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Résumé 

Les champignons mycorhiziens à arbuscules (CMA) forment un groupe de 

champignons qui appartient à l'embranchement des Gloméromycètes (Glomeromycota). Les 

CMA forment des associations symbiotiques, connus sous le nom des mycorhizes à arbuscules 

avec plus de 80 % des plantes vasculaires terrestres. Une fois que les CMA colonisent les 

racines de plantes, ils améliorent leurs apports nutritionnels, notamment le phosphore et 

l'azote, et protègent les plantes contre les différents pathogènes du sol. En contrepartie, les 

plantes offrent un habitat et les ressources de carbone nécessaires pour le développement et la 

reproduction des CMA. Des études plus récentes ont démontré que les CMA peuvent aussi 

jouer des rôles clés dans la phytoremédiation des sols contaminés par les hydrocarbures 

pétroliers (HP) et les éléments traces métaliques. Toutefois, dans les écosystèmes naturels, les 

CMA établissent des associations tripartites avec les plantes hôtes et les microorganismes 

(bactéries et champignons) qui vivent dans la rhizosphère, l'endosphère (à l'intérieur des 

racines) et la mycosphère (sur la surface des mycéliums des CMA), dont certains d'entre eux 

jouent un rôle dans la translocation, l’immobilisation et/ou la dégradation des polluants 

organiques et inorganiques présents dans le sol. Par conséquent, la diversité des CMA et celle 

des microorganismes qui leur sont associés sont influencées par la concentration et la 

composition des polluants présents dans le sol, et aussi par les différents exsudats sécrétés par 

les trois partenaires (CMA, bactéries et les racines de plantes). Cependant, la diversité des 

CMA et celle des microorganismes qui leur sont associés demeure très peu connue dans les 

sols contaminés. Les interactions entre les CMA et ces microorganismes sont aussi méconnus 

aussi bien dans les aires naturelles que contaminées. 
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Dans ce contexte, les objectifs de ma thèse sont: i) étudier la diversité des CMA et les 

microorganismes qui leur sont associés dans des sols contaminés par les HP, ii) étudier la 

variation de la diversité des CMA ainsi que celle des microorganismes qui leur sont associés 

par rapport au niveau de concentration en HP et aux espèces de plantes hôtes, iii) étudier les 

correlations (covariations) entre les CMA et les microorganismes qui leur sont associés et iv) 

comparer les communautés microbiennes trouvées dans les racines et sols contaminés par les 

HP avec celles trouvées en association avec les CMA. 

Pour ce faire, des spores et/ou des propagules de CMA ont été extraites à partir des 

racines et des sols de l'environnement racinaire de trois espèces de plantes qui poussaient 

spontanément dans trois bassins de décantation d'une ancienne raffinerie de pétrole située dans 

la Rive-Sud du fleuve St-Laurent, près de Montréal. Les spores et les propagules collectées, 

ainsi que des échantillons du sol et des racines ont été soumis à des techniques de PCR (nous 

avons ciblés les genes 16S de l'ARNr pour bactéries, les genes 18S de l'ARNr pour CMA et 

les régions ITS pour les autres champignons), de clonage, de séquençage de Sanger ou de 

séquençage à haut débit. Ensuite, des analyses bio-informatiques et statistiques ont été 

réalisées afin d'évaluer les effets des paramètres biotiques et abiotiques sur les communautés 

des CMA et les microorganismes qui leur sont associés. 

Mes résultats ont montré une diversité importante de bactéries et de champignons en 

association avec les spores et les propagules des CMA. De plus, la communauté microbienne 

associée aux spores des CMA a été significativement affectée par l'affiliation taxonomique des 

plantes hôtes et les niveaux de concentration en HP. D'autre part, les corrélations positives ou 

négatives qui ont été observées entre certaines espèces de CMA et microorganismes 

suggérèrent qu’en plus des effets de la concentration en HP et l'identité des plantes hôtes, les 
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CMA peuvent aussi affecter la structure des communautés microbiennes qui vivent sur leurs 

spores et mycéliums. La comparaison entre les communautés microbiennes identifiées en 

association avec les spores et celles identifiées dans les racines montre que les communautés 

microbiennes recrutées par les CMA sont différentes de celles retrouvées dans les sols et les 

racines. 

En conclusion, mon projet de doctorat apporte de nouvelles connaissances importantes 

sur la diversité des CMA dans un environnement extrêmement pollué par les HP, et démontre 

que les interactions entre les CMA et les microorganismes qui leur sont associés sont plus 

compliquées que ce qu’on croyait précédemment. Par conséquent, d'autres travaux de 

recherche sont recommandés, dans le futur, afin de comprendre les processus de recrutement 

des microorganismes par les CMA dans les différents environnements. 

Mots-clés : champignons mycorhiziens à arbuscules (CMA), hydrocarbures pétroliers (HP), 

microorganismes associés aux CMA, bactéries, champignons, séquençage à haut débit, 

clonage, séquençage de Sanger. 
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Abstract 

Arbuscular mycorrhizal fungi (AMF) are an important soil fungal group that belongs to 

the phylum Glomeromycota. AMF form symbiosic associations known as arbuscular 

mycorrhiza with more than 80% of vascular plants on earth. Once AMF colonize plant roots, 

they promote nutrient uptake, in particular phosphorus and nitrogen, and protect plants against 

soil-borne pathogens. In turn, plants provide AMF with carbon resources and habitat. 

Furthermore, more recent studies demonstrated that AMF may also play key roles in 

phytoremediation of soils contaminated with petroleum hydrocarbon pollutants (PHP) and 

trace elements. Though, in natural ecosystems, AMF undergo tripartite associations with host 

plants and micoorganisms (Bacteria and Fungi) living in rhizosphere (the narrow region of soil 

surounding the plant roots), endosphere (inside roots) and mycosphere (on the surface AMF 

mycelia), which some of them play a key role on translocation, immobilization and/or 

degradation of organic and inorganic pollutants. Consequently, the diversity and community 

structures of AMF and their associated microorganisms are influenced by the composition and 

concentration of pollutants and exudates released by the three partners (AMF, bacteria and 

plant roots). However, little is known about the diversity of AMF and their associated 

microorganisms in polluted soils and the interaction between AMF and these microorganisms 

remains poorly understood both in natural and contaminated areas. 

In this context, the objectives of my thesis were to: i) study the diversity of AMF and 

their associated microorganisms in PHP contaminated soils, ii) study the variation in diversity 

and community structures of AMF and their associated microorganisms across plant species 

identity and PHP concentrations, iii) study the correlations (covariations) between AMF 
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species and their associated microorganisms and iv) compare microbial community structures 

of PHP contaminated soils and roots with those associated with AMF spores in order to 

determine if the microbial communities shaped on the surface of AMF spores and mycelia are 

different from those identified in soil and roots. 

To do so, AMF spores and/or their intraradical propagules were harvested from 

rhizospheric soil and roots of three plant species growing spontaneously in three distinct waste 

decantation basins of a former petrochemical plant located on the south shore of the St-

Lawrence River, near Montreal. The harvested spores and propagules, as well as samples of 

soils and roots were subjected to PCR (we target 16S rRNA genes for bacteria, 18S rRNA 

genes for AMF and ITS regions for the other fungi), cloning, Sanger sequencing or 454 high 

throughput sequencing. Then, bioinformatics and statistics were performed to evaluate the 

effects of biotic and abiotic driving forces on AMF and their associated microbial 

communities. 

My results showed high fungal and bacterial diversity associated with AMF spores and 

propagules in PHP contaminated soils. I also observed that the microbial community 

structures associated with AMF spores were significantly affected by plant species identity 

and PHP concentrations. Furthermore, I observed positive and negative correlations between 

some AMF species and some AMF-associated microorganisms, suggesting that in addition to 

PHP concentrations and plant species identity, AMF species may also play a key role in 

shaping the microbial community surrounding their spores. Comparisons between the AMF 

spore-associated microbiome and the whole microbiome found in rhizospheric soil and roots 

showed that AMF spores recruit a microbiome differing from those found in the surrounding 

soil and roots. 
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Overall, my PhD project brings a new level of knowledge on AMF diversity on 

extremely polluted environment and demonstrates that interaction of AMF and their associated 

microbes is much complex that we though previously. Further investigations are needed to 

better understand how AMF select and reward their associated microbes in different 

environments. 

Keywords : Arbuscular Mycorrhizal Fungi (AMF), petroleum hydrocarbons pollutants (PHP), 

AMF-associated microorganisms, bacteria, fungi, 454 high throughput sequencing, cloning, 

Sanger sequencing. 
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Chapitre 1 - Introduction générale 

1.1. Les défis de la remédiation des hydrocarbures pétroliers 

Les hydrocarbures pétroliers (HP) et leurs produits dérivés sont largement utilisés dans 

la vie quotidienne humaine, en particulier dans la production d’énergie, la construction, le 

transport et la production industrielle. Toutefois, l’exploitation intensive des ressources 

pétrolières, notamment les hydrocarbures aromatiques polycycliques (HAP), peut générer de 

sérieux problèmes environnementaux qui peuvent avoir de graves conséquences sur le sol, 

l'air, l'eau, la faune et la flore (Boffetta et al., 1997; Samanta et al., 2002; Poirier, 2004; 

McAloose & Newton, 2009). Par exemple, la catastrophe de déversement de pétrole brut qui 

est survenue le 6 juillet 2013 au Lac-Mégantic (Québec) a eu des conséquences très graves sur 

l'environnement. Selon la presse locale, environ 100 000 litres de pétrole brut ont été déversés 

sur une surface de 80 km dans la rivière Chaudière, tandis que les concentrations en HAP et 

arsenic ont été 394 444 et 28 fois, respectivement, supérieures aux normes admissibles par le 

ministère du Développement durable, de l’Environnement et de la Lutte contre les 

changements climatiques (MDDELCC)
1
. La décontamination des sols pollués par les HP est 

difficile, longue et très coûteuse. L’excavation, le transport et le déversement du sol contaminé 

dans des sites d’enfouissement sécurisés demeure l'approche conventionnelle la plus utilisée. 

Par contre, cette méthode est non seulement coûteuse, mais elle ne résout pas réellement le 

problème de décontamination du sol, car celle-ci ne fait que déplacer les contaminants d'un 

site à un autre. D'autre part, le caractère hydrophobe élevé des HP et de leur capacité à 

                                                 
1
 Les données ont été obtenus à partir du journal "Le Devoir" (http://www.ledevoir.com) publié le 14 août 2013 

et du journal "L'actualité" (http://www.lactualite.com) publié le 11 juillet 2013. 
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s'adsorber aux matières organiques du sol réduisent considérablement leur hydro-solubilité et 

biodisponibilité, par conséquent cela réduit considérablement l'efficacité des procédures 

chimiques de décontamination. En outre, les réactifs chimiques utilisés dans la dépollution des 

HP tels que l'ozone, le peroxyde d'hydrogène, le permanganate et le persulfate peuvent 

interagir avec la matière organique du sol et de modifier radicalement les critères physico-

chimiques et microbiologiques des sols (Mahanty et al., 2011). Pour faire face à ces 

problèmes, la phytoremédiation qui consiste à utiliser des plantes pour la décontamination des 

sols (Peuke & Rennenberg, 2005) est l'alternative la plus écologique, la plus harmonieuse avec 

le paysage, et la moins coûteuse. Cependant, dans les milieux naturels, les communautés 

bactériennes et fongiques de la rhizosphère jouent un rôle primordial dans les processus de la 

phytoremédiation. Ainsi, comprendre ces processus nécessite une connaissance approfondie 

des communautés microbiennes présentes dans les sols entourant les racines des plantes et 

vivant à l’intérieur ce celles-ci. 

1.2. Généralités sur les champignons mycorhiziens à arbuscules 

Les champignons mycorhiziens à arbuscules (CMA) appartiennent à l'embranchement 

de Glomeromycota (Schüβler et al., 2001). Selon les révisions taxonomiques réalisées par 

Oehl et al. (2011), les Gloméromycètes sont représentés par environ 230 espèces réparties en 

trois classes, cinq ordres, quatorze familles et vingt-neuf genres. L'ensemble des CMA sont 

des organismes telluriques (vivent dans les sols) possédant des hyphes coénocytiques et des 

spores multi-nucléées dont le diamètre varie en moyenne entre 50 µm et 500 µm (Fortin et al., 

2008; Smith & Read, 2008; Marleau et al., 2011) (Figure 1.1-A). Cependant, certaines espèces 

telle que Gigaspora gigantea, le diamètre peut dépasser 750 µm. Quand les CMA colonisent 

les racines des plantes hôtes, les hyphes extra-racinaires traversent les parois des cellules 
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corticales et forment des interfaces des échanges bidirectionnels des nutriments avec le 

cytoplasme appelées arbuscules, du latin arbusculum qui signifie arbuste. En plus des 

arbuscules, chez certaines espèces de CMA, les parties des hyphes qui ne traversent pas les 

cellules corticales peuvent se différencier en structures sphériques multi-nucléées connues 

sous le nom de vésicules. Selon Smith and Read (2008), les vésicules jouent un rôle d'organe 

de stockage des réserves nutritionnelles pour les CMA. Certaines espèces de CMA telle que 

Rhizophagus intraradices forment aussi des spores intra-racinaires qui ressemblent aux 

vésicules. Puisqu'il est difficile de distinguer entre les vésicules et les spores intra-racinaires, 

le terme propagules intra-racinaires est utilisé pour désigner l’ensemble des vésicules et spores 

intra-racinaires (Figure 1.1-B). Dans le chapitre 2 de ce rapport de thèse, ces structures intra-

racinaires ont fait l'objet d'études de la biodiversité des microorganismes associés aux CMA. 

Figure 1.1: Morphologie des CMA. (A) images de microscopie confocale montrant une 

spore de CMA qui contient une centaine de noyaux à l'intérieur de son cytoplasme 

(Marleau et al., 2011), (B) un schéma des différentes structures extra et intra racinaires 

des CMA (Fortin et al., 2008).  
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Quant à leur mode de vie, les CMA sont des biotrophes obligatoires formant des 

associations symbiotiques avec plus de 80 % des plantes vasculaires, ce qui représente 

approximativement 250 000 espèces de plantes (Smith & Read, 2008). L’association des CMA 

avec les plantes est considérée comme étant l’une des premières formes de symbiose entre les 

microorganismes et les plantes terrestres. D’après les études paléontologiques sur les fossiles 

dévoniens de Rhynia spp, cette relation étroite entre les CMA et les plantes date d’environ 450 

millions d’années (Simon et al., 1993; Taylor et al., 1995; Redecker et al., 2000). 

Les rôles bénéfiques des CMA ont fait l’objet de plusieurs travaux de recherche qui ont 

clairement démontré en laboratoire et en champs les impacts positifs de ces champignons sur 

la croissance des plantes, l’augmentation des rendements en agriculture et la protection des 

plantes contre les stresses biotiques (e.g. les pathogènes) et abiotiques (e.g. pollution, 

sécheresse et salinité). Dans le domaine de l’agriculture, ces champignons sont considérés 

comme étant des bio-fertilisants par excellence. Lorsque les racines de plantes sont colonisées 

par les CMA, ces derniers développent un réseau d'hyphes extra-racinaire, qui s'étendent au-

delà de la zone exploitée par les racines en permettant ainsi une meilleure exploitation de l'eau 

et les sels minéraux qui se trouvent en dehors de la zone rhizosphérique (Cho et al., 2009; Hu 

et al., 2010; Abdel Latef & Chaoxing, 2011; Karagiannidis et al., 2011). De plus, plusieurs 

études ont démontré que l'association mycorhizienne arbusculaire confère aux plantes une 

résistance accrue contre certains phyto-pathogènes du sol (St-Arnaud & Vujanovic, 2007; 

Ismail et al., 2011; Ismail et al., 2013; Schouteden et al., 2015; Song et al., 2015). 

Dans le domaine de l’environnement, les CMA peuvent jouer des rôles clés dans la 

phytoremédiation des sols contaminés par les hydrocarbures pétroliers (HP) et les éléments-

traces métalliques (Liu & Dalpé, 2009; Gao et al., 2011b; Hassan et al., 2013; Cabral et al., 
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2015). Par exemple, Liu and Dalpé (2009) ont conduit une expérience en serre et ils ont 

observé que, après 12 jours, les concentrations en anthracène et phénanthrène peuvent être 

réduites jusqu'a 80 % dans les pots cultivés avec des poireaux mycorhizés. Par ailleurs, une 

expérience similaire a été réalisée par Hassan et al. (2013) sur des sols contaminés par les 

éléments-traces métalliques (zinc, cadmium et cuivre) et ils ont constaté que l'inoculation des 

tournesols avec l'espèce Rhizophagus irregularis augmentait significativement la capacité de 

phyto-extraction de ces contaminants par rapport aux sols cultivés par des tournesols non-

mycorhizés. 

1.3. Les microorganismes associés aux CMA 

Dans un environnement aussi diversifié que complexe comme le sol, l’association 

symbiotique entre les CMA et les plantes ne dépend pas uniquement de ces deux partenaires. 

Plusieurs autres facteurs chimiques, biologiques et climatiques peuvent avoir un grand impact 

sur cette association mycorhizienne (Santos-González et al., 2007; Posada et al., 2008). 

La biodiversité bactérienne du sol est considérée parmi les facteurs majeurs qui 

peuvent influencer la symbiose mycorhizienne. En plus de leur association avec les racines de 

plantes, les CMA sont aussi capables d'établir d'autres associations symbiotiques ou 

parasitiques avec les populations bactériennes et fongiques du sol (Tarkka & Frey-Klett, 2008; 

Bonfante & Anca, 2009; Lecomte et al., 2011; Sundram et al., 2011; Yasmeen et al., 2012). 

Les associations tripartites entre les CMA, les plantes et les autres microorganismes rendent 

l'étude des différentes interactions entre les trois partenaires très difficile à réaliser. Parmi les 

populations microbiennes associées aux CMA, des bactéries appartenant aux taxons des 

Firmicutes, Bacillus, Actinobacteria, Flexibacter, Cyanobacteria, Alpha- et Beta-
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proteobacteria sont capables de former des biofilms intimement associés à la surface des 

spores et mycélia des CMA (Roesti et al., 2005; Long et al., 2008; Scheublin et al., 2010; 

Lecomte et al., 2011) (Figure 1. 2-A et B). Des champignons appartenant aux 

embranchements Ascomycota et Chytridiomycota ont été aussi identifiés à la surface des 

spores CMA (Sylvia & Schenck, 1983; Tzean et al., 1983; Paulitz & Menge, 1984; Hijri et al., 

2002). En plus de ces communautés microbiennes qu'on trouve en surface, plusieurs études 

ont démontré que les CMA hébergent des bactéries à l’intérieur de leurs spores et mycélia 

(MacDonald et al., 1982; Bianciotto et al., 1996; Bianciotto et al., 2000) (Figure 1. 2-C et D). 

En utilisant les techniques de la microscopie confocale, Bianciotto et al. (1996) ont trouvé 

qu’une spore de CMA peut contenir jusqu'à 250 000 endo-bactéries à l'intérieur de son 

cytoplasme. Malgré que les premières observations de ces bactéries dataient des années 1970 

(Mosse, 1970), on connaît peu de choses sur la biodiversité, le rôle, l’origine et les 

mécanismes d’infection et de transmission de ces endo-bactéries. En raison de leur mode de 

vie présumé biotrophe obligatoire (Jargeat et al., 2004), l'identification de ces endo-bactéries 

est généralement limitée à des techniques d’observation microscopique et d'amplification des 

régions spécifiques des séquences 16S de l’ARN ribosomique (Bianciotto et al., 1996; 

Bianciotto et al., 2003; Naumann et al., 2010). Récemment, les progrès qu'ont connus les 

techniques de génomique, protéomique et transcriptomique ont permis aux chercheurs d'avoir 

plus d'informations sur les interactions et les voies métaboliques de ces endo-bactéries 

(Ghignone et al., 2012; Salvioli et al., 2016; Vannini et al., 2016). En utilisant les techniques 

de clonage et de séquençage à haut débit, Ghignone et al. (2012) ont réussi à séquencer le 

génome complet d'une endo-bactérie typique, Candidatus Glomeribacter gigasporarum, des 

Gigasporaceae (une famille des CMA). Dans une autre étude plus récente, Salvioli et al. 
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(2016) ont étudié le transcriptome des Candidatus Glomeribacter gigasporarum et ils ont 

démontré que cette endo-bactérie est une endo-symbionte obligatoire des Gigasporaceae 

capable d'améliorer l'état physiologique des CMA et influence leurs interactions avec les 

racines de plantes. 

D'autre part, les mécanismes de recrutement des microorganismes vivant à la surface 

des spores des CMA demeurent aussi méconnus. Cependant, des hypothèses suggèrent que les 

CMA adoptent des stratégies similaires à celles des racines de plantes en sécrétant des sucres, 

des acides organiques, des acides aminés et d'autres molécules de signalisation par lesquelles 

ils sélectionnent la flore microbienne de leur mycosphère (Roesti et al., 2005; Bharadwaj et 

al., 2011). Quant à leurs rôles, il a été démontré qu’un groupe de bactéries nommé mycorrhiza 

helper bacteria (MHB), incluant des bactéries solubilisatrices du phosphore et fixatrice 

d'azote, est capable d'établir des associations symbiotiques avec les CMA (Garbaye, 1994; 

Tarkka & Frey-Klett, 2008; Bonfante & Anca, 2009). En échange d'un habitat et des 

ressources de carbone, les MHB permettent aux CMA d'augmenter leurs capacités 

d'absorption et de translocation des sels minéraux, en sécrétant des enzymes et des acides 

organiques capables de solubiliser le phosphore et de fixer l'azote atmosphérique (Bonfante & 

Anca, 2009; Miransari, 2011; Taktek et al., 2015). De plus, il a été démontré que les MHB 

améliorent les taux de mycorhizations des racines de plantes par la production des composés 

de signalisation capables de stimuler les dialogues chimiques entre les plantes et les CMA 

(Garbaye, 1994; Marschner & Timonen, 2006; Tarkka & Frey-Klett, 2008; Bonfante & Anca, 

2009). 

Dans le domaine de la phytoremédiation, certaines études ont clairement montré que la 

co-inoculation des racines de plantes par les CMA et certaines espèces de bactéries peut avoir 
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un impact positif sur la décontamination des sols pollués et confère aux plantes une meilleure 

résistance aux stresses causés par les HP et les éléments-traces métalliques (Alarcón et al., 

2008; Liu & Dalpé, 2009; Dong et al., 2014; Xun et al., 2015; Mishra et al., 2016). 

Cependant, les démarches expérimentales de l'ensemble de ces travaux sont limitées à la 

réalisation des combinaisons entre des espèces types de bactéries et de CMA, et leurs résultats 

sont restreins à l'observation des effets de ces combinaisons sur le rendement de dissipation 

des polluants dans le sol. À ce jour, on connaît peu de choses sur les interactions et la structure 

des communautés des CMA et les microorganismes qui leur sont associés dans les sites 

contaminés par les HP et les éléments traces métalliques. 
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Figure 1. 2: Les structures microbiennes associées aux spores et mycéliums des CMA. 

(A) Observation microscopique des bio-filmes bactériens associés aux mycéliums des 

CMA (la barre d'échelle au-dessous de l'image représente 100 µm) (Lecomte et al., 2011). 

(B) Des structures bactériennes à la surface des hyphes des CMA observées par 

microscope électronique à balayage (Cruz & Ishii, 2012). (C) Image de microscopie 

confocale des structures bactériennes (les flèches blanches) à l'intérieur des spores de 

CMA (Bianciotto et al., 2000). (D) Image de microscopie électronique à transmission 

montrant des structures microbiennes (les flèches rouges) à l'intérieur des spores des 

CMA (Bonfante & Anca, 2009).



 

10 

1.4. Description du site d'échantillonnage et mise en contexte de mon projet :  

Les bassins de décantation des résidus pétroliers de l’ancienne raffinerie pétro-

chimique de Varennes (Rive-Sud de Montréal, Canada) sont considérés parmi les sites les plus 

contaminés en hydrocarbures pétroliers dans la région de Montréal. D’après des analyses 

réalisées par notre laboratoire, les concentrations en hydrocarbures pétroliers dans ce site ont 

atteint des niveaux extrêmes. Par exemple, les concentrations de phénanthrène, anthracène et 

fluorène, des hydrocarbures aromatiques polycycliques (HAP) hautement cancérigènes, 

mesurées dans ce site dépassent les 4300 mg, 570 mg et 710 mg par 1 kg de sol, 

respectivement (voir Table S2.1 du chapitre 2). D'autre part, les normes admissibles par le 

MDDELCC pour ces trois composés dans les zones industrielles sont de l’ordre de 50 mg, 

100 mg, 100 mg par 1 kg de sol 
[2]

. 

Face aux coûts élevés et l'inefficacité des méthodes physiques et chimiques de 

décontamination, l’utilisation de méthodes biologiques pour la décontamination in situ de ces 

bassins semble le moyen le plus approprié pour la réhabilitation de ce site. 

Mon projet de doctorat s’inscrit dans le cadre d’un projet d’envergure qui étudie la 

phytoremédiation du site pollué de Varennes en utilisant plusieurs cultivars du saule (Salix sp.) 

et des microorganismes connus pour leurs aptitudes à dégrader les résidus pétroliers. 

Cependant, lors de notre première visite à ce site, nous avons constaté que plusieurs espèces de 

plantes poussent spontanément dans les basins de décantation de cette ancienne raffinerie 

pétro-chimique. Selon Desjardins et al. (2014), il y a 23 espèces de plantes qui poussent 

                                                 

[
2
]Ministère du Développement durable, de l’Environnement et de la Lutte contre les 

changements climatiques (MDDELCC); http://www.mddelcc.gouv.qc.ca/ 
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spontanément dans ce site pollué de Varennes. Par conséquent, ces observations ont soulevé 

les questions suivantes : 

1- Comment ces espèces de plantes, dont certaines ne sont pas connues dans le domaine 

de phytoremédiation, arrivent-elles à s'installer dans un site aussi contaminé par les 

hydrocarbures pétroliers toxiques? 

2- Quels sont les mécanismes qui permettent à ces plantes de tolérer ou dégrader les 

résidus pétroliers? 

3- Ces plantes bénéficient-elles de la flore microbienne indigène de ce site? Si 

l'établissement de ces plantes est soutenu par la flore microbienne de ce site, quelles 

sont les communautés microbiennes que l'on peut trouver en association avec ces 

plantes?  

4- Les CMA, font-ils partie des communautés microbiennes associées à ces plantes ? 

5- Étant donné que les CMA recrutent aussi des microorganismes à la surface et à 

l'intérieur de leurs spores et mycélia, quelle est la structure des communautés 

microbiennes associée aux CMA dans un site contaminé par les HP? La structure des 

communautés microbiennes associées aux CMA varie-t-elle en fonction des niveaux de 

contaminations et espèces de plantes? La structure des communautés microbiennes 

associée aux CMA est-elle différente de celle de la rhizosphère et les racines de 

plantes? 

Dans ce contexte, mon projet de doctorat a été mis en place pour tenter de répondre à 

certaines de ces nombreuses questions. Mes objectifs dans ce projet sont :  
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i. d’étudier la diversité et les structures des communautés des CMA et les 

microorganismes qui leur sont associés dans des sols contaminés par les HP; 

ii. d’étudier la variation des structures des communautés des CMA ainsi que celle des 

microorganismes qui leur sont associés par rapport au niveau de concentration en HP et 

à aux espèces de plantes hôtes; 

iii. d’étudier l'impact des CMA sur la structure des communautés microbiennes associées à 

leurs spores dans ce site contaminé; 

iv. de comparer les communautés microbiennes des racines et des sols contaminés par les 

HP avec celles associées avec les CMA. 

1.5. Résumé de la démarche expérimentale 

Afin de réaliser mon projet de doctorat, j'ai choisi trois espèces de plantes, Solidago 

canadensis, Populus balsamifera et Lycopus europaeus qui poussent spontanément dans trois 

bassins de décantation ayant des niveaux de contamination en HP différents (voir Table S3.10. 

du chapitre 3). Mon choix s'est porté sur ces trois espèces de plantes en raison de leur 

abondance, leur présence dans les trois bassins et leurs capacités à former des associations 

symbiotiques avec les CMA. Pour chacune des espèces de plantes et dans chaque bassin, j'ai 

échantillonné trois individus (individus entiers avec le sol entourant les racines) par espèce et 

par bassin en totalisant ainsi 27 échantillons (3 espèces de plantes × 3 bassins × 3 individus). 

Une fois au laboratoire, une partie des échantillons du sol a été utilisée dans l'extraction des 

spores de CMA, tandis qu'une partie des racines de plantes a été utilisée dans les observations 

microscopiques et l'extraction des propagules intra-racinaires. Les sous-échantillons restants 

des sols et des racines ainsi que les spores et les propagules extraites ont été soumis à des 
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techniques de microscopie, d'amplification de l’ADN génomique total (Whole Genome 

Amplification), de PCR, de clonage et de séquençage de Sanger ou séquençage à haut débit. 

Ensuite, des analyses bio-informatiques et statistiques ont été réalisées afin d'évaluer les effets 

des paramètres biotiques et abiotiques sur les communautés des CMA et les microorganismes 

qui leur sont associés. 
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Mise en contexte du chapitre 2 - Quel est la biodiversité des bactéries associées aux 

CMA dans un site hautement contaminé par les hydrocarbures pétroliers ? 

Il est admis que les CMA établissent des associations symbiotiques ou parasitiques 

avec la flore microbienne présente dans la rhizosphère des sols agricoles. Cependant, on 

connaît peu de choses sur la biodiversité des bactéries associées aux CMA dans les sites 

contaminés par les HP et encore moins dans les propagules intra-racinaires. À cet effet, dans 

ce chapitre, nous avons développé une approche originale basée sur la microdissection des 

racines mycorhizées pour étudier la diversité bactérienne associée aux propagules intra-

racinaires des CMA extraites à partir des racines de la plante Solidago rugosa échantillonnées 

dans le site pollué de Varennes. 

Les résultats de ce chapitre ont fait l'objet d'une publication dans la revue FEMS 

Microbiology letter en 2014. 

Ma contribution dans cet article est la participation à la mise en place de l’expérience 

et la réalisation de la totalité des travaux d’échantillonnage et de laboratoire. J’ai aussi 

participé à la rédaction et j’ai fait toutes les illustrations présentées dans l’article. 
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2.1. Abstract 

Arbuscular mycorrhizal fungi (AMF) belong to phylum Glomeromycota, an early 

divergent fungal lineage forming symbiosis with plant roots. Many reports have documented 

that bacteria are intimately associated with AMF mycelia in the soil. However, the role of 

these bacteria remains unclear and their diversity within intraradical AMF structures (AMF 

structures inside roots) has yet to be explored. We aim to assess the bacterial communities 

associated within intraradical propagules (vesicles and intraradical spores) harvested from 

roots of plant growing in the sediments of an extremely petroleum hydrocarbon-polluted 

basin. Solidago rugosa roots were sampled, surface-sterilized, and microdissected. Eleven 

propagules were randomly collected and individually subjected to whole-genome 

amplification, followed by PCRs, cloning, and sequencing targeting fungal and bacterial 

rDNA. Ribotyping of the 11 propagules showed that at least five different AMF OTUs could 

be present in S. rugosa roots, while 16S rRNA ribotyping of six of the 11 different propagules 

showed a surprisingly high bacterial richness associated with the AMF within plant roots. 

Most dominant bacterial OTUs belonged to Sphingomonas sp., Pseudomonas sp., Massilia sp., 

and Methylobacterium sp. This study provides the first evidence of the bacterial diversity 

associated with AMF propagules within the roots of plants growing in extremely petroleum 

hydrocarbon-polluted conditions. 

 

2.2. Keywords  

Arbuscular mycorrhizal fungi; bacteria; petroleum hydrocarbons; Solidago rugosa; 16S 

and 18S rRNA genes. 
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2.3. Introduction  

Arbuscular mycorrhizal fungi (AMF) belong to an ancient group of plant-inhabiting 

fungi that form symbiotic associations. The arbuscular mycorrhizal association is among the 

oldest symbioses between plants and fungi on earth, and it has been dated back to Ordovician 

(c. 450 million years) using fossil records and molecular clocks (Simon et al., 1993; Redecker 

et al., 2000). AMF belong to phylum Glomeromycota, an early diverging fungal lineage of 

ecologically and economically relevant microorganisms. Glomeromycota promote plant 

growth by enhancing mineral uptake, in particular phosphorus, and protect plants against soil-

born pathogens (St-Arnaud & Elsen, 2005; Smith & Read, 2008; Ismail et al., 2011; Ismail et 

al., 2013).  

AMF are widely distributed and can be found in all ecosystems on earth where plants 

are able to grow. Therefore, they are usually considered to be generalist plant symbionts, as 

their diversity is limited to between 200 and 300 described species (Öpik et al., 2010; 

Redecker et al., 2013). The analysis of a large dataset of 14 961 AMF nucleotide sequences 

retrieved from 111 studies showed that geographic distance, soil temperature and moisture, 

and plant community type were each significantly related to AMF community structure, but 

these factors explain only a small amount of the observed variance in the meta-analysis data 

(Kivlin et al., 2011). Soil pollutants have been considered as potentially major factors 

affecting AMF diversity (Vallino et al., 2006; Bedini et al., 2010; Long et al., 2010; Hassan et 

al., 2011). The role of AMF in polluted soils has been widely studied, and several studies 

revealed that AMF promote phytoremediation and enhance plant tolerance against trace metals 

and petroleum hydrocarbon pollutants (Bedini et al., 2010; Aranda et al., 2013; Hassan et al., 

2013). For example, Bedini et al. (2010) found nine AMF OTUs associated with plants 
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spontaneously growing in trace metal-polluted ash disposal site containing extreme 

concentrations of Cu, Pb, and Zn. 

In all types of soils where AMF are found, their growth is not limited to plant roots; 

their mycelia extend beyond roots, exploring a larger volume of soil, and producing 

extraradical hyphae and asexual multinucleate spores. The mycelia of AMF are typically 

coenocytes that lack septa, allowing cytoplasm, nuclei, and organelles to move freely within 

hypha (Marleau et al., 2011).  

In natural ecosystems, numerous bacterial taxa are closely associated with AMF 

mycelia where they colonize the surface of extraradical hyphae and spores on which they can 

form biofilm-like structures (Scheublin et al., 2010; Lecomte et al., 2011; Cruz & Ishii, 2012). 

Both culture-dependent and culture-independent methods have observed and identified several 

bacterial taxa belonging to α-, β-, and γ-Proteobacteria and Firmicutes from the surface of 

mycelia of many AMF species (Roesti et al., 2005; Bonfante & Anca, 2009; Scheublin et al., 

2010; Lecomte et al., 2011). In some AMF taxa, bacteria were also shown to live in the 

cytoplasm as endobacteria [reviewed in (Bonfante & Anca, 2009)]. Using microscopy, 

Bianciotto et al. (1996) found that an individual spore of the AMF Gigaspora margarita can 

harbor up to 250 000 bacterial cells in its cytoplasm. However, Jargeat et al. (2004) attempted 

to cultivate the endobacterium Candidatus Glomeribacter gigasporarum living inside G. 

margarita using 19 different culture media without notable success. This supports the idea that 

some endobacteria could be obligate biotrophs that are not able to grow without AMF, which 

themselves require a host plant to complete their life cycle (Jargeat et al., 2004). Interaction of 

AMF and bacteria brings another level of complexity to diversity and function of the 

mycorrhizal symbiosis. Thus, some authors hypothesize that plants, AMF, and bacteria can be 
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considered as tripartite associations resulting in a consortium that promotes plant growth 

(Bonfante & Anca, 2009). However, the potential roles and infection mechanisms of these 

bacteria, in particular the endobacteria, are still poorly understood. In addition, the diversity of 

these associated bacteria has not been explored in polluted soils, neither in extraradical spores 

nor inside the mycorrhizal roots. 

The objective of this study was therefore to describe the bacterial diversity associated 

with AMF propagules (vesicles and intraradical spores) extracted from the roots of a plant 

species growing spontaneously in a decantation basin extremely polluted with petroleum 

hydrocarbons. To do so, we microdissected mycorrhizal Solidago rugosa roots harvested from 

a polluted site to isolate intraradical AMF propagules. Then, each propagule was subjected to 

whole-genome amplification (WGA). Bacterial diversity was assessed using cloning and 

sequencing of the 16S rRNA genes. This approach allowed us to profile the bacteria closely 

associated with the AMF while reducing the additional diversity of soil bacteria, which can be 

randomly attached to the surface of AMF extraradical mycelia. 18S rRNA ribotyping was also 

performed on WGA products to assess AMF taxonomic diversity. 

 

2.4. Materials and methods 

2.4.1. Site of study, harvesting, and preparation of samples 

Sampling occurred on the site of a former petrochemical plant located on the south 

shore of the St-Lawrence River near Montreal, Quebec, Canada (45°41′55.3″N 

73°25′45.0″W). Various plants species were spontaneously growing in an open-air 

sedimentation basin in which petroleum hydrocarbon wastes were dumped for many decades. 
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Polycyclic aromatic hydrocarbon (PAH) and alkane (C10–C50) concentrations in the basin are 

shown in Supporting Information, Table S2.1. PAH and alkane concentrations exceeded by 

hundreds of time the standards for reuse defined by the government of Quebec for industrial 

areas. Three individual plants of S. rugosa Mill. growing in the basin sediments were collected 

in October 2011. Plant roots were cut, were washed several times with tap water to remove 

rhizospheric soil, and were cut again into pieces c. 1 cm long. A subsample of the roots from 

each plant was stained for microscopy observations, as described below. Under sterilized 

laminar flow hood, the remaining root pieces were washed in sterilized water containing a few 

drops of Tween 80 to favor removal of the petroleum hydrocarbons attached to the root 

surface and then in each of the following surface disinfecting treatments: ethanol 90 % for 

10 s, commercial sodium hypochlorite 5 % for 2 min, chlromine-T 4% for 10 min, and 

streptomycin 0.03 % for 30 min. After the last treatment, the roots were washed several times 

in sterile distilled water and stored in 1.5 mL microtubes prior to microdissection. To test the 

efficiency of the surface sterilization procedure, c. 20 root fragments were transferred to Petri 

dishes containing TSA or PDA media and incubated for 2 weeks to check for the presence of 

bacteria or fungi able to grow in these media. 

2.4.2. Estimation of mycorrhizal root colonization 

The roots of S. rugosa were cleared in a solution of KOH 10 % at 80 °C for 1 h, 

washed several times in deionized water, and stained in a 1 % acid fuchsin solution at 60 °C 

for 1 h. The roots then were washed, cut to small fragments, and mounted on microscope 

slides using glycerol 60 % as a mounting medium. The percentage of AMF root colonization 

was determined under the microscope using the grid-line intersect method (Giovannetti & 

Mosse, 1980). 
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2.4.3.  Root microdissection, extraction of AMF propagules, and scanning 

electron microscopy (SEM) 

Disinfected root pieces were soaked in a filtered (0.22 µm) mixture of enzymatic 

solution of 2 % pectolyase (Sigma-Aldrich) and 3 % cellulase (Sigma–Aldrich) (w/v) in sterile 

water at 30 °C for 1 h to digest root cell walls. Root pieces were rinsed and transferred to Petri 

dishes in which they were microdissected under a stereomicroscope positioned into a 

horizontal clean bench, using thin sterile forceps and needles. Fourteen fungal propagules 

were randomly collected and individually put in 0.2 mL microtubes containing 2 µL of sterile 

water and kept at 20 °C until use. Because clear discrimination between vesicles and 

intraradical spores that some AMF are able to produce requires destructive examination of the 

cell wall at high magnification, we used the term ‘AMF intraradical propagules’ to designate 

both structure types. We also collected an uncolonized root tip sample that was used as a 

control for assessing bacterial endophytes colonization within S. rugosa roots. Workflow of 

the experimental approach is summarized in Figure 2.1. To visually confirm the presence of 

bacteria on the surface of AMF propagules, root pieces were prepared for SEM following the 

protocol described in Bozzola and Russell (1992). A Quanta 200 3D (FEI, Burlington, MA) 

SEM was used to visualize samples and acquire images.  
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Figure 2.1. Workflow of the experimental approach used in this study, consisting of the 

collection of root samples from the field, root sterilization, digestion of cell wall, and 

microdissection.  

Isolated propagules were subjected to WGA, followed by PCRs targeting the fungal 18S and 

bacterial 16S rRNA genes, cloning, and sequencing. 

 

2.4.4. WGA and PCR 

WGA reactions were performed directly on each individual propagule and on 

uncolonized root tip using the Illustra GenomiPhi HY DNA Amplification Kit (GE Healthcare 

Life Sciences, QC, Canada) according to the manufacturer’s instructions. WGA reactions were 

carried out in order to have sufficient quantity of DNA for doing several PCR amplifications. 

All WGA products were stored at 20 °C until use. PCRs were then performed using WGA 

products as DNA template to amplify 18S rRNA gene fragments using AML1 and AML2 

primers (Lee et al., 2008), to identify AMF sequences. Nested PCRs were also performed with 

the primer pair AM1 and NS31 (Simon et al., 1992; Lee et al., 2008) on the propagules for 

which no amplification occurs using the AML1/AML2 primers. PCR amplifications were also 
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performed using the 16S rRNA primer pair 27f and 1495r (Bianciotto et al., 1996) to assess 

bacterial diversity associated with the AMF propagules.  

PCRs contained PCR buffer, 0.5 µM of each primer, 0.2 mM of dNTP, 1 µL of WGA 

product, and 1 U of Taq polymerase (QIAGEN, Toronto, ON, Canada) in a total volume of 

40 µL. PCRs were run on a MasterCycler ProS thermocycler (Eppendorf, Mississauga, ON, 

Canada) under the following program: an initial denaturation at 95 °C for 5 min followed by 

38 cycles of 95 °C for 30 s, 54 °C for 30 s, and 72 °C for 90 s, and a final elongation at 72 °C 

for 10 min. PCR products were separated by agarose gel (1 %) electrophoresis, stained with 

GelRed, and visualized under UV light using a Gel-Doc system (Bio-Rad Laboratories, 

Mississauga, ON). 

2.4.5. Cloning and sequencing 

Cloning reactions were performed individually on 16S and 18S rDNA PCR products. 

The ligation reactions were performed in a volume of 10 µL using pGEM-T Easy Vector 

System II kit containing chemically competent JM109 Escherichia coli cells (Promega, 

ThermoFisher, Ottawa, ON, Canada) according to recommendations of the manufacturer. 

Bacterial colonies were screened by PCR with T7 and SP6 universal primers (Hassan et al., 

2011). Positive clones that contained inserts were sent for sequencing at the McGill University 

and Genome Quebec Innovation Centre (Montreal, QC). Sequences were deposited in 

GenBank under accession numbers KJ809141–KJ809555. 

2.4.6. Data analyses 

Clustering of bacterial sequences was performed in GENEIOUS version 6 (Biomatterts 

Limited, Auckland, New Zealand), and OTUs were defined at 98 % similarity. Singleton 



 

24 

sequences were kept and used in a different analysis. Rarefaction analyses were performed in 

R version 3.0.1 software using the VEGAN package (http://www.r-project.org). The estimator 

of sample coverage was calculated using INEXT online 

(http://chao.stat.nthu.edu.tw/blog/software-download/); (Chao & Jost, 2012).  

For phylogenetic analysis, sequence similarities of AMF 18S rRNA genes were 

obtained from MaarjAM (Öpik et al., 2010) and GenBank databases. Choanoflagellate species 

Monosiga brevicollis and M. ovata were used as an out-group for this analysis. A phylogenetic 

tree was generated using a neighbor-joining approach with 1000 bootstrap resamplings using 

the MEGA version 5.10 software (Tamura et al., 2011). 

2.5. Results and discussion 

2.5.1. Diversity of AMF in plant roots 

Microscopic examination of S. rugosa roots, a plant species spontaneously growing in 

the sediments of a decantation basin containing very high concentrations of aliphatic and 

aromatic petroleum hydrocarbons (Table S2.1), showed typical AMF vesicles and hyphae 

(Figure S2.1). The roots showed mycorrhizal colonization with frequency of 70 %. As it is not 

possible to distinguish AMF species based on microscopic examination of roots, we used 

WGA, PCR, and cloning of the 18S rRNA gene to assess AMF diversity within roots of S. 

rugosa. Among the 14 propagules analyzed, 11 led to successful PCR amplification products 

that were subsequently cloned and provided a total of 41 clones. Clone sequences, which were 

amplified using AML1/AML2 primers, generated a sequence length of c. 800 bp, except those 

from propagule 5 which were amplified using AM1/NS31 primers and were c. 550 bp. The 
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number of clones, sequence lengths, and BLASTN similarity results for each propagule are 

given in Table 2.1.  

Table 2.1. Arbuscular mycorrhizal fungal taxa found in propagules isolated from 

Solidago rugosa roots, based on 18S rRNA gene sequencing 

 1
 Three clones matched with Claroideoglomus Early-1 VTX00056, while, six matched with Spizellomyces 

palustris which is a Chitridiomycete. 

Phylogenetic analysis showed a high AMF species diversity colonizing S. rugosa roots 

(Figure 2.2). The 18S rRNA gene sequences from all propagules clustered within taxa 

belonging to four different AMF families: Claroideoglomeraceae (five propagules), 

Diversisporaceae (three propagules), Glomeraceae (one propagule), and Archaeosporaceae 

(one propagule). Clones from propagule 3 showed 95–97 % identity with an unidentified AMF 

sequence (accession number: GQ140619.1) closely related to Glomeraceae which was found 

in trace metal-contaminated soil in China (Long et al., 2010). Interestingly, clones from 

Propagules 
Number of 

clones 

Fragment 

length (bp) 
Most closely related taxa  

Accession 

number 

% of 

identity 

1 3 800-801 Diversispora eburnea VTX00060 AM713429 99 

2 1 798 Archaeospora schenckii VTX00245 FR773150 96 

3 6 795-796 Glomus sp. VTX00419 GQ140619 95-97 

4 1 805 
Claroideoglomus Torrecillas12b Glo 

G1 VTX00193 
 HE614988 99 

5 4 539-560 
Claroideoglomus Torrecillas12b Glo 

G4 VTX00056 
HE615005 98 

6 2 798 Glomus irregulare VTX00114 FN600536 99 

7 4 805-806 Claroideoglomus Early-1 VTX00056 JN252440 96-97 

8 9
1 

794-805 

Claroideoglomus Early-1 VTX00056 

 

Spizellomyces palustris 

JN252440 

 

FJ827665.1 

97 

 

95 

9 3 805-806 
Claroideoglomus Torrecillas12b Glo 

G1 VTX00193 
HE614988 99 

10 6 799-804 Diversispora eburnea VTX00060 AM713429 98-99 

11 2 789-800 Diversispora eburnea VTX00060 AM713429 99 
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propagule 6 showed 98–99 % similarity with AMF sequences VeGlo8 and VeGlo10, closely 

related to Rhizophagus irregularis (previously named as Glomus intraradices), which were 

found in roots of plants growing in an extreme site polluted with Cu, Pb, and Zn in Venice, 

Italy (Bedini et al., 2010).  

No sequence matching with Paraglomeraceae, Gigasporaceae, or Acaulosporaceae 

was found in this study. However, this was expected as most AMF taxa belonging to these 

families are not known to form vesicles and spores within plant roots (Oehl et al., 2011). 

Arbuscular mycorrhizal fungal diversity in trace metal polluted soil has been extensively 

studied. For example, Vallino et al. (2006) identified 13 taxonomic units belonging to 

Glomeraceae, Diversisporaceae, and Gigasporaceae from roots of S. gigantea naturally 

growing in a trace metal-contaminated site in northern Italy. Long et al. (2010) studied AMF 

diversity from roots and rhizospheric soil of five plants species growing in trace metal-

contaminated soil and also identified species belonging to Glomeraceae, 

Claroideoglomeraceae, Acaulosporaceae, and Archaeosporaceae. In another study, Hassan et 

al. (2011) showed that the community structure of AMF associated with Plantago major 

plants was determined by trace metal concentrations in the soil and dominated by 

Funneliformis mosseae in polluted sites. In contrast, although several studies showed that 

AMF may directly or indirectly influence phytoremediation of petroleum hydrocarbons (Wu et 

al., 2009; Gao et al., 2010; Gao et al., 2011a; Gao et al., 2011b; Aranda et al., 2013), the 

effect of these compounds on AMF diversity remains unclear. 
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Figure 2.2. Neighbor-joining tree of the 18S rRNA gene of the consensus sequences of 

clones obtained from each of the 11 propagules analyzed in our study except for 

propagule 8 in which two consensus sequences of different taxonomic origin were found.  

The tree shows the different AMF families in which each propagule consensus sequence 

clustered, and it also shows that six clones of propagule 8 clustered within Chytridiomycetes. 

Bootstrap values lower than 50 % of 1000 replicates are not shown on the branches.  
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Interestingly, six of nine 18S rRNA gene clones retrieved from propagule 8 matched 

with Chytridiomycota species, showing 95 % identity to Spizellomyces palustris and 

Rhizophlyctis rosea (accession numbers: FJ827665 and GQ160454, respectively). This is not 

surprising because Chytridiomycota are commonly found in wet soils and can be endophytic 

or pathogens of plant roots (Jobard et al., 2010). However, little is known about the interaction 

between AMF and Chytridiomycota. Only a few studies from the 1970s and 1980s 

hypothesized that some chytrids such as Rhizidiomycopsis sp., Phlyctochytrium sp., and 

Spizellomyces sp. could be hyperparasites of AMF and may negatively affect the mycorrhizal 

symbiosis (Ross & Ruttencutter, 1977; Schenck & Nicolson, 1977; Sylvia & Schenck, 1983). 

However, Paulitz and Menge (1984) also proposed that Chytridiomycota could be saprotrophs 

of decaying AMF structures and reported that Spizellomyces punctatum infected mainly 

nongerminated or dead spores of Gigaspora margarita. Tzean et al. (1983) suggested that 

Phlyctochytrium kniepii may be vector for transmitting bacteria such as Spiroplasma-like 

organisms to the cell wall and cytoplasm of AMF spores. It has also been reported that some 

AMF spores could be infected by other fungi belonging to Ascomycota (Hijri et al., 2002). 

2.5.2. Bacterial diversity associated with AMF propagules 

Among the 11 AMF propagules successfully identified, six propagules belonging to 

different AMF species (propagules 1–6) were used to assess the associated bacterial diversity. 

A total of 428 clones were sequenced from the six propagules and from a control noncolonized 

root tip. Of these clones, 53 sequences matched with plant chloroplastic genes and were 

removed from the analysis. The remaining 375 sequences matched with bacterial 16S rRNA 

genes and were clustered at 98 % sequence identity resulting in 27 OTUs and 23 additional 
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singleton sequences. The bacterial genera obtained from the different OTUs groups and 

singletons are shown in Table 2.2. Rarefaction analyses were performed on each propagule 

sequence dataset (Figure 2.3). The highest coverage was obtained from the propagules 2, 5, 

and 6 with recovery of 91.7 %, 92.6 %, and 90.4 %, respectively, while the lowest coverage 

was obtained from the propagule 4 with 66.2 %. Propagules 1 and 3 showed intermediate 

values with 80.4 % and 87 %, respectively. The control root tip showed a saturated rarefaction 

curve with 100 % of sample coverage and was represented only by two OTUs (Figure 2.3). 

The most dominant bacterial OTUs associated with AMF propagules belonged to 

Sphingomonas sp. (28.2 %), Pseudomonas sp. (15.7 %), Massilia sp. (14.4 %), 

Methylobacterium sp. (11.7 %), and unidentified bacterium (9.8 %). Other OTUs belonging to 

Bradyrhizobium sp., Bacillus sp., Bosea sp., and Paenibacillus sp. were found at lower 

frequencies (Figure S2.2). The highly abundant bacterial OTUs were observed in almost all 

propagules with variable frequencies between the propagules. Those that were less abundant 

were only found in specific propagules. This may be due to the sampling effort, which did not 

cover all the bacterial diversity associated with propagules, or perhaps there is a specific 

affinity of bacteria for AMF species. For example, Pseudomonas sp. was the dominant OTU 

in propagules 1 and 5 with proportions of 33 % and 42 %, respectively, but it was not detected 

in propagule 2 and was only found at low frequencies in other propagules. The same is true for 

Sphingomonas sp. which was detected as the dominant OTU for propagules 2, 4, 5, and 6, 

while only one clone belonging to this taxon was found in propagule 1 (Figure S2.3). 

Interestingly, the bacterial OTU richness found in the root sample was extremely low in 

comparison with that found in AMF propagules as it was represented by only two OTUs, 

which were also found in AMF propagules, and these belonged to Pseudomonas sp. (14 
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clones) and Streptococcus sp. (15 clones). Pseudomonas sp. was largely dominant (45 clones 

from 5 of the 6 AMF propagules), while Streptococcus sp. was found in propagules 1 and 2 

only (with seven clones in total). Pseudomonas spp. were reported as an endophytic as well as 

AMF-associated bacterium, able to promote both plant growth and the symbiotic association 

between AMF and plants (Strobel & Daisy, 2003; St-Arnaud & Elsen, 2005; Scheublin et al., 

2010; Gaiero et al., 2013). The low bacterial richness found in the root may be due to the 

effect of the surface disinfection of root fragments or to the fact that meristematic cells 

forming a significant part of the root tip are mainly exempt of bacterial colonization.  

Bacteria found to be associated with AMF propagules and within roots may either 

colonize the AMF cytoplasm or may be attached to their external surface, although both 

situations were reported to occur for some bacteria (Bonfante & Anca, 2009). To test whether 

bacteria were attached to the surface of the intraradical AMF propagules, microdissected 

mycorrhizal roots previously disinfected, and processed under sterile conditions were 

examined using SEM. Coccoid bacteria and biofilm-like structures attaching to the surface of 

AMF propagules were clearly visible inside the cortex of S. rugosa roots (Figure 2.4). The size 

of these bacterial cells ranged from 0.5 to 1.5 µm. 
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Table 2.2. Detection frequencies and identity of bacterial genera associated with AMF propagules isolated form Solidago 

rugosa based on 16S rRNA gene sequencing OTUs were clustered at 98 % of sequence identity; then, OTUs showing 

similarities with the same bacterial genera were grouped together. P means propagule; R means roots. 

Bacterial taxa P-1 P-2 P-3 P-4 P-5 P-6 R Fragment 

length 

Percentage of 

identity 

Accession Numbers 

Sphingomonas sp. 1 39 26 14 11 15 - 664-1463 91%-98.5% EF061133, JQ659520, JX566637, AY749436, 

HF558376, AF181571, AB109749, JX879745 

Pseudomonas sp. 22 - 1 1 11 10 14 325-1538 98%-99% AM421016, FJ889609, KF011692 

Massilia sp. 5 26 16 5 1 1 - 827-1505 94%-95% JX566602 

Methylobacterium sp. 4 3 32 - - 5 - 604-1487 92%-99% AB698713, FJ025133, CP001029, JF905617 

Uncultured bacterium 11 4 17 - - 5 - 791-1506 96%-99% HE576045, AY672523, JF429334, DQ129631, 

JX647723, HE798198, JN023771, JX271950, 

FJ984639, HM845051, JQ769980, GU563747 

Streptococcus sp. 2 5 - - - - 15 876-1517 92%-99% FR875178, FQ312041  

Bosea sp. 7 4 1 1 - - - 846-1453 97% DQ440827 

Afipia sp. 1 1 - 1 - 4 - 842-1453 99% DQ123622 

Brevundimonas sp. - - 2 2 - 1 - 912-1430 98% KC494321 

Bradyrhizobium sp. 4 - - - - - - 1461-1486 98% FJ390912 

Paenibacillus sp. 3 - - - - - - 1034-1517 97% JX566644 

Lysobacter sp. - 1 2 - - - - 946-1002 97%-99% JQ746036 

Acinetobacter sp. - - - 2 1 - - 868-1504 99% HE651920 AB099655  

Stenotrophomonas sp. - - - - 2 - - 890-1514 99% KF150351 

Propionibacterium sp. 1 - - 1 - - - 1495-1499 99% CP003877 

Agrobacterium sp. 2 - - - - - - 816-898 99% AY174112 

Legionella sp. 1 - - 1 - - - 883-938 95%-97% AM747393 JF779686 

Pseudacidovorax sp. - - 2 - - - - 951-1000 97%-98% HQ834240 

Azospirillum sp. - - - 1 - - - 869 95% AP010946 

Bacillus sp. - 1 - - - - - 1521 97,50% JQ435679  

Lactobacillus sp. - - 1 - - - - 1540 99% EU855223 

Leptothrix sp. 1 - - - - - - 1238 97,80%  AF385534 

Pseudoxanthomonas sp. 1 - - - - - - 929 98,70%  DQ337597 

Total 66 84 100 29 26 41 29    
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Figure 2.3. Rarefaction curves of the bacterial OTUs associated with AMF propagules 

and roots. OTUs were assigned at 98 % of sequence similarity. The estimation of sample 

coverage for propagules 1–6 and the uncolonized roots were respectively 80.4 %, 91.7 %, 

87 %, 66.2 %, 92.2 %, 90.4 %, and 100 %. 

Based on 16S rRNA genes, most bacterial OTUs retrieved from AMF propagules 

matched with bacterial taxa already reported to attach on the surface of spores and extraradical 

mycelia of AMF in soil (Roesti et al., 2005; Scheublin et al., 2010; Lecomte et al., 2011). Our 

data support that these bacteria are not only able to interact with the external AMF mycelia in 

soil, but they also colonize the AMF propagules inside roots. However, the effect of these 

bacteria on AMF remains unclear. Dominant bacterial taxa found in this study, belonging to 

genera Sphingomonas, Pseudomonas, Massilia, and Methylobacterium, were previously 

identified in hydrocarbon-polluted soils and were shown to be involved in biodegradation of 

PAHs (Dennis & Zylstra, 2004; Van Aken et al., 2004; Zhou et al., 2006; Ní Chadhain & 

Zylstra, 2010; Zhang et al., 2010). Interestingly, the nondominant taxa found here, which 
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belong to genera Bosea, Brevundimonas, Bradyrhizobium, and Paenibacillus, have been 

reported elsewhere to improve mycorrhizal colonization of roots and plant nutrient uptake 

(Frey-Klett et al., 2007; Tarkka & Frey-Klett, 2008; Bonfante & Anca, 2009). The 

nondominant taxa we have found have also been considered to be members of a group called 

mycorrhiza helper bacteria (MHB), which includes phosphate-solubilizing bacteria (PSB) and 

nitrogen-fixing bacteria (Garbaye, 1994; Marschner & Timonen, 2006). The relationship 

between MHB and AMF has not yet been investigated in detail, but it has been suggested that 

MHB obtain their carbon resources from AMF hyphae (Bonfante & Anca, 2009) and that in 

return, these bacteria produce signaling compounds that can enhance the AMF stimulation of 

root exudates (Barea et al., 2005). It has also been reported that Paenibacillus sp. can support 

the growth and sporulation of the AMF Rhizophagus irregularis (formerly named G. 

intraradices), independently from the presence of the plant (Hildebrandt et al., 2006), 

although this report was controversial. Our results also support that intraradical AMF 

propagules can also harbor obligate endobacteria living inside AMF spores. For example, the 

clone G15GN sequenced from the propagule 1 (accession number KJ809239) showed a 

sequence identity of 97 % with an obligate endobacterium (accession number FJ984641) 

found in the cytoplasm of an AMF species (Naumann et al., 2010). 
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Figure 2.4. Scanning electron micrographs of dissected roots of Solidago rugosa showing 

AMF hyphae (H) and propagules (P) on which bacterial cells and biofilm-like structures 

(orange arrow) can be seen attached to their surface (panels a to e). Panels b and c are 

magnifications of the sections selected in the panels a and d, respectively. Panel f shows 

an AMF spore (S) isolated from the rhizospheric soil of S. rugosa roots sampled from the 

contaminated soil. Although the spore surface was washed several times with sterilized 

water, many microorganisms are visibly still attached to its cell wall surface.
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2.6. Conclusions 

In this report, we described AMF diversity and associated bacteria from individual 

intraradical propagules isolated from roots of plants spontaneously growing in sediments of an 

extreme petroleum hydrocarbon-polluted basin. Based on WGA, cloning, and sequencing on 

individual AMF propagules, our results showed that intraradical propagules of AMF harbor a 

highly diversified bacterial community. However, further investigations will be needed to 

determine the functions and putative roles of these bacteria in mycorrhizal symbiosis and in 

phytoremediation. 

2.7. Acknowledgements 

This project was supported by the Genome Canada and Genome Quebec funded 

Genorem project which are greatly acknowledged. We thank Petromont Inc. (ConocoPhillips 

Canada) for allowing us to access to the Varennes field site. We also thank Franck Stefani for 

support in sequence analyses and Karen Fisher-Favret for comments on the manuscript. 

 



 

36 

Mise en contexte chapitre 3 - Effets des niveaux de contamination et des espèces de 

plantes hôtes sur la biodiversité et la structure des communautés microbiennes associées 

aux CMA. 

Dans le chapitre précédent, les techniques de microscopie, de clonage et de séquençage 

ont montré que même dans des conditions extrêmes, les CMA sont capables de s'associer avec 

plusieurs espèces de bactéries du sol. Cependant, nous ne savons pas comment les niveaux de 

contamination en HP et les espèces de plantes peuvent influencer la biodiversité et la structure 

des communautés microbiennes associées aux CMA. De plus, nous ne savons pas si les 

espèces de CMA peuvent aussi jouer un rôle dans la structure de ces communautés 

microbiennes associées à leurs spores et mycéliums ? 

Dans ce chapitre, en utilisant les techniques de séquençage à haut débit, nous avons 

étudié la biodiversité microbienne associée aux spores des CMA extraites à partir de trois 

espèces de plantes qui poussent dans trois bassins de décantation ayant des niveaux de 

contaminations différents. 

Les résultats de ce chapitre ont fait l'objet d'une publication dans la revue 

Environmental Microbiology en 2016. 

Ma contribution dans cet article est la participation à la mise en place de l’expérience 

et la réalisation de la totalité des travaux d’échantillonnage et de laboratoire. J’ai également 

fait toutes les analyses bioinformatiques et statistiques. J’ai aussi participé à la rédaction et j’ai 

fait toutes les illustrations présentées dans l’article. 
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3.1. Abstract  

The root-associated microbiome is a key determinant of pollutant degradation, soil 

nutrient availability and plant biomass productivity, but could not be examined in depth prior 

to recent advances in high-throughput sequencing. Arbuscular mycorrhizal fungi (AMF) form 

symbioses with the majority of vascular plants. They are known to enhance mineral uptake 

and promote plant growth, and are postulated to influence the processes involved in 

phytoremediation. Amplicon sequencing approaches have previously shown that petroleum 

hydrocarbon pollutant (PHP) concentration strongly influences AMF community structure in 

in situ phytoremediation experiments. We examined how AMF communities and their spore-

associated microbiomes were structured within the rhizosphere of three plant species growing 

spontaneously in three distinct waste decantation basins of a former petrochemical plant. Our 

results show that the AMF community was only affected by PHP concentrations, while the 

AMF-associated fungal and bacterial communities were significantly affected by both PHP 

concentrations and plant species identity. We also found that some AMF taxa were either 

positively or negatively correlated with some fungal and bacterial groups. Our results suggest 

that, in addition to PHP concentrations and plant species identity, AMF community 

composition may also shape the community structure of bacteria and fungi associated with 

AMF spores. 

 

3.2. Keywords  

Arbuscular mycorrhizal fungi; Petroleum hydrocarbon pollutants; 454 high throughput 

sequencing; Spore-associated microbes. 



 

39 

3.3. Introduction  

Arbuscular mycorrhizal fungi (AMF) constitute a widespread soil fungal group which 

establishes symbiotic associations with the majority of vascular plants (Smith & Read, 2008). 

Once AMF colonize plant roots, they develop an extraradical hyphal network, promote 

nutrient uptake, in particular phosphorus and nitrogen, and protect plants against soil-borne 

pathogens (St-Arnaud & Vujanovic, 2007; Smith & Read, 2008; Ismail et al., 2011). In the 

last few years, several studies showed that AMF can also influence the fate of trace elements 

and petroleum hydrocarbon pollutants (PHP) in soils (Gao et al., 2010; Gao et al., 2011b; 

Hassan et al., 2013). As fungi that extend their hypha into the rhizosphere and the surrounding 

soil, AMF not only interact with plants, but also with a myriad of soil microbes. Several in 

vivo and in vitro studies have demonstrated that a large range of bacterial species are living on 

the surface and/or inside mycelia, spores and intraradical propagules of AMF (Bianciotto et 

al., 1996; Scheublin et al., 2010; Lecomte et al., 2011; Cruz & Ishii, 2012; Iffis et al., 2014; 

Agnolucci et al., 2015). Some fungal taxa belonging to Ascomycota and Chytridiomycota have 

also been reported to be associated with AMF mycelia (Paulitz & Menge, 1984; Hijri et al., 

2002; Iffis et al., 2014). 

 

Even if there is no clear evidence that AMF directly metabolize and degrade petroleum 

hydrocarbons, they might stimulate soil microbial metabolic activity by releasing nutrients in 

the mycosphere similar to plant root exudates in the rhizosphere (Barea et al., 2005; Boer et 

al., 2005; Frey-Klett et al., 2007; Bonfante & Anca, 2009). This may lead to an acceleration of 

degradation of organic pollutants by mycosphere microbes as well as to the translocation and 

immobilization of trace elements (Joner et al., 2001; Liu & Dalpé, 2009; Hernández-Ortega et 
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al., 2012; Hassan et al., 2013), and their accumulation in plant tissues (Jing et al., 2007). 

Previous reports have shown that AMF can improve soil resilience to organic pollution (Joner 

et al., 2001; Leyval et al., 2002; Joner & Leyval, 2003; Liu et al., 2004; Volante et al., 2005). 

However, these studies were mostly done only under greenhouse or in vitro conditions. 

Hassan et al. (2014) reported that PHP contaminant concentrations strongly influenced the 

AMF community structure within the rhizosphere of 11 willow cultivars planted across PHP 

contaminated soils at the site of a former petrochemical plant. These authors also showed that 

different AMF families dominated at each contaminant level. Determination of the best 

approach for selecting competent microbes for bioremediation should be based on prior 

knowledge of the microbial communities inhabiting the target site (Tyagi et al., 2011), since 

long-term exposure to a contaminant may have allowed different microbes to develop 

tolerance to highly polluted conditions or favored the proliferation of taxa able to metabolize 

or accumulate the pollutants. 

 

In this study, we report the effects of PHP concentrations and host plant identity on the 

diversity of AMF and of their spore-associated microbiomes in three distinct waste 

decantation basins located on the site of a former petrochemical plant. AMF associated 

microbiome refers here to the whole community of bacteria and fungi living on the surface 

and/or inside AMF spores. We further investigated the relationships between community 

structure of AMF and of their spore-associated microbial communities. 

We sampled rhizospheric soils and roots of three plant species, Solidago canadensis, 

Populus balsamifera and Lycopus europaeus growing spontaneously in the three contaminated 

basins, leading to 27 samples. From each rhizospheric soil sample, we manually collected one 
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thousand AMF spores using wet sieving and sucrose gradient centrifugation. The rationale for 

choosing spores relies on the fact that they can easily be discriminated from those of other 

fungi. Total DNA of spore samples was individually extracted, PCR-amplified and sequenced 

using the Roche GS-FLX+ platform targeting the 18S rRNA gene for AMF, ITS for fungi and 

16S rRNA gene for bacteria. Our results showed that the community structures of AMF were 

only affected by PHP concentration, while the AMF-associated microbes were significantly 

affected by both PHP concentration and plant species identity. The proportions of taxa 

belonging to known petroleum-degrading microorganisms were higher in the highly 

contaminated basin than in the lowest contaminated basin. We also observed that in addition 

to the PHP contaminants and plant species effects, AMF may also shape the microbial 

communities associated with their spores. This investigation is the most comprehensive study 

on an AMF spore-associated microbiome, whose diversity is found to be much more complex 

than previously shown. 

 

3.4. Materials and methods 

3.4.1. Experimental design and sampling 

Field sampling was carried out on October 18th, 2013, in three decantation basins in 

which petroleum hydrocarbon wastes have been dumped by a former petrochemical plant 

located on the south shore of the St-Lawrence River near Montreal, QC, Canada (45.70 N, 

73.43 W). More details and description of this site can be found in Bell et al. (2014). An 

exhaustive inventory of spontaneous vegetation growing on this site was also reported by 

Desjardins et al. (2014), who identified 23 plant species. We selected Solidago canadensis, 

Populus balsamifera and Lycopus europaeus for this study based on their abundance, their 
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presence in each of the three adjacent basins and their ability to form mycorrhizal symbiosis. 

In each basin, we collected three individual plants of each plant species with the soil 

surrounding their roots, totaling 27 plant samples (three basins × three plant species × three 

replicates). The fresh soil attached to each plant root system was collected and the AMF 

spores were separately extracted from each sample as described below. To confirm the AMF 

colonization of the sampled plant roots, a subsample of each root system was cleaned under 

tap water, cut into 1 cm long pieces, stained using 1 % Trypan blue and observed under the 

microscope (Giovannetti & Mosse, 1980). 

3.4.2. Soil chemical analysis 

Nine composite soil samples, each formed from a mix of the soil from the three 

replicates of each plant species per basin, were sent for polycyclic aromatic hydrocarbons 

(PAHs) and total alkanes (C10–C50) analyses to a commercial laboratory service (Maxxam, 

Montreal, QC). Soil chemical analyses are summarized in Supporting Information Table 

S3.10. Basin 1 showed the highest contamination level (termed as HC), followed by Basin 3, 

with a moderate contamination level (termed as MC), while Basin 2 showed the lowest 

contamination level, with concentrations comparable to a non-contaminated soil (termed as 

LC), according to the definitions used by the government of the province of Québec, Canada 

(http://www.mddelcc.gouv.qc.ca). 

3.4.3. AMF spore harvesting 

AMF spores were separately extracted from the fresh soil of each individual plant 

sample. AMF spores were extracted using wet sieving followed by sucrose gradient 

centrifugation according to Walker et al. (1982), with some minor modifications. Briefly, the 
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soil surrounding roots and a part of the bulk soils were collected by shaking and scratching 

plants roots in sterile plastic bags. Then, the collected soil was homogenized and a 50 g 

subsample was mixed in a 1 L container half full of tap water. The soil suspension was passed 

through a series of five superposed sieves with mesh sizes of 1 mm (top sieve), 500 µm, 

250 µm, 150 µm, and 40 µm (bottom sieve). The sieve assemblage was mounted in a vibratory 

sieve shaker apparatus (AS 200 basic, Retsch), operated at 30 Hz for 3 min under a mild water 

jet. The soil particles collected in 250 µm, 500 µm and 1 mm sieves were discarded, while 

those collected in 40 µm and 150 µm sieves were put into 50 ml tubes containing 20 ml of 

water. The suspensions were then subjected to sucrose gradient centrifugation and, for each 

sample, approximately 1000 spores were handpicked under a stereomicroscope using a 100 µl 

micropipette and collected in 1.5 ml microtubes. DNA extractions were performed directly on 

the fresh spores as described below. 

An additional 50 spores sample was harvested from each plant and they were subjected 

to electron scanning microscopy using a Quanta 200 3D SEM (FEI, Burlington, MA), as 

described in Iffis et al. (2014). 

3.4.4. DNA extraction 

Spores were washed three times with sterilized distilled water in order to remove the 

soil particles adhering on spore surfaces. DNA extraction was then performed using the 

DNeasy Plant Mini Kit (QIAGEN, Toronto, ON, Canada) following the manufacturer’s 

instructions. DNA was eluted in 50 µl of elution buffer, and quantified using a Qubit 2.0 

fluorometer (Life Technologies, Burlington, ON, Canada). DNA concentrations ranged 

between 0.4 and 10 ng/µl. The extracted DNA samples were stored at -20 °C until use. 
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3.4.5. Polymerase chain reactions 

To identify the AMF taxa, the extracted DNA samples were subjected to PCR 

amplifications targeting a partial 18S rRNA gene fragment with the primer pair AM1 and 

NS31, which produce a fragment of approximately 550 bp (Simon et al., 1992; Lee et al., 

2008). It is known that AM1 is not meant to amplify Archaeosporales and Paraglomerales 

(Lee et al., 2008; Van Geel et al., 2014), so our results might have underestimated these taxa if 

present (although some singletons of Paraglomus were produced). We initially used the 

AML1-AML2 primer pair aiming to amplify a more diverse set of Glomeromycota taxa but 

the sequence quality was bad and for this reason we used AM1 and NS31 primers. To identify 

the AMF spore-associated microbes and assess their community structure, two other PCRs 

were performed with primers UnivBactF 9 and BSR534/18, and ITS1F and ITS4, targeting the 

16S rRNA gene of bacteria and the ITS regions of fungi, respectively (Bell et al., 2014). All 

primers cited above were tagged with adaptors and unique multiplex identifier (MID) tags 

from the extended MID set recommended by Roche Diagnostics (Roche, 2009). 

PCRs were performed in 50 µl volumes containing 5 µl of 10× PCR buffer, 0.2 mM of 

dNTP mix, 1 µl of BSA (100 mg/ml), 1 µl MgCl2 (25 mM), 0.4 mM of each primer, 2 µl of 

DNA template and 1 U of Taq DNA polymerase (QIAGEN, Toronto, ON). PCRs were run on 

a thermal cycler Pro S thermocycler (Eppendorf, Mississauga, ON, Canada) using an initial 

denaturation at 95 °C for 5 min followed by 35 cycles of 94 °C for 30 s, 55 °C for 30 s, 72 °C 

for 1 min, and a final elongation step at 72 °C for 10 min. After electrophoresis separation and 

UV light visualization, PCRs products were purified with the QIAquick Gel Extraction Kit 

(QIAGEN, Toronto, ON) following the manufacturer’s instructions. DNA concentrations of 

the purified PCR products were measured using the Qubit 2.0 fluorometer and three pools 
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were prepared by mixing equimolar volume of PCR products. The first pool contained 18S 

rRNA gene amplicons, the second contained 16S rRNA gene amplicons and the third 

contained ITS amplicons. These pools were sent for sequencing to the Genome Quebec 

Innovation Centre using the Roche 454 FLX+ pyrosequencing platform (Roche, Branford, CT, 

USA). One eighth of each sequencing plate was used for sequencing each of the 18S rRNA 

gene, 16S rRNA gene and ITS amplicons. 

3.4.6. Bioinformatic processing 

The 454 datasets were processed in Mothur (v.1.34.4) (Schloss et al., 2009). The 

partial 16S rRNA gene and ITS sequences were processed as described in Mothur wiki 

(http://www.mothur.org/) and in Bell et al. (2014) with some minor changes. For the bacterial 

16S sequences, the "minlength" parameter of the command "trim.seqs" was adjusted to 300 

instead of 200. The ITS sequences were processed three times: (i) on the overall dataset, 

including AMF sequences; (ii) on a subset containing only the ITS sequences belonging to 

AMF; (iii) on a subset containing only the non-AMF fungal ITS sequences. The quality 

filtering steps were done similarly between the three ITS datasets, whereas the OTUs 

grouping, taxonomy and standardizing were performed separately on the different ITS 

datasets.  

The AMF 18S rRNA gene sequences were analyzed as described in Hassan et al. 

(2014) with the following modifications: "minlength" and "qwindowaverage" of "trim.seqs" 

command were 350 and 35 respectively. Parameters of "screen.seqs" command were: 

end=26790, optimize=start, criteria=90 and processors=2. After removing non-AMF 

sequences and standardizing the dataset using subsampling in order to have an equal number 

of reads per sample, the 18S rRNA gene sequences were assigned to OTU groups at a 97 % of 

http://www.mothur.org/
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sequence identity using Geneious version 6 (Biomatterts Limited, Auckland, New Zealand), 

then a Blast search was carried out in the MaarjAM database (Öpik et al., 2010). 

In total, five sequence datasets were obtained: AMF 18S rRNA genes, AMF ITS, non-

AMF ITS, overall fungal ITS and bacterial 16S rRNA genes. For each dataset, reads were 

assigned to OTUs at 97 % of sequence identity. Singletons of each dataset were removed 

(OTUs that were globally represented by less than 2 reads in each dataset). Datasets were 

randomly standardized by subsampling to the sample size that showed the lowest number of 

reads. 

All 454 databases generated in this study were deposited in the NCBI Sequence Read 

Archive and are available under the project number SRP069084. 

OTUs tables of each dataset, after and before subsampling, are provided as 

supplemental tables in the excel file named list of the OTUs tables (Table S3.1 to Table S3.4, 

Table S3.6 and Table S3.11 to Table S3.13). 

3.4.7. Statistical analysis 

All statistical analyses were performed in R software (version 3.1.1). After verification 

of the normalities by Shapiro–Wilk test, the effect of contamination concentration and plant 

species identity on the Shannon diversity index of the microbial communities, which are 

normally distributed, were tested by ANOVA using the "Rcmdr" package. To verify the 

efficiency of our sampling efforts and sequencing depth, rarefaction curves were drawn for 

each individual sample using the "rarefy" function in the "vegan" package. To test the effect of 

the different factors on the community structures, PERMANOVA analyses were performed 

using the "adonis" function in the "vegan" package on Bray–Curtis values obtained from the 
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community structures matrices previously normalized by the Hellinger transformation. To test 

the homogeneity of dispersion of the different communities (AMF, other fungi and bacteria) 

against PHP concentration and plant species identity, beta-dispersion analyses were performed 

on the Bray–Curtis matrices using the "betadisper" function in the "vegan" package. Principal 

coordinate analyses (PCoA) were performed in order to visualize the effects of contamination 

levels and plant species identity on community composition. PCoA ordinations were 

calculated using the "cmdscale" function on Bray–Curtis values. In order to reveal which 

fungal or bacterial groups were affected by the contamination level or plant species, Kruskal-

Wallis tests were performed on the most abundant: five OTUs of AMF 18S rRNA gene 

dataset, ten OTUs of the AMF ITS dataset, twenty OTUs of the non-AMF ITS dataset and 

fifty OTUs of the bacterial 16S rRNA gene dataset. Kruskal–Wallis tests were also performed 

on the different taxonomic levels of the different datasets. Relative abundances were 

calculated with Excel on the different datasets to visualize the percentage of the taxonomic 

affiliations across sites and plant species. Co-inertia analysis (CoIA) was carried out in order 

to display the relationships between: (i) the community structures of AMF 18S rRNA gene (at 

the genera level) and bacterial 16S rRNA gene (at the class level), (ii) the community 

structures of AMF 18S rRNA gene (genera) and non-AMF fungi (classes). Co-inertia analysis 

was performed with the package "ade4" following the protocol described in Legendre and 

Legendre (2012). CoIA considered as an alternative method to the canonical correlation 

analysis with the main function based on the matching of two datasets and projection of their 

variables in the same space (named co-inertia plane) in order to visualize their co-variations 

(relationships). One advantage of this method is that it allows to study the co-variation 

between two response matrices (symmetric model), contrarily to some canonical analysis (e.g. 
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redundancy analysis) which requires a response matrix and an explanatory matrix (Dolédec & 

Chessel, 1994; Dray et al., 2003; Legendre & Legendre, 2012). Here, we used the CoIA 

approach to study the relationships between AMF and AMF spore-associated bacterial and 

fungal communities because the three datasets (AMF, fungi, and bacteria) were produced from 

the same samples (the AMF spores), and therefore no dataset would represent the response 

matrix or the explanatory matrix. To support the Co-inertia analysis, Spearman correlation 

tests were performed using the "corr.test" function in the "psych" package in order to calculate 

the different paired correlations between AMF genera and the microbe classes (bacteria and 

fungi classes). P-values and corrected P-values (using false discovery rate method) were also 

generated with the "corr.test" function for each correlation coefficient. The array correlation 

matrices were drawn using the "levelplot" functions in the "lattice" package. A variance 

partitioning analysis was performed in order to test the contribution of AMF communities, 

PHP concentrations and plant species identity on the variation of bacterial and fungal 

community structures using the "varpart" function in "vegan" package in R (more details on 

variance partitioning analysis are available in Supplemental Material). 

3.5. Results  

3.5.1. Microscopy observations 

Root staining and light microscopy clearly confirmed the mycorrhizal colonization of 

the roots of the three selected plant species. Typical vesicles and intraradical hyphae of AMF 

were clearly visible in all root fragments examined (Figure S3.1.). Scanning electron 

microscopy of AMF spores showed the presence of aggregates and biofilm-like structures 

adhering to the surface of spores, whose morphology varied greatly among examined spores. 
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The presence of thin structure, typical of fungal filaments, was also observed on the surface of 

some spores (Figure S3.2.). 

3.5.2. OTUs affiliations of the AMF spores and of their associated-microbiomes 

After quality filtering and standardizing the number of sequences of the different 

datasets, the AMF 18S rRNA gene dataset allowed us to retrieve a total of 21465 sequences 

(795 per sample across the 27 samples) that were assigned to 27 OTUs (Table S3.1). For the 

whole fungal ITS dataset, 16983 sequences (629 per sample) were obtained and assigned to 

141 OTUs. In the AMF ITS subdataset, we obtained a total of 6507 sequences (241 per 

sample) that were assigned to 48 OTUs (Table S3.2). For the fungal ITS subdataset (excluding 

the AMF sequences), a total of 1269 sequences (47 per sample) were obtained and they were 

assigned to 66 fungal OTUs (Table S3.3). A total of 27324 sequences (1012 sequences per 

sample) were retrieved from the 16S rRNA gene dataset after bioinformatic processing, and 

were assigned to 1080 bacterial OTUs (Table S3.4). For each AMF, fungi and bacteria 

datasets, rarefaction curves showed that the sampling efforts were close to the saturation for 

the all samples, and the Good's coverage values were ranked between 0.85 and 1 (Figure S3.3. 

and Table S3.5.).  

 

Blast searches of the AMF 18S rRNA gene sequences in MaarjAM database 

(http://maarjam.botany.ut.ee/) (Öpik et al., 2010) allowed us to assign the OTUs to virtual taxa 

(VTX) which were mainly represented by AMF taxa belonging to the genera Diversispora 

(46%), Glomus (28 %), Acaulospora (16 %) and Claroideoglomus (10 %) (Table S3.5. and 

Figure S3.4. A). Other taxa belonging to the genus Paraglomus were also found as singletons 

but were removed after dataset filtering (Table S3.6). Interestingly, the AMF taxa profile 
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obtained from the ITS dataset was comparable in term of abundance for the most dominant 

taxa identified in the AMF 18S rRNA gene dataset, with genera Diversispora and Glomus 

forming 43 % and 27 % of the reads, respectively (Figure S3.4. B). However, in contrast to the 

18S rRNA gene dataset, the proportions of Acaulospora and Claroideoglomus were lower in 

the AMF ITS dataset. Furthermore, the AMF ITS dataset showed the presence of other genera 

such as Rhizophagus, Entrophospora, Funneliformis, as well as unclassified 

Archaeosporaceae, although most of them were found at low abundance. 

Because the total DNA was directly extracted from washed AMF spores, it was not 

unexpected that the AMF sequences represented 68 % of the reads in the whole fungal ITS 

dataset (Figure S3.4. D). The AMF sequences were therefore sorted out to focus on the non-

AMF fungal diversity associated with the spores. After sorting, 55 % of the remaining ITS 

dataset was composed of Pezizomycetes (13 %) and Dothideomycetes (13 %) followed by 

Chytridiomycetes, Sordariomycetes and Microbotryomycetes at a proportion of 9 % each 

(Figure S3.4. C). The other fungal classes of Agaricomycetes, Leotiomycetes, Tremellomycetes 

and Ustilaginomycetes were also found but their proportions were lower than 1 %. The 

remaining 45 % of fungal sequences were assigned to unclassified fungi. 

The bacterial 16S rRNA gene dataset profile was composed of taxa belonging to 33 

bacterial classes. The most abundant classes were Gammaproteobacteria (49 %), 

Betaproteobacteria (23 %), Actinobacteria (11 %) and Alphaproteobacteria (6 %). The other 

bacterial classes were present at proportion lower than 3 % (Figure S3.4. E). 



 

51 

3.5.3. Effect of PHP concentrations and plant species identity on the diversity 

and community structure of AMF 

ANOVA tests revealed that Shannon diversity indices of the 18S rRNA gene dataset 

were near-significantly affected by contamination concentration (P = 0.073), with a highest 

diversity in the HC site and lowest diversity in LC site. Whereas, Shannon diversity indices of 

the ITS dataset were not affected by both contamination concentration and plant species 

identity (Figure 3.1. and Table 3.1). However, PERMANOVA analysis revealed a significant 

effect of contamination concentration on the community structure of both AMF 18S rRNA 

gene and AMF ITS sequences (P = 0.004 and 0.016, respectively). Beta-dispersion analyses 

showed a near-significant dispersion of AMF 18S rRNA gene OTUs and a significant 

dispersion of AMF ITS OTUs across contamination concentrations (P = 0.093 and 0.042, 

respectively) (Table 3.1). A post-hoc Tukey’s HSD test showed that the AMF ITS 

communities were more variable in the HC site and MC site than in the LC site (Figure S3.5. 

D). The PCoA ordinations showed a clear grouping of AMF community structure in response 

to the contamination level, in particular between HC and LC sites (Figure 3.2. A and B). 

 



 

52 

Figure 3.1. Comparison of Shannon diversity indices of the different pyrosequencing 

datasets across contamination concentrations (A), and plant species (B).  

Within each microbial group, means with the same letter are not significantly different by a 

Tukey’s range test (P < 0.05). HC = high contamination, MC = moderate contamination, LC = 

low contamination. 
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The Kruskal-Wallis tests performed on most abundant OTUs of the AMF 18S rRNA 

gene dataset revealed that the contamination concentration significantly affected the OTUs 

belonging to Diversispora sp. VTX00061 (P = 0.002), Rhizophagus sp. VTX00113 (P = 

0.003), and Claroideoglomus sp. VTX00193 (P = 0.021) (Table S3.7. A). Relative abundances 

showed that the genus Diversispora was the most abundant taxon at the LC site (78.07 %) and 

the MC site (48.23 %), (Figure 3.3 A). By contrast, genera Glomus and Claroideoglomus were 

mostly represented in the HC site with proportion of 42.43 % and 17.49 %, respectively, and 

the MC site (29.51 % and 11 %, respectively) (Figure 3.3 A). The Kruskal-Wallis tests and the 

relative abundances calculated from the AMF ITS dataset were similar to those performed on 

the 18S rRNA gene dataset. The only notable difference was that, in addition to genera 

affected by the contamination concentration in 18S rRNA gene dataset, the genus 

Rhizophagus was also significantly (P < 0.001) affected by the PHP contamination 

concentration in the AMF ITS dataset, with a high abundance in the HC site (39.37 %) and 

MC site (16.96 %) (Figure 3.3 B; Table S3.7. A and B). However, no effect of plant species 

identity was noted on AMF community structure for either the 18S rRNA gene or the ITS 

sequence datasets. 
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Table 3.1. ANOVA on Shannon diversity indices, PERMANOVA and Beta-dispersion analyses on the community structures 

of the different pyrosequencing datasets (n = 9 for plants species and contamination levels, and n = 3 for the interaction 

effects). The Bolded values are significant at P < 0.05. NA mean not calculated. 

 

 

 

 
Contamination level 

 
Plant species  Interaction effects 

 
ANOVA PERMANOVA 

Beta-

dispersion  
ANOVA PERMANOVA 

Beta-

dispersion 
 ANOVA PERMANOVA 

Beta-

dispersion 

AMF 18S 0.073
 

0.004 
 0.093 

 
0.711 0.898 0.876  0.180 0.241 NA 

AMF ITS 0.326 0.016  0.042  
 

0.917 0.716 0.887  0.168 0.023 NA 

ITS (excluding AMF) 0.292 0.002  0.77 
 

0.439 0.010  0.585  0.379 0.354  NA 

Bacterial 16S 0.171 0.010  0.383 
 

0.00336  0.001  0.088  0.960 0.186  NA 
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Figure 3.2. Principal coordinates analysis (PCoA) showing the community compositions assignments of: (A) AMF 18S rRNA 

gene, (B) AMF ITS, (C) non AMF ITS, and (D) 16S rRNA gene across contamination level and plant species.  

PERMANOVA analysis showed significant effects of the contamination concentrations on the community composition of AMF 

ITS, fungal ITS and 16S rRNA gene (n = 9, P = 0.016, 0.002 and 0.010, respectively). Significant effects of plant species were also 

observed on the community compositions of non AMF ITS and 16S rRNA gene (n = 9, P = 0.010 and 0.001, respectively). 
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3.5.1. Effect of PHP concentration and plant species identity on the diversity and 

community structure of AMF spore-associated fungi 

ANOVA tests showed that there was no effect of PHP contamination concentration and 

plant species identity on Shannon diversity indices of fungi, excluding the AMF (Figure 3.1. 

and Table 3.1). However, PERMANOVA tests revealed that the community structure of fungi 

was significantly affected by both contamination concentration (P = 0.002) and plant species 

identity (P = 0.01), while Beta-dispersion analyses showed that the AMF spore-associated 

fungi were homogeneously dispersed across plant species identity and PHP contaminated sites 

(Table 3.1; Figure S3.5. E and F). The PCoA plot showed a change in community structure of 

fungi across contamination concentrations and distinct groupings were observed between HC 

and LC sites (Figure 3.2.C). 
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Figure 3.3. Relative abundances of major: (A) genera of AMF 18S rRNA gene dataset, 

(B) genera of AMF ITS dataset, (C) classes of fungal ITS dataset, and (D) bacterial 

classes of 16S rRNA gene dataset.  

So-HC: S. canadensis High Contamination; Po-HC: P. balsamifera High Contamination; Ly-

HC: L. europaeus High Contamination; So-MC: S. canadensis Moderate Contamination; Po-

MC: P. balsamifera Moderate Contamination; Ly-MC: L. europaeus Moderate 

Contamination; So-LC: S. canadensis Low Contamination; Po-LC: P. balsamifera Low 

Contamination; Ly-LC: L. europaeus Low Contamination. 
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When comparing the community composition of fungi across contamination 

concentrations, Kruskal-Wallis tests revealed that taxa Pulvinula constellatio (Pezizomycetes) 

and Spizellomyces plurigibbosus (Chytridiomycetes) were significantly affected by PHP 

concentration (P = 0.008 and 0.015, respectively) (Table S3.7. C). Kruskal-Wallis tests were 

performed also at the fungal class level and allowed us to note a significant effect of the 

contamination concentration on the proportions of Pezizomycetes and Chytridiomycetes (P < 

0.05), and a near-significant effect on Dothideomycetes (P < 0.1) (data not showed). 

Relative abundances showed that Pezizomycetes was the most dominant fungal class in 

the MC (26.74 %) and LC (13.71 %) sites, in particular with Populus balsamifera and 

Solidago Canadensis. Dothideomycetes was higher in MC (26.95 %) and HC (10.87 %) sites 

compared to the LC site (2.12 %). Chytridiomycetes which were represented mainly by the 

family of Spizellomycetaceae, were observed only in HC (21.27 %) and MC sites (5.67 %). In 

contrasting, no Chytridiomycetes OTU was detected in the LC site (Figure 3.3 C and Figure 

3.4 C). 
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Figure 3.4. Co-inertia analysis showing the relationship between AMF genera obtained from 18S rRNA gene dataset and 

fungal classes (RV = 0.29, P = 0.004). A) Projection of both AMF genera and AMF-associated fungal classes onto co-inertia 

plane. B) Projection of AMF genera onto co-inertia plane. C) Projection of AMF-associated fungal classes onto co-inertia 

plane.  

The base of each arrow (black circle) represents AMF genera, while the tip represents fungal classes. The lengths of the arrows 

indicate the degree of concordance between AMF genera and their associated microorganisms. The best concordances were 

observed in the shortest arrows length. 
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Kruskal-Wallis tests performed on the most abundant fungal OTUs across plant species 

showed a slightly significant effect on Leptosphaeria sp. (Dothideomycetes) (P = 0.09), with a 

higher proportion in P. balsamifera (11.58 %) and S. canadensis (4.49 %) (Table S3.7. C). 

Kruskal-Wallis tests performed at the class level revealed that there was no significant effect 

of plant species identity, except Sordariomycetes which their proportions showed a trend 

toward significance across plant species. (P = 0.10). The relative abundance of 

Sordariomycetes was higher in L. europaeus (10.63 %) and S. canadensis (11.82 %) than in P. 

balsamifera (3.07 %) (Figure 3.3C). 

3.5.2. Effect of PHP concentration and plant species identity on the diversity and 

community structure of AMF spore-associated bacteria 

In contrast to AMF and other fungi, ANOVA test revealed that there was a highly 

significant effect of plant species identity (P = 0.003) on Shannon diversity indices of the 

bacterial 16S rRNA gene dataset. Tukey's range test showed that the bacterial diversity was 

higher in samples from L. europaeus and P. balsamifera plants compared to S. canadensis. 

There was no significant effect of PHP concentration on Shannon diversity indices of bacteria. 

The PERMANOVA analysis showed that the AMF spore-associated bacterial 

community structure was affected both by PHP contaminant concentration (P = 0.01) and 

plant species identity (P = 0.001) (Figure 3.1. and Table 3.1). However, Beta-dispersion 

analyses showed a near-significant dispersion of AMF spore-associated bacterial communities 

across plant species identity and a homogeneous dispersion across contamination 

concentration (P = 0.088 and 0.383, respectively). Boxplot of beta-dispersion per plant species 

identity showed that the AMF spore-associated bacterial communities were more variable in 

L. europaeus and P. balsamifera than in S. canadensis (Figure S3.5. G). The PCoA ordination 
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performed on bacterial OTUs also showed that, in addition to the grouping across the sites, the 

bacterial communities were also grouped across plant species. S. canadensis formed a distinct 

group compared to L. europaeus and P. balsamifera (Figure 3.2. D and F; Figure S3.6. D). 

Similar PCoA plots were also obtained at the bacterial family and class levels (data not 

showed). 

A Kruskal–Wallis test revealed that among the most abundant 50 OTUs, 35 were 

significantly affected either by contamination concentration (15 OTUs), plant species identity 

(13 OTUs), or by both (six OTUs). Most of the OTUs affected by the contamination 

concentration and/or plant identity belonged to the bacterial classes Actinobacteria, 

Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria and 

Flavobacteriia (Table S3.7. D). 

Histograms of relative abundances of the different bacterial classes across PHP 

contamination concentrations showed that Gammaproteobacteria (P = 0.031) were the most 

abundant in the LC site (60.69 %) followed by HC (51.43 %) and MC (35.35 %) sites. 

Actinobacteria (P = 0.086) were more abundant in MC site (21.72 %) than in HC (6.29 %) and 

LC (5.12 %) sites. For Betaproteobacteria, there was no significant effect (P = 0.25), but a 

slightly higher abundance was noted in the HC site (28.35 %) compared to the MC (21.72 %) 

and LC (20.36 %) sites. No significant effect was observed on Alphaproteobacteria (P = 

0.48). However, a slightly significant effect of contamination concentration was measured on 

Caulobacteraceae (P = 0.07), which was the most abundant family of Alphaproteobacteria, 

with a higher abundance in the LC (2.76 %) and MC (1.12 %) sites (Figure 3.3D). 
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Comparison of the relative abundances across plant species showed that 

Gammaproteobacteria (P = 0.007) were more abundant in S. canadensis samples (66.23 %) 

than with L. europaeus (41.85 %) and P. balsamifera (39.39 %). However, Actinobacteria (P 

< 0.001), Deltaproteobacteria (P = 0.026) and Acidobacteria groups (P < 0.001) were clearly 

more abundant with L. europaeus (13.68 %, 3.55 % and 2.51 %, respectively) and P. 

balsamifera (17.8 %, 2.9 % and 1.5 %, respectively) than with S. canadensis (1.65 %, 2.29 % 

and 0.55 %, respectively).  

For Alphaproteobacteria, a slightly significant effect of plant identity was measured (P 

= 0.10), with a highest abundance in L. europaeus (7.69 %) and P. balsamifera (7.30 %) 

samples than with S. canadensis (3.78 %) (Figure 3.3 D). 

3.5.3. Relationship between AMF spores and their associated fungi and bacteria 

Co-inertia analysis (CoIA) revealed a significant relationship between AMF genera and 

fungal classes (RV = 0.29, P = 0.004) (Figure 3.4). The first and second axes representing 

80.46 % and 16.80 % of the total projected inertia. A nearly significant relationship was also 

observed between AMF genera and bacterial classes (RV = 0.20, P = 0.12) (Figure 3.5), with 

the first and second axes of the CoIA explaining 50.50 % and 44.23 % of the total projected 

inertia. Figure 3.4 A and Figure 3.5 A show the position of sites on co-inertia axes, where we 

observe a clear separation between HC and LC sites, and arrow lengths in the LC sites 

generally being shorter than in HC sites. This indicates that the relationship between 

community composition of AMF and their associated microorganisms varied across PHP 

concentrations, which is in line with our PCoA analysis, and that both AMF-fungi and AMF-

bacteria relationships are more concordant in the low contaminated sites than in highly 

contaminated sites.  
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Figure 3.5. Co-inertia analysis showing the relationship between AMF genera obtained 

from 18S rRNA gene dataset and bacterial classes (RV = 0.20, P = 0.12). A) Projection of 

both AMF genera and AMF-associated bacterial classes onto the co-inertia plane. B) 

Projection of AMF genera onto co-inertia plane. C) Projection of AMF-associated 

bacterial classes onto co-inertia plane.  

The base of each arrow (black circle) represents AMF genera, while the tip represents bacterial 

classes. The lengths of the arrows indicate the degree of concordance between AMF genera 

and their associated microorganisms. The best concordances were observed in the shortest 

arrows length. Abbreviations shown in panel C are: Acido: Acidobacteria, Actino: 

Actinobacteria, Alpha: Alphaproteobacteria, Anae: Anaerolineae, Baci: Bacilli, Bacte: 

Bacteroidetes_incertae_sedis, Bact: Bacteroidia, Beta: Betaproteobacteria, Cald: Caldilineae 

(masked by Gammaproteobacteria and Spartobacteria), Cand: Candidatus_Hydrogenedens, 

Chlo: Chloroflexia, Clos: Clostridia, Cyto: Cytophagia, Delta: Deltaproteobacteria, Flavo: 

Flavobacteriia, Gamma: Gammaproteobacteria, Gemm: Gemmatimonadetes, Nega: 

Negativicutes, Opit: Opitutae, Planc: Planctomycetia, Spart: Spartobacteria, Sphi: 

Sphingobacteriia, Subd: Subdivision3, Ther: Thermomicrobia, uncl: unclassified. 
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Figure 3.4 B and C shows preferential associations between AMF genera and fungal 

classes. AMF genera pointing the same direction that AMF-associated fungal classes are 

positively correlated, whereas those pointing the opposite direction are negatively correlated. 

These relations are also supported by the Spearman correlations test showing that 

Diversispora and Glomus have opposite correlation coefficients across most of the non-AMF 

fungal classes (Figure S3.7.). Diversispora was positively correlated with Leotiomycetes (r = 

0.38), Pezizomycetes (r = 0.38) and Tremellomycetes (r = 0.33), while Glomus was negatively 

correlated with these fungal classes. Conversely, Diversispora was negatively correlated with 

Chytridiomycetes (r = -0.55), Dothideomycetes (r = -0.29) and Sordariomycetes (r = -0.37) 

which were positively correlated with Glomus (Figure S3.7.). P-values and corrected P-values 

of the different pairwise correlations between AMF genera and fungal classes are shown in the 

supporting information Table S3.8.  

In the case of bacteria, Figure 3.5 B and C shows preferential associations between 

AMF genera and bacterial classes. Similarly, positive and negative correlations were also 

observed between AMF genera and some bacterial classes using Spearman correlations test 

(Figure S3.8.). For example, Glomus was correlated with the classes Betaproteobacteria (r = -

0.37), Actinobacteria (r = 0.31), Bacilli (r = -0.34) and Sphingobacteriia (r = 0.34). 

Diversispora was correlated with Deltaproteobacteria (r = -0.33) and Cytophagia (r = 0.54). 

On the other hand, bacterial classes Gammaproteobacteria, Alphaproteobacteria, 

Flavobacteriia and the Acidobacteria groups did not show any significant correlation with any 

AMF genera. P-values and corrected P-values of the different pairwise correlations between 

AMF genera and bacteria classes are shown in the supporting information Table S3.9. 
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Furthermore, a variance partitioning analysis showed that AMF community structure, 

PHP concentration and plant species identity explained a total contribution of 21.51 % of the 

variability in fungal communities (11 % related to plant species identity, 7.6 % related to PHP 

concentrations and 3.5 % related to AMF) and 24.13 % of the variability in bacterial 

communities (13.3 % related AMF, 7.4 % related to PHP concentrations and 6.7 % related to 

plant species identity) (Figure S3.9. and Supplemental Material). 

3.6. Discussion 

In the rhizosphere, plant roots, arbuscular mycorrhizal fungi (AMF) and the other soil 

microorganisms share the same microenvironment where they compete for nutrients and 

exchange complex chemical signaling dialogues, leading to the establishment of saprophytic, 

parasitic, mutualistic or symbiotic lifestyles. Consequently, the community compositions of 

AMF and their associated microorganisms are determined in a large part by the different 

chemical compounds released in the rhizosphere (root exudates and AMF spore exudates). In 

natural conditions, the community compositions of AMF and their associated microorganisms 

are also potentially affected by environmental conditions, such as soil composition and 

climatic conditions. In this study, using the Roche 454 high throughput sequencing platform, 

we scrutinized the diversity of bacteria and fungi associated with AMF spores collected from 

the rhizospheric soils of three plant species spontaneously growing in PHP contaminated sites. 

We found that the assemblages of some AMF and their spore-associated microorganisms were 

structured across PHP concentration and across plant species. Furthermore, we discovered that 

the community composition of some AMF-associated microorganisms were intimately linked 

to the community composition of AMF. 
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3.6.1. AMF community structure 

The taxa belonging to Glomeraceae and Diversisporaceae families were dominant on 

the AMF spores identified in both 18S rRNA gene and AMF ITS datasets. Glomeraceae were 

found as the most abundant taxa in the highest contamination level site (HC), while 

Diversisporaceae were the most abundant in the lowest contamination level site (LC). 

Comparing our results to those of Hassan et al. (2014) on rhizospheric soil of 11 Salix 

cultivars collected in a contaminated site nearby the basins of our study, we found that all the 

AMF families identified in our study were also previously found by these authors, except for 

Gigasporaceae, which were not observed in our study, in both 18S rRNA gene and AMF ITS 

datasets. Furthermore, in the Hassan et al. (2014) study, Glomeraceae was also found as the 

most dominant AMF family in the highly contaminated plots. The presence of Glomeraceae in 

high proportions in the highly PHP contaminated site suggest their ability to tolerate extreme 

concentrations of PHP. There are several studies reporting that numerous taxa belonging to 

Glomeraceae were tolerant to petroleum hydrocarbon and trace element contaminations, and 

they suggest that these taxa may accelerate biodegradation of PHP (Vallino et al., 2006; Liu & 

Dalpé, 2009; Long et al., 2010; Hassan et al., 2011; Aranda et al., 2013; Hassan et al., 2014). 

For example, Liu and Dalpé (2009) demonstrated that after 12 weeks of growth in a substrate 

spiked with antracene and phenanthrene, the inoculation of leek roots with Glomus 

intraradices and Glomus versiforme isolates reduced concentrations of antracene and 

phenanthrene by 30 % and 88 %, respectively. Conversely, the presence of Diversisporaceae 

members in higher proportions in the LC site than in the HC site suggest that the species 

belonging to this AMF family are less tolerant to high concentrations of PHP. 
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In our study, the effect of plant species on the community structure of AMF was not 

statistically significant for both ITS and 18S rRNA gene datasets. Previous studies have 

demonstrated that the host plant species has a substantial effect on the community structures of 

AMF (Klabi et al., 2014; Toju et al., 2014). This difference can be due to the range of plant 

species used in each of the different studies or it is possible that the effect of PHP 

concentration was high enough to mask the smaller effect of host plant on AMF community 

structures.  

We also found that the community composition in the AMF ITS dataset was slightly 

different from that observed in the AMF 18S rRNA gene dataset. This is not surprising since 

several studies have demonstrated that the microbial profiles of high throughput sequencing 

studies varied across the primer pairs and the targeted gene region used (Engelbrektson et al., 

2010; Lumini et al., 2010; Gihring et al., 2012). Furthermore, a high genetic polymorphism in 

ITS regions have been reported within AMF isolates and even within spores of the same 

isolate (Sanders et al., 1995; Lloyd-Macgilp et al., 1996; Hijri et al., 1999; Redecker et al., 

1999). 

3.6.2. Associations between AMF spores and microbial communities 

We found an high fungal and bacterial diversity associated with AMF spores in PHP 

contaminated sites. The AMF-associated microorganisms found in this study covered fungal 

species belonging to Chytridiomycota and Dikarya, and bacterial species belonging to 

Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria and Firmicutes. The observed 

AMF-associated microbial communities are in line with what was observed previously by 

other authors both in in vitro conditions and in agricultural soils (Hijri et al., 2002; Mirabal 

Alonso et al., 2008; Scheublin et al., 2010; Lecomte et al., 2011; Lace et al., 2015; Battini et 
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al., 2016), although much larger bacterial and fungal communities were found here owing to 

the use of high throughput sequencing. Recently, Iffis et al. (2014) identified fungi belonging 

to Chytridiomycota, as well as bacteria belonging mainly to the genera Sphingomonas, 

Pseudomonas, Massilia, and Methylobacterium from vesicles and intraradical spores of AMF 

collected within Solidago rugosa roots growing in the extremely petroleum hydrocarbon-

polluted basin on the same site used in our study. However, the roles of the microorganisms 

associated with AMF and the mechanisms that govern their interactions remain poorly 

explored particularly in highly stressful conditions such as polluted environments. It has been 

reported that some genera of Firmicutes and Proteobacteria, including Paenibacillus and 

Pseudomonas, which were identified in this study, are able to enhance AMF colonization by 

stimulating fungal spore germination, hyphal growth and increasing root branching (Garbaye, 

1994; Barea et al., 2005; Frey-Klett et al., 2007; Bonfante & Anca, 2009). Interestingly, 

some studies have demonstrated that the co-inoculation of AMF with Proteobacteria such as 

Acinetobacter sp., Serratia sp., and Sphingomonas sp. (also identified in the present study) can 

significantely enhance the rate of petroleum hydrocarbons degradation (Alarcón et al., 2008; 

Yu et al., 2011; Dong et al., 2014; Xun et al., 2014). In the cases of fungi, Mirabal Alonso et 

al. (2008) isolated two yeast species belonging to Rhodotorula and Cryptococcus (also 

identified in the present study) from the spores of Funneliformis mosseae (synonym Glomus 

mosseae) with a potential phosphate solubilization activity. 

Contrary to the AMF community, which was affected only by the contamination level, 

the bacterial and fungal communities (excluding AMF) were significantly affected by both 

plant identity and contamination concentrations (Table 3.1). We found that the class 

Actinobacteria (represented mainly by the genus of Streptomyces) was present in higher 
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proportions in spore samples harvested from the MC and HC sites (21.72 % and 6.29 %, 

respectively) than in LC site (5.12 %). This was expected, since several studies have reported 

that Streptomyces sp. may grow in PHP contaminated soils and are able to breakdown several 

recalcitrant petroleum hydrocarbons, such as phenanthrene, pyrene and naphthalene 

(Balachandran et al., 2012; Bourguignon et al., 2014; Mohamed et al., 2015). Interestingly, 

Gammaproteobacteria (represented mainly by the genus of Pseudomonas) was found in high 

proportions in both LC (60.69 %) and HC (51.43 %) sites. Pseudomonas species are 

ubiquitous in soils and have a large spectrum of activities in the rhizospheric soils. For 

example, several studies reported that Pseudomonas can potentially degrade a large range of 

PHP compounds (Kok et al., 1989; Dennis & Zylstra, 2004; Ní Chadhain & Zylstra, 2010), 

while other studies reported that Pseudomonas species are able to establish a symbiotic 

association with AMF and plant species and may play an important role in improving the 

AMF colonization, plant growth, nitrogen fixation and phosphate solubilization (Rodr  gue  & 

Fraga, 1999; Desnoues et al., 2003; Sharma et al., 2013). 

OTUs belonging to classes Dothideomycetes and Chytridiomycetes were the most 

dominant AMF-associated fungi in highly and moderately contaminated sites. Previous studies 

conducted by Bell et al. (2014) from contaminated field soils, and by Ferrari et al. (2011) from 

fungal cultures, showed that the abundance of Dothideomycetes increased at high hydrocarbon 

concentrations. However, Chytridiomycetes were not reported by Ferrari et al. (2011) and Bell 

et al. (2014) studies. The infection of AMF by Chytridiomycetes was reported before (Ross & 

Ruttencutter, 1977; Schenck & Nicolson, 1977; Sylvia & Schenck, 1983; Paulitz & Menge, 

1984), though the nature of the relationship between AMF and Chytridiomycetes remains 

unclear. Paulitz and Menge (1984) reported that Chytridiomycetes were mainly infecting non-
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germinated or dead spores of Gigaspora margarita, while Ross and Ruttencutter (1977) and 

Sylvia and Schenck (1983) found that Chytridiomycetes negatively affected the AMF 

symbiosis functioning. 

The effect of plant identity on AMF-associated microorganisms observed here could be 

determined by the nature of root exudates. In rhizospheric soils, plant roots release a cocktail 

of complex and specific exudates composed mainly by carbohydrates, amino acids and organic 

acids, as well as of several signaling compounds by which plants interact with the soil 

microbes and form a complex rhizospheric microbial community (Bais et al., 2006; Turner et 

al., 2013a; Rohrbacher & St-Arnaud, 2016). In addition, root exudates are specific for each 

plant species and they are influenced by several factors such as soil composition, plant age, 

plant health and climatic conditions, and consequently the microbial communities may change 

significantly depending on the variation in root exudates composition (Bais et al., 2006; 

Turner et al., 2013a).  

However, the positive and the negative correlations measured between specific AMF 

taxa and specific AMF-associated microorganisms led us to speculate that AMF identity may 

also play a key role in shaping the microbial community surrounding their spores. The results 

obtained from the variance partitioning analysis support this speculation and showed that 

AMF spores contribute significantly to changes in bacterial community (13.3 %, P = 0.021). 

Whereas, AMF spores were intercorrelated with PHP concentrations and both explained 7 % 

of the total variation of fungal community (Figure S3.9.).  

As plant roots, AMF spores and hyphae may also release exudates and chitin fragments 

from the out layers of cell walls by which AMF might attract specific microbial communities 
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(Roesti et al., 2005; Bharadwaj et al., 2011). This could be a strategy by which AMF recruit 

beneficial microbes, although this hypothesis will need to be tested. Roesti et al. (2005) 

performed four combinations of inoculations between two AMF species (Glomus geosporum 

and Glomus constrictum) and two host plant species (Plantago lanceolata and Hieracium 

pilosella), and they showed that the AMF associated bacterial communities were more 

dependent on the AMF spore identity than plant species identity. Recently, Agnolucci et al. 

(2015) found diverse bacterial communities in close association with six different AMF 

species cultured with the same host plant, under the same environmental conditions and within 

the same soil. They found the genus Streptomyces as the most frequent Actinobacteria 

identified in association with the spores of Rhizophagus intraradices (formerly known as 

Glomus intraradices). This was in line with our result that showed positive, yet non-

significant, correlation between Glomus and Actinobacteria (r = 0.31, P = 0,12).  

Because AMF show a high genetic and phenotypic polymorphism between species and 

even between isolates of the same species (Hijri et al., 1999; Redecker et al., 1999; Hijri & 

Sanders, 2005; Croll et al., 2008; Angelard et al., 2010), the AMF exudates composition may 

also vary across AMF species or isolates. Consequently, we postulate that AMF taxa recruit 

different AMF-associated microbes through variation in the composition of their exudates. To 

date, the most well-known association between specific AMF species and specific microbes is 

between Gigaspora margarita and an the obligatory endobacterium Candidatus 

Glomeribacter gigasporarum (Bianciotto et al., 2003; Ghignone et al., 2012; Salvioli et al., 

2016; Vannini et al., 2016), though little is known about the specific AMF-microorganisms 

interactions and further investigations on this topic are needed.  
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Overall, we demonstrated that AMF may undergo complex interaction not only with 

plants, but also with soil microbes, and therefore we assumed that AMF can be seen as corner 

stone interface bridging and extending the complex root microbial assemblages beyond roots 

and their rhizospheres. 
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Mise en contexte chapitre 4 - Comparaison entre les communautés microbiennes 

associées aux CMA et celles du sol et des racines de plantes. 

Dans le chapitre précédent, le séquençage à haut débit des régions 18S d'ARNr des 

CMA, 16S d'ARNr bactériens et des ITS fongiques nous a permis de faire une étude globale 

sur la biodiversité des CMA et des microorganismes qui sont leurs associées dans un site 

hautement contaminé par les HP. Nos résultats nous ont permis de constater que les 

communautés microbiennes associées aux CMA sont influencées par les niveaux de 

contamination et les espèces de plantes hôtes. De plus, les corrélations observées entre 

quelques espèces de CMA et de microorganismes nous laissent suggérer que les CMA peuvent 

aussi jouer un rôle clé dans la structure des communautés de ces microorganismes.  

Dans le présent chapitre, nous avons conservé la même démarche expérimentale que 

dans le chapitre 3, mais cette fois-ci nous nous sommes focalisés sur l’étude de la biodiversité 

des bactéries et des champignons présents dans les sols et les racines afin de les comparer avec 

celle retrouvée en association avec les CMA. 

Les résultats de cet article sont en préparation pour la publication dans une revue 

scientifique internationale. 

Ma contribution dans cet article est la participation à la mise en place de l’expérience 

et la réalisation de la totalité des travaux d’échantillonnage et de laboratoire. J’ai également 

fait toutes les analyses bioinformatiques et statistiques. J’ai aussi participé à la rédaction et j’ai 

fait toutes les illustrations présentées dans l’article. 
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4.1. Abstract 

Phytoremediation is a promising in situ green technology based on the use of plants to 

cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, 

that closely interact with plant roots play key roles in phytoremediation processes. In polluted 

soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient 

uptake and may either degrade or sequester a large range of soil pollutants. Therefore, 

improving the efficiency of phytoremediation requires a thorough knowledge of the microbial 

diversity living in close association with plant roots in both the rhizosphere and the 

endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using 

high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago 

canadensis, Populus balsamifera and Lycopus europaeus) growing spontaneously in three 

petroleum hydrocarbon polluted sedimentation basins. Because we have previously conducted 

a thorough study on the diversity of bacteria and fungi associated with arbuscular mycorrhizal 

fungi (AMF) harvested from the same areas, the microbial community structures of 

rhizospheric soils and roots were compared with those of microbes associated with AMF 

spores in order to verify whether AMF are able to recruit specific microbial communities on 

the surface of their spores and mycelia. Our results showed a difference in OTU richness and 

community structure composition between soils and roots for both bacteria and fungi. We 

found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on 

fungal and bacterial community structures in both soils and roots, whereas plant species 

identity showed a significant effect only on the roots for bacteria and fungi. Our results also 

showed that the community composition of bacteria and fungi in soil and roots varied from 

those associated with AMF spores harvested from the same plants. This let us to speculate that 
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in PH contaminated soils, AMF release chemical compounds by which they recruit beneficial 

microbes in order to tolerate or degrade the PH pollutants present in the soil. 

4.2. Keywords  

Petroleum hydrocarbon pollutants; 454 high throughput sequencing; phytoremediation; 

AMF-associated microbes. 

4.3. Introduction  

During the past century, industrial production, urbanization, energy consumption, 

transportation and human population have expanded exponentially, resulting in increased soil, 

water and air pollution, which in turn has placed the environment under substantial pressure 

(Samanta et al., 2002; Chen & Kan, 2008). Together, these factors produced a large number of 

highly polluted sites all over the planet, containing usually complex mixtures of toxic and 

carcinogenic, organic and inorganic compounds. Organic contaminants such as PAHs and 

PCBs are known mutagens and carcinogens that enter the food chain together with lipophilic 

compounds
 
(Boffetta et al., 1997; Henner et al., 1997; Poirier, 2004). Inorganic contaminants 

mainly consist of metalloids and trace metals with soil retention times of up to thousands of 

years. Like organic compounds, they reduce plant growth, negatively impact the soil 

microbiota
 
(McGrath et al., 2001), and decrease the quality of the environment

 
(Gremion et 

al., 2004) to such an extent that they pose serious health risks to humans and animals.  

Polluted sites may be cleaned by physico-chemical strategies including excavation and 

storage, washing, and chemical treatment. Yet, most ex situ treatments only contain 

contamination without eliminating it. They damage or even destroy soil microbial 

communities, and are unfit for application over large areas because they are prohibitively 
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expensive. An alternative, most promising in situ approach for multi-contaminated sites is 

phytoremediation
 
(Salt et al., 1995; Salt et al., 1998; Peuke & Rennenberg, 2005), which uses 

plants and their associated soil microbial communities (fungi and bacteria) to accumulate 

pollutants within the plants, and/or degrade them in the soil (Peuke & Rennenberg, 2005; 

Pilon-Smits, 2005; Bieby Voijant et al., 2011). 

In the past few years, phytoremediation method has become increasingly popular 

owing to its efficiency, cost effectiveness and respect for the integrity of the soil structure and 

biology. However, in many cases, phytoremediation is best achieved through a complex 

interaction between plants and the myriad of bacteria and fungi living in the rhizospheric soil 

and inside plant roots (endophytic microorganisms) (Pilon-Smits, 2005; Jing et al., 2007; Ma 

et al., 2016; Rohrbacher & St-Arnaud, 2016; Thijs et al., 2016). Therefore, improving the 

efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living 

in association with plant roots (either in the rhizosphere or the endosphere), and of their 

interactions with plants. Several studies demonstrated that, in contaminated soils, the root 

exudates released in the plant rhizosphere promote the selection of microorganisms able to 

degrade pollutants and stimulate the expression of several genes involved in xenobiotic 

compound degradation (Bell et al., 2014; Yergeau et al., 2014; Pagé et al., 2015; Rohrbacher 

& St-Arnaud, 2016; Thijs et al., 2016). For example, Pagé et al. (2015) used a 

metatranscriptomic approach to compare the gene expression of ten oxygenases related to 

petroleum hydrocarbon degradation between the bulk and rhizospheric soils of Salix purpurea. 

They found that among the ten genes examined, four of them were significantly over-

expressed in rhizospheric soil compared with bulk soil. Bell et al. (2014) studied the fungal 

and bacterial diversity from the rhizospheric soils of eleven cultivars of willow planted in 
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three hydrocarbon contaminated sites, and they found that the abundance of some petroleum 

hydrocarbon-degrading microorganisms, such as some classes of Proteobacteria (Alpha, Beta 

and Gamma- proteobacteria) and Dothideomycetes (fungi), was significantly enhanced in the 

highly contaminated plots compared with the low and non-contaminated plots.  

Arbuscular mycorrhizal fungi (AMF) are well known as soil fungi able to establish a 

mutualistic symbiosis with over than 80 % of the land plants (Smith & Read, 2008). In 

exchange for carbon resources, AMF provide the host plants with nutrients and protect them 

against soil-borne pathogens (St-Arnaud & Vujanovic, 2007; Smith & Read, 2008; Ismail et 

al., 2011). In addition, many reports have shown that AMF may play an important role in soil 

phytoremediation processes (Liu & Dalpé, 2009; Wu et al., 2009; Gao et al., 2011b; Hassan et 

al., 2013). In the soil surrounding plant roots, AMF share the same micro-environment with 

other rhizospheric microorganisms and several studies have shown that AMF species 

collaborate with some of these microorganisms in phytoremediation process (Alarcón et al., 

2008; Liu & Dalpé, 2009; Teng et al., 2010). However, AMF also harbor their own 

hyposphere microorganisms on the surface of their spores and mycelium (Hijri et al., 2002; 

Bonfante & Anca, 2009; Scheublin et al., 2010; Lecomte et al., 2011), and the role of these 

microbes in phytoremediation processes is unknown. 

Using 454 sequencing, Iffis et al. (2016) have conducted a study of bacteria and fungi 

associated to AMF spores harvested from soil collected from the rooting zone of three plant 

species (Solidago canadensis, Populus balsamifera and Lycopus europaeus) growing 

spontaneously in waste decantation basins of a former petrochemical plant. These authors have 

found a large diversity of bacteria and fungi in association with the AMF spores. They also 

found that the AMF-associated fungal and bacterial communities were significantly affected 
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by both PHP concentrations and plant species identity. Furthermore, Iffis et al. (2016) 

observed that some AMF taxa were either positively or negatively correlated with some fungal 

and bacterial groups, suggesting that AMF may also play a role in shaping the microbial 

communities associated with their spores. Similarly, Iffis et al. (2014) showed that the 

intraradical propagules (vesicules and spores inside plant roots) of AMF extracted from 

Solidago rugosa roots, sampled in a PHP polluted site, also harbored a large diversity of 

bacteria and fungi. 

Based on these studies, we inferred that plant species, AMF community and PHP 

concentrations are among the major driving forces that shape microbial communities living in 

the rhizosphere and endosphere of plants growing in PHP polluted sites. The current study 

aims to understand the contribution of each of these factors on bacterial and fungal community 

structures in rhizospheric soils and roots sampled in polluted sedimentation basins. Our 

objectives were: (i) to assess the bacterial and fungal diversity associated with roots and their 

rhizospheric soil from mycorrhizal plants spontaneously growing in waste decantation basins 

of a former petrochemical plant; (ii) to test the effects of petroleum hydrocarbon pollutants 

(PHP) and plant species identity on the microbial community structure in the soil and plant 

roots; (iii) and to compare the microbial community structure of soil and roots with the 

microbial community structure associated with the AMF spores in order to verify the 

hypothesis that AMF are able to recruite specific microbial communities on the surface of 

their spores and mycelia. 

To do so, soil and root samples used in Iffis et al. (2016) were subjected to DNA 

extraction, PCR amplifications targeting the ITS regions for fungi and 16S rRNA gene for 
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bacteria, then the PCR products were sequenced using the 454 FLX+ high throughput 

sequencing platform to profile the microbial communities structure. 

Overall, our results show a difference in OTUs richness and community structure 

composition between soil and roots for both bacteria and fungi. We also found that PHP 

concentration have a significant effect on the fungal and bacterial community structures in 

both soil and roots while, plant species identity had a significant effect only on the root 

bacteria and fungi. Furthermore, the comparison between the results of this study and Iffis et 

al. (2016) study showed that the microbial community structures found in soil and root 

differed from those found in association with the AMF spores harvested from the same 

samples. These results support the hypothesis that AMF are able to recruit specific microbial 

communities on the surface of their spores and mycelium. According to our knowledge, this is 

the first research work devoted to compare between the microbial communities of soil, roots 

and in association with AMF spores in PH contaminated sites. 

4.4. Materials and methods 

4.4.1. Experimental design and sampling 

Field sampling and experimental design were previously described in Iffis et al. 

(2016). Briefly, Solidago canadensis, Populus balsamifera and Lycopus europaeus are three 

plant species naturally growing in three petroleum contaminated basins of an former 

petrochemical plant located on the south shore of the St-Lawrence River near Montreal, 

Quebec, Canada (45.70 N, 73.43 W) (Desjardins et al., 2014). The root system of three 

individual plants with their surrounding soils were collected for each plant species and from 

each basin, totalling 27 samples (three basins × three plant species × three replicates). 
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The root system from each plant was washed several times in tap water until 

elimination of all soils debris attached, and then cut into 1 cm long pieces. Since a part of the 

root samples was already used for microscopic examination, the remaining amounts were 

insufficient for individual DNA extractions. Therefore, the root replicates of each plant species 

were pooled in 10 ml tubes, and ground in liquid nitrogen with a mortar and pestle. Then, 

500 mg aliquots of the ground root material were collected in 1.5 ml tubes, totaling 9 tubes for 

plant roots. As the remaining soil amount was sufficient for individual DNA extraction, the 

soil samples were kept separate for each individual per plant species from each basin, so there 

were a total of 27 soil samples. For each replicate, the soil surrounding the roots was collected 

in plastic bag, homogenized by shaking, then 500 mg aliquots of this soil were collected in 

1.5 ml tubes for DNA extraction. Root and soil tubes were conserved at -20 °C until use. 

The analysis of polycyclic aromatic hydrocarbon (PAH) and total alkane (C10–C50) 

concentrations from the soil of the three contaminated basins was carried out using a 

commercial laboratory service (Maxxam Analytical Laboratories, Montreal, QC), and the 

results are available in Table S3.10. of Iffis et al. (2016). Basin 1 was the most highly 

contaminated with mean concentration of alkanes (C10–C50) equal to 2200 mg/kg of soil 

(termed as HC), basin 2 was the least contaminated with mean concentration of alkanes (C10–

C50) equal to 153 mg/kg of soil (termed as LC), while the basin 3 was moderately 

contaminated with mean concentration of alkanes (C10–C50) equal to 800 mg/kg of soil 

(termed as MC) (Iffis et al., 2016). 
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4.4.2. DNA extraction 

DNA extraction was performed in both soil and roots samples using the NucleoSpin 

Soil Kit (MACHEREY-NAGEL, USA) following the manufacturer’s instructions. DNA was 

eluted in a 50 µl of elution buffer, and was stored at -20 °C until use. 

4.4.3. Polymerase chain reactions 

To identify the bacterial taxa, soil and root DNA samples were subjected to PCR 

amplification targeting a partial 16S rRNA gene fragment with primer pair UnivBactF 9 and 

BSR534/18 (Bell et al., 2014). To identify the fungal taxa, the ITS regions were targeted using 

primer pair ITS1F and ITS4 (Bell et al., 2014). For the soil DNA samples, PCR amplifications 

were performed once on each DNA sample, totaling 27 PCR tubes of soil samples. For the 

root DNA, since plant root replicates were pooled, PCR amplifications were performed in 

triplicate on each DNA sample, also totaling 27 PCRs tubes. 

Both 16S and ITS primers were tagged with adaptors and unique multiplex identifier 

(MID) tags from the extended MID set recommended by Roche Diagnostics (Roche, 2009). 

PCRs were performed in 50 µl volumes containing 5 µl of 10× PCR buffer, 0.2 mM of dNTP 

mix, 1 µl of BSA (100 mg/ml), 1 µl MgCl2 (25mM), 0.4 mM of each primer, 2 µl of DNA 

template and 1 U of Taq DNA polymerase (QIAGEN, Toronto, ON, Canada). PCRs were run 

on a thermal cycler Pro S thermocycler (Eppendorf, Mississauga, ON, Canada) using an initial 

denaturation at 95 °C for 5 min followed by 35 cycles of 94 °C for 30 s, 55 °C for 30 s, 72 °C 

for 1 min, and a final elongation step at 72 °C for 10 min. After electrophoresis separation and 

UV light visualisation, the PCRs products were purified with the QIAquick Gel Extraction Kit 

(QIAGEN, Toronto, ON, Canada) following the manufacturer’s instructions. Then, DNA 

concentrations of the purified products were measured using the Qubit 2.0 fluorometer (Life 
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Technologies, Burlington, ON, Canada). Four pools were prepared by mixing equimolar 

volumes of PCR products. The four pools contained 16S rRNA gene amplicons of soil 

samples, 16S rDNA amplicons of root samples, ITS amplicons of soil samples and ITS 

amplicons of root samples. These pools were sent for sequencing to the Genome Quebec 

Innovation Centre using the Roche 454 FLX+ pyrosequencing platform (Roche, Branford, CT, 

USA). One eighth of sequencing plate was used for sequencing each pool. 

4.4.4. Bioinformatic processing 

Sequence processing was performed in Mothur (v.1.34.4) (Schloss et al., 2009) as 

described in Mothur wiki (http://www.mothur.org/) and (Bell et al., 2015) with some minor 

modifications. Briefly, for both soil and root 16S rRNA gene sequences, the ".sff" files of the 

different samples were first merged in one ".sff" file, then ".qual" and ".fasta" files were 

obtained from the ".sff" file using "merge.files" and "sffinfo" commands, respectively. Low 

quality and short sequences were removed using the "trim.seqs" command, with the following 

parameters: maxambig=0, maxhomop=8, bdiffs=1, pdiffs=2, qwindowaverage=30, 

qwindowsize=50, minlength=300 and then, we reduced the dataset to only unique sequences 

using the "unique.seqs" command. After sequence alignments against the Mothur interpreted 

Silva bacterial database using "align.seqs", the non-aligned sequences were removed using the 

"screen.seqs" command with the following criteria: start=1044, optimize=end, criteria=95. 

Here, we used reference-based clustering instead of de novo clustering because, it is difficult 

to process a large amount of sequences (e.g. sequences produced by next generation 

sequencig) with de novo clustering, owing to their intensive computational algorithms. Prior to 

sequence classifications, the datasets were first subjected to a second simplification using the 

"unique.seq" command, followed by the commands "pre.cluster" and "chimera.uchime" to 
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reduce the sequencing errors. Sequence classifications were carried out with the Mothur 

implementation of the RDP database using the "classify.seqs" command. Sequences identified 

as "Mitochondria", "Chloroplast", "Archaea", "Eukaryota", or "unknown" were removed using 

the "remove.lineage" command. The sequences matched with Archaea were removed because 

the primer sets used in this study are universal primers for eubacteria and therefore, did not 

allow to recover all the diversity of Archaea. Distance matrices were generated with 

"dist.seqs" command and OTUs were obtained using the "cluster.split" command 

(method=average, processors=2, splitmethod=classify, large=T). Removal of the singleton 

reads was carried out using the "split.abund" command and then, to have an equal number of 

reads per sample, datasets were standardized by a random sub-sampling using the 

"sub.sample" command. OTU tables at 97% similarity were generated following the steps for 

"create.database". 

Overall, the steps of soil and root ITS datasets processing were similar to those of 16S 

rRNA gene dataset processing. Most of the modifications were introduced owing to the 

absence of reference database for ITS sequence alignments. After elimination of low quality 

and short sequences by the "trim.seqs" command (maxambig=0, maxhomop=8, bdiffs=1, 

pdiffs=2, qwindowaverage=30, qwindowsize=50, minlength=250), we ran "chop.seqs" and 

"chimera.uchime" commands to standardize sequence length (numbases=249) and reduce the 

sequencing errors, respectively. Then, the ".fasta" files were clustered into OTUs at 97% 

identity using the CD-HIT software (Li & Godzik, 2006) and reformatted to ".list" file in order 

to continue Mothur processing. Since Iffis et al. (2016) used CD-HIT software for clustering, 

we used the same software in this study in order to keep the same parameters for 

comparisons.The remaining steps of the ITS datasets processing was similar to 16S rRNA 



 

85 

gene dataset processing, except sequence classification was performed using the UNITE 

reference database, and the "remove.lineage" command was not used in ITS datasets 

processing. 

4.4.5. Statistical analysis 

All statistical analyses were performed in R (version 3.1.1). To compare the diversity 

and OTU richness between soil and root datasets, Student’s t-tests or Wilcoxon tests were 

carried out on Shannon diversity indices and the Chao richness estimator using the "Rcmdr" 

package. Student’s t-tests were performed on the fungal Chao values (normally distributed), 

while Wilcoxon tests were performed on the bacterial Chao and Shannon values, and on the 

fungal Shannon values (non-normally distributed residuals). Student’s t-tests or Wilcoxon 

tests were also performed in order to compare the fungal and bacterial relative abundances 

between soil and roots. To verify the efficiency of our sampling efforts and sequencing depth, 

rarefaction curves were drawn for each individual sample using the "rarefy" function in the 

"vegan" package. Depending on the normal distribution of the residuals, the effect of 

contamination levels and plant species identity on Shannon diversity indices of fungi and 

bacteria were tested by ANOVA or Kruskal-Wallis tests using the "Rcmdr" package in R 

(ANOVA tests were carried out on soil fungi, root fungi and soil bacteria, while Kruskal-

Wallis tests were performed on root bacteria. 

To test the effect of contamination levels, plant species and biotopes (soil roots and 

AMF spores) on the bacterial and fungal community structures, PERMANOVA analysis were 

performed using the "adonis" function in the "vegan" package on Bray–Curtis values obtained 

from the community structure matrices previously normalized by the Hellinger transformation. 

The Hellinger transformations were carried out in order to alleviate the effect the highest 
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abundances and the double zeros problemes (Legendre & Legendre, 2012). For the 

PERMANOVA carried out across biotopes, since the microbial datasets of soil, roots and 

AMF spores were obtained from different sequencing pools with different sequencing depth, 

their abundances were transformed on percentages and the taxonomic data were summed at 

the genera level, prior to the merging of matrices and PERMANOVA analyses. For the 

PERMANOVA performed to compare the fungal communities of soil and roots with those of 

AMF spores, all the taxa matching with Glomeromycota were removed from soil and root 

matrices, prior to the analysis. To test the homogeneity of dispersion of the different 

communities against PHP concentration and plant species identity, beta-dispersion analyses 

were performed on the Bray–Curtis matrices using the "betadisper" function in the "vegan" 

package. In order to reveal which fungal or bacterial taxa were affected by the contamination 

levels or plant species, Kruskal–Wallis tests or ANOVA were performed on the abundances at 

class level and on the most abundant thirty OTUs of fungi and bacteria in both soil and root 

datasets. Non-metric multidimensional scalings (NMDS) were performed in order to visualize 

the effects of contamination levels, plant species and biotopes on community composition. 

NMDS ordinations were calculated from the Bray–Curtis matrices using the "metaMDS" 

function from the vegan package. Relative abundances were calculated with Excel software on 

the different datasets in order to visualize the percentages of taxonomic affiliations across 

biotopes, contamination levels and plant species. Krona charts were calculated using the 

KronaTools available from (https://github.com) (Ondov et al., 2011) in order to compare the 

AMF-associated microbial communities (Iffis et al., 2016) with the soil and roots microbial 

communities. 
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4.5. Results 

4.5.1. Soil microbial diversity versus root microbial diversity 

After quality filtering and standardizing the number of sequences in the different 

datasets, the soil 16S rRNA gene dataset allowed us to retrieve a total of 23085 reads (855 per 

sample) which were assigned to 4083 OTUs, while a total of 25839 reads (957 per sample) 

were obtained from the soil ITS dataset which were assigned to 215 OTUs. For the root 16S 

rRNA gene dataset, we retrieved a total of 2403 reads (89 per samples) which were assigned to 

820 OTUs, while a total of 13716 reads (508 per samples) were obtained from the root ITS 

dataset and assigned to 188 OTUs. Since the different datasets were standardized by 

subsampling to the sample size that showed the lowest number of reads, the number of reads 

retrieved in each dataset was relatively low in comparison with what 454 sequencing 

technology can produce. Furthermore, the presence of PCR inhibitors in our samples may be 

one of the major factor that affected the sequencing depth. 

Rarefaction curves showed that the sampling effort for fungi was close to saturation for 

the all samples with Good's coverage values ranged between 0.97 and 0.99 for soil fungi, and 

0.94 and 0.98 for root fungi. Contrary to fungi coverage, the sampling efforts were relatively 

low yielded for bacteria, in particular the samples related to L. europaeus and P. balsamifera. 

The Good's coverage values of bacteria ranged between: 0.68 and 0.81 for soil bacteria, 0.22 

and 0.70 for root bacteria, (Figure 4.1. and Table S4.1.). 
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Figure 4.1. Rarefaction curves of OTUs for individual samples across the different datasets: (A) soil bacteria, (B) root 

bacteria, (C) soil fungi, (D) root fungi. 
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The bacterial OTU diversity and richness of bacteria were significantly higher in soils 

than in roots (Wilcoxon test, P < 0.0001) for both Shannon diversity indices and Chao 

richness estimators (Figure 4.2. A and B). For fungi, Wilcoxon test on Shannon diversity 

indices showed no significant difference in fungal diversity between soil and root datasets (P 

= 0.15). However, a significant difference in OTU richness was observed between the soil and 

root samples for fungi (Student’s t test, P = 0.05), with Chao values higher in the soil samples 

(mean Chao value = 68.66) compared to root samples (mean Chao value = 59.58) (Figure 4.2. 

A and B). 

PERMANOVA analyses showed that the bacterial and fungi community structures 

present in soil were significantly different from the bacterial and fungi communities found in 

association with plant roots (P < 0.001). For both bacteria and fungi, NMDS ordinations 

showed a clear change in community structures across soil and roots (stress value = 0.14 and 

0.22, respectively) (Figure 4.3. A and Figure 4.4. A) 

BLAST searches of the bacterial 16S rRNA gene sequences showed that, at class or 

phylum level, the bacteria profiles were similar in soil and root datasets. The most abundant 

bacterial taxa identified in the two datasets belong to classes Alphaproteobacteria, 

Betaproteobacteria, Gammaproteobacteria, Actinobacteria, and phylum Acidobacteria. 

However, except for Alphaproteobacteria and Betaproteobacteria, which were found 

approximately in similar proportions in soil and root datasets (36 % and 33 % for 

Alphaproteobacteria, and 14 % and 12 % for Betaproteobacteria), the proportions of the other 

most abundant bacteria groups were different between the soil and root datasets. Acidobacteria 

and Deltaproteobacteria had higher proportions in the soil dataset (11 % and 5.25 %, 

respectively) compared to the root dataset (4 % and 3.41 %, respectively) (Student’s t test, P < 
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0.05) while, the percentages of Actinobacteria (represented mainly by Streptomyces) and 

Gammaproteobacteria were higher in the root dataset (19 % and 14 %, respectively) than in 

the soil dataset (6% and 9%, respectively) (Wilcoxon test, P < 0.0001 for Actinobacteria and 

Student’s t test = 0.15 for Gammaproteobacteria) (Figure S4.1. A and B). Moreover, within 

each bacterial group, most OTUs found in the root dataset were different from those found in 

the soil dataset (Table S4.2. and, Figure S4.2. A and B). For instance, in the root dataset, the 

OTUs related to Alphaproteobacteria were represented mainly by Bradyrhizobium, 

Skermanella, Sphingobium and Hoeflea, while in the soil dataset, Alphaproteobacteria were 

dominated by Sphingomonas, Skermanella and Dongia. Similarly, Betaproteobacteria was 

represented mainly by Ideonella, Duganella and Limnobacter in the root dataset, while it was 

dominated by Caenimonas, Burkholderiales and Ferrovum in the soil dataset. 
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Figure 4.2. (A) Comparison of Shannon diversity indices of bacteria and fungi across soil and roots. (B) Comparison of 

Chao estimator values of bacteria and fungi across soil and roots. (C) Comparison of Shannon diversity indices of the 

different pyrosequencing datasets across contamination concentrations. (D) Comparison of Shannon diversity indices of the 

different pyrosequencing datasets across plant species. 

Acronyms HC, CM and LC mean high contamination, moderate contamination, and low contamination, resperctively. (∗): 

significant at 5 %; (∗∗∗): significant at 0.1 %; (§): P values calculated using Wilcoxon or Kruskal-Wallis tests.
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For the ITS sequences, BLAST searches showed that almost all fungal taxa identified 

in the soil dataset were also identified in the root dataset. The major part of the fungal taxa 

found in the two datasets belong to the classes Dothideomycetes, Sordariomycetes, 

Agaricomycetes, Chytridiomycetes and Glomeromycetes. Dothideomycetes, Agaricomycetes 

and Chytridiomycetes were found in similar proportions in the root and soil datasets. 

Dothideomycetes represented 23 % and 24 % of the OTUs in soil and root datasets, 

respectively. Agaricomycetes represented 10 % and 7 % of OTUs in the soil and root datasets, 

respectively. Similarly, Chytridiomycetes represented 5 % and 4 % of OTUs in the root and 

soil datasets, respectively. However, the proportions of Sordariomycetes and Glomeromycetes 

were clearly different between soil and root samples (Wilcoxon test, P ≤ 0.0001). 

Sordariomycetes were found as the most dominant taxa in the soil dataset, with a percentage 

of 37 % of OTUs, whereas they represented only 5 % of the root dataset. Glomeromycetes 

represented 20% of the root dataset, but only 1 % of the fungal sequences in the soil dataset 

(Figure S4.1. C and D). 

4.5.2. PHP and plant species identity effects on soil and root bacterial diversity 

ANOVA tests revealed a nearly significant effect of the contamination level on 

Shannon diversity indices of bacteria in the soil dataset (P = 0.077), with a higher diversity in 

the least contaminated (LC) site than in most highly contaminated (HC) and moderately 

contaminated (MC) sites. On the other hand, there was clearly no effect of contamination on 

the bacterial diversity indices in the root dataset (Table 4.1 and Figure 4.2. C). However, when 

comparing the shifts in Shannon diversity indices by plant species, a highly significant effect 

of plants species identity on bacterial diversity was observed in the root dataset (P < 0.001), 

with a higher diversity of bacteria in L. europaeus and P. balsamifera than in S. canadensis. In 
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contrast, there was no effect of plant species identity on the bacterial diversity in the soil 

dataset (Table 4.1 and Figure 4.2. D). 

 

 



 

94 

Table 4.1. P-values of ANOVA and PERMANOVA analyses calculated on Shannon diversity indices and community 

structures of the different pyrosequencing datasets. 

n = 9 for soil bacteria, root bacteria, soil fungi and root fungi. The Bolded values are significant at P < 0.05. (§): P-values calculated 

using Kruskal-Wallis tests. 

 

 

 

 

 
Contamination level 

 
Plant species 

 

ANOVA on 

Shannon index 

PERMANOVA on the 

community structure 

Beta-

dispersion 

PERMANOVA 

R squared
 

 

ANOVA on 

Shannon index 

PERMANOVA on the 

community structure 

Beta-

dispersion 

PERMANOVA 

R squared 

Soil bacteria 0.0777 0.011 0.25 0.05 
 

0.544 0.428 0.49 0.03 

Root bacteria 
§
0.7242 0.034 0.46 0.05 

 
§
0.0001 0.001 0.031 0.07 

Soil fungi 0.424 0.002 0.72 0.08 
 

0.151 0.37 0.10 0.03 

Root fungi 0.714 0.006 0.51 0.09 
 

0.000965 0.002 0.06 0.11 
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PERMANOVA analysis revealed that the community structure of bacteria was 

significantly affected by the contamination level for both soil and root datasets (P = 0.01 and 

0.032, respectively). However, a significant effect of plant species identity on the bacterial 

community structure was observed only on the root dataset (P = 0.001), while no effect of 

plant species was observed on bacteria in the soil dataset (P = 0.41) (Table 4.1). 

The variations in diversity and community composition of bacteria were corroborated 

by the non-metric multidimensional scaling (NMDS) plots in both soil and root datasets. In 

NMDS plots performed across contamination levels, a clear separation of the bacterial 

communities was observed between the LC and HC sites in both soil and root datasets (stress 

value = 0.15 and 0.22, respectively) (Figure 4.5. A and B). However, the NMDS plot 

performed across plant species showed that the bacterial communities were determined by 

plant species identity only in the root dataset, where bacteria from S. canadensis roots grouped 

apart those from the other plant species (stress value = 0.15 and 0.22, respectively) (Figure 

4.6. A and B). 

Kruskal-Wallis tests performed on the soil bacteria OTUs showed clearly that the 

contamination level had a stronger effect on the bacterial composition than plant species 

(Table S4.2.). Among the most abundant 30 OTUs, 17 were significantly affected by the 

contamination levels, two by plant species, and two by both contamination levels and plants 

species, while no effect was found on the remaining nine OTUs. Most of the OTUs affected by 

the contamination belong to classes Alphaproteobacteria (Sphingomonas, Skermanella, 

Dongia, Rhizobiales), Betaproteobacteria (Caenimonas, Burkholderiales, Ferrovum, 

Comamonadaceae), Gammaproteobacteria (Xanthomonadales, Thermomonas, 

Steroidobacter) and Acidobacteria groups (Table S4.2.).  
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At the class level, The proportion of Alphaproteobacteria and Acidobacteria groups 

were significantely increased in the HC (40.8 % and 11.6 %) and MC (37.7 % and 12.9 %) 

sites more than in the LC site (29.8 % and 8.7 %) (ANOVA, P = 0.012 and 0.002). 

Betaproteobacteria showed also a high proportion in the HC and MC sites (13.3 % and 15 %) 

than in the LC site (12.8 %) though, ANOVA test did not showed a significant difference. On 

the other hand, the abundance of Gammaproteobacteria was slightly higher in the LC and HC 

sites (10.8 % and 10.4 %) than in the MC site (7.2 %) though, the difference was also not 

significant (Figure 4.7. A). 
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Figure 4.3. Non-metric multidimensional scaling (NMDS) showing the bacterial 

community compositions assignments across: (A) soil and roots (stress value = 0.14), (B) 

soil and AMF spores (stress value = 0.11) and (C) roots and AMF spores (stress value = 

0.17). 
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Figure 4.4. Non-metric multidimensional scaling (NMDS) showing the fungal community 

compositions assignments across: (A) soil and roots (stress value = 0.22), (B) soil and 

AMF spores (stress value = 0.14) and (C) roots and AMF spores (stress value = 0.17). 
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Figure 4.5. Non-metric multidimensional scaling (NMDS) showing the community composition assignments of: (A) soil 

bacteria (stress value = 0.15), (B) root bacteria (stress value = 0.22), (C) soil fungi (stress value = 0.15) and (D) root fungi 

across contamination concentrations (stress value = 0.17). PERMANOVA analysis showed significant effects of 

contamination levels on the community composition of soil bacteria, root bacteria, soil fungi and root fungi (n = 9, P = 0.010, 

0.032, 0.003 and 0.006, respectively). 
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Figure 4.6. Non-metric multidimensional scaling (NMDS) showing the community compositions assignments of: (A) soil 

bacteria (stress value = 0.15), (B) root bacteria (stress value = 0.22), (C) soil fungi (stress value = 0.15) and (D) root fungi per 

plant species identity (stress value = 0.17). PERMANOVA analysis showed significant effects of plant species identity only 

on the community composition of root bacteria and root fungi (n = 9, P = 0.0001 and 0.0009, respectively). 
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Kruskal-Wallis tests performed on the root bacteria OTUs showed that the most 

abundant OTUs were affected by both contamination levels and plant species identity. Among 

the 30 most abundant OTUs, 10 were significantly affected by the contamination 

concentration, 13 by plant species and two by both contamination and plant species. Bacteria 

related to the classes Alphaproteobacteria (Bradyrhizobium, Skermanella, Sphingobium, 

Hoeflea, Hyphomicrobium and Altererythrobacter), Actinobacteria (Streptomyces, 

Actinoplanes, Streptomyces and Lentzea) Betaproteobacteria (Ideonella, Duganella and 

Limnobacter) and Gammaproteobacteria (Rhizobacter, Steroidobacter and Pseudomonas), 

had the most OTUs affected by the contamination levels or plant species (Table S4.2.).  

When comparing the relative abundances of the root bacteria at class level across the 

contaminated sites, we observed that Actinobacteria were in higher proportions in the HC 

(20.4 %) and MC sites (22.5 %) than in the LC site (15.6 %) (ANOVA, P = 0.041). On the 

other hand, Betaproteobacteria was in higher abundance in the LC (13.9 %) and MC sites 

(14.1 %) than in the HC site (6.9 %) (ANOVA, P = 0.003). 

When the relative abundances of root bacteria were compared across plant species, we 

observed that Alphaproteobacteria were clearly more abundant in P. balsamifera (38.3 %) and 

L. europaeus (33.8 %) than in S. canadensis (25.8 %) samples (ANOVA, P < 0.001). By 

contrast, the abundance of Gammaproteobacteria was higher in S. canadensis (24.2 %) than in 

P. balsamifera (10.1 %) and L. europaeus (8.4 %) samples (Kruskal-Wallis, P = 0.004). For 

Betaproteobacteria, its abundance was higher in S. canadensis and L. europaeus (12.6 % in 

both plant species roots), compared to P. balsamifera (9.6 %) but the P value was not 

significant (Figure 4.7. B). 
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Figure 4.7. Relative abundances of major: (A) soil bacteria classes, (B) root bacteria classes, (C) soil fungi classes and (D) 

root fungi classes. 

Sol_HC: S. canadensis in the highly contaminated site; Pop_HC: P. balsamifera in the highly contaminated site; Lyc_HC: L. 

europaeus in the highly contaminated site; Sol_MC: S. canadensis in the moderately contaminated site; Pop_MC: P. balsamifera in 

the moderately contaminated site; Lyc_MC: L. europaeus in the moderately contaminated site; Sol_LC: S. canadensis in the least 

contaminated site; Pop_LC: P. balsamifera in the least contaminated site; Lyc_LC: L. europaeus in the loweast contaminated site. 
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4.5.3. PHP and plant species identity effects on soil and root fungal diversity 

ANOVA tests showed that there was no effect of contamination on the Shannon 

diversity indices of fungi in either soil (P = 0.424) or root (P = 0.714) datasets (Table 4.1 and 

Figure 4.2. A). However, there was a highly significant effect of plant species identity on the 

fungal diversity in roots (P < 0.001). Tukey's range test showed that the divergence in root 

fungal diversity has occurred in L. europaeus, which showed the highest diversity compared 

with P. balsamifera and L. europaeus. No effect of plant species identity on the fungal 

diversity was found in soil (Table 4.1 and Figure 4.2. B). 

However, PERMANOVA analysis showed that the contamination had a significant 

effect on the community structure of fungi in both soil and root samples (P = 0.003 and P = 

0.006, respectively), while plant species identity had a significant effect only in roots (P = 

0.003) (Table 4.1). NMDS plots showed a clear separation between the community 

composition of the HC and LC sites, while the community of the MC site was intermediary in 

both soil and root datasets (Figure 4.5. C and D). NMDS plots across plant species showed 

differences in community structure only in roots, where a distinct grouping of the fungal 

communities was found between L. europaeus and P. balsamifera, with the community of S. 

canadensis being intermediate (Figure 4.6. C and D). 

The Kruskal-Wallis tests confirmed that soil fungi were more affected by the 

contamination levels than by plants species identity, while a similar amount of root fungi were 

affected by either contamination and plants species (Table S4.2.). Among the 30 most 

abundant soil fungal OTUs, 13 were significantly affected by contamination, four by plants 

species, one by both, while the 12 remaining OTUs were not affected. The soil fungi OTU 
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which were significantly affected by contamination level or plants species identity belong 

mainly to the fungal classes Sordariomycetes (Emericellopsis sp. (OTU 5), Lasiosphaeriaceae 

(OTU 13) and Fusarium sp. (OTU 19)), Agaricomycetes (Thelephoraceae (OTU 13)), 

Dothideomycetes (Leptosphaeria sp. (OTU 11) and Pycnidiophora sp. (OTU 27)), 

Eurotiomycetes (Penicillium sp. (OTU 6)) and Chytridiomycetes (Spizellomyces plurigibbosus 

(OTU 8)). On the other hand, among the 30 most abundant root fungal OTUs, nine were 

affected by contamination, 10 by plants species, eight by both, while three OTUs were not 

affected. Most of the root fungi OTU which were significantly affected by contamination 

levels and/or plant species identity belong to the classes Dothideomycetes (Leptosphaeria sp. 

(OTU 1), Pleosporales sp. (OTU 15) and Phoma herbarum (OTU 7)), Chytridiomycetes 

(Olpidium brassicae (OTU 6) and S. plurigibbosus (OTU 2)), Glomeromycetes 

(Claroideoglomus (OTU 10) and Entrophospora infrequens (OTU 4)), Leotiomycetes 

(Helotiales (OTU 9)) and Sordariomycetes (Fusarium sacchari (OTU 22) and Myrothecium 

sp. (OTU 29)) and Agaricomycetes (Sebacinaceae (OTU 5)). 

In soil, the fungal classes Sordariomycetes and Agaricomycetes were more abundant in 

the LC (46.9 % and 9.9 %, respectively) and MC sites (41.9 % and 14.9 %, respectively) than 

in the HC site (22.6 % and 4.3 %, respectively) (Kruskal-Wallis, P = 0.02 and 0.15). 

Contrarily, Eurotiomycetes and Chytridiomycetes were more abundant in the HC site (8.1 % 

and 7.3 %) than in MC (4.1 % and 3.7 %) and LC sites (0.1 % and 0.3 %) (Kruskal-Wallis, P 

≤ 0.001) (Figure 4.7. C and Table S4.2.). Dothideomycetes also showed a higher abundance in 

the HC (27.7 %) than in the MC and LC sites (18.1 % and 23.7 %) though, the Kruskal-Wallis 

rank test did not showed a significant difference. In roots, Dothideomycetes and 

Chytridiomycetes were more abundant in the HC site (34.3 % and 8.1 %) than in MC (23.4 % 
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and 3.9 %) and LC sites (14.4 % and 3.6 %) (Kruskal-Wallis, P ≤ 0.05). Contrarily, 

Glomeromycetes and Sordariomycetes were more abundant in the LC site (32.8 % and 7.3 %) 

compared to MC (14.9 % and 3.2 %) and HC sites (12.7 % and 3.7 %) (Kruskal-Wallis, P = 

0.02 and 0.04). When the abundances of root fungi were compared across plant species, we 

observed that the proportions of OTUs belonging to different fungal classes also varied 

between plant species identity. Dothideomycetes were more abundant in P. balsamifera (29 %) 

and S. canadensis (28.7 %) than in L. europaeus (14.4 %) (Kruskal-Wallis, P = 0.09), while 

Glomeromycetes and Sordariomycetes were more abundant in L. europaeus (30.7 % and 

6.1 %, respectively) and S. canadensis (23.5 % and 5.2 %) than in P. balsamifera (6.3 % and 

2.9 %, respectively) (Kruskal-Wallis, P = 0.004 and 0.14). Agaricomycetes were in higher 

proportions in S. canadensis (14.7 %) compared to L. europaeus (1.6 %) and P. balsamifera 

(5.3 %) (Kruskal-Wallis, P = 0.018). Chytridiomycetes and Leotiomycetes were more 

abundant in P. balsamifera (14.5 % and 13.2 %, respectively) than in L. europaeus (1 % and 

0.6 %, respectively) and S. canadensis (0.04 % and 1.2 %, respectively) (Kruskal-Wallis, P < 

0.001) (Figure 4.7. D and Table S4.2.). 

4.5.4. Soil and root microbial diversity versus AMF spore-associated microbial 

diversity 

The comaparison of the soil and roots microbial communities with those identified in 

association to AMF in Iffis et al. (2016) study revealed that the community structure of AMF-

associated microorganisms were significantly differed from the communities identified in the 

rhizosphere and endosphere of the same plants (PERMANOVA, P < 0.001). The NMDS plots 

showed a distinct grouping of soil and root microbial communities compared with AMF 

spore-associated microbial communities (Figure 4.3. C and D, and Figure 4.4. C and D). We 
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previously found that Gammaproteobacteria and Betaproteobacteria were the most dominant 

classes associated within AMF spores (their abundances were 49 % and 23 %, respectively), 

while the most dominant fungi belonged to the unclassified fungi (55 %), Pezizomycetes 

(13 %) and Dothideomycetes (13 %) (Iffis et al., 2016). However, in the present study, 

Alphaproteobacteria was the most dominant bacterial class in both the soil and root datasets 

(36 % in soil and 33 % in roots), while Sordariomycetes was the most dominant fungal group 

in soil (37 %) and Dothideomycetes was the most dominant in roots (24 %). Here, 

Gammaproteobacteria represented only 9 % of OTUs in soil and 14 % in roots, while 

Pezizomycetes formed only 1.3 % of OTUs in roots and 0.8 % in soil (Figure S4.4.). 

Differences in community structures between the AMF spore-associated microbiomes and the 

rhizospheric and endophytic communities were also found at the genus level (Iffis et al., 

2016). Indeed, Alphaproteobacteria was represented mainly by the genera Sphingomonas in 

soils and Bradyrhizobium in roots, while this group was represented mainly by the genus 

Caulobacter in the AMF spore-associated microbiome (Iffis et al., 2016). Similarly, 

Betaproteobacteria was represented mainly by the genera Duganella and Janthinobacterium 

in the spore microbiome, while they were formed mainly by unclassified Betaproteobacteria 

and Caenimonas in soil, and by Duganella in roots (Figure S4.2.). For fungi, Septoria was the 

most representative genus of Dothideomycetes associated with the AMF spores, while in soil 

and roots the Dothideomycetes was represented mainly by Pleosporales (Figure S4.3.). 

4.6. Discussion 

In rhizospheric soil, plant roots, bacteria and fungi form tripartite symbiosis or parasitic 

associations based on exchange of complex signaling dialogs and nutrient compounds by 

which each partner influences the other in order to avoid the different biotic and/or abiotic 
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stresses able to disrupt their life cycle. Therefore, the microbial community structures living in 

soil or in association with roots are intimately linked to the different exudates released in the 

rhizosphere (root and microbe exudates), soil composition and climatic conditions. In this 

study, we assessed the variation in bacterial and fungal diversity across PHP concentrations, 

plant species identity and biotopes (soil versus roots). Furthermore, since the soil and root 

samples used in this study are the same as those used previously in Iffis et al. (2016) study, the 

bacterial and fungal diversity found in the current study was compared to the AMF-associated 

microbial diversity found in the Iffis et al. (2016) study in order to verify the hypothesis that 

the microbial communities living in association with AMF spores are meticulously selected by 

the AMF exudates released in the mycosphere. 

The comparison of microbial communities across PHP concentrations revealed that 

Alphaproteobacteria were favored in the high contaminated (HC) site, both in soil and in 

roots. Actinobacteria were also among the most dominant classes in the plant roots of the HC 

site. The high abundance of Alphaproteobacteria and Actinobacteria in the HC site may be 

related to their PHP tolerance and/or their ability to degrade PHP compounds. Several studies 

carried out on the microbial communities in PHP contaminated sites showed that 

Alphaproteobacteria and Actinobacteria were often found in higher abundances in the more 

highly organic contaminated soils (Greer et al., 2010; Bell et al., 2014; Yergeau et al., 2014; 

Pagé et al., 2015). Furthermore, it was reported that Sphingomonas (the most dominant 

Alphaproteobacteria in soil dataset) and Bradyrhizobium (the most dominant 

Alphaproteobacteria in root dataset), as well as Streptomyces (the most dominant 

Actinobacteria in soil and roots) are able to degrade a range of the recalcitrant polycyclic 

aromatic hydrocarbon (PAH) compounds, such as phenanthrene, pyrene and naphthalene 
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(Rentz et al., 2008; Qu & Spain, 2011; Balachandran et al., 2012; Bourguignon et al., 2014). 

On the other hand, the presence of Gammaproteobacteria in similar abundances in the LC and 

HC sites, for both soil and root datasets, may be related to the large spectrum of activities of 

the species belonging to the Gammaproteobacteria class. For example, in PHP contaminated 

soils, Pseudomonas (the most dominant genus of Gammaproteobacteria in roots) was shown 

to degrade a range of PAH compounds such as phenanthrene, alkane and naphthalene (Ma et 

al., 2006; Ní Chadhain & Zylstra, 2010; Sun et al., 2014). In agricultural soils, Pseudomonas 

taxa are known as potential plant growth-promoting bacteria, where they are able to establish a 

symbiotic association with plant roots and play an important role in plant growth, nitrogen 

fixation and phosphate solubilization (Rodr  gue  & Fraga, 1999; Desnoues et al., 2003; 

Sharma et al., 2013). In the case of fungi, Dothideomycetes and Chytridiomycetes were the 

fungal classes which were found in higher abundance in the HC site. To our knowledge, there 

are no studies devoted to PHP tolerance or biodegradation abilities of Chytridiomycetes. 

Surprisingly, excepting the study of Iffis et al. (2016), none of the studies carried out nearby 

the basins of our study has found Chytridiomycetes, either in rhizospheric soils and sediments 

or in association with plant roots (Bell et al., 2014; Stefani et al., 2015; Bourdel et al., 2016). 

However, all of these studies found Dothideomycetes among the most dominant fungal classes 

in the PHP contaminated sites. Furthermore, several studies reported that some species 

belonging to Dothideomycetes are able to tolerate or break down a range PHP compounds 

(Junghanns et al., 2008; Ferrari et al., 2011; Harms et al., 2011; Stefani et al., 2015). For 

example, Alternaria and Cladosporium, which were identified in both soil and root datasets, 

have been shown to degrade crude oil and a variety of its derivative products such as 
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phenanthrene, benzo[a]pyrene, fluoranthene, and anthracene (Giraud et al., 2001; Potin et al., 

2004; Mohsenzadeh et al., 2012; Ameen et al., 2016). 

Our resuts also showed that the OTU richness of bacteria and fungi were significantly 

decreased in root samples in comparison to the soil samples. Generally, the microbial diversity 

was shown to increase in rhizospheric soils compared to the different plant compartments 

(roots, stem or leaves) (Xu et al., 2012; Turner et al., 2013a; Edwards et al., 2015). The 

increase of microbial richness in soils compared to roots may be related to the difference in 

environmental conditions and nutrient bioavailability in the two ecological niches (soil versus 

roots). Indeed, plant roots have a selective effect on both rhizospheric and endophytic 

microorganisms, however the selective effect is much higher in the endosphere (inside roots) 

owing to the complexity and specificity of plant-microbe interactions and plant immune 

system responses (Bais et al., 2006; Hardoim et al., 2008; Oldroyd, 2013). Generaly, before 

root colonization, plants and microorganisms engage in a complex chemical dialogue, and 

only the bacteria or fungi recognizing the signaling pathways are allowed to penetrate and 

colonize plant roots (Bertin et al., 2003; Bais et al., 2006; Oldroyd, 2013). Furthermore, once 

inside roots, the endophytes are subjected to stress caused by the new conditions and 

consequently, only the microbes able to adapt to the intraradical conditions can proliferate 

inside root compartments (Jones et al., 2007; Parniske, 2008; Gaiero et al., 2013; Brader et al., 

2014). For example, plant root infection by nitrogen fixing bacteria (eg. Bradyrhizobium) and 

arbuscular mycorrhizal fungi, which are found in higher proportion in root samples than in soil 

samples, is achieved through an exchange of complex chemical signaling between the plant 

roots and microbes. In the nitrogen-fixing bacterial symbiosis, plant roots release in the 

rhizosphere specific signaling compounds, composed mainly of flavonoids, which stimulate 
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nitrogen fixing bacteria to answer by producing a series of lipochitooligosaccharide 

compounds (nodulation factors), that are required to activate the rest of the symbiosis 

signaling pathway (Fisher & Long, 1992; Jones et al., 2007). An analogue strategy to 

nitrogen-fixing bacteria infection was also described between plant roots and AMF. The 

signaling begins with root exudation of strigolactones in the rhizosphere. Perception of 

strigolactones by AMF stimulate the spores to answer by releasing other signaling compounds, 

so called "Myc factors", which trigger the symbiosis pathway (Parniske, 2008; Oldroyd, 

2013). Contrary to the microorganisms living inside roots, in the rhizosphere the soil 

surrounding the roots is nutrient-rich. A large range of soil organic matter, as well as root 

exudates composed mainly of carbohydrates, amino acids and organic acids are present in the 

soil-root interface and stimulate the proliferation of the rhizosphere-living fungi and bacteria 

(Bertin et al., 2003; Somers et al., 2004; Bais et al., 2006; Philippot et al., 2013; Quiza et al., 

2015). 

The comparison of microbial communities between soil ans roots showed that the 

proportions of OTUs belonging to some groups of fungi (eg: Sordariomycetes and 

Glomeromycetes) and bacteria (eg: Gammaproteobacteria, Actinobacteria and Acidobacteria) 

were different between rhizospheric soils and plant roots. In addition, at the genus rank, we 

found that the fungal and bacterial genera identified in rhizospheric soils were different from 

those identified in plant roots. Even if the root microbiome was considered as a community 

derived from the rhizospheric soil (Compant et al., 2010; Gaiero et al., 2013; Turner et al., 

2013a), several studies demonstrated that the microbial community composition (fungi and 

bacteria) in rhizospheric and bulk soils are different from those of plant roots (Smalla et al., 

2001; Xu et al., 2012; Shakya et al., 2013; Edwards et al., 2015; Quiza et al., 2015). Usually, 
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the same phyla or classes of microorganisms were found in soils and roots, but their 

abundances varied between the two biotopes. Moreover, differences in the taxonomic 

affiliations were often reported when the comparisons were carried out at genus or species 

rank (Gottel et al., 2011; Turner et al., 2013a; Turner et al., 2013b; Edwards et al., 2015). In 

our study, most of the bacteria and fungi identified in high proportions in roots were already 

known to be endophytic or obligatory biotrophic microorganisms, establishing a symbiotic, 

saprophytic or pathogenic associations with plants. For example, Bradyrhizobium and 

Pseudomonas (the most dominant Alphaproteobacteria and Gammaproteobacteria found in 

root dataset) are memebers of plant growth-promoting bacteria able to establish endosymbiotic 

associations with the roots of several plant species (Fisher & Long, 1992; Kneip et al., 2007; 

Sharma et al., 2013). Similarly, Glomeromycetes are known as obligate biotrophic fungi, 

which require a host plants for their growth and reproduction (Simon et al., 1993; St-Arnaud 

& Vujanovic, 2007; Smith & Read, 2008). 

On the other hand, the shifts in the community structures of AMF-associated bacteria 

and fungi across soils and roots observed in this study support the hypothesis that AMF select 

the microbial communities living in association with their spores and mycelia. As with plant 

roots, AMF may release carbon resources and other signaling molecules that render the 

surface of spores and mycelia favorable and then selective for the growth of specific 

microorganisms, as proposed previously (Roesti et al., 2005; Bharadwaj et al., 2011; Lecomte 

et al., 2011; Agnolucci et al., 2015; Iffis et al., 2016). For example, Bharadwaj et al. (2011) 

conducted in vitro cultures of 10 AMF-associated bacteria isolates and they observed that the 

growth rate of the ten isolates were significantly increased by the addition to the culture 

medium a broth medium, in which AMF have been already cultured (Bharadwaj et al. (2011) 
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considered broth medium rich in AMF exudates). In another study, Roesti et al. (2005) 

performed four combinations of inoculations between two AMF species (Glomus geosporum 

and Glomus constrictum) and two host plant species (Plantago lanceolata and Hieracium 

pilosella), and they observed that the AMF spore identity affected the AMF-associated 

bacterial communities more than plant species identity did. However, little is known about 

AMF exudate compositions and their interactions with the soil microorganisms. Therefore, 

further investigations on this topic will be required to understand the different mechanisms by 

which AMF spores recruit their associated microorganisms. 

4.7. Conclusion 

The high throughput amplicon sequencing approach used in our study allowed us to 

identify variations in the bacterial and fungal communities in soils and roots across PH 

concentrations and plant species. Overall, we found that bacterial and fungal community 

structures associated to plant roots varied significantly across both PH concentrations and 

plant species identity. Whereas, bacterial and fungal communities found in soil were affected 

only by PH concentrations. Our results also showed that the OTU richness and community 

structures of bacteria and fungi were significantely differed between soil versus roots. 

Furthermore, comparisons between the AMF spore-associated microbiome described 

previously in Iffis et al. (2016) and the results of the present study showed that the microbial 

communities living in association with AMF spores differed from those found in the 

surrounding soil and roots. 
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Chapitre 5 - Discussion générale et perspectives 

5.1. Discussion 

Dans les environnements contaminés, les plantes et les microorganismes du sol sont 

confrontés à des stress élevés et doivent développer des stratégies qui leur permettent de 

s’adapter à ces habitats hostiles. Plusieurs mécanismes ont été largement décrits dans la 

littérature, tels que la dégradation, la séquestration et la phyto-extraction des polluants qui sont 

présents dans la rhizosphère. De plus, des stratégies relatives aux modes de vie peuvent être 

mises en jeux par certains organismes en interagissant avec d’autres organismes pour établir 

des associations symbiotiques, saprophytiques ou parasitiques afin d’augmenter la tolérance 

aux conditions extrêmes causées par les différents polluants présents dans le sol. Les 

champignons mycorhiziens arbusculaires (CMA) font partie des microorganismes du sol qui 

jouent un rôle clé dans la phytoremédiation et ils sont capables d'interagir à la fois avec les 

racines de plantes et les microorganismes présents dans la rhizosphère. 

Dans cette thèse de doctorat, j'ai mené une étude globale sur la biodiversité des 

bactéries et des champignons associés aux CMA dans des sites hautement contaminés par les 

hydrocarbures pétroliers (HP). Grâce aux techniques de clonage, de séquençage et de 

microscopie électronique à balayage, mes premières expériences ont abouti à la réalisation 

d'un portrait d'ensemble sur la biodiversité des bactéries associées aux propagules intra-

racinaires des CMA extraites à partir des racines de Solidago rugosa qui poussent 

spontanément dans le site pollué de Varennes (chapitre 2). Mes résultats ont montré que 

malgré les concentrations en HP mesurées dans ce site ont atteint des niveaux extrêmes (voir 

Table S2.1), le niveau de diversité des CMA et des bactéries associées aux CMA a été élevé à 
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l'intérieur des racines de S. rugosa. Les observations microscopiques ont permis d'observer un 

taux de mycorhization des racines de S. rugosa pouvant atteindre 70 %, tandis que l'arbre 

phylogénétique obtenu à partir des séquences 18S de l'ARN ribosomique montre que les 

racines de S. rugosa sont colonisées par des espèces de CMA qui appartiennent au moins à 

cinq familles distinctes. Curieusement, parmi les séquences des clones 18S utilisés pour 

l'identification des CMA, six d'entre eux ont montré des similarités avec des espèces 

appartenant à la classe des Chytridiomycètes. Présentement, on connait peu de choses sur les 

relations entre les Chytridiomycètes et les CMA à l'exception de quelques études qui 

remontent aux années 1970 et 1980 et qui suggèrent que les Chytridiomycètes peuvent être 

soit des parasites, des saprotrophes des CMA ou même des vecteurs de bactéries (Ross & 

Ruttencutter, 1977; Schenck & Nicolson, 1977; Sylvia & Schenck, 1983; Tzean et al., 1983; 

Paulitz & Menge, 1984). L'analyse des séquences 16S de l'ARN ribosomique a montré qu'il y 

a plusieurs espèces de bactéries qui sont associées aux propagules intra-racinaires des CMA. 

Le groupe des mycorrhiza helper bacteria, incluant des bactéries solubilisatrices de phosphate 

et fixatrices d'azote (e.g. les genres Pseudomonas, Bosea, Brevundimonas, Bradyrhizobium, et 

Paenibacillus), ainsi que des bactéries connues par leurs capacités à dégrader des 

hydrocarbures pétroliers (e.g. les genres Pseudomonas, Sphingomonas, Massilia et 

Methylobacterium) sont les taxons les plus dominants identifiés en association avec les 

propagules des CMA. 

Les expériences du chapitre 3 m’ont permis d’investiguer en profondeur la biodiversité 

des CMA ainsi que celle des bactéries et champignons qui leurs sont associés dans les sites 

contaminés par les hydrocarbures pétroliers (HP). Pour ce faire, j'ai utilisé le séquençage à 

haut débit à partir des spores de CMA extraites de la rhizosphère de trois espèces de plantes 
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qui poussent spontanément dans trois bassins de décantation ayant des niveaux de 

contamination différents. Les résultats de cette expérience montrent que la biodiversité des 

microorganismes associés aux CMA est en réalité plus élevée que ce que les études 

précédentes avaient montré. Les espèces de champignons associées aux CMA identifiées dans 

ce chapitre appartiennent pratiquement à tous les embranchements des Eumycota, allant des 

Chytridiomycota jusqu'aux Basidiomycota avec une forte abondance des Ascomycota, tandis 

que la plupart des bactéries identifiées en association avec les spores des CMA sont des 

espèces telluriques appartenant dans la majorité des cas aux embranchements des 

Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria et Firmicutes. La comparaison 

des communautés microbiennes associées aux CMA par rapport aux niveaux de contamination 

et aux affiliations taxonomiques des espèces de plantes montre que ces deux facteurs ont des 

effets significatifs sur la structure de ces communautés microbiennes. Il est important de noter 

que parmi les classes des microorganismes associés aux CMA identifiées avec des proportions 

élevées dans le bassin hautement contaminé, tels que Actinobacteria (bactéries), 

Gammaproteobacteria (bactéries) et Dothideomycetes (champignons), nombreuses 

contiennent des espèces connues pour leurs capacités à dégrader certains HP et en particulier 

les HAP. Les interactions entre les CMA et ces microorganismes dans des sites contaminés 

demeurent à ce jour méconnues, cependant certaines études ont démontré que la co-

inoculation des CMA avec certaines espèces bactériennes peut augmenter significativement le 

rendement de la phytoremédiation (Alarcón et al., 2008; Liu & Dalpé, 2009; Yu et al., 2011; 

Dong et al., 2014; Xun et al., 2014). Les Chytridiomycetes font aussi partie des 

microorganismes associés aux CMA identifiés en proportions élevées dans le bassin 

hautement contaminé. Toutefois, comme discuté auparavant, on connait peu de choses sur les 
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interactions entre ces champignons et les CMA, et d'autant plus sur leurs rôles dans les 

processus de la phytoremédiation. Quant aux effets de l'affiliation taxonomique des plantes sur 

les structures des communautés microbiennes associées aux CMA, les exsudats racinaires 

jouent un rôle primordial dans la sélection des communautés microbiennes présentes dans les 

sols entourant les racines. Il a été démontré dans plusieurs études que les racines de plantes 

sécrètent des composés de signalisation, tels que les flavonoïdes, les strigolactones et d'autres 

molécules chimiques, qui sont capables d'établir des interactions très spécifiques avec 

certaines communautés microbiennes du sol (e.g. les interactions entre les légumineuses et les 

Rhizobiales) (Jones et al., 2007; Turner et al., 2013a; Edwards et al., 2015; Rohrbacher & St-

Arnaud, 2016). Grâce aux analyses de co-inertie, de partition de la variance et des corrélations 

de Spearman, j'ai observé aussi que certaines espèces de CMA peuvent avoir soit des 

corrélations positives ou négatives avec certains microorganismes associés à leurs spores. 

Cette observation m'a permis de supposer qu'en plus des effets des niveaux de contamination 

et de l'affiliation taxonomique des plantes, les CMA peuvent aussi jouer un rôle clé dans la 

sélection des communautés microbiennes associées à leurs spores et mycélia. Les mécanismes 

de recrutement des microorganismes par les CMA demeurent à ce jour méconnus, cependant 

des hypothèses suggèrent que les CMA sécrètent des exsudats mycéliens contenant des acides 

organiques, des sucres, des composés phénoliques et d'autres composés de signalisations 

destinés à stimuler et à mobiliser certains microorganismes d'intérêt présents dans le sol. 

(Roesti et al., 2005; Bharadwaj et al., 2011; Taktek et al., 2015). En outre, étant donné que les 

CMA sont caractérisés par un polymorphisme génétique élevé entre les différentes espèces 

voire même entre les isolats de la même espèce (Hijri et al., 1999; Redecker et al., 1999; Hijri 

& Sanders, 2005; Croll et al., 2008), il est fortement possible que la composition des exsudats 
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mycéliens varie d'une espèce de CMA à une autre, cependant cela reste à démontrer 

expérimentalement. De ce fait, j'ai formulé l'hypothèse que des espèces différentes de CMA 

peuvent avoir des affinités différentes vis-à-vis de la flore microbienne de la mycosphère. 

Étant donné que les CMA sont des microorganismes telluriques, il est certain que les 

microbes recrutés par ceux-ci à la surface et à l'intérieur de leurs spores proviennent en grande 

majorité de la rhizosphère dans laquelle ils vivaient ou des racines des plantes hôtes qu'ils ont 

colonisées. Donc, il est pertinent de poser la question suivante: les communautés microbiennes 

associées aux CMA sont-elles différentes de celles de la rhizosphère et les racines de plantes? 

Dans le chapitre 4 de mon projet de doctorat, j'ai tenté de répondre à cette question en 

étudiant les communautés microbiennes présentes dans les sols et les racines de plantes du 

même site qui a servi aux études précédentes (Varennes, QC), afin de les comparer avec celles 

en association avec les CMA. Pour ce faire, les échantillons des sols et des racines des plantes 

utilisées dans le chapitre 3 ont été récupérés et soumis au séquençage à haut débit pour étudier 

la biodiversité microbienne présente dans chacun des biotopes (les sols rhizosphériques et les 

racines). Mes résultats ont montrés malgré les CMA vivent à la fois dans les sols et à 

l'intérieur des racines de plantes, les communautés microbiennes présentent à la surface et à 

l'intérieur des spores des CMA sont différentes de celles identifiées dans les sols et racines. 

Même si j'ai observé pratiquement les mêmes classes de champignons et de bactéries dans les 

sols, les racines et les spores des CMA, leurs proportions étaient clairement différentes dans 

ces trois biotopes. De plus, quand la comparaison des communautés microbiennes des trois 

biotopes est réalisée au niveau des genres, j'ai observé que les affiliations taxonomiques des 

genres fongiques et bactériens observées en association avec les spores CMA sont dans la plus 

part des cas différentes de celles identifiées dans les racines et les sols. Cette différence entre 



 

119 

les communautés microbiennes associées aux CMA et celles associées aux sols et racines 

soutient l'hypothèse que les CMA sécrètent des exsudats mycéliens par lesquels ils 

sélectionnent la flore microbienne de leur mycosphère. 

5.2. Les perspectives  

Le présent projet de doctorat a permis une description détaillée des communautés 

microbiennes associées aux CMA présents dans les sites hautement contaminés par les HP. 

Les résultats obtenus montrent à quel point la biodiversité des microorganismes associés aux 

CMA est complexe dans le sol, même si celui-ci a atteint des niveaux extrêmes de pollution. 

Mon projet de doctorat n'a fait qu'effleurer la surface d’un monde aussi complexe que vaste 

qui peut concerner aussi bien les écosystèmes naturels que perturbés. La structure de ces 

communautés associées aux CMA est le résultat des échanges de complexes dialogues 

chimiques, dont on ne connait que peu de choses sur les molécules impliquées, les étapes des 

voies de signalisations ainsi que les facteurs qui peuvent influencer ces interactions. De ce fait, 

il serait donc nécessaire de se focaliser dans le futur sur l'étude de la structure des composés 

chimiques sécrétés par les CMA et les microorganismes qui sont leurs associés, notamment 

dans les milieux contaminés par les hydrocarbures pétroliers. Connaître la composition des 

exsudats mycéliens des CMA et savoir comment ceux-ci varient en fonction des plantes hôtes, 

des saisons, des nutriments (e.g. phosphore et azote) et des conditions physico-chimiques des 

sols, serait un atout considérable pour mieux comprendre les interactions entre les CMA et les 

microbes qui leurs sont associés. D'autre part, il est maintenant connu que les CMA jouent un 

rôle primordial dans les processus de phytoremédiation, cependant à ce jour on ne connait pas 

quels sont les mécanismes de décontamination que mettent en oeuvre ces champignons. Donc, 

il serait très pertinent de vérifier par des approches génomiques ou transcriptomiques la 
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présence des gènes codant pour des enzymes impliqués dans la dégradation, la chélation ou la 

translocation des HP chez les CMA. Pour finir, il y a des études plus récentes qui ont été 

réalisées in vitro et qui démontrent que le volume des réseaux mycéliens des champignons 

peut augmenter significativement la dissipation des hydrocarbures pétroliers dans les milieux 

de culture (Kohlmeier et al., 2005; Banitz et al., 2013; Schamfuß et al., 2013). Ces études ont 

formulé l'hypothèse que les bactéries utilisent le réseau mycélien comme « autoroutes » 

(fungal highways) et se déplacent tout au long des filaments mycéliens, ayant ainsi une 

meilleure propagation et une meilleure exploration des interfaces de contact avec HP. Par la 

suite, ces bactéries se chargent de la dégradation des HP en composés secondaires assimilables 

et transportables par les hyphes des champignons « pipelines » (fungal pipelines). Dans le cas 

des processus de phytoremédiation par les CMA et bactéries, il me semble que ça serait très 

pertinent de vérifier en premier lieu cette hypothèse de fungal highways versus fungal 

pipelines pour comprendre les coopérations entre CMA et bactéries dans la dégradation des 

HP. 
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Annexes 

1- Supporting information (Chapter 2) 

Bacteria associated with arbuscular mycorrhizal fungi within roots of plants 

growing in a soil highly contaminated with aliphatic and aromatic 

petroleum hydrocarbons 

 

Table S2.1. Concentrations of polycyclic aromatic hydrocarbons (PAH) and alkanes 

(C10–C50) in the sediments where Solidago rugosa plants were collected. 

 

[1]
Values corresponding to the maximum limit accepted for contamination of industrial areas by the Sustainable 

Development, Environment, Wildlife and Parks Department of the Province of Québec, Canada 

(http://www.mddefp.gouv.qc.ca/sol/terrains/politique/annexe_2_tableau_1.htm).
 

 

PAHs Accepted limit 

values
[1] 

Concentrations (mg/kg) 

Acenaphthene 100 760 

Anthracene 100 340 

Benzo anthracene 10 21 

Chrysene 10 23 

Fluorene 100 710 

Phenanthrene 50 2700 

Pyrene 100 150 

2-Methylnaphthalene 10 160 

1-Methylnaphthalene 10 320 

1,3-Dimethylnaphthalene 10 390 

2,3,5-Trimethylnaphthalene 10 150 

 

Alkanes (C10-C50) 3500 41000 
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Figure S2.1. Root of Solidago rugosa stained using fuchsine, showing a high intensity of 

mycorrhizal colonization. 

 

 

Figure S2.2. Proportion of the different bacterial genera identified in AMF propagules 

and Solidago rugosa roots. Only proportions over 2 % are showed. 
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Figure S2.3. Stacked histogram showing the percentage of the different bacterial genera 

in each of the six AMF propagules and roots. 
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2- Supporting information (Chapter 3) 

Petroleum hydrocarbon contamination, plant identity and arbuscular 

mycorrhizal fungal community determine assemblages of the AMF spore-

associated microbes 

 

Table S3.1. AMF virtual taxa of the 18S rRNA gene dataset after sub-sampling. OTUs 

sequences were compared with MaarjAM database. 

This supporting table is available as Table S1 in the website of Environmental Microbiology 

Journal (http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13438/full). 

 

Table S3.2. OTUs of AMF ITS dataset after sub-sampling. 

This supporting table is available as Table S2 in the website of Environmental Microbiology 

Journal (http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13438/full). 

 

Table S3.3. OTUs of non AMF fungi dataset after sub-sampling. 

This supporting table is available as Table S3 in the website of Environmental Microbiology 

Journal (http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13438/full).  

 

Table S3.4. OTUs of bacteria 16S rRNA genes dataset after sub-sampling. 

This supporting table is available as Table S4 in the website of Environmental Microbiology 

Journal (http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13438/full). 
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Table S3.5. Observed richness, Chao1 estimator values and Good's coverage values for each individual sample across the 

different datasets. LY: Lycopus europaeus, PO: Populus balsamifera, SO: Solidago canadensis, HC: high contamination, 

MC: moderate contamination, LC: low contamination. 

 AMF (18S dataset)  AMF (ITS dataset)  Fungi (without AMF)  Bacteria 

Samples sobs chao coverage  sobs chao coverage  sobs chao coverage  sobs chao coverage 

LY1-HC 7.00 7.50 1.00  5.00 5.00 1.00  4.00 5.00 0.96  138.00 246.97 0.92 

LY1-LC 7.00 7.00 1.00  7.00 10.00 0.99  10.00 10.33 0.96  206.00 330.90 0.89 

LY1-MC 2.00 2.00 1.00  6.00 7.00 0.99  6.00 7.00 0.96  217.00 304.00 0.91 

LY2-HC 9.00 9.33 1.00  12.00 12.00 1.00  3.00 3.00 0.98  117.00 255.32 0.93 

LY2-LC 5.00 5.00 1.00  8.00 9.00 0.99  16.00 20.20 0.85  140.00 248.37 0.92 

LY2-MC 8.00 11.00 1.00  9.00 15.00 0.98  10.00 17.50 0.87  298.00 458.16 0.85 

LY3-HC 11.00 11.33 1.00  8.00 11.00 0.99  5.00 8.00 0.94  177.00 319.50 0.91 

LY3-LC 7.00 8.00 1.00  9.00 9.75 0.99  7.00 13.00 0.91  198.00 343.41 0.89 

LY3-MC 11.00 11.75 1.00  11.00 14.00 0.98  14.00 16.50 0.89  169.00 319.19 0.90 

PO1-HC 7.00 8.00 1.00  11.00 14.33 0.98  7.00 17.00 0.89  49.00 124.43 0.97 

PO1-LC 9.00 10.50 1.00  8.00 11.00 0.99  6.00 7.00 0.96  97.00 155.33 0.95 

PO1-MC 7.00 7.00 1.00  10.00 16.00 0.98  9.00 9.33 0.96  194.00 338.76 0.90 

PO2-HC 5.00 5.00 1.00  6.00 7.50 0.99  5.00 5.50 0.96  54.00 95.33 0.97 

PO2-LC 15.00 18.00 0.99  10.00 10.00 1.00  6.00 12.00 0.91  108.00 242.00 0.93 

PO2-MC 9.00 12.00 1.00  9.00 15.00 0.98  4.00 4.00 0.98  212.00 352.14 0.89 

PO3-HC 4.00 4.00 1.00  6.00 6.50 0.99  8.00 9.50 0.94  259.00 409.96 0.87 

PO3-LC 4.00 4.00 1.00  4.00 4.00 1.00  5.00 5.00 0.98  174.00 268.22 0.92 

PO3-MC 10.00 12.00 0.99  15.00 22.50 0.98  7.00 9.00 0.91  174.00 257.13 0.91 

SO1-HC 8.00 14.00 0.99  8.00 8.00 1.00  9.00 12.00 0.94  74.00 113.67 0.97 

SO1-LC 7.00 7.00 1.00  12.00 13.50 0.98  4.00 4.00 0.98  30.00 60.60 0.98 

SO1-MC 4.00 4.00 1.00  7.00 8.00 0.99  8.00 14.00 0.91  155.00 238.42 0.92 

SO2-HC 9.00 15.00 0.99  7.00 7.00 1.00  6.00 6.50 0.96  65.00 123.57 0.96 

SO2-LC 5.00 6.00 1.00  7.00 10.00 0.98  11.00 11.14 0.96  37.00 61.43 0.98 

SO2-MC 11.00 16.00 0.99  10.00 15.00 0.98  5.00 5.00 0.98  56.00 134.75 0.96 
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SO3-HC 4.00 4.00 1.00  6.00 6.00 1.00  6.00 9.00 0.94  59.00 97.15 0.97 

SO3-LC 9.00 12.00 1.00  9.00 10.00 0.99  7.00 7.00 1.00  68.00 125.00 0.96 

SO3-MC 8.00 8.33 1.00  9.00 10.00 0.99  8.00 11.00 0.91  49.00 82.33 0.98 
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Table S3.6. AMF virtual taxa of the 18S rRNA gene dataset before removing the 

singletons. OTUs sequences were compared in MaarjAM database. 

This supporting table is available as Table S6 in the website of Environmental Microbiology 

Journal (http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13438/full). 

 

Table S3.7. Kruskal–Wallis test on: (A) OTUs of AMF 18S rRNA gene, (B) OTUs of 

AMF ITS, (C) most abundant 20 OTUs of fungal ITS, (D) most abundant 50 OTUs of 

bacterial 16S rRNA gene. 

A) Kruskal-Wallis test on AMF 18S rRNA gene taxa 

  OTUs affiliation Class level 
Contamination 

level 

plant 

species 

OTU 1 Diversispora sp. VTX00061 Glomeromycetes 0.001905 0.9982 

OTU 2 Acaulospora acau10 VTX00028 Glomeromycetes 0.1673 0.4342 

OTU 3 Glomus sp.VTX00265 Glomeromycetes 0.8493 0.5176 

OTU 4 Glomus intraradices VTX00113 Glomeromycetes 0.003496 0.6071 

OTU 5 Claroideoglomus sp. VTX00193 Glomeromycetes 0.02143 0.6927 

B) Kruskal-Wallis test on AMF ITS taxa 

  OTUs affiliation Class level 
Contamination 

level 

plant 

species 

OTU 1 Unclassified Diversispora Glomeromycetes 0.004537 0.6885 

OTU 2 Unclassified Rhizophagus Glomeromycetes 0.000751 0.925 

OTU 3 Glomus sp Glomeromycetes 0.4079 0.5636 

OTU 4 Glomus versiforme Glomeromycetes 0.03603 0.8301 

OTU 5 Entrophospora infrequens Glomeromycetes 0.1209 0.9274 

OTU 6 Unclassified Rhizophagus Glomeromycetes 0.0005533 0.7686 

OTU 7 Glomus sp Glomeromycetes 0.2739 0.7586 

OTU 8 Unclassified Acaulospora  Glomeromycetes 0.1886 0.2502 

OTU 9 Glomus irregulare Glomeromycetes 0.03296 0.4602 

OTU 10 Claroideoglomus luteum Glomeromycetes 0.0005259 0.4422 

C) Kruskal-Wallis test on the other ITS fungi taxa 

  OTUs affiliation Class level 
Contamination 

level 

plant 

species 

OTU 1 Pulvinula constellatio Pezizomycetes 0.008627 0.5001 

OTU 2 unclassified Ascomycota - 0.02184 0.3281 
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OTU 3 Septoria citricola Dothideomycetes 0.1957 0.5233 

OTU 4 Spizellomyces plurigibbosus Chytridiomycetes 0.01543 0.7582 

OTU 5 Rhodotorula sp Urediniomycetes 0.1954 0.205 

OTU 6 unidentified Ascomycota - 0.08417 0.09763 

OTU 7 Fusarium sacchari Sordariomycetes 0.6838 0.1932 

OTU 8 unidentified - 0.1607 0.01797 

OTU 9 unclassified - 0.0154 0.481 

OTU 10 unclassified Ascomycota - 0.07152 0.2816 

OTU 11 unclassified Ascomycota - 0.7954 0.2689 

OTU 12 unclassified - 0.3679 0.3679 

OTU 13 Leptosphaeria sp Dothideomycetes 0.1581 0.09583 

OTU 14 unclassified - 0.3679 0.3679 

OTU 15 unclassified Pleosporales Dothideomycetes 0.5937 0.1253 

OTU 16 unclassified Basidiomycota - 0.1253 0.5937 

OTU 17 Geopora sp Pezizomycetes 0.3679 0.3679 

OTU 18 Rhodotorula glutinis Urediniomycetes 0.2398 0.7456 

OTU 19 unidentified - 0.3086 0.7195 

OTU 20 unclassified Sordariomycetes Sordariomycetes 0.1253 0.1253 

D) Kruskal-Wallis test on the bacterial 16S rRNA gene taxa 

  OTUs affeliation Class level 
Contamination 

level 

plant 

species 

OTU 1 Pseudomonas Gammaproteobacteria 0.05137 0.3107 

OTU 2 Duganella Betaproteobacteria 0.1477 0.2048 

OTU 3 Pseudomonas Gammaproteobacteria 0.3751 0.529 

OTU 4 Pseudomonas Gammaproteobacteria 0.01856 0.03218 

OTU 5 Janthinobacterium Betaproteobacteria 0.1906 0.4143 

OTU 6 Enterobacter Gammaproteobacteria 0.02186 0.72 

OTU 7 Yersinia Gammaproteobacteria 0.6775 0.06549 

OTU 8 Streptomyces Actinobacteria 0.05386 0.07186 

OTU 9 Acidovorax Betaproteobacteria 0.7112 0.002563 

OTU 10 Streptomyces Actinobacteria 0.0425 0.1305 

OTU 11 Caulobacter Alphaproteobacteria 0.007955 0.4104 

OTU 12 Massilia Betaproteobacteria 0.9873 0.5411 

OTU 13 unclassified Burkholderiales Betaproteobacteria 0.1154 0.1494 

OTU 14 Massilia Betaproteobacteria 0.1124 0.206 

OTU 15 Lentzea Actinobacteria 0.8954 0.07729 

OTU 16 unclassified - 0.05453 0.8802 

OTU 17 unclassified Myxococcales Deltaproteobacteria 0.03708 0.276 
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OTU 18 unclassified Myxococcales Deltaproteobacteria 0.1033 0.1075 

OTU 19 Roseateles Betaproteobacteria 0.2992 0.4269 

OTU 20 Flavobacterium Flavobacteria 0.05416 0.3444 

OTU 21 Streptomyces Actinobacteria 0.0264 0.02176 

OTU 22 Streptomyces Actinobacteria 0.02258 0.04187 

OTU 23 Lechevalieria Actinobacteria 0.2945 0.004914 

OTU 24 unclassified - 0.7751 0.04076 

OTU 25 Arthrobacter Actinobacteria 0.2672 0.07443 

OTU 26 Streptomyces Actinobacteria 0.03832 0.5952 

OTU 27 Bradyrhizobium Alphaproteobacteria 0.05465 0.4536 

OTU 28 Herbaspirillum Betaproteobacteria 0.02521 0.2302 

OTU 29 unclassified Rhodospirillales Alphaproteobacteria 0.5893 0.003573 

OTU 30 Sphingomonas Alphaproteobacteria 0.04077 0.3151 

OTU 31 unclassified - 0.19 0.7138 

OTU 32 Variovorax Betaproteobacteria 0.3483 0.8183 

OTU 33 Streptomyces Actinobacteria 0.0907 0.06903 

OTU 34 Lechevalieria Actinobacteria 0.2777 0.03598 

OTU 35 Aeromonas Gammaproteobacteria 0.4461 0.09937 

OTU 36 Aeromonas Gammaproteobacteria 0.03638 0.7278 

OTU 37 unclassified Myxococcales Deltaproteobacteria 0.113 0.09157 

OTU 38 Stenotrophomonas Gammaproteobacteria 0.04076 0.7708 

OTU 39 unclassified Betaproteobacteria Betaproteobacteria 0.4066 0.2544 

OTU 40 Leifsonia Actinobacteria 0.1285 0.06888 

OTU 41 Sphingobium Alphaproteobacteria 0.001386 0.7392 

OTU 42 Streptomyces Actinobacteria 0.1216 0.3784 

OTU 43 Sphingomonas Alphaproteobacteria 0.3679 0.3679 

OTU 44 Salinibacterium Actinobacteria 0.06033 0.01554 

OTU 45 Caulobacter Alphaproteobacteria 0.9072 0.03504 

OTU 46 Ideonella Betaproteobacteria 0.1093 0.01734 

OTU 47 Comamonas Betaproteobacteria 0.3578 0.03997 

OTU 48 Skermanella Alphaproteobacteria 0.04425 0.3641 

OTU 49 Pseudoxanthomonas Gammaproteobacteria 0.1888 0.2791 

OTU 50 unclassified Chromatiales Gammaproteobacteria 0.002228 0.1231 
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Table S3.8. P-values and adjusted P-values (P-val adj) of Spearman correlations test 

calculated between AMF genera and other fungal classes. P-value corrections were 

performed using false discovery rate method. 

 

 

 

 
Glomus  Diversispora  Claroideoglomus  Acaulospora 

 
P-val  

P-

val 

adj 

 P-val  

P-

val 

adj 

 P-val  

P-

val 

adj 

 P-val  

P-

val 

adj 

Agaricomycetes 0.503  0.849  0.552  0.849  0.800  0.872  0.831  0.872 

Chytridiomycetes 0.021  0.166  0.003  0.069  0.003  0.069  0.452  0.823 

Dothideomycetes 0.005  0.069  0.143  0.358  0.710  0.871  0.065  0.26 

Leotiomycetes 0.012  0.126  0.050  0.254  0.685  0.871  0.858  0.872 

Microbotryomycetes 0.296  0.593  0.536  0.849  0.872  0.872  0.869  0.872 

Pezizomycetes 0.1855  0.422  0.050  0.254  0.618  0.871  0.714  0.871 

Sordariomycetes 0.0782  0.274  0.057  0.256  0.856  0.872  0.531  0.849 

Tremellomycetes 0.0491  0.254  0.095  0.274  0.429  0.818  0.675  0.871 

Unclassified 0.0889  0.274  0.117  0.314  0.193  0.422  0.862  0.872 

Ustilaginomycetes 0.6201  0.871  0.718  0.871  0.200  0.422  0.095  0.274 
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Table S3.9. P-values and adjusted P-values (P-val adj) of Spearman correlations test calculated between AMF genera and 

bacterial classes. P-value corrections were performed using false discovery rate method. 

 

 Glomus  Diversispora  Claroideoglomus  Acaulospora 

 P-val  P-val adj  P-val  P-val adj  P-val  P-val adj  P-val  P-val adj 

Gammaproteobacteria 0.3002  0.715  0.1953  0.705  0.6735  0.933  0.869  0.959 

Betaproteobacteria 0.0565  0.66  0.8441  0.959  0.2548  0.705  0.1081  0.66 

Actinobacteria 0.1214  0.66  0.2452  0.705  0.9626  0.98  0.7197  0.947 

Alphaproteobacteria 0.1667  0.695  0.59  0.888  0.2229  0.705  0.3589  0.764 

unclassified 0.9475  0.98  0.6743  0.933  0.5822  0.888  0.8557  0.959 

Deltaproteobacteria 0.2688  0.705  0.097  0.66  0.4163  0.833  0.822  0.959 

Acidobacteria_Gps 0.5701  0.888  0.8003  0.959  0.8161  0.959  0.4912  0.859 

Flavobacteriia 0.9526  0.98  0.4357  0.844  0.5886  0.888  0.2541  0.705 

Bacteroidetes_incertae_sedis 0.908  0.976  0.6117  0.888  0.8917  0.969  0.8731  0.959 

Bacilli 0.0817  0.66  0.681  0.933  0.4509  0.851  0.016  0.534 

Opitutae 0.8389  0.959  0.2054  0.705  0.1527  0.695  0.118  0.66 

Sphingobacteriia 0.0804  0.66  0.2848  0.705  0.2891  0.705  0.1096  0.66 

Gemmatimonadetes 0.5303  0.871  0.7656  0.959  0.4804  0.859  0.2309  0.705 

Clostridia 0.3414  0.759  0.439  0.844  0.3715  0.773  0.9249  0.98 

Anaerolineae 0.7185  0.947  0.2766  0.705  0.3554  0.764  0.6907  0.933 

Cytophagia 0.1574  0.695  0.0035  0.332  0.0066  0.332  0.2703  0.705 

Thermomicrobia 0.0779  0.66  0.2094  0.705  0.4607  0.853  0.5811  0.888 

Subdivision3 0.0999  0.66  0.1135  0.66  0.3301  0.75  0.7858  0.959 

Planctomycetia 0.6217  0.888  0.8407  0.959  0.0705  0.66  0.7313  0.95 

Caldilineae 0.5989  0.888  0.498  0.859  0.9701  0.98  0.4979  0.859 

Spartobacteria 0.1255  0.66  0.617  0.888  0.9503  0.98  0.5312  0.871 

Chloroflexia 0.1428  0.695  0.1253  0.66  0.229  0.705  0.2553  0.705 

Negativicutes 0.803  0.959  0.3134  0.729  0.0952  0.66  0.1253  0.66 

Bacteroidia 0.803  0.959  0.5313  0.871  0.1615  0.695  0.2048  0.705 

Candidatus_Hydrogenedens 1  1  0.8029  0.959  0.229  0.705  0.3788  0.773 
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Table S3.10. Concentrations of polycyclic aromatic hydrocarbons (PAH) and alkanes 

(C10-C50) measured from the rhizospheric soils of each plant species and contaminated 

basins. PAH and alkanes (C10-C50) were measured three times for each sample, then 

means and standard deviation were calculated for each sample. The data showed that 

basin 1 is the most contaminated site followed by basin 3, while basin 2 is the least 

contaminated site. Abbreviations mean: S-B: Solidago canadensis-Basin; P-B: Populus 

balsamifera-Basin; LB: Lycopus europaeus.-Basin; [C]: Concentrations; NA: Not 

detected. 

 

PHCs concentration in basin 1 

(mg/kg of soil) 
 

PHCs concentration in basin 2 

(mg/kg of soil) 
 

PHCs concentration in basin 3 

(mg/kg of soil) 

PHCs contaminants 
S-B-

1 

P-B-

1 

L-B-

1 

mean [C] 

in B-1 
 

S-

B-2 

P-

B-2 

L-

B-2 

mean [C] in 

B-2 
 

S-

B-3 

P-

B-3 

L-B- 

3 

mean [C] in 

B-3 

Anthracene 23 16 12 17±5.56  1.4 1.3 0.8 1.166±0.32  8.2 5 11 8.066±3 

Benzo(a)anthracene 1.1 0.7 0.9 0.9±0.2  <0.1 <0.1 <0.1 NA  0.3 0.2 0.3 0.266±0.05 

Benzo(a)pyrene 0.9 0.8 0.6 0.76±0.15  <0.1 <0.1 <0.1 NA  0.3 0.2 0.2 0.233±0.05 

Benzo(b+j+k)fluoranthene 1.3 0.8 0.7 0.93±0.32  <0.1 <0.1 <0.1 NA  0.3 <0.1 0.2 NA 

Benzo(ghi)perylene 0.5 0.4 0.3 0.4±0.1  <0.1 <0.1 <0.1 NA  0.2 0.1 0.2 0.166±0.05 

Chrysene 2.3 1.3 1.6 1.73±0.51  <0.1 0.1 <0.1 NA  0.3 0.4 0.4 0.366±0.05 

Fluoranthene 1.5 1.1 1.3 1.3±0.2  <0.1 <0.1 <0.1 NA  0.2 0.1 0.1 0.133±0.05 

Fluorene 1.1 0.9 0.7 0.9±0.2  <0.1 <0.1 <0.1 NA  0.3 0.2 0.3 0.266±0.05 

Phenanthrene 0.7 0.6 0.2 0.5±0.26  <0.1 <0.1 <0.1 NA  0.2 0.2 0.3 0.233±0.05 

Pyrene 5.8 3.8 6.6 5.4±1.44  <0.1 0.2 <0.1 NA  1 0.7 0.4 0.7±0.3 

Alkanes (C10-C50) 3000 1500 2100 2200±755  110 140 210 153.33±51.31  890 530 980 800±238.11 
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Table S3.11. OTUs of AMF ITS dataset before sub-sampling. 

This supporting table is available as Table S11 in the website of Environmental Microbiology 

Journal (http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13438/full). 

 

Table S3.12. OTUs of non AMF fungi dataset before sub-sampling. 

This supporting table is available as Table S12 in the website of Environmental Microbiology 

Journal (http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13438/full). 

 

Table S3.13. OTUs of bacteria 16S rRNA genes dataset before sub-sampling. 

This supporting table is available as Table S13 in the website of Environmental Microbiology 

Journal (http://onlinelibrary.wiley.com/doi/10.1111/1462-2920.13438/full). 

 

Figure S3.1. Root of Solidago canadensis (A), Populus balsamifera (B) and Lycopus 

europaeus (C) stained with trypan blue showing a high rate of mycorrhizal colonization. 
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Figure S3.2. Scanning electron micrographs of AMF spores collected from the 

rhizospheric soils of the different plant species sampled from the contaminated basins. 

The white arrows showed biofilm-like structures of bacteria and mycelia of other fungi 

attached to the surface of AMF spores. 
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Figure S3.3. Rarefaction curve of OTUs for individual sample across the different datasets: (A) AMF 18S rRNA gene 

dataset, (B) AMF ITS dataset, (C) fungi ITS dataset (without AMF), (D) bacteria 16S rRNA gene dataset. 
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Figure S3.4. Proportion of the different: (A) AMF 18S rRNA gene genera, (B) AMF ITS 

genera, (C) non AM fungi classes, (D) total ITS fungi classes, and (E) bacterial 16S rRNA 

gene classes. 
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Figure S3.5. Boxplots of distance to centroid based on beta-dispersion analysis on the 

community structures of AMF, other fungi and bacteria against PHP concentration and 

plant species identity. The figures A, C, E and G showed the dispersion of AMF 18S 

rRNA gene, AMF ITS, other fungi ITS and bacteria 16S rRNA gene communities across 

plant species identity. The figures B, D, F and H showed the dispersion of AMF 18S 

rRNA gene, AMF ITS, other fungi ITS and bacteria 16S rRNA gene communities across 

PHP concentration. S.c: S.canadensis, P.b: P.balsamifera, L.e: Lycopus europaeus 
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Figure S3.6. Principal coordinates analysis (PCoA) identical to that shown in Figure 2, 

but with color coding changed to show more clearly the community compositions 

assignments across plant species. (A) AMF 18S rRNA gene, (B) AMF ITS, (C) non AMF 

ITS, and (D) 16S rRNA gene. 
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Figure S3.7. C l   map  f th  Sp a man’s c    lati n c  ffici nts b tw  n AMF   n  a an  AMF-associated fungi classes. 

The green boxes indicate positive correlations, while the purple boxes indicate negative correlations. The black stars 

indicate that the P-value of the Spearman rank coefficients were lower than 0.1. 
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Figure S3.8. Colo  map  f th  Sp a man’s c    lati n c  ffici nts b tw  n AMF   n  a an  AMF-associated bacteria 

classes. The green boxes indicate positive correlations, while the purple boxes indicate negative correlations. The black stars 

indicate that the P-value of the Spearman rank coefficients were lower than 0.1. 
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Figure S3.9. Variance partitioning of fungal and bacterial communities by AMF 18S rRNA gene, PHP concentration and 

plant species identity. The figures showed that the total variance explained by the three sets of explanatory matrices were 

24.13% for the bacterial community variations (13.3% related AMF, 7.4% related to PHP concentrations and 6.7% related 

to plant species identity) and 21.51% for the fungal community variations (11% related to plant species identity, 7.6% 

related to PHP concentrations and 3.5% related to AMF). 
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3- Supplemental Material : Variance partitioning analysis (Chapter 3) 

Because our results showed that the AMF spore-associated fungal and bacterial 

communities are linked to the AMF community structure, PHP concentration and plant species 

identity, a variance partitioning analysis was performed in order to look at the relative 

contribution of these three parameters (AMF community structure, PHP concentration and 

plant species identity) on the shifts in fungal and bacterial communities. The variance 

partitioning analysis was carried out using the "varpart" function in "vegan" package in R. 

Significance levels according to Monte Carlo permutation tests were carried out with 1000 

permutations. The response variables used in this analysis were either the Hellinger-

transformed matrix of fungal OTUs (represented by the OTUs whose sum of abundances > 50, 

totalizing 9 OTUs) or the Hellinger-transformed matrix of bacterial OTUs (represented by the 

OTUs whose sum of abundances > 100, totalizing 26 OTUs). The explanatory matrices were 

the Hellinger transformed matrix of AMF 18S rRNA gene (represented by the OTUs whose 

sum of abundances >50, totalizing 5 OTUs), the matrix of the three plant species (binary 

encoded) and the matrix of the PHP concentrations, which was represented by three columns 

(the first contained the concentrations of alkanes, the second the concentrations of anthracene, 

while the third contained the means concentration of the remaining PAH compounds reported 

in the Table S3.10.). The combination of remaining PAH compounds in a same column and 

the reduction of the number of columns (OTUs) were carried out in order to avoid collinearity 

problems caused by redundant variables, and in order to keep the number of rows (sites) 

higher than the number of columns (OTUs).  
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The results of this analysis showed that the three explanatory datasets explained a total 

contribution of 21.51 % of the variability in fungal communities and 24.13 % of the variability 

in bacterial communities. For the variation in bacterial communities, AMF matrix explained 

the highest fraction of the variation (13.3 %, P = 0.021), followed by PHP concentrations 

(7.4 %, P = 0.048) and plant species identity (6.7 %, P = 0.002). For the variation in fungi 

communities, plant species identity matrix was the only parameter that explained a significant 

contribution in fungal community variation (11.0 %, P = 0.024). PHP concentrations and 

AMF matrices explained only 7.6 % and 3.5 % in fungal community variation while their 

contribution was not significant (Figure S3.9.). 
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4- Supporting information (Chapter 4) 

Variation in bacterial and fungal community structures across biotopes (soil vs roots), petroleum 

hydrocarbon concentration and plant species identity 

Table S4.1. Observed richness, Chao1 estimator values and Good's coverage values for each individual sample across the 

different datasets. LY: Lycopus europaeus, PO: Populus balsamifera, SO: Solidago Canadensis 

 

 Soil bacteria  Root bacteria  Soil fungi  Root fungi 

Samples sobs chao coverage  sobs chao coverage  sobs chao coverage  sobs chao coverage 

LY1-HC 357 648.20 0.749  67 161.23 0.438  73 90.00 0.981  43 48.14 0.982 

LY1-LC 373 668.66 0.745  63 149.25 0.483  44 59.00 0.990  53 61.25 0.976 

LY1-MC 370 669.16 0.740  65 137.07 0.472  59 85.00 0.986  65 76.40 0.963 

LY2-HC 378 688.67 0.727  66 193.50 0.427  68 77.07 0.982  49 70.00 0.970 

LY2-LC 442 770.81 0.688  71 204.00 0.360  44 53.00 0.990  46 53.09 0.974 

LY2-MC 399 639.32 0.739  72 227.55 0.337  57 67.50 0.984  55 74.13 0.965 

LY3-HC 398 854.79 0.691  76 284.00 0.270  64 75.77 0.981  43 56.20 0.976 

LY3-LC 284 577.45 0.784  60 121.50 0.528  55 59.00 0.991  50 61.67 0.970 

LY3-MC 385 736.65 0.713  73 220.50 0.326  48 54.60 0.987  58 71.60 0.967 

PO1-HC 328 555.77 0.779  74 318.13 0.292  71 84.60 0.982  36 51.17 0.972 

PO1-LC 433 746.75 0.706  75 299.00 0.281  43 51.25 0.987  39 42.11 0.984 

PO1-MC 389 747.57 0.716  64 260.86 0.404  39 47.25 0.987  35 38.00 0.988 

PO2-HC 330 589.21 0.777  77 361.75 0.236  39 59.00 0.983  38 68.33 0.972 

PO2-LC 423 750.55 0.712  62 129.57 0.506  51 59.67 0.986  32 71.00 0.974 

PO2-MC 378 795.24 0.709  67 279.14 0.382  53 66.20 0.987  36 40.00 0.984 

PO3-HC 371 635.24 0.742  72 209.75 0.348  56 83.14 0.979  34 41.50 0.980 

PO3-LC 397 673.72 0.730  68 140.06 0.438  55 68.13 0.984  33 39.43 0.980 
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PO3-MC 376 693.29 0.731  78 338.67 0.225  55 67.36 0.982  38 41.11 0.984 

SO1-HC 299 566.05 0.788  55 185.00 0.551  74 92.75 0.974  39 44.08 0.976 

SO1-LC 353 588.44 0.770  59 120.50 0.528  55 70.55 0.980  61 77.15 0.959 

SO1-MC 301 479.89 0.812  54 103.58 0.607  61 66.00 0.989  49 73.43 0.963 

SO2-HC 325 502.00 0.792  41 70.55 0.708  75 93.47 0.972  44 63.43 0.967 

SO2-LC 422 799.35 0.691  47 81.36 0.685  64 81.00 0.981  50 63.13 0.970 

SO2-MC 323 472.65 0.813  48 82.36 0.685  37 50.75 0.989  37 42.14 0.982 

SO3-HC 343 558.18 0.773  50 142.63 0.562  66 83.50 0.978  54 112.00 0.943 

SO3-LC 430 728.36 0.705  47 122.43 0.629  41 56.00 0.990  68 97.25 0.947 

SO3-MC 333 576.79 0.768  50 112.33 0.618  43 52.43 0.987  28 31.00 0.986 
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Table S4.2. P values of Kruskal–Wallis test on the most abundant thirty OTUs of the: 

(A) 16S soil bacteria, (B) 16S root bacteria (C) ITS soil fungi, (D) ITS root fungi. 

A- Kruskal-Wallis test on the soil bacteria 

 OTUs affiliation Class level contamination 

level 

plant 

species 

OTU 1 (C) Sphingomonas Alphaproteobacteria 0.0033 0.7989 

OTU 2 (C) Unclassified Betaproteobacteria Betaproteobacteria 0.0003 0.9581 

OTU 3 (P) Unclassified Rhizobiales Alphaproteobacteria 0.4508 0.0859 

OTU 4 Sphingomonas Alphaproteobacteria 0.3299 0.7332 

OTU 5 (C) Unclassified 

Gammaproteobacteria 

Gammaproteobacteria 0.0399 0.614 

OTU 6 (C) Skermanella Alphaproteobacteria 0.0138 0.7258 

OTU 7 Bradyrhizobium Alphaproteobacteria 0.4850 0.4854 

OTU 8 (C) Caenimonas Betaproteobacteria 0.0678 0.5422 

OTU 9 Acinetobacter Gammaproteobacteria 0.2001 0.2091 

OTU 10 Bellilinea Anaerolineae 0.1566 0.1566 

OTU 11 (C.P) Dongia Alphaproteobacteria 0.0582 0.0723 

OTU 12 (C) Unclassified Acidobacteria Gp4 Acidobacteria_Gp4 0.0002 0.8235 

OTU 13 (C) Dongia Alphaproteobacteria 0.0567 0.4271 

OTU 14 Unclassified Deltaproteobacteria Deltaproteobacteria 0.8115 0.5443 

OTU 15 (C) Steroidobacter Gammaproteobacteria 0.0051 0.9505 

OTU 16 Acinetobacter Gammaproteobacteria 0.3679 0.3678 

OTU 17 (C) Unclassified Acidobacteria Gp4 Acidobacteria_Gp4 0.0015 0.9458 

OTU 18 (C) Unclassified Burkholderiales Betaproteobacteria 0.0555 0.6418 

OTU 19 (C) Thermomonas Gammaproteobacteria 0.0067 0.4271 

OTU 20 (C) Ferrovum Betaproteobacteria 0.0011 0.2729 

OTU 21 (C) Unclassified Comamonadaceae Betaproteobacteria 0.0901 0.2268 

OTU 22 (C) Unclassified Xanthomonadales Gammaproteobacteria 0.0273 0.7325 

OTU 23 (C) Unclassified Burkholderiales Betaproteobacteria 0.0033 0.3724 

OTU 24 (P) Unclassified Burkholderiales Betaproteobacteria 0.2148 0.0579 

OTU 25 Dongia Alphaproteobacteria 0.7484 0.3193 

OTU 26 Terrimonas Sphingobacteriia 0.5309 0.6835 

OTU 27 (C) Unclassified Rhizobiales Alphaproteobacteria 0.0101 0.5183 

OTU 28 Skermanella Alphaproteobacteria 0.4622 0.3296 

OTU 29 (C.P) Unclassified Ohtaekwangia Bacteroidetes 0.0264 0.0467 

OTU 30 (C) Dongia Alphaproteobacteria 0.0135 0.5054 

B- Kruskal-Wallis test on the root bacteria 

OTU 1(P) Pseudomonas Gammaproteobacteria 0.1154 0.0113 

OTU 2 (C) Bradyrhizobium Alphaproteobacteria 0.0846 0.2454 

OTU 3 (P) Pseudomonas Gammaproteobacteria 0.1115 0.0036 
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OTU 4 (C) Streptomyces Actinobacteria 0.0159 0.6044 

OTU 5 (C) Steroidobacter Gammaproteobacteria 0.0049 0.8035 

OTU 6 (C.P) Streptomyces Actinobacteria 0.0263 0.0602 

OTU 7 (P) Actinoplanes Actinobacteria 0.2762 0.0581 

OTU 8 (C.P) Sphingomonas Alphaproteobacteria 0.0737 0.0470 

OTU 9 (P) Duganella Betaproteobacteria 0.2687 0.0005 

OTU 10 (C) Rhizobacter Gammaproteobacteria 0.0416 0.2374 

OTU 11 (P) Lentzea Actinobacteria 0.7349 0.0821 

OTU 12 Unclassified Burkholderiales Betaproteobacteria 0.1818 0.1390 

OTU 13 (P) Unclassified Proteobacteria Unclassified 

Proteobacteria 

0.4253 0.0018 

OTU 14 Leifsonia Actinobacteria 0.4210 0.9354 

OTU 15 (P) Hyphomicrobium Alphaproteobacteria 0.6685 0.0535 

OTU 16 (C) Skermanella Alphaproteobacteria 0.0939 0.2796 

OTU 17 (P) Hyphomicrobium Alphaproteobacteria 0.8675 0.0667 

OTU 18 (P) Steroidobacter Gammaproteobacteria 0.3218 0.0021 

OTU 19 (C) Sphingobium Alphaproteobacteria 0.0932 0.3735 

OTU 20 (P) Limnobacter Betaproteobacteria 0.4367 0.0097 

OTU 21 (P) Pseudomonas Gammaproteobacteria 0.1985 0.0121 

OTU 22 (C) Actinoplanes Actinobacteria 0.0540 0.4537 

OTU 23 (P) Ideonella Betaproteobacteria 0.1494 0.0113 

OTU 24 (P) Altererythrobacter Alphaproteobacteria 0.2924 0.0012 

OTU 25 Unclassified 

Gammaproteobacteria 

Gammaproteobacteria 0.9830 0.2018 

OTU 26 (C) Hoeflea Alphaproteobacteria 0.0906 0.1533 

OTU 27 (C) Actinoplanes Actinobacteria 0.0405 0.1917 

OTU 28 (C) Ideonella Betaproteobacteria 0.0637 0.8015 

OTU 29 Acidobacteria Gp6 Acidobacteria_Gp6 0.2433 0.1528 

OTU 30 Dongia Alphaproteobacteria 0.2673 0.2673 

C- Kruskal-Wallis test on the soil fungi 

OTU 1 Fusarium sacchari Sordariomycetes 0.1139 0.4173 

OTU 2 (C.P) Unclassified Pleosporales Dothideomycetes 0.0912 0.0126 

OTU 3 (P) Unclassified Thelephoraceae Agaricomycetes 0.1226 0.0160 

OTU 4 Unclassified Sordariomycetes Sordariomycetes 0.1315 0.7498 

OTU 5 (C) Emericellopsis sp Sordariomycetes 0.0004 0.8375 

OTU 6 (C) Penicillium sp Eurotiomycetes 0.0016 0.5295 

OTU 7 Cladosporium sp Dothideomycetes 0.4228 0.5873 

OTU 8 (C) Spizellomyces plurigibbosus Chytridiomycetes 0.0002 0.9721 

OTU 9 (C) Unclassified fungi Unclassified fungi 0.0090 0.5157 

OTU 10 Unclassified Sordariales Sordariomycetes 0.2995 0.8009 

OTU 11 (C) Leptosphaeria sp Dothideomycetes 0.0546 0.1132 



 

xli 

 

OTU 12 (C) endophytic ascomycete sp Unidentified ascomycete 0.0068 0.2526 

OTU 13 (C) Unclassified Lasiosphaeriaceae Sordariomycetes 0.0003 0.9631 

OTU 14 (P) Pleosporaceae sp Dothideomycetes 0.1683 0.0209 

OTU 15 (C) Acremonium sp Sordariomycetes 0.0031 0.9489 

OTU 16 fungal sp QLF106 Unidentified fungi 0.6794 0.1530 

OTU 17 Alternaria sp Dothideomycetes 0.7618 0.3890 

OTU 18 (P) Unclassified Basidiomycota Unclassified 

Basidiomycota 

0.5688 0.0034 

OTU 19 (C) Fusarium sp Sordariomycetes 0.0545 0.6308 

OTU 20 Cadophora luteo olivacea Leotiomycetes 0.4874 0.6427 

OTU 21 (C) Phoma herbarum Dothideomycetes 0.0847 0.6056 

OTU 22 Mortierella alpina Incertae_sedis 0.1377 0.3057 

OTU 23 Chalara sp Incertae_sedis 0.5635 0.1922 

OTU 24 Uncultured Ganoderma Agaricomycetes 0.5943 0.7733 

OTU 25 (C) Sphaerosporella brunnea Pezizomycetes 0.0113 0.1154 

OTU 26 Cladosporium cladosporioides Dothideomycetes 0.1234 0.5300 

OTU 27 (C) Pycnidiophora sp Dothideomycetes 0.0005 0.6691 

OTU 28 (P) Dioszegia changbaiensis Tremellomycetes 0.7342 0.0885 

OTU 29 (C) Unclassified fungi Unclassified fungi 0.0008 0.5646 

OTU 30 Unclassified fungi Unclassified fungi 0.3812 0.3257 

D- Kruskal-Wallis test on the root fungi 

OTU 1 (P) Leptosphaeria sp Dothideomycetes 0.1705 0.0006 

OTU 2 Unclassified Ascomycota Unclassified 

Ascomycota 

0.9606 0.8872 

OTU 3 (P) fungal sp QLF106 Unidentified fungi 0.7043 0.0003 

OTU 4 (C) Entrophospora infrequens Glomeromycetes <0.0001 0.8253 

OTU 5 (C.P) Unclassified Sebacinaceae Agaricomycetes 0.0099 0.0165 

OTU 6 (P) Olpidium brassicae Chytridiomycetes 0.2788 <0.0001 

OTU 7 (C.P) Phoma herbarum Dothideomycetes 0.0014 0.0224 

OTU 8 (C) Unclassified Pleosporales Dothideomycetes 0.0405 0.6149 

OTU 9 (C) Unclassified Helotiales Leotiomycetes 0.0003 0.4083 

OTU 10 (C.P) Uncultured Claroideoglomus Glomeromycetes 0.0105 0.0272 

OTU 11 (P) Uncultured Glomus Glomeromycetes 0.3518 0.0007 

OTU 12 (C) fungal sp SUN1 Unidentified fungi 0.0073 0.1138 

OTU 13 (C) Unidentified Ascomycota Unidentified 

Ascomycota 

0.0002 0.1600 

OTU 14 (C.P) Chalara sp Incertae_sedis 0.0007 0.0730 

OTU 15 (C.P) Pleosporales sp Dothideomycetes 0.0393 0.0393 

OTU 16 (P) Rhizophagus irregularis Glomeromycetes 0.8907 0.0001 

OTU 17 (P) Unclassified Glomeraceae Glomeromycetes 0.1677 0.0032 

OTU 18 (C.P) Unclassified Glomeraceae Glomeromycetes 0.0584 0.0565 



 

xlii 

 

(C):
 
significant effect across contamination level, (P):

 
significant effect across plant species, 

(C.P):
 
significant effect across contamination level and plant species 

OTU 19 (P) Unclassified Thelephoraceae Agaricomycetes 0.8501 0.0012 

OTU 20 (P) Cadophora luteo olivacea Leotiomycetes 0.2541 0.0006 

OTU 21 Alternaria sp Dothideomycetes 0.9722 0.2991 

OTU 22 (C) Fusarium sacchari Sordariomycetes 0.0674 0.8795 

OTU 23 (C) Pleosporales sp Dothideomycetes 0.0004 0.8035 

OTU 24 Glomus sp Glomeromycetes 0.1217 0.1217 

OTU 25 (C.P) Uncultured Tetracladium unidentified 0.0036 0.0266 

OTU 26 (C) Pulvinula constellatio Pezizomycetes 0.0019 0.1114 

OTU 27 (P) Dioszegia changbaiensis Tremellomycetes 0.7417 <0.0001 

OTU 28 (C.P) Spizellomyces plurigibbosus Chytridiomycetes 0.0453 0.0224 

OTU 29 (C) Myrothecium sp Sordariomycetes 0.0020 0.2011 

OTU 30 (P) Podospora communis Sordariomycetes 0.2025 0.0654 
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Figure S4.1. Proportion of the different: (A) soil bacteria classes, (B) root bacteria classes, (C) soil fungi classes, (D) root 

fungi classes. 
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Figure S4.2. Krona charts showing the taxonomic identification and relative abundance of: (A) soil bacteria, (B) root 

bacteria and (C) AMF-associated bacteria. 
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Figure S4.3. Krona charts showing the taxonomic identification and relative abundance of: (A) soil fungi, (B) root fungi and 

(C) AMF-associated fungi. 
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Figure S4.4. comparison of relative abundances between: (A) the bacteria classes found 

in soil, roots and in association with AMF spores; (B) the fungi classes found in soil, roots 

and in association with AMF spores.  
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Abstract

Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form
multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which
makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is
homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we
performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with
two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect
to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially,
due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open
reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in
Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the
result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence
variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences.
This variation makes it possible to design reliable intra- and inter-specific markers.
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Introduction

Arbuscular mycorrhizal fungi (AMF) are plant root-inhabiting

obligate symbionts that form symbiotic associations with approx-

imately 80% of plant species [1,2]. This symbiosis helps plants to

acquire nutrients and protects them from soil-borne pathogens

[3,4] by inducing plant resistance [5–8] or inhibiting pathogen

growth [9]. In return, plants provide carbohydrates, which AMF

cannot acquire from extracellular sources. They are an important

component of soil microbial communities, as they are able to

exchange their genetic material between compatible isolates

through a process called anastomosis [10]. The latter have been

hypothesized to be an important factor in maintaining the genetic

diversity found in Glomeromycota and to attenuate the effect of

genetic drift within a population [10–14]. AMF are currently

thought to reproduce clonally, based on the absence of a

recognizable sexual stage (or apparatus). However, this hypothesis

has been challenged by the identification of many orthologues of

sexually-related genes [15–17], which suggests at least the presence

of cryptic recombination. AMF spores and hyphae are multinu-

cleated, but their true genetic organization is currently under

debate [11,18–21]. However, evidence strongly suggests that

nuclei can be genetically divergent within an AMF individual.

Thus, AMF are characterized by considerable within-isolate

nuclear genetic diversity even at the expression level [22]. The

presence of such diversity in AMF individuals/populations

[22,23], combined with a lack of molecular data, have hindered

the use of nuclear markers to assess questions on community

structure, diversity and function. In contrast, AMF mitochondrial

(mt) DNA is homogeneous within single isolates [24,25], making it

a good target for marker development. Following this logic, the

mitochondrial large subunit (LSU) rRNA gene has been explored

for its usefulness as a marker [24,26,27], although determining its

specificity at the isolate level is still challenging for all AMF taxa

aside from the model species G. irregulare.

Comparative AMF mitochondrial genomics has been proposed

as an approach to open up new possibilities for development of

strain-specific molecular markers [25,28,29] given that the type of

mitochondrial marker necessary to establish specificity at different

divergence levels may vary. This approach has been shown to be a

powerful tool for the study of evolutionary relationships among

lower fungi [30]. Unfortunately, only three AMF mitochondrial

genomes had been published until recently, including that of

Glomus intraradices [25,29] (renamed to G. irregulare [31] and

changed again recently to Rhizophagus irregularis based on an
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exhaustive molecular phylogeny of rRNA genes [32]; in the

present paper, we will use the older nomenclature) as well as those

of two distant AMF species, Gigaspora rosea and Gigaspora margarita

[33,34]. Compared to G. irregulare, the Gigasporaceae genomes

have an inflated mitochondrial genome size that is mainly the

result of extended intergenic regions. These regions are not

syntenic and both genomes harbor cox1 and rns genes with exons

encoded on different strands, whose products are joined at the

RNA level through either trans-splicing events of group I introns,

or base-pairing. The mitochondrial protein sequences in the

dataset were sufficient to confirm the phylogenetic relationship of

AMF with Mortierellales as a sister group. This shows that a broader

sampling of AMF mtDNA can answer questions about the

evolution of these ecologically important fungi. Formey et al.

(2012) have recently sequenced four isolates of G. irregulare [29] and

were able to develop isolate-specific markers using variable regions

That were created by the insertion of mobile elements.

Those elements, including linear or circular plasmids and mobile

ORF encoding endonucleases (mORFs), are present in a broad

range of fungal mitochondrial genomes (For review see [35]).

Plasmids are autonomously-replicating circular or linear extrachro-

mosomal DNA molecules. They are found in three broad types:

circular plasmids encoding a DNA polymerase gene (dpo) [36], linear

plasmids with terminal inverted repeats encoding either a dpo or rpo

(RNA polymerase) gene or both [37], and retroplasmids, which

usually encode a reverse transcriptase [38]. Free linear or circular

plasmids encoding dpo can be present in the mitochondria of fungi

[36] and plants [39]. Segments have been shown to integrate within

the mtDNA of fungi [40–42], but plasmid-related dpo insertions tend

to fragment, shorten (since they are not selected for) and eventually

Figure 1. The Glomus sp. 229456 mitochondrial genome circular-map was opened upstream of rnl. Genes on the outer and inner
circumference are transcribed in a clockwise and counterclockwise direction, respectively. Gene and corresponding product names are atp6, 8, 9, ATP
synthase subunit 6; cob, apocytochrome b; cox1–3, cytochrome c oxidase subunits; nad1–4, 4L, 5–6, NADH dehydrogenase subunits; rnl, rns, large and
small subunit rRNAs; A–W, tRNAs, the letter corresponding to the amino acid specified by the particular tRNA followed by their anticodon. Open
reading frames smaller than 100 amino acids are not shown.
doi:10.1371/journal.pone.0060768.g001
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disappear from mitochondrial genomes. Plasmid-related dpo inser-

tions have been reported in the AMF Gigaspora rosea, but are virtually

absent from the closely related paraphyletic zygomycetes. The

mobility of mORFs, elements that thrive in Glomus, is mediated by

the site-specific DNA endonuclease they encode. This endonuclease

cleaves ORF-less alleles by creating a double-strand break in DNA

and initiates the insertion and fusion of the mobile element. The

same process, called intron homing, has been proposed for group I

introns [43]. Several lines of phylogenetic evidence support the

hypothesis of the evolutionary-independent ancestral origins of

mORFs [44]. These highly mobile elements have the ability to carry

group I introns [45], intergenic sequences [46], and coding

sequences [47]. The first reported case of mitochondrial gene

transfer caused by those elements was a mORF-mediated insertion

of a foreign atp6 carboxy-terminal in the blastocladiomycete

Allomyces macrogynus [48].

The present study compared the mitochondrial genomes of the

newly sequenced AMF species Glomus sp. DAOM226456 (a Glomus

diaphanum like species based on spore morphology) with two

isolates of the closely related G. irregulare. Along with a highly

divergent intron insertion pattern, we found insertions of plasmid-

related DNA polymerase and propagation of mobile open reading

frame (mORFs) encoding endonucleases in Glomus mtDNAs. Our

findings have brought to light the first evidence of AMF

interspecific exchange of mitochondrial coding sequences entailing

formation of gene hybrids in Glomus sp. atp6, atp9 (coding for the

subunit 6 and 9 of the ATP synthetase complex), cox2 (cytochrome

C oxidase subunit 2) and nad3 (NADH dehydrogenase subunit 3)

genes.

Figure 2. Comparative view of the three mitochondrial genomes linear map where the exons (black), introns (white), rDNA (gray),
dpo plasmid insertions (red), ORFs (blue) and mobile endonuclease (yellow) are represented. Divergence in intron insertion pattern is
indicated by projections. A hyper-variable region in the cox3-rnl intergene is boxed in grayscale.
doi:10.1371/journal.pone.0060768.g002
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Table 1. Gene and intron content in AMF and selected fungal mtDNAs.

Genes

Species rnl, rns atp 6, 8, 9 cob cox 1, 2, 3 nad 1–6 a trn A–W rnpB rps3 ORFs b Intron I c Intron II c

Glomus Sp. 229456 2 3 1 3 7 25 0 0 19 31 1

Glomus irregulare 494 2 3 1 3 7 25 0 0 8 26 0

Glomus irregulare 197198 2 3 1 3 7 25 0 0 8 26 0

Gigaspora rosea 2 3 1 3 7 25 0 0 4 13 1

Smittium culisetae 2 3 1 3 7 26 1 1 3 14 0

Mortierella verticillata 2 3 1 3 7 28 1 1 7 4 0

Rhizopus oryzae 2 3 1 3 7 23 1 0 4 9 0

Allomyces macrogynus 2 3 1 3 7 25 0 1 4 26 2

Saccharomyces cerevisiae d 2 3 1 3 0 25 1 1 3 9 4

aIncludes nad1, nad2, nad3, nad4, nad4L, nad5 and nad6.
bOnly ORFs greater than 100 amino acids in length are listed, not including intronic ORFs and dpo and rpo fragments.
cIntron I and Intron II denote introns of group I and group II, respectively.
dS. cerevisiae strain FY 1679 [57].
doi:10.1371/journal.pone.0060768.t001

Figure 3. A) Schematic alignment representation of two mitochondrial intergenic regions (rnl-cox2 and cox3-nad6) showing the
presence of numerous insertions and deletions (indels). The red arrows indicate the approximate position of the PCR primers that yield strain-
specific markers, while the green arrows indicate the position of PCR primers that produce a size-specific marker. The yellow and orange arrows
indicate potential regions to design, respectively, specific and size-specific markers in G. irregulare 494. B) Agarose gel electrophoresis figure showing
the PCR results of the proposed markers on Glomus sp. 229456 (Gs) and G. irregulare DAOM197198 (Gi) respectively for each marker. Marker 1 shows
the Glomus sp. specific amplification (156 bp), while marker 2 shows the G. irregulare 197198 specific marker (263 bp). The size-specific marker 3 yield
a length of 160 bp for Glomus sp. and 226 bp for G. irregulare 197198. Finally, the size-specific marker 4 yield a length of 159 bp for Glomus sp. and
131 bp for G. irregulare 197198.
doi:10.1371/journal.pone.0060768.g003

Rapid Mitochondrial Genome Evolution in AM Fungi

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e60768



Materials and Methods

Fungal material
Spores and mycelium of Glomus sp. (DAOM-229456) and G.

irregulare (DAOM 197198) were cultivated in vitro on a minimal (M)

medium with carrot roots transformed with Agrobacterium rhizogenes,

as described in the literature [49]. The medium was liquefied using

a 0.82 mM sodium citrate and 0.18 mM citric acid extraction

buffer solution. The resulting fungal material was further purified

by hand under a binocular microscope, to remove root fragments.

DNA extraction
Spores and mycelium were suspended in 400 mL of the DNeasy

Plant Mini Kit AP1 buffer (Qiagen) and crushed with a pestle in

1.5 ml microtubes, and the DNA was purified according to the

manufacturer’s recommendations. Purified DNA in a final elution

volume of 40 mL was stored at 220uC until use.

RNA extraction
Fresh Glomus sp. fungal material was harvested from in vitro

cultures. RNA extraction was performed using an E.Z.N.A.

Fungal RNA Kit (Omega Biotek) according to manufacturer’s

recommendations. Total RNA was treated with Turbo DNase

(Applied Biosystems) for 30 min at 37uC to remove residual DNA

fragments that could interfere with downstream applications. In

order to prevent chemical scission of the RNA during heat

inactivation of the DNase at 75uC for 15 min, EDTA was added

at a final concentration of 15 mM. In total, 40 ml of 100 ng/ml

RNA was collected and stored at 280uC until use. The RNA

concentration was determined using a Nanophotometer Pearl

(Implen).

cDNA synthesis
From the total RNA previously extracted, 500 ng were used for

cDNA synthesis with the SuperScript III reverse transcriptase kit

(Life Technologies, Canada) according to manufacturer’s recom-

mendations, using oligo dT. The only change from these

recommendations was the addition of MgCl2 to a final concen-

tration of 15 mM to compensate for the EDTA added in the

previous step. In order to remove RNA complementary to the

cDNA, 1 ml of RNase ONE ribonuclease (Promega, Canada) was

added to the cDNA and incubated at 37uC for 20 min. The

resulting cDNA was stored at 220uC until use.

Polymerase chain reaction (PCR)
The proposed intergenic markers to discriminate between G.

irregulare DAOM197198 and Glomus sp. were tested by PCR using

the KAPA2G Robust Hotstart ReadyMix PCR kit (KapaBiosys-

tems, Canada). The specific primers used were respectively rnl-

cox2_197198_spec_F (59-AAAGGAATTACATCGATTTA-39),

rnl-cox2_197198_spec_R (59- ACAAGAAGGTTTG-

CATCGCTA-39), nad6-cox3_dia_spec_F (59- CCACTAGT-

TAAGCTACCCTCTA-39) and nad6-cox3_dia_spec_R (59- AAT-

CATACCGTGTGAAAGCAAG -39). The variable length

primers were rnl-cox2_197198_size_F (59- TAGGGATCAG-

TACTTTAGCCAT -39), rnl-cox2_197198_size_R (59-

TCCTTACGGTATGAATGGTAAG -39), rnl-cox2_dia_size_F

(59- AGACTTCTTCAGTTCCACAATCA -39) and rnl-cox2_-

dia_size_R (59- ATGGCTAAAGTACTGATCCCTAC -39). For

40 ml of PCR reaction volume, 12 ml of water, 20 ml of 26 PCR

buffer, 3.5 ml of (5 mM) forward and reverse primers, and 1 ml of

DNA were added. Cycling parameters were 94uC/3 min, followed

by 38 cycles of: 94uC/30 sec, 54uC/25 sec, 72uC/45 sec and a

final elongation at 72uC. PCR products were separated by

electrophoresis in a 1.5% (w/v) agarose gel and visualized with

GelRed under UV light.

Reverse transcriptase – polymerase chain reaction (RT-
PCR)

Our objective with regard to PCR reactions on cDNA was to

assess which regions of the gene hybrid reported in atp6, atp9, cox2

and nad3 were expressed at the mRNA level. For each of the four

hybrids, a forward primer designed in the conserved ‘core’

structure of the gene (atp6_core_F: 59-AGAGCAGTTTGA-

GATTGTTAAG-39, atp9_core_F: 59-CTGGAGTAGGAG-

TAGGGATAGT-39, cox2_core_F: 59-CATGGCAATTAG-

GATTTCAAGA-39 and nad3_core_F: 59-

TCGTTCCTTTGTTCGTGCTA-39) was used in combination

with three reverse primers designed respectively in the inserted C-

terminal (atp6_insert_R1: 59-AGCCTGAATAAGTGCAACAC-

39, atp9_insert_R1: 59- GTAAGAAAGCCATCATGAGACA-39,

cox2_insert_R1: 59-TGAGAAGAAAGCCATAACAAGT-39 and

nad3_insert_R1: 59-AGAAGTATGAAAACCATAGCAATC-39),

the mobile ORF (atp6_mORF_R2: 59-AGTCTTCGAATA-

TACTGGCAG-39, atp9_mORF_R2: 59-TGTCGAGTCTC-

CAAAGTATGT-39, cox2_mORF_R2: 59-ACT-

GAATTCCTGTGTTTCGATCT-39 and nad3_mORF_R2: 59-

TGACGAATGGTTAGACGATGT-39) and the native C*-ter-

minal portion of the corresponding gene (atp6_native_R3: 59-

CGTACCGTCGTAACAAGTAGA-39, atp9_native_R3: 59-

CCATCATTAAGGCGAATAGA-39, cox2_native_R3: 59-

CTAACAAACTCCCGACTATTACCT-39 and nad3_native_R3:

59-AGAATGAAGACCATTGCAAC-39). To verify that there was

no residual mitochondrial DNA in the cDNA, the primers

Ctrl_positive_nad5exon4_689F (59-ACCATTCTGTTATGTTC-

TAATGT-39) and Ctrl_positive_nad5exon4_689R (59-

GTCTGACTTAGCAGGTTAGTTAAG-39) were designed in

nad5 exon 4 and used as a positive control on cDNA and negative

control on RNA. The RT-PCR reactions were carried out using

the KAPA2G Robust Hotstart ReadyMix PCR kit (KapaBiosys-

tems, Canada) as described above in the PCR section.

Cloning
Cloning reactions were performed on each successful RT-PCR

amplification. The ligation reactions were done using the pGEM-

T Easy Vector Systems kit (Promega, Canada) according to

manufacturer’s recommendations. The transformation was carried

out in E. coli DH5 alpha competent cells. Bacterial colonies were

screened via PCR using T7 and SP6 universal primers as

described in the PCR section.

Sequencing, assembly and gene annotation
Glomus sp. total DNA was sequenced using 454 Titanium Flex

shotgun technology (one plate) and the respective resulting

1,078,190 reads were assembled with Newbler (Genome Quebec

Innovation Center, McGill University, Montreal, Canada). Gene

annotation was performed with MFannot (http://megasun.bch.

umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl), followed by

manual inspection and introduction of missing gene features as

described in Nadimi et al., (2012). G. irregulare isolates 494 and

DAOM-197198 mtDNAs (accession numbers FJ648425 and

HQ189519 respectively) were used for comparison. Sequencing

of the cloned RT-PCR products was performed on the same

sequencing platform, using Sanger technology with T7 and SP6

universal primers.
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Phylogenetic analysis
For each gene of interest (atp6, atp9, cox2 and nad3) in 12 AMF

species, the dataset contains the corresponding C*-terminal for:

Glomus sp. DAOM-229456, G. irregulare isolate 494, G. irregulare

DAOM-197198, G. irregulare DAOM-240415, G. irregulare DAOM-

234179, G. irregulare DAOM-234328, G. irregulare DAOM-213198,

Glomus sp. DAOM-240422, G. fasciculatum DAOM-240159, G.

aggregatum DAOM-240163, G. cerebriforme DAOM-227022, Giga-

spora rosea DAOM-194757 (accession number JQ693396) and 3

selected fungal representatives: Mortierella verticillata (accession

number AY863211), Smittium culisetae (accession number

AY863213) and Rhizopus oryzae (accession number AY863212).

The sequences were deposited in databases under the accession

numbers: JX074786-JX074817. The reference phylogeny was

constructed using the concatenated ‘core’ sequence (without the

C*-terminal portion used previously) of the same four genes. The

DNA sequence alignments and the inference of maximum

likelihood trees using GTR+G (with five distinct gamma catego-

ries) were performed using the integrated program MEGA version

5 [50]. Bootstrap resampling (1000 replicates) was carried out to

quantify the relative support for each branch of the trees. Bayesian

analysis were done using MrBayes version 3.2 using the GTR+G

model (with five distinct gamma categories), four independant

chains, one million cycles, tree sampling every 100 generations

and a burn-in value of 25%.

Results and Discussion

Glomus sp. genome organization and structure
The complete sequence of the Glomus sp. 229456 mt genome was

a double-stranded circular DNA molecule, exempt of polymor-

phism, with a size of 87,763 bp. The annotated sequence of Glomus

sp. was deposited in GenBank under the accession number

JX065416. Its mtDNA harbors the typical set of 41 mitochondrial

genes found in other AMF (two rRNAs, 14 protein coding genes

(PCGs) and 25 tRNAs). The PCGs include three ATP synthetase

(atp), one cytochrome b (cob), three cytochrome C oxydase (cox) and

seven NADH dehydrogenase (nad) genes. Also, 19 ORFs and 31

introns are inserted in this newly sequenced mt genome (Figure 1).

Comparative view of three Glomus mtDNAs
The gene content in Glomus sp. and G. irregulare mitochondrial

genomes is similar to that found in zygomycetes, except for rps3

and rnpB. The mtDNAs of both AMF species have the same gene

order, and all genes are transcribed from one strand with very

similar coding regions except for the insertion of mobile ORF

elements (mORFs) in the atp6, atp9, cox2 and nad3 genes of Glomus

sp. (Figure 2). However, there are many differences in the number

of introns, some of which carry more substantial sequence

differences than do the coding sequences. The differences in the

presence of introns and mORFs explain the inflated genome size

of 87,763 bp in Glomus sp., as compared to 70,800 bp in G. irregulare

197198 (Table 1). Glomus sp. cox1 intron 8 is the homolog of an

intron inserted at the same position in Rhizopus oryzae and

angiosperms (with 76 and 79% of sequence identity, respectively)

[28]. G. irregulare cox1 intron 7 is also inserted at the same position,

but has an eroded ORF encoding the homing endonuclease gene,

and thus also shares identity with the intron RNA secondary

structure of R. oryzae and plants. The plant cox1 intron was thought

to have been acquired from a fungal donor, due to the proximity

of its clade to that of fungi rather than to the non-vascular plant

Marchantia. Knowing the extent to which the intron has spread in

angiosperms [51,52], it would be interesting to see whether such

an invasion has also occurred within the Glomeromycota phylum.

Figure 4. Comparison of gene hybrids atp6, atp9, cox2 and nad3. A) The atp6 gene hybrid reported for Allomyces macrogynus (grayscale,
boxed) is used as a reference in a comparison of the most similar atp6 (a), atp9 (b), cox2 (c) and nad3 (d) genes in Glomus sp. mtDNA. Each occurrence
is put in perspective with the gene of a close relative (either Allomyces arbusculus or G. irregulare) in order to show the insertion point of the foreign
element with the projections. Exons are in black, while the inserted foreign C-terminal is shaded in gray. The mobile endonuclease element is in
yellow. For each gene, the black arrow indicates the position of the forward primer used in the downstream RT-PCR experiment in combination with
three different reverse primers. The green arrows indicate expression at the RNA level of the corresponding portion of the gene, while the red arrows
indicate a negative amplification. B) Agarose gel electrophoresis figure showing the RT-PCR results. For each gene hybrid, the expression at the RNA
level was tested using a forward primer in the conserved gene core and a reverse primer respectively in the inserted C-terminal (1), the mobile
endonuclease (2) and the native C*-terminal portion (3). Primers in nad5 exon 4 were used as a positive control on cDNA (RT +) and negative control
on RNA (RT 2). The expected size of the amplified fragments was: atp6 inserted C-terminal (684 bp), atp9 inserted C-terminal (149 bp), atp9 mORF
(717 bp), atp9 native C*-terminal (1085 bp), cox2 inserted C-terminal (938 bp), cox2 mORF (1291 bp), nad3 inserted C-terminal (261 bp), nad3 mORF
(597 bp), nad3 native C*-terminal (1183 bp) and the positive control in nad5 exon 4 had an expected amplicon size of 689 bp. The red box indicates a
faint band that is present on the gel.
doi:10.1371/journal.pone.0060768.g004

Table 2. Description of the gene hybrids found in Glomus sp. 229456 mtDNA.

atp6 atp9 cox2 nad3

Total length 1569 1171 1894 1242

CDS length 1569 225 837 1242

Features

Group I intron - - [684–922]

Inserted C-terminal [537–774] 1 [175–225] 1 [923–1018] 1 [194–313] 1

mORF [550–1567] 1 [334–1119] 1 [1187–1738] 1 [451–867] 1

Native C*-terminal [1582–1860] [1120–1171] 1 [1739–1894] [1116–1238] 1

Remarks C-terminal and mORF in phase
with native gene

C-terminal in phase with native
gene.

Partial inserted C-terminal in
phase with native gene.

C-terminal and mORF in
phase with native gene.

1Gene hybrid features that are expressed at the mRNA level (see Figure 4B).
doi:10.1371/journal.pone.0060768.t002

Rapid Mitochondrial Genome Evolution in AM Fungi

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e60768



Further, intergenic regions differ substantially in sequence: some

are identical while others show signs of very fast, substantial

changes including point mutations, insertions, deletions and

inversions (Figures 2 and 3). Most of these differences occur in

the cox3-rnl intergene, a large hyper-variable region that has been

invaded by dpo fragments. The variations observed in intergenic

regions provide an opportunity to develop species- specific

molecular markers as shown in Figure 3, and even isolate-specific

markers or methods allowing reliable identification and/or

quantification of these fungi. Lack of efficient and powerful

molecular markers for AMF identification and quantification

constitutes a major problem that limits the analysis of population

genetics and field studies in AMF. Mitochondrial DNA is

homogeneous within the AMF individuals studied to date, but

evidence of genetic polymorphism between G. irregulare isolates has

been observed in intergenic regions. They harbor highly conserved

genes as well as highly variable regions, which promises to

facilitate AMF barcoding at different taxonomic levels, an analysis

that is currently challenging to carry out using nuclear genes.

Hyper-variable intergenic regions with eroded dpo insertions and

indels in intergenic regions constitute useful mitochondrial areas

on which to focus attention in order to develop suitable markers

for discriminating isolates of the same species. Intron insertion

pattern variations, genome reorganizations (such as gene shuffling)

and coding region divergences will make it possible to distinguish

between different AMF species, genera and families.

Our 454 pyrosequencing data and direct PCR sequencing

showed that G. irregulare DAOM197198 and Glomus sp. mtDNAs

are homogeneous, meaning that all the mitochondrial genomes in

a given isolate are essentially identical, in stark contrast to the

nuclear genomes. Our results confirm the previous report by Lee

et al. (2009) suggesting homoplasmy in the first completed

Glomeromycota mitochondrial genome of the AMF G. intraradices

(G. irregulare isolate 494). A rapid and effective mitochondrial
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Figure 5. Unrooted maximum likelihood trees obtained with the GTR+G model (5 distinct gamma categories). The first number at
branches indicates ML bootstrap values with 1000 bootstrap replicates and the second number indicates posterior probability values of a MrBayes
analysis with four independant chains. Bayesian inference predict similar trees (not shown). The concatenated tree of the atp6, atp9, cox2 and nad3
‘core’ genes (without the duplicated C*-terminal portion) (1489 alignment positions) of selected AMF representatives (grayscale boxed) are compared
with those of the atp6 (298 alignment positions), where the red box with the asterisk point out to the reference Allomyces spp. HGT event (Figure 4)
(A), atp9 (51 alignment positions) (B), cox2 (106 alignment positions) (C) and nad3 (120 alignment positions) (D) C*-terminals. The Glomus sp. native
C*-terminals are in blue, while the inserted C-terminals are in red.
doi:10.1371/journal.pone.0060768.g005
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segregation mechanism was suggested to explain those findings. It

was previously demonstrated that isolates of the same species can

exchange nuclear material through anastomosis [10], but

exchange of divergent mitochondrial haplotypes has yet to be

shown. This leads us to question whether polymorphism does

indeed occur through anastomosis, and for how many generations

mitochondrial heteroplasmy is maintained.

Rapid expansion of plasmid-like DNA polymerase
sequences in Glomus

Plasmid-related DNA polymerase genes are found in mobile

mitochondrial plasmids that occur either as free linear or circular

DNAs, and have been shown to also insert into mtDNA (for review

see [35]). One striking feature in the comparison of the two closely

related Glomus species is the presence of numerous dpo insertions in

the intergenic regions of their mtDNA (Figure 2). All three Glomus

mtDNAs contain a large number of dpo fragments, most of which

are substantially divergent in sequence and therefore are most

likely the result of independent plasmid insertion events. Even the

two G. irregulare (isolates 494 and DAOM197198), otherwise almost

identical in sequence, differ in dpo sequence, which supports the

interpretation that dpo insertion occurs repeatedly and frequently

through evolutionary time. A bona fide and complete dpo gene is

present in Glomus sp., and its sequence is different from those in G.

irregulare isolates. Because of its complete length, it most likely

results from a recent insertion event. There is no evidence that dpo

is functional when inserted in mtDNA. As in numerous other

cases, dpo coding regions are fragmented in Glomus and occur on

both strands, representing a good indicator of a genomic region

experiencing little if any selective evolutionary constraints.

The source of the dpo insertions in Glomus mtDNA remains

elusive. We did not find any free mitochondrial plasmids in our

Glomus sp. and G. irregulare isolate DAOM197198 shotgun data

(combining nuclear and mitochondrial DNAs), as we did for

Gigaspora rosea, where a 3582 bp contig with high sequence

coverage was found [34]. However, since the Glomus strains used

in this study come from aseptic in vitro cultures, and even though

the G. rosea fungal material was extracted from in vivo greenhouse

pot cultures, we cannot rule out the possibility that an

environmental vector is the source of dpo plasmids and is

responsible for their propagation in G. rosea. Interestingly, dpo

plasmids have been found to occur in numerous plants, notably in

Daucus carota [53] which is used as a host plant for AMF cultures in

vitro. The obligate biotrophic dependence of AMF on plants could

be one of the reasons that dpo insertions are most abundant in

Glomus mtDNAs yet virtually absent in mitochondrial sequences of

the Blastocladiomycota (except for a single 100 amino acid long

fragment occurrence in Smittium culisetae mtDNA), which is the

closest phylogenetic group to the Glomeromycota.

Mobile element insertions have been shown to trigger genomic

rearrangements such as gene shuffling through homologous

recombination [54] and even genome linearization [35,55,56].

Whenever sequence repeats occur, more than one genome

conformation may exist, but we have no evidence that this

happens in Glomus mtDNA. It would be interesting to examine

whether numerous recent dpo insertions with high sequence

similarity might act as genomic repetitions and give rise to

genome reorganization in closely related AMF species. Integrated

plasmid segments within mitochondrial genomes, even though

they are neutral or cryptic, could promote genomic rearrange-

ments.

Mobile ORF elements (mORFs) in Glomus
Although most ORF-encoding endonuclease genes are inserted

in introns where they have been shown to play a role in

propagation, they can also be present in genes in which their

evolutionary impact is less obvious. We identified numerous

mORFs encoding endonuclease genes unique to Glomus sp. isolate

DAOM-229456 mtDNA. When we annotated the sequences of

the atp6, atp9, cox2 and nad3 genes, we observed that they all have a

peculiar organization. Indeed, these genes harbor a carboxy-

terminal duplication (C*-terminal) that was found downstream of a

mORF insertion. For example, in the atp6 gene, the duplicated

portion of the C-terminal was found about 1000 bp downstream,

following an inserted LAGLIDADG endonuclease ORF. When

we compared the DNA sequence of the C*-terminal portion with

the corresponding sequence of G. irregulare isolate 494, a close

relative to Glomus sp., we found a 91.2% nucleotide identity. In

contrast, the comparison between the Glomus sp. atp6 duplicated

carboxy-terminals (C-terminal and C*-terminal) showed a low

sequence identity of 63.5%. Interestingly, comparison of the

Glomus sp. C*-terminal amino acid sequences with the correspond-

ing portion in G. irregulare showed 100% identity, indicating that

the mutations observed in DNA are all synonymous. However, the

comparison of the amino acid sequences of Glomus sp. atp6

carboxy-terminals showed 91% identity.

Surprisingly, when we designed a forward primer in the

upstream sequence (59 gene portion) and two reverse primers in

the C-terminal and C*-terminal respectively, we found that the C-

terminal is transcribed with the upstream sequence resulting in a

putative hybrid transcript while the C*-terminal was not expressed

into mRNA. Thus we hypothesized that the C-terminal portion

could have been acquired from a donor through horizontal gene

transfer (HGT). We also observed similar organization in atp9, cox2

and nad3 genes of Glomus sp. where the carboxy-terminal portion

(C*-terminal) was replaced partially or completely by one carried

by a mORF (C-terminal) encoding a LAGLIDADG endonuclease

(except in atp9, a GIY-YIG family endonuclease) (Figure 4A: a, b,

c and d). In atp6, the insert lacks a stop codon and the ORF is in

phase with the native gene. In atp9, the insert, along with the

mORF, completely replaces the native 39 end, while in cox2 and

nad3 only a portion of the carboxy-terminal is replaced (Table 2).

The resulting gene hybrids are expressed at the mRNA level in all

four cases as shown in Figure 4B. After sequencing of the cDNA

bands, we found that the mORF and the inserted C-terminal are

integral parts of the transcript in all four genes. However, in atp6

and cox2, the native C*-terminal was not expressed into mRNA.

These gene hybrid structures are similar to that of the atp6 gene

previously described in the Allomyces macrogynus (Figure 4, grayscale

box), a species that belongs to the basal fungal phylum

Blastocladiomycota [48]. The same scenario has also been

observed in the Rhizopus oryzae atp9 and Mortierella verticillata cox2

genes [30]. These hybrids contain a carboxy-terminal duplication

as well as a mORF encoding an endonuclease, which has been

biochemically demonstrated to be responsible for the element

mobility. In Allomyces macrogynus, the inserted C-terminal was

shown to have been recently acquired by HGT based on the

divergence in sequence it had with the native C*-terminal, while

the latter had a perfect sequence identity with the corresponding

gene portion of the closely related species Allomyces arbusculus.

The Glomus sp. atp6, atp9, cox2 and nad3 native C*-terminals

showed higher nucleotide sequence identity to those of G. irregulare

494 (91, 98, 93 and 98%, respectively) than their duplicated C-

terminal counterparts (64, 71 and 81 and 73%, respectively)

(Figures S1, S2, S3, and S4 and Tables S1, S2, S3, and S4).

However at the protein level, the comparison of the C*-terminal
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amino acid sequences of the atp6, atp9, cox2 and nad3 genes with

the corresponding portion in G. irregulare 494 was 100% for atp6,

94% for atp9, and 100% for cox2 and nad3. The high sequence

identity of the native Glomus sp. C*-terminals with G. irregulare 494,

is in stark contrast to the low similarity observed with the inserted

C-terminal portions and points to a recent HGT event, as was

described in Allomyces spp. [48]. However, the HGT hypothesis

could likely apply to the atp6 and cox2 genes, since their native C*-

terminal portion is no longer translated and could undergo rapid

divergence. For the atp9 and nad3 hybrids, even though it is less

parsimonious, the observed sequence divergence between the

duplicated portions could have been caused by independent

evolution following the mobile element insertion, since both are

expressed in the mRNA transcript. It would also be interesting to

see if some of the reported gene hybrids can still accomplish their

functions at the protein level, given that the mORF and both C*-

terminals are expressed in some cases. They are apparently

expressed pseudogenes but post-translational modification mech-

anisms may be in place to ensure that the resulting protein is

functional. We did not find a mORF-less copy of those genes that

could have been transferred to the Glomus sp. nuclear genome that

could explain a pseudogenization in Glomus sp. mtDNA.

In regards to the HGT hypothesis, and in order to evaluate

whether there is a plausible donor for the duplication, we

compared the carboxy-terminal sequence of these genes with

those in 11 Glomus spp. (to avoid redundancy we didn’t add the G.

margarita sequences since they are identical to G. rosea) and three

phylogenetically related fungal representatives (Figure 5). In all

four Glomus sp. gene hybrids (atp6, atp9, cox2 and nad3), the native

C*-terminal sequences cluster within the Glomus spp. group as

expected given the reference phylogeny (Figure 5, grayscale box),

thereby supporting a recent insertion of the foreign element. The

atp6 gene carboxy-terminal comparison (Figure 5A) shows that the

mORF-derived C-terminal is related to a Glomus sp. isolate

DAOM213198 with a moderate 60% bootstrap value. Surpris-

ingly, in atp9 (Figure 5B) the inserted C-terminal is even more

distantly related to Glomus spp. than to G. rosea. In cox2 (Figure 5C)

the Glomus sp. inserted C-terminal and the more divergent AMF

species G. cerebriforme are in the same cluster. Finally, the nad3 C-

terminal clustered with Glomus sp. 213198, as it was the case for

atp6, with a 79% bootstrap value (Figure 5D). Also, the nad3 gene

shows high variability in length in Glomus spp., due to the insertion

of those elements.

In all four cases, the native Glomus sp. C*-terminal is nested

within the Glomus spp. group and the inserted C-terminal is in a

different cluster. Although it is difficult to pinpoint the donor of the

sequence duplications, due to the possibly complex evolutionary

history of those mobile elements with numerous insertion/loss

events and 39 end reshufflings, our data suggest HGT from a

foreign AMF species, and thus the first reported occurrence in

Glomeromycota. The presence of foreign DNA elements could

potentially hamper mitochondrial gene phylogeny analysis unless

the foreign C-terminals are carefully removed from the native

portion of the gene.

Conclusion

The inclusion of mitochondrial sequences from phylogenetically

distant AMF species in the database is essential for developing a

better understanding and classification of AMF within fungi. The

mitochondrial genome comparison presented here for two closely

related AMF species reveals substantial changes in mitochondrial

gene sequences, resulting from dpo plasmid insertions and mobile

ORFs invasions, along with intergenic sequence variation. This

illustrates the importance of adding closely related species to the

numerous isolates of the same species in the AMF mitochondrial

genome collection. Comparative mitochondrial genomics, togeth-

er with a broader sequencing effort in AMF, opens new avenues

for the development of molecular markers at different evolutionary

distances. It would be interesting to identify the source of plasmid-

related DNA polymerase in AMF mtDNA, which should provide

an estimate of the extent to which it is present within the

Glomeromycota phylum and an assessment of the consequences

on mitochondrial genome organization. Also, the mORF-carried

foreign C-terminal described here represents the first reported

evidence of HGT in AMF. The intimate relationship between

AMF, the roots of their plant symbiont and soil microorganisms

might be a perfect biological context to facilitate such transfers. To

what extent the mobilome and HGT may have contributed to

AMF evolution is a topic that merits exploration in future studies.
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