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Résumé

Le mémoire présente les modeles statistiques pour la segmentation de séquences
moléculaires. I décrit des algorithmes de segmentation et leur implémentation, en
utilisant diverses méthodes de pénalisation pour la complexité du modele, avec des
restrictions possibles des longueurs de segments. Les méthodes sont illustrées sur
les séquences d’ADN du bactériophage lambda. Methanocaldococcus jannaschii, et du

complexe majeur d’histocompatibilité humain.

Mots clés : Segmentation, Modeles Statistiques. Isochores, Taux de GC



Abstract

The thesis discusses statistical models for the segmentation of molecular sequences.
It describes segmentation algorithms and their implementation. using various penal-
ization methods for model complexity, along with possible restrictions on segment
lengths. The methods are illustrated on the DNA sequences of bacteriophage lambda,

Methanocaldococcus jannaschii and the human Major Histocompatibility Complex.

Keywords: Segmentation, Statistical Models. Isochores. GC-Content
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Chapter 1

Introduction

Large-scale sequencing projects like the Human Genome Project produce a great
wealth and variety of sequence data. Molecular sequences in sequence data banks
such as GenBank of the National Center of Biotechnology Information (NCBI) add
up to more than 100 billion base pairs now. There is an increasing need of developing
efficient tools to analyze these sequences. A class of analysis methods involves se-
quence segmentation, consisting of dividing a sequence into fairly homogeneous parts
by some measure of homogeneity.

Csliros (2004) investigated the problem of determining maximume-scoring segment
sets that can be applied to a number of molecular biology problems. such as DNA and
protein segmentation. To calculate potential segment sets for a given sequence, Csiiros
presented a number of fast algorithms in which different statistical models were used
for two classes. In our research work, we demonstrate how sequence segmentation

can be carried out efficiently using various statistical models with multiple classes.
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1.1 Plan

In Chapter 2, we provide a brief introduction to DNA and isochores. We also give
a description of the proposals that eventually led to the existence of the isochore
theory. Furthermore, we present arguments pertaining to the actual existence of
isochores. In addition to problems associated with the sequence segmentation based
on isochore content, we discuss different applications of segmentation algorithms to
other problems. ‘

In Chapter 3, we present statistical models that can be used in segmentation.
including Bayesian and hidden Markov model, as well as statistical notions of com-
plexity.

In Chapter 4, we present the algorithms that can be used to solve the problems
encountered in segmentation statistical models. We also present the penalty-based
best segmentation model. First, we provide a description of how this model can be
implemented through dynamic programming. Secondly. we present the implemented
algorithms without and with traceback. Thirdly, we show how this model can be
incorporated in maximum-likelihood estimation. Finally, we demonstrate how mini-
mum segment length values can be incorporated into this model.

In Chapter 5. we present the experiments used to evaluate our implemented al-
gorithms on three sequences: bacteriophage-A genome. the genome of Methanocaldo-
coccus jannaschii (M. jannaschii), and the sequence of the major histocompatibility
complex (MHC) on human chromosome 6. We present the tests used for each se-
quence and the observed results.

Chapter 6 provides a summary of the discussed segmentation concepts and. most

importantly, our analysis of the experimental results.



1.2 Contributions

To carry out our sequence segmentations, we extend the two-class algorithms pre-
sented by Csilirés (2004) to propose two algorithmic models that uses an arbitrary
number of classes: the penalty-based best segmentation model and the penalty-based
best segmentation with minimum segment lengths model. Although both models par-
tition a given sequence using maximum-likelihood estimation, only the latter takes
minimum segment lengths into consideration. We also incorporated the best segmen-
tation score for the implemented traceback algorithms to refer to when determining
the best segmentation of a sequence. For model parameter estimation, we proposed
the use of Laplace pseudo-counters. As well, we incorporated the data compression
algorithm in order to reduce the amount of allocated memory. We implemented our
segmentation models using Java and evaluated the different penalization methods
on bacteriophage-A, M. jannaschii, and MHC on human chromosome 6. Finally, we
conducted a RNase P analysis of helical and non-helical GC-content versus optimal

growth temperature on Prokaryotes.



Chapter 2

Segmentation in Sequence Analysis

2.1 DNA: A Brief Introduction

Deoxyribonucleic Acid (DNA) is a nucleic acid that contains the genetic information
required for any organism to function biologically (Watson and Crick 1953). As
initially proposed by James Watson and Francis Crick in 1953, it is characterized as
a double helix where each nucleotide base in one strand is bonded to a base in the
other strand.

Each strand is a chain of repetitive units known as nucleotides. A nucleotide
consists of a 2’-deoxyribose sugar and a phosphate group with a so-called base. The
molecular structure of the sugar is illustrated in Figure 2.1, where the numbered
values represent carbon atom positions. DNA is measured in base pairs, that is, kbp
(thousand base pairs). Mbp (million base pairs), and Gbp (billion base pairs) are
“units” used in the Biotechnology community.

As shown in Figure 2.2. nucleotides can form a polynucleotide chain by connecting
to each other through a covalent bond between the 3’-carbon of one nucleotide, the
phosphate residue. and the 5'-carbon of the next unit. The sugar and phosphate

molecules are represented as “r” and “p” symbols. respectively.
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DNA molecules normally comprise two polynucleotides. called strands. Each 1’-
carbon in the strand contains a nucleotide base attached to it. which can be one of
the four different types: adenine (A). guanine (G), cytosine (C). and thymine (T).
Nucleotide bases can be categorized into two main groups, namely. purines (A and G)
and pyrimidines (C and T'). The strands are connected together by forming hydrogen
bonds at the bases as illustrated in Figure 2.3. where A-T and C-G are defined as
complementary or Watson-Crick base pairs. Figure 2.4 provides a schematic molec-
ular structure view of a double strand of DNA. A DNA molecule is determined thus

by the sequence of bases on one of its strands. represented as a sequence of characters

over the alphabet ¥ = {A.C,G.T}.

H H
I |

C C
sogu— sgr— N N
: /

\
/C _C\ / SN

/
—N N C=0"-
N B AN H H
H+ - X . /N\ Ht. \N /
'H_,_ ’ o- H H.+ EE‘\]——_-—C/
7 i

,N_C\ 0 =c/ \'/C —H

o- =C/ C — CHs Cytosine \ - /

Thymine N\ _c< Sugar/N ¢ 4
Sugar H

Figure 2.3. Molecular structure of nucleotide bases with hydrogen bonding (dot-
ted lines) (Setubal and Meidanis 1997).
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Figure 2.4. Schematic molecular view of a double strand of DNA (Setubal and
Meidanis 1997).

2.2 Isochores

Sequence segmentation involves dividing a given sequence into fairly homogeneous
parts by some measure of homogeneity. As an example. we discuss here the segmen-

tation of a DNA sequence into so-called isochores.

2.2.1 Description

A profile of guanine and cytosine (GC) levels can be used to characterize variation
along chromosomes. where the natural partition of a chromosome sequence is defined
as abrupt changes in GC level (Paces et al. 2004). GC levels are correlated with key
biological properties in many eukarvotes. such as gene density changes. replication
timing switches. and differences between the locations of adjacent regions in the
interphase nucleus.

Bernardi (2000) proposed the isochore theory which describes the structural com-



position of the genomes of warm-blooded vertebrates. Unlike the classical work of
Meselson et al. (1957) where CsCl density gradients were used in equilbrium centrifu-
gation to reveal broad, assymetrical bands in DNA. Filipski et al. (1973) proposed
that high-resolution fractionation is possible by using equilibrium centrifugation in
Cs2S04-Ag™ density gradients instead to partition DNA-silver complexes according
to the frequency of silver-binding sites on DNA molecules. When applied to bovine
DNA, this technique revealed three distinct families of fragments (comprising 85% of
the genome) having different GC content. This subsequently led to the discovery that
DNA fractionation reveals the compositional heterogeneity of high molecular weight,
“main band” (i.e. non-satellite. non-ribosomal) bovine DNA. Furthermore, the lab-
oratory concluded that vertebrate genomes are comprised of a mosaic of isochores,
which are defined as long DN A segments of more than 300-kbp that are composition-
ally homogeneous and belong to a small number of families characterized by different
GC levels.

These isochores reflect a level of genome organization (Eyre-Walker and Hurst
2001) since it is observed that GC-rich components of the genome yielded a higher
number in terms of gene density. short interspersed repetitive DNA elements, and
recombination frequency. For GC-poor components of the genome, however, it is

found that they almost exclusively possess long interspersed repetitive DNA elements.

2.2.2 Proposed Causes

Scientists are interested in finding an explanation of why there is a large-scale varia-
tion in base composition along chromosomes. It was suggested that variation could
be due to three non-mutually exclusive processes: mutation bias. natural selection.

and biased gene conversion.



Mutation Bias

Different base composition can be expected if there are different mutation processes
acting on different parts of the genome. With a simple probabilistic model. assume
that each nucleotide may mutate independently by the same mutation probabilities
along the sequence. The base composition will converge towards the stationary prob-
abilities determined by the substitution probabilities. If the mutation probabilities
are not identical along the genome. then the base composition will vary too.

Wolfe et al. (1989) noted that the concentrations of free nucleotides affect the
pattern of base misincorporation during DNA replication. For example. G and C
nucleotides tend to be preferentially misincorporated into DNA that is replicated in
a pool of free nucleotides rich in G and C. They also observed that free nucleotide
concentrations vary during the cell cycle. and that different parts of the genome
are replicated at different times. Wolfe et al. concluded that the regions of the
genome with different replication times should have different mutation patterns. and.
ultimately. different base compositions.

Filipski (1987) hypothesized that variation in the efficiency of DNA repair might
be responsible for the formation and maintenance of isochores. He reasoned that this
is due to the variable efficiency of certain types of DNA repair and that some types
of pair are known to be biased. thereby causing variation in the pattern of mutation.

Fryxell and Zuckerkandl (2000) suggested that isochores are a consequence of
cytosine deamination, which is defined as the reaction of a water molecule with the
amino group on position 4 of the pyrimidine ring of cytosine. thereby resulting in the
conversion of cytosine to uracil (Eyre-Walker and Hurst 2001). They found that the
deamination of methyl-cytosine and cytosine (i.e. C to T and C to U. respectively)
is expected to occur more easily in AT-rich DNA than in GC-rich DNA since the
former tends to be more unstable. They proposed that an isochore structure can

be assembled if a DNA sequence somehow becomes GC-rich. consequently causing
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a reduction in cytosine deamination and an increase in GC content in the surround

areas.

Natural Selection

Bernardi and Bernardi (1986) suggested that isochores are the consequence of natural
selection, which is defined as the differential multiplication of mutant types. This oc-
curs through either negative selection. that is, the elimination of organisms with dele-
terious mutations. or positive selection via the preferential propogation of organisms
with advantageous mutations with respect to environmental pressures. One hypoth-
esis implies that natural selection acts upon the increased thermostability of DNA
caused by GC-enrichment in order to adapt to any temperature increase in warm-
blooded vertebrates, where there is a tendency for GC-rich DNA to be more thermally
stable than AT-rich DNA. To demonstrate this hypothesis. Bernardi referred to the
isochores found in the human genome. where the GC-richest and gene-richest iso-
chores found in a set of R(everse)-chromosomal bands coincide with the T(elomeric)
chromosomal bands previously identified as particularly resistant to thermal denat-
uration (Saccone et al. 1993). As well. a difference in amino-acid compositions and
hydropathies between GC-rich and GC-poor isochores was observed.

Unlike the observations made for warm-blooded vertebrates. previous work con-
cluded that there was no correlation between GC-content and habitat temperature
in the case of prokaryotes (Galtier and Lobry 1997; Hurst and Merchant 2001) and
cold-blooded vertebrates (Belle et al. 2002; Ream et al. 2003). Furthermore. Vino-
gradov (2001) observed that the bendability of genomic sequences of warm-blooded
vertebrates increased faster than their thermostability as the GC-content increased.
Hence, Vinogradov (2003) proposed an alternative hypothesis in which the formation
of isochores was primarily due to the bendability. and not thermostability. of the DNA
molecule for active transcription in the GC-rich regions and for gene suppression in

the GC-poor regions.
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Figure 2.5. Reciprocal and non-reciprocal recombination following crossing-over
(Watson 2004).

Biased Gene Conversion

Gene conversion is defined as a non-reciprocal recombination process that causes one
sequence to be converted into the other. An illustration of a crossing-over between
two chromatids (double-stranded DNA molecules) is shown in Figure 2.5. We define
an allele as an alternative form of a gene that occupies a specific position on a
chromosome. Suppose that the strands contain a number of alleles as indicated by
alphabetical letters. When crossing-over occurs, there are two possible recombinants:
reciprocal, where an equal 2:2 segregation of the entering alleles is observed; non-

reciprocal. where a 3:1 segregation and gene conversion of allele B to B* is exhibited.



Biased gene conversion is when the two possible directions occur with unequal
probabilities (Eyre-Walker and Hurst 2001). Biased gene conversion would lead to a
base mismatch if the heteroduplex DNA extends across a heterozygous site. These
base mismatches are sometimes repaired by the DNA-repair machinery. although
they tend to be biased and thereby leading to an excess of one allele (i.e. one of
the different forms of a gene or DNA sequence that can exist at a single locus) in
reproductive cells. Their hypothesis is based on two observations that demonstrates

the correlation between the recombination rate and GC content. that is.

1. There is a correlation between the frequency of recombination and GC content

both between and within human chromosomes.

2. Sequences that have stopped recombining are either declining in GC content,.
or have a lower GC content than their recombining paralogues (i.e. a locus that

is homologous to another in the same genome).

2.2.3 Existence

Demonstrated by the numerous amount of studies since its first proposition, the
isochore theory is considered to be the most reliable method of studying the long-range
compositional structures of metazoan genomes within an evolutionary framework
(Cohen et al. 2005). Furthermore. it is generally assumed that isochores exist and
that they contain genes with corresponding GC contents. When the draft of the
human genome was first proposed. however. some scientists questioned about the
existence of isochores or at least their usefulness.

The authors of the initial draft of the human genome studied the genome sequence
to examine whether strict isochores could be identified (Lander et al. 2001). The
authors defined the term “strict isochores™ as sequences that cannot be distinguished

from random sequences. in which every nucleotide is free to change. To illustrate
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their argument that isochores do not merit the prefix “iso”, Lander et al. divided
the human genome sequence into 300-kbp windows and subdivided each window into
20-kbp subwindows. From calculating the average GC content of each window and
subwindow, and from examining the relationship between the variance of the GC
content in the subwindows and the average GC content in each window. Lander et al.
concluded that the idea of isochores being strictly homogeneous can be ruled out since
the residual variance was too large to be consistent with a homogenous distribution.

Despite the arguments of Lander et al., Li et al. (2003) maintained that isochores
do merit the prefix “iso™ . Li et al. presented two points in which the strict isochores
correspond to the isochore concept originally developed and defined by Bernardi.
First, Bernardi (2001) defined isochores as fairly homogeneous regions. Unlike Lander
et al., Li et al. considered the GC% mean values and variance to be two independent
parameters of a statistical distribution, and found support for the isochore theory in
the human genome sequence.

Cohen et al. (2005) examined whether it is possible to provide a concrete definition
of isochores so that the human genome can be described as isochoric. They also
studied the extent to which each isochore can be classified into a particular isochore
family. Their work was based on a number of criteria that they have proposed to

describe the properties of isochores. namely:

1. Characteristic GC content : An isochore is a DNA segment possessing a char-

acteristic GC content that significantly differs to those in adjacent regions.

o

Homogeneity : An isochore is more homogeneous in its composition than the

chromosome on which it resides.
3. Minimum segment length : The length of an isochore typically exceeds 300-kbp.

4. Genome coverage : The overwhelming majority of the human genome consists

of segments satisfying the first three criteria.
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5. Isochore famalies : The human genome is composed of five isochore families,

each with different Gaussian-distributed GC content.

6. Isochore assignment into families : Each isochore can be associated with a

isochore family based only on its compositional properties.

To identify and quantify isochoric regions, Cohen et al. used a binary recursive
segmentation procedure proposed by Bernaola-Galvén et al. (1996) to partition the
human genome. The method repeatedly splits the sequence based on an entropy
measure to maximize the difference between neighbouring regions. A statistical test.
similar to the one of Li et al. (2003) was used. The segmentation procedure revealed
that the distribution of segment lengths does not have a characteristic length scale.
Cohen et al. (2005) observed isochores span less than half of the sequenced portion of
the human genome if they satisfy the first three attributes. but found that alternative
isochores with lower cutoff lengths also satisfy the same criteria. Although the human
genome is traditionally described using five isochore families. Cohen et al. found that
four families already capture the GC content distribution. Finally, Cohen et al.
questioned the use of the Gaussian model to define isochores since they did not find
any evidence of a robust multi-Gaussian description of alternative sets of isochores.
Due to overlaps found between candidate families, they also had difficulty in reliably
classifying the segments into families by compositional properties.

Although the existence of isochores remains debatable up to this point. all studies
agreed that the definition of isochores is relative. Furthermore. they agreed that the
genome does contain large homogeneous regions of distinctive GC content. and is
worthwhile to redefine the isochore concept to describe the dynamics of GC content

within the human genome.



2.3 Other Applications of Segmentation Models

In addition to isochores in higher vertebrates, there is a wide variety of segmentation
models which are used to answer a number of biological problems. For instance.
genome alignments exhibit a mosaic structure where segments correspond to regions
with different evolutionary pressure.

Horizontal gene transfer between bacteria. as demonstrated in a wide variety of
ecosystems, plays an important role in the acquisition of adaptive traits. such as
pathogenicity. resistance to antibiotics or heavy metals like mercury and arsenic.
Furthermore, it is considered to be heavily influential in bacterial evolution. Bacteria
are known to integrate prophages and have other ways of integrating foreign DNA se-
quences through DNA segments. Nicolas et al. (2002) used a statistical segmentation-
based approach to study heterogeneities in the Bacillus subtilis. Specifically, they
applied hidden Markov models in which each type of segment is characterized by its
own statistical oligonucleotide composition. Their objectives were to reconstruct seg-
ments from DNA sequences and characterize the identified segment types. with the
aim of investigating correlations between segment types and biological DNA features
such as horizontal gene transfers. From their analysis, they revealed a number of
heterogeneities including those related to horizontal gene transfer, the GT richness
of hydrophobic proteins, and the codon usage frequency of highly expressed genes.

The application of segmentation models to biological problems is not exclusive to
DNA sequence analysis. Romero et al. (1997) proposed methods that predict locally
disordered (so-called low complexity) regions that arc based on physiochemical fea-
tures of a set of relatively short domains found in proteins of an otherwise known
structure. Wootton and Federhen (1993) introduced the SEG algorithm which auto-
matically partitions protein sequences into low- and high- complexity segments.

Functional regions in genomic sequences were traditionally predicted by identify-

ing features associated with genes or regulatory regions. Functional regions tend to
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be conserved in sequences that have evolved from a common ancestor. In contrast.
non-functional regions are more likely to mutate. Consequently. functional regions
can be identified in genomes using sequence comparison. Non-functional regions need
to be statistically diverged so that statistical procedures can distinguish them from
functional regions. Because of this, features present only at close evolutionary prox-
imity are lost, thereby limiting the usefulness of such comparisons (MNcAuliffe et al.
2004). Boffelli et al. (2003) used phylogenetic shadowing which involves segmenting
alignments between closely related species into regions with high- and low- mutation
rates. This technique would enable the localization of regions of collective varia-
tion and complementary regions of conservation, thus facilitating the identification of
coding and non-coding functional genes. Using the phylogenetic shadowing concept,
McAuliffe et al. proposed the generalized hidden Markov phylogeny (GHMP) in order
to determine the genomic sequences systematically, where the GHMP is presented as
a directed graphical model (Jordan and Sejnowski 2001).

Segmentation models can also be implemented to partition proteins into a number
of segments. Krogh et al. (1994) applied hidden Markov models to the problems
associated with statistical modelling, database searching, and multiple alignment of
protein families and protein domains. To construct their hidden Markov model, they
defined the 20 amino acids from which protein molecules are composed of as states
and the strings of amino acids that form the primary protein sequence as observations.
For each set of proteins. their model represents one in which high probability to the
sequences in that particular set are assigned.

A related application of segmentation models to protein partitioning is the topol-
ogy prediction of helical transmembrane proteins. Tusnddy and Simon (1998) pro-
posed the HNIMTOP method. which is based on the hypothesis that the difference in
thie amino acid distributions in various structural parts of these proteins determine
the localizations of the transmembrane segments and the topology. They constructed

a hidden Markov model that consisted of five states that describe transmembrane
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protein structure: inside loop. inside helix tail, membrane helix, outside helix tail.
and outside loop. Rather than accounting only the absolute amino acid compositions
of various structural parts. their approach involves finding the combination of states
that yield maximal divergences in the amino acid distribution. Alternatively. Krogh
et al. (2001) presented the TMHMNM method in which they take the alternation
between cytoplasmic and non-cytoplasmic loops in helical transmembrane proteins
into consideration. Their hidden Markov model consisted of seven types of states:
helix core, helix caps on either side of the membrane. short loop on cytoplasmic side,
short and long loop on non-cytoplasmic side, and a globular domain state. Each
state contains a probability distribution over the 20 amino acids that characterizes
the variability of amino acids in the region it models. The amino acid and transition
probabilities were calculated from techniques that compute the maximum posterior
probabilities given a prior and the observed frequencies. The TNHNNM method pre-
dicts the transmembrane helices by determining the most probable topology given

the hidden Markov model.



Chapter 3

Statistical Models

The advantage of probabilistic models is that they can describe the relationships
between various quantities while considering the underlying uncertainty associated
with them. This leads to the efficient use of available information when making pre-
dictions about biological sequences (Liu and Lawrence 1999). Statistics is mainly
focused on making inferences, which can be defined as the process of deriving con-
clusions from facts and premises. In our case. the facts are the observed data. the
premises are represented by a probabilistic model of biological sequences. and the con-
clusions are related to the unobserved quantities. This chapter provides a description
of a number of statistical models that can be used to segment a given molecular
sequence.

Let ¥ be a finite alphabet; for DNA sequences. ¥ = {A.C.G,T}. We consider
a DNA sequence x = x175...7, as the observed value of a sequence of random
variables X = X1 X,...X,,. We define segments as a continuous interval [i. j] such
that z; = z;41 = ... = 2;. The distribution of X is determined by a sequence of hidden
variables z = 125 ... z, which define these segments, where z; € {0...., k—1}. The
segmentation vector. z is the value taken by a random variable Z = Z;Z,... Z,.

The distribution of each X; is completely determined by Z; through the probabilities
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p;j(z) = P{X,; = z|Z; = j}. Notice that we assume that these distributions do not
depend on 1.

For a given segmentation, the likelihood of the observed sequence is written as
L(z) = P{X =x|Z =z} . (3.1)

The main objective of using statistical models is to determine z.

Equation 3.1 can be expanded as

The log-likelihood function can be derived as

l(z) = logL(z)

= > logp:,(z:)
i=1
n n pz (_’El)

= log po(z;) + log —/——=. 3.3
2 el ) g’ 1) 89

(In this thesis. log denotes natural logarithm.) The formula can be interpreted in the
following manner: the first term is the null hypothesis that all the z; are in class 0,
and the second term denotes the log-likelihood ratio for the alternative hypothesis

defined by z.

3.1 Bayesian Approach

Classical (or frequentist) statistics such as maximum-likelihood estimation interpret
their probabilities as purely frequencies or ratios. In contrast, the Bayvesian approach

models consider their probability distributions as a measure of belief in a proposition.



A Bayesian approach allows for prior knowledge and reasonable prior concepts to be
built into statistical analysis (Ewens and Grant 2001). Bayesian analysis involves
determining a joint probability and defining the appropriate posterior distribution by
using the calculated joint probability and the observed data.

In our case. the goal of using the Bayesian approach is to determine z. A number
of different hypotheses about Z can be compared by using the posterior probability.
that is

P{Z =z|X =x}. (3.4)

The likelihood function as presented in Equation 3.4 can be derived by calculating

the joint probability, which is Joint = Likelihood x Prior or
P{X=xZ=z}=P{X=x|Z=2z}P{Z=1z}. (3.5)
By the definition of conditional probabilities.
P{X=x}=> P{X=x|Z=2}P{Z=1z}. (3.6)

Vz

The posterior distribution can found through Bayes’ theorem.

P{X =x|Z =1z} P{Z =z}
P{X =x}
P{X =x|Z =1z} P{Z =z}
S PIX=XZ -0} P{Z=7)

P{Z=2z|X=x} =

(3.7)

Since the denominator of the equation will be the same for all choices of z when x is

fixed. the best z can be found by maximizing the numerator, that is.

M(z) = P{X=x|Z=2}P{Z=1z}. (3.8)

The z that maximizes M (z) is called the mazimum a-posterior (MAP) segmentation.



A number of different approaches can be used to deal with the prior distribution
P{Z = z}. One idea is to assume that z is a uniform distribution, that is, every
segmentation is equally possible. Using this assumption. the probability of obtaining

z is

1

P{Z = = -

== = 1I;
1

Applying Equation 3.9 to the joint probability equation, we will have
Maz) = - H . (2:) (3.10)
= — - \Li). .

A =

Clearly. A (z) is maximized when p; (7;) is maximal in each position 7. Such a
segmentation maximizes the likelihood but then every 7 can be a segment of length
1, which hardly captures any meaningful pattern in the data. In order to avoid
such cases of potential “overfitting”. the space of acceptable segmentations must be
restricted either by imposing different prior distributions. or by using other statistical
model estimation methods than MAP. Prior distributions may impose a fixed (or
bounded) number of segments. or bounds on segment lengths. Another popular prior
distribution is defined by a Markov model, as discussed in the forthcoming Section
3.2. An alternative to MAP estimation is to use complexity penalties as presented in

Section 3.3.

3.2 Hidden Markov Model

The hidden Markov model (HMM) can be described as a series of observations by
a "hidden” stochastic process (Krogh et al. 1994). In a tutorial paper. Lawrence

Rabiner demonstrated how the hidden Markov model can be applied to problems in
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speech recognition (Rabiner 1989). In this case, sounds forming a word represent the
observations while the model is one that generates these sounds through its hidden
random process in which a probability distribution is defined over possible sound se-
quences (Krogh et al. 1994). Ideally. a good word model would assign high probability
to likely modelled sound sequences and low probability to other sequences.

In computational molecular biology research, the hidden Markov model was im-
plemented in a number of applications including protein multiple alignment and func-
tional classification (Krogh et al. 1994). protein folding prediction (Di Francesco et al.
1997), bacterial and eukaryotic gene recognition (Burge and Karlin 1997; Kulp et al.
1996; Henderson et al. 1997). DNA functional site analysis and prediction (Crowley
et al. 1997), and nucleosomal DNA periodical pattern identification (Baldi et al.
1996). The first application of HMNMs to genetic data was proposed by Churchill
(1989) who used it to segment mitochondrial and phage genomes by nucleotide com-
position. The model makes the assumption that the different segments can be clas-
sified into a finite set of states, where the nucleotide data is assumed to follow some
probability distribution. The states are assumed to randomly switch from one to the
other with low probability.

In our statistical segmentation model. HMMs represent the case when Z;,..., 2,
form a Markov chain with states {0..... k —1}. The prior distribution is specified as

follows. Let the initial state distribution be 7 = {m;} where

denote the probability of transition between states j and j' by ¢;_.;;. The probability
of obtaining the sequence of hidden variables (i.e.. a particular segmentation) is com-

puted by taking the transition probabilities between states into consideration. that



P{Z =2} = 7wt ugtogzg. o te 1 n (3.11)

Bernardi et al. described the human genome as a mosaic of segments representing
isochores (Bernardi 2000: Bernardi 2001). Furthermore. their research revealed that
there are five different classes of isochores in the human genome that are defined by
their GC-levels: H1. H2, H3. L1. and L2. Figure 3.1 illustrates how the isochore
structure of the genome can modelled by a hidden Markov model. The different
isochore classes are the states.

Now. using M(z) = P{X = x.Z = z} from Equation 3.8, the joint probability

can be written as

P{X=x,Z=12} = P{X=x|Z=2}P{Z=2z}

= Ty Pay (1)t 20Dy (T2)bog—zg - - Fop 12Dz, (T0)- (3.12)

3.3 Complexity Penalties

This section reviews some alternatives to imposing prior probabilities in order to han-
dle the overfitting when maximizing the likelihood. The basic idea is to maximize the
sum of the log-likelihood and a so-called complexity penalty. We discuss three penal-
ization methods: Akaike's information criterion. the Bavesian information criterion,

and the principle of minimum description length.

3.3.1 Akaike’s Information Criterion

The maximum likelihood principle is encountered in two different branches of statis-
tical theories: estimation theory through the maximum likelihood method, and test

theory through the log-likelihood ratio. Akaike (1974) argued that the quantities



States
H1 H2 H3 L1 L2
P(C) P, P, P, P, P.
P(G} P, P, P, P, P
P(A) 1-P, 1-P, 1-P. 1-P, 1-P,
P(T) 1-P. 1-P, 1-P, 1-P, 1-P.

Figure 3.1. An example of HMM modelling isochores in human genome. Note
that the actual isochores found in the human genome are much longer than
those depicted here.



obtained from maximum likelihood estimates are most sensitive to small variations
of the parameters around the true statistical model. As an estimate of a measure of
fit of a statistical model. he proposed an information criterion (AIC). which can be
described as an extension of the maximum likelihood principle for problems in which
the final estimate of a finite parameter model can be calculated when presented al-
ternative maximum likelihood estimates from various restrictions of the model. For
this paper, we consider “Akaike’s information criterion™ as an equivalent term to “an
information criterion”.

Akaike used the Kullback-Leibler divergence function to find the minimum differ-
ence between two probability distributions. namely. the true and approximate seg-
mentation models. Suppose we use a DNA sequence x = r175...1, as a sequence of
observed values of a sequence of random variables X = X X,... X, and a sequence of
hidden variables z = zy29... 2, that defines the segments. where z; € {0,...,k — 1}
and z is derived from a random variable Z = Z1Z,...7Z,. As well, we define
f(x) = P{X =x|Z =2*} and g(x) = P{X = x|Z = z} where z* is the true seg-
mentation and z the approximate. Then. the Kullback-Leibler divergence function

can be written as

KL = Zf(.r)log f (.i)
= Zf () Zf ) log(g(x)) (3.13)

~—

Note that the first term of Equation 3.13 is fixed since there can be only one true
segmentation probability model. Also. notice that if the approximate segmentation
probability model is the same as the true model. that is, if g(x) is the same as f(x).
then the Kullback-Leibler divergence will be zero. This demonstrates that the model
with minimal Kullback-Leibler divergence will be considered as the best estimated

sequence z.



To obtain the optimum estimated sequence z. Akaike suggested that we can de-
termine the linear approximation of Equation 3.13 by taking the second-term as an

approximation to Akaike’s Information Criterion, that is.
AIC =log L(z) — A (3.14)

where the model whose AIC value is largest will be chosen to represent the sequence
z. We define m as the number of segments in the segmentation defined by z and A as
the model dimension. Note that Equation 3.14 was multipled by —2 in the original
paper presented by Akaike and considered as Akaike's information criterion due to
“historical reasons” (Burnham and Anderson 2004). In our case. z can be described
by a list of pairs of parameters (i.e., segment length. segment class) for m segments,
so we write the model dimension as A = 2m. Hence, AIC can be rewritten from
Equation 3.14 as

AIC =log L(z) — 2m. (3.15)

3.3.2 Bayesian Information Criterion

Akaike presented the AIC as an extension of the maximum likelihood principle.
Schwarz took a similar approach and considered the problem in terms of Bayesian
statistics (Schwarz 1978). In contrast to Akaike's information criterion. the Bayesian
information criterion (BIC) suggests that the model dimension should be multiplied

by %log n. Hence. the BIC can be written as
1 .
BIC =log L(z) — aAlog n. (3.16)

The segmentation z which maximizes the BIC of Equation 3.16 is chosen as the opti-
mal one. As before, we consider the length and the segment class as our parameters

for m segments. so we write the model dimension as A = 2m. Thus. we use the
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model dimension to rewrite the BIC as

BIC =log L(z) — mlogn. (3.17)

3.3.3 Minimum Description Length

Another possible approach to measuring complexity bias is through the minimum de-
scription length (MDL) method. Rissanen (1983) presented this concept by attempt-
ing to find the estimate that minimizes the total number of binary digits required
to rewrite the observed data, where each observation consists of a precision value.
For a fixed segmentation z. an optimal encoding uses — log, p., (x;) bits on average
to encode the character z; in every position i. Furthermore. log, n bits can be used
to encode the length of one segment. and log, & bits to specify its class. Hence, the

total code length can be written as
Q= Z(— log, s, (2;)) + m(log, n + log, k) (3.18)
i=1

where m is the number of segments in the segmentation defined by z. Equation 3.18

can rewritten as

Q— _2iz1logp:, (v;) —m(logn +log k) (3.19)

log 2
Referring to Equation 3.19, the minimum description length concept would maximize
the numerator. Notice that by doing this. the first term corresponds to the log-
likelihood function and the second term can be interpreted as a penalty on model

complexity:

MDL =m(logn + logk) (3.20)



Chapter 4

Algorithmic Problems In
Statistical Models

4.1 Forward-Backward Algorithm

The probability of the observed sequence x can be calculated by finding the sum
of the joint probability over all possible hidden state sequences z. However, it is
not computationally feasible since its time complexity is O(nk™) for a hidden Markov
model of £ states and sequence length n. To solve this. an alternate and more efficient
method is through the forward-backward procedure.

Let the forward variable a;(j), i.e.. the probability of the partial observation

sequence and state j € {0. A — 1} up to index i. be
ai(j) = P{mxe... 7.2 =j}.

Then, a;(7) can be solved into three steps. that is

1. Initialization:

ai(j) = mpi(z1). 0<ji<k—1



z.y =]

i i+1

«(j) ()

Figure 4.1. lllustration of operations required for computing forward variable

aiy1(g')-

2. Induction:

k-1
Q;,l(j/) = I:Z a;(j)tj_J/jl ])j/(-’l'i+1)- 0 S 7 S n—1

0<j <k—1.

3. Termination:
k-1
P{X =x}= Zan(j).
§=0

The induction step can be illustrated as shown in Figure 4.1, where it demonstrates
how state j' can be reached at index i+1 from all possible states =; € {0. k — 1}. where
the transition probability #; ;. observation z;.; in state j'. and partial observation
sequence a;(7) from all k states are taken into consideration. After the termination

step. it can be seen that the desired calculation of P {X = x} is obtained as the sum
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LN Ly

Observation. i

Figure 4.2. lllustration of computing a;(7) in terms of observations z; and states

~.
~e

of the terminal forward variables a,(j).

Figure 4.2 illustrates the calculations involved in the forward procedure, where

each state at index ¢ + 1 considers all possible states z;.
Similarly, let the backward variable 3,(j), i.e.. the probability of the partial ob-

servation sequence from i + 1 to the end. given state j at index 7. be
af,(]) = P {.’Ej_|.1.’lf?j_._:_) ce .'L'nlli = 7} .

Then, /3;(j) can be solved into three steps. that is
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1. Initialization:

Ba(i)=1. 0<j<k-1.

2. Induction:

k1
Bi(s) = Zfj—~j’pj'(-77i+1)ﬁi+1(jl)a t=n—-1ln-—-2... 1.
J'=0
0<7<k-1.
3. Termination:
k-1
P{X =x} =) mp).

7=0

Like the induction step in the forward procedure. Figure 4.3 demonstrates how state
J takes all possible states ;1 € {0.k — 1} into consideration, factoring in the transi-
tion probability ¢;_.;, observation x;;; in state j'. and remaining partial observation
sequence J;41(7'). After the termination step, P {X = x} is obtained as the sum of

the terminal backward variables 3, (7).

4.2 Viterbi Algorithm

For hidden Markov models. the optimal state sequence associated with the given
observation sequence can found by implementing the Viterbi algorithm through dy-
namic programming, where one would find a single best state sequence while taking
several possible optimality criteria into consideration.

Let z* = z7z5 ...z represent the best state sequence that is to be determined

for a given observation x = z;7s...%,. Suppose that §;(j) represent the initial best



Z.=0

Oz =1

Zjq = k-1

i it1

(33) i)

Figure 4.3. lllustration of operations required for computing backward variable

Bi(3)-

score. i.e.

Furthermore, let §;(j) be the best score along a single path at index 7 up to state

j€{0,k—1}. ie,

5i(j) B s P{:lz'-’"'zi zj--L'l-Tg...:rn}
Z122...5 1
= < ] ., i 1 ] 7 . .
B [osl}}é‘i-‘_l 0i1(7)t; —J} pj(:) (4.1)

Using Equation 4.1, we can inductively find d;,1(j') as

Siri(y) = { max 5i(j)t]'—~j’:| P (Tig1)- (4.2)

0< <k—1
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where j' € {0.k — 1}. Then, the best sequence of hidden variables z when given the

observed sequence x can be represented as

*

zt = argmaxP{z]x}

= arg max [4,(j)].
"-_]'H-Im—

(4.3)

Let 4;(j') be an array that keeps track of the argument used to maximize Equation

4.2 in order to calculate the state sequence. Then, the Viterbi procedure can be

presented as:

1. Imitialization:

61(4) = 7"ij(5’31)-
lf)l(j) =0.

2. Recursion:

2<1<n
0<j <k-1
2<i<n
0<j <k-1

0(1") =  max  [0i1(5)t—y] Py (i),
(7)) = arg max [8i1(7)tj—j]
3. Termination:
P = oJax [0, (7)]
zp = arg max [o,,( )] -

0<j<k—
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4. Backtracking:

~F ~ % ) —
~1_l/)2+1(~1+1) 7:—’”'—1,'”_2,....1.

4.3 Penalty-Based Best Segmentation

In this section we consider the case of partitioning the DNA sequence using the
penalty-based best segmentation model. Section 4.3.1 provides a description of how
the penalty-based best segmentation model can be implemented using dynamic pro-
gramming. Section 4.3.2 presents the implemented algorithms, without and with
traceback, as well as how the DNA sequence can be iteratively segmented by using
maximum-likelihood estimation.

Let x = 7, ...z, be a sequence of characters over the alphabet ¥ = {oy,....0,}
(e.g.. a DNA sequence with ¥ = {A,C.G.T}). Let w; : ¥ — R represent a scoring
function for the letters in class j € {0,....k — 1}. A segmentation of x is defined by
the segmentation indicators z = 2 ... =, where z; € {0..... k — 1}. The score of such
a segmentation is w(z) = >\, w;,(;). Given w; and x. our main objective is to find

z that maximizes w(z) or its penalized form

n
w(z)—ay L,
i=2

where a is a segmentation complexity penalty. This general scoring framework in-

cludes likelihood maximization as a special case: set

pj(zi)
po(:)

wj(z;) = log (4.4)

from Equation 3.3. The various complexity penalties of Equation 3.3 are reflected in

the choice of &. In a more compact form, we describe a segmentation by the set of its



segments. A segment S = [a,b] — j is a maximal contiguous subsequence of indices
{a,a+1,....b} such that z, = 2,41 = ... = z, = 5. A segmentation set ® is defined
as the partition of the indices [1,7] into a set of segments. that is, ® = {¢;....,dn}

where each ¢; is a segment (and consecutive segments belong to different classes).

4.3.1 Description

The penalized segmentation score takes the segmentation penalty « into consideration
for each segment transition found in ® and can be written as V = V(®)—a-(|®| — 1).

where |®] > 0.

Lemma 1 Let V(i.j) be defined as the best segmentation score of [1...1] that ends

with class j. If i > 1, then

V(i.j) = w;(x;) + 1[13?“*;1] {V(Ei—1,¢) —a- L.z} (4.5)
cel0.r—

where V(1,7) = wj(z;) and

1 afc#]

0 otherwise

Lex; =

Proof Consider the segmentation set of [1.7] by extending the last interval of a
segmentation set associated with V(i — 1. 7), and by adding [i. ] belonging to class j
to a segmentation set associated with V(i — 1,¢) where ¢ # j. Then,
V(i j) > wj(z:) + 1[112’}); |{V(i —l.c)—a,V(i—1.7)}
cc|0.k—1
where (wj(z;)+V(i—1.c¢)—a) and (w;(z;) + V(i —1,j)) are the respective penalized
scores. However, there is no inequality since 7 can be removed from the segmentation

set of [1,7] to obtain the segmentation set of [1.4 — 1]. 0
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Lemma 2 V (i, 7) takes two different cases into consideration: ¢ = j and ¢ # j

V(i.j) = wj(z;) + max {V(i —1.7), max {V(i—1.c)— a}}

cel0.k-1]

Proof Let 3 represent the second term of the equation, that is

3 = max {V(i —1.7). max {V(i—1l.¢c)— a}}
c€[0.k—1]
Since it is trivial that V(¢ — 1.7) > V(i — 1. j) — «, B can be rewritten such that

g = max {V(?’ —1.7). max {V(i—1,¢)— a}}

ce[0,k—1]\j

Hence, this lemma’s equation is the same as Equation 4.5, that is,

ce[0k—1]\j

= w;(z; x {V(i—1.¢)—a- Iy
wilw:) + max {V(i—1.c)—o L}

V(i,j) = wj(a'i)—}—max{V{?'—l.j). max {V(i— 1.¢) —a}}

Lemma 1 implies a dynamic programming algorithm that executes in O(nk?)
time. The implementation of Lemma 2, however. implies that the maximum value
of V(i — 1,c¢) can be pre-calculated and would reduce the time complexity to O(nk)

time.

4.3.2 Algorithms
Without Traceback Implementation

Equation 4.5 demonstrates the accumulated score calculation at nucleotide ; by
using the best possible prefix score at the previous nucleotide z; ; via dynamic pro-

gramming. This idea is employed in the algorithm presented in Figure 4.4, where the
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scores at the first nucleotide z; are initialized as written in the the loop body 1-3.
The loop body 4-13 processes the scores of the remaining nucleotides x; for each class.
where Line 5 helps reduce the number of iterations of determining the maximum value
of the scores from the previous nucleotide. Lines 8 and 10 are implementations of

Lemma 2 for each class.

Lemma 3 The algorithm presented in Figure 4.4 finds an optimal segmentation into

k classes for a DNA sequence of length n in O(nk) time.

Proof The initialization of the scores for j € [0,k — 1] at x; is performed in the first
loop body 1-3 in O(k) time. The second loop body 4-13 is executed n — 1 times,
where the maximum of V(¢ —1.¢) for ¢ € [0,k — 1} in Line 5 and the inner loop body
6-12 are determined in O(k) time for each iteration. Therefore, the time complexity

can be simplified to yield O(nk). [

Input : Sequence X. segmentation penalty a
Output: Best penalized segmentation ®

1 forj—0tok—1do
2 VI(1,j) «— wj(x1):
3 end

4 fori — 2 ton do

5 Vinaz + maXcegigp—1) V (4-1.¢):

6 for j <~ 0to k—1do

7 if V(i-1.7) = Vipga — o then

8 V(i.j) «— wj(ai) + V3E-1.9);
9 else
10 Vi(ig) — wji(ai) + Vinae — a:
11 end
12 end
13 end

Figure 4.4. Penalty-based best segmentation algorithm.
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With Traceback Implementation

Let P(i.7) denote an element of the traceback array containing the class number of
the previous nucleotide z; ; referred to when calculating the accumulated penalized
segmentation score V'(i.j) via Equation 4.5. For example, if V(i,j) = w;(z;) +
V(i—1.c) —aand ¢ # j, then P(i,5) = ¢ (otherwise, P(i.5) = j). The algorithm
presented in Figure 4.5 is an adapted version of algorithm denoted in Figure 4.4 which
incorporates the traceback array feature. where P(7,7) is assigned in Lines 10 and
13 for each 1 < ¢ < n and class ¢. Note that the traceback array elements at the
beginning of the sequence for each class ¢, that is. P(1.¢) are not assigned. Line 17

assembles the segmentation set ® through the traceback algorithm.

Input : Sequence X. segmentation penalty a
Output: Best penalized segmentation @

1 forj—0tok—-1do
2 VI(1,j) — wj(z1);
3 end

4 fori—2tondo

5 Vinaz — mMaXce(o k-1 V(i-1.¢);

6 Craz — arg maXee(o.k—1) V(i-1.c):
7 for j —~0tok—1do

8 if V(i-1.5) > Ve — a then

9 V(ig) — wji(a;) + V36-1.5);
10 P(ij) « 5
11 else
12 V(7]) ‘—wj[$-¢)+"111a,m_a:
13 P(i.j) — Chaz:
14 end
15 end
16 end

17 ® «— Traceback(V. P):

Figure 4.5. Penalty-based best segmentation with traceback array al-
gorithm.
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The traceback algorithm is implemented as shown in Figure 4.6. where it computes
the segments obtained from the penalty-based best segmentation algorithm. We use
Z = Z...Z, to store the class numbers of the sequence. As well, let § be the current
segment class number. ¢’ the segment class number read from the traceback array,
istart the start of a segment, i.,4 the end of a segment, and p the iterator for the list
of segments. This algorithm is initialized by determining which class contains the
maximum accumulated penalized score for the sequence as illustrated in Line 4. In
the loop body 6-10, ¢’ is read from the traceback array (Line 7) and is inserted into
zi—1 (Line 9). The segmentation set ® is assembled in the loop body 11-18, where the
segment ¢, = {[istart- bend] — =i—1} is inserted into @ if z;_; is not equal to 2; (Line
12). As well, i¢ng and i44-¢ are updated as denoted in Lines 13 and 15. respectively.

The last segment inserted to the list is represented in Line 20.

Maximum-Likelihood Estimation of Segments

Maximum-likelihood estimation can be used to approximately determine the segments
of a given sequence when provided probability values. This can be implemented
in conjunction with the penalty-based best segmentation algorithm as presented in
Figure 4.7.

The algorithm will be repeated executed in the loop body 1-5 until the log-
likelihood ratio converges. For each iteration. a new score is calculated based on
the log-likelihood ratio and a new segmentation is computed via the penalty-based
best segmentation algorithm as presented in Figure 4.5. Furthermore. new probability
values are calculated using Laplace pseudo-counters as implemented in the algorithm

denoted in Figure 5.1.
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Input : Segmentation score array V. traceback array P. penalty a
Output: Assembled segmentation ¢

tstart < 1;
tend < 1;
p—1
§ « argmax.c(o -1 V (n,¢);
zZn — 0
for i — n downto 2 do
8 — P(i,d );
60— 4"
zi1 « 0;
end
fori—2tondo

if Zi—1 7& Zi then
Tend — 1 — 1:
d’p — {['istart- iend] — 51‘—1};
lstart — &
p—p+1:
end
end
lend < M;

d’p — {[istart- iend] — :n}§

Figure 4.6. Traceback algorithm.

Input : Sequence X. segmentation penalty a
Output: Maximum-likelihood segmentation via penalty-based best segmentation
algorithm @
repeat
p,lr),
w;j(z) « log p——(’)m_J.
® — BestSegmentation(X.a);
p +— ProbabilityCalculation(®):;
until convergence ;

Figure 4.7. Maximume-likelihood estimation of segments via penalty-
based best segmentation algorithm.

40
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4.4 Penalty-Based Best Segmentation with Mini-

mum Segment Lengths

In this section we discuss the case of partitioning the DNA sequence using the penalty-
based best segmentation with minimum segment lengths model. Section 4.4.1 pro-
vides a description of how the penalty-based best segmentation with minimum seg-
ment lengths model can be implemented using dynamic programming. Section 4.4.2
presents the implemented algorithms without and with traceback. as well as an algo-
rithm in which the DNA sequence can be iteratively segmented by using maximum-

likelihood estimation.

4.4.1 Description

While calculating via the penalty-based best segmentation equation as presented in
Equation 4.5 yields a pattern of segments in the sequence, it is possible that overfitting
data (ie. ¢ = [i,4] — j : w;; > 0 segments) can occur and consequently render the
data biologically meaningless. Hence. Equation 4.5 can be modified such that it takes
minimum segment lengths into consideration.

Let m; be defined as the minimum segment length for class 7. Thus, for m €
[1.m,], and ¢ € [m, n]. let <I)Zlm represent the segmentation sets of [1.7] that maximize

V' (®) while satisfying the requirements for all segment lengths except for the last one

of class j whose length is at least m.

Lemma 4 Let Vipor(i. j) = V((Iﬁl) and Vigng(l.j) = V((Dg_mj). Therefore, the fol-

lowing recursions represent the calculation of the weights of these segmentation sets.

that s

V:short('i-j) = Lu‘](.’L',-)‘l‘

max {X short (T —1.7). ~1[1(}61.I-X1| {Vieng(i = 1.¢) —a- HC#]}} (4.6)



i

Viong(iaj) = V:short( m; + 1. 7) + Z wj(-rl) (47)

l=i—m;+2

where Vo (1,7) = wi(z1) and c € [0.k — 1]\ J.

Proof For Equation 4.6, let ¢g0r be some segment of class j at nucleotide z;, i.e.
Gshort = [i.1) — j. If the last segment of (Iﬁ:l includes nucleotide x;_; (i.e. nucleotide
z; and x;_; are of the same nucleotide). then @7, is obtained by extending the last

segment of o’

J
i1 Otherwise. ®/, = ®f ,,, U {bshort}-

For Equation 4.7, let dong be some segment of class j from nucleotides Ti_m,+2

t0 T;, 1.e. Pong = [1 —m,; + 2.4 — j. @’ is obtained by extending the last segment

t,my

of (I)i.—m] 411 With segment ¢ong. i

Lemma 5 Vj,, takes two different cases into consideration: ¢ = j and ¢ # j

Vahore (1, j) = wj(z;) + max {Vs,,o,.,(?' —1.7). max {Vjpny(i —1.¢) — ar}}

c€[0.k—1]

Proof Let [ represent the second term of the equation, that is

# = max {V;,o,f( 1.7). max {110,,9( l.c) — o}}

cel0.k~1]

Let Myong be the required minimum segment length associated with Vigng(i —1. j) —
Likewise. let mgpory = 1 be the required minimum seginent length associated with

Vshort( — 1. 7). Since myong > Mispore. then
‘/:shori(i - 1.7) > ‘;ong(j - 1./) - Q.
Hence, [ can be rewritten such that

[ = max {\ short(t —1.7), max  {Vipne(i — 1.¢) — a}}

c€[0.k—1]\7
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Therefore, this lemma’s equation is the same as Equation 4.6. that is,

‘/.sh.ort(i7j) = wj (Ti) + max {‘/sh,ort(j - 1,]) [})nka‘\i]\ {‘/Iong(_'i - 17 C) - Q}}
ee[0.k—1)\j

= wj(w) +
max {‘ short (1 — 1. 7). ,1[13%}{1] {Viong(i — 1.c) —a- Hr'#j}}

Lemma 4 implies a dynamic programming of that computes an optimal segmen-
tation set that is subject to the given minimum segment lengths in O(nk?) time.
However, like Lemma 2. applying Lemma 5 would allow the pre-calculation of the

maximum value of Vi,,4(7 — 1. ¢). thereby reducing the time complexity to O(nk).

4.4.2 Algorithms
Without Traceback Implementation

Referring to Equations 4.6 and 4.7, the occurrence of overfitting data can be elimi-
nated by specifying the minimum segment lengths of segments. Let m be an array
containing minimum segment lengths for each class j. The algorithm presented in
Figure 4.8 illustrates this computation where both Vyjory and Vi,,g scores at the first
nucleotide x; are initialized for each class in the loop body 1-10. Loop body 11-
29 processes the scores of the remaining nucleotides z;, where the largest value of
Vieng(% — 1,¢) is determined in Line 12 in order to reduce the number of required

iterations. The inner loop body 13-28 is an implementation of Equations 4.6 and 4.7.

Lemma 6 The algorithm presented in Figure 4.8 finds an optimal segmentation into

k classes for a DNA sequence of length n in O(nk) time.

Proof The initialization of the scores for j € [0.k — 1] at z; is performed in the

first loop body 1-10 in O(k) time. The second loop body 11-29 is executed n — 1
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times, where the maximum calculations in Line 12 and the inner loop body 13-28 are
determined in O(k) time for each iteration. Therefore, the time complexity can be

simplified to yield O(nk). |

Input : Sequence X. segmentation penalty a. minimum segment lengths m
Output: Minimum length segmentation ®

1 forj—0tok—1do

2 Vshort (1.7) — Wy (-’Ei):
3 if m; > 1 then
4 Viong (1.7) « —o0;
5 55 — wj(x1);
6 else
7 ‘}ong (1.7) « Vipor (1.5
8 s; 0z
9 end
10 end
11 for i — 2 to n do
12 Vinaz — maXee(o.k 1) Viong (1-1.¢);
13 for j«—0tok—1do
14 55+ 85 + w;(3);
15 if m; > 1 then
16 8j + 85 — wj(Ti—m,+1);
17 end
18 if Viport (i-1,7) > Vipee — a then
19 Vshort ('1_7) Wy (-Ti) + Vhort (i‘l-j);
20 else
21 Vshort (1.9) wy (-Ti) + Vinge — o
22 end
23 if © > m; then
24 ‘}ong(juj) <_‘.shor1(7'_"nj+17j)+3j:
25 else
26 Viong (1.3) «— —o0:
27 end
28 end
29 end

Figure 4.8. Penalty-based minimum length segmentation algorithm.



With Traceback Implementation

The algorithm presented in Figure 4.9 is an adapted version of the algorithm denoted
in Figure 4.8 which incorporates the traceback array feature. Similar to its penalty-
based best segmentation traceback counterpart. the traceback array elements P(i. j)
is assigned for each nucleotide z; and class ¢ in Lines 21 and 24. Again, the traceback
array elements at the first nucleotide 77 for each class c. that is P(1.¢) are not
assigned. Line 33 assembles the segmentation set ® through the traceback with
minimum segment lengths algorithm.

The traceback with minimum segment lengths algorithm is presented in Figure
4.10. where it computes the segments while taking the specified minimum segment
lengths into consideration. We use z = z...z, to store the class numbers of the
sequence. Furthermore, let ¢ be the current segment class number. ¢’ the segment
class number read from the traceback array. meoynier the minimum length counter,
stare the start of a segment. 4c,q the end of a segment. and p the iterator for the
list of segments. This algorithm is initialized by determining which class contains
the maximum accumulated penalized score for the sequence (Line 3) and setting the
Meounter Dased on this class (Line 4). In the loop body 7-18, Musunter decrements
whenever it is not 1 (Line 9). otherwise § and mcounier changes whenever ¢ is not
equal to ¢’ (Line 12). In either case, z;_; stores the current class number §. The
segmentation set ® is assembled in the loop body 19-26. where the segment ¢, =
{[istarts Tend) — zi-1} is inserted into @ if z;_; is not equal to z; (Line 20). As well,
Tend ANd igq are updated as denoted in Lines 21 and 23, respectively. The last

segment inserted to the list is represented in Line 28.

Maximum-Likelihood Estimation of Segments

Like its penalty-based best segmentation algorithm counterpart. maximum-likelihood

estimation can be used with the penalty-based best segmentation with minimum



Input : Sequence X. segmentation penalty a. minimum segment lengths m
Output: Minimum length segmentation ®

1 forj—0tok—1do

2 Vsh,ort(-znj) Wy (11)
3 if m; > 1 then
4 Won.g(-l-j) — —00;
5 55 — wj(x1);
6 else
7 Won.g(-l;j) — Vahort (1.7
8 55— 0;
9 end
10 end
11 for i — 2 to n do
12 Vinaz + MmaXee(o,k-1] I/;ong (1-1.c);
13 Cinaz < arg maxceo k—1) Viong (i-1,¢);
14 for j—0tok—1do
15 55 — 85 + wj(zs);
16 if m; > 1 then
17 85— 85 — wj(Ti—m,+1);
18 end
19 if Vhort (i-1.5) > Vipaz — a then
20 Vshort (1.7) Wi (%5) + Vihort (i-1.5);
21 P(ij) — j:
22 else
23 Vshort (1.5) — wj(2:) + Vinaz —
24 P(i.7) « Chag;
25 end
26 if i > m; then
27 VZong (2.7) — Viport (i — mj + 1.j) + S5t
28 else
29 Viong (i.) = —oo:
30 end
31 end
32 end

33 ¢ « MinimumLengthTraceback(l". P, m):

Figure 4.9. Penalty-based minimum length segmentation with trace-
back array algorithm.
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Input : Segmentation score array V. traceback array P. minimum segment

lengths m
Output: Assembled segmentation ¢

lstart < 1;
lend < 1;
§ — argmax,cjg 1 V (n.c);
Mceounter < M §;
Zn + 0;
p—1
for i — n downto 2 do
if meounter > 1 then
Meounter < Meounter — 13
else
&' — P(i,d);
if § # ¢’ then
§—4d;
Meounter < M55
end
end
zj1 + 0;
end
for i — 2 to n do
if z; 1 # z; then
lend < 1 — 15
d’p — {['islart;iend] = 2 1};
Istart < 1
p—p+1
end
end
lend < M;

d)p — {['istm‘t- 'ie71d] = :n}§

Figure 4.10. Traceback with minimum segment lengths algorithm.
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segment lengths algorithm to approximately find the segments of a given sequence

when provided probability values. as implemented in the algorithm as shown in Figure

4.11.

Input : Sequence X. segmentation penalty c. minimum segment lengths m
Output: Maximum-likelihood segmentation via penalty-based best segmentation
algorithm &

=

repeat
)
wj(w) + log 2135;
® — MinimumLengthSegmentation(X.a.m):
p < ProbabilityCalculation(®);

until convergence ;

L5 B L I ]

Figure 4.11. Maximum-likelihood estimation of segments via penalty-
based minimum length segmentation algorithm.

The algorithm will be repeatedly executed in the loop body 1-5 until the log-
likelihood ratio converges. For each iteration. a new score is calculated based on the
log-likelihood ratio and a new segmentation is computed via the penalty-based best
segmentation with minimum segment lengths algorithm as described in the algorithm
presented in Figure 4.9. Furthermore, new probability values are calculated using

Laplace pseudo-counters as implemented in the algorithm presented in Figure 5.1.



Chapter 5

Experimental Results

GC-content is defined as the measurement of the relative frequency of G (guanine)
and C (cytosine) found in a region. When applied to DNA segmentation, this has
been used to determine segments whose contents are rich in guanine and cytosine.

The actual genome sequences of the organisms used in this research can be down-
loaded from the National Center for Biotechnology Information (NCBI) website (i.e.
http://www.ncbi.nlm.nih.gov).

The European Molecular Biology Open Software Suite (ENBOSS) is a collection
of software analysis programs designed to meet the needs of the molecular biology user
community (Rice et al. 2000). Among the numerous functionalities that EMBOSS
can perform include sequence alignment. nucleotide sequence pattern analysis. and
GC-content sequence analysis. We compared our segmentation results with those
obtained from the GC-content analysis tool found in the latest version of ENIBOSS,
which can be downloaded from its homepage (i.e. http://emboss.sourceforge.net/).

Before we discuss the experimental results. the following presents other implemen-

tations that were included to complement our sequence segmentation algorithms.
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Model Parameter Estimation

In Chapter 3. we presented the log-likelihood function for our statistical models as
denoted in Equation 3.3. where the first term denotes the null hypothesis that the
segments is of class 0 and the second term is the log-likelihood ratio defined by the
observation sequence z. In order to avoid encountering probability values of 0 in
the denominator of the log-likelihood ratio, Laplace pseudo-counters can be used as

denoted in Equation 5.1

n; + 1
= 5.1
= (5.1)
where p = {p1,po..... pr} is a collection of probability values for alphabet 3 and
ny1.Moa,....N, represent the counters of characters 1..... r in positions for a given

class in a given segmentation.

Laplace pseudo-counters were implemented as presented in Figure 5.1. For each
class 7. let the total number of nucleotides be represented as n;.; and the counters
of nucleotide alphabet ¥ = {oy.09....,0,} be denoted as n,,,ng,....,ny.. The
algorithm iteratively counts the number of each nucleotide alphabet and total number
of nucleotides found in the current class as expressed in the loop body 3-8. Ultimately.

the new probability values are calculated in Line 10.

Data Compression

In Chapter 4, we presented the penalty-based best segmentation algorithms in which
dynamic programming was implemented by applying the traceback array. As pre-
viously mentioned. the traceback array contains class numbers at various nucleotide
positions. To increase memory efficiency, we stored our traceback values by compress-
ing them in byte (8-bit) arrays. where the value is stored in the appropriate position
in the data byte.

To construct our traceback arrav. we needed to determine the fixed amount of



Input : Segmentation ®
Output: New probability values p

1 forj«—0tok—1do

2 Neotal — 05

3 fori — 1 tondo

4 if z; = j then

5 Ng, — Ng, + 1:
6 Total < Niotal + 1:
7 end

8 end

9 for o «— 01 to o, do
10 Pg — ng,:(jiﬁ
11 end
12 end

Figure 5.1. Probability calculation algorithm.

memory required to store our traceback values efficiently. For a sequence X and
k classes. let C represent the number of classes that can be stored per byte, b the
number of bits required per class, r the number of required bits to construct the
traceback array, and R the number of required bytes equivalent to r. Determining C

depends on &, that is.

—

if 16 < k < 256
ifd< k<16

[S]

if2<hk<4

4
\ 8 otherwise

Because a byte consists of 8 bits. b can be calculated by dividing 8 bits by the number

of classes per byte, that is.

8
b= ok (5.3)

Furthermore, r can be determined by taking the sequence length. number of classes.



and number of bits per class into consideration, or

r=(X|-1) x k x b. (5.4)

We convert the number of required bits r to the number of required bytes R by using

"3l 9

Suppose T denote the traceback array, tg the initial traceback index. ¢, i fset the
traceback offset value, ¢;4, the traceback index, and ¢ the number of counted classes.
Using these variables. we can determine where to add our new value in our traceback
array. as presented in Figure 5.2. Line 5 uses the compress static function to store
the data at the appropriate place in the traceback array. Suppose n denote the
new byte value. Then. the implementation of this function is presented as shown in
Figure 5.3, where we used logic operations and hexadecimal values to assign the value

accordingly.

Input: Value v. nucleotide index i. class index j

(i-2)xkxb
o= —%

foffset — ‘é‘

tide < o+ toffset:

c—c+1;

T (tigr ) < Compress(T (tig.). v. C. ¢ ):

gk W =

Figure 5.2. Add data to traceback array algorithm.

Similar to Figure 5.2, the appropriate value can be read from the traceback array
as presented in Figure 5.4. Line 4 translates the nucleotide index input value to the
appropriate index value in the traceback array. Also, line 5 calls the decompress static
function which returns the byte value. This decompression function is presented in

Figure 5.5.



Input : Current byte value B, value V. number of classes per byte C'. number
of counted classes ¢
Output: New compressed byte value n

1 switch C do

2 case 1

3 n—V,

4 case 2

5 if cmod C =1 then n— (V << 4)V (B A0x0F)
6 else n — V Vv (B A0xF0);

7 case 4

8 switch ¢mod C do

9 case !
10 n «— (V << 6) V(B A0x3F):
11 case 2
12 n«— (V << 4) v (B A 0xCF);
13 case J
14 n— (V<< 2)V (B AO0xF3);
15 case (

16 n+— V V(B AOxFC):
17 end

18 case §

19 switch ¢ mod C do
20 case 1
21 n— (V << 7)V (B AOXTF):
22 case 2
23 n — (V << 6) vV (B A 0xBF);
24 case J
25 n — (V << 5)V (B A0xDF):
26 case 4
27 n— (V << 4) v (B AOxEF);
28 case §
29 n— (V << 3) V(B AOxF7);
30 case 6
31 n— (V<< 2)Vv (B AOxFB):
32 case 7
33 n— (V<<1)Vv(BAOxFD):
34 case (
35 n«— V V(B AOxFE);
36 end
37 end

Figure 5.3. Byte compression into traceback array algorithm.



Input : Nucleotide index i. class index j
Output: Byte value from traceback array n

(i—2)xkxb
-8

2“0 A )

foffset — ‘(7,";

tide < to + tosyset:
d—(i—-2)xkxj+1

n < Decompress (T (tig.), C, d );

[ B N N

Figure 5.4. Read data to traceback array algorithm.

5.1 Bacteriophage Lambda

5.1.1 Description

The bacteriophage A is a parasite of the intestinal bacterium FEscherichia coli that is
commonly used as a benchmark sequence for the comparison of segmentation algo-
rithms (Boys and Henderson 2004). The reasoning for considering this organism is
due to its experimental segmentation being based on the gradient centrifugation of
its GC-content as conducted by Skalka et al. They identified six sections of differing
GC-content and deduced that the lengths given for the three shorter sections are not
exact, while the lengths of the three longer sections are. Furthermore, they concluded
that any errors found anywhere other than the three longer sections are compensated
equally in the 43%-GC and 48%-GC sections (Skalka et al. 1968). Their experiment
work is quantitatively presented in Figure 5.6 and Table 5.1.

To analyze the nucleotide distribution for bacteriophage A graphically, we used
the isochore analysis application included in ENIBOSS. This application operates by
calculating the GC-content within a fixed-length window and incrementally shifting
this window along the entire sequence. Figure 5.7 provides an illustration of the
nucleotide distribution for bacteriophage A based on GC-content using ENBOSS,
where we used the default values of 1-kb and 0.1-kb as our window length and shift

increment values. respectively.



Input : Current byte value B. number of classes per byte C, converted class

index ¢
Output: Appropriate byte value n

1 switch C do

2 case !

3 n «— B;

4 case 2

5 if cmod C =1 then n « (BAOxF0)>> 4
6 else n «— (B A 0x0F);

7 case 4

8 switch ¢ mod C do

9 case I

10 n — (B A 0xC0) >> 6;
11 case 2

12 n — (B A 0x30) >> 4;
13 case &

14 n — (B A0x0C) >> 2;
15 case (

16 n «— (B A 0x03);

17 end

18 case &

19 switch ¢ mod C do
20 case I
21 n«— (BA0x80) >>T:
22 case 2
23 n — (B A 0x40) >> 6:
24 case J

25 n «— (B A0x20) >> 5:
26 case 4
27 n — (B A 0x10) >> 4;
28 case 5
29 n — (B A0x08) >> 3;
30 case 0
31 n — (B A0x04) >> 2;
32 case 7
33 n «— (B A0x02) >> 1;
34 case 0

35 n — (B A 0x01):

36 end

37 end

Figure 5.5. Byte decompression from traceback array algorithm.
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Figure 5.6. Nucleotide distribution in bacteriophage \ based on GC-content via
gradient centrifugation.

Segment, | Nucleotide Start | Nucleotide End | %GC
1 1 485 48
2 186 21340 57
3 21341 26191 37
4 26192 34436 43
5 34437 46077 48
6 46078 48502 42

Table 5.1. Quantitative data describing the nucleotide distribution in bacterio-
phage A via density centrifugation.
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Figure 5.7. Nucleotide distribution in bacteriophage \ based on GC-content via
EMBOSS.
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5.1.2 Tests

We tested our algorithms on the bacteriophage A (48,502 base pairs, GenBank ac-
cession NC_001416) using different complexity penalty values a as depicted in Table
5.2 (where k is the number of classes to be considered). We also tested the DNA
segmentation on a number of classes with the probability values presented in Table
5.3 and the minimum length values listed in Table 5.4. We compared each DNA

segmentation test to the obtained bacteriophage A nucleotide distribution conducted

by Skalka et al.

Test Name Q
None 0
AIC 2
BIC log 48.502
MDL log 48.502 + log &

Table 5.2. Complexity penalty values o tested for bacteriophage .

Case p;(a)
5 po(S) = 0.5 | po(W)=10.5
2 Classes p1(S) = 0.52 | p1(W) = 0.48
3 Classes | p1(S) = 0.52 | p1 (W) =0.48
po(S) = 0.7 | pa(W) =10.3
po(S) = 0.37 | po(W) = 0.63
p1(S) =0.42 | p(17") = 0.58
4 Classes | (5) = 0.48 | po(IV) = 0.52
p3(S) = 0.57 | po(W) = 0.43

Table 5.3. Probability values p; (1) tested for bacteriophage \.
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Case Class | Minimum Length

0 200

{)

2 Classes 1 200
0 200

3 Classes 1 200
2 200
0 200
1 200

4 Classes 9 200
3 200

Table 5.4. Minimum length values tested for bacteriophage A.

5.1.3 Results
Case 1: 2 Classes

For the case in which there is no complexity penalty value. we found the bacteriophage
A genome to be heavily segmented such that the segmentation consists of two types
of segments. i.e.. segments consisting of only C or G nucleotides and segments that
do not. In addition, we observed the occurrence of overfitting data. where segments
of length 1 are found. These observations are similar to those found in the AIC test,
although the GC-content for the GC-poor and GC-rich segments will not necessarily
be 0% and 100%, respectively.

The DNA segmentation for the BIC and MDL tests yielded four segments as
shown graphically in Figure 5.8 and quantitatively in Table 5.5. As illustrated by
the solid and dashed lines in both graphs, we found both experimental nucleotide
distributions to be graphically similar. and not necessarily exact, to those found
through gradient centrifugation. Because it was previously found that the lengths of
the three longer sections are more exact for gradient centrifugation, we calculated the
average GC-content within these sections on our experimental data. say. A. B. and

C. For every section in both graphs. we found a resemblance between the calculated
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average experimental GC-content and the corresponding density centrifugation value
as presented in Table 5.6. A summary of GC-content for each test is presented in
Table 5.7.

When taking minimum lengths into consideration. Figures 5.9 and 5.10 represent
the nucleotide distribution after DNA segmentation for no penalty and AIC tests,
respectively. As well, we found that the BIC and MDL yielded identical results
to those obtained without minimum lengths. Calculating the average experimental
GC-content in the same manner as previously mentioned, we found the values for
each section to be comparable to those obtained through density centrifugation as

demonstrated in Tables 5.8 and 5.9. We summarized each test in Table 5.10.
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Figure 5.8. Nucleotide distribution in bacteriophage A\ based on GC-content for
BIC and MDL tests when using 2 classes (solid line) and density centrifugation
(dashed line).



Segment | Nucleotide Start | Nucleotide End | %#GC
1 1 21923 57
2 21924 39174 42
3 39175 40550 54
4 40551 48502 46

Table 5.5. Quantitative data describing the nucleotide distribution in bacterio-
phage A\ for BIC and MDL tests (2 classes).

Theoretical Average
Segment | Nucleotide Start | Nucleotide End 160 Experimental
%GC o
%GC
A 486 21340 57 57
B 26192 34436 43 43
C 34437 46077 48 47

Table 5.6. Comparison of the nucleotide distribution in bacteriophage A\ between

those found via density centrifugation and those found via BIC and MDL tests

when using 2 classes.

Test Name | Penalty Score C(;jéséo C%)a.(s;scl
None 0 948.65906 0 100
AIC 2.0 3481.035 33 56
BIC 10.78936 | 768.2105 44 57
MDL 11.482508 | 766.13116 44 57

Table 5.7. Summary of experimental data for bacteriophage A when using 2

classes.
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Figure 5.9. Nucleotide distribution in bacteriophage )\ based on GC-content for
no penalty test with minimum lengths when using 2 classes (solid line) and
density centrifugation (dashed line).

Theoretical AVerage
Segment | Nucleotide Start | Nucleotide End Experimental
%GC ¢
%GC
: 186 51340 = c
B 26192 34436 3 o
C 34437 0 & 0

Table 5.8. Comparison of the nucleotide distribution in bacteriophage \ between
those found via density centrifugation and those found via no penalty test with
minimum lengths when using 2 classes.
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Figure 5.10. Nucleotide distribution in bacteriophage A based on GC-content
for AIC test with minimum length when using 2 classes (solid line) and density

centrifugation (dashed line).

Theoretical Average
Segment | Nucleotide Start | Nucleotide End s Experimental
%GC ¢
7GC
A 486 21340 57 57
B 26192 34436 43 44
C 34437 46077 48 47

Table 5.9. Comparison of the nucleotide distribution in bacteriophage )\ be-

tween those found via density centrifugation and those found via AIC test with
minimum lengths when using 2 classes.
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Test Name | Penalty Score C%acs;sco (E;Oaézl
None 0 1830.736 39 %)
AIC 2.0 1443.6943 40 56
BIC 10.78936 | 768.2105 14 57
MDL 11.482508 | 766.13116 44 57

Table 5.10. Summary of experimental data for bacteriophage A when using 2
classes with minimum lengths.

Case 2: 3 Classes

We observed that the DNA segmentation obtained for the no penalty, AIC. BIC,
and MDL tests were identical to those obtained in the case in which we considered
2 classes. Like the previous case. although we did not find an exact graphical match
between the experimental and theoretical nucleotide distributions. we did find the
average experimental GC-content within the three sections to be comparable to those
obtained from density centrifugation as shown in Table 5.11. The summary of GC-
content for each test is presented in Table 5.14, where the “-" markers represent
classes that are not found in the DNA segmentation.

Taking the minimum lengths into consideration, we obtained the segmentation
for no penalty and AIC tests as illustrated in Figure 5.11 and 5.12. respectively.
Furthermore, we found the average experimental GC-content within the three longest
sections to be similar to those obtained from density centrifugation as shown in Tables
5.12 and 5.13. The DNA segmentation results for the BIC and MDL tests were found
to be identical to their counterparts in the 2 classes case. The GC-content for each

test is summarized in Table 5.15.
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Figure 5.11. Nucleotide distribution in bacteriophage )\ based on GC-content

for no penalty test with minimum lengths when using 3 classes (solid line) and
density centrifugation (dashed line).

Theoretical Average
Segment | Nucleotide Start | Nucleotide End @ Experimental
AGC
NGC
A 486 21340 57 57
B 26192 34436 43 44
C 34437 46077 48 47

Table 5.11. Comparison of the nucleotide distribution in bacteriophage \ be-
tween those found via density centrifugation and those found via BIC and MDL

tests with minimum lengths when using 3 classes.
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Figure 5.12. Nucleotide distribution in bacteriophage A\ based on GC-content
for AIC test with minimum lengths when using 3 classes (solid line) and density
centrifugation (dashed line).

Theoretical Average
Segment | Nucleotide Start | Nucleotide End o ca Experimental
%GC
%GC
A 486 21340 57 57
B 26192 34436 43 44
C 34437 46077 48 47

Table 5.12. Comparison of the nucleotide distribution in bacteriophage \ be-
tween those found via density centrifugation and those found via no penalty
test with minimum lengths when using 3 classes.
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Theoretical Average
Segment | Nucleotide Start | Nucleotide End %GC Experimental
%GC
A 486 21340 57 57
B 26192 34436 43 44
C 34437 46077 48 47

Table 5.13. Comparison of the nucleotide distribution in bacteriophage \ be-
tween those found via density centrifugation and those found via AIC test with
minimum lengths when using 3 classes.

Test Name | Penalty Score C%)aésco C(yloa.(s;scl %%aésé?
None 0 8135.6226 0 - 100
AIC 2.0 14303.221 18 93 100
BIC 10.78936 | 768.2105 44 57 -
MDL 11.887973 | 764.9146 44 57 -

Table 5.14. Summary of experimental data for bacteriophage \ when using 3

classes.

Test Name | Penalty Score C%aésco (f,}aézl (3}/1;15502
None 0 2526.8127 37 20 60
AIC 2.0 2627.7852 36 48 57
BIC 10.78936 | 768.2105 14 57 -
MDL 11.887973 | 764.9146 44 57 -

Table 5.15. Summary of experimental data for bacteriophage A when using 3

classes with minimum lengths.
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Case 3: 4 Classes

Based on the results obtained from the previous cases, we found the risk of overfit-
ting data to be high for the no penalty and AIC tests. Furthermore, we found the
segmentation obtained from the BIC and MDL tests to be comparable to each other.
Using the three longest sections defined by density centrifugation in Figure 5.13, the
average experimental GC-content values within these boundaries were found to be
comparable to those determined by density centrifugation as shown in Table 5.16.
We graphically compared the nucleotide distribution between the experimental
and EMBOSS-calculated data using BIC penalty. As illustrated in Figure 5.14, it
can be seen that the trend describing the experimental data (dashed line) gave an
interestingly good estimation of the nucleotide distribution found by its ENMBOSS
counterpart (solid line). This was also attained when the defined minimum length

values were applied.

Theoretical Average
Segment | Nucleotide Start | Nucleotide End " | Experimental
%GC o
%NGC
A 486 21340 57 57
B 26192 34436 43 14
C 34437 46077 48 47

Table 5.16. Comparison of the nucleotide distribution in bacteriophage \ be-
tween those found via density centrifugation and those found via BIC test when
using 4 classes.
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Figure 5.13. Nucleotide distribution in bacteriophage A\ based on GC-content
for BIC test when using 4 classes (solid line) and density centrifugation (dashed
line).
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Figure 5.14. Nucleotide distribution in bacteriophage )\ based on GC-content
for BIC when using 4 classes (dashed line) and EMBOSS (solid line).
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5.2 RNA Genes in Thermophiles

5.2.1 Description

Klein et al. (2002) used a hidden Markov model consisting of two states. labelled
as “RNA” and “background genome”, to segment the thermophile Archaebacteria
Methanocaldococcus jannaschii (M. jannaschii) genome based on GC-content in order
to find non-coding RNA genes. They defined the *“RNA” state to be GC-rich in
its transfer RNA (tRNA) and ribosomal RNA (rRNA) content and therefore was
assigned a higher GC-content emission probability, whereas the “background genome”
state is said to be GC-poor and therefore was assigned a low GC-content emission
probability. According to the NCBI database. there are 6 known ribosomal RNA and
37 known transfer RNA segments found in the M. jannaschii genome.

Eddy (2001) determined that structural RNA genes in Prokaryotes tend to have a
GC-content that is proportional to the optimal temperature growth. including those
of tRNA and rRNA genes (Galtier and Lobry 1997). However. we found that this
is not necessarily the case for Ribonuclease (RNase) P RNA genes in Prokaryotes as
illustrated in Figure 5.15. where we analyzed the GC-content of the genes stored in
the Ribonuclease P Database (http://jwbrown.mbio.ncsu.cdu/RNaseP) (Brown 1999)
and used the optimal growth temperature values found in the Prokaryotic Growth
Temperature Database (http://pgtdb.csie.ncu.edu.tw) (Huang et al. 2004). This is
also the case if we analyzed the GC-content in the helices of these genes as shown in
Figure 5.16.

For Methanocaldococcus jannaschii in the NCBI database, the RNase P RNA gene

stored in the ribonuclease P database can be found between base 643.507 and 643.758.
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5.2.2 Tests

We tested our algorithms on M. jannaschii (1.664.970 base pairs, GenBank accession
NC_000909) using different complexity penalty values o as depicted in Table 5.17. We
also tested the DNA segmentation on various number of segments with the probability
values presented in Table 5.18 and the minimum length values listed in Table 5.19.
The probability values are based on the genome's overall GC-content. Since the
M. jannaschii genome consisted of RNA segments whose contents are GC-rich. we
measured the nucleotide distribution and the number of RNA genes detected in our

DNA segmentation tests.

Test Name a
None 0
AIC 2
BIC log 1.664.970
NDL log 1.664.970 + log k

Table 5.17. Complexity penalty values a tested for M. jannaschii.

5.2.3 Results
Case 1: 2 Classes

Using the AIC and no penalty values to segment the Al jannaschii genome, we found
the nucleotide distribution of the sequence to be heavily segmented with GC-rich and
GC-poor fragments. We observed data overftting in which the segmented sequence
revealed numerous segments of length 1. although the degree of overfitting for AIC
was found to be smaller than if we used no penalty at all. Because the sequence
was heavily segmented. all ribosomal and transfer RNA segments given by the NCBI

database were found.



Case p;(z)
po(S) = 0.34 | po(W) = 0.66
2 Classes | 6y = 0.72 | py (W) = 0.28
Po(S) = 0.31 | po(W) = 0.69
3 Classes | p1(S) =0.64 | p1(W) = 0.36
p2(S) = 0.74 | p(W) = 0.26
po(S) = 0.31 | po(W) = 0.69
p1(S) = 0.60 | py(W) = 0.40
p2(S) = 0.61 | po(W) =0.39
6 Classes | 0 (S) = 0.62 | ps(WW) = 0.38
pa(S) = 0.71 | p4(W) =0.29
ps(S) = 0.72 | ps(W) = 0.28
po(S) = 0.31 | po(W) = 0.69
p1(S) = 0.64 | p1 (W) = 0.36
p2(S) = 0.74 | po(W) = 0.26
p3(S) = 0.68 | ps(IW) = 0.32
p4(5) =0.72 p4(ﬂ') = 0.28
10 Classes | (o) — 0.63 | ps(177) = 0.37
pe(S) = 0.65 | ps(IW) = 0.35
p7(S) =0.66 | pz(IW) =0.33
ps(S) = 0.69 | ps(IW) = 0.31
po(S) = 0.70 | po(W) = 0.30

Table 5.18. Probability values p;(z) tested for M. jannaschii.
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Case Class | Minimum Length

50
2 Classes 50
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

jen}

3 Classes

6 Classes

10 Classes

O 00 ~J O Ul WP OO W — O — Ol

Table 5.19. Minimum length values tested for M. jannaschii.
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From our DNA segmentation tests using BIC and MDL penalty values, we ob-
tained the nucleotide distribution graphically shown in Figure 5.17 where there is no
occurrence of overfitting (i.e., the length of each segment is greater than 1). As well,
it can be seen that the segmentation revealed fragments that can be characterized
as either GC-poor or GC-rich, where the GC-content of the former is approximately
30% and the majority of the latter is at least 60%. Table 5.20 shows the number of
ribosomal and transfer RNA segments found in this genome as defined by the NCBI
database, where all tests were able to find all ribosomal RNA segments. The BIC and
MDL tests were able to find only 21 of the 37 known transfer RNA segments. How-
ever, many of the fragments that were determined experimentally contained more
than one known RNA segment. whether it be rRNA or tRNA or both, and may
have affected the GC-content of these fragments. For example, the segment [97326,
97823] contained 2 known tRNAs and was considered to be GC-rich. even though its
GC-content is approximately 51.8%. Interestingly, we were also able to detect the
RNase P RNA gene by comparing the associated GC-rich segment with the sequence
associated with this gene found in the M. jannaschii genome at [643507.643758].

The GC-content for each class found in the segmentation is shown in Table 5.21.
Although we used 2 classes to segment our sequence in order to determine GC-rich and
GC-poor segments, we found the obtained GC-content values do not distinguish these
two kinds of segments very well if we used either AIC or no penalties with minimum
length values applied. Consequently, it may be difficult to distinguish between GC-
rich and GC-poor segments when analyzing this segmentation. In contrast, the GC-
content values calculated from the other tests were more characteristic of GC-rich

and GC-poor segments and can be easily identified in the segmentation.

Case 2: 3 Classes

Like the case where two classes were considered. data overfitting was observed in the

segmented M. jannaschii genome if we used AIC or no penalty values. Figures 5.18
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Figure 5.17. Nucleotide distribution in M. jannaschii based on GC-content for
BIC and MDL tests when using 2 classes.



(a) Without minimum lengths

Number of

Number of

Number of

Test Name rRNA tRNA rRNA and tRNA
found found found
None 6 37 43
AIC 6 37 43
BIC 6 21 27
MDL 6 20 26

(b) With

minimum lengt

hs

Number of

Number of

Number of

Test Name rRNA tRNA rRNA and tRNA
found found found
None 6 37 43
AIC 6 37 43
BIC 6 21 27
MDL 6 20 26

Table 5.20. RNA found by implementation for M. jannaschii when using 2

classes without and with minimum lengths.
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(a) Without minimum lengths

Test Name | Penalty Score C%aésco C(yloa.cs;scl
None 0 392433.5 0.0 100.0
AIC 2.0 10919.063 | 29.4 78.5
BIC 14.325317 | 2292.9995 | 31.2 61.6
MDL 15.018465 | 2279.2048 | 31.2 61.6

(b) With minimum lengths

Test Name | Penalty Score C(;Oaésco C(yloaéscl
None 0 74798.42 21.8 40.5
AIC 2.0 50029.78 21.7 36.5
BIC 14.325317 | 2292.9995 | 31.2 61.6
MDL 15.018465 | 2279.2048 | 31.2 61.6
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Table 5.21. Summary of experimental data for M. jannaschii when using 2
classes without and with minimum lengths.

and 5.19 illustrates the nucleotide distribution from DNA segmentation using BIC
and MDL for both without and with minimum length values.

For AIC and no penalty values. the DNA segmentation was able to reveal all the
ribosomal and transfer RNA segments regardless of whether minimum length values
were used or not. In contrast. as shown in Table 5.22, a fraction of transfer RNA
were detected for BIC and MDL test cases. Like the previous case. the RNase P RNA
gene for M. jannaschii was found.

Although segments in a sequence can be characterized as GC-rich and GC-poor,
as demonstrated in the previous case, it may be possible to include additional GC-rich
segments with different GC-content values. We segmented the M. jannaschii sequence
using 3 classes. where we associated one class as GC-poor and two classes as GC-rich
segments but with different GC-content values. As shown in Table 5.23. we could see

how the M. jannaschii genome can be segmented based on this possibility. However,
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our experimental data also demonstrated classes that were not found and therefore

could be omitted from the segmentation.

(a) Without minimum lengths

Number of | Number of Number of
Test Name rRNA tRNA rRNA and tRNA
found found found
None 6 37 43
AIC 6 37 43
BIC 6 22 28
MDL 6 20 26
(b) With minimum lengths
Number of | Number of Number of
Test Name rRNA tRNA rRNA and tRNA
found found found
None 6 37 43
AIC 6 37 43
BIC 6 20 26
NDL 6 19 25

Table 5.22. RNA found by implementation for A. jannaschii when using 3
classes without and with minimum lengths.

Case 3: 6 Classes

Overfitting was observed when we applied AIC or no penalty values to calculate the
DNA segmentation of M. jannaschii. The nucleotide distribution for the BIC and
MDL tests were illustrated Figures 5.20 and 5.21.

Unlike the AIC and no penalty tests in which the DNA segmentation revealed all
the ribosomal and transfer RNA segments, a portion of transfer RNA were detected
for BIC and MDL tests as shown in Table 5.24. The RNase P RNA gene for this

genome was also observed.
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Figure 5.18. Nucleotide distribution in M. jannaschii based on GC-content for
BIC and MDL tests when using 3 classes.
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Figure 5.19. Nucleotide distribution in A/. jannaschii based on GC-content for
BIC and MDL tests with minimum lengths when using 3 classes.



(a) Without minimum lengths

Test Name | Penalty Score C%aésco 0(71:(5;%1 C(;éaéSCQ
None 0 456894.3 0.0 - 100.0
AIC 2.0 174689.28 | 14.7 33.4 100.0
BIC 14.325317 | 2319.419 31.2 61.8 70.1
MDL 15.42393 | 2294.2566 | 31.2 61.8 67.9

(b) With minimum lengths

Test Name | Penalty Score Cwloa(.-s;sco C(;Oa-cs;scl Class 2
None 0 77393.234 | 20.8 31.1 42.0
AIC 2.0 9875.5 32.2 44.7 20.2
BIC 14.325317 | 2310.6177 | 31.2 61.9 -
MDL 15.42393 | 2290.3052 | 31.2 61.9 -
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Table 5.23. Summary of experimental data for M. jannaschii when using 3
classes without and with minimum lengths.

Tables 5.25 provides a summary of each DNA segmentation test for the M. jan-

naschii genome. Like before, it is possible that some segmentation classes can be

omitted.

Case 4: 10 Classes

When we used the AIC or no penalty values to segment the M. jannaschii genome.,
the sequence was found to be heavily segmented and segmentation to be overfitted.
Figures 5.22 and 5.23 gives a graphical representation of how the nucleotides are
distributed based on GC-content.

Table 5.26 presents the number of ribosomal and transfer RNA segments found
in comparison to those defined by the NCBI database. We also found the RNase P
RNA gene for this genome as stored in the ribonuclease P database.

Even though we attempted to segment the M. jannaschii sequence using 10 classes
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Figure 5.20. Nucleotide distribution in Al. jannaschii based on GC-content for
BIC and MDL tests when using 6 classes.
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Figure 5.21. Nucleotide distribution in A{. jannaschii based on GC-content for
BIC and MDL tests with minimum lengths when using 6 classes.
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(a) Without minimum lengths

Number of

Number of

Number of

Test Name rRNA tRNA rRNA and tRNA
found found found
None 6 37 43
AIC 6 37 43
BIC 6 23 29
MDL 6 20 26

(b) With

minimum lengt

hs

Number of

Number of

Number of

Test Name rRNA tRNA rRNA and tRNA
found found found
None 6 37 43
AIC 6 37 43
BIC 6 21 27
MDL 6 19 25

Table 5.24. RNA found by implementation for M. jannaschii when using 6

classes without and with minimum lengths.
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(a) Without minimum lengths

Test Name | Penalty Score Class | %GC | Class | %GC
0 0.0 3 -
None 0 441425.62 1 - 4 100.0
2 - 5 100.0
0 0.0 3 56.8
AIC 2.0 1328935.0 1 23.0 4 78.2
2 37.5 ) 100.0
0 31.2 3 62.4
BIC 14.325317 | 2342.75 1 55.4 4 -
2 57.8 ) 70.1
0 31.2 3 62.7
MDL 16.117077 | 2305.5107 1 4.7 4 -
2 60.6 5 63.8
(b) With minimum lengths
Test Name | Penalty Score Class | %GC | Class | %GC
0 17.9 3 38.1
None 0 116933.086 1 25.1 4 44.8
2 31.7 ) 62.4
0 19.2 3 10.2
AIC 2.0 82396.46 1 29.4 4 44.2
2 34.9 ) 62.6
0 31.2 3 62.4
BIC 14.325317 | 2334.582 1 55.4 4 64.5
2 57.8 5 -
0 31.2 3 62.7
MDL 16.117077 | 2305.8728 1 54.7 4 -
2 60.6 5 -

Table 5.25. Summary of experimental data for M. jannaschii when using 6

classes without and with minimum length.
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that includes a variety of GC-content values. it is clear from the summary presented
in Table 5.27 that some classes can be omitted since they were not found in the seg-
mentation. Furthermore, the MDL penalty value may be too severe for segmentation
since we observed fewer classes found than if we used BIC. Hence, it is possible to
segment this sequence using 4 or 5 classes with the BIC segment transition penalty

value applied.

(a) Without minimum lengths

Number of | Number of Number of
Test Name rRNA tRNA rRNA and tRNA
found found found
None 6 37 43
AIC 6 37 43
BIC 6 23 29
MDL 6 20 26
(b) With minimum lengths
Number of | Number of Number of
Test Name rRNA tRNA rRNA and tRNA
found found found
None 6 37 43
AIC 6 37 43
BIC 6 21 27
MDL 6 19 25

Table 5.26. RNA found by implementation for M. jannaschit when using 10
classes without and with minimum lengths.
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Figure 5.22. Nucleotide distribution in A/. jannaschii based on GC-content for
BIC and MDL tests when using 10 classes.
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Figure 5.23. Nucleotide distribution in A{. jannaschii based on GC-content for
BIC and MDL tests with minimum lengths when using 10 classes.



(a) Without minimum lengths

Test Name | Penalty Score Class | %GC | Class | %GC | Class | %GC
0 0.0 4 - 8 -
1 - 5 - 9 -
None 0 456894.3 9 100.0 6 i
3 - 7 -
0 11.3 4 82.4 8 59.6
1 31.2 5 22.4 9 71.6
2 2.72
AIC 2.0 308832.72 9 100.0 6 238
3 46.3 7 0.0
0 31.2 4 66.7 8 -
1 - 5 61.4 9 -
2 2
BIC 14.325317 | 2330.747 9 68.1 6 63.4
3 - 7 -
0 31.2 4 - 8 -
1 - 5 61.4 9 -
2 2983.12
MDL 16.627903 | 2283.1248 9 63.8 6 63.4
3 - 7 -
(b) With minimum lengths
Test Name | Penalty Score Class | %GC | Class | %GC | Class | %GC
0 0.0 4 - 8 -
1 - 5 - 9 -
:
None 0 456894.3 9 100.0 6 )
3 - 7 -
0 20.5 4 64.7 8 -
1 36.0 5 30.6 9 -
9
AIC 2.0 65343.36 9 62.8 6 19,3
3 49.1 7 -
0 31.2 4 - 8 -
1 - 5 61.4 9 -
2 2322
BIC 14.325317 | 2322.5967 5 i G 63.4
3 63.8 7 -
0 31.2 4 - 8 -
1 - ) 61.4 9 -
27 29
MDL 16.627903 | 2281.4048 5 i 6 534
3 - 7 -

Table 5.27. Summary of experimental data for M. jannaschii when using 10

classes without and with minimum length.
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5.3 Major Histocompatibility Complex

5.3.1 Description

Using isochoric content as their parameter. Li et al. applied their recursive segmenta-
tion algorithm on the major histocompatibility complex (MHC) sequence on human
chromosome 6p21. They obtained the result as illustrated in Figure 5.24 (Li et al.
2002), where they measured the GC-Content by using a moving window whose size is
150 kb and shift increment is 15 kb. The figure can be interpreted as follows: (A) The
domain borders are represented by the vertical dotted lines, whereas the GC-content
segmented domains are illustrated by the horizontal solid lines; (B) The segmentation
strength s values are denoted by the vertical bars. According to the obtained graph,
they observed that the segmentations at three known segment borders possessed the
highest segmentation strength. where classes III and II are the most homogeneous
segments. We confirmed their findings by using the ENIBOSS software application

using the same window size and shift increment values.

5.3.2 Tests

Like Li et al.. we downloaded the NHC sequence found in the Sanger Center ( “current
concensus” version. 28 October 1999, 3.673,778 bases). We applied our algorithms
using the complexity penalty values o as depicted in Table 5.28. As well, we tested
the DNA segmentation using the probability values presented in Table 5.29 and the

minimum length values listed in Table 5.30.

Test Name a
BIC log 3.673,778
MDL log 3.673,778 + log k

Table 5.28. Complexity penalty values o tested for MHC.
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Figure 5.24. Segmented MHC sequence as found by Li et al. (Li et al.
Case p;(z)
po(S) = 0.458 | po(117) = 0.542
pi(S) = 0.519 | p;(117) = 0.481
4 Classes | ©(5) = 0411 | po(W) = 0.589
p3(S) = 0.506 p3(117) = 0.494

Table 5.29. Probability values pj(.'(,‘) tested for MHC.

Case Class | Minimum Length
0 100,000
1 100.000
4 Classes | 100.000
3 100.000

Table 5.30. Minimum length values tested for MHC.

2002)

strength
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5.3.3 Results

According to the graph illustrated in Figure 5.25, we observed that our algorithm
heavily segments the MHC sequence for the BIC test. If we take minimum lengths into
consideration, however, we could characterize our obtained nucleotide distributions
to be estimates of the distribution graph found by Li et al, as illustrated in Figure
9.26. Like Li et al.. we found regions defined by classes II and III to be the most
homogeneous, whereas the region defined by class I to be the least. Whether we apply
minimum length values or not, we obtained identical nucleotide distribution graphs

when we used the NMDL penalty value.
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Figure 5.25. Nucleotide distribution in MHC based on GC-content for BIC and
MDL tests when using 4 classes.

Figure 5.24 illustrated the segmentation of the MHC sequence, where it consisted

of segments of at least 100-kb. As illustrated in Figure 5.27. we found the nucleotide
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Figure 5.26. Nucleotide distribution in MHC based on GC-content for BIC and
MDL tests with minimum lengths when using 4 classes.
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distribution determined experimentally using the minimum lengths provided a reason-
ably good estimation of the distribution found by the EMBOSS software application,
where we applied the same window size and shift increment values as those defined

by Li et al.
60.0% 1
55.0%

50.0%

GC-Coantent
-3
n

40.0% |
35.0%
30.0% T T T T T T T
(4] 500000 1000000 1500000 2000000 2500000 3000000 3500000
Nucleotide Position

Figure 5.27. Nucleotide distribution in MHC based on GC-content for BIC test
with minimum lengths when using 4 classes (dashed line) and EMBOSS (solid
line).



Chapter 6

Conclusions

6.1 Discussion

In our research, we introduced different statistical models that can be used to segment
a given genomic sequence: Bayesian approach. hidden Markov model, and different
complexity penalties. As well, we discussed how segmentation algorithms can be
also applied to other problems that do not involve segmenting sequences based on
isochoric content.

Our research work presented two different implementations of the penalty-based
best segmentation model: without and with minimum segment lengths. Using our
implementations. we used the bacteriophage \, Methanocaldococcus jannaschii. and
MHC genome sequences to demonstrate how they can be segmented based on their
GC-content. From our nucleotide distribution analysis of the bacteriophage A and
MHC genome sequences using 4 classes. we found the experimental segmentations
gave an interestingly good graphical estimation of the graphs determined by the
EMBOSS software application. In the case of the Methanocaldococcus jannaschii se-
quence, our implemented segmentation algorithms were able to identify all ribosomal

and RNase P RNA fragments based on their GC-content. However, we found that the
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number of transfer RNA fragments depends on the penalty and minimum segment
lengths.

In general, we observed that the amount of segmentation in a sequence is inversely
proportional to the complexity penalty values, that is, the number of segments tends
to increase whenever the penalty is lower and vice versa. We found the risk of
overfitting data to be higher when using AIC and no penalty values to segment our
sequences. Furthermore, our tests demonstrated instances in which some probability
classes were not found in the segmented sequence and therefore can be omitted.
Finally. we found the MDL penalty value to be severe since, as demonstrated in
our Methanocaldococcus jannaschii genome segmentation, there is a tendency for the

number of found classes to be lower than if the BIC penalty value was applied.

6.2 Future Work

While the current implementation was able to successfully segment the sequences
used in this project, some improvements could be made. For example. we would need
to optimize the source code such that it can handle very long sequences since the
current memory requirements is O(n?). Grice et al. (1997) proposed the checkpoint-
based algorithm in which it would reduce memory requirements to O(n &/n), where L
is some arbitrary integer. and would be applicable to the forward-backward training
of linear hidden Markov models.

Although we were able to segment the bacteriophage A. M. jannaschii, and major
histocompatibility complex (MHC) on human chromosome 6 sequences, one addi-
tional test that would be of interest is the segmentation of the human genome where

we could analyze the human isochores determined by our segmentation algorithms.
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