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RÉSUMÉ

L’apprentissage automatique repose sur l’étude des méthodes de détermination

de paramètres de modélisation de données afin d’accomplir une tâche, telle que la

classification d’image ou la génération de phrases, pour un jeu de données. Ces

paramètres forment des espaces latents qui peuvent démontrer diverses propriétés

impactant la performance du modèle d’apprentissage sur la tâche visée.

Permettre à un modèle d’adapter son espace latent avec plus de liberté peut

amener à l’amélioration de la performance de ce modèle. Un indicateur valide de la

qualité de l’espace latent engendré par un modèle est la collection des propriétés ex-

primés par cet espace latent, par exemple en ce qui a trait aux aspects topologiques

de la représentation apprise par le modèle.

Nous montrons des résultats appliqués dans des régimes supervisés et non-

supervisés, et nous augmentons des modèles par plusieurs modes d’interactions

inter-couches, comme des connections entre les couches d’un codeur au décodeur

analogue dans un modèle autoencodeur, l’application de transformations affines à

la suite de couches, et l’addition de réseaux de neurones auxiliaires connectés en

parallèle. L’effet des méthodes proposés est évalué en mesurant soit la performance

de classification ou la qualité des échantillons générés par ces modèles, ainsi qu’en

comparant les courbes d’entrainement des algorithmes. Les modèles et méthodes

sont évalués sur des jeux de données d’images populaires, comme MNIST et CI-

FAR10, et sont comparés aux méthodes à l’état de l’art pour les tâches accomplies.

Nous développons un modèle qui utilise la puissance générative des autoen-

codeurs variationnels, enrichi par des connections latérales dans le style des réseaux

escaliers pour application en classification.

Nous proposons une méthode qui permet d’isoler les tâches réalisées par les

couches convolutionnelles (soit l’apprentissage de filtres pour l’extraction de traits

et l’agencement topologique nécessaire pour l’apprentissage par les couches sub-



séquentes) en utilisant des couches complètement connectées intercalées avec les

couches convolutionnelles.

Enfin, nous appliquons la technique de normalisation par groupe aux couches

du réseau récurrent à l’état de l’art (pixel-rnn) et nous démontrons que cela per-

met une augmentation prononcée du taux de convergence du modèle, ainsi qu’une

amélioration notable de sa performance totale.

Mots-clefs: apprentissage automatique, apprentissage profond, vision

par ordinateur, non-supervisé, autoencodeur, réseau de neurone
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ABSTRACT

Machine learning models rely on learned parameters adapted to a given set of

data to perform a task, such as classifying images or generating sentences. These

learned parameters form latent spaces which can adapt various properties, to im-

pact how well the model performs.

Enabling a model to better fit properties of the data in its latent space can im-

prove the performance of the model. One criteria for quality is the set of properties

expressed by the latent space - that is, for example, topological properties of the

learned representation.

We develop a model which leverages a variational autoencoder’s generative abil-

ity and augments it with the ladder network’s lateral connections for discrimination.

We propose a method to decouple two tasks perfomed by convolutional layers

(that of learning useful filters for feature extraction, and that of arranging the

learned filters such that the next layer may train effectively) by using interspersed

fully-connected layers.

Finally, we apply batch normalization to the recurrent state of the pixel-rnn

layer and show that it significantly improves convergence speed as well as slightly

improving overall performance.

We show results applied in unsupervised and supervised settings, and augment

models with various inter-layer interractions, such as encoder-to-decoder connec-

tions, affine post-layer transformations, and side-network connections. The effects

of the proposed methods are assessed by measuring supervised performance or the

quality of samples produced by the model and training curves. Models and meth-

ods are tested on popular image datasets such as MNIST and CIFAR10 and are

compared to the state-of-the-art on the task they are applied to.

Keywords: machine learning, deep learning, computer vision, unsup-

pervised, autoencoder, neural network
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CHAPTER 1

INTRODUCTION

Machine learning aims to develop methods to automatically capture patterns

in data that can be used to solve tasks. Deep learning, which is concerned with

models composed of many stacked layers, has made great strides in all areas of

machine learning due to its tremendous ability to scale to complex problems where

a lot of data is available, but no closed-form solution is known to solve a given task.

In deep learning, computational layers are stacked, forming a graph that links

the space of inputs to the space of outputs for a task of interest, as illustrated in

figure 1.1. An input is transformed through those computational stacks, and the

quality of the model’s prediction for that task is refined during the training process.

The layers between the input and output successively map the output of the

previous layer into a new representation so as to ignore factors in the input which

are not relevant to the task of interest, while retaining as much information relevant

to the task as possible. At the same time, layers may project their input into a

redundant format that may be easier to process by layers further in the pipeline.

If the representation chosen by a layer is not appropriate for the task, the

model will perform the task poorly. If a layer is free to map its input into arbitrary

representations, the space of possible solutions – few of which are useful to the task

– will take a long time to search and the model might settle in a local minimum.

On the other hand, if the layer is too restricted in the representation it can project

its input unto, the representation useful to the task might not be present in the

search space.

On a high level, supervised learning can be described as a paradigm where

a function from input to label is learned, whereas unsupervised learning learns

parameters that describe its input to generate new examples like it. More concrete



Figure 1.1: A high-level illustration of a directed machine learning model for clas-
sification. The inputs x are transformed successively through computational layers
hi. ŷ is the prediction from the model for the current task.

examples of the learning paradigms can be found in the following chapters.

Unsupervised learning models the data distribution (e.g., a specific model is

proprosed, and the parameters for that model are learned from the input data so

as to best fit the data). On the other hand, supervised learning attempts to perform

a task directly, based on the data (such as recognizing a digit from an image, or a

phonem from a sound stream, or predicting the required settings to move a robot’s

arm for the next part of a motion). Finally, semi-supervised learning attempts

to perform a task directly, except in the presence of data for which the expected

outcome is not known in all cases.

For supervised learning, the quality of the internal representations in the model

simply impacts model performance on a given task. In the case of unsupervised

learning, the quality of the internal representations in the model directly impacts

the model’s ability to model the data, and thus the quality of samples that can

be generated from the model. This setting allows many applications, such as data

2



CHAPTER 1. INTRODUCTION

compression, reconstructing partially missing data, generating unseen datapoints

that match the distribution of the dataset, etc. Semi-supervised learning has to

perform tasks similar to unsupervised models when the data is not labeled, and

similar to supervised learning otherwise.

Thus, the impact of varying properties of the representations is much clearer

on unsupervised and semi-supervised models, and so we focus our experiments on

unsupervised and semi-supervised models for the most part. We explore a hybrid

of the ladder network [36] – an autoencoder augmented by lateral connections –

and variational autoencoder [17] – an autoencoder which models latent factors of

the data using a variational method – models and find that the training process

seems to converge to a middle-ground that prevents the model from performing well

on either task. We also explore the impact of batch normalization on the pixel-

rnn model and find that it greatly improves convergence speed. Additionally, we

propose that separating the tasks performed by individual layers in a deep model

can lead to improved model performance, which we demonstrate with improved

performance on the MNIST dataset.

The next few chapters cover the central principles from which our experiments

are derived. In chapter 5, we discuss experiments to shape latent model variables

to adopt a convolutional structures, and to decouple latent representation topology

and function. In chapter 6, we discuss experiments which aim to improve model

classification performance by exploiting latent representations learned in a gener-

ative context. Finally, we explore the pixel-rnn model, a recurrent neural network

which maintains latent a representation across timesteps which is conditioned on

an image’s pixels, with an auto-regressive dependency.

The code used in the experiments of this thesis is available at

<https://bitbucket.org/zumerj/latent>.

3





CHAPTER 2

DATA FORMAT

Datasets are segmented into three subsets: a training set, a testing set and a

validation set. The testing set is used to measure the model’s ability to generalize

for the task it has learned – that is, to measure how well the model performs when

presented with unforeseen data, while the validation set is used to tell when the

model is overfitting the train data and no longer learning information useful to the

task proper; the training set being the subset used to actually train the model.

The test set performance is not used to tune the model, it is only used to measure

final model performance after tuning on the validation set. This is to ensure that

the model does not overfit the test set by being tuned to perform best on it. Thus,

training error is tracked throughout training and is the metric used to inform the

model on how to improve, while test error is used to assess how the model is doing

comparatively, on a set that it doesn’t see during training.

2.1 MNIST

The MNIST digit dataset contains 28 by 28 pixels grayscale images. Each digit

can have a label between 0 and 9 (i.e. the digit being represented). The image

data represents handwritten digits. The dataset comes with a predefined train and

test split, where the train set is 60,000 images and the test set is 10,000 images.

10,000 images from the train set are held out at random to form the validation set.

Images are shuffled randomly.

The state of the art on the MNIST dataset is 0.21% test-set error [5, 8]. The

task can essentially be considered to be solved. Nevertheless, it is a useful dataset

to determine the viability of a model.



2.2. CIFAR10

2.2 CIFAR10

The CIFAR-10 dataset contains 80 million images of size 32 by 32 pixels [1].

We use this dataset to measure model performance on a task harder than MNIST.

The images come with a predefined 50,000 images train set and 10,000 images test

set. 10,000 images from the train set are held out to form a validation set. The

images are converted from RGB to YUV, image mean is subtracted. Finally, each

pixel is divided by their image variance. CIFAR10 images can take one of 10 labels,

hence its name.

Images represented in this dataset are heavily downscaled natural images of

various types, such as boats, cars, dogs, etc.

The state of the art on CIFAR10 is 96.53% test-set accuracy, and it relies heavily

on data augmentation and multiple passes at test time [5, 12].

2.3 Dogs vs Cats

The Dogs vs Cats Kaggle dataset is a dataset of 3000000 cat and dog images

used by the Asirra (Animal Species Image Recognition for Restricting Access)

CAPTCHA system [10].

The subset of the dataset that we used is the one provided by the Kaggle

competition “Dogs vs Cats” [3]. The dataset contains 25000 images of dogs and

cats, with a binary label (1 for dog, 0 for cat). 5000 images are randomly held out

from this dataset to form a validation set. The test set is not publicly available.

The state of the art on the Dogs vs Cats dataset is 98.53% test-set accuracy

[4, 40].

Since these images are large, they are first preprocessed by resizing them such

that the smaller dimension is 48 pixels long. A centered 48 pixel window is cropped

along the remaining dimension. The resulting images are 48 by 48 pixels, and no

additional preprocessing was performed.

6



CHAPTER 3

LEARNING PARADIGMS

In this chapter, the main settings for which machine learning models are trained

are described. The first section describes the generic setting, and further sections

each describe a paradigm in more details.

3.1 Generalization and Regularization

We are interested in learning parameters for models that allow them to gen-

eralize to unforeseen data - that is, to perform accurate predictions on data not

already seen by the model. In order to do that, we split our datasets into training

and test sets, where the training set is used to drive the model’s training process,

and the test set is used to determine generalization statistics for the model, such as

the classification error rate. The metrics obtained on the test set serve to estimate

the model’s generalization performance on unforeseen data (that is, we assume the

test set is distributed in the same way as the data in the domain we are interested

in).

When the model trains repetitively on the same training data, and if the model’s

capacity (that is, complexity of the functions it can represent, which can be de-

scribed in terms of amount of parameters in the model) is sufficient, the model may

learn to fit specific details of the training set, which are not necessarily relevant to

data at large. This may cause overfitting - that is, training performance may con-

tinue improving while test performance decreases; thus, the model features worse

generalization performance.

In order to prevent this phenomenon, we use regularization schemes, i.e., meth-

ods which penalize the model when it adapts to show properties that indicate

overfitting. These properties may be a reduction in performance on a hold out



3.2. SUPERVISED LEARNING

“validation” set (a set which is not used for feedback during training, and is not

used for testing, but on which we track metrics such as validation performance

during training to determine if the model is overfitting the training data), or prop-

erties of the weights, such as their sparsity or magnitude [34]. Some regularization

schemes, such as L1 and L2 regularization [34], as well as early stopping, are intro-

duced later in this chapter.

A model that is properly regularized may feature even better performance on

the test set than the equivalent model without proper regularization right before it

would start overfitting, because regularization schemes may help the model avoid

local extrema in the optimization process [34].

3.2 Supervised Learning

Supervised learning consists of training parameters of a model based on observed

relations, such as image to label mappings. The model makes a prediction on what

the mapped value should be for a given input and the divergence between the

prediction and the actual output drives learning.

A model is trained to optimize a function which acts as a proxy for the perfor-

mance of the task we’re interested in performing. We use a proxy function, called

the loss, so as to ensure the function to optimize is reasonable smooth. Doing so

ensures that areas that aren’t smooth in the function are minimized, so as not to

lead the model to be unable to escape a bad region of the loss function’s curve.

Performance for the model can simply be evaluated by using the task the model

is trying to solve. For example, in the case of recognizing digits, the recognition

error rate is an obvious way to compare models. However, variants exist, based on

how difficult the task is, or how ambiguous some of the choices are. Top-K error

rate, where the model’s top K predictions are evaluated rather than just the top 1,

is one such variants. This approach has the advantage that when a datapoint has

8



CHAPTER 3. LEARNING PARADIGMS

no clear, obvious expected output, such as deciding if an image represents leaves

or a tree from a close-up shot of a tree’s leaves, models which make a reasonable

decision are not judged to be outright wrong. This approach is also used when data

is classified using a hierarchy of labels, such as all palm trees also being labeled as

trees, and all trees also being labeled as plants.

3.3 Unsupervised Learning

Unsupervised learning attempts to extract useful information from unlabeled

data. In other words, it learns a (usually lossy) compression scheme specific to the

class of data the input belongs to. In probabilistic terms, it learns the parameters

of the distribution which best fits the input data, for example.

Training the model results in capturing patterns inherent in the data, without an

additional task restriction. This can be used to compress the data (by making the

inner-most layer of the network much smaller than the input, and training the model

to reconstruct the input: the representation at any layer is thus a compression for

the input that the model knows how to decompress), to reconstruct missing data

(for example, in the case of superresolution, where a small image is upscaled and the

model learns to minimize distortions and artifacts), or to generate new examples

(such as producing music based on a dataset of music clips).

Performance is typically evaluated using negative log-likelihood for the data

under the model’s learned distribution as a way to tell how well the model has

really managed to capture the distribution of the dataset.

3.4 Hybrid Learning

Hybrid learning refers to learning both an unsupervised and a supervised objec-

tive at the same time, as opposed to basing a supervised learning algorithm on top

of a model that has been trained in an unsupervised setting, or performing super-

9



3.4. HYBRID LEARNING

vised tuning of models that were pre-trained in an unsupervised setting. The most

common usage of hybrid learning is semisupervised learning, whereby only a subset

of the input data contains labels. In that setting, the model uses hybrid learning

to perform the standard classification task while attempting to “reconstruct” the

missing labels by modeling the labels by a suitable distribution and learning this

distribution’s parameters during training, or by marginalizing over examples with

missing labels.

In general, hybrid learning attempts to leverage unsupervised learning methods’

ability to match some structure of the input data without any other input other

than the data itself, in order to better perform classification, or alternatively, to

improve the ability of the model to fit the data distribution by providing it with

labeling information.

Several models perform this task, including the ladder network [36] and the

generative semi-supervised model [19], which are described below. The experiments

described in chapter 6 derive from the same principle, and make use of specifics of

these models.

As the latent space representation of an input can be more informative if there

are less factors that explain it than there are input dimensions (that is to say,

the latent space representation matching a specific input can dilute unimportant

factors to present a more informative representation of a datapoint), it is sensible to

hypothesize that capturing this latent input representation would allow for easier

classification, as the noise from external factors that are not part of the true data

of interest are stripped from this compressed representation.

If the data contains information that is useful to the classification task in ques-

tion, then it is natural to assume that learning unsupervised information about

the data will help perform the classification task. For example, if input images for

the same class have similarities in input space (that is, if they “look similar”, such

as with hand-written digits in the case of digit classification), then it is possible

10
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to extract useful information from the data in an unsupervised way to inform the

classification task and thus improve model performance, such as by acting as a

regularization scheme based on the distribution of the data we are interested in.

3.5 Learning In Models With Latent Variables

When considering the layers of the model as forming latent spaces, training

is the process of inferring the parameters of the model to match the distribution

of the data set (or “data distribution”), and models support a generation opera-

tion, which can produce data of the kind we’re interested in, by sampling from

the model, using the parameters learned during inference (i.e. sampling from the

“model distribution”). The training process otherwise proceeds normally; that is,

an output prediction is sampled from the model in the case of classification tasks,

and unsupervised tasks are often learned by training the model to reconstruct the

input by sampling from the latents and matching the output to the input of the

model.

3.6 Optimization

Optimizing the parameters of the model with regard to its objective function is

what drives learning. The most typical solution to perform optimization in neural

networks (and some probabilistic models such as the VAE) is to use backpropaga-

tion (which consists of calculating gradients in the opposite direction as the model

usually operates to produce an output, minimizing the required amount of unique

computations) with stochastic gradient descent (SGD). SGD consists of updating

the parameters based on the gradient of the cost with regard to these parameters

and a scaling factor, as described in equation 3.2 where C is the cost function.

Because the optimization problem is typically non-smooth and non-convex (al-

though the assumption that the surface is locally convex is often made) [23], a

11
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large learning rate η will cause training to diverge as the parameter never settles

near a minimum. However, if the scaling factor is too small, the parameter will not

update quickly enough and the model will not train in reasonable time. Moreover,

if the surfaces formed by the function based on its parameters are too non-smooth,

it is possible that the gradient takes extreme values away from useful regions of

that manifold.

Several approaches exist to solve this problem. One might reduce the learning

rate under specific conditions, such as when the training objective stops improving,

or systematically after a certain number of training epochs, or by a small amount

every epoch. Methods like momentum [33], described in equation 3.1, attempt to

prevent the learning process from diverging due to proximity to non-smooth areas

of performance vs parameters space by taking into account the contribution of pre-

vious gradients to the trajectory of the parameters. Methods like L1 regularization

such as in equation 3.3 or L2 regularization such as in equation 3.4, which are

applied after the normal SGD update of equation 3.2 can also help in preventing

overfitting [34].

gt+1← νgt +(1−ν)η · ∂C

∂
−→
θt

−−→
θt+1←

−→
θt −gt+1 (3.1)

−−→
θt+1←

−→
θt −η · ∂C

∂
−→
θ t

(3.2)

−−→
θt+1←

−−→
θt+1 +λ1

||
−−→
θt+1||

∑
i=1
|
−→
θ

i
t+1| (3.3)

−−→
θt+1←

−−→
θt+1 +λ2

||
−−→
θt+1||

∑
i=1

(
−→
θ

i
t+1)

2 (3.4)

Methods such as adadelta, RMSProp and ADAM [9, 18, 47] attempt to solve

the learning scheduling and learning rate selection issues with adaptive algorithms.
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These methods are also typically able to speed up training by using topological in-

formation in error space by maintaining statistics on the gradients observed during

training (similar to how second-order methods make use of topological information

such as hessians or local hessian estimates to help avoid saddle points and improve

convergence speed).

A recent and surprisingly powerful method to improve optimization performance

if batch normalization [15], which centers pre-activations (i.e. removes the mean

and divides by the variance) based on batch statistics (the mean and variance

estimates are updated as training progresses), and trains parameters γ and β to let

the model remap the pre-activation (via the transformation described in equation

3.5 where α is the centered pre-activation).

hi = γi(αi +βi) (3.5)
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CHAPTER 4

MODELS

We describe various models on which we base our experiments. We first describe

simple models such as the multilayer perceptron and convolutional models, and

then move up to more complex models like the ladder network and the variational

recurrent neural network.

4.1 Multilayer Perceptron

Multilayer perceptron models (MLPs) are feedforward models composed of lay-

ers of units. Units are simple elementwise operations. Layers are independent of

the part of the network that lie below them, conditional on the layer immediately

below. These models are said to be feedforward because their output is obtained

by feeding an input forward through the network, from one layer to the next, such

that the output of one layer is the input to the layer above. Layers in a MLP are

typically fully-connected, i.e. each unit in a layer above is connected to each unit

in the layer below.

Layers in MLPs typically perform non-linear transformations. The output of a

unit is called an “activation”, a reference to neuron activations in biological neural

networks, and the non-linear operation they perform is referred to as the“activation

function”. Some popular activation functions are described in equations 4.1 through

4.4, where operations are elementwise when applicable and −→α is the vector of pre-
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activations for the layer.

max(0,−→α ) Rectified linear (4.1)

1
1+ e−

−→
α

Logistic sigmoid (4.2)

exp(−→α )− exp(−−→α )

exp(−→α )+ exp(−−→α )
Tanh (4.3)

exp(−→α )

∑
||−→α ||
i=1 exp(−→α i)

Softmax (4.4)

A feedforward layer output is typically described by equation 4.5 where f is

the activation function for the layer, W is a matrix of weights,
−→
b is a vector of

biases, and −→x is the input vector. Units of layers that are not the input layer or

the output layer are often called “hidden units” because their target state is not

directly observed and they are free to adopt any pattern to fit the function being

learned. A hidden unit’s activation is thus often denoted h.

h j = f (Wi jxi +b j) (4.5)

4.1.1 Convolutional Networks

Convolutional Neural Networks (CNNs) [24] are MLP-like feedforward networks

whose layers learn convolution kernels to process inputs on the premise that topo-

logically far elements are weakly correlated, to the point that they are ignored

implicitly via the convolution kernel size selection. They have shown to be power-

ful models to extract useful information from image-like data [13, 20, 40–42]

4.1.1.1 Convolution Operation

The discrete convolution operation is defined in equation 4.6. This operation

applies the function f across the signal g. As per the convolution theorem, this is

typically equivalent to the inverse Fourier transform of the Fourier transform of f
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multiplied element-wise by the Fourier transform of g [7].

The 1D convolution does not conserve all topological information that may be

relevant in images [6, 26] (although such a structure is not necessarily hard to learn

[38]). 2D convolution (and multidimensional discrete convolution in general) is a

straightforward expansion of 1D convolution and is described in 4.7. For convo-

lutional networks operating on images, this is the preferred form of convolution

[38].

( f ∗g)[n] =
∞

∑
m=−∞

f [m]g[n−m] (4.6)

( f ∗g)[n,k] =
∞

∑
m1=−∞

∞

∑
m2=−∞

f [m1,m2]g[n−m1,k−m2] (4.7)

While equations 4.6 and 4.7 formalize the computations performed by convo-

lutional layers, the idea of convolution as used in neural networks was inspired by

biology [24]. Convolution layers have some advantages over fully-connected lay-

ers when working with images: they offer shift and distortion invariance as well

as reducing greatly the amount of parameters in the model by their use of local

receptive fields (i.e. the part of the input which contributes to the output for a

specific cell in the output matrix is not the entire image, note that this is in line

with the prior that nearby pixels to a target pixel are strongly correlated, while

those further apart are only weakly correlated [28]), and shared weights (i.e. the

same parameters are used to perform the convolution at each location on the in-

put). Additionally, it is customary to apply a pooling (or subsampling) operation

on the output of the convolution [24].
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4.2 Recurrent Models

Recurrent models are models where there is a connection between the hidden

layers across timesteps [29]. A vanilla recurrent neural network (RNN) can be

described such as in equation 4.8 where f is an arbitrary non-linearity.

−→
ht = f (W−→x +V

−−→
ht−1 +

−→
b ) (4.8)

An LSTM model is a kind of recurrent model which adds gating units, forget,

state, output and input gates, allowing the network to clear its memory, skip out-

putting a value, skip updating its state, or ignore the input (as well as more complex

transformations). These features allow the model to learn more complex long-term

dependencies [11]. The LSTM state update function is described in equations 4.9

to 4.14, where −→v is the output, the gates are
−→
i (input),

−→
f (forget), −→o (output),

and −→s (state), gx are arbitrary activation functions, and Wx and Vx are weight

matrices. The activation functions are often the logistic sigmoid for the forget and

input gate, and the hyperbolic tangeant for the output and state gates.

−→
i = gi(Wi

−→x +Vi
−−→
ht−1 +

−→
bi ) (4.9)

−→s = gs(Ws
−→x +Vs

−−→
ht−1 +

−→
bs ) (4.10)

−→
f = g f (Wf

−→x +Vf
−−→
ht−1 +

−→
b f ) (4.11)

−→o = go(Wo
−→x +Vo

−−→
ht−1 +

−→
bo) (4.12)

−→
ht =

−→
i ·−→s +

−→
f ·
−−→
ht−1 (4.13)

−→v = gv(
−→
ht ) ·−→o (4.14)

The Wx
−→x term in the LSTM equations is often referred to as the “inputs-to-states”

while the Vx
−−→
ht−1 term is referred to as the “states-to-states”.

RNNs are typically trained via the backpropagation through time (BPTT) al-
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gorithm, which is simply the backpropagation algorithm applied on an unrolled

view of the network. Additional considerations, such as gradient clipping and step

limits, may be used to alleviate issues such as exploding or vanishing gradient which

happen more often in these models due to the interactions between timesteps.

4.2.1 Pixel-RNN

The pixel-rnn model is an RNN that operates on images, capturing a topo-

logically significant “context” (i.e. surrounding pixels) while ignoring pixels that

the model will observe in later timesteps [45]. This is achieved by performing a

convolution on the image (making use of the fact that the convolution is applied

left-to-right, top-to-bottom across the image, whereas the image is processed in a

recurrent way with timesteps along the height of the image). A mask is applied to

the convolution kernel as a pattern extraction step. The mask used in this step is

illustrated in figure 4.1 and eliminates any dependencies with pixels that haven’t

been visited by the convolution previously.

The model is implemented as a set of two LSTMs that process the image from

opposing corners, and from the top to the bottom, in diagonal. The output of these

LSTMs is combined by flipping the output of the LSTM that processes the image

right-to-left, and adding it to the other LSTM’s output, with an offset of one row.

Figure 4.1: Illustration of the mask used by the pixel-rnn during the patch extrac-
tion step (image taken from [45])
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Figure 4.2: Illustration of the diagonal bilstm progress over the image through time
(image taken from [45])

A convolutional network then processes this combined output into a final output

for the current step. This double LSTM assembly is referred to as a “diagonal

bilstm”, and its processing order on the image is illustrated in figure 4.2.

The model is trained by minimizing the binary crossentropy between the input

and output in the case of binary input, such as binarized MNIST, and the cate-

gorical crossentropy between the input and output otherwise, by using a discrete

softmax output on the 256 possible pixel intensity values for each pixel as the final

non-linearity in the output layer.

4.3 Variational Methods

Variational methods enable sampling of the posterior distribution by using an

approximator distribution which can be easily sampled from, and determining that

distribution’s parameters so that it matches the real data distribution as closely

as possible. This variational distribution is denoted q(·) as opposed to the model

distribution p(·).

4.3.1 Log-likelihood Lower bound

The likelihood is typically manipulated in log-space as it is easier to manipulate

log-terms than raw likelihood terms. In order to train a variational model, we thus
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want to maximize the log-likelihood of the data.

Dkl(q||p) =
∫

∞

−∞

q(x) log
(

q(x)
p(x)

)
dx (4.15)

The log-likelihood of a model is given in equation 4.16 [16] where Dkl is the

Kullback-Leibler (KL) divergence as described in equation 4.15 and L is the “vari-

ational lowerbound” which is discussed further below. The KL divergence is always

positive (as per equation 4.15), and so we want to optimize the variational lower-

bound (since the expression of the KL divergence may be intractable). Equations

4.17 through 4.23 derive such a bound (based on the expression for the KL di-

vergence), where p(·) is shorthand for p(·|θ) for data parameters θ , and q(·) is

shorthand for q(·|φ) for model parameters φ . Thus, we find the variational lower

bound described in equation 4.23. It is then possible to train the model by iterative

sampling to optimize the bound.

log p(−→x ) = L (−→x )+Dkl(q(
−→z |−→x )||p(−→z |−→x )) (4.16)
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Dkl(q(
−→z |−→x )||p(−→z |−→x )) = ∑

−→z ∈Z

q(−→z |−→x ) ln
(

q(−→z |−→x )

p(−→z |−→x )

)
(4.17)

= ∑
−→z ∈Z

q(−→z |−→x ) ln(q(−→z |−→x ))− ∑
−→z ∈Z

q(−→z |−→x ) ln(p(−→z |−→x )) (4.18)

= Eq(−→z |−→x )[ln(q(
−→z |−→x ))]− ∑

−→z ∈Z

q(−→z |−→x ) ln
(

p(−→z ,−→x )

p(−→x )

)
(4.19)

= Eq(−→z |−→x )[ln(q(
−→z |−→x ))]− ∑

−→z ∈Z

q(−→z |−→x ) ln(p(−→z ,−→x ))+ ∑
−→z ∈Z

q(−→z |−→x ) ln(p(−→x ))

(4.20)

= Eq(−→z |−→x )[ln(q(
−→z |−→x ))]−Eq(−→z |−→x )[ln(p(−→x ,−→z ))]+ ln(p(−→x )) ∑

−→z ∈Z

q(−→z |−→x )

(4.21)

= Eq(−→z |−→x )[ln(q(
−→z |−→x ))]−Eq(−→z |−→x )[ln(p(−→x ,−→z ))]+ ln(p(−→x )) (4.22)

≥ 0 Dkl is always positive

⇐⇒ ln(p(−→x ))≥ Eq(−→z |−→x )[− ln(q(−→z |−→x ))+ ln(p(−→x ,−→z ))] (4.23)

4.4 Autoencoders

Autoencoders (AEs) are popular unsupervised models. They are comprised of

an encoder pathway and a decoder pathway. The encoder pathway maps an input

to a latent representation, and the decoder pathway maps the latent representation

back into input space as a so-called reconstruction of the input. Such an architec-

ture is illustrated in figure 4.4. Several variants exist, and we describe denoising

autoencoder and variational autoencoder variants in the following subsections. The

Pixel-RNN model is a kind of autoencoder.

4.4.1 Denoising Autoencoders

Denoising autoencoders (dAEs) [46] are a variant of autoencoders where instead

of the encoder mapping the input to latent space, it instead maps a corrupted ver-

sion of the input to latent space. The input is typically corrupted by injecting

noise, such as gaussian noise, at the input. The decoder in such models still at-

tempts to map the latent space to (noise-free) input space. In so doing, the latent
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Figure 4.3: An autoencoder model. The part of the model outputting to the latent
space is the encoder, while the part of the model taking its input from the latent
space is the decoder.

space learned by the model is expected to encode only the factors which are truly

relevant to the input while ignoring noise native to the input, such as that created

by imperfect instruments in the collection of the data.

4.4.2 Variational Autoencoders

Variational autoencoders (VAEs) are autoencoder models which are trained in a

variational way, but which objective can be optimized directly by back-propagation,

making them very fast without accumulating bias from sampling [17].

Since we have full control of the prior distribution of the model (given that the

prior distribution is determined in advance and does not depend on model or data

specifics), and since we know the parameters of the model, the expression of the

Dkl becomes simpler to compute. Because the p(x|h) model is directed, it becomes

trivial to sample from it. By choosing a continuous latent distribution which can

easily be split to isolate the random process, it is then possible to backpropagate

through even the sampling step. One such distribution is the gaussian distribution,

which can be reparameterized as in equation 4.24, where the random process is
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independent of the parameters and thus is constant in all gradients.

N (µ,σ2) = µ +σN (0,1) (4.24)

It is important to note that the sampling operation mentioned here is unrelated

to the sampling operations performed during training with methods such as con-

trastive divergence: it is instead akin to the sampling performed in order to inject

noise at the input of a dAE, with the difference that the noise is instead injected

at the latent space instead.

Since we know the prior, we can rewrite the variational lower-bound in terms of

a KL divergence we can compute tractably. The derivation described in equations

4.25 through 4.30 shows the rewriting process, starting from the new KL divergence

and relating it to the previous expression of the variational lower-bound found in

section 4.3, where equation 4.30 gives the variational autoencoder’s lower-bound.

The reconstruction term (that is, the expectation term beside the Dkl in equation

4.30) is obtained by sampling. A single sample is enough to get an unbiased esti-

mate of the gradient, which can be used in gradient descent algorithms [17]. Due

to the interaction between the stochastic terms and the deterministic terms with

reparameterization, it becomes easy to backpropagate.

Dkl(q(
−→z |−→x )||p(−→z )) = ∑

−→z ∈Z

q(−→z |−→x ) ln
(

q(−→z |−→x )

p(−→z )

)
(4.25)

= ∑
−→z ∈Z

q(−→z |−→x ) ln(q(−→z |−→x ))− ∑
−→z ∈Z

q(−→z |−→x ) ln(p(−→z )) (4.26)

= Eq(−→z |−→x )[ln(q(
−→z |−→x ))]− ∑

−→z ∈Z

q(−→z |−→x ) ln
(

p(−→z ,−→x )

p(−→x |−→z )

)
(4.27)

= Eq(−→z |−→x )[ln(q(
−→z |−→x ))]− ∑

−→z ∈Z

q(−→z |−→x ) ln(p(−→z ,−→x ))+ ∑
−→z ∈Z

q(−→z |−→x ) ln(p(−→x |−→z ))

(4.28)

= Eq(−→z |−→x )[ln(q(
−→z |−→x ))]−Eq(−→z |−→x )[ln(p(−→x ,−→z ))]+Eq(−→z |−→x )[ln(p(−→x |−→z ))]

(4.29)

→L (−→x ) =−Dkl(q(
−→z |−→x )||p(−→z ))+Eq(−→z |−→x )[ln(p(−→x |−→z ))] (4.30)
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4.5 Generative Semi-Supervised Model

The generative semi-supervised model (M2 in the original paper), and its latent-

feature discriminative (M1) and stacked generative (M1+M2) variants [19], leverage

generative modeling to capture factors in the underlying data which are useful for

classification in the context of partially missing label information. The latent-

feature model is a generative model trained in an unsupervised way, on top of

which a generic classifier, such as an SVM, may be used to perform classification.

The combined model is a generative model that is composed of two sets of latent

variables: one for the class of the data (y) and another for all other features (z),

as illustrated in figure 4.5; and their combination, which first trains the latent-

feature model and then trains a combined model on top of the features learned

from latent-feature model [19].

The latent-feature approach lacks capacity and somewhat fails to capture the

essence of what has made modern forays into machine learning so successful (namely,

deep learning) as it separates the tasks in distinct steps and the classification task

cannot inform the unsupervised learning task and vice-versa. The generative semi-

supervised approach is more interesting as it describes the classification task as

Figure 4.4: The VAE model in plate notation. Dashed lines form the inference
path while solid lines form the generative path (image taken from [17]).
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Figure 4.5: The generative semi-supervised model in plate notation. Dashed lines
form the inference path while solid lines form the generative path.

an inference problem, which, with proper parameterization, allows one to both

capture latent information about the form of the data (e.g. calligraphy style or col-

orscheme for images, or timbre or pitch for sound data) and information related to

the task (i.e. the labels) simultaneously. The latent information useful to determine

the data’s class is learned separately and in isolation, during the inference process

(the stacked model is a straightforward extension to the generative semi-supervised

model that attempts to leverage depth to improve the power of the model by train-

ing a generative semi-supervised model on top of the latent feature model’s learned

latent representation). Thus, experiments in further chapters are mostly based

on the generative semi-supervised model when appropriate, and the latent-feature

model will not be discussed further here. The generative semi-supervised model

is composed of two parts: the model’s approximating function for the posterior

distribution, conditional on both the input and the label (equation 4.31, usually

an arbitrary MLP), and the approximating distribution for the labels themselves,
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conditional on the input (equation 4.32, likewise).

q(−→z |−→y ,−→x ) = N (−→z |µ(−→y ,−→x ),diag(σ2(−→x ))) (4.31)

q(−→y |−→x ) = Cat(−→y |π(−→x )) (4.32)

The functions µ , σ2 and π are modeled by MLPs [19]. As this model is trained

semi-supervised, two cases are considered: when the label is present along with the

input, the term being optimized is an extension of the general variational objective

as in equation 4.17, which also takes the label into account, as in equation 4.33

(which is simply the normal lowerbound with the likelihood term associated with

the y variables added). In the case where the label is missing, it is treated as another

latent parameter, and the term being optimized is described in equation 4.35. The

total objective is simply the sum of the two objectives (U (x) and L (x,y)) over the

subsets of the training data they respectively apply to (the former for labeled inputs

and the latter otherwise), but with the former cost augmented by λ [− logqφ (y|x)],

where λ is a scaling factor which balances the relative weight between generative

and discriminative learning.

−L (−→x ,−→y ) =−Dkl(qφ (z|x,y)||p(z))+Eqφ (z|x,y)[log pθ (x|y,z)+ log pθ (y)] (4.33)

= Eq(−→z |−→x ,−→y )[log p(−→x |−→y ,−→z )+ log p(−→y )+ log p(−→z )− logq(−→z |−→x ,−→y )]

(4.34)

−U (−→x ) = ∑
−→y

q(−→y |−→x )(−L (−→x ,−→y ))−q(−→y |−→x ) logq(−→y |−→x ) (4.35)

4.6 Ladder Network

The ladder network [36] is based on the denoising autoencoder model and uses a

carefully crafted ad-hoc function to fit lateral information from the encoding path-

way into the corresponding part of the decoder. This model is shown in figure 4.6.
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Figure 4.6: The ladder network

Because batch normalization is used, isotropic noise is added to the input, but no

additional regularization method is added.

The model tries to simultaneously optimize two objectives: reconstruction (i.e.

mapping the noisy model input unto the clean, real input) and classification. The

objective for the classification task is given by equation 4.36, while the objective

for the reconstruction task is given by equation 4.37, where ·̂ is the model estimate

for ·, and the c· and d· are trained parameters of the model.

Cclass =−
1
N

N

∑
n=1

log(P(Y = tn|xn)) (4.36)

Creconst =
1
N

N

∑
n=1

1
|x|
||x̂n− xn||2 (4.37)

ẑi = ai1zi +ai2σ(ai3zi +ai4)+ai5 (4.38)

ai j = ci jui +di j (4.39)
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The full cost optimized during training is Cclass +ηCreconst , where η is a hyper-

parmeter that determines the reconstruction task’s contribution.

Finally, the layers in the encoding path perform linear transformations after the

batch normalization step, and the elementwise interaction between the hierarchical

and lateral connections are given by equation 4.38, where σ is the logistic sigmoid,

h0 is taken to be x̂, and c and d are parameters of the model.

We refer to this mapping as the“ad-hoc function”. It is equivalent to adding the

output of a linear transformation with that of a two-layer, sigmoid-affine network,

where all the weights are diagonal, and it is designed to encourage the model to

learn gaussian distributions [37]. The model can also be interpreted as averaging

the samples from two sources (the lateral and horizontal sources) with these activa-

tions, where the contribution of each model is weighted implicitely by the learned

(diagonal) weights. The restriction on the shape of the weights in this model

would create a bottleneck, ensuring perfect information is not transfered to the

corresponding decoding layer, which forces the model to learn useful information

in its upper layers.

Note that the mapping from ẑi to ui−1, which is a linear transformation, does

not aim to reproduce the content of the layer at the same level in the encoding

path, but rather to project ẑi into the same space as that layer.
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AUGMENTED CONVOLUTION

In this chapter, we explore an augmentation to convolutional models that aims

to ease training and improve classification performance by learning the mapping

operation for data in the space of convolutional outputs into the space of convolu-

tional inputs. In other words, we aim to decouple the steps of learning convolution

operators suitable for classification, and of learning the position of output filters so

as to accommodate training of further layers in the model by using fully-connected

layers that can learn to rearrange filters correctly between convolutional layers.

It is expected that, since the fully-connected layers afford a global view of the

patches from the convolution operation at the previous layer to the next convolu-

tional layer, the joint training of convolutional and fully-connected layers ensures

that the fully-connected layers will learn to assist the convolutional layers purely

as a result of the training process. That is, given that convolutional layers are so

powerful on image-structured data, the fully-connected layers will learn to respect

this structure due to the form of the optimization problem. Fully-connected layers

are not restricted in which inputs they depend on, which make them more suit-

able to learn global topological structures, while convolutional layers are known to

extract local image information extremely well compared to other approaches.

5.1 Convolutional VAE

We used a convolutional VAE where the decoder network was a deconvolutional

network (i.e. a network which aims to learn the reverse transformation of the

encoder’s convolution) based on standard convolutional layers.

This model would encourage the latent −→z to use an encoding format compatible

with image data (i.e. compatible with 2D convolution). To do so, the encoder and
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decoder originally followed an intuitive design. Namely, the stack elements were

laid out in the same order, with the encoder input being the training data whereas

the decoder input was a sample from the latent distribution.

Unexpectedly, this kind of model did not perform very well (the same model

using a regular auto-encoder and hamiltonian variational inference [39] does not

have this issue). However, inserting a fully-connected layer between the latent

sample and the first convolutional layer of the decoder pathway “unlocked” the

model, allowing it to perform significantly better.

Our hypothesis was that the fully-connected layer was remapping the sample

to achieve a representation more suitable for the convolutional decoder to learn

from, without losing information encoded in the latent space. That is, the learning

dynamics caused the fully-connected layer to adapt to the convolutional layers

above and below to convert the output of one into an input suitable for the other,

without any explicit feedback, e.g. from the cost during the training process.

Informal experiments where more fully-connected layers were added between

convolutional layers in both the encoder and decoder networks continued to improve

model performance, which gave weight to the hypothesis.

In the following sections, we describe experimental results in classification tasks

using convolutional networks augmented by interspersed fully-connected layers. In

section 5.2, the experimental framework is described. In section 5.3, the model

specifics and experimental results on the MNIST dataset are presented. Finally, in

section 5.4, the model specifics and experimental results on the CIFAR10 dataset

are presented.

5.2 Setup

In the following sections, the models are composed first from simple convolu-

tional layers (thus, the baseline model is a simple CNN). Then, fully-connected
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layers are added between pairs of previously connected convolutional layers. These

fully-connected layers map an input vector −→x of size ||−→x || to an output vector of

size ||−→x ||. Each layer except the top layer use rectified linear activations, while the

top layer used a softmax activation (cf. equations 4.1 - 4.4).

This rectified linear activation was chosen due to its very good empirical per-

formance both in terms of computation time and in helping a neural network train

[30, 32, 48]. The softmax activation was chosen because it readily allows outputs

to be interpreted as output probabilities for the possible labels for the data.

The convolutional layers do not use any biases and we did not find a configura-

tion that convincingly improved performance in this setting. The size and stride of

the convolutional kernels (that is, the dimensions of the kernel matrix and the offset

between convolutional applications on the image, in pixels), as well as the padding

to the input before convolution depends on the experiment. The subsampling lay-

ers perform maxpooling, i.e. only the maximal activation is conserved within each

pooling window.

Cross-entropy loss as in equation 5.1 (where
−→t is the vector of predicted prob-

abilities that the input belongs to a certain class, while −→y is the ground truth -

a zero vector with a single value of one for the class to which the input belongs)

was used as the cost to optimize for every model. The optimization method and

learning schedule depends on the experiment.

L (−→y ,
−→t ) =−−→y log−→t − (1−−→y ) log(1−−→t ) (5.1)

5.3 MNIST

For MNIST, each convolution was followed by a pooling layer, and there was no

padding of the input. The model’s final output was passed through a softmax non-

linearity to yield 10 values (one per label) which can be interpreted as probabilities
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that an input be labelled correspondingly. The ADAM algorithm was used for

optimization because it performs very well and allows quick convergence with very

little hyperparameter tuning [18]. The learning rate was decreased by decaying it

to 99% of its previous value once every epoch. Training was stopped when the

classification performance on the validation set didn’t improve in 10 consecutive

epochs. The structure of the model with the fully-connected layers is illustrated in

figure 5.6. The results reported are taken from an average of 5 runs with varied

seeds so as to reduce selection bias, despite the more popular approach of publishing

single-best results.

On MNIST, we additionally test a variant of the proposed approach which

replaces fully-connected layers with convolutional layers which feature very large

receptive fields (which nevertheless do not completely cover the entire input), in a

bid to decrease the computational cost of the approach. The variant of the model

with fully-connected layers is refered to as“fc”, while the variant using convolutional

layers with large receptive fields is referred to as “conv”. Baseline refers to the

network without either variant applied. The results are summarized in table 5.I.

While the state of the art on MNIST is much better than our method, we do

not make use of any data augmentation, preprocessing (such as patch extraction or

whitening), ensembling or pretraining, and we train in a purely supervised context.

To our knowledge, our model achieves a new state of the art in that category,

Model name Error rate on test set
SOTA (35 convnets + elastic dist + width norm) [8] 0.23%

Boosted LeNet4 + distortions [27] 0.7%

Unsupervised on patches + no distortions [35] 0.60%
Simard convnet + affine distortions [41] 0.60%

Baseline 0.71%
Augmented Convolution (conv) 0.73%

Augmented Convolution (fc) 0.61%

Table 5.I: Test set error rate on the MNIST dataset (lower is better).
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rivaling and even beating models that use pre-training, heavy preprocessing or

affine transformations of the input. Moreover, it is based on a straightforward

convolutional model without any tricks, trained with regular backpropagation, with

the classical cross-entropy objective, making this method very easy to implement

without complications, and potentially adaptable to a wide variety of convolutional

structures as it does not a priori need any particular considerations.

From these results, it appears that the fully-connected layers are properly

remapping the output of the previous convolutional layer into a representation

that is more straightforward to learn from for the next convolutional layer – i.e. it

is distorting the space of the output manifold of its previous layer. The relatively

poor results when using the convolutional layers seem to imply that the full range

of connectivity is required, i.e. that the fully-connected layers aren’t merely boost-

ing network capacity, but truly serving a role in restructuring the output of the

previous layer.

5.4 CIFAR10

The baseline model we used was a variant of the VGG model (specifically, it

is the cifar.torch model [2], and results reported with regard to the baseline come

from the results the authors report on this model). Some convolutional layers were

directly followed by other convolutional layers, all convolutions used a kernel of size

3×3 followed by a rectifier transformation, and their input was padded by one pixel

in each direction (thus, the dimensions of the output was the same as the input

along the width and height, but the number of output channels could change).

Fully-connected layers were inserted between the 3rd and 4th, and the 4th and 5th

convolutional groups (as illustrated in figure 5.5). No fully-connected layers were

inserted before that point because of the scaling issues with this method, such that

the number of parameters was so large that VRAM consumption exceeded GPU
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Figure 5.1: Performance on the CIFAR-10 dataset with the baseline model (image
taken from [2])

Figure 5.2: Performance on the CIFAR-10 dataset with the augmented single-layer
model
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Figure 5.3: Performance on the CIFAR-10 dataset with the augmented two-layers
model

capacity.

Training was performed using simple stochastic gradient descent, using a mo-

mentum factor of 0.9 and a L2 weight-decay rate of 0.0005. The learning rate

was halved every 25 epochs and training was stopped after 250 epochs. Moreover,

batch normalization [15] was applied before the activation function on each layer.

Dropout was applied after most layers [44]. The model failed to train when batch

normalization was removed, regardless of hyperparameter selection, when using

stochastic gradient descent. When using the ADAM algorithm, the model was not

able to obtain more than 75% classification accuracy, which is why we used SGD

in this case. Results of the experiment are summarized in table 5.II.

Note that the best models for classification on CIFAR10 use data augmenta-

tion extensively. Without it, most perform about as well as the baseline model,

sometimes worse.
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Figure 5.4: Performance on the CIFAR-10 dataset with the augmented three-layers
model

Unlike with the MNIST experiment, results on CIFAR10 were not particularly

convincing. Not only did the scalability issues of this method limit the experiment,

but the best model obtained this way decreased performance over the baseline

model (but note that the baseline model was trained without a validation set, so

it might be overfitted to the test set). It is not clear why there is such a difference

between the results on MNIST and on CIFAR10, but the training conditions being

widely different, it is difficult to find one point of failure. Perhaps the MNIST data

is more subject to poor manifold fits across convolutional layers, or perhaps this

method is more sensitive to training conditions than originally thought.

Varying the amount of fully-connected layers in the network showed that the

best performance was achieved by training using 2 layers, while adding an addi-

tional layer reduced performance. This suggests that beyond performance-related

scaling issues due to the large amount of additional parameters added to the model,
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Figure 5.5: The 2-layers augmented model architecture used for CIFAR-10

Model name Accuracy on test set
SOTA (data aug. + multiple passes)[12] 96.53%

Aggressive augmentation[43] 95.59%
Maxout + mirroring + rand. shifs[31] 94.16%

Very deep network[14] 93.57%

Baseline (VGG-like + mirroring [2]) 92.45%
Augmented Convolution (1 layer) 90.7%
Augmented Convolution (2 layers) 92.3%
Augmented Convolution (3 layers) 89.8%

Table 5.II: Test set accuracy on the CIFAR10 dataset (higher is better)

this method does not scale well in terms of classification performance, at least in

this setting. This indicates that models of this form might lack the flexibility

required to learn in the general case. While it would be natural to suspect overfit-

ting, regularization methods such as dropout and reducing the model capacity only

reduced test-time performance, and train-time performance without these regular-

ization methods does not appear to differ much from that of models that perform

better on this task.

Figures 5.1 - 5.4 show the train set and test set performance across training

epochs for the augmented models, showing that training proceeds faster with the
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Figure 5.6: The augmented model architecture used for MNIST

augmented model even though it does not reach the same test performance. This

could be a consequence of the large increase in model capacity, which help the

overfitting process. While training with dropout helped keep overfitting issues

mostly in check, it was still not enough to prevent its effect.

5.5 Conclusion

While we were able to obtain excellent results when training the model on the

MNIST dataset, this method has shown its limits even on the CIFAR10 dataset,

both in terms of scaling, where it was not possible to fully install fully-connected

layers between the convolutional stages due to VRAM requirements, and in terms of

performance, where the model without the fully-connected layers performed better

than the one with these layers.

Due to the wide difference in setting between the CIFAR10 models and the

MNIST model, it is hard to draw a conclusion from these experiments, other than
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the fact that this method clearly has scaling issues and also does not adapt to

arbitrary contexts, despite not being engineered to depend on model specifics.

It is possible that the CIFAR10 dataset has inherent structural properties that

the fully-connected layers cannot help with. For example, there is a lot of noisy

information in the background of CIFAR10 images as they are taken from natural

sources, whereas there are only black pixels in the backgrounds of MNIST digits

as they have been cleaned up.

It is also possible that the lack of feedback from the objective function (i.e. all

layer roles, such as the expectation for the fully-connected layers to be learning

topological information, were achieved without applying a penalty for misbehavior

in the objective function - achievement of this goal is up to the optimization process

in searching for better performing solutions) was sufficient in simpler networks, but

instead induce extra stress in larger networks, where the fully-connected layers

would learn too slowly to let the convolutional stages focus purely on convolution.

The fact that learning in the CIFAR10 setting was faster with the fully-connected

layers than without, yet stalled sooner, could either be an indication that they do

not participate in the training process properly and merely provide additional ca-

pacity to the model (the classic overfitting regime), or that they aren’t taking the

right role (e.g. some units from the fully-connected layers are stuck trying to prop-

agate useful information to the next convolutional layer instead of being purely

concerned with learning topology), or not quickly enough. Although the fact that

we can still achieve performance similar to the baseline model despite the large ad-

dition of extra parameters in the model, which should make the training problem

significantly harder, indicates that the fully-connected layers are performing some

task that is useful for the model, even if it’s not the best task that these layers

could perform.
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GENERATIVE CLASSIFICATION

To correctly classify data, models need to perform complex transformations

from the input format to the desired output format (for example, from image pixel

data to a vector representing the likelihood of the image being in each class).

There is a lot of information inherent in the data regardless of the task that

we are trying to solve. If the data is non-random, then it can be compressed. If it

can be compressed, then the difference in bits between the compressed and original

image is inherently non-informative.

Generative models fit distributions to best approximate the data, potentially

yielding a much more compressed - and thus informative - representation for the

data.

We investigated the use of generative models to improve classification perfor-

mance on images. The generative model learns to encode the data within a latent

space without information specific to any task we may want to complete. This

latent space can be designed to be a compression of the input data (getting rid of

factors that least explain the data, such as noise in the data caused by the quality

of recording instruments, or due to unimportant background information), or can

express a more useful representation than the input (such as by separating the

factors that explain the data and recombining them in various ways).

The discriminative model performs a prediction based on the data, using the

latent representation learned by the generative model. This approach achieves a

separation of concerns (the generative model tries to find a coding of the data that

is easier to manipulate regardless of the task whereas the discriminative model tries

to achieve the task based on a better data representation) which could improve the

overall model’s ability to perform a given task.



6.1. SEMI-SUPERVISED-VAE MODEL

We use the MNIST and Dogs v.s. Cats datasets [10, 25] to evaluate perfor-

mance while we base our work on the generative semi-supervised semi-supervised

generative model [19] and an early version of the ladder network [36]. We attempt

to reconcile the classification performance of convolutional neural networks with

the generative power of variational autoencoders [17].

6.1 Semi-Supervised-VAE Model

Figure 6.1: The Semi-Supervised-VAE parameter-generating architecture. The
dotted path has the same root as the other path and generates Σ2 whereas the
solid path generates µ for the latent z.

The VAE model has shown to be outstanding in its generative capacity. We

attempt to merge it with the generative semi-supervised model, which is able to

perform classification based on a better latent representation learned during train-

ing, so as to further improve such a latent representation and thereby hopefully
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improve classification performance.

The basic architecture of the model is very similar to the generative semi-

supervised model. However, the encoder and decoder functions for the model (as

illustrated in figure 6.1) are learned through a convolutional neural network. We

describe the CNNs used in the case of the MNIST task.

For the encoder, we use interspersed affine fully-connected, and convolutional

layers in alternation, starting with an affine layer, with convolutional kernel size

of 7× 7 and a convolutional stride of 1 across either dimension of the image. No

pooling is applied, and convolution is performed using“valid”convolution in matlab

parlance (i.e. no padding was added to the image). The convolutional layers use a

rectified linear activation function.

For the decoder, we use much of the same architecture as in the encoder, but

with“full” convolutions instead of “valid”, in matlab parlance (i.e. padding is added

to fill the convolutional window which leaves the boundaries of the input shape),

in order to recover the amount of data that was lost due to convolution with zerod

out edges in the encoding pass.

The CNN architecture is illustrated in figure 6.1. We choose this particular

interspersed structure because we have found that it improves performance (cf.

chapter 5).

Just as for a VAE, we choose prior distributions to sample from to produce

samples for the latent factors. For the latent −→z (i.e. explanatory factors, such

as the calligraphic style used to draw a digit), we use a gaussian distribution and

learn both its parameter vectors µ and Σ2. For the −→y (i.e. the data’s class), we

use a multinomial and learn nclass parameters. For the data −→x , we use a bernoulli

vector and learn its parameter.

Finally, the classification layer is composed of two rectified linear layers fol-

lowed by a sigmoid layer. The size of the first two layers is
⌊nvisible

5

⌋
and

⌊nvisible
10

⌋
respectively.
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6.1.1 Model Architecture

We tried two approaches to this problem: generative semi-supervised describes

the architecture based on the generative semi-supervised model’s organization struc-

ture [19], but uses convolutional VAEs as the generative model. 2-headed describes

a modified version of the aforementioned model that makes an independence as-

sumption between the two classes of latent variables (the −→z , which are the classical

VAE latents, and the −→y , which are the latent class variables).

6.1.1.1 Generative Semi-Supervised Architecture

This model follows the original generative semi-supervised model architecture

with few variations. We simply use a VAE and CNNs for the encoder and decoder in

the generative model (see figure 4.5). The classical VAE lower bound is modified by

adding the expected log probability of the −→y latents to the bound as in equation

6.1 for each variable, where the probability distributions are modeled, as in the

VAE and the generative semi-supervised model, with MLPs, taking the conditioned

variables as inputs.

−L =−Dkl(qφ (z|x,y)||pθ (z)) (6.1)

+Eqφ (z|x,y)[logqε(y|x)] (6.2)

+Eqφ (z|x,y)[log pθ (x|z,y)] (6.3)

+Eqε (y|x)[log pπ(y)] (6.4)

In this setting, the generative model is described in equation 6.5 while the inference

model is given in equations 6.6 and on; the q(·) are used during training to infer the

corresponding parameters, and the p(·) are represented by the model itself (that

is, the model family used is chosen in advance), using the parameters learned by
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the inference model and used at generation time.

x∼ pθ (x|y,z)pπ(y)pθ (z) (6.5)

y∼ qε(y|x) (6.6)

z∼ qφ (z|x,y) (6.7)

The convolutional architecture confers some advantages over the fully-connected

one, namely parameter sharing (allowing us to build larger models) as well as the

expressive power of convolutional features.

6.1.1.2 2-headed model

This model simply removes the dependency link between the −→y and −→z latent

variables in the posterior approximation (see figure 6.2). The generative model is

still described by equation 6.5 except with qφ (z|x,y) becoming qφ (z|x) in the case of

one dimension (that is, the reconstruction and classification are made independent

processes that share the same encoder stem), while the new inference model can

now be described by equation 6.8 and on for individual variables. The independence

assumption lets the −→z latents learn a representation that may include factors that

are relevant to both the class and the form of the digit because its independence

from the−→y latents means it does not need to care about this coupling of information

when trying to produce good samples. The additional dimensions used to minimize

Dkl in the −→z latent space are no longer used to accomodate for good cooperation

with the latents of −→y .

z∼ qφ (z|x) (6.8)

y∼ qε(y|x) (6.9)
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Figure 6.2: The 2-headed model in plate notation. Dashed lines represent the
inference path whereas the generative path is illustrated with solid lines.

Figure 6.3: Analogies on MNIST digits: the latent z vary only per row while the
latent y are varied across columns (image taken from [19]).
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Figure 6.4: M2 (top) and 2-headed model (bottom) samples for each MNIST digit
class, from 0 to 9, left to right.

Table 6.I: Test error on the MNIST dataset and the Dogs v.s. Cats dataset (lower
is better)

MNIST DogsVsCats
SOTA [8, 40] 0.21% 1.1%

generative 2.644% -
2head 1.2% 32%

6.2 Results

Using the generative semi-supervised model as described and using CNNs for

the encoder and decoder did not yield positive results. The samples were pure

noise (beside the biases), and while classification was reliable, the model did not

seem able to pass the 2% error mark on binarized MNIST. It is unclear where

the problem lies. In order to obtain sensible samples, it was necessary to modify

the model by removing the dependency between the −→y and −→z latent variables.

Class-conditional samples averaged over 100 trials are shown in figure 6.4.

The 2-headed model was able to yield close to 1% classification error on the

binarized MNIST dataset, which is a step up from the generative semi-supervised

model with VAE and CNN.

Under this model, it is possible to obtain class-conditional samples of MNIST

digits. However, −→z seems to be completely ignored during the generative path as

seeding the −→z to arbitrary values yield almost identical class-conditional samples.

This problem has been noted by myself and others (personal communications)

when using generative models such as variational autoencoders with more than one
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independent layers. The original generative semi-supervised model as described in

[19] suggests that it’s the dependency between layers that permits learning co-

adapted features, such as the latent −→z encoding brush strokes while the latent −→y

encode the class, such as in figure 6.3.

This model was also applied to the kaggle competition’s Dogs v.s. Cats dataset,

where it was able to overfit the training set completely while performing very poorly

elsewhere (at best, it could reach around 36% on a validation set obtained from

holding out 10% of the original training set, at which point the training performance

was of around 32% error).

The results collected on the different models are summarized in table 6.I.

6.3 Discussion of the Results

It is clear that in these experiments, the dependency between −→z and −→y is

detrimental to learning, despite evidence suggesting the opposite should be true.

it is possible that the fully labeled nature of these tasks cause trouble for the VAE

architecture, although it is also possible that the generative semi-supervised model

featuring two branches that learn independently from the same layer inside the

model causes issues in the VAE framework.

6.4 VAE-Ladder Model

The ladder network is one of the few semi-supervised models that show good

results in the fully-supervised case. In fact, the ladder network is able to effectively

reach state-of-the-art performance on the MNIST dataset. However, it is based on

a denoising autoencoder model and we would like to improve the ladder network

by using a VAE instead (since VAEs are known for their generative performance).

In this section, we develop and train a VAE model hybridized with the ladder

network to provide a more unified architecture where the generative and discrim-
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Figure 6.5: The VAE-Ladder hybrid.
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inative tasks are more closely intertwined in an attempt to provide enough drive

for the generative part of the model to learn useful features for discrimination,

while at the same time encouraging the discriminative part to adapt to the latent

representation learned by the generative part of the model.

The model in figure 6.4 shows a hybrid adaptation of the original model working

inside the VAE framework: sampling is performed at every layer in the network for

the lateral pathway, while the mean of the distribution is used as input to further

layers on the encoder pathway. Batch-normalization is applied at every layer in the

encoding path, as illustrated. Whereas in the original model, the mapping from

individual units ẑi to ĉi is performed by a linear transformation that achieves a

basis change, we now adopt a probabilistic interpretation of the model and map

samples ẑi to the distribution of ĉi and then obtain a sample from that distribution.

Layers in the model use the rectified linear activation, except the class prediction

and reconstruction. The reconstruction is output by a logistic sigmoid activation,

which preserves the range of valid values for grayscale pixels. A softmax outputs

the class prediction, encoding a categorical prior.

In one formulation, the ad-hoc function is used to transfer lateral information.

In the other, a small MLP is used instead (that is, the lateral information is passed

through a bottleneck that trains alongside the rest of the model [36]).

The lateral −→z use a gaussian prior in all the experiments. The KL divergence

(as seen in equation 6.10, where D is the parameter from the data, and θ is the

parameter of the model) with q being the gaussian distribution gives the DKL term

for the cost as in equation 6.11. This DKL is with regard to z rather than x and thus

the“data”parameter D is actually the prior parameter for the model, allowing us to

use p(θ |D) = N (0, I) and q(θ) = N (µ,Σ2) from which we obtain the expression.

Dkl(q(θ)||p(θ |D)) =−∑q(θ) log p(θ |D)+∑q(θ) logq(θ) (6.10)
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− 1
N ∑

i

N

∑
n

[
− log(σi)−0.5+0.5exp{2log(σi)}+µ

2
i
]

(6.11)

When the model is tuned for generation, the part of the cost associated with recon-

struction is given by equation 6.12. For classification, better results were obtained

by using equation 6.13, which encodes a gaussian structure (note that the cost of

equation 6.12 is only valid for values in the closed [0,1] interval, whereas the cost

of equation 6.13 is valid over R. Since image data is kept in the [0,1] range, we

can freely use either in this case). In these equations, xn is the input’s nth value

whereas x̂n is the reconstruction’s nth value.

−∑
i
[xi log(x̂i)+(1− xi) log(1− x̂i)] (6.12)

−∑
i
||xi− x̂i||2 (6.13)

The class penalty for the models is the binary cross-entropy cost. The total cost

for training (L (x)) is the sum of terms given by equation 6.16 in the classification

case, where yi is the label for the ith datum and ŷi is the model likelihood for that

class.

L (x) =−∑
i
||xi− x̂i||2 (6.14)

− 1
N ∑

i

N

∑
n

[
− log(σi)−0.5+0.5exp{2logσ1}+µ

2
i
]

(6.15)

−∑
i
[yi log(ŷi)+(1− yi) log(1− ŷi)] (6.16)

6.5 Results

Ztop means only the layerwise cost associated with the top z layer is actually

used (the others being fixed at zero). Unfortunately, we were not able to obtain

particularly good error rates on MNIST using this model. Although the ladder
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Model name Error rate on test set
VAE+Ladder+MLP+ztop 0.99%

VAE+Ladder+ad-hoc 3.86%
VAE+Ladder+MLP 1.92%

Table 6.II: Test set error rate on the MNIST dataset (lower is better). MLP uses
an MLP instead of the ad-hoc function for lateral connections. Ztop disconnects
lateral costs except at the top layer.

Figure 6.6: Samples from a VAE-Ladder hybrid model tuned for generation. The
label is kept fixed to generate a specific digit.
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network achieves state-of-the-art results in the position-invariant case for MNIST,

our VAE-Ladder hybrid remained far from achieving similar performance. A sum-

mary of results is given in table 6.II. While the model could be tuned to generate

decent (although still poor) samples, as in figure 6.5, the same could not be said for

classification. It appears that the combination of the classification and generation

objectives can benefit generation, but not classification.

As a control experiment, a completely different combination of VAE and ladder

networks was tested: the model was a VAE at its core, with the encoder and decoder

paths being composed of a ladder network. Samples from the latent z were input

at the top of the decoding part of the network, and were computed in the usual

way, where the last layer of the encoding path served as input to two independent

sigmoid layers that generated the mean and variance parameters of the gaussian

latent z. The ladder objective was used for all layers except the last decoding layer

(that is, the one which output is x̂). The VAE objective was added to this ladder

objective to yield the total cost optimized during training.

That experiment showed significantly better results than the previous model,

achieving 0.7% performance. However, the fact that this model still performed

worse than the pure ladder network suggests, along with the previous results, that

the VAE framework is unsuitable for combination with the ladder network.

6.6 Conclusion

We were not able to train a VAE-Ladder hybrid on MNIST data to improve

performance beyond the ladder network baseline despite the various approaches we

employed to attain this goal.

One possible explanation as to why is that multilayer VAE architectures are

very hard to train, with early layers typically learning quickly while later layers

do not learn anything at all. However, by manipulating the scaling factor for each
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part of the cost, it is possible to make any amount of layers train (i.e. the per-layer

DKL – that is, the DKL term from equation 6.11, which is applied on each layer in

the same way as the standard ladder network layerwise cost – improves on each

layer), so this does not seem to be the issue in this case.

Another possible explanation is that either too much, or not enough information

is transmitted by the lateral connections. Since further layers can learn, it does

not seem plausible that the lateral pathways would leak too much information. If

they did not leak enough information for the decoder to easily perform its job, it

would be natural that features that would be useful for classification are discarded

by the encoder in order to distribute features useful to generation along the lateral

path through multiple levels. However, manipulating the scaling factors for the

cost parts again, which would encourage the model to prioritise classification over

generation, has not been able to improve performance, suggesting that the VAE-

Ladder forward structure itself is flawed (as otherwise, the model could lean toward

a pure classification setting).

Additionally, it is possible that training to obtain great features that fit both

a generative and a classification objective at the same time is not viable. Namely,

since the reversed setting (i.e. optimizing the structure for generation from the

get go and further tuning for generation performance) can work successfully [21],

it is likely that when training for classification by learning a latent space fit for

generation at the same time, the resulting latent space is a sort of middle ground

that is unsuitable for either tasks (as opposed to first learning a latent space that is

suitable for generation and then performing classification on it, which is known to

work [19], and as opposed to training for generation by augmenting the model with

a classification objective, which may simply drive the model to learn a structured

latent space instead of reaching that middle ground).
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PIXEL-RNN EXPLORATION

We explore the pixel-rnn model[45] and attempt to improve upon it by applying

batch-normalization to it, adapted for use in recurrent networks[22].

7.1 Architecture with Batch-Normalization

The model is organized like the pixel-rnn, where the input is first passed through

a masking convolution which prevents the network from seeing future pixels. The

output of this convolution is then passed through two LSTMs, forming a diagonal

BiLSTM; that is, a couple of LSTMs scanning the image from opposing corners at

the top toward opposing corners at the bottom, in diagonal, as in the pixel-rnn.

Batch normalization is applied to the inputs-to-state of the LSTMs from the

base pixel-rnn model: at training time, batch statistics are calculated and a rolling

sums for the variance and average of the inputs-to-state are maintained. Those

same train statistics are applied at test time (i.e. as opposed to using testing set

batch statistics), as is usual. Parameters γ and β are learned during training, and

the final inputs-to-state representation is obtained as in equation 7.1.

î = γ(

−→
i −||−→i ||

σ−→i
)+β (7.1)

Training then proceeds as with the standard pixel-rnn model.

7.2 Results

Figure 7.1 shows the training curves for the model with and without batch

normalization. Additionally, test-set performance results are summarized in table

7.I.
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Table 7.I: NLL on test set for binarized MNIST (lower is better) [13, 45]
NLL = NLL ≤

MADE 2 layers, 32 masks 86.64 -
DRAW w/o attention - 87.40
DRAW w/ attention - 80.97

pixel-rnn 1 layer 80.75 -
pixel-rnn 7 layers 79.20 -

pixel-rnn reprod 1 layer 81.2198 -
pixel-rnn reprod, bn 1 layer 81.2027 -

When batch normalization is used, the model reaches train-set NLL values close

to 81.5 much earlier than when batch normalization is not used in terms of epochs.

Validation performance tends to match the same pattern during training. Final

test performance is not significantly different when using batch-normalization or

not. However, on the same GPU, the model with batch normalization took 0.573

seconds on average to complete one iteration, whereas without batch normalization,

one iteration took 0.482 seconds on average.

7.3 Conclusion

We observe that adding batch normalization slows the model down in terms

of wallclock time, but improves convergence speed over epoch after a “burn-in”

period, before which the model trains somewhat slower. This slowdown is likely

associated with the fact that the model has yet to learn good values for the γ and β

batch normalization parameters. Batch normalization does not seem to help much

with regard to generalization performance. Due to the increase in training speed

in epochs provided by batch normalization, in the setting the model was trained,

significant wallclock time is saved by applying it to the model.
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Figure 7.1: Training and validation set error over epoch, with and without batch
normalization
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CHAPTER 8

CONCLUSION

In this thesis, we have explored various methods to influence the properties

of the latent representations learned by various models. We have proposed an

augmented convolution model which is capable of achieving state-of-the-art results

in the setting it was employed in, on the MNIST dataset, but this model was prone

to scaling issues. We have successfully modified VAEs to have their latent spaces

adopt image-like structures. However, we were not able to improve the classification

performance of ladder networks using the generative capacity of VAEs.

We have developed a method to decouple the structure and transformation

stages of convolutional layers, providing a boost in performance on simple datasets

like MNIST, but we have not been able to show generalized results on more complex

datasets. This suggests that while the two tasks convolutional layers must perform

simultaneously to achieve a goal is non-trivial, learning the tasks separately might

be even harder as the data increase in complexity. Moreover, the approach chosen

showed poor resource scaling and would not work inside larger models.

Our experiments strongly suggest that it is difficult to train a model to both

perform well for generation and for classification at the same time, with the ulti-

mate goal to improve classification performance, as if the model had to settle in a

bad middle-ground. Yet, it is possible to improve upon VAEs’ generative ability by

augmenting them with a classification objective. The ability of the ladder network

to achieve great performance by combining generative and discriminative objec-

tives suggested that improving the generative part of the model should improve

its performance for classification, but we were not able to do so. Determining the

exact mechanics which makes it hard to train such a model, but not the standard

ladder network, may be the key to building the next generation of high-performance



discriminative models: while we would have hoped that the generative objective

of the model could act as a kind of regularizer to force the model to learn more

salient features while preventing it from focusing on factors that are too specific to

the data used for training (that is, we would have hoped that this would help the

model generalize better), thus improving overall performance, it instead seemed

that the objectives were in conflict and the model was stuck in a middleground

that was good at neither task.

Further research in this direction could prove to be very useful in improving

the quality of generative models, including learning in semi-supervised setting.

Since we have access to very large amounts of data, but only a small fraction of it

typically has useful labels, and due to the resource cost associated in labeling the

data with missing labels, it is clear that improving the quality of semi-supervised

or unsupervised algorithms would bring high value to machine learning efforts.

There are two main directions to pursue on this end: scalability (developing

methods to separate the two convolutional tasks without requiring significantly

more variables than in the initial model), and generalization (whether it is possible

to generalize the findings to more complex and larger data).

Finally, we have shown the effects of batch-normalization on the Pixel-RNN

model’s training process, demonstrating that it can notably, though not signifi-

cantly, improve network convergence speed.

We have explored many models and methods from a latent-space manipula-

tion point of view. We have demonstrated that various latent space manipulations

and cross-layer interactions can have a large impact on various characteristics of a

model. Inducing certain properties in a latent space can provide boosts in perfor-

mance (such as in the augmented convolution).

Further research in ways to bridge the gap between the latent space requirements

for varying goals, such as models or training algorithms that enable the capture of

multiple, or of much more complex latent spaces, may enable us to develop better
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models for fully-supervised (and perhaps semi-supervised) tasks.
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