
Université de Montréal

Workftow Technology for Complex Socio-Teclmical Systems

par

Sarita Bassil

Département d’Informatique et de Recherche Opérationnelle

Faculté des Arts et des Sciences

Thèse présentée à la Faculté des Études Supérieures en vue de l’obtention
du grade de Philosophie Doctor (Ph.D.) en Informatique

Décembre, 2004

© Sarita Bassil, 2004

U5 o

03(

Université
de Montréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does flot represent any loss of
content from the document.

jiuvciit u ivruituai

Faculté des Études Supérieures

Cette thèse intitulée:

Workflow Technology for Complex Socio-Technical Systems

présentée par:

Sarita Bassil

a été évaluée par un jury composé des personnes suivantes:

Président-rapporteur: Houari Sahraoui

Directeur de recherche: Rudoïf K. Keller

Codirecteur: Peter Kropf

Membre du jury: Yann-Gael Guéhéneuc

Examinateur externe: Kostas Kontogiannis

Représentant du doyen de la FES: Jacques Nantel

Sommaire

La technologie des workfiows s’est avérée importante pour des secteurs tels que

l’approvisionnement, la logistique et la production. Elle est définie comme un outil in

formatique dédié à la gestion des procédures d’entreprise. Toutefois, cette technologie

ne supporte pas encore de façon adéquate les exigences inhérentes aux systèmes socio

techniques complexes. Les négociations électroniques et le transport sont des exemples

de domaines qui font appel à de tels systèmes. L’étude de ces deux domaines nous per

met de reconnaître le besoin d’une meilleure technologie des workflows. Par consé

quent, un ensemble élucidé et sophistiqué de concepts et de fonctionnalités pour les sys

tèmes de gestion de workflow (WIMSs) est rassemblé, et des solutions appropriées sont

proposées pour supporter cet ensemble. Dans ce contexte, un modèle de référence pour

les WfMSs est également passé en revue, et une extension de ce modèle est présentée

afin d’accommoder ces concepts et ces fonctionnalités.

Dans cette thèse, nous étudions un système de support pour les négociations électroni

ques (CONSENSUS). Ce système est basé sur un WfMS. Le but de CONSENSUS est

d’assister l’utilisateur dans la modélisation et l’exécution d’un certain type de négocia

tion électronique utilisant les workfiows. Ce système doit cependant supporter la modifi

cation dynamique d’un workflow. Cette fonctionnalité s’avère indispensable pour faire

face aux évènements imprévus qui peuvent apparaître lors d’une négociation. De nos

jours, les WfMSs (par exemple, IBM MQ Series Workflow et WLPI de BEA Systems)

supportent seulement de façon limitée ce genre de dynamisme. Par conséquent, les béné

fices de l’approche CONSENSUS se trouvent être réduits.

Une autre application socio-technique non-triviale est étudiée: la planification et le sup

port du transport multi-transfert de conteneurs (MTCT — Multi-Transfer Container

Transportation). Cette application révèle des besoins en dynamisme pour la composition

iv

des workflows. Nous concevons un système orienté-workflow pour le traitement des re

quêtes clients. Ce traitement est réalisé par des séquences d’activités iiiterdépendantes

qui doivent être créées juste à temps et ensuite adaptées pour répondre aux événements

imprévus qui peuvent apparaître. La création et l’adaptation de ces séquences sont ba

sées sur une gestion optimisée des ressources et sur la planification des activités.

Dans le premier système, nous intégrons un prototype de WflvIS (ADEPT) qui supporte

quelques-unes des modifications dynamiques requises au niveau de l’exécution. D’une

part, cette intégration accroît les bénéfices de l’approche CONSENSUS et d’autre part,

elle dévoile le besoin de plusieurs autres fonctionnalités qui ne sont pas encore tout à fait

supportées par les WfM$s. Dans le deuxième système, le prototype ADEPT est égale

ment utilisé. Son API est enrichie avec des fonctionnalités primordiales et des solutions

de rechange sont nécessaires pour assurer convenablement la définition d’un modèle de

workflow et la gestion (dynamique) des instances.

La réalisation de ces deux applications va au-delà des projets CONSENSUS et MTCT.

En effet, la liste des concepts de modélisation de workflow et des fonctionnalités avan

cées est soigneusement rassemblée. Nous analysons particulièrement les meilleures solu

tions possibles (l’application appropriée des fonctionnalités offertes par un WfMS, des

solutions de rechange, etc.) utilisant trois WfMSs. Nous travaillons également sur une

extension formelle d’un méta-modèle de workflow afin de proposer un critère

d’exactitude pour l’interruption sans risque d’activités en cours d’exécution. Ceci est une

fonctionnalité d’une grande importance. Comme perspectives de recherche, la liste iden

tifiée et les problèmes exprimés peuvent définir un agenda de recherche dans le domaine

des workflows. Les solutions déjà étudiées peuvent être applicables dans le contexte

d’autres applications poussées. Elles peuvent aussi donner aux développeurs de WfMSs

des informations valables pour les futures versions de leurs produits.

Mots clés: technologie des workflows, systèmes de gestion de workflow, concepts de

modélisation de workflow, workflows adaptatifs, application de négociation électroni

que, application de transport, architecture de système.

Abstract

Workflows are a major enabling technology for areas such as supply chains, Iogistics

and production. They aim to provide computer support to the management of business

processes in general. However, this technology offers littie adequate support to require

ments inherent to complex socio-technical systems. The domains of e-negotiations and

transportation are examples that cali for such systems. These domains serve us to inves

tigate the need for an enhanced workflow technology. Hence, a clarified and a refined

set of concepts and functionality for workflow management systems (WfMSs) is gath

ered, and appropriate solutions are proposed to deal with this set. In this context, the

Workflow Reference Model is also reviewed, and an extension thereof is suggested to

accommodate these concepts and functionality.

In this thesis, we study an e-negotiation support system (CONSENSUS) based on a

WfMS. CONSENSUS was developed to help the user model and enact a specific kind of

e-negotiation using workflows. This system requires, however, support for dynamic

modification induced by unexpected events that can occur during negotiation. Current

WfMSs (e.g., IBM MQ Series Workflow, BEA’s WLPI) support this kind of dynamism

in a hmited way only, thus reducing the benefits of the CONSENSUS approach to e

negotiations.

Another complex socio-technical application, the multi-transfer container transportation

(MTCT) application, exhibits inherently dynamic requirements for workflow modeling.

We devise a workflow-oriented system for the processiiig of customer requests for con

tainer transportation. This processing is achieved by specific sequences of interdepend

ent activities that need to be created just-in-time and then adapted to deal with unex

pected events that may occur. The creation and the adaptation of activity sequences are

based on an optimized resource management and activity scheduling.

vi

In the first system, we integrate a WfMS prototype (ADEPT) that supports some of the

required dynamic modifications at the workfiow instance level. On one hand, this inte

gration increases the benefits of the CONSENSUS approach. On the other hand, it sheds

the light on several workflow requirements flot yet fully supported by current WfMSs. In

the second system, the ADEPT prototype is also used. Its API is enriched with useful

ftinctionality, and workaround solutions are required to properly cope with the defmition

of a workflow model and with the (dynamic) management of instances.

The realization of these two applications reaches far beyond the CONSENSUS and the

MTCT projects. Indeed, the “wish list” of workfiow modeling concepts and advanced

functionality is carefully gathered. Particularly, we analyze best effort solutions (proper

use of WfMS features, workarounds, etc.) applying three state-of-the-art WfMSs. We

also work on a formai extension of a workflow meta-model to propose a conectness cri-

tenon for safely interrupting running workflow activities. This is a functionality of ut

most importance. As research perspectives, the identified “wish list” and the probiems

expressed whiie experimenting with current WfMSs may define an agenda for further

research in the workflow technology domain. The already investigated solutions may be

applicable in the context of other challenging applications, and they may give valuable

input to WfMS builders for future versions of their products.

Keywords: workflow technology, workfiow management systems, workfiow modeling

concepts, adaptive workflows, e-negotiation application, transportation application, sys

tem architecture.

Table of Contents

Sommaire jj

Abstract y

Table of Contents vii

List of figures xii

List of Tables xv

List of Acronyms xvi

Dedication xviii

Acknowledgments Xix

Cliapter 1 Introduction 1

1.1 Probteni Statemeitt 1
1.2 Research Objectives 4
1.3 Major Contributions 6
1.4 Thesis Stntcture 8

Chapter 2 Processes, Workflows, and Workllow Management Systems 9

2.1 Workftow Basics and Ctassfications 9
2.2 Workflow Design 12

2.2.1 Petri Nets and Workflows 15
2.2.2 UML and Workflows 16
2.2.3 WSM-Nets Formalism 17
2.2.4 Workflow Temporal Aspects 19
2.2.5 Organizational Structure 21

2.3 Workflow Enactment 23
2.4 Workfiow Management Systems 24

2.4.1 Standardization Effort 24
2.4.1.1 Workflow Enactment Service 25
2.4.1.2 Process Definition Tools 26

2.4.1.2.1 Definition ofProcesses 26
2.4.1.2.2 Classification ofResources 27
2.4.1.2.3 Analysis 27

2.4.1.3 Workflow Client Applications 27

vi”

2.4.1.4 Invoked Applications -28
2.4.1.5 Other Workflow Enactment Services 28
2.4.1.6 Administration and Monitoring Tools 29

2.4.1.6.1 Operational Management Tool 29
2.4.1.6.2 Recording and Reporting Tool 29

2.4.1.7 Discussion ofthe Workflow Reference Model 29
2.4.2 Current Generation of Commercial WfMSs 30

2.4.2.1 IBM MQ Series Workflow 30
2.4.2.2 BEA WebLogic Integration 32
2.4.2.3 Future Prospects ofWfMSs 34

2.5 Sumrnctry 36

Chapter 3 Adaptive Workflows 38

3.1 Chctltenges in Adaptive Workftows 39
3.2 Projects Addressing Adaptive Workflows 41

3.2.1 Workflow Change: Policies and Modalities 42
3.2.1.1 Modification PoÏicies 42
3.2.1.2 Change Modalities 43

3.2.2 Proposed Solutions for Adaptive Workflows 45
3.2.2.1 Description of Key Projects 45
3.2.2.2 Workflow Meta-Model Expressiveness 48
3.2.2.3 Set of Changes Completeness 50
3.2.2.4 Summary ofConectness Verification 51
3.2.2.5 Discussion 53

3.3 Adaptive Workfiow Management Systems 56
3.4 Conctttsion 57

Chapter 4 Wf Technology Applied to Complex Socio-Technical Systems ----59

4.1 Workflow-Oriented Applications 59
4.1.1 E-Business Domain 60
4.1.2 MedicalDomain 61
4.1.3 Banking and Insurance Domain 63
4.1.4 Public Administration Domain 63
4.1.5 Why Studying Complex Socio-Technical Applications? 64

4.2 The Combined Negotiation Application 64
4.2.1 Description of the Application 65
4.2.2 Example of Combined Negotiation Packages 69

4.2.2.1 “Flight Connection” Package 69
4.2.2.2 “Importing” Package 72

4.2.3 The CONSENSUS System 74
4.2.3.1 WLPI Studio Unit 75
4.2.3.2 Enactment Unit 76
4.2.3.3 Coordination Unit 78

4.2.4 Towards a Dynamic Version of CONSENSUS 78
4.3 The Multi-Transfer Container Transportation Application 79

4.3.1 Description ofthe Application 80

x

4.3.2 Examples of Customer Request Processing Planning-$4
4.3.2.1 Customer Request Processing Planning — Simple Example $4
4.3.2.2 Customer Request Processing Planning — Re-planning Example $7

4.3.3 Customer Request Processing 89
4.4 Suinrnaiy 9]

Chapter 5 The Enhanced CONSENSUS System 93

5.1 Dynanzic Aspects ofthe “Importing Package” Example 94
5.2 The CONSENSUS S stem Basecï on an Adoptive WJMS 95

5.2.1 Dynamic Modifications Using ADEPT 95
5.2.2 ADEPT in CONSENSUS 98

5.3 Adoptive Workflow Framework 100
5.3.1 Adaptive Workflows and Transaction Management 103

5.4 Sunnnaiy and Discussion 104

Chapter 6 Workflow Management Requirements 106

6.1 Workfiow Technology Enhancement 107
6.2 Enhanced Workftow Concepts anti Functionalltv 108
6.3 Enhanced Workflow Concepts 110

6.3.1 The Activity Template Concept 110
6.3.2 The Template Classification 111
6.3.3 The Activity Temporal Aspects 112

6.3.3.1 The Activity Starting/finishing Time 113
6.3.3.2 The Activity Duration 114
6.3.3.3 The Activity WUT Concept — Integration ofPreparation Activities 114

6.3.3.3.1 Dealing with the 1 Disadvantage of the “Prep. Act.” Approach:
Introduction of an Intermediate Work-list with a Listener Process 118
6.3.3.3.2 Dealing with the 2nd Disadvantage of the “Prep. Act.” Approach:
Defining Preparation Activities in the Background (First Solution) 119
6.3.3.3.3 Dealing with the 2 Disadvantage ofthe “Prep. Act.” Approach:
A Layered Workflow Architecture (Second Solution) 120
6.3.3.3.4 Extension ofthe Warm-Up Time Concept — An Overview 122

6.4 Enhanced Workflow ftcnctionalit Applied at the Workftow instance Levet 123
6.4.1 The Dynamic Insertion of an Activity 123

6.4.1.1 The Dynamic Insertion ofa New Activity Instance 123
6.4.1.2 The Dynamic Insertion ofa Block ofActivities 124

6.4.2 The Dynamic Deletion of an Activity 128
6.4.2.1 The Interruption of an Act. Execution Whiie Preserving its Context 12$

6.4.2.1.1 formai Framework 131
6.4.2.1.2 Correctness Criterion 137
6.4.2.1.3 Discussion 140

6.4.3 The Dynamic Move of an Activity 142
6.4.4 The Dynamic Modification of Activity Attributes 142

6.4.4.1 The Dynamic InsertionlSetting/Updating of Input Attributes 142
6.4.4.2 The Dynamic Deletion of Input/Output Attributes 144
6.4.4.3 The Dynamic (Re-)Assignment ofActivities to a Participant 145

X

6.4.4.4 The Dynamic Setting/Updating of Time Attributes-145
6.4.5 The Dynamic Management of Work-Iists 146
6.4.6 The Automatic/Manual Modification ofWorkflow Instances 146

6.5 Conclusion 147

Chapter 7 The MTCT System 148

7.1 The Transportation System Framework 149
7.2 Architecture oftheliTCTSystern 151

7.2.1 System Components 151
7.2.1.1 Build-time Components 152
7.2.1.2 Run-time Components 153

7.2.2 Underlying Management Mechanisms 154
7.2.2.1 Workflow Management 154
7.2.2.2 Resource Management 155

7.2.2.2.1 Static Resource Management 156
7.2.2.2.2 Dynamic Resource Management 156

7.2.2.3 Rule Management 158
7.2.2.3.1 Designing Modification Rules 15$
7.2.2.3.2 Implementing Modification Rules 161

7.2.3 Interface of the MTCT System to External Systems 161
7.3 Planning and Modfying the Processing of Custorner Requests - Examptes 162
7.4 Impternentation of the MTCTSystern 165
7.5 Conclusion 168

Chapter 8 Extension of the Specification of the WfRM 170

8.1 Review of the Workjlow Reference ModeÏ 171
8.2 The Proposed Extension 174

8.2.1 Extension oflnterf. 1 (Process Definition Tools) 175
8.2.2 Extension oflnterf. 2 (Wf Client Apps) and Interf. 3 (Invoked Apps) 176
8.2.3 Discussion of Atready Existing Components 177

8.3 functionality Extension of a WJMS 178
8.3.1 Structural Modifications 179
8.3.2 Activity Attributes Modification 179
8.3.3 Work-lists Management 180
8.3.4 Discussion of Cunent Implementation 181

8.4 Conclusion 181

Chapter 9 Conclusion 183

9.1 Summa,y and Discussion 183
9.1.1 The CONSENSUS and the MTCT Applications as Drivers of
Sophisticated Requfrements for Workflow Technology 183
9.1.2 The Identification and the Accommodation ofSophisticated
Requirements for Workflow Technology 184
9.1.3 The Extension of the WRM to Adequately Support Enhanced
Workfiow Technology 187
9.1.4 Further Discussion 18$

xi

9.2 Research Perspectives-188

References 191

Appendix A Extending the Workflow Reference IVIodel: Workflow
Management Application Programming Interface Specification I

A.] Cornpressed Sttnunay ofthe Groups of Operations anfÏ Operations I
A.2 Detailed Sumrnaiy ofthe Groups of Operations and Operations IV
A.3 Description ofthe Extended WAPI Specfication XII

A.3.l Inserting Activities XII
A.3.2 Deleting Activities and Templates XXVII
A.3.3 Moving Activity Instances XXIX
A.3.4 Setting and Updating Attribute Values XXX
A.3.5 Inserting Attributes XXXII
A.3.6 Deleting Attributes XXXIV
A.3.7 Role/User Assignment XXXVI
A.3.8 Time Attributes Assignment XXXVIII
A.3.9 Keeping Modified Process Instances XLIV
A.3.1O Inserting Sub-Workflows XLV
A.3.1 1 Managing Work-Iists XLVI

A.4 WAPI Data Types Addendum XLIX
A.5 WAPI Error Return Codes AddencÏunz LI

References of Appendix A LII

List of Fïgures

Figure 2.1. Ad-hoc, Collaborative, Administrative, and Production Workflows 12

Figure 2.2. The Process Definition Meta-Model, taken from [WfMC99aJ 14

Figure 2.3. Medical Treatment Process 18

Figure 2.4. Example of an Organizational Meta-model, adapted from [RTO2] 22

Figure 2.5. Example of an Organizational Model (Tree Structure) 22

Figure 2.6. WfRlvI — Components and Interfaces, taken from [WfMC95] 24

Figure 2.7. Groups of Operations Distributed within the Five Interfaces of the Workflow

Reference Model. based on [WfMC95] 25

Figure 2.8. Interoperability Models, adapted from [WflvIC95]. (a) Chained, (b) Nested

Sub-Processes, (c) Peer-to-Peer, (d) Parallel Synchronized 28

Figure 3.1. Loop Tolerance in ADEPT/WSM-Nets, adapted from [RRDO4a] 54

Figure 3.2. Markings Adaptation using the SCOC — Syntactic Cut Over Change — in

ML-DEWS/Flow Nets, adapted from [RRDO4a] 55

Figure 4.1. Flight Connection Package Workflow Mode! in WLPI 71

Figure 4.2. Importing Package Workflow Model in WLPI 74

Figure 4.3. CONSENSUS based on BEA Systems WLPI, adapted from [BBKOI] 75

Figure 4.4. WLPI Studio Unit. ta) Workflow Variables, (b) Invoking a Business

Operation, (c) List of Business Operations 76

Figure 4.5. Agent Control and Monitoring Tool 77

Figure 4.6. Example of a Transportation Network, adapted from [TraO4J 85

Figure 4.7. Re-planniig Example. (a) The Proposed Modifications for the Processing of

OR, (b) The Proposed Solution for the Processing ofNR 89

XiII

Figure 5.1. Importing Package during Run-time in ADEPT — Modeled without Decision

Branches. Instance State (a) After Creation, (b) After Moving Task F, (c) After

Deleting Tasks: Ti, T2, 13, and I 96

Figure 5.2. “Importing Package” in ADEPT — Modeled with Decision Branches. (a) The

Whole Picture, (b) Detailed Part of the Process 97

Figure 5.3. WLPI Methods Called by the ADEPT Client Application for the

Implementation of Negotiation Activities 99

Figure 5.4. Adaptive Workflow Framework 100

Figure 5.5. Sequence of Messages Bxchanged (a) during a Normal Execution ofa

Workflow Instance, (b) when an Activity Insertion is Required, and (c) when an

Activity Deletion is Required 102

Figure 6.1. Workflow Technology Enhancement 10$

Figure 6.2. Integrating “Preparation Activities” to a Workflow. ta) A Workflow with

Two Activities (“a” and “b”) Defined in Sequence, (b) Integrating “Prep: a”, (c)

Integrating “Prep: b”- 116

Figure 6.3. The Mechanism of an Intermediate Work-list with a Listener Process ---- 119

Figure 6.4. Sending “Preparation Activities” to the Background 120

Figure 6.5. Explanation of the Layered Workflow Architecture for the Support of the

WUT Concept 120

Figure 6.6. The “Proclet” Idea for the Support of the WUT Concept 122

Figure 6.7. Steps for the Dynamic Insertion ofa Sub-Workflow 126

Figure 6.8. Valid Structure ofthe Workflow Resulting ftom Step 1 126

Figure 6.9. Valid Structure ofthe Workflow Resulting from Step 2 127

Figure 6.10. Example ofa Sub-Workflow Including a Loop 127

Figure 6.11. Data Classification Scheme 131

Figure 6.12. Medical Treatment Process (Atomic Steps) 133

Figure 6.13. Container Transportation Process 135

Figure 6.14. Data Classification in the Medical Treatment and Contaiiier Transportation

Processes 137

Figure 6.15. Container Transportation Scenario 140

xiv

Figure 7.1. Transportation System Famework
- 149

Figure 7.2. Different Steps ftom the Detection of an Event tiil the InstantiationlChange

ofWorkflow Instances 150

Figure 7.3. Architecture of the MTCT System 152

Figure 7.4. Entity-Relation Diagram for the Resource Management in the MTCT System

156

Figure 7.5. Example h ADEPT ofa Planned Unavailabiiity Workflow Instance for the

Two Drivers McCain and Watson 156

Figure 7.6. Workflow Instance Creation and Adaptation Foilowing a Request Arrivai —

State Diagram 160

Figure 7.7. A Transportation Network Representation: Resources Represented as Icons

in a Simulation Environment 162

Figure 7.8. “Request Information” Form 163

Figure 7.9. A Modification Rule of the Pool of Workflow Instances 164

Figure 7.10. The Added MecÏicttor Component within the ADEPT Structure 166

Figure 7.11. Screenshot of the MTCT System Version 0.1. (a) The Envfronment of the

System Administrator, (b) The Environment ofthe Drivers 168

List of Tables

Table 2.1. Wf Modeling Formalisms and Wf Management Systems 37

Table 3.1. Adaptive Wfs Key Projects — Wf Meta-Model Expressiveness 48

Table 3.2. Adaptive Wfs Key Projects — Correctness Verification of Changes 51

Table 4.1. Act. Templates Involved in the Proc. ofa Cust. Request for Cont. Transp.--$1

Table 4.2. Duration Between Two Locations (in minutes) $5

Table 8.1. Groups of Ops Distributed within Interfaces 1, 2 and 3 ofthe WfRM 173

List of Acronyms

ADEPI: Application Development based on Encapsulated pre-modeled Process Tem
plates

API: Application Programmhig Interface

B2B: Business to Business

B2C: Business to Consumer

BPEL4WS: Business Process Execution Language for Web Services

BPM: Business Process Management

C2C: Consumer to Consumer

CIRANO: Centre Interuniversitaire de Recherche en ANalyse des Organisations

CN: Combined Negotiation

CONSENSUS, CNSS: Combined Negotiation Support System

CORBA: Common Object Request Broker Architecture

DWM: Dynarnic Workflow Model

ECA: Event-Condition-Action

EFT: Earliest Finishing Time

EST: Earliest Starting Time

FDL: Workflow Definition Language

GNP: Generic Negotiation Platform

GPS: Global Positioning System

ICN: Information Control Net

IT: Information Technology

JDBC: Java Database Coimectivity

LFT: Latest Finishing Time

LST: Latest Starting Time

MCS: Minimal Critical Specification

ML-DEWS: Modelirig Language to support the Dyriamic Evolution within Workflow
Systems

MR: Modification Rule

MTCT: Multi-Transfer Container Transportation

xvii

0M: Optimization Model

OPL: Optimization Programming Language

PDP: Pick-up and Delivery Problem

ST: Starting Time

TSE: TRP (Technical Reinvestment Project) Support Environment

UML: Unified Modeling Language

URL: Uniform Resource Locator

WAP: Wireless Application Protocol

WAPI: Workflow Application Programming Interface

WAR: Write After Read

WARIA: Workflow and Reengineering International Association

WARP: Workflow Automation through Agent-based Reflective Processes

WAW: Write After Write

Wf: Workflow

WfMC: Workflow Management Coalition

WfMS: Workflow Management System

WfRIVI: Workflow Reference Model

Wf-XML: Workflow Extensible Markup Language

WLPI: WebLogic Process Integrator

WNM: Workflow Net Mode!

Woflan: WOrkFLow ANalyzer

WPDL: Workflow Process Definition Language

WSCI: Web Services Choreography Interface

WSCL: Web Services Conversation Language

WSDL: Web Services Description Language

WSM: Workflow Sequential Mode!

WSM-Nets: Well-Structured Marking-Nets

WUT: Warm-Up Time

XML: Extensible Markup Language

XPDL: XML Process Definition Language

XRL: eXchangeable Routing Language

xviii

I dedicate this thesis to iny parents, Jean and Colette.
This thesis could neyer have been accornplished

withzottt their unconditional love and support.
Yott are the war,ntÏi inside my heart and the reason in ny sout.

You made me what I am now.

I dedicate this thesis to Joanna, iny dear sister andfriend.
To your affection, love and kindness.

May God bless you and keep you safe.

Acknowledgments

I would like to thank Rudoif K. Keller, associate professor at the University of Montreal,

for giving me the chance to join his team at CIRANO (Centre Intertmiversitaire de Re

cherche en ANdilyse des Organisations), and for supervising this research. His determi

nation, his critical sense and his clear sightedness helped me to progress in the best re

search axes.

My thanks also go to Peter Kropf, professor at the University of Neuchâtel (Switzer

land), for co-supervising this thesis. His availability, ail the valuable discussions I had

with him, and his encouragement were a significant factor in the sttccess of this work. I

thank him as welI for inviting me to spend six months at the University of Neuchâtel,

and for supporting me ail along my stay. This stay helped in speeding up the writing

process of the thesis.

I would like to thank Houari Sahraoui, professor at the University of Montreal, for pre

siding my jury. Yann-Gaei Guéhéneuc, professor at the University of Montreal and

member of my jury, may also find here the expression of my appreciation. Furthermore,

I thank Jacques Nantel, professor at FIEC, for representing the Faculty Dean at my thesis

defense.

My gratitude also goes to Kostas Kontogiannis, professor at the University of Waterioo,

for accepting to be the extemai examiner. I thank him for having encouraged me once,

during our meetings at CSER (Consortium for Software Engineering Research), to work

on a Ph.D.

I would also like to thank the NSERC (Naturai Sciences and Engineering Research

Councii of Canada), Beil Canada and CIRANO. Definitely, the completion of this re

search was made possible thanks to ftinding provided by the NSERC (CRD-224950-99),

xx

Beli Canada’s support through its Beil University Laboratories R&D program, and sup

port by the CIRANO. I thank each ofthe CIRANO’s researchers and employees.

Thanks to Morad Benyoucef former Ph.D. student at the CIRANO and now professor at

the University of Ottawa, for mtroducing me to the CONSENSUS project and for his

collaboration.

I would like to thank Peter Dadam, professor at the University of Ulm (Germany), for

making me the honor to be interested in my rcscarch and to invite me to spend two

weeks at the Database and Information System Department. My special thanks go to

Manfred Reichert, former junior-professor at the University ofUlm and now professor at

the University ofTwente (The Netherlands), for the valuable comments he made during

our numerous exchanges and for his friendship. My sincere appreciation and admiration

also go to my collaborator and friend Stefanie “Steffi” Rinderle for her contribution to

my research. Moreover, I thank Steffi and Manfted for making my stay in Germany an

enjoyable experience.

Finally, I thank every person caring about me. In particular, my special and sincere

thanks go to Dr. Roger Hakimian, a dear friend, for aiways being close to me despite the

geographical distances between us. I am also grateful to every member of my farnily,

especially those in Lebanon, for thefr prayers, attitude and lice words.

Chapter J Introduction

7.1 Problem Statement

For competition purposes, today’s organizations are forced to streamiine their way of

doing business. In this context, often a process logic is applied. It consists of focusing on

the business processes described within these organizations. A business process is de

fined as a set of one or more linked activities, which coliectively realize a business ob

jective [WfMC99b]. Speciflcally, these activities are carried out, in a coordinated way,

by different processing entities, including humans and software systems, in order to

reach a goal, such as delivering merchandise or operating a patient. Since organizations

typicaliy work in dynamic environments their business processes require to be just-in

time modified.

WorLflows correspond to a technology that aims to provide as much computer support as

possible to the management of business processes. This technology has gained great at

tention in recent years because the success of organizations is more and more associated

with the effective use of information technoiogy, mainiy to support their business proc

esses. Workflow Management Systens (WfMSs) allow for capturhig formai descriptions

of business processes and for supporting the automatic enactment of processes based on

those formai descriptions. We say that WflVISs support the modeÏing (i.e., build-time)

and enactment (i.e., run-time) of workflows, and we differentiate between a workflow

modet and a workflow instance which is the representation of a single enactment of a

workflow modei. In particular, systems that support the workflows in a specific business

situation or that are adapted to a particular application are called workflow-oriented (or

workflow-based) systems. They consist of a WtM$ hi addition to the application-specific

modules.

7

By adopting a specific business solution, such as implementing workflow-oriented sys

tems, organizations are usually interested in optimizing their profits as much as possible.

This optimization goal is however sometimes compromised when, for instance, we are

forced to follow a predefined set of linked activities without being able to take into ac

count real-time events, possibly coming from the extemal environment, and to react ap

propriately with profitable adaptations. The adaptation problem in workflows, also

known as the area of adaptive workflow tecÏmotogy, was flot yet addressed by the busi

ness process management community in a significant manner with respect to real-world

applications:

• The Workflow Reference Model (WfRM) {WfMC95] developed by the Work

flow Management Coalition1 (WfMC) [WfMCO4] as an overali model for work

flow management systems does not support refined workflow issues such as

adaptive workflows. This lack of support reduces the benefits of workflow tech

nology, and discourages the building of sophisticated workflow-oriented sys

tems.

• Workflow ineta-models that form an integral part ofWflvISs and that (1) include

a set of modeling concepts used to define workflow models, and (2) support the

specification of workflow aspects that are relevant for enactment (e.g., the con

trol flow, the data flow, and the assignments of activities to processing entities),

are not expressive enough to allow practically relevant modifications. As an ex

ample, if a workflow meta-model does not explicitly consider data flows, there

would be no way to deal with data during workflow modifications: the inser

tionldeletion of data would not be possible; flirthermore, the correctizess verifi

cation regarding the application of modifications on workflow instances will not

include the verification of data, i.e., whether data are conectly provided or not.

• The sets of allowed modification operations proposed by current adaptive work

flow projects are stii incomplete. Particularly, the studied modification opera

The WfMC, founded in August 1993, is a non-profit, international organization of workflow vendors, users, analysts and univer
sity/research groups. Its goal is to develop standards for workllow systems operation. and to promote knowledge of the technology
within the industry.

3

tions are limited to workfiow structural modifications (i.e., modifications at the

control flow level, such as inserting/deleting an activity). Activity attribute

modifications (i.e., modifications at the data fiow level, such as inserting/deleting

an activity attribute) are flot addressed.

The correctness criteria defined to verify that a workfiow instance is compliant

with the proposed modifications (i.e., modifications will not cause inconsisten

cies or errors for the rest of the workflow instance processing) are sometimes too

restrictive.

The study of sophisticated workfiow requirements, including in particular the need for

modification facilities that allow for adapting workflow instances during run-time, is the

principal subject of this work. We address adaptiveness at the workflow enactment level

by introducing new modification operations and their corresponding correctness criteria,

and at the modeling level by further developing existing workflow concepts, defined by

work flow meta-models, to include flexibility.

We realized that only real-world applications reflect the relevant needs for workfiow

technology. Our research envfronment, the CIRANO — Centre Intenuziversitaire de Re

cherche en ANalyse des Organisations, gathers expertise in economic science and opera

tions research. Hence, this represents a most valuable opportunity to consider appli

cations and to address systems in the context of these specific fields. We chose to talk

about complex socio-technicaÏ systems to reflect the fact that multiple actors are using

such systems in a coordinated way requiring the management of shared resources (i.e.,

social aspect), that the applications addressed by those systems stem ftom technical

flelds (i.e., technical aspect), and that these systems need to be reactive, they may also

involve a number of technologies, such as optimization engine technology and rule en-

gifle technology, in conjunction with the workftow technology (i.e., complexity aspect).

This doctoral research has partly been conducted within the 11M (Towards Electronic

Marketplaces) project, a joint industry-university project supported by the Beil Univer

sity Laboratories, NSERC (National Sciences and Engineering Research Council of

Canada), and CIRANO. The objective of this project was to address market design is

4

sues h respect to resource allocation and control, and reward mechanisms, to investigate

open protocols for e-marketplaces, and to explore concepts and tools for e-business. The

work that we canied out was partly associated with the last topic. In particular, a work

flow-based support system for e-business application has been studied (i.e., the CON

SENSUS application). Our work went however beyond the only e-business application

by exploring an application from the transportation domain as well (i.e., the MTCT ap

plication). CONSENSUS and MTCT are from quite different domains. This adds to the

generality of our research.

1.2 Research Objectives

The objectives of this research project are summarized as follows:

(1) The extension of the WfRM to adequately support adaptive workflows.

Currently, the WfRM is a generic, domain-independent model. It only supports

basic workflow aspects. However, successful workflow-oriented systems are

the ones that are tailored for particular applications stemming from specific

domains (e.g., the medical domain):

• We decided in our research to focus on specific domains. This approach

has the potential of behig a constructive method for deriving, as an exten

sion of the WfRM, an architectural framework for adaptive workflows.

• We will demonstrate that the construction of effective workflow-oriented

systems requires an extended WfRM. For this purpose, an already existing

workflow-oriented system will be reviewed and extended for better sup

porting an e-negotiation application.

(2) The identification and specification of the extension requirements for the

next generation of adaptive workflows. The identified list of requirements

shail enable better specifications to be developed within the context of the ex

tended WtRM:

5

• We wil address these requirements in the best appropriate manner to make

them availabie from an existing Workflow Management System (WfMS),

thus foilowing a best practice policy.

• We will demonstrate that a formai specification can be provided for the

support of such requirements. This specification wi!i extend a state-of-the

art workflow modeling language. In particular, we wili present a nove! so

!ution to the probiem of workflow activity interruption. We will show how

to preserve the context of iiitenupted activities.

(3) The design of an adaptive workflow system architecture that respects the

extended WfRM:

• We wiil show that the extended mode! encourages the construction of ef

fective adaptive workflow-oriented systems. For this purpose, a concrete

architecture that stems from the extended WtRM wiIl be devised. As a

proof of concept, this architecture will be adapted to a transportation app!i

cation.

• We wi!! imp!ement an adaptive workflow-oriented system prototype to

evaiuate the quality and scope of the mode! extension and of the derived

architecture.

A conventiona! research approach wou!d suggest to formally study workflow require

ments and then va!idate the requirements in respect to specific app!ications. In our re

search, we took a slight!y different approach. We set off by investigating a number of

specific app!ications ftom where we derived workflow requirements as input for our re

search. This application-driven approach proved quite effective in identifying realistic

requirements and in providing solutions that are readi!y applicab!e to rea!-world prob

iems.

6

1.3 Major Contributions

In the course of this research project, we have extended the WfRM. A new architectural

ftamework for adaptive workflows has been proposed (cf. Chapter 5):

• The model alÏows for designing concrete workflow-oriented system architectures

in the context of specific applications stemming from specific domains.

• The model supports adaptive workflows.

We have identified a list of requirements for adaptive workflows. This list includes new

concepts, such as the activity template concept, the atomic step concept and the activity

warm-up time concept, and enhanced functionalities, such as the interruption of an activ

ity execution, the dynamic move of an activity, and the dynamic modification of activity

attributes. As a proof of concept, we have proposed best effort solutions (proper use of

WfMS features, workarounds, etc.) to address these requirements based on three state

of-the-art WEVISs. The problems encountered while experimenting with those systems

may give WfMS builders valuable input for future versions of their products, and may

define an agenda for further research in the domain (cf. Chapter 6).

Particularly, we have proposed a formai framework to conectÏy address the issue of

safely interrupting running workflow activities in case of exceptional situations. This

issue is a major requirement for the next generation of adaptive workflows. In the con

text of this framework, we have introduced a lower level of granularity to the modeling

of activities by defining the atomic step concept, and we have elaborated a data classifi

cation scheme that puts the frequency of updating activity data and the relevance of

these data into relation. We have formally derived a conectness criterion for the safe in

terruption of a running activity (i.e., interrupting a running activity by keeping its con

text) (cf. Chapter 6).

We have extended the combined negotiation support system CONSENSUS2, an e

CONSENSUS is a workflow-based system that helps the user mode! and enact a combined negotiation. Combined negotiations are
defmed as a nove! and a general type of negotiation in which the user is interested in a package of goods or services and conse
quently engages in many negotiations at the same time [BAV÷O1].

7

business application that was developed by Benyoucef [BAV+O1] (cf. Chapters 4 and 5):

• The extended CONSENSUS supports dynamic modifications induced by unex

pected events possibly occurring durhig negotiations. It allows for mov

ing/deleting an already scheduled e-negotiation activity, for inserting a new ac

tivity, and for changing the attributes of an activity.

• We used the WfMS prototype ADEPT3 [RRDO3a, RTO2I in order to accommo

date these modifications. We have proposed an extension to ADEPT to support

the whole set of modification operations required by CONSENSUS, and to allow

the “automatic cali” feature for the implementation of e-negotiation activities.

Finally, based on the designed architectural ftamework for adaptive workflows and tak

ing into account the identified list of workflow requirements and the proposed solutions

to address these requirements, we have proposed an original adaptive workflow-oriented

system applied iii the transportation domain: the multi-transfer container transportation

system MTCT. It allows for the processing of customer requests for container

transportation. In this context. an innovative integration problem involving workflow

technology, optimization engine technology and rule engine technology, was studied.

This should give interesting input for the development of new solutions and tools in the

transportation domain (cf. Chapter 7).

Various aspects of this work have already been published in the proceedings of the in

ternational conferences and workshops: BPM’2004 (IntenzationctÏ Co,ference on Busi

ness frocess Management) [BKKO4], ICECR-4 (International Cotference on Etectronic

Commerce Research) [BBKO1], ODYSSEUS’2003 (International Workshop on freight

Transportation and Logistics) {BBK+03] and DEXA’2002 (International Workshop on

Datctbase ctnd Expert Systems Applications, In tel7zationaÏ Workshop on Negotiations in

e-Markets) {BBK+02a]. A ftirther paper has recently been accepted for publications in

ADEF (Application Developmenl based on Encapsulated pre-modeled Process Templates) in one of the few available WfMS
research prototypes dealing with adaptive workflows. It offers temporal constraint management. workflow modifications, synchroni
zation of inter-workflow dependencies. and scalability [RRDO3aJ.

8

the proceedings of the international conference ICEIS’2005 (International Conference

on Enteiprise Information Systems) [BRK+05].

1.4 Thesis Structure

The reminder of this thesis is structured as follows. Chapter 2 gives a general overview

of related work in the area of processes, workflows, and workflow management systems.

Particularly, we review the WfRM as defined by the WfMC. In Chapter 3 we focus on

adaptive workflows. We provide a state-of-the-art assessment on existing workflow

modification projects and shed the light on extension points. Chapter 4 presents two dif

ferent applications (the CONSENSUS application and the MTCT application) that out

line (1) the need for an adaptive workftow framework, and (2) the requirements to ad

dress new concepts and functionality in workflow technology. In Chapter 5 we discuss

an extended version of CONSENSUS, and we provide an overall architecture as an ex

tension to the WfRTVI for supporting adaptive workflows. The CONSENSUS application,

its extension, and the description of the MTCT application serve as a motivation to

Chapter 6, which presents possible solutions to specific problems in adaptive workflow

systems. In particular, this chapter presents a novel solution to the problem of workflow

activity interruption. Chapter 7 introduces a system architecture as a solution to the

MTCT problem using adaptive workflows. This architecture stems ftom the overall ar

chitecture provided in Chapter 5. Chapter 8 proposes a detailed extension to a workflow

application programming interface (WAPI) to support adaptive behavior within the con

text of the WfRM. Further details about the extension of the WfRM WAPI specification

are annexed to the thesis in Appendix A.

Each of these chapters is ended either by a “Conclusion” section, a “Summary and Dis

cussion” section or simply a “Summary” section. A “Conclusion” section refers to an

analytic conclusion where a qualitative analysis of the chapter or of some issues related

to the chapter is given. The last chapters of the thesis are ended with a “Conclusion” sec

tion (Chapters 3, 6, 7 and 8), while the first chapters are rather ended with a “Summary”

or a “Summary and Discussion” section (Chapters 2, 4 and 5).

Chapter 2 Processes, Workflows, and Workflow

Management Systems

Complex tasks must be structured with some model representation to facilitate their

management as well as the automation of their execution. Workflow technology has

been proposed to deal with this kind of tasks. The WIMC proposes a definition of work

flow that is widely used within the literature. A workflow is considered as “the automa

tion of a business process — defined as a set of one or more linked activities, which col

lectively realize a business objective —, in whole or part, during which documents, in

formation or tasks are passed from one participant to another for action, according to a

set of procedural rules” [WIMC99b]. From a more general perspective, not necessarily

related to the business world, a process is defined as a set of partially ordered steps in

volved in reaching a goal [CK092].

To support automation, a Workflow Management System (WfMS) can be defined as a

software that manages a workflow efficiently by tracking and controlling its execution.

It supports the definition, the execution, and the monitoring of a workflow [WfMC99b].

This chapter is structured as follows. Section 2.1 explains the terminology related to

processes and workflows and reviews workflow classifications. Sections 2.2 and 2.3

consider in detail the two main constituents of workflow management: workflow design

and workflow enactment. Section 2.4 addresses WfMSs: an emerging standard is re

viewed and specific WfMSs are studied. The chapter is summarized in Section 2.5.

2.1 Workflow Basics and Classifications

In order to set up a nomenclature for specifications, as wefl as for discussions among

users, analysts, and researchers, the basic terms related to processes and workflows need

to be defmed. Many papers propose a terminology relating concepts as well as relation-

‘o

ships among them [DNR9O, FH92, LS97, WfMC99b]. The concepts defined by the

WfMC [WfMC99b], and then refined by van der Aalst and van Hee in [AHO2], are the

most widely applied ones within the business process management community. The fol

lowing list presents the basic workflow concepts and structures for workflow design,

workflow enactment, and the organizational configuration, as suggested by the WfMC:

An activity (node, task) is a description of a piece of work that forms one logical

step within a workflow. It can be manual or automatic [AHO2]. A manual activ

ity is entirely performed by one or more people, without any use of an applica

tion. By contrast, an automatic activity is performed without any intervention by

people; an application — a computer program — carnes out the activity entirely

based upon previousty recorded data. Activities are ordered based on the mutual

dependencies imposed by structural and data aspects (control flows and data

flows between activities). Various configurations cover the structural aspects:

sequence, selection, iteration, and concurrency. Two approaches are most com

monly used for the representation of data: either through data flows between ac

tivities, or through data provision services ftomlto which activities readlwnite.

• An instance (workflow instance (case), or activity instance) is the representation

ofa single enactment ofa workflow, or activity within a workflow.

• A participant (actor, agent, user, processing entity, resource) is the construct that

performs an activity instance. It may range from humans to software systems.

• A work-item is the representation of the work to be processed (by a participant)

in the context of an activity within a workflow instance. A list of work-items as

sociated with a given workflow participant (or group of workflow participants) is

catled a work-list.

• A workflow (resp., activity) state is related to the internai conditions defining the

status of a workflow (resp., activity) instance at a particular point in time. In the

case of a workflow, the state could be “initiated”, “running”, “active”, “sus

pended”, “completed”, “termiiated”, and “archived”. In the case of an activity, it

could be “inactive”, “active”, “running”, “suspended”, “skipped”, and “com

pleted”. Variants of these terms are found within the literature, as well as when

considering specific workflow products.

11

• An organizationat inodel is a model that represents organizational entities and

their relationships; it may also incorporate a variety of attributes associated with

the entities, such as skills or roÏe.

• An organizational role is a group of participants exhibithig a specific set of at

tributes, qualifications and-or skills. A workflow participant assumes a role

given that she bas the appropriate skil set.

Two major workflow classification schemes have been proposed in the literature

[McC92, LR99, GT9$, GHS95]:

(I) Ad—hoc, coïlaborative, administrative, and production woi*flows (Figure 2.])

[McC92, LR99, GT98]. These fout kinds of workflows are categorized accord

ing to their business value and their repetitiveness. Ad-hoc workflows and col

laborative workflows involve participants collaborating to reach a certain goal.

Usually, no workflow model is defined in advance because of littie repetitive

ness. Collaborative workflows (e.g., preparation of product documentation)

have a higher business value than the ad-hoc workflows (e.g., meeting schedul

ing). Administrative workflows and production workflows have a high repeti

tiveness. Workflow models can be predefined for them. Production workflows

(support of an organization’s cote business; e.g., claims-handiing in an insur

ance company) have a higher business value than administrative workflows

(e.g., processing a salary calculation). In this thesis, we address workflows

with littie repetitiveness (and low business value) but which can be instantiated

from a basic workflow mode! (refer to the multi-transfer container transporta

tion application presented in Section 4.3). Combined (business) negotiation

workflows (cf. Section 4.2) can be considered either as collaborative work

flows (if B2C/C2C) or production workfiows (if B2B, e.g., support of the mah

business of a travel agency or of an import/export company).

12

Busîness

nisratve
Low ows ows

Low High Repetitiveness

Figure 2.1. Ad-hoc, Collaborative, Administrative, and Production Workflows

(2) Hwnan-oriented, system-oriented, and transactionaÏ workflows [GHS95]. The

activities in human-oriented workflows are carried-out by humans. Human

oriented workflows are comparable to ad-hoc and coHaborative workflows.

System-oriented workflows involve computer systems that perform computa

tion-hitensive operations and specialized software tasks. Transactional work

flows [AAE+96, WS97] are a special kind of system-oriented workflows. The

database community focuses on this kind of workflows. The main motivation

for introducing the concept of transactional workflows was to address the

WfMS’s inability to ensure the conectness and reliability of workflow execu

tions in the presence of concurrently executing workflows and failures. In this

thesis we take an abstract, conceptual view of workflows with no emphasis on

transactional workflows. A workflow is simply considered to consist of a set of

activities with data and control flow dependencies among them, where the ac

tivities are executed by participants that may include humans as well as soft

ware agents.

2.2 Workflow Design

Two types of methodologies are basically used to design or model a workflow: commu

nication-based methodologies and activity-based methodologies. The former focus on

modeling the communications among workflow participants while the latter focus on

13

modeling activities. WfMSs typically adopt activity-based methodologies, and in this

thesis, this type of methodologies will mahily be considered.

In spite of the standardization efforts taking place in the WfMC (cf. Section 2.4.1), no

generally accepted workflow meta-model lias been defined so far. Textual or graphical

workflow modeling languages provide concrete constructs for the concepts of an under

lying meta-model. In the context of activity-based methodologies, most of tlie workflow

modeling languages discussed in the literature are based on formalisms such as Petri nets

[PetriO4J and UML [UMLO4] (including state and activity charts). Petri nets are known

for their rigorous semantics, and UML is widely used these days because of its object

oriented paradigm. However, a workflow modeling language based on one of these for

malisms provides users, especiaHy non-computer experts, hardly an intuitive and struc

tured representation of a business process [RD98]. Furthermore, tliese formalisms do not

offer a detailed structure for the definition of workflow aspects.

To facilitate specific purposes, e.g., to address adaptive workflows (cf. Chapter 3), some

researcliers developed their own workflow modeling languages that rely neither on Petri

nets nor on UML. An example of such a workflow modeling language is the ADEPT

model (WSM-Nets) based on the concept of symmetrical control structures [RD981. The

Workfiow Process Definition Language (WPDL) defined by the WfMC [WfMC99a],

remains tlie only consortium-Ied language providing constructs that focus specifically on

workflow aspects. Its re]ated process definition meta-model lias been specified to cap

ture tlie highest-leveÏ objects and relationships that sliould be defined to support process

automation (Figure 2.2). An extension of this meta-modal to support dynamic mter

organizational workflow management lias been proposed by Meng in lier Pli.D. thesis

{MenO2].

Finally, XML-based representations are often discussed in workflow-based inter

organizational e-business applications (cf. Section 4.1.1) [KZO2, LOOl, AKOO]. XML

(Extensible Markup Language) [XMLO4] is a document declaration standard proposed

by the WWW Consortium [W3C04] that allows the electronic exchange of semantic in

formation. XML on its own does, however, not provide support for document routing

and data iriterchange between the organizations iiivolved. Lenz and Oberweis propose

14

XML nets — a new kind of high-level Petri nets — that allow to model both the flow of

XML documents and the business process [LOOl]. Van der Aalst and Kumar propose

XRL (eXchangeable Routing Language) for document routing [AKOO, VHAO2]. XRL is

also expressed in terms of Petri nets. Another XML-based representation to support in

ter-organizational applications, published by the WfMC, is Wf-XML [WfMCOÏJ. It is

intended as a basis for concrete implementations of the WfMC’s Interface 4 (cf. Section

2.4.1). Wf-XML relies on WPDL for routiiig issues. The XML version of the WfMC’s

WPDL is called the XPDL (XML Process Definition Language) [WfMC98J.

,nuv j,uI,trle

System &
Environmcntal

Data

Figure 2.2. The Process Definition Meta-Model, taken from [WfMC99aJ

In the context of e-business applications, choreography languages have been proposed

by imposing companies and organizations (e.g., IBM, Microsoft, W3C) for the composi

tion or orchestration of Web Services. The emerging of such languages underlines the

timeliness of this research project. Examples of choreography languages include Web

Services Conversation Language (WSCL) [WSCLO2], Web Services Choreography In

terface (WSCI) [WSCIO2Ï and Business Process Execution Language for Web Services

(BPEL4WS) [BPELO3]. The latter, developed by IBM and considered as a standard,

seems to have a lot of momentum. The Web Services Description Language (WSDL)

[WSDLOY] is the XML-based specification used for describïng the operational informa

tion of Web Services (e.g., input and output messages) (i.e., function logic) and

*
,nnv rtjer tu i.

(Sub)Process

-
-

_ - - -

Workflow Process Alomic - - - -

V fl5 T
‘—— Loop I
i L

n,t,Y re/crefl,e

Organizational
Model

15

BPEL4WS ailows for defining business processes letting several Web Services from dif

ferent service providers work together (i.e., flow iogic). BPEL4WS provides a long

running transaction model that allows increasing consistency and reliabiity of Web Ser

vices applications. A collection of “primitive” activities (e.g., invoke, receive, reply) —

that we may also cal! “activity templates” — and “structure” activities (e.g., sequence,

switch, while) is defined. The invocation of services is done using the “invoke” activity,

while the reception of an invocation from a client is done using the “receive” and “re

ply” activities. Hence, the WfMC’ s Interface 3 (Invoked Applications; cf Section 2.4.1)

is weil defined by BPEL4WS.

In the next sections, we begin by briefly describing both the Petri net and UML formaI

isms with respect to workflows (Section 2.2.1 and Section 2.2.2). Then, we present the

WSM-Nets formaÏism on which we rely to fomially introduce in Chapter 6 new work

flow concepts and functionality (Section 2.2.3). Workflow temporal aspects wiIl be dis

cussed thereafter as a further issue in workflow design (Section 2.2.4). The organiza

tional structure is part of workflow design and wiii be introduced as weli (Section 2.2.5).

2.2.1 Petri Nets and Workflows

“Petri nets” {PetriO4] is a major formalism for modeling workflows. One of the strengths

of Petri nets is the strong mathematical basis they offer along with a graphical represen

tation. In this section, we summarize the mapping between workflow concepts and Petri

nets [JB96, AAH98, AHO2].

A process defines tasks as weIi as the conditions for their execution. Using Petri nets, a

process is represented by mapping its oniy entrance (i.e., start node) into a place without

incoming arcs, and its only exit (i.e., end node) into a place without outgoing arcs. Con

ditions are mapped into places, and tasks into transitions. Usuaiiy, a process specified

using Petri nets should fulfihi two requirements: (1) it should at any time be possible to

reach a state in which there is a token in “end”, and (2) when there is a token in “end”,

ail the other tokens should have disappeared.

Different instances of the same process can be transiated into Petri net modeis in two

ways: (1) produce a separate copy of the Petri net (i.e., process) for each instance, (2)

16

use just one Petri net by making use of the color extension [PetriO4l. Each token wil

then be provided with a color or value from which it is possible to identify the instance

to which the token refers.

Tasks may need to be carried out for certain instances and not for others. The order in

which tasks are performed may also vary from one instance to another. Routiiig permits

to determine which tasks need to be carried out and in what order. Basic constructions

for routing (sequential, selective, iterative, and parallel routing) are associated with spe

cific Petri net compositions such as “two transitions linked using a place” to represent a

sequence of two activities, “two transitions” to model the And-split and the And-joiri of

a parallel routing, and “a place” to model a condition for a selective/iterative routiiig.

In a process modeled with a Petri net, an enabled transition corresponds to a work-item,

and the firing of a transition to an activity instance. Certain work-items can only be

transformed in an activity instance once they are triggered. A trigger could correspond to

a participant initiative, to an extemal event or to a time signal coming from the environ

ment. To each transition belonging to a task requiring a trigger an extra input place is

added. A trigger occurrence brings a token in that extra input place. The token is con

sumed once the appropriate transition fires. A failure while performing a task requires a

rollback (i.e., go back to the state prior to the start of the activity). When an activity has

been successfiully completed, a commit occurs and changes become definitive.

2.2.2 UML and Workflows

State and activity charts are another major formalism for the modeling of workflows.

They were originally invented by Harel [Har$7], and have been incorporated hito UML

(Unified Modeling Language) [UMLO4J in a slightly different form. Weissenfels et al.

[WIVIW9S] have investigated the use of state and activÏty charts to model workflows (the

Mentor WfMS project), while Blake [BlaO2, BIaOO] presents a systematic approach to

the modeling of workflows using UML (the WARP project).

In the Mentor WIMS project [WMW98J, activities reflect the functional decomposition

of a system and denote the active components of a specification; they correspond di

rectly to the activities of a workflow. An activity chart specifies the data flow between

17

activities, in the form of a directed graph with data items as arc annotations. State charts

capture the behavior of a system by specifying the control flow between activities. A

state chart is a finite state machine with an initial state and transitions driven by Event

Condition-Action (ECA) rules. Each transition between states is annotated with an ECA

rule. A transition from state X to Y, annotated with an ECA rule, fires if event E occurs

and condition C holds. The effect is that state X is left, state Y is entered, and action A is

executed. Conditions and actions are expressed in terms of variables, for example, those

that are specified for the data flow in the corresponding activity chart. In addition, an

action A can start an activity, and can generate an event E or set a condition C.

Turning to the WARP (Workflow Automation through Agent-based Reflective Proc

esses) project [B1a02, BlaOO], the approach used distinguishes between structural, func

tional, non-functional, and operational views. The structural views show information

about the activities, definition of the roles, and composition of the workflow. They are

represented in UML class diagrams. The functional views show the data and control

flow of the workflow by using UML activity diagrams. The non-functional concems (er

ror-handling, concurrency. atomicity, etc.) use data and control flow models and can be

modeled with activity diagrams as well. finally, the operational views are related to the

initiation of workflow instances, and the coordination for the completion of the work

flow. Operational views can be modeled using UML sequence diagram.

2.2.3 WSM-Nets Formalism

The Well-Structured Marking-Nets (WSM-Nets) approach is used in the ADEPT WflVIS

{RD98]. As it has been summarized in [RRDO3bI, WSM-Nets are serial-parallel, attrib

uted graphs on which control and data flow of a process schema can be described. More

precisely, different node and edge types are provided for modeling control structures like

sequences, branchings, or loops. Branchings and Ioops are modeted in a block-oriented

fashion (block structure). This structure is relaxed by offering svnc edges, which allow

defining precedence relations between activities of parallel branches. Self-explanatory

definitions for WSM-Nets and for workflow instances based on WSM-Nets have been

given in [RRDO3bJ. WSM-Nets are somewhat comparable to BPEL4WS (cf. Section

2.2). The latter uses a block structure for defining processes. WSM-Nets provide, how

1$

ever, a better understanding and formai foundation regarding the use of links (cailed

sync iinks in WSM-Net).

In the foilowing, we provide the defmitions of a WSM-Net and of a workflow instance

based on WSM-Net. We will apply these definitions to formatly introduce new concepts

and functionality in Chapter 6.

Definition 2.1 (Wett-Structured Marking-Net, WSM-Net) A tuple S = (N, D, NT, CtrlE,
SvncE, LoopE, DataE) is caÏled a WSM-Net if the following Ïiolds:
- N is o set of activities and D a set ofprocess data elenients
- NT: N {StortF1o Endf1o Activity AndSplit, AndJoin, XOr

Spiit, XOrJoin, StartLoop, EndLoop}
NT assigns to each node ofthe WSM-Net a respective node type.

- CtrlE C N X N is ci precedence relation
- SyncE C N X N is o prececlence relation between activities of paraItel executed

branches
- LoopE C N X N is ct set of Ïoop backwa,-d edges
- DataE c N X D X { read, write } is a set of read/write data links between activities and

data elements

As an example of a process scherna modeled by a WSM-Net, Figure 2.3 depicts a sim

plified medicai treatment process. The control and data flow are clearly shown. For ex

ample, activities “admit patient”, “inform patient”, and “prepare patient” are arranged in

sequence whereas activities “monitor” and “operate” are executed in parailel. “Weight”

and “temperature” are examptes of data involved in a data flow modeled between activi

ties “prepare patient” and “operate”.

Figure 2.3. Medical Treatment Process

19

Process instances can be created and executed at run-time. As defmed in {RRDO4cJ, a

process instance references the process schema it was created on. Furthermore, specific

execution states of a process instance are given by model-inherent activity and edge

markings. An activity which can be worked on is thus labeled ActJvated. As soon as

the activity execution is started the marking changes to Running. Finally, a fmished

activity is marked as Completed and an activity, which belongs to a non-selected, al

ternative execution branch, is marked as Skipped. Once an activity is completed, its

outgoing edge is set to TrueSignaled. When an activity is marked as Skipped its

outgoing edge is set to FalseSignaied, which may lead to the skipping of succeed

ing activities.

Definition 2.2 (Workflow Instance based on WSM-Net A workfiow instance I is de
fined bv o tapie (S, M5, Val5, 91) where:
- S = (N, D, NI, CtrlE, SyncE, ...) denotes the WSM-Net the execution of I is based on.
- M = (NS5, ES5) describes iiode and edge inarkings of I:

N55: N i—* {NotActivated, Activated, Running, Compieted, Skipped}

ES5: (CtrtE u SyizcE u LoopE) i— {NotSignaled, TrueSignaied, False
Signaled}

- Val5 is afunction on D. It reflects for each data element d D either its carrent value
or the ectitte UNDEFINED (if d lias not been written vet).

- 91= < e ek > is the execution histo,y of Ï. e0 ek denote tue stai-t and enci events
ofactivity execittions. For each started activitv X the values of data elements read bv X
andfor cadi completed activity Ythe values of data elements writteit b)’ Yare logged.

2.2.4 Worktlow Temporal Aspects

The workflow model should be capable of capturing different aspects of the business

process [JB961 including structure, data, and resources properties, but atso temporal

properties. Time modeling in workflows has been investigated in the context of some

(few) workfiow research projects. Marjanovic and Orlowska specify that basicaUy three

main time constraints can be specified [M099J: (1) a duration constraint that models the

expected duration of an activity in a workflow (a single relative lime value or an interval

of two relative time values); (2) a deadline constraint that can be specified in terms of

absolute lime limits when an activity shoutd start or finish during workflow execution;

(3) an interdependent temporal constraint that limits when an activity should start/finish

relative to the start/fmish of another activity (a relative time value). Temporal consis

20

tency plays a crucial role in the modeling of time constraints. It must be verifled several

times during the workflow lifetime: during the workflow modeliiig and then again dur

ing the workflow enactment at several control points (usuaily after each decision node)

to make sure that activities are executmg as planned. An algorithm for the verification of

temporal consistency in workflows is introduced in [M099].

Dadam et al. introduce temporal aspects by defrnirig time edges between activities

[DRKOO]. They discuss a minimum and a maximum duration of an activity, and an ear

liest and a latest relative starting/finishing time of an activity.

Eder et al. {EPP+99J worked on a method to enrich a workflow specification by time

information for activities, and to translate such a workflow description into a PERT

diagram that shows for each activity the time when the activity must be at a specific state

to satisfy the overali time constraints of the workflow. They put the assumption that the

erid event of an activity corresponds to the start event of alt its successor activities. The

extension of the PERT-net technique (ePERT [PEL97Ï) consists in associating relative

time information with the end of an activity A. As an example, the earliest point in time

A may end corresponds to an execution where optional activities are not executed and

the fastest alternative in ail selective routings is always selected. A forward traversai of

the workflow model is required for computing the earliest point in time activities may

end. A backwai-d traversai of the workflow model is required for computing the Ïatest

possible pomt in time activities can finish to ensure minimal execution time for the en-

tire workflow.

As argued by Marjanovic in [MarOlJ, the three approaches introduced above [M099,

EPP+99, DRKOO] follow the paradigm of modeling temporal aspects “on top” of a “con

trol-flow” oriented workflow model: to assign temporal attributes to individual activities

whose order has been predetermined by control flows. In [MarOIJ, a two-levels approach

for workflow modeling is motivated: a control flow level and an operational level. Thus,

a separation is done between the modeling of control flow and the modeling and verifi

cation of temporal constraints. At the operational level, an analysis of the accumulated

workflow instances stored in a workflow log is made to detect cases where duration of

an activity is a function of an instance type (i.e., identification of imprecise activities —

21

an imprecise activity is an activity with different duration for different instance types).

Decision nodes are introduced at the operational level to distinguish these cases. Hence,

temporal propertïes determine modeling of control flows at this level. As a consequence,

workflow models at the two different leveis are syntactically different but semantically

equivalent, and the workflow model at the operational level provides a more precise

modeling of temporal aspects than the workflow model at the control-flow level. Due to

the improved precision in modelmg, it is possible to predict more accurately, during

workflow execution, wÏien a specfic activitv is tiketv to occttr and to dynamically verif’

temporal constraints based on the actual execution (i.e., the real duration) of individual

activities.

Assigning time to activities in a workflow is a task similar to scheduling in real-time

systems. A differentiation is done between time management at build-time and time

management at run-time. At build-time, using the workflow modet and the durations as

signed to the activities in the mode!, the relative start and end times for ail activities are

calcu]ated (with respect to the beginning of the workflow). Such caiculations are carried

out using a forward traversai and a backward traversa! of the workflow mode!. At work

flow instantiation time, a calendar is used to convert ail relative time information speci

fied during bui!d-time to absolute time points.

If a deadiine is missed, a time failure is generated and special actions may be triggered,

referred to as escalation actions [EPP+99]: deadiine extension, alternative selection, op

tional removal, and time enor.

Despite the importance of time for the coordination and the execution of business proc

esses, the currently available time management support in workflows is rather rudimen

tary. As pointed out in [MarOlJ, the requirements for time modeling and visualization far

exceed the capabilities provided by today’s (commercial) WfMSs.

2.2.5 Organizational Structure

Participants’ specification in the workflow usuafly requires beforehand a specification of

an organizational structure (roles, capabiities, positions, hierarchies, etc.). One impor

tant aspect of an organizational structure is the division of authorities and responsibili

22

ties. An example of authority is to assign work to other members of staff. The most

widely used form of organizational structure is the hierarchical organization character

ized by a “tree” structure where each node shows either (1) the person who is responsi

hie for alt the people below her in the tree, or (2) the department (i.e., organizationai

unit) that gathers sub-departments defined beiow it in the tree down to reach individual

staff at the leaves (cf. Figure 2.5). A simple exampie of an organizational meta-model

based on the second definition could he the one captured by the entity-relation diagram

of Figure 2.4. Based on this meta-model, a tree such as the one shown in Figure 2.5 can

be defmed.

Staff

Organizational Unit
Organizational sUb-Unit Posîton

1 r Empioyee El

Com an X J‘) “
,... Position Pi Employee E2

I rI wrDept. Di . Position P2

Dept. D2 i Position P3

L’Position P4

Figure 2.5. Exampte of an Organizational Mode! (Tree Structure)

The WfMC defines a simpiistic organizationai modei [WfMC99b]. It specifies that a

reference to an externai model can also be donc. In fact, depending on the internai struc

ture of a company and on the workflow application to be deveioped, the definition of a

company-specific or application-specific organizationai model may be necessary. The

Parent!
Child of

Belongs f0

t’ .1)

toi) Directed by

(1,1)

Belongs to

(°.)
--<>- Staff

Figure 2.4. Example of an Organizational Meta-model, adapted ftom [RTO2J

23

complexity of the meta-model on which this definition should be based is a subject of

discussion. The more complex the meta-model is, the more detailed the organizational

model can be defined, and the more specific the actor assignment to activities can be de

rived.

2.3 Workflow Enactment

Workflow enactment consists mainly in coordinating the execution of activities accord

ing to a predefined workflow model. More precisely, since activities are canied out by

workfiow participants, workflow enactment actuaÏly requires coordination among the

participants in executing the activities.

Architectures for the scheduler-based workflow enactment range from a highly central

ized to a fully distributed coordination [CHR+9$J. In the centralized approach, there is a

single workflow engine (or scheduter) that controls and coordinates the execution of the

activities for ail workflow instances. The advantages of the centralized approach include

easy monitoring and auditing, simpler synchronization mechanisms, and overail design

simplicity [MenO2J. However, there are also many shortcomings: a single point of fail

ure, performance Limitations, scaiability problems, etc. [AM971. Scalability problems

involve workflow engine robustness problems, e.g., a workflow may crash when hun

dreds or thousands of workflow instances are concurrently running. To solve these prob

lems, the distributed approach is proposed. A summary of some architectures for this

alternative approach is given in [SAA99]. A distinction is donc between the partially dis

tributed approach, where each workflow has its own scheduler, and the fully distributed

approach, where there is no scheduier and the task managers (that couid be software

agents) coordinate the execution of activities by communicating among them.

In addition to the basic workflow enactment, a “dynamic” workflow enactment is neces

sary to deal with the dynamic nature of today’s business environments. Adaptive work

flows wiII be iiitroduced in Chapter 3. At this point, we only emphasize the need for a

“dynamic” workflow engine to support changes brought to the execution course of

workflow instances at run-time.

24

2.4 Workflow Management Systems

We 110W study how we can manage processes using information technology. Recently,

the availabiity of tools to help in the definition and control of the various activities as

sociated with a process considerably increased. These tools are known as Workflow

Management Systems (WfMSs). Section 2.4.1 thoroughly reviews the Workflow Refer

ence Model (WfRM), an emerging standard from the Workflow Management Coalition

(WfMC). Section 2.4.2 addresses current generation of commercial WfMSs.

2.4i Standardization Effort

The WfMC has developed a reference model for workflow technology (WfRM)

{WfMC95I (Figure 2.6). The major goal of the model is to provide a standard for inter

operability among workfiow subsystems. It consists of a general description of the struc

ture of a WfMS, in which five main components are presented (Process Definition

Tools, Workflow Client Applications, Invoked Applications, Other Workflow Enact

ment Service(s), Administration and Monitoring Tools).

Proœss Definition
Toots

Interface 1

Workflow API and Interchange focmats Interface 4

Workflow Enactment Service

Workllow
Engine(s)

Interface 2 Interface

Workflow Client lnvoked
Applications Applications

Figure 2.6. WfRM — Components and Interfaces, taken from [WflVIC951

These components are related to the Workflow Enactment Service via interfaces, which

are supported by a set of API calis (Workflow Application Programming Interface

Other Workflow Enactment
Service(s)

Engine(s)

j

25

WAPI). Many operations are identified across the five interface areas. These operations

are gathered within a number of groups represented by the 14 ellipses in Figure 2.7.

Based on [AI-102, WfMC95], the following sections present details on each component

of the WfRM.

/EroJ

coroi :
eControI Management
Ib0fl5 ionsI

I I J L — J

Interface 1: Interface 2: Interface 3: Interface 4: Interface 5:
Process Defini- Workflow Client lnvoked Appli- Other Workflow Administration
tion Tools Applications cations Enactment & Monitoring

Service(s) Tools

Figure 2.7. Groups of Operations Distributed within the Five Interfaces of the Workflow
Reference Model, based on [WfMC95Ï

2.41.1 Workflow Enactment Service

The Workflow Enactment Service is the core of a WfMS. It provides the run-time envi

ronment for the execution of workftow instances. It comprises at least one workflow en

gine. The latter bas the functionality for creating, managing, and executing workflow

instances. It allows mainly to:

• Sign-onlsign-off specific participants

• Create/delete an instance

• Control an instance (creation, activation, suspension. termination, etc.)

• Route an instance by interpreting the process model definition

• Manage attributes

26

• Submit work-items to the correct resources based upon the classification of the

different resources (cf. Section 2.4.1.2.2)

• Handie triggers

• Cali and start up IT applications related to a specific task and link any workflow

relevant data

• Record historical data (audit), provide a summary of the workflow, and monitor

the consistency of the workfiow (these are supervisory actions)

2.4.1.2 Process Detinîtion Tools

In order to accomplish the aspects covered by the engine, process definitions and re

source classifications are used. They are preliminarily produced by Process Definition

Tools. In addition to illustrating the process and the organization, these tools offer some

times analysis techniques (e.g., simulation). These techniques are still limited in durrent

WfMSs. In the following sections (2.4.1.2.1, 2.4.1.2.2, and 2.4.1.2.3), we will describe

each of the three aspects addressed by the Process Definition Tools.

2.4.7.2.1 Definition of Processes

In a Process Defmition Tool, the process model is defined either in a graphical or textual

way. Aspects such as the name, the description, the date, the version, and the compo

nents of the process are specified. Such a tool allows also to model different types of

routing by means of components such as And-splitlAnd-join and Or-spllt/Or-join. It

supports version management for a same process, the defmition of attributes used in the

process, the specification of tasks, the checking of the (syntactical) correctness of a

process defmition, and the tracing of any omissions or inconsistencies. Finally, a number

of characteristics need to be established for each task:

• The name and description of each task

• The associated user (role/organizational unit) or IT application that should carry

out the task (or should be started)

• Supporting information (resp., instructions) for the user performing the task

(resp., IT application)

• Task routhg characteristics

27

• Specification of triggers

• Instructions to the workfiow engine (e.g., priorities)

• Specification of the related attributes

• Rules that determine how the tasks progress across the workfiow and which con-

trois are in place to govem each task

2.4.7.2.2 Classification 0f Resources

When a process is defined, it is better to couple tasks with resources instead of a specific

user. A Resource Classification Tool, considered as part of the Process Definition Tool,

ailows to flnd relationships among various resource classes (roles and organizational

units). Roles are based upon qualifications, functions, and skills, while organizational

units are rather based upon regrouping into teams, branches, and departments. Specific

characteristics are affected to a specific resource class. A hierarchy of roles or organiza

tional units may exist (this deflnes a relationship).

2.4.7.2.3 Analysis

An Analysis Tool can be embedded in the Process Definition Tool. It aliows workflow

simulation or creates prototype and-or pilot versions of a particular workflow such that

this workflow can be tested on a limited basis before it goes into production. Such analy

sis can encompass checking the semantic correctness of a process definition.

2.4.1.3 Worktlow Client Applications

When a defined process is initiated by a workfiow engine, the appropriate user and IT

applications are scheduÏed and engaged to compiete each activity as the process pro

gresses. The contact the humans have with the workfiow is done via the Workfiow Cli

ent Applications. Work-lists that are part of the Workfiow Client Applications, are used

by workflow engines to show which work items need to be carried out. Each user has

her personal work-list to quickly identify her current tasks along with such things as due

date, priority, state, etc. We distinguish between a standard and a customized work-list

handier. In a standard work-Iist handler, the functions provided are generic. They are not

customized to any application. By contrast, the customized work-list handier can be

adapted to a specific application.

28

2.4.1.4 lnvoked Applications

Performing a task may require the workflow engine to execute one or more external ap

plications. A distinction is done between interactive and fully automatic applications.

Interactive applications are initiated when we select a work item from the work-list (e.g.,

a form that needs to be completed). However, a fully automatic does flot require any user

intervention (e.g., a program that performs a calculation).

Some applications are workflow-enabled and can be invoked directly by the workflow

engine. However, other applications are not compatible with the standardized interface

related to the Invoked Applications component. Their integration into the business proc

ess is possible only via a software agent that takes the role of an actor and enables indi

rect interaction of the workflow engine and the application in question. The actor agent

is encountered in projects such as the MALL2000 project [HH99J, the TSE project (An

dersen Consulting) [CS96], and CONSENSUS project [BAV+OI].

2.4.1.5 Other Workflow Enactment Services

It is possible to link several autonomous WfMSs with one another. Instances (or part

thereof) can be distributed among these WfMSs. This distribution may be based upon

the characteristics of the instance, the task, or the resource. Four possible interoperability

models are identified in [WtMC95]: connected discrete (chained), hierarchical (nested

sub-processes), connected indiscrete (peer-to-peer), and parallel synchronized. Refer to

Figure 2.8 fora visual representation of these models.

(a)

(e)

_____________ ___________ _________________

Enacted
[j

Wfenine(s) A

[I(\j-14] across I

[jWfenhIe(s BI

Figure 2.8. Interoperability Models, adapted from [WfMC95]. (a) Chained, (b) Nested
Sub-Processes, (c) Peer-to-Peer, (d) Parallel Synchronized

(b)

(d)

Al Synchronization Bi M B5
point _ —— --

A2A3 B2

29

2.4.1.6 Administration and Monitoring Tools

The Administration and Monitoring Tools can be divided into two types of tools, those

used for the operationa! management of the workflows, and those used for recording and

reporting.

2.4.7.6.7 Operational Management Tool

Three types of information are managed by the Operational Management Tool: resource

related, system-related, and instance-related information. The tool functions for re

source-related information allow the addition or deletion of staff and the input or updat

ing of user details such as the user name, the user rote, and the user avaiÏability. The

functions for system-related information allow the reconfiguration of the workfiow sys

tem. Finally, the functions for instance-related information permit the inspection and the

manipulation of the logistical state of an instance when an exception occurs.

2.4.7.6.2 Recording and Reporting Tool

Some of the WfMSs give the opportunity to measure and analyze the execution of the

process so that continuous improvements can be made. A number of aspects can be

saved duririg execution. These are historical data that gather, for instance, information

about the execution (e.g., completionlwaiting/processing time of an instance) and prop

erties of completed workflows (e.g., bottlenecks, overcapacity). Such aspects may lead

to revise the current process (e.g., reallocation of tasks, redefiniiig portion of the work

flow mode!).

2.4.1.7 Discussion 0f the Worktlow Reference Model

It is ofien argued that workflow technology is stili young and flot yet fully deve!oped.

The WfRM just presented reduces the confusion that may arise as to what is expected

from the basic functionality of a WfMS. Indeed, it defmes the different components of a

WfMS as we!1 as the API that supports the interfaces among these components and the

Workflow Enactment Service. However, workfiow management bas many facets other

than the basic ones already supported by the current WfRM. Indeed, in the context of

specific complex applications, WfMSs are often expected to support (1) advanced con-

30

cepts such as concepts relative to the temporal aspects of a workflow or to the standard

definition of activities, and (2) enhancect fun ctioizalitv such as operations for the dy

namic change of workflow instances. Unfortunately, it is stili unclear which components

and-or API calis should be added to the existing WfRM so that such concepts and func

tionality could be provided.

2.4.2 Current Generation of Commercial WfMSs

A number of WfMSs are available on the market. The number of suppliers offering

WfMSs is estimated at two hundred [AHO2]. Staffware from TIBCO Software Inc. and

Staffware Pic {TibO4l is one of the most widespread WfMSs in the world. Therefore it

may serve as a nice illustration of the capabilities of the current generation of commer

cial WfMSs. A detailed description of Staffware is given in [AHO2Ï. In an initial phase

of our work, we experimented with two other mainstream commercial WfMSs: the IBM

MQ Series Workflow [IbmO4J and the WLPI (WebLogic Process Integrator) from BEA

Systems [WebO4]. In the following, we wifl first briefly describe each of these two

WfMSs. Then, we will discuss future prospects of these systems.

2.4.2.7 IBM MQ Series Workflow

IBM MQ Series Workflow (now, IBM WebSphere MQ Workflow) [IbmO4l is a “flow

chart style” WfMS. It consists of the following components (designed as a three-tier

structure):

(1) The Buildtirne GUI offers a graphical editor to create workflow models. Other

features allow one to define the organization (staff, roles, etc.) and the impie

mentations (data structures and programs to use in the workflow), as well as

the network definition.

(2) The MQ Workflow Client used to start/stop the execution of workflow in

stances and to manage work-items within work-lists. Process monitoring func

tions are also part of this component.

31

(3) The Administration Utllity used to startlstop the MQ Series Workflow system,

to list the defined resources specifled in build-time. It regularly checks the

state of ail servers and it can be used to list the current state of any server.

(4) The server components inciude four types of servers: the Execution Server

(process instances management), the Administration Server (server compo

nents management), the Scheduling Server (activities control), and the Cleanup

Server (finished process instances deletion).

The MQ Series Workflow components can be easily mapped onto the WfRM: the Baud

time GUI corresponds to the process definition tools (Interface 1), the MQ Workflow

Client corresponds to the client applications (Interface 2), the Ad,ninistration UtiÏity cor

responds to the administration and monitoring tools (Interface 5), and the server coinpo

nents provide the workflow enactment service of MQ Series Workflow.

MQ Series Workflow requires a relational database (DB2 or Oracle). Process develop

ment information and process run-time information are stored in two separated data

bases. MQ Series Workflow uses a Workflow Definition Language (FDL) for the cx-

change of process modeis between build-time and run-time.

During build-time, activities read data from an input data structure. take some action,

and then write data to an output data structure. A mapping tool is provided to map items

in the output data structure to the input data structure of the next step. Each activity bas

an exit condition that is set by the activity program and is saved into the output data

structure of the activity. A process wili flot move on until the activity exit condition is

met. When this exit condition is met, MQ Series Workflow evaluates the conditions on

ail the subsequent control connectors from that activity. It then activates zero, one, or

many subsequent activities depending upon whether the control connectors to those ac

tivities evaluate to true or lot. MQ messages are used to pass control from one activity

to the next.

At run-time, MQ Series Workflow uses a Program Execution Agent and a Program Exe

cution Server to invoke application programs in a workflow. Note that the MQ Work

flow Client bas a poor usabiity. For instance, it does flot provide the abitity to re-order

32

work-lists. The poor usability of the client windows incites users to build a custom cli

ent.

An interesthg comparison of MQ Series Workflow and Staffware — considered as the

leader of the business process management (BPM) market — is given in [WatOl]. In

short, Staffware is more suitable than MQ Series Workflow when dealinig with simple

workflows. Staffware does flot require any infrastructure to operate in a basic mode. It

has its own mtegrated form builder and uses its own file format to store workflow defmi

tions and run-time information, while MQ Series Workflow requires a relational data

base and a programming language for building programs that implement activities. In

addition, MQ Series Workflow provides more benefit over Staffware for complex work

flows. Workflow definitions and run-time statistics in MQ Series Workflow are already

available in a relational database for reporting purpose, while in Staffware, extra work is

required to load this information into a database.

2.4.2.2 BEA WebLogic Integration

BEA WebLogic Integration [WebO4J allows for connecting applications, databases, en

terprise information systems, processes, and business partners; it gathers a set of func

tionality in the following areas: application integration, BPM, B2B integration, and data

integration. Since we are interested in BPM, we will describe the BPM functionality

provided by BEA WebLogic Integration. This corresponds to the former WebLogic

Process Integrator (WLPI) product. WLPI consists of the following components:

(1) The WebLogic Integrcttion Studio (formerly, WLPI Studio) used to design

processes. It provides a graphical interface in which flowchart elements are

available for workflow modeling. It is also used to define users and roles as

well as to monitor workflow instances.

(2) The BEA WebLogic Server includes a process engine used to manage the exe

cution of business processes.

(3) The WebLogic Integration Worklist (formerly, WLPI Worklist) is the client

application used to start/stop processes and to interact with a running process.

33

It also allows users to handie business process tasks assigned to them (e.g.,

specify the value of a variable).

WebLogic Integration can be mapped onto the WfRM as follows. The WebLogic Inte

gration Stitdio forms the process definition tools (Interface 1). This Studio as well as the

WebLogic Integration Worktist forms the workflow client applications (Interface 2). The

Studio corresponds to the administration and monitoring tools as well (Interface 5). The

process server provides the workflow enactment service of WebLogic Integration. We

observe that the BPM functionality of the WebLogic Integration system is mainÏy en

compassed in the Studio. This does not show in a clear manner the separation of the dif

ferent interfaces defined in the WfRM. IBM MQ Series Workflow provides a better

separation as we already saw in the previous section.

WebLogic Integration requires a relational JDBC database (Oracle or SQL Server).

Workflow template definitions and running instances of a workflow are respectively

saved in a template store and an instance store.

At build-time, public and private business processes can be developed using the Studio

(B2B integration environment). Nodes such as Start, Done, Task, Decision, Event, And

join, and Or-join are used to design workflow models. Actions are defined within these

nodes and they are performed when a node is activated in the workflow. A wide variety

of actions are provided (e.g., cali an Enterprise JavaBeans (EJB) method, send an XML

message to an application).

During execution, XML is used for data representation, and JMS is used for messaging

between workflows and other applications. Business processes can be started in a num

ber of ways: called by an application or another workflow (sub-flow), invoked manually

(e.g., usiig WebLogic Integration Worklist), triggered by the reception of an event noti

fication (XML message), or timed to start automatically at a predefined date and time.

During run-time, statistics can be collected for reports (evaluation of processes, optimi

zation of performance and throughput).

34

2.4.2.3 Future Prospects 0f WfMSs

Van der Aalst and van Hee examined the future prospects for WfMSs in terms of seven

areas of functionality [AHO2]:

• Modeling: WtMSs should acquire more repositoiy functions in the future, or

improved interfacing with such tools. Repositories should record much more on

an organization’s data and they should offer good query opportunities through

which ail the connections relevant to the management of the organization can be

analyzed. Another aspect is the expressive power of the modeling function.

Common constructions in business processes shouid be well handled. A fmal as

pect is that today’s WflvISs are rnain)y suited to standard processes where the

number of workflow instances is large compared with the number of workflow

models (i.e., production workflows). WfMSs should offer functionality for so

calied one-of-a-kind processes (ad-hoc workflow), with a separate process de

fined for each case. WfMSs should integrate process defmition functionality

with the workflow engine.

• Analysis: Simulation and formai verification techniques are used to perform

workflow analyses. An expansion of simuiation abilities includes to ease the use

of historical data from the WfMS for testing modified business processes. Simu

lation tools can easiiy evolve into workflow engines because it is flot a great Ieap

from simulating workflows to coordinating reai ones. An expansion of formai

verification techniques — mainly developed for Petri nets — wouid incorporate

correctness tests into the process definition tooÏs.

• Planning: Today’s WflvlSs sometimes offer a limited ability to aliocate re

sources to tasks and to schedule tasks using the same resources. Timetabling

probiems are not solved by today’s WfMSs, though these problems are becom

ing more and more significant in organizations. Planning support may be offered

by the application of modem operations research methods in preparing schedules

(e.g., taboo search, constraint satisfaction). What we just introduced is known as

operational planning problems. Tactical planning problems should also be con

sidered. As an example, decisions are taken about how much of the capacity of a

35

particular resource wffl be required during the period being planned for. AI

though a WfMS does in fact contain ail the relevant information needed to solve

such problems, none yet actuafly offers the faciities to do so. Also, it is siil un

clear whether producers of these systems should develop such functionality

themselves, or whether it would be better for them to try to integrate planning

software into their pro rams.

• Transaction management: This requires an appropriate communications proc

ess (e.g., XML for supporting e-business transaction processing).

• Interoperabillty: Restrictions regardhig the monitoring of protocols and the

support of data conversion among communicating applications, should be over

corne.

• Internet/Intranet: WfMSs should allow the use of a web browser as a Work

flow Client Application (Interface 2). On the one hand, this makes it possible for

users to access the workflow system through the Internet. and hence to perform

work from anywhere. On the other hand, the combination of workflow and the

WWW opens up new application opportunities: e-business.

• Logistical management: It is provided by Enterprise Resource Planning (ERP)

systems. One of the most important functions of these systems is the calculation

of the required resources for a specific enterprise project. The scheduling of

these resources in time is addressed, and the process is deduced consequently. It

is of interest to iricorporate such functions ftom ERP systems into WfMSs.

Van der Aalst and van Hee argue that it is unlikely that workflow product manufacturers

iiicorporate ail these functionalities because they would neyer be able to remain up to

date in every one of these fields. A better solution is for the architecture of their systems

to be tefi sufficiently open so that it is easy to integrate other manufacturers’ software

packages with specific functions from the range described. A great work of standardiza

tion is required.

The BEA WebLogic Integration product (whose BPM functionality is described in Sec

tion 2.4.2.2) and the IBM WebSphere MQ Workflow (described in Section 2.4.2.1) can

be considered as an attempt to integrate ftinctionalities in many areas. These areas do

36

not, however, completely cover ail the ones introduced above. They are mostly oriented

towards B2B applications (e.g., “IBM e-business solutions”), and they Jack to address in

an appropriate manner ail the modeling, planning, and analysis issues.

In this thesis, we address mainly aspects related to the modeling area (expressive model

ing functions, functionality for one-of-a-kind processes), and to the planning area (inte

gration of a planning software into WfMSs). The two examined commercial WfMSs are

flot quite appropriate to address advanced needs in today’s complex applications. Indeed,

functionality stemming from areas such as “adaptive workflows”, “workflow temporal

constraints” and “workflow data management” should be supported. Nevertheless, some

researchers in the workflow domain are studying these areas — part of the “modeling”

area of functionality in the classification of van der Aalst and van Hee exposed above.

ADEPT [RRDO3aJ is an example of a WfMS prototype that addresses adaptive work

flows and workflow temporal issues. In our work we rely on ADEPT as a well-founded

basis, to address and to test new workflow concepts and functionality, but also to try to

integrate functionalities provided by externaT tools/systems.

2.5 Summary

In this chapter, workflow management concepts have been reviewed and the terminol

ogy that wiIl be used in the Test of the thesis has been introduced. Workflow manage

ment involves the design and enactment of workflows. Workflow design consists of cre

ating a workflow model, which is a description of several aspects of a workfiow: the ac

tivities to be fulfilled, the assignment of activities to participants that are either humans

or software systems, the control and data flow between activities. Workflow design re

quires a set of modeing concepts including temporal issues and organizationat structure

issues. Modeling concepts may be based on formalisms such as Petri nets and UML, or

on formalisms that focus specifically on workflow aspects. In this thesis, we are inter

ested by the latter. We consider the WSM-Nets formaÏism to introduce new workflow

modeling concepts and ftinctionality. Workflow enactment refers to the execution of the

activities comprised in a workflow, as prescribed by the conespondhig workflow model.

The WtRM is a standardization effort for the development of WfMSs. This model does

37

flot accommodate in an appropriate manner concepts and functionality iriherent to com

plex socio-technical systems. These concepts and ftinctionality relate to modeling,

analysis as well as planning. Table 2.1 lists the workflow modeling formalisms that were

presented in this chapter, as well as the enactment engines presented and their corre

sponding specification languages. Workflow modeling formalisms concerning adaptive

workflows are flot Iisted in the table, since they wilI be covered in detail in Chapter 3.

Table 2.1. Workflow Modeling Formalisms and Workflow Management Systems

Workflow Management Systems
Workflow modeling

formalisms-Ianguages
SpecificationEnactment engines

languages

Workflow DefinitionPetn nets IBM MQ Senes
Language (fDL)

BEA WebLogic XML-based languaeUr\ff. (state and actlvlty charts)
Integration (e.g., WSCI)

WSM-Nets

WPDL

XML-based formalisms (e.g.,
XML nets, XRL, XPDL,

WSCL, WSCI, BPEL4WS)

Chapter 3 Adaptive Workflows

The capability to dynamically adapt in-progress workflows is an essential requirement

for any workflow management system [RRDO4aI. This requirement is mainly motivated

by the need to react to external or unexpected events. Furthermore, as pointed out by

Rom and Jablonski [HJ9$], adaptive workflows are interesting in the context of specific

applications because it may be impossible to identify ail the elements of a workflow

model (i.e., workflow or process schemaltype) before run-time. Furthermore, modeiing

ah alternative paths in advance might decrease its readability. Domain experts some

times prefer therefore to model paths that are used ftequently only.

A distinction is made between (1) ad-hoc chfmges or punctuaÏ chftnges [EKOO] which

are workflow changes applied to a single workflow instance, and (2) evoltttionarv

changes consisting of adaptiig a collection of workflow instances due to a permanent

change of a workflow model [HS98]. The latter includes propagating changes on work

flow instances or migrating workflow instances running on an old schema S to the new

schema S’. Evolutionary changes are relevant for instance when new laws come into ef

fect, when the maintenance or when the optimization of a workflow model is required.

Ad-hoc changes are of interest when exceptional situations occur that influence a single

workflow instance.

Adaptive workflows are currently studied by a number of researchers in the workflow

community [AMOO, CCP+98, EKOO, HS98, HJ98, KBB98, RD9$, KraOO, WesOl,

ABO2, SM000, RRDO4bJ. Problems and challenges behind this topic are featured withhi

the literature, and solutions based on specific approaches are proposed as well. In this

chapter, we flrst review the challenges and problems related to adaptive workflows as

exposed in the literature (Section 3.1). Then, we present and discuss a selection of im

portant research projects and their related approaches (Section 3.2). In Section 3.3, adap

39

tive WfMSs are discussed. The final section puts the chapter into perspective by high

lighting our hiterests regarding adaptive workflows.

3.1 Challenges in Adaptive Workflows

While flot distinguishing between ad-hoc and evolutionary changes, we focus on three

main issues related to adaptive workflows:

The expressiveness of the workftow meta-modet used [HS98]. The workflow meta

model should provide appropriate modeling constructs to support the dynamic require

ments of business processes. There are two different interpretations of this statement:

The first interpretation consists of a workflow meta-model that is expressive

enough to let workflow instances react atttoinaticaÏlv to specific events which

corresponds to a process-driven approach for workflow changes. As an example,

the Dynamic Workflow Model (DWM) extension of the Workflow Process

Definition Language (WPDL) provides dynamic properties needed to support the

requirements of inter-organizational business processes [MenO2]. Constructs

such as “events” (e.g., before-activity event, after-activity event, external event),

“rules” and “triggers” are defined within DWM. Another example is given in

NDS96J. A workflow modeling approach using transactions and tasks is de

scribed: transactions specify the contents of the workflow, and tasks specify the

scheduling and execution of transactions and also provide reactivity to failures.

In such ftameworks, the workflow already comprises the adaptations required

for accommodating pre-defmed, potential failures. In fact, automatic adaptations

depend usuafly on the outcomes of previous activity executions, and they restrict

in advance the possible workflow changes.

• The second interpretation consists of a workflow meta-model that is expressive

enough at the control and data flow level to atlow practicatty relevant changes: if

ioops for instance are not tolerated by a specific workflow meta-model, there

would be no way to bring a change by insertiiig/deletiiig a cyclic structure.

WASA2 Activity Nets [WesOll, MILANO Nets [AMOO], and TRAMs Graphs

[KraOO, KG99] provide examples of adaptive workflow models based on meta

40

models exctuding loops. If data flow issues were excluded from a workflow

meta-model, there would be no way to deal with data during workflow changes;

e.g., the insertionldeletion of data would flot be possible. Petri Net-based adap

tive workflow models do flot usually explicitly consider data flows. Examples of

such models are Workflow Nets [ABO2] and MILANO Nets [AMOO]. In this

case, the correctness venficazion of changes (refer to the third issue below) does

flot include the verification of data, i.e., whether data is conectly provided or flot.

Ihe compteteness aftlze set of change operations allowed [RD98, RRDO4a, SM000].

The set of offered change operations should be complete in the sense that starting from a

basic workflow model with only a begin node and an end node, any workflow model can

be built using this set of change operations. Completeness and minimality are well dis

cussed in [RD98]. It has been argued that for practical purposes, as a minimum, change

operations for inserting and deleting activities as well as controlldata dependencies

among them are needed [RRDO4aJ. In [SM000], the authors also discuss change opera

tions for modifying activity properties (data requirements, underlying application, tem

poral constraints, resource allocation) and for modifying the order of activity execution.

Sometimes, an adaptive workflow meta-model (e.g., MILANO Nets [AMOO]) allows for

structural changes such as parallelization to change sequential activities into parallel ac

tivities, sequentialization to change parallel activities into sequential activities, and

swapping to change the order of activities. However, it faits to allow for fundamental

changes such as the insertion of a new activity and the deletion of an existing one. A

complete yet minimal set of change operations is desired [RD9$1.

The correctness venfication regarding the apptication of changes on instances. Cor

rectness criteria for verifying if a workflow instance is compliant with the proposed

changes are required. It must be ensured that those changes will flot cause inconsisten

cies or errors for the rest of the workflow iiistance processing. Rinderle et al. [RRDO4aJ

point out that conectness criteria should flot be too restrictive, i.e., no workflow change

should be needÏessly refused. As surveyed in {RRDO4aJ, such criteria are addressed by

the following researchers: Agostini and De Michetis (MILANO [AMOOJ), Casati et aï.

(WIDE [CCP+98fl, Ellis et al. (ML-DEWS [EKOO, EKR95I), Reichert and Dadam

41

(ADEPT [RD98]), Kradolfer and Geppert (TRAMs [KraOO, KG99]), Weske (WASA

[WesOlj), van der Aalst and Basten (Woflan [ABO2Y), Sadiq et aï. (BREEZE [SM000J).

To this list, the work of Rinderle et al. is added [RRDO3b, RRDO4c, RRDO4b].

The second and third issues discussed above have been identifled in [RRDO4a] as fun

damental issues. Moreover, another interesting issue bas been added in [RRDO4a],

namely change realization. From a workflow evolution perspective, it should be possible

to automaticaïly migrate workflow instances to a new schema. One challenge is to cor

rectly and efficientÏy adapt instance states [RRDO4a]. This challenge holds in the context

of ad-hoc changes as well.

It must be mentioned that the four issues cited above are discussed in the literature ai

most exctusively in the context of stntcturciÏ workflow changes. Regarding other kind of

changes such as workflow attribute changes, changes in the workflow temporal aspect,

and organizational mode! changes, they are stil! flot studied and discussed in an appro

priate manner. Attribute changing operations are evoked in [RRDO4c]. It consists of

changing the value of an activity attribute or of an edge attribute. In [SM000], it is ar

gued that “time” is an element that makes workflows dynamic, and that temporal uncer

tainty during workflow modeling cails for veriliing the consistency of temporal con

straints during execution, at the workflow instance level. Applying changes on an organ

izational mode! and correctly propagating those changes on workflow instances have not

been addressed tiil now in the literature.

32 Projects Addressing Adaptive Workflows

Even though the need for adaptive workflows is apparent, solutions are not obvious. In

this section, we review relevant research projects in relation with adaptive workflows.

Change policies and modalities are first reviewed and discussed (Section 3.2.1). Then, in

Section 3.2.2, key projects proposing solutions to the challenges identified in Section 3.1

are surveyed and discussed.

42

3.2.7 Workflow Change: Policies and Modalities

We review in this section two main research projects that ciassify various elements re

iated to workflow change. We begin by presentliig modification policies [Sad99] (Sec

tion 3.2.1.1); then we expose a set offactors to be taken into account when specifying a

change [EKOOI (Section 3.2.1.2).

3.2.1.1 Modification Policies

In the context of evolutionary changes, Casati et al. present a set of workflow changes

refened to as Case Evolution Policies [CCP+98]. They identify “abort”, “flush” and a

set of progressive policies that allow instance or case dependent evotution management

of a workflow. Sadiq [Sad99j identifies a larger number of workflow modification poli

cies, which can be adopted by the workflow administrator:

• Flush: Ail current instances are allowed to complete according to the original

process model, but new instances are set to follow the new model.

• Abort: Active workflow instances may be aborted when the process model is

changed, and then restarted (or flot) according to the new model.

• Migrate: The change affects ail cunent instances but it has to be introduced

without allowing current instances to abort or flush. This policy cails for the

“correctness verification” issue discussed in Section 3.1.

• Adapt: The process model may not change permanentiy, but some instances have

to be treated differently because of some exceptional and unexpected circum

stances (i.e., ad-hoc changes).

• Build: The starting point is flot a detailed pre-existing model, but an elementary

description, which captures only the basics. For instance, workflow activities are

identifled, but the order of execution is mostly unknown. In [KBB98I, the au

thors use the terms “partial” or ‘just-in-time” execution.

These policies cover evolutionary changes (flush, abort, migrate), and ad-hoc changes

(adapt). In [HS9$1, Han and Sheth specify that a strong association can exist between ad

hoc and evolutionary changes: if ad-hoc changes are to be made permanent, we are con

fronted with a problem of workflow evolution. Moreover, we may add that if a workflow

43

evolution is to be applied on running instances, we are confronted with a problem of ad

hoc changes.

From these policies, two different facets are also identified with respect to adaptive

workflows: the dynamic change ami the dynamic definition of workflows. We observe

that the “build” policy tackies exclusively the dynamic definition of workflows. Hence,

adaptive workflow technology takes a broader perspective than the one that is restricted

to “dynamic workflow changes”.

When compared to the modification policies presented above, the requirements dis

cussed in [KBB98] address advanced elements regarding adaptive workflows. The au

thors describe for instance “reflexivity” where a process has the ability to re-model it

self, and the ‘late binding of resources” where the completion of activities uses the re

sources at hand at a specific point in time.

3.2.1.2 Change Modalities

When we want to specify’ a change, there are many factors that must be taken into ac

count. Ellis and Keddara [EKOO] present eight important change modalities to be speci

fied so that an unambiguous change will be implemented:

• Change duration: Instantaneous versus time interval versus indefinite.

• Change lifetime: This specifies the amount of time that the change is in effect. It

could be permanent or temporary.

• Change medium: Manual versus automatic versus mixture. Usually, when the

number of instances that must change is small, this could be manually done by a

hurnan. If the number of instances is big, then they should be autornaticddÏy up

dated. This has been discussed in [RRDO4a] under the “change realization” is

sue.

• Change time-frame: Past versus present versus future. The instances to which a

change is appLicable are typically restricted to the ones in progress. However,

there are situations where instances that have not yet begun are excluded, or in

stances that have already terminated are included.

44

• Change continuity: Preemptive versus integrative. Here we specify the planning

and the impiementation work of the changes, e.g., should we disrupt (preempt)

currently running instances or not? Preemptive strategies include abort, rollback,

restart, checkpoint, and flush schemata. Integrative strategies include versioning,

and other graduai iiistance migration schemata.

• Change agents: Here we specify which participants play which orgarnzational

roles within the change process, e.g., who has the right to specify, enact, and au

thorize what types of changes.

• Change rules: There are participatory rules that define the participation aspect of

a change process, integrity rules that define the various constraints of a change,

(e.g., temporal, data integrity, and flow constraints), and situated rules that spec

ify how to react in the face of exceptional situations, e.g., constraint violation

and system failure.

• Change migration: This refers to the abitity to bring filtered-in instances into

compliance with the new schema in accordance with the migration policies.

Note that the “change lifetime” specification refers to both ad-hoc and evolutionary

changes. The “change continuity” is obviously deflned by policies such as the ones pre

sented in 3.2.1.1, and the “change migration” overlaps with the “migrate” policy.

Regarding the “change medium” modality that introduces the automatic change aspect,

we think that the specified context (i.e., big number of instances) within which automatic

changes are interesting is too restrictive. Automating workflow changes is indeed desir

able in many other contexts. The type of application studied may for instance require

autornatic workflow changes (e.g., with a rule-based approach). This may be realized on

top ofadaptive WfMSs (cf. Section 3.3).

As a final note conceming change modalities, “change duration”, “change time-frame”,

and “change agents” are flot well studied in the literature. Researchers are rather inter

ested in “change rules”, e.g., the “correctness verification”, as discussed in Section 3.1.

45

3.2.2 Proposed Solutions for Adaptive Workflows

A survey and an iriteresting classification of key projects in the adaptive workflow do-

main [AMOO, CCP+98, EKOO, RD98, KraOO, WesOl, ABO2, SM000I, and specifically

of the approaches adopted and the correctness criteria developed within these projects,

are provided in [RRDO4a]. In this section, we review these key projects with respect to

the three adaptive workflow issues discussed in Section 3.1.

We begin by describing each of these projects (Section 3.2.2.1). Then, in Section 3.2.2.2,

the expressiveness of the workflow meta-model used within each project is studied. Af

terwards, in Section 3.2.2.3, the completeness of the set of changes provided by these

projects is reviewed. A summary of the different projects’ correctness verification of

changes is given in Section 3.2.2.4. Finally, Section 3.2.2.5 puts these three adaptive

workfiow issues into perspective, by discussing five typical problems regarding dynamic

workflow change.

3.2.2.1 Description of Key Projects

Woflan [ABO2]. In this project, the Workflow Nets, a Petri Nets-based mode!, is intro

duced. Transformation rules based on inheritance concepts (cf. Section 3.2.2.4) are de

veloped to avoid problems such as the “dynamic-change bug”. The latter refers to errors

such as duplication of work, skipping of tasks, and deadlocks introduced when migrating

an instance from an old schema to a new one or when ad-hoc changes are applied on an

instance. A tool that supports the inheritance notions has been developed (Woflan —

WOrkFLow ANalyzer {VAO4]). It can analyze workflows designed with various work

flow products. This tool has been successfully tested with Staffware.

WASA2 [WesOl]. The workflow model Activity Nets using an object-oriented activity

based workflow meta-model, is defined. It comprises one generic class Workflow of

which Workflow schema and Workflow instance are instances. Within a workflow

schema, activity noUes, control connectors, and data cormectors are defined. Data con

nectors map output and input parameters of subsequent activities (data flow). The work

flow model used is comparable to Activity Nets applied hi IBM MQ Series Workflow. A

46

WfMS architecture based on the CORBA object-oriented middleware lias been elabo

rated. The system, including dynamic adaptations, has been imp!emented.

MILANO [AMOOJ. Two different representations of a workflow model are possible: (1)

The Workflow Net Mode! (WNM) — a !ocal state representation making explicit the in

dependence between the actions, and (2) the Workflow Sequential Model (WSM) — a

global state representation where the path fol!owed during the execution of an instance is

made immediate!y visib!e. MILANO provides a specification modu!e that supports the

users when changing a workflow mode!. The correctness of changes is verified to ensure

a safe enactment of these changes on instances. This enactment is postponed in instances

that are in an unsafe state until they reach a safe one. The theoretical framework of Mi

!ano allows three patterns of change: paral!eiization, sequentialization, and swapping. A

Minimal Criticat Spectfication (MCS) is defined, and must be satisfied by the workflow

mode! and its changes. It is used as a reference to guide changes.

ICN and ML-DEWS [EKOOJ. An approach to provide dynamic changes by rep!acing a

given sub-workflow by another complete!y specified sub-workflow is introduced in

[EKR95I. Notions of dynamic change and correctness as allowed by the Petri Net for

ma!ism — the Information Control Net model (ICN) — are defined. ICN is used to analyze

structural changes. In {EKOO], the eight change moda!ities presented in Section 3.2.1.2

are defined, but a!so a workflow Modeling Language (ML-DEWS) that supports the

Dynamic Evolution within Workflow Systems is elaborated. ML-DEWS is an extension

of UML. It provides two meta-models: one to specify a workflow, and the other to spec

ify a change within this workflow. The language is based on concepts as proposed by the

WfMC. Ail workflow model elements (workflows, activities, ru!es, events, and flow) are

modeled as classes. Pre-defined change schemata are supported by ML-DEWS. Within

these schemata, the ad-hoc schema supports ad-hoc changes. The idea is to complete the

change specification at run-time when the change process is enacted. The authors dis

cuss change design and enactment that either a!temate or are done in parai!el.

WIDE [CCP÷98]. One of the first approaches dealing with dynamic workflow changes

was offered by the WIDE project. It provides a generic conectness criterion for process

schema change propagation (the so called compliance criterion). This criterion is suit-

47

able when instance execution histories are logged. An instance I created from a schema

S is compliant with a changed schema S’ if the execution history of I can be correctly

replayed on S’. In WIDE, workflow schemata can be described either graphically or by

using predecessor and successor functions. In brief, as stated h [RRDO4aI, WIDE has

offered a comerstone for many other approaches — the iiituitive history-based compli

ance criterion.

TRAMs [KG99]. Within this project, the workflow meta-model developed provides

support for the versioning of process schemata and explicitly defmes conectness criteria

for the model as well as for the workflow instances. A taxonomy of modification opera

tions bas been developed. These operations address changes at the process schema level

(addldrop a process schema), at the version level (addldrop a version, changes to a ver

sion state), and at the version content level (attribute and activity changes). The migra

tion of workflow instances is studied. Another aspect addressed in [KraOOJ is the reuse

of process schemata, which is a process consisting of finding, understanding, adapting,

and integrating process schemata instead of developing process schemata from scratch.

ADEPT [DR98]. The WSM-Nets workflow model deveÏoped within the ADEPT project

bas already been introduced in Chapter 2. The research efforts in this project were mi
tially concentrated on the support of ad-hoc deviations at the workflow instance level

without violating data consistency, temporal constraints. and robustness of the system

{RD98]. Data dependencies and the data flow between steps are analyzed to decide

which dynamic modifications can be granted and which have to be refused. Lately, evo

lutionary changes have been addressed in a significant manner within the ADEPT pro

ject [RRDO3b, RRDO4c, RRDO4b]. When compared to other projects that address work

flow evolution, the ADEPT approach is considered as a farsighted approach since it

studies and proposes correctness criteria for propagating process type changes not only

to instances that are stili running according to their original schema (i.e., unbiased in

stances), but also to those instances that have been individually modifled (i.e., biased

instances).

BREEZE [SM000]. A three-phase modification methodology that consists of (I) defin

ing the modification, (2) verifying the compliance of the workflow instance with the

48

proposed modification, and (3) realizing the modification is proposcd in [S099a,

Sad99]. This methodology handies the modification policies presented in Section

3.2.1.1. A WfMS architecture providing ftilÏy automated support for the process of dy

namic changes bas been elaborated. It allows the automatic compliance verification of

the instance to migrate. A “compliance module” component generates graphs (called

“compliance graphs”) that define a bridge between a workflow model version k, and a

workfiow model version k+1.

3.2.2.2 Workflow Meta-Model Expressiveness

Assume a workfiow composed of a sequence of three activities A, B, and C. We apply

workfiow models respectively developed within the different projects (P) introduced in

Section 3.2.2.1 to represent this workflow (Sp). Table 3.1 shows workfiow instances Ip

respectively issued from Sp. In each instance the activities A and B were completed. In

formation behind the execution phase is included (e.g., execution history, markings).

Some notes regarding the expressiveness of the workfiow meta-model used are given.

We consider that a workfiow model allows the modeling of sequential, parallel, condi

tional, and iterative activity branches, and that data fiow is supported. Otherwise, i.e., if

it is not the case for a specific workfiow model, we state it clearly in what follows.

Table 3.1. Adaptive Workflows Key Projects — Workfiow Meta-Model Expressiveness

Workflow instance taking into ac- Execution phase information, Meta-model expressiveness
count a specific workflow modeling

language I

Woflan: Workflow Nets
Petri nets rules apply. Data flow issues are ex

cluded.

oîo ® O

49

WASA2: Activity Nets
t NotActivated t Data flow

t Completed Loops are excluded. The
acycbc graph structure is
even a correctness criterion

Possible markings: NotActi- for a workflow schema —

vated, Activated, Running, no deadlocks.
Completed, Skipped.

Activity output parameter and
its corresponding activity in
put parameter should be type
conform. This is one ofthe
correctness criteria for a
workflow schema.

MILANO Nets
Petri net rules apply in Loops are excluded —

WNM A B c WNM. acyclic Free-Choice Petri

C) l () ‘K) I K”) Nets are used.
Current state in WSM

Data flow is flot explicitly
WSM A B c considered.
-

ML-DEWS: Ftow Nets Colored tokens are used to Comparable to Workflow
distinguish different in- Nets, but places can hold

(D î (D Î <D K’)
stances, more than one token.

WIDE Graphs
Only activity completion t StarUEnd

the

V S_1 Workflow instance state can
Hisory=((Es,), (EA), (Ea, <di, “value>)) be deduced from the history

logs.

TRAMs Graphs
SC: Start Condition t Data flow

A B C Possible markincs: Activated,
Running Completed.

SU: Tme SC: done(A) SC: done(B)

Activity start and completion
Varss=(dL) events are togged within the
Hisiory=((SA). (EA), (SD), (Es, <d1. “value”>)) Histo’ (S = Start, E = End).

Workflow instance state can
be deduced from the history
logs.

50

ADEPT: WSM-Nets
Completed Data flow

Activated Synchronization edges be
tween activities in different

• : True-Signaled parallel branches are in-
A B C cluded.

Possible markinrs: NotActi
vated, Activated, Running,

History=((SA), (EA), (SB), (Es. <U1, “value”>)) Completed, Skipped.

Activity start and completion
events are togged within a te
duced History (S = Start, E =

End).

BREEZE : Completed Initial

A C
Possible markines: Sched- Final
uled, Active, Suspended,
Completed, Terminated. * Data flow

Varss=(dIl

History=(fSA), (EA), (Se), (Ee, <d1, “value”>))

3.2.2.3 Set ot Changes Completeness

In [RRDO4a], it has been specifïed that the set of changes defined within each of the pro

jects introduced in Section 3.2.2.1 is complete except in the Woflan project where the

order changing operations are explicitly excluded, and in the MILANO project where

only the parallelization, the sequentialization, and the swapping of activities are allowed.

Indeed, most of the projects allow for the serial and parallel insertion and deletion of an

activity, and the change of an activity attribute value (variable, in-/out-parameter). In

addition, ADEPT allows moving an activity, inserting and deleting a synchronization

edge, and changing an edge attribute value. However, the insertion and deletion of a

workflow data element is evoked but flot discussed in detail. In TRAMs, the start and

end conditions of an activity can be changed, and changes on data issues are addressed:

insertion and deletion of an in-/out-parameter, of a workflow variable dectaration, and of

a data flow. In WIDE, the insertion and deletion of variables is possible as well.

51

3.2.2.4 Summary of Correctness Verification

A summary of the change correctness criteria elaborated withii each of the key projects

is given in Table 3.2. A detailed survey of these criteria is given in [RRDO4a].

Table 3.2. Adaptive Workflows Key Projects — Correctness Verification of Changes

Approach Correctness verification

Woflan: Workflow Nets A workflow instance I on schema S is compiiant with the modified schema
S’, if S and S’ are related to each other under inheritance.

(Ad-hoc and evotrttiona,y There are two kinds of basic inheritance relations. S is a subclass of S’ if the
changes) behaviors of S and S’ cannot be distinguished when:

• onlv executing tasks of S, which are also present in S’. Le., blocking a
sub-set of tasks of S.

• arbitrarv (ail) tasks of S are executed but onty effects of tasks that are
present in S’ as well are taken into account. I.e., hiding a sub-set oftasks
ofS.

(S and S’ could be reversed.)

There exist automatic transfer rules for adapting markings.

WASA2: Activity Nets lis compliant with S’ (i.e., I can be migrated to S’) if a valid mapping exists
between I and S’, i.e., if I is a prefix of S’. In this case, ail compieted activi

(Ad-hoc and evotutionary ties of I and ail control and data dependencies in I are aiso contained in S’.
changes) I is a purged instance graph: I is derived from S by deleting ail activities

which have flot been started yet and by removing ail associated control and
data edges.

MILANO Nets lis compliant with S’ if lis in a safe state on S regarding S’. A safe state on
S regarding S’ is a state that is present in S’ as well.

(Evotutionary changes j If lis in an unsafe state, the migration of I is postponed until a safe state is
onty) reached.

ML-DEWS: ftow Nets Suppose that m is the marking of I on S. It is supposed that the marking m’
of I migrated to S’ is known.

(Ad-hoc and evotutionary I is compliant with S’ if for each of the possible firing sequences leading
changes) from m’ to the final marking of S’:

• This sequence is producibie on S starting from m. What will potentially
be done on S’ could be done on S as well.

OR
• The firing sequence that ied to m on S can be reproduced on S’ and hence

it can be continued on S’ by this sequence. What has been done on S can
be reproduced on S’.

Marldng adaptations are always correctly performed since the old change
region is completely contained in the new net.

52

WIDE Graphs lis compilant with S’ if the execution history on S can be “replayed” on S’
as well. Ail events stored in the execution history could also have been

(Evottttionary changes logged by an instance on S’ in the same order.
onty) Obvions approach probteins: (1) Possibly extensive volume of history data,

which is normally flot kept in main memory [KG99]. (2) Restrictions in con
junction with change operations within cyclic structures [RRDO4aI.

TRAMs Graphs Similar to WIDE Graphs. In addition, migration conditions are verified. This
provides a solution for problem (1) exposed in WIDE Graphs.

(‘Evotutionaiy changes
only)

ADEPT: WSM-Nets Similar to WIDE Graphs. However, a reduced execution history is used, and
migration conditions are verifled. This provides a solution respectively for

(Ad-hoc and evotrttionary problem (2) and problem (1) exposed in WIDE Graphs.
changes)

BREEZE Similar to WIDE Graphs. A compliance graph is generated. it defines a
bridge between S and S’. A compliance graph i related to an instance j, ai

(Evotutionary changes lows the latter to follow a unique path defining actions or compensations
only) necessary to achieve compliance for this instance, and a suitable “plug” point

in S’.

In the context of the Woflan project, van der Aatst and Basten used the concept of bi-

simulation [Mil8O, Par8 11 in order to verify inheritance of process schemata [ABO2J.

Speciflcally, branching bi-similarity was used as an equivalence relation on Petri Nets

schemata: two Petri Nets schemata S and S’ are bi-similar if S can simulate every behav

ior of S’ and vice versa, i.e., starting from the initial marking every firing sequence of S

must be executable on S’ and vice versa. Bi-simulation is a well-founded concept for

correctness verification that can also be applicable on process specification formalisms

other than Petri Nets. Other techniques coming from process algebra [Hen8$] were suc

cessfully used for the verification of systems [GRO1]. In fact, process algebra can be

used as a specification formalism for workflows since they yield elements for the model

ing of sequential, alternative and parallel processes but also a rule framework for the

verification of these processes. Unfortunately, there is no implementation of WfMSs

based on process algebras. A possible explanation could be the lack of understandabiïty

(i.e., user friendliness) of the formalism. Featuring more detaits regarding bi-simulation

and process algebra goes beyond the scope of this work.

53

3.2.2.5 Discussion

Five typical problems regarding dynamic workflow change have been reviewed in

[RRDO4a1: changing the past, loop tolerance, dangÏing states, order changing, and parai-

lei insertion. They denote correctness criteria problems. It has been argued that: (1) the

past of an instance shouid not be changed; (2) it should not be needlessly impossible to

bring changes within loops; (3) it is sometimes probÏematic flot to distinguish between

activated and running activities; (4) a potential problem of order changing is to correctly

adapt instance markings; and (5) inserting a new parallel branch is problematic in Petri

Net-based approaches (e.g., Workflow Nets, Flow Nets) — new tokens may have to be

added to avoid deadÏocks or Ïivelocks.

The approaches adopted by specific projects for the correctness verification of changes

either deal or do flot deal with each of these five problems. Furthermore, in the case

where they deal with a problem, they may not do it conectly. This mainly depends on

the expressiveness of the workftow ,neta-,nodet used, on the completeness of the set of

change operations allowed for, as well as on the approach adopted itself:

Changing the past. A possible problem of changing the past is to miss input data of

subsequent activity execution. As highlighted in [RRDO4aJ, it is interesting to see that

the FIow Nets approach forbids changes that affect both already passed regions and re

gions which will be entered in the sequel. This can be easily expiained when considering

the two exclusive criteria of the Flow Nets correctness verification of changes. Indeed,

when a change is applied on a schema S leading to a schema S’, in the best case, either

the statement “what will potentially be done on S’ couÏd be done on S as welt” is yen

fied or the statement “what has been done on S can be reproduced on S” is venified, but

neyer both. Suppose both statements are venified, this means that S = S’, which is flot the

case. Obviously, the verification ensured by the Flow Nets approach guarantees correct

data provision.

Loop tolerance. It has been argued in [RRDO4a] that a reduced (i.e., consolidated) view

of the execution history as in ADEPTIWSM-Nets relieves the restrictive aspect in con

junction with change operations within cyciic structures. A reduced execution history is

derived from an execution history by discarding ail the history entries reiated to other

54

loop iterations than the Iast completed or currently running ioop. As shown hi the exam

pie of Figure 3.1, the execution history on S cannot be repiayed on S’, but the reduced

execution history on S can be replayed on S’. The redttced pre-changefiring sequence

which is a Petri Net-based approach adopted in FIow Nets and that corresponds to the

sequence of transitions that have been fired before the change arrives, and the purged

instance graph approach adopted in WASA2 are both comparable to the reduced execu

tion history approach in the sense that they relieve the restrictive aspect in conjunction

with change operations within cyclic structures. Nevertheless, this problem is factored

out in WASA2 since the workflow meta-model used exciudes Ioops.

y’ Compted

AoopStart B C LoopEnd D • True-Signaled

Changes = (insertAct(X, {B), {C)))

%

A LœpSart B X C LoopEnd D

Histon, = ((SA), (SA), (Si.,,p5t,rj, it=1), (Ej,,,psia,t), (S11), (111) , (Sc), (Et). (SLpEn1).
(EL,Efld, condition=true), (S1,,psan, it2), (Et.pStrt), (S11), (Es))

ReducedHistoi1 = ((SA), (EA), (SpSt, it2), (E,p5ta), (S11), (511))

Figure 3.1. Loop Tolerance in ADEPT/WSM-Nets, adapted from [RRDO4aj

Dangling states. We observe that the approach of execution histories that contain only

“end” entries of activities — such as in WIDE Graphs — does not help to distinguish be

tween an activated state and a runnhig state for a specific activity. The activity state (i.e.,

the markings) should be specifled explicitly to cope with this problem, which however is

flot done in WIDE Graphs. Workflotv modeling languages based on Petri nets (WF Nets,

MILANO Nets, and Flow Nets) abstract as welI from internai activity states, i.e., they

only differentiate between activated and non-activated transitions [RRDO4aJ. As it has

been shown in [RRDO4a], this coarse differentiation of activity states is unfavorabte in

conjunction with the deletion change operation. As an example, the deletion of activated

55

activities is forbidden which is too restrictive, or the deletion of running activities is ai

lowed which leads sometimes to loss of work.

Order changing. FIow jumpers used in the FÏow Nets approach help to correctly adapt

instance markings when changing the order of two activities (Figure 3.2). Markings ad

aptation is considered as a challenging problem hi workflow changes, and very littie ap

proaches address this issue. Furthermore, in the case where an approach addresses this

issue, it may flot do it correctly.

o îo 1€ o ïo
I on S

Changes = (Parallelize(B, C))

Parallel insertion. As opposed to Petri Net-based approaches, when the correctness

verification is based on “compliance criteria” (e.g., WIDE Graphs, TRAMs Graphs,

WSM-Nets, BREEZE), the parallel insertion — if flot mixed with the “changing the past”

problem — can obviously be easily solved.

As a fmal note in this section, the correctness verification in the context of “evolutionary

changes” or compliance verification may lead to non-compliant instances where in

stances cannot be migrated to the new workflow schema. Current adaptive workflows

projects deal with these instances either by proposing compensation activities so that

rolling back non-compliant instances into a compliant state becomes possible [SM000,

SadOOJ, or by delaying the migration until a compliant state has been reached [EKR95J.

Figure 3.2. Markings Adaptation using the SCOC — Syntactic Cut Over Change — in
ML-DEWS/FIow Nets, adapted from [RRDO4aI

56

3.3 Adaptive Workflow Management Systems

Most current WfMSs support process versioning where multiple versions of a workflow

may be active at the same time. Few commercial products provide, however, support for

adaptive workflows. WfMSs like Staffware, WebSphere MQ Workflow (reviewed in

Section 2.4.2.1), and WLPI (reviewed in Section 2.4.2.2) tend to be very inflexible.

Mainly, the adaptation of in-progress instances is flot allowed. By contrast, InConcert

[IncO2] and FileNet Ensemble [Ens9$J allow workflow instance adaptation during run

time, namely the dynamic insertion and deletion of an activity. InConcert [IncO2] for

example supports ad-hoc workflows by using Process Design by Discoverv, a method

which aHows customers to deploy workflows without a preliminary design phase: the

process is built by doing the tasks, may be changed on the fly by users, and saved as a

template when completed. As argued in [RRDO4a], though ad-hoc WfMSs provide

flexibility, they have failed to adequately support end users. Particularly, they do flot

support them in defining changes and in dealmg with potential side effects such as miss

ing input data of an activity due to the deletion of a preceding data provider activity.

Since one cannot expect from the end user to cope with such problems, this increases the

number of errors and therefore limits the practical usability of respective WtMSs.

Turning now to academic WfMSs, prototypes exist for some of the projects introduced

and discussed in the previous sections. We are aware of the following WfMS implemen

tations: WASA2, BREEZE, Chautauqua [EM97J which offers an implementation where

Flow Nets are generalized to Information Control Networks (ICN), and ADEPT which

offers an implementation based on WSM-Nets. As for other projects, the basic mecha

nisms of the framework have been implemented and simulated (e.g., MILANO, TRAMs,

Woflan). However, no complete WfMS prototype has been developed.

Automatic workflow changes may be realized on top of adaptive WfMSs. Examples in

clude the dynamic workflow system discussed by M Hier and Rahm {MR99]. This sys

tem has been taiored on top of ADEPT. It implements an automatic ruie-based approach

for the detection of semantic exceptions (e.g., drug-side effects) in cancer therapy work

flow scenarios, and for the dynamic changes of patient treatment workflow instances.

Exception events are filtered out of “normal” events, thon affected workflow instances

57

and control flow areas are automatically ïdentifled, and finally affected areas are auto

matically adjusted. Control flow modification algorithms are provided for this purpose.

They allow to drop, to replace, to check, to detay, and to insert a node. Such a rule-based

approach for automatic workflow changes is usually based on the availability of know]

edge bases, as it is for example the case for medicat domains. In fact, a lot of declarative

knowledge is needed to derive modification implications when events occur.

3.4 Conclusion

We consider the problems and solutions reviewed in this chapter as groundwork, first,

for the categorization of limitations in adaptive workflow technology, and second, for

the formalization of related solutions. The expressiveness of a workflow meta-model and

the completeness of a set of change operations are debatable issues. Indeed, it lias aI

ready been highlighted in Section 3.1 that the expressiveness is measured taking iiito ac

count the practically relevant changes allowed by the workflow meta-model. To the ex

tent that “practicality” is involved in the measurement of expressiveness, a “new” work

flow concept may appear of great practicality when studying a specific application.

Moreover, the completeness of a set of change operations can be judged mostly from the

application for which it is going to be used. The proposed and studied change operations

are stitl almost only limited to workflow structural changes. The completeness of a set

of change operations should be measured beyond structural changes only.

Indeed, issues such as “time” and “workflow attributes” are relevant as well. Beyond the

structural specification, the temporal aspects are relevant since they add another dimen

sion to the scheduling of workflow activities [5099b]. If temporal constrairits exist, they

should be specified as a complement to the control flow, and they should be addressed in

conjunction to changes. Workflow attributes are relevant as well since the successful

execution of an activity may require the availability of specific attributes [5099b1. A

data dependency may exist between activities (i.e., data flow). The workflow attributes

and the structural aspects of a workflow model are dependent on each other: a condition

needs the attributes provided by a data flow to select the alternative path, and a control

flow path must also exist to satisfy a data flow constrairit between two activities

5$

[S099b1. Mainly, because of this dependency, structural changes may require changes at

the workflow attribute level and vice versa.

Once limitations of cunent adaptive workflow technology are identified, it becomes

necessary to propose solutions to cope with these limitations. Under this perspective, the

correctness verification issue should be considered. Proposed solutions need to be based

as much as possible on formai defmitions, and correctness criteria need to be developed.

Chapter 4 Workflow Technology Applied to Complex

Socio-Iechnïcal Systems

The domains of e-negotiations and transportation are examples that cal! for non-trivial

socio-technica! systems. These systems need to be “dynamic” mainly because of the un

derlying application environment; they need to be “reactive” in the sense that they

should be able to automaticaily react to internai and-or external events; they involve

multiple actors which implies their “social” aspect; they sometimes require the manage

ment of shared resources; and finally, we define a “human in the ioop” which means that

the user must take decisions and she should be able to intervene (manually) with the sys

tem to communicate resuits, to bring modifications to what already exists, and so on.

Studying complex systems wiii serve us to hwestigate refined aspects of workflow tech

nology and to trigger more adequate support for building such systems.

This chapter begins by briefly reviewing state-of-the-art workflow-oriented applications

and by motivating the need to study complex socio-technical applications. Then, in Sec

tion 4.2, an e-negotiation application is reviewed in detail and a combined negotiation

support system (CONSENSUS) is presented. In Section 4.3, another comptex socio

technicai application, the muiti-transfer container transportation (MTCT) application, is

detailed and a workflow-oriented system for the processing of customer requests for

contahier transportation is motivated.

4.1 Workflow-Oriented Applications

for a number of years, workflow technology has been embedded within IT products,

histead of being a standalone technoiogy. Hoilingsworth discusses the emergence of

workflow within the market by analyzing some of the application domains where this

technoiogy has been successfully applied [Ho1971: image processing, document man

60

agement, electronic mail and directories, groupware applications, and project support

software.

Today’s literature gathers a number of workflow applications. Some of these applica

tions must be considered as sample examples, while others corne from the real world

where workflow systems are sometimes specifically tailored to cope with them. The

most cited applications are related to dornains such as e-business (electronic business),

medicine, banking, insurance, public administration, and software development. A nurn

ber of other workflow case studies can be found at the WARIA website [WARIAO4].

These case studies are gathercd under different topics: academic, financial, government,

healthcare, industry, technology, transportation, and utitities.

In the following, we first review four application domahs that are well supported by

workflow teclmology. We focus on the e-business dornain, the medical dornain, the

banking and insurance domain, and the public administration domain. Then, we motivate

our involvement in cornplex socio-technical applications.

4.1.7 E-Business Domaîn

In e-business, purchasing of goods (e.g., computers, books), buying/selling of stocks, e

procurement of materials (e.g., raw materials) and outsourcing (i.e., supply chains of

services) are examples of applications that can be supported by workflow technology

[1vflVW98]. These applications involve inter-organizational workflows [AalOOJ because

they require communication between multiple parties. They are used as typical distnb

uted examples in {BIaOO, SRK+01, AKOO, W1981. Express mail services over the Inter

net is another e-business application where a company such as Federal Express can offer

a workflow-based service to notify the customer (both sender and receiver) as soon as a

package is delivered at a site [KZO2]. We rnay also think of a tracking service that tracks

the routing of the package.

Recent research projects in the e-business domain are oriented towards e-services appli

cations (e.g., Web services). We discuss below two recent projects in the context of e-

services.

61

Blake worked on a workflow architecture, called WARP (Workflow Automation

through agent-based Reflective Processes), that supports Web services [B1a021. This ar

chitecture consists of software agents that can be configured to control the workflow op

eration of distributed services.

Meng worked on a dynamic inter-organizational WtMS [MenO2]. The sharable tasks

performed by people or automated systems in a virtual enterprise are treated as e

services, and e-services requests are specified in the activity definitions of a process

model. Four dynamic properties of the proposed WfMS are discussed: the flexible prop

erty (the dynamic binding of e-services to service providers), the active property (a result

of the integration of business events and business rules with business processes), the cus

tomizable property (the processing of business rules may enforce customized business

constraints and policies), and the adaptive property (the processing of business rules may

dynamically alter the process mode! at run-time).

The two workflow-based projects described above allow for the dynamic binding of e-

services during run-time. This can be considered as a specific type of dynamism in

workflows. Meng discusses also dynamic aspects stemming from the enactment of busi

ness processes, and she proposes a rule-based approach to deal with such dynamism.

Finally, the BPEL4WS language introduced in Section 2.2, has exceptions built into the

language via the “throw” and “catch” constructs. It also supports the notion ofcompen

sation, and introduces the notion of scope (comparable to spheres [Ley95]). There is

some work on exception handiing in BPEL4WS [CKL+03j. However, dynamic change

issues have not been addressed yet.

4.1.2 Medical Domain

In the medical domain, most applications are implemented using adaptive workflows.

Dadam and Reichert discuss, under the ADEPT project, the management of a hospital’s

“day cliiiic” division by means of workflows [DR98J. They analyze relevant processes,

and evaluate to which degree these processes could be supported by current workflow

technology. Workflow evolution, exception handling, flexibility, and temporal aspects

are among the many important aspects addressed within the project. These aspects are

62

mairily motivated by medical cases: acute emergency, violation of prerequisites for

medical intervention, incomplete medical orders, etc.

A dynamic workflow system tailored for an oncology application is discussed by Mtifler

and Rahm [MR99]. Cancer therapy is characterized by a long-term treatment based on

standardized plans that can be modeled using workflows. However, one major problem

of cancer treatment is the enormous amount of diagnosis, which may create, for instance,

specific drug-side effects to a significant number of patients. The treatment workflows

of these patients will have to be modified partially. We already explained this applica

tion previously (cf. Chapter 3, Section 3.3).

At another level, the management of food services and dietetics departments of a hospi

tal can be donc using workflow technology [NDS96]. Ngu et aï. describe a workflow

modeling approach using transactions and tasks to manage the meal production and the

distribution of meals to patients in a number of hospitals (CBORD system). Transactions

specify the contents of the workflow, and tasks specify the scheduling and execution of

transactions, and they provide reactivity to failures. However, these failures need to be

known in advance so that appropriate adaptations are defined. For example, in case the

production unit (i.e., “prepare meal” task) of the CBORD system cannot satisfy the re

quired number of meals due to unforeseen disruption in the kitchen, a contingency task

“acquire meal” can be invoked to order the shortfall from the extemal kitchen.

In spite of the fact that the ADEPT project was initiated to address clinical processes, the

resuit of this project was an adaptive WfMS that could be applied to many types of ap

plications. The dynamic workflow system addressing the oncology application uses

ideas relative to dynamic workflows that are behind the ADEPT system. In addition, a

rule-based approach is elaborated for the detection of semantic exceptions and for apply

ing the changes to workflow instances. This approach is based on the availabiity of

knowledge bases. Finally, the CBORD system puts the emphasis on the fact that when

wc talk about adaptive workflow management, we refer not only to a workflow system

that is flexible enough to support adaptation, but also to modeling languages that provide

the appropriate constructs to support dynamism. In this ftamework, the workflow aI

ready comprises the required adaptation for pre-defined possible failures. The dynamism

63

provided by this ftamework as well as the one supported by the rule-based approach are

similar in the sense that they introduce the notion of “automatic” dynamism (reactivity).

4.1.3 Banking and Insurance Domain

The bankhig domain and the insurance domain provide classical examples of workflow

applications. Examples include credit processing applications and insurance daims

processing applications [Man99]. The literature reÏated to the Mentor project

[MWW÷9$] uses the credit processing application as a sample example. The work of

van der Aalst et aï. [ABE+OO] considers the insurance daims processing application, as

well as applications related to software development, w the hiring of new employees,

and to the organization of a conference, as typical examples to expose their new work

flow control approach based on pivcÏets (used to let instances interact among themselves

via channels).

4.1.4 Public Administration Domain

A public administration represents a huge enterprise dealing with different tasks. Well

structured models are usually deflned for processes like vacation or travet requests.

However, complex and long-running workflows depending on events exist as well.

Some parts of these workflows cannot be planned in advance and have to be modified

during execution.

An example of such workfiows is given by Siebert in [Sie96]. It consists of the planning

phase for the construction of a new building triggered by the relocation of some authori

ties from one city to another. The need for inter-organizational and for adaptive (ad-hoc

changes) workflows is highlighted. A “workflow modification services” component is

provided to check and perform modifications. Adaptivity rights (i.e., which adaptations

may be performed by which actors), and structural integrity/consistency rules are con

sidered by this component to decide whether a requested modification is allowed or flot.

An originaL idea conceming the “on-the-fly” editing has been discussed by Siebert

{Sie96]. New activities need to be defmed and modeled at run-time.

Van der Aalst and van Hee discuss in detail another public administration application

based on workflows: the custom service application. They describe the workflow-based

64

Sagitta 2000 declaration-processing system of the Dutch Customs Service [AHO2I. One

of the topics addressed is the requirement to separate management and application. This

creates an opportunity to improve the control of business processes, it eases the abiiity to

adapt business processes to changes in the law, and it gives a guarantee that formai steps

do take place in accordance with the iaw.

4.1.5 Why Studying Complex Socio-Technïcal Applications?

The approach of focusing on specific applications has the potentiat of being a construc

tive method for building a list of (new) aspects that need to be addressed by workflow

technology so that these applications can be properiy supported. Some applications, such

as the ones cited in previous sections, are considered as workflow-oriented by their na

ture. Even if studying these applications can help identify some interesting workflow

aspects, these aspects may stiil lack some innovation because the applications introduc

ing them are initially meant to be supported by workflows. However, when studying ap

plications that do not readily tend themsetves to workflow-oriented applications, the re

quirements inherent to workflow-oriented systems supporting them can be profltably

used to enhance what workflow technology is currently offering. In this perspective, we

study complex socio-technicai applications asking for dynamic and reactive systems

where multiple actors are involved and where the user should be able to interact with the

system.

4.2 The Combined Negotiation Application

Combined negotiations (CN5) are a novel and generai type of e-negotiation, in which the

user is interested in a package of items (goods and services) and consequently engages in

separate negotiations for these items [BAV+01]. The negotiations are independent of

each other, whereas the goods or services are typicaliy interdependent. As examples of

CNs, two packages are described respectively in [BBKOI, BBK+02a}: a flight connec

tion package and an importing package. The fiight connection package may consist of

three items: a plane ticket from placei to place2, another plane ticket from place2 to

place3, and a hotel room for one night in place2. The importing package involves a num

ber of activities/services such as the purchase, the shipment, the insurance and the for-

65

warding of goods. The items within each package are interrelated since for instance, in

the first package, the hotel room should be reserved at place2 on the date of the trip, and

in the second package, the shipment of goods should be scheduÏed after the goods are

delivered. Furthermore, many constraints exist such as the maximum price to pay, the

preferable date to travel or to receive goods and so on.

A CN Support System (CNSS) based on a WfMS is proposed in BAV+O1J to help the

user (consumer or business) model the CN by specifying the sequencing of the individ

ual negotiations and the dependencies between them. The CNSS is then used to enact the

CN and to allow the user to control, track and monitor the progress of the CN as well as

the individual negotiations.

In the following, we begin by describing the CNs application. Then. we discuss in detail

the modeling of the two packages introduced above. The CNSS, called CONSENSUS, is

finally presented.

4.2.1 Description of the Application

Negotiation takes place when an agreement between the consumer and the provider has

potential for optimization, and the parties intending to carry out the transaction are wiII

ing to discuss (i.e., negotiate) their offers [Str99]. Auctions are a special case of negotia

tions as they represent a more general approach to price determination, admitting a range

of protocols, including fixed-price as a special case [WWW9$]. The benefit of dynami

cally negotiating a price for a product instead of fixing it is that it relieves the merchant

from needing to determine the value of the good a priori. Rather, this burden is pushed to

the marketplace {MGM99]. On the Internet, negotiation often amounts to one party

(typically the seller) presenting a take-it-or-leave-it offer (e.g., a sale price), but in the

last few years auctions have become more and more popular especially in the C2C mar

ket.

In the context of negotiations, the consumer may be interested in many items that fonn a

whole (i.e., a package of items). The negotiation of these items cannot be conducted

separately. Indeed, if conducted separately, it can happen that the consumer fmalizes a

deaL on one item but cannot get a good deal (or any deal at ail) on another item. Break-

66

ing the commitments4 already made is flot aiways permitted, and even if it is, it usually

costs money and leaves the consumer at the point where she started (i.e., with no pack

age). CNs were mainly thought to cope with this problem, that is, to aflow the consumer

negotiate the package of items with the minimum tisk of breaking her commitments and

with the maximum chances of getting good deals on ail the items.

Moreover, if more than one attribute of an item is negotiable (e.g., price, date), the de

pendencies among the h)dividuai negotiations get more complicated. The outcome of

one negotiation is crucial in the other ones. Therefore, CN facilitates dealing with multi

attribute negotiations, possibly of different types.

In [BAV+O1. BBKOI], important issues related to CNs are addressed:

• CN Failure. We talk of CN failure (i.e., exposure) when we need two items A

and B, engage in negotiations on both items, and end up winning on A but losing

on B. In a single negotiation, there is no guarantee that we wilI succeed in win

ning the item. In a CN the risk of failure is even higher because the user negoti

ates several items5. Since the consumer wants the whole package or nothing, she

might want to break (if allowed) the commitments she afready made in the suc

cessfui negotiations. Breaking a commitment evidently has a price. Obviously,

the possibUity of breaking commitments adds more compfexity and requires

more flexibility to the CN problem.

• AND-Negotiation and OR-Negotiation. The package that is the object of a CN

is in generai made up of many items. If many negotiations are launched for the

same item, these negotiations are called OR-Negotiations. Negotiations for dif

ferent items that make up the package are called AND-Negotiations. Each of

these types of negotiation may be run either in parallel or sequentially. However,

it is iriteresting to run OR-Negotiations in parallel in order to save time and also

to maximize the chance of a good deal, whereas it is sometimes an obligation to

Commitment means that 011e agent (human ot software agent) binds itself to u potentiai contract whiie waiting for the oiher agent 10
either accept or reject its offer [SL95]. 1f the other pafly accepts, both parties are bound to tise commitnsent. When accepting, lise
second party is sure that the contract svili be made, but the first party bas commit before it is sure.

What con go crong ss’itt go wrong, as Murphy’s iasv goes — if there are more things that can full, more things sviH fail.

67

run AND-Negotiations sequentially since the output of one negotiation may be

crucial as input for another one.

Intnnsic and Procedural CN Constraints. Let us consider three different nego

tiations (Ni, N2 and N3) associated with three different items in a CN. Suppose

that the attributes for each item are the price, the date and the place. Intrinsic

constraints concern the attributes and the dependencies between the items at the

attribute level. They may involve just one individual negotiation (e.g., pricel

THRESHOLD, date I in RANGE, place I = X), or more than one individual ne

gotiation (e.g., price to pay for the package THRESHOLD, date3 = f(datel,

date2)). Procedural constraints indicate the control flow between the individual

negotiations:

o Sequential: N2 is launched after Ni is finished.

o Parallel: Ni and N2 are launched at the same time.

o Choice: depending on a condition, either Ni is launched or N2 is

launched.

o Wait for: N3 waits for NI and N2 to finish or waits for either one to

finish.

o Repeat: repeat Ni until a condition is met.

In order to negotiate the diffèrent items in a CN, software agents are assigned to individ

ual negotiations. These agents may be instances of a generic negotiation server infra

structure such as GENESIS [BKL+OO] that supports a variety of negotiation types. The

behavior of software agents is defined via negotiation rules (i.e., protocols), negotiation

strategies and coordination strategies:

• Negotiation rules [BAV+Ol] need to be downloaded from the negotiation server

so that a specific agent, responsible of the negotiation of a specific item, is cor

rectly instantiated taking into account the type of the negotiation. Some well

known negotiation types are the flxed-price sale, the Dutch auction, the English

auction, the bilateral bargaining, and the combinatorial auction.

• Negotiation strategies [BAV+OlJ are used by the agents when generatiiig offers

and counteroffers during the course of a negotiation. A differentiation is done

6$

between negotiation strategies applied to one individual negotiation (e.g., “if

your bid is aiways beaten by the same opponent then be less aggressive in your

bidding”) and negotiation strategies applied to the CN as a whole (e.g., “if you

have littie chance of making a deal on an item then don’t commit yourself on the

other items of the package”).

Coordination strategies [BAL+02J correspond to the information that the

agents need in order to coordinate their actions hi a specific CN. Here are two

examples: (1) When two agents are participating in separate negotiations with

the goal of purchasing just one item, the foïlowing rule ensures that the agents

make no more than one commitment at the same time: “If Agent2 is Ïeading or in

the process of bidding, tïien Agent] shoutd wait.” (2) When two agents are par

ticipating in separate negotiations with the goal of purchasing two complemen

tary items, the following rule minimizes the risk of exposure: “If Agent2 is trail

ing, and its chances of making a deal are stim, then Agent] should waitforfur

ther instructions.”

Ciearly, a CN is a coinptex process since it asks for a specific structure of the different

negotiations (procedural constraints), it requires the definition of the dependencies be

tween the items at the attribute level (intrinsic constraints), and it involves many agents,

each one conducting an individual negotiation on a distant server while cooperating with

other agents in soiving a common problem: “the consumer wants the whole package or

nothing at the best possible price.”

As stated in [BBKOI], modeling a CN using workfiows gives a visual representation,

which is easily understandable by humans, and identifies and formalizes as activities ail

the necessary items of the CN. This may be helpful in a prospective evolution or modifi

cation of the current negotiation items, their sequencing and the dependencies between

them. A CN workflow also incites to reason about the variables and the attributes of a

CN (such as the prices, dates, etc.). It may for instance specify some forecasting (e.g.,

“what wili be the new reserve-price based on the outcome of the negotiations that are

already done”). It facilitates to deal with software agents responsibie of the different ne-

69

gotiations since these agents are assigned to negotiation-activities, and they participate in

a CN as actors in the workflow.

4.2.2 Example of Combined Negotiation Packages

Combined negotiations can be used at the B2B, B2C or C2C levels. As an example, a

B2C transaction would be when a consumer negotiates a vacation package consisting of

a transportation ticket, a bote! room and an excursion ticket. In case one or more items iii

the package are offered by consumers (e.g., a rare ticket to a concert auctioned on an

auction site), a C2C transaction is encountered; and when a travel agency negotiates

travel packages on beha!f of its clients, we refer to B2B e-commerce. The more items

there are to be negotiated and the more providers of such items there are, the more inter

esting a CN is.

In the following, we describe first a “flight connection” package which can be consid

ered either a B2C example when the trip is arranged by the consumer herseif, or a B2B

example when the trip is arranged by a travel agency (the common way to arrange trips),

and second an “importing” package, which is mainly a B2B example.

4.2.2.1 “Flight Connection” Package

The “flight connection” package may consist of three items: a plane ticket from placei

(e.g., Montreal) to place2 (e.g., Paris), another ticket from place2 to place3 (e.g., Mos

cow), and a hote! room for one light in place2. These three items are clearly intenelated.

One obvious constraint is to find a “Paris—Moscow” flight with a suitable departure

time; tbat is, taking into account tbe arriva! time of tbe “Montreal—Paris” flight. From

here we can see the obligation of spending a night in Paris before taking the flight to

Moscow. Many other constraints exist such as the date of tbe trip, the total amount to be

spent, the maximum price the consumer is willing to pay for each item, and ber prefer

ences for certain air companies.

The three items (two plane tickets and a hotel room) may be negotiated, and this can be

done on different negotiation servers (or on the same server, but in separate negotia

tions). The negotiations practiced on each single server (i.e., each hidividual negotiation)

can be of different types (“type” in this context means “the rules of the negotiation”).

70

Modeling the package as a CN is profitable siiice when conducting each negotiation

separately, it can happen, for instance, that a deal is made on the “Montreal—Paris”

ticket, while an interesting deal on a “Paris—Moscow” ticket is missing out just because

the flight “Montreal—Paris” arrives to Paris a few hours later.

Modeting tite ftight Connection Package Exampte

When modeling the Flight Connection CN, the consumer (or business) bas to decide,

first, how many negotiations she should start for each item. Engaging in more than one

negotiation for the same item (i.e., OR-Negotiation) is a way to minimize the risks of

failing to make a deal on the item in question.

Suppose that the consumer decides to participate in two separate negotiations for the

“Montreal-Paris” ticket and in two separate negotiations for the “Paris-Moscow” ticket

(there are many providers of air transportation tickets on the Web, and there is usually a

great disparity between the prices) and one single negotiation for the hotel room (the

same thing could be said about this item too, but in this example, the consumer may de

cide to run only one negotiation). The five negotiations that make up the CN are to be

conducted separately, and possibly obey to different rules for making bids (offers), for

picking a winner, for closing, etc. The consumer chooses to participate, say, in an Eng

lish auction for the first “Montreal-Paris” ticket on the Air France auction site, and in a

Dutch auction for the second “Montreal-Paris” ticket on the Air Canada auction site.

One “Paris-Moscow” ticket is to be negotiated in a sealed-bid multi-round auction on the

Air France auction site, and the other “Paris-Moscow” ticket in an English auction on

the Aeroflot auction site. The hotet room will be negotiated in a bargaining type negotia

tion on one of the popular commercial auction sites. For a complete description of auc

tion types, refer to [SurOl).

The sequenchig in time of the five negotiations is important. Which negotiations should

be conducted in parallel, which ones should be conducted in sequence, which ones

should be finished (with a successful or unsuccessful deal) before we start the others?

Does the consumer need ail negotiations for the fiight tickets to succeed or does she

need just one to succeed? What to do in case one negotiation fails? In this example, the

71

consumer might decide that the two negotiations for the “Montreal-Paris” ticket will be

launched first, and only if one of them succeeds, the other negotiations will be launched.

This may be because the consumer knows that the chances of making a good deal on this

particular item are rather slim. Note that only one deal should be made on the “Montreal

Paris” ticket even though the two negotiations are launched at the same time (a case of

parallel OR-negotiation). In case one “Montreal-Paris” negotiation succeeds, the con

sumer launches two parallel negotiations for the “Paris-Moscow” ticket. Let us suppose

that one “Paris-Moscow” flight with Aeroflot is on the same day as the arrivai of the

“Montreal-Paris” flight. The other flight, with Air France, is scheduled for the next day,

and the consumer would have to spend a night in Paris. To that end, a negotiation for a

hotet room in Paris is launched. The negotiations for the “Paris-Moscow” ticket with Air

France and the one for the hotel room are started sequentiaiiy (a case of sequential

AND-negotiation).

Figure 4.1 shows a workflow modeling the “flight connection” CN. WLPI were

used. There are five main tasks or activities (one for each individual negotiation) repre

sented by rectangles. The ones for the “Montreal-Paris” ticket are launched first, and if

one of them succeeds (State = “WINNING”) the two negotiations for the “Paris-

Figure 4.1. Flight Connection Package Workflow Modei in WLPI

72

Moscow” ticket, are launched. The negotiation for the hotel room is launched only if the

“Paris-Moscow” (AF) ticket negotiation succeeds. There is one “start” state and two

“done” states representing the process completion. The star-shaped elements in the fig

ure represent events. The events are to be sent by the tasks to the workflow processor so

that the processing continues with the next activity. Events are triggered by XML mes

sages, and in this example, the events are “Nego ended” (i.e., negotiation ended). The

diamond-shaped figures are the decisions. They contain conditions that must be evalu

ated before the succeeding node can be initiated. The conditions evaluate to TRUE or

FALSE, and depending on the outcome of the evaluation, the workflow can foliow dif

ferent paths. There are also two And-joins in the workflow. Ail nodes linked by an And

join must be satisfied before the successor of the join can be activated.

The five activities (i.e., the five negotiations) are assigned to software agents. The tasks

iabeied “BREAK COMMITMENT”, “DEAL WITH WIN”, and “DEAL WITH LOSS”

are assigned to a human agent (the person running the CN).

4.2.2.2 “Importing” Package

Importing goods is a compiex procedure in which a buying company is invoived in a

number of activities/services such as the purchase, the shipment (the term “transporta

tion” is sometimes used thereafter), the insurance, and the forwarding of goods. These

activities/services are obviousiy interreiated. As an exampie, a special kind of insurance

could be preferred whiie a specific packaging of goods is considered. Many constraints

exist as well. Here are some of the constraints that are likely to be invoived in the pur

chase activity: the maximum price the buying company is willing to pay for the goods,

the quantity needed, the terms of payment, the deiivery date, the packaging of the goods.

With regard to the shipping service, which may include inter-modal transportation, a

number of scenarios are possible. The supplier can cover the fteight shipment and insur

ance from warehouse of origin to warehouse of destination. Another alternative is to let

the buyer cover ah charges. In this latter scenario, a constraint might be for instance to

find a truck with a suitable arrival (resp. departure) time to port of shipment (resp. from

port of destination), taking into account the vessei loading (resp. unloading) time. The

buying company could have preferences for specific shipping companies, and may also

73

specify the maximum amount to be spent for each shipment phase, as welt as the total

amount for the whole shipping. As for the insurance, the buyhig company could aiso

have some restrictions regarding the insurance companies, the kind of insurance, the

price to pay, etc.

An importing procedure is considered as a sourcing application where multi-stage nego

tiations such as RFP (Request For Proposai) and RFQ (Request For Quotation) can be

applied. Indeed, the buying company may choose to engage in different negotiations for

the complementary (i.e., cannot have one without the other) items discussed above (pur

chase of goods, shipment, insurance, etc.), trying to make the best deal with respect to its

interests. We can imagine a CN model as described previously to encompass the activi

ties associated with the negotiation of the different items.

Modeting the Irnportiizg Package Example

Figure 4.2 shows a workflow model example for the importing package created using

WLPI Studio. Negotiations are defined as activities in the workflow. Software agents are

responsible of executing these activities. As the workflow progresses, negotiation

activities evolve through various states: created (creation of the agent), activated (the

agent joins the negotiation), executed (the agent negotiates), and marked done (the agent

leaves the negotiation and the agent is destroyed).

In this example, the buying company has to take a decision regarding the number of ne

gotiations that shouid be Iaunched for the purchase of the goods. These tasks could be

initiated at the same time (in parallel), but only one deal should be struck. The next step

wili be to start negotiations for the shipment services. The buying company might

choose to begin by negotiating the sea shipment, and then the two surface shipments

(from warehouse of origin to port of shipment, and from port of destination to ware

house of destination) because surface transportation is usually more flexible and avail

able than sea transportation. It wiil hence be easier to schedule the truck arrivaI (resp.

departure) time to port of shipment (resp. from port of destination) with respect to the

vessel loading (resp. unloading) time (than to do it in the opposite way). The insurance

74

and the forwarding negotiations are planned in sequence as the last two items of the

mode!. (For the sequencing, cf. Figure 4.2.)

As stated before, when we fail to make a deal on an item, after concluding deals on other

complementary items, we talk of “exposure”. To avoid exposure, the buying company

would have to restart the whole process (“Restart Process” task in Figure 4.2) by renego

tiating some (or ail) of the attributes of the deals already made. For instance, if the buy

ing company fails to find suitabie transportation for a given date (fixed in a previous

deal), then it could go back and re-discuss the delivery date with the supplier of the

goods. In the worst case, this procedure could !ead the buying company to breaking its

commitments.

4.2.3 The CONSENSUS System

CONSENSUS is based mainly on the following components of a WfMS: the Process

Defmition Tool used to mode! the workflow, the Workflow Engine which executes and

tracks an instance of the workflow, the Administration and Monitoring Tool used to ad

minister and track the status of the instance, and the Workflow Client Application

through which the participants interact with the instances.

Figure 4.2. Importing Package Workflow Mode! in WLPI

75

The first prototype of CONSENSUS was built on IBM MQ Series Workflow. Then to

validate the daim that in CONSENSUS the underlying WfMS may be easily substituted

for another WIMS, a new version of CONSENSUS was built on BEA Systems WLPI

(cf. Figure 4.3). This version was made up of three units: (1) the WLPI Studio Unit

which is used to build the CN workflow and to monitor its execution; (2) the Enactment

Unit which is used to launch the CN workflow and to monitor the software agents; and

(3) the Coordination Unit which is used to coordinate the work of the software agents.

The usage of the system is summarized hereafter, in Sections 4.2.3.1, 4.2.3.2 and 4.2.3.3.

More details are given in [BAL+02, BAV+O1, BBKOI]. Please note that a complete end

user documentation comprising UML diagrams (e.g., use case descriptions, sequence

charts, etc.) has not been written yet.

4.2.3.1 WLPI Studio Unit

Figure 4.1 and Figure 4.2 show examples of CN workflows created using the graphical

tool of WLPI Studio. One important aspect of modeling a CN is the use of variables that

store the CN-specific information required by the workflow at run-time. This informa-

Server 1 Server 2
4

BXML
XML

Agent 1 Agent 2

RM

Figure 4.3. CONSENSUS based on BEA Systems WLPI, adapted from [BBKOIJ

76

tion is often used to control the Iogic withni the CN. Figure 4.4(a) shows the list of vari

ables of the workflow modeling the “Flight Connection” CN example.

-.

E —

(a) (b) (c)

Figure 4.4. WLPI Studio Unit. (a) Workflow Variables, (b) Invoking a Business
Operation, (c) List of Business Operations

Business operations are another important concept in the definition of a CN. Defined as

a set of beans and methods that implement customized actions, they are called at the

“Action” level using “Perform Business Operation”. Figure 4.4(b) shows the “task prop

erties” of the “MTL-PARIS (AC)” task. When the action is executed, the business

operation “Negotiate” (a Java method) should be called. The business operation is given

workflow variables and constants as parameters. The list of alt available business opera

tions for the “Flight Connection” CN example is given in Figure 4.4(c).

4.2.3.2 Enactment Unit

Once a CN model is created and stored in a database, the mode! is instantiated, and the

workflow engine (part of the Enactment Unit) can then start executing the activities in

the instance by creating and invoking the software agents responsible for the individual

negotiations.

In fact, some applications (e.g., Microsoft Office applications such as Excel and Word)

are workflow-enabled and can be invoked directly by the workflow engine, whereas

other applications — such as negotiation servers — are not compatible with the standard

ized workflow interface, and their integration into the business process may be achieved

77

via a software agent. The latter takes the role of an actor, which is defined in the context

of a WfMS, as being a resource that performs a task. It is invoked by a workflow engine,

and enables indirect interaction of this engine and the application in question.

Under this perspective, the agents within CONSENSUS are first created, and then the

workflow engine invokes them. An indirect interaction between the workflow engine

and the negotiation servers is observed. These negotiation servers are flot initially com

patible with the workflow engine; their integration is only possible via the actor agents.

Note that the agents are invoked by the workflow engine using RMI (Remote Method

Invocation), and they communicate with this engine by sending XML events. They par

ticipate in negotiations taking place on instances of negotiation servers (e.g., GNP

[BKL+OO]). The exchanges (e.g., orders, bids, responses) are made using XML docu

ments. The Agent Control and Monitoring tool, also part of the Enactment Unit, is used

to watch the progress of the individual negotiations. Figure 4.5 shows a screenshot of

this tool during the execution of the “flight connection” CN.

Finally, the user of the system can track and monitor the progress of the CN at run-time,

and she can adjust certain intrinsic constraints. Examples include adjusting the total

price she is willing to pay, or changing the range of acceptable dates for her flight.

CNSSAnt ontroC ,nd anftor(n5 — X

t-ee88 bAum 311

agent nCPR -- aak$ 50188 allaCatai 5)1858 543550158e

urL - PARIS tAC) -- - --
- -

- our

PARIS - MOSCO’C) lAC) 720919 -CL0560 122104300430000,8 4300 :4300 WIUNINC

PARIS - 810560W)08,orlor) — - —
- —

-- tUT

HOZEL — PARIS 720941 OPINER 1t900 2300 2300 2300 — LEADING

lOTi — PARIS tAS) 72089) -CLOSER 0000 3000 3000 t,ot 3800 3800 WINNING

MrS8t9nR

(ÇMTCA) RecOsoing agent 351.
ICMTS&) Dote
flgen8Manage3 C,eated agent ‘MOL — PARIS (AC)’
flgenrManaaed Cr88810 tacot ‘PARIS — MOSCOW CAP)
AgeStMlflager] Created agent ‘PARIS — MCSÇOSV (ACPRFIUI)’
AÇCSIM ,naaed CrasSe) agent ‘HOTEL — PARIS’
!flgenrpanagen CreateR agent ‘MTL — PARIS (Afl
PARIS — MOSCOW (8F)) ConS ecred 1083)/IsbaOS lob tat 5080,81 2u88R0

)AOZCC — PARIS) CRnnected tR 13) Ia»RR3Iob on Rn8reSI Cr8888.
MTL — PARIS lAC)) CRnI,ecred CR83))labolJ lub umontreal 208888

(PARIS — 810570W)ACPCPIR8)) CRnnected 8R t3f)IabolO lob otno,,rne& 080889
TL - PARS CAP)) CSn,,enCd tACS)/IabolSIob ors Rorpet) 208898

Cuti — PARIS (40)) JoIe) neaRnolan 4720308

(PARIS - MOSCOW (nE)) joint) n89005Ilat 4720913
MOTEL — PARIS) JAIS) InCursion 4729945

(MTL — PAAIS CAP)) iRise) OeOR8IRIon 4726857
(PARIS — MO3COSV)AeFIo1)] JAns) Ieast,ntjon 4770930
u ri — PARIS)ACN W,85e,1ed DoRle QRCte)CPA—7209 16,91018=12316 30,IGP8,=170908, lIate—OPEflCD 5—200 5)

(PARIS — MOSCOW (RenDORt)) Witne,eed quRte Quace)GPK— 720938,t.me— 17 15 5 4,MGPK—720330, ttele—OPENFD 5—200 0 -

90761 — PARIS) WItSe8aed quore QURte)CPK—12C949tI,ne— 8727 04,ICPN—710941, slate..OPENED 5=200 0)

Figure 4.5. Agent Control and Monitoring Tool

78

4.2.3.3 Coordination Unit

In CONSENSUS, the workflow captures the togic of the CN (i.e., its intrinsic and pro

cedural constraints), whereas the agents capture the logic of the individual negotiations.

The agents, by participating in the workflow, share information and cooperate in con

ducting the CN. They are provided with “individual negotiation” knowledge, as weII as

with “coordination” knowiedgc. This knowiedge is deciarative, and thus it is represented

as “if-then” rules which are exploited using an inference engine. In bnef the Coordina

tion Unit has a rule-base, which contains the rules, and a rule engine for exploiting these

ruies. For more details on this aspect, refer to [BAKOII.

4.2.4 Towards a Dynamïc Version of CONSENSUS

Workflows are a major enabiing technoiogy for CN [BAV+O1Ï, and CONSENSUS pro-

vides the user a support system to favorabiy resolve a CN workflow. Supporting dy

namic modifications to the CN instance during run-time shouid however increase the

benefits of the CONSENSUS approach. In Chapter 5, we highlight the need for such

support and we discuss a solution for a dynamic version of CONSENSUS.

Extensions proposed to CONSENSUS are motivated by events such as the arrivai of

new offers that may be proposed by the counterpart during a specific e-negotiation, and

the wiiiing to avoid a break commitment activity. These offers may necessitate to cancci

an aiready scheduied e-negotiation activity (e.g., if the item to be negotiated is covered

by the proposed offer), to move an e-negotiation activity earlier in the process (e.g., if

there is a possibility to receive an interesting offer during this e-negotiation that may in

fluence the rest of the scheduled e-negotiation activities), to insert a new e-negotiation

actïvity (e.g., if ail scheduled e-negotiations conceming a specific CN item were lost),

and so on. A detaiied discussion of a scenario asking for a modification of a CN instance

is introduced in Section 5.2.1. Moreover, this section identifies other less obvious re

quirements towards adaptive workftows that stem from the modeling of CNs using the

ADEPT WflVIS. Those requirements inciude the dynamic change of decision nodes and

the dynamic change of attributes. In brief, the extension proposed to CONSENSUS ai

iows for bringing dynamic modifications to CN instances during run-time: deletion,

79

move, and insertion of an e-negotiation activity, deletion of an already defmed e

negotiation attribute.

4.3 The Multi-Transfer Container Transportation

Application

The Multi-Transfer Container Transportation (MTCT) — that could be extended to multi

modaL freight transportation — can be defined as the action of moving a container ftom

one terminal to another with the possibility to shift it from one vehicle to another before

delivering it to the final destination. The MTCT is considered as one of the sectors in

which the fleet management at the operational level is highly dynamic. Other sectors in

clude rescue and emergency services (e.g., ambulance transportation), sanitation, urban

transportation, and express mail services. As described by Crainic [CraO2j, fleet man

agement covers the whole range of planning and management issues from procurement

of power units and vehicles to vehicle dispatch and scheduling of crews and mainte

nance operations. This type of management can be tackled under various lengths of the

planning horizon and levels of details: the strategical, the tactical and the operational

level. The latter involves a short planning horizon where the level of details is relatively

high. In our work, we focus on the MTCT at the operational level, in which a close fol

low-up of activities must be achieved to ensure a good customer requests satisfaction.

In the context of the MTCT management, it appears that the processing of a customer

request for container transportation can be achieved by a specific sequence of interde

pendent activities: e.g., attach an empty container to a vehicle, move the empty container

to origin location, load the container, move the container to the fmal destination, unload

the container. Moreover, the MTCT requfres to create just-in-time the sequence of ac

tivities needed to accomplish a request. It also requires a high degree of adaptation of the

ongoing activities’ sequences to deal with unexpected events (e.g., newly request arrivai,

delayed vehicles, crew members desistance, technicai problems). A solution, based on

workflow technoiogy, for the processing of customer requests is investigated.

80

In the following, we first describe the MTCT application. Then, we give an example of

scenario(s) in which the processing of customer requests is required. Finally, the adopted

approach for planning the processing of customer requests is presented.

4.3.1 Description 0f the Application

From a customer request processing perspective, container transportation is constituted

of a number of activities of different duration which range from the delivery of empty

containers to the origin location where goods are located, to the retuming of these con

tainers to depots/terminals. These activities need to be performed in a certain order

(“composing activities”), and they are scheduled within a given time window depending

on the individual request information, on the resource availability and on the possible

paths to follow.

Request Information. A customer request for container transportation is usually well

defined, it gathers at least the following information (that we wiIl consider thereafter in

this thesis): an origin location where goods are picked-up, a destination where goods are

delivered, a pick-up time window and a delivery time window. Other information such

as goods characteristics (e.g., item description, packaging type, weight, volume, storage

temperature control) may be involved as welI. Ail this information is used — among other

information (i.e., resource availability and possible paths to follow) — as input to deter

mine attributes related to the different activities. An empty container is chosen for in

stance taking into account the volume of the goods, and it is delivered to customer for

goods’ loading at a specific time (i.e., pickup time), and at a specific location (i.e., origin

location).

Transportation Resources. A set of transportation units which we cail (material and

human) “resources”, may be composed of a fixed number of containers with fixed

wheels, trucks (i.e., vehicles) without loading space, crews (i.e., drivers) and terminals.

We suppose that the transportation company offers a full container-load, where one con

tainer carnes at one time only merchandise related to one client. These resources can be

assigned to activities as specific attributes. We cail these attributes “input attributes”

when referring to material resources and “assign attribute” when refening to human re

sources.

81

Activity Templates. A set of activities that we cail activity templates, are defmed. A

composition of these activities provides a possible solution to satisfy a customer request.

An activity is assigned to a specific driver who becomes responsible for its execution

within a specific time and by taking into account information related to the assigned ma

terial resources (i.e., input attributes). Table 4.1 shows an example of a set of six activity

templates. A possible composition of these activities to satisfy a customer request could

be the following sequence: (1)-(3)-(6)-(4)-(3)-(2)-(6)-(1)-(3)-(6)-(5)-(3). Note that a

“wait at location” activity is sometimes necessary before going further in the processing

ofa request.

Table 4.1. Activity Templates Involved in the Processing ofa Customer Request for
Container Transportation

(1) Attach (2) Detach (3) Move (4) Load (5) Unload (6) Wait at
container container vehicle to container container location
to vehicle from vehicle location

Input Container Idem’ Container Container Idem Idem
attributes Vehicle Vehicle Location

Location O_location2
D location3

Assign Driver Idem Idem Idem Idem Idem
atiribute

Time MinD/MaxD1 Idem Idem Idem Idem Idem
attributes WUT5

EST/LST6

the same as Iett, 2, 3The origin (resp., destinatton) location of the activity, which does flot ncccssary corre
spond to the origin (rcsp., destination) location of a customer request, 4The minimumlmaximum duration,
5The Warm-Up Time: time when the driver is informed about the activity to carry out, tThe earlïesUlatest
starting time.

Paths Scenarios. The composition of activities to satisfy a speciflc customer request

should also be based on a transportation network in which a number of nodes (i.e., loca

tions) and edges (i.e., paths) between these nodes are defined. As a first configuration.

we consider a transportation network with a central depot or terminal where resources

are located and where a transfer is possible. A transfer is defined as the action of shifting

a container ftom one vehicle to another vehicle. As an example, the sequence “(2)-(6)-

(1)” in the composition presented above, represents a transfer.

Taking into account this configuration, a number of path scenarios are possible for the

management of customer requests. The simplest scenario would be to consider that the

82

satisfaction of a customer request consists to ask a couple container/driver (cld — We

consider that each driver is associated with a specific vehicle.) to leave the depot P at a

specific time, to pick up the goods at the origin location O specified by the request, to

deliver the goods at the fmal destination D and then to go back to P. In other words, sat

isfying a request consists of accomplishing the path P-O-D-P (“simple scenario”).

Another scenario would be to ask a couple c/d to leave P at a specific time, to pick up

the goods at O and to go back to P with the possibility to make a transfer at P (i.e., to

change the driver and the vehicle at P) before delivering the goods at D and then to go

back to P (i.e., P-O-P-D-P). This represents a “transfer scenario”. It can be motivated by

the non-availability of drivers. In this case, we hence need to plan a path P-O-P when a

driver is just available to make this portion of the whole path.

In the flrst two scenarios, c/d should return to P before satisfying a new request. We may

however consider that a couple c/d is free to answer a new request as soon as the goods

are delivered at a specific destination (i.e., P-01-D1-02-D2-P, where 01/D1 are related to

a specific request and O2/D2 are related to another request). We use the term “round sce

nario”. A combination of the transfer scenario and the round scenario is also possible.

Here is an example: P-O-P-D1-O2-D2-P.

The scenarios presented above take into account a transportation network with a central

depot. This transportation network configuration could be extended to a more complex

one that gathers a number of distributed depots. Considering this configuration, a “mufti

transfer scenario” of the kind P1-O-P7-P3-...-P-D (where {P1, P2, ..., P} E T, Theing

the partition of the set of depots) is possible.

Unexpected Events. In a transportation envfronment, the planning (i.e., the composition

of activities) or the re-planning (i.e., the review of the already composed sequence of

activities) of a customer request processing is triggered by the occurrence of specific un

expected events. The list of events we are exposing here is flot only related to the MTCT

application; on the contrary, very similar events may also appear in other sectors such as

the express mail and the emergency services.

$3

Arrivai of izew requests. This is the principal event that can occur. Its satisfaction

requires to defme a new sequence of activities to be accomplished. In addition,

in case of “urgent” customer request (i.e., request that need to be processed in a

relatively short time after their arrivai), some forecast requests may flot material

ize, and already planned activities related to requests in a processing phase, may

need to be reviewed and adjusted. In fact, a new planning may impact a previous

planning (aiready launched, or waiting to be launched).

• Deiayed vehictes. If traffic is slower than predicted (e.g., accident, congestion),

an adaptation of afready planned activities may be required. Indeed, a delay of a

particular vehicle can make impossible the execution of the next activities as

pianned: the latest beginning time of these activities may be exceeded; their as

signed crews may be no more avaitable, etc.

• Crews (e.g., drivers) desistance. In this case, a re-ailocation (or re-assignment) of

an activity is desirabie. We also refer to the dynamic aLlocation of crews in un-

certain environments. Sometimes, crews’ unavailability makes this re-allocation

impossible at a specific time. Hence, we may think about modifying the con

cerned activity by changing for instance its (forecasted) schedule. 0f course, this

change may require other modifications either within the same sequence of ac

tivities or within other sequence(s).

• Tecïmicai probiems. These probiems are related to resources such as vehicies and

loading machines that are unavailable for a certain period of time. Consequently,

sequences of activities should be modified taking into account the re-allocation

of availabie resources, or the delay to fix the probiem.

The MTCT application just described can be considered as a Pick-up and Delivery Prob

lem (PDP). A number of papers discuss methods deveioped for solving this problem

[SS95, Mit9$J. A distinction is done between PDP with (softlhard) time windows and

PDP without (soft/hard) time windows. The time window constraint compticates the

formulation and the resolution of the problem. In general, researchers in the domain con

sider the “arrivai of a new request” as an event triggering the (dynamic) management of

resources and the scheduling of a set of routes. Other events such as the ones presented

above are of course identified, but they are rareiy studied since studying the “arrivai of a

$4

new request” is already considered as a complex decision problem where the decision

must be taken under considerable time pressure. Algorithms and heuristics are proposed

as a means to tackie this dynamic problem and optimize the ptanned routes between the

occurrences of new events. Examples of these algorithms and heuristics include the in

sertion procedure [WSW+70], neighborhood search heuristics [GGP+9$J (e.g., tabu

search), and neural networks [PSR92J. Since our main interest h this thesis is flot to

study the PDP problems and solutions, but rather to focus on the workfiow aspects in the

particular MTCT application, we will not go into details regarding this topic. Interested

readers may refer to [SS95, Mit9$] for a survey of the methods used to solve the PDP

problems.

4.3.2 Examples of Customer Request Processing Planning

In this section, we illustrate the different steps for satisfying a customer request taking

into account the simple path scenario and the transfer path scenario discussed in Section

4.3.1. First, a simple example is exposed, and then an example involving an already

planned customer request in proposed.

4.3.2.1 Customer Request Processing Planning — Simple Example

When a request is received, its related information becomes available at the transporta

tion company side. This information, the availability of the resources and the transporta

tion network information are used to generate a solution (if any) for the processing of

this request.

Suppose that the transportation network the company is covering is the one shown in

Figure 4.6. 20 locations are identified. For this example, we consider a configuration

with a central depot (e.g., Drummondville). The remaining 19 locations are used to b

cate the origin and the destination of the received customer request. The distance (in km)

between the different locations can also be expressed in duration (in minutes) such as it

is shown in Table 4.2.

Suppose that the transportation company owns a set of containers: Clii, C222, C333,

etc., a set of vehicles: ViOl, V202, etc., and that a number of drivers are working for

this company: McCain, Watson, etc.

85

Table 4.2. Duration Between Two Locations (in minutes)

Montréal Trois-Rivières Québec Drummondville Sherbrooke

Montréal 105 165 75 115

Trois-Rivières - 90 166 209

Québec
;.

105 209

Drummondviile - - . -$ 60

Sherbrooke
-______

Suppose that the following customer requcst information is received:

Origin location: Québec
Destination location: Montréal
Eartiest pickup tiine: 15/10/2003 08:30
Ltitestpickup lime: 15/10/2003 10:30
EarÏiest detive,y lime: 15/10/2003 13:30
Latest detiveiy lime: 15/10/2003 15:00

And that the current reservation of resources is the following, where <st, ft> corresponds

to the startirlg and finishing time of the resource reservatiori:

CIII: [<16/10/2003 09:30, 16/10/2003 13:30>)
C222: [<16/10/2003 09:20, 16/10/2003 16:00>)

5aint-çath-
(IiS-MOfltS

Mon tmany

figure 4.6. Example of a Transportation Network, adapted from [TraO4J

$6

C333: (<15/10/2003 09.30, 15/10/2003 14:00>,
<16/10/2003 09:20, 16/10/2003 16.00>)

McCain/ViOl: (<15/10,2003 09:30, 15/10/2003 14:00>,
<16/10/2003 09:20, 16/10/2003 16:00>)

WatsonN2O2: (<16/10/2003 09:20, 16/10/2003 16:00>)

Based on the above information regarding the customer request, the transportation net

work, the (non-)availability of the resources, and taking into account the simple path

scenario discussed in Section 4.3.1, a solution such as the following one can be found:

Solution fotmd...

Container: Cl]]
Driver: WatsonA72O2

Depot — starting time: 1 5/1 0/2003 08:10
Depot — attach container: «5 min.»
Depot—leaving tiine: 15/10/200308:15 «105 min.»

Origin — arrivai time: 15/10/2003 10:00
Origin — bac! container: <<30 mm.>>
Origin — leaving time: 15/10/2003 10:30 «165 min.»

Destination — ctrrivai timne: 1 5/1 0/2003 13:30
Destination — unboad container: <<30 ,nin.>>
Destination —leaving time: 15/10/2003 14:00 «75 min.»

Depot — arrivai time: 15/10/2003 15:15

***waitiiig time before deliveiy: «15 min.»

A basic workflow model that corresponds to the simple path scenario and that captures a

sequence of activities defined between a “start” activity and an “end” activity can be in

stantiated: (S) start, (AÏ) attach container to vehicle, (A2) move vehicle to O, (A3) wait

at O, (A4) toad container, (A5) move vehicle to D, (A6) wait at D, (A7) unload con

tainer, (A$) move vehicle to P, (E) end. Since the solution proposed does flot specify a

waiting time at O, the activity (A3) should then be deleted from the instance. Note that

in this case, the activities constitute a simple sequence of actions. Other examples may

yield to activities whose control flow is best captured in a state-transition diagram.

87

The solution found reflects the different attributes (input, assign and time attributes) of

the activities, except for the WUT (Warm-Up Time) introduced in Table 4.1, and that

will be discussed later in Chapter 6, Section 6.3.3.3. These attributes should be given as

input to the different activities of the workflow iiistance.

4.3.2.2 Customer Request Processing Planning — Re-planning Example

Following the reception of a new request NR, the current reservation of resources is con

sidered so that an available couple cld is found for the processing of NR. However, it

may appear that no solution is possible for NR, even when considering the different path

scenarios. This can happen if for instance no driver is available to satisfy NR taking into

account the specified pickup andlor delivery time windows (we suppose that

(containers) > # (drivers) holds). This situation may lead to consider the

requests for which the processing was already planned and for which the activity “Move

vehicle from O to D” is not reached yet. Let R be the set of these requests. A solution for

NR may become possible when modifying the solution already proposed for one of the

requests of R. Let OR be this request: (1) a new solution for OR is found (e.g., by insert

ing a transfer at P, and by removing the waiting time at D), and (2) a solution that satis

fies NR (e.g., according to the simple scenario) is now possible since the driver previ

ously reserved for OR is now released. Refer to Figure 4.7.

Suppose that the following information corresponds to NR:

Origin location: Sherbrooke
Destination location: Montréal
Eartiestpickup tirne: 15/10/2003 13:30
Latestpickttp tiine: 15/10,2003 14:30
Eartiest detive,y tiine: 15/10/2003 14.30
Latest delivery time: 15/1072003 17:00

And suppose that the current reservation of resources is the following:

Clii: (<15/10/2003 08:10, 15/10/2003 15:15>,
<16/10/2003 09:30, 16/10/2003 13:30>)

C222: (<15/10/2003 09:30, 15/10/2003 11:40>,
<16/10/2003 09:20, 16/10/2003 16:00>]

C333: (<15/10/200309:30, 15/10/2003 10:30>,
<16/10/2003 09:20, 16/10/2003 16:00>)

88

McCainJVlOl: (<15/10/2003 11:40, 15/10/2003 13:05>,
<16/10/2003 09:20, 16/10/2003 16:00>]

Watsonfl/202: (<15/10/2003 08:10, 15/10/2003 15:15>,
<16/10/2003 09:20, 16/10/2003 16:00>]

We suppose that the identifled OR (the request for which the already planned processing

should be modified) is the request considered in section 4.3.2.1; and that the new solu

tion found for the processing of this request is the one specified below. Note that in this

solution, strikethroughed elements are the elements that were removed and bolded ele

ments are the ones that were added, when comparhig with the old solution (shown in

Section 4.3.2.1). The solution for the processing ofNR is proposed thereafier.

New sohttionfotnzdfor OR...

Container: CII]
Driver: Watson/V202

Depot — starting tinte: 15/10/2003 08:10
Depot — cittach container: «5 min.»
Depot—leaving tinte: 15/10/200308:15 «105 min.»

Origin — arrivai time: 15/10/2003 10:00
Origin — bac! container: <<30 min.>>
Origin — teaving time: 15/10/2003 10:30 «165 min.» «105 min.»

Depot — arriva! lime: 1 5/1 0/2003 12:15
Depot — detach container: «.5 min.»
***Waitiflg time before allach: «46 min.»
Driver: Mcain/ViOl
Depot — attach container: «.5 min.»
Depot — teaving lime: 15/10/2003 13:11 «75 min.»

Destination — arrivai tinte: 15/10/2003 1330 14:26
Destination — tintoaci container: <<30 min.>>
Destination —leaviizg tinte: 15/10/2003 1400 14:56 «75 min.»

Depot — arrivai time: 15/10/2003 144-5 16:11

* * Waiting timc bcforc dcliv

Solution foundfor NR...

Container: C222
Driver: WatsonJV202

89

Depot — stalling thne: 15/10/2003 12:25
Depot— attach container: «5 mm.»
Depot — leaving time: 15/10/2003 12:30 «60 min.»

Origin — arrivai timne: 15/10/2003 13.30
Origin — toaci container: «30 min.»
Origin — leaving time: 15/10/2003 14:00 «]]5 min.»

Destination — arrivai timne: 15/10/2003 15:55
Destination — unloaci container: <<30 mm.>>
Destination —teaving tinie: 15/10/2003 16.25 «75 min.»

Depot— arrivai time: 15/10/2003 17:40

ta)

(b)

Figure 4.7. Re-planning Example. (a) The Proposed Modifications for the Processing of
OR, (b) The Proposed Solution for the Processing of NR

4.3.3 Customer Request Processing

In our work, we are interested in managing the processing of customer requests in a

muki-transfer container transportation application. Taking into account the observations

of previous sections, we exploit workflow technoÏogy to model and to concunently man

age this processing. The workflow approach reduces in general the need for manual,

time-consumÏng management and organization, and specific features of workflow tech

Con siititte the transter

Move Detach Wait at Attach
o-P

p*

Move Unload I t Move
P-D

*

Wait until a driver becomes available to continue the processing ofthe request.

90

nology can resuit in positive effects for the transportation domain. These features should

however include enhanced concepts and functionality.

Indeed, at the operational level, the MTCT application is faced with a continuously

changing environment where resource sharing issues are invoÏved. In this context, the

need for dynamic creation and adaptation of (optimized) solutions is of utmost impor

tance. Operations research modules (e.g., resource management module, activity sched

ulhig module) should provide the planning and the re-planning of activity sequences. If

such modules indicate that changes must be brought to existing solutions, it should be

possible to modify conesponding ongoing workflow instances. These modifications at

the workflow tevel are typically of three types: activity postponement, attribute updating

and structural modifications. The first modification type allows (1) to react to the lack of

availability of resources or (2) to free some planned resources to reallocate them to other

(priority) activities. The second modification type allows for reacting to strategic ad

justments that tend to improve the efficiency of the global processing. Finally, the third

modification type allows for modifying the sequence of a workflow instance by inserting

a new activity (e.g., to accommodate a transfer path scenario) or by deleting an existing

one (e.g., to remove a “wait at location” activity).

The MTCT application can amply take advantage of workflow technology once its un

derlying challenging aspects are accomrnodated. These aspects should cope with the ai

ready discussed dynamic management of instances. They should also properly cope with

the definition of basic workflow models and with the instantiation of these models. The

defmition of basic workflow models should rely on well-defmed activity templates and it

should map out the different path scenarios. The instantiation of a specific model is con

sidered as a complex and a critical operation since it is based on solutions (i.e., planning

of activity sequences) provided by operations research modules. Moreover, new instan

tiations and modifications of workflow instances need to be automated as much as pos

sible so that time-consuming manual interactions arc reduced.

We are aware of the fact that workflow technology in the transportation domain is usu

ally applied to manage logistic activities where documents and information are passed

from one participant to another according to a set of procedural rules [CCP+981. How

91

ever, the central issue related to workflows in our approach is the focus on supporting

flow of work and flot on supporting flow of “documents” [AMOO]. Furthermore, we

adopt the idea of emergent workflows described by Jørgensen and Carisen h [CraO2]:

“emergent workflows provide an integrated support for planning, coordination and per

formance of work”. The workflow definition and enactment are intertwijied.

Taking into account what was discussed tiil now, a workflow-oriented solution applied

in the MTCT context shouid enable the user (i.e., “system administrator”) to efficientiy

track and monitor the progress of many customer requests in process. Moreover, it

should aliow crew members (i.e., “drivers”) to identify at the right time their assigned

activities and to transmit to the system administrator the state of each actïvity from its

selection to its completion. This wiit aliow, among other thiiigs, for determining at any

time the state of the different resources.

In chapter 7, we introduce the MTCT system with ail its constructs to support the proc

essing of customer requests. As it was motivated ail aiong Section 4.3, the solution pro

vided by the MTCT system is workfiow-oriented.

4.4 Summary

In this chapter, we introduced a set of workflow-supported applications that were aI

ready discussed in the iiterature. A motivation for studyirig compiex socio-technical sys

tems was given. The major part of the chapter was devoted for describing the combiried

negotiatÏon application and the muiti-transfer container transportation application: two

exampies of non-trivial socio-technical applications. CONSENSUS, a workflow

oriented combined negotiation support system, was discussed and a dynarnic solution

was iritroduced. This solution wilI be the subject of our next chapter. The functionality

of the MTCT system was also specified. This system will be described in detaii in Chap

ter 7.

The CONSENSUS application and the MTCT application appeared to be well chosen

since it allowed us to identify an interesting set of new requirements for enhanced work

flow technoiogy:

92

• The activity template concept defined as a standalone activity designed without

being part of a workflow model.

• The template classification that assigns a specific category to a set of activity

templates and workflow models.

• The warrn-up tirne concept defined as the necessary time to inform a human actor

about an assigned activity.

• The dynarnic insertion ofa new activity at the workflow instance level.

• The dynarnic insertion ofa sub-workflow at the workflow instance level.

• The dynarnic detetion ofa scheduÏed activity at the workflow instance level.

• The dynarnic deletion ofa running activity by preserving its context.

• The dynamic inove of an activitv at the workflow instance level.

• The dynamic insertion/deletion of an activity attribute at the workflow instance

level.

• The dyizamic setting/updating of auributes at the workflow instance level.

• The dynamic tnanagelnent of work-Ïists as a consequence of dynamic modifica

tions.

In Chapter 5, we better develop the requfrements stemming from the CONSENSUS ap

plication. Then, in Chapter 6, we address each of the identified requirements in the best

appropriate manner.

Chapter 5 The Enhanced CONSENSUS System

In this chapter, we reconsider the combined negotiation support system (CONSENSUS)

discussed in Section 4.2.3. The WfMS-based CONSENSUS platform was developed to

help the user mode! and enact combined negotiations (CNs). A CN is modeled as a

workflow, and at run-time, software agents participate in negotiations as actors in the

workflow. In this chapter, we highlight the need for a dynamic version of CONSENSUS.

Indeed, this system requires support for dynamic ad-hoc changes induced by unexpected

events that can occur during negotiation. IBM MQ Series Workflow and BEA Systems

WLPI support this kind of dynamism in a limited way. Consequentty, the benefits of the

workfiow-based CONSENSUS approach to e-negotiations, namely, minimizing the risk

of commitment breaking and maximizing the chances of good deals, are slightly re

duced. To cope with the required flexibility, we experiment using ADEPT in the context

of CNs. ADEPT is considered as a state-of-the-art adaptive WfMS. We show to which

extent this system is able to support dynamism as required by e-negotiations, and we

outtine requirements that shouÏd be supported by adaptive WfMSs to fully satisfy the

nature of such dynamism. A dynamic version of CONSENSUS based on ADEPT is dis

cussed, and an overali adaptive workflow ftamework is proposed. This ftamework ex

tends the WfRM [WfMC95Ï introduced in Section 2.4.1, for supporting adaptive work

flows in the context of a specific application. The “importing package” example intro

duced in Section 4.2.2.2 will be the running example in our discussion.

The remainder of this chapter is organized as follows: In Section 5.1, we identify a num

ber of dynamic scenarios in the “importing package” example. In Section 5.2, first, we

demonstrate that ADEPT is fit to cope to sorne exteizt with dynamism in the context of

CNs; then, we discuss the CONSENSUS version based on ADEPT. In Section 5.3, we

provide the overali architecture as an extension to the WIRM for supporting adaptive

94

workflows. Section 5.4 wraps up the chapter by focusing on the requfrements of CON

SENSUS towards adaptive workflow technology.

5.1 Dynamic Aspects ot the ‘importing Package”

Exam pie

Although it is widely recognized that WflVISs shouid provide flexibility, most of today’s

systems unfortunately have problems dealing with changes RRDO4aJ. However, various

contingencies and obstacles that cari appear during negotiation may require changes at

the workflow instance level.

Takiig into account the “importing package” example introduced in Section 4.2.2.2, an

obvious dynamic change could corne up immediateiy after negotiatiiig the purchase of

the goods. The supplier could offer, for instance, to cover the fteight shipment and in

surance from the warehouse of origin to the warehouse of destination. The buying com

pany couid be interested in this offer, and hence decides to flot engage in any of the sub

sequent negotiations of the CN (i.e., transportation, insurance, forwarding). It should be

possible for the buying company to remove ail these scheduled negotiations from the

workflow instance during run-time.

Obviously, a similar offer could aiso corne frorn the forwarding agent. In this case, the

buying company might find it interesting to engage in the negotiation with the forward

ing agent in parallel with transportation, and thus the possibility to move the “forward

ing” activity right after the “purchase of goods” activities becornes necessary. In case the

negotiation with the forwarding agent succeeds covering the freight shipment and insur

ance, a next step would be to delete ail the negotiation activities related to transportation

and insurance.

Among other possibilities, the two dynamic scenarios described above couÏd occur in a

real-world importing process. Other dynamic scenarios may appear as weii in the con

text of other CN processes, such as the vacation package and the ffight connection pack

age presented in Section 4.2.2. Hence, it would be advantageous for a Combined Nego

95

tiation Support System (CNSS) to allow on-the-fly changes while a CN instance is run

ning.

5.2 The CONSENSUS System Based on an Adaptive

WfMS

In order to address dynamic aspects in CNs, we experimented using ADEPT. In Section

5.2.1, first, we review the different components of ADEPT that are of interest for the

CONSENSUS approach; then, we discuss the modeling of the “importing package” ex

ample as well as the possibilities and characteristics of ADEPT with regards to changes.

In Section 5.2.2, the integration ofADEPT within CONSENSUS is discussed.

5.2.1 Dynamic Modïfïcations Usïng ADEPT

As afready introduced in Chapter 3, ADEPT offers support for ad-hoc dynamic changes.

The ADEPT Workflow-Editor is a build-time client application for modeling activities

and workflows. It corresponds to the Process Definition Tool of the WIRM. As with

WLPI, the workflow mode! is stored in a database. The provided ADEPT Client moni

tors the execution of a workflow instance. It corresponds to a Workflow Client Applica

tion when referring to the WfRM. The user can intervene, via the ADEPT Client, by in

serting or deteting an activity to the instance already created and Iaunched. The activity

to insert should exist in one of the instances a!ready created, including the ones related to

a different workflow mode!. It is not allowed to define/model a new activity during run

time. 0f course, a certain number of constraints must be satisfled before proceeding to

the modification steps, i.e., correctness verification (cf. Section 3.2.2.4).

We used ADEPT to mode! and run CN processes in order to address the dynamism issue

in CNs. Two main criteria were applied to retain this system among other adaptive

WfMS prototypes (cf. Section 3.3). Indeed, the first and foremost criterion is its compli

ance with the WtRM, whereas the second criterion concems the availability of its API.

Figure 5.1 shows the “importing package” example as provided by the ADEPT Client.

This example is based on the second scenario described in Section 5.1. Activities in Fig

ure 5.1(a) correspond to the different negotiations of the “importiiig package” as shown

96

in Figure 4.2. Two “empty” nodes are used for the And-spiit and the And-join of the

“purchase (supplier 1 and 2)” activities (nodes Si and 52). Inserting an activity to the

current instance requÏres synchronization with activities that must be compÏeted before

and after the inserted one. In our example, the “forwarding” activity (node F) should be

activated after the two “purchase (supplier 1 and 2)” activities, and obviousiy before the

“carry out deals” activity (node C). The edge from node Si (resp. S2) to node F, and the

one from node F to node C in Figure 5.1(b) show the sy’richronization. Figure 5.1(c) de

picts the case where the negotiation with the forwarding agent succeeds. Ail the remain

ing negotiations related to transportation (nodes Ti, T2, and T3) and insurance (node I)

are deIeted. The “carry out deals” activity is then iaunched straightaway. Note that it was

possible to deiete node Ti aÏthough it has already been activated. The two activities

“forwarding” and “sea shipment” are activated in parallel; however, the “forwarding”

activity had to be compieted first.

(a)

Non-actvated Activated Completed Deleted And-spiit And-join True-signaled

Figure 5.1. Importing Package during Run-time in ADEPT — Modeied without Decision
Branches. Instance Statc (a) After Creation, (b) After Moving Task F, (c) After Deleting

Tasks: Ti, T2, T3, and I

(b)

97

From our experience with ADEPT as a standalone WfMS, we realized that nodes mode!

ing decisions make CN processes Iess flexible to deal with changes during run-time. In

deed, adjusting a moved activity with its corresponding decision branch is impossible in

ADEPT. The insert operation and the delete operation do flot cover “XOr

Split”/”XOrJoin” nodes. Consequently, instead of modeling CNs as it is shown in Figure

5.2, we chose to mode! them without decision branches at aIl (cf. Figure 5.1(a)), letting

the user decide manually whether to go for the next negotiation in the sequence, to delete

specific negotiation(s), or to insert new one(s). Obviously, the user should take into ac

count the results of the previously completed negotiations (e.g., deal or flot). The previ

ous argumentation suggests that in order to offer a more flexible model, we need to de

fme less automatic activities, avoiding for instance decision branches.

LI LI
And-spiit And-join

Figure 5.2. “Importing Package” in ADEPT — Modeled with Decision Branches. (a) The
Whole Picture, (b) Detailed Part of the Process

j
j
‘

/
/

(a)

SI iS

XOR 52 iv won if T] ix lost

If T] is won

D LI LI LI
Non-activated Activated XOr-split XOr-join

(b)

98

In the case of dependent attributes between activities, e.g., an item needs as input the re

suit of a predecessor item, ADEPT does not allow to delete the producing task. This is

perfectiy coherent. However, since it is flot allowed to modify attributes — mahily to de

lete the attributes that were pre-assigned to the consuming activity — this makes, once

again, our model Ïess flexible regarding deletion. Dependent attributes may easily appear

in CNs, and a possible solution could be to permit changes of attributes.

Finaily, the move operation is not provided by the ADEPT prototype we are using. We

had to replace it by a delete followed by an insert.

5.2.2 ADEPT in CONSENSUS

The availabUity of the ADEPT API makes it possible to implement client applications

and work-list handiers for specific domains. Indeed, a client application for the medical

domain was implemented and provided within the released version of ADEPT [RTO2J.

In the context of CONSENSUS, we have implemented a client application that supports

the launching of automatic activities. The latter refer to negotiation activities that invoke

application-related methods, e.g., methods to create and to destroy an agent, to join a

negotiation, to leave a negotiation, to negotiate, to get an agent state and to get an adju

dicated price. This feature is not supported by the provided ADEPT Client. We also no

ticed that the ADEPT API itself does flot provide any method that allows the implemen

tation of automatic activities. In contrast, the WLPI API provides such methods which

we cati from our application (Figure 5.3).

Whenever a negotiation activity is reached, our ADEPT Client Application detects this

new activity state (i.e., Activa ted), and it cails successively methods Automatic_

Call_createAgent(...), Automatic_Call.joinNegotiation(...), and Automatic_Call_

negotiate(...). Once the agent is created, the Automatic_CalLgetAgentState(...) is called

continuously until the agent state becomes OUT, WINNING, or LOSING. Once the agent

joins the negotiation, the state of the corresponding negotiation activity becomes

Selected. The activity state turns to Running as soon as the agent begins

negotiating, and the activity state remains Running as long as the agent state is

different from OUT, WINNING, or LOSING. Then, it tums to Completed.

99

ClasslnvocationDescriptor(s.

String description, ‘.

String className, \
MethodDescrïptor constructorDescriptor ‘

String[] constructorParmDescriptions,
MethodDescriptor methodDescriptor,,.—’ ;
String[i methodParmDescriptions __--

Instance froni ctass / IinvokeMethod(
• AgentFacade /

Object obj, /

Object[1 methodParameters <— - —. — j(fo the
parameters oftz
specific Agent

Facade ‘s nzetltod

CONSENSUS-related class and methods
to deal with a negotiation agent

(CONSENSUS API)

AgentFacade()

createAgent(String name)
destroyAgent(String name)
joinNegotiation($tring name, String URL, ...)
leaveNegotiation(String name)
negotiate(String name, double reservePrice)
getAgentState(String name)
getAdjudicatedPrice(String name)

Figure 5.3. WLPI Methods Called by the ADEPT Client Application for the Implemen
tation of Negotiation Activities

Once we integrated ADEPT within CONSENSUS, we made an interesting observation

concerning the automatic activities and the opportunities for user intervention. Indeed, as

specified in Section 4.2.3, CONSENSUS comprises an Agent Control and Monitoring

Tool (Figure 4.5) from which the user can monitor the work of the agents responsible of

individual negotiations. While the user is interacting with this tool, the workflow in

stance could not go further in the execution. This gives time for the user to think about a

possible adjustment, and to bring appropriate changes to the instance. In the current ver

sion of CONSENSUS built on ADEPT, the user should interact with two control and

monitoring tools, as defmed by the architecture of CONSENSUS [BAV+OÏ]: the work

WLPI classes and methods for the invoca
tion of application-related methods

(WLPI API)

ClassDescriptor(Class)

MethodDescriptor[1 <— getConstructorDescriptorsO/
‘-.• getMethodDescriptors()

String[J — getParameterTypes() s.

)

\ Methods from the ADEPT Client
Application

Automati c_Cal l_createAgent(...)
Autornatic_Call_destroyAgentf...)
Automatic_CalljoinNegotiation(...)
Automatic_Call_leaveNegotiation(...)
Automatic_Call_negotiate(...)
Automatic_Call_getAgentState(•..)
Automatic_Call_getAdjudicatedPrice(. .•)

c —* m: Class c implements method m.

c —-—-> p: Class c gives value to param p.

M r:= A: Methods M are called by app A.

100

flow control and monitoring tool, and the agent control and monitoring tool. The archi

tecture of CONSENSUS was designed before integratiiig the flexibility feature, and

hence does flot take care of this extension. Taking ijito account this new feature, usabil

ity can be improved by integrating the workflow control and monitoring tool with the

agent control and monitoring toot, 50 that the user will flot have to switch ftom one win

dow 10 the other to intervene at the workflow instance level and at the agent level.

53 Adaptive Workflow Framework

The architecture of CONSENSUS [BAV+0I] (cf. Section 4.2.3, Figure 4.3) should be

reviewed in order to support adaptive workflows. For this, we have extended the WfRM

by proposing a new overail architectural framework for adaptive workflows (cf. Figure

5.4). This ftamework allotvs for designiiig concrete workflow-oriented system architec

tures in the context of specific applications.

E,iriched with..
ci set of chctnge opercitions
ct correct,tess verificcition module

Unexpected Events

Application-Spei

- J

Workflow Rule

t ClientsJ Processing

Figure 5.4. Adaptive Workflow Framework

The “Workflow Engine ++“ corresponds to the core of the framework. The workflow

modeling language provided by the engine should be based on a workflow meta-model

that is expressive enough to allow practically relevant changes. The engine needs also to

be enriched with a set of useful change operations, and il asks for a correctness verifica

tion module (cf. Section 3.1). The “Workflow Definition Tool” and the “Workflow Cli-

Provides ct ii’orkflow mnodeling
language baseci on an expressive
workflow ,neta-moclet

Workflow
Engine ++ j

8 5-7
,_

,—sI

101

ents” are two modules already defined within the Workflow Reference Model (WfRIvl).

The “Resource Defmïtion Tool” is useful to define resources required for the defmition

of activities, e.g., negotiation agents in the CONSENSUS application and drivers as well

as material resources in the MTCT application. “Application-Specific Modules” com

municate unexpected events to the “Workfiow Engine ++“. The decision regarding the

changes that must be applied on the set of workflow instances is either taken by the user

of the system (i.e., application domain expert), or derived automatically using a decision

module. In the first case, the user specifies the changes via a workflow client. In the sec

ond case, the “Rule Processing” module may remedy the lack, within the workflow

meta-modeÏ, of constructs for autoinatic workflow changes (e.g., events, triggers, rules).

We illustrate in Figure 5.5 the sequence of messages that are exchanged between the

“Workflow Engine ++“, a “Workflow Client” module such as a workflow control and

monitoring tool, and the user of the adaptive workflow system. We consider the case

when a normal execution with no adaptation is required (Figure 5.5(a)), and the case

when an insertion (Figure 5.5(b)) or a deletion (Figure 5.5(c)) of an activity is required.

____________________ ________________

(a)
WorkflowEngine ++ I I Workflow Client I [jsJ

ConnectionConfirmedO
Instantiation Intention()

T GetWorkflowlemplates()

j Instantiation(t) . CreateWorkflowlnstance(t)w UpdateWorklist InstantationOrder(t)
DisplayWorkflowlnstance(i)

DisplayWorklist(w)
UpdateActState(...)

w:=UpdateWorkflif g WorkitemStarted(i. ...) I -

DisplayWorkflowlnstance(i)
DisplavWorklist(wUpdateActState(...) — TerminpteWorkïtem(i. ...)w UpdateWorklist(WorkitemTerminated(i ...)

L DisplayWorkflowlnstance(i)
DisplavWorklist(w)

[DeleteWorkflowlnstance(i)
Deletion(i) DeletionOrderfi)ri

102

Workflow Engine ++ Workflow Client

(b)

User

fr=1

lnsertAct(i, a, a_NEf,
aAFF)

w UpdateWork istO

Display(r)

I GetWorkflowlnstances()

A := GetActivities()

r CorrectnessVenfO ActlnsertionOrder(i, a, a_BEF, aAFF

Actlnsertionlntentionf)

InsertAct(i, a, a_BEF, a_AFF)

DisplayWorkflowlnstance(i)
DisplayWorklïst(w)

—

(c)

r CorrectnessV

(r = 1]

DeleteAct(i, a
w UpdateWork ist()

Figure 5ï. Sequence of Messages Exchanged (a) during a Normal Execution ofa
Workflow Instance, (b) when an Activity Insertion is Required, and (c) when an Activity

Deletion is Required

103

Dealing with unexpected events in the domain of workflows can be compared with error

handling in the domain of transactions. We wiIl discuss this issue in what follows.

5.3.1 Adaptive Workflows and Transaction Management

The requirements resulting from dealing with unexpected events are by far more chai

lenging than those faced by standard transaction management (enor handling). Standard

transaction modeis define their correctness criteria in terms of the transaction ACID

properties {E1m92]:

• Atomicity: The transaction is a single unit of processing. Either ail of its activi

ties are executed or no activity is executed.

• Consistency: The activities are executed only when they resuit in a consistent

state.

• Isolation: The activities are executed without the interference of activities of

other concunently executed transactions.

• Durability: Ail results of a committed transaction are persistent, regardless of

subsequent system failures.

A workflow can be seen as a possibiy iong-running transaction, and the ACID properties

have to be relaxed in conjunction with these iong-running transactions. This is of utmost

importance to improve the performance of a system implementing a transactional execu

tion, but aiso to let more failures recovery. One first step towards relaxing the ACID

properties is the definition of nested transactions. Nested transactions [Mos82] aliow

finer grained recovery and provide more flexibility in terms of transaction execution.

Another notion quite similar to nested transactions is the definition of sagas [G587J. A

saga refers to a long-running transaction that can be broken up into a collection of sub

transactions that can be interleaved with other transactions. When compared to nested

transactions, sagas oniy permit two leveis of nesting: the top level (saga) and simple

transactions, and at the outer level full atomicity is not provided (i.e., sagas may view

the partial resuits of other sagas). A saga relaxes the requirement that a long-running

transaction need to be executed as an atomic action. 0f course, a compensation mecha

nism needs to be impiemented in order to guarantee that a saga would commit ail its sub

transactions or it wouid roil back any comrnitted transaction. This relaxes the durability

104

property. The concept of sphere bas been deflned such that compensation can be applied

flot oniy on one activity but also on a group of activities (called sphere) [Ley95]. A de

tailed discussion of transactions applied in the domain of workflows is given by Worah

and Sheth in [WS971.

Further issues in the analysis of correctness properties in adaptive workflows can be dis

cussed in conjunction with transaction management. As an example, deadlocks, which

constitute an important problem in transaction management, can appear as a resuit of

modifications in workflows. In transaction management, the blocking of transactions by

a two-phase locking can give Tise to deadiock, i.e., two or more transactions are simuita

neousiy waiting for each other to release a iock before they can proceed. In workflow

management, modifications such as skipping or deleting an activity may resuit in a dead

lock since the successor activities would wait for the termination of the skipped or de

leted activity, e.g., in order to provide needed data. Moreover, modifications resuiting in

undesired cycles may cause deadiocks. In order to ensure the correctness (i.e., sound

ness) of a workflow after a modification is made, correctness checks need to be canied

out. As an example, in the ADEPT approach, modification operations have formai pre

and post-conditions which ensure by construction that the resulting process schema does

not contain deadiocks. We already discussed, in Section 3.2.2.4, this issue of correctness

verification in the context ofreviewed adaptive workflows projects. In Section 6.4.2.1.2,

we introduce a generai correctness criterion ensuring the safe interruption of a running

activity.

5.4 Summary and Discussion

CN is a novei negotiation type [BAV+01] that is required, for exampie, in the context of

supply chains and e-procurement. CONSENSUS was probabiy the first workflow-based

system to support CNs. Flexibiiity bas widely been recognized as an important feature of

WflvISs in generai, but in the context of CNs, the inability to cope with flexibiity puts

iimits to the benefits of the CONSENSUS approach. Indeed, CN requires flexibiiity to

accommodate the various contingencies and obstacles that can appear during negotia

tion. For example, if a supplier or a shipphig company makes a new offer that might be

105

of interest for a buying company, the buyer wil review negotiation activities afready

planned within the workflow model and may want to rearrange them (e.g., to dynami

cally delete, replace, or move activities). In this context, the ADEPT change and verffi

cation facilities have proven as coherent with the flexibility requirements in CNs. How

ever, there are several requirements identified withiit the CONSENSUS project that have

not yet been fully supported by ADEPT:

• Dynamic change of decision ,zodes, so that the automated execution provided by

workflows does flot play against the flexibility. In fact, decision nodes play an

important role in the computational representation for automated execution.

• Dynamic change of attributes, so that the structural change operations provided

are flot needlessly forbidden. As an example, atiowing the deletion of an attribute

increases the chances to pass through the verifications that exist behind the activ

ity deletion operation. Indeed, it confronts the dependent attributes problem.

• Dynamic inove operation. We were applying successively the delete operation

and the insert operation to compensate the absence of the move operation. How

ever, the move operation should relax the verifications related to the activity de

letion operation. As an example, the verification of dependent attributes should

not generate correctness problems when the new position of a moyeU activity A

is stili preceding activities taking input from A.

These requirements, gathered from studying CONSENSUS under the “flexibility per

spective” and from considering a state-of-the-art adaptive WfMS, help us not only to

provide interesting input for the enhancement of the “flexibiity” feature of ADEPT, but

also to cÏarify and refine the needs for adaptive workflows in general. Indeed, the identi

fied requirements allow us for deriving an adaptive workflow framework in which we

stressed the need for an appropriate set of change operations, for a correctness verifica

tion module, and for a workflow meta-model that is expressive enough to allow practi

cally relevant changes.

Chapter 6 Workflow Management Requirements

The CONSENSUS and the MTCT applications studied m the previous chapters serve us

to investigate the needs for a set of enhanced concepts and functionality for WfMSs. In

CONSENSUS, process activities represent e-negotiations, and software agents are re

sponsible for their execution. Automatic activities are hence hwolved. There is an inter-

est for manual intervention during run-tirne (i.e., human involvement in the loop). In the

MTCT system, process activities represent transportation activities, and human partici

pants such as drivers are responsible for accomplishing them. Manual activities are

hence involved. There is an ifflerest for automatic modifications during run-time (i.e.,

reactive system).

It appears that characteristics inherent to such complex applications are stiil not ade

quately supported by current workflow technology. These characteristics are translated

into a list of workflow constructs and real-time features. In this chapter, we report on

this list. As an essential basis, we use established ideas such as (1) the basic workflow

concepts and structures that exist behind workflow modeling (e.g., activity, activity at

tributes, controlldata flow and structural constructs in activity-based workflow modeling

methodologies), (2) the concepts behind workflow enactment (e.g., workflow/activity

state, work-list) and (3) concepts related to the organizational configuration (e.g., organ

izational model, organizational role).

In the following, we present in Section 6.1 the workflow technology enhancement proc

ess we devised. Section 6.2 exposes the (ist of enhanced workflow concepts and func

tionality. Sections 6.3 and 6.4 discuss these concepts and functionality, respectively, and

expose investigated solutions for each of them.

107

61 Workflow Technology Enhancement

Figure 6.1 shows the workflow technology enhancement process. Characteristics of

complex socio-technical applications are translated into requirements towards workflow

technology. This translation is indirectly accomplished passing through application de

mands and workflow technology features. The set of requirements identifled can be di

vided into subsets, depending on the flinctionality already provided by the WfMSs that

we are considering. The purpose ofa subset is to complement existing WfMS features.

The tÏzeoreticat definition of workflow concepts and functionaÏity layer gathers the theo

reticai definition of the identified workflow technoiogy requirements. A transition tctyer

exists between the theoretical definition layer and WfMSs. The transition layer defines

the implementation of the requirements subsets. In the best case, the WfMS provides a

direct solution based on its offered features. Otherwise, a workaround solution can be

impiemented. In both cases, we rely on what is offered by the considered system and

hence the transition layer is present to some degree. In the worst case, no solution is

provided at ail; an impiementation needs to be directly integrated within the W1MS.

Such an impiementation may previousiy require some research work. In this case, the

transition layer is absent.

Once this integration of new features is made, as a final stage of the workflow technol

ogy enhancernent process, we may demonstrate/evaiuate (1) the enhanced WfMS(s)

(e.g., ADEPT itselO, and (2) the workflow-based systems we developed (e.g., MTCT

system, CONSENSUS system, ADEPT specific applications systems).

We recognize the fact that building a comprehensive iist of requirements for WfMSs is

an evoiutionary task. This means that the system functionality is improved through the

continuous assessment and revision of representative applications. In our case, the itera

tive investigation of complex applications stemming from typical, yet representative ar

eas, the e-negotiations and the transportation domains, helped us to identify a set of en

hanced workflow concepts and functionality. We believe that this list shouid be used to

help improve what today’s WfMSs offer h term of concepts and functionaiity.

Characteristics

t
exSocio-TechnicaJ

Applications

Workflow-based Systems

A WfMS oflers a set of features to practïcally implement the theoretically deflned
workt]ow concepts and functionality.

—-—-) ... are translated into...

imply...

generate...

The evaluation is made via the enhanced WIMSs and via the workflow-based systems.

> Applications give input to workflow technology.

Figure 6.1. Workflow Technology Enhancement

6.2 Enhanced Workflow Concepts and Functionality

Taking hito account our experience with three specific WfMSs (IBM MQ Series Work

flow, BEA’s WLPI, and ADEPT) as welI as our review of the literature reÏated to cur

rent WfMSs, we specify for each conceptlftinctionality identified, if its lack is a general

problem Ç (i.e., it is not provided by most WfMSs) or if it is a WflVIS-specffic problem

(91 for ADEPT-specific problem, gt’[for MQ Series-specific problem, and W for WLPI

specific problem). We also specify whether it was possible or not to find a solution (D5

f
$

108

Demands ,‘ >Features

t
Requirements

(The theoretical definition of tvorkllow)
concepts and functionality

4

‘t //
Trtitin La\cr

\ Ï /
WfMS1 WfMS2 WIMS3

•

109

for direct solution or Ws for workaround solution) based on the features offered by

ADEPT. Among the three WfMSs considered, we focus on ADEPT because it is the

only one that already offers some functionality for ad-hoc changes. In the case where no

solution was possible in ADEPT, we discuss either a possible implementation of the so

lution (1), or theoretical ideas (T]) for a possible support of the conceptlfunctionality.

Here is the list of requfrements for workfiow technology.

Enhanced workflow concepts (cf Section 6.3):

• The activity template concept [7vt W, D5, 6.3.1]

• The template classification [91, ‘WS 6.3.21

• The activity temporal aspects [Ç, V5 6.3.3]

o The activity starting/finishing time [91, W5, 6.3.3.1]

o The activity duration 6.3.3.21

o The activity warm-up time concept [Ç, WS 6.3.3.31

Enhancedftinctionatity apptied at tize workflow instance tevet (cf Section 6.4):

• The dynamic insertion of an activity [Ç, D5, 6.4.1]

o The dynamic insertion ofa new activity instance [91, Ws, 6.4.1.1]

o The dynamic insertion of a block of activities [Ç, WS, 6.4.1.21

• The dynamic deletion of an activity [Ç, D5 6.4.2]

o The interruption of an activity execution while preserving its context

[Ç, T1 6.4.2.1]

• The dynamic move of an activity [Ç, Ws 6.4.3]

• The dynamic modification of activity attributes [Ç, L 6.4.41

o The dynamic insertionlsettiiig/updathig of input attributes [Ç, L,

6.4.4.1]

o The dynamic deletion of inputloutput attributes [Ç, L, 6.4.4.2]

o The dynamic (re-)assignment of activities to a participant [91, I,

6.4.4.3]

o The dynamic setting/updating of time attributes [Ç, j, 6.4.4.41

110

• The dynamic management ofwork-iists [Q, j, 6.4.5]

• The automatic/manual modification of workfiow instances [Q, 1, 6.4.6]

This llst shows only one requirement (the interruption of an activity execution whUe pre

serving its context) for which theoretical ideas (T]) are elaborated. In the following, this

requh-ement is studied hi depth. Detaiied formai defmitions are given. Based on these

definitions, a general correctness criterion ensuring what we refer to as the safe interrup

tion of a ruimhig activity is specified.

Other concepts and functionallty from this list, narnely the ones marked with ¶DS WS

and I, are discussed in less formai detail in what fotlows.

6.3 Enhanced Workflow Concepts

In this section, we discuss concepts identified in Section 6.2. We also report on direct or

workaround solutions we investigated to support each of these concepts.

6.3.7 The Actïvity Template Concept

In order to introduce a standard way for defining activities, il is usefuÏ to devise a set of

activity templates related to the studied application. Activity templates are standalone

activities that can be designed without being part of any workflow definition. They are

defined for prospective use during the scheduling of the different activities in a work

flow model or in a workflow instance. Each activity template consists of a task with

three types of attributes:

• Jnpttt/output attributes, which specify the information needed to accomplish a

task (input attributes) or the information produced by the task (output attributes).

This captures the semantic aspects of the task.

• Assignment ctttributes, which specify the actor(s)/role(s) responsible of

accomplishing (or allowed to accomplish) this task. This is mainly used by the

system to let the task appear in the appropriate work-iist in case of a human

actor, or to cail the appropriate applicationlprogramlsoftware module in case of a

software actor.

111

Tirne attributes, which specify the (minlmax) duration of the task, its (earli

est/latest) starting time, and its related warm-up time.

Activity templates should be accessible from the execution phase mainly to allow the

dynamic insertion of a ncw activity instance based on their defmition. Refer to Section

6.4.1.1 for more details regarding this issue.

In current WtMSs, the activity template concept is flot defined. Moreover, even if it was

defined, we cannot take advantage of this concept since no dynamic insertion is allowed

during run-time in most WtMSs.

In ADEPT, this concept is defmed. However, the prototype of ADEPT does flot allow

the dynamic insertion of an activity based on activity templates.

6.3.2 The Template Classification

Since a WfMS is usually used in the context of different applications, we found it neces

sary to define the “template classification”. This concept assigns a specific “category”

(i.e., application domain) to a set of activity templates and workflow models. It fosters

the more focused selection of a specific activity temptate or (sub-) workflow: interest for

the modeling and for the execution phase. As an example, activities such as: “attach con

tainer to vehicle”, “move container to origin location”, “load container”, etc. belong to

the transportation domain and can rarely be useful for the designladaptation of workflow

models/instances in other domains. The cÏassification concept also facilitates the extrac

tion of resources in systems such as the MTCT system. It facilitates the implementation

of the Resource Extraction CLient (cf. Section 7.2).

Commercial WfMSs such as IBM MQ Series Workflow and BEA’s WLPI, usually pro

pose a tree structure for workflows. Thïs structure allows to defme categories that gather

workflow models. Example ofcategories:

• “Banking” gathering workflow models such as “Credit Request” and “Savings”.

• “Sales and Underwriting” gathering “Life Insurance”, “Medical Insurance”, etc.

112

A WtMS’s user bas usually authorizations for specific categories. A filter with “cate

gory” as criterion is used to retrieve, when necessary, workflow temp]ates that belong to

a specific category.

The classification of activity temptates accordiiig to the application they belong to ap

pears prornising as well. Usua[ly, in current WfMSs, the first level ii a trec structure de

fmes the categories; the second level defmes the workflow models and the activities are

gathered within the third level. However, we would also like to view activity templates

flot related to a specific workflow model, at the same level as the workflow models.

The workaround solution we adopted in ADEPT is the following. When defining the

workflow templates and the activity templates related to a specific application, we save

them with a specific prefix. E.g., ail activity templates related to our Multi-Transfer

Container Transportation application were saved with the “MTCT” prefix. This facili

tates filtering thereafter.

6.3.3 The Activity Temporal Aspects

Activity time attributes such as the duration and the starting/finishing time of an activity

are discussed in the literature. The ADEPT project treats these two aspects in detail

[DRKOOI. In Sections 6.3.3.1 and 6.3.3.2. we discuss the activity startinglfinishing time

and the activity duration. respectively. A differentiation should however be made be

tween (I) the pÏannecÏ starting time of an activity, (2) the activation time of an activity

(i.e., when the activity is due, taking into account the control flow), and (3) its assign

ment time to a work-list. Usually, within current WfMSs an activity is assigned to a

work-Iist as soon as it is due within the flow. However, workflow participants should not

be surprised by activities, and they should know in advance about the next activity to

carry out. Hence, the assignment time of an activity to a work-list should depend on the

planned starting time of the activity and on the necessary warm-up time. Eder et aï.

tackle a similar probtem by working on future personal schedules [EPG+03]. Their work

is motivated by the need to provide early information about future tasks (i.e., forecasting

of tasks). Their approach is based on probabilistic time management. The warm-up time

concept wil be presented in Section 6.3.3.3.

113

6.3.3.1 The Activïty Starting/Finishing Time

We distinguish between absolute dates (i.e., fixed calendar dates) and dependant dates

between activities. Absolute dates are referred to as externat dependencies [RXZO4J. An

external dependency is caused by parameters extemal to the system (e.g., time): an activ

ity “a” can enter a specific state “s” oniy if a certain condition “c” is satisfied where the

parameters hi “c” are external to the workflow. An example of an extemal dependency is

that activity “a” of workfiow “W’ can start at “9:00 am GMT”. Dependant dates are re

ferred to as tirne dependeitcies between activities [DRKOO]. Time edges are introduced

hi [DRKOO] to connect two activities and defme a minimal or maximal time distance be

tween them. Time reÏationships could be: completionlstart, start/start, comple

tionlcompletion, and start/completion. An example of dependant date is: activity “a”

must be completed two days before activity “b” starts.

In IBM MQ Series Workflow, the startinglfinishing time of an activity cari be defined

within the activity by specifying respectively its “START” condition and its “EXIT”

condition.

In BEA’s WLPI, a distinction is made between sytichronous actions and asynchronous

actions. One of the asynchronous actions is the “set task due date” used to specify the

activity starthig time. “Time event” is another asynchronous action that can be used to

specify the finishing time.

The definition of dependent dates between activities in IBM MQ Series Workflow and

hi BEA’s WLPI is flot straightforward; by contrast, this constitutes one of the strengths

of ADEPT.

However, the ADEPT prototype does flot aflow the specification of an absolute date for

the activities’ starting/finishing time. The workaround solution we found is as follows:

We use the “time edge” concept and we define a minimum and a maximum time dis

tance between the “start” activity (S) and each of the activities (A). The earliest and the

latest starting time of A (ESTA/LSTA) are specified takhig into account the real starting

time of S. Once the execution of S is completed, its real starting time STs is then known.

114

The minimum time distance and the maximum time distance of the “time edge” between

S and A are respectively equal to ESTA-STS and LSTA-STS.

6.3.3.2 The Activity Duration

This is flot a problem in ADEPT. The duration is directly specified within the activity. In

MQ Series and WLPI, the duration of the activity can be defined within conditions

(“EXIT” condition in MQ Series and “decision” in WLPI) using a date function format

in a specific expression. Example: when the expression that compares “the current

date/time” with the sum of “the activity real starting time” and “the activity duration” is

evaluated to TRUE, then continue the execution with the next activity taking into ac

count the control flow.

6.3.3.3 The Actïvity Warm-Up Time Concept — Integration 0f Preparation

Activities

The introduction of [EPG+03] motivates convincingly the need for providing earÏy in

formation about upcoming activities:

ht rhe execution of workflows, workflow participants are crpicalty “sur
priseci” b)’ the activities thev should peifornt, surprised in the sense thar
theyfïncl rhese activities in their to-do—lists when these acrivities are readv,
i.e. ail prececling activities are fin ish ccl. Infonnarion about upcoming activi—
tics would be mach earlier available in the workfiow sstem. For an exam
pie, when the first activitv of a seqttence is readv, the succeeding acrivities
wilt be reacîv soon. Current workfiow sys teins do not inake tise of titis in
formation anci do notforward titis information to the participants depriving

them ofthepossibility ofplanning their work aÏtead. [...]

In current WIMSs, activities are assigned to work-lists in-order regarding the control

flow. We would like to find a technique for aîtowing activities to be dispatched out-of

order when (1) the difference between the starting time of the activity and the time re

quired to get prepared to this activity (i.e., the warm-up time WTJT) corresponds to the

current lime, but also when (2) the activity bas a high probability of being reached by the

control flow. The question that may arise is the followhig: how to measure/predict this

probability? In [EPG+03], probabilities are taken for granted. However, in real-world

applications, probabilities can rarely be fixed in advance.

115

The idea behind the “out-of-order” handiing of activities stems from the dynamic sched

uling (i.e., 1ookiig-ahead, pre-fetchiiig) approach sometimes based on prediction,

adopted by processor technologies. In fact, the dynamic scheduhuig allows instructions

to execute out-of-order regarding the instructions order within a program, when there are

sufficient resources and no data dependencies (e.g., structural hazards, WAW, WAR).

A way to support the warm-up time concept is to introduce it at the workflow modeiling

level by integrating “preparation activities”. Preparation activities are deflned for work

tist management purpose (i.e., notification purpose) but also for resource management

purpose. Indeed, A specific activity may require some preparation work done in ad

vance. This preparation may ask for some resource reservation.

When eariy information about a future activity “Act” needs to be provided to the (bu

man) participant responsible of the execution of “Act”, a preparation activity “Actprep”

related to “Act” is scheduied within the workflow. During run-time, “Actprep” is an

automatic activity that appears at the right time (e.g., at time: “ESTAC(- WTJTACÉ”) in the

work-iist of the participant responsibie of “Act”. “Act” could be executed as soon as

ESTAL is reached: “Actprep” teaves the work-list, and “Act” appears instead.

We include preparation activities within the formai definition of WSM-Nets [RRDO4cÏ,

already introduced in Section 2.2.3.

Definition 6.1 (Extended WSM-Net — Preparation Acivilies) A ttiple S = (AÇ Nprep, NT
CtrtE, pct) is called an extended WSM-Net if thefolÏowing hoÏds:
- N is a set of activities
- NT: N H-* {StartF1o EndF1o Activity PreparationActivity

AndSplit, Andloin, XorSplit, Xorloin, StartL,oop, EndLoop}
NT assigns to each node of the extended WSM-Net a respective node type.

- Nprep C N l5 tue set ofpreparation activities.
Vii E Nprep, NT(n) = PreparationActivity

- CtrÏE C N X N is a precedence relation
- pa: (N \ Nprep) H> Nprep L) { L]NDEFINED}

pa ctssigns to each activitv of (N \ Nprcp) eitlzer a specific preparation activity from
Nprep or UNDEFINED.

V b E (N \ Nprep) I a(b) = bprep E Nprp, E Pred*(S, b) hotds.
Pred*(S, b) denotes alt direct and indirect predecessors of activity b.

116

Takhig into account Definition 6.1, a workflow such as the one shown is Figure 6.2(c)

can be modelled.

j__Stait__j—ir.j a b Enci ta)

LJ Piep a f—+j a b (b)

Stait j j rf—f_Prep Eitcl (c)

Figure 6.2. Integrating “Preparation Activities” to a Workflow. (a) A Workflow with
Two Activities (“a” and “b”) Defmed in Sequence, (b) Integrating “Prep: a”, (c) Inte

grating “Prep: b”

Given an initial schema S with activities defined in sequence as the workflow in Figures

6.2(a), if a “preparation activity” is to be detined for an activity “a”, which is the first

activity to be executed in the workflow, it will be inserted in sequence with “a”, previous

to “a” (Figure 6.2(b)). In general, a preparation activity “Prep: b” defined for an activity

“b” is to be inserted in parailel with ail the activities that precede “b” (Figure 6.2(c)).

However, other modelling structures more complicated than the simple “sequence” of

activities, e.g., concurrency or parallel branching, synchronization, selection or condi

tionai branching, iteration, may be involved in a schema S. A way that helps studying

each of these structures with the purpose of integrating “preparation activities” is to pro

ceed as follows:

A schema S involving a specific structure is designed. An instance 1s on S is created, and

the insertion of a preparation activity bprep is made by specifying its “before nodes” and

its “after nodes”. The “afier nodes” of bptep consist of b and of ail its successors. Let AN

the set that gathers these “after nodes”. The set of “before nodes” (BN) is defined as N \

AN (the compiement of AN in N).

117

We used ADEPT to insert “preparation activities” during run-time, and to discover

where these activities need to be scheduled within a workflow taking into account a spe

cific structure. We retain the following remarks:

(1) “Preparation activities” are inserted the same way in a “parallel” and iii a

“conditional” branching; but in the latter, the work-list requires more sophisti

cated management. Indeed, activities in conditional branches are announced.

Once a decision is taken regarding the branch to be followed, preparation ac

tivities corresponding to the activities that will not be executed should be re

moved from the work-list(s). An alert stating the “non-execution of these ac

tivities anymore” may also be generated.

(2) When a loop is defined within a workflow, the activities defined in the ioop are

announced just once as “repetitive activities” and this is made before accessing

the loop.

We observe two obvious disadvantages with the integration of “preparation activities”:

(1) Workflow participants are notified, via their work-tist, about alt the activities

of the workflow as soon as the “start” node is completed. What we really need

is a just-in-time notification.

(2) If each activity in the initial workflow needs to be associated with a prepara

tion activity, the number of (non-empty) activities in the workflow doubles.

Moreover, we will be dealing with at least as many parallel branches as the

number of activities requiring a preparation activity. The workflow becomes

complicated to understand. A dynamic modification of a workflow instance

becomes complicated to manage since an activity has a special relation with its

preparation activity. Finally, we may also think about the loss of the workflow

general view since the preparation activities are not a genuine part of the busi

ness process.

In the following, we present and discuss how each of these two disadvantages can be

dealt with.

118

6.3.3.3.1 Dealing with the First Disadvantage of the “Preparation

Activities” Approach: Introduction of an Intermediate Work

Iist with a Lïstener Process

The just-in-time notification is possible when we manage the work-Iist in a way that its

update depends flot oniy on the control fiow but also on the “starting time” of the prepa

ration activities. This can be resolved by a suitable implementation. Once an activity is

due taking into account the control flow, it is assigned to an intermediate work-list. A

listener process on this work-tist should be implemented to detect when the “starting

time” of a work-item is reached — so that this work-item appears in the appropriate

work-list. The mechanism of an intermediate work-list with a listener process is ex

plained in Figure 6.3.

—

-

8um Dur; ST ST-2pm

_*‘tiep t,

ST Ipm Dur It,.

(a) An example of a wodcflow wiffi preparation activities Actvities a and b are assigned to actor X The
starting time (ST) of activity n (resp b) is fixeil to 9am (resp 2pm) and the WUT of a (resp b) us I hour
(resp. 1 hour). The duralion (Dur) of the activity ‘Prep: n” (resp. “Prep: b”) and its ST are deduced.

Work-Iist of “X”

iT 83m Dur:lhr T 9arn ST: Dpm

I —

I EjiI

ST Ipm Dur IhrJ

_____ ____

I Completed actuvfly
Activ!ty Activpty

f.—
-Prep:a

Runnmgactivaty
Prep:b ... t,

(b) The work-list of “X” and the intermediate wcrk-Iist (i.e. work-list of”null”) are posted. Ma certain point in
time (<$am), the two activities ‘Prep: a’ and “Prep: b” are activated and appear in the intermediate work-list.
They remain bere as long as their respective starting time is not reached yet,

119

WorkIiBt 0f

Figure 6.3. The Mechanism of an Intermediate Work-list with a Listener Process

6.3.3.3.2 Dealing with the Second Disadvantage 0f the “Preparation

Activities” Approach: Defining Preparation Activities in the

Background (First Solution)

Given a schema S (cf. Figure 6.4), let S’ the schema that corresponds to S and that in

corporates warm-up times for activities that need to be forecast in advance. A label

specifying the WUT can be associated with each of these activities. The structure of S’

wilI stii show the genuine business process, i.e., the same structure as S. In brieL the

“warm-up time concept” shouÏd be defmed as a construct related to an activity in the

same way other similar constructs are usua]ly defined (e.g., ESTILST, EFTILFT).

We associate S’, considered as a high-level schema, with a low-level schema S’ii. S’

will integrate the preparation activities in parallel branches; preparation activities wilI

however be kept out of sight of the WflvIS’s user controffing and monitoring the work

flow (i.e., they are in the background).

Work-UBt 0f “X” Work-IIst of “nuil”

-‘ I

Activty ... Actfvity
.. ‘t ‘“

Prep: a .,. Prep: b
u SOO

fc) At 8am. the starting time of “Prep: &‘ is reacbed. ‘Prep: a” leaves the work-list of “nuil” audit is assigned to
the work-Iist of “X”. - -

[tam Dur: Ibri ST:9am ST2pr

Zfl —=-——‘L’

ST. Ipm Dur.lhr

_ _

A

_____________ ____________

Completedactivity

L tivaty

Prep: b ...

901) Runmngactivity

(d) At 9am. the starting time of “a” is reached. ‘Prep: a” leaves the work-Iist of ‘X” and “a’ is assigned 10 this
work-list.

A transformation function needs to be defined: S — S’ —* S’

S’ JStartHH%jrH End I

Listenerf /J -

27O’
.. f

I “I ‘
Sgnzzls... I Clock

k/’ +- Z

List,ze7
ar

- Preparation activities workflow

ê —. Defines a link between an activity and its preparation activity (we cali it a “Iink-line”).

Figure 6.5. Explanation of the Layered Workflow Architecture for the Support ofthe
WUT Concept

120

S JStartft a —*f b F—End

Dur: ij

Figure 6.4. Sending “Preparation Activities” to the Background

6.3.3.3.3 Deallng with the Second Disadvantage 0f the “Preparation

Activities” Approach: A Layered Workllow Architecture

(Second Solution)

Instead of incorporating the “preparation activities” directly within the workflow, we

may think about gathering ail the preparation activities related to a specific workflow

within a separated (sub-)workflow. We may devise a “layered workflow architecture”

(Figure 6.5). The challenge here is how to define links between an activity and its asso

ciated preparation activity so that a modification brought to an activity is reflected to its

associated preparation activity.

l8O

- + Workflow

121

For a workflow activity “Act”, we specify a “starting time” (e.g., an absolute date) and a

WIJT (e.g., in minutes). For a preparation activity ACtprep, we specify a “starting time”

that corresponds to “ESTAt - WUTA”. A modification brought to the “starting time” of

Act involves a shifi of the link-line to the right or to the left (—). A modification

brought to the WUT of Act involves a rotation of the link-line (s.). The rotation angle

lies between 00 and 90°, ami the angle of the Iink-liuie should aiways lie between 270°

and 360°. A link-line angle of 270° means the WUT is equal to O minutes. This can ap

ply to automatic activities where no human actors are involved. Nevertheless, the hrik

une angle can neyer be 360°. The “360°” corresponds to a horizontal une, meaning that

the WUT is equal to . As a consequence, the “90°” rotation angle is also impossible.

The really used intervals for the link-line angle and for the rotation angle are respec

tively a sub-interval of [270°, 360°] and a sub-interval of [0°, 90°].

When a modification is brought to the ST or to the WUT of an activity, a message

should be sent from this activity (the sender) to its related preparatÏon activity (the re

ceiver). In [ABE+00], the authors introduce peifonnatives used in the context of pro

clets. The latter are deflned as lightweight workflow processes equipped with communi

cation channels. Performatives are used to specify communication and collaboration be

tween proclets. They have attributes such as “channel” (the medium used to exchange

the performative), “sender” (the identifier of the proclet creating the performer), “re

ceiver” (the identifier of the proclet receiving the performer), “action” (the type of the

performative), and “content” (the actual information that is being exchanged). In our

context, the workflow and its corresponding preparation activities workflows can be

seen as proclets (Figure 6.6). Performatives are defined to allow a one-way communica

tion between “activities” and their related “preparation activities”. The action attribute in

our case can be viewed as a “notification”: an activity notifies the corresponding prepa

ration activity about a modification brought to its ST or to its WUT. The content attrib

ute specifies the new ST or the new WUT.

122

A notification action

Figure 6.6. The “Proclet” Idea for the Support of the WUT Concept

6.3.3.3.4 Extension of the Warm-Up Time Concept — An Overview

The WUT concept can be extended to a notification system where alerts can be triggered

asynchronottsÏy to handie an event or exception. Chiu et al. for instance study the ur

gency requirements for alert routing in a healthcare application. employing mobile tech

nologies, and healthcare panner process integrations [CKW+04J. In their approach, they

propose to separate user alerts from user sessions with the WfMS. Online users are

alerted through ICQ (I seek you) with the task summary and reply URL as the message

content. If the user is flot on-une, or does flot reply withii a pre-defined period, the

WfMS sends the alert by email. At the same lime, another alert may be sent via SMS

(Short Message) to the user’s mobile phone. Whatever the alert channel bas been, the

user needs not connect to WfMS on the same device, or even on the same platform. For

example, after receiving a SMS alert, the user may use ber handset to connect to the

WfMS via WAP, or she may reply with an SMS message. Attematively, the user may

find a PC (Personal Computer) with Internet connection or use ber PDA (Personal Digi

tal Assistant) to connect to the WIMS.

123

6.4 Enhanced Workflow Functïonalïty Applied at the

Workflow Instance Level

In this section, we discuss ftinctionality identified h Section 6.2. We report on direct or

workaround solutions to cover the dynamic insertion, deletion, and move of an activity.

This will comprise theoretical work ensuring the safe interruption of an activity execu

tion. Then, the implementation within the system of the dynamic modification of activity

atttibutes is discussed. As a consequence to the dynamic modification of attributes, the

adaptation of work-lists is consïdered. Each of the functionalities identified can be ap

plied either manually or automatically. This will be finally discussed.

6.4.1 The Dynamic Insertion of an Activity

This insertion should be based on previously defined activity templates and sub

workflows. During insertion, temporal constraints should be respected and input attrib

utes of the inserted activity should be linked to newly generated data elements. This is

discussed in [RD98I. The dynamic insertion of an activity coutd be extended to the dy

namic insertion of a sub-workflow. As an example from the MTCT application, the se

quence of the two activities “detach container from vehicle” and “attach container to ve

bide” should be inserted each time a container needs to be transferred from one vehicle

to another.

Commercial WfMSs, such as WLPI, allow re-executing an activity afready completed.

However, this does flot correspond to the dynamic insertion of an activity since no struc

tural modification is possible.

This functionality is defined in ADEPT, however the ADEPT prototype exposes the

main problem discussed in Section 6.4.1.1. The dynamic insertion of a sub-workflow

(Section 6.4.1.2) is not possible hi ADEPT.

6.4.1.1 The Dynamic Insertion of a New Activity Instance

It is not clear in the literature of ADEPT if the activity to be inserted has to be chosen

from the set of activities of workflow instances, or rather from the set of activity tem

124

plates. The ADEPT prototype allows onÏy the first option. Since this is possible, it

should flot be a problem to support in a workaround manner the second option:

When a specific activity template is chosen to be inserted within a workflow instance,

this activity can be automatically defined within a workflow model, between a “begin”

node and an “end” node; and an instance of this workflow can be created. The problem

of inserting an activity based on a previously defined activity template amounts to the

same thing as the problem of inserting an activity instance.

The WAW (write after write) problem should not exist. That’s why the parameters of

two activity instances defined from the same activity template within a specific work

flow, should be linked to distinct data elements. In the MTCT system, two activities Al

and A2 defined from the same activity template are usually distinct within a specific

workflow. As an example, the activity “Move vehicle y from location a to location b”

may be present twice in the same workflow. The three variables y, a, and b are linked to

three data elements. Data elements in Al should be different from data elements in A2.

A refined issue is to aÏlow the insertion of a new activity by defming it from scratch.

This is known by the “on-the-fly” editing [Sie961 where new activities can be defined at

run-time. This means that the user is supposed to deal with a graphical workflow editor

during run-time. A similar idea is evoked in [KBB98I. The authors discuss partial execu

tion that supports creating and executing workflows and workflow fragments “on-the

fly” as they are needed — or as the information becomes available —, rather than requiring

the entire workflow to be specified ahead of time.

6.4.1.2 The Dynamic Insertion 0f a Block of Activities

There is no solution defined within current WfMSs. The workaround solution we devel

oped can be captured by the five steps described below. This solution is based on the

fact that the dynamic insertion of an activity is possible. Refer to Figure 6.7.

Step 1: Take the first activity in the given sub-workflow and insert it between the BE

FORE noUes and one of the AFfER nodes AN1. Based on a symmetriccit controt struc

tttre as used in [RD98J, Figure 6.8 shows the effective structure of the workflow after

125

inserting the first activity. Empty nodes and sync-edges are introduced as a consequence

to the insertion. Reduction rules are applied.

Step 2: Take one next activity instance in the given sub-workflow with no predecessors

that are flot inserted yet (except for loops there must aiways be one existing) and insert it

between its already inserted predecessors and ANI. figure 6.9 shows the effective struc

ture of the workflow after inserting the second activity.

Step 3: Continue like this until you reach the last activity in the provided sub-workflow.

Step 4: Insert this Iast activity between its already inserted predecessors and ail AFTER

nodes.

Step 5. Delete ati edges between the AFTER node ANI and ail newty inserted nodes

except for the last one.

Stepi —

Step2 —,

126

Step 3 —

Step 4 —;

Step5 —;

‘ Sync-edge
Control edge

Figure 6.7. Steps for the Dynamic Insertion of a Sub-Workflow

Figure 6.8. VaÏid Structure of the Workflow Resulting from Step 1

127

Sync-edge
•—‘ Control edge

Suppose that the sub-workflow shown in Figure 6.10 is to be inserted between C. D

and {f} (cf. Figure 6.7). Is the “End loop” node considered a “predecessor” to the

“empty” node, to “b” and to “c”? The first time “b” and “c” are executed it is not. When

the loop is executed more than once, the “End loop” node becomes a “predecessor” to

the “empty” node, to “b” and to “c”.

Edge type: ioop

pd

Figure 6.10. Example of a Sub-Workflow Including a Loop

The workaround solution just exposed (insertiiig the activities of a sub-workflow one by

one) has at least four problems:

(1) 1f flot automated, this solution presents too much (manual) manipula

tions/interactions with the system, which is an error-prone solution.

(2) The activities insertion order is very important. E.g., an activity input parame

ter should be previously provided as an output parameter of a predecessor ac

tivity.

(3) This solution has been applied to sub-workflows with sequential activities

only; the insertion of complex modelling structures is problematic. Indeed, in

the example of figure 6.7, the insertion of an And-spiit and an And-join, as

well as of activities between these two specific nodes is flot obvious.

Figure 6.9. Valid Structure ofthe Workflow Resulting from Step 2

12$

(4) Step 5 (deletion of un-useful edges) is complicated to accomplish because of

the introduction of sync-edges and empty nodes. This step can however be

skipped.

An appropriate solution for the insertion of a sub-workflow is to consider the latter as a

whole with input and output data. This was flot addressed yet in the literature, but it

could fit well in the approach proposed in [RD98] for the insertion of a single activity.

Indeed, in this approach, the correctness of the flow of data is verified to ensure a

syntactically correct schema.

6.4.2 The Dynamic Deletion of an Activïty

ADEPT provides this functionality. In other WfMSs, the activity instance can be “force

finished” (MQ Series Workflow) or it can be marked as “done” without execution

(WLPI). Marking an activity instance as done without executing it can remedy in certain

cases to the dynamic deletion of this activity. This is true when for instance we do flot

expect output attributes ftom the activity instance marked as done.

In the following, we discuss a sophisticated issue in conjunction with the dynamic dele

tion of an activity instance, that is, the safe interruption of an activity in a running state.

6.4.2.1 The Interruption of an Activity Execution While Preserving its

Context

An activity interruption triggered by the appearance of unexpected events in environ-

ment such as the MTCT cannot be avoided. As an example, technical problems of vehi

des, traffic jams or forced rerouting may appear at any time while vehicle V is on the

road moviiig goods between origin location O and destination location D. This usually

leads to the interruption of the “move V from O to D” activity. In such a situation, an

adaptation of an already planned flow of activities for the satisfaction of a customer re

quest is required; this adaptation should take into account the current context of the in

terrupted activity. The new transportation solution may propose to send a new vehicle V’

to the current position of V or to change the afready planned route leading to D. In both

cases, the current position of V should be known such that an appropriate new solution

can be proposed.

129

Preserving the context of an iriterrupted activity consists of saving data, which is pro

duced by or associated with this activity. This must be done at the right time, e.g., as

soon as the data become available or relevant. At this point, it is important to have a

doser look at the granularity of work unit descriptions. Usuaily, a business process ac

tivity can be further subdivided into atornic steps corresponding to basic working units

or to data provision services. Basic workmg units are either dfrectly coded within appli

cation programs or can be worked on manually by people. Distinguishing between ac

tivities and atomic steps is useftil for the following reasons: Atomic steps are not man

aged within work-lists like activities are. This contributes to better system performance

since the cost for managing and updating work-Iists decrease. Furthermore, this ap

proach offers more flexibility to users (if desired) since they can choose the order in

which they want to work on atomic steps. The distinction between activities and atomic

steps finally leads to the following basic considerations.

We distinguish between a continuotts and a discrete data update by activities. The

“move V ftom O to D” activity is an example of an activity continuously updating the

“V current position” data element by a GPS system. An example of an activity discretely

updating data is even more obvious in process-oriented appLications. We may think

about the activity “fil! in a form” with many sections, each one asking for information

(i.e., data) related to a specific topic. The information becomes relevant, and therefore

may be kept in the system, oniy after the completion of a specific section. Filling in a

section could be seen as working on a particular atomic step.

We highlight the fact that a process activity may apply both updating kinds: it may dis

cretely update a particular data element d1 and continuously update another data element

d2. Moreover, data elements may be discretely updated by a specific activity n and be

continuousty updated by another activity 112. As an example, an activity “monitor pa

tient” in a simplified medical treatment process such as the one introduced in Chapter 2

and depicted again in Figure 6.12, may ask to measure twice a day the “patient tempera

ture” and to continuously control the “patient heart electric signais”. On the other hand,

the “patient temperature” may be permanently controlled in case of high fever within

130

activity “monitor patient” while it may be measured twice a day after operation within

activity “aftercare”.

Data conthiuously or discretely updated by activities may be only relevant for the spe

cifically studied application (e.g., the vehicle “current position” for the container trans

portation process depicted in Figure 6.13) or they may be relevant for process execution

as wetl. In the latter case, these data are consumed by process activities and therefore

have to be supplied by preceding activities. At the occurrence of exceptional situations,

it may appear that mandatory process relevant data wil flot be available at the time an

activity is invoked. Depending on the application context and the kind of data, it may be

possible to provide the missing data by data provision services, which are to be executed

before the task associated with the respective activity is handled.

We distinguish between exclusive application dcita and process relevant data. Note that

an exclusive application data may become process relevant when a failure occurs. In the

transportation application, an example of process relevant data would be the “container

temperature” (continuously) measured during a “move V from O to D” activity and rele

vant for a “Report to customer” activity within the same process. Reporting on the con

tainer temperature would inform the customer whether the transported goods (e.g.,

foods) were or were flot continuously preserved under the appropriate temperature. The

“V current position” is an example of exclusive application data since it is relevant for

the application, in particular for the optimization module of the application (cf. Chapter

7), but not for the business process management system. If however, a road traffic prob

lem occurs, the “current position” of V may become relevant for the process as well; i.e.,

the origin location O’ of a newÏy proposed activity “move V from O’ to D” changing the

already planned route leading to D, would correspond to “current position” of V (i.e., O’

:= “V current position”).

Figure 6.11 shows a data classification scheme in the context of business processes. This

classification puts the frequency of updating activity data and the relevance of these data

into relation. Within these two dimensions of data, we respectively differentiate be

tween:

131

• a continuously and a discretely updated data, and

• an exclusive application data and a process relevant data

Taking hito account this classification, and knowing that exceptions stemming ftom the

application environment cannot be avoided and generally appear during activity per

formance. it would be a challenge not to tose availabic data afready produced by the ac

tivity that will be inevitably interrupted or deleted. In order to formally speci1’ the cor

rectness criterion for iiiterrupting running activities while preserving their context, for

mai definitions of requisite foundations for this specification arc indispensable.

Data Update
Frequency

Continuous

Discrctc

Data Relevance

In the following, we first define such foundations (Section 6.4.2.1.1). Then, we intro

duce a general correctness criterion ensuring a safe interruption of a rurming activity

(Section 6.4.2.1.2). Finally, the adopted approach is discussed in Section 6.4.2.1.3.

6.4.2.7.1 FormaI Framework

In order to preciseiy defme the different kinds of data and update frequencies, we use the

established formaiism of Well-Structured Marking-Nets (WSM-Nets) [RRDO4cJ (cf.

Section 2.2.3) and extend it for our purposes. As rnotivated previously, an activity can be

subdivided hito a set of atomic steps. The lower two lanes in Figure 6.12 show the

atomic steps assigned to the process activities as welI as the data flow between these

steps. For example, the atomic steps “measure weight”, “measure temperature”, and

“wash patient” are assigned to activity “prepare patient”. “Provide weight” is an exam

Exclusive application Process

Figure 6.11. Data Classification Scheme

132

pie of a data provision service assigned to activity “operate” as atomic step. If an excep

tional situation (e.g., failure at the “measure weight” atomic step level) occurs, this data

provision service wiil be invoked h ordet to supply input data element “weight” of the

activity “operate” (and particularly of its atomic step “anesthetize”). We define a partial

order relation on the set of atomic steps (mcl. data provision services) assigned to a cer

tain activity. The precedence relation depicts a micro control flow between elements of

this set. Note that, by contrast, a macro control flow is defined between activities. We set

up this relation by assigning numeric labels to atomic steps, e.g., an atomic step with

numeric label “I” is considered as a predecessor of ail atomic steps with numeric label

“2” or greater. By default, ail atomic steps have number “1”, i.e., they can be worked on

in parallel. In this case, the actor which works on the respective activity is considered as

being the expert in choosing the best order. Data provision services have number “O”

sïnce they must be executed before ail atomic steps assigned to the same activity, in or

der to properly supply these atomic steps with the required input data.

So far the formai definition of WSM-Nets has not considered splitting activities into

atomic steps. Therefore we extend the definition by including this additionaÏ level of

granularity. In the following, S describes a process schema.

Definition 6.2 (Extended WSM-Net — Atoinic Steps) A tapie S = (N, D, NT, CtrÏE,
DataE, ST. P, Asn, Aso, DataEtïte,de(,) is calted an extended WSM-Net f the foïlowing
ÏzoÏds:
- N is a set of ctctivities and D is a set ofprocess ctata etements
- NT: N i—* {StartFlow EndFlow, Activity AndSplit, Andloin,

XorSplit, Xorloin, SfrartLoop, EndLoop}
Ta eaclz activity, NT assigns a respective node type.

- CtrÏE C N X N is a precedence relatio,z setting out the order between activities.
- DataE C N X D X NAccessMode is a set of data Ïinks between activities and data

eleinents (with NAccessliode = {read, write, continuous-reacl, continuous- write})
- ST is the total set of atomic steps defineci for alt activities ofthe process (witÏi P ST

describing the set of data provision services)
- Asti: ST N assigns ta each atomic step a respective activity.
- Aso: ST N assigns w eacÏz atomic step a intmber iitdicating in which order the

atontic steps of a certain activitv are to be executed. By defautt: Ifs e P, Aso(s) = O
Ïzolds; othenvise, Aso(s) = 1.

- DataEev,e,ideu c ST x D x STAccessliode is a set of data tinks between atomic steps
and data etements (with STAccessMode = { read, write })

133

As can be seen in the example from Figure 6.12, there are atomic steps which produce

data (e.g., “measure weight”) and others which do flot write any data element (e.g.,

“wash patient”). In order to express this fact, we logically extend the set DataE to set

DataEeie,ided which comprises ail readlwrite data links between atomic steps and data

elements. In particular, an intra-activÏty data dependency may be defined such that

intermediate resuÏts of an activity execution can be passed between subsequent

atomic steps stj and st2 with Asn(sti) Asn(st,); i.e., (sti, cl, write), (st2, cl, read)

e DataEer,e,ided. As an example (Figure 6.12), consider the intra-activity data flow from

“anesthetize” to “operate” via data element “sensory perception degree”. In fact. the

atomic step “operate” needs this data element to decide when to begin surgery.

electro sensory perception
temperature cardiogram degree >.

4 4 / V

s I I O

I s I j

Process Schema S: “s \
. I ‘‘ /

‘, Monitor ‘‘>‘
(—)r. Control fId / ‘..

t Data f Iow J ‘ .‘ ,‘,‘ N

Admit Inform Prepare g
Operate Aftercare

patient patient

::: ::.:.::::. ;. J .::..:...:::

1i: rn: W: . J:Inform Sign : Measure Measure :: Wash :: Provide Anesthetize: Operate
[weight temp. patient weight :

.:--- z2”
o

sensory perception wweiht ternoerature —

_____ _____ _____

____c tee O

Intuitively, siiice we have extended WSM-Nets by adding atomic steps we also have to

extend the definition of proccss instance markings by assignhig markings to atomic

steps.

consent weight

A’5

*

consent

Figure 6.12. Medical Treatment Process (Atomic Steps)

134

Definition 6.3 (Process Instance on Extended WSM-Net A process instance I on an
extended WSM-Net S is defined by a tapie (S, M!ended Vat) where:
- S = (N, D, NT, CtrtE, ...) denotes the extended WSM-Net I was derivedfrom
- Mt,ntieti = (NS5, STS5) describes activity and atomic step markings of I.

NS5: N I—> NotActivated, Activated, Running Completed, Skipped}
ST i— {NotActivated, Activa ted, Running, Completed,

Skipped}
- Vals describes a function on D. It reftects for each data eÏement d e D either its cur

rent vattte or the value UNDEFINED (if d has liot been written yet).

Markings of activities and atomic steps are correlated. When an activity becomes acti

vated, related atomic steps (with lowest number) become activated as well. The atomic

steps will then be carried out according to the defined micro control flow. As soon as

one of them is executed, both the state of this atomic step and of its corresponding activ

ity change to Running. An activity is marked as Completed after completion of ail

corresponding atomic steps. FinaÏly, if an activity is skipped during process execution,

ail related atomic steps will be skipped as weIl.

As aiready motivated, it is important to distinguish between data elements that are only

relevant in the context of applications and data elements that are relevant for process

progress as well. We can see whether a data element is relevant for the process if there is

an activity reading this data etement.

Definition 6.4 (Data Retevance) Let S be an extended WSM-Net, let w e { write,
continuotts-write } aitd r e { read, continuous-react}. Then we denote d e D as
- an exclusive application data eÏement if

(n, d, w) e DataE —d (in, d, r) E DataE
- a process relevant data element f

(n, d, w) e DataE in E Succ*(S, n) u {n}: (in, d r) E DataE
Succ*(S, n) deitotes cttt direct anci indirect successors of activity n.

The Data Relevance dimension captures both data elements that are produced by the

process, but are oniy consumed by the application, and data elements that are produced

and consumed by the process. In the medical treatment process (cf. Figure 6.12), data

elements “weight” and “temperature” taken during the “prepare patient” activity are ex

amples of process relevant data elements. They are of utmost importance for carrying

out the subsequent “operate” activity (i.e., to calculate the quantity of anesthesia that has

to be administered w the patient). The “electro cardiogram” data element tracked during

135

the “monitor” activity is another example of process relevant data. It is used by the “af

tercare” activity. By contrast, “consent” is an exclusively application data element. As

explained iii Section 6.4.2.1, when a failure occurs, an exclusive application data ele

ment may become relevant for the process as weIl. A patient who aÏready consented

upon a surgery accepts the risks, and the “consent” data element may thus be used in

subsequent activities dealing with respective problems. Tuming now to the container

transportation process, “cunent position” is an exclusive application data element

whereas “container temperature” is a process relevant data element (cf. Figure 6.13).

We 110W define the notion of data update ftequency. Based on this notion we will be able

to define a criterion for safely intenupting running activities while preserving their con

text. Intuitively, for a discrete data update by atomic steps there are certain periods of

time between the single updates, whereas for continuous data updates the time suces be

tween the single updates converge to O.

For defming the tirne suces between data updates, we need the function:

stp: ST i—3 i u { UNDEFINED}

This function maps each atomic step of ST either to a specific point in time or to UIVDE—

FINED. In detail:

figure 6.13. Container Transportation Process

136

stp(st) -Ç t1 (st, d, write) DataEex,enued
UIVDEFINED otheiwise

whereby t, :
=

completion tirne of st

°°
by defatcÏt

Note that the infinite default value we assign to t, is updated as soon as st is completed.

Hence, the real completion time of st is assigned to t.,.

Definition 6.5 (Data Update Frequency) Let S be an extended WSM-Net, let w e { write,
continuous-write } C NAccessMocÏe, and let d e D, n e N with (n, d, w) e DataE. Let
further S1tI be the set of atomic steps associated with activity n and writhtg data ele

meut d; i.e., ST’ := { st asn(st) = n, (st, d, write) e DataEe,c;ndcd }.
Then we cleitote (d, n) as:
- a discrete data update ofd by n if (n, d, write) e DataE

In terms of atomic steps: ‘‘ st e S7’’ : stp(st) = t,. UNDEFINED

— o coittinuous data update ofd bp n if (n, cl, continttous-write) e DataE
lit ternis of atomic steps: SI’’ Ø

In case an activity n continuously updates a data element d, no atomic steps writing d are

dissociated, i.e., there are no atomic steps associated with it that write d; e.g., take the

absence of atomic steps writing the “current position”, the “container temperature”, and

the “electro cardiogram” in Figures 6.12 and 6.13. These data elements are examples of

data continuously updated respectively by a GPS system, a thermometer, and a cardio

graph instrument.

On the other hand, the set of atomic steps discretely writing a data element may be lim

ited to only one atomic step. The “consent”, the “weight”, and the “temperature” are

written once respectively by the “sign”, the “measure weight” and the “measure tem

perature” atomic steps (cf. Fig. 6.13).

Figure 6.14 summarizes the classification of the data involved in the medical treatment

process and in the container transportation process, taking into account the general data

classification scheme presented in Figure 6.11.

137

Data Update
Frequency /1

- container temp.
Continuous - container current

- patient electro
POSitiOfl cardiogram

- patient weight

Discrete
- patient consent

- patient temp.
- sensory perception

Exclusive application Process Data Relevance

Figure 6.14. Data Classification in the Medical Treatment and Container Transportation
Processes

6.4.2.7.2 Correctness Criterion

In order to correctly deal with exceptional situations, it is crucial to know those points in

time when running activities can be safeÏy interrupted. A running activity is safely inter

rupted means that the context of that activity is kept such that aIÏ input data of subse

quent activities are correctly supplied. This context preservation will allow for finding

possible solutions for exceptional situations. We denote these points hi time as safe

poiltts ofthe respective activities.

The challenging question is how to determine the safe point of an activity. In order to

adequately answer this question, our distinction between continuous and discrete data

update is helpful. As the following definitions show, it is possible to precisely determine

the particular safe interrupt points for discrete and continuous data updates, i.e., those

points in time when the respective data are updated such that subsequent activities read

ing these data are correctly supplied.

Definition 6.6 (Safe Intemipt Point for a Discrete Data Update) Let (d, n) (n E N,
d e D) be a discrete data update of d by n, anci let ST,’ be the set of atomic steps asso

ciateci witÏz n and writing d. Let further B := {stp(st), st e SI’ I —,

p e P: Asn(p) n

ctncÏ (p, d, write) e DataEevtended }. Then the safe interrupt point t, of (cl, n) corre

sponds to the maximum point in time any atomic step writes d (on condition that d can
not be provided by a data provision service). formally:

13$

t, := (rnax(B):B 0

[UNDEFINED: othenvise

Informally, the safe interrupt point for a discrete data update by atomic steps is that

maximum point in time when the last write access to the respective data element has

taken place.

Definition 6.7 (Safe Intemtpt Point for a C’ontinuous Data Update) Let (cl, n) (n e N,
d e D) lie a continuous data update of d b)1 n with a start updating tirne tj and a finish
updating tirne tk. The safe interrupt point Çf(. of(d, n) (tj < t.je < tk) corresponds to the
tinte when d becomes relevant for sttbsequent activities. This time isJixed by the user. If
no sale interrupt point isfixed by the tiser t, := UNDEFINEDhoÏds.

Intuitively, for continuous data updates there is no “natural” safe interrupt point. There

fore, we offer the possibitity to define a safe interrupt point by the user. An example us

age for such a user-defined safe interrupt point would be the “waiting time” in order to

get the right container temperature after attaching it to the vehicle that shah power the

refrigeration system within the container.

In order to determine the safe point of an activity, we have to consider that there might

be several safe interrupt points. One example is the activity “prepare patient” which has

two safe interrupt points belonging to data elements “weight” and “temperature” (Figure

6.12).

Definition 6.8 (Activity $afe Point) Let {d1 dk) lie the set of data eteinents (continu
ously) written by activity n e N (i.e., (n, d1, w) E DataE, j = 1 k w e {write,
continuous—write }). Letfurther tfr. lie tue reÏated safe interrupt poi,zts.

Then we denote tfe inax{ t, t } as the safe point of n (f t;fe = UNDEFINED

V i = 1 k, is set ta UNDERFINED as weÏÏ). Therebv, tj corresponds to the tinte
when n can lie safely interrupted keeping its context. An activity n can lie safety iizter
rttpted falt input data of subsequent activities of n are provided.

Using the notion of activity safe point, we can state a criterion based on which it is pos

sible to decide whether a running activity can be safely interrupted or not.

139

C’riterion 6.1 (Intemipting a Running Activity by Keeping its Context) Let $ be an ex
tencled VilSlvi—Net, let I be an instance 011 S, and let w E { write, continuous-write
c NAccessMode. A node n e N with NS5(n) = Running ancÏ safe point t can be
safety interrupted ut ti,zternpr if one ofthefotlowing conditions hotds.
-

_- (n, d, w) E DataE
— tsaf tiflterrj(ptjo,, or t.c,Je = UNDEFINED

— V (n, d, w) e DataE, ti,frerrup(< ts(,ft. : d is an exclusive application data elenient

A running activity can be safely interrupted from a process perspective if it either writes

no data or if it solety writes exclusive application data. If a running activity writes proc

ess relevant data it can be safely interrupted if it has an undefined safe point or its safe

point has been already transgressed. Finally, if exclusive application data become proc

ess relevant (e.g., if an exception handiing process makes use of the full context of the

interrupted activity), the Ïast condition of Criterion 6.1 may flot be applicable.

In order to illustrate the defined correctness criterion, we consider the container trans

portation process. Based on process schema S provided in Figure 6.13, instance I in

Figure 6.15 has been started. Taking into account a defined transportation network, each

of the activities’ locations in js is captured by a coordinate (x, y). E.g., the origin and the

destination locations in activity “move vehicle V from Montréal to Québec” would re

spectively correspond to the coordinates (1.5, 3.5) and (13, 8) within the transportation

network. Suppose that a road traffic problem occurs at time = tR + 75minutes

(elapsed time since departure) while V is on the road between Montréal and Québec. At

this time, suppose that the GPS system is indicating (7, 5.5) for the current position of V.

To avoid the traffic problem, an optimization module may propose a new transportation

solution that consists of changing the already planned route leading to Québec. The new

route includes a detour via another location, that is Trois-Rivières Iocated at position (7,

7). However, this new solution is on]y possible if V is close enougli to Trois-Rivières,

which means that the current position of V is beyond (6, 5). This corresponds to

= tgjfl + 6Ominutes. In addition, suppose that the right container tempera

ture is reached 15,ninutes after finishing loading the container and hence after the depar

ture from the origin location, i.e.,
rat,,e

= tÇ,’egjn + 15,ninutes. Taking into ac

count Definition 6.8, the safe point of activity “move vehicle V from Montréal to Qué

140

bec” corresponds to max{ t J:r1P00, t
.,,erTnperrire” } < tjnierrttpt. Hence, this activity

can be safely interrupted. The exclusive application data element “current position” was

used to generate the new solution shown in Figure 6.15. Following the road traffic prob

lem, this data element becomes process relevant as well: it is given as input to the in

serted activity “move vehicle V from current location to Trois-Rivières”. Note that hi

this specific example, the “container temperature” data element is not relevant for the

definition of the safe point, and hence it could be fixed to UNDEFINED.

6.4.2.1.3 Discussion

The solution proposed to ensure a safe interruption of a running activity adopts a “divide

and conquer” approach: An activity is divided into atomic steps so that the interruption

of this activity becomes possible by preserving its context.

In [MSO2, SSOOII “pockets of flexibility” are defined. So called “containers” comprise

different activities and constraints posed on these activities (e.g., activity B always be

fore activity C). These containers can be inserted into certain regions within the process.

If process execution reaches such a container the assigned user can choose the order of

Trt,is-Rtttères I I 1.—t.
(7,7) — J_4—9 L..—

I I If II I [J
_t.-11 1—1 Interrupted

Driintn,ondi’ille (6,4) activity

* Current position of V at t
- “““fl”

Insefled
O Expected position ut ,‘“

‘‘“ activtty

Figure 6.15. Container Transportation Scenario

141

working on the offered activities by obeying the imposed constrairns. This idea can be

compared to our approach of subdividing activities into atomic steps and posh)g an order

relation on them if necessary. However, both approaches use a different level of granu

larity and focus on different aims. The approach presented by [SSOO1] provides more

flexibility regarding process modeling whereas our approach uses atomic steps for being

able to preserve the data context hi case of unexpected events during run-tirne.

The two kinds of data addressed by the Data Relevance dimension of our data classifica

tion scheme have already been discussed within the literature [AHO2, WfMC99b]. In

[WfMC99bJ, a differentiation is made between application data and process relevant

data. It is argued that application data may become process relevant if they are used by

the workflow system to determine a state change. In this paper, we adopt the same defi

nitions and interpretations as provided in {WfMC99b]; furthermore, we judiciously high

light the fact that exclusive application data may become process relevant when a failure

occurs. In [AHO2Ï, a bigger variety of process data is featured: analysis data, operational

management data, historical data, etc. It is stated that application data cannot be directÏy

accessed by a workflow system but only indirectly through instance attributes ami appli

cations themselves. Hence, only the way of accessing application data from a WfMS is

discussed.

The infinite completion time assigned as a default value to an atomic step st may be

more precisely predicted using, for instance, the forwardlbackward calculation technique

based on the duration of activities as proposed in [EPG÷03, EPO2]. This would allow

estimating an activity safe point (tc,fe) as a specific point in lime (instead of infinite) even

before reaching this point.

Another interesting application of the presented results arises in the context of process

scherna evolution [RRDO4a], i.e., process schema changes and their propagation to run

ning process instances. One important challenge in this context is to tind correctness cri

teria in order to ensure correct process instance migration after a process schema change.

According to the compliance criterion [CCP+98, RRDO4a] it is forbidden to skip already

running activities, i.e., the respective process instances are considered as being non

compliant. However, if we transfer the concepts of safe interruption of activities to the

142

safe deletion of activities the number of process instances compliant with the changed

process schema can be hcreased.

6.4.3 The Dynamic Move of an Actïvity

This functionality is flot provided by current WtMSs. A workaround solution consists of

inserting at a new position the activity we want to move, and then to delete this activity

from its cunent position. Deleting then inserting the activity may flot be possible be

cause of data flow conflicts (e.g., detection of missing input data). In the context of a

move operation, a relaxation of the consistency verifications applied for the delete

operation should be done.

6.4.4 The Dynamic Modïfication of Activity Attributes

Functionality disctissed in Sections 6.4.1 to 6.4.3 brings structural modifications to

workflow instances. Attribute modifications are another kind of modification applied at

the activity attribute level: the insertion, deletion, setting, and updating of activity attrib

utes. We mainly distinguish between input/output attributes, assignment attributes, and

time attributes (cf. Section 6.3.1). In the following, we address modifications applied in

the context of each of these three types ofattributes.

6.4.4.1 The Dynamic Insertion/Setting/Updating of Input Attributes

It could happen that the definition of a workflow model is flot complete [Sad99]. In this

case, workflow activities could be identified, but only elernentary descriptions would be

given. We use the terms “partial” or “just in time” execution [KBB98] where the defini

tion of the workflow is flot completed until the information becomes available (before it

is required). This information may be used to set or update the value of an already de

fined activity attribute or to define and insert a new attribute for a specific activity flot

reached yet. In a combined negotiation importing process for instance, when a company

begins negotiating with the supp[ier(s), it is stili not necessary to know details regarding

the “Insurance” negotiation activity. These details may corne later and they may trigger

the insertion of new activity attributes such as the “kind of insurance”.

143

In current WfMSs, the workflow modeller chooses where the values for activity instance

attributes are to be obtained. Though most WfMSs fun-lime API provides a function to

“dynamically” set activity attributes during run-time, an attribute value can stiil only be

obtained from a so calied “input container”6 (1) set with a default value, (2) provided

when an activity instance is started or (3) iinked to an output container.

This restriction regarding “when” an input container is set should be relaxed. In ail

cases, since the function allowing to set activity attributes is provided by most APIs, the

functionality aiiowing activity attributes to be seUupdated “anvtirne” at run-time can be

implemented in a specific workflow client related to a specific application.

An advanced issue is however to aliow the insertion of a new attribute to an activity in a

running state. We refer to the dynamism at the activity level rather than at the workflow

level. The deletion of an activity in a running state by preserving its context (Section

6.4.2.1) may remedy the insertion of a new attribute to an activity in a running state. In

deed, the running activity to which a new attribute is to be inserted is deleted by preserv

ing the work already done. A new activity comprising the remaining work from the de

leted activity is inserted. The new attribute will be deflned within this activity before its

insertion.

A motivation behind the insertion of a new attribute to a running activity stems from the

e-negotiation domain. Indeed, sometimes the negotiation rules change during the nego

tiation process. This is known as a “muiti-stage” negotiation. MOAI LiveExchange

[MoaiO4j ami Inspire [IntO4] are two exampies of auction/bargaining systems that sup

port multi-stage negotiations [NBB+03]. In MOAI LiveExchange, trade terms may be

settied many times during negotiation and in Inspire, an agent participating in a negotia

tion may decide to negotiate a new issue that will be added to the afready existing issues.

In both systems, a new termlcondition may appear in the (e-)contract.

In CONSENSUS, to support muiti-stage negotiations, mainly to secure contracts in B2B

negotiations, it should be possible to dynamically insert new attributes to e-negotiation

6 A cornainer is defined as a data element.

144

activities while these activities are afready in a running state. Indeed, the process of

drawing up a contract consists of negotiating a number of terms and conditions. The

(two) parties should agree upon these terms and conditions by negotiating them. In this

context, a new stage of negotiation is entered when a new termlcondition is “dynami

cally” iiitroduced for negotiation. Here is an example of a scenario that can occur in a

goods importing process. A company A selis cars and a company B is considering pur

chasing. A number of issues (e.g., price, warranty) are negotiated between A and B.

While negotiating, a new issue (e.g., cars shipment) may appear of interest for the buy

ing company to negotiate.

6.4.4.2 The Dynamic Deletion of InputlOutput Attributes

The need for the “dynamic deletion of an activity attribute” functionality was motivated

from studying the “Combined Negotiation” case. Indeed, dependent attributes may eas

ily appear in CNs. When modelling the CN workflow, a “carry out deals” task for in

stance usually takes as input attributes such as the “final price” of each item that is

planned to be negotiated within the workflow. Suppose that during run-time, a specific

negotiation task N for a specific item I has to be deleted. Since N produces the “final

price” attribute that is consumed by the “carry out deals” task, N cannot be deleted.

A first possible solution is to remove the consuming task (e.g., the “carry out deals”

task), to insert a new one with the appropriate attributes (i.e., without the input attribute:

“final price” of I), and finally to delete N. Another straightforward solution is to delete

the input attribute ftom the consuming task(s). This removes the “parameter unsupplied”

problem that appears when trying to delete N during the pre-deletion step, i.e., the data

dependency verification step, and N can then be deÏeted.

In the example we have just presented, we experimented the need to delete a specific

activity input attribute and this was necessary for an activity deletion purpose. The se

mantic verification apart, the input attribute deletion operation does flot require consis

tency verifications. At the semantic level, we must ensure for instance that the input at

tributes are flot used by a specific code/program, etc.

145

However, the deletion operation of an activity output attribute should be handled with

caution. It can be comparable to an activity de]etion; the same data dependency verifica

tion should be applied. Note that ii our case studies, we did flot experiment the need to

delete an output attribute. Examples cari be found in case studies stemming from the

medical domain. E.g., a specific activity may no more provide a specified output attrib

ute. The latter should be removed.

6.4.4.3 The Dynamic (Re-)Assignment of Activities to a Participant

This should be done to a valid workflow participant. [KBB98] evokes the late binding of

resources. Verifications regarding inconsistent actor dependencies should be made.

These verifications are already an issue at the design level and should be considered dur

ing run-time. The re-assignment during run-time is alÏowed by most WfMSs. Usually, a

“task reassign permission” should be set on, and the reassignment is possible once the

activity appears in the work-list of a specific user. A relaxation of this functionality ai

Iowing the activity reassignment anytime before its execution is an issue. Most APIs

provide the appropriate function. It is only a matter of properly implementing this func

tionality in a specific workflow client.

A sophisticated issue is related to the modification of the organizational model during

run-time. This requires an on-the-fly verification of the workflow assignments.

6.4.4.4 The Dynamic Setting/Updating 0f Time Attributes

The setting of time attributes during the design phase should afready cail for verifica

tions regarding time inconsistencies. As examples, the maximum time distance between

two activities should flot be exceeded; the minimum time distance should flot have harm

ful effects on subsequent activities. These verifications should be considered again dur

ing run-time.

In current WfMSs, the activity duration can be set/updated during run-time. However,

the updating of the activity starting/fmishing time is stili an issue to be considered. In

deed, the startiiig time and the fmishhig time are defined via conditions. Shice condi

tions, once they are specified during build-time, cannot be modifled anymore, modifying

time during run-time becomes very complicated.

146

The dynamic setting/updating of time attributes has also an effect on the resource man

agement. A resource that has akeady been reserved for a specific activity may become

available for another activity waiting for it.

6.4.5 The Dynamic Management of Work-Iïsts

The reassignment or the deletion of an activity already assigned to a specific work-list

should be complemented by correctly managing the underlying work-lists. Following a

reassignment, the work-item that corresponds to the reassigned activity should 5e re

moyeU from its original work-list and it should appear in the appropriate work-list taking

into account the new assignment (if not nul!). The work-item that corresponds to a de

leted activity should be removed from its work-list. The updating of an activity input

attribute or lime attribute should 5e complemented by a correct updating of the informa

tion provided by the work-lists.

The dynamic management of work-lists shouÏd be done when implementing a specific

workflow client related to a specific application. However, the WfMS API shouM ai

ready provide the fiinctions allowing the implementation of this management.

6.4.6 The Automatic/Manual Modification of Workflow Instances

Dynamic modifications can 5e manualÏy applied to workflow instances (human in the

Ioop). The functionality discussed in Sections 6.4.1 to 6.4.4 should be provided from the

workflow client, e.g., a workflow monitoring and control tool, so that specific users can

be granted the permission to manually bring modifications on workflow instances. On

the other hand, some applications may require automatic modifications. The MTCT ap

plication is such an example. In fact, the MTCT system is a reactive system that reacts to

specific optimization mode! solutions by bringing the appropriate modifications to the

pool of workflow instances.

The automation level of modifications at run-time characterized by the “automatic” and

the “manual” modification is considered as a property for a specific application. This

property can 5e fixed within the template classification (Section 6.3.2).

147

We think that a WfMS should facilitate the integration of a tool, e.g., a rule-processor,

for the application of automatic modifications.

6.5 Conclusion

In this chapter, we have (1) motivated the need to review some of the already existing

workflow concepts and functionality, and (2) discussed original workflow concepts and

functionality to better support complex application characteristics.

Taking into account what current WIMSs provide, specifically ADEPT, a workaround

solution was necessary to deal with most of the identified requirements. Even when a

direct solution was apparently available, that solution had to be reviewed, leading most

of the time to a workaround solution.

At the implementation level, we distinguish between (1) what the API of a specific

WfMS allows to implement, and (2) what a workflow client provided by that WfMS of

fers as functionality. We have asked ourselves the following question: “the challenge

today is it to provide a complete API and to allow the access to ail the features &om the

provided workflow client?” When a workflow-based system is to be implemented for a

specific application, a customized workflow monitoring and control tool is most of the

time implemented. From this perspective, a complete API is indeed sufficient.

Only one of the identified functionalities has been formally and deeply studied: the inter

ruption of an activity execution while preserving its context. Similarly, we intend in fu

ture work to further investigate some of the workaround solutions discussed. Theoretical

foundations shah be elaborated mainly for the warm-up time concept, and for the func

tionality allowing one to dynamically insert a block of activities and to dynamically

move an activity.

Chapter 7 The MTCT System

In the context of the MTCT application studied in Section 4.3, the processing of cus

tomer requests for container transportation is achieved by specific sequences of interde

pendent activities. These sequences need to be created just-in-time, and furtherrnore,

they need to be adapted to deal with unexpected events that may occur. The creation and

the adaptation of activity sequences should be based on an optimized resource manage

ment and activity scheduÏing. Moreover, a number of special workflow concepts and

functionality are required to correctly manage activity sequences.

Taking into account the adaptive workflow framework introduced in Section 5.3, in this

chapter, we device a workflow-oriented system architecture for the processing of cus

tomer requests for container transportation:

• Optimization mode]s are involved to take care of the resource management and

of activity scheduling.

• Specific workflow concepts and functionality are used to dea] with activity se

quence creation and adaptation.

• Finally, the proposed architecture includes a rule processing part to reduce the

time-consuming manual interaction with the system.

In the following, we first describe the transportation system framework that we devel

oped (Section 7.1). Then, the architecture of the MTCT system is presented (Section

7.2). This architecture is based on workflow technology, optimization technology, and

rule engines. Section 7.3 gives examples regarding the planning and the modification of

the processhig of a customer request that illustrates the use and the characteristics of the

devetoped architecture. Section 7.4 reports on the implementation of the MTCT system.

Section 7.5 concludes the chapter by exposing a set of useful new workflow concepts

149

and ftinctionallty derived from studyhg the MTCT application, and from devefoping the

MTCT system.

Li The Transportation System Framework

We introduce an original transportation system framework adapted to the MTCT appli

cation [BBK+02bJ. This framework is conceptuafly divided into two main Ïayers: a

workflow layer and a coordination layer. Refer to Figure 7.1.

Workftow
layer

Data inforinatioit ancÏ Insta,ttiatioizs, chan?e orders
controtflow information -

Logistics -

Cooiïlinatio,z

Figure 7.1. Transportation System Framework

The workflow layer essentially gathers a set of concurrently running workflow instances,

each of them being associated with a specific customer request. Knowing that a work

flow instance is composed of a sequence of activities, and that the state of these activi

ties is known at any time, it is hence possible to determiiie the set of used resources such

as vehicles, containers, and drivers. Since we are dealhig with activities to be achieved

by humans, the dispatching of the appropriate crews at the appropriate time plays an im

portant role. We take advantage of the work-list concept to ensure this task. Crews have

their personal work-list to quickly identify their assigTled activities. It should also be

possible for crews to transmit feedbacks to the coordination layer about the state of their

150

ongoiig activities (e.g., normal termination, abnormal termination due to technical prob

lems).

The coordination layer is responsible for a certain number of tasks that ensure the effi

cient allocation of resources. It is responsible for receiving the new requests, for asking

the workflow layer to instantiate new workflow instances, and for reacting accordingly

to unexpected events by sending modification orders to the workflow layer. In brief, the

coordination layer gathers a set of optimization algorithms that are used for the man

agement ofresources and for the scheduling ofactivities.

Following the occurrence and reception of unexpected events, the coordination layer is

able to notify the workflow layer that the pool of workflow instances needs to be modi

lied. These notifications are of four types: instantiation notifications, suspension and

postpone notifications, attribute updating notifications, and structural modification noti

fications. Note that unexpected events do flot act directly on the pool of workflow in

stances. Instead, they trigger resource management algorithms, and resuits generated by

these algorithms are translated into appropriate changes of the pool. These resuits lead to

various actions such as the (re-)scheduling of activities, and the (re-)allocation of re

sources. Refer to Figure 7.2.

(Re-)scheduling,
(re-)allocation

orders

I nstantiate/change

Figure 7.2. Different Steps from the Detection of an Event tili the InstantiationlChange
of Workflow Instances

The instantiation is usually followed by the setting of activities’ attributes. In fact, the

arrivai of a new customer request instantiates a basic workflow model, and attributes re

lated to the activities are determined based on the resuits provided by the triggered re

source management algorithms. The information reÏated to a customer request, e.g.,

151

pickup/delivery timeRocation, is given as input to these algorithms. It is possible that the

resulting instance is flot fully predefined; typicaliy this occurs when some activities’ at

tributes are flot set from the beginning because of their unavailability. We propose to

just-in-time set these attributes as soon as the needed values become available. It bas to

be ensured that the necessary values are available when they are required.

The transportation system framework presented in this section calis for an (automatic)

interaction between the two defined layers. The development of a system based on this

framework may be considered as an enterprise application integration (EAI) problem.

The three main issues that should be addressed are the workflow management, the re

source management, and the interaction management. The first two kinds of manage

ment are associated with the workflow layer and the coordination layer, respectively.

The interaction management takes care of the exchanges between both layers. An auto

matic interaction may for instance be based on a rule processing approach.

7.2 Architecture of the MTCT System

Taking into account the framework presented in Section 7.1, we propose in this section a

workflow-oriented system architecture applied for the MTCT application (Figure 7.3).

This system — that we cail the MTCT system — enables the user, i.e., system administra

tor, to efficiently track and monitor the progress of multiple customer requests being

processed. Moreover, the system allows crew members, i.e., drivers, to identify at the

right time their assigned activities and to transmit to the system administrator the state of

each activity from its selection to its completion.

In the following, we first describe the different components of the MTCT system (Sec

tion 7.2.1). Then, an overview ofits underlying management mechanisms is given (Sec

tion 7.2.2). Finally, a possible extension ofthe system is depicted (Section 7.2.3).

7.2.1 System Components

Two phases are distinguished in this system: the build-time phase and the run-time

phase. The build-time phase is executed less frequently than the run-time phase. The end

152

of the build-time phase defines the starting point for a successful run-time phase execu

tion. The latter constitutes the daily working environment.

> Write to repository (database)

Read from repository (database)

Module/engfrie “A” renders service
to module/engine “B”

Interaction with a module

Figure 7.3. Architecture of the MTCT System

72.1.J Buïld-time Components

During build-time, a set of activity templates is defined usirig the Workflow Definition

Tool. The latter is also used to design basic workflow models that capture the sequenc

Database

D Engine

D Module

Input from an external system

Output towards an extemal system

o
©

User

Human resource
(e.g., driver)

153

irig of the most lilcely required activities for the processing of a customer request. Activ

ity templates and basic workflow models are stored in the Workflow Repository as

Workflow and Activity Template Defmitions.

The Resource Definition Toot allows the defmition of resources that make possible the

accomplishment of the activities. The resources are stored in the Workflow Repository

as Resource Defmitions. The planned (fixed) availability of the human resources is de

flned via workflows usiiig the Workflow Definition Tool. This will be detaïled in Sec

tion 7.2.2.2.

Optimization models (OMs) are described with the Optimization Model Definition Toot.

These models are used to (re-)plan the processing of customer requests. Refer to Section

7.2.2.2 for details.

Modification rules (MRs) are usually defined using a raie editor (flot shown in Figure

7.3 for simplicity purpose). They go into the MR Repository. Modification rules ami rule

engines are discussed in Section 7.2.2.3.

The Transportation Network Repositorv holds information about particular locations or

depots of the transportation network as well as the durations to move between two loca

tions. This information, once it is specified, is rarely modifled.

7.2.1.2 Run-time Components

At run-time, when a new event appears, the system administrator of the MTCT system

uses the Event Definition TooÏ to define this event, e.g., a new request arrivai, as weil as

its related data. This triggers the selection of a specific 0M. The Solution Provider mod

ule takes care of this selection. As long as no solution is found, a number of OMs may

be solved. Specialized Optimization Algorithms are called by the Opriinization Engine to

solve a selected 0M. Three data sources are used to initialize the 0M:

(1) The Event Definition Tool provides event information.

(2) The Resource Extraction Client provides data related to the cunent reservation

or unavailability of resources reflected by the state of our workflow instances.

154

(3) The Transportation Network Repository afready as defmed for the build-time

phase.

When an optimized solution is generated, it is interpreted and translated into a set of

modifications that are applied on the pool of currently running instances. The Ride Cli

ent is responsible of automatically communicating these modifications to the Workflow

Engine. Modifying the pool of workflow instances consists m the creation of a new

workflow instance, or in the structural or attribute modification of an existing workflow

instance. The interpretation of solution implications on this pool is the task of the RuÏe

Engine and the MR Repository. The system administrator can also make manual modifi

cations. Indeed, the optimized solution can be displayed to the system administrator via

the Solution Visucilization Toot, so that she can take decisions regarding the modifica

tion(s) to bring to the pool of instances. Manual modifications are communicated to the

Workflow Engine via the Workflow Monitoring and Control Tool.

The Workjlow Engine is responsible of applying modifications on the pool of workflow

instances. It also executes the instances by enforcing the sequencing of the activities and

by dispatching work at the appropriate time to the appropriate human resource. Work

lists, which are part of the Workflow Monitoring and Control Tool, are used to show

which activity needs to be carried out. Each human resource has her personal work-list

to quickly identify her assigned activities.

7.2.2 Underlying Management Mechanisms

The MTCT system architecture is based on workflow technology, optimization technol

ogy and rule engines. Workflow management and resource management constitute the

essential part of the system. They can be complemented by a rule management part, so

that the modifications brought to the pool of workfiow instances are automated.

7.2.2.1 Workflow Management

The architecture of the MTCT system is based on WflvIS modules. These modules pro-

vide advanced functionality that go far beyond the basic workflow definition, workflow

execution, and workflow monitoring. Indeed, they allow for:

155

• Defining transportation resources (drivers, vehicles, containers, etc.) and their

respective initial location and availability.

• Defining specific templates for transportation activities: “attach container to ve

bide”, “move vehicle to location”, “load contaiier”, etc.

• Tracking the state of the current workftow instances. This reflects the current

reservation of the different resources.

• (Automatically) Setting specific time attributes at run-time: the minimum and

maximum duration of an activity, its warm-up time, and its earliest and latest

starting time.

• (Automatically) Adjusting activity attributes at run-time:

o Rushing or postponing the execution time of a specific activity.

o Changing the driver responsible of an activity.

o Changing the location(s), the vehicle or the container assigned to an

activity.

• (Automatically) Bringing structural modifications to workflow instances:

o Adding a transfer to an already planned customer request processing.

o Removing or interrupting a specific activity.

• Once the execution of a workflow instance is completed, (automatically) re

cording this instance as historical data (i.e., audit). Workflows are hence seen as

providing a way to represent a blueprint of activities so that anatysis becomes

possible for the detection and for the prevention of bottlenecks at the operational

level.

7.2.2.2 Resource Management

The resource management is another main part of the MTCT system. Two aspects re

lated to resource management are discussed: the static aspect and the dynamic aspect.

The static aspect refers to the way the resources are captured within the system: thefr

representation, and the management of their availability. The dynamic aspect refers to

the optimized resource scheduling and allocation.

156

7.2.2.2.7 Static Resource Management

The diagram of Figure 7.4 describes the entities that are used for capturing the resource

structure and the relations between them. A resource type (e.g., vehicle) gathers a set of

resources (e.g., ViOl, V202). Untike material resources, human resources (i.e., drivers)

are flot continuously available but only within their own shift. The planned unavailabil

ity (i.e., the complementary of the availabiity or shift) of the different drivers over a pe

riod of time is captured by a workflow with parallel branches. Each branch of the work

flow corresponds to a specific driver and each activity of the branch defines a period of

unavailability for this driver. Refer to Figure 7.5.

Resources can be assigned to activity instances. The tables corresponding to the dashed

part of the entity-relation diagram (Figure 7.4) are frequently updated. At a specific time,

the reservation of the different resources is deduced from the set of activity instances

where the state is different from “completed”, “deleted” or “skipped” (cf. Section 2.1).

—

— ;* Activity instance I

Empy

McCarj______ McCain

EmpyJ______

noUe aiIaj unavaiia.r node End

av

Figure 7.5. Exampte in ADEPT of a Planned Unavailabillty Workflow Instance for the
Two Drivers McCain and Watson

7.2.2.2.2 Dynamic Resource Management

The need for an optimized management of resources when (re-)plannfrig activities in the

container transportation domain is weIl recognized [TCD93J and can be answered by

belongs to s assigned to

Figure 7.4. Entity-Relation Diagram for the Resource Management in the MTCT System

157

defining spccific optimization models. These can be defined as a data-independent

abstraction of an optimization problem in which the aim is to find the best of ail possible

solutions. Formally, the goal is to find a solution h the feasible region, i.e., the set of ail

possible solutions, which bas the minimum or maximum value of the objective function

[AlgOOl. In our context, we use OMs to plan the processing of customer requests and to

re-plan this processing when necessary. These OMs should assign resources to activities

while satisfying the constraints of a customer request and by taking iifto account the

transportation network infonnation. Our resource allocation problem is modeled as a

constraint satisfaction problem that we resolve using constraint programming [Tsa93].

When modeling our problem, we leveraged the work reported in [Tri98, WHF+95].

Suitabie strategies to answer a customer request according to the different path scenarios

presented in Section 4.3.1 were developed. An example of a strategy consists of mini

mizing the duration of a request processing, i.e., minimizing the reservation duration of a

set of resources. Taking into account this strategy, the followhig defines a model that

picks an available resource and schedules the different activities to answer a customer

request according to the “simple scenario”, i.e., the path P-O-D-P:

Give,z
- R: a set of resources ofa specific type
— S = {<r, st, ft> i=1 m; j=1, (st, ft) is a reservation block (start

ing/finishing lime) for r1 E R}, at a specific point in time S reflects the current reser
vation ofr1E R.

- Custoiner reqt iest iifonnation: origin location O, destination location D, pick-up time
window (putmjn, put), and delivery time window (dtmin, dtnux)

- Transportation network information: duration(Move(P-O)), duration(Move(O-D)),
duration(Move(D-P)) where P corresponds to the depot

- Durations of specflc operations: duration(Load), duration(Unload)

Objective fiinction
Z = duration(Waiting_time(O)) + cÏuration(Waiting_tiine(D)) + e
c is a constant: c = duration(Move(P-O)) + duration(Load) + duration(Move(O-D)) +

duration(Unioad) + duration(Move(D-P))
Z corresponds to the duration of the request processing.

Optimization

Minimize Z
Subject to the foltowing constraints (where t corresponds to the leaving time at P):

(Cl) t + duration(Pvlove(P-O)) + duration(Waiting_time(O)) put,,,,1

158

(C2) t + duration(Move(P-O)) + dttration(Waiting_time(O)) +

duration(Load) put,,1,
(C3) t + dtiration(Move(P-O)) + duration(Waiting_time(O)) +

cluration(Load) + duration(Move(O-D)) +

duration(V/aitiizg_tiine(D))
(C4) t + duration(Move(F-O)) + duration(Waiting_time(O)) +

dttration(Load) + duration(Move(O-D)) +

duration(Waiting_time(D)) + ditration(UnÏoad) dt,,,
(C5) V <i; stj, ftj> S where r R, t >ftj y + Z < stj

When selecting a specific 0M, the Solution Provider module provides to the Optimiza

tion Engine the necessary data to solve this model (i.e., the “given statements”). Once a

solution is returned from the Optimization Engine to the Solution Provider, the latter

passes it over to the Rule Processing part of the system.

7.2.2.3 Rule Management

In the architecture of the MTCT system, we use rule engines to represent and exploit

modification rules. A rule such as: “If a itew request arrives, and f a solution is fotind

wÏzen a specfic optimization model is sotved, and f a specfic basic workflow model lias

aÏrecidy been defined, and if a workflow instance manager exists, then a new workfiow

instance reÏated ta the newÏv arrived request is instantiated from the basic workflow

modeÏ” can be nicely coded as a declarative statement [MBOOI. The rules can be coded

as standalone atomic units, separate from and independent of the rest of the application

logic. This makes the rules easier to develop and maintain. In the following, we describe

the design and the implementation of modification rules.

7.223.7 Designing Modification Rules

At the design level, we use UML state diagrams to model modification rules and to spec

ify the different states as well as the transitions between these states. One state diagram

gathers rules logically interrelated. As an example, there exists a set of rules that should

be applied so that a created workflow instance becomes ready to execute. The

“Event[Condition]/Action” paradigm is applied to represent modification rules; it allows

to shift ftom one state to another state. An example of such state diagram is depicted in

Figure 7.6. For simplicity purpose, an English-like syntax bas been used to defme

“Event[Condition]/Action” statements. This example bas been developed in a standalone

159

fashion, flot considering inputs from optimization models previously described. It pre

sents the different states in which a workflow instance is involved from the adjustment

of its structure tiil the assignment of its attributes. This state diagram provides a possibil

ity to modify a workflow instance just after its creation taking into account the state of

the different resources:

(1) The creation of a workfiow instance is triggered by the arrivai of a customer

request; the condition “request accepted” should hold.

(2) The location of the different resources is verified, and the structure of the

workflow instance is adjusted consequently. It is verified for instance if an

empty container, a vehicle. and a driver are already available at the request’s

origin location at pick-up time. In this case, the two activities “attach container

to vehicie” and “move vehicle to origin location” are deleted.

(3) The possibility to transfer a container ftom one location to another before de

iivering it to the final destination is verified, and the initial P-O-D-P path is

compieted with intermediate locations. Basically, “move vehicle to location”

activities are inserted between the activity “Ioad container at origin” and the

activity “move vehicie to destination”. The number of such inserted activities

depends on the number of transfers. In this example, a maximum of three

transfers is modeied. The insertion of more than one “move vehicle to loca

tion” activity corresponds to the insertion of a sub-workfiow.

(4) The change of vehicle on an intermediate location is verified, and a “detach

container from vehicie” activity and an “attach container to vehicle” activity

are inserted between two “move vehicle to location” activities. This is done by

inserting a “detach-attach” sub-workflow. In parallei, activity’s attributes are

assigned as soon as they become avaiiable.

(5) The end state is reached once ah activities’ attributes are assigned.

160

Arrivai ofa customer request
-- [Request acceptedj

/Creation ofa workflow instance

[Adjusting_workflow_instancj

[Empty container and vehicie ot a’vailabte at the same ocation]
/insert activity “Move vehicle o location o ernpty cont mer” between activity “Start” and activity
“Attach container 10 vehicle”

[Empty container an lable at the ame location]

coitainer and vehicle exist at origin location
up timej
activities “Attach container to vehicle” and
ehicle to origin location”

[Completing path

[No intermediate locationr

[One intermediate b
/insert activity “Mov termediate I cation” be
tween “Load contain e vehicle to estination”

maie intermediate locationsi
ub-workflow “n-transit” between “Load
r” and “Move vehicle to destination”

j__>t
-

[Destination locat’in of activity “Move veh
its successor activity “Move vehicle to loca
used in B]
/lnsert sub-workflow “Detach_attach” betv en A and B

[For every activity, its state is “Deleted” or ail its

C) attributes are

Figure 7.6. Workflow Instance Creation and Adaptation Following a Request Arrivai —

vehicigiva

[Empt
at pick
/Deletc
“Move

ation]
vehicie to i

r”and”Mo

[Two o
/insert
contain

Assigning attributes

Ativity’ s attribute becomes avaiiable
/Assignment of activity’s attribute

de to location” (A) corresponds to the origin location of
ion” (B) AND vehicle used in A is different from vehicie

State Diagram

161

7.2.2.3.2 Implementing Modification Rules

At the implementation level, we use rule engines to write our modification rules. In fact,

a rule engine usually iiicludes a special language for writÏng rules. It is defmed as a

software component designed to evatuate and execute rules [MBOOj. Rule engines have

afready been applied for dynamic modification of workflows [MR99J. This approach

intends (1) to detect semantic exceptions, (2) to derive which instances and control flow

areas are affected, and (3) to automatically adjust the affected areas. In the MTCT sys

tem, we only experimented with the automatic workflow instantiation and the automatic

attributes setting; however, the automatic structural modification of instances can take

advantage ofthe approach proposed hi [MR99].

7.2.3 Interface of the MTCT System to External Systems

The MTCT system provides an input point from an external system through the Event

Definition Tool, and an output point towards an external system through the Workflow

Engine. A simulation system, such as ARENA [KSSO2], is an example of an extemal

system that can be used to evaluate the performance of the MTCT system.

On the one hand. the different manual activities of concurrently running workflow in

stances can be simulated. Particularly, resources are represented using specific icons

(Figure 7.7), and the different states of the activities are simulated. As an example, icons

that correspond to resources assigned to activities in a “running” state are animated. Ac

tivities’ states are communicated to the simulation system via the Workflow Engine.

On the other hand, once an activity is completed at the simulation side, this information

is communicated to the MTCT system via the Event Definition Tool. The activity’s state

can now tum to “completed”. Unexpected events can also be simulated and communi

cated to the MTCT system. For histance, a traffic problem can be simulated as discon

thiuhig a vehicle in movement.

We identifled two main challenges in integrating a simulation system with the MTCT

system. First, the simulation system needs to be synchroriized with the MTCT system. In

systems such as ARENA, an extension called ARENA Real Time provides this feature

of synchronization. Second, the simulation in the same simulation environment of many

162

activities executed h parallel is a must. This is possible for instance if many flowcharts

at the simulation side can be launched in parallel.

7.3 Planning and Modifying the Processing of

Customer Requests - Examples

Resottrces

Locations
.....
Vehicles

Containers

Drivers

We illustrate here the different steps for satisfying a customer request within the MTCT

system. The example already discussed in Section 4.3.2.1 is considered again here.

When a request is received, the system administrator uses a “request information” form

(Figure 7.8) provided by the Event Definition Tool to specify the related information.

This information, the availability of the resources and the transportation network infor

mation are used to generate a solution.

If a solution is found (as in our case), the system administrator uses the Workflow Moni

toring and Control Tool to instantiate a basic workflow model and to adjust this model

taking into account the solution shown in Figure 7.8, i.e., to delete the “wait at O” activ

ity since the solution does flot show a waiting time at O. If no solution is found, the cus

tomer request in rejected.

Figure 7.7. A Transportation Network Representation: Resources Represented as Icons
in a Simulation Environment

163

Trr
.

Fcitit Ir.f€trmtImi

crIqIr1 (pftkup IttIJr) Qrsebec

DtIntkrI (dIh,rn-V Ictctktn) [1rintre E

ErIIet I.ckup TIm 15110103 08.30 EIIiet li 5/10/0313.30

LtI ck...g, Tim 15/10/03 10 30 LIet DIh,rn3,Tinrn tis/i 0103 15.00 j

L__.!t____ I
SolUtio,1 toor.d...

Container oi ii Duration in minute
Driver: Vatsnn 1 V202

Attach cor,tiner (Parking) attirne Wod Oct 15 08.1 0.00 pom 2003 5
Parking - leavino tirne. VVed Oct 1 5 08-1 5:00 ED 2003 -ccl 05

Origir, - arrivai tirne. VVed Oct 1 5 1 0:0000 Dt 2003
LoaU container (Origin) -c30-c-c
Origin - leasing tirne V’/eU Oct 1 5 1 0:30 00 EDI 2003 -c-cl 65

Destination - arnsal timo. VVect Oct 15 13-30.00 PD- 2003
tjnioad container (Destination). -c3Q>-
Destination - beaving tirne. VVod Oct 15 1 4.00.00 om 2003 75

Parking - arrivai Orne: VVed Oct 15 15 15 00 EDT 2003

VVaiting tirne bofore deibven,. 15 minutes

Figure 7.8. “Request Information” Form

Two types of edges are used in our workflow model: the control edges and the time

edges. The used WfMS prototype ADEPT does flot allow the specification of a fix cal

endar date for the activities’ starting time. We use instead the “time edge” concept and

define a minimum and a maximum distance between the “start” activity (S) and each of

the other activities (A). The earhest and the latest starting time of (A) are specified tak

ing into account the real starting time of (S). Once the execution of (S) is completed, its

real starting time ST becomes known. The minimum distance and the maximum dis

tance of the “time edge” between (S) and (A) are respectively equal to ESTA-STs and

LSTA-STS.

The system administrator launches (S) to specify the five following output attributes (cf.

Figure 7.8): the customer request origin location (Quebec), the customer request destina

tion location (Montreal), the central depot of our transportation network, and the con

tainer and vehicle IDs shown in the solution (Clii and V202). These attributes are

given as input to the different activities of the workflow instance. The other elements of

164

the solution (e.g., driver, starting time/duration of the activities) are used to set the as

signment attribute and the time attributes for each activity.

The set of steps just accomplished by the system administrator: workflow instantiation,

activity deletion, execution of (S) and attributes setting, can be automated so that time

consuming manual interactions with the system are reduced. For that reason, we need

modification rules such as the one shown in Figure 7.9 in the ILOG JRules [JRulesO4l

notation. Rules have a “WHEN part” which specifles the conditions that must be met in

order for the “THEN part” to be executed. The rule iii Figure 7.9 applies to a workflow

instantiation. Four class instances are invoÏved in this rule: Requestlnformation and Op
timisationModel are classes from our implemented application; ProcessTemplate and

ProcesslnstanceManager are classes provided by the ADEPT API.

*]Rues Buder - Automa&ModIfiatIans =JPJii
Fe Edi(ew Proect FHese Debug Abn

Dc ax]k r rnrrn j ,

— —__ -

X

— llInIrty

detault

WHEN
there sa Requestinformation called Lri
the,e s s OptirnisationModel called nm

sucS bal 0M_ID =

and SnlulionFound bue
there isa Processjemplale callnd 7pl

Luth that PT_NarnecompareToçSrmple) = O
there s a Processlnstancet.lanaqer called ?pim

THEN
applr 7pim

sa that asseri (createProcesslnstanceçapl Lrr Requesl_ID STANDARD. Administratnf))
I

bot! nriCIttatIOII
--

ta new requesl srrraeu tveiS aIl Se rblated intormation),
an ifS Solution is found when a specihc oplimrsation model (i.e., OptimIsalion Model Pi) iL solved,
and la basic process lemplate bas already been defined.

-

5fb ta process instance manager exints,
then a new prncess instance relatnd tu Se nnwly arrieed request is instanliatnd tram the basic process templale)itrs
also asserted tu Ihe content).

I
tgatesets tao

Messages

Figure 7.9. A Modification Rule of the Pool ofWorkflow Instances

Another interestiiig exampte of a modification rule addresses the handiing of a road traf

fic problem. Suppose that during the execution of a “move vehicte to destination” activ

ity, a road traffic problem occurs. To cope with this problem, a new transportation solu

tion that consists of changing the already planned route leading to the destination loca

tion may be proposed. The new solution includes a detour via another location. How

X.

kt tOit. linon

Instantiation

tJ it
nt) At*omatkMotiihcations

) tnttriSeft

Anributesbetting

it

Instanhiatian

165

ever, this solution can be considered only if the activity bas been safely interrupted. This

example bas already been discussed in the context of the studied “activity execution in

tenuption” ftmctionality (cf. Section 6.4.2.1.2, Figure 6.15). The following rule captures

the just exposed reasoning:

If a road traffic probtem occurs (with ail
the retftted lnfoi7nation)

and f the “move vehicte” activity has been
safety interrupted

and if a solution is found when a specfic
optim ization inodet (i.e., change_route
optimization model) is soÏved

tÏien two “inove vehicte” activities are
inserted to the workftow instance related
to the request in question

7.4 Implementation of the MTCT System

The implementation of the MTCT system includes a WIMS (ADEPT with an APi exten

sion), an optimization system, and a ru]e processing system.

We use the ADEPT prototype to cover the workflow management part of the system.

Besides the selection criteria already stated in Section 5.2.1, ADEPT has been adopted

because it supports in a certain way the “activÏty template” concept, some temporal as

pects, except the WUT (introduced in Chapter 4, Table 4.1, and discussed in Chapter 6,

Section 6.3.3.3), and two structural changes: the insertion and the deletion of an activity.

A Mediator component that extends the existing ADEPT API was implemented. This

component provides functions for the dynamic setting/updating of input attributes, as

signment attributes and time attributes, and for the dynamic management of work-lists.

Figure 7.10 shows the WfRM-compliant ADEPT structure with the added Mediator

component.

166

tn(erface 1

(Workflow API sitU laterchange formats)

Interface2 Interface 3

Mrd,ator ‘ «7

II

Figure 7.10. The Added liediator Component within the ADEPT Structure

We use OPL Studio from ILOG [OPLO4] to define OMs that are solved using the

CPLEX optimization algorithms. Since our implementation is based on ADEPT which is

implemented in Java and which uses an Oracle relationai database, the advantage of

OPL is twofold: (1) We can access its C++ API from Java code, relying upon the Java

Native Interface (JNI). So, once a model is designed, compiÏed and tested in OPL Stu

dio, it can be easily solved from a Java application by interfacing with OPL. (2) We can

estabiish a connection to a database and initialize the model by reading the appropriate

relational tables. Having this in mmd, we implemented the ADEPT Resource Extraction

Client and the Solution Provider in Java.

We have integrated ILOG IRules into our MTCT system to cover the rule management

part of the system. JRules is a rule engine that combines ruie-based techniques with ob

ject-oriented programming. Its advantage is that it can be easily accessed from a Java

application. Hence, the Rule Client lias been implemented in Java. Basically, a context is

defined in this client. It serves as an interface between the Java application and the

ILOG JRules engine. It comprises two containers: (1) a working nienzory which is the

place where ILOG JRules stores ail the objects with which it is currently working, e.g.,

the workflow models and the workflow instances; and (2) an agenda which is the place

that stores rule instances that are ready to be flred. Note, modification rules are designed,

compiled and tested within ILOG JRules Builder before they are given as input to the

Rule Client.

In Figure 7.11, we present a screenshot of the MTCT system. The main window in (a)

shows the Workflow Monitoring and Control Tool. It provides functionality the system

167

administrator can use to modify the pool of the workflow instances. The first two win

dows (top right) are monitoring windows and show running workflow instances: a

pianned unavailabiity workflow instance, and one of the customer request processing

instances that is going on. The three windows at the bottom right show the current reser

vation of the different resources. This information is automaticatly extracted and used by

the Solution Provider component; however, the system administrator is also abie to visu

alize it at any time. The last window here (bottom ieft) shows one of the possible win

dows the system administrator can access to make manual modifications to the pool of

instances — the “Activity (re-)assignment” in this case. In fact, each time she chooses one

of the six possible operation options, the corresponding window is opened. The two

windows in (b) show the work-Iists of two specific drivers. Ail necessary information is

available for the execution of an activity related to a request processing instance. As we

can see, activities related to a planned unavailability workflow instance are also commu

nicated to drivers via their work-tists.

As a final note in thïs section, the performance of the system shah be briefly discussed.

No controlled experiments have been done; yet some qualitative information can be

given. Indeed, a performance evaluation of the system may be eiaborated in terms of an

swering questions such as “how much time does it take to generate a solution using

OMs?” and “how rnuch time does it take to modify the pool of instances (e.g., to instan

tiate a new workflow instance, to update/adapt afready plannedlinstantiated ones)?” The

time to adapt a workflow instance may be defined as a function of its complexity or of

the compiexity of the apphied modification. Alternativeiy, a cost model can be consid

ered to estimate the cost time (or resources) to introduce and enact basic adaptations.

Based on our cunent prototype implementation, we encountered a performance problem

that is mainly related to the continuous access to the database. In fact, some of the

ADEPT API functions that are useful in our context are not implemented yet. Conse

quently, we sometimes had to manipulate the ADEPT database directly, especially when

implementing the Mediator component. The performance of the system would be con

siderably enhanced if the functions of this component were inherently provided by the

WfMS (e.g., ADEPT).

EE,?
IV.11001111

.PJ_Ça*0nroe FhlT1rneJ0,iaj5_ _0eeline0pir_
Watson 2003 1015103000 20031015131500 Ounbnl 800,601
walson ru
,Walson ‘-

813mo, Cime - Finishing 11mo - 053m Oestinaliofl
V202 2003 1015103000 2003-1015131500 0,1006, UonhIoal

M,C,1ln . .
- 11

Walson
V202 ContIner 614188g T,me - FIflIShIog TIme 0*1010 OOnhnatIOfl

,Walson 0111 2003-10-15 103000 200310-15131500 Su060c Moniroal

vo 7003-10-15100000 2003 10-15 103000 f10000,

CIII 2003-10-15133000 2003-10-15140000 Moolloal
CIII 2003-10-15131500 3003*0-15133000
0111 2003-10-16140000 2003-10-15161500 MonIroal Drummondv,Iin -

CIII 20031015001500 2003-10-15100000 DIummondoilo Cuoboc

7.5 Conclusion

4’ * ——_,_._11L»•.

AdM

A01M0(1..Jee.181

801M18818e tkiê

16$

(a)

o.’

ReWvMkInMreSfl4flS

-o»
I. 7086 5*0*6 004* —

karC00006vo*0o *0 fOSi Lt00

ai !i’i

Prn808 MTCT_R —

*68041, UTCTWd81

MCCOIO.*.Mlson

Weisml.

CrewnmmbeO.frW Muller.Walsoo

04*500.006

(b)
-

jj
*480*4* LST - LFT 00gb 088040*81 CentaIne. VehkIe 8101050W StOte

UTCTUnaoaIIabIn 7003 *0*418 0000 2003*016000000 MOCT U RUNNINO

f.arrnnrnras’tc.c. i0Ixj
.._...&tMIY .j CSr_ CF] - 0112m OnsImn018n Conta,noo .008*0*0 WorWow mate

1MTCT IJnaOauabto 200310 15100000 7003.10 t 7050000 MDCC I t 0CIV0TE0 Sied
MTCTMOVOVOhICIS (0 01*2*0 Carillon 2003-10-15 081500 2003-10-l 5100000 Oummondgble Qu0600 0111 V202 MTCT_Rt AUflOATtO

Figure 7.11. Screenshot of the MTCT System Version 0.1. (a) The Environment of the
System Administrator, (b) The Environment of the Drivers

The experience and insights acquired with the realization of the MTCT system reach be

yond this system in at least two ways:

First, many of the characteristics identified in the MTCT application can be identified as

wefl hi other applications. Hence, we may anticipate that the architecture described in

this chapter can be adapted to other transportation applications. Local express-mail ser

vices and dial-a-ride services are examples of applications where the planning of activi

ties can be solved as a Pick-up and De[ivery Problem. Moreover, production systems in

which assembty tines are hwolved could take advantage of this architecture. Indeed, in

such systems, the management of limited shared resources and the management of proc

esses are interrelated. On the one hand, the availability of resources may influence the

activities scheduling within a process. On the other hand, planned processes reflect the

reservation of resources.

169

Second, the complex MTCT application appeared to be well chosen because ït allowed

us to identify an interesting set ofnew requirements for enhanced workfiow technology.

The ADEPT prototype WtMS used supports some of the investigated concepts and dy

namic modifications required at the workflow instance level. Its flexibility helped in de

ve1ophg the MTCT system, yet its API had to be enriched with useful functionality, and

workaround solutions were required to properly cope with the definition of a workflow

modet and with the (dynamic) management of histances. However, the implementation

of the different system components would be considerably simplified and, as stated at

the end of Section 7.4, the performance of the system would be substantially enhanced if

these workflow concepts and fiinctionafity were inherently provided by the WIMS (e.g.,

ADEPT).

Chapter 8 Extension of the Specïfïcation of the

Workflow Reference Model

Workflow-based systems usuatly require the implementation of specific workflow client

applications. Examples are the Workflow Monitoring and Control Tool implemented in

the context of both the CONSENSUS and the MTCT systems, as well as the Rule Client

and the Resource Extraction Client within the MTCT system. Moreover, applications

implemented as workflow-based systems require specific workflow concepts to accom

modate specific needs. Examples include the activity template concept introducùig a

standard way for defining activities in the context of one application, and the warm-up

time concept allowing humans to be informed at the right moment about tipcoming ac

tivities in the process. A prereqtiisite to let required functionality be correctly impie

mented within workflow client appLications is to provide an appropriate workflow appli

cation programming interface (WAPI). This API should contain ail the necessary func

tions ailowing one to handle the workflow concepts and functionaiity required by the

studied application.

In Chapter 6, we built up a list of such concepts and functionaiity. This list was moti

vated by the study of two compiex applications. To precisely define the corresponding

functions, we reiy on an existing workflow API nameiy the established WfRIvI

{WIMC95J of the WfMC {WfMCO4I and extend it for our purposes.

In the foliowing, a brief review of the WtRM in its current state is given (Section 8.1).

The methodology used for the extension of the model and the extension itseif are then

presented and discussed in Section 8.2. The impiementation reiated to the conceptual

extension is presented in Section 8.3. This implementation enhances the ftrnctionality of

the afready existing WfMS ADEPT. Section 8.4 discusses and concludes the chapter.

171

Details regarding the extension of the W&M conceptual specification are given in Ap

pendix A. The extended specification is presented using the WfMC-description ap

proach. This approach consists of definhig the operations under their reÏated interfaces.

In addition, we provide three levels of details in Appendix A: a compressed summary, a

detaited summary, and a detailed description of the extension. The detailed description

groups the different operations under the functionality they allow. A UML specification

of interfaces may be given instead. We opted, however, for the WIMC-description ap

proach because we want to address the workflow community in the first place; a UML

description should be added eventually for other audiences.

8.7 Review of the Workflow Reference Model

The WfRM consists of a generic description of the structure of a WfMS, thus enablhig

individual specifications to be developed within its context. At the highest leveZ, ail

WfMSs may be characterized as providing support in three functional areas [WflVIC95I:

(1) the build-time functions, concerned with defining and modeling the workflow proc

ess and its activities; (2) the run-time control functions, concemed with managing the

workflow processes in an operational environment and with sequencing the activities to

be handled as part of each process; and (3) the run-time interactions with human users

and IT applications for processing the various activity steps. At a lower leveZ, five main

components are identified within the architecture of the WfRM [WfMC95]: (1) Process

Definition Tools, (2) Workflow Client Applications, (3) Invoked Applications, (4) Other

Workfiow Enactment Services, and (5) Administration and Monitoring Tools. We intro

duced these components in Chapter 2. They are related to a Workftow Enactment Ser

vice, which ensures that the right activities are carried out in the right order and by the

right people or applications. This service comprises at least one engine (the core of a

WfMS, called the “workflow engine”). for the purpose of our work, we focus on the

first three components:

Process Definition Tools — They gather mainly the build-time functions con

cerned with modeling the workflow process and its constituent activities.

172

• Workftow Client Applications — They gather the run-time functions concerned

with interacting with users and IT applications for completing the various activi

ties. Work-lists that identify the work-items to be carried out by a specific user

form part of this component.

• Invoked Applications — This component is responsible for the launching of

applications associated with specific tasks.

While these three components address the main features we are concemed with during

the build-time phase and the run-time phase, the two other components, that is, the

“Other Workflow Enactment Services” and the “Administration and Monitoring Tools”

components, deal with supplementary workflow features such as distributed workflows

and workflows measurement and analysis.

Ten groups of operations (i.e., API calis) support the interfaces that exist between each

of the three interesting components and the Workflow Enactment Service (Table 8.1;

groups (Gi) to (GlO)) [WfMC98I. The Workflow Enactment Service should flot be con

fused with the fourth component of the WfRM (Other Workfiow Enactment Services).

As explained in Chapter 2, Section 2.4.1.1, the Workflow Enactment Service constitutes

the core of a WfMS. It comprises at least one workflow engine and it provides the build

time and the run-time environments for the creation, management and execution of

workflows.

Group (Gi) provïdes two functions that allow a specific component to connect to and to

disconnect from the workflow engine for a series of interactions. It is obvious that this

group of operations appears in each of the three component interfaces.

Groups (G2), (G3) and (G4) are exclusively assigned to Interface I and gather a set of

functions that deals with the definition of workflow models. Group (G2) supports the

creation and the modification of a workflow process model, whereas group (G3) in

cludes creatmg and deleting entities, and group (G4) allows for getting and setting the

attributes of these entities. An entity is defmed as a building block for a workflow defini

tion [WtMC99a]. An activity, a transition and a participant specification are examples of

entities. Note that an entity is aiways scoped by another entity.

173

Table 8.1. Groups ofOperations Distributed within Interfaces 1, 2 and 3 ofthe WfRM

o
o
H
no —
= 1)

n n

1.)
u
o

n
O

u

.- u
— c

ç-J

o

I-.
O

no

V

1)

o
n

Groups (G5) to (GlO) are assigned to Interfaces 2 and 3. Group (G5) allows the creation,

the starting and the termination of a specific process instance, as welI as the changing of

its operational state. Group (G6) is intended to provide a view of current process in

stances allowing the verification of the work done, the work to be donc, etc. Similarly,

groups (G7) and (G$) allow respectively for changing the operational state of activity

instances, and for providing a view at the activity instance level. We specify that groups

(G5) and (G7) deal not only with process instances and activity instances, but with their

attributes as well allowing the assignment of a specific value.

Group (G9) addresses work-items and allows for changing thefr states, reassigning them

to different work-lists and assigning a specific value to their attributes.

Components

Groups of Operations

(Gi) Connection Functions
(G2) Process Modeling Functions
(G3) Entity Handling Functions
(G4) Entity Attribute Manipulation functions
(G5) Process Control Functions
(G6) Process Status Functions
(G7) Activity Control Functions
(G8) Activity Status Functions
(G9) Work-list/Work-item Handiing Functions V’

(G 10) Administration Functions V’

(G]]) Classfication Category Definition Functions
‘G12) Activity TempÏate Modeting Functions
G13) Activity Temptate Attribute Manipulation functions

174

Finally, group (GlO) provides the functiona]ity needed to perform the administration and

maintenance of a workflow system. This includes functions that allow for aborting and

terminating process instances.

8.2 The Proposed Extension

We now present the extension made to the WfRM to support the Iist of workflow con

cepts and functionality. Our methodology is best presented by a set of four questions: (1)

Is there a need for a new component and a conesponding new interface? (2) Is there a

need for a new group of operations? (3) Is there a need for new operations that wiIl ex

tend already existing groups of operations? (4) Which group of operations should be as

signed to which interface to support a specific requirement?

No new components are added to the WfRM because the existing ones are defined on a

sufficiently high level aÏlowing for an extension within their context. Indeed, when a

new concept is defined, a new group of operations is created and assigned to an existing

interface. New operations are added to an existing group of operations to extend the

functionality related to a specific existing concept.

Ail the new functions, data types and function error return codes that we define follow

the naming conventions of the WfMC [WIMC97]. For example, a function name is pre

ceded by “WM” meaning “Workflow Management”, a data type name is preceded by

‘WMT” meaning “Workflow Management Type” or by “WMTP” meaning “Workflow

Management Type Pointer”, and function enor return codes are fully capitalized. They

also follow the traditional structure of the initial WAPI: components, interfaces, groups

of operations, etc. Like the original WAPI specification, we do flot explicitly inciude any

requirements or provisions for process consistency. This is teft up to specific implemen

talions, and it is usually based on developed conditions ensuring the conectness of a

process; e.g., conditions specified in Criterion 6.1 ensuring the safe interruption of a

process running activity.

175

8.2.1 Extension of Interface J (Process Definition Tools)

The extension brought to Interface 1 introduces mainly the two concepts discussed in

Chapter 6: the activity template concept and the template classification. New data types

are deflned to support these concepts at the build-time level. A total of three new groups

ofoperations are added: (Gil), (G12), and (G13) of Table 8.1. Groups (Gil) and(G12)

gather respectively operations for the creationldeletion of a classification category, and

operations for the creationldeletion of an activity template and for its assignment

to/detraction from a classification category. Since we associate attributes with an activity

template, group (G13) is also added to Interface 1. Group (G13) comprises operations

that allow (1) for inserting/deleting an input/output attribute to/from an activity template

already created, (2) for setting an input/output attribute of an activity template, (3) for

assigning a workflow participant to an activity template, and (4) for setting a time attrib

ute of an activity template. Time attributes comprise the duration of an activity, its start

ing/finishing time and its WUT. Absolute values for these tirne attributes are required.

The definition of a new group of operations, however, is necessary when dealing with

activity time attributes as a new concept. The discussion of activity temporal aspects as a

concept was given in Section 6.3.3.

One may think of considering an activity template as an entity and of using the functions

deflned within the existing groups (G3) and (G4) instead of defining the new groups

(G12) and (G13). This is not possible, however, because an entity is always scooped by

another entity (cf. Section 8.1), whereas an activity template is defined as a standalone

activity, not being part of any workflow definition (cf. Section 6.3.1). Hence, the defined

functions in (G3) and (G4) require a scooping entity as an input parameter. A scooping

entity cannot be provided for an activity template.

Finally, two operations allowing the assignment/detraction of a process definition

to/from a classification category are added to the afready existhig group (G2) of Inter

face 1 (cf. Table 8.1).

176

8.2.2 Extension of Interface 2 (Workflow Client Applications) and

Interface 3 (I nvoked Applications)

The extension brought to Interfaces 2 and 3 is obviously related to the dynamic modifi

cation of process instances. The WflvIC specifies that soine WfMSs may allow dynamic

alterations to process definitions from the run-time operational environment [WIMC95J.

Since the run-time operational environment is hivolved within the second and third func

tional areas (cf. Section 8.1), a WflvIS supporting dynamic alterations could be seen as a

system that extends these two functional areas by a set of run-time process modification

functions that allow users to modify instances of the original model. Indeed, a Workflow

Client Application is deflned as the component supporting interactions with user inter

face desktop functions. It is responsibte, together with the Invoked Applications compo

nent, for the execution of workflow activities. Consequently, a possibility to permit the

dynamic modification of process instances is to add to the interfaces that exist between

each of these components and the Workflow Enactment Service a set of operations for

the insertion, the moving, and the deletion of a particular entity within a workflow in

stance, and for the creation, the setting and the deletion of a particular entity attribute.

A number of operations are added to the three groups: (G5), (G7) and (G9). The opera

tions added to group (G7) basically allow dynamic modifications that concern activity

instances (cf. Section 6.4):

• The dynamic insertion of a new activity instance

• The dynamic deletion of an activity

• The dynamic move of an activity

• The dynamic insertionlsettinglupdating of input attributes

• The dynamic (re-)assignment of activities to a participant

• The dynamic setting/updating of time attributes

The “insert” operation (cf. Section 6.4.1.1) takes as input, among other things, an activ

ity instance that corresponds to the activity to be inserted. On the one hand, the activity

instance may afready exist within the run-time environment. A WMGetActivitylnstance

operation, already defmed within group (G6), is used so that the specific activity in-

177

stance to be inserted can be obtahied. On the other hand, we may want to create an activ

ity instance from an activity template. For this reason, an operation that allows this crea

tion (i.e., WliCreateActivitylnstance) as well as operations that deal with the list of ac

tivity templates (openlclose the list and fetchiget activity template from the list) are also

added to group (G7).

The operations added to group (G5) deal with process instances. They allow the dynamic

insertion ofa block ofactivities (cf. Section 6.4.1.2), as well as the storage of the proc

ess defmition that corresponds to a modifïed process instance. Fina{ly, one operation is

added to group (09). It allows the deletion of a work-item ftom a given work-list (cf.

Section 6.4.5). Other functions related to the dynamic management of work-lists include

the reassignment of a work-item to another work-list and the update of a work-item at

tribute. These functions are afready provided by the original specification of the WflvIC

[WtMC98I.

8.2.3 Discussion of Already Exïsting Components

As pointed out in Chapter 2, the Process Definition Tools address aspects beyond the

defmition of processes. These aspects cover the classification of resources and the analy

sis of processes. Following the same idea, the Workflow Client Applications component

should be extended to address functionallty beyond the mere workflow monitoring and

control. Hence, the resources classifled at buitd-time should be tracked during run-time,

and the workflow instances should sornetimes be autontaticaÏly monitored and con

trolled.

In the MTCT system discussed in Chapter 7, the Resource Extraction Client and the

Rule Client are considered as Workflow Client Applications. Specific functions are re

quired to deal with resources and rules, respectivety. Connection ftinctions are necessary

to connect each of the Resource Extraction Client and the Rule Client to the workflow

engine. These functions are gathered within group (01) (cf. Table 8.1) already provided

by the original conceptual specification. Other functions are required for the extraction

of resources:

178

• A function to extract the resources involved in a specific workflow instance or in

a specific workflow activity.

• A function to get the reservation ofresources at a specific time.

• A function to get the shifi ofa specific resource.

Functions required in the context of the RuÏe Client are usually provided by the API of

the underlyfrig rule engine (e.g., ILOG JRutes used in the MTCT system). They do flot

need to be supported on the WAPI side. Examples of such functions are:

• A function that gives as input a rule base to the Rule Client.

• A function that parses the rule base.

• A function that creates an exectttion context (which contains initially the entire

rule set).

• A function that asserts the process templates, the process instance manager, and

the attributes to the context.

• A function thatfire ruÏes in the context.

8.3 Functionality Extension of a WfMS

The implementation of specific workflow clients for the studied applications bas

necessitated the implementation of the set of requirements identified in Chapter 6 and to

which no direct or workaround solutions could be found in ADEPT.

Not considering the minimal difference in the structure and interplay of functions, the

ADEPT API provides most of the functionatity requested by the original specification of

the WIRM (the WAPI). Moreover, it offers additional features that correspond to some

of the functionality studied in Chapter 6: (1) the activity temptate concept and (2) func

tions for structural modifications (insertion and deletion).

AIl new functions we implemented are collected in a Mediator component that extends

the existing ADEPT API and contributes to the current pool of available functions by

running in parallel to ADEPT (cf. Chapter 7; Figure 7.10). The ADEPT Client uses the

extended Interfaces 2 and 3 by accessing the Mediator functions as well as the original

functions in the ADEPT Server. It should be stated that this solution could not be a de-

179

finitive one; it was merely adopted for simpllcity. For further genuine implementations,

the ADEPT API must be extended by modifying the source code of the system.

More details regarding the implemented ftmctions of the Mediator component are given

below. The current state of the implementation extending ADEPT covers mainly the dy

namic modification of activity attributes (Section 8.3.2) and the dynamic management of

work-lists (Section 8.3.3). A check for the compliance of the atready supported struc

tural modifications (the dynamic insertion and the dynamic deletion of an activity) to the

extended WIRM was successful (Section 8.3.1). A discussion of the current implementa

tion that extends ADEPT is fmally given (Section 8.3.4).

8.3.1 StructuraI Modifications

The WMlizsertActivitylnstance and the WMDeleteActivitvlnstance functions were there

fore realized with a reasonable effort by calling respectively the dynarniclnsert function

and the cÏynainicDetete function from the ADEPT API. In our conceptual specification,

an activity template must be instantiated first to obtain an activity instance that then can

be inserted. In the ADEPT API, dynamicinsert takes as a parameter the activity instance

to be inserted. We, however, do not implement the WMCreateActivitWnstcti;ee function

in this context. We simply apply the workaround solution described in Section 6.4. 1.1. It

consists of defining an activity template within a workflow model W such that the activ

ity instance to be inserted can be created by instantiathig W. We consciously accept this

difference between our conceptual specification and the actual implementation.

8.3.2 Activity Attributes Modification

The functions related to the dynamic modification of activity attributes that have been

implemented are the following:

WMAssignActivitvlnstanceAttribute — This function is responsible for dynami

cally inserting an attribute or setting/updating its value in an activity instance. In

case the attribute provided as a parameter to the function already exists, its defi

nition is changed according to the provided parameters: attribute type and attrib

ute length. In case the specified attribute does not exist yet, it is added to the

named activity instance. If there is a value submitted in the corresponding pa

180

rameter of the function, it is set or updated within the attribute. For consistency

reasons some internai checks with the database are done to ensure that the in

serted or updated values comply with the specified types (e.g., string/long).

• WliDeleteActivitylnstanceAttribttte — This function dynamically deletes an activ

ity instance attribute. If we are dealing with an input attribute, this attribute is

siiiiply removed from the conesponding activity iistance. if, however, we are

dealing with an output attribute O, ail mput attributes consuming from O are de

teted in every activity instance in the sequel to ensure consistency on a basic

level.

• WliAssignActivitvlnstanceParticipcuzts — This function dynamically sets or up

dates the participant(s) assigned to an activity instance. According to the WtMC

standard, up to ten participants can be assigned to one activity instance

[WfMC98].

• WMAssignActivitylnstanceDuration — This function dynamicaily sets or updates

the minimum or maximum duration of an activity instance. Only an absolute

value, i.e., the number of minutes, can be submitted for the duration in the corre

sponding parameter of the function.

• WMAssignActivityhtstanceTime — This function dynamically sets or updates the

eariiest/latest startinglfinishing time of an activity instance. Only an absolute

value, i.e., a fixed date, can be submitted for the time in the corresponding pa

rameter of the function.

The WUT is flot practically set/updated using the function defined within the conceptual

specification. A workaround solution bas been proposed in Section 6.3.3.3.

8.3.3 Work-Iists Management

The function related to the dynamic management of work-]ists that bas been impIe

mented is the WMDeteteWorkite,n. This function dynamically deletes a work-item from

a work-list. The work-item should not be in a running state. The deletion of an activity in

a running state, studied formaliy in Section 6.4.2.1, bas flot been implemented yet.

181

8.3.4 Discussion of Current lmplementatîon

The ADEPT API bas flot been designed to add new functionality such as presented

above. Consequently, it was impossible to implement our desired functions relying ex

clusively on the ADEPT API. Sometimes, we were obliged to directly access the data

base where ADEPT stores the workflows and their related data. Thus, we evade alt con

sistency checks within ADEPT. Although some basic measures have been taken to en-

sure consistency, there are stiÏl some leaks such that our approach cannot be considered

a complete solution that ensures correctness and consistency. Therefore, with the current

implementation, the responsibility is shifted to the user of the functions to invoke the

latter wisely. Hence, the implementation of the CONSENSUS and the MTCT workflow

clients include many verifications defined in the context of the respective applications.

These verifications are made before invoking a specific function. As an example, in the

contcxt of the MTCT application, verifications regarding time consistencies for com

plete transportation solutions are done by the optimization part of the MTCT system.

Such transportation solutions are reflected by specific workflow instances. The WMAs

signActivit’JnstanceDumtioîz function (resp. the WliAssignActivitvlnstanceTime func

tion), whcn invoked on these instances, takes the duration (resp. the tirne) given by the

calculated consistent solution.

8.4 Conclusion

We proposed in this chapter an extension to the WfRM specification. The reference

model initialïy provides a basic architecture that can be used as a standard for the devel

opment of a WfMS. The discussed extension mainÏy proposes a set of ftinctions address

ing the concepts and functionallty studied in Chapter 6.

On the one hand, new data types are defmed to support the two concepts: the workflow

template concept and the template classification. functions for the manipulation of these

concepts are deflned within new groups of operations assigned to Interface 1.

On the other hand, functions for the dynamic modification of process instances are de

fined and distributed within existing groups of operations (Interfaces 2 and 3). These

functions mainly support the creation, the insertion, and the deletion of a particular ac

182

tivity instance, as well as the insertion, the assignment, and the deletion of a particular

activity instance attribute during run-time at the process instance level. We highlight the

fact that the “Entity Handiing Functions” group and the “Entity Attribute Manipulation

Functions” group assigned to Interface 1 gather similar functions. Indeed, the creation,

the retrieval, and the deletion of a particular entity, as welI as the retrieval, the setting,

and the deletion of a particular entity attribute are possible during build-time at the proc

ess level.

We think that the separation that is made between the operations of Interface 1 and those

of Interfaces 2 and 3 should be removed to allow the dynamic modification of process

instances. A similar argumentation is given by Han and Sheth in [HS98j. The authors

talk rather about the separation that exists between build-time and run-time in terms of

workflow models. They specify that this is a barrier to be removed to a!low the adapta

tion of workflows.

It is, however, obvious that during run-time we need to be stricter than during build-time

regarding the preservation of workflow consistency and conectness. Indeed, the opera

tions of Interface I deal with the modeling of workflows. Usua!ly, at build-time, the

consistency and correctness verifications are only checked once the workflow mode! is

comp!etely defined and ready to be saved as a model to be instantiated. At run-time,

these verifications are done more ftequently. Each time a modification is brought to a

workflow instance, verifications are done and the modification is forbidden, if the con

sistency and the correctness of the mode! are violated.

The extension that we proposed in this chapter distinguishes between build-time and

run-time operations. It was made this way because of two reasons: flrst, to respect the

initia! conceptua! specification of the WIRM that separates the bulld-time and the run

time functional areas, and second, to emphasize the differences that exist between the

build-time and the run-time phases regarding the frequency of the consistency and the

correctness verifications.

Chapter 9 Conclusion

In this chapter, we sum up and discuss our work by referriiig to the research objectives

and major contributions exposed in Chapter 1. Then, we detail further research issues

that need to be addressed in future work.

9.1 Summary and Discussion

Workfiow technology offers littie adequate support to requirements inherent to non-

trivial socio-technical systems. In this thesis, we studied two applications that cail for

such systems: the combined negotiation application and the multi-transfer container

transportation application. These applications have served to investigate the needs for a

clarified and a refined set of concepts and functionalities for workflow management sys

tems. This set was motivated, on the one hand, by the requirements of the two applica

tions and their respective support systems towards workflow technology, and on the

other hand, by the constraints of today’s WfMSs with respect to these applications and

systems. In the following, a systematic summary of the thesis is provided and a discus

sion of remaining issues is provided.

9.1.1 The CONSENSUS and the MTCT Applications as Drivers 0f

Sophïstïcated Req uï rements for Workf10w Technology

The combined negotiation support system (CONSENSUS) based on a WfMS was stud

ied in detail. This system was devcloped to help a user model and enact a specific kind

of e-negotiations: combined negotiations. A combined negotiation is modeled as a work

flow that captures the sequencing of individual negotiations as we[l as the dependencies

among them. At run-time, software agents participate in negotiations as actors in the

workflow. It appeared that this system requires support for dynamic modifications in

duced by unexpected events that can occur during negotiations. We realized that current

184

WfMSs such as IBM MQ Series Workfiow and BEA’s WLPI, support in a limited way

this kind of dynamism, slightly reducing the beneflts of the workfiow-based CONSEN

SUS approach to e-negotiations.

Another complex socio-technical application, the multi-transfer container transportation

(MTCT) application, exhibits inherently dynamic requirements for workflows. A work

flow-oriented system for the processing of customer requests for container transportation

was devised. This processing is achieved by specific sequences of interdependent activi

ties that need to be created just-in-time and then (automatically) adapted to deal with un

expected events that may occur. The creation and the adaptation of activity sequences

are based on an optimized resource management and activity scheduling.

In the first system, the integration of a WfMS (ADEPT) that supports some of the re

quired dynamic modifications at the workfiow instance level increases the benefits of the

CONSENSUS approach. In the second system, the ADEPT WfMS prototype has been

used as well. Its flexibility helped in designing the MTCT system, yet its API had to be

enriched with useful functionality, and new solutions were sometimes required to prop

erly cope with the definition of workflow models and with the (dynamic) management

of instances.

9.1.2 The Identification and the Accommodation of Sophïsticated

Req uï rements for Workflow Technology

The experience and insights acquired with the realization of these two applications go

beyond the CONSENSUS and the MTCT projects in leading to the “wish list” of clan

fied and refmed workfiow concepts and functionalities (cf. Chapter 6). Each of these

concepts and functionalities bas been studied and corresponding solutions have been

proposed.

Indeed, direct solutions that respectively address the activity template concept and the

activity duration were possible using a state-of-the-art WfMS (ADEPT). Workaround

solutions were, however, proposed in ADEPT to support other concepts namely the tem

plate classification, the activity starting/finishing time, and the activity warm-up time

concept:

185

• The template classification is usually offered in commercial WfMSs. It is how

ever missing in ADEPT. Saving workflow templates and activity templates with

a specific prefix remedies this lack.

• In the literature, a distinction is done between dependant dates between activities

and absolute dates assigned to activities as a starting/fmishing time. On the one

hand, while flot supported by commercial WIMSs, dependant dates are well de

flned in ADEPT. On the other hand, absolute dates are not support by ADEPT

although they are less complicated to deal with when compared to dependant

dates. We found a solution based on dependant dates to cover absolute dates in

ADEPT.

• The warm-up time (WUT) concept is of utmost importance. To our knowledge, it

is not supported yet by any WIMS. The WUT of an activity should be known

such that early information about this activity is provided at the right time to the

right workflow participant. Preparation activities were proposed to support this

concept. Nevertheless, two noticeable shortcomings were recognized: the lack of

a just-in-tirne notification and the complication of the workflows. We tried to

deal with the first shortcoming by proposing an intermediate work-list with a lis

tener process, and with the second shortcomiiig by suggesting to define the

preparation activities in the background of the initial workflow (i.e., the work

flow not including preparation activities), or to separate between the initial work

flow and the workflow that defines preparation activities.

The basic dynamic activity insertion and dynamic activity deletion functionalities are

already well discussed in the literature and direct solutions can be found in adaptive

WfMSs such as in ADEPT. A refinement of both functionality is however required in

the context of compÏex, yet representative, process-oriented applications:

• We discussed solutions for the dynamic insertion of a new activity instance and

for the dynamic insertion of a bÏock of activities. The activity template concept is

used to accommodate the insertion of a new activity instance. Hence, this reme

dies the “write after write” problem encountered when an already existing activ

ity instance is insertcd within the workflow instance. The dynamic insertion of a

186

block of activities is accomplished step-by-step using the defined dynamic inser

tion of a single activity operation. Many problems were identifled to this solution

including the high number of interaction with the system and the lack of opera

tions allowing for the insertion of decision nodes present in compiex modeling

structures.

• An extension of an existing formai meta-model, that is the WSN-Nets formalism,

was elaborated to support a refmement of the dynamic activity deletion function

atity: the safe activity interruption in case of exceptional situations. This novel

ftmnctionality corresponds to the deletion of an activity in a running state. The lat

ter was not tolerated yet in the current adaptive workflow teclmology. The sup

port of this functionality appears to be, however, extremely important because

most exceptional situations occur while an activity is in progress, and adequate

solutions need to be provided in the sequel. We may talk about aforward i-ecov

eiy. For this purpose, besides modeling logical work units as process activities,

we have introduced another level of granularity by defining the atomic step con

cept. The latter is used to build up the basis for a two-dimensionai data classifi

cation scheme. On the one hand, the definition of the data relevance dimension,

distinguishing between exclusive application data and process relevant data, is

considered at its pure level within the safely interruption criterion conditions

statement. On the other hand, we dug deeper regarding the data update ftequency

dimension by defming safe interrupt points for each of the discrete and the con

tinuous data update by activities. This has led to the formai definition of the ac

tivity safe point considered as the backbone for the safely interruption criterion.

Preserving this criterion, in tum, guarantees that if an activity is safely inter

rupted all necessary data is kept and can be used to figure out an adequate solu

tion for the respective exceptional situation.

• The dynamic move of an activity was repiaced by a workaround solution: insert

ing the activity to be moved at its new position and then deleting this activity.

Incorrect data flow confficts may be detected if we appty these two operations in

the opposite way (i.e., the deletion before the insertion). We specified that a re

187

laxation should be done to the consistency verifications applied for the delete

operation in the context of a move operation.

The functionalities already discussed tackle workflow structural modifications. More

over, in this thesis, we motivated and we analyzed attribute modifications, namely the

insertion and the deletion of activity attributes:

• The insertion of activity attributes on the fty is motivated by the unavailability of

the information required for the definition of these attributes at the workflow

modeling level. The activity to which an attribute is to be inserted should not be

in a running state.

• The activity attribute deletion operation is mainly required so that an activity de

letion operation is flot needlessly forbidden. A distinction is done between the

detetion of input attributes and the deletion of output attributes. The former does

flot necessitate any consistency verification, while the latter requires data de

pendency verifications comparable to ones carried ont in the context of an activ

ity deletion.

The setting and updating of (time) attributes as well as the (re-)assignment of activities

to participants at the workflow execution level were addressed. The issue of properly

implementing these functionalities in a specific workflow client was discussed. As a

consequence to the dynamic modification of attributes, the appropriate adaptation of

work-lists is considered.

Finally, it has been argued that each of the discussed functionality may require to be ap

plied either manually or automatically to a workflow instance, and that a WfMS should

facilitate the integration of a tool for the automatic application of this functionality.

9.1.3 The Extension of the WfRM to Adequately Support Enhanced

Workf10w Technology

An extension of the Workflow Reference Model (WfRM) has been proposed to accom

modate the reflned set of workflow concepts and functionality. First, we have extended

the WfRIvI by proposing a new overail architecture ftamework for adapive workflows.

188

Second, we have expanded the existing specification by defming black box functions.

The latter were either assigned to an existing group of operations or they were gathered

under new groups of operations. The extended WfRM should facilitate the implementa

tion of original WfMSs or the review of existing WIMS versions leading to enhanced

systems.

9.7.4 Further Discussion

When studying a specific fiinctionality, we realized that novel workfiow concepts must

emerge. Indeed, the defmition of the atomic step concept was essentia! to formally spec

ify the criterion behind the safe activity interruption functionality. It is, hence, important

to keep in mmd that nove! workflow concepts may be discovered not on!y when apply

ing the direct approach of studying a specific app!ication, but a!so indirectly from deeply

addressing a required workflow functionality.

We think that state-of-the-art WfMSs should provide innovative workflow concepts and

functionality but without forgetting about basic ones. In spite of the fact that ADEPT

covers interesting workfiow concepts (activity temp!ate, time edges, etc.) and it provides

advanced functionality (the dynamic activity insertion and de!etion), we observed that it

!acks to offer some of the basic WfMSs features such as the tempÏate c!assification and

the support of absolute dates. Unfortunate!y, though simple, these features are desirable

for the development of many workflow-based applications.

9.2 Research Perspectives

We are firmly convinced that the fol!owing stimulating prob!ems need to be forma!ly

addressed. The resutts shou!d then be imp!emented within a powerfiil workfiow engine:

• Various research groups have already formally studied the consistency verifica

tions re!ated to basic workflow structural modifications: the insertion and the de

letion operations. This is done based on specific forma!isms such as the WSM

Nets formalism. Tins formalism or a similar one should be used as a basis to

formal!y specify the criteria for a correct application of the refined structural

modification functiona!ity that were identified and informally addressed within

189

this thesis: the insertion of a new activity instance, the insertion of a bÏock of oc

tivities, and the move of an activity. The safe activity mterruption functionality

was already formatty addressed within this thesis. There are, however, stiil irter

esting questions concemirig the implementation of this functionality: questions

related to modification authorization, modification analysis, and usability.

The WUT concept should be formally studied takiiig into account the solutions

proposed to deal with the shortcomings of the current workaround solution.

The functions related to the dynamic modification of activity attributes that we now pro-

vide via a Mediator component running in parallel to ADEPT, need to be implemented

within the core of ADEPT.

If implemented within ADEPT, the above features may judiciously contribute to the

“Next Generation Enterprise Process Management System” project launched by the

DBIS department at University of Ulm [DBISO4Ï.

Extended transactional issues (e.g., semantic rollback) may be studied as well. Indeed, at

the workflow modification level, only forward recoveries were addressed in this thesis.

As an example, if a problem occurs, the current activity is interrupted and a new solution

is proposed in the sequel of the workflow instance. Rolling-back issues are interesting to

be studied as well. For example, once an activity is interrupted, a backward recovery is

proposed to cope with the triggering event. A roltback (i.e., backward recovery) is spe

cifically interesting if no safe interruption of an activity is possible. As an example, if

the interruption of the “move (1.5,3.5) -) (13,8)” activity in Figure 6.15 (cf. Chapter 6)

is not safe, a solution could be to go back and (1) to return the merchandise to the origin

location, or (2) to keep the merchandise in a depot as long as no delivery solution is pos

sible. This can be done using compensation activities. An example of a compensation

activity in the context of the combined negotiation application is “breaking the commit-

ment” of an afready committed “e-negotiation” activity (cf. Chapter 4). The discussed

facilities are crucial for realizing real-world adaptive enterprise applications.

Finally, several interesting issues in the context of the MTCT system should be investi

gated. Among these issues is the support of unexpected events such as delayed vehicles,

190

crew member desistance and technical probiems. The only event supported up to now by

the MTCT system is the “arrivai of a new customer request”. Another issue is the dis

tributed work-lists that should be investigated to dispatch work on a network of several

computers, which couid be located at different terminals/vehicles. Modification rules are

another important research issue. New rules that would bring structural modifications to

workflow instances should be developed. It is mteresting to define more complex opti

mization models taking into account complex path scenarios. Solutions coming from

these optimization models will potentially be translated into novel and challenging struc

tural modifications of workflow instances. Finally, at the iiiplementation level, the per

formance of the MTCT system would be considerably enhanced if the functions of the

Mediator component were inherently provided by the WfMS on which the system relies.

We rigorously encourage researchers to deal with each of the above research perspec

tives. Moreover, we encourage them to study further practical applications to discover

and to propose solutions for additional factual needs for workflow technology. We

strongly believe that the enhancement of any technology should mainly derive from

practice.

References

[Aa100] van der Aatst, W.M.P., Loosely Coupled Interorganizational Workflows:
Modeling and Analyzing Workftows Crossing Organizationat Bounda
ries. Information and Managenteitt, 37(2):67-75, March 2000.

[AIgOO] Algorithms and Theory of Computation Handbook, CRC Press LLC,
1999. Appearing in the Dictionary of Computer Science, Engineering and
Technology, CRC Press LLC, 2000.

[AAE+961 Alonso, G., Agrawal, D., Et Abbadi. A., Kamath, M, Gtmthôr, R., and
Mohan, C., Advanced Transaction Models in Workflow Contexts. In
Proceedings of the 12th International Conference on Data Engineering
(ICDE’96), 574-581, New Orleans, LA, February 1996.

[AAH98I Adam, N.R., Atiuri, V., and Huang, W.K., Modeling and Analysis of
Workflows using Petri Nets. Journal of Intelligent hformation Systems,
10(2):131-158, March 1998.

[ABO2I van der Aalst, W.M.P., and Basten, T., Inheritance of Workflows: An
Approach to Tackiing Problems Related to Change. Theoretical Coin
pitter Science, 270(1-2): 125-203, 2002.

[ABE+00] van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., and Wainer, J.,
Workflow Modeling using Proclets. In Etzion, O. and Scheuennann, P.
(Eds.): Proceedings ofthe fifth International Conference on Cooperative
Information Systems (CoopiS ‘00), 198-209, Eliat, Israel, September 2000.
LNCS 1901.

{AHO2] van der Aalst, W.M.P. and van Hee, K., Workflow Management: Models,
Methods, and Systems. The MIT Press, 368 pp., 2002. ISBN 0-262-
01189-1.

[AKOOI van der Aalst, W.M.P. and Kumar, A., XML Based Schema Definition
for Support of the Inter-organizational Workflow. In Proceedings of die
21sr International Conference on Application ancÏ Theon’ of Petri Nets
(ICATPN’OO) (Meeting on XML/SGML based Interchange Formats for
Petri Nets), Aarhus, Denmark, June 2000. On-lime at <http:I/
www.daimi.au.dk/pn2000/Interchange/papers/det_0 1 .pdf>.

[AM97J Alonso, G. and Mohan, C., Workflow Management Systems: The Next
Generation of Distributed Processing Tools. In Jajodia, S. and Ker
schberg, L. (Eds.): Advanced Transaction Modets and Architectures,
Chapter 1, 35-62, Kiuwer Academic Publishers, 1997.

192

[AMOO] Agostini, A., and De Michelis, G., Improving Ftexibility of Workflow
Management Systems. In van der Aalst, W.M.P., Desel, J., and Oberweis,
A. (Eds.): Business Process Management — Models, Techniques, and Em
piricaÏ Studies, 2 18-234, LNCS 1806 Springer-Verlag, 2000.

{BlaOOl Blake, M.B., WARP: An Agent-Based Process and Architecture for
Workflow-oriented Distributed Component Configuration. In Proceed
ings of the 2000 International Coiference on Artificial Intelligence
(ICAI’OO) (Session on Software Agent-Oriented Workflow), 205-213,
Las Vegas, NV, June 2000.

[B1a02] Blake, M.B., An Agent-Based Cross-Organizational Workflow Architec
ture in Support of Web Services. In Froceedings of the jjth International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’02), Pittsburgh, PA, lune 2002. IEEE. On-une at
<http:/!www.cs.georgetown.edul—blakeb/pubs/blake_WETICE2002_final
.pdf>.

[BAKOIJ Benyoucef M., Alj, H., and Keller, R.K., An Infrastructure for Rule
Driven Negotiating Software Agents, In Proceectings of the 12th Interna
tional Workshop on Database and Expert Systems AppÏicatio,zs
(DEXA ‘01), 737-741, Munich, Germany, September 2001. IEEE. Pre
sented in 2 e-Negotiations Workshop.

[BAL+02j Benyoucef, M., Alj, H., Levy, K., and Keller, R.K., A Rule-driven Ap
proach for Defining the Behavior of Negotiating Software Agents. In
Proceediitgs of the fourth International Conference on Distributed
Convnu,zities oit the Web (DCW’02), 165-181, Sydney, Australia. April
2002. Springer-Verlag. LNCS.

[BAV+Olj Benyoucef, M.. Alj, H., Vézeau, M., and Keller, R.K., Combined Nego
tiations in E-Commerce: Concepts and Architecture. Electronic Com
inerce Research Journal, 1(3):277-299, luly 2001. Special Issue on The
ory and Application of Electronic Market Design. Baltzer Science Pub
lishers.

{BBKOIj Benyoucef, M., Bassil, S., and Keller, R.K., Workflow Modeling of
Combined Negotiations in E-Commerce. In Proceedings of the Fottrth In
ternational Conference on Electronic Commerce Research (ICEC’R-4),
348-359, Dallas, TX, November 2001.

{BBK+02a1 Bassil, S., Benyoucef, M., Keller, R.K., Kropf, P., Addressing Dynamism
in E-negotiations by Workflow Management Systems. In Proceedings of
the j3thi International Workshop on Database and Expert Systems Appli
cations (DEXA ‘02), 655-659, Aix-en-Provence, France, September 2002.
IEEE. Presented in 3rd e-Negotiations Workshop.

[BBK+02b] Bassil, S., Bourbeau, B., Keller, R.K., and Kropf, P., Fleet Management
and Dynamic Workflows. Technicat Report GELO-152, Université de
Montréal, Canada, June 2002.

193

[BBK+03J Bassil, S., Bourbeau, B., Keller R.K., and Kropf, P., A Dynamic Ap
proach to Multi-transfer Container Management, In Froceedings of the
Second International Workshop on Fre ight Transportation ctncï Logistics
(ODYSSEUS’03), Mondello (Palermo), Sicily, Italy, May 2003.

[BKKO4I Bassil, S., Keller R.K., and Kropf, P., A Workflow-Oriented System Ar
chitecture for the Management of Container Transportation, In Proceed
ings of die Second International Coiference on Business Process Mcm
agement (BPM’04), 116-13 1, Potsdam, Germany, June 2004. LNCS
3080.

[BKL+00J Benyoucef, M., Keller, R.K., Lamouroux, S., Robert, J., and Trussart, V.,
Towards a Generic E-Negotiation Platform, In Proceedings of tite Sixth
International Coiference on Re-Technologies for Information Systems,
95-109, Zurich, Switzerland, February 2000.

[BPELO3J Business Process Execution Language for Web Services version 1.1
(2003). On-une at <http ://www- 128 .ibm.comldeveloperworks/library/
specification/ws-bpell>.

[BRK+05] Bassil, S., Rinderle, S., Keller, R.K., Kropf, P., and Reichert, M., Preserv
ing the Context of Interrupted Business Process Activities, In Proceed
ings of the Seventh International Conference on Enterprise Infonnation
Svstenis (ICEIS’05), Miami, FL, May 2005. To appear.

[CraO2] Crainic, T.G., Long-Haul Freight Transportation. In R. W. Hall (Ed.):
Handbook of Transportation Science, Second Edition, Kiuwer Academic
Publishers, 2002.

{CCP+9$Ï Casati, F., Ceri, S., Pernici, B., and Pozzi, G., Workflow Evolution. Data
and Knowtedge Engineering, 24(3):2 11-238, 1998.

[CHR+98] Cichocki, A., Helal, A., Rusinkiewiez, M., and Woelk, D. (Eds.), Work
flow and Process Automation: Concepts and Technology. Khtwer Aca
de,nic Publishers, Vol. 432, 136 pp., 1998. ISBN 0-7923-8099-1.

[CKL÷031 Curbera, F., Khalaf, R., Leymann, F., and Weerawarana, S., Exception
Handiing in the BPEL4WS Language. In Proceedings of the Interna
tional Conference on Business Process Management (BPM’03), 276-290,
Eindhoven, The Netherlands, June 2003. LNCS 2678.

[CK0921 Curtis, B., Kefliier, M., and Over J., Process Modeting. Communications
of the AcM, 35(9):75-89, September 1992.

[CKW+041 Chiu, D.K.W., Kwok, B.W.C., Wong, R.L.S., Cheung, S.C., Kafeza, E.,
and Kafeza, M., Alerts for Heatthcare Process and Data Integration. In
Proceedings of the 3111 Annuat Hawaii International Conference on Sys
tem Sciences (HICSS-37), Big Island, Hawaii, January 2004.

[CS96] Chang, J.W. and Scott, C.T., Agent-based Workflow: TRP Support Envi
ronment (TSE). In Proceedings of the Ftfth International World Wide
Web Conference, Paris, France, May 1996. On-une at <http://
www5conf.inria. ft/fich_htmllpaperslP53/Overview. html>.

194

[DBIS04J Abteilung Datenbanken und Informationssysteme — Universitit UIm
(2004). On-une at <http://www.infomiatik.uni-ulm.de/dbis/index
en.htm>.

[DNR9O] Downson, M., Nejmeh, B., and Riddle, W., Concepts for Process Defmi
tion Support. In Proceedings of the $ixth International Software Process
Workshop, $7-90, Hakodate, Japan, October 1990. IEEE Computer Soci
ety Press.

[DR9$j Dadam, P. and Reichert, M., The ADEPT WfMS Project at the University
of UIm. In FroceecÏings of the First European Workshop on Workflow
and Process Management (WPM’98) (Workflow Management Research
Projects), Zurich, Switzerland, October 199$. On-une at <http://
www.informatik.unï-ulm.de/dbis/papers/abstracts/DaRe98.ps. html>.

[DRKOO] Dadam, P., Reichert, M., and Kuhn, K., Clinical Workflows — The Killer
Application for Process-oriented Information Systems? In Proceedings qf
the Fourth International Conference on Business Information Systems
(BIS’OO), 36-59, Poznan, Poland, April 2000.

[E1m92] Elmagarmid, A.K. (editor), Database Transaction Models for Advanced
Applications, Morgan Katfinann Pubtishers, 610 pp., 1992. ISBN 1-
55860-214-3.

[Ens98] FileNet Ensemble User Guide. FileNet Corp., Costa Mesa, Califomia,
199$.

[EKOO] Ellis, C.A. and Keddara, K., A Workflow Change Is a Workflow. In In
van der Aalst, W.M.P., Desel, J., and Obenveis, A. (Eds.): Business Proc
ess Management — Moctels, Techniques, and Empiricat Studies, 201-217,
LNCS 1806 Springer-Verlag, 2000.

[EKR95] FUis, C.A., Keddara, K., and Rozenberg, G., Dynamic Change within
Workflow Systems. In Proceedings of the Coitference on Organizational
Computing Systems (OCS’95), 10-21, Milpitas, Califomia, 1995. ACM
Press.

{EM97] Ellis, C. ami Maltzahn, C., The Chautauqua Workflow System. In Pro
ceedings of the 30th International Coi!ference on Systemn Sciences
(HICSS’97), 427-437, Maui, HI, January 1997.

[EPO2J Eder, J. and Pichler, H., Duration Histograms for Workflow Systems. In
Proceedings of the Working Conference on Engineering hformation Sys
tems in the Internet Context (EISIC’02), 239-253, Kanazawa, Japan, Sep
tember 2002.

[EPG+03] Eder, J., Pichler, H., Gruber, W., and M. Ninaus, Personal Schedules for
Workflow Systems. In Proceedings of the International Conference on

Business Process Management (BPM’03), 216-231, Eindhoven, The
Netherlands, June 2003. LNCS 2678.

{EPP+99] Eder, J., Panagos, E., Pezewaunig, H., and Rabinovich, M., Time Man
agement in Workflow Systems. In Proceedings of the Third International

195

Conference on Business Infor,nation Systems (BIS’99), 265-280. Poznan,
Poland, Aprit 1999. (Springer-Verlag)

[FH92] Feiler, P.H. and Humphrey, W.S., Software Process Development and
Enactment: Concepts and Definitions. Technicat Report SEI-92-TR-004,
Software Engineering Institute, Camegie Mellon University, Pittsburgh,
PA, 1992. On-une at <http://www.sei.cmu.edu/publications/documents/
92.reports/92 .tr.004. html>.

[GGP+98] Gendreau, M., Guertin, F., Potvin, J.-Y., and Séguin, R., Neighborhood
Search Heuristics for a Dynamic Vehicle Dispatching Problem with Pick
ups and Deliveries. Technicat Report cRT-98-1O, Centre de Recherche
sur les Transports, Université de Montréal, Canada, 199$.

{GHS95] Georgakopoulos, D., Homick, M., and Sheth, A., An Overview ofWork
flow Management: From Process Modeling to Workflow Automation In
frastructure. Distributed and PctraÏÏeÏ Databases, 3(2):1 19-153, April
1995.

[GROI] Groote, J.F. and Reniers, M.A., Algebraic Process Verification. In
Bergstra, J.A., Ponse, A., and Smotka, S.A. (Eds.): Handbook ofProcess
Algebra, 115 1-1208, Amsterdam, The Netherlands, 2001.

[G587] Garcia-Molina, H., Salem, K., Sagas. In Proceedings ACM SIGMOD In
ternational Coiference on Management of Data, 249-259, San Francisco,
CA, May 1987.

{GT98] Georgakopoulos, D. and Tsalgatidou, A., Technology and Tools for
Comprehensive Business Process Lifecycle Management. In Dogac, A.,
KaÏinichenko, L., Ozsu, T., and Sheth, A. (Ecis.): Workflow Managenient
Systems anci Interoperabititv. NATO SI Series F. Springer-Verlag, 1998.
On-une at <http://cgi.di. uoa.gr/—aftodite/nato.pdb..

[Har87] Harel, D., State Charts: A Visual Formalism for Complex Systems. Sci
ence of Computer Progrnnming, 8(3)231-274, June 1987.

[Hen88] Hennessy, M., Algebraic Theory of Processes. The MIT Press, 272 pp.,
1988. ISBN 0-262-08171-7.

[Ho1971 Hollingsworth, D., Workflow — A Model for Integration. ICL Systems
Journal, 12(2) :213-232, November 1997.

[HH99] Handi, D. and Hoffmann, H.-J., Workflow Agents in the Document
centered Communication in MALL2000 Systems. In ProceecÏings of the
First International Workshop on Agent- Oriented Iifonnatioiz Systems
(AOIS’99). Seattie, WA, May 1999. On-line at <http://www.aois.org/
99/handl. html>.

[HJ98j Hom, S., and Jablonski, S., An Approach to Dynarnic Instance Adaption
in Workflow Management Applications. In Proceedings of the Workshop
Towards Adaptive Workflow Systems at the Conference on Computer
Supported Cooperative Work (CSCW’98), ACM Press, Seattie, WA, No
vember 1998. On-une at <http://ccs.mit.edu/klein/cscw98/paper21/>.

196

[HS98J Han, Y. and Sheth, A., A Taxonomy of Adaptive Workflow Manage
ment. In Proceedings of the ACM Conference on Computer-Supported
Cooperative Work (CSCW’98), Seattie, WA, November 199$. On-une at
<http://ccs.mit.edu/klein/cscw98fpaper03/>.

[IbmO4l IBM Software — WebSphere MQ Workflow (2004). On-une at <http://
www-306.ibm.com/software/integration/wmqwfl>.

[IncO2J TIBCO InConcert Concepts. TIBCO Software Inc., Cambridge. MA,
January 2002.

[IntO4] InterNeg (2004). On-une at <http ://interneg.carleton.caiinternegb.

[JRulesO4J ILOG JRules (2004). On-une at <http:Hwww. ilog.comlproducts/jrules/>.

[JB96] Jablonski, S. and Bussier, C., Workflow Management — Modeling Con
cepts, Architecture and Implementation. International Tho,npson Com
puter Press, 351 pp., 1996. ISBN 185032222$.

[KraOO} Kradotfer, M., A Workflow Metamodel Supporting Dynamic, Reuse
Based Model Evolution. Doctoral Thesis, University of Zurich, Switzer
land, 2000.

[KBB98J Kammer, P.J., Bolcer, G.A., and Bergman, M., Requirements for Sup
porting Dynamic Adaptive Workflow on the WWW. In Proceedings of
the Workshop on Adoptive Workfiow Syste,ns (CSCW’98), Seattie, WA,
November 199$. On-une at <http://www.ags.uci.edu/—pkammer/papers/
cscw98.pdf>.

[KG991 Kradolfer, M. and Geppert, A., Dynamic Workflow Schema Evolution
Based on Workflow Type Versioning and Workflow Migration. In Pro
ceedings of the Fou rth International Confe,-ence on Cooperative informa
tion Systems (CoopIS’99), 104-114, Edinburgh, UK, September 1999.
IEEE Computer Society Press.

[KSSO2] Kelton, W.D., Sadowski, R.?., and Sadowski, D.A.. Simulation with
Arena. McGraw-Hill, 631 pp., 2002 (2 edition). ISBN 0-07-239270-3.

[KZO2I Kumar, A. and Zhao, J.L., Workflow Support for Electronic Commerce
Applications. Decision Support Systems, 32(3):265-278, May 2002. On
une at <http://sheÏl. bpa.arizona.eduklzhao/dsso2-print.pdf>.

[Ley9S] Leymann, F., Supporting Business Transactions via Partial Backward Re
covery in Workflow Management Systems. In Proceedings of the Date,i
banksysteme in Biiro, Technik und Wissenschaft (BTW’95), 5 1-70, Dres
den, Germany, 1995.

[LOOl] Lenz, K., and Oberweis, A., Modeling Interorganizational Workflows
with XML Nets. In Proceedings of the 34th Hawaii International Confer
ence on System Sciences (HICSS-34), Maui, Hawaii, January 2001. On
lime at <http://csdl.computer.org/comp/proceedings/hicss/2001/0981/07/
098 17052.pdf>.

197

[LR99j Leymann, F. and Roller, D., Production Workflow, Concepts and Tech
niques. Prentice-Haït PTR, 479 pp., 1999. ISBN O-130-21753-O.

[LS97] Lei, K. and Siiigh, M., A Comparison of Workflow Metamodels. In Pro
ceecïings of the WorksÏzop on Behavioral Modeïing anct Design Transfor
mations: Issues and Opportun ities in Conceptuat Modeting at the 16tui

j

temational Conference on Conceptual Modeïing / the Entity Reïationship
Approach (ER’97), Los Angeles, CA, November 1997. On-une at <http://
osm7 .cs. byu.edufER97/workshop4/Is.html>.

[Man99] Mami, J., Workflow and Enterprise Application Integration. EAJ Journal,
49-53, September/October 1999. On-une at <http://www.bijonline.com/
PDF/mann_1 .pdf>.

[MarOl] Marjanovic, O., Methodological Considerations for Time Modeling in
Workflows. In Proceedings of the 12th Australasian Conference on In
formation Systems (ACIS’Ol), Coifs Harbour, Australia, December 2001.

[McC92I McCready, S., There is More than One Kind of Workflow Software.
Computerworïd, November 2:86-90, 1992.

[MenO2] Meng, J., Achieving Dynamic Inter-organizational Workflow Manage
ment by Integrating Business Processes, Events, and Rutes. Doctoral
Thesis, University of Florida, Gainesville, FL, 2002.

[Mi180] Mimer, R., A Calculus of Communicating Systems. 1980. LNCS 92.

[Mit9$J Mitrovié-Mini6, S., Pickup and Delivery Problem with Time Windows: A
Survey. Technicat Report 8fU CMPT TR 1998-12, Simon Fraser Univer
sity, Canada, 1998.

[MoaiO4J Moal LiveExchange (2004). On-une at <http://www.moai.com/>.

FMos82] Moss, J., Nested Transactions and Reliable Distributed Computing. In
Proceedings of the Second Symposium on Reliabitity in Distributed Soft
ware and Database Systems, 3339, Pittsburgh, PA, July 1982.

[MBOOI McCÏintock, C. and Berlioz, C.A., Implementing Business Rules in Java.
Java Deveïopers Journal, 5(5):$-16, 2000.

[MGM99] Maes, P., Guttman, R.H., and Moukas, A.G., Agents that Buy and Sel!:
Transforming Commerce as we Know it. Communications of the ACM,
42(3):81-91, 1999.

[M099] Marjanovic, O. and Orlowska, M.E., On Modeling and Verification of
Temporal Constraints in Production Workflows, Knowïedge aizd Informa
tion Systems, 1(2):157-192, 1999.

[MR99J Muller, R., and Rahm, E., RuIe-Based Dynamic Modification of Work
flows in a Medical Domain. In BucÏznzann, A.P. (Ed.): Proceedings oftÏze
Datenbanksvstemne in Biiro, TecÏmik und WissenscÏtaft (BTW’99), 429-
448, Freiburg im Breisgau, Germany, March 1999. On-une at <http:/I
dol. uni-Ieipzig.de/pub/showDoc.Fulltext?lang=de&doc=1999-1 4&format
=pdf&compression=>.

198

[MSO2I Mangan, P. ami Sadiq, S., A Constraint Specification Approach to Build
ing Flexible Workflows. Journal of Research aiul Practice in Infonnation
Technotogy, 35(1):2 1-39, 2002.

[MWW98J Muth, P., Weissenfels, J., and Weikum, G., What Workflow Technology
Can Do For Electronic Commerce. In Proceedings of the EURO-MED
NET Conference, Nicosia, Cyprus, March 1998. On-une at <http://
citeseer.ist.psu.edu/muth98what.html>.

[MWW+981 Muth, P., Wodtke, D., Weissenfels, J., Weikum, G.. and Kotz Dittrich,
A., Enterprise-wide Workflow Management based on State and Activity
Charts. In Dogac, A., KaÏinichenko, L., Tomer Ozsu, M., and Sheth, A.
(Eds.): Advances in Workflow Management Systems and Internperabitit,
28 1-303, NATO Advanced Study Institute, Spinger-Verlag, 1998.

[NBB+03] Neumann, D., Benyoucef, M., Bassil, S., and Vachon, J., Applying the
Montreal Taxonomy to State of the Art E-Negotiation Systems. Group
Decision and Negotiation Journal, 12(4):2$7-3 10, July 2003. (Published
in cooperation with the Institute for Operations Research and the Man
agement Sciences - Informs - and its Section on Group Decision and Ne
gotiation.). Kiuwer Academic Publishers.

[NDS96I Ngu, A.H.H., Duong, T, and Srinivasan, U., Modeling Workflow using
Tasks and Transactions. In Proceedings of tue Seveitth International
Workshop on Database and Expert Systems Applications (DEXA ‘96), Zu
rich, Switzerland, September 1996. On-une at <http:II
www .cse. unsw .edu.aul—anne/work3/work3 .html>.

[OPLO4I ILOG OPL Studio (2004). On-une at <http://www.ilog.com/productsI
oplstudio/>.

[Par8l] Park, D., Concurrency and Automata on Infinite Sequences. In Proceed
ings of the Ftfth GI-Conference on TÏzeoreticat Computer Science, 167-
183, 1981. LNCS 104.

[PetriO4J Petri Nets World: Online Services for the International Petri Nets Com
munity (2004). On-Ime at <http://www.daimi.au .dklPetriNets>.

[PEL97I Pozewaunig, H., Eder, J., and Liebhart, W., ePERT: Extending PERT for
Workflow Management Systems. In Proceedings of Hie First East
European Symposimn on Advances in Database and Information Systems
(ADBIS’97), 217-224, St.-Petersburg, Russia, September 1997.

[PSR92I Potvin, J.-Y., Shen, Y., Rousseau, J.-M., Neural Network for Automated
Vehicle Dispatching. Computers and Operations Research (Special issue
on neural networks and operations research), 19(3-4):267-276. AprilfMay
1992.

[RD98] Reichert, M., and Dadam, P., ADEPTflex: Supporting Dynamic Changes
of Workflow without Losing Control. Journal of Intelligent Information
Systems, 10(2):93-129, 1998.

199

[RRDO3aI Reichert, M., Rinderte, S., and Dadam, P., ADEPT Workflow Manage
ment System: Flexible Support for Enterprise-wide Business Processes
(bol Presentation). In ProceecÏings of the first Intel7zationat Confereizce
on Bttsiness Fmcess Management (BPM’03), 370-379, Eiridhoven, The
Netherlands, June 2003. LNCS 2678.

[RRDO3bÏ Rinderle, S., Reichert, M., and Dadam, P., Evaluation of Correctness Cri
teria for Dynamic Workflow Changes. In Proceedings of the First Inter
national Conference on Business Process Management (BPM’03), 41-57,
Eindhoven, The Netherlands, June 2003. LNCS 267$.

[RRDO4a] Rinderle, S., Reichert, M., and Dadam, P., Conectness Criteria for Dy
namic Changes in Workflow Systems — A Survey. In Datct & Knowledge
Engineering (Special issue on advances in business process manage
ment), 50(1):9-34, 2004.

[RRDO4b] Rinderle, S., Reichert, M., and Dadam, P., Flexible Support of Team
Processes by Adaptive Workflow Systems. In Distributed and ParatÏeÏ
Databases, 16(1):91-116, 2004.

[RRDO4cJ Rinderle, S., Reichert, M., and Dadam, P., On Deating with Structural
Conflicts between Process Type and Instance Changes. In Proceedings of
the Second International Conference on Business Process Management
(BPM’04), 274-289, Potsdam, Germany, June 2004. LNCS 3080.

[RTO2] Reichert, M. and Tarabrin, A., ADEPT Release version 2.0 — Short User
Guide, Department DBIS. University of Ulm, Germany, October 2002.

[RXZO4I Ray, I., Xin, T., and Zhu, Y., Ensuring Task Dependencies During Work
flow Recovery. In Proceedings of the Ffteenth International Workshop
on Database and Expert Svstenzs Applications (DEXA ‘04), 24-33,
Zaragoza, Spain, September 2004. LNCS 3180.

[Sad99J Sadiq, S., Workflows in Dynamic Environments - Can they be Managed?
In Proceedings of the Second International Swnposium on Cooperative
Database Systems for Advcmced Applications (CODAS’99), 165-176,
Woollongong, Australia, March 1999.

[Sie961 Siebert, R., Adaptive Workflow for the German Public Administration. In
Proceedings of the Workshop on Adaptive Workflow at the First Interna
tional Conference on ProcticaÏ Aspects of Knowledge Management
(PAKM’96). Basel, Switzerland, 1996. On-tine at <http://
www .informatik.uni-stuttgart.de/ipvr/as/publikationen/S ieber96b.html>.

[Str99] Strobet, M., Effects of Electronic Markets on Negotiation Processes —

Evaluating Protocol SuitabUity. Tecïmical Report 93237, IBM, Zurich
Research Laboratory, Switzerland, 1999.

[SurOl] A Survey of Auctions (2001). On-une at <http://www.agorics.com/
Library/auctions.htmt>.

200

[SAA99] Sheth, A.P., van der Aalst, W., and Arpinar, I.B., Processes Driving the
Networked Economy. In IEEE Concurrency, 7(3):18-31, JuIy-September
1999.

[SL95J Sandholm T. and Lesser, V., Issues in Automated Negotiation and Elec
tronic Commerce: Extending the Contract Net Framework. In Proceed
ings of the First International Conference on Mutti-Agent Systems
(ICMAS’95), 328-335, San Francisco, CA, June 1995.

[SM000] Sadiq, S., Marjanovic, O., and Orlowska, M., Managing Change and
Time in Dynamic Workfiow Processes. The International Journal of Co
operative Information Systems, 9(1-2):93-116, 2000.

[S099a] Sadiq, S. and Orlowska. M.E., Architectural Considerations in Systems
Supporting Dynamic Workflow Modifications. In Proceedings of the
WorksÏzop oit Software Architectures for Business Process Management
at the]j” Conference on Advanced Infonnation Systems Engineering
(CaiSE’99), Heidelberg, Germany. June 1999. On-une at <http://
www.dstc.edu. aulpraxis/publications/ssadiq_sabpm_1 999.pdf>.

[S099b] Sadiq, W. and Orlowska, M.E., On capturhig Process Requirements of
Workflow Based Business Information Systems. In Proceedings of the
Th irci International Conference on Business Info onation Systems
(BIS’99). 195-209, Poznan, Poland, April 1999. (Springer-Verlag)

[SRK+01] Stricker, C.. Riboni, S., Kradolfer, M.. and Taylor, J., Market-based
Workflow Management for Supply Chains of Services. In Proceediitgs of
the 34thj Hawaii International Coiference on System Scie,, ces (HICSS
34), Maui, Hawaii, January 2001. On-une at <http://anaisoft.unige.chl
public-documents/deliverables/hicss3 3 .pdf>.

[SS951 Savelsbergh, M.W.P. and Sol, M., The General Pickup and Delivery
Problem. Transportation Science, 29:17-29. 1995. On-line at <http://
www .isye.gatech.edul—mwps/publications/ts29.pdf>.

[SSOOI] Sadiq, S., Sadiq, W., and Orlowska, M., Pockets of Flexibility in Work
flow Specifications. In Proceedings of the 2U” Inte,izationat Conference
on Conceptual Modeting (ER’Ol), 513-526, Yokohama, Japan, November
2001.

[TibO4] TIBCO Software Inc. (2004). On-une at <http://www.tibco.com>.

[TraO4] Transports Québec: Carte routière, les distances routières entre les princi
pales agglomérations (2004). On-hne at <http://www. mtq.gouv.qc.cal
images/informationlcarte_routiere/PDF/carton_les_distances.pdf>.

[Tri98j Trilling G., Génération automatique d’horaires de médecins de garde
pour l’hôpital Côte-des-Neiges de Montréal. Technical Report cRT-98-
05, Centre de Recherche sur les Transports, Université de Montréal, Ca
nada, January 1998.

[Tsa931 Tsang, E., Foundations of Constraint Satisfaction. Acadeinic Press, Lon
don and San Diego, 421 pp., 1993. ISBN 0-12-701610-4.

201

[TCD93J Taleb-Ibrahimi, M., de Castiiho, B., and Daganzo, C.F., Storage Space
Versus Handling Work h Container Terminais. Transportation Research
Part B: MethodoÏogicat, 27(1): 13-32, 1993.

[UMLO4] Unified Modeling Language Resource Center (2004). On-une at <http://
www-306.ibm.com/software/rationallumll>.

[VAO4I Verbeek, H.M.W. and van der Aalst, W.M.P., Woflan Home Page (2004).
On une at <http://tmitwww .tm.tue.nhlresearchlwoflanl>.

[VHAO2] Verbeek, H.M.W., Himschall, A., and van der Aalst, W.M.P.,
XRL/Flower: Supporting Inter-Organizationai Workflows Using
XML/Petri-net Technology. In Proceedings of tue Workshop on Web Ser
vices, e-Business, and the Semantic Web: fotindations, Modets, Architec
titre, Engineering and Semantic (WES’02) — HeÏd in conjunction with the
]4th Int’Ï Conf on Advances Information Systems Engineering
(CAiSE’02), 93-108, Toronto, Canada, May 2002. LNCS 2512.

[WatOl] Watts, A., Comparison of Staffware and MQ Series Workflow. White
Paper, Kraftware Systems Limited, July 2001. On une at <http://
www.kraftwaresystems. co.uk/pdf/staffware-mqseriesworkflowcomparison.pdf>.

[WebO4] BEA Systems — BEA WebLogic Integration (2004). On-une at <http://
www.beasys.com/products/weblogic/integration/index.shtml>.

[WesOl] Weske, M., Formai Foundation and Conceptuai Design of Dynamic Ad
aptations in a Workflow Management System. In Proceedings of the 34ul

Hawaii International Coiference on System Sciences (HICSS-34), Maui,
Hawaii, January 2001. On-une at <http://csdl.computer.org/comp/ pro
ceedings/hicss/200 1/0981/07/09817051 .pdf>.

{WfMC95J Workflow Management Coalition, The Workflow Reference Model.
WfMC-TC-1003, Version 1.1, January 1995. On-une at <http://
www.wfiT1c.org/standards/docs/tc003v11 .pdf>.

[WIMC97] Workflow Management Coaiition, Workflow Client Application (Inter
face 2) Application Programming Interface (WAPI) Naming Conven
tions. WFMC-TC-]013, Version 1.4, November 1997. On-une at <http://
www.wfmc.org/standards/docs/tc013v14a.pdf>.

[WfMC9$] Workflow Management Coalition, Workflow Management Application
Programming Interface (Interface 2&3) Specification. WFMC-TC-1009,
Version 2.0, July 1998. On-une at <http://www.wfmc.org/standards
docs/if2v20.pdf>.

[WfMC99aJ Workflow Management Coalition, Interface 1: Process Definition Inter-
change Process Modei. WfMC-TC-1016-P, Version 1.1, October 1999.
On-line at <http://www.wfmc.org/standards/docs/TC-1016-P_vi 1_IFI_
Process_definition_Interchange.pdf>.

[WfMC99b] Workflow Management Coalition, Terminology and Giossary. WFMC
TC-]O]1, Version 3.0, February 1999. On-lime at <http://www.wfmc.org/
standards/docs/TC- 101 1_term_glossary_v3 .pdf>.

202

[WfMCOIJ Workflow Management Coalition, Interoperabiity Workflow-XML
Bïnding, WFMC-TC-1023, Version 1.1, November 2001. On-une at
<http://www.wfmc.orglstandards/docs/Wf-XIvIL- 11 .pdb..

[WIMCO4] The Workflow Management Coalition (2004). On-fine at <http://
www.wfmc.org>.

[WARIAO4I Workflow and Reengineering International Association (2004). On-une at
<http://www.waria.com>.

[Wf-IF+95] Weil, G., lIeus, K., François, P., and Poujade, M., Constraint Program
ming for Nurse Scheduling. Engineering in Mediciize and Biotogy,
14(4):417-422, 1995.

[W198] Weber, M., Ilimaim, T., Using Java for the Coordination of Workflows in
the WWW. In Tagtrngsband der Fachtagung “htterakrion 1m Web — hi

novative Kommtmikationsfonnen”, Marburg, Germany, May 1998. On
une at <http://medien.informatik.uni-ulm.de/forschung/publikationenl in
teraktion9$.pdf>.

[WMW98I Weissenfels, J, Muth, P., and Weikum, G, Flexible Worktist Management
in a Light-Weight Workflow Management System. In Proceedings of the
Worksltop on Workflow Management Systems ctt the Sixth international
Conference on Extending Database Technologv (EDBT’98), 29-3$. Va
lencia, Spain, March 1998.

[WS97] Worah, D. and Sheth, A., Transactions in Transactional Workflows. In
Jajodia S. and Kerschberg, L (Eds.), Advanced Transaction Models and
Architectures, Chapter 1, 3-34, Kluwer Academic Publishers, 1997.

[WSCIO2] Web Services Choreography Interface 1.0 (2002). On-tine at <http://
www.w3.org/TR/wsci1>

[WSCLO2] Web Services Conversation Language 1.0 (2002). On-fine at <http://
www.w3.org/TR/wsc110/>.

[WSDLOIJ Web Services Description Language 1.1 (2001). On-line at <http:II
www.w3.org/TR/wsdl>.

{WSW+70] Wilson, N.H.M., Sussman, J.M., Wong, H.-K., and Higonnet, T., Sched
uling Algorithms for a Dial-A-Ride System. Technicat Report TR-70-]3,
Department of Civil Engineering, MIT, Cambridge, MA, 1970.

[WWW98Ï Wurman, P.R., Wellman, M.P., and Walsh, W.E., The Michigan Internet
AuctionBot: A Configurable Auction Server for Human and Software
Agents, In Proceedings of the Second intenzational Coiference on
Auto,zomous Agents, 301-30$, Mhrneapofis, MN, May 199$.

[W3C04J The World Wide Web Consortium (2004). On-une at <http://
www.w3.org>.

[XMLO4] Extensible Markup Language (2004). On-line at <http://www.w3.org/
XML>.

Appendix A Extending the Workflow Reference Model:

Workflow Management Applicatïon

Programming Interface Specifïcation

The Workflow Management Coalition [WfMCO4Ï has developed a standard general

model for Workflow Management Systems (WflVISs). This model, called the Workflow

Reference Mode! (WfRM) [WfMC95], does not support many of the concepts and the

functionality required by workflow-based comp!ex socio-technical systems. This appen

dix, based on [BRK+03], presents an extension of the WfRM in order to accommodate

these requirements. A compressed summary of the new or extended groups of operations

is first given in Section A.!. Then, a detailed summary of these groups, showing the sig

nature of each operation is given in Section A.2. In Section A.3, the detai!ed specifica

tion of the extended Workflow Management App!ication Programming Interface

(WAPI, Interfaces 1, 2 and 3) is presented. Sections A.4 and A.5 provides the WAPI

data types addendum and the WAPI error retum codes addendum.

A.1 Compressed Summary of the Groups of

Operations and Operatïons

Activity Control Functions (Interface 2&3)

WMOpenActivityTemplatesList: Specifies and opens query to produce a list of a!1 ac
tivity temp!ates that meet the setection criterion of the filter.

WMFetchActivityTemp!ate: Retums the next activity template from the set of activity
templates that met the selection criterion stated in the WMOpenActivïtyTemplatesList
cal!.

WMCloseActivityTemp!atesList: C!oses the query of activity templates.

II

WMGctActivityTemplate: Returns the activity template specified by its ID.

WMCreateActivitylnstance: Creates an activity instance from an activity template.

WMlnsertActivitylnstance: Inserts an activity instance between two groups of existing
activity instances.

WMDeleteActivitytnstance: Deletes an activity instance.

WMMoveActivitylnstance: Moves an existing activity instance from its original place
between two groups of activity instances.

WMAssignActivitylnstanceAttribute: Sets or changes attribute values.

WMlnsertActivitylnstanceAttribute: Inserts a new attribute into an activity instance.

WMDeleteActivitylnstanceAttnbute: Deletes an attribute assigned to an activity in
stance.

WMAssignActivitylnstanceParticipants: Assigns one or up to ten workflow partici
pants to an activity instance.

WMAssignActivitylnstanceDuration: Assigns a duration to an activity instance.

WMAssignActivitylnstanceTime: Assigns a (starting, finishing) time to an activity in
s tance.

WMAssignActivitylnstanceWUT: Assigns a warm-up duration to an activity instance.

Process Control Functions (Interface 2&3)

WMKecpProcesslnstance: Stores the process definition corresponding to a modified
process instance.

WMlnsertProcesslnstance: The process instance provided is inserted into another
process instance as a sub-workflow.

Work-list/Work-item Handling Functions (Interface 2&3)

WMReassignWorkltem: Reassigns a work-item from one workflow participant’s
work-list to another workflow participant’s work-tist.

WMAssignWorkltemAttribute: Sets or updates the value of an attribute of a work
item.

WMDcleteWorkltem: Deletes a work-item in a given work-list.

III

Classification Cateorv Definition Functions (New - Interface 1)

WMCreateClassificationCategory: Creates a new classification category.

WMDeleteClassificatïonCategory: Deletes a classification category.

Activity Template Modeling Functions (New - Interface 1)

WMCreateActîvîtyTemplate: Creates an “empty” new activity template.

WMOpenActivityTemplate: Prepares for editing of an activity template.

WMCloseActivityTemplate: Allows the system to free up any resources that are main
tained to handie the activity template.

WMAssignActivityTemplateClassificafionCategory: Assigns an activity template to a
classification category.

WMDetractActivityTemplateCtassificationCategory: Detracts an activity tempÏate
from a classification category.

WMDeleteActivityTemplate: Deletes an activity template.

Activitv Template Attribute Manipulation Functions (New - Interface 1)

WMAssignActivityTemplatcAttributc: Sets an attribute of an activity template.

WMlnsertActivityTemplateAttribute: Inserts a new attribute into an activity template.

WMDeleteActivityTemplateAttribute: Detetes an attribute assigned to an activity
template.

WMAssignActivityTemplateParticipants: Assigns one or up to ten workflow partici
pants to an activity template.

WMAssignActivityTemplateDuration: Assigns a duration to an activity template.

WMAssignActivityTemptateTime: Assigns a (starting, fmishing) time to an activity
template.

WMAssignActivityTemplateWUT: Assigns a warm-up duration to an activity tem
plate.

Iv

Process Modeling Functions (Interface 1)

WMAssignProcDefClassificationCategory: Assigns a process definition to a classifi
cation category.

WMfletractProcDefClassificationCategory: Detracts a process definition from a clas
sification category.

A.2 Detailed Summary of the Groups of Operations

and Operations

Activïty Control Functions (Interface 2&3)

WMErrRetType WMOpenActivityTcmplatesList (
II Specifies and opens query to produce a list of ail activity templates that meet the selec
tion criterion of the filter.

in WMTPSessionHandle psession_handie,
in WMTPFilter pactivity_tempiate_fiiter,
in WMTBoolean count_flag,
ont WIvITPQueryHandle pqucry_handie,

WMTPInt32 pcount
)

WMErrRetType WMfetchActivityTemplate (
II Retums the next activity template from the set of activÏty templates that met the selec
tion criterion stated in the WMOpenActivityTemplatesList cail.

in WMlPSessionHandle psession_handle,
WMTPQueryHandle pquery_handle,
WMTPActivityTemplate pactïvity_template_buf_ptr

WMErrRetType WMCioseActivityTemplatesList (
II Closes the query of activity templates.

in WMTPSessionHandte psession_handie,
in WMTPQueryHandle pquery_handle,
)

WtvlErrRetType WMGetActivityTemplate t
II Retums the activity template specifled by its ID.

in WMTPSessionHandle psession_handie,
in WIVITText activity_template_name,

WMTPActivityTemplatelD pactivïty_template_ID,

V

WMTErrRetType WMCreateActïvitylnstance (
II Creates an activity instance from an activity template.

in WMTPSessionHandle psession_handie,
j WlVlTPActivityTemplatelD pactivity_template_ïd,

WMTPActivitylnstancelD pactivity_instance_id
)

WMTErrRetType WMlnsertActivitylnstance (
II Inserts an activÏty instance between two groups of existing activity instances.

in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_instjd,
i,z WMTPActivitylnstlD pactivity_instance_id,
in WMTPActivitylnstlD[J pbefore_activity_inst_id,
in WMTPActivitylnstlD[] pafter_activity_inst_id
)

WMTErrRetType WMDeleteActivitylnstance t
II Deletes an activity instance.

in WMTPSessionHandle psession_handie,
in WlvITPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id

)

WMTErrRetType WMMoveActivitylnstance (
II Moves an existing activity instance from its original place between two groups of ac
tivity instances.

in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id,
in WJVITPActivityInstID[1 pbefore_activity_inst_id,
in WMTPActivitylnstlD[] pafter_activity_inst_id

)

WIvITErrRetType WMAssignActivitylnstanceAttribute (
II Sets or changes attribute values.

in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value

)

VI

WMTErrRetType WMlnsertActivitylnstanceAttribute (
II Inserts a new attribute hito an activity instance.

in WMTPSessionHandle psession_handic,
in WMTPProcTnstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_instjd,
in WMTPAttrName pattribute_name,
n WMTInt32 attribute_type,

in WMTInt32 attribute_Iength
)

WIvITErrRetType WMDeleteActivitylnstanceAttribute (
/7 Deletes an attribute assigned to an activity instance.

LLt WfVlTPSessionHandle psessionhandie,
in WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id,

WMTPAttrName pattribute_name

WMTErrRetType WMAssignActïvitylnstanceParticipants (
II Assigns one or up to ten workflow participants to an activity instance.

in WTvllPSessionHandle psession_handie,
in WMTPWflParticipant[j pparticipants[1O],
in WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id
)

WMTErrRetType WMAssignActivitylnstanceDuration(
II Assigns a duration to an activity instance.

in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,

WMTPActivitylnstlD pactivity_inst_id,
in WMTInt32 duration_limit_type,

WMTPIntI6 pduration_value
)

WMTErrRetType WMAssignActivitylnstanceTime(
II Assigns a (starting, finishing) time to an activity instance.

in WrvlTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id,
j WtVITInt32 time_period_type,

WJVITPDate ptime_value
)

VII

WlvllErrRetType WMAssignActivitylnstanceWUT(
II Assigns a warm-up duration to an actïvity instance.

in WMTPSessionHandle psessionhandle,
j WMTPProcInstID pproc_inst_ïd,

WMTPActivitylnstlD pactivity_inst_id,
in WMTInt32 wut_limit_type,
in WMTPIntI6 pwutvalue
)

Process Control Functions (Interface 2&3)

WIvITEnRetType WMKeepProcesslnstance t
II Stores the process definition correspondiiig to a modified process instance.

in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,
ont WMTPProcDeflD pproc_def_id

WMTErrRetType WMlnsertProcesslnstance (
II The process instance provided is inserted into another process instance as a subwork
flow.

in WlvlTPSessionHandle psession_handie,
in WMTPProcInstID phost_proc_inst_id,

WMTPProcInstID pinsert_proc_inst_id,
in WMTPActivitylnstlD[j pbefore_activity_instjd,
in WMTPActivitylnstlD[J pafter_activity_inst_id

Work-list/Work-itcm Handling Functions (Interface 2&3)

WMTErrRetType WMReassignWorkltem (
II Reassigns a work-itern ftom one workflow participant’s work-list to another workflow
participant’ s work-list.

j WMTPSessionHandle psession_handie,
in WMTPWflParticipant psource_user,

WMTPWflParticipant ptarget_user,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_itemjd

WMTErrRetType WMAssignWorkltemAttribute t
II Sets or updates the value of an attribute of a work-item.

in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id
in WIVITPAttrName pattribute_name,

VIII

in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value
)

WMTEnRetType WrvlDeleteWorkltem (
II Detetes a work-item in a given work-Iist.

in WlvlTPSessionHandle psession_handie,
iii WMTPProcInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id
)

Classification Category Definition Functions (New - Interface 1)

WMErrRetType WMCreateClassificationCategory (
II Creates a new classification category.

in WMTPSessionHandle psession_handie,
in WIvITText classification_category_name,
out WMTPClassiflcationCategorylD pclassification_category_id

WIVIErrRetType WMDeleteClassificationCategory (
II Detetes a classification category.

in WMTPSessionHandle psession_handie,
in WMTPClassificationCategorylD pclassification_category_id
)

Activity Template Modeling Functions (New - Interface 1)

WMErrRetType WMCreateActivityTemplate (
II Creates an “empty” new activity template.

in WMTPSessionHandle psession_handle,
in WMTName activity_template_name,
oui’ WlvlTPActivityTemplatelD pactivity_template_id

WMErrRetType WMOpenActivityTemplate (
II Prepares for editing of an activity template.

ni WMTPSessionHandle psession_handie,
in WMTPActivityTemplate pactivity_template,

WMTPEntity pactivity_template_handle
)

WMEnRetType WMCloseActivitylemplate (
II Allows the system to ftee up any resources that are mairitained to handie the activity
temptate.

Ix

in WMTPSessionHandle psession_handie,
in WMTPEntity pactivity_template_handle

WMTErrRctType WMAssignActivityTemplateClassificationCategory (
II Assigns an activity template to a classification category.

in WMTPSessionHandle psession_handle,
in WtvlTPActivityTemplatelD pactivity_templatejd,
in WMTPClassificationCategorylD pclassification_category_id

WMTErrRetType WMDetractActivitylemplateClassificationCategory (
II Detracts an activity template from a classification category.

n WMTPSessionHandle psession_handie,
in WMTPActivityTemplatelD pactivity_template_id,
in WMTPClassificationCategorylD pclassification_category_id

WMErrRetType WMDeleteActivityTemplate (
II Deletes an activity template.

in WMTPSessionHandle psession_handie,
in WMTPActivityTemplatelD pactivity_template_id

Activity Template Attribute Manipulation Functions (New - Interface 1)

WMTErrRetType WMAssignActivityTemplateAttnbute (
II Sets an attribute of an activity template.

in WMTPSessionHandle psession_handie,
in WMTPActivityTemplate pactivity_template.
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattnbute_value
)

WJvITErrRctType WMlnsertActivitylemplateAttnbute (
II Inserts a new attribute into an activity template.

in WMTPSessionHandle psession_handle,
in WMTPActivityTemplatelD pactivity_temptate_id,
in WMTPAttrName pattnbute_name,
in WMTInt32 attribute_type,
in WMTInt32 attnbute_length
)

X

WIvITEnRetType WMDeleteActivityTemplateAttribute (
II Deletes an attribute assigned to an activity template.

in WMTP$essionHandle psession_handie,
WlVlTPActivityTemplatelD pactivity_template_id,

in WMTPAttrName pattribute_name
)

WMTErrRetType WMAssignActivityTemplatcParticipants (
II Assigns one or up to ten workflow participants to an activity template.

in WMTPSessionHandle psession_handie,
in WlVlTPWflParticipant{] pparticipants1OJ,
in WMTPActivityTemplatelD pactivity_tcmplate_id

WJvlTErrRetType WMAssignActivityTemplateDuration (
II Assigns a duration to an activïty template.

WMTPSessionHandle psession_handie,
WMTPActivityTemplatelD pactivity_template_id,

in WMTInt32 duration_limit_type,
n WMTPIntI6 pduration_value

)

WMTErrRetType WMAssignActivityTemplateTime (
II Assigns a (starting, finishing) time to an activity template.

in WMlPSessionHandle psession_handie,
in WMTPActivityTemplatelD pactivity_template_id,
in WIVITInt32 time_period_type,
in WMTPDate ptime_value
)

WMTEnRetType WMAssignActivityTemplateWUT (
II Assigns a warm-up duration to an activity template.

in WMTPSessionHandle psession_handie,
in WMTPActivityTemplatelD pactivity_template_id,
in WMTInt32 wut_limit_type,
in WMTPIntI6 pwut_value

)

Proccss Mode1in Functions (Interface 1)

WJvITEnRetType WMAssignProcDefClassificationCategory
II Assigns a process definition to a classification category.

in WMTPSessionHandle psession_handie,
in WMTPProcDeflD pproc_defjd,
in WMTPClassifictionCategorylD pclassification_category_id
)

WMTErrRetType WMDetractProcDefClassifictionCategory (
II Detracts a process defmition from a classification category.

WMTPSessionHandle psession_handie,
in WMTPProcDeflD pproc_def_id,
in WlvlTPClassificationCategorylD pclassification_category_id
)

XI

XII

A.3 Description of the Extended WAPI Specificatïon

A.3.J Inserting Activities

WMOpenActivityTemplatesList
(belongs to WAPI Activity Control Functions)

NAME

WMOpenActivityTemplatesList — Specifies and opens query to produce a list of ail
activity templates that meet the selection criterion of the filter.

DESCRIPTION

WMEnRetType WMOpenActivityTemplatesList (
in WMTPSessionHandle psession_liandie,
in WMTPFi1ter pactivity_template_filter,
in WMTBoolean count_flag,
out WMTPQueryHandle pqueryjandle,
out WMTPInt32 pcount
)

Argument Name Description

psession_liandie Pointer to a structure containing information about the
context for this action.

pactivity_template_fitter Filter associated with the activity templates.
count_flag Boolean flag that indicates if the total count of activity

templates should be returned.
pquery_handle Pointer to a structure containing a unique query informa

tion.
pcount Total number of activity templates that fulfil the filter

condition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER

XIII

WMFetchActivityTemplate
(belongs to WAPI Activity Control Functions)

NAME

WMFetchActivityTemplate — Retums the next activity template from the set of activity
templates that met the selection criterion stated in the WMOpenActivityTemplatesList
cali.

DESCRIPTION

WMErrRetType WMfctchActivityTemp]ate (
in WlVlTPSessionHandle psession_handie,
in WIvITPQueryHandle pquery_handle,
out WMTPActivityTemplate pactivity_template_buf_ptr
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pquery_handle Identification of the specific query handie returned by the
WMOpenActivityTemplatesList query command.

pactivity_template_buf Pointer to a buffer area provided by the client application
where the activity template structure will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_NO_MORE_DATA

XIV

WMCloseActivityTemplatesList
(belongs to WAPI Activity Control Functions)

NAME

WMCloseActivityTemplatesList — Closes the query of activity templates.

DESCRIPTION

WMErrRetType WMCloseActivityTemplatesList (
in WMTPSessionHandle psession_handie,
in WMTPQueryHandle pquery_handle,

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pquery_handle Identification of the specific query handie returned by the
WMOpenActivityTemplatesList query command.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE

xv

WMGetActivitylemplate
(belongs to WAPI Activity Control Functions)

WMGetActivityTemplate — Retums the activÏty template specified by its ID.

DESCRIPTION

WMErrRetType WMGetActivityTemplate (
in WlvlTPSessionHandle psession_handie,
in WMTText activity_template_name,
oui’ WMTPActivityTemplatelD pactivity_templatejD,
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pactivity_template_name The name of the activity instance requested.
pactivity_template_id Pointer to the ID of the activity template requested.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ ACTIVITY_TEMPLATE_NAME

xv’

WMCreateActivitylnstance
(belongs to WAPI Activity Control Functions)

NAME

WMCreateActivitylnstance — Creates an activity instance from an activity template.

DESCRIPTION

WMTErrRetType WMCreateActivitylnstance (
in WMTPSessionHandle pscssion_handle,
in WMTPActivityTemplatelD pactivity_template_id,
oui’ WMTPActivitylnstancelD pactivity_instance_id
)

Argument Name Description

psession_handie Pointer to a structure containing information about
the context for this action.

pactivity_template_id Pointer to the ID of the activity template to be in
stantiated.

pactivity_instance_id Pointer to the ID of the activity instance that is cre
ated.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ ACTIVITY_TEMPLATE

XVII

WMlnsertActivitylnstance
(belongs to WAPI Activity Control Functions)

NAME

WMlnsertActivitylnstance — Inserts an activity instance between two groups of exist
ing activity instances.

DESCRIPTION

WMTErrRetType WMlnsertActivitylnstance (
in WMTPSessionHandle psession_handie,
in WMTPProcInstID pprocjnst_id,
in WMTPActivitylnstlD pactivity_instance_id,
in WMTPActivitylnstlD[J pbefore_activity_inst_id,
in WMTPActivitylnstlD[1 pafter_activity_inst_id

)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the activity template ID that is to be inserted.
pbefore_activity_inst_id[] Pointer anay to the activity instance IDs that are deter

mined to be before the newly inserted activity instance.
pafter_activity_inst_id[] Pointer array to the activity instance IDs that are deter

mined to be afier the newly inserted activity instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALIDPROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_BEFORE_ACTIVITY_INSTANCE
WM_INVALID_AFrER_ACTIVITY_INSTANCE

XVIII

WMCreateActivityTemplate (Interface 1)
(belongs to Activity Temptate Modeffing Functions in Interface 1)

NAME

WMCreateActivityTemplate — Creates an “empty” new activity template.

DESCRIPTION

WMErrRetTypc WMCreateActivityTemplate (
in WMTPSessionHandle psession_handie,
in WMTName activity_template_name,
out WMTPActivityTemplatelD pactivity_template_id

Argument Description

psession_handie Pointer to the structure with the session information cre
ated by a cal! to WMConnect.

activity_template_name The name for the template that is being created.
pactivity_template_id Pointer to the new activity template ID for the activity

template created.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE

XIX

WMOpenActivityTemplate (Interface 1)
(belongs to Activity TempÏate ModelÎing Functions in Interface 1)

NAME

WMOpenActivityTemplate — Prepares for editing of an activity template.

DESCRIPTION
This command telis the Enactment Service to prepare for editing of the specified activity
template.

WMErrRetType WMOpenActivitylemplate (
in WMTPSessionHandle psession_handie,
in WlvlTPActivityTemplate pactivity_template,
out WMTPEntity pactivity_template_handle

)

Argument Description

psession_handie Pointer to the structure with the session information cre
ated by a cali to WMConnect.

pactivity_template Pointer to a structure containing the activity template to be
edited.

pactivityjemplate_handie Pointer to a buffer which wilI receive the entity represent
iiig the activity template.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE

xx

WMCloseActivityTemplate (Interface 1)
(belongs to Activity Template Modeffing Functions ii Interface I)

NAME

WMCtoseActivityTemplate — AIlows the system to ftee up any resources that are
maiiitained to handie the activity template.

DESCRIPTION

WMErrRetType WMCloseActivityTemplate (
in WMTPSessionHandle psession_handie,
in WMTPEntity pactivity_template_handle

Argument Description

psession_handie Pointer to the structure with the session information cre
ated by a cali to WMConnect.

pactivity_template_handle Pointer w a buffer which receives the contents of the activ
ity template. It is assumed that the entity representing the
activity template becomes inaccessible once the activity
template is closed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALTDSESSION_HANDLE

xx’

WMCreateClassificationCategory (Interface 1)
(belongs to Classification Category Definition Functions in Interface 1)

NAME

WMCreateClassificationCategory
— Creates a new classification category.

DESCRIPTION

WMErrRetlype WMCreatcClassificationCategory t
in WMTPSessionHandle psession_handte,
in WMTText classification_category_name,
oui’ WMTPClassificationCategorylD pclassification_category_id
)

Argument Description

psession_handle Pointer to the structure with the session informa
tion created by a calI to WMConnect.

classification_category_name The name for the classification category that is be
ing created.

pclassification_category_id Pointer to the new classification category ID for
the classification category created.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE

XXII

WMDeleteClassificationCategory (Interface 1)
(belongs to Classification Category Defhiition Functions in Interface 1)

NAME

WMDeleteClassificationCategory — Deletes a classification category.

DESCRIPTION

WMErrRetType WMDeleteClassificationCategory (
in WMTPSessionHandle psession_handie,
in WMTPClassificationCategorylD pclassification_category_id
)

Argument Description

psession_handie Pointer to the structure with the session information cre
ated by a cali to WMConnect.

pclassification_category_id Pointer to the classification category ID for the classifica
tion category to be deleted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_CLASSIFICATION_CATEGORY

XXIII

WMAssignActivityTemplateClassificationCategory (Interface 1)
(belongs to WAPI Activity Template Modelling Functions)

NAME

WMAssignActivitylernp]ateClassificationCategory
— Assigns an activity template to

a classification category.

DESCRIPTON

Note that this function can be executed repeatedly to assign an activity template to more
than one classification category.

WMTErrRetType WMAssignActivityTemplateClassificationCategory (
in WMTPSessionHandle psession_handie,
in WMTPActivityTemplatelD pactivity_template_id,
n WMTPClassificationCategorylD pclassification_category_id

)

Argument Name Description

psession_handle Pointer to a structure containing information about
the context for this action.

pactvity_template_id Pointer to the ID of the activity template that is to
be assigned to a classification category.

pclassification_category_id Pointer to the ID of the classification category to
which the activity template is to be assigned.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_INVALID_CLASSIFICATION_CATEGORY

XXIV

WMDetractActivityTemplateClassificationCategory (Interface 1)
(belongs to WAPI Activity Template Modelling Functions)

NAME

WMDetractActivityTemplateClassificationCategory — Detracts an activity template
from a classification category.

DESCRIPTION

WMTErrRetType WMDetractActivityTemplateClassificationCategory (
in WMTPSessionHandle psession_handie,
in WMTPActivityTemplatelD pactivity_template_id,
in WMTPClassificationCategorylD pclassification_category_id

Argument Name Description

psession_handie Pointer to a structure containing information about
the context for this action.

pactvity_template_id Pointer to the ID of the activity template that is to
be detracted from a classification category.

pclassification_category_id Pointer to the ID of the classification category from
which the activity template is to be detracted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_INVALID_CLASSIfICATION_CATEGORY

xxv

WMAssignProcflefClassificationCategory (Interface 1)
(belongs to WAPI Process Modelling Functions)

NAME

WMAssignProcDefClassificationCategory — Assigns a process defmition to a classifi
cation category.

DESCRIPTON

Note that this function can be executed repeatedly to assign a process definition to more
than one classification category.

WMTEnRetType WMAssignProcDefClassificationCategory (
in WMTPSessionHandle psession_handie,
iii WMTPProcDeflD pproc_def_id,
in WMTPClassificationCategorylD pclassification_category_id
)

Argument Name Description

psession_handie Pointer to a structure containing information about
the context for this action.

pproc_def_id Pointer to the ID of the process definition that is to
be assigned to a classification category.

pclassification_category_id Pointer to the ID of the classification category to
which the process definition is to be assigned.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCES S_DEFINITION
WM_INVALID_CLASSWICATION_CATEGORY

XXVI

WMDetractProcDcfClassificationCategory (Interface 1)
(belongs to WAPI Process Modelling Functions)

NAME

WMDetractProcDefClassificationCategory — Detracts a process definition from a
classification category.

DESCRIPTION

WMTErrRetType WMDetractProcDefClassificationCategory (
in WlvlTPSessionHandle psession_handie,

WMTPProcDeflD pproc_def_id,
WMTPClassificationCategorylD pclassification_category_id

)

Argument Name Description

psession_handie Pointer to a structure containing information about
the context for this action.

pproc_def_id Pointer to the ID of the process definition that is to
be detracted from a classification category.

pclassification_category_id Pointer to the ID of the classification category from
which the process definition is to be detracted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCES S_DEFINITION
WM_INVALID_CLASSIFICATION_CATEGORY

XXVII

A.3.2 Deleting Activities and Templates

WMDeleteActivitylnstance
(belongs to WAPI Activity Control Functions)

NAME

WMDeleteActivitylnstance - Deletes an activity instance.

DESCRIPTION

WMTErrRetType WMDeleteActivitylnstance (
in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,

WMTPActivitylnstlD pactivity_ïnst_id)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance that is to be de
leted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_TNVALID_ACTIVITY_INSTANCE

Note: More ERROR RETURN VALUE to be added. E.g., Detect the deletion of an
activity instance providing an attribute that is required by another activity instance in the
process instance.

XXVIII

WMDeleteActivityTemplate (Interface 1)
(belongs to Activity Template Modelling Functions hi Interface 1)

NAME

WMDeleteActivityTemplate — Deletes an activity template.

DESCRIPTION

WlvlErrRetType WMDeleteActivityTemplate (
in WMTPSessionHandle psession_handie,
in WMTPActivityTemplatelD pactivity_template_id
)

Argument Description

psession_handie Pointer to the Structure with the session information cre
ated by a eau to WMConnect.

pactivity_template_id Pointer to the activity template ID for the activity template
to be deÏeted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE

XXIX

A.3.3 Moving Activïty Instances

WMMoveActivitylnstance
(belongs to WAPI Activity Control Functions)

NAME

WMMoveActivitylnstance — Moves an existing activity instance from its original place
between two groups of activity instances.

DESCRIPTION

WMTErrRetType WMMoveActivitylnstance t
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
iz WIvITPActivityInstID pactivity_inst_id,
in WMTPActivitylnstlD[] pbefore_activity_inst_id,
in WMTPActivitylnstlD[J pafter_activity_inst_id
)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance that is to be
moved.

pbefore_activity_inst_id Pointer to the activity instance ID which is determiried to
be before the moved activity instance.

pafter_activity_inst_id Pointer to the activity instance ID which is determined to
be afier the moved activity instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVAUD_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITYJNSTANCE
WM_INVALTD_BEFORE_INSTANCES
WM_INVALID.AFTER_INSTANCES

xxx

A.3.4 Seuing and Updating Attrïbute Values

WMAssignActivitylnstanceAttribute (afready existing in [WfMC98I, p. 52)
(belongs to WAPI Activity Control Functions)

NAME

WMAssignActivitylnstanceAttribute — Sets or changes attribute values.

DESCRIPTION

WMTErrRetType WMAssignActivitylnstanceAttnbute (
in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id,
in WMTPAttrName pattribute_name,
in WIVITInt32 attributc_type,
in WMTInt32 attnbute_length,
in WMTPText pattnbute_value
)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance for which the at
tribute will be assigned.

pattribute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attnbute_length Length of the attribute value.
pattnbute_value Pointer to a buffer area where the attribute value will be

placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED

XXXI

WMAssignActivityTemplateAttributeValue (Interface 1)
(belongs to WAPI Activity Template Manipulation Functions)

NAME

WMAssignActivityTemplateAttributeValue
- Sets an attribute of an activity template.

DESCRIPTION

WMTEnRetType WMAssignActivityTemplateAttribute (
in WMTPSessionHandle psession_handie,
in WMTPActivityTemplate pactivity_template,

WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WTVITInt32 attribute_length,
in WMTPText pattribute_value

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pactivity_template Pointer to a structure containing the activity template ftom
which the attribute is being retrieved.

pattnbute_name Pointer to the name of the attribute to put the value into.
attribute_type Type of the attribute.
attribute_length Length of the attribute value.
pattnbute_value Pointer to a buffer area where the attribute value wilI be

placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_INVALTD_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED

XXXII

A3.5 Insertïng Attributes

WMlnsertActivitylnstanceAttribute
(belongs to WAPI Activity Control Functions)

NAME

WMlnsertActivitylnstanceAttribute — Inserts a new attribute iiito an activity instance.

DESCRIPTION

WMTErrRetType WMAssignActivitylnstanceAttribute (
in WMTPSessionHandle psession_handie,
in WIvITPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute type,

WMTInt32 attribute_length

)

Argument Name Description

psession_handie Pointer to a structure containing information about the context for
this action.

pproc_inst_id Pointer to a structure containing the unique process instance ID.
pactivity_inst_id Pointer to a structure containing the activity instance identification

for which the attribute wilI be assigned.
pattnbute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attnbute_length Length of the attribute value.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVAUD_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_INSERTION_FAILED

XXXIII

WMlnsertActivityTemplateAttribute (Interface 1)
(belongs to WAPI Activity Template Manipulation Functions)

NAME

WMlnsertActivityTemplateAttribute — Insert a new attribute into an activity template.

DESCRIPTION

Note that at the moment only fully specified attributes (name, type and length) can be
inserted into an activity template.

WMTErrRetType WMlnsertActivityTemplateAttribute (
in WMTPSessionHandle psession_handle,
in WMTPActivityTemplatelD pactivity_template_id,
in WMTPAttrName pattnbute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pactivity_template_id Pointer to a structure containing the activity template iden
tification for which the attribute will be assigned.

pattnbute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attnbute_length Length of the attribute value.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_INSERTION_FMLED

XXXIV

A.3.6 Deleting Attributes

WMfleleteActivitylnstanceAttribute
(belongs to WAPI Activity Control Functions)

NAME

WMDeleteActivitylnstanceAttnbute — Deletes an attribute assigned to an activity in
stance.

DESCRIPTION

WMTErrRetType WMDeleteActivitylnstanceAttribute (
in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,
in WlVITPActivityInstID pactivity_inst_id,
in WMTPAttrName pattribute_name

Argument Name Description

psession_handie Pointer to a structure containing friformation about the
context for this action.

pprocjnst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance the attribute is
assigned to.

pattribute_name Pointer to the name of the attribute to be deleted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_ATTRIBUTE

xxxv

WMDeleteActivityTemplateAttribute (Interface 1)
(belongs to WAPT Activity Template Manipulation Functions)

NAME

WMDeleteActivityTemplateAttribute — Deletes an attribute assigned to an activity
template.

DESCRIPTION

WMTEnRetType WMDeleteActivityTemplateAttnbute (
in WMTPSessionHandle psession_handle,
in WMTPActivityTemplatelD pactivity_template_id,
in WMTPAttrName pattnbute_name

)

Argument Name Description

psession_handle Pointer to a structure containhig information about the
context for this action.

pactivity_template_id Pointer to the ID of the activity template the attribute is
assigned to.

pattnbute_name Pointer to the name of the attribute to be deleted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVAUDACTIVITY_TEMPLATE
WM_INVALID_ATTRIBUTE

xxxv’

A.3.7 RoIe/User Assignment

WMAssignActivitylnstanceParticipants
(belongs to WAPI Activity Control Functions)

NAME

WMAssignActivitylnstanceParticipants — Assigns one or up to ten workflow partici
pants to an activity instance.

DESCRIPTION

WMTEnRetType WMAssignActivitylnstanceParticipants (
in WMTPSessionHandle psession_handie,
in WMTPWflParticipant[1 pparticipants[1O],
in WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pparticipants[1O] The identification of the workflow participant(s) who are
to be assigned.
A fleld of the array is NULL for every participant Iess than
‘o.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance to which the par
ticipant(s) are to be assigned.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVTTY_INSTANCE
WM_INVALID_WORKFLOW_PARTICIPANT

xxxv”

WMAssignActivityTemplateParticipants (Interface 1)
(belongs to WAPI Activity Template Manipulation Functions)

NAME

WMAssignActivityTemplateParticipants — Assigns one or up to ten workflow partici
pants to an activity template.

DESCRIPTION

WMTErrRetType WMAssignActivityTemplateParticipants (
in WMTPSessionHandle psession_handie,

WMTPWflParticipant[1 pparticipants[1O],
WMTPActivityTemplatelD pactivity_template_id

)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pparticipants[1O] The identification of the workflow participant(s) who are
to be assigned.
A field of the array is NULL for every participant less than
10.

pactivity_template_id Pointer to the ID of the activity template to which the par
ticipant(s) are to be assigned.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_TNVALIDACTTVTTY_TEMPLATE
WM_INVALID_WORKFLOW_PARTICIPANT

xxxv”

A.3.8 Tïme Attributes Assignment

WMAssignActivitylnstanceDuration
(belongs to WAPI Activity Control Functions)

NAME

WMAssignActivitylnstanceDuration — Assigns a duration to an activity instance.

DESCRIPTION

WIvITErrRetType WMAssignActivitylnstanceDuration t
in WlVlTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id,
in WMTInt32 duration_limit_type,
in WMTPIntI6 pduration_value
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance to which the dura
tion is to be assigned.

duration_limit_type Limit type of the duration, minimum or maximum duration.
pduration_value Pointer to a buffer area where the duration value will be

placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_DURATION_ASSIGNMENT_FMLED

XXXIX

WMAssignActivitylnstanceTime
(belongs to WAPI Activity Control Functions)

NAME

WMAssignActivitylnstanceTime — Assigns a (starthig, fmishing) time to an activity
instance.

DESCRIPTION

WMTErrRetType WMAssignActivitylnstanceTime t
in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id,
in WMTInt32 time_period_type,
in WMTPDate ptime_value
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pprocjnst_id Pointer to a structure containing a unique process instance
ID.

pactivityjnst_id Pointer to the ID of the activity instance to which the time
is to be assigned.

time_period_type Period type of the time, eartiest%atest starting/finishing
time.

ptime_value Pointer to a buffer area where the time value will be
placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_TIME_ASSIGNMENT_FAILED

XL

WMAssignActivitylnstanceWUT
(belongs to WAPI Activity Control functions)

NAME

WMAssignActivitylnstanceWUT — Assigns a warm-up duration to an activity in
stance.

DESCRIPTION

WMTErrRetType WMAssignActivitylnstanceWUT (
in WMTPSessionHandle psession_handie,

WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstlD pactivity_inst_id,
in WlVITInt32 wut_limit_type,
in WMTPIntI6 pwut_value
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance to which the
warm-up duration is to be assigned.

wutjimit_type Limit type of the duration, minimum or maximum warm-up
duration.

pwut_value Pointer to a buffer area where the warm-up duration value
will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_WUT_ASSIGNMENT_FAILED

XLI

WMAssignActivityTemplateDuration (Interface 1)
(belongs to WAPI Activity Template Attribute Manipulation Functions)

NAME

WMAssignActivityTemplateDuration — Assigns a duration to an activity template.

DESCRIPTION

WMTErrRetType WMAssignActivityTemplateDuration (
in WMTPSessionHandle psession_handie,
in WMTPActivityTemplatelD pactivity_template_id,
in WMTInt32 duration_limit_type,
in WIVITPInt16 pduration value
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pactivity_template_id Pointer to a structure containing the activity template iden
tification for which the duration will be assigned.

duratïon_limit_type Limit type of the duration, minimum or ,naiinttm duration.
pduration_value Pointer to a buffer area where the duration value witl be

placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVAUD_ACTIVITY_TEMPLATE
WM_DURATION_ASSIGNMENT_FAILED

XLII

WMAssignActivityTemplateTime (Interface 1)
(belongs to WAPI Activity Template Attribute Manipulation Functions)

NAME

WMAssignActivityTemplateTime — Assigns a (starting, finishiig) time to an activity
template.

DESCRIPTION

WMTErrRetType WMAssignActivityTemplateTime (
WMTPSessionHandle psession_handie,

in WlvlTPActivityTemplatelD pactivity_template_id,
in WMTInt32 time_period_type,
in WMTPDate ptime_value

)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pactivity_template_id Pointer to a structure containing the activity template iden
tification for which the time will be assigned.

time_period_type Period type of the time, eartiest/latest starting/finishing
time.

ptime_value Pointer to a buffer area where the time value will be
placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_TIME_ASSIGNMENT_FAILED

XLIII

WMAssignActivityTemplateWUT (Interface 1)
(belongs to WAPI Activity Template Attribute Manipulation Functions)

NAME

WMAssignActivityTemplateWUT — Assigns a warm-up duration to an activity tem
plate.

DESCRIPTION

WMTErrRetType WMAssignActivityTemplateWUT (
in WlVlTPSessionHandle psession_handie,
in WlVlTPActivityTemplatelD pactivity_template_id,

WMTInt32 wut_limit_type,
in WMTPInt16 pwut_value
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pactivïty_template_id Pointer to a structure containing the activity template iden
tification for which the warm-up duration will be assigned.

wut_limit_lype Limit type of the duration, minimum or maximum warm-up
duration.

pwut_value Pointer to a buffer area where the warm-up duration value
wiIl be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_WUT_ASSIGNMENT_FMLED

XLIV

A.3.9 Keepïng Modified Process Instances

WMKeepProcesslnstance
(belongs to WAPI Process Control Functions)

NAME

WMKeepProcesslnstance — Stores the process defmition corresponding to a modified
process instance.

DESCRIPTION

WMTEnRetType WMKeepProcesslnstance t
in WlVlTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
out WMTPProcDeflD pproc_def_id
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pproc_ïnst_id Pointer to a structure containing a unique process instance
ID.

pproc_def_id Pointer to the ID of the new process definition.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
Note: Is it possible that the process definition could not be created for another reason?

XLV

A.3.JO Inserting Sub-Workflows

WMlnsertProclnstance
(belongs to WAPI Process Control Functions)

NAME

WMlnsertProclnstance — The process iiistance provided is inserted into another proc
ess instance as a subworkflow.

DESCRIPTION

Note that the process instance has to start with a single start activity and end with one
single end activity.
One single activity that represents both the start and the end activity is also allowed.

WMTEnRetType WMlnsertProcesslnstance (
in WMTPSessionHandle psession_handle,
j WMTPProcInstID phost_proc_inst_id,
in WMTPProcInstID pinsert_proc_inst_id,
in WMTPActivitylnstlD[J pbefore_activity_inst_id,
in WMTPActivitylnstlD[] pafter_activity_inst_id
)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

phost_proc_inst_id Pointer to a structure containing the unique ID of the proc
ess instance in which the sub-workflow is to be inserted.

pinsert_proc_inst_id Pointer to a structure containing the unique ID of the proc
ess instance which is to be inserted.

pbefore_activity_inst_id[] Pointer array to the activity instance IDs that are deter
mined to be before the newly inserted activity instance.

pafter_activity_inst_id[J Pointer array to the activity instance IDs that are deter
mined to be after the newly inserted activity instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_BEFORE_ACTIVITY_INSTANCE
WM_INVALID_AFFER_ACTIVITY_INSTANCE

XLVI

A.3.J1 Managing Work-Iists

WMReassignWorkltem (already existing ii [WfivIC9$], p. 73)
(belongs to WAPI Work-list/Work-item Handiing Functions)

NAME

WMReassignWorkltem — Reassigns a work-item from one workflow participant’s
work-Iist to another workflow participant’s work-list.

DESCRIPTION

WMTErrRetType WMReassignWorkltem (
in WMlPSessionHandle psession_handie,
in WMTPWflParticipant psource_user,
in WlvlTPWflParticipant ptarget_user,
in WMTPProcInstID pproc_inst_id,

WMTPWorkItemID pwork_item_id
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

psource_user The identification of a workflow participant from which
work is to be reassigned.

ptarget_user The identification of a workflow participant to whom work
is to be assigned.

pproc_inst_id Pointer to a structure containing the unique ID of the proc
ess instance.

pwork_item_id Pointer to a structure containing the unique ID of the work
item that is to be reassigned.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM
WM_INVALLD_SOURCE_USER
WMINVALID_TARGET_USER

XLVII

WMAssignWorkltemAttribute (already existing in [WfMC9$}, p. 7$)
(belongs to WAPI Work-list/Work-item HandHng Functions)

NAME

WMAssignWorkltemAttribute — Sets or updates the value of an attribute of a work
item.

DESCRIPTION

WMTErrRetType WMAssignWorkltemAttribute (
in WMTPSessionHandle psession_handie,

WMTPProcInstID pproc_inst_id,
WMTPWorkItemID pwork_item_id
WMTPAttrName pattribute_name,

L WMTInt32 attribute_type,
WMTInt32 attribute_Iength,
WMTPText pattnbute_value

)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing the unique ID of the proc
ess instance.

pwork_item_id Pointer to a structure containing the unique ID of the work
item for which an attribute will be set or updated.

pattnbute_name Pointer to the name of the attribute.
attribute_type Type of the attribute.
attribute_tength Length of the attribute value.
pattribute_value Pointer to a buffer area where the attribute value will be

placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED

XLVIII

WMDeleteWorkltem
(belongs to WAPI Work-tist/Work-item Handiing functions)

NAME

WMDeleteWorkltem — Deletes a work-item iii a given work-Iist.

DESCRIPTION

WMTErrRetType WMfleleteWorkltem (
in WMTPSessionHandle psession_handie,
in WMTPProcInstID pproc_inst_id,

WMTPWorkItemID pwork_item_id
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pprocjnst_id Pointer to a structure containing the unique ID of the proc
ess instance.

pwork_item_id Pointer to a structure containing the unique ID of the work
item that is to be deleted.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM

XLIX

A.4 WAPI Data Types Addendum

Activity Template Data Types

typedef struct

WMTText activity_template_id[UNIQUE_ID_SIZEI;
WMTActivityTemplatelD;

typedef WlvlTActivityTemplatelD *WMTPActivityTemplateID;

typedef struct

II This is the minimum Iist of elements at this time.
II Future versions to provide extensibility for this structure.

WMTText activitytemplate_name[NAME_STRING_SIZE];
WMTActivityTemplatelD activity_template_id;

WMlActivityTemplate;

typedef WMTActivityTemplate *WMlpActivityTemplate;

Classification Category Data Types

typedef struct

WMTText classification_category_id[UNIQUE_ID_SIZE];
WlVllClassificationCatcgorylD;

typedef WMTClassificationCategorylD *WMTPClassificationCategorylD;

typedef struct

WJVITText classification_category_name[UNIQUE_ID_SIZE];
WMlClassificationCategorylD classification_category_id;

WMTClassificationCategory;

typedef WMTClassiflcationCategory *wMTpClassificationCategory;

Process Definition Data Types

typedef struct

II This definition extends the defmition of WMTProcDef

L

II given in the document [WfMC98], p. 14.
II Two new elements are added:
J! The new element ancestor_proc_def_id contains the ID of the former process instance,
II if the latter has been modified to create the one at hand.
II Ibis element is NULL, if there is no such aricestor.

WMTText process_name[NAME_STRING_SIZE];
WMTProcDeIID proc_def_id;
WMTProcDefState state;
WMTProcDeflD ancestor_proc_def_id;

} WMTProcDef;

Association Data Types

typedef struct

WlvlTClassificationCategorylD classification_category_id;
WMTProcDeIID proc_def_id;

) WMTAssociationProcDefClassificationCategory;

typedef struct

WMTClassificationCategorylD classification_category_id;
WMTActivityTemplatelD activity_template_id;

WMTAssociationActivityTemplateClassificationCategory;

Time Data Types

typedef WMTUInt32 WMTDate;
typedef WMTDate *wMTpDatc;

LI

A.5 WAPI Error Return Codes Addendum

WM_INVALID_A CTIVITY_TEMPLATE
Indicates that the activity template ID that was passed as a parameter to an API
cal! was flot valid, or it was flot recognized by the servicing workfiow engine.

WM_INVALffl_CLASSIFICATION_CATEGORY
Indicates that the classification category ID that was passed as a parameter to an
API cail was flot valid, or it was flot recognized by the servicing workfiow en
gine.

WM_INVALID_BEFORE_INSTANCES
Can occur when an activity instance is inserted or moved.
Indicates that provided IDs for activity instances that are to be before the in
sertedlmoved activity instance are not valid. I.e. the activity instance to be in
serted or moved cannot be placed behind one or more of the specified before in
stances.

WM_INVALID_AFTER_INSTANCES
Can occur when an activity instance is inserted or moved.
Indicates that provided IDs for activity instances that are to be after the in
serted/moved activity instance are not valid. I.e. the activity instance to be in
serted or moved cannot be placed before one or more of the specified before in
stances.

WM_INVALID_WORKFLOW_PARTICIPANT
Indicates that at least one of the participants that tvas passed (in an array) as a pa
rameter to an API cali was flot valid, or was not recognized by the servicing
workfiow engine.

WM_ATTRIBUTE_INSERTION_FAILED
Indicates that the workfiow engine was not able to complete the attribute inser
tion requested.

WM_DURATION_ASSIGNMENT_fAILED
Indicates that the workflow engine was not able to complete the duration assign
ment requested.

WM_TIME_ASSIGNMENT_FAILED
Indicates that the workfiow engine was flot able to complete the tirne assignment
requested.

WM_WUT_ASSIGNMENT_FAILED
Indicates that the workflow engine was flot able to complete the WUT assign
ment requcsted.

LII

References of Appendïx A

[BRK÷031 Bassil, S., Roui, D., Keller, R.K., and Kropf, P., Extending the Workflow
Reference Mode! to Accommodate Dynamism: Workflow Management
Application Programming Interface (Interfaces 1, 2, and 3) Specification.
Technical Report GELO-]52, Université de Montréal, Canada, March
2003.

[WfMC95J Workflow Management Coalition, The Workflow Reference Mode!.
WFMC-TC-]003, Version 1.1, January 1995. On-une at <http://
www.wfmc.org/standards/docs/tc003vil.pdf>.

[WflvIC9s] Workflow Management Coalition, Workflow Management Application
Programming Interface (Interface 2&3) Specification. WFMC-TC-1009,
Version 2.0, Ju!y 1998. On-une at <http://www.wfmc.org/standards/docs
if2v20.pdf>.

[WfMCO4] The Workflow Management Coalition (2004). On-une at <http://
www.wfmc.org>.

