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Résumé

La recherche documentaire modemne est une discipline en expansion. Un systéme de
recherche documentaire identifie automatiquement les documents pertinents dans de
grandes collections selon les besoins d'information de l'utilisateur. Cependant, l'utilisateur
peut ne fournir que des questions imprécises. Ainsi, il va recevoir en réponse un trés
grand ensemble de documents. Pour réduire le nombre de documents inappropriés
retrouvés par un systéme, plusieurs méthodes ont été proposées pour d'améliorer la
requéte, en y ajoutant des mots-clés additionnels pour augmenter la spécificité de la
requéte.

Des régles d'association ont été présentées comme approche pour des dépendances entre
les eéléments dans des bases de données de transactions commerciales. Elles représentent
un cadre particuliérement approprié pour l'extraction des dépendances entre les mots-clés
d'un corpus textuel. De leur coté, les treillis de Galois fournissent une base théorique pour
I'extraction de régles d'association a partir d'un ensemble de données.

Dans ce mémoire nous étudions une approche par treillis de Galois pour l'extraction de
régles entre termes en vue d'une expansion de requéte. Nous développons des méthodes
d'extraction de régles et d'expansion de requéte. Un probléme important ici est d'affecter
des poids aux nouveaux mots-clés qui seront ajoutés a la requéte. Nous avons effectué
diverses expérimentations pour trouver des stratégies appropriées pour ceci. Selon nos
expérimentations, l'application des régles d'association dans l'expansion de requétes
apporte quelques améliorations, mais nombreux problémes restent encore a résoudre
avant que les régle d'association puissent étre utilisées pour améliorer la performance de

la recherche d'information.

Mots clés : régles d'association, treillis de Galois, treillis iceberg, I'expansion de requéte,

recherche d'information
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Abstract

Modern information retrieval is a rapidly expanding discipline. Using algorithmically
derived search engines, information retrieval systems automatically identify and select
documents from large document collections according to the user information need.
However, the user may only be able to provide simple and inaccurate queries and thus get
in return a very large set of documents. To reduce the number of irrelevant documents
retrieved by a system, different strategies were proposed to improve the query, in

particular, by joining in additional keywords to increase the specificity of the query.

Association rules have been introduced as'an approach to the discovery of dependencies
between items in transaction databases. In fact, they represent a particularly suitable
framework for keyword dependency mining from a textual corpus. Galois lattices provide,

in turn, a theoretical basis for the extraction of association rules from a dataset.

In this thesis, we study a Galois lattice-based approach for rule mining for query
expansion and we design methods to implement it. One important problem proved to be
the assignment of weights to the new keywords that will be added to a query. We did
many experiments to find suitable strategies for weight computation. According to the
experimental results, the application of association rules to query expansion can slightly
improve the system performance. However, there are still important problems to be

solved before the association rules could be used effectively in IR practice.

Key words:
Association rule mining, query expansion, information retrieval, Galois lattice, iceberg

lattice.
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Chapter 1 Introduction

Modern information retrieval is a rapidly expanding discipline, driven by the ever
growing amount of available textual documents, in particular on the Web, but also in
electronic libraries and documentary data bases of the large corporations. Using
algorithmically derived search engines, information retrieval systems or search engines
try to automatically identify and select the relevant documents from large document
collections according to the user information need. A search is successful if it returns as
many relevant documents as possible and as few non-relevant ones as possible. For
most of the search engines at present, users have to submit a query to search documents.
In these cases, the user information need is represented by a query in a search engine.
Unfortunately the users are not always capable of formulating well-defined queries to
represent their information need. They may only be able to provide simple and
inaccurate queries and thus get in return a very large set of documents. The
effectiveness of the information retrieval system will therefore be very poor. Improving
the user’s queries becomes a very important task of the IR system. For that purpose, the
correlations between keywords can be explored. The resulting approach consists in
expanding initial user queries, by joining in additional keywords to increase the
specificity or the coverage of the query. By automatically expanding queries one tries to

provide additional information so as to obtain a more accurately formulated queries.

Our work described in this thesis aims to expand queries automatically. Our query
expansion strategy is based on the term co-occurrences. Various methods exploiting
term co-occurrences for query expansion have been proposed. In these methods the
relationships between terms are bi-directional. That is, if there is a relation between
“database” and “data structure”, then the reverse relation is also assumed. From a query

expansion perspective, if it is reasonable to expand a query on “database” by adding
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“data structure”, it may not be the case in the reverse direction. In our application the
relations between terms are asymmetrical or directional. Some terms are premise and
others are treated as consequence. This is equivalent to considering a relationship
between terms as a logical implication. We think that if we can find meaningful rules in
our application then we can get a more relevant result by applying them in the process
of query expansion. The interpretation of the rules may make the process more
reasonable. If it is the case then the technique can also be used to interact with users to

get better results.

The relations between terms are expressed as association rules in our study. Association
rules have been introduced as an approach to the discovery of dependencies between
items in transaction databases. We believe that they represent a particularly suitable
framework for keyword dependency mining from a textual corpus. However, a well
known problem with association rule miners is the large number of discovered rules,
which can contain much noise. Galois lattices provide a theoretical basis for mining
association rules which helps reduce the number of rules that can be extracted from a
dataset, while preserving the global amount of knowledge gained. Furthermore, non-
redundant bases can be constituted as a minimal representation of the complete set of
association rules.

Our aim is to study the Galois lattice-based approach to extract important association
rules, and to use them in information retrieval. More precisely, the goal is to design
effective methods which implement the approach while keeping the scalability and the
efficiency of the classical retrieval and expansion techniques. As the utilization of
Galois lattice in IR have not been extensively investigated, our study will provide some

preliminary indication on the usefulness of Galois lattices for query expansion in IR.
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One of the key difficulties in information retrieval is the assignment of weights to the
keywords in the query. When we find the new keywords to be added to the query we
have to assign weights to the new keywords. Unfortunately, there are no available
guidelines to follow. The weights of the original keywords, the support and confidence
values of the association rules that suggested the addition of a keyword are factors that
contribute to the weight computation. We design a series of experiments and try to find

a reasonable strategy for the task.

The thesis is structured as follows. In Chapter 2 we introduce the theoretical foundation

of information retrieval discipline. First, we present the general process of information

retrieval. We also explain the #f xidf weighting scheme and vector space model in

detail. The vector space model is a widely used model to measure the similarity of a
document and a query. It is implemented in the SMART system, which is briefly
described since it is used in our experiments. In the same chapter we also show how to
measure the system performance in terms of precision and recall. In Chapter 3 the
foundations of the association rule mining problem is explained. We introduce in detail
the Galois lattice and iceberg lattice, which consists of only the top-most concepts of a
concept lattice. We also describe the algorithms to construct the lattice and their
implementations. We introduce the Galicia platform [VGRH2003]. The algorithms are
implemented in this platform and all the association rules are generated by the platform.
Two algorithms for lattice construction are described in Chapter 3: Bordat [B1986]
algorithm and incremental algorithm [VHM2003]. The first algorithm is a classical one.
We did several modifications to make it easy to integrate into the Galicia platform and
to generate iceberg lattices. Incremental algorithms have been developed in recent years.
It makes sense since it reflects the fact that in most cases the document collections are
dynamic. New documents will be added into the collections from time to time. These

algorithms can avoid reconstructing the whole lattice from beginning every time there
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are new documents added into the collection. Chapter 4 shows an application of
association rules in query expansion. We describe the process of query expansion and
the algorithm implemented for it. Several experimental results are presented in Chapter
5 and we also make an analysis based on the results. We got a slight improvement of
system performance in the experiments. We may conclude that the association rules can
help query expansion. However, in order fully to benefit from the advantages of the
data mining mechanisms, a set of problems need to be solved. In Chapter 6 we propose

several future research avenues.
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Chapter 2 Information retrieval

2.1 Information retrieval

2.1.1 Introduction

Information retrieval is a science about the representation, storage, organization and
accessing of information items [SM1988]. Although information retrieval systems are
traditionally used to process bibliographic records and textual data, there is no
restriction on the type of information items. The representation and storage of
information items should help the users access the information easily. There may be
many information items available. People may be interested in only part of them and
different people may have different interests. An information retrieval system should
provide the user with a convenient and effective way to access the information he is

interested in.

To illustrate the whole information retrieval process first we give some definitions. A
database or a document collection is a collection of documents. Here we only discuss
text documents. A document is a sequence of words. It is written in a natural language
such as English or French. A term is a unit extracted from a document in an indexing
process. It represents a part of the document content. A term can be a word, or just a
root of a word. It can also be a more complex element such as a compound term or a
phrase. In this thesis, we will only deal with single words or roots of words. A query is
a request to the database for finding documents relevant to some topic. Generally a
query is also represented as a sequence of terms.

The information retrieval process can be separated into several steps, as shown in

Figure 2.1.1. [BR1999]
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Step 1: Define the text database. This step specifies the collection of documents to be
used and the text model. The text model provides the structure of the text and it also
determines what elements can be retrieved. In this step, text operations transform the
original text and generate a logical view of the documents.

Step 2: Build the index of the documents. Indexing is critical because it allows fast
searching over a large database. There are several different index structures but the
most popular one is inverted file (See 2.1.2 for more details).

Step 3: The user sends a request (also called user need) in natural language to the
system. The same text operations as in step 1 are also applied to generate the logical
view of the request. Query operations are applied to generate actual query, which is a
system representation of user’s request.

Step 4: The Query is processed to obtain retrieved documents, typically by computing
the similarity, or the likelihood of relevance, of documents to the query.

Step 5: The retrieved documents are ranked according to a likelihood of relevance and
then presented to the user.

There may be some optional operations such as user feedback. We will not deal with

them in this study.
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Figure 2.1.1 Information retrieval process
We will describe in more detail step 2 in Section 2.1.2. Step 4 and 5 will be discussed

in Section 2.1.3.

2.1.2 Automatic indexing

The most crucial and difficult procedure in the process of information retrieval is
indexing. The main task is to select appropriate terms which can represent the content
of the documents. The selection of content identifier must fulfill three requirements:

1. To help locating the documents that the user is interested in.

2. To help the discovery of the relationship between documents, i.e., different

documents dealing with similar or related topic areas.

3. To help the prediction of the relevance of documents to the users requirements.
The indexing task consists of two parts. The first is to select terms capable of
representing document contents. The second is to assign each term a weight to represent

its importance as a content identification.
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Generally terms are extracted from the text of the documents themselves. Inverted file
designs are applied in most information retrieval systems. So our discussion will focus
on such kind of systems. In the inverted file design, a system constructs document
index files and one or more auxiliary files storing the so called inverted index. The

inverted index associates with each indexing term the list of documents containing the

term. Thatis, t — {<d,,w, >,<d,,w, >...} . Here, t is a term, d; is a document and w; is

the weight of the term in the document. When a user submits a query composed of one
or more terms, the system searches in the inverted index to find the terms and their
associated document reference numbers. Finally by combining the document reference
lists, the list of required documents is composed, and the references are returned to the
user.

Before indexing, the words in the documents will be pre-processed. First they should be
filtered by a stoplist. A stoplist is a list of uninteresting words in indexing. In English
functional words such as “a, be, have, of” and some common words such as “he, she,
her, here” are included in a stoplist. These words are ignored during the procedure of
indexing. Second, words should be “stemmed” to extract the root of the words. In most
cases, morphological variants of words have similar semantic interpretations and can be
considered as equivalent in information retrieval system. For example, the words
“transform, transformation, transforming” should be stemmed to a single form

“transform”. After stemming we will get the standard forms of the words.

Once terms are selected, they should be weighted. There are several methods used for

weighting terms. Here we introduce the method based on #f xidf weighting [BR1999].
The tf xidf weighting method takes two ideas into account for term weighting. Here
tf represents the term frequency in a given document. It can be used to measure the

importance of a term in a document. The value idf represents the inverse document
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frequency of the term in the whole document collection. Typically, it is measured by
log(N/n) where N is the total number of documents in the collection and # is the number

of documents that contain the term. It can be used to measure how specific the term is

to a document. So we can use #f Xidf to set the weight of each term. Note that the term

weight needs to be normalized to avoid that a longer document is always given a higher

weight. The following formula is one of the most used # Xidf weighting schemas -

—Costne formula:

w = tf xlog(N/n,)
I @) Xllog(N /n, )T

Where:

w, 1s the weight of term 7, in document D, .

tf, 1s the frequency of term 7, in document D, .

N is the total number of documents in the collection.

n, is the number of documents in the collection that contain 7, .

log(N /n,) is the formula to calculate idf of term 7, .

2.1.3 Vector space model

The Vector space model is one of the most commonly used models to measure the
similarity of document and query [BR1999]. After indexing, each document in a given
collection is represented by a set of terms. When we take the union of all these sets of
terms we get a set of terms that defines a vector space: each term defines a different
dimension. A document vector is defined by the set of terms occurring in it and their

weights determined during the indexing process. If a term does not appear in the
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document, its weight is set to zero. In this way a document D, can be treated as a point
in the document space and the weight of each term in D, represents the coordinate
of D,. That also means that D, can represent a vector from the origin of the document
space to the point defined by the coordinate of D, . That is:

D, =<w,,W,,...,w, >.

i il» in

Here, w,,w,,,...,w,, are the weights of terms7},7,,...T, in documentD,. w, =0 if term

il? im

T, is absent in D, .

So the collection can be represented by a document-term matrix as shown in Table
2.1.1. Each row of the matrix is a document and each column is a term. An element of

the matrix is the weight of the term in the document.

T T, T; T,
D[ Wiqg Wi Wit Wiy
Dg Wy W2 W W,
D; Wil Wiz Wjj Win
D, Wi W2 . Wi . Won

Table 2.1.1 Matrix representation of Collection

Generally a query is specified by the user in natural language. The query will be
processed in the same way as a document. So it is also transformed into a vector in the

vector space. That is:
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O =<w,,W,...., W, >.
Here, w,,,w,,...,w,, are the weights of terms7},7,,...T, in query Q. w,, =0 if term T,

is absent inQ . The weights of terms in a query are compute in the same way as in a

document.

When we have the document vectors and the query vector we can measure the
similarity between them. All the documents can be ranked according to their similarity
values. The document that is most similar to the query gets the highest rank. In the
vector space model we assume that the document most similar to the query will be most
relevant to the query. The usual way to measure the similarity is by the inner product

[BR1999]:
Si”I(D,,Q) = Z(Wlk X qu)
k=1

Remember that all weights are already normalized here by the Cosine formula. Putting

the earlier Cosine formula into the similarity measure, we have:

i(wlk XW,)
Sim(D,,Q) = k

PICAEPACHE

This 1s the cosine of the angle between the document vector and the query vector. After

we calculated the similarity of each document with the query and ranked all the
documents in the reverse order of their similarities, the documents are returned to the

user in the order of their ranking.

2.1.4 System performance evaluation

With respect to a given query, the collection of the documents can be divided into four

groups according to the relevance and the retrieval result, as shown in Table 2.1.2.
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Relevant Non-Relevant
Retrieved A B
Not Retrieved C D

Table 2.1.2 Document Group

Two main measures of system performance can be derived from Table 2.1.2:

Definition 2.1.1 Given a set of documents, Precision is the fraction of relevant

documents retrieved from the total number retrieved.

Precision =
AUBRB

Definition 2.1.2 Given a set of documents, Recall is the fraction of relevant documents

retrieved from the set of total relevant documents.

Recall = L
AuC

Ideally, we hope that a system can give a high value of precision and recall at the same
time. A system with 100% precision and recall values means that it finds all the
relevant documents and only the relevant documents.

Different user queries may get different precision-recall pair values. To evaluate the
performance more accurately the concept of average precision is introduced. The main
idea is to average the precision values of different queries. Two methods are employed

mostly to calculate the average precision.

Method 1:

. 1 y 1
Precision,,, = ——ZPreczszon,. =— :
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Recall —LiRecall ——l—i 4
“ N S ‘" N&4uC

[TXR 3]

Here, N is the number of queries. The subscript “i” represents a particular query i.
Using this method, N queries are sent to the system and the precision and recall values
of each query are recorded. Then we use these values to calculate the average precision

and average recall value of the system.

Method 2:

>4
Precision,,, = ——~——
D> (4 UB)
i=1

N

2.4

5 =1
D(4UC)
i=1

Recall,, =

Using this method, we also send N queries to the system. But we don’t calculate the
precision and recall values of each query. Instead, we record the values of 4, B, C of
each query. Then we calculate the average value of 4, B, C and finally we compute the

average precision and average recall value as a single query.

Precision and recall are not independent. There is a strong relation between them: when
one increases, the other decreases. Measurements of Precision-Recall are not static. A
system does not have only one measurement of Precision-Recall. The behaviour of a
system can vary in favour of precision or of recall. Thus, for a system, there is a curve

of Precision-Recall which has the general form as shown in Figure 2.1.2 [BR1999].
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100 %

precision

0%

0% 100%
recall

Figure 2.1.2 Precision-Recall graph
To draw a Precision-Recall graph, one simply computes the precision at 0.1, 0.2... 1.0
level of recall. The precision-Recall graph shows the trade-off between precision and
recall made by the search algorithm of a system. It shows the system performance at
different operating points. Different users may be interested in different point on the
graph. Mean Average Precision is also defined:

Mean Average Precision = Average of Precisions at 11 points of recall.

2.1.5 Query Expansion

In most of the popular search engines, the user interacts with the system by means of
queries. In order to find as many relevant documents as possible and as few non-
relevant ones as possible, the users should compose their information need accurately in
the form of query which is accepted (or ‘understood’) by the search engine. There are
two major problems in the task. The first is that generally the users can not express their
information needs in a precise way. What they can do is just give an approximate
description of what they want. For example: if a user wants to find some documents

about the new techniques applied in query expansion, he may use only “query
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expansion” as the query. Obviously the search engine will return a very large set of
documents that contain the term “query expansion”. The user may need only part of the
set. In this case the user has to refine his/her query. The second problem is that most
users do not know much about the search engines. Even if they know how to express
their information needs precisely, they do not know how to transform it into the form
that can be understood by the search engine. So, in most cases, their queries are
incomplete and inaccurate. To solve this problem, some information retrieval systems
provide some kind of user interaction that can help the user optimize their query. To
that end, a range of techniques has been deployed, including query expansion, which

adds new terms into the original query to improve search performance.

We divide query expansion research into two major areas according to [QF1993]. The
first one relies on semi-automatic and automatic query expansion techniques. In
automatic query expansion, the system determines a set of related terms to be added
into the original query by using either a thesaurus or by exploiting the documents
returned by the system. The second one is the manual approach. In this approach,
people examine the user’s query and use their experience or other auxiliary tools such
as thesaurus to derive or modify the original query during the query expansion. In my
thesis 1 will focus on the automatic query expansion.

Our query expansion approach is based on the term co-occurrences. Various methods

for exploiting term co-occurrences in query expansion have been proposed for decades.

They can be classified into four groups [QF1993]:

1. Use of term classification. The system calculated the similarities between terms
based on the classification hypothesis. Then the system classifies terms by setting a
similarity threshold value. The terms in the same class will be treated as equivalent.
The system will expand the query by adding all the terms of the classes that contain

query terms. Researchers have analyzed the limitation of such method [PW91], and
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it turns out that this idea is too simple to be applied in practice because it adds a lot
of noise into the query.

Use of document classification. First the system classifies the documents using a
document classification algorithm. Terms in the same document class are
considered to be similar and will form a term class, also called thesaurus class.
Thesaurus class can be used to enhance both the indexing and query process. The
query is expanded by replacing a term by a thesaurus class. According to [CY92],
some parameters, which have strong impact on retrieval effectiveness, are hard to
determine. Since most of the document collections are highly dynamic, a system
may run document classification more often than run term classification.
Furthermore, most of the document collections are very large. The number of
documents may be much larger than the number of terms in the collection. Thus,
document classification is much more expensive than term classification.

Use of syntactic context. The similarities between terms are computed based on the
linguistic knowledge and co-occurrences statistics. A grammar and a dictionary are
used to extract for each term a list of modifiers. The modifiers in the list are used to
calculate the similarities between terms. At last a query is expanded by adding those
most similar terms. According to [G1992], this method can only slightly improve
the system performance.

Use of relevance information. Pseudo relevance feedback is a commonly used
approach for automatic query expansion [MSB1998]. In this method, first the
original user query is used to retrieve a small set of documents. These documents
are assumed to be relevant and used in a relevance feedback process to extract terms
to expand query. The problem of this method is that if the assumption is wrong, say,
a large portion of documents retrieved in the first step are not relevant, then the
terms added to the query are likely to be unrelated to the user’s need, and thus

damage the system performance.
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In this thesis we develop an approach for automatic query expansion based on
association between terms. The associations are extracted from documents by a data
mining technique called Association Rule Mining. It is also a method based on the co-
occurrences between terms. However, it is different from the simple use of co-
occurrences data. In the latter one, the relations between terms are bi-directional. They
are treated as ‘equal’. In our application, the relations between terms are asymmetrical.
Some of terms are premise and others are treated as consequence. We think that if we
can find insightful rules in our application then we can get a much more relevant result
when applying them to the process of query expansion. The interpretation of the rules
may make the process more reasonable. If it is the case, the technique can also be used
to interact with users to get better results.

An association rule has the follow form:

tl, t2-->13, 4, with Support=V,, confidence=V,, where

tl, 12, 13, 14 are terms, V5, V. are values of rule support and rule confidence, respectively.
The rule confidence can be understood as the conditional probability, ¥, =P(t;,t,|t,,,).
The meaning of the rules is: term ¢3, ¢4 will appear in a document when ¢/, t2 both
appear in that document with probability V.. So if ¢/, ¢2 appear in a query together, it is
natural to expand that query with ¢3, #4. In contrary, unlike other term co-occurrence
techniques, if if ¢3, ¢4 appear in a query together, we will not use ¢/, 2 to expand that
query, i.e, use the rule in the reverse direction. This is reasonable since the probability
of ¢/, t2 appear in a document when ¢3, t4 both appear in that document may be
different from V... We will give a more detailed description about association rules and

their meaning in Chapter 3.
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2.2 SMART System

2.2.1 SMART System

SMART system is an experimental system of information retrieval [G1971]. It uses the

vector model. Many current IR systems are inspired by SMART. For retrieval

effectiveness, SMART is comparable to the commercial search engines available on the

Internet. It is also a free system for research with source code. So it is an ideal

framework to do our experiment.

Here we give a brief introduction to the system.

1.

Indexing

A database is a collection of text documents. A text document may contain various

fields. A field is called section in SMART. For example, in a document we can

distinguish the title, the author, the date and the text. SMART makes it possible to
treat these fields in a different way. A query may also contain various fields.

The indexing of a document has several steps:

Step 1: Recognition of sections. This is done according to markers which denote the
beginning of sections. SMART can define the markers and corresponding
actions of indexing.

Step 2: Tokenization. For each section that SMART indexes, the system cuts it in
words. This consists in recognizing the separator of words, such as «,”, «:”,
space, etc. The output of this step is a sequence of tokens.

Step 3: Stoplist. The stoplist contains all the words that we do not want to keep as
index. The tokens found in step 2 are compared with the stoplist to
remove the insignificant ones. This step is optional since we may decide
that all the words are significant and must be kept.

Step 4: Stemming. This treatment transforms the tokens into a certain standard

form. Three options are offered in SMART: no stemming; removing the
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“s” at the end of a word; or using a trie to remove the termination. After
stemming, the result word is compared with a dictionary. The dictionary
stores all the indices and the identification number of each index. The
purpose of the comparison is to obtain the identification number for a
word. If the word is already stored in the dictionary, we simply take its
identification number. If not, the system creates a new identification
number for the word automatically and adds an entry into the dictionary
for the new word.

Step 5: Statistic. For each word the system makes a statistic of its frequency of
occurrence in the document. The final result for a document is a list of
word identification numbers with their frequencies.

Step 6: Conversion of the result. The raw indexing results can be further processed
through a conversion process. Conversion is done only when all the
document is the collection were indexed. Two kind of conversion can be

made in SMART: To convert vectors into inverted file or to convert the

weight of terms. The #f xidf weighting can be employed in this step.

The indexing of a query is very similar to that of a document.

Similarity measurement
The evaluation of query utilizes the inverted file of documents and the indexing
result of the query which is a sequence of word identification number and its weight.

SMART uses inner product as similarity.
Sim(d,q)= ) (p,;*q,)
Here, d is a document, g is the query, p, and g, are the weight of a word in

document 4 and query q.
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The SMART system implements a calculation for all documents at the same time.
At the end of this calculation, we obtain the value of Sim for every document. The

documents will be ranked according to the Sim values and returned to the user.
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Chapter 3 Mining of association rules
3.1 Association rules

3.1.1 Introduction

Association rules are very widely applied for knowledge discovery and data mining in
database [AIS1993]. The ideas of mining association rules come from market-basket
analysis. It is a process of analysing customer buying habits (patterns) which are
expressed by rules such as “A customer who buys a desktop computer will also buy an
operating system with a certain probability.” This kind of rule is called association rule
since it expresses the patterns of co-occurrence of different products in the customer’s
basket. In a database of commercial transactions, association rule mining is used to find
all interesting co-occurrence patterns of items.

A collection of documents can be treated as a database and each document is a record
of this database. Terms can be seen as items of the record. This motivates us to apply
association rules mining in document analysis to find co-occurrence patterns of terms in
a document collection. As we mentioned in Chapter 2, these co-occurrence patterns can

be used to expand a query to achieve better search performance.

3.1.2 Association rules mining

Association rules are used to identify relationships among a set of items in a transaction
database. The relationships are based on co-occurrence of the data items.

A formal notation and definition of the association rule is as follows: [AIS1993]

Let I = {ij, i5..., i} be a set of distinct attributes, also called items. A transaction set T

is a multi-set of subsets of / that are identified by TID.
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Definition 3.1.1: A subset X ¢ I with |X |=k 1s called a k-itemset. The fraction of

transactions that contain X is called the support (or frequency) of X, denoted by supp
X):

l{teTngt}l.
7]

supp(X) =

Definition 3.1.2: If the support of an itemset X is above a user-defined minimal

threshold (minsupp), then X is frequent (or large) and X is called a frequent itemset
(FI).

Definition 3.1.3: An association rule is an implication of the form X =Y |

where X,Y C I,and X NY =¢. Here X is called antecedent, and Y consequent.

Support and confidence are two important measures for association rules. They are

defined as follows.

Definition 3.1.4: The support (s) of an association rule is the ratio of the number of
transactions that contain X U Y to the total number of transactions in the transaction set.

That is:

Definition 3.1.5: The confidence (¢ ) of an association rule is the ratio of the number of

records that contain X U Y to the number of transactions that contain X, That is:

| X VY|

(X =Y)= X
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Confidence of a rule indicates the degree of correlation in the itemset between X and Y.
It is a measure of a rule’s strength. For a given association rule X =Y, a higher
confidence means a higher probability that the itemset Y is present in transactions
which contain itemset X. Support is the statistical significance of an association rule. It
is a useful measure since rules with low support mean this kind of pattern rarely occurs
in the transaction set. Even if such a rule has a very high confidence, it is still not
interesting for the analyzer. So support measure is often used to eliminate uninteresting
rules. Minsupp is a minimum threshold value of support specified by the user. An
itemset X is frequent when supp(X) reaches minsupp. Similarly, minconf is defined as a

minimum threshold value of confidence.

The association rule mining problem can be formally described as follow:

Given a set of transactions T, minsupp, minconf, find all association rules with

support 2 minsupp and confidence = minconf .

The total number of possible rules of a transaction dataset D with itemset / grows
exponentially with the number of items. So it’s impractical to enumerate all rules and
then calculate their support and confidence values. To reduce the computation overhead
we should find an algorithm that can prune the useless rules (i.e. support lower than
minsupp or confidence lower than minconf) earlier without computing their support and
confidence values. From Definition 3.1.4 we know that the support of a rule X =Y

depends only on its itemset X UY . For example, for the following rules

= 1{d, g}, {d} = {c,g}.{g} = {c.d}

{e.d} = {g}.{c,g} = {d}.{d.g} = {c},

The supports are identical since they correspond to the same itemset {c,d, g}. So if the

itemset is infrequent (i.e., s({c,d, g)} < minsupp), all these six rules can be discarded.
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Thus, the problem of mining association rules with given minimum support and

confidence can be split into two steps:

1. Detecting all frequent itemsets (FIs) (i.e., all itemsets that occur in the transaction
set with a support > minsupp).

2. Generating association rules from frequent itemsets (i.e., rules whose
confidence > minconf)

The second step is relatively straightforward [AIS1994]. However, the first step

presents a great challenge because the set of frequent itemsets still grows exponentially

with| 7.

The computation of frequent itemsets is the most time consuming operation in
association rule generation. Researchers have proposed search space pruning techniques
based on the computation of frequent closed itemsets (FCIs) only, without any loss of
information [PBTL1999].

The key property of closed itemset(CI) is any itemset has the same support as its
closure since it is as frequent as its closure. CIs and FCIs may be used in the generation

of all FIs and rules, without further accessing the transaction database.

In the next two sections we present a framework for generating FCIs. The generation of

rules from FCIs is not discussed in this thesis.

3.1.3 Formal concept analysis

Concept lattice is a structured graph for conceptual hierarchy’s representation of
knowledge. Formal Concept Analysis (FCA) [W1982] is an approach for data analysis
based on the lattice theory. In the following we give a formal notations and definitions

for FCA.



Association Rule Mining for Query Expansion in Textual Information Retrieval 25

Definition 3.1.6: Given a set G, a partial order < on G is a binary relation that is
reflexive, transitive and anti-symmetric. A set G subject to a partial order <g is called a

partially ordered set or poset or partial order, which is denoted by (G, <¢).

Definition 3.1.7: Given a partial order P = (G, <) and two elements, s, pe G, if

p<; s, we call p the predecessor of s and s the successor of p. The set of all common

successors of s and p are called upper bounds of s and p. The set of all common

predecessors of s and p are called lower bounds of s and p.

Definition 3.1.8: Given a partial order P = (G, <) and 4, a subset of G, if

ds€ G,s = Min(upper bounds of A), s is called the least upper bound of A (LUB),
denoted sup(A4); if Ipe G, p =Max(lower bounds of A), p is called the greatest

lower bound of A (GLB), denoted inf(4).

Definition 3.1.9: Given a partial order P = (G, <¢) and s, pe G, if s<; p,

dt,wheres<,t<. pandt=sort=p,sis called the immediate predecessor of p and
ct=¢ P P P

p the immediate successor of s.

Hasse diagram is used to represent P by its covering graph Cov (P) = (G, <g). In Hasse
diagram, each element s in G is connected to both the set of its immediate predecessors
(called lower covers (CoV')) and of its immediate successors (called upper covers

(Cov").

Definition 3.1.10: A partial order P = (G, <;) is a lattice if and only if

Vx,y€ G, inf({x,y})€ G and sup({x, y})€ G. The lattice is denoted as L= (G, <;). In
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a lattice inf({x, y}) is called the meet of x,y, denoted as x A, y, sup({x,y})is called

the join of x,y, denoted as x v, y.

Definition 3.1.11: If given a lattice L= (G, <), VY € G,3 inf(Y)€ G, sup(Y)e G, we

call this lattice a complete lattice.

Definition 3.1.12: A structure with only one of the join and meet operations is called a

semi-lattice.

Definition 3.1.13: A formal context is a triple K = (0O, A,1) where O and A are sets and

I is a binary (incidence) relation, i.e., / COxA . The elements of O are called

transactions (or objects), and the elements of 4 are called items (or attributes).

Definition 3.1.14: Let K =(0, 4,1) be a formal context, the function f maps a set of
objects into the set of their common attributes, whereas g is the dual for attribute sets. f
and g are denoted by ’ :

—f:P(O)— P(A), f(X)=X"'={ae A|VYoe X,ola}

—g:P(A)—> P(O),g(Y)=Y'={oe O|VYae Y,ola}

P(0)=2° is the power set of O, P(A4)=2" is the power set of 4,

The couple (f, g) defines a Galois connection of the formal context.

Definition 3.1.15: f°g (Y) and g°/ (X) are Galois closure operators over 2* and 2*
respectively. Hereafter, both f°g (Y) and g°f (X) are noted by .
fgM=fEeM))=r
gfX)=g(fX))=Xx
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Definition 3.1.16: An itemset X'is closed if X = X".

If an itemset X is closed, adding an arbitrary item i from /-X to X resulting a new
itemset X which is less frequent [PHM2000].
Property 3.1.1: If X is closed (X=X"), then V i € I-X, supp (X U{i}) < supp (X).

Definition 3.1.17: If a closed itemset (C/) X is frequent, and then we call it a frequent
closed itemset (FCI). That is: FCI={X|Xe CIs A supp (X) > minsupp}.

Definition 3.1.18: Give a formal contextK = (0, 4,1), a formal concept c is a couple

(X, Y), where Xe€ P(O), Ye p(A), X=Y'and Y =X"'. X is called the extent and Y

the intent of the concept.

For a concept ¢ = (X, Y), since X=Y ’= {X’}’= X”, so the intent of a concept is a closed

itemset.

Definition 3.1.19: The support of a concept ¢ = (X, Y) is defined as the ratio of the size

of X to the size of O, supp (c) = %

Definition 3.1.20: If the support of a concept ¢ is above a user-defined minimal

threshold (minsupp), then c is frequent and c is called a frequent concept.

Given a set of concepts C, the partial order is defined as:

V(X 1), (1€ C, (X, 1) S (XY, I (X, € X,) A(Y, C )
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Definition 3.1.21: Given a set of concepts C, The partial order L = (C, <;) is a complete

lattice called a concept lattice with joins and meets as follows [W1982]:

(XpY) v, (X, 1) = (X, 0 X)L N}

(X1, 1) AL (X, 1) = ({X, N X)L Y VL))

The Hasse diagram of the concept lattice L from Table 3.1.1 is shown in Figure 3.1.1.
The numbers in the nodes are numbers of the concepts. Intents and extents are indicated

in rectangles below the nodes. For example, the join and meet of cuj3= ({2, 5, 9}, {f, h})

and cyi6=({2,3,9}, {d, f g}) are cua=({2,3,6, 7,9}, {f}) and cuos= ({2}, {a, c. d f g,
h}) respectively.

Figure 3.1.1 is an example of the Hasse diagram of lattice L drawn

fromK = ({1,2,..9},{a,b,..h},R).

a b ¢ d e f g h
1 | X xXx x X X
2 | x X X X X X
3 X X X X
4 X X
5 X X
6 | X X X X
7 X X X X
8 X
9 X X X X X

Formal context K =(T ={1,2,..9},1 ={a,b,...h},R)
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Figure 3.1.1 The Hasse diagram of the Galois lattice derived from K

3.1.4 Iceberg Concept Lattices

In the worst case, the size of a concept lattices is exponential in the size of the context.
So for most application the size of the concept lattices is too large to be used. The user
has to find strategies to cut off the lattice and keep relevant parts of the lattice structure
at the same time. Here we present an approach named iceberg concept lattice which is
based on frequent closed itemsets. The iceberg concept lattices will consist only of the
top-most concepts of the concept lattice.

The set of all frequent concepts of a context K is called the iceberg concept lattice of

the context K.
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The notion and properties of iceberg concept lattice were introduced in [STBPL2000].
Definition 3.1.30: Given minsupp a € [0, 1], C? is the set of all a-frequent concepts

and the partial order (C% < p) is called the iceberg concept lattice.

The support function is monotonously decreasing:
A C 4, = supp(4)) 2 supp(4,)

So the iceberg concept lattice is an order filter of the whole concept lattice. In general,
it is a sup-semi-lattice. This allows us to apply the algorithm for computing concept

lattices and iceberg concept lattices. Here we give an example. For the binary table
K=(0={1,2,.9},4={a,b,..h},R) shown in Figure 3.1.1, given 30% as the minsupp

value we can get the iceberg lattice as shown in Figure 3.1.2.
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Figure 3.1.2 Iceberg lattice derived from K with minsupp value of 30%
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3.2 Galicia Platform

3.2.1 Introduction

Galicia is an integrated software platform that can perform almost all the key operations
on concept lattices. These kinds of operations might be required in both practical
applications and more theoretically-oriented studies. Three major functions are includes
in the platform [VGRH2003]: input of contexts, lattice construction and lattice
visualization.

The architecture of the platform also includes some auxiliary functions such as
interactive data inputs, result export to various formats, etc. Galicia performs all the

necessary tasks during the complete life-cycle of a lattice. (See Figure 3.2.1)

Figure 3.2.1: Architecture of Galicia
The Galicia platform can support the applications of FCA as well as the development of
new techniques based on lattices. Some frequently occurring lattice sub-structures are
built in, together with the respective manipulation mechanisms. Thus, for our research
we can produce the whole lattice, some iceberg lattices and respective association rules

within the platform.
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3.2.2 Architecture of Galicia

Galicia has been designed as an open platform and its implementation in Java ensures
the high portability of the entire system [VGRH2003].

The architecture of Galicia is a traditional layered architecture, with a lower-most level
composed by the Java environment, and the upper one dedicated to interaction with the
users of the platform (Figure 3.2.2). Two intermediate levels have been identified, the

kernel of the platform and the tool layer.
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Figure 3.2.2: Dependencies between components of Galicia platform

In our research, we use Galicia to implement and develop algorithms for lattice
construction and association rule generation.

Several algorithms have been implemented in Galicia platform. They are described in
the following sections. We need to implement and adapt some algorithms that, although
designed for lattices, can be used for iceberg lattice. To accommodate the dynamic
database, we also need to implement algorithms that can construct lattices

incrementally.
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3.3 Bordat Algorithm

3.3.1 Description of the algorithm

The Bordat algorithm is a top-down batch algorithm. It consists of two basic steps:

e Compute the top concept (0,0’)

e For each computed concept, generate all its lower neighbours.

Our implementation of Bordat Iceberg Lattice algorithm is based on the description of
[KO2001]. A set of modifications was made. The first is the change of the algorithmic
scheme from recursive to iterative. The second is that instead of using an auxiliary tree
to construct the line diagram, we use the tree structure defined in the Galicia platform.
The third is that we reversed the lattice traversal to top-down so that we can use the
algorithm to generate iceberg lattice.

Below is the description of our implementation of the algorithm:

1. Procedure PROCESS(In: top the top concept of the lattice)

2. Local : cand:=@ a linked list of concept

3. cand€ candVU {top}

4. while cand is not empty

c€cand.getFirst

Ln €FINDLOWERCOVER(c.extent, c.intent)

forall ein Ln do

if e.supp<minsupp continue
pp pp

o X N W

if e is not processed before then

10. cand€ candV { e}

11. endif

12.  LINKCONCEPT2UPPERCOVER(c, e)

13. cand.removeFirst



Association Rule Mining for Query Expansion in Textual Information Retrieval 34

1. FINDLOWERCOVER(In: e extent of concept c, In: i intent of concept ¢, Out: Ln a
collection of concept)

2. Lni=40

3. a=i

4. while((fo=FINDFIRSTOBJECT(a,e))!=null)

5 efo={fo.extent}

6.  ifo=fo.intent

7 h:=efo

8 while(e has more objects)

9 h:=e.nextObject

10. if(—((ifoNh.intent) belong to a))

11. efo=efo Uh

12. ifo=ifoNh.intent

13. if (ifoNa equals i)

14. Ln:=LnU {(efo,ifo)}

15. a:=aUlifo

16. Return Ln

In PROCESS procedure, cand is a linked list of concepts. It is used to store all the

concepts that need to be processed to generate their lower covers in the lattice. top is

the top concept of the lattice. The top concept is generated by Galicia system. It is the

first concept put intocand . Lines 4 to 13 form a loop. At each iteration one concept
incand will be processed. The lower cover of the concept will also be put intocand .
Since some concepts may have the same concept in their lower covers, Line 9 to Line

11 prevent a concept from being put into cand repeatedly. If the support value of a

concept is lower than minsupp it will be discarded immediately (Line 8), and it will not
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be used to generate lower covers since the support of any lower cover will also be lower

than minsupp . The loop ends when cand becomes empty, which means the entire

iceberg lattice was built.

LINKCONCEPT2UPPERCOVER is a function provided by the Galicia platform to
construct the lattice structure. FINDFIRSTOBJECT is an auxiliary function and we do
not show it here. In our implementation, if we set minsupp to zero, we will get the

whole lattice, otherwise we get an iceberg lattice.

3.4 Incremental Algorithm

We also developed an incremental algorithm to construct the iceberg lattice. The
incrementation can be either object-wise or attribute-wise. Here we only analyze the
object-wise incremental algorithm. The attribute-wise one is in fact the dual although it
has its own properties.

An incremental algorithm does not in fact construct the lattice. It just maintains the
integrity of the lattice upon the insertion of new object into the context. [VHM2003]

The problem is defined as follows:

Given: a context k = (0, 4,1) with its lattice L and an object o,

Find: the lattice L” corresponding to K* = (0O U {0}, 4,1 U{o}x0").

So an incremental algorithm can construct the lattice L starting form a single object o,
and gradually incorporating every new object o; into the lattice L, ;. The concepts in the

new lattice L; can be divided into four categories:

1. N¥(o): New concepts whose intents correspond to intersections of {o,}' with
intents from C;’,, which are not themselves inC;,.

2. G"(0): The set of Genitors. When inserting the new concepts into the lattice, each
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new concept is preceded by a specific concept from the initial lattice, called its

genitor. Its counterpart in L;.; is denoted as G(o0).
3. M"(0): Modified concepts correspond to intersections of {0 }' with members of
C, that already exist inC/, . Its counterpart in L, ; is denoted as M (0).

4. U'(0): Old or unchanged: remain set of concepts in the initial lattice L;.;. Its

counterpart in L;.; is denoted as U(0).

Here is an example. Given the binary table K™ =(0={1,2,4,...,9},4={a,b,...,h},R)

and Object 3 in Table 3.4.1, the Hasse diagram of Galois lattice derived from K is

shown in Figure 3.4.1. When inserting the Object 3 into K~ we get the Hasse diagram
of Galois lattice derive fromK =(0={1,2,3,...,9},4={a,b,...,h},R), which is shown
in Figure 3.4.2.

So in Figure 3.4.1, the three categories of concepts are G(o) = {Cy, C;, Cs, Cs, Cs, Co,
Cio}, M(0) ={Cy Cs, C;1},and U(0)= {C7 Cs}. G*(0),M*(0), and U*(0) are shown
in Figure 3.4.2 with the same IDs as their counterparts shown in Figure 3.4.1. We can

observe the changes on their extent and intent respectively. N*(0)= {C3, C14, C;5, Cjs,

Ci7, Cis, Cig).
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a b ¢ d e f g h
1 [x X X X X X X X
2 | X X X X X
4 X X X X
5 X
6 X X X
7 | x x x X
8 X X X
9 X
3 X X X X X

Table 3.4.1 Binary table K =(0={1,2,4,...,9},4={a,b,...,h},R) and object 3
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Figure 3.4.1 The Hasse diagram of the Galois lattice derived from K~
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Figure 3.4.2 The Hasse diagram of the Galois lattice derived from K

An Incremental algorithm makes sense, since in many cases the data set is not static.
New data is added to the set from time to time. In the context of information retrieval,
we know that in many cases the collections of documents are also dynamically evolving.
New documents will be added into the collections periodically. The construction of the
lattice is a time consuming operation. So it is not acceptable to generate the lattice from

scratch each time a new data is added to the data set. An Incremental algorithm
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provides a way to generate new lattices from old ones and the new data, hence save the
time and computational resources.

For example, to construct the lattice of a context with 100 objects and 1000 attributes, it
takes about 2 seconds within Galicia. If we already have the lattice of the first 99
objects and the 1000 attributes, when we add the 100 object, Galicia needs only

several milliseconds to construct the new lattice.

3.5 Association rules generation

After we get all the frequent closed itemsets, generating association rules is
straightforward. The algorithms are implemented in Galicia platform. We just give a

brief description on the principle of rules generation [Z2000].
Given a frequent closed itemset X and minconf, rules of the form ¥ —2— X —Y are
generated for allY ¢ X,Y ¢ &, provided p > minconf .

Further research on association rules generating is beyond the scope of this study. We

will not discuss them here.
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Chapter 4 Query expansion using association rules

4.1 Applying association rules

In this chapter we will study how to apply association rules in query expansion. The
process is shown in Figure 4.1.1. It can be divided into two main parts. The first is the
association rules mining from a document collection. The second is using association

rules for query expansion.
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Association Rules File
RO:att_6071 >att_943 (S=0.0043%; C=0.69)

Figure 4.1.1 Experiment Process
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4.1.1 Mining association rules from a document collection

Mining association rules form a document collection includes step 1 to step 3 in Figure
4.1.1.

Step 1: Using SMART system to index the document collection. This step results in the
weighted inverted file and dictionary file.

Step 2 We need to transform the inverted file into the file format that can be recognized
by Galicia system. We call it context file.

Step 3 Load the context file in Galicia, given the minsupp (minimal support) and
minconf (minimal confidence), so that we can get all the association rules. They are
recorded in a text file. Its format is like below:

Processing Base informative

Min confidence = 50% ; Min Support = 0.0035%

RO : att 6071 --> att 943 (S =0.0043% ; C = 69%)
R1 : att 2466 --> att 943 (S=0.0271%; C=77%)
R2 :att_159 > att 5501 (S =0.0096% ; C = 52%)
R3 :att 8677 --> att 8820 (S=0.039%,; C=60%)

R4 :att 4121 --> att 7651 (S=0.0137% ; C =60%)
R5 :att 4121 --> att 943 (S=0.0121%; C=53%)

The first line tells us that the algorithm used to extract these association rules is Base
informative. The second line tells us that in the calculation the minconf is 50% and
minsupp is 0.0035%. The rest of the lines are rules. The prefix “att_ is added by the
system and the number is the identifier of the term. S and C are the support and

confidence of the rule, respectively.



Association Rule Mining for Query Expansion in Textual Information Retrieval 42

4.1.2 Using association rules for query expansion

Step 4 When we get the association rules we can use them to expand the queries. Here
we just show the strategy for query expansion. Later we give the detailed description.
First, we get the collection of all the keywords in a query. Then, we find all the subsets
of the keywords collection that can match the antecedent (left side) of the rules. Once
we find a matching, the keywords in the consequent (right side) of the rule are added to

the query. We repeat this process and it results in a new query set.

4.2 Algorithm for query expansion

4.2.1 Organization of association rules

A trie data structure is currently used to store sets of words over a finite alphabet
[CM1995]). The trie provides a good trade-of between storage requirements and
manipulation cost. In the basic form a trie is a tree where edges are letters from the
alphabet. So each word corresponds to a unique path in the tree. The nodes
corresponding to the end of a word are called terminal nodes, and the rest are called
inner nodes.

We use the trie data structure to store all the association rules. Here we assign the
words in the antecedent of a rule to the edges. The consequents of the rules are stored in
the terminal nodes. The support and confidence of a rule are also stored in the terminal
nodes. So the matching process is easy and quick. First, we go through the text file
which contains the association rules and fill the trie with what we read. Then we get the
keyword collection of a query. For each subset of the collection, we search it in the trie.
When we encounter a terminal node, it means we find a matching rule. The words

stored in the terminal nodes, which are the words in the consequent of the rule, will be
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added to the query. The support and confidence value are also retrieved at the same
time.

For example, we have a query with a set of terms: {terml, term2, term3}. When we
expand the query, {terml}, {term2}, {term3}, {terml, term2}, {terml, term3}, {term2,
term3} and {terml, term2, term3} are all used to match the rules. Each time we find a
matching rule, the consequent of that rule will be inserted to the new query.

Here is an example of some rules stored in the trie data structure. Given the rules:

RO:att 2 —->att 5 (S=0.0043%,; C=0.69)

RI:att 2, att 3 -->att 6 (S=0.0271%;C=10.77)

R2 :att 2,att 4 -->att 7 (S =0.0096%; C=0.52)

R3 :att 2,att 9 -->att 8 (S=0.039%,;C=10.6)

R4 :att 4 -->att 1 ($=00137%;C=10.6)

R5 : att_6,att_7,att 8 --> att_4, att 5 (S=0.0121%; C=10.53)

Some steps of the process of constructing the trie to store these rules are shown in

Figure 4.2.1
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Figure 4.2.1: The process of constructing trie for rules
In Figure 4.2.1, the alphabets outside the node are identifiers of nodes. The numbers
are identifiers of terms. Except the root node (node a), if there is no element in the pair
of braces beside the node, the node is an inner node. Otherwise it is a terminal node.
For example, nodes b, ¢ and d are terminal and nodes g and 4 are inner. At first there is

an empty node a as the root of trie. When we read rule R0, node b is inserted to the tree.
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When we read rule RI, R2, R3, and R4 nodes c, d, e and fare inserted to the tree one by
one. When we read rule RS, three nodes (g, /, and i) are inserted to the tree.

The matching process is also very simple. For example, assume that {att 2, att 4} is a
subset of terms in a query. First we read att 2, in the trie we will locate node b. Then
we read att_4 and reach node e through node &. Since node b is a terminal node and
att_7 1s stored in this node, we add att_7 to the query. In constrast, if {att 6, att 7} is a
subset of terms in a query, when we search in the trie we will reach node 4. It is an

inner node so we can not expand this query by these two terms.

4.2.2 Algorithm of query expansion

After we processed whole documents collection we got a set of association rules in the

following form:

terml,term2 = term3,term4 , with support value sup and confidence value con.

The interpretation of such rule is: When term! and term2 are present in a document at
the same time, term3 and term4 will also be present in that document with confidence
con. So we can use such rules to expand the query. That is, if a query contains term/
and term2, it is reasonable for us to add term3 and term4 to the query to achieve better
search result.

Algorithms 4.2.1 and 4.2.2 describe the main steps of the query expansion process.
Algorithm 4.2.1 is simple: it just uses a loop to see if a keyword in a query can match
the first keyword of a rule. If there is a matching we call Algorithm 4.2.2 to continue

the matching process.

1: procedure QUERYEXPAND(In: gw a collection of keywords, we a trie storing
all rules, Out: ngw collection of new keywords that will be added to the query)
2: Local: nqw a collection of new keywords

3:forall ie gw do

4: if i matches a node » in the first level of we then
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5:  EXPANSION(n, gw-i, ngw)

Algorithm 4.2.1

1: procedure EXPANSION(In: » a node in the trie we, rqw a collection of
keywords, In/Out: ngw a collection of new keywords)

2: if n 1s a terminal node then

3: put all keywords in » into ngw

4: for all i€ rgw do
5: for all je cn {cn: the children of n} do

6: if i matches j then
7: EXPANSION(j, rgw-i, ngw)

Algorithm 4.2.2

Algorithm 4.2.2 has two nested loops and is itself recursive. Combined with algorithm
4.2.1, this algorithm ensures that every matching rule can be found.

Procedure QUERYEXPAND has two inputs. The first ‘gw’ is a collection of all
keywords in a query. The second ‘we’ is a trie which stores all association rules. The
output ‘ngw’ is collection of all the new keywords that will be used to expand the query.
Note that the keywords in ‘gqw’ are ordered by their word _num as well as the keywords
in subset of ‘gw’. This order makes it easy to enumerate the subset of ‘gw’ and
procedure EXPANSION ensures no subset that can match a rule is omitted or repeated.
The loop in Procedure QUERYEXPAND is used to match first keyword of every
subset. If it finds a matched node, procedure EXPANSION will go through the trie path
via the first matched node to find the next matched node of the consequent keyword in
the subset. When a terminal node is matched, it means we find a matched rule and all

the keywords stored in the terminal node will added to collection ‘ngw’. A recursion
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ending by the matching of an inner node means no rule matched that subset and hence

the subset can not be expanded.

4.3 Weight of new keywords in query

Now we can get the new keywords from the original query. There is another important
task to be done when we add these keywords into the query file: We need to assign
appropriate weights to the new keywords. Unfortunately there is no principle that can
be followed in doing that. We used several different ways to calculate the new weight
and tried to find a proper one to apply uniformly in the system.

Intuitively, we think the new weight must rely on the composition of the rule since the
new keyword is inferred from its premise. There are several factors in a rule that may
affect the new weight.

The first one is the weight of the keywords from the premise of the rule, that is to say,
the weight of the keywords in the original query. Here we consider two situations:

1. Simple case: A new keyword is inferred from only one rule. That is,

n:{a,..,a,} = {t,...}. Here a,_a, are keywords in the original query. We can set
the weight of the new keyword ¢, either by the maximum weight of a, a, or their

average weight.
2. Complex case: Several rules infer the same new keyword. That is,

r{a,...,a,} = {t...}

rooAmy,.,am = {t..}

In this case, we separate the calculation of the weight of the new keyword into two
steps. First, for each rule we calculate the weight as in the simple case. Second, we
can set the weight of the new keyword either by the maximum result of the rules or

their average result.
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Combine the two cases we get four basic strategies to compute the weight of new

keyword. Assume:

nia,...a,} = {t...}

voodmy,,m = {0

w,,, is the weight of the new keyword ¢,

1;...t; are rules that contain keyword ¢, in their consequent.

a, a, and m,..m, are keywords in the antecedent of each rule respectively.

W W, and w_...w_ . are weights of each keyword in the query.

The four strategies are listed in Table 4.3.1

Weight Computation
Strategy 1 w,,, = max[max(w,,,,..w, ),..max(w_,..w, . )]
Strategy 2 w,, = max[average(w,,,,..W,,, ),...average(w, ,..w, )]
Strategy 3 w,,, = average[max(w,_,,..w,  ),..max(w_ ..w_ 1]
Strategy 4 | w,, = averagelaverage(w,,,,..w,,.),...average(w, ,..w, . ]

Table 4.3.1 Basic Strategies for weight computation

The next two factors are the support and the confidence of the rule. When we consider
these factors we can combine them with the four basic strategies. According to these

strategies we designed our experiments whick will be analysed in the next chapter.
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Chapter S Experimental Results

5.1 Experimental environment

The SMART system and The Galicia platform are used in the experiments. They are
introduced in Chapter 2 and Chapter 3. The implementations of the algorithms for
query expansion are presented in Chapter 4. Here we give a brief description of the
CACM collection which is used in our experiments.

The CACM collection is a collection of 3204 titles and abstracts from the journal
CACM. Documents in the collection are separated by sections. Each section is marked

by the letters in bold.

d introduces the start of a new document.

.T introduces the section ‘title’.

.W introduces the section ‘abstract’.

.B introduces when the article is published.

A introduces the author of the document.

N identify when the document was added to the collection.
X introduces the section ‘reference’.

The documents in CACM are like the example below:

d1025

T

A Method of Syntax-Checking ALGOL 60

W

A syntax checker was designed based on the syntax of ALGOL as described in the
ALGOL 60 Report [Communications of the ACM, May, 1960]. Since the definition of
the elements of the language is recursive it seemed most desirable to design the syntax

checker as a set of mutually recursive processors tied together by subroutines which
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perform certain bookkeeping functions. Because of the recursive nature of the language
and of the syntax checker the problem of recovery after an error required much
attention.

A method was devised which permits most programs to be checked completely despite
errors.

.B

CACM August, 1964

A

Lietzke, M. P.

N

CA640805 JB March 9, 1978 7:24 PM

X

1025 5 1025

1025 5 1025

1025 5 1025

There are 52 queries with relevance judgments. The query file has already been
prepared by the CACM collection and SMART system so we need not to do query pre-
process. The parameters of the CACM collection and the experiments are listed on
Table 5.1.1.

The Galicia platform is a research environment, to make it general, it sacrifices the
efficiency in a way. If the collection is too large it will cost too much time to get the
association rules set. This is why we use CACM collection in our experiment instead of

the TREC collection since CACM is relatively small.
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Document collection CACM
Total number of documents 3204
Total number of keywords 8994
Total number of queries 52
Value of minsupp 0.004%
Total concepts 17423
Total rules 7760
Total keywords in the query set 671
Total keywords after expansion 2056

Table 5.1.1 Parameters of the dataset used in the experiments

5.2 Query expansion using basic strategies

Experiment 1.

To find a best strategy to decide the weight of new keyword added to the query we

carried out several experiments.

Average precision for all points

Original Strategy 1 Strategy 2 Strategy 3 Strategy 4
11-pt Avg: 0.2341 0.1644 0.1652 0.1847 0.1845
% Change: -29.8 -294 -21.1 -20.7

Table 5.1.2 Result of experiment 1

In experiment 1 we evaluated the SMART system 5 times using all the extracted rules.

The first time we did not employ query expansion. Strategies 1 to 4 are used for query

expansion in the next four times respectively. 11-point average precision is the most
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important metric in our experiment. Its change represents the relative change of the
system performance.

The experimental results are shown in Table 5.1.2. There are five columns of data in the
table. The first column is the original system performance evaluation without query
expansion. The next four columns represent system performance evaluations for the

four basic strategies applied to query expansion in the experiments.

The Precision-Recall graph of the experiment is shown in Figure 5.1.1

Precision-Recall Graph

—o— Original
—8— Strategy 1 |
Strategy 2

Precision

Strategy 3
‘ —%— Strategy 4

0 0.10203040506070809 1
Recall

Figure 5.1.1: Precision-Recall graph of the experiment 1

Figure 5.1.1 is the Precision-Recall graph of experiment 1. We observe that after we
employ the strategies to the process of query expansion, all of the results are barely

satisfactory. We think the reason is the weight of a new keyword can not be as high as
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that of the original ones. We also observe that the strategies using average weight are

somewhat better than those using maximum weight.

5.3 Query expansion considering confidence

Experiment 2

In this experiment when we infer a new keyword from a rule we multiply the weight of

the original keyword by the confidence of the rule and then apply the same strategies

used in experiment 1. For strategy 1, this is:

w,,, = max[max(w,,,,..w,, ) Xcon,,..max(w,,,..w, )xcon,]

atl ran

where

con,,...con,, are the confidence values of the rules r,...r;, respectively.

For the other three strategies the modification are similar.

The result is shown in Table 5.1.3

Average precision for all points
Original Strategy 1 Strategy 2 Strategy 3 Strategy 4
11-pt Avg: 0.2341 0.2001 0.2006 0.2161 0.2159
% Change: -14.5 -14.3 -71.7 -7.8

Table 5.1.3 Result of Experiment 2
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Precision-Recall Graph
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Figure 5.1.2 Precision-Recall Graph of the experiment 2
As we can see in Table 5.1.3 and Figure 5.1.2 the result is much better than the result in

experiment 1 but it is still unsatisfactory. We need to decrease the weight value further.
5.4 Query expansion considering support

Experiment 3

Based on experiment 2, we introduce the support value of the rules to the calculation of
the weight (i.e. further multiple support value with the weight we got in experiment 2).
We normalize the support value of all rules before we apply it. The formula of

normalization is;

Supp — Supp,,., +0.001 < A

Su =
PP Supp,,.. —Supp,,, +0.001

Here Supp is the support value of a rule. Supp,, and Supp,, are the maximum and

minimum support value of all the rules. Supp, , is the support value of rule after

normalization. We add 0.001 to both numerator and denominator to make all the values

positive. This value is determined empirically. The values of Aand B(1>4>0,8>0),

can make the support distribute in different interval. For strategy 1, this becomes:
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w,,, = max[max(w,,,,...w,_ )X con, Xsupp,,,..max(w,_ ...

where

con,,...con,; are confidence values of the rules r,...r, respectively.

supp,,...supp,; are support values of the rules 7...r; respectively.

For the other three strategies the modification are similar.

Experiment 3.1

In experiment 3.1, we set A=1, B=0. The result is shown in Table 5.1.4

W, )Xcon, Xsupp, ]

Average precision for all points
Original Strategy 1 Strategy 2 Strategy 3 Strategy 4
11-pt Avg: 0.2341 0.2363 0.2363 0.2355 0.2355
% Change: 1.0 1.0 0.6 0.6
Table 5.1.4 Result of Experiment 3.1
‘ Precision—Recall Graph
ot
l 0.6
05 R —e—Original
.S 0.4 ——Strategy 1 [
g 0' 5 Strategy 2|
é_‘i ) Strategy 3
0.2 |—%—Strategy 4|
0.1
O ] { 1 | | 1 1 L
0 0.10.20.30.40.50.60.70.80.9 1 ‘

Recall

Figure 5.1.3 Precision-Recall Graph of the experiment 3.1
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In this experiment the system performance is further improved. And now we can see

that query expansion has improved the whole system performance.

We compare the query files in experiment 2 and experiment 3 as listed in Table 5.1.5.

The keywords above the dash line are original ones. From the table we can see that the

weight of the new keywords should be much lower than that of the original keywords.

Note in this experiment the average weight strategy did not show advantages as they

did in experiment 1 and 2. We think it means that the weight value is too small in this

experiment.

Query 3 in Experiment 2 (after expansion)

Query 3 in Experiment 3.1 (after expansion)

3 0 3352 0.34318 compiler
3 0 3874 0.43674 construction
3 0 7295 0.53726 multi

3 0 7741 0.59144 intermediate
3 0 15587  0.23029 language
3 0 17482 0.13395 data

3 0 10420 0.16351 grammar
3 0 16508 0.11745 structure
3 0 5152 0.13717 program
3 0 17338  0.15217 system

3 0 13148  0.17502 level

3 0 4967 0.17271 1

3 0 18563  0.18423 paper

3 0 19661  0.20496 problem

3 0 2981 0.17041 input

3 0 18900  0.12436 general

3 0 5376 0.13798 programming
3 0 18948  0.1819291 2

3 0 3352 0.34318 compiler
3 0 3874 0.43674 construction
3 0 7295 0.53726 multi

3 0 7741 0.59144 intermediate
3 0 15587  0.23029 language

3 0 17482  0.01443 data

3 0 10420 0.01178 grammar
3 0 16508  0.00502 structure

3 0 5152 0.01322 program
3 0 17338  0.01292 system

3 0 13148 0.03232 level

3 0 4967 0.01128 1

3 0 18563  0.01026 paper

3 0 19661  0.01200 problem
3 0 2981 0.01957 input

3 0 18900  0.00896 general

3 0 5376 0.01331 programming
3 0 18948  0.01188 2

Table 5.1.5 Query file (Partial) after expansion
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Experiment 3.2
In experiment 3.2 we tried different values of 4 and B in the normalization formula.
Considering the results of experiment 1 and experiment 2, we use the result of strategy

4 in experiment 3.1 as the base for comparison. The result is shown in Table 5.1.6.

System Performance B

change 0 0.1 0.2 0.3 0.4 0.5

0.5 0.0 1.9 1.1 0.5 1.6 -0.2

0.6 -0.9 1.9 1.2 0.5 1.8 -0.9

0.7 0.2 1.8 1.2 0.0 1.6 -0.9

A 0.8 0.2 1.8 1.2 0.1 1.6 -1.0
0.9 0.3 1.8 1.2 0.1 1.2 -1.0

1.0 0.6 1.8 1.2 -0.1 1.2 -0.9

Table 5.1.6 Result of experiment 3.2

From the result we found that when 4=0.6, B=0.1 (i.e. all support values distribute in

[0.1, 0.6]) the system performance can be best improved.

5.5 The impact of the threshold values

Experiment 4

There are 671 keywords in total in the original query file. In the first three experiments
we have 2056 keywords in query file after query expansion. We think that too much
new keywords may introduce much more noise. So we tried to reduce the number of

new keywords.

Experiment 4.1
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In experiment 4.1 we give a threshold value of rule confidence (i.e. we ignore those
rules with low confidence). We use the result of strategy 4 in experiment 3.2 as the base

for comparison (4=0.6, B=0.1).

Lower threshold of rule confidence

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9

System
Performance 1.9 0.6 0.9 1.5 1.5 1.1 0.5 -0.6

change

Table 5.1.7 Result of experiment 4.1

25 |
2 L
1.5 |
System 1k
Performance
Change
-0.5
-1
05 055 06 065 07 075 08 09

Threshold of Rule Confidence J

Figure 5.1.4 System Performance Change of Experiment 4.1

We can see from Figure 5.1.4 that the system performance became worse as the
threshold of rule confidence increased. It seems that rules with lower confidence have
more contribution to the system performance improvement. This is reasonable since

generally a rule with high confidence value will have a low support value.
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Experiment 4.2
In experiment 4.2 we ignore those rules with high confidence. Other parameters are the

same as in experiment 4.1. The result is shown in Table 5.1.8.

Upper threshold of rule confidence

0.9 0.8 0.75 0.7 0.65 0.6 0.55
System
Performance 1.9 1.6 1.7 1.6 1.5 1.0 0.6
change
Table 5.1.8 Result of experiment 4.2
2
1.5
System
Performance 1 A
Change
0.5 -
0 i i L I
0.9 0.8 0.75 0.7 0.65 0.6 0.55

Threshold of Rule Confidence

Figure 5.1.5 System Performance Change in Experiment 4.2

The results of experiment 4.1 and 4.2 show us that it’s not beneficial to use restrictions
on rule confidence to reduce the number of new keywords. This technique can not

improve the system performance.
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Experiment 4.3

The problem of experiments 4.1 and 4.2 is that the values of the support are fixed. So in
experiment 4.3 we fix only the value of B as 0.1 and make the value of A vary from 0.5
to 1. At the same time we make the threshold value of the confidence vary from 0.5 to

0.9. The result is shown in Table 5.1.9.

System Lower threshold of rule confidence

Performance | 0.5 | 0.55 06 | 065 | 07 | 075 | 0.8 0.9
0.5 1.9 0.5 1.0 1.5 1.5 1.2 0.5 -0.6

0.6 1.9 0.6 0.9 1.5 1.5 1.1 0.5 -0.6

0.7 1.8 0.6 1.0 1.5 1.7 1.1 0.4 -0.6

A 0.8 1.8 0.5 1.0 1.4 1.7 1.1 0.5 -0.6
0.9 1.8 0.6 0.4 1.4 1.7 1.0 0.5 -0.6

1.0 1.8 0.6 0.4 0.8 1.0 1.0 0.5 -0.6

Table 5.1.9 Result of experiment 4.3

System
| Performance 0.5-
Change
| 01 \
A\ Y
-0.51 ‘V/

(/
07 Valueof A
05 ps5
06 065 g7 075 op 05
: 8 09

Low er Threshold of Rule confidence

Figure 5.1.6 System Performance Change in Experiment 4.3
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Comparing the result with experiment 4.1 we see that no other combination of

confidence and support can get better result.

Experiment 5

In this experiment we ignored those keywords in the original query with low weights

when inducing new keywords from association rules. In this experiment we give a

threshold value of the weight. When we find a matching rule, we will ignore this rule if

a keyword that appears in antecedent of the rule has a low weight (i.e. lower than the

threshold value). We

use the result of strategy 4 in experiment 4.1 as the base for

comparison. The threshold is changed from 0.1 to 0.26.

Lower Threshold value | System  Performance | Threshold value of | System  Performance
of Weight change Weight change
0.0 1.9 0.18 1.1
0.10 1.7 0.19 1.0
0.11 1.7 0.20 1.0
0.12 1.8 0.21 04
0.13 1.2 0.22 0.6
0.14 1.2 0.23 -0.2
0.15 1.2 0.24 0.3
0.16 1.2 0.25 0.1
0.17 1.2 0.26 -0.3

System Performance ! ?

2.5+
2

Table 5.1.10 Result of Experiment 5

Change 05 _ A |
0 L " 1 1 1
0.5 L A ~.
NN N R T T T T N TN T, TR N O S
OF Y Y Y Y Y Y o YV YV Y oY

Threshold of Weight

Figure 5.1.7 System Performance change of Experiment 5
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As we can see in Table 5.1.10 and Figure 5.1.7, there’s no noticeable improvement.

When the threshold is too high it will even make the system perform worse.

Experiment 6

In this experiment we try another way to reduce the total number of new keywords. We

give a threshold value for the weight and if a new keywords appears whose weight

value is lower than the threshold we do not add it to the query. We still use the result of

strategy 4 in experiment 3.1 as the basis for comparison. According to the new query

file in experiment 3 as shown in Table 5.1.4 we choose the threshold range from 0.008

to 0.030. The result is shown in Table 5.1.11 and Figure 5.1.8.

Lower Threshold value of

System Performance

Threshold value of

System Performance

Weight of new keyword change Weight change
0.0 1.9 0.015 0.6
0.008 1.8 0.016 04
0.009 1.8 0.017 0.5
0.010 1.9 0.018 0.3
0.011 1.3 0.019 1.1
0.012 0.5 0.020 1.1
0.013 0.4 0.025 0.7
0.014 0.6 0.030 04

Table 5.1.11 Result of Experiment 6
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Figure 5.1.8 System Performance change of Experiment 6

From the result we know that the use of a unified threshold value for all queries is not

reasonable. It just makes the system perform worse.

Experiment 7

In this experiment we try to reduce the total number of new keywords by giving
threshold value of the support.

Experiment 7.1

In experiment 7.1 we give a threshold value of rule support (i.e. we ignore those rules
with low support). We use the result of strategy 4 in experiment 3.2 as the base for
comparison (4=0.6, B=0.1, threshold of confidence is 0.5). The result is shown in
Table 5.1.12 and Figure 5.1.9.

Lower threshold of rule support (%)
0.0040 | 0.0045 | 0.0050 | 0.0055 | 0.0060 | 0.0065 | 0.007 | 0.0075

System
Performance 1.9 14 0.6 14 0.9 0.9 04 04

change

Table 5.1.12 Result of Experiment 7.1
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Figure 5.1.9: System Performance change of Experiment 7.1

Experiment 7.2
In experiment 7.2 we ignore those rules with high support. Other parameters are the

same as in experiment 7.1. The result is shown in Table 5.1.13 and Figure 5.1.10.

Upper threshold of rule support
0.0090 | 0.0085 | 0.0080 | 0.0075 | 0.0070 | 0.0065 | 0.0060 | 0.0055

System
Performance | -0.1 0.7 14 0.6 09 09 1.5 1.1

change

Table 5.1.13 Result of Experiment 7.2
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System Performance
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0.009
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Figure 5.1.10 System Performance change of Experiment 7.2

Experiment 7.3

In experiment 7.1 and 7.2 the threshold value of confidence is fixed to 0.5. In

experiment 7.3 we will vary the threshold value of confidence from 0.5 to 0.9. The

result 1s shown in Table 5.1.14.

System Performance Lower threshold of rule confidence
change 0.5 0.55 0.6 | 0.65 0.7 0.75 0.8 0.9
0.004 1.9 0.6 0.9 1.5 1.5 1.1 0.5 -0.6
0.0045 | 1.7 0.6 0.4 1 0.8 0.5 -0.7 | -1.1
0.005 | 0.8 0.6 0.9 1.1 1.1 -0.1 -09 | -09
bower  Foooss | 1.5 | 1.1 | 1.1 | 08 | 1.1 | -01 | -1 | -09
threshold of
0.006 1.1 0.9 0.4 0.6 0.6 -02 | 0.1 | -0.2
rule support
0.0065 | 1.1 0.7 0.4 0.3 0.6 -0.1 0 -0.2
0.007 | -0.2 | -0.2 0.2 0.2 -05 | 09 | -0.7 | -0.2
0.0075 0 0 -04 | -04 | 05 | -09 0 -0.2

Table 5.1.14 Result of Experiment 7.3
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The result of experiment 7 shows us that it is not reasonable to use restriction on rule
support to reduce the number of new keywords. This technique can not improve the

system performance.
5.6 Interactive Query expansion

Experiment 8

In this experiment we actually use interactive query expansion. It needs the user’s
intervention during the process of expansion. That is say after we get the new query file
we look through it and remove some new keywords according to our own judgment.
The purpose of this experiment is to see the possible upper bound when association

rules are used in query expansion.

Query 5 Original keywords Query 5 Original keywords

5 0 80 0.26938 manager 5 0 9655  0.21901 editing

5 0 502 0.14039 user 5 0 10134  0.23277 essential
5 0 545 0.41144 interface 5 0 12200 0.33835 window
5 0 2673  0.21418 5 0 12513  0.20582 human
effectiveness 5 0 13461 0.17278 efficiency
5 0 4183 0.31976 satisfaction | 5 0 15418 0.20939 design

5 0 4346  0.21573 issue 5 0 15605 0.22074 view

5 0 5912 0.13686 implementation | 5 0 17481 0.20456 command
5 0 6117  0.19263 improvement | 5 0 18563 0.09073 paper

5 0 7551  0.23760 interpreter

Table 5.1.15 Keywords in Query 5 before expansion

17482 0.01534 data
5152 0.01179 program
1811  0.01391 computer
17338 0.01889 system
12266  0.00834 algorithm
15587 0.01504 language
4967  0.00784 1

19661 0.01224 problem
18900 0.01205 general

1090  0.01131 time

5376  0.01633 programming
18948 0.00760 2

12568 0.01623 text

b b i
S O ©oO O O o o
th WL b L W
S ©O O © o ©

Table 5.1.16 New Keywords in Query 5 after expansion
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For example, in Table 5.1.16 there are 13 new keywords in query 5 after the expansion.
We think keyword ‘1’ and ‘2’ are not reasonable so we remove it from the query.
Keywords ‘problem’, ‘algorithm’ and ‘system’ are too general in CACM collection.
They also need to be removed.

We go this way all through the query file and get a new query file. Using this file, we
test the system performance. According to our experiment, the system performance
improvement is between 0.5 and 1.1 compared to the query without expansion.

This result shows that even used in an interactive way, the association rules can not

make a larger improvement in IR effectiveness.

5.7 Experimental results analysis

From the experimental results we can conclude that the assignment of weights for the
new keywords is a crucial aspect in query expansion. Different strategies for this task
may lead to totally different results. Unfortunately there’s no principle to guide us. In
our experiments we tried many possibilities in the search for a good strategy to assign
weight. The system performance improves slightly in some experiments. According to
the results, the application of association rules in query expansion did not bring the
improvement that we would expect. But we do not think it proves that we made efforts
in the wrong direction. In fact, several factors may affect the result.

The first is the number of rules. As we can see in table 5.1.2 we use very low support
value (only 0.004%) to generate rules and still got a large set of rules (7760). In the
CACM collection there are 52 queries and 671 keywords. After applying the
association rules, we obtain 2036 keywords. The average size of a new query is more
than three times of the original one. Inevitable, this introduces noise to the query and it
is difficult to reduce such noise. We think we should introduce some other analysis to

the query process in order to filter the association rules.
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The second factor is the document collection itself. CACM is a small collection and
most documents in this collection are very short. Thus the weight of single keyword
may have significant impact on the query result. This makes it more difficult to assign
weight to the new keywords. Furthermore, the documents in this collection focus on
only few fields (namely, all about computer science). This makes some frequent
keywords present in almost every document as shown by Experiment 8. Since these
frequent keywords do not belong to the stoplist, they will not be discarded in the
indexing process. Also, since they are very frequent, they have a high probability to co-
occur with other keywords. So, they may be present in many rules. After the expansion
process, they may appear in every query, and may have no contribution to the precision
but just introduce noise. As we observe in experiment 8, it is difficult to discard these
words manually. It may be an important task of further research to find the guidelines to

do this automatically.

The third factor is the rule extraction process. In fact, the document-term matrix used
for rule extraction is treated as a binary value matrix in the process of rule generation.
This means we only consider whether a term is present in a document or not. But
actually these terms are weighted and the matrix should be a multi-valued. In the
current approach it is not reasonable to calculate the co-occurrence of a term with high
weight and a term with low weight. So we may scale the context to avoid such problem.
Scaling aims to transform multi-valued matrix to single value matrix. (See appendix
A.2 for the concept of scaling). Although scaling is already implemented in the Galicia
platform, it introduces other problems. A problem is that after scaling a term may
generate several binary features which correspond to different weights of that term in
different documents. This makes it difficult to combine rule generation with the

indexing process and it also makes the indexing process complex. The second problem
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is after scaling the size of the context may grow quickly, which may lead to serious

computational problems.

The fourth factor is the co-occurrence of terms. At present we consider that two terms
co-occur if they appear in the same document. Actually, we may consider the distance
of the two terms in the text as a factor. For example, if these two words are not present
in the same paragraph, we should not consider them as co-occuring. The selection of

the distance is also a potential research field.

The last possible reason is that, as both the document and the queries are in a very
specific area (computer science), the queries may be already well expressed, and they
do not need to be further expanded. It would be interesting to test query expansion
using association rules on a different and non-specialized collection, in which the

queries may be less well expressed (for example, a TREC collection).
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Chapter 6 Conclusion and future work

6.1 Conclusion

The goal of this thesis is to apply association rules to query expansion in information
retrieval. To generate association rules between terms a Galois lattice based-method is
used. The key problem here is to efficiently generate the iceberg lattice. We used two
algorithms for this purpose. Bordat algorithm is a classic top-down batch algorithm. We
modified it so it can generate iceberg lattice according to the given support value. We
also developed an incremental algorithm to construct the iceberg lattice. The increment
can be either object-wise or attribute-wise. It makes sense to use an incremental
algorithm since in many cases, especially in the context of information retrieval, the
data set is dynamic. New documents will be fed into the collections periodically. An
incremental algorithm provides a way to generate new lattice from the old lattice and
the new data. Hence, it saves both time and computational resources.

When applying association rules to query expansion, the main problem is the
assignment of weights to the new keywords that will be added to the queries. We have
followed several alternative tracks and we did some experiments in a search for a good
strategy to assign weights. The system performance improved slightly in some cases.
With respect to our experiment results, we may conclude that the association rules can
help query expansion to some extent. However, in order to take full advantage of the
data mining mechanisms, a set of problems need to be solved. In particular, more

effective weight assignment mechanism should be designed.

6.2 Future work

We have already pointed out some future research avenues in section 4.4. These may be

summarized into five axes:
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1.

Statistical document analysis. The analysis should be carried out on two levels.
First, one should analyze the terms in a single document to find more
information about the ways those terms are related, such as the distance between
them. Second we should take the whole collection into consideration to extract
the global relationships between those terms. This analysis focuses on statistical
information and does not consider the semantic aspects of the term-document or
term-term relations.

The semantic analysis of the association rules. We think this is important to
reduce the noise introduce by the rules. A considerable challenge lays in the
automation of the analysis.

Indexing process. As we mentioned above if we scale the multi-valued
document-term context, the frequency of a term in a document can be integrated
into the mining process in a natural way. Thus the weight assignment could be
benefit from this valuable information which is currently missing. However, the
indexing process may require substantial modifications to accommodate the
new scaling process.

The expansion process may be combined with pseudo-relevance feedback. In
the process of pseudo-relevance feedback, the system assumes the top n
documents in the first search result as relevant to the query. Then the system
takes the terms from these documents to expand the query. We may apply
association rules on the new query generated by the pseudo-relevance feedback
process.

Finally, it would be interesting to experiment association rule extraction on a
larger document collection. In order to do this, the complexity of the rule

extraction process should be greatly reduced.
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Appendix
A.1 Bordat algorithm

First we show the original description of Bordat algorithm. In this description, an
auxiliary tree is used to construct the line diagram. It is implemented by the sets Ch.
Ch((A,B)) is the set of children of the concept (A,B) in this tree.

0.L=0

1. Process((0,0"),0"
2. L is the concept set.

Process((A, B),C)
1.L=LU{(4,B)}
2. LN = LowerNeighbors(( A, B))
3. For each (D,E)e LN
31.If CNnE=B
3.1..C=CUE
3.1.2. Process((D, E),C)
3.1.3. Ch((4, B) =Ch((A4,b)) W {(D, E)}
3.2. Else
3.2.1. Find((0,0"),(D, E))
3.3. (4, B) is an upper neighbor of (D,E)
Find((4,B),(C, D))
1. (E, F) is the first concept in Ch((A4, B)) such that F C D
2If F#D
2.1. Find((E, F),(C,D))
3. Else (E,F) is the desired concept
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LowerNeighbors((A, B))

0.LN =0

1.C=8B

2. g is the first object in A such that —({g}' € C);if there is no such object,
g is the last element of A

3. While g is not the last element of A

3.1.E={g}
32.F ={g}
33.h=g

3.4. While h is not the last element of A
3.4.1. h is the next element of A
342.If ~(Fni{h}'cC)

3421. E=EU{h}
3422. F =Fn{h}'

35.f FNC=B8
3.5.1. LN == LN U{(E,F)}
36.C=CUF

3.7. g is the first object of A such that —~({g}' < C); if there is no such object,
g is the last element of A
4. LN is the set of lower neighbors of (A4,B)

A.2 Scaling in Formal Concept Analysis

Conceptual scaling was developed by Ganter and Wille.

A formal notation and definition of the Conceptual scaling is as follows [GW1989]:

Definition A.2.1: A many-valued context (G, M, W, I) consists of sets G, M, and W
and ternary relation / between G, M and W (i.e. I CGXM XW),

where the following holds:

(g,m,w)e I and (g,m,v)e I imply w=v.

The elements of G are called objects, the elements of M are called many-valued
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attributes and the elements of W attribute values.

Definition A.2.2: A conceptual scale for attribute m of the many-valued context is a

(onevalued) context S =(G,,M,,1,) with m(G)C G, . The

attributes of a scale are called scale values, the attributes scale

attributes.

Definition A.2.3: For a many-valued context (G, M, W, I) and scale contexts
S,,m€e M , the derived context is (G, N, J) with
N = U M, and g J(m,w): = m(g) I w
me M
The many-valued context (G, M, W, I) together with the family of scale S,,me M is

called a plainly scaled context



