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Sommaire

L’objectif de cette thèse est d’éttidier des techniques d’inférence, classiques et par

simulation, en échantillons finis dans le contexte de modèles utilisés en finance.

Dans le premier essai nous introduisons une méthode d’estimation simple, dispo

nible en forme fermée, fondée sur la méthode des moments pour une famille générale

de modèles de régression à volatilité stochastique, qui rend possible l’implémentation

de procédures d’inférence simulées relativement couteuses en calcul. L’estimateur dé

veloppé dans cet essai est fondamentalement un estimateur des moments en 2 étapes,

qui utilisent les résidus d’une regression préliminaire pour évaluer les conditions de

moments de deuxième étape. Sous des conditions de régularité très générales, nous

montrons que cet estimateur en 2 étapes est asymptotiquement normalement distribué

et en particulier sa matrice de covariance asymptotique ne dépend pas de la distribution

de l’estimateur de première étape.

Dans le deuxième essai, nous exploitons la forme fermée de l’estimateur des mo

ments proposé pour implémenter des techniques d’inférence simulée telles que la tech

niques des tests de Monte Carlo [cf. Dwass (1957), Barnard (1963), Birnbaurn (1974)].

En particulier, les tests de Monte Carlo maximisés [cf. Dufour(2002)] autorisent des

statistiques de tests dont la distribution dépend de paramètres de nuisance. Dans cette

procédure, nous définissons une fonction p-value simulée comme fonction des para

mètres de nuisance (sous l’hypothèse nulle), et nous montrons que maximiser cette

dernière par rapport aux paramètres de nuisance rapporte un test exact, indépendam

ment de la taille de l’échantillon et du nombre de réplications utilisées. En particulier,

nous implémentons les trois procédures de tests classiques - le test de type Wald, le test

de type score et le test de type LR- ainsi que le test de type c(c) introduit par Neyman

(1959). Nous proposons également un test de spécification pour le processus de volati

lité qui distingue entre une spécification linéaire de la volatilité contre une spécification

alternative à intégration fractionnaire.

Dans le troisième essai, nous estimons le modèle de volatilité stochastique par in

férence indirecte [cf Srnith (1993), Gouriéroux, Monfort and Renault (1993)] sous des
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conditions non regulières. En effet, la condition de rang du jacobien de la fonction de

lien asymptotique n’est pas de plein rang en des valeurs isolées du paramètre d’intérêt,

condition requise pour que la théorie distributionelle standard dérivée par Gouriéroux,

Monfort and Renault (1993) reste valide. En particulier, l’estimateur auxiliaire entrant

dans la fonction objectif du critère d’inférence indirecte est fondé sur des conditions

de moment qui deviennent nonlinéairement redondantes sous l’hypothèse nulle d’ho

moskédasticité du processus de volatilité. La matrice de covariance de l’estimateur

auxiliaire ainsi que celle des statistiques de Wald et du score deviennent singulières

et non inversibles au sens usuel. Pour remédier à ce problème, nous implémentons des

techniques de régularisation dont celle proposée par Ltitkepohl et Burda (1997) qui

consiste à prendre un estimateur de rang réduit pour la matrice de covariance de la sta

tistique de Wald fondé sur l’inverse généralisée de Moore-Penrose. Les techniques de

régularisation proposées permettent aux statistiques de test de rester calculables sous

des conditions non régulières. Cependant, la théorie distributionnelle développée par

Gouriéroux, Monfort et Renault (1993) n’est plus garantie sous des conditions non ré

gulières. Par conséquent, nous combinons des techniques d’inférence par simulation

telles que les tests de Monte Carlo maximisés aux statistiques de test modifiées pour

rapporter une procédure inférentielle valide en présence d’estimateurs de covariance de

rang réduit.

Dans le quatrième essai, nous caractérisons complètement les équations différen

tielles stochastiques pour lesquelles les fonctions propres du générateur infinitésimal

sont des polynômes dans la variable dépendante. En particulier, des transformations

affines du processus d’Omstein-Uhlenbeck, du processus de Cox-Ingersoll-Ross et du

processus de Jacobi appartiennent à cette famille d’équations différentielles stochas

tiques. De tels processus exhibent une structure très particulière des fonctions de dérive

et de volatilité de même qu’une forme particulière des valeurs propres.

Dans le cinquième essai, diverses méthodes d’estimation à partir de données dis

crètes sont inspectées pour estimer un processus de Jacobi appartenant à la classe des

processus de diffusion dont les fonctions propres sont des polynômes . Les propriétés
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distributionnelles de ce processus autant que sa décomposition canonique non linéaire

sous-tendent les méthodes d’estimation retenues. Plus précisément, nous proposons une

procédure du maximum de vraisemblance approché fondée sur les fonctions propres.

Cette méthode de quasi-vraisemblance est alors comparée à la méthode des moments

de Kessler et Sorensen (1999). En effet, alors que nous approchons la fonction de tran

sition inconnue de données discràtes provenant du processus de Jacobi, ces derniers

utilisent la décomposition spectrale pour approcher la fonction score inconnue. Des

méthodes d’estimation simulées sont aussi considérées parmi lesquelles la méthode

des moments simulés et la méthode d’inférence indirecte. Les propriétés statistiques de

ces divers estimateurs sont comparées dans des expériences de Monte Carlo.

Mots clés: volatilité stochastique; volatilité à intégration fractionnaire; méthode des

moments; tests exacts; test c(c); inférence indirecte; inverses généralisées; processus

dc diffusion; processus de Jacobi; analyse canonique non-linéaire.
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The objective of this thesis is to study standard and simulation-based inference

techniques which are valid in finite samples for models used in finance.

In the first essay, we study a simple moment estimator, available in closed fomi for

general regression models with stochastic volatility models This easy-to-use estimator

allows for simulation-based inference techniques which can be computationally expen

sive. Using residuals from a preliminary regression, the parameters of the stochastic

volatility (SV) mode! are then evaluated by a method-of-moment estimator based on

three moments (2S-3M) for which a simple closed-form expression can be derived.

Under general regularity conditions, we show the two-stage estimator is asymptotically

normally distributed. An interesting and potentially useful feature of the asymptotic

distribution stems from the fact its covariance matrix does not depend on the distribu

tion ofthe conditional mean estimator.

In the second essay, we exploit the closed-form expression of the moment esti

mator for the parameters of the SV mode! to implement simulation-based inference

techniques sucli as Monte Carlo (MC) tests [ see Dwass (1957), Barnard (1963), Bim

baum (1974)]. More specifically, maxirnizedMC tests [see Dufour(2002)] allow for test

statistics whose distribution may depend on nuisance parameters. In this procedure, we

define a simulated p-value function which is not pivotal under the nuli hypothesis and

we show that maximizing this p-value w.r.t. nuisance parameters does provide an exact

test, irrespective of the sample size and the number of replications used. We imple

ment the three standard tests- the Wald-type test, the score-type test and the likelihood

ratio-type test- but a!so a c(a)-type test introduced by Neyman (1959). We also pro

pose a specification test for the volatility process which discriminates between a Ïinear

Gaussian specification for the volatility against afractionaÏÏy integrated Gaussian ai

temative.

In the third essay, we estimate the SV model by indirect inference [sec Smith

(1993), Gouriéroux, Monfort and Renault (1993), henceforth (GMR)] under nonregu!ar

conditions. More specifically, the rank ofthejacobian ofthe asymptotic binding func
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tion is flot of fuIl-columri rank at isolated values of the parameter of interest whereas

this condition is required for the standard distributional theory dcrived by GMR(1993)

to hold. Indeed, the auxiliary estimator which enters the second step objective ente-

non in the indirect estimation procedure is based on moment conditions which become

nonlinearly redundant under the nuil hypothesis of homoscedasticity of the volatility

process. As a result, the covariance matrix become singular and non invertible in the

usual sense. Therefore, we propose to regularize the covariance matnix by resorting to

a reduced rank matrix estimator based on generalized inverse among which the Moore

Penrose inverse proposed by Lutkepohl and Burda (1997). We also propose two slightly

different regularization techniques among which one that displays good power proper

tics. Furthcr, unlike the nonregularized test statistics, the modifled statistics can aiways

be computed under nonregular conditions. However, although the regularization tech

niques help in keeping the test statistics computable despite sorne singulanity issues,

they do not ensure a 2 distribution for the modified statistics anymore. As a resuit, the

distributional resuits developed by GMR (1993) become useless when thejacobian of

the asymptotic binding function does not satisfy the required rank condition. One way

to overcome this difficulty and stiil provide valid critical points and p-values, is to re

sort on mctximized Monte Carlo tests which achieves in controïling for size distortions

irrespective of nuisance parameters in the distribution of the test statistic.

In the fourth essay, we characterize the one-dimensional stochastic differential

equations, for which the eigcnfunctions of the infinitesimal generator are polynomi

als in y. In particular, affine transformations of the Omstein-Uhlenbeck process, the

Cox-Ingersoll-Ross process and the Jacobi process belong to this stochastic differen

tial equations family. Such processes exhibit specific pattems ofthe drift and volatility

functions together with a particular form ofthe eigenvalues.

In the fifth essay, we consider a discretely sampled Jacobi process appropriate to

specify the dynamics of a process with range [0,1], such as a discount coefficient, a

regime probability, or a state price. The discrete time transition of the Jacobi process

does not admit a closed form expression and therefore the exact maximum likelihood
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is infeasible. Wc first review a characterization ofthe transition function based on non

linear canonical decomposition. They allow for approximations of the log-likelihood

function which can be used to define a quasi-maximum likelihood estimator. The finite

sample properties of this estimator are compared with the properties of other estima-

tors proposed in the literature, such as the Kessier and Sorensen’s estimator which is

a method of moments which also exploits the nonlinear canonical decomposition to

approximate the unknown score function [sec Kessler and Sorensen (1999)]. It is also

compared with generalized method of moments (GMM) estimator, simulated method

of moments (SMM) estimator, or indirect inference estimator.

Key words: stochastic volatility; fractionally integrated volatility; moment estima

tor; exact tests; c(c)-test; indirect inference; generalized inverses; diffusion processes;

Jacobi process; nonlinear canonical analysis.
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Introduction

La thèse traite de divers sujets d’économétrie financière. Elle est divisée en deux

parties. La première partie propose des tests simulés en échantillons finis dans le contexte

de modèles utilisés en finance (3 essais) tandis que la seconde partie développe des nié

thodes d’analyse canonique non linéaire pour des processus de diffusion (2 essais).

Dans la première partie de la thèse nous nous intéressons aux propriétés asympto

tiques et en échantillons finis de diverses statistiques de tests dans le cadre du modèle de

volatilité stochastique lognormal introduit par Taylor (1986). Depuis, ce modèle a été

largement utilisé en finance et plus particulièrement en économétrie de la finance - car

il est directement relié aux processus de diffusion très populaires en finance théorique

[cf. Wiggins (1987), Melino and Tumbull (1990), Chernov, Gallant, Ghysels and Tau

chen (2004)]. Cependant, il reste difficile à estimer en particulier quand il est comparé

aux modèles de type GARCH [cf. Engle (1982), Boflerslev (1986)] en raison de l’in

troduction d’un bruit inobservable dans le processus de volatilité rendant les méthodes

d’estimation usuelles - telles le maximum de vraisemblance infaisable. De nombreuses

techniques d’estimation alternatives, quasi-exactes [cf. Nelson (1988), Harvey, Ruiz,

and Shephard (1994), Ruiz (1994)], GMM [Melino and Turnbull (1990), Andersen and

Sørensen (1996)], ou des techniques d’échantillonage fondées sur la simulation telles

que le maximum de vraisemblance simulé [Danielsson and Richard (1993), Daniels

son (1994)], ou encore l’inférence indirecte [cf. Gouriéroux-Monfort-Renault(1993)]

ou encore la méthode efficace des moments de Gallant et Tauchen (1996), [cf. Gallant,

Hsieh, and Tauchen (1997), Andersen, Chung, and Sorensen (1999)] — ou encore des

méthodes bayesiennes [Jacquier, Polson, and Rossi (1994), Kim, Shephard, and Club

(1998)] ont alors été proposées dans la litérature afin de contourner cette difficulté mais

souvent au prix de complication s computati onelles importantes.

C’est la raison pour laquelle, dans le premier essai nous introduisons une méthode

d’estimation simple, disponible en fomie fermée, fondée sur la méthode des moments

pour une famille générale de modèles de régression à volatilité stochastique, qui rend

possible l’implémentation de procédures d’inférence simulées relativement couteuses
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en calcul. L’estimateur développé dans cet essai est fondamentalement un estimateur

des moments en 2 étapes, qui utilisent les résidus d’une regression préliminaire pour

évaluer les conditions de moments de deuxième étape. Sous des conditions de régularité

très générales, nous montrons que cet estimateur en 2 étapes est asymptotiquement nor

malement distribué et en particulier sa matrice de covariance asymptotique ne dépend

pas de la distribution de l’estimateur de première étape. Suivant des résultats récents sur

l’estimation de modèles autorégressifs à volatilité stochastique [cf. Goncalves-Kilian

(2004)], les résultats distributionels développés dans cet essai, restent valides en parti

culier pour de tels modèles.

Dans le second essai, nous exploitons la forme fermée de l’estimateur des moments

proposé pour implémenter des techniques d’inférence simulée telles que la techniques

des tests de Monte Carlo [cf. Dwass (1957), Bamard (1963), Bimbaum (1974)]. En

particulier, les tests de Monte Carlo maximisés [cf. Dufour (2002)] autorisent des sta

tistiques de tests dont la distribution dépend de paramètres de nuisance. Dans cette

procédure, nous définissons une fonction p-value simulée comme fonction des para

mètres de nuisance (sous l’hypothèse nulle), et nous montrons que maximiser cette

dernière par rapport aux paramètres de nuisance rapporte un test exact, indépendam

ment de la taille de l’échantillon et du nombre de réplications utilisées. En particulier,

nous implémentons les trois procédures de tests classiques - le test de type Wald, le test

de type score et le test de type LR- ainsi que le test de type c(û) introduit par Neyman

(1959). Nous procédons alors à des comparaisons entre les techniques asymptotiques et

les procédures d’inférence simulées. Les résultats exhibent une meilleure performance

du test de type c(). Nous proposons également un test de spécification pour le pro

cessus de volatilité qui distingue entre une spécification linéaire de la volatilité contre

une spécification alternative à intégration fractionnaire qui présente un intérêt crucial

en terme de mémoire longue pour la valorisation d’options [cf. Comte and Renault

(1998), Comte, Coutin and Renault (2003), Ohanissian, Russel and Tsay (2003)]. Des

expériences de Monte Carlo sont réalisées et suivies par une application empirique sur

données journalières pour l’indice de prix composite du Standard and Poor(1928-87).
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Dans le troisième essai, nous estimons le modèle de volatilité stochastique par in

férence indirecte [cf Smith (1993), Gouriéroux, Monfort and Renault (1993)] sous des

conditions non regulières. En effet, la condition de rang du jacobien de la fonction de

lien asymptotique n’est pas de plein rang en des valeurs isolées du paramètre d’intérêt,

condition requise pour que la théorie distributionelle standard dérivée par Gouriéroux,

Monfort and Renault (1993) reste valide. En particulier, l’estimateur auxiliaire entrant

dans la fonction objectif du critère d’inférence indirecte est fondé sur des conditions

de moment qui deviennent nonlinéairement redondantes sous l’hypothèse nulle d’ho

moskédasticité du processus de volatilité. La matrice de covariance de l’estimateur

auxiliaire ainsi que celle des statistiques de Wald et du score deviennent singulières

et non inversibles au sens usuel. Pour remédier à ce problème, nous implémentons des

techniques de régularisation dont celle proposée par Ltftkepohl et Burda (1997) qui

consiste à prendre un estimateur de rang réduit pour la matrice de covariance de la sta

tistique de Wald fondé sur l’inverse généralisée de Moore-Penrose. Les techniques de

régularisation proposées permettent aux statistiques de test de rester calculables sous

des conditions non régulières. Cependant, la théorie distributioimelle développée par

Gouriéroux, Monfort et Renault (1993) n’est plus garantie sous des conditions non ré

gulières. Par conséquent, nous combinons des techniques d’inférence par simulation

telles que les tests de Monte Carlo maximisés aux statistiques de test modifiées pour

rapporter une procédure inférentielle valide en présence d’estimateurs de covariance de

rang réduit. Des résultats de simulation sur la performance des test modifiés sont pré

sentés suivies d’une illustration financière pour l’indice de prix composite du Standard

and Poor (1928-87).

La seconde partie de la thèse est consacrée à l’analyse canonique non linéaire de

processus de diffusion dont le but est d’étudier la dépendance temporelle des proces

sus d’une façon moins traditionnelle. Ainsi la décomposition canonique de la distri

bution conditionnelle permet d’identifier les directions de corrélation maximale entre

les variables canoniques ce qui présente un intérêt statégique en finance empirique en

particulier en terme de couverture des risques.
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Dans le quatrième essai, nous caractérisons complètement les équations différen

tielles stochastiques pour lesquelles les fonctions propres du générateur infinitésimal

sont des polynômes dans la variable dépendante. En particulier, des transformations

affines du processus d’Omstein-Uhlenbeck, du processus de Cox-Ingersoll-Ross et du

processus de Jacobi appartiennent à cette famille d’équations différentielles stochas

tiques. De tels processus exhibent une structure très particulière des fonctions de dérive

et de volatilité de même qu’une forme particulière des valeurs propres. En outre, des

contraintes de stabilité sont imposées sur les paramètres des processus.

Dans le dernier essai, diverses méthodes d’estimation à partir de données discrètes

sont inspectées pour estimer un processus de Jacobi appartenant à la classe des proces

sus de diffusion dont les fonctions propres sont des polynômes . Ce processus prend des

valeurs entre O et I, et semble donc adapté pour modéliser des variables dynamiques

bornées telle qu’une probabilité de changement de régime, ou capturer l’évolution d’un

prix d’état. Les propriétés distributionnelles de ce processus autant que sa décompo

sition canonique non linéaire sous-tendent les méthodes d’estimation retenues. Plus

précisément, nous proposons une procédure du maximum de vraisemblance approché

fondée sur les fonctions propres. Cette méthode de quasi-vraisemblance est alors com

parée à la méthode des moments de Kessler et Sorensen (1999). En effet, alors que

nous approchons la fonction de transition inconnue de données discrètes provenant du

processus de Jacobi, ces derniers utilisent la décomposition spectrale pour approcher

la fonction score inconnue. L’estimateur de quasi-vraisemblance est aussi comparé à la

méthode des moments généralisés de Hansen (1982) puisque la décomposition spec

trale de l’opérateur d’espérance conditionelle [cf. Hansen and Sheinckman (1995)] et

la forme polynomiale des fonctions propres associées fournissent tous les moments

conditionels du processus en terme des moments marginaux. Des méthodes d’estima

tion simulées sont aussi considérées parmi lesquelles la méthode des moments simulés

et la méthode d’inférence indirecte. Les propriétés statistiques de ces divers estimateurs

sont comparées dans des expériences de Monte Carlo.
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Chapitre 1

On a simple closed-form estimator for

a stochastic volatility mode!

‘This paper is co-authored with Jean-Marie Dufour.
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1.1. Introduction

Modelling conditional heteroskedasticity is OIIC of the central problems of financial

econometrics. The two main families of models for that purpose consist of GARCH

type processes, originally introduced by Engle (1982), and stochastic volatility (SV)

models proposed by Taylor (1986). Although the latter may be more attractive — be

cause they are directly connectcd to diffusion processes used in theoretical finance —

GARCH models are mucli more popular because they are relatively easy to estimate;

for reviews, see Gouriéroux (1997) and Palm (1996). In particular, evaluating the like

lihood function of GARCH models is simple compared to stochastic volatility models

for which it is very difficult to get a iikelihood in closed form; sec Shephard (1996),

Mahieu and Schotman (1998) and the review ofGhysels, Harvey, and Renault (1996).

This is a generai feature of almost ail nonlinear latent variable models, due to the high

dimensionahty of the integral defining the hkelihood function. As a resuit, maximum

likelihood methods are prohibitively expensive from a computational viewpoint, and

alternative methods appear to be required for applying such models.

Since the first discrete-time stochastic volatility models was proposed by Taylor

(1986) as an alternative to ARCH models, much progress has been made regarding

the estimation of nonlinear latent variable modeÏs in general and stochastic volatil

ity moUds in particular. The methods suggested include quasi maximum likelihood

estimation [sec Nelson (1988), Harvey, Ruiz, and Shephard (1994), Ruiz (1994)], gen

eralized method-of-moments (GMM) procedures [Melino and Tumbuil (1990), Ander

sen and Sorensen (1996)], sampling simulation-based techniques — such as simulated

maximum likelihood [Danielsson and Richard (1993), Danielsson (1994)], indirect in

ference and the efficient method of moments [Gallant, Hsieh, and Tauchen (1997), An

dersen, Chung, and Sørensen (1999)] — and Bayesian methods [Jacquier, Poison, and

Rossi (1994), Kim, Shephard, and Chib (1998),Wong (2002a), Wong (2002b)]. Note

also that the rnost widely studied specification in this literature consists ofa stochastic

volatility model oforder one with Gaussian log-volatility and zero (or constant) condi

tional mean. The most notable exception can be found in Gallant, Hsieh, and Tauchen
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(1997) who ailowed for an autoregressive conditional mean and considered a general

autoregressive process on the iog-voiatiiity. It is remarkable that ail these methods are

highiy noniinear and computer intensive. Impiementing them can be quite complicated

and get more so as the number of parameters increases (e.g., with the orders of the

autoregressive conditional mean and iog-voiatility).

In this paper, we consider the estimation of stochastic volatility parameters in the

context ofa iinear regression where the disturbances follow a stochastic voiatility model

of order one with Gaussian iog-voiatiiity. The iinear regression represents the condi

tionai mean of the process and may have a fairly general form, which includes for

exampie finite-order autoregressions. Our objective is to deveiop a computationaiiy

inexpensive estimator that can be easily expioited within a simuiation-based inference

procedures, such as Monte Carlo and bootstrap tests.2 So we study here a simple two

step estimation procedure which can be described as foilows: (1) the conditional mean

model is first estimated by a simple consistent procedure that does take into account

the stochastic volatiiity structure; for example, the parameters of the conditionai mean

can be estimated by ordinary ieast squares (aithougli other estimation procedures can

be used); (2) using residuais from this preliminaiy regression, the parameters of the

stochastic model are then evaluated by a method-of-moment estimator based on three

moments (2S-3M) for which a simple closed-form expression can be derived. Under

generai regularity conditions, we show the two-stage estimator is asymptoticaiiy nor

maiiy distributed. Foilowing recent resuits on the estimation of autoregressive modeis

with stochastic voiatility [sec, for exampie, sec Theorem 3.1, Gonçalves and Kiiian

(2004)], this then entails that the resuit hoids for such models. An interesting and po

tentiaily useftil feature ofthe asymptotic distribution stems from the fact its covariance

matrix does not depend on the distribution ofthe conditional mean estimator, Le., the

estimation uncertainty on the parameters of the conditional mean does not affect the

distribution of the voiatility parameter estirnates (asymptotically). The properties of

the 2S-3M estimator are aiso studied in a small Monte Cario experiment and compared

2TIis feature is exploited in a companion paper tDufour and Valéry (2004)] where various simulation

Ç’.
based test procedures are developed and implemented.
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with GMM estimators proposed in this context. We find that the 25-3M estimator has

quite reasonable accuracy with respect to the GMM estimators: indeed, in several cases,

the 2S-3M estimator lias the lowest root mean square error. With respect to computa

tional efficiency, the 2S-3M estimator aiways requires less than a second whule GMM

estimators may need several hours before convergence obtains (if it does). Finally, the

proposed estimator is illustrated by applying it to the estimation of Standard and Poor’s

Composite Price Index (1928-87).

The paper is organized as follows. Section 1.3 sets the framework and the main

assumptions made. The closed-form estimator studied is described in section 1.3. The

asymptotic distribution of the estimator is established in section 1.4. In section 1 .5,

we report the results of a small simulation study on the performance of the estimator.

Section 1.6 gives an application to the Standard and Poor’s Composite Price Index

retum series in Section 5. We conclude in section 1.7. AIl proofs are gathered in the

Appendix.

1.2. Framework

We consider here a regression model for a variable y, with disturbances that follow a

stochastic volatility process, which is described below following a notation similar to

the one used by Gaflant, Hsieh, and Tauchen (1997).

Assumption 1.2.1 LINEAR REGRE$SION WITH STOCHASTIC VOLATILITY. The

process {yt : t e N03}follows a stochastic voÏatiÏity modeÏ ofthe type:

YtX+flt, (1.2.1)

= exp(w/2)rzt, Wt = aw_ + TVt , (1.2.2)

where xj isa k x 1 random vector independent ofthe variables {r7-_1, z, u-,-, w-,- : T <

t}, and[3, r, {a}1, r arefixed parameters.

3N0 refers to the nonnegative integers.
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Typically Yt denotes the first difference over a short time interval, a day for instance,

ofthe log-price ofa financial asset traded on securities markets. The regression function

x/3 represents the conditional mean of lit (given the past) while the stochastic volatil

ity process dctermines a varying conditional variance. A common specification here

consists in assuming that x8 lias an autoregressive form as in tlie following restricted

version ofthe mode! described by Assumption 1.2.1.

Assumptïon 1.2.2 AUTOREGRESSIVE MODEL WITH STOCHASTIC VOLATILITY.

Theprocess {y : L e No}folÏows a stochastic volatiÏity model ofthe type.

L

lit
—

c(yt_
— ) + u, (1.2.3)

j=1

Ut = exp(w/2)Tz, aw_ + TVt , (1.2.4)

i=1

where , {c}1, r, {a}1 andT arefixed parameters.

We shah refer to the latter model as an AR-SV(L, L) model. The !ag !engtlis of

the autoregressive specifications used in the literature are typically short, e.g.:

O and L = 1 [Andersen and Sorensen (1996), Jacquier, Poison, and Rossi (1994),

Andersen, Chung, and Sørensen (1999)], 0 < < 2 and O < L < 2 [Gai!ant, Hsieli,

and Tauclien (1997)]. In particuhar, we will devote special attention to the AR-SV(1, 1)

mode!:

Yt
—

= C(yti
—

t) + exp(wt/2)rzt, c < 1 (1.2.5)

= O]t—i + TU a < 1 . (1.2.6)

so that

Cov(wt,wt+T) = aTy (1.2.7)

where = r/(1 — a2). The basic assumptions described above wi!i lie completed by

a Gaussian distnbutional assumption and stationarity condition.
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Assumption 1.2.3 GAUSSIAN NOISE. The vectors (Zj, Ut)’, t N0 ai-e i.i.d. accord

ing to a N[O, 12] distribution.

Assumption 1.2.4 STATIONARITY. Theprocess St = (yt, Wt)’ is srrictÏy stationarv.

The process defined above is Markovian oforder L3 = max(L0, L). Under these

assumptions, the AR-SV(L0, L) is a parametric model with pararneter vector

p = (, C1, . . . , C, T0, a1, . . . , aLt,, ‘r,)’. (1.2.8)

Due to the fact that the model involves a latent variable (Wt), the joint density of the

vector of observations = (iii, •.. , l/T) is flot available in closed-form because the

latter would involve evaluating an integral with dimension equal to the whole path of

the latent volatilities.

1.3. Closed-form method-of-moments estimator

In order to estimate the parameters of the volatility model described in the previous

section, we shall consider the moments of the residual process in (1 .2.1), which can

5e estimated relatively easily from regression residuals. Specifically, we wi]1 focus on

stochastic volatility model oforder one (L = 1). Set

O = (a, T0, T)’, (1.3.1)

awt_i + TUt
Ut(O) exp(

2
)T0Zt, Vt. (1.3.2)

Model (1.2.1) - (1.2.2) may then be conveniently rewritten as the following identity:

Yt — = Ut(O), Vt. (1.3.3)



12

The estimator we will study is based the moments of the process Ut E Vt(O). The

required moments are given in the following lemma.

Lemma 1.3.1 MOMENTS AND CROSS-MOMENTS 0f THE VOLATILITY PROCESS.

Under the assumptions 1.2.1, 1.2.3 and 1.2.4 with L = 1, the moments and cross-

moments of Ut = exp(wt/2)T0zt are given by thefollowingform;tlas: for k, t and ra

nonnegative integers,

E E(u) = T2(k/2/2)! exp [T/(1 — a2)], k is even,

= O, ïfkisodd, (1.3.4)

k1(mI) E E(UU+m)

= T0
2(k/2)(k/2)! 2(t/2)(t/2)!

exp
a2)

(k2 + t2 + 2ktaT.3.5)

if k and t are even, and ,k,t(mI&) = O fk or t is odd.

Ontakingk=2,k=4,k=rt=r2andrn=1,weget:

t2() = E(u)=Texp[r/2(1—a2)], (1.3.6)

E(u) = 3rexp{2r/(1 — a2)] (1.3.7)

2,2(10) = E[uu1] = rexp[T/(1 - a)]. (1.3.8)

An important observation here cornes from the fact the above equations can be explic

itly solved for a, r and r. The solution is given in the following lemma.

Lemma 1.3.2 MOMENT EQUATIONS SOLUTION. Under the assumptions offropo

4Expressions for the autocorrelations and autocovariances ofu were derived by Taylor (1986, Sec
tion 3.5) and Jacquier, Poison, and Rossi (1994). The latter authors aiso provide the higher-order mo
ments E[In], whiie generai formulas for the higher-order cross-moments of a stochastic voiatihty
process are reported (without proof) by Ghyseis, Harvey, and Renault (1996). For compieteness, we give
a relatively simple proof in the Appendix.
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sition 1.3.1, we have:

— 1og[i22(1I)] + log [4(&)/(3I2())]
1 1 3 9a

log [4(9)/(32()2)]

31/4 KO”
= (/4

(1.3.10)
[L4 j

1/2

= [ti — a2)log [4(9)/(32(o)2)]] . (1.3.11)

From lemmas 1.3.1 and 1.3.3, it is easy to derive higher-order autocovariance func

tions. In particular, for later reference, we will find useful to speil out the second and

fourth-order autocovariance functions.

Lemma 1.3.3 HIGHER-ORDER AUTOCOVARIANCE FUNCTIONS. Under the assztrnp

tions ofProposition 1.3.1, let X, = (Xii, X2,, X3)’ where

—
(&), X2 = — bt4(9), X3t = — 22(1). (1.3.12)

Then the covariances (r) Cov(X,, Xj,t+T), i = 1, 2, 3, are given by:

7y(T) t1(9)[exp(yaT)
— 1] (1.3.13)

72(T) = tJ)[exp(47ciT)
— 1] Vr 1, (1.3.14)

= 2,2(10)[exp(7(1 + a)2aT_l)
— 1], Vr 2, (1.3.15)

where y = r/(1 — a2).

Suppose now we have a preliminary estimator of /3. For example, for the au

toregressive model (1.2.3) - (1.2.4), estimation ofthe equation (1.2.3) yields consistent

asymptotically normal estimators of [3; sec Theorem 3.1, Gonçalves and Kilian (2004)

and Kuersteiner (2001). 0f course, other estimators ofthe regression coefficients may

be considered. Given the residuals

=y—x, t=0,Ï, ... ,T, (1.3.16)
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it is then natural to estimate 2(), ji.(&) and i22(lIO) by the corresponding empirical

moments:

[L2Z,

This yields the following estimators ofthe stochastic volatility coefficients:

= log[2(1)] + log [4/(3)]
- 1 (1 3 17)

10g [4/(3)]

1/4 / 1/4
_3_2_(32

14 \/L4J

1/2

[t’ - à2)log [4/(3)]] . (1.3.19)

Clearly the latter estimates can 5e quite easy to compute as soon as the estimator used

to compute the residuals = — x is also easy to obtain (e.g., it is a Ieast squares

estimator).

1.4. Asymptotic distribution

We will 110W study the asymptotic distribution of the moment estimator defined in

(1.3.17) - (1.3.19). For that purpose, it will be convenient to view the latter as a special

case of the general class of estimators obtained by minimizing a quadratic form of the

type:

Mr(9) = [TtÛT) - (0)j’T[TtÛT)
-

(6)] (1.4.1)

where () is a vector of moments, YT(UT) is the corresponding vector of empirical

moments based on the residual vector ÛT = (, •..
, u)’, and 2T is a positive

definite (possibly random) matrix. 0f course, this estimator belongs to the general

family of moment estimators, for which a number ofgeneral asymptotic general resuits

do exist; see Volume 1, Chapter 9, Gouriéroux and Monfort (1995b) and Newey and

McFadden (1994). However, we need to account here for two specific features, namely:
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(1) the disturbances in (1.2.1) follow a stochastic volatility model, and the satisfaction

of the relevant regularity conditions must be checked; (2) the two-stage nature of the

procedure where the estimator of the parameter of the conditional mean equation is

obtained separately and may not be based on the same objective function as the one

used to estimate 0. In particular, it is important to known whether the the estimator

of conditional mean parameter lias an effect on the asymptotic distribution of the

estimator of 0.

To speli out the properties ofthe estimator T(f2T) obtained by minimizing MT(O),

we will consider first the following generic assumptions, where 0 denotes the “truc”

value ofthe parameter vector 0.

Assumption 1.4.1 ASYMPTOTIC NORMALITY 0F EMPIRICAL MOMENTS.

[TtUT) - (0o)] N[O, ] (1.4.2)

where UT (ni, ... , n)’ and

= 11m E{T[T(UT) - (0)] [T(UT) - (0)]’}. (1.4.3)

Assumption 1.4.2 ASYMPTOTIC EQUIVALENCE FOR EMPIRICAL MOMENTS. The

randoin vector V’[.T(ÛT) — ,u(00)] is asyrnptoticaÏly eqitivalent 10 v”[T(UT) —

t(0o)] , i.e.

p1im{[T(ÛT) - (0)]
- [r(UT) - (0)] } =0. (1.4.4)

T—oo

Assumption 1.4.3 ASYMPTOTIC NONSINGULARITY 0F WEIGHT MATRIX.

plim(.QT)= !2wheredet(f2)O.

Assumption 1.4.4 ASYMPTOTIC NONSINGULARITY 0F WEIGHT MATRIX. i(0o)

is Iwice continuously diffèrentiabÏe in an open neighborhood oJ’ 00 and the Jacobian

matrix P(00) hasfïtlÏ rank, where P(0) --.
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Given these assumptions, the asymptotic distribution of?T(f2T) is determined by a

standard argument on method-of-moments estimation.

Proposition 1.4.5 ASYMPTOTIC DISTRIBUTION 0F METHOD-0F-MOMENTS ESTI

MATOR. Under the assumptions 1.4.1 to 1.4.4,

v[T(f2) - o] N[O, V(OoIf2)] (1.4.5)

where

V(91f2) = [P(O)f2P(&)’j’ P(O)f2f2!2P(8)’ [P()f2P(O)’]’ (1.4.6)

P(8) = . If furthermore, (z) P(9) is a square mati-ix or (ii,.) f2 is nonsinguÏar and

f2 = f2:’, then

= V(O). (1.4.7)

As usual, V,. (On) is the smallest possible asymptotic covariance matrix for a method

of-moments estimator based on IVfT (e). The latter, in particular, is reached when the

dimensions ofj and O are the same, in which case the estimator is obtained by solving

the equation

gT(UT)

Consistent estimators V(001S2) and V0(00) can be obtained on replacing 0c and 12, by

consistent estimators.

A consistent estimator ofS7 can easily be obtained [see Newey and West (1987b)]

by a Bartlett kemel estirnator, i.e.:

K(T)

*=Fo+Z(1_K()+l)(Pk+Pk) (1.4.8)

where

= {9tk(Û) - (O)][g(û) -

t=k+1
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with O replaced by a consistent estimator 0T of O. The truncation parameter K(T) =

6T’3 is allowed to grow with the sample size such that:

K(T)
11m , =0,

T—œ T’i2

[sec White and Domowitz (1984)]. A consistent estimator 0f V (Os) is then given by:

= [P(T)&’P(T)’]’. (1.4.9)

The main problem here consists in showing that the relevant regularity condi

tions are satisfied for the estimator O = (â, iJ, i)’ given by (1.2.5)-(1.2.6) for

the parameters of a stochastic volatility moUd of order one. In this case, we have

(O) = [/12(0), /14(6), /12,2(110)],

i —T 2
T Lt=it

gTWT)=gt(UT)=

1T22

(1.4.10)

Z=1 LUt1

1 çT 2
T T Zt=i t

T(UT) = = (1.4.11)

i T 22
zt=1

where g(ÛT) = [û, û, ûû_1], and gt(UT) = [ri, r4, rLu_1]’.
Since the number of moments used is equal to the number of parameters (three),

the moment estimator can be obtained by taking 2T equal to an identity matrix so

that Assumption 1.4.3 automatically holds. So the main problem consists in showing

that the assumptions 1.4.1 and 1.4.2 are satisfied. for that, it wiIl useful to show the

following lemma.
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O Assumption 1.4.6 EXISTENCE 0F MOMENTS. Let:

p1im Xt = u2,(O), (1.4.12)

p1im xx = u2,(O, 0), (1.4.13)
T—’œ

p1im = u2,X,(0, 1), (1.4.14)
T—’œ

p1im Zxt_iuxi = u2,,(1,0), (1.4.15)
T—œ

where the k x k matrices 2,t0), 0), G2,x,u(O, 1) afld U2,x,(1, 0) are

bounded.

Proposition 1.4.7 ASYMPTOTIC DISTRIBUTION FOR EMPIRICAL MOMENTS. Un

(‘a)
der the assumptions 1.2.1, 1.2.3 and 1.2.4, with L = 1, we have:

[gTWT) —

(6o)] N[0, ] (1.4.16)

where gT(UT) Z gt/T, gt = {, , LU_1]’, and

= V[gt] = E[gtgj — (&)(O)’. (1.4.17)

Proposition 1.4.8 ASYMPTOTTC EQUIVALENCE FOR EMPIRICAL MOMENTS. Sup

pose the assumptions 1.2.1, 1.2.3, 1.2.4 and 1.4.6 hoÏd with L = 1, let be an

estimator oJ43 sïtch that

— 43) is asymptoticaÏly bounded, (1.4.18)

and û = y — x43. Then vT[T(UT) —
,i(9)] is asymptotically equivatent to

[T(UT) -
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The fact that condition (1.4.18) is satisfied by the least squares estimator can be

easily seen from earlier published resuits on the estimation of regression models with

stochastic volatility; sec Theorem 3.1, Gonçalves and Kilian (2004) and Kuersteiner

(2001). Conceming equation 1.4.12 it holds in particular for the AR(p) case witli Xt

= (y_1 y—)’, [see the proofs ofTheorem 3.1, and 3.4, Gonçalves and Kilian

(2004)].

On assuming that the matrices !2 and P(90) have full rank, the asymptotic normal

ity ofT follows as described in Proposition 1.4.5. Concerning the latter, it is interesting

and potentially useful to note that this asymptotic distribution does flot depend on the

asymptotic distribution of the first-step estimator of the autoregrcssive coefficient (,)
in the conditional mean equation.

1.5. Simulation study

In this section we stiidy the statistical properties in terms of root mean square error,

variance and bias of our moment estimator by simulation. We have considered two

different sets of parameters, one set with a low dependency in the autoregressive dy

namics ofboth processes, namely c = 0.3 and a = O whuic the other one sets c = 0.95

and a 0.95. For both sets the scale parameters have been flxed at r, 0.5 and

T = 0.5. The RMSE are computed on 1000 replications. Our unrestricted estimator

available in closed form is denoted by 6T with 3 moments. As a benchmark, we bave

taken the moment design used by Jacquier, Poison, and Rossi (1994) and Andersen and

Sørensen (1996). In particular we compare our estimator available in closed form to the

GMM estimator ofAndersen and Sorensen obtained with 5 moments and 24 moments.

GÏobally, the optimality of one estimator over the other one is flot so clear since in

some situations we are doing better in terms ofbias and RMSE than the optimal GMM

estirnator with 24 moments. the GMM estimator with 5 moments is clearly dominated

by our 2S-3M estimator. In terms of variance the GMM estimator with 24 moments

performs this time quite better than ours. Indeed, including more moment conditions

usuaily helps in reducing the variance but introduces more bias. In this respect, Ander
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sen and Sorensen did address the choice of the number of moments to include in the

ovendentified estimation procedure and found that it depends critically on sample size.

According to these authors, one should exploit additional moment restrictions when the

sample size increases. This advice is not so clear here since our estimator based on the

three minimal (for identification) moments perfomis better than their estimator when

the sample size is getting larger, namely for T = 1000, 2000, 5000. In this respect, our

just identified estimator enhances the widespread idea that one should not include too

many instruments increasing thereby the chance ofincluding irrelevant ones in the esti

mation procedure. This assertion is largely documented in the literature on asymptotic

theory [sec for example, Buse (1992), Chao and Swanson (2000)]. In particular overi

dentification increases bias of IV and GMM estimators in finite samples. Dufour and

Taamouti (2003) give evidence on that through Monte Carlo methods. Further, when

24 moments are used, it implies to estimate 24(24+ 1)/2 separate entries ofthe weight

ing matrix along with the sample moments and the GMM estimator becomes thereby

computationally cumbersome compared to our estimator availabic in closed form. Fur

thermore, when the values of the autoregressive parameters get close to the boundaries

ofthe domain, this creates some numerical instability in estimating the weighting ma

trix and the situation is getting worse in small samples (T 100, 200). Note that

when the sample size is very small (T = 100, 200), the RMSE is critically high (be

tween 55% and 84%) especially for the autoregressive parameter a and is due to the

extrcmely poorbehavior of sample moments in small samples. A GARCH filter forthe

volatility process is known to have rather good filtering properties, However, Bayesian

estimation ofthe volatility proccss is largely considered to be the more efficient way to

estimate this process but relies strongly on the choice of an a priori distribution.

1.6. Application to Standard and Poor’s price index

In ibis section, we apply our moment estimator on the Standard and Poor’s Composite

Pnce Index (SP), 1928-87.The data have been provided by Tauchen where Efficient

Method of Moments have been used by Gallant, Hsieh and Tauchen to fit a standard
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stochastic volatility model. The data to which we fit the univanate stochastic volatil

ity mode! is a long time series comprised of 16,127 daily observations, on

adjusted movements ofthe Standard and poor’s Composite Price Index, 1928-87. The

raw series is the Standard and Poor’s Composite Price Index (SP),daily, 192$-87. We

use a long time series, because, among other things, we want to investigate the long

term properties of stock market volatility through a persistence test. The raw series is

converted to a price movements series, 100[1og(SP) — log(SPL_y)], and then adjusted

for systematic calendar effects, that is, systematic shifts in location and scale due to

different trading pattems across days of the week, holidays, and year-end tax trading.

This yields a variable we shah denote Yt.

The unrestricted estimated value of p from the data is:

PT (0.129, 0.926, 0.829, 0.427)’

= [0.007, 2.89, 1.91, 8.13’

where the method-of-moments estimated value of a corresponds to T = 0.926. We

may conjecture that there is some persistence in the data during the period 192$-87

what lias been statistically checked by performing the three standard tests in a compan

ion paper [see Dufour and Valéry (2004)].

1.7. Conclusion

We provide a computationally simple moment estimator available in close form and

derive its asymptotic distribution for the parameters of the stochastic volatility model.

Compared witli the GMM estimator of Andersen and Sorensen, it demonstrates good

statistical properties in terms ofbias and RMSE in many situations. Further, it casts

some doubt on their advice that one should increase the number ofmoments to some ex

tent as the sample size grows. In this respect, ourjust identified estimator enhances the

widespread idea that one should not include too many instruments increasing thereby

the chance of including irrelevant ones in the estimation procedure. This assertion



22

is largely documented in the literature on asymptotic theory [sec for exampic, Buse

(1992), Chao and Swanson (2000)]. In particular ovendentification increases bias of

IV and GMM estimators in finite samples. Dufour and Taamouti (2003) give evidence

on that through Monte Carlo rnethods. Further, our closed-form estimator can underlie

computationally costly inference techniques like simulation-based inference techniques

when asymptotic approximations do not provide reliable inference. further, our closed

foi-m estimator can be the basis for a easy-to-implement restricted estimator which is

deduced from the unrestricted one by simply imposing the constraint in the analyti

cal expression of the former one. This easy-to-irnplement restricted estimator is very

attractive in particular for its simplicity and allows for implementing C(&) tests [see

Neyman (1959)] based on any root-n consistent restricted estimator [sec Dufour and

Valéry (2004)].
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Table LI. BIAS

BIAS

(c = 0.3, a = O, r = 0.5, T = 0.5)

0T

T]OO T=200 T=500

3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.

-0.2106 -0.0767 0.0780 -0.1554 -0.0522 0.0901 -0.0805 -0.0233 0.0717

0.0047 -0.0117 -0.0152 0.0044 -0.0021 -0.0064 0.0023 0.0017 -0.0012

i -0.298$ -0.4016 -0.3315 -0.2384 -0.3643 -0.3070 -0.1360 -0.3210 -0.2218

T=]000 T=2000 T5OOO

3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.

-0.0332 0.0052 0.0186 -0.0204 0.0149 0.0186 -0.0062 0.0191 0.0186

0.0012 0.0026 0.0009 0.0006 0.0019 0.0009 0.0003 0.0012 0.0009

j -0.0685 -0.3097 -0.0485 -0.0328 -0.3026 -0.0485 -0.0127 -0.2074 -0.0485

(c = 0.95, o. = 0.95, r = 0.5, r, = 0.5)

T=]OO T2OO T5OO

3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.

-0.2490 -0.2904 -0.3400 -0.1576 -0.2652 -0.1327 -0.092[-0.3209 -0.0257
rn-;:;;— 0.2063 0.0801 0.0178 0.1754 0.0422 0.0339 0.1379 0.0124 0.0284

Ç7 -0.1240 -0.3307 -0.3024 -0.0817 -0.2240 -0.3 146 -0.0687 -0.0843 -0.3215

T=]000 T=2000 T5OOO

3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.

T -0.0610 -0.3391 -0.0156 -0.0480 -0.3593 0.0071 -0.0299 -0.3813 0.0256

0.1149 0.0056 0.0253 0.0890 0.0061 0.0262 0.0639 0.0141 0.0305

j -0.0746 -0.0104 -0.3105 -0.0583 0.0676 -0.2856 -0.0683 0.1988 -0.2461
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Table 1.2. VARIANCE

VARIANCE

(c=O.3,a=0,r=0.5,T=0.5)

8T

T=]OO T2OO T5OO
3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.

a 0.6482 0.3712 0.2914 0.5434 0.3819 0.2986 0.3346 0.3373 0.2947
0.0019 0.0056 0.0024 0.0010 0.0018 0.0008 0.0005 0.0004 0.0003
0.0572 0.0423 0.0360 0.0593 0.0557 0.0321 0.0436 0.0827 0.0233

T1OOO T2OOO T5OOO
3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.

a 0.1686 0.2103 0.0354 0.0862 0.1027 0.0354 0.0276 0.0304 0.0354
ry 0.0002 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
rw 0.0200 0.1119 0.0030 0.0092 0.1432 0.0030 0.0029 0.1252 0.0030

(c = 0.95, a = 0.95, r 0.5, T = 0.5)
T=]OO T=200 T=500

3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.
0.1796 0.3538 0.3019 0.0751 0.3217 0.1634 0.0343 0.3339 0.0426
0.1184 0.0815 0.0691 0.0647 0.0458 0.0497 0.0284 0.0177 0.0225

j 0.1574 0.0607 0.0633 0.1679 0.0979 0.0481 0.1649 0.1254 0.0325
T]OOO T=2000 T=5000

3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.
i 0.0210 0.3336 0.0414 0.0143 0.3309 0.0172 0.0093 0.2911 0.0003

0.0143 0.0089 0.0115 0.0073 0.0047 0.0056 0.0040 0.0020 0.0021
r 0.1522 0.1484 0.0213 0.1432 0.1546 0.0189 0.1312 0.1709 0.0108
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Table 1.3. RMSE

RMSE
(c = 0.3, a = 0, r = 0.5, T = 0.5)

OT
T=100 T—200 T=500

3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.

0.8318 0.613$ 0.5459 0.7530 0.6205 0.5536 0.5837 0.581$ 0.5475

0.0439 0.0759 0.0513 0.0320 0.0434 0.0295 0.0226 0.0203 0.0199

0.3827 0.4512 0.3822 0.3408 0.4335 0.3555 0.2491 0.4313 0.2694

T=]000 T=2000 T=5000
3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. S mm. 24 mm.

T 0.411$ 0.4590 0.4759 0.2942 0.3211 0.3561 0.1662 0.1754 0.1891

0.0155 0.0140 0.0137 0.0113 0.0101 0.0098 0.007$ 0.0070 0.0068

r 0.1571 0.4559 0.2000 0.1014 0.4852 0.1393 0.0556 0.4100 0.0732

tc = 0.95, a 0.95, T = 0.5, r = 0.5)
T]00 T200 T50O

3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.

i 0.4914 0.6617 0.6459 0.3159 0.6351 0.4252 0.2069 0.6607 0.2079

0.4010 0.2964 0.2634 0.3089 0.2180 0.2255 0.2178 0.1338 0.1527

7 0.4155 0.4123 0.3933 0.4176 0.3847 0.3835 0.4116 0.3638 0.3686

T=1000 T=2000 T=5000
3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm. 3 mm. 5 mm. 24 mm.

0.1573 0.6696 0.2041 0.1291 0.6780 0.1314 0.1014 0.6605 0.0312

0.1659 0.0944 0.1102 0.1234 0.0686 0.0797 0.0900 0.0460 0.0553

r 0.3970 0.3852 0.3431 0.3828 0.3988 0.3170 0.3685 0.4586 0.2673



Chapitre 2

Finite and Large $ample Inference for

a Stochastic Volatility Mode! 1

‘This paper is co-atithored with Jean-Marie Dufour.
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2.1. Introduction

Evaluating the likeiihood fiinction of ARCH models is relatively easy compared to

Stochastic Volatility models (SV) for which it is impossible to get an explicit closed

form expression for the likelihood function [sec Shephard (1996), Mahieu and Schot

man (199$)]. This is a generic feature common to almost ail nonlinear latent variable

models due to the curse of the high dimensionaÏity of the integral appearing in the

likeiihood function ofthe stochastic voiatility model. This is the reason why econome

tricians were reluctant to use this kind of models in their applications for a long time

since in this setting, maximum likelihood methods are computationaily intensive. But

ever since progress has been made regarding the estimation of nonlinear latent variable

models in general and stochastic volatility models in particular. It mainly exists three

types ofmethods, namely, quasi-exact methods, simulation-based-estirnation methods

and bayesian methods. Thus, we can mention the Quasi Maximum Likelihood (QML)

approach suggested by Nelson (1988) and Harvey, Ruiz and Shephard (1994), Ruiz

(1994), a Generalized Method of Moments (GMM) procedure proposed by Melino and

Tumbull (1990). On the other hand, increased computer power lias made simulation

based estimation methods more attractive arnong which we can mention the Simulated

Method of Moments (SMM) proposed by Duffle and Singleton (1993), the indirect in

ference approacli ofGouriéroux, Monfort and Renault (1993) and the moment match

ing methods (EMM) ofGallant and Tauchen (1996). But computer intensive Markov

Chain Monte Carlo methods applied to SV models by Jacquier, Poison and Rossi (1994)

and Kim and Shephard (1994), Kim, Shephard and Club (1998), Wong(2002a,2002b)

and simulation-based Maximum Likelihood (SML) method proposed by Danielsson

and Richard (1993), Danielsson (1994), are the most efficient methods to estimate this

kind ofmodeis. In particular, Danieisson (1994), Danielsson and Richard (1993) de

velop an importance sampling technique to estimate the integrai appearing in the like

lihood function of the SV model. In a Bayesian setting, Jacquier, Polson and Rossi

(1994), Kim, Shephard and Club (199$) combine a Gibbs sampler with the Metropolis

Hastings algorithm to obtain the marginal posterior densities of the parameters of the
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SV model.

In contrast, the major contribution of this paper is to provide asymptotic and ex

act inference techniques for testing hypotheses on the parameters of the log-normal

stochastic volatiiity model with an autoregressive mean part. Indeed, the standard

form as set forth, for instance, in Harvey, Ruiz, and Shephard (1994), Jacquier, Poi

son, and Rossi (1994), Danielsson (1994), takes the form of an autoregression whose

innovations are scaied by an unobservabie volatility process, usually distributed as a

lognormal autoregression but other distributions (Student, mixture of normal distribu

tions) can be considered [sec Kim, Shephard and Club (1998), Mahieu and Schotman

(1998), Wong (2002a,2002b)]. TIc stochastic volatility specification we have dhosen

here cornes from Gailant, Hsieh, Taudhen (1997), Tauchen (1997). Whercas ail the au

thors quoted above, mainly focus on estimation performance for the stochastic volatiiity

model, often preoccupied by efficiency considerations [e.g. bayesian methods, Efficient

Method of Moments], our paper instead is mostiy motivated by inference techniques

applied to the stodhastic voiatiiity model. Our concem for inference, in particuiar for

simulation-based inference sud as tIc technique of Monte Carlo tests introduced by

Dwass (1957) for permutation tests, and iater extended by Bamard (1963) and Bim

baum (1974), requires an estimation method easy to impiernent. Thus, the estimation

method used in this paper is mainly a method of moments [sec Tayior (1986)] in two

steps which coincides with the GMM procedure in the particular case that tIc autore

gressive rnean part vanishes. For a detaiied presentation of the estimation technique

applied to the 5V mode! with an autoregressive conditional mean part, sec Dufour and

Valéry (2004). As econometricians previousiy quoted rnainly focused on efficient esti

mation procedures to estimate the SV model, they mostly examined specification tests

such as the x2 tests for goodness of fit in Andersen and Sorensen (1996), Andersen,

Chung and Sorensen (1999), specification tests with diagnostics in Gaflant, Hsieh and

Tauchen (1997), x2 specification tests through Indirect Inference critehon in Monfar

dini (1997), or hkelihood ratio tests statistics for comparative fit in Kim, Shephard and

Chib (1998). As a result, inference techniques for testing hypotheses on pararneters
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of the stochastic volatility model remained underdcveloped, apart from standard t-tests

for individual parameters in Andersen and Sorensen (1996), in Andersen, Chung and

Sorensen (1999) often performed with size distortions.

In this setting, the aim of the paper is to fulfiul the gap for testing hypotheses on

parameters of the SV model, more precisely, to propose exact tests in the sense that

the tests have correct levels in small samples. To do this, we implement the three stan

dard test statistics that is the Wald-type, score-type and likelihood-ratio-type test based

on a computationally simple method-of-moments estimator available in closed forrn

[see Dufour and Valéry (2004)]. We further consider a c(Q)-type test [see Neyman

(1959), Ronchetti (1987), Berger and Wallenstein (1989), Kocherlakota and Kocher

lakota (1991)] wbich is very easy to implement in our framework and demonstrates

good size and power properties. Using these test procedures, we test the nuil hypothesis

of no persistence in the volatility against alternatives of strong persistence in the volatil

ity process.Testing for the presence or not of strong serial correlation in the volatilfty

process is relevant mostly for speculative retums which tend to display systematic long-

range volatility dependencies in general and more specifically for option pricing pre

dictions. Indeed, a strong serial correlation in die underlying volatility process will

help minimizing the pricing error of future option prices computed on the basis ofboth

current realized and implied volatilities. In this respect, a stream ofthe option pricing

literature has seized the importance ofthis issue by allowing for long-range dependence

in the volatility process when compared with the standard stochastic volatility model or

the ARCH family, using thereby a fractional integration process whose autocorrelation

function is known to decrease at a much slower rate, a hyperbolic decay rate, than that

ofthe standard stochastic volatility process or the ARCH-type family [sec Breidt,Crato,

Lima (1998) for detection and estimation ofa long-memory feature in a discrete tirne

stochastic volatility model , sec Comte and Renault (1998) for the continuous time

stochastic volatility and Comte, Coutin and Renault (2003), Ohanissian, Russel and

Tsay (2003) for its applications to option pricing]. In this regards, we propose a speci

fication test for testing the nuli hypothesis oflinearity in the volatility process against a
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fractionally integrated volatility process by means of a likelihood-ratio-type test statis

tic for comparative fit. Furthermore,we also provide a joint test for testing homoscedas

ticity in the volatility process. In this respect, a statistical check for homoscedasticity

in the stochastic volatility model could be viewed as a relevant pre-test before trying

to include a latent factor to drive the dynamic ofthe volatility process which makes its

estimation much more complicated. Testing for homoscedasticity arises strong anoma

lies as the moment conditions become no more identifying under the nuil. In presence

ofsuch irregularities, the standard asymptotic distribution is known to fail and one has

to resort to nonstandard inference techniques or simulation-based inference techniques

such as Monte Carlo tests to control for the size.

In a Monte Carlo study we compare the finite sample properties of the standard

asymptotic techniques to the technique of Monte Carlo tests which is valid in finite

samples and allow for test statistics whose nuil distribution may depend on nuisance

parameters. In particular maximized Monte Carlo tests (MMC) introduced by Du-

four (1995) have the exact level in finite samples wlien the p-value function is maxi

mized over the entire set of nuisance parameters. In contrast to MMC tests which are

highly computer intensive, simplified (asymptotically j ustified) approximate versions

of Monte Carlo tests provide a halfway solution which achieves to control the level

of the tests while being less computationally demanding. We finally illustrate the test

procedures by providing an application on a long time return series on the Standard and

Poor’s Composite Price Index.

The paper is organized as follows. Section 2 sets the framework and the assump

tions underlying the model and reviews the estimation procedure used to implement the

tests. Section 3 is devoted to the specification test of linear volatility against fraction

ally integrated volatility. Hypothesis testing is examined in Section 4 where we also

discuss how to build confidence sets by inverting the test statistics. In Section 5 we re

view the technique of Monte Carlo tests. Simulation results are displayed in Section 6

while empirical results on the Standard and Poor’s Composite Price Index retum series

are discussed in Section 7. We finally conclude in Section 8.
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2.2. Framework

The basic form of the stochastic volatility mode! we study here for y cornes from

Gallant, Hsieh, Tauchen (1997). Let Yt denote the first difference ovcr a short time

interval, a day for instance, of the log-price of a financial asset traded on securities

markets.

Assumption 2.2.1 Theprocess {y, t N}follows a stochastic voÏatiÏity model ofthe

type:
L

y
— =

ci(yt_i
—

+ cxp(wt/2)r9zt, (2.2.1)

j=

vit
— = —

+ TWV , (2.2.2)

where i9, {c}1, r, {a}r and T are the parameters oJthe two equarions,

caÏled the mean and votatiÏity equations respectively. s = (yt, vii)’ 15 initiatizedfrom

its stationary distribution.

The lag lengths of the autoregressive specifications uscd in the literature are typically

short, e.g. L = 1, L9 = 1, or L9 = O, or L = 2, L9 = 2 [see e.g. Andersen

and Sorensen (1996), Ga!!ant, Hsieh, Tauchen (1997), Andersen, Chung and Sorensen

(1999)]. In this regards, a simplified version ofmodel (2.2.1)-(2.2.2) consists in setting

= O and c = = O, Vj > 2, and p = (c, 9’)’ with 9 = (a, ry, r)’. We then have:

—

= c(’y_y
— ) + exp(w/2)r9z, ici < 1 (2.2.3)

vit = aw + 7Vt , lai < 1 . (2.2.4)

We shal! ca!1 the rnodel represented by equations (2.2.3)-(2.2.4) the stochastic volati!ity

mode! with an autoregressive mean part of order one [AR(1)-SV for short].

Assumptïon 2.2.2 The vectors (Zt, Vt)’, t E N are i.i.d. according to a N(O, 12) distri

bution.
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Assumption 2.2.3 Theprocess st (yt, wt)’ is striclÏy stationwy.

The process is Markovian of order L5 = max(L, L). Let

(2.2.5)

denote the pararneter vector ofthe stochastic volatility model. The process {y} is oh

served whereas {wt} is regarded as latent. Accordingly, the joint density ofthe vector

of observations = (ii,.• . , YT) is not available in closed form since it requires eval

uating an integral with dimension equal to the whole path of the latent volatilities. Let

F() = F(yi,... YT) = P[Y1 < y, . . . , Y1 Hn] denote its unknown distribution

fiinction

To estimate the AR(1)-SV model above, we consider a two-step method whose

first step consists in applying ordinary least squares (OLS) to the mean equation which

yields a consistent estimate ofthe autoregressive parameter c and ofthe mean parameter

denoted by T, fi1 and the residuals ‘fit ‘Ut(CT) — t-’y —

fl’(yt_
— [‘u). Then,

we apply in a second step a method of moments to the residuals ‘ft to get the estimate

ofthe parameter O = (a, r,, r)’ ofthe mean and volatility equations. In the sequel we

will focus on the particular case where = O but alI the resuits stili hold in the general

case. In the two propositions below, we recali the moments of the volatility process

as well as the estimating equations defining the moment estimator of 9. For a detailed

proofoftliese propositions, the reader is referred to Dufour and Valéry (2004).

Proposition 2.2.4 MoMENTS 0F THE VOLATILITY PROCESS.

Under Asstmiptions 2.2.1,2.2.2,2.2.3, with ,u = = O and c = e = 0, V j > 2.

Then ‘Ut has thefollowing moments for even values of k and t:

kt) = T2tk/2/2)! exp{r/(1 — e2)], (2.2.6)

k,l(mIO) E(ui1)
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— T
2(k/2)(L/2)! 2(h/2)(t/2)! exP[$(1

a2)
(k2 + t2 + 2ktam)].

(2.2.7)

The odd moments are equaÏ to zero.

In particular, for k = 2, k = 4 and k = t = 2 and m 1, we get as in Jacquier, Poison

and Rossi (1994):

= E(n) = Texp{T/2(1 — a2)], (2.2.8)

= = 3r exp[2r/(1 — a2)] (2.2.9)

and

/2,2(1) = rexp[r/(1 — o)]. (2.2.10)

Solving the above moment equations conesponding to k = 2, k = 4 and rri = 1 yields

the following proposition.

Proposition 2.2.5 ESTIMATING EQUATIONS.

Under the assumptions ofProposition 2.2.4, we have:

[log(22(19)) — log(3) — 4log(i2) + 1og(4)]
a= —1, (2.2.11)

log( 3(i)2)

31/4

Ty =
1/4

(2.2.12)
/14

1/2

T—
(log(3(/14)2)(1_a2))

. (2.2.13)

Given the latter proposition, it is easy to compute a method-of-rnoments estimator for

9 = ta, r, r)’ replacing the theoretical moments by sample counterparts based on the

residuals . Let T denote the method-of-moments estimator of O. Typically, E(r),

EQi4) and E(rju_1) are approximated by:

/t2U /12t1)1_1
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respectively. 6T is consistent and asymptotically normally distributed. Sec Dufour and

Valéry (2004) for an exhaustive prescntation of its asymptotic propcrtics.

2.3. Specification test

In this section we propose a specification test to test the nufl hypothesis oflinearity in

thc volatility proccss as stated in equation (2.2.4) against the alternative ofa fractionally

intcgratcd Gaussian process for the volatility wherc equation (2.2.4) is replaced by:

(1 — = N(0,u) (2.3.14)

where cl (—0.5, 0.5). When cl is restrictcd to this domain, w, is stationary and invert

ible [sec Hosking (1981)]. By denoting Vt(&) = exp(wt/2)rz where O = (d,T, u,)’,

we review the first tvo moments ofvt(O) obtained from properties ofthe log-normal

distribution as it is stated in Brcidt, Crato and de Lima (1998):

2t) = E(t(&)2) rexp[y(0)/2], (2.3.15)

/14(0) = E(u(0)4) = 3r exp[2y(0)], (2.3.16)

and

= E[v(8)2vt_h(6)2] = rexp[7(0)(1 + p(h))Ï, (2.3.17)

wherc thc auto-covanance and autocorrelation functions for thc long-memory process

{Wt}, denoted by y(.) and p(.) are given by:

[‘(1 — 2d)
)

— — cl) ‘

p(h) = ,h= 1,2,..., (2.3.19)
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[sec Brockwell and Davis, (1991), p.522]. Then, the likelihood-ratio-type test statistic

for comparative fit that is investigated here is given by:

T[MTIMo) - MTIMI)1 (2.3.20)

where

E {9T(U) —
— t(9M)], i = 0,1 (2.3.21)

to test the nuil hypothesis that the truc model, denoted by M0 is the linear volatility

process against the alternative M1 which is the fractionally integrated gaussian volatil

ity process.

2.4. Tests and confidence sets

In this section we shah set the framework for testing general hypotheses as H0 : f e

ï-L0, where ï-Le is a subset of ail possible distributions for the stochastic volatiiity model

(2.2.3)- (2.2.4), that is,

E {F(.) F() F0((6)) aid i(9) = 0}, (2.4.22)

where ;(9) is a p x 1 continuously differentiable fonction of 9. H0 is usually abbre

viated as: H0 : 0. The derivative ofthe constraints P(6) = bas full row

rank. Let tT be the unrestricted estimator and the constrained estimator obtained by

minimizing the foïlowing criterion under H0:

E [T(Û) - (9)]!*1[(Û)
- (9)]. (2.4.23)

The Wald statistic is defined as

= T’’(T)’[(J’Î1])’]’T) (2.4.24)

I
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where ] = P(T), Î I(T)
= Ç2*(OT) J J(T) =

The score statistic is defiried from the gradient of the objective fiinction with respect

to 8 evaluated at the constrained estimator. This gradient is given by:

VT -
(2.4.25)

and the test statistic is given by

= TV(JÎ’Jo)1VT, (2.4.26)

where Ïo I() J J() = . Finally, we can introduce the

difference between the optimal values of the objective function that we shail cal! the

LR-type test in the simulations:

= T[M() —
. (2.4.27)

The three standard test statistics c”, , and are known to be asymptotically equiv

alent and to follow a x2 distribution undcr the nul! hypothesis.

We also consider the c(c) -type test statistic defined by:

PC() = T[)
- T(Û)]’Wo[/i() - YT(U)j (2.4.28)

where IlJ(]uIlJ)1P[P(juIl])h]!11P(YIlJ)h]fI , with

= J() = () Ï0 = I() = !2*() , and Po = P(). is any

root-n consistent estimator of & that satisfies b() = O. For our concem, wi!l

be obtained by imposing the constraints in the analytic expressions ofthe unrestricted

method-of-momcnts estimator 8T given at equations (2.2.11) to (2.2.13), yielding a

consistent restricted estimator without any optimization step. It is known [see Dufour

and Trognon (2001, p8, Proposition 3.1)] that the c(Œ)-type test statistic is asymptot

ically distributed as a y2 variable under the null hypothesis. In the simulations, we
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toi
will focus on a particular forrn ofthe constraint, i.e. i/’(6) (1,0) ( I =

and the nuil hypothesis H0 t = O simplifies to H0 t 0, (e.g. 9 E

61 E (a, r)’).We shah discuss at this stage a few anomalies arising when testing the

joint nuiT hypothesis of no heteroscedasticity H0 : (a, r)’ = O against an alterna

tive of stochastic voiatility. We shah stress two interesting findings. The first one is

when tlying implementing the nuil hypothesis no heteroscedasticity, the score-type test

statistics such as the score statistic and the c(c) statistic becorne identically nuli by

construction through the derivatives of the moments of the volati!ity process. In that

sense, the score-type test statistics are no longer meaningful under weaker regularity

conditions. As a consequence, the test of no heteroscedasticity against an alternative of

stochastic volatility is performed by means ofthe Wald statistic and the LR-type statis

tic. However, a serious singularity issue arises when implementing the nuli hypothesis

of homoscedasticity, since under the nuil the moment conditions become nonhinearly

redundant. Indeed, the three moment conditions (2.2.8), (2.2.9) and (2.2.10) reduces to

only two relevant moment conditions. Hence, the Jacobian of the moment conditions

is no more of fuli-column rank and therefore some singularity problems arise. In such

a framework, it is known that the standard asymptotic theoiy does flot provide reli

able inference any longer. A simulation exercise strongly highlights the failure of the

asymptotic theory when the usual regularity conditions do not hold anymore. In partic

ular, the WaId statistic exhibits severe size distortions for any length of the simulated

path. As for the LR-type statistic, it tends to under-reject the nul! but remains g!ob

ahly vaiid under nonreguiar conditions. Indeed, it is known [sec Dufour (1997)] that

the WaId statistic is flot reliable in nonstandard situations whereas the LR statistic stili

provides reliable inference. In sucli a context, simuhation-bascd inference such as the

tecirnique of Monte Carlo tests presented in the next section, is the solution to correct

for these extreme size distortions observed for its asymptotic counterparts.

We aiso provide confidence sets by inverting the test statistics. Let Sc = S(1/, )
note one of the four previous tests statistics computed from the sampie points =

(y’,. . . , yT) and under the hypothesis H0 : /(0) = 0. It is known that there is
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a correspondence between confidence sets and tests. The acceptance region of the

hypothesis test, the set in the sampÏe space for which H0 : O is accepted, is

given by

A() = { = (y, . . . , YT) : S(, ) <} (2.4.29)

for a û level test, and the confidence set, the set in the paraineter space with plausible

values of’(9), is given by

C(yi,..
. = {) : S() = {(9) : G(S()) û},

(2.4.30)

where G(.) denotes the p-value function. These sets are connected to each other by the

tautology

tYI,...,YT) A() (&) e G(yl,...,yT).

The hypothesis test fixes the parameter and asks what sample values (the acceptance re

gion) are consistent with that fixed value. The confidence set fixes the sample value and

asks what parameter values (the confidence set) make this sample value most plausible.

Thus, if A(’/i) is an acceptance region with level û, we have:

PF[YgA(b)] û ,VFe7-

and hence,

Pf[YeA(&)]>1—û ,VFE7-(0.

Then, the coverage probability ofthe set 0(Y) is given by:

Pf[(O) e 0(Y)] = PF[Y e A()] i-û

showing that 0(Y) is a 1 — û confidence set for ‘çb().

Following this metliodology, we will build confidence sets for the autoregressive

parameter of the volatility process by retaining ah the values ofthe parameter for which

the p-value frmnction is greater than or equal to 1 — û, yielding a (1 — û)-level confidence
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set.

2.5. Monte Carlo testing

The technique of Monte Carlo tests has originafly been suggested by Dwass (1957) for

implementing permutation tests, and did flot involve nuisance parameters. This tech

nique lias been later extended by Bamard (1963) and Birnbaum (1974). This technique

lias the great attraction of providing exact (randomized) tests based on any statistic

whose finite sample distribution may be intractable but can be simulated.

We review in this section the metliodology of Monte Carlo tests as it is exposed in

Dufour (2002),[see also Dufour and Kiviet (1996), Kiviet and Dufour (1997),Dufour

and Khalaf (1997), Dufour and Khalaf (2002b), Dufour and Khalaf(2002a), ...] where

the distribution of the test statistic S may depend on nuisance parameters. for the test

statistics exposed in section 2.4, their asymptotic distribution is asymptotically pivotai

(du-square distribution), but their finite sample distribution remains unknown. At this

stage, we need to make an effort of formalization to clearly expose the procedure. We

consider a family ofprobability spaces {(Z, A, P0) : p e !2} and suppose that S is a

real valued Az-measurable function wliose distribution is determined by P where 7i is

the “true” parameter vector. We wish to test the hypothesis

H0 7i e !2,

wliere !2 is a nonempty subset of [2. We consider a critical region of the form S > c,

wliere e is a constant which does not depend on p. The critical region S e lias Ïevel

c if and only if

P0[S c] <c,Vp E f2o

or equivalently,

sup P0{S> c] <cv.
pE f20
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Furthermore, S c lias size a when

sup P[S > cj = c.
pE fi0

We consider a real random variable So and random vectors ofthe form

S(N,p) = (Site),.. .,SN(p))’,p E ,

ail defined on a common probability space (Z, A, P), such that the variables

So, S(p),... , Spj(7i) are i.i.d. or exchangeable for some !2, each one with dis

tribution function F[xp] = P[50 < x]. Typically, $ will refer to a test statistic com

puted from the observed data when the true parameter vector is p (i.e., p = ), whule

$‘(p),..., Siv(p) wilI refer to i.i.d replications of the test statistic obtained indepen

dently (e.g., by simulation) under the assumption that the parameter vector is p (i.e.,

P[S(p) < x] P[xlp]). In other words, the observed statistic S is simulated by first

generating an “observation” vector y according to

y = g(p,z,v) (2.5.31)

where the function g lias the bivanate AR(1)-SV specification as stated in equations

(2.2.3) and (2.2.4), with p (c, p,,, e)’, & = (a, r0, r)’. The perturbations z and u

have known distributions, which can be simulated (N(0, 1) or student, or mixtures,

e.g.). We can then compute

5(p) S[g(p, z, u)] gs(p, z, y). (2.5.32)

The observed statistic S0 is then computed as S0 = S[g(p, Z, u0)] and the simu

lated statistics as 51(p) = S[g(p, z, ui)] , i = 1,... , N where the random vectors

z0,z1,... ,ZN are i.i.d. (or exchangeable) and u0,u1, .. . ,N are i.i.d. (or exchange

able) as well.

The technique of Monte Carlo tests provides a simple metliod aflowing one
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to replace the theoretical distribution F(xlp) by its sample analogue based on

Si(p),. . . ,$(p):

FN[x; S(N, p)] = — S(p)) =
— Si(P))

where s(x) = 1[O,œ1(X) and 1A(x) is the indicator function associated with the set A.

We also consider the corresponding sample tail area function:

GN[x; S(N, p)] = S(3(p) - x).

and the p-value function -

NGN[p]+1
PN[XPj

N+1

The sample distribution function is related to the ranks R1,•- , Rjy of the variables

S1 (p), . . . , Sr (p) (when put in ascending order) by the expression:

NFN[S; S(N, p)] = S(Sj(p)
—

S(p)), j = 1,..., N.

The central property which is exploited here is the following: to obtain critical values

or compute p-values, the “theoretical” nuil distribution F[xj can be replaced by its

simulation-based “estimate” FN[xlp] v[x; $(N, p)] in a way that will preserve the

level of the test infinite samples, irrespective ofthe number N ofrepÏications used. At

this stage we shah refer the reader to Dufour (2002, p.i3, Proposition 4.1) in which the

author states the finite sample vahidity of Monte Carlo tests when the p-value function

is maximized over the entire set ofthe nuisance parameters.

Therein, the author shows that the critical region sup{GN{$otp] : p e !2}

has level c irrespective ofthe presence of nuisance parameters in the distribution ofthe

test statistic S under the nuil hypothesis H0 : E !2. Likewise, the (almost) equivalent

randomized critical regions inf{ÊN[$op] : p e !2} 1 — or S sup{1{1 —

c1 p] : p .f2} are shown to have the same level a as their non-randomized analogues.
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Dufour (2002) cails such tests maximized Monte Carlo (MMC) tests. The function

GN [$ p] (or ]5N [Soin]) is then maximized with respect to p E f20, keeping the observed

statistic So and the simulated disturbance vectors z1, ..., z and u1, ..., u fixed. The

ftrnction ÔN [Soin] is a step-type function which typically has zero derivatives almost

everywhere, except on isolated points (or manifolds) where it is flot differentiable. So

it cannot be maximized with usual derivative-based algorithms. However, the required

maximizations can be performed by using appropriate optimization algorithms that do

flot require differentiability, such as sirnuÏatedanneaÏing. For further discussion ofsuch

algorithms, the reader may consuit Goffe, Ferrier, and Rogers(1994).

On the other hand, Dufour (2002) also proposes simplified (asymptoticallyjustified)

approximate versions of Monte Carlo tests where the p-value function may be evaluated

either at a consistent point estimate and defines thereby a bootstrap version, or at a

consistent set estimate of p and defines instead confidence-set-Monte Carlo tests. The

author shows [sec Dufour, (2002, p.16, Proposition 5.1 and p.i9, Proposition 6.3)]

that both tests are asymptotically valid in the sense that they have the correct level

ù asymptotically and the estimated p-values converge to the truc p-values. He also

assesses the validity of the MMC tests and the asymptotic Monte Carlo tests based on

consistent set estimators for general distributions , when ties have non-zero probability

[see Dufour, (2002, p.14, Proposition 4.2 and p.17, Proposition 5.2)].

In the remaining of the paper we will implement the maximized and bootstrap ver

sions ofthe Monte Carlo technique and investigate in a comparative Monte Carlo study

their actual size and power performances with respect to those of the standard asymp

totic tests developed in section 2.4.

2.6. Simulation resuits

Here we test the nuil hypothesis of no-persistence in the volatility, which corresponds

to H0 : a = O against the alternatives FI a = 0.8, 0.99. The nominal level of the

tests lias been set to c =
597 M represents the number ofreplications used to assess

the actual size oftlie tests and lias been fixed to M = 1000 for ah tests. N represents
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the number of simulated statistics used in the Monte Carlo tests. T is the sample size

of the series y whose data generating process is assumed to be specified as in equa

tions (2.2.3)-(2.2.4). Implementation is performed with the GAUSS software version

3.2.37. Note that the autoregressive parameter a in the autoregressive specification of

the volatility process is restricted to (-1,1) to ensure the stationarity of the volatility

process. At this end, each time the estimate ofa falis outside of its domain we tmncate

theestimatorbysettingittoa = O.99whena >= 1 andtoa= —O.99whena <= —1.

The Wald statistic as defined at equation (2.4.24) is evaluated at the unrestricted

method-of-moments estimator °1T• The Score statistic as defined at equation (2.4.26)

is evaluated at the restricted estimator which minimizes the criterion M,(O) defined

at equation (2.4.23) submitted to the constraint a = O whereas represents another

restricted estimator of 9 obtained by setting e = O in the analytic expressions ofthe un

restricted method-of-moments estimator T given at equations (2.2.11)- (2.2.13). The

c(c)-type statistic as defined at equation (2.4.28) is evaluated at this restricted estima

tor of 9. Further, the LR-type test statistic corresponds to the difference between

the optimal values ofthe objective function. Let LR(S) [sec equation (2.4.27)]

where S2 f2(T). The weighting matrix S? is estimated by a kemel estimator with a

fixed-Bandwith Bartlett Kemel, where the lag fruncation parameter K lias been set to

K = 2.

Let S denote tlie test statistic which altematively will take tlie form of one of the

four test statistics earlier mentioned and let So denote the statistic computed from the

“pseudo-true” data obtained by simulation under the data generating process evaluated

at the “truc” value ofthe parameter. The asymptotic critical regions used to perform the

asymptotic tests are ofthe form:

= {S > x_(i) = c}, i = 1,2,3

with c1 = 3.84, c2 5.99 and c3 = 7.81. The critical regions used to perfomi the
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Monte Carlo tests lias the following form:

= {i5[Sj <}

with the p-value function given by:

NÔpq [S0 I] ± Y
PN[SoIp}=

N+1

and the survival function given by:

GN[So; S(N, p)] =

N

s(S(p)
— So).

The p-value function is evaluated at a consistent restrictcd estimator of p (c, 9’)’

(c, a, r, r.)’. Tlie critical region used to implement the maximized Monte Carlo test

correspond to:

= {maxN[SoIp] <c’},
pEe0

where the p-value function is maximized on a neighborhood of the restricted estimate

of p. We use a grid with increment equal to 0.1 to compute the p-value function in

the neighborhood. The simulated statistics S(p) i 1, ..., N will aiways be evaluated

under the nuli hypothesis in the Monte Carlo tests whatever the hypothesis to be tested.

a has been set to c = 5%. Monte Carlo tests whose p-value function is evaluated at a

consistent point estimate ofthe nuisance parameters follow the metliodology presented

in section 2.5.

2.6.1. Size investigation

We study the actual size of the various tests compare them to their nominal size fixed

at & = 5%. Conceming the specification test, we study in Table 2. 1 the actual size of

rejecting the nuli hypothesis of a hnear autoregressive volatility specification against

an alternative fractionally integrated gaussian volatility process. The parameters have
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been set to c = 0.3, r = = 0.5 and the autoregressive volatility parameter a =

0.3. As usually encountered in specification tests, the test underreject the nuli in small

samples and requires at least T = 5000 observations to reach the nominal level stated

at a = 5%.

The resuits reported in the top part of Table 2.2 for rejecting the nuli hypothesis

H0 o. = O display evidence for the asymptotic tests of under-rejecting H0 for the

Wald and the C(c) tests particularly in small samples, whereas the score-type and the

LR-type tests tend to over-reject. In particular the underrejection under the nuil tends to

induce a loss ofpower under the alternative. By contrast, we can sec in the bottom part

of Table 2.2 that the technique of MC tests achieves in conecting for the size distortions

ofthe asymptotic tests. We also investigate in Table 2.3, ajoint test ofhomoscedasticity

in the stochastic volatility model by testing the nuil hypothesis H0 e = 0. r = O by

means ofthe Wald-type and LR-type statistics. The score-type test statistics have been

evacuated here since they are identically nuil by construction. The asymptotic critical

value is given by the 95%-quantile of the du-square distribution with two degrees of

freedom which correspond to c2 = 5.99. Note the extremely huge over-rejection (more

than 90%) displayed by the asymptotic Wald test when usual regularity conditions are

flot satisfied. Whatever sample size is considered, the situation is flot getting better.

Conceming the LR statistic behavior, it tends to slightly overreject in small samples

and underreject in large samples. Once again we can note in Table 2.3,that Monte

Carlo tests achieve in correcting the severe size distortions observed for the asymptotic

tests. More specifically, the Wald statistic performs extremely poorÏy for the joint nuli

hypothesis H0 : e = 0, r,, O whereas the LR statistic is more rehable. Tndeed,

the estimators used to construct the test statistics. are based on the moments of the

volatility process but under this joint null hypothesis these moment conditions become

nonlinearly redundant. As a consequence, the Jacobian ofthe moment conditions is no

more of full-column rank under thc nuli causing some singularity issue for the covari

ance matrices. It is known [sec Dufour (1997)] that the Wald statistic is not reliable

under nonregular conditions whereas the LR statistic stili provides reliable inference.
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It is worth noting in Table 2.4 that when the Monte Carlo tests (MC) evaiuated at a

consistent restricted estimate of the nuisance parameter fail to correct for the size dis

tortions observed in smali samples (T = 50, 100) for the LR statistic, its maximized

version (MMC) does correct for the size distortions. Indeed, we observe in Table 2.4

that MMC test achieves in reaching the correct level stated at c 5% in smail samples

(T 50, 100) whereas MC tests remains around 10%. The MMC version is performed

by maximizing the p-value function on a neighborhood ofthe restricted estimate ofthe

nuisance parameters which are c and r.

2.6.2. Power investigation

Here we study the actual power ofthe different tests. Note that the standard asymptotic

tests for testing the nuli hypothesis H0 a = O have been corrected for size distortions

using the conesponding simulated critical values computed on JVI = 10, 000 replica

tions, as reported in Table 2.6 which yields exact 5%-level tests under the nuli hypoth

esis. Conceming the specification test, to simulate the model under the alternative of

a fractionally integrated gaussian process, we follow Bollerslev and Mikkelsen (1996)

[see aiso Baillie, Bollerslev, and Mildcelsen (1996)] and trnncate the moving average

fiiter and then let the process mn for a long whuie to attenuate the effects oftransients.

Bollerslev and Mikkeisen suggest to truncate at k = 1000 but since the moving average

coefficients becorne very smali afier 160, we chose to truncate at k = 160 yielding

160 kthe moving average filter Zk=o./’k . We then trim off the first 10000 observations.

Ail parameters have been kept to the same values as under the null hypothesis with

the long memory parameter d = 0.3 replacing the autoregressive parameter a = 0.3.

We then observe that the simulations averaged over 1000 replications, require at least

1000 observations to exhibit sufficient power. Note also that the Monte Carlo tests do

gradually ioose power when compared to their asymptotic analogues due to some noise

introduced by lengthy simulations. In Table 2.7, we observe that both inference tech

niques, that is the asymptotic and Monte Carlo tests, suifer from a lack ofpower when

the sample sizes are very srnall (T = 50, 100, 200). Note also the increase in power
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when we switch from one type of alternative: H1 : a = 0.8 to a more persistent one:

H1 : a = 0.99. The power of Monte Carlo tests could be improved in small samples by

increasing the number of simulated statistics from N = 99 to N = 299,499, 999. Note

that aithougli the asymptotic procedure seems in some cases to exhibit more power

w.r.t. Monte Carlo tests, the former however remains a not feasible benchmark for

reai data whose data generating process (DGP) is generally unknown. In this respect

the simulation-based inference technique appears more robust to any DGP. Both test

procedures have more power when the sample size grows which is intuitive since both

tests are asymptoticaliy justified. Further, note that the c(û) test outperforms its com

petitors at any sample sizes. In particular the c(c) test performs better than the score

test statistic whereas both belong to the same score-type family. The c() test statistic

lias besides the advantage of being tlie easiest to impiement since it does not require

in our case any optimization procedure. Indeed the restricted estimate of O is obtained

by sirnply imposing the constraint in the analyticai expressions availabie for the unre

stricted moment estimator.

We also examine in Tables 2.8 and 2.9, the power of the joint test ofthc nuil liypoth

esis ofliomoscedasticity against the alternative I-Ii e = 0.5, r, 0.5. The Wald-type

test lias littie power compared to the LR-type test which stili remains valid under non-

standard conditions. Indeed, the Waid test after being corrected for the size distortions,

is not consistent at ail wlien increasing the sample size. In this respect, it is known [sec

Dufour (1997)], that Wald tests are not reformable in nonstandard situations, whatever

asymptotic, Monte Carlo or maximized MC tests, exhibit tlie same inconsistent behav

ior for the WaId test. By contrast, the LR-type test remains consistent despite some

singularity issues, even thougli its finite and asymptotic distribution may be modified.

Finally, we also provide some plots ofthe power functions for asymptotic (in dashed

line) and Monte Carlo (in cubic une) Waid and LR tests in Figure 2.1, and for score-

type and c(c)-type tests in Figure 2.2, respectively. Once again, we observe tliat the

c(c) test lias more power than its counterparts and displays a much smoother power

function when cornpared to the tests invoiving the unrestricted estimator (the LR or the
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Wald tests). The score-type test also performs better than the LR or the Wald tests.

2.7. Empirical application

In this subsection we test the nuli hypothesis of no-persistence in the volatility and also

the hypothesis oflinear specification for the volatility process against the alternative of

a fractionally integrated specification from real data (Standard and Poor’s Composite

Price Index (SP), 192$-$7).

2.7.1. Data

The data have been provided by Tauchen where Efficient Method of Moments have

been used by Gallant, Hsieh and Tauchen to fit a standard stochastic volatility model.

The data to which we fit the univariate stochastic volatility model is a long time series

comprised of 16,127 daily observations, {}6’27 on adjusted movements ofthe Stan

dard and poor’s Composite Price Index, 1928-87. The raw series is the Standard and

Poor’s Composite Price Index (SP),daily, 1928-87. We use a long time series, because,

among other things, we want to investigate the long-term properties of stock market

volatility through a persistence test. The raw series is converted to a price movements

series, 100[log(SPt) — 1og(SP_y)], and then adjusted for systematic calendar effects,

that is, systematic shifis in location and scale due to different trading patterns across

days of the week, holidays, and year-end tax trading. This yields a variable we shail

denote Yt.

2.7.2. Resuits

The unrestricted estimated value of p from the data is:

PT = (0.129, 0.926, 0.829, 0.427)’

= [0.007, 2.89, 1.91, 8.131’,
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wliere the method-of-moments estimated value of a corresponds to T = 0.926. We

may conjecture that there is some persistence in the data during the period 192$-87

what is statisticaliy checked by pcrforming the tests below. The restricted estimated

values of p from the data are:

= (0.129, 0, 0.785, 1.152)’

= [0.007, —, 1.95, 1.77]’

and

= (0.129, 0,0.829, 1.133)’,

[0.007, —, 1.91, 1.661’

Note the large discrepancy between the unrestricted and restricted estimates of T,

where the restricted estimates are not consistent if the nuil hypothesis H0 a = O

is false.

In Table 2.10, we observe that ah standard asymptotic tests reject indeed the nuli

hypothesis of no-persistence in the volatihity since 80 > x_t1) = 3.84 as well as

ah the bootstrap tests whose p-value is equal or less than 5%, whatever length of the

simulated statistics is used to implement them. Concerning the specification test, the

resuits shown in the bottom part of Table 2.10 give evidence in favor of the nuil hy

pothesis of linear volatility against the alternative of a fractionaily integrated volatihity

process as given by the statistic defined in equations (2.3.20) and (2.3.21). Indeed,

the observed statistic ( = 0.00345) is much beiow the asymptotic critical value of

x95(3) = 7.81. The same hold for the MC p-values which are around 0.8 and greater

than n = 0.05.

We also provide in Table 2.11 confidence sets by inverting the corresponding test

statistics as exposed in section 2.4. The coverage probabilities for the confidence sets

are 1 — = 95%. We can observe that ail tests do cover the estimated value of u

‘(â = 0.926), at the confidence level of 95%, except for the bootstrap version of the
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score test statistic that covers at a confidence level of 93% and is empty at 95%. We

may conclude by saying that the data seem to exhibit some persistence features as

usuaily expected from financial data.

2.8. Concluding remarks

The c(ù) test outperfonns the other types of tests while being the easiest to implement

since it does flot require in our framework any optimization procedure. It has good sta

tistical properties: a good level and a high power for sufficiently large sample sizes. On

the other hand, Monte Carlo tests and maximized MC tests appear as a good alternative

to the standard asymptotic tests, specifically when the standard asymptotic approach

fails - in situations of almost-unidentified models where the modified distribution of

the test statistic remains unknown. We may consider as further research an extension of

our approacli to asymmetric and fat-taiied distributions such as the asymmetric student

distribution and shah test the hypothesis of leverage effect in the stochastic volatiiity

model. We may also consider a continuous-time specification of stochastic volatility

since ail the moments are already available in Meddahi (2002).
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Table 2.1. Size of asymptotic and Monte Carlo tests, specification test

LEVELS in % specification test
T=50 T=]00 T=200 T=500

Asy MC Asy MC Asy MC Asy MC

LR(S2) 0.2 0.3 0 0.1 0.1 0.1 0 0.1
1=1000 T=2000 T=5000

Asy MC Asy MC Asy MC Asy MC
LR(f2) 0 0.7 0.1 0.7 5.1 1.3 - -

Table 2.2. Size of asymptotic and Monte Carlo tests, ,H0 : a = O

LEVELS in % (under H0: a = 0)
Asymptotic tests

T=50 T=100 T=200 T=500 T=1000 T=2000
Wald 0.1 0.7 0.9 2.1 2.4 3.2

Score(t2c) 7.7 6 2.6 2.8 3.2 3

LR(f2) 7.5 4.8 3.8 2.5 3 3.7
0(ù) 0.4 0.7 2.6 3 2.9 2.9

Monte CarÏo tests
T=50 T=100 T=200 T=500 T=1000 T=2000

WaId 5.4 5.1 3 2.6 5.1 5.5

Score(f2c) 5.2 5.1 6 6 4.7 3
LR(â) 4.2 5.6 5.8 6.6 5.5 4.8
0(ù) 4.7 4.4 6 6.9 5.4 4

Table 2.3. Size of asymptotic and Monte Carlo tests, H0 : a 0, r, O

LEVELS in % (H0 : a = 0, r, = 0),(nuisance:c = 0.3, r0 = 0.5)
Asymptotic joint tests

T=50 T=100 T=500 T=1000 T=2000 T=5000
Wald 94.8 91.6 90.7 90 90.2 92.3
LR(f2) 8.8 8.9 1.4 0.7 0.5 0.6

Monte Carlo joint tests
T=50 T=100 T=500 T=1000 T=2000 T=5000

Wald 5.5 4.6 3.6 5.8 4.4 4.3

LR(f2) 8.1 7.3 4.7 4.5 3.2 4
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Table 2.4. Size ofasymptotic and Monte Carlo tests, H0 : a = 0, rj,» = O

LEVELS in % (H0 : u. 0, r,, = 0), (nuisance:c 0.95, r 0.5)
T5O T=]OO______ T5OO______

Asy MC MMC Asy MC MMC Asy MC MMC
Wald 93.8 4.3 4.5 92.2 5 4.2 91.1 3 2.9
LR(f2) 9.4 10.5 3.3 8.2 9.9 5.2 1.50 6.4 4.9

T=1000 T=2000 TQOO
Asy MC MMC Asy MC MMC Asy MC MMC

Wald 88.8 5.6 5 90.8 4.4 4.3 91 3.9 3.9

LR() 0.6 5.6 4.1 0.4 3.2 3.1 0.6 4.7 4.1

Table 2.5. Power of asymptotic and Monte Carlo tests, specification test

POWER in Yo specification test
T—50 T=]00 T=200 T5O0

Asy MC Asy MC Asy MC Asy MC

LR(S1) 7.2 1.5 2 1.8 0.4 8.4 6.8 26
T=1000 T2000 T5000

Asy MC Asy MC Asy MC Asy MC

LR() 32.5 33.2 74.4 41.1 83.3 46.5 - -

Table 2.6. Simulated critical values, under H0 : a O

Simulated critical values
M=] 0, 000 repÏications

T=50 T100 T=200 T=500 T1000 T=2000
WaId 0.8458 1.4295 2.8303 2.5826 2.7878 3.0203

Score «2c) 1.7051 2.3336 2.6773 2.9260 2.9472 2.9523

LR(t2) 5.7228 3.7033 2.7759 3.0385 3.1352 2.9970
C(c) 1.7974 2.3030 2.6901 2.8807 2.8879 2.9133
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Table 2.7. Power of size-corrected asymptotic ami Monte Carlo tests

POWER in %_(under H1)
Size-corrected Asymptotic tests

H1 a = 0.8
T50 T=l00 T200 T500 T=1000 T=2000

Wald 10.9 17 23.4 60.4 84.5 93.2

Score(f2c) 16.8 25 47 78.6 93.9 97.8

LR(t2) 10.3 16.8 37.6 71.5 88.9 96.6
C(ù) 19.7 30.9 51.8 81.8 96 99.5

H1 a = 0.99
Wald 31.2 59.5 81.5 90.9 99 99.6

$coTe(f2c) 39.7 55.7 85.4 97.7 99.3 99.9
LR(f2) 25 44.6 77.3 96.7 99.2 99.3
C(n) 41.5 68.8 91.6 99.2 99.7 100

Monte Carlo tests (N = 99)
H1 a = 0.8

T=50 T=100 T=200 T500 Tl000 T=2000
Wald 10.1 11.8 19.4 44.8 68.3 84

$core(f2c) 15 18.2 27.9 63.3 89.7 96.8

LR(S2) 9.4 10 23.4 60.5 83.5 92.4
C(ù) 21.6 28.8 43.4 74.1 93.5 98.5

H1 a 0.99
Wald 28.7 54.1 74.6 87.5 96.3 96.5

Score(tc) 11.9 22.3 39.6 82.7 94.4 97.8
LR(f2) 15.8 29.8 55.6 72.6 98.5 99.2
C(c) 36.1 62.6 78.8 91.6 99.6 99.9

Table 2.8. Power 0f asymptotic and Monte Carlo tests, H1 : a = 0.5, T = 0.5, set I

POWER in % (under H1)
Asymptotic joint tests
H1 o. = 0.5, r = 0.5

T=50 T=100 T=500 T1000 T2000 T=5000
Wald 15.8 17.6 18.1 12.7 6.7 1.3

LR(t2) 10.9 13.3 84.8 99.4 99.9 100
Monte Carlo joint tests (N = 499)

T50 T100 T=500 T1000 T2000 T=5000
Wald 16.1 18.8 18 12.6 6.9 1.6

LR(t2) 14.5 15.7 86.5 99.1 99.9 100
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Table 2.9. Power ofasymptotic and Monte Carlo tests, H1 a = 0.5, T1, = 0.5, set II

POWER in % (H1 : e = 0.5, r, = 0.5), (nuisance: c = 0.95, r, = 0.5)
T=50 T=]OO______ T=500______

Asy MC MMC Asy MC MMC Asy MC MMC
Wald 18 16.8 12.8 20.2 17.2 16.6 17.6 16.4 16.2

LR(f) 11 14 3.8 15.4 17.4 11.6 84.6 85.6 $5.4
T]OOO T2OOO T5OOO

Asy MC MMC Asy MC MMC Asy MC MMC
Wald 12 11.6 11.5 6 6 6 1 0.8 0.8

LR(f2) 99.6 99 99 100 100 100 100 100 100

Table 2.10. Empirical application

data
H0 e = O

Asympto tic tests Monte Carlo tests

So N19 N99 N999
Wald 206.03 0.05 0.01 0.001

Score (t20) 1039.04 0.05 0.01 0.001

LR(â) 63.20 0.05 0.01 0.001
C(c) 854.55 0.05 0.01 0.001

specification test

; 0.00345 0.80 0.80 0.789

Table 2.1 1. Confidence sets

Confidence sets for e, (1 — = 95%)
Asymptotic Monte CarÏo

Wald ]0.92,0.93] [0.92,0.93]

Score(c) ]0.92,0.93] [0.92,0.931*

LR(S2) ]0.92,0.93] [0.92,0.93]
C(c) 10.92,0.93] [0.92,0.93]
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Figure 2.2. Asymptotic and Monte Carlo Power frmnetions, score and 0(ù) tests
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Chapitre 3

Monte Carlo Tests and Regularized

Indirect Inference for a $tochastic

Volatility Mode! 1

fl ‘This paper is co-authored with Jean-Marie Dufour.
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3.1. Introduction

Indirect estimation was proposed by Smith (1993), Gouriéroux, Monfort and Renault

(1993) [henceforth GMR] as an estimation and inference procedure for models having

complex formulations or untractable likelihood ftinctions. Basically, it consists in opti

mizing an auxiliary criterion that does not directly provide a consistent estimator ofthe

parameter of interest. A consistent estimator is then obtained by simulation. Indirect

inference techniques belong to the class of modem statistical procedures which exploit

Monte Carlo methods to derive estimators and tests for complex models. Bootstrap

and Monte Carlo Markov chain methods belong to this class and, more generally, any

simulation-based inference technique is a potential candidate. The only requirement for

implementing simulation-based procedures is that the model or the statistic can be sim

ulated. In this framework, the three standard test statistics have been proposed to make

inference on the parameters of interest of the structural model, which are a Wald-type

statistic, a likelihood ratio-type statistic and a score-type statistic [see GMR (1993)].

However, the distributional tbeoiy associated with those statistics is asymptotic and

the choice of the existing statistics importantly depends on the possibility to obtain an

asymptotic nuisance-parameter free distribution under the null hypothesis. This opens

up the way for approximation errors of any magnitude [sec Dufour (1997)]. Further,

under nonregular conditions, asymptotic tests are known to have incorrect size even

asymptotically on a subset of the parameter space [sec Andrews (1987), Gregory and

VeaU (1985), Breusch and Schmidt (1988), Lutkepohl and Burda (1997, henceforth

LB)]. More specifically, LB examined the behavior ofthe Wald statistic for multi-step

causality for finite order vector autoregressive (VAR) processes. In sucli a setup, multi

step noncausality entails a set of highly nonlinear restrictions on the VAR coefficient

matrices. For this type ofnonlinear restrictions, standard Wald tests fail to have limiting

2—distributions in general. In this respect, LB proposed modifications to the WaÏd

statistic which ensure an asymptotic 2—distribution under the nuil hypothesis. Indeed,

Andrews (1987) derived a necessary and sufficient rank condition to be satisfied by the

asymptotic covariance matrix and its estimator to ensure a limiting X2—distribution for
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the Wald statistic under the nuli.

In this paper, we examine the behavior of the indirect inference procedure and of

the resulting test statistics as proposed by GMR (1993) under nonregular conditions,

when the simulated binding function does not satisfy the same rank condition (derived

by Andrews (1987)) as the population binding function whose rank is getting lower at

isolated values 6 ofthe parameter of interest 6. This rank condition can be violated

at least in two ways: first,in situations where some parameters become unidentified

under the nuil hypothesis while the other situation is concerned with some (possibly

nonlinearly) redundant restrictions under the null. Thus under the nuil hypothesis, the

covariance matrix of the auxiliary estimator and that of the Wald and score statistics

become singular. As a result, the usual invertibility technique breaks down making

the statistics non implementable. To remedy this problem, we propose to modify the

indirect objective function in a way that accounts for singularity problems under the

nuil hypothesis. To do so, we exploit two alternative regularization techniques: the first

one was originally proposed by LB (1997) for multi-step noncausality and amounts

to estimating a reduced rank covariance matrix and then modifying the Wald statistic

accordingly. When the covariance matrix becomes singular, we replace (like LB) the

usual inverse by its Moore-Penrose generalized inverse, by setting to zero the inverses

ofits eigenvalues ofthe estimated covariance matrix when they drop below a threshold.

Alternatively, we propose two slightly different regularization techniques which con

sists in keeping the eigenvalues of the estirnated covariance matrix which are greater

than a predetermined threshold and setting the smaller ones to the threshold, instead

of zero. Then we can stili be proceeding as usual to invert the covariance matrix thus

regularized. The third regularization technique is particularly attractive from a power

viewpoint. Unlike LB who did regularize the singular covariance matrix of the Wald

statistic in the testing problem, we implement these regularization techniques at two

levels: one to regularize the indirect estirnator at thc estimation stage and the other one

to regularize the covariance matrices ofthe test statistics like LB(1997). Indeed, we re

sort to g-inverted matrices to regularize the Wald-type statistic, the score-type statistic
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and the indirect criterion in a situation where the standard regularity conditions required

for the parameter estimator to be consistent and asymptotically normal are no more sat

isfied under the nuli hypothesis. There have been several papers in the econometric

literature dealing with nonregular inference problems such as unidentified parameters

under the nuli, for instance. Andrews (1993b) analyzed tests for structural change.

Andrews and Ploberger (1994) explore optimal testing but do not discuss methods to

obtain critical values in practice. Andrews (1993a) discusses econometric examples

which suffer from the problem ofunidentifled nuisance parameters.

As an example, we consider testing a null hypothesis of homoskedasticity in the

volatility process of a lognormal stochastic volatility (SV) model under which the

gradient of the simulated binding function does not satisfy the same rank condition

as the gradient of the population binding function. Indeed, the auxiliary estimator

which enters the second step objective criterion in the indirect estimation procedure

is based on moment conditions which become nonlinearly redundant under the nuIl of

homoskedasticity ofthe volatility process. To account for this singularity issue, we im

plement the proposed regularization techniques at two distinct levels: one to overcome

the singularity problem ofthe covariance matrix ofthe auxiliary estimator appearing in

the indirect criterion whereas the second-step regulanzation handlcs singularity prob

lems occurring for the Wald statistic and the score statistic. Unlike the nonregularized

test statistics, the modified statistics can always be computed. They also demonstrate

more power than their nonregularized counterparts. These power advantages have ai

ready been pointed out by Gallant (1977), Gallant and Tauchen (1989) for taking care

of unidentified parameters under H0 and redundant restrictions. Therefore the regu

larization techniques appear very useful in two ways, by keeping the statistics com

putable in nonregular conditions and further by increasing power performances when

compared with their nonregularized counterparts. However, although the regulariza

tion techniques help in keeping the test statistics computable in such situations, they do

flot ensure a limiting x2 distribution for the modified statistics anymore. As a result,

the distributional resuits developed by GMR (1993) become useless under nonregular
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conditions. One way to overcome this difficulty and obtain valid critical points and

p-values is to resort on simulation-based inference techniques such as Monte Carlo

tests. In the same spirit, Dufour, Khalaf, Bemard and Genest (2004) resort to Monte

Carlo tests in non-standard test problems such as the ARCH-M case to circumvent

an unidentified nuisance parameter problem and obtain valid p-values. By contrast,

Hansen (1996) propose to use a conditional transformation which is analogous to an

asymptotic p-value but yields an asymptotic distribution free of nuisance parameters.

Then Hansen shows that this transformation can be easily approximated via simulation.

To summarize, there are two main contributions in the paper: the first one consists

in modifying the objective function and test statistics in order to account for singular

covariance matrices under nonregular conditions, the second one consists in apply

ing the technique of Monte Carlo tests (MC, henceforth){see Dwass (1957), Bamard

(1963), Bimbaum (1974)], and maximized Monte Carlo (MMC, henceforth) [sec Du-

four (2002)] tests to the modified test statistics in order to provide valid critical points

and p-values to offset a standard distributional theory which may be misleading under

nonregular condition.

The paper is organized as foilows. In Section 2, we review the standard indirect

inference procedure whule in Section 3, we document some singuiarity issues arising

when estirnating a 10g-normal SV mode! under the nuil hypothesis ofhomoscedasticity

in the volatility process. In Section 4, we describe the techniques to regularize the sin

gular covariance matrices. In Section 5, we briefly review the methodology of Monte

Carlo tests which still provides reliable inference for distributions which are not pivotai

even asymptotically. We then provide some simulation results in Section 6 before illus

trating the methodoiogy on the Standard and Poor’s Composite Price Index (SP),daily,

1928-$7 in Section 7. We conclude in Section 8.

3.2. Estimation by Indirect Inference

In this section we review the indirect estimation procedure chosen to estimate a pa

rameter of interest 6. Fora more complete description ofthe method, sec Gouriéroux,
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Monfort and Renault (1993). The method is proposed for situations where the likeli

hood function of the structural model is unknown or untractable. To solve this diffi

culty, one resorts to an approximate mode! called the auxiliary mode! which is simpler

to estimate. The auxiliaiy model should closely approximate the distribution of the

observed data but does not have to nest it. However, if the auxiliary model nests the

structural model then the estimator is as efficient as maximum like]ihood [see Gallant

and Tauchen (1996)]. Let MT(/3) denote the auxiliary criterion parameterized by the

auxiliary parameter 3. Let us denote by 737 the solution to this problem:

argmaxMT(/). (3.2.1)

Then in a second step we can obtain the indirect estimator T by minimizing the second

step criterion MT(O) defined by:

[ -
(0)]’2[T -

(3.2.2)

where f22 is a positive definite matrix defining the metric. îT denotes the estimate of

the auxiliary parameter based on the observed data whereas (0) denotes the cor

responding estimate for a data set simulated under the structural model for a value 0.

Under standard regularity conditions, 0T is a consistent estimator of the truc unknown

value O. A consistent estimator of the metric is given by:

f22
= J()hJ()_1J() (3.2.3)

where

= -tYTT), (3.2.4)

1(0) = f0(0) + - )(P(o) ± P(0)), (3.2.5)



63

and

= YT(0)T)8tYTt9),T). (3.2.6)
t=k+1

The metric f22 defined at equation (3.2.3) is the metric which minimizes the asymptotic

variance-covariance matrix of the indirect estimator, yielding the optimal estimator.

This asymptotic variance-covariance matrix is given by

(1+ ) (F(é?0), 9o, 0)I(é?0)’ (F(9o), 90, do))

‘

(3.2.7)

where F(00) is the tme unknown probability measure associated with the structural

model. A consistent estimator of W is given by

W = (1+ (3.2.8)

as soon as we can compute the derivative of with respect to 9. The computation of

such a derivative bas to be made numerically.

Let us now consider the problem of testing general hypotheses such as H0 : F

7é0, where ?é0 is a subset of ail possible distributions, that is,

E {F(.) : F() F0((O)) and (O) = 01, (3.2.9)

where b(9) is a p x 1 continuously differentiable fiinction of 9. H0 is usuaiiy abbre

viated as: H0 : l(8) 0. The derivative ofthe constraints P(9) = has full row

rank. Let 0T be the unrestricted indirect estimator and 9 the constrained estimator

obtained by minimizing the second step indirect criterion MT(&) defined in equation

(3.2.2) under H0. To test the null hypothesis we shah consider the three standard test

statistics, sucli as a Wald-type statistic, a likelihood ratio-type statistic and a score-type

statistic. The Wald statistic is defined as

W = T’T)’[P(J’Î’J)’]’(9T) (3.2.10)
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where ] = P(OT), I = I(?9T), J = ]t6T) . The likelihood ratio statistic is the

difference between the optimal values ofthe objective function as defined below:

TS[Mtc)M()l (3.2.11)

The score-type statistic is defined from the gradient of the indirect objective function

with respect to 9 evaluated at the restricted estimator . This gradient is given by:

VT =

__

-

(3.2.12)

and the test statistic is

S = TVSVT. (3.2.13)

Under standard regularity conditions for the estimator and the testing problem, those

statistics have been shown [sec GMR(1993)] to be asymptotically x2-distributed. How

ever, if certain regularity conditions are somehow relaxed, there is no guarantee any

more that the indirect estimator be asymptotically normally distributed, and standard

distributional theory for making valid inference collapses.

3.3. Singularity issues: example of a stocliastic volatil

ity model

The main purpose of this section is to investigate some degenerate testing problems in

the sense that some regularity conditions defining the indirect estimator are flot satis

fied under the nuli hypothesis. In this respect, one condition required for the indirect

estimator to be consistent is the truc binding function

b[f(90), 9j
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being a one-to-one mapping and satisfying the following rank condition that is,

9] is offutÏ-coÏumn rank. (3.3.14)

If this rank condition is flot satisfied, then singularity problems can arise. In this re

spect, the rank condition above can be violated at least in two ways: first, in situations

where some parameters become unidentified under the nuil hypothesis while the other

situation is concemed with some (possibly nonlinearly) redundant restrictions under the

null. In other words, in order to ensure identification ofthe parameter ofinterest 9, the

dimension of the auxiliaiy parameter 49 is required to be equal or greater than the one

of O. If this condition does not hold, the structural parameter is no more fully identified

and so, the standard distributional theory for the indirect estimator and the resulting

test statistics may be misleading. Bound et al. (1995), Hall et al. (1996), Maddala

and Jeong (1992), Nelson and Startz (1990a, 1990b), Staiger and Stock (1997), and

Zivot et al. (199$) give evidences on size distortions when conducting inference with

instrumental variables when weak instruments are involved. As an example, we are in

terested in testing the nuil hypothesis of no stochastic volatility (H0 : a = O, r,, = O)

in the stochastic volatility model described below.

Let the structural model be a stochastic volatility model with an autoregressive

mean part of order one [AR(1)-SV for short]2:

= c + Cyt_y + exp(w/2)rzt, c <1 (3.3.15)

rut = awi + TWVt , a < 1, (3.3.16)

and let O (c, T, a, r)’ denote the parameter ofinterest. Let a = jt.,(1 — c) where

be the conditional mean of y. The perturbations zj and ‘ut are mutually independent and

identically distributed N(O, 1). Let /3T(Û, 9) denote the functional estirnator3 defined

2This AR(p)-SV specification cornes from Ga]lant, Hsieh and Tauchen (1997). The SV mode! with
out autoregressive mean part, has extensively been used, in particutar, in Harvey, Ruiz, and Shephard
(1994), Jacquier, Poison, and Rossi (1994), Danielsson (1994).

3See Dufour and Valéiy (2004) fora more exhaustive description ofthe moment estirnator used for
the AR(1)-SV model.
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by:

/TW O) = aTgmin[g(Û) -

-

i(O)], (3.3.17)

where gT(Û) = 1gt(Û) with g1(Ù) = (y,,_1)’ and t(O) =

(/1,/L2,/14,/i22(hIO)) with

t-’2() = E(n) = Texp{r/2(1 — ci2)], (3.3.18)

ti4(0) = EC) = 3rexp[2r/(1 — ci2)] (3319)

and

2,2(hI0) = E[i1] = r exp[r,/(1 — ci)]. (3.3.20)

As the sample moments used to compute the estimator are computed from residuals

from a preliminary regression yielding a V”-consistent estimator for the mean param

eter, and flot from truc perturbations, we can correct for the approximation error by

simulating the truc binding function b(f(00), 9e). In consequence, the functional es

timator t3T(U, 0) wilI tend asymptotically to the truc binding function t3(U(00), O) =

b(F(O0), Os).

To get an insight on the singularity issue here, let us focus on the simplified model

with c = O and O = (ci, r, r0). In this context, the binding function depends on the

moment conditions given in equations (3.3.18)-(3.3.20), namely

TW,0) = bT[U,(O)]. (3.3.21)

In this context, we are interested in testing hypotheses ofthe form

toi
‘(O)(0,1) I I =02

0 J

and the nul! hypothesis H0 b(O) = O simplifies to H0 t 02 = 0, (e.g. 02 (ci, T)’).

This specific form H0 : (ci, r)’ = O of the constraint corresponds to testing no het

eroskedasticity in the volatility process against an alternative of stochastic volatility.
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However, when implementing the nuil hypothesis of homoskedasticity, some singular

ity issues anse since under the nuil, the moment conditions which define the auxiliaiy

estimator become nonlinearÏy reditndant. Indeed, the moment conditions (3.3.18) and

(3.3.20) reduce to only one relevant moment condition under H0 up to a nonlinear

transformation causing the rank of [U, 0] being Iower at the isolated value 0 =

under H0 (a, r)’ = O. Indeed, the determinant of [U, 0] where

8a 8r, 8r,,

8/t4 8 (3.3.22)
8jc92 8It2,2 8b’2,2

8a 8r,, 8r

when evaluated under H0 : ta, r)’ = O, that is

00 2r

(U,9) O O 12r (3.3.23)

O O 4r

is equal to zero and the rank becomes equal to one at O = O = r [see Appendix for the

analytical expressions of the derivatives]. But the rank of (Û, O) when evaluated

at any value O O is greater than that of (U, Os). In consequence, the rank of

the gradient of the sirnulated binding function generally excced that of the population

binding function causing the equality of the rank condition between the population

quantity and its estimator to fail. [Sec Andrews (1987), LB(1997)]. Therefore the

whole standard distributional theory derived by GMR (1993) may not hold anymore.

3.4. Regularized Inference

In this section, we examine the singularity problem highlighted in the previous section

when studying nulI hypotheses which causes the rank condition to fail. We will investi

gate to what extent this may affect standard inference procedures and propose solutions

to stiil conduct valid inference when dealing with singular matrices. More specifically,
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the redundant moment conditions under the nuil hypothesis, creates sorne singularity

problems for the covariance matrix:

VaT([T -
= (1 + i/S)’

through the non-invertibility of 1(6?) defined in equations (3.2.5) and (3.2.6). Hence,

the usual invertibility ofthe matrix fails occasionally.

To remedy this problem, we propose to modify the indirect objective function

MT(9) defined in equation (3.2.2) in a way that it accounts for singularity problems

arising from redundant restrictions under the nuli hypothesis which causes the rank

condition between the gradient ofthe population binding function and its functional es

timator to fail. To do so, we shah exploit two general regularization techniques among

which the Moore-Penrose generahized inverse of the corresponding matrix. The idea

cornes from LB (1997) to use the principal cornponents associated with the largest

eigenvalues ofthe estimated covariance matrix.

To do so, let L’ be a suitable reduced rank consistent estirnator of a covariance

matrix Z’ with eigenvalues q > ... > .j, and 7 an orthogonal matrix consisted ofthe

associated eigenvectors, such that

where Â diag(y,... , j). For some c > O, define ] to be the number of j > c

and let Â diag(i,. . .

, ,
O, . . . , O). Moreover, define

Â—diag(’1OO)

Then, the Moore-Penrose generalized inverse of L’ denoted by L’+ is obtained as:

(3.4.24)
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Thus, we will denote

= [(]‘Î-’J)-1]’]

and L’, the Moore-Penrose generaiized inverse ofI(), L’y, and

.Ês, respectively. When regularizing the estimated covariance matrices by taking their

Moore-Penrose generalized inverse as proposed by LB (1997), the modified statistics

will be referred to as W for the modified Waid statistic, LR for the modified LR

statistic and S for the modified LM statistic.

Altemately, to regularize the estimated covariance matrix

we propose instead to keep the estimated eigenvalues > c and set = c whenever

they drop below the threshold c. For c > O, let J be the number of eigenvalues for

which j > c. Let

Thus, the second regularized covariance matrix is obtained as:

QAJ1’. (3.4.25)

finally, a third regularized covariance matrix is obtained as the sum of the non

regularized initial matrix and a regularizing matrix such that:

= + (3.4.26)

Note that Z’ is always less than or equal to L by construction and therefore its in

verse will aiways be equal or greater than that of L’ and may induce some gains in

power. Finally, the inverses of and ‘ are obtained by taking a usual inverse defined

for positive definite matrices. In particular, when ail eigenvalues are greater than the
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threshold, the regularized matrices coincide with the original matrices, since iL, = Â.

Thus,

(î-)-’, ()1 (Ê)-’

will correspond to the inverses ofI(),
,

[(J/f_h])_1f] and fs respectively,

regularized according to equation (3.4.25). Likewise, we will denote

I-’ = I(’, ‘ [(J’Î’J)’’]-’ ,and

the inverse matrices ofIQ), Ê, = and Ê8 respectively, regularized

according to equation (3.4.26). Thus, when using this two regularization techniques,

the modified Wald statistics will be refened to as W, 7, the modified LR statistics

LR, LR and the modified LM statistics as S, ‘ accordingly. These modified inverses

will be built sequentially if necessary. The first one will help in regularizing the indirect

criterion to account for singularity issues, and thereby will benefit to the statistics alto

gether whereas at the opposite the Wald and score statistics will take advantage of the

two inverses jointly when the covariance matrices become singular. In the remaining of

the paper, we will compare the modified statistics with the original statistics proposed

by GMR (1993). However, although the regularization techniques help in keeping the

test statistics computable despite sorne undendentified parameters, they do flot ensure a

2 distribution for the modified statistics anymore. As a resuit, the distributional resuits

developed by GMR (1993) become useless under nonregular conditions (i.e. the rank

condition ofthe gradient ofthe binding function does flot hold anymore). One way to

overcome this difficulty and stiil provide valid critical points and p-values, is to resort

on simulation-based inference techniques sucli as Monte Carlo tests whose rnaximized

version achieves in controlling for size distortions irrespective of nuisance parameters

in the distribution ofthe test statistic.
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3.5. Monte Carlo testing

The technique of Monte Carlo tests lias originally been proposed by Dwass (1957) for

implementing permutation tests and did flot involve nuisance parameters. This tech

nique lias been extended by Bamard (1963) and Bimbaum (1974). It lias tlie great at

traction ofproviding exact (randomized) tests based on any statistic whose finite sample

distribution may be intractable but can lie simulated. We briefly review the methodol

ogy of Monte Carlo tests covering both cases, flrst witliout nuisance parameters and

then with nuisance parameters as it is proposed in Dufour (2002). Tlie technique of

Monte Carlo tests provides a simple method allowing one to replace the unknown or

untractable theoretical distribution F(xl) by its sample analogue based on the statistics

SN(8) simulated under the null hypotliesis. The procedure can be designed

as follows.

First we present the case without nuisance parameters which provides an exact test.

• STEP 1: Using the observed sample, we calculate the relevant statistic denoted

by So.

• STEP 2: Using draws under H0, we generate N simulated samples: S1, . . . ,

• STEP 3: Then we compute the estimated survival function:

GN[x; s( - x)

and the associated p-value function

NGN(x)+1
PN(x)

N+1

If N is chosen SO that c(N + 1) is an integer, under H0:

P(N[So] c) =

yielding an exact test.
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Second, in presence of nuisance parameters, Dufour (2002) proposes to maximize the

nuisance parameters over the parameter space conformable with the nuli hypothesis. In

this case the procedure is the following.

• STEP I: To test the nuil hypothesis

H0 : E !2,

we use first the observed sampic to calculate the relevant statistic denoted by $0.

• STEP 2: For each 9 E f20, we generate N replications of$: S(6),. . .

• STEP 3: Using these simulations we compute the corresponding simulated p-

value function:
- NGN[XIO1+l
PN[Xl0l=

N+l

finally the p-value function j3 [sol 0] as a function of O is maximized over the parameter

space. If the number of simulated statistics N is chosen so that c(N + 1) is an integer,

then we have under H0:

P{sup{N(SolO) : O E f20}

that is we control for the size. Such a technique which provides an exact test irre

spective of the presence of nuisance parameters under the nuil hypothesis is called a

Maxirnized Monte CarÏo test (henceforth MMC) by Dufour (2002). A proof of this

assertion can be found in Dufour (2002). In the simulation exercises below we will

implement the test in two forms, one in a local maximized version we cal! (MMC) and

another one when the nuisance parameters are evaluated at a consistent point estimate

yie!ding a form ofparametric bootstrap we sha!! call (MC) tests. For the MMC version

the nuisance parameters are maximized over a fine grid since there are only two nui

sance parameters. When the nuisance parameters are numerous one can use simu!ated

annealing [see Goffe, Ferrier and Rogers (1994)] an appropriate optimization a!gorithm

which does flot require differentiability. Indeed Gv[Sol9] is step-type function which
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typically has zero derivatives almost everywhere, except on isolated points where it is

flot differentiable.

3.6. Simulation resuits

In this section, we implement the Wald test (W), the Likelihood ratio test (LR) and the

score-type test (S) for testing the nuil hypothesis ofhomoskedasticity in the volatility

process, say, H0 a 0, r = 0. The tests are performed in three ways. The first

one uses the asymptotic x2 critical point ((1) = 3.84) for cv = 5% determined by

the rank of the gradient of the population binding function which is equal to 1 under

H0, while the other ones are based on the simulated p-values. for the Monte Carlo test

(hereafter, MC), the p-value is evaluated at a consistent restricted point estimate ofthe

nuisance parameters. Concerning the maximized Monte Carlo test (hereafter, MMC),

the p-value function is maximized over a neighborhood of the restricted estimate ofthe

nuisance parameters using a grid with increments equal to 0.1. The nuil liypothesis is

rejected each time the maximized p-value is less than the nominal level fixed at 5%. We

assess the actual sizes ofthe tests averaged on 100 replications. The Monte Carlo tests

are performed with N = 19 statistics sirnulated under the nuli hypothesis. Under the al

ternative, the Iength ofthe simulated statistics is increased to N 99 to gain in power.

The nuisance parameters have been set to T0 0.4 and c = 0.95 to produce a higli level

ofpersistence in the mean equation. In the simulations the drift parameter cv lias been

flxed at 0.5 throughout the experiment. The simulations are run on the GAUSS software

(3.2.37 version). Conceming the regularization techniques, in order to facilitate com

pansons across methods, the thresholds have been set to c = 0.01 for T = 2000, 1000

and e = 0.1 for T 500, 200 for both rnethods. We need to increase the threshold

when the sample size decreases due to the “poor” performance ofthe indirect estimator

in small samples. Indeed, we have to impose stronger regularization in small samples

to force convergence otherwise the algorithm breaks down quite often. In this respect

the rate at which the thresliold should tend to zero with the sample size lias to 5e investi

gated. LB (1997) gives sorne device on this issue suggesting to use the convergence rate
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ofthe estimated eigenvalues toward the truc ones. In practice, this device does not work

that wel] and lias to be investigated empirically. The LR statistic modified according to

LB regularization and denoted by LR, will only benefit from the first regularization

for computing Î i(79) QÂ P, with = diag(’,.
,

and î denotes

the number of) ofthe estimated covariance matrix 1(79) which satisfy: 3j > c1. The

modifled Wald statistic (denoted by Wj, wifl benefit flot only from 1÷, but also from

= {f(j’f_lj)—1f/]+
= QÂQ’. Similarly, the modified score statistic denoted

by S, wiIl benefit from I, but also from Likewise, the statistics modifled by the

second-type regularization based on the inverse ofÊ defined in equation (3.4.25) win

be refened to as W, LR and S. Finally, the modified statistics built on the inverse

of E will be referred to as 7, LR and ‘ in the simulation experiments.

3.6.1. Size analysis

First of ail, we can sec in Table 3.1 that the frequency at which the non-regularized

WaId statistic becornes non computable is around 10% in small sample and it dimin

ishcs when the sample size increases. As for the score statistic, the frcquency at which it

fails varies between 4% and 10%. Conceming the non-regularized LR statistic, the fre

quency at which it fails is around 3%. The rejection frequencies for the non-regularized

procedures have been computed after exciuding the cases when the usual inverses crash.

We cari sec in Table 3.1 that the regularization techniques work cxtremely wcIl for the

LM statistic which tends to systcmatically rejcct the nuil hypothesis when performing

the test with the non-regularized LM statistic. But once they are regularized, thc LM

statistics are contTolled for the size fixed at ù 5%. On the other hand, the size distor

tions displaycd by the non-regularized Wald statistic is not severe and varies between

7 and 9% but do not diminish when the sampic size increases. However, the attempts

ofrcgularization ofthe covariance matrices performed at two levels, at the estimation

stcp when regularizing the indirect criterion and at the testing step whcn regularizing

the covariance matrix in the Wald statistic seem to lielp the latter. Wc can sec that reg

ularizing the covariance matrices by modifying the inverses prevents the statistic from
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breaking down but also help in reducing the large standard errors. The rtvo regulariza

tion techniques we propose better control for the size ofthe Wald test when compared

with that of LB for ah sample sizes. Indeed, the Wald statistic regularized with the

tecimique proposed by LB stili slightly overrejects in smahl samples and more than the

other statistics. However, when the sample size increases, its overrejection is getting

less severe. In such situations, simulation-based inference techniques such as Monte

Carlo tests [see Dufour (2002)] help controlling for the size especially for the modified

Wald statistic W in small samples. At the opposite, the non-regularized LR statistic

tends to underreject. For T 1000 for instance, the non-regularized LR statistic neyer

rejects the nuil hypothesis. The resuits support earlier works that both finite sample and

asymptotic distributions ofthe LR test may also be modified when identifiabibty condi

tions are flot satisfied [see Sargan (1983), Phillips (1989), Staiger and Stock (1997), and

other references in Dufour (1997)]. However, Dufour (1997) shows that LR statistics

have nulI distributions which can be bounded by a nuisance-parameter-free distribu

tion (possibly derived from the Wilks A distribution), hence inference methods based

on such statistics are more reliable. Further, the LR statistic is known to be robust to

non-invariance problems unlike the Wald statistics [see Breusch and Schmidt (1988),

Nelson and Savin (1990), Dagenais and Dufour (1991)]. Concerning the regularized

LR statistics, the size performances are quite similar and help correcting for the under

rejection for LR+ and ER but LR stiil suffers from underrejecting. In consequence,

one can expect LR to loose power under the alternative. . Moreover, we observe for

the LR tests (LR, I]R) at T 500 and T 2000 in Table 3.1 that when MC tests

whose distribution also depends on strong regularity conditions [sec Dufour (2002)],

cannot achieve in correcting for some over-rejections, the rnaxirnized MC test usuahly

solves over-size problems.

3.6.2. Power analysis

We also study in Table 3.2 the power properties ofthe tests for an alternative hypothe

sis of stochastic volatihity with a quite higli persistence feature in the volatihity process,
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namely H1 : a = 0.9, r, = 0.9. The asymptotic tests suffering from oversize prob

lems, have been conected for size distortions. Monte Carlo tests are impiemented

with N = 99 simulated statistics since for power considerations, the number of sim

ulated statistics may have an impact on gains in power. As expected, the Wald test

is flot consistent at ail. When the sampie size increases, the gains in power for the

Wald statistic for the three procedures (Asy, MC, MMC), are flot significant and are

even diminishing for 1’7. This observation carnes out a crucial message conceming

the behavior of the Waid statistic in a context of (almost) unidentified parameters. It

is impossible to buiid a valid test based on the Wald statistic despite the various tech

nical tools in hand, such as reguiarization techniques which may also contributes in

correcting for “poor” standard errors. The Wald statistic is not reJormabÏe in situations

close to non-identification [see Dufour (1997)]. Indeed, Dufour (1997) shows that the

distribution of the Wald test cannot be bounded by any finite set of distribution func

tions under nonregular conditions. Under H0 : a = 0, T = 0, the moment conditions

defining the auxiliary estimator become nonlinearly redundant arising some singularity

issue. On the other hand, we can note the very erratic behavior of the non-regularized

LR statistic which support the fact that the regularization techniques help increasing

the power performances significantly. This observation is particularly outstanding in

large samples for T = 1000, 2000 where for instance P[LR > x_a(l)IHi] 0.17

compared with P[LR > x_(1)IH1] = 0.57, P[LR > _a(1)Hi] = 0.50 or

P[LR > x_(1)IHi1 0.44. We further observe that LR outperform the other

statistics in smali samples but in large sampies, especiaily for T 2000, fI? demon

strates equivalent power which reaches 68%. As expected, LR underperforms in

term of power LR+ and [R for ail sampie sizes. We further observe in Table 3.2, a

loss in power for both versions of Monte Carlo tests w.r.t. their asymptotic counter

parts. Indeed, there is always a ioss of “power” of the simuiated tests compared with

the asymptotic ones due to the noise introduced by the simulations. In this respect,

one lias to be aware that the asymptotic tests remain infeasible and arc considered as

a benchrnark usefiul for comparisons purposes. Indeed, implementing the asymptotic



77

tests requires the prior knowledge of the nuisance parameters which is flot available

in practice. By contrast, maximized Monte Carlo tests provide provabÏy exact tests ir

respective of presence of nuisance parameters in the distribution of the test statistic.

The only requirement of the procedure is that the test statistic can be simulated. On

the other hand, once the score-type statistic bas been corrected for overrejecting, the

non-regularized statistic fails to reject the nuli hypothesis and gives a strong evidence

on the fact that its asymptotic distribution is clearly modified in presence of singular

ity issue. Ail regularization technique indistinctivcly improve power significantly in

such a situation. However, we observe that $+ less power than ‘ and $. On the

other hand, as predicted by constructing which is aiways less than or equal to L,

the modified score statistic based on the former demonstrates more power than $,

namely P[S> x_(1)Hi1 = 0.73 whereas P[$ > = 0.68. Clearly,

the third-type regularization technique outperform in term of power the other ones for

the score statistic whereas the LB technique built on the Moore-Pcnrose inverse scems

to work better for the LR statistic in presence ofweak identification.

3.7. Empirical application

In this section we test the nuil hypothesis ofhomoskedasticity in the volatility process

from real data on the Standard and Poor’s Composite Price Index (5?), 1928-87.

3.7.1. Data

The data have been provided by Georges Tauchen where Efficient Method of Moments

have been used by Gallant, Hsieh and Tauchen (1997) to fit a standard stochastic volatil

ity model. The data to which we fit the univanate stochastic volatility model is a long

— 161°7
tirne series comprised of 16,127 daiiy observations, {yt}t’i , on adjusted movements

of the Standard and poor’s Composite Price Index, 1928-$7. The raw series is the

Standard and Poor’s Composite Price Index (SP),daily, 1928-$7. The raw series is con

verted to a price movements series, 100 [log(SPt) — 1og(SP_1)], and then adjusted for
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systematic calendar effects, that is, systematic shifts in location and scale due to differ

ent trading pattems across days of the week, holidays, and year-end tax trading. This

yields a variable we shah denote y.

3.7.2. Resllits

To conduct the asymptotic tests, we use the asymptotic critical value ofa ?_(1) =

3.84 for a c 5% significance level. In Table 3.3, we observe that W and W reject

the nuil hypothesis H0 : a = 0, r = O ofhomoskedasticity in the volatility process

whereas the other ones, which are W and W do flot reject the nuli hypothesis. The

same observation holds for simulated tests where this time W and W cannot reject

H0 at both level whereas Monte Carlo tests based on W and W statistics do reject H0

at c 5% and a 1%. Once again, these controversial resuits obtained with the Wald

statistic highhight the unrehiable feature ofthe latter when making inference under non

regular conditions. As predicted by Dufour (1997), whatever powerful tools in hand,

the Wald statistic is not reformable. Such a statistic cannot produce valid inference in

nonstandard situations. By contrast, the LR statistic stihi provides rehiable inference

under nonregular conditions, even though its finite and asymptotic distribution may be

modified. Our results reported in Table 3.3 for the LR statistics give evidence on this

statement. The LR statistic did not need to be regularized since its estimated eigenval

ues were greater than the thresholds, c = 0.1 and c = 0.01. Based on the LR statistic,

asymptotic and simulated tests do reject H0 at c = 5% and c = 1%. Conceming

the score statistic, the non-regularized statistic is flot computable due to its covariance

matrix Z which is singular and not invertible. Therefore, we need to resort to its g

inverted covariance matrices and implement S+, S and S. The results obtained with

real data support those obtained with artificial data since the asymptotic test based on

‘ is the most powerful one over S and far beyond S+ which cannot reject the nuil

hypothesis. However, although the asymptotic test built on S fails to reject H0 at the

specified levels, the simulated tests do achieve in rejecting the nuil. Thus, simulations

may provide more accurate critical points compared with asymptotic approximation
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and produce more reliable inferences as observed here with Monte Carlo tests. In sum,

we can formulate three types of recommendations: the practitioner should use the LR

statistic which is the more robust test statistic to any data generating process, avoid the

Wald statistic which tends to provide unreliable inference under nonregular conditions;

finally if computing the restricted estimate of the parameter of interest is easier for

the practitioner for the kind ofnull hypothesis under investigation, then he should use

the score-type statistic modified according to the third regularization technique (g’) to

maximize power when conducting inference with singular covariance matrices.

Finally, based on these resuits, we can infer that the nuli hypothesis ofhomoskedas

ticity in the volatility observed on the Standard and Poor’s Composite Price Index

(SP),daily, 1928-87 can be rejected at both level ofsignificance. However, although it

is well-known that high-ftequency financial data are time-varying and displays sfrong

volatility clustering effects [see Engle (1982)], it is not clear that such a rejection may

be attributed to volatility persistence effects but to tau thickness. In this vain, some

researchers [see Chemov, Gallant, Ghysels and Tauchen (2003)] tly to incorporate this

aspect of asset retums distribution (tau thickness) by extending the single 5V model by

adding additional SV factors, thus breaking the link between tau thickness and volatil

ity persistence.

3.8. Concluding remarks

To summarize, we provide regularization techniques of covariance matrices when these

ones become singular and non invertible under nonregular conditions by resorting to

some specific generalized inverses. However, although the regulanzation techniques

help in keeping the test statistics computable under nonregular conditions, they do not

ensure a x2 distribution for the modified statistics anymore. As a result, the distribu

tional resuits developed by GMR (1993) become useless under nonregular conditions.

One way to overcome this difficulty and stiil provide valid critical points and p-values,

is to resort on sirnulation-based inference tecimiques such as Monte Carlo tests whose

rnaxirnized version achieves in controlling for size distortions irrespective of nuisance
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parameters in the distribution of the test statistic. The modified tests further demon

strate more power than their nonregularized counterparts. However, despite the at

tempts to regularize the covariance matrix ofthe Wald statistic, it stiil provides invalid

inference in nonstandard problems. Indeed, the distribution ofthe Waid statistic cannot

be bounded by any finite set of distribution functions under nonregular conditions. In

sucli situations, maximized Monte Carlo tests can control for the size but at the cost of

no power at ail under the alternative. By contrast, the iikeiihood ratio test behave much

better (both in size and power) in sucli situations even thougli its finite and asymptotic

distributions may be modified. Concerning the performance ofthe score statistic under

singularity issues, the nonregularized statistic behave very poorly but once regularized,

especially according to the third technique based on , it provides a powerful test statis

tic [sec Hansen (1996)]. Finaliy, it is worth noting that the reguiarization techniques

implemented here in the context of a stochastic volatiiity model estimated by indirect

inference is flot restricted to this particular framework but could be empioyed in more

general modeis to handie singular weighting matrices as encountered for instance in

GMM contexts or aiso in nonlinear models [sec Gailant (1977), Gallant and Tauchen

(1989)].



Table 3.1. Size

LEVEL1n %(H0 ta 0,r1, = 0)
c= 0.95,r = 0.4

T2OO T=500
Asy NON reg. Asy MC MMC Asy NON reg. Asy MC MMC

failure 10 - - - 11 - - -

W 8.8 - - - 7.9 - - -

W+ - 11 6 3 - 11 6 1
W - 3 2 1 - 1 1 0

* - 3 3 3 - 5 7 4
failure 3 - - 1 - - -

LR 1 - - - 4 - - -

LR - 2 5 2 - 4 7 1
LR - 1 1 1 - 1 1 0

LR - 2 3 2 - 5 6 4
failure 4 - - 5 - -

s ioo - - - 100 - - -

5+ - 3 3 1 - 4 3 2
S - 2 2 1 - 1 2 1

- 2 5 1 - 1 1 1
T1â?5O TÏÔdO____

Asy NON reg. Asy MC MMC Asy NON reg. Asy MC MMC
failure 6 - - - 4 - - -

W 7.4 - - - 7.9 - - -

w+ - 8 2 1 - 7 2 1
T17 - 1 2 1 - 3 1 0

W - 6 2 2 - 6 5 4
failure 3 - - - O - - -

LR O - - - 2 - - -

LR - 2 1 1 - 4 6 1
LR - 1 1 0 - 0 1 0

[R - 1 1 1 - 4 7 4
failure 9 - - - 10 - - -

5 95.6 - - - 100 - - -

5+ - 3 3 1 - 3 2 2
s- - 1 1 1 - 1 1 1

- 2 2 1 - 5 2 1
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Table 3.2. Power

Power in % (H1 : a 0.9, r, 0.9)
c 0.95, r, = 0.4

T=500

Asy NON reg. Asy MC MMC Asy NON reg. Asy MC MMC

w io - - - I - - -

W+ - 9 8 5 - 9 6 3

W - 8 7 1 - 8 4 2

1’7 - 7 8 3 - 4 5 4

LR 44 - - 39 - -

LR - 45 26 20 - 48 2$ 21

LR - 30 26 16 - 33 31 19

[R - 32 25 20 - 3$ 30 28

3 0 - - O - -

3+ - 39 1$ 13 - 42 20 15

S - 44 24 13 - 50 41 2$

S - 49 46 22 - 59 43 33

TJO____
Asy NON reg. Asy MC MMC Asy NON reg. Asy MC MMC

117 0 - - - O - - -

W+ - 6 5 2 - 5 4 1

W - 2 6 3 - 5 5 3

W - 0 2 2 - O I O

LR 17 - - 42 - -

LR - 57 51 46 - 69 63 51

LR - 44 35 22 - 49 53 39

[R - 50 49 40 - 68 61 50

s o - - O - -

5+ - 45 30 18 - 51 38 31

S - 63 58 41 - 68 65 59

S - 69 68 51 - 73 67 62
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Table 3.3. Empirical application

Standard and Poor’s Composite Price index
H0: a = O r = O

Asympto tic tests Monte Carlo tests
So N19 N99

W 0.000772 0.249 0.23
W+ 6.70 0.30 0.30
W— 3.46 0.05 0.01

W 5.20 0.05 0.01
LR 111.91 0.05 0.01
LR 111.91 0.05 0.01
LR 111.91 0.05 0.01

[R 111.91 0.05 0.01
S failure - -

3+ 0.0015 0.05 0.01
5 6.67 0.05 0.01

13.35 0.05 0.01
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Nonlinear Canonical Analysis
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Chapitre 4

Diffusion Processes with Polynomial

Eigenfunctions Ï

‘This paper is co-authored with Christian Gouriéroux and Eric Renault.
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4.1. Introduction

One dimensional stochastic differential equations (s.d.e), such as:

dy u(yt)dt + u(y)cR1/t , (4.1.1)

where (I47) is a brownian motion, p and u the drift and volatility functions are basic

specifications for describing the evolution of financial returns [sec e.g. Black and Sc

holes (1973)] interest rates [see e.g. Vasicek (1977), Cox, Ingersoll, and Ross (19$5b),

Cox, Ingersoll, and Ross (19$5a)], or macroeconomic series [see e.g. Chen and Epstein

(1999), Anderson, Hansen, and Sargent (2003), Cagetti, Hansen, Sargent, andWilliams

(2002)] in continuous time. A recent literature points out the importance of the spec

tral analysis ofthe associated infinitesirnal generator for the analysis ofa s.d.e. On the

one hand, the knowledge of the spectral decomposition simplifies the computation of

nonlinear predictions at any horizon. This feature is used for instance to detennine the

pattern ofthe terni structure of interest rates when the short term interest rate follows an

equation like (4.1.1) [see e.g. Pagan, Hall, and Martin (1996)]. On the second hand the

spectral analysis underlies nonparametric estimation methods ofthe drift and volatility

functions. The basic idea is to estimate the infinitesimal generator either by kemel ap

proach [sec e.g. Darolles, florens, and Gouriéroux (2000)] or by projecting on a basis

ofpolynomials [sec e.g. Darolles, florens, and Renault (1997), Hansen, Scheinkman,

and Touzi (1998), Chen, Hansen, and Scheinkman (199$), Florens, Renault, and Touzi

(1998), Darolles and Gouriéroux (2001)], to perform the spectral decomposition ofthis

estimated generator, and then to deduce from the first and second eigenfunctions the

drift and volatility functions [sec Demoura (1993)].

The aim ofthis paper is to fully characterize the one-dimensional stochastic differ

ential equations, for which the eigenfunctions ofthe infinitesima] generator are polyno

mials in y. for these s.d.e., it can be expected that the estimation rnethod by projection

will be accurate, even in finite sample.

The characterization of the diffusion processes with polynomial eigenfunctions is
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given in section 2. We also provide in this section the eigenvalues, the expressions ofthe

eigenfunctions, the stationarity conditions and the density of the marginal distribution

ofthe processes. The proofs ofthe main results are gathered in section 3.

4.2. Cliaracterization

Let us consider a one dimensional stationary diffusion process:

dy = ,u(yt)dt + (y)dW , (4.2.2)

with drifi and volatility functions denoted by i and u, respectively. Its infinitesimal

generator A is defined by:

A(y) = lim
- y], (4.2.3)

and explains how to compute the infinitesimal drift ofthe fransformed series (bÇ4)).

By applying Ito’s lemma, it is easily seen that the generator A corresponds to the dif

ferential operator for C2 functions b:

A(y) = (y)(y)
+ g(y)2(y) (4.2.4)

Tt is known that this operator is generally self-adjoint, and in particular admits a spectral

decomposition with real eigenvalues [sce e.g. Hansen and Scheinkman (1995)]. We

assume [sec fbrens, Renault, and Touzi (1998) for a discussion] that:

Assumption 4.2.1 COMPACTNESS 0f THE INFINITESIMAL OPERATOR. A is a

compact operatol’ with distinct negative eigenvalues n E N, say, and eigenfunc

tions n é N.

Proposition 4.2.2 CHARACTERIZATION PROPERTY. Under Assumption 4.2.1 the

dffitsion process admits polynomial eigenfunctions with increasing degree n fand
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onÏy fone oJthefoÏlowing conditions is satisfied:

i,) iy) = b(y
— ) u2(y) = c0. where b < O, andy is definedon R;

ii) i-i(y) = b(y
— ) u2(y) c1y + c0, where b < O, and y is defined on the

semi-intervaÏ [—co/ci, +œ[, /c1 > O, or on the semi-intervall — oc, —co/cij, f

cl < O.

iii) (y) = b(y—), u2(y) c(y—71)(y—72), whereb <O, c <O, < <

‘Y2’ andy is defined in the intervat(71,72).

In any case the eigenvaÏues are: = bn+ cn(n — 1), n 1 where c = Ofor cases

i) andii).

Thus we get three types of processes which can be distinguished by the restrictions

on the domain of admissible values. They are affine transformations of the Omstein

Uhlenbeck process, the Cox-Ingersoll-Ross process and the Jacobi process, respec

tively. The Ornstein-Uhlenbeck process, or mean-reverting process [sec the nega

tivity condition imposed on parameter b in i)] underlies the Vasicek model [sec Va

sicek (1977)]. The Cox-Ingersoll-Ross process when c0 = O in ii), and more gener

ally the square root processes are used for describing the evolution of interest rates

[see Pagan, Hall, and Martin (1996)], or for defining time deformation [sec Conley,

Hansen, Luttmcr, and Scheinkman (1997), Carrasco, Hansen, and Chen (1999), Ghy

sels, Gouriéroux, and Jasiak (1995), Ghysels, Gouriéroux, and Jasiak (1998)]. finally

the Jacobi process is appropriate for the evolution of a probability or a default rate,

which are between O and 1 [sec Nielsen, Saa Requeja, and Santa Clara (1993), Lando

(1998), Cagetti, Hansen, S argent, and Williams (2002)].

The corollary below provides different properties ofthese processes conceming the

stationary distribution and the expressions ofthc cigenfunctions. The stationary distri

bution belongs to the Pearson family, that is their density j satisfy dlogf(y)
=

say. Thus, the class of diffusion processes with polynomial eigenfunctions coincides

with the class of stationary markov processes with marginal distribution in the Pear

son family [sec Wong (1964), Wong and Thomas (1962)]. Then, the expressions of
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the eigenftmctions are deduced from standard resuits on orthogonal polynomials [see

e.g. Abramowitz and Stegun (1965)]. It is important to note that the eigenfunc

tions are not uniquely defined. The eigenfunctions given below , say, ar& stan

dardized with respect to the marginal distribution of the process, that is they satisfy

.fnty)’m(y)f(Y)dy O, ifn m, 1 , ifn = m, where fis the p.d.fofthe

marginal distribution.

Corollary 4.2.3

j) The eigenfunctions ofthe Ornstein-Uhlenbeckprocess solution ofthe s.d.e.

dy = b(Yt — [3)dt +

are the Hermitepolynomials given by:

e(y) (n!)h/2(_1)!(l
2m)!

(_2b)
(Y

— )n_2m.

(4.2.5)

They are standardized with respect to the marginal gaztssian distribution

N(,6, —) of(y).

ii,) The elgenfunctions ofthe square rootprocess (yt). solution ofthe s.d.e.:

dy = b(y — )dt + i/ciy + c0dW

are the GeneraÏized Laguerrepolynomials:

- () ( ) — ( )i [ta + 1 + )l/2 [n!P(a + 1)]h/2

[(a+1+j) j!(n-j)!
j=O

where a —(ci,8 + co) — 1, Zj = —(ciyt + co). The polynomials are

standardized with respect to the marginal distribution of tyt), which corresponds

to the gamma distribution 7[—(c1 + co), —] shfiedfrom The special

case C0 = O yields the cox-Ingersoll-Ross process.
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iIi,) The eigenfitnctions ofthe Jacobiprocess (y), solution ofihefollowing s.d.e.:

clYt = — /3)dt + C(Yt
— 7i)(Yt 72)dW,

are the Jacobipolynomials given by:

1/2

P (,)= -n
n!T(++n+1)P(++2)P(fl+n+1)

n (nF(+++m+l)(yt_72)m
427

m=O
m) P( + ru + 1) (72 — 7i)

with 3 = —1 and73 = —1. They are standardized with respect to
C C Y2—71

tue marginal distribution of(yj), which corresponds to an affine transformation

ofthe Beta distribution B(j3 + 1, + 1).

4.3. Proof of the properties

The proofinvolves five steps. We first establish the necessary patterns ofthe dnft and

volatility functions, then the necessary expressions ofthe eigenvalues. In the third step,

we discuss the constraints to be introduced on the pararneters to ensure a nonnegative

volatility and a stationary solution. In the fourth step, we establish the marginal dis

tributions of the processes. Finally, we determine the standardized polynomial eigen

firnctions.

4.3.1. The pattern ofthe drift ami volatility functions

Assumption 4.3.1 If the eigenfitnctions are polynomials, the drfl is a polynomial of

degree one:

= b(y — ), with b < O,

whereas the volatility is apolynomial ofdegree at most 2.

u2(y) = cy2 + c1y + c9.
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Proof: It is known from (a generalized version of) Sturm-Liouville theory, that

the eigenfunctions satisfy the following shape restrictions [see Chen, Hansen, and

Scheinkman (1998)1:

• crosses the zero axis preciselyj tirnes;

• has precisely j — 1 intenor zeros (same sign between any two consecutive

zeros).

In accordance with these shape restrictions, the first eigenfunction crosses the zero axis

once, the second one twice, and so forth... As a consequence, the first two eigenfunc

tions are ofthe form:

‘1(y) = y + a10, 2(Y) = y2 + a21y + a20, say.

They satisfy the condition:

A,jy) = ),/(y), ri = 1,2 with < O

(y)(y) + j2(y)fl(y)
= n = 1,2

f (y)=Ài(y+ayo)

I (y)(2y+a21)+u2(y)= 2(y2+a2yy+a20).

By solving this system we deduce the resuit ofLemma 4.3.1. Q.E.D

4.3.2. Expression ofthe eigenvalues

Lemma 4.3.1 If the eigenfunctions are poÏynomiats, the eigenvalues are.

nb + cn(n — 1), where c < O, and b < O, fc = O.

Proof: After replacing i and u2 by their expressions, the condition

Ab(y) = /,,(y) becomes:

b(y
-

)(y) + (cy2 + Ciy + co)(y)
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When ‘/(y) = yfl + a,_1y’ + + a is a polynomial, we get by identifying the

coefficients ofthe ternis ofdegree n:

nb + cn(n — 1) = /\.

for large n, ) is equivalent to eitlier cn(n — 1), if c 0, or nb, if c = 0. We deduce

the constraints on parameters b and c to ensure that ), is negative. Q.E.D

4.3.3. The constraints on the parameters

case j) : Constant volatility.

The volatility is u2(y) = c0 > O and the eigenvalues are = nb, with b <

0. These constraints are sufficient to characterize affine transformations of the

Ornstein-Uhlenbeck process.

case ii) : Affine volatility.

The volatility is u2(y) = c1y + c0, with c1 O and the eigenvalues are = nb,

with b < 0. The positivity ofthe volatility is ensured if the domain of admissible

values of y is restricted:

y e] — co/ci,+œ[, if c1 >0 ,y ej — oo,—co/ci[, if c1 <0.

These constraints are sufficient to characterize affine transformations of the

square foot process.

case iii) : Quadratic volatility.

The volatility is u2(y) = cy2 + c1y + c0 and the eigenvalues are = nb +

cn(n — 1) with c < 0. Since c < 0, the volatility ftrnction can take positive

values if and only if the polynomial u2(y) = cy2 + c1y + e0 lias two distinct real

foots y1 < 72•

Lemma 4.3.2 /3 is between the mots -y1 and-’y2.
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Proof: The strict positivity of the volatility u2(y) = cy2 + c1y + c0 implies that

y E (71,72)’ which implies that E(y) = 3 belongs to the (71,72) = (0,1)

interval. Q.E.D

Then it can be checked that the process is well defined, stationary, with range

(71,72).

4.3.4. Stationarv distributions

It is known [see Hansen, Scheinkman, and Touzi (1998)] that the density function of

the stationary distribution ofa diffusion process is proportional to:

21 exp
[2fX ) ] (4.3.8)

u(y)

where a is an arbitrary interior point of the state space.

case j) : Omstein-Uhlenbeck process.

The drift and volatility functions are t(y) b(y—/3) and u2(y) = c0 respectively,

which yields that the p.d.fofthe stationary distribution is proportional to:

1 b 2—exp[—(y-/3)]. (4.3.9)
C0 C0

Therefore, we recognize a N(3, —) distribution for the Omstein-Uhlenbeck

process and
1 1 1(y—/3)2

f(Y)==\,,,_-__exP — . (4.3.10)

case ii) : Square root process.

For the square root process, we have i(y) = b(y — /3) and u2(y) c1y + co

which yields that the p.d.fofthe stationary distribution is proportional to:

+
)_+_1

exp(x). (4.3.11)

Let us consider the case c1 > 0, which corresponds to the dornain [—, +ocj of
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the square root process. Thus the p.d.f of the stationary distribution corresponds

to a gamma distribution with drift. We get:

2b

=

exP [_(_)(YL + (Yt
+

(4.3.12)

Thus, Yt = OOZt + 0, where 0 = —, Oi = — and Zj follows the gamma

distribution with parameter —(/ +

case iii) : Jacobi process.

The drift and volatility functions are defined by t’() = b(y — t3) and u2(y)

c(y — 71)(y — ‘) with c < O, which yields that the p.d.fofthe stationary distri

bution is proportional to:

1
— (72 — ) . (4.3.13)

We deduce that the p.d.f

ZiL1 22Zy

(y—7 )cv2-vI (7 y)c2—

j()
1 2 1(712)(y) (4.3.14)

(72 - 7)’3

corresponds to a Beta distribution defined Ofl [7 72].

4.3.5. Polynomial eigenfunctions

It is easily checked that the differential equation

b(y
— )(y)

+ (cy2 + cy + CO) (y) = [nb + cn(n — 1)j(y) (4.3.15)

admits a polynomial solution ofdegree n. Therefore there is a basis ofcanonical eigen

functions corresponding to polynomials of increasing degrees. Then we have just to
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give the solutions for the three cases described in Proposition 4.2.2.

case j) : Omstein-Uhlenbeck process.

The differential equation (4.3.15) with c = O and c1 = O is directly related to the

Hermite equation:
3(1)

2 + (—z) + n(z) O
z z

after an appropriate change of variable. More precisely, starting from the condi

tion A/(y) = )b(y) with À. = 1m, we get:

b(y — /3) + = bn(y). (4.3.16)
3y 2 dy

Considering an affine transforrn of the form: y = cz + ‘y such that: P,(z) =

b(cz + ‘y) we can rewrite equation (4.3.16) as:

b
+ —(ûz +‘y- /3)(z) - b’n(z) =0. (4.3.17)

Equating —b, we get after a few manipulations:

(z)+(-z+ )(z)+n(z) =0 (4.3.18)

which yields ‘y = /3 [sec Abramowitz and Stegun (1965), p.781 formula 22.6.2 1].

It is known [see Abramowitz and Stegun (1965), p.775 formula 22.3.11] that:

(P(z) = He(z)

[]
= n! Z(_1)

1
n_2m. (4.3.19)

— m!2m(n — 2m)!
m—O

Thus,the transforrned variable Zt = — /3) satisfies

b(y - /3)(y) + (co)(y) nb(y)
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whose solutions are the Hermite polynomials:

[]

He(y) n! (_1)m
2rn( 2m)! () ( — )n_2m (4.3.20)

Given that Yt N(t3, —) [sec paragraph 4.3.4], Zt N(0, 1). Wc shah stan

dardize the Hermite polynomials in the sequel. We can state [sec Abramowitz

and Stegun (1965), p.775 formula 22.2.15] that

f exp(_Hen(z)2dzt =

or either,
y +œ 2

f exp(_Hen(zt)2 dZL = n!.

Hence,

-

— He,(z)
Hez)

— I 2(n.) /

that is

[]

e(zt) = (n!)”2 Z’r!2m(’ 2m)!Zt (4.3.21)
m=O

and therefore

= (n!)1/2Z(_1)m,2m(l
2m)! () 2(yt

— )n_2m•

(4.3.22)

case ii) : Square root process.

The differential equation (4.3.15) with c O corresponds to

32.

b(y
- (y) + (cy + CO) (y) = nb(y), (4.3.23)

Jy 2

and is directly related to the Kummcr’s equation [sec Abramowitz and Stegun
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(1965), p.5O4 formula 13.1 .1]:

z(z) + + CO) - ) (z) + ni(z) =0, (4.3.24)

through the following change of variable: Zt
= + co) with ((ciyt +

c0)) = b(y). The solution to (4.3.24) is a polynomial of order n in z correspond

ing to the Kummer’s function up to order n, i.e.

M(aK, bK, zt) ± +
(aj2

+ +
(a)

(bK)2 2! (bK) n!

wherc the coefficients are given by aK —n, bK = —(c1/3 + CO),Zt =

—(Ciyt + e0), and flic following Pochammer’s symbols (aK) = aK(a] +

1)(aK + 2)...(aK + n — 1), (aK)o = 1 [see Abramowitz and Stegun (1965), p.504

formulas 13.1.2 and 13.1.3]. If is known that the Kummer function JVJ(aj, b1, z)

with the Kummer coefficients ofthe fomi aK —n and bK = —(c1/3 + co) =

Œ + 1 (set = — 1), corresponds to a Generalized Laguerre polynomial of

the form [sec Abramowitz and Stegun (1965), p.509 formula 13.6.9]:

n!

(a + 1)T, fl

witli û = —(cit3 + e0) — 1. The Generalized Laguerre polynomials [sec

Abramowitz and Stegun (1965), p.775 formula 22.3.9] can be standardized as

follows [sec Abramowitz and Stegun (1965), p.775 formula 22.2.12].

f exp(—z)zL(z)2 dzt
[(û ±1 + n)

Besides we know that

J exp(—z)z dz = [(û + 1),
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hence,

_____

F(+1+n)1 / exp(—z)zL(z)2 dz
= n!P( + 1)P(cl + 1)10

or either, that

t n! 12 r
n! 72r(+l+)1 / exp(—zt)zI I L(z)2dz

= [ I± 1) J t( + l)n] ( + i)n] n!F( + 1)

Therefore, the standardized polynomials correspond to:

(&)

L(z)
= L (Zt)

t T(+1+n)
n!P(û+1) )

1/2

which yields with Zt = (ciyt ± co) and c = —(ci/ + co) — 1:

E( + 1 + n)’!2 [n!F(a + 1)]1/2

T(+1+j) j!(n-j)!
i=0

case iii) : Jacobi process.

After introducing the foots 7 equation (4.3.15) can be written as:

2b 2 1
[y2+(71+79)y7172](y ——(y

8
y +—[nb+—cn(n—1)ji/(y) O.

c c 2
(4.3.25)

Without loss ofgenerality, we can focus on the case [71,72] = t—1,11 where

equation (4.3.25) becomes:

26 26 8’J( 2 1
(l-y)(y)±t—-—y)—- y ±-[nb+-cn(n-1)b(y) = 0. (4.3.26)

c 2

It is known [see Abramowitz and Stegun (1965), p.781 formula 22.6.1] that this

differential equation admits as solutions the Jacobi polynomials [see Abramowitz
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and Stegun (1965), p.775 formula 22.3.2]:

T( +n + 1) (n [(*
+ + n + rn + 1)(*1)flt

n!F(* + + n + n m) 2mP(* + m + 1)
) rn=0

(4.3.27)

with 6 = -(1
—

— 1 and /3
= (/3*

+ 1) — 1. We know [sec Abrarnowitz

and Stegun (1965), p.773 formulas 22.1.1, 22.1.2, and 22.2.1] that

1

I t — o,
—1

and

21 F(
+ n +

1)P(*
+ n + 1)f (1y (1+y*P(y)dy =

_______________________

.1_1 2n + 6 ± + 1 n!f(* + + n + 1)
(4.3.28)

But we nccd to standardize the weight function:

1(1 —y(1 +ydy = J(—2vt +2)*(2vt)2dvt

.1

= I 2’(1—vt)vdvt
.0

= 2+1
E( + 1)P(* + 1)(4329)

rt* + + 2)

using the transformation y = 2v — 1 in order to have a distribution function.

Using this standardization, eq.4.3.28 becomes

2++1P(* + 1)T(* + 1)
— yfl(1 + yP(y)dy

E(6 + + 2)T(* + n + 1)T(t + n + 1)
—

(4.3.30)
— (2n + 6 ± + 1)F(6 ± 1)F(Y ± 1)T( + + n + 1)n!

which yields the standardized Jacobi potynomials

[E(* + n + 1)(2n + 6 + + 1)P(t + 1)P(* + 1)1 1/2

t n!F( + +n+ 1)E( + + 2)P(* +n + 1) J
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n (nT(*+* +n+m+l)(
— 1). (4.3.31)

0\m) 2mP(*+m+1) t

finally from the stochastic differential equation on (—1, 1):

dy = bt(y — /3)dt ± + l)(y — 1)dWt

we can deduce the solution ofthe stochastic differential equation on (77):

dy = b(Yt. — /3)dt +
— 7i)(Yt —

by applying the affine transform Yt 21 y + 21• We have b = bt, c = ct,

and /3 = (y1 + 72)/2 +
/3*(79

— 7)/2. The polynomial eigenffinctions ofthe

general s.d.e. are obtained by applying the same affine transformations to the

Jacobi polynomials (4.3.31). We get:

P( +n+ 1)(2n+& ±/3 ± 1)P( + 1)P(/3+ 1)
1/2

n

(nF(++n+m+ 1) (Yt _72)rn
. (4.3.32)

m=om) P(+m+1) (7_7)rn

with6=2
C C



Chapitre 5

A quasi-likelihood approacli baseil on

. . 1eigenfunctions for a Jacobi process

‘This paper is co-authored with Christian Gouriéroux.
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5.1. Introduction

The Jacobi process is the solution of the stochastic differential equation:

dy —b(y — /3)dt + i]cyt(1 — y)dT’V, (5.1.1)

with b > 0, c > O and O < /3 < 1. b represents the mean-reverting parameter, /3
the mean of the process and c the volatility coefficient. This process is stationary and

takes values between O and 1. This is a continuously-valued process whose values

are restricted to the finite interval [0, 1]. As a result, it is appropriate to model dy

namic bounded variables such as a regime probability, or to capture the evolution of

a state price. Such a process is particularly appealing since it allows for substantial

improvements in various applications, arnong which Markov switching regimes first

introduced by Hamilton (1988,1989,1990) and later extended to smooth transition au

toregressive models by Terasvirta and Anderson (1992), Terasvirta (1994) are the most

well-known applications. Indeed, by allowing for a stochastic specification for the

regime shifi probabilities, it relaxes the somehow “unrealistic” predetermined features

ofthe regimes usually encountered in the Markov switching regimes literature.

More recently, the Jacobi process appears very useful in credit risk modelling by

relaxing the assumptions ofpredetermined states which rules out the possibility ofzero

pricing of default risk in the short run. Furthermore, the Jacobi process which allows

for smooth continuous regime shifting can smooth jump processes such as jumps in

default intensity due to default correlation among firms [see Jarrow and Yu (2001),

Schonbucher and Schubert (2001), Gagliardini and Gouriéroux (2003), Dai and Sin

gleton (2003)] and jumps in the credit rating in a credit migration model [sec Bielecki

and Rutkowski (2000), Gagliardini and Gouriéroux (2004)].

further, in a risk-neutral world the Jacobi process can also be used to model the

dynamic of state prices of any derivative written on an underlying asset [see Clement,

Gouriéroux and Monfort (2000)].

Besides that it naturally extends jump processes to smooth stochastic processes, it
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is also better suited for modelling the dynamic of currency processes. In this regards,

the Jacobi process finds an additional application field in target zone models through

the work ofLarsen and Sorensen (2003) in which they generalize the target zone model

proposed by De Jong, Drost and Werker (2001) by allowing asymmetry between cur

rencies, which is a crucial feature of data on exchange rates in a target zone. This

asyrnmetry is achieved by allowing a specific dynamic near the boundaries ofthe target

zone. More specifically, when the exchange rate modelled by a Jacobi process gets near

the boundanes, the diffusion coefficient becomes small and the drift (which models the

intervention of the central banks) drives the process away from the boundaries.

For a more exhaustive description of the potential application areas of the Jacobi

process, the reader is referred to Gouriéroux and Jasiak (2003). Therefore, the is

sue of estimating a Jacobi process which is, either very convenient to rnodeÏ the dy

namic of a probability process or flexible enough to fit data on excliange rates in a

target zone, appears undeniably relevant. Moreover its simplicity makes it tractable

enougli for efficiently estimating its parameters. However, although the process is de

fined in continuous time, the data are available in discrete time. Unfortunately, the

likelihood function for discrete observations generated by a Jacobi process does not

admit a closed-form expression and therefore the maximum likeÏihood is not feasible.

To remedy this problem, we propose a technique based on nonhinear canonical analysis

to approximate the unknown discrete-time transition fonction of the continuous-time

Jacobi process. The approximation technique consists in truncating the spectral de-

composition of the transition density derived from the spectral decomposition of the

infinitesimal generator associated with the diffusion process. Since the expression of

the approximation to the hikehihood fonction is explicit, the maximum likeÏihood ap

proach becomes feasible. Our technique to approximate the transition fonction is much

simpler than that proposed in Aït-Sahalia (2002) and is much doser tailored to the gen

uine diffusion process since we do not proceed with any preliminary transformation of

the data. The maximization of this quasi-likelihood fonction over the parameter space

yields the quasi-maximum likelihood estimator, denoted QML. It is worth noting that
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this estimation tecirnique can easily be extended to any diffusion process, either scalar

or multivariate, since it involves only the spectral decomposition of the infinitesirnal

generator ofthe diffusion.

The finite sample properties of this estimator are then compared with the proper

ties of some estimators existing in the literature such as the Kessler and Sorensen’s

estimator (EIG) [sec Kessier and Sorensen (1999)], which is basically a method-of

moments which exploits the spectral decomposition of the infinitesimal generator to

build some unbiased martingale estirnating functions. The optimal estimating function

thus obtaincd can be thouglit of as an approximation in terms of eigenfunctions to the

unknown score function. While these authors try to approximate the unknown score

function, the approximated QML estimator approximates the unknown transition den

sity. We also compare the QML estimator with the generalized method of moments

(GMM) estimator, and with simulation-based estimators such as the simulated method

of moments (S MM) estimator, or indirect inference (II) estimator and also with an exact

indirect tEl) estimator based on an identitying constraint. Compared with these meth

ods, the QML estimation method is easy to implement, no computationally intensive

(compared to SMM in particular) and demonstrates good statistical properties.

The paper is organized as follows. Section 2 exploits the subordination properties

to induce a Jacobi process, and its distributional properties are analyzed by means of

nonlinear canonical analysis. Based on the distributional resuits of Section 2, we in

troduce the quasi-maximum likelihood estimator (QML) in Section 3. We also review

some alternative estimation methods (GMM, SMM, El, II, EIG), which wiIl serve as

benchmarks in assessing the finite sample properties of the QML estimator. How to

simulate the Jacobi process is detailed in Section 4 before presenting the finite sample

Monte Carlo resuits in Section 5. Finally concluding remarks are given in Section 6.

The proofs are gathered in appendices.
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5.2. Distributional properties of the Jacobi process

We review in this section distributional properties ofthe Jacobi process, which are use-

fui to interprete the parameters ofinterest and to define appropriate estimation methods

[see Gouriéroux, Renault and Valéry (2002)].

5.2.1. Time deformation

The standard family of distributions used to specify the distribution of a random vari

able y with range [0, 1] is the beta family. It is well-known that the beta distribution

can be deduced from gamma distributions. Typically, if x1 and x2 are two indepen

dent gamma variables, y xi/(xi + x2) foilows a beta distribution. The first resuit

extends this property to continuous time stocliastic processes. Let us recail that a Cox

Ingersoll-Ross (CIR) process admits marginal (resp. conditional) distributions which

are gamma (resp. noncentered gamma) distributions. A Jacobi process can be deduced

from a bivariate Cox-Ingersoll-Ross process by a time deformation. Let us consider the

bivariate stationary Cox-Ingersoll-Ross process:

f d = —b(x — 1)dt +
(5 2 2)

—b(x — 2)dL + dW2,

where (W1) and (W2) are mutually independent standard Brownian motions and the

mean-reverting { resp. volatility] pararneters b [resp. e] are identical. The parameters

are constrained by b > 0, /3 > 0, !2 > 0, e > 0. The two CIR processes are

independent. Let us now consider the transformations: Yit = Xlt±X2,
and Y2t = x +

2t• They define a process with range [0, 1] and a positive process, respectively. By

Ito’s lemma, the bivariate process (yit, y2t) satisfies the bivariate stochastic differential

system:

f —tb/y2t)[yit(i + 2) — 1]dt + [c(y1/y2)(1 — yi)]1/2dJi,
(5 2 3)

dy = —b[y2t
—

+ )]dt + d172,
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where (W1) and (W2) are independent standard Brownian motions. Therefore the

process (Y2L) ïs a CIR process with parameters b, t3 + / and c, whereas (Yu) is a

Jacobi process after time deformation. Indeed, let us define the time deformed process:

yi (5.2.4)

where the time deformation:

= / Y2u, (5.2.5)
iii

bas stationary increments {y2t}. The process (y) satisfies the stochastic differential

equation:

dy b(1 + 2)[Y1t — + [cy(1 — y)1172dW, (5.2.6)

and is a Jacobi process. To summarize, a Jacobi process can be deduced from indepen

dent CIR processes X1, x2 by first applying the transformation Yi x1/(xi + x2), and

then a time deformation with increments Y2 = + X2. We see below how this property

can be used to derive the marginal distribution ofa Jacobi process, integral expressions

ofits transitions, and also of course for simulation purpose.

5.2.2. Canonical decomposition

5.2.2.1. Spectral decomposition of the infinitesimal generator

It is known that the dynamic properties ofa diffusion process y are characterized by the

infinitesimal generator, which explains how to compute the infinitesirnal drifi of any

transformation P(y) ofprocess y. The infinitesimal generator A is defined by:

AP(y) = 11m E[P(y±) — P(yt)y = y]. (5.2.7)
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By applying Ito’s formula, it is easily checked that the restriction of A to the set of

twice continuously differentiable functions P is the differential operator:

AP(y) + Lï2(y)(y) (5.2.8)

where ,u. and g2 are the infinitesimal dnft and volatility, respectively. Thus for a Jacobi

process the differential operator becomes:

AP(y) = -b(y
-

+ cy(1
-

y)(y). (5.2.9)

For a Jacobi process, the infinitesimal generator admits a spectral decomposition, that

is there exists a set ofeigenvalues À, n e N\{0}, and eigenftinctions P7, n e N\{O},

such that:

AP = )TLPfl .V n, (5.2.10)

and (Pu, n e N\{O}) generates the set of square integrable functions P. The spectral

decomposition bas been initially given by Wong (1964), [see also Hansen, Scheinkman

(1995)]. The eigenvalues are negative given by À,, —bn — cn(n — 1), whereas the

eigenfunctions are polynomials, called Jacobi polynomials [see Abramowitz, Stegun

(1965)]. They are given by:

P(y) = F( + n)(2n + + - 1F(() 1/2

Z(-’)m
(n

n!P(&+13+n— 1)1+)T(3+n) m=O

P(++n+m—1)
Yt , 5.2.11)

P(a+m)

with 6 = and /3 = i(1
— f3). These polynomials define an orthonormal basis

with respect to the inner product < P, P >= f P(y)Pt(y)dv(y), where y is the beta

distribution ( 2b(i_3)) We will see below that this distribution is the marginal

distribution ofthe Jacobi process. These polynomials are standardized with respect to

the beta distribution /3( 2b(i_) that is they satisfy: E[P(y)] = O and V{P(y)] =

1, for any n.
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5.2.2.2. The conditional expectation operator

The infinitesimal generator measures the drift at very short horizon. However in prac

tice the observations are available in discrete time t 1,2, ..., say, and the drifi ofthe

transformed process is measured at a fixed horizon, by convention equal to I. For this

reason, it is useful to introduce the conditional expectation operator T which associates

with any transformation P the new transformation TP defined by:

TP(y) = E[P(yt+i)Iyt y]. (5.2.12)

The conditional expectation operator T is simply the exponential of the infinitesimal

generator A:

T exp A.

Therefore it admits the spectral decomposition with eigenvalues exp ),. and eigenfunc

tions P7, ri E N\{0}.

5.2.2.3. Moment conditions

The spectral decomposition can be used to derive moment conditions satisfied by a

Jacobi process. Indeed we get:

EfP(yy_1J = exp(\)P(y_1) V n e

and, by iterated expectation theorem we deduce a similar relation at any horizon h,

h E

Vh, n E N\{0}. (5.2.13)
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This set of moment conditions corresponding to degree smaller than n can be written

equivalently in terms ofpower moments. More precisely we get:

1 exp(Àoh) 1

y exp(,\1h) Yt-h

E y IYt-h = A’diag exp(2h) A

y exp\h) y_h

where A is the (n + 1) x (n + 1) matrix independent ofthe lag h, which describes the

coefficients of the polynomial eigenfunctions:

P0(y) 1

P1(y) y

P2(y) =A y2

P(y)

Matrix A is lower triangular:

1 0 O

arn a11 O O

a20 a21 a22 O . . . O

00

a.,-d a2

with coefficients given by equation (5.2.11).

Explicit expressions of the conditional power moments can be found by solving

recursively the system of moment conditions (5.2.13):

Z(_’)m
(n) ‘ E[yyj = exp(h) Z(_’)m (,)m=O m=Q
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P(++n+m—1)

F(+m) Yt-h

(5.2.14)

for instance we have:

E[ytlyt_hJ = [1 — exp(—bh)] + exp(—bh)yL_h,

2 (+i) 2(+1)
E[y 1h-hi — [1 — exp[(—2b — c)h]] +

(ù++1)(c++2)

[1 — exp(—bh)] - +
1)

{exp(—bh) — exp[(—2b
— c)h]}yt,

c+/3 (c++2)

+exp[(—2b — c)h]y,1,

and the conditional variance at horizon h, that is the volatility at term h, depends on the

past by means of an affine function ofy_,1, And so forth.

Then cross moments ofthe type E(yy_) are easily derived from the conditional

power moments since: E[yy_] = E[y_hE[yIyt_h]], where E[yyt_h] is given by

equation (5.2.14). For instance, we get:

- [()2

+E[yyh]
= ()2 + 3(e) +2’

exp[(2b - C)h])k2(O)

[(2

++2
± 2

[1 — exp(—bh)]k2(9)

+2
+ 2

{exp(—bh) — exp[(—2b — c)h]}k3(9) + exp[(—2b — c)h]k4(9),

where k() Eo(y) denotes the marginal power moment of degree i [sec Appendix
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for closed-form expressions ofk(O) and ofthe cross moments].

5.2.3. Marginal and conditional distributions ofthe Jacobi process

The resuits above can be used to get some insight on the transition density ofa Jacobi

process, even if this transition does flot admit a closed form expression.

i) The marginal distribution.

The marginal distribution of the Jacobi process is the beta distribution

2b(if)) This resuit can be immediately deduced from the interpretation

of the Jacobi process in terms of time deformation [see Section 5.2.1]. Since

y yi,1- where Yi and r are independent processes, the marginal distribution

ofy coincides with the marginal distribution ofyi
= 12t

Therefore this is

the distribution of ‘ where —Xit and X2t are independent with distnbu
Xft+X2t C C

tions -y(), respectively, conesponding to the marginal distributions of

the CIR processes, that is the beta distribution. The resuit follows.

ii) Au expression ofthe transition based on nonlinear canonical analysis.

From the spectral decomposition of the infinitesimal generator, it is possible to

deduce a decomposition of the transition density at any horizon h [sec Lancaster

(1968)]:

f(ytIyt-h; O) = f(yt; O) { i + exp(flh)P(yt)P(yt_h) }, (5.2.15)

where ), = —ba — — 1), P are the orthonormal polynomials defined at

equation (5.2.11) and f(y1; 9) denotes the marginal distribution ofy [sec i)].

5.3. Estimation methods

In this section we describe the different estimation rnethods of the parameter 9 =

(6, /3, c)’ ofthe Jacobi process {Yt} from discretely sampÏed data {i, ‘ifl,. . . ,
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5.3.1. (Approximate) Quasi-maximum likeliliood

The maximum likelihood estimator
IL

of is defined by:

ML
= argmax1ogJ(yt(yt_i;O)

where f(ytyt—i; O) denotes the transition density at horizon 1. It is conditional on

the initial value yo of tlie process. Since the transition density lias no closed form

expression for tlie Jacobi process, the exact maximum likeliliood approacli is infeasiNe.

However, it is possible to approximate the likelihood along the unes described below.

An approximation to the tme transition density J(y1yt_i; O) based on its spectral

decomposition (which depends on O) can be obtained by:

fNtytIyt-1;O) J(yj;O){1 + Zexp(Àn(O))P(yt;O)P(yt_i;O)},
n= 1

for a large value of N, since

lim fNtytIyt-1;O) = J(yyt_i;9)

for each O E e, where j(ytlyt_.i; O) lias been defined at equation (5.2.15) and J(yt; O)

denotes tlie marginal p.d.f. ofthe process whicli corresponds to a Beta distribution for

tlie Jacobi process.

Then we can define tlie (approximate) quasi-maximum likeliliood estimator TJL

of O as:
QML

argmx1ogJN(ylyt_y;O).

This estimator based on a tmncated version ofthe likelihood is asymptotically equiva

lent to the ML estimator when N tends to infinity with T at an appropriate rate [see e.g.

Carrasco, Florens (2000)]. This rate depends on tlie rate of decrease ofnonlinear cor

relations. Finally note that the truncated canonical decomposition JN(yLIyLl: O) is flot

necessarily positive, when N is fixed. This can create numencal problems in the opti
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mization due to the logarithm. However this case occurs with probability tending to O

when N tends to infinity, and equivalent asymptotic resuits are obtained after replacing

JN by its absolute value in the expression ofthe log-likelihood function.

5.3.2. Metliod of moments

The idea of the method is to calibrate the values of the parameters on well chosen

conditional moments.

5.3.2.1. Selection of the moments

The basic moments selected for estimation purpose will be the first N conditional mo

ments of the form E{ytjyt_i], E{y?j’y_2] E[yjy_1]. When N is large, this set

of conditional moments brings the same information as the score (due to the special

canonical decomposition ofthe Jacobi process) and therefore the generalized method

of-moments (GMM) estimator [sec Carrasco, fbrens (2000)] becomes equivalent to

the maximum likelihood estimator. Moreover, from Section 5.2.2, the conditional mo

ments E[y[y_;] are polynomials oforder N; therefore it is equivalent to calibrate on

marginal moments such as:

Eoy = k1(00), Eoyyt_i =

E0y = k2(90), Eoyy_i k21(80), E0yy1 =

E0y = k3(00), E0yy_1 k31(0), E0yy1 = E0yy1 = k33(&0)

N N N2 NN
Eoy = kNt&o), Eoy y; kNl(90), Eoy y1 = kN2(&n), .. y_1 kNN(60).

(5.3.16)

In practice a finite number of relevant moments are selected. They will be chosen to be

sufficiently informative, that is to provide insight on various features ofthe series such

as skewness, kurtosis, volatility clustering, leverage effect, and to ensure the identifica

tion ofthe parameter ofinterest.
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5.3.2.2. Identification issue

To determine how many conditional moments are required to identify the parameters

ofthe Jacobi process, let us consider the first two conditional moments:

E[yIyyj = [1 — exp(—b)]/ + exp(—b)y_

and

R2b)2
+ 2b} [2b/32

+ 1
E[y(y1] =

- [()2 + 3(e) +2]
exp(-2b - c)) +2

+2]
(1- exp(-b))

+2 {exp(—b) — exp(—2b — C)}yt_i + exp[(—2b — c)h]y1.

Since the conditional moments are polynomials in Yt—i, they can be writtcn as:

E[ytyt_y] = aiiyt._i + a10

E[yy_] a22y_1 + a2lYt_1 + a20.

Thus the parameter of interest 6 can be identified from these two conditional mo

ments ifthemapping O — (aii,a10,a22,a21,a20) isa one-to-onemapping. Itis shown

in Appendix that this identification condition is satisfied. More precisely the parame

ters can be identified from E(y), Var(yt) and COTT(yt, ‘y). Typically, denoting by

rnT, pT(1) the sample mean, sample variance and first order empincal conelation

respectively, we can deduce by inverting this relation that /3T rnT, bT = — ln(pT(Ï))

and:

aolrnT+a2O
CT = 2lntpT(1))—lntl— -2 )

UT + 7fl

— -i —2
= gmT,u,pT

This suggests a guideline for the choice of the moment conditions to include in the
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indirect estimation procedure below2.

5.3.2.3. An exact indirect estimator

An exact indirect estimator is a moment estimator based on a number of moments

equal to the parameter size. A simple indirect estimator can be based on the identifying

constraint which associates a unique parameter value to the summary statistics m,

p(l). Let us denote by T â PT(1Xl the sample counterpart ofthese moments.

aTtends asymptotically to a(&) [k1(O),k2(O) — ki(9)2,p(1,9)], where p(l,O) =

k(’)(O)_k1())2 . . ‘EI

k2(e)_ki(o)2 . The exact indirect estimator denoted by 9T is solution of:

-EI
aT =

5.3.2.4. Generalized-method-of-momeuts estimator

The summary statistics m,
2, p(l) are functions offirst and second order moments of

the pair tyt, yt—i). Thus we can expect an improvement ofthe estirnator by considering

a larger set of moments and applying GMM. We consider below a set of moments also

including third and fourth marginal moments to account for skewness and kurtosis, as

well as cross moments ofthe type E(yty_1) (to capture the risk premium ), E(yy_1)

(to capture the possible volatility persistence). More precisely equation (5.3.16) can be

rewritten under a vector form as:

E0[K(y) — k(00)] O.

2The identification issue can be considered for any lag h. Wehavejust to replace b —* bh, c — ch,
pT(1) —* T(h). In particular another consistent estimator ofb is bT — ln(T(h))/h. The comparison
ofthe estirnated values — ln(7T(h))/h, h varying, can be the basis ofa specification test for the Jacobi
hypothesis.



116

TypicalÏy, the set of moment conditions selected for implementing GMM is:

—

YtYt—i — ‘vii

y—k2(é?)

K(y)
— = YtY_i —

2 2 (i)
YtYt—i —

y—k3(&)

y—k4(6)

The GMM estimator is defined by:

= argm([K(Yt) - k()])1 ([K(v) -

where f2 is a consistent estimator of the asymptotic variance covariance matrix of

[K(y) — k()]. It can be obtained through a Bartlett kemel estimator [sec

Newey and West (1987)] as

=FO+(1_
K±1)t’

where:

= [K(y)
- k(T)][K(yt) -

where T is any consistent estimator of 9 and K tends to infinity with T at an appropriate

rate.

5.3.2.5. E stimating equations based on eigenfunctions

As an alternative to the quasi-likelihood approach aforementioned, Kessier and

Sorensen (1999) propose a moment estimatorwhich also exploits the spectral decompo

sition of the infinitesimal generator to build unbiased martingale estimating functions.
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The optimal estimating function thus obtained can be seen as an approximation in terms

of cigenfunctions to the unknown score function. While these authors tly to approxi

mate the unknown score function, the (approximate) QML estimator approximates the

unknown transition density itself. It is worth noting that the GMM methodology pre

sented earlier in this section does flot use optimal instruments. Therefore, we should

expect the latter flot to behave in finite samples as well as the GMM of Kessier and

Sorensen based on optimal instruments. Indeed, Kessier and Sorensen exploits the

spectral decomposition to derive optimal instruments in the sense ofHansen (1982),

Godambe and Heyde (1987), [sec also Heyde (1997)]. More precisely they note that

the functions:

= (yt;&) —exp[(8)(y_i;8) ,j = 1,...,N, (5.3.17)

where P, ) denote the eigenfunctions and eigcnvalues, respectively, satisfy the con

ditional restrictions:

E[h(Y, y; 9)4_i] O ,j = 1,... , N. (5.3.18)

These restrictions imply marginal restrictions ofthc type:

= E(Yti)h(,Yi;O)] 0, (5.3.19)

where the instruments c(Yi) have a dimension equal to the parameter size. The

moment estimator deduced from these marginal restrictions is solution of:

= 0. (5.3.20)

As usual the asymptotic variance-covariance matrix of this estimator depends on the

selected instruments. The optimal choice ofthe instruments is obtained by considering

the best prediction of the conditional score on the estimating functions [sec e.g. Go-
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dambe and Heyde (1987)]. More precisely, let us denote by J(ytlyt—y; 6) the transition

density ofthe process. The score is bogf ji°o) and the best conditional prediction

ofthe score based on the estimating functions h(y, yt—i; O) is:

B(yt_i;o)C(y_y;6o)’h(yt,yt_y;Oo), (5.3.21)

where:

h(y, y_y; 6) = (hy(y, yi;
. . , h(y, y;; Oo))’, (5.3.22)

C(yt_i; 9) = E90[hÇY, yt-i; 8o)hO’, yt-i; &o)’yt_i1, (5.3.23)

B(yt-i;Oo) (5.3.24)

Thus the optimal moment estimator based on h1,. . . , hj is the solution of:

=0, (5.3.25)

where &*(yy) is a consistent approximation of:

*(yt1)
= B(y_i; Oo)C(y_i; 8e)’

To implement this estimator, we will use the optimal estimating function G(9)

with the above optimal instruments o evaluated at a preliminary consistent estimate

denoted by 9T, (e.g. the GMM estimate). Let:

G) = B(y1; r)C(yti; T)’h(yt, yy; &), (5.3.26)

where h = (h1,..., hN)’ with h(y, x; 6) ,j = 1,..., N such that:

x; O) = Pj(y; O) — exp((O))Pj(c; 6). (5.3.27)

The eigenfunctions and eigenvalues are the Jacobi polynomials and the corresponding
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eigenvalues, respectively. On the other hand, the estimating function is a one-to-one

mapping, that is, when taking its expectation w.r.t. the true probability distribution,

parameterized by the truc parameter 9, then it has to satisf’y’ E00G(60) = O which

identifies the truc parameter 6 without ambiguity. Since G(6) bas a dimension equal

to 9 [dirn(6) p = 3], the estimator 9T is easily obtained by solving an explicit sys

tem of p = 3 equations with 3 unknowns, namely, by solving the estimating equation

G(6) O. Before solving the equations, we need to compute the matrices defin

ing the optimal instruments. Given that the eigenfunctions are polynomials of the

type: P3(y; 6) = Z=0 ak(O)yk, and further are also eigenfunctions for the condi

tional expectation operator associatcd with the cigenvalues exp(i\j(6)), the computa

tion of these matrices involving 6 can be simplified. Further, it is easily shown that the

p x N—matrix,

B(x;Oo) = = —E00{800h(y,x;&o)IxÏ.

As a resuit the matrix B(x; 0) = {b(x; 0)} lias entries ofthe type:

bj(x;8) = Z80,aj,k(0) f ykj(yx;0)dy — 89(eÀi(O)P.(x;0)) (5.3.28)

and the N x N—matrix C(x; 0) = {c(x; 0)} defined at equation (5.3.22) has entries

ofthe type:

c(x; 9) = aj,r(0)aj,s(0) yT+Sf(y Ix; 0)dy — e°°P(x; 0)(x; 9).
r=Os=0 .0

(5.3.29)

Sec Appendix for a proof The weighting matrices B(x; 9) and C(x; 0) will be eval

uated at a preliminary consistent estimatc of 0 available in practice. These coeffi

cients require the computation of the integrals of the type f1 ykf(y1X; 0)dy, for k =

O, 1, 2, . . . , 21V. To compute these integrals, vie exploit again the fact that the Jacobi

polynomials P1(y; 0) are also eigenftinctions for the conditional expectation operator

associated with the eigenvalues exp(À(O)), sec Appendix 5.6 for a proof. These inte
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grals are computed recursively, j = 1, 2,... , 2N using the fact that f0’ j(yx; O)dy = 1

since this is the conditional density of Yt given that Yt—i x, to start the recursion.

Finally, the estimator of O (b, /3, c)’ denoted by is obtained as the solution to

the explicit system (5.3.26) of p 3 equations. Kessier and Sorensen (1999) showed

that for N going to infinity, the optimal estimating function of the type (5.3.26) will

converge to the score function. Larsen and Sorensen (2003) applies this estimator for

fitting a Jacobi process to exchange rates data.

5.3.3. Simulated methods

We consider two imulated methods that are the simulated method of moments (SMM)

and the indirect inference. These approaches require artificial data sets simulated from

the Jacobi dynamics. Let (y(O),. . . , y(O)) with s = 1,... , S denote the simulated

data sets, with parameter O (b, /3, c)’ [sec Section 5.4.1 for the description of the

simulation procedure].

5.3.3.1. The simulated method of moments

This method is essentially a moment method, in which the theoretical moments are

approximated by simulation. The SMM estimator denoted by is then defined as:

-SMM
argm1nsT(O),

where:

ST(0)

= -

K(y(O))]}’f2’{[K(yt) -

1

and:

=+(- K±1)’
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where:

= [K(y) - K(yT))1[K(yt) -

t=k±1 s=1 s=1

and 0T is any consistent estimator of &.

When the number ofreplications S tends to infinity, K(y(9)) tends to k(O)

and the estimator
IM

coincides with the GMM estimator corresponding to the same

moment conditions. 0f course in our framework where closed-form expressions of

the moments are available, GMM approach is preferred from the asymptotic point of

view. However it can be informative to compare the finite sample properties of GMM

and SMM. Indeed, some diminution of the finite sample bias is ofien observed with

simulation based methods.

5.3.3.2. The indirect inference method

The indirect inference rnethod (hereafter II) [sec Gouriéroux, Monfort and Renault

(1993)], is a calibrating method based on an instrumental mode! which approxirnates

the true model, that is the Jacobi process, but is casier to estimate. The instrumen

tal model is naturally deduced from the Euler discretization of the s.d.e. (5.1.1). The

instrumental model corresponds to the autoregression with conditional heteroscedastic

ity:

Yti — Yt
_5*(y

— ) + Vcyt(1
— yt)et+i

where the errors tï are independent with standard normal distribution. Afier a change

of parameters where c = 1 — b, y = b/3 and 6 = v’, the instrumental model can

be rewritten as an autoregressive model linear in the new parameters c, ‘y.

Yt±i 1h 7

______

= + +6et+1.

— Yt) y(l
— ‘1h) yt(l

—

The parameter g = (, , 6) can be estimated by OLS by regressing “‘ on
yt(1—yt,)

Yt and . g denotes the associated estirnator. We can also compute
yt(1—yt)
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(&) the OLS estirnate of the transformed parameter based on a data set y(O) =

(yj5(O),.. .

, y(6)), for s = 1,.. . , S, simuÏated under the structural model for a vatue

O ofthe parameter ofinterest.

The indirect inference estimator of 6 is defined by choosing a value for which

g and -.(6) are as close as possible:

arg nn [T -

(O)]
-

where S7 is a symmetric nonnegative matnx defining the metric. Since the instrumental

model lias the same number of parameters as the initial Jacobi process, the estimator

does not depend on the choice of f2 and we select f2 = 13 in the application.

5.4. Simulation of the Jacobi process

In this section we explain how the discrete time sampled Jacobi process can be simu

Iated by means of a tmncated Euler approximation or by using the time deformation

interpretation. Then we check the accuracy of the simulated path for different sets of

parameter value.

5.4.1. A truncated Euler scheme

The Jacobi process is simulated through an Euler discretization ofthe stochastic differ

ential equation with a small time unit , where the values ofthe process y are truncated

to restrict them to the range [0, 11.

The Euler approximation of the equation is:

Y(k+1)6 Yk —
—

+ —

where Ek, k varying, are independent standard normal variables. However, this tech

nique does not ensure values between O and 1 and therefore the positivity of the volatil

ity term. To satisfy this restriction, we truncate the values out of the range (0, 1).
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Typically, wlien y takes a value greater than or equal to 1, we set y = 0.99 and, if y

takes a value less than or equal to 0, we set y = 0.0 1. Thus the truncated Euler scheme

is defined by:

0.99 , if Y+l)6 1,

Yk+1)6
= { y1)6, if O < Y+i)5 < 1, (5.4.30)

0.01, zf Y+i)6 < 0,

wliere:

y — b(y
—

)6 + cy(i
—

(5.4.3 1)

and e are independent drawings in the standard normal distribution.

The truncated Euler discretization scheme lias to be applied with a small time unit 5,

to get a good approximation oftlie underlying continuous time path. For tlie illustration

we select = 1/10. Thus we first simulate by the truncated scheme (5.4.30-5.4.3 1) the

underlying values corresponding to dates 1/10, 2/10, 3/10 The simulated discrete

time path is deduced by considering only the integer time indexes that are y =

with k = t/. They correspond to k = 10 for t = 1, k 20 for t 2 and so forth.

5.4.2. Simulation scheme based on time deformation

A simulation scheme can also be designed from the interpretation of a Jacobi process

in term of time deformation as follows.

• step 1: Simulate two very long sample paths from independent x2 distributions

[or equivalently from gamma distributions] sucli tliat:

(s)
k6 z = 1, 2

wliere tlie time unit has been fixed to 6 = 1/10.

• step 2: To generate a variable yj,i witli a beta distribution, apply the transfor

mation:
(s)

(s) — Xlk,
Y1,k6

— (s) (s)
Z1k + X2k
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where the x corne from step 1.

• step 3: To sirnulate the time deformation process Tk = f(x1 + x2)du, sum

up:
k

(s) 1 (s) (s)
= + x21)

• step 4: To produce draws from a Jacobi process, we select the simulated values

y? for which the tirne deformation process reaches integer values, such that:

*(s)
= y , when ,r E N,

with k varying.

The random draws of the Jacobi process thus produced will be unequally spaced in

tirne.

5.4.3. Simulated series

The approach above is followed to simulate paths of the Jacobi process. The Iength of

the path is T 2000, and the parameters are fixed at different values:

• pararneter set I : (0.43, 0.5, 0.8)

• pararneter set II: (0.5,0.5,0.25)

The different parameter sets have been selected to reproduce the two typical patteras of

the rnarginal beta distribution. Sets I and II correspond to symmetric beta distribution,

with more weights on boundary values 0-1 for set I. The dynarnics also differ. The

processes associated with pararneter sets I and II admit rather high first order conela

tion, larger than 0.6. Simulated paths of the Jacobi process and of its transformations

conesponding to the first three canonical polynornials are provided in figures 1 and 2

for parameter sets I and II.

[Insert Figure 5.1: Simulated paths, set I]

[Insert Figure 5.2: Simulated paths, set II]
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Due to the choice ofparameter values, the process distribution can give more or less

weight in a neighborhood of the limiting values O and 1. Larger weights on extremes

can be immediately observed on simulated paths. Moreover since the autocorrelation

is rather higli ( 0.6) for set I we observe also some extreme clustering. Indeed when

y,, is close to O or 1, the random component in equation (5.4.3 1) is close to zero and the

equation becomes almost deterministic.

The paths associated with the canonical directions are simply polynomial transfor

mations of the initial path. Nonlinear features can be observed, such as skewed paths

for the second degree polynomial, or more extreme phenomenon for polynomial of

degree 3. Distributional properties ofthe paths can also be derived by replicating the

simulations. The number ofreplications is M = 1000. We provide in Figures 5.3 and

5.4 the empirical marginal distributions of Yt, P2(y,,), P3(y) for the first two sets of

parameter values.

[Insert figure 5.3: Empirical marginal distributions, set I]

[Insert Figure 5.4: Empirical marginal distributions, set II]

The comparison between the sample distribution for Yt and the theoretical beta distri

bution (see the first row of Figures 5.3 and 5.4) gives some information on the accuracy

ofthe simulations as well as Table 5.1 reporting summary statistics.

The skewness [resp. fat tau] effects are also clearly seen on the sample distribution

ofP2(y) [resp. P3(y) ] on Table 5.2. The sample means are close to zero whereas the

variances close to 1 for the three polynomials. This corresponds to the normalization

ofpolynomials in the canonical decomposition.

We have seen that the empirical resuits conceming marginal distributions coincide

with the expected theoretical results. Let us now focus on dynamic features.

From the theoretical results we expect that the processes P1(y,,), P2(y,,), P3(y,,) are

flot correlated and are autoregressive of order one. Figures 5.5, 5.6 provide the joint

autocorrelogramms ofthe three series for the two sets ofparameter values. The dashed

lines represent the confidence hands of plus or minus twice standard deviations com

puted under the i.i.d hypothesis. The absence of cross correlation is clearly seen on
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Table 5.1. Summaiy statistics for Yt and beta distr.

set I
sample moments ofy theoretical beta

mean 0.4891 0.5
variance 0.1063 0.1204
skewness 0.056 0
kurtosis 1.6140 1.5276

set II
mean 0.4960 0.5
variance 0.0493 0.05
skewness 0.0337 0
kurtosis 2.2051 2.1428

Table 5.2. Summary statistics for P17P2,P3.

set I
mean variance skewness kurtosis

Pi(yt) 0.0313 0.8826 -0.056 1.614
P2(yt) -0.1608 0.9021 0.2477 1.622
P3(y) -0.0227 0.9275 0.0222 1.5339

set II
mean variance skewness kurtosis

P1(y) 0.016 0.9869 -0.0337 2.2051

P2(g) -0.0124 1.0265 1.2733 3.8740

P(y) -0.0174 1.0161 0.1509 6.7443
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Table 5.3. Sample and theoretical correlations for P1,P2,P3.

set I

(1) p(l) (2) p(2)
P1(y) 0.587 0.650 0.334 0.4231
P2(y) 0.136 0.1901 -0.007 0.0361

P3(y) 0.064 0.025 0.017 6.23E-4
set II

7(1) p(l) (2) p(2)

P1(y) 0.585 0.606 0.32$ 0.367
P2(y) 0.274 0.286 0.041 0.082
P3(yt) 0.097 0.105 -0.018 0.011

the correlogramms, but the autoregressive dynamics is more difficult to detect on the

autocorrelogramms shown in Figures 5.5, 5.6 except for the first polynomial. For this

reason we also provide a plot for another set of parameter values (0.1, 0.5,0.03) cone

sponding to a veiy high correlation level ( 0.9). For this set the typical exponential

decay is clearly seen for the three polynomials. A complementary information is pro

vided in Table 5.3 where are reported the sample and theoretical first and second order

correlations.

[Insert Figure 5.5: Empirical correlations, set I]

[Insert Figure 5.6: Empirical correlations , set II]

[Insert Figure 5.7: Empirical correlations , set (0.1, 0.5, 0.03)]

To summarize, the comparison of the empirical and theoretical results conceming

the Jacobi process and its transformations allows for the validation of the simulation

scheme based on the Euler discretization, both for marginal and dynamic features.

5.5. Comparison of the estimators

5.5.1. The estimation methods

The aim ofthis section is to compare by simulations the finite sample properties ofthe

quasi-maximum likelihood (QML) estimator with the moment estimator of Kessler and
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Sorensen (EIG), which uses the spectral decomposition to approximate the unknown

score function, together with the exact indirect estirnator (El), the GMM estimator,

the SMM estimator and the indirect inference estimator (II). Different sample sizes

are considered T = 500, 1000, 2000, 3000 and the number of simulations used in the

Monte Carlo study is M = 1000.

The QML approacli is applied with N 4 terms in the canonical decomposition.

This number has been chosen small and independent of the sample size to have an idea

of the truncation bias. The Kessier and Sorensen estimator based on the eigenfunc

tions is implemented with thc first two eigenfunctions as recommended by Larsen and

Sorensen (2003). The weighting matrices defining the optimal instruments are evalu

ated at a preliminary consistent estimate of 6. In the subsequent Monte Carlo study,

the GMM estimate of 6 has been used to get a consistent estimate of the instruments.

Finally, to solve the estimating function 5.3.26 0, we use the nlsys libraiy of the

GAUSS sofware for solving a system of nonlinear equations in the unknown param

eter O. The El approach calibrates the three parameters of the Jacobi process on the

sample mean, variance and first order correlation. This set of moments is sufficient to

identify the Jacobi parameters and can serve as a benchmark for other GMM estima

tion methods based on a larger set of moments. The GMM approach is applied with

the seven moments described in Section 5.3.2.4. These moments include those used

in the El approach together with higher moments associated with skewness, lwrtosis,

and cross moments in order to capture more dynamic features. The GMM approach is

perfonned in two steps. The flrst step estimator is obtained with the identity matrix re

placing the weighting matrix in the GMM criterion. This preliminary estimator is then

plugged into the f2 matrix to get a Newey-West estimator ofthe weighting matrix. The

second step estimator is then obtained by minimizing the second step GMM criterion.

Similarly, the SMM approach is the simulated version ofthe GMM approach, but, in

stead of comparing the sample moments to their theoretical analogs k(6), we compare

thc sample moments to the simuÏated ones K(y(O)) averaged over S = 10 simula

tions. Since one expects simulated methods to correct for finite sample bias by means
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of simulations, the SMM approach is rneaningfiul to study the behavior of finite sample

estimation bias. Similarly, the indirect inference approach can possibly diminish finite

sample estimation bias [see Gouriéroux, Renault and Touzi (2000)]. It is important to

compare the distributional properties ofthe estimators for different sample sizes. Such

an analysis gives an idea of the number of observations necessary for the asymptotic

theory to be valid and of how this number depends on parameter values. Moreover

when the sample sizes are too small, we can detect the most important differences with

asymptotic normality, such as skewness, fat tails, or multimodes. We first consider the

comparison for each type ofparameters, the mean reverting parameter b, the volatility

coefficient c and the mean parameter j3 and in a second step the joint distribution of b

and c.

5.5.2. Marginal properties of the estimated coefficients

I) Analysis of the bias.

Let us first consider the finite sample bias for the different estimation methods. In

order to facilitate the comparison with respect to sample size and across experiment,

we consider the bias standardized by T and divided by the true value of the parameter.

Such a standardization will not change the interpretation ofthe bias since the parameter

values are positive.

Due to the interpretation of the parameters we can expect less bias on the mean

parameter 4] than on the mean reverting parameter b and on the volatility coefficient c.

Moreover we cxpect a bias (resp. a standardized bias) tending to zero (resp. to a limit)

when the sample size tends to infinity. Indeed,the standardized bias seem to stabilize

towards a limit when the sample size increases which gives support for the fact that the

bias seems to converge at a rate of 1/T.

Let us consider the sign ofthe bias as reported in Table ??. Wlien exarnining pa

rameter set II in Table ??, the bias for the volatility coefficient c tends to be positive for

the exact methods (QML,EIG,EI,GMM) in contrast to the simulated methods (SMM,II)
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for which it is negative. A positive bias for c leads to overestimate the volatility. If one

has in mmd a credit barrier model which is mainly a derivative pricing model in which

the underlying is a credit quality variable with the meaning of distance to default, then

y may represent the dynamic of the default probability. In such a framework, a higher

volatility increases the default probability.

In this sense, the negative bias is not a suitable property of the simulated methods

since it may lead to underestimate the risk ofdefault. However this observation is less

clear in parameter set T. The same type of observation holds for the mean reverting pa

rameter b which is biased upwards for the exact methods (QML,EIG,EI,GMM), while

it tends to be negative for the simulated ones (SMM,II). h is known that the speed

of reversion is relatively difficuit to estimate without bias [see Larsen and Sorensen

(2003)]. The exact methods seem to overestimate the speed ofreversion and therefore

might drive the manager to take more risk as the latter expect the probability of default

occurrence to go back faster to its long-mn equilibrium level modelled by the mean

parameter /3. Therefore, a risk-averse manager could be mistaken by an overestirnation

of the mean-reverting parameter b by getting a wrong appreciation of the evolution of

the default probability. Conceming the sign of the bias for the mean parameter /3, the

sign is not constant and varies across experiments and across methods. Note that the

sign of the bias for /3 is always positive for SMM. In particular, all the other methods

exhibit a negative bias for /3 in pararneter set II whereas SMM overestimates its bias.

Paradoxically, SMM exhibits more bias for the mean parameter than the one observed

for the other methods but the magnitude of the bias remains Iimited (less than 0.8).

Conceming flic magnitude ofthe bias, we clearly see that SMM drastically reduces

the finite sample bias of the mean reverting parameter b and to a lesser extent of the

volatility coefficient c.The sirnulated moments seem to perform better than the indirect

procedure in reducing the bias. Indeed, the indirect procedure suffers from singularity

problems when trying to invert the XIX matrix in the first step OLS estimator of the

auxiliaiy pararneter due to a lack ofrobustness ofthe latter in presence ofoutliers. This

point is clearly highlighted in Genton and Ronchetti (2001) where they show that the
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finite sample bias may flot be necessarily negligible under a contaminated version of

the DGP. Moreover, we can sec that GMM exhibits slightly more bias than El, which

confirms the fact that including more moments in the estimation increases the magni

tude ofthe bias [sec Buse (1992), Andersen and Sorensen (1996), Chao and Swanson

(2000)]. When the moment cstimator of Kessier and Sorensen is flot too affected by

numerical instability, we note that the bias of the mean-reverting parameter b is less

important than those observed for El and GMM in parameter set I. This better perfor

mance of the EIG may be attributed to the selection of the optimal instruments of the

latter. The same remark hoids for the bias ofthe volatility coefficient c in parameter set

II. The parameter with the strongest bias is the mean reverting parameter b mostly in

set I, which corresponds to the marginal symmetric Beta distribution which puts more

weight on the extreme values, whereas the mean parameter j3 is much less biased.

The mean reverting parameter b is iess biased in set II which corresponds to the

symmetric Beta distribution with more weight on the averaged values. But this is not

as clear as for the volatility coefficient which seems to be less biased in set I. Note that

the QML estimator tends to exhibit more bias (upwards) for the mean reverting param

eter b than for the volatility coefficient c when compared with other rnethods. More

specifically, QML demonstrates iess bias for the volatility coefficient when compared

with the estimator of Kessier and Sorensen based on eigenfunctions for ail experiments.

QML seems therefore to be potentially more accurate in evaluating the risk.

[Insert Table ??: standardized biases, set 1,11.]

ii) Analysis of the variance.

Let us now consider in Table 5.4, the variance ofthe estimators standardized by the

sampie size and divided by the square of the truc value of the parameter in order to

facilitate the comparison across sample size and experiment. Indeed, the variance of

the estimators tends to diminish when the sample size increases whereas the standard

ized variance tends to a limit. Conceming the magnitude ofthe variance, QML is more

accurate than the other methods. In particular, the estimator proposed by Kessier and
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Sorensen exhibits a very large variance when the sample size is small. This large van

ability may be attributed to a lack ofrobustness oftlie G(O) cntenon defined at equa

tion (5.3.26) to outiiers. There is aiways a tradeoffbetween robustness and efficiency

and the latter focuses on efficiency issues. But, at the same time, the G(O) criterion is

also sensitive to numerical instability, in particular in small samples. Indeed, the com

putation of the integrals as nonlinear functions of the parameters, fails a few times in

small samples. Therefore, it is quite difficuit to disentangle the effects stemming from

essentially numerical instability from those due to robustness considerations. fortu

nately, when the sample size grows, the situation is getting better. To get an insiglit

on the relative efficiency of the QML estimator w.r.t. the EIG estimator, we compute

some relative efficiency coefficients. In parameter set I when EIG is less affected by

numerical instability, the relative efficiency ofthe estimator of b decreases from 0.7245

(6.8181/9.4099) for T 500 toward 0.9884 (6.2937/6.3672) for T = 3000 in favor

of QML. In other words, the QML estirnator ofthe mean-reverting parameter is 27.5%

more efficient than its EIG estimator in small sample; they become equivalent in large

samples where for T 3000 the QML estimator outperforrns the EIG estimator ofonly

1 .16% approximately. Conceming the diffusion parameter c in set T, the EIG estimator

remains dominated by the QML estimator. Indeed, the relative efficiency for T = 500

is around 0.7117 (3.6209/5.0874) in favor ofQML and this time the EIG estimator lias

some trouble to catch up with QML when the sample size increases, since the relative

efficiency is stiil around 0.8652 (3.4640/4.0036) in favor of QML when T 3000.

Hence, despite the large sample size of T 3000, the QML estimator remains more

efficient than the EIG estimator of 13.48%. Note the extreme high variances displayed

by II in parameter set I reported in Table 5.4 flot oniy for the mean-reverting parameter

but also for the volatility coefficient. They contrast sharply with the variances of its

competitors. II is known to be a very general estimation method which can be used in

estimating a large variety ofmodels. However, the more general an estimation method

is, the less precise it may be, and hence, the less efficient it appears. Although II is said

to 5e suitable in estimating continuous-time diffusion processes since the cmde dis-
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cretization ofthe latter naturally provides an auxiliary model for estimation, it remains

that its performance critically depends on the choice ofthe discretization scheme. As a

result, what the indirect inference estimation method wins in generality it looses in ef

ficiency. Further, when companng El and GMM variances, there is no obvious gain in

efficiency in implementing the over-identified method which is more complicated and

also computationafly costly even though including moments ofthe form Ey, Eyy_1

in the GMM estimation may capture dynamic features such as skewness, leverage ef

fect compared with the El estimator. Moreover we may expect that GMM and SMM

are equivalent at least asymptotically. The resuits seem to predict something in that

sense mostly in set II with the sample sizes T = 2000, 3000. On the other hand, the

QML estimator is quite appealing since it does not require estimating a weighting ma

trix as it is the case for ETG, GMM, SMM. Indeed, estimating a weighting matrix may

arises numerical instability which may affect the estimation results. Moreover using a

Bartlett estimator leads to a truncation bias in the estimation of f2. Moreover, the more

moments are included in the estimation procedure, the larger is the risk of colinearity

and therefore the more trouble we have to invert the weighting matrix f2. Again, we

observe that the mean-reverting parameter exhibits more variability than the diffusion

coefficient in both parameter sets.

[Insert Table 5.4: standardized variances, set 1,11.]

iii) Analysis of skewness and kurtosis coefficients.

Globally the skewness and kurtosis coefficients reported in Tables 5.5 and 5.6 are

getting doser to those characterizing normality(skew= 0, and kurt. = 3) when the

sample size increases. QML suffers a little asymmetiy around T 3000 in set I

mostly for the mean-reverting and the mean parameter, which may be attributed to

the small number of polynomials in the expansion of the density function. Increasing

the number N of polynomials in this expansion may take into account more dynamic

features ofthe process such as heavy tails and asymmetries. Note again the extremely

high kurtosis and skewness for EIG and II (greater than 10 in set I and 100 in set II)
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in small samples due to some nurnerical instability. In this respect, QML behave better

than the estimator of Kessier and Sorensen because ofnumerical instability arising from

nonlinearities in the parameters for the latter. Note again some very similar resuits

in ternis of skewness and kurtosis for the just-identified moment estimator tEl) and

the over-identified one (GMM). SMM also exhibits some good symmetric properties

and does not appear leptokurtic. Unexpectedly, deviations from normality in ternis

of asymmetries and fat-tailed effects appears more severe in parameter set II than in

set I and could say more in favor of the numerical instability hypothesis. Again the

mean parameter demonstrates better distributional behavior than the mean-reverting

parameter and the volatility coefficient.

[Insert Tables 5.5, 5.6: nonstandardized skewness and kurtosis coefficients, set I, II.]

iv) Analysis of marginal distributions.

The empirical marginal distributions of the parameters have been standardized as

— 6) where & denotes the truc value of the parameter. The parameters are

represented on the figures by column, (b, 3, c) from the left to the right whereas the

sample size increases from top to bottom (T = 500, 1000, 2000, 3000). We study dif

ferent sample sizes to get an insight on the speed at which the asymptotic works. As

expected, the asymptotic might work faster for SMM than displayed for GMM and

QML. Increasing the number ofpolynomials in the expansion ofthe transition function

might help QML for reaching the asymptotic behavior faster, that is in smaller sample

sizes. The distributions are getting doser to the Gaussian distribution when the sam

pie size increases and in particular more synirnetric.Globally, the distribution of the

mean-reverting parameter b exhibits more dispersion than the volatility coefficients c

as already observed when analyzing the variances. In particular, we observe that the

distributions of the mean-reverting parameter b are clearly biased to the right for the

exact methods (QML, EIG, El, GMM) in set I which correspond to the marginal Beta

distribution which puts more weight on the extrerne values. As for El and GMM we

should better choose the instruments to include in the procedure, ideally select the op
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timai instruments. By contrast, the simulated methods (SMM, II) dispiay distributions

whicli are more centered around O in set I and therefore achieves in correcting for the

bias as usually expected for this kind of estimation methods. But this improvement lias

a cost in term of computation time since these methods are known to be very computa

tion intensive. Ail the distributions of ail standardized estimators of b are more centered

around O for pararneter set II and do not dispiay any bias. The distribution ofthe mean

parameter /3 and ofthe volatility coefficient c do flot suifer from such bias and are giob

aiiy centered around O for ail parameter sets and ail methods. They also converge faster

to the Gaussian distribution than observed for the mean-reverting parameter b which

appears undeniably as the most chailenging parameter to estimate. Note aiso that the

tails are getting thinner wlien the sampie size grows, mostly for the EIG estimators of

ail parameters. We further observe that the distribution of the ETG estimator of the

voiatility coefficient is left-skewed for T = 500, 1000 in parameter set Il. Indeed, we

observe heavy taiis and skewness features on the smail sample distributions of the EIG

estimators as aiready noticed when analyzing the kurtosis and skewness coefficients,

respectiveiy. Deviations from normaiity, in terms of skewness and fat-taiied eifects,

are more severe in small samples T = 500, 1000 for indirect inference, in particular in

pararneter set II with extremeiy high skewness and kurtosis coefficient as reported in

Tabie 5.6.

[Insert Figures 5.8,5.9:Empiricai marginal distributions ofthe LI estimates, set 1,11]

[Insert Figures 5.l0,5.11:Empirical marginal distributions ofthe QML estimates, set

1,11] [Insert Figures 5.12,5.13:Empirical marginal distributions of the EIG estimates,

set 1,11] [Insert Figures 5.14,5.15:Empiricai marginai distributions ofthe GMM

estimates, set 1,11] [Insert Figures 5.16,5.17:Empirical marginal distributions ofthe

SMM estimates, set 1,111 [Insert Figure 5.18,5.19 :Empiricai marginai distributions of

the II estimates, set 1,11]
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5.5.3. Joint distributional properties of the estimators of b and c

In addition to marginal behaviors, studying the joint dynamic of the parameters could

be informative conceming potential useful connections across them. Such an insight

is particulariy relevant if one wants to make derivative pricing. In this respect, un

derstanding the joint dynamic of the parameters which drives the drifi and diffusions

firnctions respectively is essentiai for risk considerations.To do so, we have chosen to

examine the joint behavior ofthe mean-reverting parameter b and of the volatiiity coef

ficient c since they are the parameters which drives the dynamic of the process, leaving

aside the long-term mean parameter j3 which informs more on the long-mn equilibrium

level. The joint distributions of b and e have the typicai ellipsoidal shape characterizing

the bivariate Gaussian distribution for ail estimators. The ellipsoids are fatter in set

I than in set II where they are thinner iilustrating that there is more dispersion in the

estimated values obtained in parameter set I. We also observe for ail estimators indis

tinctively, some outliers in small sampies. The presence of outiiers may be interpreted

as a measure of occurrence of extreme events. Indeed, outiiers are much numerous in

parameter set I which correspond to the beta distribution which put more weight on

the extreme values. In other words, the proportion of outiiers couid be interpreted as a

measure ofnonlinear dependence, that is as a measure of dependence in the tails whose

the usuai statistics oflinear dependency are unable to capture. Thus, when the estimate

ofvolatility parameterized by c tends to get too high, the estimate of the mean-reverting

parameter b has to reach higher values in order drive the process back to the long-mn

equilibrium. The higlier the volatility coefficient c is, the higher the probabiiity for the

process to hit the boundaries wiii be, hence the higher the mean-reverting parameter

should be in order to be sufficiently forceful to keep the process stationary. Again we

observe that the eiiipsoids are biased to thc right in set I for the exact methods (QML,

EIG, El, GMM), as already observed on the marginai distribution ofthe mean-reverting

parameter b, whereas they are more centered around O in set II. Once again, the simu

lated estimation methods (SMM, II) correct for the bias observed in set I for the exact

methods. Indeed, all the eliipsoids of SMM and II are centered around O whatever
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Q sample size considered. Note also that SMM perfoms much better than II which un

fortunately suffers from numerical instabiÏity which may produce some multimodes.

Such a deviation from normality is unfortunate for II, since in sucli simations, we do

flot know which optimum to choose. Indeed for II, the procedure fails quite ofien due

to some singularity issue stemming from the fact that the procedure gets very unsta

ble numerically when the process hits the boundaries O and 1. As a resuit, the XIX

matrix, defining the OLS estimator ofthe auxiliaiy parameter, becomes non-invertible.

As for the estimator EIG of Kessier and Sorensen, the procedure fails a few times as

well, but in a much lesser extent than for II. These computational crashes arise from the

computation ofthe integrals defining the weighting matrices B and C which are highly

nonlinear in the parameters and creates some trouble to invert the weighting matrix C.

The joint distribution of b and e are well-behaved for the QML estimator and seem to

be more robust to outiiers than the EIG estimator. In this view the QML estimator has

an advantage over the EIG estimator and the II estimator since in the QML procedure

we do not have to invert any matrix which may create some numerical instability of any

kind. Further, as it is not computational intensive as II, it does not have to handie with

some trouble arising at the boundaries. Concerning the ET and the GMM estimators,

there is not obvious benefit to implement the over-identified method which is also more

cornplicated, when one compares their joint distributions. This remark gives support

once again to the detractors ofover-identified methods. In general the optimal number

of instruments allows for the just-identified case. Intuitively, to maximize efficiency,

one should flot include ineÏevant instruments. This assertion is largeÏy documented in

the literature on asymptotic theory [see Buse (1992), Chao and Swanson(200)]. Dufour

and Taamouti (2003) provides evidence on this issue through Monte Carlo methods.

[Insert Figures 5.20,5.2 1 :Empirical joint distributions ofthe El estimates of bande,

set 1,11.] [Insert Figures 5.22,5.23 :Empirical joint distributions ofthe QML estimates

of b and e, set 1,11.] [Insert Figures 5.24,5.25 :Empirical joint distributions ofthe EIG

estimates of b and e, set 1,11.] [Insert figures 5.26,5.27:Empirical joint distributions of

(N the GMM estimates of b and e, set 1,11.] [Insert figures 5.28,5.29:Empirical joint
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distributions ofthe SMM estimates of b and e, set 1,11.] [Insert Figures

5.30,5.31:Empirical joint distributions ofthe II estimates of b and e, set 1,11.]

5.6. Concluding remarks

To summarize, the quasi-maximum likelihood estimator QML exhibits globally one of

the best behaviors with respect to bias and variance, while being one ofthe easiest esti

mation method to implement, at the exception of the just-identified moment estimator

El. It is further no computation intensive and so very fast. Indeed, it rules out some

difficulty like estimating a weighting matnx in the GMM, SMM, EIG procedure which

may create some numerical instability due to some difficulties to invert the weighting

matnx. These numerical difficulties can be avoided by resorting to the quasi-maximum

likelihood. Further, the quasi-maximum iikeiihood estimator appears more robust to

outiiers than the estimator based on the eigenftmctions ofKessler and Sorensen or than

the indirect inference procedure. The empirical joint distribution of the QML estima-

tors of the volatility coefficient and of the mean-reverting parameter looks similar to

the bivariate gaussian distribution for ail sets.
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Table 5.4. Standardized variance

set I

T b__

QML EIG El GMM SMM II

500 6.8181 9.4099 8.8657 9.6319 7.6623 76.9341

1000 7.0358 7.2155 8.8517 9.2338 7.6680 61.8202

2000 6.5798 6.5723 7.9215 8.2802 7.3122 53.1076

3000 6.2937 6.3672 7.6626 8.0455 7.2385 73.1982

T /3
QML EIG FI GMM SMM II

500 0.7927 6.8107 1.8001 1.7622 2.3917 1.1550

1000 0.7468 4.8142 1.7248 l.7030 2.4774 1.8748

2000 0.7768 4.8381 1.7412 1.7846 2.3639 1.0854

3000 0.7015 4.5428 1.5722 1.5919 2.3274 1.7815

T c__

QML FIG FI GMM SMM II

500 3.6209 5.0874 4.3377 4.8351 5.2806 63.6620

1000 3.6777 4.1932 4.6238 4.8790 4.6170 31.0570

2000 3.5836 4.1786 4.2579 4.4773 5.2834 26.0690

3000 3.4640 4.0036 4.2487 4.5058 5.1112 34.3427

set II

T b__

QML FIG FI GMM SMM II

500 5.6704 302.43 6.6339 7.1301 7.0027 6.4383

1000 5.2873 31.69 6.7363 7.1621 7.3463 7.7470

2000 5.4264 5.9182 6.1352 6.4619 6.5078 11.9585

3000 5.2865 5.7946 5.7885 6.0650 5.9193 13.5154

T 3
QML EIG El GMM SMM II

500 0.4986 17.99 0.8456 0.8548 0.8527 0.4139

1000 0.3085 5.9503 0.8221 0.8018 0.8212 0.2368

2000 0.3276 2.2619 0.8423 0.8425 0.8352 0.0554

3000 0.1514 2.2685 0.7724 0.7632 0.7479 0.0424

T e__

QML FIG FI GMM SMM II

500 3.1459 185.12 3.9844 4.5354 3.8282 3.9735

1000 2.2798 21.12 4.2944 4.6027 3.9695 5.4284

2000 2.2827 3.6963 3.9792 4.3394 3.8796 4.7032

3000 1.6182 3.7815 3.9571 4.3110 3.7541 4.8279
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figure 5.0: Simulated paths, set I.
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Figure 5.1: Simulated paths, set Il.
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figure 5.5: Cross autocorrelograms, set II.
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Figure 5.6: Cross autocorrelograms, set (0.1, 0.5,0.03).
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Figure 5.7: Standardized marginal sample distribution ofEl, set 1: (parameter per column,
size per row:500,1000,2000,3000).
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Figure 5.8: Standardized marginal sample distribution ofEl, set II: (parameter per column,
size per row:500,1000,2000,3000).
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Figure 5.9: Standardized marginal sample distribution ofQML, set I: (parameter per column,

size per row:500,l 000,2000,3000).
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Figure 5.10: Standardized marginal sample distribution ofQML, set II: (parameter per column,
size per row: 500,1000,2000,3000).
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figure 5.11: Standardized marginal sample distribution of 11G, set I: (parameter per column,

size per row: 500,1000,2000,3000).
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figure 5.12: Standardized marginal sample distribution ofEIG, set II: (parameter per colunm,
size per row:500, 1000,2000,3000).
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Figure 5.13: Standardized marginal sample distribution ofGMM, set I: (parameter per column,
size per row:500,1000,2000,3000).
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Figure 5.14: Standardized marginal sample distribution ofGMM, set II: (parameter per column,
size per row:500,1000,2000,3000).
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figure 5.15: Standardized marginal sample distribution ofSMM, set I: (parameter per column,

size per row: 500,1000,2000,3000).
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Figure 5.16: Standardized marginal sample distribution ofSMM, set II: (parameter per column,
size per row:500,1000,2000,3000).
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Figure 5.17: Standardized marginal sample distribution of II, set I: (parameter per colurnn,

size per row:500, 1000,2000,3000).

159



III

Figure 5.18: Standardized marginal sample distribution of II, set II: (parameter per column,
size per row:500,1000,2000,3000).
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Figure 5.19: Standardized joint sample distribution of bande, El, set I: (pararneter per column,

size per row:500,1000,2000,3000).
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Figure 5.20: Standardized joint sample distribution of b and c, El, set II: (parameter per column,

size per row:500,1000,2000,3000).
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Figure 5.21: Standardized joint sample distribution of b and e, QML, set I: (parameter per column,

size per row:500,1000,2000,3000).
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Figure 5.22: Standardized joint sample distribution of b and e, QML, set II: (parameter per column,
size per row: 500,1000,2000,3000).
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Figure 5.26: Standardized joint sample distribution of b and c, GMM, set II: (parameter per column,
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Conclusions générales

Dans des problèmes d’inférence non standard, la classe de procédures statistiques

modernes qui exploite des méthodes d’inférence simulées telles que les moments simu

lés, l’inférence indirecte, la méthode des moments efficace, mais aussi les techniques

bootstrap, Monte Carlo Markov chain ou encore les tests de Monte Carlo (maximisés)

permettent de dériver des estimateurs et des procédures de tests puissants et robustes

pour des modèles complexes dans des situations possiblement non standard - condition

de rang des matrices violée, problème d’identification de paramètres de nuisance sur

un sous-espace de l’espace des paramètres, restrictions redondantes dans des modèles

nonlinéaires, présence de racines unitaires...- modulo une modification des résultats

asymptotiques usuels.

Néanmoins, il reste que les techniques d’inférence simulées ne doivent pas être dé

connectées des procédures statistiques conventionelles mais doivent être utilisées en

combinaison avec celles-ci. En particulier elles doivent exploiter les caractéristiques

dynamiques des processus étudiés - telles que celles identifiées par des techniques de

décomposition canonique par exemple, qui permettent d’identifier les directions de cor

rélation maximale et d’obtenir tous les moments conditionels des processus - pour rap

porter des outils statistiques puissants et fiables.

En particulier, l’estimation par inférence indirecte ou EMM requiert l’utilisation

d’un modèle auxiliaire qui fournit une bonne approximation du modèle structurel pour

produire un estimateur aussi efficace que possible [cf. Gallant and Long (1997), Tau

chen (1997)]. Si le modèle auxiliaire emboîte le vrai processus générateur de données

alors les estimées quasi-maximum de vraisemblance deviennent des statistiques suffi

santes et dans ce cas, l’estimateur (II ou EMM) est pleinement efficace [Gallant and

Tauchen (1996)].

De plus les estimateurs simulés (SMM, II, EMM, MCMC) sont très utilisés dans des

applications utilisant des données des marchés financiers ou des données d’enchères.

Cependant il semble, dans des situations où le maximum de vraisemblance est éva

cué parce qu’infaisable, qu’aucun résultat théorique n’existe qui pernettent d’affirmer
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la supériorité des méthodes simulées sur des méthodes plus conventionelles [Gallant

and Tauchen (1999)].
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Appendix: Proofs of chapter 1

PROOF 0f LEMMA 1.3.1 first, if U N(0, 1) then E(U21) = 0, Vp N and

E(U2?) (2p)!/[2?p!] V p N [see Gouriéroux and Monfort (1995a, Volume 2, page

518)]. Under Assumptions 1.2.1,

E(u) = rE(z)E[exp(kw/2)]

k! k2
= T9(k/2)(k/9), exp r/2(1 —

k_____ k2 2
= TY2(k/2)(k/2)? exp — a

where the second equa]iiy uses the definition of the Gaussian Laplace transform of

N[0, r/(1 — a2)] and ofthe moments ofthe N(0, 1) Zt variable. Let us now

calculate the cross-product:

E[nr4] = E[Ttzz+rnexp(k +
jWt+m)]

T+1E(Z)E(Z+m)E[exP(k + tWtrn)]

= T2
2(k/2)(k/2)! 2(t/2)(j/2)!

exp
[8(1 a2)

(k2 + + 2ktaTni)]

where E(w) = 0, VaT(w) Tf2 and

VaT(k +
l)

= Var(wt) + Var(wL+flL) + 2Cov(w, Wt+m)

4(l_a2)+t±2kta).

E

PROOF 0f LEMMA 1.3.2 Taking the ratio ofequation (1.3.7) on equation (1.3.6) to
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the square produces
E(u)

2 = exptr/(1 —

(E (u))

i.e.

T/(1 - a2) = 1og(3(9) E Q. (.0.1)

Inserting Q T,/(1 — a2) in equation (1.3.6) yields

4 E(u)
1/2 3’/4E(u)

T2
exp(Q/2)) = E(n)’/4

from equation (1.3.8), we have

f 2 2
7w

_______

exP((1))=

which, afler a few manipulations, yields

[1og(E[z1]) -4 log(r2)]
1+a=

Q

or either

[1og(E[rtn1]) - log(3) - 41og(E{]) + 1og(E[])]
/ —1.

f E[uJ
Ô 3(E[îJ)2

from the expressions of Q E r/(1 — a2) at equation (.0.1) and that of a above, we

can deduce:
E[zz4]

1/2

T
[(1_a2)log(3([])2)]

E

PROOF 0F LEMMA 1.3.3 Here we derive the covariances of the components of
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X = (X1, X2, X3)’ that is

7(T) = Cov(Xi. Xl,t+T) =
— — 2(0)1I

= E(uu)
—

(6) TE exp(wt + w+) —

= exp [ (1 + aT)]
— () (){exp(7aT)

— 1],
1—a2

where y = j7j2. Similarly,

72(T) = Cov(X2, X2,t+T) = — —

= E(u4+T)
—

= 9rE{exp[2(wt + wt+T)]} — (6)

TJ
= 9r exp[41

— a2(1 + aT) —

= (O)[exp(47aT)
— 11

Finally,

73(T) = Cov(X3, X3,÷) = E{[nu_1
— 2,2(1I)][nt+Tut+T_l — 2,2thI9)i}

= E[ — 2,2 (116)

rEexp(w+ + Wt+T_l + Wt + Wt_i) — 22(hI6)

T exp[2(Ï + a)7] exp[7(aT_l + 2aT + aT+l)j
— t2,2(lI6)

= bL2,2(116){exP[7@ + 2aT + aT+l)]
— 1}

= /2,2(1I6){P[7(1 + a)2aT_l]
—

1}

forallT>2.

PROOF 0f PROPOSITION 1.4.5

The method-of-moments estimator T(S2) is solution of the following optimization

problem:

min M’(8) = min{(8) - T(ÛT)]T{(&) - T(ÛT)1.
6
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O The first order conditions (F.O.C) associated with this problem are:

(OT)T[(9T) - T(UT)1 = O.

An expansion ofthe F.O.C above around the truc value 9 yields

(OT)T ([t9) ± - O) -

where, afier rearranging the equation,

- o] -

Using Assumptions 1.4.1 to 1.4.4, we get the asymptotic normality of r(S2) with

asymptotic covariance matrix V() as specified in proposition 1.4.5. LI

PROOF 0F PROPOSITION 1.4.7 In order to establish the asymptotic normality of

\/[gT(UT)
—

wc shah use a Central Limit Tlieorcm (C.L.T) for dcpcndent

processes [sec Davidson (1994, Theorem 24.5, page 385 )]. for that purpose, wc first

check the conditions under which this C.L.T holds. Setting

‘L4 — /14(6) = gt(&) —

22
— I_L22

T T

t=1

and the subfields .F = J(St, St_i, ...) where st (Yt, vit)’, we need to check three

conditions:

a) {X, J} is stationaly and crgodic,

b) {X, .F} is a L1-mixingale ofsize —1,
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c)
11m sup T’2EIST) <cc (.0.2)
T-

in order to get that T’12ST = (T(UT) — N[0, Sj.

a) By Propositions 5 and 17 from Carrasco and Chen (2002) we can say that:

(j) if {Wt} is geometrically ergodic, then {(Wt, In IvtD} is Markov geometrically er

godic with the same decay rate as the one of{wt};

(ii) if {w} is stationary t3-mixing with a certain decay rate, then {ln IvtI} is /3-mixing

with a decay rate at least as fast as the one of{w}.

If the initial value u0 follows the stationary distribution, {ln jutI} is strictly stationary

/3-mixing with an exponential decay rate. Since this property is preserved by any con

tinuous transformation, {Vt} and hence {v} and {vv_1} arc strictly stationary and

exponential /3-mixing. We can then deduce that X, is strictly stationary and exponential

/3-mixing.

b) A mixing zero-mean process is an adapted L1-mixingale with respect to the sub

fields .F provided it is bounded in the L1-norm [sec Davidson (1994, Theorem 14.2,

page 211)]. To sec that {X} is bounded in the L1-norm, we note that:

Elv
- 2(9)I < E(jv + I2()I) = 22(O) <œ,

EIu
— 4t)I <24(O) <cc,

EIvu_y — 2,2(1I)I 222(1J8) <cc.

Wc now nced to show that the L1-mixingale {X, LT} is of size —1. Since X is

/3—mixing, it has mixing coefficients ofthe type /3 = cp’ , c > 0, , O < p < 1.

In order to show that {X} is ofsize —1, we need to show that its mixing coefficients

= O(n), with > 1. Indeed,

= nexp(nÏogp) = exp(Ïogn)exp(r1ogp) = exp(1og+nlogp).



195

It is known that 1im log n + ‘n log p = —oc which yields

lim exp(çlÏogn+nÏogp) 0.
R—.

This holds in particular for çb > 1, [see Rudin (1976, Theorem 3.20(d), page 57)].

c) By Cauchy-Schwarz inequality, we have:

EIT2SrI <T’2IISTII9

so that (.0.2) can be proven by showing that lim SUPTœ T1 E(S1S) <oc.

We shah prove that:

lim sup T’E(STS) = 1imsuPVar[ST] <oc

j) The first component of ST. Set STY = Z_1 Xy, where X1, — 2(O). We

compute:

Var [sT1] = [ va(it) + ZCOV(Xi,S, Xit)]

5t

= [T7i(O)+2(T_T)7i(r)] =7l(0)+2Z(1-1l(r),

where r/(1 — n2). We must prove that ‘(1 — )71(r) converge as T — oc.

By Lemma 3.1.5 in Fuller (1976, page 112), it is sufficient to show that Z171()

converge. Using the resuits of Lemma 1.3.3 we have:

(r)
= (&)[exp(7aT) -11= (6) [i+

(7Qr)k

] (9) [7UT
(7nT)1]

r k r k

=
(9) [a

(7u

1)!]
<2()7QT (9)a



196

O Therefore, the series

œ oc

(r) (O)fZaTexp(7aT)
<(g)7exp(7a)aT

Tz1 r=1 T1

2 a7exp(7a)

= 2t&) <oc

1 — a

converges. We deduce by Cauchy-Schwarz inequality that

T

lim sup T/2E [ —
/2t0)] <oc.

T—oc I

The proof is very similar for the second component of ST• Wc will skip to the third

component of 8T

ii) The third component of ST• Set ST3 = Z X3, where X E
— 2,2(1I6).

Likewise, wejust have to show that Z’°_1 ‘y(r) < oc in order to prove that

T

lim sup T’/2E
— t22(I)] j <oc.

L= 1

By lemma 1.3.3 we have for ail T 2:

+ a)2a’)
— 11

2(hI1 +
[7(1 + a)2aT_I]k

— i}
k!

k=1

+ a)2aT_l]
[(1 + a)2aT_ljk_l

k!
k= 1

= I,2(hI0)[7t1 + a)2a,T_l]
[(1 ± a)2aT_l]k

(k ± 1)!
k=O

,2t’I°)[7( + a)2aT_lj
[(1 + a)2aT]k

k!
k=O

2,2(’)[7(’ + a)2a’] exp[7(1 + a)2aT_l],
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such that

73(T) 73(1) + [t2,2(O)7(1 + a)2 eT_l exp[7(1 + a)2aT_l]

7(1) +42(118)7(1 +a)2exp[7(1 +a)2ajaT_1

73(1) +2(hI8)7(1 +a)2exp[7(1+a)2a]ZaT

73(1) + 42(118)7(1 + e)2 exp[7(1 + a)2aj
1 a

Since IimSUPTJ T”2Ej XI < œ we can therefore apply Theorem 24.5 of

Davidson (1994) to cadi component STi , i — 1, 2, 3 of 5T to state that: T112ST -

N(O, À) and then by Cramér-Wold theorem establish the limiting resuit for the 3 x

ivector 5T using the stability property ofthe gaussian distribution, i.e.,

T’2ST =T2ZXt [T(UT) —(6)] N3(O, *),

where

= lim E[(T2ST)2j = lim E{T[T(UT) — (O)] [T(UT) —

T—+oo T—œ

E

PROOF 0F PROPOSITION 1.4.8 The asymptotic equivalence of

1 T L2
Zt=i tut /12(8)

[T(ÛT) - bt(8)]

T 22

- L4(8)]

Z= [u ui_1 —

with+ V”f(.ÇJT(UT) — i(8)) can be established by Ïooking at each component.
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1. The component Z(û P2(0)) . We have:

(y)2(yx//3)2

( - - /3) - 2( -

We deduce after aggregation:

T T T

- /‘2()] = - l2t&)j + - /3)’ ZXtX V(43
- /3)

v
T

- ]. (.0.3)
t= 1

By (1.4.18), and Assumption 1.4.6, and by the Law of Large Numbers (L.L.N.)

y T — E(xtut) = 0, we deduce that equation (.0.3) is equiva

lent to
T T

1

tzzl t=1

asymptotically.

2. The component (i4 — /14(9)) . Noting that

- = -4(
- /3)’ + 6( - /3)’x(/ - /3) - 4( - /3)’x

- /3)( -

+( -
/3)’xx

-

- /3)’xtx - /3)

we get afier aggregation:

T T

- 14(9)) = (n - [‘4(0)) + RT

where

T T

RT -4(/3 - /3)’ +
- /3)’ - /3)

t=1 t= 1
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T T

-
- -

t=1

T T
,1

-
- -

t=1 t=1

1vT 2’Since v(—/), X1U1X and + Z XtX are asymptoticallybounded, andby

the L.L.N., + Z + ctut, we can conclude that RT is an o(1)-variab1e

which yields that

T T

Z - 4())# Z(11 - L4())

asymptotically.

3. The component Zl(i_l — t22(1I)) . Noting that:

— —2(
—

[xtUtu_i + Xt_iUUt_i] + ( — )‘XtU_yX
—

± ( -
- ) ± 4(

- )‘XtUt
-

- 2( - )‘xtx
—

- fl)’xti’ati - 2( - )‘xtIi(
-

+ ( -
-

- -

yields afier aggregation

T T

2,2(10)) = (UU-1
= 2,2(I°)) + RT

where

T

RT E —2(
— )‘ [XtUt_i + X_ Ut_11

t= 1

T
1

- )‘ -

t=1

T
1

- )‘ - ) + -

t=1
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T

xut1xt
-

t= I

T T

-2(
- )‘ Zxtx( - - )‘xiui

t=1 t=1

T T

-2(
-

- -

t=1

T T

-
- -

xx(
-

t=1 t=1

By (1.4.18), Assumption 1.4.6 , and by the L.L.N. applied to ZL x_1un_1 which

converges to E[x_iui_i] = = 0, we deduce that

RT is an o(1)-variab1e. Therefore, we have the asymptotic equivalence below.

T T

- 22(1)())#

Thus,

asy
*=1t2t0)) ) (- 2,2t1)(0)) - 2,2(1)tO))

# *Z1t1-4t6))
VT 2-

and from equation (1.3.3), we get the asymptotic equivalence

asy

(gT(UT)
-

(9)) # (T(UT)
-

with .T(UT) defined as in equation (1.4.11). E
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Appendix: Proofs of cliapter 3

Analytical expressions ofthe derivatives

The analytical expressions of the derivatives of the moment conditions defining the

binding function are given by:

____

22
2

3a
— (l_a2)2rex2(l_a2)])

_____

2

______

Bi’ — (1— a2) Y
r ex

Tj
2rexp[1

— a2)

=12
8e (1

[j

9’)rw 4

____

8r - (l_a2)rYexP[(l_a2)]

2r
= 12rexP[(

—8r

____

— r;
4exp[

r

8e — (1 — a)2 (1 — e)

8/12,2 2r r3
= rex

8r1 1—a ‘ (1—a)

8/J22 r
= 4r exp

8r (1—a)

Ail these derivatives evaiuated at a = 0, r O gives the resuits stated in equation

(3.3.23).
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Appendix: Proofs of chapter 5

Moments used in the GMM estimation

[(2b/3)22b/3]
+2L’1

k2(6) E(Y2) = —

______________ ________

()2+3()±2
k1(O).

+ 3(j3)2 + 2(j3)}
k3(O)E(3)

(+4)(+3)(+2)

[(a) + 3()
+ 21k1(O)

(+4)(+3)

+32k2(&)

[(j3)4 + 6() + ii(/3)2 + 6(/3)]
-

- (+6)(+5)(+4)(+3)

4[(C/)
+ 6(/3)2 + 11(/) + 6]

C k()
(+4)(+5)(+6)
“C

+ 5(j3) + 6]
+

2b
(+5)(+6)

k2(8)+4

k(6) E[ytyt_h] = exp(—bh)k2(O) ± [1 — exp(—bh)]2

E[yy] exp(—bh)k3(O) + [1 — exp(—bh)]k2(8)

[(2b3)2
+ (/3)]

k9) E[yy_] =

____________

21 t(2 + 3(f) + 2]
— exp{(—2b — c)h])k1(9)

t C J
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+ 2+9 [1 — exp(—bh)jki (6) +2 {exp(—bh) — exp[(—2b — c)hj}k2(9)

+ exp[(—2b — c)hjk3(6)

- [()2

+k(6) E[yy]
= ()2 + 3(f) +2’

exp[(-2b - c)h])k2(O)

[t2

+ [±11
+2

+ 2
[1—exp(—bh)jk2Q9)+2 2b + 2

{exp(—bh)—exp(—2b—c)h}}k3(6)

+ exp[(—2b — c)hjk4(O).

Identification issue

Our concem here is to identify the parameter of the Jacobi process. Note that taking the

unconditional expectation of equation (5.3.2.2), yields under stationarity assumption

that:
a10

E(Y)== m.
1 —

b can be deduced from a as

b
— log(aii)

h

where the coefficients aH and e10 can be estimated by considering the regression equa

tion

Yt aflYt_, + C10 + Uj

Further, c can be identified from C22 since

c —2b
— lOg(a22)



o

204

where a22 can be estimated from the regression equation

y2
= a222 h + a21_h + a20 + L2t . (.0.4)

In other words, denoting by TflT an estimator of E(Y), 7(h)T an estirnator of

Cov(, i’_h)/Var(Y_h) and â an estirnator of Var(Y), we can deduce that /T =

rnT, bT
= since a11 = Cov(Y,Yt_,1)/VaT(Yt_h) = p(h) ,, =

—

â) where u Var(uyt). And finally, = 2I0(
— Iog(1-)

where

e22 = 1 — and e21 and e20 can be estimated from equation (.0.4).

Computation of the weigliting matrix C

The weighting matrix C(x; 9) = {c(x; 9)} has been defined as:

C(x; 9) = Eo[h(y, x; O)h(y,x; )‘I’]•

Therefore its entries correspond to, where for simplicity of notations Àj(9)

c(x;O) = Eo[h1(y,x;O)h(y,x;9)x]
ri r’

= J P; 9)(y; 9)f(yI; 9)dy - exp(,\); 9)] (y; O)f(y(x; 9)dy

—exp()Pj(x; 9) f P(y; O)f(ylx; O)dy + exp(1) exp()P(x; 9)P(x; O),

where by expoiting Ihe fact that the polynomials are also eigenfunctions for the condi

tional operator with eigenvalues exp)j), cjj(; O) is equal to:

c1(x; O)
= f (y; O)Pj(y; O)f(ylx; O)dy — exp() exp(/\j)(; 9)P(; 9).
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Finally, since the eigenfunctions are polynomials we have:

c(x; 8) = ajr(&)ajs(8) f yT+SJ(y
.

8)dy_exp() exp(À)P?(; 8)(x; O).

r=O s=O O

Computation of the integrals

To compute these integrals, we exploit again the fact that the Jacobi polynomials

P3 (y; O) are also eigenfunctions for the conditional expectation operator associated with

the eigenvalues exp(/\(O)) in the following way:

f Pj(y; 8)f(y; O)dy f ai,k(o)ykj(yIx;

E[(y; O)Ix; a(8) f ykf(y1; 9)

e°Pj(x; 8) ak(O) f YkI(YIX. 8)dy

a,k()yk
= Z a,k(O) j

ykf(y1; O)dy.


