
Université de Montréal

Formai Checking of Web Based Applications

Par

Doina Mirela Barburas

Département d’Informatique et de Recherche Opérationnelle

Faculté des Arts et des Sciences

Mémoire présenté a la faculté des Études Supérieures

en vue de l’obtention du grade de

Maître ès Science (M. Se.)

en Informatique

Juin, 2006

© Doina Mirela Barburas, 2006

-,Lj 9

Université
de Monfréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, t does flot tepresent any loss of
content from the document.

11

Université de Montréal

faculté des Études Supérieures

Ce mémoire intitulé

formai Checking of Web Based Applications

Par

Doina Mirela Barburas

A été évalué par un jury composé des personnes suivantes:

Jean - Yves Potvin
président — rapporteur

Houari Sahraoui
directeur de recherche

Mexandre Petrenko
codirecteur

Miche! Boyer.
membre du jury

Mémoire accepté le : 13 octobre 2006

lu

Résumé

La plupart des outils de test examinent seulement un ou quelques aspects spécifiques

des applications Web. La vérification de la syntaxe des documents HTML, la

confirmation de l’intégrité des liens d’un ensemble de documents HTML, l’examen

des composants GUI inclus dans les browsers et la mesure de l’exécution de

l’application en sont de bons exemples. Dans cette thèse de maîtrise, nous définissons

des méthodes d’extraction d’un modèle de l’application Web à tester qui permet

d’examiner, à l’aide d’un outil de vérification de modèle, si l’application possède

certaines propriétés définies par l’utilisateur. Cette approche permet, par exemple, de

vérifier la structure de navigation d’une application Web. Notre outil est un prototype

qui permet ces vérifications en utilisant des méthodes formelles.

Elles peuvent être exécutées avec un vérificateur de model suivant la création d’un

modèle « machine à états finis » (fSM) extrait à partir de l’application en question.

Nous employons une méthodologie basée sur la théorie de machine à états finis, en

particulier, la théorie du vérificateur de modèle. Développant un environnement de

vérification pour des applications Web, nous réutilisons un vérificateur de modèle

SPIN utilisé dans les laboratoires de recherche. La méthode est intégrée à un

prototype qui automatise le processus d’extraction du modèle de machine à états finis

à partir de l’application à vérifier et automatise également la transformation du

modèle dans un langage reconnu par le vérificateur de model choisi.

Mots clés: vérificateur de model application web, machine à états finis, vérification

des liens

iv

Abstract

Most Web application test tools test only one or some specific aspects of Web

applications, such as verifying the syntax of HTML documents, confirming the

hyperlink integrÎty of a set of HTML documents, testing the GUI components

embedded in the browsers, or measuring the performance ofthe Web application.

In this work, methods are defined for extracting a model from a given web

application so that a commercial or academic model-checking tool can be used to

verify whether the application possesses certain properties defined by the user. This

approach ailows us to check, for exampie, the link structure in hyperdocuments or

more generally the navigation structure of a web application. Our prototype tool

checks the properties of a web application using formai methods. This is achieved

with an existing model-checker once a state machine model is extracted from the

application in question.

We use a methodology based on finite state machine theory, in particular, the theory

of model checking, and test derivation from state machine models. Then developing

a verification environment for web applications, we reuse an academic model-checker

and testing tool cailed SPIN. The method is implemented in a prototype tool that

automates the process of extracting a state machine model of the application to be

verified and the model transformation into the input recognized by the off-the-shelf

model-checker chosen.

Keywords: model checker, web application, finite state machine, link verification

V

Table of contents

Introduction 1

2 Motivation 8

2.1 Methodology Overview 10

2.2 Detailed Methodology 11

3 Mode! Checking 16

3.1 The Process of Mode! Checking 16

3.1.1 Modeling 17

3.1.2 Specifications 17

3.1.3 Verification 17

3.2 The model 17

3.3 Formalizing browsing properties 18

3.4 SPIN Model Checker 19

3.4.1 PROMELA (PROcess MEta LAnguage) 21

3.5 Formai Properties (LTL) 22

4 State ofthe Art 24

4.1 Stotts approach 24

4.1.1 Links-Only Document Behaviour 25

4.1.2 Temporal logic and dynamic properties of systems 28

4.2 Stotts mode! 29

4.3 formai modeling in WWW multimedia 32

4.3.1 Interactive temporal behaviour 32

4.3.2 The abstract temporal synchronization controi architecture 35

4.3.3 The EFSM model 37

vi

4.3.4 Link synchronization .38

4.4 Other Related work 42

4.5 Our approach 44

5 Formai Checking of Web Based Applications 46

5.1.1 Communication interception 46

5.1.2 Java HTTP Proxy Server 46

5.2 The Mode! 51

5.2.1 FSMinXML 51

5.2.2 DTD 55

5.2.3 FSMinPromeia 62

5.2.4 Formai Properties 62

5.2.4.1 Browsing Properties 63

5.2.4.2 Connectivity Properties 67

6 Web Mode! Extractor/Manipuiator 68

6.1 Functionaiities 68

6.2 GUI 71

7 Case Study 75

7.1 The “Beethoven” Radio Station Web Site 75

7.2 Properties 77

7.3 Formai Mode! 78

7.4 formai Properties (LTL) $5

7.4.1 Property 1 $6

7.4.3 Property3 $9

7.4.4 Property4 90

7.5 Limitations ofthe ExtractorlManipulator Tool 91

8 Conclusions 93

8.1 $ummary ofthe Resuits 93

8.2 Future Work 93

References 95

vii

Table of Figures

Figure 1 The growth of Internet from January 1994 to January 2004 I

Figure 2 Framework 6

Figure 3 Framework detailed 10

Figure 4 Fragment from the log file 12

Figure 5 Fragment ofthe FSM Model 13

Figure 6 SPIN Model Checker 20

Figure 7 Traditional view ofthe hypertext document 26

Figure 8 Automaton view ofthe hyperdocument 27

Figure 9 FSM encoding ofthe links-automaton for Trellis document 30

figure 10 A distance course in several linked web pages 33

Figure 11 Multimedia presentation schedules for page P0 34

Figure 12 The abstract temporal synchronization control architecture 37

Figure 13 The media server EFSM 39

Figure 14 Added states and transitions in Pager Ef5M for processing 40

Figure 15 HTTP Request 48

Figure 16 HTTP Response 49

figure 17 HTTP Request/Response for an Image 50

Figure 1$ A Simple Site Graph 54

Figure 19 The DTD file for the implemented model in XML 55

figure 20 The XML Partial Model 59

figure 21 XML to Promela with Web Model Extractor/Manipulator 62

Figure 22 CRIM’s home page 63

figure 23 CRUVI’s Services page 64

figure 24 One page web site 64

figure 25 Enable/disable objects 65

Figure 26 CRIM’s Members page 66

Figure 27 Class Diagram 69

figure 28 Processing ofthe proxy server log file 70

vin

figure 29 Web Mode! Extractor/Manipulator Window .71

Figure 30 Option Window 73

Figure 31 Show the file button 73

Figure 32 Bui!d the mode! button 74

Figure 33 Home Page from www.beethoven.com site 76

Figure 34 Explore page from www.beethoven.com site 7$

figure 35 Web Model ExtractorlManipu!ator 79

Figure 36 Option Window 80

Figure 37 The mode! — XML Format $1

Figure 38 Finite State Machine in Promela 83

Figure 39 The Mode! — Graphica! Representation 85

Figure 40 Linear Time Temporal Logic Formulae $6

figure 41 The Neyer Claim for LTL: [J occur 87

Figure 42 Guided Simulation Output — Property 1 8$

figure 43 Guided Simulation Output — Property 4 91

Figure 44 Scalabi!ity 92

ix

Abbreviation Iist

DOM Document Object Model

DTD Document Type Definition

XML Extensible Markup Language

FSM fmite State Machine

PROMELA PRocess MEta LAnguage

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

LTL Linear Temporal Logic

URL Uniform Resource Location

WWW World Wide Web

X

Acknowledgements

I would like to express my honest appreciation to my supervisor, Professor Mexandre

Petrenko for his constant guidance, constructive criticism and encouragement during

ail the period ofmy ïnternship at CRUvI and afterwards.

I also want to thank my thesis director, Professor Houari Sahraoui for his valuable

courses during my studies at Université de Montréal and his constant encouragements

and valuable advice.

Speciai thanks to May Haidar and Dr. Serge Boroday for their collaboration. I

benefited greatiy from formai and informai discussion with them.

I thank CRIM (Centre de recherche informatique de Montréai) who provided a

wonderffil research environment and financiai support for this thesis.

I wish to thank the “Département d’informatique et recherche opérationnelle”,

Université de Montréal for the graduate courses and the research environment, and

Manette Paradis for easing the procedure of dealing with Department.

I would like to express my honest appreciation to my fiancé Charles Younghusband

for his support and constant efforts to improve my Engiish.

1

Chapter I

I Introduction

Since its inception in 1991 the World Wide Web (WWW) has experienced a rapid

growth, and become the dominant Internet user application. As shown in Figure 1

below, drawn ftom the Internet Domain Survey [URL1J, an increase in the number of

hosts was close to one hundred percent per year and occasionally exceeding that

number. Today the rate has tapered off to approximately 33% annually.

Internet Domain Survey Host Count

50000

__

Source: Internet Software Consortium twwwisc.oro)

figure 1 The growth of Internet from January 1994 to January 2004

2

The increase in the number ofpersonal computers, combined with the rapid growth of

digital networking technologies, has dramatically increased the accessibility of the

Internet and the World Wide Web. This new way of accessing information made the

Internet more attractive to companies, which in turn stimulates its growth by creating

more elaborate and attractive web sites appealing to both personal and business users.

Thanks to the Web, companies are now able to reach almost ail possible target groups

and it has become an excellent advertising medium and interactive channel for new

businesses or adapted business models. New products and services, in turn, drive

new features to optimize the Web based communications, adding to the complexity of

web sites while not necessarily improving the robustness and quality.

Presently, the connection between different Internet resources is almost exclusively

done by means of hypertext links, in which case the resources are called standard

resources: file-based, static and read-only. Up to now these standard resources have

been used very successfully within the current Internet environment. However, they

have a number of shortcomings, which, in the light of the immense growth rates

experienced, could make the use of the hypertext within the future Internet

environment probiematic. The problem of broken links between Internet resources,

caused by the lack of referential integrity within the current hypertext

implementation, is a good example of such a shortcoming. This problem will scale

exponentially with the ongoing growth in the number of resources.

A classification by Thomas A. PowelI [151 based on the degree of interactivity

offered by a web site divides web sites into five categories:

o Static Web Sites

They are the most basic form of Web site, such as presentation of HTML-documents.

No interactivity is offered except for the choice of pages by clicking links.

o Static with Form-Based Interactivity

A web site containing forms is used to collect information from the user, including

comments or requests for information, but the content they deliver is static. The

3

primai-y purpose of this category is document delivery, implementing data collection

mechanisms.

o Sites with Dynamic Data Access

The web site is used as a front-end for accessing a database. Users can search a

catalogue or perform queries on the contents of a database, through a web page, and

the resuits are displayed in HTML format.

o Dynamically Generated Sites

These sites are generally based on static content, but which were generated in a

personalized fashion to suit the needs of individual users.

o Web-Based Software Applications

These are Web sites that are used as an interface for software applications such as

inventory-tracking programs or sales force automation tools. They often have more in

common with traditional client/server applications than with static web sites.

This classification ai-ose from the need for methodology during the development of

web sites, but is useffil also for the testing process, as different types of web sites

require more or less extensive testing. For instance, the requirements for a static web

site are relatively few: the only things that need to be checked are that the information

is correct and up-to-date, that the source HTML is correct and that the load capacity

of the server is large enough. i.e. that it can handie a sufficiently large number of

visitors at the same time. At the other end of the spectrum, the demands of Web

Based Software Applications are much higher, security and code integrity being

merely two of several relevant issues.

For the purpose of this thesis, we choose to define web-based application as any

HTTP application available on the Internet.

There are an estimated 1 billion pages accessible on the World Wide Web, with 1.5

million pages being added daily. These resources have been created by large teams

of human editors which make the formatting of the content impossible to measure.

4

However other web site properties can be analyzed and evaluated, such as the

navigation properties.

In this thesis we focus on the formai modeling of interactive temporal behaviour of

the hyperlinks. This research is an exploratoiy study and the first step of an on going

PhD thesis [7] focusing on test and quality assurance of web-based applications.

Reference [7J presents an approach for modeling an existing web application using

communicating finite automata model based on the user-defined properties to be

validated. A method to automate the extraction from a recorded browsing session of

such a model is generated. The obtained model is used to verfy properties with a

model checker.

In this thesis, our goal is to find a method to extract the information ftom a browsing

session from which we extract a finite state model. The finite state model should be in

a standard format in order to be easily transformed into a model accepted by a model

checker that was determined during the research period. The next step was to define

the properties that we wanted to test and to formalize them to be accepted by the

chosen model-checker.

We developed a prototype tool which extracts a recorded browsing session into a

finite state model in XML format then from the XML format into the finite state

moUd formatted properly for the model-checker SPiN. We used the model-checker to

verify the properties defined by the user.

This paper presents the steps for developing the prototype tool for web-testing. We

will define methods to extract a model from web applications. The model type chosen

is a finite state machine, which has been widely used in protocol engineering

including protocol validationlverification [5], [9], implementation [3], and testing [7],

[12). We wiÏÏ show how we transformed the model in a standard format which is

flexible for fiirther transformation in accordance with the model-checking tool

chosen. The format chosen to represent the modei is XML, which can be easily

5

be transformed in a F$M accepted by the out of the box model-checking tool SPIN

used for research purposes. The next step is to formulate the properties to be tested in

a language understood by the model checking verification tool, SPIN, to test and

interpret the resuit.

We wili conduct a case study to demonstrate the appiicability of the developed tool,

stepping through ail the necessary phases:

o intercepting the communication between the client and the web server.

o logging the web pages visited in a flat file, in text format; the fact that

we work with the output from the web server to the browser makes our

tooi programming language independent. For example, on the server

side the code which generated the web page could be C#, ASP.Net or

javascript, but we are logging oniy the HTML code from the browser

side.

o parsing the text file in order to transform the given site into XML

FSM; this gives the flexibility in the selection ofthe model-checker;

o demonstrating the model checking by transforming the XML FSN to

PROMELA FSM, which is the input ofthe model checker SPIN;

o formulating the properties to be tested in the iinear temporal logic

language (LTL) understood by the modei checking verïfication tool;

o verification ofthe properties;

o interpreting the resuit.

6

The following figure represents the steps described above:

I 1
Mode! Checker

figure 2 framework

The remainder ofthis thesis is organized as follows.

Chapter 2 gives the motivation of our work conducted on the applicability of model

checking technique for the web verification.

page IL______J

L
Formai Finite $tate

Properties Machine

7

Chapter 3 presents the basics of the theoiy of model checking, mode! checking

princip!es and the process of model checking verification technique. We finalize this

chapter with the introduction ofmodel checking tool SPIN.

Chapter 4 it is a short review ofthe previous research re!ated to formai verification of

hyperdocuments: specifically model checking. We present in particu!ar the work of

Stotts et ai, which is the approach and methodology on which our work is based.

Chapter 5 describes the functionalities of the Web Mode! Extractor/Manïpulator, the

tool developed to extract the mode! from a given web site.

Chapter 6 presents a case study on which we have applied our approach and

ftamework, namely the web site of a classical music radio station “Beethoven”.

In Chapter 7 we present the conclusions and future work.

8

Chapter 2

2 Motivation

Existing Web testing tools [URL 141 generally verify the syntax in HTML documents,

conflrm the hyperlink integrity of a set of HTML documents, test the GUI

components embedded in the browsers and measure the performance of the Web

application. Most of the tools test oniy one or some aspects of Web applications.

There is a need for formai checking of properties of a web application. This could be

achieved with an existing mode! checker once a finite state machine model is

extracted from the application in question.

In this case the purpose of the formai modeling is to undertake the development of a

tool capable of testing the navigation of a web site according to the properties

specffled by the user. For exampie, a user may want to test if they can reach a Web

site’ s home page from any page in a particular web site; or if a site has orphan pages,

which prevent back and forth navigation unless using the browser’s features.

This masters project is a part of an ongoing Ph.D. research project [9J related to the

development of a prototype tool that could be used by the web based application

developers and testers to improve the quality of their products. The main project is

about modeling an existing web application into a FSM mode! based and validate

user-defined properties. The obtained mode! is used to verify properties with the

model-checker as wel! as for regression testing and documentation. The project plan

includes comp!ex multi-window/frame applications testing.

9

This master thesis is the first step in the realization of such a complex testing tool.

Several activities were undertaken during the course of this project: the architecture

was defined, a solution was implemented to record a browsing session to a log file,

and a JAVA application was deveioped to create, manipulate and export a mode! of a

web site for analysis. The JAVA application creates a FSM coded in XML and it can

transform the X1VIL fSN into the PROMELA language FSM — which can be

interpreted by the model-checker SPIN. The JAVA application can also check the

logged web-pages for requested information by the user. The end result of these

activities is a methodology and set of sofiware tools which can transform an arbitrary

web site into a standard mode! as a finite state machine, which can then be imported

into a model-checking tool. The use of finite state machines provides a formai model

on which we based the testing ftamework.

To effectively use the tool deveioped by this project, the user must define what

properties are to be tested and formulate them in a language understood by the model

checking verification tool.

The next section presents the methodology of extracting the relevant information

from a browsing session, recording it into a log file, transforming the web site in a

fSM and then using the mode! checker to verify the user-defined properties.

‘o

2.1 Methodology Overview

Figure 3 is the detailed representation of figure 2 where the proxy server represents

the Monitor/Interceptor step from Figure 2. The Mode! Extractor/Manipulator is

made ofthree steps: Processing Log File, FSN in XML and Processing FSM in XML.

The Finite State Machine from Figure 2 is replaced with FSM in PROMELA and the

Model Checker is specified as the SPIN Model Checker.

Referring to the Figure 3, we will describe the methodology used to extract a web site

or a partial website and model it into a XML FSM.

Requestli

1 Client IL Z I ji Service
Web page

I Log File
j

I Processina Lo File I

I FSMInXML I
I Processing

FSMinXML

L Formai Properties L FSM in PROMELA I

figure 3 Framework detailed

These individual steps will now be described in more detail.

11

22 Detailed Methodology

The first step is to extract a formai model from the web application. In order to

extract the model offline, we have used a proxy server that is able to intercept the

data transfer between the web client and the web server: the client’ s requests and the

server’ s responses. Moreover this proxy server is logging the intercepted data to a

text file, referred in Figure 3 as “Log File”.

The proxy server used is an open source project developed by Stefan and Emily

Reitshamer, available from their web site [URL3J. This product performs typically as

an HTTP proxy: it reads a client’s HTTP request, forwards the request to the referred

server, reads the HTTP response ftom the server, and forwards it to the client and

optimally creates the 10g file of ail the data transfers that occurred. The requests and

responses are logged as they arrive.

The Log file contains the requests and the responses with their header, body and

details as they would appear if we would look at the source ofthe web page from the

browser’s View\Source menu. The next figure is a fragment ofthe log file.

12

GET hftp ://www. crim. calindex. epl?selec=23 00&href=/rdltelecom.htm TfITP/1 .0
Host: www. cnm. ca
Accept: applicationlvnd.ms-excel, applicationlmsword, applicationlvnd.ms-powerpoint, imageIgif,
image/x-xbitmap, image/jpeg, image/pjpeg,
User-Agent: MozillaJ4.0 (compatible; MSffi 6.0; Windows NT 4.0)
Accept-Language: en-us

END 0F HTTP REQUEST
HTTP/1.J 2000K
Content-Type: text/html
Content-Length: J $3 J 6
Server: Apache/1 .3.9 (Unix) mod_perlIl .21 mod_sslI2.4. 9 Open$SL/0.9.4
Date: Wed, 10 Apr 2002 19:40:02 GIvif

<HTML>
<HEAD>
<L1NK rel=”stylesheet” href=”/styles.css”>

<TITLE>CRIM : Développement de réseaux de télécommurncations<ITITLE>

<A href”/index.epl?selec=2700&href/rd!personnes/alexandre_petrenko.htm’>
Alexandre Petrenko

<AREA href=”/index.epl?href=/visite/index.htm” coords=”79, 11, 143, 33” shape=”rect”>....

</HTML>
END 0F ffTTP RESPONSE

Figure 4 Fragment from the log file

Having the log file of the proxy server as a starting point we consider the data

extraction to create a finite state machine model.

As previously discussed, the prototype tool is based on the finite state machine

theory, in particular, the theory of model checking. The development of a verification

environment for web applications is relying on the model checker SPIN, an efficient

verification system for models of distributed software systems.

The finite state machine (F$M) model consists in a set of states (including the initial

state), a set of input events, and a state transition function. The function takes the

13

current state and an input event and retums the next state. Some states may be

designated as “terminal states”, which are end states with no more transitions.

In order to create the FSM the log file in text format is parsed and the client’s

requests and the server’ s responses are extracted.

In the figure 5, an example of a FSM fragment is shown. The states are the web

pages, the initial state is the Home Page ofCPJM’s web site, and the input events are

the clicks on a hyperlink which creates a request to the web server. One of the

terminal states in our example is the error state marked in red in the figure 5.

Event State

Figure 5 Fragment ofthe F$M Model

14

With the data extracted from the log file, the corresponding f5M model in X1\’EL

format is then created. We have chosen the XML format due to its increasingly

flexible data format, easy to transform in another format if necessary and easy to

understand by anyone with or without XML knowledge.

Our goal is to transform a chosen web site into a f5M model and then as an input of

the model checking tool. The model checking tool chosen for our work is SPIN. SPIN

is a popular open-source software tool, used by thousands of people worldwide, that

can be used for the formai verificatïon of distributed software systems and the

language accepted by SPIN is PROMELA [URLI3j. The next step is to transform the

FSM formatted in XML into an FSM formafted in PROMELA. If for any reason

there is a need to use another model checking tool, the F$M in)UvIL can be easily

transformed into another format ofFSM.

The transformation of the log file into the XML FSM and from XML FSM into

PROMELA FSM is automated with the prototype tool that we have implemented. In

figure 3 those steps are represented as cProcessing Log file”, “FSM in XML” and

“Processing F5M in XML”.

As shown in Figure 3, before the verification of the FSM model with the model

checking tool, we need to formulate the properties to be verified and to translate them

in the language used by the model checking verification tool (formai Properties

step). The language in which the properties are formulated is the linear temporal

logÉe (LTL), which will be described in more detail later in this paper.

Finally, afier applying the verification of the properties on the FSM model — (SPIN

Mode! Checker step) we interpret the resuits (Mode! Checking ReuÏts) to see if the

model respects the properties or flot.

The steps Processing Log file, FSM in XML and Processing fSM in XML are

implemented in our prototype tool that automates the process of extracting a state

15

machine model of the application to be verified, so that formai verification could be

peiformed using an off the sheif model checker.

16

Chapter 3

3 Model Checking

In this chapter we make a short introduction of mode! checking theory in the first two

sections and then continue with the presentation of the model checking browsing

properties and introduce the SPIN model checker.

RecentÏy, many tools were developed to verify the correctness of a system. The

basics of those tools rely on formai methods, which are methods based on

mathematical models describing the systems that are to be tested. The automation of

this reasoning allows large systems to be analyzed efficiently. Model checking

method is a successftil aftempt in this direction.

Model checking is a method for fomially verifying finite-state concurrent systems.

Specifications about the system are expressed as temporal logic formulas, and

efficient algorithms are used to traverse the mode! defined by the system and to check

if the specification holds or flot. Large state-spaces can ofien be traversed in minutes.

The technique has been applied to several complex industrial systems such as the

Futurebus+ and the PCI local bus protocols. [URL5J

3.1 The Process of Model Checking

The process of model checking was first introduced by Edmund M. Clarke [41. It

consists of three main tasks: modeling, specifications and verïfication.

17

3.1.1 Modeling

In order to use the mode! checking technique, the flrst task is to mode! a system using

a formalism accepted by a mode! checking too!. In many cases, this can be

straightforward in other cases it can be quite involved. Modeling a system may

require the use of abstraction to eliminate irrelevant or unimportant details. In general

this task consist of transforming the system in an automaton with the aim to produce

the appropriate finite state machine for the Kripke structure [4] required by the mode!

checker.

3.1.2 Specifications

The next step is to state the properties that the model must satisfy. A property in the

mode! checking theory is described as a temporal !ogic formula named automata.

3.1.3 Verification

Idea!!y the verification is ffilly automatic, but, in practice it often invo!ves human

assistance. The ana!ysis of the verification result is done manua!!y. In case of a

negative resuit, the mode! checker provides us a counter example for the checked

property so we can detect where the error occurred.

An error trace can result from incorrect mode!ing of the system or from an incorrect

specification (a!so ca!!ed faïse negative). The error trace can be usefu! in identifying

and fixing these problems.

3.2 The model

The first step in verifying correctness of the system is specifying the properties that

the system should or must have. Once system related properties are identified, the

second step is to construct the forma! mode! for the system. In order to be suitab!e for

verification, the mode! should capture those properties that must be considered to

establish correctness. On the other hand, it shou!d abstract away those details that do

not affect the correctness of the checked properties and make verification more

complicated.

18

In the mode! checking theory, the system to be analyzed is mode!ed using some

ftamework based on defining a set of states and a transition relation determining how

the system may change over time. This mode! can then be checked against a

specification, written in some logic specifying desirabie properties of the system’s

dynamic behaviour. [4]

A state is a representation of the characteristics of the system in a particular instance

of time. The state of the system can change in time as a resuit of some interna! or

external events. Those changes can be described by giving the state before the event

occurs and the state after the event occurs. Such a pair of states determines a

transition of the system. [4]

3.3 Formalizing browsing propetties

For a better understanding of properties to be checked with a model checker on a

hypertext document mode!, we present a short example of how the browsing

properties can be formalized. Given a hypertext document with elements X and Y, it

contains the link anchors B and C and the information I. We would like to formalize

statements like:

- “ail browsing sessions must encounter X, but on!y sometime afier seeing Y, and

information I is encountered on this path flot more than 3 times”

- “there is at least one browsing session encountering Y with the information I,”

- “there is a browsing session in which at some point B and C are both encountered

and the information I is present.”

More general specifications include:

- “for every node X there must be a path back to the index”

- “every node Y must have at !east one !ink out.”

The browsing behaviour of a hypertext document can be formalized as event traces

which can occur in a browsing session. Traces can be described with a temporal

logic !anguage.

19

Temporal Logics are descriptive languages for the specification of ordenng

reÏationships characterizing the execution sequencing of time-varying systems.

Temporal logics are ofien classified according to whether time is assumed to have a

linear or a branching structure. The concept of time implied by “temporal” is flot

duration but rather the relative ordering of events in a sequence. [16]

Symbolic logicians and philo sophers, for reasofling about ordenng of events in time

without mentioning the time explicitly, first conducted work in temporal logic under

the name of tense logic. In the last decade, temporal logic has become a convenient

formalism used in program verification. [16]

More recently, temporal logic has been applied successfully to the specification,

verification, and analysis of reactive systems. Reactive systems are based on

concurrent computations that maintain a relationship with their environments. [16]

Hypertext documents bear some resemblance to reactive systems, that is why we can

successfully apply on them model checking method.

3.4 SPIN Model Checker

$PfN is a wîdely distributed software package that supports the formal verification of

distributed systems. The software was developed at Beil Labs in the formal methods

and verification group starting in 1980.

20

Figure 6 SPIN Model Checker

Some ofthe features that set this tool apart from related verification systems are:

SPiN targets efficient software verification, not hardware verification. SPIN

uses a high level language to specify system descriptions, called PROMELA

(PROcess MEta LAnguage). SPIN has been used to trace logical design errors

in distributed systems design, such as operating systems, data

communications protocols, switching systems, concurrent algorithms, railway

signalling protocols, etc. The tool checks the logical consistency of a

specification. It reports on deadlocks and unspecified receptions, it flags

incompleteness, race conditions, and unwarranted assumptions about the

relative speeds of processes.

SPIN CONIROL 34.7 -- 23 April 2001

File.. Édit.. Run.. Help SPIN DESIGN VERIFICATION

)DoIev,K
‘An 0[n Ic Run Syntax Check

“finding in

Set Simulation Parameters..
1dehne ele
ttdeFine no[

______ ____________

lldeFin onc
— Set Venhcation Parameters..

/“ propertie

< LTL Property manager..

[] View Spin Automaton For each Proctype..
“J

Hdehne N 5 J” nr cF processes [use 5 For demos) “J
Udefine I 3 /“ noUe given the smallest number “J
Udefine L 10 /“ size cf buffer [>= 2”N] “J

mtype = { one, two. winner J;
chan q[N] = [L] of { mtype. byte};

byte nt_leaders = 0;

proctype node [chan in. ouf; byte mynumber)
{ bit Active = 1. know_winner = 0;

byte nr. maximum = mynumber. neighbourft;

:piri 1 If :• []oneLeader r
cIairii in pan. Iti:.:.

.Jar[inq ...erihc:ah:n:.
piti -a -X N par ftI pari_tri
pin: inc 1 1. _tri-ip1_ .. E croc: daim rie-.-er: re’]etined near rie-cc spin: Ï errori: .1 — abortiru

21

• SPIN works on-the-fly, which means that it avoids the need of constructing a

global state graph, or a Kripke structure, as a prerequisite for the verification

of any system properties.

• SPIN can be used as a full LTL model checking system, supporting ail

correctness requirements expressible in linear time temporal logic, but it can

also be used as an efficient on-the-fly verifier for more basic properties. Many

ofthe latter properties can be expressed, ami verified, without the use ofLTL.

Correctness properties can be specified as system or process invariants (using

assertions), or as general linear temporal logic requirements (LTL), either

directly in the syntax of LTL, or indirectiy as Biichi Automata (calleU neyer

daims).

• SPIN supports random, interactive ami guided simulation, and both

exhaustive and partial proof techniques. The tool is meant to scale smoothly

with probiem size, and is specïfically designed to handie even very large

probiem sizes.

• b optimize the verification runs, the tool exploits efficient partial order

reduction techniques, and (optionally) BDD-like storage techniques. [4]

3.4.1 PROMELA (PROcess MEta LAnguage)

PROMELA is a verification modelïng language. The intended use of SPIN is to

verify fractions of process behaviour that for one reason or another are considered

suspect. The relevant behaviour is modeied in PROMELA and verified. A complete

verification is typically performed in a series of steps, with the construction of

increasingiy detailed PROMELA models at each step. Each model can be verified

with SPIN under different types of assumptions about the environment. Once the

correctness of a model has been estabiished with SPIN, this fact can be used in the

construction and verification of ail subsequent modeis. [URL6J

22

3.5 FormaI Properties (LIL)

Linear temporal logic (LTL), specifying correctness requirements, expresses features

of one individual (possibly infinitely long) execution of a system. In this thesis we

consider LTL, because we want to verify an ïndïvïdual mn that occurs during a

simulation of the system. The execution of a system can be observed as an (infinite)

discrete sequence ofboolean values that can be evaluated in every state ofthe system.

$uch values can for example correspond to the fact that a certain information or

transition bas been found. Without specifyïng how these observable features are

defined, we will cali them atomic propositions and denote them with the letters p, q,

etc. [12]

LTL formulae consist of atomic propositions, boolean connectives and temporal

operators. Temporal operators are:

• aiways, or henceforth (symbol: o)

o We say that oo is true at a moment î, if is true from moment i

onwards.

• eventually (symbol: O)

o We say that O ç.’ is true at moment I, if ç1’ will eventually be truc at

moment î or later.

• strong until (symbol: U)

o We say that (çUçu) is true at moment î, if eventually becomes true,

and until then ç, is true.

• weak until (symbol: W)

o Like Strong Until, but without the requirement that v eventually

becomes truc.

• next time (symbol: O)

23

o We say that Oç. is true at the moment j, if will be true at moment

i+ 1.

24

Chapter 4

4 State of the Art

In this chapter we describe work related to formai verification ofhyperdocuments and

in particular the use of model checking. Several approaches have been proposed to

validate aspects of hyperdocuments, such as navigation-based verification by de

emphasizing browser features and emphasizing inherent document structure with

browsing semantics [16], [17].

In section 4.1 and 4.2 we will present Stotts et al. [16] approach and methodology. In

section 4.3 we will talk about Huang and Jang [9] work in multimedia domain.

Section 4.4 is a brief presentation of other related research papers. With that

background, in section 4.5 ouf approach is described.

4.1 Stottsapproach

We will start with a resume ofthe work completed by Stotts et al. in this domain and

then we wiÏl detail their work presenting also our contributions and differences.

Stofts et al. [16] did not develop a new mode! checking technique, but they proved

that it is possible to apply it to the domain of hypermedia. They have a new view of

hyperdocuments, viewing them as an abstract process instead of a static data structure

links-automaton. They modeled Trellis and Hyperties hyperdocuments as a Petn-net

structure to build the corresponding links-automaton. Stotts et al. expressed the

25

browsing properties using Hypertext Temporal Logic (HTL and HTL*), a branching

temporal logic based on CTL*, CTL, and POIL temporal notation. Properties

expressed with HTL and HTL* can be efficiently verified with Clarke’s model

checking technique.

Model checking technique was borrowed from concurrent—system verification and

Stotts proved that it can be adapted to be used to increase the utility of hypertext

documents and specifically document’s browsing properties, as for example: what

sequence of links a reader may be allowed to follow during browsing.

Stotts et al. shows how to verify in an automated fashion whether the linked structure

of a document satisfies the required property specifications. The focus of the authors

is concentrated on the behaviour that is allowed by links alone, independent of any

navigation aids that a browser or navigation programs might provide as “Back”,

“Forward” or “History” button.

We extend this idea and we will prove that we can successffilly apply model checking

for other kinds of hyperdocuments and web sites, using a more straightforward

model, the finite state machine.

4.1.1 Links-OnIy Document Behaviour

Researchers have successfully modelled the Web as a graph in different

representations. It is beyond the scope ofthe thesis to make a synthesis about the web

represented as a graph, but we will discuss how Stotts represented Trellis and

Hyperties and how we see the Web model.

Stofts approach is not exclusively applicable only on Trellis and Hyperties, it is

applicable to any hypertext system. According to the authors, what is required in

particular about a hypertext document is that it must be viewed as an abstract

automaton that specifies the process of the browsing within it. One of $totts et aï.

26

novel contributions is the idea of links-automaton, in which they view

hyperdocuments as an abstract process instead ofa static data structure [16].

Stotts et al. represents Treliis and Hyperties as a Petri net or PI-net [URL15J which is

a formai and graphical appealing language which is appropriate for modelling

systems. Mso, they are using the model checking algorithm and sofiware from Clarke

which uses a finite state model. In order to use this model checking technique they

are transforming PI-net representation of the documents into a finite state machine

[16].

figure 7 shows the traditional view of the hyperdocument: a browser program

ailowing navigation over a directed graph.

IIYl)4rtC.t VL(1

brow sÏ IIt

figure 7 Traditional view ofthe hypertext document

Figure $ represents the structure of a hypertext document view by Stotts et al. There

exists a browsing path from the starting node (A), continuing through the nodes E and

D, and ending with node C. The link-oniy behaviour of the document does flot allow

any further browsing from this point, because there is no transition out of node C. In

order for browsing to continue, the author of this structure must be relying on some

feature of the browser.

,.
J

27

Figure $ Automaton view ofthe hyperdocument

The structure of this document witt be much more attractive for the user if the user

can search for information in the document without going back to the old information

that was already seen. A good design in our opinion will be one in which from every

node we have at least one way out and the ability to navigate to an index, for

example.

sti t t
sLik

document alune
itit’ ‘n.it i - lin i i stit nih t n t

28

4.1.2 Temporal logïc and dynamic properties of systems

A popular formalism to express properties of state-transition based concurrent

systems is temporal logic. Temporal logïc model checking algorithms introduced in

the 1980s allowed the reasoning to be automated [141. Besides being automatic,

model checking has another important advantage over proof-checker based methods:

if a formula is flot true of a model, we can produce an execution trace that shows why

the formula is flot satisfied.

Stotts et al. are using temporal logic for expressing browsing properties of

hyperdocuments, and the use of links-automaton of hyperdocuments as a basis for

model checking ofthese properties [16]. CTL (Computation Tree Logic) was the first

temporal logic language used by Clark&s original model checker to define the

specifications [1].

The Stotts’s approach introduces HTL*, or hypertext temporal logic for succinctly

expressing hyperdocument browsing properties, and the HTL subset of HTL* that

can be verified with the model checking algorithm and software from Clarke, which

they use to implement their hyperdocument analysis tool.

Instead of HTL* we are using LTL or linear temporal logic which is a widely used

logic for expressing properties of programs viewed as sets of executions, and is

accepted by SPIN model checker [11]. An LTL formulae or formula is supposed to

hold for all possible executions that the system might produce.

Stotts’s approach wishes to be general, being applicable to a wide range of

hyperdocuments types, but we believe that their methods can be improved. We are

convinced that improvements can be achieved in the model representation where they

are using the reachability graph of a Petri-net as the finite-state model for the

verification of the properties, relating mainly to browsing aspects of hyperdocuments

without taking in account the content of the state itself.

29

4.2 Stoifs model

To understand better the differences between our mode! and the mode! created by

Stotts et al. let us expose their mode! as they describe it in [16].

Tre!!is hypermedia was deve!oped by $toffs and Furuta in 1989. In Trellis system,

links can have multiple source nodes and multiple destination nodes. Moreover this

system allows parallel browsing paths with multiple concurrent!y displayed content

elements; meaning, for example, that when we click on a !ink leading to a new page,

the tafget content popup on the screen and the source content remains visible. The

source can have a supp!ementary action: the click on the “remove” button.

To mode! this kind of hypermedia Stotts et al. used PT-net. In order to use the model

checking technique, Stotts et al. must transform the PT-net in a fmite state machine

and they are doing so by computîng the coverability graph ofthe PI-net and simp!ify

it for not having redundant states.

In figure 9 we show the finite state machine obtained by Stotts et al. in their case

study[16J.

NAME = Reffl.fsm;
1NPUTS=;
STATES =8;
CUBES 12;
MOORE-OUTPUTS = c.we!come, c.overview, c.shuttle, c.engine, c.al!ow, c.inhibit,

b.begin, b. orbiter, b.propulsion, b. start, b.return, b.remove;

#o l000ioi00000
1

#1 010010011000
2
6

#2 010101000011
3
4

30

#3 000fl000001O
0

#4 110001100001
o
5

#5 010001000001
1

#6 011001000101
7
4

#7 001010000100
0

#END

Figure 9 fSM encoding ofthe links-automaton for Trellis document

Variable STATES in the picture represents the number of states, variable MOORE

OUTPUTS represents the name of the atomic predicates used and the bit vector

following the state number indicates which atomic predicate(s) — respecting the order

listed in MOORE OUTPUTS — are presented or not in that state. The transitions out

of the state are present after each state number and they are represented as a list of

destination state numbers.

31

In the presented example there are some concurrent elements. In state 2, in the bit

vector on positions 2 amI 4 the bits are set to 1, signifying the presence of two

predicates from the MOORE OUTPUTS list (the 2m1 and the 4th) This atomic

predicates are concurrently visible whule browsing the page represented by state 2.

At this point, after modeling the hyperdocument, using the mode! checking technique,

Stotts can verify browsing properties expressed with HTL* [16].

We will show an example of one of the properties formulated in proper English and

HTL*:

“Does there exista browsingpath such that at some point both the “shuttte” text and

“engines” text are concurrently visible?” [16]

O (c.shuttle A c.engine)

I=EF(c.shuttle & c.engine)

The formulae is FALSE.

32

4.3 FormaI modeling in WVVW multimedia

Chung-Ming Huang and Ming-Yuhe Jang [91 focus on the formai modeling of

interactive temporal behaviour and hyperlink temporal behaviour in multimedia

WWW application systems and they propose the extended final state machine

approach for formai modeling of interactive temporal and link control architecture.

The response time and the synchronization of the elements invoived in multimedia

system are the main keys. In this paper [9] the authors study and model the behaviour

ofWWW multimedia components synchronization correlated to user interaction.

They define two types of temporal synchronization: (a) intramedium synchronization

which deals with internai behaviour in medium stream and (b) intermedia

synchronization which reduce asynchronous anomalies among media stream.

Huang and Jang theory includes the user interactive temporal behaviour with the web

application, called “user interaction” for simplicity. User interaction in WWW is

classified as: (i) interpage user interaction and (ii) intrapage user interaction.

A multimedia application is flot affected only by the user interaction but also by the

availability of its components which are accessible via hyperlinks. The hyperÏinks

could be valid during certain time periods and invalid during other time periods.

Therefore the authors separate their theory in (i) interpage and intrapage user

interactions and (ii) hyperlink temporal behaviour.

4.3.1 interactive temporal behaviour

Huang and Jang like Stotts et al. represefit the navigation of a set of web pages as a

graph in which a circle denotes a webpage and an arc denotes a hyperlink. They give

33

us an example of a distance learning course for a mathematical theorem graphïcally

represented in Figure 10.

F are the web pages and L, is the hyperlïnk ftom page P, to page P. In Figure 10,

Fo is Theorem introduction web page, F1 is the Exercise Guideline page and L01 is the

hyperlink which leads from the Theorem page to the Exercise Guideline page.

In a WWW multimedia system, multimedia presentations are carried out by the user’ s

clicks on the available hyperlinks on presentation’s web pages. Web pages may

contain images, text, graphics, video objects aiid multimedia scenarios which consist

in several presentation stages.

In the above example, Huang and Jang assume that Fû has three image objects to

illustrate the formula 0f], 012, 013; two text objects 0T1 and 0T2 for the legends used in

oh and 013 respectively; two audio objects 0A1 and 0A2 for teacher annotations and two

video objects 0V1 and 0V2 associated with the teacher’s annotations as in Figure 11

from Huang and Jang.

Figure 10 A distance course in several linked web pages

34

Fïii] oi I nt3

f f)AI I oA_j

I oV t oV2
I V I f p-Time

tsti ti t2
tflL

tJ t 15 t,j

f4— ‘taè I —#-stagc 2 4 stzgc 3 —j

figure 11 Multimedia presentation schedules for page Po

figure 11 presents page F0 as follows: the Fo presentation can be divided into three

presentation stages, stage 1, 2 and 3, which associate their own temporally related

media objects in three time durations [tstart, t3J, [t3, tsJ and [t5, tend] respectively.

We use few paragraphs from Huang and Jang [9] to be faithful to their examples and

explanations and we use italic font to enhance them in this sub-chapter.

Stage J consisis ofthefollowing:

(D image object olj and audio object begin their presentations at time tstart

simultaneously,

(2) at time tj, text object 0T1 and video object 0V1 simultaneously begin their

presentations,

(3) text object 0T1 ends itspresentation at time t2;

(4) objects a[j, a4i and oVi end their presentations together at time t3 and at that lime

(t3,) stage 2 starts up.

(Page O

MeJia

I User interaction

Valid I.inl. t

ea1id Lnk 2

Image

Tcxt

Audio

Vidco

I rjTi I rZE]

35

Stage 2 consists ofthefotlowing:

(J) objects 012, 0A2 and 0V2 simzdtaneousÏy begin their presentations;

(2) at time t5, objects 012, 0A2 and 0V2 end their presentations at which lime stage 3

starts up.

Stage 3 consists of the foiowing: objects Q13 and 0T2 start their presentation

sequences until time tend 15 attamed. At time tend, presentation ofFo is completed and

the user can switch to the other pages’ presentations by ciicking some other

hyperiinks. Hyperlinks con be valid/mvalio I. e. the corresponding marks are/are ïzot

shown on the screen, so that users are/are flot able to click on them. HyperÏink L01 is

vaÏidfrom time tstart to lime t3; hyperÏink L02 is vaÏidftom time t4 to time tend.

We will flot present the Huang and Jang theory that discusses user interactions, as we

are doing offline testing, which means that we no longer deals with the user

interactions but rather their actions that are stored in a log file, as we will describe

later. We are more interested in showing the similarities of Huang and Jang theory

with our work regardïng hyperlink behaviour.

4.3.2 The abstract temporal synchronization control architecture

Huang and Jang named the processing of the hyperlink temporal behaviour, “link

synchronization”. Link synchronization is responsible for the continuity ofthe related

pages’ presentations. Users cannot avoid some waiting time for requested pages

because some fetching time is required to load the requested pages into the local

media buffer. Link synchronîzation in WWW multimedia presentation is necessary to

shorten the waiting period.

Huang and Jang designed and architecture for multimedia WWW interactive

temporal synchronization control, as depicted in figure 12.

36

The hypermedia browser and several remote WWW servers are interconnected over

the Internet. The remote WWW media servers can receive request messages from

hypermedia browsers and respond with media objects.

The kernel of the hypermedia browser’ s interactive temporal synchronization control

mechanism consists ofthree parts, i.e. Pager, Synchronizer and Actor.

The main function of Pager is exception handiing and fetching media objects

contained in requested pages from WWW servers. Each Web page P has a

Synchronizer and a set of Actors, which cooperate with each other to control the

associated multimedia presentation of P. Each medium stream is associated with an

Actor.

The Synchronizer is responsible for intermedia synchronizatïon; an Actor is

responsible for the medium stream’ s intra-medium synchronization. The

Synchronizer is also responsible for receiving user’s interactions from the user

interface and processing the corresponding reactions, for example, having Actors

pause the ongoing presentation and asking Pager to fetch the next page.

A set of hyperlinked Web pages has a Pager. Interpage interactive synchronization

and intrapage interactive synchronization are achieved through the cooperation of

Pager, Synchronizer and Actors. With this approach the Pager, Synchronizer and

Actor can be represented as Extended Finite State Machines (EFSM) respectively.

37

4.3.3 The EFSM model

t3uffr

Huang and Jang used EFSM mode! to formally mode! (i) interpage and intrapage user

interaction and (ii) the hyperlink temporal behaviour.

An EFSM isformally represented as a nine-tupte (Z; S, s0; .sy-; V B, A; F;, where

(‘z) is the set ofmessages that can be sent or received; ‘ii S is a set ofstates; (iii) s0

is the initial state; (h) Sf is the final state; (i) V is the set of context variables; (vi) B

is the set ofpredicates that operate on context variabtes, (vii) A is the set of actions

that operate on context variables; (‘viii P is the set ofpriorily clauses; (ix) is the set

of state transition fimctions in which each state transition fiinction can be fonnally

represented asfoltows: S x x 3(V) x P —÷ S x x A(J’9. For convenience, each state

transition is represented as S
T > 52, where Si (S2) is caÏted the head (tait) state

of transition 1 Tis calted the incoming (outgoing) transition ofstate 52 (Si).

Media Diiptay
De’ices

figure 12 The abstract temporal synchronization controt architecture

38

We will present the modeling of link synchronization formalized by Huang and Jang

using EfSM model.

4.3.4 Link synchronization

An important part of WWW media presentation is the process of an interpage user

interaction. The interpage user interaction in this context consists of two events. One

is to terminate the fetching ofthe current page and the other is to fetch the target page

that is requested by the user.

The progress of the current page pre-fetching in Pager EFSM is tenninated when

Pager EFSM changes from any state L to state Valid, I = O...3, state transactions

depicted in Figure 14. The behaviour offetching the targetpage is divided into three

phases which correspond to states VaiId , FetchingPage and In-lineFetching’

(Figure 14).

) At state Vaiid, Pager EF$M checks whether the target page is on the local btffer

or flot. If the targetpage is unavailable on the local buflèr transition Tnv’ is executed

for fetching the page. Howevei, f the target page is avaliabie on the local buffer

transition Tv’ is executed to ski the pagefetching.

In transition Tv’, Pager EFSM retoads the most recently intemipted iî!formation of

the target page. This is 10 h?fonn Synchronizer EFSM ofthe targetpage 10 determine

from when and which part ofthe targetpage ‘spresentation is to be resumed Pager

EFSM changesfrom state Vahd to state 5 (FetchingPage’) afler executing

transition Tv’ (Tnv9.

(ii) At state FetchingPage, Pager EFSM (a) receives the page document in the

response message, i.e. the input event ‘When Sen’er(Port).RESPONSE(response)’.

If the status of the response is OK, transition Tparse’ is executed. Otherwise,

transition Tnv’ is executed to notify the corresponding Synchronizer EFSM with an

39

enor message using the output event cOUUt $yn(’P).ERROR(P, NextP, fl IS)’. Pager

EfSM changes from state FetchingPage’ to state In-tineFetching’ (5’) afler executing

transition Tparse’ (Trcv’).

(iii) At state In-tinefetching’, Pager EFSM: (a) continues requesting the rest of the in

line objects of the target page to be fetched. This is done by repeatedly executing

transition Treq’; and (b) by checking the response status ofthe fetched object during

the fetching process. If the response is OK, transition Tok’ is executed to store the

fetched object; otherwise, transition Tnok’ is executed to store default objects. When

the fetching of ail in-une objects in the target page is compiete Pager EFSM executes

transition Tdn’ to initiate the associated Synchronizer and Actor EFSMs for the target

page’s presentation. Pager EFSM stays at state In-lineFetching’ afier executing

transition Treq, Tok’ or Tnok’ and changes to state $° aller executing transition Tdn’.

The media server EFSM at the server site is depicted in Figure 13.

In transition Tq&r, the media server receives the request message sent from Pager

EFSM and sends the corresponding response message to Pager EfSM in the action

part. Aller the ‘one-request and one-response’ communication session is complete,

the corresponding HTTP connection is disconnected.

Tq&r
Erom Ser.;ig

Tq&t Ta., Serviig

f Wheo Pager,REQUESTIXÏ,
-‘- Beg.in

Ç Sering) IoadRFS. X):
outpir Paier.RJ:SP(iNSERESi;
(h&flflflCCtt X):

Fnd

Figure 13 The media server EFSM

40

Se

y-_ t
Tic.’

lit
(Fi_[oit

{TmokÇiO, 1,2.3)
Fruit r-l;nFigIvn
I’ r-I neleicling’
Whti: Scncn.Pt.RLSPNStreprnsc
Prn iSeti iespon;e.S:ariCnde iî E—i.ï-Cni1e
L3teir

:Ù-efle3u1tflSject espoi.Sn:iCodei;

index :— .ndex 1:

flV,1—0, 1,2,3)
Frorn V ai:d
Tn S”
Pro ided s;r titi — Trie

(Tmv,1=Q, t,Z,3}
F:om VaLd’
J o
Povided aLid — Fols—
Regin

F1[LSJ-iP. cri):
reo. t-ju:1, Fz,ltihud. Soi-rit, [‘Ou):
tcpconsccuSo:urcc Pal handini:
piepare htp hardie, Merhad, Scure:. rqLntl:

o’rrp;il SnntiPoriRcQJESTrvqiesO;
Fr4d

Inrz:n
pie ,rarusl P. itvpe, [staLLis);

ori,p.ii SyrgP)OK P lrpr, biaurrs);
End

(Tsyn’.ifl,1.2,3
Froru S’
le Voiicl4
When S’ia(?i PAGErF. NextP, li. 15)
Bciri

I -i I: Nexil’, iLd):
Erd

(TekÇ I 1. 1,2,3)
Fuit: in-IiaFcict,i:i
It’ lri-lneFeichrnc4
Vhnri Sen?on.RESP\SLiresponsei
Previdec reprinse.SiirusCndt)K

= Tnr Segii
tzcrer-s:ssnsc, SKI.
lices “i:de L:

End

(Trvq,t”O,1.2,3)
Pion In-lineFetching
Tu In-IineFtztcfuirr53
?niz,ited coutil (J

3cin

Lnd

)Td.’,I—O, 1,2,3)
Feom Li-1incFccchj:’
Tu Y
Psoidcd irdex> rrrl’,un’.
Reain

III Ii u J.atitirrl \± tP:..
pre_sia(us(NettP, tkpe. ist;i.i’i:

uptiate sLa1a5?. if 15):
nurpu: S rr(Nn:P) flK(5.e’crî’ Irype. Ira::rs,

End

ffp.uic’, &O, 1, 2, 3)
Frem FctchingPage’
Tu Iri-jinuFewijinur’
Whcn Srrveri l’uni RLSI’NsE; resputusel

Provided response SierrisCode— 13K
Re&n

Figure 14 Added states and transitions in Pager EFSMforprocessing

interpage user interactions

Huang and Jang are using EFSM to model temporal WWW media behaviour into

taking account the user interactions. They describe the architecture of a

synchronization control for links in WWW multimedia presentations, necessary to

shorten the waiting time and they create the EFSM model for a WWW media

rescle(urI_lis1jcOr’n1, 1ei:i’il. Source, Pois;

preiitttis(SnIP, upe. I’.Irr!ui), tepcc-nnectSc’urce. Per. uanle):
updxestaltslR il. 15): p-tpare hnpiiandle. Me:hed, Sc.wce, rteucslI,

initiali:.aiien)SexiP), COtifl COittfl - 1;
iiirlrrrr S) njiNesrPF OKI\r\IP. Irype, [-carui), o’itput SencriPorO.RLOUESffrcqtcst):

Lcd :.udcx :— O;

(Trn”,IaO,1,2,3)
Frorr Fen’NngPajte

‘La S’
Whcn Sn-icr1Pnrtr.RESPNSEirexponse
P ov.dud ucs;ç,rise-.Srara,Code t Fiturfodes = nue

parseirvcponse rrd]si[). trrl_ounEI;
rOUit : un count,
inde\ —(l;

Lnd

presentation using the synchronization control. The synchronization control works

41

like the caching prïnciple for web-based applïcations; when the requested web-age

exists in cache then the page is flot requested from the web server. The difference is

that the related objects of the pages are required from the server even if they were flot

requested for immediate presentation and they are stored in the buffer. Also if the

page is flot available they are fetched from the media server.

Absent from their work is a description of the important and difficuit task of

capturing the structure and timing as they are presented to the user in a relatively

automatic fashion. Considerable more work, including arbitrary model structure

selection, must be done from the server-side perspective, looking directiy at the

source of the multimedia, and developing a correlated mode! alongside the

multimedia presentation. Such parallel work reduces the attractiveness of formai

modelling and is !ikely to introduce user error in the process, although this approach

can be usefiil as a planning tool before the multimedia is fully produced. In contrast,

in this paper this information is captured from the iog files and input to create the

models directly. We use the output of the web server to the browser as a source for

the formai mode! which increases the correctness of the model, compared to this

approach where ail of a user’ s browsing related behaviour is spiit into different

EfSM. This makes it more difficuit to test the application as a whole.

42

4.4 Other Related work

In “Testing Web Applications by Modeling with FSM” by Andrews et al. [2], the

technique used is based on a black box system and most significantly attempts to

address the problem with state space explosion when large web sites are analyzed

using an FSM technique. State space explosion is a significant problem as cadi

additional user input or web page in a heavily cross-linked web site can create

exponentially more states and test cases.

This research takes the approach of reducing the possible number of states by

clustering groups of logical functions together in a hierarchical format. The smallest

units are made up oflogical web pages — possibly a single page, but possibly multiple

pages performing a common function. These logical web pages are grouped together

as a cluster. Clusters may contain other clusters. To simplify the FSM, each logical

web page is assumed to have only one starting state and one finishing state. The

approach assumes continues input values, single-use or non-propagated inputs.

Continues input values are ones that have been selected for sample input and will

continue to be used. For example, language selection may be an early logical web

page — and its own node among the clustered finite state machines, and this choice

will continue through the test as inputs are propagated among the aggregated finite

state machines. Single use input values are ones that are flot permitted to be re-used

in a single test, for example the serial number of a new item in a shipped product list.

Importantly, the decision of clustering logical web pages together is a manual

process, thus the process is likely repeatable from tester to tester, particularly as the

size of the web application grows. Although flot directly incorporated in this

research, it is suggested that the logical web pages can be clustered together on the

basis of the quantity of common other pages they link to, suggesting they should

43

likely be grouped together as a cluster. This approach does assist in reducing the test

process to a more reasonable problem space even if the introduction of subjective

clustering adds more uncertainty to this approach.

for example, a section of a web application may allow users to modify their personal

profiles, while another permits them to modify their billing settings. Each application

is likely to be an independent cluster. However at a higher level in the hierarchy they

could be grouped together as a common cluster “user preferences”

The use of the clustering technique following a comprehensive modeling phase

permits more straightforward test sequences to be defined based on possible inputs at

each logical web page and then analyzed from the clustering perspective.

The tools used in this research were able to automate, to a certain extent, four tasks:

identifying logical web pages and input selection constraints, identify connections

between Ïogical web pages, and partitionïng the connectivity model between the

logical web pages. These tasks assumed the pre-processing of the web application

code. The tools could also build a test value database if one already exists with the

web application.

The model is limited for further work due to the artificial imposition of the

hierarchical clustering, technique. While it reduces the test problem space h does so

manually and attempts to automate this element is likely to cause illogical clustering

and interfere with defining constraints.

44

4.5 Our approach

Our approach is more straight-forward. We represent the browsing behaviour of a

web site as a finite state machine (f$M) directly without going through another

representation. Moreover, we are concemed flot only about the linked structure, but

also about the characterization ofthe states (web pages).

Another new element in our work is the representation of the finite state machine in

an)CIVIL [URL4J file. The benefits of this representation are multiple. XML is a

standard format easy to create, modify or update. It is expressive even for someone

uninitiated in XML technology, and gives us a general format, which permits the

reuse of models with any model-checking tool.

Unlike Stotts et al. our approach is flexible and modular; we can easily modify our

tool to work with any model checker, not only with $PTN

We are testing web applications offline. b build the model from the web site we

extract the necessary information to create the model. This information extraction is

achieved by intercepting the communication between a client and the server that

holds the specified web site, and records this data for ftwther processing and is

programming language independent.

Afier collecting the response/request pairs we extract a model that conforms to the

structure of the web site in terms of navigation properties. We organize the

information necessary to create the mode! as a finite state machine. A state represents

a web page with static information found in the page, such as textual information and

links. The transitions between states represent the hyperlinks between pages. Aller

the model extraction, we transform the model ftom a standard intermediary format

mode! to the mode! accepted by the chosen model checker, in our case SPIN. The

45

next step is to formulate the properties in LTL. finally, the model is verified against

the properties.

With the aim to automate the process as much as possible, and starting ftom the

specifications of the project, we will build an application to do the mode! extraction

automatically.

46

Chapter 5

5 FormaI Checking of Web Based Applïcations

The goal of the project is to create a prototype tool that automates the testing of web

based applications and to demonstrate the applicability of mode! checking techniques

in the context of verification of web applications. We fol!ow the process of mode!

checking described by Edmund M. Clarke, Jr. et al., i.e., modeling, specification, and

verification where we try to automate the modeling process.

5.1.1 Communication interception

In order to intercept the communication between a user of a web site and the web

server we are using a proxy server. The proxy server must record in its log file the

requests sent by the user (Internet Explorer, Netscape Navigator) to the web server

and the responses of the !ast one back to the initiator. The navigation can be donc

manua!!y for small models and with a crawler for large models.

The next step is to extract the useffil information from the proxy server log file that

can help us transform the surveyed web site in the desired mode!.

5.1.2 Java HTTP Proxy Server

The Java Proxy Server is an open source project developed by Stefan and Emily

Reitshamer, available ftom [URL3]. The proxy reads a client’s WFTP request,

forwards the request to the origin server specified in the “start une” of the request,

47

reads the HTTP response from the origin server, and forwards it to the client. The

implementation included here follows the HTTP protocol for sending and receiving

messages among distributed objects.

Ail the code is written in Java, is well documented, and is “open source”. HTTP

requests of ail content-types are handled correctly.

The Java Proxy Server is used to proxy HTTP requests. b use the proxy server, we

simply have to set the web browser to use the proxy server at the host and port.

To do this in Internet Explorer, we select Toolsllntemet Options. . . /Connections/LAN

Settings and check Use a proxy for your LAN and for Netscape Navigator, we go to

Edit/Preferences. . ./AdvancedlProxies and check Manual proxy configuration where

we set the name of the machine where the proxy is installed and the port $080 for

HTTP proxy.

This proxy server creates the log file as output file, which provides the information

needed for ffirther processing. However, for the sake of accuracy, it should be

mentioned that the proxy server does flot classify the information that it receives. It is

flot aware ofthe web site and page visited. In this case, the user who wants to use our

application and this proxy server should correctly operate within the chosen site for

an accurate model.

b access a page from a certain server we need to generate a request for this page.

The request could be initiated by the user clicking on a hypertext anchor pointing to

the file, for example

Home Page

The actual data sent by a client to the server and registered in the proxy server’ s log

file is shown in figure 15.

48

GET http ://www. crim. calindex.epl?selec=23 00&href=/rdltelecom. htm HTTP/1 .0

Host: www.crim.ca

Accept: application/vnd. ms-excel, applicationlmsword, applicationlvnd.ms-powerpoint,

image/gif imagefx-xbitmap, image/jpeg, imagelpj peg, *1*

User-Agent: MozillaJ4.0 (compatible; MSffi 6.0; Windows NT 4.0)

Accept-Language: en-us

EN]) 0F HTTP REQUEST

Figure 15 HTTP Request

The request message consists of a request header containing several request header

fieÏds. Each field is a simple line of text, terminated by a carriage-retum linefeed

character pair (CRLF). The blank une (containing only CRLF pair) at the end of the

collection of header fields indicates the end of the header and the beginning of the

data being sent from the client to the server, (P0$T requests in the example). $o the

blank une is the end ofthe request [6J.

The request message contains two parts. The first part, namely the first une of the

request, is the method field, which specifies both, the HTTP method to be used and

the location of the desired resource on the server. This is followed by the server

HTTP request fields, which provide information to the server about the capabilities of

the client, and about the nature of the data, if any, being sent by the client to the

server. This request, as shown on the upper example, is registered in the proxy

server’s log file.

The information that we need to extract from the request is the method field:

specifically the exact the location of the requested resource on the server.

Afier the request is registered, the corresponding response will follow as shown in

Figure 16.

49

HTTP/1. E 2000K
Content-Type: text/html
Content-Length: 18316
Server: Apache/1 .3.9 (Unix) mod_perIIl .21 mod_ssII2.4.9 OpenSSL/0.9.4
Date: Wed, 10 Apr 2002 19:40:02 GMT

<HTML>
<HEAD>
<L1NK rel” stylesheet” href=”/styles. css”>

<TITLE>CREVI : Développement de réseaux de télécommunications</TITLE>

Alexandre Petrenko

<AREA href”/index. epl?href=/visite/index. htm” coords” 79, 11, 143, 33”
shape=”rect”>.
<JHTML>

ENI) 0F HTTP RESPONSE-— —

Figure 16 HTTP Response

When the server receives the request, it tries to apply the designated method to the

specified object (file or program), and passes the results of this effort back to the

client. The returned data is preceded by a response header, consisting of response

header fieÏds, which communicates information about the state of the transaction

back to the client. As with the request header fields sent from the client to the server,

those are single lines of text terminated by a CRLF, while the end of the response

header is indicated by a single blank une containing only a CRLF. [5]

The data of the response follow the blank une, as we can see from the upper example

extracted from the proxy server’s log file. The header of the response and the data

sent ftom the server to the client is completely registered in the log file.

In the response case, the data that interests us consists in the “href’ found in the

HTML page as in the example shown in Figure 16 and textual information that can

characterize the state.

50

Each request has a response but the data may flot be registered on the log file if the

response is a GIF file for example or if the desired document was moved from the

known location or deleted.

figure 17 represents an example of an image request and its response extracted from

the log file:

GET http ://www. crim. calimgltop_lefl5 . gif HTTP/1 .0
User-Agent: Mozillal4.76 [en) (WinNT; U)
Referer: hftp ://www. crim. cal
Accept-Charset: iso-8859- 1, *,jjf_8

Accept-Language: en
Accept-Encoding: gzip
Cookie: SID=5cbed9537305f759
Host: www.crim.ca

Accept: image/gif image/x-xbitmap, image/jpeg, image/pjpeg, image/png

END 0f HTTP REQUEST
HTTP/1.1 200 0K
Content-Type: image/gif
Content-Length: 8243
Last-Modified: Fri, 25 Jan 2002 14:57:47 GMT
Server: Apache/1 .3.9 (Unix) modperlll .21 mod_sslJ2.4.9 OpenSSL/0.9.4
Date: Mon, 18 feb 2002 18:40:58 GMT
Accept-Ranges: bytes
ETag: “c2b6d-2033-3c5 1726b”

(BTNARY DATA - NOT SHOWN)
END 0f HTTP RESPONSE -

figure 17 HTTP Request/Response for an Image

51

5.2 The Model

In this section we give more details about the model that we use.

5.2.1 FSM in XML

In this section we explain the representation of a web site as a finite state machine in

order to understand the next steps and we get into details later on, when we discuss

the design and implementation.

We want to represent the pages as states of finite state machine and the links as

transitions ofthe finite state machine.

Since we created the flrst version of the tool, it was not clear which model checker

best matched with our goals. As a resuÏt, we have created an application to be flexible

at the later decisions andlor changes. So we needed an intermediary data structure

which can be easily translated in another kind of representation.

We have decided to use XML file where we can stock the first format of the model

extracted from the web site, the finite state machine (i.e., with explicitly defined

states and edges).

As we already mentioned, we want our application to be flexible with respect to the

choice ofthe model checking tool. As consequence before creating the model in the

language accepted by the model checking tool of our choice, we first want to output

the model representing the web site to be checked in a standard format easy to modify

and transform.

52

In this section we explain how we represent a web site as a finite state machine. We

are creating an)UVIL intermediaiy data structure which reflects the finite state

machine architecture ofthe web site (i.e. with explicitly defined states and edges).

We are focusing mainly on the navigationai properties of the site, expressed by links

between pages. Starting from the Iog file of the proxy server we can extract the

information that we need to create a finite state machine. We refer to the content of

pages as states, and to transition from page to page (which are possible without

browser navigation facilities) as edges.

We described above the structure of the data in the log file. And as we said every

request causes a response. Starting from the proxy server log file we extract from

every HTTP response, whose body is an HTML page, ail the links of page. We

consider the requests that generated these pages as response, the transitions. There is

a transition from a page to another (or there is an edge from a state to another) if

there is a request for the second page and the first page has a link, that matches this

request.

If the user decides to navigate, and we concentrate our attention in this direction,

everything that user does is registered in the log file. We have to consider that the

user can make mistakes and the pages requested from the other sites are not

considered. On the other hand the user cannot try ail possible navigation trajectories.

However, some transitions, even those flot peiformed by the user could be deduced,

assuming that the content of the page does flot change (i.e. ORLs lead to the same

pages). Such deduced transitions are discussed below.

Let us assume a page A that contains links b and c. From the page A, clicking on link

b we can go to page B with success. Now we suppose that page B contains link c and

clicking on link c we can go to page C with success. We can conclude that from page

A, we can go to page C with success. In the site graph we denote such a transition

with a dotted edge from A to C as labelled by c.

53

We can talk now about two kinds of transitions: consumed transitions and deduced

transitions. Consumed transitions are the transitions, which conforms to the

definition of the transition and the user performed them. The deduced transitions are

the transitions that conform to the definition of the transition but the user neyer

performed these transitions (as in the situation described in the previous paragraph).

This explanation is important to understand how the edges are constructed in the

XML file. We will explain now the algorithm ofXl\4L file construction.

We are processing the proxy log file, page by page. If a link is present in a page and

we have a request for a new page corresponding to this link, then between these two

pages/nodes we have an edge labelled with the request.

First let us consider a simple example site graph. Suppose that with the help of a

browser we generate a request for the home page of CRIM web site GE T

http: / /www. crim. cal and we navigate from the obtained page to another one

by clicking one ofthe encountered links.

The nodes represent the pages and edges represent the links (figure 1$). The doffed

edges correspond to possible transitions, solid edges correspond to transitions

performed by the user. The content ofedges is flot shown for clarity ofthe figure.

54

GEl http://www.crim.cal

GET
http:/Iwww.crim.ca//
index e l7selec=230
O&href=/rdltele

Figure 18 A Simple Site Graph

This graph represents a partial model of CRIM’s web site. The intermediary XML

file contains the information extracted from the proxy’ s log file, and represents onÏy

the pages and edges with the related information.

for this graph we can give some examples of browsing properties expressed with

linear temporal logic (LTL).

“Each time we hit Home page, eventually we can hit Telecom page

To express this using LTL the events “hit Home page” and “hit Telecom page” must

be specified. If they are given the name ‘p’ and ‘q’ respectively, this is expressed as

follows in LTL:

o(p— Oq),

where i denotes aiways, — denotes implies and O denotes eventually.

It is also possible to specify the behaviour that should neyer occur in any

navigation. This can be defined as follows:

GET
hftp://www.crhuca/index.
epl?selec=2700&href=/rdl
personnes/alexandrejetr
enko.hlm

À

À

GET
hftp://www.crim.cal/ùidex.e
pl?selec=2300&href=/r

GET http:Ilwww.crim.cal

55

“Eventuatly II should flot happen that when we hit the Home page eventuatÏy we cati
hit Atexandre Petrenko page”

This can be expressed in LTL using the same name for the events, where! denotes
tiegation:

O!(p—Oq)

We’ll see more examples ofproperties in subchapter 5.2.4.1.

5.2.2 DTD

XML offers an adaptable standardized markup language for describing documents

according to a given structure Document Type Definition (DTD). Therefore it will be

sufficient to look at the currently implemented DTD file to understand the structure

ofour XML file.

<?xml version=”l.O” encoding”UTF-8”?>

<!ELEMENT site (#PCDATA vector I edge I request j page)*>

<!ELEMENT bref (#PCDATA)>

<!ELEMENT form (#PCDATA)>

<!ELEMENT edge (#PCDATA)>

<!ATIUST edge Start NMTOKEN #RBQUIRED>

<!ATI’LIST edge End NMTOKEN #RBQUIRED>

<!ATI1IST edge Label CDATA #REQUJRED>

<!ATI1IST edge edgeld NMTOKEN #REQUIRED>

<!ELEMENT vector (element*)>

<!ATTLIST vector Id NMTOKEN #REQUmED>

<!ELEMENT request (#PCDATA)>

<!ELEMENT elernent (#PCDATA)>

<!ELEMENT stnng (#PCDATA)>

<!ATfLIST string Occurence NMTOKEN #REQUIRED>

<!ELEMENT page (hreP’, fonn*, string)>

<!ATfLIST page Id NMTOKEN #REQUIRED>

<!ATTLIST page Code CDATA #FDŒD ‘NIA”>

<!ATrLIST page Request CDATA #REQUIRED>

figure 19 The DTD file for the implemented model in XÏV[L

56

In the following we describe the meaning of each sentence from the DTD file.

<IELEMENT site (#PCDATA j vector I edge request I page)* >: for every site (the

foot of the XN’IL file) we have pages, requests, edges and the vectors which

characterize the presence of the links in pages. We give more details below. The “m”

sign in the example above declares that the child element message can occur zero or

more times inside the state element.

<IELEMENT page (href, form*, string*) > Every page bas zero or more links

(href s), zero or more forms and zero or more strings.

<!ELEMENT vector (element*) >

<!ELEMENT href(#PCDATA)> !ELEMENT bref defines the “bref’ element to be

ofthe type “PCDATA”.

<!ELEMENT edge (#PCDATA)> !ELEMENT edge defines the “href’ element to

be ofthe type “PCDATA”.

<!ATTLIST page Request CDATA #REQUWED>: for every page we chose five

attributes: the Id ofthe page, a number, the request for this page, the URL which

points to this page and the code which is the error code retumed by the server.

<IATTLI$T vector Id NMTOKEN #REQUIRED>: The vector contains one or more

elements and the label in common with the page that it characterizes. It is the page

number in the order of apparition in the log file.

<!ATTLIST page Id NMTOKEN #REQUIRED>

<!ATTLIST page Code CDATA #FDŒD “N/A”>

<‘ATTLIST edge Start NMTOKEN /REQUTRED>

<!ATTLIST edge End NMTOKEN #REQUIRED>

<!ATTLT$T edge Label CDATA #REQUIRED>

<!ATTLI$T edge edgeld NMTOKEN #REQUTRED> : Edge element has four

attributes: “edgeld” representing the D ofthe edge, a number given to identify the

edge in the order in which the edge was found; “Start” represents the Id ofthe page

from where the request was generated; “End” represents the Id ofthe requested page

57

and “Label” is the URL ofthe requested page.

(#PCDATA) stands for parsed character data. Its the tag that is shown and also will

5e parsed (interpreted) by the program that reads the)UvIL document.

(#CDATA) stands for character data. CDATA will not be parsed or shown

The first character of an NMTOKEN value must be a letter, digit, ‘.‘, ‘-‘, , or

#REQUIRED means that the attribute must always be included - validity constraint.

#IMPLffiD: the attribute does not have to be included.

#fDŒD or “Defauh_Value”: the attribute must always have the default value that is

specffled by a validity constraint. If the attribute is not physically added to the

element tag in the X1\4L document, the XN’IL processor wiil behave as though the

default value does exist. In our case “N/A” means that the server did flot send back to

the client an error code.

Now we explain the role of the vectors in this structure. As we explained before, we

extracted from every page the links (href s). With these links we create another XML

file which contains ail the links from ah visited pages that belong to this site.

The DTD ofthis XML file is described below:

<?xml version’”1.O” encoding=’UTF—8” ?>

<!EIEMENT href f #PCDATA) >

<!ELEMENT UniqueListOfHrefs t #PCDATA href)* >

<!ELEMENT processing t UniqueListOfHrefs) >

Afier this file is created, we can create the hists with the hinks number that

characterizes the presence of the links in a particular page. We need these hists to

keep the record of the hinks that we have in a page. The numbers represent the

position of the link that we can find in the file, where the latter contains ahi the hinks

ofthe.

58

The content of a state in the XML file is characterized by the links extracted from the

page if there is any and the textual information that interests us if there is any,

described as “string” in the DTD.

Following is a fragment of an XIVIL file representing our model, shown to befter

understand the meaning ofthe described DTD.

59

<request>GET http://www.cfim.ca HTTP/LO</request>

<page Request=”hllp://www.crim.ca” Code=”N/A” Id=”O’>

<href> http://www.crim.caIindex.ep1?href/visite/index.hffli</hreP
<hreP http://www.crim.ca//index.ep1?se1ec23OO&href/rdJte1ecom.htm </hreP
<href>http:llwww.crim.ca/<fhref>

<string Occurence=”O”>Alexandre<Istring>
</page>

<request>GET http://www.crm.ca//index.ep1?se1ec23OO&href/rd/te1ecom.htm HTTP/1 .O</request>

<page Request=” htt :llwww.crim.ca//index.ep1?se1ec=23OO&hre1/rd/te1ecom.htm Code=”N/A
ld=’ 1’>...

<href>http://www.ccaJindex.ep1?href=/visite/index.hÙn</href
<hrefhttp://www.crim.caJindex.ep1?href=/coordonnees.htm<Ihref
<hre>http://wvw.crim.caIindex.ep1?se1ec27OO&href=/rdIpersonnes/a1exandre_petrenko.htm</href
<href>http ://www.crim. cal<fhref>
<string Occurence=”3 “>Alexandre</string>

</page>

<request>GET hftp:llwww.ciim.caindex.epl?selec=2700&href/rdlpersonnes/alexandre...petrenko.htni
HTTP/1 .O</request>

<page Request=”http://www.crim.ca/iridex.epl?selec=2700&href/rdlpersonnes/alexandre...petrenko.htrn”
Code=”N/A” Id=”2”>

<href littp://wv.crirn.caJ/index.ep1?se1ec23OO&arnp:hrei/rdJte1ecom.htm </href5
hrefhftp:llwww.crim.ca/index.ep1?href=/coordonnees.hbn/href
<href>http://www. cri in. ca/</href>

<string Occurence=”6”>Alexandre</stiing>
<Ipage>

<edge edgeld=”2” Label=”http://www.crim.ca/index.epl?href/menus/menu_altinc” Start=”2
End”O”>Start source page Id =2 End = requested page Id O</edge>

<edge edgeld=” 13” Label=”hftp:llwww.crhn.calindex.epl?selec2300&href/rd/telecom.htm”
Start=”O” End=” 1”>Start = source page Id =0 End = requested page Id 1</edge>

<edge edgeld=”25”
Label=”http://www.crim.calindex.epl?selec=2700&href=/rd/personnes/alexandrepetrenko.hùn”
Start=” 1” End=”2’>Start = source page Id 1 End = requested page Id 2</edge>...

Figure 20 The XML Partial Mode!

Figure 20 shows the code in the XML file for the model in figure 1$.

60

We can observe in figure 18 and figure 20 that the first page with the Id=”O” and the

attribute “Request “http://www.crim.caf’ contains the link which Ïeads to

telecom.htm page. Clicking on the anchor text corresponding to this link on the

original HTML document generates the request:

GET http :Ilwww. crim.callindex. epl?selec=23 00&href=Ird/teiecom.htm

In this instance we can say that ftom the page with Id=”O” to the page with Id=” 1”,

there is an edge generated by the new event, namely the click with the mouse on the

anchor text corresponding to that link Simiiariy, from the page with 1d” 1”, we have

a request for alexandre_petrenko.htm, the page with Id2”, so we create the new

edge ftom page 1 to page 2 (<edge edgeld=”25” Label

“http :/Iwww. crim. calindex. epi?seiec=2700&href=Irdlpersonneslalexandre_petre

nko.htm” $tart=”l” End=”2”>Start = source page Id =1 End = requested page Id

2<Iedge>). Those pages were sent successfuily from the server to the client and the

code is set to NIA. In case ofa failure we could have one ofthe error codes (404, 304

etc).

As observed from the XN’IL file we have in page “2” the link which can generate a

request for page “0”. This event neyer occurred in this testing session (it was not

registered in the log file). Nevertheless, we can conclude that we can have an edge

from page “2” to page “0” because there is a link in page 2 which can lead us to page

0. We represented the deduced edges in the graph with dotted lines (for clarity, not ail

deduced edges are shown in figure 18 and figure 20).

Thus, the conditions to have an edge from a HTML page to another HTJVIL page are:

a) to have a link in the source HTML page which corresponds to the HTML

destination page;

b) to have a HTTP request for the destination page (reai edge) or the destination

page was requested before and registered in the iog file (deduced edge);

The method of creating the)UVIL file can be outlined as follows:

61

L If the source page and the destination page are encountered for the first

time in the log file and a request is generated from the source page to

the destination, page, then register the corresponding nodes (with their

links) and the edge in the XIVIL file.

2. If the source page and the destination page are already registered in the

XN’IL file and an edge between them is registered, no action is

performed.

3. If both the destination and source pages were registered in the XML

file but the source page contains a link to the destination page, then we

just create a new edge tag which binds these pages in the XML file;

4. Lastly, when only one of them is encountered on the iog file before a

node was created in the XML file, and then we register the new one

and create a corresponding edge.

With this method, we can construet the graph corresponding to a chosen web site.

We identif’ a page only by its UKL. Thus, to check if a page is already in the)UVLL

file or flot, we can compare the new request with ail the other requests already

registered in the graph. If the page has the same URL then with one aiready

registered, then we eau say that we have already seen this page and we are not

creating another node in the XML file (thus, we don’t have redundant information in

the site graph). However, we can flot say that we found the same page if we have the

same content but a different request. So the pages with the same link list but with

different requests are registered separately in the XML file, and as a consequence we

will have a new node in the graph.

Defining a page flot oniy by its URL but also by a linked list may be inadequate in

case of sites which change their content rapidly, like news sites, etc. For such sites,

62

pages should be identified only by UKLs, or may be by a URL with a list of essential

links.

5.2.3 FSM in PROMELA

Afier describing the finite state machine in XML format we need to describe it in a

specification language ofthe model checker ofour choice.

5.2.4 Formai Properties

The last step is to specify the properties using the specification language ofthe model

checker and then to mn the mode! checker with the finite state machine and the

property to check.

figure 21 is a schema ofthe transformation from a state and a transition described in

)UvJL to a state and transition in PROMELA.

<request n> LABEL n:
<page n> J if

data :: atomic{processed data}

</page> fi;

XML Promela
Finite State Finite State Machine

Machine

figure 21)UVIL to PROMELA with Web Mode! Extractor/Manipulator

We define a set of !ogical properties to be checked against web applications. These

properties are classified into four categories: browsing properties, connectivity

_IL

Every company’s web site should start with a home page which presents minimum

information about their company and menu and links which lead to more

choices/information ami even other web-sites.

From any page you have a Ïink out

LTL formulae o(p- Qq), where p is “any page” and q is a “link ouf’ or q

63

properties, frame properties, and quantitative properties. For each category, we

present the possible properties to be checked.

5.2.4.1 Browsing Properties

These properties refer to the browsing of a web site and they are independent of the

browser’s navigational ffinctions.We will present some browsing properties

examples:

At start oJyour navigation on a web-site, you must encounter the home page.

LTL formulae: p where p is “home page”

iu Tr1irprlT’ma3T]j]
Is lew FavoEPes

-
lods He —-

Bakj 5ea.d, jFeeeLRs Meda JeJ

jefrsse Jèw.e.r,knreffq

] o i-s

C sT.I 1 ‘ °cheek std.è AI odiorr$ Y

RECHERCHE

—

C RIM POURQUOI LECRIH? SERVICES I MEHORES I INFOTUFQUE I ÊUÊSEMENT

accéIérateur -

r technoIogique
I I *‘

CONTACTEZ-N

il

O*enacnot des aROndes de la liftaIt 1)9E dc lISIQ

• • La Fillèro PME sot an r. g ip,nr,nt da Ptit opc al éaa o,

I , sén.td d irrfo,rraLsn. U. Marri,, e-prèidet ic
CRIM Québec et responsable de lj2U, est b eurnu, é’ ennonuer le
démorraan des aoUv,tds de la Fi ère bru an oécunté do

Figure 22 CRIM’s home page

n

64

There is no commercial website created with one page which leads nowhere. From

every web-page we should have at least one link to another page. A web site which

presents a business should create their web-site with enough information to make it

appealing to clients.

Example: from CRIM’s home page we could go to Services as in the screenshot

below.

I ‘u’, a,rr.s de I kits - I) nrlnpp.noent de pnodoita ffinoveteeIrE - pe.to de haut niveau Nhrrasoft bi.rflet Eoplmet

de EdO Vw Fpym*eO louis jalp - - -

4.Bouk-4-j StijFavnntes

htrpjfwvou.rrmcaffrjuces.Nnrl j Go Cflks ‘°

Go lc. j (tourds - 74 bloufod (hast éutotksk tul5,l Oettins

‘J
RECHERCHE

POURQUOI LE CRIM I SEREICES I MEMBRES I TNFOTHÈQUE I ÉRÉNEMENTS

R-D I Formation I Qualitd IogiieIIt I ISIQ I Autres servions

Services du CRIM

Pour répondre aux besoins des entreprises en rextinuelln évolution, In CRIN n - -

-- -
développé un modèle d’affaires unique qui s’appuie sur une vision -

globule de l’innoouUun, Cette vision se reflàtn dans la Eoçxs qu’a In CRIM
de répondre nux besoins de ses clients dès le définition des projets il tient -u -‘
compta des perspectives do potentiel toohn,Iutique, de développement de
qualité, de transfert, de déploiement, de soutien et de formation.

CONJACIlE?-nltllt
Parla oemplémentonté de ses services et expertises ainsi que ceux dents
partenaires, In CRIN contribue

4i C2 tanin reseanng) Doe,obadrq picture httprffw.rrte.caftaou/.tagesfmmfcxsd.p ireninoet

figure 23 CRIM’s Services page

ZOMOO - Minreeeft BReinet teploier --i

A counter example is www.zombo.com who has one page on his web-site:

=JJ-I
Fis EdO Vèni FpxmEes louis fdp

4.’Bosk”é jj SoœxhjjFexmtes)MosIa j -] -

----- --___________

- e’tt

S-Iusn*ocs.n j Gneurrh l?Ot*ictiad Cfoeds ,AsdÏls - Opdnini s,

j

figure 24 One page web site

65

From any page you can go to the home page.

LTL formulae: D(p—* nq), where p is “any page” and q is “home page”.

It is good practice to have a link to home page from any other page of the web-site.

This browsing property gives the user the possibiÏity to go back to the main menu and

have more browsing choices, increasing the visibility of the company who presents

its business.

In ail situations a certain button/anchor a can be eventuaily selectable (in the form ‘s

case).

LTL formulae: LJ(p —> O q), where p is “certain button/anchor a” and q is “selectable”

It is possible for a certain button/anchor a to be eventuaily disabÏed (in the form ‘s

case).

LTL formulae: O (p — O q) where p is “button/anchor a” and q is “disabled’

Example:

- htt1. :,.bjd un, gn4.er/fiInupIodd.dspx?stdtus_updat&.manidu&nzoo6 - Mkruuoft Inteni

e Edt Yiew Favotes Ico Help

J J j 5na,cb JFavuutes r.1ndI, j J £
P.dress Io itte:flsea1re.bid2.ccreçterjetadpx?stnts=update&jnfn=rradana2oc6 j c° tlnlcs ‘

Go. - Ea peons

7 Yes, I want tu reœive Gift Certificates nri special uffers tram Bidz.com ami its
afflhlatesl

(Yes, I wnt ta receive Munthly Auction Updtes’

C Yes, I want tu receive Weekly Auction Updates!
BillM.
LLater (Yes I wanL tu receive Daily Auction Updates!

C No,I dont vant tu recelve Any Auction Updates!

TERMSIvCONDITION°°°°°°

1. DEFINITION
‘Bidz.com’ j, the interactive on—une auction service on the World
Wide Web of the Internets con5istIn of auction services and
content provided by Bidz.com affiliates of Bidzcom and other third j

By nubrnitting nor gtfrvbvn inforroation. or, indirotn that you açrno tu the Tsrnvs
h Conditions and have read and understand tho privas, poiicy.

Suhmft

al

• Internet

Figure 25 Enable/disable objects

66

In the previous screenshot we have the choice to receive information about the Gifi

Certïficates from www.bidz.com web site or flot. It adds business value to the

company in the case of customers who want to give presents to their friends or family

gifi certificates to buy jewelleries.

In aï!forward browsing sessions the menu/tabÏe oJcontent is eventuaÏÏy visible.

LTL formulae: O (p—> O q], where p represents ‘fonvard browsing sessions” and q

the property to be “visible”.

3
RECHERCHE

CRIM I
POURQUOI f CRIM 7 SERVICES I INEOTHÈQUE I ÈVÈNEMENTS

Liste Zone résernea Memb,rohip

Les membres du CRIM

La majonté des membres du CRIM sont des nnflpnsen provenant de l’industrie
du développement logiciel nu du sereine-conseil en informatique, eu des
nrganIsmes oeuvrant dans des sedeurs d’application comme le santé, l’éducation
et les finanue5.

Le 001M travaille pour ses membres et, par conséquent, pour leurs clients. Les
FME représentent Eu % du rneesbersh,p du CR10, 0e plus, le mernbership du
CRIM regroupe des ect-epnsns et tins organisations do 9 régions du Québec.

figure 26 CR1M’s Members page

We can notice in the previous web page example that we have the same menu as the

one found in home page. This gives more browsing flexibility to the user who can go

from the Members page to any other choice ftom the menu instead of going back to

the home page.

Immediately afler thefirst occurrence oja yiwill happen.

LTL formulae: p —> Oi

For example, afier you fill up a form you will encounter a Submit button.

as neambeas de, I 01M- M.tcesoft Interna-R Explores-

4e dt RIen, FRumEan Ioule Ilelp

4 J j Somrh jF maties Madia £
Adress hItpJfnu.mm.caffrjMmn4eesj

- J Go LIeRa ‘°

Go .r] G Sourds - 74 Nonkod check AufoI]ck Oçkiucs

•

67

5.2.4.2 Connectivity Properties

Connectivity properties correspond to the structure of the web site. Consider a

domain A, where A can be a web site address; for example, www.crim.ca. The

properties include:

- In a web site, there is a certain page such that the URL ftom which it is retrieved

contains the substring A. For example, the research and development web page at

CRIM is derived from the URL http://www.crim.ca/rd/index.htm. This page is

within the domain of CRI4 since its URL contains the substring www.crim.ca.

- Another property is to ensure that ail the links within the web site point to pages

in its domain. It can be formulated as follows. Ail URL pages are such that the

URLs from which they are retrieved contain the substring A. This property forces

the author to exciude ftom his web site any Iink to external web sites. For

example, in CRIM web site, www.crirn.ca, this property will not hold since there

exist a link to FCAR fiinds web site, http://www.fcar.gc.ca, which is extemal to

CRIM’ s domain. A web administrator can enforce the design of a web-site to

remain within the domain in the situation when the employees of the company

have no Internet connection just Intranet, so he/she doesn’t want to have broken

Iinks on their company web-site.

- In a web site, while loading some URL page, the HTTP error numbered k occurs

where a HTTP error number is a status code delivered in the header of the

server’s response. Every status code refers to a message describing the status of

the server’ s response such as successfiil transactions, redirection transactions, and

error messages. This is part ofevery development error management system. You

want to have a user friendly message not a HTTP error code which is irrelevant

for the user.

- Non-existing link targets: this property checks for dead-ends. In case the author

uses URLs to point to a different web site or a different domain, then it is

sufficient to check whether the targeted web site really exists or not and that the

link to it is not broken.

68

Chapter 6

6 Web Model ExtractorlManîpulator

In this chapter, we describe the fiinctionalities of the Web Mode!

Extractor/Manipulator. The subsequent sections contain the description of the

architecture and the graphical user interface.

6.1 FunctonaIïties

The prototype tool design contains nine classes as shown in Figure 27. Three ofthem:

“Myframe”, “FrApplication” and “AboutBox” are built for the graphical user

interface. The classes: “XlVlLTreatment”, “CutLogFile”, “OneList”, “DoOro”,

“GetPostFilter” and “Html” are designated to implement the algorithm for the

extraction of the necessary information from the proxy log file and to process this

information in order to create the finite state machine using an XML format. The

class “PROMELA” is used to translate the finite state machine from the XN’IL format

into PROMELA language used by SPIN mode! checking tool.

69

GetPostFiiter XMLTreatment Promela

wo rd:String

trXMLTreatment
tokenizer:StringTokenizer oc curr:ArrayList

÷stepThroughAll:void

____________ ________________

-u ris :ArrayList ÷getAttribute:String
-tempString:StringBuffer -requestList:void

÷createEdg e :void
-createstates:void÷flndEdge:void

+fllterRequest: String +promelaFile:void÷checkP a ge:bool e an

ZJDiaiog
CutLoqFiie Html ActionListener

Aboutflox

oro: Do Oro

________________ _________________________

prom e la:Promeia -‘-Html ÷About9oxrepareURL:Html ÷escape:String
getPost:OetPostFiiter ÷unescape5tring #processwindowEvent:void

cancel:void-htmlTag:String
actio n P erform ed:vo j d÷theMain:void

JFrame
MyFrame FrApplication

DoOro
frame:MyFrame

jBuffonerowse_actionPerformed:v

packFrame:boolean
jsuttonPromela_actionPertormed:

+substRequest:String jButtonOptions_actionPerformed:v +FrApplication
÷subst:String Ente r_actionPerfo rmed:void +main:void
+beauty:String +MyFrame
+hrefs:ArrayUst -Jblnit:void
÷forms:ArrayList +checkBox:void
÷stringFinderint +jMenuFileExit_actionPerformed:v’

+jMenuHeipAbout_actionPerforme
#processwindowEvent:void
doEnter:void
doOpenCommand:void
doopenPromela:void

Figure 27 Class Diagram

70

The main function of the Web Mode! Extractor/Manipulator is processing proxy

server’s log file. The main steps ofthis ifinction are as follows:

The tool splits the proxy server log file into request/response pairs by finding the

beginning and the end ofthe HTML pages contained in the log file (figure 28).

Request O

F— <request n>
ResponseO

Request n WME/M <page n>

Response 1
Request 2 Response ii data

Response 2

</page>
etc... Interrnediwy

buffer

Proxy server XML
log/ïÏe Finite State

Machine

Figure 28 Processing ofthe proxy server log file

• The Web Model ExtractorlManipulator afterwards treats the HTML pages one by

one in order to extract the necessary information that helps create the finite state

machine. Currently, the focus is on extracting the hyperlinks and the number of

occurrences of a selected string. We consider one single specimen from every

hyperlink because we do not want to expand the model with duplicate transitions

if there is no benefit.

• We also avoid creating duplicate states in the mode! for duplicate pages.

Therefore, we check if the page already exists in the XML file. If the page is

found, we skip its analysis. Otherwise, we extract the information needed to

create a new state ofthe finite state machine.

To process the XML file we use a java parser from org.w3c.dom [URL7] that

provides the interfaces for the Document Object Mode! (DOM), a component of the

71

Java API for XML Processing [URL8J. DOM is a tool for manipulating data, flot a

data structure itself DOM is a memory representation of the data in a tree

representation. It uses a pointer to the root node. Building the Document tree is an

expensive operation, being a Java object equivalent ofthe whole XVIL tree, but it can

iterate over the tree to look at the nodes and it also can cUit the tree: add/remove

nodes. The last step is to create the finite state machine in PROMELA. The states and

transitions described in XML are mapped to the states and transitions in PROMELA

language.

6.2 GUI

In this section, the graphical user interface (GUI) ofthe tool is described. The GUI is

relatively simple as seen in Figure 29.

Web Model Buitde, IJE3
File He

file name Showlhelie

Oioos Ertersstrinhere: initstringvalue iidfl,endel

t t t t t t Instructions t t t t t t t

to buid e model from e proxy log file, firat choose the file using Brovse button

thon enter e string to calculate its occurence in every page.

1]

Figure 29 Web Model Extractor/Manipulator Window

72

It consists of one main window with four buttons: “Browse”, “Options”, “Show the

file” and “Build the modef’.

With the Browse button, the user browses the files/directories structure and can

choose the proxy Ïog file to be processed.

eb Model &il4r

File Help
-jpj

Options button opens a new window, as seen in Figure 30 where the user can select

one of two options: “whole word” and “case sensitive”. These options are relative to

the string to be searched that the user enters in the GUT.

Browse Ie name

Options Entera string here: lot string value

t * * w * * * T.4-....,t-.-.-.., * * * * * * *

To buid

then ent

Showtheflle

Auild the model

Open File ouse button

Looki: JTeI] 4

3 model,TXT

.) oc1.txt

) otiiiuge.txt

rni

Fename: outlittle.TXT Open

Fes al type: IA1I Files (] Cancel

73

— mxl
n F khole worc

F case sensitive

0k

Figure 30 Option Window.

“Show the file” button displays the content ofthe chosen file on the text area from the

interior part ofthe application’ s window, as in the following screenshot example:

Web Model Builder L =JçJ2sj
File Help

Browse frojectPresentation\Tesflmodellxr Showtheflle

Options Entera string here: tint string value

ff17P11.1 200 0K

content-Type: textlhtal

Server: Microsott—IIS/S%0

Date: Fri, 14 Jun 2002 17:53:53 swr

chead>

<title>The WORLD’S classical Radio Station, classical Husic 2417, FEEE e—nail!</title:

<JtETÀ naae=nvdescription content=rBeethoven. con is The World’s Classical Radio Statio:

<NETÀ nasae=nrkeyuordsrr content=’TBeethoven, Bach, Mozart, radio, classical music, class

<script la age=T’JavaScript” te=”text/javascript”>

1/ Source: codeïoot.coa

function blockError () {return truc;)

4j

____j

Loaded: c:tprojectpresentation\Tesfloutlillle.1Xr

Figure 31 Show the file button

The last one, “Build the modef’ button, starts the main engine and extracts the final

state machine from the proxy log file.

Build ffie model j

J

74

File Help

Browse jroiectPresentation\Testouilittle.DCr

J]
Chosen file: C:i.projecFresentatonTesfloutlittle.]Xf

Figure 32 Build the mode! button

Show the file

There are three fields: the one on the !eft of the Browse button displays the name of

the chosen log fi!e produced by the proxy server. The second text fie!d is for the user

to enter the string for which the number of occurrences is calculated. The third text

fie!d is the text area where we disp!ay the main steps executed by the app!ication as h

mns.

Options Entera string here IMoza Ouildthemodel

t t t t t Instructions t t t t t

To buid e mode! from e proxy log file, first choose the file using Erouse button

then enter e string to calculate its occurence in every page.
ttttttt

Starting building the mode! fron die proxy ueb log file...

Running...

J
75

Chapter f

7 Case Study

In this chapter we present a case study on which we appiied our approach and

ftamework. We seiect the web site of a classical music radio station “Beethoven” that
has the foliowing URL: www.beethoven.com.

The aim of this case study is to demonstrate applicability of formai methods for

verification of Web based applications and the correctness of Web Model

Extractorllvlanipulator tool. We first present our browsing experiments with the web
site. We then present the formai modei extracted by the ExtractorlManipuiator tooi

and represented as an automaton in SPIN. Then we formulate properties used for

verification. We formulate the properties to be checked in LTL. Finally, we discuss
the scalability ofthe tool to generate large models of web applications.

71 Ihe “Beethoven” Radio Station Web Site

We surf the web site to observe the particularities of our test target, starting from the
home page at www.beethoven.com. A snapshot ofthis page is shown in Figure 22.

76

£ictea
(tt»

£Ij©k h.,.

YOU AIlE BEING IEANG!
Support the Members 0f Congreos have lntredoeeti legivlation tu 1181f

INTERNET RADIO FAIRNESS ACT soya Inlemut rutila Your efforts am worWflO, bot We nnw n000
J help more than everto gel Ibis bit made 10W.

fAX CONGRESS IIERE te support the Internet Radio
Fairness Art NOW1

Fnday, August 9, 2002

Technlcol Alartt . Flrowafl lavons
Ifysu are hwing difficulty listening tu Beethoven Radio t may be due ta o firewall issue.

r more Information.

ickage frum Myslic Marriott bolet!
s great confusE

Click
von Radia otatrtrao plcketi outtoryou IbIs week

Figure 33 Home Page from www beethoven. cont site

On the left side of the Home Page, we can observe that there is a menu which is

supposed to help us navigate easily through the web site.

Looking at the lefi menu ftom the Home Page, Figure 33, we observe the item

“Explore”. Holding the “hand” cursor on this item, another menu is opened. This new

menu holds another eleven items which can leaU us to eleven pages, respectively: The

Liszt, Culture Connection, Beethoven’s Backyard, Photo Gallery, Beethoven

University, Notes and Quotes, Ludwig Wallpaper, Link b Us, Start With Us, New

Releases and Beethoven Movie. On the boftom ofthe page there is also a link called

“Explore” that leads us to a page “Explore” shown in the next snapshot. This page

lias no relationship with the menu “Explorer” that was described before. Moreover

the menu dispÏayed in this page looks exactly like the menu encountered in the Home

j
tin Vew Fvmke, Inok p

J _j
Bach . . Otcp Rofreoh Hotte

Akyas CJ httpi/www.beefivuyeocam -

talle,.. Classerai Uueic 2417. FREE e-jp . Uletatait Internet Etto.ee

tveet,it
IVr.,Id, C1n,.,i,il !,.,dis

ii
Se,.ch Euvodea Hotrea

las - Tbe Si.ean trom Carnivai of the Animais toncton Siutoniet

BBEIHOVEN E.MfiILetor 10:

Paotnord:

GelMyE-Meil

Support the

Iw’
lLEGALDEFtPEFUND

-.-

,,

Moi ‘trI [dl [diwth>(M..

-

w

31

.2.J

rj

-o

cv

zi

Tire hart

Cueure Cnnnectlnn

Beeth.wena uactwlrrd

Photo GalieIy

Beethoven UnMwslty

Notes a,oi Quotas

Ludwig Wallpdper

Iiek Te Us
Start tnfth tJS

News liCteuses

Beethoven Macle

IT

iClassics.com Feature

Essenilal GuCar
Audras Sogmet aed John
W:Illams are justtwo 0f the
stars an tItis grual-priced
2-CC ol avarlabie now al

Classtcs rom :.11r k..
BUYttNOW ‘

Sobscribe 10 OUt
e-mail newslelter

E-mail Addr,s.

SigeUp

av-9

uret E-mal bddrysti

check Beethoven Radio Local Time

Ciasnlcal Uuslc Hews

Juty 31, 2002 . Oerliner Ensemble Girector Staying
Ensemble founded by Bertuldt Brecht wlll mmaln tinter Clous Pegreann. CAP)

Juty 30, 2002 . Orchestra Strïke Wrecks New York Mozart FestiaI
Pertormanues have been canceled due tU lober dispute WW1 muaicrans (Reuters)

Beethoueti Poil

Carilcal Muaic Ladre ami lrfieredxrg 110M h/e Found • Intente

ajfiuaaooatu.I JGnvee. I Wuhvosolt.. I M]JDBCShe..) flE:desnu...j JEeoinhRo..f]JOBCShe-.. MJThOWIJR...I iŒ%AM

From theoe US.
cities, which has

the bout
orchestra?

77

Page, but is flot the same. In the Explore page, the menu is composed of ten items:

Now Playing, Music Log, E-Mail, Shopin Mail, Live! Webcam, Bulletin Board,

Ludwig’s Links, Contests, About Us and Help. Though the menus ftom previousiy

described pages look similar, they do flot lead to the same set of pages.

We also observe that a certain page named ccSchedu1e can be reached only starting

from the Home Page. So, to navigate from “Explore” page to “Schedule” page, the

user has to go through the Home Page.

7.2 Properties

We can formulate some browsing properties that could be checked against the model

ofthis web site. For example:

- “Is page Schedule reachabte from Explore page without going through Home

Page?” and

- “Is there at ieast a page from which page Schedule is reachabte without going

through the Home Page?”

78

- Beethoeen sas - Ladsiq’. Lisk - Misosotl Internai Eiqdo.er

Et LdinhXM..

zi Go Lrka’

Ei1

w

0
Exp1pr

e
- J

r-ii
The besit tne no -

stopamanfrom I
becomrng abuuim j

q

—‘t)

Teach boha that —
aioieeaoe againat j
WOfllaii S wrnag.

Deere Internet

jj ‘leJperriaiŒ I $Jthoreae ap JGneeSeV. WMiooeott.. I]Jbo.I 3RerAblS ‘s-- j MerOri &©I 2°’1 4:41 PM

Figure 34 Explore page from www.beetltoven.com site

We wouÏd like to check if a certain string, say “music”, is flot repeated more than a

certain number of times. For instance, we want to check if “the number of

occurrences of the string music in every page that we visited, is strictly less than a

given threshold, let it be 6”. If we combine this last property with the last formulated

browsing property we can have a new one, now more complex: cThere exists at least

one page with occurrence of string music < 3 reachable from Explore page without

going through the Home Page”. Afier we establish what we want to verify in the web

site, we extract the model and formalize the properties.

7.3 FormaI Model

The next step is to extract a model for the web site case study. We use our prototype

tool, the Web Model ExtractorlManipulator to generate a finite state machine that

corresponds to the above mentioned web site.

Verw Fvnflne bols ll&p

s) :i
- - V Hshneh Berne

Ii h /?neersbeitrev om/ortee tem

L - I
bosch Faycete: Hiherp - - - - Mol - - - Pr.rt

yteettj’1c. -. -

U’’ 7hc iis,/rlr C1b,s.rirel Nn,Iis .St,fuu

Lt’

sijot bar.

SALZBURG FESTIVAL —°- - - -

COMPEtON 2OO2 -

NOW PtAYING

UUSIC LOG

E-MAIL

CHOPIN MALC

CIVE! WEBCAU

BULLETIN BOARD

LUDWIQ’S LINKS

CONTESTS

ABOUT US

HECP

Tire Cisci
Greatweb silos foryourcuilurai illestile thatfeIioW similisai munis loyers Ihink ace the beIt! Mit ysur own favorites 10
Ihe isP

Cioneical Notes and Quotas
Check oui some interosbng lacis unit pontes about ciassicai music lent In bygecthoeencom°users.

Beethoven Univershy
Leam ail about ciassicai inuits tram ibe Internet Publie Library.

Cuiterai Cannoctions
Take o peek al borne 0f the emiling veonha voit shows !ak:ng place n pour bernoises wlth ou, Colora! Connechons

Civet Webcam
He,ç what are fou IoOldng ai? Pjfl pour ioeority Beetflomnc-om° pernonalloer n mirai! digital studio!

VteiI Oui DïqiIt Studios
Beethoven Radios ail digital, state-obihe-art broadcaat studios are ON AIR. Unhike analogue broadcasitng, now enjoy
ail clansital munie ail the lime rrom apure digital source. Yeu’qe neyer fiant radio hke thin butane!

Beethoven ut the Moules
Orab o boit nfpopcorn and check eut Ibis eecihng presentauun. Ode lu Jey! Youil floed die Ban Flash browser piug-in
from Macoomedia.

Send tu Friand

79

During the navigation of the web site, the request/response pairs of the visited pages

are collected in the log file ofthe proxy server - “out.txt”.

The following is a snapshot of the GUI of the Web Model ExtractorlManipulator

when executed using our case study.

RWeb Model Duilde,

File Help

Browse jC\proecfloufloutbd Showtheef

Options Enterastringhere: Imusic !.6uildthemodel

[‘o liuid a iaodel froi a proxy log filer first chonse the file using Browse button

then enter a string to calculate its occurence in every page.

Starting building the iaodel froia the proxy web log file...

unning...

luilding the Proiaela file representing the model...

unning...

In this iaodel we f ound 14 states and 115 transitions.

Chosen file: C:projectOutout±xt

Figure 35 Web Model Extractor/Manipulator

We browse the files/directories structure and we have chosen the proxy log file to be

processed (out.txt file).

80

- I I x

I whûle wor

t case sensitive

0k

figure 36 Option Window

We then select the “Option” button which opens a new window. Two options are

available in this window: “whole word” and “case sensitive”. We select “whole

word” and we validate our selection with the “OK” button.

Then we write the string “music” for which we calculate the occurrence in every

visited page and we click on the “Build the model” button. The main engine starts

and extracts the finite state machine from the proxy log file. The main area of the

GUI is a text area where the main steps executed by the application while running are

shown.

The prototype tool first builds an XML FSM mode! ftom the proxy server log file.

Since we explained the main steps of this module in the analysis and functionalities

part, we only show the concrete results. Figure 37 shows a fragment ofthe finite state

machine expressed in XML format.

81

<?xml version” 1.0” encoding”UTF-8”?>

<site>

<request>GET http:llwww.beetlioven.com:80/ HTTP/1 .0</request>

<page Request=”http://www.beethoven.com” Code=”N/A” Id=”O”>

<href>httpilwww.beelhoven.com4href>

<hrefhttp://www.beeffioven.com/notes.htm<Jhret

<hrethttp://www.beethoven.conVhe1p.htm</hret

<hrethttp://www.beethoven.comIschedu1e.htin4hret

<hrethttp://www.beethoven.comIstore.htm<Ihret

<href>hftp://www.beethoven.comJcontacthtin4href

<string Occurence=”2”>music</string>

</page>

<request>GET http:llwww.beeffioven.com:$0/Assets/menulimageslaboutus_12.gff HTTP/1.0</request>

<request>GET http:llwww.beethoven.com: $0/contest.htm HTTP/1 .0</request>

<page Request=”http://www.beeffioven.comIcontesthtm” Code”N/A” 1d” 1”>

<hrePbllp://www.beethoven.comJcontest.htm<!hreI

<hreIhftp://www.beethoven.comJabouthtm4hret

<hrelittp://www.beethoven.com/contest.htn1href

<string Occurence”2”>music<Istring>

</page>

<Isite>

Figure 37 The model — XML Format

82

The next step of the execution is to translate the XML mode! to the PROMELA

language which is understood by the mode! checking too! that we have chosen, SPiN.

In Figure 38 we show a fragment of the PROMELA model created from the XML

file representing the classical music radio station site.

We can observe here a non-exhaustive list ofthe hit links and 2 ofthe 14 states.

83

/*tO = http://www.beethoven.com,

t4 = http: //www.beethoven. com/explore.htm,

tu http://www.beethoven.com/schedule.htm,
t12 = http://www.beethoven.com/newsletter/newsletter.htm,
t13 = http://www.beethoven.com/bbackyard.htm;*/
bit tO= 1, tl= 1, t2= 1, t3= 1, t4= 1, t5= 1, t6= 1, t7= 1, t8= 1, t9=
1, tlO= 1, tll= 1, t12= 1, t13= 1;
byte state =0, strocc = 2
active proctype websitef)

tO —>strocc = 2;
ti —>strocc = 2;
t2 —>strocc = 2;
t3 —>strocc = 4;
t4 —>strocc = 4;
t5 —>strocc = 0;
t7 —>strocc 4;
t8 —>strocc = 1;
t9 —>strocc = 3;

state
state
state
state
state
state
state
state
state

=0;

=2;
=3;
=4;
=5;
=7;

=9;

goto
goto
goto
goto
goto
goto
goto
goto
goto

LABELO;
LABEL1;]
LkBEL2;
LABEL3;)
LABEL4; J
LABEL5;]
LABEL7;
LABEL8;)
LABEL9;

goto LABELO;
LABELO:
If
t: atondc{
:: atomic{
:: atomic(
t: atomic(

atomic{
t: atomic{
:: atomic{
t: atomic{
:: atomic{
t: atomic{
:: atomic(
tt atomic{
t: atomic{
fi;
LABEL1:
If
:: atomic{
:: atomic{
:: atomic{
:: atomic{
:: atomic{
2: atomic{
:: atomic{
t: atomict

t’a
t”
t12
t13

—>strocc
—>strocc
—>strocc
—>strocc

= 2;
= 6;
= 3;
= 8;

state =10; goto LABEL1O;}
state =11; goto LABEL11;]
state =12; goto LABEL12;]
state =13; goto LABEL13;}

ta —>strocc
t, —>strocc
t2 —>strocc
t3 —>strocc
t4 —>strocc
t7 —>strocc
t8 —>strocc
t9 —>strocc

= 2; state
= 2; state
= 2; state
= 4; state
= 4; state
= 4; state
= 1; state
= 3; state

=0;
=1;

=3;
=4;
=7;

=9;

go t o
got o
goto
goto
goto
goto
goto
goto

LABELO;
LABEL1;
LABEL2;]
LABEL3;
LABEL4;
LABEL7;
LABEL8;]
LABEL9;

:: atoudc{ tlO —>strocc = 2; state =10; goto LABEL1O;}
fi;

figure 38 Finite State Machine in PROMELA

The attributes Request ofthe states (pages) from the XML file here became the labels

tO, ti, t13 ah initialized to 1; means that ail transitions are enabled and any ofthem

could be taken.

84

The labels from PROMELA file represent the states. For example, “Label 0” is

representing the start state that is the home page. Aller the “if’ statement we have the

transitions. for example: “::atomic{ tlO ->strocc = 2; state =10; goto LABEL1O;}”

means that from the home page (Label 0) we can leave the state using the transition

tlO (where tlO = http://www.beethoven.com/privacy.htm) to go to the state 10 (Label

10) with the attribute state=10, the state number and strocc = 2 meaning the

occurrence ofthe string “music” in this page is 2.

The state description is finished with “fi”.

In figure 38 we show the first two states from the model extracted from

www.beethoven.com web site in the XML format.

Afier the translation of the model from XIVIL to PROMELA, the model can be

visualized in a graphical representation as shown in Figure 39. This representation is

generated by SPIN starting from the PROIVifiLA model.

The circle labelled with 80 represents our Label O which is the home page. The edge

labelled tO, ..., t5, t7, . . . ,t13 represent the transitions which leave the state 80 and

target the corresponding states: Label 0 (80) — “Home Page”, Label 1(136), Label 2

(192), Label 3 (242), Label 4 (298) — “Explore” page, Label 5 (354), Label 7 (404),

Label 8(454), Label 9 (504), Label 10 (554), Label 11(610) “Schedule” page, Label

12 (666), Label 13 (722). Label 6 is flot in the model because it is an extemal link and

the model checker did flot find a transition from the other states to this state. We can

search for the transitions which leave each state to see the potential browsing flow.

85

figure 39 The Mode! — Graphica! Representation

It can be observed that there is no edge between Labe! 4 (298) — “Explore” page and

Labe! 11(610) — ccSchedu!er page.

7.4 FormaI Properties (LTL)

In this section, we formally specify the properties described in section 3 in LTL
(Linear lime Temporal Logic). We then present the resuits of checking these
properties against the mode! extracted in section 4 using SPiN model checker.

86

7.4.1 Propertyl

“15 the number of occurrences of the string music in eveiy page strictly less than a

given threshold 6?” LTL: the LTL formulae and the definition of the predicate

“occur” are defined as follows:

[J occur

define occur (strocc < 6)

Linear lime Temporal Loqic Formulae

Formula: occur Load.

Operators: [1 <> U > or

Property hdds For: Ail Ececutions (desired behavior) C No E,4ecutions (error behavior)

Notes [File Beeihovenlinail ii):

— Use Load to open a File or a tempiate.

Dehnitions:

— ffdefine occur (stbcc < 6)

Neyer Ciaim: Generate

j neyer { I” ![[] occur) /
TO_init:

(I ftoccur))) -> qoto accept_all
(1).> qoto TO_init

accept_ali:
— skip

Verificahon Resuit: RunVenificabon

±J warning: For p.c. reduction to be valid the neyer daim must be stutter-ciosed
J (neyer daims qenerated From LTL Formuiae are stutter-ciosed)

(Spin Version 3.4.3 with XML-S June 2001)
+ Partial Order Reduction

Full statespace search For:
I neyer-daim ÷

Heli Clear Close SaveAs..

Figure 40 Linear Time Temporal Logic Formulae.

Figure 40 shows a snapshot ofthe LTL Property Manager window of SPIN.

87

The Formulae field introduces the LTL formulae “[j occur”. In the $ymbol Definition

field, we give a definition of the predicate “occur” which states that the state affribute

“strocc” is strictly less than a given threshold 6: “#define occur (strocc < 6)”.

Neyer Claim:

The next step is to generate the neyer daim (negative) ofthe property by selecting the

“Generat&’ button from the “Neyer Claim” section. figure 41 shows the neyer daim

ofthe property:

1*
* Formula As Typed: [j occur
* The Neyer Claim Below Corresponds
* To The Negated Formula !([J occur)
* (formalizing violations ofthe original)
*1

neyer {/* !([] occur) *1
TOinit:

If
(! ((occur))) -> goto accept_all
(1) -> goto TO_init

fi;
acceptall:

skip

J

Figure 41 The Neyer Claim for LTL: []occur.

Verification Resuit: The result ofverifying the property is invalid. SPIN produces a

counter example with an option to mn a guided simulation of the counter example

that shows a path to a page that violates the property. Figure 42 shows the simulation

mn where the “music” string occurrence is equal to 8.

$8

preparing trail, please wait. done
spin: warning. “pan_in”, global, byte state’ variable b neyer used
spin: warning. “pan_in”, global. ‘byte strocc’ variable b neyer used
spin: couldn’t find daim ignored)

2: proc O [website] une 23 “pan_in” (state 2) [(t2]] <merge O now
2: proc O (website) une 23 “pan in” (state 3) [stroco = 8] <merge 161 now
2: proc O [website] line 23 “pan_in” (state 4] tstate = 2] <merge 161 now @1 61>

spin: trail ends after 3 steps
flprocesses: 1

3: prac O [websilej une 50 “pan_in” (state 161]
1 processes created

Single Step Suspend Save in: sim.out Clear Cancel

Figure 42 Guided Simulation Output — Property 1

7.4.2 Property 2

“Is page Schedule reachablefrom Explore page without going through Home

Page?”

This property implies that there exists a path from Explore page to Schedule page

without going through the home page. However, properties with existential operators

cannot be specified in LTL. Therefore, the property is negated to check if in every

path between the designated pages, the home page is present. $o, if the negation of

the property is satisfied, it means that the original property is violated and vice versa.

Negation: On ailpathsfrom Explore page to ScheduÏe page Home Page is present.

b specify this property in LTL, we make use of the property pattems found in

[URL7J. Predicate P becomes true at a time t1, between tq and tr, which are the times

when predicates Q and R become truc, respectively. The property is specified as

follows:

ExistBetween (home, explore, schedule) where home, explore, and schedule are

predicates that designate the web pages in question.

Simulation Output

89

LIL: As we did previously, the following LTL formulae and definitions of the

predicates are inserted in the Formulae and Symbol Definitions fields respectively.

fi (explore && !scheduie -> f(! schedufr) U «home && !schedufr) II fi
(Isehedute» »# define home (state = =0)

define explore (state =4)

define schedule (state==1])

Verification Resuit:

The verification resuit is valid which means that the original property is invalid:

“page Schedule is not reachable from Explore page without going through Home

Page”. This resuit conforms to our observations, which means the model conforms to

the web site navigation structure and the property was verified.

7.4.3 Property3

“There exists at Ïeast apagefrom which page Schedute is reachable without going

through the Home page.”

For the same reasons explained for Property 2, this property has to be negated.

Negation:

“On ail paths to Schedule page, the Home page is present “Using the Existence

pattern: ExistBetween (home, (t (home & t (schedule)), schedule)

- The predicate (home) is designated for the home page.

- The predicate (t(home) & !(schedule)) is designated for any page that is not the

Home page nor the Schedule page.

- The predicate schedule is designated for the Schedule page.

LTL:

([J ((Ihome) && !schedule -> ((I scheduÏe) U ((home && !schedute) [J
(!schedule)))))# define home (state = 0)

90

define schedzde (state =11)

As in the previous case the “Verification Resuit” is valid which means the original

property is invalid which conforms to our observation.

7.4.4 Property 4

“There exists at least one page with occurrence of string music < 3 reachable from

Explore page without going through the Home Page.”

Negation:

“On ail paths from Explore page to pages where occurrence of string music < 3 the

Home Page is present.” Using pattem: ExistBetween (home, explore, (minocc &&

explore))

LTL: the following are the property in LTL and the definitions ofthe predicates used

in the formulae:

fi (explore && I(minocc && !explore)-> ((I (minocc && !explore)) U (home I [J
minocc && !expÏore,)» »#define home (state= O)

#deflne explore (state==4,

Ildefine minocc (strocc<3,)

Verification Resuit: The resuit of verifying the property is invalid. Figure 43 shows

the output of the simulation mn for the counter example. It shows the sequence of

states that violates the property where the page explore (state = 4) is followed by the

page where state = 8 and where strocc = 2. The latter page obviously is flot the home

page (state O). So, it can be concluded that there exists at least a path from page

Eexplore to a page where strocc is less than 3 without going through the Home page

which proves the validity ofthe original property.

91

— preparing trail, please waii. .done
spin: warning. “pan_in”, global. ‘byte state’ variable is neyer used
spin: warning. “pan_in”, global. ‘byte strocc’ variable is neyer used
spin: couldn’t (md daim (ignored)

2: proc O [website] me 26 “pan_in” (state 17) [[14)]
2: proc O [website] me 26 “pan_in” (stale 18) [strocc = 6]
2: proc O [website) line 26 “pan_in” [state 19) [slate = 4]
4: proc O [website) line 79 “pan_in” [state 230] [[18)]
4: proc O [website) fine 79 “pan_in” (state 231) [stroce = 2]
4: proc O [website) me 79 “pan_in” (state 232) [state =8]
6: proc O (website) me 113 “pan_in” (state 348) [[110)]
6: proc O [website) fine 113 “pan_in” (state 349) [slrocc = 4]
6: proc O [website) line 113 “pan_in” (state 350) [slate = 10]

spin: trail ends af ter 7 steps
flprocesses: 1

7: proc O (website) fine 133 “pan_in” (state 467)
— 1 processes crealed

Single Step Suspend j Save in: sim.out

Figure 43 Guided Simulation Output — Property 4

7.5 Limitations of the Extractor/Manipulator Tool

The scalability ofthe application is limited by the processing power.

The following example taken from CRIM’s web site includes 441 states and 8867

edges. The time for model extraction in this case was 2 to 3 minutes but the

transformation of the)CvEL finite state machine file in the PROMELA finite state

machine file took a considerable amount of time of 2-3 hours. Thus, more work

should be done in order to reduce the execution time. Since we are working with

XML files, h is very expensive in terms of memory. The solution would be to store

the information that we need in another data structure which can be accessed faster

such as hash tables.

Simulation Dulput

<merge O now @1 8>
<merge 250 now @19>
<merge 250 now @25O>
<merge O now @231>
<merge 388 now @232>
<merge 388 now @388>
merge O now @349>
<merge 467 now @35O>
<merge 467 now @467>

Clear Cancel

92

RWeb Modal Builder

PUe Help

Browse IC:\projectTesflouthuge2CRlM.td Showthe file

Options Entera string here: Ireseareh Buildthe model

t t * t t t Instructions t t t t t t

ro buid a model f rom a proxy log file, first choose the file using Browse button

then enter a string to calculate its occurence in every page.
ttttttt

J

Starting building the modal from the proxy web log file...

tunning...
ttt**tt

luilding the Promela file representing the model...

tunning...
ttttt*t

In this model we found 441 states and 6867 transitions.
ttttttt

n

_______ ______ ________

1f:
Chosen file: C:prcflTestouthuge2CRlMi%

Figure 44 Scalability

93

Chapter 8

8 Conclusions

8.1 Summary of the Resuits

We demonstrated that the mode! checking technology can effectively be used for

verification of web applications.

Our work was just the beginning of a research for defining a more general modeling

ftamework and implementation of the toolkit. We described a framework for

modeling simple web applications defined in LTL (Linear Temporal Logic). The

properties expressing the web navigation can then be verified by the SPIN model

checker on the model extracted from the browsing session. The process includes

interception of the traffic between the client and server, its analysis and the

construction of a formai model (fSM) out of it, using a standardized format (XML),

and the translation to PROMELA which is the language of the SPIN model checker.

We implemented a prototype tool that is based on this framework and demonstrated

on case studies that the theory of mode! checking can be efficient!y appiied for web

application verification.

8.2 Future Work

We built a prototype tool that can be used for formai verification of simple web

applications. At the same time, more work remains to be done. In particu!ar, the

94

modeling approach has to be expanded to applications with ftames and windows,

forms and other features. Accordingly, the deveÏoped tools have to be extended to

handie such features. It would also be of interest to investigate the applicability of the

developed ftamework for web services.

95

References

[1] L. de Alfaro, “Model Checking the World Wide Web”, In Proc. of the l3th

International Conference on Computer Aided Verification, Paris, france, July

2001.

[2J A. A. Andrews, J. Offutt and R. T. Alexander: “Testing Web applications by

modeling with fSMs”, Software and Systems Modeling, Publisher: Springer

Berlin/Heidelberg, Volume 4, Number 3 D, 2005.

[3] 5. Budkowski, “Estelle development toolset (EDT)”. Comput. Network, 1992.

[4] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. “Model Checking”, The IVIIT

Press, 1999.

[5] M. G. Gouda, “Protocol verification made simple: a tutorial.” Comput. Network.,

1993.

[6) I. S. Graham, “HTI4J Sourcebook”, Second Edition, John Wiley & Sons, Inc.,

New York, 1996.

[7) M. Haydar, “FormaI Framework for Automated Analysis and Verification of

Web-Based Applications”, Proceedings ofthe l9th ffiEE international conference

on Automated software engineering, September 20-24, 2004.

[8] R. M. Hierons, “Extending test sequence overlap by invertibility.” Comp. J.,

1996.

[9] C. M. Huang, and J. M. Hsu, “An incremental protocol verification method.”

Comp., 1994.

[10] C-M. Huang, M.-Y. Jang: “Interactive Temporal Behaviours and Modelling

for Multimedia Presentations in the WWW Environment.” Comput. J. vol. 42,

1999.

96

[li] G.J. Holzmann. “The Model Checker Spin”, fflEE Transactions on Software

Engineering, vol 23, no 5, May 1997.

[121 K. Naik, “Fault-tolerant UTO sequences in finite state machines.” Proc. sth

Int. Workshop on Protocol Test Systems, Cavalli, A. and Budkowski, S. (eds),

1995.

[13] M. Niisson, “Regular Model Checking”, Printed by the Department of

Information Technology, Uppsala University, Sweden, 2000.

[14] M.C.f. de Oliveira, P.C. Masiero, “A Statehart-Based Model for Hypermedia

Applications”, ACM Transactions on Information Systems, Vol. 19, No. 1, 28-52,

January 2001.

[15J T.A. Poweil, “Web Site DeveÏopment, Beyond Web Page Design”, Prentice

Hall, 1998.

[16] P.D. Stoif s, C.R Caban-us, “Hyperdocuments as Automata: Verification of

Trace-Based Browsing Properties by Mode! Checking”, ACM Transactions on

Information Systems, Vol.16, No. 1, January 1998.

[17] D. Stotts, J. Navon, “Model Checking CobWeb Protocols for Verification of

HTML Frames Behaviour”, In Proc. of the 1 lth International World Wide Web

Conference, Hawai, U.S.A., May 2002.

97

VRLs

[URL 1] http :llwww.isc. orglindex.pl?/ops/ds/

[URL2] http :llwww. ascusc. org/jcmc/vol3/issue 1/ho.html

[URL3 J http://www.useit.com/alertbox/990502.htm1

[URL4J http://www.reitshamer.com!

{URL5J http://www.w3schoo1s.com/xm1/

[URL6J http :llwww.w3 schools. comldtdl

[URL7] http ://netlib .bell-labs. com/netlib/spin/whatispin. html

[URL$J http://JAVA.sun.com/j2se/1.4/docs/api/index.htm1

[URL9] http://JAVA.sun.com/xmll

[URLI 0J http :Uwww. cis. ksu. edu/santos/spec-pattems/

[URL 111 http ://cm.bell-labs. com/cmlcs/what/spinlMan/ltl.html

[URL 12] http i/www-2. cs. cmu. eduf—modelchecld

[LTRL 13] http://spinroot.com/spin/whatispin. html

[URL 14] http://www.softwareqatest.com/qatweb1 html

[URL 15] http :Ilpdv. cs.tu-berlin. de/—aziJpetri. html

n

ç’ — t
t

