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Résumé

La formation de nouveaux vaisseaux sanguins ainsi que l’extension du réseau pré -

existant sont des processus indispensables au bon déroulement de la gestation. Une

augmentation de l’apport sanguin au foetus durant son développement est en effet essentielle

pour répondre rapidement aux besoins croissants en échanges gazeux, en apport

nutritionnel et â la nécessité d’éliminer les déchets. Cette amplification de la

vascularisation s’effectue par l’intermédiaire de facteurs angiogéniques. Le principal

facteur impliqué dans ce processus est le facteur de croissance de l’endothélium vasculaire

(VEGf). Grâce à ses récepteurs à activité tyrosine kinase, VEGF induit la proliferation des

cellules endothéliales des vaisseaux sanguins et augmente la perméabilité vasculaire. Dans

cette étude. nous avons caractérisé l’expression de VEGF et de ses récepteurs au niveau de

l’uterus et du placenta pendant la période de péri-implantation embryonnaire. Nous avons

utilisé en guise de modèle animal, le vison américain, un carnivore qui présente une

diapause embryonnaire obligatoire.

Notre premier objectif a été de caractériser l’expression de VEGf et de ses

récepteurs au cours des étapes précoces de la gestation chez le vison. Nous avons cloné la

séquence codante de VEGf exprimé chez le vison ainsi que des portions de séquences

codante pour ses récepteurs. Toutes les séquences clonées ont témoigné d’une homologie

élevée avec les séquerces déjà identifiées chez d’autres espèces. L’expression des ARNm

correspondant à ces gènes a été évalué dans l’utérus de vison durant la diapause, la
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reactivation de l’embryon, l’implantation et la pseudo-gestation. Nous avons démontré que

les trois isoformes les plus abondants de VEGF et ses récepteurs étaient sur-régulés au

moment l’implantation. Le niveau d’expression de l’ARNm de VEGf était élevé dans

l’uterus en pseudo-gestation tandis que celui de ses récepteurs était relativement bas, ce qui

suggère que l’embryon est impliqué dans la regulation de l’expression des récepteurs en

presence de VEGF. Sous sa forme protéique, VEGF a été localisé dans l’épithélium

glandulaire pendant la diapause, et sa progression vers l’épithélium luminal a été observé

lors de la réactivation de l’embryon. La présence de VEGF a également été détecté durant

l’implantation au niveau de l’épithélium luminale et glandulaire ainsi que du stroma, et de

manière plus intense dans les cellules invasives du trophoblaste.

Nous avons ensuite étudié l’expression de la prostaglandine E2 (PGE2) dans l’utérus

au début de la gestation afin de déterminer son rôle dans la régulation de VEGf. Des

embryons de vison mis en culture ont secrété une quantité importante de PGE2. La

présence de PGE synthase, enzyme responsable de la formation de PGE2, a par ailleurs été

détecté dans les cellules du stroma utérin en réponse à l’invasion de l’embryon au début de

l’implantation. Deux des récepteurs de PGE2, EP2 et EP4, ont de plus été localisé dans

l’utérus au même moment. En transfectant des cellules du stroma utérin avec le gène

rapporteur de la luciférase placé sous le contrôle du promoteur de VEGF exprimé chez le

vison, nous avons démontré que PGE2 stimulait la transcription de VEGf.

Nous avons finalement déterminé les mécanismes de régulation de la transcription

de VEGf par PGE2. En utilisant le système de transfection précédemment décrit, nous
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avons montré que PGE2 dépendait de l’activation des voies de signalisation par la PKA.

Grâce à des expériences de délétions et de mutations dans la séquence promotrice de

VEGF, nous avons identifiés la presence de boîtes AP2/SPY dans la région proximale du

promoteur et démontré que ceux-là étaient responsables de la transactivation du promoteur

de VEGf par PGE2. Cela a ensuite été confirmé par des essais d’immnuoprécipitation de la

chromatine qui ont permis d’observer que AP2/SP I se liaient effectivement au promoteur

endogène de VEGF après traitement à la PGE2 chez le vison. En plus d’induire la liaison

des facteurs au promoteur, PGE2 est impliqué dans l’acétylation de l’histone H3 qui est

associée à la chromatine active.

Ces études permettent de conclure que VEGF et ses récepteurs sont sur-régulés au

début de la gestation, contribuant ainsi à la formation du placenta et à l’augmentation de la

vascularisation utérine. VEGF est en partie régulé par la présence de PGE2 au niveau de

l’embryon et de l’utérus, responsable de la transactivation du promoteur par AP2/SP1 ainsi

que de l’acétylation de l’histone H3 associée à cette région promotrice.

Mots-clés VEGF, angiogénèse, période de peri-implantation, uterus, placenta,

prostaglandines, vison, régulation transcripti onnelle.
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Abstract

The formation of new blood vessels, as wefl as the extension of a pre-existing vessel

network, are processes required for successful maintenance of pregnancy. An increase in

blood supply to the growing fetus is necessary to meet the rapidly expanding need for gas

exchange, nutrient supply and waste removal. This amplification of vascularity is achieved

through the action of angiogenic factors. The principal factor implicated in the process is

the vascular endothelial growth factor (VEGF). Through its tyrosine kinase receptors,

VEGf induces proliferation of the endothelial celis of the vesseis, and increases vascular

perrneability. In this study, we characterized the expression of VEGF and its receptors in

the uterus/placenta during the embryo peri-implantation period, and identified a key

mechanism of regulation of this angiogenic factor during this period. As our model, we

utilized the American mink, a carnivore presenting obligate embryonic diapause.

Our first objective was to characterize the expression of VEGF and its receptors

during the early stages ofpregnancy in the mink model. We cloned the coding sequence of

mink VEGF, as well as portions of the receptors sequences. Ail cloned sequences bore

high hàmology with other species sequenced to date. Expression of the rnRNA for these

genes was evaluated in the rnink uterus during different stages: diapause. embryo

activation, implantation and pseudopregnancy. We demonstrated that the three most

abundant VEGF isoforms and its receptors are up-regulated associated with implantation.

VEGF mRNA levels were high in pseudopregnant uteri, whereas both receptors displayed



vii

low levels of mRNA at this stage, indicating that the embryo may play a role in regulating

expression of the receptors as opposed to VEGF. VEGf protein was localized in the

glandular epithelium during diapause and progressed to the luminal epithelium as embryo

activation ensued. Luminal and glandular epithelium, as well as the stroma, were positive

for VEGF protein during implantation. The most intense localization was found at the

invasive trophoblast celis at this stage.

following VEGF localization, we investigated prostaglandin E2 (PGE2) in the uterus

during early pregnancy to determine itS role in VEGF regulation. Activated mink embryos

in culture produced high levels of PGE2. PGE synthase, responsible for formation of PGE2,

was present in the uterine stromal ceils in response to the presence of the invading embryo

during early implantation. Two of the PGE2 receptors, EP2 and EP4, were found to be

present in the uterus at that time. By transfecting mink uterine strornal ceils with the

luciferase reporter gene driven by the mink VEGF promoter, we demonstrated that PGE2

stimulates VEGf transcription.

Lastly, we determined the mechanisrn involved in regulation of VEGf transcription

by PGE2. Using the transfected stromal celi system described above, we showed that PGE2

action is dependent on activation of the PKA pathway. Through promoter deletion and

mutation studies, we identified an AP2/$P1 cluster at the proximal promoter region and

demonstrated that it is responsible for PGE2 induced VEGf promoter transactivation. This

was further confirmed by ChIP assay, which demonstrated AP2/SP1 binding to the

endogenous mink VEGf promoter following PGE2 treatment. In addition to inducing
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binding of these factors to the promoter, PGE2 also induced histone H3 acetylation, which

is associated with active chromatin.

From these studies we concluded that VEGF and receptors are up-regutated during

early pregnancy, contributing to the formation of the placenta and in the increase in uterine

vascularity. Expression of VEGf is regulated in part by the presence of ernbryonic and

uterine PGE2 at this stage, and its actjon induces promoter transactivation by AP2/SP1 and

histone H3 acetylation associated to this prornoter region.

Keywords VEGf, angiogenesis, peri-implantation period, uterus, placenta,

prostagi andins, mink, transcriptional regulation
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INTRODUCTION

The American mink (MusteÏa vison) is a carnivore that displays obligate embryonic

diapause, which consists of an arrest in mitotic activity of the embryo, resulting in delayed

implantation. The mink embryos arrest development at the blastocyst stage, six to seven

days after mating, upon entrance to the uterus (Hansson, 1947). Increased secretion of

prolactin terminates diapause (Papke et al., 1980; Murphy et al., 19$1; Martinet et al.,

1981). The increase in prolactin levels is dependent upon the reduction in melatonin levels

(Murphy et aI., 1990) related to the vernal equinox. Prolactin reactivates the corpus luteum,

which following ovulation is barely functional. In the mink, reactivation of ernbryo

development appears to be controlled by maternai rather than embryonic factors (Chang et

al.. 1968). following embryonic reactivation and implantation, the mink forms a

discontinuous zonary placenta of the endotheliochorial type in which the classic decidual

response seen in other species is absent (Enders, 1957).

Development and growth of blood vessels is paramount to the success of early

pregnancy. Embryo growth and survival are dependent upon establishment ofthe placenta,

which in turn guarantees the influx of nutrients, gas exchange and elimination of waste.

Increase in uterine vascularity occurs at early stages of pregnancy, even preceding embryo

attachrnent (Psychoyos, 1986). This increase is dependent upon up-regulation of

angiogenic factors responsible for proliferation of vessel endothelial ceils as well as

increased permeability.
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One of the most important regulators of blood vessel formation and development is

the angiogenic factor vascular endothelial growth factor (VEGf) and its tyrosine kinase

receptors Fit-1 (frns-like tyrosine kinase, also known as VEGFR-l) and KDR (kinase

domain region, also known as VEGFR-2) (Jussila and Alitalo, 2002). Through binding to

its receptors, VEGF induces both vascular permeability and serves as a potent endothelial

celi-specific mitogen (Senger et al., 1983; ferrara an Henzei, 1989). VEGF is required for

the proper development and viability of embryos, based on findings that inactivation of

even a single aÏlele is embryonic lethal at days 11-12 of gestation (Carmeliet et al., 1996).

Up-regulation of VEGF and receptors in the uterus, during early pregnancy, lias been

demonstrated in several species to date (Yi et al., 1999; Ghosh et al., 2000; Chakraborty et

al., 1995; Halder et al., 2000; Das et al., 1997).

The prostaglandins, lipid compounds derived from the fatty acid arachidonic acid,

are known to have multiple effects on reproduction. These effects can be seen in a variety

of reproductive processes, including regulation of ovarian changes, participation in sorne of

the events leading to fertilization, and actions on implantation, placental formation, and

parturition. An array of prostaglandins can be derived from arachidonic acid. The

synthetic cascade begins with the action of phospholipase A2, which liberates arachidonic

acid from the phospholipids of the membrane. This substrate is then acted on by two

isoforms ofthecyclo-oxygenase enzyme, COX-1 and COX-2, also known as prostaglandin

H synthase, giving rise to prostaglandin H2. The action of prostaglandin synthases on
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prostaglandin FI2 bring about formation of specific prostaglandins. Expression of each

product will vary according to celi type and biological context, resulting in a panoply of

potential effects. The importance of prostaglandin to reproduction is summarized in the

work of Lim et al. (1997), who demonstrated that mice nuli for COX-2, the rate-limiting

enzyme on inducible prostaglandin formation, present failures in ovulation, fertilization,

implantation and decidualization.

Prostaglandin E2 is produced from Prostaglandin H2 following the action of

prostaglandin E synthase (PGE synthase). It binds to the E? receptor, which lias 4

subtypes: EPÏ through EP4, which elicit different intracellular pathways. This specific

prostaglandin can partially rescue the ovarian phenotype of anovulation seen in the COX-2

nuli mice (Davis et al., 1999) and, in fact PGE synthase is highly expressed in pre

ovulatory follicles (Filion et al., 2001). Besides its action in the ovary, PGE2 appears to

modulate early pregnancy events. PGE synthase is co-expressed with COX-2 in the uterus

of several species, and it appears to be modulated by the presence of the ernbryo (Wang et

aI., 2004; Ni et al., 2002). In the mink, our laboratory has previously demonstrated that

COX-2 is expressed in the uterus following implantation and it appears to localize to the

stroma surrounding the invading trophoblast celis (Song et al., 199$). In the work

presented herein, we demonstrate that PGE synthase appears to follow the same temporal

and spatial pattern of expression of COX-2 in the mink pregnant uterus.
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Prostaglandin E2 bas been shown to be an important regulator of VEGF. In studies

mainly involving cancer ccli unes, PGE2 bas been reported to significantly up-regulate

VEGF transcription (Eibl et ai., 2003; Saies et aI., 2004; Casibang et aÏ., 2001). In a

considerable number of these investigations, ligand binding to EP2 and EP4, and

subsequent increase in intracellular cAMP, seems to be the pathway invoived in the VEGF

transcriptional induction.

The present work aims: 1) To characterize the expression and localization of tbe

isoforms of the principal angiogenic factor VEGF, as well as its receptors KDR and Fit-1,

in the mink uterus during diapause, embryo activation, at early stages of implantation and

piacental formation, as well as in the pseudopregnant uterus. Its goal is to verify the effect

of embryonic and maternai factors on the regulation of VEOF and receptors; 2) To identify

prostaglandin E2 as an important regulator of VEGF and therefore vasculogenesis and

angiogenesis at early stages of placenta formation; and 3) To establish the molecular

mechanisms involved in PGE2 induced increase in VEGF transcription in mink uterine

ceils.
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3200 rue Sicotte, St.Hyacinthè, Quebec, Canada J257C6
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Abstract

Embryonic diapause, a condition cf temporaiy suspension of development cf the mammatian embryo, occurs due to suppres
sion cf celi proliferation at the blastocyst stage. It is an evo!utionary strategy to ensure the survival of neonates. Obligate dia-
pause occurs in every gestation cf some species, uhile facultative diapause ensues in others, assodated with metabolic stress,
usually lactation. The onset, maintenance and escape tram diapause are regulated by cascades of environmental, hypophyseal,
ovarian and uterine mechanisms that vary among species and between the obligate and facultative condition, In the best
known models, tise rodents, tise uterine environment maintains tise embryo in diapause, while estrogens, in combination with
growth factors, reinitiate development. Mitotic arrest in the mammalian embryo occurs at tise GO or Cl phase of tise ccli
cycle, and may be due to expression of a specific celi cycle inhibitor. Regulation of proliferation in non- mammalian modeis
of diapause provide dues ta orthoiogous genes whose expression may regulate tise reprse cf proliferation in the mammalian
context.
Reproduction (2004) 723 669—678

Introduction

Embryonic diapause, aiso known as discontinuous devel
opment or in mammals, deiayed implantation, is among
the evolutionary strategies that ensure successful repro
duction. t comprises tise uncoupling of mating and fertili
zation from birth and serves to maintain developmentat
arrest of the embryo, usuai(y to ensure that postnatal
deve!opment can be compieted under more favorable
environmental conditions. lts wide distribution among
unrelated taxa, from plants ta insects to vertebrates,
suggests that it bas atisen numetous times during evol
ution. Tise defining characteristic 0f diapause in plants
and animais is dramatic reduction or cessation of mitosis
in the embryo. Ceil cycle arrest can occur at tise DOIGt or
G2 phase, depending on the species, and is induced by
mechanisms that are poorly understood in virtualiy every
species so fat investigated. The exit from diapause can be
defined as tise resumption of mitotic activity. t s regu!ated
by numerous factors, often specific to tise species in
question.

Recent comprehensive syntheses cf literature have
appeared on the evolutionary aspects cf diapause (Thom
et al. 2004), and on tise maintenance and termination cf
diapause (Rentree & Shaw 2000). Tise moiecular regu
lation of implantation from the uterine perspective bas

recently been discussed in depth (Dey et al. 2004). In tbis
presentation we address the characteristics 0f tise embryo
in diapause and focus on tise mechanisms cf regulation of
this phenomenon, including tise environmental and meta
bouc stimuli that induce and terminate this condition, tise
hormonal regulatory pathways, and tise phenomenon of
ceii cycle arrest and reactivation.

The embryo in diapause
in most mammais displaying discontinuity of develop
ment, the progression ta the bastocyst stage of the embryo
and post-implantation development of the embryo and
fetus fol(ow a preordained, species-specific program.
There is an arrest in deveiopment that initiates diapause
occuring at the btastocyst stage in most species. Notable
exceptions are found in tise bat family, where variation in
the rate of post-implantation development has been docu
mented (Rasweiler & Badwaik 1997). Among species dis
piaying diapause at the b!astocyst stage there s significant
vatiation in morphotogy of tise arrested embryo. In many
species that dispiay pre-implantation delay, including tise
rodents (Zhao & Dean 2002), tise roe deer fAitken 1975)
and tise nine-banded armadillo (Dasypus novemcinctus; A
C Enders, personal communication), tise embryo hatches

C 2C03 Scciety for Reproduction and Fertility
lS5 1370-t 626 tpaper) 1731—7899 fonline)

Dol: 101530/rep.100443
Online en:on via www.reproduction.onTine.org



7

ABSTRÀCT

Embryonic diapause, a condition of temporary suspension of developrnent of the

mammalian embryo occurs due to suppression of ceil proliferation at the blastocyst stage of

development. It is an evolutionary strategy to ensure the survival of neonates. Obligate

diapause occurs in every gestation of some species, whule facultative diapause ensues in

others, associated with metabolic stress, usually lactation. The onset, maintenance and

escape from diapause are regulated by cascades of environmental, hypophysial, ovarian and

uterine mechanisms that vary arnong species and between the obligate and facultative

condition. In the best-known models, the rodents, the uterine environment maintains the

embryo in diapause, while estrogens, in combination with growth factors, reinitiate

development. Mitotic arrest in the mammalian ernbryo occurs at the GO or Gi phase ofthe

ceil cycle, and may be due to expression of a specific ceil cycle inhibitor. Regulation of

proliferation in non-mammalian models of diapause provide dues to orthologous genes

whose expression may regulate the reprise of proliferation in the mammalian context.

INTRODUCTION

Ernbryonic diapause, also known as discontinuous development or, in mammals,

delayed implantation, is among the evolutionary strategies that ensure successful

reproduction. It comprises the uncoupling of mating and fertilization from birth and serves
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to maintain developmental arrest of the embryo, usually to ensure that postnatal

development can be completed under more favorable environrnental conditions. Its wide

distribution among unrelated taxa, from plants to insects to vertebrates, suggests that it bas

arisen numerous tirnes during evolution. The defining characteristic of diapause in plants

and animais is dramatic reduction or cessation of mitosis in the embryo. Ceil cycle arrest

can occur at the G0/Gl or G2 phase, depending on the species, and is induced by

mechanisrns that are poorly understood in virtually every species so far investigated. The

exit from diapause can be defined as the resumption of mitotic activity. It is regulated by

numerous factors, often specific to the species in question.

Recent comprehensive syntheses of literature have appeared on the evolutionary

aspects of diapause (Thom et al. 2004), and on the maintenance and termination of

diapause (Renfree & Shaw 2000). The molecular regulation of implantation from the

uterine perspective bas recently been discussed in depth (Dey et aÏ. 2004). In this

presentation we address the characteristics of the embryo in diapause and focus on the

mechanisms of regulation of this phenomenon, including the environmental and metabolic

stimuli that induce and terminate this condition, the hormonal regulatory pathways, and the

phenomenon of cell cycle arrest and reactivation.

Tuf EMBRYO IN DIAPAUSE

In most mammals displaying discontinuity of development, the progression to the

blastocyst stage of the embryo and post-implantation development of the embryo and fetus
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follow a preordained, species-specific program. There is an arrest in development that

initiates diapause and that occurs at the blastocyst stage in rnost species. Notable

exceptions are foutid in the bat family, where variation in the rate of post-implantation

development lias been docurnented (Rasweiler & Badwaik 1997). Among species

displaying diapause at the blastocyst stage there is significant variation in morphology of

the arrested embryo. In many species that display preimplantation delay, including the

rodents (Zhao & Dean 2002), the roe deer (Aitken 1975) and the nine-banded armadillo

(Dasypus novemcinctus; A.C. Enders, personal communication) the embryo hatches from

its zona peliticida before entering into diapause. The embryo of the roe deer has a modest

complernent of 30-40 cells (Aitken 1975). The mouse embry’o has a similar celi number at

hatching, but this number increases to approxirnately 130 cells within 72 h, and this cell

complement is maintained through diapause (Spindler et al. 1996). The blastocyst of the

armadillo is much larger, consisting of an inner celi mass in excess of 100 celis, and

approximately 600 trophoblast ceils (Enders 1962). In marsupials, the embryo in diapause

comprises 60-100 cells (Smith 1981) surrounded by a glycoprotein investment comprising

the zona pellucida of the oocyte, supplemented by two further investments derived from the

oviduct (Selwood 2000). The carnivore embryo in diapause consists of 200-400 ceils, with

a zona that persists until implantation (Desmarais et al. 2004). The carnivore zona appears

to be supplemented with layers of glycoprotein acquired during the passage of the embryo

from the oviduct to the uterus (Enders & Mead 1996). There is evidence from studies of

the western spotted skunk (Spilogale putorius) and the badger (Taxidia taxzis) that embryo
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diameter and the total number of ceils in the blastocyst increase during diapause, although

this proliferation is restricted to the trophoblast celis (Mead 1993). In other mtistelids, the

total celi number does not seem to increase during diapause (Mead 1993). In the mink

(Musteta vison,), blastocyst diameter increases and ceils proliferate only after reactivation

(Desmarais et al. 2004). In the tammar wallaby t’Macroptts eugenit,), neither the number of

ceils in the embryo nor its diameter increase during diapause (Renfree 1981). In contrast, a

low level of mitosis characterizes preimplantation delay in the roe deer (Lengwinat &

Meyer 1996).

TWO VARIATIONS ON THE THEME 0F DIAPAUSE

Two functionally distinct categories of mammalian embryonic diapause are

recognized (Table 1). Facultative diapause. best known in rodents and marsupials, is the

devetopmental arrest induced by environmental conditions related to the survival of the

dam and her ability to nourish developing ernbryos. Facultative diapause can be produced

experimentally in rodents hy ovariectomy of the female soon after fertilization, followed by

progesterone treatrnent (Paria et al. 2002). In contrast, obligate diapause is present during

every gestation ofa species, and is believed to be a mechanism for synchrony of parturition

with environmental conditions favorable to neonatal survival. While common in mustelid

carnivores, it is also found in the roe deer and some bats (Sandeil 1990) In some species.

there is seasonal diapause superimposed on diapause resulting from metabolic factors or

lactation (Renfree & Shaw 2000).



Given the selective advantages of diapause in temperate ciimates, it is somewhat

surprising that species that are ciosely related do not aiways express the trait. Examples

can be found in the mustelids, where gestation undergoes an ordered progression without

evidence of diapause in the European ferret, while in the rnink, every pregnancy includes a

period of preimplantation delay. Alrnost every other aspect of reproduction (induced

ovulation, postimpiantation gestation etc.) is identical between these species. There are

examples in which obiigate diapause is restricted to subspecies of animais that arc

geographicalty isolated, rnost notably the spotted skunk (Mead 1993). There is similar

selectivity in the occurrence of facultative diapause, it is found in rodents of the subfamily

Sigmodontinae in North America (e.g. Peromyscus spp.), whule compietely absent in South

American species of this subfamily. Lindenfors et al. (2003) argue for a single

evolutionarv origin of ernbryonic diapause in carnivores, followed by ioss of the trait in

sorne subgroups. It is possible to induce diapause in species where it does not normally

occur; for example, blastocysts from the ferret transplanted to the mink uterus, cease

development (Chang 196$). A pre-implantation delay can be induced in ferrets by

experimental manipulation of either pituitary (Murphy 1979) or ovarian (foresman & Mead

1978) endocrine function. Evidence based on the appearance of chorionic gonadotropin

secretion suggests that diapause or developmentai delay, can occur in human embryos

(Tarin & Cano 1999). The anecdotal data, then, allow the speculation that many

mammalian species might be capable ofexpressing diapause under appropriate conditions.
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REGULATION 0F DIAPAUSE BY EXTERNAL FACTORS

Environmental regulation of diapause, including its onset, maintenance and

termination is imposed directly on the exposed embryo in invertebrates. In contrast, it is

regulated by means of the maternai organism in viviparous vertebrates. Most mammals

that have survived in temperate and variable climates have evolved a pattern of seasonal

breeding to maximize their reproductive success. The rnost common environrnental cue

that synchronizes both estrus and male reproductive competence in mammalian species is

photoperiod. Nonetheiess, there are numerous examples of species whose reproductive

cycle is dictated by the availability of nutrients, often secondary to rainfail, and by

enviromnental temperature.

Photoperiod and temperature

Reduced ambient temperature is one of the principal factors inducing diapause in

invertebrates (Kostal et al. 2000). Low temperature will induce diapause in some reptiles

(Shanbhag et al. 2003). In mammals, the role of temperature is best known in the

regulation of delayed deveiopment in bats (Mead 1993). There is, nonetheless, evidence

that elevated temperature induces facultative diapause in rodents (Marois 1982), and that

low temperatures can prolong obiigate diapause in sorne carnivores (Canivenc & Bonnin

1979). The physiological mechanisms in mammals are currently unknown.

It was recognized early that photoperiod played an important role in termination of

diapause and the consequent induction of implantation (Pearson & Enders 1944). In

mustelids, diapause is terrninated during Iengthening photoperiod, and the lengthening of
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days prior to and after the vernal equinox influences the timing of implantation in

nurnerous species, including the spotted skunk (Mead 1971) and the mink (Murphy &

James 1974). In the seal family, implantation occurs under a regime of decreasing day

length (Atkinson 1997). Day length, or more precisely, a regime ofphotoperiod in which

mink are exposed to light during a critical period from 12-16 h after dawn, provides a

facultative signal that induces implantation (Murphy & James 1974). Studies in both mink

and skunks indicate that the requirernent for long days is not absolute, as implantation

occurs in animais maintained in constant dark as weIl as in blinded animals (Mead 1993).

The pineal gland was first implicated in studies in which its denervation by cervical

sympathetic ganglionectorny disrupted photoperiodic regulation of the termination of

diapause (Murphy & James 1974), later confirmed by pinealectorny and melatonin

replacement (Bonnefond et aL 1990). While chronic melatonin treatment of mink does not

interfere with puberty, ovulation or blastocyst formation in mink, it prevents termination of

diapause and implantation (Murphy et aÏ. 1990). Implantation can be rescued by

exogenous prolactin in this species, suggesting a single mechanisrn for photoperiod

induction of implantation. In some rnacropod marsupials, seasonal regulation of diapause

is superimposed on lactational diapause, and long days associated with the summer solstice

are the cue that reinitiates embryo development (Renfree & Shaw 2000). Diapause can be

terrninated by denervation of the pineal in marsupials, implicating melatonin as the effector

(Renfree et al. 1981). The environmental cues and their translation into physiological

events are less well studied and more difficult to discern in species such as the roe deer,
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where diapause is terminated during short days (Sempere et aÏ. 1992), or, as in the case of

the ursids, when implantation occurs during hibernation (Harlow & Beck 2002).

Metabotic stress and lactation

There is evidence to suggest, at least in the European badger (Meles metes), that

reduced nutrition of the dam lengthens diapause (ferguson et al. 1996). In the classic

paradigm of facultative diapause in rodents, mating occurs at a postpartum estrus, and

implantation is delayed by the presence of suckiing young, with larger litters causing a

longer delay (Weichert 1940). In marsupials, the presence of suckiing young, independent

of number, represents the stimulus for entry and for maintenance of diapause, and removal

of pouch young resuits in rapid reactivation of the embryo and consequent implantation

(Renfree & Shaw 2000). Social stress, including crowding or introduction of new males,

will induce facultative diapause in rodents (Marois 1982).

REGULATION BY ENDOGENOUS FACTORS

Maternai controt

Rodent blastocysts survive, but do not implant when transferred to the uterus of

ovariectornized, progesterone-treated aduit females (Weitlauf & Greenwald 196$) or the

oviducts of intact, immature females (Papaioannou & Ebert 1986). Under both conditions,

embryos retain their capability to implant and develop normally, indicating that the

maternai environment is the crucial factor that maintains diapause. Evidence that the uterus

inhibits the renewal of embryonic development in obligate diapause comes from transplant
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experiments where blastocysts from the ferret (a non-diapause species) were arrested in

development when transferred to the mink uterus, whiie mink blastocysts reinitiated

embryogenesis in the ferret uterus (Chang 1968). Mink embryos in diapause co-cultured

with conspecific uterine ceil unes dispiayed the capacity for reprise of ernbryonic

deveiopment in vitro, providing further evidence that uterus maintains diapause in this

species (Moreau et aÏ. 1995).

(‘ojitrot by tite pituitaly gland

Regulation of embryonic diapause via hypophysial prolactin demonstrates the

principle that existing hormones have been co-opted for variable, often diametricaliy

opposed uses, during evolution (Figure 1). Prolactin is the key factor essentiai for embryo

implantation in mustelid carnivores. Its circulating concentrations increase some days prior

to implantation in both the mink (Murphy & Rajkumar 1985) and the spotted skunk (Mead

1993). Treatment of mink in diapause with prolactin precociously terminates diapause,

while dopamine agonists, at doses that prevent prolactin secretion, prevent implantation

(Papke et aÏ. 1980). Withdrawal of the dopamine agonist (Papke et aÏ. 1980) or

administration of dopamine antagonists (Murphy 1983) terminates diapause in mink.

Indeed; prolactin alone induced implantation in hypophysectomized mink (Murphy et al.

1981), as did administration of prolactin to animais in protracted diapause due to chronic

melatonin treatment (Murphy et al. 1990). In macropod marsupiais, prolactin plays an

inhibitory role. In these species, hypophysectorny terminates diapause, and it has been

shown that suckling-induced prolactin secretion during lactational delay prevents
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implantation (Renfree & Shaw 2000). During the seasonal delay in marsupials, a pulse of

prolactin secretion is necessary for inhibition of implantation, and this pulse can be blocked

by long photoperiods (Renfree & Shaw 2000).

Rodent facultative diapause is terminatcd by a short-lived surge of estrogen from

the ovary (Dey et al. 2004). Hypophyseal secretion of luteinizing hormone (LII) is

essential for this release (Macdonald et al. 1967). It is of interest that both LII and

prolactin will activate the corpus luteum in the long-fingered bat (Miniopterus schreibersit),

but only protactin terminates diapause (Bernard & Bojarski 1994).

Ovarian events

Following ovulation in musteiids displaying an obligate diapause, the ovarian

follicle collapses and forms the corpus luteum (Hanssen 1947). The CL body undergoes a

remarkable structural reduction in size as diapause ensues, ail the time secreting low levels

of progesterone (Mead 1993, Murphy et aÏ. 1993). In contrast to the pattern of terminal

differentiation that characterizes CL development in most species, the mink CL retains its

mitotic potential during the period of diapause (Dougias et al. 1998). In response to the

pituitary prolactin signal that terminates diapause, the CL is rejuvenated, a process

characterized by a several fold increase in volume and in progesterone output (Murphy et

aÏ. 1993). In contrast to models of facultative delay, it bas not been possible to terminate

diapause in carnivores by steroid administration. Studies in the ferret (foresman & Mead

1978) and mink (Murphy et al. 1983) indicated that a luteal protein in combination with

progesterone are required for successful implantation. A credible candidate protein,



glucose-6-phosphate isomerase, also known as autocrine motility factor, bas recently been

shown to be secreted by the ferret CL during the appropriate pre-implantation window

(Schuiz & Bahr 2004) and to 5e required for implantation (Schuiz & Bahr 2003). In mink,

circulating concentrations of glucose-6-phosphate isomerase are low during diapause and

increase with activation of the CL, and are elevated at the time of implantation (RD.

Bennett and B.D. Murphy, unpublished observations), suggesting that it might also play a

role in reactivation ofthe mink embryo in diapause.

In marsupials, as exemplified by the wallaby, the CL develops during the estrous

cycle, only to be inactivated by lactational or seasonal prolactin secretion (Renfree & Shaw

2000). Reactivation ensues when this inhibitory influence is removed. In rodents, it is the

absence of an ovarian estrogen pulse that maintains diapause, but the ovarian structure (CL

or follicle) from which the steroid issues has flot been resolved.

The most unusual manifestation of ovarian regulation of diapause is found in the

nine-banded armadillo. In this species, there appears to be no regression of the corpus

luteum associated with delay, as indicated by plasma progesterone concentrations (Peppler

& Stone 1980). Nonetheless. implantation is induced sorne 14 days after ovariectiomy

(Mead- 1993), suggesting ovarian inhibition of nidation. The basis for this inhibition

remains undiscovered.

Uterinefactors

As noted above, reciprocal ernbryo transfers have demonstrated that the maternai

uterine environment induces and maintains the embryo in its developmental arrest. An
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important question is whether diapause is due to the absence of uterine factor(s) necessary

for developrnent beyond the blastocyst, or whether the uterus actively maintains diapause

by inhibition of development. Support for the former view can be found in studies that

have shown large scale increase in uterine protein synthesis and secretion concurring with

the termination of obligate diapause (Mead 1989, Lambert et al. 2001). furthermore,

cascades in the synthesis of several classes of proteins, including adhesion factors,

cytokines, and growth factors, folÏow the estrogen pulse that induces mouse implantation

(Dey et al. 2004). A simplified view of uterine and ovarian regulation of diapause in the

embryo is presented in figure 2.

The requirement for uterine expression of the cytokine. leukemia inhibitory factor

(LIF), for implantation has been demonstrated by targeted mutation in mice (Dey et al.

2004). In this species LIF injection can replace the nidatory estrogen pulse (Sherwin et aï.

2004), indicating an important role in termination of diapause. LIF transcripts are detected

in the uterus of carnivores during the early stages of embryo reactivation (Song et al. 1998,

Hirzel et ai. 1999) rendering it a candidate for an uterine factor that terminates mitotic

arrest in the ernbryo. Evidence is lacking for a direct stimulatory role ofLIF on the ernbryo

to reinitiate developrnent in any species, indeed, mouse embryos bearing inactivating

mutation of the LIF receptor develop beyond the blastocyst stage and successfully implant

(Ware et aÏ. 1995).

Epidermal growth factor (EGF) is a potent mitogen, and thus a candidate for a

uterine paracrine or autocrine factor regulating embryo mitosis. It can terminate diapause
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in ovariectornized rats in the absence of the estrogen pulse (Jobnson & Chatterjee 1993),

and members of the EGf family of growth factors, including heparin-binding EGf

(hbEGf) and amphiregulin are expressed in overlapping patterns by the uterus during

rodent implantation (Dey et al. 2004). The expression pattern of hbEGF at sites of

implantation prior to embryo activation implicates it as a uterine factor effecting

termination of diapause in rodents (Das et al. 1994). DNA microarray comparison of

dormant and activated mouse blastocysts indicates that activation is associated with the

expression of the gene encoding hbEGF, as well as the EGf receptor isoforms ErbB I and

ErbB4 (Hamatani et al. 2004). further, hbEGF expression is induced in the uterus by

estrogen, (Zhang et cd. 1998) the proximal signal for the termination of diapause. In

addition, EGF receptors are present in dormant carnivore embryos, and their signaling

activity is increased associated with escape from diapause (Paria et al. 1994). It is

therefore reasonable to speculate that estrogen-induced expression of EGF and EGF-like

factors from the uterus and embryo, acting on cognate receptors in the blastocyst, reinitiates

development.

Microarray analysis comparing the mouse uterus before and after the nidatory

estrogen pulse indicates upregulation of other growth factor-related transcripts (Reese et al.

2001). A pentraxin family protein (PTX3) is expressed at nearly four-fold greater intensity

in the post-delay uterus. This protein is involved in complement binding and in innate

immune responses, and is secreted in response to inflammatory cytokines (fulop et al.

2003). PTX3 gene deletion disrupts ovarian function by interfering with cumulus
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formation (Fulop et al. 2003). While there are no investigations of its role in termination of

diapause, its expression pattern, and its known role in glycoprotein synthesis identify it as a

potential downstrearn target of the growth factor and cytokine cascade that terminates

embryo arrest.

There is evidence to suggest that the uterus actively inhibits development of the

ernbryo, thereby inducing and maintaining diapause. Flushings from the uteri of

ovariectomized, progesterone treated mice (the delayed implantation model) contain protein

fraçtions that inhibit DNA synthesis of embryos in vitro (Weitlauf 1978). Recent studies

have revealed that the endogenous cannabinoid, anandamide, at high, but nonetheless

physiologically relevant concentrations, inhibits mouse embryo development (Wang et aï.

2003). Low levels of anandamide, in stark contrast, activate the dormant mouse blastocyst

via mitogen activated kinase pathways. Thus, differential expression of cannabinoids may

regulate facultative diapause.

Uterine microarray analysis md icates that several interferon-’ induced-genes are

downregulated in the activated, relative to the delayed mouse uterus (Reese et al. 2001),

suggesting that this cytokine might play a role in induction or maintenance of mitotic

quiescence of the embryo.

REGULATION 0F DIAPAUSE BY CELLULAR FACTORS

Cet! cycle arrest

The mammalian embryo develops from the zygote by celi division and
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differentiation. The common theme in diapause is the inhibition of the mitotic celi cycle in

embryonic celis, such that proliferation ceases or is greatly reduced. Ceils enter a quiescent

state, and apoptosis is prevented by the maintenance of the basal metabolism, with protein

and RNA synthesis, as well as oxygen consumption (Renftee & Shaw 2000). Entry into

dormancy occurs first in the trophoblast subpopulation of the mouse blastocyst. followed

by a more graduai entry ofthe inner ccli mass celis (Given 1988). In insects, the mitotic

arrest most commonty occtirs at the G0/G1 stage of the ceti cycle, but there are exampLes of

G2-arrest in some species (Tammariello 2000). Quantification of DNA (Sherman &

Barlow 1972) suggests that the arrest in mammalian embryos occurs prior to the S phase of

the ccli cycle. The absence of 5-bromo-2-deoxyuridine uptake by mink embryos in

diapause (Desmarais et al. 2004) supports the case for GO/G 1 arrest in this species.

By definition, the quiescent embryonic ceils also retain the ability to resurne the celi

cycle when diapause terminates (Renfree & Shaw 2000). In the mouse, proliferation is

initiated first in the inner ce!! mass of the biastocyst, almost immediately after the estrogen

signal, and follows 6 to 12 h later in the trophoblast (Given & Weitlauf 1981). An

intriguing new report suggests that reactivation of development in the trophoblast

comparment of the spotted skunk embryo engenders endocycles, resuiting in

endopolyploidy (Isakova & Mead 2004). The significance of this finding to the termination

of diapause awaits further investigation.

Ccli cycle arrest has not been extensively studied in the mammalian embryo in

diapause. Given the conservation of genes during evolution, investigations of diapause in
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invertebrate and subrnarnmalian vertebrate models might be expected to provide insight

into the maintenance of mammalian diapause. It bas been shown that, in the fruit fly

(Drosophila meÏanogaster), the developmental arrest during embryogenesis can be

attributed to the dacapo gene, homolog of the mammalian p21, an inhibitor of cyclin

E/cdk2 complex activation (Lane et aÏ. 1996). This is consistent with inhibition in Gi, as

cyclin E/cdk2 complex formation is necessary for entry into S phase. Other candidate

genes for inhibition of the ceIl cycle in diapause have been derived from cDNA microarray

and subtractive hybridization comparisons of embryos in diapause with their activated

counterparts. In insects, protiferating celi nuclear antigen, a factor associated with DNA

synthesis and reguiated by p21 (Fotedar et al. 2004), is flot expressed during diapause

(Denlinger 2002). These findings are consistent with new information from the mouse

embryo where dormancy is associated with the increased expression p2lcP and

concomitant decrease in a number of DNA replication genes (Hamatani et al. 2004).

These studies also demonstrated that an inhibitor of GOIGY transition, the B ccli

transiocation gene Ï (Btgl (Rouault et al. 1992)) is upregulated in the embryo during

facultative diapause, providing a mechanism for maintenance of ceil arrest. Expression of

the classic celi cycle inhibitor, p53 and associated genes did not differ between dormant

and activated mouse embryos, suggesting that this common effector of celi cycle arrest is

flot involved in diapause (Hamatani et al. 2004).
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Regtdation of the ce!! cycle bi diapatise and reactivation

Given the variation among mammalian groups displaying embryonic diapause, there

may be no single mechanisrn of reactivation ofrnitosis. In non-mammalian modeis, several

different proxirnal signais (temperature, photoperiod, nutrient supply) regulate celi cycle

arrest and reactivation. In insects, reduction in ambient temperature induces a decline in

ecdysteroid concentrations that in turn signais the initiation of diapause (Denlinger 2002).

The earliest intracellular response detected to environrnental stimuli that terminate

diapause, inciuding increasing temperature, is upregulation of synthesis of ecdysone and

expression of its nuclear receptor (Denlinger 2002). In the nematode, Caenorhabditis

elegans, multiple signais inducing the dauer diapause converge on daf-12, a nuclear

receptor for a yet unknown steroi iigand (Gerisch & Antebi 2004). In this species,

termination of diapause engenders downregulation of daf-9, a P450 hydroxylase that

catalyzes formation of the ligand. Thus, a common therne emerges of termination of

diapause in invertebrates by choiesterol or its derivatives, acting through classic nuclear

receptor pathways.

Vertebrates have evolved to empioy specific choiesteroi derivatives, the steroids, in

the regulation of reproduction. In ail known exampies of marnmaiian diapause, with the

possible exception of the armadillo, ovarian progesterone is essential for the termination of

delay (Mead 1993). Further, a single estrogen injection terminates diapause in rodents

(Dey et al. 2004). Treatment of carnivores in obligate (Murphy et al. 1982) or marsupials

in seasonal (Fletcher et ai. 1988) delay with estrogen does not induce reactivation of the
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ernbryo. Nonetheless, estrogens have pleiotropic mitogenic and mitotic effects on target

tissues, mediated tlwough ciassic nuclear receptors, membrane estrogen receptors and

actions of multiple intracellular effectors (Frasor et al. 2003) and may, in the appropriate

concentration and temporal sequence, reactivate ernbryos in diapause. Estrogen receptors

(ER) are expressed in ail cdl types ofthe dormant and activated mouse blastocyst (Hou et

al. 1996) and both nuclear receptor subtypes. ERa and ERB, have been identified in the

ceils of the blastocyst in diapause (Paria et aï. 199$). Treatment of mice in delay of

implantation with estradiol-1713 resulted in S-phase activity in the embryos at the earliest

time tested, 6 h (Given & Weitlauf 1981) and a detectable increase in the ccli number

within 12 h (Spindler et al. 1996). Paria et al. (Paria et ai. 199$) report that the principal

mammalian estrogens, estradioi-1713, estrone and estriol do flot directly activate the

dormant mouse ernbryo. This was concluded because estradiol-17B failed to induce the

expression of EGF binding to the embryo, the hallrnark of ernbryo activation, and

blastocysts treated with estrogen in vitro failed to implant. These findings notwithstanding,

it rernains likely, based on the temporal sequence of occurrence of the S-phase after

estrogen treatment, that estrogens function as mitogens to terminate ceil cycle arrest. The

effects of estrogens may not be mediated through the classic nuclear receptors. Paria et ai.

(Paria et al. 199$) make a case for embryo activation (EGf-signaling) by uterus-derived

catechol-estrogens, signaling via a nongenomic pathway. EGF is a potent mitogen, and

there is evidence for nongenomic signaling between estrogen- and EGf-rnediated cellular

events (Driggers & Segars 2002). A plausible hypothesis is that mitosis is reinstated in the
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embryo by EGF as a downstream event induced by primary estrogen or catechol-estrogen

signaling.

Clues to the intracellular events in mitotic renewal can be derived from comparison

of the transcriptorne between dormant and activated mouse embryos (Harnatani et al.

2004). There is upregulation ofthe estrogen-responsive target, Brca], a gene that promotes

proliferation in other tissues (Deans et aÏ. 2004). Dormant embryos have greater

abundance of the histone deacetylase (HDAC)-5 transcript, a gene whose expression is

associated with attenuation of proliferation, and is independent of p53 rnechanisms (Huang

et al. 2002). The mitotic stimulus downregulates this chromatin modifier, allowing for

histone acetylation and consequent transcription of previously silenced genes.

Comparative models provide some insiglit into potential regulation of mitotic

reinitiation at the end of diapause. The FoxO genes are the mammalian orthologs of the C

elegctns Daf genes that regulate diapause (Hosaka et aÏ. 2004). Among the roles played by

FoxO transcription factors in C. elegans are the induction of p21 expression and

consequent mitotic arrest (Seoane et aÏ. 2004). Indeed, overexpression of FoxO

transcription factors induces ceil cycle arrest at the Gi phase in mammalian celis in vitro

(Burgering & Kops 2002). Although nuil mutation offoxOl, 2 or 3 does not interfere with

early embryo development or implantation in mammals, ovarian function is disrupted in

FoxO3a nuil mice, with a phenotype of proliferation of the granulosa component of an

abnormal number of follicles and consequent precocious depletion ofthe follicle population

(Hosaka et aÏ. 2004). Thus, FoxO-induced ceil cycle inhibition may be an important
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mechanism in the maintenance of diapause. Recent studies have further defined a

mechanism of escape from foxO-induced inhibition of proliferation. Phosphorylation of

FoxO genes occurs in response to mitogens, including estrogen (Birkenkamp & Coffer

2003). This modification restricts their translocation to the nucieus, thereby abrogating

their cytostatic effects (Seoane et aÏ. 2004). Further investigation is required to verify this

hypothesis.

SUMMARY AND CONCLUSIONS

Ernbryonic diapause is an intriguing biological rnechanisrn that has been employed

by species in numerous taxa to ensure successful reproduction. In mammals. its onset,

maintenance and termination are under maternai control, and are influenced by

environmental factors and lactation. Reduction or cessation of mitotic activity in the

embryo most likely resuits from the absence of uterine and ovarian mitogens necessary for

development of the embryo beyond the blastocyst stage. Members of the EGF farnily of

uterine origin are the best current candidates for induction of mitotic reprise in the embryo.

Ovarian estrogen may also act directly to induce embryo mitosis. Cessation of

development occurs before the S phase of the celi cycle in mammals, and may be due to

expression of celi cycle inhibitors of the p21 family. Littie is known about celi cycle

reguiation upon reactivation of the dormant embryo (Figure 3). Based on non-vertebrate
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models, a case is made for transcriptional regulation ofcell cycle inhibitors by the forkhead

family of transactivators, inactivated by mitogenic stimulation.
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Characteristic Facultative diapause Obligate diapause

Distribution Rodents, marsupials Mustelid, ursid and phocid

carnivores, roe deer, some

bats and armadilios

Developmental status of Hatched in rodents, Encapsulated in carnivores,

blastocyst in diapause Encapsulated in marsupials hatched in roe deer and

armadillo

Mitotic activity in the None Minor proliferation in some

embryo in diapause species restricted to

trophoblast

Stimulus for entry into Lactation and metabolic Developrnental stage in ail

diapatise stress gestations

Exogenous stimulus for exit Weaning (photoperiod in Photoperiod

from diapause sorne marsupials)

Endogenous stimulus for Ovarian estrogen (rodents) Prolactin secretion,

exit from diapause Prolactin withdrawal unknown ovarian factors.

(marsupials)



Table 1. Characteristics of facultative vs. obligate diapause of mammalian embryos.
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f igure 1. Strategies for photoperiodic modulation of diapause employ melatonin and

prolactin for contrasting purposes. In the marsupial mode!, both suckÏing stimulus, and

increased melatonin secretion associated with nocturnal periods in excess of the summer

solstice upregulate prolactin which then inhibits luteal activation, thereby initiating and

maintaining diapause. In the carnivore model, photoperiod associated with the vernal

equinox decreases melatonin secretion, releasing prolactin from inhibition. Prolactin

activates the corpus luteum, provoking release of progesterone and other factor(s) that

terminate diapause.
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Figure 2. Summary of uterine influences that could be acting on the dormant ernbryo in the

rodent model to terminate the mitotic anest of diapause. Against a background of luteal

progesterone (P4), an ovarian pulse of estradiol 1713 (E2) is the proximal stimulus for

developmental recrudescence of the embryo. It may have direct mitogenic effects on the

dormant embryo via its nuclear receptors, ERa and ERJ3. It can be replaced by leukernia

inhibitory factor (LIF) acting on the uterus to induce secretion of factor(s) mitogenic to the

dormant embryo. E2 provokes expression of members of the epidermal growth factor

(EGF) family, including EGf, heparin-binding EGF, and amphiregulin, acting through the

EGF receptors Erbi and Erb4 to reactivate mitotic activity of the embryo in diapause.

Catechol estrogens derived from uterine conversion of E2, act via an unknown receptor to

activate the embryo via the mitogen-activate protein kinase pathway. f inally, anandamide,

an endogenous cannabinoid from the endornetrium acts in Iow concentrations on its cognate

receptors (Cbr), to stimulate the reprise of embryo development.
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figure 3. Some of the potential celi cycle regulatory mechanisms controlling the entry of

the mammalian ernbryo into diapause by mitotic arrest and consequent developmental

recrudescence by reinitiation of mitotic activity. Entry and maintenance of diapause resuit

from expression of ccli cycle inhibitors of the p21 family that interfere with cyclin E/cdk2

complex formation necessary for progression through GL Transcription factors of the

foxO farnily upregulate p21 expression, to initiate and maintain this effect. In addition,

histone deacetylase 5 (HDAC-5) is upregulated in the dormant embryo, which can prevent

chrornatin modification necessary for transcription of celi cycle genes. Further, dormant

embryos express Btgl, a factor that prevents entry from GO to Gi, providing a further

rnechanism for ccii cycle arrest. Ernbryo reactivation occurs due to mitogens from the

ovary (estrogens) and from the uterus (EGf farnily and other factors). These have

pleiotropic effects on the mitotic cycle, first by upregulation of proiiferating cdl nuclear

antigen (PCNA), second by phosphorylating foxO transcription factors, thereby preventing

their transiocation to the nucleus and consequent upregulation of p21, and third by direct

stimulation of several components of Gi regulation, including cyclins D and E and cdk2

and cdk4.



49

PLACENTATION IN THE MINK

Classification of mammalian placental morphology has traditionally been based on

the number of tissue layers present between maternai and fetal blood systems. The most

often used system is the Grosser’s histological classification method (Steven 1975). The

most invasive placenta is found in humans and rodents, where the embryonic tissue is in

direct contact with maternai blood, therefore with no layer present between maternai biood

and chorionic tissue. This placental type is called hemochorial. The carnivore species also

present a high degree of erosion of maternai tissues at the site of embryo attachment, but in

these species however, the maternai vesseis are surrounded by trophoblast ceils but vessel

integrity is maintained (Steven 1975), resuiting in the endotheliai-chorial designation. The

American mink is a carnivore and like its counterparts it dispiays an endotheliochorial

placenta ofthe discontinuous zonary type (Enders 1957).

THE PROCESS 0F VESSEL FORMATION

The vascular system is amongst one of the first developed systems in the eariy

embryo and placenta, in order to accommodate the necessity for nutrients, gas exchange

and elirnination of waste products.
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In the early stages of tissue development, i.e. placenta! formation, formation of

vessels occurs through a process termed vasculogenesis. This is understood to be

differentiation of endothelial cells from primitive angioblasts, giving rise to a primitive

tubular network in a previously avascular tissue (Risau, 1995; 1997; Yancopoulos et al.,

2000). Following initial formation of this tubuÏar structure, other processes take place in

order to transforrn this primitive system into a well organized, and highly functional

network responsible for the supply of blood to the tissues. This process of transforming the

primary vascular system into a mature network is known as angiogenesis. Angiogenic

rernodelling can take place by two distinct processes, sprouting and non-sprouting. Truc

sprouting angiogenesis involves extra-cellular matrix degradation al!owing for migration

and proliferation of the pre-forrned endothe!ial cells (Risau, 1997). Most of the currently

identified angiogenic factors orchestrate this form of angiogenesis either by directing the

migration by serving as chemoatractants, and/or by inducing the proliferation of these ce!ls

(Risau, 1997). Non-sprouting angiogenesis occurs based on enlargement of the !umen of

pre-existing vessels by proliferation of endothelial ceils, which wi!I in turn form bridges

inside the lumen thereby initiating the splitting of the primary vessel (Risau. 1997).

Angiogenic factors

Severa! factors are currently known to play a role in formation and modification of

the vascular system. VEGF and its tyrosine kinase receptors, as well as the basic fibroblast

growth factor (bFGF) are involved in regulating angioblast differentiation (reviewed by
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Carmeliet, 2000). Angiopoietin-l (Angi) and ephrin-B2 are required during remodelling

and maturation of the vasculature (Yancopoulus et al., 2000). AngI, acting through its

receptor Tie2, is believed to optimize the integration of endothelial celis with their

supporting celis, allowing for an interaction between them, which in turn guarantees

successful signalling of further angiogenic factors (Suri et al., 1996). AngI has also been

demonstrated to be responsible for maintaining a quiescent stage to the mature vasculature,

and induction of its antagonist Ang2 will perturb this quiescence and re-initiate vascular

remodelling (Yancopoulus et al., 2000). 0f utmost importance and at the forefront of

vessel formation is VEGf, which is required for both initiation of vascular formation

(vasculogenesis) to sustain development in forming tissues, and for re-arrangernent and

maturation ofpre-existing or newly formed primaiy vasculature.

VEGF, first named vascular permeability factor (VPF), was identified from a partial

purification from a guinea-pig hepatocarcinoma celi line as a protein that prornoted

increased vascular permeability with a high potency (Senger et al., 1983). In 1989, ferrara

and Henzel isolated a diffusible endothelial celi-specific mitogen from the medium of

bovine pituitary folliculostellate ceils, and they determined it was a potent mitogen specific

to endothelial celis and narned it VEGF, due to its restricted target, the endothelial ceils

(Ferrara an Henzel, 1989). Since the original isolation, the VEGf family has been shown

to include several forms derived from different genes, and to date VEGf-A, -B, -C, -D and

-E, have been identified.
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VEGf-A is a homodimeric glycoprotein of 40—45 kDa, and the isoforms coded by

the human VEGF-A gene are formed due to alternative spiicing ofeight exons. Four major

isoforms are present in the majority of the tissues, varying according to the final number of

aminoacids in the mature forrn: VEGF121, VEGF165, VEGF1$9, VEGF2O6 (Tischer et al.,

1991; Houck et al., 1991). Other less common isoforms have been identified in a more

tissue specific manner (Neufeld et al., 1999). Differential heparin-binding properties are

related to the bioavailability ofthe isoforms (Houck et al., 1992). The shorter VEGF forrn,

VEGFI21, does flot bind heparin, making this isoform freeÏy diffusible, whereas the two

longer forms, I 89 and 206 are almost found exclusively bound to the extra-cellular matrix

(ECM). The most predominant forrn is VEGF 165, and it can be found either in the

diffusible form or bound to the ECM (Park et al., 1993). The diffusible form 121 has

reduced mitogenic activity given that mitogenicity is associated with the heparin binding

properties (Keyt et al., 1996).

VEGF exerts its action through binding to tyrosine kinase receptors, Fit-1 (frns-like

tyrosine kinase, also known as VEGFR-1) and KDR (kinase domain region, also known as

VEGfR-2) (Jussila e Alitalo. 2002). These tyrosine kinase receptors are comprised of

seven extracellular immunoglobulin (Ig)-like domains, a membrane-spanning region and an

intraceilular tyrosine kinase domain (Shibuya et al., 1990; reviewed by Robinson and

Stringer, 2001). A soluble forrn of Fit-1 has been identified. This forrn lacks the last 1g-

like domain, nonetheiess it binds VEGF with very high affinity. This truncated form binds
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to VEGf and sequesters it, causing inhibition of VEGF activity (Kendali and Thomas,

1993). This soluble form was found at increasing levels in the mouse placenta starting at

day 13 of gestation (He et al., 1999) and its presence may indicate a role in regulating

VEGF activity at later stages ofpregnancy.

VEGF 165 can also bind to a receptor called neuropilin-1, which bas been shown to

be a neuronal receptor involved in axon growth (Takagi et al., 1995). Neuropilin-1 is a co

receptor to VEGFI 65, enhancing its binding to KDR (Soker et al., 1998).

VEGf-B binds Fit-1 and appears to be involved in degradation ofthe ECM, in ccli

adhesion and in celi migration (Olofsson et al., 1996). VEGF-C and VEGF-D both bind

KDR and F lt-4. The latter is a further tyrosine kinase receptor on precursor ceils that

originate the endothelial celis, as well as on endothelial celis of the iyrnphatic system

(Kukk et aI., 1996). Both forms seern to be involved prirnarity with regulation oflymphatic

system developrnent (Kukk et al., 1996). VEGF-E is coded by the parapoxvirus Orf virus

(Orf) and binds selectively to the KDR receptor and has its effects on angiogenesis through

this receptor (Meyer et al., 1999). Another member of the VEGF family that presents

angiogenic effects is the placental growth factor (P1GF); this protein bas no mitogenic or

permeability activities, nonetheless it can dimerize with VEGF and it is known to potentiate

the actions of low concentrations of VEGF (Meyer et al., 1999). For the purposes of the

present work, we focus on the VEGF-A gene and its isoforms.



54

VEGF and receptors are required during early pregnancy for embryo

ami placental development

The importance of VEGF for the proper deveiopment and viability of embryos was

eiegantly demonstrated by Carmeliet et al. (1996), who showed that inactivation of even a

single allele to be ernbryonic lethal at days 11-12 of gestation. A hypermorphic model of

VEGf-A is also embryo lethal (Miquerol et al., 2000), which indicates the need for

precisely controiied levels ofVEGF during embryonic deveioprnent.

Importance of the F lt-l receptor during vasculogenesis has been demonstrated

through the use of nuli mice, which die at embryonic day 8.5 (Fong et al., 1995). Despite

formation of endothelial ceils in both ernbryonic and maternai cornpartments of the

placenta in these animais, organized vessels fail to form. However, nui! mutation of the

tyrosine kinase domain of Flt-1 does not eliminate embryonic vascular developrnent in

mice (Hiratsuka et al., 1998), which in turn indicates that actual F lt-1 signalling is not

required for embryo development. It appears that the role for F lt-1 during vascular

development in embryos lies on sequestering VEGF-A and preventing its binding to KDR.

Studies inactivating Fit-1 in a trophoblast specific manner demonstrated that this receptor is

not necessary for the initial establishment of the feto-maternal interface (Hirashima et al.,

2003). Mice nul! for KDR receptor die at 9.5 days of gestation due to problems in the

development of endothelial precursors (Shalaby et al., 1995).
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Using a mice mode! containing the reporter LacZ at the VEGf gene, Miquerol et al.

(1999) dernonstrated that VEGf is expressed as early as day 4 in blastocysts, and

expression was also observed soon after in the primaiy giant ceils of the placenta, those

invading the decidual layer of the uterus. This rnechanism coordinates the beginning of

vasculogenesis of the placenta. By day 7 post-conception, extensive expression of the

reporter LacZ was observed in the extra-embryonic membranes, whereas expression in the

embryo proper is noticeable only a day later.

Expression of angiogenic factors during early pregnancy

Several studies to date have demonstrated the expression of VEGf-A and its rnost

common receptors, Flt-1 and KDR, during stages of the reproductive cycles in several

species. In humans, intense staining for VEGf was observed in both stromal and glandular

epithelial uterine ceils during the mid-secretory phase. Accompanying decidualization,

expression of both VEGF and KDR is increased. Even though expression of Fit-1 is also

high during early stages of pregnancy, it does not seem to vary with the decidualization

process (Sugino et al., 2002). In the golden hamster, expression of VEGF and both of its

receptôrs was observed in the uterus at early stages ofpregnancy (Yi et al., 1999). Ghosh

et ai. (2000) dernonstrated that VEGF increased in levels in the decidua as implantation

progressed, and that cytotrophoblast celis also express VEGF. In mice, luminal epithelial

and strornal cells accumulated VEGf mRNA (Chakraborty et al., 1995). On day 5 of

gestation, following initial attachrnent and invasion. the luminal epithelial and stromal cells
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immediately surrounding the blastocysts exhibited accumulation of VEGF mRNA. On the

embryonic side, mainly the trophoblast giant ceils accumulated VEGf mRNA on day 8. In

situ hybridization studies showed accumulation of f1k-1 mRNA in a subset of celis in the

stromal bed on day 4. On days 5-8, cells in both the mesometrial and antimesometrial

decidual beds exhibited accumulation of Flk- 1 and Fit-1 mRNAs (Chakraborty et al.,

1995). Also in the mouse, Halder et aÏ., (2000) have shown that VEGFÎ64 is the

predominant form of VEOF during early gestation, and that VEGf expression is temporally

coordinated with expression of the receptors KDR and neuropilin-1 in the endothelial celis.

The pregnant rabbit uterus also displays high levels of VEGF at the peri-implantation

stages and a pronounced localization was observed in the invading trophoblast celis (Das et

al., 1997).

Regulation of VEGF

The vast mai ority of studies presented to date on regulation of the angiogenic factor

VEGf have deait with tumor vascularity, given that turnor growth is dependent upon

transactivation of VEGF transcription. One of ffie most potent and known regulators of

VEGf is hypoxia (reviewed by Josko and Matzurek, 2004). Its up-regulation is exerted

through increased transcription, which is mediated by binding of the hypoxia-inducible

transcription factor (111F-1) to the HRE region ofthe VEGf promoter, as well as increased

stability of the mRNA (Liu et al., 2002). 111f-la is induced by hypoxia and it

heterodimerizes with the constitutively expressed HIF-13 form (Jiang et al., 1997).
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Hypoxia can aiso induce other transcriptional mediators, such as reiated transcriptional

enhancer factor-1 (RTEF-1), which binds to a SPi site in the proxirnal promoter region of

the human VEGF gene (Shie et ai., 2004). Hypoxia plays a central foie fl the

vascuiogenesis and angiogenesis that must take place during eariy gestation, in order to

meet the increasing demands for gas exchange and nutrient supply ofthe growing tissue.

Non-hypoxic regulation of VEGf is controlled by several classes of substances,

inciuding cytokines, other growth factors, products of oncogenes, hormones such as

estrogens and progestins (reviewed by Loureiro e D’Amore, 2005). 0f the growth factor

ciass, one very important regulator of angiogenesis that acts both directly by inducing

endothelial ceil proliferation, and indirectiy by up-regulating VEGf, is fibroblast growth

factor-4 (FGf-4) (Deroanne et ai., 1997). Transforming growth factor-f3 (TGF-13) has been

shown to stimulate VEGf in a variety of cancerous ceils by several different mechanisms,

varying according to the cancer type. Some of these rnechanisms invoive activation of the

SMAD signalling (Sugano et ai. 2003), or transactivation of SPi (Benckert et ai., 2003).

Members of the epidermai growth factor family (EGf) and their receptors (EGFR and

ErbB) have been iinked with increased expression of VEGF, and different mechanisrns

appear to be invoived (Goidman et ai., 1993; Yen et al., 2002; Petit et ai., 1997). Another

example of growth factors regulation of VEGF is the insuiin-like growth factor-1 (IGF-i),

which dictates VEGf expression in endometrial adenocarcinoma ceils at the post

transcriptionai level by enhancing the stabilization of the 2 major VEGf isoforms mRNAs
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(VEGF121 and VEUf 165), and also by directly inducing VEUF expression (Bermont et

al., 2001).

Cytokines are also known to regulate VEUF, such as some forms of interleukin (IL

1(3 and IL-6; Kawaguchi et al., 2004 and Huang et al., 2004, respectiveiy) and turnor

necrosis factor-a, which has been reported to both stimulate and inhibit VEGF according to

ccli system investigated (Ryuto et ai., 1996; Patterson et al., 1996).

Steroids have been extensively reported to be regulators of VEUF and angiogenesis.

Several studies deait with the control of angiogenesis by the changing levels of steroids

during the reproductive cycle and pregnancy in the ovaries and uterus (Culliiman-Bove and

Koos, 1993; Shifren et aï., 1996; Ma et aL, 2001). Estradiol-17f3 increases ail isoforrns of

VEUF in human endometrium, whereas progesterone selectively stimulates VEGFI89

(Ancelin et al., 2002). In breast cancer ceils, and endometrial adenocarcinoma ceils, both

nuclear receptors ERa and ER(3 are involved in up-regulation of VEUF in response to

estradiol (Buteau-Lozano et ai., 2002; Mucher et al., 2000).

Prostaglandin-dependent regulation of VEUF has also been demonstrated in other

systems and will be discussed in later sections ofthis literature review.
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Given the variety of elernents controlling VEGf, it is of interest to evaluate the

effects and mechanisms involved on VEGf regulation by the hormones, cytokines and

other regulators previously dernonstrated to be present during early pregnancy in the mink.

This comprises the main purpose ofthe present study.

PROSTAGLANDINS AND THEIR RECEPTORS

Prostaglandins are bioactive lipid compounds derived from the essential fatty acid

arachidonic acid that were first identified in the 30s by von Euler (1939) from semen and

the prostate, and later had their chemical structures elucidated by Bergstr5m and

Samueisson (1962) and van Dorp (1964).

Arachidonic acid can be metabolized into three different categories of eicosanoids:

5-HpETE, that will be further processed into leukotrienes (LT A4, B4, C4, D4 and E4)

through the action of the enzyme 5-lipoxygenase; it can also be processed by 11-, 12- or

15-lipoxygenase into 11-, 12- or 15-HETE or HpETE; and finally prostaglandins and

thromboxanes following the action ofCOX-1 and COX-2.

Arachidonic acid is most comrnonly found in an esterified form in phospholipids of

the membrane (Irvine, 1982). In order for the arachidonic acid to be available for

formation of prostanoids, it must be cleaved from the membrane. The main lipase
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responsible for this cleavage is phospholipase A2 (PLA2), on its two forms, cytosolic PLA2

and the non-pancreatic type II secretory PLA2 (Dennis, 1994). following cleavage, the free

arachidonate migrates to the lurninal surface of the endoplasmic reticulum (ER) or to the

nuclear membrane where it enters the prostanoid formation cascade (Monta et al., 1995).

The first stages of prostaglandin formation involve the cyclo-oxygenases (COX-1 and -2)

present at the ER or nuclear membranes, which will first diooxygenate the original

arachidonic acid in order to form the endoperoxide-containing prostaglandin G2 (PGG2)

that will then have a hydroperoxyl reduced to form a hydroxyl group to give rise to

prostaglandin H2 (PGH2), also by COX-1 and COX-2. PGH2 can then be converted by the

specific synthases (prostaglandin and tÏwomboxane synthases) to its biologicalÏy active

products.

Leukotrienes, also derived by PLA2-cleaved arachidonic acid, are formed following

the action of 5-lipoxygenase present at the nuclear membrane, and are synthesized mainly

in inflammatory ceils, such as mast celis, leukocytes and macrophages (Peters-Golden and

Brock, 2001). These substances contain an oxane ring instead of the cyclopentane ring, as

found in the prostaglandins.

Several prostaglandins are formed from the PGH2 precursor, PGI2, PGD2, PGE2,

PGf2a and they have a variety of biological functions, as well as a diverse spatial
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localization, according to the functions they exert. Each of these prostaglandins is formed

by the action of a synthase carrying the name of the final prostaglandin formed from PGH2.

The prostanoids (prostaglandin and thrornboxanes) are secreted substances that act

as autocrine and/or paracrine modulators of biological responses. Prostaglandins G, H, I

and thrornboxane are very unstable and have a haif-life of 30s to a few minutes. The

remaining prostaglandins, although stable, are metabolized and inactivated in a single

passage through the lungs, which makes local production of prostanoids a requirement for

their action (reviewed by Narumiya et al., 1999).

The prostanoid receptors have been identified as part of the G protein-coupled

rhodopsin type receptors, containing seven transmembrane domains. There ïs a different

receptor for each prostanoid (Narurniya et al., 1999). Although each prostaglandin binds to

its receptor with high affinity, a certain degree of cross-reactivity is found amongst the

ligands. Eight different receptors, coded by separate genes. have been identified to date:

DP — PGD; IP — PGI; FP — PGF; TP — thromboxane; EP — PGE. four subtypes are known

for the-EP class of receptors, termed EPÏ through EP4. The intracellular pathway elicited

by these receptors is also variable. The fP receptor activates the Phospholipase C (PLC)

pathway via the G protein Gq (Ito et aÏ., 1994). The IP receptor was reported to stimulate

adenylate cyclase following ligand binding, however activation of phosphatidylinositol

(PI), as well as elevation of Ca2+ levels, were also observed (Namba et al., 1994; Vassaux
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et al., 1992). Ligand binding to the prostanoid receptor DP induces increases in cAMP

given that this receptor is coupled to the Gs protein (Boie et al., 1995). The isoforms a and

f3 of the thromboxane receptor TP both induce a PI dependent response through Gq (Hirata

et al., 1996), but they differ on their cAMP related response, where the a isoform inhibits

and the f3 activates cAMP. The PGE receptors of the EP type present a variety of

intracellular pathways. EP1 activation elevates Ca2 concentration (Watabe et al., 1993)

and activation of the PLC pathway (Kimura et al., 2001). EP2 and EP4 are coupled to Os

and are therefore responsible for increase in cAMP. EP3 is a complex series of receptor

variants (3A, B, C and D) with signalling systems varying from Gi (inhibitory) to Gs

(stimulatory) in relation to cAMP responses, as well as Gq, related to PI responses. The

major pathway however, is inhibition ofcAMP through Gi activation (Namba et al., 1993).

A variety of actions throughout the body have been described for the prostanoids.

Their actions elicit a diversity of responses: contraction and relaxation of smooth muscles,

modulation of neurotransmitter release, fever response, sleep induction, secretion of

gastrointestinal enzymes, as well as regulation of tract motility, transport of water and ions

to the kidney, apoptosis, celi differentiation, immune responses, platelet aggregation and

vascularity (Clyman et al., 1978; Andersen et al., 1980; Coleman and Sheldrick 1989;

Hayaishi, 1991; Phipps et al., 1991; Akarsu and Ayhan, 1993; Dom et al., 1992; Dinchuck

et al., 1995; Matlhagela et al., 2005; and reviewed by Narumiya et al., 1999). They also
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play major roles in regulation of reproductive functions as discussed in the following

section of this review.

Prostaglandins and their effects on reproduction

Prostaglandins have been shown to exert multiple effects on reproduction, varying

from effects on ovarian changes, to involvement in fertilization events, to implantation and

regulation of parturition. A study utilizing a nuli mice model demonstrated the important

effects of prostaglandins on reproduction. In this study, Lim et al. (1997) revealed the

multiple reproductive failures observed in COX-2 deficient mice. Given that COX-2 is the

rate-limiting enzyme on inducible prostaglandin formation, this study increased the interest

in uncovering the specific prostaglandin involved in each aspect of the reproductive

processes.

Mice nuli for COX-2 present normal follicular development but compromised

ovulation even following exogenous gonadotropin treatment, indicating that the defect in

ovulation is not due to gonadotropin levels (Lim et al.,1997). The authors suggested that it

is likely due to defective oocyte maturation given that the cumulus cells sunounding

ovulated oocytes in wild-type mice present a peri-nuclear accumulation of COX-2 protein.

Ovulation was rescued in part due to PGE2 administration to the COX nuli mice (Davis et

al., 1999), suggesting that COX-derived PGE2 participates in the ovulatory process. In fact,

the requirement for COX-2 during the ovulatoiy process was shown earlier in several
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species like the rabbit (Grinwich et al., 1972), the rat (Orczyc et al., 1972); the pig

(Ainsworth et al., 1979), the ewe (Murdoch et al., 1983) and the monkey (Wallach et al.,

1975). In the mice nul! model, fertilization was also reduced in oocytes collected from the

nuil mice, likely due to lack of maturation (Lim et al., 1997). Through the use of

exogenous injections of steroids and transplantation of wild-type blastocysts, the authors

demonstrated that implantation is also defective in the COX-2 knockout females, and this

was flot due to improper steroid priming of the uterus. The process of decidualization was

also found to be impaired in the COX-2 deficient mice.

Mice nul! for the prostaglandin E2 receptor subtype EP2 have impaired fertility

(Kennedy et al., 1999; Tilley et al., 1999) and it is likely due to reduced ovulation and

impairment in fertilization. It was demonstrated that expansion of the cumulus celis

surrounding the oocytes, a process required for oocyte maturation, was reduced, as well as

unovulated oocytes were present in the nul! ovaries (Hizaki et al.,1999).

Lim et al. (1999) bas also demonstrated that impaired implantation in the COX-2

knockout mice can be rescued through the administration of a PGI2 analog and also by

analogs of PPAR, keeping in mmd that PGI2 is a ligand for PPAR, suggesting

involvement oftbis nuclear receptor and PGI2 in the implantation process, according to the

authors.
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Perhaps the best known reproductive functions of prostaglandins is the effect of

PGF2a in ovarian cycles. This prostaglandin is well known for its major role in inducing

luteolysis in Artiodactyls, such as the cow and the ewe (Nancarrow et al., 1973; Peterson et

al., 1975; 1976). In ruminants, prostaglandin F2a is released from the uterus in pulses

during the process of luteolysis, reaching the ovaiy via a counter-current transfer from the

uterine vein to the ovarian artery (Ginther, 1974). This prostaglandin is then responsible,

following binding to its receptors in the ovary, for the regression of the progesterone

producing corpus luteum, in order for a new cycle to be initiated by a new ovulation.

Prostaglandin E2 and reproduction

Prostaglandin E2 originates from PGH2 through the action of two enzymes, PGE

synthase of the cytosolic and microsornal isoforms, products of separate genes. The

microsomal version is a membrane-bound protein, part cf the mcmbrane-associated

proteins involved in eicosanoid and glutathione metabolisrn (MAPEG) superfamily

(Jakobsson et al., 1999), that bas high specificity for the substrate PGH2. The cytosolic

form was characterized, almost at the same tirne, as an also highly specific enzyme that

convers PGH2 into PGE2 in the presence of glutathicne as a co-factor (Tanioka et al.,

2000). This enzyme acts preferentially on the conversion cf COX-Ï induced PGH2, rather

than on the COX-2 derived PGH2. The microsomal forrn is associated to the inducible

form of COX, and is therefore related te delayed generation cf PGE2, given that it depends

on induction cf COX-2 for production cf its substrate PGH2 (Murakami et al., 2000).
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As mentioned above, PGE2 is capable ofrescuing ovulation in mice lacking COX-2,

which present defective ovulation as a phenotype (Davis et al., 1999). Likewise, mice nuil

for the EP2 receptor of PGE2 have reduced ovulation. More recently, microsomal PGE

synthase vas co-localized with COX-2 in the granulosa ceils of pre-ovulatory bovine

follicles, and expression was related to gonadotropin treatment (Filion et al., 2001). In the

present work, we focus on microsomal PGE synthase produced PGE2, given that this forrn

is related to the induced COX-2 and is more likely to be regulated during the reproductive

processes.

In the uterus of hamsters, PGE2 was identified as the major prostaglandin in

implantation sites, and mPGE synthase is co-expressed with COX-2 at this site (Wang et

al., 2004). In mice, rnPGE synthase mRNA and protein were localized in the subluminal

strorna surrounding the implanting blastocyst. The authors suggested that the embryo

regulates PGE synthase expression, given that a similar pattern of expression was absent in

pseudopregnant females, as well as in the interimplantation sites in the uterus (Ni et al.,

2002). In bovine endometrial celis, the expression of PGE synthase is also correlated with

that ofCOX-2 (Parent et al., 2002).

Expression of EP4 mRNA by in situ hybridization was detected in the epithelial and

stromal layers of the mouse uterus during days 3-5 of early pregnancy. Furthermore, the

same level of expression was found in pseudopregnant females, indicating that maternai
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factors, rather than the ernbryo, regulate expression of this receptor (Yang et al., 1997).

The rnRNA for the EP2 receptor was highly expressed in the luminal epithelial celis

prirnarily on days 4 and 5 of pregnancy, suggesting a possible role for these factors in the

implantation process (Lim and Dey, 1997). Elevated expression of the receptor EP2

mRNA as well as its protein was detected in the luminal epithelium at implantation sites of

female rats on day 6 ofpregnancy (Shi et al., 2005).

Prostaglandin E2 and regulation ofVEGF

Although sorne other prostaglandins have been reported to participate in the

regulation of VEGF, for the purpose of the present work, we have focused on the effects of

PGE2 in the transcription of VEGF, as this appears to be a very important regulatory

process in the titerus.

Given the importance of angiogenesis to cancer biology, it is flot surprising that the

vast majority of work published in the regulation of VEGf by PGE2 deals with the use of a

variety of cancer ceils as models. In human pancreatic cancer ceils, PGE2 stimulated the

mRNA for VEGF and this effect was blocked by an EP2 receptor antagonist (EibI et al.,

2003). EP2 acts by increasing cAMP levels, and in their study the blocking of VEGf

induction by the EP2 antagonist was corroborated by the findings that intracellular levels of

cAMP increased in response to PGE2 treatrnent. In lung cancer celis (squamous ceil

carcinoma), Casibang and colleagues (2001) reported that PGE2 induces a rapid increase in
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cAMP and that this increase resulted in elevated mRNA and secreted protein levels of

VEGF. Further, the protein kinase A inhibitor H89 was successful in blocking the PGE2

induced VEGF response. Increased VEGF expression was observed in mammary tumor

celis nul! for the EP2 receptor following adenoviral deÏivery of the gene coding for this

receptor. further, the authors reported that the induction was indeed dependent on the

cAMP/PKA pathway (Chang et al., 2005). Fukuda et al. (2003) placed HIF-l as the

transcription factor involved in induction of VEGF by PGE2 in FICT1I6 human colon

carcinoma celis. PGE2 induced release of VEGF in human uterine cancer celis (Yshikawa

celis) is dependent on intracellular cAMP rnediated transactivation of the EGFR and

ERKI/2 pathways, and this pathway is induced by ligand binding to EP2 receptor (Sales et

al., 2004). Homozygous deletion of the EP2 receptor caused decreases in number and size

of intestinal poiyps in Apc (Delta 716) mice (mouse model for human familial

adenomatous polyposis). The authors conclude that EP2 is the major receptor mediating

the PGE2 induced increase in cellular cAMP and subsequently VEGF (Sonoshita et al.,

2001).

-In a study on carpal tunnel syndrome, a disease that causes extensive extra-cellular

matrix remodelling, PGE2 and VEGf are co-expressed in the lesion areas, indicating a

possible association of these two factors in this disease (Hirata et al., 2004). In rat gastric

microvascular endothelial celis, PGE2 stimulates VEGF mRNA, as well as protein, through

transactivation of JNK1 by ERK2 (Pai et al., 2001). In a cell model using human airway
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smooth muscle ceils, Bradburry and colleagues (2005) have recently shown that PUE2

stimulates VEGF transcription following binding to EP2/EP4 and cAMP activation. The

binding site for SPi appears to be involved in this cAMP dependent pathway. In human

synovial fibroblasts, binding of PUE2 to EP2 and EP4, and increase in cAMP are also

involved in regulation of VEUF (moue et al., 2002).

As reviewed above, PUE2 stimulation of VEUF acts through a variety of second

messenger systems. It appears that the majority of the work published thus far, indicates

that the receptors EP2 and EP4, and therefore the PKA dependent pathway, are the

mechanisms of choice in the regulation of this specific angiogenic factor by PGE2. In the

work presented herein, we have succeeded in demonstrating the regulation of VEUF by

PUE2 and we have characterized the factors involved in this regulation in a mink uterine

ce!! system.
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ABSTRACT
Expression cf vascular endotheliai growth factor (VEGF) iso

forms and its receptors, Fit-1 and KDR, was investigated during
the period cf peri-impiantation in mink, a species that displays
obiigate embryonic diapau5e. Uterine samples were collected
during diapause embryo activation, and implantation from
pseudopregnant and anestrous animais and anaiyzed by terni-
quantitative reverse transcription polymerase chain reaction and
immunohistochemistry. lite abundance cf mRNA of VEGF iso
forms 120, 164, and 188 was highest during late embryo acti
vation and at implantation. VEGF protein was iocaiized to the
glandular epithelium at ail stages of peri-impiantation, whereas
tire luminai epithelium lacked VEGF reactivity during diapause.
Endometrial stroma and luminai and glandular epithelia sere
positive for VEGF in implanted uteri. Tire invasive trophoblast
celis of tire impianting embryo were intensively stained. Higir
leveis cf VEGF mRNA in pseudopregnant uteri indicates that
VEGF upregubtion leading to implantation is dependent upon
maternai rather than embryonic factors. Tire abundance of tire
two receptors, KDR and Fit-l, increased in the uterus during
implantation. Low levels cf the receptors in pseudopregnant
uteri compared with those containing activated or impTanted
embryos indicates that tire embryo reguiates receptor expres
sion. These resuits demonstrate VEGF and VEGF receptor ex
pression during early gestation in mink and suggest that mater
nai and embryonic input reguîates different aspects of the an
giogenic process.

placenta, pregnancy implantation, seasonal reproduction, utcrus

INTRODUCTION

The Ametican mink, Mustetn vison, is among a number
of carnivores that display obligate embryonic diapause [1],
characterized by an arrest in mitotic activity of tire embryo
and leading te a delay in implantation. Mink are seasonal
breeders, and their mating season is during spring in the
Northern Hemisphere. Ovulation is induced by mating, and
the arrest in embryo development occurs at the blastocyst
stage 6 days after mating. concurrent with embryo entrance
into the uterus [2]. Tire lengtir of embryonic diapause is
associated with photoperiod and averages 18—25 days [3].
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Tire termination of diapause is associated tvith increased
levels of ro1actin [4—6] under tire règulatory influence cf
a reduction in m1atonin [7] associated with the vernal equi
nox. The corpus tuteum, which functions at a diminished
level following ovulation, is reactivated by prolactin [4, 5].
Tire proximal regulation of delayed implantation appears to —

be dependent on uterine factors. Using reciprocal transfers,
Chang [X] demonstrated tirat mink embryos in diapause re
initiated devetopment in the ferret utems, whereas ferret
embryos, winch do not display diapause, underwent devel
opmental arrest when transferred into mink utems. The pro
cess of implantation in mustelids begins witir focal adhe
sion of tire trophoblast to tire endomeu-ial endothelium, fol
lowed by rapid invasion at tire sites of attacirment [9]. Con
sequent differentiation of trophoblast celis in tire mink Ieads
to formation of a discontinuous zonary placenta of tire en
dotheliochorial type in winch tire classic decidual response
seen in other species is absent [10]. Postimplantation preg
nancy is a consistent 30—31 days in this species [2].

The pet-i-implantation period in mammals is chai-acter
ized by morphotogical and functional changes in the utetine
ceils accompanied by vascular remodelling. Angiogenesis
is a key event for tire proliferative processes in tire uterus
and is required for both placental and embryonic develop
ment [11—14]. Vascular endothelial growth factor (VEOF)
is the principal factor responsible for regulation cf vascular
changes [151. VEGF is a homodimeric glycoprotein of 40—
45 kDa and is best known for its potent endothelial ceil
specific mitogenic activity, but it aIse plays a role in in
creasing vascular permeability [16—19]. Several isoforms
have been identifled te date, and these differ in tire number
of amine acids in the final protein. Tire VEGF gene has
eight exons, seven introns, and a coding region of around
14 kilobases [20]. Tire isoforms are tire resuit cf alternative
exon spiicing from a single gene [20]. Tire isof&ms share
the saine function, and tire main difference among tirem lies
in their ability b bind to heparin [15, 21]. Sucir differential
heparin-binding properties are related te tire bioavailability
of tire several isoforms [22]. Tire major isoforms identified
in humans are comprised of 121, 165, and 189 amine acids
[23]. One of tirese, VEGf 121, is a soluble protein in ils
free forrn and lias no heparin-binding properties. VEGF 165
is secreted and bound te tire cdl surface and extracellular
mati-ix (ECM), and VEGf 189 is almost completely bound
te tire 1CM [23J. VEGF protein appears te become avait
able te endotirelial ceils in at least Éwo ways: as freely dif
fusible proteins (VEGF 121 and 165 in humans) or after
protease activation and cleavage cf tire longer isoforms
bound te tire 1CM [15]. Among tire factors tirat upregulate
VEGE are tire ovarian steroid hormones (see [24] for t-e
view) and prostaglandins (sec [25] for review). VEGF is
expressed in the endometrium [26] and is an important fac-
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ABSTRACT

Expression of vascular endothelial growth factor (VEGF) isoforms and its receptors,

F lt-1 and KDR, was investigated during the period of peri-implantation in rnink, a species

that displays obligate embryonic diapause. Uterine samples were collected during

diapause, embryo activation, implantation, from pseudopregnant and anestrous animais and

analyzed by serni-quantitative RT-PCR and immunohistochemistry. The abundance of

rnRNA ofVEGF isoforms 120, 164 and 18$ was highest during late ernbryo activation and

at implantation. VEGF protein localized to the glandular epithelium at ail stages of peri

implantation, whereas the lurninal epithelium lacked VEGF reactivity during diapause.

Endornetriai stroma, and lurninal and glandular epithelia were positive for VEGf in

irnplanted uteri. The invasive trophoblast celis of the implanting embryo were intensively

stained. High levels of VEGF mRNA in pseudopregnant uteri indicates that VEGF

upregulation leading to implantation is dependent upon maternai rather than embryonic

factors. The abundance of the two receptors, KDR and Fit-1, increased in the uterus during

implantation. Low leveis of the receptors in pseudopregnant uteri cornpared to those

containing activated or implanted embryos indicates that the embryo reguiates receptor

expression. These resuits demonstrate VEGF and VEGF receptor expression during eariy

gestation in mink and suggest that maternai and ernbryonic inputs regulate different aspects

of the angiogenic process.
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INTRODUCTION

The American mink, Mustela vison, is among a number of carnivores that display

obligate embryonic diapause [1], characterized by an arrest in mitotic activity of the

embryo, leading to a delay in implantation. Mink are seasonal breeders, having their

mating season during spring in the Northern hernisphere. Ovulation is induced by mating

and the arrest in embryo developrnent occurs at the blastocyst stage, six days after mating,

concurrent with ernbryo entrance into the uterus [2]. The length of embryonic diapause is

associated with photoperiod, averaging 1$-25 days [3]. The termination of diapause is

associated with increased levels of prolactin [4-6], under the regulatory influence of a

reduction in melatonin [7] associated with the vernal equinox. The corpus luteum, which

functions at a diminished level following ovulation, is reactivated by prolactin [4,5]. The

proxirnal regulation of delayed implantation appears to be dependent on uterine factors.

Using reciprocal transfers, Chang [8] dernonstrated that mink embryos in diapause

reinitiated development in the ferret uterus, whereas the ferret embryos, which do not

display diapause, underwent a developmental arrest when transferred into mink uterus. The

process of implantation in mustelids begins with focal adhesion of the trophoblast to the

endometrial endothelium, followed by rapid invasion at the sites of attachrnent [9].

Consequent differentiation of trophoblast celis in the mink leads to formation of a

discontinuous zonary placenta of the endotheliochorial type in which the classic decidual
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response seen in other species is absent [10]. Postimplantation pregnancy is a consistent

30-31 days in this species [2].

The peri-impiantation period in mammals is characterized by morphological and

functional changes in the uterine celis, accompanied by vascular remodelling.

Angiogenesis is a key event for the proliferative processes in the uterus, and is required for

both placenta! and embryonic development [11-14]. VEOF is the principal factor

responsible for regulation ofvascular changes [15]. VEGF is a homodimeric glycoprotein

of 40-45 kDa and is best known for its potent endothe!ial celi-specific mitogenic activity

but it also plays a foie 1fl increasing vascular permeability [16-19]. Several isoforms have

been identified to date, and these differ in the number of amino acids in the final protein.

The VEGf gene is organized in eight exons, seven introns, with a coding region of around

14 kb [20]. The isoforms are the result of alternative exon spiicing from a single gene [20].

The isoforms share the same function, and the main difference among them lies in their

ability to bind to heparin []5,21]. Such differential heparin-binding properties are related

to the bioavailability ofthe several isoforms [22]. The major isoforrns identified in hurnans

are comprised of 121, 165 and 189 amino acids [23]. One ofthese, VEGf 121, is a soluble

protein found in its free form and presents no heparin-binding properties; while VEGF 165

is found secreted as well as bound to the ccli surface and extracellular matrix (ECM); and

VEGF 189 is almost completely bound to the ECM [23]. It is beÏieved that VEGf protein

becomes available to endothelia! celis by at least two different mechanisrns: freely

diffusible proteins (VEGF 121 and 165 in humans) or after protease activation and cleavage
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ofthe longer isoforms bound to the ECM [15]. Among the factors that upregulate VEGf

are the ovarian steroid hormones ([24] for review) and prostaglandins ([25] for review).

VEGF is expressed in the endometrium [26], and is an important factor in regulation of the

events of early implantation and establishment ofthe placenta [27].

VEGF effects on angiogenesis are dependent upon its binding to tyrosine kinase

receptors, F lt-1 (fms-like tyrosine kinase, also known as VEGfR-1) and KDR (kinase

domain region, also known as VEGFR2) ([2$] for review). These receptors play an

important role in transduction ofthe VEGF signal during implantation [27].

Gestation in mink displays unique characteristics including obligate diapause,

implantation through the zona pellucida and formation of an endotheliochorial placenta.

Further, mitogenic activity of the endothelial celis of the maternai placental microvascular

is accelerated during the early part of gestation.[29]. In addition, mink placenta differs

from other carnivores in retention the fetal chorionic villi, allowing the maternai blood

vessels to maintain their architecture [30]. Given the peculiarities in this species, it was of

considerable interest to explore the expression of the angiogenic factors through the

implantation process, including VEGF isoforms, and the VEGf receptors KDR and Fit-1.

A further goal was to evaluate the involvement of the embryo in the angiogenic process.

MATERIALS AND METHODS
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Animas and Sample Collection

Ail animal treatrnent protocols were approvcd by the Comité de déontologie,

Faculté de médecine vétérinaire, Université de Montréal in accordance with regulations of

the Canadian Council of Animal Care.

Mink of the Dark and Pastel varieties were purchased and maintained on a

commercial farm (A. Richard, St. Damase, Canada). Females were mated to fertile males

twice, 7 days apart throughout the first two weeks of March, according to standard

husbandry procedures. Prolactin injection has been previously shown to induce embryo

activation [4] and implantation [5,6]. A standard protocol, consisting of injections of I

mg/kg of prolactin (Sigma, St. Louis, MO) given i.m. daily beginning approxirnately one

week following last mating, was employed. Injections were carried on for twelve days.

Implantation, as indicated by the presence of uterine swelling(s), occurred on the thirteenth

day after initiation ofprolactin injections.

Uterine tissues were collected from three animals selected randomly every second

day starting on the day of the first prolactin injection (d O) to 19 days thereafter. Uteri were

flushed- for embryo recovery (non-implanted females) and frozen in liquid nitrogen

immediately following flushing or, in the case of impianted uteri, implantation chambers

were frozen individually. Samples were kept at - 700 C until analyzed.

The assignment of samples into categories was based upon gross and microscopic

inspection of the uterus and embryos. Diapause samples were collected prior to prolactin
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injection, the uterus had no implantation chambers and only embryos in diapause

(approximately 200 pm) were found during flushing. The activation period was divided

into early and late activation, according to the number of prolactin injections received as

well as the size of flushed embryos [31], i.e. fate activated embryos were near 2 mm in

diameter. Implantation was confirmed by microscopic evidence of embryo attachment and

trophoblast invasion. Pseudopregnant animais were not mated, rather received two

injections of GnRH (10 tg/kg; Factrel, Ayerst, Canada) 7 days apart during the mating

period to induce ovulation, and samples were obtained 30 days later, allowing for their

natural increases in prolactin and progesterone levels to take place. To establish whether

there is basal expression of VEGF, uteri from anestrous females were obtained prior to

beginning of the mink breeding season, when ovarian steroids are not present in significant

amounts and therefore, are not expected regulate VEGF.

RNA Extraction, Purification ancÏ Reverse transcriptase (RI) Reaction

Tissues were homogenized in buffer RLT (Qiagen, Mississauga, Canada) with

0.12M f3-mercaptoethanol (Sigma) and RNA was purifled using a RNeasy Protect Mini kit

(Qiagen) as recommended by the manufacturer. Total RNA was measured by

spectrophotometry at 260 nm and 1.5 ig/sample of total RNA was used for the RT reaction

using the Omniscript RT kit (Qiagen) according to the instructions from the manufacturer.
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Mink Specific cDNA Cloning

VEGf primers were designed based on homofogous sequences between human

(GenBank Accession No. AF022375), mouse (GenBank Accession No. NM 009505) and

bovine (Gen3ank Accession No. M32976) (Table 1). Homologous sequences of hurnan

(GenBank Accession No. for KDR: AF035121, for fit-1: AF063657), rat (GenBank

Accession No. for KDR: U93 306, for fit-1: D2$49$) and mouse (GenBank Accession No.

for KDR: X70842, for fit-1: L07297) were also used for designing prirners for the VEGf

receptors (Table 1). PCR products of the expected size, obtained from the primers

rnentioned above were excised and purified using a Gel Extraction kit (Qiagen). Purified

cDNA was then ligated into a pGEM-T Easy Vector System I (Promega Corp., Nepean,

Canada) according to the instructions of the manufacturer, and further transforrned into

competent Escherichia cou strain XL-l blue. Plasmids were isolated by the used of a

QlAprep Spin Miniprep kit (Qiagen) and sequenced using a ABI PRISM 310 sequencer

(Applied Biosystems, Foster City, CA), and at Ïeast 3 independent samples were sequenced

for verification ofthe transcripts. The primers for KDR and Fit-1 based on the homologous

sequences mentioned above were further used for our studies.

Mink specific primers (GenBank Accession No. AY158156), with exception to

primer ex6 which was based on the homologous sequences (above), were chosen for ail 3

VEGF isoforrns, and are presented in Fig. 1. Briefly the forward primer (ex3) utilized for
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ail 3 VEGF isoforms was the sarne, located at the third exon, whether the reverse primers

varied to allow for amplification ofthe individual isoforms (Table 1).

Mink specific prirners for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were used

(GenBank Accession No. Af076283) as a control (Table 1).

Serni-quantitative RT-FC’R

Uterine tissues from three animais in each of the following reproductive states:

anestrous, diapause, early embryo activation, late embryo activation, implanted

(implantation sites and inter-implantation sites), and pseudopregnant were studied. Ail

analyses are presented as the mean ± SEM ofthe 3 individual samples per group.

Relative abundance ofthe VEGF isoforms 120, 164 and 18$, as well as the receptors KDR

and Fit-1, was determined by semi-quantitative PCR using GAPDH as a control for RNA

quantity and RT efficiency. for each individual product analyzed, the number of cycles

was chosen by subjecting the RT products to PCR reactions of 17 — 35 cycles. The

quantification procedure was performed by choosing the number of cycles retaining

amplification in the exponential phase. The number of cycles chosen for GAPDH, VEGF

120 and 164 were 23, 32 and 2$, respectively. For VEGF 188 and the receptors KDR and

FIt- 1, 31 cycles were empioyed.

The semi-quantitative reactions were carried at the chosen number of cycles in a

final volume of 50 d and using Taq DNA polymerase (Amersham Biosciences Corp., Baie
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d’Urfe, Canada). Amplifications were carried out with annealing conditions of 58° C/40 s

for VEGf 120 and 59° C/40 s for the remaining products. PCR products were separated in

a 1.8% agarose gel and stained in ethidium bromide. Densities ofthe amplified fragments

were analysed using the Collage software (Photodyne, New Berlin, WI). Resuits were

expressed as a density ratio of the target gene to the control (GAPDH).

IrnrnzrnohistochernicaÏ Analysis of VEGf

Tissues fixed in Zamboni’s solution were used to demonstrate expression ofVEGf

through the peri-implantation period. A Vectastain ABC kit (Vector Laboratories,

Burlington, Canada) was used according to the manufacturer’s protocol. Deparaffinized

and hydrated sections were immersed in methanol containing 0.75% hydrogen peroxide for

20 min for quenching of any endogenous peroxidase activity. Sections were then washed

in TBS and retrieval of antigens was performed by microwave treatment twice for 5

minutes in TBS. Sections were then incubated with normal goat serum at room

temperature for 30 min. A rabbit polyclonal antibody, (VEGF: A-20, Santa Cruz

Bioteclinology, CA) raised against residues 1-20 at the amino-terminus of human VEGF,

thus recognizing ail isoforms used during this study, was added at a concentration of 0.6

ig/ml diluted in normal serum and tissues were incubated overnight at 4° C. The same

antibody lias been previously used to immunolocalize VEGF in rnink [32]. After washes in

PBS, incubation with biotinylated second antibody took place for 45 min. Following PBS
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washes, a complex of avidin-biotin-peroxidase was applied for 45 min. Positive reactions

were identified by the use of the peroxide substrate 3,3’ diaminobenzidine (Sigma) at a

concentration of 0.6 mg/ml.

Statisiicat Analysis

The ratio of target gene/GAPDH was used as a value for each sample and data

analyzed using the least square analysis of variance by the General Linear Model

procedures of SAS. When significant differences in treatments were found, comparisons of

means were further performed by the methods of Orthogonal Contrasts, and Duncan’s

Multiple Range Test.

RESULTS

Serni-Quantificcition of VEGF Isoforrns 120, 164 and 188

Ail three of VEGF isoforrns were present in anestrous, diapause, activated (early

and late), implanted (implantation site and inter-implantation site) and pseudopregnant uteri

of mink. The relative abundance for ail three isoforms of VEGf increased through

implantation (Fig. 2). Expression of VEGF 120 was significantïy different arnong groups
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(P<O.O1) (Fig. 2). Individual mean comparisons reveaied that anestrous uteri had the

lowest leveis of VEGF 120 mRNA, significantly iower relative to impianted and

pseudopregnant sampies (P<0.05). Diapause and early activated uteri displayed

significantly lower VEGf 120 levels relative to implanted uteri (P<0.05) (Fig. 2).

Expression ofVEGF 164 mRNA also differed significantly among groups (P<0.01).

Anestrous uteri had the lowest leveis of VEGF 164 mRNA, which were significantly iower

than early and late activated, implanted and pseudopregnant uteri (P<0.05). $amples from

diapause and early activation had iower VEGF 164 leveis than late activated, impianted and

pseudopregnant uteri (P<0.05), with diapause VEGF 164 levels being similar to anestrous

levels (fig. 2).

Expression of VEGF 1$$ differed significantly among groups (P<0.01). Anestrous

uteri aiso had the lowest levels of VEGF 18$ mRNA relative to late activated, impianted

and pseudopregnant uteri levels (P<0.05). Late activated and pseudopregnant samples had

the highest mRNA levels and differed from anestrous, diapause and eariy activated samples

(P<0.05); while implanted samples had levels in between early activated and the highest

groups, late activated and pseudopregnant (fig. 2).

Further analyses were performed by comparing the groups by Orthogonal Contrasts,

in which the different stages were grouped and contrasted to aiiow comparisons of

biologicai interest. The contrasts chosen were as follows: anestrous vs. pregnant (including

ail the other groups); diapause vs. activated (early and late); early activated vs. late

activated; late activated and implanted vs. pseudopregnant; implanted vs. non-implanted
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(diapause, early and late activated); implantation site vs. inter-implantation site. Resuits for

VEGF isoforms are depicted in Table 2.

VEGf Localization During the Peri-impiantation Period

Mink uterine tissues from the peri-implantation period were stained for VEGf

protein. In uteri samples taken from diapause, or obligate delay, presence of VEGF

staining was observed in the glandular epithelium, very littie or no staining present on the

luminal epithelium, whereas the subepithelial stroma presented no staining for VEGF (Fig.

3A,B). Following activation of the embryo, VEGF staining was observed in the luminal

and glandular epithelium, while the stromal bed consistently lacked expression of VEGf

(Fig. 3E,f). In implanted uteri, VEGF was strongly expressed in the luminal and glandular

epithelium as well as in the subepithelial stroma (Fig. 3G,H) . At the site of embryo

attachrnent and implantation the first layer of trophoblast ceils, leading the invasion into the

uterus, displayed a strong VEGF signal (Fig 3G,H). Samples taken from pseudopregnant

animals presented a similar pattern of VEGF localization as activated samples, with

positive staining in the luminal and glandular epithelium and lack of signal in the stromal

bed (Fig. 31,J). In uterine samples collected during anestrous, no significant localization of

VEGF protein could be observed (Fig. 3L,M).

Semi-Quantflcation of VEGf Receptors KDR and Fit-1
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We aiso investigated expression ofthe VEGF receptors KDR and Fit-1 through the

process of implantation. Expression of KDR mRNA was different among groups (P<O.05).

Group comparisons revealed that anestrous and pseudopregnant uteri had lower levels of

this receptor than implanted uteri (P<O.05) (Fig. 4).

Expression of Fit-1 mRNA was different among groups (P<O.O1). Group

comparisons reveaied that anestrous and pseudopregnant uteri had iower levels in

comparison to activated and implanted uteri (P<O.05); diapause levels were found to be

significantly lower than implantation site samples (P<O.05) but did not differ from any

other group (Fig. 4). Orthogonal Contrast analysis was performed for the receptors using

the same comparisons as for the VEGF isoforms. Resuits are shown in Table 2.

DISCUSSION

This investigation provides the flrst information about the expression of angiogenic

factors in uterine and embryonic tissues during the peri-implantation period in a species

that displays obligate emb;yonic diapause and the distinct carnivore pattern of implantation.

The defining characteristics of obligate diapause are the developmental arrest of the embryo

and the iack of an active corpus luteum, with attendant low level of progesterone secretion

[33]. In other species it lias been shown that estrogen and progesterone upregulate VEGF

expression [24]. The differential effects of the two steroids were revealed by a recent study
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in which estrogen was shown to inhibit angiogenesis while increasing vascular permeability

in the mouse uterus [34]. Progesterone, on the other hand, stimulated angiogenesis, VEGF

and Flk-1, but had no effect on vascular permeability [34]. Based on these flndings, we

postulated that reactivation the CL and its attendent increase in progesterone synthesis

would be reflected in the expression of VEGF and its receptors. This proved to be the case,

as VEGF expression in the mink uterus is Ïow during diapause and is upregulated during

embryonic activation and implantation. Concurrence with ovarian changes provides strong

evidence for ovarian steroid hormone control.

A second candidate for the regulation of angiogenic factors during implantation is

prolactin, as this hormone is an important effector of the termination of diapause [5].

Indeed, prolactin receptors are present in the mink uterus during early gestation, and their

abundance is influenced by ovarian steroids [35]. No evidence for or against direct

regulation ofVEGF expression in the rnink uterus by prolactin is yet available.

A third possibility is that the activated or implanting embryo plays a role in

regulating VEGF either locally or globally in the uterus. This has been previously

suggested for the hamster [36] and is supported in the present study by the distinct

differerices that were noted in VEGF expression between mink uteri containing blastocysts

in diapause and those with activated embryos. We showed that VEGF staining was limited

to the glandular epithelium during diapause, whereas activated uteri presented VEGF

localization in the glandular epithelium as well in the luminal epithelium. Nonetheless,

similar increases in the quantity and extent of VEGF expression, both in terrns of mRNA
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abundance and protein localized to glandular and endometrial epithelium during the

implantation process, were also observed in uteri of pseudopregnant animais. The pattern

in the uterus of the pseudopregnant animais resembles that seen during late embryo

activation and early implantation. Further, mRNA resuits revealed that the increase in

VEGF did flot differ in samples taken from the implantation site relative to those from

inter-implantation areas, indicating that the changes are not specific local effects of embryo

invasion. Thus, it can be concluded that VEGF expression is independent of ernbryonic

influence in the mink. This distinguishes this species from other mammals studied to date.

An interesting finding of the present study is the very strong VEGf localization

present in invasive hypertrophied trophoblast celis. In contrast, the outermost layer of

trophoblast celis, which are flot in direct contact with uterine tissue, had no positive staining

for VEGF. A similar VEGF localization within the invasive trophoblast ceils lias been

observed in murine implantation [37]. At later times in gestation, VEGf positive staining

is present in the cytotrophoblast and syncytiotrophoblast layers of the mink placenta [32].

This indicates evolution of VEGf expression in the two trophoblast ceil types as gestation

progresses.

Matsumoto et al. [27] have suggested that, whule preimplantation expression of

VEGF is steroid regulated, the onset of implantation and decidualization shift this

regulation to COX-2-derived prostaglandins. Uterine expression of COX-2 is associated

with implantation in mice, and COX-2 deficient mice display defective implantation and

decidualization [38,39]. further studies by Lim et al. [40] revealed that COX-2-derived
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PGI2 is involved in implantation and decidualization, and its action is mediated by the

peroxisome proliferator-activated receptor delta (PPAR). We have previously shown in

the mink that COX-2 expression is a transient event that occurs at the time of trophoblast

attachment and invasion [41] and this concurs with elevated expression of VEGf in the

present study. further, endornetrial expression of PPAR has been observed in this species

folfowing implantation [42]. This reinforces the view that prostaglandins contrihute to

upregulation of VEGF during this time in early gestation. PGE2 has been shown to

effectively induce VEGF expression in other tissues [43], and its expression was shown in

the mouse uteri during implantation [40]. Preliminary data indicates that the rnink activated

embryo produces PGE2 [42]. Other candidates include PGJ, which has been shown to

stimulate VEGF expression in human macrophages, activating gene expression through a

PPAR’ mediated processes [43]. PPAR’, as well as its heterodimerization partner RXRa,

are strongly expressed in human trophoblasts; RXR is also present in decidual ceils [44].

Preliminary information indicutes that PPARy is expressed in the trophoblast at the time of

implantation [42], placing PPAR’y as a proximal candidate for VEGF regulation following

implantation. The occurrence of the ligands for PPARy at implantation remains to be

investigated.

VEGf acts through the tyrosine kinase receptors KDR and fit-1 [45]. In this study,

expression of KDR in the uteri of pseudopregnant mink was iow in comparison to samples

from implanted anirnals. In addition, uterine samples derived from implantation sites

displayed greater expression of fit-1 relative to either uteri from diapause or from
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pseudopregnancy. $tudies in the mouse show very low accumulation of KDR mRNA in

the uterus on the first two days of pregnancy; however, on days 3 and 4, these genes were

distinctly expressed in the stromal bed [37]. On days 5-8 of mouse gestation, the decidual

beds accumulated KDR as well as Fit-1 mRNAs [37]. In the rabbit, mRNA for both

receptors were present in the uterus at several stages, with high levels at estrus and just

prior to implantation [46]. In the hamster, expression of the receptors were also correlated

with the progression of embryo implantation [36]. In the current studies we shown that

elevation of VEGF receptor expression likewise appears to be associated with implantation

in rnink. Unlike the VEGf isoforms, both receptors studied were found to be at lowest

levels in pseudopregnant uteri. This indicates that the implanting embryo plays a role in

regulating expression of VEGF receptors. The factors produced by embryos, or by the

uterus induced by the presence of the embryo during implantation rernain obscure, but the

eicosanoids and their receptors described above are excellent candidates.

In conclusion, we have used an unique animal model that presents an obligate

developmental arrest in the embryo, progesterone-dependent embryo activation, a lack of

decidual response and an endotheliochorial placenta, to study the factors involved in

angiognesis during the peri-implantation period. We have shown that three VEGF

isoforms are upregulated during the peri-implantation period, as are the VEGF receptors,

KDR and Flt-1. Upregulation of VEGf during the implantation process is dependent on

maternal factors, presumably gonadal steroids, whereas the presence of the embryo appears

to regulate the VEGF receptors.
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Gene Primer Sequence 5’ - 3’

VEGF forward CCTCCGAAACCATGAACTTTCTG

reverse GAGTTAAACGAACGTACTTGCAGA

KDR forward AAGTGGCTAAGGGCATGGAG

reverse CTGCCTACCTCACCTGTTTCC

Fit-1 forward GAAGGAGAGGACCTGAAACTG

reverse GCACGCTGTTTATTGAAAGAGTCAC

VEGF 120, 164, 188 forward CCGTCCCATTGAGACCCTG

VEGF 120 reverse GACAAGAAAAATGTGACAAGCCG

VEGF 164 reverse GCAAGAAAATCCCTGTGGGC

VEGf I 88 reverse GAGGAAAGGGAAAGGGGCA

GAPDH forward GTCCATGCCATCACTGCCAC

reverse CAAGAAGGTGGTGAAGCAGG



9$

Table Ï. Sequences of oligonucleotides used for mink specific cDNA cloning or RT-PCR

of VEGf isoforms and receptors KDR and fit- 1.
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Contrasts VEGf 120 VEGf 164 VEGF 18$ KDR Fit-1

anestrous vs. pregnant ** ** ** *

diapause vs. activated * *

early vs. late activated ** **

late activated, implanted vs. pseudopregnant * * * *

irnplanted vs. non-implanted * ** *

implantation site vs. inter-implantation site *

*p < 0.05; ** <0.01
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Table 2. Orthogonal contrast analysis of the abundance of VEGf isoforms and receptors

during mink early gestation.



VEGF 120

exonÏ 2

VEGf 164

exoni 2

VEGf 188

xon 1 2

ex3 ex5-8

3 4 5 8

ex3 ex5-7

ex3 ex6

3 4 5 6 7 8
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Fig. 1. Structure of the VEOF gene and selection of primers for specific semi-quantitative

RT-PCR for VEGF isoforms 120, 164 and 188 in mink uterine and embryo-uterine tissue

samples.
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Fig. 2. Serni-quantitative RT-PCR for VEGF isoforms 120, 164 and 188 in the anestrous,

diapause, activated (early and late), implanted (implantation site and inter-implantation

region) and pseudopregnant uteri in mink. Graphs represent the ratio of VEGF

120/GAPDH (A); VEGF 164/GAPDH (B); and of VEGF 188/GAPDFI (C). The

quantification represents mean ± SEM of three individual samples. Different superscripts

represent differences in means at P<0.05.
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f ig. 3. Immunohistochemical characterization of VEGF in the mink uterus. A and 3,

VEGF rnainly localized to the glandular epithelium (GE) in the diapause uterus. C and D,

Negative control for Iocallzation. E and F, VEGF expressed in both the GE and luminal

epithelium (LE) in the activated uterus. G and H, VEGf Iocalization in the subepithelial

strorna (S), GE, LE and intensively in the invasive trophoblast celis (*) in the implanted

uterus. I and J, VEGF in both the GE and LE in the pseudopregnant uterus. L and M, Yack

of VEGf localization in anestrous uterus. The bar in each photo represents 500 im.
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Fig. 4. Serni-quantitative RT-PCR for VEOF receptors KDR and Fit-1 in the anestrous,

diapause, activated (early and late), implanted (implantation site and inter-implantation

region) and pseudopregnant uteri in mink. Graplis represent the ratio of KDR’GAPDI-T (A);

and Flt-l/GAPDH (B). The quantification represents mean ± SEM of three individual

samples. Different superscripts represent differences in means at P<0.05.
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ABSTRACT

Vascular endothelial growth factor (VEGf) is an essential angiogenic signalling

elernent. Acting tbrough its two tyrosine kinase receptors, it induces both proliferation of

vessel endothelial ceils and vascular permeabllity. Given the importance of vasculogenesis

and angiogenesis to early pregnancy, it is of interest to understand the mechanisrns

regulating vascular developrnent at this stage. We previously demonstrated that VEGF and

its receptors are up-regulated during ernbryo implantation in the mink, a species displaying

obligate embryonic diapause. In the present investigation, we examined the role of

prostaglandin E2 (PGE2) as a regulator ofVEGF during early pregnancy and established the

mechanisms of this regulation. We demonstrate that activated mink embryos secrete PGE2

and that expression of the PGE synthase protein in the uterus is dependent upon direct

contact with the invading trophoblast celis during implantation. Using mink uterine

stromal celis transfected with the mink VEGF promoter driving the luciferase reporter

gene, we show that PGE2 induces promoter transactivation and that this response can be

eliminated by blockade of PKA. There was no PGE2 induced response in transfected ceils

pre-treàted with antagonists to the PGE2 receptors EP2 and EP4. Deletional studies of the

promoter revealed that a region of 99 basepairs (bp) upstream of the transcription start site

is required for PGE2 induced transactivation. Mutation of the AP2/SP 1 cluster, found

within the 99 bp, completely eliminated the PGE2 response. furthermore, chrornatin

immunoprecipitation assays confirmed binding of these two transcription factors to the
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endogenous rnink VEGF prornoter in the uterine ceils. PGE2 stimulation increased the

acetylation of histone H3 associated with promoter region containing the AP2/SP1 cluster.

Taken together, these resuits demonstrate that in this unique model, PGE2 plays an

important role in regulating uterine and thus placental vascular development, acting through

its receptors EP2 and EP4, provoking PKA activation of AP2 and SPi, as weli as

acetylation of histone H3, to transactivate the VEGF prornoter.

INTRODUCTION

ProstagÏandin E2 (PGE2) is a prostanoid synthesized tlwough the cyclo-oxygenase

pathway characterized by the initial step of formation of PGH2 from arachidonic acid

catalyzed by the cyclo-oxygenases I and 2 (COX-1 and -2). Formation of PGE2 follows

formation of PGH2 from arachidonic acid and is dependent on the presence of

prostaglandin E synthase (PGE synthase). Iwo isoforms of the PGE synthase have been

identifled, one is a cytosolic form (cPGE synthase), that acts mostly on COX-I derived

PGH2. The second is a microsomal form (mPGE synthase), preferentially coupled with the

inducible COX-2 induction of PGE2 generation (Murakami et al, 2000). PGE2 exerts its

effects following binding to specific receptors containing seven transmembrane dornains

(see Narurniya et al., 1999 for review). Four receptor subtypes have been identified to date:

EPI, 2, 3 and 4, each activating different intracellular pathways. Knockout models for each



112

subtype have been investigated, and mice deficient for EP2 presented impaired ovulation

and fertilization (Tilley et aI.,1999).

The role of prostaglandins in reproductive processes have been extensively

investigated. COX-2 deficient mice have irnpaired ovulation, fertilization, implantation,

and decidualization (Lim et al.,1997). PGE2 is luteoprotective (Arosh et al., 2004); it also

plays a role in regulation of immune responses at the site of embryo attachment (Lala et al.,

1989), in ovulation (Matsumoto et al., 2001), and in the decidualization process in rats

(Jolmston and Kennedy, 1984; Kennedy and Doktorcik, 198$). Recently, Wang et al.

(2004) identified PGE2 as the major PG at implantation sites in hamsters, and expression of

mPGE synthase was correlated with expression of COX-2. In mice, both mPGE synthase

mRNA and protein were localized in the subluminal strorna surrounding the implanting

blastocyst (Ni et al.,2002). The authors suggested ernbryonic regulation of PGE synthase

expression since a similar pattern of expression was absent in pseudopregnant females as

well as at the inter-implantation sites in the uterus.

Early pregnancy in mammals is associated with morphological and functional

changes in uterine celis, accompanied by vascular remodelling. These changes are required

for both placental and embryonic developrnent (Breier et al., 1992; Klauber et al., 1997;

Risau, 1997; Smith, 1998). Vascular endothelial growth factor (VEGF) is the major

regulator of angiogenesis (Ferrara and Davis-Smyth, 1997) and is an important factor in
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regulation of the events of early implantation and establishment of the placenta (Matsurnoto

et al., 2002). VEGF is a homodimeric glycoprotein of 40—45 kDa and whule best known for

its potent endothelial ceil-specific mitogenic activity, it also plays a role in increasing

vascular permeability (ferrara and Hanzel, 1989; Gospodarowicz et al., 1989; Keck et al.,

1989; Leung et al., 1989). Prostaglandins are among the factors reported to regulate VEGf

(see Gately, 2000 for review). VEGF effects on angiogenesis are dependent upon binding

to tyrosine kinase receptors, f lt-1 (fms-like tyrosine kinase, also known as VEGFR-1) and

KDR (kinase domain region, also known as VEGFR-2) (see Jussila and Alitalo, 2002 for

review). We have previously demonstrated that VEGF and its receptors are up-regulated

during peri-implantation stages of gestation in the rnink uterus (Lopes et al., 2003).

Earlier, Keirnedy and colleagues (1979) showed that PGE2 is a regulator of

increased vascular permeability at implantation sites in the rat. Since then, PGE2 has been

shown to up-regulate VEGF in a number of tissues, including umbilical cord blood-derived

mast ceils (Abdel-Majid and Marshall, 2004), colon cancer ceils (fukuda et al., 2003),

endothelial ceils (Pai et al., 2001), human pancreatic cancer ceils (Eibl et al., 2003), gastric

cancer e11s (Ding et al., 2005), and mouse mammary tumor celis (Chang et al., 2005).

In the present investigation, we aimed to verify the expression of PGE synthase in

the uterus during early pregnancy and to investigate the role of PGE2, as well as its

mechanism of regulation of the angiogenic factor VEGf.
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MATERIALS AND METHODS

Animais and Sample Collection - Ail treatment protocols involving the use of animais were

approved by the Comité de déontologie, Faculté de médecine vétérinaire, Université de

Montréal in accordance with regulations of the Canadian Council of Animal Care. Mink of

the Dark and Pastel varieties were purchased and maintained on a commercial farm (A.

Richard, St. Damase, PQ, Canada). females were mated twice, 7 days apart, throughout

the first 2 weeks of March, according to standard husbandry procedures. It bas been

previously demonstrated that prolactin injections induce ernbryo activation and

implantation in the mink (Papke et al., 1980; Murphy et al., 1981; Martinet et al., 1981) and

a standard protocol consisting of daily i.m. injections of I mg/kg prolactin (Sigma, St.

Louis, MO) was employ’ed beginning 1 week following last mating and continuing for 12

days. Implantation takes place approximately on the l3 day after initiation of prolactin

injections, verifled by the presence of uterine swelling(s). Pseudopregnancy was induced

by two injections of GnRH (10 ig/kg Factrel; Ayerst, Guelph, ON, Canada) 7 days apart

given to non-mated females to induce ovulation. Uterine tissues were collected at the early

stages 6f implantation from randomly selected females at days 13 and 15 following the first

prolactin injections, as well as from pseudopregnant animais. Pseudopregnant samples

were obtained 30 days later, allowing natural increases in prolactin and progesterone leveis

to take place. Samples were frozen immediately in liquid nitrogen and stored at -70°C until

analyzed.
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Ccli Ctitture - A mink uterine stromal immortalized ce!! !ine previously described by our

laboratory (Moreau et aI., 1995) was used for the in vitro experirnents described herein.

Celis were cu!tured in DMEM/F12 (Invitrogen) supp!emented with 10% fetal bovine serum

(FBS; Invitrogen), containing 1% of Penicil!inlStreptomicin (Invitrogen) and 0.5% of

fungizone (Invitrogen). A natura!!y irnmortalized ce!! !ine prepared in our lab (Douglas

and Murphy, unpublished) from an ovarian tumor of the mink was also used for

transfection experiments. This ceil !ine was maintained in OPTI-MEM supplemented with

5% FBS and the antibiotics as above. A human breast cancer ccl! une, MCF-7, was kindly

made avai!ab!e by Dr. Wi!son Miller and was also used during our experiments. The MCf

7 celis were maintained in the same medium as the rnink ovarian cel!s described above.

Ernbiyo collection and RIA for PGE2 - Embryos were co!!ected by repeated flushing of the

uterine horns of fema!es in diapause and 9 days following initia! embryo activation

(Desmarais et a!., 2004) with TC-199 medium (Invitrogen, Burlington, ON, Canada)

containing 10% feta! bovine serum (Invitrogen). Ernbryos (in groups of 5) were incubated

in 500 pi INRA Menezo B2 medium (Pharmascience, Paris France) supp!emented with 5%

fBS (fnvitrogen) for 48 h, in the presence or absence of mink uterine ce!!s. for

radioimmunoassay evaluation, 100 i! of ernbryo or ccl! culture medium were ernp!oyed.

The RIA for PGE2 was performed according to Xiao et al. (1999). Briefly, antiserum from

Assay Design (Ann Arbor, MI) was used with reactivity with PGE, PGf1(1, PGF2<1 and keto

PGFIŒ of 70%, 1.4%, 0.7% and 0.6%, respectively. Assay sensitivity was 4 pg/100 jil, and
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the intra-assay coefficient of variation, calculated between duplicates ranged from 0.04% to

6.1%.

Extraction of RiVA, Purification and Reverse T’ranscrtption - Uterine tissues were

homogenized in buffer RiT (Qiagen, Mississauga, ON, Canada) with 0.12 M 13-

mercaptoethanol (Sigma). Purification of RNA was performed using an RNeasy Protect

Mini kit (Qiagen), following the recommendations of the manufacturer. Total RNA was

measured by spectrophotometry at 260 nm, and 1 ig/sarnple of total RNA was used for

reverse transcription (RT) with the Omniscript RT kit (Qiagen) according to the

manufacturer’ s instructions.

PCR for PGE synthase and Receptors in the Mink Uterine Samples - Hornologous

sequences of rat (accession numbers: PGEs: NM_021583; EP-1: NMOI3IOO; EP-2:

NMO3YO$$; EP-4: D2$860), mouse (PGEs: NM022415; EP-1: NM013641; EP

2 :NMOO$964; EP-3 : NM011196), and human (EP-1: NM000955; EP-2:

NM_000956; EP-3 : NM_000957; EP-4: NM_00095$) were used to design primers for

PGE snthase, and for PGE receptors (Table 1). PCR products of the expected size were

excised and purified using a gel extraction kit (Qiagen). Purified cDNA was ligated into a

pDrive vector (Qiagen) following rnanufacturer’s instructions, and further transformed into

competent Escherichia cou strain XL-1 blue. Plasmids were isolated with a QlAprep Spin

Miniprep kit (Qiagen) and sequenced by automated DNA sequencing for verification
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(Service d’Analyze et de Synthèse d’Acides Nucléiques de Université Lavai, Québec,

Canada). PCR reactions were carried out in a final volume of 50 .t1 using Taq DNA

polyrnerase (Amersham Biosciences Corp., Baie d’Urfe, PQ, Canada). PCR products were

separated in a 1 .5% agarose gel and visualized with ethidium brornide.

Cloning and Sequencing of the Mink VEGf 5 ‘UTR and Prornoter Regions - The 5’-

flanking region of the mink VEGF gene was cioned by PCR using the Universal Genome

Waiker Kit (Clontech Laboratories. Inc., Palo Alto, CA) from a iibrary constructed from

mink genornic DNA. The Expand High fidelity kit served for amplification. The PCR

products were cloned into a pGEM-T vector (Qiagen) for sequencing, which was

performed by automated DNA sequencing (Service d’Analyze et de Synthèse d’Acides

Nucléiques de Université Lavai, Québec, Canada). Sequence analysis was undertaken

using Matlnspector (Abteilung Genetek, Braunschweig, Germany) and TF Search (Yukata

Akiyama: Tf Search - Searching TF Binding Sites). The transcription start site of the

VEGf gene was predicted using the program for promoter prediction of the Berkeley

Drosophila Genorne Project (UC Berkeley, Berkeiey, CA). To confirm prediction, we

employed the 5’/3’ RACE kit (Roche) to identify the site of transcription initiation from 2.9

Kb ofthe mink S’flanking region. Primers used are described in Table 2.

Immunohistochernical Analysis of microsomat EGE synthase - Tissues fixed in 4%

paraformaldehyde solution were used to demonstrate expression of PGE synthase during
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the early implantation stages. Sections were re-hydrated and permeabilized with 0.2%

Triton in PBS. Blocking was perfomed for 1 h using 5% BSA in PBS, and sections were

incubated overnight at 4°C with rabbit anti-human PGE synthase (Cayman, Aim Arbor,

MI) diluted 1:150 in 5% BSA/PBS. A conjugated Cy3 anti-rabbit second antibody

(Jackson ImmunoResearch, West Grove, PA) was employed for 1 h to localize the PGE

synthase positive staining. Tissues were counterstained using 4’,6-diamidino-2-

phenylindole dihydrochioride (DAPI; Boehringer Mannheim, Indianapolis, IN). Normal

rabbit serum was used as negative control.

Flasmid constructions - The I .7kb sequence of the mink VEGF gene was cloned into a

pGL2 basic vector (Promega Corp., Nepean, Ontario, Canada). Ail deletions were derived

from the original construct by PCR using KPNI and XHOI insertions for directional

cloning. Mutation of the predicted AP2 and SPi sites was performed using the

QuickChange Site-directed Mutagenesis Kit (Stratagene, La Joua, CA). Ail plasmids used

for transient transfection were prepared using the Maxi Prep kit (Qiagen, Mississauga,

Ontario, Canada) and sequenced prior to transfection.

Transfections, Lucferase Reporter Assays and Treatments — Just prior to transfection,

culture medium was changed to OPTI-MEM lacking FBS and antibiotics in ail ceil unes

used. Transfection and treatments were carried out in 24-well plates in this medium. For

transient transfection, Lipofectamine 2000 (Invitrogen) was used according to the
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manufacturer’s protocol. Ceils were transfected with 400 ng/well ofthe pGL2 basic vector,

containing the mink VEGf promoter constructs, for 5 h prior to addition of treatrnents.

Medium was changed following the 5 h of transfection, and treatrnents were added 1 h

following transfection. Ceils were cotransfected with the simian virus 40 (SV4O) Renilla

luciferase control vector pRL.SV4O (Promega) to normalize the resuits for transfection

efficiency. Control transfections received equal arnounis of the pGL2 basic vector

(Promega) devoid of promoter constructs. Treatments comprised addition of varying doses

ofPGE2 (Sigma) from 10 to 100 iM for 6 to 24 h. To test the role ofthe protein kinase A

(PKA) pathway, some cultures were treated with 100 jiM and 1 mM dibutyryl cAMP

(Bu2cAMP; Sigma) and chlorophenylthio cAMP (pCPT cAMP; Sigma) for 12 h, or the

PKA inhibitor I-189 (Sigma) at a dose of 10 jiM beginning 1 h prior to PGE2 treatment. To

establish which of the PGE2 receptors were invoÏved, antagonists for POE2 receptors EPÏ

(SC19220; 10 jiM; Sigma), EP2 (AH6809; 20 tM; Sigma) and EP4 (AH2384B; 30 jiM;

Sigma) were added to transfected ceils 1 h prior to treatrnent with PGE2. Luciferase

activity was evaluated using the Dual Luciferase Assay System (Prornega) and

cherniluminescence was measured with a Berthold 9501 luminometer.

Chromatin Immunoprecipitation (‘ChIP) Assay - ChIP assays were perforrned as described

by Kuo and Allis (1999) with some modifications. Mink uterine stromal cells were plated

in a 10 cm plate and treated after confluence with 75 jiM PGE2 for 6 h. Prior to treatrnent,

celis were serum-starved for 20 h. following treatment, DNA and protein were cross-
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linked by addition of formaldehyde to the medium at a final concentration of 1% for 10 min

at 37 C. Celis were then washed in PBS, resuspended in 200 pi of ChIP lysis buffer [1%

sodium dodecyl sulfate (SDS), 10 mM EDTA, 50 mM Tris-HC1 (pH 8.0), and protease

inhibitors] and sonicated with a Branson Sonifier 450 (Danbury, CT) at power setting 2

with 10-sec pulses at duty cycle 90. ChIP dilution buffer (0.01% SDS; 1.1% Triton X-100;

1.2 mM EDTA; 16.7 mM Tris, pH 8.1; 16.7 mlvi NaC1; and protease inhibitors) was used to

dilute the chromatin solution Ï 0-fold. Total DNA used for controlling the amount of

DNA/sample was purified from one tenth of the lysate. Each sample was precleared by

incubating with $0 pi salmon sperm DNA/protein A-agarose 50% gel slurry (Upstate

Biotechnology, Inc., Lake Placid, NY) for 30 min at 4 C. Anti-acetyl histone H-3 (5ig;

Upstate Biotechnology, Inc.), anti-AP2 (5 .tg; Santa Cruz Biotehnology, Santa Cruz, CA),

anti-SPi (5 tg; Santa Cruz), and rabbit IgG (as negative controls) were added and

irnrnunoprecipitated at 4 C overnight. The immunoprecipitate was collected using salmon

sperm DNA!protein A-agarose and washed once with buffers in the following order: low

salt wash buffer (0.1% SDS; 1% Triton X-100; 2 mM EDTA; 20 mM Tri-I-ICi, pH 8.1; 150

mM NaC1); high-salt wash buffer (0.1% SDS; 1% Triton X-100; 2 mM EDTA; 20 mM

Tris-HC1, pH 8.1; 500 mM NaC1); LiC1 wash buffer (0.25 M LiC1; 1% Nonidet P-40; 1%

sodium deoxycholate; 1 mM EDTA; 10 mM Tris-HCI, pH 8.1); TE (10 mM Tris-HCI, pH

8.0; 1 mM EDTA). The DNA-protein or histone cross-links were reversed by incubation at

65 C for 4 h followed by proteinase K treatment. DNA was then recovered and purified

with the Qiaquik PCR purification column (Qiagen). PCR was carried with an annealing
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temperature of 61 C. The primers used for the PCR are depicted in Table 2. Primers

derived from the open reading frame of the gene were ernployed as controls. PCR products

were separated on a 1.5% agarose gel and ethidium brornide was used for visualization.

StatisticaÏ Analysis - The relative luciferase activity throughout this study was analyzed

using the Ieast square ANOVA and the general linear model procedures of SAS (Cary,

NC). When significant differences in treatrnents were found, comparisons of means were

further performed by the methods of orthogonal contrasts and the Duncan multiple range

test. A probability level ofp<O.05 was considered significant.

RESULTS

Ernbiyonic production of PGE2 - Embryos collected during the diapause and activation

stages were incubated in the presence or absence of rnink uterine ceils to determine whether

there was production of PGE2. Embryos in diapause failed to produce and/or secrete

identifiable levels of PGE2. The embryos collected following activation, and that were

therefoe in active growth (Desmarais et al., 2004), produced copious quantities of PGE2

(Fig. lA), either alone or in co-culture with uterine celis. Uterine ceils alone failed to

produce this prostaglandin.
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Expression of PGE synthase and E? receptor mRNA in the uterus - The uterine tissues

collected from implantation and inter-implantation sites, as weil as uteri collected from

pseudopregnant femaies expressed mRNA for PGE synthase. This enzyme was highly up

regulated (approximately 7 fold) in the tissues collected from the implantation sites,

comprised of both embryonic and uterine components, at 3-4 days following implantation

(f ig. lB). EPI receptor expression was negligible, whereas the receptors of the EP2 and

EP4 subtypes were expressed at ail stages and locations collected, but no apparent

regulation was evident arnong the samples (Fig. lB). The EP3 receptor mRNA was flot

detected at any of the sites or stages investigated (data not shown).

IrnmuhistochemicaÏ ÏocaÏization oJPGE synthase in the mink pregnant uterzts - Given the

increased expression ofthe PGE synthase observed at implantation sites (Fig. lB), we were

interested in establishing whether this increased expression was of uterine or ernbryonic

origin. We found the PGE synthase protein to be present in the myometrium of ail stages

evaluated. In the endometrium, PGE synthase was localized in the stromal layer

immediately surrounding the implanting embryo (Fig. 2A,B,C), whereas no significant

localiztion was observed in the antimesornetrial uterine tissue opposite to the invading

trophoblasts (Fig. 2D). Histological sections from inter-implantation sites further

confirmed that pattern, in that endometrial ceils in these regions, lacking direct contact with

embryonic tissue, did flot express this protein (Fig. 2E,F).
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Cloning and sequencing of the 5 ‘-fianking region of the rnink VEGF gene — A 2.9 kb

sequence upstream of the ATG triplet was identified by means of the Genome Walker kit

(Clontech). The transcription initiation site at 105$ bp upstream if the ATO triplet was

predicted by means of the promoter prediction prograrn oC the Berkeley Drosophila

Genome Project (UC Berkeley, Berkeley, CA), and confirrned by 5’RACE using the RNA

of three different mink samples, two of uterine and one of ovarian origin. The VEGF

proximal prornoter region in the mink bears a high homoÏogy to the human (81%) and

mouse sequences (72%) (Accession Numbers: AF095785 and U41383, respectively).

Matinspector analysis of the mink prornoter sequence identified several potential response

elernent sequences previously identified in the human and mouse VEGf promoters, API,

AP2 and SPI, amongst others. Concurring with the human and mouse counterparts, there

was no consensus TATA box motif present, while an important GC rich region was found

in the proximal promoter region, about 70 bp upstream ofthe transcription start site.

PGE2 induces VEGf transcription in dfferent celi types — We ernployed the reporter gene

luciferase driven by the mink VEGf proximal promoter in mink uterine strornal celis. We

observéd that PGE2 was capable of inducing a 3-fold induction in transcription of the

reporter gene, in response to the doses of 75 and 100 iM (p<O.05), and a 2-fold induction

to the dose of 50 tM, whereas 10 tM resulted in a modest and non-significant 50%

elevation (Fig. 3A). Similar leveis of induction were observed at the three different times

tested, 6, 12 and 24 h of PGE2 treatment (f ig. 33). furthermore, we tested transfection of
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other ceil types and consequent response to prostaglandin treatment in regards to induction

of VEGF transcription. The resuits indicate rnink prornoter activation in mink ovarian

tumor ceils (Fig. 3C), as well as in the human breast cancer celis MCF-7 (f ig. 3D).

PGE2 induction of VEGf transcription is FK4 dependent — Mink stromal celis transfected

with a 1.5 kb mink VEGF promoter driving the lue iferase gene were treated with the cAMP

agonists dibutyryl and chlorophenylthio cAMP (100 tM, 1 mM) eliciting inductions ofthe

VEGF promoter comparable to those observed following treatment with PGE2 (f ig. 4A).

To further investigate the involvement of the PKA pathway in PGE induced VEGF

transcription, transfected ceils were pre-treated with the PKA antagonist H89. The

responses to PGE2 were completely abolished by pre-treatment with H$9 (Fig. 45). H89

blockade of PKA likewise abrogated the PGE2 response in mink ovarian tumor celis (flot

shown).

EF2 and EF4 antagonists bÏock the PGE2 induced up-regu/ation of VEGF transcrzption —

After verifying that PGE2 stimulates VEGF through a PKA dependent pathway (Fig. 4), we

sought to confirm that the response observed in VEGF transcription was dependent upon

ligand binding to the receptors previously known to elicit an increase in cAMP.

Antagonists to the receptors EP1, EP2 and EP4 were added to the transfected stromal celis

1 h prior to treatment with PGE2. Even though ligand binding to EP1 does flot elicit PKA

dependent responses, the antagonist for EP2 also blocks EP 1. We therefore tested an EP 1



125

specific antagonist to control for the blocking ofthis receptor. The EP1 specific antagonist

had no significant effect on the transcription of the reporter gene driven by the rnink VEGF

prornoter (Fig. 5). The antagonist impairing both EP2 and EPI receptors significantly

blocked the transactivation of the VEGf promoter (Fig. 5, p<O.05). A significant, if less

pronounced attenuation was observed following treatment with the EP4 antagonist (Fig. 5,

p<O.O5). Complete abrogation of promoter activation was ohserved when the celis were

treated with antagonists for EPI+EP2 and EP4 (f ig. 5).

AF2 and 8F] are invotved in mediating FGE2 induced responses in the mink VEGF

pronzoter — We carried out promoter deletion analysis in order to identify the region(s) of

the promoter transactivated following PGE2 treatment. The two longest constructs used,

containing 1289 and 708 bp respectively, resulted in comparable levels of induction

following PGE2 treatment. The third construct, spanning onÏy 99 bp upstream of the

transcription start site resulted in slightly lower induction by PGE2, although flot

significantly different from the two longer versions. Loss of response to PGE2 was

observed when only 51 bp remained upstream of the transcriptional site, and a further

deletion of 34 bp completely eliminated basal promoter activity (Fig. 6A, p<O.05). Within

the 51 bp rernaining upstream of the transcription, an AP2 and a SPi binding site, were

predicted by Matinspector. To verify the importance of these two sites in promoter

induction, we effected a mutation to render them unable to bind these transcription factors.

Given their proxirnity, and sharing of nucleotides, the mutation interfered with both sites.
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Subsequent transfection trials demonstrated that mutation of these sites completely

elirninated the PGE2 induced promoter transactivation (Fig. 6B, p<O.O5).

AF2 and 8F] internet with the VEGF prornoter in response to FGE2 — Following the

mutation of the AP2/SPI cluster and loss of PGE2 induced promoter response, we sought to

verify if treatment with PGE2 could induce the binding of these two transcription factors to

the endogenous rnink VEGF promoter in the uterine stromal ceil line by ChIP assay.

Confluent ceils were serum-starved for 20 h prior to addition of PGE2. Following 6 h of

PGE2 treatment, celis were cross-linked and immunoprecipitated with the AP2 and SP1

antibodies. Cross-linking was reversed and the irnmunoprecipitated DNA was then

amplified by PCR using prirners spanning the proximal promoter region (including the

transcription start site). Confirming the deletional studies, binding of both transcription

factors to the VEGF promoter region in uterine celis was induced by treatment with PGE2

(f ig. 7A). A four fold induction of AP2 binding to the VEGF promoter region was

observed following PGE2 treatment, whereas PGE2 doubled the binding of SPi to the

VEGF promoter.

FGE2 induces histone modifications — To investigate whether PGE2 also plays a role in

covalent modification of histones, we immunoprecipated PGE2 treated ceils with an

antibody recognizing histone H3 acetylated on lysine 14. Mink stromal ceils were serum

starved for 20 h and then were treated with 75 jiM PGE2 for 6 h. Ceils were then cross-
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linked and irnmunoprecipitated with the acetyÏated H3 antibody. Cross-linking was

reversed and the immunoprecipitated DNA was then amplified by PCR using primers

spanning the proximal promoter region (including the transcription start site). Treatment

with PGE2 was effective in inducing acetylation ofhistone H3 by two fold in comparison to

non-treated control (Fig. 7B), and the site amplified by PCR corresponds to the promoter

region containing the binding sites for AP2 and SPi, shown here to be involved in PGE2

transactivation of the mink VEGF promoter (Fig. 6A, B and Fig. 7A).

DISCUSSION

Extensive angiogenesis is paramount for successful maintenance of gestation

(Psychoyos, 1986) to provide the increase in blood supply to the implanting and rapidly

developing ernbryo. VEGF lias been demonstrated to 5e one of the major angiogenic

factors inducing proliferation and migration of endothelial ceils, as well as permeability in

the vessels in a wide array of normal and pathogenic mammalian tissues (Ferrara and

Davis-Smyth, 1997).

We previously demonstrated that, in the mink uterus, VEGF mRNA and protein are

up-regulated around the time of implantation (Lopes et al., 2003), indicating an important

role for this growth factor in this species. The early investigations of Kennedy (1977)

demonstrated the importance of prostaglandins in the process of embryo implantation in
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rodents. Confirmation came in the form of complete abrogation of implantation in mice

bearing nuil mutation of the COX-2 gene (Lim et al., 1997). We established the occurrence

of COX-2 expression by both the trophoblast and uterine stroma at the site of implantation

in the unique carnivore model we employ in the current study, the mink (Song et al., 1998).

Investigations by Matsumoto and colleagues (2002) on the COX-2 deficient mouse have

indicated a functional link between prostaglandin synthesis and VEGF expression in mouse

implantation.

In the present study we provide the first evidence to place PGE2 as an important

regulator ofVEGF expression during the peri-implantation period in mammais. f irstly, we

show that the mink embryo that bas escaped from diapause is an important source ofPGE2.

Further we have verified that presence of the enzyme responsible for synthesis of PGE2

from PGH2, PGE synhase, is regulated in the utenis during early stages of pregnancy, with

its up-regulation dependent on the presence of the invading embryo. We have

unequivocally placed the expression of PGE synthase in the expression in the stroma

surrounding the invading trophoblastic layer, and have demonstrated its absence from the

inter-iriiplantation endometrium. This concurs with a sirnilar phenomenon in mice where

PGE synthase mRNA and protein occur in the subliminal stroma surrounding the

implanting blastocyst (Ni et al., 2002). In the current investigation, the PGE synthase

expression we found appears to coincide with expression of COX-2, which is likewise

localized at the sites of trophoblast invasion, particularly in the necks of the uterine glands
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during early implantation (Song et al., 1998). This co-localization places the presence of

the substrate for PGE2 in a timely manner to allow for PGE2 synthesis by the PGE synthase.

In the present study, we were interested in investigating possible regulators of

VEGF and the mechanisms involved in this regulation. PGE2 was our choice given its

effects on VEGF expression in other tissues, the secretion of PGE2 by the embryo and the

presence of PGE synthase at the site of implantation. By employing a homologous in vitro

system using immortalized rnink uterine stromal celis with the mink VEGf promoter

driving the reporter gene luciferase, we show that PGE2 induces expression of VEGF as

demonstrated. PGE2 can act through four different G-coupled receptors, EP I through EP4,

each employing its own second messenger system (see Narumiya et al., 1999 for review).

EP1 acts through activation of the phospholipase C system and by inducing a rise in

intracellular calcium levels (Kimura et al., 2001), while EP2 and EP4 both induce responses

through activation of the PKA pathway and both have been involved in PGE2 induced

regulation ofVEGF (Chang et al., 2005; Sales et al., 2004; Bradbury et al., 2005). Multiple

EP3 isoforms have been identifled to date, and they can act through different signalling

pathways associated with Gi, Gs and Gq activation (see Narumiya et al., 1999 for review).

We identified the presence of EP2 and EP4 rnRNA in the mink uterine tissues

during early stages of implantation and placentation, as well as in the pseudopregnant

uterus, but no variation in expression, and thus no pregnancy-specific regulation of these
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receptors was present. This suggests that regulation of the ligand PGE2, rather than up

regulation ofthe receptors, is responsible for the effects seen in VEGF expression. The fact

that these two receptors bring about cAMP dependent responses, strongly argues that the

increase in VEGf transcription is cAMP dependent.

Intracellular pathways involving cAMP most usually involve phosphorylation of

CREB (reviewed by Sassone-Corsi, 1998), but we were unable to find, through the use of

the Matinspector software, predicted CRE response elernents within the proximal promoter

region of the mink VEGF gene. Although responses involving transcription factors to

which no putative binding sequences were predicted are quite possible, we were able to

place the AP2 and SPi cis-acting elements downstream ofthe PGE2 induction ofthe VEGf

promoter. Mutation of these overlapping regions for AP-2 and SPI was sufficient to

induce loss of transcription induction by PGE2, without the Ioss of basic promoter activity.

The use of ChIP has enabled us to verify that PGE2 does in fact increase binding of these

two transcriptional factors to the proxirnal promoter region of VEGF. This concurs with

the studies of human smooth muscles ceils of the airway, which have placed SPi

downsteam of cAMP in the induction ofVEGf by PGE2 (Bradbury et al., 2005). This AP

2/SP-1 cluster has previously been shown to be involved in transcriptional regulation of

VEGF (Milanini et al., 1998; Brenneisen et al., 2003). The partnership between AP-2/SP-1

has also been involved in transcriptional regulation of another gene, CYP17, following

increased levels of cAMP (Zhang and Veldhuis, 2004).
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The region we found to control the transactivation of the promoter lies in a GC rich

region of the mink VEGf promoter, from -71 to -53. This again concurs with previous

findings in which the same GC rich region appears to regulate VEGF prornoter activation

by TGfa through AP2 in humans (Gille et al., 1997), by UVB through AP2/SP1 in humans

(Brenneisen et al., 2003), by p42/p44 MAP kinase also through AP2/SPY binding in

hamsters (Milanini et al., 1998), and by PDGF through SPi in humans (f inkenzeller et al.,

1997). Taken together, these previous results in human and the hamster, and our findings

with the mink VEGF prornoter, argue for the conclusion that this promoter region, along

with the transcription factors AP2 and SP 1, play a central role in the regulation of VEGF

transcription.

In addition to recruitrnent of cis-acting elements, chromatin modifications are also

required in order to allow transactivation of promoter regions. Amongst these

modification, histone acetylation has been associated with active chromatin and consequent

access of transcription factors to promoter regions (reviewed by Mizzen and Allis, 1998).

In the mink model, PGE2 provoked acetylation of H3 localized to the proximal promoter

region, spalming the area containing the response elernents for AP-2 and SP-1. This

dernonstrates that PGE2 induces activation of the transcription factors in conjunction with

induction of chromatin restructuring to bring about promoter binding and transactivation.
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In summary, the current study provides evidence that PGE2 of embryonic and

endometrial provenance regulates the expression of VEGF at implantation sites in the

uterus of the mink. Ibis indicates that, in this unique mode! of decidua-free, endothelial

chorial placentation, there is dependence on the presence of local prostaglandin synthesis

for establishment of the vascularity required for maintenance of early gestation.
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Oligo name Seguence 5’ — 3’

PGEs forward GCTGCGGAAGAAGGCTTTTG

PGEs reverse AGGTAGGCCACGGTGTGTAC

EPI forward GGCGGCTGCATGGTCTTCTT

EP1 reverse. CAGCAGATGCACGACACCAC

EP2 forward GCCACGATGCTCATGCTCTT

EP2 reverse GAATGAGGTGGTCCGTCTCC

EP3 forward GGAGAGCAAGCGCAAGAAGT

EP3 reverse CTGATGAAGCACCACGTCC

EP4 forward ATCTTCGGGGTGGTGGGCAA

EP4 reverse TTGATGGCCAGGTAGCGCTC
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Table 1. Sequences of oligonucleotides used to amplify PGE synthase and the EP

receptors.
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Oligo narne Seguence 5’ — 3’

5’RACE-Spl TTGACCCTGTCCCTGTCGTTGC

5’ RACE-Sp2 CTCTGACCCCGTCTCTCTCTCT

5 ‘RACE-Sp3 GGGGAAGTAAAGGAGCGATCTC

ChIP-forward CAGGGGTCACGCCAGTATTCCA

ChIP-reverse CCTCTGCGCTCCCTACCACTA



Table 2. Oligonucleotides empïoyed for 5’ RACE and ChIP.

145



E

G)
E
E
c,)

w
Q
o

Gapdh

Implantation Inter- Implantation Inter- Pseudo

site implantation site implantation pregnant

J-2 days site 3-4 days site utetus

b

b

A.

1400-

1200-

1000 -

800 -

600-

400 -

200 -

B.

a a

Uterine Diapause Activated
ceils embryos embryos

+ celis

Activated
embryos

PGE synthase

EP2

1 EP4
14

1-2 days 3-4 days



147

Fig. 1. Activated mink embryos produce PGE2 and PGE synthase is up-regulated in

implanted uteri. A, Diapause and re-activated embryos were flushed from the uterus and

placed in culture with or without the presence of mink uterine celis. Afier 48 h in culture,

medium was collected and assayed for PGE2 by RIA. B, Expression of mRNA of PGE

synthase and the receptors EP2 and EP4 were verified by PCR in mink uterine samples

collected during early implantation stages (1-2 and 3-4 days following implantation) and

from pseudopregnant females.
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fig. 2. Immunohistochemical characterization of PGE synthase in the rnink uterus. A, B,

C, PGE synthase is localizes principally to the stromal celis surrounding the implanting

trophoblast celis, as demonstrated by the white arrows. D, Lack of PGE synthase

localization in the uterine tissue on the mesornetrial (opposite) side of the uterus to the

invading embryo. E, f, VEGf localizes at the vessels and the myometrium (white arrows),

but not in the endorntrial celis, in samples collected from inter-implantation sites. Bars =

500 jim
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fig. 3. VEGF promoter activity is increased following PGE2 treatrnent in different ccli

types. Ceils were transfected with 1.5kb of the rnink VEGF promoter driving the luciferase

reporter gene. A, Transfected mink strornai ceHs were treated for 12 h with different doses

ofPGE2 (10, 50, 75 and 100 tM). B, Ceils were treated with 75 iM ofPGE2 for different

times (6, 12 and 24 h). C, Transfected mink ovarian turnor celis, and D, MCF-7 celis were

treated for 12 h with 75 tM of PGE2. The quantification represents mean ± SEM of

tripiicate transfection experirnents. Di fferent superscripts represent significant di fferences

in means (F < 0.05).
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Fig. 4. VEGF prornoter activity is stimulated by PGE2 through a PKA dependent

rnechanism. Mink strornal ceils were transfected with 1.5 kb of the proxirnal mink VEGF

promoter. A, Transfected ceÏls were treated with dibutyryl cAMP (Bu2cAMP; 100 1iM and

lrnM) and chlorophenylthio cAMP (pCPT cAMP; 100 jiM and I mM) for 12 h and

prornoter activity vas measured by luciferase assay. B, Transfected ceils were pre-treated

with H$9 (10 iM) and then treated with PGE2 (75 iM) for 12 h. Promoter activity was

measured by luciferase assay. The quantification represents mean ± SEM of triplicate

transfection experiments. Different superscripts represent si gnificant differences in means

(F< 0.05).
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Fig. 5. Transactivation of the VEGF promoter by PGE2 is dependent upon binding to the

PKA related receptors EP2/EP4. Transfected ceils were pre-treated for 1 h with the

antagonists for EP1+EP2 (AH6$09; 20 1iM), for EPÏ (SC19220; 10 jiM) alone, for EP4

(AH23$4B; 30 1iM) and a combination of both the EP1+EP2 and EP4. PGE2 treatment was

then added and luciferase activity was assayed afier 12 h of PGE2 treatment. The

quantification represents mean ± SEM of triplicate transfection experirnents. Different

superscripts represent significant differences in means (F <0.05).
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Fig. 6. Deletion constructs of the mink VEGF promoter. A, Fragments of the promoter

driving the luciferase reporter gene were transfected into mink uterine stromal ceils.

Treatment consisted of addition of PGE2 (75 tM) for 12 h. Approximate location of the

AP2 and SPI sites are indicated by black rectangles. B, Mutation of the AP2 and SPi sites

inhibits the PGE2 induced VEGF promoter transactivation. Mink stromal celis transfected

with constructs containing intact AP2 and SPi sites or mutated forrns of these response

elements. Transfected celis were treated for 12 h with PGE2 and promoter activity was then

assessed by luciferase assay. The quantification represents mean + SEM of triplicate

transfection experirnents. Different superscripts represent significant differences in means

(F <0.05).
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Fig. 7. PGE2 treatment induces AP2 and SPi interaction with the VEGF prornoter as well

as histone modification in rnink uterine celis. Mink strornal celis were serum starved for 24

h prior to addition of PGE2 (75 tM) for 6 h. A, Immunoprecipitation was performed using

antibodies against AP2 and SPi and 3, Acetylated histone 1-13. Following chromatin

precipitation, 500 bp of the proximal promoter region of VEGF was amplified by PCR.

Input control was established by amplification of an equivalent amount of DNA that had

not been previously irnmunoprecipated. Control for antibody specificity was established by

precipitation with rabbit IgG.
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GENERAL DISCUSSION

The American rnink is a carnivore with interesting and unique reproductive

characteristics. It displays mating-induced ovulation and an embryo that will, upon arrivai

in the uterus at the blastocyst stage, enter obligate diapause. The embryos remain in this

stage of arrested mitotic activity until melatonin levels from the pineal gland are reduced

coinciding with the vernal equinox, allowing for prolactin levels to rise and rescue the

corpora lutea (CLs). Increased progesterone from the CLs will then re-activate the embryos

and this wiii bring about implantation. Titis nidatory event in the mink is followed by

formation of an endotheliai-chorial placenta as reviewed in Chapter I.

Given the peculiar reproductive characteristics of this species, we were interested in

understanding the characteristics and regulation of the angiogenic process that takes place

during early stages of pregnancy and that is vital for embryo development in other species.

In the studies presented in this thesis, we provide new information on the expression

of a major angiogenic factor, VEGf, and its receptors during the peri-implantation period

in the mink. We further characterize the presence of PGE2 in the uterus during this stage

and describe the mechanism ofregulation ofVEGF transcription by this prostagiandin.
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As discussed before, the process of formation and development of blood vessels in

the placenta and embryo, as weÏl as the increased vascularity in the uterus itself, is

indispensable for maintenance of pregnancy. Given the growing need for gas exchange,

nutrient supply and waste removal, it is clear that an efficient regulation of vasculogenesis

and angiogenesis must be present at this time.

Uterine aniogenesis during early pregnancy

VEGf-A, a homodirneric glycoprotein of 40—45 kDa, was first identifled for its

induction on vascular permeability (Senger et al., 1983). In 1989, Ferrara and Henzel

described this protein as a potent endothelial celi-specific mitogen. VEGF exerts its action

through binding to tyrosine kinase receptors, f lt-1 (fms-like tyrosine kinase, also kiown as

VEGfR-1) and KDR (kinase dornain region, also known as VEGFR-2) (Jussila e Alitalo,

2002). These two processes that induce development of new vascular system

(vasculogenesis), as well as enlargement of the pre-existing one (angiogenesis), are

principally directed by VEGf.

Increased uterine vascularity, associated with implantation, is a condition that has

been observed in several species to date. In 1973, Psychoyos through the use of a protein

bound blue dye, reported an increase in vascular permeability as the earliest uterine

response to the implantation process. This demonstrated that vascular changes are amongst
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one of the first uterine modifications occulling during successfui embryo implantation and

subsequent placentation.

Since then, several researchers have focused on the expression of the major

angiogenic regulator, VEGF. In the hamster, VEGF and its receptors are up-regulated in

the uterus during eariy pregnancy (Yi et al., 1999). During the peri-implantation stages,

both mice and rabbit present intense uterine expression ofVEGF (Chakraborty et al., 1995;

Das et al., 1997). In Chapter II, we describe the expression ofVEGf and the receptors fit

1 and KDR in the rnink uterus during early pregnancy. We observed that the mRNA levels

for the three most common VEGF isoforms, 121, 164 and 189, increase following embryo

activation and this increase continues through to implantation. Highest levels were

observed during immediate pre-implantation stages (late stages of embryo activation) and

in the early implantation sites. Interestingly, VEGF mRNA levels were also up-regulated

in pseudopregnant uteri, indicating a maternai rather than embryonic regulation of

expression of this growth factor. Arnongst the several regulators of VEGF studied to date,

progesterone is a likely candidate to be controlling VEGf during pregnancy. In 1993,

Cullinafi-Bove and Koos reported that progesterone stimulates VEGf expression in the rat

uterus. In human breast cancer celis, the PRB receptor appears to be mediating the

progesterone induction of VEGf (Wu et al., 2004). The idea of progesterone regulation is

corroborated by the low expression of VEGF during diapause in the mink, considering the

low levels ofprogesterone during this stage due to the inactive CL present at this time. As
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ernbryo activation in the rnink is dictated by the rescue of the CLs and increase in

progesterone levels (Douglas et al., 1997), it is plausible to place progesterone as a major

regulator ofuterine VEGf at this stage in this species.

Estrogen is also a powerful inducer of VEGF, and in species like mice, where there

is an estrogen requirement for initiation of implantation (reviewed by Paria et al., 2001), it

likely plays a major role in controlling VEGF regulation. However, in the mink, the pre

implantation rise in estradiol while it may occurr, has not been demonstrated, thus we can

only speculate that this might account for the risc in VEGf seen during ernbryo activation.

The expression of the receptors for VEGF was also increased leading to

implantation. but interestingly, unlike VEGf, mRNA for both receptors was low in

pseudopregnant uteri, indicating embryonic control over the expression of the receptors.

Less is currently known about regulation of the angiogenic receptors in the context of

implantation. but an embryonic factor bas been shown to participate in this regulation. In

humans, human chorionic gonadotropin (hCG) was found to induce f lt-l rnRNA

expression in cultured oviductal celis (Lam et al., 2004). A gonadotropin similar to hCG

bas not yet been described in mink, and it is unlikely that it exists, as there appears to be no

uterine-derived control of the CL (Douglas et aÏ., 1997). Identification of the factor(s),

originating from the embryos, and responsible for regulation of the angiogenic receptors

represents an exciting future direction for this research.
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VEGF regulation in the mink uterus

In general, regulation of VEGF and, consequently, angiogenesis is mainly driven by

locally produced growth factors (Goidman et al., 1993; Yen et al., 2002; Petit et al., 1997;

Sugano et al. 2003; Deroanne et al., 1997), cyclic hormones, such as estradioÏ and

progesterone (reviewed by Loureiro e D’Amore, 2005) and hypoxia (Liu et aI., 2002).

Such control assures that vesse! development andlor growth is initiated and proceeds in a

localized and temporally controlled maimer.

While we cannot elirninate the possibility of strict and sole control over VEGF

transcription by steroids (in fact the increase in progesterone levels lits nicely with the

increase in VEGf), there are other potential candidates to VEGf control, such as prolactin,

given that its rise is also temporaÏly associated with the up-regulation of VEGf. In fact,

prolactin has been shown to stirnulate VEGF in human macrophages through up-regulation

of heme oxygenase-1 (Malaguarnera et al., 2004). further evidence for this postulate can

be found in studies that show that heme oxygenase- 1 has the same pattern of expression as

VEGF during rat gestation (Kreiser et al., 2003). This attractive and new pathway of

uterine regulation of angiogenesis merits further investigation.

In the present study we were interested in placing locally-produced PGE2 as a

regulator of the peri-implantation increase in VEGf. Our laboratory has previously
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demonstrated that the rate-limiting enzyme necessary for prostaglandin production, COX-2,

is expressed at early stages of implantation and that it is localized in the uterine stromal

ceils surrounding the invading embryos (Song et aï., 199$). We further demonstrated in

Chapter III that the activated ernbryos produce copious arnounts of PGE2 and that PGE

synthase is expressed in the same ceil type as COX-2, and is also dependent on the

presence of the embryo. These results indicate that PGE2 is most certainly present in the

uterus during up-regulation of VEGf. We believe it to be produced by the uterine ceils

themselves, following implantation, and by the blastocysts following activation.

By utilizing mink uterine celis transfected with the mink VEGf promoter, and

performing deletional and mutational studies on the prornoter, we were able to verify that

PGE2, through binding to its two receptors EP2 and EP4, activates PKA which in turn Ieads

to AP2/SP1 binding to the proximal promoter region. As mentioned before, this cluster has

been previously involved in transactivation of VEGf by other upstream regulators

(Milanini et al., 199$; Brenneisen et al., 2003). The region where these response elements

were identified, corresponds to a OC rich region, which is also involved in the

transcriptional activation of VEOF by AP2 and SPi in combination or alone, confirming

therefore, the importance of this OC rich region to the transactivation of VEGF. Given the

fact that the PKA pathway was proven necessary for PGE2-induced promoter

transactivation, it was surprising that we did not find predicted sites for CREB within the

smallest fragment that rernained responsive to PGE2. This finding is not unusual, given
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that the activation of an AP2/SPI cluster downstrearn of PKA has been previously

dernonstrated (Zhang and Veldhuis, 2004).

Our lab has previously produced imrnortalized mink uterine stromal celis (Moreau

et al., 1 995) and the use of this ceil une allowed us to test the rnink VEGF promoter

transactivation in the in vitro mode! c!osest to the uterine ceils that produce PGE2, and that

also express VEGF only following implantation. An intriguing finding in the current study

was the fact that strornal localization of VEGf vas observed only following implantation,

and ternpora!!y coordinated with COX-2 expression (Song et al., 199$) in the mink uterus.

We show similar spatial and temporal correlation of PGE synthase with the VEGf in the

strorna imrnediately surrounding the invading embryo. It is tempting to hypothesize that

up-regulation of VEGF at the stromal layer and surrounding tissues is dependent upon the

presence of PGE2, whose synthesis is in turn associated with the contact with the ernbryo.

Transcriptional activation does flot depend only upon binding of transcription

factors to their response elements. Histone modification, namely that of histones H3 and

H4, aré processes required for chromatin remodelling into an active form (Struhi, 1998).

Amongst the histone modifications associated with permissive chromatin are acety!ation

and phosphorylation of H3 and H4, which resuits in !oss of stability of the nucleosorne

making the access to response elements possible (Struhi, 199$). In the work presented in

chapter III, we observed by ChIP that treatment of mink uterine ceils with PGE2, induces
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acetylation of H3, which in tum is expected to prompt the chrornatin modifications required

for binding of transcription factors. further, the promoter fragment that was amplified

following immunoprecipitation for the acetylated H3 encompasses the area where we

demonstrated the binding of AP2 and SPi to the endogenous promoter following PGE2

treatment. We conclude that PGE2 elicits histone H3 acetylation, resulting in active

chromatin at the site required for PGE2 induced promoter transactivation, and it further

induces, through PKA activation, the binding ofAP2 and SP2 to the site.
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CONCLUSION

During our studies we demonstrated that the angiogenic factor VEGf and its two

tyrosine kinase receptors, KDR and f lt-1, are up-reguiated during the process of

implantation in the rnink, indicating their central role in increasing the network of blood

vessels in the uterus and placenta in order to meet the growing demands for oxygen and

nutrients of the implanting embryo. We concluded that regulation of VEGF is driven in its

majority by maternai factors, whereas the increased receptors expression is embryo

dependent.

We have shown that PGE2 is produced by mink embryos following escape from

obligate diapause and also by the uterine strornal celis surrounding the implanting embryos.

We verified in a mink stromal ccii une, that VEOF is stimulated by PGE2 following

binding of this prostagiandin to its receptors EP2 and EP4. This binding induces activation

of the PKA pathway leading to downstream promoter transactivation. PGE2 treatment

induced binding of AP2 and SPi to the proximal promoter region of mink VEGF, and

mutation of this specific binding region in the VEGF resuits in loss of PGE2 induced

response. As promoter transactivation requires remodeliing of the chromatin, we aiso

demonstrated that PGE2 induces histone H3 acetylation, which we expect resuits in

conformational changes rendering the chromatin active. Since this epigenetic modification

was observed in the promoter region associated with the response elements for the AP2 and
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SPi factors, we concluded that PGE2 flot oniy induces binding of these factors to the

promoter of VEGF, but also elicits covalent modifications in histone H3 allowing for the

transcription factors to bind to the VEGf promoter and initiate transcription.

In summary, our studies dernonstrated that in the mink VEGf and receptors are

increased during the peri-implantation period and that PGE2 is a major regulator of VEGF

transcription, stimulating binding of transcription factors to the prornoter as well as

epigenetic changes leading to a permissive chromatin. This places PGE2 as an important

regulator ofperi-implantation angiogenesis, a process crucial for successful maintenance of

pregnancy.
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