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An early decision market is governed by rules that allow each student to apply
to (at most) one college and require the student to attend this college if admitted.
This market is ubiquitous in college admissions in the United States. We model this
market as an extensive-form game of perfect information and study a refinement of
subgame perfect equilibrium (SPE) that induces undominated Nash equilibria in ev-
ery subgame (SPUE). Our main result shows that this game can be used to define a
decentralized matching mechanism that weakly Pareto dominates student-proposing
deferred acceptance.
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1 Introduction

In early admissions programs, colleges admit students before the general application
period. In the United States, these programs have become popular among colleges; and,
a high percentage of freshmen are admitted to college each year through early admissions
programs.
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Early admission is an indication that the college admission market has failed.1 The
unraveling has taken different forms ranging from colleges that offer (non-binding) pro-
grams of early admission to ones that offer (binding) programs of early decision. In an
early decision program, each applicant is required to (1) apply to exactly one college
and (2) to commit to attend the college if admitted.2,3 Due to this binding commitment
to enrol, the debate on early admissions has largely focused on early decisions.
Formally, early decision can be viewed as a decentralized two-sided market that

matches students to colleges. Decentralization is one way to organize a matching market
by letting agents directly approach one another and propose partnerships. Matching
theory is mainly concerned with the stability and the efficiency of the matchings that
a market produces. A matching is said to be stable if it matches all agents to accept-
able partners and no unmatched student-college prefers one another to their proposed
partners. Data from organized matching markets have shown that many of the most
successful matching markets produce stable matches; and, there is now a great deal of
empirical evidence suggesting that stability played a critical role in the success of these
markets.
The bulk of the literature on decentralized matching has focused on market mech-

anisms that implement stable matchings. However, stability is not a concern in early
decision markets: the rules simply do not allow participants to seek new partners once
the matching has been produced. This raises the question whether there exists an early
decision market which produces matchings (according to an appropriate equilibrium
concept) that Pareto dominate any stable matching from the students’ perspective.
We show that, when students can coordinate, the matchings produced weakly Pareto

dominate the outcome of the student-proposing deferred acceptance (DA) mechanism.
We model the early decision market as an extensive form game with perfect information:

1Avery and Levin (2010) explained this unraveling by a signaling game where students signal their
enthusiasms for colleges via early admissions.

2These informations are taken from Columbia undergraduate admissions website:
https://undergrad.admissions.columbia.edu/apply/first-year/early-decision.

3The commitment is not legally enforceable. Some colleges enforce it by an as-
signment of agreement of enrolment. The early decision’s agreement of Wake For-
est University must be assigned by the applicant, a parent and his school counselor
(http://static.wfu.edu/files/pdf/admissions/early.decision.pdf). Other colleges enforce the agree-
ments via high school guidance counselors (Coles et al., 2011) by sharing information, refusing to
admit students who applied more than one early decision.
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first, students sequentially make at most one application and, then, colleges sequentially
decide on which applicants to admit. Of course, an admitted student attends the college
as reflected in the binding commitment.
While the appropriate equilibrium concept for a perfect information game is subgame

perfect equilibrium (SPE), there are non-intuitive SPEs whose outcomes may be Pareto
dominated by the outcome of the DA mechanism. They are equilibria where some
students play strategies that are weakly dominated at some subgames. We propose a
refinement that induces undominated Nash equilibria in every subgame (SPUE). We also
consider costly applications and identify the SPEs of the corresponding game. We show
that either of these solution concepts allow one to define a matching mechanism that
weakly Pareto dominates the DA mechanism (Theorem 3).
Our analysis shows that information is important for coordination. In general, stu-

dents prefer orders where they can observe other students’ applications before they have
to decide (Proposition 2). It is only for a particular subset of markets, where the DA
mechanism is claims consistent, that this information is irrelevant. Arguably, unmodeled
details of the market could introduce randomness into the order of applications. For this
reason, we also consider an early decision matching game with random ordering. We
show that every matching in the support of a random matching induced by an SPUE
weakly Pareto dominates the outcome of the DA algorithm.
Currently, the DA mechanism is employed by many US cities (like New York and

Boston) to assign students to public schools. While the DA mechanism has the advantage
of being stable, it has been criticized for its lack of Pareto efficiency (Kesten, 2010). In
general, Pareto efficiency is not compatible with stability (Roth, 1982; Ergin, 2002;
Abdulkadirŏglu et al., 2009). At the same time, there can be no dominant strategy
incentive compatible mechanism (strategy-proof mechanisms) which Pareto dominates
the DA mechanism (Kesten, 2010; Abdulkadirŏglu et al., 2009; Alva and Munjunath,
2016). For this reason, the literature has recently begun to consider mechanisms that
impose weaker incentive requirements. The main result of this paper can be viewed as
a contribution to this literature.
Despite the interest in decentralized matching going back to Roth and Xing (1994),

two-sided matching theory has devoted little attention to this issue. In part, this is
likely due to the fact that, in practice, some of these markets have failed and centralized
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clearinghouses have emerged.4 Nonetheless, a large number of matching markets are
still decentralized — the early decision market being an important case in a point.
We discuss the relevant literature in Section 5 after we introduce our matching model

in Section 2 and derive the results in Section 3 and Section 4. We collect all proofs in
the appendices.

2 Model

2.1 Many-to-one matching market

Let S denote a finite set of students and C a finite set of colleges. Let |S|:= n, C =
{c1, ..., cm} and S ∪ C denote the set of agents with a generic agent denoted by v.5 For
each agent, remaining unmatched is denoted by ∅ (which also stands for the empty set).
Each student s has a strict preference relation Ps over C ∪ {∅}. Let P denote the set

of preference relations and PS the set of preference profiles P = (Ps)s∈S such that for
each s ∈ S, Ps ∈ P. Given s ∈ S and Ps ∈ P, let Rs denote the weak preference relation
associated with Ps: for all v, v̂ ∈ C ∪ {∅}, v Rs v̂ if v Ps v̂ or v = v̂. For Ŝ $ S, we often
write (P

Ŝ
, P−Ŝ) instead of P .

Each college c has a maximum number qc ∈ N of students it may admit, its quota. Let
q := (qc)c∈C denote the (profile of) quotas. Then, each college c has a strict preference
relation �c over the set 2S of all subsets of S. Given c ∈ C, �c is the weak preference
relation associated with �c and Chc : 2S → 2S is c’s choice function induced by �c
such that Chc(Ŝ) := max�c 2Ŝ for each Ŝ ∈ 2S . Note that Chc is well-defined because
for each Ŝ ∈ 2S , Chc(Ŝ) is uniquely defined since �c is strict. We assume that c’s
preference �c satisfies the followings: (1) for each Ŝ ⊆ S with |Ŝ|> qc, ∅ �c Ŝ and (2)
�c is substitutable and acceptant.

Susbtitutability and acceptability. If Chc is c’s choice function induced by �c,
(i) �c is substitutable if for each S′ and each S′′ such that S′ ⊆ S′′ ⊆ S, we have
Chc(S′′)∩S′ ⊆ Chc(S′); (ii) �c is acceptant if for each S′ ⊆ S, |Chc(S′)|= min{qc, |S′|}.

Let Ch = (Chc)c∈C denote the profile of choice functions satisfying (1) and (2).

4Popular examples include entry-level medical markets in the US and Great Britain, and students
placement to public schools in some US cities.

5We just fix the number of students here; we later identify them with their orders.
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A market is a list (S,C, P,Ch, q). Since S,C and q mostly remain fixed throughout
the paper, we suppress them and denote a market (S,C, P,Ch, q) by M = (P,Ch).

A matching is a function µ : S ∪ C → 2S∪C such that (1) for each s ∈ S, |µ(s)|≤ 1
and µ(s) ∈ C ∪ {∅}, (2) for each c ∈ C, µ(c) ⊆ S and (3) for each s ∈ S and each c ∈ C,
µ(s) = {c} if and only if s ∈ µ(c). By convention, for each v ∈ S ∪ C, we write µv
instead of µ(v) and for each s ∈ S and c ∈ C, µs = c instead of µs = {c}. LetM denote
the set of matchings. We extend agents’ preferences over the appropriate sets to the set
M naturally as follows: for each agent v and µ, µ̂ ∈ M, v prefers (or weakly prefers) µ
to µ̂ if and only he or it prefers (or weakly prefers) µv to µ̂v. We write µRµ̂ if µsRs µ̂s
for each s ∈ S.
If µv = ∅, we say that agent v is unmatched under µ. We say that a matching µ is

Individually Rational (IR) at M = (P,Ch) if for each s ∈ S, µsRs ∅ and for each c ∈ C,
Chc(µc) = µc. Next, we say that µ is blocked by the pair (s, c) ∈ S × C at M = (P,Ch)
if c Ps µs and s ∈ Chc(µc ∪ {s}). Finally, we say that µ is stable at M if it is IR at M
and it is not blocked by any pair at M .
A (matching) mechanism ϕ : PS →M selects a matching ϕ(P ) ∈M for each P ∈ PS .

Given P ∈ PS and µ, µ̂ ∈ M, we say that µ Pareto dominates µ̂ (for students) at P
if µsRsµ̂s for each s ∈ S and for some s ∈ S, µsPsµ̂s. We say that µ weakly Pareto
dominates µ̂ at P if µ Pareto dominates µ̂ at P or µ = µ̂. A mechanism ϕ Pareto
dominates a mechanism ϕ̂ if for each P ∈ PS , ϕ(P ) weakly Pareto dominates ϕ̂(P ) and
for some P ∈ PS , ϕ(P ) Pareto dominates ϕ̂(P ). Finally, a mechanism ϕ weakly Pareto
dominates a mechanism ϕ̂ if ϕ Pareto dominates ϕ̂ or ϕ = ϕ̂.

2.2 Early decision matching game

Let π : {1, 2, ..., n} → S be a bijection and O the set of all such bijections. Each bijection
describes the order in which students apply. Given an order π, we index the students
such that st = π(t) for t = 1, 2, ..., n. Since in each statement, there will be one order
involved, this convention will not create a confusion. Given an order π the game form
is as follows:

Applications phase: student s1 either applies to one college or chooses to remain
unmatched. Let a1 ∈ C ∪{∅} denote s1’s decision such that a1 = c if s1 applies to c and
a1 = ∅ if he chooses to remain unmatched.6 For each t = 2, ..., n, student st observes

6Similarly, for each t ≥ 2, let at ∈ C ∪ {∅} denote st’s decision, such that at = c if st applies to c and
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any application decisions a1, ..., at−1 and makes an application at ∈ C ∪ {∅}.

Admissions phase: colleges offer admissions following the order of their index numbers.
Given any application decisions a1, ..., an, college c1 offers admissions to a subset o(c1) ⊆
{st ∈ S|at = c1} of its applicants. For each j = 2, ...,m, college cj observes any decisions
a1, ..., an, o(c1), ..., o(cj−1) and offers admissions to a subset o(cj) ⊆ {st|at = cj} of its
applicants.

Each student’s action consists of applying to a college or choosing to remain un-
matched. Each college’s action consists of admitting some students from among its ap-
plicants. A history is an ordered collection of actions (Osborne and Rubinstein, 1994).
Let h0 denote the empty history. Given an order π and t = 1, ..., n, the ordered collection
(h0, a1, ..., at) := ht of actions is a history.7 Let Htπ denote the set of all such histories.
The outcome at any terminal history (h0, a1, ..., an, o(c1), ..., o(cm)) is the matching µ
such that for each t = 1, ..., n, (i) if at = ∅, then µst = ∅ and (ii) if at = c, then µst = c

if st ∈ o(c) and µst = ∅ otherwise. The game form just described is a well-defined finite
perfect-information extensive-form game. Given an order π and a marketM , let G[π,M ]
denote the game induced by π and M .

Given an order π, a market M and t = 1, ..., n, a strategy σst for student st in G[π,M ]
is a function σst : Ht−1

π → C ∪{∅} specifying an application decision σst(ht−1) ∈ C ∪{∅}
for each ht−1 ∈ Ht−1

π .
It is straightforward to see that given a history hn = (h0, a1, ..., an), the optimal

admission of each c ∈ C is o(c) = Chc({st ∈ S|at = c}). This is because a college does
not get any further applications and therefore can choose only from {st ∈ S|at = c}.
Henceforth, we ignore colleges’ strategy profile and abuse language and speak of students’
strategy profile as equilibrium of G[π,M ].
In any game G[π,M ], one can use Kuhn’s (1953) backwards-induction algorithm to

find a strategy profile that induces a Nash equilibrium in every subgame of G[π,M ].
Such a strategy profile is a subgame perfect (Nash) equilibrium (SPE) of G[π,M ]. Given
a game G[π,M ], letMSPE(G[π,M ]) denote its SPE outcomes.

at = ∅ if he chooses to remain unmatched.
7The empty history h0 is considered as nature’s action.
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3 Results

We first describe the student-proposing deferred acceptance (DA) algorithm by Gale and
Shpley (1962) whose outcome is one our main interests. Given a market M = (P,Ch),
it works as follows:

Step 1. Every student proposes to his most preferred acceptable college under P (if any).
Let Ŝ1

c be the set of students proposing to college c. College c tentatively accepts
the students in S1

c = Chc(Ŝ1
c ) and rejects the proposers in Ŝ1

c \ S1
c .

Step t. (t ≥ 2). Every student who was rejected at Step (t − 1) proposes to his next
preferred acceptable college under P (if any). Let Ŝtc be the set of students
proposing to college c at this step. College c tentatively accepts the students
in N t

c = Chc(St−1
c ∪ Ŝtc) and rejects the proposers in (St−1

c ∪ Ŝtc) \ Stc.

The algorithm terminates when each student is either accepted or rejected by all of
his acceptable colleges. The tentative acceptance becomes final when the algorithm
terminates and each student rejected by all of his acceptable colleges is unmatched. The
mechanism that selects the outcome of the DA algorithm at M = (P,Ch) for each P is
the DA mechanism. Let ϕCh denote the DA mechanism induced by Ch.8

Next, we show that the outcome of an SPE may be Pareto dominated by the outcome
of a DA algorithm.

Example 1. An outcome of a DA algorithm Pareto dominating an SPE
outcome. Consider a market where S = {s1, s2, s3} and C = {c1, c2} with quotas
qc1 = qc2 = 1 and the preferences are as follows:

Ps1 Ps2 Ps3 �c1 �c2

∅ c2 c1 s2 s1

c1 c2 s1 s3

s3 s2

Students move according to their index numbers. We represent only the relevant part of
the tree. Specifically, we omit colleges’ moves and the part where s1 applies to c2 and
the subsequent subgame since such application will be accepted and c2 is not acceptable

8This mechanism is due to Roth and Sotomayor (1990). However, the current version of the student-
proposing DA algorithm is taken from Kojima and Manea (2010).
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to s1. We also represent the outcome in the terminal histories of the tree obtained when
colleges choose optimally from among their applicants.

s1

s2

s3

∅
c1

∅

c1

∅
c1

c2

c2

∅
c1

∅

∅
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c1

c1

∅
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c2

c1

c2

∅

∅
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∅
∅
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∅
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∅

∅

∅
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∅
c1

∅

c1

∅
c1

c2

c2

∅
c1

∅

∅

c1

s3

∅
c2

c1

c1

∅
∅
c2

c2

∅
c2

∅

∅

c2

s3

∅
∅
c1

c1

∅
∅
c2

c2

∅
∅
∅

∅

∅

∅

µs1 :
µs2 :
µs3 :

Applying Kuhn’s algorithm identifies two SPEs represented by the connected arrows
and double arrows. In both SPE outcomes, s1 is unmatched. Clearly, the outcome of
the first SPE,

(
s1 s2 s3
∅ c1 c2

)
, is Pareto dominated by the outcome of the DA algorithm,(

s1 s2 s3
∅ c2 c1

)
.

As the example suggests, the underlying feature of the first SPE is that some students
apply to unacceptable colleges; yet remain unmatched in the equilibrium. While such
applications do not affect their welfare, it may induce subsequent students to apply to
colleges that are less preferred to the ones where they would have applied otherwise.

Note that s1’s strategy of applying to the unacceptable college c1 in the example is
weakly dominated. Indeed, choosing to remain unmatched weakly dominates the strat-
egy of applying to c1: under c1’s strategy of admitting s1, he strictly prefers choosing
to remain unmatched to applying to c1. The case of an SPE containing a weakly dom-
inated strategy of Example 1 is representative of a more general issue: an SPE may
contain strategies that are weakly dominated at some subgames, that is, their restric-
tions to some subgames may contain weakly dominated strategies. We deal with these
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non-intuitive strategies next.

3.1 Equilibrium characterization

3.1.1 Subgame perfect equilibrium with costly applications

One reasonable way of ruling out SPEs that are weakly dominated at some subgames is
to assume that applications are costly. This way, no student is indifferent between the
option of applying to a college and not being admitted, which we denote by ∅a, and the
option of not applying to any college and obviously remaining unmatched, denoted by
∅na. We next make the necessary adjustments.

Each student s has now a strict preference Ps over C ∪ {∅a, ∅na} such that ∅na Ps ∅a.
Let P̃ denote the set of all such preferences. A college c is acceptable to s if c Ps ∅na.
Now a matching is a function µ : C ∪ S → 2C∪S ∪ {∅a, ∅n} such that (1) for each s ∈ S,
|µs|≤ 1, µs ∈ C ∪ {∅a, ∅na} and µs 6= ∅, (2) for each c ∈ C, µc ⊆ S and (3) for each
s ∈ S and each c ∈ C, µs = c if and only if s ∈ µc. Finally, the outcome attached to
any terminal history (h0, a1, ...., an, o(c1), ..., o(cm)) is the matching µ such that for each
t = 1, ..., n, (i) if at = ∅na, then µst = ∅na and (ii) if at = c for some c ∈ C, then µst = c if
st ∈ o(c) and µs = ∅a otherwise. With regard to the DA algorithm, its outcome matches
each student who is rejected by all his acceptable colleges to ∅na. Finally, given an order
π and a market M = (P,Ch) with P ∈ P̃, let G̃[π,M ] denote the game induced by π
and M when applications are costly. We now turn its SPEs.

In this setting, each game G̃[π,M ] turns out to have a unique SPE, which we charac-
terize. Given s ∈ S and c ∈ C, let P cs ∈ P̃ denote s’s preference relation in which c is
his unique acceptable college and P ∅nas ∈ P̃ his preference relation in which no college is
acceptable.
Given an order π, a market M = (P,Ch) with P ∈ P̃S , define P (h0) ≡ P and for

each t = 2, ..., n and each history ht−1 = (h0, a1, ..., at−1) of G̃[P,M ], let P (ht−1) ∈ P̃S

denote the following preference profile

P (ht−1) = (P a1
s1 , ..., P

at−1
st−1 , Pst , ..., Psn).

It is obtained by simply replacing the preference relation Ps
t̂
of each student s

t̂
with t̂ < t

and a decision a
t̂
according to ht−1 by P

a
t̂

s
t̂
and maintaining the preference relations of

the remaining students as in P . Note that for each t̂ = t, ..., n, Ps
t̂
(ht−1) = Ps

t̂
.
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Then for each t = 1, ..., n, let σ∗st : Ht−1
π → C ∪ {∅na} define the following strategy for

st in G[π,M ]. We dub it solidarity strategy.

Solidarity strategy. Given an order π and a market M = (P,Ch), st’s strategy σ∗st in
G̃[π,M ] is a solidarity strategy if for each ht−1 ∈ Ht−1

π ,

σ∗st(h
t−1) = ϕChst (P (ht−1)).

At each history ht−1, σ∗st recommends that (1) if ϕChst (P (ht−1)) = c for some c ∈ C
then st applies to c and (2) if ϕChst (P (ht−1)) = ∅na, then st chooses to remain unmatched.
Let σ∗ = (σ∗s)s∈S denote the profile of solidarity strategies of G̃[π,M ]. Then we have,

Theorem 1. Given an order π and a market M , the profile σ∗ of solidarity strategies
is the unique subgame perfect equilibrium of G̃[π,M ].

Appendix A contains the proof of Theorem 1.

3.1.2 Subgame perfect undominated Nash equilibria

Given an order π, a market M , a history h ∈
⋃n−1
t=1 Htπ of G[π,M ], let G[π,M |h] denote

the subgame of G[π,M ] that starts at h. Moreover, given a student s and his strategy σs,
σs|h is the restriction of σs to G[π,M |h]. Let σ|h:= (σs|h)s∈S . The matching attached to
the terminal history reached when σ is executed starting at h is denoted by µ(σ|h). Given
an order π, a market M = (P,Ch) and t = 1, ..., n, st’s strategy σst weakly dominates
his strategy σ̂st at the subgame G[π,M |ht−1 ], if for each strategy profile σ−st , he weakly
prefers µ(σ|ht−1) to µ(σ̂st , σ−st |ht−1) under Pst with at least one strict preference, that is,
µst(σ|ht−1)Rst µst(σ̂st , σ−st |ht−1) and µst(σst , σ̂−st |ht−1)Pstµst(σ̂|ht−1) for some σ̂−st . A
strategy is undominated at some subgame if it is not weakly dominated at that subgame.

Remark. Given an order π, a market M = (P,Ch), t = 1, ..., n and a history ht−1 ∈
Ht−1
π , st’s strategy of applying to an unacceptable college c under Pst is is weakly domi-

nated at the subgame G[π,M |ht−1 ] by any strategy where he chooses to remain unmatched
at ht−1. Indeed, the application to c may lead to two outcomes for st. Either c admits
him in which case he prefers choosing to remain unmatched to applying to c at ht−1 or
c does not admit him, the same outcome as choosing to remain unmatched at ht−1.

Although weakly dominated strategies may be best responses, the literature on game
theory has a long tradition of eliminating them. The dominance solvable concept
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(Moulin, 1979) widely applied in game theory is based on the idea that successive elimina-
tion of weakly dominated strategies yields a unique strategy profile. Strategy-proofness
of mechanisms is based on the idea that truthful reporting of preferences by every agent
weakly dominates any untruthful reporting of preferences. In all these well-known ap-
plications, weakly dominated strategies are not expected. We follow this tradition and
reject strategy profiles that contain weakly dominated strategies at some subgame.
Given an order π, t = 1, ..., n, a market M and a history ht−1 ∈ Ht−1

π in G[π,M ],
st’s strategy in the subgame of G[π,M ] that starts at ht−1 becomes a decision at ht−1.
Thus, in this subgame choosing to remain unmatched weakly dominates the strategy
of applying to an unacceptable college. The elimination of strategies that are weakly
dominated in some subgames yields the following refinement of SPE.

Subgame perfect undominated Nash equilibrium (SPUE). Given an order π
and a market M , a strategy profile in G[π,M ] is a subgame perfect undominated Nash
equilibrium of G[π,M ] if it induces an undominated Nash equilibrium in every subgame
of G[π,M ].

Given an order π and a market M , letMSPUE(G[π,M ]) denote the outcomes of the
SPUEs of G[π,M ]. This mild refinement of SPE produces outcomes that weakly Pareto
dominate the outcome of the DA algorithm. Wasted applications to unacceptable col-
leges are ruled out in any SPUE. However, there are other wasted applications. Any
application to an acceptable college which is not admitted is also wasteful. Such appli-
cation does not affect the applicant’s outcome of not being admitted in the SPUE but
may affect others. We then dub such strategy a bossy strategy.9

Example 2 (continued). A bossy strategy. Consider Example 1 where student s1’s
preference relation becomes P c1

s1 in which c1 is the unique acceptable college to him.
Applying Kuhn’s backwards-induction algorithm again yields the same equilibria identified
in the tree of this example. The outcomes of the SPEs are now the outcome of the DA
algorithm

(
s1 s2 s3
∅ c1 c2

)
and the matching

(
s1 s2 s3
∅ c2 c1

)
. Student s1 applied to c1 in an

SPE but is not admitted. The other students prefer the outcome of the SPE where he
chose to remain unmatched to the one where he applied to c1. It is a bossy strategy.

9We thank William Thomson for making a parallel between non-bossiness, a social choice theory con-
cept, and the property embodied in the strategy mentioned; which led to the choice of bossy strategy.
A social choice function is bossy when some agent can change the outcome for others without changing
his own.
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Bossy strategy. Given an order π, a market M = (P,Ch) and t = 1, ..., n, st’s
strategy σ∗∗st in G[π,M ] is a bossy strategy if for each history ht−1 ∈ Ht−1

π , letting
ϕChst (P (ht−1)) := v

(i) σ∗∗st (ht−1) = v if v = c for some c ∈ C and

(ii) σ∗∗st (ht−1) = v̂ with v̂ Rst ∅ if v = ∅ and v̂ 6= ∅ for at least one history.

In a bossy strategy σ∗∗st , (i) for each history ht−1 with ϕChst (P (ht−1)) = c for some
c ∈ C, st applies to c and (ii) for each history ht−1 with ϕChst (P (ht−1)) = ∅, st either
chooses to remain unmatched or applies to an acceptable college ; with at least one
application.
We can adapt the definition of solidarity strategy to the present setting as follows:

given an order π and a market M = (P,Ch), st’s strategy σ∗st in G[π,M ] is a solidarity
strategy if for each ht−1 ∈ Ht−1

π ,

σ∗st(h
t−1) = ϕChst (P (ht−1)).

Theorem 2. Given an order π and a market M , the subgame perfect undominated Nash
equilibria of G[π,M ] correspond to the strategy profiles σ = (σs)s∈S in G[π,M ] such that
for each student s, σs is either a solidarity strategy or a bossy strategy in G[π,M ].

Appendix B contains the proof of Theorem 2.

3.2 Properties of the equilibrium matchings

Whether we consider costly applications or SPUE concept, an early decision matching
mechanism recommends the outcome of an intuitive equilibrium for every preference
profile.

Early decision matching mechanisms. Given an order π and a choice profile Ch,
the early decision matching mechanisms induced by Ch are:

(i) the mechanism ϕ(., Ch) : P̃ → M such that for each P ∈ P̃S; ϕ(P,Ch) =
MSPE(G̃[π,M ]), where M = (P,Ch) and

(ii) each mechanism ϕ(., Ch) : PS → M such that for each P ∈ PS; ϕ(P,Ch) ∈
MSPUE(G[π,M ]), where M = (P,Ch).
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Then, our main result is as follows:

Theorem 3. Each early decision matching mechanism weakly Pareto dominates the DA
mechanism.

Appendix C contains the proof of Theorem 3.

Remark. As a corollary of the theorem, the outcome of the DA mechanism is the unique
stable matching that can arise at an intuitive equilibrium.

Since the order matters for the SPE outcome under costly applications, it is important
to understand how often this is the case. We later characterize the markets for which
the outcome is order independent. But first we show that the the outcome of an SPE or
SPUE is in certain sense order independent. A student who is matched at some order
will remain matched for any other order. This holds for any unmatched student. This
result resembles a feature of the set of stable matchings (Roth 1984, 1986),10 known
there as rural hospital theorem. A student who is matched at some stable matching
remains matched in any other stable matching and this holds for any unmatched student.
Furthermore, a college with unfilled seats at some stable matching is matched to the same
set of students at each stable matching.
The rural hospital theorem owes its name from the following mal-distribution problem

in the American medical labor market. It is empirically reported that hospitals in
rural areas experience a shortage of doctors while hospitals in other areas succeed in
filling their available positions with resident students. The problem persisted when the
National Resident Matching Program centralized its matching procedure and used a
stable matching mechanism. The insight from the rural hospital theorem suggests that
no other stable matching mechanism can address this issue.

Rural hospital theorem. A non-empty subset M′ ⊆ M of matchings satisfies the
rural hospital theorem if for each µ, µ′ ∈M′, (i) for each v ∈ C ∪ S, |µ(v)|= |µ′(v)| and
(ii) for each c ∈ C, |µ(c)|< qc implies µ(c) = µ′(c).

Given a marketM = (P,Ch) with P ∈ PS and a marketM ′ = (P ′, Ch′) with P ′ ∈ P̃S ,
we consider the set

⋃
π∈OMSPE(G̃[π,M ′]) and the set

⋃
π∈OMSPUE(G[π,M ]) obtained

at various orders. These sets satisfy the rural hospital theorem.
10Hatfield and Milgrom (2005) partially obtained the rural hospital theorem on the set of stable match-

ings, when colleges have substitutable preferences coupled with another condition.
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Proposition 1. Given a market M = (P,Ch) with P ∈ P and M ′ = (P ′, Ch) with
P ′ ∈ P̃,

(i) the set
⋃
π∈OMSPE(G̃[π,M ′]) satisfies the rural hospital theorem.

(ii) the set
⋃
π∈OMSPUE(G[π,M ]) satisfies the rural hospital theorem.

Appendix F contains the proof of Proposition 1. We note that Proposition 1 is not a
negative result as in the medical labor market. It is a positive result in the sense that the
order does not change a matched student to unmatched or an unmatched to matched.
Unfortunately, when we insist on order independence in the sense that the order does
not affect the outcome of an SPE, we obtain that only on a subset of markets.
The idea of order independence of a solution’s outcomes is first modeled as an equi-

librium concept by Moldovanu and Winter (1992). We rather regard it as a property of
a market. We search for these markets only under costly applications for simplicity.

Order independence. A market M induces an order independent G-outcome if for all
orders π and π′,MSPE(G̃[π,M ]) =MSPE(G̃[π′,M ]).

Corollary 1. If a market M induces an order independent G-outcome, then for each
order π, the subgame perfect equilibrium outcome of G̃[π,M ] is the outcome of the DA
algorithm.

Appendix D contains the proof of Corollary 1. Given a mechanism ϕ and a market
M = (P,Ch), let Pϕ ∈ PS denote a profile such that for each student s, ϕs(P ) is
s’s unique acceptable college if any. Let PϕS′ denote the restriction of Pϕ to S′. We
study the robustness of a mechanism ϕ when some students, say S′, deviate from their
original preference profile PS′ and claim each only his outcome at ϕ(P ). Then, claims
consistency requires that whenever such deviation is observed then the mechanism still
selects the same matching.

Claims consistency. 11 A mechanism ϕ is claims consistent at P if for each subset
S′ ⊆ S,

ϕ(PϕS′ , P−S′) = ϕ(P ).

11Variants of consistency have been explored, ranging from consistency, bilateral consistency to average
consistency (Thomson, 2011).
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Theorem 4. A market M = (P,Ch) induces an order independent G-outcome if and
only if the DA mechanism ϕCh is claims consistent at P .

Appendix E contains the proof of Theorem 4. It is worth connecting our definition to
the popular version of consistency. Fix a choice profile Ch. Given a market (S, P,Ch, q),
a subset Ŝ ⊆ S of students and quotas q′ such that q′c ≤ qc for all c ∈ C, call the market
(Ŝ, P

Ŝ
, Ch|

2Ŝ
, q′) a sub-market of (S, P,Ch, q) where Ch|

2Ŝ
is the restriction of Ch to

2Ŝ . Next, the extended DA mechanism ϕ̃Ch selects the outcome of the DA algorithm at
(Ŝ, P

Ŝ
, Ch|

2Ŝ
, q′) for any P ∈ PS and any sub-market (Ŝ, P

Ŝ
, Ch|

2Ŝ
, q′) of (S, P,Ch, q).

Given a matching µ, consider the sub-market (Ŝ, P
Ŝ
, Ch|

2Ŝ
, qµ) with respect to Ŝ and

µ that results from a departure of the students in S \ Ŝ with their outcomes at µ; that
is, qµc = qc− |µc \ Ŝ| for each c ∈ C. Then, given a domain P of preferences, we say that
the DA mechanism is consistent on P if for all profile P ∈ PS and all subset Ŝ ⊆ S,
letting µ = ϕ̃Ch(S, P,Ch, q), we have

µ|
Ŝ

= ϕ̃Ch(Ŝ, P
Ŝ
, Ch|

2Ŝ
, qµ).

The matching literature has focused on the strict preference domain (P = P) and
searched for choice profiles Ch for which the DA mechanisms ϕCh are consistent on P.
The following acyclical condition provided by Ergin (2002) for responsive preferences
and later generalized to substitutable preferences by Kumano (2009) is the answer. A
cycle consists of three distinct students i, j, k and two distinct colleges c, ĉ such that
there exist two disjoint subsets Sc, Sĉ ⊂ S \ {i, j, k} verifying (C) j /∈ Chc(Sc ∪ {i, j}),
k /∈ Chc(Sc ∪ {j, k}) and i /∈ Chĉ(Sĉ ∪ {i, k}) and (S) |Sc|= qc − 1 and |Sĉ|= qĉ − 1.
A choice profile is acyclical if there is no cycle. Given a choice profile Ch, the DA
mechanism ϕCh is consistent on P if and only if Ch is acyclical (Klijn, 2011).
Given an acyclical choice profile Ch, for any profile P ∈ PS , ϕCh is claiming consistent

at P .12 However, claiming consistency additionally characterizes markets (P,Ch) for
which P ∈ PS and Ch has a cycle. For a simple example, if Ch is a choice profile that
has a cycle and P any profile then, ϕCh is claiming consistent at Pϕ.

Remark. If a choice profile Ch is acyclical then, the mechanism ϕ(., Ch) : P̃ → M
12Since Ch is acyclical, for each P ∈ PS , ϕCh(P ) is Pareto efficient (Kumano, 2009). Fix Ŝ ⊆ S and

let P̂ := (Pϕ
Ŝ
, P
−Ŝ

). It is proven (Kojima and Manea, 2010) using an (IR monotonicity) property of

the DA mechanism that ϕCh(P̂ ) R̂ ϕCh(P ). Thus, for each s ∈ Ŝ, ϕChs (P̂ ) = ϕChs (P ). Therefore, if
ϕCh(P̂ ) 6= ϕCh(P ) then, ϕCh(P̂ ) Pareto dominates ϕCh(P ) at P .
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such that for each P ∈ P̃, ϕ(P,Ch) =MSPE(G̃[π,M ]), where M = (P,Ch) is the DA
mechanism, that is, ϕ(., Ch) = ϕCh.

When the outcome of an SPE is order independent no student cares about his order
of application. Otherwise, students have preferences over orders. We next model such
preferences. We say that a non-empty subset Ŝ of students have the same relative
ranking under π and π̂ if for each s, ŝ ∈ Ŝ, s is ordered before ŝ in π if and only if s
is ordered before ŝ in π̂. Formally, for each s, ŝ ∈ Ŝ, π−1(s) < π−1(ŝ) if and only if
π̂−1(s) < π̂−1(ŝ). The following proposition says that essentially students prefer orders
where they move later.

Proposition 2. Given a market M and a student s, let π and π̂ be two orders such that
(i) the set S \{s} has the same relative ranking under π and π̂ and (ii) π̂−1(s) < π−1(s).
Then, s weakly prefers the outcome of the subgame perfect equilibrium of G̃[π,M ] to the
outcome of the subgame perfect equilibrium of G̃[π̂,M ].

Appendix C contains the proof of Proposition 2. A fixed (deterministic) order of
applications favors students moving late. This order is not observed. Some unmodeled
details of the market may introduce randomness to how it can be determined. We turn
to random orderings in the next section.

4 Extension to random ordering

So far we considered deterministic orderings of students. Since these orders are not
known, we can assume that they are randomly determined. We introduce “nature"
in the game whose role is to randomly determine the order of applications. Nature
first randomly chooses the student who must move first and following each application
decision, randomly chooses the student who must move next among the remaining ones.
Given a non empty subset Ŝ ⊆ S, a probability distribution F

Ŝ
over Ŝ is a function

F
Ŝ

: Ŝ → [0, 1] such that
∑
s∈Ŝ FŜ(s) = 1. A device is a collection F = (F

Ŝ
)
Ŝ⊆S of

probability distributions such that for each Ŝ ⊆ S, F
Ŝ
is a probability distribution over

Ŝ. A game form is now described by a device F as follows:
Applications phase: nature chooses each student s with probability FS(s) to move

first. Let s1 be the student chosen and a1 ∈ C ∪ {∅} his application decision such that
a1 = c if he applies to college c and a1 = ∅ if he chooses to remain unmatched. For
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each t = 1, ..., n − 1, let s1, ..., st be the students chosen by the device respectively for
the first move to the tth move and let a1, ..., at be their application decisions such that
a
t̂
is the application decision of s

t̂
. Let Ŝ := {s1, ..., st}. Then, nature chooses each

remaining student s ∈ S \ Ŝ with probability F
S\Ŝ(s) to move next. Let st+1 be the

student chosen. Then, st+1 observes the applications a1, ..., at and makes an application
decision at+1 ∈ C ∪ {∅}.
Admissions phase: colleges offer admissions following the order of their index numbers.

Given application decisions a1, ..., an such for each t, at is the application decision of st,
each college c observes all the decisions up to its turn and offers admissions to a subset
o(c) ⊆ {st ∈ S|at = c} of its applicants.

Given a device F and a marketM , let G[F,M ] be the game induced by F andM . An
action for nature after any application decision consists of choosing a student among the
remaining ones. Let h0 be the empty history. Given a student s such that FS(s) 6= 0,
(h0, s) is the history in which the device F chooses s first. Let a1 be his decision. Then,
(h0, s, a1) is the history in which the device chooses s first and he takes the decision a1.
Again, given a student ŝ ∈ S \ {s} such that FS\s(ŝ) 6= 0, (h0, s, a1, ŝ) is the history
following (h0, s, a1) in which the device chooses ŝ next. More generally, every such
history alternates a student with an application decision.13 Let H denote the histories.
Then for each student s, let Hs = {(h, s) ∈ H|h ∈ H} denote the histories at which s is
chosen to move next.
Given a device F and a market M , s’s strategy in G[F,M ] is a function σs : Hs →

C ∪ {∅}. Given a game G[F,M ], every strategy profile in G[F,M ] induces a probability
distribution over the set of matchings attached to the terminal histories. This introduces
the notion of random matching.
A random matching η is a probability distribution overM. Given a random matching

η and a student s let ηs denote the probability distribution which η induces over the set
C∪{∅} of outcomes for s. We assume that students evaluate random matchings according
to first-order stochastic dominance. The random matching η first-order stochastically
Ps-dominates the random matching η′, in notation ηP sds η′, if for each v ∈ C ∪ {∅},∑

v′∈C∪{∅}:v′Rsv
ηs(v′) ≥

∑
v′∈C∪{∅}:v′Rsv

η′s(v′).

13Note that we only model histories before any college’ decision. This is again an abuse to simplify the
analysis since colleges optimal decisions are known.
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Given a subset Ŝ of students let π : {1, ..., |Ŝ|} → Ŝ be a bijection. It describes a
possible order in which a device might choose the set of students in Ŝ if they are the
remaining ones. Let O(Ŝ) be the set of all such bijections. Then any device F induces
a probability distribution π̃

Ŝ
over O(Ŝ). For each π ∈ O(Ŝ), let Pr(π̃

Ŝ
= π) denote the

probability that π̃
Ŝ
places on π.

Fix Ŝ ⊂ S, s /∈ Ŝ and let h ∈ Hs be a history such that at h, Ŝ is the set of remaining
students. Then, an action a ∈ C ∪ {∅} taken by s at h, a strategy profile σ

Ŝ
for

the remaining students and an order π ∈ O(Ŝ) induce a specific matching µπ(a, σ
Ŝ
|h).

Therefore, considering all possible orders of Ŝ, the action a and the strategy profile σ
Ŝ

induce a random matching η(a, σ−s|h) as follows:

Pr(η(a, σ
Ŝ
|h) = µ) =

∑
π∈O(Ŝ):µπ(a,σ

Ŝ
|h)=µ

Pr(π̃
Ŝ

= π).

Given a device F , a market M = (P,Ch), student s and a history h ∈ Hs, s’s strategy
σs first-order stochastically dominates his strategy σ′s in the subgame G[F,M |h] if for
each strategy profile σ−s,

η(σ|h)P sds η(σ′s, σ−s|h).

A student strategy is first-order stochastically undominated in some subgame if it is not
first-order stochastically dominated in that subgame.

Subgame perfect first-order stochastically undominated Nash equilibrium
(sd-SPUE). Given a device F and a market M , we say that a strategy profile σ in
G[F,M ] is a subgame perfect first-order stochastically undominated Nash equilibrium
(sd-SPUE) of G[F,M ] if it induces a first-order stochastically undominated Nash equi-
librium in every subgame of G[F,M ].

The set of sd-SPUEs of G[F,M ] corresponds to the set of strategy profiles σ in which
every agent uses either a solidarity strategy or a bossy strategy. A solidarity strategy
simply adapts to the present set-up as follows: given a student s, for each h ∈ Hs,
σ∗s(h) = ϕChs (P (h)). A Bossy strategy also adapts similarly. Given a device F and
a market M , let ∆sd−SPUE(G[F,M ]) denote the set of all random matchings induced
by the sd-SPUEs of G[F,M ]. For each random matching in ∆sd−SPUE(G[F,M ]), the
matchings which it assigns positive probabilities, its support, weakly Pareto dominate
the outcome of the DA algorithm.
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Theorem 5. Given a device F and a market M = (P,Ch), let η be a random match-
ing in ∆sd−SPUE(G[F,M ]). Then, every matching in the support of η weakly Pareto
dominates the outcome of the DA algorithm at P .

Appendix H contains the proof of Theorem 5.

5 Related literature and conclusion

The theoretical appeal of stability for matching markets has led most papers on decen-
tralized matching markets to search for game forms that implement stable matchings.
They are game forms where students simultaneously apply and colleges sequentially ad-
mit by Romero-Medina and Triossi (2012); game forms with simultaneous moves by
Alcalde and Romero-Medina (2000) and Triossi (2012) and game forms with sequen-
tial moves by Haeringer and Wooders (2008), Pais (2005), Diamantoundi et al.(2015),
Wu(1015) and Suh and Wen (2008). In some of these contributions, unstable matchings
were starting to emerge in equilibrium (Suh and Wen, 2008; Diamantoundi et al., 2015;
Wu, 2015; Triossi, 2012) and further conditions were imposed.
There is a prior reference to our contribution in Theorem 4. Indeed, Suh and Wen

(2008) already identified a subset of the markets that we characterize in that theorem.
They consider (1) a one-to-one matching market: qc = 1 for each c ∈ C; (2) a balanced
market: |S|= |C|; (3) a mutual acceptability: for each c ∈ C and each s ∈ S, cRs∅ and
s �c ∅ and (4) an additional condition (αM condition) that is equivalent to the claiming
consistency we formulated. In an equivalent game, they proved that the game has a
unique SPE such that its outcome is order independent and produces the outcome of
the DA algorithm. However, their result does not hold if we drop market balancedness
or mutual acceptability. Thus, Theorem 4 strengthens their result.
Next, it is well-known that no strategy-proof mechanism can Pareto dominates the

DA mechanism. Recently, Bando (2014) unified two independent solutions— by Ehlers
(2007), Wako (2010) and Kesten (2010)— which weakly Pareto dominate the DA mech-
anism; and, showed that these solutions coincide and can be supported by a strictly
strong Nash equilibrium.
Finally, the introduction of first-order stochastic dominance criterion to evaluate prob-

ability distributions has a connection with prior results. The notion is introduced by
D’Aspremont and Peleg (1988) and employed in matching theory by Ehlers and Masso
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(2007, 2015) in incomplete information environment and Pais (2008) in decentralized
random matching environment.
Unraveling has led many matching markets to adopt a centralized matching procedure.

However, the result in this paper supports the continued use of early decision, at least
when students can coordinate their applications. As part of the market design literature,
this piece provides an understanding of an important aspect of the market that can
improve students welfare.
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Appendices
Appendix A: Proof of Theorem 1

The proof uses known results that we collect first.
The DA mechanisms possess some form of monotonicity established by Kojima and

Manea (2010). Given s ∈ S and Ps, P̂s ∈ P̃, we say that P̂s is an individually rational
(IR-) monotonic transformation14 of Ps at v ∈ C ∪ {∅na}, in notation P̂s i.r.m.t Ps at
v, if any college that is ranked above both v and ∅na under P̂s is also ranked above v
under Ps, that is

for each c ∈ C, c P̂s v and c P̂s∅na ⇒ c Ps v.

Of course, Ps i.r.m.t Ps at v ∈ C ∪ {∅na}. The following case deserves to be illustrated
separately as it will be the main form of IR-monotonic transformation we will be using.
Given c ∈ C and s ∈ S, let P cs ∈ P̃ be s’s preference relation where c is his unique
acceptable college and P ∅nas his preference relation where no college is acceptable.

Remark. Given s ∈ S, Ps ∈ P̃ and v ∈ C∪{∅na}, let µ ∈M be such that v Rs µsRs∅na.
Then, P vs i.r.m.t Ps at µs.

We say that P̂ is an IR-monotonic transformation of P at matching µ, in notation
P̂ i.r.m.t P at µ, if for each s ∈ S, P̂s i.r.m.t Ps at µs.

IR-monotonicity. A matching mechanism ϕ is IR-monotonic if for each P, P̂ ∈ PS,
P̂ i.r.m.t P at ϕ(P ) ⇒ ϕ(P̂ ) R̂S ϕ(P ).

Next, we will use the following incentive compatibility property of mechanisms.

Strategy-proofness. A matching mechanism ϕ is strategy-proof if for each P ∈ PS,
each s ∈ S and each P̂s ∈ P, ϕs(P )Rs ϕs(P̂s, P−s).

The DA mechanism ϕCh induced by any profile Ch of choice functions is strategy-
proof (Lemma 1). Beside this result (and others), the choice functions themselves have
others properties. We collect the relevant ones.

Path-independence. College c’s choice function Chc is path-independent if for each
Ŝ ⊆ S and each s ∈ S,Chc(Chc(Ŝ) ∪ {s}) = Chc(Ŝ ∪ {s}).
14See Kojima and Manea (2010) for further discussions.
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Irrelevance of rejected students. College c’s choice function Chc satisfies the irrel-
evance of rejected students if for each Ŝ ( S and each s /∈ Ŝ, s /∈ Chc(Ŝ ∪ {s}) ⇒
Chc(Ŝ ∪ {s}) = Chc(Ŝ).

We now gather in a lemma these results.

Lemma 1. Let Ch be a profile of choice functions and ϕCh the DA mechanism induced
by Ch. Then

(1) ϕCh is IR-monotonic (Kojima and Manea, 2010, Theorem 1).

(2) ϕCh is strategy-proof (Hatfield and Milgrom, 2005).

(3) For each c ∈ C, Chc is path-independent (Ehlers and Klaus, 2016, Lemma 1).

(4) For each c ∈ C, Chc satisfies the irrelevance of rejected students (Ehlers and Klaus,
2016; Aygün and Sönmez, 2012).

Point 2 of Lemma 1 is established by Hatfield and Milgrom (2005) when each college’s
preference is substitutable and satisfies the law of aggregate demand, that is, for each c ∈
C with choice function Chc, for each Ŝ ⊆ S and each S′ ⊆ S, S′ ⊆ Ŝ implies |Chc(S′)|≤
|Chc(Ŝ)|. However, an acceptant preference satisfies this law (Ehlers and Klaus, 2016).
Our proofs also use a result by Abdulkadiroğlu et al.(2009) when each college has a

responsive preference,15 and recently obtained by Alva and Munjunath (2016) in a more
general model encompassing acceptant substitutable preferences.

Lemma 2 (Abdulkadiroğlu et al. 2009, claim in Theorem 1). Let M = (P,Ch) be a
market and µ∗ the outcome of the DA algorithm atM . If a matching µ Pareto dominates
µ∗ at P , then, the same set of students are matched in both µ and µ∗, in notation,
µC = µ∗C .

We are now ready to prove the theorem. Fix an order π and a market M = (P,Ch)
and let G[π,M ] be the game induced by π andM . By convention, whenever we consider
a history ht = (h0, a1..., at), at̂ is the application that s

t̂
makes. To simplify the notation,

we suppress the reference to the choice profile Ch in the DA mechanism ϕCh induced

15Let �c be c’s preference relation over S ∪ {∅}. A preference relation �̄c over 2S is responsive to �c,
if for any subset Ŝ of students with |Ŝ|< qc, Ŝ ∪ {s}�̄cŜ ∪ {s′} if and only if s �c s′ and Ŝ ∪ {s}�̄cŜ
if and only if s �c ∅.

24



by Ch and just write ϕ := ϕCh. We continue by establishing two important results as
lemmas. For each t = 1, ..., n, each history ht = (h0, a1, ..., at) and each v ∈ C ∪ {∅na},
let Sv(ht) := {s

t̂
|t̂ ≤ t, a

t̂
= v}.

Lemma 3. Fix a history hn−1 ∈ Hn−1
π and let µn−1 := ϕ(P (hn−1)).

(i) assume that st applies according to solidarity strategy, and let v̂ = σ∗sn(hn−1). Let
hn = (ht, v̂) be the terminal history following such application. Then, for each c ∈ C,
µn−1
c = Chc(Sc(hn)).
(ii) assume that µn−1

sn = ∅ and sn applies to an acceptable college ĉ and let ĥn =
(hn−1, ĉ) be the terminal history following such application. Then, for each c ∈ C,
µn−1
c = Chc(Sc(ĥn)).

Proof of Lemma 3. (i). Since we only have two histories to consider, we further simplify
the notations; Sc := Sc(hn−1) and Ŝc := Sc(hn).

Now consider the DA algorithm that produces µn−1 at (P (hn−1), Ch). Recall that
Psn(hn−1) = Psn and for each t 6= n, we have Pst(hn−1) = P atst . Therefore, each student
in S \ {sn} makes a proposal (if any) no further than the first step of the algorithm.
Furthermore, by σ∗sn(hn−1) = µn−1

sn = v̂, we have

sn ∈ Ŝv̂. (1)

Fix c ∈ C and consider the set of students proposing to c in the DA algorithm. There
are two cases regarding sn’s proposals.
Case 1. sn did not propose to c.

Then, c received (in the first step) only proposals from students in Sc.16 Therefore,
µn−1
c = Chc(Sc) and c 6= v̂ imply that sn /∈ µn−1

c . Now by (1) sn /∈ Ŝc and we draw that
Ŝc = Sc. By substitution, µn−1

c = Chc(Ŝc) = Chc(Sc(hn)).
Case 2. sn proposed to c.

If sn proposed to c in Step 1 of the algorithm, then µn−1
c = Chc(Sc ∪ {sn}). If sn

proposed to c in a step later than Step 1, then µn−1
c = Chc(Chc(Sc) ∪ {sn}). Since Chc

is path-independent, Chc(Chc(Sc) ∪ {sn}) = Chc(Sc ∪ {sn}). In any case,

µn−1
c = Chc(Sc ∪ {sn}). (2)

First, assume that sn ∈ µn−1
c . Then c = v̂ and by (1), sn ∈ Ŝc. Hence Ŝc = Sc ∪ {sn}.

16Sc is the set of students from whom c receives applications before sn’s turn in the game G[π,M ].
Thus, Ps(ht−1) = P cs for all s ∈ Sc.
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Then combining this and (2) obtains µn−1
c = Chc(Ŝc). Second, assume that sn /∈ µn−1

c .
Then from (2), sn /∈ Chc(Sc ∪ {sn}). Since Chc satisfies the irrelevance of rejected
students, Chc(Sc∪{sn}) = Chc(Sc). Again c 6= v̂ and by (1), sn /∈ Ŝc and thus, Ŝc = Sc.
Consequently, Chc(Sc ∪ {sn}) = Chc(Sc) = Chc(Ŝc). Finally combining the later result
with (2) obtains µn−1

c = Chc(Ŝc) = Chc(Sc(hn)).
(ii). For this case, we further simplify the notation and let S∗c := Sc(ĥn) for each

c ∈ C. With regard to the proof of (i), we only need to consider college ĉ. Since sn
applied to ĉ, S∗

ĉ
= Sĉ ∪ {sn}. Consider the DA algorithm that produces µn−1. Since

µn−1
sn = ∅na and ĉ is acceptable to him, sn has proposed to that college in some step

of the algorithm. Then using (2) obtain µn−1
ĉ

= Chĉ(Sĉ ∪ {sn}). Combining this with
S∗
ĉ

:= Sĉ ∪ {sn} obtains µ
n−1
ĉ

= Chĉ(S∗ĉ ) = Chĉ(Sĉ(ĥn)).

Lemma 4. Let t = 1, ..., n − 1 and fix a history ht−1 = (h0, a1, ..., at−1). Assume that
student st applies accordine to σ∗st(h

t−1) = v and let ht = (h0, a1, ..., at−1, v) be the
history following that decision. Let µt−1 := ϕ(P (ht−1)) and µt := ϕ(P (ht)). Then, the
same set of students are matched in both µt−1 and µt, that is, µt−1

C = µtC .

Proof of Lemma 4. By definition, σ∗st(h
t−1) = ϕ(P (ht−1). Thus, v = µt−1

st . Since
Pst(ht−1) = Pst , we have P (ht−1) = (Pst ,P−st(ht−1)) and P (ht) = (P vst ,P−st (h

t−1)).
Next, because P vst i.r.m.t Pst at v, we have P (ht) i.r.m.t P (ht−1) at ϕ(P (ht−1)). Since
ϕ is IR-monotonic, ϕ(P (ht)) R(ht) ϕ(P (ht−1)) or equivalently,

µt R(ht)µt−1.

For st, µtst = v because Pst(ht) = P vst and µ
t−1
st = v. For each student s 6= st, Ps(ht) =

Ps(ht−1). Student st is matched to v in both µt−1 and µt and the preference relation of
each s 6= st is the same in both P (ht−1) and P (ht). Therefore, we have

µt R(ht−1) µt−1. (3)

Now (3) and Lemma 2 give µt−1
C = µtC .

We now turn to the proof of Theorem 1. We show that the solidarity strategy σ∗ is the
unique backwards-induction strategy of G[π,M ], by induction on t = 1, ..., n, starting
from n.
Induction base (t = n): We verify that at any history hn−1, applying according to

σ∗sn is sn’s unique best application at that history. Assume first that σ∗sn(hn−1) = ĉ for
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some ĉ ∈ C. We show that if sn applies to ĉ, then ĉ will admit him. This is in fact the
conclusion of Lemma 3. By this result, if ĉ is sn’s first choice according to Pst , then we
are done. Otherwise, let c ∈ C be such that

c Psn ĉ (4)

and assume that sn applies to c at hn−1. We show that c will not admit him. Let
µn−1 = ϕ(P (hn−1)) and for the purpose of this proof let S∗c = Sc(hn−1). Next, pick
st ∈ µn−1

c with t 6= n. Then st applied to c and therefore st ∈ S∗c . Therefore, µn−1
c ⊆ S∗c

and µn−1
c ∪{sn} ⊆ S∗c ∪{sn}. Since c’s preference is substitutable, if sn ∈ Chc(S∗c ∪{sn}),

then

sn ∈ Chc(S∗c ∪ {sn}) ∩ (µn−1
c ∪ {sn}) ⊆ Chc(µn−1

c ∪ {sn}). (5)

From (4), (5) and the fact that µn−1
sn = ĉ, the pair (sn, c) blocks µn−1 at (P (hn−1), Ch),

contradicting the stability of µn−1 at (P (hn−1), Ch). In conclusion, sn /∈ Chc(S∗c ∪{sn})
and c will not admit sn. Assume now that σ∗(hn−1) = ∅na. Then, the last conclusion
says that if sn applies to an acceptable college he will not be admitted. Clearly, by
costly application choosing to remain unmatched (∅na) is better than applying to an
unacceptable college and either not being admitted (∅a is the resulted outcome) or being
admitted.
Induction hypothesis: Let t be such that t < n and assume that for each t̂ with

t < t̂ ≤ n, student s
t̂
uses solidarity strategy, that is, for each ht̂−1 ∈ Ht̂−1

π , σ∗s
t̂
(ht̂−1) =

ϕs
t̂
(P (ht̂−1)).
Induction step: Fix an arbitrary history ht−1 ∈ Ht−1

π . We show that the action
σ∗st(h

t−1) is the unique best response for st to σ∗−st |ht−1 in G[π,M |ht−1 ]. We distinguish
two cases:
Case 1: σ∗st(h

t−1) = ĉ for some ĉ ∈ C.
We consider the case where st applies to ĉ (Case 1.1) and a case where st applies to

a college c with c Pst ĉ (Case 1.2), if any.
Case 1.1. st applies to ĉ. Then ĉ will admit him.

Let ht, ..., hn be the histories reached after st’s application and each of the remaining
students apply according to solidarity strategy. Let µt̂ := ϕ(P (ht̂)), t̂ = t− 1, ..., n. We
know that st ∈ µt−1

ĉ
since ϕst(P (ht−1)) := σ∗st(h

t−1) = ĉ and µt−1 := ϕ(P (ht−1)). Now
apply Lemma 4 to obtain st ∈ µtC ,..., st ∈ µn−1

C . Next because Pst(hn−1) = P ĉst and
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µn−1 is IR at (P (hn−1), Ch), st ∈ µn−1
C implies that µn−1

st = ĉ. Finally, apply Lemma 3
to obtain st ∈ µn−1

ĉ
= Chĉ(Sĉ(hn)). Therefore, ĉ will admit st.

By Case 1.1, if ĉ is st’s first choice, then applying to ĉ is his unique best response at
ht−1. Otherwise, let c ∈ C be such that

c Pst ĉ = σ∗st(h
t−1).

Case 1.2. st applies to c. Then c will not admit him.
Let ĥt, ..., ĥn be the histories reached after this application and each of the remaining
students apply according to solidarity strategy. Let µ̂t := ϕ(P (ĥt)), t̂ = t, ..., n − 1.
By definition, P (ht−1) = (Pst ,P−st(ht−1)) and P (ĥt) = (P cst ,P−st(h

t−1)). Since ϕ is
strategy-proof, we have ϕst(Pst ,P−st(ht−1))Rst ϕst(P cst ,P−st(ĥ

t)) or equivalently

µt−1
st Rst µ̂

t
st . (6)

Since cPst ĉ = µt−1
st by assumption and Rst is strict, (6) implies cPst µ̂tst and thus c 6= µ̂tst .

Now because Pst(ĥt) = P cst and µ̂
t
st is IR at (P (ĥt), Ch), we have µ̂tst = ∅na. Next, apply

Lemma 4 to obtain that st /∈ µ̂tC , ..., st /∈ µ̂
n−1
C . Thus, st /∈ µ̂n−1

c . Finally apply Lemma
3 to obtain that st /∈ Chc(Sc(ĥn)) = µ̂n−1

c . Hence, c will not admit st.
Case 2: σ∗st(h

t−1) = ∅na.
By an argument similar to Case 1.2, st cannot be admitted by an acceptable college.

Suppose that at history ht−1, he applies to an unacceptable college, say c. Then, either
c admits him and he would have been better off not applying or c does not admit him
and since applications are costly choosing to remain unmatched would have been a best
response.
In conclusion, σ∗ is the unique backwards-induction strategy of G[π,M ].

Appendix B: Proof of Theorem 2

Let π be an order and M = (P,Ch) a market with P ∈ PS . We need to show that
the set of SPUEs of G[π,M ] corresponds to the profiles σ = (σs)s∈S of strategies such
that for each s ∈ S, σs is a solidarity strategy or a bossy strategy. An SPUE of G[π,M ]
is a strategy profile that induces an undominated Nash equilibria in every subgame of
G[π,M ]. It is itself an SPE of G[π,M ]. We continue by establishing two results as
lemmas.

Lemma 5. Let t = 1, ..., n − 1 and ht−1 ∈ Ht−1
π a history such that ϕst(P (ht−1)) = ∅.
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Assume that student st applies to an acceptable college, say c and let ht = (ht−1, c) be the
history following such application. Let µt−1 := ϕ(P (ht−1)) and µt := ϕ(P (ht)). Then,
the same set of students are matched in both µt−1 and µt, that is, µt−1

C = µtC .

Proof of Lemma 5. First, by definition we know that Pst(ht−1) = Pst and Pst(ht) =
(P cst ,P−st(h

t−1)). Since ϕst(P (ht−1)) = ∅, ϕ is strategy-proof and ϕst(P (ht)) is IR at
P (ht) we have ϕst(P (ht)) = ∅. Because P (ht) i.r.m.t P (ht−1) at ϕ(P (ht−1)) and ϕ is
IR-monotonic, we have ϕ(P (ht)) R(ht) ϕ(P (ht−1)) or equivalently

µt R(ht)µt−1.

Now with P−st(ht) = P−st(ht−1) and µt−1
st = ∅ = µtst , we conclude that

µt R(ht−1) µt−1. (7)

Finally, (7) and Lemma 2 obtain µtC = µt−1
C .

From Lemma 5 we establish Lemma 6 which will be used twice in the proof.

Lemma 6. Let t = 1, ..., n − 1 and consider student st. Assume that each student s
t̂

with t̂ > t uses a strategy σs
t̂
that is either a solidarity strategy or a bossy strategy. Fix

a history ht−1 ∈ Ht−1
π and let v = ϕst(P (ht−1)). Let c be such that c Pstv and assume

that st applies to c. Then c will not admit st.

Proof of Lemma 6. Let ht, ..., hn be the histories following st’s application and each stu-
dent s

t̂
with t̂ > t takes the decision σs

t̂
(ht̂−1). Let µt̂ := ϕ(P (ht̂), t̂ = t−1, ..., n−1. By

definition, we have P (ht−1) = (Pst ,P−st(ht−1)) and P (ht) = (P cst ,P−st(h
t−1)). Since ϕ

is strategy-proof, we have ϕst(P (ht−1))Rst ϕst(P (ht)). As c Pst v and v = ϕst(P (ht−1)),
we have ϕst(P (ht)) 6= c. Thus, ϕst(P (ht)) = ∅ as Pst(ht) = P cst and ϕ(P (ht)) is IR
at (P (ht), Ch). Next, as P (ht) i.r.m.t P (ht−1) at ϕ(P (ht−1)) and ϕ is IR-monotonic,
ϕ(P (ht)) R(ht) ϕ(P (ht−1)) or equivalently

µt R(ht) µt−1.

Since µt−1
st = ∅ = µtst and P−st(ht) = P−st(ht−1), we can conclude that µt R(ht−1)µt−1.

By Lemma 2, the same set of students is matched in both µt and µt−1. Finally, by
Lemma 5, the same set of students is matched in µt through µn−1. Now apply Lemma
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3 (ii) to obtain µn−1
c = Chc(S(hn)). Thus, st /∈ µtc implies st /∈ Chc(S(hn)) and c will

not admit st.

We now proceed to the proof of the theorem. Let π be an order and M = (P,Ch) a
market. The proof is divided into two steps. We first show that any strategy profile in
which each student uses either a solidarity strategy or a bossy strategy is an SPUE of
G[π,M ] (Step 1) and that any SPUE of G[π,M ] is of this form (Step 2). Let σ = (σs)s∈S
be a strategy profile such that for each s ∈ S, σs is a solidarity strategy or a bossy
strategy.
Step 1: σ is an SPUE of G[π,M ].
We show this by induction on t = 1, ..., n, starting from n.
Induction base (t = n): It is a matter of verification fairly similar to the induction

base case of the proof of Theorem 1, that for each hn−1 ∈ Hn−1
π the decision σsn(hn−1)

is a best response for sn. We leave the details aside and focus on the induction step.
Induction hypothesis: Fix t with t < n − 1 and assume that for each t̂ such that

t < t̂ ≤ n, student s
t̂
uses σs

t̂
.

Induction step: Fix an arbitrary history ht−1 ∈ Ht−1
π and let ϕst(P (ht−1)) = v.

First assume that v = c for some c ∈ C. If st applies to c, it will admit him. This is
the conclusion of Case 1.1 when its proof is based on Lemma 3 (ii) and Lemma 5. If
st applies to a college ĉ with ĉPstc, then ĉ will not admit him. This is the conclusion
of Lemma 5. Therefore, applying to c is the best response of st to (σs

t̂
)
t̂>t

at ht−1,
that is, applying according to σst at ht−1.17 Second, assume that v = ∅. Then by
Lemma 5, if he applies to an acceptable college, it will not admit him. Since applying
to an unacceptable college is weakly dominated in the subgame G[π,M |ht−1 ], applying
according to σst is a best response of st to (σs

t̂
)
t̂>t

at ht−1. Indeed, choosing to remain
unmatched or applying to any acceptable college at ht−1 both lead to the same outcome
for st of remaining unmatched.
Step 2: Every SPUE of G[π,M ] is a strategy profile σ such that for each s ∈ S, σs

is either a solidarity strategy or a bossy strategy of G[π,M ].
Let σ̂ = (σ̂s)s∈S be an SPUE of G[π,M ]. Assume by contradiction that there exists

some t, such that σ̂st is neither a solidarity strategy nor a bossy strategy ofG[π,M ]. Since
the restriction of σ̂st to every subgame is not weakly dominated, st does not apply to an

17Note that according to σst , if ϕst (P (ht−1)) = c for some c ∈ C, then st applies to c at that history.
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unacceptable college under Ps at any history. Thus, there exists a history ht−1 ∈ Ht−1
π

and a college c such that ϕst(P (ht−1)) = c and σ̂st(ht−1) 6= c. First, t 6= n. Indeed,
assuming not, by Step 1 of this proof, if sn applies to c, then it will admit him. Thus,
σ̂sn(hn−1)Psnc. Since ϕ(P (hn−1)) is IR at (P (hn−1), Ch) and Psn(hn−1) = Psn , then
σ̂sn(hn−1) = ĉ for some ĉ ∈ C. Now by Lemma 6, ĉ will not admit him, contradicting
optimality of σ̂sn(hn−1) as he could have been admitted by c. In conclusion t 6= n.
Inductively, fix t̂ < n and assume that t 6= t′, for t′ = t̂ + 1, ..., n. We show that t 6= t̂.
Assuming not, we use the previous argument to reach the contradiction that σ̂s

t̂
(ht̂−1)

is not optimal. Thus, t does not exist, the desire contradiction; which finishes the proof.

Appendix C: Proof of Theorem 3

Let h0, ..., hn be the histories in an execution path of a solidarity strategy unique SPE of
G̃[P,M ] (the reasoning is similar with an SPUE). Fix t = 1, ..., n and let µt̂ := ϕ(P (ht̂)),
t̂ = 0, ...., n. Now, recall that by definition, for each t̂ ≤ t, Pst(ht̂) = Pst . Therefore, by
(3) or (7), we have µt−1

st Rst ... Rst µ
0
st . Since Pst is strict, the outcome of the SPE for st

is µt−1
st and the and the outcome of the DA algorithm at M is µ0, the following result

concludes the proof.

µt−1
st Rst µ

0
st .

Appendix D: Proof of Proposition 1

We prove that
⋃
π∈OMSPUE(G[π,M ]) satisfies the rural hospital theorem. Let µ, µ̂ ∈⋃

π∈OMSPUE(G[π,M ]). Let µ∗ := ϕCh(P ). By Theorem 2, µ R µ∗ and µ̂ R µ∗. It is
sufficient if we prove that µ and µ∗ satisfies part (i) and (ii) of the definition of the rural
hospital theorem.
Part (i) follows from Lemma 2. For part (ii), assume that for some c ∈ C, |µc|< qc.

By part (i), |µ∗|= |µc|< qc. This part is complete if we show that µc ⊆ µ∗c . Let s ∈ µc.
If µ∗s 6= c, then c Ps µ∗s, in contradiction with the stability of µ∗ since |µ∗c |< qc and c’s
preference is acceptant. Thus, µc ⊆ µ∗c ; proving that µc = µ∗c . Alva and Munjunath
(2016) independently proved a similar result in a more general model.
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Appendix E: Proof of Corollary 1

The result follows from order independence and Theorem 1 in which every student is
matched to his outcome under the DA algorithm when he is ordered first.

Appendix F: Proof of Theorem 4

Proof. “ ⇒ ”. Fix a market M = (P,Ch) with P ∈ P̃S and assume that it induces
an order independent G-outcome and let µ be this unique outcome. Consider the DA
mechanism ϕCh induced by Ch. In the remainder we drop the reference to Ch in ϕCh.
By Corollary 1,

for each s ∈ S, µs = ϕs(P ). (8)

We now show that ϕ is claims consistent at P . Pick an arbitrary subset Ŝ ⊆ S. We then
show that ϕ(Pϕ

Ŝ
, P−Ŝ) = ϕ(P ). Now pick s ∈ S. We distinguish two cases:

Case 1: s ∈ Ŝ. Since, (Pϕ
Ŝ
, P−Ŝ) i.r.m.t P at ϕ(P ), and ϕ is IR-monotonic, it is

easily established that ϕs(Pϕ
Ŝ
, P−Ŝ) = ϕs(P ).

Case 2: s /∈ Ŝ. Let π be an order such that all students in Ŝ are ordered first, and
π(|Ŝ|+1) = s. Let h|Ŝ| = (ho, a1, ..., a|Ŝ|) be a history in the execution path histories of
the solidarity strategy profile of G[π,M ]. By (8) every student in Ŝ is matched under
µ to his mate under ϕ(P ). Therefore, we have a1 = ϕs1(P ),...,a|Ŝ| = ϕs

|Ŝ|
(P ) and thus

P (h|Ŝ|) = (Pϕ
Ŝ
, P−Ŝ). Since s = s|Ŝ|+1, according to solidarity strategy,

µs = ϕs(Pϕ
Ŝ
, P−Ŝ). (9)

Combining (8) and (9) obtains ϕs(Pϕ
Ŝ
, P−Ŝ) = ϕs(P ).

Case 1 and Case 2 establish that ϕ is claims consistent.
“ ⇐ ”. Fix a market M = (Ch, P ) and assume that ϕ is claims consistent at P .

We prove that M induces an order independent G-outcome. Given an order π, let
µπ ≡ MSPE(G[π,M ]). We now show by induction on t = 1, ..., n that for each order π
and each s ∈ S, µπs = ϕs(P ). By Theorem 1, for each order π and each s ∈ S, s = s1

implies

µπs1 = ϕs1(P ). (10)

Equation (10) is the induction base (t = 1). As an induction hypothesis, let t > 1 and
assume that for each t̂ < t, each order π and each s ∈ S, s = s

t̂
implies µπs

t̂
= ϕs

t̂
(P ).
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We now prove the induction step. Fix an arbitrary order π and let Ŝ ≡ {s
t̂
|t̂ < t}. Let

ht−1 = (ho, a1, ..., at−1) be a history of the execution path of σ∗. Then by the induction
assumption a

t̂
= ϕs

t̂
(P ), t̂ < t. Thus, P (ht−1) = (Pϕ

Ŝ
, P−Ŝ) and by solidarity strategy,

µπst = ϕst(P
ϕ

Ŝ
, P−Ŝ). (11)

Since ϕ is claims consistent at P , ϕst(P ) = ϕst(P
ϕ

Ŝ
, P−Ŝ); and together with (11) obtain

µπst = ϕst(P ).

Appendix G: Proof of Proposition 2

Fix a market M = (P,Ch) with P ∈ P̃S , a student s and two orders π and π̂ for
which the set S \ {s} has the same relative ranking under π and π̂ and assume that
π̂−1(s) < π−1(s). Without loss of generality, assume that π and π̂ are adjacent as
represented below; the difference between π and π̂ occurs only on the elements in boxes:

π̂ : s1...st−1 s ŝ ...sn

π : s1...st−1 ŝ s ...sn.

Let σ∗ and σ̂∗ be the solidarity strategy profiles of G[π,M ] and G[π̂,M ] respectively. By
Theorem 1, they are the unique SPEs of G[π,M ] and G[π̂,M ]. Consider the histories
in the execution paths of these strategies. Since the ordering of the first t− 1 students
and the market are the same in both games, the first t histories in these paths are the
same. We represent them as follows:

Execution path of σ̂∗ : h0, ..., ht−1, ĥt, ..., ĥn.

Execution path of σ∗ : h0, ..., ht−1, ht, ..., hn.

Let µπ ≡ MSPE(G[π,M ]) and µπ̂ ≡ MSPE(G[π̂,M ]). We show that µπsRs µπ̂s . Since s
decides after history ht−1 in G[π̂,M ] and after ht in G[π,M ], we have

µπ̂s = ϕs(P (ht−1)) (12)

and

µπs = ϕs(P (ht)). (13)

Now because P (ht) i.r.m.t P (ht−1) at ϕ(P (ht−1)), we have ϕ(P (ht)) R(ht) ϕ(P (ht−1))
as ϕ is IR-monotonic. Since Rs(ht) = Rs, (12) and (13) obtain µπsRsµπ̂s as desired.
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