Université de Montréal

Formal Checking of Web Based Applications

Par

Doina Mirela Barburas

Département d’Informatique et de Recherche Opérationnelle

Faculté des Arts et des Sciences

Mémoire présenté a la Faculté des Etudes Supérieures
en vue de I’obtention du grade de
Maitre és Science (M. Sc.)

en Informatique

Juin, 2006

© Doina Mirela Barburas, 2006

Ami, 3950.5

RL;
s}

Aol
V- oiq

Université l'"‘l

de Montréal

Direction des bibliothéques

AVIS

L'auteur a autorisé I'Université de Montréal a reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement & des fins non lucratives d'enseignement et de
recherche, des copies de ce mémoire ou de cette thése.

L'auteur et les coauteurs le cas échéant conservent la propriété du droit
d'auteur et des droits moraux qui protégent ce document. Ni la thése ou le
mémoire, ni des extraits substantiels de ce document, ne doivent étre
imprimés ou autrement reproduits sans F'autorisation de I'auteur.

Afin de se conformer & la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu étre enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n'y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author's permission.

in compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

Faculté des Etudes Supérieures

Ce mémoire intitulé

Formal Checking of Web Based Applications

Par

Doina Mirela Barburas

A été évalué par un jury composé des personnes suivantes :

Jean - Yves Potvin
président — rapporteur

Houari Sahraoui
directeur de recherche

Alexandre Petrenko
codirecteur

Michel Boyer.
membre du jury

Mémoire acceptéle : 13 octobre 2006

il

iii

Résumé

La plupart des outils de test examinent seulement un ou quelques aspects spécifiques
des applications Web. La vérification de la syntaxe des documents HTML, la
confirmation de l'intégrité des liens d'un ensemble de documents HTML, l'examen
des composants GUI inclus dans les browsers et la mesure de l'exécution de
l'application en sont de bons exemples. Dans cette thése de maitrise, nous définissons
des méthodes d'extraction d'un modéle de l'application Web a tester qui permet
d'examiner, a l'aide d'un outil de vérification de modéle, si l'application posseéde
certaines propriétés définies par l'utilisateur. Cette approche permet, par exemple, de
vérifier la structure de navigation d'une application Web. Notre outil est un prototype
qui permet ces vérifications en utilisant des méthodes formelles.

Elles peuvent étre exécutées avec un vérificateur de model suivant la création d'un
modele « machine a états finis » (FSM) extrait a partir de I'application en question.
Nous employons une méthodologie basée sur la théorie de machine a états finis, en
particulier, la théorie du vérificateur de modéle. Développant un environnement de
vérification pour des applications Web, nous réutilisons un vérificateur de modéle
SPIN utilis¢ dans les laboratoires de recherche. La méthode est intégrée a un
prototype qui automatise le processus d'extraction du modéle de machine 4 états finis
a partir de l'application a vérifier et automatise également la transformation du

modele dans un langage reconnu par le vérificateur de model choisi.

. N . . . N o’ . P .
Mots clés: vérificateur de model application web, machine a états finis, vérification

des liens

iv

Abstract

Most Web application test tools test only one or some specific aspects of Web
applications, such as verifying the syntax of HTML documents, confirming the
hyperlink integrity of a set of HTML documents, testing the GUI components
embedded in the browsers, or measuring the performance of the Web application.

In this work, methods are defined for extracting a model from a given web
application so that a commercial or academic model-checking tool can be used to
verify whether the application possesses certain properties defined by the user. This
approach allows us to check, for example, the link structure in hyperdocuments or
more generally the navigation structure of a web application. Our prototype tool
checks the properties of a web application using formal methods. This is achieved
with an existing model-checker once a state machine model is extracted from the

application in question.

We use a methodology based on finite state machine theory, in particular, the theory
of model checking, and test derivation from state machine models. Then developing
a verification environment for web applications, we reuse an academic model-checker
and testing tool called SPIN. The method is implemented in a prototype tool that
automates the process of extracting a state machine model of the application to be
verified and the model transformation into the input recognized by the off-the-shelf

model-checker chosen.

Keywords: model checker, web application, finite state machine, link verification

Table of contents

1 INtrOAUCHION ..ottt ettt e e e 1
2 IMOLIVALION ..ottt e et e e et e et e e e e ner e e neeeeenee 8
2.1 Methodology OVEIVIEWccooviiiiiiiiiiiiieec e 10
2.2 Detailed MethodologYocvooiiiiiiiiiieiee e 11

3 Model Checkingooooviiiiiiiiiiiiee e 16
3.1 The Process of Model Checkingcoccoeiiiiiniiniiiiciieeeeecc 16
311 MOAEHNE ..o 17
3.1.2 SPeCifications...........ccccoiriiiiiiiiiii e 17
3.1.3 Vertfication............ooooi i 17

3.2 Themodelcoooviiiiiiiiiiii e 17
3.3 Formalizing browsing propertiescccooiiriieriiniinieieeeee e 18
34 SPINModel Checker.............ocoiiiiiiiiieiecceecee e 19
3.4.1 PROMELA (PROcess MEta LAnguage)..................ccooeeeeuvieccuieecieenn, 21

3.5 Formal Properties (LTL).........ccc.coiriiiiiiieiieicciecie e 22

4 State of the Art..........oooiiiiii e 24
4.1 Stotts approach...............ccoooiiiiiiiiii e 24
4.1.1 Links-Only Document Behaviour..........................c.ccooo i 25
4.1.2 Temporal logic and dynamic properties of systems 28

42 StottsmOdel ..o 29
43 Formal modeling in WWW multimedia.. 32
43.1 Interactive temporal behaviour...............................oooii 32
43.2 The abstract temporal synchronization control architecture 35

433 The EFSMmodel...........cocoooiiiiiiiiiiiiiieeeeee e 37

434 Link synchromization................ccocooviiiiiiiiiiiinicccce s 38

44 OtherRelated WOrkooiiiiiii e 42
4.5 QUL apProach..........ccoiiiiiiiiiiii e 44

5 Formal Checking of Web Based Applications..............cccooveeiiiiiiiniiiicenceenn. 46
5.1.1 Communication IMterCEPHIONcccuiiiiiriiiiiieee e 46
5.1.2 Java HTTP ProxXy SeIVer.............cccoiiiiiiiiiiiiiiiiie et 46

52 TheModel.......ooooi e 51
521 FSMin XMLcooooiiiiiiiiiiii et 51
522 DTD oo 55
523 FSMinPromela.........ccooivimiiiiiiiiiie e 62
524 Formal Properties..........ccccooiiimiiieiiiiiiiieiie e 62
5.2.4.1 Browsing Properties..............cccooiriiiiiiiirieiie e 63
5.2.4.2 Connectivity PTOPErtiesccceeviiiiiiiiiiiiniiiiieiceee e 67

6 Web Model Extractor/Manipulator.............cccoociiiiiiiiiiiiieeecee e 68
6.1 Functionalities............cccooiiiiiiiiiiieiiieeiieeieeee e 68
6.2 QUL e 71

T Case StUAYooiiiiiii e 75
7.1 The “Beethoven” Radio Station Web Site................cccocceiiiiiiiiiiinie 75
T2 PIOPEIHIES ...ttt ettt et ee e e eneeeeeenes 77
7.3 Formal MOdel.......cocoiiiiiiii e 78
7.4 Formal Properties (LTL)..........c.cococooiiiiiiiii e 85
TA1 Property 1 ..o 86
743 PIOPEITY 3 ..ottt ettt ns 89
T4.4 Property 4 ..o 90

7.5 Limitations of the Extractor/Manipulator Tool......................ccocoeeiiinnn, 91

8 CONCIUSIONSootiiiiiiiiiieiie ettt 93
8.1 Summary of the Results...............ccccooeiiiiiiiiiiiiiiii e 93
82 Future WOrK ..o 93

RELETEIICES. ... e 95

Table of Figures

Figure 1 The growth of Internet from January 1994 to January 2004 1
Figure 2 FramewoOrkKcooiiiiiiiiii et et 6
Figure 3 Framework detailed...................ooooiiiiice 10
Figure 4 Fragment fromthe log file.....................ccooi i 12
Figure 5 Fragment of the FSM Model...............cooooiiiiiiiiiice 13
Figure 6 SPIN Model Checker...............cooocoiiiiiii e 20
Figure 7 Traditional view of the hypertext document..................ccocooiiiniiin. 26
Figure 8 Automaton view of the hyperdocumentccoooiiiiiiiiiinn. 27
Figure 9 FSM encoding of the links-automaton for Trellis document....................... 30
Figure 10 A distance course in several linked web pages................................... 33
Figure 11 Multimedia presentation schedules for page POcccooiiiiens 34
Figure 12 The abstract temporal synchronization control architecture...................... 37
Figure 13 The media server EFSMccccooiiiiiiiii e, 39
Figure 14 Added states and transitions in Pager EFSM for processing...................... 40
Figure 15 HTTP REQUESL.ccoouiiiiiiiiiiiiiiii ettt 48
Figure 16 HTTP RESPONSEocoiiiiiiiiiiiiieieeieet ettt seseaaaeaens 49
Figure 17 HTTP Request/Response for an Imagecccoooveeviieiiiiciiennnne, 50
Figure 18 A Simple Site Graph...............oocoooviiiiiiiiiceeeee 54
Figure 19 The DTD file for the implemented model in XML......................c............. 55
Figure 20 The XML Partial Modelcco oo 59
Figure 21 XML to Promela with Web Model Extractor/Manipulator....................... 62
Figure 22 CRIM’S hOME PAEEooveieiiiieeeeeeee e, 63
Figure 23 CRIM’S SEIVICES PAZEcveeeeeeieeiee et e, 64
Figure 24 One page Web Site..............occooiiiieiiieniciiiiee e 64
Figure 25 Enable/disable objectscoooiiiiiiiiiiiieceeee e, 65
Figure 26 CRIM’S MemDbErs PAZEc.ccvoiimiviieiienieieieieet e, 66
Figure 27 Class Diagramc.cooooiiiiiioiiiii e 69

Figure 28 Processing of the proxy server log file.......................c.ocoocoviiiiine, 70

viii

Figure 29 Web Model Extractor/Manipulator Window ..., 71
Figure 30 Option WINdOW.ccooiiiiiiiiiiiiici e 73
Figure 31 Show the file button.................cccoiiiiiii 73
Figure 32 Build the model button ... 74
Figure 33 Home Page from www.beethoven.com site..................cc.cocoiinnn 76
Figure 34 Explore page from www.beethoven.com site....................c. 78
Figure 35 Web Model Extractor/Manipulatorccooociiiiiiiiiiniinieniienieenes 79
Figure 36 Option WIndOWccooiiiiiiiiiiee ettt 80
Figure 37 The model — XML Format.............cccoociiiiiniiiiiiiiiicccecccee 81
Figure 38 Finite State Machine in Promela ... 83
Figure 39 The Model — Graphical Representation..............cc.ccccoeeiiiiniieniiiiinieenne. 85
Figure 40 Linear Time Temporal Logic Formulae.cooiiii. 86
Figure 41 The Never Claim for LTL: [] 0CCUT..........occcoiviiiiiniieciccecec 87
Figure 42 Guided Simulation Output — Property 1..............c.cccoiiiiiiiiiinicne 88
Figure 43 Guided Simulation Output —Property 4ccocveeieeierieieieeeienee, 91

Figure 44 Scalability

ix

Abbreviation list

DOM Document Object Model
DTD Document Type Definition
XML Extensible Markup Language
FSM Finite State Machine
PROMELA PRocess MEta LAnguage
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
LTL Linear Temporal Logic

URL Uniform Resource Location

WWW World Wide Web

Acknowledgements

I would like to express my honest appreciation to my supervisor, Professor Alexandre
Petrenko for his constant guidance, constructive criticism and encouragement during

all the period of my internship at CRIM and afterwards.

I also want to thank my thesis director, Professor Houari Sahraoui for his valuable
courses during my studies at Université de Montréal and his constant encouragements

and valuable advice.

Special thanks to May Haidar and Dr. Serge Boroday for their collaboration. I

benefited greatly from formal and informal discussion with them.

I thank CRIM (Centre de recherche informatique de Montréal) who provided a

wonderful research environment and financial support for this thesis.

I wish to thank the “Département d’informatique et recherche opérationnelle”,
Université de Montréal for the graduate courses and the research environment, and

Mariette Paradis for easing the procedure of dealing with Department.

I would like to express my honest appreciation to my fiancé Charles Younghusband

for his support and constant efforts to improve my English.

Chapter 1

1 Introduction

Since its inception in 1991 the World Wide Web (WWW) has experienced a rapid
growth, and become the dominant Internet user application. As shown in Figure 1
below, drawn from the Internet Domain Survey [URL1], an increase in the number of
hosts was close to one hundred percent per year and occasionally exceeding that

number. Today the rate has tapered off to approximately 33% annually.

Internet Domain Survey Host Count

300,000,000 1
250,000.000 +
200,000,000 +
150,000,000 +
100,000,000

50.000.000 +

aord
1 T T
Lo (L=

? ¢

[oy <
o o
) -

Jan-04 +

Source: Internet Software Congortium [www_isc_org)

Figure 1 The growth of Internet from January 1994 to January 2004

The increase in the number of personal computers, combined with the rapid growth of
digital networking technologies, has dramatically increased the accessibility of the
Internet and the World Wide Web. This new way of accessing information made the
Internet more attractive to companies, which in turn stimulates its growth by creating
more elaborate and attractive web sites appealing to both personal and business users.
Thanks to the Web, companies are now able to reach almost all possible target groups
and it has become an excellent advertising medium and interactive channel for new
businesses or adapted business models. New products and services, in turn, drive
new features to optimize the Web based communications, adding to the complexity of

web sites while not necessarily improving the robustness and quality.

Presently, the connection between different Internet resources is almost exclusively
done by means of hypertext links, in which case the resources are called standard
resources: file-based, static and read-only. Up to now these standard resources have
been used very successfully within the current Internet environment. However, they
have a number of shortcomings, which, in the light of the immense growth rates
experienced, could make the use of the hypertext within the future Internet
environment problematic. The problem of broken links between Internet resources,
caused by the lack of referential integrity within the current hypertext
implementation, is a good example of such a shortcoming. This problem will scale

exponentially with the ongoing growth in the number of resources.

A classification by Thomas A. Powell [15] based on the degree of interactivity
offered by a web site divides web sites into five categories:

o Static Web Sites

They are the most basic form of Web site, such as presentation of HTML-documents.
No interactivity is offered except for the choice of pages by clicking links.

o Static with Form-Based Interactivity

A web site containing forms is used to collect information from the user, including

comments or requests for information, but the content they deliver is static. The

primary purpose of this category is document delivery, implementing data collection
mechanisms.

o Sites with Dynamic Data Access

The web site is used as a front-end for accessing a database. Users can search a
catalogue or perform queries on the contents of a database, through a web page, and
the results are displayed in HTML format.

o Dynamically Generated Sites

These sites are generally based on static content, but which were generated in a
personalized fashion to suit the needs of individual users.

o Web-Based Software Applications

These are Web sites that are used as an interface for software applications such as
inventory-tracking programs or sales force automation tools. They often have more in

common with traditional client/server applications than with static web sites.

This classification arose from the need for methodology during the development of
web sites, but is useful also for the testing process, as different types of web sites
require more or less extensive testing. For instance, the requirements for a static web
site are relatively few: the only things that need to be checked are that the information
is correct and up-to-date, that the source HTML is correct and that the load capacity
of the server is large enough, i.e. that it can handle a sufficiently large number of
visitors at the same time. At the other end of the spectrum, the demands of Web-
Based Software Applications are much higher, security and code integrity being

merely two of several relevant issues.

For the purpose of this thesis, we choose to define web-based application as any

HTTP application available on the Internet.

There are an estimated 1 billion pages accessible on the World Wide Web, with 1.5
million pages being added daily. These resources have been created by large teams

of human editors which make the formatting of the content impossible to measure.

However other web site properties can be analyzed and evaluated, such as the

navigation properties.

In this thesis we focus on the formal modeling of interactive temporal behaviour of
the hyperlinks. This research is an exploratory study and the first step of an on going
PhD thesis [7] focusing on test and quality assurance of web-based applications.
Reference [7] presents an approach for modeling an existing web application using
communicating finite automata model based on the user-defined properties to be
validated. A method to automate the extraction from a recorded browsing session of
such a model is generated. The obtained model is used to verify properties with a

model checker.

In this thesis, our goal is to find a method to extract the information from a browsing
session from which we extract a finite state model. The finite state model should be in
a standard format in order to be easily transformed into a model accepted by a model
checker that was determined during the research period. The next step was to define
the properties that we wanted to test and to formalize them to be accepted by the

chosen model-checker.

We developed a prototype tool which extracts a recorded browsing session into a
finite state model in XML format then from the XML format into the finite state
model formatted properly for the model-checker SPIN. We used the model-checker to
verify the properties defined by the user.

This paper presents the steps for developing the prototype tool for web-testing. We
will define methods to extract a model from web applications. The model type chosen
is a finite state machine, which has been widely used in protocol engineering
including protocol validation/verification [5], [9], implementation [3], and testing [7],
[12]. We will show how we transformed the model in a standard format which is
flexible for further transformation in accordance with the model-checking tool

chosen. The format chosen to represent the model is XML, which can be easily

be transformed in a FSM accepted by the out of the box model-checking tool SPIN

used for research purposes. The next step is to formulate the properties to be tested in

a language understood by the model checking verification tool, SPIN, to test and

interpret the result.

We will conduct a case study to demonstrate the applicability of the developed tool,

stepping through all the necessary phases:

o}

(o]

intercepting the communication between the client and the web server.
logging the web pages visited in a flat file, in text format; the fact that
we work with the output from the web server to the browser makes our
tool programming language independent. For example, on the server
side the code which generated the web page could be C# , ASP.Net or
javascript, but we are logging only the HTML code from the browser
side.

parsing the text file in order to transform the given site into XML
FSM,; this gives the flexibility in the selection of the model-checker;
demonstrating the model checking by transforming the XML FSN to
PROMELA FSM, which is the input of the model checker SPIN;
formulating the properties to be tested in the linear temporal logic
language (L.TL) understood by the model checking verification tool;
verification of the properties;

interpreting the result.

The following figure represents the steps described above:

Monitor/
] Interceptor

i

Log File

Model
Extractor/Manipulator

Formal Finite State
Properties Machine

[e |

Properties
to Check

Model Checking
Result

Model Checker _‘

v

Figure 2 Framework

The remainder of this thesis is organized as follows.

Chapter 2 gives the motivation of our work conducted on the applicability of model

checking technique for the web verification.

Chapter 3 presents the basics of the theory of model checking, model checking
principles and the process of model checking verification technique. We finalize this

chapter with the introduction of model checking tool SPIN.
Chapter 4 it is a short review of the previous research related to formal verification of
hyperdocuments: specifically model checking. We present in particular the work of

Stotts et al., which is the approach and methodology on which our work is based.

Chapter 5 describes the functionalities of the Web Model Extractor/Manipulator, the

tool developed to extract the model from a given web site.

Chapter 6 presents a case study on which we have applied our approach and

framework, namely the web site of a classical music radio station “Beethoven”.

In Chapter 7 we present the conclusions and future work.

Chapter 2

2 Motivation

Existing Web testing tools [URL14] generally verify the syntax in HTML documents,
confirm the hyperlink integrity of a set of HTML documents, test the GUI
components embedded in the browsers and measure the performance of the Web

application. Most of the tools test only one or some aspects of Web applications.

There is a need for formal checking of properties of a web application. This could be
achieved with an existing model checker once a finite state machine model is

extracted from the application in question.

In this case the purpose of the formal modeling is to undertake the development of a
tool capable of testing the navigation of a web site according to the properties
specified by the user. For example, a user may want to test if they can reach a Web
site’s home page from any page in a particular web site; or if a site has orphan pages,

which prevent back and forth navigation unless using the browser’s features.

This masters project is a part of an ongoing Ph.D. research project [9] related to the
development of a prototype tool that could be used by the web based application
developers and testers to improve the quality of their products. The main project is
about modeling an existing web application into a FSM model based and validate
user-defined properties. The obtained model is used to verify properties with the
model-checker as well as for regression testing and documentation. The project plan

includes complex multi-window/frame applications testing.

This master thesis is the first step in the realization of such a complex testing tool.
Several activities were undertaken during the course of this project: the architecture
was defined, a solution was implemented to record a browsing session to a log file,
and a JAVA application was developed to create, manipulate and export a model of a
web site for analysis. The JAVA application creates a FSM coded in XML and it can
transform the XML FSN into the PROMELA language FSM — which can be
interpreted by the model-checker SPIN. The JAVA application can also check the
logged web-pages for requested information by the user. The end result of these
activities is a methodology and set of software tools which can transform an arbitrary
web site into a standard model as a finite state machine, which can then be imported
into a model-checking tool. The use of finite state machines provides a formal model

on which we based the testing framework.

To effectively use the tool developed by this project, the user must define what
properties are to be tested and formulate them in a language understood by the model

checking verification tool.

The next section presents the methodology of extracting the relevant information
from a browsing session, recording it into a log file, transforming the web site in a

FSM and then using the model checker to verify the user-defined properties.

10

2.1 Methodology Overview

Figure 3 is the detailed representation of Figure 2 where the proxy server represents
the Monitor/Interceptor step from Figure 2. The Model Extractor/Manipulator is
made of three steps: Processing Log File, FSN in XML and Processing FSM in XML.
The Finite State Machine from Figure 2 is replaced with FSM in PROMELA and the
Model Checker is specified as the SPIN Model Checker.

Referring to the Figure 3, we will describe the methodology used to extract a web site
or a partial website and model it into a XML FSM.

= -
§ Proxy
| T Service
Server -

Log File

|_Client_]

[Processing Log File '
—_—ree el

FSM in XML

Processing
FSM in XML

[

Formal Properties FSM in PROMELA

Figure 3 Framework detailed

These individual steps will now be described in more detail.

11

2.2 Detailed Methodology

The first step is to extract a formal model from the web application. In order to
extract the model offline, we have used a proxy server that is able to intercept the
data transfer between the web client and the web server: the client’s requests and the
server’s responses. Moreover this proxy server is logging the intercepted data to a

text file, referred in Figure 3 as “Log File”.

The proxy server used is an open source project developed by Stefan and Emily
Reitshamer, available from their web site [URL3]. This product performs typically as
an HTTP proxy: it reads a client's HTTP request, forwards the request to the referred
server, reads the HTTP response from the server, and forwards it to the client and
optimally creates the log file of all the data transfers that occurred. The requests and

responses are logged as they arrive.

The Log File contains the requests and the responses with their header, body and
details as they would appear if we would look at the source of the web page from the

browser’s View\Source menu. The next figure is a fragment of the log file.

12

GET http://www.crim.ca/index epl?selec=2300&href=/rd/telecom.htm HTTP/1.0

Host: www.crim.ca

Accept: application/vnd. ms-excel, application/msword, application/vnd. ms-powerpoint, image/gif,
image/x-xbitmap, image/jpeg, image/pjpeg, */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 4.0)

Accept-Language: en-us
-—-e-m=-----END OF HTTP REQUEST
HTTP/1.1 200 OK

Content-Type: text/html
Content-Length: 18316

Server: Apache/1.3.9 (Unix) mod_perl/1.21 mod_ssl/2.4.9 OpenSSL/0.9.4
Date: Wed, 10 Apr 2002 19:40:02 GMT

<HTML>
<HEAD>
<LINK rel="stylesheet" href="/styles.css">

<TITLE>CRIM : Développement de réseaux de télécommunications</TITLE>

Alexandre Petrenko

<AREA href="/index.epl?href=/visite/index.htm" coords="79, 11, 143, 33" shape="rect">....
</HTML>

END OF HTTP RESPONSE

Figure 4 Fragment from the log file

Having the log file of the proxy server as a starting point we consider the data

extraction to create a finite state machine model.

As previously discussed, the prototype tool is based on the finite state machine
theory, in particular, the theory of model checking. The development of a verification
environment for web applications is relying on the model checker SPIN, an efficient

verification system for models of distributed software systems.

The finite state machine (FSM) model consists in a set of states (including the initial

state), a set of input events, and a state transition function. The function takes the

13

current state and an input event and returns the next state. Some states may be

designated as "terminal states", which are end states with no more transitions.

In order to create the FSM the log file in text format is parsed and the client’s

requests and the server’s responses are extracted.

In the Figure 5, an example of a FSM fragment is shown. The states are the web
pages, the initial state is the Home Page of CRIM’s web site, and the input events are
the clicks on a hyperlink which creates a request to the web server. One of the

terminal states in our example is the error state marked in red in the Figure 5.

Recherche et
développement

Technologies I.
Inc.

e Event @ State

Figure 5 Fragment of the FSM Model

14

With the data extracted from the log file, the corresponding FSM model in XML
format is then created. We have chosen the XML format due to its increasingly
flexible data format, easy to transform in another format if necessary and easy to

understand by anyone with or without XML knowledge.

Our goal is to transform a chosen web site into a FSM model and then as an input of
the model checking tool. The model checking tool chosen for our work is SPIN. SPIN
is a popular open-source software tool, used by thousands of people worldwide, that
can be used for the formal verification of distributed software systems and the
language accepted by SPIN is PROMELA [URL13]. The next step is to transform the
FSM formatted in XML into an FSM formatted in PROMELA. If for any reason
there is a need to use another model checking tool, the FSM in XML can be easily

transformed into another format of FSM.

The transformation of the log file into the XML FSM and from XML FSM into
PROMELA FSM is automated with the prototype tool that we have implemented. In
Figure 3 those steps are represented as “Processing Log File”, “FSM in XML” and
“Processing FSM in XML”.

As shown in Figure 3, before the verification of the FSM model with the model
checking tool, we need to formulate the properties to be verified and to translate them
in the language used by the model checking verification tool (Formal Properties
step). The language in which the properties are formulated is the linear temporal

logic (LTL), which will be described in more detail later in this paper.

Finally, after applying the verification of the properties on the FSM model — (SPIN
Model Checker step) we interpret the results (Model Checking Results) to see if the

model respects the properties or not.

The steps Processing Log File, FSM in XML and Processing FSM in XML are

implemented in our prototype tool that automates the process of extracting a state

15

machine model of the application to be verified, so that formal verification could be

performed using an off the shelf model checker.

16

Chapter 3

3 Model Checking

In this chapter we make a short introduction of model checking theory in the first two
sections and then continue with the presentation of the model checking browsing

properties and introduce the SPIN model checker.

Recently, many tools were developed to verify the correctness of a system. The
basics of those tools rely on formal methods, which are methods based on
mathematical models describing the systems that are to be tested. The automation of
this reasoning allows large systems to be analyzed efficiently. Model checking

method is a successful attempt in this direction.

Model checking is a method for formally verifying finite-state concurrent systems.
Specifications about the system are expressed as temporal logic formulas, and
efficient algorithms are used to traverse the model defined by the system and to check
if the specification holds or not. Large state-spaces can often be traversed in minutes.
The technique has been applied to several complex industrial systems such as the
Futurebus+ and the PCI local bus protocols. [URLS5]

3.1 The Process of Model Checking

The process of model checking was first introduced by Edmund M. Clarke [4]. It

consists of three main tasks: modeling, specifications and verification.

17

3.1.1 Modeling

In order to use the model checking technique, the first task is to model a system using
a formalism accepted by a model checking tool. In many cases, this can be
straightforward in other cases it can be quite involved. Modeling a system may
require the use of abstraction to eliminate irrelevant or unimportant details. In general
this task consist of transforming the system in an automaton with the aim to produce
the appropriate finite state machine for the Kripke structure [4] required by the model

checker.

3.1.2 Specifications

The next step is to state the properties that the model must satisfy. A property in the

model checking theory is described as a temporal logic formula named automata.

3.1.3 Verification

Ideally the verification is fully automatic, but, in practice it often involves human
assistance. The analysis of the verification result is done manually. In case of a
negative result, the model checker provides us a counter example for the checked
property so we can detect where the error occurred.

An error trace can result from incorrect modeling of the system or from an incorrect
specification (also called false negative). The error trace can be useful in identifying

and fixing these problems.

3.2 The model

The first step in verifying correctness of the system is specifying the properties that
the system should or must have. Once system related properties are identified, the
second step is to construct the formal model for the system. In order to be suitable for
verification, the model should capture those properties that must be considered to
establish correctness. On the other hand, it should abstract away those details that do
not affect the correctness of the checked properties and make verification more

complicated.

18

In the model checking theory, the system to be analyzed is modeled using some
framework based on defining a set of states and a transition relation determining how
the system may change over time. This model can then be checked against a
specification, written in some logic specifying desirable properties of the system's

dynamic behaviour. [4]

A state is a representation of the characteristics of the system in a particular instance
of time. The state of the system can change in time as a result of some internal or
external events. Those changes can be described by giving the state before the event
occurs and the state after the event occurs. Such a pair of states determines a

transition of the system.[4]

3.3 Formalizing browsing properties

For a better understanding of properties to be checked with a model checker on a
hypertext document model, we present a short example of how the browsing
properties can be formalized. Given a hypertext document with elements X and Y, it
contains the link anchors B and C and the information I. We would like to formalize
statements like:
“all browsing sessions must encounter X, but only sometime after seeing Y, and
information I is encountered on this path not more than 3 times”
“there is at least one browsing session encountering Y with the information 1,”
“there is a browsing session in which at some point B and C are both encountered
and the information I is present."
More general specifications include:
“for every node X there must be a path back to the index”

- “every node Y must have at least one link out.”

The browsing behaviour of a hypertext document can be formalized as event traces
which can occur in a browsing session. Traces can be described with a temporal

logic language.

19

Temporal Logics are descriptive languages for the specification of ordering
relationships characterizing the execution sequencing of time-varying systems.
Temporal logics are often classified according to whether time is assumed to have a
linear or a branching structure. The concept of time implied by “temporal” is not

duration but rather the relative ordering of events in a sequence. [16]

Symbolic logicians and philosophers, for reasoning about ordering of events in time
without mentioning the time explicitly, first conducted work in temporal logic under
the name of tense logic. In the last decade, temporal logic has become a convenient

formalism used in program verification. [16]

More recently, temporal logic has been applied successfully to the specification,
verification, and analysis of reactive systems. Reactive systems are based on
concurrent computations that maintain a relationship with their environments. [16]
Hypertext documents bear some resemblance to reactive systems, that is why we can

successfully apply on them model checking method.

3.4 SPIN Model Checker

SPIN is a widely distributed software package that supports the formal verification of
distributed systems. The software was developed at Bell Labs in the formal methods
and verification group starting in 1980.

20

SPIN CONTROL 3.4.7 -- 23 Apnl 2001 M=l E3

File.. | Edit. | Run., | He!pl SPIN DESIGN VERIFICATION Linett:|8 Find:

|»

_|ttdefind one

*AnOfnlk Run Syntax Check

: /ﬁnding M Run Skcing Algorithm
Htdefine ele Set Simulation Parameters..
Hdefine nol

Set Verification Parameters..
/* propettie

® |[

* < LTL Property manager..

x ¢ 1 siel—
* [1 View Spin Automaton for each Proctype..

*}

fidefine N B /* nr of processes {use 5 for demos) */
fidefinel 3 /* node given the smallest number */
fidefine L 10 7 size of buffer (>=2"N) =/

mtype = { one, two, winner };
chan q[N] = [L] of { mtype, byte};

byte ni_leaders = 0;

proctype hode [chan in, out; byte mynumber)
{ bit Active = 1, know_winner = 0;
byte nr, maximum = mynumber, neighbourR;

Figure 6 SPIN Model Checker

Some of the features that set this tool apart from related verification systems are:

SPIN targets efficient software verification, not hardware verification. SPIN
uses a high level language to specify system descriptions, called PROMELA
(PROcess MEta LAnguage). SPIN has been used to trace logical design errors
in distributed systems design, such as operating systems, data
communications protocols, switching systems, concurrent algorithms, railway
signalling protocols, etc. The tool checks the logical consistency of a
specification. It reports on deadlocks and unspecified receptions, it flags
incompleteness, race conditions, and unwarranted assumptions about the

relative speeds of processes.

21

e SPIN works on-the-fly, which means that it avoids the need of constructing a
global state graph, or a Kripke structure, as a prerequisite for the verification
of any system properties.

e SPIN can be used as a full LTL model checking system, supporting all
correctness requirements expressible in linear time temporal logic, but it can
also be used as an efficient on-the-fly verifier for more basic properties. Many
of the latter properties can be expressed, and verified, without the use of LTL.
Correctness properties can be specified as system or process invariants (using
assertions), or as general linear temporal logic requirements (LTL), either
directly in the syntax of LTL, or indirectly as Biichi Automata (called never
claims).

e SPIN supports random, interactive and guided simulation, and both
exhaustive and partial proof techniques. The tool is meant to scale smoothly
with problem size, and is specifically designed to handle even very large
problem sizes.

e To optimize the verification runs, the tool exploits efficient partial order

reduction techniques, and (optionally) BDD-like storage techniques. [4]

3.4.1 PROMELA (PROcess MEta LAnguage)

PROMELA is a verification modeling language. The intended use of SPIN is to
verify fractions of process behaviour that for one reason or another are considered
suspect. The relevant behaviour is modeled in PROMELA and verified. A complete
verification is typically performed in a series of steps, with the construction of
increasingly detailed PROMELA models at each step. Each model can be verified
with SPIN under different types of assumptions about the environment. Once the
correctness of a model has been established with SPIN, this fact can be used in the

construction and verification of all subsequent models. [URL6]

22

3.5 Formal Properties (LTL)

Linear temporal logic (LTL), specifying correctness requirements, expresses features
of one individual (possibly infinitely long) execution of a system. In this thesis we
consider LTL, because we want to verify an individual run that occurs during a
simulation of the system. The execution of a system can be observed as an (infinite)
discrete sequence of boolean values that can be evaluated in every state of the system.
Such values can for example correspond to the fact that a certain information or
transition has been found. Without specifying how these observable features are
defined, we will call them atomic propositions and denote them with the letters p, q,
etc. [12]

LTL formulae consist of atomic propositions, boolean connectives and temporal

operators. Temporal operators are:

e always, or henceforth (symbol: o)

o We say that np is true at a moment i, if ¢ is true from moment i

onwards.
o eventually (symbol: 0)

o We say that O ¢ is true at moment i, if ¢ will eventually be true at

moment 7 or later.
o strong until (symbol: U)

o We say that (pUy) is true at moment i, if ¥ eventually becomes true,
and until then ¢ is true.

e weak until (symbol: W)

o Like Strong Until, but without the requirement that y eventually

becomes true.

e next time (symbol: O)

23

o We say that Ogp is true at the moment j, if ¢ will be true at moment

i+l

24

Chapter 4

4 State of the Art

In this chapter we describe work related to formal verification of hyperdocuments and
in particular the use of model checking. Several approaches have been proposed to
validate aspects of hyperdocuments, such as navigation-based verification by de-
emphasizing browser features and emphasizing inherent document structure with

browsing semantics [16], [17].

In section 4.1 and 4.2 we will present Stotts et al. [16] approach and methodology. In
section 4.3 we will talk about Huang and Jang [9] work in multimedia domain.
Section 4.4 is a brief presentation of other related research papers. With that

background, in section 4.5 our approach is described.

4.1 Stotts approach

We will start with a resume of the work completed by Stotts et al. in this domain and

then we will detail their work presenting also our contributions and differences.

Stotts et al. [16] did not develop a new model checking technique, but they proved
that it is possible to apply it to the domain of hypermedia. They have a new view of
hyperdocuments, viewing them as an abstract process instead of a static data structure
links-automaton. They modeled Trellis and Hyperties hyperdocuments as a Petri-net

structure to build the corresponding links-automaton. Stotts et al. expressed the

25

browsing properties using Hypertext Temporal Logic (HTL and HTL*), a branching
temporal logic based on CTL*, CTL, and POTL temporal notation. Properties
expressed with HTL and HTL* can be efficiently verified with Clarke’s model
checking technique.

Model checking technique was borrowed from concurrent-system verification and
Stotts proved that it can be adapted to be used to increase the utility of hypertext
documents and specifically document’s browsing properties, as for example: what

sequence of links a reader may be allowed to follow during browsing.

Stotts et al. shows how to verify in an automated fashion whether the linked structure
of a document satisfies the required property specifications. The focus of the authors
is concentrated on the behaviour that is allowed by links alone, independent of any
navigation aids that a browser or navigation programs might provide as “Back”,

“Forward” or “History” button.

We extend this idea and we will prove that we can successfully apply model checking
for other kinds of hyperdocuments and web sites, using a more straightforward

model, the finite state machine.
4.1.1 Links-Only Document Behaviour

Researchers have successfully modelled the Web as a graph in different
representations. It is beyond the scope of the thesis to make a synthesis about the web
represented as a graph, but we will discuss how Stotts represented Trellis and

Hyperties and how we see the Web model.

Stotts approach is not exclusively applicable only on Trellis and Hyperties, it is
applicable to any hypertext system. According to the authors, what is required in
particular about a hypertext document is that it must be viewed as an abstract

automaton that specifies the process of the browsing within it. One of Stotts et al.

26

novel contributions is the idea of links-automaton, in which they view

hyperdocuments as an abstract process instead of a static data structure [16].

Stotts et al. represents Trellis and Hyperties as a Petri net or PT-net [URL15] which is
a formal and graphical appealing language which is appropriate for modelling
systems. Also, they are using the model checking algorithm and software from Clarke
which uses a finite state model. In order to use this model checking technique they

are transforming PT-net representation of the documents into a finite state machine
[16].

Figure 7 shows the traditional view of the hyperdocument: a browser program

allowing navigation over a directed graph.

Iy pertext view

4 2
A om0
Browser © 4
Program <:> L\«@/—""@""

browsing o)
N

Figure 7 Traditional view of the hypertext document

Figure 8 represents the structure of a hypertext document view by Stotts et al. There
exists a browsing path from the starting node (A), continuing through the nodes E and
D, and ending with node C. The link-only behaviour of the document does not allow
any further browsing from this point, because there is no transition out of node C. In
order for browsing to continue, the author of this structure must be relying on some

feature of the browser.

27

start
stale

document alone @
Caulomaton. hnite stale machined

Figure 8 Automaton view of the hyperdocument

The structure of this document will be much more attractive for the user if the user
can search for information in the document without going back to the old information
that was already seen. A good design in our opinion will be one in which from every
node we have at least one way out and the ability to navigate to an index, for

example.

28

4.1.2 Temporal logic and dynamic properties of systems

A popular formalism to express properties of state-transition based concurrent
systems is temporal logic. Temporal logic model checking algorithms introduced in
the 1980s allowed the reasoning to be automated [14]. Besides being automatic,
model checking has another important advantage over proof-checker based methods:
if a formula is not true of a model, we can produce an execution trace that shows why

the formula s not satisfied.

Stotts et al. are using temporal logic for expressing browsing properties of
hyperdocuments, and the use of links-automaton of hyperdocuments as a basis for
model checking of these properties [16]. CTL (Computation Tree Logic) was the first
temporal logic language used by Clarke's original model checker to define the

specifications [1].

The Stotts’s approach introduces HTL*, or hypertext temporal logic for succinctly
expressing hyperdocument browsing properties, and the HTL subset of HTL* that
can be verified with the model checking algorithm and software from Clarke, which

they use to implement their hyperdocument analysis tool.

Instead of HTL* we are using LTL or linear temporal logic which is a widely used
logic for expressing properties of programs viewed as sets of executions, and is
accepted by SPIN model checker [11]. An LTL formulae or formula is supposed to

hold for all possible executions that the system might produce.

Stotts’s approach wishes to be general, being applicable to a wide range of
hyperdocuments types, but we believe that their methods can be improved. We are
convinced that improvements can be achieved in the model representation where they
are using the reachability graph of a Petri-net as the finite-state model for the
verification of the properties, relating mainly to browsing aspects of hyperdocuments

without taking in account the content of the state itself.

29

4.2 Stotts model

To understand better the differences between our model and the model created by

Stotts et al. let us expose their model as they describe it in [16].

Trellis hypermedia was developed by Stotts and Furuta in 1989. In Trellis system,
links can have multiple source nodes and multiple destination nodes. Moreover this
system allows parallel browsing paths with multiple concurrently displayed content
elements; meaning, for example, that when we click on a link leading to a new page,
the target content popup on the screen and the source content remains visible. The

source can have a supplementary action: the click on the “remove” button.

To model this kind of hypermedia Stotts et al. used PT-pet. In order to use the model
checking technique, Stotts et al. must transform the PT-net in a finite state machine
and they are doing so by computing the coverability graph of the PT-net and simplify
it for not having redundant states.

In Figure 9 we show the finite state machine obtained by Stotts et al. in their case
study [16].

NAME = RefB.fsm,;

INPUTS =;
STATES =38,
CUBES = 12,

MOORE-OUTPUTS = c.welcome, c.overview, c.shuttle, c.engine, c.allow, c.inhibit,
b.begin, b.orbiter, b.propulsion, b.start, b.return, b.remove;

#0 100010100000
1

#1 010010011000
2
6

#2 010101000011
3
4

#3

#5

#6

#7

000110000010
0

110001100001
0
5
010001000001
1
011001000101
7
4
001010000100
0

#END

Variable STATES in the picture represents the number of states, variable MOORE
OUTPUTS represents the name of the atomic predicates used and the bit vector
following the state number indicates which atomic predicate(s) — respecting the order
listed in MOORE OUTPUTS - are presented or not in that state. The transitions out

of the state are present after each state number and they are represented as a list of

30

O

Figure 9 FSM encoding of the links-automaton for Trellis document

destination state numbers.

31

In the presented example there are some concurrent elements. In state 2, in the bit
vector on positions 2 and 4 the bits are set to 1, signifying the presence of two
predicates from the MOORE OUTPUTS list (the 2" and the 4™). This atomic
predicates are concurrently visible while browsing the page represented by state 2.

At this point, after modeling the hyperdocument, using the model checking technique,
Stotts can verify browsing properties expressed with HTL* [16].

We will show an example of one of the properties formulated in proper English and
HTL*:
“Does there exist a browsing path such that at some point both the “shuttle” text and

“engines” text are concurrently visible?” [16]

30 (c.shuttle A c.engine)

|=EF(c.shuttle & c.engine).

The formulae is FALSE.

32

4.3 Formal modeling in WWW multimedia

Chung-Ming Huang and Ming-Yuhe Jang [9] focus on the formal modeling of
interactive temporal behaviour and hyperlink temporal behaviour in multimedia
WWW application systems and they propose the extended final state machine

approach for formal modeling of interactive temporal and link control architecture .

The response time and the synchronization of the elements involved in multimedia
system are the main keys. In this paper [9] the authors study and model the behaviour

of WWW multimedia components synchronization correlated to user interaction.

They define two types of temporal synchronization: (a) intramedium synchronization
which deals with internal behaviour in medium stream and (b) intermedia

synchronization which reduce asynchronous anomalies among media stream.

Huang and Jang theory includes the user interactive temporal behaviour with the web
application, called “user interaction” for simplicity. User interaction in WWW is
classified as: (i) interpage user interaction and (ii) intrapage user interaction.

A multimedia application is not affected only by the user interaction but also by the
availability of its components which are accessible via hyperlinks. The hyperlinks
could be valid during certain time periods and invalid during other time periods.
Therefore the authors separate their theory in (i) interpage and intrapage user

interactions and (ii) hyperlink temporal behaviour.

4.3.1 Interactive temporal behaviour

Huang and Jang like Stotts et al. represent the navigation of a set of web pages as a

graph in which a circle denotes a webpage and an arc denotes a hyperlink. They give

33

us an example of a distance learning course for a mathematical theorem graphically

represented in Figure 10.

Exercise 1
(Page P;)

Figure 10 A distance course in several linked web pages

P; are the web pages and L, is the hyperlink from page P; to page F;. In Figure 10,
Py, is Theorem introduction web page, P; is the Exercise Guideline page and Lo; is the

hyperlink which leads from the Theorem page to the Exercise Guideline page.

In a WWW multimedia system, multimedia presentations are carried out by the user’s
clicks on the available hyperlinks on presentation’s web pages. Web pages may
contain images, text, graphics, video objects and multimedia scenarios which consist

in several presentation stages.

In the above example, Huang and Jang assume that P, has three image objects to
illustrate the formula of}, ol5, of3; two text objects o7 and 07> for the legends used in
ol and ol respectively; two audio objects o4; and ¢4 for teacher annotations and two
video objects ¢V, and oV associated with the teacher’s annotations as in Figure 11

from Huang and Jang.

34

(Page 0)
Media
3
User interaction

Valid Link 1 friimn Lon]

Valid Link 2 R TR
Image L ol1 [o 1 otz |
Text 0T1] 012
Audio | 0A1) | 0A2 |
Video [ovi | ov2 |

T —» Time
Istart 1] t2 G u U tend

je— stagel —pje-stage 2-Ple—stage 3—|

Figure 11 Multimedia presentation schedules for page Py

Figure 11 presents page Py as follows: the Py presentation can be divided into three
presentation stages, stage 1, 2 and 3, which associate their own temporally related
media objects in three time durations [#yar, 23], [#3, 5] and [s, fend] respectively.

We use few paragraphs from Huang and Jang [9] to be faithful to their examples and

explanations and we use italic font to enhance them in this sub-chapter.

Stage 1 consists of the following:

(1) image object ol) and audio object (A, begin their presentations at time Iyan
simultaneously;

(2) at time t;, text object (T, and video object oV, simultaneously begin their
presentations;

(3) text object ¢T; ends its presentation at time t;

(4) objects ol,, 0A; and oV end their presentations together at time t; and at that time
(13,) stage 2 starts up.

35

Stage 2 consists of the following:
(1) objects ol5, oA and oV simultaneously begin their presentations;
(2) at time ts, objects ols, 0A> and oV end their presentations at which time stage 3

starts up.

Stage 3 consists of the following: objects ol; and oI, start their presentation
sequences until time tenq is attained. At time t.,q, presentation of Py is completed and
the user can switch to the other pages’ presentations by clicking some other
hyperlinks. Hyperlinks can be valid/invalid, i.e. the corresponding marks are/are not
shown on the screen, so that users are/are not able to click on them. Hyperlink Lo; is

valid from time sy to time t3; hyperlink Lo, is valid from time t, to time len.

We will not present the Huang and Jang theory that discusses user interactions, as we
are doing offline testing, which means that we no longer deals with the user
interactions but rather their actions that are stored in a log file, as we will describe
later. We are more interested in showing the similarities of Huang and Jang theory

with our work regarding hyperlink behaviour.

4 3.2 The abstract temporal synchronization control architecture

Huang and Jang named the processing of the hyperlink temporal behaviour, “link
synchronization”. Link synchronization is responsible for the continuity of the related
pages’ presentations. Users cannot avoid some waiting time for requested pages
because some fetching time is required to load the requested pages into the local
media buffer. Link synchronization in WWW multimedia presentation is necessary to

shorten the waiting period.

Huang and Jang designed and architecture for multimedia WWW interactive

temporal synchronization control, as depicted in Figure 12.

36

The hypermedia browser and several remote WWW servers are interconnected over
the Internet. The remote WWW media servers can receive request messages from

hypermedia browsers and respond with media objects.

The kernel of the hypermedia browser’s interactive temporal synchronization control
mechanism consists of three parts, i.e. Pager, Synchronizer and Actor.

The main function of Pager is exception handling and fetching media objects
contained in requested pages from WWW servers. Each Web page P has a
Synchronizer and a set of Actors, which cooperate with each other to control the
associated multimedia presentation of P. Each medium stream is associated with an

Actor,

The Synchronizer is responsible for intermedia synchronization; an Acfor is
responsible for the medium stream’s intra-medium synchronization. The
Synchronizer is also responsible for receiving user’s interactions from the user
interface and processing the corresponding reactions, for example, having Actors

pause the ongoing presentation and asking Pager to fetch the next page.

A set of hyperlinked Web pages has a Pager. Interpage interactive synchronization
and intrapage interactive synchronization are achieved through the cooperation of
Pager, Synchronizer and Actors. With this approach the Pager, Synchronizer and
Actor can be represented as Extended Finite State Machines (EFSM) respectively.

37

[Pager
| WWW Server pr——
—
l 1
WWW Server N —— ' User
T Synchronizer e teract]
E
WWW Server R
N I |
eoe i)
Actor F V22
WWW Server 8
Actor Vi
000
L X X o000
@ LA é
[H
Media Display
Buffer Devices

Figure 12 The abstract temporal synchronization control architecture

4.3.3 The EFSM model

Huang and Jang used EFSM model to formally model (i) interpage and intrapage user

interaction and (ii) the hyperlink temporal behaviour.

An EFSM is formally represented as a nine-tuple (3; S; so; S¢; V; B; A; P;6), where

(i) Y. is the set of messages that can be sent or received; (ii) S is a set of states; (iii) s,

is the initial state; (iv) syis the final state; (v) V is the set of context variables; (vi) B
is the set of predicates that operate on context variables; (vii) A is the set of actions
that operate on context variables; (viii) P is the set of priority clauses; (ix) d is the set
of state transition functions in which each state transition function can be formally
represented as follows: Sx Y x B(V) x P — S x 3 x A(V). For convenience, each state
transition is represented as S; ——> S, where S) (S,) is called the head (tail) state

of transition T, T is called the incoming (outgoing) transition of state S; (Sy).

38

We will present the modeling of link synchronization formalized by Huang and Jang
using EFSM model.

4.3.4 Link synchronization

An important part of WWW media presentation is the process of an interpage user
interaction. The interpage user interaction in this context consists of two events. One
is to terminate the fetching of the current page and the other is to fetch the target page
that is requested by the user.

The progress of the current page pre-fetching in Pager EFSM is terminated when
Pager EFSM changes from any state S; to state Valid , i = 0...3, state transactions
depicted in Figure 14. The behaviour of fetching the target page is divided into three
phases which correspond to states Valid , FetchingPage' and In-lineFetching
(Figure 14).

(i) At state Valid , Pager EFSM checks whether the target page is on the local buffer
or not. If the target page is unavailable on the local buffer transition Tnv' is executed
for fetching the page. However, if the target page is available on the local buffer
transition TV is executed to skip the page fetching.

In transition TV, Pager EFSM reloads the most recently interrupted information of
the target page. This is to inform Synchronizer EFSM of the target page to determine
Jfrom when and which part of the target page’s presentation is to be resumed. Pager
EFSM changes from state Valid to state S° (FetchingPage') after executing
transition TV' (Tnv').

(i) At state FetchingPage', Pager EFSM (a) receives the page document in the
response message, i.e. the input event ‘When Server(Port). RESPONSE(response)’.

If the status of the response is OK, transition Tparse' is executed. Otherwise,

transition 7nv' is executed to notify the corresponding Synchronizer EFSM with an

39

error message using the output event ‘output Syn(P).ERROR(P, NextP, IT, IS)’. Pager
EFSM changes from state FetchingPage' to state In-lineFetching (S') after executing
transition Tparse' (Trev').

(iii) At state In-lineFetching, Pager EFSM: () continues requesting the rest of the in-
line objects of the target page to be fetched. This is done by repeatedly executing
transition Treq’; and (b) by checking the response status of the fetched object during
the fetching process. If the response is OK, transition Tok' is executed to store the
fetched object; otherwise, transition 7nok’ is executed to store default objects. When
the fetching of all in-line objects in the target page is complete Pager EFSM executes
transition Tdn' to initiate the associated Synchronizer and Actor EFSMs for the target
page’s presentation. Pager EFSM stays at state In-lineFetching' after executing
transition Treq’, Tok' or Tnok’ and changes to state S° after executing transition Tdr'.
The media server EFSM at the server site is depicted in Figure 13.

In transition 7q&r, the media server receives the request message sent from Pager
EFSM and sends the corresponding response message to Pager EFSM in the action
part. After the ‘one-request and one-response’ communication session is complete,

the corresponding HTTP connection is disconnected.

1 To&r}
From Serving
Tq&r To Serving

‘ When Pager REQUEST(X);

Begin
@ load(RES, X);
output Pager RESPONSE(RES)

disconnect(X):
End

Figure 13 The media server EF.SM

- ~

{Took!,i=0,1,2,34 !
Frum In-lineFewhing'
lo Ir-linebetchng!
When Server(Port). RESPNSE{respense)

(Tsyn',i=0,1,2,3
From &
To Valid?
When S5yn(P}.PAGE(P. NextP, 1T, I5)
Begin
losal_finck Nexif?, valudy
Erd
{Tok’,i=0,1,2,3}
Fromn In-lizeFeiching:
o In-hinekeiching?
When Server{Port).RESPNSE(response)
Providec reiponse.S:ctusCode = OK

Provided response StannnCode (@ FrorCodes = True Bepip

Begir
stored DefanttQpject, respoase StawsCode);
index -= ndex ' I;

End

{Tv,i=0,1,2,3)

From Vald

To sf

Provided valid = True

Begin
pre_status{NeatP, ltype, Istatus).
update_status| P 1T, 18):
imtialization! NextP),

steres response, 0K,
mdex —andex ¢ L
End
[TM‘«' i= 0. l‘ 19 3}
From In-lincFetching
To In-lineFerching’
Provided couni > 0
Begin
reselveturl_listfcouns], Metaed, Source, Port);
tcpeonnect(Source. Port, handle):
prepare hitplhandle, Meathad, Source. request),
couns ;= coun: - 15

outpst Syne¢NextPrOKINextP, liype, [sats), output Serven(Port). REQUEST{request)

End
‘TBVJO 1=0,1,2,3}

From Valid'
lo FetclingPage’

Provided valid = False
Begin
getURL(NextP, url):

resolve(uzl, Methud, Source, Porty;
tepeonnectiSource, Port, handle):

prepase_hzpdhandle, Method, Seurce, request):

output ServenPorty REQUTSTirequesty;
End
{Trey/,1=0,1,2, 3}
From FetchingPage!
To 5!
When Sersverf Port).RESPNSE(responsct

Provided response.StatasCode @ FrrorCodes = True Provided

Beg:n

pre_statust P, Itype, [statosy;

autpit Syn(PLOK(P. ftype, Tstatus);
Ead

indes = @
knd
(Tdn',im0,1,2,3}

From In-lincFetching*
To §¢
Provided index > url_coumt
Begin
intial zutiond NexiPy,
pre_status{NextP, [ivpe. Tstatuse
update status(P. IT. IS):
output Syn(NextP) OK{Neul, Irype, latatus),
End

{Tplnlc‘. ""0. lq 3.3}

From FetchingPage*

To In-iineFetching !

When ServertPostk RESPNSEiresponse)
response StztusCode = OK
Regin

parse{response, url_list[). url_countk;
count == uzl_count,
index == 0

Lind

40

Figure 14 Added states and transitions in Pager EFSM for processing

interpage user interactions

Huang and Jang are using EFSM to model temporal WWW media behaviour into
taking account the user interactions. They describe the architecture of a
synchronization control for links in WWW multimedia presentations, necessary to
shorten the waiting time and they create the EFSM model for a WWW media

presentation using the synchronization control. The synchronization control works

41

like the caching principle for web-based applications; when the requested web-age
exists in cache then the page is not requested from the web server. The difference is
that the related objects of the pages are required from the server even if they were not
requested for immediate presentation and they are stored in the buffer. Also if the

page is not available they are fetched from the media server.

Absent from their work is a description of the important and difficult task of
capturing the structure and timing as they are presented to the user in a relatively
automatic fashion. Considerable more work, including arbitrary model structure
selection, must be done from the server-side perspective, looking directly at the
source of the multimedia, and developing a correlated model alongside the
multimedia presentation. Such parallel work reduces the attractiveness of formal
modelling and is likely to introduce user error in the process, although this approach
can be useful as a planning tool before the multimedia is fully produced. In contrast,
in this paper this information is captured from the log files and input to create the
models directly. We use the output of the web server to the browser as a source for
the formal model which increases the correctness of the model, compared to this
approach where all of a user’s browsing related behaviour is split into different

EFSM. This makes it more difficult to test the application as a whole.

42

4.4 Other Related work

In “Testing Web Applications by Modeling with FSM” by Andrews et al. [2], the
technique used is based on a black box system and most significantly attempts to
address the problem with state space explosion when large web sites are analyzed
using an FSM technique. State space explosion is a significant problem as each
additional user input or web page in a heavily cross-linked web site can create

exponentially more states and test cases.

This research takes the approach of reducing the possible number of states by
clustering groups of logical functions together in a hierarchical format. The smallest
units are made up of logical web pages — possibly a single page, but possibly multiple
pages performing a common function. These logical web pages are grouped together
as a cluster. Clusters may contain other clusters. To simplify the FSM, each logical
web page is assumed to have only one starting state and one finishing state. The

approach assumes continues input values, single-use or non-propagated inputs.

Continues input values are ones that have been selected for sample input and will
continue to be used. For example, language selection may be an early logical web
page — and its own node among the clustered finite state machines, and this choice
will continue through the test as inputs are propagated among the aggregated finite
state machines. Single use input values are ones that are not permitted to be re-used

in a single test, for example the serial number of a new item in a shipped product list.

Importantly, the decision of clustering logical web pages together is a manual
process, thus the process is likely repeatable from tester to tester, particularly as the
size of the web application grows. Although not directly incorporated in this
research, it is suggested that the logical web pages can be clustered together on the

basis of the quantity of common other pages they link to, suggesting they should

43

likely be grouped together as a cluster. This approach does assist in reducing the test
process to a more reasonable problem space even if the introduction of subjective

clustering adds more uncertainty to this approach.

For example, a section of a web application may allow users to modify their personal
profiles, while another permits them to modify their billing settings. Each application
is likely to be an independent cluster. However at a higher level in the hierarchy they

could be grouped together as a common cluster “user preferences”

The use of the clustering technique following a comprehensive modeling phase
permits more straightforward test sequences to be defined based on possible inputs at

each logical web page and then analyzed from the clustering perspective.

The tools used in this research were able to automate, to a certain extent, four tasks:
identifying logical web pages and input selection constraints, identify connections
between logical web pages, and partitioning the connectivity model between the
logical web pages. These tasks assumed the pre-processing of the web application
code. The tools could also build a test value database if one already exists with the

web application.

The model is limited for further work due to the artificial imposition of the
hierarchical clustering, technique. While it reduces the test problem space it does so
manually and attempts to automate this element is likely to cause illogical clustering

and interfere with defining constraints.

44

4.5 Our approach

Our approach is more straight-forward. We represent the browsing behaviour of a
web site as a finite state machine (FSM) directly without going through another
representation. Moreover, we are concerned not only about the linked structure, but

also about the characterization of the states (web pages).

Another new element in our work is the representation of the finite state machine in
an XML [URLA4] file. The benefits of this representation are multiple. XML is a
standard format easy to create, modify or update. It is expressive even for someone
uninitiated in XML technology, and gives us a general format, which permits the

reuse of models with any model-checking tool.

Unlike Stotts et al. our approach is flexible and modular; we can easily modify our

tool to work with any model checker, not only with SPIN.

We are testing web applications offline. To build the model from the web site we
extract the necessary information to create the model. This information extraction is
achieved by intercepting the communication between a client and the server that
holds the specified web site, and records this data for further processing and is

programming language independent.

After collecting the response/request pairs we extract a model that conforms to the
structure of the web site in terms of navigation properties. We organize the
information necessary to create the model as a finite state machine. A state represents
a web page with static information found in the page, such as textual information and
links. The transitions between states represent the hyperlinks between pages. After
the model extraction, we transform the model from a standard intermediary format

model to the model accepted by the chosen model checker, in our case SPIN. The

45

next step is to formulate the properties in LTL. Finally, the model is verified against

the properties.

With the aim to automate the process as much as possible, and starting from the
specifications of the project, we will build an application to do the model extraction

automatically.

46

Chapter 5

5 Formal Checking of Web Based Applications

The goal of the project is to create a prototype tool that automates the testing of web-
based applications and to demonstrate the applicability of model checking techniques
in the context of verification of web applications. We follow the process of model
checking described by Edmund M. Clarke, Jr. et al,, i.e., modeling, specification, and

verification where we try to automate the modeling process.

5.1.1 Communication interception

In order to intercept the communication between a user of a web site and the web
server we are using a proxy server. The proxy server must record in its log file the
requests sent by the user (Internet Explorer, Netscape Navigator) to the web server
and the responses of the last one back to the initiator. The navigation can be done

manually for small models and with a crawler for large models.

The next step is to extract the useful information from the proxy server log file that

can help us transform the surveyed web site in the desired model.

5.1.2 Java HTTP Proxy Server

The Java Proxy Server is an open source project developed by Stefan and Emily
Reitshamer, available from [URL3]. The proxy reads a client's HTTP request,

forwards the request to the origin server specified in the "start line" of the request,

47

reads the HTTP response from the origin server, and forwards it to the client. The
implementation included here follows the HTTP protocol for sending and receiving
messages among distributed objects.

All the code is written in Java, is well documented, and is "open source". HTTP

requests of all content-types are handled correctly.

The Java Proxy Server is used to proxy HTTP requests. To use the proxy server, we
simply have to set the web browser to use the proxy server at the host and port.

To do this in Internet Explorer, we select Tools/Internet Options.../Connections/LAN
Settings and check Use a proxy for your LAN and for Netscape Navigator, we go to
Edit/Preferences. ../Advanced/Proxies and check Manual proxy configuration where
we set the name of the machine where the proxy is installed and the port 8080 for
HTTP proxy.

This proxy server creates the log file as output file, which provides the information
needed for further processing. However, for the sake of accuracy, it should be
mentioned that the proxy server does not classify the information that it receives. It is
not aware of the web site and page visited. In this case, the user who wants to use our
application and this proxy server should correctly operate within the chosen site for

an accurate model.

To access a page from a certain server we need to generate a request for this page.
The request could be initiated by the user clicking on a hypertext anchor pointing to
the file, for example

Home Page

The actual data sent by a client to the server and registered in the proxy server’s log

file is shown in Figure 15.

48

GET http://www.crim.ca/index.epl?selec=2300&href=/rd/telecom.htm HTTP/1.0

Host: www.crim.ca

Accept: application/vnd. ms-excel, application/msword, application/vnd.ms-powerpoint,
image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 4.0)

Accept-Language: en-us

END OF HTTP REQUEST

Figure 15 HTTP Request

The request message consists of a request header containing several request header
fields. Each field is a simple line of text, terminated by a carriage-return linefeed
character pair (CRLF). The blank line (containing only CRLF pair) at the end of the
collection of header fields indicates the end of the header and the beginning of the
data being sent from the client to the server, (POST requests in the example). So the
blank line is the end of the request [6].

The request message contains two parts. The first part, namely the first line of the
request, is the method field, which specifies both, the HTTP method to be used and
the location of the desired resource on the server. This is followed by the server
HTTP request fields, which provide information to the server about the capabilities of
the client, and about the nature of the data, if any, being sent by the client to the
server. This request, as shown on the upper example, is registered in the proxy

server’s log file.

The information that we need to extract from the request is the method field:
specifically the exact the location of the requested resource on the server.
After the request is registered, the corresponding response will follow as shown in

Figure 16.

49

HTTP/1.1 200 OK

Content-Type: text/htm]

Content-Length: 18316

Server: Apache/1.3.9 (Unix) mod_perl/1.21 mod_ssl/2.4.9 OpenSSL/0.9.4
Date: Wed, 10 Apr 2002 19:40:02 GMT

<HTML>
<HEAD>
<LINK rel="stylesheet" href="/styles.css">

<TITLE>CRIM : Développement de réseaux de télécommunications</TITLE>

Alexandre Petrenko

<AREA href="/index.epl?href=/visite/index. htm" coords="79, 11, 143, 33"
shape="rect">....
</HTML>

END OF HTTP RESPONSE

Figure 16 HTTP Response

When the server receives the request, it tries to apply the designated method to the
specified object (file or program), and passes the results of this effort back to the
client. The returned data is preceded by a response header, consisting of response
header fields, which communicates information about the state of the transaction
back to the client. As with the request header fields sent from the client to the server,
those are single lines of text terminated by a CRLF, while the end of the response
header is indicated by a single blank line containing only a CRLF. [5]

The data of the response follow the blank line, as we can see from the upper example
extracted from the proxy server’s log file. The header of the response and the data
sent from the server to the client is completely registered in the log file.

In the response case, the data that interests us consists in the “href” found in the
HTML page as in the example shown in Figure 16 and textual information that can

characterize the state.

50

Each request has a response but the data may not be registered on the log file if the
response is a GIF file for example or if the desired document was moved from the
known location or deleted.

Figure 17 represents an example of an image request and its response extracted from
the log file:

GET http://www.crim.ca/img/top_left5.gif HTTP/1.0
User-Agent: Mozilla/4.76 [en] (WinNT; U)

Referer: http://www.crim.ca/

Accept-Charset: i50-8859-1,* utf-8
Accept-Language: en

Accept-Encoding: gzip

Cookie: SID=5cbed9537305f759

Host: www.crim.ca

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png

END OF HTTP REQUEST
HTTP/1.1 200 OK

Content-Type: image/gif

Content-Length: 8243

Last-Modified: Fri, 25 Jan 2002 14:57:47 GMT
Server: Apache/1.3.9 (Unix) mod_perl/1.21 mod_ssl/2.4.9 OpenSSL/0.9.4
Date: Mon, 18 Feb 2002 18:40:58 GMT

Accept-Ranges: bytes

ETag: "c2b6d-2033-3c51726b"

(BINARY DATA - NOT SHOWN)
END OF HTTP RESPONSE

Figure 17 HTTP Request/Response for an Image

51

5.2 The Model

In this section we give more details about the model that we use.

5.21 FSMin XML

In this section we explain the representation of a web site as a finite state machine in
order to understand the next steps and we get into details later on, when we discuss

the design and implementation.

We want to represent the pages as states of finite state machine and the links as

transitions of the finite state machine.

Since we created the first version of the tool, it was not clear which model checker
best matched with our goals. As a result, we have created an application to be flexible
at the later decisions and/or changes. So we needed an intermediary data structure

which can be easily translated in another kind of representation.

We have decided to use XML file where we can stock the first format of the model
extracted from the web site, the finite state machine (i.e., with explicitly defined

states and edges).

As we already mentioned, we want our application to be flexible with respect to the
choice of the model checking tool. As consequence before creating the model in the
language accepted by the model checking tool of our choice, we first want to output
the model representing the web site to be checked in a standard format easy to modify

and transform.

52

In this section we explain how we represent a web site as a finite state machine. We
are creating an XML intermediary data structure which reflects the finite state

machine architecture of the web site (i.e. with explicitly defined states and edges).

We are focusing mainly on the navigational properties of the site, expressed by links
between pages. Starting from the log file of the proxy server we can extract the
information that we need to create a finite state machine. We refer to the content of
pages as states, and to transition from page to page (which are possible without

browser navigation facilities) as edges.

We described above the structure of the data in the log file. And as we said every
request causes a response. Starting from the proxy server log file we extract from
every HTTP response, whose body is an HTML page, all the links of page. We
consider the requests that generated these pages as response, the transitions. There is
a transition from a page to another (or there is an edge from a state to another) if
there is a request for the second page and the first page has a link, that matches this

request.

If the user decides to navigate, and we concentrate our attention in this direction,
everything that user does is registered in the log file. We have to consider that the
user can make mistakes and the pages requested from the other sites are not
considered. On the other hand the user cannot try all possible navigation trajectories.
However, some transitions, even those not performed by the user could be deduced,
assuming that the content of the page does not change (i.e. URLs lead to the same

pages). Such deduced transitions are discussed below.

Let us assume a page 4 that contains links b and c. From the page 4, clicking on link
b we can go to page B with success. Now we suppose that page B contains link ¢ and
clicking on link ¢ we can go to page C with success. We can conclude that from page
A, we can go to page C with success. In the site graph we denote such a transition
with a dotted edge from A4 to C as labelled by c.

53

We can talk now about two kinds of transitions: consumed transitions and deduced
transitions. Consumed transitions are the transitions, which conforms to the
definition of the transition and the user performed them. The deduced transitions are
the transitions that conform to the definition of the transition but the user never

performed these transitions (as in the situation described in the previous paragraph).

This explanation is important to understand how the edges are constructed in the

XML file. We will explain now the algorithm of XML file construction.

We are processing the proxy log file, page by page. If a link is present in a page and
we have a request for a new page corresponding to this link, then between these two

pages/nodes we have an edge labelled with the request.

First let us consider a simple example site graph. Suppose that with the help of a
browser we generate a request for the home page of CRIM web site GET
http://www.crim.ca/ and we navigate from the obtained page to another one

by clicking one of the encountered links.

The nodes represent the pages and edges represent the links (Figure 18). The dotted
edges correspond to possible transitions, solid edges correspond to transitions

performed by the user. The content of edges is not shown for clarity of the figure.

54

A

GET http://www.crim.ca/ GET E
http://www.crim.ca/index. i

GET epl?selec=27008href=/rd/ 5
http://www.crim.ca// personnes/alexandre_petr '

index.epl?selec=230 enko.htm

0&href=/rd/tele /—\
Home com.htm K Telecom ——— _f_
Page /o _ ... __. _.-'.\J* o

GET
A http://www.crim.ca//index.e

Alexandre
Petrenko

pl?selec=2300&href=/r

Figure 18 A Simple Site Graph

This graph represents a partial model of CRIM’s web site. The intermediary XML
file contains the information extracted from the proxy’s log file, and represents only

the pages and edges with the related information.

For this graph we can give some examples of browsing properties expressed with

linear temporal logic (LTL).

“FEach time we hit Home page, eventually we can hit Telecom page”

To express this using LTL the events “hit Home page” and “hit Telecom page” must
be specified. If they are given the name ‘p’ and ‘q’ respectively, this is expressed as
follows in LTL:

ofp— 0q),

where 0 denotes always, — denotes implies and ¢ denotes eventually.

It is also possible to specify the behaviour that should never occur in any

navigation. This can be defined as follows:

55

“Eventually it should not happen that when we hit the Home page eventually we can
hit Alexandre Petrenko page”

This can be expressed in LTL using the same name for the events, where ! denotes
negation:
Ol(p—0q)

We’ll see more examples of properties in subchapter 5.2.4.1.

522 DTD

XML offers an adaptable standardized markup language for describing documents
according to a given structure Document Type Definition (DTD). Therefore it will be
sufficient to look at the currently implemented DTD file to understand the structure
of our XML file.

<?xml version="1.0" encoding="UTF-8" 7>

<IELEMENT site (#PCDATA | vector | edge | request | page)* >
<IELEMENT href (#PCDATA) >

<IELEMENT form (#PCDATA) >

<!ELEMENT edge (#PCDATA) >

<IATTLIST edge Start NMTOKEN #REQUIRED >
<IATTLIST edge End NMTOKEN #REQUIRED >
<IATTLIST edge Label CDATA #REQUIRED >
<IATTLIST edge edgeld NMTOKEN #REQUIRED >
<IELEMENT vector (element*) >

<IATTLIST vector Id NMTOKEN #REQUIRED >
<IELEMENT request (#PCDATA) >

<!ELEMENT element (#PCDATA) >

<!ELEMENT string (##CDATA) >

<IATTLIST string Occurence NMTOKEN #REQUIRED >
<IELEMENT page (href*, form*, string) >

<IATTLIST page I1d NMTOKEN #REQUIRED >
<IATTLIST page Code CDATA #FIXED "N/A" >
<IATTLIST page Request CDATA #REQUIRED >

Figure 19 The DTD file for the implemented model in XML

56

In the following we describe the meaning of each sentence from the DTD file.

<IELEMENT site (#°CDATA | vector | edge | request | page)* >: For every site (the
root of the XML file) we have pages, requests, edges and the vectors which
characterize the presence of the links in pages. We give more details below. The “*”
sign in the example above declares that the child element message can occur zero or
more times inside the state element.

<IELEMENT page (href*, form*, string*) > Every page has zero or more links
(href’s), zero or more forms and zero or more strings.

<!ELEMENT vector (element*) >

<IELEMENT href (#PCDATA) > |ELEMENT href defines the "href" element to be

of the type "PCDATA".

<IELEMENT edge (#PCDATA) > |ELEMENT edge defines the "href" element to

be of the type "PCDATA".

<tATTLIST page Request CDATA #REQUIRED >: For every page we chose five
attributes: the Id of the page, a number, the request for this page, the URL which
points to this page and the code which is the error code returned by the server.
<IATTLIST vector Id NMTOKEN #REQUIRED >: The vector contains one or more
elements and the label in common with the page that it characterizes. It is the page
number in the order of apparition in the log file.

<IATTLIST page Id NMTOKEN #REQUIRED >

<IATTLIST page Code CDATA #FIXED "N/A" >

<IATTLIST edge Start NMTOKEN #REQUIRED >

<IATTLIST edge End NMTOKEN #REQUIRED >

<IATTLIST edge Label CDATA #REQUIRED >

<IATTLIST edge edgeld NMTOKEN #REQUIRED > : Edge element has four
attributes: “edgeld” representing the ID of the edge, a number given to identify the
edge in the order in which the edge was found; “Start” represents the Id of the page

from where the request was generated; “End” represents the Id of the requested page

57

and “Label” is the URL of the requested page.

(#PCDATA) stands for parsed character data. It's the tag that is shown and also will
be parsed (interpreted) by the program that reads the XML document.

(#CDATA) stands for character data. CDATA will not be parsed or shown

The first character of an NMTOKEN value must be a letter, digit, '.!, -, ' ', or".".
#REQUIRED means that the attribute must always be included - validity constraint.
#IMPLIED: the attribute does not have to be included.

#FIXED or "Default Value": the attribute must always have the default value that is
specified by a validity constraint. If the attribute is not physically added to the
element tag in the XML document, the XML processor will behave as though the
default value does exist. In our case “N/A” means that the server did not send back to

the client an error code.

Now we explain the role of the vectors in this structure. As we explained before, we
extracted from every page the links (href’s). With these links we create another XML
file which contains all the links from all visited pages that belong to this site.

The DTD of this XML file is described below :

<?xml version="1.0" encoding="UTF-8" 72>
<!ELEMENT href (#PCDATA) >

<!ELEMENT UniqueListOfHrefs (#PCDATA | href)* >

<!'ELEMENT processing (UniquelistOfHrefs) >

After this file is created, we can create the lists with the links number that
characterizes the presence of the links in a particular page. We need these lists to
keep the record of the links that we have in a page. The numbers represent the
position of the link that we can find in the file, where the latter contains all the links
of the.

58

The content of a state in the XML file is characterized by the links extracted from the
page if there is any and the textual information that interests us if there is any,

described as “string” in the DTD.

Following is a fragment of an XML file representing our model, shown to better

understand the meaning of the described DTD.

59

<request>GET http:/www.crim.ca HTTP/1.0</request>
<page Request="http://www.crim.ca" Code="N/A" 1d="0">

" <href> hitp://www.crim.ca/index eplThref=/visite/index.htm</href>
<href> http://www.crim.ca//index.epl?selec=2300&href=/rd/telecom. htm </href>
<href>http://www.crim.ca/</href>

- <string Occurence="0">Alexandre</string>
</page>

<request>GET http://www.crim.ca//index.epl?selec=2300&href=/rd/telecom.htm HTTP/1.0</request>

<page Request=" http://www.crim.ca//index.epl?selec=2300&href=/rd/telecom.htm " Code="N/A"
1d="1">...
<href>http://www.crim.ca/index.epl ?href=/visite/index htm</href>
<href>http://www.crim.ca/index.epl?href=/coordonnees. htm</href>
<href>hitp://www.crim.ca/index.epl?selec=2700&href=/rd/personnes/alexandre_petrenko.htm</href>
<href>http://www.crim.ca/</href> ...
<string Occurence="3">Alexandre</string>
</page>

<request>GET http://www.crim.ca/index.epl?selec=2700&href=/rd/personnes/alexandre_petrenko.htm
HTTP/1.0</request>

<page Request="http://www.crim.ca/index.epl?selec=2700&href=/rd/personnes/alexandre_petrenko.htm"
Code="N/A" Id="2">

" <href> htp://www.crim.ca//index epl?selec=2300&:href=/rd/telecom. htm </href>
<href>http://www.crim.ca/index epl?href=/coordonnees. htm</href>
<href>http://www.crim.ca/</href>

. .<stn'ng Occurence="6">Alexandre</string>
</page>

<edge edgeld="2" Label="http://www.crim.ca/index.epl ?href~/menus/menu_all.inc" Start="2"
End="0">Start = source page Id =2 End = requested page Id 0</edge>

<edge edgeld="13" Label="http://www.crim.ca/index.epl?selec=2300&href=/rd/telecom.htm"
Start="0" End="1">Start = source page Id =0 End = requested page Id 1</edge>

<edge edgeld="25"
Label="http://www.crim.ca/index.epl?selec=2700&href=/rd/personnes/alexandre_petrenko.htm"
Start="1" End="2">Start = source page Id =1 End = requested page Id 2</edge>...

Figure 20 The XML Partial Model

Figure 20 shows the code in the XML file for the model in Figure 18.

60

We can observe in Figure 18 and Figure 20 that the first page with the Id="0" and the
attribute “Request = "http://www.crim.ca/” contains the link which leads to
telecom.htm page. Clicking on the anchor text comresponding to this link on the
original HTML document generates the request:

GET http://www.crim.ca//index.epl?selec=2300&href=/rd/telecom.htm

In this instance we can say that from the page with Id="0" to the page with Id="1",
there is an edge generated by the new event, namely the click with the mouse on the
anchor text corresponding to that link. Similarly, from the page with Id="1", we have
a request for alexandre petrenko.htm, the page with Id="2", so we create the new
edge from page 1 to page 2 (<edge edgeld="25" Label=
"http://www.crim.ca/index.epl?selec=2700&href=/rd/personnes/alexandre_petre
nko.htm" Start="1" End="2">Start = source page Id =1 End = requested page Id
2</edge>). Those pages were sent successfully from the server to the client and the
code is set to N/A. In case of a failure we could have one of the error codes (404, 304
etc).

As observed from the XML file we have in page "2" the link which can generate a
request for page "0". This event never occurred in this testing session (it was not
registered in the log file). Nevertheless, we can conclude that we can have an edge
from page "2" to page "0" because there is a link in page 2 which can lead us to page
0. We represented the deduced edges in the graph with dotted lines (for clarity, not all
deduced edges are shown in Figure 18 and Figure 20).

Thus, the conditions to have an edge from a HTML page to another HTML page are:

a) to have a link in the source HTML page which corresponds to the HTML
destination page;

b) to have a HTTP request for the destination page (real edge) or the destination
page was requested before and registered in the log file (deduced edge);

The method of creating the XML file can be outlined as follows:

61

1. Ifthe source page and the destination page are encountered for the first
time in the log file and a request is generated from the source page to
the destination, page, then register the corresponding nodes (with their
links) and the edge in the XML file.

2. Ifthe source page and the destination page are already registered in the
XML file and an edge between them is registered, no action is

performed.

3. If both the destination and source pages were registered in the XML
file but the source page contains a link to the destination page, then we

just create a new edge tag which binds these pages in the XML file;

4. Lastly, when only one of them is encountered on the log file before a
node was created in the XML file, and then we register the new one

and create a corresponding edge.

With this method, we can construct the graph corresponding to a chosen web site.

We identify a page only by its URL. Thus, to check if a page is already in the XML
file or not, we can compare the new request with all the other requests already
registered in the graph. If the page has the same URL then with one already
registered, then we can say that we have already seen this page and we are not
creating another node in the XML file (thus, we don’t have redundant information in
the site graph). However, we can not say that we found the same page if we have the
same content but a different request. So the pages with the same link list but with
different requests are registered separately in the XML file, and as a consequence we

will have a new node in the graph.

Defining a page not only by its URL but also by a linked list may be inadequate in

case of sites which change their content rapidly, like news sites, etc. For such sites,

62

pages should be identified only by URLS, or may be by a URL with a list of essential
links.

5.2.3 FSMin PROMELA

After describing the finite state machine in XML format we need to describe it in a

specification language of the model checker of our choice.

5.2.4 Formal Properties

The last step is to specify the properties using the specification language of the model
checker and then to run the model checker with the finite state machine and the

property to check.

Figure 21 is a schema of the transformation from a state and a transition described in
XML to a state and transition in PROMELA.

<request n> LABEL n:
pagew | Lo)| | T
WMEM |
data > | :: atomic{processed data}
</page> fi;
Fi MV% Promela
inite .tate Finite State Machine
Machine

Figure 21 XML to PROMELA with Web Model Extractor/Manipulator

We define a set of logical properties to be checked against web applications. These

properties are classified into four categories: browsing properties, connectivity

63

properties, frame properties, and quantitative properties. For each category, we

present the possible properties to be checked.

5.241 Browsing Properties

These properties refer to the browsing of a web site and they are independent of the

browser’s navigational functions. We will present some

examples:

browsing properties

At start of your navigation on a web-site, you must encounter the home page.

LTL formulae: op where p is “home page”

ZRLAIM - Accueil - Microsoft Internel Fuplorer

=alx]

Be ER Wow Favories Tok Leb I SRt |+ |
“tak v 4 @) D) A Qsewh ffevortes Prioda 1J S b 4~ 1 8
addess (@ ntpipwmcincael _=|cPeallinis |
Google » <] (G seath + 55 Ehizebloded 4 Check ~ -\ Autolik ~ - options
u RECHERCHE
—
-_
CRIM POURQUOI LECRIM? | SERVICES | 1 EQUE | EvE

Dimacrean des activitds da la Filiire PHE da 1510
m m La Fillara PME ast un ragroupamant de PME spécialiséas an
2 sweurité de Anformation. M. Chrstian Martin, vice-prasident de
I - CRIM Quebec et responsable de | [5iQ, est heursux d'annoncer le
el demarrage des activités de |2 Fllikra PME an sécunte de

CONTACTEZ-N

Figure 22 CRIM’s home page

Every company’s web site should start with a home page which presents minimum

information about their company and menu and links which lead to more

choices/information and even other web-sites.

From any page you have a link out.

LTL formulae: o(p— 0q), where p is “any page” and q is a “link out” or oq

64

There is no commercial website created with one page which leads nowhere. From
every web-page we should have at least one link to another page. A web site which
presents a business should create their web-site with enough information to make it
appealing to clients.

Example: from CRIM’s home page we could go to Services as in the screenshot

below.

W verncrs dut 1141 Hevelnppentent de prodints inovalem s « | xperits de haut niveai = Micro<oft Intemet Expl -0l x|
Ho ER Yiw Fgvokes Joos Leb [= |
SaBack v @_;:] A Dseach SlFovoes 'PMeda P =N\ b v -0l B
mﬁsmhﬂp:ﬂwm.mn.mﬁrlxm.m _:] PG inks ®
Google - <] G sewch - 0 Shizabocked 4 Check -\ Auolink ~] optons

\ ¥4

— RECHERCHE

CRIM

POURQUOI LE CRIM? 1 SERVICES 1 MEMBRES 1 INFOTHEQUE 1 EVENEMENTS

R-D | Formation | Qualité logicielle 1 ISIQ | Autres services

Services du CRIM

Pour répondre aux besoins des entrepnses en conbnuelle évolubion, le CRIM a
développé un modéle d'affaires unigue qui s’appuie sur une vlsion
globale de I'innovation. Cetts vision se reflste dans la fagon qu’a le CRIM
de répondre aux besoins de ses dnants des la deﬁnmon des projets, il ient
compte des perspectves de de de
qualite, de transfert, de déploiement, de soutien et de formation.

Par la complémentanté de ses services et expertises ains: que ceux de ses
partenaires, le CRIM contribue |

3] (2rems boading picture hetp:/fwww. crim. cajfi serv_ford_t N @ Internet

Figure 23 CRIM’s Services page

A counter example is www.zombo.com who has one page on his web-site:

A 70M80 - “ticosoft Inteinet Explorer o e - =laix|
He Edt View Fyvortes Jook Help -
Giback + = D) A Dvowch Yrevorkes Tweds 3 N4 o -0 8 _
Acess [15) TITETINGREN Z] peo s
Co sk'mm ~] Gsoach » = [T7abioded ¥ Check + « Aublik + #joptans
_ i =l
mbo.com
=
&) bone © Mtemet

Figure 24 One page web site

65

From any page you can go to the home page.

LTL formulae: o(p— oq), where p is “any page” and q is “home page”.

It is good practice to have a link to home page from any other page of the web-site.
This browsing property gives the user the possibility to go back to the main menu and
have more browsing choices, increasing the visibility of the company who presents

its business.

In all situations, a certain button/anchor a can be eventually selectable (in the form'’s

case).

LTL formulae: o(p— ¢ q), where p is “certain button/anchor a” and q is “selectable”

It is possible for a certain button/anchor a to be eventually disabled (in the form'’s
case).

LTL formulae: ¢ (p — ¢ q) where p is “button/anchor a” and q is “disabled’

Example:
]hl\us S i.mi Lo reunlrr fllmupluud a)pxl'sialu) UD‘GLEWNII-IIIIGMVT_ 6 - Micro _ Inten -lﬂl)_(]
B Et Yow Fgvotos Joob Hep |-
HBack v = QJQ'QMUFW@M@}-JE&Q s
Adgtress |) htps:fjsecure. bidz.comjregisterffleupioad. 3 =l PG uks»
Google » | |(Soard1-$§muodud “fdwckv - 1 ol @] options -
> -
100% =l
mt‘ W Yes, I want Lo raceive Gift Certificates and special offers from Bidz.com and its
Arav
affillates!
" Yes, 1 want to racelve Monthly Auction Updates!
" Yes, I want to receive Weekly Auction Updates!
Lcter' & ves, I want to receive Daily Auction Updates!
No, 1don't want to recelve Any Auction Updates!
#e+s++ TERMS & CONDITIONS ****** fl
% 1. DEFINITIONS *
"Bidz.com" is the interactive on-line auction service on the Waorld
Wide Web of the Internet, consisting of auction services and
content provided by Bidz.com, affiliates of Bidz.com and other third ~|
By submitting your ragistration information, you indicate that you agree to the Tarms
& Conditions and have read and understand the Privacy Polcy.
4 | >
& [2) | @ 1temet

Figure 25 Enable/disable objects

66

In the previous screenshot we have the choice to receive information about the Gift

Certificates from www.bidz.com web site or not. It adds business value to the

company in the case of customers who want to give presents to their friends or family

gift certificates to buy jewelleries.

In all forward browsing sessions, the menu/table of content is eventually visible.
LTL formulae: ¢ (p — 0q), where p represents “forward browsing sessions” and q

the property to be “visible”.

Thi ey otembies de L RIM - Mictocaft Internet Deplacee e AV | | e =[Ol x|
Be ESR Wow Favortes ook Hep =
waBack v = - @ 2] A} DSewch 3iFavorkes PMeda (F 2N- b 4 3L R R
Address [{E] etpsfjowoow.crm.coffe/Membres] =] Poo ks ®
_C.a_sl:_-j ~] Gsewdh « 0 Bi7abiockad AF Check - '\ Aubork - #] options

g RECHERCHE

CRim

POURQUOILE CRIM ? | SERVICES | [MEMBRES | INFOTHEQUE | EVENEMENTS
Lists | Zone réservée | Membership

Les membres du CRIM

w
La majorité des membres du CRIM sont des cmrennsos provenant de l'industrie ‘ . '
du logicie! ou du ser | on infor ou des r L | |i—

organismes oeuyvrant dans das secteurs d'application comme |a santé, I'éducation
et les finances.

CONTACTEZ-NDUS

Le CRIM travaille pour ses mambres st, par conséquent, pour leurs clisnts, Las
PME représentent 60 % du membership du CRIM. De plus, le membership du
CRIM regroupe des entropnises et des organisatiens de 9 régions du Québec.

J . m——— e e - . -] iJ"J
L

Figure 26 CRIM’s Members page

We can notice in the previous web page example that we have the same menu as the
one found in home page. This gives more browsing flexibility to the user who can go
from the Members page to any other choice from the menu instead of going back to

the home page.

Immediately after the first occurrence of a ¢, wwill happen.
LTL formulae: ¢ —>Owy

For example, after you fill up a form you will encounter a Submit button.

67

5242 Connectivity Properties

Connectivity properties correspond to the structure of the web site. Consider a

domain A, where A can be a web site address; for example, www.crim.ca. The

properties include:

In a web site, there is a certain page such that the URL from which it is retrieved
contains the substring A. For example, the research and development web page at

CRIM is derived from the URL http://www.crim.ca/rd/index.htm. This page is

within the domain of CRIM since its URL contains the substring www.crim.ca .

Another property is to ensure that all the links within the web site point to pages
in its domain. It can be formulated as follows. All URL pages are such that the
URLs from which they are retrieved contain the substring A. This property forces
the author to exclude from his web site any link to external web sites. For
example, in CRIM web site, www.crim.ca , this property will not hold since there

exist a link to FCAR funds web site, http://www.fcar.qc.ca , which is external to

CRIM’s domain. A web administrator can enforce the design of a web-site to
remain within the domain in the situation when the employees of the company
have no Internet connection just Intranet, so he/she doesn’t want to have broken
links on their company web-site.

In a web site, while loading some URL page, the HTTP error numbered & occurs
where a HTTP error number is a status code delivered in the header of the
server’s response. Every status code refers to a message describing the status of
the server’s response such as successful transactions, redirection transactions, and
error messages. This is part of every development error management system. You
want to have a user friendly message not a HTTP error code which is irrelevant
for the user.

Non-existing link targets: this property checks for dead-ends. In case the author
uses URLs to point to a different web site or a different domain, then it is
sufficient to check whether the targeted web site really exists or not and that the

link to it is not broken.

68

Chapter 6

6 Web Model Extractor/Manipulator

In this chapter, we describe the functionalities of the Web Model
Extractor/Manipulator. The subsequent sections contain the description of the

architecture and the graphical user interface.

6.1 Functionalities

The prototype tool design contains nine classes as shown in Figure 27. Three of them:
“MyFrame”, “FrApplication” and “AboutBox” are built for the graphical user
interface. The classes: “XMLTreatment”, “CutLogFile”, “OneList”, “DoOro”,
“GetPostFilter” and “Html” are designated to implement the algorithm for the
extraction of the necessary information from the proxy log file and to process this
information in order to create the finite state machine using an XML format. The
class “PROMELA” is used to translate the finite state machine from the XML format
into PROMELA language used by SPIN model checking tool.

69

GetPostFilter XML Treatment Promela
word:String trXMLTreatment
tokenizer.StringTokenizer +stepThroughAll:void occurr-Arraylist
e +getatiribute:String | o
-tempString:StringBuffer +createEdge:void -requestlListvoid

- +indEdge void -createStatt.as:vo!d
+filterRequest:String +checkPage:boolean +promelaFile:void
\
JDialog
CutLogFile Htmi ActionListener
AboutBox
oro:DoOro
promela:Promela > +Himl +AbOUtBOX
aetPostOotPoatFiter +escapaiSifing Joinitvoid
9 " +unescape:String #processWindowEventvoid
. cancelvoid
-htmiTag:String . L
+theMainvold +actionPerformed:void
JFrame
\ MyFrame Fripplication
DoOro
. . . frame:MyFrame
jButtonBrowse_actionPerformed:v packFrame:boolean
jButtonPromela_actionPerformed:]e)
+substRequest:String jButtonOptions_actionPerformed.v +Frapplication
+subst:String Enter_actionPerformed:void +main:void
+heauty:String +MyFrame -
+hrefs:ArraylList -jbinitvoid
+forms:ArrayList +checkBoxvoid
+stringFinder:int +jMenuFileExit_actionPerformed:vo
+jMenuHelpAbout_actionPerformed

#processWindowEventvoid
doEntervoid
doOpenCommand:void
doOpenPromela:void

Figure 27 Class Diagram

70

The main function of the Web Model Extractor/Manipulator is processing proxy

server’s log file. The main steps of this function are as follows:

e The tool splits the proxy server log file into request/response pairs by finding the
beginning and the end of the HTML pages contained in the log file (Figure 28).

Request 0 < N
Response 0 request n
Request 1 Request n <page n>
Response 1 > > d
Request 2 Response n ata
l?;esponse 2 .
et Intermediary

buffer

XML
Finite State

Proxy server
log file

Figure 28 Processing of the proxy server log file

Machine

e The Web Model Extractor/Manipulator afterwards treats the HTML pages one by
one in order to extract the necessary information that helps create the finite state
machine. Currently, the focus is on extracting the hyperlinks and the number of
occurrences of a selected string. We consider one single specimen from every
hyperlink because we do not want to expand the model with duplicate transitions

if there is no benefit.

e We also avoid creating duplicate states in the model for duplicate pages.
Therefore, we check if the page already exists in the XML file. If the page is
found, we skip its analysis. Otherwise, we extract the information needed to

create a new state of the finite state machine.

To process the XML file we use a java parser from org.w3c.dom [URL7] that
provides the interfaces for the Document Object Model (DOM), a component of the

!

Java API for XML Processing [URL8]. DOM is a tool for manipulating data, not a

data structure itself. DOM is a memory representation of the data in a tree
representation. It uses a pointer to the root node. Building the Document tree is an
expensive operation, being a Java object equivalent of the whole XML tree, but it can
iterate over the tree to look at the nodes and it also can edit the tree: add/remove
nodes. The last step is to create the finite state machine in PROMELA. The states and
transitions described in XML are mapped to the states and transitions in PROMELA

language.

6.2 GUI

In this section, the graphical user interface (GUI) of the tool is described. The GUI is

relatively simple as seen in Figure 29.

& Web Model Builder M= Ei |
Fle Help
L“__’Bro-;s-;“_!,l [file name Show the file I
Options | Erter a string here:]inn string value Build the model
+ + + + *+ %+ + Instructions * * * %t % % % |

To buid a model from a proxy log file, first choose the file using Browse button

then enter a string to calculate 1ts occurence in every page.
* ¥ ¥ ¥ ¥ ¥ X

Figure 29 Web Model Extractor/Manipulator Window

72

It consists of one main window with four buttons: “Browse”, “Options”, “Show the
file” and “Build the model”.

With the Browse button, the user browses the files/directories structure and can

choose the proxy log file to be processed.
[web Model Builder =lolx|

File Help
Browse file name Show the file |
Options | Enter a string here: Ilnlt string value Bulld the model |

TR R TR Trnarvrirmriana & © * & * * . —_—— = :I
To buid = = —?—L’-(J owse button
lithen ent | o i I —y Test L’ e B Ef'

=] model. TXT
] out.txt
outl.kxt
outhuge.txt

Dbkt THT

2]

Flename: |outittle. TXT | Open I
Fles of type: Al Files %) ~l Cancel]

4 of

Options button opens a new window, as seen in Figure 30 where the user can select
one of two options: “whole word” and “case sensitive”. These options are relative to

the string to be searched that the user enters in the GUL

73

& Opti... Mi=1E3

Figure 30 Option Window.

“Show the file” button displays the content of the chosen file on the text area from the

interior part of the application’s window, as in the following screenshot example:

Egj;WPb Model Buillder . _|DL>_(_|

File Help _) _ _ i
Browse | F)rojectPresentation\Tesﬂmodel.TXT |§" Show the ﬁ_lg:i
Options I Enter a string here: Iinit string value Build the model I

HTTP/1.1 200 OK :El
Content-Type: text/html

Server: Microsoft-IIS/5.0

Date: Fri, 14 Jun 2002 17:53:53 GMT

<html>

[<head>

<title>The WORLD'S Classical Radio Station, Classical Music 24/7, FREE e-mail'</title
<META name="description” content="Beethoven.com is The World's Classical Radio Statio:
<META namez="keywords” content="Beethoven, Bach, Mozart, radio, classical music, class
<script language="JavaScript" type=""text/javascript'>

// Source: CodeFoot.com

function blockError({){return true;}

a | _'li‘l

Loaded: CprojectPresentatiomTestoutlitie TXT

Figure 31 Show the file button

The last one, “Build the model” button, starts the main engine and extracts the final

state machine from the proxy log file.

74

%4 Web Madel Builder . T ; =10 x{

File Help

Oplions I Enter a string here: lMozart

tt*tt*tmstruc;ions*tt'kttt —A_l
|To buid a model from a proxy log file, first choose the file using Browse button

then enter a string to calculate its occurence in every page.
L S

$tarting building the model from the proxy web log file...
Running...

" o

Cho's'enﬁElprojectPresentahon\TesnoutlittIe.Txr

Figure 32 Build the model button

There are three fields: the one on the left of the Browse button displays the name of
the chosen log file produced by the proxy server. The second text field is for the user
to enter the string for which the number of occurrences is calculated. The third text
field is the text area where we display the main steps executed by the application as it

runs.

75

Chapter 7

7 Case Study

In this chapter we present a case study on which we applied our approach and
framework. We select the web site of a classical music radio station “Beethoven” that

has the following URL: www beethoven.com.

The aim of this case study is to demonstrate applicability of formal methods for
verification of Web based applications and the correctness of Web Model
Extractor/Manipulator tool. We first present our browsing experiments with the web
site. We then present the formal model extracted by the Extractor/Manipulator tool
and represented as an automaton in SPIN. Then we formulate properties used for
verification. We formulate the properties to be checked in LTL. Finally, we discuss

the scalability of the tool to generate large models of web applications.

7.1 The “Beethoven” Radio Station Web Site

We surf the web site to observe the particularities of our test target, starting from the

home page at www.beethoven.com. A snapshot of this page is shown in Figure 22.

76

[T%s WORLD S Clacaical Racio Siation lbssical Music 2477, FREE o maill | Miersioft infsmet Explare: = ST ML
fle Edt !mt Fm Jools Hep -f_
= = - = [an]
) (3 2 a |) & o w _
Back Stop Aefresh Home Seatch Favontos History Mad Pt Edt Edit with XM
Agdress [£7 i/ /www besthoven.com £
i - K
ﬁ,beet’.}a‘z)eas.g.r Fie Designed by "
“T'he Warld's Classical Radio Station” y
s The Swan trom Carnival of the Auimals Dondon Sintoniet
t Supportthe of Congress have isiationto nelp s o:
INTEINET RADIO FAIRNESS Ac’j save Intemet radio. Your efforts are working, but we now need
help more than ever fo get this bill made law. Pazword:

((m» “** FAX CONGRESS HERE to suppost the Internet Radio e
Fairness Act NOW?

\ Friday, August 9, 2002 I IClassics.com Feature
ON THE AIR ay, Aug slasein e

e et
| Support the

E MAIL Tochnical Alert! - Firewall lssues

e Ifyou are havlng difficulty listening to Beethoven Ratio, t may be due to a firewall issue. VA
LEGAL DEFENSE FUND!|

< s benstice o more Information.
The Liszt

RLC S L. cia e from Mystic Marriott hotel!

Leethoven's Backyard JEERTESE =] Essential Gukar
Phota Gallery | Andrés Segovia and John
ADVERUSE Beethoven University (LRI | Williams are justiwo of the
== | My fiedrr i ires pven Radio stalhas picked out for you this week. stars on this grest-priced
ABQUT US 2-CD set available now al
Lunderng Wallpapen iCinssics com
HELP | Link ToUs BUY IT NOW
SRR Check Boethoven Radio Local Time
Hews Itrleases —— e
Subseribe to our,
e-mail newsietter JTRET LSRR Classical Music News
Beethoven Pall
E-mail Addrass:
July 31, 2002 . Berliner Ensemble Director Staying From these U.S.
Ensembie founded by Bertoldt Brechi will remaln under Claus Peymann. (AF) cities, which has
the best
July 30, 2002 . Orchestra Strike Wrecks New York Mozart Festival orchestra?

Performances have been canceled due 1o 1abor dispute with musicians (Reuters)

) Classical Music Links and inferesting Stuff We Found

Mstant| B2 ypedocu. | Elbrmes ap | §1Googke Se. | I¥ Mot | £19DBC Shor. | K3 RE. des no..| BEngish Ro..| £708CShor.| B]TheWOR_| | KB A7 10%aM

Figure 33 Home Page from www. beethoven.com site

On the left side of the Home Page, we can observe that there is a menu which is

supposed to help us navigate easily through the web site.

Looking at the left menu from the Home Page, Figure 33, we observe the item
“Explore”. Holding the “hand” cursor on this item, another menu is opened. This new
menu holds another eleven items which can lead us to eleven pages, respectively: The
Liszt, Culture Connection, Beethoven’s Backyard, Photo Gallery, Beethoven
University, Notes and Quotes, Ludwig Wallpaper, Link To Us, Start With Us, New
Releases and Beethoven Movie. On the bottom of the page there is also a link called
“Explore” that leads us to a page “Explore” shown in the next snapshot. This page
has no relationship with the menu “Explorer” that was described before. Moreover

the menu displayed in this page looks exactly like the menu encountered in the Home

)

Page, but is not the same. In the Explore page, the menu is composed of ten items:
Now Playing, Music Log, E-Mail, Shopin Mall, Live! Webcam, Bulletin Board,
Ludwig’s Links, Contests, About Us and Help. Though the menus from previously
described pages look similar, they do not lead to the same set of pages.

We also observe that a certain page named “Schedule” can be reached only starting
from the Home Page. So, to navigate from “Explore” page to “Schedule” page, the
user has to go through the Home Page.

7.2 Properties

We can formulate some browsing properties that could be checked against the model

of this web site. For example:

- “Is page Schedule reachable from Explore page without going through Home
Page?” and

- “Is there at least a page from which page Schedule is reachable without going
through the Home Page?”

78

:‘ Beethuven com - Ludwiq s Links - Microsoft Inteinet Explomen

Ble Edl Vw Favodes Todk Heb B=
! . » »
) [5)] a | &) a3 5 T 4
Back Stop Aefesh Home Search Favontes Histogy Mal Pt Edt Edt wth>M. .
Agdress [£] hitp://wwen.beethaven.com/erplore hm ~] P60 Lnks™
“=beets : SALZBURG FESTIVAL o= i
Zpbeethovern.coi . s
“The World's Glussical Radio Station” COMPETITION 2002 A
Requests
- — Explore
Listen
The Liszt e
Greatweb sites for your cuitural lifesyle that fellow tlassical music lovers think are the besti Add your awn favorites to " -
the list! &
NOW/ PLAYING
MUSIC LOG Classical Notes and Quotes =
The best tane to
Check out some Interesting facts and quotes about classical music sentin by Beethoven com® users.
E-MAIL 9 stop a man from
CHOPIN MALL Beethoven University becoming sbusive
Leamn all about classical music from the Internet Public Library
LIVE! WEBCAM
Cultural Connections
BULLETIN BOARD Take a peek at some of the exciling events and shows taking place in your homeltawn with our Cullural Connections
LUDWIG'S LINKS
Live! Webcam
CONTESTS Hey, what are yoi looking a1? Watch your favorite Beethoven com® personalities in our all digital studiol
WENIRE visit Our Digital Studios
HELP Beethoven Radio's all digital, state-ofthe-art broadcast studios are ON AIR. Unlike analogue broadcasting, now enjoy Ll
ali classical music all the time from a pure dipitsl source. Youve never heard radio like this before/
g Beethoven at the Movies
Send to Frlend Grab a bag of popcom and check out this exciting presentation. Ode tu Joyt You'll need the free Flash browsar plug-In
from Macromadia, Teach boya that
violence ageinat
woman is wrong.
I
i) Done @ Intemnat i

MStnt| 3 ryperdoc. | €)tomen ap.| E]6ooge Se. | WP Mcrsoh . | #1908C Shor | ESRe:aWS .. | S10GC Shon. [@ Bosthov... _HHasmOu | BGHE L a1 pu

Figure 34 Explore page from www. beethoven.com site

We would like to check if a certain string, say “music”, is not repeated more than a
certain number of times. For instance, we want to check if “the number of
occurrences of the string music in every page that we visited, is strictly less than a
given threshold, let it be 6”. If we combine this last property with the last formulated
browsing property we can have a new one, now more complex: “There exists at least

one page with occurrence of string music < 3 reachable from Explore page without

going through the Home Page”. After we establish what we want to verify in the web

site, we extract the model and formalize the properties.

7.3 Formal Model

The next step is to extract a model for the web site case study. We use our prototype
tool, the Web Model Extractor/Manipulator to generate a finite state machine that

corresponds to the above mentioned web site.

79

During the navigation of the web site, the request/response pairs of the visited pages
are collected in the log file of the proxy server - “out.txt”.
The following is a snapshot of the GUI of the Web Model Extractor/Manipulator

when executed using our case study.

& Web Model Builder =] E3

File Help

I___-_ — — —— = = ————————————————— — ——————.
Browse IC:Ip rojectiOuiout b Show the file]

”_—__ ———— ——————— ———— — = = — = — —

' Options 1 Enter a string here: |music B the mooel | |

:_t_ttxrttn;s_t-rucgions-xw:tt*; - - — _-:Ili

To buid a model from a proxy log file, first choose the file using Browse button
then enter a string to calculate its occurence in every page.

* *F ¥ * & *® % ‘
Starting building the model from the proxy web log file...
Running. ..

T XY ERER I‘
Building the Promela file representing the model... '
{Running. ..
I S I R S

In this model we found 14 states and 115 transitions.
T X TN

Chosen file: C:\projectiOutiout txt

Ly __ o]

Figure 35 Web Model Extractor/Manipulator

We browse the files/directories structure and we have chosen the proxy log file to be

processed (out.txt file).

80

8 opti.. MEIER

Figure 36 Option Window

We then select the “Option” button which opens a new window. Two options are

22

available in this window: “whole word” and “case sensitive”. We select “whole

word” and we validate our selection with the “OK” button.

Then we write the string “music” for which we calculate the occurrence in every
visited page and we click on the “Build the model” button. The main engine starts
and extracts the finite state machine from the proxy log file. The main area of the
GUI is a text area where the main steps executed by the application while running are

shown.

The prototype tool first builds an XML FSM model from the proxy server log file.
Since we explained the main steps of this module in the analysis and functionalities
part, we only show the concrete results. Figure 37 shows a fragment of the finite state

machine expressed in XML format.

81

<?xml version="1.0" encoding="UTF-8"?>

<site>

<request>GET http://www.beethoven.com:80/ HTTP/1.0</request>
<page Request="http://www.beethoven.com" Code="N/A" Id="0">

<href>http://www.beethoven.com</href>
<href>http://www.beethoven.com/notes. htm</href>
<href>http://www.beethoven.com/help.htm</href>
<href>http://www.beethoven.com/schedule. htm</href>
<href>hitp://www.beethoven.com/store. htm</href>
<href>http://www.beethoven.com/contact htm</href>

<string Occurence="2">music</string>

</page>

<request>GET http://www.beethoven.com:80/Assets/menw/images/aboutus_f2.gif HTTP/1.0</request>
<request>GET http://www.beethoven.com:80/contest. htm HTTP/1.0</request>

<page Request="http://www.beethoven.com/contest.htm" Code="N/A" Id="1">
<href>http://www . beethoven.com/contest. htm</href>
<href>http://www.beethoven.com/about. htm</href>

<href>http://www.beethoven.com/contest. htm</href>

<string Occurence="2">music</string>

</page>

</site>

Figure 37 The model - XML Format

82

The next step of the execution is to translate the XML model to the PROMELA
language which is understood by the model checking tool that we have chosen, SPIN.
In Figure 38 we show a fragment of the PROMELA model created from the XML
file representing the classical music radio station site.

We can observe here a non-exhaustive list of the hit links and 2 of the 14 states.

33

/*t0 = http://www.beethoven.com,
t4 = http://www.beethoven.com/explore.htm,

tll = http://www.beethoven.com/schedule.htm,

tl2 = http://www.beethoven.com/newsletter/newsletter.htm,

t1l3 = http://www.beethoven.com/bbackyard.htm;*/

bit t0= 1, t1= 1, t2= 1, t3= 1, t4= 1, t5= 1, t6= 1, t7= 1, t8= 1, t9=
1, tl0= 1, tl1ll1l= 1, tl2= 1, tl13= 1;

byte state =0, strocc = 2 ;

active proctype website ()

{

goto LABELO;

LABELO:

If

:: atomic{ t0 ->strocc = 2; state =0; goto LABELO;}
atomic{ tl ->strocc = 2; state =1; goto LABELl;}
atomic{ t2 ->strocc = 2; state =2; goto LABEL2;}
atomic{ t3 ->strocc = 4; state =3; goto LABEL3;}
atomic{ t4 ->strocc = 4; state =4; goto LABEL4;}
atomic{ t5 ->strocc = 0; state =5; goto LABEL5;)
atomic{ t7 ->strocc = 4; state =7; goto LABEL7;)}
atomic{ t8 ->strocc = 1; state =8; goto LABELS;]}
atomic{ t9 ->strocc = 3; state =9; goto LABELY;)}
atomic{ tl0 ->strocc = 2; state =10; goto LABEL10;}
atomic{ tll ->strocc = 6; state =11; goto LABEL11;}
atomic{ tl2 ->strocc = 3; state =12; goto LABEL12;}

:: atomic{ tl3 ->strocc = 8; state =13; goto LABEL13;)

£i;

LABEL1:

If

:: atomic{ t0 ->strocc = 2; state =0; goto LABELO;)
atomic{ tl ->strocc = 2; state =1; goto LABELl;}
atomic{ t2 ->strocc = 2; state =2; goto LABEL2;)
atomic{ t3 ->strocc = 4; state =3; goto LABEL3;}
atomic{ t4 ->strocc = 4; state =4; goto LABEL4;}
atomic{ t7 ->strocc = 4; state =7; goto LABEL7;)}
atomic{ t8 ->strocc = 1; state =8; goto LABELS;)
atomic{ t9 ->strocc = 3; state =9; goto LABEL9;}
atomic{ tl0 ->strocc = 2; state =10; goto LABEL10;}

£i;

Figure 38 Finite State Machine in PROMELA

The attributes Request of the states (pages) from the XML file here became the labels

t0, t1, ... t13 all initialized to 1; means that all transitions are enabled and any of them
could be taken.

84

The labels from PROMELA file represent the states. For example, “Label 0” is
representing the start state that is the home page. After the “if” statement we have the
transitions. For example: “::atomic{ t10 ->strocc = 2; state =10; goto LABEL10;}”
means that from the home page (Label 0) we can leave the state using the transition
t10 (where t10 = http://www.beethoven.com/privacy.htm) to go to the state 10 (Label
10) with the attribute state=10, the state number and strocc = 2 meaning the
occurrence of the string “music” in this page is 2.

The state description is finished with “fi”.

In Figure 38 we show the first two states from the model extracted from

www.beethoven.com web site in the XML format.

After the translation of the model from XML to PROMELA, the model can be
visualized in a graphical representation as shown in Figure 39. This representation is
generated by SPIN starting from the PROMELA model.

The circle labelled with 80 represents our Label 0 which is the home page. The edge
labelled t0, ..., t5, t7, ...,t13 represent the transitions which leave the state 80 and
target the corresponding states: Label 0 (80) — “Home Page”, Label 1(136), Label 2
(192), Label 3 (242), Label 4 (298) — “Explore” page, Label 5 (354), Label 7 (404),
Label 8(454), Label 9 (504), Label 10 (554), Label 11 (610) “Schedule” page, Label
12 (666), Label 13 (722). Label 6 is not in the model because it is an external link and
the model checker did not find a transition from the other states to this state. We can

search for the transitions which leave each state to see the potential browsing flow.

~

85

t9

Figure 39 The Model — Graphical Representation

It can be observed that there is no edge between Label 4 (298) — “Explore” page and
Label 11 (610) — “Scheduler” page.

7.4 Formal Properties (LTL)

In this section, we formally specify the properties described in section 3 in LTL
(Linear Time Temporal Logic). We then present the results of checking these

properties against the model extracted in section 4 using SPIN model checker.

86

7.4.1 Property 1

“Is the number of occurrences of the string music in every page strictly less than a
given threshold 6?” LTL: the LTL formulae and the definition of the predicate
“occur” are defined as follows:

[1 occur

define occur (strocc < 6)

Linear Time Temporal Logic Formulae =] B3

Formula: I[] occur Load... .
Operators: [] |<>| U I > lancl orlnokl

lPropotty holds for. & All Executions {desked behavior] ¢ No Executions {ermor behavior)

_“ | Use Load to open a file or a template.

~|

|
[Notes [file Beethovenfinall M - ”l
|
|

| Symbol Definitions:
- | #tdefine occur (stocc < B)

w

Never Claim: Generate

:l never{ /= |([] occur) */
TO_init:
if
= (! {{occur))) -> goto accept_all
2 (1) > goto TO_init
fi;
accept_all:
- skip

Verification Result: Run Verffication

2 | warning: for p.o. reduction to be valid the never claim must be stutter-closed
(never claims generated from LTL formulae are stutter-closed)
[Spin Version 3.4.3 with XML -- June 2001}
+ Partial Order Reduction

Full statespace search for:
~| never-claim +

Help | Clear I Close | Save As..

Figure 40 Linear Time Temporal Logic Formulae.

Figure 40 shows a snapshot of the LTL Property Manager window of SPIN.

87

The Formulae field introduces the LTL formulae “[] occur”. In the Symbol Definition
field, we give a definition of the predicate "occur" which states that the state attribute

"strocc" is strictly less than a given threshold 6: “#define occur (strocc < 6)”.

Never Claim:
The next step is to generate the never claim (negative) of the property by selecting the
“Generate” button from the “Never Claim” section. Figure 41 shows the never claim

of the property:

/*

* Formula As Typed: [] occur

* The Never Claim Below Corresponds
* To The Negated Formula !([] occur)
* (formalizing violations of the original)
*/

never {/* I([] occur) */
TO_init:
If
.2 (! ((oceur))) -> goto accept_all
.2 (1) > goto TO_init
fi;
accept_all:
skip
}

Figure 41 The Never Claim for LTL: [] occur.

Verification Result: The result of verifying the property is invalid. SPIN produces a
counter example with an option to run a guided simulation of the counter example
that shows a path to a page that violates the property. Figure 42 shows the simulation

run where the “music” string occurrence is equal to 8.

88

Simulation Dutput M= E3

' ~| preparing trall, please wait...done

spin: warning, ‘pan_in", global, 'byte state’ variable is never used
spin: warning, "'pan_in", global, 'byte strocc' variable is never used
spin: couldn't find claim {ignored)

2 pioc O {website] ine 23 "'pan_in" (state 2) [(€2)] <meige 0 now &3>
2 pioc 0 (website] line 23 "pan_in" {state 3) [stroce = 8] <merge 161 now @4>
2 proc 0 (website] line 23 "pan_in" (state 4] [state = 2] <merge 161 now @161>
spin: trail ends after 3 steps
#processes: 1
3 proc O [website] line 50 “pan_in" [state 161)

1 processes created

4

Single Step | Suspend Savein: | sim.out Clear | Cancel

Figure 42 Guided Simulation Output — Property 1

7.42 Property 2
“Is page Schedule reachable from Explore page without going through Home

Page?”

This property implies that there exists a path from Explore page to Schedule page
without going through the home page. However, properties with existential operators
cannot be specified in LTL. Therefore, the property is negated to check if in every
path between the designated pages, the home page is present. So, if the negation of
the property is satisfied, it means that the original property is violated and vice versa.

Negation: On all paths from Explore page to Schedule page Home Page is present.

To specify this property in LTL, we make use of the property patterns found in
[URL7]. Predicate P becomes true at a time #, between #, and #,, which are the times
when predicates O and R become true, respectively. The property is specified as
follows:

ExistBetween (home, explore, schedule) where home, explore, and schedule are

predicates that designate the web pages in question.

89

LTL: As we did previously, the following LTL formulae and definitions of the

predicates are inserted in the Formulae and Symbol Definitions fields respectively.

[] (explore && Ischedule -> ((! schedule) U ((home && !schedule) || []
(Ischedule))))# define home (state==0)

define explore (state==4)
define schedule (state==11)

Verification Result:

The verification result is valid which means that the original property is invalid:
“page Schedule is not reachable from Explore page without going through Home
Page”. This result conforms to our observations, which means the model conforms to

the web site navigation structure and the property was verified.

7.4.3 Property 3

“There exists at least a page from which page Schedule is reachable without going

through the Home page.”

For the same reasons explained for Property 2, this property has to be negated.

Negation:

“On all paths to Schedule page, the Home page is present.”Using the Existence

pattern: ExistBetween (home, (!(home) & !(schedule)), schedule)

- The predicate (home) is designated for the home page.

- The predicate (!(home) & !(schedule)) is designated for any page that is not the
Home page nor the Schedule page.

- The predicate schedule is designated for the Schedule page.

LTL:
(/] ((lhome) && !schedule -> ((! schedule) U ((home && !schedule) || []
(Ischedule)))))# define home (state==0)

90

define schedule (state==11)
As in the previous case the “Verification Result” is valid which means the original

property is invalid which conforms to our observation.

7.4.4 Property 4

“There exists at least one page with occurrence of string music < 3 reachable from

Explore page without going through the Home Page. ”

Negation:

“On all paths from Explore page to pages where occurrence of string music < 3 the

Home Page is present.” Using pattern: ExistBetween (home, explore, (minocc &&
lexplore))

LTL: the following are the property in LTL and the definitions of the predicates used
in the formulae:

[] (explore && I(minocc && lexplore)-> ((! (minocc && lexplore)) U (home || []
(!(minocc && lexplore)))))#define home (state==0)

#define explore (state==4)

ttdefine minocc (strocc<3)

Verification Result: The result of verifying the property is invalid. Figure 43 shows
the output of the simulation run for the counter example. It shows the sequence of
states that violates the property where the page explore (state = 4) is followed by the
page where state = 8 and where strocc = 2. The latter page obviously is not the home
page (state = 0). So, it can be concluded that there exists at least a path from page
Eexplore to a page where strocc is less than 3 without going through the Home page
which proves the validity of the original property.

91

Simulation Dutput M[=] E3

| preparing trall, please wait...done

spin: warhing, “'pan_in", global, 'byte state’ variable is never used
spin: waming, "'pan_in", global, 'byte strocc’ variable is never used
spin: couldn't find claim (ignored)

L4

2 proc O {website) line 26 “'pan_in" (state 17) [(t4)] <merge 0 now @18>

2 pioc O {website] line 26 “'pan_in" (state 18) strocc = 6] <merge 250 now @19
2 proc 0 (website] line 26 “pan_in" {state 19) state = 4] <metge 250 now ©250>
4 proc 0 {website) line 79 “pan_in" [state 230) [(t8) <merge 0 now @231>

4 proc 0 {website] ine 79 "pan_in" (state 231) stroce = 2] <merge 388 now @232>
4 proc 0 {website] ine 79 “pan_in" [state 232) state = 8] <merge 388 now (@388>
6: proc O [website] line 113 “pan_in" (state 348) [109] meige 0 now @343

6: proc 0 [website] ine 113 "pan_in"' state 349) stroce = 4] <merge 467 now @350>
6: proc 0 {website] line 113 "pan_in" [state 350} state =10] <merge 467 now @467>

spin: trail ends after 7 steps
#processes: 1

7 proc 0 (website) fine 133 "'pan_in" (state 467)
_|1 processes created

v

Single Step | Suspend Savein: | sim.out Clear | Cancel

Figure 43 Guided Simulation Output — Property 4

7.5 Limitations of the Extractor/Manipulator Tool

The scalability of the application is limited by the processing power.

The following example taken from CRIM’s web site includes 441 states and 8867
edges. The time for model extraction in this case was 2 to 3 minutes but the
transformation of the XML finite state machine file in the PROMELA finite state
machine file took a considerable amount of time of 2-3 hours. Thus, more work
should be done in order to reduce the execution time. Since we are working with
XML files, it is very expensive in terms of memory. The solution would be to store
the information that we need in another data structure which can be accessed faster

such as hash tables.

92

& web Model Builder M=l E3 ‘

s e e ke e kA R
Browse I |c:projectTestouthuge2CRIM bt Show the fie | |||
——_—_— ——|

Options I Enter astring here: [research Build the model I i'
T e 7]

To buid a model from a proxy log file, first choose the file using Browse button
then enter a string to calculate its occurence in every page.

kS I R B !|
Istarting building the model from the proxy web log file...
' unning. ..

L S

uilding the Promela file representing the model...
[Running. . .

L A

:In this model we found 441 states and 8867 transitions. I‘
* ¥ KN F ¥ KT K |

L) S o]

Chosen file: C:\projectiTestiouthuge2CRIM 1xt

Figure 44 Scalability

93

Chapter 8

8 Conclusions

8.1 Summary of the Results

We demonstrated that the model checking technology can effectively be used for
verification of web applications.

Our work was just the beginning of a research for defining a more general modeling
framework and implementation of the toolkit. We described a framework for
modeling simple web applications defined in LTL (Linear Temporal Logic). The
properties expressing the web navigation can then be verified by the SPIN model
checker on the model extracted from the browsing session. The process includes
interception of the traffic between the client and server, its analysis and the
construction of a formal model (FSM) out of it, using a standardized format (XML),
and the translation to PROMELA which is the language of the SPIN model checker.
We implemented a prototype tool that is based on this framework and demonstrated
on case studies that the theory of model checking can be efficiently applied for web

application verification.

8.2 Future Work

We built a prototype tool that can be used for formal verification of simple web

applications. At the same time, more work remains to be done. In particular, the

94

modeling approach has to be expanded to applications with frames and windows,
forms and other features. Accordingly, the developed tools have to be extended to
handle such features. It would also be of interest to investigate the applicability of the

developed framework for web services.

95

References

[1]L. de Alfaro, “Model Checking the World Wide Web”, In Proc. of the 13th
International Conference on Computer Aided Verification, Paris, France, July
2001.

[2] A. A. Andrews, J. Offutt and R. T. Alexander: “Testing Web applications by
modeling with FSMs”, Software and Systems Modeling, Publisher: Springer
Berlin/Heidelberg, Volume 4, Number 3 D, 2005.

[3] S. Budkowski, “Estelle development toolset (EDT)”. Comput. Network, 1992.

[4] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. “Model Checking”, The MIT
Press, 1999.

[5]1 M. G. Gouda, “Protocol verification made simple: a tutorial.” Comput. Network.,
1993.

[6] L. S. Graham, “HTML Sourcebook”, Second Edition, John Wiley & Sons, Inc,,
New York, 1996.

[7] M. Haydar, “Formal Framework for Automated Analysis and Verification of
Web-Based Applications”, Proceedings of the 19th IEEE international conference
on Automated software engineering, September 20-24, 2004.

[8] R. M. Hierons, “Extending test sequence overlap by invertibility.” Comp. J,,
1996.

[9] C. M. Huang, and J. M. Hsu, “An incremental protocol verification method.”
Comp., 1994.

[10] C.-M. Huang, M.-Y. Jang: “Interactive Temporal Behaviours and Modelling
for Multimedia Presentations in the WWW Environment.” Comput. J. vol. 42,
1999.

96

[11] G.J. Holzmann. “The Model Checker Spin”, IEEE Transactions on Software
Engineering, vol 23, no 5, May 1997.

[12] K. Naik, “Fault-tolerant UIO sequences in finite state machines.” Proc. 8th
Int. Workshop on Protocol Test Systems, Cavalli, A. and Budkowski, S. (eds),
1995.

[13] M. Nilsson, “Regular Model Checking”, Printed by the Department of
Information Technology, Uppsala University, Sweden, 2000.

[14] M.CF. de Oliveira, P.C. Masiero, “A Statehart-Based Model for Hypermedia
Applications”, ACM Transactions on Information Systems, Vol. 19, No. 1, 28-52,
January 2001.

[15] T.A. Powell, “Web Site Development, Beyond Web Page Design”, Prentice
Hall, 1998.

[16] P.D. Stotts, CR. Cabarrus, “Hyperdocuments as Automata: Verification of
Trace-Based Browsing Properties by Model Checking”, ACM Transactions on
Information Systems, Vol.16, No. 1, January 1998.

[17] D. Stotts, J. Navon, “Model Checking CobWeb Protocols for Verification of
HTML Frames Behaviour”, In Proc. of the 11th International World Wide Web
Conference, Hawai, U.S.A., May 2002.

URLs

[URL1]
[URL2]
[URL3]
[URL4]
[URLS]
[URLS6]
[URL7]
[URLS]
[URL9]
[URL10]
[URLI11]
[URL12]
[URLI13]
[URL14]
[URL15]

97

http://www.isc.org/index.pl?/ops/ds/
http://www.ascusc.org/jcmc/vol3/issuel/ho.html
http://www .useit.com/alertbox/990502 . html
http://www.reitshamer.com/
http://'www.w3schools.com/xml/
http://www.w3schools.com/dtd/
http://netlib.bell-labs.com/netlib/spin/whatispin.html
http://JAV A sun.com/j2se/1.4/docs/api/index.html
http://JAV A sun.com/xml/
http://www.cis.ksu.edu/santos/spec-patterns/
http://cm.bell-labs.com/cm/cs/what/spin/Man/It]. html
http://www-2.cs.cmu.edu/~modelcheck/
http://spinroot.com/spin/whatispin. html

http://www softwareqatest.com/qatweb1.html
http://pdv.cs.tu-berlin.de/~azi/petri.html

