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Résumé 

Il existe un nombre grandissant de preuves au cours des dernières années que la 

diminution de la sécrétion des œstrogènes chez les animaux ovariectomisés (Ovx) et chez les 

femmes ménopausées conduit à une accumulation importante de triglycérides (TG) dans le 

foie. Cependant, les évidences de perturbations dans le métabolisme du cholestérol, en lien 

avec la diminution des œstrogènes, sont limitées à des observations de niveaux élevés de 

cholestérol total dans le plasma trouvés chez la femme ainsi que chez les animaux. En fait, 

l'impact de la suppression des œstrogènes sur le métabolisme du cholestérol dans le foie a reçu 

peu d'attention et montre quelques controverses. Par conséquent, les trois études présentées 

dans cette thèse ont été réalisées chez des rats Ovx, comme modèle animal de femmes post-

ménopausées, afin de documenter les effets du retrait des œstrogènes sur les marqueurs 

moléculaires clés du métabolisme du cholestérol et des acides biliaires dans le foie et dans 

l'intestin et des effets potentiels de l’entraînement physique. Il a été en effet démontré que 

l'entraînement physique peut réduire le niveau plasmatique de cholestérol. Une amélioration 

du transport du cholestérol en périphérie vers le foie pour sa sécrétion subséquente dans la bile 

et pour son l'excrétion de l'organisme a été suggérée, bien que les mécanismes sous-jacents ne 

soient pas entièrement compris. 

Dans la première étude, nous avons démontré que les rattes Ovx nourris avec une diète 

standard et une diète standard + cholestérol avait un taux de cholestérol total dans le foie plus 

élevé (P <0,05) que les rattes avec une ovariectomie simulée (Sham) nourris avec ces deux 

derniers types de diète, tandis que la teneur en triglycérides du foie était plus élevée chez les 

rattes Ovx que chez les rattes Sham nourris avec une diète standard, une diète standard + 

cholestérol et aussi une diète riche en grasses + cholestérol. Étonnement, la diète standard + 

cholestérol a été associée à un niveau plasmatique plus faible (P <0,001) de cholestérol total et 

de triglycérides chez les rats Ovx que les rats Sham, ce qui suggère une diminution de la 

sécrétion de lipoprotéines à très basses densités (VLDL). Par conséquent, la transcription de 

plusieurs marqueurs clés de la synthèse des VLDL, y compris la microsomal triglyceride 

transfer Protein (MTP) et apoB-100, ont été réduites (P <0,05) chez les rattes Ovx par rapport 

aux rattes Sham nourris avec tous les trois types diètes et cette diminution de MTP et apoB-
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100 était plus prononcée chez les rats nourris avec la diète standard + cholestérol. Pour aller 

un peu plus loin, dans la deuxième étude, nous avons déterminé les effets de l'entraînement 

physique sur les marqueurs clés hépatiques de la voie farnesoid X receptor (FXR) - small 

heterodimer partner (SHP) - de cholestérol 7 alpha-hydroxylase (CYP7A1) (FXR-SHP-

CYP7A1) impliquée dans la conversion de cholestérol en acides biliaires et de leur excrétion 

chez les rat Ovx nourris avec une diète standard + cholestérol. 

Notre groupe expérimental principal comprenait des rats Ovx nourris avec une diète 

riche en cholestérol (Ovx-Chol). Ce groupe a été comparé à un groupe de rats Ovx nourris 

avec une diète standard (Ovx-SD) et un groupe de rats Sham nourris avec une diète riche en 

cholestérol (Sham-Chol) pour observer, respectivement, l'effet de l'alimentation et l’effet du 

retrait de l'œstrogène. Les résultats de cette étude ont démontré que les niveaux de cholestérol 

total dans le plasma et dans le foie ne sont pas affectés par l'entraînement physique dans 

aucune des conditions expérimentales. L'alimentation en cholestérol a induit une accumulation 

plus importante chez les rats Sham et Ovx a mené à une accumulation du cholestérol dans le 

foie significativement plus élevée (P <0,001) que chez les rats Ovx-SD. Un effet principal 

d'entraînement physique (P <0,05) a été trouvée dans l’expression génique du SHP et de 

CYP7A1. Ce dernier gène est reconnu pour son implication majeure sur le contrôle de la 

biosynthèse des acides biliaires à partir du cholestérol. De plus, cette étude a montré que le 

récepteurs des LDL (LDL-R) et proprotein convertase subtilisin/kexin type 9 (PSCK9) au foie, 

qui sont impliqués dans l'absorption du cholestérol de la circulation, ne sont pas influencés par 

l’entraînement physique. Ces résultats suggèrent que l'entraînement physique module le 

métabolisme du cholestérol chez les animaux Ovx par un réglage positif de la formation des 

acides biliaires. Un nombre croissant de preuves récentes suggèrent que le transport inverse du 

cholestérol (RCT) peut également passer par une voie non-biliaire connue sous le nom 

« transintestinal cholesterol excretion » (TICE). En effet, le foie et l'intestin sont impliqués 

dans l'excrétion du cholestérol excédentaire du corps. Dans cette optique, dans la troisième 

étude, nous avons élargi nos recherches afin de déterminer si l'entraînement physique module 

l’expression des récepteurs de cholestérol de la membrane intestinale qui sont impliqués dans 

TICE chez les rats intacts et Ovx nourris avec une diète standard et une diète riche en 

cholestérol. Les résultats de cette étude ont montré que l'entraînement physique a augmenté (P 



 

iii 

<0,01) l’expression génique intestinale de LDL-R et de PCSK9 impliquées dans la captation 

du cholestérol intestinal de la circulation et de leur récepteur nucléaire, « sterol regulatory 

element-binding protein 2 » (SREBP2) (P <0,05) chez les rats Sham et  Ovx par rapport aux 

rats sédentaires (Sed). D'autre part, l’expression des gènes hépatiques de LDL-R et de PCSK9 

ont été supprimées (P <0,01) par l’alimentation riche en cholestérol, mais pas affectée par 

l'entraînement physique. L'expression du gène « flavin monooxygénase 3 » (FMO3), en tant 

que régulateur de l'équilibre du cholestérol dans le foie, a été diminuée de façon significative 

(P <0,01) par le cholestérol alimentaire chez les rats Sham et Ovx par rapport aux rats nourris 

avec la diète standard, mais demeure inchangée suite à l'entraînement physique et le retrait des 

œstrogènes. Un réglage positif de l'expression de gènes du LDL-R et PCSK9 intestinale par 

l'entraînement physique chez les rats intacts et  Ovx suggère que l'entraînement physique peut 

contribuer à l’accroissement de l'élimination de cholestérol par la voie TICE. 

Dans l'ensemble, nos résultats indiquent qu'une combinaison d’une diète riche en 

cholestérol et un retrait des œstrogènes a mené à une diminution de l'expression des gènes des 

marqueurs essentiels de la synthèse de VLDL, ce qui implique une réduction de l'excrétion du 

cholestérol du foie. Il semble que la réduction de LDL-R hépatique pourrait être due à 

l'accumulation du cholestérol dans le foie. De plus, nos résultats ont présenté l’entraînement 

physique comme une intervention non pharmacologique appropriée pour stimuler l'excrétion 

du cholestérol excédentaire de l'organisme par le réglage positif des gènes impliqués dans la 

biosynthèse des acides biliaires dans le foie et les récepteurs intestinaux de cholestérol dans la 

voie TICE. 

 

 

Mots-clés : Ovariectomie, Rat, Diète riche en cholestérol, l'assemblage VLDL, LDL-R, 

PCSK9, Accumulation de cholestérol dans le foie, Entraînement physique, CYP7A1, la voie 

TICE. 
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Abstract 

There has been accumulating evidence in recent years that the estrogen deficient state 

in ovariectomized (Ovx) animals and in postmenopausal women results in substantial liver 

triglyceride (TG) accumulation. However, evidence of disturbances in cholesterol metabolism 

in link with estrogen deficiency is limited to observations of higher plasma total cholesterol 

levels found in human as well as in animals. In fact, the impact of estrogen withdrawal on 

liver cholesterol metabolism has received little attention and shows some controversies. 

Therefore, the three studies presented in this thesis have been conducted in Ovx rats, as an 

animal model of post-menopausal women, to investigate the effects of estrogen withdrawal on 

key molecular markers of cholesterol and bile acid metabolism in liver and in transintestinal 

cholesterol excretion (TICE), and also to determine the potential role of exercise training as a 

positive alternative intervention. It has been shown that exercise training can improve plasma 

cholesterol levels. An enhanced transport of peripheral cholesterol toward the liver for 

subsequent secretion into bile and excretion from the body has been suggested; however, the 

underlying mechanism for this action is not fully understood.  

In the first study, we showed that estrogen withdrawal was associated with higher (P < 

0.05) liver total cholesterol under the standard diet and the standard diet + cholesterol diet, 

while liver triglyceride (TG) content was higher in Ovx than in Sham rats in all three dietary 

conditions which are the standard diet, the standard diet + cholesterol and the high fat diet + 

cholesterol. Surprisingly, the standard diet + cholesterol was associated with lower (P < 0.001) 

plasma total cholesterol and TG levels in Ovx than in Sham rats, suggesting a decrease in very 

low-density lipoprotein (VLDL) secretion. Accordingly, several transcripts of key markers of 

VLDL synthesis including microsomal triglyceride transfer protein (MTP) and apoB-100 were 

decreased (P < 0.05) in Ovx compared to Sham rats under the three dietary conditions and 

even more so for MTP and apoB-100 when rats were fed the standard diet + cholesterol. To go 

one step further, in the second study we determined the effects of exercise training on hepatic 

key markers of farnesoid X receptor (FXR)-small heterodimer partner (SHP)-cholesterol 7 

alpha-hydroxylase (CYP7A1) (FXR-SHP-CYP7A1) pathway, involved in cholesterol 

conversion into bile acid and excretion from the body, in Ovx cholesterol fed rats. Our main 
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experimental group was Ovx rats fed a high cholesterol diet (Ovx-Chol) that was compared, 

on one hand, to a group of Ovx rats fed a standard diet (Ovx-SD) to observe the effects of the 

diet and, on the other hand, compared to a group of Sham operated rats fed the cholesterol diet 

(Sham-Chol) to observe the effect of estrogen withdrawal. Results of this study showed that 

plasma and liver total cholesterol levels were not affected by exercise training in any of the 

experimental conditions. Cholesterol feeding in both Sham and Ovx rats resulted in 

significantly (P<0.001) higher hepatic cholesterol accumulation than in Ovx-SD rats. A main 

effect of training (P< 0.05) was, however, found for transcripts of SHP and CYP7A1. The 

SHP and CYP7A1 transcripts were increased by training. These results suggest that exercise 

training through up-regulation of genes involved in bile acid formation may modulate 

cholesterol metabolism in Ovx animals. Finally, a recent growing body of evidence suggests 

that reverse cholesterol transport (RCT) can also proceed through a non-biliary pathway 

known as transintestinal cholesterol excretion (TICE). Indeed, both liver and intestine are 

involved in excretion of the excess cholesterol from the body. Based on this concept, we 

expanded our research to determine whether exercise training has an effect on intestinal 

membrane cholesterol receptors involved in TICE pathway in intact and Ovx rats fed a normal 

and a high cholesterol diet. Results of the third study showed that exercise training increased 

(P< 0.01) transcripts of intestinal LDL-R and PCSK9, which are involved in intestinal 

cholesterol uptake from circulation, and their nuclear transcription factor, intestinal sterol 

regulatory element-binding protein 2 (SREBP2) (P< 0.05) in both Sham and Ovx rats 

compared to rats remaining sedentary (Sed). On the other hand, hepatic LDL-R and PCSK9 

gene expression was suppressed (P< 0.01) by cholesterol feeding but not affected by exercise 

training. Flavin monooxygenase 3 (FMO3) gene expression, as a cholesterol balance regulator 

in liver, was significantly decreased (P<0.01) by cholesterol feeding in both Sham and Ovx 

rats compared to rats were fed the SD diet but unchanged following exercise training and 

estrogen withdrawal. An up-regulation of intestinal gene expression of LDL-R and PCSK9 

following voluntary wheel running in intact and Ovx rats suggests that exercise training may 

contribute to increased cholesterol elimination through the TICE pathway. 

Overall, our results indicate that a high cholesterol diet and ovariectomy combine to 

decrease the gene expression of key markers of VLDL synthesis suggesting a reduction in 
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cholesterol excretion from the liver. Alternatively, it seems that reduced hepatic LDL-R 

transcript found in Ovx animals might be due to hepatic cholesterol accumulation. Moreover, 

our findings introduced exercise training as an appropriate non-pharmacological intervention 

to stimulate the excretion of the excess cholesterol from the body through upregulation of 

genes involved in bile acid biosynthesis in liver and intestinal basolateral cholesterol 

transporters in TICE.  

 

Keywords: Ovariectomy, Rat, High cholesterol diet, VLDL assembly, LDL-R, PCSK9, 

Hepatic cholesterol accumulation, Exercise training, CYP7A1, TICE pathway. 
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Introduction 

Menopause is defined by the progressive decrease of estrogen production resulting in 

cessation of menses (Mastorakos et al. 2010). Menopause as well as ovariectomy in animals is 

associated with diverse metabolic consequences including ectopic fat deposition mainly in the 

liver and this condition is known as non-alcoholic fatty liver disease (NAFLD) (Brunt 2001; 

Volzke et al. 2007). There has been accumulating evidence in recent years showing that the 

estrogen deficient state in ovariectomized (Ovx) animals and in postmenopausal women 

results in substantial liver triglyceride (TG) accumulation, indicating the protective role of 

estrogens against NAFLD and also perturbation in TG metabolism in the absence of estrogens 

(Picard et al. 2000; Paquette et al. 2007; Volzke et al. 2007). In addition to TG accumulation, 

lipidomic analyses indicate that hepatic free cholesterol content was also increased in hepatic 

steatosis (Puri et al. 2007) suggesting that cholesterol metabolism is also affected in liver 

diseases. The situation of hepatic cholesterol content in Ovx animals is controversial. It was 

reported that hepatic total cholesterol content was not affected by estrogen withdrawal in 

female C57BL/6J mice. Despite the fact that they showed higher plasma cholesterol levels, 

hepatic cholesterol content was not changed probably due to a reduced liver cholesterol uptake 

by LDL-R and a reduced hepatic de novo cholesterol production by 3-hydroxy 3-

methylglutaryl coenzyme A reductase (HMGCoA-r) (Kamada et al. 2011). On the other hand, 

other studies showed that hepatic total cholesterol content was increased in Ovx rats (Kato et 

al. 2009; Ngo Sock et al. 2014a) suggesting the vulnerability of Ovx animals to develop 

hepatic cholesterol accumulation. Liver is known as a master regulator of cholesterol 

metabolism in terms of cholesterol synthesis, uptake from circulation and excretion from the 

body. Estrogens through its interaction with HMGCoA-r and LDL-R, genes involved in 

cholesterol synthesis and uptake respectively, play a critical role in cholesterol homeostasis 

(Bruning et al. 2003). In fact, the information on the impact of the absence of estrogens on 

cholesterol metabolism in liver is scarce and is mostly limited to observations of 

hypercholesterolemia in human as well as in animals. Estrogen deficiency state has been 

repeatedly reported to result in the development of an atherogenic lipid profile characterized 

by an increase in plasma total cholesterol (TC) and low density lipoprotein cholesterol (LDL-
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C) levels (Matthews et al. 1989; Kimura et al. 2006; Park et al. 2011b; Chaudhuri et al. 2012; 

Kaur et al. 2013). Elevated plasma concentration of LDL-C is the primary risk factor for 

coronary artery disease and atherosclerosis, which constitute the largest cause of mortality in 

developed countries (Mozaffarian et al. 2016). It is important to note that incidence of 

cardiovascular diseases increases with age in women, with a noticeable increase after 

menopause (Sharp et al. 1997). This situation raises the hypothesis that perhaps disturbances 

in different aspects of cholesterol metabolism in liver might be the root of 

hypercholesterolemia in an estrogen deficient state. Indeed, plasma cholesterol level is tightly 

determined by a complex homeostatic network which requires the accurate metabolic interplay 

between hepatic and intestinal processes, to regulate efficiently cholesterol homeostasis (Oram 

et al. 2006). Recent studies on newly identified transintestinal cholesterol excretion (TICE) 

pathway have revealed that cholesterol homeostasis in the body depends on a dynamic 

interplay between liver and intestine (Temel et al. 2012). An interesting intervention to 

metabolic deterioration due to estrogen deficiency is exercise training. For instance, in an 

intervention study where Ovx rats were submitted to the treadmill training for 12 weeks, 

reduced plasma LDL-C and total cholesterol levels were observed (Oh et al. 2007). An 

increase in fecal cholesterol excretion accompanied by lower plasma cholesterol levels was 

also reported in exercise trained animals (Meissner et al. 2011). However exactly how exercise 

exerts such beneficial actions is largely unknown. 

These observations highlight the importance of a need for more physiological and 

molecular information to better understand how liver, as a master regulator of cholesterol 

metabolism, is affected by estrogens withdrawal. The three studies presented in this thesis 

have been conducted to provide molecular information on how liver regulates cholesterol 

metabolism in Ovx rat model of menopause and whether exercise training could provide some 

beneficial effects on cholesterol metabolism. Rodent ovariectomy is an experimental model of 

human post-menopausal state. Ovariectomy eliminates the interference of endogenous 

estrogens and mimics post-menopausal condition which makes it possible to study the 

metabolic consequences of loss of ovarian functions. On the other hand, ovariectomy can 

result in metabolic changes in very short period of time, while post-menopausal state is a 

natural process that happens gradually over several years. We also used the high cholesterol 



 

3 

diet as a nutritional tool to investigate the role of liver in regulating cholesterol metabolism in 

our series of experiments. 

In the first study, we investigated the effects of high dietary cholesterol on hepatic key 

markers of VLDL and cholesterol/bile acid metabolism in Ovx rats. There is some evidence 

that exercise training is one of the best non-pharmacological strategies to attenuate hepatic 

cholesterol accumulation; however, the molecular information on how this action takes place 

is lacking. In line with this first approach, in the second study we determined the effect of 

exercise training on key markers of hepatic cholesterol and bile acid metabolism by targeting 

the FXR-SHP-CYP7A1 gene markers in Ovx rats submitted to the high cholesterol diet. In the 

third study, we expanded our research to determine the effect of exercise training on key 

intestinal cholesterol receptors involved in TICE pathway in intact and Ovx rats fed a normal 

and a high cholesterol diet. We targeted gene expression of key molecules involved in TICE 

via cholesterol uptake and excretion at the intestinal basolateral and apical membrane, 

respectively.   

The present thesis consists of three chapters. Chapter 1 is devoted to the review of the 

literature which is divided into two sections. The objective of the first section is to provide the 

reader with an overview of reverse cholesterol transport (RCT) with an emphasis on the major 

molecular markers of liver and intestine associated with it. This first section is subdivided into 

two parts: hepatobiliary pathway, non-hepatobiliary TICE pathway. In the second section, we 

review the effects of a high cholesterol diet, estrogen withdrawal, and exercise training on 

RCT by subdividing it in two parts: hepatobiliary and non-hepatobiliary TICE pathways. 

Chapter 2 introduces the original research articles of this thesis that are presented according to 

the format required by the journals to which they are published or submitted. Finally, chapter 

3 provides a general discussion and conclusion on the findings of the thesis. 
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Chapter 1: Review of Literature 

Cholesterol is an essential key component of vertebrate cell-membrane structure and 

function. It permits cells to keep their permeability and fluidity which is fundamental for cell 

viability (Ikonen 2008; Maxfield et al. 2010). In addition to its structural function, cholesterol 

is a precursor for many substances such as bile acids, steroid hormones and vitamin D 

(Maxwell et al. 2003). The regulation of cholesterol metabolism relies on a complex 

homeostatic network, which requires accurate metabolic cross-talks between hepatic and 

intestinal processes, to regulate efficiently cholesterol homeostasis (Oram and Vaughan 2006). 

Indeed, both liver and intestine have a key role in cholesterol metabolism, particularly in 

cholesterol excretion. Consequently, there is an increasing interest in investigating the 

pathways involved in the elimination of surplus cholesterol from the body. The process of 

reverse cholesterol transport and cholesterol excretion from the body is an effective way to 

decrease LDL-C, which eventually declines the risk of atherosclerosis (Temel and Brown 

2012).   

In the first part of the present review of literature, the pathways and key molecules 

involved in cholesterol removal from the body both through liver and intestine will be 

reviewed. In the second part, the effects of the high cholesterol diet, estrogen withdrawal, and 

exercise training on different aspects of cholesterol and bile acid metabolism in Ovx animal 

model will be discussed.  

1.1 Reverse Cholesterol Transport (RCT) 

There are two main excretory pathways for cholesterol disposal from the body, which 

are named the hepatobiliary and non-biliary route (Temel and Brown 2012). The hepatobiliary 

route transfers cholesterol from peripheral cells and macrophage foam cells in the artery wall 

plaque to the liver for secretion (Glomset 1968; Rong et al. 2001), while in the non-biliary 

pathway the cholesterol is directly secreted into the intestine (Figure 1) (van der Velde et al. 

2007). Therefore, both the liver and intestine are involved in cleansing the body from the 

excess cholesterol, and indeed, both the biliary and non-biliary pathways are part of the 

reverse cholesterol transport (RCT).  
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Figure 1. Schematic representation of the main pathways of cholesterol excretion. Adapted 

from (Brufau et al. 2011). 
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1.1.1 Hepatobiliary pathway 

The classic model of cholesterol secretion, which is called the hepatobiliary pathway, 

was presented by John Glomset almost 40 years ago (Glomset 1968). In this process, 

cholesterol, from peripheral tissues and macrophage foam cells in the artery wall plaques, is 

returned to the liver via high-density lipoproteins (HDLs), for secretion into bile and excretion 

through the feces (Glomset 1968; Rong et al. 2001).  

Different types of molecules such as transporters and/or receptors both in peripheral 

cells and hepatocytes (e.g., the HDL receptor), apolipoproteins (e.g., apoA1), and plasmatic 

enzymes (e.g., lecithin:cholesterol acyltransferase (LCAT)) are involved in this process. They 

are responsible for transporting the cholesterol from peripheral tissues, moving it through 

plasma, and finally delivering it to the liver for excretion (Jolley et al. 1998). In the following 

pages, this pathway will be explained in details.   

1.1.1.1 Cholesterol influx into liver 

HDL is the main lipoprotein involved in removing excess cholesterol from cells and 

transporting it through the circulation into the liver. The apolipoprotein A1 (apoA1) is the 

main structural protein component of the HDL. HDL formation starts when apoA1 is 

synthesized and secreted as a lipid-poor protein mainly by the liver and also to some extent by 

the intestine (Figure 2) (Oram and Vaughan 2006). ApoA1 interacts with the membrane-

embedded ATP binding cassette transporter A1 (ABCA1) and incorporates small amounts of 

unesterified cholesterol and phospholipids into the apoA1 molecule (Zannis et al. 2006). 

ABCA1 changes lipid-poor apoA1 to partially lipidated “nascent” lipoproteins. Then, these 

nascent HDLs become effective acceptors for cholesterol secreted by peripheral and foam 

cells (Oram and Vaughan 2006; Vaughan et al. 2006). ABCA1 mediates the rate-limiting step 

in HDL particle formation and maintains plasma HDL levels (Oram and Vaughan 2006). 

Maturation of these nascent HDLs happen in the circulation through the activity of the 

enzymes lecithin: cholesterol acyltransferase (LCAT) and phospholipid transfer protein 

(PLTP). LCAT converts free cholesterol of nascent HDL to cholesteryl ester and PLTP 

transfers phospholipids from remnant particles to HDL (Jolley et al. 1998). Then, ABC 

transporters (ABCA1 and ABCG1), in peripheral and foam cells, by interacting with HDL, 
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transfer the unesterified excess cholesterol (Wang et al. 2004; Tall et al. 2008). ABCG1 is 

highly expressed in macrophages whereas ABCA1 is more ubiquitous (Oram and Vaughan 

2006). Targeted disruption of ABCA1 and ABCG1 resulted in a total ablation of cholesterol 

efflux in vitro, decreased reverse cholesterol transport into feces in vivo, and accelerated 

atherosclerosis (Out et al. 2006; Yvan-Charvet et al. 2007). Moreover, higher expression of 

ABCG1 was observed in cholesterol-loaded macrophages, providing an explanation for the 

reverse relationship between HDL levels and risk of atherosclerosis (Wang et al. 2004; Brufau 

et al. 2011). Mature HDL particles are remodeled by cholesteryl ester transfer protein (CEPT) 

in the circulation. CEPT facilitates the transport of cholesterol esters (CEs) and TG between 

the lipoproteins. It transfers CE molecules from HDL to very low density lipoprotein (VLDL) 

and chylomicron in exchange for TG (Curtiss et al. 2006). Ultimately, cholesteryl esters are 

delivered to the liver (Jolley et al. 1998). 

  

 

Figure 2. HDL formation and cholesterol influx into liver. Taken from (Wiener et al. 2012) 
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1.1.1.2 Hepatic cholesterol uptake from circulation  

The liver first clears the cholesterol from HDL at the basolateral side of the 

hepatocytes via scavenger receptor class B type 1 (SR-B1)-dependent selective uptake which 

is predominant pathway of cholesterol uptake in rodents (Jolley et al. 1998). It is important to 

note that in CETP containing species like human, monkey and rabbit a large portion of HDL’s 

CE cargo is transferred by CETP to apolipoprotein B (apoB)-containing lipoproteins, which 

are cleared by the liver through hepatic low-density lipoprotein (LDL) receptors (LDL-R) 

(Figure 3) (Morton et al. 2014; Temel et al. 2015). Approximately 70% of total LDL-R found 

in the body are present at the basolateral membrane of hepatocytes. The major function of 

LDL-R is mainly to bind ApoB and/or ApoE containing lipoproteins, such as LDL, VLDL, 

and chylomicron remnants to remove the highly atherogenic LDL particles from the 

circulation (Ikonen 2008). Therefore, hepatic LDLRs have a crucial role in the removal of 

LDL cholesterol particles from the circulation (Ouguerram et al. 2004). The LDL-R activity is 

downregulated post-transcriptionally by proprotein convertase subtilisin/kexin type 9 (PCSK9) 

(Abifadel et al. 2003). 

 

 

Figure 3. Cholesterol uptake by the liver. Taken from (Rader 2006) 
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Cholesterol may also be taken up from circulation through LDL receptor-related 

protein 1 (LRP1). LRP1, as a multifunctional receptor, is expressed in the liver and has close 

structural and biochemical similarities to LDL-R. LRP1 is responsible for the removal of 

VLDL remnants (IDL) and chylomicron remnants from the circulation. The lipoprotein 

remnants are enriched with cholesterol, therefore, their prolonged stay in the bloodstream 

could be atherogenic as well (Moon et al. 2012). LRP1 thus plays a key role in clearing these 

atherogenic particles along with LDLRs (Rohlmann et al. 1998). Hepatic LRP1 gene 

expression has been found to be negatively associated with intracellular cholesterol levels 

(Moon et al. 2011). Moreover, lower hepatic gene expression of LRP1 has been reported in 

HepG2 cells in a diabetic condition which was associated with the development of an 

atherogenic dyslipidemia (Moon et al. 2012). Sterol regulatory element-binding protein 2 

(SREBP-2), as a nuclear receptor involved in cholesterol metabolism, regulates the gene 

expression of LDL-R, PCSK9 and LRP1 in the liver (Moon et al. 2011). When cellular 

cholesterol levels are low, SREBP-2 are transported to the Golgi, cleaved, and translocated to 

the nucleus in which gene targets are activated, while cellular cholesterol levels are high, the 

SREBP-2 remain uncleaved and attached to the endoplasmic reticulum and their gene 

expression is suppressed (Engelking et al. 2005).  

 

Interaction between PCSK9 and LDL-R 

 PCSK9, a member of the subtilisin serine protease family, is synthesized by the liver 

as a precursor in the endoplasmic reticulum (ER), and then transformed to an active protease 

in the Golgi apparatus and is subsequently secreted into circulation (Seidah et al. 2003). 

PCSK9 is coded as a natural inducer of LDL-R degradation (Maxwell et al. 2004). PCSK9 

binds to the LDL-R, internalizes it, and the receptor along with the LDL particle are 

subsequently destroyed (Horton et al. 2009). Indeed, the tight binding of PCSK9 to LDL-R 

and its degradation in lysosome compartments prevents LDL-R recycling to the cell surface 

(Gent et al. 2004). Reduced LDL-R levels result in a reduction of LDL cholesterol uptake, 

which could lead to hypercholesterolemia. Therefore, PCSK9 has an important role in 

cholesterol metabolism (Maxwell et al. 2003). In the absence of PCSK9, the apoB–LDL 

receptor complex undergoes endocytosis then the LDL-R dissociates from the ligand. The 
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ligand is sent to the lysosome for degradation, and the LDL-R is recycled back to the cell 

surface to clear more LDL-C from the circulation (Figure 4) (Gent and Braakman 2004). It is 

important to note that there are different gene variants of PCSK9 which vary in their affinity 

for LDL-R and consequently leads to diverse changes in the circulating levels of LDL-C 

(Cunningham et al. 2007; Kwon et al. 2008). PCSK9 loss-of function (LOF) mutations are 

associated with lower plasma LDL-C levels and decreased risk of cardiovascular diseases. It 

means that PCSK9 does not bind LDLR to induce degradation. Therefore, LDLR can return to 

the cell surface and clear the cholesterol from circulation. Whereas PCSK9 gain-of function 

(GOF) mutations lead to higher LDL-C levels due to LDLR degradation and consequently, 

hypercholesterolemia and an increased risk of CVD (Abifadel et al. 2003; Cohen et al. 2006). 

PCSK9 shares a mutual regulatory pathway with LDL-R through the SREBP-2 (Maxwell et al. 

2003). Indeed, both PCSK9 and LDL-R gene expression are up regulated transcriptionally by 

the transcription factor, SREBP-2 (Smith et al. 1990; Dubuc et al. 2004). Regulation of 

cholesterol metabolism is mainly modulated by SREBP-2.  For instance, high dietary 

cholesterol prevents maturation of SREBPs and cuts off cholesterol and LDL receptor 

synthesis (Goldstein et al. 2006).  
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Figure 4. LDL-cholesterol metabolism in the presence (a) or absence of PCSK9 (b). Taken 

from (Dadu et al. 2014). 
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Transcriptional control of cholesterol levels in the liver  

Cholesterol synthesis, uptake and clearance from the body are chiefly regulated via two 

nuclear receptors, sterol regulatory element binding proteins (SREBPs) and liver X receptors 

(LXRs) in the liver (Ikonen 2008).  

The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has 

become more precise with the discovery of the transcription factors sterol regulatory element 

binding proteins (SREBPs) (Weber et al. 2004). Sterol regulatory elements (SREs) are 

nucleotidic sequences in the gene promoters, encoding proteins involved in cholesterol 

homeostasis such as HMGCoA-r and LDL receptor (LDL-R). These sequences are recognized 

by a family of transcription factors called SREBP. The SREBP family members, SREBP-1 (a 

and c) and SREBP-2, are synthetized as membrane protein in the endoplasmic reticulum. 

SREBP-2 is considered to be largely involved in the regulation of cholesterol metabolism 

(Goldstein et al. 2006) 

SREBP2 modulates cholesterol metabolism through the activation of transcription of 

genes involved in cholesterol synthesis and liver uptake from the circulation (Goldstein et al. 

2006). 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMGCoA-r) catalyzes the rate 

limiting step in cholesterol synthesis in the liver and its gene expression is regulated by 

SREBP2 (Horton et al. 1998). As mentioned above, LDLR, PCSK9, and LRP1 transcripts are 

also regulated by nuclear factor SREBP2.  

LXR acts as whole body cholesterol sensors. Oxysterols as ligands activate LXR and 

its activation contributes in reverse cholesterol transport through stimulation of transcripts 

involved in cellular cholesterol efflux and hepatic cholesterol secretion (Tontonoz et al. 2003). 

ABC transporters have been identified as LXR target genes, including ABCA1, ABCG1, and 

also ABC transporters G5/G8 (ABCG5/G8). The ABCA1 and ABCG1 play a critical role in 

the efflux of excess cellular cholesterol to apoA1, the first step in reverse cholesterol transport. 

The ABCG5/G8 proteins form a dimer that resides in the apical membrane of the hepatocyte 

and functions to pump cholesterol into bile (Venkateswaran et al. 2000; Tontonoz and 

Mangelsdorf 2003). In addition to ABC transporters, cholesterol 7 alpha-hydroxylase 
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(CYP7A1) is also an LXR target gene. CYP7A1 catalyzes the rate-limiting step in bile acid 

synthesis in the liver (Peet et al. 1998).  

 

1.1.1.3 Cholesterol excretion from the liver 

A large portion of cholesterol delivered to the liver can be directly discarded via 

ABCG5/G8 in the bile canaliculus (Berge et al. 2000). The presence of a biliary acceptor 

‘micelle’ is necessary for cholesterol movement into bile. Micelles are assembled during the 

simultaneous transport of bile acids and phospholipids into bile by transporters such as the bile 

salt export pump (BSEP) and the multidrug resistance protein 2 (MDR2), respectively. MDR2 

is also encoded by the ABCB4 gene (Voshol et al. 1998). Furthermore, cholesterol can be 

converted to bile acids by an array of enzymes including CYP7A1 and then secreted in the bile 

canaliculus (Figure 5) (Myant et al. 1977). The excess free cholesterol can also move to the 

endoplasmic reticulum (ER) in the liver where it is repackaged onto nascent apoB-containing 

lipoproteins that are ultimately secreted from the liver into the bloodstream (Pramfalk et al. 

2005). 

Figure 5. Cholesterol excretion from the liver. Adapted from (Jonker et al. 2009). 

Hepatocyte 
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Once cholesterol is secreted into bile, a large portion of this pool is delivered to the 

lumen of the small intestine via the common bile ducts (Temel and Brown 2015). Cholesterol 

excretion in the form of neutral sterols or bile acids via the bile into the feces is the main 

mechanism of elimination of excess cholesterol from the body (Brufau et al. 2011). Therefore, 

the hepatobiliary pathway is an atheroprotective route that decreases the risk of atherosclerosis 

(Yu et al. 2002b; Meissner et al. 2011). 

 

1.1.1.3.1 Bile acids formation and the enterohepatic circulation 

Bile acids are amphipathic steroids that are formed from cholesterol in the liver. 

Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and 

preventing cholesterol accumulation in liver. Primary bile acids are conjugated to either 

taurine or glycine to increase hydrophilicity. They are secreted into the bile and stored in the 

gallbladder. Upon ingestion of a meal, they are discharged into the small intestine to promote 

nutrient digestion and absorption in the proximal intestine. Bile acids are re-absorbed with an 

efficiency of 95% at the distal ileum and transported back to the liver through the portal vein 

and re-secreted into bile which results in the accumulation of a pool of bile acids (Russell 

2003; Dawson et al. 2009). This bile acid pool cycles between the liver and the intestine and is 

called the enterohepatic circulation (Hofmann 2009) and the non-absorbed (5%) bile acids are 

eliminated from the body in the feces (Dawson et al. 2009) 

 

Role of FXR in regulation of bile acid synthesis and transport 

There is accumulated evidence indicating that farnesoid X receptor (FXR) exerts a key 

role in bile acid metabolism through the regulation of bile acid synthesis, bile acid secretion, 

intestinal bile acid absorption, and hepatic uptake of bile acids (Sinal et al. 2000; Eloranta et 

al. 2008; Lefebvre et al. 2009; Modica et al. 2010).  

Bile acid absorption in the intestine is regulated by the nuclear factor FXR through the 

regulation of bile acid transporters from the intestine to the portal system (Wang et al. 1999; 

Matsubara et al. 2013). These acid transporters are involved in bile acid reabsorption at the 

apical and basolateral membranes of the ileum (Figure 6). The apical sodium-dependent bile 
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acid transporter (ASBT) is expressed at the apical membrane of enterocytes in the terminal 

ileum and mediates the reabsorption of bile acids from the ileum. The ileal bile acid binding 

protein (iBABP) shuttles the bile acids from the apical side to the basolateral membrane of 

ileum. Heteromeric organic solute transporter α and β (Ostα-Ostβ) are ileal basolateral bile 

acid transporters. They transport the bile acids from the basolateral side of the ileum toward 

the liver (Shneider 2001; Dawson et al. 2005). Bile acids are then re-circulated via the portal 

circulation to the hepatocytes, where a sinusoidal Na+- dependent taurocholate cotransport 

peptide (NTCP) takes them up into hepatocytes. NTCP transporters are involved in bile acid 

uptake at the basolateral membrane of the hepatocytes. It is the major uptake system to 

transport bile salts from the portal circulation into the liver cells (Stieger et al. 1994).  

 

Figure 6. Transporters involved in bile acid reabsorption in the ileum. Adapted from 

(Schaap et al. 2014) 
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Bile acids function as natural ligands for the transcription factor FXR (also known as 

bile acid receptor or nuclear receptor subfamily 1 group H member 4) (Parks et al. 1999; 

Wang et al. 1999). Bile acids induce FXR activation both in the liver and the intestine which 

leads to a set of interactions resulting in suppression of bile acid biosynthesis (Wang et al. 

1999). Activation of FXR is a major mechanism in suppressing bile acid biosynthesis by 

reducing the expression levels of CYP7A1. FXR-mediated induction of hepatic small 

heterodimer partner (SHP) and intestinal fibroblast growth factor 15/19 (FGF15/19) (FGF19 

in humans) has been shown to be responsible for this suppression (Kerr et al. 2002; Holt et al. 

2003). 

 

a. Hepatic FXR/SHP/CYP7A1 pathway 

FXR knockout mice showed an increase in bile acid synthesis and CYP7A1 gene 

expression suggesting FXR-mediated bile acid inhibition of CYP7A1 (Figure 7) (Sinal et al. 

2000). CYP7A1 catalyzes the rate-limiting step of cholesterol conversion into bile acids in the 

liver (Jelinek et al. 1990). FXR inhibits CYP7A1 gene transcription by indirect mechanism. 

Bile acid-activated FXR induces SHP gene expression that inhibits the activity of liver related 

homologue-1 (LRH-1), and results in inhibiting CYP7A1 gene transcription (Goodwin et al. 

2000). The FXR/SHP mechanism is supported by the finding that SHP and CYP7A1 mRNA 

expression levels have an inversed relationship, and CYP7A1 expression and bile acid 

synthesis are induced in SHP knockout mice. Paradoxically, bile acid feeding to SHP null 

mice inhibits CYP7A1 expression and bile acid synthesis suggesting that redundant pathways 

may exist for bile acid inhibition of CYP7A1 (Kerr et al. 2002; Wang et al. 2002).  

SHP 

The SHP gene is expressed in different tissues, including liver, heart, pancreas, kidney, 

adrenal gland, spleen, stomach, and small intestine (Lee et al. 1998). SHP is an atypical 

receptor without a DNA-binding domain, but has a putative ligand-binding domain, which 

makes SHP a member of the nuclear receptor family (Seol et al. 1996; Seol et al. 1997). 

Furthermore, SHP interacts with several nuclear receptor family members. Through these 

interactions, SHP is involved in diverse metabolic pathways, including cholesterol, bile acid, 
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triglyceride, and glucose homeostasis (Lee et al. 2007; Zhang et al. 2011). For instance, 

hepatic SHP overexpression in transgenic mice led to liver steatosis due to an indirect 

activation of SREBP-1c (Boulias et al. 2005). Besides, deletion of SHP decreased TG 

accumulation in ob/ob obese mice, which was associated with increased hepatic VLDL 

secretion and elevated expression of microsomal triglyceride transfer protein (MTP), the rate 

limiting enzyme in VLDL assembly and secretion (Huang et al. 2007).  

Not only SHP can affect diverse biological responses, but also several genetic 

variations and mutations of SHP were identified in obese and diabetic subjects in population 

based studies showing that there might be a relationship between SHP genetic variations and 

increased risk of obesity and type 2 diabetes (Nishigori et al. 2001; Hung et al. 2003; Echwald 

et al. 2004; Enya et al. 2008).  

 

b. Intestinal FXR/FGF15/19 /FGFR4 pathway 

It has been suggested that intestine-derived FGF15/19 acts as an enterohepatic signal to 

activate hepatic fibroblast growth factor receptor 4 (FGFR4) signaling, which inhibits 

CYP7A1 expression in the hepatocytes (Figure 7) (Inagaki et al. 2005). Bile acids induce FXR 

activation in the intestine which results in stimulation of FGF15/19 and then, FGFR4 acts as a 

hepatic receptor for intestinal FGF15/19. FGFR4 mediates the effects of intestinal FGF15/19 

on suppression of bile acid biosynthesis in liver (Holt et al. 2003). FGFR4 deficient mice 

showed higher mRNA levels of CYP7A1 suggesting that FGFR4 is also involved in 

suppression of bile acid biosynthesis (Kong et al. 2012).  

Intestinal FXR-dependent mechanism is based on the observation that GW4064 (a 

synthetic FXR agonist) induces an intestinal hormone FGF15/19, which activates a hepatic 

FGFR4 signaling and through that inhibits bile acid biosynthesis in the liver (Holt et al. 2003). 

Intestinal FXR activation by bile acids leads to the release of FGF15/19 from the ileum and 

the expression of FGF15/19 mRNA is negatively correlated to the CYP7A1 mRNA expression 

levels in mouse liver (Inagaki et al. 2005). 
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Figure 7. The molecular mechanisms of FXR pathway in bile acid synthesis in liver and 

intestine. Adapted from (Ory 2004; Inagaki et al. 2005)  
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1.1.1.3.2 VLDL assembly 

Since liver constantly takes up circulating triglycerides and cholesterol from both 

endogenous and exogenous sources, VLDL production and secretion by hepatocytes is a 

crucial step in preventing hepatic steatosis (Alger et al. 2010; Flamment et al. 2010).  

When lipids are available in the ER, the newly synthesized apo-B polypeptide interacts 

co-translationally with MTP, which is a rate-limiting molecule in VLDL assembly and 

secretion, and transfers triglycerides (TG) into the apo-B (Figure 8) (Rava et al. 2006). ApoB-

100 is an essential structural protein that translocates into the luminal side of the endoplasmic 

reticulum (Cianflone et al. 1990). Diacylglycerol acyltransferase 2 (DGAT2) plays a role in 

VLDL assembly by converting fatty acids into TG. DGAT2 catalyzes the last step of the 

synthesis of TGs that are going to be incorporated into VLDL. Acyl-CoA:cholesterol 

acyltransferase (ACAT-2) has also a key role in the hepatic storage and packaging of 

cholesteryl ester into apoB-containing lipoproteins (VLDL), by converting free cholesterol 

into cholesterol esters (Pramfalk et al. 2005; Chang et al. 2009). Cell death-inducing DNA 

fragmentation factor alpha (DFFA)-like effector B (Cideb) is a lipid droplet-associated protein 

contributing to further lipidation of lipoprotein particles after they exit the endoplasmic 

reticulum compartment (Ye et al. 2009). The last step of VLDL production is mediated by 

small GTPase a (Sar1a), which is required for Golgi trafficking events. Sar1a, an intracellular 

vesicular trafficking protein, facilitates the movements of VLDL particles toward the Golgi 

apparatus where they are secreted in the plasma (Asp et al. 2000). Since VLDL carries both 

TG and cholesterol into circulation, appropriate assembly and secretion of VLDL is important 

for both liver cholesterol contents and plasma cholesterol levels. 
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Figure 8. VLDL assembly in liver. Taken from (Bartosch et al. 2010) 
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1.1.2 Non-biliary TICE pathway 

Transintestinal cholesterol excretion (TICE) presents a non-hepatobiliary direct route 

of cholesterol secretion “from blood to gut” (van der Velde et al. 2007). The highest levels of 

TICE have been reported to take place in the proximal small intestine (Brown et al. 2008). 

Under normal physiological conditions the biliary route is a predominant pathway for 

cholesterol excretion while TICE accounts for nearly 20–30% of fecal neutral sterols in both 

human and animal (Temel and Brown 2012). However, there is evidence showing that the 

TICE pathway can be stimulated by both pathophysiologic and pharmacologic stimuli (Temel 

and Brown 2012). For example, pharmacological activation of liver X receptor (LXR) (van 

der Veen et al. 2009) or high fat diet (van der Velde et al. 2008) resulted in increased intestinal 

cholesterol disposal. There is evidence showing that the set point of cholesterol excretion is 

sustained by the crosstalk between biliary and non-biliary pathways (Kruit et al. 2005). In a 

recent study hepatic flavin monooxygenase 3 (FMO3) was identified as a key cholesterol 

regulator of both biliary and non-biliary RCT pathways (Warrier et al. 2015). Indeed, 

cholesterol disposal from the body requires contribution of both biliary and non-biliary TICE 

pathways (Temel and Brown 2015). Since TICE like the hepatobiliary route is involved in 

cholesterol removal from the body, it can be considered an atheroprotective pathway.  

However, to date our knowledge about the molecular mechanisms that define TICE is 

limited. The identification of non-biliary route largely stems from multiple observations 

indicating that biliary cholesterol excretion does not match with the amount of cholesterol in 

the feces. According to the classic biliary model, both biliary cholesterol secretion and fecal 

cholesterol loss should precisely be predictable by plasma HDL levels. In contrast, several 

studies showed that biliary and fecal sterol losses are quite normal in mice with extremely low 

HDL levels (Jolley et al. 1998; Groen et al. 2001; Xie et al. 2009). Similarly, biliary 

obstruction or diversion did not avoid the appearance of neutral sterols in the feces 

(Pertsemlidis et al. 1973; van der Velde et al. 2008). For instance, in hepatic ABCG5/G8 and 

MDR2 knockout mice, which lack the ability to normally secrete cholesterol into the bile, 

fecal cholesterol loss remains either unchanged or, in some cases, increased (Voshol et al. 

1998; Yu et al. 2002a). These findings have led to the discovery of a non-hepatobiliary route 

of cholesterol excretion termed transintestinal cholesterol excretion (TICE) (van der Velde et 
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al. 2007). Earlier findings of the existence of an additional pathway of cholesterol excretion go 

back to the beginning of the last century. In 1927, Sperry reported that bile diversion in mice 

did not lessen fecal neutral excretion (Sperry 1927). However, this observation was only 

confirmed 50 years later by Pertsemlidis (Pertsemlidis et al. 1973). 

TICE as its name implies, relies on the intestine for cholesterol secretion. Through this 

pathway, cholesterol-derived from plasma lipoprotein is directly secreted via the small 

intestine into the lumen (van der Velde et al. 2008; Temel and Brown 2012). The intestine is 

responsible for receiving the cholesterol from the blood via its cholesterol receptors at the 

basolateral membrane. Possibly, there are molecules involved in transferring the cholesterol 

through the basolateral to the apical side of enterocytes, and finally there are cholesterol 

transporters at the apical membrane of enterocytes to discard cholesterol into the lumen. In 

order to address this pathway effectively, the molecules and receptors involved in the TICE 

pathway will be discussed in details in four steps. 

1.1.2.1 Step1: The role of lipoproteins in the TICE pathway 

TICE requires plasma lipoproteins to transport the cholesterol from either peripheral 

tissues and/or the liver to the small intestine for secretion (Temel and Brown 2012). However, 

it is still not clear which type of lipoproteins play the main role in this pathway.  

As mentioned before, normal biliary and fecal cholesterol loss was observed in apoA-1 

or ATP-binding cassette transporter A1 (ABCA1) null mice, although these mice present 

extremely low plasma HDL levels (Jolley et al. 1998; Xie et al. 2009). These findings imply 

two important points; firstly, the existence of non-biliary cholesterol excretion in addition to 

hepatobiliary route and secondly the non-biliary route does not depend on HDL to be 

proceeded. In line with these studies, recently Vrins et al showed that the rate of TICE did not 

change significantly in ABCA1 deficient mice with very low levels of HDL compared to the 

wild type (WT) littermates (Vrins et al. 2012). Moreover, intestinal perfusions of a modified 

Krebs solution supplemented with bile salts and phospholipids in SR-B1-deficient mice, SR-

B1 is a well-known HDL receptor, were significantly associated with a twofold increase in 

TICE suggesting that HDL might not have a main role in the TICE pathway (Acton et al. 
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1996; van der Velde et al. 2008). It thus seems that despite the predominant role of HDL in the 

hepatobiliary route (Tall et al. 2008), its role in non-hepatobiliary TICE pathway is unclear.  

Based on these findings, it seems that liver-derived apoB-containing lipoproteins have 

a main role in delivering cholesterol to the proximal part of the intestine. The excess free 

cholesterol in the liver is shifted to the ER where it is packed onto nascent apoB-containing 

lipoproteins. The first apoB-containing lipoprotein secreted from the liver into the circulation 

is the VLDL. The VLDL then changes to other apoB-containing lipoproteins such as the IDL 

and/or the LDL. The liver-derived apoB-containing lipoproteins are then recognized by the 

proximal small intestine through lipoprotein receptors such as LDL-Rs and probably other 

receptors like LDL-Rs family (Temel and Brown 2015). For instance, Brown et al showed that 

liver-specific depletion of Acetyl-CoA acetyltransferase 2 (ACAT2) resulted in increased fecal 

sterol loss through non-biliary pathway without changes in HDL levels (Brown et al. 2008). 

ACAT2 converts free cholesterol into cholesterol esters to pack them in VLDL molecules. 

Liver-specific inhibition of ACAT2 via antisense oligonucleotide (ASO) prevents cholesterol 

esterification and secretion of CE in apoB-containing lipoproteins into the plasma. In this 

study, a reduction in ACAT2 protein and activity of 99.3% was observed and they found that 

even a small amount (less than 1% of normal) of ACAT2 may be sufficient to support 

packaging of hepatic CE into apoB-containing lipoproteins and these lipoproteins drives the 

cholesterol toward the proximal small intestine for secretion, suggesting that apoB-containing 

lipoproteins deliver cholesterol esters to the TICE pathway for excretion (Brown et al. 2008). 

In line with this study, Marshal et al recently showed that acutely reducing hepatic ACAT2 

expression resulted in packaging the hepatic cholesterol onto nascent apoB-containing 

lipoproteins that feed cholesterol into the TICE pathway for fecal excretion (Marshall et al. 

2014). All in all, these studies suggest that hepatic apoB-containing lipoproteins have a key 

role in delivering cholesterol into the TICE pathway for fecal excretion.   

On the other hand, Le May et al. recently reported that both LDL and HDL can provide 

cholesterol for TICE in human and mice jejunal explants at the basolateral side of the 

enterocytes. They radiolabeled both LDL and HDL with 3H-free cholesterol (3H-LDL, 3H-

HDL) and observed that both these lipoproteins can deliver cholesterol to the proximal part of 
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the small intestine. According to Le May’s finding, both HDL and LDL can be involved in 

TICE (Le May et al. 2013).  

Based on these findings, various lipoproteins might participate in TICE and provide 

cholesterol for secretion through this pathway. Regarding the role of lipoproteins as the 

cholesterol carriers in TICE, the liver function is undeniable in this pathway. Indeed, the liver 

plays a central role in TICE by providing requisite lipoproteins. Taking all together, these two 

organs, the intestine and the liver, collaborate for cholesterol secretion through the TICE 

pathway.   

1.1.2.2 Step 2: Cholesterol receptors at intestinal basolateral membrane  

Several studies have been conducted to investigate the role of potential intestinal 

basolateral receptors involved in cholesterol uptake from circulation in TICE route based on 

which lipoproteins are involved in delivering cholesterol to the basolateral side of the small 

intestine. 

Recently, Le May et al reported that deletion of PCSK9 increases TICE. PCSK9 

deletion means no degradation effect on LDL-R and that results in a higher number of 

intestinal LDL-R as a cholesterol acceptor in the TICE and consequently higher levels of 

TICE (Le May et al. 2013). This group had previously showed that PCSK9 deficient mice 

have higher amounts of LDL receptors in their intestine (Le May et al. 2009). Plasma PCSK9 

induces LDL receptor degradation. Overall, this study showed that LDL receptors at the 

intestinal basolateral membrane are involved in cholesterol uptake from LDL (Le May et al. 

2013). However, intestinal cholesterol uptake from apoB-containing lipoprotein does not 

merely depend on LDL receptors because there is evidence showing that LDL receptor 

deficient mice still have normal or increased levels of TICE (Brown et al. 2008; Le May et al. 

2013).  

Seemingly, other members of the LDL-R family can also play a role as cholesterol 

acceptors at the basolateral membrane of enterocytes. Other receptors including low-density 

lipoprotein receptor-related protein 1 (LRP1), very low-density lipoprotein receptor (VLDLR), 

and apolipoprotein E receptor 2 (apoER2), which are all members of the LDL receptor family, 

are also expressed in the gut (Herz et al. 1988; Garcia-Miranda et al. 2010). As a result, it 
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would be reasonable to assume that they can function as the main or secondary receptors for 

cholesterol delivering lipoproteins.  

Based on these data, it can be concluded that LDL receptor and/or LDL receptor 

family, including LRP1, VLDLR, and apoER2 could participate in the intestinal cholesterol 

uptake from both apo E and/or apoB-containing lipoproteins.      

1.1.2.3 Step 3: Cholesterol trafficking from the basolateral to the apical membrane of 

enterocytes 

The trafficking itinerary of TICE-derived cholesterol within the enterocyte is not fully 

understood. It is probable that apoB-containing lipoproteins, which are the TICE cholesterol 

donor particles, are eventually degraded in lysosomes. It is tempting to assume that the 

trafficking itinerary would involve endosomal/lysosomal compartments (Temel and Brown 

2012). Thus, TICE would need Niemann-Pick type C1 (NPC1) and NPC2 proteins to move 

the cholesterol out of the lysosomal compartment. These two cholesterol-binding proteins act 

in the removal of unesterified cholesterol from lysosomes (Vance et al. 2011; Temel and 

Brown 2012). 

Vrins et al introduced other factors possibly involved in trafficking cholesterol. They 

showed that endosomal Rab protein 9 (Rab9) and lysosomal integral membrane protein-2 

(LIMP2) could also play a role in intracellular trafficking of cholesterol derived from TICE 

(Vrins et al. 2009). Rab is a family of Ras-like small G proteins that control membrane 

trafficking (Ikonen 2008). The intestinal expression of these two genes and TICE were 

significantly increased in mice upon peroxisome proliferator-activated receptor delta (PPAR 

δ) activation (Vrins et al. 2009). Furthermore, earlier Van der Veen et al. showed that PPAR δ 

activation led to higher fecal neutral sterol excretion without affecting the hepatobiliary 

cholesterol secretion (van der Veen et al. 2005). As a consequence, increased expression of 

Rab9 and LIMP2 might be a sign of cholesterol trafficking. Nevertheless, the relationship 

between the proteins encoded by these genes and TICE is still not clear (Vrins et al. 2009). 
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1.1.2.4 Step 4: Cholesterol efflux via intestinal apical transporters into the lumen 

After being moved to the intestinal apical membrane, cholesterol is excreted via apical 

transporters into the lumen. ABCG5/G8 transporters are involved in TICE, regarding to their 

indispensable role in cholesterol excretion. Van der Veen et al. showed that TICE is impaired 

in ABCG5 deficient mice, suggesting that ABCG5/G8 contributes to TICE. However, in this 

study ABCG5 deficient mice still had a substantial contribution of TICE, suggesting that other 

apical transporters might be involved (van der Veen et al. 2009). On the other hand, Le May et 

al observed that TICE was reduced by 26.5% in ABCB1a/b deficient mice (Le May et al. 

2013). It seems, therefore, that both apical transporters, ABCG5/G8 and ABCB1a/b, 

contribute to the excretion of cholesterol into the gut lumen. It is reasonable to suppose that 

the secreted cholesterol into the gut requires luminal acceptors. A mixture of bile salts and 

phospholipids has been suggested as the luminal cholesterol acceptors in TICE (van der Velde 

et al. 2007). This finding is in the line with the presence of high concentration of bile-derived 

phospholipids in the proximal small intestine, a region of the gut that has been reported to 

have the highest levels of TICE (Temel and Brown 2012).  

In summary, mainly plasma apoB-containing lipoproteins deliver cholesterol to the 

intestine for excretion through the TICE route. LDL receptor and/or LDL receptor family are 

responsible for cholesterol uptake from circulation at the intestinal basolateral membrane. The 

exact molecules involved in trafficking the cholesterol from basolateral to apical membrane, 

are unknown at the present time. ABCG5/G8 and ABCB1a/b are the main transporters at the 

intestinal apical membrane responsible for the secretion of cholesterol into the lumen in the 

TICE pathway (Figure 9).  

Taken together, TICE is a non-biliary route of the cholesterol elimination. It directly 

discards the cholesterol into the lumen. Thus, TICE could be considered an anti-atherogenic 

pathway; however, a better understanding of this newly identified pathway will require further 

investigations.   
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Figure 9. A model of non-biliary transintestinal cholesterol excretion (TICE). Adapted from 

(Le May et al. 2013). 
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Cholesterol absorption in intestine 

In addition to de novo cholesterol synthesis which is tightly regulated by HMGCoA-r, 

dietary intake is another source of cell cholesterol supply. The Niemann–Pick C1-like-1 

(NPC1L1) protein which is located at the apical membrane of enterocytes is the main 

transporter responsible to facilitate the dietary cholesterol uptake across the brush border 

membrane. It is also the target of the cholesterol absorption inhibitor ezetimibe (Altmann et al. 

2004). The process of cholesterol absorption by intestinal NPC1L1 is the opposite of biliary 

and non-biliary RCT flux (Sehayek et al. 2008). The intestinal ABCG5/G8 transporter 

functions at the apical membrane of enterocytes to export the absorbed cholesterol back into 

the lumen (Wang 2007). In ER of enterocytes, the absorbed cholesterol is esterified by 

ACAT2, which forms the nascent chylomicron particles. Then Apo-B48, as the main 

apolipoprotein of chylomicron, is used for packaging absorbed lipids and cholesterol to form 

chylomicrons. The particles leave the ER in COPII-coated vesicles and then are secreted 

through the Golgi complex to the basolateral side of the enterocyte. Chylomicrons travel 

through lymphatic vessels to reach the venous circulation (Figure 10) (Shoulders et al. 2004). 

The majority of cholesterol absorbed by the intestine is directed to the liver (Turley et al. 

2003), as a result it affects de novo cholesterol synthesis, cholesterol esterification and also 

packaging into lipoproteins (Dietschy et al. 2002; Horton et al. 2002; Turley and Dietschy 

2003). This indicates that cholesterol homeostasis requires dynamic interactions between the 

liver and the intestine in different aspects of cholesterol metabolism.   
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Figure 10. Dietary cholesterol absorption. Adapted from (Wang et al. 2013).  
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1.2 The effects of high cholesterol diet, estrogen withdrawal and 

exercise training on reverse cholesterol transport (RCT) 

1.2.1 Hepatobiliary pathway 

1.2.1.1 Hepatic cholesterol accumulation 

a. The effects of high cholesterol diet 

It has been reported that cholesterol feeding (0.2%) for 6 weeks increased cholesterol 

ester storage and triglyceride accumulation in mice hepatocytes. The authors explained that 

the presence of cholesteryl ester in liver interferes with TG hydrolysis and mobilization and 

this can lead to hepatic triglyceride accumulation. It was also mentioned that hepatic 

triglyceride accumulation observed following the cholesterol diet is independent of 

lipogenesis. Using ACAT2 KO mice, the authors suggested that ACAT2 depletion is 

consistently associated with a major reduction in hepatic cholesteryl ester and with a decrease 

in liver triglycerides (Alger et al. 2010). ACAT2 is the main cholesterol-esterifying enzyme in 

the liver, and genetic deletion of this enzyme in mice has been shown to decrease hepatic 

cholesteryl ester accumulation when mice are challenged with a high cholesterol diet (Willner 

et al. 2003; Lee et al. 2005). The data of Alger’s study provided evidence that there is a 

limitation of triglyceride mobilization from the liver in the form of VLDL-TG in the presence 

of cholesteryl ester accumulation. It also explains underlying mechanisms for dietary 

cholesterol-driven NAFLD (Alger et al. 2010). Savard et al also showed that feeding a high fat 

high cholesterol (HFHC) diet (15% fat and 1% cholesterol) for 30 weeks led to hepatic 

steatosis with profound deposition of TGs and also cholesterol esters in the liver of male 

C57BL/6J mice (Savard et al. 2013). In this study, hepatic lipid accumulation caused by 

HFHC was greater than the HF or HC diet alone (Savard et al. 2013). A HFHC (0.25% and 

0.5%) diet in Ovx rats led to increased hepatic TC accumulation which was accompanied by 

reduced plasma cholesterol levels, suggesting an impaired mobilization of cholesterol from the 

liver (Cote et al. 2014). Moreover, hepatic TC accumulation following the HFHC diets was 

higher than the HF diet alone, suggesting the critical role of the cholesterol in a diet (Cote et 

al. 2014). It seems that a diet rich in cholesterol alone or combined with a HF diet has a 
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determinant role in cholesterol accumulation in liver and hepatic cholesterol accumulation 

might be the main reason for limitation of TG mobilization and accumulation in liver.  

b. The effects of estrogen withdrawal 

It has been reported that liver TC content was not increased in Ovx animal models. The 

authors concluded that similar hepatic cholesterol levels in Sham and Ovx mice despite the 

higher serum cholesterol levels in cholesterol fed groups might be a reflection of a reduced 

liver cholesterol uptake by LDL-R and a reduced hepatic de novo cholesterol production by 

HMGCR (Kamada et al. 2011). However, recent studies conducted in Ovx rats showed an 

increase in hepatic cholesterol accumulation (Kato et al. 2009; Ngo Sock et al. 2014a) that was 

more pronounced when Ovx rats were fed a HFHC diet suggesting a determinant role of the 

cholesterol diet (Cote et al. 2014). It might be assumed that hepatic TC accumulation is the 

result of hepatic cholesterol biosynthesis in Ovx animals. However, there is accumulating 

evidence indicating that hepatic HMGCoA-r mRNA expression is lower in Ovx than in Sham 

rats (De Marinis et al. 2008; Kato et al. 2009; Ngo Sock et al. 2013; Cote et al. 2014). 

HMGCoA-r catalyzes the rate limiting step in cholesterol biosynthesis in liver (Horton et al. 

1998). Furthermore, low expression of HMGCoA-r mRNA was reported in Ovx mice fed a 

HFHC diet (containing 15% fat, 1.25% cholesterol) for 6 weeks compared to Sham mice fed 

the same HFHC diet (Kamada et al. 2011). In contrast, estrogen administration resulted in an 

increase in hepatic HMGCoA-r protein content in normal female animal models (Di Croce et 

al. 1996; Di Croce et al. 1997). These studies support the concept that estrogens play an 

important role in regulating cholesterol synthesis and homeostasis. Indeed, HMGCoA-r 

promoter has an estrogen-responsive element-like sequence and HMGCoA-r activity is 

stimulated by estradiol (Di Croce et al. 1999). In addition to the HMGCoA-r, gene expression 

of SREBP2, the nuclear factor involved in the regulation of HMGCoA-r expression, was also 

reduced in Ovx animals (Cote et al. 2014; Ngo Sock et al. 2014b) indicating that hepatic 

cholesterol accumulation is not a consequence of elevated cholesterol biosynthesis in liver of 

Ovx animals.  

Taken together, estrogens have a key role in regulation of cholesterol biosynthesis 

through their effects on HMGCoA-r promoter. Therefore, high hepatic TC accumulation in 

Ovx animals is not the result of an increased cholesterol biosynthesis in liver. On the other 
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hand, hepatic cholesterol accumulation might subsequently interfere in cholesterol 

biosynthesis in Ovx rats. Accumulation of cholesterol in the ER membrane of hepatocyte, the 

place of cholesterol biosynthesis by HMGCoA-r, was reported in previous studies (Di Croce et 

al. 1996; Di Croce et al. 1997). It has been reported that ER stress caused by cholesterol 

accumulation in ER of hepatocytes can lead to disturbances in VLDL secretion and through 

that might exacerbate hepatic cholesterol accumulation in Ovx rats (Hager et al. 2012).    

 

c. The effects of exercise training 

There is conflicting information about the effect of exercise training on cholesterol 

accumulation in liver. For instance, male rats trained on a voluntary wheel running for two 

weeks showed a decrease in hepatic TG accumulation without any change in hepatic TC 

content compared to sedentary rats. An increase in hepatic cholesterol synthesis via higher 

mRNA levels of HMGCoA-r to compensate for fecal sterol loss was explained as a reason for 

unchanged hepatic TC content between trained and sedentary rats (Meissner et al. 2010a). 

However, 12 and 8 weeks of running training resulted in a reduction of hepatic TC content in 

LDL-R deficient mice and HF fed mice (Meissner et al. 2011; Wen et al. 2013). Excretion and 

elimination of cholesterol from the liver in the form of VLDL or bile acids in response to 

exercise can be put forward as possible reasons to explain decreased or unchanged hepatic TC 

accumulation. These will be discussed in the following pages.   

1.2.1.2 Hepatic cholesterol uptake from circulation 

a. The effects of high cholesterol diet and estrogen withdrawal  

In addition to HMGCoA-r, a reduction in hepatic LDL-R transcripts was also reported 

in Ovx animals (Di Croce et al. 1997; Ge et al. 2006; Kato et al. 2009; Kamada et al. 2011; 

Cote et al. 2014; Ngo Sock et al. 2014a). Inversely, estrogen supplementation has been 

reported to upregulate levels of hepatic LDL-R mRNA and protein levels in animals (Di Croce 

et al. 1996; Di Croce et al. 1997; Parini et al. 2000). Estrogen stimulates expression of the 

LDL-R gene through the estrogen receptor (ER-α), which can activate transcription of the 

LDL-R promoter through its interaction with Sp1 (Bruning et al. 2003).  
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Along with HMGCoA-r and LDL-R transcripts, a reduction in hepatic PCSK9 

transcripts and plasma PCSK9 levels were also observed in Ovx rats (Ngo Sock et al. 2014a). 

As aforementioned PCSK9 induces LDL-R degradation (Maxwell and Breslow 2004). 

Therefore, a paralle reduction in PCSK9 and LDL-R transcripts was not expected. The rate of 

hepatic LDL-R recycling on the cell surface might be an explanation for similar reductions in 

PCSK9 and LDL-R transcripts in Ovx animals (Roubtsova et al. 2015). Furthermore, it seems 

that PCSK9 like LDL-R might have an estrogenic-like promoter site on its gene. That might 

explain somehow the reduction of both PCSK9 and LDL-R transcript in Ovx animals. 

Moreover, as mentioned before, there are different gene variants of PCSK9 with different 

affinity for LDL-R. It need to be clarified what type of gene mutations exist in Ovx animal 

model.  

On the other hand, feeding the rats with dietary cholesterol (2%) for 8 days decreased 

PCSK9 gene expression, resulting in an increased number of hepatic LDL-Rs proteins despite 

a reduction in LDL-R mRNA levels suggesting posttranscriptional regulation of LDL-R by 

PCSK9 (Persson et al. 2009). High-dose ethinylestradiol treatment resulted in a 50% decrease 

in PCSK9 gene expression in male rats accompanied with an increase in the number of hepatic 

LDL-R. The authors concluded that the increase in hepatic LDL-R by high-dose estrogen 

treatment in the male rat was due to a combination of posttranscriptional regulation, i.e. a 

reduced PCSK9 expression together with a strong transcriptional increase of the LDL-R gene.  

(Persson et al. 2009). Surprisingly, different studies reported similar impacts on PCSK9 

transcripts by estrogen treatment and estrogen deficiency state. The difference in response to 

estrogens in male and female animals might explain this similar effect. 

It is important to note that in addition to LDL-R, LRP1 has also been identified as a 

target for PCSK9 induced degradation in HepG2 cells. It seems that these receptors compete 

for PCSK9 activity (Canuel et al. 2013). Moreover, a reduction in gene expression and protein 

content of LRP1 has been reported in Ovx rats (Ngo Sock et al. 2014a; Ngo Sock et al. 2016) 

along with a decrease in the SREBP-2 transcription factor transcript levels (Moon et al. 2011). 

Reduced transcript levels of both LDL-R and LRP1 could cause high plasma cholesterol levels 

in Ovx rats through the decrease in LDL cholesterol and lipoprotein remnants uptake from the 

circulation.  
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Taking together, these findings suggest that the increase in plasma LDL cholesterol 

concentrations found in Ovx rats is associated with a decrease in hepatic LDL-R activity.  

 

b. The effects of exercise training on LDL-R  

Twelve week of treadmill exercise training increased LDL-R gene expression and 

attenuated the gallstone development in gallstone-sensitive male mice fed a lithogenic diet 

(21% fat, 1.25% cholesterol, 0.5% cholic acid) (Wilund et al. 2008). The lithogenic diet is a 

supersaturation of bile with cholesterol which is a prerequisite of the development of 

gallstones (Reihner et al. 1996). Moreover, it has been reported that treadmill exercise (EX) 

for 8 weeks increased the mRNA expression of LDL-R, PCSK9, and protein content of 

SREBP2 in mice fed a high fat (HF) diet compared to sedentary HF fed mice. A decrease in 

plasma PCSK9 levels was also observed in HF+EX group. These results suggested that 

treadmill exercise reduces circulating non-HDL cholesterol through higher cholesterol uptake 

by LDL-R (Wen et al. 2013). Furthermore, CETP transgenic (CETP-tg) mice showed an 

elevated content of hepatic LDL-R protein after six weeks of treadmill exercise. This 

enhanced LDL receptor protein levels suggests that exercise has a positive effect on RCT 

through increased hepatic cholesterol uptake from circulation (Rocco et al. 2011). CETP 

transfers esterified cholesterol from HDL to apoB-containing lipoproteins that are ultimately 

removed by the hepatic LDL-R. CETP-tg mice were used as an animal model to study RCT 

similar to human lipoprotein pattern (Yin et al. 2012; Temel and Brown 2015). Recently, it 

was reported that LDL-R protein content was higher in male mice on treadmill exercise for 6 

weeks (Pinto et al. 2015). Trained mice for 2 weeks also showed a dramatic increase in hepatic 

LDL-R gene expression, suggesting that exercise might favor reverse cholesterol transport and 

lipoprotein clearance from the circulation (Wei et al. 2005).   

Based on these findings, it appears that exercise training has a positive key role in RCT 

by reducing the circulating LDL cholesterol through an increase in LDL-R and consequently 

an elevated hepatic cholesterol uptake from the circulation, a potential mechanism for the anti-

atherosclerotic effect of exercise (Wei et al. 2005; Halverstadt et al. 2007; Meissner et al. 

2010a; Meissner et al. 2011; Rocco et al. 2011).  
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On the other hand, treadmill exercise for 8 weeks did not change the gene expression 

of LDL-R, PCSK9, and LRP1 in Sham and Ovx rats, although its positive effects on plasma 

TC concentrations in Ovx rats. On the opposite, estradiol replacement markedly corrected 

changes in gene expression in almost all markers of hepatic cholesterol metabolism. The 

authors concluded that exercise might have no impact on hepatic expression of genes involved 

in cholesterol uptake from circulation in Ovx rats (Ngo Sock et al. 2014a; Ngo Sock et al. 

2016).  

 
c. The effects of exercise training on HDL 

Higher ABCA1 mRNA and plasma HDL content were reported in rats following 

treadmill exercise for 6 weeks. It seems that elevated plasma HDL levels induced by exercise 

might be the result of higher hepatic ABCA1 gene expression, suggesting a positive effect of 

exercise training on RCT process (Ghanbari-Niaki et al. 2007). Moreover, increased hepatic 

expression of SR-B1 was observed following two weeks of exercise training in mice. SR-B1 is 

known as a hepatic HDL receptor (Wei et al. 2005). Furthermore, it was reported that an 

increase in SR-B1 mRNA was accompanied with a reduction in gallstone development in 

gallstone sensitive mice fed a lithogenic diet after 12 weeks of exercise training (Wilund et al. 

2008). An increase in hepatic SR-B1 protein content with evidence of increased macrophage 

cholesterol flux into the liver has been also reported in male mice trained for 6 weeks (Pinto et 

al. 2015). Six weeks of treadmill exercise resulted in an increase in hepatic ABCA1 protein 

content in CETP transgenic mice suggesting high levels of circulating HDL and a positive 

effect of exercise on the hepatobiliary route. However, treadmill exercise had no influence on 

SR-B1 expression in CETP transgenic mice (Rocco et al. 2011). On the other hand, exercise 

training had no impact on ABCA1 and SR-B1 mRNA expression in Ovx rats (Ngo Sock et al. 

2014a).  

Taken together, it seems that exercise training has a positive influence on molecular 

markers of HDL metabolism and that might favor an increase in circulating HDL levels and 

reverse cholesterol transport (Halverstadt et al. 2007). 
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1.2.1.3 Cholesterol excretion from the liver 

 1.2.1.3.1 VLDL assembly and secretion 

 

a. The effects of high cholesterol diet  

There are some data indicating that overconsumption of cholesterol induces the 

overproduction of hepatic lipoproteins. For instance, cholesterol feeding (2%) for 3 months 

resulted in a four-fold increase in hepatic secretion of newly synthesized VLDL in perfused 

liver of Japanese monkey (Teramoto et al. 1987). In another study, 2 weeks of 2% cholesterol 

supplementation versus a standard diet increased the hepatic production of VLDL-

cholesterol fourfold, VLDL-triglyceride two and one-half-fold, and also enhanced apo-B 

protein levels tenfold in isolated hamster liver (lChen et al. 1996). On the other hand, there is 

other evidence pointing toward a reduction in VLDL assembly and secretion following a 

cholesterol diet. Alger et al reported that a six week cholesterol diet (0.2%) led to a reduction 

in hepatic VLDL–TG secretion, resulting in neutral lipid retention within the hepatocytes. 

However ACAT2 deficient mice showed an increase in mobilization and use of stored hepatic 

triglyceride for VLDL secretion. This study suggests that there is an association between 

hepatic cholesterol ester accumulation and reduced VLDL secretion. The authors explained 

that hepatic cholesterol accumulation results in limitation of TG mobilization and use of TG in 

VLDL assembly (Alger et al. 2010). Alger’s study provided data supporting the hypothesis 

that accumulation of hepatic cholesteryl ester in lipid droplets can limit the mobilization of 

hepatic triglyceride (Demel et al. 1985; Ghosh et al. 1995; Alger et al. 2010) and consequently 

reduce VLDL secretion (Alger et al. 2010). Moreover, Savard et al. showed that 

high cholesterol (1%) diet feeding for 30 weeks decreased transcripts of MTP and ACAT2, 

involved in VLDL assembly and secretion, in mice compared to SD fed mice. It is important 

to note that similar differences in these gene expressions were observed when the HFHC-fed 

mice were compared to the HF-fed mice. Therefore, the authors concluded that dietary 

cholesterol causes consistent changes in gene expression of MTP and ACAT2, whether it was 

added to the control diet or to the HF diet, suggesting that cholesterol is a determinant 

component in a diet regarding VLDL assembly and production (Savard et al. 2013).  
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b. The effects of estrogen withdrawal  

It has been reported that estrogen deficiency state results in a reduction in VLDL 

secretion (Lemieux et al. 2005; Barsalani et al. 2010). Therefore common high plasma 

cholesterol levels in Ovx animal are hardly a consequence of elevated cholesterol secretion in 

the form of VLDL from the liver (Kato et al. 2009; Ngo Sock et al. 2013). Disruption to 

VLDL production is a mechanism that may explain the accumulation of TG and TC found in 

the liver of Ovx rats fed a HFHC diet compared with those fed other diets (Cote et al. 2014). 

In addition to a decrease in VLDL production, expression of several genes involved in hepatic 

VLDL synthesis and assembly including MTP and apo-B were also reduced in Ovx rats fed a 

standard diet (Barsalani et al. 2010; Cote et al. 2014). It seems that estrogen withdrawal in 

Ovx animals or the blockage of estrogen receptors results in a reduction of MTP transcript and 

impaired VLDL secretion (Barsalani et al. 2010; Cote et al. 2012).  

On the other hand, hepatic VLDL secretion was unaffected by ERα overexpression in 

female ob/ob mice (Wang et al. 2015), suggesting that estrogens have no direct impacts on 

VLDL secretion. Disturbance in VLDL assembly and production in Ovx rats might be induced 

by ER stress as a result of cholesterol accumulation in ER of hepatocytes (Hager et al. 2012). 

ER stress through apoB degradation impairs VLDL assembly and secretion (Ota et al. 2008) 

and as a result, this exacerbates hepatic triglyceride and cholesterol accumulation in Ovx 

animals.    

 

c. The effects of exercise training  

Barsalani et al reported that VLDL-TG production is lower in Ovx compared to Sham 

rats and using treadmill exercise for 5 weeks as an intervention also resulted in lower plasma 

VLDL-TG levels in Ovx rats. It seems that exercise training is unable to restore VLDL-TG 

production in estrogen deficient state. However, in this study reduced VLDL-TG production 

by training in Ovx rats did not lead to hepatic TG accumulation probably due to an increase in 

fat oxidation as a source of energy (Barsalani et al. 2010). In addition to reduced VLDL-TG 

production induced by exercise training, there is evidence that hepatic MTP protein content 
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was also diminished by exercise training in mice and female rats fed a SD and HF diet 

(Chapados et al. 2009; Meissner et al. 2011).  

On the other hand, a lower rate of VLDL secretion and reduced gene expression of 

apoB and MTP observed in sedentary tumour-bearing male Wistar rats were restored to 

control values when the animals were submitted to the treadmill exercise for 8 weeks (Lira et 

al. 2008). The authors suggest that exercise training promoted the re-establishment of hepatic 

VLDL assembly and secretion and this subsequently resulted in decreased hepatic TG 

accumulation (Lira et al. 2008).  

    1.2.1.3.2 Bile acid biosynthesis  

a. The effects of high cholesterol diet  

Another plausible explanation for hepatic cholesterol accumulation in Ovx rats, 

especially when they were fed the HFHC diets, is a decrease in cholesterol excretion from the 

liver in the form of bile acids. For instance, lower FXR gene expression, the regulator of 

hepatic bile acid metabolism, and its target gene CYP8b1 were observed in rats fed HFHC diet 

for 6 weeks (40% fat, 0.5% cholesterol) compared to rats fed a SD diet (Cote et al. 2014). It 

seems that dietary interventions can result in a disruption to bile acid metabolism and, in turn, 

exacerbate cholesterol accumulation in liver.  

A 2-week cholesterol feeding (2%) decreased bile salt secretion by 28% but 

increased cholesterol secretion 118% in bile in the isolated perfused hamster liver, however 

phospholipid and bile volume did not change in this study (lChen et al. 1996). Low bile salt 

secretion might be consequence of a reduction in cholesterol conversion to bile acid and to 

some extent disturbance in bile acid production.    

Increased hepatic ABCG5/8 and CYP7A1 mRNA expression, involved respectively in 

cholesterol secretion into bile duct and bile acid biosynthesis, and also higher fecal cholesterol 

excretion were observed in male mice fed cholesterol diet (1%) for 30 weeks compared to 

control diet fed mice. FXR transcript was significantly low in cholesterol fed mice (Savard et 

al. 2013). It seems that the effect of cholesterol diet on bile acid metabolism is different in 

short and long term course of study. Increased cholesterol secretion and bile acid production at 
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the gene levels might be kind of an adaptation to the diet that happened over a longtime study 

(30 weeks).   

b. The effects of estrogen withdrawal 

There is growing evidence showing that bile acid formation and consequently 

cholesterol excretion in the form of bile acid are reduced in Ovx animals. For instance, 

CYP7A1 and CYP8B1 gene expression, involved in bile acid biosynthesis in liver, were 

decreased in Ovx rats and mice (Kato et al. 2009; Kamada et al. 2011; Ngo Sock et al. 2013; 

Cote et al. 2014). This reduction was higher when Ovx rats were fed a high fat diet (42%) 

(Ngo Sock et al. 2013). Previously, it was reported that CYP7A1 activity and bile acid 

biosynthesis in short term was increased by 17 β-estradiol administration in rat hepatocyte 

monolayers in vitro (Chico et al. 1996). Recently it has been observed that 17 β-estradiol 

administration restored reduced hepatic CYP7A1 gene expression in Ovx mice fed a HFHC 

diet (1.25% cholesterol, 15% cocoa butter, and 0.5% cholic acid) (Kamada et al. 2011). 

Furthermore, mRNA levels of BSEP and MDR2, involved respectively in bile acid and 

phospholipid secretion from hepatocytes into bile canaliculi, were also decreased in Ovx rats. 

Moreover, estrogen deficiency in this study was associated with lower transcripts of nuclear 

receptor FXR (Cote et al. 2014), suggesting that there is no bile acid accumulation in the liver 

of Ovx rats. FXR has a key role in preventing bile acid accumulation and toxicity through 

inhibition of genes involved in bile acid biosynthesis and stimulation of genes involved in bile 

acid excretion. In fact, bile acids act as ligands for FXR and hepatic bile acid accumulation 

induces FXR activation which leads to a set of interactions resulting in the suppression of bile 

acid biosynthesis (Wang et al. 1999). It seems that not only bile acid biosynthesis but also its 

secretion via the hepatobiliary route are decreased by estrogen deficiency. Since biliary 

cholesterol excretion is the main way of cholesterol elimination from the body, disturbances in 

bile acid metabolism result in hepatic cholesterol accumulation.  

Furthermore, in a series of studies conducted by Czerny et al. a decrease in total bile 

production was found in Ovx rats, supporting the hypothesis that biliary metabolic pathways 

are disrupted by estrogen withdrawal (Czerny et al. 2005; Czerny et al. 2006; Czerny et al. 

2011). Since disrupted biliary metabolic pathways restrain hepatic cholesterol output, the 
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repression of key enzymes involved in bile acid excretion by ovariectomy is consistent with 

the massive accumulation of liver TC in Ovx rats. 

On the other hand, hepatic ABCG5/G8 transcripts, involved in the secretion of 

cholesterol into the bile duct, were not altered in Ovx compared to Sham rats (Ngo Sock et al. 

2013; Cote et al. 2014) and in aromatase KO mice implying that these transporters may not be 

modulated by estrogens (Hewitt et al. 2003).  

 

Relationship between SHP and CYP7A1  

SHP knockout (KO) mice showed an increase in bile acids synthesis and accumulation 

due to the removal of the suppressive effect of SHP on CYP7A1 and CYP8B1 (Kerr et al. 

2002). Studies conducted on mice lacking SHP showed that under normal physiological 

conditions, the inputs of FXR and SHP are the major known pathway that mediates inverse 

feedback regulation of bile acid synthesis (Kerr et al. 2002). However, beyond normal 

physiological conditions such as liver damage (cholestasis, hepatosteatosis), additional 

mechanisms of regulation such as pregnane X receptor (PXR) and its target gene, CYP7A1 

promoter binding factor (CPF), which is independent of FXR-SHP pathway, might come into 

play to modulate bile acid output in a way to protect against liver injury (Staudinger et al. 

2001; Xie et al. 2001; Kerr et al. 2002) 

It has also been reported that estrogen treatment directly through activation of SHP 

promoter induces SHP gene expression in mouse and rat liver and in human HepG2 cells 

(Evans et al. 2002; Lai et al. 2003). Wang et al recently reported that mRNA levels of hepatic 

SHP were reduced in Ovx mice while estrogen upregulated SHP expression through binding 

to its proximal promoter. SHP promoter has an estrogen receptor responsive element (ERE) 

site. In fact, SHP is a target gene for estrogen/estrogen receptor α (ERα) in the liver, 

suggesting a novel role of estrogen in improving hepatosteatosis through upregulation of SHP 

expression (Wang et al. 2015). Moreover, this ERα binding site overlaps with the known FXR 

binding site on the SHP promoter. The combination of ethynylestradiol plus FXR agonists did 

not produce an additive induction of SHP expression in Ovx mice, suggesting that 

simultaneous occupancy of this site by both estrogen receptor and FXR could not happen. To 



 

41 

 

test this hypothesis, Ovx mice were given either a control diet or a cholic acid diet (to activate 

FXR) along with subcutaneous ethynylestradiol treatment. Ethynylestradiol administration 

stimulated SHP expression in the mice consuming the control diet but not in mice fed the 

cholic acid diet. The lack of ethynylestradiol effect on the stimulation of SHP expression in 

animals in which was activated by FXR is consistent with the overlapping of ethynylestradiol 

and FXR response elements site on the SHP promoter. Surprisingly, it has been reported that 

induction of SHP by ethynylestradiol did not inhibit expression of the known SHP target genes 

CYP7A1 or CYP8B1 (Lai et al. 2003). It is expected that activation of SHP inhibits 

expression of CYP7A1 (Goodwin et al. 2000) which was not observed under estrogen 

treatment, suggesting that the stimulation of SHP by estrogens may not result in suppression 

of CYP7A1 transcript. Furthermore, it seems that SHP may act independently of FXR. 

 

c. The effects of exercise training 

A 30% increase in fecal bile acid and cholesterol excretion were reported by 

submitting healthy and LDL-R deficient male mice to voluntary wheel running for 2 and 12 

weeks respectively. However the expression of key hepatic genes involved in bile acid 

synthesis including CYP7A1, CYP8B1, and CYP27A1 were not affected by exercise training 

in these studies. It was mentioned that changes in these genes might be at the 

posttranscriptional levels (Meissner et al. 2010b; Meissner et al. 2011). Nevertheless, Rocco et 

al. reported a decrease in hepatic CYP7A1 mRNA levels in 6 weeks trained CETP-tg mice. 

CETP-tg mice were used as an animal model to study RCT (Rocco et al. 2011).  

On the other hand, Pinto et al. recently reported that CYP7A1 mRNA was increased by 

6 weeks of training in male mice (Pinto et al. 2015). It seems that elevated gene expression of 

CYP7A1 as an enzyme involved in conversion of extra cholesterol to bile acids is a reflection 

of the beneficial effect of exercise training on RCT. Furthermore, higher CYP27A1 gene 

expression was observed in mice fed a lithogenic diet after 12 weeks of exercise training 

(Wilund et al. 2008).  

Taken together, these data indicate that exercise training through upregulation of key 

hepatic genes involved in bile acid biosynthesis and increased fecal cholesterol and bile acid 
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excretion from the liver promotes cholesterol excretion from the liver. This would depict a 

mechanism by which exercise has a positive effect on RCT via the hepatobiliary pathway.   

 

1.2.2 Non-biliary TICE pathway  

Studies regarding the effects of cholesterol diet, estrogen withdrawal, and exercise 

training on TICE pathway have not been conducted so far. In fact, the findings discussed in 

this part are presenting the effects of above mentioned factors on intestinal genes involved in 

cholesterol metabolism including the intestinal genes of TICE pathway. 

Bile acid content in small intestine was increased in Ovx rats as a consequence of a 

reduction in bile acid reabsorption through its transporter, IBAT in the terminal ileum (Kato et 

al. 2009). On the other hand, ABCA1 transcripts were higher in jejunum of Ovx rats which 

means an increase in intestinal cholesterol efflux through HDL (Ngo Sock et al. 2014a). 

Exercise training for 8 weeks had no impact on ABCA1 mRNA expression in the jejunum of 

Ovx rats (Ngo Sock et al. 2014a). On the other hand, ABCA1 gene expression was increased 

by 8 weeks training in the ileum of female rats (Ngo Sock et al. 2014b). An increase in 

ABCA1 transcripts in the proximal part of the small intestine following exercise training was 

also reported in Wistar rats (Khabazian et al. 2009). The intestine, similar to the liver, has a 

role in apoA1 lipidation through ABCA1. It seems that the effect of training on genes involved 

in HDL synthesis is the same for both liver and intestine, suggesting an increase in HDL 

synthesis and enhanced the cholesterol efflux following exercise training.  

Increased small intestinal ABCG8 gene and protein expression were reported in 

treadmill-trained female rats after 8 weeks (Ghanbari-Niaki et al. 2012). However, Ngo Sock 

et al reported a reduction in NPC1L1 and ABCG5/G8 mRNA in the ileum of female rats 

trained for 8 weeks, suggesting less cholesterol accumulation in trained rats (Ngo Sock et al. 

2014b). Furthermore, 12 weeks of exercise training resulted in a decrease in NPC1L1 and 

ABCG5/G8 transcript in duodenum of male mice. Lower NPC1L1 and less cholesterol 

absorption by enterocytes were proposed as a reason for the decrease in ABCG5/G8 

transcripts as a transporter involved in cholesterol excretion from enterocytes into the lumen 

(Wilund et al. 2008).   
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Increased fecal bile acid and cholesterol loss and decreased jejunal expression of 

NPC1L1 were also reported following two weeks of voluntary wheel running in male mice, 

suggesting a decrease in intestinal cholesterol absorption (Meissner et al. 2010a). Moreover, 

lower ileal OSTα/β and hepatic NTCP mRNA, involved in bile acid enterohepatic circulation, 

were observed in 2 weeks voluntary running mice. Jejunal gene expression of ABCG5/G8 was 

not changed by running in this study. Reduced NPC1L1 transcript involved in cholesterol 

absorption was explained as a reason for unchanged jejunal ABCG5/G8 transcript. ABCG5 

and G8 are responsible for sterol efflux from the enterocytes into the lumen, whereas NPC1L1 

is involved in sterol entry from the lumen into the enterocyte (Kidambi et al. 2008). The 

authors concluded that regular exercise increases cholesterol turnover and through this action 

contributes to reduce the risk of cardiovascular diseases (Meissner et al. 2010a). In another 

study from this group, increased fecal bile acid loss and a 33% reduction in the aortic lesion 

size were also reported in LDL-R deficient mice after 12 weeks of running, implying some 

beneficial effects of exercise training in reducing the risk of atherosclerosis (Meissner et al. 

2011). LDL-R-/- mice were submitted to the HFHC (0.15%) diet for 3 months and after that 

placed on 3 months treadmill exercise program with a normal diet which resulted in a 50% 

reduction in the aortic lesion area in LDL-R-/- mice compared to sedentary LDL-R-/- mice 

(Ramachandran et al. 2005). In addition to a reduction of the aortic lesion size, prevention of 

aortic valve sclerosis was also reported following exercise training in LDL-R deficient mice 

compared to sedentary group (Matsumoto et al. 2010).  

A reduction in ileal FXR transcription factor transcripts along with its downstream 

genes ileal OSTα/β have been also reported in female rats trained for 8 weeks (Ngo Sock et al. 

2014b). Since FXR has a key role in protecting the intestine against bile acid accumulation, 

reduced FXR transcript suggests that there is less bile acid accumulation in trained animals. It 

seems that the need to protect the intestine against bile acid overload is reduced in trained rats 

fed a normal diet (Ngo Sock et al. 2014b). 

Taken together, it seems that reverse cholesterol efflux through intestinal genes of 

TICE similar to hepatobiliary pathway can be affected by exercise training and through 

excretion of the cholesterol from enterocytes into the lumen has a key role in reducing the risk 

of atherosclerosis.   
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1.3 General objective of the thesis and the presentation of 

manuscripts 

The general objective of the present thesis is to provide physiological and molecular 

information to shed some light on how cholesterol and bile acid metabolism is affected by 

estrogens withdrawal in liver and intestine. It was also intended to introduce an appropriate 

non-pharmacological intervention (exercise training) to stimulate cholesterol excretion from 

the body and consequently decrease the risk of atherosclerosis. The three studies presented in 

this thesis have been conducted in an ovariectomized (Ovx) rat model as an experimental 

model of human post-menopausal state to study the metabolic consequences of loss of 

estrogens on cholesterol and bile acid metabolism. We also used a diet rich in cholesterol as a 

nutritional tool to investigate the role of liver and intestine in regulating cholesterol 

metabolism in our series of experiments. 

The first study was undertaken to investigate the effects of high dietary cholesterol on 

key hepatic markers of VLDL assembly and some other molecular markers of cholesterol/bile 

acid metabolism including BSEP, MDR2, and NTCP, in Ovx rats. In this study, Ovx and sham 

operated (Sham) rats were given either a standard (SD), a SD supplemented with 0.25% 

cholesterol (SD+Chol), or a high fat supplemented with 0.25% cholesterol (HF+Chol) diets 

for 5 weeks. There is growing evidence showing that exercise training, as one of the best non-

pharmacological strategies, improves cholesterol metabolism and diminishes the risk of 

atherosclerosis; however, the molecular mechanisms have not been fully explored. Therefore, 

in the second study, it was of interest to determine the effect of exercise training on key 

markers of hepatic cholesterol and bile acid metabolism by targeting the molecular markers of 

the FXR-SHP-CYP7A1 pathway in Ovx rats under cholesterol feeding. In the second study, 

the main experimental group was composed of Ovx rats fed a high cholesterol diet (Ovx-Chol) 

that was compared, on one hand, to a group of Ovx rats fed a standard diet (Ovx-SD) to 

observe the effects of the diet and, on the other hand, compared to a group of Sham operated 

rats fed the cholesterol diet (Sham-Chol) to observe the effect of estrogen withdrawal. These 

groups of Ovx and Sham rats were subdivided into either voluntary wheel running or 

sedentary groups for 5 weeks. Recent studies on newly identified transintestinal cholesterol 
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excretion (TICE) pathway showed that this pathway contributes in cholesterol excretion along 

with the hepatobiliary route indicating that cholesterol homeostasis in the body depends on a 

dynamic interplay between liver and intestine. In line with this concept, in the third study, we 

expanded our research to determine whether exercise training has effects on key intestinal 

cholesterol receptors involved in the TICE pathway in intact and Ovx rats fed a normal and a 

high cholesterol diet. We targeted key molecular markers involved in TICE via cholesterol 

uptake and excretion at the intestinal basolateral and apical membrane, respectively. To reach 

our goal, Sprague-Dawley rats were first divided into 4 groups: Sham operated and Ovx rats 

fed a standard diet (Sham-SD; Ovx-SD), or a high cholesterol diet (Sham-Chol; Ovx-Chol). 

These 4 groups were subsequently subdivided into either sedentary (Sed) or voluntary wheel 

running (Tr) groups for 6 weeks. 

 

 

 

 

 

 

 

 

 



 

46 

 

 

Chapter 2: Original research articles 

 

2.1 Article 1 : High dietary cholesterol and ovariectomy in rats 

repress gene expression of key markers of VLDL and bile acid 

metabolism in liver. 

 

 

 

Authors 

Farahnak, Z., Côté, I., Sock, E.T.N., and Lavoie, J-M. 

 

 

 

 

Journal 

Lipids Health Dis 2015; 14: 125-134. 

 

 

 

 

 

 



 

47 

 

High dietary cholesterol and ovariectomy in rats repress gene expression of key markers 

of VLDL and bile acid metabolism in liver 

 

 

Zahra Farahnak, Isabelle Côté, Emilienne T. Ngo Sock, and Jean-Marc Lavoie 

 

Department of kinesiology, University of Montreal, 

Montréal, Québec, Canada 

 

 

 

Short title: Cholesterol, ovariectomy, and VLDL assembly 

 

 

Correspondance to: Dr. Jean-Marc Lavoie, Département de Kinésiologie, Université de 

Montréal, C.P. 6128, Succ. centre-ville, Montréal (Québec) Canada H3C 3J7. Tel: (514) 343-

7044; Fax: (514) 343-2181; E-mail: jean-marc.lavoie@umontreal.ca 

 

Words: 3500 

 

 

 

 

 

 

 

 

 

 

 

mailto:jean-marc.lavoie@umontreal.ca


 

48 

 

Abstract 
 

Background 

The purpose of the study was to evaluate the effects of high dietary cholesterol in 

ovariectomized (Ovx) rats on several key markers of hepatic cholesterol and bile acid 

metabolism. 

Method 

Ovx and sham operated (Sham) rats were given either a standard (SD), a SD supplemented 

with 0.25% cholesterol (SD+Chol), or a high fat supplemented with 0.25% cholesterol 

(HF+Chol) diets for 5 weeks.  

Results 

Ovx was associated with higher (P<0.05) liver total cholesterol (TC) under the SD and the 

SD+Chol diet, while liver triglyceride (TG) content was higher in Ovx than in Sham rats in all 

3 diet conditions. Surprisingly, the SD+Chol diet was associated with lower (P<0.001) plasma 

TC and TG levels in Ovx than in Sham rats, suggesting a decrease in VLDL secretion. 

Accordingly, several transcripts of key markers of VLDL synthesis including microsomal TG 

transfer protein (Mttp) and Apob-100 were decreased (P<0.05) in Ovx compared to Sham rats 

under the three dietary conditions and even more so for Mttp and Apob-100 when rats were 

fed the SD+Chol diet. Transcripts of bile acid transporters including bile salt export pump 

(Bsep) and Na+-taurocholate cotransporting polypeptide (Ntcp) were decreased by the 

addition of cholesterol to the SD diet in both Ovx and Sham rats.  

Conclusion 

These results indicate that a high cholesterol feeding and ovariectomy combine to reduce the 

gene expression of key markers of hepatic cholesterol/bile acid metabolism suggesting a 

reduction in excretion of cholesterol from the liver.   

 

 

Key words: liver cholesterol, cholesterol diet, VLDL synthesis, LDL receptors 
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Introduction      

There has been accumulating evidence in recent years that estrogens deficient state in 

ovariectomized (Ovx) animals and in postmenopausal women results in substantial liver 

triglyceride (TG) accumulation(1-4). On the other hand, evidence of disturbances of cholesterol 

metabolism in link with estrogens deficiency is limited to observations of higher plasma levels 

of total cholesterol found in human as well as in animal models(5-8). Liver cholesterol 

metabolism in Ovx animals has received little attention and shows some controversies. For 

instance, liver total cholesterol (TC) level was reported not to be affected by Ovx in previous 

studies(9-10) although we recently found an increase in rats ovariectomized for 8 wks(11). There 

is, therefore, a need for more physiological and molecular information to better understand 

how liver, as a master regulator of cholesterol metabolism, is affected by estrogens 

withdrawal. 

Nutritional approaches have been used frequently as a tool to investigate the role of the liver in 

regulating TG and cholesterol metabolism(12,13).  In Ovx animals, our group recently observed 

a large cholesterol accumulation in liver of rats fed a high fat (HF) diet, suggesting a 

vulnerability to cholesterol accumulation of Ovx animals when fed a HF diet(14). The 

vulnerability of Ovx animals to dietary cholesterol has also been recently enlighten by the 

demonstration that gene expression of several molecular markers of VLDL assembly were 

reduced following high fat/high cholesterol diets(15). However, dietary fat and dietary 

cholesterol have been reported to result in a positive synergistic interaction on the 

development of for instance hypercholesterolemia(13). We, therefore, postulated that a better 

understanding of how Ovx animals regulate hepatic cholesterol metabolism would be obtained 

if the animals were fed a high cholesterol diet without the confounding effect of dietary fat.  

 In an attempt to shed some light on how liver of Ovx animals respond to high dietary 

cholesterol, we targeted key molecular markers of pathways involved in cholesterol/bile acids 

metabolism/transport that have recently been found to be affected by estrogens deficiency(15). 

We first looked at molecular markers of VLDL assembly, including microsomal TG transfer 

protein (Mttp), a rate limiting molecule in VLDL assembly and secretion, Apob-100 an 

essential structural protein that translocates into the luminal side of the endoplasmic reticulum, 

diacylglycerol acyltransferase 2 (Dgat2) involved in converting fatty acids into triglyceride 
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(TG), acyl-Coa: cholesterol acyl transferase (Acat2) that converts free cholesterol into 

cholesterol ester, cell death-inducing like-effector type B (Cideb) a protein involved in 

lipidation of particles, and small GTP-binding protein a (Sar1a) a protein that facilitates the 

movements of VLDL particles toward the Golgi apparatus. 

Furthermore, we investigated the gene expression of molecular markers of bile acids 

metabolism/transport, a pathway that is tightly associated with elimination of cholesterol from 

the liver. These included ATP-cassette binding protein G5 and G8 (Abcg5/Abcg8) that export 

cholesterol from hepatocytes to the bile duct, bile salt export pump (Bsep) and multidrug 

resistance-associated transporter 2 (Mdr2) which stimulate bile acid and phospholipid 

transport from hepatocytes to bile canaliculi, Na+-taurocholate cotransporting polypeptide 

(Ntcp) involved in bile acid uptake in the basolateral membrane of the hepatocytes, farnasoid 

X receptor (Fxr) a nuclear receptor involved in regulation of hepatic bile acid biosynthesis, 

and cytochrome P450 7A1 (Cyp7a1) the main enzyme that catalyses the conversion of 

cholesterol into bile acids. Finally, we complemented our approach by investigating the 

response of hepatic LDL-receptor (Ldl-r), a major determinant of removal of LDL-cholesterol 

particles from the circulation, LDL receptor-related protein-1 (Lrp-1) involved in the removal 

of plasma remnant lipoproteins(16,17), and sterol regulatory element-binding protein-2 (Srebp2) 

a transcription factor involved in the regulation of cholesterol.  

The aim of the present study was to determine the effects of high dietary cholesterol on 

hepatic key markers of VLDL and cholesterol/bile acid metabolism in Ovx rats.  

 

Methods 

Animal care 

Female Sprague-Dawley rats (n 48; Charles River, St Constant, PQ, Canada) weighing 180-

200 g upon arrival were housed individually. Food and water were supplied ad libitum. Their 

environment was controlled in terms of light (12 h light–dark cycle starting at 06:00 AM), 

humidity and room temperature (20–23°C). Body weight and food intake were monitored two 

times per week. All experimental procedures were conducted according to the protocols 

approved by the directives of the Canadian Council on Animal Care after institutional 

approval.  
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Diets and surgery                

 Rats were first acclimated to their environment for a period of one week while fed a chow diet 

(12.5 % lipid, 63.2 % CHO and 24.3 % protein; kJ from Agribrands Canada, Woodstock, 

Ontario, Canada). Thereafter, rats underwent either a bilateral ovariectomy (Ovx, n 24) or a 

bilateral sham-operation (Sham, n 24) according to the technique described by Robertson et al. 

under isoflurane anaesthesia(18). After surgery, animals were injected with antibiotics 

(Tribrissen 24%; 0.125 cc/kg, subcutaneously) and analgesic (Carprofen; 4.4 mg/kg, 

subcutaneously) for 3 days. Thereafter, the Ovx and Sham rats were assigned to one of three 

following diets: standard (SD), SD supplemented with 0.25% cholesterol (SD+Chol), or high 

fat supplemented with 0.25% cholesterol (HF+Chol) for 5 weeks (Table 1). The 0.25% 

cholesterol dose was chosen to increase the dietary cholesterol without the atherogenic effects 

of higher doses used in several other studies(12,13 ).   

Blood and tissue sampling    

Rats were fasted overnight and sacrificed between 09:00 and 12:00 AM. Immediately after 

complete anaesthesia with isoflurane, the abdominal cavity was opened following the median 

line of the abdomen and approximately 4 ml of blood was collected from the abdominal vena 

cava (<45 s) into syringes pre-treated with ethylenediaminetetraacetic acid (15%; EDTA). 

Blood was centrifuged (3000 rpm; 4°C; 10 min; Beckman GPR Centrifuge) and the plasma 

kept for further analyses. Immediately after blood collection, the liver median lobe was 

removed and freeze-clamped. This sample was used for triacylglycerol (TG), cholesterol, and 

mRNA determinations.  Several organs and tissues were removed and weighed (Mettler AE 

100) in the following order: uterus, mesenteric, urogenital, and retroperitoneal fat deposits. 

The mesenteric fat pad consisted of adipose tissue surrounding the gastrointestinal tract from 

the gastroesophageal sphincter to the end of the rectum. The urogenital fat pad included 

adipose tissue surrounding the kidneys, bladder as well as ovaries, oviducts and uterus. The 

retroperitoneal fat pad was taken as that distinct deposit behind each kidney along the lumbar 

muscles. All tissue samples were frozen in liquid nitrogen immediately after being weighed 

(Mettler AE-100). All tissue samples were stored along with plasma samples at −80 ◦C until 

analyses were performed.  
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Biochemical analyses 

Commercial kits from Sigma (Sigma; St-Louis, Missouri, USA) were used to determine 

plasma and liver TG by colorimetric method. Liver TG concentrations were estimated from 

glycerol released after KOH hydrolysis. Total liver cholesterol concentrations were 

determined with some adaptations of the procedure described by Folch et al.(19). Briefly, 0.1g 

of liver was homogenized with chloroform–methanol mixture (2:1, v/v). The chloroform layer 

was collected and evaporated overnight. After adding 10% Triton X-100 in isopropanol, the 

sample was assayed for total cholesterol using commercial kits according to the 

manufacturer’s instructions (Wako Diagnostics and Chemicals USA, Richmond, VA, USA). 

Plasma total cholesterol was determined using the same kits supplied by Wako.   

Molecular analyses   

Total RNA was extracted from frozen liver with the use of RNA extraction Mini kit 

(Invitrogen) according to the manufacturer’s protocol. Then RNA was treated with DNase 

(Invitrogen) in order to avoid genomic contamination. Total RNA (2 µg) was reverse-

transcribed into complementary DNA using high capacity complementary DNA reverse 

transcription kits (Applied Biosystems). RT samples were stored at -20°C. Gene expression 

for β-actin was determined using a pre-validated Taqman Gene Expression Assay (Applied 

Biosystems, Rn01462661, Foster City, CA). Gene expression level for target genes was 

determined using assays designed with the Universal Probe Library from Roche. The primer 

sets and UPL probe numbers are presented in Table 2. To validate the efficiency of the qPCR 

assays, we used a mix of the samples tested in the study. 

The ABI PRISM® 7900HT (Applied Biosystems) was used to detect the amplification level 

and was programmed with an initial step of 3 min at 95˚C, followed by 40 cycles for 5 s at 

95˚C and 30 s at 60˚C. All reactions were run in triplicate and the average values of threshold 

cycle (CT) were used for quantification. β-actin was used as endogenous control. The relative 

quantification of target genes was determined using the ∆∆CT method. Briefly, the CT values 

of target genes were normalized to an endogenous control gene (β-actin) (∆CT = CT target – CT 

β-actin) and compared with a calibrator: (∆∆ CT = ∆ CT Sample - ∆CT Calibrator). Relative expression 

(RQ) was calculated using the Sequence Detection System (SDS) 2.2.2 software (Applied 

Biosystems) and the formula is RQ = 2-∆∆C
T.    
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Statistical analysis 

All data are presented as mean ± SE. Statistical significance (P<0.05) was determined using a 

2-way ANOVA for non-repeated measures with ovariectomy and diets as main factors. Fisher 

LSD post hoc test was used in the event of a significant interaction effect. For a significant 

diet effect without interaction, Fisher LSD from a one-way ANOVA was used.  

 
Results 

Body weight, intra-abdominal fat pad weight and food intake measured at the end of the 

experiment were all significantly (P<0.01) higher in Ovx than in Sham animals in the three 

dietary groups (Table 3). The addition of Chol to the SD diet did not result in any changes in 

both Ovx and Sham rats in body weight, intra-abdominal fat pad weight, and food intake when 

compared to animals fed the SD diet. However, food intake was significantly (P<0.05) higher 

in rats fed the HF+Chol diet as compared to the two other diets in both Sham and Ovx 

animals. Body weight and intra-abdominal fat pad weight also showed a strong tendency to be 

higher in rats fed the HF+Chol diet with respect to the Sham and Ovx conditions  (P=0.06 and 

P=0.08, respectively). Uterus weight was lower (P<0.001) in Ovx than in Sham rats 

throughout the dietary conditions confirming total ovariectomy (Table 3). 

Plasma and liver lipid profile 

Liver TC levels in Sham rats were progressively higher (P<0.01) following the SD, SD+Chol 

and HF+Chol diets order (Fig. 1(a)). This was not observed, however, in Ovx animals. Liver 

TC levels were on the whole higher (P<0.001) in Ovx than in Sham rats but not under the 

HF+Chol diet (Fig. 1(a)). Liver TG levels were higher (P<0.001) in Ovx than in Sham rats in 

all three dietary conditions (Fig. 1(b)). Liver TG levels were not affected by the SD+Chol diet 

while it was higher (P<0.01) in the HF+Chol diet compared to the SD diet in both Ovx and 

Sham animals. A completely different picture was observed for the TC and TG concentrations 

measured in plasma. Plasma TC levels were higher (P<0.05) in Ovx than in Sham rats under 

the SD and HF+Chol diets but largely lower (P<0.001) in Ovx than in Sham animals under the 

SD+Chol diet (Fig. 1(c)). On the whole, plasma TC levels in Ovx rats were lower (P<0.05) 

under the two Chol diets as compared to the SD diet. On the opposite of liver TG, plasma TG 

levels were lower (P<0.05) in Ovx than in Sham rats under the SD and SD+Chol diets (Fig. 
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1(d)). Plasma TG values were also lower (P<0.001) in Sham rats fed the HF+Chol diet as 

compared to Sham rats in the 2 other diets. On the whole, TC and TG levels under the 

SD+Chol feeding were higher in liver of Ovx vs Sham animals while the opposite was found 

in plasma.  

Hepatic gene expression 

Gene expressions of key molecules involved in VLDL synthesis are presented in Fig. 2. On 

the whole, mRNA levels of 5 out of the 6 genes involved in VLDL synthesis (including Sar1a 

and Cideb and with the exception of Acat2) were lower (P<0.05) in Ovx than in Sham rats in 

all dietary conditions (only under the SD+Chol diet for Dgat2). The lowest (P<0.01) values 

for Mttp, Dgat2, and Apob-100 transcripts were found in Ovx rats under the SD+Chol (as 

compared to the SD diet), suggesting that Ovx and the SD+Chol diet combine to decrease 

VLDL synthesis. Interestingly, we found that the decreased responses in gene expression of 

Mttp, Dgat2, Acat2, and Apob-100 under the SD+Chol diet were statistically attenuated (as 

compared to the SD diet) when rats were fed the HF+Chol diet (Fig. 2).  

To complete the information we investigated genes involved in hepatic cholesterol and biliary 

acids transport (Fig. 3). With the exception of Mdr2 transcripts, we found no difference 

between Ovx and Sham rats in any of the measured gene expression in all dietary conditions 

(Fig. 3). However, we observed that several of the genes (Abcg8, Mdr2, Bsep, Fxr, and Ntcp) 

had their transcripts decreased when animals were fed the SD+Chol compared to the SD diet. 

On the other hand, Abcg5/g8 and Cyp7a1 mRNA levels were higher (P<0.01) in HF+Chol 

compared to SD+Chol fed animals.   

To further explore hepatic cholesterol metabolism, we measured gene transcripts of key 

molecules involved in cholesterol uptake from cholesterol rich lipoproteins. We first found a 

lower (P<0.001) Lrp1 gene expression in Ovx than in Sham animals in all dietary groups (Fig. 

4(b)). Interestingly, we observed that gene expression of Ldlr and Srebp2 were highly 

decreased (P<0.001) when rats were fed either the SD+Chol or the HF+Chol diets as 

compared to rats fed the SD diet, while Lrp1 transcripts were decreased (P<0.05) only under 

the SD+Chol diet (Fig. 4). 
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Discussion 

The main finding of the present study is that high dietary cholesterol represses gene expression 

of key molecular markers of VLDL synthesis (Mttp, Acat2, Apob-100) in Sham rats and even 

more so in Ovx rats (Mttp and Apob-100). In addition, the sole addition of cholesterol to the 

SD diet reduced gene expression of several liver markers of bile acid and phospholipid 

transport (Bsep, Ntcp, Mdr2) in both Sham and Ovx animals. Finally, gene expression of key 

markers involved in liver LDL cholesterol uptake (Ldl-r and Lrp1) was also decreased by the 

sole addition of cholesterol to the diet in Sham as well as in Ovx rats. These results first 

indicate that the cholesterol component in a mixed diet is a determinant factor that regulates 

liver cholesterol metabolism in sham as well as in Ovx rats. In addition, the present molecular 

responses to high cholesterol diet converge to indicate a reduction in hepatic TG and 

cholesterol excretion from the liver, this being to a certain extent, accentuated by the absence 

of estrogens.  

We recently reported data showing an impairment of VLDL assembly following ovariectomy 

and high fat/high cholesterol diets in rats(15). The present study extends these findings by 

indicating that the sole high content of cholesterol in the diet impaired VLDL assembly in 

Sham and even more so in Ovx animals. Ovx has been previously associated with a decrease 

in VLDL production in rat via Mttp regulation(20). Accordingly, molecular expression of 

several genes related to VLDL assembly, including Mttp and Apob, was reduced in Ovx rats 

under the present SD diet. That high cholesterol diet decreases even more so VLDL 

assembly/production in Ovx animals suggests an additive effect of these two stimuli. This 

additive effect on VLDL assembly/production is corroborated by the higher accumulation of 

TC and TG in liver along with lower levels of plasma TC and TG found in Ovx compared to 

Sham animals under the SD+Chol diet.  

It is not clear at this point the mechanism by which a high cholesterol diet would repress 

VLDL assembly/production. Hepatic VLDL production has been reported to be reduced by 

competitive inhibitors of HMGCoA-r reductase, the main enzyme responsible for cholesterol 

biosynthesis, through the regulation of the SREBP family transcription factors(21,22).  SREBP-2 

gene expression was repressed by the cholesterol diet in the present study. Although there is 

evidence that several steps of the VLDL assembly/secretion are under the control of SREBP-
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1, there are also indications that upon the cell type and physiological conditions, SREBP1 and 

SREBP2 may mediate changes in lipoprotein assembly and secretion(22). An alternative 

explanation for the decrease in VLDL synthesis/production following high dietary cholesterol 

and Ovx would be the endoplasmic reticulum (ER) stress. There are indications that 

cholesterol can induce hepatic ER stress through free cholesterol accumulation in the ER(23), 

and that ER stress limits VLDL assembly and secretion through apoB degradation(24).  

In addition of reducing VLDL synthesis/production, high cholesterol feeding in Ovx and 

Sham animals also repressed gene expression of key markers of bile acid metabolism. The 

present finding of a reduction in Bsep and Mdr2 gene expression suggests a reduction in bile 

acid and phospholipid excretion, while the reduction in Ntcp mRNA suggests a reduction in 

bile acid uptake from the entero-hepatic circulation. These observations may be taken as an 

indication of a reduction of the entero-hepatic circulation of bile acids. Furthermore, the 

reduction in Fxr gene expression in the SD+Chol fed rats suggests that even though 

cholesterol level was increased in liver, there was no accumulation of bile acids since the role 

of hepatic Fxr is to prevent bile acid hepatotoxicity. Dietary interventions such as high 

cholesterol/high fat diets have been reported to repress Fxr gene expression in liver(13,15). The 

gene expression of the present key molecules thus supports the previous suggestion that high 

cholesterol feeding in rats disrupts bile acid metabolism (15).  

In addition to a decrease in gene expression of markers of VLDL synthesis and bile acid 

transport, dietary cholesterol in the present study resulted in a down regulation in gene 

expression of Ldl-r and Lrp1 in Sham and Ovx animals suggesting a decrease in cholesterol 

uptake from circulation. This response was even more pronounced in Ovx rats for Lrp1 

transcripts. Ovx has been previously reported to be associated with a reduction in the 

expression of several genes involved in the uptake of lipoprotein molecules(11,25). The decrease 

in LDL receptors was most likely linked to the excess hepatic cholesterol level through the 

decrease in Srebp2 gene expression(26,27). Taken together, the present results suggest an 

association between reduced VLDL synthesis/production, reduced bile acids transport and 

reduced LDL receptors under high dietary cholesterol in Sham as well as in Ovx rat.  

The interest of comparing a high cholesterol diet with and without the addition of a high fat 

content is enlighten by the observation that the sole addition of cholesterol to a SD diet had no 

effect on body weight in Sham and Ovx animals while the addition of fat in the diet caused an 
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increase in food intake and a strong tendency in higher body weight (P=0.06) and intra-

abdominal (P=0.08) fat accumulation (Table 3). This implies, on a clinical point of view, that 

a high cholesterol diet might not be perceived as being deleterious since it does not affect body 

weight when in fact it causes several metabolic perturbations. One noticeable effect of adding 

fat to cholesterol in the diet was the increase in liver fat accumulation resulting from the diet 

and most likely from increased lipogenesis(28). On the other hand, higher expression of 

Abcg5/g8 and Cyp7a1 were also observed under HF+Chol feeding, both of these genes being 

involved in cholesterol excretion from the liver. These responses may be taken as an 

indication that hepatic cholesterol metabolism may be less vulnerable to high fat/high 

cholesterol feeding than high dietary cholesterol alone.     

In summary, results of the present study first indicate that gene expressions of key markers of 

VLDL synthesis/production are reduced under high cholesterol feeding and that this reduction 

is exacerbated in Ovx animals. In addition, the present data provide evidence that the activities 

of bile acid and Ldl-r pathways are also reduced by the sole addition of cholesterol to a SD 

diet in Sham as well as in Ovx animals. These results point to the direction as if the liver under 

high cholesterol feeding reduces its excretion of cholesterol, at least on a short term basis, thus 

contributing to exacerbate liver fat and cholesterol accumulation known to occur in Ovx 

animals. 
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Figure legends 

Fig 1.  Liver and plasma total cholesterol (TC) and triacylglycerol (TG) levels in sham (■) and 

ovariectomized (Ovx,   ) rats fed a standard diet (SD),  a SD+0.25% cholesterol diet 

(SD+Chol), and a high fat+0.25% cholesterol diet (HF+Chol). Values are mean ± SE with n = 

8 rats per group.  * Significantly different from respective Sham rats (P<0.05),  **(P<0.01),  

*** (P<0.001); † Significantly different from respective rats fed the SD diet (P<0.05),   †† 

(P<0.01),  †††  (P<0.001); δ Significantly different from respective rats fed the SD+Chol diet 

(P<0.05),  δδδ  (P<0.001).    

Fig 2.  Hepatic mRNA expression of genes involved in VLDL synthesis/production in sham 

(■) and ovariectomized (Ovx,   ) rats fed a standard diet (SD),  a SD+0.25% cholesterol diet 

(SD+Chol), and a high fat+0.25% cholesterol diet (HF+Chol). Values are mean ± SE with n = 

8 rats per group. *** Significantly different from respective Sham rats (P<0.001); † 

Significantly different from rats fed the respective SD diet (P<0.05),   †† (P<0.01), ††† 

(P<0.001); δδ Significantly different from rats fed the respective SD+Chol diet (P<0.01). Mttp 

microsomal TG transfer protein; Dgat-2, diacylglycerol acyl transferase-2; apoB-100,  

apolipoprotein B-100; Acat-2, acyl-coA cholesterol acyl transferase-2; Sar1a,  small GTP-

binding protein; Cideb, cell death-inducing like-effector type B. 

Fig. 3.  Hepatic mRNA expression of genes related to bile acid metabolism in sham (■) and 

ovariectomized (Ovx,   ) rats fed a standard diet (SD),  a SD+0.25% cholesterol diet 

(SD+Chol), and a high fat+0.25% cholesterol diet (HF+Chol). Values are mean ± SE with n = 

8 rats per group.  *** Significantly different from respective Sham rats (P<0.001); † 

Significantly different from rats fed the respective SD diet (P<0.05),   †† (P<0.01), †††  

(P<0.001); δδ Significantly different from rats fed the respective SD+Chol diet (P<0.01),  δδδ  

(P<0.001). Abcg5/Abcg8, ATP-cassette binding protein G5 and G8; Mdr2, multidrug 

resistance-associated transporter 2; Bsep, bile salt export pump; Ntcp,  Na+-taurocholate 

cotransporting polypeptide; Cyp7a1, cytochrome P450 7A1; Fxr,  farnesoid X receptor. 

Fig. 4.  Hepatic mRNA expression of genes involved in uptake of cholesterol rich lipoproteins 

from the circulation  in sham (■) and ovariectomized (Ovx,    ) rats fed a standard diet (SD),  a 

SD+0.25% cholesterol diet (SD+Chol), and a high fat+0.25% cholesterol diet (HF+Chol). 

Values are mean ± SE with n = 8 rats per group.  *** Significantly different from respective 
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Sham rats (P<0.001); † Significantly different from rats fed the respective SD diet (P<0.05),   

††† (P<0.001).  Ldlr, LDL-receptor; Lrp-1, LDL receptor-related protein-1; Srebp2, sterol 

regulatory element-binding protein-2.  
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Table 1. Diet description   

 Standard Diet (SD) 
 (D12450J) 

SD + Chol (0.25%) 
(D13020701) 

High Fat + Chol (0.25%) 
(D13020703) 

(%)    
Protein 19.2 19.2 22.8 
Carbohydrate 67.3 67.1 45.7 
Fat 4.3 4.3 20.2 
(g)    
Casein 200 200 200 
L-Cystine 3 3 3 
    
Corn Starch 506.2 506.2 202.5 
Maltodextrin 10 125 125 125 
Sucrose 68.8 68.8 68.8 
Cellulose, BW200 50 50 50 
    
Soybean Oil 25 25 25 
Lard 20 20 155 
    
Mineral Mix S10026 10 10 10 
DiCalcium Phosphate 13 13 13 
Calcium Carbonate 5.5 5.5 5.5 
Potassium Citrate, 1 H2O 16.5 16.5 16.5 
Vitamin Mix V10001 10 10 10 
Choline Bitartrate 2 2 2 
    
Cholesterol  0.0 2.63 2.63 
    
Kcal/g 3.85 3.84 4.56 

Formulated by: Research Diets, Inc. (20 Jules Lane, New Brunswick, NJ 08901 USA) 
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Table 2. Oligonucleotide primers used for quantitative real-time polymerase chain reaction 

Gene Oligo FWD Oligo REV 

MDR2 ggcattctccatcatcctgt cacttctgttgctttactgtgtca 

BSEP cggtggctgagagatcaaat tgcgatagtggtggagaaca 

ABCG5 cggagagttggtgttctgtg caccgatgtcaagtccatgt 

ABCG8 cagatgctggctatcataggg ctgatttcatcttgccacca 

ACAT-2 cctcacagatgcgtttcaca ctctgctcacttgccattttt 

Apob gatggagatgggagatgaggt gggctcctcatcaacaagag 

Cideb gctccaatggcctgctaag ttatgatcacagacacggaagg 

Cyp7a1 ggagcttatttcaaatgatcagg cactctgtaaagctccactcactt 

DGAT-2 aggatctgccctgtcacg gtcttggagggccgagag 

HMG-CoAr caaccttctacctcagcaagc acagtgccacacacaattcg 

LDLr tgctactggccaaggacat ctgggtggtcggtacagtg 

LRP-1 aatcgagggcaagatgacac ccagtctgtccagtacatccac 

Mttp gcgagtctaaaacccgagtg cactgtgatgtcgctggttatt 

  FXR ccacgaccaagctatgcag tctctgtttgctgtatgagtcca 

Sar1a gggcaaaccacaggaaag cactgcacatgaacacttcca 

SREBP-2 gtgcagacagtcgctacacc aatctgaggctgaaccagga 

               NTCP aaaatcaagcctccaaaggac ttgtgggtacctttttccaga 

ActB cccgcgagtacaaccttct cgtcatccatggcgaact 

GAPDH ccctcaagattgtcagcaatg agttgtcatggatgaccttgg 
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Abstract 

Small heterodimer partner (SHP) is an important transcriptional factor involved in the 

regulation of glucose, lipid, and bile acid metabolism in liver. Shp has been reported to be 

down regulated in ovariectomized (Ovx) mice and up-regulated by estrogens suggesting a link 

between estrogens and Shp. The purpose of the present study was to determine the effects of 

exercise training on Shp and key markers of cholesterol and bile acid homeostasis in Ovx rats 

under cholesterol feeding. Our main experimental group was composed of Ovx rats fed a high 

cholesterol diet (Ovx-Chol) that was compared to a group of Ovx rats fed a standard diet 

(Ovx-SD) and a group of Sham operated rats fed the cholesterol diet (Sham-Chol). These 

groups of Ovx and Sham rats were subdivided into either voluntary wheel running or 

sedentary groups for 5 weeks. Plasma and liver total cholesterol levels were not affected by 

exercise training in any of the experimental conditions. Cholesterol feeding in both Sham and 

Ovx rats resulted in significantly (P<0.001) higher hepatic cholesterol accumulation than in 

Ovx-SD. Hepatic LDL receptor (Ldlr) and proprotein convertase subtilisin/kexin type 9 

(Pcsk9), which are involved in cholesterol uptake from circulation, were not influenced by 

training. A main effect of training (P< 0.05) was, however, found for transcripts of Shp and 

cholesterol 7 alpha-hydroxylase (Cyp7a1), the main gene involved in bile acid biosynthesis 

from cholesterol. These results suggest that voluntary wheel running may modulate cholesterol 

metabolism in Ovx animals through up-regulation of Shp and bile acid formation. 

 

Key words:  LDL receptor, Pcsk9, Cyp7a1, liver cholesterol 
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Introduction  

Accumulated evidence from human and animal studies shows that estrogen deficient state 

leads to disturbances in fat and cholesterol metabolism. While most studies were limited to 

assessment of plasma cholesterol levels (Park et al. 2011b; Chaudhuri et al. 2012; Kaur et al. 

2013) recent studies indicate that hepatic cholesterol metabolism is also affected by estrogen 

withdrawal (Ngo Sock et al. 2013; Ngo Sock et al. 2014a). Considering that the liver is a 

master regulator of cholesterol metabolism, there is a need for a better understanding of the 

liver response under estrogen withdrawal. Nutritional approaches have been frequently used to 

investigate the response of the liver to estrogen deficient conditions (Cote et al. 2013; Savard 

et al. 2013). For instance, a large hepatic cholesterol accumulation was observed in 

ovariectomized (Ovx) animals when fed a high fat and/or high fat/high cholesterol diets (Cote 

et al. 2014; Ngo Sock et al. 2014a). Furthermore, gene expression of different markers such as 

low density lipoprotein-receptor (Ldlr) was decreased in liver of Ovx rats fed a cholesterol diet 

probably due to cholesterol accumulation in liver (Farahnak et al. 2015). This study also 

revealed that the combined effect of cholesterol diet and ovariectomy resulted in suppression 

of transcripts of hepatic bile salt export pump (Bsep) and Na+-taurocholate cotransporting 

polypeptide (Ntcp), two transporters of bile acids in liver. It appears that a better knowledge of 

the contribution of bile acid transport/metabolism, which is the main way of elimination of 

excess cholesterol transiting through the liver, can shed some light on how liver regulates 

cholesterol metabolism in Ovx animal.  

In addition to nutritional approaches, there is some evidence that exercise training may also 

influence hepatic cholesterol metabolism. For instance, it has been reported that voluntary 

wheel running increases cholesterol conversion into bile acids and consequently decreases 

atherosclerotic burden in Ldlr deficient mice (Meissner et al. 2011). It seems that running 

modulates cholesterol metabolism through bile acid formation. Running also enhanced fecal 

cholesterol excretion in mice implying beneficial effects of exercise (Meissner et al. 2010b).  

One of the key molecules involved in bile acid metabolism is small heterodimer partner (Shp). 

Shp is a main transcriptional regulator involved in the regulation of glucose, lipid and bile acid 

metabolism in liver. Shp acts through its interaction with several nuclear receptors, including 

farnesoid X receptor (Fxr), a transcription factor known to regulate Cyp7a1 (Chiang 2004; 

Modica et al. 2012), the main enzyme of the biosynthesis of bile acids from cholesterol 
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(Jelinek et al. 1990). It was reported that Shp is down regulated in Ovx mice and alternatively, 

up-regulation of Shp by estrogens suggests that there is a link between estrogens and Shp 

(Wang et al. 2015).  

The purpose of the present study was to determine the effect of training on key markers of 

hepatic cholesterol and bile acid metabolism in Ovx rats under cholesterol feeding. We 

targeted gene expression of molecules involved in cholesterol metabolism such as Ldlr and 

Pcsk9, and bile acid metabolism in liver, including Shp and Cyp 7a1. 

 

Materials and Methods 

Animal care 

Female Sprague-Dawley rats (n=49) weighing 180–200 g were obtained from Charles River 

(St-Constant, PQ, Canada) and housed individually to monitor food intake in each animal. The 

animals had ad libitum access to food and tap water. Their environment was controlled in 

terms of light (12 h light–dark cycle starting at 06:00 AM), humidity and room temperature 

(20–23°C). Body weight and food intake were monitored bi-weekly from the start of 

experiment. All experimental procedures were conducted according to the protocols approved 

by the Institutional Animal Care and Use Committee of the University of Montreal in 

agreement with The Canadian Council on Animal Care’s rules (CCAC-CCPA).  

Diets, surgery, and exercise protocols              

 Rats were first acclimated to their environment for a period of one week while fed a chow diet 

(12.5 % lipid, 63.2 % CHO and 24.3 % protein; kJ from Agribrands Canada, Woodstock, 

Ontario, Canada). Thereafter, rats underwent either a bilateral ovariectomy (Ovx, n=34) or a 

bilateral sham-operation (Sham, n=15) according to the technique described by Robertson et 

al. under isoflurane anaesthesia (Robertson et al. 1984). After surgery, all animals were 

injected with antibiotics (Tribrissen 48%; 0.125 cc/kg, subcutaneously) and analgesics 

(Carprofen; 4.4 mg/kg, subcutaneously) for 3 days.  

Six groups of rats were compared. Our main experimental group was composed of Ovx rats 

fed a high cholesterol diet (Ovx-Chol, n=17) that was compared to a group of Ovx rats fed a 

standard diet (Ovx-SD, n=17) and a group of Sham rats fed the cholesterol diet (Sham-Chol, 

n=15). These three groups of Ovx and Sham rats were subdivided into either voluntary wheel 

running (Tr) or sedentary groups (Sed). In fact, the effects of training were determined in Ovx-
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Chol rats that were compared to two control groups: an Ovx-SD group and a Sham-Chol 

group to isolate the diet and estrogens withdrawal effects, respectively.  The Chol diet 

consisted of a standard diet (SD) supplemented with 0.25% cholesterol (SD+Chol) (Table S1).  

Tr rats were placed in freely rotating wheel cages while Sed rats were placed in blocked 

running wheel cages. Each wheel cage was equipped with a sensor connected to a 

computerized data acquisition system enabling the continuous sampling of running data from 

individual rats. The rats were on diet and training for 5 weeks. 

Blood and tissue sampling    

Rats were euthanized between 09:00 and 12:00 AM. Food was removed from the cage 

overnight before sacrifice. Rats refrained from exercising ~24h before sacrifice.   Immediately 

after complete anaesthesia with isoflurane, the abdominal cavity was opened following the 

median line of the abdomen. Approximately 4 ml of blood was collected from the abdominal 

vena cava (<45 s) into syringes treated with ethylenediaminetetraacetic acid (15%; EDTA). 

Blood was centrifuged (3000 rpm; 4°C; 10 min; Beckman GPR Centrifuge; Beckman Coulter) 

and the plasma kept for further analyses. Immediately after blood collection, the liver median 

lobe was removed and freeze-clamped. This sample was used for triacylglycerol (TG), 

cholesterol, and mRNA determinations.  Several organs and tissues were removed and 

weighed (Mettler AE 100) in the following order: uterus, urogenital, retroperitoneal and 

mesenteric fat deposits. The urogenital fat pad included adipose tissue surrounding the 

kidneys, uterus and bladder as well as ovaries, oviducts and uterus. The retroperitoneal fat pad 

was taken as that distinct deposit behind each kidney along the lumbar muscles. The 

mesenteric fat pad consisted of adipose tissue surrounding the gastrointestinal tract from the 

gastroesophageal sphincter to the end of the rectum, with special care taken in distinguishing 

and removing pancreatic cells. All tissue samples were frozen in liquid nitrogen immediately 

after being weighed (Mettler AE-100). All tissue samples were stored along with plasma 

samples at −80 ◦C until analyses were performed.  

Biochemical analyses 

Commercial kits from Sigma (Sigma; St-Louis, Missouri, USA) were used to determine 

plasma and liver TG by colorimetric method. Liver TG concentrations were estimated from 

glycerol released after KOH hydrolysis. Liver total cholesterol concentrations were 

determined with some adaptations of the procedure described by Folch et al. (Folch et al. 
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1957). Briefly, 0.1g of liver was homogenized in a chloroform–methanol mixture (2:1, v/v). 

The chloroform layer was collected and evaporated overnight. After adding 10% Triton X-100 

in isopropanol, the sample was assayed for total cholesterol using commercial kits according 

to the manufacturer’s instructions (Wako Diagnostics and Chemicals USA, Richmond, VA, 

USA). Plasma total cholesterol was determined using the same kit supplied by Wako.   

Molecular analyses   

Total RNA was extracted from frozen liver using RNA extraction Mini kit (Invitrogen), 

according to the manufacturer’s protocol. Thereafter, the RNA was treated with DNase 

(Invitrogen) to avoid genomic contamination. Total RNA (2 µg) was reverse-transcribed into 

complementary DNA using high capacity complementary DNA reverse transcription kits 

(Applied Biosystems). RT samples were stored at -20°C. The gene expression for Cyclophilin 

B was determined using a pre-validated Taqman Gene Expression Assay (Applied Biosystems, 

Rn01462661, Foster City, CA). The gene expression of the target genes was determined using 

assays designed with the Universal Probe Library from Roche. The primer sets and UPL probe 

numbers are presented in Table S2. To validate the efficiency of the qPCR assays, we used a 

mix of the samples tested in the study. The ABI PRISM® 7900HT (Applied Biosystems) was 

used to detect the amplification level and was programmed with an initial step of 3 min at 

95˚C, followed by 40 cycles for 5s at 95˚C and 30s at 60˚C. All reactions were run in duplicate 

and the average values of threshold cycle (CT) were used for quantification. Cyclophilin B 

was used as endogenous control. The relative quantification of target genes was determined 

using the ∆∆CT method. Briefly, the CT values of target genes were normalized to an 

endogenous control gene (Cyclophilin B) (∆CT = CT target – CT Cyclophilin B) and compared with a 

calibrator: (∆∆ CT = ∆ CT Sample - ∆CT Calibrator). Relative expression (RQ) was calculated using 

the Sequence Detection System (SDS) 2.2.2 software (Applied Biosystems) and the formula is 

RQ = 2-∆∆C
T.    

Statistical analysis 

All data are presented as mean ± SE. Statistical significance (P<0.05) was determined using a 

2-way ANOVA for non-repeated measures with exercise and surgery-diet as main factors. 

Interpretation of the comparisons was made only between the Ovx-Chol and the Ovx-SD 

groups on one hand and between the Ovx-Chol and the Sham-Chol groups on the other hand. 

Fisher LSD post hoc test was used in the event of a significant interaction effect. For a 
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significant surgery-diet effect without interaction, Fisher LSD from a one-way ANOVA was 

used.  

 

Results     

Anthropometric parameters, food intake  

Running did not significantly impact on final body weight in any of the experimental groups 

despite of higher (P<0.001) food intake (Table 1). On the other hand, final body weight 

(P<0.001) as well as food intake (P<0.05) were lower in Sham-Chol group compared to both 

Ovx groups. Intra-abdominal fat pad weight was decreased (P<0.05) by training in both Sham 

and Ovx groups fed the cholesterol diet, whereas Ovx-SD group showed slightly higher intra-

abdominal fat weight under training. Similarly to body weight, intra-abdominal fat pad weight 

was significantly (P<0.001) higher in the two Ovx groups compared to Sham-Chol group. The 

chol diet as compared to the SD diet in Ovx animals had no effect on final body weight, food 

intake and intra-abdominal fat pad weight. Uterus weight was significantly (P<0.001) lower in 

Ovx groups compared to Sham rats confirming total ovariectomy (Table 1).  

Liver and plasma lipid profile 

Liver TC and TG levels were not affected by training in any of the nutritional conditions (Fig. 

1). Nevertheless, cholesterol feeding in both Sham and Ovx rats resulted in significantly 

(P<0.001) higher hepatic cholesterol accumulation than in Ovx rats fed the SD. In addition, 

liver TC was significantly (p < 0.05) higher in Sham than in Ovx animals fed the cholesterol 

diet. Opposite to liver TC, hepatic TG levels were significantly (P<0.05) lower in Sham fed 

the cholesterol diet compared to both Ovx groups. As liver TC, plasma TC levels were not 

significantly affected by training (Fig. 1). However, plasma TC was significantly (P<0.01) 

lower in Sham cholesterol group compared to both Ovx groups. Plasma TG levels showed a 

tendency (P=0.09) to be lower in active rats fed a cholesterol diet. On the other hand, plasma 

TG levels were significantly (P<0.05) lower in both sham and Ovx groups fed the cholesterol 

diet compared to Ovx-SD group.    
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Molecular markers of hepatic cholesterol synthesis and uptake  

Gene expression levels of sterol regulatory element binding protein 2 (Srebp2), a key regulator 

of hepatic cholesterol content, as well as its target genes 3-hydroxy-3-methyl-glutaryl-CoA 

reductase (Hmgcoar), LDL receptor (Ldlr) and proprotein convertase subtilisin/kexin type 9 

(Pcsk9) were not changed by training (Fig. 2). Cholesterol feeding in both Sham and Ovx rats 

led to lower (P<0.01) gene expression of Srebp2 and all of its aforementioned target genes 

compared to Ovx rats fed the SD (Fig. 2). These results imply that the expression levels of the 

nuclear receptor and all the present genes involved in hepatic cholesterol synthesis and uptake 

were down regulated by the cholesterol diet. 

Besides Ldlr and Pcsk9, low density lipoprotein receptor-related protein 1 (Lrp1) is also 

involved in hepatic cholesterol uptake. Running had no impact on the gene expression level of 

Lrp1 similarly to Ldlr and Pcsk9. On the other hand, the expression level of Lrp1 was lower 

(P<0.01) in Ovx-Chol than in both Ovx-SD and Sham-Chol groups (Fig. 2). These findings 

indicate that Lrp1 gene expression was significantly reduced by the combination of cholesterol 

feeding and ovariectomy.  

Molecular markers of hepatic cholesterol and bile acid excretion  

Hepatic gene expression of ATP-cassette binding protein G5 and G8 (Abcg5/g8) and Bsep, 

involved in hepatic cholesterol and bile acid secretion, respectively, were not affected by 

exercise training (Fig. 3). The mRNA levels of Abcg5/g8 were significantly (P<0.05) lower in 

both Sham and Ovx rats fed the cholesterol diet compared to animals in the Ovx-SD group, 

while Bsep gene expression was reduced (P<0.05) only in Ovx rats fed the cholesterol diet 

compared to rats in the Ovx-SD group (Fig. 3). These results suggest that cholesterol feeding 

can lead to a reduction in cholesterol excretion from the liver. 

Molecular markers of bile acid metabolism  

The most significant effects of training in the present study were found for gene expression of 

Cyp7a1 and Shp with higher (P<0.05) values measured in Tr compared to Sed rats in all 

experimental conditions (Fig. 4). The Cyp7a1 and Shp responses were not significantly 

affected by the surgery and the diet. Gene expression of Ntcp, involved in bile acids uptake at 

the basolateral membrane of hepatocytes, and fibroblast growth factor receptor 4 (Fgfr4) that 

mediates the effects of intestinal fibroblast growth factor 15 (Fgf15) on suppressing bile acid 
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biosynthesis in liver, along with the transcription factor Fxr were all decreased (P<0.001) 

following the cholesterol diet but their gene expressions were not affected by training (Fig. 4).   

 

Discussion 

The main finding of the present study is an increased gene expression of two key markers of 

bile acid metabolism (Cyp7a1 and Shp) found in liver of exercise-trained rats. This finding 

was observed in animals fed a standard diet but more importantly when rats were fed a high 

cholesterol diet and that independently of estrogen levels. This observation suggests that 

exercise training may help overcome a cholesterol load by stimulating bile acid metabolism. 

On the other hand, exercise training was associated with no change in Srebp2, Hmgcoar, Ldlr, 

and Pcsk9 transcripts indicating an absence of molecular effects on key markers of cholesterol 

synthesis and hepatic cholesterol uptake from the circulation.  

Cyp7a1 

Exercise training has for a long time being associated with changes in plasma cholesterol 

levels favouring a decrease in LDL- cholesterol and an increase in HDL levels, the latter being 

in line with an increase in the so-called reverse cholesterol transport (Durstine et al. 2002; 

Halverstadt et al. 2007). However, the basic pathways responsible for these exercise-induced 

beneficial effects are poorly understood. In recent years, Meissner et al. (Meissner et al. 

2010b; Meissner et al. 2011) reported an increased fecal bile acid excretion in healthy and 

especially in hypercholesterolemic mice suggesting that bile acid metabolism may be involved 

in the action of exercise training on cholesterol metabolism. The present increase in Cyp7a1 

liver mRNA expression, the main enzyme involved in bile acid synthesis from cholesterol in 

liver, is in line with the concept that exercise training may regulate excess cholesterol through 

bile acid metabolism. In support of this, larger increase (two-fold) in Cyp 7a1 transcripts was 

observed when rats, whether Ovx or Sham, were fed the high cholesterol diet. An increase in 

hepatic gene expression of Cyp27a1, a second important hepatic enzyme of bile acid 

formation from cholesterol, has been previously reported in exercising mice fed a lithogenic 

diet for 12 weeks, thus favouring the catabolism of cholesterol to bile acids and reducing 

gallstone formation (Wilund et al. 2008). On the other hand, Meissner et al. (Meissner et al. 

2010b; Meissner et al. 2011) did not find any changes in gene expression of Cyp7a1 in mice 

assigned to voluntary wheel running in spite of an increase in fecal bile acid excretion. 
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However, Pinto et al. (Pinto et al. 2015) recently reported an increase in hepatic Cyp7a1 

expression in liver of mice trained for 6 weeks while there were no differences in the 3H-

cholesterol excretion into feces between the sedentary and exercise groups. In the present 

study, Cyp7a1 transcripts were increased with exercise training in Ovx as well as in Sham rats 

fed the cholesterol diet indicating that this exercise effect takes place independently of 

estrogen levels. Taken together, the present data support the concept that higher bile acid 

biosynthesis following exercise training contributes to the reduction in hepatic cholesterol 

accumulation. 

Shp 

An important novel finding of the present study is the increase in mRNA expression of Shp 

with exercise training in all experimental conditions. SHP is an orphan nuclear receptor 

involved in the regulation of bile acids/cholesterol and also in the regulation of glucose and 

lipid metabolism through the modulation of several transcription factors (Chiang 2004; 

Boulias et al. 2005).  

The importance of the present Shp up-regulation by exercise training is enlighten by findings 

of previous studies indicating that missense mutations and polymorphisms in the promoter and 

coding regions of Shp in human were associated with severe early-onset obesity and diabetes 

(Nishigori et al. 2001; Hung et al. 2003). SHP is, therefore, an excellent candidate that may 

link cholesterol/bile acid regulation to glucose and lipid adaptations known to occur with 

exercise training. It has been recently reported that estrogens up-regulate Shp liver expression 

and decreases hepatosteatosis in male mice fed a high-fat diet (Lai et al. 2003; Wang et al. 

2015). The present finding that exercise training also up-regulated Shp expression in the Ovx 

animals extends previous findings from our lab showing that exercise training provokes 

estrogenic like effects on the expression of several genes involved in the regulation of lipid 

metabolism in liver (Pighon et al. 2011). 

Relationship between Shp and Cyp7a1 

Shp is known to suppress the expression of Cyp7a1 (Nitta et al. 1999; Lee et al. 2002), the 

rate-limiting enzyme in conversion of cholesterol into bile acids (Jelinek et al. 1990). The lack 

of this relationship in our study is in concert with Lai et al’s finding showing that the induction 

of Shp by ethynylestradiol did not repress the expression of  Cyp7a1 (Lai et al. 2003). In prior 

studies, the same researchers had shown that chronic administration of 17β-estradiol in mice 
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resulted in increased expression of Shp (Evans et al. 2002).  It is, thus, likely that the induction 

of Shp by estrogens does not result in gene suppression of Cyp7a1. It seems that training in 

our study might imitate the effect of estrogens on Shp. On the other hand, higher expression of 

Shp and consequently Cyp7a1 under training might be a compensatory response to overcome 

the hepatic cholesterol accumulation. Lack of inverse relationship between Shp and Cyp7a1 in 

the present study suggests that based on circumstances, Shp acts differently. Kerr et al.  

suggested that under normal conditions the inputs of Fxr and Shp result in regulation of bile 

acid synthesis through the negative feedback on Cyp7a1. Beyond the normal conditions e.g. 

when liver is damaged, alternate pathways may regulate bile acid homeostasis (Kerr et al. 

2002).   

In contrast to Cyp7a1, gene expressions of other markers of bile acid metabolism in liver, 

including Ntcp, Fgfr4, and Fxr were all decreased by the cholesterol diet in Sham and Ovx rats 

but not affected by the training state. Down-regulated gene expression of Ntcp suggests that 

there is less bile acid influx to the liver from the enterohepatic circulation. Decreased 

transcript levels of Fgfr4 by cholesterol feeding may indicate that the inhibitory effect of 

Fgf15 on Cyp7a1 which acts through hepatic Fgfr4 receptor might be reduced. This lack of 

inhibitory effect on Cyp7a1 would reinforce the interpretation that higher Cyp7a1 production 

and consequently higher bile acid synthesis from cholesterol is a way to remove excess 

cholesterol from the liver.  

Hmgcoar, Ldlr, and Pcsk9 

Cholesterol feeding in the present study resulted in lower hepatic transcripts of Srebp2 and its 

target gene, Hmgcoar in both Sham and Ovx animals. In addition, hepatic expression of Ldlr 

and Pcsk9, two other target genes of Srebp2 which are involved in hepatic cholesterol 

absorption from circulation, were suppressed by the cholesterol diet. Hepatic cholesterol 

accumulation might be a reason for the suppression of cholesterol biosynthesis and uptake 

from plasma. Seemingly, it could be a protective response to prevent more cholesterol 

accumulation in the liver. These findings are in concert with our previous study that showed 

that cholesterol feeding led to a reduction in Srebp2, Ldlr and Lrp1 expression in the liver 

(Ngo Sock et al. 2014a).  

 Meissner et al. (Meissner et al. 2010b) reported that fecal excretion of bile acids and neutral 

sterols in running mice was a reflection of elevated endogenous hepatic cholesterol synthesis 
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in running group compared to sedentary mice. This is hardly the case in the present study 

since cholesterol feeding resulted in lower expression of Hmgcoar in both Sham and Ovx rats 

regardless of exercise intervention. Therefore, higher Cyp7a1 mRNA expression under 

training is likely a consequence of hepatic dietary cholesterol accumulation. It thus seems that 

exercise does not modulate a cholesterol load by reducing cholesterol synthesis, but rather by 

stimulating bile acid metabolism. 

Moreover, a training effect was not observed in mRNA expression of Srebp2, Ldlr, Pcsk9 and 

Lrp1 in liver. Previously our group showed that exercise training increased mRNA expression 

of Srebp2 in Ovx rats but had no effect on its hepatic target genes expression (Ngo Sock et al. 

2014a). These data, therefore, do not provide any evidence that exercise training affect hepatic 

cholesterol uptake from the circulation through the Ldlr pathway. On the other hand, Wen’s et 

al. reported that a high fat diet plus exercise for 8 weeks resulted in an increase in nuclear 

Srebp2 protein with elevated levels of hepatic Ldlr and Pcsk9 mRNA in mice due to a 

reduction in hepatic cholesterol accumulation (Wen et al. 2013).   

Liver TC and TG 

Higher Cyp7a1 expression in response to training suggests higher bile acid synthesis and more 

excretion of the cholesterol from the liver in the form of bile acid. Therefore, less cholesterol 

accumulation might be expected inside the liver. However, liver TC and TG levels were not 

changed by training under all the present nutritional conditions while exercise running in other 

studies (Meissner et al. 2010b; Wen et al. 2013) resulted in decreased hepatic cholesterol 

content in male mice. It is possible that the reported effects of training in Ovx rats under the 

present duration of observation are only at the molecular level. Furthermore, considering that 

Ovx rats were fed a diet rich in cholesterol, perhaps longer time would be needed to overcome 

the hepatic cholesterol and TG accumulation. Nevertheless, plasma lipid profile especially TG 

levels were lower in trained rats fed the chol diet than rats in Ovx-SD condition. Apparently, 

plasma and liver TC and TG accumulation responses to exercise training follow different time 

courses. On the other hand, hepatic gene expression of Abcg5/g8 and Bsep which are involved 

respectively in cholesterol and bile acid efflux from liver into the bile duct were not increased 

by training. This is unexpected in view of a potential increase in bile acid synthesis. It is 

possible the expression of hepatic gene involved in cholesterol excretion from liver need a 

longer period of time to respond to a training stimulus.  
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In summary, results of the present study indicate that exercise training modulates hepatic 

cholesterol metabolism through the up-regulation of Shp and bile acid metabolism. It seems 

that increased mRNA expression of Shp and subsequently higher expression levels of Cyp7a1 

is a positive response triggered by exercise to alleviate hepatic cholesterol accumulation and 

help to drive the cholesterol out from liver. Elevated cholesterol turnover induced by exercise 

training may contribute to improve hepatosteatosis and decrease the risk of obesity, diabetes 

and cardiovascular disease.  
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Figure captions 

Fig 1. Liver and plasma total cholesterol (TC) and triacylglycerol (TG) levels in 

ovariectomized (Ovx) rats fed a standard diet (SD) (Ovx-SD), Ovx rats fed a standard diet + 

0.25% cholesterol (Chol) (Ovx-Chol) and sham operated (Sham) rats fed the Chol diet  

(Sham-Chol) in sedentary (Sed,   ) or trained (Tr,   ) state. Values are mean ± SE. * 

Significantly different from respective Sed group (P < 0.05),   ** (P < 0.01),  ***   (P < 

0.001). † Significantly different from respective Ovx-SD group (P < 0.05),  †† (P < 0.01),  

††† (P < 0.001);  δ Significantly different from respective Ovx-Chol group (P < 0.05),   δδ (P 

< 0.01),  δδδ (P < 0.001).       

Fig 2. Hepatic mRNA expression of genes involved in hepatic cholesterol biosynthesis and 

cholesterol uptake from the circulation in ovariectomized (Ovx) rats fed a standard diet (SD) 

(Ovx-SD), Ovx rats fed a standard diet + 0.25% cholesterol (Chol) (Ovx-Chol) and sham 

operated (Sham) rats fed the Chol diet (Sham-Chol) in sedentary (Sed,   ) or trained (Tr,   ) 

state. Values are mean ± SE. * Significantly different from respective Sed group (P < 0.05),   

** (P < 0.01),  ***   (P < 0.001). † Significantly different from respective Ovx-SD group (P 

< 0.05),  †† (P < 0.01),  ††† (P < 0.001);  δ Significantly different from respective Ovx-Chol 

group (P < 0.05),   δδ (P < 0.01),  δδδ (P < 0.001). Srebp2, sterol regulatory element-binding 

protein-2; Hmgcr, 3-hydroxy-3-methyl-glutaryl-CoA reductase; Ldlr, LDL-receptor; Pcsk9, 

proprotein convertase subtilisin/kexin type 9; Lrp-1, LDL receptor-related protein-1. 

Fig 3. Hepatic mRNA expression of ATP-cassette binding protein G5 and G8 (Abcg5/g8) and 

bile salt export pump (Bsep) in ovariectomized (Ovx) rats fed a standard diet (SD) (Ovx-SD), 

Ovx rats fed a standard diet + 0.25% cholesterol (Chol) (Ovx-Chol) and sham operated 

(Sham) rats fed the Chol diet  (Sham-Chol) in sed (Sed,   ) or trained (Tr,   ) state. Values are 

mean ± SE. * Significantly different from respective Sed group (P < 0.05),   ** (P < 0.01),  

***   (P < 0.001). † Significantly different from respective Ovx-SD group (P < 0.05),  †† (P 

< 0.01),  ††† (P < 0.001);  δ Significantly different from respective Ovx-Chol group (P < 

0.05),   δδ (P < 0.01),  δδδ (P < 0.001). 

Fig 4. Hepatic mRNA expression of genes related to bile acid metabolism in ovariectomized 

(Ovx) rats fed a standard diet (SD) (Ovx-SD), Ovx rats fed a standard diet + 0.25% cholesterol 

(Chol) (Ovx-Chol) and sham operated (Sham) rats fed the Chol diet in sedentary (Sed,   ) or 

trained (Tr,   ) state. Values are mean ± SE. * Significantly different from respective Sed 



 

85 

 

group (P < 0.05),   ** (P < 0.01),  ***   (P < 0.001). † Significantly different from respective 

Ovx-SD group (P < 0.05),  †† (P < 0.01),  ††† (P < 0.001);  δ Significantly different from 

respective Ovx-Chol group (P < 0.05),   δδ (P < 0.01),  δδδ (P < 0.001). Cyp7a1, cholesterol 

7 alpha-hydroxylase; Shp, small heterodimer partner; Ntcp, Na+-taurocholate cotransporting 

polypeptide; Fgfr4, fibroblast growth factor receptor 4; Fxr, farnesoid X receptor. 
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Table S1. Diet description   

 Standard Diet (SD) 
 (D12450J) 

SD + Chol (0.25%) 
(D13020701) 

(%)   
Protein 19.2 19.2 
Carbohydrate 67.3 67.1 
Fat 4.3 4.3 
(g)   
Casein 200 200 
L-Cystine 3 3 
   
Corn Starch 506.2 506.2 
Maltodextrin 10 125 125 
Sucrose 68.8 68.8 
Cellulose, BW200 50 50 
   
Soybean Oil 25 25 
Lard 20 20 
   
Mineral Mix S10026 10 10 
DiCalcium Phosphate 13 13 
Calcium Carbonate 5.5 5.5 
Potassium Citrate, 1 H2O 16.5 16.5 
Vitamin Mix V10001 10 10 
Choline Bitartrate 2 2 
   
Cholesterol  0.0 2.63 
   
Kcal/g 3.85 3.84 

Formulated by: Research Diets, Inc. (20 Jules Lane, New Brunswick, NJ 08901 USA) 
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Table S2. Oligonucleotide primers used for quantitative real-time polymerase chain reaction 

Gene Oligo FWD Oligo REV 

ABCG5 cggagagttggtgttctgtg caccgatgtcaagtccatgt 

ABCG8 cagatgctggctatcataggg ctgatttcatcttgccacca 

BSEP cggtggctgagagatcaaat tgcgatagtggtggagaaca 

Cyp7a1 ggagcttatttcaaatgatcagg cactctgtaaagctccactcactt 

Fgfr4 ttgaggcctctgaggaaatg             tcttgctgctccgagattg 

  FXR ccacgaccaagctatgcag tctctgtttgctgtatgagtcca 

HMG-CoAr caaccttctacctcagcaagc acagtgccacacacaattcg 

LDLr tgctactggccaaggacat ctgggtggtcggtacagtg 

LRP-1 aatcgagggcaagatgacac ccagtctgtccagtacatccac 

               NTCP aaaatcaagcctccaaaggac ttgtgggtacctttttccaga 

               PCSK9 cacctagcaggtgtggtcag              gcagactgtgcagactggtg 

               SHP cctcggtttgcatacagtgtt              aggttttgggagccatcaa 

               SREBP-2 gtgcagacagtcgctacacc aatctgaggctgaaccagga 

               ActB cccgcgagtacaaccttct cgtcatccatggcgaact 

              Cyclophilin B acgtggttttcggcaaagt cttggtgttctccaccttcc 
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Abstract  

Aim: Transintestinal cholesterol excretion (TICE) is known as an alternate non-biliary route 

of cholesterol excretion. Indeed, the cholesterol excretion from the body depends on a 

dynamic interplay between both classic biliary and non-biliary pathways. This study was 

designed to determine whether exercise training has effects on intestinal membrane receptors 

involved in TICE in intact and ovariectomized (Ovx) rats.  

Study design: Sprague-Dawley rats were first divided into 4 groups: Sham operated and Ovx 

rats fed a standard diet (Sham-SD; Ovx-SD), or a high cholesterol diet (Sham-Chol; Ovx-

Chol). These 4 groups were subsequently subdivided into either sedentary (Sed) or voluntary 

wheel running (Tr) groups for 6 weeks.     

Results: As expected, cholesterol diet resulted in increased hepatic cholesterol accumulation 

(P< 0.001) in both Sham and Ovx rats. Exercise training increased (P< 0.01) transcripts of 

intestinal LDL receptor (Ldlr) and proprotein convertase subtilisin/kexin type 9 (Pcsk9), 

which are involved in trans-intestinal cholesterol uptake from circulation, and their nuclear 

receptor, intestinal sterol regulatory element-binding protein 2 (Srebp2) (P< 0.05) in both 

Sham and Ovx rats compared to rats remaining Sed in all diet conditions except for higher 

Pcsk9 mRNA expression which was found only in Chol fed rats. On the other hand, hepatic 

Ldlr and Pcsk9 gene expression were suppressed (P< 0.01) by cholesterol feeding but not 

affected by exercise training. Flavin monooxygenase 3 (Fmo3) gene expression, as a 

cholesterol balance regulator in liver, was significantly decreased (P<0.01) by cholesterol 

feeding in both Sham and Ovx rats compared to rats were fed the SD diet but unchanged 

following exercise training and estrogen withdrawal.  

Conclusion: The present results indicate an up-regulation of intestinal gene expression of Ldlr 

and Pcsk9 following voluntary wheel running in intact and Ovx rats and suggest that exercise 

training may contribute to an increased cholesterol elimination through the TICE pathway. 

Exercise training appears to be an appropriate nonpharmacological intervention to stimulate 

TICE to excrete the excess cholesterol from the body. 

 

Key words:  Intestinal cholesterol disposal, LDL receptor, FMO3, liver cholesterol 
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Introduction 

Although the biliary route is the main pathway for elimination of excess cholesterol from the 

body, several studies have recently enlighten that reverse cholesterol transport (RCT) can also 

proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE) 

(Brown et al. 2008; van der Velde et al. 2008; Temel and Brown 2012). Indeed, in this new 

model of RCT, the cholesterol disposal from the body depends on an active interplay between 

liver and intestine (Temel and Brown 2015). In TICE pathway, cholesterol is transported 

through the receptors at the basolateral and apical membrane of intestine which are involved in 

cholesterol uptake from plasma and cholesterol secretion into the lumen, respectively. Low 

density lipoprotein (LDL) receptor and LDL receptor family were reported as receptors 

involved in cholesterol uptake from circulation at the basolateral side of intestine (Le May et 

al. 2013). Adenosine triphosphate binding cassette transporters G5 and G8 (ABCG5/G8) and 

adenosine triphosphate binding cassette transporters B1a and b (ABCB1a/b) are also 

introduced as receptors involved in cholesterol excretion into the lumen at the apical 

membrane of intestine (van der Veen et al. 2009; Le May et al. 2013). Additionally, there is 

evidence that the set point of cholesterol excretion is sustained by the crosstalk between biliary 

and non-biliary pathways (Kruit et al. 2005). In very recent study hepatic flavin 

monooxygenase 3 (Fmo3) has been identified as a key cholesterol regulator of both biliary and 

non-biliary RCT pathways (Warrier et al. 2015). Transport and elimination of cholesterol is 

particularly relevant to ovariectomized (Ovx) animals in which hepatic cholesterol metabolism 

has been reported to be disrupted especially when fed a high cholesterol diet (Kamada et al. 

2011; Cote et al. 2013). For instance, large hepatic cholesterol content was observed in Ovx 

models by the cholesterol feeding suggesting that dietary cholesterol plays a critical role in 

development of steatohepatitis (Subramanian et al. 2011; Cote et al. 2014). In addition to 

hepatic cholesterol accumulation, hepatic very low density lipoprotein (VLDL) production and 

secretion is reduced in Ovx rats fed a cholesterol diet (Farahnak et al. 2015). Recent studies 

have shown that hepatic mRNA expression of adenosine triphosphate binding cassette protein 

G8 (Abcg8) and bile salt export pump (Bsep) transcript, involved in cholesterol and bile acid 

excretion from liver into bile duct respectively, were also decreased in Ovx rats fed a 

cholesterol diet (Cote et al. 2014; Farahnak et al. 2015). It seems that estrogen withdrawal and 
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high cholesterol diet act synergistically to impair different aspects of hepatic cholesterol 

metabolism including cholesterol excretion from the body. It has been revealed that 

contribution of biliary and non-biliary TICE is different under physiological or 

pathophysiological conditions (Temel and Brown 2015). Under normal physiological 

conditions, the biliary route has a predominant role and the non-biliary TICE pathway 

contributes to approximately 20-30% of the cholesterol disposal. However, TICE pathway can 

be stimulated by both pathophysiological and pharmacological stimuli (Temel and Brown 

2012). For example, pharmacological activation of Liver X Receptor (LXR) (van der Veen et 

al. 2009) or high fat diet (van der Velde et al. 2008) resulted in increased intestinal cholesterol 

disposal. It seems that biliary cholesterol insufficiency can be compensated by intestine 

through TICE to keep normal levels of fecal cholesterol loss. Considering that hepatic 

cholesterol excretion is impaired in Ovx animal, thus it is important to gain knowledge about 

the role of TICE in cholesterol excretion in Ovx model.  

There is some evidence that exercise training, as one of the best nonpharmacological 

strategies, attenuates hepatic cholesterol accumulation and leads to higher biliary bile acid 

secretion in hypercholesterolemic mice (Meissner et al. 2011). Increase in cholesterol 7 alpha-

hydroxylase (Cyp7a1) transcript, involved in conversion of cholesterol into bile acid in liver, 

was also reported in trained male mice (Pinto et al. 2015). On the other hand, several studies 

showed diverse effects of exercise training on intestinal Abcg5/g8 transcript in healthy female 

rats (Ghanbari-Niaki et al. 2012; Ngo Sock et al. 2014b). Lack of evidence for training effects 

on TICE thus creates a great avenue to explore this pathway under training to gain a better 

knowledge of cholesterol disposal through intestine. 

The aim of the present study was to determine the effect of exercise training on key intestinal 

cholesterol receptors involved in TICE in intact and Ovx rats fed a normal and a high 

cholesterol diet. We targeted gene expression of key molecules of TICE at intestinal 

basolateral membrane such as Ldlr and proprotein convertase subtilisin/kexin type 9 (Pcsk9) 

and also at intestinal apical membrane like Abcg5/g8 and Abcb1a/b. We also targeted gene 

expression of Fmo3, Ldlr, Pcsk9 and scavenger receptor B1 (Sr-B1) in liver.   
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Materials and Methods 

Animal care 

Female Sprague-Dawley strain rats (n=65; Charles River, St Constant, PQ, Canada), weighing 

187–194 g upon their arrival were housed individually and had ad libitum access to food and 

tap water. Their environment was controlled in terms of light (12 h light–dark cycle starting at 

06:00 AM), humidity and room temperature (20–23°C). Body weight and food intake were 

monitored bi-weekly from the start of experiment. All experimental procedures were 

conducted according to the protocols approved by the Institutional Animal Care and Use 

Committee of the University of Montreal in agreement with The Canadian Council on Animal 

Care’s rules (CCAC-CCPA).  

Surgery, diets, and exercise protocol              

 Rats were first acclimated to their environment for a period of one week while fed a chow diet 

(12.5 % lipid, 63.2 % CHO and 24.3 % protein; kJ from Agribrands Canada, Woodstock, 

Ontario, Canada). Afterwards, rats underwent either a bilateral ovariectomy (Ovx, n=32) or a 

bilateral sham-operation (Sham, n=33) according to the technique described by Robertson et 

al (Robertson 1984) under isoflurane anaesthesia. After surgery, all animals were injected with 

antibiotics (Tribrissen 48%; 0.125 cc/kg, subcutaneously) and analgesic (Carprofen; 4.4 

mg/kg, subcutaneously) for 3 days. Ovx and Sham rats were given either a standard diet (SD) 

or a high cholesterol diet (Chol). The Chol diet consisted of the standard diet (SD) 

supplemented with 0.25% cholesterol (SD+Chol) (Table S1). The four groups composed of 

Sham rats fed a SD or a Chol diet  (Sham-SD, n=17; Sham-Chol, n=16  and Ovx rats fed a SD 

or a Chol diet  (Ovx-SD, n=16; Ovx-Chol, n=16) were further subdivided into either voluntary 

wheel running (Tr) or sedentary groups (Sed) for a total of 8 groups. Tr rats were placed in 

freely rotating wheel cages while Sed rats were placed in blocked running wheel cages. Each 

wheel cage was equipped with a sensor connected to a computerized data acquisition system 

enabling the continuous sampling of running data from individual rats. Rats were on diet and 

training for 6 weeks.   

Blood and tissue sampling    

Rats were fasted overnight and euthanized between 08:00 and 11:00 AM. Rats were refrained 

from exercising ~ 24 h before sacrifice. Immediately after complete anaesthesia with 

isoflurane, the abdominal cavity was opened following the median line of the abdomen. 
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Approximately 5 ml of blood was collected from the abdominal vena cava (<45 s) into 

syringes treated with ethylenediaminetetraacetic acid (15%; EDTA). Blood was centrifuged 

(3000 rpm; 4°C; 10 min; Beckman GPR Centrifuge; Beckman Coulter) and the plasma kept 

for further analyses. Immediately after blood collection, the liver median lobe was removed 

and freeze-clamped. This sample was used for cholesterol, and mRNA determinations. Several 

organs were removed and weighed (Mettler AE 100) in the following order: uterus, urogenital, 

retroperitoneal and mesenteric fat deposits. The urogenital fat pad included adipose tissue 

surrounding the kidneys, uterus and bladder as well as ovaries, oviducts and uterus. The 

retroperitoneal fat pad was taken as that distinct deposit behind each kidney along the lumbar 

muscles. The mesenteric fat pad consisted of adipose tissue surrounding the gastrointestinal 

tract from the gastroesophageal sphincter to the end of the rectum, with special care taken in 

distinguishing and removing pancreatic cells. After mesenteric fat removal, a section of 

approximately 5 cm of jejunum, was removed, washed in antiprotease solution (10% pepstatin 

A in methanol, 100% leupeptin, 1.7% phenylmethylsulfonyl fluoride in isopropanol, 0.9% 

NaCl), and frozen in liquid nitrogen. Liver and a fragment of jejunum along with plasma 

samples were stored at −78 ◦C until analyses were performed.  

Biochemical analyses 

Liver total cholesterol concentrations were determined with some adaptations of the procedure 

described by Folch et al. (Folch et al. 1957). Briefly, 0.1g of liver was homogenized in a 

chloroform–methanol mixture (2:1, v/v). The chloroform layer was collected and evaporated 

overnight. After adding 10% Triton X-100 in isopropanol, the sample was assayed for total 

cholesterol using commercial kits according to the manufacturer’s instructions (Wako 

Diagnostics and Chemicals USA, Richmond, VA, USA). Plasma total cholesterol was 

determined using the same kit supplied by Wako. Plasma PCSK9 concentration was measured 

using Mouse/Rat PCSK9 ELISA kit from CircuLex. 

RNA isolation and quantitative real-time (RT) polymerase chain reaction (PCR)  

Quick-frozen tissue samples of liver and jejunum were powdered with cold mortar and pestle 

and ~100 mg was used for the isolation of RNA. Details of RNA extraction following by RT-

PCR have been previously described (Farahnak et al. 2015). The primer sets and UPL probe 

numbers used to generate amplicons are presented in Table S2. 

Statistical analysis 
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All data are presented as mean ± SE. Statistical significance (P<0.05) was determined using a 

3-way ANOVA for non-repeated measures with exercise, diet and surgery as main factors. 

Fisher LSD post hoc test was used in the event of a significant interaction effect. For a 

significant exercise, diet and surgery effect without interaction, Fisher LSD from a one-way 

ANOVA was used.  

 

Results 

Anthropometric parameters, food intake  

Final body weight was not affected by exercise training in any of the experimental groups 

whereas intra-abdominal fat pad weight was significantly decreased (P<0.001) by training in 

both Sham and Ovx rats regardless of type of the diet (Table 1). On the other hand, final body 

weight (P<0.001), intra-abdominal fat pad (P<0.01) and also food intake (P<0.001) were 

higher in Ovx compared to Sham rats implying the effect of estrogen withdrawal. Cholesterol 

diet had no impact on any of the aforementioned parameters in both Sham and Ovx rats. 

Uterus weight was significantly (P<0.001) lower in Ovx groups compared to Sham rats 

confirming total ovariectomy. Total running distance was approximately 2 times higher in 

Sham groups compared to Ovx rats (Table 1). 

Molecular markers of TICE at the intestinal basolateral and apical membranes  

Running resulted in significantly (P<0.01) higher Ldlr transcript in both Sham and Ovx rats 

compared to rats remaining Sed in all diet conditions (Fig. 1). A trend for higher Ldlr gene 

expression (p= 0.1) was observed under cholesterol feeding in both Sham and Ovx rats 

compared to rats on the SD diet. Similarly to Ldlr, Pcsk9 mRNA gene expression was 

significantly (P<0.001) higher following training but only in rats fed the Chol diet. These two 

genes are involved in cholesterol uptake from circulation at the basolateral side of intestine. 

Ldlr and Pcsk9 are the target genes of transcription factor Srebp2. Intestinal Srebp2 transcript 

was also increased (P<0.05) by training in both Sham and Ovx rats in both dietary conditions 

(Fig. 1). On the other hand, estrogen withdrawal had no effect on Ldlr and Pcsk9 mRNA gene 

expression. Based on previous studies, in addition to Ldlr and Pcsk9, scavenger receptor class 

B member 1 (Sr-b1) and very low density lipoprotein (Vldlr) also play a role in intestinal 

cholesterol uptake. Our results showed that mRNA expression of Sr-b1 and Vldlr were not 
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affected by training, Chol diet, and or estrogen withdrawal in any of the experimental groups 

(Fig S1).  

ATP-binding cassette protein G5/G8 (Abcg5/g8) and ATP-binding cassette sub-family B 

member 1 a/b (Abcb1a/b), the receptors at the apical membrane of the intestine, are involved 

in cholesterol excretion from the intestine into the lumen. With the exception of Abcb1b 

mRNA expression which was found to be lower (P<0.05) in Sham compared to Ovx rats (Fig. 

2), all other receptors measured at the intestinal apical side were not affected by any of the 

main experimental factors (exercise, diet, surgery) (Fig. 2).  

Liver and plasma total cholesterol (TC) levels 

Running had no effect on liver and plasma TC levels (Fig. 3). Cholesterol diet resulted in 

higher (P<0.001) hepatic TC in both Sham and Ovx rats compared to animals on SD diet. This 

result indicates that cholesterol feeding led to cholesterol accumulation in liver.  Plasma TC 

levels was not affected by the dietary intervention (Fig. 3). Estrogen withdrawal had no impact 

on TC levels in liver while levels of TC in plasma were higher (P<0.01) in Ovx compared to 

Sham rats fed the Chol diet. 

Molecular markers of hepatic cholesterol uptake form circulation 

Running had no impact on mRNA gene expression of hepatic Ldlr, Pcsk9 and circulating 

Pcsk9 (Fig. 4) while Sr-b1 transcript, involved in cholesterol uptake from HDL, was higher 

(P<0.05) in Tr than in Sed animals in both Sham and Ovx groups. Cholesterol feeding 

significantly reduced mRNA expression of all of these three genes in both Sham and Ovx 

groups compared to rats fed the SD diet with the exception of Pcsk9 gene expression which 

was only decreased in Sham-Chol group (Fig. 4). Ovx rats showed lower Ldlr transcript 

(P<0.001) compared to Sham rats in both dietary conditions. On the other hand, Pcsk9 mRNA 

expression was only decreased (P<0.05) by estrogen withdrawal in Ovx rats on SD diet 

compared to Sham-SD group. Sr-b1 mRNA expression was not affected by estrogen 

withdrawal in any of the experimental groups. Circulating concentration of PCSK9 showed 

the same trend as its hepatic gene expression (Fig. 4). Taken all together, cholesterol feeding 

and estrogen deficiency state had major effects on reduction of the expression of the receptors 

involved in cholesterol uptake from circulation in liver, especially in Ldlr and Pcsk9.   

Hepatic Fmo3 and Abcg5/g8 mRNA expression 
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Flavin monooxygenase 3 (Fmo3) plays an important role in cholesterol balance in liver. It 

regulates the amount of cholesterol entering the biliary and non-biliary pathways. Down 

regulation of Fmo3 directs the cholesterol excretion from biliary to non-biliary TICE pathway. 

Gene expression of Fmo3 was not changed either by exercise training or by estrogen 

withdrawal (Fig. 5). On the other hand, Fmo3 transcript was significantly decreased (P<0.01) 

by cholesterol feeding in both Sham and Ovx rats compared to respective rats fed the SD diet.  

Hepatic Abcg5 and g8 transcript, involved in hepatic cholesterol excretion into bile duct, were 

not affected by exercise and estrogen deficiency (Fig. 5). However like Fmo3, Abcg8 mRNA 

expression was reduced (P<0.05) in rats fed Chol diet compared to animals on SD diet 

suggesting that liver might have less role in cholesterol secretion probably owe to deficit in 

hepatic cholesterol uptake as a consequence of hepatic cholesterol accumulation (Fig. 5).  

Molecular marker of Vldl assembly 

Microsomal triglyceride transfer protein (Mttp) is the rate limiting enzyme in Vldl assembly. 

The gene expression of Mttp was not affected by exercise training either in liver (Fig. 6a) or in 

intestine (Fig. 6b). Hepatic Mttp transcript was significantly decreased (P<0.01) by the Chol 

diet in both Sham and Ovx rats compared to their counterparts fed the  SD diet implying less 

Vldl assembly in liver. Opposite to hepatic Mttp, intestinal Mttp mRNA expression was higher 

(P<0.05) in rats fed Chol diet than rats fed the SD diet. Estrogen withdrawal resulted in lower 

hepatic Mttp transcript in both SD and Chol diet groups (Fig. 6a) but had no effect on 

intestinal Mttp mRNA expression (Fig. 6b).   
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Discussion  

The main finding of the present study was that a six week of voluntary exercise resulted in a 

significant increase in gene expression of intestinal Ldlr and Pcsk9 at the basolateral 

membrane along with their regulatory transcription factor Srebp2. This was observed 

especially under the Chol-fed condition independently of the Ovx or Sham surgery. Unlike the 

basolateral receptors, gene expressions of the intestinal apical receptors (Abcg5/g8 and 

Abcb1a/b) involved in cholesterol excretion from intestine into the lumen were not affected by 

exercise training. In addition, exercise training had no impact on hepatic Fmo3 transcript, a 

cholesterol balance regulator in liver. These results indicate that intestinal cholesterol uptake 

from circulation might be increased at the basolateral membrane of intestine following 

exercise training, suggesting that TICE might be a way by which exercise training contributes 

to an elimination of excess cholesterol.  

To the best of our knowledge, the present study is the first to report an important increase in 

intestinal Ldlr and Pcsk9 transcripts following exercise training. The main function of LDL-

receptor is to remove the circulating cholesterol from apoB-lipoproteins (Ouguerram et al. 

2004). LDL-receptor activity is downregulated post-transcriptionally by Pcsk9 (Abifadel et al. 

2003). Both LDL-receptor and Pcsk9 are regulated transcriptionally by the transcription 

factor, SREBP-2 (Smith et al. 1990; Dubuc et al. 2004). Although protein levels were not 

measured in the present study, there is consistency in the responses of intestinal LDL-receptor 

and Pcsk9 transcripts and their nuclear transcription receptor, intestinal Srebp2, in response to 

exercise training. Higher intestinal Pcsk9 transcript along with Ldlr in trained rats might raise 

the possibility that there is degradation of intestinal Ldlr through Pcsk9. However circulating 

concentration of Pcsk9 was significantly low in Ovx rats and Chol-fed rats compared to intact 

rats on SD diet suggesting less degradation effect of Pcsk9 on intestinal LDLr. This might also 

explain why the plasma TC levels did not increase in Chol-fed rats in our study. Indeed, 

despite higher intestinal Pcsk9 transcript, its protein level is low in the circulation therefore; 

there is less degradation effect on intestinal LDLr and as a result higher cholesterol uptake 

from circulation via intestinal LDLr.   

Supporting the link between circulating Pcsk9 and intestinal Ldl-r is the report that circulating 

recombinant PCSK9 injection through degradation of LDLr content in intestine acutely 

decreases TICE in Pcsk9 knockout mice (Schmidt et al. 2008; Le May et al. 2013). Moreover, 
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it was reported that PCSK9 null mice have more LDL receptors in their gut (Le May et al. 

2009)) and subsequently faster intestinal cholesterol clearance and higher TICE were observed 

in PCSK9 null mice compared to wild type (WT) mice (Le May et al. 2013). On the other 

hand, injection of recombinant PCSK9 in LDLr null mice resulted in 40% higher TICE than 

Pcsk9 knockout mice. The discrepancy between the effect of circulating Pcsk9 on TICE were 

explained by the existence of higher TICE in LDLR-/- mice or the difference in genetic 

background between strains (Le May et al. 2013). Indeed, different levels of TICE were 

reported in mice with different genetic backgrounds (van der Velde et al. 2007).  

Le May et al recently suggested that in addition to Ldlr, other unidentified mechanisms might 

be involved in cholesterol uptake from plasma via TICE due to the uptake of LDL particles at 

the proximal part of intestine in LDLR−/− mice (Le May et al. 2013). In addition to intestinal 

Ldlr, Sr-B1 and Vldlr have been identified as cholesterol acceptors at the basolateral 

membrane of intestine as well. Contrary to intestinal Ldlr, intestinal Sr-B1 and Vldl transcripts 

were not altered following exercise training. Sr-B1 has a well-accepted role in RCT via 

hepatobiliary pathway (Tall et al. 2008), It binds with apolipoprotein A-I (apoA-I), a protein 

component of high-density lipoprotein (HDL), and removes esterified cholesterol from HDL 

(Acton et al. 1996). van der Velde AE. et al reported that upregulation of intestinal Sr-B1 

expression by high-fat feeding was correlated with TICE. However in the same study they 

surprisingly found that intestinal perfusions resulted in twofold increase in TICE in Sr-B1 

deficient compared with WT mice (van der Velde et al. 2008). It seems that despite the well-

known role of Sr-B1 in hepatobiliary, its function in TICE route is unclear. In addition, Vrins 

CL, et al. reported that secretion of radiolabeled cholesterol from HDL via TICE did not 

change in WT and Abca1-/- and Sr-b1-/- mice, implying that HDL might not be the plasma 

cholesterol donor to intestine (Vrins et al. 2012) and consequently it is reasonable to assume 

that Sr-B1 might not have a significant role in cholesterol uptake from circulation at the 

intestinal basolateral side (Bura et al. 2013). Based on these findings and the result of the 

present study, it appears that LDLr might be the main cholesterol acceptor from circulation at 

the basolateral side of intestine influenced by exercise training.   

Surprisingly, we found no effects of exercise training as well as Chol-diet and estrogen 

withdrawal on intestinal receptors (except Abcb1b transcript) at the apical side which are 

involved in cholesterol excretion from intestine into the lumen. Intestinal Abcb1b transcript 
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was higher in Ovx rats and particularly showed a tendency to higher expression in Ovx trained 

rats however it did not reach the point to be significant. Previously, van der Veen et al showed 

that TICE is impaired in Abcg5 null mice, implying that intestinal cholesterol transporting 

Abcg5/Abcg8 heterodimer contributes to TICE pathway (van der Veen et al. 2009). On the 

other hand, it has been shown that mice lacking Abcg5 still have an appropriate level of TICE, 

suggesting that other apical transporters have a role in TICE. Among the candidates, multidrug 

transporter ABCB1 a/b, located at the apical side of enterocyte can be involved in intestinal 

cholesterol excretion into the lumen (Le May et al. 2013). On the whole further studies need to 

be done to clarify what receptors might have the main role in cholesterol excretion at the 

basolateral side of intestine. In regard to exercise training, there is inconsistency in previous 

reports on the expression of cholesterol transporters at the intestinal apical side. Some authors 

reported an increase in intestinal ABCG8 gene and protein expression in treadmill-trained 

female rats compared to female Sed rats (Ghanbari-Niaki et al. 2012). On the other hand, 

reduced ABCG8 gene expression was observed in the ileum of exercise-trained female rats 

compared to Sed female rat (Ngo Sock et al. 2014b) probably due to a reduced need to efflux 

cholesterol back to the lumen as a consequence of lower cholesterol absorption (Wilund et al. 

2008). Apparently, exercise training could promote TICE through increase in gene expression 

of receptors involved in cholesterol uptake from circulation at the basolateral side, however 

further works will be needed to illustrate the excretion of cholesterol from intestinal apical 

side into the lumen.  

In contrast to intestinal Ldlr and Pcsk9 transcripts, hepatic gene expression of Ldlr and Pcsk9 

were not altered by exercise training. Hepatic Ldlr transcript was, however, lowered by the 

ovariectomy and the Chol feeding. Unchanged hepatic transcripts of Ldlr and Pcsk9 following 

training in the present study was in concert with the recent observation that  exercise training 

had no effects on hepatic gene expression of Ldl and Pcsk9 in Ovx rats (Ngo Sock et al. 

2014a). On the other hand, it was also reported that treadmill exercise resulted in increased 

LDL-R, Pcsk9 and SREBP-2 mRNA expression in liver of high-fat-fed C57BL/6 mice. 

Reduction in hepatic cholesterol accumulation was mentioned as a main reason for higher 

hepatic LDL-R, Pcsk9 transcript by treadmill exercise in high-fat-fed C57BL/6 mice (Wen et 

al. 2013). It seems that higher hepatic cholesterol content in Chol-fed rats in our study is an 

underlying reason for lower hepatic LDL-R, Pcsk9 transcript and consequently suppression of 
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cholesterol uptake from plasma. In addition, higher expression of SR-B1, involved in 

cholesterol uptake from circulating HDL, by training and simultaneously its down regulation 

following Chol-diet led us to the interpretation that this could probably be a protective 

response to prevent more cholesterol accumulation in the liver of Ovx rats. Taken all together, 

it appears that the effects of exercise training on the management of cholesterol metabolism 

may happen more at the intestinal than the hepatic level in our animal model.   

Considering that cholesterol uptake was reduced through the liver probably due to hepatic 

cholesterol accumulation, it was expected to observe higher plasma TC levels under 

cholesterol feeding. The absence of increased plasma TC levels in the present study might be 

explained by higher cholesterol uptake through intestinal Ldlr as a result of intestinal up-

regulation of this receptor under training.  

In addition to hepatic Ldlr and Pcsk9 transcript, hepatic ABCG8 gene expression, involved in 

cholesterol excretion into bile in liver, was not changed by training. Down regulation of 

hepatic ABCG8 transcript following the cholesterol diet was reported in the present and 

previous studies of Ovx model (Cote et al. 2014). The fact that there was no effect of exercise 

training on genes involved in cholesterol uptake and excretion in liver and simultaneously 

positive effects on intestinal basolateral cholesterol receptors suggests that the effects of 

exercise training on cholesterol uptake and excretion may take place more at the intestine than 

at liver tissue. Furthermore, several lines of evidence suggest that there is a mechanism of 

crosstalk between biliary and non-biliary TICE pathways in liver (Kruit et al. 2005; Temel et 

al. 2010). The new model of RCT involves the classic central role of liver but also includes 

extra steps where the liver decides whether to excrete the cholesterol into bile or divert it into 

the non- biliary TICE pathway (Temel and Brown 2015). Indeed, under normal physiological 

conditions, the biliary route is a main way to excrete the extra cholesterol from the body and 

the non-biliary TICE pathway contributes to approximately 30% of the cholesterol disposal. 

However it was shown that TICE pathway can be stimulated, for instance, by a high fat diet 

(van der Velde et al. 2008), suggesting that, based on circumstances, the TICE pathway might 

have the main role. To get an insight into the molecular mechanisms underlying the 

collaboration of liver and intestine in cholesterol excretion, we measured hepatic Fmo3 gene 

expression. Recently, hepatic Fmo3 was introduced as a novel regulator of cholesterol balance 

in biliary and non-biliary TICE pathway (Warrier et al. 2015). Similar to other hepatic genes 
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involved in cholesterol metabolism, hepatic Fmo3 was not affected by exercise training in the 

present study but lowered by the Chol feeding. Apparently, lower gene expression of hepatic 

Fmo3 in Chol-fed rats compared to rats on the SD diet in the present study is a mechanism 

through which the liver attempted to shunt a portion of cholesterol into non-biliary TICE 

pathway for secretion (Temel and Brown 2015). This occurrence might be a protective 

response from liver to avoid more cholesterol accumulation due to its overload of cholesterol. 

This finding is in concert with a recent study that showed that FMO3 gene expression is 

supressed in several mouse models of augmented TICE (Warrier et al. 2015). Moreover, in 

mice fed a high cholesterol diet, where the liver accumulated excess cholesterol, FMO3 

knockdown caused a significant decrease in hepatic LXR target genes including ABCG5 and 

G8 and suppression in biliary cholesterol levels suggesting the role of FMO3 in activation of 

biliary route (Warrier et al. 2015). Indeed, inhibition of FMO3 reorganizes the total body 

cholesterol balance and redirects the cholesterol away from biliary excretion into the non-

biliary TICE pathway (Warrier et al. 2015). It seems that reduced Fmo3 transcript under the 

cholesterol diet might shift the responsibility for the cholesterol excretion from liver into 

intestine and this occurrence is probably due to impairment in cholesterol disposal from the 

liver as a consequence of liver overload of cholesterol. Obviously, further studies are needed 

to gain insights into mechanisms in which FMO3 regulates the cholesterol balance between 

biliary and non-biliary TICE routes.   

In summary, results of the present study indicate that exercise training through up-regulation 

of intestinal gene expression of Ldlr and Pcsk9 in intact and Ovx rats may contribute to 

elimination of excess cholesterol via TICE pathway. It also introduced exercise training as an 

appropriate nonpharmacological intervention to stimulate TICE to excrete the extra cholesterol 

from the body and decrease the risk of atherosclerosis.  
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Figure legends 

Fig 1. mRNA expression of genes involved in transintestinal cholesterol excretion (TICE) at 

the basolateral membrane of the intestine in sham operated (Sham) rats fed a standard diet 

(SD) (Sham-SD), ovariectomized (Ovx) rats fed a standard diet (SD) (Ovx-SD), Sham rats fed 

a standard diet + 0.25% cholesterol (Chol) (Sham-Chol) and Ovx rats fed the Chol diet (Ovx-

Chol) in sedentary (Sed,   ) or trained (Tr,   ) state. Values are mean ± SE. * Significantly 

different from respective Sed rats (P < 0.05),   ** (P < 0.01),  *** (P < 0.001). † Significantly 

different from respective rats fed the SD diet (P < 0.05),  †† (P < 0.01),  ††† (P < 0.001); δ 

Significantly different from respective Sham rats (P < 0.05),   δδ (P < 0.01),  δδδ (P < 0.001). 

Ldlr, LDL-receptor; Pcsk9, proprotein convertase subtilisin/kexin type 9; Srebp2, sterol 

regulatory element-binding protein 2. 

  

Fig 2. mRNA expression of genes involved in transintestinal cholesterol excretion (TICE) at 

the apical membrane of the intestine in sham operated (Sham) rats fed a standard diet (SD) 

(Sham-SD), ovariectomized (Ovx) rats fed a standard diet (SD) (Ovx-SD), Sham rats fed a 

standard diet + 0.25% cholesterol (Chol) (Sham-Chol) and Ovx rats fed the Chol diet (Ovx-

Chol) in sedentary (Sed,   ) or trained (Tr,   ) state. Values are mean ± SE. * Significantly 

different from respective Sed rats (P < 0.05),   ** (P < 0.01),  *** (P < 0.001). † Significantly 

different from respective rats fed the SD diet (P < 0.05),  †† (P < 0.01),  ††† (P < 0.001); δ 

Significantly different from respective Sham rats (P < 0.05),   δδ (P < 0.01),  δδδ (P < 0.001). 

Abcg5, ATP-binding cassette protein G5; Abcg8, ATP-binding cassette protein G8; Abcb1a, 

ATP-binding cassette sub-family B member 1a; Abcb1b, ATP-binding cassette sub-family B 

member 1b. 

 

Fig 3. Liver and plasma total cholesterol (TC) levels in sham operated (Sham) rats fed a 

standard diet (SD) (Sham-SD), ovariectomized (Ovx) rats fed a standard diet (SD) (Ovx-SD), 

Sham rats fed a standard diet + 0.25% cholesterol (Chol) (Sham-Chol) and Ovx rats fed the 

Chol diet (Ovx-Chol) in sedentary (Sed,   ) or trained (Tr,   ) state. Values are mean ± SE. * 

Significantly different from respective Sed rats (P < 0.05),   ** (P < 0.01),  *** (P < 0.001). † 

Significantly different from respective rats fed the SD diet (P < 0.05),  †† (P < 0.01),  ††† (P 
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< 0.001); δ Significantly different from respective Sham rats (P < 0.05), δδ (P < 0.01),  δδδ 

(P < 0.001).    

 

Fig 4. Hepatic mRNA expression of genes involved in cholesterol uptake from circulation and 

also plasma Pcsk9 levels in sham operated (Sham) rats fed a standard diet (SD) (Sham-SD), 

ovariectomized (Ovx) rats fed a standard diet (SD) (Ovx-SD), Sham rats fed a standard diet + 

0.25% cholesterol (Chol) (Sham-Chol) and Ovx rats fed the Chol diet (Ovx-Chol) in sedentary 

(Sed,   ) or trained (Tr,   ) state. Values are mean ± SE. * Significantly different from 

respective Sed rats (P < 0.05),   ** (P < 0.01),  *** (P < 0.001). † Significantly different from 

respective rats fed the SD diet (P < 0.05),  †† (P < 0.01),  ††† (P < 0.001); δ Significantly 

different from respective Sham rats (P < 0.05),   δδ (P < 0.01),  δδδ (P < 0.001). Ldlr, LDL-

receptor; Pcsk9, proprotein convertase subtilisin/kexin type 9; Sr-b1, Scavenger receptor class 

B member 1.  

 

Fig 5. Hepatic mRNA expression of cholesterol regulator and genes involved in hepatic 

cholesterol secretion into bile duct in sham operated (Sham) rats fed a standard diet (SD) 

(Sham-SD), ovariectomized (Ovx) rats fed a standard diet (SD) (Ovx-SD), Sham rats fed a 

standard diet + 0.25% cholesterol (Chol) (Sham-Chol) and Ovx rats fed the Chol diet (Ovx-

Chol) in sedentary (Sed,   ) or trained (Tr,   ) state. Values are mean ± SE. * Significantly 

different from respective Sed rats (P < 0.05),   ** (P < 0.01),  *** (P < 0.001). † Significantly 

different from respective rats fed the SD diet (P < 0.05),  †† (P < 0.01),  ††† (P < 0.001); δ 

Significantly different from respective Sham rats (P < 0.05),   δδ (P < 0.01),  δδδ (P < 0.001). 

Fmo3, Flavin monooxygenase 3; Abcg5, ATP-binding cassette protein G5; Abcg8, ATP-

binding cassette protein G8. 

 

Fig 6. Hepatic (a) and intestinal (b) mRNA expression of rate limiting gene involved in VLDL 

assembly in sham operated (Sham) rats fed a standard diet (SD) (Sham-SD), ovariectomized 

(Ovx) rats fed a standard diet (SD) (Ovx-SD), Sham rats fed a standard diet + 0.25% 

cholesterol (Chol) (Sham-Chol) and Ovx rats fed the Chol diet (Ovx-Chol) in sedentary (Sed,   

) or trained (Tr,   ) state. Values are mean ± SE. * Significantly different from respective Sed 

rats (P < 0.05),   ** (P < 0.01),  *** (P < 0.001). † Significantly different from respective rats 
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fed the SD diet (P < 0.05),  †† (P < 0.01),  ††† (P < 0.001); δ Significantly different from 

respective Sham rats (P < 0.05),   δδ (P < 0.01),  δδδ (P < 0.001). Mttp, Microsomal 

triglyceride transfer protein. 

 

Fig S1. mRNA expression of genes involved in transintestinal cholesterol excretion (TICE) at 

the basolateral membrane of the intestine in sham operated (Sham) rats fed a standard diet 

(SD) (Sham-SD), ovariectomized (Ovx) rats fed a standard diet (SD) (Ovx-SD), Sham rats fed 

a standard diet + 0.25% cholesterol (Chol) (Sham-Chol) and Ovx rats fed the Chol diet (Ovx-

Chol) in sedentary (Sed,   ) or trained (Tr,   ) state. Values are mean ± SE. * Significantly 

different from respective Sed rats (P < 0.05),   ** (P < 0.01),  *** (P < 0.001). † Significantly 

different from respective rats fed the SD diet (P < 0.05),  †† (P < 0.01),  ††† (P < 0.001); δ 

Significantly different from respective Sham rats (P < 0.05),   δδ (P < 0.01),  δδδ (P < 0.001). 

Sr-b1, Scavenger receptor class B member 1; Vldlr, very-low-density-lipoprotein receptor.      
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Table S1. Diet description   

 Standard Diet (SD) 
 (D12450J) 

SD + Chol (0.25%) 
(D13020701) 

(%)   
Protein 19.2 19.2 
Carbohydrate 67.3 67.1 
Fat 4.3 4.3 
(g)   
Casein 200 200 
L-Cystine 3 3 
   
Corn Starch 506.2 506.2 
Maltodextrin 10 125 125 
Sucrose 68.8 68.8 
Cellulose, BW200 50 50 
   
Soybean Oil 25 25 
Lard 20 20 
   
Mineral Mix S10026 10 10 
DiCalcium Phosphate 13 13 
Calcium Carbonate 5.5 5.5 
Potassium Citrate, 1 H2O 16.5 16.5 
Vitamin Mix V10001 10 10 
Choline Bitartrate 2 2 
   
Cholesterol  0.0 2.63 
   
Kcal/g 3.85 3.84 

Formulated by: Research Diets, Inc. (20 Jules Lane, New Brunswick, NJ 08901 USA) 
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Table S2. Oligonucleotide primers used for quantitative real-time polymerase chain reaction 

Gene Oligo FWD Oligo REV 

ABCB1a ccaccagttcatcgactcac gatgtgaggctgtctgacga 

ABCB1b cacagaccgtcagcgaca caatgcccgtgtaatagtaggc 

ABCG5 cggagagttggtgttctgtg caccgatgtcaagtccatgt 

ABCG8 cagatgctggctatcataggg ctgatttcatcttgccacca 

FMO3 agcatgaaaactacgggttga gctggaagctcatcattgaac 

LDL-R tgctactggccaaggacat ctgggtggtcggtacagtg 

MTP gcgagtctaaaacccgagtg cactgtgatgtcgctggttatt 

               PCSK9 cacctagcaggtgtggtcag              gcagactgtgcagactggtg 

SR-B1 ggtgcccatcatttaccaac gcgagccctttttactacca 

               SREBP-2 gtgcagacagtcgctacacc aatctgaggctgaaccagga 

               Actb cccgcgagtacaaccttct cgtcatccatggcgaact 

             GAPDH ccctcaagattgtcagcaatg agttgtcatggatgaccttgg 
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Chapter 3: General discussion and conclusion  

3.1 General discussion 

The general objective of the studies presented in this thesis was to provide molecular 

information on how the liver and the intestine regulate cholesterol and bile acid metabolism in 

an ovariectomized (Ovx) rat model of menopause. It was also intended to introduce an 

appropriate non-pharmacological intervention (exercise training) to stimulate cholesterol 

excretion from the body and consequently decrease the risk of atherosclerosis.  

We used an ovariectomized rat model as an appropriate research tool to mimic the 

postmenopausal hormonal state to investigate whether hepatic and intestinal molecular 

markers involved in cholesterol and bile acid metabolism are affected by estrogen withdrawal. 

To reach our main goal, we used a diet rich in cholesterol as a nutritional tool in our series of 

experiments. Nutritional approaches have been used frequently as a tool to investigate the role 

of the liver in regulating TG and cholesterol metabolism (Cote et al. 2013; Savard et al. 2013). 

The positive potential of exercise training on improvement of plasma lipoprotein profile and 

consequently reduction in the risk of atherosclerosis has been repeatedly reported (Durstine et 

al. 2002; Halverstadt et al. 2007; Butcher et al. 2008). However, the underlying mechanisms 

are not fully understood;  therefore, it was of interest to investigate the effects of exercise 

training as an alternative intervention on cholesterol and bile acids pathways, especially in the 

context of estrogens deficiency.  

In the first study, we attempted to shed some light on how liver of Ovx animals 

respond to high dietary cholesterol feeding by targeting the main molecular markers involved 

in VLDL assembly and secretion. Results of this first study indicate that a high cholesterol diet 

and ovariectomy combine to reduce the gene expression of key markers of VLDL assembly 

including MTP, apo-B, and ACAT2 suggesting disturbances in VLDL assembly from the 

liver. Moreover, the sole addition of cholesterol to the SD diet decreased the gene expression 

of ABCG8, BSEP, and MDR2 in both Sham and Ovx animals implying impairment in bile 

acid formation and cholesterol excretion from the liver into bile ducts. 
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Data of our first study support the concept that cholesterol component in a mixed diet 

is a determinant factor in regulation of hepatic cholesterol metabolism in both sham and Ovx 

rats. It has been previously reported that increasing dietary cholesterol exacerbated hepatic 

cholesterol accumulation and caused hepatocyte injury in different human and animal studies 

(Ioannou et al. 2009; Park et al. 2011a; Subramanian et al. 2011; Van Rooyen et al. 2011). 

Based on the findings of the first study, it seems that decreased expression of genes involved 

in hepatic bile acid and cholesterol excretion into bile ducts and also VLDL assembly might 

be the possible underlying mechanisms for impairment in cholesterol metabolism in Ovx rats 

leading to hepatic cholesterol loading.  

There is some evidence that exercise training may influence hepatic cholesterol 

metabolism. For instance, it has been reported that voluntary wheel running increases 

cholesterol conversion into bile acids based on the observation of increased fecal bile acid 

excretion in LDL-R deficient mice (Meissner et al. 2011). However the underlying molecular 

mechanism for these observations has not been fully explored. Since hepatic cholesterol and 

bile acid excretion were disrupted by a high cholesterol diet, especially in Ovx rats, we 

conducted our second study to determine the effects of exercise training on molecular markers 

of hepatic FXR/SHP/CYP7A1 pathway which are involved in bile acids production, as key 

markers of the conversion of extra cholesterol into bile acids.  

Results of second study suggest that voluntary wheel running modulates cholesterol 

metabolism in Ovx animals through hepatic up-regulation of SHP and CYP7A1, genes 

involved in bile acid biosynthesis. Surprisingly, the inverse relationship between SHP and 

CYP7A1 was not observed following training. Moreover, unchanged FXR transcript under 

training suggests that SHP can also act independently of FXR. This novel finding is in concert 

with findings of Lai et al  showing that induction of SHP by estrogen administration did not 

inhibit expression of CYP7A1 or CYP8B1, the well-known SHP target genes, (Lai et al. 

2003). These findings suggest that stimulation of SHP by estrogens may not result in 

suppression of CYP7A1 transcripts. It seems that exercise training in our study imitated the 

effect of estrogen therapy on SHP transcripts. In fact, the present finding that exercise training 

also up-regulated SHP expression in Ovx animals extends previous findings from our lab 
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showing that exercise training provokes estrogenic like effects on the expression of several 

genes involved in the regulation of lipid metabolism in liver (Pighon et al. 2011).  

Results in our second study do suggest that exercise training may alleviate hepatic 

cholesterol load by stimulating bile acid biosynthesis. On the other hand, exercise training was 

associated with no changes in hepatic SREBP2, HMGCoA-r, LDL-R, and PCSK9 transcripts 

indicating an absence of molecular effects on hepatic key markers of cholesterol biosynthesis 

and hepatic cholesterol uptake from circulation. It was postulated that this might be due to 

hepatic overload of cholesterol.  

Although the hepatobiliary route is the main pathway for elimination of excess 

cholesterol from the body, several studies have recently enlighten the fact that RCT can also 

proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE) 

(Brown et al. 2008; van der Velde et al. 2008). In TICE pathway, cholesterol is transported 

through the receptors at the basolateral and apical membrane of intestine which are involved in 

cholesterol uptake from plasma and cholesterol secretion into the lumen, respectively. Indeed, 

in this new model of RCT, the cholesterol disposal from the body depends on an active 

interplay between liver and intestine (Temel and Brown 2015). Therefore, the third study was 

designed to determine whether exercise training may influence intestinal membrane receptors 

involved in TICE in intact and ovariectomized cholesterol fed rats. It was of interest to study 

the effect of exercise training on intestinal receptors involved in cholesterol disposal through 

TICE.  

The results of third study indicate an up-regulation of intestinal gene expression of 

LDL-R and PCSK9 at the basolateral membrane along with their regulatory transcription 

factor SREBP2 following a six week voluntary wheel running in intact and Ovx rats. These 

data suggest that exercise training may contribute to increased cholesterol elimination through 

the TICE pathway.   

In contrast to intestinal LDL-R and PCSK9 transcripts, hepatic gene expression of 

LDL-R and PCSK9 was not altered by exercise training. It seems that higher hepatic 

cholesterol content in Chol-fed rats in our study is an underlying reason for lower hepatic 
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LDL-R, PCSK9 transcript and consequently suppression of hepatic cholesterol uptake from 

plasma. 

Moreover, there is evidence that the set point of cholesterol excretion is sustained by 

the crosstalk between hepatobiliary and non-biliary TICE pathways (Kruit et al. 2005). In very 

recent study hepatic flavin monooxygenase 3 (FMO3) has been identified as a key cholesterol 

regulator of both biliary and non-biliary TICE pathways (Warrier et al. 2015). In our study, 

exercise training had no impact on hepatic FMO3 transcripts. On the other hand, lower gene 

expression of hepatic FMO3 found in Chol-fed rats compared to rats fed a SD diet in the 

present study is a mechanism through which the liver attempted to shunt a portion of excess 

cholesterol into non-biliary TICE pathway for secretion (Temel and Brown 2015). We 

concluded that this occurrence might be a protective response of the liver to avoid more 

cholesterol accumulation due to cholesterol overload in liver. 

On the whole, data of the third study indicate that intestinal cholesterol uptake from 

circulation might be increased at the basolateral membrane of intestine following exercise 

training, suggesting that TICE might be a way by which exercise training contributes to an 

elimination of excess cholesterol.  

To the best of our knowledge, this study is the first to report an important increase in 

intestinal LDL-R and PCSK9 transcripts following exercise training. Our data in the third 

study open a new avenue for the investigation of potential mechanisms that might explain the 

benefits of exercise training in decreasing the hypercholesterolemia and the risk of 

atherosclerosis in postmenopausal women.  

Taken together, it seems that estrogen withdrawal and a high cholesterol diet act 

synergistically to impair different aspects of hepatic cholesterol metabolism including 

cholesterol excretion from the body. Exercise training appears to be an appropriate non-

pharmacological intervention to stimulate cholesterol excretion from the body through both 

hepatobiliary and non-biliary TICE pathway. Up-regulation of genes involved in bile acid 

formation was a predominant effect of exercise training in liver suggesting that exercise 

training may alleviate hepatic cholesterol load by stimulating bile acid biosynthesis. Up-

regulation of intestinal basolateral receptors involved in cholesterol uptake from the 
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circulation following exercise training might be a mechanism through which exercise training 

may contribute to elimination of excess cholesterol via TICE pathway.  

3.2 Conclusion 

Results of the studies presented in this thesis indicate that different aspects of 

cholesterol metabolism including cholesterol uptake from circulation, VLDL assembly, and 

cholesterol excretion were disrupted in the liver of Ovx rats especially when they were fed the 

cholesterol diet.  

Metabolic perturbations in hepatic cholesterol metabolism which were caused by the 

combined effect of estrogen withdrawal and a high cholesterol diet might contribute to hepatic 

cholesterol accumulation in addition to TG accumulation. It is also reasonable to conclude that 

disturbances in hepatic cholesterol metabolism might be the root of common 

hypercholesterolemia observed in post-menopausal women as well as in Ovx rat. 

From a clinical point of view, a high cholesterol diet might not be perceived as being 

deleterious since it does not affect body weight. However, the fact is that at the molecular 

level it causes several disturbances in hepatic cholesterol metabolism. Of note, the present 

results generated from an animal model are intended to open research issues that need to be 

tested in humans. 

We also introduced exercise training as an appropriate non-pharmacological 

intervention to alleviate perturbations in hepatic cholesterol metabolism. Exercise training 

modulated cholesterol metabolism through its positive effects on molecular markers involved 

in hepatic bile acid formation and intestinal cholesterol uptake from the circulation. This 

occurrence may contribute to improve NAFLD and decrease the risk of atherosclerosis and 

also explain the underlying mechanisms for the beneficial role given to exercise. Moreover, 

our results clearly indicate that cholesterol homeostasis in the body depends on a dynamic 

interplay between liver and intestine.    
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