Université de Montréal

Simulation-based Inference and Nonlinear
Canonical Analysis in Financial Econometrics

par

Pascale Valéry
Département de sciences économiques

Faculté des arts et des sciences

Théese présentée a la Faculté des études supérieures
en vue de I’obtention du grade de Philosophiae Doctor (Ph.D.)
en sciences économiques

Février 2005

(©Pascale Valéry, 2005







Université I"H‘b

de Montréal

Direction des bibliothéques

AVIS

L'auteur a autorisé I'Université de Montréal a reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement a des fins non lucratives d'enseignement et de
recherche, des copies de ce mémoire ou de cette thése.

L'auteur et les coauteurs le cas échéant conservent la propriété du droit
d'auteur et des droits moraux qui protégent ce document. Ni la thése ou le
mémoire, ni des extraits substantiels de ce document, ne doivent étre
imprimés ou autrement reproduits sans I'autorisation de I'auteur.

Afin de se conformer a la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu étre enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n'y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author's permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document



Université de Montréal
Facult¢ des études supérieures

Cette thése intitulée :

Simulation-base.d ]nfe_rence_and Nonlineag' Canonical
Analysis in Financial Econometrics

présentée par:

Pascale Valéry

a été évaluée par un jury compos€ des personnes suivantes

Nour Méddabhi: président-rapporteur (Université de Montréal)
Jean-Marie Dufour: directeur de recherche (Université de Montréal)
Christian Gouriéroux: codirecteur de recherche (University of Toronto)
Sylvia Gongalves: membre du jury (Université de Montréal)
Lynda Khalaf: examinateur externe (Université Laval)

Christian Léger: représentant du doyen de la FES (Université de Montréal)



Sommaire

L’objectif de cette these est d’étudier des techniques d’inférence, classiques et par
simulation, en échantillons finis dans le contexte de modéles utilisés en finance.

Dans le premier essai nous introduisons une méthode d’estimation simple, dispo-
nible en forme fermée, fondée sur la méthode des moments pour une famille générale
de modeles de régression a volatilité stochastique, qui rend possible I’'implémentation
de procédures d’inférence simulées relativement couteuses en calcul. L’estimateur dé-
veloppé dans cet essai est fondamentalement un estimateur des moments en 2 étapes,
qui utilisent les résidus d’une regression préliminaire pour évaluer les conditions de
moments de deuxiéme étape. Sous des conditions de régularité trés générales, nous
montrons que cet estimateur en 2 étapes est asymptotiquement normalement distribué
et en particulier sa matrice de covariance asymptotique ne dépend pas de la distribution
de I’estimateur de premiére étape.

Dans le deuxiéme essai, nous exploitons la forme fermée de 1’estimateur des mo-
ments proposé€ pour implémenter des techniques d’inférence simulée telles que la tech-
niques des tests de Monte Carlo [cf. Dwass (1957), Barnard (1963), Birnbaum (1974)].
En particulier, les tests de Monte Carlo maximisés [cf. Dufour(2002)] autorisent des
statistiques de tests dont la distribution dépend de parameétres de nuisance. Dans cette
procédure, nous définissons une fonction p-value simulée comme fonction des para-
métres de nuisance (sous I’hypothése nulle), et nous montrons que maximiser cette
derniére par rapport aux paramétres de nuisance rapporte un test exact, indépendam-
ment de la taille de I’échantillon et du nombre de réplications utilisées. En particulier,
nous implémentons les trois procédures de tests classiques - le test de type Wald, le test
de type score et le test de type LR- ainsi que le test de type c(«) introduit par Neyman
(1959). Nous proposons également un test de spécification pour le processus de volati-
lité qui distingue entre une spécification linéaire de la volatilité contre une spécification
alternative a intégration fractionnaire.

Dans le troisieme essai, nous estimons le modele de volatilité stochastique par in-

férence indirecte [cf. Smith (1993), Gouriéroux, Monfort and Renault (1993)] sous des
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conditions non reguliéres. En effet, la condition de rang du jacobien de la fonction de
lien asymptotique n’est pas de plein rang en des valeurs isolées du parametre d’intérét,
condition requise pour que la théorie distributionelle standard dérivée par Gouriéroux,
Monfort and Renault (1993) reste valide. En particulier, I’estimateur auxiliaire entrant
dans la fonction objectif du critere d’inférence indirecte est fondé sur des conditions
de moment qui deviennent nonlinéairement redondantes sous I’hypothése nulle d’ho-
moskédasticité du processus de volatilité. La matrice de covariance de 1’estimateur
auxiliaire ainsi que celle des statistiques de Wald et du score deviennent singulicres
et non inversibles au sens usuel. Pour remédier a ce probléme, nous implémentons des
techniques de régularisation dont celle proposée par Liitkepohl et Burda (1997) qui
consiste a prendre un estimateur de rang réduit pour la matrice de covariance de la sta-
tistique de Wald fondé sur I’inverse généralisée de Moore-Penrose. Les techniques de
régularisation proposées permettent aux statistiques de test de rester calculables sous
des conditions non réguliéres. Cependant, la théorie distributionnelle développée par
Gouriéroux, Monfort et Renault (1993) n’est plus garantie sous des conditions non ré-
guliéres. Par conséquent, nous combinons des techniques d’inférence par simulation
telles que les tests de Monte Carlo maximisés aux statistiques de test modifiées pour
rapporter une procédure inférentielle valide en présence d’estimateurs de covariance de
rang réduit.

Dans le quatriéme essai, nous caractérisons completement les équations différen-
tielles stochastiques pour lesquelles les fonctions propres du générateur infinitésimal
sont des polyndmes dans la variable dépendante. En particulier, des transformations
affines du processus d’Ornstein-Uhlenbeck, du processus de Cox-Ingersoll-Ross et du
processus de Jacobi appartiennent a cette famille d’équations différentielles stochas-
tiques. De tels processus exhibent une structure trés particuliere des fonctions de dérive
et de volatilit¢ de méme qu’une forme particuliere des valeurs propres.

Dans le cinquiéme essai, diverses méthodes d’estimation a partir de données dis-
crétes sont inspectées pour estimer un processus de Jacobi appartenant a la classe des

processus de diffusion dont les fonctions propres sont des polyndmes . Les propriétés
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distributionnelles de ce processus autant que sa décomposition canonique non linéaire
sous-tendent les méthodes d’estimation retenues. Plus précisément, nous proposons une
procédure du maximum de vraisemblance approché fondée sur les fonctions propres.
Cette méthode de quasi-vraisemblance est alors comparée a la méthode des moments
de Kessler et Sorensen (1999). En effet, alors que nous approchons la fonction de tran-
sition inconnue de données discrétes provenant du processus de Jacobi, ces derniers
utilisent la décomposition spectrale pour approcher la fonction score inconnue. Des
méthodes d’estimation simulées sont aussi considérées parmi lesquelles la méthode
des moments simulés et la méthode d’inférence indirecte. Les propriétés statistiques de

ces divers estimateurs sont comparées dans des expériences de Monte Carlo.

Mots clés: volatilité stochastique; volatilité a intégration fractionnaire; méthode des
moments; tests exacts; test ¢(«); inférence indirecte; inverses généralisées; processus

de diffusion; processus de Jacobi; analyse canonique non-linéaire.
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Summary

The objective of this thesis is to study standard and simulation-based inference
techniques which are valid in finite samples for models used in finance.

In the first essay, we study a simple moment estimator, available in closed form for
general regression models with stochastic volatility models This easy-to-use estimator
allows for simulation-based inference techniques which can be computationally expen-
sive. Using residuals from a preliminary regression, the parameters of the stochastic
volatility (SV) model are then evaluated by a method-of-moment estimator based on
three moments (2S-3M) for which a simple closed-form expression can be derived.
Under general regularity conditions, we show the two-stage estimator is asymptotically
normally distributed. An interesting and potentially useful feature of the asymptotic
distribution stems from the fact its covariance matrix does not depend on the distribu-
tion of the conditional mean estimator.

In the second essay, we exploit the closed-form expression of the moment esti-
mator for the parameters of the SV model to implement simulation-based inference
techniques such as Monte Carlo (MC) tests [ see Dwass (1957), Barnard (1963), Birn-
baum (1974)]. More specifically, maximized MC tests [see Dufour(2002)] allow for test
statistics whose distribution may depend on nuisance parameters. In this procedure, we
define a simulated p-value function which is not pivotal under the null hypothesis and
we show that maximizing this p-value w.r.t. nuisance parameters does provide an exact
test, irrespective of the sample size and the number of replications used. We imple-
ment the three standard tests- the Wald-type test, the score-type test and the likelihood
ratio-type test- but also a c¢(a)-type test introduced by Neyman (1959). We also pro-
pose a specification test for the volatility process which discriminates between a /inear
Gaussian spectfication for the volatility against a fractionally integrated Gaussian al-
ternative.

In the third essay, we estimate the SV model by indirect inference [see Smith
(1993), Gouriéroux, Monfort and Renault (1993), henceforth (GMR)] under nonregular

conditions. More specifically, the rank of the jacobian of the asymptotic binding func-



tion is not of full-column rank at isolated values of the parameter of interest whereas
this condition is required for the standard distributional theory derived by GMR(1993)
to hold. Indeed, the auxiliary estimator which enters the second step objective crite-
rion in the indirect estimation procedure is based on moment conditions which become
nonlinearly redundant under the null hypothesis of homoscedasticity of the volatility
process. As a result, the covariance matrix become singular and non invertible in the
usual sense. Therefore, we propose to regularize the covariance matrix by resorting to
a reduced rank matrix estimator based on generalized inverse among which the Moore-
Penrose inverse proposed by Liitkepohl and Burda (1997). We also propose two slightly
different regularization techniques among which one that displays good power proper-
ties. Further, unlike the nonregularized test statistics, the modified statistics can always
be computed under nonregular conditions. However, although the regularization tech-
niques help in keeping the test statistics computable despite some singularity issues,
they do not ensure a )2 distribution for the modified statistics anymore. As a result, the
distributional results developed by GMR (1993) become useless when the jacobian of
the asymptotic binding function does not satisfy the required rank condition. One way
to overcome this difficulty and still provide valid critical points and p-values, is to re-
sort on maximized Monte Carlo tests which achieves in controlling for size distortions
irrespective of nuisance parameters in the distribution of the test statistic.

In the fourth essay, we characterize the one-dimensional stochastic differential
equations, for which the eigenfunctions of the infinitesimal generator are polynomi-
als in y. In particular, affine transformations of the Ornstein-Uhlenbeck process, the
Cox-Ingersoll-Ross process and the Jacobi process belong to this stochastic differen-
tial equations family. Such processes exhibit specific patterns of the drift and volatility
functions together with a particular form of the eigenvalues.

In the fifth essay, we consider a discretely sampled Jacobi process appropriate to
specify the dynamics of a process with range [0,1], such as a discount coefficient, a
regime probability, or a state price. The discrete time transition of the Jacobi process

does not admit a closed form expression and therefore the exact maximum likelihood
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is infeasible. We first review a characterization of the transition function based on non-
linear canonical decomposition. They allow for approximations of the log-likelihood
function which can be used to define a quasi-maximum likelihood estimator. The finite
sample properties of this estimator are compared with the properties of other estima-
tors proposed in the literature, such as the Kessler and Sorensen’s estimator which is
a method of moments which also exploits the nonlinear canonical decomposition to
approximate the unknown score function [see Kessler and Sorensen (1999)]. It is also
compared with generalized method of moments (GMM) estimator, simulated method

of moments (SMM) estimator, or indirect inference estimator.

Key words: stochastic volatility; fractionally integrated volatility; moment estima-
tor; exact tests; c(c)-test; indirect inference; generalized inverses; diffusion processes;

Jacobi process; nonlinear canonical analysis.
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Introduction

La these traite de divers sujets d’économétrie financiére. Elle est divisée en deux
parties. La premiére partie propose des tests simulés en échantillons finis dans le contexte
de modeles utilisés en finance (3 essais) tandis que la seconde partie développe des me-
thodes d’analyse canonique non linéaire pour des processus de diffusion (2 essais).

Dans la premiére partie de la thése nous nous intéressons aux propriétés asympto-
tiques et en échantillons finis de diverses statistiques de tests dans le cadre du modéle de
volatilité stochastique lognormal introduit par Taylor (1986). Depuis, ce modéle a ét¢
largement utilisé en finance et plus particuliérement en économétrie de la finance - car
il est directement relié aux processus de diffusion trés populaires en finance théorique
[cf. Wiggins (1987), Melino and Turnbull (1990), Chemnov, Gallant, Ghysels and Tau-
chen (2004)]. Cependant, il reste difficile & estimer en particulier quand il est compare
aux modeles de type GARCH [cf. Engle (1982), Bollerslev (1986)] en raison de I'in-
troduction d’un bruit inobservable dans le processus de volatilité rendant les méthodes
d’estimation usuelles - telles le maximum de vraisemblance infaisable. De nombreuses
techniques d’estimation alternatives, quasi-exactes [cf. Nelson (1988), Harvey, Ruiz,
and Shephard (1994), Ruiz (1994)], GMM [Melino and Turnbull (1990), Andersen and
Serensen (1996)], ou des techniques d’échantillonage fondées sur la simulation telles
que le maximum de vraisemblance simulé [Danielsson and Richard (1993), Daniels-
son (1994)], ou encore I'inférence indirecte [cf. Gouriéroux-Monfort-Renault(1993)]
ou encore la méthode efficace des moments de Gallant et Tauchen (1996), [cf. Gallant,
Hsieh, and Tauchen (1997), Andersen, Chung, and Serensen (1999)] — ou encore des
méthodes bayesiennes [Jacquier, Polson, and Rossi (1994), Kim, Shephard, and Chib
(1998)] ont alors été proposées dans la litérature afin de contourner cette difficulté mais
souvent au prix de complications computationelles importantes.

C’est la raison pour laquelle, dans le premier essai nous introduisons une méthode
d’estimation simple, disponible en forme fermée, fondée sur la méthode des moments
pour une famille générale de modeles de régression a volatilité stochastique, qui rend

possible I’implémentation de procédures d’inférence simulées relativement couteuses



en calcul. L’estimateur développé dans cet essai est fondamentalement un estimateur
des moments en 2 étapes, qui utilisent les résidus d’une regression préliminaire pour
évaluer les conditions de moments de deuxiéme étape. Sous des conditions de régularité
trés générales, nous montrons que cet estimateur en 2 étapes est asymptotiquement nor-
malement distribué et en particulier sa matrice de covariance asymptotique ne dépend
pas de la distribution de I’estimateur de premiére étape. Suivant des résultats récents sur
’estimation de modéles autorégressifs a volatilité stochastique [cf. Goncalves-Kilian
(2004)], les résultats distributionels développés dans cet essai, restent valides en parti-
culier pour de tels modeles.

Dans le second essai, nous exploitons la forme fermée de I’estimateur des moments
proposé pour implémenter des techniques d’inférence simulée telles que la techniques
des tests de Monte Carlo [cf. Dwass (1957), Barnard (1963), Birnbaum (1974)]. En
particulier, les tests de Monte Carlo maximisés [cf. Dufour (2002)] autorisent des sta-
tistiques de tests dont la distribution dépend de paramétres de nuisance. Dans cette
procédure, nous définissons une fonction p-value simulée comme fonction des para-
meétres de nuisance (sous I’hypothése nulle), et nous montrons que maximiser cette
derniére par rapport aux parameétres de nuisance rapporte un test exact, indépendam-
ment de la taille de ’échantillon et du nombre de réplications utilisées. En particulier,
nous implémentons les trois procédures de tests classiques - le test de type Wald, le test
de type score et le test de type LR- ainsi que le test de type ¢(c) introduit par Neyman
(1959). Nous procédons alors & des comparaisons entre les techniques asymptotiques et
les procédures d’inférence simulées. Les résultats exhibent une meilleure performance
du test de type c(). Nous proposons également un test de spécification pour le pro-
cessus de volatilité qui distingue entre une spécification linéaire de la volatilité contre
une spécification alternative a intégration fractionnaire qui présente un intérét crucial
en terme de mémoire longue pour la valorisation d’options [cf. Comte and Renault
(1998), Comte, Coutin and Renault (2003), Ohanissian, Russel and Tsay (2003)]. Des
expériences de Monte Carlo sont réalisées et suivies par une application empirique sur

données journaliéres pour I’indice de prix composite du Standard and Poor (1928-87).



Dans le troisiéme essai, nous estimons le modele de volatilité stochastique par in-
férence indirecte [cf. Smith (1993), Gouriéroux, Monfort and Renault (1993)] sous des
conditions non regulieres. En effet, la condition de rang du jacobien de la fonction de
lien asymptotique n’est pas de plein rang en des valeurs isolées du paramétre d’intérét,
condition requise pour que la théorie distributionelle standard dérivée par Gouriéroux,
Monfort and Renault (1993) reste valide. En particulier, I’estimateur auxiliaire entrant
dans la fonction objectif du critére d’inférence indirecte est fondé sur des conditions
de moment qui deviennent nonlinéairement redondantes sous 1’hypothése nulle d’ho-
moskédasticité du processus de volatilité. L.a matrice de covariance de I’estimateur
auxiliaire ainsi que celle des statistiques de Wald et du score deviennent singuliéres
et non inversibles au sens usuel. Pour remédier a ce probleme, nous implémentons des
techniques de régularisation dont celle proposée par Liitkepohl et Burda (1997) qui
consiste a prendre un estimateur de rang réduit pour la matrice de covariance de la sta-
tistique de Wald fondé sur I’inverse généralisée de Moore-Penrose. Les techniques de
régularisation proposées permettent aux statistiques de test de rester calculables sous
des conditions non réguliéres. Cependant, la théorie distributionnelle développée par
Gouriéroux, Monfort et Renault (1993) n’est plus garantie sous des conditions non ré-
guliéres. Par conséquent, nous combinons des techniques d’inférence par simulation
telles que les tests de Monte Carlo maximisés aux statistiques de test modifiées pour
rapporter une procédure inférentielle valide en présence d’estimateurs de covariance de
rang réduit. Des résultats de simulation sur la performance des test modifiés sont pré-
sentés suivies d’une illustration financiere pour I’indice de prix composite du Standard
and Poor (1928-87).

La seconde partie de la theése est consacrée a ’analyse canonique non linéaire de
processus de diffusion dont le but est d’étudier la dépendance temporelle des proces-
sus d’une fagon moins traditionnelle. Ainsi la décomposition canonique de la distri-
bution conditionnelle permet d’identifier les directions de corrélation maximale entre
les variables canoniques ce qui présente un intérét statégique en finance empirique en

particulier en terme de couverture des risques.



Dans le quatriéme essai, nous caractérisons complétement les équations différen-
tielles stochastiques pour lesquelles les fonctions propres du générateur infinitésimal
sont des polyndmes dans la variable dépendante. En particulier, des transformations
affines du processus d’Omstein-Uhlenbeck, du processus de Cox-Ingersoll-Ross et du
processus de Jacobi appartiennent a cette famille d’équations différentielles stochas-
tiques. De tels processus exhibent une structure trés particuliére des fonctions de dérive
et de volatilité de méme qu’une forme particuliere des valeurs propres. En outre, des
contraintes de stabilité sont imposées sur les parametres des processus.

Dans le dernier essai, diverses méthodes d’estimation a partir de données discrétes
sont inspectées pour estimer un processus de Jacobi appartenant a la classe des proces-
sus de diffusion dont les fonctions propres sont des polynémes . Ce processus prend des
valeurs entre 0 et 1, et semble donc adapté pour modéliser des variables dynamiques
bornées telle qu’une probabilité de changement de régime, ou capturer 1’évolution d’un
prix d’état. Les propriétés distributionnelles de ce processus autant que sa décompo-
sition canonique non linéaire sous-tendent les méthodes d’estimation retenues. Plus
précisément, nous proposons une procédure du maximum de vraisemblance approché
fondée sur les fonctions propres. Cette méthode de quasi-vraisemblance est alors com-
parée a la méthode des moments de Kessler et Sorensen (1999). En effet, alors que
nous approchons la fonction de transition inconnue de données discrétes provenant du
processus de Jacobi, ces derniers utilisent la décomposition spectrale pour approcher
la fonction score inconnue. L’estimateur de quasi-vraisemblance est aussi comparé a la
méthode des moments généralisés de Hansen (1982) puisque la décomposition spec-
trale de 1’opérateur d’espérance conditionelle [cf. Hansen and Sheinckman (1995)] et
la forme polynomiale des fonctions propres associées fournissent tous les moments
conditionels du processus en terme des moments marginaux. Des méthodes d’estima-
tion simulées sont aussi considérées parmi lesquelles la méthode des moments simulés
et la méthode d’inférence indirecte. Les propriétés statistiques de ces divers estimateurs

sont comparées dans des expériences de Monte Carlo.
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On a simple closed-form estimator for

a stochastic volatility model 1

I'This paper is co-authored with Jean-Marie Dufour.



1.1. Introduction

Modelling conditional heteroskedasticity is one of the central problems of financial
econometrics. The two main families of models for that purpose consist of GARCH-
type processes, originally introduced by Engle (1982), and stochastic volatility (SV)
models proposed by Taylor (1986). Although the latter may be more attractive — be-
cause they are directly connected to diffusion processes used in theoretical finance —
GARCH models are much more popular because they are relatively easy to estimate;
for reviews, see Gouriéroux (1997) and Palm (1996). In particular, evaluating the like-
lihood function of GARCH models is simple compared to stochastic volatility models
for which it is very difficult to get a likelihood in closed form; see Shephard (1996),
Mahieu and Schotman (1998) and the review of Ghysels, Harvey, and Renault (1996).
This is a general feature of almost all nonlinear latent variable models, due to the high
dimensionality of the integral defining the likelihood function. As a result, maximum
likelihood methods are prohibitively expensive from a computational viewpoint, and
alternative methods appear to be required for applying such models.

Since the first discrete-time stochastic volatility models was proposed by Taylor
(1986) as an alternative to ARCH models, much progress has been made regarding
the estimation of nonlinear latent variable models in general and stochastic volatil-
ity models in particular. The methods suggested include quasi maximum likelihood
estimation [see Nelson (1988), Harvey, Ruiz, and Shephard (1994), Ruiz (1994)], gen-
eralized method-of-moments (GMM) procedures [Melino and Turnbull (1990), Ander-
sen and Serensen (1996)], sampling simulation-based techniques — such as simulated
maximum likelihood [Danielsson and Richard (1993), Danielsson (1994)], indirect in-
ference and the efficient method of moments [Gallant, Hsieh, and Tauchen (1997), An-
dersen, Chung, and Serensen (1999)] — and Bayesian methods [Jacquier, Polson, and
Rossi (1994), Kim, Shephard, and Chib (1998),Wong (2002a), Wong (2002b)]. Note
also that the most widely studied specification in this literature consists of a stochastic
volatility model of order one with Gaussian log-volatility and zero (or constant) condi-

tional mean. The most notable exception can be found in Gallant, Hsieh, and Tauchen
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(1997) who allowed for an autoregressive conditional mean and considered a general
autoregressive process on the log-volatility. It is remarkable that all these methods are
highly nonlinear and computer intensive. Implementing them can be quite complicated
and get more so as the number of parameters increases (e.g., with the orders of the
autoregressive conditional mean and log-volatility).

In this paper, we consider the estimation of stochastic volatility parameters in the
context of a linear regression where the disturbances follow a stochastic volatility model
of order one with Gaussian log-volatility. The linear regression represents the condi-
tional mean of the process and may have a fairly general form, which includes for
example finite-order autoregressions. Our objective is to develop a computationally
inexpensive estimator that can be easily exploited within a simulation-based inference
procedures, such as Monte Carlo and bootstrap tests.? So we study here a simple two-
step estimation procedure which can be described as follows: (1) the conditional mean
model is first estimated by a simple consistent procedure that does take into account
the stochastic volatility structure; for example, the parameters of the conditional mean
can be estimated by ordinary least squares (although other estimation procedures can
be used); (2) using residuals from this preliminary regression, the parameters of the
stochastic model are then evaluated by a method-of-moment estimator based on three
moments (2S-3M) for which a simple closed-form expression can be derived. Under
general regularity conditions, we show the two-stage estimator 1s asymptotically nor-
mally distributed. Following recent results on the estimation of autoregressive models
with stochastic volatility [see, for example, see Theorem 3.1, Gongalves and Kilian
(2004)], this then entails that the result holds for such models. An interesting and po-
tentially useful feature of the asymptotic distribution stems from the fact its covariance
matrix does not depend on the distribution of the conditional mean estimator, i.e., the
estimation uncertainty on the parameters of the conditional mean does not affect the
distribution of the volatility parameter estimates (asymptotically). The properties of

the 2S-3M estimator are also studied in a small Monte Carlo experiment and compared

2This feature is exploited in a companion paper [Dufour and Valéry (2004)] where various simulation-
based test procedures are developed and implemented.



with GMM estimators proposed in this context. We find that the 2S-3M estimator has
quite reasonable accuracy with respect to the GMM estimators: indeed, in several cases,
the 2S-3M estimator has the lowest root mean square error. With respect to computa-
tional efficiency, the 2S-3M estimator always requires less than a second while GMM
estimators may need several hours before convergence obtains (if it does). Finally, the
proposed estimator is illustrated by applying it to the estimation of Standard and Poor’s
Composite Price Index (1928-87).

The paper is organized as follows. Section 1.3 sets the framework and the main
assumptions made. The closed-form estimator studied is described in section 1.3. The
asymptotic distribution of the estimator is established in section 1.4. In section 1.5,
we report the results of a small simulation study on the performance of the estimator.
Section 1.6 gives an application to the Standard and Poor’s Composite Price Index
return series in Section 5. We conclude in section 1.7. All proofs are gathered in the

Appendix.

1.2. Framework

We consider here a regression model for a variable y; with disturbances that follow a
stochastic volatility process, which is described below following a notation similar to

the one used by Gallant, Hsieh, and Tauchen (1997).

Assumption 1.2.1 LINEAR REGRESSION WITH STOCHASTIC VOLATILITY. The

process {y; : t € No*} follows a stochastic volatility model of the type:

Y =IL';,B+'U¢ N (121)
Lu

u, = exp(we/2)ryz,, wy= Z QjWy—j + Twly , (12.2)
j=1

where z, is a k x 1 random vector independent of the variables {x,_1, z;, Vr, W, : T <

t}, and B, vy, {a;};, ru are fixed parameters.

3Ny refers to the nonnegative integers.
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Typically y; denotes the first difference over a short time interval, a day for instance,
of the log-price of a financial asset traded on securities markets. The regression function
z, 3 represents the conditional mean of y, (given the past) while the stochastic volatil-
ity process determines a varying conditional variance. A common specification here
consists in assuming that z; has an autoregressive form as in the following restricted

version of the model described by Assumption 1.2.1.

Assumption 1.2.2 AUTOREGRESSIVE MODEL WITH STOCHASTIC VOLATILITY.

The process {y, : t € No} follows a stochastic volatility model of the type:

Ly
Ve ty = Y Ci(Yms — ) + U (1.23)
j=1
L'\H
uy = exp(we/2)ryze, Wy = Z ajwi—j + Twy , (1.2.4)
j=1

where 3, {c; }3’11, ry, {a;};=, andr,, are fixed parameters.

We shall refer to the latter model as an AR-SV(L,, L,,) model. The lag lengths of
the autoregressive specifications used in the literature are typically short, e.g.: L, =
0 and L,, = 1 [Andersen and Serensen (1996), Jacquier, Polson, and Rossi (1994),
Andersen, Chung, and Serensen (1999)],0 < L, < 2and 0 < L,, < 2 [Gallant, Hsieh,

and Tauchen (1997)]. In particular, we will devote special attention to the AR-SV(1, 1)

model:
Yo — py = (Y1 — 1) +exp(w,/2)ryz,, || <1 (1.2.5)
Wy = aW—y + Ty, |al < 1. (1.2.6)

so that
Cov(w, weer) = a™y (1.2.7)

where v = 72 /(1 — a?) . The basic assumptions described above will be completed by

a Gaussian distributional assumption and stationarity condition.
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Assumption 1.2.3 GAUSSIAN NOISE. The vectors (z,, v:)', t € Ny are i.i.d. accord-

ing to a N[0, I,] distribution.

Assumption 1.2.4 STATIONARITY. The process s, = (y;, w,)’ is strictly stationary.

The process defined above is Markovian of order Ly = maz(L,, L,,). Under these

assumptions, the AR-SV(L,, L,,) is a parametric model with parameter vector

P = (lys C1y -+ s CLy» Tyy Q1 -« QL,, Tw) - (1.2.8)

Due to the fact that the model involves a latent variable (w;,), the joint density of the
vector of observations § = (yi, ..., yr) is not available in closed-form because the
latter would involve evaluating an integral with dimension equal to the whole path of

the latent volatilities.

1.3. Closed-form method-of-moments estimator

In order to estimate the parameters of the volatility model described in the previous
section, we shall consider the moments of the residual process in (1.2.1), which can
be estimated relatively easily from regression residuals. Specifically, we will focus on

stochastic volatility model of order one (L,, = 1). Set

0 = (a, ry, Tw), (1.3.1)
0,(8) = exp(ﬂ“l—;ﬂ)ryzt, Vt. (13.2)

Model (1.2.1) - (1.2.2) may then be conveniently rewritten as the following identity:

Yo — T8 = v (6), Vt. (1.3.3)
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The estimator we will study is based the moments of the process u; = v;(f). The

required moments are given in the following lemma. *

Lemma 1.3.1 MOMENTS AND CROSS-MOMENTS OF THE VOLATILITY PROCESS.
Under the assumptions 1.2.1, 1.2.3 and 1.2.4 with L,, = 1, the moments and cross-
moments of u, = exp(w,/2)ryz, are given by the following formulas: for k, | and m

nonnegative integers,

k2

k!
— Bk _ ok K201 _ 2 L
pe(0) = E(u)) = 7y IR exp [ 3w (1-a )] , ifkiseven,
— 0, ifkisodd, (1.3.4)
pia(mlf) = E(ustym)
K I 2

= T

Tw 2, g2 .
v 20k/2)(k/2)1 20720 (1/2)! exp [8(1 — ) (°+ 17+ 2kla"'01].3.5)

if' k and | are even, and p,, ,(m|0) = 0 if k or | is odd.

Ontakingk =2, k=4,k=1=2and m = 1, we get:

py(0) = E(uf) =rlexp[r/2(1 —a?)], (1.3.6)
pa(0) = E(uy) =3ryexp[2ry/(1 —a®)], (1.3.7)
#2,2(”0) = E[U?Uf—l] = T; exp[rﬁ,/(l —a)]. (1.3.8)

An important observation here comes from the fact the above equations can be explic-

itly solved for a, r, and r,,. The solution is given in the following lemma.

Lemma 1.3.2 MOMENT EQUATIONS SOLUTION. Under the assumptions of Propo-

“Expressions for the autocorrelations and autocovariances of u? were derived by Taylor (1986, Sec-
tion 3.5) and Jacquier, Polson, and Rossi (1994). The latter authors also provide the higher-order mo-
ments E[|u}*|], while general formulas for the higher-order cross-moments of a stochastic volatility
process are reported (without proof) by Ghysels, Harvey, and Renault (1996). For completeness, we give
a relatively simple proof in the Appendix.
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sition 1.3.1, we have:

o — | loglrap(116)] +log [1a(6)/ (312(0))] |
= [ log [12(0)/ (312(0)?)] } b (139
_ 31/4/»‘2(9)
=g (1.3.10)
T = [(1 —a?)log [,14(9)/(3,#2(49)2)]]1/2 . (1.3.11)

From lemmas 1.3.1 and 1.3.3, it is easy to derive higher-order autocovariance func-
tions. In particular, for later reference, we will find useful to spell out the second and

fourth-order autocovariance functions.

Lemma 1.3.3 HIGHER-ORDER AUTOCOVARIANCE FUNCTIONS. Under the assump-

tions of Proposition 1.3.1, let X, = (X1, Xot, X31)" where
Xu = up — pp(8), Xow = uy = py(6), X = wiuy_, — Ho2(1]6) - (1.3.12)

Then the covariances v;(T) = Cov(X;,, Xii4r), @ = 1, 2, 3, are given by:

71(7) = p3(8)[exp(ya”) — 1] (1.3.13)
Yo(7) = pi(6)[exp(dya™) — 1], V7 > 1, (1.3.14)
v5(7) = p35(110)[exp(v(1 + a)?a™ ') — 1], V7 > 2, (1.3.15)

wherey =12 /(1 — a?).

Suppose now we have a preliminary estimator B of 8. For example, for the au-
toregressive model (1.2.3) - (1.2.4), estimation of the equation (1.2.3) yields consistent
asymptotically normal estimators of 3; see Theorem 3.1, Gongalves and Kilian (2004)
and Kuersteiner (2001). Of course, other estimators of the regression coefficients may

be considered. Given the residuals

W=y —z.8,t=01...,T, (1.3.16)
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it is then natural to estimate u,(6), 114(f) and p, ,(1|6) by the corresponding empirical

moments:

1 & 1 < 1o
o= 0, fu=g ) 0, Ra(l)= 5 4.
t=1 t=1

t=1

This yields the following estimators of the stochastic volatility coefficients:

. | loglia(1)] + log [f1/ (333)]
- _1, 13.17
: { log [71,/ (342)] (1240
. 3h, (Lfé)m 2
Ty = ﬂi/4 - /14 ) (131 )
/
7, = [(1 — ) log [;14/(3;13)]]1 ° ) (1.3.19)

Clearly the latter estimates can be quite easy to compute as soon as the estimator 3 used
to compute the residuals 4; = y; — m’tﬁ is also easy to obtain (e.g., it is a least squares

estimator).

1.4. Asymptotic distribution

We will now study the asymptotic distribution of the moment estimator defined in
(1.3.17) - (1.3.19). For that purpose, it will be convenient to view the latter as a special
case of the general class of estimators obtained by minimizing a quadratic form of the
type:

Mz (0) = [gr(Ur) — w(0))' C2rlgr(Ur) — w(®)] (14.1)

where u(8) is a vector of moments, gr(Ur) is the corresponding vector of empirical
moments based on the residual vector Ur = (G, ..., @r), and (r is a positive-
definite (possibly random) matrix. Of course, this estimator belongs to the general
family of moment estimators, for which a number of general asymptotic general results
do exist; see Volume 1, Chapter 9, Gouriéroux and Monfort (1995b) and Newey and

McFadden (1994). However, we need to account here for two specific features, namely:
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(1) the disturbances in (1.2.1) follow a stochastic volatility model, and the satisfaction
of the relevant regularity conditions must be checked; (2) the two-stage nature of the
procedure where the estimator of the parameter 3 of the conditional mean equation is
obtained separately and may not be based on the same objective function as the one
used to estimate 6. In particular, it is important to known whether the the estimator
of conditional mean parameter § has an effect on the asymptotic distribution of the
estimator of 6.

To spell out the properties of the estimator 6(f27) obtained by minimizing Mr(6),
we will consider first the following generic assumptions, where 6y denotes the “true”

value of the parameter vector 6.

Assumption 1.4.1 ASYMPTOTIC NORMALITY OF EMPIRICAL MOMENTS.

VT [gr(Ur) = u(6)] = N[0, £2.] (142)
where Ur = (uy, ..., ur) and
2. = lim E{T[gr(Ur) — p(00)] [37(Ur) - u(00)]'} - (14.3)

Assumption 1.4.2 ASYMPTOTIC EQUIVALENCE FOR EMPIRICAL MOMENTS. The

random vector \/T|gr(Ur) — u(6o)] is asymprotically equivalent 1o /T[gr(Ur) —

/J,(Ho)] y i.e.

glim{ﬁ[gT(UT) — u(00)] — VT [gr(Ur) — 1(60)] } = 0. (1.4.4)
Assumption 1.4.3 ASYMPTOTIC NONSINGULARITY OF WEIGHT MATRIX.
plim(£27) = 2 where det(£2) #£ 0.

T—o0
Assumption 1.4.4 ASYMPTOTIC NONSINGULARITY OF WEIGHT MATRIX.  p(fp)
is twice continuously differentiable in an open neighborhood of 6y and the Jacobian

matrix P(0y) has full rank, where P(0) = %%’
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Given these assumptions, the asymptotic distribution of 9T(f27~) is determined by a

standard argument on method-of-moments estimation.

Proposition 1.4.5 ASYMPTOTIC DISTRIBUTION OF METHOD-OF-MOMENTS ESTI-

MATOR. Under the assumptions 1.4.1 to 1.4.4,
VT [B7(£2) - 65) 3 N[0, V(6,]12)] (1.4.5)
where
V(6|02) = [P(6)2P(6)) " P(6)202.02P(6) [P(6)2P(6)) " (1.4.6)

P(#) = %%’. If, furthermore, (i) P(0) is a square matrix or (ii) {2, is nonsingular and
2 =07 then
V(6)0) = [PO)R7 P9)] ™ = V.(6). (1.4.7)

As usual, V,(6)) is the smallest possible asymptotic covariance matrix for a method-
of-moments estimator based on Mr(§). The latter, in particular, is reached when the
dimensions of p and ¢ are the same, in which case the estimator is obtained by solving

the equation

gr(Ur) = p(br) -

Consistent estimators V (6y|{2) and V(fp) can be obtained on replacing 6, and {2, by
consistent estimators.

A consistent estimator of {2, can easily be obtained [see Newey and West (1987b)]
by a Bartlett kernel estimator, i.e.:

K(T)

- k ﬂ ~,
.=h+) (1- m)(ﬂc + 1) (1.4.8)

1

b-q

~

x
i

where

e

> [ge-i(@) = 1(0)][ge() — u(6))
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with 0 replaced by a consistent estimator f1 of 6. The truncation parameter K (T') =

&T''/3 is allowed to grow with the sample size such that:

. K(T)
A e = O

[see White and Domowitz (1984)]. A consistent estimator of V, () is then given by:

V. = [P(6r) 27 P(Br)] . (1.4.9)
The main problem here consists in showing that the relevant regularity condi-

tions are satisfied for the estimator §# = (&, Ty, Tw)' given by (1.2.5)-(1.2.6) for

the parameters of a stochastic volatility model of order one. In this case, we have

w(0) = [pa(0), 1g(6), o 2(110)]',

T -
1 T %Zt:l a
gr(Ur) == alUn) = | £+ (1.4.10)
t=1 o
%ZL @iy
1 T % ZtT=1 u
gr(Ur) =D aUn) = | 50, (1.4.11)

% ZtT=1 uui_,
where g,(Ur) = [@, ay, a7a; ), and g, (Ur) = [uf, uf, wjui_,]'.

Since the number of moments used is equal to the number of parameters (three),
the moment estimator can be obtained by taking Qr equal to an identity matrix so
that Assumption 1.4.3 automatically holds. So the main problem consists in showing
that the assumptions 1.4.1 and 1.4.2 are satisfied. For that, it will useful to show the

following lemma.



18

Assumption 1.4.6 EXISTENCE OF MOMENTS. Let:

plim th = 05.(0) (14.12)
plim 7 Zztutmt_aozu(o 0), (1.4.13)
plimz thut 1T} = 0924(0,1) (14.14)

plim Zwt 2T, = 0954(1,0), (1.4.15)

where the k x k matrices 05.(0), 0224(0,0), 02..(0,1) and 05,,(1,0) are

bounded.

Proposition 1.4.7 ASYMPTOTIC DISTRIBUTION FOR EMPIRICAL MOMENTS. Un-

der the assumptions 1.2.1, 1.2.3 and 1.2.4, with L., = 1, we have:

VT [g7(Ur) — u(6s)) = N[0, 12.] (1.4.16)

where gr(Ur) = Zt_l 9/T, g0 = [u}, ui, w}ui ), and

2. = V(g = E{gi9;] — (fo)ps(0)"- (1.4.17)

Proposition 1.4.8 ASYMPTOTIC EQUIVALENCE FOR EMPIRICAL MOMENTS. Sup-
pose the assumptions 1.2.1, 1.2.3, 1.2.4 and 1.4.6 hold with L,, = 1, let 8 be an

estimator of 3 such that
VT (B - B) is asymptotically bounded, (1.4.18)

and @, = vy, — z.B. Then VT [QT(UT) - #(90)] is asymptotically equivalent to
VT [gr(Ur) — p(60)] -
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The fact that condition (1.4.18) is satisfied by the least squares estimator can be
easily seen from earlier published results on the estimation of regression models with
stochastic volatility; see Theorem 3.1, Gongalves and Kilian (2004) and Kuersteiner
(2001). Concerning equation 1.4.12 it holds in particular for the AR(p) case with z, =
Y1 = (¥i-1,---,Yi—p), [see the proofs of Theorem 3.1, and 3.4, Gongalves and Kilian
(2004)].

On assuming that the matrices {2, and P(6,) have full rank, the asymptotic normal-
ity of 6 follows as described in Proposition 1.4.5. Concerning the latter, it is interesting
and potentially useful to note that this asymptotic distribution does not depend on the
asymptotic distribution of the first-step estimator of the autoregressive coefficient ()

in the conditional mean equation.

1.5. Simulation study

In this section we study the statistical properties in terms of root mean square error,
variance and bias of our moment estimator by simulation. We have considered two
different sets of parameters, one set with a low dependency in the autoregressive dy-
namics of both processes, namely ¢ = 0.3 and a = 0 while the other one sets ¢ = 0.95
and a = 0.95. For both sets the scale parameters have been fixed at r, = 0.5 and
Tw = 0.5. The RMSE are computed on 1000 replications. Our unrestricted estimator
available in closed form is denoted by 0 with 3 moments. As a benchmark, we have
taken the moment design used by Jacquier, Polson, and Rossi (1994) and Andersen and
Serensen (1996). In particular we compare our estimator available in closed form to the
GMM estimator of Andersen and Sorensen obtained with 5 moments and 24 moments.
Globally, the optimality of one estimator over the other one is not so clear since in
some situations we are doing better in terms of bias and RMSE than the optimal GMM
estimator with 24 moments. the GMM estimator with 5 moments is clearly dominated
by our 2S-3M estimator. In terms of variance the GMM estimator with 24 moments
performs this time quite better than ours. Indeed, including more moment conditions

usually helps in reducing the variance but introduces more bias. In this respect, Ander-
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sen and Sorensen did address the choice of the number of moments to include in the
overidentified estimation procedure and found that it depends critically on sample size.
According to these authors, one should exploit additional moment restrictions when the
sample size increases. This advice is not so clear here since our estimator based on the
three minimal (for identification) moments performs better than their estimator when
the sample size is getting larger, namely for 7 = 1000, 2000, 5000. In this respect, our
just identified estimator enhances the widespread idea that one should not include too
many instruments increasing thereby the chance of including irrelevant ones in the esti-
mation procedure. This assertion is largely documented in the literature on asymptotic
theory [see for example, Buse (1992), Chao and Swanson (2000)]. In particular overi-
dentification increases bias of IV and GMM estimators in finite samples. Dufour and
Taamouti (2003) give evidence on that through Monte Carlo methods. Further, when
24 moments are used, it implies to estimate 24(24 + 1) /2 separate entries of the weight-
ing matrix along with the sample moments and the GMM estimator becomes thereby
computationally cumbersome compared to our estimator available in closed form. Fur-
thermore, when the values of the autoregressive parameters get close to the boundaries
of the domain, this creates some numerical instability in estimating the weighting ma-
trix and the situation is getting worse in small samples (" = 100, 200). Note that
when the sample size is very small (T" = 100, 200), the RMSE is critically high (be-
tween 55% and 84%) especially for the autoregressive parameter a and is due to the
extremely poor behavior of sample moments in small samples. A GARCH filter for the
volatility process is known to have rather good filtering properties, However, Bayesian
estimation of the volatility process is largely considered to be the more efficient way to

estimate this process but relies strongly on the choice of an a priori distribution.

1.6. Application to Standard and Poor’s price index

In this section, we apply our moment estimator on the Standard and Poor’s Composite
Price Index (SP), 1928-87.The data have been provided by Tauchen where Efficient
Method of Moments have been used by Gallant, Hsieh and Tauchen to fit a standard
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stochastic volatility model. The data to which we fit the univariate stochastic volatil-
ity model is a long time series comprised of 16,127 daily observations, {§;},>;>", on
adjusted movements of the Standard and poor’s Composite Price Index, 1928-87. The
raw series is the Standard and Poor’s Composite Price Index (SP),daily, 1928-87. We
use a long time series, because, among other things, we want to investigate the long-
term properties of stock market volatility through a persistence test. The raw series is
converted to a price movements series, 100[log(SP;) — log(SP,—;)|, and then adjusted
for systematic calendar effects, that is, systematic shifts in location and scale due to
different trading patterns across days of the week, holidays, and year-end tax trading.

This yields a variable we shall denote y;,.

The unrestricted estimated value of p from the data is:

pr = (0.129, 0.926, 0.829, 0.427)'

ér = [0.007, 2.89, 1.91, 8.13]',

where the method-of-moments estimated value of a corresponds to ar = 0.926. We
may conjecture that there is some persistence in the data during the period 1928-87
what has been statistically checked by performing the three standard tests in a compan-

ion paper [see Dufour and Valéry (2004)].

1.7. Conclusion

We provide a computationally simple moment estimator available in close form and
derive its asymptotic distribution for the parameters of the stochastic volatility model.
Compared with the GMM estimator of Andersen and Sorensen, it demonstrates good
statistical properties in terms of bias and RMSE in many situations. Further, it casts
some doubt on their advice that one should increase the number of moments to some ex-
tent as the sample size grows. In this respect, our just identified estimator enhances the
widespread idea that one should not include too many instruments increasing thereby

the chance of including irrelevant ones in the estimation procedure. This assertion
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is largely documented in the literature on asymptotic theory {see for example, Buse
(1992), Chao and Swanson (2000)]. In particular overidentification increases bias of
IV and GMM estimators in finite samples. Dufour and Taamouti (2003) give evidence
on that through Monte Carlo methods. Further, our closed-form estimator can underlie
computationally costly inference techniques like simulation-based inference techniques
when asymptotic approximations do not provide reliable inference. Further, our closed-
form estimator can be the basis for a easy-to-implement restricted estimator which is
deduced from the unrestricted one by simply imposing the constraint in the analyti-
cal expression of the former one. This easy-to-implement restricted estimator is very
attractive in particular for its simplicity and allows for implementing C(c) tests [see
Neyman (1959)] based on any root-n consistent restricted estimator [see Dufour and

Valéry (2004)].
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Table 1.1. BIAS
BIAS
(¢c=0.3,a=0,1,=0.5, 7, =0.5)
O

=100 =200 =500
3mm. | Smm. [24mm. || 3mm. | Smm. |24 mm. || 3mm. | Smm. | 24 mm.
a | -0.2106 | -0.0767 | 0.0780 || -0.1554 | -0.0522 | 0.0901 || -0.0805 | -0.0233 | 0.0717
ry | 0.0047 | -0.0117 | -0.0152 || 0.0044 -0.0021 | -0.0064 || 0.0023 | 0.0017 | -0.0012
Ty | -0.2988 | -0.4016 | -0.3315 || -0.2384 | -0.3643 | -0.3070 || -0.1360 | -0.3210 | -0.2218

T=1000 T=2000 T=5000
3mm. | Smm. |2dmm. || 3mm. | Smm. |24 mm. || 3mm. | Smm. | 24 mm.
a | -0.0332 | 0.0052 | 0.0186 || -0.0204 | 0.0149 | 0.0186 | -0.0062 | 0.0191 | 0.0186
ry | 0.0012 | 0.0026 | 0.0009 | 0.0006 | 0.0019 0.0009 || 0.0003 { 0.0012 | 0.0009
Tw | -0.0685 | -0.3097 | -0.0485 || -0.0328 | -0.3026 | -0.0485 || -0.0127 | -0.2074 | -0.0485

(c=0.95a=095,r,=0.5,r1, =0.5)

T=100 T=200 T=500
3mm. | Smm. |[2dmm. || 3mm. | Smm. [ 24mm. || 3mm. | Smm. | 24 mm.
a | -0.2490 | -0.2904 | -0.3400 || -0.1576 | -0.2652 | -0.1327 || -0.0921 | -0.3209 | -0.0257
r, | 0.2063 | 0.0801 | 0.0178 | 0.1754 | 0.0422 | 0.0339 0.1379 | 0.0124 | 0.0284
Tw | -0.1240 | -0.3307 | -0.3024 || -0.0817 | -0.2240 | -0.3146 || -0.0687 | -0.0843 | -0.3215

T=1000 T=2000 T=5000
3mm. | Smm. {(2dmm. || 3mm. | Smm. [ 2dmm. || 3mm. | Smm. | 24 mm.
a | -0.0610 | -0.3391 | -0.0156 || -0.0480 | -0.3593 | 0.0071 {| -0.0299 | -0.3813 | 0.0256
r, | 0.1149 | 0.0056 | 0.0253 | 0.0890 | 0.0061 0.0262 || 0.0639 | 0.0141 | 0.0305
Tw | -0.0746 | -0.0104 | -0.3105 {j -0.0583 | 0.0676 | -0.2856 || -0.0683 | 0.1988 | -0.2461
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VARIANCE
(c=03,a=0,7,=0.5,r, =0.5)
Or

T=100 =200 T=500
3mm. | Smm. | 2dmm. || 3mm. | Smm. | 24 mm. | 3 mm. | 5mm. | 24 mm.
a |[0.6482 03712 | 0.2914 |} 0.5434 | 0.3819 | 0.2986 || 0.3346 | 0.3373 | 0.2947
ry | 0.0019 | 0.0056 | 0.0024 |} 0.0010 | 0.0018 | 0.0008 || 0.0005 | 0.0004 | 0.0003
rw | 0.0572 | 0.0423 | 0.0360 | 0.0593 | 0.0557 | 0.0321 |l 0.0436 | 0.0827 | 0.0233

T=1000 T=2000 T=5000
3mm. | Smm. |24mm. | 3mm. | Smm. | 24 mm. || 3mm. | S mm. | 24 mm.
a | 0.1686 | 0.2103 | 0.0354 || 0.0862 | 0.1027 | 0.0354 || 0.0276 | 0.0304 | 0.0354
ry | 0.0002 | 0.0001 | 0.0000 || 0.0001 | 0.0000 | 0.0000 || 0.0000 | 0.0000 | 0.0000
rw | 0.0200 | 0.1119 | 0.0030 || 0.0092 | 0.1432 | 0.0030 || 0.0029 | 0.1252 | 0.0030

(c=0.95,a=0.95,1,=05, r, = 0.5)

=100 =200 =500
S3mm. | Smm. | 24dmm. || 3mm. | Smm. | 24 mm. || 3mm. | 5mm. | 24 mm.
a |0.1796 | 0.3538 | 0.3019 | 0.0751 | 0.3217 | 0.1634 || 0.0343 | 0.3339 | 0.0426
T, | 0.1184 | 0.0815 | 0.0691 || 0.0647 | 0.0458 | 0.0497 | 0.0284 | 0.0177 | 0.0225
Ty | 0.1574 | 0.0607 | 0.0633 | 0.1679 | 0.0979 | 0.0481 || 0.1649 | 0.1254 | 0.0325

T=1000 T=2000 T=5000
3mm. | Smm. | 24mm. || 3mm. | Smm. | 24 mm. || 3mm. | Smm. | 24 mm.
a 0.0210 | 0.3336 | 0.0414 || 0.0143 | 0.3309 | 0.0172 || 0.0093 | 0.2911 | 0.0003
T, | 0.0143 | 0.0089 | 0.0115 |} 0.0073 | 0.0047 | 0.0056 | 0.0040 | 0.0020 | 0.0021
T | 0.1522 | 0.1484 | 0.0213 | 0.1432 | 0.1546 | 0.0189 || 0.1312 |} 0.1709 | 0.0108
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RMSE
(c=03,a=0,r,=0.5, r, =0.5)
br

T=100 =200 =500
3mm. | Smm. [ 24mm. || 3mm. | Smm, | 24 mm. || 3mm. | S mm. | 24 mm.
a | 0.8318 | 0.6138 | 0.5459 || 0.7530 | 0.6205 | 0.5536 || 0.5837 | 0.5818 | 0.5475
ry | 0.0439 | 0.0759 | 0.0513 || 0.0320 | 0.0434 | 0.0295 || 0.0226 | 0.0203 | 0.0199
rw | 0.3827 | 0.4512 | 0.3822 || 0.3408 | 0.4335 | 0.3555 | 0.2491 | 0.4313 | 0.2694

T=1000 T=2000 T=5000
Smm. | Smm. [ 24mm. | 3mm. | Smm. | 24 mm. || 3 mm. | S mm. | 24 mm.
a | 04118 | 0.4590 | 0.4759 | 0.2942 { 0.3211 | 0.3561 || 0.1662 | 0.1754 | 0.1891
r, | 0.0155}0.0140 | 0.0137 || 0.0113 | 0.0101 | 0.0098 | 0.0078 | 0.0070 | 0.0068
Ty | 0.1571 | 0.4559 | 0.2000 |l 0.1014 | 0.4852 | 0.1393 | 0.0556 | 0.4100 | 0.0732

(c=10.95,a=0.95r,=0.5, 1, =0.5)

T=100 T=200 7=500
3mm. | Smm. | 2dmm. || 3mm. | Smm. | 24 mm. || 3 mm. | 5 mm. | 24 mm.
a |0.4914 | 0.6617 | 0.6459 || 0.3159 | 0.6351 | 0.4252 | 0.2069 | 0.6607 | 0.2079
Ty | 0.4010 | 0.2964 | 0.2634 || 0.3089 | 0.2180 | 0.2255 | 0.2178 | 0.1338 | 0.1527
Ty | 0.4155 | 0.4123 | 0.3933 || 0.4176 | 0.3847 | 0.3835 |} 0.4116 | 0.3638 | 0.3686

7=1000 T=2000 T=5000
3mm. | Smm. [ 24mm. || 3mm. | Smm. | 24 mm. || 3mm. | Smm. | 24 mm.
a | 0.1573 | 0.6696 | 0.2041 | 0.1291 | 0.6780 | 0.1314 | 0.1014 | 0.6605 | 0.0312
Ty | 0.1659 | 0.0944 | 0.1102 || 0.1234 | 0.0686 | 0.0797 | 0.0900 | 0.0460 | 0.0553
T | 0.3970 | 0.3852 | 0.3431 || 0.3828 | 0.3988 | 0.3170 || 0.3685 | 0.4586 | 0.2673




Chapitre 2

Finite and Large Sample Inference for

a Stochastic Volatility Model L

I"This paper is co-authored with Jean-Marie Dufour.
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2.1. Introduction

Evaluating the likelihood function of ARCH models is relatively easy compared to
Stochastic Volatility models (SV) for which it is impossible to get an explicit closed-
form expression for the likelihood function {see Shephard (1996), Mahieu and Schot-
man (1998)]. This is a generic feature common to almost all nonlinear latent variable
models due to the curse of the high dimensionality of the integral appearing in the
likelihood function of the stochastic volatility model. This is the reason why econome-
tricians were reluctant to use this kind of models in their applications for a long time
since in this setting, maximum likelihood methods are computationally intensive. But
ever since progress has been made regarding the estimation of nonlinear latent variable
models in general and stochastic volatility models in particular. It mainly exists three
types of methods, namely, quasi-exact methods, simulation-based-estimation methods
and bayesian methods. Thus, we can mention the Quasi Maximum Likelihood (QML)
approach suggested by Nelson (1988) and Harvey, Ruiz and Shephard (1994), Ruiz
(1994), a Generalized Method of Moments (GMM) procedure proposed by Melino and
Turnbull (1990). On the other hand, increased computer power has made simulation-
based estimation methods more attractive among which we can mention the Simulated
Method of Moments (SMM) proposed by Duffie and Singleton (1993), the indirect in-
ference approach of Gouriéroux, Monfort and Renault (1993) and the moment match-
ing methods (EMM) of Gallant and Tauchen (1996). But computer intensive Markov
Chain Monte Carlo methods applied to SV models by Jacquier, Polson and Rossi (1994)
and Kim and Shephard (1994), Kim, Shephard and Chib (1998), Wong(2002a,2002b)
and simulation-based Maximum Likelihood (SML) method proposed by Danielsson
and Richard (1993), Danielsson (1994), are the most efficient methods to estimate this
kind of models. In particular, Danielsson (1994), Danielsson and Richard (1993) de-
velop an importance sampling technique to estimate the integral appearing in the like-
lihood function of the SV model. In a Bayesian setting, Jacquier, Polson and Rossi
(1994), Kim, Shephard and Chib (1998) combine a Gibbs sampler with the Metropolis-

Hastings algorithm to obtain the marginal posterior densities of the parameters of the
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SV model.

In contrast, the major contribution of this paper is to provide asymptotic and ex-
act inference techniques for testing hypotheses on the parameters of the log-normal
stochastic volatility model with an autoregressive mean part. Indeed, the standard
form as set forth, for instance, in Harvey, Ruiz, and Shephard (1994), Jacquier, Pol-
son, and Rossi (1994), Danielsson (1994), takes the form of an autoregression whose
innovations are scaled by an unobservable volatility process, usually distributed as a
lognormal autoregression but other distributions (Student, mixture of normal distribu-
tions) can be considered [see Kim, Shephard and Chib (1998), Mahieu and Schotman
(1998), Wong (2002a,2002b)]. The stochastic volatility specification we have chosen
here comes from Gallant, Hsieh, Tauchen (1997), Tauchen (1997). Whereas all the au-
thors quoted above, mainly focus on estimation performance for the stochastic volatility
model, often preoccupied by efficiency considerations [e.g. bayesian methods, Efficient
Method of Moments], our paper instead is mostly motivated by inference techniques
applied to the stochastic volatility model. Our concern for inference, in particular for
simulation-based inference such as the technique of Monte Carlo tests introduced by
Dwass (1957) for permutation tests, and later extended by Barnard (1963) and Birn-
baum (1974), requires an estimation method easy to implement. Thus, the estimation
method used in this paper is mainly a method of moments [see Taylor (1986)] in two
steps which coincides with the GMM procedure in the particular case that the autore-
gressive mean part vanishes. For a detailed presentation of the estimation technique
applied to the SV model with an autoregressive conditional mean part, see Dufour and
Valéry (2004). As econometricians previously quoted mainly focused on efficient esti-
mation procedures to estimate the SV model, they mostly examined specification tests
such as the x? tests for goodness of fit in Andersen and Sorensen (1996), Andersen,
Chung and Sorensen (1999), specification tests with diagnostics in Gallant, Hsieh and
Tauchen (1997), x? specification tests through Indirect Inference criterion in Monfar-
dini (1997), or likelihood ratio tests statistics for comparative fit in Kim, Shephard and

Chib (1998). As a result, inference techniques for testing hypotheses on parameters
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of the stochastic volatility model remained underdeveloped, apart from standard t-tests
for individual parameters in Andersen and Sorensen (1996), in Andersen, Chung and
Sorensen (1999) often performed with size distortions.

In this setting, the aim of the paper is to fulfill the gap for testing hypotheses on
parameters of the SV model, more precisely, to propose exact tests in the sense that
the tests have correct levels in small samples. To do this, we implement the three stan-
dard test statistics that is the Wald-type, score-type and likelihood-ratio-type test based
on a computationally simple method-of-moments estimator available in closed form
[see Dufour and Valéry (2004)]. We further consider a c(a)-type test [see Neyman
(1959), Ronchetti (1987), Berger and Wallenstein (1989), Kocherlakota and Kocher-
lakota (1991)] which is very easy to implement in our framework and demonstrates
good size and power properties. Using these test procedures, we test the null hypothesis
of no persistence in the volatility against alternatives of strong persistence in the volatil-
ity process.Testing for the presence or not of strong serial correlation in the volatility
process is relevant mostly for speculative returns which tend to display systematic long-
range volatility dependencies in general and more specifically for option pricing pre-
dictions. Indeed, a strong serial correlation in the underlying volatility process will
help minimizing the pricing error of future option prices computed on the basis of both
current realized and implied volatilities. In this respect, a stream of the option pricing
literature has seized the importance of this issue by allowing for long-range dependence
in the volatility process when compared with the standard stochastic volatility model or
the ARCH family, using thereby a fractional integration process whose autocorrelation
function is known to decrease at a much slower rate, a hyperbolic decay rate, than that
of the standard stochastic volatility process or the ARCH-type family [see Breidt,Crato,
Lima (1998) for detection and estimation of a long-memory feature in a discrete time
stochastic volatility model , see Comte and Renault (1998) for the continuous time
stochastic volatility and Comte, Coutin and Renault (2003), Ohanissian, Russel and
Tsay (2003) for its applications to option pricing]. In this regards, we propose a speci-

fication test for testing the null hypothesis of linearity in the volatility process against a
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fractionally integrated volatility process by means of a likelihood-ratio-type test statis-
tic for comparative fit. Furthermore,we also provide a joint test for testing homoscedas-
ticity in the volatility process. In this respect, a statistical check for homoscedasticity
in the stochastic volatility model could be viewed as a relevant pre-test before trying
to include a latent factor to drive the dynamic of the volatility process which makes its
estimation much more complicated. Testing for homoscedasticity arises strong anoma-
lies as the moment conditions become no more identifying under the null. In presence
of such irregularities, the standard asymptotic distribution is known to fail and one has
to resort to nonstandard inference techniques or simulation-based inference techniques
such as Monte Carlo tests to control for the size.

In a Monte Carlo study we compare the finite sample properties of the standard
asymptotic techniques to the technique of Monte Carlo tests which is valid in finite
samples and allow for test statistics whose null distribution may depend on nuisance
parameters. In particular maximized Monte Carlo tests (MMC) introduced by Du-
four (1995) have the exact level in finite samples when the p-value function is maxi-
mized over the entire set of nuisance parameters. In contrast to MMC tests which are
highly computer intensive, simplified (asymptotically justified) approximate versions
of Monte Carlo tests provide a halfway solution which achieves to control the level
of the tests while being less computationally demanding. We finally illustrate the test
procedures by providing an application on a long time return series on the Standard and
Poor’s Composite Price Index.

The paper is organized as follows. Section 2 sets the framework and the assump-
tions underlying the model and reviews the estimation procedure used to implement the
tests. Section 3 is devoted to the specification test of linear volatility against fraction-
ally integrated volatility. Hypothesis testing is examined in Section 4 where we also
discuss how to build confidence sets by inverting the test statistics. In Section 5 we re-
view the technique of Monte Carlo tests. Simulation results are displayed in Section 6
while empirical results on the Standard and Poor’s Composite Price Index return series

are discussed in Section 7. We finally conclude in Section 8.
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2.2. Framework

The basic form of the stochastic volatility model we study here for y;, comes from
Gallant, Hsieh, Tauchen (1997). Let y, denote the first difference over a short time
interval, a day for instance, of the log-price of a financial asset traded on securities

markets.

Assumption 2.2.1 The process {y;, t € N} follows a stochastic volatility model of the

type.‘
Ly
Yo~y = ci(ye—j — ) + exp(wy/2)ryz (2.2.1)
7=1
Lu
Wy — phy, = Z aj(Wi—j — fy) + Tl , (2.2.2)
j=1

where p,, {c; };’;1, Ty Mo {Qj ;‘;“1 and T, are the parameters of the two equations,
called the mean and volatility equations respectively. s, = (y, w,)’ is initialized from

its stationary distribution.

The lag lengths of the autoregressive specifications used in the literature are typically
short,e.g. L, =1, L, =1, or L, = 0,0r L, = 2, L, = 2 [see e.g. Andersen
and Sorensen (1996), Gallant, Hsieh, Tauchen (1997), Andersen, Chung and Sorensen
(1999)]. In this regards, a simplified version of model (2.2.1)-(2.2.2) consists in setting
Ky =0andc; =a; =0,Vj > 2,and p = (¢, 8") with § = (a,ry,7,) . We then have:

Yo =ty = (Y1 — 1) +exp(we/2)ryz,  ef <1 (223)

wy =aw_y + Tt , |a|<1. 2.2.4)

We shall call the model represented by equations (2.2.3)-(2.2.4) the stochastic volatility

model with an autoregressive mean part of order one [AR(1)-SV for short].

Assumption 2.2.2 The vectors (z,v,)', t € Nare i.i.d. according to a N(0, I,) distri-

bution.
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Assumption 2.2.3 The process s, = (y;, w;)" is strictly stationary.

The process is Markovian of order Ls = maz(Ly, L,). Let

P = (HysCly - ooy CLy Tys Pgy Ol - - yGLyy Tw) (2.2.5)

denote the parameter vector of the stochastic volatility model. The process {y;} is ob-
served whereas {w, } is regarded as latent. Accordingly, the joint density of the vector
of observations § = (yi,--.,yr) is not available in closed form since it requires eval-
uating an integral with dimension equal to the whole path of the latent volatilities. Let
F(y) = F(y1,-..,yr) = PY1 < y1,...,Yr < yr|p] denote its unknown distribution
function

To estimate the AR(1)-SV model above, we consider a two-step method whose
first step consists in applying ordinary least squares (OLS) to the mean equation which
yields a consistent estimate of the autoregressive parameter ¢ and of the mean parameter
14, denoted by ér, fi,r and the residuals 4, = w(ér) = Yo — phy — er(ys—1 — 1,,). Then,
we apply in a second step a method of moments to the residuals 1, to get the estimate
of the parameter § = (a, 7y, 7y) of the mean and volatility equations. In the sequel we
will focus on the particular case where 1, = 0 but all the results still hold in the general
case. In the two propositions below, we recall the moments of the volatility process
as well as the estimating equations defining the moment estimator of 6. For a detailed

proof of these propositions, the reader is referred to Dufour and Valéry (2004).

Proposition 2.2.4 MOMENTS OF THE VOLATILITY PROCESS.
Under Assumptions 2.2.1,2.2.2,2.2.3, with i, = p,, = O0andc; = a; =0,V j 2 2

Then u, has the following moments for even values of k and l:

: k! k?
me(6) = E(uf) = TL‘W explgra/(1—a’)], (2.2.6)

#k,t(m|9) o E(ufuilm)
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et K 1 2

T 2 ey m
4 Q(k/z)(k/2)!2“/2)(l/2)!exP[S(l_a2)(l” +1° + 2kla™)] .

=T

2.2.7)

The odd moments are equal to zero.

In particular, for k = 2,k =4 and k = [ = 2 and m = 1, we get as in Jacquier, Polson

and Rossi (1994):

po(0) = E(uf) = 75 explrl/2(1 — a?)] (2.2.8)
py(0) = E(u)) = 3r exp[2r /(1 — a®)] (2.2.9)

and
p22(116) = Elufu;_] = ryexp[rl/(1 - a)] . (22.10)

Solving the above moment equations corresponding to k = 2, k = 4 and m = 1 yields

the following proposition.

Proposition 2.2.5 ESTIMATING EQUATIONS.

Under the assumptions of Proposition 2.2.4, we have:

0= (log(po,2(1]0)) — log(3) ~ 4log(us) + log(pg))]

-1, (2.2.11)
log(sg.32)
31/4’u
Ty = 1—/42 , (2.2.12)
Hy
1 1/2
Ty = | log(=2 1—a2> . (2.2.13)
(et =

Given the latter proposition, it is easy to compute a method-of-moments estimator for
§ = (a,Ty,Ty) replacing the theoretical moments by sample counterparts based on the
residuals 4;. Let @T denote the method-of-moments estimator of 6. Typically, E(u?),

E(u}) and E(u?u?_,) are approximated by:

T T

. 1 9 . 1 . . 1 aDn

/‘2:T E :u? /~‘4=T§ U?7 I~L2(1)=T E :Ufuf-l
t=1
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respectively. f is consistent and asymptotically normally distributed. See Dufour and

Valéry (2004) for an exhaustive presentation of its asymptotic properties.

2.3. Specification test

In this section we propose a specification test to test the null hypothesis of linearity in
the volatility process as stated in equation (2.2.4) against the alternative of a fractionally
integrated Gaussian process for the volatility where equation (2.2.4) is replaced by:
(1-B)Yw=n, , n, =" N(0,02) (2.3.14)
where d € (—0.5,0.5). When d is restricted to this domain, w is stationary and invert-

ible [see Hosking (1981)]. By denoting v;(8) = exp(w,/2)r,z where 6 = (d, Ty, 02),

1

we review the first two moments of v,(¢) obtained from properties of the log-normal

distribution as it is stated in Breidt, Crato and de Lima (1998):

pa(8) = E(v(6)*) = rZ exp[y(0)/2] , (2.3.15)
14(8) = E(v(8)*) = 3r§ exp[27(0)] , (23.16)

and
pa,2(Rl0) = Elui(8)v, n(8)*) = r}exp[y(0)(1 + p(h))] , (23.17)

where the auto-covariance and autocorrelation functions for the long-memory process

{w,}, denoted by v(-) and p(-) are given by:

r(l-2ad
~7(0) =0§—F£(1 _d; , (2.3.18)
p(h) = [(h = d)I(1 —d) h=1,2,..., (2.3.19)

F(h—d+1)I(d) "’
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[see Brockwell and Davis, (1991), p.522]. Then, the likelihood-ratio-type test statistic

for comparative fit that is investigated here is given by:
E? = T[M}(87| Mg) — M (87| M;)] (2.3.20)
where
M;(61M:) = [gr(U) = p(6l M2 [gr(U) — p(6lMy)], i=0,1 (2321

to test the null hypothesis that the true model, denoted by My is the linear volatility
process against the alternative M; which is the fractionally integrated gaussian volatil-

ity process.

2.4. Tests and confidence sets

In this section we shall set the framework for testing general hypotheses as Hy : F' €
H,, where H, is a subset of all possible distributions for the stochastic volatility model

(2.2.3)- (2.2.4), that is,
Ho= {F() : F(5) = Fo(gl(6)) and v(6) = 0} , (2.4.22)

where () is a p x 1 continuously differentiable function of §. Hy is usually abbre-
viated as: Hy : %(0) = 0. The derivative of the constraints P(f) = g—g’—, has full row
rank. Let §7 be the unrestricted estimator and 9; the constrained estimator obtained by
minimizing the following criterion under Hy:

M3(0) = [gr(0) — p(0))' 2" gr(U) — u(8)] - (2.4.23)

The Wald statistic is defined as

X = Ty(br) [P(JT71J) 9 (br) (2.4.24)
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“where P = P(fr), | = I(87) = 2 (Br), J = J(Br) = 2(0r) .

The score statistic is defined from the gradient of the objective function with respect

to # evaluated at the constrained estimator. This gradient is given by:

Bu ~C

Dr = -5 (0r)2 7 (u(@r) - gr(0)) (24.25)

and the test statistic is given by
&5 = TDR(JjI3 o) Dr (2.4.26)

where [y = 1(9;) = Q*(@CT), Jo = J(éCT) = g{fr(@;) . Finally, we can introduce the
difference between the optimal values of the objective function that we shall call the

LR-type test in the simulations:
&8 = T[M;(87) — M7 (b)) . (2.4.27)

The three standard test statistics £ , £5., and €5 are known to be asymptotically equiv-
alent and to follow a x? distribution under the null hypothesis.

We also consider the c(c)-type test statistic defined by:
PC(87) = T{u(f7) — gr(0)) Wolu(87) — gr(0)] (2.4.28)

where Wy = I3 Jo(JiI5 Jo) 2 Py Po(JiIt Jo) L By By(J 5 Jo) Iyt with
Jo = J(07) = 2(67) , I = I(67) = @°(67) , and By = P(87). 07 is any
root-n consistent estimator of ¢ that satisfies 7,0(9;) = 0. For our concem, écT will
be obtained by imposing the constraints in the analytic expressions of the unrestricted
method-of-moments estimator f7 given at equations (2.2.11) to (2.2.13), yielding a
consistent restricted estimator without any optimization step. It is known [see Dufour
and Trognon (2001, p.8, Proposition 3.1)] that the c(a)-type test statistic is asymptot-

ically distributed as a x? variable under the null hypothesis. In the simulations, we
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6
will focus on a particular form of the constraint, i.e. ¢(#) = (1,0) "1 =0

P
and the null hypothesis Hy : %(0) = 0 simplifies to Hy : 6, = 0, (e.g. 6, = a,

6, = (a,7y)").We shall discuss at this stage a few anomalies arising when testing the
joint null hypothesis of no heteroscedasticity Hy : (a,7,) = Q against an alterna-
tive of stochastic volatility. We shall stress two interesting findings. The first one is
when trying implementing the null hypothesis no heteroscedasticity, the score-type test
statistics such as the score statistic and the c¢(«) statistic become identically null by
construction through the derivatives of the moments of the volatility process. In that
sense, the score-type test statistics are no longer meaningful under weaker regularity
conditions. As a consequence, the test of no heteroscedasticity against an alternative of
stochastic volatility is performed by means of the Wald statistic and the LR-type statis-
tic. However, a serious singularity issue arises when implementing the null hypothesis
of homoscedasticity, since under the null the moment conditions become nonlinearly
redundant. Indeed, the three moment conditions (2.2.8), (2.2.9) and (2.2.10) reduces to
only two relevant moment conditions. Hence, the Jacobian of the moment conditions
is no more of full-column rank and therefore some singularity problems arise. In such
a framework, it is known that the standard asymptotic theory does not provide reli-
able inference any longer. A simulation exercise strongly highlights the failure of the
asymptotic theory when the usual regularity conditions do not hold anymore. In partic-
ular, the Wald statistic exhibits severe size distortions for any length of the simulated
path. As for the LR-type statistic, it tends to under-reject the null but remains glob-
ally valid under nonregular conditions. Indeed, it is known [see Dufour (1997)] that
the Wald statistic is not reliable in nonstandard situations whereas the LR statistic still
provides reliable inference. In such a context, simulation-based inference such as the
technique of Monte Carlo tests presented in the next section, is the solution to correct
for these extreme size distortions observed for its asymptotic counterparts.

We also provide confidence sets by inverting the test statistics. Let So = S(¢, §)
note one of the four previous tests statistics computed from the sample points § =

(y1,---,yr) and under the hypothesis Hy : (f) = 0. It is known that there is
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a correspondence between confidence sets and tests. The acceptance region of the
hypothesis test, the set in the sample space for which Hy : (8) = 0 is accepted, is
given by

A)={=(,--,y7) : S, 9) <x} ..} (2.4.29)

for a « level test, and the confidence set, the set in the parameter space with plausible

values of 1(#), is given by

Clyr, .. yr) ={¥(0) : S@,9) < xio}={¥®) : GSE,9)>a},
(2.4.30)

where G(.) denotes the p-value function. These sets are connected to each other by the

tautology
(¥1,---,yr) € A(Y) & P(0) € Clyy, -, yr) -

The hypothesis test fixes the parameter and asks what sample values (the acceptance re-
gion) are consistent with that fixed value. The confidence set fixes the sample value and
asks what parameter values (the confidence set) make this sample value most plausible.

Thus, if A(¢) is an acceptance region with level a, we have:

PrlY ¢ AW)] <a ,VF€H,

and hence,

PF[YEA(IJ))]ZI—O[ WVF eH,.

Then, the coverage probability of the set C(Y') is given by:
Prly(0) e C(Y)] = PrlY € A(¥)] 21 -«

showing that C(Y') is a 1 — a confidence set for ¢(f).
Following this methodology, we will build confidence sets for the autoregressive
parameter of the volatility process by retaining all the values of the parameter for which

the p-value function is greater than or equal to 1 — ¢, yielding a (1 — «)-level confidence
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set.

2.5. Monte Carlo testing

The technique of Monte Carlo tests has originally been suggested by Dwass (1957) for
implementing permutation tests, and did not involve nuisance parameters. This tech-
nique has been later extended by Barnard (1963) and Bimbaum (1974). This technique
has the great attraction of providing exact (randomized) tests based on any statistic
whose finite sample distribution may be intractable but can be simulated.

We review in this section the methodology of Monte Carlo tests as it is exposed in
Dufour (2002),[see also Dufour and Kiviet (1996), Kiviet and Dufour (1997),Dufour
and Khalaf (1997), Dufour and Khalaf (2002b), Dufour and Khalaf (2002a), ...] where
the distribution of the test statistic S may depend on nuisance parameters. For the test
statistics exposed in section 2.4, their asymptotic distribution is asymptotically pivotal
(Chi-square distribution), but their finite sample distribution remains unknown. At this
stage, we need to make an effort of formalization to clearly expose the procedure. We
consider a family of probability spaces {(Z,.Az, F,) : p € 2} and suppose that S is a
real valued .Az-measurable function whose distribution is determined by P, where p is

the *“‘true” parameter vector. We wish to test the hypothesis
H() IpE Qo,

where (2 is a nonempty subset of {2. We consider a critical region of the form S > ¢,
where c 1s a constant which does not depend on p. The critical region S > c has level
« if and only if

P,[S > c] < a,Vp € £,

or equivalently,

sup P,[S > (] < o
PES
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Furthermore, S > c has size o when

sup B[S > ] = a.
pPES

We consider a real random variable Sy and random vectors of the form

S(N,p) = (Si(p),-.-,Sn(p)),p € 12,

all defined on a common probability space (Z,.Az, P), such that the variables
So,S1(p), - --,Sn(p) are i.i.d. or exchangeable for some p € (2, each one with dis-
tribution function F[z|p] = P[Sy < z]. Typically, S will refer to a test statistic com-
puted from the observed data when the true parameter vector is p (i.e., p = p), while
S1(p), - - -, Sn(p) will refer to i.i.d replications of the test statistic obtained indepen-
dently (e.g., by simulation) under the assumption that the parameter vector is p (i.e.,
P[Si(p) < z] = F[z|p]). In other words, the observed statistic S is simulated by first

generating an “observation” vector y according to

y=g(p z,v) (2.531)

where the function g has the bivariate AR(1)-SV specification as stated in equations
(2.2.3) and (2.2.4), with p = (c,,,0)’, 8 = (a,my, 7). The perturbations z and v
have known distributions, which can be simulated (N(0, 1) or student, or mixtures,

e.g.). We can then compute

S(p) = Slg(p, z,v)] = gs(p, z,v) . (2.5.32)

The observed statistic Sp is then computed as S; = S[g(p, 29, vo)] and the simu-
lated statistics as Si(p) = S[g(p, z:,v:)] ;i = 1,..., N where the random vectors
z9,21,---, 2y are 11.d. (or exchangeable) and vy, vy, ..., vy are i..d. (or exchange-
able) as well.

The technique of Monte Carlo tests provides a simple method allowing one
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to replace the theoretical distribution F'(z|p) by its sample analogue based on

S1(p),- -+ Sw(p):
N
Fxlz; S(N, p)] Z (p) NZI[O""] (z — Si(p))

where s(z) = 1jp,00)(z) and 14(z) is the indicator function associated with the set A.

We also consider the corresponding sample tail area function:

Mz

GN[IESNp

=1

and the p-value function

pnlzlo] = NGy[z|p] + 1
NITIP N+1
The sample distribution function is related to the ranks R;,--- , Ry of the variables

S1(p), ..., Sn(p) (when put in ascending order) by the expression:

N
R; = NFy[S;; S(N, p)] ZS i(p), 7=1,...,N.
i=1

The central property which is exploited here is the following: to obtain critical values
or compute p-values, the “theoretical” null distribution F'[z|p] can be replaced by its
simulation-based “estimate” Fiy[z|p] = Fn[z; S(N, p)] in a way that will preserve the
level of the test in finite samples, irrespective of the number N of replications used. At
this stage we shall refer the reader to Dufour (2002, p.13, Proposition 4.1) in which the
author states the finite sample validity of Monte Carlo tests when the p-value function
is maximized over the entire set of the nuisance parameters.

Therein, the author shows that the critical region sup{Gn[So|o] : p € 2} <
has level a irrespective of the presence of nuisance parameters in the distribution of the
test statistic S under the null hypothesis Hy : p € (2. Likewise, the (almost) equivalent
randomized critical regions inf{ Fx[Solp] : p € 20} > 1 — oy or Sy > sup{F5'[1 -

ay|p] - p € (2} are shown to have the same level « as their non-randomized analogues.
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Dufour (2002) calls such tests maximized Monte Carlo (MMC) tests. The function
G [So|p] (or P [Solp]) is then maximized with respect to p € (2, keeping the observed
statistic Sy and the simulated disturbance vectors z1, ..., zy and vy, ..., vy fixed. The
function G ~|[Solp] is a step-type function which typically has zero derivatives almost
everywhere, except on isolated points (or manifolds) where it is not differentiable. So
it cannot be maximized with usual derivative-based algorithms. However, the required
maximizations can be performed by using appropriate optimization algorithms that do
not require differentiability, such as simulated annealing. For further discussion of such
algorithms, the reader may consult Goffe, Ferrier, and Rogers(1994).

On the other hand, Dufour (2002) also proposes simplified (asymptotically justified)
approximate versions of Monte Carlo tests where the p-value function may be evaluated
either at a consistent point estimate and defines thereby a bootstrap version, or at a
consistent set estimate of p and defines instead confidence-set-Monte Carlo tests. The
author shows [see Dufour, (2002, p.16, Proposition 5.1 and p.19, Proposition 6.3)]
that both tests are asymptotically valid in the sense that they have the correct level
« asymptotically and the estimated p-values converge to the true p-values. He also
assesses the validity of the MMC tests and the asymptotic Monte Carlo tests based on
consistent set estimators for general distributions , when ties have non-zero probability
[see Dufour, (2002, p.14, Proposition 4.2 and p.17, Proposition 5.2)].

In the remaining of the paper we will implement the maximized and bootstrap ver-
sions of the Monte Carlo technique and investigate in a comparative Monte Carlo study
their actual size and power performances with respect to those of the standard asymp-

totic tests developed in section 2.4.

2.6. Simulation results

Here we test the null hypothesis of no-persistence in the volatility, which corresponds
to Hy : a = 0 against the alternatives H; : a = 0.8,0.99. The nominal level of the
tests has been set to o« = 5%. M represents the number of replications used to assess

the actual size of the tests and has been fixed to M = 1000 for all tests. IV represents
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the number of simulated statistics used in the Monte Carlo tests. T is the sample size
of the series y; whose data generating process is assumed to be specified as in equa-
tions (2.2.3)-(2.2.4). Implementation is performed with the GAUSS software version
3.2.37. Note that the autoregressive parameter a in the autoregressive specification of
the volatility process is restricted to (-1,1) to ensure the stationarity of the volatility
process. At this end, each time the estimate of a falls outside of its domain we truncate
the estimator by setting itto a = 0.99 whena >=1landtoa = —0.99 whena <= —1.

The Wald statistic as defined at equation (2.4.24) is evaluated at the unrestricted
method-of-moments estimator élT. The Score statistic as defined at equation (2.4.26)
is evaluated at the restricted estimator 6. which minimizes the criterion M3 () defined
at equation (2.4.23) submitted to the constraint ¢ = 0 whereas g)CT represents another
restricted estimator of § obtained by setting a = 0 in the analytic expressions of the un-
restricted method-of-moments estimator §7 given at equations (2.2.11)- (2.2.13). The
c(a)-type statistic as defined at equation (2.4.28) is evaluated at this restricted estima-
tor ?)f} of §. Further, the LR-type test statistic corresponds to the difference between
the optimal values of the objective function. Let LR(f2) = €5 [see equation (2.4.27)]
where 2 = 2(fr). The weighting matrix 2 is estimated by a kernel estimator with a
fixed-Bandwith Bartlett Kernel, where the lag truncation parameter K has been set to
K =2

Let S denote the test statistic which alternatively will take the form of one of the
four test statistics earlier mentioned and let Sp denote the statistic computed from the
"pseudo-true" data obtained by simulation under the data generating process evaluated
at the "true" value of the parameter. The asymptotic critical regions used to perform the

asymptotic tests are of the form:
Re={S > xi_.(d)=c}, 1=1,2,3

with ¢; = 3.84, ¢; = 5.99 and ¢3 = 7.81. The critical regions used to perform the
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Monte Carlo tests has the following form:

R = {pn[Solp7] < a}

with the p-value function given by:

) NGn[Solp] +1
alolp] = Tl
and the survival function given by:
) Y
G[So: SN, p)] = 7 > 5(Si(p) = So) -
i=1

The p-value function is evaluated at a consistent restricted estimator of p = (c, ')’ =
(c,a,ry, 7). The critical region used to implement the maximized Monte Carlo test

correspond to:

R = {max pn[Solp| < a} ,
pES)

where the p-value function is maximized on a neighborhood of the restricted estimate
of p. We use a grid with increment equal to 0.1 to compute the p-value function in
the neighborhood. The simulated statistics S;(p) ¢ = 1, ..., IV will always be evaluated
under the null hypothesis in the Monte Carlo tests whatever the hypothesis to be tested.
o has been set to @ = 5%. Monte Carlo tests whose p-value function is evaluated at a
consistent point estimate of the nuisance parameters follow the methodology presented

in section 2.5.

2.6.1. Size investigation

We study the actual size of the various tests compare them to their nominal size fixed
at « = 5%. Concerning the specification test, we study in Table 2.1 the actual size of
rejecting the null hypothesis of a linear autoregressive volatility specification against

an alternative fractionally integrated gaussian volatility process. The parameters have



45

been set to ¢ = 0.3, r, = 7, = 0.5 and the autoregressive volatility parameter a =
0.3. As usually encountered in specification tests, the test underreject the null in small
samples and requires at least T = 5000 observations to reach the nominal level stated
at o = 5%.

The results reported in the top part of Table 2.2 for rejecting the null hypothesis
Hy : a = 0 display evidence for the asymptotic tests of under-rejecting Hy for the
Wald and the C(a) tests particularly in small samples, whereas the score-type and the
LR-type tests tend to over-reject. In particular the underrejection under the null tends to
induce a loss of power under the alternative. By contrast, we can see in the bottom part
of Table 2.2 that the technique of MC tests achieves in correcting for the size distortions
of the asymptotic tests. We also investigate in Table 2.3, a joint test of homoscedasticity
in the stochastic volatility model by testing the null hypothesis Hy : a = 0,7, = 0 by
means of the Wald-type and LR-type statistics. The score-type test statistics have been
evacuated here since they are identically null by construction. The asymptotic critical
value is given by the 95%-quantile of the chi-square distribution with two degrees of
freedom which correspond to c; = 5.99. Note the extremely huge over-rejection (more
than 90%) displayed by the asymptotic Wald test when usual regularity conditions are
not satisfied. Whatever sample size is considered, the situation is not getting better.
Concerning the LR statistic behavior, it tends to slightly overreject in small samples
and underreject in large samples. Once again we can note in Table 2.3 that Monte
Carlo tests achieve in correcting the severe size distortions observed for the asymptotic
tests. More specifically, the Wald statistic performs extremely poorly for the joint null
hypothesis Hy : a = 0,7, = 0 whereas the LR statistic is more reliable. Indeed,
the estimators used to construct the test statistics, are based on the moments of the
volatility process but under this joint null hypothesis these moment conditions become
nonlinearly redundant. As a consequence, the Jacobian of the moment conditions is no
more of full-column rank under the null causing some singularity issue for the covari-
ance matrices. It is known [see Dufour (1997)] that the Wald statistic is not reliable

under nonregular conditions whereas the LR statistic still provides reliable inference.
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It is worth noting in Table 2.4 that when the Monte Carlo tests (MC) evaluated at a
consistent restricted estimate of the nuisance parameter fail to correct for the size dis-
tortions observed in small samples (T = 50, 100) for the LR statistic, its maximized
version (MMC) does correct for the size distortions. Indeed, we observe in Table 2.4
that MMC test achieves in reaching the correct level stated at & = 5% in small samples
(T = 50, 100) whereas MC tests remains around 10%. The MMC version is performed
by maximizing the p-value function on a neighborhood of the restricted estimate of the

nuisance parameters which are c and 7.

2.6.2. Power investigation

Here we study the actual power of the different tests. Note that the standard asymptotic
tests for testing the null hypothesis Hy : a = 0 have been corrected for size distortions
using the corresponding simulated critical values computed on M = 10, 000 replica-
tions, as reported in Table 2.6 which yields exact 5%-level tests under the null hypoth-
esis. Concerning the specification test, to simulate the model under the alternative of
a fractionally integrated gaussian process, we follow Bollerslev and Mikkelsen (1996)
[see also Baillie, Bollerslev, and Mikkelsen (1996)] and truncate the moving average
filter and then let the process run for a long while to attenuate the effects of transients.
Bollerslev and Mikkelsen suggest to truncate at £ = 1000 but since the moving average
coefficients become very small after 160, we chose to truncate at £ = 160 yielding
the moving average filter Z,lffo 1, B*. We then trim off the first 10000 observations.
All parameters have been kept to the same values as under the null hypothesis with
the long memory parameter d = 0.3 replacing the autoregressive parameter a = 0.3.
We then observe that the simulations averaged over 1000 replications, require at least
1000 observations to exhibit sufficient power. Note also that the Monte Carlo tests do
gradually loose power when compared to their asymptotic analogues due to some noise
introduced by lengthy simulations. In Table 2.7, we observe that both inference tech-
niques, that is the asymptotic and Monte Carlo tests, suffer from a lack of power when

the sample sizes arc very small (T" = 50, 100, 200). Note also the increase in power
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when we switch from one type of alternative: H; : a = 0.8 to a more persistent one:
H; : a = 0.99. The power of Monte Carlo tests could be improved in small samples by
increasing the number of simulated statistics from N = 99 to NV = 299, 499, 999. Note
that although the asymptotic procedure seems in some cases to exhibit more power
w.r.t. Monte Carlo tests, the former however remains a not feasible benchmark for
real data whose data generating process (DGP) is generally unknown. In this respect
the simulation-based inference technique appears more robust to any DGP. Both test
procedures have more power when the sample size grows which is intuitive since both
tests are asymptotically justified. Further, note that the ¢(c) test outperforms its com-
petitors at any sample sizes. In particular the c¢(a) test performs better than the score
test statistic whereas both belong to the same score-type family. The c(a) test statistic
has besides the advantage of being the easiest to implement since it does not require
in our case any optimization procedure. Indeed the restricted estimate of ¢ is obtained
by simply imposing the constraint in the analytical expressions available for the unre-
stricted moment estimator.

We also examine in Tables 2.8 and 2.9, the power of the joint test of the null hypoth-
esis of homoscedasticity against the alternative H; : a = 0.5, 7, = 0.5. The Wald-type
test has little power compared to the LR-type test which still remains valid under non-
standard conditions. Indeed, the Wald test after being corrected for the size distortions,
is not consistent at all when increasing the sample size. In this respect, it is known [see
Dufour (1997)], that Wald tests are not reformable in nonstandard situations, whatever
asymptotic, Monte Carlo or maximized MC tests, exhibit the same inconsistent behav-
ior for the Wald test. By contrast, the LR-type test remains consistent despite some
singularity issues, even though its finite and asymptotic distribution may be modified.

Finally, we also provide some plots of the power functions for asymptotic (in dashed
line) and Monte Carlo (in cubic line) Wald and LR tests in Figure 2.1, and for score-
type and c(«)-type tests in Figure 2.2, respectively. Once again, we observe that the
c(c) test has more power than its counterparts and displays a much smoother power

function when compared to the tests involving the unrestricted estimator (the LR or the
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Wald tests). The score-type test also performs better than the LR or the Wald tests.

2.7. Empirical application

In this subsection we test the null hypothesis of no-persistence in the volatility and also
the hypothesis of linear specification for the volatility process against the alternative of
a fractionally integrated specification from real data (Standard and Poor’s Composite

Price Index (SP), 1928-87).

2.7.1. Data

The data have been provided by Tauchen where Efficient Method of Moments have
been used by Gallant, Hsieh and Tauchen to fit a standard stochastic volatility model.
The data to which we fit the univariate stochastic volatility model is a long time series
comprised of 16,127 daily observations, {§;},;2; ", on adjusted movements of the Stan-
dard and poor’s Composite Price Index, 1928-87. The raw series is the Standard and
Poor’s Composite Price Index (SP),daily, 1928-87. We use a long time series, because,
among other things, we want to investigate the long-term properties of stock market
volatility through a persistence test. The raw series is converted to a price movements
series, 100[log(SP;) — log(SP;-1)|, and then adjusted for systematic calendar effects,
that 1s, systematic shifts in location and scale due to different trading patterns across

days of the week, holidays, and year-end tax trading. This yields a variable we shall

denote y;.

2.7.2. Results

The unrestricted estimated value of p from the data is:
pr = (0.129, 0.926, 0.829, 0.427)’ ,

67 = [0.007, 2.89, 1.91, 8.13]',
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where the method-of-moments estimated value of a corresponds to ar = 0.926. We
may conjecture that there is some persistence in the data during the period 1928-87
what is statistically checked by performing the tests below. The restricted estimated

values of p from the data are:
pr = (0.129, 0, 0.785, 1.152)",

6r = [0.007, —,1.95, 1.77]",

and

7. = (0.129, 0,0.829, 1.133)’ ,
&7 = [0.007, —, 1.91, 1.66] .

Note the large discrepancy between the unrestricted and restricted estimates of r,,
where the restricted estimates are not consistent if the null hypothesis Hy : a = 0
is false.

In Table 2.10, we observe that all standard asymptotic tests reject indeed the null
hypothesis of no-persistence in the volatility since Sy > x? (1) = 3.84 as well as
all the bootstrap tests whose p-value is equal or less than 5%, whatever length of the
simulated statistics is used to implement them. Concemning the specification test, the
results shown in the bottom part of Table 2.10 give evidence in favor of the null hy-
pothesis of linear volatility against the alternative of a fractionally integrated volatility
process as given by the statistic E? defined in equations (2.3.20) and (2.3.21). Indeed,
the observed statistic (Eﬁ = 0.00345) is much below the asymptotic critical value of
X25(3) = 7.81. The same hold for the MC p-values which are around 0.8 and greater
than o« = 0.05.

We also provide in Table 2.11 confidence sets by inverting the corresponding test
statistics as exposed in section 2.4. The coverage probabilities for the confidence sets
are 1 — o = 95%. We can observe that all tests do cover the estimated value of a

,(@ = 0.926), at the confidence level of 95%, except for the bootstrap version of the
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score test statistic that covers at a confidence level of 93% and is empty at 95%. We
may conclude by saying that the data seem to exhibit some persistence features as

usually expected from financial data.

2.8. Concluding remarks

The ¢(a) test outperforms the other types of tests while being the easiest to implement
since it does not require in our framework any optimization procedure. It has good sta-
tistical properties: a good level and a high power for sufficiently large sample sizes. On
the other hand, Monte Carlo tests and maximized MC tests appear as a good alternative
to the standard asymptotic tests, specifically when the standard asymptotic approach
fails - in situations of almost-unidentified models where the modified distribution of
the test statistic remains unknown. We may consider as further research an extension of
our approach to asymmetric and fat-tailed distributions such as the asymmetric student
distribution and shall test the hypothesis of leverage effect in the stochastic volatility
model. We may also consider a continuous-time specification of stochastic volatility

since all the moments are already available in Meddahi (2002).



Table 2.1. Size of asymptotic and Monte Carlo tests, specification test

LEVELS in % specification test
T=50 =100 T=200 =500
Asy | MC || Asy | MC || Asy | MC || Asy | MC
LR(£2)| 02 | 0.3 0 | 01 || 0.1} 0.1 0 | 0.1
T=1000 =2000 T=5000 |
Asy | MC || Asy | MC || Asy | MC || Asy | MC
LR(f2)| 0 [ 07| 01|07 ] 51|13 - -

Table 2.2. Size of asymptotic and Monte Carlo tests, ,Hy: a =0

LEVELS in % (under Hy : a = 0)
Asymptotic tests
T=50 | T=100 | T=200 | T=500 | T=1000 | T=2000

Wald 01 | 07 | 09 | 21 24 32
Score(Qc) | 1.7 6 26 | 28 3.2 3
LR(02) 75 | 48 | 38 | 25 3 3.7
Cla) 04 | 07 | 26 3 2.9 2.9

Monte Carlo tests
T=50 | T=100 | T=200 | T=500 | T=1000 | T=2000

Wald 54 | 5.1 3 2.6 5.1 5.5
Score(f2¢) | 52 | 5.1 6 6 4.7 3
LR(2) 42 | 56 | 58 | 66 5.5 4.8
C(a) 47 | 44 6 6.9 54 4

Table 2.3. Size of asymptotic and Monte Carlo tests, Hy : a = 0,7, =0

LEVELS in % (Hp : a = 0,1, = 0),(nuisance:c = 0.3, , = 0.5)
Asymptotic joint tests
T=50 | T=100 | T=500 | T=1000 | T=2000 | T=5000
Wald 948 | 91.6 90.7 90 90.2 923
LR(§2) | 88 8.9 1.4 0.7 0.5 0.6
Monte Carlo joint tests
T=50 | T=100 | T=500 | T=1000 | T=2000 | T=5000
Wald 5.5 4.6 3.6 5.8 4.4 4.3

LR(2)| 81 | 73 | 47 45 3.2 4




Table 2.4. Size of asymptotic and Monte Carlo tests, Hy: a =0,r, =0

LEVELS in % (Hy : a = 0,7, = 0), (nuisance:c = 0.95, r, = 0.5)

T=50 T=100 T=500
Asy | MC | MMC || Asy | MC | MMC || Asy | MC | MMC
Wald 938 | 43 4.5 922 | 5 4.2 91.1| 3 29
LR(f2) | 94 |10.5| 33 82 | 99 5.2 1.50 | 6.4 4.9
T=1000 T=2000 T=5000
Asy | MC | MMC || Asy | MC | MMC || Asy | MC | MMC
Wald 88.8 | 5.6 5 90.8 | 44 4.3 91 | 3.9 3.9
LR(§2) | 0.6 | 5.6 4.1 04 | 3.2 3.1 0.6 | 47 4.1

Table 2.5. Power of asymptotic and Monte Carlo tests, specification test

POWER in % specification test
=50 T=100 T=200 T=500
Asy | MC || Asy | MC || Asy | MC || Asy | MC
LR(£2)| 72 | 1.5 2 1.8 || 04 | 84 || 6.8 | 26
T=1000 =2000 T=5000
Asy | MC || Asy | MC || Asy | MC || Asy | MC
LR(£2){3251332 | 744 | 41.1 || 83.3 | 46.5 - -
Table 2.6. Simulated critical values, under Hy: a =0
Simulated critical values
M=10,000 replications
T=50 | T=100 { T=200 | T=500 | T=1000 | T=2000
Wald 0.8458 | 1.4295 | 2.8303 | 2.5826 | 2.7878 | 3.0203
Score(f2c) | 1.7051 | 2.3336 | 2.6773 | 2.9260 | 2.9472 | 2.9523
LR(2) 5.7228 | 3.7033 | 2.7759 | 3.0385 | 3.1352 | 2.9970
C(a) 1.7974 | 2.3030 | 2.6901 | 2.8807 | 2.8879 | 2.9133

52
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Table 2.7. Power of size-corrected asymptotic and Monte Carlo tests

POWER in % (under H;)
Size-corrected Asymptotic tests
Hi:a=038
T=50 | T=100 | T=200 | T=500 | T=1000 | T=2000

Wald 10.9 17 234 60.4 84.5 93.2
Score({2c) | 16.8 25 47 78.6 93.9 97.8
LR(£2) 103 | 16.8 37.6 71.5 88.9 96.6
C(a) 19.7 | 309 51.8 81.8 96 99.5

Hl :a=0.99
Wald 31.2 | 595 81.5 90.9 99 99.6
Score(f2¢) | 39.7 | 55.7 85.4 97.7 99.3 99.9
LR(£2) 25 44.6 77.3 96.7 99.2 99.3
C(a) 41.5 | 68.8 91.6 99.2 99.7 100

Monte Carlo tests (N = 99)
Hy:a=08
T=50 | T=100 | T=200 | T=500 | T=1000 | T=2000

Wald 10.1 11.8 19.4 448 68.3 84
Score(f2c) | 15 18.2 27.9 63.3 89.7 96.8
LR(2) 9.4 10 234 60.5 83.5 924
Cl(a) 21.6 | 28.8 434 74.1 93.5 98.5

Hy:a=0.99
Wald 28.7 | 54.1 74.6 87.5 96.3 96.5
Score(f2c) | 119 | 223 39.6 82.7 94.4 97.8
LR(§2) 158 | 298 55.6 72.6 98.5 99.2
Cl(a) 36.1 | 62.6 78.8 91.6 99.6 99.9

Table 2.8. Power of asymptotic and Monte Carlo tests, H; : a = 0.5,7, = 0.5, set |

POWER in % (under H;)

Asymptotic joint tests

Hi:a=0.5,7,=0.5
T=50 | T=100 | T=500 | T=1000 | T=2000 | T=5000
Wald 15.8 | 17.6 18.1 12.7 6.7 1.3
LR(£2) | 109 | 133 84.8 99.4 99.9 100
Monte Carlo joint tests (N = 499)
T=50 | T=100 | T=500 | T=1000 | T=2000 | T=5000
Wald 16.1 | 18.8 18 12.6 6.9 1.6
LR(§2) | 145 | 15.7 86.5 99.1 99.9 100
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Table 2.9. Power of asymptotic and Monte Carlo tests, H; : a = 0.5, 1, = 0.5, set Il

Table 2.11. Confidence sets

Confidence sets for a, (1 — o = 95%)

Asymptotic Monte Carlo
Wald 10.92,093] [0.92,0.93]
Score(2c) 10.92,0.93] [0.92,0.93]"
LR(Q) 10.92,0.93] [0.92,0.93]
Cla) 10.92,0.93] [0.92,0.93]

POWER in % (H; : a = 0.5, 7, = 0.5), (nuisance: c = 0.95,r, = 0.9)
T=50 T=100 =500
Asy | MC | MMC || Asy | MC | MMC || Asy | MC | MMC
Wald 18 | 168 | 128 | 202|172 | 166 | 17.6 | 164 | 16.2
LR((2) | 11 14 3.8 154|174 | 116 | 84.6|85.6| 854
T=1000 T=2000 T=5000
Asy | MC | MMC || Asy | MC | MMC || Asy | MC | MMC
Wald 12 [ 11.6 | 11.5 6 6 6 1 0.8 0.8
LR(£2) | 99.6 | 99 99 100 | 100 | 100 100 | 100 | 100
Table 2.10. Empirical application
data
Hy: a=0
Asymptotic tests Monte Carlo tests
So N=19 | N=99 | N=999
Wald 206.03 0.05 | 0.01 | 0.001
Score(f2¢c) 1039.04 0.05 { 0.01 | 0.001
LR(£2) 63.20 0.05 | 0.01 | 0.001
C(a) 854.55 0.05 | 0.01 | 0.001
specification test
£ 0.00345 0.80 | 0.80 | 0.789



Figure 2.1. Asymptotic and Monte Carlo Power functions, Wald and LR tests
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Figure 2.2. Asymptotic and Monte Carlo Power functions, score and C(«) tests
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Chapitre 3

Monte Carlo Tests and Regularized
Indirect Inference for a Stochastic

Volatility Model !

I'This paper is co-authored with Jean-Marie Dufour.
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3.1. Introduction

Indirect estimation was proposed by Smith (1993), Gouriéroux, Monfort and Renault
(1993) [henceforth GMR] as an estimation and inference procedure for models having
complex formulations or untractable likelihood functions. Basically, it consists in opti-
mizing an auxiliary criterion that does not directly provide a consistent estimator of the
parameter of interest. A consistent estimator is then obtained by simulation. Indirect
inference techniques belong to the class of modern statistical procedures which exploit
Monte Carlo methods to derive estimators and tests for complex models. Bootstrap
and Monte Carlo Markov chain methods belong to this class and, more generally, any
simulation-based inference technique is a potential candidate. The only requirement for
implementing simulation-based procedures is that the model or the statistic can be sim-
ulated. In this framework, the three standard test statistics have been proposed to make
inference on the parameters of interest of the structural model, which are a Wald-type
statistic, a likelihood ratio-type statistic and a score-type statistic [see GMR (1993)].
However, the distributional theory associated with those statistics is asymptotic and
the choice of the existing statistics importantly depends on the possibility to obtain an
asymptotic nuisance-parameter free distribution under the null hypothesis. This opens
up the way for approximation errors of any magnitude [see Dufour (1997)]. Further,
under nonregular conditions, asymptotic tests are known to have incorrect size even
asymptotically on a subset of the parameter space [see Andrews (1987), Gregory and
Veall (1985), Breusch and Schmidt (1988), Lutkepohl and Burda (1997, henceforth
LB)]. More specifically, LB examined the behavior of the Wald statistic for multi-step
causality for finite order vector autoregressive (VAR) processes. In such a setup, multi-
step noncausality entails a set of highly nonlinear restrictions on the VAR coefficient
matrices. For this type of nonlinear restrictions, standard Wald tests fail to have limiting
x2—distributions in general. In this respect, LB proposed modifications to the Wald
statistic which ensure an asymptotic y?—distribution under the null hypothesis. Indeed,
Andrews (1987) derived a necessary and sufficient rank condition to be satisfied by the

asymptotic covariance matrix and its estimator to ensure a limiting x2—distribution for



59

the Wald statistic under the null.

In this paper, we examine the behavior of the indirect inference procedure and of
the resulting test statistics as proposed by GMR (1993) under nonregular conditions,
when the simulated binding function does not satisfy the same rank condition (derived
by Andrews (1987)) as the population binding function whose rank is getting lower at
isolated values 8, of the parameter of interest #. This rank condition can be violated
at least in two ways: first,in situations where some parameters become unidentified
under the null hypothesis while the other situation is concerned with some (possibly
nonlinearly) redundant restrictions under the null. Thus under the null hypothesis, the
covariance matrix of the auxiliary estimator and that of the Wald and score statistics
become singular. As a result, the usual invertibility technique breaks down making
the statistics non implementable. To remedy this problem, we propose to modify the
indirect objective function in a way that accounts for singularity problems under the
null hypothesis. To do so, we exploit two alternative regularization techniques: the first
one was originally proposed by LB (1997) for multi-step noncausality and amounts
to estimating a reduced rank covariance matrix and then modifying the Wald statistic
accordingly. When the covariance matrix becomes singular, we replace (like LB) the
usual inverse by its Moore-Penrose generalized inverse, by setting to zero the inverses
of its eigenvalues of the estimated covariance matrix when they drop below a threshold.
Alternatively, we propose two slightly different regularization techniques which con-
sists in keeping the eigenvalues of the estimated covariance matrix which are greater
than a predetermined threshold and setting the smaller ones to the threshold, instead
of zero. Then we can still be proceeding as usual to invert the covariance matrix thus
regularized. The third regularization technique is particularly attractive from a power
viewpoint. Unlike LB who did regularize the singular covariance matrix of the Wald
statistic in the testing problem, we implement these regularization techniques at two
levels: one to regularize the indirect estimator at the estimation stage and the other one
to regularize the covariance matrices of the test statistics like LB(1997). Indeed, we re-

sort to g-inverted matrices to regularize the Wald-type statistic, the score-type statistic
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and the indirect criterion in a situation where the standard regularity conditions required
for the parameter estimator to be consistent and asymptotically normal are no more sat-
isfied under the null hypothesis. There have been several papers in the econometric
literature dealing with nonregular inference problems such as unidentified parameters
under the null, for instance. Andrews (1993b) analyzed tests for structural change.
Andrews and Ploberger (1994) explore optimal testing but do not discuss methods to
obtain critical values in practice. Andrews (1993a) discusses econometric examples
which suffer from the problem of unidentified nuisance parameters.

As an example, we consider testing a null hypothesis of homoskedasticity in the
volatility process of a lognormal stochastic volatility (SV) model under which the
gradient of the simulated binding function does not satisfy the same rank condition
as the gradient of the population binding function. Indeed, the auxiliary estimator
which enters the second step objective criterion in the indirect estimation procedure
is based on moment conditions which become nonlinearly redundant under the null of
homoskedasticity of the volatility process. To account for this singularity issue, we im-
plement the proposed regularization techniques at two distinct levels: one to overcome
the singularity problem of the covariance matrix of the auxiliary estimator appearing in
the indirect criterion whereas the second-step regularization handles singularity prob-
lems occurring for the Wald statistic and the score statistic. Unlike the nonregularized
test statistics, the modified statistics can always be computed. They also demonstrate
more power than their nonregularized counterparts. These power advantages have al-
ready been pointed out by Gallant (1977), Gallant and Tauchen (1989) for taking care
of unidentified parameters under Hy and redundant restrictions. Therefore the regu-
larization techniques appear very useful in two ways, by keeping the statistics com-
putable in nonregular conditions and further by increasing power performances when
compared with their nonregularized counterparts. However, although the regulariza-
tion techniques help in keeping the test statistics computable in such situations, they do
not ensure a limiting y? distribution for the modified statistics anymore. As a result,

the distributional results developed by GMR (1993) become useless under nonregular
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conditions. One way to overcome this difficulty and obtain valid critical points and
p-values is to resort on simulation-based inference techniques such as Monte Carlo
tests. In the same spirit, Dufour, Khalaf, Bernard and Genest (2004) resort to Monte
Carlo tests in non-standard test problems such as the ARCH-M case to circumvent
an unidentified nuisance parameter problem and obtain valid p-values. By contrast,
Hansen (1996) propose to use a conditional transformation which is analogous to an
asymptotic p-value but yields an asymptotic distribution free of nuisance parameters.
Then Hansen shows that this transformation can be easily approximated via simulation.

To summarize, there are two main contributions in the paper: the first one consists
in modifying the objective function and test statistics in order to account for singular
covariance matrices under nonregular conditions, the second one consists in apply-
ing the technique of Monte Carlo tests (MC, henceforth)[see Dwass (1957), Barnard
(1963), Bimbaum (1974)], and maximized Monte Carlo (MMC, henceforth) [see Du-
four (2002)] tests to the modified test statistics in order to provide valid critical points
and p-values to offset a standard distributional theory which may be misleading under
nonregular condition.

The paper is organized as follows. In Section 2, we review the standard indirect
inference procedure while in Section 3, we document some singularity issues arising
when estimating a log-normal SV model under the null hypothesis of homoscedasticity
in the volatility process. In Section 4, we describe the techniques to regularize the sin-
gular covariance matrices. In Section 5, we briefly review the methodology of Monte
Carlo tests which still provides reliable inference for distributions which are not pivotal
even asymptotically. We then provide some simulation results in Section 6 before illus-
trating the methodology on the Standard and Poor’s Composite Price Index (SP),daily,

1928-87 in Section 7. We conclude in Section 8.

3.2. Estimation by Indirect Inference

In this section we review the indirect estimation procedure chosen to estimate a pa-

rameter of interest §. For a more complete description of the method, see Gouriéroux,
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Monfort and Renault (1993). The method is proposed for situations where the likeli-
hood function of the structural model is unknown or untractable. To solve this diffi-
culty, one resorts to an approximate model called the auxiliary model which is simpler
to estimate. The auxiliary model should closely approximate the distribution of the
observed data but does not have to nest it. However, if the auxiliary model nests the
structural model then the estimator is as efficient as maximum likelihood [see Gallant
and Tauchen (1996)]. Let M7(() denote the auxiliary criterion parameterized by the

auxiliary parameter (. Let us denote by (B the solution to this problem:
By = Mr(B) . 3.2.1
Br = argmax Mr(f) B.2.1)

Then in a second step we can obtain the indirect estimator 6 by minimizing the second

step criterion Mr(6) defined by :

19,

Mr(8) = [Br — Zﬂ(s) ) 2By — Z 98,1, (3.2.2)

where (2, is a positive definite matrix defining the metric. ,BT denotes the estimate of
the auxiliary parameter based on the observed data whereas ﬁ;f)(a) denotes the cor-
responding estimate for a data set simulated under the structural model for a value 6.
Under standard regularity conditions, O is a consistent estimator of the true unknown

value 6. A consistent estimator of the metric is given by:

Q, = J(@)1(H)~1J(h) (3.2.3)
where
O*M 5
J(0) —ng—)(w(@),ﬂﬂ : (3.2.4)

I(8) = To(0) + D _(1 = ) (1(8) + [(0)) (325)



63

and

T 1
n = 3 MO0, 5020 g0, 026
t=k+1

The metric (2, defined at equation (3.2.3) is the metric which minimizes the asymptotic
variance-covariance matrix of the indirect estimator, yielding the optimal estimator.

This asymptotic variance-covariance matrix is given by

8 M, 02 Mo, -
= (1 )(aeaﬂl (F(go) 001ﬂ0)1(90) - aﬂael (F(60)7001ﬂ0)> (327)

where F(fp) is the true unknown probability measure associated with the structural

model. A consistent estimator of W is given by

o Mr ; I Mr 5 ))_l (3.2.8)

=(1 8
( + = )(aeaﬂ ( T),HT) ( ) aﬁael( TaﬂT
as soon as we can compute the derivative of M with respect to 6. The computation of
such a derivative has to be made numerically.

Let us now consider the problem of testing general hypotheses such as Hy : F' €

Hq, where Hj is a subset of all possible distributions, that is,

Ho = {F() : F(7) = Fo(yl4(6)) and ¢(0) = 0} , (3.2.9)

where 1(6) is a p x 1 continuously differentiable function of . Hj is usually abbre-
viated as: Hy : ¥(6) = 0. The derivative of the constraints P(f) = g;”, has full row
rank. Let O be the unrestricted indirect estimator and 9; the constrained estimator
obtained by minimizing the second step indirect criterion Mr(6) defined in equation
(3.2.2) under Hy. To test the null hypothesis we shall consider the three standard test

statistics, such as a Wald-type statistic, a likelthood ratio-type statistic and a score-type

statistic. The Wald statistic is defined as

W = T(07) [P(JT10) 1P 1(67) (3.2.10)
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where P = P(07), I = I(f7), J = J(f7) . The likelihood ratio statistic is the
difference between the optimal values of the objective function as defined below:
TS

LR = m[MT(é;) — Mz(67)] . (3.2.11)

The score-type statistic is defined from the gradient of the indirect objective function

with respect to § evaluated at the restricted estimator 9;. This gradient is given by:

_ oy

Dr 7

ACNA 17 1 5 ~(s) 5c
(01)(2[By — 5 Zﬂ(T)eT] : (3.2.12)
s=1

and the test statistic is

S =TDySsDr . (3.2.13)

Under standard regularity conditions for the estimator and the testing problem, those
statistics have been shown [see GMR (1993)] to be asymptotically x2-distributed. How-
ever, if certain regularity conditions are somehow relaxed, there is no guarantee any-
more that the indirect estimator be asymptotically normally distributed, and standard

distributional theory for making valid inference collapses.

3.3. Singularity issues: example of a stochastic volatil-
ity model

The main purpose of this section is to investigate some degenerate testing problems in
the sense that some regularity conditions defining the indirect estimator are not satis-
fied under the null hypothesis. In this respect, one condition required for the indirect

estimator to be consistent is the true binding function

b[F(0o), 00] = By
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being a one-to-one mapping and satisfying the following rank condition that is,
ob )
3 [F(6o),00] is of full-column rank. (3.3.14)

If this rank condition is not satisfied, then singularity problems can arise. In this re-
spect, the rank condition above can be violated at least in two ways: first, in situations
where some parameters become unidentified under the null hypothesis while the other
situation is concerned with some (possibly nonlinearly) redundant restrictions under the
null. In other words, in order to ensure identification of the parameter of interest 6, the
dimension of the auxiliary parameter g is required to be equal or greater than the one
of 6. If this condition does not hold, the structural parameter is no more fully identified
and so, the standard distributional theory for the indirect estimator and the resulting
test statistics may be misleading. Bound et al. (1995), Hall et al. (1996), Maddala
and Jeong (1992), Nelson and Startz (1990a, 1990b), Staiger and Stock (1997), and
Zivot et al. (1998) give evidences on size distortions when conducting inference with
instrumental variables when weak instruments are involved. As an example, we are in-
terested in testing the null hypothesis of no stochastic volatility (Hy : a =0, r, = 0)
in the stochastic volatility model described below.

Let the structural model be a stochastic volatility model with an autoregressive

mean part of order one [AR(1)-SV for short]*:
Y = a+ cy—1 +exp(we/2)ryze, || <1 (3.3.15)

wy = awg_1 + Ty, Jaj <1, (3.3.16)

and let § = (c, 7y, a,r,)" denote the parameter of interest. Let @ = p, (1 — c) where p,,
be the conditional mean of y. The perturbations z; and v, are mutually independent and

identically distributed N(0,1). Let 8(U.6) denote the functional estimator® defined

2This AR(p)-SV specification comes from Gallant, Hsieh and Tauchen (1997). The SV model with-
out autoregressive mean part, has extensively been used, in particular, in Harvey, Ruiz, and Shephard
(1994), Jacquier, Polson, and Rossi (1994), Danielsson (1994).

3See Dufour and Valéry (2004) for a more cxhaustive description of the moment estimator used for
the AR(1)-SV model.
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by:
Br(U,6) = arg gleig[ér(l?) — u(0) lgr(U) — u(9)] , (3.3.17)

where gr(U) = 330, a(0) with g(U) = (y,,47,af,8747 ;)" , and p(f) =

(Kys Hos gy Pa2(116))" with

po(0) = E(u}) = 73 explry/2(1 — a®)] (3.3.18)
1a(6) = E(uf) = 3rj exp[2ry /(1 — a?)] (3.3.19)

and
p22(116) = Elufui_)] = ryexplry/(1 - a)] . (3.3.20)

As the sample moments used to compute the estimator are computed from residuals
from a preliminary regression yielding a v/T-consistent estimator for the mean param-
eter, and not from true perturbations, we can correct for the approximation error by
simulating the true binding function b(F(6y),6p). In consequence, the functional es-
timator AU, ) will tend asymptotically to the true binding function 3(U(6,),60) =
b(F'(8o), fo)-

To get an insight on the singularity issue here, let us focus on the simplified model
with ¢ = 0 and § = (a,7y,7y). In this context, the binding function depends on the

moment conditions given in equations (3.3.18)-(3.3.20), namely
B(U,6) = br[U, p(0)] - (3.3.21)
In this context, we are interested in testing hypotheses of the form

01
¥(0) = (0,1) =02
02
and the null hypothesis Hy : 1(0) = 0 simplifies to Hy : 62 = 0, (e.g. 02 = (a,7)).
This specific form Hy : (a,7,) = 0 of the constraint corresponds to testing no het-

eroskedasticity in the volatility process against an alternative of stochastic volatility.
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However, when implementing the null hypothesis of homoskedasticity, some singular-
ity issues arise since under the null, the moment conditions which define the auxiliary
estimator become nonlinearly redundant. Indeed, the moment conditions (3.3.18) and
(3.3.20) reduce to only one relevant moment condition under Hy up to a nonlinear
transformation causing the rank of %[U, 6] being lower at the isolated value 6y = 7,

under Hy : (a,7y,)" = 0. Indeed, the determinant of g—g[U, 6] where

Ouy  Oup Oy
da 0T ory,

ob
%[U,9]= Gy Obs O (3.3.22)

Ouzs Oupo  Ougp
da Orw ory

when evaluated under Hy : (a,r,) = 0, that is

0 0 2r

ab )

25 U0 =0 0 1278 (3.3.23)
0 0 4r3

Y

is equal to zero and the rank becomes equal to one at § = f, = r, [see Appendix for the

2s)
analytical expressions of the derivatives]. But the rank of 6—geL(U ,0) when evaluated

b

at any value 6 # 6 is greater than that of 3

(U,65). In consequence, the rank of
the gradient of the simulated binding function generally exceed that of the population
binding function causing the equality of the rank condition between the population
quantity and its estimator to fail. [See Andrews (1987), LB(1997)]. Therefore the

whole standard distributional theory derived by GMR (1993) may not hold anymore.

3.4. Regularized Inference

In this section, we examine the singularity problem highlighted in the previous section
when studying null hypotheses which causes the rank condition to fail. We will investi-
gate to what extent this may affect standard inference procedures and propose solutions

to still conduct valid inference when dealing with singular matrices. More specifically,
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the redundant moment conditions under the null hypothesis, creates some singularity

problems for the covariance matrix:

S
Var(VT{pr - 5 3 B0 = (1+1/9)0;"

through the non-invertibility of /(#) defined in equations (3.2.5) and (3.2.6). Hence,
the usual invertibility of the matrix fails occasionally.

To remedy this problem, we propose to modify the indirect objective function
Mr(6) defined in equation (3.2.2) in a way that it accounts for singularity problems
arising from redundant restrictions under the null hypothesis which causes the rank
condition between the gradient of the population binding function and its functional es-
timator to fail. To do so, we shall exploit two general regularization techniques among
which the Moore-Penrose generalized inverse of the corresponding matrix. The idea
comes from LB (1997) to use the principal components associated with the largest
eigenvalues of the estimated covariance matrix.

To do so, let 5 be a suitable reduced rank consistent estimator of a covariance
matrix 2’ with eigenvalues ;\1 >...> A ;,and V an orthogonal matrix consisted of the

associated eigenvectors, such that

2 =VAV',
where A = diag(:\l, ceey ;\J). For some ¢ > 0, define jc to be the number of ;\j >c
and let A, = diag(;\l, .. ’;\Jc’ 0,...,0). Moreover, define

- S <-1
A =diag(A, ,...,A;,,0,...,0).

Then, the Moore-Penrose generalized inverse of % denoted by £+ is obtained as:

St =VAIV' . (3.4.24)
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Thus, we will denote

S = [P P

and £, the Moore-Penrose generalized inverse of I(8), £, = [P(J'I~1J)~'P'] and
S, respectively. When regularizing the estimated covariance matrices by taking their
Moore-Penrose generalized inverse as proposed by LB (1997), the modified statistics
will be referred to as W+ for the modified Wald statistic, LR* for the modified LR
statistic and S* for the modified LM statistic.

Alternately, to regularize the estimated covariance matrix

L =VAV

we propose instead to keep the estimated eigenvalues ;\j > c and set :\j = ¢ whenever
they drop below the threshold ¢. For ¢ > 0, let J, be the number of eigenvalues for
which :\j > c. Let

Ao = diag(;\],...,/\jc,c,...,c) .
Thus, the second regularized covariance matrix is obtained as:

T =VAV'. (3.4.25)

Finally, a third regularized covariance matrix is obtained as the sum of the non-

regularized initial matrix and a regularizing matrix such that:
S o
Y= §[VAV' + VAV . (3.4.26)

Note that = is always less than or equal to £~ by construction and therefore its in-
verse will always be equal or greater than that of £~ and may induce some gains in
power. Finally, the inverses of £~ and £ are obtained by taking a usual inverse defined

for positive definite matrices. In particular, when all eigenvalues are greater than the
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threshold, the regularized matrices coincide with the original matrices, since A= A,
Thus,
00 BRI 6 v L 0 R

will correspond to the inverses of I(8), £, = [P(J'I=1J)~'P] and L respectively,

regularized according to equation (3.4.25). Likewise, we will denote

P =101, Z =[PP Jand Z5!
the inverse matrices of I(8), ZATP = [P(J'I71J)~'P'] and L respectively, regularized
according to equation (3.4.26). Thus, when using this two regularization techniques,
the modified Wald statistics will be referred to as W™, W, the modified LR statistics
LR, LR and the modified LM statistics as S~, S accordingly. These modified inverses
will be built sequentially if necessary. The first one will help in regularizing the indirect
criterion to account for singularity issues, and thereby will benefit to the statistics alto-
gether whereas at the opposite the Wald and score statistics will take advantage of the
two inverses jointly when the covariance matrices become singular. In the remaining of
the paper, we will compare the modified statistics with the original statistics proposed
by GMR (1993). However, although the regularization techniques help in keeping the
test statistics computable despite some underidentified parameters, they do not ensure a
2 distribution for the modified statistics anymore. As a result, the distributional results
developed by GMR (1993) become useless under nonregular conditions (i.e. the rank
condition of the gradient of the binding function does not hold anymore). One way to
overcome this difficulty and still provide valid critical points and p-values, is to resort
on simulation-based inference techniques such as Monte Carlo tests whose maximized
version achieves in controlling for size distortions irrespective of nuisance parameters

in the distribution of the test statistic.
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3.5. Monte Carlo testing

The technique of Monte Carlo tests has originally been proposed by Dwass (1957) for
implementing permutation tests and did not involve nuisance parameters. This tech-
nique has been extended by Barnard (1963) and Bimbaum (1974). It has the great at-
traction of providing exact (randomized) tests based on any statistic whose finite sample
distribution may be intractable but can be simulated. We briefly review the methodol-
ogy of Monte Carlo tests covering both cases, first without nuisance parameters and
then with nuisance parameters as it is proposed in Dufour (2002). The technique of
Monte Carlo tests provides a simple method allowing one to replace the unknown or
untractable theoretical distribution F'(z|8) by its sample analogue based on the statistics
S1(0), ..., Sn(0) simulated under the null hypothesis. The procedure can be designed
as follows.

First we present the case without nuisance parameters which provides an exact test.

e STEP 1: Using the observed sample, we calculate the relevant statistic denoted

by So.
e STEP 2: Using draws under Hy, we generate N simulated samples: Sy, ..., Sy.

e STEP 3: Then we compute the estimated survival function:

R 1 &
Glz; S(N)] = % > s(S: - z)-

and the associated p-value function

pN(CE) _ NGN(IL') +1 .

N+1

If N is chosen so that a(/N + 1) is an integer, under Hy:
P(pn[So] € @) =

yielding an exact test.
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Second, in presence of nuisance parameters, Dufour (2002) proposes to maximize the
nuisance parameters over the parameter space conformable with the null hypothesis. In

this case the procedure is the following.

e STEP 1: To test the null hypothesis
HO : 9 € -QO y

we use first the observed sample to calculate the relevant statistic denoted by Sp.
e STEP 2: For each 6 € {2, we generate N replications of S: 51(0), ..., Sn(0).

e STEP 3: Using these simulations we compute the corresponding simulated p-

value function: A
NG N [IE IB] +1

Pttt = ==

Finally the p-value function px[Sp|f] as a function of # is maximized over the parameter
space. If the number of simulated statistics IV is chosen so that (/N + 1) is an integer,

then we have under Hy:
P[sup{ﬁN(S'ow) 0 e Qo} < Ol] La,

that is we control for the size. Such a technique which provides an exact test irre-
spective of the presence of nuisance parameters under the null hypothesis is called a
Maximized Monte Carlo test (henceforth MMC) by Dufour (2002). A proof of this
assertion can be found in Dufour (2002). In the simulation exercises below we will
implement the test in two forms, one in a local maximized version we call (MMC) and
another one when the nuisance parameters are evaluated at a consistent point estimate
yielding a form of parametric bootstrap we shall call (MC) tests. For the MMC version
the nuisance parameters are maximized over a fine grid since there are only two nui-
sance parameters. When the nuisance parameters are numerous one can use simulated
annealing [see Goffe, Ferrier and Rogers (1994)] an appropriate optimization algorithm

which does not require differentiability. Indeed Gn[So|6] is step-type function which
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typically has zero derivatives almost everywhere, except on isolated points where it is

not differentiable.

3.6. Simulation results

In this section, we implement the Wald test (W), the Likelihood ratio test (LR) and the
score-type test (S) for testing the null hypothesis of homoskedasticity in the volatility
process, say, Hy : a = 0,7, = 0. The tests are performed in three ways. The first
one uses the asymptotic x? critical point (x?_,(1) = 3.84) for @ = 5% determined by
the rank of the gradient of the population binding function which is equal to 1 under
Hy, while the other ones are based on the simulated p-values. For the Monte Carlo test
(hereafter, MC), the p-value is evaluated at a consistent restricted point estimate of the
nuisance parameters. Concerning the maximized Monte Carlo test (hereafter, MMC),
the p-value function is maximized over a neighborhood of the restricted estimate of the
nuisance parameters using a grid with increments equal to 0.1. The null hypothesis is
rejected each time the maximized p-value is less than the nominal level fixed at 5%. We
assess the actual sizes of the tests averaged on 100 replications. The Monte Carlo tests
are performed with N = 19 statistics simulated under the null hypothesis. Under the al-
ternative, the length of the simulated statistics is increased to N = 99 to gain in power.
The nuisance parameters have been setto r, = 0.4 and ¢ = 0.95 to produce a high level
of persistence in the mean equation. In the simulations the drift parameter o has been
fixed at 0.5 throughout the experiment. The simulations are run on the GAUSS software
(3.2.37 version). Concerning the regularization techniques, in order to facilitate com-
parisons across methods, the thresholds have been set to ¢ = 0.01 for T' = 2000, 1000
and ¢ = 0.1 for T' = 500, 200 for both methods. We need to increase the threshold
when the sample size decreases due to the "poor" performance of the indirect estimator
in small samples. Indeed, we have to impose stronger regularization in small samples
to force convergence otherwise the algorithm breaks down quite often. In this respect
the rate at which the threshold should tend to zero with the sample size has to be investi-

gated. LB (1997) gives some device on this issue suggesting to use the convergence rate
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of the estimated eigenvalues toward the true ones. In practice, this device does not work
that well and has to be investigated empirically. The LR statistic modified according to
LB regularization and denoted by LR™, will only benefit from the first regularization
for computing [+ = I(6)* = V/ijl V', with /1j1 = diag(:\l_], . /\;rll) and J,, denotes
the number of A, of the estimated covariance matrix I (8) which satisfy: A; > ¢;. The
modified Wald statistic (denoted by W), will benefit not only from I*, but also from
Zy = [P(J'I71J)~'P|* = VALV, Similarly, the modified score statistic denoted
by S+, will benefit from I, but also from ﬁ'; Likewise, the statistics modified by the
second-type regularization based on the inverse of 2~ defined in equation (3.4.25) will
be referred to as W—, LR~ and S~. Finally, the modified statistics built on the inverse

of & will be referred to as W, LR and S in the simulation experiments.

3.6.1. Size analysis

First of all, we can see in Table 3.1 that the frequency at which the non-regularized
Wald statistic becomes non computable is around 10% in small sample and it dimin-
ishes when the sample size increases. As for the score statistic, the frequency at which it
fails varies between 4% and 10%. Concerning the non-regularized LR statistic, the fre-
quency at which it fails is around 3%. The rejection frequencies for the non-regularized
procedures have been computed after excluding the cases when the usual inverses crash.
We can see in Table 3.1 that the regularization techniques work extremely well for the
LM statistic which tends to systematically reject the null hypothesis when performing
the test with the non-regularized LM statistic. But once they are regularized, the LM
statistics are controlled for the size fixed at « = 5%. On the other hand, the size distor-
tions displayed by the non-regularized Wald statistic is not severe and varies between
7 and 9% but do not diminish when the sample size increases. However, the attempts
of regularization of the covariance matrices performed at two levels, at the estimation
step when regularizing the indirect criterion and at the testing step when regularizing
the covariance matrix in the Wald statistic scem to help the latter. We can see that reg-

ularizing the covariance matrices by modifying the inverses prevents the statistic from
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breaking down but also help in reducing the large standard errors. The two regulariza-
tion techniques we propose better control for the size of the Wald test when compared
with that of LB for all sample sizes. Indeed, the Wald statistic regularized with the
technique proposed by LB still slightly overrejects in small samples and more than the
other statistics. However, when the sample size increases, its overrejection is getting
less severe. In such situations, simulation-based inference techniques such as Monte
Carlo tests [see Dufour (2002)] help controlling for the size especially for the modified
Wald statistic W™ in small samples. At the opposite, the non-regularized LR statistic
tends to underreject. For T = 1000 for instance, the non-regularized LR statistic never
rejects the null hypothesis. The results support earlier works that both finite sample and
asymptotic distributions of the LR test may also be modified when identifiability condi-
tions are not satisfied [see Sargan (1983), Phillips (1989), Staiger and Stock (1997), and
other references in Dufour (1997)]. However, Dufour (1997) shows that LR statistics
have null distributions which can be bounded by a nuisance-parameter-free distribu-
tion (possibly derived from the Wilks A distribution), hence inference methods based
on such statistics are more reliable. Further, the LR statistic is known to be robust to
non-invariance problems unlike the Wald statistics [see Breusch and Schmidt (1988),
Nelson and Savin (1990), Dagenais and Dufour (1991)]. Concerning the regularized
LR statistics, the size performances are quite similar and help correcting for the under-
rejection for LR* and LR but LR~ still suffers from underrejecting. In consequence,
one can expect LR~ to loose power under the alternative. . Moreover, we observe for
the LR tests (LR*, LR) at T = 500 and T = 2000 in Table 3.1 that when MC tests
whose distribution also depends on strong regularity conditions [see Dufour (2002)],
cannot achieve in correcting for some over-rejections, the maximized MC test usually

solves over-size problems.

3.6.2. Power analysis

We also study in Table 3.2 the power properties of the tests for an alternative hypothe-

sis of stochastic volatility with a quite high persistence feature in the volatility process,
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namely H; : a = 0.9,7, = 0.9. The asymptotic tests suffering from oversize prob-
lems, have been corrected for size distortions. Monte Carlo tests are implemented
with N = 99 simulated statistics since for power considerations, the number of sim-
ulated statistics may have an impact on gains in power. As expected, the Wald test
is not consistent at all. When the sample size increases, the gains in power for the
Wald statistic for the three procedures (Asy, MC, MMC), are not significant and are
even diminishing for W. This observation carries out a crucial message concerning
the behavior of the Wald statistic in a context of (almost) unidentified parameters. It
is impossible to build a valid test based on the Wald statistic despite the various tech-
nical tools in hand, such as regularization techniques which may also contributes in
correcting for "poor" standard errors. The Wald statistic is not reformable in situations
close to non-identification [see Dufour (1997)]. Indeed, Dufour (1997) shows that the
distribution of the Wald test cannot be bounded by any finite set of distribution func-
tions under nonregular conditions. Under Hj : a = 0,7, = 0, the moment conditions
defining the auxiliary estimator become nonlinearly redundant arising some singularity
issue. On the other hand, we can note the very erratic behavior of the non-regularized
LR statistic which support the fact that the regularization techniques help increasing
the power performances significantly. This observation is particularly outstanding in
large samples for T = 1000, 2000 where for instance P[LR > x3_,(1)|H:] = 0.17
compared with P[LR* > x2__(1)|H,] = 0.57, P[LR > x?__(1)|H,] = 0.50 or
P[LR™ > x?_,(1)|H:1] = 0.44. We further observe that LR* outperform the other
statistics in small samples but in large samples, especially for T = 2000, LR demon-
strates equivalent power which reaches 68%. As expected, LR~ underperforms in
term of power LR* and LR for all sample sizes. We further observe in Table 3.2, a
loss in power for both versions of Monte Carlo tests w.r.t. their asymptotic counter-
parts. Indeed, there is always a loss of "power" of the simulated tests compared with
the asymptotic ones due to the noise introduced by the simulations. In this respect,
one has to be aware that the asymptotic tests remain infeasible and are considered as

a benchmark useful for comparisons purposes. Indeed, implementing the asymptotic
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tests requires the prior knowledge of the nuisance parameters which is not available
in practice. By contrast, maximized Monte Carlo tests provide provably exact tests ir-
respective of presence of nuisance parameters in the distribution of the test statistic.
The only requirement of the procedure is that the test statistic can be simulated. On
the other hand, once the score-type statistic has been corrected for overrejecting, the
non-regularized statistic fails to reject the null hypothesis and gives a strong evidence
on the fact that its asymptotic distribution is clearly modified in presence of singular-
ity issue. All regularization technique indistinctively improve power significantly in
such a situation. However, we observe that S* less power than S and S=. On the
other hand, as predicted by constructing ~ which is always less than or equal to 2,
the modified score statistic S based on the former demonstrates more power than S-,
namely P[S > x2__(1)|H:] = 0.73 whereas P[S™ > x?_,(1)|H:1] = 0.68. Clearly,
the third-type regularization technique outperform in term of power the other ones for
the score statistic whereas the LB technique built on the Moore-Penrose inverse seems

to work better for the LR statistic in presence of weak identification.

3.7. Empirical application

In this section we test the null hypothesis of homoskedasticity in the volatility process

from real data on the Standard and Poor’s Composite Price Index (SP), 1928-87.

3.7.1. Data

The data have been provided by Georges Tauchen where Efficient Method of Moments
have been used by Gallant, Hsieh and Tauchen (1997) to fit a standard stochastic volatil-
ity model. The data to which we fit the univariate stochastic volatility model is a long
time series comprised of 16,127 daily observations, {{, 32’1127, on adjusted movements
of the Standard and poor’s Composite Price Index, 1928-87. The raw series is the

Standard and Poor’s Composite Price Index (SP),daily, 1928-87. The raw series is con-

verted to a price movements series, 100{log(SP,) — log(SP,—1)], and then adjusted for
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systematic calendar effects, that 1s, systematic shifts in location and scale due to differ-
ent trading patterns across days of the week, holidays, and year-end tax trading. This

yields a variable we shall denote y;.

3.7.2. Results

To conduct the asymptotic tests, we use the asymptotic critical value of a x?__(1) =
3.84 for a o = 5% significance level. In Table 3.3, we observe that W+ and 114 reject
the null hypothesis Hy : a =0, 7, = 0 of homoskedasticity in the volatility process
whereas the other ones, which are W~ and W do not reject the null hypothesis. The
same observation holds for simulated tests where this time W and W+ cannot reject
H, at both level whereas Monte Carlo tests based on W and W ~ statistics do reject Hy
at o = 5% and @ = 1%. Once again, these controversial results obtained with the Wald
statistic highlight the unreliable feature of the latter when making inference under non
regular conditions. As predicted by Dufour (1997), whatever powerful tools in hand,
the Wald statistic is not reformable. Such a statistic cannot produce valid inference in
nonstandard situations. By contrast, the LR statistic still provides reliable inference
under nonregular conditions, even though its finite and asymptotic distribution may be
modified. Our results reported in Table 3.3 for the LR statistics give evidence on this
statement. The LR statistic did not need to be regularized since its estimated eigenval-
ues were greater than the thresholds, ¢ = 0.1 and ¢ = 0.01. Based on the LR statistic,
asymptotic and simulated tests do reject Hy at « = 5% and @ = 1%. Concerning
the score statistic, the non-regularized statistic is not computable due to its covariance
matrix X's which is singular and not invertible. Therefore, we need to resort to its g-
inverted covariance matrices and implement S*, S~ and S. The results obtained with
real data support those obtained with artificial data since the asymptotic test based on
S is the most powerful one over S~ and far beyond S* which cannot reject the null
hypothesis. However, although the asymptotic test built on S~ fails to reject Hy at the
specified levels, the simulated tests do achieve in rejecting the null. Thus, simulations

may provide more accurate critical points compared with asymptotic approximation
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and produce more reliable inferences as observed here with Monte Carlo tests. In sum,
we can formulate three types of recommendations: the practitioner should use the LR
statistic which is the more robust test statistic to any data generating process, avoid the
Wald statistic which tends to provide unreliable inference under nonregular conditions;
finally if computing the restricted estimate of the parameter of interest is easier for
the practitioner for the kind of null hypothesis under investigation, then he should use
the score-type statistic modified according to the third regularization technique (S) to
maximize power when conducting inference with singular covariance matrices.
Finally, based on these results, we can infer that the null hypothesis of homoskedas-
ticity in the volatility observed on the Standard and Poor’s Composite Price Index
(SP),daily, 1928-87 can be rejected at both level of significance. However, although it
is well-known that high-frequency financial data are time-varying and displays strong
volatility clustering effects [see Engle (1982)], it is not clear that such a rejection may
be attributed to volatility persistence effects but to tail thickness. In this vain, some
researchers [see Chernov, Gallant, Ghysels and Tauchen (2003)] try to incorporate this
aspect of asset returns distribution (zail thickness) by extending the single SV model by
adding additional SV factors, thus breaking the link between tail thickness and volatil-

ity persistence.

3.8. Concluding remarks

To summarize, we provide regularization techniques of covariance matrices when these
ones become singular and non invertible under nonregular conditions by resorting to
some specific generalized inverses. However, although the regularization techniques
help in keeping the test statistics computable under nonregular conditions, they do not
ensure a Y? distribution for the modified statistics anymore. As a result, the distribu-
tional results developed by GMR (1993) become useless under nonregular conditions.
One way to overcome this difficulty and still provide valid critical points and p-values,
is to resort on simulation-based inference techniques such as Monte Carlo tests whose

maximized version achieves in controlling for size distortions irrespective of nuisance
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parameters in the distribution of the test statistic. The modified tests further demon-
strate more power than their nonregularized counterparts. However, despite the at-
tempts to regularize the covariance matrix of the Wald statistic, it still provides invalid
inference in nonstandard problems. Indeed, the distribution of the Wald statistic cannot
be bounded by any finite set of distribution functions under nonregular conditions. In
such situations, maximized Monte Carlo tests can control for the size but at the cost of
no power at all under the alternative. By contrast, the likelihood ratio test behave much
better (both in size and power) in such situations even though its finite and asymptotic
distributions may be modified. Concerning the performance of the score statistic under
singularity issues, the nonregularized statistic behave very poorly but once regularized,
especially according to the third technique based on 2, it provides a powerful test statis-
tic [see Hansen (1996)]. Finally, it is worth noting that the regularization techniques
implemented here in the context of a stochastic volatility model estimated by indirect
inference is not restricted to this particular framework but could be employed in more
general models to handle singular weighting matrices as encountered for instance in
GMM contexts or also in nonlinear models [see Gallant (1977), Gallant and Tauchen

(1989)].
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Table 3.1. Size

LEVEL in % (Hp : @ = 0,7y = 0)

c=0095r, =04

T=200 T=500
Asy NON reg. | Asy | MC | MMC | Asy NONreg. | Asy | MC | MMC
failure 10 - - - 11 - - -
%4 8.8 - - - 7.9 - - -
w+ - 11 6 3 - 11 6 1
%% - 3 2 1 - 1 1 0
w - 3 3 3 - 51 7 4
failure 3 - - - 1 - - -
LR 1 - - - 4 - - -
LR* - 2 5 2 - 4 7 1
LR~ - 1 1 1 - 1 1 0
LR - 2 | 3 2 - 51 6 4
failure 4 - - - 5 - - -
S 100 - - - 100 - - -
St - 3 3 1 - 4 3 2
S- - 2 2 1 - 1 2 1
S - 2 | 5 1 - 1 1 1
T=1000 T=2000
Asy NON reg. | Asy | MC | MMC | Asy NON reg. | Asy | MC | MMC
failure 6 - - - 4 - -
%% 7.4 - - - 7.9 - - -
w+ - 8 2 1 - 7 2 1
W~ - 1 2 1 - 3 1 0
114 - 6 | 2 2 - 6 | 5 4
failure 3 - - - 0 - - -
LR 0 - - - 2 - - -
LR* - 2 1 1 - 4 6 1
LR~ - 1 1 0 - 0 1 0
LR - 1 1 ] - 4 | 7 4
failure 9 - - - 10 - - -
S 95.6 - - - 100 - - -
S+ - 3 3 1 - 3 2 2
S~ - 1 1 1 - 1 1 1
S - 2 | 2 1 - 51 2 1
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Power in % (H, :a=0.9,7, = 0.9)

c=095r,=04

T7=200 T=500
Asy NON reg. | Asy | MC | MMC | Asy NON reg. | Asy | MC | MMC
W 10 - - - 1 - - -
W+ - 9 8 5 - 9 6 3
W~ - 8 7 1 - 8 4 2
W - 7 8 3 - 4 5 4
LR 44 - - R 39 - - -
LR+ - 45 | 26 | 20 - 48 | 28 21
LR~ - 30 | 26 16 - 33 | 31 19
LR - 32 | 25 20 - 38 | 30 28
S 0 - - - 0 - R -
S+ - 39 | 18 13 - 42 | 20 15
S- - 44 | 24 13 - 50 | 41 28
S - 49 | 46 | 22 - 59 | 43 33
T=1000 T7=2000
Asy NON reg. | Asy | MC | MMC | Asy NONreg. | Asy | MC | MMC

W 0 - - - 0 - - -
W+ - 6 5 2 - 5 4 1
W~ - 2 6 3 - 5 5 3
144 - 0 2 2 - 0 1 0
LR 17 - - R 42 - - -
LR* - 57 | 51 46 - 69 | 63 51
LR~ - 44 | 35 22 - 49 | 53 39
LR - 50 | 49 | 40 - 68 | 61 50
S 0 - - - 0 - - R
S+ - 45 | 30 18 - 51 | 38 31
S- - 63 | 58 41 - 68 | 65 59
S - 69 | 68 51 - 73 | 67 62
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Table 3.3. Empirical application

Standard and Poor’s Composite Price index

H()Z a=0 rw=0

Asymptotic tests

Monte Carlo tests

So N=19 N=99
W 0.000772 0.249 0.23
W+ 6.70 0.30 0.30
W— 3.46 0.05 0.01
1474 5.20 0.05 0.01
LR 111.91 0.05 0.01
LR* 111.91 0.05 0.01
LR~ 111.91 0.05 0.01
LR 111.91 0.05 0.01
S failure - -
S+ 0.0015 0.05 0.01
S- 6.67 0.05 0.01
S 13.35 0.05 0.01

i
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Chapitre 4

Diffusion Processes with Polynomial

Eigenfunctions l

!'This paper is co-authored with Christian Gouriéroux and Eric Renault.



86

4.1. Introduction

One dimensional stochastic differential equations (s.d.e), such as:

dy, = p(y.)dt + o (y)dWw, , (4.1.1)

where (W,) is a brownian motion, 4 and ¢ the drift and volatility functions are basic
specifications for describing the evolution of financial returns [see e.g. Black and Sc-
holes (1973)] interest rates [see e.g. Vasicek (1977), Cox, Ingersoll, and Ross (1985b),
Cox, Ingersoll, and Ross (1985a)], or macroeconomic series [see €.g. Chen and Epstein
(1999), Anderson, Hansen, and Sargent (2003), Cagetti, Hansen, Sargent, and Williams
(2002)] in continuous time. A recent literature points out the importance of the spec-
tral analysis of the associated infinitesimal generator for the analysis of a s.d.e. On the
one hand, the knowledge of the spectral decomposition simplifies the computation of
nonlinear predictions at any horizon. This feature is used for instance to determine the
pattern of the term structure of interest rates when the short term interest rate follows an
equation like (4.1.1) [see e.g. Pagan, Hall, and Martin (1996)]. On the second hand the
spectral analysis underlies nonparametric estimation methods of the drift and volatility
functions. The basic idea is to estimate the infinitesimal generator either by kernel ap-
proach [see e.g. Darolles, Florens, and Gouriéroux (2000)] or by projecting on a basis
of polynomials [see e.g. Darolles, Florens, and Renault (1997), Hansen, Scheinkman,
and Touzi (1998), Chen, Hansen, and Scheinkman (1998), Florens, Renault, and Touzi
(1998), Darolles and Gouriéroux (2001)], to perform the spectral decomposition of this
estimated generator, and then to deduce from the first and second eigenfunctions the
drift and volatility functions [see Demoura (1993)].

The aim of this paper is to fully characterize the one-dimensional stochastic differ-
ential equations, for which the eigenfunctions of the infinitesimal generator are polyno-
mials in y. For these s.d.e., it can be expected that the estimation method by projection
will be accurate, even in finite sample.

The characterization of the diffusion processes with polynomial eigenfunctions is
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given in section 2. We also provide in this section the eigenvalues, the expressions of the
eigenfunctions, the stationarity conditions and the density of the marginal distribution

of the processes. The proofs of the main results are gathered in section 3.

4.2. Characterization

Let us consider a one dimensional stationary diffusion process:
dye = p(y)dt + o (y:)dW, (42.2)

with drift and volatility functions denoted by u and o, respectively. Its infinitesimal

generator A is defined by:

1

AP(y) = lim —=Elp(Yera) - (Y)Y =y, (4.2.3)

and explains how to compute the infinitesimal drift of the transformed series (¥(Y;)).
By applying Ito’s lemma, it is easily seen that the generator A corresponds to the dif-

ferential operator for C? functions v:

oY 1 0%
A = — —o(y)?*=—=(y) . 4.2.4
Y(y) = p(y) 3y (Y) +50() 97 (v) (4.2.4)
It is known that this operator is generally self-adjoint, and in particular admits a spectral
decomposition with real eigenvalues [see e.g. Hansen and Scheinkman (1995)]. We

assume [see Florens, Renault, and Touzi (1998) for a discussion] that :

Assumption 4.2.1 COMPACTNESS OF THE INFINITESIMAL OPERATOR. Aisa
compact operator, with distinct negative eigenvalues \,, n € N, say, and eigenfunc-

tions Y, n € N.

Proposition 4.2.2 CHARACTERIZATION PROPERTY.  Under Assumption 4.2.1 the

diffusion process admits polynomial eigenfunctions v, with increasing degree n if and
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only if one of the following conditions is satisfied:
) uly)=bly—0B), o*(y)=co, whereb <0, andy is defined on R,

i) uly) =bly—B), o*(y) = cy + co, where b < 0, and y is defined on the
semi-interval [—cy/c1, +oo|, if c; > 0, or on the semi-interval | — 00, —co/cy], if

¢ < 0.

i) p(y) =by—B), ¢*(y)=c(y—711)(y—"2) whereb <0,c<0,7, <f<
7v,, and y is defined in the interval (7y,,7,).

In any case the eigenvalues are: A\, = bn+cn(n—1), n > 1wherec =0 for cases
i) and i1).
Thus we get three types of processes which can be distinguished by the restrictions
on the domain of admissible values. They are affine transformations of the Omstein-
Uhlenbeck process, the Cox-Ingersoll-Ross process and the Jacobi process, respec-
tively. The Ornstein-Uhlenbeck process, or mean-reverting process [see the nega-
tivity condition imposed on parameter b in i)] underlies the Vasicek model [see Va-
sicek (1977)]. The Cox-Ingersoll-Ross process when ¢y = 0 in ii), and more gener-
ally the square root processes are used for describing the evolution of interest rates
[see Pagan, Hall, and Martin (1996)], or for defining time deformation [see Conley,
Hansen, Luttmer, and Scheinkman (1997), Carrasco, Hansen, and Chen (1999), Ghy-
sels, Gouriéroux, and Jasiak (1995), Ghysels, Gouriéroux, and Jasiak (1998)]. Finally
the Jacobi process is appropriate for the evolution of a probability or a default rate,
which are between 0 and 1 [see Nielsen, Saa Requeja, and Santa Clara (1993), Lando
(1998), Cagetti, Hansen, Sargent, and Williams (2002)].

The corollary below provides different properties of these processes concerning the
stationary distribution and the expressions of the eigenfunctions. The stationary distri-

dlog f(y) _ __ay+b

bution belongs to the Pearson family, that is their density f satisfy G = oiidgie

say. Thus, the class of diffusion processes with polynomial eigenfunctions coincides
with the class of stationary markov processes with marginal distribution in the Pear-

son family [see Wong (1964), Wong and Thomas (1962)]. Then, the expressions of
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the eigenfunctions are deduced from standard results on orthogonal polynomials [see

e.g.

Abramowitz and Stegun (1965)]. It is important to note that the eigenfunc-

tions are not uniquely defined. The eigenfunctions given below 1, say, ar€ stan-

dardized with respect to the marginal distribution of the process, that is they satisfy

Jnl

WY, () f(y)dy =0,ifn#m,=1,ifn = m, where f is the p.d.f of the

marginal distribution.

Corollary 4.2.3 .

i)

The eigenfunctions of the Ornstein-Uhlenbeck process solution of the s.d.e.

dyt = b(yg - ,H)dt + \/Eath y

are the Hermite polynomials given by:

[%] n—2m

Hen(y) = (n!)"? Z("1)mm!2m(r;l —2m)! <_c§b> -
’ 4.2.5)

They are standardized with respect to the marginal gaussian distribution

N(B,—5) of (-

The eigenfunctions of the square root process (y), solution of the s.d.e.:

dy, = b(y, — B)dt + Ve + codW,

are the Generalized Laguerre polynomials:

. = T(a+ 14+ n)Y? pM e+ 1)V2
L@(z) = (-1y ] 4.2.6
where o = —%gi’(clﬁ +c)—1 2z = -%?(th + cg). The polynomials are

standardized with respect to the marginal distribution of (y.), which corresponds
to the gamma distribution v[— 2% (c10 + co), —%Tb] shifted from —%. The special
1

case cy = 0 yields the Cox-Ingersoll-Ross process.
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iii) The eigenfunctions of the Jacobi process (y;), solution of the following s.d.e.:

dy, = by, — B)dt + /ey — 11) (e — 12)dWy

are the Jacobi polynomials given by:

Py — [r(&+n+1)(2n+a+5+1)r(a+1)r([3+1) 1/2
W T TG Bt )G+ B+ 2B +n+1)

P /n\I@+B8+n+m+1) (g — 7)™

Z(m> ra+m+1)  (vo—7)™’ (427

m=0

witha = 2 ,;’—22—_:% —~landf=2% fz—j-yLl — 1. They are standardized with respect to

the marginal distribution of (y;), which corresponds to an affine transformation

of the Beta distribution B( + 1,& + 1).

4.3. Proof of the properties

The proof involves five steps. We first establish the necessary patterns of the drift and
volatility functions, then the necessary expressions of the eigenvalues. In the third step,
we discuss the constraints to be introduced on the parameters to ensure a nonnegative
volatility and a stationary solution. In the fourth step, we establish the marginal dis-
tributions of the processes. Finally, we determine the standardized polynomial eigen-

functions.

4.3.1. The pattern of the drift and volatility functions

Assumption 4.3.1 If the eigenfunctions are polynomials, the drift is a polynomial of

degree one:

u(y) =bly — B), withb <0,

whereas the volatility is a polynomial of degree at most 2:

Ay =cy* +ay+c.
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Proof: It is known from (a generalized version of) Sturm-Liouville theory, that
the eigenfunctions satisfy the following shape restrictions [see Chen, Hansen, and

Scheinkman (1998)]:

e 1, crosses the zero axis precisely ] times;

° 1/1;- has precisely j — 1 interior zeros (same sign between any two consecutive

ZETO0S).

In accordance with these shape restrictions, the first eigenfunction crosses the zero axis
once, the second one twice, and so forth... As a consequence, the first two eigenfunc-

tions are of the form:
D1(y) =y +an, Pu(y) =y* +any +axn, say.
They satisfy the condition:
A, (v) = A\, (y), n=1,2 withi, <0

0 1 o2
& MU G2 + 3070 G 0) = M) =12

#(y) = M(y + ao)
1(¥)(2y + a21) + 0% (y) = Aa(y? + any + an).

4

By solving this system we deduce the result of Lemma 4.3.1. QED

4.3.2. Expression of the eigenvalues

Lemma 4.3.1 Ifthe eigenfunctions are polynomials, the eigenvalues are:
Ao =nb+ sen(n — 1), wherec < 0, andb < 0, if ¢ = 0.
Proof: After replacing 1 and o2 by their expressions, the condition

Ay, (y) = A1, (y) becomes:

1, ., %y,
5(ey’ + ey + ) % (1) = A, (y).-

a.
by — ) fuj"

5 (v) +
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When ¢, (y) = y™ + @Gnn-1y™* + ... + ano is a polynomial, we get by identifying the

coefficients of the terms of degree n:
1
nb + §cn(n —-1)= A,

For large n, Ay, is equivalent to either 2cn(n — 1), if ¢ # 0, or nb, if ¢ = 0. We deduce

the constraints on parameters b and c to ensure that A, is negative. QED

4.3.3. The constraints on the parameters

case 1) : Constant volatility.

The volatility is 6%(y) = c; > 0 and the eigenvalues are A\, = nb, with b <
0. These constraints are sufficient to characterize affine transformations of the

Omstein-Uhlenbeck process.

case 1i) : Affine volatility.

The volatility is o2(y) = ¢,y + co, with ¢; # 0 and the eigenvalues are A, = nb,
with b < 0. The positivity of the volatility is ensured if the domain of admissible

values of y is restricted:
Yy €] —co/cr,+oof, if a0 >0 ,y €] —o00,—co/ar], if 1 <O0.

These constraints are sufficient to characterize affine transformations of the

square root process.

case 1ii) : Quadratic volatility.

The volatility is o2(y) = cy? + c1y + cp and the eigenvalues are \, = nb +
sen(n — 1) with ¢ < 0. Since ¢ < 0, the volatility function can take positive
values if and only if the polynomial 62(y) = cy? + c1y + co has two distinct real

roots v; < ¥,.

Lemma 4.3.2 (3 is between the roots v, and y,.
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Proof: The strict positivity of the volatility o%(y) = cy® + c1y + ¢o implies that
y € (7;,72), which implies that E(y) = [ belongs to the (v;,7,) = (0,1)
interval. Q.ED

Then it can be checked that the process is well defined, stationary, with range

(’71:’)’2)-

4.3.4. Stationary distributions

It is known [see Hansen, Scheinkman, and Touzi (1998)] that the density function of

the stationary distribution of a diffusion process is proportional to:

aztx) exp [2 /: :2((?) dy} , (4.3.8)

where a is an arbitrary interior point of the state space.

case 1) : Omstein-Uhlenbeck process.

The drift and volatility functions are u(y) = b(y—/8) and 0?(y) = co respectively,

which yields that the p.d.f of the stationary distribution is proportional to:
1 b
— exp[—(y - B)?] . (4.3.9)
Co Co

Therefore, we recognize a N (3, —§3) distribution for the Omstein-Uhlenbeck

process and

_ ! _1__(?/"/3)2} 43.10
f) QW\/_—%exp[ 2 —m |- (4.3.10)

case i1) : Square root process.

For the square root process, we have u(y) = b(y — B) and o%(y) = a1y + o
which yields that the p.d.f of the stationary distribution is proportional to:
Lip 4 Sy B 2b

— —zI). 43.11
(2 exp( ) @311

Let us consider the case ¢; > 0, which corresponds to the domain [—zil, +00)| of
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the square root process. Thus the p.d.f of the stationary distribution corresponds

to a gamma distribution with drift. We get:

fy = CASEE [ (- 2w + C")}( N
— [ —— — — c c1
e hoo) () - (4.3.12)
Thus, y = 6oz, + 01, where 8y = —5;, 0, = —-%‘11 and z; follows the gamma

. . . . 2b
distribution with parameter —22(8 + &).

case ii1) : Jacobi process.

The drift and volatility functions are defined by u(y) = b(y — 8) and o*(y) =
c(y = v,)(y — v,) with ¢ < 0, which yields that the p.d.f of the stationary distri-

bution is proportional to:

1 2b By _ 2 ¥9-8 _
—=—m) T rp —y) ' (4.3.13)
We deduce that the p.d.f
(y— 7)o Ny —y) ¥
_fy c Y2=7Y] ’Y _._y c Y2="7]
fly) = T N ) (4.3.14)
[ - —'Y —
(Yo —71)* B(?m‘;, ?722?)

corresponds to a Beta distribution defined on [y, 7,)-

4.3.5. Polynomial eigenfunctions

It is easily checked that the differential equation

oy, 1 0%

b(y — B) By (y) + E(Cyz + c1y + ¢o)

2 (0) = b+ en(n = D) (4319)

admits a polynomial solution of degree n. Therefore there is a basis of canonical eigen-

functions corresponding to polynomials of increasing degrees. Then we have just to
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give the solutions for the three cases described in Proposition 4.2.2.

case 1) : Omstein-Uhlenbeck process.

The differential equation (4.3.15) with ¢ = 0 and ¢; = 0 is directly related to the

Hermite equation:

% od
+ (—z)—z—- +nd(z) =0

22
after an appropriate change of variable. More precisely, starting from the condi-

tion Ay, (y) = A, (y) with A\, = bn, we get:

o, 15,
oy 90 Oy?

b(y — B) = b, (y) - (4.3.16)

Considering an affine transform of the form: y = az + 7 such that: @,(z) =

Y, (az + ) we can rewrite equation (4.3.16) as:

U2 " b ’
27.[245"(2) + a(az +v—=08)P,(z) —bnd,(z) =0. (4.3.17)
Equating % = —b, we get after a few manipulations:
" ﬂ - ’7 1 _
D (z)+ (—z+ T)¢n(z) +nP,(z) =0 (4.3.18)

which yields v = 3 [see Abramowitz and Stegun (1965), p.781 formula 22.6.21].
It is known [see Abramowitz and Stegun (1965), p.775 formula 22.3.11] that:

¢,.(2) = Hey(2)

1
= nl) (=)™ o 43.19
" m=0( ) mi2™(n — 2m)!z ( )
Thus,the transformed variable z, = ‘C—i”(yt — [3) satisfies

N 1, o2
by = B) 20) + 5 c0) G 0) = b 0)




—
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whose solutions are the Hermite polynomials:

[ 2
Hen(y)=n!) (-1)™ ! (_2b> (ye — BY"™*™ . (4.3.20)

NG

] n—2m

— m!2m(n — 2m)' \ ¢y

Given that y, ~ N(8, —%) [see paragraph 4.3.4], 2z, ~ N(0,1). We shall stan-
dardize the Hermite polynomials in the sequel. We can state [see Abramowitz

and Stegun (1965), p.775 formula 22.2.15] that

+oc 52
/ exp(—%Hen(zt)2 dz; = V2mn!

or either,
1 [+ 2
— exp(——He,(z) dz, = n!
=) P i
Hence,
] . Hen(zt)
that 1s
(5] 1

He,(z) = (n!)'/?

m=0

m n—2m
(1) T g LA (43.21)

and therefore

n-2m

Heatw) = (S0 () e

— mi2m(n — 2m)!' \ ¢
(4.3.22)
case 11) : Square root process.
The differential equation (4.3.15) with ¢ = 0 corresponds to
o, 1 0%,

and is directly related to the Kummer’s equation [see Abramowitz and Stegun
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(1965), p.504 formula 13.1.1]:

0% 2b ) -

za—;/;(z) + <—c_f(clﬂ +¢cp) — z) a—f(z) +ny(z) =0, (4.3.24)

through the following change of variable: z, = :C%—" (c1y, + co) with 1]1(%%—” (cry+
1

co)) = ¥(y). The solution to (4.3.24) is a polynomial of order n in z correspond-

ing to the Kummer’s function up to order n, i.e.

ax (ax)2 2 (aK)n 2
M(ak,bi,2) =1+ —= g 2
(ax, bic, 2 b T (o)s 2 (bx)m 1!
where the coefficients are given by ax = —n, by = —%g(clﬂ + co)yzt =
1

—%lg(clyt + ¢g), and the following Pochammer’s symbols (ax), = ax(ax +
)(ak +2)...(ax +n—1), (ak)o = 1 [see Abramowitz and Stegun (1965), p.504
formulas 13.1.2 and 13.1.3]. It is known that the Kummer function M (a, b, 2)
with the Kummer coefficients of the form ag = —n and by = —%13(01,3 + ) =
a + 1 (set « = bg — 1), corresponds to a Generalized Laguerre polynomial of

the form [see Abramowitz and Stegun (1965), p.509 formula 13.6.9]:

n!
" rla)
(a+1), " (2)
with o = —%lg(clﬁ + cp) — 1. The Generalized Laguerre polynomials [see

Abramowitz and Stegun (1965), p.775 formula 22.3.9] can be standardized as
follows [see Abramowitz and Stegun (1965), p.775 formula 22.2.12].

INa+1+mn)

/ exp(—2)2) L (2)? dz, = |
0 n.

Besides we know that

/ exp(—z)z0dzy =N+ 1),
0
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hence,

I'a+1+n)

1 e [4 4 (03
) / exp(—z:)2; LSl Nz)?dz, = M (a+1)

I'a+1) Jo

or either, that

1 )/wexp(_zt)z?[ n! rL(“)(t)%zz:[ n! r['(a-i—l—i—n),

FNa+1) Jo (a+1), (a+1),| nll'(a+1)

Therefore, the standardized polynomials correspond to:

N L(a)(zt)
Lgla)(zt) - .n—1/2
I'(a+14+n)
AT (a+1) )
which yields with z;, = lczrb(c;yt +eg)anda = —Z(c;8+co) — 1t
1 €1

n

Lyl +14n)t7 [n!F(a+1)]1/zzj
Z( ) NMa+1+j3)  jin-5! ™

LY (z) =

7=0

case iii) : Jacobi process.

After introducing the roots v, ,, equation (4.3.15) can be written as:

o*Y 2b oY

[~ 1)y 102l g )= (r=A) g ) b

1

Sen(n=Dl(y) =
(4.3.25)

Without loss of generality, we can focus on the case [y,,7,] = [—1,1] where

equation (4.3.25) becomes:

0%y 2b Oy

By (v)+ ( ,3—— )= )+§[nb+%cn(n—l)]¢(y)=0. (4.3.26)

(1-v*)55 3y

It is known [see Abramowitz and Stegun (1965), p.781 formula 22.6.1] that this

differential equation admits as solutions the Jacobi polynomials [see Abramowitz
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and Stegun (1965), p.775 formula 22.3.2]:

PEy) =

& +n+1) &K/n\T@+8 +n+m+1), . ..
. > e (v 1)
nllMN& +0 +n+1) m 2ml (& +m+1)

m=0

(4.3.27)
witha” = £(1 - ") — 1 and g = 'C’—:(ﬂ* + 1) — 1. We know [see Abramowitz
and Stegun (1965), p.773 formulas 22.1.1, 22.1.2, and 22.2.1] that

1 PR
/ (1= )% (1440 Pa) Palal)dys =0, n#m

1

and

L B 2 e s 2 @ +n+1)(F +n+1
/ (I-y,) (1+yt)ﬁ Pg(yt)dyt = Y ( —x )~* ) :
- n+a +p +1 nll'@+pg +n+1)

(4.3.28)

But we need to standardize the weight function:

1 . 1 . .
/ (1= 9)% (1440 dy; / (~2u, +2) (2u) 2dv,
J =1 1]

1

- / 08 +B+1(1 _ 4,)5 o dy,
0
gatp L@+ I(B + 12\4.3.29)
re +p +2)

using the transformation y; = 2v, — 1 in order to have a distribution function.

Using this standardization, eq.4.3.28 becomes

r@a+p +2) /1 . -
— — 1—y)* (1 + )P Piy!)dy;
LG+ )IE ) =y () Paly))dy,

_ ra+p8 +2)r@ +n+0)r@ +n+1)
@n+a + 5 +1)M@& + 1)@ + )G +8 +n+1)n!

1

(4.3.30)

which yields the standardized Jacobi polynomials

r@ +n+0)2n+a +08 +)r@E +10)0r@ +1)1"7"°
@& +8 +n+0MGE& +8 +2rB +n+1)

BE ) (yr)
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S\ L@ +B +n+m+l)
Z(m) oml(& +m+1) (y; — ™. (4.3.31)

m=0

Finally from the stochastic differential equation on (-1, 1):

dy; = b*(y; — B%)dt + /e (yi + 1) (y; — 1)dW;

we can deduce the solution of the stochastic differential equation on (7y;,7v5):

dy, = b(y, — B)dt + \/c(ye — 11) (¥ — 12)dW,

by applying the affine transform y, = 222 0y; + 231 We have b = b*, ¢ = ¢,
and 8 = (v; +79)/2 + B (v2 — 71)/2. The polynomial eigenfunctions of the
general s.d.e. are obtained by applying the same affine transformations to the

Jacobi polynomials (4.3.31). We get:

pedy,) — [F(&+n+1)(2n+&+ﬁ+1)F(d+1)F([3+1) 12
W TG Bt DG+ BT (B+n+1)

Ea\ L@+ B+n+m+1) (g — )™

2 (m) ra+m+1) (v, - 7?)'" - (4332

m=0

withd =228 _1apdf =250 _
C Y2—N c Y2~ T



Chapitre 5

A quasi-likelihood approach based on

eigenfunctions for a Jacobi process 1

I'This paper is co-authored with Christian Gouriéroux.
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5.1. Introduction

The Jacobi process is the solution of the stochastic differential equation:

dy, = —b(y, — B)dt + /ey (1 — y)dW, , (5.1.1)

withb > 0,¢c > 0and 0 < § < 1. b represents the mean-reverting parameter, (3
the mean of the process and c the volatility coefficient. This process is stationary and
takes values between 0 and 1. This is a continuously-valued process whose values
are restricted to the finite interval [0, 1]. As a result, it is appropriate to model dy-
namic bounded variables such as a regime probability, or to capture the evolution of
a state price. Such a process is particularly appealing since it allows for substantial
improvements in various applications, among which Markov switching regimes first
introduced by Hamilton (1988,1989,1990) and later extended to smooth transition au-
toregressive models by Terasvirta and Anderson (1992), Terasvirta (1994) are the most
well-known applications. Indeed, by allowing for a stochastic specification for the
regime shift probabilities, it relaxes the somehow "unrealistic” predetermined features
of the regimes usually encountered in the Markov switching regimes literature.

More recently, the Jacobi process appears very useful in credit risk modelling by
relaxing the assumptions of predetermined states which rules out the possibility of zero
pricing of default risk in the short run. Furthermore, the Jacobi process which allows
for smooth continuous regime shifting can smooth jump processes such as jumps in
default intensity due to default correlation among firms [see Jarrow and Yu (2001),
Schonbucher and Schubert (2001), Gagliardini and Gouriéroux (2003), Dai and Sin-
gleton (2003)] and jumps in the credit rating in a credit migration model [see Bielecki
and Rutkowski (2000), Gagliardini and Gouriéroux (2004)].

Further, in a risk-neutral world the Jacobi process can also be used to model the
dynamic of state prices of any derivative written on an underlying asset [see Clement,
Gouriéroux and Monfort (2000)].

Besides that it naturally extends jump processes to smooth stochastic processes, it



103

is also better suited for modelling the dynamic of currency processes. In this regards,
the Jacobi process finds an additional application field in target zone models through
the work of Larsen and Sorensen (2003) in which they generalize the target zone model
proposed by De Jong, Drost and Werker (2001) by allowing asymmetry between cur-
rencies, which is a crucial feature of data on exchange rates in a target zone. This
asymmetry is achieved by allowing a specific dynamic near the boundaries of the target
zone. More specifically, when the exchange rate modelled by a Jacobi process gets near
the boundaries, the diffusion coefficient becomes small and the drift (which models the
intervention of the central banks) drives the process away from the boundaries.

For a more exhaustive description of the potential application areas of the Jacobi
process, the reader is referred to Gouriéroux and Jasiak (2003). Therefore, the is-
sue of estimating a Jacobi process which is, either very convenient to model the dy-
namic of a probability process or flexible enough to fit data on exchange rates in a
target zone, appears undeniably relevant. Moreover its simplicity makes it tractable
enough for efficiently estimating its parameters. However, although the process is de-
fined in continuous time, the data are available in discrete time. Unfortunately, the
likelihood function for discrete observations generated by a Jacobi process does not
admit a closed-form expression and therefore the maximum likelihood is not feasible.
To remedy this problem, we propose a technique based on nonlinear canonical analysis
to approximate the unknown discrete-time transition function of the continuous-time
Jacobi process. The approximation technique consists in truncating the spectral de-
composition of the transition density derived from the spectral decomposition of the
infinitesimal generator associated with the diffusion process. Since the expression of
the approximation to the likelihood function is explicit, the maximum likelihood ap-
proach becomes feasible. Our technique to approximate the transition function is much
simpler than that proposed in Ait-Sahalia (2002) and is much closer tailored to the gen-
uine diffusion process since we do not proceed with any preliminary transformation of
the data. The maximization of this quasi-likelihood function over the parameter space

yields the quasi-maximum likelihood estimator, denoted QML. It is worth noting that
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this estimation technique can easily be extended to any diffusion process, either scalar
or multivariate, since it involves only the spectral decomposition of the infinitesimal
generator of the diffusion.

The finite sample properties of this estimator are then compared with the proper-
ties of some estimators existing in the literature such as the Kessler and Sorensen’s
estimator (EIG) [see Kessler and Sorensen (1999)], which is basically a method-of-
moments which exploits the spectral decomposition of the infinitesimal generator to
build some unbiased martingale estimating functions. The optimal estimating function
thus obtained can be thought of as an approximation in terms of eigenfunctions to the
unknown score function. While these authors try to approximate the unknown score
function, the approximated QML estimator approximates the unknown transition den-
sity. We also compare the QML estimator with the generalized method of moments
(GMM) estimator, and with simulation-based estimators such as the simulated method
of moments (SMM) estimator, or indirect inference (II) estimator and also with an exact
indirect (EI) estimator based on an identifying constraint. Compared with these meth-
ods, the QML estimation method is easy to implement, no computationally intensive
(compared to SMM in particular) and demonstrates good statistical properties.

The paper is organized as follows. Section 2 exploits the subordination properties
to induce a Jacobi process, and its distributional properties are analyzed by means of
nonlinear canonical analysis. Based on the distributional results of Section 2, we in-
troduce the quasi-maximum likelihood estimator (QML) in Section 3. We also review
some alternative estimation methods (GMM, SMM, EI, 11, EIG), which will serve as
benchmarks in assessing the finite sample properties of the QML estimator. How to
simulate the Jacobi process is detailed in Section 4 before presenting the finite sample
Monte Carlo results in Section 5. Finally concluding remarks are given in Section 6.

The proofs are gathered in appendices.
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5.2. Distributional properties of the Jacobi process

We review in this section distributional properties of the Jacobi process, which are use-
ful to interprete the parameters of interest and to define appropriate estimation methods

[see Gouri€éroux, Renault and Valéry (2002)].

5.2.1. Time deformation

The standard family of distributions used to specify the distribution of a random vari-
able y with range [0, 1] is the beta family. It is well-known that the beta distribution
can be deduced from gamma distributions. Typically, if z; and z, are two indepen-
dent gamma variables, y = z,/(z; + ) follows a beta distribution. The first result
extends this property to continuous time stochastic processes. Let us recall that a Cox-
Ingersoll-Ross (CIR) process admits marginal (resp. conditional) distributions which
are gamma (resp. noncentered gamma) distributions. A Jacobi process can be deduced
from a bivariate Cox-Ingersoll-Ross process by a time deformation. Let us consider the

bivariate stationary Cox-Ingersoll-Ross process:

d.’L‘]f_ = (.’L']t ﬁl)dt + \/C.'L']tdW“ y
dzo, = —b(zg — By)dt + /CToidWoy ,

(5.2.2)

where (W7;) and (Ws,) are mutually independent standard Brownian motions and the
mean-reverting [ resp. volatility] parameters b [ resp. c] are identical. The parameters
are constrained by b > 0, 8, > 0, 8, > 0, ¢ > 0. The two CIR processes are
independent. Let us now consider the transformations: y,, = Fﬂ;—m and yy = 1, +
Z. They define a process with range [0, 1] and a positive process, respectively. By

Ito’s lemma, the bivariate process (¥4, yo;) satisfies the bivariate stochastic differential

system:

dy1e = —(b/y2e)[y1:(B1 + Ba) — Buldt + [c(yre/ya) (1 — y1e)]/2dWh,
dyar = —blya — (B, + By)]|dt + \/CyztdWm )

(5.2.3)
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where (Wy,) and (Wa,) are independent standard Brownian motions. Therefore the
process (yo;) is a CIR process with parameters b, §, + 0, and c, whereas (yy,) is 2

Jacobi process after time deformation. Indeed, let us define the time deformed process:

Y1t = Yire (5.2.4)

where the time deformation :

t
Ty = / Y2udU , (5.2.5)
0

has stationary increments {y»; }. The process (y;,) satisfies the stochastic differential

equation:

dy;, = —b(By + Bo)[y1, — ﬂl—ﬂ_*_l‘ég]dt + [y (1 — y;z)]l/zdwl*t ) (5.2.6)

and is a Jacobi process. To summarize, a Jacobi process can be deduced from indepen-
dent CIR processes 1, o by first applying the transformation y; = z1/(x; + z2), and
then a time deformation with increments y, = z; + 2. We see below how this property
can be used to derive the marginal distribution of a Jacobi process, integral expressions

of its transitions, and also of course for simulation purpose.

5.2.2. Canonical decomposition
5.2.2.1. Spectral decomposition of the infinitesimal generator

It is known that the dynamic properties of a diffusion process y are characterized by the
infinitesimal generator, which explains how to compute the infinitesimal drift of any

transformation P(y) of process y. The infinitesimal generator A is defined by:

1
AP(y) = ,lllf(l) EE[P(th) — P(y)ly. =y} - (5.2.7)
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By applying Ito’s formula, it is easily checked that the restriction of A to the set of

twice continuously differentiable functions P is the differential operator:

APW) = )5 ) + 55" 37 ) (5:29)

where u and o2 are the infinitesimal drift and volatility, respectively. Thus for a Jacobi
process the differential operator becomes:
oP 1 o*P
Ply) =—-bly—B)—=— —cy(1 —y)==(y) - 5.2.9
AP(y) = ~bly = B)5-(0) + 5201 ~9) 55 1) (529)
For a Jacobi process, the infinitesimal generator admits a spectral decomposition, that
is there exists a set of eigenvalues A,, n € N\{0}, and eigenfunctions P,, n € N\{0},

such that:
AP, = M\.P, ,Vn, (5.2.10)

and (P,, n € N\{0}) generates the set of square integrable functions P. The spectral
decomposition has been initially given by Wong (1964), [see also Hansen, Scheinkman
(1995)]. The eigenvalues are negative given by A, = —bn — %cn(n — 1), whereas the
eigenfunctions are polynomials, called Jacobi polynomials [see Abramowitz, Stegun

(1965)]. They are given by:

&+n)2n+a+p6— &A@ 1172 & n
ps = [ B A1 S ()

nll(&+pf+n—1)Ga+B) B +n m
&+ 0 —
(@ ’ﬁ::;)m Dom 5211

with & = 24 and g = 2(1 — ). These polynomials define an orthonormal basis
with respect to the inner product < P, P* >= [ P(y)P*(y)dv(y), where v is the beta
distribution ( ﬂ(zbﬂ 2b(1-A ))). We will see below that this distribution is the marginal
distribution of the Jacobi process. These polynomials are standardized with respect to
the beta distribution 8(%£, Qb(l 2U-P)) that is they satisfy: E[P,(y)] = 0and V[P,(y)] =

1, for any n.
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5.2.2.2. The conditional expectation operator

The infinitesimal generator measures the drift at very short horizon. However in prac-
tice the observations are available in discrete time £ = 1,2, ..., say, and the drift of the
transformed process is measured at a fixed horizon, by convention equal to 1. For this
reason, it is useful to introduce the conditional expectation operator 7 which associates

with any transformation P the new transformation 7 P defined by:

TP(y) = E[P(g41)lye = 9] - (5.2.12)

The conditional expectation operator 7 is simply the exponential of the infinitesimal

generator A:

T =expA.

Therefore it admits the spectral decomposition with eigenvalues exp A, and eigenfunc-

tions P,, n € N\{0}.

5.2.2.3. Moment conditions

The spectral decomposition can be used to derive moment conditions satisfied by a

Jacobi process. Indeed we get:

E[Pa(y:)lye-1] = exp(An) Pa(yi-1) ¥V n € N\{0},

and, by iterated expectation theorem we deduce a similar relation at any horizon h,

h e N\{0}:

E[Pn(ye)|y—n] = exp(Anh) Pa(ys-n) Vh, n € N\{0}. (5.2.13)
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This set of moment conditions corresponding to degree smaller than n can be written

equivalently in terms of power moments. More precisely we get:

1 exp(Aoh) 1

" exp(\h) Yt—h
E|| o2 | lyn| = A7'diag | exp(\ah) | A| 2, | >

\w/) | (k) | | v

where A is the (n + 1) x (n + 1) matrix independent of the lag h, which describes the

coefficients of the polynomial eigenfunctions:

Pi(y.) Yt

i P, n(yt) i | yy ]
Matrix A is lower triangular:
1 0 0
ajp an 0 0
A= | ayp an ax O 0 )
0 0
Ano On1 Qp2 ... ... Qpp /

with coefficients given by equation (5.2.11).
Explicit expressions of the conditional power moments can be found by solving

recursively the system of moment conditions (5.2.13):

S (1) PP gy ) = expiont) 3o -07 ()

m=0 m=0)
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ra+pf+n+m—1)

I'(&+m) Yizh -
(5.2.14)
For instance we have:
Elyye—n) =1 - exp(—bh)]%é- + exp(—bh)y,— ,
9 o a(a+1) B o 2(a+1)
E[yclyt—h] = (&+B+1)(&+B+2) [1 exp[( 2b C)h]]+ (&'*',B‘*‘Q)
[1 = exp(—bh)] 2 + &+ 1)

51 h  Giit 2 {exp(—bh) — exp[(—2b — c)h]}yi—n

+exp[(—2b — )Ry},

and the conditional variance at horizon h, that is the volatility at term h, depends on the
past by means of an affine function of y;p, ¥2_,. And so forth.

Then cross moments of the type E(y™y._,) are easily derived from the conditional
power moments since: E{y*y._,] = E[yi_, E[y!"|y.-n]], where E[y[*|y,_s] is given by

equation (5.2.14). For instance, we get:

E[ytyt—h] = (2_:)2 i 3(_2C_b) ) (1 - exp[(——2b - C)h])k2(9)
@) + 0]
+2‘QQT[1 — exp(—bh)]ko(6)
—(z—f)ﬂ + 1}
+2‘2_bT{exp(—bh) — exp[(—2b — ¢)h|}k3(0) + exp[(—2b — c)h]ks(9) ,

c

where k;() = Ey(y;) denotes the marginal power moment of degree i [see Appendix
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for closed-form expressions of k;(6) and of the cross moments].

5.2.3. Marginal and conditional distributions of the Jacobi process

The results above can be used to get some insight on the transition density of a Jacobi

process, even if this transition does not admit a closed form expression.

i)

The marginal distribution.

The marginal distribution of the Jacobi process is the beta distribution
I6} (2—';2, 2(_16—_{1)) This result can be immediately deduced from the interpretation
of the Jacobi process in terms of time deformation [see Section 5.2.1]. Since
yi, = Y1, where y; and 7 are independent processes, the marginal distribution

of y}, coincides with the marginal distribution of y,, = —=4—. Therefore this is

the distribution of —Z—, where 271, and 2z, are independent with distribu-
tions 7(2%1), 7(@1), respectively, corresponding to the marginal distributions of

the CIR processes, that is the beta distribution. The result follows.

An expression of the transition based on nonlinear canonical analysis.

From the spectral decomposition of the infinitesimal generator, it is possible to
deduce a decomposition of the transition density at any horizon h [see Lancaster

(1968)]:

PO ului0) = S0 1+ > PP Palun) o (5219)

n=1

where A, = —bn — Jcn(n — 1), P, are the orthonormal polynomials defined at

equation (5.2.11) and f(y;#) denotes the marginal distribution of y, [see 1)].

5.3. Estimation methods

In this section we describe the different estimation methods of the parameter § =

(b, B, c)’ of the Jacobi process {y,} from discretely sampled data {1,%s, - - -, yr}-
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5.3.1. (Approximate) Quasi-maximum likelihood

The maximum likelihood estimator éﬁ“ of 6 is defined by:

T

ML

O = arg max 51 log f(yt|yi-1;0) ,
1=

where f(y:|y:—1;0) denotes the transition density at horizon 1. It is conditional on
the initial value yp of the process. Since the transition density has no closed form
expression for the Jacobi process, the exact maximum likelihood approach is infeasible.
However, it is possible to approximate the likelihood along the lines described below.
An approximation to the true transition density f(y:|y;—1;6) based on its spectral

decomposition (which depends on £) can be obtained by:

N
In@elye-1;0) = f {1+ exp(An(6)) Palye; 6) Palyi—1;0)} ,
n=1
for a large value of IV, since

A}i_r‘noo fN(yth!t—l; 9) = f(yt|yt—1; 9)

for each 6 € ©, where f(y:|y:—1;6) has been defined at equation (5.2.15) and f(y;6)
denotes the marginal p.d.f. of the process which corresponds to a Beta distribution for
the Jacobi process.

Then we can define the (approximate) quasi-maximum likelihood estimator 9?,1:1

of 6 as:
QML

T
gT,N = aIrg mgxx ; log fN(yt|yt—1§ f) .
This estimator based on a truncated version of the likelihood is asymptotically equiva-
lent to the ML estimator when /V tends to infinity with 7" at an appropriate rate [see e.g.
Carrasco, Florens (2000)]. This rate depends on the rate of decrease of nonlinear cor-
relations. Finally note that the truncated canonical decomposition fn (y;|y;—1;6) is not

necessarily positive, when N is fixed. This can create numerical problems in the opti-
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mization due to the logarithm. However this case occurs with probability tending to 0
when N tends to infinity, and equivalent asymptotic results are obtained after replacing

fn by its absolute value in the expression of the log-likelihood function.

5.3.2. Method of moments

The idea of the method is to calibrate the values of the parameters on well chosen

conditional moments.

5.3.2.1. Selection of the moments

The basic moments selected for estimation purpose will be the first NV conditional mo-
ments of the form E[y,|yi—1], E[v2|yi-1],-- -+ E[y} [y:-1]. When N is large, this set
of conditional moments brings the same information as the score (due to the special
canonical decomposition of the Jacobi process) and therefore the generalized method-
of-moments (GMM) estimator [see Carrasco, Florens (2000)] becomes equivalent to
the maximum likelihood estimator. Moreover, from Section 5.2.2, the conditional mo-
ments Efy" |y._,] are polynomials of order V; therefore it is equivalent to calibrate on

marginal moments such as:

Eoys = k1(fo),  Eoyiye—1 = ku(0o),
Eoy? = ky(60),  Eoyiyi—1 = ka1(6o), Eoytyr = kaa(fo),

Eoyd = k3(6),  Eoylye—1 = kai(bo),  Eoyivi_, = ks2(bo), Eoyiys_y = ksa(6o)
Eoy =kn(00), EoyMyi—1 = kni(80), Eoyr viy = kn2(60), -.-Eoyl y/ly = knn(6o) -
(5.3.16)

In practice a finite number of relevant moments are selected. They will be chosen to be
sufficiently informative, that is to provide insight on various features of the series such
as skewness, kurtosis, volatility clustering, leverage effect, and to ensure the identifica-

tion of the parameter of interest.
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5.3.2.2. Identification issue

To determine how many conditional moments are required to identify the parameters

of the Jacobi process, let us consider the first two conditional moments:

E[yelyi1] = [1 — exp(—b)|8 + exp(—b)y:1 ,

and
263y2 4 2b 2b 2
Elyily1] = — [(g);i) 3;_,);'_?_]2] (1 —exp(—2b— c)) -+ 2[‘[:—25-:_7']8](1 — exp(-b))
+2< {exp(—b) — exp(—2b — ¢)}yi—1 + exp[(—2b — c)hly;; -

242

c

Since the conditional moments are polynomials in y,_;, they can be written as:

Ely)yi-1] = a119:-1 + a0

E[y¢2|yt—1] = azzyf_l + a1Yi—1 + Az .

Thus the parameter of interest # can be identified from these two conditional mo-
ments if the mapping 8 — (a1, @10, @22, @21, A2) 1S a one-to-one mapping. It is shown
in Appendix that this identification condition is satisfied. More precisely the parame-
ters can be identified from E(y,), Var(y,) and Corr(y;, y.—1). Typically, denoting by
My, 6>, pp(1) the sample mean, sample variance and first order empirical correlation
respectively, we can deduce by inverting this relation that S = 1hr, by = — In(p7(1))
and :

G111 + Qo

ér = 2In(pr(1)) —In(1 - )

=9 -
&7 +m2

= g(mTu &g"a pT(l)) -

This suggests a guideline for the choice of the moment conditions to include in the
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indirect estimation procedure below?.

5.3.2.3. An exact indirect estimator

An exact indirect estimator is a moment estimator based on a number of moments
equal to the parameter size. A simple indirect estimator can be based on the identifying
constraint which associates a unique parameter value to the summary statistics m, o2,
p(1). Let us denote by ar = [rhr, 53, pr(1)]’ the sample counterpart of these moments.

ar tends asymptotically to a(f) = [k1(8), k2(0) — k1(0)?, p(1,8)], where p(1,0) =

RORAO

.- . ~EI, .
T (0) T (0 The exact indirect estimator denoted by 8, is solution of:

. ~EI
ar = a[HT l :

5.3.2.4. Generalized-method-of-moments estimator

The summary statistics m, o2, p(1) are functions of first and second order moments of
the pair (y;, y,—1). Thus we can expect an improvement of the estimator by considering
a larger set of moments and applying GMM. We consider below a set of moments also
including third and fourth marginal moments to account for skewness and kurtosis, as
well as cross moments of the type E(y.y7_,) (to capture the risk premium ), E(y?y>_,)
(to capture the possible volatility persistence). More precisely equation (5.3.16) can be

rewritten under a vector form as:

EO[K(yt) - k(go)] =0.

2The identification issue can be considered for any lag A. We have just to replace b — bh, ¢ — ch,
pr(1) — pp(h). In particular another consistent estimator of b is b7 = — In(p1(h))/h. The comparison
of the estimated values — In(pr(h))/h, h varying, can be the basis of a specification test for the Jacobi
hypothesis.
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Typically, the set of moment conditions selected for implementing GMM is:

Y — K (9)
S HC
YY1 11 ( )
yt2 — k(0)

K(y) = k(0) = | w2, — ki3 (6)
yRy? ) — ki (0)
yp — ks(6)
yi — ka(6)

The GMM estimator is defined by:

~GMM

T ’ T
57(2) = sxgmin (Sl - ko)) (ourew - o)
where (2 is a consistent estimator of the asymptotic variance covariance matrix of

# ST K (y.) — k(8)]. It can be obtained through a Bartlett kernel estimator [see
Newey and West (1987)] as

K
- . k . -,
Q=F0+ E (1—K—H)(Fk+Fk),
k=1

where:
I = % Z (K (ye-k) — k(éT)][K(yt) - k(éT)]' )
t—k+1

where 0 is any consistent estimator of § and K tends to infinity with 7" at an appropriate

rate.

5.3.2.5. Estimating equations based on eigenfunctions

As an alternative to the quasi-likelihood approach aforementioned, Kessler and
Sorensen (1999) propose a moment estimator which also exploits the spectral decompo-

sition of the infinitesimal generator to build unbiased martingale estimating functions.
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The optimal estimating function thus obtained can be seen as an approximation in terms
of eigenfunctions to the unknown score function. While these authors try to approxi-
mate the unknown score function, the (approximate) QML estimator approximates the
unknown transition density itself. It is worth noting that the GMM methodology pre-
sented earlier in this section does not use optimal instruments. Therefore, we should
expect the latter not to behave in finite samples as well as the GMM of Kessler and
Sorensen based on optimal instruments. Indeed, Kessler and Sorensen exploits the
spectral decomposition to derive optimal instruments in the sense of Hansen (1982),
Godambe and Heyde (1987), [see also Heyde (1997)]. More precisely they note that

the functions:
hj(ytayt—l; 9) = ‘P](yt’ 0) - exp[)‘](e)]PJ(yt—ly 0) 1j = 17 DR N1 (5317)

where P;, \; denote the eigenfunctions and eigenvalues, respectively, satisfy the con-

ditional restrictions:
Elhy(Ys, Yo1;0)[Yia] =0 ,5=1,...,N . (5.3.18)

These restrictions imply marginal restrictions of the type:
N
E[Z CYj(Yc—l)hj(Yt,Yz—l;g)] = Ela(Yi-1)h(Y, Vi3 6)] =0, (5.3.19)
j=1

where the instruments a;(Y;-;) have a dimension equal to the parameter size. The

moment estimator deduced from these marginal restrictions is solution of:

T
3" a(y1)hye vee1;0) =0 (5.3.20)

t=1

As usual the asymptotic variance-covariance matrix of this estimator depends on the
selected instruments. The optimal choice of the instruments is obtained by considering

the best prediction of the conditional score on the estimating functions [see e.g. Go-
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dambe and Heyde (1987)]. More precisely, let us denote by f(y:|y:~1;60) the transition
density of the process. The score is w and the best conditional prediction

of the score based on the estimating functions h;(y:, ys—1; o) is:

B(y-1;00)C(ye-1; 00) " h(ye, ye-1; 00) (5.3.21)
where:
h(ye, ye-1500) = (ha(ye, ye-1;60), - - -, v (Yes Ye1; 90))’ ) (5.3.22)
C(yt—1;90) = Eeo[h(yz,yz—l;eo)h(yz,yt—l;go),lyt—l] ) (5.3.23)
dlog f(Yi|lyi-1;6
B(yi-1;00) = Eg,| gf((;(l)yt - O)h(}/hyt—l;go)lwt—l] : (5.3.29)
Thus the optimal moment estimator based on Ay, ..., hy is the solution of:
T -~
> 6 (1) Ay ye-1;67) =0, (5.3.25)
t=1

where &” (y;—1) is a consistent approximation of:

o (ye-1) = B(y1-1;00)C(y1-1;60) " .

To implement this estimator, we will use the optimal estimating function G7.(f)
with the above optimal instruments ¢* evaluated at a preliminary consistent estimate

denoted by 9T, (e.g. the GMM estimate). Let:

Gr(6) = B(y1-1; 01)C(¥e—r; 1) " 21, ve-16) | (5.3.26)
t=1
where h = (hy, ..., hy) with h;(y,z;8) ,j=1,..., N such that:

hj(y,z;0) = P;(y; 0) — exp();(8)) P;(z; 0) . (5.3.27)

The eigenfunctions and eigenvalues are the Jacobi polynomials and the corresponding
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eigenvalues, respectively. On the other hand, the estimating function is a one-to-one
mapping, that is, when taking its expectation w.r.t. the true probability distribution,
parameterized by the true parameter 6, then it has to satisfy Ey,G5(6p) = 0 which
identifies the true parameter 6, without ambiguity. Since G7-(6) has a dimension equal
to 6 [dim(f) = p = 3], the estimator A7 is easily obtained by solving an explicit sys-
tem of p = 3 equations with 3 unknowns, namely, by solving the estimating equation
G5(0) = 0. Before solving the equations, we need to compute the matrices defin-
ing the optimal instruments. Given that the eigenfunctions are polynomials of the
type: Pj(y;0) = S°1_,a;x(0)y*, and further are also eigenfunctions for the condi-
tional expectation operator associated with the eigenvalues exp(A;(6)), the computa-
tion of these matrices involving § can be simplified. Further, it is easily shown that the

p X N —matrix,

01 ;0 ,
Bli00) = Eu ELYE )y 0 60y10) = — B foush(y,2:00)e]

As a result the matrix B(z; ) = {;;(z;6)} has entries of the type:

J 1
bij(x;60) = ) o,05(6) /0 v f(ylz; 0)dy — 8, (MO Py(z;0)),  (53.28)
k=0

and the N x N—matrix C(z;0) = {c¢;;(z;0)} defined at equation (5.3.22) has entries
of the type:
i .

cy(z36) =) Z ai,r(6)ajs (6 / Y f(y, | 0)dy — eM DM O Py, 6) Pi(x;6) .

0 (5.3.29)
See Appendix for a proof. The weighting matrices B(z;#) and C(z; ) will be eval-
uated at a preliminary consistent estimate of § available in practice. These coeffi-
cients require the computation of the integrals of the type fol v* f(y|z;0)dy, for k =
0,1,2,...,2N. To compute these integrals, we exploit again the fact that the Jacobi
polynomials P;(y; ) are also eigenfunctions for the conditional expectation operator

associated with the eigenvalues exp();(6)), see Appendix 5.6 for a proof. These inte-
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grals are computed recursively, j = 1,2, ..., 2N using the fact that fol fylz; 0)dy =1
since this is the conditional density of y, given that y;,_, = z, to start the recursion.
Finally, the estimator of § = (b, 3, ¢)’ denoted by 9,‘?,16 is obtained as the solution to
the explicit system (5.3.26) of p = 3 equations. Kessler and Sorensen (1999) showed
that for N going to infinity, the optimal estimating function of the type (5.3.26) will
converge to the score function. Larsen and Sorensen (2003) applies this estimator for

fitting a Jacobi process to exchange rates data.

5.3.3. Simulated methods

We consider two simulated methods that are the simulated method of moments (SMM)
and the indirect inference. These approaches require artificial data sets simulated from
the Jacobi dynamics. Let (y§(0),...,45(0)) with s = 1,...,S denote the simulated
data sets, with parameter 8 = (b, 3,c)’ [see Section 5.4.1 for the description of the
simulation procedure].

5.3.3.1. The simulated method of moments

This method is essentially a moment method, in which the theoretical moments are

. . . . ~SMM .
approximated by simulation. The SMM estimator denoted by HTMM 1s then defined as:
-5
T.MM = arg moin Ysr(9) ,
where:

T S T S
Usr(6) = {3 1K (W) — 5 3 KON Y (K@) - 5 3 KGO}

and:

K
Q=F0+Z(1— >(Fk+r,;),
— K+1
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where:

~
<)

S
o= 3 Ky z WK - 5 > KGN
s=1

t=k+1 s=1

and A7 is any consistent estimator of 4.

When the number of replications S tends to infinity, § Zil K (y;(0)) tends to k(6)
and the estimator ?)iMM coincides with the GMM estimator corresponding to the same
moment conditions. Of course in our framework where closed-form expressions of
the moments are available, GMM approach is preferred from the asymptotic point of
view. However it can be informative to compare the finite sample properties of GMM
and SMM. Indeed, some diminution of the finite sample bias is often observed with

simulation based methods.

5.3.3.2. The indirect inference method

The indirect inference method (hereafter II) [see Gouriéroux, Monfort and Renault
(1993)], is a calibrating method based on an instrumental model which approximates
the true model, that is the Jacobi process, but is easier to estimate. The instrumen-
tal model is naturally deduced from the Euler discretization of the s.d.e. (5.1.1). The
instrumental model corresponds to the autoregression with conditional heteroscedastic-
ity:

Yee1 — Yo = —b" (s — %) + mﬁnﬂ ,

where the errors €, are independent with standard normal distribution. After a change
of parameters where @ = 1 — b*, v = b*3" and § = /c*, the instrumental model can

be rewritten as an autoregressive model linear in the new parameters «, .

Yi+1 _ Yi Y

V ye(1 — ) - a\/yt(l — Y) i \/yt(l - Y)

The parameter ¢ = (a,<,d) can be estimated by OLS by regressing \/l—
ye(1-ye)

-+ 6€t+1 .

gr denotes the associated estimator. We can also compute

Yt and L .
Vye(1-) Vye(1-3:)
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§5-(0) the OLS estimate of the transformed parameter based on a data set y3.(f) =
(y3 (), ...,y5(0)), for s = 1,...,S, simulated under the structural model for a value
6 of the parameter of interest.

The indirect inference estimator of ¢ is defined by choosing a value 9;1 for which

gr and §5.(0) are as close as possible:

S ' S
11 . 1 ns . 1 s

b7 (12) = argmin [gT -3 2_; T(9)] n [gT -5 ZQT(O)] :

where {2 is a symmetric nonnegative matrix defining the metric. Since the instrumental

model has the same number of parameters as the initial Jacobi process, the estimator

does not depend on the choice of {2 and we select (2 = I3 in the application.

5.4. Simulation of the Jacobi process

In this section we explain how the discrete time sampled Jacobi process can be simu-
lated by means of a truncated Euler approximation or by using the time deformation
interpretation. Then we check the accuracy of the simulated path for different sets of

parameter value.

5.4.1. A truncated Euler scheme

The Jacobi process is simulated through an Euler discretization of the stochastic differ-
ential equation with a small time unit §, where the values of the process y, are truncated
to restrict them to the range [0, 1].

The Euler approximation of the equation is:
Yik+1)s = Yks — b(yrs — B)0 + /cyrs (1 — ykﬂ)\/gfk )

where e, k varying, are independent standard normal variables. However, this tech-
nique does not ensure values between 0 and 1 and therefore the positivity of the volatil-

ity term. To satisfy this restriction, we truncate the values out of the range (0, 1).
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Typically, when y takes a value greater than or equal to 1, we set y = 0.99 and, if y
takes a value less than or equal to 0, we set y = 0.01. Thus the truncated Euler scheme

is defined by:

099, if Yerys = 1
Ylks1)s = { Yies» o 0S¥y S 1, (5.4.30)
001, if Uit < 0,
where:
Yiesns = Vis — b(uis — B) + [ cyis(1 — yig) Viey | (5.4.31)

and ¢} are independent drawings in the standard normal distribution.

The truncated Euler discretization scheme has to be applied with a small time unit ¢,
to get a good approximation of the underlying continuous time path. For the illustration
we select § = 1/10. Thus we first simulate by the truncated scheme (5.4.30-5.4.31) the
underlying values corresponding to dates 1/10,2/10, 3/10, .... The simulated discrete
time path is deduced by considering only the integer time indexes that are y; = yi;,

with k = t/6. They correspond to k = 10 fort = 1, k = 20 for ¢t = 2 and so forth.

5.4.2. Simulation scheme based on time deformation

A simulation scheme can also be designed from the interpretation of a Jacobi process

in term of time deformation as follows.

e step 1: Simulate two very long sample paths from independent x? distributions

[or equivalently from gamma distributions] such that:

2%, i=1,2,

where the time unit has been fixed to § = 1/10.

e step 2: To generate a variable y; ks With a beta distribution, apply the transfor-

mation:
e
y(s) . 1,ké
Lké 7 (s) (s} 7
Ty ks + Tors
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)

where the :c( 5 come from step 1.

e step 3: To simulate the time deformation process 7,5 = fok J(xlu + To,)du, sum

up:

(s) _

k
(S)
Tks = E :m116+x2l¢5

Onlb—l

. step 4: To produce draws from a Jacobi process, we select the simulated values

yl k 5 for which the time deformation process reaches integer values, such that:

'(5) = yis,zé , when ,'rffa) eN,

with k varying.

The random draws of the Jacobi process thus produced will be unequally spaced in

time.

5.4.3. Simulated series

The approach above is followed to simulate paths of the Jacobi process. The length of

the path is T' = 2000, and the parameters are fixed at different values:

e parameter set I : (0.43,0.5,0.8)

e parameter set II : (0.5,0.5,0.25)

The different parameter sets have been selected to reproduce the two typical patterns of
the marginal beta distribution. Sets I and II correspond to symmetric beta distribution,
with more weights on boundary values 0-1 for set I. The dynamics also differ. The
processes associated with parameter sets I and II admit rather high first order correla-
tion, larger than 0.6. Simulated paths of the Jacobi process and of its transformations
corresponding to the first three canonical polynomials are provided in Figures 1 and 2

for parameter sets I and II.

[Insert Figure 5.1: Simulated paths, set I]
[Insert Figure 5.2: Simulated paths, set I1]
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Due to the choice of parameter values, the process distribution can give more or less
weight in a neighborhood of the limiting values 0 and 1. Larger weights on extremes
can be immediately observed on simulated paths. Moreover since the autocorrelation
is rather high (~ 0.6) for set I we observe also some extreme clustering. Indeed when
y, is close to 0 or 1, the random component in equation (5.4.31) is close to zero and the
equation becomes almost deterministic.

The paths associated with the canonical directions are simply polynomial transfor-
mations of the initial path. Nonlinear features can be observed, such as skewed paths
for the second degree polynomial, or more extreme phenomenon for polynomial of
degree 3. Distributional properties of the paths can also be derived by replicating the
simulations. The number of replications is M = 1000. We provide in Figures 5.3 and
5.4 the empirical marginal distributions of y:, P»(y:), Ps(y;) for the first two sets of

parameter values.

[Insert Figure 5.3: Empirical marginal distributions, set I]

[Insert Figure 5.4: Empirical marginal distributions, set II]

The comparison between the sample distribution for y, and the theoretical beta distri-
bution (see the first row of Figures 5.3 and 5.4) gives some information on the accuracy
of the simulations as well as Table 5.1 reporting summary statistics.

The skewness [resp. fat tail] effects are also clearly seen on the sample distribution
of Py(y,) [resp. Ps(y:) ] on Table 5.2. The sample means are close to zero whereas the
variances close to 1 for the three polynomials. This corresponds to the normalization
of polynomials in the canonical decomposition.

We have seen that the empirical results concerning marginal distributions coincide
with the expected theoretical results. Let us now focus on dynamic features.

From the theoretical results we expect that the processes Py (y,), P2(v:), Ps(y:) are
not correlated and are autoregressive of order one. Figures 5.5, 5.6 provide the joint
autocorrelogramms of the three series for the two sets of parameter values. The dashed
lines represent the confidence bands of plus or minus twice standard deviations com-

puted under the 1.i.d hypothesis. The absence of cross correlation is clearly seen on



Table 5.1. Summary statistics for y; and beta distr.

set I
sample moments of y, | theoretical beta

mean 0.4891 0.5
variance 0.1063 0.1204
skewness 0.056 0
kurtosis 1.6140 1.5276

set I1
mean 0.4960 0.5
variance 0.0493 0.05
skewness 0.0337 0
kurtosis 2.2051 2.1428

Table 5.2. Summary statistics for P;,P;,Ps.

set 1
mean | variance | skewness | kurtosis
Pi(y,) | 0.0313 | 0.8826 -0.056 1.614
Py(y,) | -0.1608 | 0.9021 0.2477 1.622
P3(y,) | -0.0227 | 0.9275 0.0222 1.5339
set 11
mean | variance | skewness | kurtosis
Pi(y;) | 0.016 0.9869 | -0.0337 | 2.2051
Py(y:) | -0.0124 | 1.0265 1.2733 3.8740
Ps(y,) | -0.0174 | 1.0161 0.1509 6.7443
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Table 5.3. Sample and theoretical correlations for P;,P,,P;.

set I

p(L) | p(Q) | p(2) | p(2)
Pi(y,) | 0.587 | 0.650 | 0.334 | 0.4231
Py(y;) | 0.136 | 0.1901 | -0.007 | 0.0361
P3(y;) | 0.064 | 0.025 | 0.017 | 6.23E-4
set I1
A [ p [ 2@ | @)
Pi(y.) | 0.585 | 0.606 | 0.328 | 0.367
Py(y;) | 0274 | 0.286 | 0.041 0.082
Ps(y) | 0.097 | 0.105 | -0.018 | 0.011

the correlogramms, but the autoregressive dynamics is more difficult to detect on the
autocorrelogramms shown in Figures 5.5, 5.6 except for the first polynomial. For this
reason we also provide a plot for another set of parameter values (0.1, 0.5, 0.03) corre-
sponding to a very high correlation level (~ 0.9). For this set the typical exponential
decay is clearly seen for the three polynomials. A complementary information is pro-
vided in Table 5.3 where are reported the sample and theoretical first and second order

correlations.

[Insert Figure 5.5: Empirical correlations, set I]
[Insert Figure 5.6: Empirical correlations , set II]

[Insert Figure 5.7: Empirical correlations , set (0.1, 0.5, 0.03)]

To summarize, the comparison of the empirical and theoretical results concerning
the Jacobi process and its transformations allows for the validation of the simulation

scheme based on the Euler discretization, both for marginal and dynamic features.

5.5. Comparison of the estimators

5.5.1. The estimation methods

The aim of this section is to compare by simulations the finite sample properties of the

quasi-maximum likelithood (QML) estimator with the moment estimator of Kessler and



128

Sorensen (EIG), which uses the spectral decomposition to approximate the unknown
score function, together with the exact indirect estimator (EI), the GMM estimator,
the SMM estimator and the indirect inference estimator (II). Different sample sizes
are considered T' = 500, 1000, 2000, 3000 and the number of simulations used in the
Monte Carlo study is M = 1000.

The QML approach is applied with N = 4 terms in the canonical decomposition.
This number has been chosen small and independent of the sample size to have an idea
of the truncation bias. The Kessler and Sorensen estimator based on the eigenfunc-
tions is implemented with the first two eigenfunctions as recommended by Larsen and
Sorensen (2003). The weighting matrices defining the optimal instruments are evalu-
ated at a preliminary consistent estimate of #. In the subsequent Monte Carlo study,
the GMM estimate of § has been used to get a consistent estimate of the instruments.
Finally, to solve the estimating function 5.3.26 = 0, we use the nlsys library of the
GAUSS sofware for solving a system of nonlinear equations in the unknown param-
eter #. The EI approach calibrates the three parameters of the Jacobi process on the
sample mean, variance and first order correlation. This set of moments is sufficient to
identify the Jacobi parameters and can serve as a benchmark for other GMM estima-
tion methods based on a larger set of moments. The GMM approach is applied with
the seven moments described in Section 5.3.2.4. These moments include those used
in the EI approach together with higher moments associated with skewness, kurtosis,
and cross moments in order to capture more dynamic features. The GMM approach is
performed in two steps. The first step estimator is obtained with the identity matrix re-
placing the weighting matrix in the GMM criterion. This preliminary estimator is then
plugged into the {2 matrix to get a Newey-West estimator of the weighting matrix. The
second step estimator is then obtained by minimizing the second step GMM criterion.
Similarly, the SMM approach is the simulated version of the GMM approach, but, in-
stead of comparing the sample moments to their theoretical analogs k(f), we compare
the sample moments to the simulated ones /(y;(#)) averaged over S = 10 simula-

tions. Since one expects simulated methods to correct for finite sample bias by means
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of simulations, the SMM approach is meaningful to study the behavior of finite sample
estimation bias. Similarly, the indirect inference approach can possibly diminish finite
sample estimation bias [see Gouriéroux, Renault and Touzi (2000)]. It is important to
compare the distributional properties of the estimators for different sample sizes. Such
an analysis gives an idea of the number of observations necessary for the asymptotic
theory to be valid and of how this number depends on parameter values. Moreover
when the sample sizes are too small, we can detect the most important differences with
asymptotic normality, such as skewness, fat tails, or multimodes. We first consider the
comparison for each type of parameters, the mean reverting parameter b, the volatility
coefficient ¢ and the mean parameter § and in a second step the joint distribution of b

andc.

5.5.2. Marginal properties of the estimated coefficients

i) Analysis of the bias.

Let us first consider the finite sample bias for the different estimation methods. In
order to facilitate the comparison with respect to sample size and across experiment,
we consider the bias standardized by 7" and divided by the true value of the parameter.
Such a standardization will not change the interpretation of the bias since the parameter
values are positive.

Due to the interpretation of the parameters we can expect less bias on the mean
parameter ( than on the mean reverting parameter b and on the volatility coefficient c.
Moreover we expect a bias (resp. a standardized bias) tending to zero (resp. to a limit)
when the sample size tends to infinity. Indeed,the standardized bias seem to stabilize
towards a limit when the sample size increases which gives support for the fact that the
bias seems to converge at a rate of 1/7.

Let us consider the sign of the bias as reported in Table ??. When examining pa-
rameter set II in Table ??, the bias for the volatility coefficient c tends to be positive for

the exact methods (QML,EIG,EI,GMM) in contrast to the simulated methods (SMM,II)
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for which it is negative. A positive bias for c leads to overestimate the volatility. If one
has in mind a credit barrier model which is mainly a derivative pricing model in which
the underlying is a credit quality variable with the meaning of distance to default, then
y may represent the dynamic of the default probability. In such a framework, a higher
volatility increases the default probability.

In this sense, the negative bias is not a suitable property of the simulated methods
since it may lead to underestimate the risk of default. However this observation is less
clear in parameter set 1. The same type of observation holds for the mean reverting pa-
rameter b which is biased upwards for the exact methods (QML,EIG,EI,GMM), while
it tends to be negative for the simulated ones (SMM,II). It is known that the speed
of reversion is relatively difficult to estimate without bias [see Larsen and Sorensen
(2003)]. The exact methods seem to overestimate the speed of reversion and therefore
might drive the manager to take more risk as the latter expect the probability of default
occurrence to go back faster to its long-run equilibrium level modelled by the mean
parameter (3. Therefore, a risk-averse manager could be mistaken by an overestimation
of the mean-reverting parameter b by getting a wrong appreciation of the evolution of
the default probability. Concerning the sign of the bias for the mean parameter 3, the
sign is not constant and varies across experiments and across methods. Note that the
sign of the bias for [ is always positive for SMM. In particular, all the other methods
exhibit a negative bias for § in parameter set II whereas SMM overestimates its bias.
Paradoxically, SMM exhibits more bias for the mean parameter than the one observed
for the other methods but the magnitude of the bias remains limited (less than 0.8).

Concerning the magnitude of the bias, we clearly see that SMM drastically reduces
the finite sample bias of the mean reverting parameter b and to a lesser extent of the
volatility coefficient ¢.The simulated moments seem to perform better than the indirect
procedure in reducing the bias. Indeed, the indirect procedure suffers from singularity
problems when trying to invert the X’X matrix in the first step OLS estimator of the
auxiliary parameter due to a lack of robustness of the latter in presence of outliers. This

point is clearly highlighted in Genton and Ronchetti (2001) where they show that the
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finite sample bias may not be necessarily negligible under a contaminated version of
the DGP. Moreover, we can see that GMM exhibits slightly more bias than EI, which
confirms the fact that including more moments in the estimation increases the magni-
tude of the bias [see Buse (1992), Andersen and Sorensen (1996), Chao and Swanson
(2000)]. When the moment estimator of Kessler and Sorensen is not too affected by
numerical instability, we note that the bias of the mean-reverting parameter b is less
tmportant than those observed for EI and GMM in parameter set 1. This better perfor-
mance of the EIG may be attributed to the selection of the optimal instruments of the
latter. The same remark holds for the bias of the volatility coefficient ¢ in parameter set
II. The parameter with the strongest bias is the mean reverting parameter b mostly in
set I, which corresponds to the marginal symmetric Beta distribution which puts more
weight on the extreme values, whereas the mean parameter (3 is much less biased.

The mean reverting parameter b is less biased in set II which corresponds to the
symmetric Beta distribution with more weight on the averaged values. But this is not
as clear as for the volatility coefficient which seems to be less biased in set I. Note that
the QML estimator tends to exhibit more bias (upwards) for the mean reverting param-
eter b than for the volatility coefficient ¢ when compared with other methods. More
specifically, QML demonstrates less bias for the volatility coefficient when compared
with the estimator of Kessler and Sorensen based on eigenfunctions for all experiments.

QML seems therefore to be potentially more accurate in evaluating the risk.
[Insert Table ??: standardized biases, set LII.]

ii) Analysis of the variance.

Let us now consider in Table 5.4, the variance of the estimators standardized by the
sample size and divided by the square of the true value of the parameter in order to
facilitate the comparison across sample size and experiment. Indeed, the variance of
the estimators tends to diminish when the sample size increases whereas the standard-
ized variance tends to a limit. Concerning the magnitude of the variance, QML is more

accurate than the other methods. In particular, the estimator proposed by Kessler and
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Sorensen exhibits a very large variance when the sample size is small. This large vari-
ability may be attributed to a lack of robustness of the G7.(6) criterion defined at equa-
tion (5.3.26) to outliers. There is always a tradeoff between robustness and efficiency
and the latter focuses on efficiency issues. But, at the same time, the G.(6) criterion is
also sensitive to numerical instability, in particular in small samples. Indeed, the com-
putation of the integrals as nonlinear functions of the parameters, fails a few times in
small samples. Therefore, it is quite difficult to disentangle the effects stemming from
essentially numerical instability from those due to robustness considerations. Fortu-
nately, when the sample size grows, the situation is getting better. To get an insight
on the relative efficiency of the QML estimator w.r.t. the EIG estimator, we compute
some relative efficiency coefficients. In parameter set I when EIG is less affected by
numerical instability, the relative efficiency of the estimator of b decreases from 0.7245
(6.8181/9.4099) for T = 500 toward 0.9884 (6.2937/6.3672) for T = 3000 in favor
of QML. In other words, the QML estimator of the mean-reverting parameter is 27.5%
more efficient than its EIG estimator in small sample; they become equivalent in large
samples where for T' = 3000 the QML estimator outperforms the EIG estimator of only
1.16% approximately. Concerning the diffusion parameter ¢ in set I, the EIG estimator
remains dominated by the QML estimator. Indeed, the relative efficiency for T = 500
is around 0.7117 (3.6209/5.0874) in favor of QML and this time the EIG estimator has
some trouble to catch up with QML when the sample size increases, since the relative
efficiency is still around 0.8652 (3.4640/4.0036) in favor of QML when T = 3000.
Hence, despite the large sample size of ' = 3000, the QML estimator remains more
efficient than the EIG estimator of 13.48%. Note the extreme high variances displayed
by II in parameter set I reported in Table 5.4 not only for the mean-reverting parameter
but also for the volatility coefficient. They contrast sharply with the variances of its
competitors. II is known to be a very general estimation method which can be used in
estimating a large variety of models. However, the more general an estimation method
is, the less precise it may be, and hence, the less efficient it appears. Although II is said

to be suitable in estimating continuous-time diffusion processes since the crude dis-
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cretization of the latter naturally provides an auxiliary model for estimation, it remains
that its performance critically depends on the choice of the discretization scheme. As a
result, what the indirect inference estimation method wins in generality it looses in ef-
ficiency. Further, when comparing EI and GMM variances, there is no obvious gain in
efficiency in implementing the over-identified method which is more complicated and
also computationally costly even though including moments of the form Ey3, Ey,y2 ,
in the GMM estimation may capture dynamic features such as skewness, leverage ef-
fect compared with the EI estimator. Moreover we may expect that GMM and SMM
are equivalent at least asymptotically. The results seem to predict something in that
sense mostly in set II with the sample sizes 7' = 2000, 3000. On the other hand, the
QML estimator is quite appealing since it does not require estimating a weighting ma-
trix as it is the case for EIG, GMM, SMM. Indeed, estimating a weighting matrix may
arises numerical instability which may affect the estimation results. Moreover using a
Bartlett estimator leads to a truncation bias in the estimation of 2. Moreover, the more
moments are included in the estimation procedure, the larger is the risk of colinearity
and therefore the more trouble we have to invert the weighting matrix (2. Again, we
observe that the mean-reverting parameter exhibits more variability than the diffusion

coefficient in both parameter sets.
[Insert Table 5.4: standardized variances, set I,11.]

iii) Analysis of skewness and kurtosis coefficients.

Globally the skewness and kurtosis coefficients reported in Tables 5.5 and 5.6 are
getting closer to those characterizing normality(skew= 0, and kurt. = 3) when the
sample size increases. QML suffers a little asymmetry around 7' = 3000 in set I
mostly for the mean-reverting and the mean parameter, which may be attributed to
the small number of polynomials in the expansion of the density function. Increasing
the number N of polynomials in this expansion may take into account more dynamic
features of the process such as heavy tails and asymmetries. Note again the extremely

high kurtosis and skewness for EIG and II (greater than 10 in set I and 100 in set II)
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in small samples due to some numerical instability. In this respect, QML behave better
than the estimator of Kessler and Sorensen because of numerical instability arising from
nonlinearities in the parameters for the latter. Note again some very similar results
in terms of skewness and kurtosis for the just-identified moment estimator (EI) and
the over-identified one (GMM). SMM also exhibits some good symmetric properties
and does not appear leptokurtic. Unexpectedly, deviations from normality in terms
of asymmetries and fat-tailed effects appears more severe in parameter set II than in
set I and could say more in favor of the numerical instability hypothesis. Again the
mean parameter demonstrates better distributional behavior than the mean-reverting

parameter and the volatility coefficient.
[Insert Tables 5.5, 5.6: nonstandardized skewness and kurtosis coefficients, set I, 11.]

iv) Analysis of marginal distributions.

The empirical marginal distributions of the parameters have been standardized as
VT (07 — 6,) where 6, denotes the true value of the parameter. The parameters are
represented on the figures by column, (b, 3, c) from the left to the right whereas the
sample size increases from top to bottom (7" = 500, 1000, 2000, 3000). We study dif-
ferent sample sizes to get an insight on the speed at which the asymptotic works. As
expected, the asymptotic might work faster for SMM than displayed for GMM and
QML. Increasing the number of polynomials in the expansion of the transition function
might help QML for reaching the asymptotic behavior faster, that is in smaller sample
sizes. The distributions are getting closer to the Gaussian distribution when the sam-
ple size increases and in particular more symmetric.Globally, the distribution of the
mean-reverting parameter b exhibits more dispersion than the volatility coefficients c
as already observed when analyzing the variances. In particular, we observe that the
distributions of the mean-reverting parameter b are clearly biased to the right for the
exact methods (QML, EIG, EI, GMM) in set I which correspond to the marginal Beta
distribution which puts more weight on the extreme values. As for EI and GMM we

should better choose the instruments to include in the procedure, ideally select the op-
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timal instruments. By contrast, the simulated methods (SMM, II) display distributions
which are more centered around 0 in set I and therefore achieves in correcting for the
bias as usually expected for this kind of estimation methods. But this improvement has
a cost in term of computation time since these methods are known to be very computa-
tion intensive. All the distributions of all standardized estimators of b are more centered
around 0 for parameter set Il and do not display any bias. The distribution of the mean
parameter 3 and of the volatility coefficient ¢ do not suffer from such bias and are glob-
ally centered around O for all parameter sets and all methods. They also converge faster
to the Gaussian distribution than observed for the mean-reverting parameter b which
appears undeniably as the most challenging parameter to estimate. Note also that the
tails are getting thinner when the sample size grows, mostly for the EIG estimators of
all parameters. We further observe that the distribution of the EIG estimator of the
volatility coefficient is left-skewed for T = 500, 1000 in parameter set II. Indeed, we
observe heavy tails and skewness features on the small sample distributions of the EIG
estimators as already noticed when analyzing the kurtosis and skewness coefficients,
respectively. Deviations from normality, in terms of skewness and fat-tailed effects,
are more severe in small samples 7' = 500, 1000 for indirect inference, in particular in
parameter set II with extremely high skewness and kurtosis coefficient as reported in

Table 5.6.

[Insert Figures 5.8,5.9:Empirical marginal distributions of the EI estimates, set LII]
[Insert Figures 5.10,5.11:Empirical marginal distributions of the QML estimates, set
LII] [Insert Figures 5.12,5.13:Empirical marginal distributions of the EIG estimates,
set I,I1] [Insert Figures 5.14,5.15:Empirical marginal distributions of the GMM
estimates, set I,II] [Insert Figures 5.16,5.17:Empirical marginal distributions of the
SMM estimates, set LII] [Insert Figure 5.18,5.19 :Empirical marginal distributions of

the II estimates, set I,I1]
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5.5.3. Joint distributional properties of the estimators of b and c

In addition to marginal behaviors, studying the joint dynamic of the parameters could
be informative concerning potential useful connections across them. Such an insight
is particularly relevant if one wants to make derivative pricing. In this respect, un-
derstanding the joint dynamic of the parameters which drives the drift and diffusions
functions respectively is essential for risk considerations.To do so, we have chosen to
examine the joint behavior of the mean-reverting parameter b and of the volatility coef-
ficient ¢ since they are the parameters which drives the dynamic of the process, leaving
aside the long-term mean parameter  which informs more on the long-run equilibrium
level. The joint distributions of b and ¢ have the typical ellipsoidal shape characterizing
the bivariate Gaussian distribution for all estimators. The ellipsoids are fatter in set
I than in set II where they are thinner illustrating that there is more dispersion in the
estimated values obtained in parameter set I. We also observe for all estimators indis-
tinctively, some outliers in small samples. The presence of outliers may be interpreted
as a measure of occurrence of extreme events. Indeed, outliers are much numerous in
parameter set I which correspond to the beta distribution which put more weight on
the extreme values. In other words, the proportion of outliers could be interpreted as a
measure of nonlinear dependence, that is as a measure of dependence in the tails whose
the usual statistics of linear dependency are unable to capture. Thus, when the estimate
of volatility parameterized by c tends to get too high, the estimate of the mean-reverting
parameter b has to reach higher values in order drive the process back to the long-run
equilibrium. The higher the volatility coefficient c is, the higher the probability for the
process to hit the boundaries will be, hence the higher the mean-reverting parameter
should be in order to be sufficiently forceful to keep the process stationary. Again we
observe that the ellipsoids are biased to the right in set I for the exact methods (QML,
EIG, EI, GMM), as already observed on the marginal distribution of the mean-reverting
parameter b, whereas they are more centered around 0 in set II. Once again, the simu-
lated estimation methods (SMM, II) correct for the bias observed in set I for the exact

methods. Indeed, all the ellipsoids of SMM and II are centered around 0 whatever
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sample size considered. Note also that SMM performs much better than II which un-
fortunately suffers from numerical instability which may produce some multimodes.
Such a deviation from normality is unfortunate for II, since in such situations, we do
not know which optimum to choose. Indeed for II, the procedure fails quite often due
to some singularity issue stemming from the fact that the procedure gets very unsta-
ble numerically when the process hits the boundaries 0 and 1. As a result, the X'X
matrix, defining the OLS estimator of the auxiliary parameter, becomes non-invertible.
As for the estimator EIG of Kessler and Sorensen, the procedure fails a few times as
well, but in a much lesser extent than for II. These computational crashes arise from the
computation of the integrals defining the weighting matrices B and C which are highly
nonlinear in the parameters and creates some trouble to invert the weighting matrix C.
The joint distribution of b and ¢ are well-behaved for the QML estimator and seem to
be more robust to outliers than the EIG estimator. In this view the QML estimator has
an advantage over the EIG estimator and the II estimator since in the QML procedure
we do not have to invert any matrix which may create some numerical instability of any
kind. Further, as it is not computational intensive as II, it does not have to handle with
some trouble arising at the boundaries. Concerning the EI and the GMM estimators,
there is not obvious benefit to implement the over-identified method which is also more
complicated, when one compares their joint distributions. This remark gives support
once again to the detractors of over-identified methods. In general the optimal number
of instruments allows for the just-identified case. Intuitively, to maximize efficiency,
one should not include irrelevant instruments. This assertion is largely documented in
the literature on asymptotic theory [see Buse (1992), Chao and Swanson(200)]. Dufour

and Taamouti (2003) provides evidence on this issue through Monte Carlo methods.

[Insert Figures 5.20,5.21 :Empirical joint distributions of the EI estimates of b and c,
set LIL.] [Insert Figures 5.22,5.23 :Empirical joint distributions of the QML estimates
of b and c, set LI1.] [Insert Figures 5.24,5.25 :Empirical joint distributions of the EIG
estimates of b and c, set LIL.] [Insert Figures 5.26,5.27:Empirical joint distributions of
the GMM estimates of b and c, set LIL.] [Insert Figures 5.28,5.29:Empirical joint
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distributions of the SMM estimates of b and c, set L,II.] [Insert Figures

5.30,5.31:Empirical joint distributions of the II estimates of b and c, set I,I1.]

5.6. Concluding remarks

To summarize, the quasi-maximum likelihood estimator QML exhibits globally one of
the best behaviors with respect to bias and variance, while being one of the easiest esti-
mation method to implement, at the exception of the just-identified moment estimator
EL It is further no computation intensive and so very fast. Indeed, it rules out some
difficulty like estimating a weighting matrix in the GMM, SMM, EIG procedure which
may create some numerical instability due to some difficulties to invert the weighting
matrix. These numerical difficulties can be avoided by resorting to the quasi-maximum
likelihood. Further, the quasi-maximum likelihood estimator appears more robust to
outliers than the estimator based on the eigenfunctions of Kessler and Sorensen or than
the indirect inference procedure. The empirical joint distribution of the QML estima-
tors of the volatility coefficient and of the mean-reverting parameter looks similar to

the bivariate gaussian distribution for all sets.
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Table 5.4. Standardized variance

set ]

b

QML

EIG

El

GMM

SMM

II

500

1000
2000
3000

6.8181
7.0358
6.5798
6.2937

9.4099
7.2155
6.5723
6.3672

8.8657
8.8517
7.9215
7.6626

9.6319
9.2338
8.2802
8.0455

7.6623
7.6680
7.3122
7.2385

76.9341
61.8202
53.1076
73.1982

QML

EIG

El

GMM

SMM

IX

500

1000
2000
3000

0.7927
0.7468
0.7768
0.7015

6.8107
4.8142
4.8381
4.5428

1.8001
1.7248
1.7412
1.5722

1.7622
1.7030
1.7846
1.5919

2.3917
24774
2.3639
2.3274

1.1550
1.8748
1.0854
1.7815

QML

EIG

El

GMM

SMM

I1

500

1000
2000
3000

3.6209
3.6777
3.5836
3.4640

5.0874
4.1932
4.1786
4.0036

4.3377
4.6238
4.2579
4.2487

4.8351
4.8790
4.4773

4.5058

5.2806
4.6170
5.2834
5.1112

63.6620
31.0570
26.0690
34.3427

set I1

QML

EIG

El

GMM

SMM

11

500

1000
2000
3000

5.6704
5.2873
5.4264
5.2865

302.43
31.69
5.9182
5.7946

6.6339
6.7363
6.1352
5.7885

7.1301
7.1621
6.4619
6.0650

7.0027
7.3463
6.5078
5.9193

6.4383
7.7470
11.9585
13.5154

QML

EIG

El

GMM

SMM

II

500

1000
2000
3000

0.4986
0.3085
0.3276
0.1514

17.99
5.9503
2.2619
2.2685

0.8456
0.8221
0.8423
0.7724

0.8548
0.8018
0.8425
0.7632

0.8527
0.8212
0.8352
0.7479

0.4139
0.2368
0.0554
0.0424

QML

EIG

El

GMM

SMM

II

500

1000
2000
3000

3.1459
2.2798
2.2827
1.6182

185.12
21.12

3.6963
3.7815

3.9844
4.2944
3.9792
3.9571

4.5354
4.6027
4.3394
43110

3.8282
3.9695
3.8796
3.7541

3.9735
5.4284
4.7032
4.8279
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Figure 5.0: Simulated paths, set I.
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Conclusions générales

Dans des problémes d’inférence non standard, la classe de procédures statistiques
modernes qui exploite des méthodes d’inférence simulées telles que les moments simu-
1és, I’inférence indirecte, la méthode des moments efficace, mais aussi les techniques
bootstrap, Monte Carlo Markov chain ou encore les tests de Monte Carlo (maximisés)
permettent de dériver des estimateurs et des procédures de tests puissants et robustes
pour des modéles complexes dans des situations possiblement non standard - condition
de rang des matrices violée, probléme d’identification de paramétres de nuisance sur
un sous-espace de 1’espace des paramétres, restrictions redondantes dans des modeles
nonlinéaires, présence de racines unitaires...- modulo une modification des résultats
asymptotiques usuels.

Néanmoins, il reste que les techniques d’inférence simulées ne doivent pas étre dé-
connectées des procédures statistiques conventionelles mais doivent étre utilisées en
combinaison avec celles-ci. En particulier elles doivent exploiter les caractéristiques
dynamiques des processus étudiés - telles que celles identifiées par des techniques de
décomposition canonique par exemple, qui permettent d’identifier les directions de cor-
rélation maximale et d’obtenir tous les moments conditionels des processus - pour rap-
porter des outils statistiques puissants et fiables.

En particulier, ’estimation par inférence indirecte ou EMM requiert [I’utilisation
d’un modéle auxiliaire qui fournit une bonne approximation du modéle structurel pour
produire un estimateur aussi efficace que possible [cf. Gallant and Long (1997), Tau-
chen (1997)]. Si le modéle auxiliaire emboite le vrai processus générateur de données
alors les estimées quasi-maximum de vraisemblance deviennent des statistiques suffi-
santes et dans ce cas, I’estimateur (II ou EMM) est pleinement efficace [Gallant and
Tauchen (1996)].

De plus les estimateurs simulés (SMM, I, EMM, MCMC) sont trés utilisés dans des
applications utilisant des données des marchés financiers ou des données d’encheres.

Cependant il semble, dans des situations oli le maximum de vraisemblance est éva-

cué parce qu’infaisable, quaucun résultat théorique n’existe qui permettent d’affirmer
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la supériorité des méthodes simulées sur des méthodes plus conventionelles [Gallant

and Tauchen (1999)].
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Appendix: Proofs of chapter 1

PROOF OF LEMMA 1.3.1  First, if U ~ N(0, 1) then E(U?**!) = 0,V p € N and
E(U?) = (2p)!/[2Pp!] V p € N [see Gouriéroux and Monfort (1995a, Volume 2, page
518)]. Under Assumptions 1.2.1,

E(uf) = ryE(z)Elexp(kw,/2)]

k! k? \
s | 20— )

. K R
Ty__g(kﬂ)(k/z)!e)(p i (1—a%)

=T

where the second equality uses the definition of the Gaussian Laplace transform of
w, ~ N[0, 72 /(1 — a?)] and of the moments of the N(0, 1) 2, variable. Let us now

calculate the cross-product:

o)
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where E(w;) = 0, Var(w,) = 12 and

Wy Witm 02 l2 kl
Var(k? +1 5 ) = zVar(wt) + ZVar(me) + 2§§Cov(wt, Wigm)
2
— J__ .2 2 ] T
= 4(1—a2)(k + 1 + 2kla™) .

PROOF OF LEMMA 1.3.2  Taking the ratio of equation (1.3.7) on equation (1.3.6) to
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\
h the square produces
E(u}
———( t) 5 = 3exp[rl/(1 —a?)],
(Ft))
ie.
E(u})
2/1—a?) =log| o=55 | =@ - 0.1
Inserting Q = r2 /(1 — a?) in equation (1.3.6) yields
o E@d) sV
' \ew@a) T EMT
From equation (1.3.8), we have
T Efuui_)]
exp( (1 _ a)) - T;
which, after a few manipulations, yields
log(E[ufu;_,]) — 4log(ry)]

l4+a=

Q

or either

o = Hog(Efuyu_,]) — log(3) - 4log(E[uf]) +log(E[u])]
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08 (3(Elu?1)2>

From the expressions of @ = r2 /(1 — a?) at equation (.0.1) and that of a above, we

can deduce:

PROOF OF LEMMA 1.3.3  Here we derive the covariances of the components of



/'-"‘-\.‘I‘
J

192
Xt = (X]t, th, X3t), that is

(1) = Cov(Xu, Xip4r) = E{[uf — po(8)] [“?w — ua(60)]}

= E(ufuy,) - w3 (0) = T;EGXP('UH + wyyr) — p5(6)
2

= rpexp| o (1-400)] — 0) = sOfexpla”) -1,

where v = l—r_}*a—Q Similarly,

vo(r) = Cov(Xay, Xapir) = E{[uf — pa(O)][ugyr — 1a(0)]}
= E(uful,,) — p2(0) = IrSE{exp[2(w; + wesr)]} — p(6)

T (14 07) - 1(6)] = W6 [exp(tra”) — 1]

1 —a?

= 9rjexp[4
Finally,

v3(1) = Cov(Xat, Xaper) = E{fufui_, - #2,2(1|9)][u3+1'u;.2+‘r—1 — pip,2(110)]}
= E[u?u?—lua—ru?#r—l] - #3,2(”9)
= ”‘zE exp(Wypr + Wear—1 + Wy + Weq) — u§,2(1|9)
= Sexp[2(1 +a)v]exp[y(a” +2a7 +a™)] — p3,(116)
= p2,(1)0){exp[y(a” + 207 +a")] - 1}

= p3,(1]0){exp[y(1 + a)’a™"!] - 1}

forall T > 2. O

PROOF OF PROPOSITION 1.4.5
The method-of-moments estimator 67(§2) is solution of the following optimization

problem:

min Mr(6) = minu(f) — gr(U7)) 2ru(8) — gr(Ur)] -
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The first order conditions (F.O.C) associated with this problem are:

_aﬂ(éT)QT[/L(éT) — gr(Ur)] =0.

An expansion of the F.O.C above around the true value ¢ yields

% or)r (10) + PO Gr — 0) - ar(0m)| =0

where, after rearranging the equation,
VT [0r(2) — 8] = [P(8)2P ()] P(O)VT [gr(Ur) — n(6)] -

Using Assumptions 1.4.1 to 1.4.4, we get the asymptotic normality of f7(£2) with

asymptotic covariance matrix V (£2) as specified in proposition 1.4.5. O

PROOF OF PROPOSITION 1.4.7  In order to establish the asymptotic normality of
VTgr(Ur) — p(8))] we shall use a Central Limit Theorem (C.L.T) for dependent
processes [see Davidson (1994, Theorem 24.5, page 385 )]. For that purpose, we first

check the conditions under which this C.L.T holds. Setting

U? — io(6)
Xy = up — py(6) = g:(0) — p(9) ,
u?“?—l - N2,2(1|9)

T T
St = ZXL = th(e) — u(0) ,

and the subfields F, = o(s;, 5,—1, ...) where s, = (y;, w;)’, we need to check three
conditions:

a) {X,, F.} is stationary and ergodic,

b) {X;, F.} is a L;-mixingale of size —1,
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lim sup T~Y2E|Sy| < o0 (.0.2)

T—oo

in order to get that T~Y/2Sr = VT (Gr(Ur) — u(8)) = N[0, f.].

a) By Propositions 5 and 17 from Carrasco and Chen (2002) we can say that:

(i) if {w,} is geometrically ergodic, then {(w;, In lv,|)} is Markov geometrically er-
godic with the same decay rate as the one of {w};

(ii) if {w,)} is stationary B-mixing with a certain decay rate, then {In |v,|} is B-mixing
with a decay rate at least as fast as the one of {w,}.

If the initial value v, follows the stationary distribution, {In |v,|} is strictly stationary
-mixing with an exponential decay rate. Since this property is preserved by any con-
tinuous transformation, {v;} and hence {v¥} and {vfvf_,} are strictly stationary and
exponential S-mixing. We can then deduce that X, is strictly stationary and exponential
B-mixing.

b) A mixing zero-mean process is an adapted L,-mixingale with respect to the sub-
fields F, provided it is bounded in the L;-norm [see Davidson (1994, Theorem 14.2,

page 211)]. To see that {X,} is bounded in the L;-norm, we note that:

Efv} — p2(6)] < E(j7] + [12(0)]) = 2u(8) < 00,

Elvf — pa(0)] < 214(8) < o0,

E‘vazz—l - #2,2(1“9)[ < 2#2,2(”9) < 0.

We now need to show that the L;-mixingale {X;, F;} is of size —1. Since X is
[S—mixing, it has mixing coefficients of the type §, = cp™ , ¢ > 0, ,0<p<1
In order to show that {X,} is of size —1, we need to show that its mixing coefficients

B, = O(n~?), with ¢ > 1. Indeed,

T

% = n®exp(nlogp) = exp(¢ logn) exp(nlog p) = exp(¢logn +nlogp) .
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It is known that lim,_.c ¢ log n + nlog p = —oo which yields
lim exp(¢logn +nlogp) =0.

n—oo

This holds in particular for ¢ > 1, [see Rudin (1976, Theorem 3.20(d), page 57)].
¢) By Cauchy-Schwarz inequality, we have:

E\T~2S7| < T2 Sr I,

so that (.0.2) can be proven by showing that limsupr_, T “1E(SrST) < oo
We shall prove that:

1
limsup T YE(SrS,) = limsu Var[——S ] < 00
Y ( T T) p \/T T

T—oc T—o0

i) The first component of St. Set St = Z:tT=1 X1, where X1, = uf — py(0). We

compute:
) s T
Var [7—,}“5']‘1] = 7 L; Var(Xi,.) + ;COV(XLS, X1,t)]
s#L
1 T T T
= 2@+ 23 =) =m0+ 20 - pm ().
T=1

T=1

where v = 72 /(1 — a?). We must prove that ST (1= Z)7,(7) converge as T — oo.
By Lemma 3.1.5 in Fuller (1976, page 112), it is sufficient to show that > 27 v,(7)

converge. Using the results of Lemma 1.3.3 we have:

e et R e

= (0 [wa Z

k=0

'r o0 T\k
T ya T T
] < p3(8)va Z( k,) = p3(6)ya” exp(va’).
k=0 '




L= -\,\I

196

Therefore, the series

S () < B0y a exp(va”) < p(0)vexp(ve) ) a7
T=1 =1 =1
ayex a
— #g(g)w < 00

l—a

converges. We deduce by Cauchy-Schwarz inequality that

T
lim sup T~ */2E] Z [uf — py(0)]] < 0.

T—oo =1

The proof is very similar for the second component of Sr. We will skip to the third
component of St.
ii) The third component of Sr. Set Stz = ST Xa, where Xa, = uful ) — pg(110).

Likewise, we just have to show that 3> | v3(7) < oo in order to prove that

T
lim sup T'l/zE| Z [U?Uf—l - #2,2(”9)“ <00

T—o0 =1

By lemma 1.3.3 we have for all 7 > 2:

1a(r) = p32(110)lexp(v(1+a)*a™™") — 1]

_ ,@(1]9){1 + i b +afa '] 1}

— k!

1 + a)2a'r—1]k—-1
k!

= 12,01 +a)a™ > i
k=1
oo a 2 -1k
= W,(10)(1 +a)a"] Y [7(1(:31(;! |
00 2a1'—l k
< E2,00HA+a)?a Y it + i)| |
k=0 )

= u2,(10)[v(1 +a)’a™ exp[y(1 +a)’a”"],
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such that
i} 15(r) < va(1) + o (118)7(1 + a)? 2 o exply(1 + a)%a™"!]
< 73(1) + 125(18)7(1 + a) exply(1 + a)%a] 2 1
= 7y(1) + 12,(118)7(1 + @) exply(1 + a)%a] i
= v3(1) + 43 ,5(116)7(1 + a)® exp[y(1 + a)’q] E - <oo.

Since lim supy_,, T~Y/2E| EL] X,;| < oo we can therefore apply Theorem 24.5 of
Davidson (1994) to each component St; , @ = 1, 2, 3 of St to state that: T-128, LA
N(0, );) and then by Cramér-Wold theorem establish the limiting result for the 3 x

1vector Sy using the stability property of the gaussian distribution, i.e.,
T
7128, = T3 X, = VT [gr(Ur) — u(8)] > Ns(0, 2.) ,
t=1

where

2. = lim E[(T~/25r)?] = Jm E{T [3r(Ur) — u(®)] [3(Ur) — 1(8)]'} -

PROOF OF PROPOSITION 1.4.8  The asymptotic equivalence of

1 T [n2
T Lut=1 [ t —l‘z(e)]
VT [gr(Ur) — u(6)] = 77 S [ — 1a(6)]
T o (8202 — pyp(1)(6)]

with+ VT (gr(Ur) — p(6)) can be established by looking at each component.
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1. The component\/_zt (@7 — po(0)) . We have:

@2 —u? = (y—0)° - (% —z,8)’

= (B -B)zz,(B—B) 28— B)zu -

We deduce after aggregation:

T 1 T \ 1 X 1 T , X
§=j —m(0)] = ﬁ;[uz—#2(9)]"'\/—7[\/7(5—@?;%%ﬁ(ﬂ—ﬁ)

ﬂf

T
—2VT(8 - /6)’-;; >z (.0.3)
t=1

By (1.4.18), and Assumption 1.4.6, and by the Law of Large Numbers (L.L.N.)
F ZL zu, — E(zou) = E(z,)E(u,) = 0, we deduce that equation (.0.3) is equiva-

lent to

72 #% S — 1(6))

t=1

}ﬂ

asymptotically.
2. The component -} s Zt (@8 — py(8)) . Noting that

@t = —4(B— B)zd +6(8 — B)zul,(B — B) — 4(B — B)z.z; (B — B)(B - B) mw
+(B - ﬂ)/l‘tl‘;(ﬁ - 5)(3 - ﬁ)lﬂ?ﬂ?;(ﬁ - ﬁ)

we get after aggregation:

(@ — g(0)) = \% SO (0 — 1y(6)) + Ry

t=1 t=1

3~
N

where

Ry = —4\/—[3 B) ZIzut'*‘G \/—,H ﬂTthut (,f)’—ﬂ)
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—4VT(B - BY thﬁ A)B - ﬁTZztut

T
+—ff (B -8 Z wT(B ~ OVT (B - )7 ;m;ﬁ(ﬂ ~0).
Since VT (8- B), * S|z, and £ ST z.x, are asymptotically bounded, and by
the LLN., & 30 zoul, + S7_, xu, we can conclude that Ry is an o,(1)-variable

which yields that

T 1 T
Z — py(0 #_Z
t=

t=1

3~
=

asymptotically.

3. The component sz (@247 — pop(1]6)) . Noting that:

@2, — bl = —2(8 — B)lwwl_, + zerufuen] + (B — B) zeui XACEN)
+ (B - Bzl (B — B) +4(B — B) w1, (B — B)
— 2B — BYza(B — B)B — B merties — 2B — B) mirziy (B~ B)(B — B) ziuy
+ (B = BYz.ai(B ~ A)(B ~ B) zerzi- (B — B)

yields after aggregation

1Tt=i Bt 1) — 2 (119)) %g (wfup_y — Hao(110)) + R
where
Ry = -2VT(B-P) Z[xtutut L+ Teoguue )

+—\/1-—7—,\/T(ﬁ - ﬂ)’— thuf_lx’tﬁ(ﬁ ~p)

v VTh th VI = )+ 4= VT(B - B) 7
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¢ r
-. Z Itutut—lx;_lﬁ(ﬁ -B)
T T
WT(B - ) & S waiVT (B - VTP — B 7 D iy
1 t;l A t ; -
V(B = B) 7 3 wessha VT(B = AVT (B = ) 75 D i

L VT@ -0 Y waVT(B - OVT(B - B) = th 12, VT (B - B).
Tt:l

By (1.4.18), Assumption 1.4.6 , and by the L.L.N. applied to % 23;1 z,_1uu,_; which
converges 10 E(ze_1ulu;_1] = EuZE(u—1|Fi—2) E(zi-1|Fi-2)] = 0, we deduce that

Ry is an o0,(1)-variable. Therefore, we have the asymptotic equivalence below.

71_T Z(ﬁ'?ﬂ?——l ~ pgp(1 #%Z upuy_ — pa2(1)(6)) -
& Thus,
%
ﬁ Z?:l(ﬂiq — pa(8)) asy ﬁ ZL (uf — 1a(8))
I Y (8 = 1a(0)) # T2 i (uf — 1a(9))
ﬁ Z?:l(ﬁ?ﬂg—l ~ H22(1)(6)) ﬁ 23—1(“?'“?-1 — 122(1)(0))

and from equation (1.3.3), we get the asymptotic equivalence

- asy

VT (5r(Ur) — u(8)) # VT (Gr(Ur) — u(60)) ,

with gr(Ur) defined as in equation (1.4.11). O
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Appendix: Proofs of chapter 3

Analytical expressions of the derivatives

The analytical expressions of the derivatives of the moment conditions defining the
binding function are given by:

7,.2

Oty _ a 2.2 w
Be  (1—azp vy o o)

Oty Tw 2 :

)
ory ~ 1—a) VT2~ a?)

Oy T
IH2 _ 9 _Tw
or, = vl o)
Opg a 2,4 2r}
OBa _ 90 = _Tw
50 = 2oy Plg )
Ouy 2r2

Ok _q9_Tw 4oy “Tw
or. = 2i—a lao )

Oty 2r2
I _ 12 3 w
ory Ty eXP[(I - az)] '
Opig 2 T2 r4 exp| TS ]
= X
da (1—-a)?? p(l—a) '
Opag 21y  expl T2 ]
= — X —_—
or, 1—a? p(lﬂa)’
Opig : ra
3 — 4 3 w .
ory "y exp[(l - a)]

All these derivatives evaluated at a = 0, 7, = 0 gives the results stated in equation

(3.3.23).
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Appendix: Proofs of chapter 5

Moments used in the GMM estimation

[2bﬂ+ ]
242

k1 (0) -

_[(38)% +3(28)* +2(26)]
T 2+ +3) (212
[(26)? + 3(2p) + 2]
(2b+4)(2b+3) kl(e)
LI

3 B41yq

c

[(228)* + 6(20)* + 11(20)* + 6(2)]
(2 +6)(2+5)(2+4)(2+3)
[(2B)% + 6(2B)2 + 11(20) + 6]k )

(2 1+ 4)(2 +5)(2 +6) '
[(25)? +5(20) +6] 23+3
(2 +5)(2 +6) ka(0) + 455

C

k(6) = B = -

—6

k3(0)

ER(6) = Elyiyi—n) = exp(—bh)ka(8) + [1 — exp(—bh)}5*

K1(0) = Elysy?_ ] = exp(—bh)ks(8) + [1 — exp(—bh)]Bkx(6)

[~}
<

)2+ (
+3(2

B)]
Dy

(28

[(2?,,6) (1 — exp[(—2b — c)h]) k1 (6)

KD (0) = Ely?y.s) = —

~— 10

202
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2b 2
+ 2[—%[ — exp(—bh))k:(8) + 2—3?;8—:51—{exp(—bh) — exp[(—2b — c)h]}k2(6)
+ exp[(—2b — c)h]k3(0)
[ Qbﬁ 2bﬁ:|
k(h) = E[y2v?_,] 2713 (1 — exp[(—2b — c)h])k2(8)
ﬂ%m+4 {%m+q
+2 [1—exp(—bh)]k2(0)+2 {exp(—bh)—exp[(—2b—c)h]} ks(0)

c c

+ exp[(—2b — c)h]kq(0) .

Identification issue

Our concern here is to identify the parameter of the Jacobi process. Note that taking the
unconditional expectation of equation (5.3.2.2), yields under stationarity assumption

that:

EY)=f=—2_=m.

1—‘0,11

b can be deduced from a;; as

log(au)

b=——>

where the coefficients a1; and a;q can be estimated by considering the regression equa-
tion

Y, =anY—n+ap+uy-

Further, ¢ can be identified from as, since

c= —-2b— log(az)
h
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where ay can be estimated from the regression equation
Yt2 = 0»22Yt2_h + ao1Yi—n + azo + U - (.0.4)

In other words, denoting by s an estimator of E(Y;), p(h)r an estimator of
Cou(Y,, Y;_1)/Var(Y,—s) and 6% an estimator of Var(Y;), we can deduce that Br =
M, by = _'Bii’hrﬂﬁ since a;; = Cov(Y;,Yin)/Var(Ye—n) = p(h) . G2 =

A Jog(1— 221+
&= 2|0g(z(h)) _ og( ;:2+m2 ) where

&2/(1 — a%,) where 03 = Var(uy,). And finally,

Qgy = 1— “—i‘{%ﬁ and ay; and ayq can be estimated from equation (.0.4).

Computation of the weighting matrix C
The weighting matrix C(z;8) = {c;;(z; )} has been defined as:
C(z;0) = Eglh(y, z;0)h(y, z;6)'|x]

Therefore its entries correspond to, where for simplicity of notations A;(6) = A::

cij(z;0) = Eglhi(y, z;0)h;(y, z;0)|z]
_ / Pi(y; 0)Py(4;0) £y 0)dy — exp(A) Pi(x: 6) / By(y; 6)f (yl: 6)dy

— exp(\;) Py (z; 0) / Pi(y;0)f (ulz: 8)dy + exp(As) exp(A;)Pi(z; 6) Py (w:6)

where by exploiting the fact that the polynomials are also eigenfunctions for the condi-

tional operator with eigenvalues exp();), ci;(z; ) is equal to:

c(2:6) = / Pu(y; 6)P;(y; 0)f (ylz: 0)dy — exp(As) exp(A) Pa(x: 0) Py(:6)
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Finally, since the eigenfunctions are polynomials we have:
i 1
ci(z:0) =YY air(0)a;(6) / Y f(y, |; 0)dy—exp(As) exp(X) Pi(z; 0) Pi(z; 0) -
r=0 s=0 0
Computation of the integrals

To compute these integrals, we exploit again the fact that the Jacobi polynomials
P;(y; ) are also eigenfunctions for the conditional expectation operator associated with

the eigenvalues exp(A;(f)) in the following way:

[ Bwiorstalai o)y = [ 3 asuont stuiziony
0 ko

0

j 1
o EPy:0)z:0 = a;x(60) / v f(ylz; 0)dy
k=0 0
o SOB(E:6) =Y asul0) | ' f(yla: 0)dy
k=0 0

o e Z a; k(0 = Z a;x(0) / y* f(ylz; 6)dy .



