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Résumé

Le mémoire présente les modèles statistiques pour la segmentation de séquelices

moléculaires. Il décrit des algorithmes de segmentation et leur implémentation. en

utilisant diverses méthodes de pénalisation pour la complexité du modèle. avec des

restrictions possibles des longueurs de segments. Les méthodes sont illustrées sur

les séquences JADN du bactériophage lambda, Methanocaïdococcus jannasch iz. et du

complexe majeur dliistocompatibilité huniain.

Mots clés Segmentation. Modères Statistiques. Isochores. Taux de GC



Abstract

The thesis discisses statist.ieal moclels for the segme1tatioll of moleciilar sequences.

It describes segmentation algorithms and tiieir impÏementation. using varions penal

izatioli methods for model complexity, along with possible restrictions on segmelit

lengths. The methocis are illnstrated 011 the DNA seciueiices of bacteriophage lambda,

Mcthanocaldococcus jannaschii and the human Major Hstocompatibi1ity Complex.

Keywords: Segmentation. $tatistical Moclels. Isochores. CC-Content



Table of Contents

1 Introduction 1

1.1 Plau 2

1.2 Contributions 3

2 Segmentation in Sequence Arralysis 4

2.1 DNA: A Brief Introduction 4

2.2 Isochores 7

2.2.1 Description 7

2.2.2 Proposed Causes $

2.2.3 Existence 12

2.3 Other Applications of Segmentation Models 15

3 Statistical Models 1$

3.1 Bayesian Approacli 19

3.2 Hidden Markov Model 21

3.3 Complexitv Penalties 23

3.3.1 Akaikes luforniation Criteriou 23

3.3.2 Bavesian Information Criterion 26

3.3.3 Minimum Description Leugth 27



4 Algorithrnic Problems In Statistical Models 28

4.1 Forwarcl-Backward Algorithm 28

4.2 Viterbi Algorithm 31

4.3 PenaÏtv-Based Best Segmentation 34

4.3.1 Description 35

4.3.2 Algorithms 36

4.4 Penalty-Based Best Segmeiltation with Minimum Segment Lengths 41

4.4.1 Description 41

4.4.2 Algorithms 43

5 Experimental Resuits 49

5.1 Bacteriophage Lambda 54

5.1.1 Description 54

5.1.2 Tests 58

5.1.3 Resuits 59

fl 5.2 RNA Genes in Thermophules 71

5.2.1 Description 71

5.2.2 Tests 74

5.2.3 Resuits 71

5.3 Major I-Iistocompatibilitv Complex 93

5.3.1 Description 93

5.3.2 Tests 93

5.3.3 Resuits 95

6 Conclusions 98

6.1 Discussion 9$

6.2 Future Work 99

11

n



List of Figures

2.1 I\ioledlllar structure of the 2’-deoxyribose suga; 5

2.2 $chematic molecula; view of a DNA strand 5

2.3 Molecular structure of nucleotide bases with hydrogen bonding 6

2.4 Schematic molecular view of a double strand of DNA 7

2.5 Reciprocal and non-reciprocal recombination following crossing-over li

3.1 An example of HMM modelling isochores in human genome 24

1.1 Illustration of operations reciuired for computing forward variable 29

4.2 Illustration of comput ing forward variable in terms of observations and

states 30

1.3 Illustration of operations required for computmg backwarcl variable. 32

4.1 Penalty—based best segmentation algorithm 37

4.5 Penalty—basecl best segmentation with traceback arra algorithm 38

4.6 Traceback aigorit hm 4t)

4.7 I\Iaximmn-likelihood estimation of segments algorithm 40

4.8 Penalty-based minimum leiigth segmentation algorithm 44

4.9 Penalty—basecl minimum length segmentation with traceback array al—

gorithm 46

1.10 Traceback with minimum segment lengths algorithm 47



1.11 \:axinuini_1ike1ihood estiniation of segilents with minimum lengriis ai—

gorit lim 4$

5.1 Probabilitv calculation algorithm 51

5.2 Add data to traceback airay algorithni 52

5.3 Byte compression i;ito t.raceback array algorithm 53

5.4 Read data to traceback array algorithm 54

5.5 Byte decompression from traceback arrav aÏgorithm 55

5.6 Distribution iII bacteriophage /\ via gradient centrifugation .56

5.7 Distribution in bacteriophage \ via EMBO$S 57

.5.$ Bacteriophage À comparison (2 classes. BIC and MDL) 60

5.9 Bacteriophage À with miniiinim lengths coniparison (2 classes, none) 62

5.10 Bacteriophage ,\ with minimum lengths comparison (2 classes. AIC) 63

5.11 Bacteriophage À with minimum lengths comparison (3 classes. none) 65

5.12 Bacteriophage À with minimum lengths coniparison (3 classes .AIC) 66

5.13 Bacteriophage À comparison (1 classes, BIC) 69

5.14 Bacteriophage À versus EMBOS$ distribution (4 (lasses. BIC) 7t)

5.1.5 G C-content of RNase P RNA genes in Prokarotes versus optimal

growth temperatnre 72

5.16 Helical GC-content of RNase P RA genes in Prokar otes versus op

timal growth temperature 73

5.17 M. jann.ascÏih comparison (2 classes. BIC cmd MDL) 7$

5.18 M. jaîznascÏLii comparison (3 classes, BIC aid MDL) $2

5.19 IIL jannaschi:i with minimuni lengths comparison (3 classes. BIC anci

MDL) $3

5.20 M. jannaschii comparison (6 classes. BIC and MDL) $5

iv



n

5.21 M. jannaschii with minimum lengths comparison (6 classes, BIC and

MDL) 86

5.22 M. janr?achi comparison (10 classes, BIC aid MDL) 90

5.23 M. /anriascÏiii with minimum le;igtlis coniparison (10 classes, BIC and

MD1) 91

5.24 Segmented MHC sequence 94

5.25 MHC cOmpalison (4 classes, BIC auJ MDL) 95

5.26 MHC with mininmm lengths comparison (4 classes. BIC and MDL). 96

5.27 MHC with minimum leiigths versus EMBOSS distribution (4 classes.

BIC) 97

V



List of Tables

5.1 Bacteriophage À via densitv centrifugation quantitative data 56

5.2 Complexity penalty values n tested for bacteriophage À 58

5.3 Prohability values pj(.T) t.ested for bacteriophage À 58

5.4 Minimum length values testeci for bacteriophage À 59

5.5 Distribution in bacteriophage À for BIC and MDL tests (2 classes) 61

.5.6 Bacteriophage À comparison (2 classes. BIC auJ MDL) 61

5.7 Bacteniopliage À expenimental data (2 classes) 61

5.8 Bacteriophage À with minimum lellgths companison (2 classes, none) 62

5.9 Bacteniophage À witÏi minimuni Ïengtlis comparison (2 classes. AIC) 63

5.10 Bact.eriophage À witli minimum lengths experinental data (2 classes) 61

5.11 Bacteriophage À with minimum lengths comparisou (3 classes. BIC

and MDL) 65

5.12 Bacteriophage À witli minimum lengths comparison (3 classes. noue) 66

5.13 Bacteriophage À with minimum lengths comparisou (3 classes. AIC) 67

5.14 Bacteriophage À experimeHtal data (3 classes) 67

5.15 Bacteniophage À with minimum leugths experiniental data (3 classes) 67

5.16 Bacteriophage À witii nuiuiinum lengths conuparisoil (4 classes, BIC). 68

5.17 Complexity peuafty values o testecl foi’ iL jannaschii 74

5.18 Probability values pj(X) tested for M. jaflflC$CÏuz? 75



5.19 Minimum length values tested for iiI. jartnaschii. . 76

5.20 RNA fonnd for M. annaschu (2 classes) 79

5.21 Experimental data for M. ]ann ascÏin (2 classes) 80

5.22 RNA founcl f& M. janraschn (3 classes) 81

5.23 Experimeutal data for iiL jannuscÏnz (3 classes) $1

5.24 RNA fourni fbr M. jaunascim (6 (lasses) $7

.525 Experimental data for M. janriuscÏiii (6 classes) . . 88

5.26 RNA fourni for M. jannaschii (10 classes) $9

5.27 Experimeutal data for M. .iann aschi (10 classes) 92

5.28 Complexity penalty values a tested for MHC 93

5.29 Probability values pj(:r) tested for MHC 94

5.30 Minimum leigth values tested for MHC 94

vii



For Mo’m. Dad. and Li-Te.

viii

n



Acknowledgments

I woiild like to thaiik Di. Iik1és Csfirs for his invahiable friendship. inspiration,

snpport, patience. and guidance. which were crucial in bringing this thesis in finition.

I would like to thank my friends for their encouragement in completing this thesis.

finally, I would like to tliank mv parents and my brother for their prayers, cri

couragement, and love.

ix



Chapter 1

Introduction

La.rge-scale seqiiencing lJrojects like the Hiinian Genome Project prochice a great

wealth and variety of seqilelice data. Molecrilar sequeiices in sequence data banks

such as GenBank of the National Center of Bioteclmology Information (NCBI) adcl

up to more than 100 billion base pairs now. There is an increasing need of developing

efficient tools to analvze these sequences. A class of analysis methocls involves se—

qneirce segmentation. consisting of dividhiig a sequence into fahJy homogeneoris paits

by some measure of homogeueity.

Csuirs (2004) investigated the problem of determiuing maximum-scoring segment

sets that can be applied to a nnmber of molecular biology problems. such as DNA and

protein segmentation. To calculate poteutial segment sets for a given seqnellce, Csûrs

presented a nuiiiber of fast algorithms in which differeirt statistical models were used

for two classes. In ouï research work, we clemonstrate how sequence segmentation

cari be carried ont. efficiently using various statistical moclels with multiple classes.
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1.1 Plan

In Cirapter 2, we provide a brief introduction to DNA auJ isochores. We also give

a description of the proposais that eventually lcd to tire existence of the isochore

theory. Furthermore, we prescrit arguments pertaining to the actiial existence of

isochores. In addition to problems associated with the seqence segmentation baseci

on isochore content, we disdllss diffèrent applications of segmentation algorithms to

other problems.

I1Î Chapter 3, we present statistical modeis that can lie rised in segmentation.

inciriding Bayesian and hidden Maikov model, as well as statistical notions of coni

plexity.

In Chapter 4, we prescrit the aigorithms that can lie used to soive tire probleins

encountereci in segmentation statistical modeis. We aiso present tire penaÏty-based

best segmentation model. First, we provicle a description of how this modei eau lie

impiemented throngh dynamic prograruming. $econdiy. we prescrit tire impiemented

aigorithins without anci with traceback. Thirdiy, we show how tins modei cari lie

iucorporated in maximum-likelihood estimation. Finaliy. we clemonstrate how mini—

mnnr segment iength values can lie incorporated into tins modei.

In Cirapter 5, we present tire experiments rised to evainate onr implemented ai

gorithms on three sequences: bacteriophage- genonie. tire genome of Methanocaldo

cocc’us jannaschii (M. jannaschii), and tire seqiience of the major histocompatibiiity

compiex (I\1HC) oir human chromosome 6. We prescrit the tests nsed for eacir se

quence auJ tire observed resuits.

Chapter 6 provides a snmmary of tire discnssed segmentation concepts auJ. most

importantiy, our anaiysis of tire expcrimental resuits.
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1.2 Contributions

To carry otit our sequence segmentations. we extenci the two-class algorithms pre

sented by Csiirds (2004) to propose two algorithnnc models that uses an arbitrary

number of classes: the penalty—based best segmentation model ancl the penalt-based

best segmentation with minimum segment lengths model. Aithougir both moclels par

tition a given sequence using maximum-likelihood estimation, only the latter takes

minimum segment lengths info consideration. We also incorporated the best segmen

tation score for the implementeci traceback algorithms to refer to when determining

the best segmentation of a sequence. For model parameter estimation. we proposed

the use of Laplace pseudo-counters. As weÏL we incorporated the data compression

algorithm in order to reduce the amount of allocated memory. We implemented ouï

segmentation models using Java and evaluated flic clifferent penalization methods

on bacteriophage-À. M. jannascÏiii, and MHC on liuman chromosome 6. Finally, we

conclucted a RNase P analysis of heilcal and non-helical GC-content versus optimal

growth temperature on Prokaryotes.



Chapter 2

Segmentation in $equence Analysis

2.1 DNA: A Brief Introduction

Deoxyribonucleic Acid (DNA) is a rnicleic acid that contains the genetic information

required for aniy orgauism to functioll biologically (Watson auJ Crick 1953). As

initiaïly proposed by James Watson and Francis Crick in 1953, it is charactenized as

a double helix where cadi uucleotide base in one strand is boncled to a base in the

other strand.

Each strand is a chain of repetitive units known as nucleoticles. A nucleotide

consists of a 2’-deoxyribose sugar auJ a phosphate group with a so-called base. Tic

molecular structure of tic sugar is ihlustrated in Figure 2.1, where the numberecl

values represent carbon atom positions. DNA is measurecï in base pairs, tliat is, kbp

(thousand base pairs). Mbp (million base pairs). auJ Gbp (billion base pairs) are

“units’ used in tlie Biotechnologv community.

As shown in Figure 2.2. nucleotides eau form a polynucleotide chain by connectmg

to each other through a covalent bond between tic 3’-carbon of one nucleotide. the

phosphate residue. auJ tic 5-carbon of tic next unit. The sugar auJ phosphate

molecules are represented as ‘r auJ •p” svmbols. respectively.

n
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HO---U

3i 2’

flO H

5

base

Figure 2.1. Molecular structure of the 2’-deoxyribose sugar (Setubal and Mei

danis 1997).

Figure 2.2. Schernatic molecular view of a DNA strand (Setubal and Meidanis

1997).
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DNA molecules iormally comprise two polyiiucleoticles. called strands. Each 1’-

carbon in the strand contains a nucleotide base attacheci to it. which eau be one of

the four different types: adenine (A). gnaule (G). cytosirie (C). and thymine (T).

Nucleotide bases cari be categorizeci into two maili groups, namely. purines (A and G)

and pyrimidines (C and T). The strands are connected togetiier by forming hydrogen

bonds at the bases as illustra.ted in figure 2.3, where A-T auJ C-G are clefined as

complementary or Wat son-Crick base pairs. Figure 2.4 provicles a schematic molec

niai structure view of a double strand of DNA. A DNA molecule is determined tims

by the sequence of bases ou one of its strands. representeci as a sequence of characters

over the alphabet {A. C, G. T}.

H

/C%

____

Sugar N
Guanine

C C,,
/

/
N.

/
H

N H
N

H

/‘
.0 C

Cytosine I
NC

Suar H

Figure 2.3. Molecular structure of nucleotide bases with hydrogen bonding (dot

ted unes) (Setubal and Meidanis 1997).

H

Sugar— N(>
Adeninel

H
/ \ f

N _,C

b\ 4,
N—C.

/1

_____

C—CH3
/1

Thynirne \,
/NC\

Sugar H
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Figure 2.4. Schematic molecular view of a double strand of DNA (Setubal and

Meidanis 1997).

2.2 Isochores

Sequence segmentation involves dividing a giveil sequeilce into fairlv liomogeiieous

parts by some measure of homogeneity. As an example. we cliscniss lieue the segmeil

tatimi of a DNA sequence into so-called isochores.

2.2.1 Description

A inofile of gnianine auJ cvtosine (GC) levels eau Le used to characterize variation

along chromosomes. where the natural partition of a chromosome sequence is clefined

as ahrnipt changes iii GC level (Paces et al. 2004). GC levels are correlated with key

lilological properties in mally eukarvotes. sucli as geiie dellsity changes. replication

timing switches. auJ dlifferences Letween the locations of acljacellt regiolls in the

mterphase nucleils.

Bernardi (2000) proposeci the isocliore theory which clescriLes the structural com—
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position of the genomes of waim-blooded vertebrates. Unlike the classical work of

Meselson et al. (1957) where CsC1 densitv gradients were useci iii equilbrium cent.rifu—

gation to reveal broaci, assvnietricai bands in DNA. Filipski et aÏ. (1973) proposed

that high-resolution fractionation is possible by using eciuilibriuin centrifugation in

C52SO4_Ag+ density gradients instead to partition DNA-silver complexes according

to the frequency of silver-binding sites on DNA molecules. When applied to bovine

DNA, this technique revealed three distinct fainilies of fragments (coinprising 85 of

the genome) havillg different GC content. This subsequently led to the discovery that

DNA fractionation reveals the compositiollal heterogeneity of high molecular weight.

“main band” (i.e. non-satellite. non-ribosomal) bovine UNA. Purthermore, the lab—

orator conchideci that vertebrate genomes are comprised of a mosaic of isochores,

which are defineci as long DNA segments of more than 300-kbp that are composition

ally honïogeneous ancl belong to a smai number of families dharacterized by different

GC levels.

These isochores reftect a level of gellome organizat ion (Eyre-Waiker auJ Hurst

2001) since it is observed that GC-rich components of the genome yielded a higher

number in terms of gene density. short interspersed repetitive DNA elements, anci

recombination frequencv. For GC-poor components of the gellome liowever. it is

founcl that they ahnost exclusively possess long interspersecl repetitive DNA elements.

2.2.2 Proposed Causes

Scientists are interested in finding an explanation of why there is a large-scale varia

tion in base composition aÏong chromosomes. It was snggested that variation could

be due to three noll-mutuallv exclusive processes: mutation bias. natural selection.

anci biased gene conversion.
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Mutation Bias

Different base composition cari be expected if there are clifferent mutation processes

acting on different parts of the genome. With a simple probabilistic moclel. assume

that each nucleotide may mntate independentiv by tue same mutation probabilities

along the sequence. The base composition wiil converge towards the stationary prob

ahilities determined by the substitution probabilities. If the mutation probalilities

are not iclentical along tire genome. then tire base compositioir wiii vary too.

Wolfe et al. (1989) noted that tire concentrations of free nucleotides affect tire

pattern of base misincorporation cluring DNA replication. For exampie. G and C

nucleotides tend to be preferelÎtialiy misincorporated hrto DNA tirat is rephcated in

a pool of free nticleotides rich in G and C. They also observed that free nucieotide

coircentrations vary duriirg the ccii cycle. and that different parts of tire genome

are repïicated at different thrres. Woife et al. coircirideci that tire regions of the

genonre with different rephcation times shonïd have different mntatioir patterns. and.

ultimateiy. different base compositions.

Fihpski (198f) hvpothesized tirat variation hr tire efficiency of DNA repair niight

be responsibie fbr the formation and maintenance of isochores. He reasoned that tins

is due to tire variable cfficiencv of certain types of DNA repair aird that some types

of pair are known to he biased. therehv cansing variation hi tire pattern of nrutation.

Fryxeli and Zuckerkandï (2000) snggesteci tirat isochores are a consecience of

cytosine deanrination. which is defined as the reaction of a water moiecuie with tire

anrino group on position 4 of the pyriniidine ring of cytosine. thereby resniting in tire

conversion of cvtosine to uracii (Eyre-Waiker aird Hurst 2001). They found that the

deaniination of nretlryi-cytosine and cytosine (i.e. C to T and C to U. respectively)

is expected to occur more easiiv in AT-rich DNA than in GC-rich DA since tire

fornier tends to be more nirstabie. Tirev proposeci tirat an isochore structure cair

be assembled if a DNA secuence somehow becoirres GC-rich. consequently causing
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a rechiction in cytosme deamina.tion and an increase in GC content in the surrorind

areas.

Natural Selectioir

Bernarcli and Bemnardi (1986) suggested that isochores are the cousequence of natumal

selection. which is defined as the differeutial multiplication of mutant types. This oc—

cuis through either negatwe selection. that is. the elimination of orgaiisms with dde—

tenons mutations. or positive selection via tl1e preferential pmopogation of omganisms

with advantageous mutations with respect to environmental pressures. One hypoth—

esis implies that natural selection acts upon the increased thermostabihty of DNA

caused by GC-enrichnieut in orcler t.o aciapt to ally ten;pemature incmease in warni—

blooded ventebrates. wheme theme is a teudency for GC-nich DNA to be more thermally

stable than AT-rich DNA. To clemonstrate tins hypothesis. Bernardi neferred to Hie

isochores found in the human genome. where the GC-ricliest and gene-ricliest iso

choies found in a set of R(everse)-chromosomal bauds coincide with the T(elomenic)

chromosomal bauds previously identified as part iculari resistant to thermal denat—

uration (Saccone et al. 1993). As well. a difference in amino-acid compositions and

hydropathies bctween GC-rich auJ GC-poor isochores was observed.

Unlike the observations made for warm-blooded vertebrates. previous work con

cluded that there was no comrelation betweeu GC—content and habitat temperature

hi Hie case of prokaryotes (Galtier and Lobrv 1997; Hurst ancl Mercliant 2001) ancï

coïci-bloodeci vertebrates (Belle et al. 2002: Ream et al. 2003). furtiiermore. Vino

graclov (2001) observed that the benclability of genomic seciuences of warm-blooded

vertebrates increased faster than their themniostability as the GC-content increased.

1-leuce, Vinogradov (2003) proposecl an alternative hvpothesis in which the formation

of isochores was pnimarily due to the beudabilitv. and not thermostability. of the UNA

niolecule for active transcription in the GC-nich regions and for gene suppression in

the GC-poor regions.
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A B C D
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k B- C D
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_______________I
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Figure 2.5. Reciprocal and non-reciprocal recombination following crossing-over

(Watson 2004).

Biased Gene Conversion

Geire conversion is defineci as a non-reciprocal recombinatiori process that causes one

sequence to Le converted into file other. An illustration of a crossmg-over betweeri

two dhromaticis (double-strancied DNA niolecules) is shown in Figure 2.5. We ciefine

an alÏele as an alter-native form of a gene tirat occupies a specific position on a

chromosome. Suppose that tire strancis contain a nmnber of alleles as indicated Lv

aiphabetical letters. When cr-ossh;g-over occurs. there are two possible recombinants:

reciprocal, where an equal 2:2 segregatioli of the entering alleles is observed: non

reciprocaL where o 3:1 segregatiori auJ gene conversion of allele B to B is exlïihited.

Crcnsinp
oser and

pane
conversion
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Biased gene conversion is when the two possible directions occnr with llnequal

probabilities (Eyre-Walker aiid Hmst 2001). Biased gene conversion woiild lead to a

base mismatch if the heteroduplex DNA extends across a heterozygous site. These

base mismatches are sometimes repaired bv the DINA-repa.ir machinery, although

they tend to be biased and thereby leading to an excess of one allele (i.e. one of

the clifferent fonns of a gene or DNA seciuence that can exist at asingle locus) in

reprocluctive ceils. Tiieir hvpothesis is baseci on two observations that clemonstrates

the conrelation between the recombination rate and GC content. tliat is,

1. There is a correlation betweeii the frequencv of recombination and GC content

both between auJ within hunian chromosomes.

2. Sequences that have stopped recombinhig are either cledlinirig in GC content.

or have a lower GC content than their recombining paralogues (i.e. a locus that

is homologous to another in the saine genome).

2.2.3 Existence

Demonstrated by the nunierous amount of studies silice its ftrst proposition, the

isochore theory is considered to be the most reliable method of studying the long-range

coinpositional structures of met azoan genomes witlnn an evolutionary frainework

(Cohen et al. 2005). Purthermore. it is generallv assumeci that isochores exist and

tlïat they contain genes with corresponcling GC contents. When the draft of the

hmnan genome was first proposeci, liowever. sonie scientists questioneci about the

existence of isochores or at least tlieir usefulness.

The authors of the initial draft of the human genonle studied the gdllome sequence

to examine whether strict isochores coulci be identified (Lancier et al. 2001). Tue

authors clefined the terni “strict isochores as sequences that cannot be distinguisiieci

from random sequences. in which every iïucleotide is free to change. To illustrate
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their argnmellt filaI isochores do not ment the prefix “iso”. Lander et al. divideci

the human genome sequence into 300-kbp windows anci snbclivicleci each window info

20-kbp snbwindows. From calcnlating the average GC coiitent of each window and

snbwindow, and frorn exannning file relationsliip between the variance of the GC

content in the subwindows and the avenage GC content in each window. Lander et al.

concluded tliat tue idea of isochores Seing stnicti homogeneons can 5e rnled ont since

the residnal variance was too large f0 Se consistent with a homogenons distribution.

Despite the arguments of Lancier et ai., Li et al. (2003) maintained filaI isochores

do ment the prefix “iso” . Li et al. presented two points in which the strict isochores

correspond to the isociiore concept originally developed and cleflned by Bernarcli.

first, Bernardi (2001) defined isochores as fairty homogeneons regions. Unlike Lancier

et aï.. Li et al. considered the GC mean vaines and val iance to Se two independent

paiameters of a statistical distribution, and fomid support for flic isochore theory hi

the human genome sequence.

Cohen et al. (2005) examined whether if is possible to provide a concrete definition

of isochores so tiiat flic hnman genome can 5e descnibed as isochoric. They also

stnched file extent f0 winch each isochore can Se classified info a particular isochore

family. Their work n-as based on a number of cniteria tha.t they have proposed to

describe the properties of isochores. namely:

1. C7iaractenistic GC content :An isochore is a DNA segment possessing a char

acteristic GC content tuaI significantly differs to tiiose in adjacent regions.

2. Hornogeneity : An isochore is more homogeneous in its composition than flic

chromosome on winch if resides.

3. Minimum. segment leugUi : The lengf h of an isochore typicaily exceecls 300-kbp.

4. Genonie coveruge : The overwhelniing majonity of the hnman genome consists

of segments satisfying flic first three criteria.
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5. Isochore farriilies The human genome is cornposed of five isodhore familles.

cadi with different Gaussian-clistributed GC content.

6. Isochore ass?gnmcmt into famities : Eadh isodhore can be associatecl with a

isochore familv based olll On its compositional properties.

To identify auJ quantify isocioric regions, Coien et ai. iised a binaiy redursive

segmentation procedme proposeci by Bernaola-Galviin et al. (1996) to partition tic

human genome. Tic method repeatedly spiits the sequence based on an entropy

measure to maximize tic difference between neigiboming regions. A statistical test.

similar to tic one of Li et al. (2003) was used. The segmentation procedure revealed

tiat the distribution of segment lengtis does not have a ciaracteristic lengti scale.

Coien et al. (2005) observed isodhores span less tian lïalf of flic sequenced portion of

flic human genome if tiey satisfy tic first tiree attributes. but found tiat alternative

isodhores with lower cutoif lengtis also satisfy fie same criteria. Altiougli flic iunïan

genome is traditionally clescribed ilsing five isociore families. Coien et al. fomid tiiat

four families aÏready capture tic GC content distribution. Pinally, Coien et al.

qiiestioned tic use of tic Gaussian model to define isodhores since tiey dicl not mcl

any evidence of a robnst multi-Ganssian description of alternative sets of isodhores.

Due to overlaps founci between candidate families, tiey also haci difficuit in reliablv

classifying tic segments info families by compositional properties.

Althongi tic existence of isodhores rema.ins debatable up to tus point, ail studies

agreed tliat tic definition of isociores is relative. fiirtiermore. tiey agreecl tiat tic

genome does contain large iomogeneous regions of distinctive GC content. and is

worthwliile to redefine fie isochore concept to describe tic dvnaniics of GC content

witiin tic iuman genome.
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2.3 Other Applications of Segmentation Models

In addition to isochores in higlier vertebrates, there is a wide variety of segmentation

models which are used to answer a nnmber of biological problems. For instance,

genome alignments exhibit a mosaic structnre where segments correspond to regions

with dlifferellt evoÏntionary pressrire.

Horizontal gene transfer between bacteria.. as demonstrated in a wide variety of

ecosystems, plays an important 101e in the acquisition of aclaptive traits. such as

pathogenicity. resistance to antibiotics or heavy metals like mercury and arsenic.

furthermore, it is considereci to be lieavily influential in bacterial evolution. Bacteria

are known to integrate prophages and have other ways of iritegrating foreign DNA se

quences tlirough DNA segments. Nicolas et al. (2002) used a statistical segmentation

based approach to study heterogeneities in flic BacitÏ’us subtilis. $pecffically, they

applieci hiclclen I\Iarkov moclels in which cadi type of segment is characterizeci by ifs

own statistical oligonucÏeotide compositioli. Their objectives were fo reconstruct seg

ments from DNA sequenccs arid dliaracterize tic identified segment types. with the

aim of investigating correlations between segment types ancl biological DNA features

sucli as horizontal gene transfers. From their analysis. they revealed a number of

heterogeneities including those related to horizontal gene transfer, tic GT ricliness

of hvdrophobic proteins. and flic codon usage frequency of liighlv expressed geiles.

The application of segmentation moclels f0 biological problems is not exclusive to

DNA sequence analysis. Romero et al. (1997) proposed metliods that predict locally

clisordered (so-caled low complexity) regions that are based on physiochemical fea

turcs of a set of relatively short clomains founcl in proteins of an otherwise kiiown

structure. Wootton and Federiien (1993) introduced tic SEC algorithm which auto—

matically partitions protein sequences int.o low— and high— complexity segments.

Functional regions in genomic sequerices were traditionally predicted by identifv

ig features associated with genes or regulatory regions. Functional regions tend to
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be conserved in sequences that have evolved from a common ancestor. In contrast,

non-functional regions are more likely to mutate. Consequently, functional regions

can be identifled in genomes using sequence comparison. Non-functional regions need

to be statistically diverged so that statistical procedures can distinguish them from

functional regions. Because of this, features present only at dose evolution&y prox

imity are bat, thereby limiting the usefu]ness of such comparisons (McAuliffe et al.

2004). Boffeffi et al. (2003) used phylogenetic shadowing which involves segmenting

alipments between cbosely related species into regions with high- and bow- mutation

rates. This technique would enable the bocalization of regions of collective varia

tion and complementary regions of conservation, thus facilitating the identification of

coding and non-coding functional genes. Using the phybogenetic shadowing concept,

McAuliffe et ai proposed the generalized ffidden Markov phybogeny (GHMP) in order

to determine the genomic sequences systematicafly, where the GHMP is presented as

a directed graphical modal (Jordan and Sejnowski 2001).

Segmentation models can also be implemented to partition proteins into a number

of segments. Krogh et al. (1994) applied hidden Markov models W the problems

assodated with statistical modeffing, database searching. ami multiple alipment of

protein familles and protein domain To construct their hidden Markov model, they

defined the 20 amino acids from which protein molecubes are composed of as states

and the strings of amino acids that form the primary protein sequence as observations.

For eaeh set of proteins. their model represents one in which high probabffity to the

sequences in that particular set are assigned.

A related application of segmentation models to protein partitioning is the tapol

ou prediction of helical transmembrane proteins. Tusn4dy and Simon (1998) pro

posed the HMMTOP method, which is based on the hypothesis that the difference in

the amino acid distributions in various structural parts of these proteins determine

the bocalizations of the transmembrane segments and the topobou. They constncted

a hidden Markov model that consisted of five states that describe transmembrane
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l)fotein structure: illsicle loop. inside lieux tau, membrane lieux. outsicle lieux tau.

and outside loop. Rather than accounting only the absolute amino acid compositions

of varions structural parts. tiïeir approach involves finding the combination of states

that vield maximal divergences in the amino acid distribution. Alternatively. Krogh

et al. (2001) presented file TMHMM method in whicli they take the alternation

between cytoplasmic anci noil—cytoplasmic loops in helical transmembrane proteins

into consideratioin Their hidclen Markov model consisted of seven types of states:

helix core, lieux caps on either side of the membrane. short ioop on cvtoplasmic side,

short anci long loop on non-cytoplasmic side, and a globulai clomain state. Eacli

state contains a probability distribution over the 20 amino acids that characterizes

the variability of amino acids in the region it models. The a.mino acid and transition

probabilities were calculated froni techniques that compute the maximum posterior

probabilities given a prior anci the observed freciuencies. The Ti\IHI\i I method pue

dicts the transmembrane helices by cletermining the most probable t.opoÏogy given

the hiciden Markov model.



Chapter 3

$tatistical Models

The acivautage of probalilistic models is that they cari ciescribe the relatioriships

betweeu varions quaritities whule cousiderung the underiving uuicertainty associated

with them. This leads to tire efficient use of a.vailaile information when making pre

dictioris about biological sequences (Liii and Lawrence 1999). $t atistics is maunly

focused on makung inferences, which cari be defineci as tire process of deriving con

clusions from facts ancl premises. lu our case. tire facts are the observeci data, tue

premises are represented by a probabilistic model of biological sequences. auJ tire con

clusions are relateci to the nmobserved quantities. This dhapter provides a description

of a. number of statistical models that cari be usecl to segment a given molecular

sequence.

Let be a fuite alphabet: for DNA sequences. Z = {A. C. G, T}. We consider

a. DNA sequence x r1r2 as tire observed value of a secuuence of random

variables X = X1X9 ... X. We define segments as a continuous unterval [i. j] such

tirat z . . . z5. Tire distribution of X is det.ermined bv a seciuence of hidden

variables z = Z1Z. . . Z whiclr define these segments, where z {O k — 1}. Tire

segmentation vector. z is tire value taken by a rairdom variable Z Z1Z2 ... Z,.

Tire distribution of each X is completely cletermined by Z through tire probabilities
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P {X = = j}. Notice that we assume that these distributions do riot

clepend on

for a giveil segl;ÎciÏtation, the likeliliood of the observed sequerice is writtell as

L(z)=P{X=xZ=z}. (3.1)

The mai11 objective of usillg statistical models is to detennirie z.

Equatioll 3.1 cari be expauded as

L(z) = flp(i. (3.2)

The log-likelihood function cari be derived as

1(z) = logL(z)

= 1ogp(i)

= logpo()+1og. (3.3)

(In this thesis. log denotes natural logarithm.) The formula cari be iuterpreted in the

following mariner: the first terni is the miii hypothesis that ail the i are in class O,

and the second terni clenotes the Ïog-likelihood ratio for tire alternative hypothesis

defined hy z.

3.1 Bayesiai Approach

Classicai (or frequentist) st atistics such as maximum-likelihooci estimation interpret

their probabilities as purely frequencies or ratios. In coutrast, the Bayesian approach

rnociels corisider their probability distributions as a measure of belief in a proposition.
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A Bavesian approacli allows for prior kiowiedge a’lld reasonable prior concepts to lie

brut into statistical analysis (Ewens a.llcÏ Grallt 2001). Bayesian anal sis involves

determining a joint probabulitv and ciefining tire appropriate posterior distribution by

usig tue caldlllated joint probabulity and tire observed data.

In orir case. tire goal of ilsing the Bayesian approach is to cietennirre z. A number

of differellt hypotheses about Z can lie compared by ilsing tire posterior probabuiity,

that is

P{Z=zX=x}. (3.4)

Tire likelihood frmction as preseirteci iii Equation 3.4 can lie derived by calculating

tire joint probability, whiclr is Joint Likeiihood x Prior or

P{X=x.Z=z}=P{X=xZ=z}P{Z=z}. (3.5)

By the definition of conditioirai probabibties.

(3.6)

Tire posterior distribution cari formd through Bayes’ theorem.

P{Z = zX = x}
= P{X = x)Z r=z}P{Z z}

— P{X=xZrrrz}P{Zrrz}

— ZP{X=xZ=z}P{Z=zF

Since tire deiromillator of tire equation wili lie tire saine for ail choices of z when x is

fixed. tire best z can lie founci by nraximizing tire numerator. tirat is.

iI(z) P{X=xZ z}P{Z z}. (3.8)

Tire z that uraximizes ]i(z) is caiÏed tire nzŒrimnm a-posterior (MAP) segirrdntation.
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A number of clifferent approaches cari he used to deal with the prior distribution

P {Z z}. Que iclea. is to assume that z is a unifornï distribution, that is, every

segmentation is ecua.l1y possible. LTsing this assuniption. tue probability of obtaining

z is

P{Zrrrz}
= fJ

1
(39)

Applying Equation 3.9 to the joint probability equation. we will have

M(z) = flp(x). (3.10)

Clearly. ii(z) is maxhuïized wlïen p(Xj) is maximal in eadh position i. Srich a

segmentation maximizes the likelihood but then every cari be a segment of length

1. winch haidly captures anv meaningful pattern in tue data. In orcler to avoicl

such cases of poteutial overfitting”, the space of acceptable segmentations must be

restricted either by iiïosing different prior distributions. or by using other statisticai

model estimation methods thai MAP. Prior distributions mav impose a ftxed (or

bounded) number of segments. or bounds 011 segment leugths. Another popular prior

distribution is defiued by a Markov model. as discussed in the forthcomiug Section

3.2. An alternative to MAP estimation is to use complexity penalties as presentecl in

Section 3.3.

3.2 Hidden Markov Model

The hidden Maikov model (HMM) can be clescribecl as a series of observations by

a “hidden stochastic process (Rrogh et al. 1994). In a tutorial paper. Lawrence

Rabiner demonstratecl how the hidcleii I\Iarkov model cari be appliecl to probÏems in



speech recognition (Rahiner 1989). In tins case. sounds forming a word represent the

observations whule the model is one that generates these sonnds tlïrough ifs hiciden

raildom process in which a. probability distribition is defined over possible sound se

quences (Krogh et al. 1994). IclealÏy. a good word model woiild assign high probability

to likely modelled sound sequences and low probability to other sechlences.

In con;pntational molecular biologv researcli, flic hiciden I\iarkov model was im—

plemented in a nuniber of applications inchiding protein multiple alignment and ftmc—

tional classification (Krogh et al. 1994), protein folding prediction (Di francesco et al.

1997), bacterial and eukaryotic gene recognition (Burge and Karlin 1997; Knlp et al.

1996; Hendersoii et al. 1997). DNA functional site analysis aiid prediction (Crowley

et al. 1997), and nucleosomal DNA perioclical patfern identification (Baldi et al.

1996). The first application of HMMs t.o genetic data was proposed by Churchill

(1989) who used if to segment mitochondrial arid pliage genomes by nucleotide coin

positiou. The moclel makes the assumption that the clifferent segments can be clas—

sified info a fluite set of states, where flic nucleotide data is assumecl to follow some

prohability distribution. The states are assmned to rancÏomly switch from one to tue

other with low probabilitv.

In ouï statistical segmentation model. HMMs represent the case when Z1, . . . ,

form a Markov chain with states {O k — l}. The prior distribution is specifiecl as

follows. Let the initial state distribution be n = {u} where

n=P{zi=j} O<j<k—1.

denote the probabillty of transition between states j aiid j’ by ty. The probali1ity

of obtaining the sequence of iiidclen variables (i.e.. a particular segmentation) is com

puted by taking the transition probabilities between states info consideration. that
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is

P{Z = z} = zÏtz;—z2tz2—z3 . . . (3.11)

Bernaidi et aï. described tire birman genome as a mosaic of segments representing

isodhores (Bernarcli 2000: Bernardi 2001). Frirthermore. their researcli reveaied that

tirere are five different classes of isochores in the humari genome that are defined by

their GC-ievels: Hi. H2. H3. Li. and L2. Figure 3.1 iliustrates how tire isochore

structure of the genome cari modeiied by a hidden Markov model. The different

isochore classes are tire states.

Now. using M(z) P {X = x. Z = z} from Eqiration 3.8, the joint probabiiitv

can be written as

P{Xr=x,Zz=z} = P{X=xZ=z}P{Z=z}

= WziP (ii )t1—2ïi. (tr2)tZ.2_Z3 . . . (c). (3.12)

3.3 Complexity Penalties

Tins section reviews some alternatives to imposing prior probabilities in order to han—

die tire overfitting wlren maximizing tire hkehhood. Tire basic idea is to maximize the

surir of tire iog-likehirood and a so-caiïed compiexity penalty. We discuss tirree penal

ization niethods: Akaikes information criterion. tire Bayesian information criterion,

and tire priincipie of minimunr description iength.

3.3.1 Akaike’s Information Criterion

The irraximum hkelilrood principie is encountered in two clifferent brairches of statis

ticai tireories: estiiïration tireorv through tire maxinrunr hkehhood methoci. aird test

theory tirrougir flic iog-hkelihood ratio. Akaike (1974) argueci tirat tire ciuarrtities
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Figure 3.1. An example of HMM modelling isochores in

that the actual isochores found in the human genome

those depicted here.
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obtained from niaximiim likeiihood estimates are most sensitive to smail variations

of the pai ameters around file truc statistical moclel. As an estimate of a measure of

fit of a statistical model. lie proposed an informatioll criterion tAlC). which cari Le

described as an extension of file maxinmm likelihood principle for problems in which

the final estimafe of a fiinte paiameter moclel can Le calculated when presented al

ternative maximum likelihood estimates from varions restrictions of the model. For

tus paper, we coilsider “Akaikes information criterion’ as an equivaleiit terni fo ‘a11

information crit erion

Akaike used the Kullback-Leibler divergeilce function to finci the minimum differ

ence between two probability distributions. namely. flic truc and approximate seg—

mentation modeÏs. Suppose we use a DNA sequence x = r1.r9 ...i:7, as a sequence of

observed vaines of a sequence of random variables X = X1X0 ... X and a sequence of

hiddell variables z z1z2 ... z that clefines the segments. where z e {O — 1}

and z is clerived from a random variable Z Zy Z2 ... Z. As well. we define

f (x) P{X xZ z*} and g(x) P{X xZ z} where z is the truc seg

mentation anci z the approximate. Then. flic Kullback-Leibler divergence function

can Le written as

KL = f(.r)logL

= f(:r) log(f(:r)) - j(a) log(g(r)) (3.13)

Note that the first terni of Equation 3.13 is flxed since there cari Le only one truc

segmentation probability model. Also. notice tiiat if the approximat e segmentation

probability model is the sanie as the truc moclel. that is. if q(x) is the saine as ,f(x).

then the Kullback-Leibler divergence will Le zero. Tins clemonstrates that the model

with minimal Knllback-Leibler divergence will Le considered as the Lest estimated

sequence z.
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To obtain the optinmm estimated sequence z. Akaike suggested that we can de

termine the linear approximation of Equation 3.13 by taking the second—terni as an

approximation to Akaik&s Information Criterion. that is.

AIC logL(z) — A (3.14)

where the model wliose AIC value is largest will be cliosen to represent the sequence

z. We define 771 as flic rmmber of segments in the segmentation defined by z and A as

the model dimension. Note that Equation 3.14 was multipled by —2 in the original

paper presented by Aka.ike and considered as Akaike’s information criterion due to

historical reasons’ (Burnliam and Anderson 2004). In our case. z can be clescribed

by a list of pairs of palameters (i.e., segnient lengtli. segment class) for 177 segments,

so we write the model dimension as A 2177. Hence. AIC can be rewritten from

Equation 3.14 as

AIC = logL(z) —2777. (3.15)

3.3.2 Bayesian Information Criterion

Akaike presentcd the AIC as an extension of the maxinnim likelihood principle.

Schwarz took a similar approacli and consicÏered the problem in terms of Bayesiai

statistics (Scliwarz 1978). In contrast to Akaikes information criterion. the Bayesian

information criterion (BIC) suggests that the model dimension slioulcl be multipÏied

by log n. Hence. the BIC can be written as

BIC = logL(z) — Alogn. (3.16)

The segmentation z whicli maximizes the BIC of Equation 3.16 is cliosen as flic opti

mal one. As before. we consider the length and the segment class as our parameters

for 177 segmellts. so we write the mociel dimension as A 2777. Thus. w’e use tlie
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model dinieusion to rewrite the BIC as

BIC logL(z) — ni logu. (3.17)

3.3.3 Minimum Description Length

Another possible approacli to measming complexity bias is through the miiirnum de

scription lellgth (MDL) method. Rissaneri (1983) preseiited tins concept hy attempt

ing to find the estimate that minimizes the total number of binary digits required

to rewrite the observed data, where eadh observation consists of a precision value.

For a fixed segmeiltation z, an optimal encoding uses — 10g2 Pz (r) bits ou a.verage

to encode flic character x in every position . Furthermore. log2 ‘n bits can be used

to encode flic length of one segment. and log2 k bits to specify ifs class. Hence. flic

total code length eau lie written as

Q
= (_ log2p(.7)) + m(log9 n + log9 k) (3.1$)

wliere ni is the nuniber of segments iiï file segmentation defined by z. Equation 3.1$

can rewritten as

Q
= L11ogp,(a) — m(logn +logk)

(3.19)
log2

Referring to Equation 3.19, the minimum description lengtli concept woulcl maximize

file immerat.or. Notice that by doillg tus, the first terni corresponds f0 tlie log—

likeliliood frmction ancl the second tenu eau lie iuterpreted as a penalty on model

complexity:

MDL = ni(log n + log k) (3.20)



Chapter 4

Algorithmic Problems In

$tatistical Models

4.1 Forward-Backward Algorithrn

The probabiÏity of the observed seciuece x can be caldillated by fiuicliiig the sum

of the joint probability over ail possible hidden state sequences z. However, it is

lot compitationa11y feasible silice ifs time complexity is O(n h) for a hidden i\iarkov

model of k sfates ami seciueuce leugth ‘n. b solve this. ail alternate ami more efficient

method is throiigh the forward-backward procedure.

Let the forward variable o (j). i. the probability of the partial observation

seqiience and state j {O. k — 1} up to index i. be

= P{:riio . r, z = j}

Then. c(j) can be solved into three steps. that is

1. Initialization:

= j])j(IÏ). O j <k — 1.
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Figure 4.1. Illustration of operations required for computing forward variable

2. Inductioii:

= [‘ ai(J)ti_ii] Pj’(i+i), <n, — 1

O <j’ < k —1.

3. Termiriatioi:

P{X=x}= i(j).

The induction step cari be illustrateci as shown in Figure 4.1, where it clemonstrates

how state j’ cari Le reaclied at hiclex i+1 from ail possible states z e {O. k — 1}. where

tue transition probability observation :r÷1 in state j’. anci partial observation

sequence aj(j) from ail k st.ates are taken into consideration. After flic termination

step. if can be seen that the desireci calculation of P {X = x} is obtained as the sum
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Figure 4.2. Illustration of computing crj(j) in terms of observations x and states

of the terminal forward variables

figure 4.2 illustrates the calculations involved in the forward procedure. wliere

each state at index i + 1 considers ail possible states z.

Similarly, let the backwarcl variable d(j), i.e.. the probability of the partial ob

servatioll seciuence from I + 1 to tue end. given state J at index I. be

/31(j) =j}.

ihen. /3(j) eau be solveci into three steps. that is
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1. Initialization:

i3T?1. O<j<k—1.

2. Induction:

/3(j) i n — Ln —2 1.
j’ =0

O<j<k—1.

3. Termination:

P{X=x} ff13i(j).

j=0

Like the induction step in the forward proced11re. Figure 4.3 demonstrates how state

j takes ail possible states {O. k — l} into consideration. factoring iii the transi

tion probabilitv observation in state j’. auJ remaining partial observation

sequence ,‘3i(j’). After the termination step, P {X x} is obtained as thesum of

the terminal backward variables ,31(j).

4.2 Viterbi Algorithrn

For hidclen Markov models. the optimal state sectuence associated with tue given

observation sequence can foiind by implementing the Viterbi algorithm through civ—

namic programming. where eue would find a single best state sequence while takiug

several possible optimalitv criteria jute consideration.

Let z , represent the best state secjuence that is to be determined

for a given observatioll x =
.

Suppose that (j) represent the initial best
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Figure 4.3. Illustration of operations required for computing backward variable

score, Le.

1(i) =

Furtiiermore, let (j) be the best score along a single path at index i up to state

j {O, k — 1}. i.e.,

à(j) max P{ziz2 j. :ryx. . . x}

=

m(Jf)tji_j] pj(.Tj). (4.1)

Using Eciuation 4.1. we cari iuductively find j+i(j’) as

=

(J)t_] Pj’(Ji+m). (4.2)
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where j’ {O. k — 1}. Theil. the best sequence of hiciden variables z wheir give the

observeci sequence x cari be represented as

= argmaxP{zx}

arg maX [€fn(j)] . (1.3)
Ok—1

Let /‘(j’) be an array that keeps track of the argimelÎt usecl to maximize Equation

4.2 iir order to calculate the state sequence. Then, tire Viterbi procedure can be

presented as:

1. huitialization:

= jpj(’i). O j k — 1

= O.

2. Recursion:

=
[à1_1 (j)t] Pji(.Tj). 2 I n

O <.1’ < k — 1

= arg max [6_1(j)t] 2 < I n
O<j<k—1

O <j’ < k —1.

3. Ternuiiiatioii:

P = max [&(i)]
O<j <k—1

= arg max [S(j)].

n
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4. Backtracking:

= ‘+i(z1), j = n — 1, n — 2 1.

4.3 Penafty-Based Best Segmentation

In this sectioii we consider the case of partitioning tlie DNA seqnence nsing tlie

penalty-based best segmentation model. Section 4.3.1 provides a description of 1ÎOW

the penalty-based best segmentation model ca be implemented using dynamic pro

gralilming. Section 4.3.2 presents tlie implemented algoritlims, witholit and witli

traceback, as well as liow flic DNA sequece can lie iteratively segmented b using

maximum—likeliliood estimation.

Let x = .. . x7, lie a seqnence of cliaracters over the alphabet Z {u1

(e.g.. a DNA seqence witli Z {A. C. G. T}). Let w1 : Z i,’ R represent a scoring

fiinction for the letters in class j {O k — 1}. A segmentation of x is defined by

tlie segmentation inclicators z = z1 ... z7, wliere z {O k — 1}. Tlie score of sucli

a segmentation is w(z) (a’). Given w1 auJ x. our main objective is to finci

z tlia.t maximizes w(z) or ifs penalized form

w(z)
—

wliere o’ is a segmentation complexitv penalty. This general scori1g framework in

cincles likeliliood maximization as a specfa.Ï case: set

= iogt (4.4)

froni Eqiiatioii 3.3. The varions complexity penalties of Eqiiation 3.3 are reflected in

the choice of ci. In a more compact form. we describe a segmentation by the set of its
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segments. A segment S = [a, b] t-. j is a maximal contiguous subsequence of indices

{a.a+1,....b}suchthst:0=z0÷l=...=zb=j. Asegmentationset4’isdeflned

as the partition of the indices [1, n] into a set of segments. that is, = {#.
where cadi #j is a segment (and consecutive segments belong ta different classes).

4.3.1 Description

11e penalized segmentation score takes the segmentation penalty a into consideration

foreachsegmenttransitionfoundin4 andcanbewrittenasV = V()—a.(II— 1),

where > O.

Lemmn 1 Let V(Lj) be deflned as the best segmentation score of [1. . . i] that ends

withclassj. Ifi>i, then

V(i. j) = w1(x,) + max {V(i — 1. c) — a . (4..5)

when V(i.j) = wj(r1) and

fi ifc#j

I. O othenmse

Proof Consider the segmentation set of [i, i] by extending the last intenal of a

segmentation set associated with V(i — i.j), ami by adding [Li] belonging to class j
to a segmentation set associated with V(i — i, c) where c Ø j. Then.

V(i.j) w1(x1) + max {V(i — L c) — a,V(i — i.j)}

where (uj(xj+V(i—i.c)—a) anA (wjfrj+V(4—i.j)) are the respective pennhi7ed

scores. However, there is no inequality since i eau be removed fitm the segmentation

set of [i. i] to obtain the segmentation set of [i. i — i].
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Lemma 2 V(i. j) takes t’wo different cases into cons/deration: e = j and e j

V(i.j) w() + max V(i — 1,j), max {VQi — 1, e)
—

cE [O.k—1]

Proof Let /3 represeut the secoiid terni of tlïe eqiiation, that is

/3 max {vti — 1. j). max{V(i — 1.c)
—

Since it is trivial that V(i — 1. j) > V(i — 1, j) — a / cail be rewrittell snch that

/3 max — Lj). max {V(i — 1, e)
—

ceO.k—1J\j

Herice. this leminas equa-tion is the same as Equation 4.5. that is.

V(i,j) = j(’) +max{ V(i — 1.j). max {V(i — Le)
— i}

= w(i) + max {jT(/
— 1. e) —

cE [O.k—1]

I

Lemma 1 implies a dynamic prograninhing algoritiimi that execntes iii O(nk2)

time. The implementation of Lemma 2. however. implies that the maxinifim value

of V(i — 1, e) eau be pïe-calc11lated auJ would reduce the tnne complexity to O(nk)

t illie.

4.3.2 Algorithrns

Without Traceback Implementation

Equation 4.5 demonstrates the accrinmlatecl score calcula.tion at lÎncleoticle c Lv

using the Lest Possible prefix score at the previous nucleotide :r1 via dynamic pro

gramming. Tus idea is emploveci in the algorithm presented in Figure 4.4, where the
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scores at the first nucleoticle tr1 are iiitialized as written in the the loop body 1—3.

The loop body 4-13 processes the scores of the remaining nucleotides r for cadi class.

where Lille 5 helps reduce tic number of it.erations of cleterminiug the maximum value

of the scores from tic previous nucleotide. Lines $ auJ 10 are implementations of

Lemma 2 for each class.

Lemma 3 The atgoritkrn presented in Fgure .4 finds an optimal segmentation into

k classes for o, DNA sequence of iength n in 0(nk) time.

Proof Tic iruitialization of tic scores for j [0. k — 1] at i1 is performeci iii tic first

loop body 1-3 in 0(k) time. Tic second ioop body 4-13 is executed n — 1 times,

where the maxinmm of V(i — 1. c) for c e [0. k — 1] in Liue 5 auJ the huiler loop body

6-12 are determined in 0(k) time for cadi iteration. Tierefore, tie time complexity

eau be simplifieci to yield 0(nk). I

Input : Sequence X. segmentation penalty n
Output: Best perialized segmentation

1 for j — O to k — 1 do
2 V(1,j) .—wj(;i):

3 end
4 for i 2 to n do
5 dnax flillXce[o k_1] V(i-1.c)
6 forj —0 to k—1 do
y if V(i-1.j) >

— n then
8 V(i.j) wj(.r) + V(i-1.j):
9 else

10 V(i.j) w() + — n:
ii end
12 end
13 end

Figure 4.4. Penalty-based best segmentation algorithm.
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With Traceback Implementatioii

Let P(i. j) clenote an element of the tracebaek arra.v containing tire class number of

the previous nucleotide r1 referreci to when calculathrg the accuumlated penalized

segmentation score l’(i. j) via Equation 1.5. for example. if V(i. j) w(;r1) +

V(i — 1. e) — and e j. ther P(i. j) e (otherwise. P(h j) = j). Tire aigorithm

presented in figure 4.5 is an adapted version of algorithm clenoted in Figure 4.4 which

incorporates tire traceback array feature. where P(i, j) is assigneci in Lhies 10 auJ

13 for each 1 < i < n anci ciass e. Note that tire traceback array elements at the

beginning of the sequence for each class e, that is, P(1, e) are not assigned. Line 17

assembles tire segmentation set c1 through tire traeback algorithm.

Input : Seciueiice X, segmentation peHalty n
O utput: Best penalized segment at ion F

1 for j O to k — 1 do
2 V(1.j)

3 end
4 for j — 2 to n do
5 rncix 1Y1axro1j V(i-1.c):
6 °mci:l• arg 1riax.C[o.k_y] V(i-1.c):
7 forj—Otok—ldo
8 if V (i-1.’j) > l/ — n then
9 V(i.j) W (T) + V(i-1.j):

10 P(i.j) +—j;
ii else
12 V(i.j) — w(x) + — n:
13 P(i.j)

—

14 end
15 end
16 end
17 çFi—Traceback(V. P):

Figure 4.5. Penafty-based best segmentation with traceback array ai

gorithrn.
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The traceback algorithm is impÏementecl as shown in Figure 4.6, where it computes

the segments obtained from tue pellalty-basecl best segmentation aigorithm. We use

z z1 . . . z, to store the class numbers of the secluence. As well, let 6 be tue cunent

segment class number. 6’ the segment class rnuÎlber reaci from the traceback array.

start the start of a segment, end the end of a segment, and p the iterator for the Ïist

of segments. This aÏgorithm is initialized by deterniining which class contains the

niaximmïi accumulated penalizeci score for tue sequence as illustrated in Line 4. In

the loop bodv 6-10, 6’ is read from the traceback array (Line 7) and is inserted into

z1 (Line 9). The segmentation set F ïs assembled in the loop body 11-18, where the

segment p = {[start. end] z_i} is inserted into ) if z1 15 not equal to z (Line

12). As well. end anci are upclated as denoted in Lines 13 auJ 15. respectiveÏy.

The last segment inserted to the list is represented in Line 20.

Maxirnum-Likelihood Estirnatioll of Segmellts

Maximum-likelihooci estimation can be used to aj proximatelv cleterniine the segments

of a given sequence when provided probability values. This can be implemented

in conjunction with the penaltv-basecl best segmentation algorithm as presented in

Figure 4.7.

The algorithm will be repeated executecl in the loop body 1-5 until the log

likelihood ratio converges. For each iteration. a uew score is calculated based on

the log—likelihood ratio auJ a new segmentation is coinputecl via the penalty-based

best segmentation algorithm as presented in Figure 4.5. Furthermore. new probaÏility

values are calculated using Laplace pseudo-counters as impÏemented in the algorithm

denoted in Figure 5.1.
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Input : Segmentation score arrav V, traceback array P. penalty c
Output: Assembleci segmentation cF

1 start 1;
2 nd 1;
3 p —1;
4 Ô argmaxE[O.c_l] V(n,c);
5 z — 6;
6 for j — n downto 2 do
7 6’ P(i.6);
8 64—Ô’;
9 Z_j Ô;

10 end
ii for j 2 to n do
12 if then
13

14 p {[istaro end] I”

15 start 1— j:
16 p—p+l;
17 end

18 end
19 ij — n;
20 p 4- {[start,end] ‘

Figure 4.6. Traceback algorithm.

Input : Sequence X. segmentation penalty n
Output: Maximum-likelihood segmentation via penaÏty-based best segmentation

algorit 11m (J)

1 repeat

2 wjr)1og-;

3 cF BestSegmentation(X. o):
4 p ProbabilityCalculation(cF);

5 until convergence

Figure 4.7. Maximum-iikelihood estimation of segments via penalty

based best segmentation algorithm.
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4.4 Penalty-Based Best Segmentation with Mini

mum Segment Lengths

In tins section we discuss the case of partitioning the DNA segrience using the penalty—

based Lest segmentation with minillmm segment lengths model. Section 4.4.1 prO-

vides a description of how the pellalty—based Lest segmentation with mimimum seg

ment iengths model cari be impiemented using dynamic prograilming. Section 4.4.2

presents tire implemented algorithms without and with traceback. as weil as air algo—

rithm in which tire DNA sequence cari Le iteratively segmenteci by using maximum—

iikeiihood estimation.

4.4.1 Description

\\‘iule calculating via tire penalty-based Lest segmentation eciuatio;r as presented in

Equation 4.5 vielcis a pattern of segments in tire seqnence, it is possible that overfitting

data (i.e. [i i] j : > O segnients) cari occur and consequentiy render the

data hiologicaliy meaningless. Hence. Equation 4.5 cari Le modlifled sucli that it takes

minimum segment Ïeiigths into consideration.

Let rn Le ciefined as tire minimmrr segment iength for ciass j. Thtis. for ni g

[1. mi], and j g [m, n], iet m represent tire segmentation sets of [1, j] that maximize

V(cF) whuie satisfying tire requirements for ail segnrent ierigths except for the iast one

of class j whose length is at ieast in.

Lemma 4 Let iiort(i. j) = V((I1) and ong(i. j) V(I711 ). TÏierefore, flic fol

towing rec’ursions represent tue caÏc?itation of th e weights of these segmentation sets.

that îs

1iwrt(.j) +

max { /rnri( — 1.. max {409(i — 1. e) — (4.6)
ce[O./—i1
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9(i, j) = — m + 1. j) + w(xt) (4.7)
l=i—7fl) +2

where “ïiort(1.j) = w1cri) and e [O. k — 1] \ j.

Proof For Equation 4.6, let Ç5s1?ort lie some segment of cÏass j al rnic1eoticlex, i.e.

short [i. i] j,’ j. If tire last segment cf F includes micleotide
—

(i.e. nucleoticle

a and
—

are of the same nueleotide). then is obtained liy extencling tire last

Segment cf Otherwise. F1
= CFlfl? U {s1iort}.

for Equation 4.7, let loT?g lie sorne segment of class j from nucleotides

t.o x, i.e. tong [i — fuj + 2. j] j. (Fm is olitained liy ext.ending tire last segment

cf rn3H-1.1 Witi segment 5long I

Lemma 5 Vsor takes t’wo different cases jnto cons/deration: e = j and e j

iort(j,j) 1Cr) + max {ïzori( —

cij
{ong(i — 1. c) — o}}

Proof Let /3 represent the second terni of the equation. that is

= max {hOit( — 1.j).
c.Ij

{orig(’ — 1. e) —

Let mlor?g lie tire requireci minimum segment iength associateci with ‘ong( — 1. j) —

Likewise. let ms/iort = 1 lie the required minimum segment iength associated with

Vshort( — 1. j). $ince lÏong ??ishort. then

— 1. j) > ouig( — 1. j) —

1-lence, /3 eau lie rewritten such that

/3 = niax { 1jo( — L j), {i)ong( — 1. e)
—
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Therefore, this len;n;as equation is the same as Equation 4.6. that is,

hori;(Z,J) w() + max iwrt( — U). max {iong(i — 1. e)
—

=

max { UshorttZ — 1,
cl]

{4ong(i — 1. e) — o’ }
I

Lemma 4 implies a dynamic programming of that computes an optimal segmen

tation set that is subject to the given minimum segnïent lengths in 0(nk2) time.

However. like Lemma 2. applying Lemma 5 would allow the pre—calculation of the

maxinium vaine of (i — 1. c). thereby reducing the time complexity to 0(iik).

4.4.2 Algorithms

Without Traceback Implernentation

Referring to Equations 4.6 and 4.7. the occurrence of overfitting data cal; be elinu

nated by specifving tue minimum segment lengths of segments. Let ni be ai; array

containing mininmn; segnïent lengths for cadi class j. Tic algoritim presented iii

Figure 4.8 illustrates tins computation where both Vsh and i’ scores at the first

nuc1eoticler are initiallzed for cadi class in tic loop bociv 1-10. Loop body 11-

29 processes fie scores of the remaining nucleoticles .r, wiere fie largest value of

iong( — 1, e) is cletermineci in Line 12 in orcler to reduce tic nllmber of required

iterafions. Tic muer 1001) bodv 13-28 is ai; implementation of Equations 4.6 and 4.7.

Lemma 6 Tue aÏgoritkn; presented in figure . 8 finds an optirnaÏ segmentation into

k classes for a DNA sequence of leu gth n in OQk) time.

Proof lie initialization of tic scores for j [0. k — 1] at r1 is perfornied in tic

first loop body 1-10 in 0(k) tin;e. Tic second loop body 1 1-29 is execufed n — 1
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times, where the maximum calciilations in Line 12 and the illiler loop body 13-2$ are

determined in 0(k) time for each iteration. Therefore, the time complexity cari Le

simplified to yield 0(71k).

Input : Sequence X. segmentation penalty , millirnum segment lengths ‘rn

Output: 1\Iinimrim length segmentation 1

1 for j O to k — 1 do
2 VSÏ?OTt(1.i) ‘

3 if mi > 1 then
4 Vog (1.j) — —oc;
5 s

‘ wi(ri);

6 else

ong (Lj)
‘ Vswrt (1,j):

8 si—O:
9 end

10 end
ii for i *— 2 to ‘n do
12 “ rnaxCE[t).I,_l) ‘Lng(il.c);

13 forj—Otok—1do
14 si 5

15 j > 1 then
16 s s —

end
18 if (i-i,j) — c then
19 Vshort (i.j) wi(:ri) + (i-1.j);
20 else
21 hort (i.j) ‘ wj(x) + 1’nax — n:
22 end
23 if i ii then
24 1ong (z.j)

‘ hort (i — rn + 1,j) + sj;

25 else
26 Vonq(i.j) ÷— —oc:
27 end

28 end

29 end

Figure 4.8. Penafty-based minimum Iength segmentation algorithm.
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With Traceback Implementatioi

ilie algorithm preseiited in figure 4.9 is an adapted version of the algorithii denoted

in Figure 4.8 which mcorporates the traceback array feature. Similar to its penalty

based best segmentation traceback counterpart. the traceback arrav elements P(L j)

is assigned for cadi imcleotide auJ class e in Lines 21 and 21 .Again. tic traceback

array elements at the first nucleotide for cadi class e. tiat is P(1. e) are not

assiglled. Line 33 assembles tic segmentation set l tirougi tic traceback witi

minimum segment lellgtis algoritim.

Tie traccback wifi minimum segment lengtis algorifim is presented in Figure

4.10. wliere it computes tic segments wiule f aking file specifled minimmi segment

lerigtis into consideration. We use z = zi . . z, to store tic class numbers of tic

sequence. Furtiiermore, let 6 be tic current segment class number, 6’ tic segment

class ilumber read from tic traceback arrav. mco,,ntr tic minimum length counter.

15tad tlie start of a segment. tic eud of a segment. auJ p the itcrator for tic

list of segments. Tlïis algorithm is initialized b determining winch class contains

tic maximuni accumulateci pcnalized score for tic sequence (Line 3) and setting fie

based on tus class (Line 4). In tic loop boclv T—1S. mco,inter clecrements

wienever if is not 1 (Line 9), otherwisc 6 auJ mco,,,ter changes whcuever 6 is not

equal to 6’ (Line 12). In cither case. z1_1 stores flic current class mimber 6. Tic

segmentation set is assembled in tic loop bodv 19-26. whcre tic segment
=

{ [“start, frd] —÷ zi} is inserted info cF if z1 is not equal to z (Line 20). As well.

Zcnd and aie updated as clenoted in Lines 21 auJ 23. respectively. Tic last

segment inserted to flic list is representeci in Line 28.

Maximum-Likelihood Estimation of Segments

Like ifs peiialty—based bcst segmentation algoritlim counterpart. maximum—likeliliood

estimation eau be used witi flic penalty—based best segment at ion witli minimum
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Input : $equence X. segmentation pellalty o, lYHflimttm segment lengths rn
Output: IVlinimurn length seginentatioll F

1 for j—Otok—1do
2 Vsiort(1.j)
3 ifmi>lthen
4 S, —cx:;;
5 s ‘

6 else

7 T/ong(Lj)
‘

8

9 end

10 end
ii for i — 2 to n do
12 1nax maXcE[o,Ï1] i’ong(i4c);

13 Cmwr — argmaxce[o.k_l] V09(i-1,c);

14 forj—Otok—1do
15

“ 5i +wi(x);
16 if m > 1 then

si — wi(i_in3+i);

is end
19 if V0(-1.j) >

— ct then
20 horI (i.j) wt.r) + Vsïort (i-1,j);
21 P(i.j) —j;
22 else

23 ‘short (ij) w(.r) + —

24 P t i.j) ÷— c.
25 end
26 if i > mj then
27 ong(j) “ Vsiiort (i

—

fli + Lj) + s
28 else

29 vong(i.i) — —c’c:
30 end
31 end

32 end

33 —MinimuinLengthTraceback(V. P, m):

Figure 4.9. Penalty-based minimum Iength segmentation with trace

back array algorithrn.
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n

Input : Segmentation score array V. traceback array P. minimum segment

lengths rn

Output: Assembled segmentation cJ

1 start “

2 ij — 1;
3 ÷— argmax[o.k_l] V(n.c);
4 7T1countr ‘

5 Z, —

6

r for j n downto 2 do
s if mcounter > 1 then
9 Tfleounter !TiUter — 1

10 else
11

12 if Y then
13

14 mcounter nia;

15 end
16 end
17 z1

18 end
19 for i — 2 to n. do
20 if z1 z then
21

22 Ç6p ‘ {[istari. eici] ‘

23 start

24 p—p+l
25 end
26 end
27 end ‘ n;

28 {[iST, end] ‘

Figure 4.10. Traceback with minimum segment Iengths algorithm.
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segment iengths algorithm to a.pproximat.eiy find the segments of a given sequence

whell provided probabiiity vaines, as implemellted in the aigorithm as shown in Figure

4.11.

Input : Sequence X. segmentation penalty c minimum segment lengths 771

Output: Maximum-likelihood segmentation via penalty-based best segmentation
algoiithm F

1 repeat

2 — log 1;

3 (F €— Minimumlength$egmentation(X. o’, rn);
4 p ProbabilityCalculation((F);

5 until convergence

Figure 4.11. Maximum-Iikelihood estimation of segments via penalty

based minimum Iength segmentation algorithm.

The aigorithm wiii be repeatediy executed in the ioop body 1-5 until the iog

iikehhood ratio converges. For each iteration, a new score is calcuiated based on the

iog-llkellhood ratio and a new segmeiltation is computed via the penaity-based best

segmentation with rilillimuIri segment lengths aigorithm as ciescribed in the aigorithm

presented in Figure 4.9. Furthermore. new probabiiity values are calcuiateci using

Laplace pseudo-counters as implemented in tire aigorithm preseiited in Figure 5.1.



Chapter 5

Experimental Resuits

GC-conteut is defined as the measurement of the relative frequencv of G (guanine)

aud C (cytosine) fomid iii a regioli. When applied to DNA segmentation, fiais lias

been useci to determine segments whose contents are rich in guanille and cyt.osine.

The actual genome sequences of the organisms used in this researcli caii be clown

loaded from flic National Center for Biotechnology Information (NCBI) website (i.e.

hup://www. ncbi. ‘nim. ‘riih. goy).

The European I\iolecular Biology Open Software Suite (EMBOSS) is a collectioll

of software analysis programs clesignecl to meet flic neecls of flic molecula.r biology user

comuiuuity (Rice et al. 2000). Among the numerous ftmctionalities that EMBOSS

eau perform include sequence aligiment. iuicleoticle sequence patfern analysis. a.ud

GC-colltellt sequece aiïalysis. We compared otir segmentation restilt s with those

obtaiued from the GC-cortent analysis tool found in flic latest version of EMBOSS.

which can be dowiiloaded from its homepage (i.e. Ïittp://emboss .sourccfo7ge.net/.

Before we discuss flic experiment.aÏ resuÏts. the followiiig preseuts other implemen—

fatious thaf were inclucled fo complement oui secueuce seguientation algorithms.
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Model Parameter Estimation

In Chapter 3, we presented the log-likelihood ftmction for oui statistical moclels as

denoted in Equation 3.3. where the first term denotes the nuli hypothesis that the

segments is of class O auJ the second term is the log-likelihood ratio clefined by the

observation sequence z. In order to avoid encountering probability values of O in

the denominator of the log-likelihood ratio, Laplace pseuclo-comiters cari be used as

clenoted in Equat:ioii 5.1

n + 1
Pi

n+r
(5.1)

where p = {p1p2, } 5 a collection of probability values for alphabet Z and

n1. n9, . . . , n represent the counters of characters 1, r in positions for a given

class in a given segmentation.

Laplace pseudo-counters were implemented as presenteci in Figure 5.1. For each

class j. let the total number of ilucleoticles 12e represented as nt0t0,, ancl the counters

of nucleotide alphabet Z {Ji. o9 o} he denoted as n, n2,• .. , n0-,.. The

algorithm iteratively counts the number of each nucleotide alphabet and total number

of nucleotides found in the current class as expressed in the loop bocl 3-$. Ultimately,

the new probability values are caiculated in Line 10.

Data Compression

In Chapter 4, we presented the penalty-based best segmentation algorithms in which

clnamic programnhiiig was implemented by applying the traceback array. As pre

viously meutioned. the traceback array contains class nmnbers at varions nucleotide

positions. To hïcrease memory efficiency, we storeci our traceback values by compress

iilg tlïem in byte (8-bit) arrays. where the value is stored in the appropriate position

in the data byte.

To construct our traceback array, we needed to determine the fixecl amount of
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Input t Segmentation J
Output: New probability values p

1 for j — O to k — 1 do
2 nt0ua O;
3 for j ÷— 1 to n do
4 ifz=jthen
5 fl.,

— flx + 1;
6 tota1 “ 71lotat + 1;
z end
8 end
9 for u — uy to r do

10
“ T1aï

ii end
12 end

Figure 5.1. Probability calculation algorithm.

memory requireci to store ouï traceback values efficiently. For a sequence X auJ

k classes, let C represent the number of classes that can be stored per byte, b the

number of bits required per class, r the number of required bits to construct the

traceback array, and R the number of required bytes eciuivalent to r. Determining C

depends on k, that is.

1 ifl6<k<256

2 if4<k<16
— (5.2)

4 if2<k<4

$ otherwise

Because a byte consists of 8 bits. b cal; be calculatecl by divicling $ bits by tlie niimber

of classes per byte. that is.

8•
(5.3)

fiirthermore, r cal; be cletermiiied by f aking the sequence length. number of classes.
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and number of bits per class info consicleration, or

r=(X—1)xkxb. (5.4)

We couvert the number of required bits r to the nuniber of required bytes R by using

R
=

(5.5)

Suppose T denote the traceback array. t0 the initiai traceback index. toffset tue

traceback offset value, t the traceback index, auJ c the number of counted classes.

Using these variables. we can determine where to add ouï new value in our traceback

array. as presented iii Figure 5.2. Line 5 uses the compress static function to store

the data. at the appropriate place in the traceback airay. Suppose n clenote tue

new byte value.. Then, the implementation of this function is presented as shown in

Figure 5.3, where we used logic operations auJ hexaclecimal values to assign the value

accordingly.

Input: Value r. nucleotide index i. class index j
(i—2) x i x b

1 t0÷—

2 toffset ‘.

3 tjJ ‘ to + tff56:

4 cc+1;
5 T(tjT ) — Compress(T(tId). t’. C, c );

Figure 5.2. Add data to traceback array algorithm.

Similar to Figure 5.2, the appropriate value cari be read front the traceback array

as presented in Figure 5.4. Line 4 translates tue nucleotide index input value to the

a.ppropriate index value in the traceback array. Aiso, hue 5 calls the clecompress static

function which returns the byte value. This decompression function is piesented in

Figure .5.5.



53

Input Current byte value B. value V. number of classes per byte C, number

of crninted classes c
Output: New compresseci byte value n

1 switch C do
2 casel
3 n—V;
4 case2
5 if c mod C = 1 then n — (V «4) V (B A OxOF)
6 else n — V V (B A OxFO);

7 case

8 switch c mod C do

9 casel
10 n — (V « 6) V (B A 0x3F):
11 case 2
12 n— (V«4)V(BAOxCF);
13 case 3
14 n — (V « 2) V (B A 0xf3);

15 case O
16 n—VV(BAOxFC):

17 end

18 case 8
19 switch c mod C do
20 case 1
21 n—(V«7)V(BAOx7F):
22 case 2
23 n — (V «6) V (B A OxBF);
24 case 3
25 n÷—(V«5)V(BAOxDf):
26 case
27 n—(V«4)V(BAOxEf);
28 case 5
29 n (V « 3) V (B A OxFZ);
30 case 6

31 n (V « 2) V (B A OxfB):
32 case 7
33 n—(V«1)V(BAOxfD):
34 case O
35 n — V V (B A OxFE);

36 end

37 end

Figure 5.3. Byte compression into traceback array algorithm.
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Input : Nucleotide index i, class index j
Outpnt: Bte value from traceback array n

(—2)xkxb
1 i’— 8

2 toffset ‘

3 bdx tO + toffsef

4 d (i—2) x k xj+ 1;
5 n—Decompress(T(td4), C, d ):

Figure 5.4. Read data to traceback array algorithm.

5.1 Bacteriophage Lambda

5.1.1 Description

Tlie bacteriopliage is a parasite of flic intestinal bacterium Escherichia coti tliat is

commonly tised as a benclimark sequence for flic comparison of segmentation algo

ritlims (Boys and Henclerson 2001). Tlie reasoning for considering tiïis organism is

due to its experimentai segmentation being basecl on flic gracient centrifugation of

its GC-content as conciuctecl by Skalka et aï. Tliey identifleci six sections of differing

GC-confenf and declucecl tliat flic lengtlis given for tlie tliree sliorter sections are nof

exact, wliile flic lengtlis of flic tliree longer sections arc. furtliermorc, tliey conclucled

tliat any errors found anywlicrc other tliaui tlie t liree longer sections are compensated

eciually in flic 43%-GC and 48-GC sections (Skalka cf al. 1968). Tlieir experiment

work is quantitativelv prescntecl in Figure 5.6 auJ Table .5.1.

To analyze flic nucleotide distribution for bacteriopliage .) grapliically. we nseci

flic isocliore analvsis application includecl in EMBO$S. Tlns application operates by

caiculafing tlic GC-contcnt within a. fixed-lengtli window and increinenfaily sliifting

tliis window aiong flic entire sequence. Figure 5.7 provicles an illustration of tlie

nucleoticle distribution for bacteriopliage bascd on GC-content using EMBOSS.

wliere we nsed flic defaulf values of 1—kb auJ 0.1—kb as our window ïcngtli and sliift

increment values. respectivelv.
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Input : Current byte value B. number of (lasses per byte C, converted class

index c
Output: Appropriate byte value n

1 switch C do
2 casel
3

4 case2

5 if c mod C 1 then n — (B A 0xFO) » 4
6 else n — (B A OxOF):

7 case
8 switch c mod C do
9 casel

10 n (B A OxC0) » 6;
11 case 2
12 n (B A 0x30) » 4;
13 case 3
14 n—(BA0x0C)»2;
15 case O
16 n — (B A 0x03):

17 end

18 case 8
19 switch c mod C do
20 case 1
21 n — (B A 0x80) » 7;
22 case 2
23 n*—(BAOx4O)»6:

24 case 3
25 n—(BA0x20)»5;
26 case

27 n’ (B A 0x10) » 4;
28 case 5
29 n—(BA0x0$)»3:
30 case 6
31 n (B A 0x04) » 2:
32 case 7
33 n’ (B A 0x02) » Ï;
34 case O
35 n ‘ (B A 0x01):
36 end

37 end

Figure 5.5. Byte decompression from traceback array algorithm.



56

60.0%

56.0%

500%

45.0%

(3

40.0%

35,0%

30,0%

Figure 5.6. Nucleotide distribution in bacteriophage ,\ based on GC-content via

gradient centrifugation.

Segmeiit Niicleotide $ta.rt Nileleotide Elld /Gc
1 Ï 485 48
2 486 21340 57
3 21341 26191 37
4 26192 34436 43
5 34437 46077 48
6 46t)78 48502 42

Table 5.1. Quantitative data describing the nucleotide distribution in bacterio

5000 10000 15000 20003 25000 30000 35000 40003 65000

NuIotide Postjon

phage \ via density centrifugation.
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Figure 5.7. Nucleotide distribution in bacteriophage )‘ based on GC-content via

EMBOSS.
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5.1.2 Tests

\Ve tested our algorithms on the bacteriophage /\ (-18.502 base pairs. GenBank ac

cession NC_001116) using clifferent complexïtv penalty values n’ as clepicted in Table

.5.2 (where k is the ntmiber of classes to lie coilsidereci). \Ve also tested the DA

segmentation on a number of classes witli the probability values presented in Table

5.3 and tue minimum length values listeci in Table .5.4. We comparcd cadi DNA

segmentation test to the obtained bacteriophage À niicleotide distribution conducted

Jr Skalka et al.

Test Name c
I’\one O
AIC 2
BIC log 18.502

MDL log 48.502 + log k

Table 5.2. Complexity penalty values n tested for bacteriophage À.

Case

Classes Po(S) 0.5 po(W) 0.5
pi(S) = t).52 pi(W) 0.1$

po(S) = 0.5 Po(I’l) = 0.5
3 Classes p(S) 0.52 pi(T’V) = 0.18

p2(S) 0.7 I)(1T) 0.3

potS) 0.37 PotlT) = 0.63

4 Cl py(S) = 0.42 pi(TT) 0.5$
asses

P2(S) = 0.-18 ]i2(H) = 0.52

p(S) 0.57 p2(W) = 0.43

Table 5.3. Probability values pj(i) tested for bacteriophage À.
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Case CÏass I\Iininmm Length
0 200

2 Classes
1 200
0 200

3 Classes 1 200
2 200
0 200
1 200

4 Classes
2 200
3 200

Table 5.4. Minimum length values tested for bacteriophage X.

5.1.3 Resuits

Case 1: 2 Classes

For the case in. which there is no complexitv pellalty value. we found the bacteriophage

X genome to be heavily segmented such that the segmentation consists of two types

of segments. i.e.. segments consisting of only C or G nucleotides auci segments that

do not. In addition. we observed the occurrence of overfitting data. where segments

of lengtli 1 are found. These observations are sïmilar to those found in the AIC test,

altliough the GC-content for the GC-poor and GC—rich segments will not uecessarilv

he 0% and 100%, respectively.

The DNA segmentation for the BIC and MDL tests yielded four segments as

shown graphicaily in Figure .5.8 anci ciuantitativelv in Table 5.5.As illustrateci by

tue solid and dashed limes in both gra.phs, we found both experiinental nucleotide

distributions to be grapiiically similar, and mot necessarilv exact. to those found

through gradient centrifugation. Because it w-as previously founci that tue lengths of

the three longer sections are more exact for gradient centrifugation. we ca.lculated the

average GC-content within tiiese sections on our experimental data. say. A. B. and

C. For every section in both graplis. we found a resemblance between the calculated
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average experimental GC-content anci flic corresponding clensity ceiltrifugation value

as presented in Table 5.6. A summary of GC-content for eacli test is presented in

Table 5.7.

Wlien takirig minimum lengtlïs info consideration. Figures .5.9 anci .5.10 represeit

the nucleoficle distribution after DNA segmentation for no penalty a.nd AIC tests,

respectivelv. As well, we found that the BIC anci MDL vielded iclentical resuits

t.o those obtained without minimuni lengths. Calculating the average experimental

GC—content in the sanie rnanner as previouslv nientionecl, we found the values for

each section to be comparable te those obtained through densify centrifugation as

demonstrated in Tables 5.8 auJ 5.9. We summa.rized cadi test ii; Table 5.10.

60.0%

40.0%

LJ

35.0%

30.0%
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

NucIeotd Potion

Figure 5.8. Nucleotide distribution in bacteriophage i\ based on GC-content for

BIC and MDL tests when using 2 classes (solid une) and density centrifugation

(dashed line).
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Segment Nucleotide Start Nucleotide End %GC
1 1 21923 57
2 21924 39174 42
3 39175 40550 54
4 405.51 48502 46

Table 5.5. Quantitative data describing the nucleotide distribution in bacterio

phage \ for BIC and MDL tests (2 classes).

. Average
. . Theoretical

Segment: IN ucleotide St art Nucleoticle End
GC

Expenmental
GC

A 486 21310 57 57
3 26192 34436 43 43
C 31437 46077 48 47

Table 5.6. Comparison ofthe nucleotide distribution in bacteriophage \ between

those found via density centrifugation and those found via BIC and MDL tests

when using 2 classes.

. Class O Class 1
Test IName Penalty Score

/GC GC
None 0 948.65906 0 100
AIC 2.0 3481.035 33 56
BIC 10.78936 768.2105 14 .57
MDL 11.482508 766.13116 44 57

Table 5.7. Sumrnary of experimental data for bacteriophage ..\ when using 2

classes.
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40.0%

Q
40.0%

Figure 5.9. Nucleotide distribution in bacteriophage ) based on GC-content for
no penalty test with minimum lengths when using 2 classes (solid une) and

density centrifugation (dashed line).

Ti
Average

Segment Niicleotide Start Niicleotide End
i(Oi1C a

Experimentai
/°

%GC
A 486 21340 57 57
B 26192 34436 43 40
C 34437 46077 48 47

Table 5.8. Comparison ofthe nucleotide distribution in bacteriophage ) between
those found via density centrifugation and those found via no penalty test with

60.0%

55.0%

35.0%

30.0%

25.0%
5000 10000 15000 20000 25000 30000 35000 40000 45.300

NrnIeotide Position

minimum lengths when using 2 classes.
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Figure 5.10. Nucleotide distribution in bacteriophage À based Ofl

for AIC test with minimum length when using 2 classes (solid une)

centrifugation (dashed une).

GC-content

and density

Tlieoreti
Average

$egmeiit Nucleotide Start Nucleotide Elld
V GC

Experimellta.1
(

%GC
A 486 21340 57 57
B 26192 34436 43 44
C 31437 46077 48 47

Table 5.9. Comparison of the nucleotide distributioti in bacteriophage À be

tween those found via density centrifugation and those found via AIC test with

minimum lengths when using 2 classes.
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, Class O Class 1
Test Name Penalty Score t7QC %GC

None 0 1830.736 39 55
AIC 2.0 1443.6943 40 .56
BIC 10.78936 768.2105 44 57
MDL 11.482508 766.13116 44 57

Table 5.10. Summary of experimental data for bacteriophage À when using 2
classes with minimum lengths.

Case 2: 3 Classes

We observed that the DNA segmentation obtaineci for the no penalty. AIC. BIC,

and MDL tests were identica.l to those obtaineci in the case in which we considered

2 classes. Like the previous case. a.ltliongh we dia not find an exact graphical match

between the experimentai and theoreticai nncleotide distributiois. we did find the

average experimental CC-content within the three sectiolls to be compaiable to those

obtained from density centrifugation as shown iII Table 5.11. The siimmarv of GC

content for each test is presenteci in Table .5.14, where the “-“ markers represent

classes that are not foiind in the DNA segmentation.

Taki;ig the minimllm lengths info consicieration. we obtained the segmentation

for no pellalty and AIC tests as ilhiistrated in Figure 5.11 and 5.12, respectivelv.

Furtherniore, we fonnd the average experimental GC-coïitent within the three longest

sections to be similar to those obtained from density centrifugation as shown in Tables

5.12 and 5.13. The DNA segmentation resnlts for the BIC and MDL tests were found

to be identical to their couuterparfs in the 2 classes case. The CC-content for each

test is summarized in Table 5.15.
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Figure 5.11. Nucleotide distribution in bacteriophage \ based on GC-content

for no penalty test with minimum lengths when using 3 classes (solid une) and

density centrifugation (dashed line).

Ti
Average

$egmeif Nucleotide $tart Nucleotide Eud Experiiiieita1

A 486 21310 57 57
B 26192 34436 43 44
C 34437 46077 48 47

Table 5.11. Comparison of the nucleotide distribution in bacteriophage \ be

tween those found via density centrifugation and those found via BIC and MDL

tests with minimum Iengths when using 3 classes.

0 5000

Nucleo6de Potion
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Figure 5.12. Nucleotide distribution in bacteriophage ‘\ based on GC-content
for AIC test with minimum lengths when using 3 classes (solid une) and density
centrifugation (dashed une).

Ti
A\rerage

Segmeiit Nic1eotide Start NIIcleotide Enci
leOletiCa

Experimeiltal
(

%GC
A 4$6 21340 57 57
B 26192 34436 13 44
C 34437 46077 48 47

Table 5.12. Comparison of the nucleotide distribution in bacteriophage \ be
tween those found via density centrifugation and those found via no penalty
test with minimum lengths when using 3 classes.

5000 10000 15000 20000 25000 30000 35050 40000 45000

NuIaotido Po6on
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Ti
Average

Segment Nncleotide Stait NucÏeotide Elld
iCOletica

Experimental
(

/C

A 486 21340 57 57
B 26192 34436 43 44
C 34437 46077 48 47

Table 5.13. Comparison of the nucleotide distribution in bacteriophage ‘\ be
tween those found via density centrifugation and those found via AIC test with
minimum lengths when using 3 classes.

Class O Class 1 Class 2Test Name Penalty Score
7GC GC %GC

None 0 8135.6226 0 - 100
AIC 2.0 14303.221 18 53 100
BIC 10.78936 768.2105 44 57 -

MDL 11.887973 764.9146 44 57 -

Table 5.14. Summary of experimental data for bacteriophage À when using 3
classes.

Class O Class 1 Class 2
Test Name Pellalty Score

GC GC GC
Nolle 0 2526.8127 37 50 60
AIC 2.0 2627.7852 36 48 57
BIC 10.78936 768.2105 44 57 -

I\IDL 11.887973 764.9146 44 57 -

Table 5.15. Summary of experirnental data for bacteriophage À when using 3
classes with minimum lengths.
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Case 3: 4 Classes

Based on the resuits ol:)tamecl froin flic previous cases. we found the risk of overfit

tirig data to Le high for the u penalty and AIC tests. Furtilermore. we found the

segmeiltation obtained from file BIC and MDL tests to Le comparable to each other.

Ushlg the three longest sections defined Lv densitv centrifugation in Figure .5.13. the

average experimental GC—content values within these boundaries were fomid to Le

comparable to those determined by density centrifugation as showu in Table 5.16.

We graphically compared tue micleotide clistributioll betweeu the experimental

a.ncl EMBO$S-calculated data using BIC penalty. As illustrated in Figure 5.14, it

cai Le seen that the trend descrihing the experimental data (dashed 1111e) gave ail

interestingly good estimation of the nucleotide distribution fouucl by ifs EMBQ$$

counterpart (solid une). Tins was also attaineci when the defined minimum length

values were applieci.

. Average
. Theoretical

Segment N ucleotide Start N ucleotide End Experuneiital
/C’J’

/C ‘zr

A 186 21310 57 57
B 26192 34436 43 44
C 34437 46077 48 47

Table 5.16. Comparison of the nucleotide distribution in bacteriophage i\ be
tween those found via density centrifugation and those found via BIC test when

using 4 classes.
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U
U

Figure 5.13. Nucleotide distribution in bacteriophage i\ based on GC-content

for BIC test when using 4 classes (solid une) and density centrifugation (dashed

I me).
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Figure 5.14. Nucleotide distribution in bacteriophage À based on GC-content

for BIC when using 4 classes (dashed une) and EMBOSS (solid une).
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5.2 RNA Genes in Thermophiles

5.2.1 Descriptioi

Klein et al. (2002) used a hiciden Maikov model consisting of two states. Ïabelled

as “RNA” and “backgrouncl genome”, to segment the thermophule Archaebacteria

Methanocaïdococcus jann aschii (M. ja’nnaschii) genome baseci on GC-conterit in order

to find non-codling RNA genes. They defined the “RA” state to be GC-rich in

its transfer RNA (tRNA) ai;d ribosomal RNA (rRNA) content and therefore was

assigned a higher GC—content emission probability. whereas the “background genome”

state is said to be GC-poor anci therefore was assignecl a low GC-content emission

probabilitv. According to the NCBI database. there are 6 known ribosomal RNA alld

37 knowii transfer RNA segments fomïd in flic M. jannaschii genome.

Eddy (2001) cletennined that structural RNA genes in Prokaryotes tend to have a

GC-content that is proportional to the optimal temperature growth. including those

of tRNA and rRNA genes (Galtier and Lobry 1997). However. we foulld that this

is not necessarily the case for Ribonuclease (RNase) P RNA genes in Prokaryotes as

illustrated hi Figure 5.15. where we analyzed flic GC-content of the genes stored in

flic Ribonuclease P Database (http://wbrown. mbio. ncsn. ed’u/RNaseP) (Brown 1999)

and used flic optimal growtli temperature values found in flic Prokaryotic Growth

Temperature Database (http://pgtdb. csie. nc’a. edu. tw) (Huang et al. 2004). Tins is

also flic case if we analyzed the GC-coiitent in the helices of these geues as shown in

Figure 5.16.

For MethanocaÏdococcus jannaschii in the NCBI database, the RNase P RNA gene

stored in flic ribonuclease P database cari be found between base 643.507 and 643.758.
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Figure 5.15. Comparison between GC-content of RNase P RNA genes in

Prokaryotes versus optimal growth temperature.
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Figure 5.16. Comparison between helicat GC-content of RNase P RNA genes in

Prokaryotes versus optimal growth temperature.
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5.2.2 Tests

We tested our algorithms on M. jan’naschii (1.664.970 base pairs. GenBauk accession

NC_000909) usig diffèrent complexity penalty values as depicted in Table 5.17. We

also tested the DNA segmentation on varions number of segments with the probability

values presented in Table .5.18 and tue minimum length values listeci in Table 5.19.

The probability values are based on the genome’s overail GC-content. Since the

i’tf jan’naschii genome consisted of RNA segments whose contents are GC-rich, we

measured the nucleotide distribution ancÏ the number of RNA genes detected in our

DNA segmentation tests.

Test Name o
None O
AIC 2
BIC log 1.664.970

MDL log 1.664.970 + log k

Table 5.17. Complexity penalty values o tested for i14. jari’naschz.

5.2.3 Resuits

Case 1: 2 Classes

Using the AIC ancl no penalty values to segment the M. ja’nnaschii genome. we founcl

the nucleotide distribution of the sectuence to he heavil segmented with GC-rich and

GC-poor fragmeit.s. We observed data overftting in which the segmented seciuence

revealed iiumerous segments of length 1. although the clegree of overfitting for AIC

was found to be smaller than if we used no penalty at ah. Because the seciuence

was heavilv segmented. ahi ribosomal auJ transfer RNA segments giveil by the NCBI

database uTere founci.
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Case pj(1)

9
potS) 0.34 po(W) = 0.66

asses ($) = 0.72 p1(W) = 0.2$

potS) = 0.31 po(W) 0.69
3 Classes pi(S) 0.64 pi(W) 0.36

1)2(5) 0.74 P2(11) = 0.26

potS) 0.31 po(W) 0.69

pi(S) 0.60 p1(W) = 0.40

6 Cl P2(5) 0.61 p2(W) = 0.39
asses

0.62 p3(I’T/) = 0.3$

P4(S) 0.71 p4(W) = 0.29

PStS) 0.72 1)5(11) = 0.28

po(S) = 0.31 po(W) = 0.69

pi(S) = 0.64 p1(W) = 0.36

P2($) 0.74 1)2(11/) = 0.26
])3(S) 0.6$ p3(1’V) = 0.32

10 Cl
0.72 p4(1V) 0.2$

asses p(s) = 0.63 1)5(11/) 0.37

1)6(5) 0.65 P6(11) 0.35
1)7(5) = 0.66 p7(W) = 0.33
p(5) = 0.69 p8(lV) 0.31
1)9(5) = 0.70 p9(1’l’) = 0.30

Table 5.18. Probability values pj(X) tested for iii. janriaschii.
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Case Class \Iiiiimim Length
0 50

2 Classes
1 50
0 100

3 Classes 1 100
2 100
0 100
1 100
2 100

6 Classes
3 100
4 100
5 100
0 100
1 100
2 100
3 100
4 100

10 Classes
100

6 100
7 100
8 100
9 100

Table 5.19. Minimum length values tested for M. jannaschzz.
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From our DNA segmeritatioir tests using BIC arid I\1DL penalty vaines, we oh

tairied the nncleotide distrihntion graphically shown in Figure 5.17 where there is no

occurrence of overfitting (i.e., the leirgth of each segment is greater than 1). As well,

it cari lie seen that tire segmentation reveaied fragments that cari lie characterized

as either GC-poor or GC-rich, where tire GC-conteiit of tire former is approximately

30% and tire majority of tire latter is at least 60%. Table 5.20 shows the mimber of

ribosomal and transfer RNA segments fomrd in this genome as defined by the NCBI

database, where ail tests were able to find ail ribosomai RNA segments. Tire BIC alld

MDL tests were able to find oniy 21 of tire 37 known trairsfer RNA segments. How

ever, mairy of tire fragments that were cieteririined experinrentaily contained more

thai one known RNA segment. whether it lie rRNA or tRNA or both, and nray

have affected tire GC-content of these fragmeirts. For exanrple, tire segnrent. [97326,

97823] contained 2 known tRNAs a.nd was considered to lie GC-rich, even tirongir its

GC-coirtent is approximateiy 51.8%. Lrterestingly, we were aiso able to detect tire

RNase P RNA geire by compa.ring tire associated GC-ricir segment witir tire seqence

associated witir tins gene found in tire M. jannascÏci geirome at [643507.643758].

Tire GC-content for each ciass found in tire segmentation is sirown in Table 5.21.

Aithougir we used 2 classes to segment onir seclueirce in order to determine GC-rich and

GC-poor segmeirts, we fomrci tire obtarned GC-content values do not distinguisir tirese

two kinds of segurents very weii if we nsed eitirer AIC or no penalties with minimum

ieugtir values applied. Coirsequentiy, it may lie difficuit to distinguisir between GC

ricir and GC-poor segmeirts when anaiyzing tins segmentation. In contrast, tire GC

coirtent values caicnlated from tue other tests were more characteristic of GC-riclr

and GC-poor segmeirts aird cari be easily identified iir tire segmentation.

Case 2: 3 Classes

Like the case where two classes were coirsidered. data overfitting was observed iir the

segmented M. annascÏnt geironre if we used AIC or no penalty values. Figures 5.18
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(u) \Vithout mininanli lengths

Nihiber of Nuiiiaber of Number of
Test Name rRNA tRNA rRNA alld tRNA

fom;d found found
None 6 37 43
AIC 6 37 43
BIC 6 21 27
MDL 6 20 26

(b) With minimum lengths

Number of Nmnber of Nuiiber of
Test Name rRNA tRNA rRNA auJ tRNA

fornid founci found
None 6 37 43
AIC 6 37 43
BIC 6 21 27

MDL 6 20 26

Table 5.20. RNA found by implementation for M. jannascÏin when using 2

classes without and with minimum Iengths.
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(a) \Vithout minimum lengtÏis

Class O Class 1
Test Name Penalty Score

7GC GC
None 0 392433.5 0.0 100.0
AIC 2.0 10919.063 29.4 78.5
BIC 14.325317 2292.9995 31.2 61.6

MDL 15.018465 2279.2048 31.2 61.6

(b) With minimum lengths

. Class O Class 1Test iName Penalty Score
GC eGC

Noie 0 74798.42 21.8 40.5
AIC 2.0 50029.78 21.7 36.5
BIC 14.325317 2292.9995 31.2 61.6

MDL 15.018465 2279.2048 31.2 61.6

Table 5.21. Summary of experimental data for iii. jarinaschzî when using 2
classes without and with minimum lengths.

and 5.19 illustrates the nucleotide distribution from DNA segmentation using BIC

and MDL for both without and with minimum length values.

for AIC alld no penalty values. the DNA segmentation was able to reveal ah the

ribosomal auJ transfer RNA segments regaidless of whether minimum length values

Tere used or not. In contrast. as shown in Table 5.22, a fractioll of transfer RNA

were detected for BIC auJ MDL test cases. Like the previous case. the RNase P RNA

gene for M. jannaschii was found.

Aithougli seginellts in a sequence can be cha.racferized as GC-rich and GC-poor.

as demonstrated in the previous case, it mav be possible to include aclditional GC-rich

segments with different GC-coiitent values. We segmented the il’!. jan’naschi’i seclueiice

using 3 classes. where we associated one class as GC-poor auJ two classes as GC-rich

segments but with different GC-content values. As showu in Table 5.23. we could sec

how flic M. jannasckii genome can be segmented based on this possibility. However,
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or experimental data also demonstrated classes that were not foiind and tlierefore

coud be omitted from flic segmentatioll.

(a) \Vithout rniriimuni Iengths

Number of Number of Nuiiber of
Test Name rRNA tRNA rRNA and tRNA

foullcÏ found found
I\one 6 37 43
AIC 6 37 43
BIC 6 22 28

MDL 6 20 26

( b) \Vith minimum lengths

Number of Number of Number of
Test Name rRNA tRNA rRNA and tRNA

found found founci
Noue 6 37 43
AIC 6 37 43
BIC 6 20 26

MDL 6 19 25

Table 5.22. RNA found by implementation for M. jannaschii when using 3

classes without and with minimum lengths.

Case 3: 6 Classes

Overfitting was observed wlien we applied AIC or iio penalty values to calculate flic

DNA segmentation of M. jannasch.ii. Tlie nucleotide distribution for tlie BIC and

MDL tests were illustrated figures .5.20 auJ 5.21.

Unlike flic AIC and no penalty tests in wliicli flic DNA segmentation revealed ail

flic ribosomal alld transfer RNA segments. a portion of transfer RNA were detected

for BIC and MDL tests as sliowll in Table 5.24. Tlie RNase P RNA gene for tliis

genome was also observed.
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(a) \Vitbout mininmni lengths

Class O Class 1 Class 2
Test Name Penalty Score

GC c %GC
None 0 456894.3 0.0 - 100.0
AIC 2.0 174689.28 14.7 33.4 100.0
BIC 14.325317 2319.419 31.2 61.8 70.1

MDL 15.42393 2294.2566 31.2 61.8 67.9

(b) With minimum lengths

Class O Class 1 Class 2
Test Name Penalty Score

%GC GC
None 0 77393.234 20.8 31.1 42.0
AIC 2.0 9875.5 32.2 44.7 20.2
BIC 14.325317 2310.6177 31.2 61.9 -

MDL 15.42393 2290.3052 31.2 61.9 -

Table 5.23. Summary of experimental data for M. jannascÏiiz when using 3

classes without and with minimum lengths.

Tables 5.25 provides a snmmary of cadi DNA segmeiltation test for tic ]IL jan

naschii genome. Like before, it is possible that some segmentation classes can be

omitted.

Case 4: 10 Classes

Wiien we used tic AIC or no penalty valnes to segment tic M. ja’nnaschii genome.

tue seqnence was fonnd to be ieavily segmented and segmentation to be overfitted.

Pignres 5.22 and 5.23 gives a graphical representation of how the micleotides are

clistribnted based 011 CC-content.

Table 5.26 presents tic number of ribosomal auJ transfer RNA segments found

hi comparison to tiose defined by tic NCBI database. We also founci tic RNase P

RNA gene for tus genome as stored in tic ribonuclease P database.

Even tiongi we attempted to segment tic M. jannaschh sequence using 10 classes
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Figure 5.21. Nucleotide distribution in ii. janriascÏt. based on GC-content for

BIC and MDL tests with minimum Iengths when using 6 classes.
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ta) \\Titliout mininiuni lengths

Number of Number of Number of
Test Name rRNA tRNA rRNA and tRNA

found found fomïcl
None 6 37 43
AIC 6 37 43
BIC 6 23 29

MDL 6 20 26

( b) With minimum lengths

Number of Number of Number of
Test Name rRNA tRNA rRNA auJ tRNA

fouiid found found
None 6 37 43
AIC 6 37 43
BIC 6 21 27

MDL 6 19 25

Table 5.24. RNA found by implementation for M. jarinaschii when using 6

classes without and with minimum Iengths.



8$

(a) ‘sVithout niininiurn lengths

Test Name Penalty Score Class %GC Class 7cGC
0 0.0 3 -

Noue 0 411425.62 1 - 4 100.0
2 - 5 100.0
0 0.0 3 56.8

AIC 2.0 1328935.0 1 23.0 4 78.2
2 37.5 5 100.0
0 31.2 3 62.4

BIC 14.325317 2342.75 1 55.4 4 -

2 57.8 5 70.1
0 31.2 3 62.7

MDL 16.117077 2305.5107 1 54.7 4 -

2 60.6 5 63.8

( b) With minimum lengths

Test Name Penalty Score Class ¶CC Class %GC
0 17.9 3 38.1

Noue 0 116933.086 1 25.1 4 44.8
2 31.7 5 62.4
0 19.2 3 40.2

AIC 2.0 82396.46 1 29.4 4 44.2
2 34.9 5 62.6
0 31.2 3 62.4

BIC 14.325317 2334.582 1 55.4 4 64.5
2 .57.8 5 -

0 31.2 3 62.7
I\1DL 16.117077 2305.8728 1 54.7 4 -

2 60.6 5 -

Table 5.25. Summary of experimental data for M. jannasch’ii when using 6

classes without and with minimum length.
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that includes a variety of GC-content vaines. it is clear from the snmmary presentecl

in Table 5.27 that some classes can lie omitted silice they were not found in f lie seg

mentation. Fiirthermore, the MDL penalty value may lie too severe for segmentation

silice we ohserved fewer classes fond than if we used BIC. Hence. it is possible to

segment t.his seqtience using 4 or 5 classes with the BIC segment transition penalty

value appiied.

(a) \Vithout mininium lengths

Number of Nnmber of Number of
Test Name rRNA tRNA rRNA and tRNA

fomid fonnd fonnd

None 6 37 43
AIC 6 37 43
BIC 6 23 29

Iv1DL 6 20 26

(b) ivVitb minimum lengths

Number of Number of Number of
Test Name rRNA tRNA rRNA and tRNA

fonnd found found
None 6 37 43
AIC 6 37 43
BIC 6 21 27

MDL 6 19 25

Table 5.26. RNA found by implementation for iii. jannaschii when using 10
classes without and with minimum lengths.
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(a) \Vithout minimum lengths

Test Name Penalty Score Class %GC Class tY0GC Class %GC

None 0 456894.3

0 11.3 4 82.4 8 59.6
1 319 5 994 9 716

AIC 2.0 308832.72
2 100.0 6 38.8
3 46.3 7 0.0

BIC 14.325317 2330.747
6

MDL 16.627903 2283.1248

( b) With minimum lengths

Test Name Penalty Score Class GC Class %GC Class %GC

Noue 0 456894.3

AIC 2.0 65343.36

BIC 14.325317 2322.5967

MDL 16.627903 2281.4048

0 31.2 4 - 8 -

Table 5.27. Sumrnary of experimental data for i’LI. jaT1nascÏiii when using 10

classes without and with minimum length.
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5.3 Major Histocompatibility Complex

5.3.1 Description

Using isochoric content as their parameter. Li et al. applied their recursive segmenta

tion algorithm on the major histocompatibilitv complex (MHC) sequence 011 human

chromosome 6p21. Thev obtaineci the resuit as ifinstrateci iII figure 5.24 (Li et al.

2002), where they measured the GC-Content by nsing a moving wmdow whose size is

150 kb a.lld shift increment is 15 kb. The figtire can be interpreted as follows: (A) The

domain borclers are represented by the vertical dotted unes, whereas the GC-content

segmentcd domains are illustrated by the horizontal solid unes; (B) The segmentation

strength s values are clenoted hy the vertical bais. Accorcling to the obtained graph,

they observeci that flic segmentations at three known segment borders possessed the

highest segmentatlon strength. where classes III auJ II are the most homogeneous

segments. We confirmed their filldings b using the EMBOSS software application

using the saiie window size auJ shift increment values.

5.3.2 Tests

Like Li et al.. we clownloaded the J\1HC sequence found in the Sanger Center (“current

concensus’ version. 2$ October 1999. 3.673 .778 bases). We applied our algorithms

using the complexity penalty values as depicted in Table 5.28. As well, we tested

the DNA segmentation using the probability values presented in Table 5.29 auJ the

minimum length values listed in Table 5.30.

Test Name ci
BIC log 3.673.778

MDL log 3.673.778 + log k

Table 5.28. Cornplexity penalty values ci tested for MHC.



(9
Q

o

c)
o

cJ
Q

o

MHC (N=3.6M, sO=20, 11 domains)

2

positIon (Mb)

3

Q
Q
Q

Qo

Q
Q

Figure 5.24. Segmented MHC sequence as found by Li et al. (Li et aI. 2002)

Case Pj(:r)

p(J(S) = 0.458 po(W) = 0.542

4 c1
pi(S) 0.519 pi(W) = 0.181

asses
P2(S) = 0.411 132(11) = 0.589
p3(S) = 0.506 P3(I1’) = 0.494

Table 5.29. Probability values pj(’) tested for MHC.

Case Class I\iiiimiini Length
0 100.000
1 100.000

4 C1ae
‘ 2 100.000

3 100.000

94

CLASSI CLASS III

(CG-458%) 3k CG=70.1’s (CG—519%)

L=i.8Mb L=064Mb

CLASS II EXT CLASS il

(CG=411%) )CG=50.6%)

L=09Mb L=029Mb
Q

-x
Q
Q

o
C

Q
C

o

C

o

658kCC4B5

534k CG-432%

isochore border

s=237

s154s=r

s=171

s=288 (B)

Table 5.30. Minimum length values tested for MHC.
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5.3.3 Resuits

Accordiiig to the grapli illustrated in Figure 5.25. we observed that our algorithm

heavilv segments the MHC seciuence for the BIC test. If we take mininmm lengths into

consideration. however. we could dharacterize our obt ained nucleoticle distributions

to Le estimates of the distribution grapli found Lv Li et ai, as illustrateci in figure

5.26. Like Li et al.. we fomid regions defined by classes II anci III to Le the most

homogeiwous. whereas the region defined by class I to Le the least. Whether we apply

minimum length values or iot. we obtained identical nucleotide distributioll graphs

when we iised the MDL penalty value.

Figure 5.25. Nucleotide distribution in MHC based on GC-content for BIC and

MDL tests when using 4 classes.

Figure 5.24 illustrateci the segmentation of the MHC secluelice. where it consisted

of segments of at least 100-kb. As illustrateci in figure 5.27. we found the nucleotide
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Figure 5.26. Nucleotide distribution in MHC based on GC-content for BIC and

MDL tests with minimum Iengths when using 4 classes.

50.0%

55.0%

50.0%

w

45.0%

V

40.0%

35.0%

0 500000 1000000 1500000 2000000 2550500 3000000 3500000

Nucleotde Posfton



97

distribution determinecl experimentaÏly using the minimum lengths provided a reason

ably good estimation of the distriblltioll found by the EMBOSS software application,

where we applied the sanie window size anci shift increnient values as those defined

by Li et al.
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50.0% fl n 1

R Ii _
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UI
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30.0%
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Figure 5.27. Nucleotide distribution in MHC based on GC-content for BIC test

with minimum Iengths when using 4 classes (dashed line) and EMBOSS (solid

line).



Chapter 6

Conclusions

6.1 Discussion

Iii oiir research, we illtroduced differeiit statistical models that cari Le rised to segmeit

a giveil genomic sequence: Bayesian approach, indden Markov model, and different

coniplexity penalties. As well, we cliscussed how segmentation algorïthms cari Le

aiso applied to otiier problems that do not involve segmenting sequences based on

isociïoric content.

Ouï research work preseirted two different implementations of the penalty-based

Lest segmentation model: without and with minimum segment lengths. Using ouï

inïplement ations. we used the bacteriophage ;\, Methanocaïdococcus janriaschii. and

MI-IC genoie sequences to demonstrate how they can Le segmenteci baseci on their

GC-content. From ouï nucleoticle distribution analysis of the bacteriophage ,\ and

MHC genome sequences using 4 classes. we found the experimental segmentations

gave an interestingiy good graphical estimation of tire graphs determined by the

EMBO$$ software application. In tire case of tire Methanocaïdococcus ja’nnaschii se

quence. ouï implemented segmentation algorithms were able to identify ail ribosomal

and RNase P RNA fragments based on their GC-content. However. we found that tire
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nuniber of transfer RNA fragnients depends on the penalty and minimum segment

lengths.

In generaL we observed that tin amount of segmentation in a sequence is imrersely

proportional to the coniplexity penalty values, that is, the number of segments tends

to increase whenever the penalty is lower and vice versa. We found the risk of

overfittmg data to be higher when using AIC aud no penalty values to segment or

sequences. Furthermore, our tests demonstra.ted instances in which some probability

classes were not fonud in the segmented sequence and therefore can be oniitted.

Finally. we found the MDL peialty value to be severe since, as demonstrated in

our Methanocaldococczis jaunescliii genome segmentation. there is a tendency for the

mimber of found classes to be lower than if the BIC penalty value was applied.

6.2 Future Work

While the crirrent implementation was able to successfrilly segment the sequences

used in this project. some improvements could be made. For example. we wonld need

to optimize the source code snch that it can handle very long sequences since the

current memory reqnirements is 0(n2). Grice et ai. (1997) proposed the checkpoint

based algorithm in which it wonld reduce memory requirements to 0 (n where L

is some arbitrary integer. and wonkl be applicable t.o the forward-backward training

of linear hidden Ma.rkov models.

Althongh we were able to segment the bacteriophage ). M. jannasckii, and major

histocompatibility complex (MHC) on human chromosome 6 secluences. one addi

tional test that wonld be of interest is the segmentation of the human genome where

we conld analyze the human isociïores cletermined by onr segmentation algorithms.
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