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Résumé

Plusieurs études ont montré une corrélation entre l’activité de neurones dans le

cortex moteur et des variables mécaniques décrivant l’output moteur (forces des muscles et

trajectoires). Cependant, les corrélations n’impliquent pas nécessairement un lien de

causalité entre les variables enregistrées. Nous avons testé l’hypothèse que les signaux

corticaux descendants (révélés par les potentiels moteurs évoqués- PMEs) peuvent

influencer les variables d’output (activité EMG) tout en demeurant virtuellement

indépendantes de ces dernières. La stimulation magnétique transcrânienne (1.2 à 1.4 fois le

seuil moteur) a été utilisée pour analyser l’excitabilité corticospinale des voies projetant aux

muscles du poignet droit (n = 7 sujets). Les PMEs ont été enregistrés dans deux fléchisseurs

et deux extenseurs du poignet avant et après un mouvement volontaire allant de 45 “ de

flexion à 25° d’extension et vice-versa. Malgré des niveaux d’EMG de base semblables

entre les deux positions angulaires, la modulation des PMEs a montré des changements

réciproques dans les influences corticales visant les motoneurons qui activent les

fléchisseurs et les extenseurs. De plus, pour chacun des muscles, ce changement relatif dans

la taille des PMEs n’a pas varié avec la manière d’atteindre la position finale, mais a

démontré des propriétés reliées à la position. Ces résultats démontrent que le cortex moteur

est impliqué dans la spécification et le changement de positions-seuils du poignet, plutôt

que dans la détermination directe de l’activité EMG ou de forces musculaires. Ces

découvertes permettront d’ouvrir de nouvelles perspectives sur la possibilité d’utiliser la

SMT con-mie un outil prognostique et diagnostique dans l’évaluation de l’efficacité, de

l’intégrité et de la réorganisation des voies descendantes chez les populations cliniques.

Mots-clés : Stimulation magnétique transcrânienne; voies corticospinales;

mouvementes du poignet; posture et mouvement; contrôle de la position-seuil;

contrôle moteur.
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Abstract

Numerous studies revealed a correlation between the activity of the celis in

the motor cortex with mechanical variables describing the motor output (muscle forces and

movement trajectories). Correlations, however, do flot imply causality between the

recorded variables. We tested the hypothesis that descending cortical signais (revealed by

recording motor evoked potential-MEP) can influence the output variables (EMG activity)

while remaining virtually independent of them. We used transcranial magnetic stimulation

(TM$) to analyze the excitability of corticospinal pathways projecting to the wrist muscles

(n 7 subjects). Stimulation was applied before and after voluntary movement from one

position to another. The right wrist was placed on a horizontal manipulandum. Single TMS

pulses were applied (1.2 to 1.4 times the motor threshold) over the wrist area of the lefi

primary motor cortex. MEP was recorded in two wrist flexors (FCR, fCU) and extensors

(ECR, ECU) at two static wrist positions before and afier following discrete voluntary

movements between 45 ‘ wrist flexion and 25° extension. The tonic EMG activity of

muscles at each static position was made close to zero by applying small loads

compensating passive muscle tensions. Despite similar EMG levels, the MEP modulation

showed a phasic reciprocal change in cortical influences on flexor and extensor

motoneurons. Furthermore, relative change in the MEP size for each muscle was consistent

regardless of how the position was reached. Corticospinal excitability therefore showed

position related properties. The resuits imply that the motor cortex is involved in resetting

the thresholds wrist position, rather than in the specification of EMG activity and

forces.These findings open the possibility of using TMS as a prognostic and diagnostic tool

in assessing the control, integrity and reorganization of descending pathways in clinical

populations.

Keywords: Transcranial magnetic stimulation; cortïcospinal pathways; wrist

movements; posture and movement; threshold position control; motor control.
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CHAPTER I

1.0 Introduction, review of literature and objectives

1.1 Introduction

The question of whether the nervous system controls individual muscles and body

segments or the body as a whole system is stiil debatable. It is ofien assumed that control

levels of the nervous system are conelated with mechanical variables describing the motor

output such as muscle forces, movement direction, velocity and acceleration (Georgopoulos

et al. 1986, 1989; Caminiti et al. 1990; Reina et al. 2001; Scott and Kalaskal995, 1997). A

widely accepted theory is that the different control levels of the motor system are directly

involved in EMG level and force specification (Kawato 1999). Using this assumption it is

possible to demonstrate a correlation between mechanical variables and corticospinal

excitability. It is however difficuit to explain a causality relationship between the two.

Another theory states that motor actions emerge as a resuit of a central resetting of the

threshold position of the body segments - the position at which the muscles begin to be

recruited (Feldman et al. 2007; Feldman and Orlovsky 1972; Ostry and Feldman 2003).

This study investigates corticospinal influences associated with voluntary movement by

evaluating changes in the corticospinal excitability using the transcranial magnetic

stimulation (TMS) responses to which are recorded muscle evoked potentials (MEPs). The

general objective is to examine the relationship between the mechanical variables (EMG

activity, position and movement direction) and corticospinal excitability.
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1.2 Review of literature

In this study we addressed the question of how motor actions are controlled. We

first review the literature that addresses this question. In the present study, in order to

evaluate the role of the motor cortex in the control of movements, we analyzed changes in

the excitability of corticospinal pathways with the transition from one wrist position to

another by using transcranial magnetic stimulation (TMS) of the motor cortex. Therefore,

we also review literature devoted to the TMS method.

1.3.1 Motor controistudies

Over the last decades, neurophysiological data have been accumulated to explain

how the brain, spinal cord and sensory-motor apparatus are organized to produce effective

motor actions. In humans, motor actions were analyzed based on recording of kinematic

and kinetic variables as well as electromyographic (EMG) activity. These data were used to

formulate different theories explaining the control of movement and posture. These studies

were complemented by experiments in animals by recording neural activity in different

brain areas.

Numerous studies have found that the activity of celis in the motor cortex is

correlated with mechanical variables describing the motor output - muscle forces, torques,

movement trajectories and velocities (Georgopoulos and al.1982,1992; Hasan and Karst

1989; $ergio and Kalaskal998; Tax et al.1989; Weijs et al.1999). However, it has also been

suggested that cortical signaIs can influence and thus correlate with the output variables
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while remaining virtually independent of them (feidman and Orlovskyl 972; feldman

1986; feidman and Levin 1995).

There are conflicting views on how motor actions are controlled. In traditionaÏ

views, control levels of the nervous system are directiy programmed by specifying EMG

activity (motor commands), forces or torques to produce the desired motor output, for

example, a goal-directed trajectory of the hand to an object (Brown and Cooke., 1986;

Corcos et al., 1989; Gottlieb et al.1990). Another theory states that motor actions are

controiied by regulating the threshold position at which muscles start their recruitment and

the EMG activity and muscle forces emerge depending on the difference between the actual

and threshoid position ofthe system (Feldman 1986).

Several motor control studies focus on the planning and execution of movement.

These studies are also heipfui in the understanding of neurological motor dysfunctions. In

many studies, researchers describe motor actions as consisting of several components and

try to identify the regions of the brain responsible for generating these components. For

example, a simple task such as reaching for and grasping an object requires information

about object location relative in space, current ami position as well as information about the

size and shape of the object. Studies have shown that during reaching, separate but parallel

parieto-premotor channeis process visual and spatial information required for reaching and

grasping (Kandel, 2000; Latash, 1998). The motor cortex also plays an essentiai role in the

movement preparation and execution (Hoshiyama et al,1996; Bonnard et ai, 2003). In

addition, motor actions are produced in a specific environment and sudden changes in the

environmental conditions may perturb the motor action resuiting in errors. The neural

mechanisms responsibie for minimizing these errors are oflen used on-une. In visualiy

guided reach-to-grasp actions, the posterior parietal cortex and cerebellum plays a critical

role in the on-une error detection and adaptive control (Tunik et ai., 2005; Kandel, 2000).

According to the traditionaÏ theory, a movement trajectory is planned in terms of

spatial coordinates and their derivatives. This information is then transformed into required
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forces and torques by using an internai representation of dynamicai equations of motion of

the body and its interaction with the environment. The traditional notion that the nervous

system directly plans movement variables such as forces has also been supported by

extensive literature that demonstrates a reiationship between force, EMG activity and

movement parameters. In this context, movement variables such as joint angles (Scott and

Kalaska 1995, 1997), muscle forces, movement direction, velocity and acceleration

(Georgopoulos et al. 1986, 1989; Caminiti et al. 1990; Reina et al. 2001) are assumed to be

coded in the motor cortex. Scott and KaÏaska (1995, 1997) further hypothesized that motor

cortex neurons control muscle force and joint angles.

In the framework of the threshold position control theory, movement is generated by

regulating the threshold position at which muscles begin to be recruited. EMG activity and

muscle forces emerge due to the difference between the actual and threshold position.

Feidman and Orlovsky (1972) employed tonic electrical stimulation of different descending

systems (cortico-, vestibulo-, and reticulo-spinal). They found that the most adequate

measure of these influences is a shifi in the threshold of the tonic stretch reflex, i.e., the

position at which motor units of leg muscles begin their recrnitment. These shifis can also

5e visualized as dispiacements of the muscle-reflex characteristic (the dependency of

muscle force on muscle length) along the spatial (length) coordinate. Similar characteristics

were recorded for the elbow and ankle muscles in humans using the unloading method

(Asatryan and feldman 1965; feldman 1986). In human experiments, resuits showed that a

fixed descending command constrains the set of possible equilibrium points of the joint.

The equilibrium point is a point on the invariant characteristic, i.e. the combination of the

muscle torque and the joint angle associated with an equilibrium state. These points form a

torque-angle curve called an invariant characteristic (IC; feldman & Orlovsky 1972;

feldman, 1986). A specific point from this curve is established following interactions

between the muscles and with the externai load. Voluntary movements are accomplished by

shiffing the IC. It is essential that each IC reflects the property of central command

(threshold position) muscle and reflex properties (feidman 1974; 1976; 1986). The
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importance of threshold position control is emphasized by the fact that reduction in its

range of regulation gives rise to muscle wealmess, spasticity and incoordination in many

patients with hemiparesis afler stroke (Levin 2000).

If the central command is maintained and so is the IC but the load is suddenly

changed, the arm involuntarily moves from one position to another (as is the case during

the unloading reflex). In contrast, when the load remains the same, descending systems may

reset the muscle activation threshold to elicit a voluntary arm movement to another

position. In both cases, EMG modifications and forces emerge following the difference

between the actual and the reference threshold arm position (St-Onge et al. 1997). This

principle is generalized to movements involving the whole body (St-Onge and Feldman

2004).

Studies from feldman’s laboratory revealed a monotonie EMG-torque relationship

for each IC. In other words, the tonic EMG level associated with the points on each IC was

flot constant, but related to the torque (feldman and Levin 1995). Depending on the

extemal forces, the EMG level in one static position of the joint may be the same or

different from that in another static position. The same level of tonic EMG activity at two

different positions implies that muscle activation is flot the primary variable used by the

CNS to choose between the two positions (Feldman 1986; feldman and Levin 1995).

1.3.2 Threshold position control

It is often assumed that the different control levels of the motor system are directly

involved in EMG and force specification. This idea suggests that EMG activation in the

relevant arm muscles should be different for different arm position even if the movement is

not influenced by extemal torques or forces (Kawato 1999). The notion of threshold

control, on the other hand, implies that EMG and force result as a shifi in the activation
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threshold levels of the muscles from a current to a new position consequently eliciting

movement, figure 1. The threshold length for activation of a muscle is called lambda Q).
Ostry and Feidman (2003) observed the same EMG activity in the elbow muscles (agonist

and antagonist), before and afler active or passive movement. The EMG activity levels

were close to zero at an initial anu position and returned to - zero at the final arrn position

(Figure 1). Similar findings were reported by Foisy et al. (2006) for all arm muscles, when

they compared the EMG activity at different instances in reaching movements performed

under varying load conditions. The occurrence of similar EMG activity at two different

positions can be explained in neurophysiological terms by understanding the physiological

interpretation of threshold position control (Feldman and Levin, 1995).

1.3.3 FhysiologicaÏ on gin ofthresholdposition controÏ

Motoneuronal activity is usually characterized by electrical units such as membrane

potential or currents. When a muscle is stretched quasi-statically from an initial position x1,

the motoneuronal membrane potential depolarizes and eventually reaches an electrical

threshold V, at which the motomeurons begin to be recmited. The muscle length, at this

instance, is regarded as the threshold muscle Iength (2+), Figure 2A. When independent

control inputs are added (t :depolarization, :hyper-polarization), the same stretch elicits

motoneuronal recruitment at a shorter threshold length Q.). A shift in the muscle threshold

(2k) length can also occur by shifiing the electrical threshold (V,), Figure 2B. A change in

membrane potential precedes the generation of motoneuronal spikes that form EMG bursts

underlying motor actions. A shift in threshold position is therefore initiated prior to the

onset of EMG activity and force generation (feedforward process). Thus, the motoneuronal

activity and therefore muscle EMG activity emerge due to a difference between the actual

(x) and the threshold Q) muscle length (Feldman et al. 2007).
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Figure 1. Rapid elbow flexion movement (A) and reactions of muscles to passive

oscillations at the initial (B) and final (C) positions. Note that the activity of elbow muscles

(four lower traces in B) at the initial elbow position is practically zero (background noise

level) and, after transient EMG bursts, retums to zero at the final position. Muscles are

activated in response to passive oscillations of the arm at the initial (B) and final (C)

positions. An elastic connector was used to compensate for the small passive torque of non-

active flexor muscles at the initial position of about 140°. The compensation was

unnecessary for the final position (about 900) since it is known that at this position the

torque of passive elbow muscle is zero. Reproduced with permission from Ostry and

Feidman (2003).
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Figure 2. Physiological origin of threshold position control. Each motoneuron (MN)

receives afferent influences that depend on the muscle length (x) as well as on central

control influences that are independent of muscle length. The MN is recruited when the

membrane potential exceeds the electrical threshold (Vt). A: When the muscle is stretched

quasi-statically from an initial length (xi) the motoneuronal membrane potential increases

from its initial value (Vi) according to afferent length-dependent feedback from the muscle

(solid diagonal une). The electrical threshold (Vt) is eventually reached at length 2+, at

which the motoneuron begins to be recruited. When independent control inputs are added

( :depolarization, . :hyper-poÏarization), the same stretch elicits motoneuronal recruitment

at a shorter threshold length (X). B: $hifis in the spatial tbreshold (horizontal arrow) can

also result from changes in the electrical threshold (vertical arrow). In both cases (A or B),

shifis in the membrane potentials and respective changes in the threshold position are

initiated prior to the onset of EMG activity and force generation (a feed-forward process).

Thereby, the activity of motoneurons and muscle force emerge depending on the difference

between the actual (x) and the threshold (X) muscle length. Reproduced with permission

from Pilon et al. (2007).
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At a given position, the ami is stabilized by tonic descending facilitation of a

and/or ‘y- motoneurons resulting in a small initial EMG activity of appropriate muscles. In

order to change the current ami position, the CNS presumably specifies a new level of

descending facilitation of CL- and ‘y-motoneurons that gives rise to an increase in the agonist

muscle EMG activation resulting in shortening of these muscles. Following muscle

shortening, proprioceptive feedback will eventually de-facilitate the motoneurons of

antagonist muscles, thus neutralizing the surplus excitation induced by supra-spinal inputs,

which occurs at a new joint position at which the movement will cease. A comparison of

the initial and final states shows similar motoneuronal activity at both positions (Figure 1)

except that the tonic level of descending inputs to the agonist motoneurons at the final

position is assumed to be bigger than at the initial position. This suggests that the control

variables are defined by the descending control influences to the motoneurons regardless of

the muscle activation level (Feidman et aI. 2007).

To understand how the CNS influences motor actions it is necessary to measure the

corticospinal excitability using TMS and recording MEPs from appropriate muscles. The

following section briefly reviews the TM$ method and relevant studies to address questions

related to descending influences from the motor cortex and its role in the control of

movements.

1.3.4 Transcranial magnetic stimulation (TMS)

It was only in 1874 that Batholow described the movements of the contralateral

side of the body during faradic stimulation of the exposed cortex parts of the brain of a

woman with an open ulcer on her scalp. It was subsequently reconfirmed by several
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neurosurgeons at the tum of the 20th century that the motor response could be elicited or

interrupted by electrical stimulations of the brain (see Rothwell et al. 1991). However, it

was only in 1980 that Merton and Morton showed that stimulating the primary motor

cortex (Ml) with a specialized transcranial electrical stimulation (TES) could produce a

twitch in the contralateral body muscles. Rothwell et al. (1987) using the same non

invasive technique discovered that stimulation of Ml can evoke EMG responses in all

contralateral ami muscles (deltoid, biceps, forearm flexors and extensors, APB and FDI) at

short latencies, with an orderly progression from the proximal to the distal muscles.

A major limitation in the use of TES is related to high resistance of the scalp and

skull necessitating the use of high voltage stimuli for excitation of the corticospinal tract.

This techniques elicits painful sensations. A major portion of the electrical current in TES

stimulation is transmitted through the skin and subcutaneous tissues surrounding the bony

skull while only a small fraction of the current actually ftows into the brain (Rothwell

1997). The electrical transmission through the scalp contracts the scalp muscles and

activates the nociceptive fibres evoking pain sensations and discomfort.

TMS introduced in 1985 by Barker et al. is also a non-invasive technique that

produces effects similar to TES. The main advantage of TMS is that it practically painless,

compared to TES (Rothwell 1997; Di Lazarro et al. 2004). TMS is produced with a wire

coil connected to a large electrical capacitor that is rapidly discharged through the coil to

create a magnetic field. When the current is discharged through the coil, the magnetic field

rapidly passes into the brain and this perturbation induces electrical fields in the motor

cortex in this case (Ml). The perturbation depolarizes the neurones thus evoking repetitive

discharges (MEP) in the muscle of the contralateral side of the body (Barker et al.1986),

which can be recorded with electromyographic (EMG) equipment (Rothwell 1997).

The effect of motor cortex stimulation can be more easily observed and quantified

by factors such as the peak-to-peak magnitude of the MEP, the area under the rectified

response signal curve (Kiers et al. 1995) and MEP latency. Latency is defined as the time
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period measured between the beginning ofboth, the peak ofthe stimulation artefact and the

first sign ofMEP response (Rossini et al. 1994; Boyd at al. 1986; Inghilleri et aI. 1990) and

it has been used to estimate of speed of propagation of corticospinal signais. Besides

conduction lime, latency depends on the position of the recording electrodes, as well as the

site of stimulation over the motor cortex (Berardelli et aï. 1990; Fujiki e aï. 1996).

Cortical excitability is also measured by the motor threshold of the stimulation

generally described as the lowest stimulus intensity of TMS at which a motor evoked

potential (MEP) can be recorded in the target muscle (Pascual-Leone et al. 1994). Using

TM$ for mapping of the motor cortical output and evaluating the interhemispheric

asymmetries, several authors have described the range of motor threshold stimulation

intensities displayed in healthy subjects as being variable (Cicinelli et al. 1997), with

significant within-group differences (Bûtefisch et al. 2003) and age-dependency

(Matsunaga et al. 1998) . However, in a given individual the cortical output ofthe right and

lefi hemispheres presented similar excitability properties (Biitefisch et aI. 2003; Cicinelli et

al. 1997) in hand muscles. However, these factors may be inconsistent depending on the

height and alertness of the subject. In addition, MEP responses can vary from trial to trial

due to fluctuations in environmental noise which alters the influence and the ‘uncertain

range’ of cortical excitability (Cicinelli et al. 1997; Burke et al. 1995; Rossini et al. 1991).

In tonically (pre)activated muscles, TMS of the primary motor cortex induces a

short-latent MEP (excitatory effect) followed by a temporary suppression of muscle

activity in the target muscle - a silent period or decreased EMG activity (Rossini et al.

1994; Rothwell et al. 1991; Kuijk et al.2005). Afler that silent period, the EMG activity

retums to its previous level. In healthy subjects, during voluntary tonic activation ofthe lefi

and right hand muscles, the duration of the silent period was similar (l 5 0-240 ms) when

TMS was applied to the right and to the lefi hemisphere, respectively (Inghilleri et al. 1993;

Classen et al. 1997; Cicinelli et al. 1997), irrespective of whether the TM$ was focal or

non-focal (Bertasi et al. 2000). The non-focal stimulation (by circular coils or standard
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round cous) induces currents in the brain that flow in the annulus and not in the cou centre.

Thus, a large volume of neural tissue may be activated by such device. The figure-of-eight

coils provide a more focal stimulation, inducing an electric field under the junction region

of the 8 that is twice as large as that under the two wings (Rothwell 1997). In addition,

neither motor latency nor the silent period duration were correlated with the magnitude of

the background tonic activation of the muscle (Catano et al.1997; Uozumi et a. 1992,

Bertasi et al. 2000 ; Wu et al. 2000; Classen et al.1997; Day et al.1997).

Paired-pulse TM$ (Kujirai et al. 1993) is oflen used to investigate the modulation in

corticospinal excitability (facilitation and inhibition). Depending on the interval between

the two stimuli (Kujiray et al. 1993, Ziemann et al. 1998), the effect of the first,

conditioning pulse may be excitatory (due to intra-cortical facilitation, ICF; latency

between pulses = 10-15 ms) or inhibitory (due to intra-cortical inhibition, ICI; latency

between pulses = 1-6 ms). The long-latency effect is thought to result from activation of

cortico-cortical glutamatergic excitatory pathways (Lepert et al. 1997) and the short-latency

inhibition is attributed to the activation of intracortical GABAergic inhibitory intemeurones

(Ziemann et al. 1996).

Findings of Classen et al. (1997) and Matsunaga et al. (199$) further showed that

the excitability of motoneurons retumed to the previous level (H-reflex responses,

Inghilleri et al. 2003) whereas the silent period continues for up to 40 ms (Bertasi et al.

2000). This prolongation was attributed to intracortical inhibitory intemeurones (Brasil -

Neto et al. 1995; Inghiller et al. 1993, 2003; Bertasi et al. 2000). Changes in cortical

excitability (Bûtefisch et al. 2003) or differences in the silent period (Classen et al. 1997;

Liepert et al. 2000a) may be relevant for the functional recovery of patients (Nudo et al.

1999) for example, when comparing both hemispheres or in different stages afier the stroke

(Classen et al. 1997).

In healthy subjects, TMS has also been use to evaluate changes in descending

cortical influences on spinal motoneurons (Rothwell et al. 1991). Several studies have
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addressed the question of whether the MEP changes following peripheral or corticospinal

influences. It has been verified that voluntary contraction of target muscles, at a given

intensity of stimulation, enhances the size of the MEP (Barker et al.1986; Rothwell et

al. 1987). However, when the MEP was associated directly with motor outputs (for example

- force, aipha-motoneurons excitability, tonic EMG activity), controversial results were

found in the distai and proximal arm muscles. In the distal first dorsal interosseous (FDI)

hand muscles, the MEP produced by constant intensity progressively increased with

increasing isometric contraction (Di Lazzaro et al. 1998). However, Todd et al (2003;

2004) did flot find parallel changes between force and MEP size in proximal muscles (e.g,

biceps brachii) for forces within the range of 50-100% of maximal voluntary contraction.

These controversial resuits illustrate that both peripheral and cortical influences can

modulate the MEPs. Thus, to evaluate the effect of cortico-spinal influences under different

conditions, one needs to be sure that the changes in the MEPs are not related to the

differences in the levels ofthe EMG activity under these conditions.

Relations between corticospinal excitability and EMG output were also explored by

comparing TMS responses in relaxed and contracting muscles. Di Lazzaro et al. (1998)

tried to reproduce the same ME? sizes in different contraction states (active contraction vs

rest) for the FDI muscle. They also recorded potentials from electrodes implanted in the

high cervical cord (epidural electrodes at C1-C2 levels). They found that, at rest, the TMS

intensity needed to generate a given MEP size was higher than that required to stimulate

the same muscle during active contraction. The increase in the MEP size with the transition

from rest to active contraction was attributed to an increase in excitability of spinal

motoneurons rather than to an increase in corticospinal excitability.

There is strong evidence that a voluntary movement is mediated by changes in

corticospinal excitability prior to the EMG and movement onset (MacKinnon and

Rothwell.2000; Hoshiyama et ai, 1996; Schneider et al. 2004). For example, studies that

explored the onset of voluntary movement (after a visual or an auditory cue) found an
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increase of the MEP in agonist muscles before the first deflection of the EMG background

(Schneider et al. 2004; Hoshiyama et al. 1996; Mackiimon and Rothwell 2000; Reynolds

and Ashby 1999; Nikolova et al. 2006). In paired-pulse TMS, the MEP was also facilitated

(ISI-13 ms) before the EMG burst signal (Nikolova et al. 2006). The increase of the MEP

of the agonist wrist muscle occurred prior to a voluntary movement from neutral to

extension and to flexion positions in the absence of any significant changes in EMG

activity (Hoshiyama et al. 1996; Mackinnon and Rothwell 2000). In addition, the H-reflex

of the FCR muscle did not change during this period, suggesting that the relative size of the

subliminal fringe ofmotoneurons remained constant (Mackinnon and Rothwell 2000).

Lewis et al (2001) and Coxon et al (2005) examined the modulation ofcorticospinal

excitability during different phases of passive flexion- extension wrist movement. The

basal EMG level was reduced during the passive movements. The resuits showed inhibition

of the FCR’s MEP during the extensor phase and facilitation during the flexor phase. The

MEP modulation during the dynamic condition (passive movement) was greater than in

static positions (Lewis et al. 2001).

Corticospinal excitability has been observed at different shoulder static positions

(30° adduction and 30° abduction) in distal muscles(abductor digiti minimum- ADM, ECR

and FCR) and absence of any change in the EMG activity. (Ginanneschi et al. 2006;

2005). The MEP was significantly smaller for the ECR muscles and higher for the fCR

muscles at 30° shoulder abduction. When a paired-TMS was used on the FCR muscles,

there was a significant increase in ICF (15 ms I$I) at 30° shoulder abduction, confirming

that TMS responses are accompanied by subsequent intra-cortical facilitation. In addition,

the H-reflex evoked at the fCR muscle did flot show a significant difference between the

motoneurons activity at the two positions (Ginanneschi et al. 2006). The MEP of the distal

ADM showed resuits similar to the ECR muscle. The activity ofmotoneurons ofthe ADM

muscle decreased at 30° shoulder abduction. With paired-TMS, ICf of the ADM showed a

significant decrease at abduction, thus suggesting that the effect of different proxirnal
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positions on the corticospinal excitability can flot be exclusively influenced at the spinal

level (Ginanneschi et al. 2005).

Kazennikov et al. (2006) used a single TMS pulse for a forearm agonist muscle

(biceps brachii) to examine the modulation of the corticospinal excitability during postural

adjustment to active unloading. In this bimanual task, they observed a decrease in MEP and

EMG activity from the time of static holding ofthe load to the time at which the object was

touched by the opposite hand in order to initiate the unloading task. In addition, this was

also accompanied by a small displacement, also reported by others (Kaluzny and

Wiesendanger 1 992;Forget and Lamarre 1995) and, an activation of the antagonist muscles

at time ofthe postural adjustment (forget and Lamarre 1995).

Modulation in the corticospinal excitability can thus be found at different levels of

voluntary contractions (Barker et al.1986; Rothwell et al.1987; Tood et al 2003; 2004; Di

Lazzaro et al. 1998), active unloading (Kazennikov et al. 2006) before voluntary movement

(MacKinnon and Rothwell.2000; Hoshiyama et al, 1996; Schneider et al. 2004) and

sometimes correlated directly with the different levels of tonic EMG activity, thus related

the motoneurons activity or torque force. However, in static positions the changes in the

corticospinal excitability were at distal muscles and independent of the EMG levels.

(Ginanneschi et al. 2005;2006).

By analyzing modulation of corticospinal excitability in relation to the change in

peripheral variables such as the muscle length, joint angle, torques one can test the

threshold control position concept. Furthermore, this method can also be used for testing

the notion that motor actions emerge following the difference between the actual and

referent positions (feldmanl986, St-Onge and feldman 2004).

following the same purpose of Ostry and feldman (2003), this study investigates

whether the tonic EMG activity in the agonist and antagonist muscles of the wrist joint

remains the same at two different positions, before and after voluntary and passive
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movement. Modulation of the cortico spinal excitability of the wrist joint muscles was

measured, at two positions (flexion and extension), using the TMS method, under two

conditions before and after voluntary movement - from flexion to extension and from

extension to flexion positions.
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1.3 Objectives

The general objective of this study was to investigate the changes in the

corticospinal excitabiÏity associated with the transition from one wrist position to another.

The specific objective of the study was to test 2 hypotheses and its alternatives:

(1) The corticospinal inputs to wrist motoneurons vary with different wrist positions

and are independent from the movement direction. $pecifically, when EMG activity is near

zero the extensor motoneurons are facilitated when the wrist position is at extension,

whereas flexor motoneurons are facilitated when the wrist position is at flexion.

(2) The changes in the corticospinal influences associated with such intentional

movements can be expressed as shifis in the threshold wrist position, i.e. the position at

which motoneurons of wrist muscles begin to be recrnited. This hypothesis would be

supported if the corticospinal excitability at two wrist positions changes when the

background excitability of the targeted motoneurons of wrist muscles is maintained

constant. Since the MEP amplitude depends on the background excitability of

motoneurons, it was necessary to elaborate a special technique to exclude this effect so that

MEPs might only reflect changes in the corticospinal influences. Finding such conditions

was an additional objective ofthis study.

(3) Alternative to (1) and (2): corticospinal excitability is aiways coupled with the

excitability of targeted motoneurons and thus is related to the EMG activity, force and

movement direction generated at a given wrist position.
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CHAPTER II

2.0 Mcthods

2.1 Subjects

Seven healthy subjects (1 male and 6 female, age 31 ± 5.3 yrs; minimum=25 yrs

and maximum=40 yrs) participated in the study after signing an informed consent form

approved by the Ethics Committee of the CRIR. Subjects were recruited by an

announcement from the Institut de réadaptation de Montréal (IRM). Ail subjects were

right-handed as determined by the Edinburgh’s test (Oldfield RC, 1971).

2.1.1 Inclusion criteria:

Healthy subjects between 18 and 50 years old were included in the study if they had

no history of neuroiogical diseases or physical deficits involving the upper extremities. A

questionnaire for medical and personal subject information was used.

2.1.2 Exclusion criteria:

Subjects were excluded from the study if they had craniotomies or cranium

fracture, personal or family history of epilepsy, history of diseases of the peripheral or
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central nervous system, a cardio-stimulator or metallic (except dental) implants,

orthopaedic or any problems in the upper extremities.

They also were excluded if they were treated with antispasmodic, anxiolytic,

anticonvulsive drugs, anti-depressants or other drugs that could influence neuronal

excitability, or were unable to understand or express themselves in French or English.

2.2 Apparatus

Subjects sat in a reclining armchair that provided support for the head, neck, and

torso in a comfortable position allowing them to relax the right ami placed on a table (the

elbow angle was about 100°, horizontal shoulder abduction was about 45°). The head and

neck were additionally stabilized with a cervical collar. The hand and then forearm were

oriented horizontally in a neutral position between pronation and supination. The hand was

placed in a plastic split attached to a light horizontal manipulandum that could be rotated

freely about a vertical axis. The vertical axis of hand rotation at the wrist joint was aligned

with the vertical axis of the manipulandum (see apparatus in figure 3). The motion of the

forearm was minimized by foam blocks and Velcro straps attached to the table whereas the

hand could be rotated freely.

In the experiments, we compared EMG responses due to TMS at two distinctive

wrist positions (25-30° wrist extension and 40-45° wrist flexion relative to the neutral

position, 0°). Unlike the neutral position, the torques of passive flexor and extensor

muscles at these positions are not balanced so that it is necessary to activate wrist flexor

muscles to balance a passive torque of antagonist (extensor) muscles at the flexion position

and, vice versa at the extension position. However, to evaluate the effects of corticospinal
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influences at these wrist positions, it was necessary to equalize the state ofmotoneurons of

wrist muscles in terms of their activity and excitability. In order to do this, we used elastics

to compensate the passive extensor torque at the flexion wrist position and the passive

flexor torque at the extension position. In such a way, we could bring flexor and extensor

motoneurons to a nearly threshold state at each of the two positions. Specifically, two

elastics were used, one at each side of the manipulandum. One end of each elastic was

attached at a small distance (about 2 cm) from the axis of rotation ofthe manipulandum and

the other end to the table (Figure 3). At the neutral (zero) wrist position (figure 3 D), the

torques produced by the elastics were balanced. With rotation of the manipulandum from

this position, the moment arm of one elastic decreased whereas that of the other elastic

increased. At the selected flexion wrist position, the elastics produced a torque assisting

flexors and at the extension wrist position (Figure 3 E), a torque assisting extensors. Using

this method, we were able in most cases to compensate for the passive torques at the two

selected wrist positions and thus exclude position-related changes in EMG activity while

testing TMS responses. As a result, subjects could maintain the hand at these positions at a

near threshold level (see Resuits).
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Figure 3. Wrist manipulandum used in the expenment. The forearm was placed on a
horizontal platform (B) and the hand in a plastic spiit oriented vertically (A). The
wrist joint could rotate fteely by flexion-extension movements about the vertical
axis. Elastics (C) were used to compensate passive muscle torques at the selected
flexor and extensor positions. Elastic torque was zero at the neutral position (D)
assisted wrist extensors at the selected extensor position (E). F: Schematic diagram
showing compensation of passive muscle torque (solid une) by elastic torque
(dashed line).
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2.3 Data recording

Eiectromyographic (EMG) activity of 2 wrist flexor and 2 extensor muscles was

recorded using four pairs of 10 mm Ag/AgC1 bipolar surface electrodes (about 2-3 cm

between the centers) piaced on the bellies of the flexor carpi radjahs (FCR), flexor carpi

ulnaris (FCU), extensor carpi radjahs (ECR) and extensor carpi ulnaris (ECU). The

electrodes were placed afler standard cleaning the skin surface with aicohol. EMG signais

were amplffied (Grass electromyograph), fiitered (20- 500 Hz) and sampled at a rate of 5

kHz. Wrist position was recorded with a precision potentiometer coupled to the shafi of the

manipulandum.

2.4 Stimulation techniques

TM$ was produced by a Magstirn 200 stimulator (Magstim Cie, Whales, UK). We

used a double coiled electromagnet (eight-shaped, outer diameter 70 mm, 45° between the

axes of each coil) for TMS so that the direction of the currents in the two coils were

opposite (Pascual-Leone et al. 2002). TM$ was deiivered to the lefi primary motor cortex

(Rothwehi 1997; Ziemann et al.1998). The ehectromagnet was placed on the surface of the

scalp in such a way that the point of intersections between the two cous (oriented in a

frontal plane) was approximately 2 cm anterior and 6 cm haterai to the vertex (Cz),

according to the 10-20 system for EEG ehectrode placement (Jasper 1950, see Bonnard et

al. 2003). from this position, the cous were moved approximatehy 0.5 cm in the anterior

posterior and medial-hateral directions to a position that appeared optimal for eliciting

MEPs recorded from the target muscle (Wassermann et al.1992; Byrnes et al.1998). The



23

optimal spot was defined as eliciting a small MEP in the ECR (6 subjects) or fCR (Ï

subject) at a minimal, threshoÏd stimuli in 5 sequential trials when the wrist was in the

neutral position. The optimal spot was marked with a feit pen on the scalp. This served as

visual reference of the coil position. To partly compensate the weight of the cou, it was

suspended from the ceiling of the room and the experimenter held it in reference to the four

marks on the scalp around the perimeter of the cou. Once the motor threshold (MT) was

determined, the TMS intensity was enhanced to 20-40% above the threshold (1.2 -1.4 x

MT). The apparatus could produce maximal intensity of stimulation of 2 Tesla (measuring

the charge of the capacitor used for delivering the current to the coils). An intensity of 1.2

to 1.4 times the MT corresponded to approximately 20 to 40 % of the maximal output of

the stimulator. Ten stimuli were delivered at an interval of about 10 seconds at each of the

two wrist positions, before and after the movement in order to average, 10 responses at

each ofthe two positions.
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figure 4. Wrist position, before and afier the voluntary movement. In one set of

trials, the movement was perforrned from an initial 45° wrist flexion position to a

final 25 ° extension position. In another set, the movement was performed in the

opposite direction.
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25 0
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2.5 Procedures

Afier determining the motor threshold and adjusting stimulation intensity, subjects

were asked to establish an extension wrist position of about 25°. At this initial position a

single TMS was delivered and afier approximately 2 seconds the subjects were asked to

move the hand, in a self-paced speed, to flexion position of about 45°. A second TMS was

delivered at this position after the transitional EMG bursts. The interval between the two

TM$ was 10-12 s. After 20 s the trial was finished and subjects retumed the hand to the

extension position to be prepared for the next trial. In one block of 10 trials, the

experimental testing aiways started at the extension position (E—>F sequence). The second

block of experimental testing (also 10 trials) started at the flexion position (f—*E

sequence). The order ofthese sequences was randomized across subjects.

2.6 Data analysis

The EMG activity and wrist displacement were reordered using a PC and analyzed

with LabView and Matlab sofiware specifically adapted to this project. The variables

analyzed included

1. The amplitude (peak to peak) of MEPs in the EMG activity of the 4 muscles

2. The latency of MEPs was measured as a time between the onset of the

artefact from TMS and the first deflection point above the background noise

or, if present, EMG activity.
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3. The time between 2 TMS in each trial.

4. The wrist positions at which the TMS were delivered

5. In order to evaluate the difference in the TMS responses at the two wrist

positions, we computed the ratio of respective MEP amplitudes for each

muscle. For extensor muscles, the amplitude of the ME? response in each

extensor muscle was divided by the amplitude of the ME? response in the

flexor position in the same trial (E/F ratio). For flexor muscles, FIE ratio was

computed in a similar but opposite manner. Mean and standard error (SEM)

ofthese ratios for each muscle were computed individually for each ofthe 2

experiments.

6. The level of rectified EMG activity was computed in 200 ms windows

before each TMS to estimate whether or flot there was a statistically

significant difference between the EMG levels in each muscles at the time

when the two TMS were delivered (i.e. before and afier movement). To

statistically estimate the condition-dependent differences in the TMS

responses, it was necessary to have statistical parameters of empirical

probability distribution for two segments of EMG activity (in different

positions).The values of these parameters should be statistically

independent, so that they should be separated by time that is greater than the

correlation interval inside each EMG segment. The coi-relation interval was

determined by the lag value of the correlation function, so that the value of

the function did not exceed 0.1 of the maximum r. Only correlated values of

EMG fragments were taken for statistical comparison. Given the standard

deviations for both segments of EMG in each trail, we were able to confirm

the hypotheses that the probability distributions for EMG segments were

independent.
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Data were analyzed trial by trial, individually for cadi subject.

2.7 Statistics

Effect of joint position on EMG level for a given muscles before and after the

movement (i.e. between the two positions) was compared using Student t-test (p< 0.05) for

each muscle. The influence of position on the MEP amplitude was assed by calculating the

mean and standard deviation of the MEP amplitude at extension position / flexion position

for the extensor muscles (ECR and ECU) and the MEP amplitude at flexion position /

extension position for the flexor muscles (FCR and FCU) for each muscle. The cases in

which EMG activity of muscles was not equalized at the two rest wrist positions were

excluded from the analysis of effects of TMS. For each muscle, effects of the position and

movement direction on MEP amplitude and on MEP latency were compared using separate

Analyses of variance (ANOVA) with repeated measures (to ail subjects). Statistical

significance was set at the 5% level. The trials where the subject did not maintain the

correct angle or, voluntariiy helped himself to hold the position, were rejected from the

analyses.
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CHAPTER III

3.0 Resuits

The main goal of this study was to analyse the changes in the corticospinal

influences on motoneurons of 4 wrist joint muscles (ECR, ECU, FCR and FCU) at two

different positions. In each trial, TMS was produced before and afier the subject performed

a voluntary wrist movement from 25° of extension to 45° of flexion and vice-versa.

Figures 5 and 6 show typical examples of EMG and wrist position recordings taken

from single trials in two subjects (S 3 and S 5, respectively. The movement was performed

from a flexion to an extension position (Figure 5) and in the reverse direction (Figure 6). In

each figure, the first panel (A) shows the EMG levels at the initial position, 200 ms before

TMS. Panel B shows MEPs stimulated by TM$ in the four muscles at the same initial

position. The middle panel (C) shows EMG activity during an active motion from the

initial to a final position. Panel D shows the EMG activity at the final wrist position,

approximately 8 seconds afler the movement offset, just 200 ms before the second TMS.

Panel E shows MEPs stimulated by TMS at the final position. One can see that before the

movement, the EMG level of the muscles was close to zero. At the final position, aller

transient EMG bursts, the EMG activity gradually retumed to the pre-movement, near-zero

level. The first TMS was delivered at the initial position, about 2 s before the movement

onset. The second TMS was delivered approximateÏy 10 s later, i.e., aller the end of the

movernent, when the EMG activity had retumed to the pre-movement level.
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Figure 5. Wrist position (joint angle), EMG activity of wrist flexors (fCR, FCU) and

extensor muscles (ECR,ECU) before (A,B) during (C) and after (D,E) a movement ftom

flexion to extension (F-’ E). B, E: MEP before (B) and afier (E) the movement (subject

Si). Graphs 1 and 2 are averages ofthe ratio ofTMS responses: for flexors, the average is

the ration of MEPs at flexion and extension positions and for extensor the ratio of MEPs at

the extension and flexion positions (see also figure 7).
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Note that although the EMG levels (200 ms before stimulation) were practically

identical before and after the movement (sec panels A and D in Figures 5 and 6), the

amplitude of MEPs changed with the transition from one position to the other (compare B

and E in each figure): flexor responses (in the fCR and FCU) were bigger at the flexor

wrist position compared to those at the extensor position, and vice versa for extensor (ECR

and ECU) responses. The pattems of position-related responses to TMS remained

qualitatively similar regardless of whether the movements were made from flexion to

extension (f—*E, fig. 5) or from extension to flexion (E—+F, fig. 6). In other words, the

pattems of MEP changes with the transition from one wrist position to the other, whereas

the EMG level remained the same, regardless of how these positions were reached in each

trial.

The quantitative observations illustrated in Figures 5 and 6 are confirmed by

quantitative analysis described below.

3.1 EMG levels can be the same at different wrist

positions

Table 1 shows the effect of wrist joint position on the tonic EMG level (200 ms

windows before each stimulation) in the extensors (ECR and ECU) and flexors (fCR and

FCU) using Student t-test (p< 0,05) for each muscle.
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Movement F—*E E—*F

Muscle ECR ECU FCR FCU ECR ECU fCR FCU

Subject

1 0 0 0 0 0 0 + +

2 0 0 + O O O + O

3 0 + O O O O O +

4 + O + O O O O O

5 0 + O O O + O O

6 0 0 0 0 0 0 0 0

7 - - -
- o o + o

Table 1. The difference between EMG activity levels at two wrist positions before and afier

the movement (O, insignificant; + significant at p< 0.05 level; -, EMG recording was not

made, for subject 7) in the cases when the hand moved from a flexion to an extension

position (condition F—E) and in the reverse direction (condition E—>F) in different

subjects.

In 41 cases out of 52 the EMG levels were similar and did not show a significant

difference between the positions (extension and flexion). In 11 cases the level of EMG was

significantly different for the two positions. EMG was not recorded for the remaining cases

(4 cases). Conclusion: in most cases, the EMG activity could be equalized at two positions

at near zero, threshold level.
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3.2 Positïon-related changes in TMS responses

It is known that responses of muscles to TMS are modified depending on the EMG

activity of muscles (Di Lazzaro et al. 199$). To exclude this confounding factor in the

estimation of position-related corticospinal influences on motoneurons, we compared TMS

responses in each muscle only in those cases when the EMG activity levels were equalized

at the two positions (zeros in Table 1). In these cases, modulation in corticospinal

excitability was investigated by measuring the change in the MEP amplitude at the two

positions. The change in TM$ responses for the extensor muscles (ECR and ECU) was

characterized by the ratio of their MEP amplitudes at the extension position to that at the

flexion position in each trial and then computing the mean ratio and its standard deviation

across ail trials. We thus normalized the MEP to compare positional TMS effects in

different subjects. This method was more preferable than that based on a direct comparison

of positional MEP changes since it somewhat diminishes the influence of the EMG

electrode placement and skin resistance on the MEP measurement across subjects. Position

reiated changes in TMS responses in flexors muscles were characterized by the ratio of

MEP amplitudes at the flexion position to that at the extension position. Note that,

according to these definitions, the ratio exceeding 1 for extensor muscles implies that the

MEPs of these muscles are bigger at the extension wrist position. In contrast, the ratio

exceeding 1 for flexor muscles implies that the MEPs of these muscles are bigger at the

flexion wrist position.

Figures 7 and 8 shows MEP ratios for trials in which subjects move the hand from

flexion to extension and from extension to flexion, respectively. One cari see that in the

cases when the EMG levels were equalized at the two wrist positions, the ratio for

extensors typically exceeded 1. Thus, TMS responses in extensors muscles were higher

when the wrist was in the extension position. In most cases, the ratio for flexors also
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exceeded 1 implying that flexor TMS responses were higher at the flexion wrist position. In

other words, with transition from one wrist position to another, TMS responses typically

changed reciprocally for flexor and extensor muscles.
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Figure 7. The mean MEP ratios (± SEM) for the two wrist positions resulting from

the transition from flexion to extension (F —*E), for wrist extensors (right panels)

and flexors (lefi panels).
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Figure 8. The mean MEP ratios (+ SEM) for the two wrist positions resulting from the
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ANOVA for 2 positions and 2 types of motion (E —*f and F —*E) in each subject

and ail trials showed a significant effect (p< 0.05) of position on the ME? amplitude in

most cases. The influence of position on MEPs was flot significant in one case for the ECR,

ECU and FCR (F= 3.38, p= 0.79 ; F= 3.36, p= 0.76; and F= 1.32, p= 0.26, respectively)

and in three cases for the FCU (F= 0,36, p= 0.5$; F= 2.25, p= 0.15; F= 0.12, p= 0.91).

Thus, except for few cases, the TMS responses were position-dependent, both for flexor

and extensor muscles.

for extensor muscles, the ME? ratio was higher than 1 and the ME? amplitude at

the wrist extension position was> 2 tirnes higher than that at the flexion position in 77% of

cases (for flexion and extension task). For flexor muscles, except for FCU muscles in one

subject (4; see figures 7 and 8 ) the MEP ratio also exceeded 1, implying that the MEP

amplitude at the wnst flexion position was higher than that at the extension position. These

findings further suggest a strong position-related effect of TMS stimulation, reciprocal for

flexors and extensors.

3.3 Position-related changes in TMS responses may be

independent of the direction of movement from one

position to another.

Quaiitativeiy, from comparison of Figures 5 and 6, 7 and 8 or from Table 2 one can

see that the pattems of position-dependent changes in TMS responses were simiiar for both

type of movements from one wrist position to another (F—*E or E—*F). $tatistically, the

movement direction effect was insignificant (p> 0.05) for ail four muscles.
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MEP ratio

Movement f—*E E—* F

Limits Median Average max min Median Average max min

Extensors 2.7 4.5 18 1.4 2.8 4.9 27 1.3

flexors 1.3 1.8 3.9 1.2 2.1 2.2 3.7 1.3

Table 2 shows the maximal, minimal and median of the TMS response of the

extensors and flexors muscles (characterized by an average of the MEP ratios for

each subject and muscles) of subjects group, excluding the FCU responses from

subject 4 (in this subject, MEP ratio for FCU muscle, but flot for other 3 muscles,

was < 1 in extension and flexion tasks).
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3.4 Latency

MEP latency was measured by identifying the first deflection of the EMG trace

from the background level afler the stimulus artefact. In ail cases the latency was in the

range 14-18 ms (see table 3). ANOVA showed insignificant effects of wrist position,

muscle, and movement direction (p>0.05). Table 3 lists the respective mean values for all

cases.
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CHAPTER IV

4.0 Discussion

The general objective of this study was to investigate the changes in corticospinal

influences on motoneurons of wrist flexors and extensors following an intentional transition

from one wrist position to another. Thereby it was necessary to create conditions when the

levels of EMG activity of these muscles at the two positions are equalized, i.e., afler the

movement the EMG activity retums to the pre-movement near zero level. We tested two

hypotheses. First, the corticospinal influences on motoneurons of wrist muscles may be

different even though the EMG activity levels remain the same at different static wrist

positions. Second, the position-related changes in corticospinal excitability may not be

related to the direction of the movement that brings the wrist from one position to another.

In other words, the changes in corticospinal excitability are related to the positions,

regardless of whether these positions were achieved by movement from wrist flexion to

extension or from extension to flexion.

Our study showed that EMG levels can be the same at different wrist positions. In

fact, at the initial position and after the voluntary movement to the new position, the EMG

activity was close to zero, suggesting that motoneurons of the muscles recorded at the

initial wrist angle were near their activation thresholds and retumed to a near threshold state

after establishing the final joint angle. Our findings are thus similar to those by Ostry and

feldman (2003) and Foisy and feldman (2006) for arm movements and would suggest that

the motor cortex resets the threshold position of the body segments when active movements

are produced, rather than in direct specification of EMG pattems (see feldman 2007). Note

that in the present study, EMG levels were equalized between positions in most but flot ail

trials (see Table 1). One explanation of these exceptions is the presence of co-activation of

agonist and antagonist muscles: subjects were not always successful in minimizing this co

activation after the end of movement. Co-activation is oflen used to stabilize the wrist joint
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by increasing stiffness. Indeed, the wrist anatomy is especially complex, which allows the

nervous system to greatly vary the hand shape and range of motion. The presence of multi

joint muscles (including those recorded in the present study) and the absence of short

muscles directly attaching distal radial and ulnar bones to the carpal bones possibly favour

this liberty of movements at the expense of stability. Linked to this explanation is the fact

that the wrist muscles are polyfunctional: subjects might combine wrist flexion with some

abduction or adduction creating torques that tended to rotate the hand in the splint, resulting

in respective changes in the EMG levels at the two wrist position. Yet another explanation

is that, using elastics, we were flot always able to fully compensate for passive muscle

torques at the two different wrist positions, necessitating activity of some muscles to

counteract the residual passive torques of antagonist muscles at each position. These

elastics might also be responsible for variability in the stabilization of the hand and fingers

positions. This drawback in the present set-up can be overcome by using a torque-motor for

compensation of passive torque, as is the case in the new set-up in our laboratory.

When TM$ is used to measure the corticospinal excitability, it is usually correlated

with variables characterizing the motor output, such as EMG activity and force (Di Lazzaro

et al 1998; Todd et al 2003, 2004). In the current study, we were generally successful in

equalizing EMG activity at two wrist positions to support the previous feldman’s

hypothesis that changes in the motor cortex may not be involved in direct specification of

EMG activity but rather in resetting of the threshold position at which appropriate muscles

begins their recruitment.

Our results showed that the corticospinal excitability measured by MEP amplitude

of the extensors were higher at the extension position whereas flexors MEP amplitude were

higher at the flexion position. This reflected a reciprocal change in the corticospinal

influences on flexors and extensors motoneurons with the transition ftom one position to

another. Thus, the results suggested a strong position-related change in corticospinal

influences. In addition, this finding showed that the pattems of position-related changes in
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corticospinal influences practically remained the same regardless of the direction of

movement that was made in each trial (from flexion to extension or vice versa). In other

words, the observed changes in the corticospinal influences due to the position might lead

the resetting in the postural state required for the movement production rather than the

movement direction itself. In few cases, specifically for the flexor (FCR, fCU) muscles,

there were no position-related changes in the MEP amplitude. One argument could be that

the stimulation site may facilitate one group of muscles more than another (Georgopoulos

et al. 1986, 1989), or can influence a group of multijoint muscles, which cross more than

two joints (Graziano et al. 2005). The effect of position in the corticospinal excitability

could be variable in multijoint muscles due to the gating of the afferent information

obtained ofthe crossed joints, other alternative explanation could be a subtie discrepancy in

the hand positions, particularly in the fingers. Therefore, the presence of active biarticular

muscles that were not monitored and that cross the wrist joint could also influence the

excitability of the investigated muscles.

The reciprocal modulation in corticospinal excitability observed in the wrist

extensors and flexors suggests a distal synergistic relationship between these muscles.

Since wrist joints ofhuman limbs have more than one axis of rotation and are controlled by

more than two muscles, this suggests that motor cortex controls the different limb segments

as a whole rather than individually and that the corticospinal excitability modulation may

be destined for multiple muscles. It would therefore be attractive to comment on possible

proximal-distal synergies as observed by Ginanneschi et al (2006), whereas they found

changes of the corticospinal excitability pathways to forelimb muscles after changing

shoulder joint position. This would require examining the distal synergistic effect for

multiple shoulder-elbow joint configurations. for example, it would be interesting to test if

different activity levels in proximal muscles, related to different configurations of these

proximal joints, could influence the excitability of distal muscles (see future studies).
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According to the threshold position control theory ($t-Onge and Feldman 2004) the

nervous system specifies a referent configuration determined by a set of threshold joint

angles at which muscles are suent but ready to generate activity and forces to deviate from

this position. If muscles are suent, this means that the motoneurons of the wrist joint are in

the sub-threshold state just before the onset of movement. On the other hand, other studies

suggested that during the period prior to the onset of a motor action when the muscles are

ready to reach the new position, although EMG activity is nearly zero, there is an increase

in the corticospinal facilitation of agonist motoneurons and inhibition or de-facilitation (i.e.

decreased facilitation) of motoneurons of antagonist muscles. These changes in

corticospinal excitability have been recorded approximately 100 ms before the movement

onset, in the case of movements starting from a neutral wrist position (MacKinnon and

Rothwell.2000; Hoshiyama et al, 1996). In our study, the MEP was evoked approximately

2 seconds before movement onset from different initial wrist angles and around 8 seconds

afler the movement was completed. Modulation of the TMS responses was still observed.

These current results show that central excitability is changed with position independently

of muscles activation and thus independently of spinal motoneurons activation. Indeed two

interpretations of our results are possible: either cortical excitability influences (i.e.

specifies) position and/or position influences cortical excitability.

Lewis et al (2001) and Coxon et al (2005) also reported phasic modulation in

corticomotoneuronal excitability in the forearm flexor muscles. However, this modulation

was observed during passive rhythmical movement of the wrist joint, i.e. not in discrete

active positions. The findings may have been influenced by the fact that although the

subject was required to perform passive movement induced by a manipulandum, there

could be a tendency, on behalf of the subject, to assist with the movement. In essence, the

subject was therefore performing active movement of the wrist joint facilitated by an

anticipation of the passive movement to be induced by the manipulandum. On the other

hand, in this case, as in our resuits, changes in excitability could be influenced by the
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change in muscle stretch input on the motor cortical excitability. Since this stretch is

position specffic, different motor cortical excitability could be produce by different

positions. In the same manner, if the change of position of a joint can influence motor

cortical excitability, we could assume that change in cortical excitability could resuit in a

change of position. The analyses of TMS responses in passive versus active movements are

presently underway. Ours preliminary data show that the MEP response substantially

decreased with muscle relaxation and only weakly (if at all) correlated with passive

changes in the wrist positions.

However, the present results cannot be explained by stretch-reflex influences at the

spinal level. Consider for example, a position where the wrist is fully extended as allowed

by the length-tension relationship. In this position, there is shortening of the wrist

extensors. Facilitation of the extensors spinal alpha-motoneurons would therefore decrease,

because of a decrease in the firing of la afferent fibers from extensors spindles, unless this

is prevented by supraspinal activation of gamma-motoneurons, which increase the la

discharge and sensitivity. As a resuit, in the absence of alpha-gamma co-activation, the

reflex-elicited excitability ofthe flexors would be greater, while that ofthe extensors would

be smaller at wrist extension, which is contrary to the findings of this study. Therefore, this

fact emphasizes the importance and role of supraspinal influences in the resetting of alpha

motoneuron excitability.

An alternative explanation including the supraspinal activity influence by the stretch

of the muscles could be that in the fully extended position, the muscle spindles of the

flexors are stretched and they discharge. This discharge can be interpreted by the cortex as

an extension thereby increasing the excitability of the extensors. Similar results are found

when artificially firing of the flexors spindle afferents are stimulated with vibration.

Vibration of flexor tendons strongly induce an illusion of extension which resuits in wrist

extension, that is the so called antagonist vibratory reflex tRoll et al. 1995). Recently

Duclos et al. (2007) have shown that these illusions ofmovement are indeed accompanied
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by cortical activation. However, the illusion of movements caused by the vibration might

direct influence on the behaviour of the subject who may has a tendency to assist or initiate

movement as occurred in Lewis et al (2001).

If we presume that an increase in corticospinal excitability can produce a voluntary

movement and thus a change in position, then, in the event that this movement is blocked, it

must result in a voluntaiy isometric contraction (Asatryan and feidman 1965). In contrast,

when the movement is not blocked, the same central influence may result, afier intermittent

EMG bursts, in a transition of the joint ftom one position to another. In others words, the

same central influence can shifi the equilibrium state of the joint or muscle in different

positions, depending on the extemal conditions (ex. Ïoad or obstacle). Motor actions

emerges following the difference between the actual and the referent positions whereas the

activity of agonist, antagonist and synergist muscles can vary with biomechanical

properties or anatomic factors (Feldmanl9$6, Feldman and Levin 1995). For example,

every time a joint is involved in a high contraction level, the force recorded is dependant on

the joint angle and on the final configuration of the whole body. This consideration is

essential in the appreciation of the results obtained in Todd et al (2003, 2004), where the

MEP amplitude of agonist muscles decreased with increasing level of force applied,

whereas the amplitude of antagonist muscles increased. The missing data about proximal

joint position and arm configuration does not allow making any straightforward

conclusions related to the link between cortical excitability and torque.
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4.1 Study limitations

A major challenge in this study was to maintain consistent initial hand and finger

positions before and afier movements and during the progress of the experiment. This

impacted on the EMG level of the wrist flexors and extensors between trials. The

variability associated with the use of an elastic band to reproduce the effects of an elastic

position-dependant torque (to compensate for passive muscle torques) should also be taken

into account when considering the factors impacting on resuits overail variance.

Fatigue could also be another factor contributing to an increased EMG variability.

Also, this study was a pilot study that consisted of a small number of subjects. A larger

sample of subjects would have given a greater consistency in the resuits and reduced the

overail impact of variability on statistical methods. NonetheÏess, the findings were

sufficient to verify the study hypotheses and are also in accordance with other related

studies of motor control (Feldman 1986, Ostry and Feidman 2003; Foisy and feidman

2006; Ginanneschi et al. 2006).

4.2 Future directions

The current study investigated ME? modulation related to changes in wrist position.

An interesting continuation of this study would be to integrate to the TMS resuits to tests

aiming to verify the excitability of spinal\segmental levels between the different positions,

e.g. by comparing muscle responses to mechanical perturbations (stretch reflexes) at each

ofthe actively specified positions. Other studies should examine if the phantom movements
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produced by vibration (AVR) are accompanied by a differential facilitation of corticospinal

excitability (i.e MEP using TMS) in different positions.

It would therefore be desirable to examine the possible influence of movement

dynamics on MEP responses as well as their dependency on background EMG levels. In

addition, it is also necessary to investigate the changes in TMS responses when the wrist

muscles are relaxed. Resuits ofpaired-pulse experiments would be desirable to confirm

cortical involvement in the resetting of threshold positions. The influence ofperipheral

inputs (proprioceptive, cutaneous) on ME? characteristics is another topic of future TMS

studies.
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CHAPTER V

5.0 Conclusions

Motoneuronal excitability in the wrist extensors and flexors remained the same,

close to zero, in both positions — flexion as well as extension, before and after voluntary

movement. Furthermore the relative change in the MEP amplitudes for each muscle was

consistent regardless of how the position was reached, when EMG levels were equalized.

Corticospinal excitability, measured by TMS, showed position-dependence and movement

direction-impendence properties thus providing insights about the nature of supraspinal

influences during active movement.
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Annexe I. Questionnaires

Questionnaire pour Information sur sujet et Antécédents Médicaux

Identification du sujet

Nom:

___________________________________Code

d’identification:

_____________

Age:

______

ans Sexe: M ou F No de téléphone:_____________________

Antécédents médicaux

1. Avez vous déjà été affecté(e) par les troubles suivants?
a) Troubles articulaires Oui ou Non

Si oui, SPÉcIFIEz

b) Troubles neuromusculaires (maladie Parkinson, tremblement essentiel, etc.)
Oui ou Non

Si oui, spécifiez

c) Troubles visuels Oui ou Non
Si oui, spécifiez

d) Portez-vous des lunettes ou des verres de contact? Oui ou Non
Si oui, spécifiez

2. Vous êtes-vous récemment plaint de douleur aux membres supérieurs, aux mains ou
aux doigts? Oui ou Non
Si oui, spécifiez

3. Avez-vous déjà eu une perte de sensation au niveau des mains ou des bras (ex:
picotement, engourdissement)? Oui ou Non
Si oui, spécifiez

4. Prenez-vous des médicaments? Oui ou Non
Si oui, lesquels

5. Souffrez-vous d’autres conditions médicales qui devraient être mentionnées?
Oui ou Non
Si oui, spécifiez



II
Questionnaire for medical and personal subject information

Identification of subject

Name:

_____________________________Identification

Code:

_______________

Age:

______

yeats Sex: M or F Telephone number:_______________

Medical antecedents

1. Have you ever been affected by the following disorders?
a) Joint disorders Yes or No

IF YES, SPECIFY

b) Neuromuscular disorders (Parkinson’s disease, essential tremor, etc.)
Yes or No
If yes, specify

c) Visual disorders Yes or No
If yes, specify

d) Do you wear glasses or contact lenses? Yes or No
If yes, which one

2. Have you recently complained of pain in the upper Iimbs, hands or fingers?
Yes or No

If yes, specify

3. Have you ever experienced any Ioss of sensation in the hands or arms (e.g.,
numbness, tingling)? Yes or No
If yes, specify

4. Are you currently taking any medication? Yes or No
If yes, specify

5. Do you have other medical conditions which should be mentioned?

Yes or No

If yes, specify



III

Questionnaire de Dominance Edinburgh

(Oldfield RC, Neuropsychologia 9:97-113, 1971)

CODE D’IDENTIFICATION DU SUJET:

___________

A. S’il vous plaît, veuillez indiquer votre préférence quant à l’utilisation de vos
mains pour les activités suivantes en inscrivant un + dans la colonne
appropriée. Là où la préférence est tellement forte que vous ne pourriez même
pas considérer utiliser votre autre main à moins d’y être absolument forcé,
inscrivez ++. S’il est un cas où vous êtes totalement indifférent(e) quant à
l’utilisation d’une main ou l’autre, inscrivez + dans les deux colonnes.

B. Quelques-unes des activités nécessitent les 2 mains. Dans ces cas, la
composante de la tâche ou l’objet pour laquelle la préférence de la main est
demandée est indiquée entre parenthèses.

C. S’il vous plaît, essayez de répondre à toutes les questions et ne laissez
l’espace libre que si vous n’avez aucune expérience à exécuter la tâche
demandée ou à manipuler l’objet indiqué.

Gauche Droite

1 EcRIRE

2 DEsSINER

3 LANcER

4 CisEAux

5 BR055EÀDENT

6 CoUTEAu (SANS LA FOURCHETTE)

7 CUILLÈRE

8 BALAI (MAIN SUPÉRIEURE)

9 ALLUMER UNE ALLUMETTE (MAIN TENANT

ALLUMETTE)

10 OUVRIR UNE BOÎTE (COUVERCLE)



Iv
Edïnburgh Handedness Inventory

(Oidfield RC, Neuropsychologia 9:97-113, 1971)

SuBJEcT ID CODE:

_________________________

A. Please indicate your preferences in the use cf hands in the following activities
by putting + in the appropriate coiumn. Where the preference is se strong that
you wouId neyer try te use the other hand unless absolutely forced to, put ++. If
in any case you are realIy indifferent put + in both columns.

B. Some cf the activities require both hands. In these cases the part of the task,
or object, for which hand preference is wanted is indicated in brackets.

C. Please try te answer ail the questions, and oniy leave a biank if you have no
experience at ail cf the object or task.

Left Right

1 WRITING

2 DRAwING

3 THR0wING

4 ScissoRs

5 TOOTHBRusH

6 KNIFE (wITHouT FORK)

7 SPOON

8 BR00M (uPPER HAND)

9 STRIKING A MATCH (MATCH)

10 OPENING A BOX (LID)
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