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Summary

There exist many natural products bearing syn-disposed 1 ,3-methyl groups on

an acyclic carbon chains, also known as a deoxypropionate unit. Consequently,

efforts have been devoted towards the development of methodologies in order to

readily access such structural motifs. The iterative methodology developed by the

Hanessian group takes advantage of substrate and conformational control. Addition

of lithium dimethylcuprate to a1koxy and methy1-fi-unsaturated esters,

controlled by 1,2 and 1,3-induction, respectively, affords the desired structural unit in

an iterative maimer. This work studies the idea of conformational control and the

introduction of anchoring groups towards the addition of lithium dirnethylcuprate to

û6-unsaturated esters. Anchoring groups orient the acyclic chain of these esters in

certain preferred conformations by avoiding high energy syn-pentane interactions

with the pendant C-methyl groups. A variety of anchoring groups are surveyed.

Some anchoring groups introduce syn-pentane interactions in ail possible

conformations, some anchoring groups introduce only one costly interaction, whereas

other groups studied introduce no svn-pentane interactions. The diastercomeric ratios

obtained upon conjugate cuprate additions to these substrates are compared and

conclusions are drawn based on the resuits thus obtained. Another factor investigated

is the ‘ester’ effect. It has been observed that the sterically larger ester groups lead to

higher diastereoselectivities, compared to smaller esters. A variety of esters were

surveyed. Finally, a variety of alkoxy substituents were studied in order to shed some

light on the nature interaction ofthe alkoxy substituent with the reagent.

Key Words: acyclic stereoselection, conjugate addition, deoxypropionate, substrate

control, syn-pentane interaction
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Résumé

Il existe de nombreux produits naturels comportant des groupes de type 1,3-

methyles syn, appelé unité désoxypropionate. En conséquence, de nombreux efforts

ont été menés afin de développer des méthodologies donnant accès à facile ce type de

motif. La méthodologie itérative développée au sein du groupe Hanessian est basée

sur un contrôle conformatioirnel du substrat. L’addition de dirnéthylcuprate de

lithium sur un ester t,6-insaturé substitué en alkoxy et S-méthyle, contrôlée

respectivement par induction 1,2 et 1,3 permet de synthétiser l’unité structurale

désirée de manière itérative. Le travail présenté dans ce mémoire étudie te concept de

contrôle conformationnel et d’introduction de groupes d’ancrage pour l’addition de

diméthylcuprate de lithium sur des esters ,6-insaturés. Les groupes d’ancrage

doivent permettre de figer la molécule dans certaines conformations privilégiées par

l’introduction d’intéractions de type syn-pentane avec les groupes C-méthyles.

Différents groupes d’ancrage ont été évalués. Certains introduisent des intéractions

syn-pentane dan toutes les conformations possibles, d’autres introduisent seulement

une intéraction favorable et, enfin certains n’introduisent pas d”intéractions syn

pentane. Les ratios diastéréomériques obtenus à la suite de l’addition conjuguée du

cuprate à ces substrats sont comparés et les conclusions sont basées sur les résultats

obtenus. Un second facteur étudié est l’effet de l’ester. Il est montré que les esters

plus volumineux donnent de meilleures diastéréosélectivités. Pour finir, différents

éthers ont été étudiés dans le but de récolter de l’information sur la nature de

l’intéraction entre le substituant alkoxy et le réactif.

Mots clés: désoxypropionate, interaction syn-pentane, stéréosélection acyclique,

substrat dépendant
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Chapter I:

An introduction to deoxypropionate units

This chapter will focus on natural products that contain deoxypropionate

subunits and the biosynthesis of natural products derived from the polyketide

pathway. Also, discussed in this chapter are sorne of the iterative approaches to

accessing deoxypropionate units. Aspects of conformational design that bias the

molecules towards adapting certain energetically favored conformations and the

implications that this may have in the synthesis of deoxypropionates will be

highlighted.

1.1. Natural products with deoxypropionate motifs

The isolation, structural determination and synthesis of biologicaÏly active

natural products are of continuing interest, due to the fiindarnental scientific

understanding that is realized and the synthetic challenges involved. 13 Synthetically,

natural products pose great challenges, none more so than the development of new

methodology to access certain structural motifs. While describing the challenges that

were encountered during the synthesis of vitamin B12, Eschenmoser delineated the

challenges that organic chemists confront while tackiing natural product synthesis:

Na! tirai produci synthesis poses the challenge to consider and

deveÏop new pathways of structi irai transformation. Na!uraÏ products

as rargets for synthetic research possess ci speciaÏ frrtiÏiiy in this

regctrcl because the structural channeis of biosynthesis are not

necessariiy the conduits oforganic ynthesis.”

A. Eschenmoser4

1



One such structural motif is a deoxypropionate unit, found in certain natural products,

and biosynthetically produced through the successive decarboxylative condensation

ofsmaii carboxylic acids as their Co-enzyme A esters (Figure 1).5.6

MeMe MeMe

syn- deoxypropionate unit anti- deoxypropionate unit

Figure 1: Deoxypropionate units.

Many natural products harbor one or more deoxypropionate triads within their

structural framework. A deoxypropionate unit is a three carbon unit, a

deoxypropionate triad, is defined as consisting of a 2,4-dimethylpentane unit.7 In

natural products with more than one stereotriad, the metbyl groups are generaiiy in an

ail syn-orientation on a cyclic or acyclic framework, and there are only a few

exceptions where the deoxypropionate unit bas an anti- orientation.

Natural products harboring deoxypropionate units exhibit diverse biological

activities.8 For example, some cyclic and acyclic natural products with syn-oriented

deoxypropionate units are the cytotoxic dolicuÏide9. TMC- 151.10 and the $iphonaria”

family of natural products consisting of siphonarienal, siphonarienolone, pectinatone,

which exhibit activity against Gram-positive bacteria, yeast and several human cancer

ccli unes (Figure 2).

Other natural products with anti-disposed deoxypropionate units such as

venturicidine aglycone,12 ionomycin,13 and bonelidin14 are featured in Figure 3.

Ionomycin is a phanriacological tool routinely used for the intracellular transport of
2+ . . . . . . .Ca . Venturcidine aglycone possesses antifungal antibiotic activity with potential

use in agriculture. Borrelidin possesses a wide array ofbiological activities including

inhibition of cyclin-dependent kinase of Saccharornyces cerevisiac and potent

antiangiogenesis activity in the rat aorta. The recently isolated cane beetle sex



pheromone, 4,6,8,10,16,18-hexamethyldocosane has only been isolated in very small

amounts, and its biological activity bas flot yet been detenrdned.’5

OH OH O3-Mannose

TMC-151A Pectinatone

(+)-Siphonarienolone

Figure 2: Natural products with syn-deoxypropionate units.

-Y
antilantilanti syn

468,10,16,1 8-Hexamethyldocosane

synlanti
Ionomycin anhiisynlsyn

Figure 3: Natural products with anti-deoxypropionate triads.

OH

(-)-Doliculïde

(+)-Siphonarienal

00H

anti anti

Venturicidine aglycon

H.

syn
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Nature’s preference for syn-2,4-dimethylpentane units probably originates

from a preferred biosynthetic pathway in which energetically preferred conformations

avoid undesirable high energy interactions.7 Placing altemating methyl groups in an

ail yn- orientation decreases the number of high energy conformations by avoiding

syn-pentane interactions. Thus as shown in figure 4. the acyclic molecule

pectinatone adopts a conformation devoid of svn-pentane interactions (see Section I

.4). SimiÏarly the curai hydrocarbon chain in borrelidin, a macrocyciic structure, also

exists in a folded conformation wherein syn-pentane interactions are avoided. We

have found it convenient to display the acyclic chains on a virtual diamond lattice

backbone, where the methyl groups are gauche with respect to each other. 14d In fact

the solid-state conformations of pectinatone and borrelidin as seen from their X-ray

structures show quasi perfect congruence with the diamond lattice model.

C

IF;
•%74

db

Figure 4: (A) Superimposition ofthe carbon backbonc of(-)-pectinatone on a virtual

diamond lattice; (B) X-ray crystal structure of pectinatone; (C) Superimposition of

borrelidin on a virtual diamond lattice: (D) X-ray crystal structure of borrelidin.14d

A B

D
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1.2. Biosynthesïs of polyketides

Polyketide is a term that defines a class of molecules produced through

successive condensation of small carboxylic acids, such as acetates and propionates.

as their Co-enzyme A thioesters.5 Polyketide natural products are produced as

secondary metabolites. They are structurally complex and diverse molecules

displaying antibiotic, antifungal, antiparasitic. immunosuppressive, and antitumor

activities (Figure 5)6

Erythromycin A
(antibacterial)

N(CH3)2

Figure 5: Examples of some polyketide (propionate) derived natural products.

Despite their structural complexity, the biosynthesis of polyketides proceeds through

simple decarboxylative condensations of acetate or propionate units, paralleling the

reiterative biosynthesis of fatty acids.6 Structural compexity in polyketides arises

afier each condensation step as welI as by enzymes that catalyze different chemical

Actinorhodin
(antibiotic)

Epothilone B
(anticancer)

Rapamycin
(immunosuppressant)

Rifamycin B
(antituberculosis)

2°
H3CO

0H



transformations (such as cyclizations. oxidations, aikylations. glycosylations).’6

There are two types of polyketides, aromatic and complex. Aromatic polyketides are

mainly assembled from the condensation of acetate units, whereas complex

polyketides are cornposed of acetates, propionates, or butyrates. Aromatic

polyketides are constructed through a reiterative process, wherein the ,6-carbonyl

groups formed afier each cycle are usually lefi unreduced. However. in complex

polyketides the structural diversity arises from the various organic acid monomers

available (Figure 6) and the extent of fl-carbon processing (to carbonyl, hydroxyl,

enoyl, or methylene groups), which varies from cycle to cycle.5’17

o o o o o

SCoA SCoA SCoA SCoA

Acetyl C0A Propionyl C0A Butryl CoA Isobutryl CoA Isovaleryl C0A

SCoA SCoA SCoA HOSCoA

Hexanoyl CoA Octanoyl CoA Acetoacetyl CoA Malonyl C0A

HOÏSCoA °SCoA €—SCoA

Methylmalonyl C0A Benzoyl CoA Cinnamoyl C0A p-Coumaroyl CoA

HO_ïj_JSCoA HO_j_rSCOA
Ô<CoA

Caffeoyl C0A Feruloyl CoA N-Methyl anthraniloyl CoA

Figure 6: Starter and extender biosynthetic units.8

Birch and Donovan’9 proposed that polyketides are synthesized through the

condensation of acetate units. Research conducted since their first hypothesis has

drawn a substantial analogy between the formation of long chain fatty acids carried

6



out by fatty acid synthases and the synthesis of polyketides by polyketide synthases

(PKS).

Polyketide synthases (PKSs) are large multifunctional proteins, consisting

mainly of three architecturally different types. Type I synthases are large

multidomain proteins which carry ail the active sites that are necessary for polyketide

synthesis. These synthases are analogous to vertebrate fatty acid synthases, and are

responsible for the biosynthesis of fungal polyketides. Type II synthases, on the

other hand, have similar active sites distributed among smaller, monofunctional

polypeptides. Type II synthases are analogous to bacterial fatty acid synthases, and

are responsible for the biosynthesis of bacterial aromatic natural products such as

actinorhodin (Figure 5). Type III synthases, also known as Modular PKSs, have

multiple copies of active sites that are basically homologous to those found in fatty

acid synthases.2°

Modular PKSs are large multifunctional proteins that participate in the

biosynthesis of complex macrolide antibiotics such as erythromycin A (figure 5).

They are organized into multiple active sites called modules, which are composed of

catalytic active domains (100-400 amino acids each). 20.2 j
Each of these modules is

responsible for one cycle of polyketide chain extension and functional group

modification. which takes place within the individual domains of each of the

modules. The modules generally have many domains, each minimally containing:

j) acyl transferase (AT): catalyses the loading of the starter, extender and

intermediate extender units

ii) acyl carrier proteins (ACP): functions in holding the growing macrolide as

thioesters and.

iii) fl-keto acylthioester synthase (KS): catalyses chain extension

Other domains present in the various modules differ with regard to the amount of

functional group manipulation that the growing polyketide macrolide undergoes.

Some ofthe other domains comprise:

i) keto reductase (KS): catalyses reduction to the alcohol functionalit

ii) dehydratase (DH): eliminates water to give the unsaturated thioester
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iii) enol reductase tER): catalyzes the final reduction

iv) thioesterase (TE): catalyzes macrolide release and ultimate cyclization

DEBS1 DEBS2 DEBS3

Module I Module 3 Module 5Loading Module 2 Module 4 Module 6

____

r’
/ / / /s s s s

>OH OH

)OH

OH

O> OH

6-deoxyerylhronolide B

Figure 7: Predicted domain organization and biosynthetic intermediates of 6-

deoxyerythronolide 3 synthase (DEBS).22

The rnost thoroughly studied modular PKS is 6-deoxyerythronolide B

synthase (DEBS) from $accharopolvsporct erythraea, which catalyzes the formation

of 6-deoxyerytbronolide B (6-dEB), the parent macrolide aglycone of the antibiotic

erythromycin A (Figure 7). The six modules of DEBS are organized into three large

polypeptides, DEBS 1, DEBS 2, and DEBS 3. Each ofthese polypeptides consists of

two modules and is about >300 kDa. In DEBS 1 there are additional AT and ACP

domains, involved in the loading of the propionyl-CoA primer unit. In DEBS 3 the

TE dornain is linked in the release of the heptaketide from the PKS followed by

concomitant formation of the 1 4-mernbered macrolactone ring.22

Deoxypropionates have been shown to share a common biosynthetic origin to

metabolites such as erythromycin. Norte et aï. lic propose that the metabolites

isolated from Siphonaria grisea are biosynthetically obtained from propionyl-CoA,

followed by successive condensations with methylmalonyl-CoA (Figure 8).

/s

O

p-OH

/s

OH

O

OH
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CycIization

Figure 8: Proposed biosynthesis of deoxypropionate natural products.1 le

1.3. Iterative synthetic methodologies towards deoxypropionate units

The isolation and structttral detenuination of such a large number of natural

products containing deoxypropionate units has led to the development of many

methodologies allowing access to such structural motifs in an iterative fashion.23

This section will discuss some examples wherein at least two deoxypropionate units

can be accessed in an iterative fashion. The various synthetic methodologies are

divided into four main categories, ta) methods wherein stereochemical control is

introduced by utilizing chiral auxiliaries. (b) methods that make use of asymmetric

o oO SCoA

sx ACoS

o

ACoS

o
Reduction ACoSNNN

(+)-Siphonarienal

o

- C02
ACoS

Siphonariendione

- c02

(+)-Siphonarienolone

Oxidation
and

cyclization

Siphonarienfuranone

(+)-Pectinatone
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aÏlylic substitution, (c) methods that use substrate control to direct the nucleophile.

and finally. (d) catalytic rnethods.

1.3.1. 1,4-Conjugate addition using a camphorsulfonamide chiral auxiliary

mediated

The rnethodology developed by Oppolzer24 constitutes one of the earliest

examples of stereocontrolted conjugate addition. Stereochernical bias is achieved by

using a camphorsulfonamide chiral auxiliary. Re- or si- face attack of the nucleophile

leads to the fi-C alkylated ester. depending on which enantiomer of the chiral

auxiliary is used (Figure 9).

O2S
*

Rl’O

R2Cu R2Cu

R1O

Figure 9: Chiral auxiliaiy mediated facial selectivity for 1,4-conjugate addition.21

Oppoizer utilized the carnphorsulphonamide chiral auxiliary towards the synthesis of

norpectinatone. Michael addition of the organocopper reagent bearing a resident C

methyl group to compound 1 gave the corresponding anti-deoxypropionate unit, with

excellent d.e. (Scheme 1). Aikaline hydrolysis of substrate 2 was followed by

reduction ofthe corresponding carboxylic acid to the alcohol. Swern oxidation to the

aldehyde followed by chain extension with a phosphonate resulted in product 3.

Iteration of the 1,4-conjugate addition was accomplished at this stage by treatment of

compound 3 with the methylcopper reagent in the presence of BF3 affording product

4, with anti/anti-deoxypropionate units. Further functional group manipulation

afforded product 5, which did not correspond to the spectroscopic data reported for

norpectinatone. Towards that end, the (S, R, R)- diastereomer was also synthesized

10



(not shown). but did flot match the spectral data of norpectinatone either. Based on

the above information it was concluded that the desired natural product bas the ail

syn- stereochemistry.

E 1) 5N NaOH, EtOH, reflux
x CuBF3 X 2) UAIH4, Et20, 0°C

Et20, 84%, 97.5% de. 3) (COCI)2, DMSO, NEt3, 94%

1 2
4) (EtO)3P(0)CH2C0X, 85%

35°C,9od e

Scheme 1: Oppolzer’s carnphorsulfonamide auxiliary based iterative 1.4-conjugate

addition.24

1.3.2. Use of chiral cyclohexanediols as chiral auxiliaries

Sakai’s25 approach involved the use of chiral cyclohexanediols to obtain

diastereoselective addition of lithium dimethylcuprate to ,8-unsaturated esters. The

observed diastereoselectivity for the first cuprate addition leading to product 7 was

O:1 (Scheme 2). The proposed transition state involves chelation ofthe lithium ion

in the square planar dimeric diaikylcuprate complex with the aicohol and the ester

carbonyl, leading to the formation ofthe copper(I)-alkene Tt-complex (6). The double

bond then receives the R substituent from the re-face in a stereocontrolled manner.

An iterative sequence bas been proposed by Sakai. but this methodology has flot been

applied in an iterative manner.
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R—Cu—R

Me2CuLi
-Li°- [i

_____

_.OH0
=

OR1
R—Cu—R

6 7

re-face dc. 10:1

1)-OH0

- 0)(OEt)2 OH0
: r

OHCR

Scheme 2: Sakai’s method to access deoxypropionates.25

1.3.3. Using Evans’ oxazolidinone chiral auxiliary: Diastereoselective enolate

alkylatïons

Towards the synthesis of ionomycin, Evans et aÏ.l3c made use of

oxazolidinone-derived and prolinol amide-derived enolate aikylations. As shown in

Scheme 3, which starts with oxazolidinone 8, alkylation with ciimamyl brornide led

to the installation of the first methyl group in product 9. Standard functional group

manipulation provided aikyl iodide 10. Utilizing the aikyl iodide in the aikylation of

the prolinol amide enolate (11) provided product 12. The use of mixed bases and

HMPA/THF as solvent is noteworthy.

LDA, THF, -78°C, PhCH=CHCH2Br PhNO 1) LiAIH4, THF, 0°C, 71%

-40°C to 0°C, 84%, d.r. 98.7:1.3 2) MsCI, NEt3, CH2CI2;

\ Nal, Me2CO, 55°C, 93%
8 9

KH, LDA, HMPA, OH
THF 78°C d 973 Z C

PhI -
‘ K PhN

2
PhO2SOTBDpS

10

,Li-

12 13

11

Towards the synthesis of
lonomycin

Scheme 3: Evans’ use ofcarboxirnide and prolinol amide-derived chiral

auxiliaries. 13c
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The more nucleophilic prolinol amide enolate 11 was used in the second aikylation

step. since oxazolidinone derived enolates (like 8), are not sufficiently nucleophilic in

order to react with aikyl iodides. With the Ci2-C4 syn-deoxypropionate unit installed

standard functional group manipulation provided product 13, which was used to

complete the synthesis of ionomycin.

1.3.4. Using Masamune’s chiral auxiliary: Diastereosetective enolate aikylations

1) Tf20, 2,6I-Bu2-Pyrdine

2) KHMOS, HMPA, Et20, (-i-)-15 E E 1) Tf20, 2,6-t-Bu2-Pyridine
OH

___________________

- OH
3) LiBH4-EtOH, Et20 2) KHMDS, HMPA, Et20, (±)-15

61%
16 88%ds.>97%

==8% CO2Et

MHCI, PhH

Siphonarienone

t (+)-15

Scheme 4: Masamune’s use ofbenzopyranoisoxazolidine chiral auxiliary.26

The benzopyranoisoxazolidine chiral auxiliaries used by Masamune27 are

accessed by a three step sequence, starting with o-allyloxybenzaldehyde and an

oxime. The iterative approach to access deoxypropionate units was showcased by

Abiko and Masamune26 in achieving the first synthesis of (+)-siphonarienone

(Scheme 4). Treatment of chiral alcohol 14 with triflic anhydride, followed by

treatment of the corresponding triflate with the potassium enolate of (+)-15, provided

the asymmetric aikylation product with high diastereoselectivity (d.s. >97%).

Reduction of the isoxazolidine resulted in the corresponding alcohol (16),in a 67%

13



yield over three steps. Iteration of the process was achieved by conversion of the

alcohol to the triflate followed by another aikylation with the potassium enolate of

(+)-15, providing product 17 with high diastereoselectivity (d.s. >97%). With the two

deoxypropionate units installed the stage was set for completion of the synthesis.

Standard ftinctional group manipulation led to the synthesis of (+)-siphonarienone.

1.3.5. Dîastereoselective enolate aikylations usïng pseudoephedrin as a chiral

auxïliary

Myers et al.28 used pseudoephedrin as a chiral auxiliary to access

deoxypropionate units in an iterative manner. Use of D- or L- pseudoephedrin allows

access to either syn- or anti- deoxypropionate units. Yreatment of acid chlorides or

anhydrides Ieads to the selectively N-acylated product 19 (Scheme 5). Since

intramolecular O- to N-acyl transfer within pseudoephedrin 16-amino acids occurs

rapidly, and the N-acylated product is favored under neutral or basic conditions,

products arising from (mono)acylation on the oxygen atom are not observed.29

Treatment of compound 19 with lithium diisopropylamide resuits in the formation of

the dianion, which is followed by aikylation in the presence of lithium chloride

leading to product 20, with excellent diastereomeric excess. Lithium chloride has

been shown to accelerate the aikylation and also facilitates in driving the reaction to

completion.3° Iteration of the process proceeds by reduction of amide 20 to the

corresponding alcohol with lithium amidotrihydroborate (LAB), followed by

iodination to give product 21. Alkyl iodide 21 is then treated with the enolate derived

from 19 resulting in product 22. Reactions producing syn- stereochernistry represent

a matched case (22. d.r. 99:1), whereas reactions producing anti- stereochemistry, are

an example of a misrnatched case, as shown by the treatment of aikyl iodide 21 with

the enolate derived from L-pseudoephedrin, resulting in a diastereomeric ratio of 58:1

for23.
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(EtCO)20, NEt3 O LDA, [ICI, BnBr 1) LIH2NBH3, 90%
PhNH

95% 90%, >99% ee
Bn

2)12, PPh3, Imid,98%

DPseudoephedrin 19 20

[DA, LiCI, 19

__

Bn HO

I 1
58% yield over 9

99ldr
95.7% de (final)

21 [DA, LiChent-19
:Bn

HOBn

t : - 57% yield over 9 steps23
94.7% de (final)

I
= 58:1 dr

OH

Scheme 5: Myers’ pseudoephedrin chiral auxiliary.28

Cleavage of the auxiliary can be accomplished by treatrnent with either strong

acid (18N sulfuric acid) or base (tetra-n-butylammonium hydroxide). However, both

acid and base hydrolysis has reportedly resulted in sorne epimerization.3° In addition

to hydrolysis, the pseudoephedrin amides can be transformed into aldehydes and

ketones.

Me
Ph

OLi(solvent) Me O
Ph Me LDALiC BnB

Me_Lso1ven7 Ph(NIÏBn

AkyI Halides

Si favored

Scheme 6: Selectivity in pseudoephedrin amide alkylations.29

The basis for the selectivity can be explained by considering the reactive conformer

shown in Scheme 6, wherein the solvent molecules and the lithium aikoxide may

block the /3-face of the (Z)-enolate, forcing the electrophile to corne in from the a

face. The pseudoephedrin side-chain adopts a staggered conformation, with the C-H
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bond a to the N-atom lying in the same plane as the enolate oxygen, in order to

minimize allylic strain.29

1.3.6. Diastereoselective aza-enolate aikylations: Using Enders’ SAMP or RAMP

hydrazones as chiral auxiliaries

1) L1TMP, THF, 0°C NN 1) Mel, reflux, then 4N HCI, pentane

OMe 2) n-propyl iodide, -78°C OMe 2) BH3DMS, 0°C, MeOH, HCI

24
de. 94%

25

1) 4-nitrophenylsulfonyl chloride, Py,

yOH
DMAP, CH2CI2, r.t. 24, LiTMP, THF, -78°C

2) Lii, THF, then pentane, -78°C
I de. 86%

26

OMe
24, L1TMP, THF, -78°C

OMe

(+)-Pectinatone

Scheme 7: Enders’ aza-enolate alkylations.31

The aza enolates derived from SAMP or RAMP hydrazones are very reactive

towards secondary iodides, fl-branched iodides and bromides. Towards the synthesis

of (+)-pectinatone, Enders and Birbeck3’ have shown that generation of the aza

enolate, aikylation. and cleavage of the hydrazone auxiliary can be carried out in an

iterative fashion to generate deoxypropionate units. As shown in Scheme 7,

generation of the aza-enolate followed by alkylation with n-propyl iodide provided

the resulting hydrazone 25 with excellent diastereocontrol (d.e. 94%). Alcohol 26

was obtained by a two step protocol, which was followed by conversion of 26 to the

16



nosylate. In situ generation of the iodide and treatment with the enolate of 24 gave

the corresponding hydrazone 27 in 86% d.e. Cleavage of the auxiliary followed by a

second reiteration sequence gave hydrazone 29 (85% d.e., overail). Standard

functional group manipulation gave the desired natural product (+)-pectinatone,

harboring the ail syn-deoxypropionate units.

1.3.7. Williams’ oxazolidinone curai auxiiiary mediated 1,4-conjugate addition

n-PrMgBr ,CuBrDMS,

8F3OEt2, THF 1) LiBH4, MeOH, Et20, 0°C, 86%

95%, 91:9 dr. 2) Dess-Martin Periodinane

Ph” NaHCO3, CH2CI2, 98%
30 31

1) 0 o
Ph3P.

N

O Ph MeMgBr,THF,CuBrDMS

H 95%, 2.5:1 EZ BF3OEt2, -78°C, 89%, >95;5 d.r.
2)2, hv, CH2CI2, Ph

32 95%, >20:1 Ez

z Q Q z r Q Q
MeMgBr, THE, CuBrDMS

BF3OEt2, -78°C, 86%
34 Ph 35 Ph

36 Capensifuranone 1

Scheme 8: Williams’ iterative approach towards the synthesis ofcapensifuranone i.

Hruby et aL32 utilized 4-phenyl-1 .3-oxazolindin-2-ones as curai auxiliaries in

the asymmetric addition of organocuprates to a,6-unsaturated substrates. The same

chiral auxiliary was utiiized by Williams et al.33 in their synthesis of capensifuranone.

As shown in Scheme 8, addition of the Yamamoto organocopper reagent34 to

compound 30 provided product 31 (d.r. 91:9). Rernoval of the chiral auxiliary

(LiBH4), followed by oxidation. afforded aldehyde 32, which was further
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homologated. Isomerization of the resulting E/Z mixture in the presence of iodine

upon exposure to sunlight afforded product 33. Iteration of the process by addition of

the methylcopper regent provided intermediate 34 with excellent diastereocontrol.

Removal of the auxiliaiy, followed by homologation of the substrate as described

above, afforded product 35. Addition of methylcopper reagent to substrate 35, gave

product 36 with two syn/yn- deoxypropionate units. Standard functional group

manipuLation afforded the desired final product.

1.3.8. Chiral auxiliary mediated SN2’ dispiacement

i-Pr i-P i-Pr

t-BuOMe, t-BuOK ‘Ot-Bu_1)
03, CH2CI2, NaBH4, MeOH

Ç> s-BuLi, CuCN, LiBr, 2)1, PPh3, imid. CH2CI2
THE, 92%, 426:1 sl%overtwosteps

(-)-Menthone 37 38

t-BuLi, Et20, CuCN, i-Pr 1) 03, CH2CI2, NaBH4, MeOH

I(0t-Bu
THF, 37

rT0t-Bu
92%, 105:1

I 93% I
I 2)12, PPh3, imid. CH2CI2, 98%

39 40

t-BuU, Et20, CuCN, i-Pr

lff0tBu
THF,ent-37 Towardstheconstrucflonofthe

anti!syn deoxypropionate triads
found in Ionomycin

Scheme 9: SN2’ mediated dispiacernent ofallylic carbonates.35

Spino and A11an35 access the deoxypropionate units by SN2’ dispiacement of a

chiral allylic carbonate. The chiral carbonates can be derived from (+)- or t-)
menthone in one or two steps by the addition of aikenyl or aikyni metal reagents,

respectively (Scheme 9)•36 Treatment of chiral carbonate 37 with an aÏkyl cuprate

leads to the anti-addition product 38 with excellent stereoselectivity. Ozonolysis

followed by reductive workup led to cleavage of the chiral auxiliary and to
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conversion ofthe resulting chiral alcohol to iodide 39, which was ready to be used in

the first iteration step. Lithium-halogen exchange of iodide 39, followed by addition

of menthol derivative 37. led to the installation of one deoxypropionate unit with high

diastereocontrol. Reiteration of the process provided compound 42, wherein the

anti/syn deoxypropionate units of the C1-Cio fragment of ionomycin have been

installed with a high level of stereocontrol.

The high level of stereoselectivity is explained by the two rotarners shown in

figure 10. Rotamer 37A has been calculated to be approximately 4 kcal/mol lower in

energy than rotamer 37B, and it has been hypothesized that the same energy

difference would be expected to be maintained at the transition state during the

cuprate addition, leading to the anti-addition product.36

OCO2Me 0CMe

Z-7LZ_i-Pr_________
HJ

1 R1
37B

O kcal/mol 4 kcal/mol

Figure 10: Energy difference between the rotamers.36

1.3.9. Breit’s reagent-directing group: Asymmetric allylic-substitution

Breit and Herber37 report the use of ortho-diphenylphosphanylbenzoyl (o

DPPB) as a reagent-directing group for the addition of Gilman cuprates to allylic

electrophiles in an iterative fashion. This rnethod commences with a three step

preparation of the o-DPPB electrophile 43 obtained from the conesponding racernic

allylic alcohol (not shown). As shown in Scheme 10, this is followed by allylic

substitution of the Grignard reagent 44. already harboring a resident C-methyl group,

to the electrophile giving one deoxypropionate unit in product 46 with excellent

stereoselectivity (d.r. 99:1). The stereochemical outcome is explained through the

coordination ofthe phosphane with the organocopper reagent, as indicated in 45. The

resuit of the coordination is that the nucleophile is delivered syn- with respect to the
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leaving group.38 The proposed directed delivery of the organocopper reagent bas

been proven by oxidizing the phosphane. The phosphane oxide substrate proceeds

through a non-directed anti- attack ofthe nucleophile.

PPh2

0o

EtMe

43

BrMg-Ç,...OPMB

44

CuBrSMe2 (0.5 eq), Et20

80%

Ph2P9 ï

____

LnR4Cu]
- 0\ O

RR1

45

EtMB

Ut. 99:1

46

1) 03, NaBH4, 92%
2)12, imidazole, PPH3, 93%

3) t-BuLi, MgBr2 then

O(o-DPPB)

Me

Iteration

EtOPMB

88% Ut. 98:2

47

Scheme 10: Reagent directed allylic substitution.37’38

Iteration of the process begins with oxidative cleavage of the olefin by

ozonolysis and reductive workup, followed by conversion to the iodide. Lithium

halogen exchange by treatment with tert-BuLi is followed by transmetallation with

MgBr2OEt2. Directed allylic substitution of the resulting Grignard reagent with 43

gave the svn/syn deoxypropionate 47 in a diastereomeric ratio of 98:2. Recently Breit

and Herber’5 have utilized the sarne strategy in synthesizing sex pheromones of the

cane beetle, 4,6,8,10,16,1 8-hexamethyldocosane, which feature anti/anti/anti- methyl

stereochemistry in the 4,6,8,10 subunit.

Breit and Demel39 have also used the o-DPPB group as a catalyst directing

group in hydroformylation reactions. The use of the o-DPPB group has also been

extended to a subsequent step wherein it is used as a reagent-directing group towards
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the diastereoselective addition of lithium dimethylcuprates to afl-unsaturated

esters.40

1.3.10. Substrate control

Hanessian et aï.8 14d make use of substrate control for the iterative installation

of deoxypropionate units. Previously it had been demonstrated that polypropionate

subunits can be constructed from a series of 1,2-inductions by subjecting enantiopure

alkoxy-afl-unsaturated esters to a conjugate addition of lithium dimethylcuprate

followed by hydroxylation of the corresponding potassium enolate.41 Homologation

to a new alkoxy enoate and reiteration afforded enantioemiched propionate units of

a defined stereochemistry. For the construction of isotactic deoxypropionates,

Hanessian et aï. utilized a strategy similar to thc construction of polypropionates

(Scheme 11).

1) DIBAL-H, CH2CI2, -78°C
080M Me2CuLi, TMSCI OBOM 2) Swern Oxidation

TBDPSOCO2Me
THF, -78°C

TBDPSOCO2Me 3) Ph3PCHCO2t-Bu
d.r. 93:7, 95% : CH2CI2

48 49
70% thtee steps

080M 080MMe2CuLi, YMSCI
TBDPSO C0tB

Extension, Iteration

THF, -78°C E

50 d.r. 80:20, 93% 51

080M

anti- isomer

52
rit. 91:9

Scheme 11: Utilizing substrate control in the synthesis ofdeoxypropionates.8 14d

Addition of the Gilman cuprate to alkoxy-a/-unsaturated ester 4$ afforded

ester 49 with a high level of stereocontrol. resulting from 1,2-induction.
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Homologation of ester 49 to the &rnethyl-,fl-unsaturated ester 50. followed by

addition of lithium dimethylcuprate, lcd to product 51 with good selectivity. Further

homologation and iteration led to product 52. Substrates 52 and ent-52 were

intermediates in the synthesis ofdoliculide8 and borrelidinl4d, respectively.

The 1,2-induction observed in the addition of the Gilman cuprate to a1koxy-

a,6-unsaturated esters is explained by the conformations shown in figure 11. The

observed anti- attack can be rationalized on the basis of the reactive conformer model

48A, which is also in agreement with the proposed models of Yamamoto42 and

Morokuma.43 There is a favorable interaction between the lone pair of electrons on

the oxygen atom of the alkoxy substituent and thc rc-electrons of the double bond,

leading to the ‘O-inside alkoxy” (OR) effect.41

Nu OR

OBOM
H.9O2Me anti- product

TN’NCO2Me

48A

Nu OR

CC Me OBOM
2 syn- product

48B syn-49

41Figure 11: Proposed conformations for anti and svn attack.

Also the anti-orientation of the R group, with regard to the trajectory of the

nucleophile may stabilize the *CCu orbital in the d,Tt* complex-,6-cuprio (III)

adduct, through a-bond donation. Conformer 48B leading to the sy17- product does

not give the stabilizing interaction ofthe inside OR as in conformer 48A.

Conjugate addition of lithium dimethylcuprate to &methyl-o’,fi-unsaturated

esters, proceeding through 1,3-induction leading to the syn-addition products, is
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explained by the proposed transition states in Figure 12. The backbone of the

growing hydrocarbon chain folds in a manner wherein syn-pentane interactions are

minimized. Superimposition ofthe energeticalÏy favored conformation on a diamond

lattice assists in visualizing the backbone ofthe acyclic enoates.

OBOM

TBDPSOIcOB

t-BuO i!--- -

Minimization of syn-pentane
interactions

___

f - ‘OBO

--j-,,

tBuO -

o

OBOM

TBDPSOt-cOB

Figure 12: Minimization ofsvn-pentane interactions in the hydrocarbon chain

backbone.8 11d

1) DIBAL-H, PhMe, -78 °C, 92%
2) TsCI, Py

OBOM OH

4) TBAF,THF

-40 oc, 100%

- -

5) H2 (60 psi), Pd/c, MeOH/AcOH,
52 87% over 2 steps

1) Nal04, cH2cI2/H20

2) PPh3c(Me)co2Et, PhMe/cH2cI2
80 °c, 85% over 2 steps

3) DIBAL-H, cH2cI2, -78°c, 100%
4) Mn02, hexanes, 94%

r :
Synthetic [UD] ÷8.0 (e 0.2, cHcI3)

E E E Natural [Œ0] +7.0 (c 0.2, cHcl3)

(÷)-Siphonarienal

Scheme 12: Synthesis of (+)-siphonarienal from intermediate 52. 14d

The syn- selectivity ofthe conjugate additions of lithium dimethylcuprate was

verified by the synthesis of(+)-siphonarienal. As shown in Scheme 12 compound 52.

23



which serves as an intermediate towards the synthesis of borrelidin,14d is converted to

(+)-siphonarienal. The physical constants thus obtained were identical to the reported

values for (+)-siphonarienal. Furthermore upon completion of the synthesis of

borrelidin the X-ray obtained showed that the methyl groups of the deoxypropionate

chain were indeed syn with respect to each other. 14d

1.3.11. Negishi’s zirconium catalyzed method

1) ZACA with (-)-52 1) ZACA with (±)-52

2) Pd-catalyzed vinylation tiJ 2) Pd-catalyzed vinylation

1) ZACA with (±)-52

39% (crude) from styrene
dr (crude) = 20/2/1.7/1
29% (purified)from styrene
dr (purified) >35/1, 74% recovery

ZACA: Me3AI (2-5 eq), MAO (0.1 eq) or H2O (1 eq),
3-5 mol% (+)-or(-)-(NM D2ZrCI2, CH2CI2

Pd-catalyzed vinylation:

a) evaporation of volatiles /

b) Zn(OTf)2 (1.1.5 eq), DMF, 70 °C
/(

\“‘)

c) 3% Pd (DPEphos)C12, DIBAL-H, BrCH=HC2 (5-6 eq)

(-)-(NMI)2ZrCl2

52

Scheme 13: Negishi’s catalytic, iterative protocol for accessing deoxypropionates.45

Negishi et aï. prepared the deoxypropionate motif through an iterative

sequence of Zr-catalyzed asymmetric carboalumination (ZACA) followed by

palladium catalyzed vinylation. The ZACA is achieved by employing (+)- or (-)-
dichlorobis(neornenthyl)zirconium (52) as the cataÏyst in the presence of Me3AI and

methylaluminoxane (MAO). which significantly accelerates the reactions. As shown

in Scheme 13. starting from styrene, tbree cycles of iteration led to 53, with a

diastereomeric ratio of >35/1. This methodology has been applied by Negishi et cil.

in the synthesis of natural products such as siphonarienolone and some of its
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structurally related analogues, and it bas also been applied to the synthesis of

borrelidin and ionomycin intermediates.

1.3.12. Fcringa’s catalytic addition of Grignard reagents in the presence of chirat

ligands

O MeMgBr, 23 (1.2 mol%) 0 1) 10% Pd/C, Et3SiH, CH2CI2

PrSEt CuBrDMS, t-BuOMe, 75 oc PrSEt 2) Ph3PCHCOSEt, CH2CI2

55 56
92%, ee 96%

O MeMgBr, 23 (1.2 mol%) i O teration

PrSEt CuBrDMS, t-BuOMe, -75 oc ,PrWSEt

57 (-)-Iardolure [ E__LPÏ
de > 95% Fe PPh2

-Josiphos (54)

Scheme 14: Feringa’s catalytic method.46

Feringa et aL46 have developed a highly efficient iterative, catalytic system to

access the deoxypropionate motif in an enantio- and diastereoselective mariner. They

make use of conjugate addition to afi-unsaturated thioesters, in the presence of a

complex prepared in situ from CuBrDMS (6 mol %) and Josiphos (54, 5 mol%).

They have applied their methodology towards the synthesis of (-)-Iardolure (Scheme

14). Conjugate addition with methylmagnesium bromide affords enantiopure 56

(96% e.e.). Tteration of the process begins with the conversion of the thioester to the

aldehyde, followed by a Wittig reaction giving the desired fl-unsaturated thioester.

A second catalytic conjugate addition followed by another iteration sequence

provides the polydeoxypropionate 57 with an overali d.e. >95%. This rnethodology
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also allows access to anti-1,3-dimethyl arrays, by utilizing ent-54 as the chiral

catalyst, providing diastereorneric ratios of 95:5. The high diastereoselectivities

obtained showcase the efficiency of the chiral catalyst to control the configuration of

the new stereocenter, independent ofthe absolute configuration ofthe chain.

Towards the synthesis of (-)-doliculide, Gosh and Liu9t’ instail the

deoxypropionate units indirectÏy by utilizing Charette’ s cyc topropanation47 fol lowed

by regioselective ring opening.48

1.4. Conformationat design

Studies by Hoffinann et ai.7 indicate that 2,4-dimethylpentane units can be

rendered monoconformational, despite the many degrees of rotational freedom, by

anchoring an inductor group at one end of the molecule. As shown in Figure 13,

compound 58 has two Iow energy conformations 58a and 58b.49 Rotation about C2-

C3 woutd lead to a destabilizing yn-pentane interaction (58c). Introducing

substitution (X) at the terminal carbon atoms (59) could possibly destabilize one of

the two conformers (59a, 59b) to different extents. In certain cases the substitution

could render the dirnethylpentane segment monoconformational.

V

58a 58b 58c

syn-pentane

_______

interaction

59 59a 59b

Figure 13: Biasing a conformation by introducing destabilizing interactions.49
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Population 91% 76% 58%

R

Figure 14: Calculated preference for attaining fully extended conformation.7

A dimethylpentane segment in a defined conformation can serve as an

inductor group; affecting the conformation of the neighboring dimethylpentane

segments. The inductor group would affect the conformation of neighboring

segments in order to avoid destabilizing syn-pentane interactions. This

conformational control is oniy possible if the dimethylpentane segment is isotactic

(svn-methyl groups), flot when it is syndiotactic (anti-rnethyl groups). Also, the

conformational preference decreases as the number of adjacent dimethylpentane

segments increases (figure 14).
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Chapter II:

Evaluating the “anclioring” and “ester” effects

In this chapter the prospect of conformational control and the introduction of

anchoring groups in acyclic molecules are investigated. Anchoring groups bias the

molecule towards certain energetically favored acyclic conformations thereby

inducing stereochemical induction in the addition of lithium dimethylcuprate to a,fl
unsaturated esters. The ‘anchoring” effect with an iso-propyl group in such enoates

is assessed. Various esters and protecting groups are surveyed, and finally the degree

of conforniational induction offered by the iso-propyl anchor is investigated by

extending the system to its limits.

11.1. Introduction to the “anchoring effect” and the “ester effect”

Work done in the Hanessian laboratories towards the total synthesis of

doliculide8 and borrelidinh4d showed that anchoring an inductor group in &methyl

a,6-unsaturated esters led to the predominance of one reactive conformation over

another. The result of this was that higher selectivities were obtained when treating

-methyt-a,fi-unsaturated esters with lithium dimethylcuprate. The term coined for

this observation is the “anchoring effecf’. Another effect observed was the “ester

effect”, which indicated that changing the afl—unsaturated ester to a buikier ester led

to better selectivities. Both these resuits are shown in Scheme 15. Conjugate

addition of lithium dimethylcuprate to cornpounds 50a-c led to diastereomeric ratios

in the range of 50:50 to 89:11, depending on the nature of the ester substituent.

Addition of the Gilman cuprate to compound 60 led to much higher selectivity of the

syn- diastereomer.
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OBOM M C L TM OBOM
TBDPS0’

e2 u i, SCI
TBDPS0 + anti- isomer

02
THF, -78°C

CO2R

50a R = t-Bu 51a R = t-Bu, 93%, dr. 80:20
50b R = Me 51b R = Me, 80%, Ut. 50:50
50c R = MCP 51c R = MCP, 87%, d.r. 89:11

QBOM Me2CuLi, TMSCI ÇBOM

THF, -78°C MoMo-T (yC02tBu
+ anti- isomer

Ut. 91:9
60 61

MCP=

Scheme 15: Previous resuits reported by Hanessian.l4d

The only difference between substrates 50a and 60 is the structural motif highlighted

in red. Branching at C7 (instead of having the CH2OTBDPS) may destabilize one

reactive conformer in 60 over another by introducing a syn-pentane interaction with

the pendant methyl group at C5, thereby leading to better selectivities. Branched

groups at C7 may serve as inductor groups, anchoring the molecule preferentially in

one conformation over another (see also section 1.4). Intrigued by these resuits, we

wanted to further probe the anchoring effect at the extremities of a,fl-unsaturated

esters and to investigate the ester effect, while also determining what effect, if any,

the nature of the alkoxy substituent had.

Explore the interaction
with the Gilman cuprate

‘OR2

Probe the Evaluatethe
Anchoring effect ester effect

Figure 15: Studying the variables ofthe &alkyl, alkoxy-methy1-o,fl-unsaturated

esters.
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As shown in Figure 15, the substrate can be varied in three different positions,

which would allow us to alter the electronics and the sterics of the system. This

would consequently shed some light on the mechanism of addition of lithium

dimethylcuprate to -methyl-a,fl-unsaturated esters. To evaluate the role of the

anchoring group (R,), the nature of the alkoxy substituent (R2), and the ester effect

(R3), we decided to systematically vary one parameter at a time. Most of the previous

work had been done with the benzyloxymethyl (BOM) protecting group and with

methyl- and tert-butyl esters, with the buikier tert-butyl ester giving the best

selectivities. Based on the resuits presented in Scheme 15, we decided to investigate

the anchoring effect of a terminal iso-propyl group with the BOM protecting group

and a variety of ester substituents.

11.2. Determination of diastereomeric ratios

An important aspect in developing diastereo- and enantioselective reactions is

analyzing the ratios of products by a suitable method. Many different methods for

determining product ratios have been used such as HPLC analysis, GC analysis and a

variety of other chromatographic techniques. Sometimes. further chemical

conversion to either known products or to MPTA esters. and NMR analysis thereof,

has been used to determine the relative ratio ofproducts forrned. Also, analysis of ‘H

NMR spectra has been widely used for determining diastereomeric ratios. Although

diastereomers are ofien easily distinguished by routine ‘3C NMR, this method is not

suitable for quantitative analysis (vide infra).

During the course of this project, we tried many of the above techniques to

determine the diastereomeric ratio of the products formed; however. none were found

to be suitable for our molecules. Analysis by ‘H NMR provides no information in

most cases, as the diastereomers do not have detectable chemical shifi differences.

We have, nonetheless. been able to detect the different diastereorners through ‘3C

NMR spectroscopy. Therefore in order to gain quantitative information from ‘3C

NMR spectra we decided to acquire the spectra using inverse gated proton decoupling

experiments.8 In examples where the diastereomers could be observed by both ‘H
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NMR and ‘3C NMR spectroscopy, both techniques have been used and the ratios

obtained show excellent correlation.

11.2.1. Inverse gated proton decoupling experiments

Quantitative ‘3C NMR can be useful in providing structural information in

those cases where ‘H NMR spectra are harder to interpret due to overlap of the

desired signais. Signais in ‘3C NMR appear over a larger chemical shifi range,

facilitating the analysis of the spectra considerably. Quantitative 13C NMR has been

shown to be an indispensable tool in the quantitative determination of structurai units

in iignans.5° However, routine 13C NMR spectra are flot amenable to quantitative

analysis due to severai factors that affect the intensity of the 13C signais. First of ail,

the ‘3C nuclei that have different relaxation times (Ti) may flot return to equilibrium

between pulses, thereby not allowing the signals to achieve full amplitude. Secondly,

the nuclear Overhauser enhancement (nOe) observed between the proton and carbon

nuclei during the acquisition of a routine ‘3C NMR increases the signal intensity (up

to approx. 200%).51 This increase in intensity is not proportionai for ail signals.52 It

is, however, possible to adjust the parameters of the ‘3C NMR spectrum, thereby

correcting for the above mentioned limitations in order to acquire a spectrum which

can provide useful quantitative information regarding signal intensities.

The most important factor in the large variation of signai intensity between

routine NMR’s and the theoreticai values is the variation of relaxation time.53 The

relaxation delay on routine spectra is not long enough. If the relaxation deiay is long

enough (approximately five times the value of the iongest ‘3C relaxation time50) each

carbon then reaches equilibrium, 50 the effect of the effect of Il on the intensity is

removed. Different relaxation times of ‘3C nuclei can be taken care of by using a

pulse delay afier acquisition in order to reestablish equilibrium.

The second factor affecting the signal intensities mentioned above is the nOe.

Routine ‘3C NMR spectra are subject to broad band decoupling (i.e. irradiation) of

protons.5’ The effect of decoupiing is two fold. First of ail, by decoupling the

protons, the ‘3C NMR spectrum is simpiffied significantly resulting in singlets being
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observed, as opposed to complex overlapping multiplets. The second effect of

decoupling is that nOe is observed, which enhances the 13C signal intensities (vide

supra). Signal enhancement due to the nOe can be corrected for by applying inverse

gated proton decoupling (Figure 16). Inverse-gated decoupling is obtained by turning

on or gating the broadband decoupling during acquisition and tuming it off during the

pulse delay (relaxation time). The build up ofnOe is a slow process, and it builds up

only slightly during the acquisition period and dies down immediately during the

relaxation delay. Decoupling, on the other hand, is a fast process which is established

almost immediately upon irradiation, resulting in signal intensities proportional to the

number of carbon atoms that they represent.

1H Channel BuilU up ot NOE

Decoupling: established
immediately

Acquisition window

13C Channel

_____ ______

(\u
—v

Relaxation/pulse delay

Figure 16: Inverse gated broadband proton decoupling pulse sequence.

Some other factors that affect the accuracy of quantitative 13C NMR spectra

are the number of data points acquired, the signal-to-noise ratio. and the amount of

sample available for analysis. The number of data points used to acquire the spectrum

is only important to the extent that the shape of the peak be accurately represented.

The acquisition time is usually 1 .5 sec and the data is zerofilled twice before fourier

transform. The signal-to-noise ratio ideally should be at least 35/1, and

approximately 50-100 mg of sample is sufficient.
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The inverse gated decoupling experiments performed for our molecules had a

30° pulse and 10 s relaxation delay. The signal-to-noise ratios obtained were well

within the defined parameters for samples in the range of 100 mg.

11.3. Investigating the effects of the ester groups and the protecting groups

This section will deal with investigating the effects observed towards the syn

selective addition of lithium dimethylcuprate to afl-unsaturated esters upon variation

ofthe ester groups and the protecting grotips.

11.3.1. Probing the ‘ester’ effect

Following a literature procedure54, D-valine was treated with sodium

nitrite and H2S04, to give the alcohol which was converted to the hydroxymethyl

ester 62 (Scheme 16). Reduction of the ester with Dibal-H afforded alcohol 63.

Swern oxidation followed by Wittig homologation provided enoate 64. Addition of

lithium dimethylcuprate to substrate 64 gave ester 65 and the corresponding anti

diastereomer (flot shown) in a diastereomeric ratio of 96:4 (obtained by inverse gated

proton decoupling ‘3C NMR). Reduction of ester 65, providing alcohol 66, was

followed by Swern oxidation and Wittig homologation to the corresponding

methyl-a,fi-unsaturated methyl ester 67a. Addition of lithium dimethylcuprate to 67a

afforded products syn- and anti-68a with a diastereoselectivity of 75:25. This

observed ratio was higher than the ratio obtained with substrate 50b (Scheme 15),

wherein there was no anchoring group. Therefore we decided to survey a variety of

esters with the iso-propyt anchor and the benzyloxymethyl protecting group (R1

iso-propyl, R2 = BOM, Figure 15) and to examine the effect different esters had on

the selectivity ofthe cuprate additions.
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1) NaNO2, H2S04, 1) BOMCI, DIPEA,
NH2 o 0H CH I ° OBOM

C02H 2) AcCI, MeOH, r.t. C02Me 2) DIBAL-H, CH2C,

43%, over two steps -78 C, 92%
D-Valine 62 63

1) DMSO, (COCD2, NEt3,
OBOM OBOMCH2CI2, -78 C, 97/ e2 u I,

2) (Ph)3P=CHCO2Me, jCO2Me
THF, -78°C, 99%

CO2Me

2 2’ r. .,

64
d.r. 96:4

65

OBOM
1) DMSO, (COCI)2, NEt3,

OBOMDIBAL-H,CH2CI2, CH2CI2,-78°C, 87%

-78°C, 93% 2) fPh)3P=CHCO2Me, CO2Me

CH2CI2, r.t.

66 80% 67a

OBOM OBOMMe2CuLi, TMSCI

THF, -78°C
1CO2Me 1CO2Me

d.r. 75:25
syn-66a anti-68a

Scheme 16: Synthesis of substrates with iso-propyl anchor.

The various esters were prepared by Swern oxidation of 66, followed by

homologation with the corresponding Wittig reagent afforded the a,fl-unsaturated

esters 67a-e. As can be seen from the results in Table 1, conjugate cuprate addition

to 67a resuits in the lowest diastereomeric ratio (Table 1, entry 1, d.r. 75:25).

Whereas substrates 67b and c gave slightly better selectivities, and substrate 67d

gives very good selectivity with a d.r. of 89:11. Comparing these results to those

from Scheme 15 (substrate 50a, d.r. 80:20), the effect of the iso-propyl anchoring

group can be seen clearly. The selectivities increase when the iso-propyl anchor is

present, ah other aspects of the substrate being the same. However. the best

diastereomeric ratio was obtained with the 1 -methyl- 1 -cyclopentyl (MCP) ester

(Table 1, entry 5, d.r. 91:9). The precise effect ofthe ester group in the mechanism of

conjugate cuprate additions is flot clear, but it may be that the bulky ester group

serves to hold the molecule in a prefeired confonriation or there may be an interaction

of the ester carbonyl with the reagent. The diastereoselectivities obtained by the



addition of lithium dirnethylcuprate to substrates 67a and 67e (methyl- and MCP

ester) range from 75:25 to 91:9, respectively. Although the role the ester serves is not

entirely clear, there is indeed an effect on the diastereoselectivity of conjugate cuprate

additions.

1) DMSO, (COCD2, NEt3,
OBOM OBOM 67b R = t-Pr 85%
J. OH

CH2CI2, -78 C, 87/0 j 67c R = neo-pent 64%

I Y 2) (Ph)3P=CHCO2R COR R

CH2CI2, ri.
66

080M OBOM OBOMMe2CuLi, TMSCI

CO2R
THF, -78°C

CO2R ‘1CO2R

67a-e syn-68a-e anti-68a-e

Entry Substtate R d.r. (syn/antl)a yield (%)b

1 67a Me 75:25 80

2 67b i-Pr 77:23 96

3 67c neo-Pent 78:22 93

4 67d t-Bu 89:11 87

5 67e MCP 91:9 89

determined by inverse gated proton decoupled 13CNMR
b isolated yields after chromatography

Table 1: Addition of lithium dimethylcuprate to .methyl-a,,8-unsaturated esters;

probing the ‘ester’ effect.

Figure 17 shows the inverse gated proton decoupling 13C NMR spectra obtained from

the reactions featured in Table I (entries 1 and 5). Both 13C NMR spectra show the

expansions ofthe alkyl regions (approx. 50-15 ppm). Part A features the ‘3C NMR

spectrum of syn- and anti-68a. and part B shows syn- and crnti-68d. The peaks for the

minor and major diastereomers have been integrated and the signals for the minor

diastereomcr have been distinguished from the major diastereomer by placing a rcd

arrow above the peaks. Upon comparing the two 13C NMR spectra. one can see the
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quantitative difference between the two spectra by comparing the differences

observed in the integrated ratios.

OBOM OBOM

CO2Me + f[CO2Me

syn-68a d.r. 75:25 anti-68b

Figure 17: Inverse-gated proton decoupling ‘3C NMR spectra ofcornpounds (A) syn

and anti-6$a and (B) yn- and ctnti-6$d. The red arrow indicates the signais for the

minor anti- diastereomer.

,

I

“
N N p NO

40

A
30 25 20 tppm)

OBOM

CO2t-Bu

syn-68d d.r.89:11 anti-68d

O W NIo o ro WI N N

40

B

ce

9o

‘I

25

ON NWo
T? W —

20 [ppm

J



11.3.2. Effect of the nature of the protecting group

In order to evaluate the effect of the protecting group, we synthesized a series

of differentially protected methy1-a,fl-unsaturated esters. By changing the

protecting group a variety of parameters could be evaluated. Since silyl protecting

groups are known to flot chelate, having a silyl protecting group would indirectly

indicate whether or flot there is coordination of the 30M protecting group with the

lithium dimethylcuprate species. Also, the necessity of steric bulk in the E-position

could be evaluated by changing the bulky BOM group to a smaller methyl ether.

1) DIBAL-H, CH2CI2,
Pd/C:HMeOH

2) (Ph)3P=CHCO2t-Bu
CH2CI2, r.t.
61%, over 2 steps

65 69 70

70
NaH, Mel ),(0CO2tBu

THF,0°C )—/
71

Me3OBF4, proton sponge OMe

70
CH2CI2, r.t., 60%

CO2t-Bu

72a

Scheme 17: Synthesis ofsubstrates towards the second cuprate addition: accessing

the common hydroxy enoate intermediate 70.

Hydrogenation of the 30M protecting group led to in situ cyclization

affording lactone 69 in quantitative yield (Scheme 17). Reduction to the lactol with

Dibal-H (I eq.), followed by Wittig homologation, afforded the hydroxy enoate 70.

This enoate served as a common intermediate to provide the various protected ethers

72a-d. Treatment of alcohol 70 with NaH and MeT gave product 71 resulting ftom an

intermolecular etherification via conjugate aikoxide addition to the enoate. The



desired methyl ether (72a) was then prepared under non-basic conditions by treatrnent

ofalcohol 70 with Meerwein’s reagent in the presence of proton sponge®.

EMCI DIPEA DMAP OMEM

70
M

CH2CI2, r.t., Ï’C02t

72b

MOMCI DIPEA OMOM
70

CH2CI2, r.t., 82%
- 1CO2t-Bu

72c

TESOTf L td OIES

70
CH2CI2, r.t 44%

(‘CO2tBu

72d

Scheme 1$: Synthesis ofthe differentially protected substrates towards the second

cuprate addition.

Products 72b-d were obtained by standard alcohol protection methodology as

shown in Scheme 18. Conjugate addition of Gilman cuprate to the methy1-o,fl-

unsaturated esters 72a-d, resulted in a diastereomeric mixture of products 73a-d

(Table 2). Substrate 72a, with the methyl ether gave provided products syn- and anti

73a in excellent diastereomeric ratio (Table 2, entry 1), similar to the diastereomeric

ratios obtained from substrates 72b and 72c (Table 2, entries 2 and 3). From this

result it seems that steric bulk does not have a substantial impact on the selectivities

obtained. The d.r. obtained in entry 4 is in the same range as the other compounds

shown in Table 2. If the OR group coordinated to the cuprate then it would be

expected that the silyl ether would give lower selectivities. The diastereomeric ratios

obtained by changing the protecting group were all quite similar to the diastereomeric

ratios obtained with the OBOM protecting group (Table 1, entry4). It can be

concluded that the nature of the protecting group, whether it be chelating or non

chelating or sterically large or small, is not that important in these conjugate

additions.
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OR OR ORMe2CuLi, TMSCI

CO2t-Bu
THF, -78°C NCO2t-Bu ÷

72a-e syn-73a-e anti-73a-e

Entry Substrate R d.r. (syn/antl)a yield (%)b

1 72a Me 90:10 60

2 72b MEM 86:14 81

3 72c MOM 86:14 78

4 72d TES 82:18 84

5 67d BOM 89:11 87

detem,ined by inverse gated proton decoupled 13C NMR
b solated yields after chromatography

Table 2: Second iterative addition of lithium dirnethylcuprate.

11.4. Substrate control; how far can we go?

Several conclusions can be drawn from the studies conducted in the previous

section. f irst. a definitive ester effect was observed, with methyl esters giving the

lowest selectivity and buikier esters such as tert-butyl and MCP giving much more

pronounced selectivities (Table 1). Second, the ether type protecting group does not

significantty affect the observed selectivities for addition of lithium dimethlycuprate

to c-methy1-o,,6-unsaturated esters (Table 2). Finally, the proposed anchor effect was

also observed, when comparing the diastereoselectivities shown in Table 1 (entries 1,

4 and 5) with those shown in Scheme 15 for compounds Ma-c. A marked increase in

selectivity was observed in the substrates with the iso-propyt anchoring group. Based

on these resuits, we decided to extend the iteration of deoxypropionate units.

11.4.1. Third iterative cuprate addition

Reduction of the diastereomeric mixture of syn- and anti-68d with Dibal-H

resulted in a mixture of both syn- and anti-alcohols in 74% combined yield (Scheme

19). Repeated chromatographic purification ofthe mixture did not resuit in complete

separation of both diastereomers. Nonetheless enough pure 74 was obtained to
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proceed with the synthesis. Oxidation of the alcohol followed by Wittig

homologation gave diastereomerically pure enoates 75a-c.

1) DMSO, (COCI)2, NEt3,
OBOM OBOM

‘ ‘-‘2’-’2’ CH2CI2, -78 C

‘CO2t-Bu
-78°C, 4

-‘OH
2) (Ph)3P=CHCO2R,

CH2CI2, r.t.
syn- and anti-68d 74

Ut. 89:11

OBOM 75a R - Me 990/

75bR=t-Bu 94%
CO2R 75cR=MCP 85%

Scheme 19: Synthesis of substrates towards the third cuprate addition.

OBOM 030MMe2CuLi, TMSCI

fCO2R
THF, -78°C

j-CO2R
an- isomer

75a-c 76a-c

Entry Substrate R d.r. (syn/ant,)a yield f %)b

1 75a Me 67:33 84

2 75b t-Bu 87:13 97

3 75c MCP 83:17 91

determined by inverse gated proton decoupled 13CNMR
b isolated yields after chromatography

Table 3: Third iterative addition of lithium dimethylcuprate.

Addition of lithium dimethylcuprate to the .rnethyl-cq%-unsaturated esters (75a-c),

gave the corresponding esters 76a-c, with two deoxypropionate units installed in the

growing hydrocarbon chain (Table 3). The ratios for the syn-selective cuprate

additions are good, despite the fact that the conformational preference tends to

decrease as the number ofdimethylpentane segments increases (f igure 14). The best

selectivity was observed for the substrate with the tert-butyl ester (Table 3. entry 2),

followed closely by the MCP ester (Table 3, entry 3). In this series, the effect of the
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MCP ester seems to be dirninishing beyond the second cuprate addition as the chain

is extended.

11.4.2. Extension ofsubstrate control towards the fourth cuprate addition

Reduction of the diastereomeric mixture of syn- and anti- 76b (d.r. 87:13),

followed by chromatographic separation of the diastereorners, resulted in alcohol 77

(Scheme 20). Although, the diastereomers were not completely separated, enough

amounts of 77 were obtained to proceed with the synthesis of the necessary

substrates. Thus oxidation of 77, followed by Wittig homologation, provided the

a,,8-unsaturated esters 78a and 78b in good yield.

1) DMSO, (COCD2, NEt3,
OBOM DIBAL H CH ci OBOM

CO2t-Bu
-78°C, 60%

2
OH

2) (Ph)3PCHCD2R,
CH2C12, r.t.

syn- and anti-76b 77
d.r. 87:13

OBOM
I 78aR=t-Bu 71%

COR 78b R = MCP 70%

Scheme 20: Synthesis of substrates towards the fourth cuprate addition.

As shown in Table 4, the diastereomeric ratios obtained from the syn-selective

cuprate additions are surprisingly good. No of signfficant ester effect is observed, as

both substrates give similar ratios. Comparing the results from the third iterative

cuprate addition to those of the fourth addition. one can clearly see that the levels of

1,3-induction being observed have plateaued. Presumably, as the acyclic chain

continues to grow, more degrees of rotational freedom are introduced, involving more

conformers with similar energies, resulting in somewhat diminished selectivities.
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OBOM Me2CuL1, TMSC OBOM

anti- isomerfNCO2R
THF, -78°C

CO2R

- 79a,b78a,b

Substrate R d.r. (syn/anti)5 yield (%)b

78a t-Bu 85:15 78

78b MCP 83:17 92
a determined by 13C inverse gated NMR
b isolated yields atter chromatography

Table 4: Addition of lithium dimethylcuprate to c.methyl-a,fl-unsaturated esters;

towards the third deoxypropionate triad.

11.5. Deuterium labeling studies

Afier having extended the acyclic conformational control towards the third

deoxypropionate triad (i.e. afler four iterative cuprate additions), we decided to revisit

the first two cuprate additions by including a deuterium label in the fi-position on the

ofl-unsaturated ester. The expectation was that incorporating the deuterium label

would simplify the ‘H NMR spectrum, which might allow determination of the d.r.

by integration of the ‘H NMR. This would also reinforce the validity of the inverse

gated proton decoupled ‘3C NMR as an initial measure ofdiastereroselectivity.

11.5.1. Comparison of the deuterium labeled compounds with the non-deuterium

labeled compounds

As indicated in Scheme 21, alcohol $0 was obtained by reduction of the

corresponding methyl ester with lithium aluminum deuteride. Swern oxidation

followed by the usual Wittig homologation provided enoate 81. Addition of lithium

dirnethylcuprate gave product $2 in a diastereomeric ratio of 96:4 (obtained by ‘H

NMR, minor diastereomer not shown).
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1) DMSO, (COCI)2, NEt3,
OBOM LiAID4, THF OBOM

CH2CI2 -78°C
OBOM

LCO2Me
0°C to r.t., 93%

1)oH
2) (Ph)3P=CHCO2Me, CO2Me

80
CH2C12, r.t.

81
96% over two steps

1) DMSO, (COCI)2, NEt3,
Me2CuLi, TMSCJ OBOM LiAID4, THF OBOM

OH
CH2CI2, -78°C

THF, -78°C, 98%
CO2Me

0°C to r.t., 83%
*: * 2) (Ph)3P=CHCO2tBu

d.r. 96:4 (1H NMR) 82 83
CH2CI2, r.t.

55% over two steps

OBOM OBOM

jCO2t-Bu
T78

JCO2t-Bu anti- isomer

Ut. 86:14 fdetermined by inverse gated
*

= Deuterium proton decoupled 13C NMR)
Ut. 87:13 (determined by 1H NMR in C6D6)

Scheme 21: Deuterium labeling studies.

Comparing the ‘H NMR spectra of 82 with 65 (which has the same structure but

without the deuterium label) shows that flot only is the spectrum simplified for 82,

but inclusion of the deuterium label also allows for the determination ofthe d.r. by ‘H

NMR (Figure 1$). The inverse gated proton decoupling ‘3C NMR for the

diastereomeric mixture of syn- and anti- 65 gave a d.r. of 96:4, which is in excellent

agreement with the observed ratio from the addition of lithium dimethylcuprate to 81.

Reduction of 82 with lithium alurninum deuteride gave the corresponding deuterium

labeled alcohol 83. which after functional group manipulation provided the &methyl

o,/i-unsaturated ester 84. Conjugate cuprate addition to 84 provided ester 85, with a

d.r. of 87:13 (based on ‘H NMR). The ratios obtained from the inverse gated 13C

NMR spectrum (d.r. $6: 14) are in excellent agreement with the ratios obtained from

‘H NMR. Also noteworthy is the close correlation of the d.r.’s obtained from the

addition of lithium dimethylcuprate to substrates 67d (Table 1, entry 5, d.r. 86:14)

and $4 (Scheme 21, d.r. 84:16).
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DOR BA

.

Ç/
E CMe

65

D A C jB E

_-_

I I I I I I
PPM 320 3.10 390 2.90 280 270 263 256 240 230 2.20 2.10 256 1.90 I 80

COR BA

:* CO2Me
DI fe

C A B D
82

- I
PPM 320 3.10 3.00 2.90 2.80 2.70 2.60 2.50 2.40 230 2.20 2.10 2,00 1.90 1.80

R = BOM, * Deuterium

Figure 1$: Comparison ofthe 1H NMR spectra ofcompounds 65 and 85 (AV 400

MHz, CDC13). The red arrow indicates the minor anti- isomer.

11.6 Determinïng the conformation ofthe &methyl-ofl-unsaturated esters

As mentioned in Section 1.1, the chiral hydrocarbon chain in borrelidin and

pectinatone exists in conformations wherein syn-pentane interactions are minimized,

by placing the methyl groups gauche with respect to each other. The same has been

obserwed for other polyketide natura products.7 However, the presence of these

conformations in the solid state does not mean that the same will be observed in

solution. Information regarding the solution state conformations can be acquired

from vicinal 3J coupling constants along the chiral hydrocarbon backbone. The 3J

coupling constants are a function of the dihedral angle. and so they are dependent on

the conformation ofthe molecule.7
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Hoffrnarrn realized that if a srnall and large 3J coupling constant was observed

then it could be concluded that the molecule exists in a preferred conformation.55 As

shown in Figure 19. if the two conformations are present in a 1:1 ratio, then the

vicinal coupling constants (.11,2 and J,,3) will have an average value of 6-7 Hz.

However, if the two conformers are not in a I: Ï ratio then there wiH be a departure

from the average value of 6-7 Hz for J,2 and J,,3. Work done previously in the

Hanessian group aiso had shown that similar conclusions could be drawn.’4 We

performed NMR studies on several of our substrates in order to obtain the

coupling constants.

H3 H3

H2*Hte

?
ecMe

Me H’

A B

J;,2 = large J12 = small
J;,3 = small J13 = large

Figure 19: Conformational dependence based on vicinal coupling constants.35

The ‘H NMR spectrum of67a was unambiguously assigned by analysis ofthe

‘H NMR, ‘3C NMR, DEPT135, HMQC and COSY45 experiments, as well as by

homodecoupling analysis (Figure 20). Although the vicinal 3J coupling constants

couid flot be directiy obtained from the ‘H NMR spectrum due to complex

overlapping signais, we were able to obtain the desired information from ‘H-’H

homodecoupling experiments. The relevant coupling constants that would provide

some information regarding the conformation of 67a are 3JED and 3JEC. As can be

seen in Figure 21, part A, the area of interest on the ‘H NMR does not provide any

usefril information due to the complex splitting pauern observed for protons C and D,

and the overlap of protons G and E. However. upon irradiation of proton B. the

spectrum is simplified significantly. Protons labeled C and D now appear as doublet

of doublets allowing for the determination of the desired 3JED and 3JEC coupling

constants (Figure 21, part B).

45



Figure 20: ‘H NMR spectrum of67a (AV 500 MHz, CD2C12).

A: Expansion of the routine 1H NMR

F c D , G,E

________________j ______) _______

- ‘1 -- ï ‘i -,
— T F

PPM 310 390 2.90 280 270 260 290 2.40 230 2.20 20 290 130 63 170

B: Irradiation of proton B

F C D
CE = 3.22 Hz . “DE = 9.52 Hz G, E

]co= 12.92 Hz CD= 13.19 Hz

________

I ..

O

T
PPM 310 390 290 280 2.70 2.60 280 240 230 220 210 200 190 180 170

Figure 21: (A) Expansion ofthe routine ‘H NMR spectrum of67a; (B) ‘H NMR

spectrum of 67a upon irradiation of proton B.

The complete data obtained from the homodecoupling experiments are

presented in Figure 22, where it can be seen that vicinal coupling constants are 3JEC

FORDC A

G>)CO2Me

R=BOM
67a

BOM
CD2CI2 BOM

B

i-Pr+Me
CO2Me

F

G11E

A

I 111•1 I I I . I I
PPM 7.2 6.8 6.4 6.0 5.6 52 4.8 4.4 4.0 3.6 32 2.8 2.4 20 1.6 1.2 0.0
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ED = 3.22 and 9.52 Hz. One large and one smail coupling constant was observed,

indicating the presence of a prefeiied conformation in solution on the NMR time

scale. Based on the information obtained. it is flot possible to state whether

conformation A, B or C is preferred. Ihe average values for 3JEF 5.10 Hz wouid

indicate that ail three conformers exist in equilibrium.

OBOM

CO2Me

67a

MeO2C MeO2C MeO2C

A B C

3JEC = 3.22 Hz

3JED = 9.52 Hz

2CD = 13.06 Hz

3JFE = 5.10 Hz

Figure 22: Homodecoupling data for 67a.

Similarly, the coupling information for compounds 67d and 75a was also

obtained. Analysis of the acquired information, presented in Figure 23, shows that

there seems to be a preferred conformation even in solution. Since a preferred

conformation can be observed on an NMR time scale at 25 °C, then it can be

presumed that a similar conformation would be observed during the reactions which

are performed at -7$ °C.
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OBOM ‘EC =

3JED=9.7HZ
jNC02t-Bu 2CD = 14.3 Hz

3JFE=5.0Hz

67d 3JMeE691 Hz

t-BuO2C t-BuO2C t-BuO2C

A B C

3EC,ED = 4.2 and 8.5 Hz
OBOM 2J =143Hz

CO2Me JEGEF=2.4and 9.1 Hz

3HF, HG = 4.4 and 9.0 Hz
75a

3HI = 5.9 Hz

MeO2C E MeO2C E MeO2C E

A B C

Figure 23: Homodecoupling data for 67d and 75a.

11.7. Conclusions

This chapter has focused on analyzing the effects of the iso-propyl anchor

group in conjunction with different ester groups. Sections 11.3.1 and 11.3.2 probed the

effect of different esters and protecting groups on the addition of lithium

dimethylcuprate to &methyl-afl-unsaturated esters. It was observed that bulky esters

such as tert-butyl and MCP provide better selectivities, whereas smaller esters such

as methyl esters resuh in lower diastereomeric ratios. The nature of the interaction of

the ester group with the reagent or the precise role the ester plays in cuprate additions

is not entirely clear; nonetheless a significant ester effect was observed. The

conclusions drawn from the cuprate additions performed on the differentially

protected .methyt-afl-unsaturated esters were that steric bulk in the protecting

group did not play a significant role in providing higher diastereoselectivites. Nor

was chelation of the protecting group with the reagent a factor, as substantially
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decreased selectivities were flot observed with the silyl protecting group. The

benzyloxymethyl group was found to be the best protecting group, as it consistently

gave high selectivities.

The iteration of the deoxypropionate units providing two and three contiguous

deoxypropionate units installed in a fully iterative maimer by exploiting substrate and

conformational control was described in Section 11.4. A substantial ester effect was

flot observed in either the third or the fourth iterative cuprate addition. Nonetheless,

substrate control was provided some diastereocontrol, despite the increased number

of low energy conformers that would be a consequence of a growing acyclic chain.

Deuterium labeling studies showed an excellent correlation of the

diastereomeric ratios obtained from the 1H NMR spectra of the deuterated compounds

compared to those measured by the inverse gated proton decoupling ‘3C NMR

experirnents of the non-deuterated cornpounds.

Finally, homodecoupling studies provided sorne insight into the

conformational preference of the chiral hydrocarbon backbone harboring

deoxypropionate units within acyclic cç3-unsaturated esters on an NMR time scale.
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Chapter III:

Investigating other anchoring groups

Chapter two focused on one anchoring group, iso-propyl, while other

parameters were investigated, such as a variety of ester groups. alkoxy substituents.

Also, the extent of substrate control was investigated, by performing four iterative

cuprate additions with good diastereoselectivity. The focus of this chapter will be to

investigate a variety of other anchors, while also probing the ester effect. In the

previous chapter it was determined that the nature of the protecting group was flot

very important with the best alkoxy protecting group being the benzyloxyrnethyl,

therefore in this chapter the effect of the nature of the alkoxy protecting group will

not be further probed.

111.1. Investigating the effects of the phenyl anchoring group

Thus far, only sp3 hybridized anchors have been investigated. Towards the

synthesis of doliculide8 and bollelidinl4d, the anchoring group utilized was

CH2OTBDPS, and the focus of the last chapter was a branched aikyl anchor, with the

iso-propyl. We then decided to probe the effects of a phenyl anchor. Even though a

phenyl group is sterically demanding. it could in principle adopt an orientations that

would minimize unfavorable interactions.

111.1.1. Phenyl anchor; Addition of lithium dimethylcuprate to aIkoxy-a6-

unsaturated esters

Synthesis of the desired substrates began with esterification of (R)-rnandelic

acid, followed by BOM protection leading to ester $6 (Scheme 22). Reduction to the
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alcohol followed by Swern oxidation and Wittig homologation afforded products

88a-c in good yield. Attempts to reduce ester 86 directly to the aldehyde failed, with

some alcohol always being formed. Therefore, it was decided to reduce to the

alcohol and then oxidize in order to avoid unnecessary Ioss ofmaterial.

0H 1) AcCI, Me0H, r.t. 060M DIBALH, CH2CI2, 060M

PhC02H 2) BOMCI, DIPEA, PhC02Me -78°C, 87% Ph0H

(R)-Mandelic acjd CH2CI2, 0°C to r.t.
94% over two steps 86 87

1) DMSO, f C0C, NEt3,

CH2CI2, -78°C, 84% OBOM 88a R = Me 70%
88bR=t-Bu 73%

2) fPh)3P=CHCO2R, Ph CO2R 88c R = MCP 70%
CH2CI2, r.t.

Scheme 22: Phenyl anchor; synthesis of substrates towards the first cuprate addition.

As shown in Table 5, addition of lithium dimethylcuprate to the a1koxy-zfl-

unsaturated esters 88a-c gave the desired esters 89a-c, and the corresponding cinti

isomer (not shown), with excellent d.r. The best diastereoselectivity was afforded by

the substrates with the tert-butyl and the MCP esters, followed closely by the methyl

ester. Cuprate additions to alkoxy-a6-unsaturated esters (i.e. the first cuprate

additions) generally proceed with excellent stereoselectivity, as there is no pendant

methyl group to afford energetically unfavorable syn-pentane interactions. Therefore,

homologation of the substrates towards the installation of the second methyl, one

deoxypropionate unit, would give better insight into the role ofthe phenyl anchor.
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OBOM Me2CuLi, TMSCI OBOM

PhCO2R THF, -78°C
- PhCo2R

+ ant isomer

88a-c -89a-c

Substrate R d.r. (anti/syn)a yield (%)b

88a Me 94:6 97

88b t-Bu 95:5 92

88c MCP 95:5 89

determined by 1H NMR
b isolated yields alter chromatography

Table 5: Addition of lithium dimethylcuprate to alkoxy-o6-unsaturated esters.

111.1.2. Probing the effects of the phenyl anchor and the ester effect in the

addition of lithium dimethylcuprate to 6.methyl-oçfl-unsatu rated esters

Reduction of the diastereomeric mixture of syn- and anti- methyl ester 89a,

followed by the usual three step homologative sequence led to a,6-unsaturated esters

91a-b (Scheme 23). Addition of lithium dimethylcuprate to enoates 91a-c afforded

the corresponding cuprate adducts in excellent yield and moderate to good

diastereomeric ratios. Noteworthy is the comparison of the diastereomeric ratios

obtained by inverse gated proton decoupling 13C NMR experiments with those

obtained by ‘H NMR. An excellent correlation for the diastereorneric ratio’s between

the two techniques can be observed, thereby corroborating the diastereomeric ratios

reported by the inverse-gated NMR technique. A dramatic ester effect is not

observed, but the d.r. does indeed improve in going from the methyl ester to the ter!

butyl or the MCP ester.
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1) DMSO, (COCI)2, NEt3,
OBOM DI OBOM

Li Lfl, 2’-’2, CH2CI2, -78 C

2 e
-78°C, 88% 2) (Ph)3P=CHCO2R,

- CH2CI2, r.t.
syn- and anti-89a 90

d.r. 94:6

OBOM 91aR=Me 75%

Ph--CO R
91 b R = t-Bu 96%

2 9lcR=MCP 89%

OBOM TM OBOM

PhCO2R

Me2CuLI, SCI

PhCO2R
± ant& isomer

91 a-c 92a-c

Substrate R d.r. (syn/antl)a d.r. (syn/ant,)b yield (%)C

91a Me 69:31 69:31 86

91b t-Bu 84:16 81:19 85

91c MCP 85:15 - 86

determined by inverse gated proton decoupled 13C NMR
5determined by 1H NMR

isolated ylelds alter chromatography

Scheme 23: Effect ofthe phenyl anchor towards the addition of lithium

dimethylcuprate on &methyl-ofl-unsaturated esters.

111.1.3. Probing the effects of the phenyl anchor and the ester effect in the third

iterative duprate addition

Despite the moderate levels of 1,3-induction observed with the phenyl

anchored methy1-a,/3-unsaturated esters (Scheme 23), we decided to homologate

the system towards the third iterative cuprate addition and observe the level of

substrate control provided. As shown in Scheme 24, Dibal-H reduction of a

diastereomeric mixture of yn- and anti-92a, followed by careful chromatographic

purification of the resulting diastereomeric alcohols provided 93. Oxidation.

followed by Wittig homologation afforded enoates 94a and 94b. Addition of lithium

dimethylcuprate to 94a and 94b gave products 95a and 95b, with the level of

substrate control seeming to have plateaued, as in the case of the iso-propyl series

(Section 11.4.1 and 11.4.2). Although the diastereoselectivity afforded by substrate
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control is fairly good, the system seems to have reached its maximum. Also, as

mentioned previously, the ‘ester’ effect is no longer being observed, in this case both

the tert-butyl and MCP esters provide the same diastereomeric ratios.

1) DMSO, (COCI)2
OBOM OBOMDIBA - , H2 12,

_J’-OH
NEt3, CH2CI2, -78 C

Ph • CO2Me
-78°C, 60%

Ph
E 2) (Ph)3P=CHCO2R,

CH2CI2, r.t.
syn- and anti-92a 93

d.r. 69:31

OBOM
94a R = t-Bu 99%

Ph CO2R 94b R = MCP 89%

OBOM OBOM

Ph’-°CO2R

Me2CuLi,TMSCI

Ph’N<CO2R
+ anti- isomer

94a-b 95a-b

Substrate R d.r. (syn/antl)a yield (%)b

94a t-Bu 79:21 90

94b MCP 79:21 74

determined by inverse gated proton decoupled 1C NMR
b isolated yields after chromatograpby

Scheme 24: Third iterative cuprate addition with phenyl anchor.

111.2. Investigating the effects of the tert-butyl anchor

Having studied the iso-propyl and phenyl anchors in some detail, we had

realized that the anchors studied thus far aiways allowed for conformations wherein

there is at least one conformer that avoids a syn-pentane interaction. We therefore

decided to investigate the tert-butyl anchor.

111.2.1. Studying the diastereoselectivities offered by the tert-butyl anchor

As shown in figure 24, a tert-butyl anchor introduces an unavoidable syn

pentane interaction in the idealized conformations based on the virtual diamond

lattice. The bonds colored in red in conformations A, B, and C indicate the observed
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syn-pentane interactions. 0f these conformations A and C are subject to syn-pentane

interactions between appended C-methyl groups, while in B the interaction is with a

chain element. These higher energy interactions cairnot be avoided by rotating the

bonds. Therefore we assumed that the selectivities for the second cuprate addition

would be lower compared to the iso-propyl series.

OBOM

XCO2R

OBOM

R02C 2

A C

figure 24: Unavoidable syn-pentane interaction with tert-butyl anchor.

Synthesis of the substrates commences with addition of vinylmagnesium bromide to

dimethyl propionaldehyde (96), followed by BOM protection of the resulting vinyl

alcohol to afford product (±)-97 (Scheme 25). Osmium tetraoxide dihydroxylation

followed by treatment with sodium periodate gave the corresponding aldehyde, which

was subsequently treated with tert-butyl phosphonate, providing the alkoxy-afl

unsaturated ester (±)-98. Addition of lithium dimethylcuprate to substrate (±)-98

afforded ester (±)-99. Neither 1H NMR nor inverse gated proton decoupled 13C NMR

showed any presence of the minor diastereomer. Reduction of ester (±)-99 with

Dibal-H. followed by the usual homologation afforded the &methy1-a3-unsaturated

esters (±)-lOla-c.

B
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1) MgBr
THF, 0°C

2) BOMCI, DIPEA,

CH2CI2, 0°C to r.t.
50% over two steps

1) 0s04, Na104, THF/H20, r.t.

2) (Ph)3P=CHCO2Me,
CH2CI2, r.t.

54% over two steps

OBOM OBOM DIBAL-H, CH2CI2,Me2CuLi, TMSCI

)CO2Me
THF, -78°C, 89%

)CO2Me
-78°C, 82%

(±)-98 (±)-99

OBOM

OH

(±)-100

1) DMSO, (COCI)2, NEt3,
CH2CI2, -78°C

2) (Ph)3P=CHCO2R,
CH2CI2, r.t.

OBOM

)CO2R

(±)-lOla R = Me 97%
(±)-lOlb R =t-Bu 92%
(±)-lOlc R = MCP 82%

Scheme 25: Synthesis of substrates with tert-butyl anchor

OBOM OBOMMe2CuLi, TMSCI

)Co2R
THF, -78°C

(±)-1 01 a-c (±)-1 02a-c

* anti- isomer

Substrate R d.r. (syn/antl)a d.t. (syn/ant,)b yield (%)C

(±)-lOla Me 64:36 63:37 76

(±)-lOlb t-Bu 82:18 82:18 85

(±)-lOlc MCP 81:19 82:18 73

determined by inverse gated proton decoupled 13C NMR
bdeternlined by 1H NMR

isolated yields affer chromatography

Table 6: Effect of the tert-butyl anchor towards the addition of lithium

dimethylcuprate on 6-methyl-o,fl-unsaturated esters.

As shown in Table 6, addition of lithium dimethylcuprate to substrates (±)-lOla-c,

provided esters (±)-102a-c and their corresponding anti- isomers (flot shown) with

surprisingly good diastereoselectivities. Also, noteworthy is the excellent correlation

between the selectivities determined by inverse gated proton decoupled ‘3C NMR and

OBOM

(±)-97
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1H NMR analysis. Comparing the selectivities observed in Table 6 to those in

Scherne 23, one can see that despite having different anchors, the diastereomeric

ratios are quite similar. To further probe the effects of the !ert-butyl anchor. or see if

the anchor would have any effects. a third iteration was carried out.

111.2.2. Extension of the tert-butyl anchor towards the third cuprate addition

Reduction of a diastereomeric mixture of syn- and anti- esters (±)-102a with

Dibal-H. followed by careful chromatographic purification of the diastereorneric

alcohols afforded alcohol (±)-103 (Scheme 26). Oxidation followed by Wittig

homologation provided the 5.rnethyl-a/-unsaturated-tert-buty1 ester (±)-104.

Addition of lithium dimethylcuprate to substrate (±)-104 gave a diastereomeric

mixture of ester (±)-105 and the anti- isomer (not shown), in a diastereomeric ratio of

82:18. There is stili a certain amount of 1,3-induction being observed. but the

selectivities for the second and third cuprate additions with the tert-butyl anchor have

not dropped as substantially as had been hypothesized earlier. In order to understand

this discrepancy we decided to investigate the conformation ofthese molecules.

1) DMSO, fCOCI)2, NEt3,
OBOM OBOM• DBAL-H, CH2CI2, i CH2CI2, -78 C

OH
C02t-Bu

-78°C, 94% 2) f Ph)3P=CHCO2t-Bu,
CH2CI2, r.t.

syn- and anti-f ±)-1 02b (±)-1 03 70% over two stepsd.r. 82:18

OBOM OBOMMe2CuLI, TMSCI

X’CO2tBu THF, -78°C, 77% C02t-Bu
- ant& isomer

f±)-104 d.r. 82:18
- f±)-105

Scheme 26: Third iterative cuprate addition with tert-butyl anchor.

111.2.3. NMR studies towards investigating possible conformations

for the tert-butyl anchor we had hypothesized that the selectivities for the

second and third cuprate additions would be less than what had been observed with
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the iso-propyl and phenyl anchors. We had expected these results because having a

tert-butyl anchor would introduce syn-pentane interactions in ail possible

conformations as depicted in Figure 24. However, the results obtained from Sections

111.2.1 and 111.2.2 showed good diastereomeric ratios. With the above results in hand

we decided to look closely into the conformation these molecules may adapt in

solution, as had been done in Chapter 2, Section 11.6. The data obtained from the

homodecoupling analysis performed on enoate (±)-lOla is presented in Figure 25.

As had been obtained previously (Section 11.6) in this case too, for the vicinal

couplings one large (3JED = 10.3 Hz) and one small (3JEc = 2.6 Hz) coupling constant

was obtained, indicating that there was a preferred conformation. However the small

value for 3JEF indicates that conformation A is preferred over conformations B and C.

In conformations B and C one can see that there is syn-pentane interaction with the

appended C-methyl groups (indicated in green), however conformation A has a syn

pentane interaction with the chain element. From the coupling constant obtained for

3JEF it can be concluded that the syn-pentane interaction with the chain is not as high

energy as the interaction observed in conformation B.

OBOM

)CO2Me

- (±)-lOla
r,

RO2C
RO2C -Me-’ RO2C -

A B C

3EC = 2.6 Hz

3ED = 10.3 Hz

2CD = 14.3 Hz

3FE = 1.9 Hz

3MeE = 6.8 Hz

Figure 25: Data obtained from the homodecoupling analysis of(±)-lOla.
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The molecules studied in Section 11.6 bearing the iso-propyl anchor have three low

energy conformers (figures 22 and 23), however in the case of the tert-butyl anchor

only one such low energy conformer is preferred based on the coupling information

obtained. The fact that there is only one low energy conformer within the tert-butyl

series explains why lower selectivities for the second and third cuprate additions were

not observed.

111.3. Investigating the effects of having no anchoring group

As a final proof of the proposed anchoring effect we had decided to study a

series of molecules wherein no anchoring group was present. To this end we decided

to investigate a methyl anchor. It had been hypothesized that the methyl end group

would afford no anchoring to the molecule since it would flot preferentially adopt any

particular conformation.

111.3.1. Probing the ester effect towards the addition of lithium dimethylcuprate

to alkoxy-ofi-unsaturated esters

1) BOMCI, DIPEA, CH2CI2
OH 0°C to r.t., 75% ÇBOM fPh)3P=CHCO2R, OBOM

-CO2Et 2) DIBAL-H, CH2CI2, -CHO CH2C2 rt. -CO2R
(Ck I -78°C,91% 106k t y ac a e

107a R = Me 96%
707b R = t-Bu 99%
107c R = MCP 94%

Scheme 27: Synthesis ofthe methyl anchored alkoxy-a,6-unsaturated esters.

Synthesis of the substrates began with BOM protection of the cornmercially

available (S)-ethyl lactate. Reduction of the ethyl ester to the corresponding aldehyde

followed by Wittig homologation afforded the enoates 107a-c in excellent yield

(Scheme 27). As shown in Table 7, addition of lithium dimethylcuprate to enoates

107a-c afforded a diastereomeric mixture of esters lO8a-c and the anti- isomcrs (not

shown). The diastereoselectivity is flot excellent but a slight ester effect is observed,

59



with the tert-butyl ester, giving the best diastereomeric ratio. As has been observed

with other anchors the MCP ester does flot give selectivities better than the tert-butyl

ester.

ÇBOM Me2CuLi, TMSCI QBOM

THF, -78°C
jCO2R

anti- isomer

107a-c 108a-c

Substrate R d.r. (anti/syn)5 d.r. (anti/syn)1’ yield (%)C

107a Me 73:27 72:28 99

107b t-Bu 85:15 85:15 91

107c MCP 80:20 82:18 92

deterrnined by inverse gated proton decoupled 13C NMR
bdeternhined by 1H NMR
‘isolated yields alter chromatography

Table 7: Addition of lithium dimethylcuprate to methyl anchored yalkoxy- ofi
unsaturated esters.

111.3.2. Effect of no anchoring group towards the second cuprate addition

OBOM OBOM OBOMDIBAL-H z 1) DMP oxidation

CO2Me CH2CI2, 89% 2)(Ph)3P=CHCO2t-Bu, 1CO2t-Bu

CH2CI2, r.t.
anti- and syn-108a 109 170

d.r. 73:72 52% over two steps

Me2CuLi, TMSCI OBOM

+ anti- isomer
THF, -78°C, 90%

j1CO2t-Bu

111

d.r. 67:33 (determined by inverse gated
proton decoupled 13C NMR)

d.r. 75:25 (determined by 1H NMR)

Scheme 28: Effect ofthe methyl anchor towards the second iterative cuprate

addition.
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As shown in Scheme 2$, starting with a diastereorneric mixture of syn- and

anti- esters 108a, following standard functional group manipulation, enoate 110 was

obtained in three steps. Addition of lithium dimethylcuprate to substrate 110

provided ester 111 and the minor anti- diastereomer (not shown) with a d.r. of 67:33

syn/anti. As had been expected the methyl anchor leads to a decrease in selectivity

due to the loss ofthe anchoring effect that had been provided with the other anchors.

OBOM

110

Me2 OR F
C C C

RO

______

DF M

______

D
‘Mei5O2t-Bt ‘MeiCO2t-Bu

A B C

3EC = 4.6 Hz

3JED = 9.0 Hz

2CD = 14.2 Hz

3FE = 5.6 Hz

3Me1E = 6.8 Hz

3Me2E = 6.3 Hz

Figure 26: Data obtained from the homodecoupling analysis of 110.

The homodecoupling analysis of enoate 110 as shown in Figure 26, indicates

that there is not a very large gap between the vicinal coupling constants (3JEC and

3JED) upon comparison with the data presented in Sections 11.6 and 111.2.3. This

smaller 3JEC and 3JED gap may be due to the Yack of any anchoring group which

consequently results in the lower selectivities observed for these molecules. Since an

average coupling value of 5.6 Hz is observed for 3JFE it cannot be stated with

certainty which of the three conformers shown in Figure 26 is preferred. Based on

the 5.6 Hz value it may seem that ail three conformers are present.
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111.4. Studying the necessity of the benzyloxymethyl group

One of the conclusions made from the study of the alkoxy protecting groups

was that the nature of the protecting group was not that important, and it had been

observed that the BOM protecting group gave the best selectivities. We then decided

to re-visit the BOM group, and see what the effect would be if instead of having

aÏkoxy-fl-unsaturated esters we used methyl-a,fl-unsaturated esters.

111.4.1. Probing the ester effect towards the addition of lithium dimethylcuprate

to Lmethyloç/3unsaturated esters

Starting with commercially available (R)-3 -hydroxy-2-methyl-propionic acid

methyl ester, protection with TBDPSCI gave the silyl ether 112 in 96% yield

(Scherne 29). Reduction to the alcohol, followed by Swem oxidation and Wittig

homologation afforded the methyl-a6-unsaturated esters 114a-c in excellent yield.

We had hypothesized that the selectivities for the conjugate addition to enoates 114a-

e would proceed with very low diastereoselectivity. As previously mentioned

(Section 1.3.10, Figure Il), the high level ofdiastereocontrol observed in the addition

of lithium dimethylcuprate to alkoxy-a6-unsaturated esters was due to the “inside

alkoxy” effect. In substrates 114a-c. Ïoss ofthe alkoxy group altogether, would resuit

in loss of the stabilization offered by the “inside alkoxy” effect, possibly resulting in

lower selectivities.

1) DIBAL-H, CH2CI2,

I TBDPS-CI, NEt3, CH2CI2, I -78°C 86%
HOÀ. TBDPSOL.

CO2Me 0°C to r.t., 96% CO2Me 2) DMSO, (COCI)2, NEt3,
(R)-3-Hydroxy-2-methyl-

112
CH2C(2, -78°C, 92%

propionic acid methyl ester

I (Ph)3P=CHCO2R, I 114a R = Me 86%
TBDPSOIO

CH Cl r t
TBDPSOk-.

R 114b R = t-Bu 79%
2 2’ 114cR=MCP 93%

113

Scheme 29: Synthesis of the methyl- ofl-unsaturated esters.
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As shown in Table 8, addition of lithium dimethylcuprate to the rnethy1-a,6-

unsaturated esters 114a-c provided esters 115a-c and the anti- isomer (flot shown).

Surprisingly, flot only did the selectivities flot drop, but a substantial ester effect was

also observed, the MCP ester gave the best diastereomeric ratio (d.r. 94:6). The

presence of a bulky CH2OTBDPS may account for the observed ester effect. Figure

27 shows the two conformations leading to the obtained major anti- and the minor

syn- diastereomers. Conformation 1 14A leading to the desired anti- product proceeds

through the modified felkin-Anh mode!.56

Me2CuL1, TMSCI
TBDPSO’ TBDPSO

- C02R + anti- isomer
CO2R THF, -78°C E

108a-c 109a-c

Substrate R d.r. (ant,ysyn)a yield (%)b

108a Me 83:17 94

108b t-Bu 91:9 90

f 08c MCP 94:6 92

determined by Inverse gated proton decoupled C NMR
b solated yields affer chromatography

Table 8: Addition of lithium dimethylcuprate to methy1-a.fl-unsaturated esters.

Nu

S\MCQ2MO
Felkin-Ahn

TBDPSOJ_-.

[OR uSa
11 4A

CO2Me_anti-
FeIkin-Ahn

Nu syn-115a
114B

Figure 27: Modified Feikin-Aim model for chiral Michae! acceptors.
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111.4.2. Effect of no alkoxy group towards the second cuprate addition

Iteration of the cuprate addition process begins with homologation of the

substrate. Reduction of the diastereomeric mixture of syn- and anti- esters 115a to

the alcohol, followed by separation of the diastereomeric aÏcohols afforded 116

(Scheme 30). Usuat oxidation and Wittig homologation afforded the -methyI-a,,6-

unsaturated esters 117a-c. Addition of lithium dimethylcuprate to enoates 117a-c

afforded esters 118a-c and the ctnti- isomers (flot shown). The lower

diastereoselectivity due to the loss of the alkoxy group can be seen clearly in the

second cuprate addition. Furthermore, a substantial ester effect is flot observed.

Diastereoselectivities range from 67:33 to 74:26. Comparison of these ratios with

those in Scheme 15 shows the difference in diastereoselectivity with and without the

OBOM group.

1) DMSO, (COCI)2, NEt3,

TBDPS0_l_c M

DIBAL-H, CH2CI2
TBDPS0I0H

CH2CI2, -78°C

02 e
-78°C, 87% 2) (Ph)3P=CHCO2R,

syn-andanti-109a 110 2 2’

d.r. 83:17

lllaR=Me 95%
TBDPSO

- CO R 111b R = t-Bu 89%
2 lflcR=MCP 84%

Me2CuLi, TMSCI
TBDPSO •

- CO2R
TBDPSO

r z oe2 + anti- isomer
r THF, -78°C r r

111a-c 112a-c

Substrate R d.r. (syn/ant,)a yield f%)b

lila Me 67:33 88

11fb t-Bu 70:30 83

hic MCP 74:26 70

determined by Inverse gated proton decoupled 130 NMR
b isolated yields after chromatography

Scheme 30: Probing the effect ofthe loss ofthe alkoxy substituent towards conjugate

cuprate additions.

64



Based on these resuits it can be seen that depending on the substrate the

benzyÏoxymethyl group also serves to anchor the molecule in a preferred

conformation, leading to better diastereoselectivities.

111.5. Conclusions

The first section of this chapter deait with the phenyl anchor. It was observed

that the diastereoselectivities obtained with the phenyl anchor compared to the iso

propyl anchor were substantially lower (compare Tables 1 and 3 with Scheme 23 and

24). Also, upon performing iterative additions of lithium dimethylcuprate to the

phenyl anchored substrates, the diastereoselectivities did increase in going from the

smaller methyl ester to the bulkier tert-butyl and MCP esters, however not much

difference was observed between the two bulky tert-butyl and MCP esters (Schemes

23 and24).

The tert-butyl anchor was also investigated, in Section 111.2. It had been

anticipated that this anchor would provide decreased diastereoselectivities upon

addition of lithium dimethylcuprate to the corresponding &methyl-c.fl-unsaturated

esters. The observed diastereoselectivities were indeed lower than the corresponding

iso-propyl anchored substrates, but a significant difference between the phenyl anchor

and the tert-butyl anchor was not observed. An NMR investigation of the

conformation ofthe enoates sheds some light on the possible reasons.

The rert-butyl anchor was studied as an example of an anchor wherein all

possible conformations would provide high energy syn-pentane interactions. We then

decided to study a methyl anchor, wherein no conformation would lead to any svn

pentane interactions. Selectivities for the first cuprate additions were modest.

however dropped for the second iterative cuprate addition.

Finally the necessity of the OBOM group was probed. Cuprate additions to

the yrnethyl-a,fl-unsaturated esters provided the corresponding LmethyI-/rnethyl

products in excellent diastereomeric ratios. Also, an excellent ester effect was

observed with the methyl ester giving the lowest selectivity and the MCP ester giving
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the best selectivity. However, iteration of the process provided products wherein

both the diastereoselectivites were lowered and no ester effect was observed.
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Chapter IV:

Synopsis

IV.1. Addition of lithium dimethylcuprate to alkoxy- and cmethylofi

unsaturated esters

Addition of the Gilman cuprate to yrnethy1-o,fi-unsaturated esters (i.e. the

first cuprate addition) is generally not affected by variations in the anchoring group.

The high anti-selectivity for these first cuprate additions is explained by the ‘O-inside

alkoxy’ effect (Chapter I, Section 1.3.10). As shown in Table 9, the substitution was

varied in three positions. The best selectivity was observed for substrate 64, with the

iso-propyl anchor (entry 1). Somewhat lower diastereomeric ratios are observed with

the methyl anchored substrates (entries 6-8). It had been anticipated that the methyl

anchor would not provide any anchoring effect therefore, was expected to result in

lower selectivities. Also, the &methyl substrates 114a-c (entries 9-11) had been

hypothesized to give lower selectivities, in this case due to loss of the ‘O-inside

alkoxy’ effect. However, excellent diastereoselection was observed and a substantial

ester effect was also observed. The best diastereoselectivity was observed with the

MCP ester and the smaller methyl ester gave a lower diastereomeric ratio. The

modified felkin-Abn model (Chapter III, Section 111.4.1) explains the origin of the

diastereocontrol.
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R2 Me2CuLi, TMSCI R2 R2

R1CO2R3 THF, -78°C
R1CO2R3 RlLÏCO2R3

major product major product
anti- syn

Entry Substrate R1 R2 R3 d.r. (anti/syn)a yield (%)b

1 64 i-Pr OBOM Me 96:4 99

C

2 88a Ph OBOM Me 94:6 97

C

3 88b Ph OBOM t-Bu 95:5 92

4 88c Ph OBOM MCP 95:5C 89

5 (±)-97 t-Bu OBOM Me >95:5 89

6 107a Me OBOM Me 73:27 99

107b Me OBOM t-Bu 85:15 91

8 107c Me OBOM MCP 80:20 92

114a CH2OTBDPS Me Me 83:20 94

10 114b CH2OTBDPS Me t-Bu 91:9 90

114c CH2OTBDPS Me MCP 94:6 92

adetermined by inverse gated proton decoupled lac NMR
b isolated yields after chromatography
determined by 1H NMR

Table 9: Addition of lithium dimethylcuprate to yalkoxy- and methy1-a,/3-

unsaturated esters.

IV.2. Addition of lithium dimethylcuprate to &methyl-cq3-unsaturated esters

Table 10 shows the various substrates wherein lithium dirnethylcuprate was

added to &methy1-afl-unsaturated esters. Substrate 67e gave the highest

diastereoselectivity (entry 5). The second cuprate additions shed light on the anchor

effect vs. ester effect. It seems that although the anchoring group does indeed play a

role in maintaining the molecule in a preferred conformation, it does flot necessarily

introduce such costly interactions. The ester effect seems to be the dorninating factor,

as a clear difference in diastereoselectivity is observed when changing from a smaller

methyl ester to larger tert-butyl and MCP esters. The difference between tert-butyl

and MCP esters on the other hand, is not very substantial both esters generally give
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diastereomeric ratios in the sarne range. Substrates 67a, 67d, and 67e show a clear

ester effect (entries 1,4 and 5), related to the increase in the size ofthe ester.

Me2CuLi, TMSCI

R1 C02R3
THF -78°C

R1 - - C 2 3

Entry Substrate R1 R2 R3 d.r. (syn/anti) yield (%)b

1 67a i-Pr OBOM Me 75:25 80

2 67b i-Pr OBOM i-Pr 77:23 96

3 67c i-Pr OBOM neo-Pent 78:22 93

4 67d i-Pr OBOM t-Bu 89:11 87

5 67e i-Pr OBOM MCP 91:9 89

6 91a Ph OBOM Me 69:31 86

7 91b Ph OBOM t-Bu 84:16 85

8 91c Ph OBOM MCP 85:15 86

9 (±)-lOla t-Bu OBOM Me 64:36 76

10 f±)-lOlb t-Bu OBOM t-Bu 82:18 85

11 (±)-lOlc t-Bu OBOM MCP 81:19 73

12 110 Me OBOM t-Bu 67:33 90

13 117a CH2OTBDPS Me Me 67:33 88

14 117b CH2OTBDPS Me t-Bu 70:30 83

15 11 7c CH2OTBDPS Me MCP 74:26 70

determined by inverse gated proton decoupled 1C NMR
b isolated yields after chromatography
cdetermined by 1H NMR

Table 10: Comparison ofthe different anchors and esters towards the addition of

lithium dimethylcuprate to &methy1-o.fl-unsaturated esters.

Substrates 91a-c show a less pronounced difference between the tert-butyl and MCP

esters, but the selectivity observed with the methyl ester is nonetheless lower (entries

6-8). The tert-butyl anchored substrates were expected to resuit in considerably

lower selectivities, but surprisingly afforded moderate to good diastereoselection

(entries 9-11). Even though the ester effect seems to be the dominant effect the

example with the methyl anchored substrate (entry 12) shows that loosing the

anchoring group does indeed resuit in lower diastereomeric ratios. From these resuits
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it can be concluded that the ester effect is certainly the more dominant effect being

observed in the addition of lithium dirnethylcuprate to methyl-o,6-unsaturated

esters.

IV.3. Third iteratîve addition of lithium dimethylcuprate to &methy1-cq-

unsaturated esters

030M Me2CuLi, TMSCI OBOM

+ anti- somer
R1 C02R2 THF, -78°C

R1 2 C02R2

Entry Substrate R1 R2 d.r. (syn/antl)a yield (%)b

1 75a i-Pr Me 67:33 84

2 75b i-Pr t-Bu 87:13 97

3 75c i-Pr MCP 83:17 91

4 94a Ph t-Bu 79:21 90

5 94b Ph MCP 79:21 74

6 (±)-103 t-Bu t-Bu 82:18 77

determined by inverse gated proton decoupled 13C NMR
b isolated yields after chromatography

Table 11: Comparison ofthe different anchors and esters towards the third iterative

addition of lithium dimethylcuprate to &methyl-a,fl-unsaturated esters.

As shown in Table 11 the selectivities observed towards the third iterative

cuprate additions seem to have plateaued regardless of the nature of the anchoring

group. Nonetheless the level of substrate and conformational control observed for the

diastereoselective addition of lithium dimethylcuprate to acyclic &methyl-a,fl

unsaturated esters is quite impressive. Another effect that was observed was the

decreasing preference for syn-selective cuprate additions with the MCP ester in the

growing acyclic chain. Addition of lithium dimethylcuprate to substrate 67e gave the

corresponding syn- and anti- esters in a diastereomeric ratio of 91:9, homologation

and iteration thereof affords a diastereomeric ratio of 83:17 for substrate 75c (Table
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10, entry 5 and Table 11, entry 3). The same decrease in selectivity is obscrved for

the phenyl anchored substrates (Table 1, entries 4 and 5).
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Chapter V:

Experimental

V.1. General experïmental notes

Reagents

Ail reagents were purchased from Aldrich, Sigma, Lancaster or Acros and were used

without any fttrther purification, unless otherwise noted. Ail commercially

unavailable reagents were prepared following literature procedures.

Anhydrous reaction conditions

Ail anhydrous reactions were performed under an atmosphere of dry argon. The

glass vessels, needles, and stirring bars were either oven-dried at 110-140 °C, or

flame dried, and cooled to room temperature under a flow of argon. Solvents such as

tetrahydroftiran, diethyl ether, dichioromethane and toluene were obtained from the

Solvent Dispensing System (SDS), which filters the solvents over a column of

alumina under an atmosphere of argon. Acetonitrile and NEt3 were distilled over

calcium hydride under an atmosphere of argon.

Temperature control

The temperatures indicated in the reaction schemes and in the procedures are ail

extemal temperatures.

-7$ °c dry ice-acetone bath

o °c ice-water bath

room temperature ambient temperature without any control
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Chromatography

Flash chromatograpliy was carried out according to the procedure of Still,57 using

silica gel 60 (0.40-0.063 mm. 230-400 mesh ASTA) (E. Merck). Thin layer

chromatography (TLC) was performed using commercially available, precoated glass

backed Silica Gel 60 f254 plates with a thickness of 25 um. Visualization of the UV

active cornpounds on the TLC plates was done with the aid of a UV254 lamp. The

TLC plates were stained with either ofthe following stains:

• Cerium molybdate stain:58 Prepared by dissolving 12 g ammonium

rnolybdate, and 0.5 g ceric ammonium rnolybdate in 235 mL F120 and 15 mL

concentrated sulphuric acid.

• Potassium permanganate stain: Prepared by dissolving 1.5 g potassium

permanganate, 10 g potassium carbonate and 1.25 mL 10% NaOH in 200 mL

H20.

Instrumentation

Nuclear Magnetic Resonance Spectroscopy:

Routine nuclear magnetic resonance spectra were recorded on Bruker AMX 300 (‘H

300 MHz, ‘3c 75 MHz), Bruker AV 300 (‘H 300 MHz, ‘3C 75 MHz), Bruker ARX

400 (‘H 400 MHz, ‘3C 100 MHz), and Bruker AV 400 (‘H 400 MHz, ‘3C 100 MHz)

instruments. The NMR experiments reported in Chapters II and III (‘H NMR,

COSY45, Jresolve and ‘H-’H homodecoupling) were recorded on a Bruker AV 500

MHz instrument. Chemical shifis ( and coupling constants (J) are expressed in

parts per million (ppm) and hertz (Hz) respectively. Abbreviations used describing

the spiitting ofthe peaks are as follows:

s singlet

d doublet

t triplet
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q quartet

quin quintet

dd doublet of doublet

dq doublet of quartet

rn multiplet

The 13C NMR chemical shifts observed for minor diastereomers, obtained from the

cuprate additions, are indicated in parentheses.

Infrared Spectrometry:

The infrared spectra (IR) were recorded on a Perkin-Elmer 721 or Paragon 1000

spectrophotometer as a thin film on a sodium chloride celi.

Polarimetry:

Optical rotations (ŒD) were measured at the sodium line using a Perkin-Elmer 241

polarimeter at ambient temperature.

Mass spectra:

Low resolution and high resolution mass spectra were obtained from VG Micromass,

Kratos MS-50 TCTA, or Ael-MS902 instruments. The data were obtained by

ionization by electrospray, electron impact (El) or fast atom bombardrnent (FAB).

Most of the molecules reported herein did not ionize, consequently did not provide

any valid mass spectral data. Therefore there very few mass spectra are reported.

V.2. Experimental procedures and data

General Procedure A: DIBAL-H reduction

To a solution ofthe ester in CH2C12 cooled to -78 °C, DIBAL-H (3 equivalents) was

added. The reaction was stirred at -78 °C for 4 h before being quenched with a

saturated NaJK tartrate solution. The reaction mixture was diluted with EtOAc and
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stirred for 30 min at room temperature until a clear biphasic solution was observed.

The aqueous layer was extracted three times with EtOAc. The combined organic

extracts were washed with brine, dried over Na2SO4 and filtered. Afler concentration,

the resulting residue was purified by flash chromatography.

General Procedure B: Swern Oxidation

Oxalyl chloride (2.5 equivalents) was slowly added to a solution of DMSO (5

equivalents) in CH2C12 cooled to -7$ °C. The mixture was allowed to stir at -7$ °C for

20 min before addition ofa solution ofthe alcohol in CH2C12. After 45 min NEt3 (10

equivalents) was added and the reaction was warmed to room temperature. The

reaction was quenched with a saturated solution of NH4C1, the aqueous layer was

extracted three times with EtOAc, and the combined organic layers were dried over

Na2SO4, filtered and then concentrated. Flash chromatography afforded the desired

aldehyde.

General Procedure C: Wittig reaction

A solution of the aldehyde in C112C12 was charged with Ph3P=CHCO2R (1.5

equivalents). The reaction mixture was stirred at room temperature for 1$ h and then

evaporated to dryness. The crude solid was triturated with hexanes/Et20 (3:1), and

the resulting slurry was filtered over a pad of celite. The filtrate was concentrated

and purified by flash chrornatography affording the enoate.

General Procedure D: cuprate addition

b a sluny of Cul (6 equivalents) in THF at -is oc was added MeLiLiBr (12

equivalents). The resulting colorless solution was stirred at this temperature for 20

min then cooled to -7$ °C. Dropwise addition of TMSC1 (1$ equivalents) was

followed by canulation of a solution of the ofl-unsaturated ester in THF at -7$ °C.

The reaction mixture was stirred at -7$ °C for 3 h and quenched with solution of

NH4OH/NH4CI (1:1). The mixture was diluted with Et20 and warrned to room

temperature. The aqueous layer was extracted three times with Et20, the combined
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organic extracts were washed with NH4OH/NII4CY (1:1), brine, and dried over

Na2SO4. The solution was filtered and concentrated in vacïto. The resulting residue

was purified by flash chrornatography.

General Procedure E: Swern oxidation followed by Wittig reaction

Oxalyl chloride (2.5 equivalents) was added to a solution of DMSO (5 equivalents) in

CHC1 at -7$ °C. Afier 15 min. a solution ofthe alcohol in CH2C12 was added and

stirred at -7$ °C for 45 min. NEt3 (10 equivalents) was then added and the reaction

mixture was warmed to room temperature over 45 min. A saturated solution of

NH4CI was added and the layers were separated. The aqueous layer was extracted

three times with EtOAc, the combined organic layers were washed with brine. dried

over Na2SO4, filtered and concentrated. The crude aldehyde was added to a solution

of Ph3P=CHCO2R (1.5 equivalents) in CH2C12, and the reaction mixture was stirred at

room temperature for 1$ h then evaporated to dryness. The crude solid was triturated

with hexanes/Et20 (3:1), and the resulting slurry was filtered over a pad of celite.

The fittrate was concentrated and purified by flash chromatography.

2-Hyd roxy-3-methylbutyric acid methyl ester (62)

1) NaNO2, H2S04,
NH2 OHH20,O C

C02H 2) AcCI, MeOH, r.t. f)CO2Me

D-Valine 43%, over two steps 62

The above compound was prepared according to a literature procedure.4 All spectral

and physical data were in accordance with the reported data.

(2R)-2-Benzyloxymethoxy-3-methylbutan- 1-01(63)
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1) BOMCI, DIPEA,
OH OBOM

CO2Me 2)DALH,CH2,
OH

-78°C 92%
62 63

The above compound was prepared according to a literature procedure.54 Ail spectral

and physical data were in accordance with the reported data.

(E)-(4R)-4-Benzyloxymethoxy-5-methylhex-2-enoic acid methyl ester (64)

1) DMSO, (COCI)2, NEt3,
OBOM OBOM

OH
2) CO2Me

CH2CI2, r.t., 91%
63 64

The above compound was prepared according to a literature procedure.54 Ail spectral

and physical data were in accordance with the reported data.

(3S, 4R)-4-Benzyloxymethoxy-3,5-dimethylhexanoic acid methyl ester (65)

OBOM C L TMSCI OBOM

j’CO2Me
, -78°C,

JCO2Me

The above compound was prepared according to a literature procedure.54 Ah spectral

and physicat data were in accordance with the reported data.

(3S, 4R)-4-Benzyolmethoxy-3,5-dimethylhexan-1-ol (66)

OBOM DIBAL-H, CH2CI2, 080M

‘CO2Me -78°C,
OH
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Following general procedure A, reduction of compound 65 (1.51 g, 5.13 mmol)

afforded alcohol 66 (1.26 g, 93%) afier flash chromatographic purification with 10%

EtOAc/hexanes.

[ŒID -16.2 (e = 1.42, CHC13)

IR(thin film) 3410, 3032, 2961, 2876, 1455, 1384, 1366, 1207, 1159cnï1

‘H NMR (400 MHz, CDC13) 6(ppm) 7.23 (m, 5H), 4.85 (d, 1H, J 6.9 Hz), 4.82 (d,

1H, J= 6.9 Hz), 4.71 (d, 1H, J= 11.8 Hz), 4.66 (d, 1H, J= 11.8 Hz), 3.76 (m, 1H),

3.62 (m, 1H), 3.15 (m, 1H), 2.02 (m, 1H), 1.93 (m, 2H), 1.79 (rn, 1H), 1.56 (m, 1H),

0.9$ (m, 9H).

‘3C NMR (100 MHz, CDC13) 6(ppm) 132.3, 128.2 (2C), 128.2 (2C), 128.1, 97.2,

90.3, 70.6, 61.0, 34.9, 32.9, 30.9, 20.7, 12.7, 17.6

(E)-(5S, 6R)-6-Benzyloxymethoxy-5,7-dimethyloct-2-enoic acid methyl ester

(36a)

OBOM
1) DMSO, (COCI)2, NEt3,

OBOM
JOH

2) )3P=CHCO2Me, CO3Me

- CH2CI2, r.t., 96%
66 67a

following general procedures B and C, oxidation of alcohol 66 (1.55 g, 5.22 mmol)

afforded the desired aldehyde (1.3 1 g, 21%). Wittig homologation of the aldehyde

(0.10 g, 0.3$ mmol) gave product 67a (0.12 g, 96%) as a colorless oil afler flash

chromatography with 2% EtOAc/hexanes.

[Œ]D -12.7 (e = 0.73, CHC13)

IR (thin film) 3032, 2962, 2876, 1725, 1656, 1497, 1455 cmt
11 NMR (400 MHz, CDCÏ3) 6(ppm) 7.35 (m, 5H), 6.99 (m, 1H), 5.85 (d, 1H, J

15.6 Hz), 4.86 (d, 1H, J= 6.8 Hz), 4.83 (d, 1H, J= 6.8 Hz), 4.72 (d, 1H, J 12.0 Hz),

4.6$ (d, 1H, J 12.0 Hz), 3.74 (s, 3H), 3.12 (t, 1H, J 5.3 Hz), 2.55 (m, 1H), 2.05

(m, 1H), 1.90 (m, 2H), 0.95 (m, 9H)
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13C NMR (100 MHz, CDC13) 5(ppm) 167.4. 149.4, 138.3, 130.5 (2C), 128.8 (2C).

128.2, 122.5, 97.2, 89.6, 70.6. 51.8. 35.6, 35.5, 30.8, 20.7, 17.9, 17.5

HRMS (FI) m/z 321.2060 (calcd for 321.2066 C19H2804)

(E)-(5S, 6R)-6-Benzyloxymethoxy-5,7-dimethyloct-2-enoic acid isopropyl ester

(67b)

OBOM 1) DMSO, (COCI)2, NEt3,
OBOM

ÇOH
2) )3P=CHCO2ir, CO2IPt

CH2CI2, r.t., 91 /
66 67b

Following general procedures B and C, oxidation ofalcohol 66 (1.55 g, 5.82 mmol)

afforded the desired aldehyde (1.3 1 g, 8 1%). Wittig homologation of the aldehyde

(0.20 g, 0.77 mmol) gave product 67b (0.24 g, 91%) as a colorless ou after flash

chromatography with 2% EtOAc/hexanes.

[ŒÏD -11.2 (e = 0.83, CR03)

IR(thinfilm)2964, 1715. 1653. 1454, 1372, 1310, 1270. 1220, 1178 cm1

‘H NMR (400 MHz, CDC13) 6(ppm) 7.32 (rn, 5H). 6.95 (m, 1H). 5.82 (d, 1H. J

15.5 Hz), 5.0$ (m, 1H), 4.83 (d, 1H, J = 6.9 Hz), 4.81 (d, 1H, J = 6.9 Hz), 4.70 (d,

1H, J= 11.9 Hz), 4.66 (d, 1H, J= 11.9 Hz), 3.12 (t, 1H, J 5.3 Hz), 2.56 (m, 1H),

2.05 (m, 1H), 1.91 (m, 2H), 1.29 (m, 6H), 0.96 (m, 9H)

13C NMR (100 MHz, CDCY3) 6’(ppm) 175.6, 148.7, 128.8 (2C), 128.1 (2C), 128.0,

123.4, 97.2 (2C), 89.7, 70.6, 67.8, 35.6, 35.4, 30.8, 22.3 (2C), 20.7, 12.0, 17.6

HRMS (El) m/z 349.2389 (calcd for 349.2379 C21HpO4)

(E)-(5S, 6R)-6-Benzyloxymethoxy-5,7-dimethyloct-2-enoic acid 2,2-dimethyl-

propyl ester (67e)
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OBOM
1) DMSO, (COCI)2, NEt3,

OBOM

2) h)3P=CHCO2nePent02ne0t
CH2CI2, r.t., 74%

66 67c

following general procedures B and C, oxidation of alcohol 66 (1.55 g, 5.82 mmol)

afforded the desired aldehyde (1.3 1 g, 8 1%). Wittig homologation of the aldehyde

(0.20 g, 0.77 mmol) gave product 67c (0.2 1 g, 74%) as a colorless ou afier flash

chromatography with 2% EtOAc/hexanes.

IŒJD -5.8 (e = 0.55. CHC13)

IR (thin film) 3100, 1715, 1650, 149$ cm1

‘H NMR (400 MHz, CDCY3) 5(ppm) 7.31 (m, 5H), 6.98 (m, 1H), 5.87 (d. 1H, J

15.6 Hz), 4.84 (d, 1H, J 6.9 Hz), 4.81 (d, 1H, J 6.9 Hz). 4.71 (d, 1H, 1= 11.9 Hz),

4.66 (d, 1H, J 11.9 Hz), 3.84 (s, 2H), 3.12 (t, 1H, J 5.3 Hz), 2.56 (m, 1H), 2.06

(m, 1H), 1.91 (m, 2H), 0.99 (m, 18H)

‘3C NMR (100 MHz, CDCI3) (ppm) 167.1. 149.0, 128.8 (2C), 128.1 (2C), 128.1,

122.9, 97.2, $9.7. 78.6, 73.9, 70.6. 35.6, 35.5, 3 1.8, 30.8. 26.9 (3C), 20.7, 18.0. 17.5

HRMS (El) m/z 377.2706 (calcd for 377.2692 C73H3604)

(E)-(5S, 6R)-6-Benzyloxymethoxy-5,7-dimethyloct-2-enoic acid tert-butyl ester

(67d)

OBOM 1) DMSO, (COCD2, NEt3,
OBOM

r-1---
OH

CH2CI2, -78°C, 81%

2) (Ph)3P=CHCO2t-Bu, - C02t-Bu

CH2CI2, r.t., 85%
66 67d

Following general procedures B and C, oxidation of alcohol 66 (1.55 g, 5.82 mmol)

afforded the desired aldehyde (1.31 g, 81%). Wittig homologation of the aldehyde

(0.20 g, 0.77 mmol) gave product 67d (0.24 g, 85%) as a colorless ou afler flash

chromatography with 2% EtOAc/hexanes.

[Œ]D -6.3 (e 0.40, CHC13)
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IR(thinfilm)2967, 1712, 1651, 1455, 1366 cm1

1H NMR (400 MHz, CDCI3) Y(ppm) 7.34 (m, 5H), 6.87 (m, 1H), 5.77 (d, 1H, J

15.5 Hz), 4.82 (d, 1H, J= 6.9 Hz), 4.80 (d, 1H, J= 6.8 Hz), 4.69 (d, 1H, J 11.9 Hz),

4.65 (d, 1H, J= 11.9 Hz), 3.11 (t, 1H, Jz= 5.4 Hz), 2.52 (m, 1H), 2.02 (m, 1H), 1.90

(m, 2H), 1.49 (s, 9H), 0.95 (m, 9H).

‘3C NMR (100 MHz, CDC13) 5(ppm) 166.4, 147.7, 138.3, 128.8 (2C), 128.5 (2C),

128.0, 124.6, 97.2, 89.7, 80.4, 70.6, 35.6, 35.2, 30.8, 28.6 (3C), 20.7, 17.8, 17.5

HRMS (El) rn/z 363.2533 (calcd for 363.2535 C22H3404)

(E)-(5S, 6R)-6-Benzyloxymethoxy-5,7-dimethyloct-2-enoic acid 1-

methylcyclopentyl ester (66e)

OBOM
1) DMSO, (COCD2, NEt3,

OBOM

OH
2) )3P=CHCO2MCP,

CH2CI2, r.t., 64%
66 67e

Following general procedures B and C, oxidation of alcohol 66 (1.55 g, 5.82 mmol)

afforded the desired aldehyde (1.31 g, 81%). Wittig homologation of the aldehyde

(0.20 g, 0.77 rnmol) gave product 67e (0.19 g, 64%) as a colorless oil afier flash

chromatography with 2% EtOAc/hexanes.

[ŒÏD -6.8 (e = 0.83, CHCI3)

IR (thin film) 2963, 2875, 1712, 1652, 1455, 1374, 1320 cm1

1H NMR (400 MHz, CDC13) 5(ppm) 7.32 (m, 5H), 6.88 (m, 1H), 5.77 (d, 1H, J

15.6 Hz), 4.82 (d, 1H, J 6.9 Hz), 4.80 (d, 1H, J 6.7 Hz), 4.69 (d, 1H, J 11.9 Hz),

4.65 (d, 1H, J= 11.9 Hz), 3.11 (t, 1H, J= 5.3 Hz), 5.04 (m, 1H), 2.13 (m, 2H), 2.02

(m, 1H), 1.89 (m, 2H), 1.71 (m, 6H), 1.59 (s, 3H), 0.98 (m, 9H)
l3 NMR (100 MHz, CDC13) 8(ppm) 166.5, 147.8, 138.3, 128.8 (2C), 128.1 (2C),

128.0, 124.5, 97.2, 89.9, 89.7, 70.6, 39.6 (2C), 35.6, 35.3, 30.8, 24.9, 24.2 (2C), 20.7,

18.0, 17.5

HRMS (El) in/z 389.2700 (calcd for 389.2692 C24H3604)
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(3R, 5S, 6R)-6-Benzyloxymethoxy-3,5,7-trimethyl-octanoic acid methyl ester

(68a)

OBOM Me C C TMSCI OBOM OBOM

CO2Me
THE, -78°C, 80% CO2Me + CO2Me

67a syn-68a anti-68a
synlanti 7 5:25

Compound 67a (0.784 g, 2.45 rnmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification of the product with 2%

EtOAcihexanes afforded the products yn-68a and anti-6$a (0.66 g, 80% cornbined

yield) in a ratio of 75:25 syn/anti.

IŒJD -17.0 (e = 1.20, CHCI3)

IR(thinfilm)2961. 1738, 1455, 1382 cnï’

‘H NMR (400 MHz, CDC13) c5(ppm) 7.32 (m, 5H), 4.34 (d, 1H, J 6.9 Hz), 4.80 (d,

1H, J= 6.9 Hz), 4.71 (d, 1H, J 11.9 Hz), 4.66 (d, 1H, J 11.9 Hz), 3.6$ (s, 3H),

3.11 (t. 1H,J= 5.3 Hz), 2.41 (dU, 1H,J 3.7, 13.9Hz), 2.04 (m, 2H). 1.89 (m. 1H),

1.79 (m. 1H), 1.50 (m. 1H). 1.15 (m, 1H), 0.96 (rn, 12H)

‘3C NMR (100 MHz, CDCI3) 5(ppm) 173.4 (173.2), 137.7, 128.0 (2C), 127.2 (2C),

127.5, (96.4) 96.2, (89.9) 89.3, 69.7, 51.0, (42.6) 40.1, 38.8 (38.1), 32.7 (32.4), (29.9)

29.8, 27.7 (27.3), 21.0, 20.0, (18.0) 17.9. 16.9 (16.4)

(3R, 5S, 6R)-6-Benzyloxymethoxy-3,5,7-trimethyloctanoic acid isopropyl ester

(68b)

OBOM M CuL TMSCI OBOM OBOM

CO2i-Pr
THF, -78°C, 96% CO2i-Pr + C02i-Pr

67b syn-68b anti-68b
synlanti 77:23
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Compound 67b (0.10 g, 0.29 rnmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification of the product with 2%

EtOAc/hexanes afforded the products si’n-68b and anti-68b (0.102 g, 96% combined

yield) in a ratio of 77:23 syn/anti.

[Œ]D -16.1 (e 1.18, CHC13)

IR (thin film) 2963, 2934, 2276, 1731, 1498, 1455, 1374, 1259 cm1

‘H NMR (400 MHz. CDCY3) 6 (ppm) 7.31 (m. 5H), 5.02 (m, 1H), 4.82 (d. 1H, J

6.9 Hz), 4.79(d, 1H,J= 6.9 Hz), 4.69(d, IH.J= 11.9 Hz). 4.65 (d. 1H,J= 11.9 Hz),

3.09 (t, 1H, J 5.4 Hz), 2.35 (dd. 1H, J= 4.3, 14.2 Hz), 2.04 (m. 1H), 1.91 (m .2H),

1.76 (m, 1H). 1.48 (m, 1H), 1.25 (m. 6H). 1.13 (m. 1H), 0.94 (m, 12H)

13C NMR (100 MHz, CDC13) S(pprn) 172.5 (172.3), 137.7, 128.0 (2C), 127.4 (2C),

127.2, (96.3) 96.2, (89.9) 89.4, 69.7, 67.0, (43.2) 40.7, 38.9 (3 8.0), 32.6 (32.4), (29.9)

29.8, 27.7 (27.5), 21.5, 21.5, 20.9, 20.2 (20.0), (18.4) 12.0, 17.0 (16.5)

HR4S (El) rn/z 365.2711 (calcd for 365.2692 C22H3604)

(3R, 5S, 6R)-6-Benzyloxymethoxy-3,5,7-trimethyloctanoic acid 2,2-dimethyl-

propyl ester (68e)

OBOM Me CuU TMSCI OBOM OBOM

jCO2nePent
THF, -78°C, 93% CO2nePent +

67c syn-68c anti-68c
synInti 78:22

Compound 67e (0.10 g, 0.27 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification of the product with 2%

EtOAc/hexanes afforded the products syn-62c and anti-68e (0.097 g. 93% combined

yield) in a ratio of 78:22 synlanti.

[ŒID -14.6 (c = 0.65, CHC13)

IR (thin film) 2960, 2874, 1736, 1463, 1367, 1254 cm1

1H NMR (400 MHz, CDC13) 5(ppm) 7.33 (m, 5H), 4.82 (m, 2H), 4.71 (d, 1H, J

11.9 Hz), 4.66 (d, 1H, J=z 11.9 Hz), 3.78 (s, 2H), 3.10 (m, 1H), 2.44 (dd, 1H, J 3.8,

14.1 Hz), 2.25 (m, Minor), 2.08 (m, 1H), 1.99 (dd, 1H, J 9.5, 14.1 Hz), 1.90 (m,
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1H), 1.80 (m, 1H), 1.49 (in, 1H), 1.37 (m, minor), 1.27 (m, minor), 1.17 (rn, 1H),

1.00-0.91 (m, 21H)

‘3C NMR (100 MHz, CDC13) Y(ppm) 173.2 (172.9), 137.7, 128.0 (2C), 127.3 (2C),

127.2, (96.3) 96.2, (89.9) 89.4, 73.3, 69.7, (42.9) 40.4, 38.7 (38.1), 32.7 (32.4), 30.9,

(29.9) 29.8, 27.7 (27.4), 26.1 (3C), 21.1, 20.2 (20.1), (18.4) 18.0, 16.9 (16.4)

HR1VIS (ET) rn/z 393.3019 (calcd for 393.3005 C24H4004)

(3R, 5S, 6R)-6-Benzyloxymethoxy-3,5,7-trimethyloctanoic acid tert-butyl ester

(68d)

OBOM Me C L TMSCI OBOM OBOM

CO2t-Bu
THF, -78°C, 87%

CO2t-Bu CO2t-Bu

67d syn-68d anti-68d
syn/anti 89:11

Compound 67d (0.10 g, 0.2$ rnmol) was subject to a cuprate addition following

gcneral procedure D. Flash chromatographic purification of the product with 2%

EtOAc/hexanes afforded the products syn-68d and anti-68d (0.09 1 g, 87% combined

yield) in a ratio of 89:11 syn/anti.

(ŒÏD -14.0 (e = 0.60, CHC13)

IR (thin film) 2963, 2932, 2875, 1729, 14.56, 1367, 1257 cm1

‘H NMR (400 MHz, CDC13) 6(ppm) 7.31 (m, 5H), 4.82 (d, 1H, J 6.9 Hz), 4.79 (d,

1H, J= 6.9 Hz), 4.69 (d, 1H, J= 12.0 Hz), 4.65 (d, 1H, J 12.0 Hz), 3.09 (t, 1H, J

5.2 Hz), 2.30 (dd, 1H, J 4.4, 14.3 Hz), 2.01 (m, 1H), 1.87 (m, 2H), 1.77 (m, 1H),

1.49 (m, 1H) 1.46 (s, 9H), 1.12 (m, 1H), 0.94 (m, 12H)

‘3C NMR (100 MHz, CDCÏ3) 8(ppm) 173.2 (173.9), 138.5, 128.8 (2C), 128.1 (2C),

128.0, 97.1, 97.1, (90.6) 90.1, $0.4, 70.4, (44.9) 42.5, 39.6 (38.8), 33.5 (33.2), (30.7)

30.6, 28.5 (3C), 21.7, 21.0 (20.8), (19.2) 18.8, 17.7 (17.3)

HR1VIS (ET) m/z 379.2861 (calcd for 379.284$ C23H3804)
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(3R, 5S, 6R)-6-Benzyloxymethoxy-3,5,7-trimethyloctanoic acid 1-

methylcyclopentyl ester (68e)

OBOM M C L TMSCI OBOM OBOM

THF,8°C,89°k
+

67e syn-68e anti-68e
syn/anti 91:9

Compound 67e (0.10 g, 0.26 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification of the product with 2%

EtOAc/hexanes afforded the products syn-68e and anti-68e (0.094 g. 89% combined

yield) in a ratio of 91:9 syn/anti.

[Œ]D -12.0 (e = 1.25, CHC13)

IR (thin film) 2962, 2874, 1727, 1498, 1455, 1374, 1270 crn1

‘H NMR (400 MHz, CDC13) (pprn) 7.31 (m, 5H), 4.82 (d. 1H, J 6.9 Hz), 4.79 (d,

1H, J= 6.9 Hz), 4.69 (d, 1H, J= 12.0 Hz), 4.65 (d. 1H, J= 12.0 Hz), 3.09 (t, 1H. J=

5.2 Hz), 2.31 (dd, 1H, J 4.7, 14.2 Hz), 2.11 (m, 2H), 1.99 (m, 1H), 1.88 (m, 2H),

1.70 (m, 7H), 1.55 (s, 3H), 1.47 (m, 1H), 1.10 (m, 1H), 0.95 (m, 12H)

‘3C NMR (100 MHz, CDCÏ3) 6(ppm) 172.6 (172.3), 137.7, 128.0 (2C). 127.6 (2C),

127.2, (96.3) 96.2, (89.9) 89.4, 89.1, 69.7, (44.0) 41.6, 38.8, 38.8, 38.8 (38.7), 32.6

(32.7), 29.9 (29.8), 27.9, 27.6, 24.0, 23.4, 20.9, 20.2 (20.0), (18.4) 18.0, 16.9 (16.5)

HRMS (ET) nz/z 405.3017 (calcd for 405.3004 C25H4004)

(5R, 4S)-5-Isopropyl-4-methyl-dihydro-furan-2-one (69)

o
OBOM Pd/C, H2, MeOH

N CQ2Me r.t., 99%

65 69

A solution of compound 65 (2.00 g, 6.79 rnrnol) and 10% Pd/C (0.400 g) in AcOH

(10 mL) and MeOH (70 mL), was stirred for 1$ h at room temperature under an
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atmosphere of I12. The reaction mixture was then filtered over a pad of celite. A

solution of saturated NaHCO3 was added to the filtrate, the layers were separated and

the aqueous layer was extracted with CH2C12 (3 x 10 mL). The combined organic

layers were dried over Na2$04, filtered and concentrated. flash chromatography

(10% EtOAc/hexanes) afforded the lactone 69 (0.95 g, 99%) as a colorless ou.

IŒID +17.4 (e = 0.39, CHCI3)

IR (thin film) 2964, 1738, 1454, 1369 crn

‘H NMR (400 MHz, CDCÏ3) 5(ppm) 3.86 (t, 1H, J 6.1 Hz), 2.71 (dd, 1H, J 8.6,

17.6 Hz), 2.37 (ni, 1H), 2.19 (dd, 1H,J= 8.1, 17.5 Hz), 1.87 (m, 1H), 1.16 (d, 3H, 1=

6.7 Hz), 1.02 (d, 3H, J 6.9 Hz), 1.00 (d, 3H, J 6.8 Hz)

‘3C NMR (100 MHz, CDC13) 6(ppm) 177.2, 92.5, 37.7, 32.9, 32.0, 19.7, 19.1, 17.$

MS (fSI) rn/z 143.1 (M+H)

(E)-(5S, 6R)-6-Hydroxy-5,7-dimethyloct-2-enoic acid tert-butyl ester (70)

1) DIBALH, Et20,
-78°C

OH

2) (Ph)3P=CHCO2t-Bu j’CO2tBu

DCE, reflux

69
61%,over2steps

70

A solution of lactone 69 (0.960 g, 6.7Smmol) in Et20 (70 mL) at -78 °C was charged

with DIBAL-H (1.0 M in PhMe, 6.8 mL, 6.8 mmol). The mixture was stirred at -7$

°C for 20 min before being quenched with a saturated solution ofNaIK tartrate. The

reaction mixture was diluted with 30 mL of EtOAc and stirred for 30 min at room

temperature tili a clear biphasic solution was observed. This was then extracted with

EtOAc (3 x 15 mL). The combined organic extracts were washed with brine, dried

over Na2SO4, filtered and then concentrated. The lactol was taken to the next step

without any ftirther purification.

To a soLution ofthe crude lactol in DCE (50 mL) was added Ph3PCHcOEt-Bu (5.00

g. 13.5 mmol). The reaction mixture was refluxed for 4 h before concentrating in
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vacuo. The concentrate was triturated with hexanes/Et20 (3: 1) and the resulting

slurry was filtered over a pad of celite. Concentration of the filtrate followed by flash

chromatographic purification afforded product 70 (0.90 g, 61%) as a colorless ou.

[Œ]D -8.7 (e = 25.0, CHCI3)

IR (thin film) 3473, 2968, 2934, 2876, 1715, 1697, 1651, 1459, 1392, 1368, 1319 crn

‘H NMR (400 MHz, CDCI3) (pprn) 6.87 (m, 1H), 5.78 (d, 1H, J 15.5 Hz), 3.11 (t,

1H, J= 5.8 Hz), 2.50 (m, 1H), 2.05 (m, 1H), 1.79 (rn, 2H), 1.4$ (s, 9H), 0.93 (m, 9H)

‘3C NMR (100 MHz, CDC13) S(ppm) 166.4, 147.4, 124.7, $0.7, 80.4, 36.0, 35.0,

30.4, 28.6 (3C), 20.4, 16.8, 16.2

HRMS tEl) m/z 243.194$ (calcd for 243.1960 C14H2603)

(E)-(SS, 6R)-6-Methoxy-5,7-dimethytoct-2-enoic acid tert-butyl ester (72a)

0H Me3OBF4, proton sponge OMe

CO2t-Bu CH2CI2, r.t., 60% CO2t-Bu

70 72a

b a solution of compound 70 (0.10 g, 0.41 mrnol) in CH2CI2 (5 mL) were added

Me3OBF4 (0.61 g, 4.1 mmol) and proton sponge® (0.89 g, 4.1 mmol). The mixture

was stiired at room temperature for 1$ h, before being quenched with a saturated

solution of NH4C1. The layers were separated, the aqueous layer was extracted with

CH2C12 (3 x 5 mL), the combined organic layers were dried over Na2SO4. filtered and

concentrated. Purification by flash chromatography (5 % EtOAc/hexanes) afforded

product 72a (0.66 g, 60%) as a colorless oil.

[Œ]D -2.8 (e 3.60, CHC13)

IR (thin film) 2965, 1716, 1652, 1460, 1367 cm1

‘H NMR (400 MHz, CDC13) 5(ppm) 6.83 (m, 1H), 5.74 (d, 1H, J 15.5 Hz), 3.44

(s, 3H). 2.62 (t. 1H, J 5.7 Hz), 2.43 (rn, 1H), 1.96 (m. 1H), 1.80 (m, 2H), 1.46 (s,

9H), 0.90 (m, 9H)
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‘3C NMR (100 MHz, CDC13) 6(ppm) 165.9, 147.2, 123.9, 90.9, 79.8, 61.8. 35.4,

34.4, 30.4, 28.0 (3C), 20.2, 16.9, 16.8

MS (ESI) mlz 25 7.2 (M+H)

(E)-(5S, 6R)-6-(2-Methoxy-ethoxymethoxy)-5,7-dimethyloct-2-enoic acid tert

butyl ester (72b)

OH
MEMCI, DIPEA, DMAP

OMEM

CH2CI2, r.t., 74% ‘CO2t-Bu

70 72b

A solution of 70 (0.20 g, 0.23 mmol), DIPEA (0.83 mL, 5.0 mmol) and DMAP (0.02

g, 0.16 mmol) in CH2CY2 (8 mL) was cooled to O °C. Afier addition ofMEMCY (0.28

mL, 2.5 mmol), the mixture was stirred at room temperature for 1$ h. The reaction

was quenched with a saturated solution ofNH4C1, and the layers were separated. The

aqueous layer was extracted with CH2CI2 (3 x 5 mL), and the combined organic

layers were dried over Na2SO4 and filtered. Afier concentration, the residue was

purified by flash chromatography (20% EtOAc/hexanes) affording product 72b (0.20

g, 74%) as a colorless ou.

IŒJD -12.9 (e = 0.35, CHC13)

IR(thinfllrn) 2967, 2932, 1714, 1652, 1458, 1368, 1319cm’

1fl NMR (400 MHz, CDC13) cY(ppm) 6.79 (m, 1H), 5.71 (d, 1H, J 15.5 Hz), 4.71

(s, 2H), 2.46 (rn, 2H), 3.50 (t, 2H, J 4.6 Hz), 3.34 (s, 3H), 3.01 (t, 1H, J 5.4 Hz),

2.43 (m, 1H), 1.93 (m, 1H), 1.81 (m, 2H), 1.43 (s, 9H), 0.91 (m, 9H)

‘3c NMR (100 MHz. CDCY3) 6(ppm) 166.3, 147.7, 124.5, 98.0, 89.4. 80.3, 72.1,

68.0, 59.4. 35.5, 35.2, 30.7. 22.5 (3C), 20.7, 17.7, 17.4

(E)-(5S, 6R)-6-Methoxymethoxy-5,7-dimethyloct-2-enoic acid tert-butvl ester

(72c)
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OH OMOM
MOMCI, DIPEA

CO2t-Bu CH2CI2, r.t., 82% CO2t-Bu

70 72c

To a solution of compound 70 (0.20 g, 0.83 mmol) in CH2C12 (8 mL) were added

DIPEA (0.83 mL, 5.0 mmol) and MOMC1 (0.18 mL, 2.5 mmol) at O °C. The mixture

was then stirred at room temperature for 1$ h before being quenched with a solution

of saturated NH4C1. The layers were separated, the aqueous layer was extracted with

CH2CÏ2 (3 x 5 mL), the combined organic layers were dried over Na2SO4 and filtered.

Afier concentration, purification by flash chromatography (10% EtOAc/hexanes)

afforded product 72c (0.19 g, 82%) as a colorless oil.

LŒJD -12.7 (e = 0.26, cHcl3)

IR(thinfilm)2930, 1715, 1651, 1462, 1368, 1319, 1154cm’

‘H NMR (400 MHz, CDC13) 5(ppm) 6.83 (m, 1H), 5.74 (d, 1H, J 15.5 Hz), 4.63

(s, 2H), 3.38 (s, 3H), 3.00 (t, 1H, J= 5.4 Hz), 2.46 (m, 1H), 1.97 (m, 1H), 1.83 (m,

2H), 1.46 (s, 9H), 0.91 (m, 9H)

‘C NMR (100 MHz, CDC13) Y(ppm) 166.4, 147.7, 124.5, 99.2, 89.5, 80.4, 56.4,

35.5, 35.2, 30.7, 28.5 (3C), 20.7, 17.8, 17.4

(E)-(5S, 6R)-5,7-Dimethyl-6-triethylsilanoxyoct-2-enoic acid tert-butyl ester (72d)

OH
TESOIf, Lutidine

OTES

JCO2tBu CH2CI2, r.t., 44% 1CO2t-Bu

70 72d

To a solution of compound 70 (0.097 g, 0.40 mmol) in CH2C12 (5 mL) were added

lutidine (0.14 mL, 1.2 mmol) and TES-OTf (0.14 mL, 0.60 mmol) at O °C. The

mixture was stirred at room temperature for 1 h and was subsequently quenched with

saturated NH4C1. The layers were separated, the aqueous layer was extracted with

CH2C12 (3 x 5 mL), and dried over Na2SO4. Afier concentration the residue was
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purified by flash chromatographv to yield product 72d (0.10 g, 44%) as a colorless

ou.

IŒJD -5.9 (e = 0.35, CHC13)

IR(thin film) 2960, 287$, 1716, 1653, 1460, 1367, 1318 crn
11 NMR (400 MHz, CDC13) c5(ppm) 6.87 (m, 1H), 5.76 (d, 1H, J 15.5 Hz), 3.26 (t,

1H, J= 4.9 Hz), 2.45 (m, 1H), 1.93 (m, 1H), 1.7$ (m, 2H), 1.50 (s, 9H), 1.01 (rn, 9H),

0.90 (t, 9H, J 6.3 Hz), 0.64 (q. 6H. J= 7.9 Hz)

13C NMR (100 MHz, CDC13) (ppm) 166.5, 148.2, 124.3, 82.4, 80.3, 36.7, 35.2,

3 1.7, 28.6 (3C), 20.7, 18.2. 17.6, 7.5 (3C). 6.0 (3C)

(3R, 5S, 6R)-6-Methoxy-3,5,7-trimethyloctanoic acid tert-butyl ester (73a)

OMe Me CuLI TMSCt OMe OMe

JC02t-Bu THF, -78°C, 60%
C02t-Bu + CO2t-Bu

72a syn-73a anti-73a
synlanti 90:10

Compound 72a (0.069 g, 0.27 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-73a and anti-73a (0.044 g, 60% combined yield) in a ratio

of 90:10 synlanti.

[ŒÏD -19.7 (e = 1.16, CHC13)

IR (thin film) cm1 2966, 2361, 1715, 1367

‘H NMR (400 MHz, CDC13) 6(ppm) 3.46 (s, 3H), 2.60 (m, 1H). 2.31 (dd, 1H. J

4.5. 14.3 Hz), 2.12 (m, minor), 2.02 (m, 1H), 1.83 (m, 2H), 1.69 (m, 1H), 1.46 (s,

9H). 1.41 (rn, 1H), 1.30 (m. minor), 1.19 (rn, minor), 1.09 (m, 1H), 0.94 (m. 12H)

‘3C NMR (100 MHz, CDCI3) (ppm) 172.6 (172.3). 92.0 (91.9), $0.0 (2C), 61.4

(61.3), (44.2) 41.6, 38.3 (37.7), 32.7 (32.6), 30.2 (29.3). 27.7 (3C), 21.0, 20.0 (19.9),

(18.3) 17.7, 16.9(16.4)
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(3R, 5S, 6R)-6-(2-Methoxy-ethoxymethoxy)-3,5,7-trimethyloctanoic acid tert

butyl ester (73 b)

OMEM Me CuL TMSCI OMEM OMEM

CO2t-Bu
IHF, -78°C, % C02t-Bu C02t-Bu

72b syn-73b anti-73b
synlanti 86:14

Compound 72b (0.10 g, 0.30 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-73b and anti-73b (0.085 g, 81% combined yield) in a ratio

of 86:14 syn/anti.

[Œ]D -17.2 (e = 0.93, CHC13)

IR (thin film) 2962, 2931, 2876, 1729, 1459, 1367, 1257crn1

‘H NMR (400 MHz, CDC13) 6(pprn) 4.74 (d. 1H, J = 6.9 Hz), 4.71 (d, 1H, J = 7.0

Hz), 3.72 (m, 2H). 3.53 (t. 2H. J 4.7 Hz), 3.36 (s. 3H), 3.00 (t, 1H, J 5.3 Hz), 2.26

(dd, 1H, J= 4.4, 14.3 Hz), 1.96 (m, 1H), 1.81 (m, 2H), 1.69 (m, 1H), 1.42 (s, 9H),

1.07 (m, 2H), 0.91 (m, 12H)

‘3C NMR (100 MHz, CDC13) Y(ppm) 173.2 (172.9). 97.9, 97.8, (90.4) 89.9, 80.3,

72.1, 67.9, 59.4, (44.9) 42.4, 39.5 (38.7), 33.3 (33.1), (30.6) 30.5, 28.5 (3C), 21.7,

20.9 (20.7). (19.1) 18.7, 17.6 (17.2)

(3R, 5$, 6R)-6-Methoxymethoxy-3,5,7-trimethyloctanoic acid tert-butyl ester

(73e)

OMOM Me CuLi TMSCI OMOM OMOM

JCO2t-Bu THF, -78°C, 78%
CO2t-Bu JCO2t-Bu

72c syn-73c anti-73c

syn/anti 86:14

Compound 72e (0.10 g. 0.35 rnrnol) was subject to a cuprate addition following

general procedure D. fIash chromatographic purification with 2% EtOAc/hexanes
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afforded the products syn-73c and anti-73e (0.083 g. 78% combined yield) in a ratio

of 86:14 svn/ctnti.

IŒID -22.1 (c = 1.5 1, CHC13)

IR (thin film) 2962, 1730, 1462, 1367 cm1

‘H NMR (400 MHz, CDC13) Y(pprn) 4.62 (d, 1H, J 6.7 Hz), 4.66 (d, 1H, J 6.7

Hz), 3.42 (s, 3H), 3.01 (t, 1H, J= 4.8 Hz), 2.31 (dd, 1H. J= 4.9, 14.3 Hz), 2.02 (rn,

1H), 1.86 (in, 2H), 1.75 (m, 1H), 1.47 (s, 9H), 1.44 (m, 1H), 1.11 (m, 1H), 0.96 (m,

12H)

‘3C NMR (100 MHz, CDC13) c5(ppm) 173.2 (172.9), (99.0) 98.9, (90.6) 90.1, 80.4,

56.4, 42.5, 39.5 (38.6), (33.3) 33.0, (30.6) 30.5, 28.5, 21.7 (3C), 20.9 (20.7), 19.1,

(18.7) 18.7, 17.6 (17.2)

(3R, 5S, 6R)-3,5,7-Trimethyl-6-triethylsilanyloxyoctanoie acid tert-butyl ester

(73d)

OTES Me CuLi TMSCI OTES OTES

CO2t-Bu
THF, -78°C, 84%

{)CO2tBu

72d syn-73d anti-73d
syn/anti 82:18

Compound 72d (0.10 g, 0.28 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-73d and anti-73d (0.08$ g, 24% combined yield) in a ratio

of 26:14 yn/anti.

[aI0 -5.9 (c = 0.35, CHC13)

IR (thin film) 2960, 1732, 1460, 1367 cm’

‘H NMR (400 MHz. CDC13) 5(pprn) 3.21 (t. 1H. J 4.9 Hz). 2.31 (dd. 1H, J 4.4,

14.2 Hz), 1.9$ (ni, 1H), 1.86 (m, 1H). 1.76 (m, 1H). 1.63 (m, 2H), 1.47 (s, 9H), 1.41

(rn, 1H), 0.99 (m, 12H). 0.90 (rn, 9H), 0.63 (q, 6H, J= 7.9 Hz)
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‘3C NMR (100 MHz, CDC13) Y(ppm) 172.8 (172.4). ($2.6) 82.2, 79.7, (44.5) 42.0,

39.1 (38.3), 34.2 (33.8). (30.8) 30.7, 28.1, 27.8 (3C). 21.2, 20.5 (20.3). (18.6) 18.0.

17.0 (16.4), 7.0 (3C), 5.4 (3C)

(3R, 5S, 6R)-6-Benzyloxymethoxy-3,5,7-trimethyloctan-1 -ol (74)

060M OBOM OBOM

N1C02t-Bu J’C02t-Bu

DIBAL-H, cH2C12,

syn-68d anti-68d 74
syn/anti 89:11

Following general procedure A, the diastereomeric mixture of compounds yn-68d

and anïi-6$d (1.04 g, 2.76 mmol) was reduced to give a mixture of diastereorneric

alcohols. Careful chromatographic separation provided alcohol 74 (0.63 g, 74%) as a

colorless ou.

IŒID -20.6 (c = 0.73, CHC13)

IR(thin film) 3402 2960, 2931, 2875, 1456, 1382, 1158 cm1

‘H NMR (400 MHz, CDCI3) 6(ppm) 7.34 (m. 5H), 4.85 (d. 1H, J= 6.9 Hz), 4.81 (d,

IH,J= 6.9 Hz), 4.71 (d. 1H.J= 11.9 Hz), 4.67(d, IH,J 11.9 Hz). 3.70(m, 2H).

3.11 (t, IH,J= 5.3 Hz), 1.87 (m, 2H). 1.69 (m, 2H), 1.49 (rn, 2H), 1.27 (m, 1H), 1.10

(m, 1H), 0.97 (m, 12H)

‘3C NMR (100 MHz, CDC13) 6(ppm) 138.5, 128.8 (2C), 128.1 (2C), 128.0, 97.0,

90.3, 70.5, 61.5, 40.3, 39.0, 33.4, 30.6, 27.7, 21.5, 21.1, 18.8, 17.8

HR1’IS (ESI) rn/z 331.223$ (calcd for 331.2243 C19H32O3Na)

(E)-(5S, 7S, 8R)-8-Benzyloxymethoxy-5,7,9-trimethyldec-2-enoic acid methyl

ester (75a)

1) DMSO, (COCI)2, NEt3,
OBOM 060MCH2CI2, -78 C

2) (Ph)3P=CHCO2Me, C02Me

CH2CI2, r.t.
90% over two steps 75a
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Following gencral procedure E, alcohol 74 (0.20 g, 0.65 mmol) provided product 75a

(0.2 1, 90% over two steps) afler flash chromatographic purification with 2%

EtOAc/hexanes.

[ŒID -13.5 (e = 1.14, CHC13)

IR (thin film) 2959, 1726, 1458, 1382 cm1

1fl NMR (400 MHz, CDC13) 6(ppm) 7.33(m, 5H), 6.9$ (m, 1H), 5.85 (d, 1H, J

15.6 Hz), 4.84 (d, 1H, J 6.9 Hz), 4.80 (d, 1H, J 6.9 Hz), 4.70 (d, 1H, J 11.9 Hz),

4.66 (d, 1H, J 11.9 Hz), 3.73 (s, 3H), 3.10 (t, 1H, J 5.2 Hz), 2.31 (m, 1H), 1.84

(m, 4H), 1.50 (m, 1H), 1.12 (m, 1H), 0.96 (m, 12H)

‘3C NMR (100 MHz, CDC13) 6(pprn) 166.6, 148.1, 137.7, 128.0 (2C), 127.3 (2C),

127.2, 121.8, 96.2, 89.4, 69.7, 5 1.9, 38.8, 38.0, 32.7, 29.8, 29.8, 20.6, 20.3, 18.0, 17.0

(E)-(5S, 7S, 8R)-8-Benzyloxymethoxy-5,7,9-trimethyldec-2-enoic acid tert-butyl

ester (75b)

1) DMSO, (COCI)2, NEt3,
OBOM OBOMCH2CI2, -78 C

2) (Ph)3P=CHCO2t-Bu, Ïc02tBu
CH2CI2, r.t.
g°,’o over two steps 75b

Following general procedure E, alcohol 74 (1.01 g, 3.27 rnmol) provided product 75b

((E)- 1.07 g, (Z)- 0.150 g, 94%) afier flash chromatographic purification with 2%

EtOAc/hexanes.

IŒ]D -9.1 (e = 0.63, CHCÏ3)

IR(thin film) 2961, 2931, 1715, 1653, 1457, 1368, 1321, 1256cm’

‘H NMR (500 MHz, CDC13) 6(ppm) 7.36 (m, 5H), 6.87 (m, 1H), 5.7$ (d, 1H, J

15.5 Hz), 4.85 (d, 1H, J 6.7 Hz), 4.82 (d, 1H, J= 6.8 Hz), 4.71 (d, 1H, J= 11.9 Hz),

4.6$ (d, 1H, J 11.9 Hz) 3.12 (t, 1H, J= 5.2 Hz), 2.31 (m, 1H), 1.97-1.90 (rn, 3H),

1.64 (m, 1H), 1.52 (s, 9H), 1.53-1.52 (m, 1H), 1.14 (rn, 1H), 0.99 (m, 12H)
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13C NMR (100 MHz, CDCI3) 6(ppm) 166.4, 147.2, 138.5, 128.7 (2C), 128.1 (2C),

128.0, 124.7. 97.0, 90.2, 80.3. 70.5, 39.5, 38.6, 33.4, 30.6, 30.5, 28.6 (3C), 21.5, 21.0,

18.8, 17.8

(E)-(5S, 7S, $R)-$-Benzyloxymethoxy-5,7,9-trimethyldec-2-enoic acid 1-

methylcyclopenty] ester (75e)

1) DMSO, (COCI)2, NEt3,
080M 080M

OH
2) )3CHCO2MCP,

74
CH2CI2 r.t.

75c
85% over two steps

Following general procedure E, alcohol 74 (0.35 g, 0.30 mmol) provided product 75c

((E)- 0.11 g, (Z)- 0.010 g. 85%) after flash chromatographic purification with 2%

EtOAc/hexanes.

IŒ]D -11.2 (c = 1.10, CHC13)

IR (thin film) 2962. 2874, 1714, 1653, 1498, 1455, 1375, 1321 crn

‘H NMR (400 MHz, CDCI3) 6’(pprn) 7.34 (rn, 5H), 6.86 (m, 1H), 5.77 (d, 1H, J

15.6 Hz), 4.84 (d, 1H, J 6.9 Hz). 4.80 (d, 1H, J 6.9 Hz), 4.70 (d, 1H, J 11.9 Hz),

4.66 (d, 1H, J= 11.9 Hz), 3.10 (m, 1H), 2.2$ (m, 1H), 2.13 (rn, 2H), 1.87 (m, 3H),

1.73 (m, 5H), 1.65 (m, 2H), 1.59 (s, 3H), 1.4$ (m, 1H), 1.11 (m, 1H), 0.95 (m, 12H)

‘3C NMR (100 MHz, CDCÏ3) cY(pprn) 165.7, 146.5, 137.7, 128.0 (2C), 127.3 (2C),

127.2, 123.8, 96.2, 89.4, $9.1, 69.7, 38.8, 38.8, 38.7, 37.8, 32.6, 29.8, 29.7, 24.1, 23.4

(2C), 20.7, 20.2, 18.1, 17.0

(3R, 5S, 7S, 8R)-8-Benzyloxymethoxy-3,5,7,9-tetramethyldecanoic acid methyl

ester (76a)

080M 080M OBOMMe2CuLi, TMSCI

CO2Me
THF, -78°C, 84%

C02Me 1C02Me

75a syn-76a anti-76a

synlanti 67:33
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Compound 75a (0.22 g, 0.61 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-76a and anti-76a (0.26 g, 93% combined yield) in a ratio of

67:33 syn/anti.

IŒÏD -26.2 (e = 0.98, CHC13)

IR (thin film) 2959, 1740, 1462 cm1

‘H NMR (400 MHz, CDC13) (ppm) 7.34 (m, 5H), 4.84 (d, 1H, J 6.9 Hz), 4.81 (d,

1H, J= 6.9 Hz), 4.70 (d, 1H, J= 11.9 Hz), 4.67 (d, 1H, J= 11.9 Hz), 3.6$ (s, 3H),

3.11 (m, 1H), 2.3$ (dd, 1H, J= 3.9, 13.7 Hz), 2.22 (rn, 1H), 2.04 (m, 2H), 1.89 (m,

1H), 1.56 (m, 2H), 1.38 (m, 2H), 1.08 (m, 1H), 0.94 (m, 15H)

‘C NMR (100 MHz, CDC13) 6(ppm) 173.3 (173.2), 137.7, 128.0 (2C), 127.4 (2C),

127.2, (96.2) 96.1, ($9.4) 89.2, 69.6, 5 1.0, 43.3 (42.5), 40.4, (39.9) 39.7, 32.6 (32.4),

29.8, 29.7, 27.5 (27.1), 20.9, 20.8, 20.3, (18.6) 18.1, 17.0 (16.8)

(3R, 5S, 7S, 8R)-$-Benzyloxymethoxy-3,5,7,9-tetramethyldecanoic acid tert-butyl

ester (76b)

080M OBOM OBOMMe2CuLI, TMSCI

CO2t-Bu
THF, -78°C, 97% :C02t-Bu + JCO2t-Bu

75b syn-76b anti-76b
synlanti 87:13

Compound 75b (0.055 g, 0.14 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-76b and anti-76b (0.054 g, 97% combined yield) in a ratio

of 87:13 synlanhi.

[OEJu -21.1 (e = 1.10, CHC13)

IR (thin film) 2961, 2931, 2874, 1729, 1456 cm1

‘H NMR (400 MHz, CDC13) 6(ppm) 7.33 (m, 5H), 4.85 (d, 1H, J’ 6.9 Hz), 4.81 (d,

1H, J= 6.9 Hz), 4.71 (d, 1H, J= 11.9 Hz), 4.67 (d, 1H, J 11.9 Hz), 3.12 (t, 1H, J

5.1 Hz), 2.29 (dd, 1H, J= 4.8, 14.3 Hz), 2.0$ (m, 1H), 1.85 (m, 3H), 1.47 (s, 9H),

1.33 (m, 2H), 1.08 (m, 2H), 0.94 (m, 16H)
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‘3C NMR (100 MHz, CDCÏ3) 6(ppm) 173.2 (172.9), 138.0, 128.2 (2C), 127.6 (2C),

127.4, 96.3, (90.3) 90.0, 79.8, 69.9, (44.7) 44.2, (43.1) 42.8, 40.0, 33.4 (33.1), 29.9

(2C), 28.0 (3C). 27.6. 21.1, 20.9, 20.6, (19.3) 18.9, 17.8 (17.5)

(3R, 5S, 7S, 8R)-8-Benzyloxymethoxy-3,5,7,9-tetramethyldecanoic acid 1-

methylcyclopentyl ester (76c)

OBOM OBOM OBOM:: + yO

75c syn-76c anti-76c
synlanti 83:17

Compound 75e (0.073 g, 0.17 mrnol) was subject to a cuprate addition following

general procedure D. f lash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-76c and anti-76e (0.069 g. 91% combined yield) in a ratio

of 83: 17 syn/anti.

IŒ]D -12.2 (e = 1.20, CHCI3)

IR (thin film) 2960, 2874, 1728, 1462 cm1

1H NMR (400 MHz, CDC13) Y(ppm) 7.33 (m, 5H), 4.84 (d, 1H, J 6.9 Hz), 4.81 (d,

1H, J= 6.9 Hz), 4.17 (d, 1H, J= 11.9 Hz), 4.67 (d, 1H, J 11.9 Hz), 3.12 (m, 1H),

2.30 (dd. 1H, J 4.7, 14.2 Hz), 2.09 (m. 4H), 1.64 (m, 2H), 1.71 (ni. 6H). 1.57 (s,

3H), 1.45 (m, 1H), 1.31 (m, 1H), 1.20 (m, 1H), 1.07 (m. 2H), 0.94 (m, 15H)

‘3C NMR (100 MHz, CDC13) ‘5(ppm) 172.6 (172.3), 137.7, 128.0 (2C), 127.4 (2C),

127.2, (96.2) 96.1, (89.6) 89.2, 69.6, (43.9) 43.4, (42.5) 41.9, (39.9) 39.8, 38.7, 38.7.

32.6 (32.4). (29.8) 29.7, 27.7 (27.6), 27.4 (27.0), 24.0, 23.4, 20.9, 20.7, 20.4, 20.4,

20.3, (18.6) 18.1, 17.0 (16.8)

(3R, 5S, 7S, 8R)-8-Benzyloxymethoxy-3,5,7,9-tetramethyl-deean- 1-01(77)

OBOM OBOM DIB CH ci OBOM

CO2t-Bu ÷ 1CO2t-Bu
-78°C, 60%

2’

syn-76b anti-76b 77

synianti 87:13
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Following general procedure A, the diastereomeric mixture of compounds syn-76b

and anti-76b (0.23 g, 0.54 mmol) was reduced to give a mixture of diastereomeric

alcohols. Careful chromatographic purification (2% EtOAc/hexanes) provided

alcohol 77 (0.11 g, 60%) as a coÏorless ou.

IŒID -24.1 (e = 0.98, CHCI3)

IR (thin film) 3400, 2959, 2929, 1456, 1380 cm1

1H NMR (400 MHz, CDCÏ3) 5(ppm) 7.33 (m, 5H), 4.85 (d, 1H, J 6.9 Hz), 4.81 (d,

1H, J 6.9 Hz), 4.69 (d, 1H, J 11.9 Hz), 4.67 (d, 1H, J 11.9 Hz), 3.69 (m, 2H),

3.12 (t, 1H, J 5.1 Hz), 1.87 (m 2H), 1.65 (m, 3H), 1.44 (m, 2H), 1.28 (m, 2H), 1.04

(m, 1H), 0.93 (m, 16H)

‘3c NMR (100 MHz, CDC13) S(pprn) 137.7, 128.0 (2C), 127.4 (2C), 127.2, 96.1,

89.3. 69.7, 60.8, 44.1, 39.9. 38.6, 32.7. 29.7, 27.4, 26.7, 21.1, 20.5, 20.4, 18.1, 17.1

HRMS (ESI) mlz 373.27132 (calcd for 373.27079 C22H38O3Na)

(E)-(5R, 7S, 9S, 1OR)-1O-Benzyloxymethoxy-5,7,9,1 1-tetramethyldodec-2-enoic

acid tert-butyl ester (78a)

1) DMSO, (COCD2, NEt3,
OBOM OBOM

CH2CI2, -78 C

2) (Ph)3P=CHCO2t-Bu,
CH2CI2, r.t.

77 78a710/ over twa steps

Following general procedure E, alcohol 77 (0.075 g, 0.21 mmol) provided product

78a (0.06$, 71% over two steps) afier flash chromatographic purification with 2%

EtOAc/hexanes.

[ŒID -17.9 (e = 1.02, CHC13)

IR(thin film) 2960, 2930, 1715, 1653, 1457, 1368, 1321, 1228, 1250. 1158 cm1

‘H NMR (400 MHz, CDCÏ3) 5(ppm) 7.32 (in. 5H), 6.89 (m, 1H), 5.76 (d. 1H. J=

15.5 Hz),4.85d, 1H,J6.9Hz),4.$1 (d, IH,J6.9Hz),4.71 (d, IH,J 11.9Hz),
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4.67 (d, 1H, J 11.9 Hz), 3.11 (t, 1H, J 5.1 Hz). 2.24 (m, 1H), 1.86 (m. 4H). 1.57

(m. 1H), 1.50 (s, 9H). 1.42 (ni. 1H). 1.32 (ni, 1H), 1.06 (m. 1H), 0.93 (m, 16H)
l3 NMR (100 MHz, CDC13) (ppm) 165.6, 146.3, 137.7, 128.0 (2C), 127.4 (2C),

127.2, 123.9, 96.1, 89.3, 79.6, 69.7, 43.2, 39.8, 38.0, 32.6, 29.7, 29.5, 27.9 (3C), 27.4,

20.9, 20.5, 20.4, 18.1, 17.1

(E)-(5R, 7$, 9S, 1OR)-1O-Benzyloxymethoxy-5,7,9,1 1-tetramethyldodec-2-enoic

acid 1-methylcyclopentyl ester (78b)

1) DMSO, (C0CI)2, NEtS,
080M 080M

2) )3P=CHCO2MCP,
CH2CI2, r.t.

77 78b82% over two steps

Following general procedure E, alcohol 77 (0.14 g, 0.30 mrnol) provided product 78a

(0.11, 82% over two steps) afier flash chrornatographic purification with 2%

EtOAc/hexanes.

[Œ]D -15.2 (e = 0.92, CHCI3)

IR(thinfilrn)2958. 1714, 1652, 1456, 1375, 1321, 1168, 1121, 1040cm’

111 NMR (400 MHz, CDC13) 6(ppm) 7.36 (m, 5H), 6.87 (ni, 1H), 5.77 (d. 1H, J

15.6Hz),4.85 (d, 1H,J=r6.9Hz),4.81 (U, 1H,J=6.9Hz),4.71 (d, 1H,J 11.9Hz),

4.67 (d, 1H, J 11.9 Hz), 3.11 (m, 1H), 2.25 (m, 1H), 2.12 (m, 2H), 1.98-1.87 (m,

2H), 1.85-1.68 (m, 6H), 1.65 (m, 3H), 1.60 (s, 3H), 1.42 (m, 1H), 1.32 (m, 1H), 1.07

(ni, 1H), 1.87 (m 16H)

13C NMR (100 MHz, CDC13) 5(ppm) 165.7, 146.4, 137.7. 128.0 (2C), 127.4 (2C),

127.2. 123.8, 96.10, 89.3, 89.1. 69.6, 43.2, 39.8. 38.8 (2C), 38.0, 32.6, 29.7, 29.5.

27.4, 24.1, 23.4 (2C), 20.3, 20.5, 20.4, 18.1, 17.1

(3R, 5R, 7$, 9$, 1OR)-1 O-Benzyloxymethoxy-3,5,7,9,1 1 -pentamethyldodecanoic

acid tert-butyl ester (79a)
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OBOM M C L TMSCI OBOM OBOM

THF, -78°C, 78%
-C02t-Bu * :C02t

78a syn-79a anti-79a
synlanti 86:14

Compound 78a (0.067 g. 0.15 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products .syn-79a and anti-79a (0.057 g, 78% combined yield) in a ratio

of 86:14 synlanti.

IŒ]D -19.5 (e = 1.20, CHC13)

IR (thin film) 2960, 2930, 1730, 1456, 1367 crn1

‘H NMR (400 MHz, CDC13) ‘(ppm) 7.34 (m, 5H). 4.85 (d, 1H. J= 6.9 Hz). 4.81 (d,

1H. J= 6.9 Hz), 4.70 (d, 1H, J= 11.9 Hz), 4.67 (d, 1H. J 11.9 Hz), 3.12 (m, 1H).

2.28 (dd, 1H, J= 4.9, 14.2 Hz), 2.02 (m, 1H), 1.29 (m, 2H). 1.82 (m, 1H), 1.57 (m.

1H), 1.47 (s, 9H), 1.40 (m, 1H). 1.26 (rn, 3H), 1.04 (m, 1H), 0.99-0.87 (m, 19H)

‘3C NMR (100 MHz, CDC13) Y(ppm) 172.5 (172.2), 137.8, 128.0 (2C), 127.4 (2C),

127.2, 96.1, (89.3) 89.2, 79.5, 69.6, (44.6) 44.4, (44.0) 43.7, 39.8, 32.7 (32.6), 29.7,

(29.7) 29.6, 27.8 (3C), 27.7. 27.4, 27.3, 2 1.2, (20.9) 20.9, 20.6, 20.4, (18.7) 18.2, 17.0

(16.8)

(3R, 5R, 7S, 9S, JOR)-1O-Benzyloxymethoxy-3,5,7,9,11-pentamethyldodecanoic

acid 1-methylcyclopentyl ester (79b)

060M M C L TMSC 060M 060M

THF 8°C.92% (fl5
78b syn-79b anti-7gb

synlant, 83:17

Compound 78b (0.10 g, 0.21 mrnol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-79b and anti-79b (0.094 g, 92% combined yield) in a ratio

of 83:17 syn/anti.

[ŒID -23.9 (e = 1.43. CHC13)
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IR (thin film) 2960, 2874, 1729, 1456, 1376 cm1

‘H NMR (400 MHz, CDCI3) 5(ppm) 7.34 (m, 5H), 4.85 (d, 1H, J 6.9 Hz), 4.81 (d,

1H, J 6.9 Hz), 4.71 (d, 1H, J 11.9 Hz), 4.67 (d, 1H, J 11.9 Hz), 3.12 (m, 1FI),

2.30 (dd, 1H, J 4.8, 14.2 Hz), 2.07 (m, 4H), 1.89 (rn, 3H), 1.74-1.60 (m, 7H), 1.57

(s, 3H). 1.43 (m, 1H). 1.29 (rn, 2H), 1.03 (rn. 1H). 0.97 (rn, 12H), 0.90 (m, 8H)

‘3C NMR (100 MHz, CDC13) 6(ppm) 172.8 (172.6), 138.0. 132.1, 128.2 (2C), 127.6

(2C), 127.4, 96.2, $9.3, 69.8, (44.8) 44.6. (44.1) 44.0, (43.0) 42.2, 40.0, 39.0, 38.9,

32.9 (32.8), 29.9, 27.9 (27.9), 27.6 (27.3), 27.5 (27.2), 24.2, 23.6 (2C), 21.5, (21.2)

21.1 20.8, 20.7, (18.9) 18.4, 17.3 (17.2)

(2R)-2-Benzyloxym ethoxy-3-methylbutan-1 -ol (80)

OBOM THF OBOM

JCO2Me
0H

A solution of the methyl ester (0.998 g, 3.96 mmol) in THf (20 mL) cooled to O °C

was charged with LiA1D4 (0.170 g, 3.96 mmol). The reaction mixture was stined at

room temperature for 4 h before being quenched with a saturated solution of NH4C1.

The resulting precipitate was filtered over a pad of celite and concentrated. Flash

chrornatographic purification with 20% EtOAc/hexanes afforded the deuterium

labeled alcohol 80 (0.84 g, 93%) as a colorless ou.

IŒÏD -60.5 (e = 1 .07, CHCI3)

IR (thin film) 3440, 2962, 2877, 1455 cnï’

‘H NMR (400 MHz. CDC13) (ppm) 7.36 (rn, 5H), 4.96 (d, 1H, J 6.9 Hz). 4.78 (d,

1H. J 6.9 Hz), 4,77 (d, 1H, J 11.7Hz), 4.65 (d, 1H, J 11.7Hz), 3.32 (d, 1H, J

5.8 Hz), 3.06 (brs, 1H), 1.89 (m, 1H), 0.9$ (d, 3H, J 5.7 Hz), 0.96 (d, 3H, J 5.7

Hz)

‘3C NMR (100 MHz, CDCY3) 6(ppm) 136.9, 128.2 (2C). 127.7, 127.6 (2C), 95.4.

87.1, 69.7, 62.6 (quin,J= 21.4 Hz), 29.8, 18.4, 17.9
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HRMS (EST) m/z 249.14302 (calcd for 249.14254 C13H18D2O3Na)

(E)-(4R)-4-Benzyloxymethoxy-5-methylhex-2-enoic acid methyt ester ($1)

OBOM
1) OMSO, (COCD2, NEt3.

OBOM
I CH2CI2, -78°C

OH
* 2) (Ph)3P=CHCO2Me, * CO2Me

80 CH2C2, r.t.
81

96% over two steps

following general procedure E, alcohol $0 (0.865 g, 3.84 mmol), provided product

$1 ((E)- 0.82 g, (Z)- 0.13 g, 96%) afler flash chromatographic purification (2%

EtOAc/hexanes).

[ŒID+lO2.7(c= 1.13, CHCI3)

IR (thin film) 2961, 1726, 1643, 1436 cm1

‘H NMR (400 MHz. CDC13) (ppm) 7.34 (m, 5H), 6.01 (s, 1H), 4.74 (m, 3H), 4.58

(d, 1H,J= 11.7 Hz), 4.06 (d. TH.J=5.6 Hz). 3.77 (s, 3H), 1.92(m. 1H), 1.01 (d,3H.

J= 6.8 Hz), 0.96 (d, 3H, J= 6.8 Hz)

‘3C NMR (100 MHz, CDC13) (ppm) 166.2, 146.1 (t, J = 23.6 Hz), 137.3, 128.1

(2C), 127.5 (2C), 127.4, 122.2, 92.4, 80.0, 69.4, 51.3, 32.2. 17.2 (2C)

(3S, 4R)-4-Benzyloxymethoxy-3,5-dimethylhexanoic acid methyl ester ($2)

OBOM OBOM

CO2Me ::: C02Me

81 anti/syn96:4 82

Compound 81 (0.721 g. 2.59 mrnol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded product 82 (0.75 g, 98%) in a ratio of 96:4 anti/svn.

IŒ]D -16.3 (e = 1.17, CHC13)

IR (thin film) 2962, 1738, 1455 cmt
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1H NMR (400 MHz, CDCÏ3) 5(pprn) 7.35 (m, 5H), 4.82 (d, 1H, J 6.9 Hz), 4.79 (d,

1H, J 6.9 Hz), 4.70 (d, 1H, J= 11.8 Hz), 4.65 (d. 1H. J= 11.8 Hz). 3.77 (s. minor).

1.99 (s, 3H), 3.19 (U, J 7.5 Hz, minor), 3.15 (U, 1H, J= 5.3 Hz), 2.64 (d, 1H, J=

15.3 Hz), 2.55 (d, J= 15.7 Hz, minor), 2.29 (d, J 15.5 Hz, minor), 2.1$ (U, 1H, J

15.3 Hz), 1.86 (m, 1H), 0.97 (m, 9H)

‘3C NMR (100 MHz, CDCI3) 6(pprn) 173.8, 137.5, 128.1 (2C), 127.4 (2C), 127.3,

96.4, 88.5. 69.8, 51.1, 36.7, 32.1 (t,J= 19.5 Hz). 30.1, 19.8. 17.4, 17.3

(3$, 4R)-4-Benzyloxymethoxy-3,5-dimethylhexan-1-ol (83)

OBOM OBOM

82

Ooct83%

A solution of ester 82 (0.10 g, 0.3$ mmol) in THf (5 mL) cooled to O °C was charged

with LiAID4 (0.016 g, 0.3$ rnrnol). The reaction mixture was stirred at room

temperature for 4 h before being quenched with a solution of saturated NH4CI. The

resulting precipitate was filtered over a pad of celite, and the filtrate was

concentrated. Flash chromatographic purification with 10% EtOAc/hexanes afforded

the deuterium labeled alcohol 83 (0.083 g. 79%) as a colorless ou.

[ŒID -20.0 (e = 0.89, CHC13)

IR (thin film) 3404, 2961, 1455 cm1

‘H NMR (400 MHz, CDC13) 5(ppm) 7.33 (m, 5H), 4.86 (d, 1H, J= 6.9 Hz), 4.83 (U,

1H,J=6.9Hz),4.72 (d, YH,J 11.8 Hz), 4.67(d, 1H.J 11.8 Hz). 3.15 (d, IH.J

6.2 Hz), 2.40 (brs, 1H), 1.94 (m, 1H), 1.7$ (d, 1H, J= 14.0 Hz), 1.54 (d, 1H, J= 14.0

Hz). 0.97 (rn. 9H)

13C NMR (100 MHz, CDC13) 6(ppm) 137.5, 128.1 (2C), 127.4 (2C), 127.3, 96.3,

89.5, 69.9, 59.4 (quin, J 22.1 Hz), 33.7,31.6 (t, J= 19.4 Hz), 30.1, 19.9, 18.0, 16.7

HRMS (EST) m/z 292.19625 (calcd for 292.19591 C16H23D3O3Na)
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(E)-(5S, 6R)- 6-Benzyloxymethoxy-5,7-dimethyloct-2-enoic acid tert-butyl ester

(84)

080M
1) DMSO, (COCI)2, NEt3,

OBOM
CH2CI2, -78°C

2) (Ph)3P=CHCO2t-Bu ‘C02tBU

CH2CI2, r.t.
83 84

55% over two steps

Following general procedure E, alcohol 83 (0.082 g, 0.30 mmol) provided product 84

(0.060 g, 55%) after flash chromatographic purification (2% EtOAc/hexanes).

IŒ]D -13.2 (c = 1.18, CHC13)

IR (thin film) 2963, 1728, 1456, 1367 cnf1

‘H NMR (400 MHz, CDC13) Y(pprn) 7.34 (m, 5H), 5.78 (s, 1H), 4.23 (d, 1H, J 6.9

Hz). 4.81 (d, 1H. J= 6.9 Hz), 4.70 (d, 1H. J 11.9 Hz), 4.66 (d, 1H, J 11.9 Hz).

3.12 (d, 1H. J 5.1 Hz). 2.53 (d, 1H, J 14.3 Hz), 2.02 (d, 1H. J 14.3 Hz). 1,92

(m, 1H), 1.51 (s, 9H), 0.95 (ni, 9H)

13C NMR (100 MHz. CDC13) 6(ppm) 165.7, 146.6 (t, J 23.7 Hz), 137.5, 128.1

(2C), 127.4 (2C), 127.3, 123.7. 96.4, 88.8, 79.63, 69.8, 34.4 (t, J= 19.2 Hz). 34.3,

30.5, 27.8 (3C), 20.0, 17.2, 16.7

(3R, 5S, 6R)-6-Benzyloxymethoxy-3,5,7-trimethyloctanoic acid tert-butyl ester

(85)

OBOM OBOM OBOM

C02t-Bu
T,-78°C,98

+ C02t-Bu

84 syn-85 anti-85
synlanti 86:14

Compound 84 (0.060 g. 0.11 mmol) was subject to a cuprate addition foilowing

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-85 and anti-85 (0.062 g, 98% combined yield) in a ratio of

86:14 syn/anhi.
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IŒID -15.4 (e = 1.08, CHCI3)

IR (thin film) 2963, 1723, 1455 cm1

‘H NMR (400 MHz, CDC13) Y(ppm) 7.33 (m, 5H), 1.84 (d, 1H, J 6.9 Hz), 4.80 (d,

1H,J= 6.9 Hz), 4.10 (d, 1H, J= 11.9 Hz), 4.66 (d, 1H,J= 11.9 Hz), 3.10 (d, 1H,J=

6.0 Hz), 2.31 (d, 1H, J 14.5 Hz), 1.90 (m, 2H), 1.47 (s, 10H), 1.12 (d, 1H, J 13.7

Hz), 0.99 (m, 12H)

‘3c NMR (100 MHz, CDCY3) 6(ppm) 172.5 (172.2), 137.7. 128.0 (2C). 127.4 (2C),

127.2. (96.3) 96.2, (89.8) 89.4, 79.6, 69.7, (44.0) 41.6, 38.6 (37.8), 32.2 (t, J= 18.6

Hz), (29.9) 29.8. 27.7 (3C), 27.4 (t. J= 19.7 Hz), 20.8, 20.2 (20.0), (18.2) 18.1, 16.2

(16.4)

R-Benzyloxymethoxyphenylacetic acid methyl ester (86)

1) AcC, MeOH, r.t. OBOM

PhCO2H 2) BOMCI, DIPEA, PhCO2Me
CH2C)2 0°C to r.t.

(R)-Mandelic acid 86
94% over two steps

A solution of (R)-mandelic acid (4.00 g, 26.3 mmol) in MeOH (30 mL) cooled to O

was charged with AcC1 (0.930 mL. 13.1 mmol) and stirred at room temperature

for 24 h. The reaction mixture was quenched with the addition of a solution of

saturated NH4C1. Extraction with EtOAc (3 x 10 mL), was followed by dying over

Na2SO4, filtration and concentration of the volatiles. A solution of the crude hydroxy

ester in CH2C12 (50 mL) was cooled to O °C and charged with DIPEA (27.5 mL,

157.7 mmol) followed by the drop wise addition ofBOMC1 (12.30 mL, 78.87 mmol).

The mixture was stirred at room temperature for 1$ h and was quenched by the

addition of a solution of saturated NH4C1. The aqueous layer was extracted with

CH2C17 (3 x 10 mL), the combined organic extracts were dried over Na2SO4, filtered

and concentrated. Flash chromatography (5% EtOAc/hexanes) afforded methyl ester

86 (7.07 g, 94% yield) as a colorless oil.

tŒ]D -104.6 (e 1.10, CHC13)
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IR(thinfilm)2953. 1751, 1456cm’

‘H NMR (400 MHz, CDC13) 6(ppm) 7.52 (rn, 2H), 7.37 (rn, 2H). 5.26 (s, 1H), 4.96

(d, 1H. J 7.1 Hz), 4.87 (d, 1H, Jz= 7.1 Hz), 4.73 (d, 1H. J 11.7 Hz), 4.63 (d, 1H, J

= 11.7 Hz), 3.72 (s, 3H)

‘3C NMR (100 MHz, CDCÏ3) c5(ppm) 171.6, 137.9, 136.5, 129.3, 129.2 (2C), 128.9

(2C), 128.4 (2C), 128.3, 127.9 (2C), 93.7, 77.4, 70.6, 52.8

(2R)-2-Benzyloxymethoxy-2-phenylethanol (87)

080M DIBAL-H, CH2CI2, OBOM

PhC02Me -78°C, 87% Ph0H

following general procedure A, $6 (6.90 g, 24.1 mmol) was reduced to give alcohol

87 (5.41 g, 87%), upon purification by flash chrornatography with 10%

EtOAc/hexanes.

[Œ]D -157.0 (e = 1.15, CHCI3)

IR (thin film) 3436, 3032. 2886, 1495, 1454. 1383 cm1

‘H NMR (400 MHz, CDC13) S(pprn) 7.33, (m, 10H). 4.90-4.74 (m, 4H), 4.5$ (rn,

1H), 3.83-3.70 (m, 2H), 2.46 (brs, 1H)

13C NMR (100 MHz, CDCY3) (ppm) 138.3, 137.3, 128.4 (2C), 128.3 (2C), 128.0,

127.9 (2C), 127.7, 126.9 (2C), 93.2, 80.3, 70.0, 67.1

HR1’IS (ESI) mlz 281.11482 (calcd for 281.11426 C16H18O3Na)

(E)-(4S)-4-Benzyloxymethoxy-4-phenytbut-2-enoic acid methyl ester ($8a)

1) DMSO, (COCI)2, NEt3,
OBOM CH2CI2, -78°C OBOM

Ph0H 2) (Ph)3P=CHCO2Me, PhC02Me
87 CH2CI2, r.t. BBa

70% over two steps
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Following general procedure E, alcohol 87 (0.22 g, 0.85 rnrnol) provided product 88a

(0.19 g. 70% over two steps) afier flash chromatographic purification (2%

EtOAc/hexanes).

[ŒÏD -5 7.9 (c = 0.86. CHC13)

IR (thin film) 3065, 3032, 2951, 2890, 1724, 1660, 1603, 1496 cm

‘H NMR (300 MHz, CDC13) 6(pprn) 7.34 (m, 10H), 7.01 (dd, 1H, J 5.3, 15.6 Hz),

6.14 (dd. 1H, J 1.6, 15.6 Hz), 5.34 (dd, 1H, J 1.39, 5.3 Hz), 4.82 (d, 1H, J 7.0

Hz), 4.75 (d, 1H, J 7.0 Hz), 4.65 (d, 1H, J 11.7 Hz), 4.57 (d, 1H, J 11.7 Hz),

3.74 (s, 3H)

‘3C NMR (75 MHz, CDC13) 6(ppm) 166.6, 147.2, 138.4, 137.4, 128.6 (2C), 128.3

(2C), 128.2, 127.9 (2C), 127.7, 127.3 (2C), 120.4, 92.0, 76.4, 69.7, 51.5

HRMS (ESI) m/z 335.12538 (calcd for 335.12469 C19H20O4Na)

(F)-(4S)-4-Benzyloxymethoxy-4-phenylbut-2-enoic acid tert-butyl ester (88b)

1) DMSO, (COCI)2, NEt3,
OBOM CH2CI2, -78°C OBOM

Ph0H 2) (Ph)3P=CHCO2t-Bu, PhCO2t-Bu
87 CH2CI2, t.t. 88b

73% over two steps

Following general procedure E, alcohol 87 (0.25 g, 0.97 mmol) provided product 88b

(0.25 g, 73% over two steps) after flash chromatographic purification (2%

EtOAc/hexanes).

[Œ]D -49.0 (c = 0.97, CHCÏ3)

IR (thin film) 3032, 2979, 1715, 1656, 1495, 1455, 1392, 1368 cm1

‘H NMR (300 MHz, CDC13) 6(pprn) 7.22 (m, 10H), 6.90 (dd. 1H. J 5.6, 15.6 Hz),

6.03 (dd, 1H. J 1.6, 15.6 Hz), 5.32 (dd. 1H, J 1.5, 5.6 Hz). 4.83 (d. 1H. J 7.0

Hz), 4.75 (d, 1H. J 7.0 Hz), 4.66 (d, 1H, J= 11.7 Hz), 4.58 (d, 1H, J 11. 7Hz),

1.49 (s, 9H)
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13C NMR (75 MHz. CDC13) Y(ppm) 165.4, 145.5, 138.7, 137.4, 128.6 (2C), 128.3

(2C), 128.1, 127.9 (2C), 127.6, 127.3 (2C), 122.9, 92.0. 80.4, 76.5, 69.6. 28.0 (3C)

(E)-(4S)-4-Benzyloxymethoxy-4-phenylbut-2-enoic acid 1-methylcyclopentyl

ester (88e)

1) DMSO, (COCI)2, NEt3, 080M
OBOM CH2CI2, -78°C I

Ph0H 2) (Ph)3P=CHCO2t-Bu,
Phf°

CH2CI2, r.t.
87 70% over twa steps 88c

Following general procedure E, alcohol 87 (0.310 g, 1.20 mmol) provided product

88e (0.32 g, 70% over two steps) after flash chromatographic purification (2%

EtOAc/hexanes).

[Œ]D -42.3 (e = 0.84, CHCY3)

IR(thinfilrn)2962, 1713, 1655, 1495. 1454, 1374. 1310 crn1

‘H NMR (300 MHz, CDC13) S(ppm) 7.34 (m, 10H), 6.91 (dd, 1H, J 5.5, 15.6 Hz),

6.04 (dd, 1H, J 1.6, 15.6 Hz), 5.32 (dd, 1H. J 1.3, 5.5 Hz), 4.82 (d, 1H, J 7.0

Hz), 4.75 (d, 1H, J= 7.0 Hz). 4.65 (d, 1H, J 11.7 Hz). 4.52 (d, 1H. J= 11.7 Hz),

2.12 (rn, 2H), 1.75-1.69 (m, 4H), 1.64 (rn, 2H), 1.58 (s, 3H)

‘3c NMR (75 MHz, CDC13) 6(ppm) 165.6, 145.6, 138.7, 137.4, 128.6 (2C), 128.2

(2C), 122.1, 127.9 (2C), 127.6, 127.3 (2C), 122.7, 92.0, 89.9, 69.7, 39.0, 38.9, 24.3,

23.7 (2C)

(3S, 4S)-4-Benzyloxymethoxy-3-methyl-4-phenylbutyric acid methyl ester ($9a)

OBOM OBOM080M Me2CuLi, TMSCI

PhCO2Me THF, -78°C, 97%
PhCO2Me

88a anti-89a syn-89a

antiisyn 94:6
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Compound 8$ (0.10 g, 0.32 rnrnol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products anti-8% and syn-89a (0.102 g, 97% combined yield) in a ratio

of 94:6 anti! syn.

IŒID -11.7 (e = 0.77, CHC13)

IR(thin film) 3032. 2951. 1738, 1495. 1454, 1436. 138f crn1

LII NMR (400 MHz, CDC13) 6(ppm) 7.38-7.27 (m, 10H), 4.70 (m. 2H), 4.60 (d, 1H,

J= 7.0 Hz), 4.4$ (d, 1H,J= 11.7 Hz), 4.43 (d, 1H,J= 7.9 Hz), 3.69 (s, 3H), 3.69 (s,

minor), 2.76 (dd, 1H, J = 4.8, 15.8 Hz), 2.45 (m, 1H), 2.26 (dd, 1H, J = 8.7, 15.2

Hz),1.06 (d, J 6.6 Hz, minor), 7.18 (d, 3H, J 6.8 Hz)

‘3C NMR (100 MHz, CDCÏ3) 5(ppm) 173.3 (173.0), 139.3 (139.5), 137.4, 128.1

(2C), 127.9 (2C), 127.6, 127.5 (2C), 127.4, 127.4 (2C), (92.3) 92.1, 81.9 (80.8). 69.5,

51.1, 37.5, 36.6 (36.4), 16.4 (15.2)

(3$, 4S)-4-Benzyloxymethoxy-3-methyl-4-phenylbutyric acid tert-butyl ester

(89b)

080M 080MOBOM Me2CuLi, TMSCI

PhCO2t-Bu THF, -78°C, 92%
PhCO2t-Bu + PhCO2t-Bu

88b anti-89b syn-89b
antiisyn 95:5

Compound 8$b (0.10 g, 0.2$ rnmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc!hexanes

afforded the products anti-89b and yn-$9b (0.095 g. 92% cornbined yield) in a ratio

of 95:5 anti! syn.

IOEÏD -128.1 (e = 0.091, CHC13)

IR (thin film) 3032, 2977, 1728, 1495, 1455, 1367 cm’

1H NMR (400 MHz, CDCI3) S(pprn) 7.48-7.23 (m, 10H), 4.72 (m, 2H), 4.60 (d, 1H,

J 6.9 Hz), 4.4$ (d, 1H. J= 11.6 Hz), 4.42 (d, 1H, J= 7.9). 2.66 (dd. 1H, J= 5.0,
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15.0 Hz), 2.40 (m, 1H), 2.14 (m, 1H), 1.48 (s, 9H), 1.04 (d, J 6.8 Hz, minor), 0.84

(d. 3H. J= 6.8 Hz)

t3C NMR (100 MHz, CDCI3) (ppm) 172.2. 139.9, 137.4, 128.0 (2C). 127.9, 127.6

(2C), 127.4 (2C), 127.4 (2C), 127.3, 92.1, 82.0, 79.7, 69.4, 39.1, 36.6, 27.8 (3C), 16.1

(3S, 4S)-4-Benzyloxymethoxy-3-methyl-4-phenylbutyric acid 1-

methykyclopentyl ester (S9c)

OBOM OBOM OBOM
Me2CuLi, TMSCI

Ph(°
THF, -78°C, 89%

Ph° I

88c anti-89c syn-89c
anti!syn 95:5

Compound 88c (0.10 g, 0.26 rnrnol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products ctnti-89c and syn-89c (0.092 g, 89% combined yield) in a ratio

of 95:5 anti! syn.

[ŒJD -98.8 (e = 1.07. CHC13)

IR (thin film) 3032, 2964. 1727, 1495, 1454. 1374 cm1

‘H NMR (400 MHz, CDC13) c5(ppm) 7.33 (m, 10H), 4.69 (d, 1H, J 6.9 Hz), 4.60

(d, 1H, J’ 6.9 Hz), 4.4$ (d, 1H, J 11.7Hz), 4.42 (d, 1H, J 6.8 Hz), 2.65 (dd, 1H,

J 5.0. 14.9 Hz), 2.3$ (m, 1H). 2.13 (rn, 2H), 1.72 (rn. 6H), 1.65 (m. 2H), 1.59 (s,

3H), 0.90 (d, J 6.9 Hz, minor), 0.23 (d, 3H. J 6.8 Hz)

‘3C NMR (100 MHz, CDC13) 5(ppm) 172.3, 139.8, 137.4, 128.0 (2C), 127.9 (2C),

127.6 (2C), 127.4 (2C), 127.9, 127.3, 92.1, 89.3, 82.0, 69.5, 39.1, 38.8, 38.8, 36.6,

24.1, 23.5 (2C). 16.2

(3$, 4»4-Benzyloxymethoxy-3-methyl-4-phenylbutan-1-oI (90)
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030M DIBA OBOM

PhCO2Me

89a 90

Following general procedure A, $9a (0.650 g, 1.9$ rnmol) was reduced to give

alcohol 90 (0.520 g, 88%), upon purification by flash chromatography with 10%

EtOAc/hexanes.

[ŒID -9.2 (c 6.90. CHC13)

IR (thin film) 3402, 3031, 2884, 1495 cm

‘H NMR (400 MHz, CDC13) (ppm) 7.3 8-7.28 (in, 10H), 4.74 (m, 2H), 4.63 (d, 1H,

J 6.9 Hz), 4.52 (d, 1H, J 11.7 Hz), 4.45 (d, 1H, J= 7.4 Hz), 3.84-3.67 (m, 2H),

2.09-1.97 (m, 2H), 1.85 (s, 1H), 1.52 (m, 1H), 0.83 (d, 3H,J= 6.8 Hz)
l3 NMR (100 MHz. CDCI3) 5(ppm) 141.6, 139.5, 128.2 (2C), 122.6 (2C), 128.3,

128.2 (2C), 128.1 (2C), 128.0, 93.0, 83.6, 70.4, 61.6, 37.2, 36.4, 17.1

HRMS (ESI) in!: 323.16177 (calcd for 323.16206 C19H24O3Na)

(E)-(5S, 6S)-6-Benzyloxymethoxy-5-methyl-6-phenylhex-2-enoic acid methyl

ester (91a)

1) DMSO, (COC)2, NEt3,
OBOM 030M

ph0H
2) (Ph)3P=CHCO2Me, PhO2Me

90
CH2CI2, r.t.

97a
75% over two steps

Following general procedure E, alcohol 90 (0.17 g. 0.56 rnmol) provided product 91a

(0.15 g, 75% over two steps) afler flash chrornatographic purification (2%

EtOAc/hexanes).

[ŒJD -62.9 (e = 0.93, CHCÏ3)

IR (thin film) 2951, 1723, 1656, 1495 cm1

‘H NMR (400 MHz, CDC13) 6(pprn) 7.40-7.29 (rn. 10H), 7.03 (m, 1H), 5.91 (d, 1H,

J= 15.7 Hz), 4.72 (m, 2H), 4.64 (d, 1H, J= 6.9 Hz), 4.52 (d, 1H, J 11.7 Hz), 4.34
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(d, 1H. J= 7.4 Hz), 3.76 (s, 3H). 2.77 (m, 1H), 2.19-1.09 (m, 2H), 0.79 (d, 3H. J

6.6 Hz)

‘3C NMR (100 MHz, CDCY3) 6(pprn) 167.4, 148.7, 140.7, 138.2, 122.9 (2C), 128.7,

128.3 (2C), 128.2 (2C), 128.2, 128.1 (2C), 122.2, 93.0, 82.8, 70.4, 51.9, 39.5, 36.1,

16.6

(E)-(5S, 6S)-6-Benzyloxymethoxy-5-methyl-6-phenylhex-2-enoic acid tert-butyl

ester (91b)

1) DMSO, (COCI)2, NEt3,
OBOM 080MCH2CI2, -78 C

h E 2) (Ph)3P=CHCO2t-Bu, Ph C02t-Bu

90
CH2CI2, r.t.

- 91b
96% over two steps

following general procedure E, alcohol 90 (0.15 g, 0.50 mrnoÏ) provided product 91b

(0.19 g, 96% over two steps) after flash chromatographic purification (2%

EtOAc/hexanes).

[ŒID -56.4 (c = 1.05. CHC13)

IR (thin film) 3032, 2977. 2932, 1713, 1651, 1495 cm’

1H NMR (400 MHz, CDC13) S(ppm) 7.42-7.23 (m, 10H). 6.93 (m, 1H), 5.82 (d, 1H,

J= 15.6 Hz), 4.72 (m, 2H), 4.63 (d, 1H, J 6.9 Hz), 4.51 (U, 1H, J 11.7 Hz), 4.42

(d, 1H, J 7.2 Hz), 2.68 (m 1H), 2.09 (m, 2H), 1.52 (s, 9H), 0.7$ (d, 3H, J= 6.4 Hz)

3C NMR (100 MHz, CDC13) 6(ppm) 166.4, 147.1, 140.7, 138.2, 128.9 (2C), 128.7

(3C), 128.4 (2C). 128.1 (3C). 124.3. 93.0, 82.9, 80.5, 70.4, 39.5, 35.9, 28.6 (3C), 16.6

(E)-(5S, 6S)-6-Benzyloxymethoxy-5-methyl-6-phenylhex-2-enoic acid 1-

methylcyclopentyl ester (91e)
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1) DMSO, (COCI)2, NEt3,
OBOM OBOMCH2CI2, -78 C

Ph 2) (Ph)3P=CHCO2MCP, Ph

CH2CI2, r.t.
: Q

90 91c89% over two steps

Following generat procedure E, alcohol 90 (0.17 g, 0.56 mmoÏ) provided product 91c

(0.2 1 g, 96% over two steps) afler flash chrornatographic purification (2%

EtOAc/hexanes).

[ŒID -53.1 (e = 1.14, CHC13)

IR (thin film) 3032, 2964, 2876, 1712, 1652 cm

1H NMR (400 MHz, CDC13) 5(ppm) 7.40-7.28 (m, 10H), 6.92 (m, 1H), 5.84 (d, 1H,

J5.8 Hz), 4.72 (m, 2H), 4.63 (d, 1H,J= 6.9 Hz), 4.51 (d, IH,J 11.7 Hz), 4.43 (d,

1H, J= 7.2 Hz). 2.70 (m. 1H), 2.17-2.05 (rn. 4H), 1.77-1.64 (m, 6H), 1.62 (s, 3H),

0.79 (d, 3H. J 6.5 Hz)

13C NMR (100 MHz. CDC13) 6(ppm) 166.5, 147.1, 140.7, 138.2, 128.9 (2C), 128.7

(3C). 128.4 (2C), 128.1 (3C). 128.1 (2C), 124.8, 93.0, 90.0. 82.9. 70.4, 39.6, 39.5.

35.9, 24.9, 24.3, 16.6

(3R, 5S, 6S)-6-Benzyloxymethoxy-3,5-dimethyl-6-phenylhexanoic acid methyl

ester (92a)

OBOM M C L TMSCI OBOM OBOM

PhCO2Me
THF, -78°C, 86%

PhCO2Me + PhCO2Me

91a syn-92a anti-92a

synlanti 69:31

Compound 91a (0.10 g. 0.28 rnmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products svn-92a and anti- 92a (0.089 g, 86% combined yield) in a ratio

of 69:3 1 syn/anti.

tŒÏi -71.5 (e = 1.23, CHC13)
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IR (thin film) 3031, 2958, 1738 cm

tfl NMR (400 MHz, CDC13) 6(ppm) 7.40-7.27 (m, 10H), 4.73 (m, 2H), 4.62 (d, 1H,

J= 6.9 Hz), 4.45 (m, 2H), 3.66 (m, 3H), 2.39 (dd, 1H, J= 4.3, 14.5 Hz). 2.32-2.19

(rn, niinor), 2.11 (m, 1H), 2.02 (rn, 1H), 1.90 (tri, 1H), 1.69—1.61 (m, 1H), 1.10 (tri,

1H). 1.01 (d, 3H, J= 6.5 Hz), o.gi (d. 3H, J= 6.8 Hz)

‘3C NMR (100 MHz, CDC13) 5(ppm) 173.6 (173.4), (140.8) 140.6, 137.7, 128.3

(2C), 128.0, 127.9 (2C), 127.8 (2C), 127.6, 127.5 (2C), 92.5, (83.3) 82.7, 69.7. 51.2,

(42.7) 40.5, 40.1 (39.6), 36.9 (36.7), 28.0 (27.6), 21.1 (18.6), 16.2 (15.6)

(3R, 5S, 6S)-6-Benzyloxymethoxy-3,5-dimethyl-6-phenythexanoic acid tert-butyl

ester (92b)

050M M C L TMSCI 050M OBOM

PhC02t-Bu
THF, -78°C, 85%

PhC02t-Bu PhC02t-Bu

91 b syn-92b anti-92b
syn/anti 84:16

Compound 91b (0.10 g, 0.25 rnmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-92b and anti-92b (0.089 g, 85% combined yield) in a ratio

of 84:16 syn/anti.

IŒID -67.4 (e = 1.1 1, CHC13)

IR (thin film) 3032, 2965, 2932, 1727, 1495 cm

1H NMR (400 MHz. CDC13) (ppm) 7.37-7.26 (m. 10H), 4.72 (m, 2H), 4.62 (d, 1H,

J 6.9 Hz). 4.49 (d, 1H, J= 11.7 Hz). 4.41 (d, 1H. J 6.9 Hz), 2.30 (dd, 1H, J= 4.4,

14.4 Hz), 2.17-2.01 (m, 1H), 2.02-1.86 (m, 2H), 1.66 (m, 1H), 1.46 (s, 9H), 1.13-1.03

(m, 1H), 0.99 (d, 3H, J = 7.0 Hz), 0.91 (d, J = 6.4 Hz, minor), 0.79 (d, 3H, J = 6.8

Hz)
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‘3c NMR (100 MHz, CDCI3) 6(ppm) 172.4 (172.1), (140.4) 140.2, 137.5, 128.0

(2C), 127.8, 127.7 (2C), 127.6 (2C), 127.4, 127.3 (2C), 92.3, (83.1) 82.7, 79.6 (2C),

69.4. (44.1) 41.8, 39.9 (39.2), 36.6 (36.5). 27.8 (3C). 20.8 (18.4). 15.9 (15.3)

(3R, 5S, 6S)-6-Benzyloxymethoxy-3,5-dimethyl-6-phenylhexanoic acid 1-

methylcyclopentyl ester (92c)

OBOM M C L TMSCI OBOM OBOM

THF, 8°C, 86%
Ph° “Ph

91 c syn-92c anti-92c

synlanti 85:15

Compound 91c (0.10 g, 0.24 mmol) was subject to a cuprate addition following

general procedure D. flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-92c and anti-92e (0.089 g, 86% combined yield) in a ratio

of 85:15 syn/anti.

[Œ]D -64.2 (c 1.11, CHC13)

IR (thin film) 2962, 1726, 1496 cm1

‘H NMR (400 MHz, CDC13) c5(pprn) 7.36-7.25 (m. 10H). 4.71 (m 2H), 4.61 (d, 1H.

J 6.9 Hz), 4.84 (d, 1H, J 11.6 Hz), 4.41 (d, 1H, J 6.9 Hz), 2.31 (dd, 1H. J 4.3,

14.3 Hz), 2.11 (rn, 3H). 1.91 (m, 2H), 1.72-1.61 (8H). 1.55 (s, 3H), 0.99 (d, 3H, J

6.6 Hz), 0.79 (d, 3H, J 6.8 Hz)

‘3C NMR (100 MHz, CDC13) 5(pprn) 172.8 (172.7), (140.8) 140.9, 137.7, 128.2

(2C), 127.9 (2C). 127.8. 127.6 (2C), 127.5, 127.4 (2C), 92.5, 89.4, 82.9, 69.6. (44.2)

41.8, 40.2 (39.4). 39.4, 38.9, 36.8 (36.7). 28.0 (27.7), 24.2 (2C), 23.6. (20.7) 18.6,

16.1 (15.4)

(3R, 5$, 6S)-6-Benzyloxymethoxy-3,5-dimethyl-6-phenylhexan-1-01(93)
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OBOM 080M 080M

PhC02Me ÷ PhNy’CO2Me

DIBAL-H,
PhH

syn-92a anti-92a 93
d.r. 69:31

Following general procedure A, the diastereomeric mixture of svn- and anti- esters

92a (0.66 g. 1.8 mrnol) was reduced to give a mixture of diastereorneric alcohols.

Purification by flash chromatography (2% EtOAc/hexanes) gave the pure alcohol 93

(0.15 g) and a mixture of diastereorners (0.20 g) in 60% overali yield.

IŒID -51.7 (e 1.09, CR03)

IR (thin film) 3402, 2931, 1454 cm1

‘H NMR (400 MHz, CDC13) 6(ppm) 7.38-7.27 (m. 10H), 4.73 (m, 2H), 4.63 (d. 1H,

J= 6.9 Hz), 4.50 (d, 1H, J= 11.6 Hz), 4.44 (d. 1H. J 6.6 Hz), 3.75-3.62 (m, 2H),

2.00 (m, 1H), 1.75-1.63 (m, 2H), 1.61-1.46 (m, 2H), 1.32 (m, 1H), 1.03 (m, 1H), 0.97

(m, 3H), 0.78 (m, 3H)
l3 NMR (100 MHz, CDCÏ3) 5(ppm) 141.0, 138.3, 128.8 (2C), 128.5 (2C), 128.4,

122.2 (2C), 128.1 (2C), 127.9, 93.1, 83.6, 70.2, 61.4, 41.1, 39.2, 37.4, 27.7, 21.4, 17.0

HRMS (ESI) m/z 365.20872 (calcd for 3 65.20722 C77H30O3Na)

(E)-(5S, 7S, $S)-8-Benzyloxymethoxy-5,7-dimethyl-8-phenyloct-2-enoic acid tert

butyl ester (94a)

1) DMSO, (COCI)2
OBOM OBOM

NEt3, CH2CI2, -78 C
Ph

E E 2) (Ph)3P=CHCO2t-Bu, Ph C02t-Bu

- CH2CI2, r.t.
Z

93 94a
99% over two steps

Following general procedure E, alcohol 93 (0.071 g, 0.21 mmol) provided product

94a (0.090 g, 99% over two steps) aller flash chromatographic purification (2%

EtOAc/hexanes).

[ŒID -41.1 (e 0.95, CHC13)
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IR (thin film) 3065. 3031, 2930, 1713, 1652 cnï’

1H NMR (400 MHz, CDC13) 6(pprn) 7.37-7.29 (m, 10H). 6.87 (m, 1H). 5.75 (d, 1H.

J= 15.5 Hz), 4.73 (ni, 2H), 4.64 (d, 1H, J 6.9 Hz). 4.51 (d, 1H, J = 11.6 Hz), 4.44

(d, 1H, J 6.8 Hz), 2.27 (m, 1H), 2.03-1.85 (m. 2H), 1.86-1.65 (m, 2H), 1.51 (s. 9H),

1.04 (ni, 1H), 0.96 (d, 3H, J 6.4 Hz), 0.80 (d, 3H, J 6.8 Hz)
l3 NMR (100 MHz, CDC13) 6(ppm) 165.6, 146.4, 140.2, 137.5, 128.0 (2C), 127.7

(2C), 127.6, 127.4 (2C), 127.3 (2C), 127.1, 123.9, 92.3, 82.6. 79.6, 69.4, 39.8, 38.0,

36.6, 29.9, 27.2 (3C), 20.5, 16.1

(E)-(5S, 7S, $S)-8-Benzyloxymethoxy-5,7-dimethyl-8-plienyloct-2-enoic acid 1-

methylcyclopentyl ester (94b)

1) DMSO, (COCI)2
OBOM OBOM

NEt3, CH2CI2, -78

Ph 2) (Ph)3P=CHCO2t-Bu, E E II
2

CH2CI2, r.t.
2 0

89°k over two steps 94b

following general procedure E, alcohol 93 (0.071 g, 0.21 mmoÏ) provided product

94b (0.086 g, 89% over two steps) afier flash chromatographic purification (2%

EtOAc/hexanes).

[Œ]D -3 6.9 (e = 0.94, CHC13)

IR (thin film) 2960, 1713, 1652 cm1

1H NMR (400 MHz, CDCI3) 5(ppm) 7.37-7.28 (m, 10H), 6.87 (ni, 1H), 5.77 (d, 1H,

J 15.5 Hz), 4.73 (ni, 2H), 4.64 (d, 1H, J 6.9 Hz), 4.50 (d, 1K, J 11.6 Hz), 4.44

(d, 1H, J= 6.8 Hz), 2.26 (m, 1H), 2.15 (ni, 2H). 2.03-1.26 (m, 2H), 1.84-1.64 (m,

8H), 1.61 (s. 3H). 1.05 (m. 1H), 0.96 (d, 3H, J= 6.4 Hz), 0.80 (d, 3H, J 6.2 Hz)
l3 NMR (100 MHz, CDC13) 5(ppm) 165.8, 146.4, 140.2. 137.5. 128.0 (2C), 127.7

(2C), 127.6, 127.4 (2C), 127.3 (2C). 127.1. 123.8. 92.3, $9.1, $2.6, 69.4, 39.8, 38.8

(2C), 32.0, 36.6, 29.9, 24.1, 23.5 (2C), 20.5, 16.1
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(3R, 5S, 7S, 8S)-$-Benzyloxymethoxy-3,5,7-trimethyl-8-p henyloctanoic acid tert

butyl ester (95a)

OBOM M C L TMSCI OBOM OBOM

PhC02t-Bu
THF, -78°C, 90%

Ph: C02t-Bu + PhCO2t-Bu

94a syn-95a anti-95b

synlanti 79:27

Compound 94a (0.060 g, 0.14 mrnol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products svn-95a and anti-95a (0.056 g, 90% cornbined yield) in a ratio

of 79:21 syn/anti.

[ŒID -39.6 (e = 1.10, CHC13)

IR (thin film) 2960, 2930, 1728 cm

1H NMR (400 MHz, CDCI3) 6(ppm) 7.37-7.27, (m, 10H), 4.74 (m, 2H), 4.64 (d, 1H,

J= 6.9 Hz), 4.50 (d. 1H. J= 11.6 Hz). 4.44 (d, 1H. J= 6.8 Hz), 2.29 (dd, 1H, J 4.9,

14.3 Hz), 2.08-1.96 (rn. 2H), 1.90 (dd, 1H. J 8.9, 14.3 Hz). 1.65 (m, 2H). 1.47 (s,

9H), 1.30 (m, 1H), 1.04-0.92 (m, 6H), 0.87 (m, 2H), 0.78 (d, 3H, J 7.8 Hz)

‘3C NMR (100 MHz, CDC13) 6(ppm) 173.2 (173.0), 141.0, 138.3. 128.4 (2C), 128.4

(2C). 128.2, 128.2 (2C), 128.1 (2C), 127.8, 93.1, 83.6 (83.5), 80.3, 70.2, (44.0) 43.6,

42.1, (41.2) 40.9, 36.4 (36.3), 27.8 (3C), 27.7, 27.5 (27.5), 20.7, 16.1 (15.8)

(3R, 5S, 7S, 8S)-$-Benzyloxymethoxy-3,5,7-trimethyl-8-phenyloctanoic acid 1-

methylcyclopentyl ester (95b)

OBOM M C L TMSCI OBOM OBOM

Ph°
THF, 8°C, 74%

Ph°

63b syn-64b ant,-64b

synlanti 79:2 1

Compound 94b (0.086 g. 0.1$ mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes
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afforded the products syn-95b and anti-95b (0.065 g, 74% combined yield) in a ratio

of 79:21 svn/anti.

[ŒID -71 .9 (e = 0.62, CHC13)

IR (thin film) 2959, 1727, 1454 cm

‘H NMR (400 MHz, CDC13) 5(ppm) 7.37-7.27 (m, 10H), 4.75 (m, 2H), 4.64 (d, 1H,

J= 6.9 Hz), 4.50 (d, 1H, J= 11.6 Hz), 4.44 (d, 1H, J= 6.8 Hz), 2.30 (dd, 1H, J 4.8,

14.2 Hz), 2.19-1.96 (m, 4H). 1.90 (dd. 1H, J 8.9, 14. 2 Hz), 1.80-1.62 (m, 8H). 1.57

(s, 3H). 1.30 (m. 1H), 1.05-0.92 (m, 7H). 0.84 (m, 1H), 0.78 (d, 3H, J= 6.8 Hz)

‘3C NMR (100 MHz. CDCI3) 5(ppm) 173.4 (173.1). 141.0, 138.3. 122.8 (2C), 128.6

(2C), 128.4, 128.4 (2C), 128.2, 128.2 (2C), 93.1, 89.9. (83.6) 83.5, 70.2. (44.7) 44.4.

(43.5) 42.7, (41.7) 41.7, 39.6, 39.5, 39.5, 37.2, 28.4, 28.3, 24.8, 24.2 (2C), 21.5

(21.0), 16.9 (16.6)

(1-tert-Hutyl-allyloxymethoxymethyl)-benzene ((±)-97)

1) M Br
O OBOM

THF, O C

H 2) BOMCI, DIPEA,

CH2CI2, 0°C ta r.t.
(±)-96 (±)-97

5QO/ over twa steps

A solution of 1.5 M vinylmagnesium bromide (46.4 mL, 69.7 mmol) in THF (250

mL) was cooled to O °C prior to the addition of 2,2-dimethyl-propionaldehyde, 65,

(6.39 mL, 52.1 mmol). The mixture was stirred at the same temperature for 4 hr

before being quenched with a saturated solution of NH4CY. The aqueous layers were

washed with EtOAc (3 x 20 mL), dried over Na2SO4 and concentrated in vacuo. A

solution of the crude vinyl alcohol and DIPEA (40.45 mL, 232.2 mmol) in CH2C12

(150 mL) was cooled to O °C, followed by the drop wise addition of 3OMC1 (26.01

mL, 116.1 rnmol). The reaction mixture was stirred at room temperature for 18 h and

was quenched with a saturated solution ofNH4CI. The aqueous layers were washed
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with EtOAc (3 x 25 mL), dried over NaSO4 and concentrated. flash

chromatography (2% EtOAc/hexanes) gave the desired product, (±)-97, in 50% yield.

IR (thin film) 3032. 2956, 2872, 1498 cm’

1H NMR (400 MHz, CDC13) (pprn) 7.40 (m. 5H), 5.79 (m, 1H), 5.34 (d, 1H. .1=

10.4 Hz). 5.26 (d, 1H.J= 17.2 Hz), 4.$6(d, IH,J= 6.9 Hz). 4.82 (d, 1H,J= 11.7

Hz), 4.75 (d, 1H, J 6.9 Hz), 4.58 (d, 1H, J 11.7Hz), 3.78 (d, 1H, J 8.2 Hz), 1.02

(s, 9H)

‘3c NMR (100 MHz, CDCÏ3) 6(ppm) 137.7, 135.0, 128.1 (2C), 127.6 (2C), 127.3,

118.9, 91.5, 85.0, 69.3, 34.0, 25.9 (3C)

4-Benzyloxymethoxy-5,5-dimethylhex-2-enoic acid methyl ester ((±)-98)

OBOM 1 0 0 N O THF/H o t 030M
I ) S

,
a 4’ 2 •• I

2) (Ph)3P=CHCO2Me, A CO2Me

(±)-97
CH2CI2, r.t.

(±)-98
54% over two steps

b a solution of substrate (±)-97 (0.890 g. 3.80 mmol) in THF (5 mL) and H20 (5

mL) at O °C, sodium periodate (2.03 g, 9.50 mmol) was added, followed by 0S04

(0.24 mL, 0.19 mmol). The mixture was stirred at room temperature for 1$ h. The

reaction mixture was extracted with EtOAc (3 x 5 mL), dried over Na2SO4 and

concentrated. A solution of the crude aldehyde in CH2C12 (10 mL) was charged with

Ph3P=CHCO2Me (1.91 g, 5.70 mrnol), and stirred for 3 days at room temperature.

The reaction mixture was evaporated to dryness, trituration of the crude solid with

hexanes/Et20 (3:1) resulted in a slurry which was filtered over a pad ofcelite. The

filtrate was concentrated and purified by flash chromatography (2% EtOAc/hexanes)

affording enoate (±)-98 (o.60 g, 54%).

IR (thin film) 2955, 2872, 1726, 1657 cnï1

‘H NMR (400 MHz, CDC13) 6(ppm) 7.35 (m, 5H), 6.91 (dd, 1H, J 7.3, 15.8 Hz),

6.00 (dd, 1H, J 1.0. 15.8 Hz), 4.73 (s, 3H), 4.56 (d. 1H, J= 11.7 Hz), 3.93 (dd, 1H.

J 0.9, 7.3 Hz), 3.77 (s, 3H), 0.99 (s, 9H)
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‘3C NMR (100 MHz, CDC13) ô(pprn) 166.1, 145.6, 137.3. 128.1 (2C). 127.5 (2C),

127.4. 123.2. 92.6, $3.1, 69.5, 51.3, 34.8, 25.2 (3C)

(3S, 4S)-4-Benzyloxymethoxy-3,5,5-trimethylhexanoic acid methyl ester ((±)-99)

080M M C L TMSCI 080M

)C02Me
THF, -C, 89%

)C02Me

f ±)-98 (±)-99

Compound (±)-98 (0.27 g. 0.93 mmol) was subject to a cuprate addition following

general procedure D. flash chrornatographic purification of the prodtict with 2%

EtOAc/hexanes afforded product (±)-99 (0.26 g, 89%) as a single diastereomer.

IR (thin film) 2957, 2875, 1738, 1436 cm1

1H NMR (400 MHz, CDC13) 5(ppm) 7.34 (rn, 5H), 4.84 (d, 1H, J 6.9 Hz), 4.76 (d,

1H, J= 6.9 Hz), 4.72 (d, 1H, J= 11.9 Hz), 4.65 (d, 1H, J 11.9 Hz), 3.70 (s, 3H),

3.08 (d. 1H, J 2.0 Hz), 2.69 (dd. 1H, J 3.2, 15.8 Hz). 2.39 (m, 1H). 2.17 (dd, 1H.

J= 10.2, 15.8 Hz), 1.10 (d, 3H, J= 7.0 Hz), 0.97 (s, 9H)

‘3c NMR (100 MHz, CDC13) 6(pprn) 174.0, 137.5, 122.1 (2C), 127.4 (2C), 127.3,

96.7, 91.2, 69.9, 51.1, 37.3, 36.2, 30.4, 26.2 (3C), 21.6

(3S, 4S)-4-Benzyloxymethoxy-3,5,5-trimethylhexan-1-ol ((±)-1 00)

OBOM
H OBOM

NC02Me

DIBAL-H, C2C12,

(±)-99 f ±-1OO

Following general procedure A, substrate (±)-99 (0.421 g, 1.56 mmol) was reduced to

give alcohol (±)-100 (0.36 g, 82%), after chromatographic purification (10%

EtOAc/hexanes).

IR (thin film) 3369, 2958, 2874, 1481 cmt
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‘H NMR (400 MHz, CDC13) 6(ppm) 7.33 (m, 5H), 4.87 (d, 1H, J 6.9 Hz), 4.79 (d.

1H, J 6.9 Hz), 4.72 (d, 1H. J= 11.9 Hz), 4.69 (d, 1H, J= 11.9 Hz), 3.77 (rn, 1H),

3.68 (rn, 1H), 3.12 (s, 1H), 2.22 (brs, 1H), 1.97 (m, 2H). 1.43 (m, 1H), 1.09 (d, 3H, J

= 7.00 Hz), 0.9$ (s, 9H)

13C NMR (100 MHz, CDC13) 6(ppm) 137.6, 128.1 (2C), 127.4 (2C), 127.3, 96.6,

91.9, 69.9, 61.2, 36.1, 35.1, 30.3, 26.4 (3C), 21.3

(F)-(5S, 6S)-6-Benzy]oxymethoxy-5,7,7-trimethyloct-2-enoic acid m ethyl ester

((±)-lOla)

1) DMSO, (COCD2, NEt3,
OBOM OBOM

CH2CI2, -79°C
OH

2) (Ph)3P=CHCO2Me, )‘CO2Me

- CH2CI2, r.t.
(±)-100 (±)-lOla

97% over two steps

Following general procedure E. alcohol (±)-100 (0.18 g, 0.65 mrnol), provided

product (±)-lOla ((L)- 0.17 g. (Z)- 0.045 g, 97% over two steps) afier flash

chromatographic purification (2% EtOAc/hexanes).

IR (thin film) 3031, 2955, 2872, 1725. 1655, 1436 cm’

‘H NMR (400 MHz, CDC13) 5(ppm) 7.61 (m, 5H), 7.03 (m, 1H), 5.86 (d. 1H, J

15.6 Hz), 4.86 (d, 1H, J 6.8 Hz), 4.77 (d, 1H, J 6.8 Hz), 4.72 (d, 1H, J= 11.9 Hz),

4.65 (d, 1H,J 11.9 Hz), 3.75 (s, 3H), 3.11 (s, 1H), 2.60 (m, 1H), 1.99 (m, 2H), 1.07

(d, 3H, J 6.7 Hz), 0.97 (s, 9H)

‘3C NMR (100 MHz, CDC13) 6(ppm) 166.7. 149.3, 137.6, 128.1 (2C), 127.3 (2C).

127.3, 12 1.2, 96.7, 91.4. 69.9. 5 1.0, 36.2. 35.2, 32.8, 26.2 (3C), 20.87

(E)-(5S, 6S)-6-Benzytoxymethoxy-5,7,7-trimethyloct-2-enoic acid tert-bu tyl ester

((±)-lOlb)
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1) DMSO, (COCD2, NEt3,
OBOM OBOMCH2CI2, -78 C

__ __

OH

_______________

I

A 2) (Ph)3P=CHCO2t-Bu, A C02t-Bu

- CH2CI2, r.t. -

(±)-100 (±)-1Of b
92% over two steps

Following general procedure E, alcohol (±)-100 (0.079 g, 0.29 mmol) provided

product (±)-lOlb (0.098 g, 92% over two steps) after flash chromatographic

purification (2% EtOAc/hexanes).

IR (thin film) 2961, 1713, 1652, 1456 cm1

1H NMR (400 MHz, CDC13) 6(ppm) 7.34 (m, 5H), 6.91 (m, 1H), 5.77 (d, 1H, J

15.6 Hz), 4.26 (d, 1H, J=r 6.8 Hz), 4.77 (d, 1H, J 6.9 Hz), 4.72 (d, YH,J’= 11.8Hz),

4.65 (d, 1H,J= 11.9 Hz), 3.11 (s, 1H), 2.56 (m, 1H), 1.94 (m, 2H), 1.51 (s, 9H), 1.07

(d, 3H, J= 6.8 Hz), 0.96 (s, 9H)

‘3C NMR (100 MHz, CDC13) 6(ppm) 165.8, 147.6, 137.6, 128.1 (2C), 127.4 (2C),

127.3, 123.3, 96.7, 91.4, 79.7, 69.9, 36.2, 34.9, 32.8, 27.8 (3C), 26.3 (3C), 20.9

(E)-(5S, 6S)-6-Benzyloxymethoxy-5,7,7-trimethyloct-2-enoic acid 1-

methylcyclopentyl ester ((±)-1 01e)

1) DMSO, (COCI)2, NEt3,
OBOM OBOM

___

OH
CH2CI2, -78 C

A r 2) (Ph)3P=CHCO2t-Bu, A 11
- CH2CI2, r.t. - O

(±)-100 82% over two steps (±)-lOlc

Following general procedure E, alcohol (±)-100 (0.079 g, 0.29 mmol). provided

product (±)-lOlc (0.094 g, 82%, over two steps) afier flash chromatographic

purification (2% EtOAc/hexanes).

IR (thin film) 2960, 2873, 1714, 1455 cm1

‘H NMR (400 MHz, CDCI3) S(ppm) 7.34 (m, 5H), 6.91 (m, 1H), 5.78 (d. 1H, J

15.6 Hz), 4.86 (d, 1H, J=r 6.8 Hz), 4.77 (d, 1H, J= 6.8 Hz), 4.72 (d, 1H, J= 11.9 Hz),

I
I Li



4.65 (d, 1H. J= 11.9 Hz). 3.11 (s, 1H), 2.58 (m. 1H), 2.15 (m. 2H), 1.97 (m. 2H),

1.73 (rn. 4H), 1.65 (m, 2H), 1.60 (s, 3H), 1.07 (d, 3H.J= 6.6 Hz), 0.96 (s. 9H)

‘3C NMR (100 MHz, CDCÏ3) 6(ppm) 165.9, 147.7, 137.6, 128.1 (2C), 127.4 (2C),

127.3, 123.2, 96.7, 91.4, 89.2, 69.9, 38.8 (2C), 36.2, 34.9, 32.8, 26.3 (3C), 24.1, 23.5

(2C), 20.9

(3R, 5$, 6S)-6-Benzyloxymethoxy-3,5,7,7-tetramethyloctanoic acid methyl ester

((±)-1 02a)

060M 060M 060MMe2CuLi, TMSCI

)C02Me
THE, -78°C, 76%

)C02Me
*

)1C02Me

(±)-7 0f a syn-(±)-1 02a anti-(±)-1 02a
synlanti 63:37

Compound (±)-lOla (0.10 g, 0.30 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products svn-(±)-102a and anti-(±)-102a (0.080 g, 76% combined yield)

in a ratio of 63:37 svn/anti.

IR (thin film) 2957, 2873, 1739, 1456 1362 cm

1fl NMR (400 MHz, CDC13) 5(ppm) 7.33 (m, 5H), 4.85 (rn, 1H), 4.77 (m, 1H), 4.68

(m, 2H), 3.69 (s, 3H), 3.66 (s, minor), 3.11 (d, J 1.7 Hz minor), 3.09 (d, 1H, J 1.8

Hz), 2.46 (m, 1H), 2.24 (m, minor), 2.04 (m, 2H), 1.82 (m, minor), 1.5$ (m, 1H), 1.45

(m, 1H), 1.23 (m, minor), 1.11 (m, 1H), 1.0$ (d, 3H, J= 6.9 Hz), 0.99 (d, 3H, J 5.8

Hz), 0.96 (s, 9H)

‘3C NMR (100 MHz, CDC13) 5(ppm) 173.5 (173.2), 137.7, 128.0 (2C). 127.4 (2C),

127.2. 96.6 (96.6), 92.1 (92.0), 69.8, 51.0 (51.0), (42.2) 40.3, 39.1 (38.6). (36.3) 36.2,

30.9 (30.4), 28.2 (27.2). 26.5 (3C), 21.4 (20.7), 21.3 (18.5)

(3R, 5S, 6S)-6-Benzyloxymethoxy-3,5,7,7-tetramethyloctanoic acid tert-butyl

ester ((±)-102b)
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OBOM 080M OBOMMe2CuLi, TMSCI

CO2t-Bu
THF, -78°C, 85%

)C02tBu ÏCO2tBu

(±)-1 01 b syn-(±)-1 02b anti-(±)-1

syn/anti 82:18

Compound (±)-lOlb (0.060 g, 0.16 mrnol) was subject to a cuprate addition

following general procedure D. Flash chromatographic purification with 2%

EtOAc/hexanes afforded the products syn-(±)-102b and anii-(±)-102b (0.054 g, 85%

combined yield) in a ratio of $2: 18 syn/anti.

IR (thin film) 2960, 2873. 1729, 1456, 1367 crn1

‘H NMR (400 MHz. CDC13) 6(ppm) 7.31 (m, 5H), 4.85 (d, 1H, J 6.8 Hz). 4.7$ (d,

1H,J= 6.2 Hz), 4.74 (d. 1H,J 11.8 Hz), 4.66 (d, 1H,J= 11.8 Hz), 3.12 (d,J= 1.5

Hz minor), 3.10 (d, 1H. J 1.5 Hz), 2.39 (dd, 1H, J= 4.4, 14.3 Hz), 2.04 (m, 1H),

1.89 (dd, 1H, J= 9.4, 14.3 Hz), 1.83 (m, 1H), 1.57 (m, 1H), 1.4$ (s, 9H), 1.15 (m,

1H), 1.0$ (d, 3H, J= 6.9 Hz), 1.10 (d, 3H, J= 6.6 Hz), 0.96 (s, 9H)

‘3C NMR (100 MHz. CDCI3) 6(ppm) 172.6 (172.2), 137.7, 128.0 (2C). 127.4 (2C),

127.2. 96.6 (96.4), 92.1 (91.8), 79.7 (79.5). 69.8, (44.3) 41.8, 39.3 (38.5), (36.3) 36.3.

30.8 (30.4). 28.2 (27.9). 27.8 (3C), 26.6 (3C), 21.3 (20.8), 21.3 (20.7)

(3R, 5S, 6S)-6-Benzyloxymethoxy-3,5,7,7-tetramethyloctanoic acid 1-

methylcyclopentyl ester ((±)-102c)

OBOM C L 1M I OBOM

F, 8°C, %

(±)-7 01 c syn-(±)-1 02c anti-f±)-1 02c

synlanti 82:18

Compound (±)-lOlc (0.060 g, 0.15 mmol) was subject to a cuprate addition foflowing

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-(±)-102c and anti-(±)-102c (0.043 g, 73% combined yield)

in a ratio of 82:18 syn/anti.
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IR (thin film) 2959. 2874, 1728, 1456. 1374cm1

‘H NMR (400 MHz, CDCÏ3) 5(ppm) 7.34 (m. 5H). 4.85 (d, 1H, J 6.8 Hz), 4.7$ (d.

1H. J= 6.8 Hz), 4.72 (d, 1H, J= 11.8 Hz). 4.66 (d. 1H, J= 11.8 Hz), 2.40 (dd. 1H, J

= 4.3, 14.2 Hz). 2.13 (m. 3H), 2.03 (m, 1H). 1.8$ (dd, 1H, J= 9.5. 14.2 Hz). 1.79 (m,

1H), 1.72 (m, 7H). 1.57 (s, 3H), 1.56 (s, minor), 1.14 (m, 1H), 1.0$ (d, 3H, J= 7.0

Hz), 0.99 (d, 3H, J 6.6 Hz), 0.95 (s, 9H)

‘3C NMR (100 MHz, CDCÏ3) 6(ppm) 172.8 (172.4), 137.7, 128.0 (2C), 127.4 (2C),

127.2, 96.6 (96.4), 92.1 (91.8), 89.2 (89.1), 69.8, (44.2) 41.7, 39.2, 38.8, 38.8, 38.7,

36.3, 30.8 (30.4), 28.3 (27.9), 26.6 (3C), 24.0, 23.4 (2C), 21.3 (20.8)

(3R, 5S, 6S)-6-Benzyloxymethoxy-3,5,7,7-tetramethyloctan- 1-ol ((±)-1 03)

030M 030M L-H H 030M

)C02tBu + )1C02tBu

D ISA, C2C12,

syn-(±)-102b anti-(±)-102b (±)-103
d.r. 82:18

Following general procedure A. the diastereomeric mixture of svn- and anti- esters

(±)-102 b (0.16 g, 0.42 mmol) was reduced. Chromatographic purification (5%

EtOAc/hexanes) provided pure (±)-103 (0.087 g), and mixtures of diastereomers

(0.03$ g) in 94% combined yield.

IR (thin film) 3368, 2956, 2872, 1456, 1362 cm1

1H NMR (400 MHz, CDC13) 6(ppm) 7.35 (m, 5H), 4.86 (d, 1H, J 6.8 Hz), 4.79 (d,

1H, J= 6.8 Hz), 4.72 (d, 1H, J= 11.9 Hz), 4.67 (d, 1H, J= 11.9 Hz), 3.76 (m, 1H),

3.63 (m, 1H), 3.11 (d, 1H, J = 1.9 Hz), 1.95-1.86 (m, 2H), 1.75 (m, 1H), 1.69-1.54

(rn. 2H). 1.26 (m. 111). 1.11 (rn. 1H), 1.06 (d. 3H, J= 7.0 Hz), 0.97 (m, 12H)

‘3C NMR (100 MHz, CDC13) c5(pprn) 137.7, 128.0 (2C), 127.4 (2C), 127.2. 96.6,

92.2, 69.9, 60.8, 39.7, 38.3. 36.3, 30.8, 27.2, 26.6 (3C), 21.6. 20.9

HRMS (ESI) m/z 345.24002 (calcd for 345.23936 C20H34O3Na)
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(E)-(5S, 7S, 8S)-8-Benzyloxymethoxy-5,7,9,9-tetramethyldec-2-enoic acid tert

butyl ester ((±)-104)

1) DMSO, (COCI)2, NEt3,
OBOM OBOMCH2CI2, -78 C

2) (Ph)3P=CHCO2t-Bu, )‘C02tBu

- CH2CI2, r.t. - -

(±)-703 70% over twa steps (±)-104

Following general procedure E. alcohol (±)-103 (0.087 g, 0.27 mmol). provided

product (±)-104 (0.079 g, 79% over two steps) after flash chrornatographic

purification (2% EtOAc/hexanes).

IR (thin film) 2958, 2873, 1715, 1653. 1456, 136$ cm’

‘H NMR (400 MHz, CDC13) Y(pprn) 7.34 (m, 5H), 6.87 (m, 1H), 5.77 (d, 1H, J

15.5 Hz), 4.85 (d, 1H, J 6.9 Hz), 4.7$ (m, 1H, J 6.9 Hz), 4.71 (d, 1H, J 11.8

Hz), 4.66 (d, 1H,J= 11.8 Hz), 3.09 (d, 1H,J= 1.9 Hz), 2.32 (m, 1H), 1.90 (m, 2H),

1.75 (m. 1H), 1.57 (m, 1H), 1,50 (s. 9H), 1,12 (m, 1H). 1.06 (d, 3H, J 7.0 Hz), 0.95

(m, 12H)

‘3C NMR (100 MHz, CDC13) (ppm) 165.6, 146.6, 137.7, 128.0 (2C), 127.4 (2C),

127.2, 123.9, 96.6, 92.2, 79.6, 69.8. 39.1, 38.0, 36.2, 30.9, 30.3. 27.8 (3C), 26.6 (3C),

21.4, 21.0

(3R, 5S, 7S, $S)-8-Benzyloxymethoxy-3,5,7,9,9-pentametliyldecanoic acid tert

butyl ester ((±)-105)

OBOM c OBOM 080M

XCO2tBu )CO2tBu jCO2t-Bu

(±)-104 syn-(±)-105 anti-f ±)-1 05
syn/anti 82:18

Compound (±)-104 (0.078 g, 0.19 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes
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afforded the products syn-(±)-105 and anti-(±)-105 (0.062 g, 77% cornbined yield) in

aratio of 82:18 syn/anti.

IR (thin film) 2958, 2873, 1730, 1457, 1367cm’

1H NMR (400 MHz, CDC13) Y(ppm) 7.34 (m, 5H), 4.84 (d, 1H, J 6.9 Hz), 4.7$ (d,

1H,J= 6.9 Hz), 4.71 (d, YH,J= 11.9 Hz), 4.67 (d, 1H,J= 11.9 Hz), 3.10 (d, YH,J=

1.9 Hz), 2.30 (dd, 1H, J= 4.8, 14.3 Hz), 2.09 (m, 1H), 1.90 (dd, 1H, J 8.9, 14.3

Hz), 1.86 (m, 1H), 1.5$ (m, 2H), 1.47 (s, 9H), 1.35 (m, 1H), 1.02 (d, 3H, J= 7.0 Hz),

1.02 (rn, 1H), 0.97 (m, 16H)

13C NMR (100 MHz, CDC13) cY(ppm) 172.5 (172.2), 137.8, 128.0 (2C), 127.4 (2C),

127.2, 96.6, 92.2, 70.6, 69.8, (44.1) 43.5, (42.5) 42.0, (40.2) 40.0, 36.3 (2C), 30.8

(30.5), 28.0, 27.8 (3C), 26.7 (3C), 21.7, (21.3) 21.2, 20.8 (20.7)

(2)-2-Benzy1oxymethoxypropiona1dehyde (106)

1) BOMCI, DIPEA, CH2CI2
OH 0°C to r.t., 75% OBOM

-CO2Et 2) DIBAL-H, CH2CI2, CHO
-78°C, 91%

(S)-Ethyl lactate 706

(2S)-2-Benzyloxymethoxypropionïc acid ethyl ester

OBOM

-CO2Et

To solution of(5)-ethyl lactate (6.00 g, 50.8 mmol) in CH2C12 (250 mL) was cooled

to O °C. DIPEA (53.0$ mL, 304.8 rnmol) was added followed by the drop wise

addition of BOMC1 (39.77 mL, 152.4 mmol). The mixture was stirred at room

temperature for 18 h and was quenched by the addition of a saturated solution of

NH4C1. The aqueous layer was extracted with CH2C12 (3 x 50 mL), the combined

organic extracts were dried over Na2$04, filtered and concentrated. Flash
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chromatography (10 % EtOAc/hexanes) afforded the corresponding ethyl ester (9.01

g, 75% yield) as a colorless ou.

[Œ]D —59.3(c = 1.80, CHC13)

IR(thinfilm) 2985, 1748, 1498, 1455, 1378 cnï’

‘H NMR (400 MHz, CDC13) Y (ppm) 7.32 (m, 5H), 4.86 (s, 2H), 4.69 (d, 1H, J =

11.8 Hz), 4.65 (d, 1H, J 11.8 Hz), 4.32 (q, 1H, J= 6.9 Hz), 4.20 (q, 2H, J= 7.1 Hz),

1.45 (d, 3H, J= 6.9 Hz), 1.22 (t, 3H, J= 7.1 Hz)

‘3C NMR (100 MHz, CDC13) 5(ppm) 172.6, 137.3, 128.0 (2C), 127.4 (2C), 127.3,

93.6, 71.3, 69.5, 60.5, 18.2, 13.8

HR1’IS (ESI) rn/z 261.10973 (calcd for 261.10962 C13H18O4Na)

OBOM

CHO

706

To a solution ofthe ethyl ester in CH2C12 cooled to -78 °C, DIBAL-H (18.5 mL, 27.7

mmol) was added. The mixture was stirred at -7$ °C for 4 h before being quenched

with a saturated NaJK tartrate solution. The reaction mixture was diluted with EtOAc

and stirred for 30 min at room temperature tiil a clear biphasic solution was observed.

The aqueous layer was extracted three times with EtOAc. The combined organic

extracts were washed with brine, dried over Na2SO4 and filtered. Afier concentration,

the resulting residue was purified by flash chromatography (10 % EtOAc/hexanes)

affording aldehyde 106 (4.47 g, 91%) as a colorless ou.

IŒID —11.34 (c 1.37, cHcl3)

IR (thin film) 3033, 2892, 1735, 1454, 1380 cm1

‘H NMR (400 MHz, CDC13) c5(ppm) 9.67 (d, 1H, J= 1.5 Hz), 7.36 (m, 5H), 4.29 (s,

2H), 4.73 (d, 1H, J= 11.2 Hz), 4.67 (d, 1H, J= 11.9 Hz), 4.14 (dq, 1H, J 1.5, 7.0

Hz), 1.35 (d, 3H, J 7.0 Hz)

13C NMR (100 MHz, cDcl3) Y(ppm) 202.1, 137.0, 128.2 (2C), 127.5 (2C), 127.5,

93.8, 77.2, 69.7, 14.9
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(E)-(4S)-4-Benzyloxymethoxypent-2-enoic acid methyl ester (107a)

060M (Ph)3P=CHCO2Me, OBOM

-CH0 CH2CI2 rt., 96% -C02Me

106 107a

following general procedure C, aldehyde 106 (4.17 g, 21.5 mmol) provided product

107a ((E)- 3.69 g, (E+Z)- 1.45 g, 96%) afier flash chromatographic purification (2%

EtOAc/hexanes).

IŒ]D —82.1 (e = 1.12, CHC13)

IR (thin film) 3090, 2951, 2889, 1727, 1662, 1498, 1454, 1436 cm1

‘H NMR (400 MHz, CDC13) 5(ppm) 7.35 (m, 5H), 6.90 (dd, 1H, J 5.8, 15.7 Hz),

6.03 (dd, 1H, J= 1.3, 15.7 Hz), 4.81 (d, 1H, J 7.1 Hz), 4.77 (d, 1H, J 11.8 Hz),

4.61 (d, 1H, J 11.8Hz), 4.46 (m, 1H), 3.77 (s, 3H), 1.34 (d, 3H, J 6.6 Hz)

‘3C NMR (100 MHz, CDC13) 6(ppm) 166.4, 148.7, 137.3, 128.1 (2C), 127.6 (2C),

127.4, 120.2, 92.2, 70.8, 69.3, 5 1.3, 20.2

(E)-(4S)-4-Benzyloxymethoxypent-2-enoic acid tert-butyl ester (1 07b)

OBOM (Ph)3P=CHCO2t-Bu, OBOM

CH0 CH2CI2, rt., 99% C02t-Bu

106 107b

Following general procedure C, aldehyde 106 (0.15 g, 0.77 mmol) provided product

107b ((E)- 0.14 g, (E+Z)- 0.084 g, 99%) afler flash chromatographic purification (2%

EtOAc/hexanes).

[ŒID —78.0 (e = 1.24, CHC13)

IR (thin film) 3005, 2978, 1715, 1659, 1498, 1455 cm1

1H NMR (400 MHz, CDC13) 5(ppm) 7.35 (m, 5H), 6.7$ (dd, 1H, J 6.1, 15.7 Hz),

5.93 (dd, 1H, J= 11.4, 15.7 Hz), 4.81 (d, 1H, J= 7.1 Hz), 4.7$ (d, 1H, J 7.1 Hz),

Ii



4.6$ (d, 1H, J 11.7 Hz), 4.61 (d, 1H, J= 11.7 Hz), 4.42 (rn, 1H), 1.51 (s, 9H), 1.33

(d, 3H, J= 6.6 Hz)

‘3C NMR (75 MHz, CDC13) 6(ppm) 165.9, 149.9, 135.5 (4C), 133.5, 133.4, 129.6

(2C), 127.6 (4C), 122.7, 79.9, 67.5, 38.8, 28.1 (3C), 26.7 (3C), 19.2, 15.5

(E)-(4S)-4-Benzyloxymethoxypent-2-enoic acid 1 -methylcyclopentyl ester (1 07c)

OBOM
OBOM (Ph)3P=CHCO2MCP, E

CHO CH2CI2 rt., 94%

106 107c

Following general procedure C, aldehyde 106 (0.15 g, 0.77 mmol) provided product

107e ((E)- 0.12 g, (E+Z)- 0.11 g, 94%) after flash chromatographic purification (2%

EtOAc/hexanes).

IŒJD—75.3 (c= 1.43, CHC13)

IR(thin film) 3032, 2969, 1714, 1658, 1454, 1374cm’

1H NMR (400 MHz, CDC13) 5(ppm) 7.35 (m, 5H), 6.79 (dd, 1H, J 6.0, 15.7 Hz),

5.95 (dd, 1H, J= 1.3, 15.7 Hz), 4.81 (d, 1H, J 7.1 Hz), 4.78 (d, 1H, J 7.1 Hz),

4.6$ (d, 1H,J= 11.7 Hz), 4.61 (d, ÎH,J= 11.7 Hz), 4.44(m, 1H), 2.15 (m, 2H), 1.74

(m, 4H), 1.65 (m, 2H), 1.60 (s, 3H), 1.33 (d, 3H, J 6.6 Hz)

‘3C NMR (100 MHz, CDC13) 5(ppm) 165.4, 147.2, 137.4, 128.1 (2C), 127.6 (2C),

127.4, 122.4, 92.2, 89.6, 70.9, 69.2, 38.2, 38.7, 24.0, 23.5 (2C), 20.3

(3R, 4S)-4-Benzyloxymethoxy-3-methylpentanoic acid methyl ester (1 08a)

OBOM Me2CuLi, TMSCI 930M 960M

CO2Me THF, -78°C, 99%
1CO2Me CO2Me

107a anti-108a syn-1 OSa

anti!syn 72:28

1—,
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Compound 107a (0.10 g, 0.40 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products anti-108a and syn-108a (0.1 1 g, 99% cornbined yield) in a ratio

of 72:28 anti/syn.

IŒ]D +16.9 (e = 1.61, CHC13)

IR (thin film) 2974,2885,1739,1456,1437,1381 cm1

‘H NMR (400 MHz, CDC13) cY(ppm) 7.35 (nm 5H), 4.83 (m, 1H), 4.77 (m, 1H), 4.64

(s, 1H), 3.78 (rn, minor), 3.69 (s, 3H), 3.68 (s, minor), 3.63 (m, 1H), 2.55 (m, 1H),

2.19 (m, 2H), 1.19 (d, 3H, 1=6.3 Hz), 1,17 (d, J 6.4 Hz, minor), 1.00 (d, 3H, J

6.4 Hz), 2.14 (d, J 6.8 Hz, minor)

13C NMR (100 MHz, CDCY3) 5 (ppm) (173.4) 173.3, (137.6) 137.6, 128.1 (2C),

127.5 (2C), 127.3, 92.9 (92.7), 76.2 (75.1), 69.2 (69.1), 5 1.0, 37.3 (36.6), 35.6 (34.8),

16.6 (15.9), 15.6 (14.7)

(3R, 4V)-4-Benzyloxymethoxy-3-methylpentanoic acid tert-butyl ester (108b)

OBOM Me2CuU, TMSCI QBOM ÇBOM

CO2t-Bu THF, -78°C, 91% ÏCO2tBu CO2t-Bu

707b anti-7 08b Syn-108b

antilsyn 86:14

Compound 107b (0.093 g, 0.32 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products anti-108b and syn-108b (0.089 g, 91% combined yield) in a

ratio of 26:14 anti/syn.

[Œ]D +10.5 (e = 1.22, CHC13)

IR (thin film) 3032, 2977, 2884, 1730, 1498, 1456 cm1

‘H NMR (400 MHz, CDC13) S(ppm) 7.35 (m, 5H), 4.84 (d, 1H, J 7.1 Hz), 4.77 (d,

1H, 1=7.1 Hz), 4.66 (d, 1H, 1= 11.9Hz), 4.63 (d, 1H, J= 11.8 Hz), 3.75 (m, minor),

3.64 (m, 1H), 2.45 (dd, 1H, J 5.0, 14.6 Hz), 2.17 (m, 1H), 2.05 (dd, 1H, 1= 8.9,

1,.,
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14.6 Hz), 1.47 (s, 9H), 1.46 (s, minor), 1.18 (d, 3H, J= 6.3 Hz), 1.00 (d, 3H, J 6.7

Hz)

13C NMR (100 MHz, CDC13) 6(pprn) (172.4) 172.2, 137.6, 128.1 (2C), 127.4 (2C),

127.3, 92.8, 79.7, 76.1 (75.4), 69.2 (69.1), 32.8 (38.2), 35.5 (35.0), 27.8 (3C), 16.4

(16.7), 15.3 (14.6)

(4R, 5S)-5-Benzyloxymethoxy-4-methyl-1 -(1-methylcyclopentyl)-hexan-2-one

(108c)

OBOM OBOM OBOM
Me2CuLi, TMSCI E E

THF, -78°C, 92%
+

707c anti-108c syn-108c

antilsyn 82:18

Compound 107c (0.075 g, 0.24 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products ant/-lOSc and syn-1O$c (0.072 g, 92% combined yield) in a

ratio of 86:14 anti/syn.

[ŒJD +9.1 (e 1.65. CHC13)

IR (thin film) 2968, 2877, 1727, 1454, 1376 cm1

1H NMR (400 MHz, CDC13) cY(ppm) 7.35 (m, 5H), 4.84 (d, 1H, J= 7.1 Hz), 4.77 (d,

1H, J 7.1 Hz), 4.64 (s, 2H), 3.75 (m, minor), 3.64 (m, 1H), 2.45 (dd, 1H, J= 4.8,

14.5 Hz), 2.25-2.03 (m. 4H), 1.80-1.61 (m. 6H), 1.57 (s, 3H), 1.18 (d, 3H, J= 6.3

Hz). 0.99 (d. 3H, J= 6.6 Hz)

13C NMR (100 MHz, CDC13) c5(ppm) (172.5) 172.4. 137.6, 128.1 (2C), 127.5 (2C),

127.3, 92.6 (92.8), 76.2 (75.5), 69.2 (69.1), 38.8, 38.7, 38.7, 35.5 (35.0), 23.4 (2C),

16.5 (16.2), 15.3 (14.3)

(3R, 4S)-4-Benzyloxymethoxy-3-methylpentan4-oI (109)
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QBOM ÇBOM DIBAL-H, CH2CI2 960M

fCO2Me + ‘02Me
-78°C, 89%

anti-108a syn-106a 109

d.r. 72:28

Following general procedure A, the diastereomeric mixture of anti- and syn- esters

108a (3.4$ g, 13.1 mmol) was reduced to give alcohol 109 (2.77 g, 87%) UOfl

purification of the resulting diastereorneric alcohols by flash chrornatography with

2% EtOAc/hexanes.

[Œ]D +26.0 (e 1.28, CHC13)

IR (thin film) 3402, 2964, 2880, 1454. 1380 cm’

1H NMR (400 MHz, CDC13) 5(ppm) 7.33 (m, 5H), 4.86 (d, 1H, J 7.1 Hz), 4.80 (d,

1H, J= 7.1 Hz), 4.67 (d, 1H, J 11.7 Hz), 4.64 (d, 1H, J 11.7 Hz), 3.79-3.63 (m,

3H), 1.82 (m, 1H), 1.72 (rn, 2H), 1.49 (m, 1H), 1.19 (d, 3H, J 6.3 Hz), 0.9$ (d, 3H,

J 6.9 Hz)

‘3C NMR (100 MHz, CDC13) t’5(ppm) 137.5, 128.1 (2C), 127.5 (2C), 127.4, 92.8,

76.7, 69.2, 60.3, 35.1, 34.6, 16.0, 14.7

HRMS (EST) m/z 261.14612 (calcd for 261.14509 C14H27O3Na)

(E)-(5R, 6S)-6-Benzyloxymethoxy-5-methylhept-2-enoic acid tert-butyl ester

(110)

060M OBOM
2 1) DMP oxdation

2)(Ph)3P=CHCO2t-& fCO2t-6u

CH2CI2, r.t.
109 110

52% over two steps

To a solution ofalcohol 109 (0.18 g, 0.75 rnrnol) in CH2C12 (15 mE) cooled to O °C

pyridine (0.24 mL, 2.3 rnrnol) was added followed by the drop wise addition ofDess

Martin periodinane (0.3$ g, 0.89 mmol). The mixture was stiiied for 3 h at room

temperature before being quenched with a saturated solution ofNH4C1. The aqueous

layer was extracted with EtOAc (3 x 5 mL), the combined organic layers were dried

1—,
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over Na2SO4 and then concentrated. The crude aldehyde was taken onto the next step

without any further purification. b a solution of the aldehyde from above in CH2CÏ2

(15 mL) was added the tert-butyl phosphanylidene (0.34 g, 0.90 mmol). The reaction

mixture was stirred at room temperature for 1$ h and then evaporated to dryness. The

crude solid was triturated with hexanes/Et20 (3:1), and the resulting slurry was

filtercd over a pad of celite. The filtrate was concentrated and purified by flash

chromatography (2% EtOAc/hexanes) affording enoate 110 ((E)- 0.11 g, (Z)- 0.20 g,

52% over two steps) as a colorless oil.

[ŒÏD +9.8 (e = 1.22, CHCI3)

IR(thin film) 29c77, 2932, 2885, 1713, 1652, 1455, 1367 m1

‘H NMR (400 MHz, CDC13) 6(ppm) 7.35 (m, 5H), 6.8$ (m, 1H), 5.78 (d, 1H, J

15.5 Hz), 4.85 (d, 1H, J= 7.1 Hz), 4.7$ (d, 1H, J= 7.1 Hz), 4.64 (s, 2H), 3.64 (m,

1H), 2.42 (m, 1H), 2.03 (m, 1H), 1.82 (m, 1H), 1.50 (s, 9H), 1.1$ (d, 3H, J 6.3 Hz),

0.94 (d, 3H, J 6.8 Hz)

‘3C NMR (75 MHz, CDC13) 6(ppm) 165.8, 146.6, 137.8, 128.3 (2C), 127.7 (2C),

127.5, 124.2, 93.1, 79.9, 76.6, 37.8, 28.0 (3C), 16.4, 14.9

(3S, 5R, 6S)-6-Benzyloxymethoxy-3,5-dimethylheptanoic acid tert-butyl ester

(111)

ÇBOM Me2CuLi, TMSCI QBOM 980M

fCO2t-Bu
THF, -78°C, 90% fCO2t-Bu ECO2t-Bu

110 syn-1l1 anti-111
synlanti 64:36

Compound 110 (0.090 g, 0.27 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-111 and anti-111 (0.085 g, 90% combined yield) in a ratio

of 64:36 syn/anti.

IŒID +10.2 (e = 1.37, CHC13)

IR (thin film) 2970, 1882, 17.29, 1497, 1456 cnï’
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iII NMR (400 MHz, CDC13) ‘(ppm) 7.35 (m. 5H), 4.84 (U. J 7.0 Hz, minor), 4.83

(d, 1H, J 7.0 Hz), 4.79 (d. 1H, J 7.0 Hz), 4.78 (d, J 7.0 Hz, minor), 4.64 (s, 2H).

3.71 (m, 1H), 3.63 (rn, minor), 2.25 (ni, 1H), 2.16 (m, minor), 1.99 (m, 2H), 1.80 (m,

1H), 1.47 (s, 9H), 1.37 (m, 1H), 1.26 (m, minor), 1.17 (d, J 6.4 Hz, minor). 1.13 (d,

3H, J= 6.4 Hz), 1.06 (m, 1H), 0.98 (d, 3H, J 6.4 Hz), 0.94 (d, 3H, J 6.8 Hz), 0.93

(d, J 6.7 Hz, minor)

‘3C NMR (100 MHz, CDCY3) 6(ppm) 172.3 (172.1), 137.7, 128.1 (2C), 127.5 (2C).

127.3, (92.9) 92.8, 79.8, 75.9, 69.0, (43.8) 42.3, 39.8 (39.2), (34.9) 34.6, 27.8 (3C).

27.6 (27.6). 20.2 (18.6). (15.7) 15.0, 14.4 (13.9)

(2R)-3-(tert-Butyldiphenylsilanoxy)-2-methylpropionic acid methyl ester (112)

TBDPS-CI, NEt3, CH2CI2,
HO&,. TBDPSO

CO2Me 0°C ta ri., 96% CO2Me

(R)-3-Hydroxy-2-methyl- 112
propionic acid methyl ester

b a solution of (R)-3-hydroxy-2-methyl-propionic acid methyl ester (2.00 mL, 15.9

mmol) in CH2CÏ2 (160 mL), were added triethylamine (5.30 mL, 38.11 rnmol) and

DMA? (0.20 g, 1.6 mmol). The reaction mixture was cooled to O °C followed by the

addition ofTBDPSCI (4.87 mL, 19.1 rnmol), and stirred at room temperature for 18

h. The reaction mixture was quenched with a solution of saturated NH4C1, the

aqueous layers were extracted with CH2C12 (3 x 20 mL), dried over Na2SO4 and

fiÏtered. The filtrate was concentrated and purified by flash chromatography (10%

EtOAc/hexanes) providing product 112 (5.50 g, 96%)

[Œ]D -14.8 (e 1.04, CHC13)

IR (thin film) 3072, 2933. 2859, 1742, 1473, 1429 cm1

1H NMR (400 MHz, CDC13) (ppm) 7.68 (rn, 4H), 7.43 (rn, 6H), 3.82 (ni, 1H), 3.79

(m, 1H), 3.71 (s, 3H), 2.70 (m, 1H), 1.18 (d, 3H,J= 7.0 Hz), 1.06 (s, 9H)
l3 NMR (100 MHz, CDC13) 6(ppm) 183.5, 136.0 (4C), 133.9 (2C), 130.1 (2C),

128.1 (4C), 66.3, 52.0, 42.8, 27.1 (3C), 19.6, 13.9
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(2R)-3-(tert-Butyldiphenylsilanoxy)-2-methyl-propionaldehyde (113)

1) DIBAL-H, CH2CI2,

I -78°C, 86%

TBDPSOCO2Me
2) DMSQ, (COCI)2, NEt3,

TBDPSO’O

112 CH2CI2, -78°C, 92% 773

(2S)-3-(tert-Butyldiphenylsilanoxy)-2-methylpropan-1-ol

TBDPSO’OH

Following general procedure A compound 112 (5.50 g, 18.6 mmol) was reduced to

give the corresponding alcohol (5.20 g, 86%), upon purification by flash

chromatography with 10% EtOAc/hexanes.

LŒID -5.7 (e = 1.62. CHC13)

IR (thin film) 3370, 3072, 2958, 2858, 1472, 1478 cm1

‘H NMR (400 MHz. CDC13) 5(ppm) 7.70 (m, 4H). 7.44 (rn, 6H), 3.75 (m, 1H). 3.70

(d, 2H, J 6.0 Hz), 3.62 (m, 1H), 2.35 (brs, 1H), 2.01 (rn, 1H), 1.09 (s, 9H), 0.86 (U.

3H, J= 7.0 Hz)

13C NMR (100 MHz, CDC13) 5 (ppm) 136.0 (4C), 133.5 (2C), 130.2 (2C), 128.2

(4C), 69.2, 68.1, 37.7, 27.3 (3C), 19.6, 13.6

TBDPSO’O

107

following general procedure B, the alcohol from above (1.00 g, 2.69 rnmol),

provided aldehyde 113 (0.80 g, 92%) afler flash chromatographic purification (2%

EtOAc/hexanes).

1H NMR (400 MHz, CDC13) Y(ppm) 9.80 (d. 1H, J= 1.4 Hz), 7.68 (rn, 4H). 7.45 (m,

6H). 3.84 (m, 2H), 2.54 (m, 1H), 1.14 (d, 3H,J= 7.1 Hz), 1.08 (s, 9H)
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‘3C NMR (100 MHz, CDC13) 6(ppm) 204.9, 136.0 (4C), 133.6 (2C), 130.2 (2C),

128.1 (4C), 64.5, 49.2, 27.2 (3C), 19.7, 10.7

(E)-(4S)-5-(tert-Butyldiphenylsilanoxy)-4-metliylpent-2-enoic acid methyl ester

(114a)

(Ph)3P=CHCO2Me, I
TBDPSO’O

CH2CI2, r.t, 86% TBDPSOCO2Me

713 714a

Following general procedure C, aldehyde 113 (9.01 g, 27.6 mmol) provided product

1 14a (9.10 g, 86%) afler flash chromatographic purification (2% EtOAc/hexanes).

ta]D -15.1 (e = 1.15, CHC13)

IR(thinfilm)2932,2859, 1726, 1659, 1473, 1428 cm1

‘H NMR (400 MHz, CDC13) 5(ppm) 7.67 (m, 4H), 7.43 (m, 6H), 6.98 (dd, 1H, J

7.3, 15.8 Hz), 5.87 (dd, 1H, J= 1.3, 15.8 Hz), 3.76 (s, 3H), 3.60 (m, 2H), 2.58 (m,

1H), 1.09 (m, 12H)

‘3C NMR (75 MHz, CDC13) 8(pprn) 167.0, 151.6, 135.5 (2C), 135.5 (2C) 133.4,

133.4, 129.6 (2C), 127.6 (4C), 121.1, 67.4, 51.3, 39.1, 26.7 (3C), 19.2, 15.5

(E)-(4S)-5-(tert-Butyldiphenylsilanoxy)-4-methylpent-2-enoic acid tert-butyl ester

(114b)

(Ph)3P=CHCO2I-Bu, I
TBDPSO’O

CH2CI2, r.t., 79% TBDPSO028

713 114a

Following general procedure C, aldehyde 113 (0.402 g, 1.23 mmol) provided product

114b (0.4 1 g, 79%) afier flash chromatographic purification (2% EtOAc/hexanes).

(aIl) -13.7 (e = 1.05, CHC13)

IR (thin film) 2963, 1932, 2859, 1714, 1652, 1473, 1428 cm1

1-,
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Me2CuLI, IMSCI

TBDPSOlCO2Me
THF, -78°C, 94%

TBDPSO’ TBDPSOI1CO2Me

114a anti-115a syn-175a
antiisyn 83:17

Compound 114a (5.20 g. 13.6 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products anti-115a and syn-115a (5.10 g. 94% combined yield) in a ratio

of 83:17 anti/syn.

jaÏn +5.0 (e = 1.10, CHCY3)

IR (thin film) 2961, 1727, 1472, 1428 cm1

1H NMR (400 MHz, CDC13) 6(pprn) 7.68 (m, 4H). 7.41 (rn, 6H), 3.6$ (s, 3H), 3.55

(m. 2H), 2.42 (dd. 1H, J= 4.2, 14.6 Hz), 2.20 (m. 1H), 2.07 (dd. 1H, J 10.0 14.6

Hz), 1.71 (ni, 1H). 1.0$ (s, 9H), 0.93 (U, 3H, J 6.8 Hz). 0.89 (U, 3H, J 6.9 Hz)

‘3C NMR (100 MHz, CDC13) 5(ppm) 174.6 (174.2), 136.3 (4C), 134.7 (2C), 130.0

(2C), 128.1 (4C), (67.4) 67.0, 51.8, 40.5 (40.3), 38.4, 32.3 (31.4), 27.2 (3C), 19.7,

17.8 (15.3), 13.9 (12.3)

(3$, 4S)-5-(tert-Butyldiphenylsilanyloxy)-3,4-dimethylpentanoïc acid tert-butyl

ester (115b)

Me2CuU, TMSCI

TBDPSOtCO2tBu
THF, -78°C, 90%

TBDPSOICO2tBu + TBDPsOL1CO2tBU

114b ant&115b syn-115b

anti!syn 91:9

Compound 114b (0.10 g, 0.24 mmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products anti-115b and syn-115b (0.094 g, 90% combined yield) in a

ratio of 91:9 anti/syn.

[Œ]D+3.9 (c 1.11, CHC13)

IR (thin film) 2963, 1730. 1473, 1428 cm
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‘H NMR (400 MHz, CDCI3) 5(ppm) 7.72 (rn 4H), 7.45 (m, 6H), 3.56 (m, 2H), 2.37

(dd, 1H, J 4.2, 14.4 Hz), 2.37 (rn, 1H), 1.9$ (dd, 1H, J= 10.0, 14.4 Hz), 1.74 (m,

1H), 1.49 (s. 9H). 1.11 (s, 9H), 0.97 (d, 3H. J 6.9 Hz), 0.92 (d. 3H, J 6.8 Hz)

‘3C NMR (100 MHz, CDC13) (ppm) 173.5 (173.2). 136.1 (4C), 134.3 (2C). 130.0

(2C), 128.0 (4C), 80.3, (67.4) 67.1, (41.9) 40.6, 39.8, 32.3 (3 1.6), 28.6 (3C), 27.3

(3C), 19.7, 17.7 (15.1), 13.9 (12.3)

(3S, 4S)-5-(tert-Bulyldiphenylsilanyloxy)-3,4-dimethylpentanoic acid 1-

methytcyclopentyl ester (115e)

TBDPSO3O 2 T TBDPSOJyO + TBDPSOflO

114c anti-115c syn-115c
anti!syn 94:6

Compound 114e (0.10 g, 0.22 rnrnol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products anti-115e and svn-115c (0.095 g, 92% combined yield) in a

ratio of 94:6 anti/syn.

[ŒID +3.1 (e = 1.1$, CHC13)

IR (thin film) 2959, 2859, 1739, 1428 cm1

‘H NMR (400 MHz, CDC13) S(ppm) 7.70 (m, 4H), 7.42 (m, 6H), 3.53 (m, 2H), 2.35

(dd. 1H, J 4.3, 14.4 Hz), 2.10 (m, 3H), 1.96 (dd. 1H, J 10.1, 14.4 Hz). 1.67 (m.

7H), 1.56 (s, 3H), 1.07 (s, 9H), 0.93 (d. 3H. J = 6.9 Hz), 0.8$ (d, 3H, J 6.9 Hz),

‘3C NMR (100 MHz, CDCY3) (ppm) 173.7 (173.2), 135.3 (2C). 135.3 (2C), 133.5,

133.5, 129.2, 129.2, 127.3 (4C), 89.1, (67.5) 67.1, (41.7) 40.5, 38.9, 38.9, 38.7, 32.3

(3 1.5), 26.5 (3C), 24.0, 23.4 (2C), 18.9, 16.9, 13.9 (12.2)

(3S, 4S)-5-(tert-Butyldiphenylsilanyloxy)-3,4-dimethylpentan-1-ol (116)
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+ TBDPSOL1_
DIBAL-H, CH2CI2

TBDPSO,JOH
E -78°C, 87%

anti-115a syn-115a 116
d.r. 83:17

Following general procedure A, the diastereomeric mixture of anti- and svn- esters

115a (1.50 g, 3.76 rnmol) was reduced to give pure 116 (1.22 g, 87%) upon

purification (of the resulting diastereomeric alcohols) by flash chromatography with

2% EtOAc/hexanes.

IŒJD -0.9 (e = 1.08, CHC13)

IR (thin film) 3340, 3072, 2859, 1472, 1428, 1390 cmt

1H NMR (400 MHz, CDC13) 6(ppm) 7.69 (m, 4H), 7.43 (m, 6H), 3.654 (m, 1H),

3.62 (m, 3H), 1.61-1.50 (ni, 4H), 1.24 (rn, 1H), 1.08 (s, 9H), 0.89 (rn, 6H)

‘3C NMR (100 MHz, CDCI3) 6(ppm) 136.1 (4C), 134.3 (2C), 130.0 (2C). 128.0

(4C), 67.1, 62.2. 40.8, 35.9, 31.1, 27.3 (3C), 19.7, 17.7, 13.6

(F)-(5S, 6S)-7-(tert-Butyldiphenylsilanyloxy)-5,6-dimethylhept-2-enoic acid

methyl ester (117a)

1) DMSO, (COCI)2, NEt3,

DPSO’OH
CH2CI2, -78°C, 98%

TBDPSO’
ME 2) (Ph)3PCHCO2Me, E 2 e

- CH2CI2, r.t., 95% -

116 117a

following general procedures B and C, oxidation ofalcohol 116 (1.25 g. 3.37 mmol)

afforded the desired aldehyde (1.22 g. 98%). Wittig homologation of the aldehyde

(0.17 g, 0.46 mmol) gave product 117a (0.19 g, 95%) as a colorless ou afier flash

chrornatography with 2% EtOAc/hexanes.

tID +11.6 (e 1.02, CHC13)

IR (thin film) 2959, 1726, 1657. 1428 cm1

o
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‘H NMR (400 MHz, CDCI3) (pprn) 7.67 (m, 4H), 7.43 (m, 6H), 6.96 (m, 111), 5.82

(d, 1H, J 15.6 Hz), 3.76 (s, 3H), 3.56 (m, 2H), 2.27 (rn, 1H), 1.97 (m, 1H), 1.83 (m,

1H), 1.69 (m, 1H), 1.07 (s, 9H), 0.90 (m, 6H)

‘3C NMR (100 MHz, CDC13) 5(ppm) 167.5, 149.7. 136.0 (4C), 134.3 (2C). 130.0

(2C), 128.0 (4C), 122.2, 66.9. 51.8. 40.5, 36.2, 34.3, 27.3 (3C), 19.7, 17.5, 14.0

(E)-(5S, 6S)-7-(tert-Butyldiphenylsilanyloxy)-5,6-dimethylhept-2-enoîc acid tert

butyl ester (117b)

1) DMSO, (COCI)2, NEt3,

TBDPSO’OH
CH2CI2, -78°C, 98%

TBDPSOIco t-BuE 2) (Ph)3P=CHCO2t-Bu, z 2

- CH2CI2, r.t., 89% -

116 117b

Following general procedures B and C, oxidation ofalcohol 116 (1.25 g, 3.37 mmol)

afforded the desired aldehyde (1.22 g, 98%). Wittig homologation of the aldehyde

(0.17 g, 0.46 mmol) gave product 117b (0.19 g, 89%) as a colorless ou afier flash

chromatography with 2% EtOAc/hexanes.

IŒJD +11.4 (e = 1.06, CHC13)

IR (thin film) 2962, 2932, 1714, 1652, 1473, 1428 cuti1

‘H NMR (400 MHz, CDC13) 6(ppm) 7.67 (m, 4H), 7.41 (m, 6H), 6.86 (rn, 1H), 5.73

(d, 1H,J 15.5 Hz), 3.57 (m, 2H), 2.22 (m, 1H), 1.93 (m, 1H), 1.82 m, 1H), 1.68 (m,

1H), 1.51 (s, 9H), 1.07 (s, 9H), 0.90 (m, 6H)

‘3C NMR (100 MHz, CDC13) (ppm) 166.5, 148.0, 136.0 (4C). 134.3 (2C), 130.0

(2C), 128.0 (4C), 124.4, 80.4, 66.9, 40.5, 36.1, 34.4. 28.6 (3C), 27.3 (3C), 19.7, 17.5,

14.1

(E)-(5S, 6S)-7-(tert-Butyldiphenylsilanyloxy)-5,6-dïmethylhept-2-enoic acid 1-

methylcyclopentyl ester (117c)

I
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1) DM80, (COCI)2, NEt3,

TBDPS0’0H
CH2CI2, -78°C, 98%

TBDPS00
E 2) (Ph)3P=CHCO2MCP, E
- CH2CI2, r.t., 80% -

116 117c

Following general procedures B and C. oxidation ofalcohol 116 (1.25 g, 3.37 mmol)

afforded the desired aldehyde (1.22 g, 98%). Wittig homologation of the aldehyde

(0.17 g, 0.46 mmol) gave product 117c (0.1$ g, 80%) as a colorless oïl afier flash

chromatography with 2% EtOAc/hexanes.

[Œ]D +10.5 (e = 1.00, CHC13)

IR(thin film) 2961, 1714, 1652, 142$ cm1

‘H NMR (400 MHz, CDC13) 6(pprn) 7.6$ (m. 4H), 7.42 (m, 6H), 6.86 (m. 1H), 5.74

(d. 1H, J= 15.6 Hz). 3.55 (m, 2H). 2.24 (m, 1H). 2.16 (rn, 2H), 1.94 (m, 1H), 1.71

(m, 8H), 1.60 (s, 3H), 1 .07 (s, 9H), 0.89 (m, 6H)
l3 NMR (100 MHz, CDCI3) 5(ppm) 166.6, 148.0, 136.0 (4C), 134.3 (2C), 130.0

(2C), 128.0 (4C), 124.2, 89.9, 66.9, 40.5, 39.6 (2C), 36.1, 34.4, 27.3 (3C), 24.9, 24.2

(2C), 19.7, 17.5, 14.1

(3R, 5S, 6S)-7-(tert-Butytdiphenylsilanytoxy)-3,5,6-trimethylheptanoic acid

methyl ester (118a)

TBDPS0__L_-.
Me2CuLi, TMSO

TBDPS0’—__--. +

TBDPS0_Lr-.E THF, -78°C, 88% E E E

117a syn-118a anti-118a
synlanti 67:33

Compound 117a (0.10 g, 0.24 rnrnol) was subject to a cuprate addition following

geneial procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-ll8a and anti-118a (0.091 g, 88% combined yield) in a

ratio of 67:33 syn/cinti.

ÎŒ]D -6.9 (e = 1.06, CHC13)

IR (thin film) 2959, 1740, 1428 cnï1
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‘H NMR (400 MHz, CDC13) c5(ppm) 7.68, (rn, 4H), 7.42 (m, 6H), 3.6$ (s, minor),

3.65 (s, 3H), 3.61-3.46 (m, 2H), 2.41 (dd, 1H, J= 3.4, 13.8 Hz), 2.28-2.14 (m, 1H),

1.99 (m, 2H), 1.67 (m, 1H), 1.25 (m, 1H), 1.07 (s, 9H), 0.96-0.82 (m, 9H), 0.74 (rn,

1H)

l3 NMR (100 MHz. CDC13) 5(ppm) 173.7 (173.5), 135.5 (4C), 133.9 (2C), 129.4

(2C), 127.5 (4C), (66.5) 66.3, 51.2, (40.7) 40.7, 40.2. 40.0 (39.2), 31.5 (31.0), 28.0

(27.8), 26.7 (3C), 20.9, 19.1, 17.1 (16.7,). 13.5 (13.2)

(3R, 5S, 6S)-7-(tert-Butyldiphenylsilanyloxy)-3,5,6-trimethylheptanoic acid tert

butyl ester (118b)

TBDPSO_-L__-.
Me2CuLi, TMSCI

TBDPSOJ__COtB TBDPSO_l_y_coB
E THF, -78°C, 83% E

117b syn-118b anti-118b
synlanti 70:30

Compound 117b (0.10 g, 0.21 mmol) was subject to a cuprate addition following

general procedure D. Flash chrornatographic purification with 2% EtOAc/hexanes

afforded the products syn-118b and anti-118b (0.086 g, 83% combined yield) in a

ratio of 70:30 sn/anti.

[Œ]D -6.3 (e = 1.25, CHC13)

IR (thin film) 2961, 2859, 1729, 1473, 1428 crn

111 NMR (400 MHz, CDCI3) (ppm) 7.68 (rn, 4H), 7.42 (rn, 6H), 3.62-3 .45 (m, 2H),

2.32 (dd, 1H, J 4.2. 14.4 Hz), 1.97 (m, 1H), 1.82 (dd, 1H, J 9.5, 14.4 Hz). 1.65

(m, 2H), 1.46 (s, 9H). 1.26 (m. 1H). 1.07 (s, 9H), 0.94 (d, 3H. J 6.6 Hz), 0.87 (m,

6H), 0.74 (m. 1H)
13 NMR (100 MHz, CDCI3) 6(pprn) 172.6 (172.3), 135.3 (2C), 135.3 (2C), 133.7,

133.7, 129.2, 129.2, 127.2 (4C), (79.6) 79.5, (66.3) 66.2, 41.9, (40.6) 40.1, 39.9

(38.7), 31.4 (30.6), 22.0, 27.9 (3C), 26.6 (3C), 20.6, 18.9 (18.6), 16.9 (16.6), 13.4

(12.8)
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(3R, 5S, 6S)-7-(tert-Butyldiphenylsilanyloxy)-3,5,6-trimethylheptanoic acid 1-

methylcyclopenty] ester (118c)

TBDPSOO5 Me2TM TBDPSO O5 + TBDPSOO

117c syn-118c anti-118c
synlanti 74:26

Compound 117c (0.10 g, 0.20 rnmol) was subject to a cuprate addition following

general procedure D. Flash chromatographic purification with 2% EtOAc/hexanes

afforded the products syn-11& and anti-118c (0.072 g, 70% cornbined yield) in a

ratio of 74:26 syn/anti.

[ŒID -8.2 (c = 1.07. CHC13)

IR (thin film) 2961, 1728, 1462, 1428 cm

‘H NMR (400 MHz, CDC13) 5(ppm) 7.6$ (rn, 4H), 7.42 (m, 6H), 3.62-3 .40 (rn, 2H),

2.33 (dd, 1H, J= 4.1, 14.3 Hz), 2.10 (m, 3H), 1.9$ (m, 1H), 1.82 (dd, 1H, J 9.6,

14.3 Hz), 1.72-1.62 (rn, 8H), 1.56 (s, 3H), 1.07 (s, 9H), 0.94 (d, 3H,J 6.6 Hz), 0.87

(rn. 6H). 0.74 (rn. I H)

‘3C NMR (100 MHz, CDC13) 6(ppm) 172.7 (172.5), 135.3 (2C), 135.3 (2C). 133.7,

133.6, 129.2, 129.2, 127.2 (4C), (29.1) 89.1, (66.3) 66.2, 41.7 (41.7), (40.6) 40.1,

39.9, 38.9 (38.8), (38.8) 38.7, 31.3 (30.6), 28.0 (27.8), 26.5 (3C), 24.0, 23.4 (2C),

20.7, 18.9 (18.6), 16.8 (16.5), 13.3 (12.8)
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