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Résumé 
 

L’expression ‘programmation périnatale’ est employée pour décrire les effets à long terme 

d’un environnement gestationel néfaste observés chez la progéniture. Ce concept est 

aujourd’hui bien reconnu. Notre laboratoire a déjà démontré l’impact de l’hyperglycémie 

maternelle sur le développement rénal des embryons à l’aide des souris HoxB7-GFP 

transgéniques (Tg) et qui se traduit par une augmentation des espèces réactives de l’oxygène 

(ROS) et une néphrogenèse perturbée. Les rejetons affectés présentent ainsi des reins plus 

petits et possédant un nombre inférieur de néphrons à la naissance, et développent une 

hypertension et des dommages rénaux à l’âge adulte (20 semaines). 

 

Dans la première étude, nous avons tenté de réduire la production excessive de ROS dans les 

reins en développement par la surexpression de la catalase (CAT). Pour ce faire, nous avons 

croisé les souris CAT-Tg qui surexpriment la CAT dans les cellules des tubules proximaux 

rénaux (RPTCs) aux souris HoxB7-GFP-Tg afin de générer les souris HoxB7/CAT-GFP-Tg. 

Nous espérons observer la normalisation du nombre de néphrons et la prévention de 

l’hypertension et des dommages rénaux observés chez la progéniture issue d’un 

environnement gestational hyperglycémique. 

 

Nous avons observé que la surexpression de CAT dans les RPTCs permet de normaliser la 

dysmorphogenèse rénale présente chez les embryons de mères diabétiques. À l’âge adulte, la 

surexpression de CAT dans les RPTCs permet également de réduire la génération des ROS et 

l’hypertension, tout en améliorant la morphologie et la fonction rénale. Afin de définir les 

mécanismes impliqués dans ce processus, nous avons étudié le rôle potentiel de Nrf2 (‘nuclear 

factor-erythroid 2p45 (NF-E2) related factor-2’; un facteur de transcription des gènes 

antioxidants) et HO-1 (hème oxygénase-1’; une enzyme antioxidante). À la fois Nrf2 et HO-1 

sont de forts antioxidants et ont été rapportés comme protecteurs pour le rein. Nous avons 

observé une surexpression des gènes et protéines Nrf2 et HO-1, en plus d’une translocation 

nucléaire accrue de Nrf2, dans les RPTCs de la progéniture des mères diabétiques, indiquant 
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que chez les souris surexprimant CAT, Nrf2 et HO-1 sont tous deux bien activés et 

fonctionnels. 

 

En conclusion, nos études suggèrent que la surexpression de CAT dans les RPTCs permet de 

prévenir la programmation de l’hypertension et les dommages rénaux observés à l’âge adulte 

chez la progéniture issue de mères diabétiques, en partie suite à l’activation du système de 

défense Nrf2-HO-1 dans leurs reins. 

 

Il a déjà été démontré que l’activation du système rénine-angiotensine (RAS) intrarénal induit 

l’hypertension en augmentant la constriction des artérioles et la réabsorption du sodium par les 

tubules rénaux. Une activation du récepteur AT1R et de ses voies de signalisation induit 

également les dommages rénaux observés dans plusieurs pathologies. Dans le cadre de mon 

second article, nous avons identifié un nouveau mécanisme par lequel l’angiotensine (Agt) 

intrarénale induit l’hypertension et des dommages rénaux en réduisant l’expression de 

l’aquaporine 1 (AQP1, le canal pour l’eau le plus important dans les RPTCs). 

 

Des souris transgéniques surexprimant l’Agt de rat (rAgt-Tg) dans leurs RPTCs et des clones 

stables de cellules immortalisées de tubule proximal de rein de rat (IRPTCs) surexprimant le 

rAgt (pRSV/rAgt-IRPTC) ont été étudiés. Lorsque comparés aux souris non-transgéniques, les 

souris rAgt-Tg développent de l’hypertension et des dommages rénaux. Ces changements sont 

atténués par le traitement avec une double inhibition du RAS (losartan et perindopril). 

L’expression des protéines AQP1 et HO-1 est réduite dans les RPTCs, tandis que Nrf2 et le 

transporteur sodique NHE3 sont augmentés, à la fois in vivo et in vitro. Ces changements sont 

renversés par la double inhibition du RAS chez les animaux expérimentaux. Même si les 

niveaux de Nrf2 sont élevés, une accumulation cytosolique causée par une augmentation de 

l’export nucléaire induit par GSK3β se produit et ne parvient donc pas à induire l’expression 

des gènes en aval comme HO-1, ni à réduire l’expression de l’AQP1. 

 

En conclusion, nos résultats suggèrent qu’une déficience en Nrf2 nucléaire mène à une 

diminution de l’expression de HO-1 et une régulation négative de l’AQP1, jouant un role dans 

l’hypertension et les dommages rénaux induits par l’Agt intrarénal. 
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L’hypertension et les dommages rénaux sont des maladies très hétérogènes et multifactorielles 

qui impliquent l’interaction de diverses molécules et voies de signalisations, et sont 

influencées par plusieurs facteurs environnementaux tels la diète ou la programmation 

périnatale. Tous ces différents facteurs contribuent à la progression de l’hypertension et des 

dommages rénaux, rendant les stratégies de traitement d’autant plus complexes. Dans notre 

étude, nous avons évalué le développement de l’hypertension dans deux circonstances : 

l’hypertension de la progéniture programmée par le diabète maternel et l’hypertension induite 

par l’activation du RAS intrarénal. Nous avons démontré que la génération des ROS dans les 

reins constitue un facteur majeur commun dans nos deux modèles d’hypertension chez la 

souris. De plus, le gène/facteur de transcription antioxydant Nrf2, sensible aux ROS, joue un 

rôle important dans le processus. Grâce à une meilleure compréhension des diverses voies qui 

mènent à la progression de l’hypertension, nous espérons qu’il sera possible de développer de 

meilleurs traitements pour faire face à l’hypertension. 

 

 

 

Mots clés: Aquaporine 1, catalase, HO-1, hypertension, système rénine-angiotensine 

intrarénal, diabète maternel, Nrf2, progéniture, programmation périnatale, espèces réactives de 

l’oxygène 
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Abstract 

 
The term ‘perinatal programming’ is used to describe the phenomenon that maternal adverse 

environment during pregnancies which have profound influences to their offspring later in life. 

And this concept is well accepted. Previously, we successfully created an in vivo murine 

model and demonstrated that maternal diabetes constitutes an adverse in utero environment 

that may fundamentally impair nephrogenesis and subsequently program of the offspring to 

develop hypertension and kidney injury in adulthood. It appears that enhanced reactive oxygen 

species (ROS) generation, activation of the nuclear factor-kappa B (NF-kB), intrarenal renin- 

angiotensin system (RAS) and p53 pathways were involved in the underlying mechanisms. 

 

In our first study, we investigated whether overexpression of catalase (CAT) in renal proximal 

tubular cells (RPTCs) could prevent the perinatal programming of hypertension and kidney 

injury in male offspring of diabetic dams and examined the potential underlying mechanisms 

both in vivo and in vitro. Our data demonstrate that CAT overexpression in RPTCs exert a 

direct effect on nephrogenesis in utero and ameliorate maternal diabetes- induced 

dysnephrogenesis. And further consequently, CAT overexpression in RPTCs preventing 

maternal diabetes-induced perinatal programming, mediated at least in part, via the nuclear 

factor-erythroid 2p45 (NF-E2) related factor-2 (Nrf2)- heme oxygenase (HO)- 1 defense 

system. 

 

Intrarenal RAS activation has attracted more attention in recent years due to studies have been 

reported that activation of the intrarenal RAS can elicit hypertension and kidney injury 

independently from the systemic RAS. Previously, we established a murine model (Agt-Tg) 

that specifically overexpress rat angiotensinogen (Agt) in their RPTCs and develops 

hypertension and nephropathy. Aquaporin 1 (AQP1) is the major water channel within renal 

RPTCs, but whether it has a regulatory role in the development of hypertension and 

nephropathy remains elusive. Our second study aimed to examine the regulation of AQP1 

expression in an intrarenal RAS-induced hypertension and kidney injury, focusing on 

underlying molecular mechanisms. We believe that both our in vivo and in vitro studies 
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identified a novel mechanism(s) in which Agt overexpression in RPTCs enhances cytosolic 

accumulation of Nrf2 via the phosphorylation of pGSK3β Y216. Consequently, less 

intranuclear Nrf2 is available to trigger HO-1 expression as a defense mechanism and 

subsequently diminishes AQP1 expression in RPTCs. In conclusion, our data suggest that Agt 

mediated-downregulation of AQP1 and Nrf2 signaling may play an important role in 

intrarenal RAS-induced hypertension and kidney injury. 

 

Hypertension and kidney injury is a heterogeneous and multifactorial disease that involves the 

interaction of various molecules/pathways and the influence of environmental factors, for 

instance, diet and perinatal programming. Such diverse causes contribute to the progression of 

hypertension and kidney disease, making the strategy of treatment even more complex. In our 

present study, we evaluated the development of hypertension under two circumstances: 

maternal diabetes-programmed hypertension in offspring and intrarenal RAS 

activation-induced hypertension. We found that ROS generation in the kidneys is a major and 

common factor in both hypertensive mice model. Also, the ROS-sensitive antioxidant 

gene/transcription factor – Nrf2, plays an important role in the process. By understanding the 

pathways that lead to hypertension progression, we can hopefully develop more effective 

treatments to cope with the disease. 

 

 

 

 

 

Key words: Aquaporin 1, catalase, HO-1, hypertension, intrarenal renin-angiotensin system, 

maternal diabetes, Nrf2, offspring, perinatal programming, reactive oxygen species 
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1.1 Perinatal programming  

 

1.1.1 Definition 

Perinatal programming refers to the well accepted concept that the intrauterine 

environment profoundly affects the developing fetus, and if it is abnormal, this can lead to 

health problems in the adult [1]. This phenomenon is also called the “developmental 

origins of health and disease” (DOHaD) [2]. The concept of ‘perinatal programming’ is 

substantially supported by many studies that show how an adverse environmental stimulus 

experienced during a critically sensitive period of development in utero can induce short- 

and/or long-term structural and functional effects resulting in health alterations later in life 

[2, 3]. 

 

My thesis deals with how maternal diabetes influences fetus’ kidney development in the 

intrauterine high glucose environment during pregnancy, by using streptozocin 

(STZ)-induced maternal diabetes mouse model in Hoxb7-GFP-Tg male mice. The reduced 

nephron number and higher risks of developing hypertension and kidney injuries for 

offspring from diabetic mother were ameliorated in Hoxb7/Cat-GFP-Tg male offspring 

which overexpress catalase (CAT) in their proximal tubules. The work described below 

has been published in Diabetes 61(10): 2565-2574, 2012, entitled “Catalase Prevents 

Maternal Diabetes-Induced Perinatal Programming via the Nrf2-HO-1 (Nuclear factor 

(erythroid-derived 2)-like 2-Heme oxygensae-1) Defense System”. 

 

1.1.2 The impact of an adverse intrauterine environment on fetal development 

In 1989, Hales and Barker conducted a study in England that established a link between 

insufficient nutrition in pregnancies and the offspring with low birth weight (LBW; 

defined as less than 2,500 g, [4]) and increased risk of developing cardiac disease, 

metabolic syndrome and type 2 diabetes mellitus (T2DM) in adulthood [5]. This study was 

the first to describe the concept of perinatal programming that the authors termed “the 

thrifty phenotype hypothesis.” [6]. Further studies supported the theory that perinatal 

programming is an adaptive response to an adverse intrauterine nutritional environment, 

resulting in phenotype changes that begin in the fetus and affect the adult later in life [7]. 

The term “intrauterine growth restriction” (IUGR) describes a fetus which fails to achieve 
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full growth potential. IUGR is related to placental insufficiency, which is due to a 

combination of factors, such as maternal, fetal, placental and environmental factor. 

Placental insufficiency can be caused by dysfunction of fetal-placental perfusion, caused 

by maternal pre-eclampsia or hypertension, where hypoxia and ischemia affect both the 

maternal and fetal circulations [8, 9]. Abnormal placentation, including abnormal 

angiogenesis and vasculogenesis, also contributes to placental insufficiency. Poor maternal 

nutrition is the major contributing factor to IUGR. Maternal undernutrition influences the 

availability of nutrients for the fetus. During maternal starvation, low maternal food intake 

results in reduced nutrients available to the fetus, causing restriction in fetal growth [10].  

 

In contrast to maternal undernutrition, maternal overnutrion leads to fetal overnutrition, 

which also constitutes a significant health hazard for both mother and fetus. Maternal 

overnutrition leads to neonatal macrosomia (also called Big Baby Syndrome), one of the 

most common pregnancy related health concerns in modern society. Macrosomia is 

characterized by babies with a birth weight over 4000 g, or greater than the 90th percentile 

for gestational age, and is characterized by increased fetus adiposity and a number of 

metabolic and immune system changes [11, 12]. The adipose tissue in the macrosomic 

infant secretes inflammatory cytokines which lead to chronic inflammation and immune 

system activation, as well as increased insulin resistance [13]. Excess fat also induces 

hyperlipidemia and hyperinsulinemia, and leads to lipotoxicity and a build-up of lipids in 

non-adipose tissue, such as the pancreas, kidney, liver and heart [14]. 

 

Similar to maternal obesity, maternal diabetes is characterized by increased glucose level, 

and shares common factors, such as maternal hyperglycemia, hyperinsulinemia and insulin 

resistance [15]. The offspring born to a diabetic mother with poorly controlled glycaemia 

experiences a high risk of congenital malformations during gestation, and is predisposed to 

develop multiple chronic diseases, such as hypertension, T2D, cardiovascular and kidney 

diseases in adulthood [16]. 

 

A wide range of other perinatal insults and gestational events is known to alter the fetal 

developmental trajectory, includes environmental exposure to endocrine-disrupting 

chemicals, disease states, lifestyle (e.g. stress), substance abuse (e.g. smoking and alcohol 
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drinking) and medical interventions (e.g. androgens and glucocorticoids) during pregnancy. 

The maternal conditions and fetal outcomes are thoroughly discussed by Padmanabhan et 

al [1] (Figure 1-1). 

 

 

 

Figure 1-1. Impact of perinatal insults in programming adult pathologies in the offspring. 

Exposure of the fetus/offspring to different insults during critical periods of development 

may lead to adaptations that prove to be detrimental and associated with adult defects in 

several organ systems [1]. 

 

 

1.2 Perinatal programmed hypertension and chronic kidney disease (CKD) 

 

1.2.1 Two important hypothesis 

Two hypotheses brought to light the association between maternal environment, birth 

weight, nephron endowment and diseases later in life. As previously mentioned, in 1989, 

Barker DJ et al reported a correlation between maternal malnutrition, infant’s LBW and 
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higher systolic blood pressure (SBP) later at 2 different population of age: 10 and 

36-years-old, respectively [17] — Barker’s hypothesis suggested that differences in the 

intrauterine environment predisposing to differences in blood pressure and cardiovascular 

mortality in the babies. At about the same time, Brenner BM et al hypothesized that a 

decrease nephron mass may result in a diminished glomerular filtration surface and 

increased nephron glomerular filtration rate (GFR) of the remaining nephrons [18]. Over 

time, overloading of the functional capacity of the remaining nephrons, leads to glomerular 

hyperfiltration, glomerular sclerosis and proteinuria, and eventually causes kidney injury 

[19] — Brenner’s hypothesis postulated that a renal abnormality that contributes to 

essential hypertension in the general population is a reduced number of nephrons. These 

two studies shed light on how an adverse intrauterine environment can results in babies 

with LBW who are susceptible to subsequent chronic kidney disease and hypertension in 

adulthood.  

 

1.2.2 Reduced nephron endowment is a major mechanism 

Many studies were conducted to verify the correlation of birth weight with nephron 

number and the incidence of hypertension in adulthood [20]. A small case-controlled study 

conducted in Germany 2003 (n=20) examined the nephron numbers postmortem of adults 

who’s age ranges from 35 to 59 years. This study found a 50% decrease in nephron 

number in hypertensive adults compared to age-matched controls [21]. A large population 

conducted in Norway (n=2 millions, 2008) indicated that children born with LBW had a 

relative risk of 1.7 (95% confidence interval 1.4 to 2.2; P < 0.001) for developing 

end-stage kidney disease later in life [22]. A study in 2008 in Netherland gave salt 

sensitivity test to 27 healthy male adults (average 37 years) and found a close correlation 

between LBW and salt-sensitive hypertension in these adults [23]. Similarly, a study in 

2008 Switzerland assessed salt sensitivity on 50 children who aged 7 to 15 years and 

demonstrated that renal mass is reduced in children born with LBW and depends on the 

degree of growth retardation, which then determines lower GFR, increased salt sensitivity, 

and elevated blood pressure [24]. Consistent with the observations in humans, a vast of 

studies in rodent models conducted between 1999 to 2007 also confirmed that late-onset 

hypertension is associated with LBW and significantly reduced nephron numbers, and 

together with human data were reviewed by Brenner in 2010 [25].  
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A meta-analysis in humans have shown a correlation between LBW and renal dysfunction, 

as well as the effect of speeding up the progression of primary kidney disease [26]. 

Proteinuria and estimated glomerular filtration rate (eGFR) are important predictive 

biomarkers of progressive kidney injury [27]. A cohort study (1994 patients and 20,032 

controls) in US of mixed races but a majority of white children under 21-year-old found a 

significant correlation between LBW and enhanced risk of chronic kidney disease (CKD) 

with adjusted odds ratio=2.88 [28]. Also, averaging the data from 18 human studies, the 

odds ratio for CKD associated with LBW, was found to be 1.73 [29]. These 

epidemiological studies suggested a strong association between LBW and late-onset 

kidney injury. 

 

Studies both in human and in animal models have shown LBW has association with 

reduced nephron numbers [30-34]. Considering all the evidence, the concept that the 

maternal intrauterine environment can profoundly affect fetal nephrogenesis, reduce the 

nephron endowment in the fetus and thus predispose the offspring for developing 

hypertension later in life is well established [35, 36]. Nowadays, the research focus has 

been shifted to identify the underlying mechanisms involved in abnormal nephrogenesis, 

and to develop effective treatments.  

 

Nephron endowment refers to the total number of nephron which a person has at birth, 

although this number may decline due to age or disease state later in life. In fact, even 

among healthy individuals, the total number of nephrons is highly variable. This is 

illustrated in a series of Australian study (from 2003 to 2010) of adult human nephron 

endowment, where nephron numbers were found to range from 0.2-2.7 millions in African 

Americans (n=176), and from 0.2-1.6 millions in Caucasians (n=132) [37]. The currently 

accepted range for a normal human nephron number is approximately 0.9-1 millions per 

kidney [37]. In mice, the average nephron number of both C3H/HeJ and C57BL/6J mice is 

2,000 at birth and around 20,000 at adulthood (8 weeks old) while the kidney development 

is completed [38]. Currently, the technology available that is used to count nephron 

numbers accurately in humans relies on autopsy and dissociation of nephrons from kidney 

tissue by acid maceration [39, 40]. That technique creates a disadvantage when the kidney 

is destroyed and can not be used for other research purpose [39]. Less invasive methods, 
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such as ultrasound scanning, provide a second method to assess renal mass in humans, 

which is based on kidney size determination to attempt to estimate nephron endowment 

[41]. Direct microscopic observation and nephron counting is used in experimental animal 

studies, to analyze the detailed changes in nephrogenesis that occur in the fetus exposed to 

hazardous environmental conditions in utero, as well as the pathogenetic mechanisms that 

occur later in adulthood. 

 

Nephrogenesis refers to the complex process of nephron formation during kidney 

development [42]. In humans, nephrogenesis starts at the fifth week after gestation and is 

completed at week 34-36. At birth, the kidneys are fully formed and functional, and the 

number of nephrons does not increase thereafter [43]. In contrast, nephrogenesis in rodents 

is not complete at birth, and continues up to 21 days after birth [38].  

 

Nephrogenesis involves a complex process called “branching morphogenesis”, which 

requires the coordinated interaction between the developing tubular epithelia and the renal 

vasculature. The development takes place in five stages: (1) ureteric bud (UB) 

development; (2) cap mesenchyme formation; (3) mesenchymal–epithelial transition 

(MET); (4) glomerulogenesis and tubulogenesis; (5) interstitial cell development [44]. In 

brief, the primary UB originates at the posterior end of the Wolffian duct as a solid 

aggregate of epithelial cells that proliferate, migrate, and progressively invade the 

surrounding metanephric mesenchyme (MM). UB branches in a highly reproducible 

manner, and the nephron formation is induced at each of its tips. While UB are branching 

into the MM, some MM cells, including self-renewing progenitor cells, condensate and 

aggregate around the UB tip of branches, transforming themselves into the cap 

mesenchymal cells. Cap mesenchyme progressively undergoes MET, which will form 

most of the epithelia of the nephron. Glomerulogenesis and tubulogenesis stages can be 

subdivided into four more steps: (1) renal vesicle formation; (2) transformation of the renal 

vesicles into comma-shaped bodies and then into S-shaped bodies; (3) development of the 

renal vascular system; (4) progressive development of the nephron and differentiation of 

the renal interstice [44]. Ultimately, MM differentiates into the main components of the 

renal corpuscles and the tubular segments, including proximal tubules, the loop of Henle, 

distal tubules, the juxtaglomerular complex, macula densa, mesangium, and part of the 
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afferent arterioles, whilst the branches form the collecting system, including collecting 

ducts, renal pelvis and ureter (Figure 1-2). 

 

 

 

 

 

Figure 1-2. Kidney development: (A) The kidney is formed via reciprocal interactions 

between the Wolffian duct and the MM. (B) MM-derived signals induce the formation of 

the ureteric bud (UB) from the Wolffian duct. The UB then invades the MM and attracts 

MM cells. (C) MM cells condense around the tips of the branching UB, forming the 

condensed mesenchyme, or CM. In response to UB signals, CM cells are induced to 

undergo mesenchymal-to-epithelial transition (MET). (D–F) The induced cells acquire an 

epithelial phenotype concomitantly with shutting down of the major transcription factors 

described before. The cells sequentially form the pretubular aggregate, renal vesicle, C- 

and S-shaped bodies and finally the mature nephron. The cells derived from the CM form 

most of the nephron body (from glomerulus to distal tubule), whereas the UB-derived cells 

form the collecting duct [45]. 
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Hundreds of signaling genes and factors participate in a specific spatial and temporal 

pattern to play a role in the UB origin, elongation, and branching [44, 46]. For example, 

multiple genes were reported to act either as inducers (c-Ret, ETv4, ETv5, GDNF, SOX8, 

SOX9, Wnt11, Angiotensin II, FGFR1, FGFR2, FGF8, p53, MMP-9, Cofilin1, Destrin, 

AT1R, AT2R, and PAX2), or inhibitors (Spry1, class 3 semaphorins, Robo2, Slit2, BMP4, 

FoxC1, and FoxC2) [46].  

 

One human UB can branch on average 15 times during nephrogenesis and in murine, 10–

11 UB branching events occur during kidney morphogenesis [47]. The developmental 

process is normally well synchronized, but it can become less well synchronized due to 

adverse environmental conditions in utero (e.g. high glucose), with the results that both 

kidney morphology and nephron number will become abnormal [48]. 

 

1.2.3 Other mechanisms involved in programming hypertension and kidney injury in 

the infant later in life 

Evidences have shown that more other mechanisms participate in programming 

hypertension and kidney injury, in addition to reduced nephron number. An IUGR animal 

study done in a placental restriction induced by ligation of bilateral uterine vessel in Wistar 

Kyoto rat dam model (7-10 mothers per group and 5 pups per litter) proposed that the 

hypertension observed in the IUGR offspring could be ameliorated by cross-fostering with 

a normal control dam [49]. Furthermore, in a maternal glucocorticoid administration 

programmed hypertension rat model, hypertension was observed in offspring that had a 

reduction in glomeruli as well as in a group that did not have a reduction in glomerular 

number. The data suggested that a reduction in nephron number is not the only cause for 

the development of hypertension [50]. Taken together, it appears there is an existence of 

additional factors that contribute to perinatal programmed hypertension. More potential 

mechanisms that programmed hypertension in offspring exposed to maternal adverse 

environment are discussed below. 

 

1.2.3.1 Impaired kidney sodium handling and programmed hypertension 

Reduces sodium excretion either by decreasing GFR or by increasing tubular reabsorption 

of sodium can cause hypertension. The renal sympathetic nerve plays important role in 
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kidney function, include renin secretion and sodium reabsorption. Two studies which used 

the maternal placental insufficiency SD rat model [51] and maternal glucocorticoid 

administration SD rat models [52], observed that fetuses exposed to maternal adverse 

stimuli develop hypertension later in life, and the high blood pressure could be ameliorated 

by bilateral renal denervation, which altered sympathetic innervation and caused decreased 

sodium reabsorption. Aberrant sodium management is also associated with hypertension. 

Two studies in SD rat with maternal glucocorticoid exposure and maternal low protein diet 

found increased sodium channels, and increased Na+/H+ exchanger-3 (NHE3), Na-K-Cl 

cotransporter 2 (NKCC2), Na+/Cl cotransporter (NCC) in renal tubules of the offspring 

[53, 54]. 

 

1.2.3.2 Epigenetic changes and programmed hypertension – an implication of 

glycemic memories 

In utero adverse environment modulates epigenetic modification, which is one of the 

mechanisms leading to perinatal programming [55]. Epigenetic changes refer to gene 

expression altered by several mechanisms, including DNA methylation, histone 

modification, and microRNA expression, without affecting the genetic code. Epigenetic 

changes influence mRNA transcription resulting in phenotype changes eventually [56, 57]. 

 

The term “glycemic memory” (also called “metabolic memory”) was coined in 1990 while 

the researchers found fibronectin and collagen were highly and persistently produced in 

endothelial cells of diabetic rats despite their glycaemia had been normalized for two 

weeks after having diabetes for two weeks [58]. Many large-scale clinical trials and 

experimental animal studies ensued and supported this concept, and were nicely reviewed 

[59]. These studies identified early exposure to hyperglycemia or poor glycemic control 

contribute to intense and prolonged diabetic complications development. The disease 

progression persists despite glycemic control is improved afterwards. This indicates a 

memory of glycemic insult and is due to epigenetically alteration of relevant genes [59, 

60]. 

 

DNA methylation involves the covalent modification of cytosine residues that precede 

guanines-CpG dinucleotides, with the “p” referring to the phosphodiester bond between 
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the cytosine and guanine nucleotides [61]. The CpG dinucleotides are clustered in 

CpG-rich regions of the 5’ end of genes where lies promoters, enhancers and suppressors. 

Methylation of CpGs recruits multiple factors to form a complex that is bound to the 

promoter and in turn prevents access of transcription factors and RNA polymerases to the 

DNA and results in the silencing of transcription [62, 63].  

 

Epigenetic changes in the renin angiotensin system (RAS, a major system that controls 

blood pressure will be described in later section) have been observed in the adrenals of rat 

offspring of maternal low protein diet. The type 1 angiotensin II receptor subtype b (AT1b) 

promoter was hypomethylated compared to control, resulting in increased AT1b mRNA 

expression at 12 weeks of age [64]. This low protein diet model is known to produce 

hypertensive offspring identified as early as 4 weeks of age [65]. Another study examined 

the offspring’s kidney following maternal IUGR in the rat and found a decrease in CpG 

methylation of the p53 promoter resulting in increased expression of p53 mRNA levels. 

Increased renal apoptosis and reduced glomeruli number were also observed in the affected 

offspring [66]. As reported by another group using the same maternal IUGR model, it was 

found that affected offspring develop hypertension at 22 weeks of age [67]. These findings 

emphasized the potential role of epigenetics in developmental programming. However, the 

exact effects of changes in gene methylation are not always easy to assess [68]. 

 

1.2.3.3 Oxidative stress and inflammation and programmed hypertension 

Oxidative stress and inflammation are likely to be the common factors that are important in 

many pathological contexts, not to mention perinatal programmed hypertension [69]. In the 

rat maternal low protein diet model, both of these two factors were found to play a role in 

programming hypertension in the offspring [69]. However, the mechanism of how reactive 

oxygen species (ROS) regulates hypertension in offspring born to diabetic mothers is still 

unclear. Our laboratory has published a number of studies addressing the role of ROS 

generated by maternal high glucose intrauterine environment on the developing kidney of 

the fetus and on the adult-onset kidney disease and hypertension. Details will be discussed 

later in the following sections. 
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1.2.3.4 Mechanisms correlate LBW and late-onset kidney injury — the two hit model 

of kidney disease 

The two hit hypothesis is a model which requires two hit of risks in order to generate the 

clinical phenotype and was originally used to describe the onset of other kidney diseases 

[70, 71]. In that model, the first hit is an early priming in a genetically predisposed 

individual and the second hit is a likely environmental insult. The dual hits increase 

vulnerability of the individual under adverse conditions. Later, other researchers expanded 

this concept and used it to propose that low nephron number renders the kidney more 

susceptible to kidney injury. According to this hypothesis, an insufficient nephron 

endowment is the “first hit,” which then subsequently predisposes the person to more 

severe renal dysfunction if a “second hit” is added, which can be hypertension [55] (Figure 

1-3). This hypothesis has been confirmed in IUGR perinatal programmed hypertension rat 

model [72]. The kidney with less nephron numbers was impaired as a first hit, and giving 

anti-Thy1 to induce glomerulonephritis as second hit could accelerate the progress of acute 

glomerulonephritis and lead to more sclerotic lesions [72, 73]. 

 
Figure 1-3. Theoretical model for how disturbed nephrogenesis contributes to progressive 

kidney disease. Prenatal programming causes low nephron numbers, which results in 

glomerular hypertrophy, tubular malfunction and hypertension, and can lead to 

glomerulosclerosis and progressive loss of renal function. The kidney is more easily 

damaged by superimposed kidney diseases; for example, IgA nephropathy and diabetic 

nephropathy, respectively, tend to have a more severe course and more rapid loss of renal 

function in individuals with a history of LBW caused by disturbed intrauterine 

development. Abbreviations: HSD11β2, corticosteroid 11-β-dehydrogenase isozyme 2; 

Na+, sodium ion; RAAS, renin–angiotensin–aldosterone system [55]. 
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1.3 Maternal diabetes and adverse outcome 

 

1.3.1 Maternal diabetes 

Maternal diabetes refers to either pre-existing diabetes in a pregnant woman (diabetes 

mellitus type 1 or type 2; T1/T2DM), or the development of insulin resistance and 

subsequent high blood glucose that is first diagnosed during pregnancy (gestational 

diabetes mellitus; GDM). According to the latest report of the International Diabetes 

Federation (IDF), 17% (21millions) of live births in 2013 had hyperglycemia in pregnancy 

(disregard of stillbirths). Hyperglycemia is the leading cause of perinatal complications to 

the fetus. Uncontrolled maternal hyperglycemia during pregnancy can result in birth 

complications, which affect both mother and child, and these are described further below 

[74]. 

 

1.3.2 Maternal diabetes and the maternal complications 

Preexisting diabetes in a pregnant woman is known as pre-gestational diabetes mellitus 

(PGDM). According to the Canadian Diabetes Association (CDA), the diagnostic criteria 

for diabetes are a fasting plasma glucose level of ≥7.0 mmol/L; random plasma glucose 

≥11.1 mmol/L; 2-hour plasma glucose value ≥11.1 mmol/L in a 75 g oral glucose tolerance 

test (OGTT) or glycated hemoglobin (HbA1C) ≥ 6.5%. In The Northern Diabetic 

Pregnancy Survey that with a majority of White British ethnicity showed the prevalence of 

PGDM is rising, reflecting that the prevalence of both T1DM and T2DM in women of 

childbearing age is increasing [75]. Diabetic patients are already at a higher risk of 

developing complications, such as retinopathy, nephropathy, and cardiovascular disease. 

For women with diabetes, pregnancy could worsen the progression of diseases and reduce 

their lifespan. Details are nicely reviewed by this publication of CDA, entitled Diabetes 

and Pregnancy [76]. 

Becoming diabetic during pregnancy can occur in women who have never had diabetes 

before conception. It usually manifests as glucose intolerance resulting in hyperglycemia 

of variable severity that is first diagnosed during pregnancy, and is called gestational 

diabetes mellitus (GDM) [77]. GDM generally occurs around the late second trimester of 

pregnancy and ends after delivery. For women with GDM, although blood glucose levels 

return to normal after delivery, mothers are at an increasing risk of developing T2DM in 
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the future (29.4% in a 45-month follow-up period) [78]. Also, a large-scale study included 

47,909 women during a follow-up period of more than 10 years indicated that GDM is 

associated with long-term maternal cardiovascular morbidity (odds ratio=2.7) [79]. In 

Canada, CDA announced in 2016 that 3-20% of pregnant women develop GDM, 

depending on their risk factors [80]. Table 1-1. The incidence of aboriginal women is 2-3 

times higher than non-aboriginal woman probably because of the genetic background and 

the poor involvement of public health services [81, 82]. 

 

 

Table1-1 Risk factors for GDM [80]. 

 
 

Besides the risk factors listed in table 1-1, recent studies have identified several gene 

variations that are associated with an increased risk of GDM, includes the transcription 

factor 7-like 2 (TCF7L2), potassium inwardly rectifying channel subfamily J, member 11 

(KCNJ11), Glucokinase (GCK), hepatocyte nuclear factor-1alpha (HNF1A), etc [83, 84]. 

These genes are related to glucose-stimulated insulin secretion, insulin synthesis, 

pancreatic β-cell proliferation and islet cell volume, and the two studies suggested that the 

metabolic imbalance observed during GDM pregnancy occurs in women who are 

genetically predisposed to it. Thus, it appears that GDM results from an interaction 

between certain genetic backgrounds and environmental factors. 

 

Diagnosis of GDM, according to the recommendations by the World Health Organization 

(WHO), should be determined by a 2 h, 75 g oral glucose tolerance test administered 
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anytime during pregnancy (Table 1-2) [78]. 

 

 

Table 1-2. 2013 World Health Organization (WHO) recommendation for the diagnosis of 

gestational diabetes [85].  

 

 

 

1.3.3 Maternal diabetes and its complications for the offspring 

 

1.3.3.1 Short-term complications 

1.3.3.1.1 Macrosomia 

In humans, the risk of being macrosomic (big baby syndrome, also called high birth weight; 

HBW) for babies born to diabetic mothers is 3 times greater than normoglycemic mothers. 

According to a 2008 international population study (also called hyperglycemia and adverse 

pregnancy outcomes (HAPO) study) which included 25,505 pregnant women from 9 

countries, maternal fasting blood glucose level higher than 6.9 mmole/L is significantly 

correlated with fetal birth weight above the 90th percentile (odds ratio=1.38) [86]. When 

maternal glycemia is high during pregnancy, the excess glucose is transported to the fetus 

through the placenta. In response to high level of circulating glucose, the fetus secretes 

insulin after entering the second trimester of gestation, when their pancreas development is 

mature. As a result, fat and protein uptake is increased, and growth is accelerated (Figure 

1-4) [87].  
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Figure 1-4. Fetal results of maternal hyperglycemia. Modified according to Pedersen's 

hypothesis [87].  

 

 

A large fetus size can increase difficulty during vaginal delivery: the fetus may become 

stuck in the birth canal, requiring additional instruments and/or a C-section. The more 

difficult and prolonged delivery process could cause complications, such as fetus hypoxia, 

birth trauma, shoulder dystocia and cerebral palsy [88].  

 

1.3.3.1.2 Congenital malformations 

PGDM is associated with a higher incidence of congenital anomalies, compare to GDM. A 

meta-analysis review study in 2012 indicated that the risk for congenital malformations in 

PGDM is 1.9–10-fold higher than total population, while the risk is slightly increased in 

GDM compared to the general population (odds ratio=1.1-1.3) [89]. For PGDM, good 

glycemic control is the key to prevention of congenital anomalies. The level of risk for 

newborns is highest just before conception and during the first 5-11 weeks while the 

baby’s organs are beginning to develop [90]. Congenital malformations occur when the 

development of the embryo is disregulated, such as arrested, delayed or misdirected 

development effects may involve multiple organs and systems, including respiratory, 

intestinal tract, cardiovascular, neural tube, genitourinary, musculoskeletal and is a leading 

cause of infant death [91]. Although with stringent maternal glycemia monitoring and 

control intervention, the risk of congenital abnormalities for the fetus of diabetic mothers is 

still 1.7- to 3-fold higher compared with the background population [92]. 
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1.3.3.1.3 Stillbirth and perinatal mortality 

Stillbirth is defined as fetal death at or later than 20 weeks of gestation or birth weight of 

350 g or greater, while perinatal mortality is defined as the total number of stillbirths and 

neonatal deaths up to 28 days of life [93]. The perinatal mortality is mainly due to 

congenital anomalies or complication of prematurity. Both PGDM and GDM are 

associated with high rate of stillbirth. Patients with PGDM overall have a odds ratio of 3.8 

to 6.3 of perinatal mortality compared to women with normal glycemia according to a 

literature review [93]. The risk of perinatal mortality in GDM is not as high as PGDM 

[16].  

 

A US study in 2005 compared women who were diagnosed with GDM after 37 weeks (and 

left untreated till the end) with women who were treated for GDM and women without 

diabetes. The stillbirth rates in the three groups were 5.4, 3.6, and 1.8 per 1000 births, 

respectively [94]. 

 

1.3.3.1.4 Premature birth 

Preterm delivery is defined as labor with gestation less than 37 weeks completed [95]. 

Preterm birth is responsible for 75% of neonatal mortality and 50% of long-term 

neurologic impairments in children [96]. Prematurity could be caused by premature 

rupture of membranes, or maternal hormones and cytokine disorders [97]. Newborns are 

under the risk of prematurity associated complications, such as infection, respiratory 

difficulties, and intensive cares are needed [95]. 

 

1.3.3.1.5 Hypoglycemia at birth 

Immediately after delivery, the newborn’s blood insulin level is still high due to the in 

utero high glucose environment, even though the glucose supply from the mother is 

interrupted while gluconeogenesis and ketogenesis in the newborns are still immature to 

produce glucose for their selves [98, 99]. Neonatal hypoglycemia is commonly observed in 

the first hours of life of newborns [99] and persists up to 72 hours and may even last up to 

1 week [100], which can lead to cardiopulmonary, central nervous system damage and 

subsequent mental retardation and recurrent seizure activity [87]. The prevalence of 

hypoglycemia in newborns of diabetic mothers is as high as 40% compared to newborns 
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from non-diabetic mothers [98]. Immediate glucose testing and feeding or intravenous 

glucose injection to the infant is used to effectively treat this condition [101]. 

 

1.3.3.2 Long-term complications — perinatal programming 

 

1.3.3.2.1 Obesity 

Population of obesity is markedly increasing in all age groups and has become a global 

issue in the last two decades. A worldwide study in 2014 indicated that nearly 30% of the 

population including children and adults are either overweight or obese [102]. According 

to the WHO guideline on this subject, body mass index (BMI) is a useful index of obesity, 

and is defined as the individual’s weight (in kilograms) divided by the square of his/her 

height (in meters). Individuals with a BMI of 25 or more are considered overweight, and 

those with a BMI of 30 or more are considered obese [103]. Obesity is associated with a 

number of metabolic disorders, and causes a great burden of medical care to societies 

worldwide [104], hence obesity is a major problem which urgently needs to be solved. 

 

Although the individual’s eating habits may be one of the causes conferring obesity, 

studies have shown a strong link between maternal diabetes, body weight at birth and 

obesity in adulthood [105]. The concept of the obesity growing into a world pandemic, due 

to a “vicious cycle,” was first proposed by Pettitt in 1988, to explain how the maternal 

diabetic intrauterine environment is transmitted to future generations, by increasing the 

risk of obesity and T2DM in the offspring, thus contributing to a growing population of 

obese and diabetes [106] (Figure 1-5). 

 
Figure 1-5. Vicious cycle of obesity and diabetes [106]. 
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1.3.3.2.2 Type 2 diabetes mellitus (T2DM) 

T2DM is a disease of insulin resistance combined with pancreatic β-cell dysfunction [107]. 

In the early stage of T2DM onset, both β-cell mass and function are increased to 

compensate for peripheral insulin resistance. β-cells become inadequate over time, 

followed by insulin deficiency [107]. Both epidemiological and animal studies indicate 

that offspring exposed to high glycemia in utero are at a higher risk of developing T2DM 

compared to controls. 

 

A US population studies in 2008 analyzed youth of aged 10–22 years comprised 79 T2DM 

and 190 nondiabetic controls and found 47.2% (95% CI) of T2DM in youth could be 

attributed to intrauterine exposure to maternal diabetes and obesity [108]. In the same year, 

another study in Denmark (n=597) examined young adults aged 18–27 years and 

concluded that the odds ratio for offspring from GDM mothers to develop T2DM or 

impaired glucose tolerance is 7.76 while that from T1DM mothers the odds ratio is 4.02, 

all compared to offspring from control mothers [108]. A study pre-screened healthy 

participants without T1DM and measured insulin sensitivity and insulin secretion in these 

participants. Fifteen offspring were born to T1DM mothers whose fathers were healthy and 

16 offspring were born to T1DM fathers whose mothers were healthy. They found 33% 

offspring from T1DM mothers developed glucose intolerance reduced insulin secretion 

while no offspring from healthy control mothers and T1DM fathers developed the 

impairment [74]. 

 

A rat study continuously infused dams during the last week of pregnancy to mimic mild 

hyperglycemia intrauterine environment and found the offspring from hyperglycemic dams 

started to show mild glucose intolerance and impairment of glucose-induced insulin 

secretion at 1 month of age. This situation persisted and eventually developed to constantly 

hyperglycemia and severe impairment of glucose tolerance and insulin secretion at 10 

month of age [109]. It appears offspring born to mild hyperglycemic mothers (i.e. GDM or 

mother with T2DM) presented with islet hyperplasia, and increased pancreatic and plasma 

insulin concentrations [110]. In contrast, mouse offspring born to severely hyperglycemic 

mothers (i.e. with T1DM) displayed enhanced islet mass, with degranulated β-cells, 

suggesting overstimulation by hyperglycemia [111, 112]. This early exhaustion of the 
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pancreatic insulin secretory capacity may explain the low pancreatic insulin content and 

low plasma insulin levels in late intrauterus period. Immediately after birth, the mouse 

pup’s islet mass was decreased, the granular content was normalized, and the secretory 

capacity was restored. However, later during adulthood, the offspring developed insulin 

resistance [110]. 

 

1.3.3.2.3 Cardiovascular disease (CVDs) 

CVDs manifests heart and blood vessel dysfunctions and is the number 1 cause of death 

globally [103]. Coronary heart disease and stroke are the two leading factors causing death 

[103]. Atherosclerosis is a condition that develops when the arterial walls are repeatedly 

injured and results in plaque built-up in the walls. The artery walls become sclerotic and 

narrow over time, and can be broken or blocked, which can lead to heart attack or stroke 

[103]. Many circulation cell adhesion molecules, such as intercellular adhesion molecule 1 

(ICAM1), vascular adhesion molecule 1 (VCAM 1) and E-selectin, are used as a marker to 

predict CVDs [113]. Although the correlation between obesity, smoking, 

hypercholesterolemia and cardiovascular disease in adults is well established, evidence 

from both human and animal studies showed that vascular dysfunction can be programmed 

as early as the perinatal stage by various adverse maternal environments [114]. 

 

A UK study examined children aged 5-11 years (n=61) and found offspring from T1DM 

mothers expressed higher markers of endothelial dysfunction compared with offspring of 

nondiabetic pregnancies [115]. A similar US study (n=91) looked at the same endothelial 

dysfunction markers in children (aged 6-13 years) of maternal GDM exposure and found 

these children had increased values compared with non-exposed children, independent of 

BMI [116]. The above data suggested that exposure to maternal diabetes during pregnancy 

confers risks for the development of CVDs later in life and is independent of other risk 

factors of the offspring, such as adiposity [117]. 

 

The endothelium also plays an important role in the development of the vasculature by 

secreting vasoactive substances, such as vasodilators (e.g. nitric oxide) and 

vasoconstrictors (e.g. angiotensin II), which act on the adjacent vascular smooth muscle 

cells to cause vasodilation or vasoconstriction [118]. Reduced endothelium-dependent 
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vasodilatory capacity of the artery is found in 12 month old rat offspring of dams that were 

induced diabetic with STZ 10 days before mating, compared to offspring of non-diabetic 

control mother [119]. Altered angiogenesis is an important element in predisposing the 

development of vascular dysfunction in infants of diabetic mothers. A rat study examined 

19 day old offspring of dams which were induced diabetic by STZ on the 5th day of 

gestation and found that maternal diabetes led to marked alterations in blood vessel 

differentiation and cardiomyopathy [120]. More specifically, it was pointed out that in 

utero exposure to high glycemia affect angiogenesis via decreased proliferation of 

endothelial cells via decreased production of vascular endothelial growth factor (VEGF) 

and VEGF receptor, resulting in embryonic vasculopathy [121].  

 

1.3.3.2.4. Hypertension 

According to the WHO, normal adult blood pressure is defined as 120/80 mmHg 

(systolic/diastolic). When the SBP is ≥ 140 mmHg, and/or the diastolic blood pressure is ≥ 

90 mmHg, the blood pressure is considered to be high. High blood pressure can lead to 

lethal complications, such as stroke, heart attack and kidney failure [122]. One in every 

four people globally is hypertensive in 2000, and it is anticipated that this population will 

increase from 972 million to 1.5 billion by 2025 [123]. Even though many treatments for 

hypertension are currently available, there is still a need to elucidate its cause and 

underlying mechanisms in order to take precautious intervention and hence halt its 

growing prevalence. 

 

The causes of hypertension are multiple and complex [124]. Although there is clear 

evidence that an unhealthy lifestyle (little exercise and an unhealthy diet) contributes to the 

risk of developing hypertension, there is compelling data from epidemiological and 

experimental studies which show that maternal adverse environment can also increase the 

risk of their offspring developing hypertension later in life [125, 126], suggesting that 

adulthood hypertension might be determined before birth by altered fetal development. 

 

In humans, a population study on Pima Indian (US first Nation, n=42, aged 7-11 year old) 

indicated that offspring of mothers with maternal diabetes had higher SBP (about 11 

mmHg) than mothers with normal glycemia during pregnancy [127]. More recently a 
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meta-analysis study reviewed 15 publications on the association of diabetic pregnancy and 

offspring blood pressure in childhood. The review article indicated that SBP was higher in 

offspring of diabetic mothers (both PGDM and GDM) (mean difference 1.88 mmHg; 

p=0.009) [128]. 

 

A study of rat induced diabetes with STZ 10 days before mating has found that young 

offspring (3 month old) from diabetic mothers developed hypertension without affecting 

the nephron number. However, the nitric oxide (NO)-related vascular response is 

decreased which may contribute to hypertension [119]. In addition to vascular aspect, 

studies in our lab in the past have revealed that kidney also has an important role to play in 

the development of maternal diabetes-induced hypertension, and this will be discussed 

later. 

 

1.3.3.2.5 Chronic kidney disease (CKD) 

In 2015, 10% of the population worldwide is affected by CKD, and millions of people die 

every year because of unaffordable treatment for the patients [129]. Currently there is no 

cure to reverse CKD but only treatments to slow down the progression. Strategies for early 

stage of CKD are proper diet control and medication, while in the end stage of CKD 

hemodialysis or a kidney transplantation is needed. Hypertension and diabetes account for 

the major causes of CKD, however, it is gaining more and more attention that in uterus 

exposure to adverse maternal environment, such as IUGR, is a risk factor for offspring to 

develop late-onset CKD [130].  

 

The population studies of the correlation between maternal hyperglycemia exposure and 

offspring predisposition to CKD later in life is relatively scarce. A study on Pima Indian 

(n=308, aged 20-61) in 1998 found that 64% of subjects from diabetic mother were of 

HBW, and the odds ratio to develop albuminuria in subjects with HBW was 3.2 compare 

to those with normal birth weight [131]. 

 

Also, there is an absence of animal studies that look at the influence of maternal diabetes to 

the offspring kidney function at adulthood. Most of studies focus on nephron number 

change during development, for example, a study induced rat dams diabetes on day 0 of 
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pregnancy and found nephron deficit compared to normal glycemic pregnancy by 

assessing offspring’s kidney at 14 day of age [132].  

 

 

1.4 Mechanism(s) mediating maternal diabetes programmed hypertension and kidney 

injury: objective of my study 

There is a lack of human epidemiological studies correlating maternal diabetes with 

reduced nephron number in their children. Human epidemiological studies have shown a 

high correlation between maternal diabetes and their offspring macrosomia at birth [87] 

and with the development of hypertension and CKD later in life [127, 131]. The 1998 US 

Pima Indian study described above is a good example [131]. Together with the thrifty 

phenotype (LBW correlates with hypertension and kidney injuries), it appears that the 

relationship between birth weight and the risk of developing hypertension and kidney 

injury later in life is not linear, but instead is U-shaped [34, 131, 133] (Figure 1-6). Only a 

single French case-controlled clinical study (n=18-19, aged 18-41) measured GFR as an 

indirect measure of kidney functional reserve (nephron numbers), and concluded that the 

children of T1DM mothers have reduced nephron numbers and hypertension (Pearson 

correlation coefficient r=0.61, p=0.006) compared to children of T1DM fathers (r=−0.08, 

P=0.76) [134]. There is no human study, however, that examines the effect of maternal 

diabetes and HBW on nephron numbers in human neonates, children or adults. 

 

 
 

Figure 1-6. Prevalence of elevated urinary albumin excretion (albumin-to-creatinine ratio 

≥30 mg/g), by birth weight, adjusted for age, sex, duration of diabetes, HbA1c and mean 
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arterial pressure in Pima Indians from Gila River Indian Community in Arizona, 

1983-1996. Dashed lines represent twice the pointwise asymptotic standard errors of the 

estimate curve, and the vertical tics on the x-axis are a frequency plot of birth weights 

[131]. 

 

 

In experimental rodent studies, our research group has shown that pups born to diabetic 

mother had an increased risk of developing hypertension by 8 weeks of age after birth 

(n=9-14; p<0.001; about 50% of offspring are affected) [135]. We demonstrated that pups 

born to uncontrolled diabetic dams were about 27% smaller than babies born to 

non-diabetic normal at birth and exhibit approximately 40% nephron loss due to increased 

apoptosis, that occurred in utero. The diabetic dams were treated with insulin right after 

hyperglycemia was detected (two days after STZ injection), and this normalized the fetus 

body weight and nephron numbers [135]. We also detected activated renal renin 

angiotensin system (RAS) components (both protein and mRNA levels) in the 

hypertensive offspring [135]. Furthermore, we found that transforming growth factor 

TGF-β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1), which are associated 

with tubule-interstitial fibrosis, are overexpressed in the kidney of hypertensive offspring 

born to diabetic mothers [135].  

 

Elucidation of the link between maternal diabetes and the increased risk of programmed 

hypertension and kidney injury seen in their adulthood offspring is needed in order to 

develop strategies for the prevention of these chronic disease (hypertension and kidney 

disease) worldwide. A number of animal studies have shown that gestational diabetes 

induced birth defects are associated with increased ROS or impaired antioxidant defense 

systems [136, 137], indicating the enormous influence of ROS on the developing fetus. 

Also according to our study, renal ROS appears to be a major mechanism involved in 

nephrogenesis [138]. However, studies that assessed the effect of treating women with 

gestational diabetes with antioxidants, on the outcomes for their offspring, have given 

contradictory results or found these ineffective [139, 140]. 

 

In my thesis study, I used murine models of maternal diabetes to study the underlying 
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mechanisms that control the development of late-onset hypertension and kidney injury in 

the offspring, and focused particularly on the renal ROS pathways. I also tested a novel 

therapeutic approach aimed at enhancing the oxidative stress defense system in the 

offspring kidneys, by overexpressing CAT specifically in mouse renal proximal tubule 

cells (RPTCs). 

 

 

1.5 Reactive Oxygen species (ROS)  

ROS is found to be a critical mediator in many diseases progression, such as and diabetic 

nephropathy [141]. ROS refers to molecules of oxygen that contain an unpaired electron 

and thus are very unstable and active [142]. These oxygen molecules are generated 

constantly within cells because they are a byproduct of aerobic respiration. Cells have 

developed an antioxidant system to cope with this ROS generation under normal condition. 

Once the intracellular ROS begin to be produced in an unregulated manner or the defense 

system is impaired, the excess reactive molecules begin to attack cellular structures, 

activate redox-sensitive signal transduction pathways and this eventually results in 

processes that all lead to cellular pathological changes (e.g. necrosis, apoptosis, 

inflammation, fibrosis). This adverse condition is called oxidative stress [141]. 

 

There is an emerging class of reactive signaling molecules other than ROS which have also 

been well studied [142]. These include molecules contain reactive nitrogen species (RNS) 

and carbon monoxide (CO), which have share similar properties with ROS, but differ in 

other aspects [143]. In fact, the ROS plays an important role as a signal transduction 

factor/second messenger, and initiates cellular protective responses, such as activation of 

cell survival and DNA repair pathways [144, 145]. 

 

1.5.1 Origin of ROS 

The source of ROS could be endogenous (cellular) or exogenous (xenobiotic). Exogenous 

ROS concerns drug metabolism, expose to toxic substances, ionizing radiation or 

infections [144], and is beyond the scope of my thesis. The major source of intracellular 

ROS includes: 1) NADPH oxidase (NOXs) complexes that are located on cellular 

membranes, which have seven isoforms that are expressed in different cell types [146]; 2) 
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mitochondrial respiration chain molecules involved in energy production (i.e. adenosine 

triphosphate, ATP) [147]; 3) the flavoenzyme ERO1 located in the endoplasmic reticulum; 

4) lipoxygenases; 5) cyclooxygenases; 6) cytochrome P450s; 7) oxidases for polyamines 

and amino acids; and, 8) nitric oxide synthases (NOS) [148]. The major forms of ROS are 

superoxide anion (O2.-), hydroxyl radical (
.
OH) and hydrogen peroxide (H2O2).  

 

Mitochondria are the major site of O2.- production among them [149]. Briefly, oxygen is 
converted to water by 4-electron reduction by hydrogen (O2+4H→ 2H2O), in one step, 

which is the so-called electron transport chain. Approximately 1- 3% of electrons leak 

from this reaction and produce superoxides (e.g. O2.- and H2O2) (Figure 1-6).  
 

 

 

Figure1-6. Mitochondrial respiratory chain. The electron transport chain receives electrons 

(e−) from NADH and FADH2 and mediates electron transfer from complex I to complex 

IV, via ubiquinone (Ub) and cytochrome c (C). At complex IV, electrons reduce molecular 

oxygen to form water. As a byproduct of the respiratory chain, reactive oxygen species 

(ROS) are generated. O2.- is formed at complexes I and III and is dismutated to H2O2 by 
matrix manganese superoxide dismutase (MnSOD). H2O2 can then be safely reduced to 

water by catalase or glutathione peroxidase (GPX) [150]. 
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Besides mitochondria, a variety of other intracellular sources contribute minor amounts of 

O2.- and H2O2 [151] (Figure 1-7). 
 

 

 
 

Figure1-7. Production and metabolism of ROS [141]. The primary ROS produced in the 

body is O2.-, which is formed from single electron reduction of molecular oxygen. The 

primary sources of O2.- include the mitochondria, endoplasmic reticulum, cyclooxygenase, 
lipoxygenase, uncoupled nitric oxide synthase (NOS), NAD(P)H oxidase, xanthine oxidase, 

and cytochrome P450. Antioxidants then act on ROS to generate less reactive species. For 

example, superoxide dismutase (SOD) converts superoxide into H2O2, which is then 

reduced by catalase (CAT) into water and oxygen and by glutathione peroxidase (GPx) 

into water and oxidized glutathione. However in pathological states H2O2 serves as the 

substrate for formation of highly reactive and cytotoxic oxidants such as hydroxyl radical 

by catalytically-active iron (Fe2+) and hypochlorous acid by myeloperoxidase. An increase 

in ROS generation or decrease in antioxidant availability leads to oxidative stress and 

induction of the pro-inflammatory response, which contribute to disease pathogenesis.  

 

 

1.5.2 The antioxidant defense system: antioxidant genes 

The antioxidant defense system includes two categories of compounds: enzymatic and 

nonenzymatic [149]. Nonenzymatic antioxidants (e.g. vitamin C, β-carotene, glutathione 
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(GSH) serve as electron donors or react with/scavenge free radicals [152, 153]. 

Antioxidant enzymes (e.g. SOD, CAT, GPx), catalyze the breakdown or removal of free 

radicals, and hence convert dangerous oxidative molecules to H2O2 and eventually to water, 

through several steps [149]. Antioxidant enzymes include a broad spectrum of enzymes 

that have been well studied. In my project, I focus on the roles of two antioxidant enzyme 

genes: catalase (CAT) and heme oxygenase (HO)-1, as well as one of key antioxidant 

regulated transcription factors, called Nrf2 (nuclear factor erythroid 2-related factor 2). 

These are described further below. 

 

1.5.2.1 CAT 

In mammalian cells, CAT is primarily located in intracellular peroxisomes [154, 155] and 

can also be detected in the cytoplasm [156, 157]. It is widely expressed in almost all 

organs, and at high levels in liver, kidney, and erythrocytes [158]. CAT is a tetrameric 

enzyme consisting of four identical 62.5 kDa monomers [159]. It is considered a 

housekeeping gene due to its lack of TATA box and initiator element sequence, and high 

promotor GC content [160]. 

 

The major function of CAT is to catalyze the dismutation of H2O2 and defend cell from 

injury by oxidative stress [161]. As mentioned above, O2.- is produced from a variety of 
sources, and is first converted to H2O2 by SOD, then CAT reduces H2O2 to water and 

oxygen [162].  

 

In the kidney, CAT is highly expressed in the proximal tubules of the juxtamedullary 

cortex, less in that of the superficial cortex, and not detectable in the glomerulus and other 

segments of the tubular, such as tubules of Henle’s loops, distal tubules and collecting 

ducts [163]. Altered CAT activity is associated with several kidney injury animal models 

suggesting that kidney injury impairs CAT function, which can exacerbate oxidative stress 

and cause renal dysfunction [164, 165], Nrf2 and FoxO1 transcription factors known to 

upregulate CAT, are found decreased in several kidney disease condition, a putative cause 

of enhanced oxidative stress-induced cell damage [166, 167]. 
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1.5.2.2 HO-1 

There are two forms of HO: HO-1, the inducible form; and, HO-2, the constitutive form. 

HO-1 and HO-2 are encoded by two different genes, share 40% protein homology and 

have the same catabolic ability to degrade heme [168]. Briefly, HO catalyzes heme 

cleavage in the presence of oxygen and NADPH, and as a result, biliverdin is produced 

along with iron and CO. Biliverdin is further rapidly converted to bilirubin by the enzyme 

bilirubin reductase [169]. All three degradation products (iron, bilirubin, CO) have 

beneficial regulatory functions in cells. Iron is an essential component of hemoglobin and 

ferritin; CO is a messenger and signaling molecule that promotes vasodilation, 

anti-inflammation and anti-apoptosis [170]; bilirubin acts as a potent cellular antioxidant 

and anti-inflammatory agent [171]. These functions make HO as an antioxidant gene. 

However, HO-1 (but not HO-2) is responsive to oxidative stress and to numerous drugs 

and chemicals, including statins, aspirin, niacin, specific prostaglandins [172]. This makes 

HO-1 the preferred research target [172]. 

 

The basal expression of HO-1 in the kidney is abundant. In rodents, it can be detected by 

immunostaining in both proximal and distal tubules, as well as in the medullar collecting 

tubules and loops of Henle [173]. Responding to insult such as hyperglycemia, HO-1 is 

also expressed in glomeruli [174]. Moreover, HO-1 expression is detected in human 

proximal tubules under disease condition, such as ischemia/reperfusion acute kidney injury 

and diabetic nephropathy [175]. The upregulation of HO-1 is likely via transcription 

factors including Nrf2, nuclear factor-κB (NFκB), PI3K/Akt, p38 mitogen-activated 

protein kinases (MAPK)) [176, 177]. Overexpression of HO-1 specifically in the kidney, 

both by chemical induction (e.g. CoPP) or genetic engineering (e.g. HO-1 

transgenic/knockout), in renal disease animal models, demonstrates that HO-1 has a 

cytoprotective function [175, 178, 179].  

 

1.5.2.3 Nrf2 

Nrf2, belongs to the cap-n-collar (CNC) family of transcription factors which contain the 

basic leucine zipper (bZIP) motif, is known to be an activator of almost all the phase II 

antioxidant genes [180, 181]. Under normal condition, Nrf2 associates with Keap1 

(Kelch-like ECH-associated protein 1) and remains in the cytosol. Keap1 is a 
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redox/electrophile stress sensor, Nrf2-binding protein, and also an adapter protein between 

Nrf2 and the Cullin 3-based ubiquitin E3 (Cul-E3) ligase complex. Once Keap-1 binds to 

Nrf2, Keap1 promotes Nrf2 degradation by presenting ubiquitinated Nrf2 to proteasomes 

[182, 183]. When Keap1 senses oxidative stress, it undergoes conformational change and 

releases Nrf2. Nrf2 then translocates into the nucleus and targets genes which possess an 

antioxidant response element (ARE) in their promoter region [184]. Nrf2 is not only 

passively modulated by Keap1, it can also be induced by phosphorylation of certain serine 

or threonine residues of Nrf2 by upstream kinases (e.g. protein kinase C (PKC), MAPK) 

[185]. 

 

 

 
 

Figure 1-8. Keap1-Nrf2 stress response system. Stress-sensing system of Keap1 and Nrf2. 

Environmental stresses, including ROS and electrophiles, inactivate Keap1 and stall the 

ubiquitination and degradation of Nrf2. Nrf2 accumulates in the nucleus and forms a 

heterodimer with the sMaf protein. The binding of the Nrf2-sMaf heterodimer to the 

EpRE/ARE motif leads to the transactivation of Nrf2 target genes, which include a battery 

of antioxidant and detoxifying genes required for cellular protection [186] . 
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In the nucleus, Nrf2 binds to the ARE region of its target genes, to form a heterodimer with 

another transcription factor (i.e. Maf protein), thus activating transcription of the gene 

[187]. A large numbers of genes of antioxidant and phase II detoxifying enzymes are 

known to be regulated by Nrf2 (e.g. CAT, SOD, HO-1, NAD(P)H:quinone 

oxidoreductase1 (NQO1)) (Figure 1-8) [180, 181].  

 

 

1.6 Renin-Angiotensin System (RAS) 

Hypertension and kidney injury is a heterogeneous and multifactorial disease that involves 

the interaction of various molecules/pathways and the influence of environmental factors, 

for instance, diet and perinatal programming. In my second study, in addition to maternal 

diabetes-induced hypertension and kidney injury in offspring, I also investigate intrarenal 

activated RAS-induced hypertension and kidney injury. Under physiological conditions, 

RAS plays important roles in the regulation of renal functions and blood pressure and in 

the maintenance of homeostasis of electrolyte balance and body fluid composition. Once 

intrarenal RAS is dysregulated and activated, it can lead to development of hypertension 

and kidney injury. 

 

In my second project, using a transgenic animal model, I identified a novel pathway that 

overexpress angiotensinogen (Agt) in renal proximal tubule cells (RPTCs) could affect one 

of key water channels, aquaporin 1 (AQP1), via Nrf2/GSK3β/β-catenin pathways. This 

article is entitled: Overexpression of Angiotensinogen Downregulates Aquaporin 1 

Expression via Modulation of Nrf2-HO-1 Pathway in Renal Proximal Tubular Cells of 

Transgenic Mice, is published in Journal of the Renin-Angiotensin Aldosterone System 

2016 Sep 15;17(3). 

 

1.6.1 The systemic RAS 

The systemic (also called circulating) RAS is a very important regulatory system that 

controls blood pressure through arterial modulation and mediates several cellular signaling 

pathways [188]. Not properly balanced/counterbalanced RAS or activated downstream 

signaling promote reactions that are harmful (e.g. inflammation, cytokine production, cell 

proliferation, fibrosis [189]) in many disease context (e.g. cancer [190] and high glucose 
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[191].) In this system, it majorly comprises: the precursor angiotensinogen (Agt) and its 

effective product Ang II; the enzymes renin, angiotensin converting enzyme (ACE) and 

ACE2; and Ang II type 1 receptor (AT1R) and Ang II type 2 receptor (AT2R), two Ang II 

receptors. Ang II is generated through a sequential cleavage cascade from Agt and is the 

most important active peptide in this system. 

 

Briefly, Agt is synthesized in liver hepatocytes, and then released into the circulation. 

Renin, an aspartyl protease generated in the juxtaglomerular (JG) apparatus of the kidney, 

cleaves 10 amino acids from the Agt N-terminus, to form angiotensin I (Ang I). This is the 

rate-limiting step in the RAS system, which controls the activity of the entire system. 

Angiotensin converting enzyme (ACE) is a dicarboxypeptidase that catalyzes the 

conversion from Ang I to Ang II, by removing two amino acids from the c-terminus of 

Ang I. ACE is a membrane-bound protein which is abundantly expressed in the vascular 

endothelium, the lung, renal proximal tubular epithelium and ciliated intestinal epithelium 

[192]. Ang II is a key regulator of RAS system, and executes its function by binding to its 

G-protein-coupled receptor. There are two types of Ang II receptor AT1R and AT2R. 

AT1R is located in arterioles and causes vascular smooth muscle cells to contract, which 

reduces the arterial lumen and increases resistance to blood flow, ultimately increasing 

blood pressure. AT2R also located in arterioles has shown to counteract AT1R effects, 

which is vasodilation. In addition to blood pressure regulation, AT1R also plays roles in 

cellular proliferation, inducing inflammation and fibrosis [193]. AT2R is found to exert 

antagonistic effects against effects of AT1R, such as anti-inflammation and anti-fibrosis 

[194, 195]. Animals lacking AT2R develop hypertension [196] positions AT2R an 

important counterbalancing element in the RAS system. 

 

The ACE2/Ang-(1-7)/MasR pathway counterbalances the ACE/Ang II/AT1R axis. The 

ACE/Ang II/AT1R axis has long been recognized as the classic RAS system. In year 2000, 

an ACE protein homolog, ACE2, was discovered. ACE and ACE2 share more than 40% 

identity in the catalytic domain [197, 198], but have different function. ACE2 is generated 

in testis, lung, intestines and brain, and highly expressed in heart and kidney, where it was 

shown to be bound to the apical membrane of polarized cells and face externally [199]. 

The major function of ACE2 is to cleave Ang II into Ang-(1-7) peptide [200, 201]. 
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Ang-(1-7) is a ligand for the Mas receptor (MasR), which mediates effects that oppose the 

AT1R effects, including vasodilation, anti-cell proliferation, and vascular protection 

[202-204]. ACE2 hydrolyzes Ang I to Ang-(1-9) and prevents the formation of Ang II by 

ACE [197]. This ACE2/Ang-(1-7)/MasR pathway counteracts the action of the classical 

RAS pathway and plays a protective role in many settings (Figure 1-9). 

 

 
Figure1-9. Overview of the RAS [193].  

 

1.6.2 The local RAS 

In addition to the systemic RAS, a local RAS in different organ and tissue expressing all 

the components of RAS members plays an important role in response to disease or injury 

condition [193, 205, 206]. Some local RAS function independently in one organ only (e.g. 

testis and adipose tissue), while other RAS (e.g. heart, kidney) interact with the systemic 

RAS. 

 

1.6.3 The intrarenal RAS system 

The functional role of intrarenal RAS is to regulate water transport and hemodynamics, 

which are associated with sodium balance and blood pressure homeostasis. A dysregulated 

or abnormally activated intrarenal RAS can cause hypertension and kidney injury [207]. 

The local intrarenal RAS contains all the components of RAS. Agt is predominantly 
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produced in the S3 segment of kidney proximal tubules [208, 209]; renin is expressed in 

kidney JG cells and macula densa of collecting ducts; ACE is generated in kidney 

proximal tubules, endothelial cells and distal nephron segments [210, 211]; AT1R and 

AT2R are wildly distribute in all the glomerular and tubular tissue. Agt derived from 

proximal tubules is release into the kidney tubule lumen, reaches the distal tubules and 

eventually contributes urinary Ang II. To confirm this concept, Ding et al conducted a 

study of overexpression human Agt specifically in mouse proximal tubule cells 

demonstrated that human Agt was evident in the urine of transgenic mouse and no 

detectable human angiotensinogen protein in plasma [212, 213]. 

 

Intrarenal RAS regulate blood pressure via several ways. In glomeruli, Ang II controls the 

vascular tone of the afferent and efferent arterioles via AT1R. In renal tubules, Ang II 

regulates several transporters (e.g. NHE3 and Na+/HCO3- cotransporter) located in the 

proximal tubules, and sodium chloride cotransporter (NCC) located in the kidney distal 

tubules. In addition, Ang II is one of the mediators of the tubuloglomerular feedback 

mechanism, that modulates the interaction between glomeruli and the renal tubules [214]. 

When the body is in depleted of sodium, water, or in conditions of hypertension, the 

intrarenal RAS is increased or activated to balance to normal physiology.  

 

The intrarenal RAS is formed independently from the systemic RAS and it is thought to be 

the major system modulating body fluid homeostasis; as supported by the following 

evidence. Firstly, the plasma Ang II concentration in rats is in the picomolar range (50-100 

pM) [207], whereas Ang II concentration in the proximal tubule fluid of rats is in the 

nanomolar range (30−40 nM) [215], which is about 1000 folds higher, providing evidence 

that the regulation of the substantial intrarenal RAS system is autonomous from the 

systemic RAS. Secondly, it is debatable whether liver derived Agt is also an important 

source of renal Agt. Two organ-specific Agt knockout mice (liver Agt KO, kidney Agt KO 

and dual KO) were studied by Matsusaka et al, and found that the Ang II level present in 

whole kidney tissue remains the same in kidney of kidney Agt KO mice in comparison of 

WT controls. However, in liver Agt KO mice, the level of whole kidney Ang II is only 

13% of the value in control mice. The data suggested that renal Agt II originates mainly 

from the liver, while a minor proportion is produced locally in the kidney [216]. Other 
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researchers challenge this conclusion and argued that this study is based on normal dietary 

conditions [217]. Intra proximal tubular Ang II is still the most potent stimulant to 

influence blood pressure, in terms of dynamic dietary salt intake. A study evaluated two 

mouse strains: the sodium-sensitive inbred C57BL/6 and the sodium-resistant CD1 outbred. 

Under high sodium and low sodium diet, C57BL/6 mice had elevated urinary total Agt 

levels compared CD1, while plasma Agt of both strains remained unaltered levels, 

reflecting tubular RAS response to challenges of sodium homeostasis instead of systemic 

RAS [218]. Another study overexpressed Agt specifically in RPTCs of mice observed 

salt-sensitive hypertension, without recruitment of the circulating RAS [219]. Also a study 

on rat demonstrated that high salt intake increased proximal tubule luminal Ang II 

concentrations while decreased plasma and total kidney Ang II concentration [220]. 

Thirdly, in response to increasing serum Ang II concentration, AT1R on JG cells sense and 

signal to inhibit renin secretion. Unlike the negative feedback of the systemic RAS, AT1R 

located in the kidney collecting ducts stimulate renin secretion upon receiving excess Ang 

II, resulting in further increasing Ang II in the kidney [221]. This emphasizes that while 

renin formation from kidney JG cells is shut down, intrarenal Ang II formation in the 

collecting ducts can still continue independently. Taken together, intrarenal RAS system 

plays more important role regarding water and salt homeostasis. 

 

1.6.4 Intrarenal RAS and hypertension 

Studies in both experimental animal models and human patients established a correlation 

between hypertension and an augmented intrarenal RAS [207, 222]. Ang II causes 

hypertension by inducing renal vasoconstriction and increasing proximal tubule sodium 

reabsorption, thus expanding blood volume through AT1R activation. The augmented 

intrarenal Ang II level is contributed from two sources: 1) AT1R activates the 

ligand-receptor complex of internalization, leading to Ang II uptake from the blood stream 

into the intrarenal compartment [223, 224]; 2) AT1R stimulates Agt mRNA synthesis and 

protein production in proximal tubules [225-227]. 

 

Inhibition of Ang II level or Ang II signaling by AT1R are important strategies currently 

used for treating hypertension, including ACE inhibitor (ACEI) and angiotensin receptor 

blockade (ARB) [228]. Other antihypertensive strategies, such as diuretics, beta-adrenergic 
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blockers and calcium antagonists, when tested in large clinical trials, provided no 

additional advantages for improving diabetic nephropathy [229] or hypertensive kidney 

disease [230]. RAS blockade by ACEI delayed the onset and prevented kidney 

complication progression, as well as reduced blood pressure [230]. Furthermore, the 

combination treatment of ACEI plus ARB showed greater effectiveness for reducing 

proteinuria in non-diabetic patients with persistent proteinuria, compare to single blockade 

or doubling the dose [231]. 

 

1.6.5 Intrarenal RAS and kidney injury 

Interstitial fibrosis is the common final outcome of progressive renal disease, due to the 

fact that tubular interstitial damage, especially proximal tubules, is highly correlated with 

the decline of kidney function [232]. Ang II plays a pivotal role in promoting renal 

fibrogenesis [233]. TGF-β1 and oxidative stress are the major mediators of Ang II-induced 

kidney fibrosis progression, by causing apoptosis and EMT of the renal tubular epithelium. 

In proximal tubule cells, Ang II stimulates TGF-β1 expression [234] and triggers 

downstream production of PAI-1, and extracellular matrix (ECM) protein synthesis and 

deposition in the interstitial space [235, 236]. Induced by Ang II, oxidative stress 

contributes to EMT by activating Src kinase that phosphorylates caveolin-1 and its 

downstream adaptor proteins, eventually leading to EMT [237]. Furthermore, Ang II can 

activate cell signaling pathways, such as mammalian target of rapamycin (mTOR), nuclear 

factor kappa-light-chain-enhancer of activated B cells (NFkB), which causes extracellular 

matrix remodeling [238, 239]. Ang II also acts as a proinflammatory factor that promotes 

inflammation in many tissue and organs, activating the expression of numerous 

inflammatory cytokines, such as interleukin-6 (IL-6), monocyte chemoattractant protein-1 

(MCP-1) and tumor necrosis factor-α (TNF-α) in the kidney [240, 241]. 

 

Since the consequences of RAS activation are well documented, pharmacological blockade 

of RAS is the most potent strategy to prevent hypertension and kidney injury elicited by 

RAS [228]. Indeed, RAS blockade, by ACEI and ARB, are extensively used in treating 

hypertension both in human and experimental animals. Also, these treatments reduce blood 

pressure, inflammation, oxidative stress, and prevent chronic kidney disease progression 

[242]. 
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1.7 The kidneys and proximal tubules 

The primary function of kidneys is maintaining a constant composition and volume of the 

extracellular fluid by controlling ion (Na+, K+, Cl-) and water transport. Since the adult has 

variable daily intake, to keep virtually no change in the volume and composition of the 

extracellular fluid volume is an enormous task that the kidney is facing. [243]. The kidney 

consists of an outer region (cortex) and an inner region (medulla). In the cortex and 

medulla, nephrons, blood vessels and lymphatics interact with each other (Figure 1-10). 

 

 

 

     
 

Figure 1-10. Structure of a human kidney, cut open to show the internal structures [243]. 

 

 

 

Nephron is the smallest functional unit of the kidney. The nephron is a long, tubular 

structure, consisting of a single monolayer of cells, and is divided into several segments: 

renal corpuscle, proximal tubule, loop of Henle, distal tubule and collecting duct (Figure 

1-11). Inside the renal corpuscle lies a cluster of blood capillaries that is surrounded by 
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Bowman’s capsule, called a glomerulus. Each part of the kidney plays a distinct yet pivotal 

role in urine formation. 

 

 

 

Figure 1-11. Components of the nephron. A: one nephron. B: Cells of juxtaglomerular 

apparatus. C: Glomerulous and juxtaglomerular apparatus [244]. 

 

 

1.7.1 Glomerulus 

All the components in blood stream travel to the blood capillaries in the glomerulus, who’s 

main function is to filter plasma to produce glomerular filtrate. Unique, highly 

differentiated epithelial cells (podocytes) cover the outside of the capillaries and function 

as a sieve. The capillary endothelial cells, glomerular basement membrane and foot of the 
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podocytes, the three major components together form the filtration barrier [245].  

 

The glomerular filtration barrier is freely permeable to water, small and midsized solutes in 

plasma (e.g. urea), while larger molecules and negatively charged proteins retain in plasma. 

The ultrafiltration fluids flow into Bowman's space [243]. 

 

1.7.2 Proximal tubules 

The renal proximal tubule, comprising the proximal convoluted tubule (S1 and S2 

segments) and the proximal straight tubule (S3 segment), is responsible for 65–70% of 

sodium and water reabsorption under normal conditions [246]. A RPTC is a cuboidal 

epithelium cell, which has a specific orientation. The RPTC’s apical membrane faces 

toward the lumen of the tubule, which contains the urine, and its unique feature is its 

extensively amplified membrane surface (brush border). The RPTC’s basolateral 

membrane faces the blood side of the tubule and is highly invaginated. RPTCs express 

numerous kinds of channels and reabsorb most of the sodium and water, and all of the 

glucose as well as many other substances from the ultrafiltration fluid that comes from 

Bowman’s space. The reabsorbed substances then flow back into the bloodstream from this 

location [243]. 

 

1.7.3 Juxtaglomerular apparatus (JGA) 

The JGA is located between the afferent arteriole and the returning distal convoluted 

tubule of the same nephron. It is responsible for regulating both intrarenal RAS and 

extrarenal (systemic RAS) mechanisms necessary to maintain both renal and entire body 

volume status. The JGA is composed by three components: 1) the juxtaglomerular (JG) 

cells of the afferent arteriole, synthesize and store renin. 2) The macula densa, a region of 

the distal convoluted tubule but these tubular epithelial cells are more densely packed than 

other tubular epithelial cells. The macula densa senses decreased NaCl and determines 

whether to release renin. 3) mesangial cells, which connects afferent and efferent arterioles 

and determine vasoconstriction or vasodilation via mesangial cell contraction [243]. 

 

1.7.4 Other compartments of renal tubular 

Loop of Henle: This is composed of the thin descending limb, the thin ascending limb and 
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the thick ascending limb. The thin descending limb is very permeable to water and this 

helps to concentrate the ultrafiltrate. The thin ascending limb and the thick ascending limb 

are not permeable to water, and instead reabsorb ions. This creates an osmotic gradient, 

which increases water reabsorption and maximizes conservation of water. The macula 

densa is a group of cells that has distinct properties and functions that are different from 

those of tubule cells [243]. 

 

The distal tubule: This is composed of a simple cuboidal epithelium, as the distal tubule 

cells have no brush border. The permeability of water is regulated by arginine vasopressin 

(AVP) and helps to concentrate urine further in the distal tubule. Being immediately 

downstream of the macula densa, the distal tubule is responsible for a variety of 

homeostatic processes, including sodium chloride reabsorption and potassium secretion, 

similar to the other sections of the nephron [243]. 

 

Collecting duct: This is composed of two cell types: principal cells and intercalated cells. 

The former plays an important role in reabsorption of sodium chloride and secretion of 

potassium ion, while the latter plays an important role in regulating pH [243].  

 

 

1.8 Water homeostasis in kidney and blood pressure regulation 

For all cells to survive and function properly in the body, the tonicity balance of 

extracellular fluid and intracellular composition is extremely important [243]. In 

mammalians, the serum sodium concentration must be maintained in a very narrow range 

despite dynamic food and liquid intake. The kidney, especially the renal tubule, is the 

primary organ involved in regulation and maintenance of the body’s tonicity and water 

homeostasis. 

 

Under normal conditions, 65-70% of the glomerular ultrafiltrate is reabsorbed in the 

kidney proximal tubules, including both water and electrolytes. The reabsorption of 

sodium into the proximal tubular interstitium creates a major driving force and is energy 

consuming. Water reabsorption is passive, driven by osmolality between the tubule lumen 

and the renal interstitium, through water channels. The remaining 30% of the ultrafiltrate 
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flows to Henle’s loop and generates a medullary interstitial osmolality gradient, which is 

an essential step before the ultrafiltrate entering the distal tubule. A decreasing amount of 

filtrate coming from proximal tubule can perturbs water homeostasis by interfering with 

the tonicity gradient. Finally, the ultrafiltrate is delivered to the distal tubule and collecting 

duct, and undergoes additional water reabsorption. At this point, the concentration of the 

urine is controlled by AVP, a hormone that is synthesized in the hypothalamus and 

released into the bloodstream upon sensing a change in plasma osmolality. AVP binds to 

its receptor located on the collecting duct, and this signals activation of water channel 

expression on the apical side of the cell membrane of distal tubules. Due to its anti-diuretic 

function, AVP is also called antidiuretic hormone (ADH). 

 

In humans, every day 180 liter of plasma is filtered through the kidney glomeruli and less 

than 1% becomes urine and is excreted, thus 99% of this water is reabsorbed by renal 

tubules. Approximately 70% of the reabsorption takes place in the proximal tubule and 

15% in the descending thin limb of Henle, and these membrane structures rely on the 

AQPs to greatly enhanced water permeability, although water also can cross cell 

membranes by diffusion. 

 

 

1.9 Aquaporin1 (AQP1) and its role in kidney pathological conditions 

Aquaporins (AQPs) are a family of integral membrane proteins that predominantly serve 

as semi-permeable water channels. Thirteen AQPs have been identified in mammalian 

cells, namely AQP0-12. AQPs are widely express in tissues that deal with fluid 

homeostasis maintenance, such as lungs, eyes, liver, brain and kidneys [247]. AQP is a 

small protein, consisting of six membrane-spanning alpha-helical domains and a center 

pore [248]. It can further be divided into three sub-families according to their permeability 

to small neutral solutes other than water, such as glycerol and urea [249].  

 

Eight AQPs are expressed in different segments of the nephron of human kidneys (Figure 

1-13). The major water channels responsible for water reabsorption in proximal tubule is 

AQP1 and, in collecting duct is AQP2. Table 1-3 provides further details regarding renal 

AQP expression. 
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Table 1-3. AQPs in the kidney [250]. 
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Figure1-12. Expression of renal AQPs along the nephron. Blood is filtered at the 

glomerulus, and the filtrate is modified as it travels through the nephron to make the final 

urine. Most of the glomerular filtrate is reabsorbed through AQP1 in the proximal tubule 

and descending thin limbs of Henle, although AQP7 is also expressed in the S3 segment of 

the proximal tubule. AQP1 is also expressed in the descending vasa recta, facilitating the 

removal of water. In the connecting tubule and collecting duct, AQP2 is mainly expressed 

at the apical membrane and intracellular vesicles of principal cells, while AQP3 and AQP4 

are present at the basolateral membrane of the principal cells, representing exit pathways 

for water reabsorbed via AQP2. In contrast to these AQPs, AQP6, AQP8 and AQP11 are 

localized in intracellular membranes only. AQP6 is localized to intercalated cells of the 

collecting duct and connecting tubule, AQP8 is expressed in proximal tubules and weakly 

in collecting ducts, while AQP11 is localized to proximal tubules [251]. 
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AQP1 is abundant in the proximal tubule (both convoluted and straight proximal tubules), 

descending thin limb and the outer medullary descending vasa recta endothelia, express in 

both apical and basolateral plasma membranes [252, 253] (Figure 1-14). Normally the 

expression of AQP1 is constitutively high, and not responsive to the regulation of AVP, 

the classical antidiuretic hormone [254]. An in vitro study showed that AQP1 also exists in 

the cytoplasm. Upon hypotonic stimulation, AQP1 rapidly translocates to the cell 

membrane. Microtubules, PKC and calcium are involved in this process [255, 256]. 

Because the tubular fluid in the proximal tubule is nearly always isosmotic with the 

cortical interstitial fluid, so the osmotic equilibration across renal tubules that is created by 

the sodium gradient is thought to be the driving force of water flow [257, 258]. 

 

 

 
 

Figure 1-13. Immunohistochemical stainnig of AQP1 in the paraffin sections of mouse 

kidney. AQP1 at both the apical and basolateral membranes of the proximal tubule S3 

segment cells in the outer medulla (a) and descending thin limbs of the loop of Henle (b) 

[259]. 

 

 

A study on AQP1 knockout (AQP1KO) mice specifically in RPTCs found these transgenic 

mice were grossly normal in terms of survival, physical appearance, and organ 

morphology. The body and kidney weights of AQP1KO mice were slightly lower than 

age-matched controls, but weight ratio was not different. The mean arterial blood pressure 

was significantly lower in AQP1KO compared to WT (88 ± 3 mm Hg vs. 102 ± 4 mm Hg, 

P = 0.019). The AQP1KO mice were polydipsic (excessive thirst) and polyuric, consuming 

about 3 times more fluid per day then WT mice when given free access to water [260]. 
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However, under water deprivation condition for 36 hours, the knockout mice became 

severely dehydrated and lethargic, with body weight decreased by 35±2%, serum 

osmolality increased to >500 mOsm, and urinary osmolality (657±59 mOsm) did not 

change. In contrast, both WT and heterozygous mice remained active, body weight 

decreased by 20–22%, serum osmolality remained normal (310–330 mOsm), and urine 

osmolality rose to >2500 mOsm. The results suggested AQP1 is required for the formation 

of a concentrated urine by the kidney [261]. 

 

 

1.10 Glycogen synthase kinase 3β (GSK3β) and its signaling pathway 

Glycogen synthase kinase 3 (GSK3) is a serine-threonine kinase that expresses 

ubiquitously. GSK3 was originally identified in rat skeletal muscle as a negative regulator, 

able to phosphorylate and inhibit glycogen synthase, which is a key regulator of glycogen 

synthesis [262, 263]. Initially GSK3 was considered as a key enzyme in metabolism. 

Recently, research indicate that GSK3 has central roles in a number of intracellular 

signaling cascades, including Wnt pathway, hedgehog signaling pathway, growth factor, 

cytokine, and G protein-coupled receptor cascades; regulates a wide range of cellular 

events, such as gene transcription, differentiation, cell growth and apoptosis [264]. When 

GSK3 is not regulated well, it leads to the progression of many human diseases, such as 

bipolar disorder, Alzheimer’s disease, noninsulin-dependent diabetes mellitus (NIDDM) 

and cancer [264].  

 

In mammals, GSK3 exists in two isoforms: GSK3α and GSK3β, encoded by different 

genes on separated chromosomes. Both isoforms are widely expressed and share 98% 

homology in their kinase domains [265]. Most studies focused on GSK3β but not GSK3α 

because global GSK3β knockout is lethal while GSK3α knockout is not [266]. Under 

resting or unstimulated conditions, GSK3β is active, and it can be inhibited by 

phosphorylation of serine 9 (S9) [267].  

 

1.10.1 GSK3β expression and function in the kidneys 

The role of GSK3β in the kidneys was unveiled 10 years ago [268], while it has been 

observed a long time ago by clinicians that lithium treatment of bipolar disorder can cause 
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polyuria in 40% of patients [269]. Lithium, a GSK3 inhibitor, was used as mental health 

therapy for over 60 years. However, a substantial number of long-term lithium therapy 

recipients develop nephrogenic diabetes insipidus (NDI). These patients with NDI had 

significantly reduced ability to concentrate urine and showed no response to AVP [270]. In 

animal studies, lithium caused a marked AQP2 protein decrease in the collecting duct 

[271]. Further animal study using renal collecting duct-specific GSK3β knockout mice 

model indicated that the mice were not overtly polyuric under basal conditions. However, 

their urine concentrating capacity in response to water deprivation was diminished, along 

with great reduction in AQP2 mRNA and protein levels, and AQP2 membrane trafficking 

ability [272]. These data suggest that ablation of GSK3β in collecting duct reduces it’s 

response to the hydro-osmotic effects of vasopressin. 

 

As to the impact of GSK3β on blood pressure regulation, a rat model of Li-induced NDI 

was used to assess whether the marked decreases in urine output could result in blood 

pressure change [273]. The mean arterial pressure did not differ between control group and 

the group that fed standard rat chow plus Li for 4 week [273]. 

 

1.10.2 GSK3β regulates Nrf2 signaling 

In addition to the well-accepted Keap1-Nrf2 pathway, a novel mechanism of Nrf2 

regulation in response to oxidative stress was discovered [274]. It was reported by the 

same group previously that a tyrosine kinase, Fyn, can mediate Nrf2 nuclear export by 

phosphorylating Nrf2 on tyrosine 568 [275]. After that, this research team used a series of 

in vitro studies to demonstrate that GSK3β acts upstream of Fyn in control of Nrf2 nuclear 

export [274]. Inhibition of GSK3β by chemicals or siRNA leads to Nrf2 nuclear 

accumulation and transcriptional activation of its target gene, whereas H2O2 can stimulate 

phosphorylation of tyrosine 216 (Y216) on GSK3β, and results in activation of GSK3β. 

The activated GSK3β phosphorylates Fyn at threonine residue(s). Phosphorylated Fyn 

accumulates in the nucleus and phosphorylates Nrf2 at tyrosine 568. This leads to nuclear 

export and degradation of Nrf2 by proteasome [274]. Notice that H2O2 is a major form of 

ROS and is known to induce Nrf2 activation. In this study they found H2O2 caused Nrf2 

signaling activation in a short-term manner (i.e. 1 hour); but caused Nrf2 nuclear export 

and Nrf2 signaling inactivation in a long-term manner (i.e. 4 hours). The author presumed 
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that H2O2 induced Nrf2 signaling activation might be regulated by protein kinase C (PKC), 

which both inactivate GSK3β and activate Nrf2 in a synergistic fashion in response to 

early oxidative stress. However, the signaling events between H2O2 and pGSK3β(Y216) 

could be a delayed response. 

 

 

1.11 β-catenin and it’s signaling 

 

1.11.1 The canonical Wnt/β-catenin signaling pathway 

The Wnt/β-catenin signal pathway is very important in growth and development during 

embryogenesis. This signaling pathway is finely tuned and found dysregulated in disease 

condition, such as cancer [276]. Briefly, in the absence of Wnt, which serves as a ligand, 

Frizzled/low-density-lipoprotein receptor related protein (Fz/LRP) receptors are not 

activated. Casein kinase 1 (CK1) and GSK3 sequentially phosphorylate Axin-bound 

β-catenin at S45, S41, S37 and S33. Phosphorylated β-catenin then forms a destruction 

complex with β-transducin repeat containing (β-TrCP) in cytosol, which is part of an E3 

ubiquitin ligase complex. As a result, β-catenin is ubiquitinated and targeted for rapid 

destruction by the proteasome and this prevents transcriptional activation of β-catenin 

target genes. With the presence of Wnt, the Wnt signaling pathway is on and 

phosphorylation of β-catenin by CK1 and GSK3 is suppressed. The destruction complex 

falls apart, and β-catenin is free to form a complex with other transcription factors in 

nucleus, and subsequently promote expression of its target genes (figure 1-14) [276]. 
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Figure 1-14. The current Wnt signaling model. In the absence of Wnt, the destruction 

complex resides in the cytoplasm, where it binds and phosphorylates β-catenin. The latter 

then leaves the complex to be ubiquitinated by β-TrCP (which binds to the phosphorylated 

“degron” motif in β-catenin) and is then degraded by the proteasome. Wnt induces the 

association of Axin with phosphorylated LRP. The destruction complex falls apart, and 

β-catenin is stabilized [276]. 

 

 

1.11.2 β-catenin and kidney disease 

It was recently recognized that dysregulation of Wnt signaling pathway in adults is linked 

with progressive kidney injury. Progressive kidney injury is associated with 

glomerulosclerosis and interstitial fibrosis. In an Adriamycin-induced podocyte injury and 

proteinuria mouse model, Wnt/β-catenin pathway was activated. Further activation of Wnt 

signaling by intravenously injection of Wnt activator can activate glomerular β-catenin in 

glomeruli and aggravated albuminuria, whereas administration blockade of Wnt signaling 

can ameliorate podocyte lesions [277]. Also in the same study, podocyte-specific knockout 

of β-catenin can protect mice from developing albuminuria after injury [277]. These data 

suggest that Wnt/β-catenin signaling plays an important role in podocyte injury and 

proteinuria. In human with kidney diseases complicated by proteinuria, such as diabetic 

nephropathy and focal segmental glomerulosclerosis, upregulation of Wnt and active 

β-catenin in podocytes were observed.  
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Progressive renal injury also features increasing interstitial fibrosis of the kidney. In 

response to insults, kidney tubular epithelial cells undergo a phenotypic conversion and 

give rise to the matrix-producing fibroblasts and myofibroblasts. The process is termed 

epithelial-mesenchymal transition (EMT) [278]. An in vitro study using rabbit primary 

RPTCs demonstrated that administration of β-catenin inhibitor can reverse high 

glucose-induced EMT, suggested tie role of Wnt/β-catenin signaling activation in the 

process of EMT [279]. Another experimental study using both T1D and T2D mouse model 

indicated that Wnt/β-catenin signaling is activated in diabetic mice kidney. Treatment of 

insulin can attenuate activated Wnt/β-catenin signaling in the kidney. Moreover, inhibition 

of WNT signalling by using monoclonal antibody to block LRP receptor can ameliorate 

renal inflammation and fibrosis, as well as reduce proteinuria in diabetic mice [280]. 

 

1.11.3 β-catenin and its interaction with AQP1 

Interestingly, lately a study reported that AQP1 could interact with the transcription factor 

β-catenin and have protective effect in an autosomal dominant polycystic kidney disease 

(PKD) mouse model [281]. The study induced cysts formation by forskolin in 

immortalized canine kidney epithelial cells, and overexpression AQP1 can inhibit cyst 

development as well as decrease β-catenin expression and downregulate Wnt signaling. In 

vivo, cyst number is significantly greater in AQP1KO PKD mice, following decreased 

β-catenin phosphorylation and increased β-catenin expression compared to PKD mice with 

normal AQP1 [281]. The result implicated that AQP1 may be involved in the inhibition of 

Wnt signaling by recruiting and forming a complex. The author hypothesized that AQP1 

may interact and therefore increase the stability of the “destruction complex”. In that 

complex, β-catenin is phosphorylated and subsequently degraded by proteasome. Without 

AQP1 in the cells, the stability of the “destruction complex” is decreased and β-catenin is 

released from the complex, resulting in β-catenin translocate into the nucleus and promote 

transcription of Wnt target gene. This study provided us an insight of how AQP1 could 

contribute to kidney injury. 
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1.12 Animal models used in present study 

 

1.12.1 Maternal diabetic murine model 

The etiology of GDM is complex. It is considered to be a complex disease with several risk 

factors. Thus creation of appropriate animal models that are perfect replicas of this disease 

is rather difficult. Hence the choice of animal model depends whether the study focuses on 

the health consequences for the offspring of mothers with maternal diabetes, or on the 

physiology of the diabetic mothers. 

 

Rat and mouse are the most commonly used animal model for the study of maternal 

diabetes, although other vertebrates (pig, sheep, dog and non-human primates) are also 

options. There are various strategies to induce diabetes at gestation (Table 1-4). In our 

study, we chose the STZ-induced diabetic mouse model, and treated the dams with STZ 

starting on embryonic day 13 for 48 hours, as described [282]. This model mimics the 

elevated glycemia at the end of the second trimester of gestation observed in human 

mothers with GDM. STZ specifically destroys β-cells by transporting STZ through the 

glucose transporter 2 (GLUT2) [283], causing β-cell apoptosis, leading to decreased 

insulin secretion and hyperglycemia [284]. Though STZ is able to cross into the placenta, 

its half-life is less than five minutes, and therefore does not significantly affect the 

developing embryo [285]. It is a well-accepted animal model to investigate offspring of 

diabetic dams. 
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Table 1-4. Strategies in generating animal models of GDM. Currently available models for 

the study of GDM include surgery, chemical induction, nutritional manipulation, or genetic 

manipulation and are viable options for a wide variety of model organisms [286]. 

 

 

 

 

1.12.2 Hoxb7/catalase-GFP-Tg mouse 

This double transgenic mouse model was generated by crossbreeding Hoxb7-GFP-Tg mice 

along with Cat-Tg mice as description in detail below: 

 

1.12.2.1 Hoxb7-GFP-Tg mouse 

Nephron number loss is a marker for impaired nephrogenesis in the offspring of diabetic 

mouse dams [287]. To visualize kidney development, Hoxb7-Green Fluorescence 

Protein-transgenic (Hoxb7-GFP-Tg) mice were utilized in this study. During kidney 

development, a UB, the precursor of the renal collecting duct, keeps branching and 

inducing MM, which are a group of nephron progenitor cells, to form an entire nephron 

[288]. The number of UB counted during the embryonic stage is a surrogate marker of the 

Strategy Methods
Examples
of Species

Used
Major Advantages Major Disadvantages

Pancreatectomy  Dogs  � Plausible strategy in animals where
other options are not feasible  � Requires highly trained personnel

 Rats  � High mortality rate

 �  Not accurate pathogenesis of GDM

Streptozotocin  Mice  � Affordable  � Potential nonspecific consequences

Alloxan  Rats  �  Proven technique in many different
species  �  More severe hyperglycemia

 Rabbits  �  Not accurate pathogenesis of GDM

 Pigs

 Sheep

Nonhuman
primates

High-fat diet  Mice  � Affordable  � Ignores genetic contribution to
disease

Glucose infusion  Rats  �  Plausible strategy for larger animals  � Does not reflect cases of GDM not
due to diet

 Dogs

 Sheep

Gene knockouts  Mice  �  Spontaneous development of GDM  � Not an option for many animals

Transgenic
overexpression

 � Glucose intolerance specific to
pregnancy

 � Overly simplistic representation for
most cases of GDM

Surgery

Chemically
Induced

Nutritional
Manipulation

Genetic
Manipulation
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number of nephrons in adulthood. These transgenic mice express GFP in UB under the 

control of the Hoxb7 promoter, which allows monitoring of UB growth and branching 

even when the kidneys are cultured ex vivo for several days [289].  

 

1.10.2.2 CAT-Tg mouse 

A Cat-Tg mouse that overexpresses rat CAT specifically in mouse RPTCs, driven by the 

human kidney androgen- regulator protein 2 (KAP2) promoter, was kindly provided by Dr. 

John S.D. Chan [290]. The activity, function and tissue expression of the overexpressed rat 

catalase were characterized by Dr. Chan’s group [290].  

 

Briefly, to generate CAT-Tg mice specifically in RPTCs, KAP2-rCAT construct that 

driven by androgen was introduced. As a result, only male mice were studied in the 

fallowing experiments. To select a transgenic line that specifically expresses transgene in 

RPTCs but not other tissues, mRNA and protein expression was tested in various organs. 

 

After the line has been determinate, next is to demonstrate whether transgenic CAT protein 

is functional. RPTCs extract were used to perform CAT activity assay in the presence or 

absence of H2O2, and H2O2 was consumed effectively in CAT-Tg RPTCs extract compare 

to WT. Also, RPTCs were isolated, ex vivo incubated and ROS generation was induced 

with high glucose medium (25 mM D-glucose) compare to normal glucose medium (5 mM 

D-glucose plus 20 mM D-mannitol). ROS level was augmented in RPTCs of WT mice in 

response to high glucose, but no apparent changes in RPTCs of CAT-Tg mice. Diabetes 

was induced by STZ injection to both WT and CAT-Tg adult mice. WT diabetic mice 

developed albuminuria, kidney hypertrophy and kidney structural damage, while all these 

pathological changes were attenuated in diabetic CAT-Tg mice kidneys. All in vivo and in 

vitro data suggested that transgenic CAT in RPTCs can cleanse ROS generated in the 

kidney and is a good model to investigate maternal diabetes perinatal programmed 

hypertension and kidney injury, focusing on the role of intrarenal ROS. 

 

1.12.3 rAgt-Tg mouse 

The Agt-Tg mouse line was kindly provided by Dr. John S.D. Chan and was well 

characterized [291]. The strategy used to generate transgenic rat Agt-Tg mice is similar to 
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that used for Cat-Tg. Briefly, to generate Agt-Tg mice that overexpress Agt specifically in 

RPTCs, KAP2-rAgt construct that driven by androgen was introduced. It was confirmed 

that the transgene only express in RPTCs but not any other tissue by mRNA RT-PCR. 

Transgenic Agt protein expression was found to be increased in RPTCs of male Agt-Tg 

mice, and their SBP was 15 mmHg higher compared to male non-Tg littermates [292]. 

SBP of male Agt-Tg mice can be further enhanced by administration of testosterone by 

averages 20-30mmHg compared to the non-induced controls. The male transgenic mice 

displayed markedly increased albuminuria and kidney injury compared to non-transgenic 

littermates, and the levels of urinary albumin can be normalized by treatment with losartan 

or perindopril [291]. Taken together, this mice model is a perfect model for us to study 

intrarenal RAS activation-induced hypertension and kidney injury, discovering the role of 

AQP1 and underlying mechanism. 
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2.1 Abstract 

We investigated whether overexpression of catalase (CAT) in renal proximal tubular 

cells (RPTCs) could prevent the programming of hypertension and kidney disease in the 

offspring of dams with maternal diabetes. Male offspring of non-diabetic and diabetic dams 

from two Tg lines (Hoxb7- GFP-Tg (controls) and Hoxb7/CAT-GFP-Tg, which overexpress 

CAT in RPTCs), were studied from the prenatal period into adulthood. Nephrogenesis, 

systolic blood pressure (SBP), renal hyperfiltration and kidney injury as well as reactive 

oxygen species (ROS) generation were assessed. Gene expression of TGF-β1, nuclear factor-

erythroid 2p45 (NF-E2) related factor-2 (Nrf2), and heme oxygenase-1 (HO-1), were tested in 

both in vitro and in vivo studies. Renal dysmorphogenesis was observed in offspring of 

Hoxb7-GFP-Tg dams with severe maternal diabetes; the affected male offspring displayed 

higher renal ROS generation, developed hypertension and renal hyperfiltration as well as renal 

injury with increased TGF-β1 expression in adulthood. These changes were ameliorated in 

male offspring of diabetic Hoxb7/Cat-GFP-Tg dams via the Nrf2-HO-1 defense system. CAT 

promoted Nrf2 gene nuclear translocation and HO-1 gene expression, seen both in in vitro and 

in vivo studies. In conclusion, CAT overexpression in the RPTCs ameliorated maternal 

diabetes-induced perinatal programming, mediated, at least in part, by triggering the Nrf2-HO-1 

defense system.  

 

2.2 Introduction 

Gestational diabetes occurs in 3-14% of pregnancies world wide (www.diabetes.com), 

conferring substantial risk to the offspring. Infants of diabetic mothers are thus prone to 

develop a variety of disease later in life, such as metabolic syndrome, hypertension and 
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chronic kidney disease (CKD) (1;2). This phenomenon, in which intrauterine events are linked 

with later changes, is termed “perinatal programming,” but the mechanisms by which it occurs 

are incompletely delineated (3;4).  

The broad spectrum of birth defects seen in offspring of women with gestational 

diabetes and in animal models is thought to be associated either with increased reactive 

oxygen species (ROS) or diminished antioxidant defense systems (both enzymatic and non-

enzymatic defense systems), leading to increased susceptibility to ROS- induced injury in 

multiple tissues, including the kidney (5-7). Studies to determine whether antioxidant 

supplementation and/or the provision of non-enzymatic antioxidants prevent these 

abnormalities are needed. To date, reports on the efficacy of antioxidant supplementation to 

pregnant women with or without diabetes are preliminary and controversial (8;9), as is the 

case in experimental models (7). Hence, the present study focuses on antioxidant enzymatic 

pathways, specifically the catalase (CAT)- nuclear factor-erythroid 2p45 (NF-E2) related 

factor-2 (Nrf2) - heme oxygenase-1 (HO-1) pathway.  

The key initial step in the formation of all ROS is the conversion of oxygen to 

superoxide anion (O2
•
−). O2

•
−
 has a very short half-life and is rapidly converted to less reactive 

hydrogen peroxide (H2O2) by superoxide dismutases (SODs) and then reduced to H2O by CAT 

and glutathione peroxidase (GPx) (10;11). In the kidneys, CAT is localized to the renal 

proximal tubular cells (RPTCs) (12-14). CAT has been postulated to be a key enzyme 

regulating H2O2 levels since cells overexpressing CAT are more resistant to H2O2 toxicity and 

oxidant-mediated injury (15;16), whereas, overexpression of GPx alone is not protective 

against renal injury in diabetic mice (17). 
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Nrf2 is a transcriptional factor that acts as a key regulator of cellular antioxidant 

enzymes including CAT, HO-1, SODs, glutathione S-transferease, peroxidase, NAD(P)H 

quinone oxidoreductase and thioredoxin, etc. (18) via its binding to the antioxidant-response 

element to protect against oxidative stress (18;19). Under basal conditions, Nrf2 is bound 

within the cytoplasm to protein kelch-like ECH-associated protein 1 (Keap1, an oxidative 

stress sensor) and then undergoes rapid ubiquitination, with subsequent proteasome-dependent 

degradation. Upon exposure of cells to oxidative stress, Nrf2 is released from Keap1 and 

translocates to the nucleus, where it subsequently guides expression of antioxidant stress genes 

to trigger the cellular anti-oxidant defense response (18;19).  

Nrf2 is highly expressed in the kidney (19), and it is thought that the Nrf2-HO-1 

defense system is renoprotective and that its induction might even improve kidney function in 

renal fibrosis (20), diabetic nephropathy (21) and acute ischemic kidney injury (22), as well as 

in the progression of focal glomerulosclerosis (23;24). Moreover, HO-1 induction has been 

considered as a useful target for the development of antihypertensive drugs, since HO-1 or its 

metabolites can attenuate the development of hypertension and lower blood pressure in models 

of established hypertension (25). 

Previously, we reported that a high-glucose milieu ex vivo or severe maternal diabetes 

in utero (defined as maternal blood glucose concentration ~30 mM) induces ROS generation, 

which impairs nephrogenesis, resulting in offspring with relatively smaller kidneys and 

nascent nephron deficiency due to excessive apoptosis [via activation of the nuclear factor-

kappa B (NF-kB) and p53 pathways] (26-28). Moreover, we have shown that severe maternal 

diabetes is linked to low birth weight in offspring (mean decrease 20%), which later manifests 

hypertension, glucose intolerance and kidney injury in adulthood along with heightened ROS 
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generation (26;29). Taken together, our prior data suggest that an imbalance between ROS 

production and anti-oxidative capacity can lead to a state of “oxidative stress” that is 

intimately associated with perinatal programming of hypertension and kidney disease. 

In the present studies, we investigated whether overexpression of CAT in renal 

proximal tubular cells (RPTCs) could prevent the perinatal programming of hypertension and 

kidney injury in male offspring of diabetic dams and examined the potential underlying 

mechanisms both in vivo and in vitro. 

 

2.3 Materials and methods 

Animal models  

We used both Hoxb7- green fluorescent protein (GFP) –transgenic (Tg) (Hoxb7-GFP-

Tg) and Hoxb7/Catalase-GFP-Tg (Hoxb7/Cat-GFP-Tg) murine lines (both in C57/BL6 

background); both lines are fertile with a normal phenotype at birth and during adult life. 

Hoxb7-GFP-Tg mice (GFP expression specifically in ureteric bud (UB) driven by Hoxb7 

promoter) provided by Dr. Frank Costantini (Columbia University Medical Center, New York, 

NY, USA) (30;31) were engineered to allow UB branching morphogenesis to be visualized in 

real time in vivo as reported previously (28). Cat-Tg mice (e.g., rat CAT gene overexpressing 

specifically in RPTCs driven by kidney-specific androgen-regulated protein (KAP2) promoter) 

were obtained from Dr. John S.D. Chan (CRCHUM-Hôtel-Dieu Hospital, Université de 

Montréal) (32-34). High levels of androgens have been reported in the fetal and maternal 

circulation in both humans (35-38) and mice (39), rendering the KAP2 promoter a feasible way 

to direct CAT transgene expression during nephrogenesis (which occurs in mice both in the 

prenatal and postnatal periods). We thus created hybrid Hoxb7/Cat-GFP-Tg mice by cross-
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breeding Cat-Tg mice with Hoxb7-GFP-Tg mice; the resultant hybrid mice permit the 

visualization of CAT impact on nephrogenesis--e.g., UB branching morphogenesis, which we 

examined both in the presence and absence of maternal diabetes in vivo. 

 

Induction of Maternal Diabetes 

We have successfully employed a single intraperitoneal injection of 150 mg/kg body 

weight (BW) of streptozotocin (STZ, Sigma-Aldrich Canada Ltd., Oakville, ON, Canada) at 

embryonic day 13 (E13) to create an in vivo murine model of maternal diabetes (26-29). We 

studied the male offspring from non-diabetic (control) and diabetic dams of both Hoxb7-GFP-

Tg and Hoxb7/Cat-GFP-Tg.   

 

Animal Care 

Animal care and the procedures utilized were approved by the Institutional Animal 

Care Committee of the CRCHUM. Mice were housed under standard humidity and lighting 

conditions (12-h light-dark cycles) with free access to standard mouse chow and water. 

 

Isolation of Metanephroi and Counting of UB Tips 

E15-embryos were dissected aseptically from both timed-pregnant Hoxb7-GFP-Tg and 

Hoxb7/Cat-GFP-Tg mice with or without diabetic mellitus (DM). The E15-metanephroi were 

isolated under sterile conditions, and quantitative assessment of the number of UB tips in each 

group was performed as reported previously (28).  

  

 



 
 

61 

Physiological Studies 

Blood glucose levels were measured with a Side-Kick Glucose Analyzer (Model 1500, 

Interscience, ON, Canada) in the morning after a 4-hour fast, as reported previously (26;27;29). 

Mean systolic blood pressure (SBP) was monitored by the tail-cuff method with the Visitech 

BP-2000 Blood Pressure Analysis System for mice (Visitech System Inc., Apex, NC, USA), 

as reported elsewhere (29;33;34). The animals were acclimated to BP measurement (2-week 

period of pre-training starting at 6 weeks of age, followed by actual measurement of SBP 

thrice weekly from 8 weeks until 18 weeks of age). Although the technique of tail-cuff 

measurement is generally considered less sensitive than telemetry, we judged that our SBP 

data is valid, based on the substantial numbers of animals used and the fact that the animals 

were well-acclimated and used to the measurement in our longitudinal studies, thus 

minimizing stress.    

Urine samples, collected from mice individually housed in metabolic cages, were 

assayed for albumin and creatinine (ELISA, Albuwell and Creatinine Companion, Exocell Inc., 

Philadelphia, PA, USA) as reported previously (29;33;34). All animals were euthanized at 20 

weeks of age under CO2, and the kidneys removed immediately. Body weight (BW) and 

kidney weight (KW) were rapidly recorded. The left kidney was utilized for renal morphology 

and immunohistochemistry (IHC) (29;33;34). The right kidney cortex was reserved for ROS 

generation and gene expression experiments as previously reported (29;33;34). 
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Measurement of Glomerular Filtration Rate (GFR) 

As reported previously (40), we estimated the GFR in 20 week-old male animals by 

the fluorescein isothiocyanate-inulin (FITC-inulin) method, as described by Qi et al. (41) and 

recommended by the Diabetic Complications Consortium (DCC) (www.diacomp.org).  

 

Renal Morphology, Mean Glomerular Volume and Nephron Number 

Kidney morphology was assessed with hematoxylin and eosin (H & E) and periodic-

acid schiff (PAS) staining. As in previous reports (26;27;29), mean glomerular volume (Vg) 

was determined using PAS–stained images with the aid of an image analysis software system 

(Motics Images Plus 2.0, Motic, Richmond, BC, Canada) (42); and quantification of neonatal 

nephron number was adapted from Bertram’s method, using serial sections (43).   

 

ROS Generation 
 Freshly isolated renal cortex was used immediately for ROS measurement by the 

lucigenin method, as described elsewhere (26;27;32;33). ROS production was normalized by 

protein concentration and expressed as relative light units (RLU) per µg protein. 

 

Real time-Quantitative Polymerase Chain Reaction (RT-qPCR) 

Total RNA extracted from freshly isolated renal cortex was assayed for gene expression 

by real time quantitative PCR (RT-qPCR), as reported previously (27;29;40). The Fast 

SYBR® green mastermix kit and the 7500 Fast real-time PCR system (Applied Biosystems, 

Life Technologies, Foster City, CA, USA)] were employed for this purpose (26;27;32;33). 
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Immunohistochemistry 

Immunohistochemistry (IHC) was performed by the standard avidin-biotin-peroxidase 

complex method (ABC Staining System, Santa Cruz Biotechnologies, Santa Cruz, CA, USA), 

as described elsewhere (26;27;29). Polyclonal anti-CAT antibody was purchased from Sigma-

Aldrich Canada (Oakville, ON, Canada); polyclonal anti-Nrf2 antibody was purchased from 

Abcam (Cambridge, MA, USA); transforming growth factor-beta 1 (TGF-β1) and HO-1 

antibodies, were purchased from Santa Cruz Biotechnologies.  

 

Immortalized Renal Proximal Tubular Cells (IRPTCs)  

The IRPTC cell line reported previously (44) was employed for our studies in vitro. 

This in vitro setting is useful for studies of the effect of high glucose (25mM D-Glucose) on 

both Nrf2 and HO-1 gene expression as well as Nrf2 nuclear translocation with or without the 

administration of CAT (250 unit (U)). The cells incubated in low glucose (5mM D-Glucose) 

medium with 20mM mannitol to reproduce the same osmolality as high glucose served as the 

control. 

Nuclear protein (N.P.) and cytosolic protein (C.P.) extracts were prepared using the 

NE-PER nuclear and cytoplasmic extraction kit (Thermo scientific, Burlington, Ontario, 

Canada) as reported previously (26;27). Anti-Histone H3 (3H1) rabbit mAb was purchased 

from Cell Signaling Technology, Inc. (Boston, MA, USA). Western blot (WB) and 

immunofluorescence (IF) staining on both Nrf2 and HO-1 genes in IRPTCs were performed as 

reported previously (45).  
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Statistical Analysis 

Statistical significance between the experimental groups was analyzed by 1-way 

ANOVA, followed by the Bonferroni test using Graphpad Software, Prism 5.0 

(http://www.graphpad.com/prism/Prism.htm). A probability level of P  0.05 was considered 

to be statistically significant (26;27;29).  

 

2.4 RESULTS 

Hybrid Hoxb7Cat-Tg Mice Generation 

  The success of generating hybrid Hoxb7 /Cat-Tg mice was confirmed by PCR 

genotyping (Figure 1A) as well as GFP live image in E15-metanephroi (Figure 1B). Once 

these animals were obtained, we compared UB branching morphogenesis in E15-metanephroi 

after 2 days of STZ administration [e.g., maternal blood glucose concentration (mM): non-

diabetic dams (Hoxb7-GFP-Tg: 9.45 ±1.69; Hoxb7/Cat-GFP-Tg: 9.68 ± 1.01) vs. diabetic 

dams (Hoxb7-GFP-Tg: 28.6 ± 2.14; Hoxb7/Cat-GFP-Tg: 27.9 ± 2.0)].  As compared to the 

E15-metanephroi isolated from non-diabetic Hoxb7-GFP-Tg animals, the E15-metanephroi 

from diabetic Hoxb7-GFP-Tg mice displayed smaller size (Figure 1B) with less number of UB 

tips (Figure 1C), and those UB branching impairments appear to be ameliorated by diabetic 

Hoxb7/Cat-GFP-Tg mice (Figure 1B and 1C).   

 

Neonatal Kidney Outcomes in Offspring  

Neonatal renal morphology was reviewed by H & E staining and CAT-IHC.  CAT-

IHC revealed that CAT is highly expressed in RPTCs in the neonatal kidneys of Hoxb7/Cat-

GFP-Tg compared to Hoxb7-GFP-Tg mice (Figure 2A). As compared to the offspring of non-
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diabetic Hoxb7-GFP-Tg dams, the neonates of diabetic Hoxb7-GFP-Tg dams had smaller 

kidneys with small glomeruli (Figure 2A), as well as fewer nephrons (Figure 2B). This 

dysnephrogenesis appeared to be attenuated in the neonatal offspring of Hoxb7/Cat-GFP-Tg 

diabetic dams (Figure 2A and 2B).  Also, there is no significant difference in litter size and sex 

distribution among the four groups of animals (see the supplemental data).  

 

Physical and Biochemical Measurements in the Male Offspring in Adulthood 

Figure 3 displays the physical and biochemical findings in the male offspring at 20 

weeks of age. The offspring of Hoxb7-GFP-Tg diabetic dams were significantly smaller and 

lighter as compared to the offspring of non-diabetic Hoxb7-GFP-Tg dams [Body weight (BW, 

g) in Hoxb7-GFP-Tg offspring: non-diabetic (Hoxb7-Con: 27.98 ± 1.095, N=16) vs. diabetic 

(Hoxb7-DM: 22.84 ± 1.506, N=12), P 0.05]. In contrast, there were no significant differences 

between the BWs of the offspring from non-diabetic and diabetic Hoxb7/Cat-GFP-Tg dams 

[BW (g) in Hoxb7/Cat-GFP-Tg offspring: non-diabetic (Hoxb7/Cat-Con: 31.845 ± 1.35, N=13) 

vs. diabetic (Hoxb7/Cat-DM: 33.92 ± 1.82, N=14)] (Figure 3A). Although the 20 week-old 

male Hoxb7/Cat-GFP-Tg offspring had significantly bigger kidneys (kidney weight (KW, mg), 

as compared to those of Hoxb7-GFP-Tg mice (Figure 3B) [KW (mg): Hoxb7-Con (314.6 ± 

37.96, N=15); Hoxb7-DM (298 ± 41.31, N=10); Hoxb7/Cat-Con (394 ± 26.08, N=11); and 

Hoxb7/Cat-DM (380 ± 5.07, N=12)], the KW to BW ratio among all groups of 20 week-

animals, however, did not differ significantly  (Figure 3C) as well as the fasting blood glucose 

levels (mM) (Figure 3D). 
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Mean Systolic Blood Pressure (SBP) in Adulthood 

SBP as monitored by tail cuff is shown in Figure 4 A and B from age 8 to 20 weeks. 

Longitudinal studies (Figure 4A) revealed that the male offspring of diabetic Hoxb7-GFP-Tg 

dams have significantly higher SBP over the follow-up period, as compared to the control 

offspring. CAT overexpression in RPTCs seems to prevent maternal diabetes-induced 

perinatal programming of hypertension. Figure 4B summarized the SBP in the male offspring 

at 20 weeks (Hoxb7-Con: 108.74  3.21 mmHg, N=23; Hoxb7-DM: 125.47  2.08 mmHg, 

N=21; Hoxb7/Cat-Con: 113.35  1.40 mmHg, N=22; Hoxb7/Cat-DM: 116.65  1.52 mmHg, 

N=23). 

 

ROS Generation and Renal Function Assay in Adulthood 

The offspring of diabetic Hoxb7-GFP-Tg dams at 20 weeks of age have significantly 

augmented ROS generation in their freshly isolated renal cortex as compared to the offspring 

of non-diabetic Hoxb7-GFP-Tg dams (Figure 4C); The offspring of diabetic dams exhibited 

significantly increased urinary albumin/creatinine ratio (ACR) (Figure 4D) [ACR: Hoxb7-Con 

(0.026 ± 0.024, N=12) vs. Hoxb7-DM (0.38 ± 0.34, N=15), P 0.001] and glomerular 

filtration rate (GFRs) (Figure 4E) [GFRs:  Hoxb7-Con (21.50 ± 2.0, N=6) vs. Hoxb7-DM 

(36.1 ± 5.2, N=6), P 0.01]. 

In contrast, offspring with overexpression of CAT did not have an increase in renal 

ROS (Figure 4C), ACR (Figure 4D) and GFR (Figure 4E), irrespective of whether the dams 

were non-diabetic or diabetic Hoxb7/Cat-GFP-Tg [ACR: Hoxb7/Cat-Con (0.031 ± 0.004, N=9) 

vs. Hoxb7/Cat-DM (0.087 ± 0.11, N=8); and GFR: Hoxb7/Cat-Con (22.22 ± 2.39, N=7) vs. 

Hoxb7/Cat-DM (22.35 ± 3.23, N=6)].  
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Renal Morphology and TGF-β1 Gene Expression in Adulthood 

Enhanced extracellular matrix (ECM) protein expression and accumulation in 

glomeruli is a marker of glomerular injury. PAS staining of kidney sections revealed that 

ECM accumulation in the glomeruli (Figures 5A) and higher mean Vg (Figure 5B) were more 

pronounced in hypertensive offspring of diabetic Hoxb7-GFP-Tg dams; this finding was 

attenuated in offspring of both diabetic and non-diabetic Hoxb7/Cat-GFP-Tg dams (Figure 

5A-B). 

TGF-β1 is a ROS-inducible gene that is overexpressed in diabetes; it is directly 

associated with increases in ECM accumulation and tubulointerstitial fibrosis (10;11;44). 

Increments of TGF-β1 gene expression (Figure 5C), predominantly localized to glomeruli and 

the tubulointerstitium, were observed in kidneys of hypertensive Hoxb7-GFP-Tg offspring 

(Figure 5D). Further, the heightened TGF-β1 expression was attenuated in kidneys of 

offspring of diabetic Hoxb7/Cat-GFP-Tg dams (Figure 5C-D), indicating that suppressing 

ROS generation ameliorated glomerular and tubulointerstitial fibrosis. 

 

Nrf2-HO-1 Gene Expression in Adulthood  

 We assessed Nrf2 and HO-1 gene expression in the renal cortex using RT-qPCR 

(Figure 6A-B). Compared to offspring of non-diabetic Hoxb7-GFP-Tg dams, both Nrf2 and 

HO-1 levels were significantly increased in hypertensive offspring of diabetic Hoxb7-GFP-Tg 

dams. Overexpression of CAT in RPTCs further enhanced Nrf2 and HO-1 gene expression in 

the affected male offspring of both non-diabetic or diabetic Hoxb7/Cat-GFP-Tg dams.   

Consistent with the RT-qPCR data (Figure 6A-B), our IHC studies (Figure 6C) in 

paraffin-embedded renal sections showed that Nrf2 protein expression was not only detected 
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in glomeruli as reported as others (21;22), but also in RPTCs as well, whereas HO-1 appeared 

limited to the RPTCs. Most interestingly, the elevation of Nrf2 protein expression was 

strikingly increased in RPTCs, accompanied by nuclear translocation in offspring of 

Hoxb7/Cat-GFP-Tg dams, both diabetic and non-diabetic, indicating overexpression of CAT 

in RPTCs activates the Nrf2-HO-1 defense system to ameliorate maternal diabetes-induced 

perinatal programming of kidney injury in offspring.  

 

Nrf2-HO-1 Gene Expression in IRPTCs in vitro 

In order to confirm the effect of CAT on Nrf2 gene translocation, we performed 

additional in vitro studies with cultured IRPTCs (44). In this in vitro system, as in vivo, high 

glucose (WB, Figure 7A-B; IF staining, Figure 7C-D) significantly upregulates Nrf2 gene 

expression, as well as its translocation from the cytosol to nucleus, which targets the 

downstream HO-1 gene, resulting in significant up regulation, suggesting the Nrf2-

antioxidative machinery on the operation. Meanwhile, CAT itself could trigger Nrf2 

translocation and further upregulate HO-1 expression in IRPTCs, indicating that Nrf2-HO-1 

anti-oxidative action could be mediated in a CAT-dependent manner.  

 

2.5 Discussion 

The present work demonstrates that intrarenal ROS generation induced by maternal 

diabetes can exert a direct effect on nephrogenesis in utero; and consequently trigger the 

perinatal programming of hypertension and renal injury in the offspring of diabetic dams when 

they reach adulthood. CAT overexpression in RPTCs appears to prevent this phenomenon, 

mediated, at least in part, via the Nrf2-HO-1 defense system.  
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In women with gestational diabetes, there is evidence of increased oxidative stress and 

impairment of antioxidant defense mechanisms, as seen in maternal plasma and cord blood as 

well as in placental tissue (46). It appears that ROS can directly impair nephrogenesis and 

elicit growth retardation and congenital kidney anomalies (5-7), and may also lead to adverse 

perinatal programming (26;29). In the current study, we created a unique murine model, 

hybrid Hoxb7/Cat-GFP-Tg mice, allowing us to directly study the functional role of CAT on 

the impact of maternal diabetes on nephrogenesis during prenatal period and on the 

development of perinatal programming of hypertension and kidney injury in adulthood in the 

exposed male offspring. 

First, we characterized our hybrid Hoxb7/Cat-GFP-Tg mice and documented that the 

offspring of those Hoxb7/Cat-GFP-Tg mice rendered diabetic during pregnancy overexpress 

CAT in their RPTCs in isolated embryonic or newborn kidneys, which could prevent maternal 

diabetes-induced renal dysmorphogenesis (small kidneys with decreased nascent nephron 

number as well as less UB branching morphogenesis). One possible explanation is that since 

common progenitors in the S-shaped body migrate spontaneously and differentiate to form 

tubules (both proximal and distal) and glomeruli (glomerular tufts), tubulogenesis and 

glomerulogenesis directly influence each other(47). Thus, if CAT overexpression in RPTCs 

eliminates the impairment of maternal diabetes-induced ROS in tubulogenesis, 

glomerulogenesis is improved as well. Nevertheless, our data suggest that maternal diabetes-

induced renal ROS may exert a direct effect on nephrogenesis in utero, and that the impaired 

nephrogenesis induced by maternal diabetes could be ameliorated by CAT overexpression in 

RPTCs. 
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We previously reported that CAT overexpression in RPTCs of db/db mice, which 

spontaneously develop diabetes, effectively attenuates hypertension, albuminuria, interstitial 

fibrosis, tubular apoptosis, and pro-apoptotic gene expression (32;33), suggesting that CAT 

overexpression in the RPTC might provide a novel approach to obviating or reversing the 

pathophysiological manifestations of maternal diabetes-induced perinatal programming of 

hypertension and kidney injury. Hence, we hypothesized that the protective role of CAT in 

RPTCs programmed for hypertension and kidney injury by maternal diabetes might be 

mediated via the Nrf2-HO-1 defense system.  

To test this hypothesis, we followed male offspring of non-diabetic and diabetic dams 

until adulthood (20 weeks of age). We observed that the adult male offspring of diabetic 

Hoxb7-GFP-Tg dams displayed higher renal ROS generation and developed hypertension and 

renal injury-- features such as microalbuminuria, renal hyperfiltration (increased GFR and 

mean Vg), apparent glomerular injury (ECM accumulation and tubulointerstitial fibrosis with 

heightened TGF-β1 expression as compared to male offspring of diabetic Hoxb7-CAT-GFP-

Tg dams. Thus, CAT overexpression in RPTCs of the male offspring of diabetic Hoxb7/CAT-

GFP-Tg dams appear to normalize these abnormalities with upregulation of Nrf2 and HO-1 

gene expression in the kidney. 

It has recently been reported that the Nrf2-HO-1 defense system is renoprotective (20-

24); further, a causal link between Nrf2 anti-oxidative pathways and oxidative stressors--e.g., 

ROS, angiotensin II (Ang II), TGF-β1 and NF-kB etc., has been established (20-24;48). Thus, 

it seems likely that Nrf2 mediated anti-oxidative capacity could act to counterbalance the 

stress induced by increased ROS production. When Nrf2 signals are impaired, either by 

reduction of Nrf2 pathway activation (20-24;48) or by disruption of Nrf2 gene expression 
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(Nrf2 knock-out mice) (21;49;50), renal damage may worsen, suggesting Nrf2-dependent 

regulation.  Our present data indicate that overexpression of CAT in RPTCs promotes Nrf2 

gene expression, and then decreases TGF-β1 related glomerular ECM accumulation, which 

confirms the findings of Jiang et al., who reported that knockdown of Nrf2 by siRNA 

enhanced TGF-β1 transcription and fibronectin production in cultured human mesangial cells 

(21). Moreover, previously, we established that there is a functional relationship between 

intrarenal ROS generation, the activation of the intrarenal renin-angiotensin system (RAS) and 

the NF-kB signaling pathway in our maternal diabetes murine model of perinatal 

programming (26;27;29). Taken together, our data suggest that CAT is capable of triggering 

Nrf2 translocation, and then targeting downstream genes, such as the HO-1 gene, which then 

interact with the intrarenal RAS and NF-kB signalling, improving renal outcome (27;29;34).  

Finally, we observed that the augmented upregulation of Nrf2 with nuclear 

translocation was most evident in the RPTCs, rather than in glomeruli, as reported by others 

(21;22), whereas heightened HO-1-IHC expression seems to be only localized in the RPTCs, 

in agreement with other reports (20;22). Given this specific localization of Nrf2 expression in 

RPTCs, we further validated our in vivo data by employing IRPTCs in vitro (44). In addition 

to showing that CAT eliminates ROS-generation produced either by high glucose milieu, we 

confirmed that CAT itself could trigger Nrf2 translocation and further upregulate HO-1 

expression in IRPTCs, indicating that the anti-oxidative action of Nrf2-HO-1 occurs in a CAT-

dependent manner.  

In conclusion, we demonstrated that CAT overexpression in RPTCs could exert a 

direct effect on nephrogenesis in utero and ameliorate maternal diabetes-induced 
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dysnephrogenesis consequently, preventing maternal diabetes-induced perinatal programming, 

mediated at least in part, via the Nrf2-HO-1 defense system.  
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2.7 Legends and Figures 
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Figure 2-1: Characterization of Hoxb7-GFP-Tg and Hoxb7/Cat-GFP-Tg mice. (A) PCR 

Genotyping. (B) E15-metanephroi isolation either from Hoxb7-GFP-Tg dam [(b1) non-

diabetic, Hoxb7-Con; (b2) diabetic, Hoxb7-DM] or Hoxb7/Cat-GFP-Tg dam [(b3) non-

diabetic, Hoxb7/Cat-Con; (b4) diabetic, Hoxb7/Cat-DM], Magnification: 4X; (C) The number 

of E15-metanephroi UB tips. (●) Hoxb7-Con; (■) Hoxb7-DM; (♦) Hoxb7/Cat-Con; (▼) 

Hoxb7/Cat-DM; **, P 0.01; ***, P 0.001; N.S., non-significant.  
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Figure 2-2: (A) Neonatal renal morphology reviewed by H&E staining and CAT expression 

(CAT-IHC). Neonatal offspring [Non-diabetic: Hoxb7-Con (black frame); Hoxb7/Cat-Con 

(blue frame) vs. Diabetic: Hoxb7-DM (red frame); Hoxb7/Cat-DM (purple frame)]; 

Magnification: 4X and 60X. (B) Quantification of neonatal nephron number. □, non-diabetic 

offspring (Hoxb7-Con, N=9; Hoxb7/Cat-Con, N=8); ■, diabetic offspring (Hoxb7-DM, N=7; 

Hoxb7/Cat-DM, N=9). The y axis shows the percentage of nephron number compared with 

Hoxb7-GFP-Tg control animal (Hoxb7-Con, 100%), **, P 0.01; ***, P 0.001; N.S., non-

significant. 
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Figure 2-3: Physical parameters in the male offspring at 20 week-old.  (A) Body weight (BW, 

g); (B) Kidney weight (KW, mg); (C) Ratio of KW vs. BW; (D) Fasting blood glucose 

concentration (mM). The y axis shows the percentage of value compared with Hoxb7-Con 

(100%). □, non-diabetic offspring (Hoxb7-Con; Hoxb7/Cat-Con); ■, diabetic offspring 

(Hoxb7-DM; Hoxb7/Cat-DM); *, P 0.05; **, P 0.01; N.S., non-significant. 
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Figure 2-4: Mean SBP, ROS generation and renal function measurement in male offspring at 

age of 20 week-old. (A) Longitudinal changes in mean SBP in the male offspring from age 8 

to 20 weeks. (B) Mean SBP in the male offspring at age of 20 week-old. (C) ROS generation. 

ROS production was normalized with protein concentration and expressed as relative light 

units (RLU) per µg protein. (D) Ratio of urinary albumin (µg/ml)/creatinine (mg/100 ml) 

(ACR) measurement. (E) GFR measurement. □, non-diabetic offspring (Hoxb7-Con; 

Hoxb7/Cat-Con); ■, diabetic offspring (Hoxb7-DM; Hoxb7/Cat-DM); *, P 0.05; **, P 0.01; 

***, P 0.001; N.S., non-significant; 
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Figure 2-5: Renal morphology and TGF-β1 gene expression in the male offspring at age of 20 

week-old. (A) PAS staining (Magnification, 60X). (a1) Hoxb7-Con; (a2) Hoxb7-DM; (a3) 

Hoxb7/Cat-Con; (a4) Hoxb7/Cat-DM. (B) Quantification of Vg value [Hoxb7-Con (N=13); 

Hoxb7-DM (N=9); Hoxb7/Cat-Con (N=7); and Hoxb7/Cat-DM (N=6)]. The y-axis shows the 

percentage of Vg compared with Hoxb7-Con (100%). (C) RT-qPCR of renal TGF-β1 mRNA. 

The relative densities of TGF-β1 in the renal cortex were compared with their own ß-actin 

mRNA. Hoxb7-Con values were considered as 100%. Each point represents the mean ± SD of 

3 independent experiments. (D) TGF-β1-IHC expression (magnification, 20X, 60X). □, non-

diabetic offspring (Hoxb7-Con; Hoxb7/Cat-Con); ■, diabetic offspring (Hoxb7-DM; 

Hoxb7/Cat-DM); *, P 0.05; **, P 0.01; ***, P 0.001; N.S., non-significant; 
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Figure 2-6: Nrf2 and HO-1 gene expression in the male offspring at the age of 20-week-old. 

(A-B) RT-qPCR of Nrf2 (A) and HO-1 mRNA (B). The relative densities of Nrf2 and HO-1 in 

the renal cortex were compared with their own ß-actin mRNA. Hoxb7-Con values were 

considered as 100%. Each point represents the mean ± SD of 3 independent experiments. (C) 

Nrf2 and HO-1-IHC expression (magnification, 20X). □, non-diabetic offspring (Hoxb7-Con; 

Hoxb7/Cat-Con); ■, diabetic offspring (Hoxb7-DM; Hoxb7/Cat-DM); *, P 0.05; **, P 0.01; 

N.S., non-significant; 
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Figure 2-7: High glucose effects on Nrf2 and/ or HO-1 protein expression as well as Nrf2 

nuclear translocation analyzed by WB (A and B) and IF staining (C and D) in IRPTCs in vitro. 

(A) WB performed on the total cell lysis; (B) WB performed on isolated nuclear protein (N.P.) 

and cytosolic protein (C.P.) extracts; (C) IF images (Magnification 20X and 60X); (D) Semi-

quantification of Nrf2 IF-nuclear positive cells. The relative blot densities of Nrf2 and HO-1 

protein expression in IRPTCs were compared with their own ß-actin or Histone H3. The 

values in 5mM glucose medium were considered as 100%. Each point represents the mean ± 

SD of 3 independent experiments. *, P 0.05; **, P 0.01; ***, P 0.001; N.S., non-significant; 
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3.1 Abstract 

Introduction: The present studies aimed to examine the regulation of aquaporin 1 (AQP1) 

expression in angiotensinogen (Agt) transgenic (Tg) mouse model, focusing on underlying 

molecular mechanisms.  

Methods: Male Tg mice specifically overexpressing rat Agt in their renal proximal tubular 

cells (RPTCs) (Agt-Tg) and rat immortalized RPTCs (IRPTCs) stably transfected with rat 

Agt cDNA were used. 

Results: Agt-Tg mice developed hypertension and nephropathy, changes that were either 

partially or completely attenuated by treatment with losartan or dual RAS blockade 

(losartan and perindopril), respectively, while hydralazine prevented hypertension but not 

nephropathy. Decreased expression of AQP1 and heme oxygenase-1 (HO-1) and increased 

expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) and sodium–hydrogen 

exchanger 3 (NHE3) were observed in RPTCs of Agt-Tg mice and in Agt-transfected 

IRPTCs. These parameters were normalized by dual RAS blockade. Both in vivo and in 

vitro studies identified a novel mechanism(s) in which Agt overexpression in RPTCs 

enhances the cytosolic accumulation of Nrf2 via the phosphorylation of pGSK3β Y216. 

Consequently, lower intranuclear Nrf2 levels are less efficient to trigger HO-1 expression 

as a defense mechanism, which subsequently diminishes AQP1 expression in RPTCs.  

Conclusions: Our data suggest that Agt mediated-downregulation of AQP1 and Nrf2 

signaling may play an important role in intrarenal RAS-induced hypertension and kidney 

injury.  

 

3.2 Introduction 

Aquaporin-1 (AQP1) is the major water channel in the renal proximal tubule and the loop 

of Henle (1). These two nephron segments are responsible for reabsorbing 80% of the 

glomerular filtrate (1). Since renal proximal tubular cells (RPTCs) reabsorb 60% to 70% of 

filtered sodium (Na) and fluid, changes in the way in which RPTCs reabsorb water (i.e., 

AQP1) and Na (via increased Na transporter expression (2)) can have profound effects on 

renal and body fluid balance. AQP1 deficient mice (Aqp1-null) displayed normal 

phenotypes with respect to survival, physical appearance and organ morphology, but these 

mice became severely dehydrated after water deprivation, indicating that AQP1 is required 

for the formation of a concentrated urine (3). Aqp1-null mice had a relatively low blood 
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pressure phenotype, which can be explained by several possibilities—e.g., polyuria (4), 

impaired nitric oxide signaling (5) and reduced renin cell recruitment (6).  

 

It has been observed that AQP1 expression is up-regulated in the kidneys (7) and brain (8) 

of spontaneously hypertensive rats (7, 8). In contrast, recent studies reported that renal and 

cardiac AQP1 expression was down-regulated and associated with renal fibrosis (9) and 

high-salt diet induced hypertension (10). Thus, it remains unclear whether AQP1 

expression can directly or indirectly affect blood pressure and kidney injury.  

 

The intrarenal renin angiotensin system (RAS) plays a key role in blood pressure 

regulation and renal hemodynamics, and all RAS components are expressed in RPTCs (11). 

To date, how intrarenal RAS influences AQP1 expression in either patho- and 

physiological conditions are poorly understood. Bouley et al. reported that angiotensin II 

(Ang II) rather than osmolality may be more important in regulating AQP1 levels in renal 

proximal tubules (RPTs) (12). Ang II at low concentrations (10-9 and 10-8 M) or infusion 

of Ang II at 80 ng/min/kg increased AQP1 expression in cultured rat immortalized renal 

proximal tubular cells (IRPTCs) in vitro and in rat kidneys in vivo, respectively. In 

contrast, Ang II at high concentration (10-7 M) inhibited AQP1 expression in IRPTCs. 

Thus, the intrarenal RAS appears to regulate AQP1 expression, influencing water 

reabsorption and body fluid homeostasis.  

 

Our lab has established that transgenic (Tg) mice specifically overexpressing 

angiotensinogen (Agt, the sole precursor of all angiotensins) in their RPTCs developed 

hypertension and nephropathy with elevated intrarenal reactive oxygen species (ROS) 

production (13-15). In the present study, we aimed to determine whether intrarenal 

RAS-induced hypertension and kidney injury in our Agt-Tg mice could be mediated, at 

least in part, via alteration of AQP1 expression and whether RAS blockade in this 

transgenic model could reverse this effect. We further aimed to define the underlying 

molecular mechanisms both in vivo and in vitro. 

 

3.3 Materials and Methods 

Animal Models & Ethics Statement 
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Agt-Tg mice overexpressing renal rat Agt (rAgt) were generated by employing the 

kidney-specific, androgen-regulated protein promoter (KAP2) linked to rAgt cDNA as 

reported previously (16). There is no need to administer exogenous androgen since the 

circulating level of testosterone in adult male Agt-Tg mice (from 12 weeks of age, as is the 

case here) is sufficiently high to drive KAP2 promoter to express the transgenes (13, 14, 

16). Thus, male Agt-Tg mice were employed and studied starting at 10 weeks of age and 

treated with or without hydralazine (15mg/kg/day, in drinking water), losartan (losartan 30 

mg/ kg/ day, in drinking water) and /or dual RAS blockers (losartan 30 mg/ kg/ day plus 

perindopril 4 mg/ kg/ day, in drinking water) from week 13 until week 20 (13-15) (8-15 

mice per group). Non-Tg littermates served as controls. All animals had ad libitum access 

to standard mouse chow (Diet #2918, Harlan Teklad, Montreal, Canada) and water. 

 

The animal study was carried out in strict accordant with the recommendation in the Guide 

for the Case and Use of Laboratory Animals of the National Institutions of Health. Animal 

care and procedures were approved by the Animal Care Committee from the Centre de 

Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM). Mice were 

euthanized by sodium pentobarbital overdose [75mg/kg of BW (body weight)] and efforts 

were made to minimize suffering.  

  

Physiological Studies 

Mean systolic blood pressure (SBP) was monitored by the tail-cuff method with the 

Visitech BP-2000 Blood Pressure Analysis System for mice (Visitech System Inc., Apex, 

NC, USA), as reported elsewhere (13-15). Animals in each group were acclimated to 

longitudinal SBP measurement (2 weeks period of pre-training starting at 11 weeks of age, 

followed by actual measurement of SBP thrice-weekly from 13 weeks until 20 weeks of 

age) to minimize stress to the animals. While the technique of tail-cuff measurement is 

generally considered less sensitive than telemetry, our SBP data includes a 2 weeks 

pre-study training period and substantial numbers of animals (N= 8 to 15 mice per group) 

and longitudinal measurement (8 weeks excluding the 2 week pre-study training period). 

 

Twenty-four hours before the mice were euthanized, body weight (BW) was recorded and 

mice were individually housed 24 hours in metabolic cages. Blood was collected 
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individually via intracardiac exsanguination before death and then centrifuged to obtain 

serum. Urine was collected and assayed for albumin (Alb) and creatinine (Cre) ratio 

(Alb/Cre, µg/mg) (ELISA, Albuwell and Creatinine Companion, Exocell, Inc., 

Philadelphia, PA, USA), Agt and Ang II measurement [i.e., C18 Sep-Pak columns (Waters, 

Mississauga, ON); extraction kits (Bachem Americas, Torrance, CA) ELISAs (Bachem 

Americas)] as reported previously (13-15). Kidney weight (KW) were rapidly recorded. 

The left kidney was utilized for renal histology and the right kidney was reserved for renal 

proximal tubules (RPTs) isolation by the Percoll gradient method for protein expression 

experiments as previously reported (13-15). 

 

Renal Morphology, Immunohistochemistry and Immunofluorescence   

The renal morphology and immunostaining (immunohistochemistry (IHC) and 

immunofluorescence (IF)) were performed as described previously (14, 16). Briefly, the 

kidney morphology was studied with periodic-acid Schiff (PAS) and Masson's trichrome 

staining. The antibodies were used for IHC and IF including: anti-AQP1 (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA); anti-nuclear factor-erythroid 2p45 (NF-E2) related 

factor-2 (Nrf2) and anti-kelch-like ECH-associated protein 1 (Keap1) antibodies (Abcam, 

Cambridge, MA, USA); anti-heme oxygenase-1 (HO-1) (Assay Designs, Ann Arbor, MI); 

anti-catalase (Cat) and anti-β-actin antibodies (Sigma-Aldrich, Oakville, ON, Canada); 

anti-collagen type IV (Chemicon International, Temecula, CA, USA); anti-glycogen 

synthase kinase 3β (GSK3β) (27C10) and anti-phospho-GSK3β (Ser 9) (pGSK S9, an 

inactive form) (5B3) as well as anti-histone H3 (3H1) antibodies (Cell Signaling, Boston, 

MA, USA); anti-TGFβ1 and anti-β-catenin (total) antibodies (R&D Systems, Inc., 

Burlington, Canada); anti-GSK3β (pY216, an active form) (BD Transduction 

Laboratories™, Mississauga, ON, Canada); anti-phospho-β-catenin (Ser33/37/Thr41) (Cell 

signaling, ON, Canada); anti-phospho-β-catenin (Ser552) (Thermo Fisher Scientific, 

Rockford, IL, USA). The sodium–hydrogen exchanger 3 (NHE3) antibody was a gift from 

Dr. Orson Moe (University of Texas Southwestern Medical Center, Dallas, TX, USA). A 

rabbit polyclonal antibody against rAgt was generated in our laboratory (17) and is specific 

for intact rat and mouse Agt (55–62 kDa) and does not cross-react with pituitary hormone 

preparations or other rat or mouse plasma proteins, as described elsewhere (13-15). 
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Rat Immortalized Renal Proximal Tubular Cells (IRPTCs)  

The IRPTC cell line (11, 18) and an IRPTC stable clone that has been stably transfected 

with the control plasmid pRC/RSV (designated as “pRSV-IRPTC”) or with a plasmid 

pRC/RSV containing the rAgt cDNA (designated as “pRSV/rAgt-IRPTC”) (13, 19) were 

employed for our in vitro studies. We have previously reported that as compared to naïve 

IRPTC and pRSV-IRPTC, pRSV/rAgt-IRPTC express significantly high amount of rAgt 

mRNA and protein as well as significant higher amount of Ang II secreted into the culture 

medium (13, 19). All in vitro studies were performed in the normal 150 nM NaCl final 

concentration with an osmolarity of 415 mOsm/kg in normal glucose (5 mM D-Glucose) 

DMEM as reported by Bouley R et al (12). 

 

Nuclear protein (NP) and cytosolic protein (CP) extracts were prepared using the NE-PER 

nuclear and cytoplasmic extraction kit (Thermo scientific, Burlington, Ontario, Canada) 

(18). Cobalt protoporphyrin (CoPP, an activator of HO-1 expression) was purchased from 

Sigma-Aldrich Canada (Oakville, ON, Canada). 

 

Statistical Analysis 

Statistical significance between the experimental groups was analyzed by 1-way ANOVA, 

followed by the Bonferroni test using Graphpad Software, Prism 5.0 (La Jolla, CA, USA, 

http://www.graphpad.com/prism/Prism.htm). A probability level of P ≤ 0.05 was 

considered to be statistically significant and followed by a Bonferroni analysis with 

adjustment for multiple comparisons (13-15). 

 

3.4 Results 

Physiological parameters  

We measured biological parameters in five subgroups of animals at the age of 20 weeks 

--non-Tg littermates as controls (Con, N=12); Agt-Tg (N=14); Agt-Tg + RAS blockade 

(losartan and perindopril treatment, Agt-Tg + L/P, N=15); Agt-Tg + Losartan (Agt-Tg + L, 

N=14) and Agt-Tg + Hydralazine (Agt-Tg + H, N=8) as shown in Fig 1. There were no 

significant differences in BW, KW and KW/BW ratio (Fig 1A) among the 5 groups. 

However, as compared to the control group, SBP (Fig 1A, a cross-sectional measurement 

at week 20; Figure 1B, a longitudinal measurement (week 13 to 20)), urinary Alb/Cre ratio 
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(ACR, µg/mg) (Fig 1C), Agt/Cre ratio (ng/mg) (Fig 1D) and Ang II/Cre ratio (ng/mg) (Fig 

1E) were relatively increased in Agt-Tg mice; these changes were prevented by the 

treatment of losartan alone and/or dual RAS blockade in Agt-Tg mice. It appears that dual 

RAS blockade was more effective than losartan alone in decreasing the urinary ACR (Fig 

1C). In contrast, although hydralazine treatment was able to decrease SBP in Agt-Tg mice 

over the follow-up period (Figs 1A and 1B), the urinary ACR was unchanged (Fig 1C). 

The serum level of Agt (Fig 1E) or Ang II (Fig 1F) did not differ between the groups. 

 

Renal Morphology and Extracellular Matrix Protein  

Both PAS staining (Fig 2A) and Masson’s trichrome staining (Fig 2B) of kidney sections 

revealed enhanced extracellular matrix (ECM) protein accumulation in the 

glomerulo-tubular areas in hypertensive Agt-Tg, a finding that was confirmed by collagen 

type IV (Fig 2C) and TGFβ1-IHC-staining (Fig 2D). The degree of oxidative stress was 

confirmed by lower Cat expression in kidneys of hypertensive Agt mice (Fig 2E). 

Semi-quantitative analysis revealed that dual RAS blockade was more effective in 

preventing ECM accumulation and collagen type IV/TGF-β1 expression as well as in 

normalizing catalase expression in Agt-Tg mice as compared to losartan treatment alone. 

Given the greater effectiveness of dual blockade, the remainder of our mechanistic 

experiments were done with Agt-Tg mice treated with dual RAS blockade. 

 

Renal Agt, AQP1 and HO-1 Protein Expression 

We assessed Agt, AQP1, and HO-1 gene expression in the renal cortex by IHC (Fig 3A) 

and in isolated RPTs by western blot (WB) (Fig 3B). AQP1 shows a two-band WB pattern 

(glycosylated (38 kDa)  and non-glycosylated AQP1 fractions (28 kDa)), matching its 

original described character as an N-proteoglycan (20). The functional significance of 

AQP1 glycosylation is unknown but it could play a role in AQP1 oligomerization (21), 

removal of sugars from the AQP1 molecule seems not to influence AQP1 water transport 

function (22). Thus, in the current study, we evaluated the change of total AQP1 including 

both glycosylated and non-glycosylated AQP1. Compared to non-Tg control littermates, 

increased Agt, but decreased AQP1 and HO-1 protein expression were observed in RPTs 

of Agt-Tg mice and these changes were normalized with dual RAS blockade. These data 

indicate an inverse relationship between Agt expression and AQP1 and HO-1 expression in 
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RPTs of Agt-Tg mice.  

To establish a functional relationship among Agt, AQP1 and HO-1 expression, we 

performed in vitro studies by using IRPTCs (11, 18). In the presence of CoPP, an activator 

of HO-1, both HO-1 and AQP1 protein expressions were increased (Fig 3C) while the Agt 

protein expression was reduced (Fig 3D) in a dose-dependent manner. Furthermore, these 

effects seem selective since CoPP did not affect Nrf2 expression (Fig 3E). We further 

confirmed those results in naïve IRPTCs and IRPTCs transiently transfected with rat Agt 

cDNA followed by the stimulation of 2 uM CoPP (Fig 3F). 

 

Renal Agt, AQP1 and Nrf2-Keap1 Expression 

As compared to controls, there was augmented Nrf2 protein expression in kidneys of both 

Agt-Tg and Agt-Tg treated mice with dual RAS blockade (Fig 4A), and that expression 

pattern was further confirmed in the fresh isolated RPTs by WB (Fig 4B). However, higher 

magnification of IHC staining revealed that the augmented Nrf2 was mostly localized to 

the cytosolic portion in RPTCs of Agt-Tg mice with some Nrf2 staining in the nuclei of 

RPTCs (Fig 4A). In contrast, in the kidneys of Agt-Tg treated with dual RAS blockade, the 

majority of positive IHC-Nrf2 was localized in the nuclei of RPTCs (Fig 4A). Keap1, a 

protein involves in Nrf2 degradation showed no change in expression in the kidneys 

among 3 groups by either IHC staining (Fig 4A) or WB (Fig 4B).   

 

Next, we validated the renal Nrf2 translocation pattern in our pRSV/rAgt-IRPTC stable 

transformants (13, 19). As compared with naïve IRPTC and pRSV-IRPTC control 

transformants, the pRSV/rAgt-IRPTC stable transformants expressed high amounts of rat 

Agt and Nrf2 protein without any change in Keap1 protein expression (Fig 5A). Also, 

AQP1 expression was dramatically suppressed in pRSV/rAgt-IRPTC stable clone (Fig 5A). 

Similar to the in vivo observation, the higher and lower Nrf2 expression was observed in 

the cytosolic fraction and nuclear fraction of pRSV/rAgt-IRPTC stable transformants, 

respectively, as compared to pRSV-IRPTC controls (Fig 5B). Moreover, the lower AQP1 

expression pattern in the pRSV/rAgt-IRPTC stable clone was further confirmed by 

IF-AQP1 staining (Fig 5C).  
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Renal Agt and Phosphorylation of GSK3β and β-catenin 

Since studies have reported that phosphorylated (p) GSK S9 increases Nrf2 nuclear 

translocation whereas pGSK Y216 enhances Nrf2 nuclear export, we investigated the 

expression of pGSK S9 and pGSK Y216 in vivo and in vitro. As compared to control 

animals, the expression of pGSK S9 was decreased whereas pGSK Y216 expression was 

increased in kidneys of Agt-Tg mice, and dual RAS blockade treatment reversed these 

changes in Agt-Tg mice (Fig 5D). The expression pattern of pGSK S9 and pGSK Y216 

was further confirmed by WB in the fresh isolated RPTs (Fig 5E). The similar expression 

pattern of pGSK S9 and pGSK Y216 was also observed in our pRSV-IRPTCs and 

pRSV/rAgt-IRPTC stable transformants (Fig 6A).  

Studies indicate that both Ang II and AQP1 can interact with the GSK3β and β-catenin 

pathways to trigger renal injury. Thus, we studied these interactions in vitro. Our data 

indicated that the phosphorylation of β-catenin (Ser33/37/Thr41 and Ser552) was 

significantly inhibited in pRSV/rAgt-IRPTC stable transformants as compared to naïve 

IRPTC and/or pRSV-IRPTC control transformants (Fig 6A).  

 

Renal Agt and NHE3 Expression 

Co-IF staining of AQP1 and NHE3 revealed that Agt-Tg mice expressed less AQP1 

protein and augmented NHE3 protein in their RPTCs as compared to control littermates 

and that the treatment with dual RAS blockade reversed these changes (Fig 6B). These 

observations were further confirmed by WB for AQP1 and NHE3 in isolated RPTs of 

these mice (Fig 6C). The increased NHE3 expression was also confirmed in 

pRSV/rAgt-IRPTC stable transformants (Fig 6D). 

 

3.5 Discussion 

The present report identifies novel mechanism(s) by which Agt overexpression inhibits 

AQP1 expression in RPTCs, resulting in renal injury and hypertension (see our concept of 

a molecular model in Fig 7). In brief, Agt overexpression in RPTCs enhances cytosolic 

accumulation of Nrf2 via the phosphorylation of pGSK3β Y216.  Consequently, less 

intranuclear Nrf2 is available to trigger HO-1 expression as a defense mechanism.  As a 

result, AQP1 expression in RPTCs is subsequently diminished. The depleted AQP1 

expression through β-catenin-dependent signaling further contributes to hypertension that 
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involves the intrarenal RAS (via NHE3) and nephropathy.  

In this study, we are focusing on the functional interaction between Agt and AQP1 in 

RPTCs, given the fact of that Aqp1-null mice appear not to develop homeostasis 

disturbances although they have slight dehydration (3). In concert with our previous 

findings (13-15), we observed that Agt-Tg mice specifically overexpressing rat Agt in their 

RPTCs developed hypertension and nephropathy. Since we only detect significant 

increased urinary Agt/Cre ratio and Ang II/Cre ratio in Agt-Tg mice, while serum levels of 

Agt and Ang II remain unchanged, it suggests that Agt derived predominantly from RPTCs 

rather than other sources (23, 24) plays the key role in this phenomenon.  

 

The use of combination treatment with an ACE inhibitor and angiotensin-receptor blocker 

(ARB) to ameliorate the progression of kidney disease has been controversial because of 

concern about an increased risk of hyperkalemia or acute kidney injury (25, 26). However, 

a recent meta-analysis published in Lancet (27) reported a benefit of dual RAS blockade in 

the prevention of chronic kidney disease with or without diabetes.  Our current data lend 

to support these observations. We found that as compared to the treatment with losartan 

alone, dual RAS blockade (losartan and perindopril) was more effective in preventing 

hypertension induced by activation of the intrarenal RAS and nephropathy progression in 

Agt-Tg mice. Moreover, although hydralazine decreased systemic hypertension in Agt-Tg 

mice over the follow-up period, it had no impact on ACR (a marker of renal function), 

suggesting that intrarenal RAS activation contributed to the development of nephropathy 

independent of systemic hypertension (and possibly associated with elevated ROS 

production in RPTCs in Agt-Tg mice, as reported previously (14)).  

 

Both Agt and AQP1, which are mainly expressed in RPTCs, are important for maintaining 

normal fluid homeostasis; however, how they interact has not been fully delineated. 

Whether their interaction has a regulatory role in the development of hypertension and 

nephropathy remains elusive. Notably, substantial inhibition of AQP1 and HO-1 protein 

expression in the RPTCs was observed in the kidney of Agt-Tg mice, implicating their 

possible role in the pathogenesis of hypertension and nephropathy. This possibility is 

supported by the observation that significantly decreased renal AQP1 content was 

observed in the obstructed kidneys of rats with unilateral ureteral obstruction (UUO), 
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suggesting that down-regulation of AQP1 might be associated with tubulointerstitial 

fibrosis (9). Moreover, in the mouse model of hypertension induced by high-salt diet, the 

reduction of cardiac AQP1 might be associated with hypertension and cardiac injury, since 

ARB treatment (valsartan) partially reversed the effects of high-salt diet on hypertension 

with cardiac damage (fibrosis and inflammatory cell infiltration) and normalized cardiac 

AQP1 expression (10).  

 

Our in vitro studies demonstrated that CoPP, an activator of HO-1, dose-dependently 

stimulates HO-1 and AQP1 and inhibits Agt protein expression in IRPTCs, suggesting an 

inverse relationship between the expression of Agt and HO-1/AQP1 in RPTCs. How HO-1 

and AQP1 interact is not fully understood. A possible link between AQP1 and HO-1 might 

be via the Kruppel-like protein, since the AQP1 promoter contains Kruppel-like sequences 

(28), and Kruppel-like factor 2 dependently induced HO-1 expression (29).   

 

HO-1 is a stress-inducible protein that induces cellular protection in the event of injury, 

inflammation, oxidative stress, etc. Exogenous induction of HO-1 has been shown to have 

renal and/or cardiovascular protective functions (30, 31) and to attenuate the development 

of hypertension and to decrease blood pressure in models of established hypertension (30, 

31). HO-1 expression is modulated by Nrf2, a transcription factor that is highly expressed 

in the kidney (32, 33). It is thought that the Nrf2/Keap1-HO-1 defense system is 

renoprotective and that its induction might even improve kidney function (32, 33). Thus, 

we tested the intrarenal expression pattern of Nrf2/Keap1 in our three groups of animals. 

 

Via elevated ROS generation, Agt-Tg mice displayed augmented RPTC Nrf2 accumulation, 

primarily in the cytosol, with less nuclear staining, and this Nrf2 translocation pattern was 

further confirmed in our pRSV/rAgt-IRPTC stable transformants. These data suggested 

that while overexpression of Agt in RPTCs resulted in activated Nrf2 expression, it still 

failed to promote sufficient HO-1 and AQP1 expression in RPTCs to prevent or diminish 

ROS-induced kidney damage and hypertension occurring in Agt-Tg mice. Compelling 

studies suggested that Nrf2 accumulation/activation is countered by two major Nrf2 

degradation mechanisms—e.g., Keap1-induced Nrf2 proteasomal degradation in the 

cytosol; and/or GSK3β- mediated nuclear export and degradation of Nrf2 (32-36). Since 
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renal Keap1 expression did not differ among the three groups of animals, Keap1-associated 

Nrf2 degradation appears to be normal in our model. In contrast, the activated GSK3β (i.e., 

pGSK Y216 phosphorylation (33, 34, 37)) has been reported to phosphorylate Fyn tyrosine 

kinase, leading to enhanced nuclear export of Nrf2 and proteasomal degradation, likely via 

the adaptor protein β-TrCP independent of Keap1 (33, 34, 38, 39). By conducting both in 

vivo and in vitro experiments, we observed that overexpression of Agt in RPTCs indeed 

promoted and inhibited the phosphorylation of pGSK Y216 (active form) and pGSK S9 

(inactive form), respectively. This suggests that the enhanced nuclear export of Nrf2 was 

associated with an accumulation of Nrf2 in the cytosol, while lower nuclear levels of Nrf2 

failed to trigger HO-1/AQP1 induction-mediated renoprotection in RPTCs in Agt-Tg mice. 

 

Evidence suggests that β-catenin might be one of mediators that links AQP1 and Ang II 

functionally (40-42). For example, AQP1 acts as a scaffold in interaction with GSK3β to 

promote β-catenin degradation by increasing β-catenin phosphorylation; vice versa, loss of 

AQP1 inhibits β-catenin degradation and facilitates the translocation of free β-catenin to 

the nucleus to enhance Wnt signaling, consequently triggering cystic dilation of RPTs in 

polycystic kidney disease (42). Additionally, Ang II via AT1R appears to promote the 

accumulation of β-catenin protein, correlated with GSK3β phosphorylation, contributing to 

the development of renal fibrosis and hypertension (40, 41). In the current study, we 

observed the depleted AQP1 in our Agt-Tg and pRSV/rAgt-IRPTC stable transformants 

activated and inhibited phosphorylation of GSK3β (Y216) and β-catenin (Ser33/37/Thr41 

and Ser552), respectively, suggesting that loss of AQP1 might trigger the Wnt/β-catenin 

pathway, resulting in RPTs damage and hypertension.  

 

Finally, our data both in vivo and in vitro also suggest that overexpression of Agt in 

RPTCs and the related hypertension might be due to decreased water absorption via AQP1 

and increased sodium reabsorption via NHE3. Indeed, this observation is in line with 

recent findings--e.g., when compared with WT mice (NHE3+/+), AQP1 significantly 

increased in RPTCs of NHE3 KO mice (NHE3-/-) which completely blunt Ang II–induced 

hypertension, underscoring the importance of AQP1 and NHE3 interaction (43). In fact, 

Ang II-dependent hypertension mediated by an increased NHE3 abundance in RPTCs has 

been reported in AT1a receptor-deficient mice (44-46) and in oxidative stress-modulated 
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AT1R signaling in Sprague-Dawley rats (47, 48), though other Ang II infusion models 

have provided variable results (49-51) (NHE3 has been reported as increased (50) or 

decreased (49) or no changed (51)).  

 

In conclusion, our data suggest that Agt/Nrf2 mediated-downregulation of AQP1 and 

HO-1 expression in the proximal tubule plays a key role in Ang II -induced hypertension 

and kidney injury. 
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3.7 Figure legends 

 

 

 

 

Fig 3-1:  Physiolgical measurements. (A) Biological parameters in 5 groups of mice (Con, 

Agt-Tg, Agt-Tg + L/P, Agt-Tg + L, and Agt-Tg + H) at 20 week-old. *, p  0.05, **, p ≤ 

0.01, ***, p ≤ 0.001 vs. Con; †, p  0.05, ††, p ≤ 0.01, †††, p ≤ 0.001 vs. Agt-Tg;  (B) 

Longitudinal SBP (mmHg) measurement in 5 groups of mice from age 9 to 20 weeks; (C) 

Urinary Albumin/Creatinine ratio (ACR, ug/mg) in 5 groups of mice. (D) Urinary 

Agt/Creatinine ratio (ng/mg). (E) Urinary Ang II/Creatinine ratio (ng/mg). (F) Serum level 

of Agt (ng/ml). (G) Serum level of Ang II (ng/ml); *, p≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001 

vs. Con; NS, non-significant; 
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Fig 3-2:   Renal morphology and IHC, (A) PAS staining (magnification, 600X); (B) 

Masson's trichrome staining (magnification, 600X). (C) IHC-Collagen type IV 

(magnification, 200X); (D) IHC-TGFβ1 (magnification, 200X); and (E) IHC-Catalase 

(magnification, 200X), in 4 groups of mice (Con, Agt-Tg, Agt-Tg + L and Agt-Tg + L/P) 

at 20 week-old. Scale bar=50µm. *, p≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001 vs. Con; NS, 

non-significant; 
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Fig 3-3: Agt, HO-1 and AQP1 expression in vivo and in vitro. (A-B) AQP1 and HO-1 

protein expression in 3 groups of mice (Con, Agt-Tg and Agt-Tg + L/P) at 20 week-old.  

(A) IHC staining (magnification 200X). Scale bar=50µm. (B) Western blot (WB) in the 

isolated RPTCs. The relative densities of AQP1 and HO-1 were compared with its own 

ß-actin. Control values were considered as 100%. Each point represents the mean ± S.E.M 

of 3 independent experiments.; **, p 0.01 vs. Con; (C-F) CoPP effect analyzed by WB in 

vitro. (C) CoPP dose-dependent effect on HO-1 and AQP1 protein expression in naïve 

IRPTCs; (D) CoPP dose-dependent effect on HO-1 and Agt protein expression in naïve 

IRPTCs; (E) CoPP dose-dependent effect on HO-1 and total Nrf2 protein expression in 

naïve IRPTCs; (F) CoPP (2uM) effect on naïve IRPTCs and IRPTCs transient transfection 

of rat Agt cDNA.  
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Fig 3-4: Renal Nrf2-Keap1 expression in vivo. (A) IHC staining (magnification 200X and 

600X) Scale bar=50µm. (B) WB in the isolated RPTCs. Con (white bar); Agt-Tg (black 

bar); Agt-Tg+L/P (shadow bar); The relative densities of Nrf2 and Keap1 were compared 

with its own ß-actin. Control values were considered as 100%. Each point represents the 

mean ± S.E.M of 3 independent experiments. **, **, p≤0.01 vs. Con; 
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Fig 3-5: The phosphorylation of GSK3β expression in vivo and in vitro. (A) Agt, AQP1 

and Nrf2/Keap1 protein expression in IRPTC stable transformants analyzed by WB. (B) 

Nrf2 translocation in the isolated cytosol and nuclear fraction analyzed by WB; (C) 

IF-AQP1 (magnification 200X); (D-E) Phosphorylation of GSK3β in the kidney of 3 

groups of mice (Con, Agt-Tg and Agt-Tg + L/P) at 20 week-old. (D) IHC staining 

(magnification 200X) Scale bar=50µm. (E) WB in the isolated RPTCS. The relative 

densities of pGSK3β S9 and pGSK3β Y216 were compared with total GSK3β. Control 

values were considered as 100%. Each point represents the mean ± S.E.M. of 3 

independent experiments. **, p≤0.01 vs. Con;  
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Fig 3-6: The phosphorylation of β-catenin and NHE3 expression in vivo and in vitro. (A) 

Phosphorylation of GSK3β and β-catenin in IRPTC and IRPTCs stable transformants 

analyzed by WB.  The relative densities of pGSK3β S9 and pGSK3β Y216 were 

compared with total GSK3β. The values in naïve IRPTC cells were considered as 100%. 

Each point represents the mean ± S.E.M of 3 independent experiments.; ***, p  0.001 vs. 

naïve IRPTC; (B) Co-localization of IF-AQP1 and IF-NHE3 (magnification 200X) in 3 

groups of mice (Con, Agt-Tg and Agt-Tg + L/P) at 20 week-old. Scale bar=50µm. (C) WB 

in the isolated RPTCS in 3 groups of mice (Con, Agt-Tg and Agt-Tg + L/P) at 20 week-old. 

The relative density of NHE3 was compared with its own ß-actin. Control value was 

considered as 100%. Each point represents the mean ± S.E.M. of 3 independent 

experiments. *, p≤0.05 vs. Con; (D) NHE3 protein expression in IRPTC stable 

transformants analyzed by WB. The relative density of NHE3 was compared with its own 

ß-actin. The value in naïve IRPTC cells was considered as 100%. Each point represents the 

mean ± ± S.E.M. of 3 independent experiments. ***, p≤0.001 vs. naïve IRPTC. 
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Fig 3-7: Our working model.  In brief, overexpression of intrarenal Agt gene in RPTCs 

via elevated ROS generation mediates Nrf2 activation with an impaired Nrf2 translocation 

pattern. Agt overexpression in RPTCs promotes and inhibits the phosphorylation of pGSK 

Y216 (active form) and pGSK S9 (inactive form), respectively. Consequently, nuclear 

export of Nrf2 activity is enhanced, resulting in the accumulation of Nrf2 in the cytosol, 

and decreased Nrf2 expression in nuclei, which fails to trigger HO-1 expression as a 

defense mechanism and subsequently diminishes AQP1 expression in RPTCs. 

Concomitantly, the depleted AQP1 expression through β-catenin-dependent signaling 

further contributes to inrenal RAS-induced nephropathy and hypertension (via NHE3).” 
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Article 1 

4.1 Summary 

Our data suggests that overexpression of catalase (CAT) in mouse renal proximal tubular 

cells (RPTCs) prevents the offspring from maternal diabetes intrauterine programmed 

hypertension and kidney injury. Male offspring from two transgenic (Tg) lines were used 

in this study: Hoxb7-GFP-Tg as controls, and Hoxb7/CAT-GFP-Tg, which overexpress 

CAT in their RPTCs.  

 

Diabetes was induced in pregnant dams with STZ to create maternal diabetes murine 

model. We examined nephrogenesis in mouse embryonic kidney on embryonic day E15 

and measured parameters such as systolic blood pressure (SBP), glomerular filtration rate 

(GFR) and kidney injury, as well as generation of ROS in adult. To delineate the 

underlying mechanism involved, we tested renal gene expression of TGF-β1 (a marker of 

kidney fibrosis), nuclear factor-erythroid 2p45 (NF-E2) related factor-2 (Nrf2, a 

transcription factor of antioxidant genes), and heme oxygenase (HO) -1 (an antioxidant 

enzyme), both in vitro and in vivo.  

 

We observed renal dysmorphogenesis in the offspring from diabetic Hoxb7-GFP-Tg dams. 

At adulthood, these offspring developed hypertension, generated higher ROS in their 

kidneys, as well as increased renal TGF-β1 protein expression. We found that those 

observed alterations were improved in the offspring of diabetic Hoxb7/Cat-GFP-Tg dams 

that overexpressing CAT in their RPTCs. The underlying mechanism(s) is via activation of 

the offspring’s renal Nrf2-HO-1 defense system. Both protein and gene expression of Nrf2 

and its downstream target HO-1 were observed to be upregulated in RPTCs of the 

offspring, and Nrf2 protein was translocated normally into the nuclei of these cells, 

indicating that it was both activated and functional. The in vitro study of CAT-treated 

cultured RPTCs also induced Nrf2 and HO-1 protein expression, and promoted Nrf2 

nuclear translocation. In conclusion, in our maternal diabetes murine model, we 

demonstrated that overexpression of CAT in RPTCs, improved maternal 

diabetes-programmed hypertension and kidney injury in the adult offspring, at least in part, 

by activating their kidney Nrf2-HO-1 defense system. 
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4.2 Maternal diabetes intrauterine environment causes elevated ROS in the kidney, 

impairs kidney development and leads to perinatal programing of hypertension and 

kidney injury in the offspring 

Oxidative stress, via elevated ROS, is the major cause of adverse events in the kidneys of 

human and mouse infants/pups of diabetic mothers [48]. Fetal growth relies on maternal 

nutrient availability and the placenta’s ability to transport nutrients from the maternal 

circulation to the fetus. Maternal blood does not have direct contact with fetal blood in the 

placenta. Therefore, the transporters, gradients and diffusion channels for maternal 

nutrients to exchange across the placenta are very important [293]. Glucose is the primary 

energy substrate required for fetal growth because fetal gluconeogenesis is minimal [294]. 

Transplacental passage of glucose transport is accomplished by facilitated diffusion 

through glucose transporter proteins (GLUTs) [295]. Pregnancy represents a natural state 

of maternal insulin resistance and this facilitates the maternal-fetal glucose concentration 

gradient and fetal glucose uptake [296]. In the case of maternal diabetes, high glucose from 

the mother is transmitted to the fetus constantly, causing an unbalanced redox environment 

in the developing fetus [136]. Excess glucose in the fetus generates increased ROS, which 

directly impairs nephrogenesis in the offspring, reducing their nephron number and kidney 

size [48, 136]. 

 

Previous studies from our lab using the Hoxb7-GFP-Tg maternal diabetes mouse model 

demonstrated that increased ROS due to high glucose negatively affects nephrogenesis, 

both in vivo and ex vivo [138]. Also maternal diabetes induces perinatal programming of 

hypertension, kidney injury, glucose intolerance and the activation of the intrarenal RAS 

gene expression in the offspring [135]. The present study continued this work, and showed 

that elevated ROS in the kidney of fetuses from diabetic mouse dams, caused retarded 

nephrogenesis and reduced nephron numbers in their pups, as well as perinatal 

programmed hypertension and kidney injury in the adult offspring. We demonstrated that 

overexpression of CAT in the offspring’s RPTCs prevents the reduction in nephron 

number in the embryonic stage and the development of hypertension and kidney injury in 

the adult offspring.  
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4.3 Overexpressed CAT in the offspring’s RPTCs can normalize reduced nephron 

number in mouse offspring exposed to maternal diabetes in utero  

In our previous study of adult db/db mice that develop diabetes spontaneously, we reported 

that the overexpression of CAT in their RPTCs had therapeutic effects on renal 

complications [290, 297]. Eriksson et al assessed ex vivo cultures of rat embryos (at day E9) 

from diabetic dams, to delineate the relationship between ROS and teratogenic potential 

during embryonic life. They found that catalase treatment of the cultured embryos reduced 

the frequency of malformed embryos [4]. Since the ROS is the primary mediator of 

maternal diabetes intrauterine programmed hypertension and kidney injury, we 

hypothesized that overexpression of CAT in fetal and adult offspring RPTCs could inhibit 

excess ROS production and prevent perinatal programmed hypertension and kidney injury. 

 

In our mouse model of STZ-induced maternal diabetes, we found that Hoxb7-GFP-Tg fetal 

kidney development in a high glucose intrauterine milieu, showed reduced green 

fluorescent GFP expression in ureteric bud (UB) tips by 40% (n=5-11; p<0.001) on day 

E15. In contrast, the Hoxb7/Cat-GFP-Tg offspring of diabetic dams had normal UB 

branching and UB tip numbers. Similarly, morphologic examination showed that the 

Hoxb7-GFP-Tg newborns had kidneys with significantly reduced nephron numbers (40%; 

n=7-9; p<0.001) and kidney size, whereas the Hoxb7/Cat-GFP-Tg offspring had normal 

kidneys. 

 

Overexpressed CAT in offspring RPTCs of diabetic dams can improve glomerulogenesis. 

CAT was overexpressed in tubular cells locally, so it was not clear how this could 

normalize the reduced glomeruli (nephron numbers) and smaller kidney size that were 

induced by the hyperglycemic environment in utero. The explanation is that during 

nephrogenesis, renal tubules (though proximal to distal tubules) and glomeruli, arise from 

the same group of ancestor cells [298]. Due to this close spatial and temporal proximity, it 

is likely that the overexpressed CAT in RPTCs could also influence glomeruli 

development. 

 

The expression and regulation of the CAT transgene (driven by kidney androgen-regulated 

protein (KAP) promoter) appears to be normally regulated and functional in fetal Tg 
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mouse RPTCs. Our results indicated that the CAT transgene was expressed normally 

during embryonic development, since its expression reversed the abnormal nephrogenesis 

phenotype induced by increased ROS in the offspring of diabetic dams. The neonatal 

kidneys examined by IHC showed very high CAT expression in the RPTCs of 

Hoxb7/Cat-GFP-Tg mice compare to the Hoxb7-GFP-Tg controls.  

 

KAP promoter is reported to be regulated by sex steroids and KAP protein is expressed 

specifically in the epithelial cells of RPTCs [212]. In our transgenic mice, we showed that 

the KAP promoter starts to be induced earlier than day E15, on which we observed the 

reversal of the nephron number reduction caused by oxidative stress. Thus, it appears that 

the KAP promoter can be induced in embryos, and not only in adult male mice. Consistent 

with our finding, Kasik et al screened KAP mRNA expression in mouse fetuses, and found 

that KAP is abundant and highly expressed specifically in the fetal kidney during the latter 

third of pregnancy, indicating that the KAP promoter is functional during at this time 

[299].  

 

4.4 Overexpressed CAT in the offspring’s RPTCs can prevent hypertension and 

kidney injury in mouse offspring exposed to maternal diabetes in utero 

After characterizing our offspring of diabetic dams in Hoxb7/Cat-GFP double transgenic 

mouse model, we confirmed that the offspring’s altered nephrogenesis was due to the 

intrauterine hyperglycemia environment and was able to be normalized by overexpression 

of CAT in their RPTCs. We next focused on the development of hypertension and kidney 

injury in the adult offspring. We performed a longitudinal study of systolic blood pressure 

(SBP), from age 8 to 20 weeks. Also we did kidney physiology and pathology 

examinations at age 20 weeks. We found that the offspring of diabetic dams developed: 1) 

hypertension from age 8 weeks and reduced kidney function at age 20 weeks, 

characterized by renal hyperfiltration and increased ACR; and, 2) kidney pathology, 

characterized by glomerular expansion and the accumulation of TGFb1 (a marker for 

inflammation), in the interstitial compartment. In this mouse model, overexpression of 

CAT specifically in the offspring’s RPTCs prevented the reduction of nephron number and 

subsequent development of the adverse effects (hypertension and kidney pathology) 

caused by high glucose exposure in utero. 
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4.5 20-week-old adult offspring from diabetic dams have high RPTC ROS 

Our ex vivo studies showed that adult offspring of diabetic dams (age 20 weeks) had high 

levels of ROS in their RPTCs, compared to control adult offspring of non-diabetic dams. 

This was remarkable because the adult offspring of diabetic dams had only been exposed 

to the hyperglycemic environment in utero for about 6 days just prior to birth, and then 

were separated from their dams after weaning (age 3 weeks). They had normal glycaemia, 

and their kidney/body weight ratios were also normal, indicating no kidney hypertrophy. 

The explanation of their sustained RPTCs ROS is that their subnormal nephron number 

(caused by hyperglycemia in utero) was not sufficient to handle the workload. Over time, 

the RPTCs became damaged and generated excess ROS, which contributed to their 

programmed late-onset hypertension and kidney injury eventually. 

 

4.6 The underlying mechanism: role of the renal Nrf2-HO-1 defense system in 

offspring born to diabetic dams  

The renal protection function of the Nrf2-HO-1 defense was reported in studies of various 

kidney disease models [183, 300, 301]. Constant exposure to a high glucose environment 

in utero can impair Nrf2 function, reduce its downstream gene expression, and lead to 

pathology changes in many cell types of offspring from diabetic mothers (reviewed by 

Chapple et al [302]). For example, a proteomic analysis on epithelial cells isolated from 

human umbilical cords of infants from normal and GDM pregnancies (n=44-55), reported 

that the proteins involved in redox homeostasis were significantly altered in the offspring 

of diabetic pregnancies and associated with increased mitochondrial superoxide generation, 

protein oxidation and DNA damage. Furthermore, Nrf2 mRNA, protein levels, and nuclear 

translocation failed to respond to a Nrf2 stimulant [303].  

 

We hypothesized that the Nrf2-HO-1 defense system plays important role in our offspring 

of maternal diabetes mice model. To delineate the underlying mechanism mediated by 

Nrf2, we examined Nrf2 and HO-1 expression in vivo and in vitro of 20 weeks old 

offspring. In our kidney IHC staining, we observed increased Nrf2 protein expression as 

well as enhanced Nrf2 nuclear translocation in offspring from diabetic dams compared to 

offspring of normal glycemic dams, along with increased HO-1 expression. Real-time PCR 

results confirmed that Nrf2 and HO-1 mRNA levels were increased in the kidneys of 
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offspring of diabetic dams. These data suggested that the kidney Nrf2-HO-1 defense 

system is activated more strongly in adult offspring of diabetic dams, compared to control 

offspring of normal glycemic dams. 

 

However, as mentioned earlier, the offspring of diabetic dams showed increased ROS in 

their RPTCs while their kidney Nrf2-HO-1 defense system was activated at age 20 weeks, 

and this antioxidant defense system was suppose to protect the kidney from generating 

excess ROS. The possible explanation for why this activated Nrf2-HO-1 defense system 

failed to normalize the excess kidney ROS observed in our offspring of diabetic dams is 

that although the antioxidant defense system is functional, it is not able to counterbalance 

the greatly increased amount of ROS production due to decreased nephron number and 

increased workload, so the excess ROS accumulates in the kidney and causes progressive 

kidney injury. 

 

We stimulated IRPTC with high glucose (25mM) for 24 hours in vitro to see the response 

of Nrf2. Western blots showed that Nrf2 protein expression was elevated in these cells in 

response to high glucose. Normal Nrf2 nuclear translocation was confirmed by western 

blots of separated nuclei and cytoplasm of the IRPTC. Immunofluorescence staining 

showed that more Nrf2 remained in the nuclei vs. the cytoplasm with high glucose 

compared to normal glucose (5mM). Furthermore, we treated IRPTC with CAT and found 

that CAT could promote Nrf2 entering the nuclei. This is consistent with our in vivo 

observations and suggests although Nrf2 is an upstream activator of CAT, overexpressed 

CAT can trigger Nrf2 nuclear translocation and therefore induces its target gene HO-1 

expression. 

 

4.7 Could CAT be used in the clinic to prevent offspring of diabetic mothers from 

developing hypertension and kidney injury? 

The role of Nrf2 in the kidney has been extensively studied because oxidative stress is a 

critical mediator of progressive CKD (i.e. glomerulosclerosis and diabetic nephropathy) 

[141]. It has been shown that in diseased kidneys, Nrf2 activity is impaired and its 

downstream target gene expression is reduced [183, 304, 305]. Therefore, administration 

of an Nrf2 activator is a potential solution for the treatment of CKD that has been reported 
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to be effective in animal studies [306]. The current experimental and clinical strategy for 

ROS-mediated diseases is to activate the Nrf2 signaling pathway using Nrf2 activator 

compounds, which bind to the inhibitory protein Keap1, releasing its partner Nrf2 to 

translocate into the nucleus [307]. Nrf2 then induces transcription of multiple antioxidant 

genes that protect the cells.  

 

Bardoxolone methyl, a synthetic Nrf2 activator, was tested in 2011 in a small clinical trial 

(the US phase 2b BEAM study; n=227), in patients with stage II diabetic nephropathy. It 

showed efficacy in attenuating the progression of nephropathy and improved estimated 

glomerular filtration rate (eGFR) [308]. The international BEACON trial in 2013 tested the 

same compound in patients with T2DM and stage 4 CKD (n=2185) and was terminated 

due to increased adverse effects and mortality rate (96 patients in the bardoxolone methyl 

group were hospitalized or died from heart failure as compared with 55 in the placebo 

group) [309]. Research is focussed on discovering novel inducers without these 

undesirable side effects. 

 

What is the possible reason(s) lead to failure of the bardoxolone methyl trial? Evidence 

from animal studies suggested that the Nrf2 activator also induced other adverse pathways 

at the same time. For instance, a study investigated the effect of dh404, which is a 

derivative of bardoxolone methyl, on the kidney of STZ-induced diabetic apolipoprotein 

E-/- mouse model, showed that low dose dh404 reduced urinary ACR, glomerular injury 

and kidney injury. High dose dh404 stimulated the production of proinflammation 

mediators in the kidney, such as MCP-1 and the p65 subunit of NF-kB [306]. A proteomic 

screen of the human embryonic kidney 293 (HEK293) cell line which was stimulated by 

CDDO-Im (an analog of bardoxolone methyl and known Nrf2 activator), identified 577 

target proteins, including mammalian target of rapamycin (mTOR) and other transcription 

factors [310]. These findings revealed the complexity of the Nrf2 downstream network, 

and the possibility that Nrf2 activators have unwanted consequence due to this fact. 

 

Since overexpression of CAT in the kidneys is beneficial to offspring of diabetic dams, and 

the CAT gene is downstream of Nrf2, the idea to administer a Nrf2 activator to offspring to 

prevent hypertension and kidney injury seems to be feasible. However, the failure of 
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bardoxolone methyl trial suggests great challenges and more studies need to be engaged in 

the future. 

 

4.8 Other organs affected by maternal diabetes perinatal programming 

As mentioned earlier in Introduction, epidemiologic studies showed a strong correlation 

between the presence of diabetes during pregnancy and increased rates of adulthood onset 

T2D, obese and CVD in children born to diabetic mothers, compared to non-diabetic 

mothers. Therefore, organs that are related to energy metabolism, cardiovascular and 

insulin signaling pathways are likely affected by hyperglycemic intrauterine environment. 

Experimental studies of intrauterine hyperglycemic impact on various organs are described 

bellow. 

 

4.8.1 Liver 

The liver has a central role in regulating global energy metabolism, including glucose 

synthesis, lipid metabolism, and ketogenesis [311]. Excessive hepatic triacylglycerol (TG) 

accumulation can result in non-alcoholic fatty liver disease (NAFLD), which is associated 

with the development of insulin resistance [312]. It has shown that the liver TG content of 

adolescents correlated with insulin sensitivity, independent of whole body and visceral fat 

mass [313], hence the effects of maternal overnutrition or diabetes induced perinatal 

programming on the liver of the offspring could be a significant determinant of insulin 

sensitivity in youth [314]. 

Excess accumulation of hepatic lipids may lead to the formation of intracellular lipid 

droplets in cytoplasm, which is called microsteatosis. Moreover, severe lipid accumulation 

may result in larger hepatocellular lipid droplets in the nucleus, termed macrosteatosis. 

Experimental study using insulin receptor substrate-1 haploinsufficient (IRS1) mice, which 

displayed hyperinsulinemia and overall insulin resistance while maintaining normal blood 

glucose levels throughout pregnancy as maternal hyperglycemic model. The author 

observed that maternal insulin resistance increased liver fat accumulation in the male 

offspring compared to WT control male offspring, despite no changes in adiposity between 

the groups [315]. 
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4.8.2 Heart 

One study using STZ-induced maternal prenatal diabetes rat model demonstrated that the 

maternal environment has programming effects directly on the cardiovascular system of 

the offspring. Although the fetus had no cardiac malformations, cardiac hypertrophy at 

adulthood has been reported in the offspring of STZ-diabetic dams [316]. A similar study 

using same model suggests that perinatal development in a hyperglycemic intrauterine 

milieu does not result in hypertension in early adulthood but leads to subtle changes in the 

cardiovascular system which may predispose to overt cardiovascular disease [317]. In an 

STZ-induced mild pregestational diabetes rat model, the author found that the fetus 

accumulates lipids in different fetal heart [318]. 

 

4.8.3 Brain 

The developing brain is susceptible to the damaging effects of metabolic disturbances 

throughout pregnancy. Study showed that inducing maternal diabetes by administration of 

STZ to pregnant dams could cause increased food intake in the offspring [319]. The result 

appeared to suggest that maternal hyperglycemia is a factor that can program feeding 

behavior in the offspring. However, unlike rodents which develop leptin-mediated feeding 

circuit postnatally, in primates it occurs in utero [320]. That explains maternal influences 

during the suckling period are also important factors driving the effects on food 

consumption in the rodent offspring. For example, cross-fostering the offspring of obese 

dams by lean dams prevented elevated caloric intake [321]. 

 

 

Article 2 

4.9 Summary 

In this study we investigated the role of Aquaporin 1 (AQP1), a major water channel in 

renal proximal tubular cells (RPTCs) of the kidney, in the development of angiotensinogen 

(Agt)/angiotensin II (Ang II)-induced hypertension and renal injury. We used two 

complementary experimental systems: transgenic mice overexpressing rat Agt (rAgt-Tg 

mice) in their RPTCs driven by kidney androgen-regulated protein (KAP) promoter [322], 

and cultured immortalized rat renal proximal tubule cells (IRPTCs) that overexpress (rAgt) 
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by stable transfection pRSV/rAgt plasmid [323]. Compared to their non-transgenic 

littermates, rAgt-Tg mice develop hypertension and kidney injury, was prevented by dual 

RAS blockade (losartan plus perindopril). The smooth muscle relaxant, hydralazine 

normalized blood pressure without affecting albumin/creatinine ration (ACR), a biomarker 

for kidney injury. We observed that both renal AQP1 and heme oxygenase (HO) -1 were 

decreased, and renal Nrf2 and sodium transporter NHE3 were increased, in both 

experimental systems, and these changes were reversed by RAS dual blockade. To 

understand why elevated Nrf2 downregulates HO-1 expression and how overexpressed 

rAgt downregulated AQP1 expression, we examined a candidate gene that possibly is a 

mediator of Nrf2 translocation (GSK3β). 

 

The present study identified a novel mechanism for intrarenal Agt-induced hypertension 

and kidney injury: overexpression of Agt in RPTCs causes Nrf2 cytosolic accumulation by 

initiating the GSK3β pathway that exports Nrf2 from the nucleus to the cytosol. Nrf2 is an 

upstream transcription factor of HO-1, thus a deficiency of Nrf2 in the nucleus causes 

decreased HO-1 expression and downregulates AQP1. Reduced AQP1 is associated with 

β-catenin-mediated kidney damage. In conclusion, our data suggest that decreased AQP1 

and HO-1 expression in renal proximal tubules induced by excess Agt and activated 

intrarenal RAS, plays a role in the progression of hypertension and kidney injury. 

 

4.10 Characterization of the rAgt-Tg mouse model and determination of drug 

treatment 

In transgenic mice that overexpress rat Agt (rAgt), immunohistochemistry (IHC) staining 

revealed that the rAgt was specifically overexpressed in RPTCs. ELISA tests confirmed 

that the levels of Agt and Ang II were above normal in the urine, and normal in the serum, 

and indicated that the rAgt was correctly cleaved by the RAS of mouse kidney. In these 

mice, the rAgt (along with the endogenous mouse Agt) was activated and fully functional, 

as their blood pressure was on average higher by approximately 10 mm Hg compare to 

non-Tg littermates. The rAgt-Tg mice had a high urinary ACR, revealing a loss of kidney 

function compare to non-Tg littermates. Renal morphological staining such as PAS and 

Masson trichrome of the transgenic mouse kidney revealed kidney structure changes that 

are associated with loss of kidney function, including glomerular expansion, proximal 
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tubule structural damage and dilation, interstitial accumulation of inflammatory factor 

TGF-β1, as well as collagen IV, a biomarker for renal fibrosis. An increase in renal ROS is 

associated with renal RAS activation in kidney pathology progression [324, 325]. Thus we 

hypothesize that increased ROS plays a role in Agt-mediated AQP1 downregulation. We 

therefore examined catalase (CAT) expression (an antioxidant enzyme) in the rAgt-Tg 

mouse kidney by IHC, and found the expression of CAT is lower compare to non-Tg 

littermates, therefore confirming an impairment in the ROS defense system. 

 

The effect of administration of losartan (ARB) (losartan 30 mg/ kg/day) alone or in 

combination with perindopril (ACEI) (losartan 30 mg/ kg/day plus perindopril 4 

mg/kg/day) in adult rAgt-Tg mice, from week 13- 20 of age, was assessed. The treatment 

partially or largely ameliorated the urinary rAgt and Ang II concentrations, and had no 

effect on their serum levels. Blood pressure measurement indicated that RAS dual 

blockade treatment lowered the elevated rAgt-Tg mouse blood pressure to non-Tg 

littermates level. The CAT IHC showed that RAS dual blockade treatment normalized 

kidney CAT level, suggesting that it repaired the defective antioxidant defense mechanism. 

Histology examination showed that RAS dual blockade treatment restored kidney 

morphology and inhibited the characteristic progression of kidney injury seen in the 

rAgt-Tg mouse model. Hence the RAS dual blockade treatment was found to be the most 

effective and was used in subsequent experiments. 

 

To distinguish the effect of blockade of the RAS signaling pathway from that of lowered 

blood pressure, we treated adult rAgt-Tg mice (13-20 weeks old) with the smooth muscle 

relaxant hydralazine (15mg/kg/day), which normalized blood pressure but did not restore 

renal function (the elevated ACR remained unchanged). These results clarified that in the 

rAgt-Tg mouse model, the rAgt, which is overexpressed specifically in mouse RPTCs, is 

the major mediator of hypertension and kidney pathology, via alteration of kidney structure 

and physiology. This experiment ruled out the possibility that the increased rAgt-Tg mouse 

blood pressure per se was a significant contributor to the kidney injury observed in this 

mouse model.  
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4.11 Mechanisms involved in AngII-regulated AQP1 expression  

4.11.1 Results of the rAgt-Tg mouse study  

We studied the underlying mechanism of how excess of Ang II in the kidney causes a 

decrease in AQP1, using the rAgt-Tg mouse model. AQP1, as described in my thesis 

Introduction, is an essential kidney water channel, present in plasma membranes of the 

proximal tubules and descending limb of the loop of Henle [252, 253]. AQP1 expression 

was found to be reduced in rAgt-Tg mouse kidneys. We previously showed that the ROS 

defense system is impaired in rAgt-Tg mice. We decided to examine renal HO-1 and Nrf2 

expression in more detail. First, we confirmed that AQP1 and HO-1 expression are 

downregulated in the kidneys of 20-week-old rAgt-Tg mice, and this can be rescued by 

treatment with the RAS dual blockade described in the previous section. To determine 

whether the reduction of HO-1 is due to inactivation of its upstream regulator, we analyzed 

Nrf2 expression (a master regulator of the antioxidant response which relieves oxidative 

stress) and its associate protein Keap1, an Nrf2 repressor, which binds to and anchors Nrf2 

in the cytoplasm, facilitating its ubiquitination and proteolysis.  

 

We observed that Nrf2 was induced but remained in the cytoplasm of the rAgt-Tg mouse 

kidney cells, and was not translocated into the nucleus as normally occurs in non-Tg 

littermates. Insufficient nuclear Nrf2 could be causing reduced HO-1 expression, which 

would be expected if Keap1 protein expression were increased, however, Keap1 levels 

were normal. This result provides evidence for our hypothesis that Nrf2 translocation from 

the cytoplasm into the nucleus is defective in this mouse model, perhaps because another 

(as yet unidentified) Nrf2 regulation pathway exists which leads to reduced HO-1 

expression, or the Keap1-Nrf2 interaction is more complex and requires additional factors 

and/or a Nrf2 conformational change which may be missing and required for translocation 

into the nucleus.  

 

Glycogen synthase kinase (GSK)3β is a serine/threonine protein kinase involved in many 

different signaling pathways, including glycogen metabolism, gene transcription, apoptosis 

and microtubule stability [326-329]. We tested our hypothesis that GSK3β plays a role in 

Nrf2 translocation by studying GSK3β expression in our rAgt-Tg mouse model. We 

confirmed the presence of two forms of phosphorylated GSK3β by western blot on isolated 
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renal proximal tubules: 1) S9 (the inactivate form), which stabilizes Nrf2 in the cytoplasm; 

and, 2) Y216 (the active form), which is responsible for Nrf2 export from the nucleus to 

the cytoplasm. We found that while total GSK3β protein levels remained unchanged, there 

was a decrease in the inactive form and an increase in the inactive form of GSK3β in 

rAgt-Tg mouse RPTCs compare to non-Tg littermates. This result also provides support 

for our earlier hypothesis that Nrf2 transport into the nucleus is defective in kidney 

proximal tubules of rAgt-Tg mice. 

 

Sodium-hydrogen exchanger 3 (NHE3) is the major apical sodium transporter in the 

RPTCs that controls sodium reabsorption [246]. We found by western blotting that in 

rAgt-Tg mouse RPTCs, NHE3 protein expression was increased compared to non-Tg 

littermates. Furthermore, by immunofluorescence staining, we found that NHE3 is 

colocalized with AQP1. These data suggest our Agt-induced hypertension hypothesis that 

overexpression of rAgt in RPTCs leads to decreased water absorption via AQP1 and 

increased sodium reabsorption via NHE3, which together likely causes hypertension. 

 

4.11.2 Results of the in vitro studies 

We employed for our in vitro experiments three stable clonal cell lines: 1) IRPTC, a rat 

renal proximal tubule cell line immortalized by SV40 DNA [208]; 2) pRC/RSV plasmid 

that contains rAgt cDNA stably transected into IRPTC (pRSV/rAgt-IRPTC); and, 3) 

control pRC/RSV plasmid stably transfected into IRPTC (pRSV-IRPTC) [323]. We 

characterized these cell lines by detecting rAgt, Nrf2, Keap1 and AQP1 protein expression 

in western blots. rAgt was overexpressed in pRSV/rAgt-IRPTC, as expected. Consistence 

with the experiments described on RPTCs of rAgt-Tg mice, Nrf2 and AQP1 levels were 

found to be decreased, while Keap1 stayed unchanged, in pRSV/rAgt-IRPTC compared to 

IRPTC and pRC/RSV-IRPTC. We found AQP1 was express predominantly at cell 

membranes in IRPTC by immunofluorescence staining, and was dramatically decreased in 

pRSV/rAgt-IRPTC. The results supported our hypothesis that Agt plays a role 

downregulating AQP1 expression. 

 

To clarify if the reduced HO-1 expression in our rAgt-Tg mouse model leads to decreased 

AQP1 expression, we stimulated HO-1 protein expression in vitro using CoPP, a chemical 
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inducer of HO-1. We found that CoPP restored AQP1 protein expression in a 

dose-dependent manner. Induction of HO-1 by CoPP also inhibited rAgt expression in 

IRPTC, while Nrf2 expression remained unchanged. These results show that HO-1 plays a 

role on AQP1 induction. 

 

Nrf2 cytosolic accumulation was observed in RPTCs of rAgt-Tg mice, and this was further 

confirmed in pRSV/rAgt-IRPTC and pRSV-IRPTC cells by separating the cytosolic and 

nuclear fractions. Overexpression of Agt in IRPTC indeed caused Nrf2 to be retained in 

the cytosol, possibly via the GSK3β export pathway. NHE3 expression was stimulated 

when Ang II concentration was high, consistent with our observations in vivo. 

 

β-catenin was reported as a transcriptional co-regulator candidate factor that mediates Ang 

II-induced kidney injury via an as yet unidentified mechanism (detailed in following 

section). We hypothesized that β-catenin may be involve in the process of Ang II regulated 

AQP1 expression, and therefore examined β-catenin status in IRPTC. We found that the 

phosphorylated form of β-catenin was decreased in the total cell lysate of 

pRSV/rAgt-IRPTC, indicating that high levels of rAgt caused activation of the 

Wnt/β-catenin pathway. 

 

4.12 Nrf2 cytoplasmic accumulation of pRSV/rAgt-IRPTC and RPTC of rAgt-Tg 

mice 

The Keap1-Nrf2-ARE pathway is the main pathway that responds to and reduces oxidative 

stress, via activating a large number of antioxidant genes such as HO-1, NQO1 and 

catalase [180, 181]. Emerging evidence has indicated an alternative regulatory mechanism 

involved in Nrf2 signaling that is independent of Keap1, named by the glycogen synthase 

kinase 3β (GSK3β)/Fyn pathway [274, 330]. Briefly, activated GSK3β (that is 

phosphorylated at tyrosine 216) phosphorylates Nrf2 at tyrosine 568 and/or regulates it 

indirectly through phosphorylation of Fyn kinase. This leads to nuclear localization of Fyn, 

which further phosphorylates Nrf2 on tyrosine 568, resulting in the export of Nrf2 from the 

nucleus back to the cytoplasm [274, 331]. Conversely, inactivation of GSK3β by the 

inhibitory phosphorylation of GSK3β at serine 9 leads to Nrf2 nuclear accumulation.  
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Overexpression of rAgt in cells and kidney is expected to increase the level of AngII and 

activate AT1R signaling, thus inducing downstream reactions, such as inflammation and 

oxidative stress. In response to increased cellular ROS, Nrf2 is assumed to disassociate 

with KEAP-1 and translocate into the nucleus. In the current study, in RPTCs both in vivo 

and in vitro, we did not detect any changes in the level of Keap1. Nrf2 remained in the 

cytoplasm and failed to translocate to the nucleus. Thus, we hypothesize that GSK3β 

mediates Nrf2 accumulation in the cytoplasm. Indeed, we detected the upregulation of the 

active form phosphorylate GSK3β Y216 in the cytoplasm, which exports Nrf2 out of the 

nucleus, and downregulation of the inactive form phosphorylate GSK3βS9, in both 

rAgt-Tg mice and the pRSV/rAgt-IRPTC stable clone. 

 

4.13 β-catenin is a mediator of Agt-induced kidney injury – in vivo results from 

literatures match our in vitro finding 

We showed that overexpressed rAgt in the rat kidney causes hypertension and kidney 

injury and are partly due to decreased AQP1, probably mediated by the β-catenin signaling 

pathway. The effects of the activated kidney RAS on hypertension and kidney injury have 

been widely studied [207, 332]. In our study, we discovered a novel pathway by which the 

renal RAS elicits hypertension and kidney injury.  

 

The Wnt/β-catenin signaling cascade plays a pivotal role during kidney development [276, 

333] and is nearly silenced in adulthood under normal conditions. Recently, activation of 

the canonical Wnt/β-catenin pathway was observed in many different types of renal 

pathology [280, 334, 335]. When this pathway is activated, β-catenin, a co-transcriptional 

factor, translocates into the nucleus and cis-acts on its target genes, which promote cell 

proliferation and differentiation [336]. Without Wnt signaling, β-catenin stays in the 

cytoplasm and is phosphorylated by multiple kinases, including GSK3β. Recruiting and 

binding to other components, the complex targets β-catenin for degradation. Thus, 

decreased GSK3β, or dissociation of β-catenin with the destructive structure, prevents 

phosphorylation and degradation of β-catenin and results in Wnt pathway activation.  

 

In disease conditions, the renal RAS is activated in parallel with the Wnt/β-catenin 

pathway. For example, study of Zhou et al using the adriamycin (ADR)-induced 
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nephropathy model found multiple RAS genes upregulated (i.e. renin, Ang, ACE, AT1R). 

Giving pharmacological blockade of the Wnt/β-catenin pathway suppressed RAS gene 

induction and ameliorated kidney injury of ADR mice [337]. In contrast, other studies 

suggest that activated RAS leading to proteinuria and kidney injury is regulated by the 

upstream regulator Wnt/β-catenin pathway [338]. Taken together, those evidences show 

that crosstalk between the RAS and Wnt/β-catenin pathways occur. 

 

AQP1 also plays a role in the Wnt/β-catenin pathway that causes kidney damage. Wang et 

al found that in a mouse model of polycystic kidney disease, membrane-bound AQP1 

could retard cyst formation by interacting with multiple elements, include GSK3β and 

phosphorylated β-catenin, to form a destruction complex. The complex is finally targeted 

for degradation by proteasomes, leading to inhibition of Wnt signaling [281]. This finding 

is consistent with our observations in conditions of rAgt overexpression 

(pRSV/rAgt-IRPTC), where AQP1 is markedly downregulated. With the presence of very 

low levels of AQP1, β-catenin is dephosphorylated, and this likely causes activation of the 

Wnt signaling pathway, which contributes to kidney damage.  

 

4.14 The role of NHE3 in Agt-induced hypertension 

NHE3 is thought to be the major cotransporter present in kidney proximal tubules and the 

loop of Henle [339, 340]. The function of NHE3 is to secret H+ out of the tubule cell into 

the lumen, and exchange sodium absorbed from the lumen into the tubule cell on its apical 

site, contributing approximately 75% of sodium reabsorption [341]. In a recent study, Li et 

al reported that NHE3 is essential for developing Ang II-dependent hypertension [342]. By 

infusing Ang II into mice with normal or mutant NHE3 expression in the kidney, they 

observed that the mouse blood pressure was elevate only slightly in the kidney-NHE3 null 

mice compare to WT mice. We also observe increased NHE3 in the proximal tubules of 

our rAgt-Tg mice. Taken together, the results suggest that increased NHE3 and sodium 

reabsorption may be an important factor that leads to hypertension, and if AQP1 

expression does not increase coordinately, this enhances the development hypertension.  

 

4.15 How does HO-1 regulate AQP1 expression? 

We observed in IRPTC that HO-1 induction in vitro upregulates AQP1 protein expression. 
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Our finding is consistent with a study on H2O2-induced oxidative damage of rat alveolar 

epithelial cells (a primary culture isolated from lung tissue), which found that AQP1 

expression was significantly reduced in the H2O2-injured group and apoptosis rate was 

increased. Administration of HO-1 recombinant protein protected the rat alveolar epithelial 

cells from apoptosis and upregulated AQP1 expression, suggesting that HO-1 increases 

AQP1 expression in H2O2-injured cells due to its antioxidant property [343]. In our present 

study, it is likely that decreased AQP1 expression, both in rAgt-Tg mice proximal tubules 

and pRSV/rAgt-IRPTC, is due to insufficient HO-1 triggered by the defect of nuclear Nrf2 

translocation. Whether the AQP1 stimulation effect of CoPP is through oxidative stress 

clearance by HO-1 or another pathway remains unknown and needs further experiments to 

answer the question. 

 

4.16 Glycosylation of AQP1 

In our western blot experiments using antibodies directed against AQP1, we always 

detected two proteins: one of 28 kDa, which matches its estimated molecule weight, and a 

second protein around 35-40 kDa, which is thought to be corresponding to the glycosylated 

form. Many renal AQPs contain a N-link consensus glycosylation site and some have been 

investigated [344]. For instance, mutation in AQP2 has been shown to lead to 

nephrogenetic diabetes insipidus, due to a defect in covalent modification during N-linked 

glycosylation [345]. However, whether glycosylation can affect the activity of AQP1, or 

has other functional significance, is currently unknown. A study on cardiomyocytes 

performed enzymatic deglycosylation and successfully eliminated the upper 35-40 kDa 

AQP1 protein, suggesting that the lower 28 kDa protein is glycan-free AQP1 [346]. AQP1 

was first characterized as a N-proteoglycan [347], however, removal of its glycosyl group 

did not affect its ability to assemble into tetramers or affect its water transport efficiency 

[348]. We assumed that glycosylation increases the stability and half-life of AQP1. In our 

rAgt-Tg RPTCs preparations and in the pRSV/rAgt-IRPTC, both the unmodified as well as 

glycosylated form of AQP1 were found to be be decreased by western blotting, indicating 

there may be the existence of additional mechanisms that regulate AQP1 expression by 

modulating the speed of its degradation and/or expression. 
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4.17 Dramatic decrease of AQP1 in pRSV/rAgt-IRPTC but modest decrease of AQP1 

in rAgt-Tg mice RPTC 

Interestingly, comparing naive IRPTC (having normal rAgt expression) with a stable cell 

line that overexpresses rAgt (pRSV/rAgt-IRPTC), we observed dramatic decreased AQP1 

in the latter. In contrast, the difference between RPTCs’ AQP1 protein expression in mice 

that overexpress rAgt vs. non-Tg littermates is relatively smaller. The explanation may be 

due to the divergence of single cell colony (in vitro) or system crosstalk (in vivo). This is 

difficult to study because unlike kidney tissue, our IRPTC cell line only expresses AQP1 

and not AQP2. This could be explained if the AQP1 and AQP2 water channel systems 

interact, and counterbalancing mechanisms among tubule segments exist in vivo.  

 

Different levels of rAgt expression might be an explanation. In our western blot analysis, 

rAgt in rAgt-Tg mouse RPTCs protein extracts (data not shown) is about 2-fold higher 

compare to non-Tg littermates. In our in vitro experiments, rAgt expression was around 

20-fold higher in the pRSV/rAgt-IRPTC compare to the IRPTC cell lines. This extremely 

high and long-term constitutive overexpression of rAgt is likely to completely suppress 

AQP1 protein expression in Agt/RSV-IRPTC. Using transient transfection of pRSV/rAgt 

plasmids into IRPTC, we found that the magnitude of the decrease in AQP1 expression 

was smaller. 

 

In conclusion, in this study we identified a novel pathway of how overexpressed Agt in 

RPTCs induces hypertension and kidney injury. Our data suggest that high Ang II levels 

impaired Nrf2 function and subsequence decrease HO-1 and AQP1 expression. Reducing 

HO-1 and AQP1 play a role in developing hypertension and kidney injury. 
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Article1 

To further study the role of ROS and Nrf2 signaling in maternal diabetes perinatal 

programmed hypertension and kidney injury, Nrf2KO mice is a good model to use in our 

following study. Postnatal variables are also known as important factors to influence 

offspring development during sensitive period after birth. Our lab published very recently a 

study regarding post weaning high fat (HF) diet can accelerating kidney injury progress in 

maternal diabetes model. We are interested to see if the phenotype induced by perinatal 

programming can be reversed in CAT-Tg offspring. 

 

5.1 Does absence of Nrf2 in offspring kidney accelerate hypertension and kidney 

injury development in response to maternal diabetes condition? 

Conventional Nrf2 knockout (Nrf2KO) mice that previously created and characterized by 

other research teams is a good model to study the role of Nrf2 in various disease conditions 

[349]. The embryos of Nrf2KO mice were reported to be fertilized, viable and developed 

normally under standard laboratory conditions, and the author concluded that Nrf2 is 

dispensable for mouse development. Nevertheless, the mice were found to be susceptible 

to environmental toxins and oxidative stress, such as carcinogens [350] and hypoxia [351] 

in adulthood. Parallel to our study, a number of other studies highlighted the important role 

of Nrf2 in protecting fetal organ development against adverse environments in utero, such 

as toxin exposure, preeclampsia and diabetes [302]. However, long-term effect of Nrf2 in 

perinatal programming is not clear. 

 

In our present study, since we have demonstrated that ROS plays an important role in 

maternal diabetes programmed hypertension and kidney injury in offspring at adulthood, 

this Nrf2KO mouse model provides a good tool to deduce the role of Nrf2 in perinatal 

programmed hypertension and kidney injury. To study the influence of maternal 

hyperglycemia environment with the presence or absence of Nrf2 in offspring, Nrf2 

heterozygous knockout (Nrf2+/−) dams will be mated with Nrf2+/- males to generate three 

genotypes of offspring: Nrf2+/+, Nrf2+/− and Nrf2−/− (Figure 5-1). Our previous 

STZ-induced maternal diabetes model will be adapted to these dams. As mentioned in 

figure 5-1, offspring of all six groups (A to F) will be studied. Blood pressure will be 

monitored by tail-cuff method thrice weekly from 8 weeks until 18 weeks of age. GFR will 
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be estimated in 20 week-old offspring prior to sacrifice. Animals will be euthanized at 20 

weeks of age. Body weight and kidney weight will be recorded. Left kidney will be 

utilized for renal morphology assessment and IHC while the right kidney cortex will be 

reserved for ROS generation and gene expression experiments. 

It has been reported that in STZ-induced diabetic mice, administration of Nrf2 activator, 

significantly decreased blood glucose levels through the improvement of insulin secretion 

[352]. We have no idea if maternal glycemic level will go higher in Nrf2−/− or Nrf2+/− dams 

compare to Nrf2+/+ dams after induction of diabetes by STZ, and eventually enhance 

perinatal programming. Hence we intend to collect offspring from same genotype of dams 

to control the possible variation.  

 

 
 

Figure 5-1: Experimental design using Nrf2KO heterozygous to create three kinds 

genotypes of offspring: Nrf2 WT, Nrf2KO heterozygous and Nrf2-null mice.  
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We hypothesize that the deficiency of Nrf2 in offspring can predispose offspring to 

oxidative damage under maternal hyperglycemia environment. We expect to see in Nrf2-/- 

offspring kidney, nephron number loss is exacerbated compare to Nrf2+/+ offspring in 

response to maternal diabetic pregnancy during developmental stage. At adulthood, these 

Nrf2-/- offspring have greater ROS generation and develop hypertension and kidney injury. 

Nrf2+/- offspring may show an intermediate phenotype between Nrf2+/+ and Nrf2-/- 

offspring, or no change because only one copy of Nrf2 gene could function well. However, 

there is a weak point in this experimental design. This Nrf2 KO mouse model is Nrf2 

ablated in all organs; include cardiovascular system, which largely involves in blood 

pressure regulation. Reports indicate that down-regulation Nrf2 contributes to vascular 

dysfunction in hypertension [353]; and maternal hyperglycemic environment is known to 

grogram alterations in hearts and induce cardiovascular dysfunction [317]. Therefore it is 

difficult to exclude the role of heart Nrf2 in the developing of maternal diabetes perinatal 

programmed hypertension. A kidney tissue specific Nrf2 ablation line is required to dress 

the role of Nrf2 in kidney in response to intrauterine hyperglycemic environment. 

 

5.2 Does overexpression CAT in RPTCs in offspring protect or delay progression of 

kidney injury programed by maternal diabetes and postnatal overnutrition? 

Perinatal programmed adult hypertension and kidney diseases may develop with rapid 

postnatal catch-up growth, which constitutes a second hit. Therefore it is important to take 

postnatal growth into account in experimental models of perinatal programmed adult 

diseases [354]. 

 

Catch-up growth refers to a period after birth in growth-restricted neonates when they 

accelerate growing to optimize the growth of certain organs as well as body weights [354]. 

A study using low protein diet maternal IUGR rat model indicated that early postnatal 

overfeeding can induce rapid postnatal catch-up growth, improves postnatal nephrogenesis. 

However, the aging male offspring manifested sustained systemic hypertension and CKD 

[354]. “Mismatch pathway” was proposed to explain this phenomenon: there is a mismatch 

between the postnatal nutritional condition and the condition that predicted by nutrient 

status during pregnancy, As a result, energy balance regulation in offspring is disturbed 

and later physical function problems related to metabolism are predisposed [355]. 
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In our previous publication we used STZ-induced maternal diabetes model and fed the 

offspring with high fat diet (HFD) since 4 weeks of age, and looked into potential 

underlying mechanisms [356]. We observed that the offspring born to severe diabetic dams 

and on normal diet (ND) possessed IUGR phenotypes, as well as developed hypertension 

and kidney injury in adulthood. Nevertheless, IUGR offspring exposed to HFD showed 

rapid weight gain, catch-up growth and intense kidney injury in adulthood, accompany 

with increased TGFβ1, collagen type IV expression and oxidative generation in kidneys. 

Further data suggested HFD in a form of fatty acid increase CD36 and fatty acid–binding 

protein 4 (Fabp4) expression and contribute synergistically to kidney injury. 

 

It appears ROS is one of the targets of CD36 and Fabp4 in maternal diabetes plus 

post-weaning HFD-induced perinatal programmed kidney injury. We can take the 

advantage of our CAT-Tg mice and see whether overexpression CAT in offspring RPTCs 

can reverse kidney injury induced by prenatal and postnatal insults. The same strategy 

using STZ to induce diabetes and feed offspring HFD from four to 20 weeks of age will be 

applied. Six groups of animal will be collected: control non-Tg; control non-Tg feed HFD; 

diabetic non-Tg; diabetic non-Tg feed HFD; diabetic CAT-Tg; diabetic CAT-Tg feed HFD. 

We expect to see that the progression of kidney injury can be attenuated by overexpression 

CAT in RPTCs. 

 

We can add two more groups of animal: diabetic non-Tg feed antioxidant; diabetic non-Tg 

feed HFD and antioxidant, to see whether administration of antioxidant systemically (by 

adding in drinking water) or locally (overexpress CAT in kidney) is more beneficial. As it 

has been wildly studied, maternal diabetes also programmed CVD and can complicated 

hypertension and kidney injury eventually. Giving antioxidant systemically can degrade 

ROS in multiple affected organs and tissues are expected to have better result. Nonetheless, 

in our previous publication, we have already demonstrated that intrauterine hyperglycemic 

environment programmed nephron number loss via ROS generation in offspring kidney, 

and lead to kidney failure at adulthood. Overexpression CAT in the fetus can prevent from 

nephron number loss caused by high glucose milieu and may have a better shape compare 

to fetus of non-Tg diabetic dams. Perhaps give the antioxidant systemically as a treatment 

to affected offspring after the most critical window is closed, the benefit would be limited. 
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Article2 

Our next goal is to prove our hypothesis by in vivo induction of the kidney 

Nrf2/HO-1defense system pathway to see whether it could increase kidney tubular AQP1 

expression, reduce blood pressure and prevent kidney injury induced by overexpression of 

Agt/Ang II. 

 

5.3 Does kidney-specific treatment with an HO-1 inducer (CoPP) normalize blood 

pressure and AQP1 expression in rAgt-Tg mice? 

Studies of experimental hypertensive mouse models demonstrated that systemic induction 

of HO-1 by chemical inducers, such as hemin or CoPP, could prevent the development of 

hypertension [357-359]. Despite increasing	 production	 of	 CO,	 which	 functions	 as	 a	

vasodilator	in	vascular	smooth	muscle,	the mechanism involved is not yet known, nor is 

the role of kidney HO-1 induction. Vera et al have developed a method of delivering HO-1 

inducers specifically to kidneys using intrarenal medullary interstitial (IRMI) catheters 

implanted 1.5 to 2.0 mm into the left kidney [360]. Saline is infused through the catheter 

for a period of 3 days, followed by either CoPP (250 µg/mL; at 50 µL/h) or vehicle (0.1 

NaOH pH 8.0) for 2 days. Two days later, mice were implanted with osmotic minipumps, 

which infused Ang II or vehicle (saline) at 1 µg/kg/minute. Blood pressure was measured 

by carotid artery implanted five days after Ang II infusion. The kidney-specific HO-1 

induction prevented the development of Ang II-dependent hypertension and highlighted 

the importance of intrarenal HO-1 induction in the regulation of blood pressure. However, 

the underlying mechanism remains unknown. 

 

We will use Vera’s method to test kidney-specific CoPP treatment of our rAgt-Tg mice. 

Vera reported that two days of CoPP infusion induces high intrarenal HO-1 levels for 11 

days. In our future study, we plan to implant catheters in the medullary interstitial region of 

rAgt-Tg mouse kidneys and those of the control non-Tg littermates. Five days after CoPP 

or vehicle infusion, blood pressure will be measured with the tail cuff method daily for five 

days. Mice will be sacrificed after 10 days since CoPP infusion. Before sacrifice, the mice 

will be housed in metabolic cages for 24 hours, and the amount of water and food 

consumed, as well as the amount of urine will be monitored. AQP1 and HO-1 expression 

will be examined by western blot and immunostaining. We expect that this kidney-specific 
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CoPP treatment will normalize both blood pressure and the rAgt-induced reduction in 

AQP1.  

 

5.4 Does kidney-specific treatment with an Nrf2 activator normalize blood pressure 

and AQP1 expression in rAgt-Tg mice?  

Since Nrf2 is an upstream transcription factor of HO-1, we hypothesize that the 

kidney-specific Vera method could similarly be used to test whether an Nrf2 activator may 

also normalize blood pressure and AQP1 expression in our rAgt-Tg mice. In these mice, 

transgenic rAgt is persistently expressed in their RPTCs and this may permanently change 

the profile of their kidney Nrf2 import/export system. The HO-1 levels of this experiment 

may be unchanged or increased, and Agt-induced hypertension may be maintained or 

reduced. 

 

5.5 To prove that GSK3β regulate Nrf2 nuclear translocation and decreases HO-1 

and AQP1 expression in rAgt-Tg mice and pRSV/rAgt-IRPTC 

We detected both upregulation of the active form of phosphorylated GSK3β (Y216), which 

exports Nrf2 out of the nucleus into the cytoplasm, and downregulation of the inactive 

form phosphorylate GSK3β (S9), in both rAgt-Tg mouse RPTCs and pRSV/rAgt-IRPTC 

(a stable clone). We hypothesized that Agt regulates Nrf2 nuclear translocation via GSK3β. 

To further verify the causal relation between GSK3β and downstream consequences, we 

will next block the GSK3β pathway using LiCl, a chemical inhibitor of GSK3β reported by 

Salazar et al to cause nuclear accumulation and stabilization of Nrf2 in human hepatoma 

(HepG2) cells [274]. The same research team also found	 inhibition of GSK3β could 

increase HO-1 levels in human embryonic kidney (HEK) 293T cells [361]. These studies 

were only done in vitro and demonstrated that LiCl could prevent Nrf2 nuclear export 

mediated by GSK3β. We hope to demonstrate that LiCl treatment of our rAgt-Tg mice 

normalizes HO-1 and AQP1 expression, ameliorate blood pressure, and prevent kidney 

injury. In vitro, we plan to clarify the mechanism involved by blocking GSK3β expression 

using siRNA and LiCl in pRSV/rAgt-IRPTC and examine Nrf2 distribution inside these 

cells by immunofluorescence. 
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5.6 To further investigate if β-catenin interacts with AQP1 and plays a role in kidney 

injury progression induced by Agt overexpression 

In the present study, we observed that β-catenin was dephosophorylated in 

pRSV/rAgt-IRPTC, which overexpresses rAgt. We hypothesized that overexpression of 

Agt likely causes activation of the Wnt/β-catenin signaling pathway, mediated by the 

failure of AQP1 to interact with β-catenin, which further contributes to kidney damage 

[281]. To show physiological relevance, we will next test whether administration of a 

Wnt/β-catenin pathway inhibitor can reverse hypertension and nephropathy in rAgt-Tg 

mice.  

 

We hypothesize that AQP1 siRNA will inhibit AQP1 expression in IRPTC and will 

activate the Wnt/β-catenin pathway. Several genes that correlate with kidney injury were 

found to be Wnt/β-catenin target genes, such as Snail1, which has a key role in driving 

epithelial–mesenchymal transition (EMT) in glomerular podocytes; and fibronectin, a 

major interstitial matrix component. Other target genes of Wnt/β-catenin that were studied 

are Cyclin D1 and Myc, which are involved in cell cycle regulation and cell proliferation, 

although their role in kidney disease is not yet clear [362]. In the future, we plan to 

examine gene expression of all the above genes in IRPRC, to confirm if the Wnt/β-catenin 

pathway is activated when AQP1 is absent due to AQP1 siRNA. 
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