodidae) semblent l’avoir perdu. Avec 115 familles de bivalves, le temps et la patience seront les deux obstacles majeurs à cet objectif.

Le troisième obstacle, mentionné précédemment, concerne les risques de résultats faussement négatifs (Zouros, 2013). En prenant en compte cette difficulté supplémentaire, obtenir un tableau complet et fidèle de la distribution taxonomique pour le système DUI semble encore plus difficile. Pour pallier ces problèmes de faux négatifs, plusieurs options sont envisageables: (i) l’observation in vivo du comportement des mitochondries dans les embryons de bivalves par fluorescence pour enlever toute incertitude sur la présence/absence de la DUI (les mitochondries s’agrègent dans un blastomère au stade 4 cellules seulement chez les mâles avec DUI), (ii) construire des amorces spécifiques à chaque génome éviterait le risque de passer à côté du génome mâle lors de l’étape d’amplification, (iii) extraire l’ADN des spermatozoïdes plutôt que du tissu gonadique afin d’empêcher les risques de contamination par des tissus somatiques. Chez certains groupes
comme les moules d’eau douce la situation est toutefois plus facile à gérer. En se basant sur la présence de l’extension du gène cox2 unique au génome mâle (Curole et Kocher, 2002), relever la présence de la DUI devient chose plus aisée (Walker et al. 2006). Cela explique en partie pourquoi l’ordre des moules d’eau douce compte actuellement le plus d’espèces recensées avec ce système DUI.

Mis à part les risques de faux négatifs, l’étape d’amplification en elle-même représente un défi méthodologique majeure dans la quête du DUI. Si l’on connaît aujourd’hui les génomes complets de certaines espèces de bivalves, celles à haute importance économique (i.e. Mytilus edulis [moule bleue] et Crassotrea gigas [Huître commune]), ce groupe reste relativement peu étudié concernant le contenu génique. Une chose est sûre, la séquence de leur génome mitochondrial diffère radicalement de ce que l’on retrouve dans le règne du vivant (Plazzi et al. 2013). En conséquence, les amorces universelles établis pour les gènes mitochondriaux se sont révélées peu efficaces avec nos espèces à l’étude, spécialement pour les gènes 12S et Cytb (Tableau VI). Cependant, l’amplification des gènes cox1 et 16S a été nettement plus efficaces pour deux raisons : (i) ils figurent parmi les gènes les mieux conservés chez les eucaryotes (Devarapalli et al. 2014) et (ii) leurs utilisations dans la quasi-totalité des études phylogénétiques a permis à différents chercheurs d’établir de nouvelles amorces plus fidèles et même d’amorcer la création de codes à barres selon l’ADN chez les mollusques (Meyer, 2003; Lobo et al. 2013; Layton et al. 2014). Malgré tout, pour trois espèces (i.e. Musculus niger, Macoma calcarea et Astarte borealis) aucun gène n’a pu être amplifié. Cela peut être expliqué par l’incapacité des amorces à s’hybrider sur le génome mais aussi par une dégradation trop importante de l’ADN lors de son extraction ou de la présence d’inhibiteur à PCR dans nos échantillons. La dégradation de l’ADN a pu être visualisé sur les photos prises des gels d’agarose. Les inhibiteurs peuvent eux être multiples chez les bivalves, on compte le risque de contamination à l’éthanol, celui de contamination par les selles étant donné que la masse viscérale est mélangée aux gonades et enfin la présence de mucus, une caractéristique très prononcée chez ce groupe. Malgré ces quelques difficultés, un total de 143 séquences ont été obtenues dans la cadre de ce projet (Fig. S7).
Tableau VI. Tableau complet des espèces testées dans le cadre de ce projet de maîtrise. Les marqueurs mitochondriaux pour lesquels l’amplification a fonctionné sont indiqués par le symbole ✓, les amplifications sans succès par le symbole X et celles non réalisées par le symbole -.

<table>
<thead>
<tr>
<th>Classe</th>
<th>Famille</th>
<th>Espèce</th>
<th>Cox1</th>
<th>16S</th>
<th>12S</th>
<th>CytB</th>
<th>DUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivalvia</td>
<td>Arcidae</td>
<td>Bathyarca glacialis</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Arcticidae</td>
<td>Arctica islandica</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>Oui</td>
</tr>
<tr>
<td></td>
<td>Astartidae</td>
<td>Astarte montagui</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Astartidae</td>
<td>Astarte borealis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Cardiidae</td>
<td>Cerastoderma edule</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Cyrenidae</td>
<td>Polymesoda sp.</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Mesodesmatidae</td>
<td>Mesodesma deauration</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Mytilidae</td>
<td>Musculus niger</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Mytilidae</td>
<td>Musculus discors</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Nuculanidae</td>
<td>Nuculana pernula</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Pectinidae</td>
<td>Similipecten greenlandicus</td>
<td>✓</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Pectinidae</td>
<td>Placopecten magellanicus</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Pharidae</td>
<td>Ensis directus</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Semelidae</td>
<td>Scrobicularia plana</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>Oui</td>
</tr>
<tr>
<td></td>
<td>Tellinidae</td>
<td>Macoma calcarea</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Yoldiidae</td>
<td>Portlandia arctica</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>Yoldiidae</td>
<td>Yoldia hyperborea</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>Oui</td>
</tr>
</tbody>
</table>

Gastropoda	Littorinidae	Littorina littorea	X	✓	-	-	Non
	Lottioidae	Testudinalia testudinalis	✓	✓	-	-	Non
	Muricidae	Nucella lapillus	✓	X	-	-	Non
	Viviparidae	Viviparidae sp.	✓	X	-	-	Non
	Naticidae	Lunatia heros	✓	X	-	-	Non

4.2. Réflexion générale sur le système DUI : émergence, maintien et fonction

Le second objectif de ce projet était de tester l’hypothèse d’une seule origine ou d’origines multiples du système DUI par l’intermédiaire d’analyses phylogénétiques. Grâce à la nouvelle liste des espèces avec DUI, nous avons pu présenter la phylogénie la plus complète obtenue jusqu’à maintenant pour les génomes M et F chez les bivalves. Les
résultats sont en accord avec des études précédentes dans le sens où : (i) les mytilidés (à l’exception du genre *Mytilus*), les vénéridés et les protobranches présentent une distribution où les génomes M et F de chaque espèce vont former un taxon monophylétique tandis que (ii) les moules d’eau douce ont elles un patron sexe-dépendant ou tous les génomes mâles vont former un taxon et pareil pour les génomes femelles (Doucet-Beaupré et al. 2010; Theologidis et al. 2008). À première vue, ces résultats suggéreraient plusieurs origines pour la DUI dont une à la base des Unionoidés, mais en tenant compte des phénomènes de recombinaison et de masculinisation qui restaurent les divergences à zéro, l’hypothèse d’une origine unique demeure également plausible (Zouros, 2013). Pour confirmer une des deux hypothèses, il faudrait soit prouver que les séquences surnuméraires (ORFs) présents dans les génomes mitochondriaux sont d’origines virales et qu’elles assurent leur propre transmission (e.g. origines multiples), soit obtenir une distribution complète de la DUI, y compris en dehors de mollusques si c’est le cas, ou démontrer pourquoi les moules d’eau douce ne rencontrent pas de masculinisation du génome femelle (e.g. origine unique).

La question de l’origine du système DUI a largement été développée dans les chapitres précédents sans pour autant se pencher sur les mécanismes sous-jacents qui ont permis son émergence. À ce propos, une étude a suggéré que la DUI serait apparue suite à une modification de la machinerie moléculaire d’ubiquitination associée à la SMI (Zouros, 2013) mais les mécanismes exacts demeurent pour le moment inconnus. Un modèle expliquant le scénario sous lequel la DUI et le gonochorisme auraient évolué ensemble en s’inspirant de la théorie « égoïste » de gènes mitochondriaux a récemment été proposé (Milani et al. 2016). Ce modèle peut être divisé en plusieurs étapes :

Étape 1
Chez une population ancestrale de bivalves hermaphrodites, un virus aurait infecté certaines mitochondries de manière à leur conférer l’habilité d’éviter la dégradation dans l’embryon tout en assurant leur transmission à travers les générations.

Étape 2
Les mitochondries infectées sont présentes à la fois dans les lignées germinales mâles et femelles, mais il est possible d’envisager une propagation plus efficace par les
spermatozoïdes pour les raisons suivantes :

b. La majorité des insertions rétrovirales sont acquises par la lignée germinale mâle à cause du nombre élevé de divisions cellulaires impliquées dans la production des spermatozoïdes comparé aux œufs (Katzourakis et al. 2007).

c. La fréquence importante des épisodes de fission et fusion mitochondriale durant la réplication cellulaire peut être un mécanisme supplémentaire permettant à l’élément viral de se propager dans les mitochondries (Mitra, 2013; Mishra et Chan, 2014).

Étape 3
Le nombre de spermatozoïdes infectés augmente dans la population. Si l’on suppose que ces séquences virales permettent aux mitochondries qui les contiennent d’être préférentiellement dirigées vers le blastomère qui produira la lignée germinale mâle (un comportement observé chez les espèces avec DUI : Milani et al. 2012; Zouros, 2013) et transmises à la progéniture, alors dans les générations futures l’élément viral est de plus en plus présent.

Étape 4
L’infection a permis la transmission des mitochondries paternelles et maternelles. Sous ces conditions, les mitochondries sont désormais également soumises à la sélection pour des fonctions propres aux mâles comme la spermatogénèse et la capacité de mobilité des spermatozoïdes. Les mutations mitochondriales qui augmentent la valeur sélective des mâles sont alors soumises à une pression sélective positive et vont se répandre rapidement dans la population.

Étape 5
L’émergence des mâles et la transition d’hermaphrodisme à androdioécie : le gonochorisme peut apparaître quand un mutant unisexué (i.e. porteur d’une mutation
rendant la « partie mâle » ou la « partie femelle » stérile) envahit la population et que les hermaphrodites restant se spécialisent dans le genre unisexe complémentaire (Charlesworth et Charlesworth, 1978). Deux modèles théoriques sont possibles pour expliquer cette transition : gynodioécie (femelles + hermaphrodites) et l’androdioécie (mâles + hermaphrodites). Chez les animaux la transition d’hermaphrodisme à androdioécie est la plus commune (Weeks, 2012). Pour être maintenus au sein de la population, les mutants doivent présenter un avantage sélectif sur les hermaphrodites. Cet avantage consiste à la fois à augmenter la diversité génétique (éviter l’autofertilisation) et à réduire le coût énergétique lors de la production des gamètes (les spermatozoïdes sont énergétiquement moins coûteux à produire) (Charlesworth et Charlesworth, 1978; Weeks, 2012).

Étape 6
L’évolution du gonochorisme à partir de l’androdioécie : la proportion de mâles augmente au sein de la population jusqu’à ce que l’avantage sélectif soit neutralisé par le désavantage d’une population biaisée par un nombre trop élevé de mâles. Dans ces conditions, la pression sélective sur la production d’œufs sera forte et les mutations en faveur d’une stérilité masculine chez les hermaphrodites hautement favorisées.

Étape 7
Les interactions entre le génome nucléaire et les éléments cytoplasmiques créant une distorsion de sex-ratio peuvent mener à l’évolution de gènes compensatoires dans le génome nucléaire afin de restaurer la sex-ratio dans la population (Hurst, 1992). De tels gènes peuvent entraîner la monogénie, une condition sous laquelle tous les individus d’une même portée seront soit exclusivement mâles ou femelles (Werren et Beukeboom, 1998). En soutien à cette théorie, de nombreuses espèces avec la DUI présentent un tel phénomène où une femelle, peu importe avec quel mâle elle sera croisée, produira exclusivement des mâles ou exclusivement des femelles (Kenchington et al. 2002; Ghiselli et al. 2012; Machordom et al. 2015).

Il reste à déterminer quels sont les gènes qui ont permis la transmission du génome
paternel à la descendance et ceux qui ont permis de rétablir les sex-ratios. Dans leur étude, Milani et al. (2016) ont procédé à une analyse transcriptionnelle, translationnelle et fonctionnelle des cadres de lecture ouvert présents dans les génomes mitochondriaux mâles et femelles de la palourde marine R. philippinarum. Les auteurs ont suggéré que le gène RPHM21 du génome mitochondrial mâle serait responsable d’éviter la destruction des mitochondries paternelles et le gène RPHF22 du génome femelle comme celui responsable de rééquilibrer les sex-ratios. Le doute majeur entourant ces hypothèses concerne la position mitochondriale et non nucléaire du gène RPHF22, puisque dans la littérature les gènes responsables de balancer les sex-ratios sont essentiellement nucléaires (Milani et al. 2016). Il est possible que RPHF22 soit un des éléments, avec d’autres éléments codés par le génome nucléaire, prenant part à la cascade moléculaire responsable de rétablir les sex-ratios. Une approche pertinente pour être certains du rôle rempli par ces gènes serait la manipulation de leur transcription/expression en utilisant des individus « knock-out » ou des ARN d’interférences.

Un scénario similaire avait déjà été proposé chez les moules d’eau douce (Breton et al. 2011) : il est possible d’envisager que la DUI aurait émergé chez une espèce hermaphrodite (Davison, 2006; Breton et al. 2007) qui tolérait les effets néfastes de l’hérédité biparentale de l’ADNmt. Compte tenu de l’avantage apporté par cette hérédité (maintenance d’un sex ratio 50:50 et permet d’éviter les effets délétères de l’auto-fertilisation) les mitochondries paternelles auraient ainsi pu envahir les lignées futures (Breton et al. 2011). Cette théorie repose également sur la présence de cadres de lecture codant pour des protéines impliquées dans la détermination sexuelle (Breton et al. 2011). En revanche cette théorie s’oppose à l’origine virale de ces gènes comme décrit dans la précédente en proposant comme système d’apparition des nouveaux gènes le modèle « duplication-divergence-fonctionnalisation ». Ces deux hypothèses font cependant opposition à la logique de la sélection naturelle qui favorise l’hérédité uniparentale comme le meilleur moyen d’éviter le conflit inter-génomique dans la communication mito-nucléaire (Lane, 2005), mais la valeur sélective des conséquences apportées par cette hérédité pourrait bien expliquer le maintien du système DUI.
À la suite de l’émergence de la DUI, la cellule a dû mettre en place un système pour gérer ce « ménage à trois génétique » qui en temps normal devrait perturber la communication mito-nucléaire. Pour pallier à ce problème, une adaptation du génome nucléaire est possible par : (i) l’épissage alternatif des gènes nucléaires pour produire des isoformes adaptés pour interagir avec un variant mitochondrial spécifique (Wolff et al. 2014), (ii) rendre muette l’expression d’une des lignées mitochondriales dans les cellules hétéroplasmiques pour rétablir l’homoplasmie (Babayev et Seli, 2015) ou (iii) maintenir un noyau hétérozygote avec certains allèles maternels et paternels co-évoluant respectivement avec les mitotypes maternel et paternel (Wolff et al. 2014).

D’un point de vue fonctionnel, les preuves de l’implication de la DUI dans la détermination du sexe, plus précisément dans le maintien des sexes séparés, se sont accumulées durant les dernières années, mais d’avantage d’informations relatives à ce sujet demeurent requises. Par exemple, certaines études suggèrent que la masculinité n’est pas dépendante du génome mitochondrial mâle chez les Mytilidés (e.g. Kenchington et al. 2009) tandis que d’autres suggèrent fortement que les ADNmt F et M sont des éléments clés impliqués dans la détermination du sexe chez ce même groupe (e.g. Yusa et al. 2013). En plus de ces contradictions, les lacunes de nos connaissances sur les modes de détermination du sexe chez les bivalves sont un vrai obstacle (Breton et al. en préparation). Pour seulement une poignée des espèces de bivalves le déterminisme sexuel est connu. On estime que 96% sont gonochoriques et les 4% restants hermaphrodites et hermaphrodites protandriques, c’est à dire à phases successives mâles puis femelles (Morton, 1963). Parmi les mécanismes de détermination du sexe qui sont connus chez les bivalves, on retrouve :

- Un système où la température influe sur l’expression de gènes impliqués dans la cascade moléculaire de détermination sexuelle (i.e. les gènes Cg-Foxl2, Cg-Foxl2os, Cg-DM1, Cg-SoxE et Cg-β-catenin ; Naimi et al. 2009a,b; Santerre et al. 2012) chez l’huître Crassotrea gigas.

- Un système génétique où certains gènes connus pour déterminer le sexe mâle chez les mammifères sont exprimés à la hausse (Sry, Dmrt1, Dmrt2, Sox9, GATA4 et WT1) et idem pour le sexe féminin (Wnt4, Rspo1, Foxl2, and β–catenin) chez la moule d’eau douce Hyriopsis schlegelii (Shi et al. 2015).
Un système chromosomique X/Y similaire à celui des mammifères chez la palourde *Mulinia lateralis* (Guo *et al.* 1994)

- Un système chromosomique dépendant du rapport X/autosome identique à la drosophile chez la palourde *Mya arenaria* (Allen *et al.* 1986)

- L’environnement (e.g. pollution, stéroïde exogène, disponibilité en nourriture) joue également un rôle dans le déterminisme sexuel d’un grand nombre de bivalves tels que *Pinctada margaritifera, Placopecten magellanicus* et *Mytella charruana* (Stenyakina *et al.* 2010 ; Wang et Croll, 2004 ; Teaniniuraitemoana *et al.* 2016). Cependant, les gènes associés aux cascades moléculaires n’ont pas été détectés.

4.3. **Priorités de recherche et contribution générale du système DUI**

Depuis sa découverte au début des années 90, le travail accompli afin de mieux comprendre le système DUI chez les bivalves est énorme. Plusieurs caractéristiques principales de la DUI ont été décrites : e.g. évolution rapide des génomes mâles et femelles chez les bivalves par rapport aux autres espèces, distribution tissulaire des haplotypes qui est sexe-spécifique, comportement des mitochondries dans l’embryon qui est sexe-spécifique, corrélation entre perte de la DUI/hermaphroditisme et présence de gènes mitochondriaux surnuméraires. Néanmoins, aucune réponse concrète n’a jusque-là été formulée à propos de l’origine et de la fonction de la DUI. À l’issue de ce mémoire et dans un cadre général de recherche, les priorités d’études qui émergent pour répondre à ces questions sont les suivantes :

- Avoir une meilleure connaissance de la distribution taxonomique du système DUI. Ceci est indispensable pour faire des inférences quant à son origine et sa fonction. À l’intérieur de la classe des bivalves les familles à investiguer en priorité seraient celles des Nuculidae, Solemyidae, Pandoridae et Poromyidae. Ces quatre familles n’ont jusqu’à présent jamais été étudiées et leur position basale dans la phylogénie des bivalves permettrait d’assurer ou non que la DUI est présente chez les bivalves les plus anciens.

- Approfondir les études phylogénétiques. Deux alternatives aux phylogénies « classiques » sont prometteuses : (i) forcer le monophylétisme de la DUI par des contraintes
et comparer à des arbres sans contraintes et (ii) utiliser la technique de reconstruction ancestrale. Ce type de reconstruction consiste à inférer les états actuels des espèces pour un caractère donné (e.g. présence ou absence de la DUI dans notre cas) et remonter les nœuds de l’arbre à l’aide d’algorithmes mathématiques en y associant les probabilités pour chacun des états jusqu’à l’ancêtre commun de ces espèces.

- Séquencer les génomes complets mitochondriaux et nucléaires des espèces avec la DUI. La comparaison des séquences de plusieurs génomes mitochondriaux complets nous permettrait d’analyser les changements structuraux survenus au cours de l’évolution du système. L’obtention des génomes nucléaires complet serait-elle utile pour étudier les gènes impliqués dans la communication mito-nucléaire et de voir comment la cellule s’adapte à l’hétéroplasmie mitochondriale.

- Déterminer les fonctions des gènes surnuméraires présents dans les génomes mitochondriaux des espèces avec la DUI. En répondant à cette question nous pourrions confirmer, ou réfuter, que ces séquences servent à assurer leur propre transmission et/ou qu’elles codent pour des protéines fonctionnelles impliquées dans le maintien des sexes séparés ou toute autre fonction liée à la DUI.

- Étudier l’expression/transcription des génomes mitochondriaux mâles et femelles au cours du temps (e.g. différents stades de développement) et en fonction des tissus. De tels projets sur des espèces capables d’intersexe seraient d’autant plus pertinents pour comprendre le lien entre la détermination du sexe et la DUI.

La plus importante contribution de la DUI à la biologie viendra des possibilités offertes pour comprendre les mécanismes de base de la communication mito-nucléaire. Ce système offre une opportunité unique d’étudier comment l’hétéroplasmie affecte la cellule et comment elle se maintient ou se dégrade au profit de l’homoplasmie. Des études approfondies du génome mitochondrial mâle, dont l’action est restreinte au tissu gonadique, permettront d’identifier quelles parties du génome mitochondrial sont soumises à une pression sélective pour des fonctions mâles et quelles parties ne le sont pas. Contrairement aux croisements ou aux injections de cytoplasme entre populations ou espèces (e.g. cybrides), les deux lignées mitochondriales évoluent depuis des millions d’années avec un génome nucléaire commun. Grâce à cette caractéristique le système DUI
pourrait permettre une meilleure compréhension de la co-évolution mito-nucléaire et nous offrirait en même temps un modèle intéressant pour étudier les maladies mitochondriales qui trouvent leur origine dans une perturbation de la communication mito-nucléaire. Au niveau fondamental, si l’implication de la DUI dans la détermination du sexe est confirmée, il s’agira du premier système de détermination sexuelle impliquant la mitochondrie chez espèces animales.
Bibliographie

BMC Evolutionary Biology, 10:50.

González, V.L., Andrade, S.C.S., Bieler, R., Collins, T.M., Dunn, C.W., Mikkelsen P.M.,

Phylogenetic evidence for role-reversals of gender-associated mitochondrial DNA in Mytilus (Bivalvia: Mytilidae). Molecular Biology and Evolution, 14:959–967.

Ladoukakis, E.D., Zouros, E. (2001) Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. Molecular Biology and Evolution,

Ecology, 13:34.

Naimi, A., Martinez, A-S., Specq, M.L., Diss, B., Mathieu, M., Sourdaine, P. (2009b) Molecular cloning and gene expression of Cg-Foxl2 during the development and the adult gametogenic cycle in the oyster Crassostrea gigas. Comparative Biochemistry and

Sanko, T.J., Burzynski, A. (2014) Co-expressed mitochondrial genomes: recently masculinized, recombinant mitochondrial genome is co-expressed with the female–transmitted mtDNA genome in a male Mytilus trossulus mussel from the Baltic Sea. BMC
Genetics, 15:28.

Elsevier (eds.), pages consultées 85-86.

ANNEXES
Annexe 1: Tableaux supplémentaires

Table SI. Nucleotide Pairwise-distance for each marker and species.

<table>
<thead>
<tr>
<th>Species</th>
<th></th>
<th>F</th>
<th>M</th>
<th>F/M</th>
<th></th>
<th>F</th>
<th>M</th>
<th>F/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>cox1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerastoderma edule</td>
<td></td>
<td>0.0042</td>
<td>0.0000</td>
<td>0.0028</td>
<td>0.0018</td>
<td>0.0043</td>
<td>0.0041</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0.0024</td>
<td>±0.0000</td>
<td>±0.0016</td>
<td></td>
<td>±0.0017</td>
<td>±0.0024</td>
<td>±0.0017</td>
<td></td>
</tr>
<tr>
<td>Musculus discors</td>
<td></td>
<td>0.0084</td>
<td>0.0135</td>
<td>0.0092</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>±0.0033</td>
<td>±0.0049</td>
<td>±0.0028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrobicularia plana</td>
<td></td>
<td>0.0067</td>
<td>0.0020</td>
<td>0.0965</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0.0034</td>
<td>±0.0014</td>
<td>±0.0074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoldia hyperborea</td>
<td></td>
<td>0.0014</td>
<td>0.0000</td>
<td>0.0596</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0.0008</td>
<td>±0.0000</td>
<td>±0.0079</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note - Standard errors are given under p-distance value. Bold number indicate significant value for the presence of DUI. F : intrafemale divergence; M : intramale divergence; F/M: Divergence between males and females.

Table SII. Amino acid Pairwise-distance for each marker and species.

<table>
<thead>
<tr>
<th>Species</th>
<th></th>
<th>F</th>
<th>M</th>
<th>F/M</th>
<th></th>
<th>F</th>
<th>M</th>
<th>F/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>cox1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerastoderma edule</td>
<td></td>
<td>0.0036</td>
<td>0.0000</td>
<td>0.0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0.0034</td>
<td>±0.0000</td>
<td>±0.0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculus discors</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrobicularia plana</td>
<td></td>
<td>0.0072</td>
<td>0.0000</td>
<td>0.0659</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0.0070</td>
<td>±0.0000</td>
<td>±0.0100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoldia hyperborea</td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0454</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>±0.0000</td>
<td>±0.0000</td>
<td>±0.0124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note - Standard errors are given under p-distance value. Bold number indicate significant value for the presence of DUI. F : intrafemale divergence; M : intramale divergence; F/M: Divergence between males and females.
Table SIII. List of the best fitting-models for the nucleotide phylogenetic analyses according to BIC value. The lower the BIC value, the better the model fits with the data. AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; INL, Natural log likelihood.

<table>
<thead>
<tr>
<th>Model</th>
<th>INL</th>
<th>AIC</th>
<th>AICc</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIM+I+G</td>
<td>-27348.31368</td>
<td>54712.62736</td>
<td>54712.8677607</td>
<td>54747.9087591</td>
</tr>
<tr>
<td>TrN+I+G</td>
<td>-27355.2452</td>
<td>54724.4904</td>
<td>54715.246892</td>
<td>54755.3616242</td>
</tr>
<tr>
<td>GTR+I+G</td>
<td>-27347.43909</td>
<td>54714.87818</td>
<td>54715.246892</td>
<td>54758.9799288</td>
</tr>
<tr>
<td>K81uf+I+G</td>
<td>-27396.63346</td>
<td>54807.26692</td>
<td>54807.4535867</td>
<td>54838.1381442</td>
</tr>
<tr>
<td>HKY+I+G</td>
<td>-27404.24135</td>
<td>54820.4827</td>
<td>54820.6224671</td>
<td>54846.9437493</td>
</tr>
<tr>
<td>TVM+I+G</td>
<td>-27394.99722</td>
<td>54807.99444</td>
<td>54808.2954433</td>
<td>54847.6860139</td>
</tr>
<tr>
<td>TIM+G</td>
<td>-27405.78878</td>
<td>54825.57756</td>
<td>54825.7642267</td>
<td>54856.4487842</td>
</tr>
<tr>
<td>TrN+G</td>
<td>-27411.62272</td>
<td>54835.24544</td>
<td>54835.3852071</td>
<td>54861.7064893</td>
</tr>
<tr>
<td>GTR+G</td>
<td>-27404.69273</td>
<td>54827.38546</td>
<td>54827.6864633</td>
<td>54867.0770339</td>
</tr>
<tr>
<td>K81uf+G</td>
<td>-27446.18684</td>
<td>54904.23728</td>
<td>54904.4405878</td>
<td>54930.6983293</td>
</tr>
<tr>
<td>HKY+G</td>
<td>-27453.17046</td>
<td>54916.34092</td>
<td>54916.4405878</td>
<td>54938.3917944</td>
</tr>
<tr>
<td>TVM+G</td>
<td>-27444.83693</td>
<td>54921.47386</td>
<td>54921.6864633</td>
<td>54940.952591</td>
</tr>
<tr>
<td>SYM+I+G</td>
<td>-27909.2377</td>
<td>55832.4754</td>
<td>55832.6620667</td>
<td>55863.3466242</td>
</tr>
<tr>
<td>SYM+G</td>
<td>-27971.29972</td>
<td>55954.59944</td>
<td>55954.7392071</td>
<td>55981.0604893</td>
</tr>
<tr>
<td>TrNef+I+G</td>
<td>-28018.26796</td>
<td>56044.53592</td>
<td>56044.7392071</td>
<td>56062.1766195</td>
</tr>
<tr>
<td>TIMef+I+G</td>
<td>-28018.26073</td>
<td>56046.52146</td>
<td>56046.7221278</td>
<td>56068.5723344</td>
</tr>
<tr>
<td>TrNef+G</td>
<td>-28081.77954</td>
<td>56169.55908</td>
<td>56169.7981512</td>
<td>56182.7896049</td>
</tr>
<tr>
<td>TIMef+G</td>
<td>-28081.73505</td>
<td>56171.4701</td>
<td>56171.636435</td>
<td>56189.1107995</td>
</tr>
<tr>
<td>TVMef+I+G</td>
<td>-28126.97001</td>
<td>56265.94002</td>
<td>56266.1079871</td>
<td>56292.4010693</td>
</tr>
<tr>
<td>TVMef+G</td>
<td>-28179.41761</td>
<td>56368.94322</td>
<td>56369.1428878</td>
<td>56390.9940944</td>
</tr>
<tr>
<td>K80+I+G</td>
<td>-28232.49492</td>
<td>56470.98984</td>
<td>56471.0295751</td>
<td>56484.2203646</td>
</tr>
<tr>
<td>K81+I+G</td>
<td>-28232.47155</td>
<td>56472.9431</td>
<td>56473.09435</td>
<td>56490.5837995</td>
</tr>
<tr>
<td>K80+G</td>
<td>-28286.95197</td>
<td>56577.90394</td>
<td>56577.9237747</td>
<td>56586.7242898</td>
</tr>
<tr>
<td>K81+G</td>
<td>-28286.9476</td>
<td>56579.8952</td>
<td>56579.9349351</td>
<td>56593.1257246</td>
</tr>
<tr>
<td>F81+I+G</td>
<td>-29494.62578</td>
<td>58999.25156</td>
<td>58999.3522789</td>
<td>59021.3024344</td>
</tr>
<tr>
<td>F81+G</td>
<td>-29549.26104</td>
<td>59106.52208</td>
<td>59106.588415</td>
<td>59124.1627795</td>
</tr>
<tr>
<td>JC+I+G</td>
<td>-29606.92222</td>
<td>59217.92444</td>
<td>59217.9442747</td>
<td>59226.7447898</td>
</tr>
<tr>
<td>JC+G</td>
<td>-29657.59725</td>
<td>59317.1945</td>
<td>59317.2011007</td>
<td>59321.6046749</td>
</tr>
<tr>
<td>SYM+I</td>
<td>-30205.50541</td>
<td>60423.01082</td>
<td>60423.1505871</td>
<td>60449.4718693</td>
</tr>
<tr>
<td>GTR+I</td>
<td>-30244.99657</td>
<td>60507.99314</td>
<td>60508.2941433</td>
<td>60547.6847139</td>
</tr>
<tr>
<td>TIM+I</td>
<td>-30346.90562</td>
<td>60707.81124</td>
<td>60707.9979067</td>
<td>60738.6824642</td>
</tr>
<tr>
<td>TrN+I</td>
<td>-30350.58853</td>
<td>60713.17706</td>
<td>60713.3168271</td>
<td>60739.6381093</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>TVM+I</td>
<td>-30436.74696</td>
<td>60889.49392</td>
<td>60889.7343207</td>
<td>60924.7753191</td>
</tr>
<tr>
<td>TrNef+I</td>
<td>-30494.24549</td>
<td>60994.49098</td>
<td>60994.5307151</td>
<td>61007.7215046</td>
</tr>
<tr>
<td>TIMef+I</td>
<td>-30494.16869</td>
<td>60996.33738</td>
<td>60996.403715</td>
<td>61013.9780795</td>
</tr>
<tr>
<td>TVMef+I</td>
<td>-30516.54577</td>
<td>61043.09154</td>
<td>61043.1912078</td>
<td>61065.1424144</td>
</tr>
<tr>
<td>K81uf+I</td>
<td>-30543.65254</td>
<td>61099.30508</td>
<td>61099.4448471</td>
<td>61125.7661293</td>
</tr>
<tr>
<td>HKY+I</td>
<td>-30548.21657</td>
<td>61106.43314</td>
<td>61106.5328078</td>
<td>61128.4840144</td>
</tr>
<tr>
<td>K80+I</td>
<td>-30799.77759</td>
<td>61603.55518</td>
<td>61603.5750147</td>
<td>61612.3755298</td>
</tr>
<tr>
<td>K81+I</td>
<td>-30799.56789</td>
<td>61605.13578</td>
<td>61605.1755151</td>
<td>61618.3663046</td>
</tr>
<tr>
<td>JC+I</td>
<td>-32005.11367</td>
<td>64012.22734</td>
<td>64012.2339407</td>
<td>64016.6375149</td>
</tr>
<tr>
<td>F81+I</td>
<td>-32145.88992</td>
<td>64299.77984</td>
<td>64299.846175</td>
<td>64317.4205395</td>
</tr>
<tr>
<td>SYM</td>
<td>-32172.57059</td>
<td>64355.14118</td>
<td>64355.2408478</td>
<td>64377.1920544</td>
</tr>
<tr>
<td>GTR</td>
<td>-32309.9915</td>
<td>64635.983</td>
<td>64636.2234007</td>
<td>64671.2643991</td>
</tr>
<tr>
<td>TIM</td>
<td>-32419.87145</td>
<td>64851.7429</td>
<td>64851.8826671</td>
<td>64878.2039493</td>
</tr>
<tr>
<td>TrN</td>
<td>-32427.1851</td>
<td>64864.3702</td>
<td>64864.4698678</td>
<td>64886.4210744</td>
</tr>
<tr>
<td>TVMef</td>
<td>-32467.34254</td>
<td>64942.68508</td>
<td>64942.751415</td>
<td>64960.3257795</td>
</tr>
<tr>
<td>TrNef</td>
<td>-32491.4662</td>
<td>64986.9324</td>
<td>64986.9522347</td>
<td>64995.7527498</td>
</tr>
<tr>
<td>TIMef</td>
<td>-32490.40571</td>
<td>64986.81142</td>
<td>64986.8511551</td>
<td>65000.0419446</td>
</tr>
<tr>
<td>TVM</td>
<td>-32524.97601</td>
<td>65063.95202</td>
<td>65064.1386867</td>
<td>65094.8232442</td>
</tr>
<tr>
<td>K81uf</td>
<td>-32641.29106</td>
<td>65292.58212</td>
<td>65292.6817878</td>
<td>65314.6329944</td>
</tr>
<tr>
<td>HKY</td>
<td>-32649.67244</td>
<td>65307.34488</td>
<td>65307.411215</td>
<td>65324.9855795</td>
</tr>
<tr>
<td>K80</td>
<td>-32786.48039</td>
<td>65574.96078</td>
<td>65574.9673807</td>
<td>65579.3709549</td>
</tr>
<tr>
<td>K81</td>
<td>-32785.15545</td>
<td>65574.3109</td>
<td>65574.3307347</td>
<td>65583.1312498</td>
</tr>
<tr>
<td>JC</td>
<td>-33919.74979</td>
<td>67839.49558</td>
<td>67839.49558</td>
<td>67839.49558</td>
</tr>
<tr>
<td>F81</td>
<td>-34124.66017</td>
<td>68255.32034</td>
<td>68255.3600751</td>
<td>68268.5508646</td>
</tr>
</tbody>
</table>
Annexe 2: Figures supplémentaires

Figure S1. Les relations phylogénétiques chez les bivalves proposées par différents auteurs. Les cinq premières phylogénies sont basées sur des critères morphologiques (A,B,C,D,E). (F) Classification basée à la fois sur la morphologie et trois marqueurs moléculaires (ARNr 18S, ARNr 28S, Cox1). (G) Classification basée sur quatre marqueurs moléculaires (ARNr 18S, ARNr 28S, Cox1, histone H3). (H) Classification consensus. (I) Classification basée sur l’analyse bayésienne de quatre marqueurs moléculaires (ARNr 12S, ARNr 16S, Cox1, CytB). (J) Classification basée sur l’analyse bayésienne de quatre marqueurs moléculaires (ARNr 16S, ARNr 18S, ARNr 28S, Cox1, histone H3). (K) Classification consensus. (L) Classification basée sur l’analyse bayésienne de quatre
marqueurs moléculaires (ARNr 12S, ARNr 16S, Cox1, CytB). Les couleurs correspondent
aux grandes lignées de bivalves (rouge: Protobranchia; vert: Pteriomorphia; orange:
Palaeoheterodonta; indigo: Archiheterodonta; violet: Anomalodesmata; bleue:
Euheterodonta restant).

Figure S2. Anatomie interne des bivalves.
Figure S3. Maximum Likelihood Phylogenetic tree of bivalve mitochondrial *cox1* partial sequences based on an analysis using the GTR+I+G model. Bootstrap support appears next to each node. *: Nuculanoida.
Figure S4. Maximum parsimony 50% majority-rule consensus tree obtained from cox1 gene partial sequences. Values at each node show MP bootstrap support. * : Nuculanoida.
Figure S5. Phylogenetic tree based on cox1 partial sequences of Scrobicularia plana. Numbers above the branches indicate the posterior probability determined from the Bayesian analyses and numbers below the branches refer to the bootstrap value estimated from the maximum-likelihood phylogeny. Soletellina virescens was used as outgroup.
Figure S6. Phylogenetic tree based on cox1 partial sequences of *Yoldia hyperborea*. Numbers above the branches indicate the posterior probability determined from the Bayesian analyses and numbers below the branches refer to the bootstrap value estimated from the maximum-likelihood phylogeny. *Yoldia eightsii* was used as outgroup.
Porlandia Arctica

>B462G_COXI
GTATATAATGCGATCGTAAATATTACATAGTTCACAACCCCGAGCTAACACAG
GTAAGAGAATAATAATAATCACAGTAAAGAGAATAATAATAATCAAGAAGTAA
GTTTAATATGCCGATCAGTTAATTAACATAGTTCAAACCCCCAGCTAACACAG
GGGGCATCCGCTCTGCAATTATACCCCAAAAATCGACAAACAAACAATTGGTCG
CATAAATTTAGGGAATTATATATGCGACAAACAAACAATTGGTCGTCATAAAATT
TAGATCTTATATAGCGAGAAGAGTTTAAACCCAAACAAACAATTGGACAAAG
AGGGTTCAAACCCACTAGGGCCTCCGCTCCCTC

>B438S_COXI
GCCGATCGTAAATATTACATAGTTCACAACCCCGAGCTAACACAG
AATAATAATAATCAAGAAGTAAAGAGAATAATAATAATCAAGAAGTAAT
GCCGATCGTAAATATTACATAGTTCACAACCCCGAGCTAACACAG
GGGGCATCCGCTCTGCAATTATACCCCAAAAATCGACAAACAAACAATTGGTCG
CATAAATTTAGGGAATTATATGCGACAAACAAACAATTGGACAAAG
AGGGTTCAAACCCACTAGGGCCTCCGCTCCCTC

>B437G_COXI
CGATCGTAAATATTACATAGTTCACAACCCCGAGCTAACACAG
TAATAATAATAATCAAGAAGTAAAGAGAATAATAATAATCAAGAAGTAA
GGGGCTATATATATAGCGAGAAGAGTTTAAACCCAAACAAACAATTGGTCG
CATAAATTTAGGGAATTATATGCGACAAACAAACAATTGGACAAAG
AGGGTTCAAACCCACTAGGGCCTCCGCTCCCTC

>B437S_COXI
AAAGAGAATAATAATAATCAAGAAGTAAAGAGAATAATAATAATCAAGAAGTAA
GGGGCTATATATATAGCGAGAAGAGTTTAAACCCAAACAAACAATTGGTCG
CATAAATTTAGGGAATTATATGCGACAAACAAACAATTGGACAAAG
AGGGTTCAAACCCACTAGGGCCTCCGCTCCCTC

>B462S_COXI
GTATATAATGCGATCGTAAATATTACATAGTTCACAACCCCGAGCTAACACAG
GTAAGAGAATAATAATAATCACAGTAAAGAGAATAATAATAATCAAGAAGTAA
GTTTAATATGCCGATCAGTTAATTAACATAGTTCAAACCCCCAGCTAACACAG
GGGGCATCCGCTCTGCAATTATACCCCAAAAATCGACAAACAAACAATTGGTCG
CATAAATTTAGGGAATTATATGCGACAAACAAACAATTGGACAAAG
AGGGTTCAAACCCACTAGGGCCTCCGCTCCCTC

>B461G_COXI
GTATATAATGCGATCGTAAATATTACATAGTTCACAACCCCGAGCTAACACAG
GTAAGAGAATAATAATAATCACAGTAAAGAGAATAATAATAATCAAGAAGTAA
GTTTAATATGCCGATCAGTTAATTAACATAGTTCAAACCCCCAGCTAACACAG
GGGGCATCCGCTCTGCAATTATACCCCAAAAATCGACAAACAAACAATTGGTCG
CATAAATTTAGGGAATTATATGCGACAAACAAACAATTGGACAAAG
AGGGTTCAAACCCACTAGGGCCTCCGCTCCCTC
Cerastoderma edule

>B116G_16S
TCGCCCTGGTTTATCAAAAAACATCTCTTCTTGCAGTCTATATAGGAAAGTAGGCCCTGCTATGCTAAGGTTATCTCCTGTTGTTAAATGGCCCTTAAATGGGCTGAGCTTGAATGAAGCTTCCACTATGGTAACCGAAATTATAATGGGGCAATTGGGAAAAGATAACCTCCGCTTTTATGAGGATTTACTTATGAATAAAAAGCTACCGCGGGGATAACCGCGCAAGACCGCTTTAGAGGCCTTATCGACGGCAATTATGGGTTACCTTTAGGCGCAGAAGCTAAATAA

>B119G_16S
AAAACATCTCTTCTGAGTCTATAATAGGAAGTAGGGCCCTGCTATTATGCTAATATGAATAATAGGCCCTTAAATGGGCTGAGCTTGAATGAAGCTTCCACTATGGTAACCGAAATTATAATGGGGCAATTGGGAAAAGATAACCTCCGCTTTTATGAGGATTTACTTATGAATAAAAAGCTACCGCGGGGATAACCGCGCAAGACCGCTTTAGAGGCCTTATCGACGGCAATTATGGGTTACCTTTAGGCGCAGAAGCTAAATAA
ACGGCAATAATTGCGACCTCGATGTTGGATTAAGGTTACTTTTAGGGCGCAGA
AGCTAAATAA

>B273S_16S
ACGGCAATAATTGCGACCTCGATGTTGGATTAAGGTTACTTTTAGGCGCAGAAGCTAAATAA

>B275S_16S
ACGGCAATAATTGCGACCTCGATGTTGGATTAAGGTTACTTTTAGGCGCAGAAGCTAAATAA

>B276S_16S
ACGGCAATAATTGCGACCTCGATGTTGGATTAAGGTTACTTTTAGGCGCAGAAGCTAAATAA

>B116G_COXI
ACGGCAATAATTGCGACCTCGATGTTGGATTAAGGTTACTTTTAGGCGCAGAAGCTAAATAA

>B118G_COXI
ACGGCAATAATTGCGACCTCGATGTTGGATTAAGGTTACTTTTAGGCGCAGAAGCTAAATAA
AAGCTACCGCGGGGATAAACAAGGCAAGATTGCTTTAGGGCCTTATCGACGGCAATAATTGCGACCTCGATGTTGGATTAAGGTATTACTTTTTAGGCAGAAGC

>B272S_16S
TATTGCTAATGATAAAAGCGGATTTCCTTAATTGGCTAATGATAAAAGCGGATTTCCT
TAATTGGGCTGCGAGGCAGTGAAGAGGCTTATGGAATGGGCCAGATAGAAAGCCTGCTCATTTG
AAATATATTGAAACCTCTTCTCCGCTGAAAGACGGCAGGCTTCTCATTTTGA
AAAGAACCCCGGTGAGCTGTGAAATGAAGCCTCGATGTTGGATTAAGGTTACTTTTAGGCGCAGA
AACTTTAGGCGCAGAAGCTAAATAA

>B277S_16S
TTTTCTTCTCGGTGAAAGACGGCAGGCTTCTTCTGTTAAAGACGGAAGAGCAGAGGCAATAATTGCGACCTCGATGTTGGATTAAGGTTACTTTTAGGCGCAGA
AACTTTAGGCGCAGAAGCTAAATAA

>B117G_COXI
TAATTGGTTTTGGGCTTTTGAGCCTTTTGAGCCTTTTGAGCCTTTTGAGCCTTTTGAGCCTTTTGAGC
AGGTTTGGGCTGAGTATAGGCTTATGGAATGGGCCAGATAGAAAGCCTGCTCATTTG
AAATATATTGAAACCTCTTCTCCGCTGAAAGACGGCAGGCTTCTTCTTCTTCTC
GGGAAGAGATGACCTCGCCGCTTATGTAAGGATCCATTACTTAATGAAATAA
AAAAAGCCTACCCCGGGGATAACAGCAGGAAGATGACCTCGCCGCTTATGTAAGGATCCATTACTTAATGAAATAA

>B120S_COXI
TAATTGGTTTTGGGCTTTTGAGCCTTTTGAGCCTTTTGAGCCTTTTGAGCCTTTTGAGC
AGGTTTGGGCTGAGTATAGGCTTATGGAATGGGCCAGATAGAAAGCCTGCTCATTTG
AAATATATTGAAACCTCTTCTCCGCTGAAAGACGGCAGGCTTCTTCTTCTTCTC
GGGAAGAGATGACCTCGCCGCTTATGTAAGGATCCATTACTTAATGAAATAA
AAAAAGCCTACCCCGGGGATAACAGCAGGAAGATGACCTCGCCGCTTATGTAAGGATCCATTACTTAATGAAATAA

>B121G_COXI
TAATTGGTTTTGGGCTTTTGAGCCTTTTGAGCCTTTTGAGCCTTTTGAGCCTTTTGAGC
AGGTTTGGGCTGAGTATAGGCTTATGGAATGGGCCAGATAGAAAGCCTGCTCATTTG
AAATATATTGAAACCTCTTCTCCGCTGAAAGACGGCAGGCTTCTTCTTCTTCTC
GGGAAGAGATGACCTCGCCGCTTATGTAAGGATCCATTACTTAATGAAATAA
AAAAAGCCTACCCCGGGGATAACAGCAGGAAGATGACCTCGCCGCTTATGTAAGGATCCATTACTTAATGAAATAA
TATAATAATTTTCTTTTTGGTTATGCCAATAATGATTGGTGGTTTTGGTAATTG
GCTTATTCCTCTTTATATTGAGTTAGGACAAACCCCGGT
AGGTGTGTTGCGGAGATGCACTAGTTATATAATTGTAATTTGTAACGCACATGCTTT
TATATAAATTTTTCTTTTGTTATGGAACAATAATGATTGGTGGTTTTGGTAATTG
GCTTATTCCTCTTTATATTGAGTTAGGACAAACCCCGGT
AGGTGTGTTGCGGAGATGCACTAGTTATATAATTGTAATTTGTAACGCACATGCTTT
TATATAAATTTTTCTTTTGTTATGGAACAATAATGATTGGTGGTTTTGGTAATTG
Ensis directus

>B274S_COXI
TAATTGGTTTGGCTTTTGGAGGCTTTTTTGATTCGGGCTGAGTTAGGACAAACCCCGGT
AGGTGTGTTGCGGAGATGCACTAGTTATATAATTGTAATTTGTAACGCACATGCTTT
TATATAAATTTTTCTTTTGTTATGGAACAATAATGATTGGTGGTTTTGGTAATTG

>B272S_COXI
TAATTGGTTTGGCTTTTGGAGGCTTTTTTGATTCGGGCTGAGTTAGGACAAACCCCGGT
AGGTGTGTTGCGGAGATGCACTAGTTATATAATTGTAATTTGTAACGCACATGCTTT

Ensis directus

>B28G_16S
GTGGGCCCTGCCCCGCTGAATAAATATTTAAACGCGGAGCTGAGTTAACCCTTGTG
CTAAAGGTAGCGTAATAAATGCTCTCTTTAATGGGAGAAGGTATGAATGTTTTGGTT
GACGTGGTGTTTCTGCTCTCAATGGGAATATTGGAAGGCTTTCTTGTGGTGA
AAAGCTCTAAATTTAGATAAAAGACGAGAAGACCCTGCTGAGCTTTAACCTCTG
AGTAAAGAATTAAATTCTGAAGTACTATAATGCTACTGAGGTGGAC
TTGGAGAAGGGTATGAATGGTTTGACGTGGT
AGTTTCTGTCTCTCAAATGCGTTATCCTCTGCTGAGAGAATTTGGAAGAGGCTTT
TTGGAGAAGGGTATGAATGGTTTGACGTGGT

>B28S_16S
GCCGTGTTTTTCAAAAAACATCGCCTCTTTGTAATAAAATACGAGAGTTGGGCCCT
GCCCGGTGAATAAATATTTAAACGCGGAGCTGAGTTAACCCTTGTG
CTAAAGGTAGCGTAATAAATGCTCTCTTTAATGGGAGAAGGTATGAATGTTTTGGTT
GACGTGGTGTTTCTGCTCTCAATGGGAATATTGGAAGGCTTTCTTGTGGTGA
AAAGCTCTAAATTTAGATAAAAGACGAGAAGACCCTGCTGAGCTTTAACCTCTG
AGTAAAGAATTAAATTCTGAAGTACTATAATGCTACTGAGGTGGAC
TTGGAGAAGGGTATGAATGGTTTGACGTGGT
>B29S_16S
TTTCAAAAAACATCGCCTCCTTTGATAATAAATACGAGAGGTTGGCCCTGCGCG
GTGAATAACTATTTAAAACGGCCGCAGTGGATAACTGGTCTAAGGATAGCCTA
ATAAAAATTGCTCTTTAATTGGAGAAGGATATGAGTTTGCAGTGTAGTTTC
TGTCCTCAAATGTTAATCTTTGTCTTTTTGATTAAAAAGTCCTCAAATT
AGATAAAAAGACGAGAAGGACAGGCTGTGAATTAAATAATGAAAGATTTTT
TATAAAATAAAAATTTAACGGGCAAGTTGCCAGAATAAGGATTCTGCTT
TTAAAGAGATCCCGGTTTACCGAACAATAGAAAGCTACCGCAGGATAACA
GCCGTATCCCTCTCTGAGAAGAACTTTTTAATGAGGAGGTTGCTTTGCGAC
CTGGATTTAGGTTCTTTTTGTTGCGACGCGCTAAATAGTAGGACTGTCCGC
CTTTAATATCTTACGATCTGACTGGTCTCCAGACCCGAG

>B29G_16S
TCGCCCTGTTTTTCAAAAAACATCGCCTCCTTTGATAATAAATACGAGAGGTTGGGC
CTGCCCGGCTGAAATATTTATTTAAAACGGCCGCAGTGGATAACTGGTCTAAGG
TAGCTAAATAATAATTGCTCTTTAATTGGAGAAGGATATGAGTTTGCAGTGTAGTT
GTAGTTTCTGTCTCACAATGTTAATATTGAAAGGTCTTTTTGATTAAAAAGTCCT
CAAATTTAGAATAAAAGACGAGAAGGACAGGCTGTGAATTAAATAATGAAAGATTTTT
TATAAAATAAAAATTTAACGGGCAAGTTGCCAGAATAAGGATTCTGCTT
TTAAAGAGATCCCGGCTTACCGAACAATAGAAAGCTACCGCAGGATAACA
GCCGTATCCCTCTCTGAGAAGAACTTTTTAATGAGGAGGTTGCTTTGCGAC
CTGGATTTAGGTTCTTTTTGTTGCGACGCGCTAAATAGTAGGACTGTCCGC
CTTTAATATCTTACGATCTGACTGGTCTCCAGACCCGAG

>B30S_16S
TCGCCCTGTTTTTCAAAAAACATCGCCTCCTTTGATAATAAATACGAGAGGTTGGGC
CTGCCCGGCTGAAATATTTATTTAAAACGGCCGCAGTGGATAACTGGTCTAAGG
TAGCTAAATAATAATTGCTCTTTAATTGGAGAAGGATATGAGTTTGCAGTGTAGTT
GTAGTTTCTGTCTCACAATGTTAATATTGAAAGGTCTTTTTGATTAAAAAGTCCT
CAAATTTAGAATAAAAGACGAGAAGGACAGGCTGTGAATTAAATAATGAAAGATTTTT
TATAAAATAAAAATTTAACGGGCAAGTTGCCAGAATAAGGATTCTGCTT
TTAAAGAGATCCCGGCTTACCGAACAATAGAAAGCTACCGCAGGATAACA
GCCGTATCCCTCTCTGAGAAGAACTTTTTAATGAGGAGGTTGCTTTGCGAC
CTGGATTTAGGTTCTTTTTGTTGCGACGCGCTAAATAGTAGGACTGTCCGC
CTTTAATATCTTACGATCTGACTGGTCTCCAGACCCGAG

>B30G_16S
TCGCCCTGTTTTTCAAAAAACATCGCCTCCTTTGATAATAAATACGAGAGGTTGGGC
CTGCCCGGCTGAAATATTTATTTAAAACGGCCGCAGTGGATAACTGGTCTAAGG
TAGCTAAATAATAATTGCTCTTTAATTGGAGAAGGATATGAGTTTGCAGTGTAGTT
GTAGTTTCTGTCTCACAATGTTAATATTGAAAGGTCTTTTTGATTAAAAAGTCCT
CAAATTTAGAATAAAAGACGAGAAGGACAGGCTGTGAATTAAATAATGAAAGATTTTT
TATAAAATAAAAATTTAACGGGCAAGTTGCCAGAATAAGGATTCTGCTT
TTAAAGAGATCCCGGCTTACCGAACAATAGAAAGCTACCGCAGGATAACA
GCCGTATCCCTCTCTGAGAAGAACTTTTTAATGAGGAGGTTGCTTTGCGAC
CTCGATGTTGGATTAAGGTTCCTTTGTTGGTCACGACGCTAAATAGTAGGACTGTTGCCTCTTTAAAACCTTACGTGATCTGAGTTCCAGACCGA

>B31S_16S
CGCCTGTTTTTCAAAAAACATCGCCTCTTTGATAATATAATACGAGAGGTTGGCCCTGCCCGGTGAATAACTATATTTAAAACGGCCGCAGTGGATAACTGTTGCTAAGGGAGCCTGATTAATAATTTAATCTGAGTGAAGGTAATATTAGAGAGCTGTTTCTCTATATTTTAAAAAGTTGAGTTAGGTTCCAGATGTAGTTTCTGTCTCAATTGGTAATATTATGAGTTTTCTTTTGAGTTAAAAGTCTCAAATTTAGATAAAAGACGAGAAGACCCTGTCGAGCTTAATAAAATTGTAAAAGAGTTTTTATATAATAAATTTAATGAGCTGGGCACTGTTTACGTGTTCA

>B31G_16S
TCGCCTGTTTTTCAAAAAACATCGCCTCTTTGATAATATAATACGAGAGGTTGGCCCTGCCCGGTGAATAACTATATTTAAAACGGCCGCAGTGGATAACTGTTGCTAAGGGAGCCTGATTAATAATTTAATCTGAGTGAAGGTAATATTAGAGAGCTGTTTCTCTATATTTTAAAAAGTTGAGTTAGGTTCCAGATGTAGTTTCTGTCTCAATTGGTAATATTATGAGTTTTCTTTTGAGTTAAAAGTCTCAAATTTAGATAAAAGACGAGAAGACCCTGTCGAGCTTAATAAAATTGTAAAAGAGTTTTTATATAATAAATTTAATGAGCTGGGCACTGTTTACGTGTTCA

>B32G_16S
TCGCCTGTTTTTCAAAAAACATCGCCTCTTTGATAATATAATACGAGAGGTTGGCCCTGCCCGGTGAATAACTATATTTAAAACGGCCGCAGTGGATAACTGTTGCTAAGGGAGCCTGATTAATAATTTAATCTGAGTGAAGGTAATATTAGAGAGCTGTTTCTCTATATTTTAAAAAGTTGAGTTAGGTTCCAGATGTAGTTTCTGTCTCAATTGGTAATATTATGAGTTTTCTTTTGAGTTAAAAGTCTCAAATTTAGATAAAAGACGAGAAGACCCTGTCGAGCTTAATAAAATTGTAAAAGAGTTTTTATATAATAAATTTAATGAGCTGGGCACTGTTTACGTGTTCA

>B33S_16S
TCGCCTGTTTTTCAAAAAACATCGCCTCTTTGATAATATAATACGAGAGGTTGGCCCTGCCCGGTGAATAACTATATTTAAAACGGCCGCAGTGGATAACTGTTGCTAAGGGAGCCTGATTAATAATTTAATCTGAGTGAAGGTAATATTAGAGAGCTGTTTCTCTATATTTTAAAAAGTTGAGTTAGGTTCCAGATGTAGTTTCTGTCTCAATTGGTAATATTATGAGTTTTCTTTTGAGTTAAAAGTCTCAAATTTAGATAAAAGACGAGAAGACCCTGTCGAGCTTAATAAAATTGTAAAAGAGTTTTTATATAATAAATTTAATGAGCTGGGCACTGTTTACGTGTTCA
>B35G_16S
TCGCCCTGGTATCAAAAACATGCCTCTTTGATAATAATACGAGAGGTTGGGC
CTGCCCAGGTGAATAAATATTAAAAAACGCGCCAGTGATACACTGGGCTAAGG
TAGCGTAATAAATTTGGCTTATGGAAGAAGGGTATGGAATGAGTTTGGTACGTG
GTAAGTTCTGCTCAATTGGAATAATTATGAAGGTTTTTTGTAGTAAAAAGTCT
CAAAATTAGATAAAAAGCAGAGAAAGCCCTGTCGAGCTTAATAAAATTGTAAG
GAGTTTTATATAATAAATATTTAATACTGGGCAGTTGAGAACAAATAATAGTTC
TTTGTATTAAAGATCCGAGTTTTACCGAACATAAAGAAAAAGCTACCAGCAGG
GATAACACGCTTTATCCTCTCTGAGAGAACTAATTGAAGAGGGGTTTTCGCA
TCGAGTTTGGATTTTTCTTTTTGTTGACGCA

Musculus discors

>B407S_16S
GGTTTGGCAGAATAAACGCGCGCGTTAGCGTAGCTCATCCTAAAGGTAGCGCGA
TAATTGGCCCTTTAAATAGAGGGATGATGATGATAGTTAAACGTTGGGTTAGCT
GTGTCGTATAAGTTGTATTAATTTAGAAATGTGAAGGTTATTGGAAGGCGTTGTAGT
TAGAAGGGACGACAGGCCCCATGAGCTTTACTAAATTTGTAGCAAGGTCTTTCT
TTGGATATAAAAGTTTGTGATGGGTACGTTTTAGTAAGTGCTCAAAGGTATGCTA
AAATTTCCAGGGATTATTTGCTTTATATTTAATACTGAGATGATAGCTCTAG
GGAATAACACGCAACAATTTCTCCTCTCTAGATAGGTTTAGGACAGGGAGTTTGGTA
GCTCGATGTGGGTTTTGGAATTACCTAAGAGGTGTAAGAGGCTTTTTATGGTGGA
CTGTTGCACCTTTAATTTCAACG

>B411G_16S
TTTGCGAGAATAAACGCGCGCGTTAGCGTAGCTCATCCTAAAGGTAGCGCGA
TAATTGGCCCTTTAAATAGAGGGATGATGATGATAGTTAAACGTTGGGTTAGCT
GTGTCGTATAAGTTGTATTAATTTAGAAATGTGAAGGTTATTGGAAGGCGTTGTAGT
TAGAAGGGACGACAGGCCCCATGAGCTTTACTAAATTTGTAGCAAGGTCTTTCT
TTGGATATAAAAGTTTGTGATGGGTACGTTTTAGTAAGTGCTCAAAGGTATGCTA
AAATTTCCAGGGATTATTTGCTTTATATTTAATACTGAGATGATAGCTCTAG
GGAATAACACGCAACAATTTCTCCTCTCTAGATAGGTTTAGGACAGGGAGTTTGGTA
GCTCGATGTGGGTTTTGGAATTACCTAAGAGGTGTAAGAGGCTTTTTATGGTGGA
CTGTTGCACCTTTAATTTCAACG

>B411S_16S
GGTTTGGCAGAATAAACGCGCGCGTTAGCGTAGCTCATCCTAAAGGTAGCGCGA
TAATTGGCCCTTTAAATAGAGGGATGATGATGATAGTTAAACGTTGGGTTAGCT
GTGTCGTATAAGTTGTATTAATTTAGAAATGTGAAGGTTATTGGAAGGCGTTGTAGT
TAGAAGGGACGACAGGCCCCATGAGCTTTACTAAATTTGTAGCAAGGTCTTTCT
TTGGATATAAAAGTTTGTGATGGGTACGTTTTAGTAAGTGCTCAAAGGTATGCTA
AAATTTCCAGGGATTATTTGCTTTATATTTAATACTGAGATGATAGCTCTAG
GGAATAACACGCAACAATTTCTCCTCTCTAGATAGGTTTAGGACAGGGAGTTTGGTA

CCTCGATGTTGGCTNTGGATTACCTAAAGGTGTAGAGGCTTTTATGGTGGGTC
TGTTGACCTTTTAATTTCCAACG

>B410G_16S
GGTTTTGCGGAATAAACGCGCGCCTTAGCTCATCCTAAGGTAGCGCGA
 TAATTTGCTCTTTAATAGAGGATGGTATGGAATAGGAAGCTTCTAGCT
 GTGTCGATATAGTTGTTTTGTTTTAAATTTGATTTCAACGTTGAAGATGTTAGCTT
 TAGAAGGACGACAAACCCCTATGAAGCTTTGTTTAAATTTGATCTAGCTAG
TTGGATAAAAGGTGTTGATGGATGACGCTATTGTAAGAAGCTTT

>B410S_16S
GGTTTTGCGGAATAAACGCGG
CGTTAGCGTGATCGTCCTAAGGTAGCGCGA
 TAATTTGCTCTTTAATAGAGGATGGTATGGAATAGGAAGCTTCTAGCT
 GTGTCGATATAGTTGTTTTGTTTTAAATTTGATCTAGCTAG
TTGGATAAAAGGTGTTGATGGATGACGCTATTGTAAGAAGCTTT

>409G_16S
TATAGGGGCGAATTGGGCCCGACGTCGATCTCCCGGCCGCCATGGCCGCG
GGATTCGCCTGTTTATCAA
AACATTTCTTCTAGAAATCTATTAGAAGTAGGC
CCTGCCCGGTGTTTTGCGGAATAAACGCGCGGCGTTCAGCTAGCTATAC
GTAGCGCGATAAATTGCGCTTTTAATAGAGGATGGATGATAG
CTAGCTACGAGTTTCTTATAGAGGATGGATGATAG

>410G_16S
TATTGACAGGGAAGTTTGTGACCTCAGTGTGGCTTTGGATTTGCTCAAAGGTG
 TAGAAGGTTTTTATGTTGCGTCTGTCGACCTTTAATTTCCAACGCTTAGCTAC
 TTCCAGACCGAATTCGCGGCAGCGGAGCATGCGACGTCGGGCC
CAATTCGGCCCTATAGTGAGTCGATAC

>413G_16S
TACGGGATTATTCTCTGTTATATTACGAGATATTGATATTGACTACTTCTAGGGAACA
GCACAATTTCTCTTTATAAGGATTTGACCTCGATCTG
TTGGCTTTTGGATTCTCTTATATTGTTAGGGGTCTTGTTCCGACC
TTTAATTTCCAACGCTAGCTGAAGTGATCTACGAGCGAATCCCGCGGCCG
CGGAGCATGCGACGTCGGGCCCACATTCCCGCTATAGTGAGTGATAC

>414G_16S
TTTGATAAAAAGGTTTGAAGGGGTATCAGTTTTTAGTAAAGCTTATAGTGAT
AGAATTCTCTACGGGATTATTCTCTGTTATAATTACGAGATATTGATATTAGCTACTTCA
GGGATAACACGACAATTTTCTCTTATAGAGGATTTGACACGGGAAGTTTGTG
ATTAGAAGTGAGCCCTGAGGCTGTTTTGCGGAATAAACGCGGCAGTTAGCGTGATCGCTCTAGGAGGCTGTTCTTGAATAGAGGTAATAGGCTTTGCTCTTTAATAGAGGGAACAAATATATAATGTGGTAGTCACAGCGACTAATAATGATTTTTTTATGGTAATGCCGATTATGATTGGAGGTTTTGGTAATTGGTTAGTTCCGTAAATGCAGGGGTCTCCAGACATGCTATATCCGCGGTTAAATAATTTAAGGTTTTGATTAATTCCCTATGCTTTAATATTGTTGGTAATGGCTATGATGGTGGAGGGGGTGCGGGCACAGGGTGGACTATCTATCCGCCCTTTCCCGGAATGCAAGACATGCTGGGGGTTCTGTTGATTATGCTTGTTTTGCATTACATCTTTCTGGGCTGTCATCTTTGTTAGCATCAATAAAATTTTTTTAGGTACAAATGTGATAAGGGCCACCAGGGGATGCTGGTATAGAAAAAATTGCGTTGTTTCCGTGAGCTTTGATTGTTAACAGGTTTTGTTATTAATCTCTTTACCGGTATTAGCTGGTGGTGTAACTATGTTGATTGCTGATCGTAATTTTAACACCAGATTATTTTTTGTCCGGGGTGAGGGGCGCGATCCTATTTTATTCACAGCATTATTTDTGATTTTTTGGTCACCCTG

>B421S_COXI
TTGGAACATATCATGTGCTTTTGAAGGTTTTACACACGGTGAATTGATATCGGGGTACCTATAATCAAAAGGAACATTCATCTTTTCAAAAAGGGGATACGTATGCAAGTTCTTTCTGCTTTAGGTACAAATGTGATAAGGGCCACCAGGGGATGCTGGTATAGAAAAAATTGCGTTGTTTCCGTGAGCTTTGATTGTTAACAGGTTTTGTTATTAATCTCTTTACCGGTATTAGCTGGTGGTGTAACTATGTTGATTGCTGATCGTAATTTTAACACCAGATTATTTTTTGTCCGGGGTGAGGGGCGCGATCCTATTTTATTCACAGCATTATTTDTGATTTTTTGGTCACCCTG

>B423G_COXI
TTTGTTATTCGTATAAATTTACGTGTCTTTTGAGGTTAAACACCCGTAATTGATATCGGGGTACCTATAATCAAAAGGAACATTCATCTTTTCAAAAAGGGGATACGTATGCAAGTTCTTTCTGCTTTAGGTACAAATGTGATAAGGGCCACCAGGGGATGCTGGTATAGAAAAAATTGCGTTGTTTCCGTGAGCTTTGATTGTTAACAGGTTTTGTTATTAATCTCTTTACCGGTATTAGCTGGTGGTGTAACTATGTTGATTGCTGATCGTAATTTTAACACCAGATTATTTTTTGTCCGGGGTGAGGGGCGCGATCCTATTTTATTCACAGCATTATTTDTGATTTTTTGGTCACCCTG

>B423S_COXI

Arctica islandica

B336G_16S

ATAGAAAAATTTGGTTTAAATTTAAAGTATTGTAAAAATAATATGAAAGGATTATATAA
CCCGAAGGGGATGCTTTACTAGGAATAAAACGAATATTAAATTGTGTTCTTTTTG
TATAATGATTATAAATATTGTTAATGGCTATGATGCTGAGTT
TGATTGGTACAGTGTTTTTTTTGTTTAAAGAGAAATACATTCT
CGTGTAGTTTGGTGATAAAATATTTTTAATTATATAAAAATAGTGTACACTAA
GTAAAGTTCTTAGGGGCTAAAGCTCTAGGAAAGAATAAGAAAATATATAGTAC

B428G_COXI

TTGTTATTCCGTAATAATTACGTGTTCCAGGTAGAACAATTTTTAAGGGGAAACAATAATAATATAATATATGTTAGTGCTACAGCGACACGACTAAAT
TAATGATTTTTTTTATGTTAATGCGCCTTATGATTGAGGAGGTTTTGTAATATGGGTTAGTCTATTACATCGTTACATAATGGTAAATGCCGCTTATGATTGGG
TTTTGGTAATTGGTATTTTGCATTATCTCTTACCCGGATATCTAGGTTGCTAGTAATCTGGTTAGCATCAAAATTTTTATGTTACAATTGTA
AGGCAGCAAGGGGATGCTGTTATAGAAGAAATATCGGTGTTCGCAGCTGAGTT
TGATTGTACAAAGTAAAAAGTATTATAATATTGTTAATGGCTATGATGCTGAGTT
TGATTGGTACAGTGTTTTTTTTGTTTAAAGAGAAATACATTCT
CGTGTAGTTTGGTGATAAAATATTTTTAATTATATAAAAATAGTGTACACTAA
GTAAAGTTCTTAGGGGCTAAAGCTCTAGGAAAGAATAAGAAAATATATAGTAC
TTGTAGAGTTAAATATTGTCTTTTCTATAGGAAGTATTGGTTTTTGAAGTTAAATAAAAATTAGGTTTAAATATAGTATCTTTACCAACAGTTTAAATTATAACAGATGAGATAAAGTATAGAATCAGTATTTATTAAACTATATTAGACTAAATAATTTGTAAATTAAAAATGATACACGTTTATAAAAATAAATTTAGAGTTTAGTGTGGCTAACTAATAATAATAAAAATAAATCTATCTTTAAAGAACTCGGCAAATATTCCCTTC

Similipecten greenlandicus

>B336S_COXI
ATAGAAAAATTGTTTTAATTTAAAGTATTGTTAAAAATATATGAAGTATTATAAAGGAAAGTTTTTTTGAAGTTAAATAAAAATTAGGTTTAATATAGTATCTTTACCAACAGTTTAATTATAACGATGAGATAAGGTTAAATGTTTTTCTTTTTACTAGGAATAAAGGTTTAAATTGTTCTTTTGTATAATGATTTTAAATTGTATATAAAAATTATTTTCTGAAAAACTCTAGAGCACTTTTATCTTGCTATTACATAAATAAGAAGTTGCTATTACATATTAGACTAAATAAAAAATTTGTAATAAAAATAATGATACACGTTTATAAAAATAAATTTAGAGTTTAGTGTGGCTAACTAATAATAATAAAAATAAATCTATCTTTAAAGAACTCGGCAAATATTCCCTTCTC

Similipecten greenlandicus

>B467S_COXI
AATTAACATAGTTAAACCTCTCTCGCCAAAAACAGGCAGAGACACCCTAAAGGAAAGCTCGTAACAATAGTAGCTCAAACAAAAGGGGACAAAACTCTGCTTGGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCAGCCGCACTAGACCTCACCCCAGCCAGATGAAGAGACAAAATTAAAAGGTCTACACCTATGGACCCCTCATAAACAGAGAGGGGNGGGTACAAAGTCCACCCGGTACCC

Similipecten greenlandicus

>B467G_COXI
TGCCAAAACAGGCAGAGACACCCTCAAAAGGAAGCTCGTAACAAATAGTAGGCACTCTGCTTAACAAACAAAAGGGGACAAAACTCTGCTTGGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCAGCCGCACTAGACCTCACCCCACCAAGCAATTAAAGGAGTCTACACCTATGGACCCCTCATAAACAGAGAGGGGNGGGTACAAAGTCCACCCGGTACCC

Similipecten greenlandicus

>B468G_COXI
AATGCCGATCTAGAATTAACATAGTTAAACCTCTCTCGCCAAAAACAGGCAGAGACACCCTCAAAAGGAAGCTCGTAACAAATAGTAGGCACTCTGCTTAACAAACAAAAGGGGACAAAACTCTGCTTGGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCAGCCGCACTAGACCTCACCCCACCAAGCAATTAAAGGAGTCTACACCTATGGACCCCTCATAAACAGAGAGGGGNGGGTACAAAGTCCACCCGGTACCC

Similipecten greenlandicus

>B468S_COXI
CTAGAATTAACATAGTTAAACCTCTCTCGCCAAAAACAGGCAGAGACACCCTCAAAAGGAAGCTCGTAACAAATAGTAGGCACTCTGCTTAACAAACAAAAGGGGACAAAACTCTGCTTGGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCAGCCGCACTAGACCTCACCCCACCAAGCAATTAAAGGAGTCTACACCTATGGACCCCTCATAAACAGAGAGGGGNGGGTACAAAGTCCACCCGGTACCC

xxxvi
CTTGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCA
GCCGCACCTAGACCTCACCCCAAGCCAGATGAAGAGACAAATTAAATGATTAACATAAG
CACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTAACAAAGTCCACACCCGCTAC
ACCC

>B470G_COXI
AATGCCGATCTAGAATTAACATAGTTAACCCTCTGCCAAAACAGGCAGAGAC
CACCCTAAAGAAAGCCTGTAACAATATAGCTCACAACAAAGGGGGAACA
AAACTCTGCTTGTGCATATCTGCCCAGGAATTTAAGAAAGTAACTATATAATTA
TAATAGCAGCCGCACTAGACCTCCCCCACGGCGATGAAGAGACAAATTTAA
AGGTCTACACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTACAAAGCTCCAC
CTTGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCA
GCCGCACCTAGACCTCACCCCAAGCCAGATGAAGAGACAAATTAAATGATTAACATAAG
CACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTAACAAAGTCCACACCCGCTAC
ACCC

>B471G_COXI
TGCCGATCTAGAATTAACATAGTTAACCCTCTGCCAAAACAGGCAGAGAC
CACCCTAAAGAAAGCCTGTAACAATATAGCTCACAACAAAGGGGGAACA
AAACTCTGCTTGTGCATATCTGCCCAGGAATTTAAGAAAGTAACTATATAATTA
TAATAGCAGCCGCACTAGACCTCCCCCACGGCGATGAAGAGACAAATTTAA
AGGTCTACACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTACAAAGCTCCAC
CTTGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCA
GCCGCACCTAGACCTCACCCCAAGCCAGATGAAGAGACAAATTAAATGATTAACATAAG
CACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTAACAAAGTCCACACCCGCTAC
ACCC

>B471S_COXI
AATGCCGATCTAGAATTAACATAGTTAACCCTCTGCCAAAACAGGCAGAGAC
CACCCTAAAGAAAGCCTGTAACAATATAGCTCACAACAAAGGGGGAACA
AAACTCTGCTTGTGCATATCTGCCCAGGAATTTAAGAAAGTAACTATATAATTA
TAATAGCAGCCGCACTAGACCTCCCCCACGGCGATGAAGAGACAAATTTAA
AGGTCTACACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTACAAAGCTCCAC
CTTGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCA
GCCGCACCTAGACCTCACCCCAAGCCAGATGAAGAGACAAATTAAATGATTAACATAAG
CACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTAACAAAGTCCACACCCGCTAC
ACCC

>B472G_COXI
TGATCTAGAATTAACATAGTTAACCCTCTGCCAAAACAGGCAGAGACACCG
CCTAAAAGAAAGCTGTAACAATATAGCTCACAACAAAGGGGGAACA
AAACTCTGCTTGTGCATATCTGCCCAGGAATTTAAGAAAGTAACTATATAATTA
TAATAGCAGCCGCCTACTAGCCTCCCCCACGGCGATGAAGAGACAAATTTAA
AGGTCTACACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTACAAAGCTCCAC
CTTGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCA
GCCGCACCTAGACCTCACCCCAAGCCAGATGAAGAGACAAATTAAATGATTAACATAAG
CACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTAACAAAGTCCACACCCGCTAC
ACCC

>B472S_COXI
TGATCTAGAATTAACATAGTTAACCCTCTGCCAAAACAGGCAGAGACACCG
CCTAAAAGAAAGCTGTAACAATATAGCTCACAACAAAGGGGGAACA
AAACTCTGCTTGTGCATATCTGCCCAGGAATTTAAGAAAGTAACTATATAATTA
TAATAGCAGCCGCCTACTAGCCTCCCCCACGGCGATGAAGAGACAAATTTAA
AGGTCTACACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTACAAAGCTCCAC
CTTGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCA
GCCGCACCTAGACCTCACCCCAAGCCAGATGAAGAGACAAATTAAATGATTAACATAAG
CACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTAACAAAGTCCACACCCGCTAC
ACCC

>B473_COXI
TGATCTAGAATTAACATAGTTAACCCTCTGCCAAAACAGGCAGAGACACCG
CCTAAAAGAAAGCTGTAACAATATAGCTCACAACAAAGGGGGAACA
AAACTCTGCTTGTGCATATCTGCCCAGGAATTTAAGAAAGTAACTATATAATTA
TAATAGCAGCCGCCTACTAGCCTCCCCCACGGCGATGAAGAGACAAATTTAA
AGGTCTACACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTACAAAGCTCCAC
CTTGCTCATTCTGCCCCGAGAATTTAAGAAAGTAACTATAAAATTAATAGCA
GCCGCACCTAGACCTCACCCCAAGCCAGATGAAGAGACAAATTAAATGATTAACATAAG
CACCTATGGGACCCCTCATAAACAGAGGAGGGGGGTAACAAAGTCCACACCCGCTAC
ACCC
Placopecten magellanicus

>B469G_COXI
TTAATAATATGGTAATTGCTCCTGCCTAAACAGGTATTGTTAATAATAGAAGA
AATGCTGTTGCTAAATATAGATCAAACAAAAAGGGAATTGGTAAATATCTTTA
ATCCATTCTTTCGATAGTTAAGAAAGATGTTGATAGATATTCGACCTG
CTCCCNCTCCCTACTTCTGGTAAAGAGAGAGACTG

>B469S_COXI
TCGATCAGGTTAATAATAGGTAATTGCTCCTGCCTAAACAGGTATTGTTAATAATAGAAGA
AATGCTGTTGCTAAATATAGATCAAACAAAAAGGGAATTGGTAAATATCTTTA
ATCCATTCTTTCGATAGTTAAGAAAGATGTTGATAGATATTCGACCTG
CTCCCNCTCCCTACTTCTGGTAAAGAGAGAGACTG

Placopecten magellanicus

>B250G_16S
GTGGGGACATCGAGCCTAAACGGACGCGGTAAATCGTGCTAGGTAGTTAAGTTAGCTAAGGT
TATGCGCTATTATAATTTTACTTGGTGAAATGTTGACGAGCCCTCAACTGTGCT
CTAGGTTTGGTGGAATGTGTAATGCTGCTAAATGCGTGGTAAATATATTTTAAC
ATCCGGTACTAAGGTTTTCTCGGAAAGAGATGGTGTGACTTTCACTTTATG
GTGGTGAATGTTGAAATGTTGACGAGCCCTCAACTGTGCT

>B253G_16S
TCGTGCCTTCCNGTGGGCATACGAGCCTAAACGGACGCGGTAAATCGTGCTAGGTAGTTAAGTTAGCTAAGGT
TATGCGCTATTATAATTTTACTTGGTGAAATGTTGACGAGCCCTCAACTGTGCT
CTAGGTTTGGTGGAATGTGTAATGCTGCTAAATGCGTGGTAAATATATTTTAAC
ATCCGGTACTAAGGTTTTCTCGGAAAGAGATGGTGTGACTTTCACTTTATG
GTGGTGAATGTTGAAATGTTGACGAGCCCTCAACTGTGCT

>B254G_16S

Placopecten magellanicus

>B250G_16S
GTGGGGACATCGAGCCTAAACGGACGCGGTAAATCGTGCTAGGTAGTTAAGTTAGCTAAGGT
TATGCGCTATTATAATTTTACTTGGTGAAATGTTGACGAGCCCTCAACTGTGCT
CTAGGTTTGGTGGAATGTGTAATGCTGCTAAATGCGTGGTAAATATATTTTAAC
ATCCGGTACTAAGGTTTTCTCGGAAAGAGATGGTGTGACTTTCACTTTATG
GTGGTGAATGTTGAAATGTTGACGAGCCCTCAACTGTGCT

>B253G_16S
TCGTGCCTTCCNGTGGGCATACGAGCCTAAACGGACGCGGTAAATCGTGCTAGGTAGTTAAGTTAGCTAAGGT
TATGCGCTATTATAATTTTACTTGGTGAAATGTTGACGAGCCCTCAACTGTGCT
CTAGGTTTGGTGGAATGTGTAATGCTGCTAAATGCGTGGTAAATATATTTTAAC
ATCCGGTACTAAGGTTTTCTCGGAAAGAGATGGTGTGACTTTCACTTTATG
GTGGTGAATGTTGAAATGTTGACGAGCCCTCAACTGTGCT

>B254G_16S

xxxviii
GTGGGCATACGAGCCTAAACGGACGCGGTAATACTGTGCTAAGGTAGCTAAGTTATGGCCTATTAATTGTAGGTCTTGTGAATGGTTTGACGAGCCTCCAACTGTC
TCTAGGTTGTGGTTGTTAAGTATGGGTTAATCTCTCGTGAGGTAA
GAAAAGACGAGAAGACCCCCTGGAAGTTAAAAATTTTAGCCTTTGTAGGAGTTATCCCTGTTGGTGAAGGCTAGAGGGTTAAGGGATTTGGTTGGTTTCTAAGTGAGGGGTGTAGTGAATGGTTTTTGCTGGGGCAGCAAAAGGGCAAATTTAGACCTTAATTGTATTTAAAACGGGTGCGTTACGACCC
ATAATTAAAAAGGTGTGATTAGCAGAAGGAGTTACTCCGGGGATAACAGCGTTATTCGTCCTGAGAGTTCTTTATTGGTGGACGGGTTTGCNACCTCGATGTTGGCTCTGGATATCCTGGGGCTT> B250S_16S
TCGTCCTCCTCNGTGTCGTGCTACGAGCCTAAACGGACGCGGTAATACTGTGCTAAGGTAGCTAAGTTATGGCCTATTAATTGTAGGTCTTGTGAATGGTTTGACGAGCCTCCAACTGTC
TCTAGGTTGTGGTTGTTAAGTATGGGTTAATCTCTCGTGAGGTAA
GAAAAGACGAGAAGACCCCCTGGAAGTTAAAAATTTTAGCCTTTGTAGGAGTTATCCCTGTTGGTGAAGGCTAGAGGGTTAAGGGATTTGGTTGGTTTCTAAGTGAGGGGTGTAGTGAATGGTTTTTGCTGGGGCAGCAAAAGGGCAAATTTAGACCTTAATTGTATTTAAAACGGGTGCGTTACGACCC
ATAATTAAAAAGGTGTGATTAGCAGAAGGAGTTACTCCGGGGATAACAGCGTTATTCGTCCTGAGAGTTCTTTATTGGTGGACGGGTTTGCNACCTCGATGTTGGCTCTGGATATCCTGGGGCTT> B253S_16S
GTGGGCATACGAGCCTAAACGGACGCGGTAATACTGTGCTAAGGTAGCTAAGTTATGGCCTATTAATTGTAGGTCTTGTGAATGGTTTGACGAGCCTCCAACTGTC
TCTAGGTTGTGGTTGTTAAGTATGGGTTAATCTCTCGTGAGGTAA
GAAAAGACGAGAAGACCCCCTGGAAGTTAAAAATTTTAGCCTTTGTAGGAGTTATCCCTGTTGGTGAAGGCTAGAGGGTTAAGGGATTTGGTTGGTTTCTAAGTGAGGGGTGTAGTGAATGGTTTTTGCTGGGGCAGCAAAAGGGCAAATTTAGACCTTAATTGTATTTAAAACGGGTGCGTTACGACCC
ATAATTAAAAAGGTGTGATTAGCAGAAGGAGTTACTCCGGGGATAACAGCGTTATTCGTCCTGAGAGTTCTTTATTGGTGGACGGGTTTGCNACCTCGATGTTGGCTCTGGATATCCTGGGGCTT> B254S_16S
TGTCCTCTCNNNGTGTCGTGCTACGAGCCTAAACGGACGCGGTAATACTGTGCTAAGGTAGCTAAGTTATGGCCTATTAATTGTAGGTCTTGTGAATGGTTTGACGAGCCTCCAACTGTC
TCTAGGTTGTGGTTGTTAAGTATGGGTTAATCTCTCGTGAGGTAA
GAAAAGACGAGAAGACCCCCTGGAAGTTAAAAATTTTAGCCTTTGTAGGAGTTATCCCTGTTGGTGAAGGCTAGAGGGTTAAGGGATTTGGTTGGTTTCTAAGTGAGGGGTGTAGTGAATGGTTTTTGCTGGGGCAGCAAAAGGGCAAATTTAGACCTTAATTGTATTTAAAACGGGTGCGTTACGACCC
ATAATTAAAAAGGTGTGATTAGCAGAAGGAGTTACTCCGGGGATAACAGCGTTATTCGTCCTGAGAGTTCTTTATTGGTGGACGGGTTTGCNACCTCGATGTTGGCTCTGGATATCCTGGGGCTT> 249G_16S
TCGTCCTCTCNNNGTGTCGTGCTACGAGCCTAAACGGACGCGGTAATACTGTGCTAAGGTAGCTAAGTTATGGCCTATTAATTGTAGGTCTTGTGAATGGTTTGACGAGCCTCCAACTGTC
TCTAGGTTGTGGTTGTTAAGTATGGGTTAATCTCTCGTGAGGTAA
GAAAAGACGAGAAGACCCCCTGGAAGTTAAAAATTTTAGCCTTTGTAGGAGTTATCCCTGTTGGTGAAGGCTAGAGGGTTAAGGGATTTGGTTGGTTTCTAAGTGAGGGGTGTAGTGAATGGTTTTTGCTGGGGCAGCAAAAGGGCAAATTTAGACCTTAATTGTATTTAAAACGGGTGCGTTACGACCC
ATAATTAAAAAGGTGTGATTAGCAGAAGGAGTTACTCCGGGGATAACAGCGTTATTCGTCCTGAGAGTTCTTTATTGGTGGACGGGTTTGCNACCTCGATGTTGGCTCTGGATATCCTGGGGCTT> B251G_16S

Yoldia Hyperborea

>B389G_COXI♂
TAATTTTTTCTATGTTGTTGAAAAGGGGGCGGGGCCAGGTGAAACTATTTTAT
CCCCCCCTATCAAGATATTTTGTCTATACAGGTGTAGTGAGTTTTAGCGTG
TTTTTCATTACATTTGTCAGGTTTGTTTTCTTTGTTGGCGGCTGTATAATTTTATG
GCTACAGTTATTATAATCGCGCTAATGACCCAATTTGGAAAAAGGGGCCCTC
TTTTGCTTGTTCATGTGTTAATAGTTTTTGTATTAATTTCCGGTCCTGT
TTTGGCGGGAGGTGTTGAAAATGTTGATTGCTAGCTGTTATAATTACACCATTT
TTTTA

>B385G_COXI♂
AGGAATGTCTTTGAGTTTGGCTATTCAAATAAATTTACGGGTGCGGGGAAGGGC
AGTTATTTGACCCCTCATTTATACAATGGTTATTGTGACTGCTCATGCTTTAATT
ATGATTTTTTTATAGTTATACCGGTAATGATAGGGGGGGTTTGGAAAT

>B386S_COXI♀
GGCAGGTTGGATGGGTATGTCGTTGAGTTTGGCTATTCGATTAAATTTACGGG
TTCCTGGGAGACAGTATTTTGATCCCTCATTTGTAATATTGTGAGCATGGCG
CATTGGCTTAATTATAATTTTTTTATGTTTATGGCAGTAATAATAGGAGGATT
TTGGAAATGATTTGGGTGCTGCTATAATGTTAGGTGGTTCCCTGACATGTGTTATC
CTC

>B390S_COXI♀
GGCAGGTTGGATGGGTATGTCGTTGAGTTTGGCTATTCGATTAAATTTACGGG
TTCCTGGGAGACAGTATTTTGATCCCTCATTTGTAATATTGTGAGCATGGCG
CATTGGCTTAATTATAATTTTTTTATGTTTATGGCAGTAATAATAGGAGGATT
TTGGAAATGATTTGGGTGCTGCTATAATGTTAGGTGGTTCCCTGACATGTGTTATC
CTC

xl
ATGTGGTCTTGGGCAGGTTGATGTCGTTGAGTTTGCTATTCGATTAAATTTACGCGGCCTCGGAGACAGTATTTGATCCCTGATTTGTATAATGTTA TTGTTGACGGCCGATGGGTTAATTATAATTTTTTTATGTTATGCACGTAATAATAAGGAGGATTGTTAAGGTTCTATTGCTATTCGTTGATGTT TTACCTCCCTTATCAAAGGTATTTGGTTCCATACGGGTGCCTAGTGAGATTAGCGTGTGGTTTCTATTCGCTATTCGTTAATTGCTAATGTTG CTTGCTGCTATTGCTAGGGCTCTGTATTTGGCGATGCTGTGTTTTGCTTTGCTTTGTTGTGTTTGGTGGTTTCTATGGATTGGTGAAGGGTGCTGGTACAGGGTGAACTA TTTACCCTCCTTATCAAAGGTATTTGGTTCCATACGGGTGCCTAGTGAGATTAGCGTGTGGTTTCTATTCGCTATTCGTTAATTGCTAATGTTG CTTGCTGCTATTGCTAGGGCTCTGTATTTGGCGATGCTGTGTTTTGCTTTGCTTTGCTTTTCAATGGGCTGTTACTAGGGTTTTGGTTATTGATTTCTTTAC CTGTTTTAGCCGGTGTTGGAATGGTTGAGTTGGAACGCGTCAATTACACAACTACATTTTATTCCAAA

>B384S_COXI♀
ATGTGGTCTTGGGCAGGTTGATGTCGTTGAGTTTGCTATTCGATTAAATTTACGCGGCCTCGGAGACAGTATTTGATCCCTGATTTGTATAATGTTA TTGTTGACGGCCGATGGGTTAATTATAATTTTTTTATGTTATGCACGTAATAATAAGGAGGATTGTTAAGGTTCTATTGCTATTCGTTGATGTT TTACCTCCCTTATCAAAGGTATTTGGTTCCATACGGGTGCCTAGTGAGATTAGCGTGTGGTTTCTATTCGCTATTCGTTAATTGCTAATGTTG CTTGCTGCTATTGCTAGGGCTCTGTATTTGGCGATGCTGTGTTTTGCTTTGCTTTGCTTTTCAATGGGCTGTTACTAGGGTTTTGGTTATTGATTTCTTTAC CTGTTTTAGCCGGTGTTGGAATGGTTGAGTTGGAACGCGTCAATTACACAACTACATTTTATTCCAAA

>B389S_COXI♀
ATGTGGTCTTGGGCAGGTTGATGTCGTTGAGTTTGCTATTCGATTAAATTTACGCGGCCTCGGAGACAGTATTTGATCCCTGATTTGTATAATGTTA TTGTTGACGGCCGATGGGTTAATTATAATTTTTTTATGTTATGCACGTAATAATAAGGAGGATTGTTAAGGTTCTATTGCTATTCGTTGATGTT TTACCTCCCTTATCAAAGGTATTTGGTTCCATACGGGTGCCTAGTGAGATTAGCGTGTGGTTTCTATTCGCTATTCGTTAATTGCTAATGTTG CTTGCTGCTATTGCTAGGGCTCTGTATTTGGCGATGCTGTGTTTTGCTTTGCTTTGCTTTTCAATGGGCTGTTACTAGGGTTTTGGTTATTGATTTCTTTAC CTGTTTTAGCCGGTGTTGGAATGGTTGAGTTGGAACGCGTCAATTACACAACTACATTTTATTCCAAA

>B388S_COXI♀
TGCGGACGTTTGAGTGGGTATGTCGTTGAGTTTGCTATTCGATTAAATTTACGGGTCTCTGGGAGACGATTATTGATCCTCTTATTTGTATAATGTTA TTGTTGACGGCCGATGGGTTAATTATAATTTTTTTATGTTATGCACGTAATAATAAGGAGGATTGTTAAGGTTCTATTGCTATTCGTTGATGTT TTACCTCCCTTATCAAAGGTATTTGGTTCCATACGGGTGCCTAGTGAGATTAGCGTGTGGTTTCTATTCGCTATTCGTTAATTGCTAATGTTG CTTGCTGCTATTGCTAGGGCTCTGTATTTGGCGATGCTGTGTTTTGCTTTGCTTTGCTTTTCAATGGGCTGTTACTAGGGTTTTGGTTATTGATTTCTTTAC CTGTTTTAGCCGGTGTTGGAATGGTTGAGTTGGAACGCGTCAATTACACAACTACATTTTATTCCAAA
Scrobicularia plana

>B129S_COXI♀
TACTAATAAAAAAGAAGTAATAACTACAGAAACTACAATAAAGTAGTCCGT
TGAGGGTGCATACCTTCAGGCCGTTATATTTCACCTGTAGTAACAAATAAT
CCTTGCAAAAAATTTGAGATATACCAAGCAATATGAATCCCAAGAATTATAAT
TCAAGAGCAGGGTGACCTAACAACGGACAGAAAGAGGTGGAATAAGA
GTTCAACCCGTACCAACACCTTCCCTCAACTT

>B122G_COXI♀
TACTAATAAAAAAGAAGTAATAACTACAGAAACTACAAATAAAGTAGTCCGT
TGAGGGTGCATACCTTCAGGCCGTTATATTTCACCTGTAGTAACAAATAAT
CCTTGCAAAAAATTTGAGATATACCAAGCAATATGAATCCCAAGAATTATAAT
TCAAGAGCAGGGTGACCTAACAACGGACAGAAAGAGGTGGAATAAGA
GTTCAACCCGTACCAACACCTTCCCTCAACTT

>B122S_COXI♀
TACTAATAAAAAAGAAGTAATAACTACAGAAACTACAAATAAAGTAGTCCGT
TGAGGGTGCATACCTTCAGGCCGTTATATTTCACCTGTAGTAACAAATAAT
CCTTGCAAAAAATTTGAGATATACCAAGCAATATGAATCCCAAGAATTATAAT
TCAAGAGCAGGGTGACCTAACAACGGACAGAAAGAGGTGGAATAAGA
GTTCAACCCGTACCAACACCTTCCCTCAACTT

>B123G_COXI♀
TACTAATAAAAAAGAAGTAATAACTACAGAAACTACAAATAAAGTAGTCCGT
TGAGGGTGCATACCTTCAGGCCGTTATATTTCACCTGTAGTAACAAATAAT
CCTTGCAAAAAATTTGAGATATACCAAGCAATATGAATCCCAAGAATTATAAT
TCAAGAGCAGGGTGACCTAACAACGGACAGAAAGAGGTGGAATAAGA
GTTCAACCCGTACCAACACCTTCCCTCAACTT

>B123S_COXI♀
CAGCTAATACAGGGCATAGCTACTAATAAAAAAAGAAGTAATAACTACAGA
AACTAAAAAAAGTAGTCCGTGAGGGTGCATACCTTCAGGCCGTTATATT
GCACCTGTAGTAAACAAAATTAATTCCTTGCAAAAAATTTGAGATATACCAAGCA
TATGTAATCCAAGAATATTAAATTTCAAGAGGGGTGCGGGTGTACCTAACA
AGCAAAAAAGAGGGTGATAAAAGAGTTCACCCGTACCAACACCTTCCCTCAACT
TCATTAGATATAAGTAGTAAAC
>B124S_COXI♀
TACTAATAAAAAAGAAGTAATAACTACAGAAACTACAATAAAAGTAGTACCC
TGAGGTGCAATACCCTCAGCCGTATATTTGCACCTGTAGTACCAAAATAATTAT
CCTGCAAAATTGAGATATACCCAGCAATATAGTAAATCAGAAATTATAAT
TCAGAGACCGTGACGGTGACCTAAACCAAGCAGAAAGAGGTGGATAAAAG
GTTCAACCCGTACCAACACCTCCT

>B129S_COXI♀
TACTAATAAAAAAGAAGTAATAACTACAGAAACTACAATAAAGTAGTACCC
TGAGGTGCAATACCTTCAGCCGTATATTTGCACCTGTAGTACAAATTATAAT
CCTGCAAAATTGAGATATACCCAGCAATATAGTAAATCAGAAATTATAAT
TCAGAGACCGTGACGGTGACCTAAACCAAGCAGAAAGAGGTGGATAAAAG
GTTCAACCCGTACCAACACCTCCTC

>B129G_COXI♂
GGTGAGGCCTTATACAACGTTATTGTGACGTCCCAACGGGTATTTAATGATTTTT
TTTTATGGTTATACCCCTATAATAATCGGGGTGTGTTTTCGGTAAATTGATAGTTCAAT
TTTTTACATGCCCCCGACCTCTCTTTTTGCGCGAGTTAATAGTTTTAGTTCTG
ACTAATGCGGTTTTCTTTAATTTTATGTTTGTTTTTCCTCAGAAATTGAGGAAAG
GGTACGGACGGTGTGCAGATACCTATACCCCTCCTCGAGGTGGTTAGGGGACC
CAGCAGCACATAGAGTTTTATAATATGAGGTTTACACCTTGGGCTGGGCTTCA
TCGTTTTCGGG

>B130G_COXI♂
GGTGAGGCCTTATACAACGTTATTGTGACGTCCCAACGGGTATTTAATGATTTTT
TTTTATGGTTATACCCCTATAATAATCGGGGTGTGTTTTCGGTAAATTGATAGTTCAAT
TTTTTACATGCCCCCGACCTCTCTTTTTGCGCGAGTTAATAGTTTTAGTTCTG
ACTAATGCGGTTTTCTTTAATTTTATGTTTGTTTTTCCTCAGAAATTGAGGAAAG
GGTACGGACGGTGTGCAGATACCTATACCCCTCCTCGAGGTGGTTAGGGGACC
CAGCAGCACATAGAGTTTTATAATATGAGGTTTACACCTTGGGCTGGGCTTCA
TCGTTTTCGGG

>B131G_COXI♂
GGTGAGGCCTTATACAACGTTATTGTGACGTCCCAACGGGTATTTAATGATTTTT
TTTTATGGTTATACCCCTATAATAATCGGGGTGTGTTTTCGGTAAATTGATAGTTCAAT
TTTTTACATGCCCCCGACCTCTCTTTTTGCGCGAGTTAATAGTTTTAGTTCTG
ACTAATGCGGTTTTCTTTAATTTTATGTTTGTTTTTCCTCAGAAATTGAGGAAAG
GGTACGGACGGTGTGCAGATACCTATACCCCTCCTCGAGGTGGTTAGGGGACC
CAGCAGCACATAGAGTTTTATAATATGAGGTTTACACCTTGGGCTGGGCTTCA
TCGTTTTCGGG

>B132G_COXI♂
GGTGAGGCCTTATACAACGTTATTGTGACGTCCCAACGGGTATTTAATGATTTTT
TTTTATGGTTATACCCCTATAATAATCGGGGTGTGTTTTCGGTAAATTGATAGTTCAAT
TTTTTACATGCCCCCGACCTCTCTTTTTGCGCGAGTTAATAGTTTTAGTTCTG

CTATGCGCTTTTCCCTTTAATTGTGGTTTGTACGGTAGGAGGT
GTCGGAGCGGGTTGGACATTATATCCCCCCCTCTCGAGGTGGTTAGGCCACC
CAGCGCCAGCAATAGAGTTTATAATTATGGGTTTACACTTGGCTGGGGCTTCA
TCGATTTTCG

>B133G_COXI♂
GGCGTTTTATGGTGAGGCCTTATACAACGTTATTGTGACGTCCCACGGTATTT
TAATGATTTTTTATGGTTATACCTCTTTAAATACGGGTTTTTTCGGAATTAAGTTAATTCCCAATTTTATATGGTTATACCTCTTTAAATACGGGTTTTTTCGGAATTAAGTT
TTTACATGCCCCCAGCTCTCTTGGGGCGAGTTAATAGTTTTAGTTTCTGACTAATGCCGT
TTTCCTTAATTTTAGTTTTGTTTTCCAATTGT

>B134G_COXI♂
GTGAGGCCTTATACAACGTTATTGTGACGTCCCACGGTATTTTAATGATTTTTTATGGTTATACCTCTTTAAATACGGGTTTTTTCGGAATTAAGTTAATTCCCAATTTTATATGGTTATACCTCTTTAAATACGGGTTTTTTCGGAATTAAGTT
TTTACATGCCCCCAGCTCTCTTGGGGCGAGTTAATAGTTTTAGTTTCTGACTAATGCCGT
TTTCCTTAATTTTAGTTTTGTTTTCCAATTGT

Polymesoda sp.

>B491G_16S
CGGCTATTATTTATTTACTAAGGTAGCCTGAATTGTTCCCTTTAATTGGGGGCTG
GTACGATAAGGTGTGACGGTAAGCCTTTAAATATCGGTTTGGGCAAGTTAATATGTTGTTTGGGCAAGTTAATATGTTGTTTGGGCAAGTTAATATGTTGTTTGGGCAAGTTAATATGTTGTTTGGGCAAGTTAATATGTT
GGGCAACTGAAGATGAAAAGAACATTTTTTGTTATTAGATGAGGATCCATTC
AGAATGATAGAAGCAGCCAGCTACCGCAGGGAACAGGAGTATCACTTTTT
GAGAGCAGCTATTAAAGAAAGGTTTACCACCTCGATGTGGAATGAA

>B491_16S
CGGCTATTATTTATTTACTAAGGTAGCCTGAATTGTTCCCTTTAATTGGGGGCTG
GTACGATAAGGTGTGACGGTAAGCCTTTAAATATCGGTTTGGGCAAGTTAATATGTTGTTTGGGCAAGTTAATATGTTGTTTGGGCAAGTTAATATGTTGTTTGGGCAAGTTAATATGTTGTTTGGGCAAGTTAATATGTTGTTTGGGCAAGTTAATATGTT
GGGCAACTGAAGATGAAAAGAACATTTTTTGTTATTAGATGAGGATCCATTC
AGAATGATAGAAGCAGCCAGCTACCGCAGGGAACAGGAGTATCACTTTTT
GAGAGCAGCTATTAAAGAAAGGTTTACCACCTCGATGTGGAATGAA

>B492G_16S
>B492S_16S
CGGCTATTTATTTACTAAGGTAGCGTGTTAATTTGCCCTTTTAATTGGGGGCTG
GTACGAATGTTGACCTAGAAGATCTTTATTTAAGTATAGGTTGTTAAAAGT
TCCGTTTAAGTGGAAAGGGCTTTAAATTGGGCTG
GTACGAATGGTTTGACGTTAGAAAGTCTTTATTTAAAGTATGGTTGTTAAAGT
TTCCGTTTAAGTGAAAAGGCTTAAATTTTTGTAAAAGACGAGAAGACCCTGT
CGAGCTTGATTAAATGTGGTATTATTGTTTGTATATTATTTTTAAGTTTAGTTG
GGGCAACTGAAGATGAAAAGAACATTGGTTATTAGATGAGGATCCATTC
ANAATGATAGAAAGCGAAAAGCTACCAGGGATAAACAGACTAATCTATTTTT
GAGAGCAGCTATTTAAAGAAAGTGTTCCTACCTCAGATATTGGGACTAAGAAC
CCCTATGCTT

> B492S_16S
CGGCTATTTATTTACTAAGGTAGCGTGTTAATTTGCCCTTTTAATTGGGGGCTG
GTACGAATGTTGACCTAGAAGATCTTTATTTAAGTATAGGTTGTTAAAAGT
TCCGTTTAAGTGGAAAGGGCTTTAAATTGGGCTG
GTACGAATGGTTTGACGTTAGAAAGTCTTTATTTAAAGTATGGTTGTTAAAGT
TTCCGTTTAAGTGAAAAGGCTTAAATTTTTGTAAAAGACGAGAAGACCCTGT
CGAGCTTGATTAAATGTGGTATTATTGTTTGTATATTATTTTTAAGTTTAGTTG
GGGCAACTGAAGATGAAAAGAACATTGGTTATTAGATGAGGATCCATTC
ANAATGATAGAAAGCGAAAAGCTACCAGGGATAAACAGACTAATCTATTTTT
GAGAGCAGCTATTTAAAGAAAGTGTTCCTACCTCAGATATTGGGACTAAGAAC
CCCTATGCTT

Mesodesma deauratum

> B509G_16S
CGGTGCAGAATTGCTAATTGTGCAGAAGGTAGCGCAATAAAATCGTCTTTTTAATT
GGAGAAAGGTCTCAACGGCCTGTCAATGGGAGGACTGCTACGAAAAANCC
TCTGCCCCCTTCTATNNAA

> B509S_16S
CGGTGCAGAATTGCTAATTGTGCAGAAGGTAGCGCAATAAAATCGTCTTTTTAATT
GGAGAAAGGTCTCAACGGCCTGTCAATGGGAGGACTGCTACGAAAAANCC

> B508G_16S
CGGTGCAGAATTGCTAATTGTGCAGAAGGTAGCGCAATAAAATCGTCTTTTTAATT
GGAGAAAGGTCTCAACGGCCTGTCAATGGGAGGACTGCTACGAAAAATAC

Bathyarca glacialis

> B450G_COXI
CCCCATCTGGAACAAAAAAAGATGTATTAAAATTTCGATCTGCAATTAATATT
GGAGAAAGGTCTCAACGGCCTGTCAATGGGAGGACTGCTACGAAAAANACCTC

xlvi
Musculus niger

>B324S_COX1
AGTGGGCGGGAAATACTATCGTTTAGGTTAGCCCTTTTGATTCCGGCTTCTATT
TATCTCATCCAGGAAAAATTATTTAAATTAAAAATGAAATGGCACTACAATGTTGTT
GTACTACTCAGTCCTTTTTAATATTTTTTTCGCTAATTCGCGGGGCTTG-
ATTGGGGGTATTTGCTTATTCTCTTTTAATGATTGGAGGATGATGTATTT
GATTTTTCTCGTTTAAATAACTTAAAGGATCTGGTTATCTCAAATGCTTTGTA
CTTTCTGTGCTATTCCTAATAAAAAGAAAGGTGCTGGACGGGAGATGAACT
TTGGTATCTTCTCTCTCTCTCTCTCTCTGGAATACCATGGAGGTCCTCCTGTGGATGTTG
TTGATTACTTCTTTTACATTTAAATTGGGCTAAGTCTTTTGATGTAGGACATAAAT
TAT

>B326S_COX1
TAGGGTTTAAAGGGTTAGCCCTTTTGGATTCGGCCTTCTTTATTTATCTCATCCAGGA
AATTTATTAAATTAAAAATGAAGGGGATACC

>B327S_COX1
GGGGTTAGCCCTTTTGGATTCGGCCTTCTTTATCTCATCCAGGAATTTATAAT
TAAAATGAATGGTACTACAATGTGGTTGTACCCATG

Littorina littorea

>B332G_COX1
GATCTGGGCTTGTGGTACTGCTTTAAGTCTACTTTATTCCGGGCTGAATAGGT
CAACCCTGCGCTCTCTCTGGAGATGACAGCATGTACACGGTTTACAG
CCCACGCTTTGGAATATAATTTTTTCTTTTCTTTTTATGCTATGAAATTTGCTGGGT
TTGGAAAAATTACCTGCTCCCCTTTTAATTAGGAGCACCAGGATATAGCACTCTCCT
CGTTAATAATAAGCTTTTTGACTTACTCTCCCCCGGCTTTTCTGTATCTA TA
CTTTCTGCTGCCGTTAGAGAATGTTGCAAGGAGGCTGGGAATCTGATATCTCCCTC
TTATCCGGAATTTAGCCATGCGCGACGGGTCTGTGGGAATTAGCATTCTTTTCT
CTCTTACTTTGCGCGGTGCTACTCATTATTTTATGGCGCCGAAATTTTTATACAA
CTATTATATAATATTGAGAAGGAGGATGCAATTGAGCATTACCTCTTTTT
GTTTGATCTGTAAAAATTACGCCCTTTTTTACTTTTTACTCTCTCCCTCGATTTTA
GCAGGAGCCATTACAATATTGTTAACTGATCGAAAATTTAAAACACTGCCTCCTT
CGACCCCTGCTGGGGGTGGAGATCCTATTCTCTACCAGCATTTATTTTGATTTTT
TGGTCACCCTG

>B332S_COX1
GATCTGGGCTTTGTGTTGACTGCTTAAAGTCTACTTTATTCCCGGCTGAATTTAGGT
CAACCTGGCGCTCTCCGTGGGGAGATGACCTACGAACATATGTTTGACAAAAAG
CCACGCTTTTTAATAAATTTTTTCTTTCTTTCTTATGCTATGATAATTGGTTGGT
TTGGAAAT

>B50G_16S
ATATTCTAGTCCAAACATCGAGGGTCACAACAACCTTTTTTTGATGAAACTCTC
AAAAAAGATTTATGCTGTTATCCTAAGCCTGTAACATTCTTTTTTATCCGTAACA
TGACGGATCTAGTTGATATATTTATTTTTTAAATAAACAAGCTTTAGTTGGTCC
TTAGTCGCCCAACCAAAAAAAAAAAATATGAGATAATATATACACTTTTCT
TTATCATCAAATG

>B50S_16S
ATATTCTAGTCCAAACATCGAGGGTCACAACAACCTTTTTTTGATGAAACTCTC
AAAAAAGATTTATGCTGTTATCCTAAGCCTGTAACATTCTTTTTTATCCGTAACA
TGACGGATCTAGTTGATATATTTATTTTTTAAATAAACAAGCTTTAGTTGGTCC
TTAGTCGCCCAACCAAAAAAAAAAAATATGAGATAATATATACACTTTTCT
TTAT

>B53G_16S
ATATTCTAGTCCCAACATCGAGGGTCACAACAACCTTTTTTTGATGAAACTCTC
AAAAAAGATTTATGCTGTTATCCTAAGCCTGTAACATTCTTTTTTATCCGTAACA
TGACGGATCTAGTTGATATATTTATTTTTTAAATAAACAAGCTTTAGTTGGTCC
TTAGTCGCCCAACCAAAAAAAAAAAATATGAGATAATATATACACTTTTCT
TTAT

>B53S_16S
ATATTCTAGTCCCAACATCGAGGGTCACAACAACCTTTTTTTGATGAAACTCTC
AAAAAAGATTTATGCTGTTATCCTAAGCCTGTAACATTCTTTTTTATCCGTAACA
TGACGGATCTAGTTGATATATTTATTTTTTAAATAAACAAGCTTTAGTTGGTCC
TTAGTCGCCCAACCAAAAAAAAAAAATATGAGATAATATATACACTTTTCT
TTAT

>B54G_16S
ATATTCTAGTCCCAACATCGAGGGTCACAACAACCTTTTTTTGATGAAACTCTC
AAAAAAGATTTATGCTGTTATCCTAAGCCTGTAACATTCTTTTTTATCCGTAACA
TGACGGATCTAGTTGATATATTTATTTTTTAAATAAACAAGCTTTAGTTGGTCC

xlviii
AAAAAAGATTATGCTGTTATCCCTACGGTAACTAATTCTTTTAATCGTAACTAATC
TGACGGATCTAGATTTAGATATTATTATAAAAATAAAAAGAGGCTTTGATTGTTCC
TTAGTCGCCCAAACCAAAAAAATTTTTATGAAAAGAATGTTATATCATTCTCTTTCT
TTATATCATAAATAGTAAAAAAGCTGAGATAGGTTCTTTGCTTCTTTTTAATATTA
TCTAGGCCTTCTACCTAGAGGATAAATTCCAGAGATTTCTGCAGAGAGCGGG
GTTGCCCTTGTCAAAACCTTTCTACTAGCCCTCAATTATAGGGCAAAATGATTA
TGCTACCTTTGCACGGTCAGAGTACCAGGCAGCGGCGTTGAATACGAGATG

Tectura testudinalis

>B66S_COXI
TACTTTAAGATTACTAATTCCGATTACATTATATGCACAGGGGAGAGGGTTCC
TGGATGACGGCGCACCTTTGTAACAATGCAGTAAACAGCCCATGCAGTTTTTAAT
AATTTTTTTATGTTAATGCGTTTTTAATAGGGGGGTTTGGTAAATTGTTAGT
TCCCATGTTAATCCTACCTCATCCTGATTTAGATAGCTCGTATAAATACCTAA
GGTTTTGGCTATTACCACATTCCTAGTGGTTTTACTCTTTACCTTTAACAAGAG
ATACAGCAGTACGGACTGGTGAATCATACTATACCCCACCTGCTCTTCTTAGAG
GGACACCACATCTAGTGTGGTAGGACAGGAAATTTTTCTTTACATATAAGAGG
CATTGCTTCAATTATATGCAAATGTAATTACCTACAAATCAAACATGCC
CAGGGCCCAAACAAACGGTGGTGACATCCCTTGTGTTGCAGACTGCAATTGG
TACCAAGTAGTGTATTTACTCTCTCTATGCTGGCTGTTGCGGGCCCTTAAC
AATGTGTGATTACTGATCGTAATATCACACTGCCTTCTTTGATACGAGAGGG
GAGGGCGACCTGTGTTGTTTCAACACTCTTTCTGTGTTTTTG

>B96S_COXI
TACTTTAAGATTACTAATTCCGATTACATTATATGCACAGGGGAGAGGGTTCC
TGGATGACGGCGCACCTTTGTAACAATGCAGTAAACAGCCCATGCAGTTTTTAAT
AATTTTTTTATGTTAATGCGTTTTTAATAGGGGGGTTTGGTAAATTGTTAGT
TCCCATGTTAATCCTACCTCATCCTGATTTAGATAGCTCGTATAAATACCTAA
GGTTTTGGCTATTACCACATTCCTAGTGGTTTTACTCTTTACCTTTAACAAGAGG
ATACAGCAGTACGGACTGGTGAATCATACTATACCCCACCTGCTCTTCTTAGAG
GGACACCACATCTAGTGTGGTAGGACAGGAAATTTTTCTTTACATATAAGAGG
CATTGCTTCAATTATATGCAAATGTAATTACCTACAAATCAAACATGCC
CAGGGCCCAAACAAACGGTGGTGACATCCCTTGTGTTGCAGACTGCAATTGG
TACCAAGTAGTGTATTTACTCTCTCTATGCTGGCTGTTGCGGGCCCTTAAC
AATGTGTGATTACTGATCGTAATATCACACTGCCTTCTTTGATACGAGAGGG
GAGGGCGACCTGTGTTGTTTCAACACTCTTTCTGTGTTTTTG

>B97G_16S
TTTCTGGAGGCCCTAAGCCAACATCGAGGTCGCAAACCCTCCCCTTTAATGTG
GTCTCGCAGGCAGATTACGCTCTTGTTATCCCTGCGTAACCTCTTCTTTTAAC
AGTTAACATGAAACACAGTGTCTTTTATATAAGTAACACTGCTTGG
TCAGACCTTTTTAATTAATCAAGTGATTACTTTTCTGAAGGCCATTTGGCCTTG
AGGGTTAAAGTCACTATTACCTTATTCAAAGTGTTGGTCTTCTTTCTATGGAG
GGGGGCGGTGTTTACCCCTGTTACCCCAAACAAAGGTTTTAAATACAAAA
ACAATCAGTGTCTCTTATTAGGCAAGTTGTTGGGGTAAGCTACCTAAAGTTGCAG
AGGGCTTAATCGCTCTCTCAGATAATATCGGCGCTTTTCCACCAGAAGTAAAAT
TCAAAACTAATATAACCGAGACAGCGCACCACAGCGTCGTACCACTCATACGGG
CCAACAATTAATAGGCTATTGATTACCTTGTTCAGCGGTCAGGTTACCGGCAATTGAAATCCCGTACGGATGTTACGGGTACCATGCTTGCTGCAAGGCTACCGGTAACCTCCCGGGGAATAACATTACATGCTGCAGGAGGCTATGTTTTTGAACAAACAGGCGG

>B97S_16S
TTTCCTGGAGGCCCTAAGCCAACATCGAGGCTGCAAAACCCCTCCCTTTAAATGTGCGTCTCCGCCGGAAGATTACGCTGTTATCCCCGGGGTAACTCTCTCCCTTTTAAACAGTTAACGAAAACAGTGTTTATTTTAAATAGTAACACTATGTTCTTGTCAGACCTTTTTAAATATTACATGGATATTACCTTTCTGACAGGTGAACGGCAATGTGCCCTGAAGGGAAGTCACTATTACCCTTATCAAAGTGGGTGCTAACTTTCAATGGAGGGGGGCGTTTTTTTTAGTCCCCGGTTACCCCAACCAAAGGTTTAATAACAAAAACATCACTGCCTTTATTAGGCAAGTTGGTGGGTAAGCTACCTAAAGTTCGACGGGTCTAATCGTCTTTCAGACCTTTTTAATTAATCAAGTGATTACTTTCCTGAGAGGCCAATTGCCCTG

>B96S_16S
TTCTGGAGGCCCTAAGCCAACATCGAGGCTGCAAAACCCCTCCCTTTAATGTGCGTCTCCGCCGGAAGATTACGCTGTTATCCCCGGGGTAACTCTCTCCCTTTTAAACAGTTAACGAAAACAGTGTTTATTTTAAATAGTAACACTATGTTCTTGTCAGACCTTTTTAAATATTACATGGATATTACCTTTCTGACAGGTGAACGGCAATGTGCCCTGAAGGGAAGTCACTATTACCCTTATCAAAGTGGGTGCTAACTTTCAATGGAGGGGGGCGTTTTTTTTAGTCCCCGGTTACCCCAACCAAAGGTTTAATAACAAAAACATCACTGCCTTTATTAGGCAAGTTGGTGGGTAAGCTACCTAAAGTTCGACGGGTCTAATCGTCTTTCAGACCTTTTTAATTAATCAAGTGATTACTTTCCTGAGAGGCCAATTGCCCTG

>B96G_16S
TTCTGGAGGCCCTAAGCCAACATCGAGGCTGCAAAACCCCTCCCTTTAATGTGGGCTCTGGCCGGGAAGATTACGCTGTTATCCCCGGGGTAACCTCTTTTAAACAGTTAACGAAAACAGTGTTTATTTTAAATAGTAACACTATGTTCTTGTCAGACCTTTTTAAATATTACATGGATATTACCTTTCTGACAGGTGAACGGCAATGTGCCCTGAAGGGAAGTCACTATTACCCTTATCAAAGTGGGTGCTAACTTTCAATGGAGGGGGGCGTTTTTTTTAGTCCCCGGTTACCCCAACCAAAGGTTTAATAACAAAAACATCACTGCCTTTATTAGGCAAGTTGGTGGGTAAGCTACCTAAAGTTCGACGGGTCTAATCGTCTTTCAGACCTTTTTAATTAATCAAGTGATTACTTTCCTGAGAGGCCAATTGCCCTG

>B93S_16S
TTCTGGAGGCCCTAAGCCAACATCGAGGCTGCAAAACCCCTCCCTTTAATGTGCGTCTCCGCCGGAAGATTACGCTGTTATCCCCGGGGTAACTCTCTCCCTTTTAAACAGTTAACGAAAACAGTGTTTATTTTAAATAGTAACACTATGTTCTTGTCAGACCTTTTTAAATATTACATGGATATTACCTTTCTGACAGGTGAACGGCAATGTGCCCTGAAGGGAAGTCACTATTACCCTTATCAAAGTGGGTGCTAACTTTCAATGGAGGGGGGCGTTTTTTTTAGTCCCCGGTTACCCCAACCAAAGGTTTAATAACAAAAACATCACTGCCTTTATTAGGCAAGTTGGTGGGTAAGCTACCTAAAGTTCGACGGGTCTAATCGTCTTTCAGACCTTTTTAATTAATCAAGTGATTACTTTCCTGAGAGGCCAATTGCCCTG
TCAGACCTTTTTAATTAATCAAGTGATTACTTTCTGAAGGCCAATTGCCCTGGAGTTAAAGTCAAACCTTTTATTAGGCAATTTTGTGAAGGCCAATTGCCTGAGGGTAAAGTCACTATTACCCTTATCAAAGTGGGTGCTAACTTTCAATGGAGGGGGCGTTTTTTTAGTCCCCGGTTACCCCAACCAAAGTTTAATAACAAACAATCACTGCCTTTATTAGGCAAGTTGGTG

> B93G_16S
TTTCTGGAGGCCCTAAGGCAACACATCGAGGTGTCGCAAACCTCCCTCTTAATGTGCTCTGCCTGGAAGATTACGCTGTTATCCCTGCAGTTAAGCTATCGCACTGTTTTATACGCTATTTCTATTAAGCTATTTTATAATGAAACTACTAGTCTTTGAGTAAGCTATTTTCTTATACGCTAATACAGGCCAACCAATTAATAGGCTATTGATTACGCTACCTTTGCAGCGGTCA

> B66S_16S
GAGGCCGTAAGGCCCTAAGGCAACACATCGAGGTGTCGCAAACCTCCCTCTTAATGTGCTCTGCTGGAAGATTACGCTGTTATCCCTGCAGTTAAGCTATCGCACTGTTTTATACGCTATTTTCTATTAAGCTATTTTATAATGAAACTACTAGTCTTTGAGTAAGCTATTTTCTTATACGCTAATACAGGCCAACCAATTAATAGGCTATTGATTACGCTACCTTTGCAGCGGTCA

> B66S_16S
TTTCTGGAGGCCCTAAGGCAACACATCGAGGTGTCGCAAACCTCCCTCTTAATGTGCTCTGCTGGAAGATTACGCTGTTATCCCTGCAGTTAAGCTATCGCACTGTTTTATACGCTATTTTCTATTAAGCTATTTTATAATGAAACTACTAGTCTTTGAGTAAGCTATTTTCTTATACGCTAATACAGGCCAACCAATTAATAGGCTATTGATTACGCTACCTTTGCAGCGGTCA
CGGCAATTGAATCCCGTAGGCCATTGTGCAGGTGTGACCTCCCGGGAATAAC
ATTCACTATGTCTGCGGAGGGCCATGTGTTTTTGAAACACAGGCAG

>B66G_16S
GAGGCCCCCTAGCGCAACATCGAGGTCGCAAACCCCTCCCTTAATGTGTCCTCG
CGGGAAGATTACGCTGTTATCCCTCGGTTAACTCCTCCCCCTTTTAAACAGTTAA
CTGAAACACAGTTCTTTAGTTCATTTTATAAGTAAACTATGCTTTCGAGAC
CTTTTATAATTAAGTGATTATCTTCTCGAGGGTA
AAGTGCACTATATCCTACATACAAGTGGGTGCTAATCTTTAAGGGAGGGGG
CAGTTTTTTTAGCTCCCCGGTTACCACCAACCGGATTTAATAACAAATACAT
ACTGCGCTTTTATTAGGCAAGTTGGTGTAGCTACCGAAGTTCGAAGGGGT
CTAATCGTCTTTCAGATATATCTGGGCCTTTTCACCCAGAAGTTTTAATCAC
CTAATAGCCACAGCAGGCGCGCCACCACAGCGTCTGACCATTACAGGCGCA
ATTGAATCCCGTAGGCC

>B66G_16S
TTTCTGGAGGCCCTAAGCCAACATCGAGGTCGCAAACCCCTCCCTTTAATGTG
GTCCTCGCCGGGAAGATTACGCTGTTATCCCTCGGTTAACTCCTCCCCCTTTAAC
AGTTAACTGAAACACAGTTCTTTATGTTATTTTATAAGTAAACTATGCTTTT
TCAGACCTTTTTTAATAATACAGTGGATTATCTTCTCGAGGGTA
AAGGGCGGCGTTTTTTAGTCCCCCGTTACCAACCAACAGTTTTAATAACAA
ACAATACAATGGCTATTTGATTACGCTACCGTCTTTCGACAGGGTGTATTAC
CGGCAATGTAATCCCTGGTAGGCCATTGTGAGGTGTGAACCTCCCCGGGAATAAC
ATTCACTATGTCTGCGGAGGGCCATGTGTTTTTGAAACACAGGCAG

>B107S_16S
TTTCTGGAGGCCCTAAGCCAACATCGAGGTCGCAAACCCCTCCCTTTAATGTG
GTCCTCGCCGGGAAGATTACGCTGTTATCCCTCGGTTAACTCCTCCCCCTTTAAC
AGTTAACTGAAACACAGTTCTTTATGTTATTTTATAAGTAAACTATGCTTTT
TCAGACCTTTTTTAATAATACAGTGGATTATCTTCTCGAGGGTA
AAGGGCGGCGTTTTTTAGTCCCCCGTTACCAACCAACAGTTTTAATAACAA
ACAATACAATGGCTATTTGATTACGCTACCGTCTTTCGACAGGGTGTATTAC
CGGCAATGTAATCCCTGGTAGGCCATTGTGAGGTGTGAACCTCCCCGGGAATAAC
ATTCACTATGTCTGCGGAGGGCCATGTGTTTTTGAAACACAGGCAG

>B107S_16S
TTTCTGGAGGCCCTAAGCCAACATCGAGGTCGCAAACCCCTCCCTTTAATGTG
GTCCTCGCCGGGAAGATTACGCTGTTATCCCTCGGTTAACTCCTCCCCCTTTAAC
AGTTAACCTGAAACACAGTTCTTTAGGTTCTATTATTAAAGTAAACTATGTCTTG
TCAGACCTTTTTAATTAACTAAGTAGATTTACTTTTCTGAAAGGCCAATTGCCTCT
AGGGTAAAGTCCTATTACCTTTATCAAAAGTGGGTTGCTACTTTTCAATGGGAG
GGGGGGGCTTTTTTTTATGTCCTCCCGGTTACCCCAACCAAGGTTTTATATAACAA
AACAATCCTGCATTATAGGCTATTACGCTACTTTTCTGAAAGGCCAATTGCCTCT
AGGGTCTACTGTTTTTACAGATATATCTGGGTAGTCTGTTACCTTTTCACTTCAAT
TCAAAACTATAAACCAGACACGCGACACCAGCTGTTACATACACCGGG
CGCGCAAATTGATCGCCATTGTGACGGTGACCTCCCGGGAATAAC
ATTCCACTGTCTCGGAGGGCCATGTGTTTGTAAAAACAGGCGA

>B105S_16S
TTTCTGGAGGCCCTAAGCCAACATCAGGGTGCAGTCAACCCCTCAACCTGAAAGG
GTCTCGCCGGCCAAGATTACGCTATTACCTCTGGCTGTAACCTCTCTCTCTCTCT
AGTTAACCTGAAACACAGTTCTTTAGGTTCTATTATTAAAGTAAACTATGTCTTG
TCAGACCTTTTTAATTAACTAAGTAGATTTACTTTTCTGAAAGGCCAATTGCCTCT
AGGGTAAAGTCCTATTACCTTTATCAAAAGTGGGTTGCTACTTTTCAATGGGAG
GGGGGGGCTTTTTTTTATGTCCTCCCGGTTACCCCAACCAAGGTTTTATATAACAA
AACAATCCTGCATTATAGGCTATTACGCTACTTTTCTGAAAGGCCAATTGCCTCT
AGGGTCTACTGTTTTTACAGATATATCTGGGTAGTCTGTTACCTTTTCACTTCAAT
TCAAAACTATAAACCAGACACGCGACACCAGCTGTTACATACACCGGG
CGCGCAAATTGATCGCCATTGTGACGGTGACCTCCCGGGAATAAC
ATTCCACTGTCTCGGAGGGCCATGTGTTTGTAAAAACAGGCGA

>B102G_16S
TCAGATCAGTAAAGGGCTTTAATGTTGCTGACACGACACACCCCTTGAAGGCCCCCT
GCACCTTCTGGAGGCCCTAAGCCAACATCAGGGTGCAGTCAACCCCTCAACCTGAAAGG
GTCTCGCCGGCCAAGATTACGCTATTACCTCTGGCTGTAACCTCTCTCTCTCTCT
AGTTAACCTGAAACACAGTTCTTTAGGTTCTATTATTAAAGTAAACTATGTCTTG
TCAGACCTTTTTAATTAACTAAGTAGATTTACTTTTCTGAAAGGCCAATTGCCTCT
AGGGTAAAGTCCTATTACCTTTATCAAAAGTGGGTTGCTACTTTTCAATGGGAG
GGGGGGGCTTTTTTTTATGTCCTCCCGGTTACCCCAACCAAGGTTTTATATAACAA
AACAATCCTGCATTATAGGCTATTACGCTACTTTTCTGAAAGGCCAATTGCCTCT
AGGGTCTACTGTTTTTACAGATATATCTGGGTAGTCTGTTACCTTTTCACTTCAAT
TCAAAACTATAAACCAGACACGCGACACCAGCTGTTACATACACCGGG
CGCGCAAATTGATCGCCATTGTGACGGTGACCTCCCGGGAATAAC
ATTCCACTGTCTCGGAGGGCCATGTGTTTGTAAAAACAGGCGA

>B102S_16S
TTCTGGAGGCGCCTAAGCCAACATCAGGGTGCAGTCAACCCCTCAACCTGAAAGG
GTCTCGCCGGCCAAGATTACGCTATTACCTCTGGCTGTAACCTCTCTCTCTCTCT
AGTTAACCTGAAACACAGTTCTTTAGGTTCTATTATTAAAGTAAACTATGTCTTG
TCAGACCTTTTTAATTAACTAAGTAGATTTACTTTTCTGAAAGGCCAATTGCCTCT
AGGGTAAAGTCCTATTACCTTTATCAAAAGTGGGTTGCTACTTTTCAATGGGAG
GGGGGGGCTTTTTTTTATGTCCTCCCGGTTACCCCAACCAAGGTTTTATATAACAA
AACAATCCTGCATTATAGGCTATTACGCTACTTTTCTGAAAGGCCAATTGCCTCT
AGGGTCTACTGTTTTTACAGATATATCTGGGTAGTCTGTTACCTTTTCACTTCAAT
TCAAAACTATAAACCAGACACGCGACACCAGCTGTTACATACACCGGG
CGCGCAAATTGATCGCCATTGTGACGGTGACCTCCCGGGAATAAC
ATTCCACTGTCTCGGAGGGCCATGTGTTTGTAAAAACAGGCGA
CAATCAGCTTTTATAGGCAAGTGGTGGTTAACCTAAAGTCTCGACA
GGGTCTATCAGCATTTCAAGCTATATCTCTTCAATCCACAGTAAATT
AAAATAATAACCCGAGACACGCCAACACAGCCGTCACTACCTCAACAGG
CAAAATTAATAGGCTATTGATTTACGCTACTCTTTGCGAGGCCAGTTACC
GGCAATCTAGTACCCTGAGCC

Nucella lapillus

>B136S_16S
CGGCTGCATCTTTAGGATATTCTGGTCCAACATCGAGGTCAACAAACCTTTTT
TCGATTAGAATTCTCAAAAAAGATAATGCTGAGTCCCTACGGTAACCTAAT
TTCTTTAATCAAATTTTTTGATAGTACTTTGAAATGTGTTAATATTTACACAG
GAAGCTTTGTTTGTCTCACTCGTCCCCAACACTAAATGATTTAATAGCTAAAT
TTGTATTACAAAAATACTAATTTTTAAGTTTATTAATTTTTAAAAAG

>B136G_16S
CGGCTGCATCTTTAGGATATTCTGGTCCAACATCGAGGTCAACAAACCTTTTT
TCGATTAGAATTCTCAAAAAAGATAATGCTGAGTCCCTACGGTAACCTAAT
TTCTTTAATCAAATTTTTTGATAGTACTTTGAAATGTGTTAATATTTACACAG
GAAGCTTTGTTTGTCTCACTCGTCCCCAACACTAAATGATTTAATAGCTAAAT
TTGTATTACAAAAATACTAATTTTTAAGTTTATTAATTTTTAAAAAG

>B138S_16S
GACGGCTGCATCTTTAGGATATTCTGGTCCAACATCGAGGTCAACAAACCTTTTT
TCGATTAGAATTCTCAAAAAAGATAATGCTGAGTCCCTACGGTAACCTAAT
TTCTTTAATCAAATTTTTTGATAGTACTTTGAAATGTGTTAATATTTACACAG
GAAGCTTTGTTTGTCTCACTCGTCCCCAACACTAAATGATTTAATAGCTAAAT
TTGTATTACAAAAATACTAATTTTTAAGTTTATTAATTTTTAAAAAG

>B138G_16S
GACGGCTGCATCTTTAGGATATTCTGGTCCAACATCGAGGTCAACAAACCTTTTT
TCGATTAGAATTCTCAAAAAAGATAATGCTGAGTCCCTACGGTAACCTAAT
TTCTTTAATCAAATTTTTTGATAGTACTTTGAAATGTGTTAATATTTACACAG
GAAGCTTTGTTTGTCTCACTCGTCCCCAACACTAAATGATTTAATAGCTAAAT
TTGTATTACAAAAATACTAATTTTTAAGTTTATTAATTTTTAAAAAGCTCG

>B345S_16S
ATCTTTAGGATATTCTGGTCCAACATCGAGGTCAACAAACCTTTTTTTCGATT
GAACCTCAGAAAAAGATAATGCTGAGTCCCTACGGTAACCTAATTTTTTTAA
TCAAATTTTTGATAGTACTTTGAAATGTGTTAATATTTACACAGGAAAGCTTT
GTTTTGCCTCGTCGCCCCAAATAAAAATGATTTAATAGCTAAATTTTTTTAA
GCTGATTACAAAAATACTAATTTTTAAGTTTATTAATTTTTAAAAAGCTCG

ATCTTTAGGATATTCTGGTCCAACATCGAGGTCAACAAACCTTTTTTTCGATT
GAACCTCAGAAAAAGATAATGCTGAGTCCCTACGGTAACCTAATTTTTTTAA
TCAAATTTTTGATAGTACTTTGAAATGTGTTAATATTTACACAGGAAAGCTTT
GTTTTGCCTCGTCGCCCCAAATAAAAATGATTTAATAGCTAAATTTTTTTAA
GCTGATTACAAAAATACTAATTTTTAAGTTTATTAATTTTTAAAAAGCTCG

iv
Figure S7. Liste complète des séquences obtenues dans le cadre de ce projet de maîtrise. Le nom de l’espèce associée aux séquences est indiqué au-dessus de ces dernières en gras. L’identification de chaque séquence comprend (i) le numéro d’individu en laboratoire, (ii) le type de tissus dont la séquence provient, (iii) l’identification du gène et (iv) le sexe de chaque variante si l’espèce possède la DUI.