Université de Montréal

Étude de la bande d'instabilité des étoiles naines blanches variables de type ZZ Ceti

11634506

par Alexandros Gianninas Département de physique Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures en vue de l'obtention du grade de Maître ès sciences (M.Sc.) en physique

Août, 2005

©Alexandros Gianninas, 2005

QC 3 U54 2005 V. 025

Direction des bibliothèques

AVIS

L'auteur a autorisé l'Université de Montréal à reproduire et diffuser, en totalité ou en partie, par quelque moyen que ce soit et sur quelque support que ce soit, et exclusivement à des fins non lucratives d'enseignement et de recherche, des copies de ce mémoire ou de cette thèse.

L'auteur et les coauteurs le cas échéant conservent la propriété du droit d'auteur et des droits moraux qui protègent ce document. Ni la thèse ou le mémoire, ni des extraits substantiels de ce document, ne doivent être imprimés ou autrement reproduits sans l'autorisation de l'auteur.

Afin de se conformer à la Loi canadienne sur la protection des renseignements personnels, quelques formulaires secondaires, coordonnées ou signatures intégrées au texte ont pu être enlevés de ce document. Bien que cela ait pu affecter la pagination, il n'y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license allowing Université de Montréal to reproduce and publish the document, in part or in whole, and in any format, solely for noncommercial educational and research purposes.

The author and co-authors if applicable retain copyright ownership and moral rights in this document. Neither the whole thesis or dissertation, nor substantial extracts from it, may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms, contact information or signatures may have been removed from the document. While this may affect the document page count, it does not represent any loss of content from the document.

Université de Montréal Faculté des études supérieures

Ce mémoire intitulé:

Étude de la bande d'instabilité des étoiles naines blanches variables de type ZZ Ceti

présenté par:

Alexandros Gianninas

a été évalué par un jury composé des personnes suivantes:

Claude Carignan, Pierre Bergeron, Gilles Fontaine,

président-rapporteur directeur de recherche membre du jury

Mémoire accepté le: 2-09/05

Dédié à mon père.

Sommaire

Les étoiles ZZ Ceti sont des naines blanches variables de type spectral DA (raies d'hydrogène) qui se trouvent dans une bande étroite du plan $T_{\rm eff}$ -log g : la bande d'instabilité des étoiles ZZ Ceti. Historiquement, la bande d'instabilité a été étudiée en analysant les étoiles ZZ Ceti elles-mêmes. Cependant, une étude des naines blanches de type DA constantes photométriques qui se trouvent près de la bande d'instabilité peut nous en apprendre tout autant. Dans le but de mieux définir les limites de la bande d'instabilité, nous avons obtenu des spectres visuels pour toutes les naines blanches de type DA constantes proche de la bande d'instabilité. En comparant les profils des raies de Balmer observés à ceux de spectres synthétiques générés à partir de modèles d'atmosphère, nous avons pu déterminer avec grande précision leurs paramètres atmosphériques. En combinant cet échantillon d'étoiles constantes avec 39 étoiles ZZ Ceti connues, nous avons étudié la bande d'instabilité et ses limites empiriques. Nous trouvons que la frontière froide est bien contrainte mais la dépendance de la frontière chaude sur $\log g$ reste à déterminer. Nous obtenons une bande d'instabilité dépourvue d'étoiles constantes donc la bande d'instabilité doit représenter une phase évolutive à travers laquelle *toutes* les naines blanches de type DA doivent passer. Ces spectres ont été obtenus durant une campagne d'observation plus vaste à travers laquelle nous espérons identifier de nouveaux candidats ZZ Ceti. Déjà, 2 de nos étoiles cibles se sont avérées des étoiles variables.

Mots clefs:

étoiles : oscillations – étoiles : paramètres fondamentaux – étoiles : variables : ZZ Ceti – individuel (G232-38) – naines blanches – techniques : spectroscopique

Abstract

ZZ Ceti stars are pulsating hydrogen-line (DA) white dwarfs which are found in a rather narrow strip within the T_{eff} -log g plane: the ZZ Ceti instability strip. Historically, the instability strip has been studied by analyzing the ZZ Ceti stars themselves. However, an analysis of the photometrically constant DA white dwarfs which lie near the instability strip can be just as insightful. Therefore, in an effort to delineate better the boundaries of the ZZ Ceti instability strip, we have gathered optical spectra for all known constant DA white dwarfs near the instability strip. By comparing the observed Balmer line profiles to synthetic spectra generated from model atmospheres, it is possible to determine with great accuracy the atmospheric parameters of these stars. By combining this sample of photometrically constant stars with 39 known bright ZZ Ceti stars we are able to study the instability strip and its empirical boundaries. We find that the red edge is well constrained whereas the dependance of the blue edge on $\log q$ remains uncertain. Furthermore, we obtain an instability strip devoid of constant stars and this confirms our belief that the instability strip constitutes an evolutionary phase through which all DA white dwarfs must pass. These spectra have been secured as part of a broader observing campaign during which we are hoping to identify new candidate ZZ Ceti stars as well. Indeed, already two of our program stars have showed themselves to be genuine ZZ Ceti pulsators.

Subject headings:

individual (G232-38) – stars : fundamental parameters – stars : oscillations – stars : variables : ZZ Ceti – techniques : spectroscopic – white dwarfs

Table des matières

Sc	omm	aire	ii		
\mathbf{A}	bstra	act	iii		
Τa	able	des matières	iv		
Li	Liste des figures vi				
Li	ste d	les tableaux vi	iii		
1	Intr	roduction 1			
	1.1	Historique	2		
		1.1.1 Études photométriques	2		
		1.1.2 Études spectroscopiques	4		
	1.2	Pureté de la bande d'instabilité	7		
	1.3	Vers une meilleure détermination des limites de la bande d'instabilité	9		
2	Mé	thode spectroscopique 1	1		
	2.1	Modèles d'atmosphère	1		
	2.2	Détermination des paramètres atmosphériques	12		
3	$\mathbf{\acute{E}ch}$	antillon photométrique 1	8		
	3.1	Définition de l'échantillon photométrique	18		
	3.2	Observations	19		
	3.3	Analyse	20		

		3.3.1	Objets particuliers	20
		3.3.2	G226-29	22
		3.3.3	Les étoiles ZZ Ceti	30
		3.3.4	Bande d'instabilité empirique des étoiles ZZ Ceti	34
		3.3.5	GD 556	37
4	Rele	evé du	catalogue de McCook & Sion	39
	4.1	Définit	ion de l'échantillon	39
	4.2	Propri	étés globales	43
	4.3	La bar	nde d'instabilité empirique	46
5	Con	clusio	1	50
Bi	ibliog	raphie		52
R	emer	ciemen	its	56
A	nnexe	e A		57
A	Para	amètre	s atmosphériques	57
A	nnexe	e B		70
в	Disc	covery	of a Cool, Massive, and Metal-Rich DAZ White Dwarf	70
A	nnexe	e C		75
С	Tow	ards a	n Empirical Determination of the ZZ Ceti Instability Strip	75

Liste des figures

1.1	Digramme couleur-couleur Strömgren de la bande d'instabilité des étoiles ZZ	
	Ceti	3
1.2	Diagramme couleur-couleur montrant l'intensité des raies de Balmer en fonction	
	de la température	3
1.3	Variation de la largeur équivalente des raies de Balmer en fonction de $T_{\rm eff}$ et $\log g$	5
1.4	Sommaire des différentes déterminations en $T_{\rm eff}$ de la bande d'instabilité des	
	étoiles ZZ Ceti. (Wesemael et al. 1991)	6
1.5	Détermination empirique de la bande d'instabilité des étoiles de type ZZ Ceti	
	de Bergeron et al. (2004)	8
2.1	Détermination du continu pour les raies de Balmer	14
2.2	Exemples de la méthode spectroscopique	15
2.3	Distribution de la déviation standard en T_{eff} et $\log g$	16
3.1	Spectres visuels des naines blanches de l'échantillon photométrique	23
3.1	Suite	24
3.1	Suite	25
3.1	Suite	26
3.2	Courbe de lumière de G232-38	32
3.3	Spectre de Fourier de G232-38	32
3.4	Détermination empirique de la bande d'instabilité des étoiles de type ZZ Ceti $% \mathcal{L}^{(n)}$.	35
3.5	Limites théoriques et empiriques de la bande d'instabilité des étoiles de type	
	ZZ Ceti	37

LISTE DES FIGURES

4.1	Spectres visuels des étoiles du catalogue de McCook & Sion (1999) qui n'étaient	
	pas des naines blanches ou pas des naines blanches de type DA $\ldots \ldots \ldots$	41
4.1	Suite	42
4.2	Distribution de masse en fonction de la température pour les naines blanches	
	de l'échantillon global	44
4.3	Distribution de masse pour les naines blanches de l'échantillon global	45
4.4	Distribution dans le plan T_{eff} -log g des naines blanches de type DA de notre	
	échantillon global	46
4.5	Distribution dans le plan T_{eff} -log g des naines blanches variables et constantes	
	photométriques de Mukadam et al. (2004a)	48

Liste des tableaux

3.1	Paramètres atmosphériques des naines blanches DA non-variables	27
3.2	Paramètres atmosphériques d'étoiles ZZ Ceti	33
A.1	Paramètres atmosphériques de naines blanches DA du catalogue de McCook &	
	Sion	58

Chapitre 1

Introduction

Lorsqu'une étoile de la séquence principale ayant une masse inférieure à ~8 M_{\odot} épuise son carburant d'hydrogène et d'hélium, elle termine sa vie de façon discrète en expulsant ses couches externes et laisse place à un noyau chaud et dense. Ce noyau compact, avec une masse typique de ~0.6 M_{\odot} et un rayon de l'ordre du rayon terrestre, est ce que l'on appelle une étoile naine blanche. Ainsi, les naines blanches représentent l'étape finale de l'évolution stellaire pour plus de 97% des étoiles. Une caractéristique importante des naines blanches est qu'elles ne produisent plus d'énergie. Ce sont donc des étoiles qui se refroidissent tout simplement et ce, sur une échelle de temps de milliards d'années. Donc, pour les naines blanches, une séquence en température représente également une séquence temporelle.

On divise les naines blanches en plusieurs classes spectrales selon les raies d'absorption visibles dans leur spectre visuel. La catégorie la plus nombreuse est celle des naines blanches de type DA. Ce sont des étoiles qui montrent des raies d'absorption dues uniquement à l'hydrogène, c'est-à-dire, les raies de Balmer. Lorsque ces étoiles atteignent une température effective $T_{\rm eff}$ entre ~12,500 K et ~11,000 K, les conditions physiques à l'intérieur de l'étoile sont propices à l'excitation de certains modes normaux de pulsations. Ces pulsations se manifestent, pour un observateur, comme des variations de l'intensité lumineuse de l'étoile. Ces naines blanches DA variables portent le nom d'étoile de type ZZ Ceti. La région dans le plan $T_{\rm eff}$ -log g qu'occupent ces étoiles se nomme la bande d'instabilité des étoiles ZZ Ceti.

La découverte de la première étoile de ce type par Landolt (1968) fut un heureux hasard.

Par après, plusieurs sont allés à la recherche de nouvelles étoiles ZZ Ceti. Malgré ces efforts, le nombre d'étoiles ZZ Ceti connues s'élevait à seulement 5 lorsque McGraw (1977) utilisa comme critère de sélection l'indice de couleur (B - V) dans l'intervalle $0.15 \leq (B - V) \leq 0.25$. Ceci mena éventuellement à l'identification de 7 nouvelles étoiles de type ZZ Ceti. Suivant les résultats de McGraw (1977), la bande d'instabilité des étoiles ZZ Ceti devint le sujet de plusieurs études photométriques ainsi que spectroscopiques.

1.1 Historique

1.1.1 Études photométriques

La première étude photométrique de la bande d'instabilité fut réalisée par McGraw (1979). Cette analyse, ainsi que celle de Fontaine et al. (1985), étaient basées sur des données de photométrie dans le système Strömgren. McGraw (1979) a analysé la photométrie pour 10 des 12 étoiles ZZ Ceti qui étaient connues et remarqua que ces étoiles se regroupaient de façon assez évidente dans un diagramme couleur-couleur. Il a également obtenu des valeurs de T_{eff} et $\log g$ pour chaque étoile en comparant la photométrie à des couleurs théoriques calculées à partir de modèles d'atmosphère. Ainsi, McGraw (1979) plaça les limites de la bande d'instabilité à $T_{\rm eff}~=~13,640~{\rm K}$ du côté chaud et à $T_{\rm eff}~=~10,315~{\rm K}$ du côté froid et suggèra que les étoiles de type ZZ Ceti représentent une phase évolutive pour les naines blanches de type DA. Les résultats de Fontaine et al. (1985), qui ont analysé des données pour 71 naines blanches de type DA dont 11 étoiles ZZ Ceti, sont très similaires à ceux de McGraw (1979). On voit dans la Figure 1.1 que les étoiles ZZ Ceti occupent une région assez restreinte dans le diagramme (u - b) vs. (b - y) ce qui a permis de conclure que celles-ci formaient une classe très homogène de naines blanches de type DA. Une autre constatation importante qui ressort de l'analyse de Fontaine et al. (1985) est le fait que toutes les étoiles ZZ Ceti dans leur échantillon se retrouvaient du côté froid du maximum de l'intensité des raies de Balmer. Dans la Figure 1.2 on voit très clairement les étoiles ZZ Ceti qui se situent du côté rouge du maximum en m_1 . L'indice m_1 , défini de la manière suivante $m_1 = (v - b) - (b - y)$, est un bon indicateur de l'intensité des raies d'hydrogène puisque le filtre v est centré sur la raie H δ .

FIGURE 1.1 – Diagramme couleur-couleur Strömgren tiré de Fontaine et al. (1985). Superposée sont des courbes de log g constant, de 9.0 en bas à 7.0 en haut en incrément de 0.25. Celles-ci sont croisées par des courbes de température constante partant de 16,000 K à gauche jusqu'à 8000 K à droite en incrément de 1000 K. Les étoiles ZZ Ceti sont représentées par les cercles ouverts. La croix représente l'erreur interne moyenne.

FIGURE 1.2 – Diagramme couleur-couleur de Fontaine et al. (1985). Ici, l'indice de couleur m_1 sert d'indicateur de l'intensité des raies de Balmer. Les étoiles ZZ Ceti sont représentées par les cercles ouverts. La croix représente l'erreur interne moyenne.

La bande d'instabilité obtenue par Fontaine et al. (1985) s'étale de $T_{\rm eff} = 13,000$ K à 11,000 K. Également, ils ont trouvé seulement 4 étoiles non-variables à l'intérieur des limites de la bande d'instabilité mais seulement aux frontières de celle-ci. Leurs résultats étaient donc compatibles avec l'idée que toute les naines blanches de type DA deviennent éventuellement des étoiles ZZ Ceti. Finalement, Fontaine et al. (1985) avaient exprimé la necessité d'utiliser un ensemble de données homogènes pour pouvoir tirer des conclusions significatives sur la nature de la bande d'instabilité ainsi que l'utilisation de données qui couvraient plusieurs cycles de pulsation pour les étoiles ZZ Ceti.

Des analyses basées sur les données de photométrie multichannel de Greenstein (1976) ont été effectuées par Greenstein (1982), Fontaine et al. (1982) et Weidemann & Koester (1984) utilisant différentes calibrations du flux absolu. Fontaine et al. (1982) en particulier avaient trouvé uniquement des naines blanches variables dans l'intervalle $-0.45 \leq (G - R) \leq -0.38$. De plus, des recherches de nouvelles ZZ Ceti basées sur l'indice (G - R) avaient eu un taux de réussite de 100%. Fontaine et al. (1982) avaient suggéré que si toutes les étoiles se retrouvant dans la bande d'instabilité ne sont pas variables, il existerait donc un autre paramètre outre la température qui peut rendre une étoile instable.

1.1.2 Études spectroscopiques

Les premières études spectroscopiques d'un échantillon d'étoiles ZZ Ceti ont été faites à partir de données du satellite IUE avec des spectres dans l'ultraviolet par Wesemael et al. (1986) et Lamontagne et al. (1987). L'avantage de travailler dans l'ultraviolet est la sensibilité du flux au changement en T_{eff} dans cette portion du spectre. Wesemael et al. (1986) ont analysé, avec des grilles de modèles d'atmosphère, un échantillon de 7 étoiles ZZ Ceti. Ces grilles avaient été calculées pour une composition d'hydrogène pure et en supposant $\log g = 8.0$. Wesemael et al. (1986) avaient signalé que cette supposition pourrait être une source d'incertitude puisque plusieurs naines blanches démontraient des gravités de surface très différentes de $\log g = 8.0$ (Ross 548, G226-29). Lamontagne et al. (1987) ont ajouté 3 étoiles ZZ Ceti à cet échantillon ainsi que 4 naines blanches non-variables. Les résultats de ces deux études concordaient avec les analyses photométriques précédentes et plaçaient les limites de la bande

d'instabilité dans l'intervalle $T_{\rm eff} \sim 12,500$ K jusqu'à $\sim 11,400$ K.

FIGURE 1.3 – Variation de la largeur équivalente pour les raies de Balmer de H γ à H8 en fonction de T_{eff} et pour les valeurs suivantes log g = 7.50 (trait plein), 7.75 (trait long - point), 8.00 (trait court), 8.25 (trait long), 8.50 (trait court - point). (Daou et al. 1990)

Mais ce fut l'étude de Daou et al. (1990) qui utilisa pour la première fois des spectres visuels pour analyser les étoiles ZZ Ceti, en comparant les profils des raies de Balmer à des spectres synthétiques générés à partir de modèles d'atmosphère. Ils ont obtenu des mesures de $T_{\rm eff}$ et log g pour les 10 étoiles de leur échantillon. Daou et al. (1990) avaient remarqué que les raies H γ et H δ étaient de bons indicateurs de la température tandis que H ϵ et H8 donnaient une bonne mesure de la gravité de surface. Ces conclusions sont évidentes si on examine la Figure 1.3 tirée de Daou et al. (1990) qui montre la variation de la largeur équivalente de ces

FIGURE 1.4 – Sommaire des différentes déterminations en T_{eff} de la bande d'instabilité des ZZ Ceti. (Wesemael et al. 1991)

raies en fonction de la température pour différentes valeurs de $\log g$.

Wesemael et al. (1991) présentèrent un sommaire des différentes études de la bande d'instabilité des étoiles ZZ Ceti qui avaient été complétées à ce jour. Dans la Figure 1.4 ont voit le résumé des déterminations de $T_{\rm eff}$ pour les études photométriques et spectroscopiques. Malgré le fait que chaque analyse définit de façon unique la bande d'instabilité, il y a un accord général dans la région de $T_{\rm eff} \sim 12,100$ K à $\sim 11,400$ K.

Une contribution clé à l'étude des étoiles ZZ Ceti fut apporté par Bergeron et al. (1992b). Ils avaient démontré que le choix de l'efficacité convective dans les modèles d'atmosphère affecte les flux prédits, d'autant plus que cet effet atteint un maximum dans l'intervalle de température où se retrouvent les étoiles de type ZZ Ceti. Le choix de l'efficacité convective appropriée doit donc se faire judicieusement. L'étude de Bergeron et al. (1995b) a réussi à résoudre ce problème. En fait, Bergeron et al. (1995b) ont déterminé la paramétrisation de la théorie de la longueur de mélange (ML2/ $\alpha = 0.6$) qui produisait la meilleure cohérence entre les températures dérivées à partir de spectres visuels et ultraviolets. Les paramètres atmosphériques obtenus avec ces modèles étaient également en bon accord avec la photométrie disponible ainsi que les mesures de parallaxe trigonométrique et de décalage vers le rouge gravitationnel. De plus, ils ont démontré que la température n'est pas le seul paramètre qui gère la variabilité des naines blanches DA: la masse, ou de manière équivalente la gravité de surface (log g), doit aussi être spécifiée pour définir la bande d'instabilité correctement. Pour ce faire, Bergeron et al. (1995b) ont obtenu des spectres visuels pour les 22 étoiles ZZ Ceti alors connues et ont ensuite déterminé des valeurs de $T_{\rm eff}$ et log g pour chaque étoile avec une version raffinée de la méthode utilisé par Daou et al. (1990).

Ces affirmations sont supportées par les résultats de Giovannini et al. (1998) qui trouvent aussi une dépendance sur la masse, notamment pour la frontière chaude de la bande d'instabilité. Finalement, Bergeron et al. (2004) ont présenté des déterminations des paramètres atmosphériques pour 36 étoiles ZZ Ceti. Mais en plus des étoiles ZZ Ceti, Bergeron et al. (2004) ont également utilisé un échantillon de naines blanches non-variables pour contraindre la bande d'instabilité dans le plan T_{eff} -log g. On peut voir le résulat de ces efforts à la Figure 1.5.

1.2 Pureté de la bande d'instabilité

La pureté est un sujet fort important en ce qui concerne la bande d'instabilité des étoiles ZZ Ceti. En d'autres mots, on cherche à répondre à la question suivante: y a-t-il des naines blanches DA non-variables dont les paramètres atmosphériques les placent à l'intérieur des limites de la bande d'instabilité?

Basé sur leurs études photométriques, McGraw (1979) et Fontaine et al. (1982) avaient suggéré que la bande d'instabilité devait être pure. Subséquemment, plusieurs auteurs ont exprimé la possibilité que la bande d'instabilité contienne des étoiles non-variables (Dolez et al. 1991; Kepler & Nelan 1993; Kepler et al. 1995; Giovannini et al. 1998; Mukadam et al. 2004b). Kepler & Nelan (1993) doutaient de la pureté de la bande d'instabilité puisque leur analyse plaçaient 4 naines blanches non-variables à l'intérieur de la bande d'instabilité. Cependant, Bergeron et al. (1995b) ont pu démontrer que les étoiles en question se trouvaient en dehors des limites de la bande d'instabilité. Dernièrement, Bergeron et al. (2004) ont obtenu encore une

FIGURE 1.5 – Diagramme de log g vs T_{eff} où les 36 étoiles ZZ Ceti de Bergeron et al. (2004) sont représentées par des cercles ouverts. Les cercles fermés sont des naines blanches DA nonvariables. Les cercles ouverts gras sont les deux nouvelles ZZ Ceti découvertes par Bergeron et al. (2004).

fois une bande d'instabilité dépourvue d'étoiles photométriquement constantes (voir Figure 1.5). Par contre, Mukadam et al. (2004b) ont de nouveau proposé une bande d'instabilité impure avec leur analyse des naines blanches du Sloan Digital Sky Survey (SDSS).

L'importance de la pureté repose sur le fait que si la bande d'instabilité est réellement pure, cela implique que la phase ZZ Ceti est une étape évolutive par laquelle toutes les naines blanches de type DA doivent passer. Dans ce cas, ce que l'on apprend sur la structure interne de ces astres par des analyses astéroséismologiques, peut être appliqué à l'ensemble des naines blanches de type DA. De plus, une bande d'instabilité pure implique qu'une étoile ayant des paramètres atmosphériques qui la place à l'intérieur de la bande doit forcément être variable. Ainsi, nous avons un outil puissant pour prédire la variabilité des naines blanches de type DA.

1.3 Vers une meilleure détermination des limites de la bande d'instabilité

La grande majorité des études sur la bande d'instabilité des étoiles ZZ Ceti examinaient les étoiles ZZ Ceti elles-mêmes. Cependant, il est également possible d'obtenir des contraintes sur l'emplacement de la bande d'instabilité dans le plan T_{eff} -log g en analysant les étoiles non-variables qui se retrouvent à l'extérieur mais proche de la bande d'instabilité. L'analyse de Bergeron et al. (2004) se servait d'étoiles variables et non-variables pour essayer de bien définir la bande d'instabilité. Par contre, Bergeron et al. (2004) admettent qu'ils avaient obtenu des données spectroscopiques pour seulement une fraction de toutes les naines blanches DA connues comme étant constantes photométriques. Mukadam et al. (2004a) rapportaient la découverte de 35 nouvelles étoiles ZZ Ceti et de nombreuses naines blanches constantes photométriques à partir des données de SDSS. L'analyse de cet échantillon d'étoiles variables et non-variables est présentée par Mukadam et al. (2004b). Les résultats de Mukadam et al. (2004b) sont nettement différents de ceux de Bergeron et al. (2004), notamment ils ont trouvé des naines blanches non-variables dans la bande d'instabilité et vice-versa. Ceci dit, l'étude de Mukadam et al. (2004b) représente une des rares études où l'on s'est intéressé autant aux étoiles ZZ Ceti qu'aux naines blanches constantes photométriques pour déterminer les limites de la bande d'instabilité.

Connaître la pente et l'endroit exact où se trouvent les limites de la bande d'instabilité est important pour plusieurs raisons. Premièrement, il semble que la frontière chaude soit sensible à l'efficacité convective dans la couche d'hydrogène ainsi que l'épaisseur de celle-ci (Winget et al. 1982). Également, une meilleure détermination de la frontière froide de la bande d'instabilité pourrait servir à mieux comprendre le mécanisme qui fait en sorte que les étoiles ZZ Ceti cessent leurs pulsations.

Ici, nous allons utiliser comme point de départ l'analyse de Bergeron et al. (2004) à laquelle nous allons rajouter toutes les naines blanches non-variables que nous avons pu identifier dans la littérature et à partir d'autres études non-publiées. De cette manière, nous cherchons à mieux déterminer les limites de la bande d'instabilité des naines blanches de type ZZ Ceti. Pour

CHAPITRE 1. INTRODUCTION

ce faire, nous avons obtenu des spectres visuels pour toutes ces étoiles et ce, en conjonction avec un relevé plus global de naines blanches DA tirées du catalogue de McCook & Sion (1999). Ce relevé a plusieurs buts, notamment la détermination des paramètres atmosphériques pour toutes les étoiles de l'échantillon ainsi que la confirmation de leur classification spectrale. Également, nous cherchons à identifier de nouveaux candidats ZZ Ceti.

Chapitre 2

Méthode spectroscopique

2.1 Modèles d'atmosphère

L'analyse des spectres visuels des naines blanches de type DA de notre échantillon exploite la sensibilité des raies de Balmer aux variations en T_{eff} et log g pour déterminer ceux-ci. On commence en calculant des modèles d'atmosphère qui nous fournissent la structure thermodynamique de l'atmosphère. Avec cette information, on peut ensuite calculer le flux émergent de l'étoile et ainsi générer des grilles de spectres synthétiques. Comme nous allons voir, les étoiles de notre échantillon global s'étalent sur un très grand intervalle en T_{eff} , ce qui nous oblige à considérer plusieurs aspects de la physique des modèles d'atmosphère pour ces étoiles.

Pour les naines blanches plus froides que $T_{\rm eff} \sim 15,000$ K, la convection commence à jouer un rôle important dans le transport d'énergie. Bergeron et al. (1995b) ont pu déterminer que les modèles calculés pour une paramétrisation de la théorie de la longueur de mélange de ML2/ $\alpha = 0.6^1$ produisaient le meilleur accord entre les températures dérivées à partir de spectres visuels et ultraviolets, les mesures de parallaxe trigonométrique et de décalage vers le rouge gravitationnel.

Deuxièmement, précisons que les modèles d'atmosphère supposent une composition d'hydrogène pure. Dans ce cas, Napiwotzki (1997) a montré qu'il faut tenir compte des effets

 $^{^{1}}$ ML2/ $\alpha = 0.6$ correspond à la description de la théorie de la longueur de mélange de Böhm & Cassinelli (1971) où $\alpha = 0.6$; α est le rapport entre la longueur de mélange, l, et la hauteur caractéristique de pression, H, donc $\alpha \equiv l/H$

hors-ETL (hors équilibre thermodynamique locale) pour les étoiles ayant $T_{\rm eff} \gtrsim 40,000$ K. Une grille de modèles qui inclut les effets hors-ETL pour $T_{\rm eff} \gtrsim 40,000$ K ainsi que la convection pour $T_{\rm eff} \lesssim 15,000$ K est donc nécessaire.

Les modèles d'atmosphère hors-ETL comme ceux de Hubeny & Lanz (1995) (TLUSTY et SYNSPEC) sont incapables de modéliser la convection de manière satisfaisante. Pour résoudre ce problème, Liebert et al. (2005) ont décidé d'adopter les modèles de Bergeron et al. (1995b) qui incluent la convection jusqu'à une température où les effets hors-ETL sont encore négligeables pour ensuite passer au modèles TLUSTY et SYNSPEC. Il fallait s'assurer que la transition entre les deux types de modèles se fasse de façon continue. I. Hubeny (2001, communication privée) a gracieusement calculé des modèles et des spectres synthétiques avec TLUSTY et SYNSPEC pour $T_{\rm eff} > 20,000$ K, que Liebert et al. (2005) ont ensuite comparé à ceux de Bergeron et al. (1995b) dans le but d'identifier des différences systématiques. Une fois que les corrections appropriées eurent été apportées, les modèles produisaient des différences de moins de 1% en $T_{\rm eff}$ et 0.02 dex en log g entre 20,000 et 90,000 K (Liebert et al. 2005). C'est donc à 20,000 K qu'a lieu la transition entre les modèles ETL qui incluent la convection et les modèles tenant compte des effets hors-ETL.

La grille complète couvre l'intervalle en $T_{\rm eff}$ de 1500 à 140,000 K par pas de 250 K pour $T_{\rm eff}$ < 5500 K, de 500 K pour $T_{\rm eff}$ < 17,000 K, de 5000 K pour $T_{\rm eff}$ > 20,000 K et de 10,000 K pour $T_{\rm eff}$ > 90,000 K. La grille est plus fine pour les étoiles les plus froides puisque la distribution d'énergie varie très rapidement en fonction de la température pour ces valeurs de $T_{\rm eff}$. Finalement, la grille s'étale de 6.5 à 9.5 en log g par incrément de 0.5 dex sauf dans l'intervalle de 7.5 à 8.5 où l'incrément est de 0.25 dex.

2.2 Détermination des paramètres atmosphériques

La technique que l'on utilise pour déterminer T_{eff} et log g est identique à celle décrite dans Liebert et al. (2005). Dans un premier temps, le profil de chaque raie est normalisé à un continu de valeur unité à partir d'une distance fixe du centre de la raie. Ce procédé est appliqué autant aux raies du spectre observé qu'à celles du spectre synthétique. La comparaison entre les deux se fait donc uniquement à partir de ces profils normalisés. Pour tenir compte de la résolution instrumentale, les spectres synthétiques sont convolués avec un profil Gaussien avec une largeur à mi-hauteur de 3, 6, 9 ou 15 Å selon la résolution spectrale des observations.

L'aspect le plus important et possiblement le plus difficile est la définition du continu pour chaque raie. Cette tâche est rendue encore plus difficile par le fait que dans la région des étoiles ZZ Ceti, les raies de Balmer atteignent leur maximum en intensité et les ailes des raies voisines commencent à se chevaucher. Nous utilisons ici la démarche de Bergeron et al. (1995b) où des profils pseudo-Gaussiens sont lissés au spectre observé en utilisant la méthode de minimisation du moindre carré de Levenberg-Marquardt (Press et al. 1986). Le continu est ensuite fixé au points définis par cette fonction à une distance fixe du centre de la raie.

Ce procédé fonctionne bien dans l'intervalle 16,000 K $\gtrsim T_{\text{eff}} \gtrsim 9000$ K. À l'extérieur de cette plage en température, cette méthode de normalisation est moins fiable car le continu entre les raies de Balmer inférieures (H β , H γ) devient linéaire et les raies de Balmer supérieures (H8, H9) commencent à disparaître. Dans ces cas, nous utilisons des spectres synthétiques pour reproduire le spectre observé en incluant un décalage en longueur d'onde, un point zéro ainsi que des termes d'ordre plus élévé en λ (jusqu'à λ^6). Le continu est donc défini à partir de ce spectre synthétique lissé aux données. Une fois que le continu est bien défini, on peut procéder à la normalisation des raies. On peut voir dans la Figure 2.1 un exemple pour chaque méthode de normalisation.

La prochaine étape consiste à interpoler à l'intérieur de notre grille de spectres synthétiques pour déterminer les valeurs de T_{eff} et log g qui reproduisent le mieux le spectre observé. Pour accomplir cette tâche, nous employons de nouveau la méthode de minimisation du moindre carré de Levenberg-Marquardt. Plus précisement, en comparant les profils de raies, une valeur de χ^2 est déterminée ainsi que la dérivée de χ^2 par rapport aux 2 paramètres qui nous intéressent, T_{eff} et log g. De cette manière, il est possible de déterminer comment corriger les 2 paramètres pour obtenir un χ^2 minimum, c'est-à-dire, une meilleure correspondance entre observations et modèles. Ce processus est ensuite répété jusqu'à ce que les corrections soient suffisamment petites pour que l'on puisse déclarer que le processus a convergé sur une solution. Notons que nous considérons uniquement les raies de H β à H8 dans cette analyse.

Comme nous l'avons déjà mentionné précédemment, les raies de Balmer atteignent un

FIGURE 2.1 – Exemples de la procédure utilisée pour la définition du continu avec des profils pseudo-Gaussiens (*panneau du haut*: $T_{\rm eff} \sim 12,000$ K) ou avec des spectres synthétiques (*panneau du bas*: $T_{\rm eff} \sim 35,000$ K). Les lignes pointillées indiquent l'intervalle en longueur d'onde utilisé pour définir le continu de chaque raie.

maximum en intensité à 13,000 K. Ceci peut engendrer une ambiguité puisque pour les étoiles dont la température est près de 13,000 K, il y aura deux réponses possibles, une de chaque côté du maximum, c'est-à-dire une solution chaude et une solution froide. Pour s'assurer que le choix approprié soit fait, nous obtenons les solutions dans les deux cas et superposons les spectres synthétiques résultants sur le spectre observé normalisés à 4600 Å. Puisque la pente du spectre varie en fonction de la température, on peut ainsi identifier quelle solution adopter. La Figure 2.2 montre des exemples de le méthode spectroscopique pour un ensemble de naines blanches à des températures différentes.

Les erreurs internes de la méthode spectroscopique sont largement minimisées puisque le rapport signal-sur-bruit des spectres est élevé et parce que les modèles d'atmosphère reproduisent de manière détaillée les données observationnelles. L'incertitude est plutôt dominée

FIGURE 2.2 – Exemples du résultat final de la méthode spectroscopique pour des étoiles avec 80,000 K $\gtrsim T_{\rm eff} \gtrsim 6500$ K en ordre de $T_{\rm eff}$ décroissant de gauche à droite et de haut en bas. Les raies montrées vont de H β (bas) à H8 (haut). Dans chaque cas, les raies du spectre synthétique (rouge) sont superposées aux raies du spectre observé (noir). Les valeurs de $T_{\rm eff}$ et log g ainsi que les masses correspondantes sont indiquées.

FIGURE 2.3 – Distribution de la déviation standard en T_{eff} et log g pour des naines blanches avec des observations multiples en fonction de T_{eff} . La déviation standard en T_{eff} est exprimée en pourcentage par rapport à la température moyenne de l'étoile. Les traits pointillés représentent la déviation standard moyenne (Liebert et al. 2005).

par des effets externes notamment la calibration en flux des spectres observés. Liebert et al. (2005) ont obtenu des observations multiples pour plusieurs étoiles de leur échantillon et ils ont utilisé ces données pour estimer l'erreur externe sur $T_{\rm eff}$ et log g. Ils ont déterminé les paramètres moyens ainsi que la déviation standard pour chaque étoile. La Figure 2.3 montre la distribution de ces déviations standard en fonction de $T_{\rm eff}$. La déviation standard moyenne est également indiquée pour chaque paramètre, 0.038 dex en log g et 1.2% en $T_{\rm eff}$. Si l'on prend comme température moyenne des étoiles ZZ Ceti ~12,000 K, cela implique une incertitude de ~150 K sur $T_{\rm eff}$ dans la région de la bande d'instabilité des étoiles de type ZZ Ceti.

Une fois les valeurs de T_{eff} et log g obtenues, il est possible d'obtenir la masse et la magnitude absolue visuelle, M_V , pour chaque étoile en utilisant des modèles évolutifs de naines blanches de type DA. La nature dégénérée de la matière dans une naine blanche implique une relation masse-rayon inverse, c'est-à-dire plus une naine blanche est massive, plus son rayon est petit. De plus, la pression des électrons dégénérés n'étant pas une fonction de la température, les naines blanches évoluent à rayon presque constant. Les modèles évolutifs sont calculés pour une série de masses de 0.2 à 1.2 M_{\odot} . Avec la température obtenue de la spectroscopie, un rayon est calculé pour chaque masse. Ensuite, en utilisant la relation

$$g = \frac{GM}{R^2},$$

on peut déterminer une valeur de $\log g$ pour chaque paire masse-rayon à la température donnée. Finalement, la valeur de $\log g$ spectroscopique est interpolée sur cette série de valeurs de $\log g$ pour trouver la masse de l'étoile en question. Le rayon obtenu à partir de cette méthode peut ensuite être combiné à la température effective pour calculer la luminosité totale de l'étoile et subséquemment, la magnitude visuelle absolue.

Nous utilisons les modèles évolutifs de Wood (1995) avec des noyaux de carbone, des couches d'hélium avec $q(\text{He}) \equiv M_{\text{He}}/M_{\star} = 10^{-2}$, où M_{\star} et M_{He} sont la masse de l'étoile et de la couche d'hélium respectivement, et des couches d'hydrogène épaisses avec $q(\text{H}) = 10^{-4}$. Ce sont donc les modèles et les méthodes décrites dans ce chapitre que nous allons utiliser pour déterminer les paramètres atmosphériques de notre échantillon photométrique (Chapitre 3) ainsi que de notre échantillon global (Chapitre 4).

Chapitre 3

Échantillon photométrique

Le but de notre étude étant de mieux déterminer les limites de la bande d'instabilité des étoiles ZZ Ceti, nous avons défini un échantillon d'étoiles naines blanches dont la variabilité ou l'absence de variabilité est connue. C'est ce que nous appellerons ici l'échantillon photométrique. Il existe pour chaque étoile dans cet échantillon des observations en photométrie rapide pour confirmer la variabilité ou bien la constance photométrique de l'objet. Nous présentons et analysons cet échantillon dans ce chapitre. Noter que ce chapitre correspond à la section 2 de l'article en Annexe C.

3.1 Définition de l'échantillon photométrique

L'échantillon photométrique est constitué de 2 composantes: les naines blanches variables, c'est-à-dire les étoiles ZZ Ceti, ainsi que les naines blanches constantes photométriques. L'échantillon des étoiles ZZ Ceti est composé des 36 étoiles ZZ Ceti de Bergeron et al. (2004) et de 3 nouvelles étoiles ZZ Ceti que nous présenterons à la section 3.3.3 pour un total de 39 objets. Notre échantillon de naines blanches de type DA constantes contient 121 étoiles. Cette liste d'étoiles a été rassemblée à partir de plusieurs sources. Nous avons tout d'abord cherché dans la littérature toutes les mentions de naines blanches de type DA qui ne démontrent aucune variabilité photométrique. Ceci inclut deux thèses de doctorat (McGraw 1977; Giovannini 1996) ainsi que plusieurs études de la bande d'instabilité telles que Wesemael & Fontaine (1985), Dolez et al. (1991), Kepler & Nelan (1993), Kepler et al. (1995), Silvotti et al. (1997), Giovannini et al. (1998) et Kanaan et al. (2002). Une autre source importante consiste en des données non-publiées qui sont le résultat de plusieurs campagnes d'observations de P. Bergeron, G. Fontaine, G. Vauclair et J. T. McGraw. Il y a également 4 étoiles découvertes dans le Hamburg Quasar Survey et déterminées comme étant constantes par Mukadam et al. (2004a). Cependant, notre échantillon ne contient pas les étoiles dont le statut photométrique, variable ou constante, a été rapporté récemment dans les études de Mukadam et al. (2004a), Silvotti et al. (2005) et Mullally et al. (2005).

3.2 Observations

Parmi les 121 étoiles de cet échantillon photométrique, environ 30% des spectres étaient déjà disponibles à partir des analyses de Bergeron et al. (1992a) et Bergeron et al. (1995a). Ces spectres avaient été obtenus en utilisant le télescope de 2.3 m du Steward Observatory équipé du spectrographe Boller & Chivens. La fente de 4."5 avec le réseau de 600 traits mm⁻¹ au 1^{er} ordre fournissent une plage spectrale d'environ 3000 à 5250 Å avec une résolution de ~ 6 Å (pleine largeur à mi-hauteur). 40 spectres additionels nous ont été fournis par Chris Moran (1999, communication privée); ces spectres couvrent une plage spectrale semblable mais avec une résolution légèrement meilleure de \sim 3 Å. 7 spectres provenant de l'hémisphère sud sont tirés des analyses de Bragaglia et al. (1995) et de Bergeron et al. (2001). Finalement, des spectres visuels de haut rapport signal-sur-bruit pour 35 objets ont été obtenus spécifiquement dans le cadre de ce projet durant 4 missions d'observations en 2003 et 2004, et en utilisant de nouveau les installations du Steward Observatory décrites ci-dessus. La qualité des spectres est d'une grande importance pour la détermination des paramètres atmosphériques (Bergeron et al. 1995b), ainsi nous nous imposons un rapport signal-sur-bruit minimum de 80 pour chaque spectre. Pour adhérer à cette exigence, le temps de pose est ajusté en fonction de la magnitude visuelle apparente pour obtenir le rapport signal-sur-bruit désiré. Ceci dit, ce ne sont pas tous nos spectres qui répondent à ce critère. Notamment, les spectres provenant de C. Moran (1999, communication privée) et les spectres d'étoiles obtenus avant leur découverte comme étoiles de type ZZ Ceti. En ce qui concerne les étoiles constantes, elles ont presque toutes un rapport signal-sur-bruit supérieur à 50. Les 121 spectres visuels sont montrés dans la Figure 3.1 en ordre de $T_{\rm eff}$ décroissant, et les 35 spectres obtenus dans le cadre de cette

étude sont identifiés par des noms en italique.

3.3 Analyse

Les valeurs de T_{eff} et $\log g$ que nous avons déterminées pour chacune des 121 naines blanches de type DA de notre échantillon photométrique sont présentées dans le Tableau 3.1. Les étoiles sont ordonnées par leur nom WD qui représente les coordonnées de l'objet en ascension de droite et déclinaison (1950.0); la deuxième colonne indique le vrai nom de l'étoile. Nous indiquons également les masses et les magnitudes visuelles absolues dérivées à partir des modèles évolutifs décrits dans le chapitre précédent. Dans la dernière colonne du tableau, nous fournissons les réferences aux observations qui ont établi la constance photométrique de l'étoile en question. Avant de discuter des propriétés globales de notre échantillon photométrique, il y a certains objets qui méritent une attention particulière.

3.3.1 Objets particuliers

Parmi les étoiles constantes photométriques, 3 sont connues comme étant des systèmes binaires composés de 2 naines blanches que l'on ne peut résoudre individuellement. Ces étoiles sont G1-45 (WD 0101+048; Maxted et al. 2000), LP 550-52 (WD 1022+050) et G21-15 (WD 1824+050; Maxted & Marsh 1999). Liebert et al. (1991) ont montré que dans de tels cas, les paramètres atmosphériques obtenus sont en fait une moyenne des paramètres des deux composantes du système. Également, en s'appuyant sur des données spectroscopiques et des mesures de la distribution d'énergie, Bergeron et al. (1990) ont suggéré que GD 387 (WD 2003+437) est probablement un système binaire composé d'une naine blanche de type DA et d'une naine blanche de type DC. Notons que l'on caractérise une naine blanche de type DC comme une naine blanche n'ayant aucune raie d'absorption dans son spectre visuel. Bergeron et al. (1990) ont obtenu $T_{\rm eff} = 14,340$ K et log g = 7.50 pour la composante DA. Les paramètres atmosphériques pour ces quatre systèmes doivent donc être considérés comme incertains.

Deuxièmement, il y a trois étoiles dont les spectres sont composites. Dans ces cas, le centre des raies de Balmer du spectre de la naine blanche est contaminé par la lumière provenant de la surface du compagnon réchauffée par la naine blanche. Les compagnons s'avèrent généralement des naines de type spectral K ou M. Ces étoiles sont PG 0308+096 (Saffer et al. 1993), PG 1643+144 (Kidder 1991) ainsi que Case 1 (WD 1213+528; Lanning 1982). Dans le cas de PG 0308+096, seulement la raie H β est contaminée (voir Figure 3.1 (a), panneau de gauche). Pour contourner ce problème, nous excluons tout simplement la raie en question et nous utilisons uniquement les raies de H γ à H8 pour obtenir les valeurs de $T_{\rm eff}$ et log g. Pour PG 1643+144 (voir Figure 3.1 (a), panneau de gauche), nous excluons H β et H γ . Cependant, le cas de Case 1 est plus complexe puisque toutes les raies sont contaminées (voir Figure 3.1 (a), panneau de droite). Comme dans les cas précédents, nous excluons la raie H β et de plus, nous excluons 25 Å de part et d'autre du centre de chaque raie. Ainsi, seulement les ailes des raies sont considérées dans la détermination des paramètres atmosphériques. La température que nous obtenons, $T_{\rm eff} = 13,920$ K, est en bon accord avec celle déterminée par Sion et al. (1984) à partir d'un spectre ultraviolet, $T_{\rm eff} = 13,000 \pm 500$ K.

Finalement, l'échantillon contient deux étoiles connues comme étant magnétiques: GD 77 (WD 0637+477; Schmidt et al. 1992, voir Figure 3.1 (a), panneau de droite) et G128-72 (WD 2329+267; Moran et al. 1998, voir Figure 3.1 (c), panneau de gauche). La séparation des niveaux atomiques due à l'effet de Zeeman est observée dans les deux cas et cela cause un élargissement additionel des raies qui fausse la détermination des paramètres atmosphériques. Pour cette raison, les valeurs de $T_{\rm eff}$ et log g obtenues pour ces 2 objets demeurent incertains. Par exemple, pour G128-72 nous obtenons $T_{\rm eff} = 11,520$ K et log g = 9.09 tandis que Bergeron et al. (2001) obtiennent $T_{\rm eff} = 9400$ K et log g = 8.02 en analysant la distribution d'énergie photométrique BVRIJHK combinée à une mesure du rayon de l'étoile obtenue à partir de la parallaxe trigonométrique.

Ces mesures incertaines de T_{eff} et log g sont suivies de deux points (:) dans le Tableau 3.1. Il est important de bien prendre en considération ces objets lorsque nous discuterons de la bande d'instabilité.

3.3.2 G226-29

Un autre cas important dont il faut discuter est celui de G226-29 (WD 1647+591). Cet objet représente l'étoile la plus chaude de l'échantillon d'étoiles ZZ Ceti de Bergeron et al. (2004) avec $T_{\rm eff} = 12,460$ K et $\log g = 8.28$. De ce fait, G226-29 représente une contrainte importante pour déterminer la position de la frontière chaude de la bande d'instabilité. En fait, Bergeron et al. (2004) ont utilisé le même spectre que Bergeron et al. (1995b) pour leur analyse. Bergeron et al. (1995b) ont toutefois mentionné une deuxième observation spectroscopique de G226-29 dont les paramètres atmosphériques, $T_{\rm eff} = 12,260$ K et $\log g = 8.32$, sont en accord avec les mesures précédentes à l'intérieur des incertitudes. Plus intéressant encore, cette dernière détermination de la température est entièrement compatible avec la température obtenue à partir du spectre ultraviolet IUE, $T_{\rm eff} = 12,270$ K (voir Fig. 12 de Bergeron et al. 1995b). Nous avons donc décidé d'adopter ces nouveaux paramètres atmosphériques pour G226-29.

FIGURE 3.1 = (a) Spectres visuels des naines blanches de notre échantillon photométrique en ordre de $T_{\rm eff}$ décroissant de haut en bas et de gauche à droite. Le nom WD pour chaque étoile est indiqué. Les noms en italique correspondent aux étoiles dont nous avons obtenu les spectres spécifiquement dans le cadre de ce projet.

FIGURE $3.1 \equiv$ (b) Suite

FIGURE 3.1 = (c) Suite

Flux Relatif (f_

FIGURE 3.1 = (d) Suite

Flux Relatif (f_{ν})

WD	Nom	$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V	Références
0005-163	G158-132	14160	7.79	0.50	11.03	1
0009 + 501	G217-37	6610	8.36	0.83	14.31	2
0011 + 000	G31-35	9640	8.16	0.70	12.53	3
0030 + 444	G172-4	10370	8.20	0.73	12.33	3
0032 - 175	G226-135	9830	8.18	0.71	12.49	4
0000.010		10000	0.00	1 10	10.07	F 0
0033 + 016	G1-7	10980	8.83	1.12	13.27	5, 0
0037-006	PB 6089	14920	7.86	0.54	11.04	1, 2, 5, 7, 8
$0101 + 048^{a}$	G1-45	8530:	8.27:	0.77	13.17	4
0103 - 278	G269-93	13290	7.83	0.52	11.21	6, 9
0115 + 521	GD 275	10710	8.12	0.68	12.09	1
0135 - 052	L870-2	7280	7.85	0.51	13.18	4
0143 + 216	G94-9	9290	8.49	0.92	13.22	3
0148 + 467	GD 279	13430	7.93	0.57	11.33	3
0151 ± 017	G71-41	12330	7.89	0.54	11.42	1, 6, 8
0208 + 396	G74-7	7340	8.10	0.66	13.49	2
0213 + 396	GD 25	9320	8.56	0.96	13.32	3
0231 - 054	GD 31	13550	8.66	1.02	12.46	3, 5
0238 + 333	KUV 02386+3322	13390	8.23	0.75	11.77	10
0243 + 155	PG 0243+155	16670	8.02	0.63	11.08	5
0255 - 705	BPM 2819	10560	8.10	0.66	12.11	3, 6, 11
0302 + 621	CD 426	11000	8 21	0.73	12 15	5
0302 + 021	DC 0308 + 006	25000	8 08	0.10	10.36	Q
0300+090	I G 03007090	20900	7.86	0.00	10.00	ົ້ວ
0320 - 273	C_{28} /	9200 10370	8 1 3	0.02	12.24	2, 5
0332 + 320	GJ0-4 Dubin 70	10070	7 20	0.00	10.60	5680
0339+523	Rubin 70	12040	1.39	0.33	10.09	0, 0, 0, 9
0339-035	GD 47	12470	7.98	0.60	11.53	3, 5
0348 + 339	GD 52	14190	8.20	0.74	11.63	1, 7
0352 + 096	HZ 4	14030	8.19	0.73	11.64	11
0401 + 250	G8-8	12240	7.99	0.60	11.57	1, 5, 6, 7, 8, 11
0406 + 169	LB 227	15070	8.26	0.78	11.62	12
0/07 + 170	ዞፖ 10	- 19690	7 70	0 50	11 11	2
0407 + 179	114 10 ID 919	19400	7 00	0.00	11.11	ט ג
0410 + 153		10400	6.99	0.01	12.04	ປ ງ
0440 + 510	G1(0-40)	802U	0.22	0.14	10.04	ა ი
0453+418	GD 482	13000	1.08	0.44	11.09	১ 1 শ
0513 + 756	GD 433	13540	7.76	0.48	11.08	1, б

TABLEAU 3.1 = Paramètres atmosphériques des naines blanches DA non-variables

WD	Nom	$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V	Références
0518+005	GD 67	13340	7.88	0.55	11.28	3
0533 + 322	G98-18	10680	7.89	0.54	11.76	1, 5
$0637 + 477^{c}$	GD 77	14000:	8.21:	0.74	11.66	2
0710 + 216	GD 83	10480	8.07	0.65	12.09	3
0743 + 442	GD 89	14500	8.36	0.84	11.85	1
0816 + 387	G111-71	7700	8.07	0.64	13.26	4
0830 + 371	G115-9	9180	8.26	0.76	12.87	3
0839 - 327	LHS 253	9270	7.89	0.54	12.27	3
0913 + 442	G116-16	8680	8.20	0.72	12.98	3
0920 + 216	LB 3025	18000	7.83	0.53	10.66	5
0926 - 039	G161-36	12860	7.86	0.53	11.32	8
0928 - 713	BPM 5639	8580	8.28	0.78	13.16	3
0943 + 441	G116-52	12820	7.55	0.39	10.90	6, 8, 11
0950 + 077	PG 0950+078	14770	7.95	0.59	11.19	12
0950 - 572	BPM 19738	12400	7.68	0.44	11.13	3, 8
0955 + 247	G49-33	8620	8.30	0.79	13.18	3
0956 + 045	PG 0956+046	18150	7.81	0.52	10.62	5
$1022 + 050^{a}$	LP 550-52	11680:	7.64:	0.42	11.20	6, 8, 11
1026 + 023	LP 550-292	12500	7.95	0.58	11.49	1,6,8,9
1046 + 281	Ton 547	12610	7.97	0.59	11.51	3, 7
1053 - 550	BPM 20383	13420	7.81	0.51	11.16	11
1101 + 364	PG 1101+364	13040	7.24	0.29	10.41	6, 9
1108 + 475	GD 129	12460	8.24	0.76	11.92	13
1119 + 385	PG 1119+386	16500	7.94	0.58	10.98	6
1122 + 546	GD 307	14380	7.83	0.52	11.06	1
1147 + 255	G121-22	10200	8.14	0.69	12.29	3, 6
1204 - 136	EC 12043-1337	11180	8.24	0.76	12.16	13
$1213 + 528^{b}$	Case 1	13920	8.16	0.71	11.60	11
1229 - 012	HE 1229-0115	19740	7.52	0.41	10.05	5, 7
1241 + 235	LB 16	26730	7.93	0.60	10.05	7
1244 + 149	G61-17	10680	8.06	0.64	12.02	6
1253 + 482	GD 320	13970	7.59	0.41	10.78	1, 8
1327 - 083	Wolf 485A	13920	7.86	0.54	11.17	1, 6, 8, 11, 14
1418 - 005	PG 1418005	14290	7.82	0.51	11.06	6, 8
1431 + 153	PG 1431+154	13550	7.95	0.58	11.35	12

TABLEAU 3.1 =Suite

WD	Nom	$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V	Références
1448 + 077	G66-32	14170	7.75	0.48	10.97	6, 8
1507 - 105	GD 176	10100	7.75	0.47	11.76	3, 6
1508 + 637	GD 340	10450	8.12	0.68	12.18	1
1510 + 566	G201-39	9240	8.13	0.68	12.63	3
1531 + 184	GD 186	13220	7.89	0.55	11.30	3
1537 + 651	GD 348	9740	8.15	0.69	12.47	3, 7
1539 - 035	GD 189	10080	8.30	0.79	12.59	3, 6
1544 - 377	L481-60	10580	8.09	0.66	12.09	8
1550 + 183	GD 194	14260	8.25	0.77	11.70	6
1555 - 089	G152-B4B	13960	7.83	0.52	11.12	6, 8
						·
1606 + 422	Case 2	12690	7.74	0.47	11.17	2, 6, 8
1609 + 135	G138-8	9320	8.64	1.01	13.48	3
1636 + 160	GD 202	13620	7.81	0.51	11.13	5, 6
1637 + 335	G180+65	10150	8.17	0.71	12.35	3
$1643 + 143^{b}$	PG 1643+144	26850	7.91	0.60	10.02	12
1654 + 637	GD 515	15070	7.63	0.43	10.70	6
1655 + 215	G169-34	9310	8.20	0.73	12.72	2, 3
1706 + 332	G181-B5B	12960	7.80	0.50	11.21	3
1716 + 020	G19-20	13210	7.77	0.49	11.13	3, 6, 8
1743 - 132	G154-85B	12300	7.88	0.54	11.42	3
$1824 + 040^{a}$	G21-15	11970:	7.57:	0.39	11.06	5
1826 - 045	G21-16	9210	8.16	0.70	12.70	3
1827 - 106	G155-19	13300	7.63	0.42	10.93	8
1840 - 111	G155-34	10170	8.23	0.75	12.44	3, 6
1857 + 119	G141-54	9920	8.12	0.68	12.36	3, 6
1911 + 135	G142-B2A	13270	7.85	0.53	11.25	6, 9
1952 - 206	LTT 7873	13740	7.85	0.53	11.18	2, 3
1953 - 011	G92-40	7780	8.25	0.75	13.49	3
$2003 + 437^{a}$	GD 387	16910:	7.80:	0.51	10.73	1
2025 + 488	GD 390	10720	8.05	0.63	11.99	1
2029 + 183	GD 230	13090	7.79	0.49	11.18	3
2047 + 372	G210-36	14070	8.21	0.74	11.66	8
2059 + 190	G145-4	6980	8.42	0.86	14.18	2
2105 - 820	BPM 1266	10620	8.25	0.76	12.33	3,6,8,11
2115 - 560	BPM 27273	9760	8.13	0.68	12.43	6

TABLEAU 3.1 - Suite

WD	Nom	$T_{\rm eff}~({ m K})$	$\log g$	M/M_{\odot}	M_V	Références
2117 + 539	G231-40	13990	7.78	0.49	11.04	9
2124 + 550	G231-43	13340	8.34	0.82	11.95	3, 9
2126 + 734	G261-43	15290	7.84	0.53	10.97	6, 11
2136 + 229	G126-18	10210	8.10	0.67	12.23	6
2149 + 372	GD 397	13080	7.87	0.54	11.29	1, 6
2226 + 061	GD 236	15280	7.62	0.43	10.66	6
2246 + 223	G127-58	10650	8.80	1.10	13.32	3, 6
2258 + 406	G216-B14B	9860	8.23	0.75	12.55	6
2306 + 130	KUV 23060+1303	13250	7.92	0.56	11.34	9
2311 + 552	GD 556	11180	8.15	0.69	12.01	1, 5, 6, 8
2314 + 064	PB 5312	17570	7.98	0.61	10.93	1, 5
2322 + 206	PG 2322+207	13060	7.84	0.52	11.26	2, 9
$2329 + 267^{c}$	G128-72	11520:	9.09:	1.24	13.67	2, 3
2337 - 760	BPM 15727	13420	7.39	0.33	10.57	6
2341 + 322	G130-5	12570	7.93	0.57	11.45	1, 3, 5, 6, 7, 8
2351 - 335	LDS 826A	8850	8.27	0.77	13.02	2

TABLEAU 3.1 =Suite

^a Système binaire non-résolu

^b Spectre composite

^c Magnétique

Références. – (1) G. Fontaine (1979-1984, non-publié); (2) P. Bergeron & J. T. McGraw (1989, non-publié); (3) McGraw (1977); (4) Kanaan et al. (2002); (5) G. Vauclair (1979-1999, non-publié), Dolez et al. (1991); (6) Kepler et al. (1995); (7) Silvotti et al. (1997); (8) Giovannini (1996); (9) P. Bergeron & G. Fontaine (1990, non-publié); (10) G. Fontaine & P. Bergeron (1999, non-publié); (11) Kepler & Nelan (1993); (12) Mukadam et al. (2004a); (13) G. Fontaine & P. Bergeron & P. Bergeron (2003, non-publié); (14) Wesemael & Fontaine (1985).

3.3.3 Les étoiles ZZ Ceti

Pour bien définir la bande d'instabilité, il faut rajouter à notre échantillon d'étoiles constantes photométriques toutes les étoiles ZZ Ceti pour lesquelles nous avons des spectres visuels. Nous incluons donc les 36 étoiles ZZ Ceti de Bergeron et al. (2004) ainsi que trois nouvelles étoiles ZZ Ceti discutées ci-dessous. Les paramètres atmosphériques pour ces 39 étoiles sont présentés dans le Tableau 3.2 avec les masses et magnitudes absolues visuelles dérivées des modèles évolutifs de Wood (1995). Une des nouvelles étoiles ZZ Ceti est GD 133 (WD 1116+026); pour une description complète de sa découverte, se référer à la section 2.3.3 de l'Annexe C. Les deux autres nouvelles étoiles ZZ Ceti, PB 520 (WD 1039+412) et G232-38 (WD 2148+539), ont été identifiées à partir de notre relevé plus général des naines blanches de type DA du catalogue de McCook & Sion (1999) (voir Chapitre 4). Les paramètres atmosphériques pour ces deux étoiles sont données dans le Tableau 3.2 avec les masses et les magnitudes visuelles absolues. Ces valeurs de $T_{\rm eff}$ et log g les placent de manière évidente à l'intérieur des limites de la bande d'instabilité empirique (voir Fig. 3.4). Nous étions donc confiants que des observations en photométrie rapide confirmeraient leur variabilité.

Dans le cas de PB 520, des variations photométriques ont malheureusement déjà été rapportées par Silvotti et al. (2005). Cependant, G232-38, une étoile relativement peu brillante avec $V \sim 16.7$, n'avait jamais été observée pour des variations photométriques. Ainsi, nous avons obtenu des observations en photométrie rapide de G232-38 durant une mission d'observation en octobre 2004 avec le télescope de 1.6 m de l'Observatoire du mont Mégantic équipé de LAPOUNE, le photomètre à trois canaux de l'Université de Montréal. Généralement, la photométrie rapide requiert l'observation de façon alternative de l'étoile cible ainsi que d'une étoile de comparaison et du ciel. Ces deux derniers sont très importants car ils permettent d'éliminer largement les variations de luminosité provenant de sources externes et donc de détecter les variations intrinsèques de l'étoile cible. L'avantage qu'offre LAPOUNE est que ses trois canaux permettent l'observation de manière simultanée et continue des trois sources.

On peut voir à la Figure 3.2 la courbe de lumière que nous avons obtenue pour G232-38; les données s'étalent sur une durée de 3.9 heures. Cette courbe de lumière à été corrigée pour l'extinction et les effets du ciel ont également été soustraits. On voit très clairement que G232-38 est une étoile ZZ Ceti montrant des variations lumineuses multi-périodiques. On peut voir aussi l'interaction entre les différents modes de pulsations. Ces *battements* se manifestent comme des variations de l'amplitude globale des pulsations.

À partir de la courbe de lumière, nous avons calculé la transformée de Fourier que nous montrons à la Figure 3.3. La transformée de Fourier nous permet ainsi de distinguer trois modes dominants de pulsation avec des fréquences correspondant à des périodes de 741.6, 984.0 et 1147.4 s. Nous savons qu'il existe une relation période- $T_{\rm eff}$ pour les étoiles ZZ Ceti où

FIGURE 3.2 – Courbe de lumière pour G232-38 obtenue avec LAPOUNE et le téléscope de 1.6 m de l'Observatoire du mont Mégantic. Chaque point représente un temps d'échantillonage de 10 secondes. La courbe de lumière est exprimée en termes de l'amplitude résiduelle relative à la luminosité moyenne de l'étoile.

FIGURE 3.3 – Spectre Fourier de la courbe de lumière de G232-38 dans la bande passante de 0-10 mHz. L'amplitude est exprimée en termes du pourcentage de variation relatif à la luminosité moyenne de l'étoile.

WD	Nom	$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V
0104-464	BPM 30551	11260	$8.\overline{23}$	0.75	12.16
0133 - 116	Ross 548	11990	7.97	0.59	11.63
0145 - 221	MCT 0145-2211	11550	8.14	0.69	11.97
0246 + 326	KUV 02464+3239	11290	8.08	0.65	11.93
$0341 \!-\! 459$	BPM 31594	11540	8.11	0.67	11.92
0416 + 272	HL Tau 76	11450	7.89	0.55	11.63
0417 + 361	G38-29	11180	7.91	0.55	11.71
0455 + 553	G191-16	11420	8.05	0.64	11.86
0507 + 045	HS 0507+0435B	11630	8.17	0.71	11.99
0517 + 307	GD 66	11980	8.05	0.64	11.75
0532 - 560	HE 0532-5605	11560	8.49	0.92	12.52
0836 + 404	KUV 08368+4026	11490	8.05	0.64	11.85
0858 + 363	GD 99	11820	8.08	0.66	11.83
0921 + 354	G117-B15A	11630	7.97	0.59	11.70
$1039 + 412^{a}$	PB 520	11550	8.10	0.66	11.85
$1116 + 026^{a}$	GD 133	12090	8.06	0.64	11.70
1137 + 423	KUV 11370+4222	11890	8.06	0.64	11.77
1159 + 803	G255-2	11440	8.17	0.71	12.04
1236 - 495	LTT 4816	11730	8.81	1.10	13.09
1258 + 013	HE 1258+0123	11410	8.04	0.63	11.84
1307 + 354	GD 154	11180	8.15	0.70	12.07
1349 + 552	LP 133-144	11800	7.87	0.53	11.53
1350 + 656	G238-53	11890	7.91	0.55	11.56
1401 - 147	EC 14012-1446	11900	8.16	0.70	11.92
1422 + 095	GD 165	11980	8.06	0.65	11.77
1425 - 811	L19-2	12100	8.21	0.74	11.96
1541 + 650	PG 1541+651	11600	8.10	0.67	11.90
1559 + 369	Ross 808	11160	8.04	0.63	11.91
$1647 + 591^{b}$	G226-29	12260	8.31	0.80	12.10
1714 - 547	BPM 24754	11070	8.03	0.62	11.92
		-			
1855 + 338	G207-9	11950	8.35	0.83	12.22
1935 + 276	G185-32	12130	8.05	0.64	11.73
1950 + 250	GD 385	11710	8.04	0.63	11.78
$2148 + 539^{a}$	G232-38	11350	8.01	0.61	11.76
2254 + 126	GD 244	11680	8.08	0.65	11.84

TABLEAU 3.2 – Paramètres atmosphériques d'étoiles ZZ Ceti

WD	Nom	$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V
2303 + 242	PG 2303+243	11480	8.09	0.66	11.90
2326 + 049	G29-38	11820	8.14	0.69	11.91
2347 + 128	G30-20	11070	7.95	0.58	11.80
2348 - 244	EC 23487-2424	11520	8.10	0.67	11.91

TABLEAU 3.2 =Suite

^a Nouvelle étoile ZZ Ceti

^b Basé sur une nouvelle observation spectroscopique (voir section 3.3.2)

les étoiles ZZ Ceti chaudes montrent des périodes courtes avec de faibles amplitudes tandis que les étoiles ZZ Ceti froides sont dotées de périodes plus longues et de pulsations à plus grandes amplitudes (Winget & Fontaine 1982). Dans le cas de G232-38, les périodes relativement longues jumelées à l'amplitude plutôt élevée ($\leq 10\%$) des pulsations concordent bien avec sa position légèrement plus près du côté froid de la bande d'instabilité (voir Fig. 3.4).

3.3.4 Bande d'instabilité empirique des étoiles ZZ Ceti

L'emplacement dans le plan T_{eff} -log g des 121 étoiles du Tableau 3.1 ainsi que des 39 étoiles ZZ Ceti du Tableau 3.2 est montré à la Figure 3.4. Seulement 83 des 121 naines blanches constantes ont des paramètres atmosphériques qui les placent à l'intérieur des limites de la Figure 3.4. Les deux cercles en trait gras représentent les deux nouvelles étoiles ZZ Ceti PB 520 (gauche) et G232-38 (droite) identifiées à partir de notre relevé du catalogue de McCook & Sion (1999).

Il est important de noter que toutes les étoiles constantes qui ont été rapportées dans le passé comme étant à l'intérieur de la bande d'instabilité se retrouvent en fait à l'extérieur de celle-ci. Ces étoiles sont GD 52 (0348+339; Dolez et al. 1991; Silvotti et al. 1997); G8-8 (0401+250; Silvotti et al. 1997; Kepler & Nelan 1993); GD 31 (0231-054), Rubin 70 (0339+523) et GD 202 (1636+160) dans Dolez et al. (1991); PB 6089 (0037-006) et G130-5 (2341+322) dans Silvotti et al. (1997); BPM 20383 (1053-550) et BPM 2819 (0255-705) dans Kepler & Nelan (1993, PG 1022+050 est un système binaire non-résolu); PG 1119+385, GD 515 (1654+637) et GD 236 (2226+061) dans Kepler et al. (1995). Il y aussi le cas de GD 556

FIGURE 3.4 – Distribution dans le plan $T_{\rm eff}$ -log g des naines blanches de type DA pour lesquelles il existe des observations en photométrie rapide. Les cercles ouverts représentent les 36 étoiles ZZ Ceti de Bergeron et al. (2004), GD 133 de Silvotti et al. (2005, en préparation), et les deux cercles ouverts gras sont les deux nouvelles étoiles ZZ Ceti PB 520 (gauche) et G232-38 (droite). Les cercles pleins représentent les étoiles constantes photométriques du Tableau 3.1 tandis que les carrés indiquent les systèmes binaires non-résolus. Le triangle représente le vieil emplacement de G226-29 dans le plan $T_{\rm eff}$ -log g et est rélié à sa nouvelle position par un trait plein. Les lignes pointillées représentent les limites empiriques de la bande d'instabilité. La croix représente les incertitudes moyennes sur les valeurs de $T_{\rm eff}$ et log g (voir section 2.2).

(2311+552; Dolez et al. 1991; Kepler et al. 1995; Giovannini et al. 1998) que nous trouvons comme étant du côté froid et légèrement à l'intérieur de la bande d'instabilité. Nous discuterons de cet objet dans la prochaine section.

La Figure 3.4 montre très clairement que les étoiles de type ZZ Ceti définissent une région trapézoïdale dans le plan T_{eff} -log g où l'on ne retrouve aucune étoile constante, un résultat qui concorde parfaitement avec celui de Bergeron et al. (2004)(voir Fig. 1.5) qui avaient aussi trouvé une bande d'instabilité pure. La pureté de la bande d'instabilité est d'une importance capitale pour plusieurs raisons. Premièrement, cela implique que les étoiles ZZ Ceti représentent une phase évolutive que toutes les naines blanches de type DA doivent traverser. Ce que l'on peut donc apprendre par l'astéroseismologie de ces astres peut être appliqué à l'ensemble des naines blanches de type DA. Un autre aspect concerne l'identification de nouveaux candidats ZZ Ceti. Une bande d'instabilté pure nous permet de prédire la variabilité de toute étoile pour laquelle les paramètres atmosphériques la placent à l'intérieur de la bande d'instabilité. Les deux nouvelles ZZ Ceti, PB 520 et G232-38, sont de parfaits exemples de cet outil puissant à notre disposition.

Le deuxième but de notre étude est d'améliorer les déterminations des limites chaudes et froides de la bande d'instabilité en utilisant à la fois les étoiles variables et constantes. La Figure 3.4 nous montre que la frontière froide est mieux contrainte que la frontière chaude grâce aux trois étoiles constantes se trouvant proche de la limite froide (GD 556, GD 426, EC 12043-1337) mais également à cause des cinq étoiles ZZ Ceti qui longent la frontière froide (LTT 4816, HE 0532-5605, BPM 30551, GD 154, BPM 24754). La situation est bien différente du côté chaud de la bande d'instabilité où il n'y a presque pas d'étoiles constantes avec des valeurs de $T_{\rm eff}$ légèrement plus élevées que la frontière chaude. Notons que les carrés dans le haut de la figure sont les systèmes binaires mentionnés dans la section 3.3.1 et donc nous ne pouvons les utiliser pour contraindre cette région de la bande d'instabilité. De plus, les nouvelles valeurs de T_{eff} et log g que nous avons adoptées pour G226-29 enlèvent une contrainte importante sur la pente de la limite chaude (voir Fig. 3.4). Conséquemment, nous montrons dans la Figure 3.4 la gamme de pentes possibles pour la limite chaude. Il est évident que des observations supplémentaires sont nécessaires pour mieux définir la pente de la frontière chaude de la bande d'instabilité. L'emplacement exact des frontières de la bande d'instabilité dans le plan T_{eff} -log g peut nous permettre d'améliorer les modèles évolutifs des étoiles naines blanches. En effet, Winget et al. (1982) ont montré que la frontière chaude est sensible à l'efficacité convective dans la couche d'hydrogène tandis que la position de la frontière froide peut mener à une meilleure compréhension du mécanisme qui met fin aux pulsations (Tassoul et al. 1990).

D'un autre point de vue, la théorie des pulsations non-adiabatiques suggère que la frontière chaude devrait montrer une plus grande dépendance sur $\log g$ que la frontière froide, produisant ainsi une bande d'instabilité plus large en T_{eff} pour des valeurs de $\log g$ plus élevées (comme c'est le cas dans la Fig. 1.5). La plus récente détermination des limites théoriques de la bande d'instabilité est présentée par Fontaine et al. (2003). Dans cette analyse, les auteurs comparent les prédictions théoriques de l'emplacement de la bande d'instabilité avec les limites empiriques connues à l'époque. Nous montrons cette comparaison dans la Figure 3.5. On peut voir que les prédictions théoriques (en traits pleins) reproduisent relativement bien la bande d'instabilité empirique des étoiles de type ZZ Ceti. De plus, la frontière théorique chaude est tout à fait compatible avec nos résultats empiriques moyennant une meilleure détermination de la dépendance de la limite chaude sur log g. La frontière froide est prédite légèrement plus chaude que notre détermination empirique ce qui indique probablement que le processus qui arrête les pulsations est toujours mal compris.

FIGURE 3.5 – Même chose que la Figure 3.4 mais avec les prédictions théoriques de Fontaine et al. (2003) (*traits pleins*).

3.3.5 GD 556

Il y a une étoile constante dans la Figure 3.4, GD 556, qui a une valeur de $T_{\rm eff}$ légèrement plus élevée que la limite froide de la bande d'instabilité. Si on se réfère au Tableau 3.1, on peut voir qu'il existe 4 sources indépendantes confirmant sa constance photométrique. Cependant, la naine blanche G30-20 avait initialement été déclarée comme constante photométrique par Dolez et al. (1991) et Bergeron & McGraw (1989, non-publié) pour ensuite être identifiée comme une étoile de type ZZ Ceti par Mukadam et al. (2002). Il faut mentionner que GD 556 présente certaines difficultés en ce qui concerne l'observation en photométrie rapide. Premièrement, c'est une étoile relativement peu lumineuse avec un magnitude visuelle apparente de $V \sim 16.2$ (McCook & Sion 1999). Deuxièmement, sa position dans le plan T_{eff} -log g, proche de la limite froide de la bande d'instabilité, implique que si elle est réellement une étoile de type ZZ Ceti, elle devrait montrer des variations de luminosité avec des périodes plutôt longues qui se détectent plus difficilement entre autres si l'étoile est observée lorsque deux modes de pulsation sont en phase d'interférence destructive. Considérant ces faits, nous croyons qu'il vaut définitivement la peine de réobserver GD 556 autant en spectroscopie qu'en photométrie rapide dans des conditions favorables durant une future mission au Steward Observatory. Néanmoins, si GD 556 est véritablement une étoile constante, son emplacement près de la limite froide de la bande d'instabilité, en tenant compte des incertitudes sur nos mesures des paramètres atmosphériques, n'affecte pas nos conclusions sur la pureté de la bande d'instabilité des étoiles de type ZZ Ceti.

Chapitre 4

Relevé du catalogue de McCook & Sion

4.1 Définition de l'échantillon

Les spectres visuels de notre échantillon photométrique ont été obtenus en parallèle avec un relevé beaucoup plus général des naines blanches de type DA du catalogue de McCook & Sion (1999) qui va nous permettre d'accroître notre échantillon spectroscopique et éventuellement notre échantillon photométrique. Le catalogue de McCook & Sion (1999) constitue le plus grand recueil de naines blanches identifiées spectroscopiquement contenant 2249 naines blanches au total. Cependant, il n'inclut pas les naines blanches découvertes plus récemment dans le SDSS. Les étoiles dans le catalogue sont ordonnées par leur nom WD, une nomenclature basée sur les coordonnées célestes (1950.0) de l'étoile et introduite par McCook & Sion (1977). Pour chaque objet, les auteurs fournissent les coordonnées de l'étoile, les noms alternatifs, la classification spectrale et toutes les données disponibles pour l'étoile en question, c'est-à-dire la photométrie, les données de parallaxe trigonométrique et de mouvement propre. Les références appropriées sont également indiquées dans chaque cas.

Pour définir notre échantillon global, nous avons choisi toutes les naines blanches de type DA du catalogue de McCook & Sion (1999) qui répondaient aux critères suivants:

– indice de température (50,400 K/ $T_{\rm eff}$) entre 3 (16,800 K) et 7 (7200 K)

- = magnitude visuelle apparente V < 17
- déclinaison $\delta > -30^{\circ}$

Le but principal de ce relevé est d'obtenir des mesures de T_{eff} et log g pour tous ces objets. Deuxièmement, nous voulons confirmer la classification spectrale des étoiles du catalogue; nous avons déjà identifié 29 objets qui ne sont pas des naines blanches, ou bien qui ne sont pas des naines blanches de type DA, ainsi que 6 objets qui sont listés à deux reprises dans le catalogue sous 2 noms WD différents (WD 0029-181, 0030-181; WD 0423+140, 0423+141; WD 0526+271, 0525+271; WD 0839+380, 0839+379; WD 1104+602, 1100+604; WD 2354+126,2254+126). Dans la Figure 4.1 nous montrons les spectres visuels des 29 étoiles qui ont été mal classifiées. Dans le cas des objets dans la Figure 4.1(a), ce sont des étoiles sous-naines ou des étoiles A de la séquence principale. La classification erronée de ces étoiles comme des naines blanches de type DA est probablement dû au fait qu'ils montrent les raies de la série de Balmer. La distinction entre ces spectres et celui d'une vraie naine blanche de type DA repose notamment sur la largeur des raies de Balmer, la gravité de surface plus élevée d'une naine blanche induit un élargissement additionnel (voir Fig. 3.1). Dans des relevés plus vieux, comme celui de Palomar-Green (PG; Green et al. 1986) et Kiso (KUV; Noguchi et al. 1980; Kondo et al. 1984), d'où 16 de ces 29 étoiles sont tirées, il n'était pas nécessairement évident de répérer cette nuance surtout avec l'utilisation de spectres photographiques. Ensuite, dans la Figure 4.1(b), il y a WD 0648+368 qui est une naine blanche de type DC.

Il arrive souvent que lors de relevés comme celui que nous avons entrepris, des objets particuliers soient découverts. C'est justement le cas avec notre découverte de GD 362 (WD 1729+371, voir Fig. 4.1(b)). Initialement classifiée comme une naine blanche de type DA par Greenstein (1980), elle fut ensuite classifiée *sd* par Green et al. (1986). Ici, la désignation *sd* n'indique pas une étoile sous-naine mais plutôt "une observation avec un signal-sur-bruit inférieur qui démontre quelques raies de Balmer de gravité moyenne". Toutefois, GD 362 s'est avérée une naine blanche de type spectral DAZ froide, massive et riche en métaux. Les naines blanches de type DAZ sont caractérisées par la présence de raies d'absorption métalliques dans leur spectre visuel en plus des raies de Balmer. Pour l'analyse complète et détaillée de cet objet unique, voir l'Annexe B (Gianninas et al. 2004).

FIGURE 4.1 - (a) Spectres visuels des étoiles du catalogue de McCook & Sion (1999) qui ne sont pas des naines blanches ou pas des naines blanches de type DA.

FIGURE 4.1 = (b) Suite

Troisièmement, nous nous limitons à des étoiles avec des indices de température dans l'intervalle de 3 à 7 pour essayer d'identifier des nouveaux candidats ZZ Ceti mais également des nouvelles étoiles constantes photométriques qui peuvent servir à mieux définir la bande d'instabilité.

Après avoir choisi toutes les naines blanches qui répondaient à nos 3 critères de sélection, nous avons raffiné davantage notre échantillon d'étoiles à observer. Premièrement, nous avons éliminé les étoiles pour lesquelles nous avions déjà des spectres. Ensuite, nous avons consulté la littérature et nous avons éliminé les étoiles qui ont des valeurs de $T_{\rm eff}$ publiées en dehors de l'intervalle 16,000 K > $T_{\rm eff}$ > 8000 K. Finalement, il est nécessaire de produire des cartes de champ pour être en mesure d'identifier les étoiles. Cependant, il y avait des étoiles pour lesquelles ces cartes de champ n'étaient pas disponibles et donc nous étions forcés d'éliminer ces objets de notre échantillon. Ainsi, nous avons produit une liste de 291 étoiles pour lesquelles nous n'avions aucun spectre. Sur ces 291 objects, nous en avons déjà observé 173 durant plusieurs missions d'observation aux installations du Steward Observatory décrites à la section 3.2. À ces spectres récemment acquis, nous pouvons rajouter les spectres de naines blanches de type DA obtenus par P. Bergeron et ses collaborateurs durant plusieurs années. De plus, nous rajoutons aussi les 121 naines blanches constantes du Tableau 3.1 et les 39 étoiles ZZ Ceti du Tableau 3.2. En combinant tous ces spectres visuels, nous obtenons un grand total de 822 spectres de naines blanches de type DA.

4.2 Propriétés globales

La méthode spectroscopique et les modèles évolutifs décrits au chapitre 2 ont été utilisés pour déterminer les paramètres atmosphériques pour ces étoiles. Les résultats sont présentés à l'Annexe A. Dans la Figure 4.2, nous pouvons voir la distribution de masse en fonction de $T_{\rm eff}$ pour les 822 naines blanches de notre échantillon global.

Nous avons superposé dans cette figure des isochrones basés sur les séquences évolutives de Wood (1995) pour des âges de 0.001 à 1 milliard d'années et ceux de Fontaine et al. (2001) de 2 à 10 milliards d'années. Ces derniers modèles sont comparables à ceux de Wood (1995) mais descendent à des températures plus basses et en fait incluent une physique améliorée à ces températures. Les traits pleins correspondent au temps de refroidissement seulement tandis que les traits pointillés incluent aussi le temps de vie sur la séquence principale. L'aspect le plus frappant de la Figure 4.2 est la tendance vers des masses plus élevées pour les valeurs de log $T_{\rm eff} \leq 4.1$ ou $T_{\rm eff} \leq 13,000$ K. Pour $T_{\rm eff} \gtrsim 13,000$ K, la séquence montre une distribution avec une masse moyenne de $\sim 0.6 M_{\odot}$. Ceci est un problème commun à tous les relevés spectroscopiques qui s'étendent jusqu'au naines blanches les plus froides (Bergeron et al. 1995b; Koester et al. 2001; Kleinman et al. 2004; Liebert et al. 2005). Puisqu'il n'y a aucune raison, a priori, de croire que les masses des naines blanches devraient augmenter lorsqu'elles se refroidissent en deçà de 13,000 K, nos résultats pourraient suggérer un traitement inadéquat de la physique des atmosphères des naines blanches (convection, processus d'élargissement des

FIGURE 4.2 – Distribution de masse en fonction de la température pour les 822 naines blanches DA de l'échantillon global. Les traits pleins représentent des isochrones calculés en considérant seulement le temps de refroidissment des naines blanches tandis que les traits pointillés incluent aussi le temps de vie sur la séquence principale. Les âges sont indiqués en milliard d'années.

raies, opacité, etc.). Il est également possible que nos suppositions de base soient erronées. Par exemple, on suppose pour la composition chimique une constitution d'hydrogène pure de l'atmosphère. Cependant, nous savons que la présence d'hélium spectroscopiquement invisible à ces températures peut affecter la détermination de $\log g$ (Bergeron et al. 1989; Boudreault & Bergeron 2005).

Finalement, nous pouvons voir dans la Figure 4.2, à partir des isochrones qui incluent l'évolution sur la séquence principale, que la majorité des étoiles sont plus jeunes que 10 milliards d'années. Pour les naines blanches ayant une masse $M \leq 0.47 M_{\odot}$, on croit que ces étoiles auraient emprunté un trajet évolutif différent des autres étoiles, probablement par le biais d'evolution dans un système binaire. Le raisonnement ici est simple: une naine blanche

FIGURE 4.3 – (a) Distribution de masse pour les naines blanches de l'échantillon global. (b) La région hachurée représente la distribution de masse pour les naines blanches avec $T_{\rm eff}$ < 13,000 K et la région non-hachurée celle pour les naines blanches avec $T_{\rm eff}$ > 13,000 K. L'échantillonage est de 0.025 M_{\odot} dans les deux cas.

isolée avec une masse $M \lesssim 0.47 M_{\odot}$ n'aurait pas eu suffisament de temps pour ce rendre jusqu'à ce stade de son évolution.

Dans la Figure 4.3(a) nous pouvons voir la distribution de masse pour l'échantillon global échantilloné à tous les $0.025 M_{\odot}$. La distribution montre un maximum près de $0.6 M_{\odot}$ et une masse moyenne de $0.619 \pm 0.145 M_{\odot}$. Comme nous l'avons mentionné, les masses dérivées pour les naines blanches avec $T_{\rm eff} \leq 13,000$ K semblent être plus élevées que la moyenne. Dans la Figure 4.3(b) nous avons séparé l'échantillon en 2 groupes, au-dessus (région non-hachurée) et en-dessous (région hachurée) de $T_{\rm eff} = 13,000$ K. La masse moyenne de la composante chaude est de $0.596 \pm 0.134 M_{\odot}$ ce qui est compatible avec les résultats d'autres analyses spectroscopiques comme celle de Liebert et al. (2005) où les auteurs obtiennent une masse moyenne de $0.603 \pm 0.134 M_{\odot}$ en incluant seulement les étoiles avec $T_{\rm eff} > 13,000$ K. De plus, nous voyons les mêmes caractéristiques dans notre distribution de masse que celles rapportées par Liebert et al. (2005). Il y a une composante à faible masse ($M \leq 0.5 M_{\odot}$) que l'on attribue aux naines blanches ayant évolué dans des systèmes binaires. Ensuite, le maximum principal à ~ $0.6 M_{\odot}$ représente les naines blanches DA isolées. La distribution montre aussi une queue d'étoiles massives. L'origine de ces étoiles demeure incertaine (voir Liebert et al. 2005 pour une discussion plus approfondie de ce sujet). Pour les étoiles plus froides que 13,000 K, on obtient une masse moyenne considérablement plus élevée de $0.688 \pm 0.153 M_{\odot}$ qui s'apparente au phénomène des masses élevées des naines blanches froides discuté ci-dessus.

4.3 La bande d'instabilité empirique

FIGURE 4.4 – Distribution dans le plan T_{eff} -log g des naines blanches de notre échantillon global. Les cercles représentent les étoiles pour lesquelles il existe des données photométriques: les étoiles ZZ Ceti (*cercles ouverts*) et les naines blanches de type DA qui sont constantes (*cercles pleins*). Les triangles représentent les naines blanches de type DA de notre échantillon global qui n'ont jamais été observées en photométrie rapide.

Nous montrons à nouveau dans la Figure 4.4 la région dans le plan T_{eff} -log g qui contient

la bande d'instabilité empirique des étoiles ZZ Ceti mais nous rajoutons à l'échantillon photométrique (cercles) toutes les étoiles de notre relevé du catalogue de McCook & Sion (triangles) pour lesquelles il n'existe aucune donnée en photométrie rapide. Il y a trois objets près de log $g \sim 7.5$ et $T_{\rm eff} \sim 12,000$ K qui sont des systèmes binaires non-résolus. Nous avons déjà discuté de deux de ces objets (voir la section 3.3.1 et la Fig. 3.4), le troisième est GD 429 (WD 0416+701; Maxted et al. 2000). Nous voyons dans la Figure 4.4 que plusieurs objets se retrouvent près ou à l'intérieur des limites empiriques de la bande d'instabilité. Ces étoiles sont importantes dans la quête d'une détermination plus précise des limites de la bande d'instabilité des étoiles de type ZZ Ceti, entre autres pour la frontière chaude. Donc, nous planifions, dans un futur proche, observer ces objets en photométrie rapide pour déterminer leur statut photométrique.

Avec l'identification des 2 nouvelles ZZ Ceti que nous avons présentées à la section 3.3.3, toutes les étoiles de notre échantillon global qui se sont retrouvées à l'intérieur de la bande d'instabilité et qui ont été observées en photométrie rapide se sont révélées être des étoiles ZZ Ceti. De plus, à la section 3.3.4 nous avons démontré que toutes les naines blanches constantes, qui par le passé avaient été soupçonnées être à l'intérieur de la bande d'instabilité, sont en fait à l'extérieur de celle-ci. Tous ces faits mènent à une conclusion inévitable: la bande d'instabilité est bel et bien pure et aucune étoile constante ne s'y trouve.

Mukadam et al. (2004a) ont rapporté la découverte de 35 nouvelles étoiles de type ZZ Ceti ainsi que la non-variabilité de plus de 80 autres naines blanches de type DA par l'entremise du SDSS. Par après, Mukadam et al. (2004b) ont présenté une analyse de ces mêmes étoiles et les implications de leurs résultats pour la bande d'instabilité empirique des étoiles de type ZZ Ceti. Nos résultats sont en désaccord flagrant avec les conclusions de Mukadam et al. (2004b).

Avec les modèles d'atmosphère de D. Koester, Mukadam et al. (2004a) utilisent une technique spectroscopique différente de celle décrite au Chapitre 2: ils se servent du spectre au complet pour la détermination de T_{eff} et log g et non seulement le profil des raies de Balmer. Ainsi, ils ont fourni des paramètres atmosphériques pour toutes ces étoiles. Dans la Figure 4.5, nous montrons l'emplacement des objets de Mukadam et al. (2004a) dans le plan T_{eff} log g. Notons que le fait d'utiliser une grille de modèles d'atmosphère différente de la nôtre

FIGURE 4.5 – Même que la Figure 3.4 mais pour les naines blanches de type DA variables et constantes photométriques de SDSS présentées par Mukadam et al. (2004a). Les traits pointillés représentent nos déterminations des limites de la bande d'instabilité.

engendre un léger décalage systématique des paramètres atmosphériques. Ceci explique le fait que la bande d'instabilité définie par leurs étoiles ZZ Ceti est légèrement plus froide que nos limites empiriques. Plus important encore, leur bande d'instabilité empirique contient un grand nombre d'étoiles constantes, un résultat qui suggère que la bande d'instabilité n'est pas pure. Comment peut-on expliquer ces deux résultats contradictoires? La réponse repose sur la qualité des spectres qui proviennent du SDSS et qui affectent la détermination des paramètres atmosphériques. Une analyse critique et détaillée de l'échantillon photométrique de Mukadam et al. (2004a) est présentée à la section 3 de l'Annexe C (Gianninas et al. 2005).

Le côté positif du travail de Mukadam et al. (2004a) est le fait qu'ils ont presque doublé la quantité de naines blanches de type ZZ Ceti connues et le nombre de naines blanches identifiées comme étant constantes photométriques. Nous avons commencé à obtenir des spectres de plus haute qualité pour ces objets dans le but d'améliorer la précision des déterminations de $T_{\rm eff}$ et log g et de mieux déterminer l'emplacement de la bande d'instabilité des étoiles ZZ Ceti.

Chapitre 5

Conclusion

La bande d'instabilité des naines blanches de type ZZ Ceti a été l'objet d'études répétées durant les 25 dernières années. Notre étude constitue donc une des plus récentes analyses de celle-ci.

Dans le cadre de ce projet, nous avons obtenu des spectres visuels pour 121 naines blanches de type DA qui sont connues comme étant des constantes photométriques. À partir de ces spectres, nous avons déterminé des valeurs de $T_{\rm eff}$ et log g pour chaque étoile en comparant les observations à des spectres synthétiques générés à partir de modèles d'atmosphère. En utilisant cet échantillon d'étoiles constantes, les 36 étoiles ZZ Ceti de Bergeron et al. (2004) ainsi que 3 nouvelles étoiles de type ZZ Ceti, nous avons pu déterminé de manière plus précise l'emplacement de la bande d'instabilité empirique des étoiles ZZ Ceti dans le plan $T_{\rm eff}$ -log g. Nos résultats sont tels que la frontière froide de la bande d'instabilité est très bien contrainte tandis que les nouveaux paramètres atmosphériques que nous avons adoptés pour G226-29 font en sorte que la dépendance exacte de la frontière chaude sur la gravité de surface reste à déterminer. De plus, nous trouvons une bande d'instabilité dépourvue de naines blanches constantes. Ce résultat supporte notre compréhension des étoiles de type ZZ Ceti qui représentent une étape évolutive inévitable par laquelle doivent passer toutes les naines blanches de type DA.

Les spectres visuels de notre échantillon photométrique ont été obtenus dans le cadre d'un relevé plus général de naines blanches de type DA du catalogue de McCook & Sion (1999). Ce relevé a plusieurs buts, notamment la détermination de $T_{\rm eff}$ et log g pour chacune des étoiles choisies, la confirmation de leur classification spectrale, mais aussi l'identification de nouveaux candidats ZZ Ceti. Jusqu'ici, deux de ces étoiles, PB 520 et G232-38, ont été identifiées comme étant des nouvelles étoiles ZZ Ceti par Silvotti et al. (2005) et dans notre étude, respectivement. Dans un futur proche, nous planifions observer en photométrie rapide toutes les étoiles se trouvant près ou à l'intérieur de la bande d'instabilité pour déterminer leur statut photométrique. De cette manière, nous espérons améliorer la détermination des limites empiriques de la bande d'instabilité des étoiles naines blanches de type ZZ Ceti.

Bibliographie

- Bergeron, P., Fontaine, G., Billères, M., Boudreault, S., & Green, E. M. 2004, ApJ, 600, 404
- Bergeron, P., Greenstein, J. L., & Liebert, J. 1990, ApJ, 361, 190
- Bergeron, P., Leggett, S. K., & Ruiz, M. T. 2001, ApJ, 133, 413
- Bergeron, P., Liebert, J., & Fulbright, M. S. 1995a, ApJ, 444, 810
- Bergeron, P., Saffer, R. A., & Liebert, J. 1992a, ApJ, 394, 228
- Bergeron, P., Wesemael, F., & Fontaine, G. 1989, in White dwarfs; Proceedings of IAU Colloquium 114th, 430–434
- Bergeron, P., Wesemael, F., & Fontaine, G. 1992b, ApJ, 387, 288
- Bergeron, P., Wesemael, F., Lamontagne, R., Fontaine, G., Saffer, R. A., & Allard, N. F. 1995b, ApJ, 449, 258
- Böhm, K. H. & Cassinelli, J. 1971, A&A, 12, 21
- Boudreault, S. & Bergeron, P. 2005, in 14th European Workshop on White Dwarfs (sous presse)
- Bragaglia, A., Renzini, A., & Bergeron, P. 1995, ApJ, 443, 735
- Daou, D., Wesemael, F., Bergeron, P., Fontaine, G., & Holberg, J. 1990, ApJ, 364, 242
- Dolez, N., Vauclair, G., & Koester, D. 1991, in Proceedings of the 7th European Workshop, 361–367
- Fontaine, G., Bergeron, P., Lacombe, P., Lamontagne, R., & Talon, A. 1985, AJ, 90, 1094
- Fontaine, G., Brassard, P., & Bergeron, P. 2001, PASP, 113, 409
- Fontaine, G., Brassard, P., & Charpinet, S. 2003, Ap&SS, 284, 257

- Fontaine, G., Lacombe, P., McGraw, J. T., Dearborn, D. S. P., & Gustafson, J. 1982, ApJ, 258, 651
- Gianninas, A., Bergeron, P., & Fontaine, G. 2005, ApJ(soumis)
- Gianninas, A., Dufour, P., & Bergeron, P. 2004, ApJ, 617, L57
- Giovannini, O. 1996, Thèse de Doctorat, Universidade Federal do Rio Grande do Sul, Brésil
- Giovannini, O., Kepler, S., Kanaan, A., Wood, A., Claver, C. F., & Koester, D. 1998, Baltic Astron., 7, 131
- Green, R. F., Schmidt, M., & Liebert, J. 1986, ApJS, 61, 305
- Greenstein, J. L. 1976, AJ, 81, 323
- —. 1980, ApJ, 242, 738
- —. 1982, ApJ, 258, 661
- Hubeny, I. & Lanz, T. 1995, ApJ, 439, 875
- Kanaan, A., Kepler, S. O., & Winget, D. E. 2002, A&A, 389, 896
- Kepler, S. O., Giovannini, O., Kanaan, A., Wood, M. A., & Claver, C. F. 1995, Baltic Astron., 4, 157
- Kepler, S. O. & Nelan, E. P. 1993, AJ, 105, 608
- Kidder, K. M. 1991, Thèse de Doctorat, University of Arizona, Tucson
- Kleinman, S. J., Harris, H. C., Eisenstein, D. J., Liebert, J., Nitta, A., Krzesiński, J., Munn,
 J. A., Dahn, C. C., Hawley, S. L., Pier, J. R., Schmidt, G., Silvestri, N. M., Smith, J. A.,
 Szkody, P., Strauss, M. A., Knapp, G. R., Collinge, M. J., Mukadam, A. S., Koester, D.,
 Uomoto, A., Schlegel, D. J., Anderson, S. F., Brinkmann, J., Lamb, D. Q., Schneider, D. P.,
 & York, D. G. 2004, ApJ, 607, 426
- Koester, D., Napiwotzki, R., Chrislieb, N., Drechsel, H., Hagen, H.-J., Heber, U., Homeier, D.,
 Karl, C., Leibundgut, B., Moehler, S., Nelemans, G., Pauli, E.-M., Reimers, D., Renzini,
 A., & Yungelson, L. 2001, A&A, 378, 556
- Kondo, M., Noguchi, T., & Maehara, H. 1984, Annals of the Tokyo Astronomical Observatory, 20, 130

BIBLIOGRAPHIE

- Lamontagne, R., Wesemael, F., & Fontaine, G. 1987, in IAU Colloquium 95: The Second Conference on Faint Blue Stars, 677–680
- Landolt, A. U. 1968, ApJ, 153, 151
- Lanning, H. H. 1982, ApJ, 253, 752
- Liebert, J., Bergeron, P., & Holberg, J. B. 2005, ApJS, 156, 47
- Liebert, J., Bergeron, P., & Saffer, R. A. 1991, in Proceedings of the 7th European Workshop on White Dwarfs, 409
- Maxted, P. F. L. & Marsh, T. R. 1999, MNRAS, 307, 122
- Maxted, P. F. L., Marsh, T. R., & Moran, C. K. J. 2000, MNRAS, 319, 305
- McCook, G. P. & Sion, E. M. 1977, A Catalogue of spectroscopically identified white dwarfs, 1st edn. (Villanova Press)
- —. 1999, ApJS, 121, 1
- McGraw, J. T. 1977, Thèse de doctorat, Texas University, Austin
- —. 1979, ApJ, 229, 203
- Moran, C. K. J., Marsh, T. R., & Dhillon, V. S. 1998, MNRAS, 299, 218
- Mukadam, A. S., Kepler, S. O., Winget, D. E., & Bergeron, P. 2002, ApJ, 580, 429
- Mukadam, A. S., Mullally, F., Nather, R. E., Winget, D. E., von Hippel, T., Kleinman, S. J.,
 Nitta, A., Krzesiński, J., Kepler, S. O., Kanaan, A., Koester, D., Sullivan, D. J., Homeier,
 D., Thompson, S. E., Reaves, D., Cotter, C., Slaughter, D., & Brinkmann, J. 2004a, ApJ,
 607, 982
- Mukadam, A. S., Winget, D. E., von Hippel, T., Montgomery, M. H., Kepler, S. O., & Costa,A. F. M. 2004b, ApJ, 612, 1052
- Mullally, F., Thompson, S. E., Castanheira, B. G., Winget, D. E., Kepler, S. O., Eisenstein,D. J., Kleinman, S. J., & Nitta, A. 2005, astro-ph/0502520
- Napiwotzki, R. 1997, A&A, 322, 256
- Noguchi, T., Maehara, H., & Kondo, M. 1980, Annals of the Tokyo Astronomical Observatory, 18, 55

- Press, W. J., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1986, Numerical Recipes. The art of scientific computing, 1st edn. (Cambridge Univ. Press)
- Saffer, R. A., Wade, R. A., Liebert, J., Green, R. F., Sion, E. M., Bechtold, J., Foss, D., & Kidder, K. 1993, AJ, 105, 1945
- Schmidt, G. D., Stockman, H. S., & Smith, P. S. 1992, ApJ, 398, L57
- Silvotti, R., Bartolini, C., Cosentino, G., Guarnieri, A., & Piccioni, A. 1997, in Proceedings of the 10th European Workshop on White Dwarfs, 489–492
- Silvotti, R., Voss, B., Koester, D., & Bruni, I. 2005, in 14th European Workshop on White Dwarfs (sous presse)
- Sion, E. M., Guinan, E. F., & Wesemael, F. 1984, ApJ, 279, 758
- Tassoul, M., Fontaine, G., & Winget, D. E. 1990, ApJS, 72, 335
- Weidemann, V. & Koester, D. 1984, A&A, 132, 195
- Wesemael, F., Bergeron, P., Fontaine, G., & Lamontagne, R. 1991, in NATO Advanced Science Institutes (ASI) Series C, Volume 336: Proceedings of the 7th European Workshop, 159–165
- Wesemael, F. & Fontaine, G. 1985, ApJ, 288, 764
- Wesemael, F., Lamontagne, R., & Fontaine, G. 1986, AJ, 91, 1376
- Winget, D. E. & Fontaine, G. 1982, in Pulsations in Classical and Cataclysmic Variables, 46
- Winget, D. E., van Horn, H. M., Tassoul, M., Fontaine, G., Hansen, C. J., & Carroll, B. W. 1982, ApJ, 252, L65
- Wood, M. A. 1995, in Lecture Notes in Physics, Vol. 443: Proceedings of the 9th European Workshop on White Dwarfs, 41

Remerciements

Premièrement, j'aimerais remercier mon directeur de recherche, Pierre Bergeron, pour tout son appui, son enthousiasme, son encouragement et l'encadrement qu'il m'a fourni. Mais également pour m'avoir donné un bon coup de pied dans les fesses quand j'en avais de besoin.

J'aimerais aussi remercier Gilles Fontaine pour son aide indispensable durant la découverte de ma première étoile ZZ Ceti, pour toutes ses histoires et également son enthousiasme envers son travail, j'espère que ma passion pour l'astronomie demeurera aussi forte que la sienne.

Je dois aussi remercier tout mes collègues de bureau, ceux qui sont encore ici ainsi que certains qui sont déjà partis: Steve, Caroline, Agis, Patrick, Mathieu, Dominic, Charles-Philippe, Pierre-Olivier et Suzanna qui ont su créer une atmosphère très agréable.

Je veux aussi remercier l'instigateur de la traditon de la "bière du jeudi" qui nous permet tous de décrocher pour quelques heures à chaque semaine.

Finalement, j'aimerais remercier ma mère et mon frère pour leur support et encouragement durant des moments difficiles et mes amis, Tony, Conny, Sevy, Christos, Eva et Jessica qui sont toujours là pour moi.

Annexe A

Paramètres atmosphériques de naines blanches DA du catalogue de McCook & Sion

Nous présentons ici les paramètres atmosphériques pour 662 des 822 naines blanches de type DA de notre échantillon global tirées du catalogue de McCook & Sion (1999); les paramétres des 160 autres naines blanches sont données dans les Tableaux 3.1 et 3.2. Les étoiles sont ordonnées par leur nom WD qui représente les coordonnées (1950.0) de l'objet en ascension de droite et déclinaison; la deuxième colonne indique le vrai nom de l'étoile. Nous indiquons également les masses et les magnitudes visuelles absolues dérivées à partir des modèles évolutifs décrits dans le Chapitre 2. TABLEAU A.1 = Paramètres atmosphériques de naines blanches DA du catalogue de McCook & Sion

11	L																													
M_V	10.23	11.37	9.77	9.73	11.19	11.20		13.58	10.47	12.02	9.71	12.45	10.23	10.08	8.84	9.92	7.72	10.97	13.31	11.26	11.90	10.76	12.85	11.64	10.21	9.44	13.12	10.31	12.06	
M/M_{\odot}	0.60	0.60	0.57	0.63	0.54	0.55		1.U4	0.52	0.65	0.63	0.51	0.54	0.55	0.60	0.38	0.48	0.66	0.72	1.20	0.64	0.62	0.80	0.64	0.62	0.51	0.82	0.54	0.66	
log g	7.93	7.98	7.86	7.95	7.87	7,88		8.09	7.80	8.08	7.95	7.84	7.82	7.83	7.81	7.45	7.34	8.06	8.20	8.99	8.05	7.99	8.31	8.06	7.97	7.71	8.35	7.83	8.09	
$T_{\rm eff}$ (K)	24770	13680	29120	31870	13880	13850	0000	07.26	19620	10790	32020	8690	22540	24870	49040	19960	60020	18310	7980	39640	11050	19400	9420	12470	25640	30440	8940	21770	10690	
Nom	PHL 972	GD 273	GD 11	PG 0107+172	GD 12	GD 685		G33-45	GD 821	GD 276	PB 6456	LTT 10525	GD 13	GD 14	PHL 1043	PG 0132+254	PG 0134+181	GD 419	PG 0136+152	PG 0136+251	GD 420	GD 1383	G72-31	MK 362	Ton S 231	GD 421	G244-36	Feige 17	LP 649-6	
WD	0102 + 095	0103 + 558	0106 ± 372	0107 + 172	0107 + 267	0107-192		0108+143	0114 - 034	0120 ± 475	0125 ± 093	0126+101	0126 + 422	0127 + 270	0131 - 163	0132 + 254	$0134 + 181^{d}$	0134 + 833	0136 + 152	$0136+251^{\circ}$	0136 + 768	0137-229	0142 + 312	0145 + 234	0145 - 257	0147 + 674	$0148+641^{\rm b}$	0155 + 069	0155 - 070	
M_V	10.70	11.05	10.98	8.63	12.22	9,98		11.33	11.16	11.92	9.72	10.03	12.11	11.05	11.13	10.85	13.44	11.53	8.59	10.70	10.70	10.03	9.55	9.52	13.50	10.70	11.31	11.01	10.66	
M/M_{\odot}	0.62	0.53	0.52	0.55	0.69	0.56	0000	0.59	0.49	0.62	0.54	0.71	0.69	0.56	0.51	0.54	0.93	0.57	0.56	0.54	0.62	0.61	0.63	0.51	1.05	0.80	0.55	0.60	0.65	
log g	7.99	7.84	7.84	7.68	8.15	7 85		7.96	7.77	8.03	7.79	8.10	8.14	7.91	7.81	7.86	8.52	7.94	7.68	7.86	7.99	7.93	7.94	7.72	8.72	8.28	7.89	7.97	8.04	
$T_{\rm eff}$ (K)	20210	14650	15120	48330	10430	26280		13770	13080	10900	28310	30800	10790	15410	13640	16600	8840	12080	49830	17970	20160	27110	34490	29420	9650	25680	13210	16630	21370	
Nom	PG 0000+172	GD 575	PHL 670	GD 2	G158-39	PC 0010+981		PG 0014+098	Ton S 142	MCT 0016-2553	PHL 790	PHL 802	G171-B10A	MCT 0024-1211	KUV 00300-1810	GD 623	GD 411	G132-12	GD 8	BPM 16274	PG 0048+202	FBS 0050+358	GD 659	PG 0052+190	G69-31	PHL 897	GD 661	PHL 940	PG 0029+258	
WD	0000 + 171	0000 - 186	$0004+061^{a}$	0004 + 330	0009 - 058	00104280	007 L 0T00	$0014+097^{\circ}$	0016 - 220	0016 - 258	0017 + 061	0019+150	$0023 + 388^{b}$	0024 - 121	0030 - 181	0032 - 177	0033 + 771	0036 + 312	0037 + 312	0047 - 524	0048 + 202	0050+357	0050 - 332	0052 + 190	0052 + 226	0052 - 147	0052-250	$0058 - 044^{\circ}$	0059 + 257	

- Suite	
A.1	
TABLEAU	

									ľ		
Nom		$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V	WD	Nom	$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V
GD 1104		48940	8.01	0.70	9.19	0310 - 073	KUV 03106-0719	17330	7.91	0.57	10.84
LP 829-17		13200	7.78	0.49	11.16	0310 - 688	LB 3303	15500	8.03	0.63	11.21
PG 0205+134		58690	7.63	0.56	8.30	0311 + 480	KPD 0311+4801	95170	6.55	0.44	5.40
LTT 10723		20240	7.90	0.57	10.56	0312 + 225	GD 43	17970	7.85	0.54	10.70
GD 282		16260	8.00	0.62	11.09	0314 + 648	GD 427	16750	7.80	0.51	10.76
Feige 20		36100	7.97	0.65	9.53	0316 + 345	L587-77	14620	7.54	0.39	10.63
H Per 1166		21430	7.91	0.58	10.46	0317 + 196	PG 0317+196	17060	7.90	0.56	10.87
PG 0216+144		26900	7.84	0.56	9.91	0318 - 021	KUV 03184-0211	12800	7.93	0.57	11.42
G94-B5B		15520	7.93	0.58	11.08	0320 - 000	KUV 03205-0005	13180	7.73	0.47	11.09
Feige 22		18880	7.84	0.54	10.59	0320 - 539	LB 1663	34410	7.61	0.49	9.02
LP 354-382		24160	7.90	0.58	10.23	0328 ± 008	KUV 03290+0053	34610	7.92	0.62	9.51
KUV 02295+35	29	12860	7.78	0.49	11.21	0330 - 009	KUV 03301-0100	34000	7.82	0.57	9.39
LB 1628		75750	7.17	0.49	7.07	0330 - 010		33410	7.91	0.61	9.56
GD 30		14600	7.85	0.53	11.06	0336 ± 040	KUV 03363+0400	8840	8.17	0.70	12.87
GD283		13270	7.92	0.56	11.34	$0341 + 021^{a}$	KUV 03416+0206	22190	7.44	0.39	9.67
Feige 24		65290	7.24	0.47	7.41	0343 - 007	KUV	62300	7.71	09.0	8.37
G174-5		16740	8.30	0.80	11.49	0344 ± 073	KUV 03442+0719	10930	7.84	0.51	11.62
PG 0235+064		13610	8.05	0.64	11.49	0346 - 011	GD 50	41190	9.15	1.27	11.55
LP 30-203		9110	8.19	0.72	12.79	$0347 - 137^{a}$	GD 51	12620	8.19	0.72	11.81
PG 0237+242		69160	7.02	0.43	6.91	0349+247	LB 1497	31910	8.72	1.07	11.04
LHS 1442		6840	8.10	0.66	13.78	0352 ± 018	KUV 03521+0150	21950	7.93	0.59	10.43
GD 425		16280	7.94	0.58	11.00	0352 + 049	KUV 03520+0500	36450	8.72	1.08	10.83
PB 6912		14740	7.87	0.54	11.08	0352 + 052	GD 54	10280	8.10	0.66	12.20
BPM 2819		10560	8.10	0.66	12.11	0354 ± 463	Rubin 80	8130	7.54	0.37	12.31
G76-48		6460	7.48	0.33	13.19	0402+543	Lanning 351	16290	7.93	0.58	10.99
GD 38		31490	7.82	0.56	9.54	0408 - 041	GD 56	14580	7.97	0.60	11.24
Feige 31		35230	7.78	0.55	9.25	0410 + 117	HZ 2	20440	7.96	0.61	10.63
PB 7003		18700	7.97	0.61	10.80	0413 - 077	40 Eri B	16180	7.86	0.54	10.91
PG 0307+149		21320	8.03	0.64	10.64	0416 + 334	GD 60	16880	7.77	0.50	10.70
PG 0308+188		17860	7.85	0.54	10.71	0416 + 402	KPD 0416+4015	34750	7.96	0.64	9.57

ANNEXE A. PARAMÈTRES ATMOSPHÉRIQUES

- Suite
A.1
TABLEAU

MD	Nom	$T_{car}(K)$	100 0	MI Ma	Mus	MD	Nom	$T_{-x}(\mathbf{K})$	loa o	NI M	N.
$1416+701^{t}$	GD 429	11810	7.47	0.35	10.94	0606+282	GD 72	17970	06.2	0.56	10.76
0420 + 520	KPD 0420+5203	22870	8.10	0.69	10.62	$0612 + 177^{e}$	LTT 11818	25220	7.93	0.60	10.19
0421 + 162	LP 415-46	19110	8.07	0.67	10.92	0615 + 655	FBS 0615+656	96490	7.14	0.56	6.63
0421 + 740	RE J0427+740	52100	7.84	0.62	8.82	0618 + 134	${ m RE~J0620+132}$	50640	7.76	0.59	8.71
0423 + 123	KUV 04234+1222	21350	7.92	0.59	10.48	0621 - 376	RE J0623-374	59780	7.24	0.45	7.54
0425 + 168	LP 415-415	24280	8.07	0.68	10.48	0625 + 415	GD 74	16650	8.00	0.62	11.06
0426 + 106	KUV 04262+1038	10380	8.66	1.02	13.11	$0628 - 020^{b}$	LP 600-42	6910	8.15	0.69	13.81
$0429 + 176^{a}$	6 ZH	13600	8.56	0.97	12.29	0630 - 050	RE J0632-050	44250	8.19	0.79	9.62
$0430 + 136^{a}$	KUV 04304+1339	35980	7.90	0.61	9.41	0631 + 107	KPD 0631+1043	26710	7.87	0.57	9.97
0431 + 126	HZ 7	20680	8.12	0.70	10.85	0642 - 285	LP 895-41	9520	8.24	0.75	12.70
0433 ± 406	RL 107	10060	8.15	0.69	12.35	0644 + 025	G108-26	7240	8.63	1.00	14.40
0437 + 152	KUV 04370+1514	18350	7.43	0.37	10.04	0644 + 375	G87-7	21240	8.07	0.67	10.71
0438 + 108	HZ 14	26730	8.10	0.70	10.32	0646 - 253	RE J0648-252	27500	7.97	0.63	10.06
0441+467 ^{d,g}	LSV +46 21	78240	7.00	0.47	6.67	0651 - 020	GD 80	33600	8.23	0.79	10.07
0446 - 789	BPM 3523	23250	7.87	0.56	10.24	0658 + 624	GD 446	16380	7.87	0.55	10.89
0455 - 282	MCT 0455–2812	55860	7.92	0.67	8.89	0659 - 063	L886-6	6400	7.64	0.40	13.44
$0500 - 156^{d,g}$	Abell 7	83520	7.24	0.53	7.06	0701 - 587	BPM 18394	13700	8.46	0.00	12.11
0501 + 527	G191-B2B	58880	7.45	0.51	7.96	0706 + 294	KUV 07069+2929	14040	7.84	0.53	11.13
0507 + 045.1	HS 0507+0435	20790	7.99	0.62	10.64	0710 + 741	GD 448	10120	8.11	0.67	12.26
0509-007	RE J0512-004	32000	7.37	0.40	8.76	0715 + 125	G89-10	7270	8.08	0.64	13.50
0516 + 365	Lanning 32	31010	7.89	09.0	9.68	0717+368	KUV 07170+3653	24270	7.85	0.56	10.14
$0518 + 333^{b}$	G86-B1B	9040	8.20	0.72	12.83	0718 - 316	RE J0720-318	56600	7.74	0.59	8.55
0518 - 105	RE J0521 - 102	33180	8.58	1.00	10.71	0721 - 276	RE J0723-274	36200	7.95	0.64	9.48
0531 - 022	RE J0534-021	29750	8.60	1.01	10.96	0726 + 392	LP 207-7	12690	7.87	0.54	11.35
0532 + 414	GD 69	7740	8.02	0.61	13.17	0730+487	GD 86	14310	8.47	0.91	12.05
0543 + 579	GD 290	9880	8.19	0.72	12.49	0732-427	BPM 33039	14810	8.07	0.66	11.36
0548+000	GD 257	45850	7.75	0.57	8.81	0740 - 570	BPM 18615	20030	8.18	0.74	11.01
0549 ± 158	LTT 11733	33220	7.85	0.58	9.48	$0741 + 248^{b}$	LP 366-3	12370	8.07	0.65	11.67
0556 + 172	KPD 0556+1712	18300	8.28	0.79	11.31	0752 + 365	G90-28	7830	8.03	0.61	13.13
0558 + 165	KPD 0558+1631	16200	8.31	0.81	11.56	0754 + 402	KUV 07540+4015	18870	7.95	0.60	10.75

ANNEXE A. PARAMÈTRES ATMOSPHÉRIQUES

60
TABLEAU A.1 - Suite

MD	Nom	$T_{\rm eff}$ (K)	log g	M/M_{\odot}	MV	MD	Nom	$T_{\rm eff}$ (K)	log g	M/M_{\odot}	MV
0802 + 413	KUV	51450	7.59	0.53	8.39	0846 + 557	PG 0846+558	27380	7.88	0.58	9.94
$0805 + 654^{a}$	PG 0805+655	46650	7.86	0.62	8.99	0848 - 730	BPM 5102	16560	7.82	0.52	10.81
0808 + 595	PG 0808+595	27330	7.40	0.40	9.18	0850 - 617	L139-26	20640	8.08	0.67	10.78
0810 + 234	GD 295	15610	7.91	0.56	11.03	0852 + 602	PG 0852+602	31820	6.04	0.18	6.37
0810 + 392	KUV 08100+3915	22160	7.96	0.61	10.47	0852 + 658	PG 0852+659	19070	8.13	0.70	11.00
0811 + 644	GD 457	13410	7.74	0.47	11.07	0854 + 404	GD 98	22250	7.91	0.58	10.38
0812 ± 478	PG 0812+478	60920	7.58	0.55	8.16	0859 + 337	CBS 96	24380	8.00	0.63	10.36
0813 + 217	G40-15	6030	7.48	0.33	13.51	0859-039	RE J0902-040	23440	7.86	0.56	10.21
0814 + 569	PG 0814+569	37650	7.89	0.61	9.33	0901 + 140	PG 0901+140	9220	8.29	0.79	12.90
0816 + 297	PG 0816+297	16660	7.84	0.53	10.82	0901 + 597	PG 0901+597	50570	7.63	0.54	8.48
0817 + 386	KUV 08172+3838	25230	7.97	0.62	10.25	0904 + 391	PG 0904+391	25460	8.07	0.68	10.39
0819 + 363	PG 0819+364	18740	8.03	0.64	10.89	0904 + 511	PG 0904+512	32290	8.25	0.80	10.18
0821 + 632	PG 0821+633	16770	7.82	0.52	10.78	0908 + 171	PG 0908+171	17340	7.92	0.57	10.86
0823 + 316	Ton 320	70360	7.52	0.56	7.87	0909 + 271	Ton 393	48060	8.00	0.69	9.19
0824 ± 288^{a}	PG 0824+289	50700	7.74	0.58	8.67	0911 + 442	G116-16	8660	8.19	0.71	12.98
0826 + 455	GD 91	10370	7.86	0.52	11.81	0913 + 204	PG 0913+205	23610	8.22	0.76	10.76
0827 + 328	G51-16	7510	8.56	0.96	14.13	0915 + 201	LB 3016	02669	7.33	0.51	7.50
0827 + 410	KUV 08273+4101	15210	7.77	0.50	10.88	0915 + 526	PG 0915+526	15560	7.96	0.60	11.11
0834 + 500	PG 0834+501	63480	7.24	0.47	7.44	0916 + 064	PG 0916+065	43960	7.72	0.56	8.83
0836+237	PG 0836+237	54260	7.67	0.56	8.47	0920 + 363	Ton 1054	24060	7.63	0.46	9.82
0837+395	KUV 08378+3934	20870	7.87	0.56	10.45	0920 + 375	PG 0920+375	18340	8.40	0.87	11.50
0838 ± 035	RE J0841+032	37670	7.76	0.55	9.11	0922 + 162	PG 0922+162	23560	8.35	0.85	10.98
0839 + 231	PG 0839+231	25030	7.84	0.56	10.08	0922 ± 183	PG 0922+183	24730	8.21	0.76	10.67
0839 ± 345	Ton 941	17540	8.07	0.66	11.06	0928 ± 085	PG 0928+085	29430	8.56	0.98	10.90
0839+379	KUV 08391+3800	19500	8.02	0.64	10.80	0930 + 294	G117-25	8360	8.59	0.98	13.79
0839-327	L532-81	9260	7.82	0.50	12.18	$0933 + 025^{a}$	PG 0933+026	22360	8.04	0.65	10.57
0841 + 336	CBS 83	24300	8.03	0.65	10.42	0933 + 729	PG 0933+729	17380	8.00	0.62	10.97
0841 + 603	PG 0841+603	33170	7.91	0.61	9.58	0934 + 337	Ton 1080	24380	7.24	0.34	9.17
0843 + 516	PG 0843+517	23870	7.90	0.58	10.24	$0935 - 371.1^{b}$	LTT 3538	7920	7.86	0.52	12.85
0846 + 249	Ton 353	68450	7.37	0.52	7.60	0937 + 505	PG 0937+506	35830	7.88	0.60	9.38

61

TABLEAU A.1 – Suite

M_V	9.79	10.47	10.91	13.92	10.58	0.00	00.6	10.95	9.43	8.91	10.46	10.13	9.77	10.93	9.75	10.77	10.96	9.59	9.20	9.51	10.38	9.76	10.54	11.33	11.04	10.56	11.22	8.77	8.97	11.56	10.94
M/M_{\odot}	0.64	0.66	0.62	0.75	0.55	0 2 0	00	0.60	0.61	0.58	0.56	0.58	0.58	0.73	0.40	0.64	0.87	0.52	0.67	0.53	0.54	0.67	0.58	0.83	0.86	0.43	0.53	0.71	0.56	1.06	0.63
log g	7.97	8.04	8.00	8.25	7.86	00 1	0.1	7.97	7.90	7.79	7.87	7.89	7.88	8.17	7.49	8.03	8.38	7.74	7.96	7.75	7.84	8.02	7.91	8.33	8.37	7.62	7.85	7.96	7.75	8.71	8.02
$T_{\rm eff}$ (K)	31340	23680	18020	6980	19390	96060	00800	17180	35720	44910	20750	25330	29430	20650	22230	20100	24450	29100	45230	30440	21050	33160	20550	18990	23100	16250	13420	66880	41180	24310	17920
Nom	RE J1019-140	PG 1018+441	PG 1019+129	G235-67	EC 10203-2044			PG 1026+002	PG 1026+454	RE J1032+533	PG 1031+063	L825-14	GD 123	GD 304	PG 1036+086	PG 1037+512	PG 1038+634	PG 1039+748	PG 1040+452	PG 1041+580	BPM 6502	PG 1047+694	PG 1049+103	HE 1049–1552	Ton 556	EC 10532-2903	BPM 20383	LB 1919	PG 1057+719	PG 1058-129	G197-4
WD	1017 - 138	1018 + 410	1019 + 129	1019 + 637	1020 - 207	1000 - 2001	600-1070T	1026 ± 002^{a}	1026 + 453	1029 + 537	1031 + 063	1031 - 114	1033 + 464	1034 + 492	1036 ± 085	$1037 + 512^{a}$	1038 + 633	1039 + 747	1040 + 451	1041 + 580	1042 - 690	1047 + 694	$1049 + 103^{a}$	1049 - 158	1052 + 273	1053 - 290	1053 - 550	1056 + 516	1057 + 719	1058 - 129	1100 + 604
MV	11.04	10.97	11.01	8.49	10.14	00.11	71.02	9.14	8.70	10.46	9.07	10.84	9.30	11.13	10.45	10.95	10.43	10.87	8.99	8.21	10.75	10.54	10.65	10.62	10.65	9.10	14.14	10.55	8.82	10.83	10.48
M/M_{\odot}	0.52	0.71	0.68	0.65	0.60		70.0	0.71	0.37	0.62	0.58	1.36	0.50	0.44	0.58	0.44	0.63	0.51	0.34	0.58	0.62	0.61	0.60	0.60	0.58	0.63	0.84	0.63	0.68	0.65	0.60
log g	7.82	8.14	8.10	7.82	7.92	, c , c	0.01	8.02	7.26	7.98	7.80	9.18	7.68	7.68	7.91	7.68	7.99	7.80	7.21	7.64	7.99	7.97	7.94	7.95	7.93	7.89	8.38	8.00	7.93	8.04	7.94
$T_{\rm eff}$ (K)	14490	19750	18530	67930	25680	00000	00022	51710	130370	22600	40330	94400	31790	12400	21420	13620	23120	15670	25730	64000	19470	21490	19940	20340	19660	44450	6930	21990	60270	19540	21670
Nom	Ton 20	Ton 443	PG 0938+550	Ton 21	US 906	E	207 HOL	RE J0957+852		Ton 462	PG 0950+024	PG 0950+139	PG 0950+185	L189-6	PG 0954+697	BPM 6082	LB 3090	PG 0956+021	BPM 6114	CBS 18	LB 564	Ton 1150	GD 111	PG 1003-023	GD 462	PG 1010+065	LTT 12749	Ton 494	RE J1016-052	PG 1015+161	PG 1017+125
MD	0938 + 286	0938 + 299	0938 + 550	0939 + 262	0941 + 432		0347+325	0947 + 857	$0948 + 534^{g}$	0949 + 256	0950 + 023	$0950 + 139^{g}$	$0950 + 185^{a}$	0950 - 572	0954 + 697	0954-710	0955 - 008	0956 + 020	0957-666	0959 + 297	1000-001	$1001 + 203^{a}$	1002 + 430	1003 - 023	1005 + 642	1010 + 064	$1012 + 083.1^{b}$	1013 + 256	$1013 - 050^{d}$	1015 + 161	1017 + 125

ANNEXE A. PARAMÈTRES ATMOSPHÉRIQUES

Suite
1
A.1
TABLEAU

<u>UN</u>	Nom	$T_{\rm eff}$ (K)	log a	M/M_{\odot}	MV	MD	Nom	$T_{\rm eff}$ (K)	log g	M/M_{\odot}	MV
42	Ton 53	30700	7.83	0.56	9.61	1159 - 098	LP 734-6	9540	8.81	1.10	13.73
748	GD 466	19710	8.36	0.85	11.31	1200 + 548	LB 2151	28010	7.98	0.63	10.04
)48	G163-50	15140	7.85	0.53	11.00	1201 - 001	PG 1201-001	19770	8.26	0.78	11.15
325	Ton 60	62950	7.59	0.56	8.14	1201 - 049	PG 1201-049	57860	7.53	0.53	8.12
244	Ton 61	37840	8.13	0.74	9.72	1202 + 308	Ton 75	28880	7.80	0.55	9.69
413	PG 1113+413	25440	7.83	0.55	10.02	$1202+608^{e,f}$	Feige 55	57780	7.17	0.43	7.45
223	PG 1114+224	25860	7.37	0.38	9.25	1202 - 232	EC 12028-2316	8740	8.24	0.75	13.02
-439	PG 1120+439	26950	8.35	0.85	10.71	1204 + 450	PG 1204+451	22560	7.79	0.52	10.17
-216	LTT 13087	7470	8.20	0.72	13.57	1210 + 140	PG 1210+141	31930	7.03	0.31	8.18
-189	PG 1123+189	51680	7.86	0.63	8.86	$1210 + 464^{a}$	PG 1210+464	27670	7.85	0.57	9.86
-018	PG 1124–019	24280	7.72	0.50	9.95	$1210 + 533^{d}$	PG 1210+533	47120	7.82	09.0	8.90
-293	ESO 439-80	9590	8.22	0.74	12.64	1211 + 320	CBS 54	12460	8.00	0.61	11.56
F175	PG 1125+175	55030	7.72	0.58	8.55	1211 + 392	G198-B6A	18370	7.84	0.54	10.64
-025	PG 1125-026	31090	8.19	0.76	10.15	1214 + 267	LB 2	68550	7.49	0.55	7.83
+384	Feige 43	25150	7.90	0.59	10.16	1216 + 036	PG 1216+036	13800	7.85	0.53	11.17
F564	LB 2033	26630	7.86	0.57	9.96	1218 + 497	LB 2318	35660	7.87	0.60	9.38
+071	PG 1129+072	13360	7.91	0.56	11.31	1223 + 478	PG 1223+478	30980	7.84	0.57	9.60
-155	PG 1129+156	16890	8.19	0.73	11.31	1224 ± 309	CBS 60	28820	7.38	0.39	9.02
-470	G122-31	27470	8.90	1.15	11.69	1230 + 417	HZ 28	19520	7.98	0.61	10.74
⊦293	Feige 45	23030	7.84	0.55	10.21	1231 + 465	Ton 82	22550	7.94	0.60	10.40
-300	GD 140	21280	8.55	0.96	11.49	1232 + 238	PG 1232+238	46090	7.66	0.54	8.64
F258	RX J114153.4+253541	42280	7.83	0.60	9.06	1232 + 479	GD 148	14370	7.82	0.52	11.05
F424	KUV 11390+4225	27160	7.90	0.59	9.98	1233 + 337	PG 1233+338	19020	7.99	0.62	10.80
H077	PG 1141+078	62810	7.52	0.54	8.00	1233 - 164	EC	23840	8.24	0.78	10.77
F504	LB 2094	20760	7.91	0.58	10.51	1234+481	PG 1234+482	55040	7.78	0.61	8.66
⊦321	G148-7	14940	7.93	0.57	11.14	1237 - 028	LP 615-183	10240	8.58	0.98	13.02
-187	PG 1145+188	26570	7.82	0.55	9.91	$1240 + 754^{b}$	LB 261	18750	7.83	0.53	10.58
-057	PG 1149+058	11070	8.15	0.69	12.04	$1241 - 010^{f}$	PG 1241-010	23800	7.33	0.36	9.36
F410	GD 312	14070	7.84	0.53	11.12	1244 - 125	EC	13330	7.92	0.56	11.33
F432	PG 1158+433	14050	7.85	0.53	11.13	1247 + 575	LB 244	21560	8.13	0.71	10.78

TABLEAU A.1 = Suite

MV	9.40	10.86	11.29	10.35	10.32	10 53	00.0T	10.87	8.60	8.45	13.63	10.86	11.35	10.75	12.39	10.60	9.80	11.28	8.42	12.47	10.24	10.82	10.78	11.00	10.30	10.17	8.65	10.02	8.63	13.10	
M/M_{\odot}	0.61	0.54	0.80	0.51	0.79	0 47		0.52	0.51	0.67	0.67	0.69	0.58	0.63	0.70	0.46	0.44	0.57	0.52	0.73	0.51	0.59	0.63	0.54	09.0	0.61	0.57	0.50	0.41	0.65	
$\log g$	7.90	7.86	8.29	7.78	8.25	2 00		7.82	7.61	7.84	8.12	8.11	7.94	8.00	8.17	7.68	7.59	7.93	7.59	8.21	7.76	7.95	8.01	7.87	7.94	7.94	7.72	7.72	7.38	8.08	
$T_{\rm eff}$ (K)	36110	16570	18670	20510	30140	00460	00407	15960	44820	72350	7140	20330	13390	19760	10010	16620	23530	13890	50190	10010	21450	18150	19600	15350	23810	25700	50050	23370	34270	8060	
Nom	PG 1333+510	LB 2694	LP 798-13	PG 1335+369	PG 1335+701	0.938 44		PG 1339+346	RE J134059+602631	PG 1342+444	G63-54	PG 1344+509	G223-24	PB 772	LP 856-53	PB 4117	PB 999	BD +34 2473	PG 1403-077	PB 1549	BPM 38165	GD 163	PB 3534	PB 1665	CBS 260	PG 1412-109	GK Vir	G166-14	Feige 93	G124-26	
WD	1333 + 510	1333 + 524	1334 - 160	1335 + 369	1335 + 700	1337 1705		1339 + 346	1339 + 606	1342 + 443	1344 ± 106	1344 + 509	1344 + 572	1348 + 442	$1348 - 273^{b}$	1349 ± 144	1353 + 409	1354 + 340	1403 - 077	1407 + 425	1407–475 ^f	1408 + 323	1410 + 317	1410 + 425	1412 + 542	1412-109	$1413 + 015^{a}$	1413 + 231	1415 + 132	1418 - 088	
M_V	9.14	10.45	5.64	9.19	9.63	10.69	00.0T	10.52	13.17	11.05	11.11	11.52	9.78	12.66	9.79	12.45	9.14	10.92	10.93	10.58	11.66	9.37	9.92	10.60	11.18	10.66	13.73	10.94	10.77	10.42	
M/M_{\odot}	0.35	0.51	0.42	0.60	0.71	0 61	10.0	0.63	0.81	0.62	0.54	0.75	0.69	0.87	0.58	0.80	0.71	0.55	0.50	0.33	0.73	0.43	0.56	0.52	0.73	0.65	0.62	0.56	0.54	09.0	
$\log g$	7.29	7.78	6.60	7.85	8.09	02 2	1.13	8.01	8.33	8.01	7.87	8.22	8.05	8.42	7.87	8.32	8.03	7.88	7.79	7.38	8.19	7.51	7.84	7.81	8.18	8.04	8.04	7.90	7.86	7.95	
$T_{\rm eff}$ (K)	25590	19600	89460	39450	38310	000041	11 / 2010	22320	8730	16700	14480	15300	33560	10440	28980	10560	52520	16270	14950	13320	13880	27130	26680	18400	17970	21270	6780	16300	17340	22460	
Nom	GD 150	GD 151	HZ 34	GD 153	PG 1255+426	1011 00	LD 4421	GD 267	G149-28	BPM 7961	GD 322	PG 1300-098	LB 248	LP 378-537	PG 1305+018	PG 1308+583	HZ 43	PG 1314-067	LP 737-47	G177-31	G177-34	PG 1320+645	PG 1322+077	BPM 21970	PG 1325+168	PG 1325+279	LP 96-298	PG 1328+344	BPM 89123	PG 1330+473	
MD	1249 + 160	1249 + 182	$1253 + 378^{d}$	1254 + 223	1255 + 426		120/+021	1257 + 047	1257 + 278	1257 - 723	1258 + 593	1300 - 098	1301 + 544	$1304 + 227^{b}$	1305 + 018	1310 + 583	1314+293 ^{a,c}	1314 - 067	1314 - 153	$.1317 + 453^{f}$	1319+466	1320 + 645	1322 + 076	1323 - 514	1325 + 167	1325+279	1325 + 581	1328 + 343	1330 ± 036	1330 + 473	

ANNEXE A. PARAMÈTRES ATMOSPHÉRIQUES

- Suite	
A.1	
TABLEAU	

MD	Nom	$T_{\rm eff}$ (K)	log g	M/M_{\odot}	MV	MD	Nom	$T_{\rm eff}$ (K)	log a	M/M_{\odot}	MV
1428 + 373	KUV 14287+3724	14010	7.36	0.33	10.45	1511 + 009	LB 769	27590	7.83	0.56	9.84
1429 + 373	GD 336	34240	8.15	0.74	0.90	1513 + 442	PG 1513+442	29230	7.84	0.57	9.74
1433 + 538	GD 337	22410	7.80	0.53	10.21	1515 + 668	PG 1515+669	10320	8.40	0.86	12.68
1434 + 289	Ton 210	32800	8.00	0.65	9.74	1517 + 373	CBS 239	24520	7.85	0.56	10.12
1436 + 526	PG 1436+526	23440	7.94	0.60	10.34	1518 + 541	CBS 313	15660	7.85	0.53	10.94
1439 + 304	PG 1439+304	21870	7.96	0.61	10.49	1518 + 558	CBS 314	13740	7.86	0.53	11.18
1442 + 474	CBS 283	9890	8.05	0.63	12.25	1519 + 383	PG 1519+384	19620	7.98	0.61	10.73
$1443 + 336^{a}$	PG 1443+337	29760	7.83	0.56	9.68	1519 + 500	PG 1519+500	28730	7.40	0.40	9.06
1446 + 286	Ton 214	22890	8.42	0.89	11.14	1520 + 447	PG 1520+447	16550	7.89	0.56	10.90
1448+411	CBS 204	13850	7.85	0.53	11.17	1521 + 310	Ton 229	25630	7.94	0.61	10.16
1449 + 168	PG 1449+168	21600	7.88	0.56	10.39	1523 + 322	CBS 402	25820	8.26	0.80	10.66
1449 + 513	CBS 283	16140	8.45	0.90	11.81	1524 - 749	BPM 9518	23350	7.73	0.50	10.02
1451 + 006.1	GD 173	24930	7.89	0.58	10.15	1525 + 257	Ton 235	22290	8.28	0.80	10.96
1452 + 553	CBS 295	27640	8.29	0.82	10.56	1526 ± 013	PG 1526+014	50420	7.82	0.61	8.82
1452 - 042	PG 1452–043	23530	8.19	0.74	10.71	1527 ± 090	PG 1527+091	21520	8.02	0.64	10.61
1454 + 172	PG 1454+172	30660	8.14	0.73	10.10	1528 + 487	RE J1529+483	47300	77.7	0.58	8.81
1455 + 298	G166-58	7390	7.97	0.58	13.28	1531 - 022	GD 185	18620	8.41	0.88	11.49
1457 - 086	PG 1457–086	21450	7.97	0.62	10.55	1532 + 033	PG 1532+034	66330	7.56	0.56	8.01
1458 + 171	PG 1458+172	21950	7.43	0.38	9.68	1534 + 503	GD 347	8950	8.07	0.64	12.68
1459 + 219	PG 1459+219	18000	7.98	0.61	10.88	1535 + 293	Ton 797	24470	7.92	0.60	10.24
1459 + 305	PG 1459+306	25070	7.97	0.62	10.26	1539 + 530	PG 1539+530	26090	7.84	0.56	9.98
1459 + 347	PG 1459+347	21520	8.48	0.92	11.35	1547 + 015	PG 1547+016	76910	7.57	0.59	7.86
1501 ± 032	PG 1501+032	13770	7.88	0.54	11.21	1547 + 057	PG 1547+057	24850	8.41	0.88	10.98
1502 + 351	PG 1502+351	18120	8.13	0.70	11.09	1548 + 149	PG 1548+149	20520	7.89	0.57	10.52
$1504 + 546^{a}$	CBS 301	24690	7.86	0.57	10.13	1548 ± 405	PG 1548+406	54530	7.61	0.54	8.34
1507 + 021	PG 1507+021	19580	7.87	0.56	10.57	1553 + 353	PG 1553+354	25580	7.83	0.55	10.01
1507 + 220	PG 1507+220	19340	7.91	0.57	10.65	1554 + 215	PG 1554+215	26270	7.83	0.55	9.94
1508 + 548	PG 1508+549	16970	7.86	0.54	10.82	1554 + 262	PG 1554+262	21220	7.61	0.44	10.03
1509 + 322	GD 178	13970	7.98	0.60	11.34	1554 + 322	CBS 413	30500	8.35	0.86	10.46
1509 ± 536	CBS 306	13970	8.02	0.62	11.39	1559 + 128	PG 1559+129	29410	7.99	0.64	9.96

ANNEXE A. PARAMÈTRES ATMOSPHÉRIQUES

65

Suite
A.1 =
TABLEAU

MD	Nom	$T_{\rm eff}$ (K)	log a	M/M_{\odot}	MV	MD	Nom	T_{eff} (K)	log a	M/M_{\odot}	MV
0+308	Ton 252	58060	7.38	0.49	7.84	1633 + 676	PG 1633+677	23660	7.97	0.62	10.36
1+581	PG 1601+581	14670	7.84	0.53	11.05	1635 + 608	PG 1635+608	25750	7.91	0.59	10.11
3+432	PG 1603+432	36950	7.91	0.62	9.39	1636 + 351	KUV 16366+3506	37170	7.97	0.65	9.48
5+683	PG 1605+684	10280	8.72	1.06	13.27	1639 + 153	G138-56	7480	8.42	0.87	13.91
18+118	PG 1608+119	20650	7.90	0.57	10.51	1640 + 113	PG 1640+114	19630	8.03	0.64	10.80
08+419	PG 1608+419	16680	7.95	0.59	10.98	1640 + 457	LB 953	18840	7.82	0.53	10.57
09+044	PG 1609+045	29120	7.87	0.58	9.79	1640 + 690	PG 1640+690	17840	8.01	0.63	10.94
09 + 631	PG 1609+631	30400	8.67	1.05	11.05	1641 + 387	GD 357	15570	7.95	0.59	11.10
10 + 166	GD 196	14390	7.84	0.52	11.07	1642 + 385	PG 1642+386	45930	7.64	0.53	8.62
10 + 383	KUV 16106+3820	14450	7.83	0.52	11.05	1642 + 413	PG 1642+414	28720	8.24	0.79	10.40
11 - 084	RE J161419-083257	40470	7.80	0.58	9.06	$1646 + 062^{a}$	PG 1646+062	29940	7.98	0.64	9.91
14 + 136	PG 1614+137	22430	7.33	0.36	9.48	1647 + 375	KUV 16476+3733	21980	7.89	0.57	10.37
14 + 160	PG 1614+160	17000	7.92	0.57	10.90	1648 + 371	KUV 16484+3706	43110	7.56	0.49	8.56
14 - 128	LTT 6494	15610	7.83	0.52	10.92	1650 + 406	RE J1650+403	38070	8.11	0.73	9.68
15 - 154	LTT 6497	29310	8.06	0.68	10.07	1657 + 343	PG 1657+344	52240	7.64	0.55	8.47
19 + 123	PG 1619+123	16460	7.77	0.50	10.74	1659 + 303	PG 1659+303	13600	7.95	0.58	11.34
$19 + 414^{a}$	KUV 16195+4125	14090	7.93	0.57	11.24	$1704 + 481.1^{f}$	Sanduleak A	13590	7.97	0.59	11.36
19 + 525	PG 1619+525	18040	7.90	0.56	10.75	$1704 + 481.2^{f}$	Sanduleak B	9300	7.87	0.53	12.23
20+260	Ton 816	28290	7.78	0.54	9.71	1707 + 475	PG 1707+476	26350	7.80	0.54	9.89
20 + 513	PG 1620+513	20890	7.92	0.58	10.52	1709 - 575	BPM 24723	17060	7.95	0.59	10.94
20 + 647	PG 1620+648	30280	7.86	0.58	9.70	$1710+683^{b}$	G240-47	6560	8.01	0.60	13.81
20 - 391	CD-38 10980	24280	8.01	0.64	10.39	1711 + 668	RE J1711+664	53750	8.48	0.96	9.91
22+323 ^a	PG 1622+324	68280	7.56	0.57	7.98	$1713 + 332^{f}$	GD 360	22120	7.43	0.38	9.66
25 + 093	G138-31	0669	8.38	0.84	14.11	1713 + 695	G240-51	15240	7.86	0.54	11.01
26 + 409	PG 1626+409	21370	8.02	0.64	10.62	1720 + 360	PG 1720+361	13670	7.83	0.52	11.16
28 + 390	KUV 16288+3904	18940	7.89	0.56	10.65	1725 + 586	LB 335	55800	8.28	0.85	9.52
31 + 396	KUV 16319+3937	17320	7.65	0.44	10.47	$1729 + 371^{h}$	GD 362	9540	8.91	1.15	13.93
31 + 781	RE J1629+780	44930	7.76	0.57	8.86	1735 + 610	GD 525	15600	7.89	0.55	11.00
32 + 177	PG 1632+177	10100	7.96	0.58	12.05	1736 + 052	G140-2	8990	8.28	0.78	12.99
33+433	G180-63	6520	7.74	0.45	13.48	1737 + 419	GD 353	20790	7.85	0.55	10.43

ANNEXE A. PARAMÈTRES ATMOSPHÉRIQUES

TABLEAU A.1 - Suite

1	MV	9.57	10.29	10.18	10.67	10.69	11.80	10.08		1.93	10.42	13.26	10.99	12.57	8.80	9.26	10.88		10.52	12.58	12.33	13.18	9.15	10.04	12.43	11.37	8.36	13.10	9.25	13.47	10.96	10.83	12.32
76/36	M/MO	0.56	0.61	0.40	0.59	0.58	0.89	0.37		0.54	0.63	0.78	0.52	1.23	0.59	0.59	0.57		0.56	0.74	0.76	0.79	0.58	0.55	0.68	0.59	0.54	0.67	0.57	0.66	0.66	0.55	0.73
	log g	7.81	7.94	7.51	7.93	7.93	8.43	7 12		16.7	7.99	8.29	7.82	9.06	7.78	7.84	7.91		7.87	8.23	8.25	8.31	7.82	7.83	8.13	7.96	7.60	8.12	7.80	8.11	8.07	7.86	8.20
(1)	Teff (K)	30880	24100	18140	19510	19210	15860	18010		02420	23160	8380	14960	20510	48400	37110	16970		20190	0270	10620	8650	39160	25220	9760	13470	53450	8180	35860	7420	18540	16920	10390
	Nom	GD 546	GD 391	BPM 95701	Wolf 1346	LTT 8189	BPM 3491	L P 606_4		Lanning 301	BPS CS 22880-0124	LP 35-436	LP 516-13	BPS CS 22880-0134	PG 2056+033	HS 2058+0823	GD 232		KPD 2058+4958	GD 393	BPM 1266	LTT 16224	GD 394	PG 2115+011	BPM 27273	GD 547	KUV 21168+7338	GD 584	PG 2120+055	BPM 69804	GD 238	G261-45	I,P 398-18
C111	л.	2025 + 554	2028 + 390	2032 + 188	2032 + 248	2039 - 202	2039 - 682	9044_042b		2040+390	2046 - 220	2048 + 809	$2051 + 095^{b}$	2051 - 208	2056 + 033	2058 ± 083	2058 + 181		2058 + 499	2058 + 506	2105 - 820	2111 + 261	2111 + 498	2115 + 010	2115 - 560	2116 + 675	2116 + 736	2119 + 581	2120 + 054	2132 + 367	2134 + 218	2136 + 828	2138 ± 214^{b}
	MN	8.19	13.44	8.98	10.86	10.80	8.82	19 61	10.71	1.2.1	12.20	9.13	10.75	13.10	9.67	9.86	9.58		10.33	11.41	10.74	10.38	9.72	10.56	10.03	12.07	12.45	11.09	9.78	11.25	9.95	11.13	10.67
26/26	M/M_{\odot}	0.67	0.65	0.59	0.52	0.56	0.59	10.0	0.34	0.50	0.73	0.66	0.53	0.81	0.55	0.78	0.60		0.56	0.67	0.50	0.55	0.68	0.56	0.51	0.68	0.71	0.54	0.49	0.53	0.59	0.57	0.63
-	log g	7.77	8.09	7.82	7.82	7.89	7.78	0 5.0	0.0	7.24	8.20	7.95	7.83	8.34	7.81	8.20	7.90		7.87	8.09	7.77	7.84	8.04	7.87	7.74	8.12	8.17	7.86	7.69	7.85	7.89	7.93	8.01
	T _{eff} (K)	80830	7420	44170	16070	17560	47670	11900	00711	71740	10800	47300	17240	8930	29390	37040	32810		22210	14600	16530	21200	34350	19720	23620	10790	9890	14450	25710	13180	27390	14980	20730
	Nom	RE J1738+665	G259-21	KUV 18004+6836	GD 372	BPM 92960	RE J1820+580			FBS 1827+779	KUV 18284+6650	KUV 18332+6429	BPM 11593	GD 215	BPM 93487	KUV 18453+6819	KPD 1914+0929		GD 533	BPM 94172	LP 753-5	BPM 94484	RE J1943+500	LTT 15765	GD 539	GD 266	LTT 7983	LTT 7987	GD 543	GD 544	L210-114	BPS CS 22955-0037	RPS CS 22950-0122
	MD	$1738+669^{g}$	1756 + 827	1800 + 685	1802 + 213	1809 + 284	1819 + 580	1000 1 200		1827 + 778	1828 + 668	$1833 + 644^{a}$	1834-781	1840 + 042	1845 ± 019	1845 + 683	1914 + 094	- - -	1918 + 725	1919 + 145	1932 - 136	1936 + 327	1942 + 499	1943 + 163	1958 + 675	1959 + 059	2007 - 219	2007 - 303	2009 + 622	2010 + 613	2014 - 575	2018 - 233	2021-128

ANNEXE A. PARAMÈTRES ATMOSPHÉRIQUES

- =
n
rn
01
1
- 57
-
-
-4
2
<
- 6- Î
щ
ш
r .
Г
-

a 1

15	9.55	10.81	10.41	8.72	10.79	06.6	10.69	8.89	8.88	13.12	12.35	11.86	9.34	11.30	10.61	11.01	10.30	11.00	9.31	10.46	11.25	11.11	12.82	10.54	11.29	6.56	9.55	9.42	10.66
76176	M/ MO	0.62	0.61	0.51	0.66	0.29	0.55	0.48	0.65	0.83	0.78	0.81	0.51	0.56	0.57	0.56	0.55	0.55	0.42	0.41	0.53	0.63	0.50	0.33	0.55	0.41	0.51	0.64	0.54
	7.49	8.00	7.96	7.62	8.05	7.19	7.87	7.58	7.90	8.36	8.27	8.33	7.70	7.92	7.89	7.90	7.84	7.89	7.48	7.58	7.85	8.03	7.82	7.37	7.89	6.87	7.72	7.95	7.85
(/1) E	24580	19080	22810	41720	20220	16280	18220	35950	54410	8980	10690	13930	31460	13490	19520	15750	21910	15630	27320	16580	13220	16520	7880	13490	13290	72110	29060	37720	18220
N	PG 2257+162	MCT	GD 404	PHL 400	PG 2306+125	MCT	G241-46	PB 5280	BPM 97895	GD 557	KUV 23149+1408	GD 405	MK 320	LP 522-34	GD 559	PB 5379	PG 2328+108	Case 3	GD 251	G157-82	BPM 82758	PB 5486	G273-97	BPM 15727	G273-B15B	GD 561	PG 2345+305	PG 2349+286	G273-B1B 1 TTT 0760
U.M	2257+162	2259 - 267	2302 + 457	2303 + 017	2306 + 124	2306 - 274	2307 + 636	2308 + 050	2309 + 105	2313 + 682	2314 + 141	2314 + 471	2317 + 268	$2318 + 126^{b}$	2319 + 691.1	2324 ± 060	2328 + 107	2329 + 407	$2331 + 290^{f}$	2333 - 049	2333 - 165	2336 + 063	2336 - 187	2337 - 760	$2341 - 164^{b}$	2342+806 ^{d,g}	2345 + 304	2349 + 286	2350-083
11	10.97	13.35	10.09	11.42	10.87	8.91	10.74	12.81	10.03	9.22	9.82	10.25	10.80	10.75	13.52	9.83	8.43	7.39	11.14	11.12	9.56	10.25	11.17	11.40	12.75	8.41	7.42	13.44	10.26
25/25	0.52	0.65	0.57	0.51	0.58	0.55	0.55	0.73	0.40	0.56	0.48	0.61	0.86	0.81	0.73	0.57	0.51	0.50	0.88	0.59	0.65	0.56	0.60	0.60	0.72	0.58	0.32	0.46	0.54
	7.83	8.09	7.86	7.82	7.93	7.72	7.87	8.21	7.51	7.79	7.67	7.95	8.37	8.29	8.21	7.86	7.56	7.27	8.41	7.95	7.98	7.86	7.97	7.99	8.19	7.70	6.91	7.77	7.82 8 33
(71)	15180	7570	25230	11740	17350	41320	17790	9140	19730	36320	24880	24790	26330	25260	7620	28230	47680	69470	22680	15380	35540	23070	15170	13530	9190	59230	141830	6640	22150
M	GD 235	G126-25	GD 396	MCT	G93-48	PG 2150+021	GD 398	G93-53	BPS CS 22965-0020	PB 7026	BPS CS 22892-0017	PG 2204+071	RE J2207+252	BPS CS 22892-0038	G18-34	RE J2210-300	BPS CS 30337-0019	DeHt 5	PG 2220+134	Ton S 56	PG 2235+082	PG 2239+082	HS 2240+1234A	HS 2240+1234B	PHL 386	PG 2244+031	HS	BD -08 3980B	GD 245
1111	2139+115	$2139 + 132.1^{b}$	2143 + 353	2148 - 291	2149+021	2150 + 021	2150 + 338	$2151 - 015^{f}$	2152 - 045	2154 - 061	2200 - 136	2204 + 070	2205 + 250	2205 - 139	2207 + 142	2207 - 303	2212 - 279	$2218 + 706^{g}$	2220 + 133	2231 - 295	2235 + 082	2239 + 081	$2240 + 125.1^{b}$	$2240 + 125.2^{b}$	2240 - 017	2244 + 031	2246 ± 066	$2253 - 081^{b}$	2256+249

M_V	8.25
M/M_{\odot}	0.51
$\log g$	7.52
$T_{\rm eff}$ (K)	51960
Nom	PG 2357+296
WD	2357 + 296
M_V	8.20
 M/M_{\odot}	0.56
$\log g$	7.60
$T_{\rm eff}$ (K)	02609
Nom	PB 5617

TABLEAU A.1 = Suite

8.25

51960

2357+296 PG 2357+296

8.20

PB 5617

2353 + 026MD

composite
Spectre
¢

^b Mouvement propre commun

^c Magnétique ^d DAO

^e DAB

f Système binaire non-résolu

 g Étoile centrale de nébuleuse planétaire h DAZ, voir Annexe B

Annexe B

Discovery of a Cool, Massive, and Metal-Rich DAZ White Dwarf

DISCOVERY OF A COOL, MASSIVE, AND METAL-RICH DAZ WHITE DWARF

A. GIANNINAS, P. DUFOUR, AND P. BERGERON

Département de Physique, Université de Montréal, CP 6128, Succursale Centre-Ville, Montreal, PQ H3C 3J7, Canada;

Received 2004 October 7; accepted 2004 October 28; published 2004 November 3

ABSTRACT

We report the discovery of a new metal-rich DAZ white dwarf, GD 362. High signal-to-noise ratio optical spectroscopy reveals the presence of spectral lines from hydrogen as well as Ca I, Ca II, Mg I, and Fe I. A detailed model atmosphere analysis of this star yields an effective temperature of $T_{\rm eff} = 9740 \pm 50$ K, a surface gravity of log $g = 9.12 \pm 0.07$, and photospheric abundances of log (Ca/H) = -5.2 ± 0.1 , log (Mg/H) = -4.8 ± 0.1 , and log (Fe/H) = -4.5 ± 0.1 . White dwarf cooling models are used to derive a mass of $1.24 M_{\odot}$ for GD 362, making it the most massive and metal-rich DAZ star uncovered to date. The problems related to the presence of such large metal abundances in a nearby ($d \sim 25$ pc) white dwarf in terms of an accretion scenario are briefly discussed. Subject headings: stars: abundances — stars: individual (GD 362) — white dwarfs

1. INTRODUCTION

The most common types of white dwarfs are those that show hydrogen absorption lines in their optical spectra, the DA stars. A fraction of these, the so-called DAZ stars, also display absorption features from heavier elements, most notably the Ca II H and K lines. A recent spectroscopic survey at high dispersion of about 120 cool ($T_{eff} < 10,000$ K) DA stars by Zuckerman et al. (2003) reveals that $\sim 25\%$ of the objects in their sample show metallic features. The DAZ phenomenon thus seems much more common than previously believed (Billères et al. 1997). The origin of these metals in the atmospheres of DAZ stars is still poorly understood, however. Indeed, as most DAZ stars are comparatively cool and old, it is expected that all elements heavier than hydrogen would have settled rather quickly at the bottom of the atmosphere owing to the strong gravitational field present in these stars. Therefore, any metals found in the atmosphere must be provided by an exterior source, such as the interstellar medium or even comets. We refer the reader to Zuckerman et al. (2003) for a more detailed discussion of the various theories that have been put forth to account for the presence of metals in DAZ stars.

We have recently undertaken a spectroscopic survey of white dwarfs drawn from the catalog of McCook & Sion (1999). Our aim is to derive the atmospheric parameters for all stars as well as to confirm the spectroscopic classifications given in the catalog using modern CCD spectroscopy. As part of this survey, we have discovered that GD 362 (WD 1729+371, PG) is a unique DAZ white dwarf, with metallic features stronger than in any other member of its class, the Ca II H and K lines in particular. GD 362 had initially been classified as a DA white dwarf by Greenstein (1980) with a note that it could possibly constitute a composite spectrum or a dK subdwarf in a common proper-motion binary system. It was later rediscovered in the Palomar-Green survey (Green et al. 1986) where it was classified sd, which does not imply a subdwarf type but rather "a lower signal-to-noise observation in which two or three Balmer absorption lines of moderate gravity are visible."

We present in this Letter our spectroscopic data for GD 362 in which, besides the usual hydrogen Balmer lines, we have identified spectral lines of Ca I, Ca II, Mg I, and Fe I. By fitting the optical spectrum with a grid of synthetic spectra appropriate for these stars, we determine the effective temperature and surface gravity of GD 362 as well as the abundances of all the elements observed in this star.

2. FITTING PROCEDURE AND SYNTHETIC SPECTRA

2.1. Observations

The high signal-to-noise ratio $(S/N \sim 110 \text{ pixel}^{-1})$ optical spectrum of GD 362 was obtained over the course of two nights using the Steward Observatory 2.3 m telescope equipped with the Boller & Chivens spectrograph. The 4".5 slit together with the 600 line mm⁻¹ grating blazed at 3568 Å in first order provided a spectral coverage from about 3000 to 5250 Å at a resolution of ~6 Å FWHM. The spectra were reduced using standard IRAF packages. The spectrum is displayed in Figure 1, where the major spectral features are identified, namely, Ca I, Ca II, Mg I, and Fe I lines. We also show for comparison the optical spectrum of G74-7, discovered by Lacombe et al. (1983), which was the only DAZ star known until the more recent discoveries of G238-44 (Holberg et al. 1997), G29-38 (Koester et al. 1997), and those reported by Zuckerman et al. (2003). The comparison is most striking when we examine in both spectra the relative strengths of the H and K lines of Ca II at 3933.66 and 3968.67 Å, respectively. It is worth noting that the region blueward of ~3800 Å is heavily blanketed by Fe I lines.

2.2. Fitting Procedure

The technique for fitting the spectrum is similar to that described at length by Liebert et al. (2004). First, the continuum used to normalize the spectrum is set by fitting a model spectrum to the data, allowing for a possible wavelength shift, a zeropoint offset, and higher order terms in λ (up to λ^3). The purpose of this procedure is simply to obtain a function that defines best the continuum of the observed spectrum. Once the spectrum has been normalized properly, the atmospheric parameters and chemical abundances are obtained from a grid of model spectra, convolved with a Gaussian profile at 6 Å FWHM, using the nonlinear least-squares method of Levenberg-Marquardt (Press et al. 1986). This minimization technique also provides formal uncertainties of the fitted parameters through the covariance matrix (see Bergeron et al. 1992 for details).

FIG. 1.—Flux-calibrated optical spectra of G74-7 (top) and GD 362 (bottom), normalized to unity at 4500 Å and offset from each other by a factor of 0.7. The major metallic features in the spectrum of GD 362 are indicated by tick marks. In both cases, H_e is blended with Ca II λ 3969.

2.3. Synthetic Spectra

For the computation of our synthetic spectra, we adopt a grid of LTE model atmospheres with a pure hydrogen composition similar to that described in Liebert et al. (2004). We thus make the assumption that the metals have no effect on the atmospheric structure and include them only in the calculation of the emergent fluxes; this assumption will be tested subsequently. Atomic partition functions have been calculated by summing explicitly over the bound states taken directly from TOPBASE. Central wavelengths of the transitions, gf-values, energy levels, and damping constants (radiative, Stark, and van der Waals) have been extracted from the GFALL line list of R. L. Kurucz.¹

Since our preliminary analysis of GD 362 (Gianninas et al. 2005) revealed that it was a high surface gravity DAZ star, we restrict our model grid calculations to high values of log g. We first begin with the determination of the calcium abundance since calcium produces the most prominent features in the spectrum. Our model grid covers a range of $-5.7 \le \log (Ca/H) \le -4.8$ in steps of 0.3 dex, effective temperatures in the range 9000 K $\le T_{eff} \le 10,400$ K in steps of 200 K, and surface gravities in the range 8.75 $\le \log g \le 9.50$ in steps of 0.25 dex. With the calcium abundance fixed, we proceed to determine in a similar way the magnesium and iron abundances in turn, using spectra with magnesium abundances in the range $-5.6 \le \log (Mg/H) \le -4.4$ in steps of 0.4 dex and iron abundances in the range $-5.0 \le \log (Fe/H) \le -4.4$ in steps of 0.2 dex. At each step, the determination of the effective temperature and surface gravity is refined.

2.4. Atmospheric Parameter and Abundance Determinations

Before undertaking our analysis of GD 362, we wished to test our grid of synthetic spectra and more importantly our fitting procedure. With this in mind, we fitted the optical spectrum of G74-7 analyzed by Billères et al. (1997), who derived $T_{\rm eff} = 7260 \pm 40$ K, $\log g = 8.03 \pm 0.07$, and $\log (Ca/H) = -8.8 \pm 0.1$. Our own analysis of the same spectrum yields $T_{\rm eff} = 7300 \pm 60$ K, $\log g = 8.02 \pm 0.11$, and $\log (Ca/H) = -8.9 \pm 0.3$, in excellent agreement with the results of Billères et al.

Our best fit to the spectrum of GD 362 is displayed in Figure 2. The atmospheric parameters and corresponding uncertainties are $T_{\rm eff} = 9740 \pm 50$ K, $\log g = 9.12 \pm 0.07$, $\log (Ca/H) = -5.2 \pm 0.1$, $\log (Mg/H) = -4.8 \pm 0.1$, and $\log (Fe/H) = -4.5 \pm 0.1$. We are able to obtain a very good fit to the observed spectrum, albeit not a perfect one. First, we notice that although the H and K lines of Ca II are extremely well reproduced, the Ca I lines at 4227 and 4585 Å are predicted as being too strong. We believe that this is caused by an incorrect Ca II/Ca I ratio, which could be due either to an erroneous electron density or to partition function values obtained from TOPBASE. Second, the Fe I lines in the bluest portion of the spectrum are not reproduced perfectly. Some of the atomic data for iron are derived from theoretical calculations and are more uncertain than values determined experimentally. We therefore suggest that our derived iron abundance is at worse an upper limit.

A posteriori, we computed a blanketed model atmosphere in which we took into account the presence of metals at our derived abundances. The synthetic spectrum calculated from this model is identical to that computed here from our pure

FIG. 2.—Our best fit (bottom) to the observed spectrum of GD 362 (top). The atmospheric parameters obtained from this analysis are indicated along with the mass derived from the evolutionary models of Fontaine et al. (2001).

hydrogen models, validating our initial assumption that the metals play a negligible role in the determination of the atmospheric structure.

3. DISCUSSION

Using the evolutionary models of Fontaine et al. (2001) for DA white dwarfs, we derive a mass of $1.24 M_{\odot}$. Our derived atmospheric parameters thus make GD 362 the most metal-rich and massive DAZ white dwarf studied thus far and somewhat hotter than the majority of DAZ stars discovered by Zuckerman et al. (2003). In Figure 3, we show the calcium abundance as

FIG. 3.—Calcium abundances, or upper limits, as a function of effective temperature for the white dwarfs taken from Tables 1 and 2 of Zuckerman et al. (2003). The open circles mark objects where the Ca II K line was detected, while the crosses denote white dwarfs with only upper limit determinations. The filled circle represents GD 362.

a function of effective temperature for the white dwarfs from Zuckerman et al. (2003). We see from its location in Figure 3 how unique GD 362 truly is. In fact, if we compare with the values listed in Table 4 of Zuckerman et al. (2003), the iron and magnesium abundances are nearly solar!

A comparison of our calcium abundance determination for GD 362 with those of other DAZ stars from Zuckerman et al. (2003) with similar effective temperatures reveals that the abundance observed in GD 362 is at least a factor of 10^3 higher (see Fig. 3). Since the mass of GD 362 is also higher than average, we need to verify whether this is the reason for the unusual observed photospheric abundances. To do so, we compare the expected steady state calcium abundance in a massive star at 1.2 M_{\odot} to that of a normal star with a mass of 0.6 M_{\odot} . The steady state abundance, X_{ss} , is given by equation (4) of Dupuis et al. (1993),

$$X_{\rm ss} = \frac{\theta M}{\Delta M_{\rm cz}},\tag{1}$$

where θ is the diffusion timescale of calcium at the bottom of the hydrogen convection zone, \dot{M} is the accretion rate of that element, and ΔM_{cz} is the mass of the convection zone. If we assume the Bondi-Hoyle accretion rate, then \dot{M} is proportional to M^2 , where M is the mass of the white dwarf. Then the expected relative abundance of calcium between a 1.2 and a 0.6 M_{\odot} white dwarf can be expressed as

$$\frac{X_{1.2}}{X_{0.6}} \propto \frac{\theta_{1.2}}{\theta_{0.6}} \frac{M_{1.2}^2}{M_{0.6}^2} \frac{\Delta M_{cz, 0.6}}{\Delta M_{cz, 1.2}},$$
(2)

where we assume that both stars are moving with the same velocity through an interstellar medium of similar density. Us-

ing values of θ and ΔM_{ez} generously provided to us by G. Fontaine (2004, private communication), we obtain that

$$\frac{X_{1.2}}{X_{0.6}} \propto \frac{1}{36} \times 4 \times 8.5 \approx 1.$$

We see that even though a more massive star accretes at a higher rate and has a thinner convection zone—implying a smaller dilution factor—the diffusion timescale at the bottom of the hydrogen convection zone is so much shorter that comparable abundances are predicted.

In addition, the accretion model suffers from the fact there is little interstellar matter within 100 pc from the Sun, as Aanestad et al. (1993) aptly pointed out. The distance to GD 362 can be estimated in two ways. First, the $T_{\rm eff}$ and log g values inferred for GD 362 together with the photometric calibration of Bergeron et al. (1995) yield an absolute visual magnitude of $M_v = 14.31$ (or $M_B = 14.48$), which, combined with the photographic magnitude of $B_{\rm ph} = 16.15$ taken from Green et al. (1986), yields a distance estimate of ~22 pc. Alternatively, we can use the relation between the monochromatic fluxes from our optical spectrum, f_{λ} , and the theoretical Eddington fluxes, H_{λ} , given by

$$f_{\lambda} = 4\pi (R/D)^2 H_{\lambda},\tag{3}$$

where *R* and *D* are the radius of the star and its distance from Earth, respectively, to obtain an independent distance estimate of ~26 pc, consistent with our previous estimate. In either case, GD 362 seems to be well within the Local Bubble and far from

- Aanestad, P. A., Kenyon, S. J., Hammond, G. L., & Sion, E. M. 1993, AJ, 105, 1033
- Bergeron, P., Greenstein, J. L., & Liebert, J. 1990, ApJ, 361, 190
- Bergeron, P., Saffer, R. A., & Liebert, J. 1992, ApJ, 394, 228
- Bergeron, P., Wesemael, F., & Beauchamp, A. 1995, PASP, 107, 1047
- Billères, M., Wesemael., F., Bergeron, P., & Beauchamp, A. 1997, ApJ, 488, 368
- Dupuis, J., Fontaine, G., Pelletier, C., & Wesemael, F. 1993, ApJS, 84, 73
- Fontaine, G., Brassard, P., & Bergeron, P. 2001, PASP, 113, 409
- Gianninas, A., Bergeron, P., & Dufour, P. 2005, in 14th European Workshop on White Dwarfs, ed. D. Koester & S. Moehler (San Francisco: ASP), in press

any high concentrations of interstellar matter. We are therefore at odds to explain the very high metal abundances observed.

Another possibility would be that GD 362 is an unresolved degenerate binary composed of a normal DA star and a heliumrich DZ star of comparable luminosities. If this were the case, however, the intrinsic absorption features of each star would be even stronger than observed here, because of the line dilution factor, and the effective temperature inferred from the Balmer lines would thus be grossly *underestimated* (Balmer lines get stronger with increasing T_{eff} in this temperature range). In such unresolved systems, the slope of the theoretical spectrum is incompatible with that of the observed spectrum (see, e.g., Bergeron et al. 1990). We see, on the contrary, from Figure 2 that the slope of the theoretical spectrum is in perfect agreement with the observed slope of GD 362, consistent with the presence of a single star.

It is perhaps not too surprising that GD 362 had not been classified as a DAZ white dwarf by Greenstein (1980) or Green et al. (1986). The very strong Ca II H and K lines seen on their photographic spectrum, in addition to the narrow Balmer lines, have led these investigators to classify GD 362 as composite or as a lower gravity object. This raises the interesting possibility that many such objects exist and have been overlooked both in the past and in modern surveys such as the Sloan Digital Sky Survey.

We thank Gilles Fontaine and Pierre Brassard for useful discussions. We would also like to thank the director and staff of Steward Observatory for the use of their facilities as well as the referee for useful suggestions. This work was supported in part by the NSERC Canada and by the Fonds Québécois de la recherche sur la nature et les technologies (Québec).

REFERENCES

- Green, R. F., Schmidt, M., & Liebert, J. 1986, ApJS, 61, 305
- Greenstein, J. L. 1980, ApJ, 242, 738
- Holberg, J. B., Barstow, M. A., & Green, E. M. 1997, ApJ, 474, L127
- Koester, D., Provencal, J., & Shipman, H. L. 1997, A&A, 320, L57
- Lacombe, P., Wesemael, F., Fontaine, G., & Liebert, J. 1983, ApJ, 272, 660
- Liebert, J., Bergeron, P., & Holberg, J. B. 2004, ApJS, in press
- McCook, G. P., & Sion, E. M. 1999, ApJS, 121, 1
- Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1986, Numerical Recipes: The Art of Scientific Computing (Cambridge: Cambridge Univ. Press)
- Zuckerman, B., Koester, D., Reid, I. N., & Hünsch, M. 2003, ApJ, 596, 477

Annexe C

Towards an Empirical Determination of the ZZ Ceti Instability Strip

TOWARDS AN EMPIRICAL DETERMINATION OF THE ZZ CETI INSTABILITY STRIP

A. Gianninas, P. Bergeron, and G. Fontaine

Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, Canada, H3C 3J7.

ABSTRACT

We present atmospheric parameters for a large sample of DA white dwarfs that are known to be photometrically constant. For each star, we determine the effective temperature and surface gravity by comparing high signal-to-noise ratio optical spectra to the predictions of detailed model atmosphere calculations. We also report the successful prediction and detection of photometric variability in G232-38 based on similar T_{eff} and $\log g$ determinations. The atmospheric parameters derived for this sample of constant stars as well as those for the known sample of bright ZZ Ceti stars (now boosted to a total of 39) have been obtained in a highly homogeneous way. We combine them to study the empirical red and blue edges as well as the purity of the ZZ Ceti instability strip. We find that the red edge is rather well constrained whereas there exists a rather large range of possibilities for the slope of the blue edge. Furthermore, the ZZ Ceti instability strip that results from our analysis contains no nonvariable white dwarfs. Our sample of constant stars is part of a much broader spectroscopic survey of bright (V < 17) DA white dwarfs, which we have recently undertaken. We also present here some preliminary results of this survey. Finally, we revisit the analysis by Mukadam et al. of the variable and nonvariable DA stars uncovered as part of the Sloan Digital Sky Survey. Their erroneous conclusion of an instability strip containing several nonvariable stars is traced back to the low signal-to-noise ratio spectroscopic observations used in that survey.

Subject headings: stars : individual (G232-38) - stars : oscillations - white dwarfs

1. INTRODUCTION

The ZZ Ceti stars represent a class of variable white dwarfs whose optical spectra are dominated by hydrogen lines (DA stars). They occupy a narrow region in the $T_{\rm eff}$ -log g plane known as the ZZ Ceti instability strip, with an average effective temperature around $T_{\rm eff}$ \sim 11,600 K and a width of roughly 1000 K. A precise determination of the hot and cool boundaries of this instability strip may eventually provide important constraints about the structure of the outer layers of DA white dwarfs. For instance, it has been originally shown by Winget et al. (1982) that the location of the blue edge is sensitive to the convective efficiency in the hydrogen zone, which led Fontaine, Tassoul, & Wesemael (1984) to propose using this property as a potential calibrator of the mixing-length theory in pulsating white dwarfs. Similarly, the location of the red edge may help us understand the mechanism responsible for the disappearance of the ZZ Ceti phenomenon at low temperatures, which seems to be related to either convective mixing of the hydrogen outer layer with the deep helium envelope or the interaction of pulsation with convection (Tassoul et al. 1990). Also of utmost importance is to determine whether all white dwarfs within the ZZ Ceti instability strip are pulsators. If the strip is indeed pure, as first suggested by Fontaine et al. (1982), ZZ Ceti stars would necessarily represent a phase through which all DA stars must evolve, and thus the results from asteroseismological studies might provide constraints on the properties not only of known ZZ Ceti stars, but on the whole population of DA stars as well.

Determinations of the boundaries of the ZZ Ceti instability strip prior to 1991 have been nicely summarized by Wesemael et al. (1991) who discuss the results from various observational techniques, both photometric and spectroscopic. Among the first photometric studies were those conducted using Strömgren photometry by McGraw (1979) and later by Fontaine et al. (1985). Both analyses made it evident that ZZ Ceti stars formed a rather homogeneous class of DA white dwarfs in color-color diagrams, a result that was not obvious from prior analyses based on broad-band colors. Multichannel spectrophotometric data of ZZ Ceti stars obtained by Greenstein (1976) have been analyzed by Fontaine et al. (1982), Greenstein (1982), and by Weidemann & Koester (1984) using slightly different absolute flux calibrations.

Later on, Wesemael et al. (1986), Lamontagne et al. (1987), and Lamontagne et al. (1989) have used ultraviolet spectra obtained by the IUE satellite as an independent method of measuring the effective temperature of ZZ Ceti stars. In their analysis they assumed a value of $\log g = 8$ for each star but also mentioned that this assumption could be a source of uncertainty as several ZZ Ceti stars showed signs of having $\log g$ significantly higher or lower (e.g., G226-29 and Ross 548, respectively). Finally, Daou et al. (1990) have carried out the first analysis of a set of ZZ Ceti stars using the spectroscopic technique where optical

spectroscopic observations of the individual Balmer lines are fitted with synthetic spectra to obtain measures of both T_{eff} and $\log g$.

The effective temperatures for the ZZ Ceti stars inferred from these photometric and spectroscopic studies are in fairly good agreement according to Figure 1 of Wesemael et al. (1991), with the blue edge in the range $T_{\rm eff} = 12, 130-13, 500$ K and the red edge in the range $T_{\rm eff} = 10,000 - 11,740$ K. However, this apparent agreement has been seriously questioned by Bergeron et al. (1992b) who examined the effects of different convective efficiencies on the optical spectra of DA white dwarfs in the vicinity of the ZZ Ceti instability strip. The results of their calculations showed that the predicted absolute fluxes, color indices, and equivalent widths are sensitive to the convective efficiency in the range $T_{\rm eff} \sim 8000 - 15,000$ K, with a maximum sensitivity around 13,000 K. Hence, without a detailed knowledge of the convective efficiency in the atmosphere of ZZ Ceti stars, the results from all previous photometric and spectroscopic analyses had to be considered uncertain.

This problem of the convective efficiency in the atmosphere of ZZ Ceti stars has been tackled by Bergeron et al. (1995c, B95 hereafter) who used optical spectroscopic observations combined with UV energy distributions to show that the so-called ML2/ $\alpha = 0.6$ parametrization of the mixing-length theory provides the best internal consistency between optical and UV effective temperatures, trigonometric parallaxes, V magnitudes, and gravitational redshifts. With the atmospheric convective efficiency properly parameterized, the spectroscopic technique could now yield atmospheric parameters T_{eff} and log g for the ZZ Ceti stars that were not only accurate in a relative sense, but in an absolute sense as well. Hence it was possible for the first time to demonstrate that the boundaries of the ZZ Ceti instability strip were a function of both the effective temperature and the surface gravity of the star. Our knowledge of the boundaries of the ZZ Ceti instability strip prior to the study of Mukadam et al. (2004b) discussed below is summarized in Figure 4 of Bergeron et al. (2004). The ZZ Ceti stars occupy a trapezoidal region in the $T_{\text{eff}} - \log g$ plane, with the blue edge showing a stronger dependence on the surface gravity than the red edge does. Consequently the width of the instability strip is also gravity-dependent, with $\Delta T_{
m eff}$ \sim 800 K at log g = 7.5 and nearly twice as wide at $\log g = 8.5$.

As mentioned above, the assessment of the purity of the instability strip is also of considerable interest. More than twenty years ago, Fontaine et al. (1982) have argued from their study of multichannel spectrophotometric data that the strip is most likely pure, and that ZZ Ceti stars therefore represent an evolutionary phase through which all DA white dwarfs must pass. This conclusion is strongly supported by our spectroscopic analysis of the 36 known ZZ Ceti stars shown in Figure 4 of Bergeron et al. (2004). The latter also included 54 known nonvariable white dwarfs that were all found to lie clearly outside the empirical

instability strip. We note that, prior to this effort, the purity of the instability strip had been questioned repeatedly (Dolez et al. 1991; Kepler & Nelan 1993; Kepler et al. 1995; Silvotti et al. 1997; Giovannini et al. 1998).

More recently, Mukadam et al. (2004a) reported the discovery of 35 new ZZ Ceti stars from the Sloan Digital Sky Survey (SDSS) along with a large number of stars found to be photometrically constant. Mukadam et al. (2004b) used the results from this sample of both variable and nonvariable DA stars to "redefine" the location of the instability strip and to assess its purity. Although their determinations of $T_{\rm eff}$ and log g for these new ZZ Ceti stars place virtually all of the variables within the instability strip defined by Bergeron et al. (2004), with a possible offset due to the use of a different set of model spectra (see § 3), they also found a large fraction of nonvariable stars within the strip. These results are clearly at odds with the conclusions from our work during the last ten years.

In this respect, we have been gathering over the recent years optical spectroscopic observations for all known nonvariable DA white dwarfs with the goal of (1) constraining the location of the boundaries of the ZZ Ceti instability strip not only by analyzing the variable stars within the strip itself, but also the photometrically constant stars in its vicinity, and (2) increasing the statistical significance of the purity of the empirical instability strip. Some partial results from this endeavor have been reported in Bergeron et al. (2004). Here we present the results of our entire sample in § 2, which include the discovery of a new ZZ Ceti star. In § 3 we revisit the results of Mukadam et al. (2004b) for the variable and nonvariable DA stars uncovered in the SDSS. We then report in § 4 on preliminary results of a much broader spectroscopy survey of the white dwarf catalog of McCook & Sion (1999). Our conclusions follow in § 5.

2. PHOTOMETRIC SAMPLE

2.1. Spectroscopic Observations

Our sample of photometrically constant DA stars is composed of 121 objects gathered from various sources. Firstly, we have searched the literature for all mentions of DA white dwarfs observed in high-speed photometry and where no variations were detected. These include two Ph.D. theses (McGraw 1977; Giovannini 1996) and several studies of the instability strip including those of Dolez et al. (1991), Kepler et al. (1995), and Giovannini et al. (1998). Another source consists of previously unpublished data from various observing campaigns conducted over the years by two of us (GF and PB) and collaborators. We were also able to include 4 white dwarfs identified in the Hamburg Quasar Survey and reported to be constant by Mukadam et al. (2004a). Our sample does not include, however, stars whose nonvariability has recently come to our attention such as those reported by Silvotti et al. (2005) nor those discovered in the SDSS by Mukadam et al. (2004a) and Mullally et al. (2005).

Our sample of 121 nonvariable DA stars is listed in Table 1 in order of increasing right ascension. About 30% of the spectra in this sample were already available from the previous spectroscopic analyses of Bergeron et al. (1992a) and Bergeron et al. (1995a). These spectra had been secured using our standard setup at the Steward Observatory 2.3 m telescope equipped with the Boller & Chivens spectrograph. The 4."5 slit together with the 600 line mm⁻¹ grating blazed at 3568 Å in first order provides a spectral coverage from about 3000 to 5250 Å at a resolution of ~ 6 Å FWHM. An additional 40 spectra were provided to us by C. Moran (1999, private communication); these have a comparable spectral coverage but at a slightly better resolution of ~ 3 Å FWHM. Seven spectra from the southern hemisphere are taken from the analyses of Bragaglia et al. (1995) and Bergeron et al. (2001). Finally, high signal-to-noise ratio (S/N) optical spectra for 36 objects were obtained specifically for the purpose of this project during four observing runs in 2003 and 2004, using again the Steward Observatory facility.

2.2. Fitting Procedure

The method used for fitting the spectroscopic observations relies on the so-called spectroscopic technique developed by Bergeron et al. (1992a), and which has been refined by B95 and more recently by Liebert et al. (2005, LBH hereafter). The most important improvement of the method is the way the continuum used to normalize individual Balmer lines is defined. The approach is slightly different depending on the temperature range in question. For stars in the interval $16,000 \gtrsim T_{\rm eff} \gtrsim 9000$ K, pseudo-Gaussian profiles are used whereas outside this temperature range synthetic spectra are utilized to determine the continuum (see Fig. 4 of LBH). Once the Balmer lines are normalized properly, we proceed to fit them with a grid of synthetic spectra derived from model atmospheres with a pure hydrogen composition. Our grid covers a range between $T_{\rm eff} = 1500$ K and 140,000 K by steps of 500 K at low temperatures ($T_{\rm eff} < 17,000$ K) and 5000 K at high temperatures ($T_{\rm eff} > 20,000$ K), and a range in log g between 6.5 and 9.5 by steps of 0.5 dex (steps of 0.25 dex are used between 8000 K and 17,000 K where Balmer lines reach their maxima). For models where convective energy transport becomes important, we adopt the ML2/ $\alpha = 0.6$ parametrization of the mixing-length theory, as prescribed by B95.

One of the trickiest aspects of fitting optical spectra near the ZZ Ceti instability strip

is the fact that we overlap the temperature interval over which the equivalent widths of the Balmer lines reach their maximum near $T_{\rm eff} \sim 13 - 14,000$ K (see, e.g., Fig. 4 of B95). Hence, in some cases, the minimization procedure allows two acceptable solutions, one on each side of this maximum. When the true effective temperature of the star is more than ~ 2000 K away from the maximum, it is possible from a simple visual inspection of the fits to discriminate between the cool and the hot solutions. Indeed, for identical equivalent widths, the Balmer lines on the cool side of the maximum have deeper line cores. For stars in the range $T_{\rm eff} \sim 11,500 - 16,000$ K we rely on the slopes of the observed and theoretical spectra normalized to unity at 4600 Å to discriminate between both solutions. As the slope of the energy distribution changes rapidly with temperature, it becomes relatively easy to decide which solution to adopt. Finally, whenever possible, our choice of solution has been confirmed by comparing multichannel, Strömgren, or Johnson photometry published in McCook & Sion (1999) with the theoretical color predictions of Bergeron et al. (1995b).

LBH used multiple spectroscopic observations of individual white dwarfs to estimate the external uncertainties of the fitted atmospheric parameters obtained from the spectroscopic technique (see their Fig. 8). Their estimate of the external error of each fitted parameter is 1.2% in $T_{\rm eff}$ and 0.038 dex in log g. We adopt the same uncertainties in this analysis since both data sets are identical in terms of data acquisition, reduction, and S/N.

2.3. Results

2.3.1. Adopted Atmospheric Parameters

The values of T_{eff} and $\log g$ for each of the 121 constant DA stars are listed in Table 1. We also include masses and absolute visual magnitudes derived from the evolutionary models of Wood (1995) with carbon-core compositions, helium layers of $q(\text{He}) \equiv M_{\text{He}}/M_{\star} = 10^{-2}$, and thick hydrogen layers of $q(\text{H}) = 10^{-4}$. Several individual objects in Table 1 are worth discussing before looking at the global properties of the sample.

There are four known unresolved double degenerates included in our sample. The first three of those are G1-45 (WD 0101+048; Maxted et al. 2000), and LP 550-52 (WD 1022+050) and G21-15 (WD 1824+050; Maxted & Marsh 1999). Liebert et al. (1991) have shown that in such cases the atmospheric parameters derived are in fact an average of the parameters of both components of the system. Similarly, Bergeron et al. (1990a) suggested on the basis of spectroscopic and energy distribution fits that GD 387 (WD 2003+437) is probably composed of a DA and a DC star. They derived $T_{\rm eff} = 14,340$ K and $\log g = 7.50$ for the DA component. Therefore, the atmospheric parameters reported here for these four systems

are quite uncertain.

Three stars in Table 1 have composite spectra, and reprocessing of the EUV flux from the white dwarf primary in the chromosphere of the secondary contaminates the center of some, or all, of the Balmer lines. These are PG 0308+096 (Saffer et al. 1993), PG 1643+144 (Kidder 1991) and Case 1 (WD 1213+528; Lanning 1982). For PG 0308+096, the only contaminated line is H β . Therefore, we exclude that line from the fitting procedure and are able to get a satisfactory fit with atmospheric parameters identical to those reported in Table 2 of LBH. Similarly, in the case of PG 1643+144 we exclude both H β and H γ . For Case 1 however, nearly all the spectral lines, and H β in particular, are contaminated by the companion. As before, we exclude H β but we also exclude 25 Å from either side of the line centers for H γ through H ϵ , fitting only the line wings of the Balmer series. The effective temperature thus obtained, $T_{\text{eff}} = 13,920$ K agrees well enough with that determined by Sion et al. (1984) based on a fit of to the IUE spectrum, $T_{\text{eff}} = 13,000 \pm 500$ K,

Finally, our sample also includes two stars known to be magnetic, GD 77 (WD 0637+477; Schmidt et al. 1992) and G128-72 (WD 2329+267; Moran et al. 1998). They both show the characteristic Zeeman splitting of the Balmer lines caused by their magnetic fields and thus fitting their spectra is problematic due to the additional spectral broadening. Therefore the atmospheric parameters reported here for these two objects remain uncertain. For instance we obtain for G128-72 a spectroscopic solution of $T_{\rm eff} = 11,520$ K and log g = 9.09, while a fit to the BVRIJHK photometric energy distribution combined with a trigonometric parallax measurement yields $T_{\rm eff} = 9400$ K and log g = 8.02 according to Bergeron et al. (2001).

These uncertain atmospheric parameter measurements are indicated by colons in Table 1 and we must pay particular attention to the corresponding objects when discussing the ZZ Ceti instability strip below.

2.3.2. G226-29

Before discussing the results of our analysis any further, we want to consider the case of G226-29. Being the hottest ZZ Ceti star analyzed by Bergeron et al. (2004) with $T_{\text{eff}} =$ 12, 460 K and log g = 8.28, G226-29 represents an important object for determining the slope of the blue edge of the ZZ Ceti instability strip (see Fig. 4 of Bergeron et al. 2004). These atmospheric parameter determinations are based on the same spectrum than the one used by B95 in their analysis of the atmospheric convective efficiency in DA white dwarfs. However, B95 also discuss a second spectroscopic observation of G226-29 with derived atmospheric parameters that agree within the uncertainties with the values given above. To be more specific, the atmospheric parameters derived from this second observation are $T_{\rm eff} = 12,260$ K and log g = 8.32, consistent with the previous estimates within the uncertainties quoted in the previous section. What is more interesting perhaps is that this new temperature estimate is now in perfect agreement with the UV temperature obtained from the IUE spectrum, $T_{\rm eff} = 12,270$ K (see Fig. 12 of B95). Given this improved internal consistency, we adopt from now on these new atmospheric parameters for G226-29. These are reported in Table 2 together with the values for the mass and absolute magnitude.

2.3.3. New ZZ Ceti Stars

To complete the picture, in addition to the nonvariable stars given in Table 1, we need to include all ZZ Ceti stars for which we have spectroscopic observations. These include the 36 ZZ Ceti stars from Bergeron et al. (2004) as well as 3 new ZZ Ceti stars: PB 520 and GD 133 discovered by Silvotti et al. (2005) and Silvotti et al. (2005, in preparation), respectively, and G232-38 (WD 2148+539; V = 16.4) discovered as part of our ongoing spectroscopic survey of the McCook & Sion catalog described in § 4. Our fits to the Balmer lines of these new variables are presented in Figure 1; the atmospheric parameters for each object are reported in Table 2 together with the masses and absolute visual magnitudes. The values of $T_{\rm eff}$ and log g place PB 520 and G232-39 squarely within the limits of the ZZ Ceti instability strip (see Fig. 6 below) and we were more than confident that high speed photometric measurements would confirm their variability.

Silvotti et al. (2005) had already reported the detection of photometric variability in PB 520. G232-38, on the other hand, had never been observed before for photometric variability to our knowledge. Thus, we obtained high-speed photometric observations of G232-38 during an observing run in 2004 October at the 1.6 m telescope of the Observatoire du mont Mégantic equipped with LAPOUNE, the portable Montréal three-channel photometer. In all, we were able to obtain 3.9 h of data. Our sky-subtracted, extinction-corrected light curve of G232-38 is displayed in Figure 2. G232-38 is clearly a ZZ Ceti star with multiperiodic luminosity variations. The resulting Fourier (amplitude) spectrum is displayed in Figure 3. Three main-frequency components are easily discernible, with periods of 741.6, 984.0 and 1147.4 s. These relatively long periods and the rather large amplitude ($\leq 10\%$) of the luminosity variations are consistent with the location of G232-38 somewhat closer to the red edge of the ZZ Ceti instability strip (see below).

After this paper was submitted, it has come to our attention that GD 133 (WD 1116+026) has been identified as a short period (~ 120 s), low-amplitude (< 1%) ZZ Ceti star by Silvotti et al. (2005, in preparation) based on high-speed photometric observations obtained

at the VLT with ULTRACAM. This object has long been thought to be photometrically constant according to numerous published sources (McGraw 1977; Kepler et al. 1995; Giovannini 1996; Silvotti et al. 1997). Back in March 2003, two of us (G.F. and P.B.) had even observed this star with the 61-inch telescope at the Mount Bigelow observatory, the light curve of which is displayed in Figure 4. Although there is no obvious periodicity observed in the light curve, the corresponding Fourier (amplitude) spectrum shown in Figure 5 yields one significant peak above the 1σ noise level with a period of 120.13 s, consistent with the observations of Silvotti et al. We have two independent optical spectra for GD 133, one from C. Moran (1999, private communication) that yields $T_{\text{eff}} = 12,090$ K and $\log g = 8.06$, and our own data obtained in 2003 June that yields $T_{\text{eff}} = 12,290$ K and $\log g = 8.05$. Although both sets of atmospheric parameters are consistent within the uncertainties, the former solution places GD 133 within the confines of our empirical instability strip and this is the solution we will adopt here. We report the atmospheric parameters for GD 133 in Table 2 along with our determination for the mass and absolute visual magnitude. We note that the location of GD 133 at the blue edge of the strip (see Fig. 6 below) is entirely consistent with the low amplitude and short pulsation period observed in Figures 4 and 5.

2.3.4. The Empirical ZZ Ceti Instability Strip

The locations of all 121 constant DA stars from Table 1 along with the 36 ZZ Ceti stars from Bergeron et al. (2004) and the 3 new ZZ Ceti stars discussed above are plotted in Figure 6 in a $T_{\rm eff} - \log g$ diagram. Only 82 out the 121 nonvariables have atmospheric parameters that place them within the confines of Figure 6. The bold open circles within the strip correspond, from left to right, to the new ZZ Ceti stars GD 133, PB 520, and G232-38.

Given this unbiased sample, we can clearly see that the ZZ Ceti stars define a trapezoidal region in the $T_{\rm eff}$ -log g plane in which no nonvariable stars are found, within the measurement errors, in agreement with the conclusions of Bergeron et al. (2004) and references therein. And there is certainly no need here to go through any statistical analysis to conclude that the ZZ Ceti instability strip is indeed pure. We must also note that all nonvariable white dwarfs claimed to be close or even within the ZZ Ceti instability strip are in fact well outside the strip according to our analysis. These are GD 52 (WD 0348+339; Dolez et al. 1991; Silvotti et al. 1997); G8-8 (WD 0401+250; Silvotti et al. 1997; Kepler & Nelan 1993); GD 31 (WD 0231-054), Rubin 70 (WD 0339+523), GD 202 (WD 1636+160) according to Dolez et al. (1991); PB 6089 (WD 0037-006) and G130-5 (WD 2341+322) according to Silvotti et al. (1997); BPM 20383 (WD 1053-550), BPM 2819 (WD 0255-705) according to Kepler & Nelan (1993, PG 1022+050 is a double degenerate); PG 1119+385, GD 515 (WD 1654+637),

GD 236 (WD 2226+061) according to Kepler et al. (1995). There is also the case of GD 556 (WD 2311+552; Dolez et al. 1991; Kepler et al. 1995; Giovannini et al. 1998), which we find slightly hotter than the red edge of the strip; this object is discussed further in the next section.

One of the primary goals of our study is to improve the determination of the location of the blue and red edges of the empirical ZZ Ceti instability strip by using both variable and nonvariable DA white dwarfs. The results shown in Figure 6 first reveal that the location of the red edge is better constrained than the blue edge, in particular because of the three nonvariables (GD 556, GD 426, and EC 12043-1337) that lie very close to the red edge. In contrast, there are very few hot nonvariables near the blue edge. Note that the filled squares at the top of the figure are unresolved double degenerates and the atmospheric parameters obtained here are the average values of both components of the system. Hence these cannot be used to constrain the slope of the blue edge. In addition, our revised temperature for G226-29, which is 200 K cooler than our previous estimate, now removes the previous constraint we had on the slope of the blue edge. We show in Figure 6 the range of possibilities for the blue edge as defined by our spectroscopic analysis. It is clear that additional observations close to the blue edge are badly needed to constrain the slope better.

We point out, in this connection, that nonadiabatic pulsation theory does suggest that the slope of the blue edge in a $T_{\rm eff} - \log g$ diagram such as the one shown in Figure 6 should be significantly smaller than that of the red edge, leading to an expected strip which is wider at higher surface gravities. The last word on the question of the theoretical ZZ Ceti instability strip has been presented by Fontaine et al. (2003). We show in Figure 6 an updated comparison with their theoretical results (solid lines). We find that the slope of the theoretical blue edge is compatible with the range of possibilities allowed by our empirical results. On the other hand, the slope of the theoretical red edge is not too different from our own determination however it is predicted to be somewhat hotter than the red edge inferred from observation. Our aim in the future is to focus on the *empirical* boundaries with improved statistics, especially for the blue edge.

A global characteristic that is also noticeable in Figure 6 is the trend toward higher values of $\log g$ as $T_{\rm eff}$ decreases. This is now a familiar result observed in all spectroscopic surveys extending to low temperatures (B95, Koester et al. 2001, Kleinman et al. 2004, LBH, Gianninas et al. 2005). It has been proposed by Bergeron et al. (1990b) that these high inferred masses could be the result of small amounts of helium brought to the surface by the hydrogen convection zone, hence increasing the atmospheric pressure. When analyzed with pure hydrogen models, this increased pressure could be misinterpreted as resulting from of a high mass (see also Boudreault & Bergeron 2005).

2.3.5. GD 556

One constant star in Figure 6, GD 556, has an effective temperature slightly hotter than the empirical red edge. If we refer to Table 1, there are four independent sources that concluded that GD 556 is not a variable DA white dwarf. However, we would like to recall that initially G30-20 had also been found to be constant by Dolez et al. (1991) and Bergeron & McGraw (1989, unpublished) but was later identified as a ZZ Ceti pulsator by Mukadam et al. (2002); GD 133 discussed above is also a good example. It is worth mentioning that GD 556 presents certain challenges as far as photometric observations are concerned. Firstly, it is a rather dim star with $V \sim 16.2$ (McCook & Sion 1999). Secondly, its position near the red edge implies that if it is indeed a pulsator, it should show long period pulsations that can be difficult to detect if one observes the star while two pulsational modes are interfering destructively. Considering all these facts, we believe that GD 556 is definitely worth re-observing under favorable conditions, both photometrically and spectroscopically. Nonetheless, if GD 556 truly is photometrically constant, then considering our error bars, the fact that it lies within the strip, albeit very close to the red edge, changes nothing in our conclusions relative to the the purity of the ZZ Ceti instability strip.

3. RESULTS FROM THE SLOAN DIGITAL SKY SURVEY

Since the discovery of the first pulsating DA white dwarf by Landolt (1968), HL Tau 76, and up to the spectroscopic study of Bergeron et al. (2004), a total of 36 ZZ Ceti stars were known (see Table 1 of Bergeron et al. 2004), a quarter of which had been discovered using the spectroscopic technique. In a single effort, Mukadam et al. (2004a) reported the discovery of 35 *new* ZZ Ceti pulsators, hence nearly doubling the number of known variables in this class. Thirty three of these have been discovered in the white dwarf SDSS sample, mostly from the first data release (Kleinman et al. 2004), and two more from the Hamburg Quasar Survey. Very recently, Mullally et al. (2005) reported the discovery of eleven more ZZ Ceti stars from SDSS as well as several nonvariable stars. However, the stars from Mullally et al. (2005) are not included in the analysis and discussion that follow.

ZZ Ceti candidates from the SDSS were selected for follow-up high-speed photometry on the basis of various techniques including ugriz photometry, equivalent width measurements, and the spectroscopic technique using SDSS spectra and Koester's model atmospheres. By far, the spectroscopic technique led to a significantly higher success rate of discovery than other techniques (90% by confining the candidates between $T_{\text{eff}} = 11,000$ K and 12,000 K). The 33 new SDSS pulsators are listed in Table 1 of Mukadam et al. (2004a), while nonvariables are given in their Tables 2 and 3 for different detection thresholds. An examination of these tables reveal that all objects are relatively faint $(g \gtrsim 17)$ due to the intrinsic characteristics of the Sloan survey, which is aimed at identifying distant galaxies and quasars. Stellar objects on a given plate with an assigned fiber had to be faint in order not to saturate the detector.

Even though effective temperatures and surface gravities obtained from spectroscopic fits were provided in their paper, Mukadam et al. (2004a) did not discuss the implications of their new discoveries on the empirical determination of the ZZ Ceti instability strip. That discussion was deferred to a second paper by Mukadam et al. (2004b) who analyzed in more detail the spectroscopic results from their first paper, with a particular emphasis on the empirical ZZ Ceti instability strip as inferred from the location of variables and nonvariables in the $T_{\rm eff} - \log g$ plane. In particular, the authors of that study question one more time the purity of the ZZ Ceti instability strip. The results of their analysis are contrasted with our results in Figure 7. We should mention that both analyses rely on different sets of model atmospheres (ours versus D. Koester's models) and there could be systematic offsets. But the most striking feature of the Mukadam et al. results is the large number of nonvariable white dwarfs within their empirical instability strip.

Through a painstaking statistical analysis of their results, Mukadam et al. (2004b) conclude that 18 nonvariables fall within the ZZ Ceti instability strip. Given that 33 new pulsators have been discovered from the same sample, the results suggest that the ZZ Ceti instability strip is only $\sim 50\%$ pure, at best. The authors have even estimated the probability that the instability strip is pure is only 0.004 %! This result is of course in sharp contrast with our conclusions based on a comparable number of white dwarfs, and considerably brighter than those discovered in the SDSS. If indeed the instability strip is contaminated by a significant fraction of nonvariables, as implied by Mukadam et al., then the global properties of DA stars inferred from asteroseismological studies of ZZ Ceti stars could not be generalized to the entire population of hydrogen-atmosphere white dwarfs as the ZZ Ceti pulsators would no longer represent a phase through which *all* DA stars must evolve. Another important implication of this challenging result is that the pulsation instability of a white dwarf would no longer depend solely on its effective temperature and stellar mass, but would require an additional, yet unidentified, physical parameter to discriminate variables and nonvariables within the instability strip.

How can our results be reconciled with those of Mukadam et al.? The authors claim that since the discovery of white dwarf variables in 1968, their study represents the first analysis of a homogeneous set of spectra acquired using the same instrument on the same telescope, and with consistent data reductions. There is even an implicit suggestion that this homogeneity could account for the fundamental difference between their analysis and that of Bergeron et al. (2004). However, this point of view completely ignores the incentive behind the earlier study of B95 whose *specific* goal was to provide an analysis of a homogeneous set of spectroscopic observations of the 18 ZZ Ceti stars known at that time, observable from the northern hemisphere. As discussed in \S 2.1 and 2.2 of B95, the first spectroscopic analysis of a sizeable sample of ZZ Ceti stars by Daou et al. (1990) relied on spectra acquired as part of a backup project by various observers, and thus with different telescopes, spectrographs, detectors, and reduction procedures. As such, the spectroscopic sample of Daou et al. was somewhat inhomogeneous. To overcome precisely this problem, it was deemed necessary for B95 to reacquire optical spectra for the ZZ Ceti stars using the same instrument setup and reduction techniques. Hence high S/N spectroscopic observations for the 18 ZZ Ceti stars were acquired using the 2.3-m telescope at Steward Observatory, equipped with the Boller & Chivens spectrograph and a Texas Instrument CCD detector; spectra of four additional ZZ Ceti stars from the southern hemisphere have also been analyzed by Bergeron et al., but even though the spectra were of comparable quality to those obtained at the Steward Observatory, these four stars were treated separately throughout their analysis to preserve the *homogeneity* of the spectroscopic sample.

Note that the same instrument setup has been used ever since in many of our studies, and in particular in the recent extensive spectroscopic analysis of LBH who reported effective temperatures and surface gravities for nearly 350 DA stars drawn from the Palomar Green (PG) Survey. Even though the completeness of the PG survey remains questionable, the sample analyzed by Liebert et al. represents one of the largest statistically significant samples of DA stars analyzed to date. Yet, only one ZZ Ceti candidate (PG 1349+552) was found within the empirical instability strip together with 9 previously known ZZ Ceti stars. Highspeed photometric observations by Bergeron et al. (2004) confirmed that PG 1349+552was indeed a new ZZ Ceti pulsator. Hence the conclusions of LBH are consistent with those of Bergeron et al. (2004), with the results presented in this paper, and with the results of our ongoing survey of the McCook & Sion catalog discussed in § 4, that the empirical instability strip contains no nonvariable stars. Hence, arguments based on the homogeneity of the spectroscopic analyses are unlikely to be able to explain the discrepancy between our conclusions and the contrasting results of Mukadam et al. (2004b). If anything, a spectroscopic analysis of an inhomogeneous data set should lead to a contamination of the instability strip with nonvariables, not the other way around!

Mukadam et al. (2004b) also suggested that their analysis effectively samples a different population of stars, more distant by a factor of 10 than that of the Bergeron et al. (2004) sample. Actually, taking a median value of $g \sim 18.5$ (see Fig. 8 below) and an absolute magnitude of $M_g = 11.64$ obtained from a model atmosphere at $T_{\rm eff} = 12,000$ K and $\log g = 8$, we derive a distance of only 230 pc, still relatively close by. There is really no astrophysical reason to expect white dwarfs at that distance to behave differently from those at shorter distances. Other explanations must thus be sought.

A close examination of the 18 nonvariables claimed to be within the instability strip by Mukadam et al. (2004b, see their Table 1) reveals that all objects are among the faintest in their SDSS sample, as can be seen from Figure 8 where the distribution of SDSS white dwarfs taken from Tables 1 to 3 of Mukadam et al. (2004a) is shown as a function of the g magnitude in the *ugriz* photometric system. As discussed by B95, the S/N of the spectroscopic observations is one of the key aspects of the spectroscopic technique for determining precise atmospheric parameters, the other important one being the flux calibration. Since the exposure time of a given SDSS spectrum is set by that of the entire plate, the corresponding S/N must necessarily be a function of the magnitude of the star. To verify this assertion, we have measured the S/N values¹ of all SDSS spectra taken from Mukadam et al. (2004a), and plotted these values against the corresponding g magnitude. This is shown in Figure 9. As expected, fainter stars have lower S/N spectra, and only objects brighter than $g \sim 17$ have S/N above 40. This is not the case with standard slit spectroscopy, however, where the exposure time can be adjusted on a star-to-star basis. In B95 for instance, the exposure times were set to achieve an imposed lower limit of $S/N \sim 80$, although most spectra had $S/N \gtrsim 100$ since the exposure times were also set long enough to cover several pulsation cycles (for an average of ~ 4.8 cycles) in order to obtain meaningful time-averaged spectra. We mention that this last criterion is not necessarily met in the SDSS spectroscopic data.

We now turn to a more detailed comparison of S/N between our spectroscopic sample and that of Mukadam et al. (2004a). We show in the top panel of Figure 10 the distribution of S/N values for our spectroscopic sample, including the photometrically constant stars from Table 1, the 36 ZZ Ceti stars from Bergeron et al. (2004), and the 3 new pulsators from Table 2. Out of 39 ZZ Ceti stars, 12 have spectra with an admittedly lower S/N value than the imposed lower limit of ~ 80 set by B95 in their analysis. These spectra correspond to data provided to us by C. Moran (1999, private communication) in the course of his search for double degenerate binaries, or to spectroscopic observations obtained prior to the discovery of the photometric variability of the object; this includes the two ZZ Ceti stars PB 520 and G232-38 analyzed in this paper. Still, only two ZZ Ceti stars have spectra with S/N < 50, and none below 40. The spectra for our photometrically constant sample also have fairly high S/N values, almost all above 50. In contrast, the S/N of the SDSS spectra² shown in the bottom panel of Figure 10 have considerably lower values, with most spectra

¹Here the S/N is measured in the continuum between 4450 and 4750 Å.

²Only a fraction of the SDSS spectra could be recovered from the SDSS Web site.

having S/N < 60. Even worse, the subsample of nonvariables claimed to lie within the instability strip (hatched histogram) has even lower S/N values, with most objects having S/N < 40. Hence, it is perhaps not too surprising that the results of Mukadam et al. (2004b) regarding the purity of the ZZ Ceti instability strip, which are based on an analysis of low S/N spectra, differ so much from our own conclusions based on much higher quality spectroscopic observations.

We illustrate in Figure 11 a typical spectrum from our own sample of ZZ Ceti stars, GD 66 with S/N = 80, and one from the SDSS sample, SDSS J084746.81+451006.3 with S/N = 20. The S/N value of the latter is actually more typical of the sample of nonvariables found within the strip (bottom panel of Fig. 10). It is clear that the spectroscopic solution will necessarily depend on the quality of these spectra. To quantify this assertion, we performed a Monte Carlo simulation by taking a series of model spectra at $T_{\rm eff}~=~12,000$ K and $\log g = 8.0$, by adding random noise to achieve a given signal-to-noise ratio, and by fitting these spectra with our standard fitting procedure. The resulting T_{eff} and $\log g$ values are then used to compute the standard deviations $\sigma_{T_{\text{eff}}}$ and $\sigma_{\log g}$ for this assumed S/N value. Values of S/N from 10 to 200 were explored, thus encompassing the entire range exhibited by the spectra analyzed in this paper and by Mukadam et al. (2004b). The results of this exercise are displayed in Figure 12. It is clear that stars with low S/N spectra will yield atmospheric parameters with larger internal uncertainties than those derived from higher quality observations. In particular, if we again take S/N = 20 as indicative of the SDSS stars, we see from Figure 12 that such spectra would yield effective temperatures that are uncertain by ~ 500 K. If we consider that the width of the empirical instability strip is ~ 1000 K, it is easy to understand how lower quality spectra could easily place non-variable stars within the strip and vice-versa. Furthermore, stars with S/N \sim 80, typical of our photometric sample, exhibit uncertainties of roughly 150 K, which is entirely consistent with the uncertainties quoted in §2.2. Thus despite the homogeneous characteristics of the SDSS spectra in terms of instrument, telescope, and data reductions, their typical S/N is most likely too low to allow a precise measurement of the atmospheric parameters for these stars, or to determine accurately the location of the empirical ZZ Ceti instability strip, or to assess the purity of the strip for that matter.

Finally, we examine in Figure 13 the location of the SDSS white dwarfs in the $T_{\rm eff} - \log g$ plane. In each panel we consider only the objects with spectra above a certain threshold in S/N (the bottom panel includes all objects). Also reproduced is the empirical ZZ Ceti instability strip determined by Bergeron et al. (2004). The top panel with S/N > 70 corresponds to a threshold that would include ~ 80% of all ZZ Ceti stars from the sample of Bergeron et al. (2004, top panel of Fig. 10). By comparison, only 2 objects from the SDSS sample meet this criterion. Hence if we restrict the analysis to the best spectra of both samples, the results are consistent: all variables are found within the empirical strip and all nonvariables lie outside. For S/N > 40 (middle panel), 9 objects from the SDSS sample are found in the temperature range shown in Figure 13. In this case, however, one variable star (WD 1711+6541 at $T_{\rm eff} = 11,310$ K and log g = 8.64) falls slightly below the empirical red edge of the strip, while one nonvariable star (WD 1338-0023 at $T_{\rm eff} = 11,650$ K and log g = 8.08) sits comfortably near the middle of the strip. Since these two objects are relatively bright (g = 16.89 and 17.09, respectively), we managed to secure our own spectroscopic observations of these stars using the Steward Observatory 2.3 m telescope during an observing run in 2004 May. Reassuringly enough, our independent analysis of these two objects in terms of both data and models — $T_{\rm eff} = 11,490$ K and log g = 8.56 for WD 1711+6541 and $T_{\rm eff} = 11,980$ K and log g = 7.94 for WD 1338-0023 — places them where they are expected, that is, inside and outside the instability strip, respectively (see Fig. 13).

For completeness, we show at the bottom of Figure 13 all the objects from the SDSS sample (S/N > 0). Once again, we can see that the bulk of this sample is characterized with S/N values below 40, the threshold value used in the middle panel, and that the conclusion about the purity of the ZZ Ceti instability strip rests heavily on the quality of the spectroscopic observations.

4. ONGOING SPECTROSCOPIC SURVEY

In order to increase the number of stars in our spectroscopic (and eventually photometric) sample, we have undertaken a broader spectroscopic survey of DA stars drawn from the Catalog of Spectroscopically Identified White Dwarfs of McCook & Sion (1999). We have defined our sample using the following criteria: (1) a temperature index lying between 3 and 7, (2) apparent visual magnitudes of V < 17 and (3) declination greater than -30degrees. High S/N optical spectroscopic observations are currently being secured for each star that meets these criteria. This survey was initiated with several goals in mind. First and foremost, we wish to obtain measurements of $T_{\rm eff}$ and log g for each object. Secondly, we want to confirm the spectroscopic classification of stars from the catalog (we have already identified 29 stars misclassified as DA stars that are clearly lower gravity objects). A final goal of our survey is to identify new ZZ Ceti candidates (G232-38 has been discovered in this survey). This is the reason for restricting ourselves to stars with the aforementioned range of temperature indices. Some preliminary results of this analysis have already been presented in Gianninas et al. (2005). Among these is the discovery of a unique DAZ white dwarf, GD 362 (Gianninas et al. 2004).

The combined results of our ongoing spectroscopic survey and of the photometric sample

analyzed in § 2 are displayed in Figure 14 as triangles and circles, respectively. The three lowgravity objects in the vicinity of the instability strip are known double degenerate systems. We have already discussed two of these (see § 2.3.4 and Fig. 6), the third is GD 429 (Maxted et al. 2000) which has yet to be observed for photometric variability. We clearly see that many objects from our survey lie very close to both the red and blue edges of the instability strip. These stars are important as we attempt to determine better the exact boundaries of the instability strip. Therefore, we plan on securing high speed photometric observations for these objects in order to confirm their photometric status. These results will be reported in due time.

5. CONCLUSION

We have gathered optical spectra for 121 photometrically constant DA white dwarfs for which we derived values of T_{eff} and $\log g$. Using these nonvariable white dwarfs together with a sample of 39 relatively bright ZZ Ceti stars, we wished to obtain a better understanding of the location and shape of the red and blue edges of the ZZ Ceti instability strip. In so doing, we have succeeded in better populating the T_{eff} -log g plane in the vicinity of the ZZ Ceti instability strip. We find that the location and slope of the red edge is quite well constrained whereas our newly adopted atmospheric parameters for G226-29 allow for a much broader range of slopes for the blue edge which would accommodate our current photometric sample. Furthermore, we find no nonvariable white dwarfs within the ZZ Ceti instability. This supports our belief that ZZ Ceti stars represent an evolutionary stage by which all DA white dwarfs must pass.

The optical spectra that we analyzed were gathered as part of a more extensive survey of DA white dwarfs from the catalog of McCook & Sion (1999). This survey has several goals, among them, the identification of candidate ZZ Ceti stars. Thus far, two of these, PB 520 and G232-38, have been identified as ZZ Ceti pulsators by Silvotti et al. (2005) and us, respectively. The spectroscopic technique pioneered by B95 has proven once again to be an invaluable tool as far as identifying new candidate ZZ Ceti stars. Indeed, it has maintained its 100% success rate in predicting variability in DA white dwarfs. With the inclusion of PB 520, G232-38, and GD 133 the number of ZZ Ceti stars (excluding the SDSS stars) swells to 39 of which 11 have been successfully identified using this method. Even among the ZZ Ceti stars discovered through SDSS, the most fruitful method for identifying candidates was the spectroscopic method (Mukadam et al. 2004a). In the future, in order to define better the blue edge, and to study further the instability strip as a whole, we plan on securing high speed photometric observations for all the DA white dwarfs that are within or near the boundaries of the empirical strip and that have never been observed for variability.

We have also been able to show the importance of using high-quality data (i.e., high S/N) when performing analyses such as these through an in-depth examination of the data used by Mukadam et al. (2004b) in their study. It is clear that their controversial results, which place a large number of nonvariable stars within the instability strip, can be traced back to spectra of lesser quality that greatly affect the result of the spectroscopic fit. However, one cannot discount the fact that Mukadam et al. (2004a) have nearly doubled the number of known ZZ Ceti stars as well as adding a large number of nonvariable DA white dwarfs to the mix. The study of the ZZ Ceti instability strip can only benefit from the inclusion of all recently identified variable and nonvariable DA white dwarfs within our sample. We are therefore exploring the possibility of obtaining high S/N optical spectra for all the DA white dwarfs from Mukadam et al. (2004a), Silvotti et al. (2005), and Mullally et al. (2005) in the near future.

We would like to thank the director and staff of Steward Observatory for the use of their facilities. We would also like to thank the director and staff of the Observatoire du mont Mégantic for the use of their facilities and for supporting LAPOUNE as a visitor instrument. We also acknowledge the contribution of F. Provencher in the analysis of the SDSS data. This work was supported in part by the NSERC Canada and by the Fonds Québécois de la recherche sur la nature et les technologies (Québec). GF acknowledges the contribution of the Canada Research Chair Program.

- Bergeron, P., Fontaine, G., Billères, M., Boudreault, S., & Green, E. M. 2004, ApJ, 600, 404
- Bergeron, P., Greenstein, J. L., & Liebert, J. 1990a, ApJ, 361, 190
- Bergeron, P., Leggett, S. K., & Ruiz, M. T. 2001, ApJS, 133, 413
- Bergeron, P., Liebert, J., & Fulbright, M. S. 1995a, ApJ, 444, 810
- Bergeron, P., Saffer, R. A., & Liebert, J. 1992a ApJ, 394, 228
- Bergeron, P., Wesemael, F., & Beauchamp, A. 1995b, PASP, 107, 1047
- Bergeron, P., Wesemael, F., Fontaine, G. 1992b, ApJ, 387, 288
- Bergeron, P., Wesemael, F., Fontaine, G., & Liebert, J. 1990b, ApJ, 351, L21
- Bergeron, P., Wesemael, F., Lamontagne, R., Fontaine, G., Saffer, R. A., & Allard, N. F. 1995c, ApJ, 449, 258 (B95)
- Boudreault, S., & Bergeron, P. 2005, in 14th European Workshop on White Dwarfs, ed. D. Koester & S. Moehler (San Francisco: ASP), in press
- Bragaglia, A., Renzini, A., & Bergeron, P. 1995, ApJ, 443, 735
- Daou, D., Wesemael, F., Bergeron, P., Fontaine, G., & Holberg, J. B. 1990, ApJ, 364, 242
- Dolez, N., Vauclair, G., & Koester, D. 1991, in Proceedings of the 7th European Workshop on White Dwarfs, NATO ASI Series, eds. G. Vauclair & E. Sion (Dordrecht: Kluwer), 361
- Fontaine, G., Bergeron, P., Lacombe, P., Lamontagne, R., & Talon, A. 1985, AJ, 90, 1094
- Fontaine, G., McGraw, J. T., Dearborn, D. S. P., Gustafson, J., & Lacombe, P. 1982, ApJ, 258, 651
- Fontaine, G., Brassard, P., & Charpinet, S. 2003, ApSS, 284, 257
- Fontaine, G., Tassoul, M., & Wesemael, F. 1984, in Theoretical Problems in Stellar Stability and Oscillations, 25th Liège Astrophysical Colloquium, ed. A. Noels & M. Gabriel (Liège: Presses Univ. Liège), 328
- Gianninas, A., Bergeron, P., & Dufour, P. 2005, in 14th European Workshop on White Dwarfs, ed. D. Koester & S. Moehler (San Francisco: ASP), in press

- Gianninas, A., Dufour, P., & Bergeron, P. 2004, ApJ, 617, L57
- Giovannini, O. 1996, Ph.D. thesis, Universidade Federal do Rio Grande do Sul, Brazil
- Giovannini, O., Kepler, S. A., Kanaan, A., Wood, M. A., Claver, C. F., Koester, D. 1998, Baltic Astron., 7, 131
- Greenstein, J. L. 1976, AJ, 81, 323
- Greenstein, J. L. 1982, ApJ, 258, 661
- Kanaan, A., Kepler, S. O., & Winget, D. E. 2002, A&A, 389, 896
- Kepler, S. O., Giovannini, O., Kanaan, A., Wood, M. A., & Claver, C. F. 1995, Baltic Astron., 4, 157
- Kepler, S. O., & Nelan, E. P. 1993, AJ, 105, 608
- Kidder, K. M. 1991, Ph.D. thesis, University of Arizona, Tucson
- Kleinman, S. J., et al. 2004, ApJ, 607, 426
- Koester, D., Napiwotzki, R., Christlieb, N., Drechsel, H., Hagen, H.-J., Heber, U., Homeier, D., Karl, C., Leibundgut, B., Moehler, S., Nelemans, G., Pauli, E.-M., Reimers, D., Renzini, A., & Yungelson, L. 2001, A&A, 378, 556
- Lamontagne, R., Wesemael, F., & Fontaine, G. 1987, in IAU Colloquium 95, The Second Conference on Faint Blue Stars, eds. A. G. Davis Philip, D. S. Hayes, & J. Liebert (Schenectady: L. Davis), 677
- Lamontagne, R., Wesemael, F., Fontaine, G., Wegner, G., and Nelan, E. P. 1989, in IAU Colloq. 114, White Dwarfs, ed. G. Wegner (Berlin: Springer), 240
- Landolt, A. U., 1968, ApJ, 153, 151
- Lanning, H. H. 1982, ApJ, 253, 752
- Liebert, J., Bergeron, P., & Holberg, J. B. 2005, ApJS, 156, 47 (LBH)
- Liebert, J., Bergeron, P., & Saffer, R. A. 1991, in Proceedings of the 7th European Workshop on White Dwarfs, NATO ASI Series, eds. G. Vauclair & E. M. Sion (Dordrecht: Kluwer), 409
- Maxted, P. F. L., & Marsh, T. R. 1999, MNRAS, 307, 122

- Maxted, P. F. L., Marsh, T. R., & Moran, C. K. J. 2000, MNRAS, 319, 305
- McCook, G. P., & Sion, E. M. 1999, ApJS, 121, 1
- McGraw, J. T. 1977, Ph.D. thesis, University of Texas at Austin
- McGraw, J. T. 1979, ApJ, 229, 203
- Moran, C., Marsh, T. R., & Dhillon, V. S. 1998, MNRAS, 299, 218
- Mukadam, A. S., Kepler, S. O., Winget, D. E., Bergeron, P. 2002, ApJ, 580, 429
- Mukadam, A. S., et al. 2004a, ApJ, 607, 982
- Mukadam, A. S., Winget, D. E., von Hippel, T., Montgomery, M. H., Kepler, S. O., & Costa, A. F. M. 2004b, ApJ, 612, 1052
- Mullally, F., Thompson, S. E., Castanheira, B.G., Winget, D. E., Kepler, S. O., Eisenstein, D. J., Kleinman, S. J., & Nitta, A. 2005, ApJ, 625, 966
- Saffer, R. A., Wade, R. A., Liebert, J., Green, R. F., Sion, E. M., Bechtold, J., Foss, D., & Kidder, K 1993, AJ, 105, 1945
- Schmidt, G. D., Stockman, H. S., & Smith, P. S. 1992, ApJ, 398, L57
- Silvotti, R., Bartolini, C., Cosentino, G., Guarnieri, A., & Piccioni, A. 1997, in 10th European Workshop on White Dwarfs, ed. J. Isern, M. Hernanz & E. Garcia-Berro (Dordrecht: Kluwer), 489
- Silvotti, R., Voss, B., Koester, D., & Bruni, I. 2005, in 14th European Workshop on White Dwarfs, ed. D. Koester & S. Moehler (San Francisco: ASP), in press
- Sion, E. M., Guinan, E. F., & Wesemael, F. 1984, ApJ, 279, 758
- Tassoul, M., Fontaine, G., & Winget, D.E. 1990, ApJS, 72, 335
- Weidemann, V., & Koester, D. 1984, A&A, 132, 195
- Wesemael, F., Bergeron, P., Fontaine, G., & Lamontagne, R. 1991, in Proceedings of the 7th European Workshop on White Dwarfs, NATO ASI Series, eds. G. Vauclair & E. M. Sion (Dordrecht: Kluwer), 159

Wesemael, F., & Fontaine, G. 1985, ApJ, 228, 764

Wesemael, F., Lamontagne, R., & Fontaine, G. 1986, AJ, 91, 1376
- Winget, D.E., Van Horn, H.M., Tassoul, M., Hansen, C.J., Fontaine, G., & Carroll, B.W. 1982, ApJ, 252, L65
- Wood, M. A. 1995, in Proceedings of the 9th European Workshop on White Dwarfs, eds. D. Koester & K. Werner (Berlin: Springer), 41

This preprint was prepared with the AAS ${\rm IAT}_{\rm E}\!{\rm X}$ macros v5.2.

WD	Name	$T_{\rm eff}(K)$	log a	MIM	Mir	Sources
0005 102	C150 100	1 (10)	7 70	0.50	11.02	bources
0005-163	G158-132	14160	1.19	0.50	11.03	1
0009+501	G217-37	0100	8.36	0.83	14.31	2
000+1100	G31-35	9640	8.16	0.70	12.53	3
0030+444	G172-4	10370	8.20	0.73	12.33	3
0032-175	G226-135	9830	8.18	0.71	12.49	4
0033+016	G1-7	10980	8.83	1.12	13.27	5,6
0037-006	PB 6089	14920	7.86	0.54	11.04	1, 2, 5, 7, 8
$0101 + 048^{a}$	G1-45	8530:	8.27:	0.77	13.17	4
0103-278	G269-93	13290	7.83	0.52	11.21	6,9
0115+521	GD 275	10710	8.12	0.68	12.09	1
0135-052	L870-2	7280	7.85	0.51	13.18	4
0143+216	G94-9	9290	8.49	0.92	13.22	3
0148+467	GD 279	13430	7.93	0.57	11.33	3
0151+017	G71-41	12330	7.89	0.54	11.42	1, 6, 8
0208+396	G74-7	7340	8.10	0.66	13.49	2
0213 ± 396	GD 25	9320	8.56	0.96	13.32	3
0231 - 054	GD 31	13550	8.66	1.02	12.46	3.5
0238 ± 333	KUV 02386+3322	13390	8 23	0.75	11 77	10
0243 ± 155	PG 0243+155	16670	8.02	0.63	11.08	5
0255 - 705	BPM 02819	10560	8.10	0.66	12.11	3, 6, 11
0302 + 621	CD 426	11000	8.01	0.72	10.15	5
0302-021	DC 0308-L006	25000	0.21 9.09	0.10	10.36	0
0306-073	LTT 1648	20300	7.86	0.00	12.30	20
0320-213	C38 4	9200	0.00 0.12	0.52	12.24	2, 9
0339+523	Rubin 70	12640	7.39	0.33	10.69	5, 6, 8, 9
0330_035	CD 47	12470	7 08	0.60	11 59	3 5
0309-030	CD 52	14100	8.20	0.00	11.62	1 7
0350-035	UD 02	1/020	0.20 Q 10	0.72	11.00	11 ¹
0332+030	112 4 C 9 9	14030	0.19 7 00	0.70	11.04	156791
0401 + 250	G0-0 LD 007	12240	0.99	0.00	11.07	1, 0, 0, 7, 8, 1
0400+109	LD 221	13070	0.20	0.76	11.02	12
0407+179	HZ 10	13620	7.79	0.50	11.11	3
0418+153	LB 212	13480	7.99	0.61	11.41	5
0440 + 510	G175-46	8620	8.22	0.74	13.04	3
0453+418	GD 64	13660	7.68	0.44	10.94	3
0513 ± 756	GD 433	13540	7.76	0.48	11.08	1,5

 Table 1.
 Atmospheric Parameters of Photometrically Constant DA White Dwarfs

-	24 -
---	------

Table 1—Continued

	~					
WD	Name	$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V	Sources
0518+005	GD 67	13340	7.88	0.55	11.28	3
0533 + 322	G98-18	10680	7.89	0.54	11.76	1, 5
$0637 + 477^{c}$	GD 77	14000:	8.21:	0.74	11.66	2
0710+216	GD 83	10480	8.07	0.65	12.09	3
0743+442	GD 89	14500	8.36	0.84	11.85	1
0816+387	G111-71	7700	8.07	0.64	13.26	4
0830+371	G115-9	9180	8.26	0.76	12.87	3
0839-327	LHS 253	9270	7.89	0.54	12.27	3
0913 + 442	G116-16	8680	8.20	0.72	12.98	3
0920+216	LB 3025	18000	7.83	0.53	10.66	5
0926-039	G161-36	12860	7.86	0.53	11.32	8
0928-713	BPM 05639	8580	8.28	0.78	13.16	3
0943+441	G116-52	12820	7.55	0.39	10.90	6, 8, 11
0950+077	PG 0950+078	14770	7.95	0.59	11.19	12
0950 - 572	BPM 19738	12400	7.68	0.44	11.13	3, 8
0955+247	G49-33	8620	8.30	0.79	13.18	3
0956 + 045	PG 0956+046	18150	7.81	0.52	10.62	5
$1022 + 050^{a}$	LP 550-52	11680:	7.64:	0.42	11.20	6, 8, 11
1026+023	LP 550-292	12500	7.95	0.58	11.49	1, 6, 8, 9
1046+281	Ton 547	12610	7.97	0.59	11.51	3, 7
1053 - 550	BPM 20383	13420	7.81	0.51	11.16	11
1101 + 364	PG 1101+364	13040	7.24	0.29	10.41	6, 9
1108 + 475	GD 129	12460	8.24	0.76	11.92	13
1119 + 385	PG 1119+386	16500	7.94	0.58	10.98	6
1122 + 546	GD 307	14380	7.83	0.52	11.06	1
1147+255	G121-22	10200	8.14	0.69	12.29	3, 6
1204 - 136	EC 12043-1337	11180	8.24	0.76	12.16	13
1213+528 ^b	Case 1	13920	8.16	0.71	11.60	11
1229-012	HE 1229-0115	19740	7.52	0.41	10.05	5, 7
1241 + 235	LB 16	26730	7.93	0.60	10.05	7
1244+149	G61-17	10680	8.06	0.64	12.02	6
1253 + 482	GD 320	13970	7.59	0.41	10.78	1, 8
1327-083	Wolf 485A	13920	7.86	0.54	11.17	1, 6, 8, 11, 14
1418 - 005	PG 1418-005	14290	7.82	0.51	11.06	6, 8
1431 + 153	PG 1431+154	13550	7.95	0.58	11.35	12

WD	Name	$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V	Sources
1448+077	G66-32	14170	7.75	0.48	10.97	6, 8
1507-105	GD 176	10100	7.75	0.47	11.76	3,6
1508 + 637	GD 340	10450	8.12	0.68	12.18	1
1510 + 566	G201-39	9240	8.13	0.68	12.63	3
1531+184	GD 186	13220	7.89	0.55	11.30	3
1537 + 651	GD 348	9740	8.15	0.69	12.47	3, 7
1539 - 035	GD 189	10080	8.30	0.79	12.59	3,6
1544 - 377	L481-60	10580	8.09	0.66	12.09	8
1550 + 183	GD 194	14260	8.25	0.77	11.70	6
1555-089	G152-B4B	13960	7.83	0.52	11.12	6, 8
1606+422	Case 2	12690	7.74	0.47	11.17	2, 6, 8
1609 + 135	G138-8	9320	8.64	1.01	13.48	3
1636 + 160	GD 202	13620	7.81	0.51	11.13	5,6
1637 + 335	G180+65	10150	8.17	0.71	12.35	3
1643+143 ^b	PG 1643+144	26850	7.91	0.60	10.02	12
1654+637	GD 515	15070	7.63	0.43	10.70	6
1655 + 215	G169-34	9310	8.20	0.73	12.72	2, 3
1706+332	G181-B5B	12960	7.80	0.50	11.21	3
1716 + 020	G19-20	13210	7.77	0.49	11.13	3, 6, 8
1743-132	G154-85B	12300	7.88	0.54	11.42	3
1824+040 ^a	G21-15	11970:	7.57:	0.39	11.06	5
1826 - 045	G21-16	9210	8.16	0.70	12.70	3
1827-106	G155-19	13300	7.63	0.42	10.93	8
1840-111	G155-34	10170	8.23	0.75	12.44	3, 6
1857+119	G141-54	9920	8.12	0.68	12.36	3, 6
1911+135	G142-B2A	13270	7.85	0.53	11.25	6, 9
1952 - 206	LTT 7873	13740	7.85	0.53	11.18	2, 3
1953-011	G92-40	7780	8.25	0.75	13.49	3
$2003 + 437^{a}$	GD 387	16910:	7.80:	0.51	10.73	1
2025+488	GD 390	10720	8.05	0.63	11.99	1
2029+183	GD 230	13090	7.79	0.49	11.18	3
2047+372	G210-36	14070	8.21	0.74	11.66	8
2059+190	G145-4	6980	8.42	0.86	14.18	2
2105 - 820	BPM 01266	10620	8.25	0.76	12.33	3, 6, 8, 11
2115 - 560	BPM 27273	9760	8.13	0.68	12.43	6

Table 1—Continued

WD	Name	$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V	Sources
2117+539	G231-40	13990	7.78	0.49	11.04	9
2124 + 550	G231-43	13340	8.34	0.82	11.95	3, 9
2126 + 734	G261-43	15290	7.84	0.53	10.97	6,11
2136 + 229	G126-18	10210	8.10	0.67	12.23	6
2149+372	GD 397	13080	7.87	0.54	11.29	1,6
2226+061	GD 236	15280	7.62	0.43	10.66	6
2246 + 223	G127-58	10650	8.80	1.10	13.32	3,6
2258 + 406	G216-B14B	9860	8.23	0.75	12.55	6
2306 + 130	KUV 23060+1303	13250	7.92	0.56	11.34	9
2311+552	GD 556	11180	8.15	0.69	12.01	1, 5, 6, 8
2314+064	PB 5312	17570	7.98	0.61	10.93	1, 5
2322 + 206	PG 2322+207	13060	7.84	0.52	11.26	2, 9
2329+267°	G128-72	11520:	9.09:	1.24	13.67	2, 3
2337 - 760	BPM 15727	13420	7.39	0.33	10.57	6
2341+322	G130-5	12570	7.93	0.57	11.45	1, 3, 5, 6, 7, 8
2351 - 335	LDS 826A	8850	8.27	0.77	13.02	2

Table 1—Continued

^aDouble degenerate

^bComposite spectrum

^cMagnetic

Note. — (1) G. Fontaine (1979-1984, unpublished); (2) P. Bergeron & J. T. McGraw (1989, unpublished); (3) McGraw (1977); (4) Kanaan et al. (2002); (5) G. Vauclair (1979-1999, unpublished), Dolez et al. (1991); (6) Kepler et al. (1995); (7) Silvotti et al. (1997); (8) Giovannini (1996); (9) P. Bergeron & G. Fontaine (1990, unpublished); (10) G. Fontaine & P. Bergeron (1999, unpublished); (11) Kepler & Nelan (1993); (12) Mukadam et al. (2004a); (13) G. Fontaine & P. Bergeron (2003, unpublished); (14) Wesemael & Fontaine (1985).

Table 2. Atmospheric Parameters of ZZ Ceti Stars

				·	
WD	Name	$T_{\rm eff}$ (K)	$\log g$	M/M_{\odot}	M_V
1039 + 412	PB 520	11550	8.10	0.66	11.85
1116 + 026	GD 133	12090	8.06	0.64	11.70
$1647 + 591^{a}$	G226-29	12260	8.31	0.80	12.10
2148 + 539	G232-38	11350	8.01	0.61	11.76

^aBased on a new spectroscopic observation (see text).

Fig. 1.— Model fits to the individual Balmer line profiles of GD 133, PB 520, and G232-38. The lines range from H β (*bottom*) to H8 (*top*), each offset vertically by a factor of 0.2. Values of T_{eff} and log g have been determined from ML2/ $\alpha = 0.6$ models.

Fig. 2.— Light curve of G232-38, observed in "white light" with LAPOUNE attached to the Observatoire du mont Mégantic 1.6 m telescope. Each point represents a sampling time of 10 s. The light curve is expressed in terms of residual amplitude relative to the mean brightness of the star.

Fig. 3.— Fourier (amplitude) spectrum of the light curve of G232-38 in the 0-10 mHz bandpass. The spectrum in the region from 10 mHz to the Nyquist frequency is entirely consistent with noise and is not shown. The amplitude axis is expressed in terms of the percentage variations about the mean brightness of the star.

Fig. 4.— Light curve of GD 133, observed in "white light" with LAPOUNE attached to the 61-inch telescope at the Mount Bigelow observatory. Each point represents a sampling time of 10 s. The light curve is expressed in terms of residual amplitude relative to the mean brightness of the star.

Fig. 5.— Same as Figure 3 for GD 133 and in the bandpass 0-15 mHz. The dashed line represents the 1σ noise level.

Fig. 6.— $T_{\rm eff}$ – log g distribution for DA white dwarfs with high-speed photometric measurements. The open circles represent the 36 ZZ Ceti stars from Bergeron et al. (2004) as well as the three recent discoveries reported by (*bold circles from left to right*) Silvotti et al. (2005, in preparation, GD 133), Silvotti et al. (2005, PB 520) and in this paper (G232-38). The filled circles represent the photometrically constant DA stars from Table 1 with appropriate effective temperatures; while the filled squares correspond to unresolved double degenerate systems. The error bars in the upper right corner represent the average uncertainties of the spectroscopic method in the region of the ZZ Ceti stars. The dashed lines represent the empirical blue and red edges of the instability strip while the solid lines represent the theoretical boundaries of the instability strip as computed by Fontaine et al. (2003).

Fig. 7.— $T_{\text{eff}} - \log g$ distribution for DA white dwarfs with high-speed photometric measurements taken from this paper and from the analysis of Mukadam et al. (2004b). The open circles represent ZZ Ceti stars while filled circles correspond to photometrically constant stars.

Fig. 8.— Number distribution of DA stars taken from Tables 1 to 3 of Mukadam et al. (2004a) as a function of the g magnitude (*solid line histogram*) compared with the distribution of

nonvariables claimed to lie within the ZZ Ceti instability strip (*hatched histogram*) taken from Table 1 of Mukadam et al. (2004b).

Fig. 9.— S/N of the spectroscopic observations of the DA stars from Tables 1 to 3 of Mukadam et al. (2004a) as a function of the g magnitude.

Fig. 10.— Top: Distribution of S/N for the 121 spectra of the photometrically constant stars from Table 1 (solid line histogram) and of the 36 ZZ Ceti stars from Bergeron et al. (2004) and the 3 additional ZZ Ceti stars from Table 2 (hatched histogram). Bottom: Same as the top panel but for 113 out of the 118 white dwarf spectra taken from Tables 1 to 3 of Mukadam et al. (2004a, solid line histogram), and for 17 out of the 18 nonvariables that lie within the ZZ Ceti instability strip according to Mukadam et al. (2004b, hatched histogram).

Fig. 11.— Typical ZZ Ceti spectra from the SDSS (top) and Bergeron et al. (2004, bottom). Both spectra are flux calibrated, normalized to unity at 4500 Å, and offset by a factor of 0.8 for clarity. The signal-to-noise ratio is S/N = 20 for SDSS J084746.81+451006.3 and S/N = 80 for GD 66.

Fig. 12.— A plot of the uncertainty in T_{eff} (solid line) and $\log g$ (dashed line) as a function of S/N for a simulated (see text) DA white dwarf with $T_{\text{eff}} = 12,000$ K and $\log g = 8.0$.

Fig. 13.— Surface gravity – effective temperature distribution for the DA stars taken from Mukadam et al. (2004a) for different S/N thresholds. The dashed lines represent the empirical blue and red edges of the instability strip defined by Bergeron et al. (2004). Open circles represent ZZ Ceti stars while the filled circles correspond to nonvariables. The open and filled triangles represent our determinations of the atmospheric parameters of WD 1338–0023 and WD 1711+6541 (*left and right symbols*, respectively) based on our own spectroscopic observations and model spectra; dashed lines join these determinations with those of Mukadam et al. (2004a).

Fig. 14.— Same as Fig. 6 with the addition of all the DA white dwarfs from our ongoing spectroscopic survey of the catalog of McCook & Sion (1999). The circles correspond to objects that have been investigated for photometric variability with the open circles representing the ZZ Ceti stars, while the filled triangles correspond to objects that have not been investigated for photometric variability.

Time (seconds)

Time (seconds)

- 39 -

S/N

