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Résumé

La recherche documentaire moderne est une discipline en expansion. Un système de

recherche documentaire identifie automatiquement les documents pertinents dans de

grandes collections selon les besoins d’information de l’utilisateur. Cependant, l’utilisateur

peut ne fournir que des questions imprécises. Ainsi, il va recevoir en réponse un très

grand ensemble de documents. Pour réduire le nombre de documents inappropriés

retrouvés par un système, plusieurs méthodes ont été proposées pour d’améliorer la

requête, en y ajoutant des mots-clés additionnels pour augmenter la spécificité de la

requête.

Des règles d’association ont été présentées comme approche pour des dépendances entre

les éléments dans des bases de données de transactions commerciales. Elles représentent

un cadre particulièrement approprié pour l’extraction des dépendances entre les mots-clés

d’un corpus textuel. De leur côté, les treillis de Galois fournissent une base théorique pour

l’extraction de règles d’association à partir d’un ensemble de données.

Dans ce mémoire nous étudions une approche par treillis de Galois pour l’extraction de

règles entre termes en vue d’une expansion de requête. Nous développons des méthodes

d’extraction de règles et d’expansion de requête. Un problème important ici est d’affecter

des poids aux nouveaux mots-clés qui seront ajoutés à la requête. Nous avons effectué

diverses expérimentations pour trouver des stratégies appropriées pour ceci. Selon nos

expérimentations, l’application des règles d’association dans l’expansion de requêtes

apporte quelques améliorations, mais nombreux problèmes restent encore à résoudre

avant que les règle d’association puissent être utilisées pour améliorer la performance de

la recherche d’information.

Mots clés règles d’association, treillis de Galois, treillis iceberg, l’expansion de requête,

recherche d’information
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Abstract

Modem information retrieval is a rapidly expanding discipline. Using algorithmicaliy

derived search engines, information retrieval systems automatically identify and sclect

documents from large document collections according to the user information need.

However, the user may only be able to provide simple and inaccurate queries and thus get

in retum a very large set of documents. b reduce the number of inelevant documents

retrieved by a system, different strategies were proposed to improve the query, in

particular, byjoining in additionai keywords to increase the specificity ofthe query.

Association mies have been introduced asan approach to the discovery of dependencies

between items in transaction databases. In fact, they represent a particularly suitabie

framework for keyword dependency mining from a textual corpus. Galois lattices provide,

in tum, a theoretical basis for the extraction of association mies from a dataset.

In this thesis, we study a Galois lattice-based approach for mie mining for query

expansion and we design methods to implement it. One important problem proved to be

the assignment of weights to the new keywords that will be added to a query. We did

many experiments to find suitable strategies for weight computation. According to the

experimental results, the application of association rules to query expansion can slightly

improve the system performance. However, there are stiil important problems to be

solved before the association mies could be used effectively in IR practice.

Key words:

Association mie mining, query expansion, information retrievai, Galois lattice, iceberg

lattice.
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Chapter 1 Introduction
Modem information retrieval is a rapidly expanding discipline, driven by the ever

growing amount of available textual documents, in particular on the Web, but also in

electronic libraries and documentary data bases of the large corporations. Using

algorithmically derived search engines, information retrieval systems or search engines

try to automatically identify and select the relevant documents from large document

collections according to the user information need. A search is successfiil if it retums as

many relevant documents as possible and as few non-relevant ones as possible. For

most ofthe search engines at present, users have to submit a query to search documents.

In these cases, the user information need is represented by a query in a search engine.

Unfortunately the users are flot aiways capable of formulating well-defined queries to

represent their information need. They may only be able to provide simple and

inaccurate queries and thus get in retum a very large set of documents. The

effectiveness of the information retrieval system will therefore be very poor. Improving

the user’s queries becomes a very important task of the IR system. For that purpose, the

correlations between keywords can be explored. The resulting approach consists in

expanding initial user queries, by joining in additional keywords to increase the

specificity or the coverage of the query. By automatically expanding queries one tries to

provide additional information so as to obtain a more accurately formulated queries.

Our work described in this thesis aims to expand queries automatically. Our query

expansion strategy is based on the term co-occurrences. Various methods exploiting

term co-occurrences for query expansion have been proposed. In these methods the

relationships between tenus are bi-directional. That is, if there is a relation between

“database” and “data structure”, then the reverse relation is also assumed. From a query

expansion perspective, if it is reasonable to expand a query on “database” by adding
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“data structure”, it may flot be the case in the reverse direction. In our application the

relations between terms are asymmetrical or directional. Some terms are premise and

others are treated as consequence. This is equivalent to considering a relationship

between terms as a logical implication. We think that if we can find meaningful rules in

our application then we can get a more relevant resuit by applying them in the process

of query expansion. The interpretation of the rules may make the process more

reasonable. If it is the case then the technique can also be used to interact with users to

get better results.

The relations between terms are expressed as association rules in our study. Association

rules have been introduced as an approach to the discovery of dependencies between

items in transaction databases. We believe that they represent a particularly suitable

framework for keyword dependency mining from a textual corpus. However, a well

known problem with association nue miners is the large number of discovered rules,

which can contain much noise. Galois lattices provide a theoretical basis for mining

association rules which helps reduce the number of rules that can be extracted from a

dataset, while preserving the global amount of knowledge gained. Furthermore, non

redundant bases can be constituted as a minimal representation of the complete set of

association rules.

Our aim is to study the Galois tattice-based approach to extract important association

rules, and to use them in information retrieval. More precisely, the goal is to design

effective methods which implement the approach while keeping the scalability and the

efficiency of the classical retrieval and expansion techniques. As the utilization of

Galois lattice in IR have flot been extensively investigated, our study will provide some

preliminary indication on the usefiilness ofGalois lattices for query expansion in IR.
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One of the key difficulties in information retrievai is the assignment of weights to the

keywords in the query. When we find the new keywords to be added to the query we

have to assign weights to the new keywords. Unfortunately, there are no available

guidelines to follow. Ihe weights of the original keywords, the support and confidence

values of the association rules that suggested the addition of a keyword are factors that

contribute to the weight computation. We design a series of experiments and try to find

a reasonable strategy for the task.

The thesis is structured as follows. In Chapter 2 we introduce the theoreticai foundation

of information retrieval discipline. First, we present the general process of information

retrieval. We also explain the tfxk/f weighting scheme and vector space model in

detail. The vector space model is a wideiy used model to measure the similarity of a

document and a query. It is implemented in the SMART system, which is briefly

described since it is used in our experiments. In the same chapter we also show how to

measure the system performance in terms of precision and recail. In Chapter 3 the

foundations of the association rule mining problem is explained. We introduce in detail

the Galois lattice and iceberg lattice, which consists of only the top-most concepts of a

concept lattice. We also describe the algorithms to construct the lattice and their

implementations. We introduce the Galicia platform [VGRH2003]. The algorithms are

implemented in this piatfonn and ail the association mies are generated by the ptatforrn.

Two algorithms for lattice construction are described in Chapter 3: Bordat [B 1986]

algorithm and incremental algorithm [VHM2003]. The first algorithm is a classical one.

We did several modifications to make it easy to integrate into the Galicia platform and

to generate iceberg lattices. Incremental algorithms have been deveÏoped in recent years.

It makes sense since it reflects the fact that in most cases the document collections are

dynamic. New documents wilI be added into the collections from time to time. These

aigorithms can avoid reconstructing the whole lattice from beginning every time there
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are new documents added into the collection. Chapter 4 shows an application of

association rules in query expansion. We describe the process of query expansion and

the aigorithm implemented for it. Several experimcntal resuits are presented in Chapter

5 and we also make an analysis based on the resuits. We got a slight improvement of

system performance in the experiments. We may conclude that the association mies can

help query expansion. However, in order fully to benefit from the advantages of the

data mining mechanisms, a set ofprobÏems need to be solved. In Chapter 6 we propose

several future researcli avenues.
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Chapter 2 Information retrieval

2.7 Informatïon retrieval

2.1.1 Introduction

Information retrieval is a science about the representation, storage, organization and

accessing of information items [SM19$8]. Although information retrieval systems are

traditionally used to process bibliographic records and textual data, there is no

restriction on the type of inforrriation items. The representation and storage of

information items should help the users access the information easily. There may be

many information items available. People may be interested in only part of them and

different people may have different interests. An information retrieval system should

provide the user with a convenient and effective way to access the information he is

interested in.

To illustrate the whole information retrieval process first we give some definitions. A

database or a document collection is a collection of documents. Here we only discuss

text documents. A document is a sequence of words. It is writtcn in a natural language

such as English or French. A terni is a unit extracted from a document in an indexing

process. It represents a part of the document content. A term can be a word, or just a

root of a word. It can also 5e a more complex element such as a compound term or a

phrase. In this thesis, we will only deal with single words or roots ofwords. A qtteiy is

a request to the database for finding documents relevant to some topic. GeneralÏy a

query is also represented as a sequence ofterms.

The information retrieval process can 5e separated into several steps, as shown in

Figure 2.1.1. [BR1999]
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Step 1: Define the text database. This step specifies the collection of documents to be

used and the text mode!. The text model provides the structure of the text and it also

deterrnines what elements can be retrieved. In this step, text operations transform the

original text and generate a logical view ofthe documents.

Step 2: Bui!d the index of the documents. Indexing is crïtical because it allows fast

searching over a large database. There are severat different index structures but the

most popular one is invertedfile (Sec 2.1.2 for more details).

Step 3: The user sends a request (also called user need) in natural language to the

system. The same text operations as in step Ï are also applied to generate the logical

view of the request. Query operations are applied to generate actual query, which is a

system representation of user’s request.

Step 4: The Query is processed to obtain retrieved documents, typically by computing

the similarity, or the likelihood of relevance, of documents to the query.

Step 5: The retrieved documents are ranked according to a likelihood of relevance and

then presented to the user.

There may be some optional operations such as user feedback. We will not deal with

them in this study.
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2.1.2 Automatic indexing

The most crucial and difficuit procedure in the process of information retrieval is

indexing. The main task is to select appropriate ternis which can represent the content

of the documents. The selection of content identifier must fulfihi three requirements:

1. To help locating the documents that the user is interested in.

2. To help the discovery of the relationship between documents, i.e., different

documents dealing with similar or related topic areas.

3. b help the prediction ofthe relevance of documents to the users requirements.

The indexing task consists of two parts. The first is to select terms capable of

representing document contents. The second is to assign each term a weight to represent

its importance as a content identification.

Figure 2.1.1 Information retrieval process

We will describe in more detail step 2 in Section 2.1.2. Step 4 and 5 will be discussed

in Section 2.1.3.
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Generally terms are extracted from the text of the documents themselves. Inverted file

designs are applied in most information retrieval systems. So our discussion will focus

on such kind of systems. In the inverted file design, a system constructs document

index files and one or more auxiliary files storing the so called inverted index. The

inverted index associates with each indexing tenu the list of documents containing the

terni. That is, t —> {< d1,w1 >,< d,,w, > ...}. Here, tisa term, d isa document and w is

the weight of tlie term in the document. When a user submits a query composed of one

or more terms, the system searches in the inverted index to find the terms and their

associated document reference numbers. f inally by combining the document reference

lists, the list of required documents is composed, and the references are retumed to the

user.

Before indexing, the words in the documents will be pre-processed. First they should be

filtered by a stoplist. A stoplist is a list of uninteresting words in indexing. In English

functional words such as “a, be, have, of’ and some common words such as “lie, she,

lier, here” are included in a stoplist. These words are ignored during the procedure of

indexing. Second, words should be “stemmed” to extract the root of tlie words. In most

cases, morphological variants ofwords have similar semantic interpretations and can be

considered as equivalent in information retrieval system. For example, tlie words

“transfonu, transformation, transforming” should be stemmed to a single form

“transform”. After stemming we will get the standard forms ofthe words.

Once tenus are selected, they should be weiglited. Tliere are several methods used for

weighting tenus. Here we introduce the rnethod based on fxidfweighting [BR1999].

The f x idf weighting metliod takes two ideas into account for tenu weigliting. Here

f represents the tenu frequency in a given document. It can be used to measure the

importance of a term in a document. The value idf represents the inverse document
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frequency of the term in the whoïe document collection. Typically, it is measured by

log(N/n) where N is the total number of documents in the collection and n is the number

of documents that contain the term. It can be used to measure how specific the term is

to a document. So we can use fxidf to set the weight of each term. Note that the term

weight needs to be normalized to avoid that a longer document is always given a higher

weight. The following formula is one of the most used tfxidf weighting schernas -

—Cosine formula:

— Lk xlog(N/n)
—

_______________________

( )2 x[Iog(N/ )]2

Where:

W,k is the weight ofterm ?j in document D..

Lk is the frequency ofterm 7 in document D..

N is the total number of documents in the collection.

11k is the number of documents in the collection that contain I.

log(N/n) is the formula to calculate idf ofterm 1.

2.1.3 Vector space model

The Vector space model is one of the most commonly used models to measure the

similarity of document and query [BR19991. After indexing, each document in a given

collection is represented by a set of terms. When we take the union of ail these sets of

tenus we get a set of tenus that defines a vector space: each tenu defines a different

dimension. A document vector is defined by the set of tenus occurring in it and their

weights detenuined during the indexing process. If a tenu does flot appear in the
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document, its weight is set to zero. In this way a document D, can 5e treated as a point

in the document space and the weight of each term in D1 represents the coordinate

ofD1. That also means that D. can represent a vector from the origin of the document

space to the point defined by the coordinate ofD1. That is:

D1 =< Wj 2 ‘
“‘

Here, , ,..., i,, are the weights of terms ], 7, . . .l in document D. . i,,, = 0 if term

7 is absent in D1.

So the collection can be represented by a document-term matrix as shown in Table

2.1.1. Each row ofthe matrix is a document and each column is a term. An element of

the matrix is the weight ofthe term in the document.

T1 T7 ... ... T,1

D1 w11 wj? ... w11 ... w11

D2 W2j W?? ... W21 ... W?

D w, w1? ... wU .. w1,,

lflJ TV,? .
.. ‘nzJ . . }Vn,n

Table 2.1.1 Matrix representation of Collection

GeneraÏly a query is specified by the user in natural language. The query will be

processed in the same way as a document. So it is also transformed into a vector in the

vector space. That is:
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Q_<Wq1q2.,Wqfl >.

Here, wql Wq2••• Wq,z are the weights of tenus 1.. .T in query Q. = O if term

is absent inQ. The weights of terms in a query are compute in the sarne way as in a

document.

When we have the document vectors and the query vector we can measure the

similarity between them. Ail the documents can be ranked according to their similarity

values. The document that is most similar to the query gets the highest rank. In the

vector space model we assume that the document most similar to the query wilÏ be most

relevant to the query. The usual way to measure the similarity is by the inner product

[BRÏ 999]:

Sim (D1, Q) = (1
X Wqk)

Remember that ail weights are already nonualized here by the Cosine formula. Putting

the eariier Cosine formula into the similarity measure, we have:

(W, X Wqk)

Sirn(D1,Q)= k=I

(wik)2 X(wqk)2

This is the cosine of the angle between the document vector and the query vector. After

we calculated the similarity of each document with the query and ranked ail the

documents in the reverse order of their sitnilarities, the documents are retumed to the

user in the order of their ranidng.

2.1.4 System performance evaluafion

With respect to a given query, the collection of the documents can be divided into four

groups according to the relevance and the retrieval result, as shown in Table 2.1,2.
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Relevant Non-Relevant

Retneved A B

Not Retrieved C D

Table 2.1.2 Document Group

Two main measures of system performance can be derived from Table 2.1.2:

Definition 2.1.1 Given a set of documents, Frecision is the fraction of relevant

documents retrieved from the total number retrieved.

Precision
= A

AuB

Definition 2.1.2 Given a set of documents, Recaït is the fraction of relevant documents

retrieved from the set of total relevant documents.

A
Recaït =

_____

AuC

Ideally, we hope that a system can give a high value of precision and recali at the same

time. A system with 100% precision and recail values means that it finds all the

relevant documents and only the relevant documents.

Different user queries may get different precision-recall pair values. To evaluate the

performance more accurately the concept of average precision is introduced. The main

idea is to average the precision values of different queries. Two methods are employed

mostly to calculate the average precision.

Method 1:

N N

Precision = — Freciszo,z. = —

_______

avg N N A. uB1
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Recaïl, = Recall.
= 1 4

alg
N N 1=! A. c,

Here, Nis the number ofqueries. The subscript “i” represents a particular query i.

Using this rnethod, N queries are sent to the system and the precision and recail values

of each query are recorded. Then we use these values to calculate the average precision

and average recaïl value of the system.

Method 2:

Precision1 = N

(A1 u3)

Recalta,g = N
i=I

(4 UÇ)

Using this method, we also send N queries to the system. But we don’t calculate the

precision and recail values of each query. Instead, we record the values of A, B, C of

each query. Then we calculate the average value of A, B, C and flnally we compute the

average precision and average recall value as a single query.

Precision and recali are flot independent. There is a strong relation between them: when

one increases, the other decreases. Measurements of Precision-Recali are not static. A

system does flot have only one measurement of Precision-Recall. The behaviour of a

system can vary in favour of precision or of recail. Thus, for a system, there is a curve

ofPrecision-Recall which lias the general form as shown in Figure 2.1.2 [BR1999].
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100

precision

figure 2.1.2 Precision-Recail graph

To draw a Precision-Recali graph, one simply computes the precision at 0.1, 0.2... 1.0

level of recail. The precision-Recail graph shows the trade-off between precision and

recail made by the search algorithm of a system. It shows the system performance at

differcnt operating points. Different users may be interested in different point on the

graph. Mean Average Precision is also defined:

Mean Average Precision = Average ofPrecisions at 11 points ofrecaïl.

2.1.5 Query Expansion

In most of the popular search engines, the user interacts with the system by means of

queries. In order to find as many relevant documents as possible and as few non-

relevant ones as possible, the users should compose their information need accurately in

the form of query which is accepted (or ‘understood’) by the search engine. There are

two major problems in the task. The first is that generally the users can not express their

information needs in a precise way. What they can do is just give an approximate

description of what they want. For example: if a user wants to find some documents

about the new techniques applied in query expansion, he may use only “query

0% 100%
recali
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expansion” as the query. Obviously the search engine will retum a very large set of

documents that contain the tenu “query expansion”. The user may need only part ofthe

set. In this case the user has to refine his!her query. The second problem is that most

users do not know much about the search engines. Even if they know how to express

their information needs precisely, they do not know how to transform it into the form

that can be understood by the search engine. So, in rnost cases, their queries are

incomplete and inaccurate. To solve this problem, some information retrieval systems

provide some kind of user interaction that can help the user optimize their query. b

that end, a range of techniques has been deployed, including query expansion, which

adds new terrns into the original query to improve search performance.

We divide query expansion research into two major areas according to [QF1993J. The

first one relies on serni-automatic and automatic query expansion techniques. In

automatic query expansion, the system determines a set of related tenus to be added

into the original query by using either a thesaurus or by exploiting the documents

retumed by the system. The second one is the manual approach. In this approach,

people examine the user’s query and use their experience or other auxiliary tools such

as thesaurus to derive or modify the original query during the query expansion. In my

thesis I will focus on the automatic query expansion.

Our query expansion approach is based on the tenu co-occurrences. Various methods

for exploiting tenu co-occurrences in query expansion have been proposed for decades.

They can be classified into four groups [QF1993]:

1. Use of tenu classification. The system calculated the similarities between tenus

based on the classification hypothesis. Then the system classifies tenus by setting a

similarity threshold value. The tenus in the same class will be treated as equivalent.

The system will expand the query by adding all the tenus of the classes that contain

query tenus. Researchers have analyzed the limitation of such method [PW91J, and
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it tums out that this idea is too simple to be applied in practice because it adds a lot

of noise into the query.

2. Use of document classification. First the system classifies the documents using a

document classification algorithm. Terms in the same document class are

considered to be similar and will forrn a term class, also called thesaurus class.

Thesaurus class can be used to enhance both the indexing and query process. The

query is expanded by replacing a term by a thesaurus class. According to [CY92],

some parameters, which have strong impact on retrieval effectiveness, are hard to

determine. Since most of the document collections are highly dynamic, a system

may mn document classification more often than mn term classification.

Furtherrnore, most of the document collections are very large. The number of

documents may be much larger than the number of ternis in the collection. Thus,

document classification is much more expensive than term classification.

3. Use of syntactic context. The similarities between terms are computed based on the

linguistic knowledge and co-occurrences statistics. A grammar and a dictionary are

used to extract for each tenn a list of modifiers. The modifiers in the list are used to

calculate the similarities between terrns. At last a query is expanded by adding those

most similar terms. According to [G1992], this method can only slightly improve

the system performance.

4. Use of relevance information. Pseudo relevance feedback is a commonly used

approach for automatic query expansion [MS31998]. In this method, first the

original user query is used to retrieve a small set of documents. These documents

are assumed to be relevant and used in a relevance feedback process to extract terms

to expand query. The problem of this method is that if the assumption is wrong, say,

a large portion of documents retrieved in the first step are not relevant, then the

tenns added to the query are likely to be unrelated to the user’s need, and thus

damage the system performance.
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In this thesis we develop an approach for automatic query expansion based on

association between terms. The associations are extracted from documents by a data

mining technique called Association Rule Mining. It is aiso a method based on the co

occurrences between terms. However, it is different from the simple use of co

occurrences data. In the latter one, the relations between terms are bi-directional. They

are treated as ‘equai’. In our application, the relations between terrns are asymmetrical.

Some of tenns are premise and others are treated as consequence. We think that if we

can find insightfifl rules in our application then we can get a much more relevant resuit

when applying them to the process of query expansion. The interpretation of the mies

may make the process more reasonable. If it is the case, the technique can also be used

to interact with users to get better resuits.

An association mie has the follow form:

t], t2-->t3, t4, with Sztpport= V, confidence= V, where

t], t2, t3, t4 are terms, V, V are values of mie support and mie confidence, respectively.

The mie confidence can be understood as the conditional probability, V =F(t3,t4ft1,t7).

The meaning of the mies is: term t3, t4 will appear in a document when t], t2 both

appear in that document with probability V. So if ti, t2 appear in a query together, it is

natural to expand that query with t3, t4. In contrary, unlike other term co-occurrence

techniques, if if t3, t4 appear in a query together, we will not use ti, t2 to expand that

query, i.e, use the mie in the reverse direction. This is reasonable since the probability

of t], t2 appear in a document when t3, t4 both appear in that document may be

different from V. We wili give a more detailed description about association mies and

their meaning in Chapter 3.
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2.2 SMART System

2.2.1 SMART System

SMART system is an experimental system of information retrievai [G 1971]. It uses the

vector model. Many current IR systems are inspired by SMART. For retrievai

effectiveness, SMART is comparable to the commercial search engines availabie on the

Internet. It is also a free system for research with source code. So it is an ideai

framework to do our experiment.

Here we give a brief introduction to the system.

1. Indexing

A database is a collection of text documents. A text document may contain various

fields. A fleid is cailed section in SMART. for exampie, in a document we can

distinguish the titie, the author, the date and the text. SMART makes it possible to

treat these fieids in a different way. A query may also contain various fields.

The indexing ofa document bas severai steps:

Step J: Recognition ofsections. This is done according to markers which denote the

beginning of sections. SMART can define the markers and corresponding

actions of indexing.

$tep 2: Tokenization. For each section that SMART indexes, the system cuts it in

words. This consists in recognizing the separator ofwords, such as “,“, “:“,

space, etc. The output ofthis step is a sequence oftokens.

$tep 3. Stoplist. The stoplist contains ail the words that we do not want to keep as

index. The tokens found in step 2 are compared with the stoplist to

remove the insignïficant ones. Ibis step is optional since we may decide

that ail the words are significant and must be kept.

Step 4: Stemming. This treatment transfonns the tokens into a certain standard

form. Three options are offered in SMART: no stemming; removing the



Association Rule Mining for Query Expansion in Textual Information Retrieval 19

“s” at the end of a word; or using a trie to remove the termination. Afier

stemming, the resuit word is compared with a dictionary. The dictionary

stores ail the indices and the identification number of each index. The

purpose of the comparison is to obtain the identification number for a

word. If the word is already stored in the dictionary, we simply take its

identification number. If not, the system creates a new identification

number for the word automatically and adds an entry into the dictionary

for the new word.

Step 5. Statistic. For each word the system makes a statistic of its frequency of

occurrence in the document. The final result for a document is a list of

word identification numbers with their frequencies.

Step 6: Conversion ofthe resuit. The raw indexing results can be further processed

through a conversion process. Conversion is done only when ail the

document is the collection were indexed. Two kind of conversion can be

made in SMART: To convert vectors into inverted file or to convert the

weight ofterms. The fxidfweighting can 5e employed in this step.

The indexing of a query is very similar to that of a document.

2. Similarity measurement

The evaluation of query utilizes the inverted file of documents and the indexing

resuit ofthe query which is a sequence ofword identification number and its weight.

SMART uses inner product as similarity.

Sim(d,q) = (p1 .q1)

Here, d is a document, q is the query, p. and q. are the weight of a word in

document d and query q.
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The SMART system implements a calculation for ail documents at the same time.

At the end of this calculation, we obtain the value of Sim for every document. The

documents will be ranked according to the Sim values and retumed to the user.



Association RuIe Mining for Query Expansion in Textual Information Retrieval 21

Chapter 3 Mining of association rules

3.1 Association rules

3.1.1 Introduction

Association mies are vcry widely appiied for knowledge discovery and data mining in

database [AIS 1993]. The ideas of mining association mies corne from market-basket

analysis. It is a process of analysing custorner buying habits (pattems) which are

expressed by mies such as “A customer who buys a desktop computer wili also buy an

operating system with a certain probability.” This kind of mie is caiied association mie

since it expresses the pattems of co-occurrence of different products in the customer’s

basket. In a database of commercial transactions, association mie mining is used to find

au interesting co-occunence pattems of items.

A collection of documents can be treated as a database and each document is a record

of this database. Terms can be seen as items of the record. This motivates us to appiy

association mies mining in document anaiysis to find co-occurrence pattems ofterms in

a document coliection. As we mentioned in Chapter 2, these co-occurrence pattems can

be used to expand a query to achieve better search performance.

3.1.2 Association rules mining

Association mies are used to identify relationships among a set of items in a transaction

database. The reiationships are based on co-occurrence ofthe data items.

A formai notation and definition ofthe association mie is as foiiows: [AIS 1993]

Let I {i1, j2 i} be a set of distinct attributes, aiso called items. A transaction set T

is a multi-set of subsets of I that are identified by TID.
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Definition 3.1.1: A subset X c I with Ix = k is called a k-itemset. The fraction of

transactions that contain X is caiÏed the support (or frequency) of X, denoted by supp

(x):

{teTXct}
stpp(X)=

T

Definitïon 3.1.2: If the support of an itemset Xis above a user-defined minimal

threshold (minsupp), then Xis frequent (or large) and Xis cal[ed afrequent iteinset

(f]).

Definïtïon 3.1.3: An association mie is an implication of the form X = Y

where X, Y c I, and X n Y = Ø. Here Xis caiied antecede,,t, and Y consequent.

Support and coîfidence are two important measures for association mles. They are

defined as follows.

Definition 3.1.4: The sttpport (s) of an association rule is the ratio of the number of

transactions that contain X u Y to the total number of transactions in the transaction set.

That is:

IXuYI
Dl

Definition 3.1.5: The confidence (c) of an association mie is the ratio ofthe number of

records that contain X u Y to the number of transactions that contain X That is:

IxUYIc(X = Y) =

______

IX’
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Confidence of a rule indicates the degree of correlation in the itemset between Xand Y.

It is a measure of a rule’s strength. For a given association rule X = Y, a higher

confidence means a higher probability that the itemset Y is present in transactions

which contain itemset X Support is the statistical significance of an association rule. It

is a useful measure since rules with low support mean this kind ofpattem rareiy occurs

in the transaction set. Even if such a rule lias a very high confidence, it is stiil flot

interesting for the analyzer. So support measure is often used to eliminate uninteresting

rules. Minsupp is a minimum threshold value of support specified by the user. An

itemset Xis frequent when supp(X) reaclies rninsupp. Similariy, minconfis defined as a

minimum threshold value of confidence.

The association rule mining problem can be formaiiy described as follow:

Given a set of transactions T, rninsupp, rnincoiyÇ find all association mies with

support minsupp and confidence minconf.

The total number of possible mIes of a transaction dataset D with itemset I grows

exponentialiy witli the number of items. So it’s impractical to enumerate ail mies and

then caiculate their support and confidence values. To reduce the computation overhead

we should find an algorithm that can prune the useless mies (i.e. support lower than

Iniizsupp or confidence lower than minconf) earlier without computing their support and

confidence values. From Definition 3.1.4 we know that the support of a mie X ‘ Y

depends only on its itemset X u Y. For example, for the foliowing mies

{c} i {d,g} ,{d} z: {c,g} , {g} i {c,d}

{c,d}> {g},{c,g}=> {d},{d,g}= {c},

The supports are identical since they correspond to the same itemset{c,d,g}. So if the

itemset is infrequent (i.e.,s({c,d,g)} <minsupp), ail these six mies can be discarded.



Association Rule Mining for Query Expansion in Textual Information Retrieval 24

Thus, the problem of mining association rules with given minimum support and

confidence can be spiit into two steps:

1. Detecting ail frequent iternsets (Fis) (i.e., ail itemsets that occur in the transaction

set with a support rninstipp).

2. Generating association rules from frequent itemsets (i.e., mies whose

confidence ,nincoiJ)

The second step is relatively straightforward [A1S1994]. However, the first step

presents a great challenge because the set of frequent itemsets stili grows exponentially

with I.

The computation of frequent iternsets is the most time consuming operation in

association mie generation. Researchers have proposed scarch space pmning techniques

based on the computation of frequent closed itemsets (FCis) only, without any ioss of

information [PBTL 1999].

The key property of cÏosed itemset(CI) is any itemset lias the same support as its

closure since it is as frequent as its closure. Cis and FCis may be used in the generation

of ail Fis and mies, without further accessing the transaction database.

In the next two sections we present a framework for generating FCIs. The generation of

mies from FCIs is not discussed in this thesis.

3.1.3 Formai concept analysis

Concept lattice is a structured graph for conceptual hierarchy’s representation of

knowiedge. Formai Concept Analysis (FCA) [W1982] is an approach for data analysis

based on the lattice theory. In the foiiowing we give a formai notations and definitions

for FCA.
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Definïtîon 3.1.6: Given a set G, a partial order on G is a binary relation that is

reflexive, transitive and anti-symmetric. A set G subject to a partial order G is called a

partially ordered set orposet or partial order, which is denoted by (G, G).

Definition 3.1.7: Given a partial order F = (G, G) and two elements, s, pe G, if

p G s, we call p the predecessor of s and s the siiccessor of p. The set of ail common

successors of s andp are called ttpper bounds of s and p. The set of ail common

predecessors of s andp are called lower bounds of s andp.

Definition 3.1.8: Given a partial order F = (G, G) and A, a subset of G, if

G, s = Min(ïtpper bounds of A), s is called the least upper bound of A (LUB),

denoted sup(A); if p e G, p Max(Ïower bounds of A)
, p is called the greatest

lower bound of A (GLB), denoted iif(A).

Definition 3.1.9: Given a partial order F = (G, G) and s, pe G, if 5 <G P

t, where s t p and t = s or t = p, s is called the immediate predecessor ofp and

p the immediate successor of s.

Hasse diagram is used to represent F by its covering graph Cov (F) = (G, <G). In Hasse

diagram, each element s in G is connected to both the set of its immediate predecessors

(called lower covers (Cov’)) and of its immediate successors (called upper covers

(Cov”)).

Definition 3.1.10: A partial order P = (G, G) is a lattice if and only if

\Jx,yc G, inf({x,y})c G and sup({x,y})e G. The lattice is denoted as L= (G, L). In
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a lattice bf( {x, y}) is called the meet of x, y, denoted as x AL y, sïtp( {x, y}) is caÏled

the foin of x,y, denoted as x VL
•

Definition 3.1.11: If given a lattice L= (G, L), VY G, iif(Y)e G, sup(Y)E G, we

cati this lattice a compÏete lattice.

Definition 3.1.12: A structître with only one ofthejoin and meet operations is called a

sein i—lattice.

Definïtion 3.1.13: AformaÏcontext isa tripleK —z(O,A,I)where O and A are sets and

I is a binary (incidence) relation, i.e., I c OxA . The elements of O are called

transactions (or objects), and the elements of A are called items (or attribîttes).

Definition 3.1.14: Let K =(O,A,I) be a formai context, the function f maps a set of

objects into the set of their common attributes, whereas g is the dual for attribute sets. f
and g are denoted by’:

—f:P(O)---F(A),f(X)=X’={ae AIV0E X,ola}

—g:F(A)—P(O),g(Y)=Y={oEOVae Y,ola}

F(O) = 2° is the power set of O, P(A) = 2A is the power set of A,

The couple (f g) defines a Galois connection of the formai context.

Definition 3.1.15:f°g (Y) and gof(X) are Galois ctosure operators over 2 and 2A

respectiveÏy. Hereafter, bothf °g (Y) and gof(X) are noted by “.

f°g (Y) zrf(g(Y)) = Y’

gofÇ\) =g(f(X))=X’
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Definition 3.1.16: An itemset Xis closed if X X’.

If an itemset X is closed, adding an arbitrary item i from I-X to X resulting a new

itemset Xwhich is less frequent [PHM2000].

Property 3.1.1: IfXis closed (X=X”), then V i I-X supp (X’{i}) <supp (X).

Definition 3.1.17: If a closed itemset (CJ)Xis frequent, and then we cal! it afrequent

cÏosed itenset (FCJ). That is: fCI {X I Xe Cis A Stt (X) rninsupp}.

Definition 3.1.18: Give a forma! contextK = (O, A,I), ajormal concept e is a couple

(Ç Y), where XE P(O), YE p(A), X = Y’ and Y = X’. Xis called the extent and Y

the intent of the concept.

For a concept c = (? Y), since X = Y ‘= {X ‘} ‘= X’, so the intent of a concept is a closed

itemset.

Definïtïon 3.1.19: The support ofa concept e = (X Y) is defined as the ratio ofthe size

ofXto the size of O, supp (e) =

Definition 3.1.20: If the support of a concept c is above a user-defined minimal

threshold (,ninsupp), then e isfreqztent and e is called afrequent concept.

Given a set of concepts C, the partial order is defined as:

V(X,Y), (X,,Y)e C, (X,Y)(X7,Y,) iff(X1 çX,)A(Y, cY)
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Definition 3.1.21: Given a set of concepts C, The partial orderL (C, L) is a complete

lattice called a concept lattice with joins and meets as follows [W1982]:

(X1,) VL (X7,Y) = ({X1 uX7)}”,{} nY})

(X1.)) At (X7,Y2) = ({X tX,)}, {) u

The Hasse diagram ofthe concept lattice L from Table 3.1.1 is shown in Figure 3.1.1.

The numbers in the nodes are numbers of the concepts. Intents and extents are indicated

in rectangles below the nodes. For example, thejoin and rneet of c#I3 ({2, 5, 9}, {f h})

and c#i6 ({2, 3, 9}, {d,f g}) are c4= ({2, 3,6,7, 9}, (fi) and C#2S ((2), {a, e, d,f g,

h}) respectively.

Figure 3.1.1 is an example of the Hasse diagram of lattice L drawn

fromK=({l,2,...9},{a,b,...h},R).

a b c U e f g h

1 X X X X X

2 x x x x x x

3 x x x x

4 xx

5 xx

6 x x x x

7 x x x x

s
9 x x x x x

Fonnal context K =(T= {l,2,...9},I ={a,b,...h},R)
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27

I’{, b, e, 4. e. f. g. h

f igure 3.1.1 The Hasse diagram ofthe Galois lattice derived from K

3.1.4 Iceberg Concept Lattices

In the worst case, the size of a concept lattices is exponential in the size of the context.

So for most application the size of the concept lattices is too large to be used. The user

has to find strategies to eut off the lattice and keep relevant parts of the tattice structure

at the same time. Here we present an approach named iceberg concept Ïattice which is

based on ftequent closed itemsets. The iceberg concept lattices will consist only of the

top-most concepts of the concept lattice.

The set of ail frequent concepts of a context K is called the iceberg concept lattice of

the context K.

24 25
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The notion and properties of iceberg concept lattice were introduced in [STBPL2000].

Definition 3.1.30: Given rninsupp a E [0, 1], C’ is the set of ail a-frequent concepts

and the partial order (Ca, p) is called the iceberg concept Ïattice.

The support function is rnonotonously decreasing:

A1 çA, =sipp(A1)sïtpp(A,)

So the iceberg concept lattice is an order filter of the whole concept lattice. In generai,

it is a sup-semi-lattice. This allows us to apply the algorithm for computing concept

lattices and iceberg concept lattices. Here we give an exampie. For the binary table

K = (O = {l, 2, ...9}, A = {a, b, ...Ïz} , R) shown in Figure 3.1.1, given 30% as the rninsttpp

value we can get the iceberg lattice as shown in figure 3.1.2.

I{g}

*I=a.c.d)
*{l, 2. 6}

i{e.f}
*E{3.. 7]

figure 3.1.2 Iceberg lattice derived from Kwith rninsupp value of 30%
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3.2 Galicia Platform

3.2.1 Introduction

Galicia is an integrated software platform that can perform almost ail the key operations

on concept lattices. These kinds of operations might be required in both practical

applications and more theoretically-oriented studies. Three major functions are includes

in the platform [VGRH2003]: input of contexts, lattice construction and lattice

visualization.

The architecture of the platform also includes sorne auxiliary functions such as

interactive data inputs, resuit export to various formats, etc. Galicia perforrns ail the

necessary tasks during the complete life-cycle ofa lattice. (See figure 3.2.1)

Figure 3.2.1: Architecture ofGalicia

The Galicia platform can support the applications ofFCA as welI as the deveÏopment of

new techniques based on lattices. Some frequently occurring lattice sub-stmctures are

built in, together with the respective manipulation mechanisms. Thus, for our research

we can produce the whole lattice, some iceberg lattices and respective association rules

within the platform.
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3.2.2 Architecture of Galïcia

Galicia has been designed as an open platforrn and its implernentation in Java ensures

the high portability ofthe entire system [VGRH2003].

The architecture of Galicia is a traditional layered architecture, with a Iower-most levet

composed by the Java environment, and the upper one dedicated to interaction with the

users of the platform (Figure 3.2.2). Two intermediate levels have been identified, the

kemel of the platform and the tool layer.

- t -

O=tfHL

Services
.,orLxts,Lat ces
rvpoetory DBj t

[Java java 7 4 1 I,banes ang Lt’ O as! ssng etc I

figure 3.2.2: Dependencies between components ofGalicia platform

In our research, we use Galicia to implement and develop algorithms for lattice

construction and association rule generation.

Several aïgorithms have been implemented in Galicia platforni. They are described in

the following sections. We need to implement and adapt some algorithms that, although

designed for lattices, can be used for iceberg lattice. b accommodate the dynamic

database, we also need to implement algorithms that can construct lattices

incrementally.

ICtj Otner

1
- I

Kernel
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3.3 Bordat Algorïthm

3.3.1 Description of the algorïthm

The Bordat algorithm is a top-down batch algorithm. It consists oftwo basic steps:

• Compute the top concept (0,0)

• For each cornputed concept, generate ail its iower neighbours.

Our implementation ofBordat Iceberg Lattice algorithm is based on the description of

[K02001]. A set of modifications was made. The first is the change of the algorithmic

scheme from recursive to iterative. The second is that instead of using an auxiÏiary tree

to construct the une diagram, we use the tree structure defined in the Gaticia platform.

The third is that we reversed the lattice traversai to top-down so that we can use the

algorithm to generate iceberg lattice.

BeÏow is the description of our implementation of the algorithm:

1. Procedure PROCESS(In: top the top concept ofthe iattice)

2. Local : cand:=0 a linked hst of concept

3. candE- candU {top

4. while cand is flot empty

5. c-cand.getFirst

6. Ln —Fll’DLOWERCOVER(c. extent, e. intent)

7. foralleinLndo

8. if e. supp<rninsupp continue

9. if e is notprocessed bejore then

10. candE- candU { e}

il. endif

12. LINKCONCEPT2UPPERCOVER(c, e)

13. cand.removeFirst
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1. FINDLOWERCOVER(In: e extent of concept c, In: j intent of concept c, Out: Li, a

collection of concept)

2. Ln:= 0

3. a:=i

4. whi1e(Q=F1NDFIRSTOBJECT(a,e))!=nul1)

5. eJo={Jo.extent}

6. ifo=Jo.intent

7. h..zzefo

8. whule(e has more objects)

9. h:=e.nextObject

10. if(((ijflh.intent) beong to a))

11. efo=efo Uh

12. Ub=tjoflh.intent

13. if(fofla equals j)

14. Ln:r=LnU {(efo,jb)}

15. a:=aUq’à

16. RetumLn

In PROCESS procedure, cand is a linked list of concepts. It is used to store ah the

concepts that need to be processed to generate their lower covers in the lattice. top is

the top concept of the lattice. The top concept is generated by Galicia system. It is the

first concept put intocand. Lines 4 to 13 form a loop. At each iteration one concept

in cand witl be processed. The lower cover of the concept will also be put into cand,

Since sorne concepts may have the same concept in their lower covers, Line 9 to Line

11 prevent a concept from being put into cand repeatedly. If the support value of a

concept is lower than rninsupp it will be discarded immediately (Line 8), and it will flot
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be used to generate lower covers since the support of any lower cover will also be lower

than minsztpp The loop ends when cand becornes empty, which means the entire

iceberg lattice was built.

LINKCONCEPT2UPPERCOVER is a function provided by the Galicia platform to

constmct the lattice structure. FINDFIRSTOBJECT is an auxiliary function and we do

not show it here. In our impternentation, if we set minsupp to zero, we will get the

whole lattice, othenvise we get an iceberg lattice.

3.4 Incremental Algorithm

We also developed an incremental algorithm to construct the iceberg lattice. The

incrementation can be either object-wise or attribute-wise. Here we only analyze the

object-wise incremental aÏgorithm. The attribute-wise one is in fact the dual although it

has its own properties.

An incremental algorithm does flot in fact construct the lattice. It just maintains the

integrity ofthe lattice upon the insertion ofnew object into the context. [VHM2003]

The problem is defined as follows:

Given: a context k = (O, A, I) with its lattice L and an object o,

Find: the lattice L corresponding to K = (O {o}, A, I u {o} x o
t)

So an incremental algorithm can construct the lattice L starting form a single object Oj

and gradually incorporating every new object o into the lattice L11. The concepts in the

new lattice L can be divided into four categories:

1. N(o) : New concepts whose intents correspond to intersections of {o1}’ with

intents from C,1, which are not themselves in C,’1.

2. G(o): The set of Genitors. When inserting the new concepts into the lattice, each
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new concept is preceded by a specific concept from the initial lattice, called its

genitor. Its counterpart in L11 is denoted as G(o).

3. M(o): Modified concepts correspond to intersections of {o1}’ with members of

C1 that already exist in C. Its counterpart in L11 is denoted as M(o).

4. U (o) Old or unchanged: remain set of concepts in the initial lattice L11. Its

counterpart in L11 is denoted as U(o).

Here is an example. Given the binary table K = (O = {1, 2,4,..., 9}, A = {a, b,..., h} , R)

and Object 3 in Table 3.4.1, the Hasse diagram of Galois lattice derived from K is

shown in Figure 3.4.1. When inserting the Object 3 into K we get the Hasse diagram

of Galois lattice derive from K = (O = {l, 2,3,..., 9}, A = {a, b,..., h} , R), which is shown

in Figure 3.4.2.

So in figure 3.4.1, the three categories of concepts are G(o) = [C0, Ci, C2, C’3, C6, C9,

C10], M(o) ={C4, C5, Cjj},and U(o)= (C7, C}. G(o),M(o),and U(o) are shown

in figure 3.4.2 with the same IDs as their counterparts shown in Figure 3.4.1. We can

observe the changes on their extent and intent respectively. N (o) = (C13, C14, C15, C16,

C17, C18, C19}.
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a b e U e f g h

1 X X X X X X X X

2 x x x x x

4 x x x x

5 x

6 x x x

7 x x x x

s x X X

9 x

3 x x x x x

Table3.4.lBinarytable K=(O={1,2,4,...,9},A={a,b,...,h},R) andobject3

I-a
/

____________________

—--- // \
/ \.

5 9 I1
I{e. 1} $I={9} j °) I=d}
E’{12.4,6) *E{1,4,5} / dE{i,27,8) /

*frte.f.h} ,,7SI=z.b,c)

7 E{1. 27)! *E={î.7, 8)

---—-,

__7-,_ \

8
b, o. e. f} *I={e. f. g. h} /‘ I={a, b. o. d}

E{1.2} E{1.4} -‘ E{1,7}

V.

- —V

7

* I={. b, o. d. e. f. g, h)
*E{1}

Figure 3.4.1 The Hasse diagram ofthe Galois lattice derived from K
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_—
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I=} I{d) I={f} I 1{c}
IE{1.3,4,5}- jE={1.3.7,8.9} /IE={1.2.34.8)y IE{1.2.3.7,8}

/ \
__1_- ____:22

/ \ /
---H — / \z:’

15 J 2 14 o
I I={c d} I 1{e f) * 1{f h) / I I{O f) .__— I I{b c}
IE={1 3 7 8) IE{1 2 4 6} *E{1 3 46) / IE(1 2 3} / IE{1 2 7 8)

_,
—- /\. ---

:--- —?- \ /

6 ‘, 7’
II{f,g,h} II{b,c.d) 11{e.fh} II{.b.c}
1E{1.3.4} IE={1,7, 8} IE={i. 4, 6} IE={1, 27)

)K
\/

3 18 8 1
II{e,f.g.h} I1{c.d.fg.h} /Il={a.b.c.d} —‘II={d.b.c,e.1}
I E{1. 4) 1 E={1, 3) / I E(1. 7) > I E{1 2)

\ J
/

II{a. b. c U. e• f. g. h)
*E={1}

Figure 3.4.2 The Hasse diagram ofthe Galois lattice derived from K

An Incremental atgorithm makes sense, since in many cases the data set is flot static.

New data is added to the set from time to time. In the context of information retrieval,

we lmow that in many cases the collections of documents are also dynamically evoïving,

New documents will be added into the collections periodically. The construction ofthe

lattice is a time consurning operation. So it is not acceptable to generate the lattice from

scratch each time a new data is added to the data set. An Incremental algorithm
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provides a way to generate new lattices from old ones and the new data, hence save the

time and computational resources.

For exampie, to construct the lattice of a context with 100 obj ects and 1000 attributes, it

takes about 2 seconds within Galicia. If we already have the lattice of the first 99

objects and the 1000 attributes, when we add the 100th object, Galicia needs only

several milliseconds to construct the new lattice.

3.5 Assocïatïon rules generation

After we get ail the frequent closcd itemsets, generating association rules is

straightforward. The algorithms are implernented in Galicia platform. We just give a

brief description on the principle of mies generation [Z2000].

Given a frequent closed itemset X and rnincoi mies of the form Y ‘ > X — Y are

generated for ail Y c X, Y 0, providedp minconf.

Further research on association mies generating is beyond the scope of this study. We

wiil flot discuss them here.
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Chapter 4 Query expansïon using assocïatïon rules

4.1 Applying association rules

In this chapter we will study how to apply association mies in query expansion. The

process is shown in Figure 4.1.1. It can be divided into two main parts. The first is the

association mies mining from a document collection. The second is using association

mies for query expansion.

t
Documents Coflection

Experim:t Resuit

Figure 4.1.1 Experiment Process
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4.1.1 Mïnïng association rules from a document collection

Mining association mies form a document collection inciudes step 1 to step 3 in Figure

4.1.1.

Step 1: Using SMART system to index the document collection. This step resuits in the

weighted inverted file and dictionary file.

Step 2 We need to transform the inverted file into the file format that can be recognized

by Galicia system. We call it context file.

Step 3 Load the context file in Galicia, given the minsupp (minimal support) and

mincoif (minimal confidence), so that we can get ail the association mies. They are

recorded in a text file. Its format is like below:

Frocessing Base informative

Min coifideizce 50% , Min Support = 0.0035%

RO: att 607] --> att 943 (S = 0.0043%; C = 69%)

Ri: att_2466 --> att943 (S 0.027]%, C 77%)

R2 . att 159 --> att 5501 (5 = 0.0096%; C = 52%)

R3 . att 8677 --> att 8820 (5 0.039%; C = 60%)

R4. att 4121 --> att 765] (S = 0.0137%; C =60%)

R5 : att 4121 --> att943 (S = 0.0121%; C = 53%)

The first line telts us that the algorithm used to extract these association mles is Base

inJcrmative. The second une telis us that in the calculation the minconf is 50% and

minsupp is 0.0035%. The rest of the lines are mles. The prefix “att” is added by the

system and the number is the identifier of the term. S and C are the support and

confidence of the rifle, respectively.
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4.1.2 Using association rules for query expansion

Step 4 When we get the association rules we can use them to expand the queries. Here

we just show the strategy for query expansion. Later we give the detailed description.

First, we get the collection of ail the keywords in a query. Then, we find ail the subsets

of the keywords collection that can match the antecedent (left side) of the mies. Once

we find a matching, the keywords in the consequent (right side) ofthe mie are added to

the query. We repeat this process and it resuits in a new query set.

4.2 Algorithm for query expansïon

4.2.1 Organization of association mies

A trie data structure is currently used to store sets of words over a finite alphabet

[CM1995]. The trie provides a good trade-of between storage requirements and

manipulation cost. In the basic form a trie is a tree where edges are letters from the

alphabet. So each word corresponds to a unique path in the tree. The nodes

corresponding to the end of a word are caÏled terminal nodes, and thc rest are calied

inner nodes.

We use the trie data structure to store ail the association mies. Here we assign the

words in the antecedent of a mie to the edges. The consequents of the mies are stored in

the terminal nodes. The support and confidence of a mie are also stored in the terminal

nodes. So the matching process is easy and quick. First, we go through the text file

which contains the association mies and f111 the trie with what we read. Then we get the

keyword collection ofa query. For each subset ofthe collection, we search it in the trie.

When we encounter a terminal node, it means we find a matching mie. The words

stored in the tenriinal nodes, which are the words in the consequent of the mie, will be
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added to the query. The support and confidence value are also retrieved at the same

time.

For exampie, we have a query with a set of tenus: (terni], term2, term3j. When we

expand the query, {terrnl}, {terin2}, (term3), (termi, term2}, [terni], tenn3}, {term2,

term3} and {terml, term2, term3) are ail used to match the rules. Each time we find a

matching rule, the consequent ofthat rule wili be inserted to the new query.

Here is an exampie ofsorne ruies stored in the trie data structure. Given the mies:

RO: att2 --> att5 (S = 0.0043%; C = 0.69)

R] : att_2, att3 --> att6 (S = 0.0271%; C = 0.77)

R2 : att_2,att_4 --> att7 (S = 0.0096%, C = 0.52)

R3 : att2,att9 --> att8 (S = 0.039%; C = 0.6)

R4: att4 --> alt] (S = 0.0137%; C = 0.6)

R5: att 6,att 7att8 --> att4, att5 (S = 0.0121%; C = 0.53)

Some steps of the process of constructing the trie to store these mies are shown in

Figure 4.2.1

a a a a

{)

b 2 (5)

d e f

Figure 4.2.1: The process ofconstmcting trie for mies

In Figure 4.2.1, the alphabets outside the noUe are identifiers of nodes. The numbers

are identifiers of terms. Except the root node (node a), if there is no element in the pair

of braces beside the node, the node is an inner node. Otherwise it is a terminal node.

For exampie, noUes b, c and d are terminal and nodes g and h are inner. At first there is

an ernpty noUe a as the foot of trie. When we read mie RO, noUe b is inserted to the tree.

e f d

{)

{)
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When we read rule R], R2, R3, and R4 nodes e, e andfare inserted to the tree one by

one. When we read mie R5, three nodes (g, h, and i) are inserted to the trec.

The matching process is also very simple. For example, assume that {att 2, att 4} is a

subset of terms in a query. First we read att2, in the trie we will locate node b. Then

we read att_4 and reach node e through node b. Since node b is a terminal node and

att7 is stored in this node, we add att7 to the query. In constrast, if {att_6, au 7} is a

subset of tenris in a query, when we search in the trie we will reach node h. It is an

inner node so we can flot expand this query by these two terms.

4.2.2 Algorithm of query expansion

After we processed whole documents collection we got a set of association mies in the

foilowing form:

terml,terrn2 = terrn3,terrn4 , with support value sup and confidence value con.

The interpretation of such mie is: When terni] and term2 are present in a document at

the same time, term3 and term4 wili also be present in that document with confidence

con. So we can use such mies to expand the query. That is, if a query contains terni]

and terrn2, it is reasonable for us to add terrn3 and term4 to the query to achieve better

search resuit.

Algorithms 4.2.1 and 4.2.2 describe the main steps of the query expansion process.

Algorithm 4.2.1 is simple: itjust uses a loop to see if a keyword in a query can match

the first keyword of a mie. If there is a matching we caii Aigorithm 4.2.2 to continue

the matching process.

1: procedure QUERYEXPAND(In: qw a collection of keywords, we a trie storing

ail mles, Out: nqw collection of new keywords that wiii be added to the query)

2: Local: nqw a collection ofnew keywords

3: for ail le qw do

4: if I matches a node n in the first ievel ofwe then
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5: EXPANSION(n, qw-i, nqw)

Aigorithm 4.2.1

1: procedure EXPANSION(In: n a node in the trie we, i-qw a collection of

keywords, In/Out: nqw a collection ofnew keywords)

2: if n is a terminal noUe then

3: put ail keywords in n into nqw

4: for ail ie rqw do

5: for ail je cii {cn: the chuidren ofn} do

6: if j matchesj then

7: EXPANSION(j, rqw-i, nqw)

Algorithrn 4.2.2

Algorithm 4.2.2 has two nested loops and is itself recursive. Combined with algorithm

4.2.1, this algorithm ensures that every matching mie can be found.

Procedure QUERYEXPAND has two inputs. The first ‘qw’ is a collection of ail

keywords in a query. The second ‘we’ is a trie which stores ail association mies. The

output ‘nqw’ is collection of ail the new keywords that wiÏl 5e used to expand the query.

Note that the keywords in ‘qw’ are ordered by their word_num as well as the keywords

in subset of ‘qw’. This order makes it easy to enumerate the subset of ‘qw’ and

procedure EXPANSION ensures no subset that can match a mie is omitted or repeated.

The loop in Procedure QUERYEXPAND is used to match first keyword of every

subset. If it finds a matched noUe, procedure EXPANSION will go through the trie path

via the first matched noUe to find the next matched noUe of the consequent keyword in

the subset. When a terminal node is matched, it means we find a matched mie and ail

the keywords stored in the terminal node will added to collection ‘nqw’. A recursion



Association Rule Mining for Query Expansion in Textual Information Retrieval 46

ending by the matching of an inner node means no mie matched that subset and hence

the subset can flot be expanded.

4.3 Weight of new keywords in query

Now we can get the new keywords from the original query. There is another important

task to be done when we add these keywords into the query file: We need to assign

appropriate weights to the new keywords. Unfortunately there is no principle that can

be followed in doing that. We used severai different ways to calculate the new weight

and tried to find a proper one to appiy uniforrnly in the system.

Intuitively, we think the new weight must rely on the composition of the mie since the

new keyword is inferred from its prernise. There are severai factors in a mie that may

affect the new weight.

The first one is the weight of the keywords from the premise of the mie, that is to say,

the weight of the keywords in the original query. Here we consider two situations:

1. Simple case: A new keyword is inferred from oniy one ruie. That is,

{a1 ,..., a } =‘ {t1 ... }. Here a1 a are keywords in the originai query. We can set

the weight of the new keyword tj either by the maximum weight of a1 a,, or their

average weight.

2. Complex case: Severai mies infer the same new keyword. That is,

{ml,...,mk} {t1...}

In this case, we separate the calculation of the weight of the new keyword into two

steps. First, for each mie we caiculate the weight as in the simple case. Second, we

can set the weight of the new keyword either by the maximum resuit of the rules or

their average resuit.
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Combine the two cases we get four basic strategies to compute the weight of new

keyword. Assume:

{mI,...,rnk} = {t1...}

w,11 is the weight of the new keyword t1

ï are rules that contain keyword t1 in their consequent.

a1 a,, and rn1 .. .rn, are keywords in the antecedent of each mie respectively.

Wrai•••Wra,i and are weights ofeach keyword in the query.

The four strategies are listed in Table 4.3.1

Weight Computation

Strategy 1 ‘ntl = max[max(wral,...wra,,),...max(wrnhl,...wrflzk)]

Strategy 2 w,,11 = max[average(wj , .
. •“,• ), .

. .average(w,,,1 , .
.

Strategy 3 w,,,1 = average[max(w , .
.
.W,,,,),

... max(wr,,,i, .

Strategy 4 w,,, = average[average(w ..W,.,,,, ), .
. .average(wj , .

.

Table 4.3.1 Basic Strategies for weight computation

The next two factors are the support and the confidence of the mie. When we consider

these factors we can combine them with the four basic strategies. According to these

strategies we designed our experiments whick wiil be analysed in the next chapter.
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Chapter 5 Experimental Resuits

5.1 Experimental envïronment

The SMART system and The Galicia platform are used in the experiments. They are

introduced in Chapter 2 and Chapter 3. The implementations of the algorithrns for

query expansion are presented in Chapter 4. Here we give a brief description of the

CACM collection which is used in our experiments.

The CACM collection is a collection of 3204 titles and abstracts from the journal

CACM. Documents in the collection are separated by sections. Each section is marked

by the letters in bold.

.1 introduces the start of a new document.

.T introduces the section ‘title’.

.W introduces the section ‘abstract’.

.B introduces when the article is published.

.A introduces the author of the document.

.N identify when the document was added to the collection.

.X introduces the section ‘reference’.

The documents in CACM are like the example below:

.1 1025

A Method ofSyntax-C7iecking ALGOL 60

A syntax checker was designed based on the syntax of ALGOL as described in the

ALGOL 60 Report [Communications of the ACIvL May, 1960J. Since the definition of

the elements ofthe Ïanguage is recursive it seemed inost desirable to design the syntax

checker as a set of mutuaÏly recursive processors tied together by subroutines which
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peijorm certain bookkeepingfimctions. Recause ofthe recttrsive nature of the language

and of the s3’ntax checker the problem of recoveiy after an error required mttch

attention.

A method was devised which permits most programs to be checked compteteÏy despite

errors.

CACMAugttst, 1964

Lietzke, M. P.

CA 640805 JB Match 9, 1978 7:24 PM

1025 5 1025

1025 5 1025

1025 5 1025

There are 52 queries with relevance judgments. The query file lias already been

prepared by the CACM collection and SMART system 50 we need flot to do query pre

process. Tlie pararneters of the CACM collection and tlie experiments are listed on

Table 5.1.1.

The Galicia platform is a research environrnent, to make it general, it sacrifices the

efficiency in a way. If the collection is too large it will cost too much time to get tlie

association rules set. This is why we use CACM collection in our experiment instead of

the TREC collection since CACM is relatively small.
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Document collection

Total number of documents

Total number of keywords

Total number of queries

CACM

3204

8994

52

Value ofminsupp 0.004%

Total concepts Ï 7423

Total rules 7760

Total keywords in the query set 671

Total keywords after expansion 2056

Table 5.1.1 Parameters ofthe dataset used in the experiments

5.2 Query expansïon using basic strategies

Experirnent 1:

To find a best strategy to decide the weight of new keyword added to the query we

carried out several experiments.

Average precision for all points

Original Strategy 1 $trategy 2 $trategy 3 Strategy 4

11-ptAvg: 0.2341 0.1644 0.1652 0.1847 0.1845

%Change: -29.8 -29.4 -21.1 -20.7

Table 5.1.2 Resuit ofexperiment 1

In experiment 1 we evaluated the SMART system 5 times using all the extracted rules.

The first time we did not employ query expansion. Strategies 1 to 4 are used for query

expansion in the next four times respectively. 11-point average precision is the most
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important metric in our experiment. Its change represents the relative change of the

system perfonnance.

The experimental results are shown in Table 5.1.2. Therc arc five columns of data in the

table. The first column is the original system performance evaluation without query

expansion. The next four columns represent system performance evaluations for the

four basic strategies applied to query expansion in the experiments.

The Precision-Recali graph ofthe experiment is shown in Figure 5.1.1

Figure 5.1.1: Precision-Recali graph of the experirnent 1

Figure 5.1.1 is the Precision-Recall graph of experiment 1. We observe that after we

employ the strategies to the process of query expansion, all of the resuits are barely

satisfactory. We think the reason is the weight of a new keyword can not be as high as

0.7

Precision-Recail Graph
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Recall
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that of the original ones. We also observe that the strategies using average weight are

somewhat better than those using maximum weight.

5.3 Query expansion consîdering confidence

Experiment 2

In this experiment when we infer a new keyword from a mie we muitiply the weight of

the original keyword by the confidence of the mie and then apply the sarne strategies

used in experiment 1. for strategy 1, this is:

= max[nlax(w,.ai ‘ ‘ran) x COfl,1 , ... max(w,.,1 . ‘‘mk ) x COflrj]

where

COflri •COfli are the confidence values of the mies i ,, respectively.

For the other three strategies the modification are similar.

The resuit is shown in Table 5.1.3

Average precision for ail points

Original Strategy 1 Strategy 2 Strategy 3 Strategy 4

11-ptAvg: 0.2341 0.2001 0.2006 0.2161 0.2159

¾ Change: -14.5 -14.3 -7.7 -7.8

Table 5.1.3 Resuit of Experiment 2
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Figure 5.1.2 Precision-Recall Graph ofthe experiment 2

As we can see in Table 5.1.3 and Figure 5.1.2 the result is much better than the result in

experiment 1 but it is stiil unsatisfactory. We need to decrease the weight value further.

5A Query expansion consïderïng support

Experirnent 3

Based on experirnent 2, we introduce the support value of the rules to the calculation of

the weight (i.e. further multiple support value with the weight we got in experiment 2).

We normalize the support value of all rules before we apply it. The formula of

normalization is:

= Sttpp — Sttpp,1111 + 0.00 1
< A + B

SlIP? — Sitpp,,, + 0.001

Here Supp is the support value of a rule. Supp,, and Supp,, are the maximum and

minimum support value of ah the rules. Supp,7 is the support value of mie after

normalization. We add 0.00 1 to both numerator and denominator to make ah the values

positive. This value is determined empirically. The values of A and B (1 A > 0, B 0),
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Recail

can make the support distribute in different interval. For strategy 1, this becomes:
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= rnax[rnax(wrai , ) X COn1 X Stt max(wrni , . .
.W,.,,,. ) x COflri X SUpp.]

where

cOflrI .
. .con,.1 are confidence values of the rules îj.. .i’ respectively.

SUPPri•SUPPri are support values ofthe rules respectively.

For the other three strategies the modification are similar.

Experirnent 3.]

In experiment 3.1, we set A=1, 3=0. The result is shown in Table 5.1.4

Average precision for ail points

Original Strategy 1 Strategy 2 Strategy 3 Strategy 4

11-ptAvg: 0.2341 0.2363 0.2363 0.2355 0.2355

%Change: 1.0 1.0 0.6 0.6

0. 7

0. 6

0. 5
o

(‘J

G
ci)

0.2

0. 1

o

Table 5.1.4 Result of Experiment 3.1
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Strategy 2
—X—Strategy 3
—*---Strategy 4

0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1

Recail

Figure 5.1.3 Precision-Recall Graph ofthe experiment 3.1
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In this experiment the system performance is further improved. And now we can see

that query expansion has irnproved the whole system performance.

We compare the query files in experiment 2 and experiment 3 as listed in Table 5.1.5.

The keywords above the dash line are original ones. From the table we can see that the

weight of the new keywords should be much lower than that of the original keywords.

Note in this experiment the average weight strategy did not show advantages as they

did in experiment 1 and 2. We think it means that the weight value is too small in this

experiment.

Qucry 3 in Experiment 2 (after expansion) Query 3 in Experiment 3.1 (aftcr expansion)

3 0 3352 0.34318 compiler 3 0 3352 0.34318 compiler

3 0 3874 0.43674 construction 3 0 3874 0.43674 construction

3 0 7295 0.53726 multi 3 0 7295 0.53726 multi

3 0 7741 0.59144 intermediate 3 0 7741 0.59144 intermediate

3 0 15587 0.23029 language 3 0 15587 0.23029 language

3 0 17482 0.13395 data 3 0 17482 0.01443 data

3 0 10420 0.16351 grammar 3 0 10420 0.01178 grammar

3 0 16508 0.11745 structure 3 0 16508 0.00502 structure

3 0 5152 0.13717 program 3 0 5152 0.01322 program

3 0 17338 0.15217 system 3 0 17338 0.01292 system

3 0 13148 0.17502 level 3 0 13148 0.03232 level

3 0 4967 0.17271 1 3 0 4967 0.01 128 1

3 0 18563 0.18423 paper 3 0 18563 0.01026 paper

3 0 19661 0.20496 problem 3 0 19661 0.01200 problem

3 0 2981 0.17041 input 3 0 2981 0.01957 input

3 0 18900 0.12436 general 3 0 18900 0.00896 general

3 0 5376 0.13798 programming 3 0 5376 0.01331 programming

3 0 18948 0.1819291 2 3 0 18948 0.01188 2

Table 5.1.5 Query file (Partial) after expansion
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Experirnent 3.2

In experiment 3.2 we tried different values of A and B in the normalization formula.

Considering the results of experiment 1 and experirnent 2, we use the resuit of strategy

4 in experiment 3.1 as the base for comparison. The resuit is shown in Table 5.1.6.

System Performance B

change 0 0.1 0.2 0.3 0.4 0.5

0.5 0.0 1.9 1.1 0.5 1.6 -0.2

0.6 -0.9 1.9 1.2 0.5 1.8 -0.9

0.7 0.2 1.8 1.2 0.0 1.6 -0.9
A

0.8 0.2 1.8 1.2 0.1 1.6 -1.0

0.9 0.3 1.8 1.2 0.1 1.2 -1.0

1.0 0.6 1.8 1.2 -0.1 1.2 -0.9

Table 5.1.6 Result of experiment 3.2

From the result we found that when A =0. & 3=0.1 (i.e. all support values distribute in

[0.1, 0.6]) the system performance can be best improved.

5.5 The impact of the threshold values

Experiment 4

There are 671 keywords in total in the original query file. In the first three experiments

we have 2056 keywords in query file aller query expansion. We think that too much

new keywords may introduce much more noise. So we tried to reduce the number of

new keywords.

Experiment 4.1



Association Rule Mining for Query Expansion in Textual Information Retrieval 57

In experiment 4.1 we give a threshold value of mie confidence (i.e. we ignore those

mies with low confidence). We use the resuit of strategy 4 in experirnent 3.2 as the base

for comparison (A=O.& B0.]).

Lower threshold of mie confidence

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9

System

Performance 1.9 0.6 0.9 1.5 1.5 1.1 0.5 0.6

change

Table 5.1.7 Resuit ofexperiment 4.1

f igure 5.1.4 System Performance Change ofExperiment 4.1

We can see from figure 5.1.4 that the system performance became worse as the

threshold of mie confidence increased. It seems that mies with iower confidence have

more contribution to the system performance improvernent. This is reasonable since

generally a mie with high confidence value wili have a Iow support value.

2.5

System
Performance

Change

7

1.5

0.5

o
-0.5

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9

Threshold ofRule Confidence
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Experiment 4.2

In experiment 4.2 we ignore those rules with hïgh confidence. Other parameters are the

same as in experiment 4.1. The resuit is shown in Table 5.1.8.

Upper threshold of rule confidence

0.9 0.8 0.75 0.7 0.65 0.6 0.55

System

Performance 1.9 1.6 1.7 1.6 1.5 1.0 0.6

change

Table 5.1.8 Resuit of experiment 4.2

Pence 1

0.9 0.8 0.75 0.7 0.65 0.6 0.55

ThreshoÎd of Rule Confidence

Figure 5.1.5 System Performance Change in Experiment 4.2

The resuits of experiment 4.1 and 4.2 show us that it’s flot beneficial to use restrictions

on mie confidence to reduce the number of new keywords. This technique can flot

improve the system performance.
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Experirnent 4.3

The problem of experiments 4.1 and 4.2 is that the values of the support are fixed. So in

experiment 4.3 we fix only the value of B as 0.1 and make the value of A vary from 0.5

to 1. At the same time we make the threshold value ofthe confidence vary from 0.5 to

0.9. The result is shown in Table 5.1.9.

System Lower threshold ofrule confidence

Performance 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9

0.5 1.9 0.5 1.0 1.5 1.5 1.2 0.5 -0.6

0.6 1.9 0.6 0.9 1.5 1.5 1.1 0.5 -0.6

0.7 1.8 0.6 1.0 1.5 1.7 1.1 0.4 -0.6
A

0.8 1.8 0.5 1.0 1.4 1.7 1.1 0.5 -0.6

0.9 1.8 0.6 0.4 1.4 1.7 1.0 0.5 -0.6

1.0 1.8 0.6 0.4 0.8 1.0 1.0 0.5 -0.6

Table 5.1.9 Result of experiment 4.3

System

Perfornance
Oange

0.5 0.6Q95Q7,
Valueof A

0.8 0.9

Lower Threshold of Rule confidence

Figure 5.1.6 System Performance Change in Experirnent 4.3
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Comparing the resuit with experiment 4.1 we see that no other combination of

confidence and support can get better resuit.

Experiment 5

In this experirnent we ignored those keywords in the original query with low weights

when inducing new keywords from association rules. In this experiment we give a

threshold value of the weight. When we find a matching nile, we will ignore this rule if

a keyword that appears in antecedent of the mie has a low weight (i.e. lower than the

threshold value). We use the result of strategy 4 in experiment 4.1 as the base for

comparison. The threshold is changed from 0.1 to 0.26.

Lower Threshold value System Performance Threshold value of System Performance

ofWeight change Weight change

0.0 1.9 0.18 1.1

0.10 1.7 0.19 1.0

0.11 1.7 0.20 1.0

0.12 1.8 0.21 0.4

0.13 1.2 0.22 0.6

0.14 1.2 0.23 -0.2

0.15 1.2 0.24 0.3

0.16 1.2 0.25 0.1

0.17 1.2 0.26 -0.3

Table 5.1.10 Result ofExperiment 5

5YstemPermance 15

<\ < < \t <D <O <D <D ) , )
0 Q .

Threshold of Weight

f igure 5.1.7 System Performance change ofExperiment 5
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As we can see in Table 5.1.10 and Figure 5.1.7, there’s no noticeable improvernent.

When the threshold is too high it will even make the system perform worse.

Experiment 6

In this experiment we try another way to reduce the total number of new keywords. We

give a threshold value for the weight and if a new keywords appears whose weight

value is lower than the threshold we do flot add it to the query. We stiil use the resuit of

strategy 4 in experiment 3.1 as the basis for comparison. According to the new query

file in experirnent 3 as shown in Table 5.1.4 we choose the threshold range from 0.008

to 0.030. The result is shown in Table 5.1.11 and Figure 5.1.8.

Lower Threshold value of System Performance Threshold value of System Performance

Weight of new keyword change Weight change

0.0 1.9 0.015 0.6

0.008 1.8 0.016 0.4

0.009 1.8 0.017 0.5

0.010 1.9 0.018 0.3

0.011 1.3 0.019 1.1

0.012 0.5 0.020 1.1

0.013 0.4 0.025 0.7

0.014 0.6 0.030 0.4

Table 5.1.11 Result of Experirnent 6
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2

1. 5

1

0. 5

Figure 5.1.8 System Performance change of Experiment 6

From the result we know that the use of a unified threshold value for ail queries is flot

reasonable. Itjust makes the system perform worse.

Experirnent 7

in this experiment we try to reduce the total number of new keywords by giving

threshold value of the support.

Experirnent 7.1

In experiment 7.1 we give a threshold value of rule support (i.e. we ignore those rules

with low support). We use the resuit of strategy 4 in experiment 3.2 as the base for

comparison (A=0.& 3=0.1, threshold of confidence is 0.5). The result is shown in

Table 5.1.12 and Figure 5.1.9.

Lower threshold ofruie support (%)

0.0040 0.0045 0.0050 0.0055 0.0060 0.0065 0.007 0.0075

System

Performance 1.9 1.4 0.6 1.4 0.9 0.9 0.4 0.4

change

System
Performance

Change

o
f) 0.000 0.009 0.0) 001 0.012 0,013 0.014 0.015 0.016 0.017 0.01$ 0,0)9 002 0.025 0,03

Threshold of Weight

Table 5.1.12 Result ofExperiment 7.1
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figure 5.1.9: System Performance change of Experiment 7.1

Experiment 7.2

In experiment 7.2 we ignore those mies with high support. Other parameters are the

same as in experiment 7.1. The resuit is shown in Table 5.1.13 and figure 5.1.10.

Upper threshold of mie support

0.0090 0.0085 0.0080 0.0075 0.0070 0.0065 0.0060 0.0055

System

Performance -0.1 0.7 1.4 0.6 0.9 0.9 1.5 1.1

change

1.5

System
Performance 1

Change

0.5

0

0.004 0.0045 0.005 0.0055 0.006 0.0065 0.007 0.0075

Lower threshold of Rule Support

Table 5.1.13 Resuit ofExperiment 7.2
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SysternPermance 1

____

0.009 0.0085 0.008 0.0075 0.007 0.0065 0.006 0.0055

Upper threshold of Rule Support

Figure 5.1.10 System Perfoniiance change ofExperiment 7.2

Experiment 7.3

In experiment 7.1 and 7.2 the threshold value of confidence is fixed to 0.5. In

experiment 7.3 we wiII vary the threshold value of confidence from 0.5 to 0.9. The

result is shown in Table 5.1.14.

System Performance Lower threshold of rule confidence

change 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9

0.004 1.9 0.6 0.9 1.5 1.5 1.1 0.5 -0.6

0.0045 1.7 0.6 0.4 1 0.8 0.5 -0.7 -1.1

0.005 0.8 0.6 0.9 1.1 1.1 -0.1 -0.9 -0.9
Lower

0.0055 1.5 1.1 1.1 0.8 1.1 -0.1 -1 -0.9
threshold of

0.006 1.1 0.9 0.4 0.6 0.6 -0.2 -0.1 -0.2
rule support

0.0065 1.1 0.7 0.4 0.3 0.6 -0.1 0 -0.2

0.007 -0.2 -0.2 0.2 0.2 -0.5 -0.9 -0.7 -0.2

0.0075 0 0 -0.4 -0.4 -0.5 -0.9 0 -0.2

Table 5.1.14 Result ofExperiment 7.3
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The resuit of experiment 7 shows us that it is flot reasonable to use restriction on mie

support to reduce the number of new keywords. This technique can not improve the

system performance.

5.6 Interactive Query expansion

Experirnent 8

In this experiment we actually use interactive query expansion. It needs the user’s

intervention during the process of expansion. That is say after we get the new query file

we look through it and remove some new keywords according to our own judgment.

The purpose of this experirnent is to see the possible upper bound when association

mies are used in query expansion.

Query 5 Original keywords Query 5 Original keywords

5 0 $0 0.26938 manager 5 0 9655 0.21901 editing

5 0 502 0.14039 user 5 0 10134 0.23277 essential

5 0 545 0.41144 interface 5 0 12200 0.33835 window

5 0 2673 0.21418 5 0 12513 0.20582 human

effectiveness 5 0 13461 0.17278 efficiency

5 0 4183 0.31976 satisfaction 5 0 1541$ 0.20939 design

5 0 4346 0.2 1573 issue 5 0 15605 0.22074 view

5 0 5912 0.13686 implementation 5 0 17481 0.20456 command

5 0 6117 0.19263 improvement 5 0 18563 0.09073 paper

5 0 7551 0.23760 interpreter

Table 5.1.15 Keywords in Query 5 before expansion

5 0 17482 0.01534 data 5 0 19661 0.01224 problem

5 0 5152 0.01179 program 5 0 18900 0.01205 general

5 0 1811 0.01391 computer 5 0 1090 0.01131 time

5 0 17338 0.01889 system 5 0 5376 0.01633 programming

5 0 12266 0.00834 algorithm 5 0 18948 0.00760 2

5 0 15587 0.01504 language 5 0 12568 0.01623 text

5 0 4967 0.00784 1

Table 5.1.16 New Keywords in Query 5 after expansion
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For example, in Table 5.1.16 there are 13 new keywords in query 5 after the expansion.

We think keyword ‘1’ and ‘2’ are not reasonable so we remove it from the query.

Keywords ‘problem’, ‘algorithm’ and ‘system’ are too general in CACM collection.

They also need to be removed.

We go this way ail through the query file and get a new query file. Using this file, we

test the system performance. According to our experiment, the system perfonnance

improvement is between 0.5 and 1.1 compared to the query without expansion.

This resuit shows that even used in an interactive way, the association rules can flot

make a larger improvement in IR effectiveness.

5.7 Experimental resuits analysîs

From the experirnental resuits we can conclude that the assignment of weights for the

new keywords is a crucial aspect in query expansion. Different strategies for this task

may Iead to totally different results. Unfortunately there’s no principle to guide us. In

our experiments we tried many possibilities in the search for a good strategy to assign

weight. The system performance improves slightly in some experiments. According to

the results, the application of association mIes in query expansion did not bring the

improvement that we would expect. But we do not think it proves that we made efforts

in the wrong direction. In fact, several factors may affect the result.

The first is the number ofruies. As we can see in table 5.1.2 we use very low support

value (only 0.004%) to generate rules and still got a large set of rules (7760). In the

CACM collection there are 52 queries and 671 keywords. After applying the

association rules, we obtain 2036 keywords. The average size of a new query is more

than three times of the original one. Inevitable, this introduces noise to the query and it

is difficult to reduce such noise. We think we should introduce some other analysis to

the query process in order to filter the association mies.
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The second factor is the document collection itself. CACM is a srnall collection and

most documents in this collection are very short. Thus the weight of single keyword

may have significant impact on the query resutt. This makes it more difficuit to assign

weight to the new keywords. furthermore, the documents in this collection focus on

only few flelds (namely, ail about computer science). This makes some frequent

keywords present in almost every document as shown by Experiment 8. Since these

frequent keywords do flot belong to the stoplist, they will flot be discarded in the

indexing process. Also, since they are very frequent, they have a high probability to co

occur with other keywords. So, they may be present in many rules. After the expansion

process, they may appear in every query, and may have no contribution to the precision

but just introduce noise. As we observe in experiment 8, it is difficuit to discard these

words manually. It may be an important task of further research to find the guidelines to

do this automatically.

The third factor is the rule extraction process. In fact, the document-term matrix used

for rule extraction is treated as a binary value matrix in the process of mIe generation.

This means we only consider whether a term is present in a document or flot. But

actually these terms are weighted and the matrix should be a multi-valued. Tn the

current approach it is flot reasonabie to calculate the co-occurrence of a term with high

weight and a term with low weight. So we may scale the context to avoid such problem.

Scahng aims to transform muÏti-valued matrix to single value matrix. (See appendix

A.2 for the concept of scaling). Although scaling is already implemented in the Galicia

platform, il introduces other problems. A problem is that after scaling a term may

generate several binary features which correspond to different weights of that tenu in

different documents. This makes it difficuit to combine mie generation with the

indexing proccss and it aiso makes the indexing process complex. The second problem
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is after scaling the size of the context may grow quickly, which may lead to serious

computational problems.

The fourth factor is the co-occurrence of terms. At present we consider that two terms

co-occur if they appear in the same document. Actually, we may consider the distance

of the two terms in the text as a factor. For example, if these two words are not present

in the same paragraph, we should not consider them as co-occuring. The selection of

the distance is also a potential research field.

The last possible reason is that, as both the document and the queries are in a very

specific area (computer science), the queries may be already well expressed, and they

do flot need to be further expanded. It would be interesting to test query expansion

using association mies on a different and non-specialized collection, in which the

queries may be less well expressed (for example, a TREC collection).
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Chapter 6 Conclusion and future work

6.1 Conclusion

The goal of this thesis is to apply association rules to query expansion in information

retrieval. To generate association rules between terms a Galois lattice based-method is

used. The key problem here is to efficiently generate the iceberg lattice. We used two

algorithms for this purpose. Bordat algorithm is a classic top-down batch algorithm. We

modified it so it can generate iceberg lattice according to the given support value. We

also developed an incremental algorithm to construct the iceberg lattice. The increment

can be either object-wise or attribute-wise. It makes sense to use an incremental

algorithrn since in many cases, especially in the context of information retrieval, the

data set is dynamic. New documents will be fed into the collections periodically. An

incremental algorithrn provides a way to generate new lattice from the old lattice and

the new data. Hence, it saves both time and computational resources.

When appiying association mies to query expansion, the main problem is the

assignment of weights to the new keywords that will be added to the queries. We have

followed severai alternative tracks and we did some experiments in a search for a good

strategy to assign weights. The system performance improved slightly in sorne cases.

With respect to our experiment resuits, we may conclude that the association mies can

help query expansion to some extent. However, in order to take full advantage of the

data mining mechanisms, a set of probiems need to be solved. In particular, more

effective weight assignment mechanism should be designed.

6.2 Future work

We have already pointed out some future research avenues in section 4.4. These may be

summarized into five axes:
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1. Statistical document analysis. The analysis should be carried out on two levels.

First, one should analyze the terms in a single document to find more

infoniation about the ways those terms are related, such as the distance between

them. Second we should take the whole collection into consideration to extract

the global relationships between those terms. This analysis focuses on statistical

information and does not consider the semantic aspects of the term-document or

term-term relations.

2. The semantic analysis of the association rules. We think this is important to

reduce the noise introduce by the rules. A considerable challenge lays in the

automation of the analysis.

3. Indexing process. As we mentioned above if we scale the multi-valued

document-term context, the frequency of a term in a document can be integrated

into the mining process in a natural way. Thus the weight assignment could be

benefit from this valuable information which is currently missing. However, the

indexing process may require substantial modifications to accommodate the

new scaling process.

4. The expansion process may 5e combined with pseudo-relevance feedback. In

the process of pseudo-relevance feedback, the system assumes the top n

documents in the first search result as relevant to the query. Then the system

takes the terms from these documents to expand the query. We may apply

association rules on the new query generated by the pseudo-relevance feedback

process.

5. Finally, it would be interesting to experiment association rule extraction on a

larger document collection. In order to do this, the complexity of the rule

extraction process should be greatly reduced.
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Appendix

Ai Bordat algorïthm

First wc show the original description of Bordat algorithm. In this description, an

auxiliary tree is used to construct the une diagram. It is implemented by the sets Cli.

Cli((A,B)) is the set of chuidren ofthe concept (A,B) in this tree.

O.L:=Ø

1. Frocess((O, O’), O T)

2. L is the concept set.

Process((A, B), C)

Ï.L:=Lu{(A,B)}

2. LN LowerNeighbors((A,B))

3.For each (D,E)E LN

3.1.If CnE=B

3.1.1. C:=CUE

3.1.2. Process((D, E), C)

3.1.3. Ch((A, B) Ch((A,b)) u {(D, E)}

3.2. Else

3.2.1. Find((O,O’),(D,E))

3.3. (A,B) is an zipper neighbor of (D,E)

Find((A, B), (C, D))

1. (E,F) is thefirst concept in Ch((A,B)) such that F ç D

2.IJFD

2.1. Find((E,F),(C,D))

3. EÏse (E,F) is the desired concept



Association Rule Mining for Query Expansion in Textual Information Retrieval 79

LowerNeighbors((A, B))

O.LN:=Ø

1. C:=B

2. g is thefirst object in A sucÏi that —i({g}’ c C);f there is no such object,

g is the Ïast elernent of A

3. While g is liot the last element of A

3.l.E:={g}

3.2.F:={g}

3.3.h:=g

3.4. While h is not the last element of A

3.4.1. h is the next eÏernent of A

3.4.2.Jf -i(f{h}’cC)

3.4.2.l.E:=Eu{h}

3.4.2.2.f:=Fn{h}’

3.5.IffnC=B

3.5.1. LN := LNu{(E,f)}

3.6. C=CuF

3.7. g is thefirst object of A sttch that —i({g}’ C); if there is no such object,

g is the tast elernent of A

4. LN is the set of Ïower neighbors of (A,B)

A.2 Scalïng ïn Formai Concept Analysis

Conceptuai scaling was deveioped by Ganter and Wiile.

A formai notation and definition of the Conceptual scaling is as foÏlows [GW 1989]:

Definition A.2d: A many-vahted context (G, M W, I) consists of sets G, M, and W

and temaryrelationlbetween G, Mand W(i.e. J c GxMxW),

where the foilowing holds:

(g, in, w) e I and (g, in, y) e I impiy w = y.

The elements of G are calied objects, the elements of M are cailed inany-valued
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attributes and the elements of W attribute values.

Definition A.2.2: A conceptuat scale for attribute ni ofthe many-valued context is a

(onevalued) context S,, (G,,,, M,,,, I,,,) with m(G) c G,,,. The

attributes of a scale are called scale values, the attributes scate

attribittes.

Definition A.2.3: For a many-valued context (G, M, W, I) and scale contexts

S, ni E M, the derived con text is (G, N, J) with

N U M,,, and g J(rn, w) : m(g) I,,,w
,,,e M

The many-valued context (G, M W, I) together with the family of scale S,,, , in e M is

calÏed aplainly scaled context


