Université de Montréal

Workflow Technology for Complex Socio-Technical Systems

par
Sarita Bassil
Département d’Informatique et de Recherche Opérationnelle

Faculté des Arts et des Sciences

Thése présentée 3 la Faculté des Etudes Supérieures en vue de I’obtention
du grade de Philosophi& Doctor (Ph.D.) en Informatique

Décembre, 2004

L3 M
bO o g
Grade ockr oy S
& compierou e

05 MAI 2005

© Sarita Bassil, 2004

Qﬁr
U5
005
V., O3]

Université l'"‘l

de Montréal

Direction des bibliothéques

AVIS

L'auteur a autorisé I'Université de Montréal a reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement a des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thése.

L'auteur et les coauteurs le cas échéant conservent la propriété du droit
d’'auteur et des droits moraux qui protégent ce document. Ni la thése ou le
mémoire, ni des extraits substantiels de ce document, ne doivent étre
imprimés ou autrement reproduits sans I'autorisation de l'auteur.

Afin de se conformer & la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu étre enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n'y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author's permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document

Université de Montréal
Faculté des Etudes Supérieures

Cette thése intitulée:

Workflow Technology for Complex Socio-Technical Systems

présentée par:

Sarita Bassil

a été évaluée par un jury composé des personnes suivantes:

Président-rapporteur: Houari Sahraoui
Directeur de recherche: Rudolf K. Keller
Codirecteur: Peter Kropf

Membre du jury: Yann-Gaél Guéhéneuc
Examinateur externe: Kostas Kontogiannis

Représentant du doyen de la FES: Jacques Nantel

Sommaire

La technologie des workflows s’est avérée importante pour des secteurs tels que
I’approvisionnement, la logistique et la production. Elle est définie comme un outil in-
formatique dédi€ a la gestion des procédures d’entreprise. Toutefois, cette technologie
ne supporte pas encore de fagon adéquate les exigences inhérentes aux systémes socio-
techniques complexes. Les négociations électroniques et le transport sont des exemples
de domaines qui font appel a de tels systémes. L’étude de ces deux domaines nous per-
met de reconnaitre le besoin d’une meilleure technologie des workflows. Par consé-
quent, un ensemble €lucidé et sophistiqué de concepts et de fonctionnalités pour les sys-
temes de gestion de workflow (WfMSs) est rassemblé, et des solutions appropriées sont
proposées pour supporter cet ensemble. Dans ce contexte, un modele de référence pour
les WEMSs est également passé en revue, et une extension de ce modéle est présentée

afin d’accommoder ces concepts et ces fonctionnalités.

Dans cette thése, nous étudions un systéme de support pour les négociations électroni-
ques (CONSENSUS). Ce systéme est basé sur un WfMS. Le but de CONSENSUS est
d’assister I'utilisateur dans la modélisation et Pexécution d’un certain type de négocia-
tion électronique utilisant les workflows. Ce systéme doit cependant supporter la modifi-
cation dynamique d’un workflow. Cette fonctionnalité s’aveére indispensable pour faire
face aux événements imprévus qui peuvent apparaitre lors d’une négociation. De nos
jours, les WfMSs (par exemple, IBM MQ Series Workflow et WLPI de BEA Systems)
supportent seulement de facon limitée ce genre de dynamisme. Par conséquent, les béné-

fices de ’approche CONSENSUS se trouvent étre réduits.

Une autre application socio-technique non-triviale est étudiée: la planification et le sup-
port du transport multi-transfert de conteneurs (MTCT — Multi-Transfer Container

Transportation). Cette application révele des besoins en dynamisme pour la composition

v

des workflows. Nous concevons un systéme orienté-workflow pour le traitement des re-
quétes clients. Ce traitement est réalisé par des séquences d’activités interdépendantes
qui doivent étre créées juste a temps et ensuite adaptées pour répondre aux événements
imprévus qui peuvent apparaitre. La création et 'adaptation de ces séquences sont ba-

sées sur une gestion optimisée des ressources et sur la planification des activités.

Dans le premier systéme, nous intégrons un prototype de WfMS (ADEPT) qui supporte
quelques-unes des modifications dynamiques requises au niveau de I’exécution. D’une
part, cette intégration accroit les bénéfices de ’approche CONSENSUS et d’autre part,
elle dévoile le besoin de plusieurs autres fonctionnalités qui ne sont pas encore tout a fait
supportées par les WIMSs. Dans le deuxiéme systéme, le prototype ADEPT est égale-
ment utilis€. Son API est enrichie avec des fonctionnalités primordiales et des solutions
de rechange sont nécessaires pour assurer convenablement la définition d’un modéle de

workflow et la gestion (dynamique) des instances.

La réalisation de ces deux applications va au-dela des projets CONSENSUS et MTCT.
En effet, la liste des concepts de modélisation de workflow et des fonctionnalités avan-
cées est soigneusement rassemblée. Nous analysons particuliérement les meilleures solu-
tions possibles (I’application appropriée des fonctionnalités offertes par un WIMS, des
solutions de rechange, etc.) utilisant trois WfMSs. Nous travaillons également sur une
extension formelle d’un méta-modéle de workflow afin de proposer un critére
d’exactitude pour I'interruption sans risque d’activités en cours d’exécution. Ceci est une
fonctionnalité d’une grande importance. Comme perspectives de recherche, la liste iden-
tifi€e et les problémes exprimés peuvent définir un agenda de recherche dans le domaine
des workflows. Les solutions déja étudiées peuvent étre applicables dans le contexte
d’autres applications poussées. Elles peuvent aussi donner aux développeurs de WfMSs

des informations valables pour les futures versions de leurs produits.

Mots clés: technologie des workflows, systémes de gestion de workflow, concepts de
modélisation de workflow, workflows adaptatifs, application de négociation électroni-

que, application de transport, architecture de systéme.

Abstract

Workflows are a major enabling technology for areas such as supply chains, logistics
and production. They aim to provide computer support to the management of business
processes in general. However, this technology offers little adequate support to require-
ments inherent to complex socio-technical systems. The domains of e-negotiations and
transportation are examples that call for such systems. These domains serve us to inves-
tigate the need for an enhanced workflow technology. Hence, a clarified and a refined
set of concepts and functionality for workflow management systems (WfMSs) is gath-
ered, and appropriate solutions are proposed to deal with this set. In this context, the
Workflow Reference Model is also reviewed, and an extension thereof is suggested to

accommodate these concepts and functionality.

In this thesis, we study an e-negotiation support system (CONSENSUS) based on a
WIMS. CONSENSUS was developed to help the user model and enact a specific kind of
e-negotiation using workflows. This system requires, however, support for dynamic
modification induced by unexpected events that can occur during negotiation. Current
WIMSs (e.g., IBM MQ Series Workflow, BEA’s WLPI) support this kind of dynamism
in a limited way only, thus reducing the benefits of the CONSENSUS approach to e-

negotiations.

Another complex socio-technical application, the multi-transfer container transportation
(MTCT) application, exhibits inherently dynamic requirements for workflow modeling.
We devise a workflow-oriented system for the processing of customer requests for con-
tainer transportation. This processing is achieved by specific sequences of interdepend-
ent activities that need to be created just-in-time and then adapted to deal with unex-
pected events that may occur. The creation and the adaptation of activity sequences are

based on an optimized resource management and activity scheduling.

vi

In the first system, we integrate a WfMS prototype (ADEPT) that supports some of the
required dynamic modifications at the workflow instance level. On one hand, this inte-
gration increases the benefits of the CONSENSUS approach. On the other hand, it sheds
the light on several workflow requirements not yet fully supported by current WfMSs. In
the second system, the ADEPT prototype is also used. Its API is enriched with useful
functionality, and workaround solutions are required to properly cope with the definition

of a workflow model and with the (dynamic) management of instances.

The realization of these two applications reaches far beyond the CONSENSUS and the
MTCT projects. Indeed, the “wish list” of workflow modeling concepts and advanced
functionality is carefully gathered. Particularly, we analyze best effort solutions (proper
use of WIMS features, workarounds, etc.) applying three state-of-the-art WfMSs. We
also work on a formal extension of a workflow meta-model to propose a correctness cri-
terion for safely interrupting running workflow activities. This is a functionality of ut-
most importance. As research perspectives, the identified “wish list” and the problems
expressed while experimenting with current WfMSs may define an agenda for further
research in the workflow technology domain. The already investigated solutions may be
applicable in the context of other challenging applications, and they may give valuable

input to WfMS builders for future versions of their products.

Keywords: workflow technology, workflow management systems, workflow modeling
concepts, adaptive workflows, e-negotiation application, transportation application, sys-

tem architecture.

Table of Contents

Sommaire iii
Abstract v
Table of Contents vii
List of Figures xii
List of Tables XV
List of Acronyms xvi
Dedication xviii
Acknowledgments Xix
Chapter 1 Introduction 1
1.1 Problem Statement --—-----eeeeemeeeeeeee e 1
1.2 Research Objectives ——----==--- - e 4
1.3 Major Contributions ——--===-----cmmmmmmmee e 6
14 Thesis StruCture -=----------mom e 8
Chapter 2 Processes, Workflows, and Workflow Management Systems ------ 9
2.1 Workflow Basics and ClasSificQtions -----------=c--cecoeooomam . 9
2.2 Workflow Design -------==s---mmoem e e 12
2.2.1 Petri Nets and Workflows 15
2.2.2 UML and Workflows 16
223 WSM-Nets Formalism 17
2.2.4 Workflow Temporal Aspects 19
225 Organizational Structure 21

2.3 Workflow Enactiment---- - 23
24 Workflow Management SYStems - oo 24
24.1 Standardization Effort 24
24.1.1 Workflow Enactment Service 25

2.4.1.2 Process Definition Tools 26
2.4.1.2.1 Definition of Processes 26

2.4.1.2.2 Classification of Resources 27

2.4.1.2.3 Analysis 27

24.1.3 Workflow Client Applications 27

2.4.14 Invoked Applications 28

2.4.1.5 Other Workflow Enactment Services 28
2.4.1.6 Administration and Monitoring Tools 29
2.4.1.6.1 Operational Management Tool 29
2.4.1.6.2 Recording and Reporting Tool 29
2.4.1.7 Discussion of the Workflow Reference Model 29
242 Current Generation of Commercial WfMSs 30
2.4.2.1 IBM MQ Series Workflow 30
2.4.2.2 BEA WebLogic Integration 32
2423 Future Prospects of WfMSs 34

2.5 SUMMATY - 36
Chapter 3 Adaptive Workflows 38
3.1 Challenges in Adaptive Workflows--------= - o ooomemoeeeee . 39
3.2 Projects Addressing Adaptive Workflows --------=—=- oo 41
3.2.1 Workflow Change: Policies and Modalities 42
3.2.1.1 Modification Policies 42
3.2.1.2 Change Modalities 43
322 Proposed Solutions for Adaptive Workflows 45
3.2.2.1 Description of Key Projects 45
3.2.2.2 Workflow Meta-Model Expressiveness 48
3.2.2.3 Set of Changes Completeness 50
3.2.2.4 Summary of Correctness Verification 51
3.2.2.5 Discussion 53

3.3 Adaptive Workflow Management Systems---------=--=---ooomommomeeee . 56
3.4 COoNCIUSION ~= === 57

Chapter 4 Wf Technology Applied to Complex Socio-Technical Systems ----59

4.1 Workflow-Oriented Applications ---------=-==e oo oo 59
4.1.1 E-Business Domain 60
4.1.2 Medical Domain 61
4123 Banking and Insurance Domain 63
4.14 Public Administration Domain 63
4.1.5 Why Studying Complex Socio-Technical Applications? --------~------—- 64
4.2 The Combined Negotiation Application --=----------——— oo 64
4.2.1 Description of the Application 65
4.2.2 Example of Combined Negotiation Packages 69
4.2.2.1 *“Flight Connection” Package 69
4.2.2.2 “Importing” Package 72
4223 The CONSENSUS System 74
4.2.3.1 WLPI Studio Unit 75
4.2.3.2 Enactment Unit 76
4.2.3.3 Coordination Unit 78
4.2.4 Towards a Dynamic Version of CONSENSUS 78

4.3 The Multi-Transfer Container Transportation Application ----------—————---- 79

43.1 Description of the Application 80

4.3.2 Examples of Customer Request Processing Planning 84
4.3.2.1 Customer Request Processing Planning — Simple Example ------------ 84
4.3.2.2 Customer Request Processing Planning — Re-planning Example ----- 87

433 Customer Request Processing 89

4.4 Summary ---------=meemem e - Smmmmmmeeees 91
Chapter 5§ The Enhanced CONSENSUS System 93
5.1 Dynamic Aspects of the “Importing Package” Example ----------------ene——- 94
5.2 The CONSENSUS System Based on an Adaptive WfMS ------—-——-————-eeee- 95
5.2.1 Dynamic Modifications Using ADEPT 95
5.2.2 ADEPT in CONSENSUS 98

5.3 Adaptive Workflow Framework -—------ oo 100
5.3.1 Adaptive Workflows and Transaction Management 103

5.4 Summary and DisCussion --------=-=- oo 104
Chapter 6 Workflow Management Requirements 106
6.1 Workflow Technology Enhancement-------------=--=cmeommmmemeeme . 107
6.2 Enhanced Workflow Concepts and Functionality ---------------—--m-ceeeee- 108
6.3 Enhanced Workflow Concepts------=--====--mmmmm e 110

6.3.1 The Activity Template Concept 110

6.3.2 The Template Classification 111

6.3.3 The Activity Temporal Aspects 112
6.3.3.1 The Activity Starting/Finishing Time 113
6.3.3.2 The Activity Duration 114

6.3.3.3 The Activity WUT Concept — Integration of Preparation Activities 114
6.3.3.3.1 Dealing with the 1* Disadvantage of the “Prep. Act.” Approach:
Introduction of an Intermediate Work-list with a Listener Process ---------- 118
6.3.3.3.2 Dealing with the 2™ Disadvantage of the “Prep. Act.” Approach:
Defining Preparation Activities in the Background (First Solution) --------- 119
6.3.3.3.3 Dealing with the 2™ Disadvantage of the “Prep. Act.” Approach:

A Layered Workflow Architecture (Second Solution) 120
6.3.3.3.4 Extension of the Warm-Up Time Concept — An Overview ------ 122
6.4 Enhanced Workflow Functionality Applied at the Workflow Instance Level 123

6.4.1 The Dynamic Insertion of an Activity 123
6.4.1.1 The Dynamic Insertion of a New Activity Instance ----------------—-- 123
6.4.1.2 The Dynamic Insertion of a Block of Activities 124

64.2 The Dynamic Deletion of an Activity 128
6.4.2.1 The Interruption of an Act. Execution While Preserving its Context 128

6.4.2.1.1 Formal Framework 131
6.4.2.1.2 Correctness Criterion 137
6.4.2.1.3 Discussion 140

6.4.3 The Dynamic Move of an Activity 142

64.4 The Dynamic Modification of Activity Attributes 142
6.4.4.1 The Dynamic Insertion/Setting/Updating of Input Attributes-------- 142
6.4.4.2 The Dynamic Deletion of Input/Qutput Attributes 144

6.4.43 The Dynamic (Re-)Assignment of Activities to a Participant ------- 145

6.4.4.4 The Dynamic Setting/Updating of Time Attributes ------------------- 145
6.4.5 The Dynamic Management of Work-lists 146
6.4.6 The Automatic/Manual Modification of Workflow Instances --------- 146

6.5 ConClUSION — === m e 147
Chapter 7 The MTCT System 148
7.1 The Transportation System Framework ---------------coeeeoeemeeo___ 149
7.2 Architecture of the MTCT SysStem —-=--=--- o mmmomeee e 151
7.2.1 System Components 151

7.2.1.1 Build-time Components 152

7.2.1.2 Run-time Components 153
7.2.2 Underlying Management Mechanisms 154

7.2.2.1 Workflow Management 154

7.2.2.2 Resource Management 155

7.2.2.2.1 Static Resource Management 156
7.2.2.2.2 Dynamic Resource Management 156
7.2.2.3 Rule Management 158
7.2.2.3.1 Designing Modification Rules 158
7.2.2.3.2 Implementing Modification Rules 161
7.2.3 Interface of the MTCT System to External Systems 161
7.3 Planning and Modifying the Processing of Customer Requests - Examples 162
7.4 Implementation of the MTCT SyStem -« e oo 165
7.5 ConcluSiOn - -eme e 168
Chapter 8 Extension of the Specification of the WfRM 170
8.1 Review of the Workflow Reference Model------------- oo 171
8.2 The Proposed Extension------------=-nmm oo 174
8.2.1 Extension of Interf. 1 (Process Definition Tools) 175
8.2.2 Extension of Interf. 2 (Wf Client Apps) and Interf. 3 (Invoked Apps) 176
8.2.3 Discussion of Already Existing Components 177
8.3 Functionality Extension of @ WfMS --—------memmemmmem oo 178
8.3.1 Structural Modifications 179
8.3.2 Activity Attributes Modification 179
8.3.3 Work-lists Management 180
8.3.4 Discussion of Current Implementation 181
84 ConCIUSION == 181
Chapter 9 Conclusion 183
9.1 Summary and Discussion ---------------v-mu--- SRR PR 183
9.1.1 The CONSENSUS and the MTCT Applications as Drivers of
Sophisticated Requirements for Workflow Technology 183
9.12 The Identification and the Accommodation of Sophisticated
Requirements for Workflow Technology 184
9.13 The Extension of the WIRM to Adequately Support Enhanced
Workflow Technology 187

9.14 Further Discussion 188

Xi

9.2 Research Perspectives -- - - S 188

References 191

Appendix A Extending the Workflow Reference Model: Workflow

Management Application Programming Interface Specification I
A.l1 Compressed Summary of the Groups of Operations and Operations ------------ 1
A.2 Detailed Summary of the Groups of Operations and Operations -------------- v
A.3 Description of the Extended WAPI Specification---------—-----—-weeeeeeeeee_ X1

A.3.1 Inserting Activities XII
A.3.2 Deleting Activities and Templates XXV
A.3.3 Moving Activity Instances XXIX
A.3.4 Setting and Updating Attribute Values XXX
A.3.5 Inserting Attributes XXX
A.3.6 Deleting Attributes XXXIV
A.3.7 Role/User Assignment XXXVI
A.3.8 Time Attributes Assignment XXXVIII
A.3.9 Keeping Modified Process Instances XLIV
A.3.10 Inserting Sub-Workflows XLV
A.3.11 Managing Work-lists XLVI
A.4 WAPI Data Types Addenduum ----------- oo XLIX
A.5 WAPI Error Return Codes Addendum -----------—— - e LI

References of Appendix A LIl

List of Figures

Figure 2.1. Ad-hoc, Collaborative, Administrative, and Production Workflows --------- 12
Figure 2.2. The Process Definition Meta-Model, taken from [WfMC99a] --------——----- 14
Figure 2.3. Medical Treatment Process 18
Figure 2.4. Example of an Organizational Meta-model, adapted from [RT02]----------- 22
Figure 2.5. Example of an Organizational Model (Tree Structure) 22
Figure 2.6. WfRM — Components and Interfaces, taken from [WfMC95] -------------—— 24

Figure 2.7. Groups of Operations Distributed within the Five Interfaces of the Workflow
Reference Model. based on [WfMC95] 25
Figure 2.8. Interoperability Models, adapted from [WIMC95]. (a) Chained, (b) Nested

Sub-Processes, (c) Peer-to-Peer, (d) Parallel Synchronized 28
Figure 3.1. Loop Tolerance in ADEPT/WSM-Nets, adapted from [RRD04a] --------—-- 54
Figure 3.2. Markings Adaptation using the SCOC — Syntactic Cut Over Change — in

ML-DEWS/Flow Nets, adapted from [RRD04a] 55
Figure 4.1. Flight Connection Package Workflow Model in WLPI 71
Figure 4.2. Importing Package Workflow Model in WLPI 74

Figure 4.3. CONSENSUS based on BEA Systems WLPI, adapted from [BBKO1] ----- 75
Figure 4.4. WLPI Studio Unit. (a) Workflow Variables, (b) Invoking a Business

Operation, (c) List of Business Operations 76
Figure 4.5. Agent Control and Monitoring Tool 77
Figure 4.6. Example of a Transportation Network, adapted from [Tra04] --------------— 85

Figure 4.7. Re-planning Example. (a) The Proposed Modifications for the Processing of
OR, (b) The Proposed Solution for the Processing of NR 89

Xiii

Figure 5.1. Importing Package during Run-time in ADEPT — Modeled without Decision
Branches. Instance State (a) After Creation, (b) After Moving Task F, (c) After
Deleting Tasks: T1, T2, T3, and I 96

Figure 5.2. “Importing Package” in ADEPT — Modeled with Decision Branches. (a) The

Whole Picture, (b) Detailed Part of the Process 97
Figure 5.3. WLPI Methods Called by the ADEPT Client Application for the

Implementation of Negotiation Activities 99
Figure 5.4. Adaptive Workflow Framework 100

Figure 5.5. Sequence of Messages Exchanged (a) during a Normal Execution of a

Workflow Instance, (b) when an Activity Insertion is Required, and (c) when an

Activity Deletion is Required 102

Figure 6.1. Workflow Technology Enhancement 108
Figure 6.2. Integrating “Preparation Activities” to a Workflow. (a) A Workflow with
Two Activities (“a” and “b”") Defined in Sequence, (b) Integrating “Prep: a”, (c)

Integrating “Prep: b” 116
Figure 6.3. The Mechanism of an Intermediate Work-list with a Listener Process ---- 119
Figure 6.4. Sending “Preparation Activities” to the Background 120
Figure 6.5. Explanation of the Layered Workflow Architecture for the Support of the

WUT Concept 120
Figure 6.6. The “Proclet” Idea for the Support of the WUT Concept -----------=-----—- 122
Figure 6.7. Steps for the Dynamic Insertion of a Sub-Workflow 126
Figure 6.8. Valid Structure of the Workflow Resulting from Step 1 126
Figure 6.9. Valid Structure of the Workflow Resulting from Step 2 127
Figure 6.10. Example of a Sub-Workflow Including a Loop 127
Figure 6.11. Data Classification Scheme 131
Figure 6.12. Medical Treatment Process (Atomic Steps) 133
Figure 6.13. Container Transportation Process 135

Figure 6.14. Data Classification in the Medical Treatment and Container Transportation

Processes 137

Figure 6.15. Container Transportation Scenario 140

Xiv

Figure 7.1. Transportation System Framework 149

Figure 7.2. Different Steps from the Detection of an Event till the Instantiation/Change
of Workflow Instances 150

Figure 7.3. Architecture of the MTCT System 152

Figure 7.4. Entity-Relation Diagram for the Resource Management in the MTCT System
156

Figure 7.5. Example in ADEPT of a Planned Unavailability Workflow Instance for the
Two Drivers McCain and Watson 156

Figure 7.6. Workflow Instance Creation and Adaptation Following a Request Arrival —

State Diagram 160
Figure 7.7. A Transportation Network Representation: Resources Represented as Icons

in a Simulation Environment 162
Figure 7.8. “Request Information” Form 163
Figure 7.9. A Modification Rule of the Pool of Workflow Instances 164
Figure 7.10. The Added Mediator Component within the ADEPT Structure -------—-- 166

Figure 7.11. Screenshot of the MTCT System Version 0.1. (a) The Environment of the

System Administrator, (b) The Environment of the Drivers 168

List of Tables

Table 2.1. Wf Modeling Formalisms and Wf Management Systems 37
Table 3.1. Adaptive Wfs Key Projects — Wf Meta-Model Expressiveness ------—-------- 48
Table 3.2. Adaptive Wfs Key Projects — Correctness Verification of Changes ---------- 51

Table 4.1. Act. Templates Involved in the Proc. of a Cust. Request for Cont. Transp.--81

Table 4.2. Duration Between Two Locations (in minutes) 85

Table 8.1. Groups of Ops Distributed within Interfaces 1, 2 and 3 of the WIRM---—— 173

List of Acronyms

ADEPT: Application Development based on Encapsulated pre-modeled Process Tem-
plates

API: Application Programming Interface

B2B: Business to Business

B2C: Business to Consumer

BPEL4WS: Business Process Execution Language for Web Services
BPM: Business Process Management

C2C: Consumer to Consumer

CIRANO: Centre Interuniversitaire de Recherche en ANalyse des Organisations
CN: Combined Negotiation

CONSENSUS, CNSS: Combined Negotiation Support System
CORBA: Common Object Request Broker Architecture
DWM: Dynamic Workflow Model

ECA: Event-Condition-Action

EFT: Earliest Finishing Time

EST: Earliest Starting Time

FDL: Workflow Definition Language

GNP: Generic Negotiation Platform

GPS: Global Positioning System

ICN: Information Control Net

IT: Information Technology

JDBC: Java Database Connectivity

LFT: Latest Finishing Time

LST: Latest Starting Time

MCS: Minimal Critical Specification

ML-DEWS: Modeling Language to support the Dynamic Evolution within Workflow
Systems

MR: Modification Rule
MTCT: Multi-Transfer Container Transportation

OM: Optimization Model

OPL: Optimization Programming Language

PDP: Pick-up and Delivery Problem

ST: Starting Time

TSE: TRP (Technical Reinvestment Project) Support Environment
UML: Unified Modeling Language

URL: Uniform Resource Locator

WAP: Wireless Application Protocol

WAPI: Workflow Application Programming Interface
WAR: Write After Read

WARIA: Workflow and Reengineering International Association
WARP: Workflow Automation through Agent-based Reflective Processes
WAW: Write After Write

Wf: Workflow

WIMC: Workflow Management Coalition

WEMS: Workflow Management System

WIRM: Workflow Reference Model

WE-XML: Workflow Extensible Markup Language
WLPI: WebLogic Process Integrator

WNM: Workflow Net Model

Woflan: WOrkFLow ANalyzer

WPDL: Workflow Process Definition Language
WSCI: Web Services Choreography Interface
WSCL: Web Services Conversation Language
WSDL: Web Services Description Language

WSM: Workflow Sequential Model

WSM-Nets: Well-Structured Marking-Nets

WUT: Warm-Up Time

XML: Extensible Markup Language

XPDL: XML Process Definition Language

XRL: eXchangeable Routing Language

Xvii

Xviii

I dedicate this thesis to my parents, Jean and Coleite.

This thesis could never have been accomplished

without their unconditional love and support.

You are the warmth inside my heart and the reason in my soul.
You made me what I am now.

I dedicate this thesis to Joanna, my dear sister and friend.
To your affection, love and kindness.

May God bless you and keep you safe.

Acknowledgments

I would like to thank Rudolf K. Keller, associate professor at the University of Montreal,
for giving me the chance to join his team at CIRANO (Centre Interuniversitaire de Re-
cherche en ANalyse des Organisations), and for supervising this research. His determi-
nation, his critical sense and his clear sightedness helped me to progress in the best re-

search axes.

My thanks also go to Peter Kropf, professor at the University of Neuchitel (Switzer-
land), for co-supervising this thesis. His availability, all the valuable discussions I had
with him, and his encouragement were a significant factor in the success of this work. I
thank him as well for inviting me to spend six months at the University of Neuchitel,
and for supporting me all along my stay. This stay helped in speeding up the writing

process of the thesis.

I would like to thank Houari Sahraoui, professor at the University of Montreal, for pre-
siding my jury. Yann-Gaél Guéhéneuc, professor at the University of Montreal and
member of my jury, may also find here the expression of my appreciation. Furthermore,
I thank Jacques Nantel, professor at HEC, for representing the Faculty Dean at my thesis

defense.

My gratitude also goes to Kostas Kontogiannis, professor at the University of Waterloo,
for accepting to be the external examiner. I thank him for having encouraged me once,
during our meetings at CSER (Consortium for Software Engineering Research), to work

on a Ph.D.

I would also like to thank the NSERC (Natural Sciences and Engineering Research
Council of Canada), Bell Canada and CIRANO. Definitely, the completion of this re-
search was made possible thanks to funding provided by the NSERC (CRD-224950-99),

XX

Bell Canada’s support through its Bell University Laboratories R&D program, and sup-
port by the CIRANO. I thank each of the CIRANO’s researchers and employees.

Thanks to Morad Benyoucef, former Ph.D. student at the CIRANO and now professor at
the University of Ottawa, for introducing me to the CONSENSUS project and for his

collaboration.

I would like to thank Peter Dadam, professor at the University of Ulm (Germany), for
making me the honor to be interested in my research and to invite me to spend two
weeks at the Database and Information System Department. My special thanks go to
Manfred Reichert, former junior-professor at the University of Ulm and now professor at
the University of Twente (The Netherlands), for the valuable comments he made during
our numerous exchanges and for his friendship. My sincere appreciation and admiration
also go to my collaborator and friend Stefanie “Steffi” Rinderle for her contribution to
my research. Moreover, I thank Steffi and Manfred for making my stay in Germany an

enjoyable experience.

Finally, I thank every person caring about me. In particular, my special and sincere
thanks go to Dr. Roger Hakimian, a dear friend, for always being close to me despite the
geographical distances between us. I am also grateful to every member of my family,

especially those in Lebanon, for their prayers, attitude and nice words.

Chapter 1 Introduction

1.1 Problem Statement

For competition purposes, today’s organizations are forced to streamline their way of
doing business. In this context, often a process logic is applied. It consists of focusing on
the business processes described within these organizations. A business process is de-
fined as a set of one or more linked activities, which collectively realize a business ob-
jective [WIMC99b]. Specifically, these activities are carried out, in a coordinated way,
by different processing entities, including humans and software systems, in order to
reach a goal, such as delivering merchandise or operating a patient. Since organizations
typically work in dynamic environments their business processes require to be just-in-

time modified.

Workflows correspond to a technology that aims to provide as much computer support as
possible to the management of business processes. This technology has gained great at-
tention in recent years because the success of organizations is more and more associated
with the effective use of information technology, mainly to support their business proc-
esses. Workflow Management Systems (WfMSs) allow for capturing formal descriptions
of business processes and for supporting the automatic enactment of processes based on
those formal descriptions. We say that WfMSs support the modeling (i.e., build-time)
and enactment (i.e., run-time) of workflows, and we differentiate between a workflow
model and a workflow instance which is the representation of a single enactment of a
workflow model. In particular, systems that support the workflows in a specific business
situation or that are adapted to a particular application are called workflow-oriented (or
workflow-based) systems. They consist of a WIMS in addition to the application-specific

modules.

By adopting a specific business solution, such as implementing workflow-oriented sys-
tems, organizations are usually interested in optimizing their profits as much as possible.
This optimization goal is however sometimes compromised when, for instance, we are
forced to follow a predefined set of linked activities without being able to take into ac-
count real-time events, possibly coming from the external environment, and to react ap-
propriately with profitable adaptations. The adaptation problem in workflows, also
known as the area of adaptive workflow technology, was not yet addressed by the busi-
ness process management community in a significant manner with respect to real-world

applications:

e The Workflow Reference Model (WfRM) [WfMC95] developed by the Work-
flow Management Coalition’ (WIMC) [WIfMC04] as an overall model for work-
flow management systems does not support refined workflow issues such as
adaptive workflows. This lack of support reduces the benefits of workflow tech-
nology, and discourages the building of sophisticated workflow-oriented sys-

tems.

o Workflow meta-models that form an integral part of WfMSs and that (1) include
a set of modeling concepts used to define workflow models, and (2) support the
specification of workflow aspects that are relevant for enactment (e.g., the con-
trol flow, the data flow, and the assignments of activities to processing entities),
are not expressive enough to allow practically relevant modifications. As an ex-
ample, if a workflow meta-model does not explicitly consider data flows, there
would be no way to deal with data during workflow modifications: the inser-
tion/deletion of data would not be possible; furthermore, the correctness verifi-
cation regarding the application of modifications on workflow instances will not

include the verification of data, i.e., whether data are correctly provided or not.

e The sets of allowed modification operations proposed by current adaptive work-

flow projects are still incomplete. Particularly, the studied modification opera-

! The WIMC, founded in August 1993, is a non-profit, international organization of workflow vendors, users, analysts and univer-
sity/research groups. lts goal is to develop standards for workflow systems operation, and to promote knowledge of the technology
within the industry.

tions are limited to workflow structural modifications (i.e., modifications at the
control flow level, such as inserting/deleting an activity). Activity attribute
modifications (i.e., modifications at the data flow level, such as inserting/deleting

an activity attribute) are not addressed.

e The correctness criteria defined to verify that a workflow instance is compliant
with the proposed modifications (i.e., modifications will not cause inconsisten-
cies or errors for the rest of the workflow instance processing) are sometimes too

restrictive.

The study of sophisticated workflow requirements, including in particular the need for
modification facilities that allow for adapting workflow instances during run-time, is the
principal subject of this work. We address adaptiveness at the workflow enactment level
by introducing new modification operations and their corresponding correctness criteria,
and at the modeling level by further developing existing workflow concepts, defined by

workflow meta-models, to include flexibility.

We realized that only real-world applications reflect the relevant needs for workflow
technology. Our research environment, the CIRANO — Centre Interuniversitaire de Re-
cherche en ANalyse des Organisations, gathers expertise in economic science and opera-
tions research. Hence, this represents a most valuable opportunity to consider appli-
cations and to address systems in the context of these specific fields. We chose to talk
about complex socio-technical systems to reflect the fact that multiple actors are using
such systems in a coordinated way requiring the management of shared resources (i.e.,
social aspect), that the applications addressed by those systems stem from technical
fields (i.e., technical aspect), and that these systems need to be reactive, they may also
involve a number of technologies, such as optimization engine technology and rule en-

gine technology, in conjunction with the workflow technology (i.e., complexity aspect).

This doctoral research has partly been conducted within the TEM (Towards Electronic
Marketplaces) project, a joint industry-university project supported by the Bell Univer-
sity Laboratories, NSERC (National Sciences and Engineering Research Council of

Canada), and CIRANO. The objective of this project was to address market design is-

sues in respect to resource allocation and control, and reward mechanisms, to investigate
open protocols for e-marketplaces, and to explore concepts and tools for e-business. The
work that we carried out was partly associated with the last topic. In particular, a work-
flow-based support system for e-business application has been studied (i.e., the CON-
SENSUS application). Our work went however beyond the only e-business application
by exploring an application from the transportation domain as well (i.e., the MTCT ap-
plication). CONSENSUS and MTCT are from quite different domains. This adds to the

generality of our research.
1.2 Research Objectives

The objectives of this research project are summarized as follows:

(1) The extension of the WIRM to adequately support adaptive workflows.
Currently, the WIRM is a generic, domain-independent model. It only supports
basic workflow aspects. However, successful workflow-oriented systems are
the ones that are tailored for particular applications stemming from specific

domains (e.g., the medical domain):

* We decided in our research to focus on specific domains. This approach
has the potential of being a constructive method for deriving, as an exten-

sion of the WfRM, an architectural framework for adaptive workflows.

e We will demonstrate that the construction of effective workflow-oriented
systems requires an extended WfRM. For this purpose, an already existing
workflow-oriented system will be reviewed and extended for better sup-

porting an e-negotiation application.

(2) The identification and specification of the extension requirements for the
next generation of adaptive workflows. The identified list of requirements
shall enable better specifications to be developed within the context of the ex-

tended WIRM:

e We will address these requirements in the best appropriate manner to make
them available from an existing Workflow Management System (WfMS),
thus following a best practice policy.

e We will demonstrate that a formal specification can be provided for the
support of such requirements. This specification will extend a state-of-the-
art workflow modeling language. In particular, we will present a novel so-
lution to the problem of workflow activity interruption. We will show how

to preserve the context of interrupted activities.

(3) The design of an adaptive workflow system architecture that respects the

extended WfRM:

e We will show that the extended model encourages the construction of ef-
fective adaptive workflow-oriented systems. For this purpose, a concrete
architecture that stems from the extended WfRM will be devised. As a
proof of concept, this architecture will be adapted to a transportation appli-

cation.

e We will implement an adaptive workflow-oriented system prototype to
evaluate the quality and scope of the model extension and of the derived

architecture.

A conventional research approach would suggest to formally study workflow require-
ments and then validate the requirements in respect to specific applications. In our re-
search, we took a slightly different approach. We set off by investigating a number of
specific applications from where we derived workflow requirements as input for our re-
search. This application-driven approach proved quite effective in identifying realistic
requirements and in providing solutions that are readily applicable to real-world prob-

lems.

1.3 Major Contributions

In the course of this research project, we have extended the WfRM. A new architectural

framework for adaptive workflows has been proposed (cf. Chapter 5):

e The model allows for designing concrete workflow-oriented system architectures

in the context of specific applications stemming from specific domains.
e The model supports adaptive workflows.

We have identified a list of requirements for adaptive workflows. This list includes new
concepts, such as the activity template concept, the atomic step concept and the activity
warm-up time concept, and enhanced functionalities, such as the interruption of an activ-
ity execution, the dynamic move of an activity, and the dynamic modification of activity
attributes. As a proof of concept, we have proposed best effort solutions (proper use of
WIMS features, workarounds, etc.) to address these requirements based on three state-
of-the-art WiMSs. The problems encountered while experimenting with those systems
may give WfMS builders valuable input for future versions of their products, and may

define an agenda for further research in the domain (cf. Chapter 6).

Particularly, we have proposed a formal framework to correctly address the issue of
safely interrupting running workflow activities in case of exceptional situations. This
issue is a major requirement for the next generation of adaptive workflows. In the con-
text of this framework, we have introduced a lower level of granularity to the modeling
of activities by defining the atomic step concept, and we have elaborated a data classifi-
cation scheme that puts the frequency of updating activity data and the relevance of
these data into relation. We have formally derived a correctness criterion for the safe in-
terruption of a running activity (i.e., interrupting a running activity by keeping its con-

text) (cf. Chapter 6).

We have extended the combined negotiation support system CONSENSUS? an e-

? CONSENSUS is a workflow-based system that helps the user model and enact a combined negotiation. Combined negotiations are
defined as a novel and a general type of negotiation in which the user is interested in a package of goods or services and conse-
quently engages in many negotiations at the same time [BAV+01].

business application that was developed by Benyoucef [BAV+01] (cf. Chapters 4 and 5):

e The extended CONSENSUS supports dynamic modifications induced by unex-
pected events possibly occurring during negotiations. It allows for mov-
ing/deleting an already scheduled e-negotiation activity, for inserting a new ac-

tivity, and for changing the attributes of an activity.

e We used the WEMS prototype ADEPT? [RRDO03a, RTO02] in order to accommo-
date these modifications. We have proposed an extension to ADEPT to support
the whole set of modification operations required by CONSENSUS, and to allow

the “automatic call” feature for the implementation of e-negotiation activities.

Finally, based on the designed architectural framework for adaptive workflows and tak-
ing into account the identified list of workflow requirements and the proposed solutions
to address these requirements, we have proposed an original adaptive workflow-oriented
system applied in the transportation domain: the multi-transfer container transportation
system MTCT. It allows for the processing of customer requests for container
transportation. In this context, an innovative integration problem involving workflow
technology, optimization engine technology and rule engine technology, was studied.
This should give interesting input for the development of new solutions and tools in the

transportation domain (cf. Chapter 7).

Various aspects of this work have already been published in the proceedings of the in-
ternational conferences and workshops: BPM’2004 (International Conference on Busi-
ness Process Management) [BKK04], ICECR-4 (International Conference on Electronic
Commerce Research) [BBKO1], ODYSSEUS’2003 (International Workshop on Freight
Transportation and Logistics) [BBK+03] and DEXA’2002 (International Workshop on
Database and Expert Systems Applications, International Workshop on Negotiations in

e-Markets) [BBK+02a]. A further paper has recently been accepted for publications in

> ADEPT (Application Development based on Encapsulated pre-modeled Process Templates) is one of the few available WIMS
research prototypes dealing with adaptive workflows. It offers temporal constraint management, workflow modifications, synchroni-
zation of inter-workflow dependencies, and scalability [RRD03a].

the proceedings of the international conference ICEIS’2005 (International Conference

on Enterprise Information Systems) [BRK+05].
1.4 Thesis Structure

The reminder of this thesis is structured as follows. Chapter 2 gives a general overview
of related work in the area of processes, workflows, and workflow management systems.
Particularly, we review the WfRM as defined by the WfMC. In Chapter 3 we focus on
adaptive workflows. We provide a state-of-the-art assessment on existing workflow
modification projects and shed the light on extension points. Chapter 4 presents two dif-
ferent applications (the CONSENSUS application and the MTCT application) that out-
line (1) the need for an adaptive workflow framework, and (2) the requirements to ad-
dress new concepts and functionality in workflow technology. In Chapter 5 we discuss
an extended version of CONSENSUS, and we provide an overall architecture as an ex-
tension to the WfRM for supporting adaptive workflows. The CONSENSUS application,
its extension, and the description of the MTCT application serve as a motivation to
Chapter 6, which presents possible solutions to specific problems in adaptive workflow
systems. In particular, this chapter presents a novel solution to the problem of workflow
activity interruption. Chapter 7 introduces a system architecture as a solution to the
MTCT problem using adaptive workflows. This architecture stems from the overall ar-
chitecture provided in Chapter 5. Chapter 8 proposes a detailed extension to a workflow
application programming interface (WAPI) to support adaptive behavior within the con-
text of the WIRM. Further details about the extension of the WIRM WAPI specification

are annexed to the thesis in Appendix A.

Each of these chapters is ended either by a “Conclusion” section, a “Summary and Dis-
cussion” section or simply a “Summary” section. A “Conclusion” section refers to an
analytic conclusion where a qualitative analysis of the chapter or of some issues related
to the chapter is given. The last chapters of the thesis are ended with a “Conclusion” sec-
tion (Chapters 3, 6, 7 and 8), while the first chapters are rather ended with a “Summary”

or a “Summary and Discussion” section (Chapters 2, 4 and 5).

Chapter 2 Processes, Workflows, and Workflow
Management Systems

Complex tasks must be structured with some model representation to facilitate their
management as well as the automation of their execution. Workflow technology has
been proposed to deal with this kind of tasks. The WIMC proposes a definition of work-
flow that is widely used within the literature. A workflow is considered as “the automa-
tion of a business process — defined as a set of one or more linked activities, which col-
lectively realize a business objective —, in whole or part, during which documents, in-
formation or tasks are passed from one participant to another for action, according to a
set of procedural rules” [WfMC99b]. From a more general perspective, not necessarily
related to the business world, a process is defined as a set of partially ordered steps in-

volved in reaching a goal [CKO92].

To support automation, a Workflow Management System (WfMS) can be defined as a
software that manages a workflow efficiently by tracking and controlling its execution.

It supports the definition, the execution, and the monitoring of a workflow [WfMC99b).

This chapter is structured as follows. Section 2.1 explains the terminology related to
processes and workflows and reviews workflow classifications. Sections 2.2 and 2.3
consider in detail the two main constituents of workflow management: workflow design
and workflow enactment. Section 2.4 addresses WfMSs: an emerging standard is re-

viewed and specific WIMSs are studied. The chapter is summarized in Section 2.5.
2.1 Workflow Basics and Classifications

In order to set up a nomenclature for specifications, as well as for discussions among
users, analysts, and researchers, the basic terms related to processes and workflows need

to be defined. Many papers propose a terminology relating concepts as well as relation-

10

ships among them [DNR90, FH92, LS97, WfMC99b). The concepts defined by the
WIMC [WIMC99b], and then refined by van der Aalst and van Hee in [AH02], are the

most widely applied ones within the business process management community. The fol-

lowing list presents the basic workflow concepts and structures for workflow design,

workflow enactment, and the organizational configuration, as suggested by the WIMC:

An activity (node, task) is a description of a piece of work that forms one logical
step within a workflow. It can be manual or automatic [AH02]. A manual activ-
ity is entirely performed by one or more people, without any use of an applica-
tion. By contrast, an automatic activity is performed without any intervention by
people; an application — a computer program — carries out the activity entirely
based upon previously recorded data. Activities are ordered based on the mutual
dependencies imposed by structural and data aspects (control flows and data
flows between activities). Various configurations cover the structural aspects:
sequence, selection, iteration, and concurrency. Two approaches are most com-
monly used for the representation of data: either through data flows between ac-
tivities, or through data provision services from/to which activities read/write.

An instance (workflow instance (case), or activity instance) is the representation
of a single enactment of a workflow, or activity within a workflow.

A participant (actor, agent, user, processing entity, resource) is the construct that
performs an activity instance. It may range from humans to software systems.

A work-item is the representation of the work to be processed (by a participant)
in the context of an activity within a workflow instance. A list of work-items as-
sociated with a given workflow participant (or group of workflow participants) is
called a work-list.

A workflow (resp., activity) state is related to the internal conditions defining the
status of a workflow (resp., activity) instance at a particular point in time. In the
case of a workflow, the state could be “initiated”, “running”, “active”, “sus-
pended”, “completed”, “terminated”, and “archived”. In the case of an activity, it
could be “inactive”, “active”, “running”, “suspended”, “skipped”, and ‘“com-
pleted”. Variants of these terms are found within the literature, as well as when

considering specific workflow products.

11

® An organizational model is a model that represents organizational entities and
their relationships; it may also incorporate a variety of attributes associated with
the entities, such as skills or role.

® An organizational role is a group of participants exhibiting a specific set of at-
tributes, qualifications and-or skills. A workflow participant assumes a role

given that she has the appropriate skill set.

Two major workflow classification schemes have been proposed in the literature

[McC92, LR99, GT98, GHS95]:

(1) Ad-hoc, collaborative, administrative, and production workflows (Figure 2.1)
[McC92, LR99, GT98]. These four kinds of workflows are categorized accord-
ing to their business value and their repetitiveness. Ad-hoc workflows and col-
laborative workflows involve participants collaborating to reach a certain goal.
Usually, no workflow model is defined in advance because of little repetitive-
ness. Collaborative workflows (e.g., preparation of product documentation)
have a higher business value than the ad-hoc workflows (e.g., meeting schedul-
ing). Administrative workflows and production workflows have a high repeti-
tiveness. Workflow models can be predefined for them. Production workflows
(support of an organization’s core business; e.g., claims-handling in an insur-
ance company) have a higher business value than administrative workflows
(e.g., processing a salary calculation). In this thesis, we address workflows
with little repetitiveness (and low business value) but which can be instantiated
from a basic workflow model (refer to the multi-transfer container transporta-
tion application presented in Section 4.3). Combined (business) negotiation
workflows (cf. Section 4.2) can be considered either as collaborative work-
flows (if B2C/C2C) or production workflows (if B2B, e.g., support of the main

business of a travel agency or of an import/export company).

12

BusinessA E
Value !
]

High 1 Collaborative i Production

Workflows ! Workflows
|
]
-—— -—
'
1
i

Ad-hoc i Administrative

Low 1+ Workflows ! Workflows
!
]
|
]
)

} i | 2
Low High Repetitiveness

Figure 2.1. Ad-hoc, Collaborative, Administrative, and Production Workflows

(2) Human-oriented, system-oriented, and transactional workflows [GHS95]. The
activities in human-oriented workflows are carried-out by humans. Human-
oriented workflows are comparable to ad-hoc and collaborative workflows.
System-oriented workflows involve computer systems that perform computa-
tion-intensive operations and specialized software tasks. Transactional work-
flows [AAE+96, WS97] are a special kind of system-oriented workflows. The
database community focuses on this kind of workflows. The main motivation
for introducing the concept of transactional workflows was to address the
WIMS’s inability to ensure the correctness and reliability of workflow execu-
tions in the presence of concurrently executing workflows and failures. In this
thesis we take an abstract, conceptual view of workflows with no emphasis on
transactional workflows. A workflow is simply considered to consist of a set of
activities with data and control flow dependencies among them, where the ac-
tivities are executed by participants that may include humans as well as soft-

ware agents.
2.2 Workflow Design

Two types of methodologies are basically used to design or model a workflow: commu-
nication-based methodologies and activity-based methodologies. The former focus on

modeling the communications among workflow participants while the latter focus on

13

modeling activities. WfMSs typically adopt activity-based methodologies, and in this

thesis, this type of methodologies will mainly be considered.

In spite of the standardization efforts taking place in the WIMC (cf. Section 2.4.1), no
generally accepted workflow meta-model has been defined so far. Textual or graphical
workflow modeling languages provide concrete constructs for the concepts of an under-
lying meta-model. In the context of activity-based methodologies, most of the workflow
modeling languages discussed in the literature are based on formalisms such as Petri nets
[PetriO4] and UML [UMLO04] (including state and activity charts). Petri nets are known
for their rigorous semantics, and UML is widely used these days because of its object-
oriented paradigm. However, a workflow modeling language based on one of these for-
malisms provides users, especially non-computer experts, hardly an intuitive and struc-
tured representation of a business process [RD98]. Furthermore, these formalisms do not

offer a detailed structure for the definition of workflow aspects.

To facilitate specific purposes, e.g., to address adaptive workflows (cf. Chapter 3), some
researchers developed their own workflow modeling languages that rely neither on Petri
nets nor on UML. An example of such a workflow modeling language is the ADEPT
model (WSM-Nets) based on the concept of symmetrical control structures [RD98]. The
Workflow Process Definition Language (WPDL) defined by the WIMC [W{MC99a],
remains the only consortium-led language providing constructs that focus specifically on
workflow aspects. Its related process definition meta-model has been specified to cap-
ture the highest-level objects and relationships that should be defined to support process
automation (Figure 2.2). An extension of this meta-modal to support dynamic inter-
organizational workflow management has been proposed by Meng in her Ph.D. thesis

[Men02].

Finally, XML-based representations are often discussed in workflow-based inter-
organizational e-business applications (cf. Section 4.1.1) [KZ02, LOO1, AK00]. XML
(Extensible Markup Language) [XMLO04] is a document declaration standard proposed
by the WWW Consortium [W3C04] that allows the electronic exchange of semantic in-
formation. XML on its own does, however, not provide support for document routing

and data interchange between the organizations involved. Lenz and Oberweis propose

14

XML nets — a new kind of high-level Petri nets — that allow to model both the flow of
XML documents and the business process [LOO1]. Van der Aalst and Kumar propose
XRL (eXchangeable Routing Language) for document routing [AK0O, VHAO02]. XRL is
also expressed in terms of Petri nets. Another XML-based representation to support in-
ter-organizational applications, published by the WIMC, is WE-XML [WIMCO1]. It is
intended as a basis for concrete implementations of the WfMC’s Interface 4 (cf. Section
2.4.1). WE-XML relies on WPDL for routing issues. The XML version of the WIMC'’s
WPDL is called the XPDL (XML Process Definition Language) [WfMC98].

Workflow Process Definition

--------- B
1
"ONSISIS 0 may referto oo P
may includ : d X > : {Sub)Process :
Al Y =1 __ Definition__ !
System & =1 =1] cmmmemmem e
Environmental | Workflow mavd Workflow Process |18 implemented $__} Atomic H
" Relevant Data e Activit as ! Activit !
Data o e - |= === : Lo-mmme- 'y"'"'
_____________ ,
\ A is performed by Y o '-—1: Loop !
heccccccccm—- 1
mav use may invoke from A A
-l m
Workflow Workflow .
Participant Application 'T;““S“‘f’“
Specification Declaration nformation
b o I may use 1 T
| AL X <« X o—2
I) I N, I:

may vr('ferem'e

Organizational
Model

Figure 2.2. The Process Definition Meta-Model, taken from [WfMC99a]

In the context of e-business applications, choreography languages have been proposed
by imposing companies and organizations (e.g., IBM, Microsoft, W3C) for the composi-
tion or orchestration of Web Services. The emerging of such languages underlines the
timeliness of this research project. Examples of choreography languages include Web
Services Conversation Language (WSCL) [WSCLO02], Web Services Choreography In-
terface (WSCI) [WSCI02] and Business Process Execution Language for Web Services
(BPEL4WS) [BPELO3]. The latter, developed by IBM and considered as a standard,
seems to have a lot of momentum. The Web Services Description Language (WSDL)
[WSDLO1] is the XML-based specification used for describing the operational informa-

tion of Web Services (e.g., input and output messages) (ie., function logic) and

15

BPEL4WS allows for defining business processes letting several Web Services from dif-
ferent service providers work together (i.e., flow logic). BPEL4WS provides a long-
running transaction model that allows increasing consistency and reliability of Web Ser-
vices applications. A collection of “primitive” activities (e.g., invoke, receive, reply) —
that we may also call “activity templates” — and “‘structure” activities (e.g., sequence,
switch, while) is defined. The invocation of services is done using the “invoke” activity,
while the reception of an invocation from a client is done using the “receive” and “re-
ply” activities. Hence, the WIMC’s Interface 3 (Invoked Applications; cf. Section 2.4.1)
is well defined by BPEL4WS.

In the next sections, we begin by briefly describing both the Petri net and UML formal-
isms with respect to workflows (Section 2.2.1 and Section 2.2.2). Then, we present the
WSM-Nets formalism on which we rely to formally introduce in Chapter 6 new work-
flow concepts and functionality (Section 2.2.3). Workflow temporal aspects will be dis-
cussed thereafter as a further issue in workflow design (Section 2.2.4). The organiza-

tional structure is part of workflow design and will be introduced as well (Section 2.2.5).

2.2.1 Petri Nets and Workflows

“Petri nets” [Petri04] is a major formalism for modeling workflows. One of the strengths
of Petri nets is the strong mathematical basis they offer along with a graphical represen-
tation. In this section, we summarize the mapping between workflow concepts and Petri

nets [JB96, AAH98, AHO2].

A process defines tasks as well as the conditions for their execution. Using Petri nets, a
process is represented by mapping its only entrance (i.e., start node) into a place without
incoming arcs, and its only exit (i.e., end node) into a place without outgoing arcs. Con-
ditions are mapped into places, and tasks into transitions. Usually, a process specified
using Petri nets should fulfill two requirements: (1) it should at any time be possible to
reach a state in which there is a token in “end”, and (2) when there is a token in “end”,

all the other tokens should have disappeared.

Different instances of the same process can be translated into Petri net models in two

ways: (1) produce a separate copy of the Petri net (i.e., process) for each instance, (2)

16

use just one Petri net by making use of the color extension [Petri04]. Each token will
then be provided with a color or value from which it is possible to identify the instance

to which the token refers.

Tasks may need to be carried out for certain instances and not for others. The order in
which tasks are performed may also vary from one instance to another. Routing permits
to determine which tasks need to be carried out and in what order. Basic constructions
for routing (sequential, selective, iterative, and parallel routing) are associated with spe-
cific Petri net compositions such as “two transitions linked using a place” to represent a
sequence of two activities, “two transitions” to model the And-split and the And-join of

a parallel routing, and “a place” to model a condition for a selective/iterative routing.

In a process modeled with a Petri net, an enabled transition corresponds to a work-item,
and the firing of a transition to an activity instance. Certain work-items can only be
transformed in an activity instance once they are triggered. A trigger could correspond to
a participant initiative, to an external event or to a time signal coming from the environ-
ment. To each transition belonging to a task requiring a trigger an extra input place is
added. A trigger occurrence brings a token in that extra input place. The token is con-
sumed once the appropriate transition fires. A failure while performing a task requires a
rollback (i.e., go back to the state prior to the start of the activity). When an activity has

been successfully completed, a commit occurs and changes become definitive.

2.2.2 UML and Workflows

State and activity charts are another major formalism for the modeling of workflows.
They were originally invented by Harel [Har87], and have been incorporated into UML
(Unified Modeling Language) [UMLO04] in a slightly different form. Weissenfels et al.
[WMWO8] have investigated the use of state and activity charts to model workflows (the
Mentor WIMS project), while Blake [Bla02, Bla00] presents a systematic approach to
the modeling of workflows using UML (the WARP project).

In the Mentor WIMS project [WMW98], activities reflect the functional decomposition
of a system and denote the active components of a specification; they correspond di-

rectly to the activities of a workflow. An activity chart specifies the data flow between

17

activities, in the form of a directed graph with data items as arc annotations. State charts
capture the behavior of a system by specifying the control flow between activities. A
state chart is a finite state machine with an initial state and transitions driven by Event-
Condition-Action (ECA) rules. Each transition between states is annotated with an ECA
rule. A transition from state X to Y, annotated with an ECA rule, fires if event E occurs
and condition C holds. The effect is that state X is left, state Y is entered, and action A is
executed. Conditions and actions are expressed in terms of variables, for example, those
that are specified for the data flow in the corresponding activity chart. In addition, an

action A can start an activity, and can generate an event E or set a condition C.

Turning to the WARP (Workflow Automation through Agent-based Reflective Proc-
esses) project [Bla02, B1a00], the approach used distinguishes between structural, func-
tional, non-functional, and operational views. The structural views show information
about the activities, definition of the roles, and composition of the workflow. They are
represented in UML class diagrams. The functional views show the data and control
flow of the workflow by using UML activity diagrams. The non-functional concerns (er-
ror-handling, concurrency, atomicity, etc.) use data and control flow models and can be
modeled with activity diagrams as well. Finally, the operational views are related to the
initiation of workflow instances, and the coordination for the completion of the work-

flow. Operational views can be modeled using UML sequence diagram.

2.2.3 WSM-Nets Formalism

The Well-Structured Marking-Nets (WSM-Nets) approach is used in the ADEPT WfMS
[RD98]. As it has been summarized in [RRDO3b], WSM-Nets are serial-parallel, attrib-
uted graphs on which control and data flow of a process schema can be described. More
precisely, different node and edge types are provided for modeling control structures like
sequences, branchings, or loops. Branchings and loops are modeled in a block-oriented
fashion (block structure). This structure is relaxed by offering sync edges, which allow
defining precedence relations between activities of parallel branches. Self-explanatory
definitions for WSM-Nets and for workflow instances based on WSM-Nets have been
given in [RRD03b]. WSM-Nets are somewhat comparable to BPEL4WS (cf. Section

2.2). The latter uses a block structure for defining processes. WSM-Nets provide, how-

18

ever, a better understanding and formal foundation regarding the use of links (called

sync links in WSM-Net).

In the following, we provide the definitions of a WSM-Net and of a workflow instance
based on WSM-Net. We will apply these definitions to formally introduce new concepts

and functionality in Chapter 6.

Definition 2.1 (Well-Structured Marking-Net, WSM-Net) A tuple S = (N, D, NT, CtriE,

SyncE, LoopE, DataE) is called a WSM-Net if the following holds:

- Nis a set of activities and D a set of process data elements

- NI N » {StartFlow, EndFlow, Activity, AndSplit, AndJoin, XOr-
Split, XOrJoin, StartLoop, EndLoop}
NT assigns to each node of the WSM-Net a respective node type.

- CtrlE C N X N is a precedence relation

- SyncE C N X N is a precedence relation between activities of parallel executed
branches

- LoopE C N X N is a set of loop backward edges

- DataE € N x D X {read, write} is a set of read/write data links between activities and
data elements

As an example of a process schema modeled by a WSM-Net, Figure 2.3 depicts a sim-
plified medical treatment process. The control and data flow are clearly shown. For ex-
ample, activities “admit patient”, “inform patient”, and “prepare patient” are arranged in
sequence whereas activities “monitor” and “operate” are executed in parallel. “Weight”
and “temperature” are examples of data involved in a data flow modeled between activi-

ties “prepare patient” and “operate”.

_ electro sensory perception
consent weight temperature cardiogram degree
’ f\\\ ‘ \\\ * ‘\\ - 4 7
/ I Y S —
¥ ¥ T : !
Process Schema S: / i SN _
/! ! N Monitor
—p : Control flo / | ERNAN
--» : Data flow / i l PN .
Z H H 04 z b\
Admit Inform Prepare Operate Aftercare
patient patient > patient —» P

Figure 2.3. Medical Treatment Process

19

Process instances can be created and executed at run-time. As defined in [RRDO04c], a
process instance references the process schema it was created on. Furthermore, specific
execution states of a process instance are given by model-inherent activity and edge
markings. An activity which can be worked on is thus labeled Activated. As soon as
the activity execution is started the marking changes to Running. Finally, a finished
activity is marked as Completed and an activity, which belongs to a non-selected, al-
ternative execution branch, is marked as Skipped. Once an activity is completed, its
outgoing edge is set to TrueSignaled. When an activity is marked as Skipped its
outgoing edge is set to FalseSignaled, which may lead to the skipping of succeed-
ing activities.
Definition 2.2 (Workflow Instance based on WSM-Net) A workflow instance I is de-
fined by a tuple (S, M°, Val®, H) where:
- §=(N, D, NT, CtrlE, SyncE, ...) denotes the WSM-Net the execution of I is based on.
- M® = (NS®, ES®) describes node and edge markings of I:
NS*: N > {NotActivated, Activated, Running, Completed, Skipped}
ESS: (CtrlE U SyncE U LoopE) — {NotSignaled, TrueSignaled, False-
Signaled)
- Val® is a function on D. It reflects for each data element d € D either its current value
or the value UNDEFINED (if d has not been written yet).
- H=<ey, ..., e > is the execution history of L. ey, ..., e, denote the start and end events

of activity executions. For each started activity X the values of data elements read by X
and for each completed activity Y the values of data elements written by Y are logged.

2.2.4 Workflow Temporal Aspects

The workflow model should be capable of capturing different aspects of the business
process [JB96] including structure, data, and resources properties, but also temporal
properties. Time modeling in workflows has been investigated in the context of some
(few) workflow research projects. Marjanovic and Orlowska specify that basically three
main time constraints can be specified [MO99]: (1) a duration constraint that models the
expected duration of an activity in a workflow (a single relative time value or an interval
of two relative time values); (2) a deadline constraint that can be specified in terms of
absolute time limits when an activity should start or finish during workflow execution;
(3) an interdependent temporal constraint that limits when an activity should start/finish

relative to the start/finish of another activity (a relative time value). Temporal consis-

20

tency plays a crucial role in the modeling of time constraints. It must be verified several
times during the workflow lifetime: during the workflow modeling and then again dur-
ing the workflow enactment at several control points (usually after each decision node)
to make sure that activities are executing as planned. An algorithm for the verification of

temporal consistency in workflows is introduced in [MO99].

Dadam er al. introduce temporal aspects by defining time edges between activities
[DRKOO]. They discuss a minimum and a maximum duration of an activity, and an ear-

liest and a latest relative starting/finishing time of an activity.

Eder et al. [EPP+99] worked on a method to enrich a workflow specification by time
information for activities, and to translate such a workflow description into a PERT-
diagram that shows for each activity the time when the activity must be at a specific state
to satisfy the overall time constraints of the workflow. They put the assumption that the
end event of an activity corresponds to the start event of all its successor activities. The
extension of the PERT-net technique (ePERT [PEL97]) consists in associating relative
time information with the end of an activity A. As an example, the earliest point in time
A may end corresponds to an execution where optional activities are not executed and
the fastest alternative in all selective routings is always selected. A forward traversal of
the workflow model is required for computing the earliest point in time activities may
end. A backward traversal of the workflow model is required for computing the latest
possible point in time activities can finish to ensure minimal execution time for the en-

tire workflow.

As argued by Marjanovic in [MarOl], the three approaches introduced above [MQ99,
EPP+99, DRKOO] follow the paradigm of modeling temporal aspects “on top” of a ‘“‘con-
trol-flow” oriented workflow model: to assign temporal attributes to individual activities
whose order has been predetermined by control flows. In [Mar01], a two-levels approach
for workflow modeling is motivated: a control flow level and an operational level. Thus,
a separation is done between the modeling of control flow and the modeling and verifi-
cation of temporal constraints. At the operational level, an analysis of the accumulated
workflow instances stored in a workflow log is made to detect cases where duration of

an activity is a function of an instance type (i.e., identification of imprecise activities —

21

an imprecise activity is an activity with different duration for different instance types).
Decision nodes are introduced at the operational level to distinguish these cases. Hence,
temporal properties determine modeling of control flows at this level. As a consequence,
workflow models at the two different levels are syntactically different but semantically
equivalent, and the workflow model at the operational level provides a more precise
modeling of temporal aspects than the workflow model at the control-flow level. Due to
the improved precision in modeling, it is possible to predict more accurately, during
workflow execution, when a specific activity is likely to occur and to dynamically verify
temporal constraints based on the actual execution (i.e., the real duration) of individual

activities.

Assigning time to activities in a workflow is a task similar to scheduling in real-time
systems. A differentiation is done between time management at build-time and time
management at run-time. At build-time, using the workflow model and the durations as-
signed to the activities in the model, the relative start and end times for all activities are
calculated (with respect to the beginning of the workflow). Such calculations are carried
out using a forward traversal and a backward traversal of the workflow model. At work-
flow instantiation time, a calendar is used to convert all relative time information speci-

fied during build-time to absolute time points.

If a deadline is missed, a time failure is generated and special actions may be triggered,
referred to as escalation actions [EPP+99]: deadline extension, alternative selection, op-

tional removal, and time error.

Despite the importance of time for the coordination and the execution of business proc-
esses, the currently available time management support in workflows is rather rudimen-
tary. As pointed out in [Mar01], the requirements for time modeling and visualization far

exceed the capabilities provided by today’s (commercial) WfMSs.

2.2.5 Organizational Structure

Participants’ specification in the workflow usually requires beforehand a specification of
an organizational structure (roles, capabilities, positions, hierarchies, etc.). One impor-

tant aspect of an organizational structure is the division of authorities and responsibili-

22

ties. An example of authority is to assign work to other members of staff. The most
widely used form of organizational structure is the hierarchical organization character-
ized by a “tree” structure where each node shows either (1) the person who is responsi-
ble for all the people below her in the tree, or (2) the department (i.e., organizational
unit) that gathers sub-departments defined below it in the tree down to reach individual
staff at the leaves (cf. Figure 2.5). A simple example of an organizational meta-model
based on the second definition could be the one captured by the entity-relation diagram
of Figure 2.4. Based on this meta-model, a tree such as the one shown in Figure 2.5 can

be defined.

©,) Belongs to

Belongs to

0,” 1,7
8O s

Position

Directed by

Figure 2.4. Example of an Organizational Meta-model, adapted from [RT02]

Staff
Organizational unit .
Organizational sub-unit Position
Employee E1
(ST Position P1 -~ Employee E2

— Dept. D1 —[Position P2

— Dept. D2 —[Position P3
: Y Pposition P4

Figure 2.5. Example of an Organizational Model (Tree Structure)

The WIMC defines a simplistic organizational model [WfMC99b]. It specifies that a
reference to an external model can also be done. In fact, depending on the internal struc-
ture of a company and on the workflow application to be developed, the definition of a

company-specific or application-specific organizational model may be necessary. The

23

complexity of the meta-model on which this definition should be based is a subject of
discussion. The more complex the meta-model is, the more detailed the organizational
model can be defined, and the more specific the actor assignment to activities can be de-

rived.
2.3 Workflow Enactment

Workflow enactment consists mainly in coordinating the execution of activities accord-
ing to a predefined workflow model. More precisely, since activities are carried out by
workflow participants, workflow enactment actually requires coordination among the

participants in executing the activities.

Architectures for the scheduler-based workflow enactment range from a highly central-
ized to a fully distributed coordination [CHR+98]. In the centralized approach, there is a
single workflow engine (or scheduler) that controls and coordinates the execution of the
activities for all workflow instances. The advantages of the centralized approach include
easy monitoring and auditing, simpler synchronization mechanisms, and overall design
simplicity [Men02]. However, there are also many shortcomings: a single point of fail-
ure, performance limitations, scalability problems, etc. [AM97]. Scalability problems
involve workflow engine robustness problems, e.g., a workflow may crash when hun-
dreds or thousands of workflow instances are concurrently running. To solve these prob-
lems, the distributed approach is proposed. A summary of some architectures for this
alternative approach is given in [SAA99]. A distinction is done between the partially dis-
tributed approach, where each workflow has its own scheduler, and the fully distributed
approach, where there is no scheduler and the task managers (that could be software

agents) coordinate the execution of activities by communicating among them.

In addition to the basic workflow enactment, a “dynamic” workflow enactment is neces-
sary to deal with the dynamic nature of today’s business environments. Adaptive work-
flows will be introduced in Chapter 3. At this point, we only emphasize the need for a
“dynamic” workflow engine to support changes brought to the execution course of

workflow instances at run-time.

24
2.4 Workflow Management Systems

We now study how we can manage processes using information technology. Recently,
the availability of tools to help in the definition and control of the various activities as-
sociated with a process considerably increased. These tools are known as Workflow
Management Systems (WfMSs). Section 2.4.1 thoroughly reviews the Workflow Refer-
ence Model (WfRM), an emerging standard from the Workflow Management Coalition

(WIMC). Section 2.4.2 addresses current generation of commercial WfMSs.

2.4.1 Standardization Effort

The WIMC has developed a reference model for workflow technology (WfRM)
[WIMC95] (Figure 2.6). The major goal of the model is to provide a standard for inter-
operability among workflow subsystems. It consists of a general description of the struc-
ture of a WIMS, in which five main components are presented (Process Definition
Tools, Workflow Client Applications, Invoked Applications, Other Workflow Enact-

ment Service(s), Administration and Monitoring Tools).

Process Definition
Tools

Interface | ¢

Workflow API and Interchange formats Interface 4
f Other Workflow Enactment
Interface 5 Workflow Enactment Service Service(s)
Administration & <D
Monitoring Tools (€]
g Workflow Waorkflow
Engine(s) Engine(s)
Interface 2 ¢ ¢ Interface 3
Workflow Client Invoked
Applications Applications

Figure 2.6. WIRM — Components and Interfaces, taken from [WfMC95]

These components are related to the Workflow Enactment Service via interfaces, which

are supported by a set of API calls (Workflow Application Programming Interface

25

WAPI). Many operations are identified across the five interface areas. These operations

are gathered within a number of groups represented by the 14 ellipses in Figure 2.7.
Based on [AH02, WIMCY95], the following sections present details on each component
of the WiRM.

F—_ - - - -- A}
T 1
T T
: G\eclion : Process Modeling Entity Handling Entity Attribute
3 Functions Functions Functions Manipulation Function
1 \ { B P unet
AL

K e > "
Work-listWork-item Process Conirol rocess Status Administration
Handling Functions Functions Functions Functions
User Management Role Management
Functions Functions
Resource Control Audit Management
K Functions Functions j

l:l&

Interface 1: Interface 2: Interface 3: Interface 4: Interface 5:

L

Process Defini- Workflow Client invoked Appli- Other Workflow Administration
tion Tools Applications cations Enactment & Monitoring
Service(s) Tools

Figure 2.7. Groups of Operations Distributed within the Five Interfaces of the Workflow
Reference Model, based on [WIMC95]

2.4.1.1 Workflow Enactment Service

The Workflow Enactment Service is the core of a WIMS. It provides the run-time envi-
ronment for the execution of workflow instances. It comprises at least one workflow en-
gine. The latter has the functionality for creating, managing, and executing workflow

instances. It allows mainly to:

e Sign-on/sign-off specific participants

e Create/delete an instance

e Control an instance (creation, activation, suspension, termination, etc.)
¢ Route an instance by interpreting the process model definition

e Manage attributes

26

e Submit work-items to the correct resources based upon the classification of the
different resources (cf. Section 2.4.1.2.2)

e Handle triggers

e Call and start up IT applications related to a specific task and link any workflow
relevant data

e Record historical data (audit), provide a summary of the workflow, and monitor

the consistency of the workflow (these are supervisory actions)

2.4.1.2 Process Definition Tools

In order to accomplish the aspects covered by the engine, process definitions and re-
source classifications are used. They are preliminarily produced by Process Definition
Tools. In addition to illustrating the process and the organization, these tools offer some-
times analysis techniques (e.g., simulation). These techniques are still limited in current
W{MSs. In the following sections (2.4.1.2.1, 2.4.1.2.2, and 2.4.1.2.3), we will describe

each of the three aspects addressed by the Process Definition Tools.

2.4.1.2.1 Definition of Processes

In a Process Definition Tool, the process model is defined either in a graphical or textual
way. Aspects such as the name, the description, the date, the version, and the compo-
nents of the process are specified. Such a tool allows also to model different types of
routing by means of components such as And-split/And-join and Or-split/Or-join. It
supports version management for a same process, the definition of attributes used in the
process, the specification of tasks, the checking of the (syntactical) correctness of a
process definition, and the tracing of any omissions or inconsistencies. Finally, a number

of characteristics need to be established for each task:

* The name and description of each task

e The associated user (role/organizational unit) or IT application that should carry
out the task (or should be started)

e Supporting information (resp., instructions) for the user performing the task
(resp., IT application)

e Task routing characteristics

27

e Specification of triggers

e Instructions to the workflow engine (e.g., priorities)

e Specification of the related attributes

e Rules that determine how the tasks progress across the workflow and which con-

trols are in place to govern each task

2.4.1.2.2 Classification of Resources

When a process is defined, it is better to couple tasks with resources instead of a specific
user. A Resource Classification Tool, considered as part of the Process Definition Tool,
allows to find relationships among various resource classes (roles and organizational
units). Roles are based upon qualifications, functions, and skills, while organizational
units are rather based upon regrouping into teams, branches, and departments. Specific
characteristics are affected to a specific resource class. A hierarchy of roles or organiza-

tional units may exist (this defines a relationship).

2.4.1.2.3 Analysis

An Analysis Tool can be embedded in the Process Definition Tool. It allows workflow
simulation or creates prototype and-or pilot versions of a particular workflow such that
this workflow can be tested on a limited basis before it goes into production. Such analy-

sis can encompass checking the semantic correctness of a process definition.

2.4.1.3 Workflow Client Applications

When a defined process is initiated by a workflow engine, the appropriate user and IT
applications are scheduled and engaged to complete each activity as the process pro-
gresses. The contact the humans have with the workflow is done via the Workflow Cli-
ent Applications. Work-lists that are part of the Workflow Client Applications, are used
by workflow engines to show which work items need to be carried out. Each user has
her personal work-list to quickly identify her current tasks along with such things as due
date, priority, state, etc. We distinguish between a standard and a customized work-list
handler. In a standard work-list handler, the functions provided are generic. They are not
customized to any application. By contrast, the customized work-list handler can be

adapted to a specific application.

28

2.4.1.4 Invoked Applications

Performing a task may require the workflow engine to execute one or more external ap-
plications. A distinction is done between interactive and fully automatic applications.
Interactive applications are initiated when we select a work item from the work-list (e.g.,
a form that needs to be completed). However, a fully automatic does not require any user

intervention (e.g., a program that performs a calculation).

Some applications are workflow-enabled and can be invoked directly by the workflow
engine. However, other applications are not compatible with the standardized interface
related to the Invoked Applications component. Their integration into the business proc-
ess is possible only via a software agent that takes the role of an actor and enables indi-
rect interaction of the workflow engine and the application in question. The actor agent
is encountered in projects such as the MALL2000 project [HH99], the TSE project (An-
dersen Consulting) [CS96], and CONSENSUS project [BAV+01].

2.4.1.5 Other Workflow Enactment Services

It is possible to link several autonomous WfMSs with one another. Instances (or part
thereof) can be distributed among these WfMSs. This distribution may be based upon
the characteristics of the instance, the task, or the resource. Four possible interoperability
models are identified in [WfMC95]: connected discrete (chained), hierarchical (nested
sub-processes), connected indiscrete (peer-to-peer), and parallel synchronized. Refer to

Figure 2.8 for a visual representation of these models.

(b)

Wrfengine(s) A
I

Wfengine(s) B

Figure 2.8. Interoperability Models, adapted from [WfMC95]. (a) Chained, (b) Nested
Sub-Processes, (c¢) Peer-to-Peer, (d) Parallel Synchronized

29

2.4.1.6 Administration and Monitoring Tools

The Administration and Monitoring Tools can be divided into two types of tools, those
used for the operational management of the workflows, and those used for recording and

reporting.

2.4.1.6.1 Operational Management Tool

Three types of information are managed by the Operational Management Tool: resource-
related, system-related, and instance-related information. The tool functions for re-
source-related information allow the addition or deletion of staff and the input or updat-
ing of user details such as the user name, the user role, and the user availability. The
functions for system-related information allow the reconfiguration of the workflow sys-
tem. Finally, the functions for instance-related information permit the inspection and the

manipulation of the logistical state of an instance when an exception occurs.

2.4.1.6.2 Recording and Reporting Tool

Some of the WIMSs give the opportunity to measure and analyze the execution of the
process so that continuous improvements can be made. A number of aspects can be
saved during execution. These are historical data that gather, for instance, information
about the execution (e.g., completion/waiting/processing time of an instance) and prop-
erties of completed workflows (e.g., bottlenecks, overcapacity). Such aspects may lead
to revise the current process (e.g., reallocation of tasks, redefining portion of the work-

flow model).

2.4.1.7 Discussion of the Workflow Reference Model

It is often argued that workflow technology is still young and not yet fully developed.
The WIRM just presented reduces the confusion that may arise as to what is expected
from the basic functionality of a WIMS. Indeed, it defines the different components of a
WIMS as well as the API that supports the interfaces among these components and the
Workflow Enactment Service. However, workflow management has many facets other
than the basic ones already supported by the current WfRM. Indeed, in the context of

specific complex applications, WfMSs are often expected to support (1) advanced con-

30

cepts such as concepts relative to the temporal aspects of a workflow or to the standard
definition of activities, and (2) enhanced functionality such as operations for the dy-
namic change of workflow instances. Unfortunately, it is still unclear which components
and-or API calls should be added to the existing WfRM so that such concepts and func-
tionality could be provided.

2.4.2 Current Generation of Commercial WfMSs

A number of WfMSs are available on the market. The number of suppliers offering
WIMSs is estimated at two hundred [AHO2]. Staffware from TIBCO Software Inc. and
Staffware Plc [Tib04] is one of the most widespread WfMSs in the world. Therefore it
may serve as a nice illustration of the capabilities of the current generation of commer-
cial WfMSs. A detailed description of Staffware is given in [AHO2]. In an initial phase
of our work, we experimented with two other mainstream commercial WfMSs: the IBM
MQ Series Workflow [Ibm04] and the WLPI (WebLogic Process Integrator) from BEA
Systems [Web04]. In the following, we will first briefly describe each of these two

WIMSs. Then, we will discuss future prospects of these systems.

2.4.2.1 IBM MQ Series Workflow

IBM MQ Series Workflow (now, IBM WebSphere MQ Workflow) [Ibm04] is a “flow-
chart style” WIMS. It consists of the following components (designed as a three-tier

structure):

(1) The Buildtime GUI offers a graphical editor to create workflow models. Other
features allow one to define the organization (staff, roles, etc.) and the imple-
mentations (data structures and programs to use in the workflow), as well as

the network definition.

(2) The MQ Workflow Client used to start/stop the execution of workflow in-
stances and to manage work-items within work-lists. Process monitoring func-

tions are also part of this component.

31

(3) The Administration Utility used to start/stop the MQ Series Workflow system,
to list the defined resources specified in build-time. It regularly checks the

state of all servers and it can be used to list the current state of any server.

(4) The server components include four types of servers: the Execution Server
(process instances management), the Administration Server (server compo-
nents management), the Scheduling Server (activities control), and the Cleanup

Server (finished process instances deletion).

The MQ Series Workflow components can be easily mapped onto the WfRM: the Build-
time GUI corresponds to the process definition tools (Interface 1), the MQ Workflow
Client corresponds to the client applications (Interface 2), the Administration Utility cor-
responds to the administration and monitoring tools (Interface 5), and the server compo-

nents provide the workflow enactment service of MQ Series Workflow.

MQ Series Workflow requires a relational database (DB2 or Oracle). Process develop-
ment information and process run-time information are stored in two separated data-
bases. MQ Series Workflow uses a Workflow Definition Language (FDL) for the ex-

change of process models between build-time and run-time.

During build-time, activities read data from an input data structure, take some action,
and then write data to an output data structure. A mapping tool is provided to map items
in the output data structure to the input data structure of the next step. Each activity has
an exit condition that is set by the activity program and is saved into the output data
structure of the activity. A process will not move on until the activity exit condition is
met. When this exit condition is met, MQ Series Workflow evaluates the conditions on
all the subsequent control connectors from that activity. It then activates zero, one, or
many subsequent activities depending upon whether the control connectors to those ac-
tivities evaluate to true or not. MQ messages are used to pass control from one activity

to the next.

At run-time, MQ Series Workflow uses a Program Execution Agent and a Program Exe-
cution Server to invoke application programs in a workflow. Note that the MQ Work-

flow Client has a poor usability. For instance, it does not provide the ability to re-order

32

work-lists. The poor usability of the client windows incites users to build a custom cli-

ent.

An interesting comparison of MQ Series Workflow and Staffware — considered as the
leader of the business process management (BPM) market — is given in [Wat01]. In
short, Staffware is more suitable than MQ Series Workflow when dealing with simple
workflows. Staffware does not require any infrastructure to operate in a basic mode. It
has its own integrated form builder and uses its own file format to store workflow defini-
tions and run-time information, while MQ Series Workflow requires a relational data-
base and a programming language for building programs that implement activities. In
addition, MQ Series Workflow provides more benefit over Staffware for complex work-
flows. Workflow definitions and run-time statistics in MQ Series Workflow are already
available in a relational database for reporting purpose, while in Staffware, extra work is

required to load this information into a database.

2.4.2.2 BEA WebLogic Integration

BEA WebLogic Integration [Web04] allows for connecting applications, databases, en-
terprise information systems, processes, and business partners; it gathers a set of func-
tionality in the following areas: application integration, BPM, B2B integration, and data
integration. Since we are interested in BPM, we will describe the BPM functionality
provided by BEA WebLogic Integration. This corresponds to the former WebLogic
Process Integrator (WLPI) product. WLPI consists of the following components:

(1) The WebLogic Integration Studio (formerly, WLPI Studio) used to design
processes. It provides a graphical interface in which flowchart elements are
available for workflow modeling. It is also used to define users and roles as

well as to monitor workflow instances.

(2) The BEA WebLogic Server includes a process engine used to manage the exe-

cution of business processes.

(3) The WebLogic Integration Worklist (formerly, WLPI Worklist) is the client

application used to start/stop processes and to interact with a running process.

33

It also allows users to handle business process tasks assigned to them (e.g.,

specify the value of a variable).

WebLogic Integration can be mapped onto the WfRM as follows. The WebLogic Inte-
gration Studio forms the process definition tools (Interface 1). This Studio as well as the
WebLogic Integration Worklist forms the workflow client applications (Interface 2). The
Studio corresponds to the administration and monitoring tools as well (Interface 5). The
process server provides the workflow enactment service of WebLogic Integration. We
observe that the BPM functionality of the WebLogic Integration system is mainly en-
compassed in the Studio. This does not show in a clear manner the separation of the dif-
ferent interfaces defined in the WIRM. IBM MQ Series Workflow provides a better

separation as we already saw in the previous section.

WebLogic Integration requires a relational JDBC database (Oracle or SQL Server).
Workflow template definitions and running instances of a workflow are respectively

saved in a template store and an instance store.

At build-time, public and private business processes can be developed using the Studio
(B2B integration environment). Nodes such as Start, Done, Task, Decision, Event, And-
join, and Or-join are used to design workflow models. Actions are defined within these
nodes and they are performed when a node is activated in the workflow. A wide variety
of actions are provided (e.g., call an Enterprise JavaBeans (EJB) method, send an XML

message to an application).

During execution, XML is used for data representation, and JMS is used for messaging
between workflows and other applications. Business processes can be started in a num-
ber of ways: called by an application or another workflow (sub-flow), invoked manually
(e.g., using WebLogic Integration Worklist), triggered by the reception of an event noti-
fication (XML message), or timed to start automatically at a predefined date and time.
During run-time, statistics can be collected for reports (evaluation of processes, optimi-

zation of performance and throughput).

34

2.4.2.3 Future Prospects of WiMSs

Van der Aalst and van Hee examined the future prospects for WfMSs in terms of seven
areas of functionality [AHO02]:

Modeling: WiMSs should acquire more repository functions in the future, or
improved interfacing with such tools. Repositories should record much more on
an organization’s data and they should offer good query opportunities through
which all the connections relevant to the management of the organization can be
analyzed. Another aspect is the expressive power of the modeling function.
Common constructions in business processes should be well handled. A final as-
pect is that today’s WfMSs are mainly suited to standard processes where the
number of workflow instances is large compared with the number of workflow
models (i.e., production workflows). WfMSs should offer functionality for so-
called one-of-a-kind processes (ad-hoc workflow), with a separate process de-
fined for each case. WfMSs should integrate process definition functionality
with the workflow engine.

Analysis: Simulation and formal verification techniques are used to perform
workflow analyses. An expansion of simulation abilities includes to ease the use
of historical data from the WfMS for testing modified business processes. Simu-
lation tools can easily evolve into workflow engines because it is not a great leap
from simulating workflows to coordinating real ones. An expansion of formal
verification techniques — mainly developed for Petri nets — would incorporate
correctness tests into the process definition tools.

Planning: Today’s WfMSs sometimes offer a limited ability to allocate re-
sources to tasks and to schedule tasks using the same resources. Timetabling
problems are not solved by today’s WfMSs, though these problems are becom-
ing more and more significant in organizations. Planning support may be offered
by the application of modern operations research methods in preparing schedules
(e.g., taboo search, constraint satisfaction). What we just introduced is known as
operational planning problems. Tactical planning problems should also be con-

sidered. As an example, decisions are taken about how much of the capacity of a

35

particular resource will be required during the period being planned for. Al-
though a WIMS does in fact contain all the relevant information needed to solve
such problems, none yet actually offers the facilities to do so. Also, it is sill un-
clear whether producers of these systems should develop such functionality
themselves, or whether it would be better for them to try to integrate planning
software into their programs.

e Transaction management: This requires an appropriate communications proc-
ess (e.g., XML for supporting e-business transaction processing).

e Interoperability: Restrictions regarding the monitoring of protocols and the
support of data conversion among communicating applications, should be over-
come.

e Internet/Intranet: WfMSs should allow the use of a web browser as a Work-
flow Client Application (Interface 2). On the one hand, this makes it possible for
users to access the workflow system through the Internet, and hence to perform
work from anywhere. On the other hand, the combination of workflow and the
WWW opens up new application opportunities: e-business.

e Logistical management: It is provided by Enterprise Resource Planning (ERP)
systems. One of the most important functions of these systems is the calculation
of the required resources for a specific enterprise project. The scheduling of
these resources in time is addressed, and the process is deduced consequently. It

is of interest to incorporate such functions from ERP systems into WfMSs.

Van der Aalst and van Hee argue that it is unlikely that workflow product manufacturers
incorporate all these functionalities because they would never be able to remain up to
date in every one of these fields. A better solution is for the architecture of their systems
to be left sufficiently open so that it is easy to integrate other manufacturers’ software
packages with specific functions from the range described. A great work of standardiza-

tion is required.

The BEA WebLogic Integration product (whose BPM functionality is described in Sec-
tion 2.4.2.2) and the IBM WebSphere MQ Workflow (described in Section 2.4.2.1) can

be considered as an attempt to integrate functionalities in many areas. These areas do

36

not, however, completely cover all the ones introduced above. They are mostly oriented
towards B2B applications (e.g., “IBM e-business solutions™), and they lack to address in

an appropriate manner all the modeling, planning, and analysis issues.

In this thesis, we address mainly aspects related to the modeling area (expressive model-
ing functions, functionality for one-of-a-kind processes), and to the planning area (inte-
gration of a planning software into WfMSs). The two examined commercial WfMSs are
not quite appropriate to address advanced needs in today’s complex applications. Indeed,
functionality stemming from areas such as “adaptive workflows”, “workflow temporal
constraints” and “workflow data management” should be supported. Nevertheless, some
researchers in the workflow domain are studying these areas — part of the “modeling”
area of functionality in the classification of van der Aalst and van Hee exposed above.
ADEPT [RRDO03a] is an example of a WfMS prototype that addresses adaptive work-
flows and workflow temporal issues. In our work we rely on ADEPT as a well-founded
basis, to address and to test new workflow concepts and functionality, but also to try to

integrate functionalities provided by external tools/systems.
2.5 Summary

In this chapter, workflow management concepts have been reviewed and the terminol-
ogy that will be used in the rest of the thesis has been introduced. Workflow manage-
ment involves the design and enactment of workflows. Workflow design consists of cre-
ating a workflow model, which is a description of several aspects of a workflow: the ac-
tivities to be fulfilled, the assignment of activities to participants that are either humans
or software systems, the control and data flow between activities. Workflow design re-
quires a set of modeling concepts including temporal issues and organizational structure
issues. Modeling concepts may be based on formalisms such as Petri nets and UML, or
on formalisms that focus specifically on workflow aspects. In this thesis, we are inter-
ested by the latter. We consider the WSM-Nets formalism to introduce new workflow
modeling concepts and functionality. Workflow enactment refers to the execution of the
activities comprised in a workflow, as prescribed by the corresponding workflow model.

The WIRM is a standardization effort for the development of WfMSs. This model does

37

not accommodate in an appropriate manner concepts and functionality inherent to com-
plex socio-technical systems. These concepts and functionality relate to modeling,
analysis as well as planning. Table 2.1 lists the workflow modeling formalisms that were
presented in this chapter, as well as the enactment engines presented and their corre-
sponding specification languages. Workflow modeling formalisms concerning adaptive

workflows are not listed in the table, since they will be covered in detail in Chapter 3.

Table 2.1. Workflow Modeling Formalisms and Workflow Management Systems

Workflow Management Systems

Workflow modeling
formalisms-languages ' Specification
Enactment engines
languages
. . Workflow Definition
Petri nets IBM MQ Series Language (FDL)

.. BEA WebLogic XML-based language

UML (state and activity charts) Integration (e.g., WSCI)

WSM-Nets

WPDL

XML-based formalisms (e.g., |
XML nets, XRL, XPDL,
WSCL, WSCI, BPEL4WS)

Chapter 3 Adaptive Workflows

The capability to dynamically adapt in-progress workflows is an essential requirement
for any workflow management system [RRDO04a]. This requirement is mainly motivated
by the need to react to external or unexpected events. Furthermore, as pointed out by
Horn and Jablonski [HI98], adaptive workflows are interesting in the context of specific
applications because it may be impossible to identify all the elements of a workflow
model (i.e., workflow or process schema/type) before run-time. Furthermore, modeling
all alternative paths in advance might decrease its readability. Domain experts some-

times prefer therefore to model paths that are used frequently only.

A distinction is made between (1) ad-hoc changes or punctual changes [EK00] which
are workflow changes applied to a single workflow instance, and (2) evolutionary
changes consisting of adapting a collection of workflow instances due to a permanent
change of a workflow model [HS98]. The latter includes propagating changes on work-
flow instances or migrating workflow instances running on an old schema S to the new
schema S’. Evolutionary changes are relevant for instance when new laws come into ef-
fect, when the maintenance or when the optimization of a workflow model is required.
Ad-hoc changes are of interest when exceptional situations occur that influence a single

workflow instance.

Adaptive workflows are currently studied by a number of researchers in the workflow
community [AMO00, CCP+98, EK00, HS98, HJ98, KBB98, RD98, Kra00, Wes0l,
AB02, SMO00, RRD04b]. Problems and challenges behind this topic are featured within
the literature, and solutions based on specific approaches are proposed as well. In this
chapter, we first review the challenges and problems related to adaptive workflows as
exposed in the literature (Section 3.1). Then, we present and discuss a selection of im-

portant research projects and their related approaches (Section 3.2). In Section 3.3, adap-

39

tive WIMSs are discussed. The final section puts the chapter into perspective by high-

lighting our interests regarding adaptive workflows.

3.1 Challenges in Adaptive Workflows

While not distinguishing between ad-hoc and evolutionary changes, we focus on three

main issues related to adaptive workflows:

The expressiveness of the workflow meta-model used [HS98]. The workflow meta-

model should provide appropriate modeling constructs to support the dynamic require-

ments of business processes. There are two different interpretations of this statement:

The first interpretation consists of a workflow meta-model that is expressive
enough to let workflow instances react automatically to specific events which
corresponds to a process-driven approach for workflow changes. As an example,
the Dynamic Workflow Model (DWM) extension of the Workflow Process
Definition Language (WPDL) provides dynamic properties needed to support the
requirements of inter-organizational business processes [Men02]. Constructs
such as “events” (e.g., before-activity event, after-activity event, external event),
“rules” and “triggers” are defined within DWM. Another example is given in
[NDS96]. A workflow modeling approach using transactions and tasks is de-
scribed: transactions specify the contents of the workflow, and tasks specify the
scheduling and execution of transactions and also provide reactivity to failures.
In such frameworks, the workflow already comprises the adaptations required
for accommodating pre-defined, potential failures. In fact, automatic adaptations
depend usually on the outcomes of previous activity executions, and they restrict
in advance the possible workflow changes.

The second interpretation consists of a workflow meta-model that is expressive
enough at the control and data flow level to allow practically relevant changes: if
loops for instance are not tolerated by a specific workflow meta-model, there
would be no way to bring a change by inserting/deleting a cyclic structure.
WASA:; Activity Nets [Wes01], MILANO Nets [AM00], and TRAMs Graphs

[Kra00, KG99] provide examples of adaptive workflow models based on meta-

40

models excluding loops. If data flow issues were excluded from a workflow
meta-model, there would be no way to deal with data during workflow changes;
e.g., the insertion/deletion of data would not be possible. Petri Net-based adap-
tive workflow models do not usually explicitly consider data flows. Examples of
such models are Workflow Nets [AB02] and MILANO Nets [AMO00]. In this
case, the correctness verification of changes (refer to the third issue below) does

not include the verification of data, i.e., whether data is correctly provided or not.

The completeness of the set of change operations allowed [RD98, RRD04a, SMO00].
The set of offered change operations should be complete in the sense that starting from a
basic workflow model with only a begin node and an end node, any workflow model can
be built using this set of change operations. Completeness and minimality are well dis-
cussed in [RD98]. It has been argued that for practical purposes, as a minimum, change
operations for inserting and deleting activities as well as control/data dependencies
among them are needed [RRD04a]. In [SMOOO], the authors also discuss change opera-
tions for modifying activity properties (data requirements, underlying application, tem-
poral constraints, resource allocation) and for modifying the order of activity execution.
Sometimes, an adaptive workflow meta-model (e.g., MILANO Nets [AMO00]) allows for
structural changes such as parallelization to change sequential activities into parallel ac-
tivities, sequentialization to change parallel activities into sequential activities, and
swapping to change the order of activities. However, it fails to allow for fundamental
changes such as the insertion of a new activity and the deletion of an existing one. A

complete yet minimal set of change operations is desired [RD98].

The correctness verification regarding the application of changes on instances. Cor-
rectness criteria for verifying if a workflow instance is compliant with the proposed
changes are required. It must be ensured that those changes will not cause inconsisten-
cies or errors for the rest of the workflow instance processing. Rinderle et al. [RRD04a]
point out that correctness criteria should not be too restrictive, i.e., no workflow change
should be needlessly refused. As surveyed in [RRDO04a], such criteria are addressed by
the following researchers: Agostini and De Michelis (MILANO [AMOO]), Casati et al.
(WIDE [CCP+98]), Ellis et al. (ML-DEWS [EK00, EKR95]), Reichert and Dadam

41

(ADEPT [RD98]), Kradolfer and Geppert (TRAMs [Kra00, KG99]), Weske (WASA,
[Wes01]), van der Aalst and Basten (Woflan [AB02]), Sadiq ez al. (BREEZE [SMO00]).
To this list, the work of Rinderle e? al. is added [RRD03b, RRD04c, RRD04b].

The second and third issues discussed above have been identified in [RRDO04a] as fun-
damental issues. Moreover, another interesting issue has been added in [RRDO04a},
namely change realization. From a workflow evolution perspective, it should be possible
to automatically migrate workflow instances to a new schema. One challenge is to cor-
rectly and efficiently adapt instance states [RRDO4a]. This challenge holds in the context

of ad-hoc changes as well.

It must be mentioned that the four issues cited above are discussed in the literature al-
most exclusively in the context of structural workflow changes. Regarding other kind of
changes such as workflow attribute changes, changes in the workflow temporal aspect,
and organizational model changes, they are still not studied and discussed in an appro-
priate manner. Attribute changing operations are evoked in [RRDO4c]. It consists of
changing the value of an activity attribute or of an edge attribute. In [SMOO0O], it is ar-
gued that “time” is an element that makes workflows dynamic, and that temporal uncer-
tainty during workflow modeling calls for verifying the consistency of temporal con-
straints during execution, at the workflow instance level. Applying changes on an organ-
izational model and correctly propagating those changes on workflow instances have not

been addressed till now in the literature.
3.2 Projects Addressing Adaptive Workflows

Even though the need for adaptive workflows is apparent, solutions are not obvious. In
this section, we review relevant research projects in relation with adaptive workflows.
Change policies and modalities are first reviewed and discussed (Section 3.2.1). Then, in
Section 3.2.2, key projects proposing solutions to the challenges identified in Section 3.1

are surveyed and discussed.

42

3.2.1 Workflow Change: Policies and Modalities

We review in this section two main research projects that classify various elements re-
lated to workflow change. We begin by presenting modification policies [Sad99] (Sec-
tion 3.2.1.1); then we expose a set of factors to be taken into account when specifying a

change [EKO00] (Section 3.2.1.2).

3.2.1.1 Modification Policies

In the context of evolutionary changes, Casati et al. present a set of workflow changes
referred to as Case Evolution Policies [CCP+98]. They identify “abort”, “flush” and a
set of progressive policies that allow instance or case dependent evolution management
of a workflow. Sadiq [Sad99] identifies a larger number of workflow modification poli-

cies, which can be adopted by the workflow administrator:

e Flush: All current instances are allowed to complete according to the original
process model, but new instances are set to follow the new model.

© Abort: Active workflow instances may be aborted when the process model is
changed, and then restarted (or not) according to the new model.

e Migrate: The change affects all current instances but it has to be introduced
without allowing current instances to abort or flush. This policy calls for the
“correctness verification” issue discussed in Section 3.1.

e Adapt: The process model may not change permanently, but some instances have
to be treated differently because of some exceptional and unexpected circum-
stances (i.e., ad-hoc changes).

e Build: The starting point is not a detailed pre-existing model, but an elementary
description, which captures only the basics. For instance, workflow activities are
identified, but the order of execution is mostly unknown. In [KBB98], the au-

thors use the terms “partial” or “just-in-time” execution.

These policies cover evolutionary changes (flush, abort, migrate), and ad-hoc changes
(adapt). In [HS98], Han and Sheth specify that a strong association can exist between ad-
hoc and evolutionary changes: if ad-hoc changes are to be made permanent, we are con-

fronted with a problem of workflow evolution. Moreover, we may add that if a workflow

43

evolution is to be applied on running instances, we are confronted with a problem of ad-

hoc changes.

From these policies, two different facets are also identified with respect to adaptive
workflows: the dynamic change and the dynamic definition of workflows. We observe
that the *“build” policy tackles exclusively the dynamic definition of workflows. Hence,
adaptive workflow technology takes a broader perspective than the one that is restricted

to “dynamic workflow changes”.

When compared to the modification policies presented above, the requirements dis-
cussed in [KBB98] address advanced elements regarding adaptive workflows. The au-
thors describe for instance “reflexivity” where a process has the ability to re-model it-
self, and the “late binding of resources” where the completion of activities uses the re-

sources at hand at a specific point in time.

3.2.1.2 Change Modalities

When we want to specify a change, there are many factors that must be taken into ac-
count. Ellis and Keddara [EK0O] present eight important change modalities to be speci-

fied so that an unambiguous change will be implemented:

e Change duration: Instantaneous versus time interval versus indefinite.

e Change lifetime: This specifies the amount of time that the change is in effect. It
could be permanent or temporary.

e (Change medium: Manual versus automatic versus mixture. Usually, when the
number of instances that must change is small, this could be manually done by a
human. If the number of instances is big, then they should be automatically up-
dated. This has been discussed in [RRDO04a] under the “change realization” is-
sue.

e Change time-frame: Past versus present versus future. The instances to which a
change is applicable are typically restricted to the ones in progress. However,
there are situations where instances that have not yet begun are excluded, or in-

stances that have already terminated are included.

44

e Change continuity: Preemptive versus integrative. Here we specify the planning
and the implementation work of the changes, e.g., should we disrupt (preempt)
currently running instances or not? Preemptive strategies include abort, rollback,
restart, checkpoint, and flush schemata. Integrative strategies include versioning,
and other gradual instance migration schemata.

e Change agents: Here we specify which participants play which organizational
roles within the change process, e.g., who has the right to specify, enact, and au-
thorize what types of changes.

e Change rules: There are participatory rules that define the participation aspect of
a change process, integrity rules that define the various constraints of a change,
(e.g., temporal, data integrity, and flow constraints), and situated rules that spec-
ify how to react in the face of exceptional situations, e.g., constraint violation
and system failure.

e Change migration: This refers to the ability to bring filtered-in instances into

compliance with the new schema in accordance with the migration policies.

Note that the “change lifetime” specification refers to both ad-hoc and evolutionary
changes. The “change continuity” is obviously defined by policies such as the ones pre-

sented in 3.2.1.1, and the “change migration” overlaps with the “migrate” policy.

Regarding the “change medium” modality that introduces the automatic change aspect,
we think that the specified context (i.e., big number of instances) within which automatic
changes are interesting is too restrictive. Automating workflow changes is indeed desir-
able in many other contexts. The type of application studied may for instance require
automatic workflow changes (e.g., with a rule-based approach). This may be realized on

top of adaptive WfMSs (cf. Section 3.3).

As a final note concerning change modalities, “change duration”, “change time-frame”,
and “change agents” are not well studied in the literature. Researchers are rather inter-

ested in “change rules”, e.g., the “correctness verification”, as discussed in Section 3.1.

45

3.2.2 Proposed Solutions for Adaptive Workflows

A survey and an interesting classification of key projects in the adaptive workflow do-
main [AMO00, CCP+98, EK00, RD98, Kra00, Wes01, AB02, SMOO00], and specifically
of the approaches adopted and the correctness criteria developed within these projects,
are provided in [RRDO04a]. In this section, we review these key projects with respect to

the three adaptive workflow issues discussed in Section 3.1.

We begin by describing each of these projects (Section 3.2.2.1). Then, in Section 3.2.2.2,
the expressiveness of the workflow meta-model used within each project is studied. Af-
terwards, in Section 3.2.2.3, the completeness of the set of changes provided by these
projects is reviewed. A summary of the different projects’ correctness verification of
changes is given in Section 3.2.2.4. Finally, Section 3.2.2.5 puts these three adaptive
workflow issues into perspective, by discussing five typical problems regarding dynamic

workflow change.

3.2.2.1 Description of Key Projects

Woflan [ABO2]. In this project, the Workflow Nets, a Petri Nets-based model, is intro-
duced. Transformation rules based on inheritance concepts (cf. Section 3.2.2.4) are de-
veloped to avoid problems such as the “dynamic-change bug”. The latter refers to errors
such as duplication of work, skipping of tasks, and deadlocks introduced when migrating
an instance from an old schema to a new one or when ad-hoc changes are applied on an
instance. A tool that supports the inheritance notions has been developed (Woflan —
WOrkFLow ANalyzer [VAO4]). It can analyze workflows designed with various work-
flow products. This tool has been successfully tested with Staffware.

WASA; [Wes01]. The workflow model Activity Nets using an object-oriented activity-
based workflow meta-model, is defined. It comprises one generic class Workflow of
which Workflow schema and Workflow instance are instances. Within a workflow
schema, activity nodes, control connectors, and data connectors are defined. Data con-
nectors map output and input parameters of subsequent activities (data flow). The work-

flow model used is comparable to Activity Nets applied in IBM MQ Series Workflow. A

46

WIMS architecture based on the CORBA object-oriented middleware has been elabo-

rated. The system, including dynamic adaptations, has been implemented.

MILANO [AMO00]. Two different representations of a workflow model are possible: (1)
The Workflow Net Model (WNM) — a local state representation making explicit the in-
dependence between the actions, and (2) the Workflow Sequential Model (WSM) — a
global state representation where the path followed during the execution of an instance is
made immediately visible. MILANO provides a specification module that supports the
users when changing a workflow model. The correctness of changes is verified to ensure
a safe enactment of these changes on instances. This enactment is postponed in instances
that are in an unsafe state until they reach a safe one. The theoretical framework of Mi-
lano allows three patterns of change: parallelization, sequentialization, and swapping. A
Minimal Critical Specification (MCS) is defined, and must be satisfied by the workflow

model and its changes. It is used as a reference to guide changes.

ICN and ML-DEWS [EK00]. An approach to provide dynamic changes by replacing a
given sub-workflow by another completely specified sub-workflow is introduced in
[EKR95]. Notions of dynamic change and correctness as allowed by the Petri Net for-
malism — the Information Control Net model (ICN) — are defined. ICN is used to analyze
structural changes. In [EKOO], the eight change modalities presented in Section 3.2.1.2
are defined, but also a workflow Modeling Language (ML-DEWS) that supports the
Dynamic Evolution within Workflow Systems is elaborated. ML.-DEWS is an extension
of UML. It provides two meta-models: one to specify a workflow, and the other to spec-
ify a change within this workflow. The language is based on concepts as proposed by the
WIMC. All workflow model elements (workflows, activities, rules, events, and flow) are
modeled as classes. Pre-defined change schemata are supported by ML-DEWS. Within
these schemata, the ad-hoc schema supports ad-hoc changes. The idea is to complete the
change specification at run-time when the change process is enacted. The authors dis-

cuss change design and enactment that either alternate or are done in parallel.

WIDE [CCP+98]. One of the first approaches dealing with dynamic workflow changes
was offered by the WIDE project. It provides a generic correctness criterion for process

schema change propagation (the so called compliance criterion). This criterion is suit-

47

able when instance execution histories are logged. An instance I created from a schema
S is compliant with a changed schema S’ if the execution history of I can be correctly
replayed on S’. In WIDE, workflow schemata can be described either graphically or by
using predecessor and successor functions. In brief, as stated in [RRD04a], WIDE has
offered a cornerstone for many other approaches — the intuitive history-based compli-

ance criterion.

TRAMs [KG99]. Within this project, the workflow meta-model developed provides
support for the versioning of process schemata and explicitly defines correctness criteria
for the model as well as for the workflow instances. A taxonomy of modification opera-
tions has been developed. These operations address changes at the process schema level
(add/drop a process schema), at the version level (add/drop a version, changes to a ver-
sion state), and at the version content level (attribute and activity changes). The migra-
tion of workflow instances is studied. Another aspect addressed in [Kra00] is the reuse
of process schemata, which is a process consisting of finding, understanding, adapting,

and integrating process schemata instead of developing process schemata from scratch.

ADEPT [DR98]. The WSM-Nets workflow model developed within the ADEPT project
has already been introduced in Chapter 2. The research efforts in this project were ini-
tially concentrated on the support of ad-hoc deviations at the workflow instance level
without violating data consistency, temporal constraints, and robustness of the system
[RD98]. Data dependencies and the data flow between steps are analyzed to decide
which dynamic modifications can be granted and which have to be refused. Lately, evo-
lutionary changes have been addressed in a significant manner within the ADEPT pro-
ject [RRDO3b, RRD0O4c, RRD04b]. When compared to other projects that address work-
flow evolution, the ADEPT approach is considered as a farsighted approach since it
studies and proposes correctness criteria for propagating process type changes not only
to instances that are still running according to their original schema (i.e., unbiased in-
stances), but also to those instances that have been individually modified (i.e., biased

istances).

BREEZE [SMO00]. A three-phase modification methodology that consists of (1) defin-

ing the modification, (2) verifying the compliance of the workflow instance with the

48

proposed modification, and (3) realizing the modification is proposed in [SO99a,
Sad99]. This methodology handles the modification policies presented in Section
3.2.1.1. A WIMS architecture providing fully automated support for the process of dy-
namic changes has been elaborated. It allows the automatic compliance verification of
the instance to migrate. A “compliance module” component generates graphs (called
“compliance graphs”) that define a bridge between a workflow model version &, and a

workflow model version k+1.

3.2.2.2 Workflow Meta-Model Expressiveness

Assume a workflow composed of a sequence of three activities A, B, and C. We apply
workflow models respectively developed within the different projects (P) introduced in
Section 3.2.2.1 to represent this workflow (Sp). Table 3.1 shows workflow instances Ip
respectively issued from Sp. In each instance the activities A and B were completed. In-
formation behind the execution phase is included (e.g., execution history, markings).
Some notes regarding the expressiveness of the workflow meta-model used are given.
We consider that a workflow model allows the modeling of sequential, parallel, condi-
tional, and iterative activity branches, and that data flow is supported. Otherwise, i.e., if

it is not the case for a specific workflow model, we state it clearly in what follows.

Table 3.1. Adaptive Workflows Key Projects — Workflow Meta-Model Expressiveness

Workflow instance taking into ac- | Execution phase information, Meta-model expressiveness
count a specific workflow modeling |
language

Woflan: Workflow Nets Petri nets rules apply. Data flow issues are ex-

cluded.
A B C

O-O-@--0

WASA : Activity Nets

— -

O : NotActivated
O : Completed

Possible markings: NotActi-
vated, Activated, Running,

Completed, Skipped.

Activity output parameter and
its corresponding activity in-
put parameter should be type-
conform. This is one of the
correctness criteria for a
workflow schema.

MILANO Nets

WNM A B C

O-O-@-0O

WM A B c

SO—TO—rE— O

ML-DEWS: Flow Nets

A B C
WIDE Graphs
| A 1B | C |
Vnrss=(d1)

History=((Esun), (Ea), (Es, <d;, “value™>))

TRAMs Graphs

A B < B
—> >
SC: True SC: done(A) SC: done(B)

Vars®={d;}
History=((Sa), (Ea), (Sg), (Es, <d,, “value">))

Petri net rules apply in
WNM.

@ : Current state in WSM

Colored tokens are used to
distinguish different in-
stances.

Only activity completion
events are logged within the
History (E = End).

Workflow instance state can
be deduced from the history
logs.

SC: Start Condition

Possible markings: Activated,
Running, Completed.

Activity start and completion
events are logged within the
History (S = Start, E = End).

Workflow instance state can
be deduced from the history
logs.

49

----+ : Data flow

Loops are excluded. The
acyclic graph structure is
even a correctness criterion
for a workflow schema —
no deadlocks.

Loops are excluded —
acyclic Free-Choice Petri
Nets are used.

Data flow is not explicitly
considered.

Comparable to Workflow
Nets, but places can hold
more than one token.

“ : Start/End

: Data flow

50

ADEPT: WSM-Nets

v :Completed --# : Data flow
d
< : a :Activated Synchronization edges be-
tween activities in different
@—'»@—'»@ ® :True-Signaled parallel branches are in-
A B C cluded.

Possible markings: NotActi-
vated, Activated, Running,
HiStory=((Sw), (EA), (So). (Es, <dy, “value'>)) ~ Completed, Skipped.
Activity start and completion
events are logged within a re-
duced History (S = Start, E =

End).
BREEZE L] : Completed 3 : mitial
Possible markings: Sched- [] :Final
I I ’ I & H B}»I_(!_H_‘l uled, Active, Suspended,
Completed, Terminated. % : Data flow

Vars’={d, }
History=((SA), (Ea). (Ss), (Ep. <d, “*value™>))

3.2.2.3 Set of Changes Completeness

In [RRDO04a], it has been specified that the set of changes defined within each of the pro-
jects introduced in Section 3.2.2.1 is complete except in the Woflan project where the
order changing operations are explicitly excluded, and in the MILANO project where
only the parallelization, the sequentialization, and the swapping of activities are allowed.
Indeed, most of the projects allow for the serial and parallel insertion and deletion of an
activity, and the change of an activity attribute value (variable, in-/out-parameter). In
addition, ADEPT allows moving an activity, inserting and deleting a synchronization
edge, and changing an edge attribute value. However, the insertion and deletion of a
workflow data element is evoked but not discussed in detail. In TRAMs, the start and
end conditions of an activity can be changed, and changes on data issues are addressed:
insertion and deletion of an in-/out-parameter, of a workflow variable declaration, and of

a data flow. In WIDE, the insertion and deletion of variables is possible as well.

51

3.2.2.4 Summary of Correctness Verification

A summary of the change correctness criteria elaborated within each of the key projects

is given in Table 3.2. A detailed survey of these criteria is given in [RRD04a].

Table 3.2. Adaptive Workflows Key Projects — Correctness Verification of Changes

Approach Correctness verification

|
Woflan: Workflow Nets | A workflow instance I on schema S is compliant with the modified schema
S’, if S and S’ are related to each other under inheritance.
(Ad-hoc and evolutionary = There are two kinds of basic inheritance relations. S is a subclass of S’ if the
changes) | behaviors of S and S’ cannot be distinguished when:
e only executing tasks of S, which are also present in S’. Le., blocking a
| sub-set of tasks of S.
| e arbitrary (all) tasks of S are executed but only effects of tasks that are
present in S’ as well are taken into account. L.e., hiding a sub-set of tasks
of S.
(S and S’ could be reversed.)

| There exist automatic transfer rules for adapting markings.

WASA;: Activity Nets I'is compliant with §” (i.e., I can be migrated to S’) if a valid mapping exists
between I and S’, i.e., if | is a prefix of S’. In this case, all completed activi-
(Ad-hoc and evolutionary ties of I and all control and data dependencies in I are also contained in S’.

changes) I is a purged instance graph: 1 is derived from S by deleting all activities
which have not been started yet and by removing all associated control and
data edges.
f
MILANQO Nets | 1is compliant with S’ if I is in a safe state on S regarding S’. A safe state on
| S regarding S’ is a state that is present in S as well.
(Evolutionary changes If Iis in an unsafe state, the migration of | is postponed until a safe state is
only) | reached.

1

ML-DEWS: Flow Nets Suppose that m is the marking of I on S. It is supposed that the marking m’
of I migrated to S’ is known.
(Ad-hoc and evolutionary 1 is compliant with S’ if for each of the possible firing sequences leading
changes) from m’ to the final marking of S’:
e This sequence is producible on S starting from m. What will potentially
be done on S’ could be done on S as well.
OR
e The firing sequence that led to m on S can be reproduced on S’ and hence
it can be continued on S’ by this sequence. What has been done on S can
be reproduced on S’.

Marking adaptations are always correctly performed since the old change
region is completely contained in the new net.

52

WIDE Graphs I is compliant with S’ if the execution history on S can be “replayed” on S’
as well. All events stored in the execution history could also have been

(Evolutionary changes logged by an instance on S’ in the same order.

only) Obvious approach problems: (1) Possibly extensive volume of history data,

which is normally not kept in main memory [KG99]. (2) Restrictions in con-
junction with change operations within cyclic structures [RRDO04a].

TRAMs Graphs Similar to WIDE Graphs. In addition, migration conditions are verified. This
provides a solution for problem (1) exposed in WIDE Graphs.

(Evolutionary changes

only)

ADEPT: WSM-Nets Similar to WIDE Graphs. However, a reduced execution history is used, and
migration conditions are verified. This provides a solution respectively for

(Ad-hoc and evolutionary problem (2) and problem (1) exposed in WIDE Graphs.

changes)

BREEZE Similar to WIDE Graphs. A compliance graph is generated. It defines a
bridge between S and S’. A compliance graph / related to an instance i, al-

(Evolutionary changes lows the latter to follow a unique path defining actions or compensations

only) necessary to achieve compliance for this instance, and a suitable “plug” point
inS’.

In the context of the Woflan project, van der Aalst and Basten used the concept of bi-
simulation [Mil80, Par81] in order to verify inheritance of process schemata [AB02].
Specifically, branching bi-similarity was used as an equivalence relation on Petri Nets
schemata: two Petri Nets schemata S and S’ are bi-similar if S can simulate every behav-
ior of S’ and vice versa, i.e., starting from the initial marking every firing sequence of S
must be executable on S’ and vice versa. Bi-simulation is a well-founded concept for
correctness verification that can also be applicable on process specification formalisms
other than Petri Nets. Other techniques coming from process algebra [Hen88] were suc-
cessfully used for the verification of systems [GRO1]. In fact, process algebra can be
used as a specification formalism for workflows since they yield elements for the model-
ing of sequential, alternative and parallel processes but also a rule framework for the
verification of these processes. Unfortunately, there is no implementation of WfMSs
based on process algebras. A possible explanation could be the lack of understandability
(i.e., user friendliness) of the formalism. Featuring more details regarding bi-simulation

and process algebra goes beyond the scope of this work.

53

3.2.2.5 Discussion

Five typical problems regarding dynamic workflow change have been reviewed in
[RRDO4a]: changing the past, loop tolerance, dangling states, order changing, and paral-
lel insertion. They denote correctness criteria problems. It has been argued that: (1) the
past of an instance should not be changed; (2) it should not be needlessly impossible to
bring changes within loops; (3) it is sometimes problematic not to distinguish between
activated and running activities; (4) a potential problem of order changing is to correctly
adapt instance markings; and (5) inserting a new parallel branch is problematic in Petri
Net-based approaches (e.g., Workflow Nets, Flow Nets) — new tokens may have to be

added to avoid deadlocks or livelocks.

The approaches adopted by specific projects for the correctness verification of changes
either deal or do not deal with each of these five problems. Furthermore, in the case
where they deal with a problem, they may not do it correctly. This mainly depends on
the expressiveness of the workflow meta-model used, on the completeness of the set of

change operations allowed for, as well as on the approach adopted itself:

Changing the past. A possible problem of changing the past is to miss input data of
subsequent activity execution. As highlighted in [RRD04a], it is interesting to see that
the Flow Nets approach forbids changes that affect both already passed regions and re-
gions which will be entered in the sequel. This can be easily explained when considering
the two exclusive criteria of the Flow Nets correctness verification of changes. Indeed,
when a change is applied on a schema S leading to a schema S’, in the best case, either
the statement “what will potentially be done on S’ could be done on S as well” is veri-
fied or the statement “what has been done on S can be reproduced on S°” is verified, but
never both. Suppose both statements are verified, this means that S = S°, which is not the
case. Obviously, the verification ensured by the Flow Nets approach guarantees correct

data provision.

Loop tolerance. It has been argued in [RRD04a] that a reduced (i.e., consolidated) view
of the execution history as in ADEPT/WSM-Nets relieves the restrictive aspect in con-
junction with change operations within cyclic structures. A reduced execution history is

derived from an execution history by discarding all the history entries related to other

54

loop iterations than the last completed or currently running loop. As shown in the exam-
ple of Figure 3.1, the execution history on S cannot be replayed on S’, but the reduced
execution history on S can be replayed on S’. The reduced pre-change firing sequence
which is a Petri Net-based approach adopted in Flow Nets and that corresponds to the
sequence of transitions that have been fired before the change arrives, and the purged
instance graph approach adopted in WASA,, are both comparable to the reduced execu-
tion history approach in the sense that they relieve the restrictive aspect in conjunction
with change operations within cyclic structures. Nevertheless, this problem is factored

out in WASA, since the workflow meta-model used excludes loops.

IonS v" Completed
- N ‘ > - ,- _,‘_,. a Activated
o ° o ° - - True-Signaled

A LoopStart c LoopEnd °

Changes = (insertAct(X, {B}, {C}))

\

LoopStart LoopEnd

History; = ((Sa), (Ea), (Sioopstarts it=1), (Evoopstan), (Sg), (Es) . (Sc), (Ec), (Swoopnd),
(ELm)pEndv Condition:true)v (SU)upSlum il=2), (EL«mpSlun)v (SB), (Es))

ReducedHistory; = ((Sa), (Ea), (Srupstans it=2), (Eruopsin)» (Ss), (Eg)) 7

Figure 3.1. Loop Tolerance in ADEPT/WSM-Nets, adapted from [RRD04a]

Dangling states. We observe that the approach of execution histories that contain only
“end” entries of activities — such as in WIDE Graphs — does not help to distinguish be-
tween an activated state and a running state for a specific activity. The activity state (i.e.,
the markings) should be specified explicitly to cope with this problem, which however is
not done in WIDE Graphs. Workflow modeling languages based on Petri nets (WF Nets,
MILANO Nets, and Flow Nets) abstract as well from internal activity states, i.e., they
only differentiate between activated and non-activated transitions [RRDO04a]. As it has
been shown in [RRDO4a], this coarse differentiation of activity states is unfavorable in

conjunction with the deletion change operation. As an example, the deletion of activated

55

activities is forbidden which is too restrictive, or the deletion of running activities is al-

lowed which leads sometimes to loss of work.

Order changing. Flow jumpers used in the Flow Nets approach help to correctly adapt
instance markings when changing the order of two activities (Figure 3.2). Markings ad-
aptation is considered as a challenging problem in workflow changes, and very little ap-
proaches address this issue. Furthermore, in the case where an approach addresses this

issue, it may not do it correctly.

A B c D A B c D
Ton$ Flow jumpers

Changes = (Parallelize(B, C))

Figure 3.2. Markings Adaptation using the SCOC — Syntactic Cut Over Change — in
ML-DEWS/Flow Nets, adapted from [RRD04a]

Parallel insertion. As opposed to Petri Net-based approaches, when the correctness
verification is based on “compliance criteria” (e.g., WIDE Graphs, TRAMs Graphs,
WSM-Nets, BREEZE), the parallel insertion — if not mixed with the “changing the past”

problem — can obviously be easily solved.

As a final note in this section, the correctness verification in the context of “evolutionary
changes” or compliance verification may lead to non-compliant instances where in-
stances cannot be migrated to the new workflow schema. Current adaptive workflows
projects deal with these instances either by proposing compensation activities so that
rolling back non-compliant instances into a compliant state becomes possible [SMOQO,

Sad00], or by delaying the migration until a compliant state has been reached [EKR95].

56

3.3 Adaptive Workflow Management Systems

Most current WfMSs support process versioning where multiple versions of a workflow
may be active at the same time. Few commercial products provide, however, support for
adaptive workflows. WfMSs like Staffware, WebSphere MQ Workflow (reviewed in
Section 2.4.2.1), and WLPI (reviewed in Section 2.4.2.2) tend to be very inflexible.
Mainly, the adaptation of in-progress instances is not allowed. By contrast, InConcert
[Inc02] and FileNet Ensemble [Ens98] allow workflow instance adaptation during run-
time, namely the dynamic insertion and deletion of an activity. InConcert [Inc02] for
example supports ad-hoc workflows by using Process Design by Discovery, a method
which allows customers to deploy workflows without a preliminary design phase: the
process is built by doing the tasks, may be changed on the fly by users, and saved as a
template when completed. As argued in [RRDO4a], though ad-hoc W{MSs provide
flexibility, they have failed to adequately support end users. Particularly, they do not
support them in defining changes and in dealing with potential side effects such as miss-
ing input data of an activity due to the deletion of a preceding data provider activity.
Since one cannot expect from the end user to cope with such problems, this increases the

number of errors and therefore limits the practical usability of respective WfMSs.

Turning now to academic W{MSs, prototypes exist for some of the projects introduced
and discussed in the previous sections. We are aware of the following WfMS implemen-
tations: WASA,, BREEZE, Chautauqua [EM97] which offers an implementation where
Flow Nets are generalized to Information Control Networks (ICN), and ADEPT which
offers an implementation based on WSM-Nets. As for other projects, the basic mecha-
nisms of the framework have been implemented and simulated (e.g., MILANO, TRAM,
Woflan). However, no complete WIMS prototype has been developed.

Automatic workflow changes may be realized on top of adaptive WfMSs. Examples in-
clude the dynamic workflow system discussed by Miiller and Rahm [MR99]. This sys-
tem has been tailored on top of ADEPT. It implements an automatic rule-based approach
for the detection of semantic exceptions (e.g., drug-side effects) in cancer therapy work-
flow scenarios, and for the dynamic changes of patient treatment workflow instances.

Exception events are filtered out of “normal” events, then affected workflow instances

57

and control flow areas are automatically identified, and finally affected areas are auto-
matically adjusted. Control flow modification algorithms are provided for this purpose.
They allow to drop, to replace, to check, to delay, and to insert a node. Such a rule-based
approach for automatic workflow changes is usually based on the availability of knowl-
edge bases, as it is for example the case for medical domains. In fact, a lot of declarative

knowledge is needed to derive modification implications when events occur.
3.4 Conclusion

We consider the problems and solutions reviewed in this chapter as groundwork, first,
for the categorization of limitations in adaptive workflow technology, and second, for
the formalization of related solutions. The expressiveness of a workflow meta-model and
the completeness of a set of change operations are debatable issues. Indeed, it has al-
ready been highlighted in Section 3.1 that the expressiveness is measured taking into ac-
count the practically relevant changes allowed by the workflow meta-model. To the ex-
tent that “practicality” is involved in the measurement of expressiveness, a “new’” work-
flow concept may appear of great practicality when studying a specific application.
Moreover, the completeness of a set of change operations can be judged mostly from the
application for which it is going to be used. The proposed and studied change operations
are still almost only limited to workflow structural changes. The completeness of a set

of change operations should be measured beyond structural changes only.

Indeed, issues such as “time” and “workflow attributes” are relevant as well. Beyond the
structural specification, the temporal aspects are relevant since they add another dimen-
sion to the scheduling of workflow activities [SO99b]. If temporal constraints exist, they
should be specified as a complement to the control flow, and they should be addressed in
conjunction to changes. Workflow attributes are relevant as well since the successful
execution of an activity may require the availability of specific attributes [SO99b]. A
data dependency may exist between activities (i.e., data flow). The workflow attributes
and the structural aspects of a workflow model are dependent on each other: a condition
needs the attributes provided by a data flow to select the alternative path, and a control

flow path must also exist to satisfy a data flow constraint between two activities

58

[SO99b]. Mainly, because of this dependency, structural changes may require changes at

the workflow attribute level and vice versa.

Once limitations of current adaptive workflow technology are identified, it becomes
necessary to propose solutions to cope with these limitations. Under this perspective, the
correctness verification issue should be considered. Proposed solutions need to be based

as much as possible on formal definitions, and correctness criteria need to be developed.

Chapter 4 Workflow Technology Applied to Complex
Socio-Technical Systems

The domains of e-negotiations and transportation are examples that call for non-trivial
socio-technical systems. These systems need to be “dynamic” mainly because of the un-
derlying application environment; they need to be “reactive” in the sense that they
should be able to automatically react to internal and-or external events; they involve
multiple actors which implies their “social” aspect; they sometimes require the manage-
ment of shared resources; and finally, we define a “human in the loop” which means that
the user must take decisions and she should be able to intervene (manually) with the sys-
tem to communicate results, to bring modifications to what already exists, and so on.
Studying complex systems will serve us to investigate refined aspects of workflow tech-

nology and to trigger more adequate support for building such systems.

This chapter begins by briefly reviewing state-of-the-art workflow-oriented applications
and by motivating the need to study complex socio-technical applications. Then, in Sec-
tion 4.2, an e-negotiation application is reviewed in detail and a combined negotiation
support system (CONSENSUS) is presented. In Section 4.3, another complex socio-
technical application, the multi-transfer container transportation (MTCT) application, is
detailed and a workflow-oriented system for the processing of customer requests for

container transportation is motivated.
4.1 Workflow-Oriented Applications

For a number of years, workflow technology has been embedded within IT products,
instead of being a standalone technology. Hollingsworth discusses the emergence of
workflow within the market by analyzing some of the application domains where this

technology has been successfully applied [Hol97): image processing, document man-

60

agement, electronic mail and directories, groupware applications, and project support

software.

Today’s literature gathers a number of workflow applications. Some of these applica-
tions must be considered as sample examples, while others come from the real world
where workflow systems are sometimes specifically tailored to cope with them. The
most cited applications are related to domains such as e-business (electronic business),
medicine, banking, insurance, public administration, and software development. A num-
ber of other workflow case studies can be found at the WARIA website [WARIAO04].
These case studies are gathered under different topics: academic, financial, government,

healthcare, industry, technology, transportation, and utilities.

In the following, we first review four application domains that are well supported by
workflow technology. We focus on the e-business domain, the medical domain, the
banking and insurance domain, and the public administration domain. Then, we motivate

our involvement in complex socio-technical applications.

4.1.1 E-Business Domain

In e-business, purchasing of goods (e.g., computers, books), buying/selling of stocks, e-
procurement of materials (e.g., raw materials) and outsourcing (i.e., supply chains of
services) are examples of applications that can be supported by workflow technology
[MWWO98]. These applications involve inter-organizational workflows [Aal00] because
they require communication between multiple parties. They are used as typical distrib-
uted examples in [Bla00, SRK+01, AK0O, WI98]. Express mail services over the Inter-
net is another e-business application where a company such as Federal Express can offer
a workflow-based service to notify the customer (both sender and receiver) as soon as a
package is delivered at a site [KZ02]. We may also think of a tracking service that tracks

the routing of the package.

Recent research projects in the e-business domain are oriented towards e-services appli-
cations (e.g., Web services). We discuss below two recent projects in the context of e-

services.

61

Blake worked on a workflow architecture, called WARP (Workflow Automation
through agent-based Reflective Processes), that supports Web services [Bla02]. This ar-
chitecture consists of software agents that can be configured to control the workflow op-

eration of distributed services.

Meng worked on a dynamic inter-organizational WfMS [Men02]. The sharable tasks
performed by people or automated systems in a virtual enterprise are treated as e-
services, and e-services requests are specified in the activity definitions of a process
model. Four dynamic properties of the proposed WfMS are discussed: the flexible prop-
erty (the dynamic binding of e-services to service providers), the active property (a result
of the integration of business events and business rules with business processes), the cus-
tomizable property (the processing of business rules may enforce customized business
constraints and policies), and the adaptive property (the processing of business rules may

dynamically alter the process model at run-time).

The two workflow-based projects described above allow for the dynamic binding of e-
services during run-time. This can be considered as a specific type of dynamism in
workflows. Meng discusses also dynamic aspects stemming from the enactment of busi-

ness processes, and she proposes a rule-based approach to deal with such dynamism.

Finally, the BPEL4AWS language introduced in Section 2.2, has exceptions built into the
language via the “throw” and “catch” constructs. It also supports the notion of compen-
sation, and introduces the notion of scope (comparable to spheres [Ley95]). There is
some work on exception handling in BPEL4WS [CKL+03]. However, dynamic change

issues have not been addressed yet.

4.1.2 Medical Domain

In the medical domain, most applications are implemented using adaptive workflows.
Dadam and Reichert discuss, under the ADEPT project, the management of a hospital’s
“day clinic” division by means of workflows [DR98]. They analyze relevant processes,
and evaluate to which degree these processes could be supported by current workflow
technology. Workflow evolution, exception handling, flexibility, and temporal aspects

are among the many important aspects addressed within the project. These aspects are

62

mainly motivated by medical cases: acute emergency, violation of prerequisites for

medical intervention, incomplete medical orders, etc.

A dynamic workflow system tailored for an oncology application is discussed by Miiller
and Rahm [MR99]. Cancer therapy is characterized by a long-term treatment based on
standardized plans that can be modeled using workflows. However, one major problem
of cancer treatment is the enormous amount of diagnosis, which may create, for instance,
specific drug-side effects to a significant number of patients. The treatment workflows
of these patients will have to be modified partially. We already explained this applica-
tion previously (cf. Chapter 3, Section 3.3).

At another level, the management of food services and dietetics departments of a hospi-
tal can be done using workflow technology [NDS96]. Ngu et al. describe a workflow
modeling approach using transactions and tasks to manage the meal production and the
distribution of meals to patients in a number of hospitals (CBORD system). Transactions
specify the contents of the workflow, and tasks specify the scheduling and execution of
transactions, and they provide reactivity to failures. However, these failures need to be
known in advance so that appropriate adaptations are defined. For example, in case the
production unit (i.e., “prepare meal” task) of the CBORD system cannot satisfy the re-
quired number of meals due to unforeseen disruption in the kitchen, a contingency task

“acquire meal” can be invoked to order the shortfall from the external kitchen.

In spite of the fact that the ADEPT project was initiated to address clinical processes, the
result of this project was an adaptive WIMS that could be applied to many types of ap-
plications. The dynamic workflow system addressing the oncology application uses
ideas relative to dynamic workflows that are behind the ADEPT system. In addition, a
rule-based approach is elaborated for the detection of semantic exceptions and for apply-
ing the changes to workflow instances. This approach is based on the availability of
knowledge bases. Finally, the CBORD system puts the emphasis on the fact that when
we talk about adaptive workflow management, we refer not only to a workflow system
that is flexible enough to support adaptation, but also to modeling languages that provide
the appropriate constructs to support dynamism. In this framework, the workflow al-

ready comprises the required adaptation for pre-defined possible failures. The dynamism

63

provided by this framework as well as the one supported by the rule-based approach are

similar in the sense that they introduce the notion of “automatic” dynamism (reactivity).

4.1.3 Banking and Insurance Domain

The banking domain and the insurance domain provide classical examples of workflow
applications. Examples include credit processing applications and insurance claims
processing applications [Man99]. The literature related to the Mentor project
[MWW+98] uses the credit processing application as a sample example. The work of
van der Aalst et al. [ABE+00] considers the insurance claims processing application, as
well as applications related to software development, to the hiring of new employees,
and to the organization of a conference, as typical examples to expose their new work-
flow control approach based on proclets (used to let instances interact among themselves

via channels).

4.1.4 Public Administration Domain

A public administration represents a huge enterprise dealing with different tasks. Well-
structured models are usually defined for processes like vacation or travel requests.
However, complex and long-running workflows depending on events exist as well.
Some parts of these workflows cannot be planned in advance and have to be modified

during execution.

An example of such workflows is given by Siebert in [Sie96]. It consists of the planning
phase for the construction of a new building triggered by the relocation of some authori-
ties from one city to another. The need for inter-organizational and for adaptive (ad-hoc
changes) workflows is highlighted. A “workflow modification services” component is
provided to check and perform modifications. Adaptivity rights (i.e., which adaptations
may be performed by which actors), and structural integrity/consistency rules are con-
sidered by this component to decide whether a requested modification is allowed or not.
An original idea concerning the “on-the-fly” editing has been discussed by Siebert

[Sie96]. New activities need to be defined and modeled at run-time.

Van der Aalst and van Hee discuss in detail another public administration application

based on workflows: the custom service application. They describe the workflow-based

64

Sagitta 2000 declaration-processing system of the Dutch Customs Service [AH02]. One
of the topics addressed is the requirement to separate management and application. This
creates an opportunity to improve the control of business processes, it eases the ability to
adapt business processes to changes in the law, and it gives a guarantee that formal steps

do take place in accordance with the law.

4.1.5 Why Studying Complex Socio-Technical Applications?

The approach of focusing on specific applications has the potential of being a construc-
tive method for building a list of (new) aspects that need to be addressed by workflow
technology so that these applications can be properly supported. Some applications, such
as the ones cited in previous sections, are considered as workflow-oriented by their na-
ture. Even if studying these applications can help identify some interesting workflow
aspects, these aspects may still lack some innovation because the applications introduc-
ing them are initially meant to be supported by workflows. However, when studying ap-
plications that do not readily lend themselves to workflow-oriented applications, the re-
quirements inherent to workflow-oriented systems supporting them can be profitably
used to enhance what workflow technology is currently offering. In this perspective, we
study complex socio-technical applications asking for dynamic and reactive systems
where multiple actors are involved and where the user should be able to interact with the

system.
4.2 The Combined Negotiation Application

Combined negotiations (CNs) are a novel and general type of e-negotiation, in which the
user is interested in a package of items (goods and services) and consequently engages in
separate negotiations for these items [BAV+01]. The negotiations are independent of
each other, whereas the goods or services are typically interdependent. As examples of
CNs, two packages are described respectively in [BBKO1, BBK+02a): a flight connec-
tion package and an importing package. The flight connection package may consist of
three items: a plane ticket from place, to place,, another plane ticket from place; to
places, and a hotel room for one night in place,. The importing package involves a num-

ber of activities/services such as the purchase, the shipment, the insurance and the for-

65

warding of goods. The items within each package are interrelated since for instance, in
the first package, the hotel room should be reserved at place, on the date of the trip, and
in the second package, the shipment of goods should be scheduled after the goods are
delivered. Furthermore, many constraints exist such as the maximum price to pay, the

preferable date to travel or to receive goods and so on.

A CN Support System (CNSS) based on a WfMS is proposed in [BAV+01] to help the
user (consumer or business) model the CN by specifying the sequencing of the individ-
ual negotiations and the dependencies between them. The CNSS is then used to enact the
CN and to allow the user to control, track and monitor the progress of the CN as well as

the individual negotiations.

In the following, we begin by describing the CNs application. Then, we discuss in detail
the modeling of the two packages introduced above. The CNSS, called CONSENSUS, is
finally presented.

4.2.1 Description of the Application

Negotiation takes place when an agreement between the consumer and the provider has
potential for optimization, and the parties intending to carry out the transaction are will-
ing to discuss (i.e., negotiate) their offers [Str99]. Auctions are a special case of negotia-
tions as they represent a more general approach to price determination, admitting a range
of protocols, including fixed-price as a special case [WWW98]. The benefit of dynami-
cally negotiating a price for a product instead of fixing it is that it relieves the merchant
from needing to determine the value of the good a priori. Rather, this burden is pushed to
the marketplace [MGM99]. On the Internet, negotiation often amounts to one party
(typically the seller) presenting a take-it-or-leave-it offer (e.g., a sale price), but in the
last few years auctions have become more and more popular especially in the C2C mar-

ket.

In the context of negotiations, the consumer may be interested in many items that form a
whole (i.e., a package of items). The negotiation of these items cannot be conducted
separately. Indeed, if conducted separately, it can happen that the consumer finalizes a

deal on one item but cannot get a good deal (or any deal at all) on another item. Break-

66

ing the commitments* already made is not always permitted, and even if it is, it usually
costs money and leaves the consumer at the point where she started (i.e., with no pack-
age). CNs were mainly thought to cope with this problem, that is, to allow the consumer
negotiate the package of items with the minimum risk of breaking her commitments and

with the maximum chances of getting good deals on all the items.

Moreover, if more than one attribute of an item is negotiable (e.g., price, date), the de-
pendencies among the individual negotiations get more complicated. The outcome of
one negotiation is crucial in the other ones. Therefore, CN facilitates dealing with multi-

attribute negotiations, possibly of different types.
In [BAV+01, BBKOL1], important issues related to CNs are addressed:

® CN Failure. We talk of CN failure (i.e., exposure) when we need two items A
and B, engage in negotiations on both items, and end up winning on A but losing
on B. In a single negotiation, there is no guarantee that we will succeed in win-
ning the item. In a CN the risk of failure is even higher because the user negoti-
ates several items®. Since the consumer wants the whole package or nothing, she
might want to break (if allowed) the commitments she already made in the suc-
cessful negotiations. Breaking a commitment evidently has a price. Obviously,
the possibility of breaking commitments adds more complexity and requires
more flexibility to the CN problem.

* AND-Negotiation and OR-Negotiation. The package that is the object of a CN
is in general made up of many items. If many negotiations are launched for the
same item, these negotiations are called OR-Negotiations. Negotiations for dif-
ferent items that make up the package are called AND-Negotiations. Each of
these types of negotiation may be run either in parallel or sequentially. However,
it is interesting to run OR-Negotiations in parallel in order to save time and also

to maximize the chance of a good deal, whereas it is sometimes an obligation to

* Commitment means that one agent (human ot software agent) binds itself to a potential contract while waiting for the other agent to
either accept or reject its offer [SL95]. If the other party accepts, both parties are bound to the commitment. When accepting, the
second party is sure that the contract will be made, but the first party has commit before it is sure.

5 What can go wrong will 8o wrong, as Murphy’s law goes ~ if there are more things that can fail, more things will fail.

67

run AND-Negotiations sequentially since the output of one negotiation may be
crucial as input for another one.
Intrinsic and Procedural CN Constraints. Let us consider three different nego-
tiations (N1, N2 and N3) associated with three different items in a CN. Suppose
that the attributes for each item are the price, the date and the place. Intrinsic
constraints concern the attributes and the dependencies between the items at the
attribute level. They may involve just one individual negotiation (e.g., pricel <
THRESHOLD, datel in RANGE, placel = X), or more than one individual ne-
gotiation (e.g., price to pay for the package < THRESHOLD, date3 = f(datel,
date2)). Procedural constraints indicate the control flow between the individual
negotiations:
o Sequential: N2 is launched after N1 is finished.
o Parallel: NI and N2 are launched at the same time.
o Choice: depending on a condition, either N1 is launched or N2 is
launched.
o Wait for: N3 waits for N1 and N2 to finish or waits for either one to
finish.

o Repeat: repeat N1 until a condition is met.

In order to negotiate the different items in a CN, software agents are assigned to individ-

ual negotiations. These agents may be instances of a generic negotiation server infra-

structure such as GENESIS [BKL+00] that supports a variety of negotiation types. The

behavior of software agents is defined via negotiation rules (i.e., protocols), negotiation

strategies and coordination strategies:

Negotiation rules [BAV+01] need to be downloaded from the negotiation server
so that a specific agent, responsible of the negotiation of a specific item, is cor-
rectly instantiated taking into account the type of the negotiation. Some well-
known negotiation types are the fixed-price sale, the Dutch auction, the English
auction, the bilateral bargaining, and the combinatorial auction.

Negotiation strategies [BAV+01] are used by the agents when generating offers

and counteroffers during the course of a negotiation. A differentiation is done

68

between negotiation strategies applied to one individual negotiation (e.g., “if
your bid is always beaten by the same opponent then be less aggressive in your
bidding™) and negotiation strategies applied to the CN as a whole (e.g., “if you
have little chance of making a deal on an item then don’t commit yourself on the
other items of the package”).

e Coordination strategies [BAL+02] correspond to the information that the
agents need in order to coordinate their actions in a specific CN. Here are two
examples: (1) When two agents are participating in separate negotiations with
the goal of purchasing just one item, the following rule ensures that the agents
make no more than one commitment at the same time: “If Agent2 is leading or in
the process of bidding, then Agentl should wait.” (2) When two agents are par-
ticipating in separate negotiations with the goal of purchasing two complemen-
tary items, the following rule minimizes the risk of exposure: “If Agent2 is trail-
ing, and its chances of making a deal are slim, then Agentl should wait for fur-

ther instructions.”

Clearly, a CN is a complex process since it asks for a specific structure of the different
negotiations (procedural constraints), it requires the definition of the dependencies be-
tween the items at the attribute level (intrinsic constraints), and it involves many agents,
each one conducting an individual negotiation on a distant server while cooperating with
other agents in solving a common problem: “the consumer wants the whole package or

nothing at the best possible price.”

As stated in [BBKO1], modeling a CN using workflows gives a visual representation,
which is easily understandable by humans, and identifies and formalizes as activities all
the necessary items of the CN. This may be helpful in a prospective evolution or modifi-
cation of the current negotiation items, their sequencing and the dependencies between
them. A CN workflow also incites to reason about the variables and the attributes of a
CN (such as the prices, dates, etc.). It may for instance specify some forecasting (e.g.,
“what will be the new reserve-price based on the outcome of the negotiations that are

already done”). It facilitates to deal with software agents responsible of the different ne-

69

gotiations since these agents are assigned to negotiation-activities, and they participate in

a CN as actors in the workflow.

4.2.2 Example of Combined Negotiation Packages

Combined negotiations can be used at the B2B, B2C or C2C levels. As an example, a
B2C transaction would be when a consumer negotiates a vacation package consisting of
a transportation ticket, a hotel room and an excursion ticket. In case one or more items in
the package are offered by consumers (e.g., a rare ticket to a concert auctioned on an
auction site), a C2C transaction is encountered; and when a travel agency negotiates
travel packages on behalf of its clients, we refer to B2B e-commerce. The more items
there are to be negotiated and the more providers of such items there are, the more inter-

esting a CN is.

In the following, we describe first a “flight connection” package which can be consid-
ered either a B2C example when the trip is arranged by the consumer herself, or a B2B
example when the trip is arranged by a travel agency (the common way to arrange trips),

and second an “importing” package, which is mainly a B2B example.

4.2.2.1 “Flight Connection” Package

The “flight connection” package may consist of three items: a plane ticket from place,
(e.g., Montreal) to place, (e.g., Paris), another ticket from place, to places (e.g., Mos-
cow), and a hotel room for one night in place,. These three items are clearly interrelated.
One obvious constraint is to find a “Paris—-Moscow” flight with a suitable departure
time; that is, taking into account the arrival time of the “Montreal-Paris” flight. From
here we can see the obligation of spending a night in Paris before taking the flight to
Moscow. Many other constraints exist such as the date of the trip, the total amount to be
spent, the maximum price the consumer is willing to pay for each item, and her prefer-

ences for certain air companies.

The three items (two plane tickets and a hotel room) may be negotiated, and this can be
done on different negotiation servers (or on the same server, but in separate negotia-
tions). The negotiations practiced on each single server (i.e., each individual negotiation)

can be of different types (“type” in this context means “the rules of the negotiation”).

70

Modeling the package as a CN is profitable since when conducting each negotiation
separately, it can happen, for instance, that a deal is made on the “Montreal-Paris”
ticket, while an interesting deal on a “Paris-Moscow” ticket is missing out just because

the flight “Montreal-Paris” arrives to Paris a few hours later.
Modeling the Flight Connection Package Example

When modeling the Flight Connection CN, the consumer (or business) has to decide,
first, how many negotiations she should start for each item. Engaging in more than one
negotiation for the same item (i.e., OR-Negotiation) is a way to minimize the risks of

failing to make a deal on the item in question.

Suppose that the consumer decides to participate in two separate negotiations for the
“Montreal-Paris” ticket and in two separate negotiations for the “Paris-Moscow” ticket
(there are many providers of air transportation tickets on the Web, and there is usually a
great disparity between the prices) and one single negotiation for the hotel room (the
same thing could be said about this item too, but in this example, the consumer may de-
cide to run only one negotiation). The five negotiations that make up the CN are to be
conducted separately, and possibly obey to different rules for making bids (offers), for
picking a winner, for closing, etc. The consumer chooses to participate, say, in an Eng-
lish auction for the first “Montreal-Paris” ticket on the Air France auction site, and in a
Dutch auction for the second “Montreal-Paris” ticket on the Air Canada auction site.
One “Paris-Moscow” ticket is to be negotiated in a sealed-bid multi-round auction on the
Air France auction site, and the other “Paris-Moscow” ticket in an English auction on
the Aeroflot auction site. The hotel room will be negotiated in a bargaining type negotia-
tion on one of the popular commercial auction sites. For a complete description of auc-

tion types, refer to [Sur01].

The sequencing in time of the five negotiations is important. Which negotiations should
be conducted in parallel, which ones should be conducted in sequence, which ones
should be finished (with a successful or unsuccessful deal) before we start the others?
Does the consumer need all negotiations for the flight tickets to succeed or does she

need just one to succeed? What to do in case one negotiation fails? In this example, the

71

consumer might decide that the two negotiations for the “Montreal-Paris” ticket will be
launched first, and only if one of them succeeds, the other negotiations will be launched.
This may be because the consumer knows that the chances of making a good deal on this
particular item are rather slim. Note that only one deal should be made on the “Montreal-
Paris” ticket even though the two negotiations are launched at the same time (a case of
parallel OR-negotiation). In case one “Montreal-Paris” negotiation succeeds, the con-
sumer launches two parallel negotiations for the “Paris-Moscow” ticket. Let us suppose
that one “Paris-Moscow” flight with Aeroflot is on the same day as the arrival of the
“Montreal-Paris” flight. The other flight, with Air France, is scheduled for the next day,
and the consumer would have to spend a night in Paris. To that end, a negotiation for a
hotel room in Paris is launched. The negotiations for the “Paris-Moscow” ticket with Air
France and the one for the hotel room are started sequentially (a case of sequential

AND-negotiation).

| T2 1 13

guenticte ‘\ LERLAWSTRWIN

-wmrp/

e

QM: “tat \3\
BN /: | h 2

DRE&K |
CURIMITRINY

= /l\
PARIS KOICCW i ;z V-“a; ES.:.Q">

WIL+ FARIS {AFy 4 3L PARIG (ALY HOTLL- PRRIS

PARSS OBTCW |
(RF)

GreoF LD G

3 <

PRALWITH LO3S —b“—— JEALWITH ¥

Figure 4.1. Flight Connection Package Workflow Model in WLPI

Figure 4.1 shows a workflow modeling the “flight connection” CN. WLPI were
used. There are five main tasks or activities (one for each individual negotiation) repre-
sented by rectangles. The ones for the “Montreal-Paris” ticket are launched first, and if

one of them succeeds (State = “WINNING”) the two negotiations for the ‘Paris-

72

Moscow” ticket, are launched. The negotiation for the hotel room is launched only if the
“Paris-Moscow” (AF) ticket negotiation succeeds. There is one “start” state and two
“done” states representing the process completion. The star-shaped elements in the fig-
ure represent events. The events are to be sent by the tasks to the workflow processor so
that the processing continues with the next activity. Events are triggered by XML mes-
sages, and in this example, the events are “Nego ended” (i.e., negotiation ended). The
diamond-shaped figures are the decisions. They contain conditions that must be evalu-
ated before the succeeding node can be initiated. The conditions evaluate to TRUE or
FALSE, and depending on the outcome of the evaluation, the workflow can follow dif-
ferent paths. There are also two And-joins in the workflow. All nodes linked by an And-

join must be satisfied before the successor of the join can be activated.

The five activities (i.e., the five negotiations) are assigned to software agents. The tasks
labeled “BREAK COMMITMENT”, “DEAL WITH WIN”, and “DEAL WITH LOSS”

are assigned to a human agent (the person running the CN).

4.2.2.2 “Importing” Package

Importing goods is a complex procedure in which a buying company is involved in a
number of activities/services such as the purchase, the shipment (the term “transporta-
tion” is sometimes used thereafter), the insurance, and the forwarding of goods. These
activities/services are obviously interrelated. As an example, a special kind of insurance
could be preferred while a specific packaging of goods is considered. Many constraints
exist as well. Here are some of the constraints that are likely to be involved in the pur-
chase activity: the maximum price the buying company is willing to pay for the goods,
the quantity needed, the terms of payment, the delivery date, the packaging of the goods.
With regard to the shipping service, which may include inter-modal transportation, a
number of scenarios are possible. The supplier can cover the freight shipment and insur-
ance from warehouse of origin to warehouse of destination. Another alternative is to let
the buyer cover all charges. In this latter scenario, a constraint might be for instance to
find a truck with a suitable arrival (resp. departure) time to port of shipment (resp. from
port of destination), taking into account the vessel loading (resp. unloading) time. The

buying company could have preferences for specific shipping companies, and may also

73

specify the maximum amount to be spent for each shipment phase, as well as the total
amount for the whole shipping. As for the insurance, the buying company could also
have some restrictions regarding the insurance companies, the kind of insurance, the

price to pay, etc.

An importing procedure is considered as a sourcing application where multi-stage nego-
tiations such as RFP (Request For Proposal) and RFQ (Request For Quotation) can be
applied. Indeed, the buying company may choose to engage in different negotiations for
the complementary (i.e., cannot have one without the other) items discussed above (pur-
chase of goods, shipment, insurance, etc.), trying to make the best deal with respect to its
interests. We can imagine a CN model as described previously to encompass the activi-

ties associated with the negotiation of the different items.
Modeling the Importing Package Example

Figure 4.2 shows a workflow model example for the importing package created using
WLPI Studio. Negotiations are defined as activities in the workflow. Software agents are
responsible of executing these activities. As the workflow progresses, negotiation-
activities evolve through various states: created (creation of the agent), activated (the
agent joins the negotiation), executed (the agent negotiates), and marked done (the agent

leaves the negotiation and the agent is destroyed).

In this example, the buying company has to take a decision regarding the number of ne-
gotiations that should be launched for the purchase of the goods. These tasks could be
initiated at the same time (in parallel), but only one deal should be struck. The next step
will be to start negotiations for the shipment services. The buying company might
choose to begin by negotiating the sea shipment, and then the two surface shipments
(from warehouse of origin to port of shipment, and from port of destination to ware-
house of destination) because surface transportation is usually more flexible and avail-
able than sea transportation. It will hence be easier to schedule the truck arrival (resp.
departure) time to port of shipment (resp. from port of destination) with respect to the

vessel loading (resp. unloading) time (than to do it in the opposite way). The insurance

—

74

and the forwarding negotiations are planned in sequence as the last two items of the

model. (For the sequencing, cf. Figure 4.2.)

s [N i
SURFACE N fadanticlathe T | SURFACE
SHIPMENT 1 : &:mur.o‘ SHPMENT Z
v

1t i F
PURCHASE PURCHAZE
ISUPFLIER)| [{SuPPLIEAD)

cs N
Fpafertiztade

Pafen3Siztg F SanniSta
B \"gvmumcy-/} ‘Q.-;-L‘y
L L1H h\'o‘ ~ ;r
i
[} e

[t10 INSURRNCE
RESTART

Sagert1ieady T
<?'\.L!.‘Ih|?l vy

hd PROCESS
SEA
SHIPMENT Z‘& g A =

Sufer2Gtatdn T

: R

cy
F La=ritstaiés

oG
’ ‘j/
FORWARDING T

Figure 4.2. Importing Package Workflow Model in WLPI

F

4] c?

RESTART CARRY JUT T hatferticid
FROGESS BEALS SUVINNINGS,
I
~

As stated before, when we fail to make a deal on an item, after concluding deals on other
complementary items, we talk of “exposure”. To avoid exposure, the buying company
would have to restart the whole process (“Restart Process” task in Figure 4.2) by renego-
tiating some (or all) of the attributes of the deals already made. For instance, if the buy-
ing company fails to find suitable transportation for a given date (fixed in a previous
deal), then it could go back and re-discuss the delivery date with the supplier of the
goods. In the worst case, this procedure could lead the buying company to breaking its

commitments.

4.2.3 The CONSENSUS System
CONSENSUS is based mainly on the following components of a WIMS: the Process

Definition Tool used to model the workflow, the Workflow Engine which executes and
tracks an instance of the workflow, the Administration and Monitoring Tool used to ad-
minister and track the status of the instance, and the Workflow Client Application

through which the participants interact with the instances.

N,

75

The first prototype of CONSENSUS was built on IBM MQ Series Workflow. Then to
validate the claim that in CONSENSUS the underlying WfMS may be easily substituted
for another WIMS, a new version of CONSENSUS was built on BEA Systems WLPI
(cf. Figure 4.3). This version was made up of three units: (1) the WLPI Studio Unit
which is used to build the CN workflow and to monitor its execution; (2) the Enactment
Unit which is used to launch the CN workflow and to monitor the software agents; and
(3) the Coordimnation Unit which is used to coordinate the work of the software agents.
The usage of the system is summarized hereafter, in Sections 4.2.3.1, 4.2.3.2 and 4.2.3.3.
More details are given in [BAL+02, BAV+01, BBKO1]. Please note that a complete end
user documentation comprising UML diagrams (e.g., use case descriptions, sequence

charts, etc.) has not been written yet.

Server 1 Server 2 Servern
XML XML] XML
Coordination Unit
Agent1 Agent2 Agent n |
N
\ JRules Rule
RMI XML event | Engine

WLPI Studio Unit Process Engine |
‘ | m
L]

Workflow A
Definition [~ Wor '\""“’SF Enactment U’H&L
-l
|

Workﬂm] WLPI | |Agent Control and
Control { Instances i | itor
" Monitosi Work-list Monitoring

o 7.?_

Figure 4.3. CONSENSUS based on BEA Systems WLPI, adapted from [BBKO1]

4.2.3.1 WLPI Studio Unit

Figure 4.1 and Figure 4.2 show examples of CN workflows created using the graphical
tool of WLPI Studio. One important aspect of modeling a CN is the use of variables that

store the CN-specific information required by the workflow at run-time. This informa-

76

tion is often used to control the logic within the CN. Figure 4.4(a) shows the list of vari-

ables of the workflow modeling the “Flight Connection” CN example.

= = - =)
. = E——a
o =
¥romtt Tt Kot 94 | wonatiore} Som | Pysarip | B9] & i
AT 5 resrems 24
e et | ot
| v I » - - |
fo s e = Y
gaem 1 i =

(a) (b) (c)

Figure 4.4. WLPI Studio Unit. (a) Workflow Variables, (b) Invoking a Business
Operation, (c) List of Business Operations

Business operations are another important concept in the definition of a CN. Defined as
a set of beans and methods that implement customized actions, they are called at the
“Action” level using “Perform Business Operation”. Figure 4.4(b) shows the “task prop-
erties” of the “MTL-PARIS (AC)” task. When the action is executed, the business
operation “Negotiate” (a Java method) should be called. The business operation is given
workflow variables and constants as parameters. The list of all available business opera-

tions for the “Flight Connection” CN example is given in Figure 4.4(c).

4.2.3.2 Enactment Unit

Once a CN model is created and stored in a database, the model is instantiated, and the
workflow engme (part of the Enactment Unit) can then start executing the activities in
the instance by creating and invoking the software agents responsible for the individual

negotiations.

In fact, some applications (e.g., Microsoft Office applications such as Excel and Word)
are workflow-enabled and can be invoked directly by the workflow engine, whereas
other applications — such as negotiation servers — are not compatible with the standard-

ized workflow interface, and their integration into the business process may be achieved

77

via a software agent. The latter takes the role of an actor, which is defined in the context
of a WIMS, as being a resource that performs a task. It is invoked by a workflow engine,

and enables indirect interaction of this engine and the application in question.

Under this perspective, the agents within CONSENSUS are first created, and then the
workflow engine invokes them. An indirect interaction between the workflow engine
and the negotiation servers is observed. These negotiation servers are not initially com-

patible with the workflow engine; their integration is only possible via the actor agents.

Note that the agents are invoked by the workflow engine using RMI (Remote Method
Invocation), and they communicate with this engine by sending XML events. They par-
ticipate in negotiations taking place on instances of negotiation servers (e.g., GNP
[BKL+00]). The exchanges (e.g., orders, bids, responses) are made using XML docu-
ments. The Agent Control and Monitoring tool, also part of the Enactment Unit, is used
to watch the progress of the individual negotiations. Figure 4.5 shows a screenshot of

this tool during the execution of the “flight connection™ CN.

Finally, the user of the system can track and monitor the progress of the CN at run-time,
and she can adjust certain intrinsic constraints. Examples include adjusting the total

price she is willing to pay, or changing the range of acceptable dates for her flight.

5 CNSS Agent Control and Manitoring -oXx

Main

Agents Summary

agent NGPK. nseate res$ ask§ sentS allocated sliocs ad)§ aseate |

MTL - PARIS (AC) - - - - - - - - our
PARIS - MOSCOW (AF) 720919 CLOSED 12200 430G <300 true 4300 4300 WINNING |
PARIS - MOSCOW (Aeroflot) - - x = - ouT
HOTEL - PARIS 720941 COPENED 15900 2300 2300 true 00 - LEADING |
MTL — PARLE (AF) 720897 CLOSED 800 O 1800 3800 true 1800 3800 WINNING |
Mussages

CMTaol| Connected to CNiS server dev 10 lub umontres ca 7777 -

CMTool| Retneving agent list

[CMToal| Done

{AgentManager] Created agent ‘MTL - PARIS (AC)'

[AgentManager] Created agent 'PARIS - MOSCOW (AF)

[AgentManageri Created ajent 'PARIS - MCSCOW (AeroFiot)’

AgentManager] Created agent '"HOTEL - PARIS'

AgentManager] Created agent ‘MTL - PARIS (AF)

PARIS - MOSCOW (AF)} Cannected to t3 //labol3 lub ymontresl ca:8880

HOTEL - PARIS] Connected 1o t3 //1abol3 jub umontres! ca 6889

MTL - PARIS (AC)| Connected tat3 //labol3 lub umontreal ca 8888

PARIS - MOSCOW (AercFiot) Connected to t3 //tabol3 lub umontreal c2.8888

MTL - PARIS (AF)] Cannected tot3 //labol3 lub umontreal ca 8888

MTL - PARIS (AC)} Joined negotiation #720908

'[PARIS - MOSCOW {AF)] Joined negotistion #720919

HOTEL - PARIS| Juined negotiation #720941

MTL - PARIS (AF)] Joined negatiation #72G897

PARIS - MOSCOW {Acrofiot]] Jomed negouiation #72093C.

MTL - PARIS (AC)] Witnessed quote Quote[GPk=7209 16;nme= 17°16 30,nGPK=720908, state= OPENED,$ =200 0]
{PARI5 - MOSCOW (AeroFiot)] Witnessed quote Qunle[GPK-?ZDSB! time=17-1554, nGP\-?ZOSBO states OPENED $=-200 D
[HOTEL - PARIS] Witnessed quate Quote[GPK=720949 time=17°17 04,.nCPK=720394 1,stxte=OPENED §=200 0}

Figure 4.5. Agent Control and Monitoring Tool

78

4.2.3.3 Coordination Unit

In CONSENSUS, the workflow captures the logic of the CN (i.e., its intrinsic and pro-
cedural constraints), whereas the agents capture the logic of the individual negotiations.
The agents, by participating in the workflow, share information and cooperate in con-
ducting the CN. They are provided with “individual negotiation” knowledge, as well as
with “coordination” knowledge. This knowledge is declarative, and thus it is represented
as “if-then” rules which are exploited using an inference engine. In brief, the Coordina-
tion Unit has a rule-base, which contains the rules, and a rule engine for exploiting these

rules. For more details on this aspect, refer to [BAKO1].

4.2.4 Towards a Dynamic Version of CONSENSUS
Workflows are a major enabling technology for CN [BAV+01], and CONSENSUS pro-

vides the user a support system to favorably resolve a CN workflow. Supporting dy-
namic modifications to the CN instance during run-time should however increase the
benefits of the CONSENSUS approach. In Chapter 5, we highlight the need for such
support and we discuss a solution for a dynamic version of CONSENSUS.

Extensions proposed to CONSENSUS are motivated by events such as the arrival of
new offers that may be proposed by the counterpart during a specific e-negotiation, and
the willing to avoid a break commitment activity. These offers may necessitate to cancel
an already scheduled e-negotiation activity (e.g., if the item to be negotiated is covered
by the proposed offer), to move an e-negotiation activity earlier in the process (e.g., if
there is a possibility to receive an interesting offer during this e-negotiation that may in-
fluence the rest of the scheduled e-negotiation activities), to insert a new e-negotiation
activity (e.g., if all scheduled e-negotiations concerning a specific CN item were lost),
and so on. A detailed discussion of a scenario asking for a modification of a CN instance
is introduced in Section 5.2.1. Moreover, this section identifies other less obvious re-
quirements towards adaptive workflows that stem from the modeling of CNs using the
ADEPT WIMS. Those requirements include the dynamic change of decision nodes and
the dynamic change of attributes. In brief, the extension proposed to CONSENSUS al-

lows for bringing dynamic modifications to CN instances during run-time: deletion,

79

move, and insertion of an e-negotiation activity, deletion of an already defined e-

negotiation attribute.

4.3 The Multi-Transfer Container Transportation
Application

The Multi-Transfer Container Transportation (MTCT) — that could be extended to multi-
modal freight transportation — can be defined as the action of moving a container from
one terminal to another with the possibility to shift it from one vehicle to another before
delivering it to the final destination. The MTCT is considered as one of the sectors in
which the fleet management at the operational level is highly dynamic. Other sectors in-
clude rescue and emergency services (e.g., ambulance transportation), sanitation, urban
transportation, and express mail services. As described by Crainic [Cra02], fleet man-
agement covers the whole range of planning and management issues from procurement
of power units and vehicles to vehicle dispatch and scheduling of crews and mainte-
nance operations. This type of management can be tackled under various lengths of the
planning horizon and levels of details: the strategical, the tactical and the operational
level. The latter involves a short planning horizon where the level of details is relatively
high. In our work, we focus on the MTCT at the operational level, in which a close fol-

low-up of activities must be achieved to ensure a good customer requests satisfaction.

In the context of the MTCT management, it appears that the processing of a customer
request for container transportation can be achieved by a specific sequence of interde-
pendent activities: e.g., attach an empty container to a vehicle, move the empty container
to origin location, load the container, move the container to the final destination, unload
the container. Moreover, the MTCT requires to create just-in-time the sequence of ac-
tivities needed to accomplish a request. It also requires a high degree of adaptation of the
ongoing activities’ sequences to deal with unexpected events (e.g., newly request arrival,
delayed vehicles, crew members desistance, technical problems). A solution, based on

workflow technology, for the processing of customer requests is investigated.

80

In the following, we first describe the MTCT application. Then, we give an example of
scenario(s) in which the processing of customer requests is required. Finally, the adopted

approach for planning the processing of customer requests is presented.

4.3.1 Description of the Application

From a customer request processing perspective, container transportation is constituted
of a number of activities of different duration which range from the delivery of empty
containers to the origin location where goods are located, to the returning of these con-
tainers to depots/terminals. These activities need to be performed in a certain order
(“composing activities”), and they are scheduled within a given time window depending
on the individual request information, on the resource availability and on the possible

paths to follow.

Request Information. A customer request for container transportation is usually well
defined; it gathers at least the following information (that we will consider thereafter in
this thesis): an origin location where goods are picked-up, a destination where goods are
delivered, a pick-up time window and a delivery time window. Other information such
as goods characteristics (e.g., item description, packaging type, weight, volume, storage
temperature control) may be involved as well. All this information is used — among other
information (i.e., resource availability and possible paths to follow) — as input to deter-
mine attributes related to the different activities. An empty container is chosen for in-
stance taking into account the volume of the goods, and it is delivered to customer for
goods’ loading at a specific time (i.e., pickup time), and at a specific location (i.e., origin

location).

Transportation Resources. A set of transportation units which we call (material and
human) “resources”, may be composed of a fixed number of containers with fixed
wheels, trucks (i.e., vehicles) without loading space, crews (i.e., drivers) and terminals.
We suppose that the transportation company offers a full container-load, where one con-
tainer carries at one time only merchandise related to one client. These resources can be
assigned to activities as specific attributes. We call these attributes “input attributes”
when referring to material resources and “assign attribute” when referring to human re-

Sources.

81

Activity Templates. A set of activities that we call activity templates, are defined. A
composition of these activities provides a possible solution to satisfy a customer request.
An activity is assigned to a specific driver who becomes responsible for its execution
within a specific time and by taking into account information related to the assigned ma-
terial resources (i.e., input attributes). Table 4.1 shows an example of a set of six activity
templates. A possible composition of these activities to satisfy a customer request could
be the following sequence: (1)-(3)-(6)-(4)-(3)-(2)-(6)-(1)-(3)-(6)-(5)-(3). Note that a
“wait at location” activity is sometimes necessary before going further in the processing

of a request.

Table 4.1. Activity Templates Involved in the Processing of a Customer Request for
Container Transportation

(1) Attach (2) Detach (3) Move (4) Load (5) Unload (6) Wait at
container container vehicle to container container location
to vehicle from vehicle [location
Input Container Idem’ Container Container Idem Idem
attributes Vehicle Vehicle Location
Location O_location’
D_loc:mon'i
Assign Driver Idem Idem Idem Idem Idem
attribute
Time MinD/MaxD" [Idem Idem Idem Idem Idem
attributes wuT’
EST/LST®

“The same as left, = >The origin (resp., destination) location of the activity, which does not nccessary corre-
spond to the origin (resp., destination) location of a customer request, *The minimum/maximum duration,
*The Warm-Up Time: time when the driver is informed about the activity to carry out, *The earliest/latest
starting time.

Paths Scenarios. The composition of activities to satisfy a specific customer request
should also be based on a transportation network in which a number of nodes (i.e., loca-
tions) and edges (i.e., paths) between these nodes are defined. As a first configuration,
we consider a transportation network with a central depot or terminal where resources
are located and where a transfer is possible. A transfer is defined as the action of shifting
a container from one vehicle to another vehicle. As an example, the sequence “(2)-(6)-

(1)” in the composition presented above, represents a transfer.

Taking into account this configuration, a number of path scenarios are possible for the

management of customer requests. The simplest scenario would be to consider that the

P

82

satisfaction of a customer request consists to ask a couple container/driver (c/d — We
consider that each driver is associated with a specific vehicle.) to leave the depot P at a
specific time, to pick up the goods at the origin location O specified by the request, to
deliver the goods at the final destination D and then to go back to P. In other words, sat-

isfying a request consists of accomplishing the path P-O-D-P (“simple scenario”).

Another scenario would be to ask a couple c/d to leave P at a specific time, to pick up
the goods at O and to go back to P with the possibility to make a transfer at P (i.e., to
change the driver and the vehicle at P) before delivering the goods at D and then to go
back to P (i.e., P-O-P-D-P). This represents a “transfer scenario”. It can be motivated by
the non-availability of drivers. In this case, we hence need to plan a path P-O-P when a

driver is just available to make this portion of the whole path.

In the first two scenarios, c/d should return to P before satisfying a new request. We may
however consider that a couple c/d is free to answer a new request as soon as the goods
are delivered at a specific destination (i.e., P-O,-D;-0,-D»-P, where O,/D; are related to
a specific request and O./D; are related to another request). We use the term “round sce-
nario”. A combination of the transfer scenario and the round scenario is also possible.

Here is an example: P-O;-P-D,-0O,-D--P.

The scenarios presented above take into account a transportation network with a central
depot. This transportation network configuration could be extended to a more complex
one that gathers a number of distributed depots. Considering this configuration, a “multi-
transfer scenario” of the kind P;-O-P»-P3-...-P,-D (where {Py, P, ..., P,} € P, Pbeing

the partition of the set of depots) is possible.

Unexpected Events. In a transportation environment, the planning (i.e., the composition
of activities) or the re-planning (i.e., the review of the already composed sequence of
activities) of a customer request processing is triggered by the occurrence of specific un-
expected events. The list of events we are exposing here is not only related to the MTCT
application; on the contrary, very similar events may also appear in other sectors such as

the express mail and the emergency services.

83

e Arrival of new requests. This is the principal event that can occur. Its satisfaction
requires to define a new sequence of activities to be accomplished. In addition,
in case of “urgent” customer request (i.e., request that need to be processed in a
relatively short time after their arrival), some forecast requests may not material-
ize, and already planned activities related to requests in a processing phase, may
need to be reviewed and adjusted. In fact, a new planning may impact a previous
planning (already launched, or waiting to be launched).

® Delayed vehicles. If traffic is slower than predicted (e.g., accident, congestion),
an adaptation of already planned activities may be required. Indeed, a delay of a
particular vehicle can make impossible the execution of the next activities as
planned: the latest beginning time of these activities may be exceeded; their as-
signed crews may be no more available, etc.

e Crews (e.g., drivers) desistance. In this case, a re-allocation (or re-assignment) of
an activity is desirable. We also refer to the dynamic allocation of crews in un-
certain environments. Sometimes, crews’ unavailability makes this re-allocation
impossible at a specific time. Hence, we may think about modifying the con-
cerned activity by changing for instance its (forecasted) schedule. Of course, this
change may require other modifications either within the same sequence of ac-
tivities or within other sequence(s).

e Technical problems. These problems are related to resources such as vehicles and
loading machines that are unavailable for a certain period of time. Consequently,
sequences of activities should be modified taking into account the re-allocation

of available resources, or the delay to fix the problem.

The MTCT application just described can be considered as a Pick-up and Delivery Prob-
lem (PDP). A number of papers discuss methods developed for solving this problem
[SS95, Mit98]. A distinction is done between PDP with (soft/hard) time windows and
PDP without (soft/hard) time windows. The time window constraint complicates the
formulation and the resolution of the problem. In general, researchers in the domain con-
sider the “arrival of a new request” as an event triggering the (dynamic) management of
resources and the scheduling of a set of routes. Other events such as the ones presented

above are of course identified, but they are rarely studied since studying the “arrival of a

84

new request” is already considered as a complex decision problem where the decision
must be taken under considerable time pressure. Algorithms and heuristics are proposed
as a means to tackle this dynamic problem and optimize the planned routes between the
occurrences of new events. Examples of these algorithms and heuristics include the in-
sertion procedure [WSW+70], neighborhood search heuristics [GGP+98] (e.g., tabu
search), and neural networks [PSR92]. Since our main interest in this thesis is not to
study the PDP problems and solutions, but rather to focus on the workflow aspects in the
particular MTCT application, we will not go into details regarding this topic. Interested
readers may refer to [SS95, Mit98] for a survey of the methods used to solve the PDP

problems.

4.3.2 Examples of Customer Request Processing Planning

In this section, we illustrate the different steps for satisfying a customer request taking
into account the simple path scenario and the transfer path scenario discussed in Section
4.3.1. First, a simple example is exposed, and then an example involving an already

planned customer request in proposed.

4.3.2.1 Customer Request Processing Planning — Simple Example

When a request is received, its related information becomes available at the transporta-
tion company side. This information, the availability of the resources and the transporta-
tion network information are used to generate a solution (if any) for the processing of

this request.

Suppose that the transportation network the company is covering is the one shown in
Figure 4.6. 20 locations are identified. For this example, we consider a configuration
with a central depot (e.g., Drummondville). The remaining 19 locations are used to lo-
cate the origin and the destination of the received customer request. The distance (in km)
between the different locations can also be expressed in duration (in minutes) such as it

1s shown in Table 4.2.

Suppose that the transportation company owns a set of containers: C111, C222, C333,
etc., a set of vehicles: V101, V202, etc., and that a number of drivers are working for

this company: McCain, Watson, etc.

85

La Malbaie

Montmagny

Sainta-Agathe-
des-Ionts

int-
Georges

Salabgrr - Sherbrooke

de-Valleyfield Saint-Jean-

sur-Richelizu
Figure 4.6. Example of a Transportation Network, adapted from [Tra04]

Table 4.2. Duration Between Two Locations (in minutes)

Montréal | Trois-Rivieres | Québec | Drummondville | Sherbrooke | ..
Montréal 105 165 75 115
Trois-Riviéres 920 166 209
Québec 105 209
Drummondyville 60
Sherbrooke [T« o1 ZRARRSRER SR E T U T Y e R T

Suppose that the following customer request information is received:

Origin location: Québec

Destination location: Montréal

Earliest pickup time: 15/10/2003 08:30
Latest pickup time: 15/10/2003 10:30
Earliest delivery time: 15/10/2003 13:30
Latest delivery time: 15/10/2003 15:00

And that the current reservation of resources is the following, where <st, ft> corresponds

to the starting and finishing time of the resource reservation:

Cl11: {<16/10/2003 09:30, 16/10/2003 13:30>}
C222: {<16/10/2003 09:20, 16/10/2003 16:00>)

P

86

C333: {<15/10/2003 09:30, 15/10/2003 14:00>,
<16/10/2003 09:20, 16/10/2003 16:00>}

McCain/VI0I: {<15/10/2003 09:30, 15/10/2003 14:00>,
<16/10/2003 09:20, 16/10/2003 16:00>}
Watson/V202: {<16/10/2003 09:20, 16/10/2003 16:00>}

Based on the above information regarding the customer request, the transportation net-
work, the (non-)availability of the resources, and taking into account the simple path

scenario discussed in Section 4.3.1, a solution such as the following one can be found:

Solution found...

Container: Cl111
Driver: Watson/V202

Depot — starting time: 15/10/2003 08:10
Depot — attach container: <<5 min.>>
Depot — leaving time: 15/10/2003 08:15 << 105 min.>>

Origin — arrival time: 15/10/2003 10:00
Origin — load container: <<30 min.>>
Origin — leaving time: 15/10/2003 10:30 <<165 min.>>

Destination — arrival time: 15/10/2003 13:30
Destination — unload container: <<30 min.>>
Destination - leaving time: 15/10/2003 14:00 <<75 min.>>

Depot — arrival time: 15/10/2003 15:15
***Waiting time before delivery: <<I15 min.>>

A basic workflow model that corresponds to the simple path scenario and that captures a
sequence of activities defined between a “start” activity and an “end” activity can be in-
stantiated: (S) start, (A1) attach container to vehicle, (A2) move vehicle to O, (A3) wait
at O, (A4) load container, (A5) move vehicle to D, (A6) wait at D, (A7) unload con-
tainer, (A8) move vehicle to P, (E) end. Since the solution proposed does not specify a
waiting time at O, the activity (A3) should then be deleted from the instance. Note that
in this case, the activities constitute a simple sequence of actions. Other examples may

yield to activities whose control flow is best captured in a state-transition diagram.

87

The solution found reflects the different attributes (input, assign and time attributes) of
the activities, except for the WUT (Warm-Up Time) introduced in Table 4.1, and that
will be discussed later in Chapter 6, Section 6.3.3.3. These attributes should be given as

input to the different activities of the workflow instance.

4.3.2.2 Customer Request Processing Planning — Re-planning Example

Following the reception of a new request NR, the current reservation of resources is con-
sidered so that an available couple c/d is found for the processing of NR. However, it
may appear that no solution is possible for NR, even when considering the different path
scenarios. This can happen if for instance no driver is available to satisfy NR taking into
account the specified pickup and/or delivery time windows (we suppose that
#(containers) > #(drivers) holds). This situation may lead to consider the
requests for which the processing was already planned and for which the activity “Move
vehicle from O to D” is not reached yet. Let R be the set of these requests. A solution for
NR may become possible when modifying the solution already proposed for one of the
requests of R. Let OR be this request: (1) a new solution for OR is found (e.g., by insert-
ing a transfer at P, and by removing the waiting time at D), and (2) a solution that satis-
fies NR (e.g., according to the simple scenario) is now possible since the driver previ-

ously reserved for OR is now released. Refer to Figure 4.7.
Suppose that the following information corresponds to NR:

Origin location: Sherbrooke
Destination location: Montréal

Earliest pickup time: 15/10/2003 13:30
Latest pickup time: 15/10/2003 14:30
Earliest delivery time: 15/10/2003 14:30
Latest delivery time: 15/10/2003 17:00

And suppose that the current reservation of resources is the following:

Cl11: {<15/10/2003 08:10, 15/10/2003 15:15>,
<16/10/2003 09:30, 16/10/2003 13:30>}

C222: {<15/10/2003 09:30, 15/10/2003 11:40>,
<16/10/2003 09:20, 16/10/2003 16:00>)

C333: {<15/10/2003 09:30, 15/10/2003 10:30>,
<16/10/2003 09:20, 16/10/2003 16:00>}

88

McCain/V101: {<15/10/2003 11:40, 15/10/2003 13:05>,
<16/10/2003 09:20, 16/10/2003 16:00>)

Watson/V202: {<15/10/2003 08:10, 15/10/2003 15:15>,
<16/10/2003 09:20, 16/10/2003 16:00>)

We suppose that the identified OR (the request for which the already planned processing
should be modified) is the request considered in section 4.3.2.1; and that the new solu-
tion found for the processing of this request is the one specified below. Note that in this
solution, strikethroughed elements are the elements that were removed and bolded ele-
ments are the ones that were added, when comparing with the old solution (shown in

Section 4.3.2.1). The solution for the processing of NR is proposed thereafter.

New solution found for OR...

Container: Cl11
Driver: Watson/V202

Depot - starting time: 15/10/2003 08:10
Depot — attach container: <<5 min.>>
Depot — leaving time: 15/10/2003 08:15 <<105 min.>>

Origin — arrival time: 15/10/2003 10:00
Origin — load container: <<30 min.>>
Origin — leaving time: 15/10/2003 10:30 <<165-+min>> <<105 min.>>

Depot - arrival time: 15/10/2003 12:15

Depot — detach container: <<5 min.>>

***Waiting time before attach: <<46 min.>>

Driver: McCain/V101

Depot - attach container: <<5 min.>>

Depot - leaving time: 15/10/2003 13:11 <<75 min.>>

Destination — arrival time: 15/10/2003 4336 14:26
Destination — unload container: <<30 min.>>

Destination — leaving time: 15/10/2003 14:60 14:56 <<75 min.>>

Depot — arrival time: 15/10/2003 4545 16:11

A Waitine timebeforedeliverv < IS mi

Solution found for NR...

Container: C222
Driver: Watson/V202

89

Depot — starting time: 15/10/2003 12:25
Depot — attach container: <<5 min.>>
Depot — leaving time: 15/10/2003 12:30 <<60 min.>>

Origin — arrival time: 15/10/2003 13:30
Origin — load container: <<30 min.>>
Origin — leaving time: 15/10/2003 14:00 <<115 min.>>

Destination — arrival time: 15/10/2003 15:55
Destination — unload container: <<30 min.>>

Destination — leaving time: 15/10/2003 16:25 <<75 min.>>

Depot — arrival time: 15/10/2003 17:40

Attach Move Load Move Wait at Unload Move
, P p>0 [P®lo>p[™ b [P p>p
Old solution |
for OR |
L Nemodificasions
Constitute the transfer
Attach 5 Move L 5 Load 5 Move L 5 Detach [5 Wai_t at | 5 Attach
- P>0 O->P P
New solution|
forOR |
Move Unload ipt Move
D->p [i “p>p

" Wait until a driver becomes available to continue the processing of the request.

(a)

Attach Move Load Move Unload Move
—» P> 0 [P —» 0>D > —» D>P

Soluti f()rl

NR (b)

Figure 4.7. Re-planning Example. (a) The Proposed Modifications for the Processing of
OR, (b) The Proposed Solution for the Processing of NR

4.3.3 Customer Request Processing

In our work, we are interested in managing the processing of customer requests in a
multi-transfer container transportation application. Taking into account the observations
of previous sections, we exploit workflow technology to model and to concurrently man-
age this processing. The workflow approach reduces in general the need for manual,

time-consuming management and organization, and specific features of workflow tech-

90

nology can result in positive effects for the transportation domain. These features should

however include enhanced concepts and functionality.

Indeed, at the operational level, the MTCT application is faced with a continuously
changing environment where resource sharing issues are involved. In this context, the
need for dynamic creation and adaptation of (optimized) solutions is of utmost impor-
tance. Operations research modules (e.g., resource management module, activity sched-
uling module) should provide the planning and the re-planning of activity sequences. If
such modules indicate that changes must be brought to existing solutions, it should be
possible to modify corresponding ongoing workflow instances. These modifications at
the workflow level are typically of three types: activity postponement, attribute updating
and structural modifications. The first modification type allows (1) to react to the lack of
availability of resources or (2) to free some planned resources to reallocate them to other
(priority) activities. The second modification type allows for reacting to strategic ad-
Justments that tend to improve the efficiency of the global processing. Finally, the third
modification type allows for modifying the sequence of a workflow instance by inserting
a new activity (e.g., to accommodate a transfer path scenario) or by deleting an existing

one (e.g., to remove a “wait at location” activity).

The MTCT application can amply take advantage of workflow technology once its un-
derlying challenging aspects are accommodated. These aspects should cope with the al-
ready discussed dynamic management of instances. They should also properly cope with
the definition of basic workflow models and with the instantiation of these models. The
definition of basic workflow models should rely on well-defined activity templates and it
should map out the different path scenarios. The instantiation of a specific model is con-
sidered as a complex and a critical operation since it is based on solutions (i.e., planning
of activity sequences) provided by operations research modules. Moreover, new instan-
tiations and modifications of workflow instances need to be automated as much as pos-

sible so that time-consuming manual interactions are reduced.

We are aware of the fact that workflow technology in the transportation domain is usu-
ally applied to manage logistic activities where documents and information are passed

from one participant to another according to a set of procedural rules [CCP+98]. How-

91

ever, the central issue related to workflows in our approach is the focus on supporting
flow of work and not on supporting flow of “documents” [AMO0O]. Furthermore, we
adopt the idea of emergent workflows described by Jgrgensen and Carlsen in [Cra02]:
“emergent workflows provide an integrated support for planning, coordination and per-

formance of work”. The workflow definition and enactment are intertwined.

Taking into account what was discussed till now, a workflow-oriented solution applied
in the MTCT context should enable the user (i.e., “system administrator”) to efficiently
track and monitor the progress of many customer requests in process. Moreover, it
should allow crew members (i.., “drivers”) to identify at the right time their assigned
activities and to transmit to the system administrator the state of each activity from its
selection to its completion. This will allow, among other things, for determining at any

time the state of the different resources.

In chapter 7, we introduce the MTCT system with all its constructs to support the proc-
essing of customer requests. As it was motivated all along Section 4.3, the solution pro-

vided by the MTCT system is workflow-oriented.
4.4 Summary

In this chapter, we introduced a set of workflow-supported applications that were al-
ready discussed in the literature. A motivation for studying complex socio-technical sys-
tems was given. The major part of the chapter was devoted for describing the combined
negotiation application and the multi-transfer container transportation application: two
examples of non-trivial socio-technical applications. CONSENSUS, a workflow-
oriented combined negotiation support system, was discussed and a dynamic solution
was introduced. This solution will be the subject of our next chapter. The functionality
of the MTCT system was also specified. This system will be described in detail in Chap-

ter 7.

The CONSENSUS application and the MTCT application appeared to be well chosen
since it allowed us to identify an interesting set of new requirements for enhanced work-

flow technology:

92

e The activity template concept defined as a standalone activity designed without
being part of a workflow model.

e The template classification that assigns a specific category to a set of activity
templates and workflow models.

e The warm-up time concept defined as the necessary time to inform a human actor
about an assigned activity.

e The dynamic insertion of a new activity at the workflow instance level.

e The dynamic insertion of a sub-workflow at the workflow instance level.

e The dynamic deletion of a scheduled activity at the workflow instance level.

e The dynamic deletion of a running activity by preserving its context.

e The dynamic move of an activity at the workflow instance level.

e The dynamic insertion/deletion of an activity attribute at the workflow instance
level.

e The dynamic setting/updating of attributes at the workflow instance level.

e The dynamic management of work-lists as a consequence of dynamic modifica-

tions.

In Chapter 5, we better develop the requirements stemming from the CONSENSUS ap-
plication. Then, in Chapter 6, we address each of the identified requirements in the best

appropriate manner.

Chapter 5 The Enhanced CONSENSUS System

In this chapter, we reconsider the combined negotiation support system (CONSENSUS)
discussed in Section 4.2.3. The WfMS-based CONSENSUS platform was developed to
help the user model and enact combined negotiations (CNs). A CN is modeled as a
workflow, and at run-time, software agents participate in negotiations as actors in the
workflow. In this chapter, we highlight the need for a dynamic version of CONSENSUS.
Indeed, this system requires support for dynamic ad-hoc changes induced by unexpected
events that can occur during negotiation. IBM MQ Series Workflow and BEA Systems
WLPI support this kind of dynamism in a limited way. Consequently, the benefits of the
workflow-based CONSENSUS approach to e-negotiations, namely, minimizing the risk
of commitment breaking and maximizing the chances of good deals, are slightly re-
duced. To cope with the required flexibility, we experiment using ADEPT in the context
of CNs. ADEPT is considered as a state-of-the-art adaptive WfMS. We show to which
extent this system is able to support dynamism as required by e-negotiations, and we
outline requirements that should be supported by adaptive WfMSs to fully satisfy the
nature of such dynamism. A dynamic version of CONSENSUS based on ADEPT is dis-
cussed, and an overall adaptive workflow framework is proposed. This framework ex-
tends the WIRM [W{MC95] introduced in Section 2.4.1, for supporting adaptive work-
flows in the context of a specific application. The “importing package” example intro-

duced in Section 4.2.2.2 will be the running example in our discussion.

The remainder of this chapter is organized as follows: In Section 5.1, we identify a num-
ber of dynamic scenarios in the “importing package” example. In Section 5.2, first, we
demonstrate that ADEPT is fit to cope to some extent with dynamism in the context of
CNs; then, we discuss the CONSENSUS version based on ADEPT. In Section 5.3, we

provide the overall architecture as an extension to the WfRM for supporting adaptive

94

workflows. Section 5.4 wraps up the chapter by focusing on the requirements of CON-

SENSUS towards adaptive workflow technology.

5.1 Dynamic Aspects of the “Importing Package”
Example

Although it is widely recognized that WfMSs should provide flexibility, most of today’s
systems unfortunately have problems dealing with changes [RRD04a]. However, various
contingencies and obstacles that can appear during negotiation may require changes at

the workflow instance level.

Taking into account the “importing package” example introduced in Section 4.2.2.2, an
obvious dynamic change could come up immediately after negotiating the purchase of
the goods. The supplier could offer, for instance, to cover the freight shipment and in-
surance from the warehouse of origin to the warehouse of destination. The buying com-
pany could be interested in this offer, and hence decides to not engage in any of the sub-
sequent negotiations of the CN (i.e., transportation, insurance, forwarding). It should be
possible for the buying company to remove all these scheduled negotiations from the

workflow instance during run-time.

Obviously, a similar offer could also come from the forwarding agent. In this case, the
buying company might find it interesting to engage in the negotiation with the forward-
ing agent in paralle] with transportation, and thus the possibility to move the “forward-
ing” activity right after the “purchase of goods™ activities becomes necessary. In case the
negotiation with the forwarding agent succeeds covering the freight shipment and insur-
ance, a next step would be to delete all the negotiation activities related to transportation

and insurance.

Among other possibilities, the two dynamic scenarios described above could occur in a
real-world importing process. Other dynamic scenarios may appear as well in the con-
text of other CN processes, such as the vacation package and the flight connection pack-

age presented in Section 4.2.2. Hence, it would be advantageous for a Combined Nego-

95

tiation Support System (CNSS) to allow on-the-fly changes while a CN instance is run-

ning.

5.2 The CONSENSUS System Based on an Adaptive
WIMS

In order to address dynamic aspects in CNs, we experimented using ADEPT. In Section
5.2.1, first, we review the different components of ADEPT that are of interest for the
CONSENSUS approach; then, we discuss the modeling of the “importing package” ex-
ample as well as the possibilities and characteristics of ADEPT with regards to changes.

In Section 5.2.2, the integration of ADEPT within CONSENSUS is discussed.

5.2.1 Dynamic Modifications Using ADEPT

As already introduced in Chapter 3, ADEPT offers support for ad-hoc dynamic changes.
The ADEPT Workflow-Editor is a build-time client application for modeling activities
and workflows. It corresponds to the Process Definition Tool of the WIRM. As with
WLPI, the workflow model is stored in a database. The provided ADEPT Client moni-
tors the execution of a workflow instance. It corresponds to a Workflow Client Applica-
tion when referring to the WfRM. The user can intervene, via the ADEPT Client, by in-
serting or deleting an activity to the instance already created and launched. The activity
to insert should exist in one of the instances already created, including the ones related to
a different workflow model. It is not allowed to define/model a new activity during run-
time. Of course, a certain number of constraints must be satisfied before proceeding to

the modification steps, i.e., correctness verification (cf. Section 3.2.2.4).

We used ADEPT to model and run CN processes in order to address the dynamism issue
in CNs. Two main criteria were applied to retain this system among other adaptive
WIMS prototypes (cf. Section 3.3). Indeed, the first and foremost criterion is its compli-

ance with the WfRM, whereas the second criterion concerns the availability of its API.

Figure 5.1 shows the “importing package” example as provided by the ADEPT Client.
This example is based on the second scenario described in Section 5.1. Activities in Fig-

ure 5.1(a) correspond to the different negotiations of the “importing package” as shown

96

in Figure 4.2. Two “empty” nodes are used for the And-split and the And-join of the
“purchase (supplier 1 and 2)” activities (nodes S1 and S2). Inserting an activity to the
current instance requires synchronization with activities that must be completed before
and after the inserted one. In our example, the “forwarding” activity (node F) should be
activated after the two “purchase (supplier 1 and 2)” activities, and obviously before the
“carry out deals” activity (node C). The edge from node S1 (resp. S2) to node F, and the
one from node F to node C in Figure 5.1(b) show the synchronization. Figure 5.1(c) de-
picts the case where the negotiation with the forwarding agent succeeds. All the remain-
ing negotiations related to transportation (nodes T1, T2, and T3) and insurance (node I)
are deleted. The “carry out deals” activity is then launched straightaway. Note that it was
possible to delete node T1 although it has already been activated. The two activities
“forwarding” and “sea shipment” are activated in parallel; however, the “forwarding”

activity had to be completed first.

[]]] L] -

Non-activated Activated Completed Deleted And-split And-join True-signaled

Figure 5.1. Importing Package during Run-time in ADEPT — Modeled without Decision
Branches. Instance State (a) After Creation, (b) After Moving Task F, (c) After Deleting
Tasks: T1, T2, T3, and I

97

From our experience with ADEPT as a standalone WfMS, we realized that nodes model-
ing decisions make CN processes less flexible to deal with changes during run-time. In-
deed, adjusting a moved activity with its corresponding decision branch is impossible in
ADEPT. The insert operation and the delete operation do not cover “XOr-
Split”/*XOrJoin” nodes. Consequently, instead of modeling CNs as it is shown in Figure
5.2, we chose to model them without decision branches at all (cf. Figure 5.1(a)), letting
the user decide manually whether to go for the next negotiation in the sequence, to delete
specific negotiation(s), or to insert new one(s). Obviously, the user should take into ac-
count the results of the previously completed negotiations (e.g., deal or not). The previ-
ous argumentation suggests that in order to offer a more flexible model, we need to de-

fine less automatic activities, avoiding for instance decision branches.

- ~——
-

P T 5 - T

SN 3 3
- , [E—[

I:E.L‘ﬂﬂ A @)

- -
-~ -
e e

d”
-

-
-
-

]
Start * 81 A ARestart e
IfS1 is lost 3 —
S2 AND 52 is lost A > > Restart [
If S1is won / o
XOR 82 is won If T1 is lost o o

If TI is won /

L]] L I I I

Non-activated Activated XOr-split XOr-join And-split And-join

Figure 5.2. “Importing Package” in ADEPT — Modeled with Decision Branches. (a) The
Whole Picture, (b) Detailed Part of the Process

98

In the case of dependent attributes between activities, e.g., an item needs as input the re-
sult of a predecessor item, ADEPT does not allow to delete the producing task. This is
perfectly coherent. However, since it is not allowed to modify attributes — mainly to de-
lete the attributes that were pre-assigned to the consuming activity — this makes, once
again, our model less flexible regarding deletion. Dependent attributes may easily appear

in CNs, and a possible solution could be to permit changes of attributes.

Finally, the move operation is not provided by the ADEPT prototype we are using. We

had to replace it by a delete followed by an insert.

5.2.2 ADEPT in CONSENSUS

The availability of the ADEPT API makes it possible to implement client applications
and work-list handlers for specific domains. Indeed, a client application for the medical
domain was implemented and provided within the released version of ADEPT [RTO02].
In the context of CONSENSUS, we have implemented a client application that supports
the launching of automatic activities. The latter refer to negotiation activities that invoke
application-related methods, e.g., methods to create and to destroy an agent, to join a
negotiation, to leave a negotiation, to negotiate, to get an agent state and to get an adju-
dicated price. This feature is not supported by the provided ADEPT Client. We also no-
ticed that the ADEPT API itself does not provide any method that allows the implemen-
tation of autornatic activities. In contrast, the WLPI API provides such methods which

we call from our application (Figure 5.3).

Whenever a negotiation activity is reached, our ADEPT Client Application detects this
new activity state (i.e., Activated), and it calls successively methods Automatic_
Call_createAgent(...), Automatic_Call_joinNegotiation(...), and Automatic_Call_
negotiate(...). Once the agent is created, the Automatic_Call_getAgentState(...) is called
continuously until the agent state becomes OUT, WINNING, or LOSING. Once the agent
joins the negotiation, the state of the corresponding negotiation activity becomes
Selected. The activity state turns to Running as soon as the agent begins
negotiating, and the activity state remains Running as long as the agent state is

different from OUT, WINNING, or LOSING. Then, it turns to Completed.

WLPI classes and methods for the invoca-
tion of application-related methods
(WLPI API)

o

o
ClassDescriptor(Class)

}

MethodDescriptor[] «— getConstructorDescriptors()/
getMethodDescriptors()

..
~.
~.

.
e
..
fememe.

ClassInvocationDescriptor(
String description,
String className, B
MethodDescriptor constructorDescriptor.;,
String[] constructorParmDescriptions, i}
MethodDescriptor methodDescriptor.e..-~*

String[] methodParmDescriptions . .-~

]
.
S

99

CONSENSUS-related class and methods
to deal with a negotiation agent
(CONSENSUS API)

-~

AgentFacade()

!

createAgent(String name)
destroyAgent(String name)
joinNegotiation(String name, String URL, ...)
leaveNegotiation(String name)
negotiate(String name, double reservePrice)
getAgentState(String name)
getAdjudicatedPrice(String name)

Methods from the ADEPT Client
Application

Automatic_Call_createAgent(...)
Automatic_Call_destroyAgent(...)
Automatic_Call_joinNegotiation(...)
Automatic_Call_leaveNegotiation(...)

) Automatic_Call_negotiate(...)
7 Automatic_Call_getAgentState(...)
v VT Automatic_Call_getAdjudicatedPrice(...)
invokeMethod(Instance from class < §

3

N | AgentFacade
Object obj, .

Object[] methodParameters «----- /nstances for the
) parameters of a

specific Agent- ¢ —-—-> p: Class c gives value to param p.
Facade’s method

Mc—=> A: Methods M are called by app A.

¢ —» m: Class c implements method m.

Figure 5.3. WLPI Methods Called by the ADEPT Client Application for the Implemen-
tation of Negotiation Activities

Once we integrated ADEPT within CONSENSUS, we made an interesting observation
concerning the automatic activities and the opportunities for user intervention. Indeed, as
specified in Section 4.2.3, CONSENSUS comprises an Agent Control and Monitoring
Tool (Figure 4.5) from which the user can monitor the work of the agents responsible of
individual negotiations. While the user is interacting with this tool, the workflow in-
stance could not go further in the execution. This gives time for the user to think about a
possible adjustment, and to bring appropriate changes to the instance. In the current ver-
sion of CONSENSUS built on ADEPT, the user should interact with two control and
monitoring tools, as defined by the architecture of CONSENSUS [BAV+01]: the work-

100

flow control and monitoring tool, and the agent control and monitoring tool. The archi-
tecture of CONSENSUS was designed before integrating the flexibility feature, and
hence does not take care of this extension. Taking into account this new feature, usabil-
ity can be improved by integrating the workflow control and monitoring tool with the
agent control and monitoring tool, so that the user will not have to switch from one win-

dow to the other to intervene at the workflow instance level and at the agent level.
5.3 Adaptive Workflow Framework

The architecture of CONSENSUS [BAV+01] (cf. Section 4.2.3, Figure 4.3) should be
reviewed in order to support adaptive workflows. For this, we have extended the WfRM
by proposing a new overall architectural framework for adaptive workflows (cf. Figure
5.4). This framework allows for designing concrete workflow-oriented system architec-

tures in the context of specific applications.

Provides a workflow modeling . — -~ Enriched with...
language based on an expressive: ' ... aset of change operations _
workflow meta-model ; " l... a correctness verification module |

Workflow _

Definition Tool % Unexpected Events
Workflow _. ;
Engine ++ L

.
Resource % «--| Application-Specific
Definition Tool <o Modules)

J
Ll

1
——— o \'
Workflow el .1 Rule !
Clients 77777 Processing |
\

Figure 5.4. Adaptive Workflow Framework

The “Workflow Engine ++” corresponds to the core of the framework. The workflow
modeling language provided by the engine should be based on a workflow meta-model
that is expressive enough to allow practically relevant changes. The engine needs also to
be enriched with a set of useful change operations, and it asks for a correctness verifica-

tion module (cf. Section 3.1). The “Workflow Definition Tool” and the “Workflow Cli-

101

ents” are two modules already defined within the Workflow Reference Model (WfRM).
The “Resource Definition Tool” is useful to define resources required for the definition
of activities, e.g., negotiation agents in the CONSENSUS application and drivers as well
as material resources in the MTCT application. “Application-Specific Modules” com-
municate unexpected events to the “Workflow Engine ++”. The decision regarding the
changes that must be applied on the set of workflow instances is either taken by the user
of the system (i.e., application domain expert), or derived automatically using a decision
module. In the first case, the user specifies the changes via a workflow client. In the sec-
ond case, the “Rule Processing” module may remedy the lack, within the workflow

meta-model, of constructs for automatic workflow changes (e.g., events, triggers, rules).

We illustrate in Figure 5.5 the sequence of messages that are exchanged between the
“Workflow Engine ++”, a “Workflow Client” module such as a workflow control and
monitoring tool, and the user of the adaptive workflow system. We consider the case
when a normal execution with no adaptation is required (Figure 5.5(a)), and the case

when an insertion (Figure 5.5(b)) or a deletion (Figure 5.5(c)) of an activity is required.

(a)
[Workflow Engine ++ | [Workflow Client | I User I
DBConnect()

% < Connect()

ConnectionConfirmed < InstantiationIntention()

< T := GetWorkflowTemplates()
i := Instantiation(t) C Workfl t
w := UpdateWorklist < InstantationOrder(t) q—(reateWorkflowlnstance(t
lj: DisplayWorkflowInstance(i)
DisplayWorklist(w)

UpdateActState(...) P
WorkitemStarted(i, ...) ‘_M)m_)_

w := UpdateWorkli
i = DisplayWorkflowInstance(i)

UpdateActState(...) ————[dsnlneWorkltsitel . i ateWorkitem(i. ..
w := UpdateWorklist i i i <
DisplayWorkflowInstance(i)

| DisplayWorklistw) |

Deletion(i) < DeletionOrder(i) =

DeleteWorkflowInstance(i)

Workflow Engine ++ Workflow Client

102

(b)

1 := CorrectnessVerif()

User

< ActInsertionIntention()

I := GetWorkflowInstances()

A := GetActivities()

- ActInsertionOrder(i, a, a_BEF, a_AFT

< InsertAct(i, a, a_BEF, a_AFT)

Display(r
play(r) >
{r=11
InsertAct(i, a, a_BEF,
a_AFD | DisplayWorkflowInstance(i)
w := UpdateWorklist() DisplayWorklist(w) .
|| | [
(©
Workflow Engine ++ Workflow Client User
] :
1
¢ ActDeletionIntention()
< I := GetWorkflowInstances()
< DeleteFromlInstance(i)
< A := GetDeletableAct(i)
DeleteAct(i,
€ eteAct(i, a)
r := Correctness Verif{ ActDeletionOrder(i, a)
Di
isplay(r) >
fr=1}
DeleteAct(i, a
w := UpdateWorklist() DisplayWorkflowInstance(i)
l > DisplayWorklist(w) >
]
t

Figure 5.5. Sequence of Messages Exchanged (a) during a Normal Execution of a
Workflow Instance, (b) when an Activity Insertion is Required, and (c) when an Activity

Deletion is Required

103

Dealing with unexpected events in the domain of workflows can be compared with error

handling in the domain of transactions. We will discuss this issue in what follows.

5.3.1 Adaptive Workflows and Transaction Management

The requirements resulting from dealing with unexpected events are by far more chal-
lenging than those faced by standard transaction management (error handling). Standard
transaction models define their correctness criteria in terms of the transaction ACID

properties [EIm92]:

e Atomicity: The transaction is a single unit of processing. Either all of its activi-
ties are executed or no activity is executed.

e Consistency: The activities are executed only when they result in a consistent
state.

e Isolation: The activities are executed without the interference of activities of
other concurrently executed transactions.

e Durability: All results of a committed transaction are persistent, regardless of

subsequent system failures.

A workflow can be seen as a possibly long-running transaction, and the ACID properties
have to be relaxed in conjunction with these long-running transactions. This is of utmost
importance to improve the performance of a system implementing a transactional execu-
tion, but also to let more failures recovery. One first step towards relaxing the ACID
properties is the definition of nested transactions. Nested transactions [Mos82] allow
finer grained recovery and provide more flexibility in terms of transaction execution.
Another notion quite similar to nested transactions is the definition of sagas [GS87]. A
saga refers to a long-running transaction that can be broken up into a collection of sub-
transactions that can be interleaved with other transactions. When compared to nested
transactions, sagas only permit two levels of nesting: the top level (saga) and simple
transactions, and at the outer level full atomicity is not provided (i.e., sagas may view
the partial results of other sagas). A saga relaxes the requirement that a long-running
transaction need to be executed as an atomic action. Of course, a compensation mecha-
nism needs to be implemented in order to guarantee that a saga would commit all its sub-

transactions or it would roll back any committed transaction. This relaxes the durability

104

property. The concept of sphere has been defined such that compensation can be applied
not only on one activity but also on a group of activities (called sphere) [Ley95]. A de-
tailed discussion of transactions applied in the domain of workflows is given by Worah

and Sheth in [WS97].

Further issues in the analysis of correctness properties in adaptive workflows can be dis-
cussed in conjunction with transaction management. As an example, deadlocks, which
constitute an important problem in transaction management, can appear as a result of
modifications in workflows. In transaction management, the blocking of transactions by
a two-phase locking can give rise to deadlock, i.e., two or more transactions are simulta-
neously waiting for each other to release a lock before they can proceed. In workflow
management, modifications such as skipping or deleting an activity may result in a dead-
lock since the successor activities would wait for the termination of the skipped or de-
leted activity, e.g., in order to provide needed data. Moreover, modifications resulting in
undesired cycles may cause deadlocks. In order to ensure the correctness (i.e., sound-
ness) of a workflow after a modification is made, correctness checks need to be carried
out. As an example, in the ADEPT approach, modification operations have formal pre-
and post-conditions which ensure by construction that the resulting process schema does
not contain deadlocks. We already discussed, in Section 3.2.2.4, this issue of correctness
verification in the context of reviewed adaptive workflows projects. In Section 6.4.2.1.2,
we introduce a general correctness criterion ensuring the safe interruption of a running

activity.
5.4 Summary and Discussion

CN is a novel negotiation type [BAV+01] that is required, for example, in the context of
supply chains and e-procurement. CONSENSUS was probably the first workflow-based
system to support CNs. Flexibility has widely been recognized as an important feature of
WiIMSs in general, but in the context of CNs, the inability to cope with flexibility puts
limits to the benefits of the CONSENSUS approach. Indeed, CN requires flexibility to
accommodate the various contingencies and obstacles that can appear during negotia-

tion. For example, if a supplier or a shipping company makes a new offer that might be

105

of interest for a buying company, the buyer will review negotiation activities already
planned within the workflow model and may want to rearrange them (e.g., to dynami-
cally delete, replace, or move activities). In this context, the ADEPT change and verifi-
cation facilities have proven as coherent with the flexibility requirements in CNs. How-
ever, there are several requirements identified within the CONSENSUS project that have
not yet been fully supported by ADEPT:

® Dynamic change of decision nodes, so that the automated execution provided by
workflows does not play against the flexibility. In fact, decision nodes play an
important role in the computational representation for automated execution.

* Dynamic change of attributes, so that the structural change operations provided
are not needlessly forbidden. As an example, allowing the deletion of an attribute
increases the chances to pass through the verifications that exist behind the activ-
ity deletion operation. Indeed, it confronts the dependent attributes problem.

® Dynamic move operation. We were applying successively the delete operation
and the insert operation to compensate the absence of the move operation. How-
ever, the move operation should relax the verifications related to the activity de-
letion operation. As an example, the verification of dependent attributes should
not generate correctness problems when the new position of a moved activity A

is still preceding activities taking input from A.

These requirements, gathered from studying CONSENSUS under the “flexibility per-
spective” and from considering a state-of-the-art adaptive WEMS, help us not only to
provide interesting input for the enhancement of the “flexibility” feature of ADEPT, but
also to clarify and refine the needs for adaptive workflows in general. Indeed, the identi-
fied requirements allow us for deriving an adaptive workflow framework in which we
stressed the need for an appropriate set of change operations, for a correctness verifica-
tion module, and for a workflow meta-model that is expressive enough to allow practi-

cally relevant changes.

Chapter 6 Workflow Management Requirements

The CONSENSUS and the MTCT applications studied in the previous chapters serve us
to investigate the needs for a set of enhanced concepts and functionality for WfMSs. In
CONSENSUS, process activities represent e-negotiations, and software agents are re-
sponsible for their execution. Automatic activities are hence involved. There is an inter-
est for manual intervention during run-time (i.e., human involvement in the loop). In the
MTCT system, process activities represent transportation activities, and human partici-
pants such as drivers are responsible for accomplishing them. Manual activities are
hence involved. There is an interest for automatic modifications during run-time (i.e.,

reactive system).

It appears that characteristics inherent to such complex applications are still not ade-
quately supported by current workflow technology. These characteristics are translated
into a list of workflow constructs and real-time features. In this chapter, we report on
this list. As an essential basis, we use established ideas such as (1) the basic workflow
concepts and structures that exist behind workflow modeling (e.g., activity, activity at-
tributes, control/data flow and structural constructs in activity-based workflow modeling
methodologies), (2) the concepts behind workflow enactment (e.g., workflow/activity
state, work-list) and (3) concepts related to the organizational configuration (e.g., organ-

izational model, organizational role).

In the following, we present in Section 6.1 the workflow technology enhancement proc-
ess we devised. Section 6.2 exposes the list of enhanced workflow concepts and func-
tionality. Sections 6.3 and 6.4 discuss these concepts and functionality, respectively, and

expose investigated solutions for each of them.

107

6.1 Workflow Technology Enhancement

Figure 6.1 shows the workflow technology enhancement process. Characteristics of
complex socio-technical applications are translated into requirements towards workflow
technology. This translation is indirectly accomplished passing through application de-
mands and workflow technology features. The set of requirements identified can be di-
vided into subsets, depending on the functionality already provided by the WfMSs that

we are considering. The purpose of a subset is to complement existing WIMS features.

The theoretical definition of workflow concepts and functionality layer gathers the theo-
retical definition of the identified workflow technology requirements. A transition layer
exists between the theoretical definition layer and WfMSs. The transition layer defines
the implementation of the requirements subsets. In the best case, the WfMS provides a
direct solution based on its offered features. Otherwise, a workaround solution can be
implemented. In both cases, we rely on what is offered by the considered system and
hence the transition layer is present to some degree. In the worst case, no solution is
provided at all; an implementation needs to be directly integrated within the WIMS.
Such an implementation may previously require some research work. In this case, the

transition layer is absent.

Once this integration of new features is made, as a final stage of the workflow technol-
ogy enhancement process, we may demonstrate/evaluate (1) the enhanced WIMS(s)
(e.g., ADEPT itself), and (2) the workflow-based systems we developed (e.g., MTCT
system, CONSENSUS system, ADEPT specific applications systems).

We recognize the fact that building a comprehensive list of requirements for WMSs is
an evolutionary task. This means that the system functionality is improved through the
continuous assessment and revision of representative applications. In our case, the itera-
tive investigation of complex applications stemming from typical, yet representative ar-
eas, the e-negotiations and the transportation domains, helped us to identify a set of en-
hanced workflow concepts and functionality. We believe that this list should be used to

help improve what today’s WfMSs offer in term of concepts and functionality.

o

—>
—>

Complex Socio-Technical

108

oS \\z B,

‘p Demands ------;Z ------------------ » Features 0%%

/ B
T /'i// l }Q.%
Characteristics ! Requirements 2

) &

The theoretical definition of workflow)
concepts and functionality

Applications

Transition Laver

|

| wims, | | wims, | [wims,

A WIMS, offers a set of features to practically implement the theoretically defined
workflow concepts and functionality.

... are translated into...
... imply...

... generate. ..

—® The evaluation is made via the enhanced WfMSs and via the workflow-based systems.

—> Applications give input to workflow technology.

Figure 6.1. Workflow Technology Enhancement

6.2 Enhanced Workflow Concepts and Functionality

Taking into account our experience with three specific WiMSs (IBM MQ Series Work-

flow, BEA’s WLPI, and ADEPT) as well as our review of the literature related to cur-

rent WEMSs, we specify for each concept/functionality identified, if its lack is a general

problem G (i.e., it is not provided by most WfMSs) or if it is a WfMS-specific problem

(A for ADEPT-specific problem, M for MQ Series-specific problem, and %W for WLPI-

specific problem). We also specify whether it was possible or not to find a solution (DS

109

for direct solution or WS for workaround solution) based on the features offered by
ADEPT. Among the three WfMSs considered, we focus on ADEPT because it is the
only one that already offers some functionality for ad-hoc changes. In the case where no
solution was possible in ADEPT, we discuss either a possible implementation of the so-

lution (1), or theoretical ideas (‘77) for a possible support of the concept/functionality.
Here is the list of requirements for workflow technology.
Enhanced workflow concepts (cf. Section 6.3):

e The activity template concept [M, W, DS, 6.3.1]

e The template classification [4, WS, 6.3.2]

e The activity temporal aspects [G, DS, 6.3.3]
o The activity starting/finishing time [4, WS, 6.3.3.1]
o The activity duration [DS, 6.3.3.2]
o The activity warm-up time concept [G, WS, 6.3.3.3]

Enhanced functionality applied at the workflow instance level (cf. Section 6.4):

e The dynamic insertion of an activity [G, DS, 6.4.1]
o The dynamic insertion of a new activity instance [4, WS, 6.4.1.1]
o The dynamic insertion of a block of activities [G, WS, 6.4.1.2]
e The dynamic deletion of an activity [G, DS, 6.4.2]
o The interruption of an activity execution while preserving its context
[G, 11, 6.4.2.1]
e The dynamic move of an activity [G, WS, 6.4.3]
e The dynamic modification of activity attributes [G, I, 6.4.4]
o The dynamic insertion/setting/updating of input attributes [G, I,
6.4.4.1]
o The dynamic deletion of input/output attributes [G, 1, 6.4.4.2]
o The dynamic (re-)assignment of activities to a participant [4, I,
6.4.4.3]
o The dynamic setting/updating of time attributes [G, I, 6.4.4.4]

110

¢ The dynamic management of work-lists [G, , 6.4.5]

o The automatic/manual modification of workflow instances [G, I, 6.4.6]

This list shows only one requirement (the interruption of an activity execution while pre-
serving its context) for which theoretical ideas (‘77) are elaborated. In the following, this
requirement is studied in depth. Detailed formal definitions are given. Based on these
definitions, a general correctness criterion ensuring what we refer to as the safe interrup-

tion of a running activity is specified.

Other concepts and functionality from this list, namely the ones marked with DS, WS,

and 7, are discussed in less formal detail in what follows.
6.3 Enhanced Workflow Concepts

In this section, we discuss concepts identified in Section 6.2. We also report on direct or

workaround solutions we investigated to support each of these concepts.

6.3.1 The Activity Template Concept

In order to introduce a standard way for defining activities, it is useful to devise a set of
activity templates related to the studied application. Activity templates are standalone
activities that can be designed without being part of any workflow definition. They are
defined for prospective use during the scheduling of the different activities in a work-
flow model or in a workflow instance. Each activity template consists of a task with

three types of attributes:

o Input/output attributes, which specify the information needed to accomplish a
task (input attributes) or the information produced by the task (output attributes).
This captures the semantic aspects of the task.

® Assignment attributes, which specify the actor(s)/role(s) responsible of
accomplishing (or allowed to accomplish) this task. This is mainly used by the
system to let the task appear in the appropriate work-list in case of a human
actor, or to call the appropriate application/program/software module in case of a

software actor.

111

® Time attributes, which specify the (min/max) duration of the task, its (earli-

est/latest) starting time, and its related warm-up time.

Activity templates should be accessible from the execution phase mainly to allow the
dynamic insertion of a new activity instance based on their definition. Refer to Section

6.4.1.1 for more details regarding this issue.

In current WiMSs, the activity template concept is not defined. Moreover, even if it was
defined, we cannot take advantage of this concept since no dynamic insertion is allowed

during run-time in most W{fMSs.

In ADEPT, this concept is defined. However, the prototype of ADEPT does not allow

the dynamic insertion of an activity based on activity templates.

6.3.2 The Template Classification

Since a WIMS is usually used in the context of different applications, we found it neces-
sary to define the “template classification”. This concept assigns a specific “category”
(i.e., application domain) to a set of activity templates and workflow models. It fosters
the more focused selection of a specific activity template or (sub-) workflow: interest for
the modeling and for the execution phase. As an example, activities such as: “attach con-
tainer to vehicle”, “move container to origin location”, “load container”, etc. belong to
the transportation domain and can rarely be useful for the design/adaptation of workflow
models/instances in other domains. The classification concept also facilitates the extrac-
tion of resources in systems such as the MTCT system. It facilitates the implementation

of the Resource Extraction Client (cf. Section 7.2).

Commercial WfMSs such as IBM MQ Series Workflow and BEA’s WLPI, usually pro-
pose a tree structure for workflows. This structure allows to define categories that gather

workflow models. Example of categories:

* “Banking” gathering workflow models such as “Credit Request” and “Savings”.

e “Sales and Underwriting” gathering “Life Insurance”, “Medical Insurance”, etc.

112

A WIMS’s user has usually authorizations for specific categories. A filter with “cate-
gory” as criterion is used to retrieve, when necessary, workflow templates that belong to

a specific category.

The classification of activity templates according to the application they belong to ap-
pears promising as well. Usually, in current WiMSs, the first level in a tree structure de-
fines the categories; the second level defines the workflow models and the activities are
gathered within the third level. However, we would also like to view activity templates

not related to a specific workflow model, at the same level as the workflow models.

The workaround solution we adopted in ADEPT is the following. When defining the
workflow templates and the activity templates related to a specific application, we save
them with a specific prefix. E.g., all activity templates related to our Multi-Transfer
Container Transportation application were saved with the “MTCT” prefix. This facili-

tates filtering thereafter.

6.3.3 The Activity Temporal Aspects

Activity time attributes such as the duration and the starting/finishing time of an activity
are discussed in the literature. The ADEPT project treats these two aspects in detail
[DRKOO]. In Sections 6.3.3.1 and 6.3.3.2, we discuss the activity starting/finishing time
and the activity duration, respectively. A differentiation should however be made be-
tween (1) the planned starting time of an activity, (2) the activation time of an activity
(i.e., when the activity is due, taking into account the control flow), and (3) its assign-
ment time to a work-list. Usually, within current WfMSs an activity is assigned to a
work-list as soon as it is due within the flow. However, workflow participants should not
be surprised by activities, and they should know in advance about the next activity to
carry out. Hence, the assignment time of an activity to a work-list should depend on the
planned starting time of the activity and on the necessary warm-up time. Eder et al.
tackle a similar problem by working on future personal schedules [EPG+03]. Their work
is motivated by the need to provide early information about future tasks (i.e., forecasting
of tasks). Their approach is based on probabilistic time management. The warm-up time

concept will be presented in Section 6.3.3.3.

113

6.3.3.1 The Activity Starting/Finishing Time

We distinguish between absolute dates (i.e., fixed calendar dates) and dependant dates
between activities. Absolute dates are referred to as external dependencies [RXZ04]. An
external dependency is caused by parameters external to the system (e.g., time): an activ-
ity “a” can enter a specific state “s” only if a certain condition “c” is satisfied where the
parameters in “c” are external to the workflow. An example of an external dependency is
that activity “a” of workflow “W” can start at “9:00 am GMT”. Dependant dates are re-
ferred to as time dependencies between activities [DRK00]. Time edges are introduced
in [DRKOO] to connect two activities and define a minimal or maximal time distance be-
tween them. Time relationships could be: completion/start, start/start, comple-

tion/completion, and start/completion. An example of dependant date is: activity “a”

must be completed two days before activity “b” starts.

In IBM MQ Series Workflow, the starting/finishing time of an activity can be defined
within the activity by specifying respectively its “START” condition and its “EXIT”

condition.

In BEA’s WLPI, a distinction is made between synchronous actions and asynchronous
actions. One of the asynchronous actions is the “set task due date” used to specify the
activity starting time. “Time event” is another asynchronous action that can be used to

specify the finishing time.

The definition of dependent dates between activities in IBM MQ Series Workflow and
in BEA’s WLPI is not straightforward; by contrast, this constitutes one of the strengths
of ADEPT.

However, the ADEPT prototype does not allow the specification of an absolute date for

the activities’ starting/finishing time. The workaround solution we found is as follows:

We use the “time edge” concept and we define a minimum and a maximum time dis-
tance between the “start” activity (S) and each of the activities (A). The earliest and the
latest starting time of A (ESTA/LST,) are specified taking into account the real starting

time of S. Once the execution of S is completed, its real starting time STy is then known.

114

The minimum time distance and the maximum time distance of the “time edge” between

S and A are respectively equal to ESTA-STs and LSTA-STs.

6.3.3.2 The Activity Duration

This is not a problem in ADEPT. The duration is directly specified within the activity. In
MQ Series and WLPI, the duration of the activity can be defined within conditions
(“EXIT” condition in MQ Series and “decision” in WLPI) using a date function format
in a specific expression. Example: when the expression that compares “the current
date/time” with the sum of “the activity real starting time” and “the activity duration” is
evaluated to TRUE, then continue the execution with the next activity taking into ac-

count the control flow.

6.3.3.3 The Activity Warm-Up Time Concept - Integration of Preparation

Activities

The introduction of [EPG+03] motivates convincingly the need for providing early in-
formation about upcoming activities:

In the execution of workflows, workflow participants are typically “sur-

prised” by the activities they should perform, surprised in the sense that

they find these activities in their to-do-lists when these activities are ready,

i.e. all preceding activities are finished. Information about upcoming activi-

ties would be much earlier available in the workflow system. For an exam-

ple, when the first activity of a sequence is ready, the succeeding activities

will be ready soon. Current workflow systems do not make use of this in-

Sformation and do not forward this information to the participants depriving
them of the possibility of planning their work ahead. |...]

In current WIMSs, activities are assigned to work-lists in-order regarding the control
flow. We would like to find a technique for allowing activities to be dispatched out-of-
order when (1) the difference between the starting time of the activity and the time re-
quired to get prepared to this activity (i.e., the warm-up time WUT) corresponds to the
current time, but also when (2) the activity has a high probability of being reached by the
control flow. The question that may arise is the following: how to measure/predict this
probability? In [EPG+03], probabilities are taken for granted. However, in real-world

applications, probabilities can rarely be fixed in advance.

115

The idea behind the “out-of-order” handling of activities stems from the dynamic sched-
uling (i.e., looking-ahead, pre-fetching) approach sometimes based on prediction,
adopted by processor technologies. In fact, the dynamic scheduling allows instructions
to execute out-of-order regarding the instructions order within a program, when there are

sufficient resources and no data dependencies (e.g., structural hazards, WAW, WAR).

A way to support the warm-up time concept is to introduce it at the workflow modelling
level by integrating “preparation activities”. Preparation activities are defined for work-
list management purpose (i.e., notification purpose) but also for resource management
purpose. Indeed, A specific activity may require some preparation work done in ad-

vance. This preparation may ask for some resource reservation.

When early information about a future activity “Act” needs to be provided to the (hu-
man) participant responsible of the execution of “Act”, a preparation activity “Actprep”
related to “Act” is scheduled within the workflow. During run-time, “Actp,” is an
automatic activity that appears at the right time (e.g., at time: “ESTaq - WUTac™) in the
work-list of the participant responsible of “Act”. “Act” could be executed as soon as

ESTaq is reached: “Actp,” leaves the work-list, and “Act” appears instead.

We include preparation activities within the formal definition of WSM-Nets [RRDO04c],

already introduced in Section 2.2.3.

Definition 6.1 (Extended WSM-Net — Preparation Activities) A tuple S = (N, Nprep, NT,
CrrlE, pa) is called an extended WSM-Net if the following holds:
N is a set of activities
- NI: N v ({StartFlow, EndFlow, Activity, PreparationActivity,
AndSplit, AndJoin, XorSplit, XorJoin, StartLoop, EndLoop}
NT assigns to each node of the extended WSM-Net a respective node type.
= Nprep C N is the set of preparation activities.
V' n € Npep, NI(n) = PreparationActivity
- CirlE C N XN is a precedence relation
- pa: (N\ Ny.,) = Np.p U { UNDEFINED)
pa assigns to each activity of (N \ Ny.p) either a specific preparation activity from
Nprep or UNDEF INED.
V b € (N\Nprp) | pa(b) = bprep € Nprep, bprep € Pred*(S, b) holds.
Pred*(S, b) denotes all direct and indirect predecessors of activity b.

116

Taking into account Definition 6.1, a workflow such as the one shown is Figure 6.2(c)

can be modelled.

[swt = 0 f—{ v e] (@)

(b)

Figure 6.2. Integrating “Preparation Activities” to a Workflow. (a) A Workflow with
Two Activities (“a” and “b”") Defined in Sequence, (b) Integrating “Prep: a”, (c) Inte-
grating “Prep: b”

Given an initial schema S with activities defined in sequence as the workflow in Figures
06.2(a), if a “preparation activity” is to be defined for an activity “a”, which is the first
activity to be executed in the workflow, it will be inserted in sequence with “a”, previous
to “a” (Figure 6.2(b)). In general, a preparation activity “Prep: b” defined for an activity

“b” is to be inserted in parallel with all the activities that precede “b” (Figure 6.2(c)).

However, other modelling structures more complicated than the simple “sequence” of
activities, e.g., concurrency or parallel branching, synchronization, selection or condi-
tional branching, iteration, may be involved in a schema S. A way that helps studying
each of these structures with the purpose of integrating “preparation activities” is to pro-

ceed as follows:

A schema S involving a specific structure is designed. An instance Is on S is created, and
the insertion of a preparation activity by, is made by specifying its “before nodes” and
its “after nodes”. The “after nodes” of by, consist of b and of all its successors. Let AN
the set that gathers these “after nodes”. The set of “before nodes” (BN) is defined as N \
AN (the complement of AN in N).

117

We used ADEPT to insert “preparation activities” during run-time, and to discover
where these activities need to be scheduled within a workflow taking into account a spe-

cific structure. We retain the following remarks:

(1) “Preparation activities” are inserted the same way in a “parallel” and in a
“conditional” branching; but in the latter, the work-list requires more sophisti-
cated management. Indeed, activities in conditional branches are announced.
Once a decision is taken regarding the branch to be followed, preparation ac-
tivities corresponding to the activities that will not be executed should be re-
moved from the work-list(s). An alert stating the “non-execution of these ac-

tivities anymore” may also be generated.

(2) When a loop is defined within a workflow, the activities defined in the loop are
announced just once as “repetitive activities” and this is made before accessing

the loop.
We observe two obvious disadvantages with the integration of “preparation activities™:

(1) Workflow participants are notified, via their work-list, about all the activities
of the workflow as soon as the “start” node is completed. What we really need

is a just-in-time notification.

(2) If each activity in the initial workflow needs to be associated with a prepara-
tion activity, the number of (non-empty) activities in the workflow doubles.
Moreover, we will be dealing with at least as many parallel branches as the
number of activities requiring a preparation activity. The workflow becomes
complicated to understand. A dynamic modification of a workflow instance
becomes complicated to manage since an activity has a special relation with its
preparation activity. Finally, we may also think about the loss of the workflow
general view since the preparation activities are not a genuine part of the busi-

ness process.

In the following, we present and discuss how each of these two disadvantages can be

dealt with.

118

6.3.3.3.1 Dealing with the First Disadvantage of the “Preparation
Activities” Approach: Introduction of an Intermediate Work-
list with a Listener Process

The just-in-time notification is possible when we manage the work-list in a way that its
update depends not only on the control flow but also on the “starting time” of the prepa-
ration activities. This can be resolved by a suitable implementation. Once an activity is
due taking into account the control flow, it is assigned to an intermediate work-list. A
listener process on this work-list should be implemented to detect when the “starting
time” of a work-item is reached — so that this work-item appears in the appropriate

work-list. The mechanism of an intermediate work-list with a listener process is ex-

plained in Figure 6.3.
- ~]
| IST Bam Dur,lvh_rj IST 9.1@ ST 2pm
H Skt I—P' ! i Piep :n'—r{ i I—b' I '—’] b ——# Cnd]
I ~—MPrep b

| |ST: 1pm Dur: 1hr)
(a) An example of a workflow with preparation activities. Activities “a” and “b” are assigned to actor “X”. The |

starting time (ST) of activity “a” (resp. “b”) is fixed to 9am (resp. 2pm) and the WUT of “a” (resp. “b”) is 1 hour |
(resp. 1 hour). The:duration (Dur) of the activity “Prep: a” (resp. “‘Prep: b”) and its ST are deduced. |

ST 8am Dur Ihr [ST: 9alv_gl ST: 2pm |
|

|] Stat FL_I_J——"M :pia » a | P h ™ End |
L]] o o 1o e |
| -

b 'iPlcp l)l = ’ E

l ST 1pm Dur dhr |

| Work-list of *X" | Work-list of “null” | Completed activity

| | Activity ‘ O Activity |

| Prep: a f_— o
Running activity

l Prep: b

(b) The work-list of “X” and the intermediate work-ist (i.e., work-list of “null”) are posted. At a certain point in
time (< 8am), the two activities “Prep: a” and “Prep: b” are activated and appear in the intermediate work-list.
They remain here as long as their respective starting time is not reached yet.

Work-list of “X"
Activity |
Prep: a

| (c) At 8am, the starting time of “Prep: " is reached. “Prep: a” leaves the work-list of “null” and it is assigned to

| the work-list of “X”. |

st | [Fromepa] o &] S v | o
= ﬂchp b]—*;

! [ST 6am _Dwr_tha] [ST 9am) . [Twd | J‘
|
|

1ST' ipm Dur thr, 2 |

Work-list of “X"
| = Activity |
Prep: b

an 9:00 | | Reing aciviey

(d) At 9am, the st;rung time of “a” is reached. “Prep: a” leaves the work-list of “X” and “a” is assigned to this
work-list.

Figure 6.3. The Mechanism of an Intermediate Work-list with a Listener Process

6.3.3.3.2 Dealing with the Second Disadvantage of the “Preparation
Activities” Approach: Defining Preparation Activities in the
Background (First Solution)

Given a schema S (cf. Figure 6.4), let S’ the schema that corresponds to S and that in-
corporates warm-up times for activities that need to be forecast in advance. A label
specifying the WUT can be associated with each of these activities. The structure of S’
will still show the genuine business process, i.e., the same structure as S. In brief, the
“warm-up time concept” should be defined as a construct related to an activity in the

same way other similar constructs are usually defined (e.g., EST/LST, EFT/LFT).

We associate S’, considered as a high-level schema, with a low-level schema S°). S’
will integrate the preparation activities in parallel branches; preparation activities will
however be kept out of sight of the WMS’s user controlling and monitoring the work-

flow (i.e., they are in the background).

A transformation function needs to be defined: S - S’y — S’

120

S Bar+{ 2 - 5 »[End]

S SarTFpPed»a b -»End]

’ a 2
S [WUT: 1h] P [WOT: 1] End

Figure 6.4. Sending “Preparation Activities” to the Background

6.3.3.3.3 Dealing with the Second Disadvantage of the “Preparation
Activities” Approach: A Layered Workflow Architecture
(Second Solution)

Instead of incorporating the “preparation activities” directly within the workflow, we
may think about gathering all the preparation activities related to a specific workflow
within a separated (sub-)workflow. We may devise a “layered workflow architecture”
(Figure 6.5). The challenge here is how to define links between an activity and its asso-
ciated preparation activity so that a modification brought to an activity is reflected to its

associated preparation activity.

0°, 777 180°
4 N

P

Listener /& Y
(4

1700 = -
[”,
............ - J WSigdls. ..
/ t"g
Ny Y
B

Listener

- » Preparation activities workflow

Gttt —® Defines a link between an activity and its preparation activity (we call it a “link-line”).

Figure 6.5. Explanation of the Layered Workflow Architecture for the Support of the
WUT Concept

121

For a workflow activity “Act”, we specify a “starting time” (e.g., an absolute date) and a
WUT (e.g., in minutes). For a preparation activity Actye,, we specify a “starting time”
that corresponds t0 “ESTa« - WUTa«”. A modification brought to the “starting time” of
Act involves a shift of the link-line to the right or to the left (¢<). A modification
brought to the WUT of Act involves a rotation of the link-line (Ns). The rotation angle
lies between 0° and 90°, and the angle of the link-line should always lie between 270°
and 360°. A link-line angle of 270° means the WUT is equal to 0 minutes. This can ap-
ply to automatic activities where no human actors are involved. Nevertheless, the link-
line angle can never be 360°. The “360°” corresponds to a horizontal line, meaning that
the WUT is equal to e. As a consequence, the “90°” rotation angle is also impossible.
The really used intervals for the link-line angle and for the rotation angle are respec-

tively a sub-interval of [270°, 360°] and a sub-interval of [0°, 90°].

When a modification is brought to the ST or to the WUT of an activity, a message
should be sent from this activity (the sender) to its related preparation activity (the re-
ceiver). In [ABE+00], the authors introduce performatives used in the context of pro-
clets. The latter are defined as lightweight workflow processes equipped with communi-
cation channels. Performatives are used to specify communication and collaboration be-
tween proclets. They have attributes such as “channel” (the medium used to exchange
the performative), “sender” (the identifier of the proclet creating the performer), “re-
ceiver” (the identifier of the proclet receiving the performer), “action” (the type of the
performative), and “content” (the actual information that is being exchanged). In our
context, the workflow and its corresponding preparation activities workflows can be
seen as proclets (Figure 6.6). Performatives are defined to allow a one-way communica-
tion between “activities” and their related “preparation activities”. The action attribute in
our case can be viewed as a “notification”: an activity notifies the corresponding prepa-
ration activity about a modification brought to its ST or to its WUT. The content attrib-

ute specifies the new ST or the new WUT.

122

* A notification action
Figure 6.6. The *“Proclet” Idea for the Support of the WUT Concept

6.3.3.3.4 Extension of the Warm-Up Time Concept — An Overview

The WUT concept can be extended to a notification system where alerts can be triggered
asynchronously to handle an event or exception. Chiu er al. for instance study the ur-
gency requirements for alert routing in a healthcare application, employing mobile tech-
nologies, and healthcare partner process integrations [CKW+04]. In their approach, they
propose to separate user alerts from user sessions with the WIMS. Online users are
alerted through ICQ (I seek you) with the task summary and reply URL as the message
content. If the user is not on-line, or does not reply within a pre-defined period, the
WIMS sends the alert by email. At the same time, another alert may be sent via SMS
(Short Message) to the user’s mobile phone. Whatever the alert channel has been, the
user needs not connect to WIMS on the same device, or even on the same platform. For
example, after receiving a SMS alert, the user may use her handset to connect to the
WIMS via WAP, or she may reply with an SMS message. Alternatively, the user may
find a PC (Personal Computer) with Internet connection or use her PDA (Personal Digi-

tal Assistant) to connect to the WfMS.

123

6.4 Enhanced Workflow Functionality Applied at the
Workflow Instance Level

In this section, we discuss functionality identified in Section 6.2. We report on direct or
workaround solutions to cover the dynamic insertion, deletion, and move of an activity.
This will comprise theoretical work ensuring the safe interruption of an activity execu-
tion. Then, the implementation within the system of the dynamic modification of activity
attributes is discussed. As a consequence to the dynamic modification of attributes, the
adaptation of work-lists is considered. Each of the functionalities identified can be ap-

plied either manually or automatically. This will be finally discussed.

6.4.1 The Dynamic Insertion of an Activity

This insertion should be based on previously defined activity templates and sub-
workflows. During insertion, temporal constraints should be respected and input attrib-
utes of the inserted activity should be linked to newly generated data elements. This is
discussed in [RD98]. The dynamic insertion of an activity could be extended to the dy-
namic insertion of a sub-workflow. As an example from the MTCT application, the se-
quence of the two activities “detach container from vehicle” and “attach container to ve-
hicle” should be inserted each time a container needs to be transferred from one vehicle

to another.

Commercial WIMSs, such as WLPI, allow re-executing an activity already completed.
However, this does not correspond to the dynamic insertion of an activity since no struc-

tural modification is possible.

This functionality is defined in ADEPT, however the ADEPT prototype exposes the
main problem discussed in Section 6.4.1.1. The dynamic insertion of a sub-workflow

(Section 6.4.1.2) is not possible in ADEPT.

6.4.1.1 The Dynamic Insertion of a New Activity Instance

It is not clear in the literature of ADEPT if the activity to be inserted has to be chosen

from the set of activities of workflow instances, or rather from the set of activity tem-

124

plates. The ADEPT prototype allows only the first option. Since this is possible, it

should not be a problem to support in a workaround manner the second option:

When a specific activity template is chosen to be inserted within a workflow instance,
this activity can be automatically defined within a workflow model, between a “begin”
node and an “end” node; and an instance of this workflow can be created. The problem
of inserting an activity based on a previously defined activity template amounts to the

same thing as the problem of inserting an activity instance.

The WAW (write after write) problem should not exist. That’s why the parameters of
two activity instances defined from the same activity template within a specific work-
flow, should be linked to distinct data elements. In the MTCT system, two activities Al
and A2 defined from the same activity template are usually distinct within a specific
workflow. As an example, the activity “Move vehicle v from location a to location b”
may be present twice in the same workflow. The three variables v, a, and b are linked to

three data elements. Data elements in A1 should be different from data elements in A2.

A refined issue is to allow the insertion of a new activity by defining it from scratch.
This is known by the “on-the-fly” editing [Sie96] where new activities can be defined at
run-time. This means that the user is supposed to deal with a graphical workflow editor
during run-time. A similar idea is evoked in [KBB98]. The authors discuss partial execu-
tion that supports creating and executing workflows and workflow fragments “on-the-
fly” as they are needed — or as the information becomes available —, rather than requiring

the entire workflow to be specified ahead of time.

6.4.1.2 The Dynamic Insertion of a Block of Activities

There is no solution defined within current WMSs. The workaround solution we devel-
oped can be captured by the five steps described below. This solution is based on the

fact that the dynamic insertion of an activity is possible. Refer to Figure 6.7.

Step 1: Take the first activity in the given sub-workflow and insert it between the BE-
FORE nodes and one of the AFTER nodes AN1. Based on a symmetrical control struc-

ture as used in [RD98], Figure 6.8 shows the effective structure of the workflow after

125

inserting the first activity. Empty nodes and sync-edges are introduced as a consequence

to the insertion. Reduction rules are applied.

Step 2: Take one next activity instance in the given sub-workflow with no predecessors
that are not inserted yet (except for loops there must always be one existing) and insert it
between its already inserted predecessors and AN1. Figure 6.9 shows the effective struc-

ture of the workflow after inserting the second activity.
Step 3: Continue like this until you reach the last activity in the provided sub-workflow.

Step 4: Insert this last activity between its already inserted predecessors and all AFTER

nodes.

Step 5: Delete all edges between the AFTER node ANI and all newly inserted nodes

except for the last one.

Step 1 —

Step2 —

126

Step3 —

Step 4 —

Step 5 —

> Sync-edge
*—> Control edge

Figure 6.8. Valid Structure of the Workflow Resulting from Step 1

127

*—> Control edge

Figure 6.9. Valid Structure of the Workflow Resulting from Step 2

Suppose that the sub-workflow shown in Figure 6.10 is to be inserted between {C, D}
and {F} (cf. Figure 6.7). Is the “End loop” node considered a “predecessor” to the
“empty” node, to “b” and to *“c”? The first time “b” and “c” are executed it is not. When
the loop is executed more than once, the “End loop” node becomes a “predecessor” to

the “empty” node, to “b” and to “c”.

Edge type: loop

I g B o X o I o S e K

Figure 6.10. Example of a Sub-Workflow Including a Loop

The workaround solution just exposed (inserting the activities of a sub-workflow one by

one) has at least four problems:

(1) If not automated, this solution presents too much (manual) manipula-

tions/interactions with the system, which is an error-prone solution.

(2) The activities insertion order is very important. E.g., an activity input parame-
ter should be previously provided as an output parameter of a predecessor ac-

tivity.

(3) This solution has been applied to sub-workflows with sequential activities
only; the insertion of complex modelling structures is problematic. Indeed, in
the example of figure 6.7, the insertion of an And-split and an And-join, as

well as of activities between these two specific nodes is not obvious.

128

(4) Step 5 (deletion of un-useful edges) is complicated to accomplish because of
the introduction of sync-edges and empty nodes. This step can however be

skipped.

An appropriate solution for the insertion of a sub-workflow is to consider the latter as a
whole with input and output data. This was not addressed yet in the literature, but it
could fit well in the approach proposed in [RD98] for the insertion of a single activity.
Indeed, in this approach, the correctness of the flow of data is verified to ensure a

syntactically correct schema.

6.4.2 The Dynamic Deletion of an Activity

ADEPT provides this functionality. In other WfMSs, the activity instance can be “force
finished” (MQ Series Workflow) or it can be marked as “done” without execution
(WLPI). Marking an activity instance as done without executing it can remedy in certain
cases to the dynamic deletion of this activity. This is true when for instance we do not

expect output attributes from the activity instance marked as done.

In the following, we discuss a sophisticated issue in conjunction with the dynamic dele-

tion of an activity instance, that is, the safe interruption of an activity in a running state.

6.4.2.1 The Interruption of an Activity Execution While Preserving its
Context

An activity interruption triggered by the appearance of unexpected events in environ-
ment such as the MTCT cannot be avoided. As an example, technical problems of vehi-
cles, traffic jams or forced rerouting may appear at any time while vehicle V is on the
road moving goods between origin location O and destination location D. This usually
leads to the interruption of the “move V from O to D” activity. In such a situation, an
adaptation of an already planned flow of activities for the satisfaction of a customer re-
quest is required; this adaptation should take into account the current context of the in-
terrupted activity. The new transportation solution may propose to send a new vehicle V’
to the current position of V or to change the already planned route leading to D. In both
cases, the current position of V should be known such that an appropriate new solution

can be proposed.

—
N

129

Preserving the context of an interrupted activity consists of saving data, which is pro-
duced by or associated with this activity. This must be done at the right time, e.g., as
soon as the data become available or relevant. At this point, it is important to have a
closer look at the granularity of work unit descriptions. Usually, a business process ac-
tivity can be further subdivided into atomic steps corresponding to basic working units
or to data provision services. Basic working units are either directly coded within appli-
cation programs or can be worked on manually by people. Distinguishing between ac-
tivities and atomic steps is useful for the following reasons: Atomic steps are not man-
aged within work-lists like activities are. This contributes to better system performance
since the cost for managing and updating work-lists decrease. Furthermore, this ap-
proach offers more flexibility to users (if desired) since they can choose the order in
which they want to work on atomic steps. The distinction between activities and atomic

steps finally leads to the following basic considerations.

We distinguish between a continuous and a discrete data update by activities. The
“move V from O to D” activity is an example of an activity continuously updating the
”V current position” data element by a GPS system. An example of an activity discretely
updating data is even more obvious in process-oriented applications. We may think
about the activity “fill in a form” with many sections, each one asking for information
(i.e., data) related to a specific topic. The information becomes relevant, and therefore
may be kept in the system, only after the completion of a specific section. Filling in a

section could be seen as working on a particular atomic step.

We highlight the fact that a process activity may apply both updating kinds: it may dis-
cretely update a particular data element d; and continuously update another data element
d>. Moreover, data elements may be discretely updated by a specific activity n; and be
continuously updated by another activity n,. As an example, an activity “monitor pa-
tient” in a simplified medical treatment process such as the one introduced in Chapter 2
and depicted again in Figure 6.12, may ask to measure twice a day the “patient tempera-
ture” and to continuously control the “patient heart electric signals”. On the other hand,

the “patient temperature” may be permanently controlled in case of high fever within

130

activity “monitor patient” while it may be measured twice a day after operation within

activity “aftercare”.

Data continuously or discretely updated by activities may be only relevant for the spe-
cifically studied application (e.g., the vehicle “current position” for the container trans-
portation process depicted in Figure 6.13) or they may be relevant for process execution
as well. In the latter case, these data are consumed by process activities and therefore
have to be supplied by preceding activities. At the occurrence of exceptional situations,
it may appear that mandatory process relevant data will not be available at the time an
activity is invoked. Depending on the application context and the kind of data, it may be
possible to provide the missing data by data provision services, which are to be executed

before the task associated with the respective activity is handled.

We distinguish between exclusive application data and process relevant data. Note that
an exclusive application data may become process relevant when a failure occurs. In the
transportation application, an example of process relevant data would be the “container
temperature” (continuously) measured during a “move V from O to D” activity and rele-
vant for a “Report to customer” activity within the same process. Reporting on the con-
tainer temperature would inform the customer whether the transported goods (e.g.,
foods) were or were not continuously preserved under the appropriate temperature. The
“V current position” is an example of exclusive application data since it is relevant for
the application, in particular for the optimization module of the application (cf. Chapter
7), but not for the business process management system. If, however, a road traffic prob-
lem occurs, the “current position” of V may become relevant for the process as well; i.e.,
the origin location O’ of a newly proposed activity “move V from O’ to D” changing the
already planned route leading to D, would correspond to “current position” of V (i.e., O’

:= “V current position”).

Figure 6.11 shows a data classification scheme in the context of business processes. This
classification puts the frequency of updating activity data and the relevance of these data
into relation. Within these two dimensions of data, we respectively differentiate be-

tween:

131

e acontinuously and a discretely updated data, and

¢ an exclusive application data and a process relevant data

Taking into account this classification, and knowing that exceptions stemming from the
application environment cannot be avoided and generally appear during activity per-
formance, it would be a challenge not to lose available data already produced by the ac-
tivity that will be inevitably interrupted or deleted. In order to formally specify the cor-
rectness criterion for interrupting running activities while preserving their context, for-

mal definitions of requisite foundations for this specification are indispensable.

Data Update
Frequenc
quency o :
i
Continuous - Application data ' Process data
continuously updated E continuously updated
l
]
______________________ e
[}
)
]
. Application data written\ 1 (Process data written by
Discrete | b . 1 .
y atomic steps ! atomic steps
i
| ’ = >
Exclusive application Process Data Relevance

Figure 6.11. Data Classification Scheme

In the following, we first define such foundations (Section 6.4.2.1.1). Then, we intro-
duce a general correctness criterion ensuring a safe interruption of a running activity

(Section 6.4.2.1.2). Finally, the adopted approach is discussed in Section 6.4.2.1.3.

6.4.2.1.1 Formal Framework

In order to precisely define the different kinds of data and update frequencies, we use the
established formalism of Well-Structured Marking-Nets (WSM-Nets) [RRD04c] (cf.
Section 2.2.3) and extend it for our purposes. As motivated previously, an activity can be
subdivided into a set of atomic steps. The lower two lanes in Figure 6.12 show the
atomic steps assigned to the process activities as well as the data flow between these
steps. For example, the atomic steps “measure weight”, “measure temperature”, and

“wash patient” are assigned to activity “prepare patient”. “Provide weight” is an exam-

132

ple of a data provision service assigned to activity “operate” as atomic step. If an excep-
tional situation (e.g., failure at the “measure weight” atomic step level) occurs, this data
provision service will be invoked in order to supply input data element “weight” of the
activity “operate” (and particularly of its atomic step “anesthetize”). We define a partial
order relation on the set of atomic steps (incl. data provision services) assigned to a cer-
tain activity. The precedence relation depicts a micro control flow between elements of
this set. Note that, by contrast, a macro control flow is defined between activities. We set
up this relation by assigning numeric labels to atomic steps, e.g., an atomic step with
numeric label “1” is considered as a predecessor of all atomic steps with numeric label
“2” or greater. By default, all atomic steps have number 17, i.e., they can be worked on
in parallel. In this case, the actor which works on the respective activity is considered as
being the expert in choosing the best order. Data provision services have number ~0”
since they must be executed before all atomic steps assigned to the same activity, in or-

der to properly supply these atomic steps with the required input data.

So far the formal definition of WSM-Nets has not considered splitting activities into
atomic steps. Therefore we extend the definition by including this additional level of

granularity. In the following, S describes a process schema.

Definition 6.2 (Extended WSM-Net — Atomic Steps) A tuple S = (N, D, NT, CtrlE,
DataE, ST, P, Asn, Aso, DataE . engeq) is called an extended WSM-Net if the following
holds:

- Nis a set of activities and D is a set of process data elements

- NT: N — {StartFlow, EndFlow, Activity, AndSplit, AndJoin,
XorSplit, XorJoin, StartLoop, EndLoop}

To each activity, NT assigns a respective node type.

- CtrlE C N XN is a precedence relation setting out the order between activities.

- DataE < N x D x NAccessMode is a set of data links between activities and data
elements (with NAccessMode = {read, write, continuous-read, continuous- write})

- ST is the total set of atomic steps defined for all activities of the process (with P C ST
describing the set of data provision services)

- Asn: ST +— N assigns to each atomic step a respective activity.

- Aso: ST — N assigns to each atomic step a number indicating in which order the
atomic steps of a certain activity are to be executed. By default: If s € P, Aso(s) = 0
holds; otherwise, Aso(s) = 1.

- DataEeyendea € ST X D X STAccessMode is a set of data links between atomic steps
and data elements (with STAccessMode = {read, write})

133

As can be seen in the example from Figure 6.12, there are atomic steps which produce
data (e.g., “measure weight”) and others which do not write any data element (e.g.,
“wash patient”). In order to express this fact, we logically extend the set DataE to set
DataE,viensea Which comprises all read/write data links between atomic steps and data
elements. In particular, an intra-activity data dependency may be defined such that
intermediate results of an activity execution can be passed between subsequent
atomic steps st; and st; with Asn(st)) = Asn(stz); ie., 3 (st), d, write), (st d, read)
€ DataE,yendea- As an example (Figure 6.12), consider the intra-activity data flow from
“anesthetize” to “operate” via data element “sensory perception degree”. In fact, the

atomic step “operate” needs this data element to decide when to begin surgery.

o
electro sensol erception s -
consent weight temperature cardiogram I;iyegree P .g g 4
,I 4 \\ 40 * “\ Il ’ © c 2
', : \‘ ! \\ : N v o
ll ; ‘\; \\ ! \\\ /I’ /
Process Schema S:/ ! L . ¥,/
K : N Monitor | /Y 2
—p : Control flo H ! : o
--% : Data flow H ' H =
! i H =4
=]
Admit Inform Prepare s
patient i patient > patient °_§
\

e El'""E]://"E]: """"" 1R 5 oo I —— h £
i : Measure s Measure ; Wash ™\, Provide iAnesthetize! Operate | E
HE

1] [/}

1] ok

! Inform " Sign i . N ! ? " A ; A i)

H " 'L _weight temp. ! patient .. weight I " R
Tommmmmm—m—m—_———— S~ ~==== D AT g s . S

‘\\ N el T g ! g o

~ \\\ Pl \:k__— _ 1 s =

Y AL T - v ~ g ‘E’ g

. sensory perception o [

consent weight temperature i e =

degree 6 !

Figure 6.12. Medical Treatment Process (Atomic Steps)

Intuitively, since we have extended WSM-Nets by adding atomic steps we also have to

extend the definition of process instance markings by assigning markings to atomic

steps.

134

Definition 6.3 (Process Instance on Extended WSM-Net) A process instance I on an
extended WSM-Net S is defined by a tuple (S, M* Val®) where:

extended *

- §S=(N, D, NT, CtrlE, ...) denotes the extended WSM-Net I was derived from
- M’ = (NS°, STS®) describes activity and atomic step markings of I:

extended

NS N > {NotActivated, Activated, Running, Completed, Skipped}
STSS: ST > {NotActivated, Activated Running, Completed,
Skipped}
- Val® describes a function on D. It reflects for each data element d € D either its cur-
rent value or the value UNDEFINED (if d has not been written yet).
Markings of activities and atomic steps are correlated. When an activity becomes acti-
vated, related atomic steps (with lowest number) become activated as well. The atomic
steps will then be carried out according to the defined micro control flow. As soon as
one of them is executed, both the state of this atomic step and of its corresponding activ-
ity change to Running. An activity is marked as Completed after completion of all
corresponding atomic steps. Finally, if an activity is skipped during process execution,

all related atomic steps will be skipped as well.

As already motivated, it is important to distinguish between data elements that are only
relevant in the context of applications and data elements that are relevant for process
progress as well. We can see whether a data element is relevant for the process if there is

an activity reading this data element.

Definition 6.4 (Data Relevance) Let S be an extended WSM-Net, let w € {write,
continuous-write} and r € {read, continuous-read}. Then we denote d € D as
- an exclusive application data element if

d(n, d, w)€ DataE = —3 (m, d, r) € DataE
- a process relevant data element if

3(n, d, w) € DataE = I m € Succ*(S, n) U {n}: (m, d, r) € DataE

Succ*(S, n) denotes all direct and indirect successors of activity n.
The Data Relevance dimension captures both data elements that are produced by the
process, but are only consumed by the application, and data elements that are produced
and consumed by the process. In the medical treatment process (cf. Figure 6.12), data
elements “weight” and “temperature” taken during the “prepare patient” activity are ex-
amples of process relevant data elements. They are of utmost importance for carrying
out the subsequent “operate” activity (i.e., to calculate the quantity of anesthesia that has

to be administered to the patient). The “electro cardiogram” data element tracked during

135

the “monitor” activity is another example of process relevant data. It is used by the “af-
tercare” activity. By contrast, “consent” is an exclusively application data element. As
explained in Section 6.4.2.1, when a failure occurs, an exclusive application data ele-
ment may become relevant for the process as well. A patient who already consented
upon a surgery accepts the risks, and the “consent” data element may thus be used in
subsequent activities dealing with respective problems. Turning now to the container
transportation process, “current position” is an exclusive application data element

whereas “container temperature” is a process relevant data element (cf. Figure 6.13).

c
» : 623
current position container temperature 88 5
”, N, (1] -_—
,” lx‘\\ /l \\\ © E
2 I X
P T N 7 "
. e 1 N
| Process Schema S: - : * Report to
'/' ! ’ S
{(—» : Control floﬁ - i - <. 4] customer
I

' --% : Data flow

control flow

Attach aff [Move to| [Load at| |Moveto| |[Unload
P o] (o] D (P atD

Move to
P

Figure 6.13. Container Transportation Process

We now define the notion of data update frequency. Based on this notion we will be able
to define a criterion for safely interrupting running activities while preserving their con-
text. Intuitively, for a discrete data update by atomic steps there are certain periods of
time between the single updates, whereas for continuous data updates the time slices be-

tween the single updates converge to 0.
For defining the time slices between data updates, we need the function:
stp: ST —» R U {UNDEFINED}

This function maps each atomic step of ST either to a specific point in time or to UNDE-

FINED. In detail:

136

stp(st) = ty if A (st, d, write) € DataE . ienged
UNDEFINED otherwise

whereby t,, := § completion time of st
oo by default

Note that the infinite default value we assign to t, is updated as soon as st is completed.

Hence, the real completion time of sz is assigned to t,,.

Definition 6.5 (Data Update Frequency) Let S be an extended WSM-Net, let w € {write,
continuous-write} C NAccessMode, and let d € D, n € N with (n, d, w) € DataE. Let
further ST be the set of atomic steps associated with activity n and writing data ele-

ment d; i.e., ST”" := {st | asn(st) = n, 3 (st, d, write) € DataE,enged)-

Then we denote (d, n) as:
- adiscrete data update of d by n if 3 (n, d, write) € DataE
In terms of atomic steps: ¥V st€ ST"" : stp(st) = t,, # UNDEFINED

- a continuous data update of d by n if 3 (n, d, continuous-write) € DataE
In terms of atomic steps: ST = &

In case an activity n continuously updates a data element d, no atomic steps writing d are
dissociated, i.e., there are no atomic steps associated with n that write d; e.g., take the
absence of atomic steps writing the “current position”, the “container temperature”, and
the “electro cardiogram” in Figures 6.12 and 6.13. These data elements are examples of
data continuously updated respectively by a GPS system, a thermometer, and a cardio-

graph instrument.

On the other hand, the set of atomic steps discretely writing a data element may be lim-
ited to only one atomic step. The “consent”, the “weight”, and the “temperature” are
written once respectively by the “sign”, the “measure weight” and the “measure tem-

perature” atomic steps (cf. Fig. 6.13).

Figure 6.14 summarizes the classification of the data involved in the medical treatment
process and in the container transportation process, taking into account the general data

classification scheme presented in Figure 6.11.

137

-~
Data Update ," \\
Frequenc / \
PR A A
]
Conti . ! - container temp.
ontinuous —+ - container current : - patient electro
position i cardiogram
i
[}
e
i
. ! - patient weight
Discrete - patient consent : N pa[ien[[emp.‘
! - sensory perception
!
} i } >
Exclusive application Process Data Relevance

Figure 6.14. Data Classification in the Medical Treatment and Container Transportation
Processes

6.4.2.1.2 Correctness Criterion

In order to correctly deal with exceptional situations, it is crucial to know those points in
time when running activities can be safely interrupted. A running activity is safely inter-
rupted means that the context of that activity is kept such that all input data of subse-
quent activities are correctly supplied. This context preservation will allow for finding
possible solutions for exceptional situations. We denote these points in time as safe

points of the respective activities.

The challenging question is how to determine the safe point of an activity. In order to
adequately answer this question, our distinction between continuous and discrete data
update is helpful. As the following definitions show, it is possible to precisely determine
the particular safe interrupt points for discrete and continuous data updates, i.e., those
points in time when the respective data are updated such that subsequent activities read-

ing these data are correctly supplied.

Definition 6.6 (Safe Interrupt Point for a Discrete Data Update) Let (d, n) (n € N,
d € D) be a discrete data update of d by n, and let ST, be the set of atomic steps asso-

ciated with n and writing d. Let further B := {stp(st), st € ST"" | =3 pe P:Asn(p)=n

and (p, d, write) € DataE..niea}. Then the safe interrupt point t;f,ﬁ, of (d, n) corre-

sponds to the maximum point in time any atomic step writes d (on condition that d can-
not be provided by a data provision service). Formally:

138

lye = {max(B):B # &
UNDEFINED : otherwise
Informally, the safe interrupt point for a discrete data update by atomic steps is that
maximum point in time when the last write access to the respective data element has

taken place.

Definition 6.7 (Safe Interrupt Point for a Continuous Data Update) Let (d, n) (n € N,
d € D) be a continuous data update of d by n with a start updating time t; and a finish
updating time t;. The safe interrupt point ' of (d, n) (t; < t* <) corresponds to the

safe sufe
time when d becomes relevant for subsequent activities. This time is fixed by the user. If
no safe interrupt point is fixed by the user t;f,fe := UNDEFINED holds.

Intuitively, for continuous data updates there is no “natural” safe interrupt point. There-
fore, we offer the possibility to define a safe interrupt point by the user. An example us-
age for such a user-defined safe interrupt point would be the “waiting time” in order to
get the right container temperature after attaching it to the vehicle that shall power the

refrigeration system within the container.

In order to determine the safe point of an activity, we have to consider that there might
be several safe interrupt points. One example is the activity “prepare patient” which has
two safe interrupt points belonging to data elements “weight” and “temperature” (Figure

6.12).

Definition 6.8 (Activity Safe Point) Let {d,, ..., d;} be the set of data elements (continu-
ously) written by activity ne€ N (ie.,, 3(n, d, w) € DataE, i = 1, ..., k, w € {write,

continuous-write}). Let further t:f;ﬁ t;fjﬁ, be the related safe interrupt points.

Then we denote ty,, = max| tho } as the safe point of n (if t;f;fe = UNDEFINED

safe? °r “safe
Vi=1, ..,k tyg is set to UNDERFINED as well). Thereby, Lsup COTresponds to the time
when n can be safely interrupted keeping its context. An activity n can be safely inter-
rupted if all input data of subsequent activities of n are provided.

Using the notion of activity safe point, we can state a criterion based on which it is pos-

sible to decide whether a running activity can be safely interrupted or not.

139

Criterion 6.1 (Interrupting a Running Activity by Keeping its Context) Let S be an ex-
tended WSM-Net, let] be an instance on S, and let we {write, continuous-write
C NAccessMode. A node n € N with NSS(n) = Running and safe point ty can be
safely interrupted at tipierrup: if one of the following conditions holds:
- —3 (n d, w) € DataE

Lafe < linterruption OV tyufe = UNDEFINED
- V(n, d w) € DatakE, tiernp: < tyy,: d is an exclusive application data element

A running activity can be safely interrupted from a process perspective if it either writes
no data or if it solely writes exclusive application data. If a running activity writes proc-
ess relevant data it can be safely interrupted if it has an undefined safe point or its safe
point has been already transgressed. Finally, if exclusive application data become proc-

ess relevant (e.g., if an exception handling process makes use of the full context of the

interrupted activity), the last condition of Criterion 6.1 may not be applicable.

In order to illustrate the defined correctness criterion, we consider the container trans-
portation process. Based on process schema S provided in Figure 6.13, instance Is in
Figure 6.15 has been started. Taking into account a defined transportation network, each
of the activities’ locations in I5 is captured by a coordinate (x, y). E.g., the origin and the
destination locations in activity “move vehicle V from Montréal to Québec” would re-

spectively correspond to the coordinates (1.5, 3.5) and (13, 8) within the transportation

network. Suppose that a road traffic problem occurs at time tiverrp: = 1, + 75minutes

(elapsed time since departure) while V is on the road between Montréal and Québec. At
this time, suppose that the GPS system is indicating (7, 5.5) for the current position of V.
To avoid the traffic problem, an optimization module may propose a new transportation
solution that consists of changing the already planned route leading to Québec. The new
route includes a detour via another location, that is Trois-Riviéres located at position (7,
7). However, this new solution is only possible if V is close enough to Trois-Riviéres,

which means that the current position of V is beyond (6, 5). This corresponds to

Lo = gy . + 60minutes. In addition, suppose that the right container tempera-

sufe

ture is reached 15minutes after finishing loading the container and hence after the depar-

t " ContainerTemperature”
safe

ture from the origin location, i.e., = lppn + 15minutes. Taking into ac-

count Definition 6.8, the safe point of activity “move vehicle V from Montréal to Qué-

140

"CurrentPosition”

7
bec” corresponds to max|{ Loe ,

t "ContainerTemperature”
sife

} < tinterrupr- Hence, this activity
can be safely interrupted. The exclusive application data element “current position” was
used to generate the new solution shown in Figure 6.15. Following the road traffic prob-
lem, this data element becomes process relevant as well: it is given as input to the in-
serted activity “move vehicle V from current location to Trois-Riviéres”. Note that in
this specific example, the “container temperature” data element is not relevant for the

definition of the safe point, and hence it could be fixed to UNDEFINED.

Reportto [*~~.__
Instance ks on S customer N\ T=~eL__
V y | > <7
Attach at Move (6,4) Load at Move (1.5, Unload at Move (13,8) /
64 [- (1535 (1.5,3.5) ’I 35) (138 7] 138 |[—-@©4a [7
~~~~~~~~~~ \::“~~~s~~ /,/ /I
~~~~~~~~ \\\ §‘“7:: ,”
RN . A :pctivated Tt A a e)
Trois-Riviéres - i
| mﬂ(7 '7')'"“ — J _‘gggg/’;‘{e d current position container temperature
[TTT L U Québec (13,8) ’
T { # 2 Interrupted
P T Drummondille (6,4)° actwity
|| Montréal [## Current position of V 4l £,y - Inserted |
(1.53.5) " CurventPasition : activit i current position container temperature
[1 []© Expected positionat ¢ - Y LA TAwR = . A
—————— ,//r' ;i —::\'\,— ,”,z /,z-
Instance I’s (modifiedly ~__-- = e ’_-%'r \){" o
Ty e\ ey R Yia N /
Attach at Move (6,4) [Load at Move/(1.5, Move (7,5 Move (7,7)[| Unload at
64 [>01535 [(1535 [)3.5-X(138) = (7,7 —(13,8) (38 ([

[\

Figure 6.15. Container Transportation Scenario

6.4.2.1.3 Discussion

The solution proposed to ensure a safe interruption of a running activity adopts a “divide
and conquer” approach: An activity is divided into atomic steps so that the interruption

of this activity becomes possible by preserving its context.

In [MS02, SSOO01] “pockets of flexibility” are defined. So called “containers” comprise
different activities and constraints posed on these activities (e.g., activity B always be-
fore activity C). These containers can be inserted into certain regions within the process.

If process execution reaches such a container the assigned user can choose the order of

141

working on the offered activities by obeying the imposed constraints. This idea can be
compared to our approach of subdividing activities into atomic steps and posing an order
relation on them if necessary. However, both approaches use a different level of granu-
larity and focus on different aims. The approach presented by [SSO01] provides more
flexibility regarding process modeling whereas our approach uses atomic steps for being

able to preserve the data context in case of unexpected events during run-time.

The two kinds of data addressed by the Data Relevance dimension of our data classifica-
tion scheme have already been discussed within the literature [AH02, WfMC99b]. In
[WEMC99b], a differentiation is made between application data and process relevant
data. It is argued that application data may become process relevant if they are used by
the workflow system to determine a state change. In this paper, we adopt the same defi-
nitions and interpretations as provided in [WMC99b]; furthermore, we judiciously high-
light the fact that exclusive application data may become process relevant when a failure
occurs. In [AHO2], a bigger variety of process data is featured: analysis data, operational
management data, historical data, etc. It is stated that application data cannot be directly
accessed by a workflow system but only indirectly through instance attributes and appli-
cations themselves. Hence, only the way of accessing application data from a WfMS is

discussed.

The infinite completion time assigned as a default value to an atomic step st may be
more precisely predicted using, for instance, the forward/backward calculation technique
based on the duration of activities as proposed in [EPG+03, EP02]. This would allow
estimating an activity safe point (#z) as a specific point in time (instead of infinite) even

before reaching this point.

Another interesting application of the presented results arises in the context of process
schema evolution [RRDO04a], i.e., process schema changes and their propagation to run-
ning process instances. One important challenge in this context is to find correctness cri-
teria in order to ensure correct process instance migration after a process schema change.
According to the compliance criterion [CCP+98, RRDO044a] it is forbidden to skip already
running activities, i.e., the respective process instances are considered as being non-

compliant. However, if we transfer the concepts of safe interruption of activities to the

142

safe deletion of activities the number of process instances compliant with the changed

process schema can be increased.

6.4.3 The Dynamic Move of an Activity

This functionality is not provided by current WfMSs. A workaround solution consists of
inserting at a new position the activity we want to move, and then to delete this activity
from its current position. Deleting then inserting the activity may not be possible be-
cause of data flow conflicts (e.g., detection of missing input data). In the context of a
move operation, a relaxation of the consistency verifications applied for the delete

operation should be done.

6.4.4 The Dynamic Modification of Activity Attributes

Functionality discussed in Sections 6.4.1 to 6.4.3 brings structural modifications to
workflow instances. Attribute modifications are another kind of modification applied at
the activity attribute level: the insertion, deletion, setting, and updating of activity attrib-
utes. We mainly distinguish between input/output attributes, assignment attributes, and
time attributes (cf. Section 6.3.1). In the following, we address modifications applied in

the context of each of these three types of attributes.

6.4.4.1 The Dynamic Insertion/Setting/Updating of Input Attributes

It could happen that the definition of a workflow model is not complete [Sad99]. In this
case, workflow activities could be identified, but only elementary descriptions would be
given. We use the terms “partial” or “just in time” execution [KBB98] where the defini-
tion of the workflow is not completed until the information becomes available (before it
is required). This information may be used to set or update the value of an already de-
fined activity attribute or to define and insert a new attribute for a specific activity not
reached yet. In a combined negotiation importing process for instance, when a company
begins negotiating with the supplier(s), it is still not necessary to know details regarding
the “Insurance” negotiation activity. These details may come later and they may trigger

the insertion of new activity attributes such as the “kind of insurance”.

143

In current WiMSs, the workflow modeller chooses where the values for activity instance
attributes are to be obtained. Though most WfMSs run-time API provides a function to
“dynamically” set activity attributes during run-time, an attribute value can still only be

930

obtained from a so called “input container’™ (1) set with a default value, (2) provided

when an activity instance is started or (3) linked to an output container.

This restriction regarding “when” an input container is set should be relaxed. In all
cases, since the function allowing to set activity attributes is provided by most APIs, the
functionality allowing activity attributes to be set/updated “anytime” at run-time can be

implemented in a specific workflow client related to a specific application.

An advanced issue is however to allow the insertion of a new attribute to an activity in a
running state. We refer to the dynamism at the activity level rather than at the workflow
level. The deletion of an activity in a running state by preserving its context (Section
6.4.2.1) may remedy the insertion of a new attribute to an activity in a running state. In-
deed, the running activity to which a new attribute is to be inserted is deleted by preserv-
ing the work already done. A new activity comprising the remaining work from the de-
leted activity is inserted. The new attribute will be defined within this activity before its

msertion.

A motivation behind the insertion of a new attribute to a running activity stems from the
e-negotiation domain. Indeed, sometimes the negotiation rules change during the nego-
tiation process. This is known as a “multi-stage” negotiation. MOAI LiveExchange
[Moai04] and Inspire [Int04] are two examples of auction/bargaining systems that sup-
port multi-stage negotiations [NBB+03]. In MOAI LiveExchange, trade terms may be
settled many times during negotiation and in Inspire, an agent participating in a negotia-
tion may decide to negotiate a new issue that will be added to the already existing issues.

In both systems, a new term/condition may appear in the (e-)contract.

In CONSENSUS, to support multi-stage negotiations, mainly to secure contracts in B2B

negotiations, it should be possible to dynamically insert new attributes to e-negotiation

¢ A container is defined as a data element.

144

activities while these activities are already in a running state. Indeed, the process of
drawing up a contract consists of negotiating a number of terms and conditions. The
(two) parties should agree upon these terms and conditions by negotiating them. In this
context, a new stage of negotiation is entered when a new term/condition is “dynami-
cally” introduced for negotiation. Here is an example of a scenario that can occur in a
goods importing process. A company A sells cars and a company B is considering pur-
chasing. A number of issues (e.g., price, warranty) are negotiated between A and B.
While negotiating, a new issue (e.g., cars shipment) may appear of interest for the buy-

ing company to negotiate.

6.4.4.2 The Dynamic Deletion of Input/Output Attributes

The need for the “dynamic deletion of an activity attribute” functionality was motivated
from studying the “Combined Negotiation” case. Indeed, dependent attributes may eas-
ily appear in CNs. When modelling the CN workflow, a “carry out deals” task for in-
stance usually takes as input attributes such as the “final price” of each item that is
planned to be negotiated within the workflow. Suppose that during run-time, a specific
negotiation task N for a specific item I has to be deleted. Since N produces the “final

price” attribute that is consumed by the “carry out deals” task, N cannot be deleted.

A first possible solution is to remove the consuming task (e.g., the “carry out deals”
task), to insert a new one with the appropriate attributes (i.e., without the input attribute:
“final price” of I), and finally to delete N. Another straightforward solution is to delete
the input attribute from the consuming task(s). This removes the “parameter unsupplied”
problem that appears when trying to delete N during the pre-deletion step, i.e., the data

dependency verification step, and N can then be deleted.

In the example we have just presented, we experimented the need to delete a specific
activity input attribute and this was necessary for an activity deletion purpose. The se-
mantic verification apart, the input attribute deletion operation does not require consis-
tency verifications. At the semantic level, we must ensure for instance that the input at-

tributes are not used by a specific code/program, etc.

145

However, the deletion operation of an activity output attribute should be handled with
caution. It can be comparable to an activity deletion; the same data dependency verifica-
tion should be applied. Note that in our case studies, we did not experiment the need to
delete an output attribute. Examples can be found in case studies stemming from the
medical domain. E.g., a specific activity may no more provide a specified output attrib-

ute. The latter should be removed.

6.4.4.3 The Dynamic (Re-)Assignment of Activities to a Participant

This should be done to a valid workflow participant. [KBB98] evokes the late binding of
resources. Verifications regarding inconsistent actor dependencies should be made.
These verifications are already an issue at the design level and should be considered dur-
ing run-time. The re-assignment during run-time is allowed by most WfMSs. Usually, a
“task reassign permission” should be set on, and the reassignment is possible once the
activity appears in the work-list of a specific user. A relaxation of this functionality al-
lowing the activity reassignment anytime before its execution is an issue. Most APIs
provide the appropriate function. It is only a matter of properly implementing this func-

tionality in a specific workflow client.

A sophisticated issue is related to the modification of the organizational model during

run-time. This requires an on-the-fly verification of the workflow assignments.

6.4.4.4 The Dynamic Setting/Updating of Time Attributes

The setting of time attributes during the design phase should already call for verifica-
tions regarding time inconsistencies. As examples, the maximum time distance between
two activities should not be exceeded; the minimum time distance should not have harm-
ful effects on subsequent activities. These verifications should be considered again dur-

ing run-time.

In current WIMSs, the activity duration can be set/updated during run-time. However,
the updating of the activity starting/finishing time is still an issue to be considered. In-
deed, the starting time and the finishing time are defined via conditions. Since condi-
tions, once they are specified during build-time, cannot be modified anymore, modifying

time during run-time becomes very complicated.

146

The dynamic setting/updating of time attributes has also an effect on the resource man-
agement. A resource that has already been reserved for a specific activity may become

available for another activity waiting for it.

6.4.5 The Dynamic Management of Work-lists

The reassignment or the deletion of an activity already assigned to a specific work-list
should be complemented by correctly managing the underlying work-lists. Following a
reassignment, the work-item that corresponds to the reassigned activity should be re-
moved from its original work-list and it should appear in the appropriate work-list taking
into account the new assignment (if not null). The work-item that corresponds to a de-
leted activity should be removed from its work-list. The updating of an activity input
attribute or time attribute should be complemented by a correct updating of the informa-

tion provided by the work-lists.

The dynamic management of work-lists should be done when implementing a specific
workflow client related to a specific application. However, the WfMS API should al-

ready provide the functions allowing the implementation of this management.

6.4.6 The Automatic/Manual Modification of Workflow Instances

Dynamic modifications can be manually applied to workflow instances (human in the
loop). The functionality discussed in Sections 6.4.1 to 6.4.4 should be provided from the
workflow client, e.g., a workflow monitoring and control tool, so that specific users can
be granted the permission to manually bring modifications on workflow instances. On
the other hand, some applications may require automatic modifications. The MTCT ap-
plication is such an example. In fact, the MTCT system is a reactive system that reacts to
specific optimization model solutions by bringing the appropriate modifications to the

pool of workflow instances.

The automation level of modifications at run-time characterized by the “automatic” and
the “manual” modification is considered as a property for a specific application. This

property can be fixed within the template classification (Section 6.3.2).

T,

147

We think that a WIMS should facilitate the integration of a tool, e.g., a rule-processor,

for the application of automatic modifications.
6.5 Conclusion

In this chapter, we have (1) motivated the need to review some of the already existing
workflow concepts and functionality, and (2) discussed original workflow concepts and

functionality to better support complex application characteristics.

Taking into account what current WfMSs provide, specifically ADEPT, a workaround
solution was necessary to deal with most of the identified requirements. Even when a
direct solution was apparently available, that solution had to be reviewed, leading most

of the time to a workaround solution.

At the implementation level, we distinguish between (1) what the API of a specific
WIMS allows to implement, and (2) what a workflow client provided by that WIMS of-
fers as functionality. We have asked ourselves the following question: “the challenge
today is it to provide a complete API and to allow the access to all the features from the
provided workflow client?” When a workflow-based system is to be implemented for a
specific application, a customized workflow monitoring and control tool is most of the

time implemented. From this perspective, a complete API is indeed sufficient.

Only one of the identified functionalities has been formally and deeply studied: the inter-
ruption of an activity execution while preserving its context. Similarly, we intend in fu-
ture work to further investigate some of the workaround solutions discussed. Theoretical
foundations shall be elaborated mainly for the warm-up time concept, and for the func-
tionality allowing one to dynamically insert a block of activities and to dynamically

move an activity.

Chapter 7 The MTCT System

In the context of the MTCT application studied in Section 4.3, the processing of cus-
tomer requests for container transportation is achieved by specific sequences of interde-
pendent activities. These sequences need to be created just-in-time, and furthermore,
they need to be adapted to deal with unexpected events that may occur. The creation and
the adaptation of activity sequences should be based on an optimized resource manage-
ment and activity scheduling. Moreover, a number of special workflow concepts and

functionality are required to correctly manage activity sequences.

Taking into account the adaptive workflow framework introduced in Section 5.3, in this
chapter, we device a workflow-oriented system architecture for the processing of cus-

tomer requests for container transportation:

¢ Optimization models are involved to take care of the resource management and
of activity scheduling.

e Specific workflow concepts and functionality are used to deal with activity se-
quence creation and adaptation.

e Finally, the proposed architecture includes a rule processing part to reduce the

time-consuming manual interaction with the system.

In the following, we first describe the transportation system framework that we devel-
oped (Section 7.1). Then, the architecture of the MTCT system is presented (Section
7.2). This architecture is based on workflow technology, optimization technology, and
rule engines. Section 7.3 gives examples regarding the planning and the modification of
the processing of a customer request that illustrates the use and the characteristics of the
developed architecture. Section 7.4 reports on the implementation of the MTCT system.

Section 7.5 concludes the chapter by exposing a set of useful new workflow concepts

149

and functionality derived from studying the MTCT application, and from developing the
MTCT system.

7.1 The Transportation System Framework

We introduce an original transportation system framework adapted to the MTCT appli-
cation [BBK+02b]. This framework is conceptually divided into two main layers: a

workflow layer and a coordination layer. Refer to Figure 7.1.

Data information and

)] Instantiations, change orders
control flow information

Logistics
(Optimization algorithms)

Resource
scheduling

"‘) Coordination
layer

< Management _ QOptimization
of resources engine

Figure 7.1. Transportation System Framework

The workflow layer essentially gathers a set of concurrently running workflow instances,
each of them being associated with a specific customer request. Knowing that a work-
flow instance is composed of a sequence of activities, and that the state of these activi-
ties is known at any time, it is hence possible to determine the set of used resources such
as vehicles, containers, and drivers. Since we are dealing with activities to be achieved
by humans, the dispatching of the appropriate crews at the appropriate time plays an im-
portant role. We take advantage of the work-list concept to ensure this task. Crews have
their personal work-list to quickly identify their assigned activities. It should also be

possible for crews to transmit feedbacks to the coordination layer about the state of their

150

ongoing activities (e.g., normal termination, abnormal termination due to technical prob-

lems).

The coordination layer is responsible for a certain number of tasks that ensure the effi-
cient allocation of resources. It is responsible for receiving the new requests, for asking
the workflow layer to instantiate new workflow instances, and for reacting accordingly
to unexpected events by sending modification orders to the workflow layer. In brief, the
coordination layer gathers a set of optimization algorithms that are used for the man-

agement of resources and for the scheduling of activities.

Following the occurrence and reception of unexpected events, the coordination layer is
able to notify the workflow layer that the pool of workflow instances needs to be modi-
fied. These notifications are of four types: instantiation notifications, suspension and
postpone notifications, attribute updating notifications, and structural modification noti-
fications. Note that unexpected events do not act directly on the pool of workflow in-
stances. Instead, they trigger resource management algorithms, and results generated by
these algorithms are translated into appropriate changes of the pool. These results lead to
various actions such as the (re-)scheduling of activities, and the (re-)allocation of re-

sources. Refer to Figure 7.2.

(Re-)scheduling,

Resource man-

_Trigger+ agement a|go- —PI’OdUCS—» (re—)allocation
rithms orders
Instantiate/change

Figure 7.2. Different Steps from the Detection of an Event till the Instantiation/Change
of Workflow Instances

The instantiation is usually followed by the setting of activities’ attributes. In fact, the
arrival of a new customer request instantiates a basic workflow model, and attributes re-
lated to the activities are determined based on the results provided by the triggered re-

source management algorithms. The information related to a customer request, e.g.,

151

pickup/delivery time/location, is given as input to these algorithms. It is possible that the
resulting instance is not fully predefined; typically this occurs when some activities’ at-
tributes are not set from the beginning because of their unavailability. We propose to
just-in-time set these attributes as soon as the needed values become available. It has to

be ensured that the necessary values are available when they are required.

The transportation system framework presented in this section calls for an (automatic)
interaction between the two defined layers. The development of a system based on this
framework may be considered as an enterprise application integration (EAI) problem.
The three main issues that should be addressed are the workflow management, the re-
source management, and the interaction management. The first two kinds of manage-
ment are associated with the workflow layer and the coordination layer, respectively.
The interaction management takes care of the exchanges between both layers. An auto-

matic interaction may for instance be based on a rule processing approach.
7.2 Architecture of the MTCT System

Taking into account the framework presented in Section 7.1, we propose in this section a
workflow-oriented system architecture applied for the MTCT application (Figure 7.3).
This system — that we call the MTCT system — enables the user, i.e., system administra-
tor, to efficiently track and monitor the progress of multiple customer requests being
processed. Moreover, the system allows crew members, i.e., drivers, to identify at the
right time their assigned activities and to transmit to the system administrator the state of

each activity from its selection to its completion.

In the following, we first describe the different components of the MTCT system (Sec-
tion 7.2.1). Then, an overview of its underlying management mechanisms is given (Sec-

tion 7.2.2). Finally, a possible extension of the system is depicted (Section 7.2.3).

7.2.1 System Components

Two phases are distinguished in this system: the build-time phase and the run-time

phase. The build-time phase is executed less frequently than the run-time phase. The end

152

of the build-time phase defines the starting point for a successful run-time phase execu-

tion. The latter constitutes the daily working environment.

Workflow Repository

Resource | Workflow and Workflow Transportation

Definitions Activity Template] 100000 Network
Definitions i Repository
Specialized
Rl.lle © Ru{e Optimization
Client Engine Repository Algorithms
Workflow Engine Resource i Optimimtion
Cj fl 81 € Exrraction —)i"h‘".;lo" © Engine
y y e y Client iy

——
P = enum Tazk
2 Work-lists g
Y v —
Optimization Model
Worky 4
Resource Workflow M. o ﬂow d Event Definition | | Definition and Solution
Definition Tool{ | Definition Tool JiHiiopng o Tool Visualization Tool
- Control Tool § g
. .

\\\\\ ~. N —
~~~~~~~~~ = e
\\\\\\\\\\\ User of the ____.f-"""
""""" > MTCT System __/_..——""

Database ﬁ Input from an external system

Engine <:] Output towards an external system

User —> Read from repository (database)

O

[]

[ ] Moduk ~>  Write to repository (database)
O

©

Human resource n Module/engine “A” renders service

(e.g., driver) to module/engine “B”

<+—>  Interaction with a module

Figure 7.3. Architecture of the MTCT System

7.2.1.1 Build-time Components

During build-time, a set of activity templates is defined using the Workflow Definition

Tool. The latter is also used to design basic workflow models that capture the sequenc-



.

153

ing of the most likely required activities for the processing of a customer request. Activ-
ity templates and basic workflow models are stored in the Workflow Repository as

Workflow and Activity Template Definitions.

The Resource Definition Tool allows the definition of resources that make possible the
accomplishment of the activities. The resources are stored in the Workflow Repository
as Resource Definitions. The planned (fixed) availability of the human resources is de-
fined via workflows using the Workflow Definition Tool. This will be detailed in Sec-
tion 7.2.2.2.

Optimization models (OMs) are described with the Optimization Model Definition Tool.
These models are used to (re-)plan the processing of customer requests. Refer to Section

7.2.2.2 for details.

Modification rules (MRs) are usually defined using a rule editor (not shown in Figure
7.3 for simplicity purpose). They go into the MR Repository. Modification rules and rule

engines are discussed in Section 7.2.2.3.

The Transportation Network Repository holds information about particular locations or
depots of the transportation network as well as the durations to move between two loca-

tions. This information, once it is specified, is rarely modified.

7.2.1.2 Run-time Components

At run-time, when a new event appears, the system administrator of the MTCT system
uses the Event Definition Tool to define this event, e.g., a new request arrival, as well as
its related data. This triggers the selection of a specific OM. The Solution Provider mod-
ule takes care of this selection. As long as no solution is found, a number of OMs may
be solved. Specialized Optimization Algorithms are called by the Optimization Engine to

solve a selected OM. Three data sources are used to initialize the OM:
(1) The Event Definition Tool provides event information.

(2) The Resource Extraction Client provides data related to the current reservation

or unavailability of resources reflected by the state of our workflow instances.



154

(3) The Transportation Network Repository already as defined for the build-time
phase.

When an optimized solution is generated, it is interpreted and translated into a set of
modifications that are applied on the pool of currently running instances. The Rule Cli-
ent is responsible of automatically communicating these modifications to the Workflow
Engine. Modifying the pool of workflow instances consists in the creation of a new
workflow instance, or in the structural or attribute modification of an existing workflow
instance. The interpretation of solution implications on this pool is the task of the Rule
Engine and the MR Repository. The system administrator can also make manual modifi-
cations. Indeed, the optimized solution can be displayed to the system administrator via
the Solution Visualization Tool, so that she can take decisions regarding the modifica-
tion(s) to bring to the pool of instances. Manual modifications are communicated to the

Workflow Engine via the Workflow Monitoring and Control Tool.

The Workflow Engine is responsible of applying modifications on the pool of workflow
instances. It also executes the instances by enforcing the sequencing of the activities and
by dispatching work at the appropriate time to the appropriate human resource. Work-
lists, which are part of the Workflow Monitoring and Control Tool, are used to show
which activity needs to be carried out. Each human resource has her personal work-list

to quickly identify her assigned activities.

7.2.2 Underlying Management Mechanisms

The MTCT system architecture is based on workflow technology, optimization technol-
ogy and rule engines. Workflow management and resource management constitute the
essential part of the system. They can be complemented by a rule management part, so

that the modifications brought to the pool of workflow instances are automated.

7.2.2.1 Workflow Management

The architecture of the MTCT system is based on WfMS modules. These modules pro-
vide advanced functionality that go far beyond the basic workflow definition, workflow

execution, and workflow monitoring. Indeed, they allow for:



155

e Defining transportation resources (drivers, vehicles, containers, etc.) and their
respective initial location and availability.
e Defining specific templates for transportation activities: “attach container to ve-
hicle”, “move vehicle to location”, “load container”, etc.
e Tracking the state of the current workflow instances. This reflects the current
reservation of the different resources.
¢ (Automatically) Setting specific time attributes at run-time: the minimum and
maximum duration of an activity, its warm-up time, and its earliest and latest
starting time.
¢ (Automatically) Adjusting activity attributes at run-time:
o Rushing or postponing the execution time of a specific activity.
o Changing the driver responsible of an activity.
o Changing the location(s), the vehicle or the container assigned to an
activity.
¢ (Automatically) Bringing structural modifications to workflow instances:
o Adding a transfer to an already planned customer request processing.
o Removing or interrupting a specific activity.
® Once the execution of a workflow instance is completed, (automatically) re-
cording this instance as historical data (i.e., audit). Workflows are hence seen as
providing a way to represent a blueprint of activities so that analysis becomes
possible for the detection and for the prevention of bottlenecks at the operational

level.

7222 Resource Management

The resource management is another main part of the MTCT system. Two aspects re-
lated to resource management are discussed: the static aspect and the dynamic aspect.
The static aspect refers to the way the resources are captured within the system: their
representation, and the management of their availability. The dynamic aspect refers to

the optimized resource scheduling and allocation.



156

7.2.2.2.1 Static Resource Management

The diagram of Figure 7.4 describes the entities that are used for capturing the resource
structure and the relations between them. A resource type (e.g., vehicle) gathers a set of
resources (e.g., V101, V202). Unlike material resources, human resources (i.e., drivers)
are not continuously available but only within their own shift. The planned unavailabil-
ity (i.e., the complementary of the availability or shift) of the different drivers over a pe-
riod of time is captured by a workflow with parallel branches. Each branch of the work-
flow corresponds to a specific driver and each activity of the branch defines a period of

unavailability for this driver. Refer to Figure 7.5.

Resources can be assigned to activity instances. The tables corresponding to the dashed
part of the entity-relation diagram (Figure 7.4) are frequently updated. At a specific time,
the reservation of the different resources is deduced from the set of activity instances

where the state is different from “completed”, “‘deleted” or “skipped” (cf. Section 2.1).

belongs to is assigned to
A~ Fom === ——— =
Resource type TR YEGE )ll Reso::rce; I_((T :)— =X - _(T,: -L/icln_m_y Jr_i_sla_ngei :
0,
is available <>
0%

I Shift I

Figure 7.4. Entity-Relation Diagram for the Resource Management in the MTCT System

! [Empy 7] [McCain | _McCan | Empty [
liStart “inode || " unavaila.| '_Tunavailai ‘ { node End |
| — Watson 1 .Watson_[ —: Watson
unavaila. |unavaila unavaila

Figure 7.5. Example in ADEPT of a Planned Unavailability Workflow Instance for the
Two Drivers McCain and Watson

7.2.2.2.2 Dynamic Resource Management

The need for an optimized management of resources when (re-)planning activities in the

container transportation domain is well recognized [TCD93] and can be answered by



157

defining specific optimization models. These can be defined as a data-independent
abstraction of an optimization problem in which the aim is to find the best of all possible
solutions. Formally, the goal is to find a solution in the feasible region, i.e., the set of all
possible solutions, which has the minimum or maximum value of the objective function
[Alg00]. In our context, we use OMs to plan the processing of customer requests and to
re-plan this processing when necessary. These OMs should assign resources to activities
while satisfying the constraints of a customer request and by taking into account the
transportation network information. Our resource allocation problem is modeled as a

constraint satisfaction problem that we resolve using constraint programming [Tsa93].

When modeling our problem, we leveraged the work reported in [Tri98, WHF+95].
Suitable strategies to answer a customer request according to the different path scenarios
presented in Section 4.3.1 were developed. An example of a strategy consists of mini-
mizing the duration of a request processing, i.e., minimizing the reservation duration of a
set of resources. Taking into account this strategy, the following defines a model that
picks an available resource and schedules the different activities to answer a customer

request according to the “simple scenario”, i.e., the path P-O-D-P:

Given

- R: a set of resources of a specific type

- S = {<n, sty fty> | i=l,....m; j=1,....m; (stj, ft;) is a reservation block (start-
ing/finishing time) for r; € R}, at a specific point in time S reflects the current reser-
vation of ;€ R.

- Customer request information: origin location O, destination location D, pick-up time
window (putmin, Putmx), and delivery time window (dtmn, dtmay)

- Transportation network information: duration(Move(P-0)), duration(Move(O-D)),
duration(Move(D-P)) where P corresponds to the depot

- Durations of specific operations: duration(Load), duration(Unload)

Objective function
Z = duration(Waiting_time(0)) + duration(Waiting_time(D)) + ¢
c is a constant: ¢ = duration(Move(P-O)) + duration(Load) + duration(Move(O-D)) +
duration(Unload) + duration(Move(D-P))
Z corresponds to the duration of the request processing.

Optimization

Minimize Z
Subject to the following constraints (where t* corresponds to the leaving time at P):
(Cl) £+ duration(Move(P-0)) + duration(Waiting_time(0)) = put,y;,



158

(C2) o+ duration(Move(P-0)) + duration(Waiting_time(0)) +
duration(Load) < put,,
(C3)t + duration(Move(P-0)) + duration(Waiting_time(O)) +
duration(Load) + duration(Move(O-D)) +
) duration(Waiting_time(D)) 2 dt,n
(C4) t + duration(Move(P-0)) + duration(Waiting_time(0)) +
duration(Load) + duration(Move(O-D)) +
duration(Waiting_time(D)) + duration(Unload) < dt 4.
(C5)Y <r, st; ft> € Swherere R, t >fijvt +Z<st
When selecting a specific OM, the Solution Provider module provides to the Optimiza-
tion Engine the necessary data to solve this model (i.e., the “given statements”). Once a
solution is returned from the Optimization Engine to the Solution Provider, the latter

passes it over to the Rule Processing part of the system.

7.2.2.3 Rule Management

In the architecture of the MTCT system, we use rule engines to represent and exploit
modification rules. A rule such as: “If a new request arrives, and if a solution is found
when a specific optimization model is solved, and if a specific basic workflow model has
already been defined, and if a workflow instance manager exists, then a new workflow
instance related to the newly arrived request is instantiated from the basic workflow
model” can be nicely coded as a declarative statement [MBO00]. The rules can be coded
as standalone atomic units, separate from and independent of the rest of the application
logic. This makes the rules easier to develop and maintain. In the following, we describe

the design and the implementation of modification rules.

7.2.2.3.1 Designing Modification Rules

At the design level, we use UML state diagrams to model modification rules and to spec-
ify the different states as well as the transitions between these states. One state diagram
gathers rules logically interrelated. As an example, there exists a set of rules that should
be applied so that a created workflow instance becomes ready to execute. The
“Event[Condition]/Action” paradigm is applied to represent modification rules; it allows
to shift from one state to another state. An example of such state diagram is depicted in
Figure 7.6. For simplicity purpose, an English-like syntax has been used to define

“Event[Condition}/Action” statements. This example has been developed in a standalone



159

fashion, not considering inputs from optimization models previously described. It pre-
sents the different states in which a workflow instance is involved from the adjustment
of its structure till the assignment of its attributes. This state diagram provides a possibil-
ity to modify a workflow instance just after its creation taking into account the state of

the different resources:

(1) The creation of a workflow instance is triggered by the arrival of a customer

request; the condition “request accepted” should hold.

(2) The location of the different resources is verified, and the structure of the
workflow instance is adjusted consequently. It is verified for instance if an
empty container, a vehicle, and a driver are already available at the request’s
origin location at pick-up time. In this case, the two activities “attach container

to vehicle” and “move vehicle to origin location” are deleted.

(3) The possibility to transfer a container from one location to another before de-
livering it to the final destination is verified, and the initial P-O-D-P path is
completed with intermediate locations. Basically, “move vehicle to location”
activities are inserted between the activity “load container at origin” and the
activity “move vehicle to destination”. The number of such inserted activities
depends on the number of transfers. In this example, a maximum of three
transfers is modeled. The insertion of more than one “move vehicle to loca-

tion” activity corresponds to the insertion of a sub-workflow.

(4) The change of vehicle on an intermediate location is verified, and a “detach
container from vehicle” activity and an “attach container to vehicle” activity
are inserted between two “move vehicle to location” activities. This is done by
inserting a “detach-attach” sub-workflow. In parallel, activity’s attributes are

assigned as soon as they become available.

(5) The end state is reached once all activities’ attributes are assigned.



”

160

- Arrival of a customer request

[Request accepted]
/Creation of a workflow instance

[Adjusting workflow instance]

S
N,
N
N

[Empty container and vehicle
/Insert activity “Move vehicle
“Attach container to vehicle”

4
’
’
4

[Empty container ang

\

N\
not availableat the same
o location of empty contginer” between activity “Start” and activity

vehicle ava{lable at the 9

h

[Empty

ocation]

ame location]

\,

N\

N\
N . . . . .
container and vehicle exist at origin location

at pickjup time]
/Delete|activities “Attach container to vehicle” and
“Move |vehicle to origin location”

[ Completing path

)

[No intermediate location] ™~

E
-

[One intermediate logation] .~~~

/Insert activity “Mov¢ vehicle to iftermediate !
tween “Load containgr” and “Move vehicle to

[Two o
/Insert

ocation” be-
estination”

more intermediate locations]
ub-workflow “n-transit” between “Load

container” and “Move vehicle to destination”

—

Assigning attributes

N

Adtivity’s attribute becomes available
/Assignment of activity’s attribute

[Destination location of activity “Move vehjcle to location” (A) corresponds to the origin location of
its successor activity “Move vehicle to location” (B) AND vehicle used in A is different from vehicle

used in B]
/Insert sub-workflow “Detach_attach” bet

~

- [For every activity, its state is “Deleted” or all its

en A and B

attributes are assigned]

Figure 7.6. Workflow Instance Creation and Adaptation Following a Request Arrival —
State Diagram



161

7.2.2.3.2 Implementing Modification Rules

At the implementation level, we use rule engines to write our modification rules. In fact,
a rule engine usually includes a special language for writing rules. It is defined as a
software component designed to evaluate and execute rules [MBO0O]. Rule engines have
already been applied for dynamic modification of workflows [MR99]. This approach
intends (1) to detect semantic exceptions, (2) to derive which instances and control flow
areas are affected, and (3) to automatically adjust the affected areas. In the MTCT sys-
tem, we only experimented with the automatic workflow instantiation and the automatic
attributes setting; however, the automatic structural modification of instances can take

advantage of the approach proposed in [MR99].

7.2.3 Interface of the MTCT System to External Systems

The MTCT system provides an input point from an external system through the Event
Definition Tool, and an output point towards an external system through the Workflow
Engine. A simulation system, such as ARENA [KSS02], is an example of an external

system that can be used to evaluate the performance of the MTCT system.

On the one hand. the different manual activities of concurrently running workflow in-
stances can be simulated. Particularly, resources are represented using specific icons
(Figure 7.7), and the different states of the activities are simulated. As an example, icons
that correspond to resources assigned to activities in a “running” state are animated. Ac-

tivities’ states are communicated to the simulation system via the Workflow Engine.

On the other hand, once an activity is completed at the simulation side, this information
is communicated to the MTCT system via the Event Definition Tool. The activity’s state
can now turn to “completed”. Unexpected events can also be simulated and communi-
cated to the MTCT system. For instance, a traffic problem can be simulated as discon-

tinuing a vehicle in movement.

We identified two main challenges in integrating a simulation system with the MTCT
system. First, the simulation system needs to be synchronized with the MTCT system. In
systems such as ARENA, an extension called ARENA Real Time provides this feature

of synchronization. Second, the simulation in the same simulation environment of many



162

activities executed in parallel is a must. This is possible for instance if many flowcharts

at the simulation side can be launched in parallel.

I Trois-Rivieres | 5 = Québec
T 7
]
,//
/
5
< |
g 4 —, Drummondville I
OO 4——-——' | \\ T
i 6
Montréal

I Sherbrooke I

Resources

Locations

Vehicles

-

Containers

@ =
B =

Drivers

© O

Figure 7.7. A Transportation Network Representation: Resources Represented as Icons
in a Simulation Environment

7.3 Planning and Modifying the Processing of

Customer Requests - Examples

We illustrate here the different steps for satisfying a customer request within the MTCT

system. The example already discussed in Section 4.3.2.1 is considered again here.

When a request is received, the system administrator uses a “request information” form

(Figure 7.8) provided by the Event Definition Tool to specify the related information.

This information, the availability of the resources and the transportation network infor-

mation are used to generate a solution.

If a solution is found (as in our case), the system administrator uses the Workflow Moni-

toring and Control Tool to instantiate a basic workflow model and to adjust this model

taking into account the solution shown in Figure 7.8, i.e., to delete the “wait at O™ activ-

ity since the solution does not show a waiting time at O. If no solution is found, the cus-

tomer request in rejected.



163

Roguest information

Origin (pickup location) !Quebec |

D "2 ) [Montreal |

Earliest Pickup Time [1 5/10/03 0830 l Earliest Delivery Time I1 5/10/,03 13.30 |

Latest Pickup Timeae |1 510503 10 30 i Lalest Detivery Thime I1 5510503 15:00 }
oK | [ cances

Solution found...
Contalner C111 Duration in minute

Driver vwatson /sVvV202
Attach container (Parking) attime vwed Oct15 08 10 00 EDT 2003

Parking - leaving time: vWed Oct 15 08:15.00 EDT 2003 <=<105>>

Origin - arrival time: vwWed Oct 15 10.00 00 EDT 2003
Load container (Origin) =<30»>
Origin - leaving time: vWed Oct 15 10 30 00 EDT 2003 ==<165>>

Oestination - arrival time vWed Oct15 13 3000 EDT 2003
Unload container (Destination): ==30==
Destination - feaving time. vwed Oct 15 14:00 00 EDT 2003 <=75==

Parking - arrival time vwWed Oc¢t15 1516 00 EDT 2003

wwaliting time before delivery. 15 minutes

Figure 7.8. “Request Information” Form

Two types of edges are used in our workflow model: the control edges and the time
edges. The used WIMS prototype ADEPT does not allow the specification of a fix cal-
endar date for the activities’ starting time. We use instead the “time edge” concept and
define a minimum and a maximum distance between the “start” activity (S) and each of
the other activities (A). The earliest and the latest starting time of (A) are specified tak-
ing into account the real starting time of (S). Once the execution of (S) is completed, its
real starting time STs becomes known. The minimum distance and the maximum dis-
tance of the “time edge” between (S) and (A) are respectively equal to ESTA-STs and
LSTA-STs.

The system administrator launches (S) to specify the five following output attributes (cf.
Figure 7.8): the customer request origin location (Quebec), the customer request destina-
tion location (Montreal), the central depot of our transportation network, and the con-
tainer and vehicle IDs shown in the solution (C111 and V202). These attributes are

given as input to the different activities of the workflow instance. The other elements of



164

the solution (e.g., driver, starting time/duration of the activities) are used to set the as-

signment attribute and the time attributes for each activity.

The set of steps just accomplished by the system administrator: workflow instantiation,
activity deletion, execution of (S) and attributes setting, can be automated so that time-
consuming manual interactions with the system are reduced. For that reason, we need
modification rules such as the one shown in Figure 7.9 in the ILOG JRules [JRules04]
notation. Rules have a “WHEN part” which specifies the conditions that must be met in
order for the “THEN part” to be executed. The rule in Figure 7.9 applies to a workflow
instantiation. Four class instances are involved in this rule: RequestInformation and Op-
timisationModel are classes from our implemented application; ProcessTemplate and

ProcessInstanceManager are classes provided by the ADEPT API.

& JRules Bullder - AutomaticModifications® - i F T =10} x|
Fle Edt View Project Ruleset Debug About
D -1 2X 4G 3dnx PORBBBEGEBREO 4. (=2 x 9 ol i
e - x x
(B Mtct Barket |, Hule Nane ¢ Pooity F
9 S AutomaticModifications | w || Instantiation | default =
' AtinSett =] :
1 AftributesSetting WHEN
Inst | there 1s a Requestinformation called 71
Instantiation | there 1s a OptimisationModel called om
| suchinat OM_ID = 1
| and SolutionFeund = frue
there1s a ProcessTemplate called ?pt
such that PT_Name compareTo{'Simple”) = 0
there s a ProcessinstanceManager called ?pim
THEN
apply 7pim
so that assert (crealeProcessinstance(?pt, ?n Request_(D, “STANDARD", "Admimistrator))
H et -
il | Documentatian
If a new request arrives (with all the retated information),
I and if a solution is found when a specific i model (i.e., Opti ion Model #1) is solved,
| |} and if a basic process template has already been defined,
and if a process instance manager exists,
| then a new process instance related to the newly arrived request is instantiated from the basic process template (it is
also asserted to the context)
Rulasets Classes | Engines | Instantiation *
Messages| - T =

Figure 7.9. A Maodification Rule of the Pool of Workflow Instances

Another interesting example of a modification rule addresses the handling of a road traf-
fic problem. Suppose that during the execution of a “move vehicle to destination” activ-
ity, a road traffic problem occurs. To cope with this problem, a new transportation solu-
tion that consists of changing the already planned route leading to the destination loca-

tion may be proposed. The new solution includes a detour via another location. How-



165

ever, this solution can be considered only if the activity has been safely interrupted. This
example has already been discussed in the context of the studied “activity execution in-
terruption” functionality (cf. Section 6.4.2.1.2, Figure 6.15). The following rule captures

the just exposed reasoning;:

If a road traffic problem occurs (with all
the related information)

and if the “move vehicle” activity has been
safely interrupted

and if a solution is found when a specific
optimization model (i.e., change_route
optimization model) is solved

then two “move vehicle” activities are
inserted to the workflow instance related
to the request in question

7.4 Implementation of the MTCT System

The implementation of the MTCT system includes a WfMS (ADEPT with an API exten-

sion), an optimization system, and a rule processing system.

We use the ADEPT prototype to cover the workflow management part of the system.
Besides the selection criteria already stated in Section 5.2.1, ADEPT has been adopted
because it supports in a certain way the “activity template” concept, some temporal as-
pects, except the WUT (introduced in Chapter 4, Table 4.1, and discussed in Chapter 6,

Section 6.3.3.3), and two structural changes: the insertion and the deletion of an activity.

A Mediator component that extends the existing ADEPT API was implemented. This
component provides functions for the dynamic setting/updating of input attributes, as-
signment attributes and time attributes, and for the dynamic management of work-lists.
Figure 7.10 shows the WfRM-compliant ADEPT structure with the added Mediator

component.



166

U ADEPTE
Interface 1 i

(Work{low API and Interchange formats)

4 A
Interface 2 I Interface 3
----------------- ) -
H Mediator ! [ nvoked Applications

_________________

y

I ADEPT Glient

Figure 7.10. The Added Mediator Component within the ADEPT Structure

We use OPL Studio from ILOG [OPL04] to define OMs that are solved using the
CPLEX optimization algorithms. Since our implementation is based on ADEPT which is
implemented in Java and which uses an Oracle relational database, the advantage of
OPL is twofold: (1) We can access its C++ API from Java code, relying upon the Java
Native Interface (JNI). So, once a model is designed, compiled and tested in OPL Stu-
dio, it can be easily solved from a Java application by interfacing with OPL. (2) We can
establish a connection to a database and initialize the model by reading the appropriate
relational tables. Having this in mind, we implemented the ADEPT Resource Extraction

Client and the Solution Provider in Java.

We have integrated ILOG JRules into our MTCT system to cover the rule management
part of the system. JRules is a rule engine that combines rule-based techniques with ob-
Ject-oriented programming. Its advantage is that it can be easily accessed from a Java
application. Hence, the Rule Client has been implemented in Java. Basically, a context is
defined in this client. It serves as an interface between the Java application and the
ILOG JRules engine. It comprises two containers: (1) a working memory which is the
place where ILOG JRules stores all the objects with which it is currently working, e.g.,
the workflow models and the workflow instances; and (2) an agenda which is the place
that stores rule instances that are ready to be fired. Note, modification rules are designed,
compiled and tested within ILOG JRules Builder before they are given as input to the
Rule Client.

In Figure 7.11, we present a screenshot of the MTCT system. The main window in (a)

shows the Workflow Monitoring and Control Tool. It provides functionality the system



167

administrator can use to modify the pool of the workflow instances. The first two win-
dows (top right) are monitoring windows and show running workflow instances: a
planned unavailability workflow instance, and one of the customer request processing
instances that is going on. The three windows at the bottom right show the current reser-
vation of the different resources. This information is automatically extracted and used by
the Solution Provider component; however, the system administrator is also able to visu-
alize it at any time. The last window here (bottom left) shows one of the possible win-
dows the system administrator can access to make manual modifications to the pool of
instances — the “Activity (re-)assignment” in this case. In fact, each time she chooses one
of the six possible operation options, the corresponding window is opened. The two
windows in (b) show the work-lists of two specific drivers. All necessary information is
available for the execution of an activity related to a request processing instance. As we
can see, activities related to a planned unavailability workflow instance are also commu-

nicated to drivers via their work-lists.

As a final note in this section, the performance of the system shall be briefly discussed.
No controlled experiments have been done; yet some qualitative information can be
given. Indeed, a performance evaluation of the system may be elaborated in terms of an-
swering questions such as “how much time does it take to generate a solution using
OMs?” and “how much time does it take to modify the pool of instances (e.g., to instan-
tiate a new workflow instance, to update/adapt already planned/instantiated ones)?” The
time to adapt a workflow instance may be defined as a function of its complexity or of
the complexity of the applied modification. Alternatively, a cost model can be consid-
ered to estimate the cost time (or resources) to introduce and enact basic adaptations.
Based on our current prototype implementation, we encountered a performance problem
that is mainly related to the continuous access to the database. In fact, some of the
ADEPT API functions that are useful in our context are not implemented yet. Conse-
quently, we sometimes had to manipulate the ADEPT database directly, especially when
implementing the Mediator component. The performance of the system would be con-
siderably enhanced if the functions of this component were inherently provided by the

WIMS (e.g., ADEPT).



168

(@
= X
e L ADE 1T Lliwed v ALETV 5 avwer 51 Mweabbotth MALT_4 ¢ H@MSTFRARIIV ) ioor 7
New instantiation EZoCIS =}
. R . [acrvaten =1
Actiity
S Actor sesigrevent
x = * [ermzor 1) S
il ’ »
e e e T R e e ey = {77 =]
Pla  Yoom View Hep v
=
i B T B =
[MTCT Move Venicie to Orign Location
I ol ! >
[B2: Nonecv e t live Grves fhpiemame =0 oonoi o - oy B[ B3]
D¢ ___DlemngTime | Finisping Teme | Drigin —_Destinetion
[Walson  2003-10-15103000  2003-10-1513 1500  Quebec Montreal |
Wats s ’ w E- 1 7 = =
ot £ Fame s e of e Wit -Jnm..]m' AL S =N e T ‘.?L._r_.._'.l_l-mﬁ‘
—— ateon | _vehicle | Starting Time Finsting Time | _Drtgin Destination |
Procass instance MTCT_R1 < ateon  [v202 2003-10-15 103000  2003-10-1513 15 00 Quebec Montreal
- Lvtcam :?35 5 s bims ok ¢ e 5 T e e e e e
Activity MTCT Waiting < jwatson (U202 Container| __ Staing Time  |___Finiohing Time. Origin
iWatson w202 ci11 2003-10-15 1030 0G 2003-10-15131500 Quebec
McCain, WHson '!\f 02 cimm 2003 10-151000.00 2003-10-15 10 30 00 Quabeac
Watson, Brien e crit 2003-10-151330.00  2003-10-15 140000  Montreal
Crow memberidriver| Muller, Watson crt1 2003 1015131500  2003-10-15 1330 00
Waizon, Bob ci11 2003-10-15 14 00:00 2003-10-1515 1500 Montreal Drummondviile
— S _C|1|_ 20034!}_‘;‘) G8 15:00 _2003 10-15 10 00.00 O — Quebec
0 weskcibet od Wnlzaim 000 Il g sl =0 P P S = i i 3 i I (o
| Activity L8T LFT | Ongin Destination | Confainar  Vehicie | Waorkfow State | :
|MTET Unavallable 2003-10-14 18 00 DO 2003-10-16 08 00 00 MTCT U RUNNING | Finisn
| Ac ety i L8T =TS | Origin | De stion Cortainer | Venicio nidfierw | Blate 5
MTCT Unavailable 2003-10-1518 0000 2003 10-17 08 00 00 MTCT U ACTIVATED Start
MTCT Move Vehicie to Origin Location 2003-10-15 061500 2003-10-1510G0 00 Drummonaville Quabec  C111 V102 MTCT_R1 ACTIVATED

Figure 7.11. Screenshot of the MTCT System Version 0.1. (a) The Environment of the
System Administrator, (b) The Environment of the Drivers

7.5 Conclusion

The experience and insights acquired with the realization of the MTCT system reach be-

yond this system in at least two ways:

First, many of the characteristics identified in the MTCT application can be identified as
well in other applications. Hence, we may anticipate that the architecture described in
this chapter can be adapted to other transportation applications. Local express-mail ser-
vices and dial-a-ride services are examples of applications where the planning of activi-
ties can be solved as a Pick-up and Delivery Problem. Moreover, production systems in
which assembly lines are involved could take advantage of this architecture. Indeed, in
such systems, the management of limited shared resources and the management of proc-
esses are interrelated. On the one hand, the availability of resources may influence the
activities scheduling within a process. On the other hand, planned processes reflect the

reservation of resources.



169

Second, the complex MTCT application appeared to be well chosen because it allowed

us to identify an interesting set of new requirements for enhanced workflow technology.

The ADEPT prototype WfMS used supports some of the investigated concepts and dy-
namic modifications required at the workflow instance level. Its flexibility helped in de-
veloping the MTCT system, yet its API had to be enriched with useful functionality, and
workaround solutions were required to properly cope with the definition of a workflow
model and with the (dynamic) management of instances. However, the implementation
of the different system components would be considerably simplified and, as stated at
the end of Section 7.4, the performance of the system would be substantially enhanced if
these workflow concepts and functionality were inherently provided by the WIMS (e.g.,
ADEPT).



Chapter 8 Extension of the Specification of the
Workflow Reference Model

Workflow-based systems usually require the implementation of specific workflow client
applications. Examples are the Workflow Monitoring and Control Tool implemented in
the context of both the CONSENSUS and the MTCT systems, as well as the Rule Client
and the Resource Extraction Client within the MTCT system. Moreover, applications
implemented as workflow-based systems require specific workflow concepts to accom-
modate specific needs. Examples include the activity template concept introducing a
standard way for defining activities in the context of one application, and the warm-up
time concept allowing humans to be informed at the right moment about upcoming ac-
tivities in the process. A prerequisite to let required functionality be correctly imple-
mented within workflow client applications is to provide an appropriate workflow appli-
cation programming interface (WAPI). This API should contain all the necessary func-
tions allowing one to handle the workflow concepts and functionality required by the

studied application.

In Chapter 6, we built up a list of such concepts and functionality. This list was moti-
vated by the study of two complex applications. To precisely define the corresponding
functions, we rely on an existing workflow API namely the established W{RM

[WIMC95] of the WIMC [WfMCO04] and extend it for our purposes.

In the following, a brief review of the WfRM in its current state is given (Section 8.1).
The methodology used for the extension of the model and the extension itself are then
presented and discussed in Section 8.2. The implementation related to the conceptual
extension is presented in Section 8.3. This implementation enhances the functionality of

the already existing WIMS ADEPT. Section 8.4 discusses and concludes the chapter.



171

Details regarding the extension of the WfRM conceptual specification are given in Ap-
pendix A. The extended specification is presented using the WfMC-description ap-
proach. This approach consists of defining the operations under their related interfaces.
In addition, we provide three levels of details in Appendix A: a compressed summary, a
detailed summary, and a detailed description of the extension. The detailed description
groups the different operations under the functionality they allow. A UML specification
of interfaces may be given instead. We opted, however, for the WfMC-description ap-
proach because we want to address the workflow community in the first place; a UML-

description should be added eventually for other audiences.
8.1 Review of the Workflow Reference Model

The WIRM consists of a generic description of the structure of a WfMS, thus enabling
individual specifications to be developed within its context. At the highest level, all
W{MSs may be characterized as providing support in three functional areas [WfMC95]:
(1) the build-time functions, concerned with defining and modeling the workflow proc-
ess and its activities; (2) the run-time control functions, concerned with managing the
workflow processes in an operational environment and with sequencing the activities to
be handled as part of each process; and (3) the run-time interactions with human users
and IT applications for processing the various activity steps. At a lower level, five main
components are identified within the architecture of the WIRM [WfMC95]: (1) Process
Definition Tools, (2) Workflow Client Applications, (3) Invoked Applications, (4) Other
Workflow Enactment Services, and (5) Administration and Monitoring Tools. We intro-
duced these components in Chapter 2. They are related to a Workflow Enactment Ser-
vice, which ensures that the right activities are carried out in the right order and by the
right people or applications. This service comprises at least one engine (the core of a
WIMS, called the “workflow engine”). For the purpose of our work, we focus on the

first three components:

e Process Definition Tools — They gather mainly the build-time functions con-

cerned with modeling the workflow process and its constituent activities.



172

e Workflow Client Applications — They gather the run-time functions concerned
with interacting with users and IT applications for completing the various activi-
ties. Work-lists that identify the work-items to be carried out by a specific user
form part of this component.

e Invoked Applications — This component is responsible for the launching of

applications associated with specific tasks.

While these three components address the main features we are concerned with during
the build-time phase and the run-time phase, the two other components, that is, the
“Other Workflow Enactment Services” and the “Administration and Monitoring Tools”
components, deal with supplementary workflow features such as distributed workflows

and workflows measurement and analysis.

Ten groups of operations (i.e., API calls) support the interfaces that exist between each
of the three interesting components and the Workflow Enactment Service (Table 8.1;
groups (G1) to (G10)) [WIMC98]. The Workflow Enactment Service should not be con-
fused with the fourth component of the WfRM (Other Workflow Enactment Services).
As explained in Chapter 2, Section 2.4.1.1, the Workflow Enactment Service constitutes
the core of a WIMS. It comprises at least one workflow engine and it provides the build-
time and the run-time environments for the creation, management and execution of

workflows.

Group (G1) provides two functions that allow a specific component to connect to and to
disconnect from the workflow engine for a series of interactions. It is obvious that this

group of operations appears in each of the three component interfaces.

Groups (G2), (G3) and (G4) are exclusively assigned to Interface ! and gather a set of
functions that deals with the definition of workflow models. Group (G2) supports the
creation and the modification of a workflow process model, whereas group (G3) in-
cludes creating and deleting entities, and group (G4) allows for getting and setting the
attributes of these entities. An entity is defined as a building block for a workflow defini-
tion [WIMC99a]. An activity, a transition and a participant specification are examples of

entities. Note that an entity is always scoped by another entity.



173

Table 8.1. Groups of Operations Distributed within Interfaces 1, 2 and 3 of the WfRM

Components

Process Definition Tools
(Interface 1)
Workflow Client Applications
(Interface 2)

Invoked Applications
(Interface 3)

Groups of Operations

v

<

(Gl) Connection Functions

(G2) Process Modeling Functions

(G3) Entity Handling Functions

(G4) Entity Attribute Manipulation Functions
(GS) Process Control Functions v
(G6) Process Status Functions
(G7) Activity Control Functions
(G8) Activity Status Functions
(G9) Work-list/Work-item Handling Functions v
(G10) Administration Functions
G11) Classification Category Definition Functions v
G12) Activity Template Modeling Functions v
G13) Activity Template Attribute Manipulation Functions v

C|€]|<|<

Groups (G5) to (G10) are assigned to Interfaces 2 and 3. Group (G5) allows the creation,
the starting and the termination of a specific process instance, as well as the changing of
its operational state. Group (G6) is intended to provide a view of current process in-
stances allowing the verification of the work done, the work to be done, etc. Similarly,
groups (G7) and (G8) allow respectively for changing the operational state of activity
instances, and for providing a view at the activity instance level. We specify that groups
(G5) and (G7) deal not only with process instances and activity instances, but with their

attributes as well allowing the assignment of a specific value.

Group (G9) addresses work-items and allows for changing their states, reassigning them

to different work-lists and assigning a specific value to their attributes.



174

Finally, group (G10) provides the functionality needed to perform the administration and
maintenance of a workflow system. This includes functions that allow for aborting and

terminating process instances.
8.2 The Proposed Extension

We now present the extension made to the WfRM to support the list of workflow con-
cepts and functionality. Our methodology is best presented by a set of four questions: (1)
Is there a need for a new component and a corresponding new interface? (2) Is there a
need for a new group of operations? (3) Is there a need for new operations that will ex-
tend already existing groups of operations? (4) Which group of operations should be as-

signed to which interface to support a specific requirement?

No new components are added to the WfRM because the existing ones are defined on a
sufficiently high level allowing for an extension within their context. Indeed, when a
new concept is defined, a new group of operations is created and assigned to an existing
interface. New operations are added to an existing group of operations to extend the

functionality related to a specific existing concept.

All the new functions, data types and function error return codes that we define follow
the naming conventions of the WIMC [WfMC97]. For example, a function name is pre-
ceded by “WM” meaning “Workflow Management”, a data type name is preceded by
“WMT” meaning “Workflow Management Type” or by “WMTP” meaning “Workflow
Management Type Pointer”, and function error return codes are fully capitalized. They
also follow the traditional structure of the initial WAPI: components, interfaces, groups
of operations, etc. Like the original WAPI specification, we do not explicitly include any
requirements or provisions for process consistency. This is left up to specific implemen-
tations, and it is usually based on developed conditions ensuring the correctness of a
process; e.g., conditions specified in Criterion 6.1 ensuring the safe interruption of a

process running activity.



175

8.2.1 Extension of Interface 1 (Process Definition Tools)

The extension brought to Interface 1 introduces mainly the two concepts discussed in
Chapter 6: the activity template concept and the template classification. New data types
are defined to support these concepts at the build-time level. A total of three new groups
of operations are added: (G11), (G12), and (G13) of Table 8.1. Groups (G11) and (G12)
gather respectively operations for the creation/deletion of a classification category, and
operations for the creation/deletion of an activity template and for its assignment
to/detraction from a classification category. Since we associate attributes with an activity
template, group (G13) is also added to Interface 1. Group (G13) comprises operations
that allow (1) for inserting/deleting an input/output attribute to/from an activity template
already created, (2) for setting an input/output attribute of an activity template, (3) for
assigning a workflow participant to an activity template, and (4) for setting a time attrib-
ute of an activity template. Time attributes comprise the duration of an activity, its start-
ing/finishing time and its WUT. Absolute values for these time attributes are required.
The definition of a new group of operations, however, is necessary when dealing with
activity time attributes as a new concept. The discussion of activity temporal aspects as a

concept was given in Section 6.3.3.

One may think of considering an activity template as an entity and of using the functions
defined within the existing groups (G3) and (G4) instead of defining the new groups
(G12) and (G13). This is not possible, however, because an entity is always scooped by
another entity (cf. Section 8.1), whereas an activity template is defined as a standalone
activity, not being part of any workflow definition (cf. Section 6.3.1). Hence, the defined
functions in (G3) and (G4) require a scooping entity as an input parameter. A scooping

entity cannot be provided for an activity template.

Finally, two operations allowing the assignment/detraction of a process definition
to/from a classification category are added to the already existing group (G2) of Inter-
face 1 (cf. Table 8.1).



176

8.2.2 Extension of Interface 2 (Workflow Client Applications) and
Interface 3 (Invoked Applications)

The extension brought to Interfaces 2 and 3 is obviously related to the dynamic modifi-
cation of process instances. The WIMC specifies that some WfMSs may allow dynamic
alterations to process definitions from the run-time operational environment [WfMC95].
Since the run-time operational environment is involved within the second and third func-
tional areas (cf. Section 8.1), a WIMS supporting dynamic alterations could be seen as a
system that extends these two functional areas by a set of run-time process modification
functions that allow users to modify instances of the original model. Indeed, a Workflow
Client Application is defined as the component supporting interactions with user inter-
face desktop functions. It is responsible, together with the Invoked Applications compo-
nent, for the execution of workflow activities. Consequently, a possibility to permit the
dynamic modification of process instances is to add to the interfaces that exist between
each of these components and the Workflow Enactment Service a set of operations for
the insertion, the moving, and the deletion of a particular entity within a workflow in-

stance, and for the creation, the setting and the deletion of a particular entity attribute.

A number of operations are added to the three groups: (G5), (G7) and (G9). The opera-
tions added to group (G7) basically allow dynamic modifications that concern activity

instances (cf. Section 6.4):

e The dynamic insertion of a new activity instance

e The dynamic deletion of an activity

e The dynamic move of an activity

e The dynamic insertion/setting/updating of input attributes
e The dynamic (re-)assignment of activities to a participant

e The dynamic setting/updating of time attributes

The “insert” operation (cf. Section 6.4.1.1) takes as input, among other things, an activ-
ity instance that corresponds to the activity to be inserted. On the one hand, the activity
instance may already exist within the run-time environment. A WMGetActivitylnstance

operation, already defined within group (G6), is used so that the specific activity in-



177

stance to be inserted can be obtained. On the other hand, we may want to create an activ-
ity instance from an activity template. For this reason, an operation that allows this crea-
tion (i.e., WMCreateActivitylnstance) as well as operations that deal with the list of ac-
tivity templates (open/close the list and fetch/get activity template from the list) are also
added to group (G7).

The operations added to group (GS5) deal with process instances. They allow the dynamic
insertion of a block of activities (cf. Section 6.4.1.2), as well as the storage of the proc-
ess defmnition that corresponds to a modified process instance. Finally, one operation is
added to group (G9). It allows the deletion of a work-item from a given work-list (cf.
Section 6.4.5). Other functions related to the dynamic management of work-lists include
the reassignment of a work-item to another work-list and the update of a work-item at-
tribute. These functions are already provided by the original specification of the WIMC
[WIMCI8].

8.2.3 Discussion of Already Existing Components

As pointed out in Chapter 2, the Process Definition Tools address aspects beyond the
definition of processes. These aspects cover the classification of resources and the analy-
sis of processes. Following the same idea, the Workflow Client Applications component
should be extended to address functionality beyond the mere workflow monitoring and
control. Hence, the resources classified at build-time should be tracked during run-time,
and the workflow instances should sometimes be automatically monitored and con-

trolled.

In the MTCT system discussed in Chapter 7, the Resource Extraction Client and the
Rule Client are considered as Workflow Client Applications. Specific functions are re-
quired to deal with resources and rules, respectively. Connection functions are necessary
to connect each of the Resource Extraction Client and the Rule Client to the workflow
engine. These functions are gathered within group (Gl) (cf. Table 8.1) already provided
by the original conceptual specification. Other functions are required for the extraction

of resources:



178

e A function to extract the resources involved in a specific workflow instance or in
a specific workflow activity.
* A function to get the reservation of resources at a specific time.

e A function to get the shift of a specific resource.

Functions required in the context of the Rule Client are usually provided by the API of
the underlying rule engine (e.g., ILOG JRules used in the MTCT system). They do not
need to be supported on the WAPI side. Examples of such functions are:

e A function that gives as input a rule base to the Rule Client.

e A function that parses the rule base.

* A function that creates an execution context (which contains initially the entire
rule set).

* A function that asserts the process templates, the process instance manager, and
the attributes to the context.

e A function that fire rules in the context.
8.3 Functionality Extension of a WfMS

The implementation of specific workflow clients for the studied applications has
necessitated the implementation of the set of requirements identified in Chapter 6 and to

which no direct or workaround solutions could be found in ADEPT.

Not considering the minimal difference in the structure and interplay of functions, the
ADEPT API provides most of the functionality requested by the original specification of
the WiRM (the WAPI). Moreover, it offers additional features that correspond to some
of the functionality studied in Chapter 6: (1) the activity template concept and (2) func-

tions for structural modifications (insertion and deletion).

All new functions we implemented are collected in a Mediator component that extends
the existing ADEPT API and contributes to the current pool of available functions by
running in parallel to ADEPT (cf. Chapter 7; Figure 7.10). The ADEPT Client uses the
extended Interfaces 2 and 3 by accessing the Mediator functions as well as the original

functions in the ADEPT Server. It should be stated that this solution could not be a de-



179

finitive one; it was merely adopted for simplicity. For further genuine implementations,

the ADEPT API must be extended by modifying the source code of the system.

More details regarding the implemented functions of the Mediator component are given
below. The current state of the implementation extending ADEPT covers mainly the dy-
namic modification of activity attributes (Section 8.3.2) and the dynamic management of
work-lists (Section 8.3.3). A check for the compliance of the already supported struc-
tural modifications (the dynamic insertion and the dynamic deletion of an activity) to the
extended WIRM was successful (Section 8.3.1). A discussion of the current implementa-

tion that extends ADEPT is finally given (Section 8.3.4).

8.3.1 Structural Modifications

The WMInsertActivityInstance and the WMDeleteActivityInstance functions were there-
fore realized with a reasonable effort by calling respectively the dynamicInsert function
and the dynamicDelete function from the ADEPT API. In our conceptual specification,
an activity template must be instantiated first to obtain an activity instance that then can
be inserted. In the ADEPT API, dynamicInsert takes as a parameter the activity instance
to be inserted. We, however, do not implement the WM CreateActivityInstance function
in this context. We simply apply the workaround solution described in Section 6.4.1.1. It
consists of defining an activity template within a workflow model W such that the activ-
ity instance to be inserted can be created by instantiating W. We consciously accept this

difference between our conceptual specification and the actual implementation.

8.3.2 Activity Attributes Modification

The functions related to the dynamic modification of activity attributes that have been

implemented are the following:

o  WMAssignActivitylnstanceAttribute — This function is responsible for dynami-
cally inserting an attribute or setting/updating its value in an activity instance. In
case the attribute provided as a parameter to the function already exists, its defi-
nition is changed according to the provided parameters: attribute type and attrib-
ute length. In case the specified attribute does not exist yet, it is added to the

named activity instance. If there is a value submitted in the corresponding pa-



180

rameter of the function, it is set or updated within the attribute. For consistency
reasons some internal checks with the database are done to ensure that the in-
serted or updated values comply with the specified types (e.g., string/long).

e  WMDeleteActivitylnstanceAttribute — This function dynamically deletes an activ-
ity instance attribute. If we are dealing with an input attribute, this attribute is
simply removed from the corresponding activity instance. If, however, we are
dealing with an output attribute O, all input attributes consuming from O are de-
leted in every activity instance in the sequel to ensure consistency on a basic
level.

o WMAssignActivitylnstanceParticipants — This function dynamically sets or up-
dates the participant(s) assigned to an activity instance. According to the WIMC
standard, up to ten participants can be assigned to one activity instance
[WIMCI8].

o  WMAssignActivityInstanceDuration — This function dynamically sets or updates
the minimum or maximum duration of an activity instance. Only an absolute
value, i.e., the number of minutes, can be submitted for the duration in the corre-
sponding parameter of the function.

o  WMAssignActivitylnstanceTime — This function dynamically sets or updates the
earliest/latest starting/finishing time of an activity instance. Only an absolute
value, i.e., a fixed date, can be submitted for the time in the corresponding pa-

rameter of the function.

The WUT is not practically set/updated using the function defined within the conceptual

specification. A workaround solution has been proposed in Section 6.3.3.3.

8.3.3 Work-lists Management

The function related to the dynamic management of work-lists that has been imple-
mented is the WMDeleteWorkitem. This function dynamically deletes a work-item from
a work-list. The work-item should not be in a running state. The deletion of an activity in

a running state, studied formally in Section 6.4.2.1, has not been implemented yet.



181

8.3.4 Discussion of Current Implementation

The ADEPT API has not been designed to add new functionality such as presented
above. Consequently, it was impossible to implement our desired functions relying ex-
clusively on the ADEPT API. Sometimes, we were obliged to directly access the data-
base where ADEPT stores the workflows and their related data. Thus, we evade all con-
sistency checks within ADEPT. Although some basic measures have been taken to en-
sure consistency, there are still some leaks such that our approach cannot be considered
a complete solution that ensures correctness and consistency. Therefore, with the current
implementation, the responsibility is shifted to the user of the functions to invoke the
latter wisely. Hence, the implementation of the CONSENSUS and the MTCT workflow
clients include many verifications defined in the context of the respective applications.
These verifications are made before invoking a specific function. As an example, in the
context of the MTCT application, verifications regarding time consistencies for com-
plete transportation solutions are done by the optimization part of the MTCT system.
Such transportation solutions are reflected by specific workflow instances. The WMAs-
signActivitylnstanceDuration function (resp. the WMAssignActivityInstanceTime func-
tion), when invoked on these instances, takes the duration (resp. the time) given by the

calculated consistent solution.
8.4 Conclusion

We proposed in this chapter an extension to the WfRM specification. The reference
model nitially provides a basic architecture that can be used as a standard for the devel-
opment of a WIMS. The discussed extension mainly proposes a set of functions address-

ing the concepts and functionality studied in Chapter 6.

On the one hand, new data types are defined to support the two concepts: the workflow
template concept and the template classification. Functions for the manipulation of these

concepts are defined within new groups of operations assigned to Interface 1.

On the other hand, functions for the dynamic modification of process instances are de-
fined and distributed within existing groups of operations (Interfaces 2 and 3). These

functions mainly support the creation, the insertion, and the deletion of a particular ac-



182

tivity instance, as well as the insertion, the assignment, and the deletion of a particular
activity instance attribute during run-time at the process instance level. We highlight the
fact that the “Entity Handling Functions” group and the “Entity Attribute Manipulation
Functions” group assigned to Interface 1 gather similar functions. Indeed, the creation,
the retrieval, and the deletion of a particular entity, as well as the retrieval, the setting,
and the deletion of a particular entity attribute are possible during build-time at the proc-

ess level.

We think that the separation that is made between the operations of Interface 1 and those
of Interfaces 2 and 3 should be removed to allow the dynamic modification of process
instances. A similar argumentation is given by Han and Sheth in [HS98]. The authors
talk rather about the separation that exists between build-time and run-time in terms of
workflow models. They specify that this is a barrier to be removed to allow the adapta-

tion of workflows.

It is, however, obvious that during run-time we need to be stricter than during build-time
regarding the preservation of workflow consistency and correctness. Indeed, the opera-
tions of Interface 1 deal with the modeling of workflows. Usually, at build-time, the
consistency and correctness verifications are only checked once the workflow model is
completely defined and ready to be saved as a model to be instantiated. At run-time,
these verifications are done more frequently. Each time a modification is brought to a
workflow instance, verifications are done and the modification is forbidden, if the con-

sistency and the correctness of the model are violated.

The extension that we proposed in this chapter distinguishes between build-time and
run-time operations. It was made this way because of two reasons: first, to respect the
initial conceptual specification of the WfRM that separates the build-time and the run-
time functional areas, and second, to emphasize the differences that exist between the
build-time and the run-time phases regarding the frequency of the consistency and the

correctness verifications.



Chapter 9 Conclusion

In this chapter, we sum up and discuss our work by referring to the research objectives
and major contributions exposed in Chapter 1. Then, we detail further research issues

that need to be addressed in future work.
9.1 Summary and Discussion

Workflow technology offers little adequate support to requirements inherent to non-
trivial socio-technical systems. In this thesis, we studied two applications that call for
such systems: the combined negotiation application and the multi-transfer container
transportation application. These applications have served to investigate the needs for a
clarified and a refined set of concepts and functionalities for workflow management sys-
tems. This set was motivated, on the one hand, by the requirements of the two applica-
tions and their respective support systems towards workflow technology, and on the
other hand, by the constraints of today’s WfMSs with respect to these applications and
systems. In the following, a systematic summary of the thesis is provided and a discus-

sion of remaining issues is provided.

9.1.1 The CONSENSUS and the MTCT Applications as Drivers of
Sophisticated Requirements for Workflow Technology

The combined negotiation support system (CONSENSUS) based on a WIMS was stud-
ied in detail. This system was developed to help a user model and enact a specific kind
of e-negotiations: combined negotiations. A combined negotiation is modeled as a work-
flow that captures the sequencing of individual negotiations as well as the dependencies
among them. At run-time, software agents participate in negotiations as actors in the
workflow. It appeared that this system requires support for dynamic modifications in-

duced by unexpected events that can occur during negotiations. We realized that current



184

WiIMSs such as IBM MQ Series Workflow and BEA’s WLPI, support in a limited way
this kind of dynamism, slightly reducing the benefits of the workflow-based CONSEN-

SUS approach to e-negotiations.

Another complex socio-technical application, the multi-transfer container transportation
(MTCT) application, exhibits inherently dynamic requirements for workflows. A work-
flow-oriented system for the processing of customer requests for container transportation
was devised. This processing is achieved by specific sequences of interdependent activi-
ties that need to be created just-in-time and then (automatically) adapted to deal with un-
expected events that may occur. The creation and the adaptation of activity sequences

are based on an optimized resource management and activity scheduling.

In the first system, the integration of a WIMS (ADEPT) that supports some of the re-
quired dynamic modifications at the workflow instance level increases the benefits of the
CONSENSUS approach. In the second system, the ADEPT WfMS prototype has been
used as well. Its flexibility helped in designing the MTCT system, yet its API had to be
enriched with useful functionality, and new solutions were sometimes required to prop-
erly cope with the definition of workflow models and with the (dynamic) management

of instances.

9.1.2 The ldentification and the Accommodation of Sophisticated

Requirements for Workflow Technology

The experience and insights acquired with the realization of these two applications go
beyond the CONSENSUS and the MTCT projects in leading to the “wish list” of clari-
fied and refined workflow concepts and functionalities (cf. Chapter 6). Each of these
concepts and functionalities has been studied and corresponding solutions have been

proposed.

Indeed, direct solutions that respectively address the activity template concept and the
activity duration were possible using a state-of-the-art WIMS (ADEPT). Workaround
solutions were, however, proposed in ADEPT to support other concepts namely the tem-
plate classification, the activity starting/finishing time, and the activity warm-up time

concept:



185

The template classification is usually offered in commercial WfMSs. It is how-
ever missing in ADEPT. Saving workflow templates and activity templates with
a specific prefix remedies this lack.

In the literature, a distinction is done between dependant dates between activities
and absolute dates assigned to activities as a starting/finishing time. On the one
hand, while not supported by commercial WfMSs, dependant dates are well de-
fined in ADEPT. On the other hand, absolute dates are not support by ADEPT
although they are less complicated to deal with when compared to dependant
dates. We found a solution based on dependant dates to cover absolute dates in
ADEPT.

The warm-up time (WUT) concept is of utmost importance. To our knowledge, it
is not supported yet by any WfMS. The WUT of an activity should be known
such that early information about this activity is provided at the right time to the
right workflow participant. Preparation activities were proposed to support this
concept. Nevertheless, two noticeable shortcomings were recognized: the lack of
a just-in-time notification and the complication of the workflows. We tried to
deal with the first shortcoming by proposing an intermediate work-list with a lis-
tener process, and with the second shortcoming by suggesting to define the
preparation activities in the background of the initial workflow (i.e., the work-
flow not including preparation activities), or to separate between the initial work-

flow and the workflow that defines preparation activities.

The basic dynamic activity insertion and dynamic activity deletion functionalities are

already well discussed in the literature and direct solutions can be found in adaptive

WiMSs such as in ADEPT. A refinement of both functionality is however required in

the context of complex, yet representative, process-oriented applications:

We discussed solutions for the dynamic insertion of a new activity instance and
for the dynamic insertion of a block of activities. The activity template concept is
used to accommodate the insertion of a new activity instance. Hence, this reme-
dies the “write after write” problem encountered when an already existing activ-

ity instance is inserted within the workflow instance. The dynamic insertion of a



186

block of activities is accomplished step-by-step using the defined dynamic inser-
tion of a single activity operation. Many problems were identified to this solution
including the high number of interaction with the system and the lack of opera-
tions allowing for the insertion of decision nodes present in complex modeling
structures.

An extension of an existing formal meta-model, that is the WSN-Nets formalism,
was elaborated to support a refinement of the dynamic activity deletion function-
ality: the safe activity interruption in case of exceptional situations. This novel
functionality corresponds to the deletion of an activity in a running state. The lat-
ter was not tolerated yet in the current adaptive workflow technology. The sup-
port of this functionality appears to be, however, extremely important because
most exceptional situations occur while an activity is in progress, and adequate
solutions need to be provided in the sequel. We may talk about a forward recov-
ery. For this purpose, besides modeling logical work units as process activities,
we have introduced another level of granularity by defining the atomic step con-
cept. The latter is used to build up the basis for a two-dimensional data classifi-
cation scheme. On the one hand, the definition of the data relevance dimension,
distinguishing between exclusive application data and process relevant data, is
considered at its pure level within the safely interruption criterion conditions
statement. On the other hand, we dug deeper regarding the data update frequency
dimension by defining safe interrupt points for each of the discrete and the con-
tinuous data update by activities. This has led to the formal definition of the ac-
tivity safe point considered as the backbone for the safely interruption criterion.
Preserving this criterion, in turn, guarantees that if an activity is safely inter-
rupted all necessary data is kept and can be used to figure out an adequate solu-
tion for the respective exceptional situation.

The dynamic move of an activity was replaced by a workaround solution: insert-
ing the activity to be moved at its new position and then deleting this activity.
Incorrect data flow conflicts may be detected if we apply these two operations in

the opposite way (i.e., the deletion before the insertion). We specified that a re-



187

laxation should be done to the consistency verifications applied for the delete

operation in the context of a move operation.

The functionalities already discussed tackle workflow structural modifications. More-
over, in this thesis, we motivated and we analyzed attribute modifications, namely the

insertion and the deletion of activity attributes:

e The insertion of activity attributes on the fly is motivated by the unavailability of
the information required for the definition of these attributes at the workflow
modeling level. The activity to which an attribute is to be inserted should not be
in a running state.

e The activity attribute deletion operation is mainly required so that an activity de-
letion operation is not needlessly forbidden. A distinction is done between the
deletion of input attributes and the deletion of output attributes. The former does
not necessitate any consistency verification, while the latter requires data de-
pendency verifications comparable to ones carried out in the context of an activ-

ity deletion.

The setting and updating of (time) attributes as well as the (re-)assignment of activities
to participants at the workflow execution level were addressed. The issue of properly
implementing these functionalities in a specific workflow client was discussed. As a
consequence to the dynamic modification of attributes, the appropriate adaptation of

work-lists is considered.

Finally, it has been argued that each of the discussed functionality may require to be ap-
plied either manually or automatically to a workflow instance, and that a WIMS should

facilitate the integration of a tool for the automatic application of this functionality.

9.1.3 The Extension of the WfRM to Adequately Support Enhanced
Workflow Technology
An extension of the Workflow Reference Model (WfRM) has been proposed to accom-

modate the refined set of workflow concepts and functionality. First, we have extended

the WfRM by proposing a new overall architecture framework for adapive workflows.



188

Second, we have expanded the existing specification by defining black box functions.
The latter were either assigned to an existing group of operations or they were gathered
under new groups of operations. The extended WfRM should facilitate the implementa-
tion of original WiMSs or the review of existing WIMS versions leading to enhanced

systems.

9.1.4 Further Discussion

When studying a specific functionality, we realized that novel workflow concepts must
emerge. Indeed, the definition of the atomic step concept was essential to formally spec-
ify the criterion behind the safe activity interruption functionality. It is, hence, important
to keep in mind that novel workflow concepts may be discovered not only when apply-
ing the direct approach of studying a specific application, but also indirectly from deeply

addressing a required workflow functionality.

We think that state-of-the-art WfMSs should provide innovative workflow concepts and
functionality but without forgetting about basic ones. In spite of the fact that ADEPT
covers interesting workflow concepts (activity template, time edges, etc.) and it provides
advanced functionality (the dynamic activity insertion and deletion), we observed that it
lacks to offer some of the basic WfMSs features such as the template classification and
the support of absolute dates. Unfortunately, though simple, these features are desirable

for the development of many workflow-based applications.
9.2 Research Perspectives

We are firmly convinced that the following stimulating problems need to be formally

addressed. The results should then be implemented within a powerful workflow engine:

e Various research groups have already formally studied the consistency verifica-
tions related to basic workflow structural modifications: the insertion and the de-
letion operations. This is done based on specific formalisms such as the WSM-
Nets formalism. This formalism or a similar one should be used as a basis to
formally specify the criteria for a correct application of the refined structural

modification functionality that were identified and informally addressed within



189

this thesis: the insertion of a new activity instance, the insertion of a block of ac-
tivities, and the move of an activity. The safe activity interruption functionality
was already formally addressed within this thesis. There are, however, still inter-
esting questions concerning the implementation of this functionality: questions
related to modification authorization, modification analysis, and usability.

e The WUT concept should be formally studied taking into account the solutions

proposed to deal with the shortcomings of the current workaround solution.

The functions related to the dynamic modification of activity attributes that we now pro-
vide via a Mediator component running in parallel to ADEPT, need to be implemented

within the core of ADEPT.

If implemented within ADEPT, the above features may judiciously contribute to the
“Next Generation Enterprise Process Management System” project launched by the

DBIS department at University of Ulm [DBIS04].

Extended transactional issues (e.g., semantic rollback) may be studied as well. Indeed, at
the workflow modification level, only forward recoveries were addressed in this thesis.
As an example, if a problem occurs, the current activity is interrupted and a new solution
is proposed in the sequel of the workflow instance. Rolling-back issues are interesting to
be studied as well. For example, once an activity is interrupted, a backward recovery is
proposed to cope with the triggering event. A rollback (i.e., backward recovery) is spe-
cifically interesting if no safe interruption of an activity is possible. As an example, if
the interruption of the “move (1.5,3.5) = (13,8)" activity in Figure 6.15 (cf. Chapter 6)
is not safe, a solution could be to go back and (1) to return the merchandise to the origin
location, or (2) to keep the merchandise in a depot as long as no delivery solution is pos-
sible. This can be done using compensation activities. An example of a compensation
activity in the context of the combined negotiation application is “breaking the commit-
ment” of an already committed “e-negotiation” activity (cf. Chapter 4). The discussed

facilities are crucial for realizing real-world adaptive enterprise applications.

Finally, several interesting issues in the context of the MTCT system should be investi-

gated. Among these issues is the support of unexpected events such as delayed vehicles,



190

crew member desistance and technical problems. The only event supported up to now by
the MTCT system is the “arrival of a new customer request”. Another issue is the dis-
tributed work-lists that should be investigated to dispatch work on a network of several
computers, which could be located at different terminals/vehicles. Modification rules are
another important research issue. New rules that would bring structural modifications to
workflow instances should be developed. It is interesting to define more complex opti-
mization models taking into account complex path scenarios. Solutions coming from
these optimization models will potentially be translated into novel and challenging struc-
tural modifications of workflow instances. Finally, at the implementation level, the per-
formance of the MTCT system would be considerably enhanced if the functions of the

Mediator component were inherently provided by the WIMS on which the system relies.

We rigorously encourage researchers to deal with each of the above research perspec-
tives. Moreover, we encourage them to study further practical applications to discover
and to propose solutions for additional factual needs for workflow technology. We
strongly believe that the enhancement of any technology should mainly derive from

practice.



[Aal00]

[Alg00]

[AAE+96]

[AAH98]

[ABO2]

[ABE+00]

[AHO2]

[AKOO]

[AM97]

References

van der Aalst, W.M.P., Loosely Coupled Interorganizational Workflows:
Modeling and Analyzing Workflows Crossing Organizational Bounda-
ries. Information and Management, 37(2):67-75, March 2000.

Algorithms and Theory of Computation Handbook, CRC Press LLC,
1999. Appearing in the Dictionary of Computer Science, Engineering and
Technology, CRC Press LLC, 2000.

Alonso, G., Agrawal, D., El Abbadi, A., Kamath, M, Giinthor, R., and
Mohan, C., Advanced Transaction Models in Workflow Contexts. In
Proceedings of the 12" International Conference on Data Engineering
(ICDE’96), 574-581, New Orleans, LA, February 1996.

Adam, N.R., Atluri, V., and Huang, W.K., Modeling and Analysis of
Workflows using Petri Nets. Journal of Intelligent Information Systems,
10(2):131-158, March 1998.

van der Aalst, W.M.P., and Basten, T., Inheritance of Workflows: An
Approach to Tackling Problems Related to Change. Theoretical Com-
puter Science, 270(1-2):125-203, 2002.

van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., and Wainer, J.,
Workflow Modeling using Proclets. In Etzion, O. and Scheuermann, P.
(Eds.): Proceedings of the Fifth International Conference on Cooperative
Information Systems (CoopIS’00), 198-209, Eliat, Israel, September 2000.
LNCS 1901.

van der Aalst, W.M.P. and van Hee, K., Workflow Management: Models,
Methods, and Systems. The MIT Press, 368 pp., 2002. ISBN 0-262-
01189-1.

van der Aalst, W.M.P. and Kumar, A., XML Based Schema Definition
for Support of the Inter-organizational Workflow. In Proceedings of the
21" International Conference on Application and Theory of Petri Nets
(ICATPN’00) (Meeting on XML/SGML based Interchange Formats for
Petri Nets), Aarhus, Denmark, June 2000. On-line at <http://
www.daimi.au.dk/pn2000/Interchange/papers/det_01.pdf>.

Alonso, G. and Mohan, C., Workflow Management Systems: The Next
Generation of Distributed Processing Tools. In Jajodia, S. and Ker-
schberg, L. (Eds.): Advanced Transaction Models and Architectures,
Chapter 1, 35-62, Kluwer Academic Publishers, 1997.



[AMOO0]

[Bla00]

[Bla02]

[BAKOI]

[BAL+02]

[BAV+01]

[BBKO1]

[BBK+02a]

[BBK+02b]

192

Agostini, A., and De Michelis, G., Improving Flexibility of Workflow
Management Systems. In van der Aalst, W.M.P., Desel, J., and Oberweis,
A. (Eds.): Business Process Management — Models, Techniques, and Em-
pirical Studies, 218-234, LNCS 1806 Springer-Verlag, 2000.

Blake, M.B., WARP: An Agent-Based Process and Architecture for
Workflow-oriented Distributed Component Configuration. In Proceed-
ings of the 2000 International Conference on Artificial Intelligence
(ICAI’00) (Session on Software Agent-Oriented Workflow), 205-213,
Las Vegas, NV, June 2000.

Blake, M.B., An Agent-Based Cross-Organizational Workflow Architec-
ture in Support of Web Services. In Proceedings of the 11" International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’02), Pittsburgh, PA, June 2002. IEEE. On-line at
<http://www.cs.georgetown.edu/~blakeb/pubs/blake_ WETICE2002_final
pdf>.

Benyoucef, M., Alj, H., and Keller, R.K., An Infrastructure for Rule-
Driven Negotiating Software Agents, In Proceedings of the 12" Interna-
tional Workshop on Database and Expert Systems Applications
(DEXA’01), 737-741, Munich, Germany, September 2001. IEEE. Pre-
sented in 2™ e-Negotiations Workshop.

Benyoucef, M., Alj, H., Levy, K., and Keller, R.K., A Rule-driven Ap-
proach for Defining the Behavior of Negotiating Software Agents. In
Proceedings of the Fourth International Conference on Distributed
Communities on the Web (DCW’02), 165-181, Sydney, Australia, April
2002. Springer-Verlag. LNCS.

Benyoucef, M., Alj, H., Vézeau, M., and Keller, R.K., Combined Nego-
tiations in E-Commerce: Concepts and Architecture. Electronic Com-
merce Research Journal, 1(3):277-299, July 2001. Special Issue on The-
ory and Application of Electronic Market Design. Baltzer Science Pub-
lishers.

Benyoucef, M., Bassil, S., and Keller, R.K., Workflow Modeling of
Combined Negotiations in E-Commerce. In Proceedings of the Fourth In-

ternational Conference on Electronic Commerce Research (ICECR-4),
348-359, Dallas, TX, November 2001.

Bassil, S., Benyoucef, M., Keller, R.K., Kropf, P., Addressing Dynamism
in E-negotiations by Workflow Management Systems. In Proceedings of
the 13™ International Workshop on Database and Expert Systems Appli-
cations (DEXA’02), 655-659, Aix-en-Provence, France, September 2002.
IEEE. Presented in 3" e-Negotiations Workshop.

Bassil, S., Bourbeau, B., Keller, R.K., and Kropf, P., Fleet Management
and Dynamic Workflows. Technical Report GELO-152, Université de
Montréal, Canada, June 2002.



[BBK+03]

[BKKO04]

[BKL+00]

[BPELO3]

[BRK+05]

[Cra02]

[CCP+98]

[CHR+98]

[CKL+03]

[CKO92]

[CKW+04]

[CS96]

193

Bassil, S., Bourbeau, B., Keller R.K., and Kropf, P., A Dynamic Ap-
proach to Multi-transfer Container Management, In Proceedings of the
Second International Workshop on Freight Transportation and Logistics
(ODYSSEUS’03), Mondello (Palermo), Sicily, Italy, May 2003.

Bassil, S., Keller R.K., and Kropf, P., A Workflow-Oriented System Ar-
chitecture for the Management of Container Transportation, In Proceed-
ings of the Second International Conference on Business Process Man-
agement (BPM’04), 116-131, Potsdam, Germany, June 2004. LNCS
3080.

Benyoucef, M., Keller, R.K., Lamouroux, S., Robert, J., and Trussart, V.,
Towards a Generic E-Negotiation Platform, In Proceedings of the Sixth
International Conference on Re-Technologies for Information Systems,
95-109, Zurich, Switzerland, February 2000.

Business Process Execution Language for Web Services version 1.1
(2003). On-line at <http://www-128.ibm.com/developerworks/library/
specification/ws-bpel/>.

Bassil, S., Rinderle, S., Keller, R.K., Kropf, P., and Reichert, M., Preserv-
ing the Context of Interrupted Business Process Activities, In Proceed-
ings of the Seventh International Conference on Enterprise Information
Systems (ICEIS’05), Miami, FL, May 2005. To appear.

Crainic, T.G., Long-Haul Freight Transportation. In R.W. Hall (Ed.):
Handbook of Transportation Science, Second Edition, Kluwer Academic
Publishers, 2002.

Casati, F., Ceri, S., Pernici, B., and Pozzi, G., Workflow Evolution. Data
and Knowledge Engineering, 24(3):211-238, 1998.

Cichocki, A., Helal, A., Rusinkiewiez, M., and Woelk, D. (Eds.), Work-
flow and Process Automation: Concepts and Technology. Kluwer Aca-
demic Publishers, Vol. 432, 136 pp., 1998. ISBN 0-7923-8099-1.

Curbera, F., Khalaf, R., Leymann, F., and Weerawarana, S., Exception
Handling in the BPEL4WS Language. In Proceedings of the Interna-
tional Conference on Business Process Management (BPM’03), 276-290,
Eindhoven, The Netherlands, June 2003. LNCS 2678.

Curtis, B., Kellner, M., and Over J., Process Modeling. Communications
of the ACM, 35(9):75-89, September 1992.

Chiu, D.K.W., Kwok, B.W.C., Wong, R.L.S., Cheung, S.C., Kafeza, E.,
and Kafeza, M., Alerts for Healthcare Process and Data Integration. In
Proceedings of the 37" Annual Hawaii International Conference on Sys-
tem Sciences (HICSS-37), 8ig Island, Hawaii, January 2004.

Chang, J.W. and Scott, C.T., Agent-based Workflow: TRP Support Envi-
ronment (TSE). In Proceedings of the Fifth International World Wide
Web Conference, Paris, France, May 1996. On-line at <http://
www Sconf.inria.fr/fich_html/papers/P53/Overview.html>.



[DBIS04]

[DNR90]

[DR98]

[DRKO0]

[EIm92]

[Ens98]

[EK00]

[EKR95]

[EM97]

[EPO2]

[EPG+03]

[EPP+99]

194

Abteilung Datenbanken und Informationssysteme — Universitit Ulm
(2004). On-lne at  <http://www.informatik.uni-ulm.de/dbis/index-
en.htm>.

Downson, M., Nejmeh, B., and Riddle, W., Concepts for Process Defini-
tion Support. In Proceedings of the Sixth International Software Process
Workshop, 87-90, Hakodate, Japan, October 1990. IEEE Computer Soci-
ety Press.

Dadam, P. and Reichert, M., The ADEPT WIMS Project at the University
of Ulm. In Proceedings of the First European Workshop on Workflow
and Process Management (WPM’98) (Workflow Management Research
Projects), Zurich, Switzerland, October 1998. On-line at <http:/
www.informatik.uni-ulm.de/dbis/papers/abstracts/DaRe98.ps.html>.

Dadam, P., Reichert, M., and Kuhn, K., Clinical Workflows — The Killer
Application for Process-oriented Information Systems? In Proceedings of

the Fourth International Conference on Business Information Systems
(BIS’00), 36-59, Poznan, Poland, April 2000.

Elmagarmid, A.K. (editor), Database Transaction Models for Advanced
Applications, Morgan Kaufinann Publishers, 610 pp., 1992. ISBN 1-
55860-214-3.

FileNet Ensemble User Guide. FileNet Corp., Costa Mesa, California,
1998.

Ellis, C.A. and Keddara, K., A Workflow Change Is a Workflow. In In
van der Aalst, W.M.P., Desel, J., and Oberweis, A. (Eds.): Business Proc-
ess Management — Models, Techniques, and Empirical Studies, 201-217,
LNCS 1806 Springer-Verlag, 2000.

Ellis, C.A., Keddara, K., and Rozenberg, G., Dynamic Change within
Workflow Systems. In Proceedings of the Conference on Organizational
Computing Systems (OCS’95), 10-21, Milpitas, California, 1995. ACM
Press.

Ellis, C. and Maltzahn, C., The Chautauqua Workflow System. In Pro-
ceedings of the 30™ International Conference on System Sciences
(HICSS’97), 427-437, Maui, HI, January 1997.

Eder, J. and Pichler, H., Duration Histograms for Workflow Systems. In
Proceedings of the Working Conference on Engineering Information Sys-
tems in the Internet Context (EISIC’02), 239-253, Kanazawa, Japan, Sep-
tember 2002.

Eder, J., Pichler, H., Gruber, W., and M. Ninaus, Personal Schedules for
Workflow Systems. In Proceedings of the International Conference on
Business Process Management (BPM’03), 216-231, Eindhoven, The
Netherlands, June 2003. LNCS 2678.

Eder, J., Panagos, E., Pezewaunig, H., and Rabinovich, M., Time Man-
agement in Workflow Systems. In Proceedings of the Third International



[FH92]

[GGP+98]

[GHS95]

[GRO1]

[GS87]

[GT98]

[Har87]

[Hen88]

[Hol97]

[HH99]

[HI98]

195

Conference on Business Information Systems (BIS’99), 265-280. Poznan,
Poland, April 1999. (Springer-Verlag)

Feiler, P.H. and Humphrey, W.S., Software Process Development and
Enactment: Concepts and Definitions. Technical Report SEI-92-TR-004,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, 1992. On-line at <http://www.sei.cmu.edu/publications/documents/
92.reports/92.tr.004.html>.

Gendreau, M., Guertin, F., Potvin, J.-Y., and Séguin, R., Neighborhood
Search Heuristics for a Dynamic Vehicle Dispatching Problem with Pick-
ups and Deliveries. Technical Report CRT-98-10, Centre de Recherche
sur les Transports, Université de Montréal, Canada, 1998.

Georgakopoulos, D., Hornick, M., and Sheth, A., An Overview of Work-
flow Management: From Process Modeling to Workflow Automation In-
frastructure. Distributed and Parallel Databases, 3(2):119-153, April
1995.

Groote, J.F. and Reniers, M.A., Algebraic Process Verification. In
Bergstra, J.A., Ponse, A., and Smolka, S.A. (Eds.): Handbook of Process
Algebra, 1151-1208, Amsterdam, The Netherlands, 2001.

Garcia-Molina, H., Salem, K., Sagas. In Proceedings ACM SIGMOD In-
ternational Conference on Management of Data, 249-259, San Francisco,
CA, May 1987.

Georgakopoulos, D. and Tsalgatidou, A., Technology and Tools for
Comprehensive Business Process Lifecycle Management. In Dogac, A.,
Kalinichenko, L., Ozsu, T., and Sheth, A. (Eds.): Workflow Management
Systems and Interoperability. NATO SI Series F. Springer-Verlag, 1998.
On-line at <http://cgi.di.uoa.gr/~afrodite/nato.pdf>.

Harel, D., State Charts: A Visual Formalism for Complex Systems. Sci-
ence of Computer Programming, 8(3):231-274, June 1987.

Hennessy, M., Algebraic Theory of Processes. The MIT Press, 272 pp.,
1988. ISBN 0-262-08171-7.

Hollingsworth, D., Workflow — A Model for Integration. ICL Systems
Journal, 12(2):213-232, November 1997.

Handl, D. and Hoffmann, H.-J., Workflow Agents in the Document-
centered Communication in MALL2000 Systems. In Proceedings of the
First International Workshop on Agent-Oriented Information Systems
(AOIS’99). Seattle, WA, May 1999. On-line at <http://www.aois.org/
99/handl.html>.

Horn, S., and Jablonski, S., An Approach to Dynamic Instance Adaption
in Workflow Management Applications. In Proceedings of the Workshop
Towards Adaptive Workflow Systems at the Conference on Computer
Supported Cooperative Work (CSCW’98), ACM Press, Seattle, WA, No-
vember 1998. On-line at <http://ccs.mit.edu/klein/cscw98/paper21/>.



[HS98]

[Ibm04]

[Inc02]

[Int04]
[JRules04]
[JB96]

[Kra00]

[KBB98]

[KG99]

[KSS02]

[KZ02]

[Ley95]

(LOO1]

196

Han, Y. and Sheth, A., A Taxonomy of Adaptive Workflow Manage-
ment. In Proceedings of the ACM Conference on Computer-Supported
Cooperative Work (CSCW’98), Seattle, WA, November 1998. On-line at
<http://ccs.mit.edu/klein/cscw98/paper03/>.

IBM Software — WebSphere MQ Workflow (2004). On-line at <http://
www-306.ibm.com/software/integration/wmqwf{/>.

TIBCO InConcert Concepts. TIBCO Software Inc., Cambridge, MA,
January 2002.

InterNeg (2004). On-line at <http://interneg.carleton.ca/interneg/>.
ILOG JRules (2004). On-line at <http://www.ilog.com/products/jrules/>.

Jablonski, S. and Bussler, C., Workflow Management — Modeling Con-
cepts, Architecture and Implementation. International Thompson Com-
puter Press, 351 pp., 1996. ISBN 1850322228.

Kradolfer, M., A Workflow Metamodel! Supporting Dynamic, Reuse-
Based Model Evolution. Doctoral Thesis, University of Zurich, Switzer-
land, 2000.

Kammer, P.J., Bolcer, G.A., and Bergman, M., Requirements for Sup-
porting Dynamic Adaptive Workflow on the WWW. In Proceedings of
the Workshop on Adaptive Workflow Systems (CSCW’98), Seattle, WA,
November 1998. On-line at <http://www.ags.uci.edu/~pkammer/papers/
cscw98.pdf>.

Kradolfer, M. and Geppert, A., Dynamic Workflow Schema Evolution
Based on Workflow Type Versioning and Workflow Migration. In Pro-
ceedings of the Fourth International Conference on Cooperative Informa-
tion Systems (CooplS’99), 104-114, Edinburgh, UK, September 1999.
IEEE Computer Society Press.

Kelton, W.D., Sadowski, R.P., and Sadowski, D.A., Simulation with
Arena. McGraw-Hill, 631 pp., 2002 (2™ edition). ISBN 0-07-239270-3.

Kumar, A. and Zhao, J.L., Workflow Support for Electronic Commerce
Applications. Decision Support Systems, 32(3):265-278, May 2002. On-
line at <http://shell.bpa.arizona.edu/~lzhao/dss02-print.pdf>.

Leymann, F., Supporting Business Transactions via Partial Backward Re-
covery in Workflow Management Systems. In Proceedings of the Daten-
banksysteme in Biiro, Technik und Wissenschaft (BTW’95), 51-70, Dres-
den, Germany, 1995.

Lenz, K., and Oberweis, A., Modeling Interorganizational Workflows
with XML Nets. In Proceedings of the 34" Hawaii International Confer-
ence on System Sciences (HICSS-34), Maui, Hawaii, January 2001. On-
line at <http://csdl.computer.org/comp/proceedings/hicss/2001/0981/07/
09817052.pdf>.



[LR99]

[LS97]

[Man99]

[Mar01]

[McC92]

[Men02]

[Mil80]
[Mit98]

[Moai04]
[Mos82]

[MBO00]

[MGM99]

[MO99]

[MR99]

197

Leymann, F. and Roller, D., Production Workflow, Concepts and Tech-
niques. Prentice-Hall PTR, 479 pp., 1999. ISBN 0-130-21753-0.

Lei, K. and Singh, M., A Comparison of Workflow Metamodels. In Pro-
ceedings of the Workshop on Behavioral Modeling and Design Transfor-
mations: Issues and Opportunities in Conceptual Modeling at the 16" In-
ternational Conference on Conceptual Modeling / the Entity Relationship
Approach (ER’97), Los Angeles, CA, November 1997. On-line at <http://
osm7.cs.byu.edw/ER97/workshop4/ls.html>.

Mann, J., Workflow and Enterprise Application Integration. EAI Journal,
49-53, September/October 1999. On-line at <http://www.bijonline.com/
PDF/mann_1.pdf>.

Marjanovic, O., Methodological Considerations for Time Modeling in
Workflows. In Proceedings of the 12" Australasian Conference on In-
formation Systems (ACIS’01), Coffs Harbour, Australia, December 2001.

McCready, S., There is More than One Kind of Workflow Software.
Computerworld, November 2:86-90, 1992.

Meng, J., Achieving Dynamic Inter-organizational Workflow Manage-
ment by Integrating Business Processes, Events, and Rules. Doctoral
Thesis, University of Florida, Gainesville, FL, 2002.

Milner, R., A Calculus of Communicating Systems. 1980. LNCS 92.

Mitrovi¢-Mini¢, S., Pickup and Delivery Problem with Time Windows: A
Survey. Technical Report SFU CMPT TR 1998-12, Simon Fraser Univer-
sity, Canada, 1998.

Moai LiveExchange (2004). On-line at <http://www.moai.com/>.

Moss, J., Nested Transactions and Reliable Distributed Computing. In
Proceedings of the Second Symposium on Reliability in Distributed Soft-
ware and Database Systems, 33-39, Pittsburgh, PA, July 1982.

McClintock, C. and Berlioz, C.A., Implementing Business Rules in Java.
Java Developers Journal, 5(5):8-16, 2000.

Maes, P., Guttman, R.H., and Moukas, A.G., Agents that Buy and Sell:
Transforming Commerce as we Know it. Communications of the ACM,
42(3):81-91, 1999.

Marjanovic, O. and Orlowska, M.E., On Modeling and Verification of
Temporal Constraints in Production Workflows, Knowledge and Informa-
tion Systems, 1(2):157-192, 1999.

Miiller, R., and Rahm, E., Rule-Based Dynamic Modification of Work-
flows in a Medical Domain. In Buchmann, A.P. (Ed.): Proceedings of the
Datenbanksysteme in Biiro, Technik und Wissenschaft (BTW’99), 429-
448, Freiburg im Breisgau, Germany, March 1999. On-line at <http://
dol.uni-leipzig.de/pub/showDoc.Fulltext?lang=de &doc=1999- 14&format
=pdf&compression=>.



[MS02]

[MWWI8]

[MWW+98]

[NBB+03]

[NDS96]

[OPL04]

[Par81]

[Petri04]

[PEL97]

[PSRI92]

[RD98]

198

Mangan, P. and Sadig, S., A Constraint Specification Approach to Build-
ing Flexible Workflows. Journal of Research and Practice in Information
Technology, 35(1):21-39, 2002.

Muth, P., Weissenfels, J., and Weikum, G., What Workflow Technology
Can Do For Electronic Commerce. In Proceedings of the EURO-MED
NET Conference, Nicosia, Cyprus, March 1998. On-line at <http:/
citeseer.ist.psu.edu/muth98what.html>.

Muth, P., Wodtke, D., Weissenfels, J., Weikum, G., and Kotz Dittrich,
A., Enterprise-wide Workflow Management based on State and Activity
Charts. In Dogac, A., Kalinichenko, L., Tamer Ozsu, M., and Sheth, A.
(Eds.): Advances in Workflow Management Systems and Interoperability,
281-303, NATO Advanced Study Institute, Spinger-Verlag, 1998.

Neumann, D., Benyoucef, M., Bassil, S., and Vachon, J., Applying the
Montreal Taxonomy to State of the Art E-Negotiation Systems. Group
Decision and Negotiation Journal, 12(4):287-310, July 2003. (Published
in cooperation with the Institute for Operations Research and the Man-
agement Sciences - Informs - and its Section on Group Decision and Ne-
gotiation.). Kluwer Academic Publishers.

Ngu, A.H.H., Duong, T, and Srinivasan, U., Modeling Workflow using
Tasks and Transactions. In Proceedings of the Seventh International
Workshop on Database and Expert Systems Applications (DEXA’96), Zu-
rich,  Switzerland,  September  1996. On-line at  <http://
www.cse.unsw.edu.aw/~anne/work3/work3.html>.

ILOG OPL Studio (2004). On-line at <http://www.ilog.com/products/
oplstudio/>.

Park, D., Concurrency and Automata on Infinite Sequences. In Proceed-
ings of the Fifth GI-Conference on Theoretical Computer Science, 167-
183, 1981. LNCS 104.

Petri Nets World: Online Services for the International Petri Nets Com-
munity (2004). On-line at <http://www.daimi.au.dk/PetriNets>.

Pozewaunig, H., Eder, J., and Liebhart, W., ePERT: Extending PERT for
Workflow Management Systems. In Proceedings of the First East-
European Symposium on Advances in Database and Information Systems
(ADBIS’97), 217-224, St.-Petersburg, Russia, September 1997.

Potvin, J.-Y., Shen, Y., Rousseau, J.-M., Neural Network for Automated
Vehicle Dispatching. Computers and Operations Research (Special issue
on neural networks and operations research), 19(3-4):267-276. April/May
1992.

Reichert, M., and Dadam, P., ADEPTflex: Supporting Dynamic Changes
of Workflow without Losing Control. Journal of Intelligent Information
Systems, 10(2):93-129, 1998.



[RRDO03a]

[RRDO3b]

[RRDO04a]

[RRD04b]

[RRDO4c]

[RTO2]

[RXZ04]

[Sad99]

[Sie96]

[Str99]

[Sur01]

199

Reichert, M., Rinderle, S., and Dadam, P., ADEPT Workflow Manage-
ment System: Flexible Support for Enterprise-wide Business Processes
(Tool Presentation). In Proceedings of the First International Conference
on Business Process Management (BPM’03), 370-379, Eindhoven, The
Netherlands, June 2003. LNCS 2678.

Rinderle, S., Reichert, M., and Dadam, P., Evaluation of Correctness Cri-
teria for Dynamic Workflow Changes. In Proceedings of the First Inter-
national Conference on Business Process Management (BPM’03), 41-57,
Eindhoven, The Netherlands, June 2003. LNCS 2678.

Rinderle, S., Reichert, M., and Dadam, P., Correctness Criteria for Dy-
namic Changes in Workflow Systems — A Survey. In Data & Knowledge
Engineering (Special issue on advances in business process manage-
ment), 50(1):9-34, 2004.

Rinderle, S., Reichert, M., and Dadam, P., Flexible Support of Team
Processes by Adaptive Workflow Systems. In Distributed and Parallel
Databases, 16(1):91-116, 2004.

Rinderle, S., Reichert, M., and Dadam, P., On Dealing with Structural
Conflicts between Process Type and Instance Changes. In Proceedings of

the Second International Conference on Business Process Management
(BPM’04), 274-289, Potsdam, Germany, June 2004. LNCS 3080.

Reichert, M. and Tarabrin, A., ADEPT Release version 2.0 — Short User
Guide, Department DBIS, University of Ulm, Germany, October 2002.

Ray, I, Xin, T., and Zhu, Y., Ensuring Task Dependencies During Work-
flow Recovery. In Proceedings of the Fifteenth International Workshop
on Database and Expert Systems Applications (DEXA’04), 24-33,
Zaragoza, Spain, September 2004. LNCS 3180.

Sadiq, S., Workflows in Dynamic Environments - Can they be Managed?
In Proceedings of the Second International Symposium on Cooperative
Database Systems for Advanced Applications (CODAS’99), 165-176,
Woollongong, Australia, March 1999.

Siebert, R., Adaptive Workflow for the German Public Administration. In
Proceedings of the Workshop on Adaptive Workflow at the First Interna-
tional Conference on Practical Aspects of Knowledge Management
(PAKM’96). Basel, Switzerland, 1996. On-line at <http://
www.informatik.uni-stuttgart.de/ipvr/as/publikationen/Sieber96b.html>.

Strobel, M., Effects of Electronic Markets on Negotiation Processes —
Evaluating Protocol Suitability. Technical Report 93237, IBM, Zurich
Research Laboratory, Switzerland, 1999.

A Survey of Auctions (2001). On-line at <http://www.agorics.com/
Library/auctions.html>.



[SAA99]

[SL95]

[SMOO00]

[SO99a]

[SO99b]

[SRK+01]

[SS95]

[SSO01]

[Tib04]
[Tra04]

[Tri98]

[Tsa93]

200

Sheth, A.P., van der Aalst, W., and Arpinar, 1.B., Processes Driving the
Networked Economy. In IEEE Concurrency, 7(3):18-31, July-September
1999,

Sandholm T. and Lesser, V., Issues in Automated Negotiation and Elec-
tronic Commerce: Extending the Contract Net Framework. In Proceed-
ings of the First International Conference on Multi-Agent Systems
(ICMAS’95), 328-335, San Francisco, CA, June 1995.

Sadiq, S., Marjanovic, O., and Orlowska, M., Managing Change and
Time in Dynamic Workflow Processes. The International Journal of Co-
operative Information Systems, 9(1-2):93-116, 2000.

Sadiq, S. and Orlowska, M.E., Architectural Considerations in Systems
Supporting Dynamic Workflow Modifications. In Proceedings of the
Workshop on Software Architectures for Business Process Management
at the 11" Conference on Advanced Information Systems Engineering
(CaiSE’99), Heidelberg, Germany. June 1999. On-line at <http://
www.dstc.edu.au/praxis/publications/ssadiq_sabpm_1999.pdf>.

Sadiq, W. and Orlowska, M.E., On capturing Process Requirements of
Workflow Based Business Information Systems. In Proceedings of the
Third International Conference on Business Information Systems
(BIS’99), 195-209, Poznan, Poland, April 1999. (Springer-Verlag)

Stricker, C., Riboni, S., Kradolfer, M., and Taylor, J., Market-based
Workflow Management for Supply Chains of Services. In Proceedings of
the 34™ Hawaii International Conference on System Sciences (HICSS-
34), Maui, Hawaii, January 2001. On-line at <http://anaisoft.unige.ch/
public-documents/deliverables/hicss33.pdf>.

Savelsbergh, M.\W.P. and Sol, M., The General Pickup and Delivery
Problem. Transportation Science, 29:17-29. 1995. On-line at <http:/
www.isye.gatech.edu/~mwps/publications/ts29.pdf>.

Sadiq, S., Sadiq, W., and Orlowska, M., Pockets of Flexibility in Work-
flow Specifications. In Proceedings of the 20" International Conference
on Conceptual Modeling (ER’01), 513-526, Y okohama, Japan, November
2001.

TIBCO Software Inc. (2004). On-line at <http://www.tibco.com>.

Transports Québec: Carte routiére, les distances routiéres entre les princi-
pales agglomérations (2004). On-line at <http://www.mtq.gouv.qc.ca/
images/information/carte_routiere/PDF/carton_les_distances.pdf>.

Trilling G., Génération automatique d’horaires de médecins de garde
pour I'hopital Cote-des-Neiges de Montréal. Technical Report CRT-98-
05, Centre de Recherche sur les Transports, Université de Montréal, Ca-
nada, January 1998.

Tsang, E., Foundations of Constraint Satisfaction. Academic Press, Lon-
don and San Diego, 421 pp., 1993. ISBN 0-12-701610-4.



[TCD93]

[UMLO04]

[VAO4]

[VHAO02]

[Wat01]

[Web04]

[Wes01]

[WIMC95]

[WIMC97]

[WEMC98]

[WEMC99a]

[WIMC99b]

201

Taleb-Ibrahimi, M., de Castilho, B., and Daganzo, C.F., Storage Space
Versus Handling Work in Container Terminals. Transportation Research
Part B: Methodological, 27(1):13-32, 1993.

Unified Modeling Language Resource Center (2004). On-line at <http://
www-306.ibm.com/software/rational/uml/>.

Verbeek, HM.W. and van der Aalst, W.M.P., Woflan Home Page (2004).
On line at <http://tmitwww.tm.tue.nl/research/woflan/>.

Verbeek, H.M.W., Hirnschall, A., and van der Aalst, W.M.P.,
XRL/Flower: Supporting Inter-Organizational Workflows Using
XML/Petri-net Technology. In Proceedings of the Workshop on Web Ser-
vices, e-Business, and the Semantic Web: Foundations, Models, Architec-
ture, Engineering and Semantic (WES’02) — Held in conjunction with the
14" Int’'l Conf. on Advances Information Systems Engineering
(CAISE’02), 93-108, Toronto, Canada, May 2002. LNCS 2512.

Watts, A., Comparison of Staffware and MQ Series Workflow. White
Paper, Kraftware Systems Limited, July 2001. On line at <http:/
www.kraftwaresystems.co.uk/pdf/staffware-mqseriesworkflowcomparison.pdf>.

BEA Systems — BEA WebLogic Integration (2004). On-line at <http://
www.beasys.com/products/weblogic/integration/index.shtml>.

Weske, M., Formal Foundation and Conceptual Design of Dynamic Ad-
aptations in a Workflow Management System. In Proceedings of the 34™
Hawaii International Conference on System Sciences (HICSS-34), Maui,
Hawaii, January 2001. On-line at <http://csdl.computer.org/comp/ pro-
ceedings/hicss/2001/0981/07/09817051.pdf>.

Workflow Management Coalition, The Workflow Reference Model.
WFMC-TC-1003, Version 1.1, January 1995. On-line at <http://
www.wfmc.org/standards/docs/tc003v11.pdf>.

Workflow Management Coalition, Workflow Client Application (Inter-
face 2) Application Programming Interface (WAPI) Naming Conven-
tions. WFMC-TC-1013, Version 1.4, November 1997. On-line at <http://
www.wfmc.org/standards/docs/tcO13v14a.pdf>.

Workflow Management Coalition, Workflow Management Application
Programming Interface (Interface 2&3) Specification. WFMC-TC-1009,
Version 2.0, July 1998. On-line at <http://www.wfmc.org/standards/
docs/if2v20.pdf>.

Workflow Management Coalition, Interface 1: Process Definition Inter-
change Process Model. WFMC-TC-1016-P, Version 1.1, October 1999.
On-line at <http://www.wimc.org/standards/docs/TC-1016-P_v11_IF1_
Process_definition_Interchange.pdf>.

Workflow Management Coalition, Terminology and Glossary. WFMC-
TC-1011, Version 3.0, February 1999. On-line at <http://www.wfmc.org/
standards/docs/TC-1011_term_glossary_v3.pdf>.



[WIMCO1]

[WEMC04]

[WARIAO4]

[WHEF+95]

[WI98]

[WMWOg]

[WS97]

[WSCI02]

[WSCLO02]

[WSDLOI]

[WSW+70]

[WWWI8]

[W3C04]

[XMLO04]

202

Workflow Management Coalition, Interoperability Workflow-XML
Binding, WFMC-TC-1023, Version 1.1, November 2001. On-line at
<http://www.wfmc.org/standards/docs/W{-XML-11.pdf>.

The Workflow Management Coalition (2004). On-line at <http://
www.wimc.org>.

Workflow and Reengineering International Association (2004). On-line at
<http://www.waria.com>.

Weil, G., Heus, K., Francois, P., and Poujade, M., Constraint Program-
ming for Nurse Scheduling. Engineering in Medicine and Biology,
14(4):417-422, 1995.

Weber, M., Illmann, T., Using Java for the Coordination of Workflows in
the WWW. In Tagungsband der Fachtagung “Interaktion im Web — In-
novative Kommunikationsformen”, Marburg, Germany, May 1998. On-
line at <http://medien.informatik.uni-ulm.de/forschung/publikationen/ in-
teraktion98.pdf>.

Weissenfels, J, Muth, P., and Weikum, G, Flexible Worklist Management
in a Light-Weight Workflow Management System. In Proceedings of the
Workshop on Workflow Management Systems at the Sixth International
Conference on Extending Database Technology (EDBT’98), 29-38, Va-
lencia, Spain, March 1998.

Worah, D. and Sheth, A., Transactions in Transactional Workflows. In
Jajodia S. and Kerschberg, L (Eds.), Advanced Transaction Models and
Architectures, Chapter 1, 3-34, Kluwer Academic Publishers, 1997.

Web Services Choreography Interface 1.0 (2002). On-line at <http:/
www.w3.org/TR/wsci/>

Web Services Conversation Language 1.0 (2002). On-line at <http:/
www.w3.org/TR/wscl10/>.

Web Services Description Language 1.1 (2001). On-line at <http:/
www.w3.org/TR/wsdl>.

Wilson, N.H.M., Sussman, J.M., Wong, H.-K., and Higonnet, T., Sched-
uling Algorithms for a Dial-A-Ride System. Technical Report TR-70-13,
Department of Civil Engineering, MIT, Cambridge, MA, 1970.

Wurman, P.R., Wellman, M.P., and Walsh, W.E., The Michigan Internet
AuctionBot: A Configurable Auction Server for Human and Software
Agents, In Proceedings of the Second International Conference on
Autonomous Agents, 301-308, Minneapolis, MN, May 1998.

The World Wide Web Consortium (2004). On-line at <http://
www.w3.org>.

Extensible Markup Language (2004). On-line at <http://www.w3.org/
XML>.



Appendix A Extending the Workflow Reference Model:
Workflow Management Application
Programming Interface Specification

The Workflow Management Coalition [WfMC04] has developed a standard general
model for Workflow Management Systems (WfMSs). This model, called the Workflow
Reference Model (WfRM) [WIMC95], does not support many of the concepts and the
functionality required by workflow-based complex socio-technical systems. This appen-
dix, based on [BRK+03], presents an extension of the WIRM in order to accommodate
these requirements. A compressed summary of the new or extended groups of operations
is first given in Section A.l. Then, a detailed summary of these groups, showing the sig-
nature of each operation is given in Section A.2. In Section A.3, the detailed specifica-
tion of the extended Workflow Management Application Programming Interface
(WAPI, Interfaces 1, 2 and 3) is presented. Sections A.4 and A.5 provides the WAPI

data types addendum and the WAPI error return codes addendum.

A.1 Compressed Summary of the Groups of
Operations and Operations

Activity Control Functions (Interface 2&3)

WMOpenActivityTemplatesList: Specifies and opens query to produce a list of all ac-
tivity templates that meet the selection criterion of the filter.

WMPFetchActivityTemplate: Returns the next activity template from the set of activity
templates that met the selection criterion stated in the WMOpenActivityTemplatesList
call.

WMCloseActivityTemplatesList: Closes the query of activity templates.



II

WMGetActivityTemplate: Returns the activity template specified by its ID.
WNMCreateActivityInstance: Creates an activity instance from an activity template.

WMInsertActivityInstance: Inserts an activity instance between two groups of existing
activity instances.

WMDeleteActivityInstance: Deletes an activity instance.

WMMoveActivityInstance: Moves an existing activity instance from its original place
between two groups of activity instances.

WMAssignActivityInstanceAttribute: Sets or changes attribute values.
WMInsertActivityInstanceAttribute: Inserts a new attribute into an activity instance.

WMDeleteActivityInstanceAttribute: Deletes an attribute assigned to an activity in-
stance.

WDMAssignActivityInstanceParticipants: Assigns one or up to ten workflow partici-
pants to an activity instance.

WMAssignActivityInstanceDuration: Assigns a duration to an activity instance.

WMAssignActivityInstanceTime: Assigns a (starting, finishing) time to an activity in-
stance.

WMAssignActivityInstanceWUT: Assigns a warm-up duration to an activity instance.

Process Control Functions (Interface 2&3)

WMKeepProcessInstance: Stores the process definition corresponding to a modified
process instance.

WMInsertProcessInstance: The process instance provided is inserted into another
process instance as a sub-workflow.

Work-list/Work-item Handling Functions (Interface 2&3)

WMReassignWorkItem: Reassigns a work-item from one workflow participant’s
work-list to another workflow participant’s work-list.

WMAssignWorkItemA ttribute: Sets or updates the value of an attribute of a work-
item.

WMDeleteWorkItem: Deletes a work-item in a given work-list.



III

Classification Category Definition Functions (New - Interface 1)

WM CreateClassificationCategory: Creates a new classification category.

WMDeleteClassificationCategory: Deletes a classification category.

Activity Template Modeling Functions (New - Interface 1)

WMCreateActivityTemplate: Creates an “empty” new activity template.
WMOpenActivity Template: Prepares for editing of an activity template.

WMCloseActivityTemplate: Allows the system to free up any resources that are main-
tained to handle the activity template.

WMAssignActivity TemplateClassificationCategory: Assigns an activity template to a
classification category.

WMDetractActivityTemplateClassificationCategory: Detracts an activity template
from a classification category.

WMDeleteActivityTemplate: Deletes an activity template.

Activity Template Attribute Manipulation Functions (New - Interface 1)

WMAssignActivityTemplateAttribute: Sets an attribute of an activity template.
WMInsertActivityTemplateAttribute: Inserts a new attribute into an activity template.

WMDeleteActivityTemplateAttribute: Deletes an attribute assigned to an activity
template.

WM AssignActivity TemplateParticipants: Assigns one or up to ten workflow partici-
pants to an activity template.

WMAssignActivityTemplateDuration: Assigns a duration to an activity template.

WMAssignActivityTemplateTime: Assigns a (starting, finishing) time to an activity
template.

WMAssignActivityTemplateWUT: Assigns a warm-up duration to an activity tem-
plate.



v

Process Modeling Functions (Interface 1)

WM AssignProcDefClassificationCategory: Assigns a process definition to a classifi-
cation category.

WMDetractProcDefClassificationCategory: Detracts a process definition from a clas-
sification category.

A.2 Detailed Summary of the Groups of Operations

and Operations

Activity Control Functions (Interface 2&3)

WMETrRetType WMOpenA ctivity TemplatesList (
/I Specifies and opens query to produce a list of all activity templates that meet the selec-
tion criterion of the filter.

in WMTPSessionHandle psession_handle,

in WMTPFilter pactivity_template_filter,

in WMTBoolean count_flag,

out  WMTPQueryHandle pquery_handle,

out  WMTPInt32 pcount

)

WMErrRetType WMPFetchActivityTemplate (
// Returns the next activity template from the set of activity templates that met the selec-
tion criterion stated in the WMOpenActivityTemplatesList call.

in WMTPSessionHandle psession_handle,

in WMTPQueryHandle pquery_handle,

out  WMTPActivityTemplate pactivity_template_buf_ptr

)

WMErRetType WM CloseA ctivity TemplatesList (

// Closes the query of activity templates.
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,

)

WMETrrRetType WMGetActivityTemplate (
// Returns the activity template specified by its ID.
in WMTPSessionHandle psession_handle,
in WMTText activity_template_name,
out  WMTPActivityTemplateID pactivity_template_ID,



WMTErrRetType WM CreateActivityInstance (

// Creates an activity instance from an activity template.
in WMTPSessionHandle psession_handle,
in WMTPACctivityTemplateID pactivity_template_id,
out WMTPACctivitylnstancelD pactivity_instance_id

)

WMTErrRetType WM InsertActivityInstance (
// Inserts an activity instance between two groups of existing activity instances.
in WMTPSessionHandle psession_handle,
in WMTPProclnstID pproc_inst_id,
in WMTPACctivitylnstID pactivity_instance_id,
in WMTPACctivitylnstID[] pbefore_activity_inst_id,
in WMTPACctivityInstID[] pafter_activity_inst_id

)

WMTErmRetType WMDeleteA ctivityInstance (

// Deletes an activity instance.
in WMTPSessionHandle psession_handle,
in WMTPProcInstiD pproc_inst_id,
in WMTPACctivityInstID pactivity_inst_id
)

WMTErRetType WMMoveAcctivityInstance (
/ Moves an existing activity instance from its original place between two groups of ac-
tivity instances.

in WMTPSessionHandle psession_handle,

in WMTPProclnstID pproc_inst_id,

n WMTPACctivitylnstID pactivity_inst_id,

in WMTPACctivityInstID[] pbefore_activity_inst_id,

in WMTPACctivitylnstID[] pafter_activity_inst_id

)

WMTErmrRetType WM AssignActivitylnstanceAttribute (
/1 Sets or changes attribute values.

n WMTPSessionHandle psession_handle,

in WMTPProcInstID pproc_inst_id,

in WMTPACctivityInstID pactivity_inst_id,

in WMTPAttrName pattribute_name,

in WMTInt32 attribute_type,

in WMTInt32 attribute_length,

in WMTPText pattribute_value

)



VI

WMTErRetType WMInsertActivitylnstanceA ttribute (
// Inserts a new attribute into an activity instance.
in WMTPSessionHandle psession_handle,
in WMTPProclInstID pproc_inst_id,
in WMTPACctivitylnstID pactivity_inst_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length

)

WMTErrRetType WMDeleteActivityInstanceAttribute (
/I Deletes an attribute assigned to an activity instance.
in WMTPSessionHandle psession_handle,
in WMTPProclnstID pproc_inst_id,
in WMTPActivityInstID pactivity_inst_id,
in WMTPAttrName pattribute_name
)

WMTErRetType WM AssignActivityInstanceParticipants (
/1 Assigns one or up to ten workflow participants to an activity instance.
in WMTPSessionHandle psession_handle,
in WMTPWflParticipant[] pparticipants[10],
in WMTPProclnstID pproc_inst_id,
in WMTPACctivitylnstID pactivity_inst_id
)

WMTErRetType WM AssignA ctivityInstanceDuration(
/Il Assigns a duration to an activity instance.

n WMTPSessionHandle psession_handle,

in WMTPProcInstID pproc_inst_id,

in WMTPACctivitylnstID pactivity_inst_id,

in WMTInt32 duration_limit_type,

in WMTPInt16 pduration_value

)

WMTEmnRetType WM AssignA ctivityInstanceTime(

/I Assigns a (starting, finishing) time to an activity instance.
in WMTPSessionHandle psession_handle,
in WMTPProclnstID pproc_inst_id,
n WMTPActivityInstID pactivity_inst_id,
in WMTInt32 time_period_type,
in WMTPDate ptime_value

)



VIl

WMTErnRetType WM AssignA ctivityInstance WUT(
/I Assigns a warm-up duration to an activity instance.
in WMTPSessionHandle psession_handle,
in WMTPProclInstID pproc_inst_id,
in WMTPACctivityInstID pactivity_inst_id,
in WMTInt32 wut_limit_type,
in WMTPInt16 pwut_value
)

Process Control Functions (Interface 2&3)

WMTErRetType WMKeepProcessInstance (

/I Stores the process definition corresponding to a modified process instance.
in WMTPSessionHandle psession_handle,
in WMTPProclnstID pproc_inst_id,
out  WMTPProcDefID pproc_def_id

)

WMTEmnRetType WMInsertProcessInstance (
/I The process instance provided is inserted into another process instance as a subwork-
flow.

in WMTPSessionHandle psession_handle,

in WMTPProclnstID phost_proc_inst_id,

in WMTPProclnstID pinsert_proc_inst_id,

in WMTPACctivitylnstID[] pbefore_activity_inst_id,

in WMTPActivitylnstID[] pafter_activity_inst_id

)

Work-list/Work-item Handling Functions (Interface 2&3)

WMTErRetType WMReassignWorkItem (
/I Reassigns a work-item from one workflow participant’s work-list to another workflow
participant’s work-list.

in WMTPSessionHandle psession_handle,

in WMTPWflParticipant psource_user,

in WMTPWf{lParticipant ptarget_user,

in WMTPProclnstID pproc_inst_id,

in WMTPWorkItemID pwork_item_id

)

WMTErmRetType WM AssignWorkItemA ttribute (

/I Sets or updates the value of an attribute of a work-item.
in WMTPSessionHandle psession_handle,
in WMTPProclnstID pproc_inst_id,
in WMTPWorkltemID pwork_item_id
n WMTPAttrName pattribute_naime,



in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value

)

WMTErnRetType WMDeleteWorkItem (

/I Deletes a work-item in a given work-list.
in WMTPSessionHandle psession_handle,
in WMTPProclInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id

)
Classification Category Definition Functions (New - Interface 1)

WMErRetType WM CreateClassificationCategory (
/l Creates a new classification category.
in WMTPSessionHandle psession_handle,
in WMTText classification_category_name,
out  WMTPClassificationCategoryID pclassification_category_id

)

WMErrRetType WMDeleteClassificationCategory (
// Deletes a classification category.
in WMTPSessionHandle psession_handle,
n WMTPClassificationCategoryID pclassification_category_id

)

Activity Template Modeling Functions (New - Interface 1)

WMETrRetType WM CreateActivityTemplate (
/I Creates an “empty” new activity template.
in WMTPSessionHandle psession_handle,

in WMTName activity_template_name,
out  WMTPActivityTemplateID pactivity_template_id
)

WMErrRetType WMOpenActivityTemplate (

/I Prepares for editing of an activity template.
in WMTPSessionHandle psession_handle,
n WMTPActivityTemplate pactivity_template,
out  WMTPEntity pactivity_template_handle

)

WMErrRetType WM CloseA ctivity Template (

VIII

/I Allows the system to free up any resources that are maintained to handle the activity

template.



IX

in WMTPSessionHandle psession_handle,
in WMTPEntity pactivity_template_handle

WMTErnRetType WM AssignActivityTemplateClassificationCategory (
// Assigns an activity template to a classification category.
in WMTPSessionHandle psession_handle,
in WMTPACctivityTemplateID pactivity_template_id,
in WMTPClassificationCategorylD pclassification_category_id
)

WMTErRetType WMDetractActivityTemplateClassificationCategory (
// Detracts an activity template from a classification category.

in WMTPSessionHandle psession_handle,

in WMTPACctivityTemplateID pactivity_template_id,

in WMTPClassificationCategorylD pclassification_category_id

)

WMETrrRetType WMDeleteActivityTemplate (
/] Deletes an activity template.
in WMTPSessionHandle psession_handle,
in WMTPActivityTemplateID pactivity_template_id

)

Activity Template Attribute Manipulation Functions (New - Interface 1)

WMTEmnRetType WM AssignActivityTemplateAttribute (
// Sets an attribute of an activity template.

n WMTPSessionHandle psession_handle,

in WMTPActivityTemplate pactivity_template,

n WMTPAttrName pattribute_name,

in WMTInt32 attribute_type,

in WMTInt32 attribute_length,

in WMTPText pattribute_value

)

WMTErmnRetType WMInsertActivityTemplateAttribute (
// Inserts a new attribute into an activity template.
in WMTPSessionHandle psession_handle,
in WMTPACctivityTemplateID pactivity_template_id,
in WMTPAttrName pattribute_name,
n WMTInt32 attribute_type,
in WMTInt32 attribute_length

)



WMTErRetType WMDeleteA ctivityTemplateA ttribute (
// Deletes an attribute assigned to an activity template.
in WMTPSessionHandle psession_handle,
in WMTPACctivityTemplateID pactivity_template_id,
in WMTPAttrName pattribute_name
)

WMTErmrRetType WM AssignA ctivity TemplateParticipants (
/I Assigns one or up to ten workflow participants to an activity template.
in WMTPSessionHandle psession_handle,
in WMTPWflParticipant[] pparticipants[10],
in WMTPActivityTemplateID pactivity_template_id
)

WMTErRetType WM AssignActivityTemplateDuration (
/I Assigns a duration to an activity template.
in WMTPSessionHandle psession_handle,
in WMTPACctivityTemplatelD pactivity_template_id,
in WMTInt32 duration_limit_type,
n WMTPInt16 pduration_value
)

WMTErmRetType WM AssignA ctivityTemplateTime (
/1 Assigns a (starting, finishing) time to an activity template.
in WMTPSessionHandle psession_handle,
in WMTPActivityTemplateID pactivity_template_id,
in WMTInt32 time_period_type,
in WMTPDate ptime_value
)

WMTErRetType WM AssignActivityTemplateWUT (
/I Assigns a warm-up duration to an activity template.
in WMTPSessionHandle psession_handle,
in WMTPACctivityTemplateID pactivity_template_id,
n WMTInt32 wut_limit_type,
in WMTPInt16 pwut_value
)

Process Modeling Functions (Interface 1)

WMTErrRetType WM AssignProcDefClassificationCategory (
/I Assigns a process definition to a classification category.
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPClassifictionCategoryID pclassification_category_id

)



X1

WMTErnRetType WMDetractProcDefClassifictionCategory (
// Detracts a process definition from a classification category.
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def _id,
in WMTPClassificationCategoryID pclassification_category_id
)



XII

A.3 Description of the Extended WAPI Specification

A.3.1 Inserting Activities

WMOpenActivityTemplatesList
(belongs to WAPI Activity Control Functions)

NAME

WMOpenActivityTemplatesList — Specifies and opens query to produce a list of all
activity templates that meet the selection criterion of the filter.

DESCRIPTION

WMETrRetType WMOpenA ctivity TemplatesList (
in WMTPSessionHandle psession_handle,
n WMTPFilter pactivity_template_filter,
in WMTBoolean count_flag,
out  WMTPQueryHandle pquery_handle,
out  WMTPInt32 pcount

)
Argument Name Description
psession_handle Pointer to a structure containing information about the

context for this action.
pactivity_template_filter  Filter associated with the activity templates.

count_flag Boolean flag that indicates if the total count of activity
templates should be returned.

pquery_handle Pointer to a structure containing a unique query informa-
tion.

pcount Total number of activity templates that fulfil the filter
condition.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_FILTER



X1

WMPFetchActivityTemplate
(belongs to WAPI Activity Control Functions)

NAME

WMFetchActivityTemplate — Returns the next activity template from the set of activity
templates that met the selection criterion stated in the WMOpenActivityTemplatesList
call.

DESCRIPTION

WMErrRetType WMPFetchActivityTemplate (
in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,
out WMTPActivityTemplate pactivity_template_buf ptr
)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pquery_handle Identification of the specific query handle returned by the

WMOpenActivityTemplatesList query command.
pactivity_template_buf Pointer to a buffer area provided by the client application
where the activity template structure will be placed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_NO_MORE_DATA



X1V

WMCloseActivityTemplatesList
(belongs to WAPI Activity Control Functions)

NAME

WMCloseActivityTemplatesList — Closes the query of activity templates.
DESCRIPTION

WMErnRetType WM CloseA ctivity TemplatesList (

in WMTPSessionHandle psession_handle,
in WMTPQueryHandle pquery_handle,

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pquery_handle Identification of the specific query handle returned by the
WMOpenActivityTemplatesList query command.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_QUERY_HANDLE



XV

WMGetActivityTemplate
(belongs to WAPI Activity Control Functions)

WMGetActivityTemplate — Returns the activity template specified by its ID.
DESCRIPTION
WMETrRetType WMGetActivityTemplate (

in WMTPSessionHandle psession_handle,

in WMTText activity_template_name,
out  WMTPActivityTemplateID pactivity_template_ID,

)
Argument Name Description
psession_handle Pointer to a structure containing information about the

context for this action.
pactivity_template_name The name of the activity instance requested.
pactivity_template_id Pointer to the ID of the activity template requested.

ERROR RETURN VALUE
WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WML_INVALID_ ACTIVITY_TEMPLATE_NAME



XVI

WMCreateActivityInstance
(belongs to WAPI Activity Control Functions)

NAME
WMCreateActivityInstance — Creates an activity instance from an activity template.
DESCRIPTION
WMTErrRetType WMCreateActivityInstance (
in WMTPSessionHandle psession_handle,

in WMTPACctivityTemplateID pactivity_template_id,
out  WMTPActivitylnstancelD pactivity_instance_id

)

Argument Name Description

psession_handle Pointer to a structure containing information about
the context for this action.

pactivity_template_id Pointer to the ID of the activity template to be in-
stantiated.

pactivity_instance_id Pointer to the ID of the activity instance that is cre-
ated.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ ACTIVITY_TEMPLATE



XVII

WMInsertActivityInstance
(belongs to WAPI Activity Control Functions)

NAME

WMiInsertActivitylnstance — Inserts an activity instance between two groups of exist-
ing activity instances.

DESCRIPTION

WMTErnRetType WMInsertActivityInstance (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
n WMTPACctivityInstID pactivity_instance_id,
in WMTPACctivitylnstID[] pbefore_activity_inst_id,
in WMTPACctivitylnstID[] pafter_activity_inst_id

)
Argument Name Description
psession_handle Pointer to a structure containing information about the
context for this action.
pproc_inst_id Pointer to a structure containing a unique process instance
ID.
pactivity_inst_id Pointer to the activity template ID that is to be inserted.

pbefore_activity_inst_id[] Pointer array to the activity instance IDs that are deter-
mined to be before the newly inserted activity instance.

pafter_activity_inst_id[]  Pointer array to the activity instance IDs that are deter-
mined to be after the newly inserted activity instance.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_BEFORE_ACTIVITY_INSTANCE
WM_INVALID_AFTER_ACTIVITY_INSTANCE



XVIII

WMCreateActivityTemplate (Interface 1)

(belongs to Activity Template Modelling Functions in Interface 1)

NAME

WMCreateActivityTemplate — Creates an “empty” new activity template.
DESCRIPTION

WMErrrRetType WMCreateActivityTemplate (
in WMTPSessionHandle psession_handle,

in WMTName activity_template_name,
out  WMTPActivityTemplateID pactivity_template_id
)
Argument Description
psession_handle Pointer to the structure with the session information cre-

ated by a call to WMConnect.
activity_template_name The name for the template that is being created.
pactivity_template_id Pointer to the new activity template ID for the activity
template created.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE



XIX

WMOpenActivityTemplate (Interface 1)
(belongs to Activity Template Modelling Functions in Interface 1)

NAME
WMOpenActivityTemplate — Prepares for editing of an activity template.

DESCRIPTION
This command tells the Enactment Service to prepare for editing of the specified activity

template.

WMEmnRetType WMOpenActivityTemplate (
in WMTPSessionHandle psession_handle,
n WMTPActivityTemplate pactivity_template,
out  WMTPEntity pactivity_template_handle

)
Argument Description
psession_handle Pointer to the structure with the session information cre-
ated by a call to WMConnect.
pactivity_template Pointer to a structure containing the activity template to be
edited.

pactivity_template_handle Pointer to a buffer which will receive the entity represent-
ing the activity template.

ERROR RETURN VALUE
WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE



XX

WMCloseActivityTemplate (Interface 1)

(belongs to Activity Template Modelling Functions in Interface 1)

NAME

WMCloseActivityTemplate — Allows the system to free up any resources that are
maintained to handle the activity template.

DESCRIPTION

WMErrRetType WM CloseA ctivity Template (

in WMTPSessionHandle psession_handle,
in WMTPEntity pactivity_template_handle

)
Argument Description
psession_handle Pointer to the structure with the session information cre-

ated by a call to WMConnect.

pactivity_template_handle Pointer to a buffer which receives the contents of the activ-
ity template. It is assumed that the entity representing the
activity template becomes inaccessible once the activity
template is closed.

ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE



XX1

WM CCreateClassificationCategory (Interface 1)

(belongs to Classification Category Definition Functions in Interface 1)
NAME

WMCreateClassificationCategory — Creates a new classification category.
DESCRIPTION

WMETrnRetType WM CreateClassificationCategory (
in WMTPSessionHandle psession_handle,

in WMTText classification_category_name,
out WMTPClassificationCategoryID pclassification_category_id
)
Argument Description
psession_handle Pointer to the structure with the session informa-
tion created by a call to WMConnect.
classification_category_name The name for the classification category that is be-
ing created.
pclassification_category_id Pointer to the new classification category ID for

the classification category created.
ERROR RETURN VALUE

WM_SUCCESS
WML_INVALID_SESSION_HANDLE



XXII

WMDeleteClassificationCategory (Interface 1)

(belongs to Classification Category Definition Functions in Interface 1)
NAME

WMDeleteClassificationCategory — Deletes a classification category.
DESCRIPTION

WMETrrRetType WMDeleteClassificationCategory (

in WMTPSessionHandle psession_handle,
in WMTPClassificationCategoryID pclassification_category_id

)
Argument Description
psession_handle Pointer to the structure with the session information cre-

ated by a call to WMConnect.
pclassification category id Pointer to the classification category ID for the classifica-
tion category to be deleted.

ERROR RETURN VALUE
WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_CLASSIFICATION_CATEGORY



XXIIT

WM AssignActivity TemplateClassificationCategory (Interface 1)
(belongs to WAPI Activity Template Modelling Functions)

NAME

WM AssignActivity TemplateClassificationCategory — Assigns an activity template to
a classification category.

DESCRIPTON

Note that this function can be executed repeatedly to assign an activity template to more
than one classification category.

WMTErRetType WM AssignA ctivity TemplateClassificationCategory (
in WMTPSessionHandle psession_handle,
in WMTPActivityTemplateID pactivity_template_id,
in WMTPClassificationCategoryID pclassification_category_id

)

Argument Name Description

psession_handle Pointer to a structure containing information about
the context for this action.

pactvity_template_id Pointer to the ID of the activity template that is to
be assigned to a classification category.

pclassification_category__id Pointer to the ID of the classification category to
which the activity template is to be assigned.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_INVALID_CLASSIFICATION_CATEGORY



XXIV

WMDetractActivity TemplateClassificationCategory (Interface 1)
(belongs to WAPI Activity Template Modelling Functions)

NAME

WMDetractActivityTemplateClassificationCategory — Detracts an activity template
from a classification category.

DESCRIPTION

WMTErmnRetType WMDetractActivityTemplateClassificationCategory (
in WMTPSessionHandle psession_handle,
in WMTPACctivityTemplateID pactivity_template_id,
in WMTPClassificationCategoryID pclassification_category_id

)

Argument Name Description

psession_handle Pointer to a structure containing information about
the context for this action.

pactvity_template_id Pointer to the ID of the activity template that is to
be detracted from a classification category.

pclassification_category_id Pointer to the ID of the classification category from
which the activity template is to be detracted.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_INVALID_CLASSIFICATION_CATEGORY



XXV

WMAssignProcDefClassificationCategory (Interface 1)
(belongs to WAPI Process Modelling Functions)

NAME

WMAssignProcDefClassificationCategory — Assigns a process definition to a classifi-
cation category.

DESCRIPTON

Note that this function can be executed repeatedly to assign a process definition to more
than one classification category.

WMTErRetType WM AssignProcDefClassificationCategory (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPClassificationCategoryID pclassification_category_id

)

Argument Name Description

psession_handle Pointer to a structure containing information about
the context for this action.

pproc_def _id Pointer to the ID of the process definition that is to
be assigned to a classification category.

pclassification_category_id Pointer to the ID of the classification category to
which the process definition is to be assigned.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WML_INVALID_PROCESS_DEFINITION
WM_INVALID_CLASSIFICATION_CATEGORY



XXVI

WMDetractProcDefClassificationCategory (Interface 1)
(belongs to WAPI Process Modelling Functions)

NAME

WMDetractProcDefClassificationCategory ~ Detracts a process definition from a
classification category.

DESCRIPTION

WMTErRetType WMDetractProcDefClassificationCategory (
in WMTPSessionHandle psession_handle,
in WMTPProcDefID pproc_def_id,
in WMTPClassificationCategorylD pclassification_category_id

)

Argument Name Description

psession_handle Pointer to a structure containing information about
the context for this action.

pproc_def_id Pointer to the ID of the process definition that is to
be detracted from a classification category.

pclassification_category_id Pointer to the ID of the classification category from
which the process definition is to be detracted.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_DEFINITION
WML_INVALID_CLASSIFICATION_CATEGORY



XXVII

A.3.2 Deleting Activities and Templates

WMDeleteActivityInstance
(belongs to WAPI Activity Control Functions)

NAME
WMDeleteActivityInstance - Deletes an activity instance.
DESCRIPTION
WMTErRetType WMDeleteA ctivityInstance (
in WMTPSessionHandle psession_handle,

in WMTPProcInstID pproc_inst_id,
in WMTPActivitylnstID pactivity_inst_id)

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance that is to be de-
leted.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE

Note: More ERROR RETURN VALUE to be added. E.g., Detect the deletion of an
activity instance providing an attribute that is required by another activity instance in the
process instance.



XXVIIL

WMDeleteA ctivityTemplate (Interface 1)
(belongs to Activity Template Modelling Functions in Interface 1)

NAME

WMDeleteActivityTemplate — Deletes an activity template.
DESCRIPTION

WMETrnRetType WMDeleteA ctivityTemplate (

in WMTPSessionHandle psession_handle,
in WMTPACctivityTemplateID pactivity_template_id

)

Argument Description

psession_handle Pointer to the structure with the session information cre-
ated by a call to WMConnect.

pactivity_template_id Pointer to the activity template ID for the activity template
to be deleted.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE



XXIX

A.3.3 Moving Activity Instances

WMMoveActivityInstance

(belongs to WAPI Activity Control Functions)

NAME

WMMoveActivityInstance — Moves an existing activity instance from its original place
between two groups of activity instances.

DESCRIPTION

WMTErRetType WMMoveActivitylnstance (
in WMTPSessionHandle psession_handle,
in WMTPProclnstID pproc_inst_id,
in WMTPACctivitylnstID pactivity_inst_id,
in WMTPACctivityInstID[] pbefore_activity_inst_id,
in WMTPACctivityInstID[] pafter_activity_inst_id

)

Argument Name
psession_handle
pproc_inst_id
pactivity_inst_id
pbefore_activity_inst_id

pafter_activity_inst_id

ERROR RETURN VALUE

WM_SUCCESS

Description

Pointer to a structure containing information about the
context for this action.

Pointer to a structure containing a unique process instance
ID.

Pointer to the ID of the activity instance that is to be
moved.

Pointer to the activity instance ID which is determined to
be before the moved activity instance.

Pointer to the activity instance ID which is determined to
be after the moved activity instance.

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_BEFORE_INSTANCES
WM_INVALID_AFTER_INSTANCES



XXX

A.3.4 Setting and Updating Attribute Values

WM AssignActivityInstanceAttribute (already existing in [WfMC98], p. 52)
(belongs to WAPI Activity Control Functions)

NAME

WM AssignActivityInstanceAttribute — Sets or changes attribute values.

DESCRIPTION

WMTErmRetType WM AssignA ctivityInstanceAttribute (
in WMTPSessionHandle psession_handle,
n WMTPProcInstID pproc_inst_id,
in WMTPACctivityInstID pactivity_inst_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value

)

Argument Name
psession_handle
pproc_inst_id
pactivity_inst_id
pattribute_name
attribute_type

attribute_length
pattribute_value

ERROR RETURN VALUE

WM_SUCCESS

Description

Pointer to a structure containing information about the
context for this action.

Pointer to a structure containing a unique process instance
ID.

Pointer to the ID of the activity instance for which the at-
tribute will be assigned.

Pointer to the name of the attribute.

Type of the attribute.

Length of the attribute value.

Pointer to a buffer area where the attribute value will be
placed.

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED



XXXI

WMAssignActivityTemplateAttributeValue (Interface 1)
(belongs to WAPI Activity Template Manipulation Functions)

NAME
WMAssignActivity TemplateAttributeValue - Sets an attribute of an activity template.

DESCRIPTION

WMTErnRetType WMAssignActivityTemplateAttribute (
in WMTPSessionHandle psession_handle,
n WMTPActivityTemplate pactivity_template,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pactivity_template Pointer to a structure containing the activity template from
which the attribute is being retrieved.

pattribute_name Pointer to the name of the attribute to put the value into.

attribute_type Type of the attribute.

attribute_length Length of the attribute value.

pattribute_value Pointer to a buffer area where the attribute value will be
placed.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED



XXXII

A.3.5 Inserting Attributes

WMiInsertActivityInstanceAttribute
(belongs to WAPI Activity Control Functions)

NAME

WMInsertActivityInstanceAttribute — Inserts a new attribute into an activity instance.

DESCRIPTION

WMTErmrRetType WM AssignActivityInstanceAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProclInstID pproc_inst_id,
in WMTPACctivityInstID pactivity_inst_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length

)
Argument Name
psession_handle

pproc_inst_id
pactivity_inst_id

pattribute_name
attribute_type
attribute_length

Description

Pointer to a structure containing information about the context for
this action.

Pointer to a structure containing the unique process instance ID.
Pointer to a structure containing the activity instance identification
for which the attribute will be assigned.

Pointer to the name of the attribute.

Type of the attribute.

Length of the attribute value.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_INSERTION_FAILED



P

XXXIII

WMInsertActivityTemplateAttribute (Interface 1)
(belongs to WAPI Activity Template Manipulation Functions)

NAME
WMInsertActivity TemplateAttribute — Insert a new attribute into an activity template.
DESCRIPTION

Note that at the moment only fully specified attributes (name, type and length) can be
inserted into an activity template.

WMTErRetType WMInsertActivityTemplateAttribute (
in WMTPSessionHandle psession_handle,
in WMTPACctivityTemplateID pactivity_template_id,
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pactivity_template_id Pointer to a structure containing the activity template iden-
tification for which the attribute will be assigned.

pattribute_name Pointer to the name of the attribute.

attribute_type Type of the attribute.

attribute_length Length of the attribute value.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_INVALID_ATTRIBUTE
WM_ATTRIBUTE_INSERTION_FAILED



XXXIV

A.3.6 Deleting Attributes

WMDeleteActivityInstanceAttribute
(belongs to WAPI Activity Control Functions)

NAME

WMDeleteActivityInstanceAttribute — Deletes an attribute assigned to an activity in-
stance.

DESCRIPTION

WMTEmrRetType WMDeleteActivityInstanceAttribute (
in WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPACctivityInstID pactivity_inst_id,
n WMTPAttrName pattribute_name

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance the attribute is
assigned to.

pattribute_name Pointer to the name of the attribute to be deleted.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_ATTRIBUTE



P
\
\

XXXV

WMDeleteA ctivity TemplateAttribute (Interface 1)
(belongs to WAPI Activity Template Manipulation Functions)

NAME

WMDeleteActivityTemplateAttribute — Deletes an attribute assigned to an activity
template.

DESCRIPTION

WMTErmRetType WMDeleteA ctivityTemplateAttribute (
n WMTPSessionHandle psession_handle,
in WMTPACctivityTemplateID pactivity_template_id,
in WMTPAttrName pattribute_name

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pactivity_template_id Pointer to the ID of the activity template the attribute is
assigned to.

pattribute_name Pointer to the name of the attribute to be deleted.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_INVALID_ATTRIBUTE



XXXVI

A.3.7 Role/User Assignment

WMAssignActivitylnstanceParticipants
(belongs to WAPI Activity Control Functions)

NAME

WMAssignActivityInstanceParticipants — Assigns one or up to ten workflow partici-
pants to an activity instance.

DESCRIPTION

WMTEnmnRetType WM AssignActivityInstanceParticipants (
in WMTPSessionHandle psession_handle,
in WMTPWf{lParticipant[] pparticipants[10],
in WMTPProclInstID pproc_inst_id,
in WMTPACctivityInstID pactivity_inst_id

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pparticipants[10] The identification of the workflow participant(s) who are
to be assigned.
A field of the array is NULL for every participant less than
10.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance to which the par-
ticipant(s) are to be assigned.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_INVALID_WORKFLOW_PARTICIPANT



XXXVII

WM AssignA ctivityTemplateParticipants (Interface 1)
(belongs to WAPI Activity Template Manipulation Functions)

NAME

WM AssignActivityTemplateParticipants — Assigns one or up to ten workflow partici-
pants to an activity template.

DESCRIPTION

WMTErRetType WM AssignA ctivityTemplateParticipants (
in WMTPSessionHandle psession_handle,
in WMTPWflParticipant[] pparticipants[10],

n WMTPACctivityTemplateID pactivity_template_id

-~

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pparticipants{10] The identification of the workflow participant(s) who are
to be assigned.
A field of the array is NULL for every participant less than
10.

pactivity_template_id Pointer to the ID of the activity template to which the par-
ticipant(s) are to be assigned.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_INVALID_WORKFLOW_PARTICIPANT



XXXVIII

A.3.8 Time Attributes Assignment

WM AssignA ctivityInstanceDuration
(belongs to WAPI Activity Control Functions)

NAME
WM AssignActivityInstanceDuration — Assigns a duration to an activity instance.
DESCRIPTION

WMTErrRetType WM AssignA ctivityInstanceDuration (
n WMTPSessionHandle psession_handle,
in WMTPProcInstID pproc_inst_id,
in WMTPACctivityInstID pactivity_inst_id,
in WMTInt32 duration_limit_type,
in WMTPInt16 pduration_value

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance to which the dura-
tion is to be assigned.

duration_limit_type Limit type of the duration, minimum or maximum duration.

pduration_value Pointer to a buffer area where the duration value will be
placed.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_DURATION_ASSIGNMENT_FAILED



XXXIX

WMAssignActivityInstanceTime
(belongs to WAPI Activity Control Functions)

NAME

WMAssignActivityInstanceTime — Assigns a (starting, finishing) time to an activity
instance.

DESCRIPTION

WMTErRetType WM AssignActivityInstanceTime (
in WMTPSessionHandle psession_handle,
in WMTPProclnstID pproc_inst_id,
in WMTPACctivitylnstID pactivity_inst_id,
in WMTInt32 time_period_type,
in WMTPDate ptime_value
)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance to which the time
is to be assigned.

time_period_type Period type of the time, earliest/latest starting/finishing
time.

ptime_value Pointer to a buffer area where the time value will be
placed.

ERROR RETURN VALUE

WM_SUCCESS

WML_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_TIME_ASSIGNMENT_FAILED



WMAssignActivityInstanceWUT
(belongs to WAPI Activity Control Functions)

NAME

WMAssignActivityInstanceWUT - Assigns a warm-up duration to an activity in-
stance.

DESCRIPTION

WMTErRetType WM AssignA ctivityInstance WUT (
in WMTPSessionHandle psession_handle,
in WMTPProclnstID pproc_inst_id,
in WMTPACctivityInstID pactivity_inst_id,
in WMTInt32 wut_limit_type,
in WMTPInt16 pwut_value
)

Argument Name Description

psession_handie Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pactivity_inst_id Pointer to the ID of the activity instance to which the
warm-up duration is to be assigned.

wut_limit_type Limit type of the duration, minimum or maximum warm-up
duration.

pwut_value Pointer to a buffer area where the warm-up duration value
will be placed.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_ACTIVITY_INSTANCE
WM_WUT_ASSIGNMENT_FAILED



WM AssignActivityTemplateDuration (Interface 1)
(belongs to WAPI Activity Template Attribute Manipulation Functions)

NAME
WM AssignActivityTemplateDuration — Assigns a duration to an activity template.

DESCRIPTION

WMTEmrRetType WM AssignActivityTemplateDuration (
in WMTPSessionHandle psession_handle,
n WMTPActivityTemplateID pactivity_template_id,
in WMTInt32 duration_limit_type,
in WMTPInt 16 pduration_value

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pactivity template_id Pointer to a structure containing the activity template iden-
tification for which the duration will be assigned.

duration_limit_type Limit type of the duration, minimum or maximum duration.

pduration_value Pointer to a buffer area where the duration value will be
placed.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_DURATION_ASSIGNMENT_FAILED



XL

WMAssignActivityTemplateTime (Interface 1)
(belongs to WAPI Activity Template Attribute Manipulation Functions)

NAME

WMAssignActivityTemplateTime — Assigns a (starting, finishing) time to an activity
template.

DESCRIPTION

WMTErmnRetType WM AssignActivityTemplateTime (
in WMTPSessionHandle psession_handle,
in WMTPACctivityTemplateID pactivity_template_id,
in WMTInt32 time_period_type,
in WMTPDate ptime_value

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pactivity_template_id Pointer to a structure containing the activity template iden-
tification for which the time will be assigned.

time_period_type Period type of the time, earliest/latest starting/finishing
time.

ptime_value Pointer to a buffer area where the time value will be
placed.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_TIME_ASSIGNMENT _FAILED



XLIII

WM AssignActivityTemplateWUT (Interface 1)
(belongs to WAPI Activity Template Attribute Manipulation Functions)

NAME

WMAssignActivityTemplateWUT — Assigns a warm-up duration to an activity tem-
plate.

DESCRIPTION

WMTErnRetType WM AssignActivityTemplateWUT (
in WMTPSessionHandle psession_handle,
in WMTPActivityTemplateID pactivity_template_id,
in WMTInt32 wut_limit_type,
in WMTPInt 16 pwut_value

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pactivity_template_id Pointer to a structure containing the activity template iden-
tification for which the warm-up duration will be assigned.

wut_limit_type Limit type of the duration, minimum or maximum warm-up
duration.

pwut_value Pointer to a buffer area where the warm-up duration value
will be placed.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_ACTIVITY_TEMPLATE
WM_WUT_ASSIGNMENT_FAILED



XLIV

A.3.9 Keeping Modified Process Instances

WMKeepProcessinstance
(belongs to WAPI Process Control Functions)

NAME

WMKeepProcessInstance — Stores the process definition corresponding to a modified
process instance.

DESCRIPTION

WMTErrRetType WMKeepProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPProclInstID pproc_inst_id,
out  WMTPProcDefID pproc_def_id

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing a unique process instance
ID.

pproc_def_id Pointer to the ID of the new process definition.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
Note: Is it possible that the process definition could not be created for another reason?



XLV

A.3.10 Inserting Sub-Workflows

WMlInsertProcInstance
(belongs to WAPI Process Control Functions)

NAME

WMInsertProcInstance — The process instance provided is inserted into another proc-
ess instance as a subworkflow.

DESCRIPTION

Note that the process instance has to start with a single start activity and end with one
single end activity.
One single activity that represents both the start and the end activity is also allowed.

WMTEmrRetType WMInsertProcessInstance (
in WMTPSessionHandle psession_handle,
in WMTPProclnstID phest_proc_inst_id,
in WMTPProclnstID pinsert_proc_inst_id,
in WMTPACctivityInstID[] pbefore_activity_inst_id,
in WMTPACctivitylnstID[] pafter_activity_inst_id

)
Argument Name Description
psession_handle Pointer to a structure containing information about the
context for this action.
phost_proc_inst_id Pointer to a structure containing the unique ID of the proc-
ess instance in which the sub-workflow is to be inserted.
pinsert_proc_inst_id Pointer to a structure containing the unique ID of the proc-

ess instance which is to be inserted.
pbefore_activity_inst_id[] Pointer array to the activity instance IDs that are deter-

mined to be before the newly inserted activity instance.
pafter_activity_inst_id[] Pointer array to the activity instance IDs that are deter-

mined to be after the newly inserted activity instance.

ERROR RETURN VALUE

WM_SUCCESS
WML_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_BEFORE_ACTIVITY_INSTANCE
WM_INVALID_AFTER_ACTIVITY_INSTANCE



XLVI

A.3.11 Managing Work-lists

WMReassignWorklItem (already existing in [WfMC98], p. 73)
(belongs to WAPI Work-list/Work-item Handling Functions)

NAME

WMReassignWorkItem — Reassigns a work-item from one workflow participant’s
work-list to another workflow participant’s work-list.

DESCRIPTION

WMTErrRetType WMReassignWorklItem (
in WMTPSessionHandle psession_handle,
in WMTPWf(lParticipant psource_user,
in WMTPWflParticipant ptarget_user,
in WMTPProclInstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

psource_user The identification of a workflow participant from which
work is to be reassigned.

ptarget_user The identification of a workflow participant to whom work
is to be assigned.

pproc_inst_id Pointer to a structure containing the unique ID of the proc-
ess instance.

pwork_item_id Pointer to a structure containing the unique ID of the work

item that is to be reassigned.
ERROR RETURN VALUE

WM_SUCCESS
WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM
WM_INVALID_SOURCE_USER
WM_INVALID_TARGET_USER



XLVII

WMAssignWorklItemA ttribute (already existing in [WMC98], p. 78)
(belongs to WAPI Work-list/Work-item Handling Functions)

NAME

WMAssignWorkItemAttribute — Sets or updates the value of an attribute of a work-

item.

DESCRIPTION

WMTErmnRetType WMAssignWorkItemA ttribute (
in WMTPSessionHandle psession_handle,
in WMTPProclnstID pproc_inst_id,
in WMTPWorkItemID pwork_item_id
in WMTPAttrName pattribute_name,
in WMTInt32 attribute_type,
in WMTInt32 attribute_length,
in WMTPText pattribute_value

)
Argument Name
psession_handle
pproc_inst_id
pwork_item_id
pattribute_name
attribute_type

attribute_length
pattribute_value

ERROR RETURN VALUE

WM_SUCCESS

Description

Pointer to a structure containing information about the
context for this action.

Pointer to a structure containing the unique ID of the proc-
ess instance.

Pointer to a structure containing the unique ID of the work
item for which an attribute will be set or updated.

Pointer to the name of the attribute.

Type of the attribute.

Length of the attribute value.

Pointer to a buffer area where the attribute value will be
placed.

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM
WML_INVALID_ATTRIBUTE
WM_ATTRIBUTE_ASSIGNMENT_FAILED



XLVIII

WMDeleteWorkItem
(belongs to WAPI Work-list/Work-item Handling Functions)

NAME
WMDeleteWorkItem — Deletes a work-item in a given work-list.
DESCRIPTION
WMTErnRetType WMDeleteWorkItem (
in WMTPSessionHandle psession_handle,

in WMTPProclInstID pproc_inst_id,
in WMTPWorkltemID pwork_item_id

)

Argument Name Description

psession_handle Pointer to a structure containing information about the
context for this action.

pproc_inst_id Pointer to a structure containing the unique ID of the proc-
ess instance.

pwork_item_id Pointer to a structure containing the unique ID of the work
item that is to be deleted.

ERROR RETURN VALUE

WM_SUCCESS

WM_INVALID_SESSION_HANDLE
WM_INVALID_PROCESS_INSTANCE
WM_INVALID_WORKITEM



XLIX

A.4 WAPI Data Types Addendum

Activity Template Data Types
typedef struct

{
WMTText activity_template_id[UNIQUE_ID_SIZE];
} WMTActivityTemplatelD;

typedef WMTActivityTemplateID *WMTPActivityTemplatelD;

typedef struct

{

// This is the minimum list of elements at this time.

// Future versions to provide extensibility for this structure.
WMTText activity_template_name[NAME_STRING_SIZE];
WMTActivityTemplateID activity_template_id;

} WMTActivityTemplate;

typedef WMTActivityTemplate *WMTPActivity Template;

Classification Category Data Types
typedef struct

{
WMTText classification_category_id[UNIQUE_ID_SIZE];
} WMTClassificationCategoryID;

typedef WMTClassificationCategorylD *WMTPClassificationCategoryID;

typedef struct

{
WMTText classification_category_name[UNIQUE_ID_SIZE];

WMTClassificationCategorylD classification_category_id;
} WMTClassificationCategory;

typedef WMTClassificationCategory *WMTPClassificationCategory;

Process Definition Data Types

typedef struct

{
// This definition extends the definition of WMTProcDef



// given in the document [WfMC98], p. 14.

// Two new elements are added:

// The new element ancestor_proc_def_id contains the ID of the former process instance,
/1 if the latter has been modified to create the one at hand.

// This element is NULL, if there is no such ancestor.

WMTText process_name[NAME_STRING_SIZE},
WMTProcDeflD proc_def_id;

WMTProcDefState state;

WMTProcDefID ancestor_proc_def_id;

} WMTProcDef;

Association Data Types

typedef struct

{
WDMTClassificationCategoryID classification_category_id;

WMTProcDefID proc_def _id;
} WMT AssociationProcDefClassificationCategory;

typedef struct

{
WMTClassificationCategorylD classification_category_id;

WMTActivityTemplateID activity_template_id;
} WMT AssociationActivityTemplateClassificationCategory;

Time Data Types

typedef WMTUInt32 WMTDate;
typedef WMTDate *WMTPDate;



LI

A.5 WAPI Error Return Codes Addendum

WML_INVALID_ACTIVITY_TEMPLATE
Indicates that the activity template ID that was passed as a parameter to an API
call was not valid, or it was not recognized by the servicing workflow engine.

WM_INVALID_CLASSIFICATION_CATEGORY
Indicates that the classification category ID that was passed as a parameter to an
API call was not valid, or it was not recognized by the servicing workflow en-
gine.

WM_INVALID_BEFORE_INSTANCES
Can occur when an activity instance is inserted or moved.
Indicates that provided IDs for activity instances that are to be before the in-
serted/moved activity instance are not valid. Le. the activity instance to be in-
serted or moved cannot be placed behind one or more of the specified before in-
stances.

WML_INVALID_AFTER_INSTANCES
Can occur when an activity instance is inserted or moved.
Indicates that provided IDs for activity instances that are to be after the in-
serted/moved activity instance are not valid. Le. the activity instance to be in-
serted or moved cannot be placed before one or more of the specified before in-
stances.

WM_INVALID_WORKFLOW_PARTICIPANT
Indicates that at least one of the participants that was passed (in an array) as a pa-
rameter to an API call was not valid, or was not recognized by the servicing
workflow engine.

WM_ATTRIBUTE_INSERTION_FAILED
Indicates that the workflow engine was not able to complete the attribute inser-
tion requested.

WM_DURATION_ASSIGNMENT_FAILED
Indicates that the workflow engine was not able to complete the duration assign-
ment requested.

WM_TIME_ASSIGNMENT_FAILED
Indicates that the workflow engine was not able to complete the time assignment
requested.

WM_WUT_ASSIGNMENT_FAILED
Indicates that the workflow engine was not able to complete the WUT assign-
ment requested.



LII

[BRK+03]

[WIMC95]

[WIMC98]

[WIMCO04]

References of Appendix A

Bassil, S., Rolli, D., Keller, R.K., and Kropf, P., Extending the Workflow
Reference Model to Accommodate Dynamism: Workflow Management
Application Programming Interface (Interfaces 1, 2, and 3) Specification.
Technical Report GELO-152, Université de Montréal, Canada, March
2003.

Workflow Management Coalition, The Workflow Reference Model.
WFMC-TC-1003, Version 1.1, January 1995. On-line at <http://
www.wfmc.org/standards/docs/tcO03v1 1.pdf>.

Workflow Management Coalition, Workflow Management Application
Programming Interface (Interface 2&3) Specification. WFMC-TC-1009,
Version 2.0, July 1998. On-line at <http://www.wfmc.org/standards/docs/
if2v20.pdf>.

The Workflow Management Coalition (2004). On-line at <http://
www.wimc.org>.



