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Résumé 

La déchirure de la coiffe des rotateurs est une des causes les plus fréquentes de douleur 

et de dysfonctionnement de l'épaule. La réparation chirurgicale est couramment réalisée chez 

les patients symptomatiques et de nombreux efforts ont été faits pour améliorer les techniques 

chirurgicales. Cependant, le taux de re-déchirure est encore élevé ce qui affecte les stratégies de 

réhabilitation post-opératoire. Les recommandations post-chirurgicales doivent trouver un 

équilibre optimal entre le repos total afin de protéger le tendon réparé et les activités préconisées 

afin de restaurer l'amplitude articulaire et la force musculaire. Après une réparation de la coiffe, 

l'épaule est le plus souvent immobilisée grâce à une écharpe ou une orthèse. Cependant, cette 

immobilisation limite aussi la mobilité du coude et du poignet. Cette période qui peut durer de 

4 à 6 semaines où seuls des mouvements passifs peuvent être réalisés. Ensuite, les patients sont 

incités à réaliser les exercices actifs assistés et des exercices actifs dans toute la mobilité 

articulaire pour récupérer respectivement l’amplitude complète de mouvement actif et se 

préparer aux exercices de résistance réalisés dans la phase suivante de la réadaptation. L’analyse 

électromyographique des muscles de l'épaule a fourni des évidences scientifiques pour la 

recommandation de beaucoup d'exercices de réadaptation au cours de cette période. Les activités 

sollicitant les muscles de la coiffe des rotateurs à moins de 20% de leur activation maximale 

volontaire sont considérés sécuritaires pour les premières phases de la réhabilitation. À partir de 

ce concept, l'objectif de cette thèse a été d'évaluer des activités musculaires de l'épaule pendant 

des  mouvements et exercices qui peuvent théoriquement être effectués au cours des premières 

phases de la réhabilitation. Les trois questions principales de cette thèse sont : 1) Est-ce que la 

mobilisation du coude et du poignet produisent une grande activité des muscles de la coiffe? 2) 

Est-ce que les exercices de renforcement musculaire du bras, de l’avant-bras et du torse 

produisent une grande activité dans les muscles de la coiffe? 3) Au cours d'élévations actives du 

bras, est-ce que le plan d'élévation affecte l'activité de la coiffe des rotateurs? 

Dans notre première étude, nous avons évalué 15 muscles de l'épaule chez 14 sujets sains 

par électromyographie de surface et intramusculaire. Nos résultats ont montré qu’avec une 

orthèse d’épaule, les mouvements du coude et du poignet et même quelques exercices de 

renforcement impliquant ces deux articulations, activent de manière sécuritaire les muscles de 
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la coiffe. Nous avons également introduit des tâches de la vie quotidienne qui peuvent être 

effectuées en toute sécurité pendant la période d'immobilisation. Ces résultats peuvent aider à 

modifier la conception d'orthèses de l’épaule. Dans notre deuxième étude, nous avons montré 

que l'adduction du bras réalisée contre une mousse à faible densité, positionnée pour remplacer 

le triangle d’une orthèse, produit des activations des muscles de la coiffe sécuritaires. Dans notre 

troisième étude, nous avons évalué l'électromyographie des muscles de l’épaule pendant les 

tâches d'élévation du bras chez 8 patients symptomatiques avec la déchirure de coiffe des 

rotateurs. Nous avons constaté que l'activité du supra-épineux était significativement plus élevée 

pendant l’abduction que pendant la scaption et la flexion. Ce résultat suggère une séquence de 

plan d’élévation active pendant la rééducation. 

Les résultats présentés dans cette thèse, suggèrent quelques modifications dans les 

protocoles de réadaptation de l’épaule pendant les 12 premières semaines après la réparation de 

la coiffe. Ces suggestions fournissent également des évidences scientifiques pour la production 

d'orthèses plus dynamiques et fonctionnelles à l’articulation de l’épaule. 

 

Mots clés : Épaule, Déchirure de la coiffe des rotateurs, Orthèse d’épaule, 

Électromyographie intramusculaire, Réadaptation, Immobilisation de l’épaule, Activités des 

muscles de l’épaule. 
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Abstract 

Rotator cuff tear is one of the most common causes of shoulder pain and dysfunction. 

The operative repair has been widely performed for symptomatic patients and many efforts have 

been done to improve the surgical techniques. However, the re-tear rate is still high and this 

affects post-repair rehabilitation strategies.  Post-surgical care should balance between the 

restriction imposed to protect the repaired tendon and the activities prescribed to restore range 

of motion and muscle strength. Frequently, early after rotator cuff repair, shoulder is 

immobilized in a sling or abduction orthosis, but this immobilization includes elbow and wrist 

joints as well.  In this period that may last 4-6 weeks, only passive range of motion exercises 

are performed. After removing the immobilizer, patients are encouraged to do active assisted 

and active range of motion exercises respectively to regain the full active range of motion and 

be prepared for the resistance exercises in the following phase of rehabilitation. 

Electromyography of shoulder muscles has provided scientific basis for many of rehabilitation 

exercises during this period. Anecdotally, the activities of less than 20% of the maximal 

voluntary contraction of rotator cuff muscles are considered safe for the first phases of 

rehabilitation after rotator cuff repair.  Using this concept, the aim of this dissertation is to 

evaluate the activity of shoulder musculature during some movements and exercises that can 

theoretically be performed during the early phases of rehabilitation. Three main questions of 

this thesis are: 1) Do elbow and wrist mobilizations highly activate rotator cuff muscles? 2) Do 

some resistance exercises of arm, forearm and chest muscles produce high activity in rotator 

cuff muscles? 3) During active arm elevation, does the plane of elevation affect rotator cuff 

activity?    

           In our first study, we evaluated 15 shoulder muscles in 14 healthy subjects with both 

surface and indwelling EMG. Our results showed that while wearing a shoulder orthosis, elbow 

and wrist movements and even some resistance training involving these two joints, would 

minimally activate the rotator cuff muscles and can be considered safe. We also introduced some 

daily living tasks that can be performed safely during immobilization period. These findings 

may help to modify the design of current shoulder orthoses. In the second study, we also showed 

that resisted arm adduction against a low-density foam that replaced the hard wedge of orthosis 
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would not highly activate the cuff muscles. In our final study, we evaluated the EMG of shoulder 

musculature during arm elevation tasks in 8 symptomatic patients with rotator cuff tears. We 

found that supraspinatus activity during arm elevation is significantly higher in abduction plane 

than in scaption and flexion planes in patients with rotator cuff tears. This suggested a plane 

sequences for active range of motion exercises during rehabilitation. 

          The findings that are presented in this dissertation, suggest some modifications in the 

rehabilitation protocols during the first 12 weeks after rotator cuff repair. These suggestions also 

provide a scientific basis for producing more dynamic and functional shoulder orthoses. 

 

Keywords: Shoulder, rotator cuff tear, shoulder orthosis, Fine wire EMG, rehabilitation, 

shoulder immobilization, shoulder muscles activity 
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1 INTRODUCTION 

Shoulder is a highly mobile joint with a complex joint structure. This high mobility needs 

a stable base. Unlike hip or knee joints, the glenohumeral joint does not have a deep socket or 

complex ligamentous structures that keep its stability. Stability of shoulder joint is mostly a 

function of muscles around the joint which work in a balanced way to press the humeral head 

into the glenoid. Rotator cuff (RC) muscles play an important role in stabilizing the 

glenohumeral joint and controlling humeral head translations. They also contribute in 

glenohumeral abduction, external rotation and internal rotations. It has been of upmost interest 

to explore the muscles responsible for shoulder stabilization and motions and identify the 

positions where they are most active. This type of information provided a basis for shoulder 

muscle training or rehabilitative movements. Although by knowing muscle’s origin and 

insertion and its moment arm, the muscle function can be understood, however, a muscle may 

be in a good anatomic position for a specific movement, but remains inactive when that motion 

is performed.1 Electromyography (EMG) is a generally recognized tool to evaluate muscle 

activity. EMG provides information on when, how much and how often a muscle is active and 

evaluates these items throughout a range of motion. It is also a common tool to evaluate the 

muscle fatigue, a condition that predisposes individual to injury. EMG studies on glenohumeral 

and scapular muscle activities during numerous shoulder exercises have been commonly the 

basis of many shoulder rehabilitation protocols including the physical therapy after rotator cuff 

repair which is the focus of this dissertation. 

Rotator cuff tears are among the most frequently encountered causes of pain and 

dysfunction in the shoulder.2 Cuff tears are a burden on social and medical resources due to the 

high number of surgery for rotator cuff repair and long-term rehabilitation pre and post 

operation. For instance, in 2002, shoulder pain accounted for more than 4.5 million clinical visits 

in USA that resulted in 40,000 surgical procedures for rotator cuff problems.3 An annual 75,000 

rotator cuff repair with a mean time off work of seven months was also reported.4 There are 

similar reports from different countries confirming that rotator cuff tears remain a relevant 

health problem.5 Despite the high prevalence of rotator cuff injuries, there are not still clear 

guidelines for treatments. Most surgeons in the North America regularly prescribe a trial of non-
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operative treatment such as physical therapy and sub-acromial corticosteroid injection before 

considering operative repair for chronic types of symptomatic rotator cuff tears.6 The optimal 

duration for a non-operative treatment trial has not been clearly delineated. Likewise, evidence 

in relation to the best protocol for physical therapy is limited. Symptoms duration greater than 

one year and patient functional disability are considered the poor prognosis factors for non-

operative treatment and earlier surgical intervention in these conditions are suggested.3 

Expectations regarding the surgical outcomes vary. While surgeons are often interested in 

restoring the full ranges of motion and measured muscle strength, patients' main interests are in 

the relief of pain and restoration of ability to undertake activities of daily living (ADLs), 

employment, and recreation. A proper physical therapy program as a non-operative treatment 

or as a complementary treatment after operation has a tremendous importance for achieving the 

expected goals. The present thesis will concentrate on the early rehabilitation protocols after 

rotator cuff surgery. 

EMG studies during different tasks and exercises have provided valuable information to 

be applied to shoulder rehabilitation. For example, McCann et al. (1993)7 quantified the EMG 

activities of shoulder muscles during the three-phases of shoulder rehabilitation program 

introduced by  Neer (1987)8 which included passive, active and resistive exercises. They showed 

that EMG findings were consistent with clinical experience and low muscle activities in the 

early phases of the rehabilitation program have been reported. Generally, in the early phase after 

rotator cuff tendon repair, the patients are advised to avoid exercises that generate high rotator 

cuff activity. To protect the healing tendon, patient’s shoulder is immobilized for 4-6 weeks in 

a sling or a shoulder orthosis and only supervised passive movements are allowed. It has been 

shown that the activity of cuff muscles was minimal during self-assisted or helper-assisted 

elevation exercises.9 Limitation in dynamic rehabilitation is due to high rate of re-tear after 

rotator cuff surgery10-12. It is assumed that higher activity of cuff muscles may stress the healing 

tissues. However, in this phase of rehabilitation, exercises that activate scapular and other 

shoulder muscles with minimal cuff activity may be appropriate. For example, an EMG study 

by Smith et al. (2006)13 suggested that during periods of shoulder immobilization scapular 

depression and protraction exercises could potentially be safely performed to facilitate scapula-

thoracic rehabilitation. Patients usually start active assisted or active movements from the 
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seventh week post operation. In this period, the plane and angle of elevations as well as arm 

rotations should be wisely chosen to control the stress level on the newly healing tendon. During 

more advanced phases of rotator cuff rehabilitation, exercises that produce moderate to higher 

levels of rotator cuff activity may be employed to help strengthening the cuff muscles who might 

become weakened or atrophied after a period of disuse.14 The studies that are presented in this 

dissertation are mainly related to the immobilization period and the phase of starting active 

range of motion exercises.  

One of the important areas in post-op rehabilitation that should be addressed is the effect 

of long term tear on the RC muscles. Following rotator cuff tears and musculotendinous 

retraction induced by tendon release, serious changes such as fatty infiltration, degeneration and 

muscle atrophy may happen within the rotator cuff muscles.15,16 Studies on sheep models 

suggested that fatty infiltration and muscle atrophy progress steadily over the first 16 weeks 

following tendon detachment.17,15 As a majority of rotator cuff surgeries are performed on 

chronic tears, most patients already have advanced levels of muscle atrophy. Post-operative 

immobilization may even further the muscles atrophy.18 Therefore, post-op activity level is an 

important treatment component that needs to receive more attention for the shoulder. One of the 

main ideas that is followed in this dissertation is, what if full immobilisation condition changes 

to a semi-immobilization with a dynamic orthosis. Actually, when we started our studies, 

Médicus Company in Quebec was interested in developing a dynamic shoulder orthosis. Our 

findings provides a basis for manufacturing such dynamic orthoses. 

Theoretically, the amount and pattern of mechanical loading on tendon tissue is 

important for tendon development and homeostasis. As natural tendon healing is insufficient, 

manipulation of the mechanical environment of healing tendon may exert a biologic effect for 

promoting a repair process that restores normal tendon structure and function.19 Disuse 

following immobilization has been associated with alterations in tenocyte morphology and loss 

of normal extracellular matrix (ECM) architecture, resulting in impaired function and healing 

capacity in animal tendon tissue.20 An ideal exercise program should provide a biologic stimulus 

to maintain tendon homeostasis and function while avoiding harmful stress. A meta-analysis 

study on immobilization after rotator cuff repair suggested that there is not enough evidence 

indicating that immobilization after repair is superior to early-motion rehabilitation in terms of 
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tendon healing or clinical outcome.21 Functional impairment in patients with rotator cuff tears 

may be due to muscle atrophy and weakness. According to this meta-analysis21, all patients in 

different studies regained their range of motion 1 year postoperatively, but in early-motion 

rehabilitation protocol, a significant difference in external rotation at 6 months postoperatively 

favoured early motion over immobilization. Besides the controversy regarding shoulder full 

immobilization or early motion, there is an ambiguity regarding the extent of upper limb 

immobilization, i.e. whether all parts of upper limb including elbow and wrist joints need to be 

immobilized. Only 4 weeks of elbow immobilization has been shown that significantly 

decreased the forces of elbow flexors.22 Early restoration of functional ability of the upper limb 

is the goal of treatment and is sometimes crucial for patients who are manual workers or 

professional athletes. This issue is addressed in our studies. 

The general aim of this thesis is to study EMG activity of rotator cuff and some 

other shoulder muscles during certain exercises and daily living tasks to suggest different 

modifications to the commonly used rehabilitation protocols. Ideally the exercises that 

minimally activate rotator cuff muscles can be considered safe in early phases after rotator cuff 

repair. So, the EMG of shoulder musculature are evaluated in the following situations: 

 Active elbow and wrist movements 

 Some daily living tasks that involve elbow, wrist and fingers movements 

 Some resistance exercises with light weights for elbow and wrist  

 Arm adduction exercises when active assisted exercises are allowed to be 

performed. 

 Active arm elevation in different planes and arcs of elevation 

In the first part of chapter 2, the characteristics of rotator cuff tears, and their treatment 

strategies are elaborated. In part 2.2 the rationales behind rehabilitation protocols and the 

concept of tendon healing are explained.  The readers who are familiar with rotator cuff tears 

and their management may find this two section a little bit boring but for those who have limited 

information about this medical problem, reading of section 2.1 and 2.2 is highly recommended. 

In part 2.3 the basic and clinical studies on upper limb immobilization after rotator cuff repairs 
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are summarized in two synthetic tables to present the current knowledge about the 

immobilization protocols. In section 2.4, the basis of EMG is explained and the reader can 

understand how EMG can be used as a tool to identify the safety of different rehabilitation 

exercises. Considering high number of papers using EMG for evaluation of muscle activity, the 

strong points and the limitations in using EMG are also elaborated. The methods we used in our 

biomechanics lab for intramuscular EMG are introduced in details in Appendix 2 to guide future 

researchers who are interested to work in this field. In chapter 3 the EMG activity of shoulder 

muscles during different movements are evaluated and certain types of movement are presented 

in three articles. The first article entitled “Electromyographic activity in the immobilized 

shoulder musculature during ipsilateral elbow, wrist and finger movements while wearing a 

shoulder orthosis” assesses the effect of elbow, wrist and hand mobilization on rotator cuff 

muscles activity. This article suggests the utilisation of a dynamic shoulder orthosis instead of 

traditional ones in order to increase the functionality of upper limb while imposing a safe level 

of load on the repaired tendon. The second article entitled “Electromyographic activity in the 

shoulder musculature during resistance training exercises of the ipsilateral upper limb while 

wearing a shoulder orthosis” introduces some resistive training exercises for early post repair 

period that can induce minimum level of activity within rotator cuff muscles. It also suggests 

another modification to common shoulder orthosis in the wedge part, using foams with different 

densities. Both articles have been published in the Journal of Shoulder and Elbow Surgery. The 

third article: “The effects of elevation plane and angle on EMG activity of shoulder musculature 

in patients with rotator cuff tears” intends to show how elevation plane and angle can change 

the pattern of muscle activity during the active arm elevation in patients with cuff tears. This 

type of exercises is usually prescribed for the patients 4-6 weeks post-surgery, in the second 

phase of rehabilitation. The latter study has been performed on symptomatic patients with 

rotator cuff tears who were in the waiting list for surgical repair. Considering that the studies on 

patient population are very few, this study can specifically demonstrate how the position of arm 

elevation in this patient group affect muscle activity pattern and introduces some suggestions 

for this type of exercises. The precise kinematic measurement which has been fulfilled by a 3D 

motion analysis system and the synchronization of kinematic study with EMG analysis are the 

strong points of this study which has been published by the journal of Clinical Biomechanics. 

In chapter 4 the specific objectives of this dissertation are elaborated and discussed and finally 
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in the conclusion part, some modifications to the commonly used rehabilitation protocols based 

on our findings are suggested. It is believed that these findings can provide a scientific basis for 

designing more functional shoulder orthoses and presenting some new exercises for the early 

periods after rotator cuff repairs. 
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2 LITERATURE REVIEW 

2.1  ROTATOR CUFF TEARS 

             Rotator cuff tears are a common health problem. Estimates for the prevalence of tears 

vary widely and might differ according to the age, composition of the community or industry of 

the area. Lehman, et al. (1994) 23 estimated the prevalence of 6-30% of rotator cuff tears based 

on their cadaveric study. Ultrasonography studies during a community health check-up for 

general population in Japan 24 elucidated that 21.7% of 1,328 shoulders had full-thickness 

rotator cuff tears. This study has been supported by Yamamoto, et al.(2010) 25 who also showed 

that rotator cuff tear afflicts about 20% of the population regardless of the presence or absence 

of symptoms. Other Imaging studies reveal that 54% of asymptomatic persons over 60 years of 

age 26 and 65% of asymptomatic persons over 70 years of age 27 have rotator cuff defects. 

Massive tears account for 10-40% of all tears.5 Despite different reports of rotator cuff tear 

prevalence, all studies agree that the prevalence increases with age and its associated morbidity, 

in terms of pain and loss of function, can be severely debilitating.  

             Risk factors that may lead to rotator cuff tears are largely unknown. Some studies have 

identified increased age as the main risk factor and tears are being regarded as a normal 

consequence of the ageing process.27 History of trauma and the dominant arm were also reported 

as the main risk factors for cuff tear in general population.25 Increased adiposity28, arterial 

hypertension29 and smoking habit30 may also contribute to progression of rotator cuff tears. The 

contribution of genetic factors was suggested by Harvie, et al. (2004) 31 who identified a 

significantly increased risk of tears in the siblings of patients with symptomatic tears, but this 

concept has not been supported by further studies. Specific professions such as construction 

workers, office workers and musicians seem to be at higher risk for shoulder disease due to 

repetitive uses of the arm and working above shoulder height.32 People participating in overhead 

sports activities are more prone to shoulder injuries,33 because, the repetitive microtraumatic 

stresses placed on the athlete’s shoulder joint complex during the throwing motion may 

challenge the physiologic limits of the surrounding tissues including rotator cuff musculature.34 

Finally, as mentioned before trauma is an important risk factor for rotator cuff tears and more 

than 40% of patients may report it in the history before their shoulder problems occurred.35  
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             It can be seen that many factors are contributing in development of rotator cuff tears. 

Tears may not have a single cause but a single or multiple causal chains that may involve 

biological, environmental or professional risk factors. It is not clear how these risk factors work 

together and the magnitude of each factor on development of tear is not clear. By far, age is the 

most important factor for tear progression. Some of these risk factors are modifiable, some are 

not. Clinical studies mostly manipulate the modifiable risk factors and provide evidence for 

clinical approaches. However, they do little to increase our understanding of the nature of rotator 

cuff muscles. Basic science studies by explaining the nature and special characteristics of rotator 

cuff muscles and tendon can guide preventive or therapeutic interventions to be optimally timed 

and progressed. This dissertation presents some basic science studies to provide a basis for 

rehabilitation protocols in the early post-repair period.  

 Etiology of rotator cuff tears  

            With the exception of acute injuries leading to rotator cuff tears, it is generally believed 

that chronic impingement and tendinopathy can lead to partial tears that progress to full-

thickness tears over time.36 Neer (1983)36 hypothesized that the mechanical compression and 

abrasion of the cuff tendons result from mechanical compression by some structure external to 

the tendon such as abnormal acromial morphology. These “extrinsic factors” were viewed as 

the main initiating factors leading to dysfunction of the rotator cuff and eventual tearing. The 

term “subacromial impingement” has been used to describe irritation from the antero-inferior 

aspect of the acromion onto the superior aspect of the rotator cuff. The subacromial space is 

defined by the humeral head inferiorly, the anterior edge and under surface of the anterior third 

of the acromion, coracoacromial ligament and the acromioclavicular joint superiorly (Figure 1). 

Theoretically, when the arm is elevated, the humeral head and the acromion approach each other 

and narrowing the subacromial space.37 Faulty posture, altered scapular or glenohumeral 

kinematics, posterior capsular tightness, and acromial or coracoacromial arch pathology are 

among the potential extrinsic mechanics that may lead to impingement. Subacromial 

decompression or acromioplasty is a popular operative approach attempting to alter presumed 

aberrant acromial morphology, and therefore eliminate impingement on rotator cuff. 
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Figure 1: Subacromial space 

Inferior: humeral head, superior: under surface of the anterior third of the acromion, 

coracoacromial ligament and the acromioclavicular joint. 

Figure is taken from: 

http://thelondonshoulderpartnership.co.uk/shoulderinformation/shoulder/shoulder-

impingement 

 

However, other evidence suggested that, in most patients who have an abnormality of the rotator 

cuff, the primary problem is intrinsic. The ‘intrinsic impingement’, theorizes that partial or full 

thickness tendon tears occur as a result of the degenerative process that occurs over time with 

overuse, tension overload, or trauma of the tendons.38,39 Subsequently the osteophytes 

formation, acromial changes, muscle imbalances and weakness, and altered kinematics will 

follow leading to secondary subacromial impingement. However as the usual clinical 

examination findings reveal both tendon pathology as well as one or more extrinsic factors such 

http://thelondonshoulderpartnership.co.uk/shoulderinformation/shoulder/shoulder-
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as osteophytes or muscle weakness, it is not clear which form comes first, tendon degeneration 

or changes external to the tendon? However, the orthopaedic and rehabilitation approaches 

mainly address the extrinsic factors because tendon degeneration has not been very well 

understood and so its controlling factors have not been clearly determined. I briefly explain what 

we know about tendon degeneration. Understanding of this issue is important because all the 

rationales behind the rehabilitation protocols are related to tendon pathology and healing 

process.  

               Basic science researchers tried to explain tendon degeneration. Vascular studies have 

described the presence of a "critical zone" in the rotator cuff, corresponded to the zone of the 

anastomoses between the osseous and tendinous vessels 40 or about 1 cm proximal to the 

insertion of the supraspinatus tendon into the humeral head.41 Cadaveric studies suggested a 

hypovascularity in the critical zone, and presumed hypoperfusion within this area might result 

in degeneration and ultimately failure of the tendon. However other vascular studies have 

produced contradictory findings, and histologic analysis of surgical biopsy specimens of torn 

rotator cuff tendon showed vascular proliferation in the biopsy specimens.42,39 Analysis by 

intraoperative laser doppler flowmetry 43 has also shown blood flow throughout the entire rotator 

cuff including hyperaemic response at the edge of the tear. Despite the controversy regarding 

the existence of this critical zone, we will see later that critical zone is commonly mentioned in 

the clinical literature. For example it is suggested that after cuff repair, immobilization in 

abduction position can provide better blood supply to that critical zone.44   

             Other basic-science researches have been directed toward cellular studies emphasising 

the importance of intrinsic factors. Kannus and Józsa (1991)45 evaluated the specimens obtained 

from the biopsy of spontaneously ruptured tendons in 891 patients and noted degenerative 

changes in 97% of cases. Likewise, Hashimoto et al. (2003)46 observed a high prevalence and 

diffuse distribution of degenerative changes in torn rotator cuff tendons without any distinct 

inflammatory reaction. But it was Matthews et al. (2006)47 who distinct the inflammatory 

process from the degenerative process in their biopsy samples of supraspinatus tendon in 

40 patients with chronic rotator cuff tears. They observed that small sized tears had increased 

fibroblast cellularity and intimal hyperplasia, together with increased expression of leucocyte 

and vascular markers, retaining the greatest potential to heal. On the contrary, large and massive 
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tears showed marked oedema and degeneration with no increase in the number of inflammatory 

cells and blood vessels. These findings could explain why stiffness is more prevalent in small 

tears where higher activity of inflammatory process exists and why large degenerated tears have 

less capacity of healing and therefore, are more prone to re-tear. 

              In conclusion, the exact pathogenesis of rotator cuff tears remains unclear. It is probable 

that the cause of tendon pathology is multifactorial which involves extrinsic impingement from 

structure surrounding the cuff and intrinsic degeneration within the tendon. Generally, the 

degeneration - microtrauma theory is the most accepted theory for explanation of rotator cuff 

diseases. Age-related degeneration, vascular changes, and inflammation are all potential 

contributors to the intrinsic pathology of the rotator cuff. The histopathologic changes leading 

to rotator cuff rupture are gradual and progressive. However the exact pathway of these changes 

and the order of sequences are not exactly known. All these ambiguities result in difficulty of 

addressing the main causative factors and designing a proper preventive or therapeutic plan for 

rotator cuff tears. So, it is important to understand that in this dissertation we will not target the 

causative factors but some external factors (such as immobilization and exercises) that may 

affect the tendon healing are discussed.   

 Normal Tendon 

Rotator cuff consists of the tendons of the subscapularis, supraspinatus, infraspinatus, 

and teres minor muscles. The normal tendon of the rotator cuff has the average thickness of 10 

to 12 mm.48 It is formed by the confluence of tendon, the joint capsule, the ligaments 

(coracohumeral and glenohumeral), all of which blend before inserting onto the humeral 

tuberosities. The supraspinatus and infraspinatus are not really separated and join proximal to 

their insertion.49 Clark and Harryman (1992)50 performed a histological analysis of the rotator 

cuff insertion and defined five distinct histological zones in the supraspinatus and infraspinatus 

portions of the rotator cuff. Figure 2 demonstrates those layers. It should be noticed that the roof 

of the biceps sheath is formed by fibers from layer II of the supraspinatus. A group of bundles 

from the subscapularis joins with fibers of the supraspinatus to serve as the floor of the biceps 

sheath. The rotator cuff, the coracohumeral ligament complex, and the bicipital sheath are 

intimately interconnected. This anatomical characteristic may help to understand why biceps 

pathology commonly occurs following evolvement of the tear.   
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Figure 2: Histological layers of the cuff 

Layer 1: 1 mm in thickness, the most superficial layer, contains large arterioles and composed 

of fibers from the coraco-humeral ligament, Layer II:  3-5 mm in thickness, large bundles 

densely packed fibers that parallel the long axis of the tendon, representing the direct tendinous 

insertion into the tuberosities, Layer III: 3 mm thickness, smaller bundles of collagen with a less 

uniform orientation, loosely organized fibers forming an interdigitating meshwork, Layer IV: 

loose connective tissue and thick collagen bands that merges with fibers from the coraco-

humeral ligament Layer V: 2 mm in thickness, the shoulder capsule, comprises a sheet of 

interwoven collagen extending from the glenoid labrum to the humerus. 

Figure derived with permission from: www.radsource.com  

 

The insertion site of the rotator cuff tendon is often referred to as the footprint. According 

to the cadaveric study of Curtis et al. (2006),49 each rotator cuff tendon has its own, unique and 

measurable insertion onto the humerus. (Figure 3). 

http://www.radsource.com
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Figure 3: Rotator Cuff Footprint  

A: intact myotendinous unit, B: supraspinatus footprint (green), infraspinatus footprint (red), 

subscapularis footprint (blue) and teres minor footprint (black). 

Figure copied from the article written by Curtis et al.49 The permission was taken from Dr. Alan 

Curtis the corresponding author (in Boston Sports & Shoulder center) 

The supraspinatus portion of the cuff inserts and covers the antero-superior aspect of the greater 

tuberosity adjacent to the articular cartilage of humeral head. Infraspinatus and teres minor are 

slightly away of the articular margin and create a bare area. Restoration of anatomical footprint 

for torn tendon is critical for surgical outcomes. Knowledge of anatomical footprint have 

influenced on surgical techniques aiming to increase the available surface area for repair.51 

Surgical repair is more difficult for chronic tears with degeneration and muscle retraction than 

acute tears. In retracted situation, more tension is required to reattach the torn tendon. To protect 

the newly repaired tendon, the tension level should be also adjusted post-surgery and proper arm 

positioning in the immobilization period may help in repair integrity. This issue will be 

discussed in the next sections and is one of the major topics of the present thesis.  



  

14 

 

 Tears in Different Views 

           Different methods of tear classification are presented in Appendix 1. This section will 

present some common approaches for tear definition.  

2.1.3.1 Partial vs Full Thickness Tear 

A partial-thickness tear is considered to be a definite disruption of the fibres of the 

tendon not fraying or softening of the surface and occur within the tendon without 

communicating with the subacromial bursa or the glenohumeral joint. The degree of tearing is 

described more by the depth involved in the thickness of the tendon than by the area of the tear. 

partial thickness tears have 3 subtypes:48   

1) Bursal-sided tear: less common but frequently the most symptomatic. 

2) Intratendinous tear: occurs between the superficial and deep layers of the tendon, 

may present as a cystic collection in the muscle.  

3) Articular sided tear: 2-3 times more frequent and more symptomatic than bursal 

surface tears and frequently occur near the supraspinatus tendon-bone interface. 

In tears of the bursal surface, subacromial impingement may be responsible. Intratendinous 

lesions may occur in the presence of differential shear stress between the superficial and deep 

surface layers of the tendon and articular sided tears are mostly because of trauma to a 

degenerated tendon.52  

With full thickness tears, the entire tendon has separated or torn from the bone. Full 

thickness tears can initiate on the anterior, posterior or middle portion along the width of the 

tendon. In almost 90% of cases, the tear is located in the anterior portion.53 A transverse tear 

exposes the insertion side but a longitudinal tear occurs along the torn tendon fiber. Full 

thickness tear can be small pinpoint, larger button hole, or involve the majority of the tendon 

where the tendon still remains substantially attached to the humeral head. Full thickness tears 

may also involve complete detachment of the tendon(s) from the humeral head and may result 

in significantly impaired shoulder motion and function. 
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 Massive Tear is usually defined as a tear of greater than five centimeters in diameter or in terms 

of the amount of tendon that has been detached from the tuberosities. There is no universal 

agreement on the definition of a massive rotator cuff tear, however, some common definitions 

can be found in Appendix 1. Most massive tears involve supraspinatus and infraspinatus, but 

anterosuperior tears involving supraspinatus and subscapularis are also moderately common.54 

2.1.3.2 Symptomatic vs Asymptomatic 

The clinical manifestations of rotator-cuff tears vary widely among patients. It seems 

that there is no correlation between tears and symptoms as research studies have demonstrated 

substantial numbers of people with asymptomatic shoulders and full function have partial or full 

thickness rotator cuff tendon tears.25,55,56 There is considerable uncertainty why the presence of 

a structural full thickness tear of the rotator cuff may be associated with disabling pain and loss 

of function in some individuals and be asymptomatic in others. Yamaguchi  et al. (2000)57 found 

that 40% of patients with symptomatic rotator cuff tears had also an asymptomatic tear in the 

contralateral shoulder. Interestingly the symptomatic tears were on average 30% larger than 

asymptomatic ones. The mechanism behind the evolution of pain in the setting of rotator cuff 

pathology is unclear. If we assume that the patient’s pain is related to his cuff tear, then it is 

expected that a longer duration of symptoms should correlate with a larger tear size, more 

muscle atrophy, and poorer active motion. However there is evidence suggesting that the 

severity of pain does not correlate with the severity of rotator cuff disease.58,59 These 

observations cast doubt on the assumption that rotator cuff tears are the source of a patient’s 

symptoms and suggest that pain in this patient population may be originating from other sources. 

The study of Flurin et al. (2007) 60 who assessed cuff integrity after arthroscopic rotator cuff 

repair somehow confirmed this idea. According to their study, all of the components of the 

Constant score were dramatically improved by surgery but better functional results in terms of 

activity, motion, and especially strength were obtained when the cuff remained intact on 

postoperative imaging studies. Interestingly, the Constant sub score for pain did not correlate 

with the anatomic results. Likewise, Dunn et al.(2014)59 in their multicenter study on 393 

patients could not find any significant relationship between pain and the severity of the cuff 

disease (e.g., number of tendons torn, degree of retraction, and degree of fatty degeneration). In 
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contrast, increased comorbidities, lower education level, and race were significantly associated 

with pain on presentation. 

Moreover, the exact tear size that causes a loss of normal shoulder biomechanics is 

unknown. Why some patients with rotator cuff tear have still normal function? Burkhart et al. 

(1993) 61 described the theory of “rotator cable-crescent complex” in an attempt to explain this 

issue. According to this theory the intact rotator cuff inserts anteriorly on the greater tuberosity 

of humerus, and posteriorly closes to the inferior border of infraspinatus, so it acts like a 

“suspension bridge”. At the margin of avascular zone, the arching cable like thickening of the 

coraco-humeral ligament is located.  Stress on the muscles is transferred to this cable and in case 

of tear, the free margin of tear corresponds to the rotator cable but the anterior and posterior 

margins correspond to the supports at the each ends of cable span. Therefore even in the case of 

damage to supraspinatus, the compressive effect of the tendon can be exerted on the humeral 

head through distributing tensions along the suspension bridge. Ludewig et al. (2009)62 in their 

3D kinematic study demonstrated that during all humerothoracic elevation motions, 

glenohumeral external rotation occurred irrespective of plane. They suggested that as the tears 

progress into the posterior part of the rotator cuff (infraspinatus) and the patients lose external 

rotation strength, then the functional lose is more pronounced. These explanations can somehow 

clear why some patients with rotator cuff tear still have arm elevation. However, harmonizing 

the study population in respective to tear size or intensity of the symptoms is very challenging 

and two patients with similar tear characteristics may have different pain or functional scores. 

This issue will be demonstrated and deliberated in our third article (section 3.3).   

             Patients with acute, traumatic cuff tears may experience the sudden onset of weakness 

with elevation of the arm after an injury while symptomatic patients with chronic degenerative 

cuff defects may notice a gradual onset of shoulder weakness and pain, reduced functional 

ability including an inability to dress, attend to personal hygiene and use utensils to eat. They 

may also complain of nocturnal pain that affects their sleep.63,64 However, as mentioned before 

many degenerative rotator cuff defects are asymptomatic. It has been estimated that more than 

half of asymptomatic tears become symptomatic in around 3 years.65,66   

            It is important to consider that all surgical treatment and rehabilitation protocols are 

planned for symptomatic patients, not for anatomical tear. It is the patient who should be treated 
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not the tear! Therefore, when designing a rehabilitation program, it is important to address the 

patient’s expectations. Patients usually desire to do their daily living activities and return to a 

normal life as soon as possible, while clinicians may aim to restore the full range of motion and 

measurable cuff strength in a gradual process. So in this thesis both of these expectations are 

considered.  

2.1.3.3 Acute vs Chronic 

           Acute tears are reported to make up 8% of all rotator cuff tears and are usually related to 

a trauma or shoulder dislocation.67 Traumatic tears are caused by a fall or trauma to an abducted 

externally rotated arm.  They usually occur in individuals, with a mean age younger than the 

population affected by chronic cuff tears. Traumatic tears tend to be larger in size and also can 

involve the subscapularis tendon. In fact, in 50% of the cases, they are large or massive tears.65 

It should be noticed that the definition of an acute tear is not always easy. Many patients report 

an acute event that initiated their symptoms, but many of these acute events were potentially a 

new injury to a shoulder that already had a rotator cuff tear. Determining if the rotator cuff tear 

is acute may be clinically challenging and usually requires additional investigation tools such 

as MRI to evaluate fatty degeneration, atrophy, and retraction.67  

          Chronic tears are the consequences of gradual and progressive histological changes due 

to extrinsic or intrinsic contributing factors which have been discussed in the previous sections. 

2.1.3.4 Uni vs Multiple tendon 

          By far, supraspinatus is the most tendon involved; In a study with resonance magnetic 

arthrography, 93 cases of 105 partial thickness rotator cuff tears, and 43 cases of 93 full 

thickness rotator cuff tears were in supraspinatus.68  It is believed that the tear typically starts 

from anterior portion of supraspinatus humeral insertion near the long head of biceps and 

propagate posteriorly.69 However, in an ultrasound study by Kim et al. 2010,70 it was suggested 

that lesion arose in region 13-17 mm posterior to the long head of biceps tendon, near the 

junction of supraspinatus and infraspinatus tendons. Infraspinatus tear was reported in the 

second place with 60.4% of the cases.53  Teres Minor tear is often associated with supraspinatus 

and infraspinatus tears (SIT tears) following a degenerative process.71 Rupture of the 

subscapularis tendon is rare and the incidence was reported as 4-8%.11 Mechanism is often an 
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acute avulsion in younger patients with a hyperabduction / external rotation injury. The injury 

can be an isolated rupture or it may be combined with rupture of the supraspinatus.11 

Considering the higher frequency of supraspinatus tear, the activity of the supraspinatus and its 

rehabilitation is more discussed in this dissertation. 

 Treatment: Conservative or Operative 

        Treatment for rotator cuff tendon disease ranges from conservative treatment to surgery. 

The decision how to treat a rotator cuff tear is based on the symptoms and its duration, 

examination findings, tear sizes, co-morbidities, the type and duration of previous treatment and 

available evidence about outcome. Most symptomatic rotator cuff injuries may be treated 

conservatively by using nonsteroidal anti-inflammatory drugs, corticosteroid injections, 

acupuncture, physiotherapy, manual therapy or functional rehabilitation.  Most surgeons 

consider surgery after a period of failed conservative treatment. However the type and duration 

of this conservative treatment vary and the decision to operate is not as straightforward as it 

might be thought. Two review studies have highlighted this difficulty. Dunn et al. (2005)6 

selected a list of orthopaedic surgeons from American Academy of Orthopaedic Surgeons 

directory and characterized their attitudes concerning medical decision-making about rotator 

cuff surgery and investigated the associations between these beliefs and reported surgical 

volumes. They found significant variation in surgical decision-making and a lack of clinical 

agreement among orthopaedic surgeons about rotator cuff surgery. Oh et al. (2007),3 in their 

systematic review investigated the influencing factors on  decision making for rotator cuff 

operation. In this extensive study, they evaluated different variables such as demographic 

characteristics, symptoms duration, tear characteristics, indications for surgery and surgical 

outcomes. The conclusion of this review was that the exact indications for repair are not clear 

and further researches are needed to answer the question as when to operate on the rotator cuff. 

Therefore, the approach to the management of cuff lesions is largely based on physician’s 

preference and their clinical experience. The general trend is as follows: 

2.1.4.1 Acute Complete Tears 

           Acute rotator cuff tears even if they are massive are often good candidates for repair as 

long as the tissue compliance is well maintained.69 It is generally accepted that full-thickness 
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rotator cuff tears will not heal spontaneously, consequently, prolonged observation and 

nonsurgical management allow the detached tendon to retract and resorb72 while the muscle 

atrophies and fatty degeneration ensues17 which in some individuals can lead to an irreparable 

tear. In a retrospective series,73 it was reported that tears that were repaired within the first 3 

weeks of an acute injury had a greater return of motion (abduction) than those repaired after 3 

to 6 weeks and those repaired from 6 to 12 weeks.  

2.1.4.2 Partial-Thickness Rotator-Cuff Tendon Defects  

            Most partial thickness tears are treated conservatively. However, spontaneous healing of 

partial-thickness tears is unlikely,42,52,74 because the torn ends should contact and a good blood 

supply is needed.  Then what is the rationale behind conservative treatment?  

Fukuda et al.(2003)48 presented a modification version to Neer’s staging (see Appendix 1) which 

is more directly related to treatment options. They proposed that both acute oedema and 

haemorrhage, and chronic fibrosis and tendinitis belong in ‘modified’ stage I, with a full-

thickness tear in a ‘modified’ stage III. They believe that all stage (modified)-I lesions are better 

to be treated conservatively. For those in stage (modified) II with partial thickness tears, if the 

signs and symptoms of inflammation are alleviated, and if mechanical defect of the torn tendon 

compensated by prime movers and intact part of cuff muscles,  then a clinical ‘cure’ is achieved. 

Fortunately the part of the tendon remaining intact prevents retraction and muscle atrophy.69 

Patients in whom the symptoms of a partial cuff tear are refractory to the conservative treatment 

may benefit from surgery. Some believe that the choice of treatment depends on the exact cause 

of lesion and the treatment should be directed towards a primary diagnosis such as impingement 

syndrome or instability.75 By this way, treatment of tear itself is considered secondarily.   

2.1.4.3 Chronic, Full-Thickness, Degenerative Tendon Defects  

While urgent repair for an acute traumatic cuff tear is mostly agreed, for treatment of 

atraumatic cuff tear, there is not a consensus. Full thickness tears likely progress over time with 

retraction of the tendon edge, which may lead to an irreparable tear. Healing is potentially 

hindered because of poor vascularization in certain regions as well as the intra-articular 

environment, in which synovial fluid may interfere with healing.67 As these tears often are 

considerably chronic, the physicians usually try a substantial period of non-operative 
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management to improve the mechanical dysfunction such as lack of motion or stability.69 

Nonsurgical approaches include pain management, activity modification, and gentle stretching 

and strengthening exercises for the muscles that remain intact. Although there are not enough  

randomized clinical trials to assess the benefits of exercise therapy for full thickness 

degenerative defects, other studies such as case series or case reports have shown improvement 

in patients’ symptoms with exercise.76,77 However, some clinicians believe that surgical 

treatment is the only option for symptomatic patients with full-thickness rotator cuff tear.48   

Bartolozzi et al. (1994)78 recommended that early surgery to be considered in a full-

thickness tear greater than or equal to 1 cm2, symptoms lasting longer than 1 year, and functional 

impairment and weakness. However, Unruh et al. (2014)58 in their prospective cohort study on 

450 patients with full-thickness rotator cuff tears observed that the duration of symptoms was 

not related to weakness, limited range of motion, tear size, fatty atrophy, or validated patient-

reported outcome measures. They concluded that using the duration of symptoms as a guide to 

recommend surgical repair of rotator cuff tears in order to reduce pain and improve function 

might not be the best approach. Masten et al. (2014)64 tried to take some guidelines for the 

treatment of atraumatic rotator cuff tears from the existing data. They suggested if pain or 

stiffness is the main symptom, surgery may not be the ideal solution. In case of weakness as the 

primary problem, the surgeon should determine if a durable repair is achievable; if not, repair 

may not be in the best interest of the patient. And finally if instability is the issue, something 

more than a cuff repair such as reverse total shoulder arthroplasty may be needed. 

In conclusion, patients are operated in different stages as there is not a consensus on the 

timing of surgery, and they have usually experienced a period of conservative treatments such 

as physical therapy or steroid injections. Surgeon’s philosophy may affect the choice of 

aggressive approach. Post-surgical rehabilitation follows this philosophy and should be 

individualized based on patient’s situation and surgeon’s concerns. What we are presenting in 

this dissertation is actually a more dynamic and functional approach to the early rehabilitation 

after rotator cuff repair.      
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 Surgical Options 

       Although the detailed information regarding the operation procedure is beyond the scope 

of this thesis, it is important to know how the integrity of repair can be affected by different 

surgical options. The surgery is often a combination of subacromial decompression and cuff 

repair which can be performed by open surgery or arthroscopy. It is believed that arthroscopic 

procedure may have advantages over standard open procedures including less trauma to the 

shoulder muscles, less pain, decreased morbidity and an earlier return of normal movement.79 

In mini-open technique for the cuff repair, after arthroscopic subacromial decompression, an 

open repair through a smaller approach without detachment of the deltoid will be followed. 

Clinical outcomes for arthroscopic repair and mini-open surgery are almost similar, however, 

higher rate of re-rupture for larger tears that repaired arthroscopically was reported.10  

For partial tears, different operative treatments such as arthroscopic surgical debridement 

coupled with arthroscopic sub-acromial decompression,80 arthroscopic conversion to a full-

thickness tear with repair 81 or arthroscopic repair without conversion to a full-thickness tear82 

have been proposed. Biceps tenodesis in case of rotator cuff repair or biceps tenotomy in case 

of irreparable massive tear are routinely performed by some surgeons.53 

         A variety of methods and suture anchors have been developed to re-attach the torn tendon 

to bone. The arthroscopic repair can be performed by single- or double-row of suture anchors, 

using conventional methods, transosseous fixation or bridging sutures. All these methods aim 

to establish a fibrovascular interface between tendon and bone for healing and restoration of 

fibrocartilaginous tendon insertion. Therefore the goal of repair is to achieve a secure tendon to 

bone fixation while biological healing occurs. Tendon footprint contact area and contact 

pressure are critical factors that contribute to biological healing at the tendon–bone interface, 

and subsequently, long-term repair strength.51 It was suggested that a larger area of contact 

between the tendon and bone may improve the biological healing process by increasing the size 

of the newly formed insertion site.83 All the advancements in arthroscopic surgery and 

improvement of suture materials, anchors and technics have been directed to enhance the 

strength of repair. The ideal repair should provide high initial fixation strength, minimal gap 

formation, and high mechanical stability until completion of the tendon-to-bone healing 

process.84 It has been shown that double-row repair gives better resistance to gap formation.85 
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Furthermore, smaller re-tear rate has been reported after double row technique than single row, 

although the clinical outcomes were similar.86 According to a recent systematic review,87 double 

raw repair provides superior structural healing to single-row repair. However, Apreleva et al. 

(2002)83 suggested that trans-osseous simple suture fixation might provide greater potential for 

osseous incorporation and healing at the tendon-bone interface by increasing the repair-site area. 

Park et al. (2007)88 have also suggested that the mean pressurized contact area between the 

tendon and tuberosity insertion footprint is superior using the suture-bridge technique to that of 

double-row technique. Anyway, optimal method of reconstruction is highly controversial and 

decision-making is therefore influenced by personal preferences, past experiences, surgical 

volumes and perceived results. But, it should be emphasized that the type of surgical approach 

can affect the post-op rehabilitation program. Optimizing the biomechanical properties of the 

repaired tendon allows for early postoperative rehabilitation while maintaining repair integrity. 

Therefore, along with improvement in surgical techniques and mechanical stability, the post-

surgical treatments may progress from a highly conservative rehabilitation to more dynamic and 

functional rehabilitation. This issue will be discussed again in this dissertation. 

 Major Complications after Rotator Cuff Repair 

2.1.6.1 Re-Tear   

The prevalence of recurrent tear varies between 16% in young subjects with non-retraced 

tears60 to 94% in massive cuff tears.12 Bishop et al. (2006)10 assessed postoperative cuff integrity 

by MRI and reported that 31% of repairs in the open surgery group and 47% in the arthroscopic 

group were not intact. Some authors reported a significant correlation between re-rupture and 

poorer outcomes. For example, Harryman et al. (1991)89 in their evaluation of 105 tendon repairs 

noticed that the shoulders in which the repaired cuff was intact had better function during 

activities of daily living and a better range of active motion and strength. In their study, more 

than half of the repairs of a tear involving more than the supraspinatus tendon had a recurrent 

defect. However, improvement with respect to pain relief, range of motion and the ability to 

perform activities of daily living have been reported despite recurrent defects in the repaired 

tendon.12 Despite all the debate over the relationship of repair integrity and pain or functional 

outcomes, the trend is toward a better outcome with intact repair.90-92  
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Several factors may be implicated in failure of the rotator cuff repair. Generally, chronic 

tears with muscle retraction and stiff musculo-tendinous unit have worse healing than the acute 

tears.93 For this type of tears, large tensions are sometimes required to repair the tendon back to 

bone, and it was suggested that tension overload has a role in repair failure.94,95 The suture 

tendon interface is the weakest region of the repair, and tissue failure typically occurs as a result 

of pull out through the tendon.96 Inappropriate tension during rehabilitation may provide this 

situation. Anchors pulling out of bone, suture material breakage, surgical knot loosening and 

tendon pulling through sutures have been suggested as the potential causes for rotator cuff re-

tearing.97 Higher failure rate has been also reported for patients with lower bone mineral density 

and those who have higher fat infiltration in their infraspinatus.98 Medical comorbidities may 

also impede rotator cuff healing. An animal study99 has shown that diabetic rats had significantly 

lower fibrocartilage and organized collagen at the tendon-bone repair site and clinical studies 

have also reported worse result and higher rates of failure in diabetic patients.100,101 Smoking 

has also been shown to increase the repair failure rate and worsen clinical results.102 Therefore, 

repair integrity depends on different intrinsic and extrinsic factors; among them, post-op 

rehabilitation protocol is one of the most modifiable extrinsic factors. 

2.1.6.2 Shoulder stiffness 

Postoperative stiffness is one of the most frequent complications after rotator cuff repair. 

Warner and Greis. (1997) 103 in their studies on 500 cases of cuff repair, found 4% of painful 

loss of motion that was thought to be caused by postoperative adhesions. Huberty et al. (2009)104 

have reported 4.9% of stiffness in a series of 489 consecutive arthroscopic rotator cuff repairs 

and 3.1% of 576 arthroscopic rotator cuff repair cases had persistent postoperative stiffness in a 

multicenter study in France.105 Higher incidence with a 32% significant persistent postoperative 

stiffness after mini-open rotator cuff repair has also been reported.104 Severud et al. (2003)106  

compared the rate of stiffness between their arthroscopic and mini-open rotator cuff repairs and 

found a 14% incidence of postoperative adhesions and stiffness in the mini-open group and a 

0% incidence in the arthroscopic group. Therefore, it seems that shoulder stiffness is more 

prevalent after mini-open or open procedures.    
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Shoulder stiffness can be a source of pain, functional limitation, and frustration for 

patients. Several risk factors for stiffness after arthroscopic rotator cuff repair have been 

identified including calcific tendinitis, adhesive capsulitis, single-tendon cuff repair, partial 

articular side tendon avulsion, concomitant labral repair, being under 50 years of age, and having 

workers’compensation insurance.104 Typically, the patients in whom this problem develops have 

smaller rotator cuff tears, that is, they have a larger amount of tissue in the area that is available 

to participate in the inflammatory response.107 Preoperative shoulder stiffness is also a risk 

factor for postoperative stiffness. Tauro et al. (2007)108 in their retrospective review found that 

ROM did not improve postoperatively in patients with a preoperative total range of motion 

deficit of 70% or greater. Identification of risk factors for stiffness may be helpful to guide 

rehabilitation approaches. 

The influence of early passive motion or immobilization on postsurgical stiffness is still 

of particular interest because, unlike other risk factors, it is directly under the clinician’s control. 

A systematic review study109 showed that immobilization protocols slightly increased resistant 

stiffness. This issue is the main theme of this dissertation that will be elaborated in the coming 

sections. 
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2.2  EARLY POST-OP REHABILITATION, WHAT ARE THE 

RATIONALES BEHIND 

            As detailed in the previous section, rotator cuff tendon repair is highly vulnerable to re-

tear, and the capacity of the tendon to heal is limited. On the other hand, joint stiffness is a major 

post-op complication that causes patient’s dissatisfaction. Postoperative rehabilitation program 

is a critical aspect in the treatment of rotator cuff injury that should provide recovery of joint 

range of motion, muscular strength and shoulder function, without preventing healing of the 

repaired tendon. There has been a general belief that a period of immobilization is needed for 

healing after operative treatment of rotator cuff tendon tears. Overloading the repair which may 

result to re-rupture is the main concern prohibiting the implementation of a functional 

postoperative treatment. However, while there are multiple studies on post-op treatment of 

Achilles tendon which confirmed that the functional treatments are safe and do not increase the 

risk of re-rupture, this issue has received minimal attention for the shoulder. Post-operative 

activity level is an important treatment component that still needs more research to be properly 

determined. In this section different studies concerning post-op immobilization strategy are 

reviewed. 

 Tendon Healing 

After tendon injury or repair, three phases can be defined for tendon healing.19,110,111 In 

the initial “inflammatory phase”, inflammatory cells as well as platelet and erythrocytes will 

migrate to the wound site. These cells clean the site of necrotic materials and in the meantime, 

release vasoactive and chemotactic factors, which recruit tendon fibroblasts to begin collagen 

synthesis and deposition. The inflammatory phase characterizes by the development of a fibrin 

clot to stabilize the site, hemostasis, migration of neutrophils, macrophages, and erythrocytes, 

and subsequent neovascularization. This phase lasts almost one week and then the second stage 

which is “repairing phase” begins.  In the proliferating or repairing phase, substantial cellular 

proliferation occurs and fibroblasts (tenocytes) synthesize collagen and extracellular matrix 
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(ECM) components throughout approximately one to four weeks following injury. However, 

the collagen produced is highly immature and disorganized. The final stage, “remodelling and 

maturation phase” begins approximately four weeks post injury and is characterized by 

decreased cellularity and decreased collagen and ECM synthesis. During this phase, ECM is 

remodelled to create a more organized structure through collagen turnover, realignment, and 

formation of collagen cross-links. Covalent bonding between collagen fibers causes higher 

stiffness and tensile strength of the repaired tissue.19,110,111 

Rotator cuff has a short and intra-capsular tendon and its effective repair relies on tendon 

to bone integration. Rotator cuff tendon is different from long and sheeted tendons such as finger 

flexors in which the healing often depends on prevention of gapping and maintenance of tendon 

gliding. Rotator cuff injury mostly occurs at the tendon to bone insertion site where abundant 

fibroblasts produce a disorganized collagen tissue. The big difference in material properties in 

that region leads to high stress concentration.  To overcome this challenge, tendon’s collagen 

fibers usually pass a transitional fibro-cartilaginous region into the bone. Some other strategies 

are also implemented, such as a shallow attachment angle at the insertion, shaping of tissue 

morphology of the transitional tissue, and inter-digitation of transitional tissue with bone. To 

improve tendon to bone healing, this zonal phenotype should be restored.111   

It has been shown that mechanical loading has an important role in the development and 

homeostasis of tendon.19 Mechanical loading induces gene expression and protein synthesis in 

fibroblasts. Disuse following immobilization has been shown to be associated with decreased 

levels of ECM protein expression, alterations in tenocyte morphology, and loss of normal ECM 

architecture.19 These changes can result in impaired function and healing capacity. In addition, 

interruption of normal load transfer at the insertion site leads to a localized bone loss through 

increasing of osteoclast numbers in the repair site which may also impair healing.112 Therefore, 

theoretically application of static or cyclic loading at the insertion site may be necessary for 

healing. However, while it is known that appropriate loading and tension play an important role 

in overall tendon function, the optimal time for incorporating loading regimens in post-op 

protocols is a matter of debate and yet the proper postsurgical rehabilitation strategy has not 

been completely defined. This thesis intends to show how a small amount of loading can be 
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safely applied to rotator cuff tendon while shoulder joint is immobilized and no tensile pressure 

is imposed on the repaired site.    

 Animal Studies 

         Different animal studies have evaluated the effects of mobilization on tendon healing. 

Table 1 summarizes the existing animal investigations on non-rotator cuff tendons and rotator 

cuff tendon respectively. The table shows that the animal studies vary widely according to the 

tendon, evaluation methods for healing integrity and mobilization protocols. 
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Table 1: Animal studies concerning the effect of mobilization on tendon healing 

A: non-rotator cuff tendons 

Authors Subject Tendon  Protocol Comments 

Woo et al. 113 
1981 

Canine Flexor 
 

Seven groups based on duration (3 to 12 w 
post repair) and mode of immobilization and 
partial mobilization 

At 12 weeks, the repaired flexors from the 
motion group had regained over one-third of 
the ultimate tensile load with better gliding 
function. 

Gelberman et al.114  
1982 

Canine Flexor 
 

1) Early passive motion 
2) Delayed passive motion  
3) Immobilization 
Groups were compared over a 12 w period 

Early passive mobilization augments the 
physiologic processes that determine the 
strength and excursion of repaired flexor 
tendons. 

Enwemeka et al.115  
1992 

Rabbits Achilles Tendon 1) Immobilized post repair 
2) Weight bearing and mobilization from day 
five post-repair 

Functional loading augmented the tensile 
strength and energy absorption capacity of 
tenotomized tendons. 

Murrell et al.116  
1994 

Rat Achilles Tendon 1) Sham operation 
2) Tendon transection without immobilization 
3) Tendon rupture and application of 
Kirschner wires,  
4) Tendon rupture and immobilization with 
Kirschner wires connected by two frames. 

Group (4) had an additional, highly significant 
detrimental effect on the functional and 
mechanical recovery of Achilles tendon-
calcaneal complexes. 

Kamps et al. 117  
1994 

Rabbits Patellar tendon; 
central third 
removed   

1) Control 
2) Exercise on a treadmill for 12 w.  
3) Immobilization for 12 w. 
 

Early joint mobility produced large multi-axial 
stresses in original tendon leading to micro-
damages. Less aggressive exercise or delay in 
joint mobility may help control tissue 
remodelling. 

Yasuda et al.20   
2000 

34 
Rabbits 

Ruptured Achilles 
tendon without 
suture 

1) Ankle immobilized 
2) Both knee and ankle were immobilized 

Knee immobilization retards the healing of a 
ruptured Achilles tendon 
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Palmes et al.118  
2002 

114  
Mice 

Achilles Tendon 
transected and 
sutured 

1) Immobilization in equinus position  
2) Mobilization through a limited ROM 
load to failure, tendon deflection and tendon 
stiffness up to 112th postoperative day  

Complete regain of normal tendon stiffness in 
mobilization group vs half values in 
immobilized group.  
Increased inflammation in the early phase, but 
more mature tendon in the late phase. 

Ertem et al. 119 
2002 

20  
Rabbits 

Achilles tendon 
Repaired by Kessler 
technique 

1) Cast immobilisation 
2) Continuous early passive motion, 4 h/d 
Macroscopic and histologic examinations at 
week 6 

The utilization of continuous controlled passive 
motion has beneficial effects on tendon healing 
and ankle range of motion, without leading to 
eventual ruptures. 

Dagher et al.120 
2009 

60  
Rats 

ACL reconstruction 
with autograft 

1) Immobilization with external fixation 
device 
2) Normal cage activity postoperatively 
Immunohistochemistry in week 2 and 4 

Early immobilization diminished macrophage 
accumulation that may allow improved tendon-
bone integration 

Bring et al. 121 
2010 
 
 

32  
Rats 

Achilles tendon 
Ruptured 0.5 cm 
from the insertion 

1) Free mobilization post-surgery 
2) Immobilized with a plaster cast on their 
operated leg.  

Prolonged immobilization hampers the healing 
process by compromising the up-regulation of 
repair gene expression in the healing tendon. A 
shorter period of immobilization, i.e. 1 week, 
would not impair the healing process 
significantly. 

Bedi et al.122 
2010 

156  
Rats 

ACL reconstruction 
with flexor 
digitorum longus 
autograft 
 

1) Immobilization  
2) Controlled knee loading along the long axis 
of the graft  

 Immediately postoperatively  
 Post-op day 4: early delayed loading 
 Post-op day10: late delayed loading. 

Analysis: post-op day 14 or 28 

Delayed application of cyclic axial load 
resulted in improved mechanical and biological 
parameters of tendon-to-bone healing 
compared with those associated with 
immediate loading or prolonged post-op 
immobilization of the knee. 

Brophy et al 123  
2011 

42  
Rats 

ACL reconstruction 
with flexor 
digitorum longus 
autograft 

1) Immobilization group 
2) Daily loading, for 14 or 28 days with cyclic 
displacement of the femur and tibia 
constrained to axial translation parallel to the 
graft. 

Short-duration low-magnitude cyclic axial 
loading is not detrimental to the strength of the 
healing tendon-bone interface but is associated 
with greater inflammation and less bone 
formation in the tunnel in this rat model. 
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Hettrich et al. 124 
2014 

192  
Rats 

Patellar tendon 
detachment and 
repair 

1) Immobilization 
2) Immediate post-op loading 
3) Delayed onset loading (4-10 d delay) 
Axial tensile load , 50 cycles/ day 

Immobilization resulted in a stronger tendon-
bone complex, with less scar tissue and a more 
organized tendon-bone interface compared with 
all loading regimens in this study. 

 

 

B: Rotator cuff tendon 

Authors Subject Tendon  Protocol Comments  

Lewis et al. 125  
2000 

16  
Sheep 
 

Infraspinatus 
tendons were 
reattached into a 
bone 

1) Immobilized group with a softball taped 
under the foot for 6 weeks.  
2) Non-immobilized group  
Evaluation after 26 weeks 

No significant difference between the treatment 
groups for load-to-failure and stiffness. 

Thomopoulos  
et al. 126  
2003 

Rats Supraspinatus 
detached and 
repaired 

1) Immobilized group 
2) Exercised group 
Biomechanical, structural, and compositional 
assays at 2, 8, or 16 weeks. 

Viscoelastic properties and collagen organization 
was superior in the immobilization group. The 
ratio of type III to type I collagen, an indication of 
the level of scar in healing tissue, was highest in 
the exercise group. 

Gimbel et al. 94 
2007 

Rats Supraspinatus 
detached and 
reattached to its 
insertion site 

1) Shoulder immobilization 
2) Cage activity or moderate exercise for 
durations of 4 or 16 weeks. 
Biomechanical testing and a quantitative 
polarized light microscopy method 

Shoulder immobilization improved tendon to bone 
healing, by increasing the organization of the 
collagen and increasing the mechanical properties. 

Sarver et al.127 
2008 

15  
Rats 

Supraspinatus 
detached and 
reattached to its 
insertion site 

1) Not immobilized after injury and repair  
2) Immobilized immediately after injury and 
repair in 90° of forward flexion and 90° of 
abduction in a plaster cast for 4 weeks. 
3) Immobilized with no injury  
Passive shoulder mechanics measured before 
treatment and week 4 and 8 post-op 

External rotation stiffness was significantly 
greater after 4 weeks of immobilization but not 8 
weeks in immobilized group, i.e. increase in joint 
stiffness caused by immobilisation was transient.   
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Galatz et al. 128 
2009 

Rats Supraspinatus 
injury was created 
and repaired 

Muscle paralysis after repair by Botulinum 
toxin A. Postoperatively: 
1) Limb immobilized 
2) Free ROM was allowed 
3) Saline injected, casted rats as control 
Repairs were evaluated histologically, 
geometrically, and biomechanically. 

Complete removal of load by paralysis was 
detrimental to rotator cuff healing, especially 
when combined with immobilization. 

Peltz et al. 129  
2009 

67 Rats Supraspinatus 
injury was created 
and repaired 

1) Continuous immobilization 
2) Passive motion protocol 1, for two weeks 
3) Passive motion protocol 2 for two weeks 
Remobilization for 4 weeks, passive shoulder 
mechanics was measured pre-op, week 2 and 
week6 

Passive motion resulted in increased scar 
formation, decreased ROM and increased joint 
stiffness and did not have any effect on collagen 
organization or tendon mechanical properties 
measured six weeks after surgery. 

Peltz et al.130 
2010 

22  
Rats 

Supraspinatus 
injury was created 
and repaired 

Immobilisation postoperatively for 2 weeks; 
1) Cage activity for 12 w 
2) Exercise (gradual moderate treadmill 
running) for 12 w 
Tendon CSA and mechanical properties were 
measured. 

After a short period of immobilization, increased 
activity is detrimental to both tendon mechanical 
properties and shoulder joint mechanics, 
presumably due to increased scar production. 
 

Li et al. 131 
2010 

16  
Rabbits 

Supraspinatus 
rupture and repair 

Two weeks after operation: 
1) CPM group  
2) Non-CPM group (fed only) 
At 2, 4, 6, and 8 weeks, the tissue samples were 
verified for b-FGF expression. 

CPM promoted b-FGF expression to enhance type 
III collagen synthesis at the tendon-bone interface 
in early stage of repair, contributing to tendon-
bone healing after rotator cuff injury. 

Hettrich et al.132 
2010 

132 
 Rats 

Supraspinatus 
injury was created 
and repaired 

1) Repair alone  
2) Injections of botulinum toxin A into the 
muscle before repair.  
Histologic and biomechanical evaluation at 4, 
8, and 24 weeks 

Toxin–treated specimens had increased collagen 
fiber organization at 4 weeks but decreased 
mechanical properties at later time points. 

Uezono et al.133 
2014 

72  
Rats 

Supraspinatus 
ruptured and re-
constructed  with 

Shoulders immobilization for 2 weeks:  
(1) immobilization without PROM  

Immediate passive motion was detrimental to 
remodeled tendon-to-bone healing and to the 
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Acellular Dermal 
Matrix  
(ADM)Grafts  

(2) immobilization with immediate PROM (the 
day after surgery) 
(3) immobilization with delayed PROM (1 
week after surgery) 
Histological and biomechanical analysis at 2, 6, 
and 12 weeks postoperatively 

tendon maturation of ADM grafts placed in the 
rotator cuff tendon defects. 
 
Delayed passive motion did no harm. 

ROM = Range of Motion, CPM = Continuous Passive Motion, PROM= Passive Range of Motion, d= day, w = week  
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           Considering the above data, it can be observed that animal studies have sometime 

contradictory findings. It may be because the response of tendon healing to mechanical load 

varies by anatomical location and tendon type. For example, for Achilles tendon, the effect of 

mobilization on tendon healing is highly supported by animal studies. Achilles tendon 

immobilisation exhibited decreased mechanical properties and healing process. Likewise, 

immobilization of canine flexor tendon promoted adhesion formation, therefore, passive motion 

could be beneficial for its healing. On the other hand, excessive motion in the setting of anterior 

cruciate ligament reconstruction, caused accumulation of macrophages, which might be 

detrimental to tendon graft healing. (see Table 1A for references). 

          Rotator cuff tendon has special characteristics that separate it from the others tendons. 

Firstly, rotator cuff tendon is not surrounded by a synovial sheet, so the adhesion formation is 

less likely the main problem for this tendon. Secondly, repairing flexor digitarum tendons or 

Achilles tendon rupture requires tendon-to-tendon healing, whereas repairing most rotator cuff 

tears requires tendon-to-bone healing. In this respect, reconstruction of anterior cruciate 

ligament may be more similar to rotator cuff repair. Most animal studies concerning healing of 

rotator cuff repair are in favor of a period of immobilization and the avoidance of large forces 

on the healing site; however, complete removal of load (e.g. muscle paralysis) has also been 

shown to be detrimental to the healing (see Table 1B). However, although these studies have 

provided invaluable information regarding the effect of mobilization on tendon-bone healing, 

they could not identify an optimal rehabilitation strategy.  

         The effect of immobilization on shoulder joint stiffness has been reported by Schollmeier 

et al. (1994)134 on  non-operated glenohumeral joint in dog model. Results showed reduced joint 

range of motion and capsular volume, increased intra-articular pressure and histological 

modifications such as those found in adhesive capsulitis in man. However, all of these 

modifications were reversible once the joint was exercised.135 Following supraspinatus 

operation in rat model, Sarver et al 127 found a significant but transitory increase in stiffness 

during external rotation after 4 weeks of immobilization. On the other hand, some researchers 

have reported harmful effect of early but not delayed passive motion on glenohumeral range of 

motion due to scar formation favored by mechanical stresses.129  

From all these animal studies, my interpretation is as follows:  
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            For rotator cuff tendon repair, a period of immobilization is more warranted to reduce 

scar formation, and provide a safer environment for healing process, although the optimal 

duration of immobilization is not clear. During this period, in order to have better tendon 

healing, a   balance must be reached between loads that are too low and non-effective in tendon 

homeostasis and too high leading to inflammatory flare-up, gap formation or microscopic 

damage. Complete load removal may deteriorate healing process. This deduction is followed 

during most of the studies presented in this dissertation, i.e. shoulder immobilization is 

preserved while minimal loadings are imposed on rotator cuff muscles.  

 Clinical Studies 

Animal studies have provided scientific basis for many rehabilitation protocols. 

However, animal studies may not completely represent the changes in human bodies. Similar to 

animal studies, clinical investigations have also reported conflicting results in regard to 

application of load or immobilization following rotator cuff repair, and the debate still persists.  

Table 2 presents some published studies on early post-op rehabilitation strategies. 
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Table 2: Clinical studies on mobilization post rotator cuff repair 

Author Subjects Protocol Results 
 

Raab et al. 136 
1996 

26 patients after 
RCR 

1) Routine physiotherapy  
2) Physiotherapy + CPM  
Shoulder Scoring at 3 months follow-up: 
function, pain, strength, and ROM. 

No difference in shoulder score between two groups. 
CPM has a beneficial effect on ROM for all patients, as 
well as on pain relief in female patients and patients ≥ 60 
years of age 

Lastayo et al.137 
1998 

31 patients with 
RCR:   (5 small, 
18 medium and 
19 large tears) 

Post operation: 
1) CPM, for 4 weeks  
2) Manual PROM,  for 4 w 

No significant differences between two groups with 
respect to the pain, ROM, or isometric strength.  
Manual passive ROM exercises were more cost-effective 
than continuous passive motion. 

Hayes et al.138 
2004 

58 patients with 
RCR  

1) Supervised physiotherapy treatment 
2) Unsupervised home exercise regime. 
ROM, muscle force, functional outcome 
measured at 6, 12 and 24 w post-op 

Outcomes for subjects allocated to individualised 
physiotherapy treatment after RCR are no better than for 
subjects allocated to a standardised home exercise 
regime. 

Michael et al.139 
2004 

55 patients with 
RCR  

1) CPM + physiotherapy  
2) Physiotherapy alone    
time span to achieve 90˚ active abduction  

CPM group reached the primary endpoint on average 12 
days earlier than the control group with better result in 
controlling the pain and dysfunction. 

Deutsch et al.140  
2007 

70 patients with 
RCR 

1) Standard group: supine passive forward 
flexion in day 7 
2) Decelerated group: the same at week 4 
For both groups: 
Immobilization in an ultra-sling for 6 w 
pendulums exercise, post-op day #1, supine 
passive ER, post-op day #7    passive IR at 4 
w.  

No significant differences between groups for ROM, 
pain, and satisfaction scores. 
For both groups, re-tear rate: 35% of large to massive 
tears vs 4% of small to medium tears. 
No significant difference between the re-tear rates in two 
groups: (19% vs 9%), however, this difference may be 
clinically relevant. 

Klineberg et al. 141 
 2009 

14 patients after 
RCR 

1) Progressive Group: dynamic, specific 
muscle activation of RC post-op day 1 + 
PROM, sling for 4w  
2) Traditional Group: traditional method, 
immobilization for 6 weeks, no load on RC 

Larger reduction in pain during activity and at rest in 
progressive group compared with the traditional group in 
year 1 and 2 with no adverse effects. 
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Parsons et al.142 
2010 

43 patients with 
RCR 

Full-time sling immobilization without 
formal therapy for 6 w post-repair 
At 6 to 8 w of follow-up, they were 
categorized to stiff and non-stiff  
Active ROM was assessed at 3 months, 6 
months, and 1 year 

In general, 23% were considered stiff in 6-8 w. 
At 1 year: No difference in ROM between two groups 
Repeat MRI suggested a trend toward a lower re-tear rate 
among the stiff patients. 
 

Duzgun et al.143  
2011 

29 patients with 
RCR  

1) Accelerated protocol: early active 
movement (week 3-4) in combination with 
preoperative rehabilitation. 
2) Slow protocol: classical rehabilitation 
protocol 

 Accelerated protocol was associated with less pain 
during activity at weeks 5 and 16 and superior functional 
scores. 

Arndt et al.144 
2012 

100 patients 
with 
supraspinatus 
repair 

1) Immediate passive ROM 
2) Restrict immobilization for 6 w 
 
Clinical evaluation + CT arthrogram 

In immediate passive motion group: 
Better functional results  
Lower rate of adhesive capsulitis and complex regional 
pain syndrome. 
Non-significant but slightly better healing results with 
immobilization. 

Cuff et al.145 
2012 

63 patients with 
supraspinatus 
repair (suture –
bridge) 
 

1) Early group: passive elevation and 
rotation post-op day 2 
2) Delayed group: same protocol at week 6 
Clinical monitoring: 12 w 
 Healing was assessed by US  

No significant differences in functional outcome, rotator 
cuff healing, or ROM between early and delayed groups. 
Slightly better healing rate in delayed group. 

Kim et al.146 
2012 

105 patients 
with RCR 

Abduction brace for 4 to 5 w 
1) Early PROM: 3 to 4 times/ day during 
immobilization period. 
2) No passive motion 
Functional score, pain and healing were 
assessed in 3, 6, 12 months 

No statistical differences for pain, functional score or 
healing. 
Early passive motion exercise after arthroscopic cuff 
repair did not guarantee early gain of ROM or pain relief 
but also did not negatively affect cuff healing. 

Lee et al.147 
2012 

64 patients with 
RCR 
Medium-large 
size tears 

1) PROM exercises twice/ day from day 1 
by physical therapist + home rehabilitation  

Group 1 showed better ROM in 3 month but no 
significant difference between 2 groups after 1 y. 
 (23.3%) in group 1 and (8.8%) in group 2 had re-tears, 
but the difference was not statistically significant. 
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 2) Only passive forward flexion up to 90° 
using CPM for 3 w, then increasing ROM 
as tolerated and other exercises. 
No active elevation until week 6. 
Tendon healing was assessed by MRI 

Keener et al. 148 
2014 

124 patients 
With RCR with 
double raw 
technique for 
tear < 3cm  
   

1) Rehabilitation program with early ROM  
2) Immobilization with delayed ROM for 6 
weeks. 
Clinical outcomes assessment in 3, 6, 12 
and 24 months. Tendon integrity was 
assessed by US in 12 months. 

Active elevation and external rotation were better in 
group 1 at 3 months. 
No significant differences in functional outcomes  
No difference in healing or re-tear rate 
 

Koh et al.149 
2014 

88 patients with 
RCR (single-
row) for 
postero-superior 
rotator cuff tear  
 

1) Immobilization for 4 w  
2) Immobilization for 8 w  
No passive or active ROM, including 
pendulum exercise 
Functional outcomes, re-tear rate by MRI 

At 6 months post-op, 51% had stiffness, with no 
difference in two groups.  
 Stiffness was higher in group 2 (38% compared with 
18%) at 24 months post-op 
Re-tear rate 10% without any difference between groups. 

RCR= Rotator Cuff Repair, CPM= Continuous Passive Motion, ROM= Range Of Motion, IR= Internal Rotation, ER= External Rotation, w = 

Week, d= day 
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The problem with the current clinical data is that they are not harmonized in study design, 

patient population, repair methods, statistical analysis and the definition of functional outcomes. 

Therefore, comparing the current studies is very difficult and hence, identifying the best 

rehabilitation strategy in the early phase after rotator cuff repair is challenging. Five systematic 

reviews tried to extract some conclusions from the persisting data. Huisstede et al. (2011)150 

assessed effectiveness of non-surgical and post-surgical interventions for symptomatic rotator 

cuff tears. For post-surgical strategy, they evaluated eight studies and reported that progressive 

physiotherapy and adding Continuous Passive Motion (CPM) to physiotherapy are not more 

effective than the traditional physiotherapy. They also could not find any evidence for the 

effectiveness of splinting in abduction versus resting the arm at the side. Three other meta-

analyses, all have been published in 2014 focused on early post repair rehabilitation approaches 

and specifically the effect of early vs late passive movements on functional outcomes and cuff 

healing.  Shen et al. (2014) 21 evaluated three RCT studies with 256 patients on total and noticed 

that there is not any evidence showing that immobilization after arthroscopic rotator cuff repair 

was superior to early-motion rehabilitation in terms of tendon healing. They identified that the 

subjects in the early-motion group regained their ROM more rapidly, with more external 

rotation at 6 months and a similar functional outcome compared with the immobilization group. 

Chang et al. (2014) 151 have also compared three RCT studies in respect of delayed vs early 

motion therapy. The delayed group required at least 4 weeks of shoulder immobilization, but 

shoulder pendulum exercises were permitted during this period. Early mobilization was defined 

as passive shoulder ROM exercises beginning within the first 2 weeks after cuff repair surgery. 

This meta-analysis could not identify any significant differences in functional outcomes and 

relative risks of recurrent tears between delayed and early motion in patients undergoing 

arthroscopic rotator cuff repairs. Riboh et al. (2014)152 have also compared early passive motion 

with strict sling immobilization during the first 4 to 6 weeks after surgery. They selected five 

RCTs and their meta-analysis suggested that after primary arthroscopic rotator cuff repair of 

small to medium tears, early passive motion resulted in improved forward flexion and external 

rotation at 3 months. In this analysis, re-tear rates at a minimum of 1 year of follow-up were not 

clearly affected by type of rehabilitation. These reviews can be a guide for clinicians to 

implement passive ROM exercises as early as possible after rotator cuff repair. Recently (2015), 
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a comprehensive meta-analysis compared the effect of early or delayed active range of motion 

on cuff healing.153 Although there are not enough studies comparing the effect of early or 

delayed active motion on cuff integrity, this meta-analysis extracted the data from different 

studies on rotator cuff repair healing and compared the post-op protocols for 2251 repairs. In 

their investigation, the risk of a structural tendon defect was higher in the early versus delayed 

group for the tears ≤ 3 cm and repaired by trans-osseous plus single-row suture anchors. For 

tears > 3 cm, the risk of a structural tendon defect was higher in the early versus delayed group 

for suture bridge repairs and all repair methods combined. Finally, for tears > 5 cm, the risk of 

structural tendon defect was higher in the early versus delayed group for suture bridge repairs. 

They concluded that early active ROM may be harmful to the healing process for small and 

large tears regardless of repair method, and thus might not be advisable after rotator cuff repair. 

They suggested that delaying active ROM by at least 6 weeks after rotator cuff repair might be 

more appropriate for healing the tissue.  

The above studies indicate that the repair site is better to be preserved from tensile forces 

and harmful loading by a period of immobilization. Passive ROM exercises may be applicable 

in this period without augmenting the risk of re-tear, but active ROM exercises are better to be 

avoided in the early period after rotator cuff repair. However, these studies could not determine 

the best method of immobilization as well as the best timing for passive ROM exercises.  

 Clinical Application & Challenges 

            Both animal and clinical studies on rotator cuff tendon repair are in favor of applying a 

period of immobilization post-repair for better healing result. However, the risk and benefits of 

early passive mobilization versus complete immobilization for tendon healing are not clearly 

identified in those studies. While animal studies are mostly in favour of more conservative 

approach after cuff repair, clinical studies are challenging the application of early passive ROM 

exercises.  As mentioned earlier, basic science studies have shown that some loads are necessary 

for remodeling and maturation of healing site and provided theoretical support for early 

functional rehabilitation. However, timing and type of loading are still the matter of debate. It 

should be noticed that most recurrent tears develop within three to six months following 

surgery,154,155 making functional rehabilitation more challenging during this time period. Could 
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we consider some type of exercises or activities that impose safe range of load on cuff muscles 

and hence repaired tendon while respecting the beneficial effect of shoulder immobilization? 

This is exactly what I aim to challenge in this dissertation through my research studies.  

It should be reminded that healing process is a multifactorial phenomenon and different 

internal and external factors influence on it. Therefore loading or mobilization should not be 

considered as an isolated factor, and hence, a unique regimen cannot be applied to everybody. 

Other influencing factors may affect the aggressiveness of therapy and mobilization protocols.  

Wilk et al. (2000)156 listed eight factors that can significantly affect the decision making 

regarding a proper rehabilitation strategies (Table 3). Identifying these factors may help 

clinicians to determine how to proceed the treatment plan to help the tendon successfully heal 

to the tuberosity after repair. Major factors such as patient’s age, size and chronicity of the tear, 

and muscle fatty degeneration and atrophy cannot be controlled, but they affect rehabilitation 

protocol. For example, patents with larger tears may have more muscle retraction that needs 

more tension and mobilisation of tendon to be attached to its bony insertion, so less aggressive 

physiotherapy may be more appropriate in those cases. It was suggested that fatty degeneration 

of the infraspinatus muscle can serve as an independent predictor of the postoperative integrity 

of the rotator cuff.92 The surgeon’s choice of repair technique can also affect postoperative 

rehabilitation regimens for the patients. For example, the patients with traditional open cuff 

repairs, may not be able to perform any active deltoid contraction for a couple of weeks, but in 

case of mini-open surgery, mild deltoid contraction in the earlier phases of rehabilitation may 

be feasible.  
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Table 3: Factors affecting rehabilitation protocol 

Factor Details 
Type of repair Open surgery, Mini-open or arthroscopy 
Type of tear Tear size, Number of tendons involved 
Tissue quality Good, Fair, poor 
Location of tear Superior, superior to posterior, superior to anterior 
Onset of tissue failure Acute vs gradual onset, Timing of repair 
Patient variables Age, dominant vs. non-dominant arm, pre-injury level, 

desired level of function (work/sport), comorbidities 
Rehabilitation situation Supervised vs. non-supervised  
Surgeon’s preference Aggressive approach vs. conservative approach 

Table derived from Wilk et al.156 with some modifications. 

 

           To determine the optimal method of rehabilitation, the clinician should know how to 

balance the risk of structural failure with an increased risk of stiffness. Biomechanical and 

histological understandings of rotator cuff tendon to bone healing are necessary to safely 

manage post rotator cuff repair rehabilitation protocols. Most of the therapy protocols respect 

the basic science findings in tendon healing such as the histological timing of repair, the effect 

of loading on tendon healing, and controlling the tension on repaired tissue. It should be noticed 

that clinical study in the early phases after rotator cuff surgery is limited by ethical and technical 

considerations, therefore, relying on basic science findings is sometimes the only available 

option.  However, clinicians may use all the persisting data in addition to experts’ opinions or 

their personal experience to design a rehabilitation plan and individualize it according to the 

patient’s situation. Figure 4 shows the common approaches for rotator cuff rehabilitation. In this 

figure two rehabilitation protocols are exemplified: protocol 1 is suggested by Wilk et al. 

(2000)156 who are in favor of more aggressive rehabilitation and protocol 2 was offered by Miller 

et al. (2011) 155 with more conservative approach.  
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Figure 4: Schematic rehabilitation approaches, comparing two protocols with different timing 
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2.3 IMMOBILIZATION PROTOCOLS 

 Positioning: Sling vs Abduction Orthosis 

Shoulder immobilization in early phases after surgery is widely prescribed by most 

clinicians. However the method of immobilization varies. Most clinicians prescribe a sling or 

an abduction orthosis (Fig 5). Choosing between sling and abduction orthosis may depend on 

the type of injury and the amount of abduction required to repair rotator cuff tendon with little 

or no tension. Watson et al. (1985)157 in their study on 89 patients after rotator cuff repair 

reported that repair followed by splinting in abduction gave no better results than repair followed 

by resting the arm at the side.  The poor results in their study were associated with larger cuff 

defects, more pre-operative steroid injections and pre-operative weakness of the deltoid muscle. 

Apart from this study, most other studies supported the idea of immobilization in an abduction 

position. It was reported that holding the arm in the resting position of adduction and neutral 

rotation could result in a hypovascularity of the supraspinatus 44 and eventually compromises 

the repair. Andres et al.158 in an ovine model, demonstrated that increased abduction is 

associated with reduced tension and glenoid contact pressures and advised the use of abduction 

orthosis when the tension of repair is high.  In a cadaveric study,159 rotator cuff tear was created 

and repaired under a 3-kg tensile force with the arm in adduction. Strain on the repaired tendon 

was measured at 0°, 15°, 30°, and 45° of elevation in the sagittal, scapular, and coronal planes 

and from 60° of internal rotation to 60° of external rotation. The results showed that the strain 

level decreased significantly with the arm elevated more than 30° irrespective to the plane. 

However, stress level at above 30° of elevation in the scapular and coronal planes, increased 

with internal rotation and decreased with external rotation. They concluded that more than 30° 

of elevation in the coronal or scapular plane and rotation ranging from 0° to 60° of external 

rotation compose the safe range of motion after repair of the rotator cuff. Likewise, Howe et al. 

(2009)160 in a cadaveric study monitored the  tensions on sutures in 12 different positions after 

rotator cuff repair. In this model, 30° of either internal or external rotation of the arm in relation 

to the plane of the scapula created substantial imbalances in the tension between the most 

anterior and most posterior sutures of a supraspinatus repair, regardless of the position of 

abduction. They suggested that external rotation stretching should be avoided during the healing 
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of supraspinatus repairs to prevent tension overload in the critical anterior sutures. In a similar 

study, Kulwicki et al. (2010)161 reported that shoulder abduction from 45° to 60° had little effect 

on anchor tensions, however, 45° internal and external rotation significantly increased loads on 

the anterior and posterior anchors by at least 125%. Although these last two studies quantified 

the tension levels on suture anchors but none of them could identify how much tension might 

be detrimental for the repair. Reilly et al. (2004)162 by using a combination of intraoperative 

measurements and cadaveric measurements quantified the relationship between passive tension 

of rotator cuff repairs and arm position and examined the effect of this tension on repair gap 

formation. In that study, an increase of 30° in abduction posture from neutral led to an average 

decrease in passive tension of 34 N, and an imposition of this tension in a cadaveric repair led 

to gap development. Finally, Jackson et al. (2013)163 in our biomechanical lab, developed a 

generic musculoskeletal model of the shoulder to simulate postoperative immobilization of 

rotator cuff tears and verify the optimal postoperative immobilization postures that minimized 

the stresses in the repaired tendons. The results of this study recommended against using a 

standard sling, where the forearm is held against the abdomen, instead supporting the use of 

orthoses that elevate the humerus. Recently, Conti et al. (2015)164 studied the clinical effects of 

two different braces after rotator cuff repair. In this study the upper limbs of 40 patients were 

immobilized either in a 15° of external rotation brace (ER Group), or an internal rotation sling 

(IR Group). They found that at short time after repair of isolated supraspinatus and also 

associated tear of infraspinatus, patients in ER group showed less pain and a better passive 

ROM. They did not find significant functional differences at 6 months of follow-up, however, 

patients immobilised in abduction and ER brace still showed a slight advantage in ROM.  

It should be noticed that none of the previous studies addressed the positions of elbow 

and wrist in their immobilization protocols. Actually, most common slings or abduction 

orthoses, in addition to shoulder immobilization, routinely immobilize elbow and wrist joints 

(Figure 5).  There is not any scientific evidence to support that elbow and wrist immobilization 

can reduce the level of loading and stress on the repaired tendon and hence help the healing. 

Respecting all the beneficial effects of immobilization in abduction position, we used abduction 

orthoses for our studies (produced by Médicus and Otto Buck), but small modifications have 

been performed on Médicus Orthosis in a way that the subjects could mobilize their elbows in 
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horizontal plane and move their wrists in a full ROM. The orthoses that we used will be 

presented in chapter 3. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (Derived from google image, public advertisements) 

 Duration of Immobilization 

The exact timeline for healing after rotator cuff repair in human body is unknown and 

so, there is not enough data showing the exact duration of immobilization for optimal tendon to 

bone healing. However, one study has found that 8 weeks of immobilization did not yield a 

higher rate of healing of medium-sized rotator cuff tears compared with 4 weeks of 

immobilization and increased the stiffness level.149 Some authors tried to extract some 

Figure 5 : Common shoulder orthoses  
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conclusions from the current data and rationalize the immobilization duration according to the 

type of injury or repair. For example, Cohen et al. (2002)165 suggested when tension of repair is 

minimal or none with arm at the side, a simple sling can be used for immobilization. They 

suggested immobilization for 1-3 weeks for small tears, 3-6 weeks for medium tears and 6-8 

weeks for large and massive tears. They added when the minimal tension of repair is achieved 

by positioning the arm at 20-40˚ of abduction, then, using an abduction orthosis is more 

advisable. This type of orthosis is suggested to be used 6 weeks for small and medium sized 

tears and 8 weeks for large or massive tears. Wilk et al. (2000)156 introduced three types of 

rehabilitation programs based on the patient’s situation and tear size. Type I program is used for 

small tears in younger patients with good to excellent tissues. Type II is used for medium to 

large sized tears in active individuals with good tissues and type III is designed for large to 

massive size tears in patients with tenuous repair and fair to poor tissue quality. In type I 

program, 7-10 days immobilization by sling is recommended and achieving full ROM is planned 

for 4-6 weeks. In type II, 2-3 weeks immobilization by sling is suggested with full ROM in 8-

10 weeks. For more conservative program in patients with large to massive tears, abduction 

pillow for 1-2 weeks, followed by sling immobilization for 2-3 weeks is recommended and full 

ROM is planned to be achieved in 10-14 weeks. Looking at rehabilitation literature, different 

protocols for post rotator cuff rehabilitation can be found. Most of these recommendations are 

not based on clinical studies and they are simply the experts’ opinion. However, each study has 

its own justification based on the data provided by histological, physiological and biomechanical 

studies. In this respect, the biomechanical studies of the present manuscript can provide some 

basis for the extent of immobilization but cannot address the duration of immobilization.    

 Safe Exercises during Immobilization  

Determining the safety level of a rehabilitation exercise is not an easy task. In clinical 

settings, an exercise can be considered safe if it does not increase the risk of re-tear which is the 

failure of surgery or post-op complications such as stiffness, inflammation or pain. Longitudinal 

clinical studies or randomised clinical trials can verify the safety of post- repair rehabilitation 

exercises, but unfortunately this type of studies is very few and therefore, most rehabilitation 

protocols are based on experts’ views, case series or basic studies. As mentioned before, 

histological and biomechanical studies explained the nature of healing and the contributing 



  

47 

 

factors in the healing process. Tension, force and torque are the common parameters being 

measured to determine the safety. High forced exercises and the activities that increase the 

tension on the repaired tendon are considered non-safe. But quantitative studies regarding the 

exact amount of force or torque that can deteriorate the repair healing is still lacking. EMG 

studies have provided a core conception for many rehabilitation programs. Higher EMG activity 

may indicate higher force generation within the muscle that may cause higher stress on tendon. 

This concept although has been usually used in EMG studies to scale the safety level. More 

explanation can be found in section 2.4 when EMG is deliberately discussed.  

The exercises listed below are commonly prescribed for patients in the first phase of 

rehabilitation, corresponding to the first 4-6 weeks after rotator cuff surgery.  

2.3.3.1 Shoulder Range of Motion Exercises 

Table 2 presented the current data regarding the mobilization in the early phase after 

rotator cuff repair. Re-establishment of a safe range of motion after rotator cuff surgery has a 

paramount importance; however, the exact timing for starting ROM exercises is not clear. Two 

recent meta-analysis151,152 suggested that early passive ROM (PROM) could decrease stiffness 

but in case of large tendon tears might result in improper tendon healing. Some authors156 

recommended PROM exercise in scapular plane with 45˚ of internal and external rotations 

immediately the day after surgery in patients with small to medium sized tears and  good tissues, 

but for patients with large to massive tear, pendulum exercise and PROM are suggested to be 

conducted more gradually in the first week post-operation. Others165 supported the application 

of PROM exercises in the first week after operation in the ranges that are dictated by safe 

shoulder motion in the operating room irrespective to the tear size. They recommended 140° of 

forward flexion, 40° of external rotation with the arm at the side and 60° of abduction without 

rotation.  There is not any consensus in the timing of PROM exercises. 

Most clinical data are discouraging early active ROM (AROM) in the first phase of 

rehabilitation concerning that it may increase the rate of re-tear.153  AROM is usually postponed 

for 6-8 weeks post-operation according to the tear size and patient’s progress. However, active 

assisted ROM in the later periods of the first phase of rehabilitation is usually prescribed. Few 

studies have shown that earlier AROM could improve the patient’ functional scores.141,143 
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2.3.3.2 Elbow and wrist exercises  

In most rehabilitation protocols, PROMs for elbow and wrist joints are performed during 

the first phase and gradually progressed to AROM. Isotonic exercises for elbow are advised near 

the end of the first phase as well as gripping exercises. Lifting of objects is usually discouraged. 

No study evaluated the effect of elbow, wrist or hand motions or resistance exercises on rotator 

cuff muscles. This topic is one of the main objective of my thesis which will be discussed in 

section 3.1 and 3.2.  

2.3.3.3 Core body exercises 

Some clinicians recognize the need to address the trunk and legs as the contributors of 

shoulder function. Kinetic chain shoulder rehabilitation integrates the exercises of legs and trunk 

with other shoulder exercises from the beginning of the rehabilitation program. It is believed 

that this type of rehabilitation would reinforce normal movement patterns and focus on the entire 

neuromuscular system.166  

 

No resisting workout for rotator cuff muscles is allowed to be performed until 3-6 

months after operation. However, if an exercise does not highly activate cuff muscles, or impose 

little tension on the repaired tendon, but highly activate the other shoulder muscles, it should be 

theoretically applicable in this period. My research studies will follow the same concept. I will 

suggest the exercises and positions that cause low activation within the rotator cuff muscles 

while some shoulder muscles are moderately active. We also present some type of exercises that 

involve a small range of arm active adduction and passive abduction. This issue will be 

discussed in section 3.2 
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2.4 EMG AND REHABILITATION STUDIES 

 An Introduction to EMG 

(All the materials in this section and its sub-sections have been derived from the references 167-

169). 167-169  

Electromyography (EMG) is an experimental technique for studying the muscle function 

and dysfunction. The basis for EMG is development, recording and analysis of myoelectric 

signals which are formed by physiological variations in the state of muscle fiber membranes. 

EMG can be used in both clinical and basic science studies, however, there are many practical 

and technical considerations in the application and interpretation of EMG signals. As many 

papers that analyse muscle activity during shoulder exercises (like my studies) involve the use 

of EMG, it is important to understand what EMG is, how the signals are interpreted and what 

information EMG can and cannot provide. 

2.4.1.1 Molecular and chemical Basis  

            The Neural and skeletal muscle membranes are the main seat for bioelectric changes that 

result in EMG signals. Cell membrane potential is an electrical potential difference across the 

membrane which is dependent to the ionic concentration on each side of the membrane. The 

transmembrane potential is zero when concentrations of negatively and positively-charged ions 

are equal on each side. This equilibrium is maintained by ion channels through them the ions 

can be transferred across the membrane, down their electrochemical transmembrane gradients. 

Generally, channels will allow the passage of positively or negatively charged ions, but not both. 

When the K+ channels open, K+ ions, which have higher concentrations in the cytoplasm, 

diffuse down their concentration gradient through the membrane. However, negatively-charged 

counterbalancing anions, such as proteins, other organic anions and chloride, cannot cross 

through the K+ selective ion channels and this imbalance creates a negative electrical potential 

in cytoplasmic side. The resting potential of muscle fiber membrane is approximately -70 to -

90 mV. This negative potential drives K+ ions back across the membrane into the cytoplasm. 

The membrane contains voltage-gated Na+ channels too that permit the rapid passage of Na+ 

ions. At rest, the membrane is more permeable to K+ than to Na+.  
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           Excitation transferred by a motor neuron causes Na+ channels open more rapidly than do 

K+ channels and Na+ ions flow in (depolarization). This influx of Na+ further depolarizes the 

membrane and continues until a critical threshold potential is reached, when Na+ influx exceeds 

K+ efflux. In this situation, there is an explosive positive cycle of opening of Na+ channels, 

results in an action potential (AP) often called a ‘spike’. At this peak positive level, membrane 

permeability to Na+ may be up to 50 times than to K+. If a certain threshold level is exceeded 

within the Na+ influx, the depolarization of the membrane causes an action potential to quickly 

change from –70 mV up to +30 mV which is immediately restored by backward exchange of 

ions within the active ion pump mechanism; the repolarization. In repolarization, the 

membrane potential returns to negative values due to inactivation of voltage-gated Na+ channels 

and it may become, briefly, more negative than the resting potential of the axon membrane 

(hyperpolarizing) because K+ channels dominate electrical determinants of the membrane 

potential. As more K+ channels become inactivated, membrane potential returns to the resting 

value. Figure 6 illustrates the above explanations. 

 

 

Figure 6: EMG Signal Cycle 
‘Figure derived from google image, labeled for re-use with modification’ 

 

          The neuromuscular junction is the synapse where electrical information is chemically 

transmitted from nerve to skeletal muscle. The nerve is the motoneuron, which has its cell body 

in the spinal cord, and whose axon terminates at the motor end-plate of the muscle (Fig 7). The 
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smallest subunit in a muscle that can be controlled is a motor unit because it is innervated 

separately by a motor axon. 

 

 

 

Figure 7: Motor Unit 

‘Figure derived from google image, labeled for re-use with modification’ 

The electrical information from nerve is transduced to a chemical signal in the form of a 

neurotransmitter, (acetylcholine) which is transduced back to an action potential (AP) in the 

muscle. Starting from the motor end plates, the action potential spreads along the muscle fiber 

in both directions and inside the muscle fiber through a tubular system. This excitation leads to 

the release of calcium ions, which trigger the fusion of vesicles full of acetylcholine with the 

nerve terminal membrane, and this results in the opening of the receptor channel to Na+. The 

resultant stimulation of the muscle end plate is called an end plate potential that in turn opens 

voltage-gated Na+ channels to cause the AP to fire off and finally produces a shortening of the 

contractile elements of the muscle cell.  

            In a healthy muscle, any form of muscle contraction is accompanied by the described 

mechanisms. The EMG signal is based upon APs at the muscle fiber membrane resulting from 

depolarization and repolarization processes. The extent of this depolarization zone is 

approximately 1-3 mm² and this zone travels along the muscle fiber at a velocity of 2-6 m/s and 

Motor End 

Plate 
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passes the electrode side. A motor unit may contain widely different numbers of muscle fibers, 

ranging from 10 to 15 in the extra-ocular muscles to over 500 in large limb muscles such as the 

gastrocnemius. Each muscle has a finite number of motor units, each of which is controlled by 

a separate nerve ending. In each fascicle of muscle fibers, usually several motor units are 

represented in a scattered fashion. A single motor unit may occupy a relatively large portion of 

a cross section of a muscle, called the motor unit territory. In human limb muscles, the average 

motor unit territory has an irregular round shape with a diameter of about 10 mm. Excitation of 

each unit is an all or nothing event, it means that all the muscle fibers of a motor unit are 

discharged nearly synchronously upon the arrival of a nerve impulse along the axon and through 

its terminal branches to the motor end plates. The electrical signal generated in the muscle fibers 

as the result of recruitment of a motor unit is a motor unit action potential (MUAP). 

Depending on the type of electrodes used, the recorded MUAP can be derived from APs of a 

small number of muscle fibers (1–3), a moderate number of muscle fibers (15–20), or a great 

majority of muscle fibers (several hundreds). Electrodes placed on the surface of a muscle or 

inside the muscle tissue will record the algebraic sum of all MUAP’s being transmitted along 

the muscle fibers at that point in time.  

2.4.1.2 Detecting EMG signals: surface vs intramuscular electrodes 

Based on the size and site of the muscle under investigation, EMG signals can be 

detected by intramuscular or surface electrodes. The detection electrode is typically bipolar and 

the signal is amplified differentially. Surface electrodes which consist of disks of silver/silver 

chloride metal, generally detect the activity of superficial muscles, e.g. deltoid or pectoralis 

major. To determine the activity from muscles located deep in the body, assessment of fine 

movements and for recording motor unit activity, the indwelling electrodes are more 

preferable.170  Therefore, the activities of deep rotator cuff muscles are better to be detected by 

indwelling electrodes.  

In kinesiological EMG, the most common type of intramuscular electrode in use is the 

fine wire electrode which consists of a pair of extremely fine nylon-coated wires (diameter of 

50μm or less) placed in situ by means of a hypodermic needle. The needle is withdrawn and a 

small hook or barb at the end of the wires keeps them in the muscle (Figure 8). Such electrodes 
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may be driven easily into the belly of a deep muscle without anaesthesia causing no more pain 

than that resulting from the needle puncture itself. Fine wire recording have an increased 

sensitivity to power hum because of the unshielded wire endings. Therefore, it is important to 

check and establish the electrical environment during intramuscular EMG studies.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 presents the advantages and disadvantages of intramuscular EMGs. Fine wire 

electrodes have a small detection area and they record from a more localized area of the muscle, 

thus this technique gains a better degree of specificity. The minimal diameter of recording wire 

is particularly suitable for dynamic EMG analysis. However, they may be criticized on the basis 

that the small sample area is not representative of the whole muscle,171 especially if motor units 

are not homogeneously distributed throughout the muscle body. In addition, a disadvantage of 

 

1)*  2)* 

3) 
4) 

Figure 8: Insertion technique for fine wire electrodes 

1) Needle with wires, 2) insertion of the needle into the muscle, 3) needle is withdrawn, 4) fine 

wires are hooked in the muscle, * derived from Rudroff (2008)177 
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the fine wire technique is that its reliability coefficients are lower than for surface electrodes.172 

Although fine wire electrodes can be manipulated while monitoring EMG activity and are 

suitable for clinical investigations, accurate placement of fine wire electrodes is more difficult 

than with surface EMG. They must hook into the desired muscle layer and cannot be 

repositioned once inserted. Finally, the invasive insertion technique, makes intramuscular EMG 

more challenging from both technical and ethical standpoints. However, fine wire electrodes are 

superior for prolonged and non-clinical investigations of muscle function because they are 

hooked in the muscle fibers and therefore move with the fibers ensuring that the recording area 

is the same.  

Intramuscular EMG is the preferred method for detecting the activity of rotator cuff 

muscles in shoulder studies. In all studies presented in this dissertation, we used fine wire 

electrodes to evaluate the activity of rotator cuff muscles. Appendix 3 deliberately explains the 

methods of needle insertion in each of the four rotator cuff muscles that we used in our 

biomechanics lab. 

Table 4: Advantages and disadvantages of fine wire electrodes 

Advantages Disadvantages 
More sensitive Invasive technique 
Better specificity Repositioning is impossible 
Access to deep muscles Small detection area 
Lower cross-talk Increased sensitivity to power hum and 

motion 

 

Surface EMG is non-invasive and detects activation from a wider volume of the muscle. 

However, EMG recordings from thin and deep muscles are difficult to obtain due to crosstalk 

from adjacent muscle layers. Crosstalk is the signal detected over a muscle but generated by 

another muscle close to the first one. This phenomenon is present exclusively in surface 

recordings, when the distance of the detection points from the sources may be similar for the 

different sources. Crosstalk is one of the most important sources of error in interpreting surface 

EMG signals. This is because crosstalk signals can be confounded with the signals generated by 

the muscle, which may be considered active when indeed it is not. Crosstalk is a major problem 

when surface electrodes are used in the shoulder region. However, when large muscle groups 
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such as the trapezius, pectorals major or deltoid muscles are investigated, surface electrodes 

give a more global evaluation of muscle activity than do fine wire electrodes, which measure a 

rather small selection of muscle fibers. Winter (1994) 173 estimated that 90% of a surface EMG 

signal has its origin within a 12-mm distance from an electrode pair. As crosstalk is usually 

caused by distant motor units, it primarily contributes low frequency components to the EMG. 

By processing the EMG through a differentiator, the higher frequency (closer) MUAP’s are 

emphasized while the lower-frequency (further) MUAP’s are attenuated.167,174  

In our studies we used surface electrodes for three parts of deltoid, three parts of 

trapezius, latissimus dorsi, pectoralis major, biceps, triceps and serratus anterior. Some 

researchers prefer fine wire electrodes rather than surface electrodes to detect the activity of 

serratus anterior. There is an study175 indicating that intramuscular electrodes could be 

representative of activity in serratus anterior as surface electrodes, however, intramuscular 

electrodes are better for investigation of lower serratus anterior activity pattern during functional 

activities that cause considerable displacement of surface electrodes. In that study, the 

researchers could not find any evidence indicating that crosstalk is contaminating the signals 

recorded from the surface electrodes. We preferred to use superficial EMG to detect the activity 

of serratus anterior, because our main interest was rotator cuff muscles and we intended to 

minimize the number of invasive procedures especially for our patient population. In addition, 

most of our experiments have been performed while the shoulder was immobilized and hence, 

the possibility of surface electrode displacement was minimal (Figure 9). 
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Figure 9: the location of surface electrodes for serratus anterior in respect to the arm position   

2.4.1.3 EMG signals: how they behave, how we treat them  

The healthy relaxed muscle shows no significant EMG activity due to lack of 

depolarization and action potentials. With proper skin preparation, the averaged baseline noise 

should not be higher than 3-5 microvolts. By muscle activation, EMG signals appear. The EMG 

signal is a time dependent signal whose amplitude varies in a random nature above and below 

the zero value. Raw surface EMG amplitude can range between ±5 mV while the indwelling 

electrodes can have larger amplitude up to 10 mV as recorded during maximal voluntary 

contraction (MVC) testing. Typically the frequency contents of EMG range between 5 and 500 

Hz, showing most frequency power between ~ 20 and 150 Hz. The shape of recorded AP of a 

muscle fiber is typically triphasic, and the signal amplitude decreases exponentially as the 

distance between the electrode and the muscle fibers from which the recording is made 

increases. Thus the contribution of any individual muscle fiber to the MUAP amplitude crucially 

depends on its distance from the active electrode surface. A change of the shape of the MUAP 

changes the frequency content of the EMG signal. The amplitude of the action potentials is 

dependent on the diameter of the muscle fiber, muscle length and muscle fatigue.170,174 In 

addition, the number of muscle units (MUs) and their density can affect the signal complexity. 

Smaller muscles, such as the first dorsal interosseous, compared to larger muscles, such as the 
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biceps brachii, have fewer MUs and use large amounts of rate coding. Therefore, for comparable 

maximal contractions, smaller muscles will on average generate more complex signals than 

signals detected in larger muscles.176  

           Raw EMG by itself contains valuable qualitative information about “off-on” and “more-

less” characteristics of muscle activity. But for quantitative amplitude analysis, specific signal 

processing steps should be applied to increase the reliability and validity of findings. First of all, 

to avoid anti-aliasing effects within sampling, a special band-pass filter for the amplifier should 

be set. A filter is a system that allow certain frequency to pass to its output and reject all other 

signals. Low end cut-off removes electrical noise associated with wire moving and biological 

artifacts. High end cut-off eliminates tissue noise at the electrode site. Recommended range of 

the EMG amplifiers is 10-1000 Hz for surface electrodes and 20-2000 Hz for indwelling 

electrodes. Considering the special setting of our EMG machine (Model15A54, Grass 

Technology), we used bandwidth 10-1000 Hz for surface electrodes and 10-3000 Hz for 

indwelling electrodes. In certain situation, application of additional digital filtering is suitable. 

“Notch filters” cancel out certain frequency contents of the signal, e.g. 50 or 60 Hz artifact 

cycles of electrical noise. The signal loss is acceptable for amplitude oriented analysis like the 

studies in this dissertation, but for EMG investigations using frequency analysis parameters, 

notch filtering should not be used because signal energy loss can occur.  

The raw EMG spikes are of random shape, which means one raw recording burst cannot be 

precisely reproduced in exact shape. This is due to the fact that the actual set of recruited motor 

units constantly changes within the matrix/diameter of available motor units. If occasionally 

two or more motor units fire at the same time and they are located near the electrodes, they 

produce a strong superposition spike. To address this problem, the non-reproducible part of the 

signal should be minimized while the mean trend of signal should be outlined. This processing 

of EMG signals contains three parts:  

1) Filtering again! In most EMG studies, Butterworth filtering is commonly used. The 

Butterworth filter is an optimal filter with maximally flat response in the passband. This 

passband frequency must be decided by the analyzer, once it can depend on the intentions of the 

study. Usually, this frequency is fixed between 20 and 450 Hz, because normally 80% of the 

muscular energy is concentrated in this range. We set the frequency at 20-400 Hz for our EMG 

studies. 
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2) Rectification: EMG contains a varying negative, positive alternative current signal. By 

rectification, all negative values converted to positive values and by adding the total values, turn 

all the signal values integrative, (absolute value).   

3) Smoothing: Like filtering the aim of signal smoothing is to taking out the extremes. 

Smoothing creates a linear envelope in the signal, leaving only a center part of the signal. The 

mainly difference between the smoothing and the filtration, is that filtration takes in account the 

muscle activation range, and in smoothing the signal obtained itself. Two algorithms are 

generally used: 1) Moving average: in this method, the user defines a time window, then, a 

certain amount of data are averaged using the gliding window technique. It relates to information 

about the area under the selected signal epoch. 2) Root Mean Square (RMS): reflects the mean 

power of signal based on the square root calculation. RMS is the preferred method for 

smoothing.168 Both algorithms are defined for a time window which typically changes between 

20 ms for fast movement to 500 ms for slow or static activities. For our studies, we chose RMS 

algorithm with a time window of 100 ms. By applying a smoothing algorithm or selecting a 

proper amplitude parameter the non- reproducible contents of the signal is eliminated or at least 

minimized.167,170,177 How these smoothed signals should be interpreted? The next section will 

answer this question. 

2.4.1.4 Normalization: how to interpret the EMG signals 

A generalized representation of the EMG signal must contain a formulation which allows 

a comparison of the signal between different muscles and individuals. Therefore, for accurate 

documentation of the muscle activities between muscles or between conditions, some type of 

normalization is required. The goal of any normalization technique is to identify a relative 

reference point that is consistent across muscles, across exertions, as well as across subjects to 

ensure that EMG signals are useful in identifying muscle dysfunction and evaluate treatment 

outcome. Here I introduce different methods of normalization for shoulder muscles and the ones 

that we used for normalizing our data. 

 

1- Maximum Voluntary Isometric Contraction  
Maximum Voluntary Isometric Contraction (MVIC) is the most popular method of EMG 

normalization which is commonly used for EMG studies of shoulder musculature. In this 
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method, the maximal contractions are performed against static resistances. Different studies 

tried to identify the optimal manual muscle testing positions that elicit maximal neural activation 

for shoulder muscles.178 179 180  Considering the popularity of this method, we used MVIC for 

normalizing the EMG data of our healthy subjects. However, we acknowledge that this method 

has its own specific limitations: First, the reproducibility of MVIC for different muscles is under 

question.181 Normal subjects may have problems producing a true MVIC contraction level, for 

not being used to such efforts. Without training, the MVIC could be as much as 20-30% less 

than that obtained after appropriate training.182 The reproducibility of this reference point also 

depends upon the level of motivation solicited during the exertion. In other word, MVIC 

normalization method relies upon a “true” maximum exertion, while MVIC may vary depending 

upon the training and motivation of the individual. This MVIC variability may influence the 

interpretation of the EMG signal and may introduce some level of experimental error. To 

overcome this problem, Baratta et al. (1998)183 introduced a method that required the subject to 

perform a maximum exertion, followed by a series of successive exertions that increased by 

10%. Once the subject was no longer able to achieve a targeted exertion, the previous successful 

level was identified as the MVIC. However, this method is very time consuming and has limited 

utility. In our lab, we trained our subjects how to perform each MVIC test by showing them the 

exact positioning by PowerPoint slides and one of the researchers corrected their positions in 

the try-outs. The verbal encouraging method has been also applied.   

Second, logically patients cannot or should not perform MVICs with injured structures. 

In addition, EMG activity level can change with soreness or pain. It has been shown that sore 

muscles following repetitive eccentric exercise would have lower strength, 184,185 and therefore 

cannot create maximal contractions. Furthermore, muscle pain, even in the absence of obvious 

pathology (such as the cases with fibromyalgia) can reduce MVIC level 186,187 and EMG activity 
188. It is not clear if the pain of indwelling electrodes can affect the MVIC values or not. Anyway, 

we know that the patient with pain, soreness and discomfort may show lower level of MVIC 

and it may affect the normalization process. That is why we did not use this method in our third 

study on symptomatic cuff patients.  

Third, MVIC normalization is also criticized for EMG studies of an unrestricted dynamic 

task, such as walking or cycling. In these studies, the data may be normalized with respect to an 

EMG value taken during a single maximum voluntary contraction performed at one reference 



  

60 

 

joint angle, while at different joint angles, there are changes in the length/tension relationship 

of the muscle which would cause changes in the maximum EMG value.189 As most of our studies 

on shoulder musculature was performed when the shoulder was immobilized, so the latter critic 

is not relevant to our cases.  

2- Sub-maximal voluntary isometric contraction (sub-MVIC) 
In this method, the peak EMG from a submaximal isometric voluntary contraction is the 

reference point. According to Yang and Winter (1983) 181, this method has superior reliability 

and can provide a more stable reference value. However, determining the actual relative level 

of effort for a given muscle in a multiple muscle system is problematic particularly for arbitrarily 

selected sub-maximum exertions. Dankaerts et al.(2004)190 compared MVIC and sub-MVIC 

methods for interpreting the EMG of trunk musculature. They found excellent within-day 

reliability for both MVIC and sub-MVIC methods in healthy controls and patients with low 

back pain. However, the reliability of sub-MVIC in between-days was higher than MVIC 

method in both groups. As our studies did not include between-day comparisons, we preferred 

to use the maximal values for EMG normalization in two of our research studies.  

3- Maximal or Sub-Maximal Dynamic Voluntary Contraction 
In this method, the peak EMG from a maximal non-isometric voluntary contraction with 

the same muscle action, and joint angle or muscle length is the reference point. In angle and 

angular velocity specific maximal isokinetic voluntary contractions, the peak EMG from a 

maximal isokinetic voluntary contraction with the same muscle action, joint angle or muscle 

length is used for normalization. Burden and Bartlett (1999)191 compared four different methods 

of normalising EMG signals from the biceps brachii, including isotonic contractions of the 

elbow flexors with an external force of 50 N, 100 N, 150 N and 200 N, followed by a single 

isometric maximal voluntary contraction (MVC) and ten isokinetic MVCs at 0.35 rad/ s 

intervals. They suggested that only the isometric and isokinetic MVC methods should be used 

to normalise the amplitude of EMGs from the biceps brachii.   

4- Mean or Peak amplitude 
These include normalisation using either the peak or mean signal measured during a task. 

The mean or peak EMG from the task under investigation usually obtained from an ensemble 

average rather than a single trial. Although these methods do not give the information on the 
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absolute degree of activation which MVC normalisation provides, they do provide information 

about the pattern of activity. Yang and Winter (1984)192 were the first authors to discover that 

both the Mean Task and Peak Task methods reduced inter-individual variability, in relation to 

the un-normalized EMGs during walking. Morris et al. (1998)193 conducted a study to assess 

three normalisation methods (MVC, peak and mean signal) for shoulder muscles in healthy 

subjects. EMG data from shoulder musculature including the rotator cuff was collected during 

five types of exercises on an isokinetic muscle dynamometer. Interestingly the pre- and post-

exercise MVC voltages showed a marked variation which the authors contributed it to the 

migration of the electrodes during the experiments or the different recruitment pattern during 

pre- and post-protocol MVC. They criticized using MVC as a normalisation method for shoulder 

dual fine wire electromyography and suggested that normalisation using the mean or peak value 

of a movement cycle would be more appropriate because they created more similar pattern of 

activity for each of the intramuscular electrodes.  We used the mean values for normalizing the 

EMG data driven from symptomatic subjects with rotator cuff tears. This method could help us 

to evaluate the EMG pattern in certain movements, without imposing harmful contraction to 

create MVIC. 

For the dynamic events, such as gait, the peak or mean EMG can be also another 

alternative to MVC for data normalization.192 However, Knutson et al. (1994)194 studied the 

reliability of different normalization approaches by evaluating the gastrocnemius EMG resulted 

from 20 normal persons and 20 individuals with anterior cruciate deficiency during balance 

board activity. The data was normalized to MVIC, peak dynamic EMG, and mean dynamic 

EMG. They observed that the variance ratio and intra-class correlation coefficient were best 

with EMG from the MVIC which suggested better reproducibility of this method.  

 

5- EMG-Moment reference point 
Marras and Davis (2001)195 constructed a database from studies performed in their 

biodynamics laboratory. This database included individual anthropometric measurements of 

120 subjects as well as the maximum exerted trunk moments generated during MVC exertions 

for normalization purposes. They developed regression equations to predict the maximum 

contraction moments from various anthropometric measurements. In addition, they asked 20 
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subjects to perform sub-maximal and maximal exertions to determine the necessary 

characteristic exertions needed for normalization purposes. They suggested that an EMG-

moment reference point can be obtained via a set of sub-maximal exertions in combination with 

a predicted maximal exertion based upon anthropometric measurements. This method is based 

on the observation of a highly linear relationship between EMG muscle activity and trunk 

moment for most of the trunk muscles. Such a relationship for shoulder muscle has not yet been 

established. 

6- Base-line activity 
In this method, which is not very popular, the activity levels for each repetition is 

reported as a percentage of the activity observed during quiet stance at base line. This method 

is more appropriate for patients who are unable to do maximal or submaximal exertion.  Murphy 

et al. (2012)196 normalized the EMG data of shoulder musculature driven from patients after 

sub-acromial decompression surgery to compare different passive rehabilitation exercises. They 

aimed to identify and compare exercises that elicited greater activity than found at rest.  

7- EMG expressed as “Muscle Activation Ratio” 
This is another method of reporting EMG data used by de Witte et al.(2012)197 to 

normalize and report the EMG data in patients with rotator cuff tears. In this study, the EMG of 

abductor and adductor muscles were expressed using the “Activation Ratio (AR)” (−1 ⩽ AR ⩽ 

1), where lower values express more co-activation. In order to calculate the Activation Ratio for 

each muscle, muscle activation (A) during each task was qualified according to muscle specific 

primary moment arms, ‘in-phase’ (IP) or ‘out-of-phase’ (OP) with respect to its primary moment 

arm and the specific Activation Ratios were calculated by following formula:  

  
 

The decision to normalize or not normalize is based on the type of descriptions or 

comparisons that researchers want to be make. If subjects are their own control and contrasts 

are made on the same muscle within a day, without removing the electrode, normalization is not 

a big deal. But if comparisons are made between subjects, days, muscles, or studies, the 
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normalization process is required. Most studies on normal population are using MVIC for 

normalization of the EMG data. But EMG studies in patient population have used different 

normalization methods and therefore, the comparison between different reports is highly 

challenging.  

 EMG and Muscle Force 

The EMG-force relationship of skeletal muscles has been a topic of interest and 

controversy in biomechanics for few decades. In fact, two main control strategies adjust the 

contraction process and modulate the force output of the involved muscle and therefore, 

influence the magnitude and density of the observed signals: “Recruitment of MUAPs” and 

“Firing Frequency”168 An increase in the firing rates of motor unit is known to increase force 

and the integrated form of the EMG (IEMG)170 and recruited of an increasing number of motor 

units also increases muscular force and the corresponding IEMG.198 Hence, there must be at 

least a qualitative relationship between the EMG signal and the corresponding force of the 

muscle. EMG-Force relations of skeletal muscles have been described for isometric 

contractions199-201 and both linear and non-linear relationship of EMG-Force in different skeletal 

muscle have been reported.195,202 Muscles that use motor unit recruitment to obtain the initial 

50% of their maximal force, and use firing rate increase to complement the remaining 50%, 

have a nearly linear EMG-force relationship. Muscles that use recruitment to obtain 60% and 

up to 100% of their maximal force demonstrate progressive increase in non-linearity of their 

EMG-force curves.203 Generally, small muscles recruit all their motor units below 50% of their 

maximal voluntary contraction and larger muscles recruit motor units throughout the full range 

of voluntary force. So smaller muscles rely on firing rate and larger muscles rely primarily on 

recruitment to modulate their force.170 It is not clear if force production of rotator cuff muscles 

is more dependent on the firing rate or recruitment control strategy. But increasing in EMG 

activity of rotator cuff muscles may qualitatively indicate higher level of force generation and 

hence, stress within those muscles. 

Disselhorst-Klug et al. (2009)204 in their review study claimed that rather than anything 

else, muscle force can be estimated from EMG signals in geometrically well-defined situations 

during isometric contractions of limb muscles. However, the effects of muscle length and the 
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elastic properties of the muscle tissue, the tendons and the ligaments should be taken into 

consideration. In addition, it should be considered that EMG characteristics and its relationship 

to force may change with muscle fatigue. With fatigue, muscle force decreases while EMG 

activity may show different patterns of unchanged, increasing or decreasing.205  

For dynamic contractions, the EMG-force relationship is more complicated and the 

additional factors such as type of contraction, contraction velocity or contributions of other 

muscles to the resulting movement become important. It has been shown that for a given force 

generation, less motor unit activation is required for eccentric compared with concentric 

contractions. Therefore, EMG amplitude associated with negative work (muscle lengthening) is 

considerably less than that associated with the same amount of positive work (muscle 

shortening).206 Bigland et al.(1954)207 showed surface EMG amplitudes for eccentric 

contractions of the plantar flexors to be approximately 50% of concentric contractions at similar 

force levels. Similar results have been demonstrated in the elbow flexors (eccentric EMG 56% 

of concentric) 208. Therefore, EMG in regard to muscle force should be interpreted cautiously.  

However, the main focus in clinical studies is different from biomechanical studies. 

Biomechanical studies aim to quantitatively measure the amount of force produced by a muscle, 

and EMG may not be a reliable tool for this measurement. Clinical studies have more qualitative 

approach and aim to identify the exercises that might produce more or less muscle force and 

compare them with each other. Clinical studies do not care how much force a muscle exactly 

produced; they search for the possibility of higher or lower stress within the muscle that may be 

caused by bigger or smaller force generation respectively. In rehabilitation studies, the 

assumption is when a muscle has higher activity, then, it may be under higher stress. EMG 

findings have been consistent with clinical experiences. For example, lower EMG activity has 

been reported for the exercises of early phase of rehabilitation than the latter phases.7  All the 

discussions that will be presented in the following chapters are based on this assumption.  

 EMG and Injured Muscle 

         Theoretically, tissue damage may affect EMG contents through different mechanisms as 

suggested by Edgerton et al. (1996).209 First, tissue damage may stimulate pain receptors and 

the nociceptive input to the spinal cord may alter the excitation levels of multiple motor neuron 
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pools.  This latter may result in alteration of motor neurons recruitments and amplitude of 

EMG signals. Second, a ruptured or weakened muscle fiber will cause a reduction in force 

generating capacity and may also result in reduced EMG activity (hypoactivity). On the other 

hand, the nervous system can apparently detect a reduced capacity to generate force from a 

specific muscle or group of muscles and compensate by recruiting more motor neurons. This 

compensation can be made by recruiting more motor units from an un-injured area of the same 

muscle or from other muscles. Synergistic muscles would be recruited to compensate, leading 

to an unusually high level of motor neuron activity in these muscles (hyperactivity). Since the 

recruitment of some motor neurons pools would increase while the other decrease, the change 

of the ratios of the amplitude of EMG from the affected pools would be readily apparent. 

Finally, a conscious or subconscious re-education of the motor system is another mechanism 

that can explain EMG alteration. With a persistent injury, patients learn or acquire new ways 

to perform a task that enable them to avoid using musculature that is directly associated with 

the tissue injury. Neural adaptations may also occur with a chronically stretched tendon or 

muscle unit because faulty feedback on the forth-length-velocity relationship could decrease 

the load the muscle would support. Chronic compensation could also affect the spinal reflex 

pathways causing Golgi tendon organ pathways to become desensitized. 

           All the above explanations can be applicable for the changes of EMG activities in the 

injured rotator cuff muscles. Following rotator cuff tear, different types of modification in RC 

muscle integrity have been reported. The development of fatty infiltration and muscle atrophy 

of the rotator cuff musculature is a clinical problem even after surgical treatment of chronic 

rotator cuff tendon tears.210 In an animal study it has been shown that with tendon disruption, 

the muscle fibers shorten and there is an increase in the pennation angle, allowing fat to be 

deposited within the interstitial spaces between the muscle fibers.211 Interestingly the muscle 

changes that occur following chronic cuff tears differ from that observed following 

suprascapular neuropathy, especially with respect to the muscle border, and overall 

distribution of fat infiltration.212 In addition, massive rotator cuff tears may be associated with 

suprascapular neuropathy. A cadaveric study suggested that retraction of the supraspinatus 

muscle after a large rotator cuff tear changes the course of the suprascapular nerve through the 

suprascapular notch, potentially creating increased tension on the nerve and placing the nerve 
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at risk for injury.213 This hypothesis supported by an EMG study on eight subjects with massive 

rotator cuff tear, all had supra-scapular neuropathy.214   

           As mentioned before, pain by itself can affect muscle activation pattern. Lund et al. 

(1991)215 in their pain-adaptation model showed that pain increased the activity in the 

antagonist and decreased the activity in the agonist muscles during voluntary movement. 

Another study216 showed that acute pain provoked by either subacromial or intra- 

supraspinatus saline injection caused increased activity of latissimus dorsi (antagonist) to 

protect the painful structures. This finding has been previously reported in patients with 

massive cuff tears who had higher adductor (pectoralis major, latissimus dorsi, teres major) 

activation during arm elevation.217 Interestingly, after subacromial lidocaine injection in those 

symptomatic shoulders, 5 out of 8 patients restored partly this aberrant activity in one or more 

of their adductor muscles. Altered shoulder muscle activity pattern in symptomatic patients 

with cuff tear indicates different motor patterns and neuromuscular strategies in these patients. 

All the above facts should be taken into consideration when a study on patient population is 

designed. In fact, the muscle activity pattern in a shoulder with chronic rotator cuff tear may 

be different from the one with acute tear. Likewise, symptomatic patients may have different 

activation pattern comparing to asymptomatic patients. So, in our third study on patients with 

rotator cuff tear, we tried to harmonize the sample group with symptomatic patients who had 

chronic full thickness rotator cuff tear.  

 What EMG can and cannot tell us 

It is important to adjust our expectations from what EMG can provide for us. EMG can 

qualitatively tell us if a muscle is active or not (on/off) and in which phase of time within a 

movement (quantitatively). EMG can qualitatively show if a muscle is more or less active but 

can quantitatively estimate how much a muscle is active based on MVIC reference. EMG can 

also estimate muscle fatigue in repeated trials by detecting the changes in frequency spectrum 

of muscle activity.  

More specifically in shoulder studies, EMG can help us to understand the appropriate 

activation pattern of the shoulder musculature which is required to control and stabilize the 

shoulder joint during different movements. Shoulder stability is highly relied on the contribution 
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of its muscles. While the muscles must have appropriate strength and endurance to generate and 

sustain appropriate tension, it is also necessary for the contraction of the muscles to be 

appropriately controlled. If contraction of a muscle is initiated too late, too slowly, or too little, 

then its contribution to shoulder control may be compromised. Hypothetically such a change in 

recruitment strategy may lead to compromised protection of the shoulder structures. As 

deliberated before, EMG should not be equated to shoulder muscles or joint forces. However, 

in well-designed situation, EMG may estimate the force level and muscle stress.  

 EMG studies on shoulder musculature 

          A summary of EMG studies on shoulder musculature, related to the first phase of 

rehabilitation is presented in Table 5. Different methods for EMG studies on shoulder 

musculature are usually used in the literature. A more practical method is to compare EMG 

activity of one muscle across different exercises and express the EMG signals relative to a 

common reference such as the percentage of MVIC. To help generalize the comparison of 

muscle activity, an arbitrary classification based on MVIC normalization has been accepted as 

a method of quantifying the activity level of a muscle in most rehabilitation studies.14,218-220 In 

this method 0–20% MVIC is considered low muscle activity, 21–40% MVIC moderate muscle 

activity, 41–60% MVIC high muscle activity, and > 60% MVIC is considered very high muscle 

activity.  Although this classification is not highly precise, it has valuable application in clinical 

studies. For example, early after rotator cuff surgery the recovering patient is recommended to 

avoid exercises that generate moderate to high rotator cuff activity to avoid stressing the healing 

tissues. We followed this method to quantify the muscle activity of the shoulder musculature 

and identify the safety of the rehabilitation exercises in two studies of this dissertation.  

            It can be noticed that most of these studies have been performed on normal subjects, 

because EMG studies on patients with shoulder pathology have some limitations. For example, 

cuff patients may not be able to create a real MVIC; some exercises may not be safe enough to 

be evaluated in patient after cuff repair; and controlling or harmonizing all the influencing 

factors on tendon pathology or healing may not be feasible in patient population. These limiting 

factors caused that many of shoulder rehabilitation exercises being evaluated in normal 

population.
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Table 5 : EMG studies related to the first phase of rehabilitation after rotator cuff repair 

A: Immobilized shoulder 

Authors Subjects Protocol Results Comments 
Vaughan et 
al.221 
1989 

6 healthy 
subjects 

Non-dominant upper limbs immobilized 
in a plaster cast for 14 days. 
Isometric muscle strength of elbow 
flexors and extensors  + IEMG output 
of the agonist, antagonist were 
measured 

Decrease in flexor strength of the 
casted limb. Antagonist IEMG 
amplitude was decreased during 
flexion, and agonist IEMG 
amplitude and antagonist IEMG 
amplitude were diminished during 
extension of the casted limb. 
 

Short-term upper limb 
immobilization affects elbow 
flexion strength and some IEMG 
characteristics during a ballistic 
forearm movement. 

Yue et al.22 
1997 
 

10 
healthy 
subjects 

Non-dominant elbow was immobilized 
at a 90° for 4 w with a fibre-glass cast. 
Measurements: CSA of the flexor 
muscles by MRI; MVC  by EMG 

Decrease in CSA and volume of the 
flexors by11.2 + 3.1 %. 
Decline in MVC by 35.1 + 16-6 % 
in day 1, and 16.6 + 16.5 % in day 
2 post-immobilization 
Pre-immobilization level after 2 w 
 

4 w elbow caused significant 
reduction in the CSA and MVC 
force of the elbow flexor muscles. 

Smith et al.222 
 2004 

6 healthy 
Men 

EMG activity from each immobilized 
muscle at rest and during slow, fast, and 
resisted contralateral upper limb 
motions (5, 15, and 25 lb). 

Slow contralateral upper limb 
motions: <15 % MVC for SS, IS 
Fast contralateral upper limb 
motions: 56.7% MVC for IS during 
a fast straightforward reach. 25.2%-
32.1% MVC for SS during all 
resisted backward-pulling motions. 
 

Contralateral upper limb motions 
at self-selected speeds and cross-
body, straightforward, or 
downward reaches at either a slow 
or fast speeds may be 
appropriately prescribed while the 
shoulder remains immobilized. 

Smith et al. 13 
 2006 

5 healthy 
men 

EMG recording of immobilized 
shoulder muscles during scapular clock, 
counter-clock rotations, elevation, 

Upper SC activity was uniformly 
high (40%−63% MVC).  

1-scapular depression and 
protraction exercises could 
potentially be safe after rotator 
cuff repair. 



  

69 

 

depression, protraction, and retraction 
exercises. 

Scapular depression and 
protraction: <20% MVC for SS and 
IS.  
 

2- All exercises studied should be 
avoided after SC repair. 
 

Smith et al. 223 
2007 

5 healthy 
men 

EMG activity of immobilized shoulder 
muscles during a split-stance cross-body 
rotation (twisting to the opposite side at 
high, mid, and low levels), split stance 
attempted ipsilateral floor touch, and 
attempted overhead reach. 

For all exercises, biceps and IS 
activity was <10% MVC, whereas 
upper SC activity was (29%−68% 
MVC). SS activity was <20% MVC 
for all motions except the attempted 
overhead reach (23% MVC). 
 

Selected kinetic chain exercises 
could potentially be implemented 
during periods of shoulder 
immobilization 

Farthing et 
al.224 
2008 

30 
healthy 

1) (Cast-Train) wore a cast (left side) 
for 3 w and trained the free arm by 
maximal ulnar deviation 5days/w. 
2) (Cast) wore a cast and did not train.  
3) Control. 
Muscle thickness (US), muscle strength 
(dynamometer), EMG of Flexor Carpi 
Ulnaris, and Extensor Carpi Radialis 
were measured. 
 

No change in muscle thickness and 
strength in immobilized limb in 
cast-train while reduction of both 
factors in cast group. 
The agonist muscle showed a 
significantly higher amplitude of 
activation compared with the 
antagonist muscle. 

Strength training of the free limb 
attenuated strength loss in the 
immobilized limb during 
unilateral immobilization. 
Strength training may have 
prevented muscle atrophy in the 
immobilized limb. 

Magnus et 
al.225 
2010 

25 
healthy 

1) left hand immobilized + right hand 
strength training; 3 times/day 
2) immob + not strength training;  
3) no treatment 
Torque (dynamometer), muscle 
thickness (US) and muscle activity 
(EMG) of biceps and triceps were 
measured. 
 

Thickness of both left biceps and 
triceps was significantly greater in 
immob + training group. 
Right and left elbow extension 
strength for Immob + Train was 
significantly different from the 
respective limb of Immob. 

Strength training of the non-
immobilized limb benefits the 
immobilized limb for muscle size 
and strength. 
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Kuhtz-
Buschbeck and 
Bo Jing 226 
2012 

20 
healthy 

Surface EMG of shoulder muscles 
during walking on a treadmill 1) with 
natural arm swing (normal) 2) while 
holding the arms still (Held), 3) with the 
arms immobilized (Bound), and 4) with 
the arms swinging opposite-to-normal 
phasing (Anti-Normal). 
 

Immobilization of the right arm 
with a brace did not completely 
abolish activity of shoulder muscles 
and posterior deltoid, trapezius and 
LD showed EMG signals. PM was 
more active in bound than normal 
condition. 

some EMG signals persisted when 
the arms were immobilized during 
walking 

 
 
B: Passive/Active ROM Exercises 
 
Authors Subjects Protocol Results Comments 
McCann et al.7 
1993 

10 
healthy 

EMG of nine shoulder muscles 
including SS and IS during three phases 
of shoulder rehabilitation exercises as 
described by Neer.36 

Phase I (passive) exercises 
performed in the supine position 
showed the least EMG activity. 

Supine Phase I exercises should 
be considered in the early 
postoperative period after 
shoulder surgery to achieve 
maximum motion while 
minimizing shoulder muscle 
activity.  
 

Dockery et 
al.218  
1998 

10 
healthy 

The activity of SS, IS, trapezius and AD 
were measured during CPM, Pulley 
pendulum, self-assisted bar-raise, self-
assisted IR and ER, Therapist assisted 
scaption, IR and ER  

For all muscles, Pulley exercises 
showed more activity than CPM. 
SS activity: 17.6%MVC for pulley, 
8.7%MVC for self-assisted bar 
raise, 5% MVC for CPM. Therapist 
assisted was similar to CPM. 
 

CPM and therapist assisted 
passive ROM may increase the 
safety margin. 

Guant et al. 227 
2003 

15 
healthy 

EMG of SS, IS and AD assessed during 
AAROM exercises to regain patients’ 
active forward elevation. 

IS and SS demonstrated increasing 
trends in EMG activity from 
gravity minimized to upright 
assisted. 

EMG activity in all gravity-
minimized exercises are low and 
would thus be used in the earliest 
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Elevation exercises were divided into 3 
types: 1) gravity minimized,  2)upright 
assisted, and 3) upright active. 
 

stage of a rehabilitation 
continuum to regain active motion 

Wise et al.228 
2004 

20 
Healthy 

Activity of SS, IS, PD, AD and PM 
during arm elevation in 1) vertical wall 
slides (short lever), 2) diagonal wall 
slides (45° angle) (long lever) in two 
conditions: their hand in contact with 
the wall supported) and not in contact 
with the wall (unsupported). 
 

Greater SS activity in the 
unsupported exercises versus the 
supported exercises. 
Exercises performed in the 45° 
diagonal position were more 
demanding on shoulder 
musculature 

Supported short lever arm AROM 
exercises should precede 
unsupported long lever arm 
AROM exercises. 

Ellsworth et 
al.229 
2006 

9 subject 
with 
shoulder 
pain, 17 
healthy 

EMG of SS, IS, UT, MD during 
Codman's pendulum exercises 1) wrist 
suspended 1.5 kg weighted-ball, 2) 
hand-held 1.5 kg dumbbell, 3) hand-
held 1.5 kg weighted-ball, and 4) no 
weight was recorded.  

Generally, SS /upper trapezius 
muscle activity (17% MVIC) was 
significantly higher than deltoid 
(6%) and infraspinatus (7%). 
pathological group had 
significantly greater muscle activity 
in IS and SS. No effect of weight 
for upper trapezius and IS. 
 

Patients with shoulder pathology 
had greater difficulty relaxing 
their SS /upper trapezius muscle 
group during Codman's pendulum 
exercises.  

Uhl et al.230 
2010 

10 
healthy 

EMG of SS,  IS, AD, UP, LT, and SA, 
during 2 passive, 4 active –assistive and 
6  active exercises 

No significant difference between 
passive and AAROM exercises, in 
both SS and IS activities were 
<20% MVC. The standing shoulder 
active exercises demonstrated an 
increase in SS activity to the 
moderate category. 
 

Progression from passive to 
active-assisted can potentially be 
performed without significantly 
increasing muscular activation 
levels. Upright active exercises 
should be prescribed later in a 
rehabilitation program. 

Long et al.231  
2010 

13 
healthy  

EMG of SS, IS, and deltoid muscles 
while doing pendulum exercises 
incorrectly and correctly in both large 

SS activity:  >15%MVC in 
incorrect and correct large 
pendulums.  Greater activity during 

Larger pendulums may require 
more force than is desirable early 
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(51-cm) and small (20-cm) diameters, 
and while typing, drinking, and 
brushing their teeth. 

large, incorrect pendulums than 
correct one. >20% MVC during 
water drinking from a bottle. 
  

in rehabilitation after rotator cuff 
repair 
 
 

Murphy et 
al.196 
2012 

26 
patients 
after 
surgery 

Within the first 4 days after subacromial 
decompression with/or distal clavicular 
resection, muscle activity was recorded 
during 14 exercises of the passive phase 
of rotator cuff protocols and compared 
with EMG of the baseline (BL). 

SS remained at BL level during 
therapist- and self-assisted ER, 
therapist-assisted elevation, 
pendulums, and isometric IR and 
adduction. IS was activated > BL 
for all 14 exercises studied. 
 

Of the 14 exercises studied, 6 
allowed SS and 0 allowed IS to 
remain as passive as quiet-stance 
baseline in this patient group. 

 
MVC= Maximal Voluntary Contraction, CSA= Cross Sectional Area, ROM= Range of Motion, AROM= Active ROM, AAROM= Active 
Assisted Range of Motion, CPM= Continuous Passive Motion, US= Ultrasound, AD= Anterior Deltoid, MD= Middle Deltoid, PD= Posterior 
Deltoid, UT= Upper Trapezius, LT= Lower Trapezius, PM= Pectoralis Major, SA= Serratus Anterior, LD= Latissimus Dorsi,  SS= 
Supraspinatus, IS= Infraspinatus, SC= Subscapularis, w= week, d= day, immob= immobilization 
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            In general, comparing muscle activity between studies is limited by different 

positioning of electrodes, surface versus indwelling electrodes, varying signal processing 

techniques, differences in MVIC determination, the use of different normalization methods 

and different types and speed of contraction.  It is also difficult to compare muscle activity 

between studies when different exercise intensities are applied. In addition, some studies 

performed statistical analysis while the others did not, and without statistics, interpreting 

of muscle activity among exercises is very challenging. Despite all these limitations, 

valuable information can be extracted from EMG studies that can be applied in 

rehabilitation protocols.  

             However, from the studies presented in Table 5, some conclusive findings can be 

extracted: first, EMG studies concerning the immobilization period after rotator cuff repair 

are very few. Only Smith et al.13,222,223 studied some exercises that could be theoretically 

performed with the immobilized shoulder.  Second, none of the studies on immobilized 

shoulder, evaluated the extent of upper limb immobilization in respect to elbow and wrist 

joints. However, the deteriorating effects of elbow immobilization on elbow flexors 

strength and CSA have been reported.22,221 Third, only one study231 evaluated shoulder 

muscle activity during a few daily living tasks while the subjects’ shoulders were 

immobilized. EMG studies on rotator cuff muscles during daily living activities are very 

scarce. Forth, most studies evaluated the exercises that have been routinely used in clinical 

practices. These exercises included passive ROM, CPM, pendulum exercises, active 

assisted ROM and active ROM. It means that these EMG studies provided scientific basis 

for clinical experiences and few innovations in early rehabilitation protocols have been 

introduced. Fifth, rotator cuff muscles activities during most passive and active assisted 

ROM exercises were below 20% MVIC and lower muscle activity was interpreted as lower 

muscle stress in the related studies. Therefore, passive exercises that created lower rotator 

cuff muscle activity were considered safe post rotator cuff tendon repair. Sixth, active 

ROM exercises increase the activity of cuff muscles and are prescribed later in 

rehabilitation program.230 However, the safe elevation angles and appropriate sequences of 

elevation planes have not been studied. Seventh, active assisted exercises230 and supported 

arm elevation228 minimally activate the cuff muscles.  So, theoretically a supported active 
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arm movement (e.g. by a wedge shaped foam) is applicable in the early phase of 

rehabilitation.   

            Considering all the above findings, the objective of this dissertation is presented in 

the following section. 

2.5 OBJECTIVES  

           The first objective of this thesis is to evaluate the EMG activity of shoulder 

musculature during some exercises and daily living tasks that can be performed during the 

early phases of rehabilitation after rotator cuff repair. The immobilization of upper limb is 

usually not limited to shoulder joint; elbow and wrist joints are also immobilized during 

this period. There is no report about the activity level of rotator cuff muscles during elbow 

and wrist exercises and whether or not immobilization of these two joints could be 

beneficial for repair integrity. We hypothesized that any activity related to elbow and wrist 

movements would not highly activate rotator cuff muscles. These activities include daily 

living tasks, such as typing or writing and some light weight training exercises. If it is 

accepted that any exercise that creates low rotator cuff activity can be considered safe, then 

immobilization of elbow and wrist joints may not be necessary. In addition, tension on the 

repaired tendon is controlled by shoulder immobilization and elbow and wrist mobilization 

would not cause any rotator cuff tendon elongation or tension. To test this hypothesis, a 

special type of orthosis is needed that can immobilize the shoulder joint while elbow and 

wrist are mobile. Fortunately, the orthosis was prepared by assistance of Medicus 

orthopedic laboratory (Laboratoire Orthopédique Médicus) for our studies. This orthosis 

has three characteristics: 1- the shoulder can be immobilized in scaption position, 2- elbow 

is mobilized in horizontal plane and wrist can be mobilized in all ROM. 3- the degree of 

arm abduction is adjustable. The orthosis is light and can be fixed in pelvis. The subjects 

are then able to perform different exercises and daily living tasks.  

            The second objective is to evaluate the effect of some resistance exercises of elbow 

and wrist joints on rotator cuff muscle activity. We hypothesized that strength training of 

arm and forearm muscles with light dumbbells would not result in high activity of rotator 

cuff muscles and can be performed in the early phases of rehabilitation rather than three 

months postoperatively. To have an estimation of the effect of a more strenuous activity, 



  

75 

 

we test maximal forceful gripping, assuming that it would highly activate rotator cuff 

muscles.  

            The third objective is to test some active exercises for shoulder and scapula. 

Active assisted ROM exercises usually begin after week 4 to 6 post-operatively. Although 

active ROM exercises are generally discouraged in the first phase post repair, the evidence 

to support this idea is scarce. If it is accepted that rotator cuff is mostly involved in arm 

abduction and internal and external rotations, then adduction in some angle ranges that 

impose less stress on the repaired tendon, would not highly activate the rotator cuff 

muscles. To test this hypothesis, the hard wedge of the shoulder orthosis of Ottobock is 

replaced by foam wedges with different densities. So, the subject can do supported 

adduction with different forces compatible with the foam density and then passive 

abduction will follow.  

             All the above hypotheses are tested on normal population, as the safety level of 

such exercises in patient population is not clear and due to all limitations for study on 

patients which have been previously discussed.  

             Our forth objective is to evaluate the shoulder muscle activity pattern in patients 

with rotator cuff tears during arm elevation in different planes. Restoring active arm 

elevation is an important goal of rehabilitation, which is expected to be achieved in 8-12 

weeks post-operation. Our last study intends to evaluate the effect of elevation plane and 

angle on EMG activity of rotator cuff muscles. We hypothesized that in patients with 

rotator cuff tear, the EMG activity of shoulder musculature during active arm elevation 

would significantly change with elevation plane and in accordance with the elevation arcs. 

To evaluate the exact arc of elevation, a 3D motion analysis system is used to measure the 

glenohumeral elevation angle.  

              EMG studies have been the scientific basis for many rehabilitation exercises. We 

believe that the results of our studies will increase the understanding of rotator cuff activity 

pattern during different tasks and exercises and can be helpful in designing more 

appropriate rehabilitation program for patients with rotator cuff pathology.   
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3 STUDIES 

3.1  EMG OF AN IMMOBILIZED SHOULDER WHILE 

ELBOW AND WRIST ARE MOBILE. 

Two main hypotheses were evaluated in this study: 

1) Elbow and wrist motion would not highly activate rotator cuff muscles 

2) Some daily living tasks that involve elbow and wrist movements would not highly 

activate rotator cuff muscles. 

 This study was published in the journal of Shoulder and Elbow Surgery under the title of 

“Electromyographic activity in the immobilized shoulder musculature during ipsilateral 

elbow, wrist and finger movements while wearing a shoulder orthosis” in October 2013. 

The on line version can be found in the following link:   

http://www.sciencedirect.com/science/article/pii/S1058274613001973 

All the authors were involved in development of the research idea with more input 

from Dr. Patrice Tétreault, Mickael Begon and Talia Alenabi. Data collection and analysis 

of data was performed by Talia Alenabi.  Monique Jackson enriched the article by her 

comments and critics as well as English editing. The article was revised several times by 

all the co-authors. The article has been peer- reviewed and all the questions of reviewers 

were deliberately responded.  

  

http://www.sciencedirect.com/science/article/pii/S1058274613001973
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ABSTRACT 

Background: Shoulder immobilization after rotator cuff surgery is usually prescribed to 

protect the repaired tendons, however, shoulder orthoses often also immobilize the elbow 

and wrist joints. There is insufficient evidence to support that elbow and wrist movements 

can affect repair integrity by highly activating the rotator cuff muscles. The aim of this 

study was to quantify the electromyographic activity of immobilized shoulder muscles 

during elbow, wrist and finger movements. 

Method: Fifteen shoulder muscles of the dominant limb of 14 healthy subjects were 

evaluated using electromyography with 11 surface electrodes and 4 fine wire electrodes in 

the rotator cuff muscles. Whilst wearing a custom orthosis the subjects completed tests 

involving elbow, wrist and finger movements of the ipsilateral limb. The peak activity of 

each muscle was normalized to maximal voluntary contraction (% MVC) and averaged 

across the subjects. 

Results: Rotator cuff muscles were activated to less than 10% MVC in both slow and fast 

elbow flexions. The mean peak activations of all muscles during wrist and finger 

movements were less than 5% MVC. In daily activities such as writing, typing, clicking a 

computer mouse, holding a box or bag, rotator cuff muscle activity did not exceed 11% 

MVC, but sudden movements such as grasping a bottle could show higher levels of 

activity, that in some individuals exceeded 20% MVC. 

Conclusion: Elbow, wrist and finger movements could minimally activate the rotator cuff 

muscles when the shoulder is immobilized with an orthosis.  

 

 

Keywords: rotator cuff, immobilization, electromyography, shoulder, orthosis 
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INTRODUCTION 
Shoulder rotator cuff injuries are highly prevalent(45) and re-tears after surgical repair are 

also common with numerous studies reporting re-tear rates of above 25%.(1, 15, 27, 28) Thus, 

it is important to protect the repair during the immediate post-operative period, and 

therefore patients who undergo rotator cuff surgery are often immobilized in a sling or 

abduction orthosis. However, commercially available shoulder orthoses often immobilize 

not only the shoulder but also the elbow and the wrist. The effect of elbow and wrist 

movements on rotator cuff muscle activity has not been studied, and as such there is no 

data to support that movement of these joints can be detrimental to repair integrity. Since 

it is known that shoulder muscles are co-activated during some elbow and wrist motor 

tasks(17, 46) it is of interest to determine if such tasks highly activate the rotator cuff muscles. 

Post-operative rehabilitation protocols aim to balance between deconditioning and 

stiffness(4, 23, 38) that may be related to immobilization,(21, 37) and the harmful effects of over 

activity on the repaired tendon.(35) Excessive activation of the rotator cuff muscles after 

surgery may contribute to re-tearing of the tendons,(16, 32) whilst joint stiffness has also been 

shown to be unfavorable for recovery.(23) Post-operative protocols should therefore be 

designed to retain joint mobility whilst safely loading the repaired tendons.  

The main goal of this study was to quantify immobilized shoulder muscle activity while 

healthy subjects performed ipsilateral elbow, wrist and finger movements, and determine 

the effect of speed for some active mobilization exercises. Although muscle activity cannot 

be directly linked to the level of the potentially damaging force that the rotator cuff must 

withstand, we considered that electromyography can provide an estimation of the stress 

levels imposed on the rotator cuff muscles. We hypothesized that immobilized shoulder 

muscle activity during elbow, wrist, and finger movements would be low, and that daily 

activities, which involve the elbow, wrist, and fingers, would also minimally activate the 

rotator cuff.  
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METHOD 

Subjects 

Fourteen healthy volunteers (10 men, 4 women; 12 right handed, 2 left handed; 25 ± 4 

years; 73.4 ± 9.5 kg; 1.74 ± 0.08 m), free from shoulder and neck disability as determined 

by the DASH questionnaire(24) took part in the study after giving informed consent. All 

subjects exhibited full, pain free, shoulder range of motion. The study was approved by the 

university research ethics committee (Comité d’éthique de la recherche en santé, certificate 

number CERSS # 1013(1)). 

Electrode placement 

EMG signals were recorded from 15 shoulder muscles of the dominant limb using 11 

surface electrodes and 4 fine-wire electrodes. Rectangular silver-silver chloride bipolar 

surface electrodes (20 mm inter-electrode distance, CareFusion, USA) were placed over 

the long head of the triceps, biceps, anterior deltoid, middle deltoid, posterior deltoid, 

latissimus dorsi, sternal pectoralis major, serratus anterior, upper trapezius, middle 

trapezius and lower trapezius using standard placement techniques.(3, 13, 39) Fine-wire intra 

muscular electrodes (30 mm, 27 gauge, CareFusion, USA) were inserted into the 

supraspinatus, infraspinatus and teres minor as described by Perotto & Delagi(36) and into 

the lower subscapularis as described by Kadaba et al.(25) using standard aseptic techniques. 

The ground electrode was placed on non-dominant clavicle. Proper electrode placement 

was confirmed by checking the signals during sub-maximal isometric contractions which 

were performed in specific positions expected to generate high EMG activity.  

Maximum voluntary contraction tests 

A total of 14 tests (common test for infraspinatus and teres minor) were performed to elicit 

maximum voluntary contractions (MVC) from the 15 muscles(3, 5, 13, 39) (Table 1). The 

movements were shown and explained to the subject prior to completion, and a pre-trial 

with minimal force was used to ensure the movement was correctly performed. Each 

contraction was performed for 5 s, with a gradual increase in force over the first second, a 

sustained maximum for three seconds, and a gradual release over the final second. Two 

repetitions of each test were performed, with a minimum rest interval of 30 s between 
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repetitions. The subjects were closely monitored for proper positioning and when the 

positioning was incorrect the trial was repeated. The test order was randomized by subject 

position (seated or lying), and a minimum of 1 min rest preceded each new test position. 

 

Table 1: Short description of the MVC tests 

 Muscle  MVC Test 

1 Upper Trapezius Neck bent to the side, rotated to the opposite, neck extension is 

resisted 13.  

2 Middle Trapezius  Shoulder abduction at 90° in prone position is resisted13. 

3  Lower Trapezius  Arm raised above the head, shoulder flexion in prone position is 

resisted13. 

4 Anterior Deltoid shoulder forward flexion at 90° is resisted5 

5 Middle    Deltoid Shoulder abduction at 90° is resisted5. 

6 Posterior Deltoid Shoulder extension of an abducted shoulder (90°) in prone position is 

resisted5. 

7 Biceps (long head) Elbow flexion with supinated forearm is resisted39.  

8 Triceps (long head) Elbow extension in a flexed elbow (90°) is resisted39. 

9 Latissimus Dorsi Shoulder adduction with an abducted shoulder ( 90°), flexed elbow is 

resisted5.  

10 Pectoralis Major (Sternal) Horizontal adduction of the shoulder in supine position is resisted5.  

11 Serratus Anterior Resistance is applied above elbow and at scapula in a flexed shoulder 

(125°)13.  

12 
Supraspinatus 

Shoulder abduction in a lying side position is resisted5. 

13 
Infraspinatus Lateral rotation in a lying side position is resisted5. 

14 
Teres Minor 

15 
Lower subscapularis 

Lift off test in prone position5. 

 

Immobilization 

The dominant shoulder was immobilized using a custom orthosis (Figure 1), that elevated 

the arm in the scapular plane. The orthosis, which weighed approximately 0.8 kg was a 

pre-production prototype, and as such has not yet been tested on a patient population.  The 
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orthosis supported the forearm between the elbow and wrist, and was fixed to the waist 

using a belt. The length of the support bar between the elbow and the waist could be 

adjusted so as to abduct the shoulder whilst supporting the forearm. While wearing the 

orthosis the subject could flex and extend their elbow in the horizontal plane (see Figure 

1), flex, extend and rotate their wrist, and move their fingers. 

 

Figure 1: Shoulder immobilization while wearing the orthosis with a) elbow extended; b) 

elbow flexed; c) in sitting position. 

Tests 

The subjects completed a number of tests using the ipsilateral upper limb while wearing 

the shoulder orthosis. Where applicable a metronome was used to control the pace of the 

movements, and there was one minute rest between tests. The tests were performed in two 

sets namely elbow, wrist and finger movements (Table 2) and ergonomic daily living tasks 

(Table 3). 

Table 2: Elbow, wrist and finger movement tests 
 

Joint Movement Speed 

Elbow 10 cycles of Extension-flexion in the horizontal plane 30 and 60 cycles/min 

Wrist 

10 cycles of Extension-flexion 30 and 60 cycles/min 

10 clockwise rotations 60 rotations/min 

10 counter-clockwise rotations 60 rotations/min 

Fingers 10 cycles of making a fist gently and extending the 
fingers 

20 and 30 cycles/min 

The subject starts each test in a standing position with the elbow extended except for the 

elbow movements where the elbow is initially in the flexed position. 
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Table 3: Ergonomic daily living tasks 

Starting 
position 

Movement Note 

Sitting upright 
without back 
support, in front 
of a table 
adjusted to the 
subjects 
preferred height 

Writing “a-z” and “ 0-9” with pencil on a piece of 
paper 

Normal speed 

Typing a text of 80 words on a laptop using both 
hands 

Normal Speed 

Playing two Clicking games. In the first game the 
subject clicks 3 times rapidly before changing 
mouse position. In the second game the subject 
clicks once before changing the mouse position. 
Repeated 10 times for each game. 

Clicking games 
created using Matlab 
R2011b, The 
Mathworks, Natick, 
MA. 

Standing,  
elbow extended 

Holding a box with both hands for 5s. 
Box:  2.3 kg,  
22 x 28 x 5 cm Holding the handle of a light plastic bag 

containing a box, for 5s. 

10 cycles of catching a bottle by ipsilateral hand 
when it is thrown by contralateral hand and vice 
versa.  At a speed of 20 cycles/min. 

Bottle of water (591 
ml). 

 

Data processing 

The EMG data were collected and processed using a custom data acquisition program 

(Matlab R2011b, The Mathworks, Natick, MA). The electrode signals acquired at 4000 Hz 

were passed through an amplifier (Model15A54, Grass Technology, West Warick, RI) with 

10-1000 Hz bandwidth detection for the surface electrodes, and 10-3000 Hz bandwidth 

detection for the fine-wire electrodes (Common Mode Rejection Ratio > 90 dB; input 

impedance>20 MΩ; Noise:10 µV peak to peak). The signals were filtered (10th order notch 

filter at 60, 120 and 240 Hz, and 2nd order Butterworth bandpass filter at 20-400 Hz), and 

the sliding root-mean square amplitude with 100 ms window calculated and normalized to 

generate a % MVC for each muscle. Data that was contaminated by noise (less than 5% of 

the data) was removed and not used in further analysis. 

For the tests with cyclic repetitions the peak activation during the six middle cycles was 

determined, and averaged across the study population. For the continuous movements, such 
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as writing or typing, the peak activation during the complete trial was determined, and 

averaged across the study population. To determine the muscle activity patterns the means 

and standard deviations of the normalized EMGs were calculated and demonstrated in 

graphs. For the tests completed with two different speeds, a repeated measure ANOVA 

with two factors of muscle and speed was performed. A significant interaction between 

muscle and speed was found, indicating that particular muscles activated in a particular 

speed with a greater extent. As there was a significant interaction between factors, paired 

t-tests were completed for each muscle to check the statistical differences between speeds; 

p ≤ 0.05 was considered significant.  

Within this study the EMG activity was classified as low (< 20% MVC), moderate (21 – 

40% MVC), high (41 – 60% MVC) and very high (> 60% MVC), based on other studies 

on shoulder muscle activity.(9, 18, 26, 40-42) EMG activity levels below 20% MVC are 

generally regarded as potentially safe after injury or operation.(10, 20, 31) 

 
RESULTS 
Elbow, wrist and finger movements 

For the shoulder muscles considered in this study, the mean peak activations were less than 

20% MVC (Figure 2a) during elbow extension/flexion in the horizontal plane. The biceps 

exhibited the highest activity with 12.0 ± 5.6% MVC and 17.2 ± 9.0% MVC for slow and 

fast movements respectively. The rotator cuff muscles were activated to less than 10% 

MVC in both slow and fast elbow flexion, with the supraspinatus showing the highest 

activity during both slow and fast movements (9.0 ± 3.7% MVC and 9.8 ± 4.5% MVC 

respectively). There was a significant difference between the level of muscle activity 

during slow and fast elbow movements for the middle trapezius (p = 0.009), lower trapezius 

(p = 0.03), posterior deltoid (p = 0.01), biceps (p = 0.01), triceps (p = 0.03) and pectoralis 

major (p = 0.004) with faster movement resulting in higher activity.  

During the considered wrist movements the mean peak activations of all shoulder muscles 

were less than 5% MVC (Figure 2b, 2c). Supraspinatus exhibited the highest activity in 

slow wrist flexion while teres minor exhibited the highest activity in fast wrist flexions (4.0 

± 3.1% MVC and 4.4 ± 2.4% MVC respectively). Teres minor was also the most active 
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muscle during clockwise and counterclockwise rotations (4.6 ± 2.4% MVC and 4.7 ± 2.1% 

MVC respectively). The effect of wrist movement speed on shoulder muscle activation was 

only significant for teres minor (p = 0.01) and infraspinatus (p = 0.04), with higher speed 

again resulting in higher activation. 

During finger extension/flexion the mean peak activations of the shoulder muscles were 

less than 3% MVC (Figure 2d). The effect of finger movement speed on shoulder muscle 

activation was not significant.  

Ergonomic daily living tasks 

When performing basic daily activities, such as typing, writing and clicking a computer 

mouse, the maximum activations of the shoulder muscles were less than 11% MVC (Figure 

3a). In all four activities the rotator cuff muscles exhibited higher activity than the other 

shoulder muscles. 

When holding a weighted box or bag (2.3 kg) the maximum activations of the shoulder 

muscles were less than 10% MVC, although there was large variability between the 

muscles (Figure 3b). In the two tests the biceps showed the highest activity (7.4 ± 3.7% 

MVC for holding the box and 8.5 ± 4.5% MVC for holding the bag). Amongst the rotator 

cuff muscles the infraspinatus and teres minor exhibited the highest activity whilst holding 

the bag (7.9 ± 5.6% MVC and 7.5 ± 5.1% MVC respectively), while the supraspinatus 

exhibited the highest activity when holding the weighted box in two hands (6.1 ± 5.1% 

MVC).  

When catching a weighted bottle the mean peak activations of the shoulder muscles were 

below 20% MVC (Figure 3c), although there was large variability between the muscles. 

There was also high inter-subject variability, as seen by the large standard deviations. The 

biceps exhibited the highest activity with 17.7 ± 9.0% MVC. Compared to the other tasks 

catching a weighted bottle resulted in high mean peak activations of the rotator cuff 

muscles with only the subscapularis below 10% MVC.   
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Figure 2: Shoulder muscle activity during a) elbow flexions in the horizontal plane, b) wrist 

flexions, c) wrist clockwise and counter-clockwise rotations and d) finger movements. 

UT=Upper Trapezius; MT=Middle Trapezius; LT=Lower Trapezius; AD=Anterior Deltoid; MD=Middle 

Deltoid; PD=Posterior Deltoid; BC=Biceps; TC=Triceps; LD=Latissimus Dorsi; PM=Pectoralis Major; 

SA=Serratus Anterior; TM=Teres Minor; IS=Infraspinatus; SC=Subscapularis; SS=Supraspinatus 
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Figure III: Shoulder muscle activity during a) typing, writing and clicking games;  b) 

holding a box and holding a bag;  c) grasping a bottle 

UT=Upper Trapezius; MT=Middle Trapezius; LT=Lower Trapezius; AD=Anterior Deltoid; MD=Middle 

Deltoid; PD=Posterior Deltoid; BC=Biceps; TC=Triceps; LD=Latissimus Dorsi; PM=Pectoralis Major; 

SA=Serratus Anterior; TM=Teres Minor; IS=Infraspinatus; SC=Subscapularis; SS=Supraspinatus 

 

DISCUSSION 

The purpose of this study was to identify movements that can be performed during post-

operative immobilization without inducing high activation of the rotator cuff muscles. 

Complete immobilization can lead to joint stiffness,(37, 38) bone loss(30) and muscle 

deconditioning,(21) which can affect functional outcomes after surgery. It is therefore of 

interest to identify movements that can be performed while the shoulder remains safely 

immobilized and that do not induce high levels of shoulder muscle activation. While 

electromyography (EMG) studies can provide guidelines for post-operative protocols, 
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there are few such studies on the immobilized shoulder. Smith et al.(42) showed that while 

wearing a shoulder immobilizer contralateral upper limb motions at self-selected speeds 

were not likely to be harmful to healing tissues. Smith et al.(40) found that isolated scapular 

depression and protraction motions could produce levels of electromyographic activity 

sufficient enough for strengthening in the serratus anterior and trapezius muscles while 

maintaining low levels of electromyographic activity in the supraspinatus and 

infraspinatus. The same authors also suggested that selected kinetic chain exercises could 

potentially be implemented during periods of shoulder immobilization.(41) These studies 

did not, however, address the effect of ipsilateral elbow, wrist and finger motions on the 

activity level of the rotator cuff and therefore such movements were of interest.  

Our results showed that elbow flexion/extension at two different speeds did not highly 

activate the rotator cuff muscles, with the activity levels remaining below 20% MVC. 

However, elbow flexion at high speed may elicit biceps activation beyond 20% MVC in 

some individuals. Biceps pathology is a common evolution of rotator cuff tears.(44) 

Furthermore biceps tenotomy or tenodesis may be performed concomitantly with rotator 

cuff repair.(22) Our results showed that high speed elbow movements could moderately 

activate the biceps, and therefore fast elbow movements may be potentially dangerous 

when there is concomitant biceps pathology or biceps surgery. 

Wrist and finger movements were generally found to negligibly activate the shoulder 

muscles. Fast wrist flexion/extension may augment activity of the teres minor and 

infraspinatus, but the activity levels still remained very low (less than 10% MVC). 

Therefore wrist immobilization post-surgery cannot be rationalized. 

During activities of daily living, such as computer use and writing, the rotator cuff muscles 

were more highly activated than the other shoulder muscles. This finding can be attributed 

to the contribution of the rotator cuff in shoulder stability.(2, 8) Palmerud et al.(34) showed 

that the arm posture and hand load can influence greatly the development of intramuscular 

pressure in infraspinatus and supraspinatus muscles, but the muscle activity pattern was 

not the area of interest in this study. Our results suggest that despite the higher activity 

level of rotator cuff muscles during these tests, the activity levels were still low (below 

20% MVC).  
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Furthermore, when the subject was asked to hold a weight, either in one hand or two hands 

the rotator cuff muscles were again minimally activated. Thus it can be suggested that 

holding a light weight (2.3 kg) for a short period of time (5 s) may be potentially safe after 

rotator cuff surgery. However, Smith et al.(42) showed that EMG activity in most but not 

all immobilized shoulder muscles increased when the resistance on the contralateral upper 

limb was increased, therefore the activity level may change if the load or time is increased.  

Sudden movements such as grasping a bottle can result in higher activity of the rotator cuff 

muscles. In some of the subjects the activity level went beyond 20% MVC for three of the 

rotator cuff muscles (supraspinatus, infraspinatus and teres minor) as well as for the biceps. 

The inter-subject variability can be related to different positions and techniques during this 

task. Therefore the data suggests that sudden movements would not be safe for all 

individuals during post-operative immobilization. These results are in accordance with the 

study of Day et al.(7) which reported moderate activity of rotator cuff muscles in semi-

restricted shoulders during internal and external perturbation rotations.  

Within this study we assumed that activation of the rotator cuff musculature below 20% 

MVC, could be considered potentially safe. Although muscle activity cannot be directly 

linked to the level of the potentially damaging force that the rotator cuff must withstand, 

an almost linear relationship between EMG signal and isometric force has been shown(11, 

12) and furthermore, for dynamic movements EMG activity has also been shown to increase 

with force.(20) The force to failure of rotator cuff repair has been reported between 191 – 

287 N(29),  whilst the force generated during a maximal contraction of the rotator cuff has 

been approximated at 302 N.(6) Thus movements that elicit muscular activity of the rotator 

cuff of less than 20% MVC, should be well below the force to failure.  

Our findings, like those of many other rehabilitation studies (10, 20, 31, 40-43) are based on a 

healthy population whose shoulder muscle activity may not accurately represent that of 

patients with rotator cuff repair, since muscle pain can reduce MVC level (19) and EMG 

activity.(14) However, EMG data is commonly normalized based on MVC levels, and such 

types of contraction are not safe to assess in a postoperative patient population. 

Furthermore we considered that the healthy population would exhibit more accurate MVCs 
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and that the muscle activity patterns in different tasks would be less likely to be biased. 

The authors appreciate that further testing on a patient population is required. 

In this study the subjects performed movements of the ipsilateral upper limb whilst wearing 

the shoulder orthosis. The movements were not forceful and were not resisted. While such 

activities should prevent stiffening of the joints,(33) resisted movements (for example 

holding a weight) may also prevent deconditioning. The activity pattern may, however, 

change if the resistance is increased and therefore the safe range of resistance is unknown. 

This should be considered in future research.  

In summary, the results of this study imply that elbow, wrist and finger movements, and 

selected daily activities could be considered potentially safe during the post-operative 

immobilization period, and suggest semi-immobilization instead of full-immobilization of 

the upper limb after rotator cuff repair. We believe that the results of this study can provide 

useful information for clinicians, as well as for orthosis designers. 

CONCLUSION 

Shoulder immobilization after rotator cuff surgery is often required to protect tendons from 

excessive tension, but no evidence supports that the elbow and wrist should also be 

immobilized. Our results suggest that movement of these two joints as well as of the fingers 

could minimally activate the rotator cuff muscles. The results of this study could be used 

to guide orthosis selection or guide the design of a dynamic shoulder orthosis.  
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3.2  RESISTANCE TRAINING DURING SHOULDER 

IMMOBILIZATION 

Three main hypotheses were studied by this project: 

1) Light weight training exercises of Elbow and wrist would not highly activate rotator 

cuff muscles 

2) Maximal gripping may provoke high rotator cuff activity. 

3) Arm adduction exercises with wedge shaped foams would minimally activate 

rotator cuff muscles. 

This study was published in the journal of Shoulder and Elbow Surgery under the title of 

“Electromyographic activity in the shoulder musculature during resistance training 

exercises of the ipsilateral upper limb while wearing a shoulder orthosis” in June 2014. 

The on line version can be found in the following link:   

http://www.sciencedirect.com/science/article/pii/S1058274613004771 

All the authors were involved in development of the research idea. The article was revised 

several times by all the co-authors and approved.  The article has been peer- reviewed and 

all the reviewers’ questions were deliberately responded.  

  

http://www.sciencedirect.com/science/article/pii/S1058274613004771
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Abstract 

Objective:  Resistance training is usually postponed until three months after rotator cuff surgery to 

prevent the damaging effects of high muscle stress on the repaired tendon. Following upper limb 

immobilization, non-injured muscles as well as the repaired muscles would be affected by long 

term inactivity. Theoretically exercises with minimal cuff activity may be appropriate in the early 

post-operation period, so we aimed to quantify the effect of some resistance exercises on the muscle 

activity of a semi-immobilized upper limb.  

Method: Fifteen shoulder muscles of the dominant limb of 14 healthy subjects were evaluated 

using electromyography, with 11 surface electrodes and 4 fine wire electrodes in the rotator cuff 

muscles. Whilst wearing an orthosis the subjects completed resistance tests including: elbow and 

wrist flexions with three loads, maximal squeezing and shoulder adduction against three foams 

with different stiffness. The peak activity of each muscle was normalized to maximal voluntary 

contraction (% MVC) and averaged across the subjects. 

Results: Shoulder muscles were activated less than 20% MVC during elbow and wrist flexions 

with 2 and 4 lbs loads.  In the maximal squeezing test rotator cuff activity increased significantly 

and in some cases exceeded 20% MVC. With all three foams during shoulder adduction tests, 

subscapularis, latissimus dorsi, triceps and pectoralis major had the highest activation levels, which 

surpassed 20% MVC, while supraspinatus and infraspinatus were minimally activated. 

Conclusion: Some resistance training exercises can minimally activate the rotator cuff muscles 

while potentially preventing the negative side-effects of muscle disuse on other upper limb 

musculature. 

Keywords: electromyography, orthosis, resistance training, rotator cuff, shoulder, 

rehabilitation 
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Introduction 

Recovery of shoulder strength after rotator cuff surgery is an important part of all 

rehabilitation protocols. For the first six weeks after surgery the shoulder is generally 

immobilized and exercises that generate high rotator cuff activity are usually avoided. 

During this time rehabilitation involves passive exercises that minimize loads across the 

repair.(13, 34) From six weeks postoperatively, active range of motion exercises are gradually 

introduced and from three months after surgery strength training usually starts with 

isometric exercises at first, and then resistance exercises using an elastic band.(34, 38) Hence 

not only the rotator cuff muscles, but all the shoulder muscles are in a largely inactive 

condition for at least the first three months after surgery. Considering that shoulder orthoses 

often also immobilize the elbow and wrist joints, the same assumption can be made for all 

the upper limb muscles. Studies have shown that neural activation and muscle strength can 

be impaired after just two to five weeks of joint immobilization,(16, 20) so strength loss can 

be expected for all of the upper limb muscles following six weeks of immobilization. In 

addition strength is diminished with disuse,(23, 29) therefore the further six weeks of low 

muscle activity can be expected to if not exacerbate, at least maintain the strength loss.  

The main reason for postponing strength training after rotator cuff surgery is that high 

muscle activity can damage the repaired tendon.(36) However, if resistance training can be 

shown to activate the shoulder and upper limb muscles independently or with minimal 

activation of the rotator cuff, it can be assumed that such training may be implemented in 

the postoperative period without harming the repaired tendon. For instance Smith et al.(40) 

found that isolated scapular depression and protraction motions could maintain low levels 

of electromyographic activity in the supraspinatus and infraspinatus muscle while  

producing levels of electromyographic activity sufficient enough for strengthening serratus 

anterior and trapezius muscles. It was also suggested that selected kinetic chain exercises 

could potentially be implemented during periods of shoulder immobilization.(41)  However, 

these studies investigated only a limited range of activities and therefore further research 

of the effect of resistance training exercises on the immobilized shoulder musculature is 

required. Alenabi et al.(1) found that unresisted elbow, wrist and finger movements 

minimally activated the rotator cuff muscles and therefore could be considered potentially 
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safe during the post-operative period. Thus it is of interest to determine if these same 

activities could be safely performed with resistance. 

The purpose of this study was to identify resistance training exercises of the ipsilateral 

upper limb that could be safely performed during post-operative immobilization. 

Furthermore, we intended to quantify the effect of different loads on shoulder muscle 

activity. We hypothesized that some resistance training exercises will minimally activate 

the rotator cuff muscles whilst effectively activating other upper limb musculature. 

Methods 

The dominant shoulders of fourteen healthy volunteers (10 men, 4 women; 12 right handed, 

2 left handed; mean age, 25 ± 4 years; mean weight, 73.4 ± 9.5 kg; mean height,1.74 ± 0.08 

m) were evaluated using electromyography (EMG). All subjects were free from shoulder 

and neck pain or disability as determined by DASH questionnaire,(22) and exhibited full 

pain free shoulder range of motion. The study was approved by the university research 

ethics committee (Comité d’éthique de la recherche en santé, certificate number CÉRSS # 

2010-1013-P) and the subjects signed a consent form before involvement in the study.  

Rectangular silver-silver chloride bipolar surface electrodes (20 mm inter-electrode 

distance, CareFusion, USA) and standard placement techniques,(6, 8, 12, 39) were used to 

record EMG signals from shoulder muscles of the dominant limb, including the anterior, 

middle and posterior deltoid, upper, lower and middle trapezius, biceps, triceps, latissimus 

dorsi, pectoralis major (sternal), and serratus anterior. Fine-wire intra muscular electrodes 

(30 mm, 27 gauge, CareFusion, USA) were used to record EMG signals from the rotator 

cuff. Specifically the electrodes were inserted into the supraspinatus, infraspinatus and 

teres minor as described by Perotto & Delagi (37) and into the lower subscapularis as 

described by Kadaba et al.(25) using standard aseptic techniques. The ground electrode was 

placed on non-dominant clavicle. To check electrode placement, the subjects were asked 

to perform sub-maximal isometric contractions in specific positions that were expected to 

generate high EMG activity and the EMG signals were evaluated. Finally the subjects 

performed maximal voluntary contraction (MVC) tests following the protocol outlined in 

our previous study (1) to determine the MVC for each of the 15 muscles.  
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Immobilization 

The dominant shoulder was immobilized using two orthoses, both of which elevated the 

arm in the scapular plane.  

 Type 1 (Figure 1): This custom orthosis (Laboratire Orthopédique Médicus, Montréal, 

Canada) was a pre-production prototype and has not yet been tested on a patient 

population. The orthosis was fixed to the waist using a belt, and supported the forearm 

between the elbow and wrist. The length of the support bar between the elbow and the 

waist could be adjusted so as to abduct the shoulder whilst supporting the forearm. The 

subject could flex and extend their elbow in the horizontal plane, flex, extend and rotate 

their wrist, and move their fingers while wearing the orthosis. 

 Type 2 (Figure 2a): This standard orthosis (Otto Bock HealthCare GmbH, Duderstadt, 

Germany) was fixed to the waist and the contralateral shoulder using two belts. The 

ipsilateral shoulder was immobilized in abduction using a removable wedge, whilst the 

elbow and wrist were also immobilized. During the tests the rigid wedge was replaced 

by wedge shaped foams of three different densities keeping the shoulder in 42° of 

abduction (Figure 2b). Appendix 1 explains how the foam densities were compared and 

highlights the differences between the foams.  

 

 

Figure 1: Orthosis Type 1, showing the allowed elbow movement; a) extended, b) flexed. 
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Figure 2: a) Orthosis Type 2, b) Arm adduction exercises using foams. 

Tests 

While wearing the shoulder orthosis, the subjects completed a number of tests using the 

ipsilateral upper limb. The tests are explained in detail in Table 1. There was one minute 

rest between tests. Where applicable a metronome was used to control the pace of the 

movements.  

Table 1: The movements performed using the ipsilateral upper limb 

Data processing 

A custom data acquisition program (Matlab R2012b, The Mathworks, Natick, MA) was 

used to collect and process the EMG data(1) to obtain the % MVC for each muscle during 

each movement. The electrode signals acquired at 4000 Hz were passed through an 

Movement Start position Test details Load Rhythm 
Elbow 
Flexion/Extension 

Standing, 
elbow extended 

10 cycles of elbow 
extension-flexion in the 
horizontal plane with 
each load 

2, 4 and  
6 lbs 
weights 

40 beats /min 
Each cycle = 2 
beats 

Wrist 
Flexion/Extension 

Standing, 
elbow extended 

10 cycles of wrist 
extension-flexion with 
each load 

2, 4 and  
6 lbs 
weights 

40 beats /min 
Each cycle = 2 
beats 

Squeezing 
 

Standing, 
elbow extended 

Two sets of squeezing 
a small anti-stress ball 
with maximum force 
for 5 sec.  

 
Max force 

30 s rest between 
two sets 

Arm 
 adduction 

Standing, 
Arm in 42° 
Abduction 

10 cycles of sub-
maximally squeezing 
the foam which is 
positioned under the 
arm 

3 foam 
densities 

40 beats /min 
Each cycle = 2 
beats 
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amplifier (Model 15A54, Grass Technology, West Warick, RI) with 10-1000 Hz 

bandwidth detection for the surface electrodes, and 10-3000 Hz bandwidth detection for 

the fine-wire electrodes (Common Mode Rejection Ratio > 90 dB; Input impedance>20 

MΩ; Noise:10 µV peak to peak). The signals were filtered using a 2nd order Butterworth 

band pass filter at 20-400 Hz.  A 10th order notch filter at 60, 120 and 240 Hz was also 

applied to remove the effect of power hum. The sliding root-mean square amplitude with 

a 100 ms window was calculated and normalized to generate a % MVC for each muscle. 

Less than 5% of the raw data was removed and not used in further analysis due to noise 

contamination. 

For the tests with cyclic repetitions the peak activation during the six middle cycles was 

determined, and averaged for each participant. To determine the muscle activity patterns 

the means and standard deviations of the normalized EMGs were calculated across the 

study population and demonstrated in graphs. For the tests completed with three different 

loads (dumbbells or foams), a repeated measure ANOVA with repeated factors of muscle 

and load was performed. By considering a significant interaction between muscle and 

loads, we used ANOVA with one repeated factor (load) for each muscle followed by paired 

comparisons with Bonferroni adjustment.  The value of p ≤ 0.05 was used to determine 

significance. Software SPSS 20 was used for all the statistical procedures. 

Many studies have used the classification of the magnitude of normalized EMG as low (< 

20% MVC), moderate (21 – 40% MVC), high (41 – 60% MVC) and very high (> 60% 

MVC) to describe the level of muscle activities during rehabilitation exercises or sports.(7, 

17, 27, 40) This classification has been also considered in this study. Low muscles activity has 

been reported during the first phase of early post-op rehabilitation protocol and this level 

of activity can be considered safe after rotator cuff surgery.(11, 19, 33)  While >20% MVC 

activation has been considered as the activity level which is effective for moderate muscle 

strengthening.(27) 
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RESULTS 

Elbow and wrist exercises 

The mean peak activations of all tested shoulder muscles were less than 20% MVC during 

elbow extension/flexion in the horizontal plane with 2 and 4 lbs loads (Figure 3a). The 

mean peak activation of the biceps exceeded 20% MVC when using the 6 lbs load (24.2 ± 

14.9% MVC), while the mean peak activations of other shoulder muscles remained under 

20% MVC. However, when using the 6 lbs weight, in three of the fourteen cases the 

recorded activation of the teres minor, infraspinatus and supraspinatus surpassed 20% 

MVC. The effect of load on increasing the muscle activation was significant for middle 

trapezius, biceps, triceps, pectoralis major, and infraspinatus (p<0.05) as illustrated in 

Table 2. 

The mean peak activations of the shoulder muscles during wrist flexion with the three 

different loads were less than 20% MVC (Figure 3b). The highest mean activation was 

recorded for teres minor while using the 6 lbs load (14.0 ± 10.9% MVC). Activation of the 

supraspinatus and subscapularis remained below 20% MVC for all subjects regardless of 

the load, whilst for four of the fourteen subjects, teres minor and/or infraspinatus activation 

surpassed 20% MVC when using the 6 lbs load. The effect of load on increasing the muscle 

activity was significant for lower trapezius, middle deltoid, biceps, pectoralis major and 

serratus anterior, p<0 .05 (Table 2). 
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Figure 3: Shoulder muscle activity whilst wearing an orthosis during: a) elbow flexions 

using 2, 4 and 6 lbs loads; b) wrist flexions using 2, 4 and 6 lbs loads.  

UT=Upper Trapezius; MT=Middle Trapezius; LT=Lower Trapezius; AD=Anterior 

Deltoid; MD=Middle Deltoid; PD=Posterior Deltoid; BC=Biceps; TC=Triceps; 

LD=Latissimus Dorsi; PM=Pectoralis Major; SA=Serratus Anterior; TM=Teres Minor; 

IS=Infraspinatus; SC=Subscapularis; SS=Supraspinatus, 2 lbs = 907 grams, 4 lbs = 1814 

grams and 6 lbs = 2722 grams. 

  



  

107 

 

Table 2: Comparison of muscle activation between loads 

Elbow Flexion with 2, 4 and 6 lbs loads 

Loa
d 

U
T 

M
T 

L
T 

A
D 

M
D 

P
D 

B
C 

T
C 

L
D 

P
M 

S
A 

T
M 

I
S 

S
C  

S
S 

2-4 - - - - - - * - - - - - * - - 

2-6 - * - - - - * * - * - - - - - 

4-6 - - - - - - - * - - - - - - - 

Wrist Flexion with 2, 4 and 6 lbs loads 

2-4 - - * - - - * - - * - - - - - 

2-6 - - * - * - * - - - * - - - - 

4-6 - - - - * - * - - - * - - - - 

*p=<.05, the difference is significant 

UT=Upper Trapezius; MT=Middle Trapezius; LT=Lower Trapezius; AD=Anterior 

Deltoid; MD=Middle Deltoid; PD=Posterior Deltoid; BC=Biceps; TC=Triceps; 

LD=Latissimus Dorsi; PM=Pectoralis Major; SA=Serratus Anterior; TM=Teres Minor; 

IS=Infraspinatus; SC=Subscapularis; SS=Supraspinatus 

 

Maximal squeezing 

When the subjects maximally squeezed an anti-stress ball, rotator cuff activity increased 

significantly and in six of the fourteen cases exceeded 20% MVC, but the mean peak 

activations were below 20% MVC (17.7 ± 12.2% MVC for teres minor, 15.0 ± 13.4% 

MVC for infraspinatus, 15.8 ± 11.1% MVC for subscapularis and 12.7 ± 8.8% MVC for 

supraspinatus) (Figure 4). Biceps and triceps showed the highest activation levels with 42.2 

± 20.1% MVC and 41.8 ± 31.0% MVC respectively, whilst the mean peak activation of 

latissimus dorsi and lower trapezius also surpassed 20% MVC. There was high variation 

in muscle activation between the study subjects. 
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Figure 4: Shoulder muscle activity whilst wearing an orthosis during maximal squeezing. 

UT=Upper Trapezius; MT=Middle Trapezius; LT=Lower Trapezius; AD=Anterior 

Deltoid; MD=Middle Deltoid; PD=Posterior Deltoid; BC=Biceps; TC=Triceps; 

LD=Latissimus Dorsi; PM=Pectoralis Major; SA=Serratus Anterior; TM=Teres Minor; 

IS=Infraspinatus; SC=Subscapularis; SS=Supraspinatus 

Arm adduction exercises 

For this test the subjects sub-maximally squeezed the foam wedges of three different 

densities which were positioned under arm. With all three foams latissimus dorsi, triceps, 

pectoralis major and subscapularis had the highest activation levels, which surpassed 20% 

MVC (Figure 5). In contrast supraspinatus and infraspinatus were minimally activated, 

with mean peak activations below 20% MVC. Statistical analysis showed significant 

differences in the levels of muscle activity between foams for middle trapezius, biceps, 

triceps, latissimus dorsi, pectoralis major, serratus anterior, teres minor and subscapularis 

(p<0.05) (Table 3).  
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Figure 5: Shoulder muscle activity whilst wearing an orthosis during arm adduction 

exercises with three different foams. 

 

Table 3: Comparison of muscle activation between foams 

Foam
s 

U
T 

M
T 

L
T 

A
D 

M
D 

P
D 

B
C 

T
C 

L
D 

P
M 

S
A 

T
M 

I
S 

S
C 

S
S 

A-B - * - - - - * * * * - - - * - 

A-C - * - - - - - * * * * * - - - 

B-C - - - - - - - - - * - - - - - 

*p=<.05, the difference is significant 

UT=Upper Trapezius; MT=Middle Trapezius; LT=Lower Trapezius; AD=Anterior 

Deltoid; MD=Middle Deltoid; PD=Posterior Deltoid; BC=Biceps; TC=Triceps; 

LD=Latissimus Dorsi; PM=Pectoralis Major; SA=Serratus Anterior; TM=Teres Minor; 

IS=Infraspinatus; SC=Subscapularis; SS=Supraspinatus 
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DISCUSSION 

The purpose of this study was to identify resistance training exercises that could be 

performed during post-operative immobilization without inducing high activation of the 

rotator cuff muscles. Preserving muscle strength after rotator cuff surgery is important for 

recovery of normal shoulder function and prevention of recurrent defect.(15) Furthermore, 

for certain populations such as athletes or manual laborers, this is even more important. It 

can be assumed that after six weeks of immobilization, not only the shoulder muscles but 

also all the upper limb muscles would have experienced significant strength loss.(20, 31) 

Moreover, it has been shown that six weeks of immobilization also resulted in humeral 

bone density loss and good bone recovery is thought to be related to recovery of normal 

shoulder function.(32) Therefore it is of interest to identify resistance training exercises that 

can be performed safely in post-operation period in order to maintain upper limb muscle 

strength or at least reduce the amount of strength lost. In this study, the safety margin was 

set with low EMG activity (< 20% MVC) for the repaired muscles. The results of this study 

indicate that some types of resistance training exercises of upper limb muscles could 

minimally activate the rotator cuff and may be applicable during the post-operative 

immobilization period. 

During elbow flexion/extension exercises with 2 and 4 lbs weights activation of the rotator 

cuff muscles remained below 20% MVC, whist the biceps was more highly activated. 

Increasing the load resulted in a significant increase in EMG activity of some shoulder 

muscles (Table 2), a finding which is  similar to previous studies,(2, 3) but aside from the  

infraspinatus, the activation of the rotator cuff muscles did not change considerably with 

increased load. Elbow flexion with a 6 lbs load activated the biceps more than the lighter 

loads but the activity level of rotator cuff muscles also surpassed 20% MVC in some cases. 

Therefore resistance training with 2 and 4lbs loads can be considered potentially safe, 

whilst a 6 lbs load may endanger the repaired tendon. The higher load is also better to be 

avoided when there is concomitant biceps pathology(46) or when a biceps 

tenotomy/tenodesis has been performed at the time of rotator cuff repair.(21) Laursen et 

al.(28) have shown that shoulder muscle activity increased by increasing the speed of a hand 

movement task. Our previous study(1) has also shown that unresisted elbow flexion with 
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higher speed could result in higher muscle activation specially in biceps. In the present 

study the elbow movement was slow (40 beats/min), so it should be noted that increasing 

speed can change the level of muscle activity.  

Wrist exercises with the three different loads did not highly activate the rotator cuff 

muscles. The results showed that teres minor had the highest activity among the muscles 

of this study which can be attributed to its stabilizer role.(5) Wrist flexion with 6 lbs load 

activated the infraspinatus and teres minor more than 20% MVC in four of fourteen cases. 

Our results suggest that wrist resistance training with loads of up to 6 lbs can be expected 

to minimally activate the rotator cuff muscles. However, when a patient has an injury of 

the teres minor or infraspinatus, wrist resistance exercises with 6 lbs load may need more 

caution. It seems that rotator cuff muscle activity increased due to a demand for co-

contraction to stabilize the shoulder joint and allow for better wrist control. 

Maximal squeezing highly activated the biceps and triceps (> 40% MVC) and moderately 

activated the lower trapezius and latissimus dorsi (> 20% MVC), whilst the mean peak 

activations of the rotator cuff muscles remained low (< 20% MVC). However there was a 

large variability of rotator cuff activity between subjects. In this study we did not evaluate 

the levels of muscle activity during sub-maximal squeezing or repetitive squeezing 

exercises. But there are studies(42, 43) that showed both static and dynamic hand gripping 

tasks at 30% and 50% MVC, particularly in elevated arm positions, increased the load on 

some shoulder muscles including the rotator cuff muscles. It was also suggested that 

gripping redistributes muscle activity from the deltoid muscle group to the rotator cuff.(3) 

So it is wise to say that maximal squeezing which is similar to a gripping task may not be 

a safe activity after rotator cuff repair. Furthermore muscle activity can be influenced by 

the manner in which a mechanical load is controlled.(9) In our test maximal squeezing was 

completed whilst standing with the elbow extended. Changing the upper extremity posture 

may affect muscle activity such as it affects grip strength.(4, 26)  

In this study we did not evaluate the activity of forearm muscles, but it can be expected 

that 6 weeks immobilization of the upper limb with a standard orthosis, that immobilizes 

not only the shoulder but also the elbow and wrist, would result in strength loss of the 

forearm muscles as well as of the arm muscles. MacDougall et al.(30) have shown that six 
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weeks immobilization of the elbow resulted in a 41% strength loss and significant decrease 

in fast twitch and slow twitch fibers areas in triceps bracheii. Resistance training of the 

elbow and wrist joints could prevent the strength loss of forearm muscles. Davies et al.(10) 

showed that six weeks of isometric strength training increased the size and strength of 

elbow flexor muscles. Moss et al.(35) also showed that dynamic training with loads of 15% 

and 35% of 1RM (1 Repetition Maximal) resulted in an increase in 1RM of elbow flexors. 

We suggest that resistance training exercises that mobilize the elbow and wrist joints whilst 

minimally activating the rotator cuff muscles may be appropriate during the first phase of 

rehabilitation, and may prevent the complications of muscle disuse.  

In our previous study(1) we found that certain elbow, wrist and fingers movements could 

be considered potentially safe during the post-operation immobilization period, and 

suggested semi-immobilization instead of full-immobilization of the upper limb after 

rotator cuff repair. In the present study we studied adduction movement of the shoulder 

against three types of resistance, to add the idea of shoulder semi-immobilization. 

Adduction exercises with a low density foam minimally activated the supraspinatus, 

infraspinatus and teres minor while moderately activating the subscapularis, pectoralis 

major, latissimus dorsi and triceps muscles. The muscle activation significantly increased 

with increasing foam density for 8 of the 15 muscles studied (Table 3). For some subjects 

adduction exercises with a high density foam resulted in activation of above 20 % MVC 

for all four rotator cuff muscles, although the mean peak activation levels were still below 

20% MVC for supraspinatus and infraspinatus. In general we can conclude that low density 

foam resulted in the safest activity pattern. For tears in which the subscapularis and biceps 

are not involved, adduction resistance training with low density foam maintains minimal 

activation of the injured muscles. However, it is not clear if decreasing the degree of 

shoulder abduction (which occurs as the subject squeezes the foam) could have any harmful 

effect on repaired tendon. It has been shown that the optimal position of shoulder 

immobilization will depend on the injury, but generally that abduction of around 60° is 

required.(24) During the adduction exercise, the shoulder position repeatedly changed from 

approximately 42° to approximately 20° of shoulder abduction. Whether this range of 

shoulder abduction is enough to protect the repair requires further investigation.  
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It is known that an increase in the firing rates of motor units increases force and the 

integrated form of EMG, and there is at least a qualitative relation between the EMG signal 

and muscle force.(45) However, the authors acknowledge that EMG cannot quantitatively 

measure the amount of tension on the repaired tendon. It was suggested that a suitably 

calibrated EMG can be used as a coarse predictor of muscle tension for muscles whose 

length is not changing rapidly.(47) Our subjects’ shoulders were in an immobilized or semi-

immobilized position, and we observed that light resistance exercises of shoulder, elbow 

and wrist joints could minimally activate the rotator cuff muscles which is compatible with 

the first phase of rehabilitation protocols, so we could speculate that these types of training 

may not impose a high force on the repaired tendon and can be ‘potentially’ safe. 

We appreciate that there may be differences between healthy volunteers and individuals 

with known shoulder pathology. However, we chose to complete this study using healthy 

volunteers as a first step towards optimizing post-operative immobilization protocols. 

Secondly much of the scientific information regarding shoulder rehabilitation has been 

yielded from the evaluation of young healthy subjects.(11, 19, 33, 44) Thirdly, EMG data is 

commonly normalized based on MVC levels and such types of contraction are not only 

unsafe to assess on individuals with known shoulder pathology, but also are generally not 

accurate as muscle pain can reduce MVC level(18) and change EMG activity.(14) The authors 

appreciate that further testing on a patient population is required. 

CONCLUSION 

Some resistance training exercises do not require high activity of the rotator cuff muscles 

and therefore can be considered potentially safe in the post-operation immobilization 

period. Such training may help preserve muscle strength in the forearm, arm and some 

shoulder muscles, and prevent the negative side-effects of muscle disuse. The authors 

believe that the results of this study suggest that rehab protocols could be modified based 

on the specifics of an individual’s injury, and also promote the design of shoulder orthosis 

that provides semi-immobilization of the upper limb. 
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Appendix 1:  
To quantify the foam characteristics a device with two hinge jointed arms as depicted 
below, was used. The lower horizontal arm was fixed to the floor and a force sensor was 
mounted to the upper movable arm. Three reflective markers were placed on the device 
such that angle changes could be detected using an optoelectronic system. The moment 
arm, which was comparable with a human’s upper arm length, was constant for all foams. 
A force was applied perpendicular to the moveable arm. The torque (Nm) which can be 
determined by multiplying the force (N) by the moment arm (m) was calculated as the 
angle θ decreased. The graph below shows torques generated when each foam was 
squeezed and released.  

 
It can be seen that the highest torque is required to compress Foam C, and that for a 
comparable amount of torque Foam A compresses the most.  In effect, Foam C had the 
highest density, Foam A had the lowest density, and Foam B had a moderate density. By 
simulating a submaximal force which was applied during arm adduction, it can be 
considered that the necessary torque to change the angle from 42°  to 20° degrees is 19 
Nm, 30Nm and 39 Nm for Foam A , B and C respectively.  
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3.3  SHOULDER KINEMATIC AND EMG 

This study intended to reply two following questions: 

1. Does changing the plane of arm elevation affect the shoulder muscle  

activity pattern in patients with rotator cuff tendon tears? 

2. In cuff patients, does the activity pattern of shoulder muscles change in 

accordance with the elevation arcs? 

This article has been accepted to be published by the Journal of Clinical 

Biomechanics under the title of “The effects of plane and arc of elevation on 

electromyography of shoulder musculature in patients with rotator cuff tears”. Ref 

no: JCLB 4080 

All the authors were involved in development of the research idea. The subjects 

were referred from the shoulder clinic of Dr. Tétreault. Data collection, kinematic 

analysis and statistical processing have been performed by Fabien Dal Maso. Talia 

Alenabi has analysed the EMG data and interpreted the statistical findings and 

wrote the article. The article has been revised several times by all the co-authors.    
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ABSTRACT 

Background: Arm elevations in different planes are commonly assessed in clinics and are 

included in rehabilitation protocols for patients with rotator cuff pathology. The aim of this 

study was to quantify the effect of plane and angle of elevation on shoulder muscles activity 

in patients with symptomatic rotator cuff tear to be used for rehabilitation purposes. 

Methods: Eight symptomatic patients with rotator cuff tears were assessed by using EMG 

(11 surface and 2 fine wire electrodes) synchronized with a motion analysis. The subjects 

completed five elevations in full can position (arm externally rotated and thumb up) in 

frontal, scapular and sagittal planes. Muscle activity in three elevation arcs of 20° (from 0° 

to 60°) was presented as the percentage of mean activity. Data were analysed by mixed 

linear models (α = 0.003), and Tuckey Post-hoc comparisons for significant effects (α = 

0.05). 

Findings: The effect of plane was significant for supraspinatus, middle trapezius, anterior, 

middle, and posterior deltoid, triceps, and pectoralis major (p < 0.001). Supraspinatus was 

more active during abduction than scaption and flexion (p < 0.05), and its activity did not 

increase significantly after 40° of elevation (p > 0.05). Infraspinatus had similar activity 

pattern in the three planes of elevation (p > 0.003) with increasing trend in accordance with 

the elevation angle.  

Interpretation: In any rehabilitation protocol, if less activity of supraspinatus is desired, 

active arm elevation should be directed toward flexion and scaption and postponed 

abduction to prevent high level of activity in this muscle. 

Keywords: supraspinatus; active arm elevation; full can exercise; shoulder rehabilitation; 

3D glenohumeral kinematics; indwelling EMG 
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1 INTRODUCTION 

Rotator cuff disorders are among the most frequent causes of shoulder pain,(1) and many 

patients with rotator cuff tears are unable to use their affected limb efficiently.(2) 

Contribution of rotator cuff is essential for arm elevation not only to provide glenohumeral 

joint stability but also as arm movers in certain ranges of motion.(3, 4) Arm elevations are 

routinely used for clinical evaluation of shoulder dysfunction(5) and included in most of 

the upper-limb rehabilitation protocols.(6, 7) There is not yet consensus on an ideal 

exercise program to treat patients with rotator cuff disease.(8) Hence, a detailed 

examination of shoulder muscles activity during different tasks including arm elevation in 

patients with rotator cuff tear may help clinicians to design more specific shoulder 

rehabilitation programs.(9)  

Based on electromyographic (EMG) recordings of the shoulder musculature, several 

studies have proposed recommendations for shoulder rehabilitation exercises.(9, 10) For 

arm elevation exercises, “full can” position (arm externally rotated and thumb up) is 

preferred to “empty can” (arm internally rotated and thumb down)(10, 11) because internal 

rotation of the arm may decrease the width of subacromial space(12) and hence reproduce 

the symptoms.(13) Among all planes in which an arm can elevate, “scaption”, i.e. elevation 

in the scapular plane, has been most investigated.(14, 15) However, patients are 

encouraged to exercise in all planes of elevation with large range of motion.(10) While 

kinematics-based investigations have highlighted that planes of elevation alter 

rotations(16) and translations(17) of the glenohumeral joint, little is known about changes 

in rotator cuff activation pattern induced by different planes of elevation. EMG studies on 

rotator cuff muscles have described the activation pattern for each of the abduction, 

scaption, and flexion planes separately.(18-21) To our knowledge, only Reed et al. (22) 

have directly compared the shoulder muscle activity patterns in three planes of elevation 

and reported significant main effect of plane on the activation level of supraspinatus, 

middle deltoid and upper trapezius muscles. However, their experiment was based only on 

healthy participants, which may not represent the patients with pathologic rotator cuff. 

Biomechanical studies have shown that glenohumeral kinematics differs between patients 

with shoulder pain and healthy individuals.(23) These kinematic changes may also be 

accompanied with alteration in EMG activation pattern.(20, 24, 25) For example, 
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McMahon et al. (20) reported lower EMG activity of supraspinatus in the shoulders with 

anterior joint instability than normal population between 30-60° of arm elevation in all the 

three planes of elevation. Such studies have not been performed on patients with rotator 

cuff tears. Therefore, the comparison of shoulder EMG in different planes and angles of 

elevation in cuff patients is essential to characterize muscle activation pattern following 

rotator cuff tear in order to better direct rehabilitation programs. 

The aim of this study was to assess the effect of plane, i.e. abduction, scaption, and flexion 

and arc of elevation, i.e. 0-20°, 20-40°, and 40-60° of glenohumeral angles, during full can 

elevations on the EMG of shoulder musculature in patients with rotator cuff tears. 

Glenohumeral angle was selected for investigation as its movement requires more precise 

rotator cuff activity and the rotator cuff tear is associated with disruption of normal 

glenohumeral kinematics.(26) We hypothesized that plane of elevation as well as elevation 

angle significantly affect the EMG pattern of torn rotator cuff and should be considered in 

different phases of rehabilitation protocols. 

 

 

2 MATERIALS AND METHODS 

 

2.1 Participants 

Eight symptomatic patients with full thickness rotator cuff tears affecting one or two 

tendons were chosen for this study. The patients’ information is detailed in Table 1. All 

tears were confirmed by MRI and the patients were waiting for surgery for more than six 

months after their diagnosis. Any patient with coexisting musculoskeletal disorder 

affecting the upper limb or previous surgery was excluded from the experiment. Written 

informed consent was obtained from all participants before the experiment. All patients 

were then asked to complete quick-DASH(27) and Constant(28) questionnaires by aid of 

the same experimenter. The research was approved by the ethics committee of the local 

university (CÉRSS-2010-1013-P). 
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Table 1: Demographic variables and functional scores 

Patients Age Gender BMI Injured 
side 

Q-
DASH Constant Tendon 

torn  
Tear 
size 

Symptomatic 
(year) 

P1 64 M 29.7 R 64 25 SS 1-3 cm 3-5 

P2 55 M 30.1 L 35 57 SS 1-3 cm 1-3 

P3 41 F 26.8 R 65 26 SS <1 cm 3-5 

P4 69 F 28.4 L 75 38 SS + IS 1-3 cm 3-5 

P5 68 M 30.7 L 67 50 SS 1-3 cm 3-5 

P6 64 F 33.6 R 44 46 SS + IS 3-5 cm 1-3 

P7 49 F 27.6 R 91 18 SS + IS 3-5 cm 1-3 

P8 57 F 24 R 93 13 SS  1-3 cm 1-3 

Mean 58.38  28.86  66.75 34.12    

(STD) (9.8)  (2.87)  (20.28) (15.97)    

M = Male, F = Female, R = Right, L = Left, SS = Supraspinatus, IS = Infraspinatus, STD = Standard 
Deviation 

 

2.2 Recordings 

EMG signals were recorded from 13 shoulder muscles of the affected limb of the patients 

using 2 fine-wire electrodes and 11 surface electrodes. Fine-wire intramuscular electrodes  

(30 mm, 27 gauge; CareFusion, San Diego, CA, USA) were inserted into the supraspinatus 

and infraspinatus as explained by Perotto.(29) After suitable skin preparation, circular 

silver–silver chloride bipolar surface electrodes (20 mm inter-electrode distance; 

CareFusion, San Diego, CA, USA) were placed over 11 muscles, namely the long heads 

of triceps and biceps, anterior, middle, and posterior deltoid, latissimus dorsi, sternal part 

of pectoralis major, serratus anterior and upper, middle, and lower trapezius by standard 

placement techniques.(30-32) The ground electrode was placed on the opposite clavicle. 

Proper electrode placement was confirmed by checking the signals during sub-maximum 

isometric contractions, which were performed in specific positions expected to generate 

high EMG activity.(33) The EMG signals were acquired at 1000 Hz and passed through an 

amplifier (model 15A54; Grass Technology, West Warick, RI, USA) with 10 to 1000 Hz 

bandwidth detection (common mode rejection ratio > 90 dB; input impedance > 20 MΩ; 

noise, 10 mV peak to peak).  

For kinematic analysis, the patients were setup with 29 reflective markers on the trunk and 

the affected arm as described by Robert-Lachaine et al.(2015).(34) Marker trajectories 

were tracked using an 18-camera motion analysis system (Vicon Motion System, Oxford 
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Metrics Ltd., Oxford, UK) at 150 Hz. EMG and kinematic data were synchronized online 

using the Nexus 1.8.5 software (Vicon Motion System).  

 

2.3 Experimental procedure 

Patients were standing in an anatomic posture and maintained the trunk as stable as 

possible. Each movement started with the arm relaxed at the side. Patients executed three 

repetitions of arm elevations in different planes, shoulder rolls, shrugs, and circumductions, 

along with five elbow flexion- extension to locate joints centers and axes of rotation.(35) 

Then, they were asked to perform 5 arm elevations in frontal, scapular and sagittal planes 

(abduction, scaption, and flexion) at their maximum range of motion with the thumb 

pointing towards the ceiling (full can position). One examiner was checking the exact plane 

of scapula for each patient and then adjusted the other two planes accordingly. Moderate 

self-controlled speed was maintained throughout elevations as application of metronome 

was not feasible due to different maximal elevation angle for each patient. Five trials were 

recorded in each plane of elevation and the order of planes was randomly assigned for each 

patient. 

 

2.4 Data Processing 

2.4.1 Kinematic 

For joint kinematic analysis, the positions of the center of rotation of the sternoclavicular, 

acromicoclavicular, and glenohumeral joints were personalized. This personalization was 

performed in accordance to the recent recommendations based on a gold standard 

kinematics measurements performed in our lab.(36) Secondly, to improve the accuracy of 

kinematic reconstruction, the displacement of the scapula was constrained to follow an 

ellipsoid representative of the scapula-thorax interface. The geometry of the ellipsoid was 

optimized to fit all the markers positioned on the scapula during functional movements. 

The constraint imposed in a way that at least one point of the scapula was in contact with 

the ellipsoid. Thirdly, a kinematic chain model and a global optimization algorithm were 

used to reconstruct the kinematics of each degree of freedom at each frame. This method 

has been already shown to be relevant to minimize the effect of soft tissue artefacts.(37) 

The glenohumeral angles were expressed according to the Euler angle with the sequence 
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plane of elevation, elevation, axial rotation.(38) Maximum glenohumeral and 

thoracohumeral elevation angles were measured for each patient in each plane of elevation. 

Glenohumeral elevation angles were retrieved in each plane of elevation up to 60° in three 

arcs: 0-20°, 20-40°, and 40-60°. Sixty degrees was chosen as it was the average of 

maximum glenohumeral elevation angles reached by our patients, and corresponded to the 

average range of motion required during most of the daily living tasks.(39) 

2.4.2  EMG 

Raw EMG signals were filtered using a 20-400 Hz band-pass eighth-order zero-lag 

Butterworth filter and then a 60 Hz notch-pass filter. The root-mean square (RMS) 

amplitude was then calculated using a 200 ms window and the muscle activation levels 

were obtained as follows. For each muscle, the RMS EMG of all trials in each plane was 

first averaged over every single degree from 0° to 60° of glenohumeral elevation. The mean 

EMG amplitude was then computed over abduction, scaption, and flexion from 0° to 60° 

of glenohumeral elevation to obtain a reference for normalization.(40) Since pain in 

symptomatic patients reduces the maximal contraction levels(41) and therefore muscle 

maximum voluntary excitation,(42) we preferred this method of normalization over 

maximal voluntary contractions, which is reported to be more appropriate for indwelling 

EMG in shoulder studies.(40) The normalized EMG values were then averaged for 0-20°, 

20-40° and 40-60° of glenohumeral elevation for available range of motion. Wherever 

there was not any value, it was considered as “not a number” in the computing process. 

 

2.5 Statistics 

A linear mixed model analysis was performed using R Core Team(43) and the lme4(44) 

package according to Winter’s method.(45) Briefly, a rank transformation from numeric to 

ordinal data was first applied for elevation planes and elevation angles in order to increase 

the statistical power. As dependent factor, the average activation levels and as fixed effect, 

the interaction between planes (i.e. abduction, scaption, and flexion) and arcs of elevation 

(i.e. 0-20°, 20-40°, and 40-60°) were entered. The intercepts by patients were considered 

as the random effect. The residual plots were visualised to check any deviations from 

homoscedasticity or normality. The p value was obtained by likelihood ratio tests of the 

full model against the model without the effect in question. As 13 muscles were tested by 
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linear mixed model, a Bonferroni correction procedure was used to cope with the problem 

of multiple comparisons. Thus, the level of significance was set at p < 0.003. When linear 

mixed model revealed significant effects, Tuckey Post-hoc comparisons were performed 

to determine differences between arcs and planes of elevation, with a significance level set 

at α = 0.05. Power tests were also performed for all the analyses. 

 

3 Results 

The maximum ranges of motion in three planes of abduction, scaption, and flexion 

according to glenohumeral and thoracohumeral angles are presented in Table 2. As three 

patients could not elevate their affected arms in the range of 40-60° of glenohumeral 

elevation, the analysis of this arc is based on the data collected from five patients only. On 

average the patients reached their maximum elevations after 3.2 (1.1) s, 3.1(1.2) s and 

3.4 (1.4) s for abduction, scaption, and flexion, respectively.  

Table 2: Maximum glenohumeral (GH) and thoracohumeral (TH) angles of elevation 

reached for each patient. 

Patients 
Maximum GH angle (°)   Maximum TH angle (°)   
Abduction Scaption Flexion   Abduction Scaption Flexion   

P1 78 62 56  103 126 124  
P2 78 70 60  107 112 103  
P3 64 75 62  91 101 91  
P4 97 94 94  120 120 119  
P5 83 78 66  102 117 112  
P6 37 46 52  86 97 95  
P7 24 39 50  53 68 75  
P8 24 53 52   56 81 73   
Mean  60.7  64.6  61.5   89.6  102.5  98.9   
(STD) (28.4) (18.0) (14.1)   (23.9) (20.0) (19.0)   

STD =standard deviation 

The results of the linear mixed model analysis for the plane and arc of elevation effects, 

and plane * arc of elevation interaction are summarized in Table 3. No significant 

plane * arc of elevation interaction was observed for any muscle (all p > 0.003, 

power < 80%); both main effects are described in details below.  

 

3.1 The effect of elevation plane  
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Figure 1 represents the EMG activity pattern of each shoulder muscle according to the 

glenohumeral elevation angle during abduction, scaption, and flexion. The linear mixed 

model analysis revealed a significant plane of elevation effect on the activation pattern of 

7 out of 13 muscles, namely, supraspinatus, anterior, middle, and posterior deltoids, middle 

trapezius, triceps, and pectoralis major (all p < 0.001). According to the post-hoc analysis, 

supraspinatus, and middle and posterior deltoids were significantly more active during 

abduction than scaption and flexion. Moreover, supraspinatus and middle deltoid were 

significantly more active during scaption than flexion. Anterior deltoid and pectoralis 

major were more active during flexion than abduction (p < 0.001). Flexion produced also 

a significant higher activation level than scaption for the pectoralis major (p = 0.001) but 

not for anterior deltoid (p = 0.73). The activation level of the middle trapezius was 

significantly higher during abduction than scaption. The activation level of the 

infraspinatus did not differ between planes of elevation (p = 0.08). 

 

3.2 The effect of elevation arc  

The linear mixed model analysis revealed a significant arc of elevation effect on the 

activation level of all muscles (p < 0.001). The post-hoc analysis revealed that the 

activation level of the supraspinatus, posterior deltoid, middle trapezius, and triceps 

increased significantly from the first to the second arc of elevation, but there were not 

significant differences in EMG values between the second and the third arcs of elevation 

for these muscles. The activation level of the pectoralis major increased significantly only 

between the first and the last arcs of elevation (p < 0.05). The activation level of the other 

muscles of this study showed continuous and significant increase from the first to the 

second and the third arcs of elevation (p < 0.05). 
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Table 3: Results of the linear mixed model analyses.  

Muscles 

Plane of elevation   Arc of elevation   Interaction of plane * arc of elevation  

Linear mixed model Post-hoc  Linear mixed model Post-hoc  Linear mixed model 

Χ2 p value power 
ABD 

vs. 
SCAP 

ABD 
vs. 

FLEX 

SCAP 
vs. 

FLEX 
 Χ2 p value Power 

Arc 1 
vs.  

Arc 2 

Arc 1 
vs. 

Arc 3 

Arc 2 
vs. 

Arc 3 
 Χ2 p value power 

Supraspinatus 49.39 <0.001 1 <0.001 <0.001 <0.001  21.34 <0.001 0.99 0.001 0.001 0.99  3.68 0.4 0.25 

Infraspinatus 4.88 0.08 0.86     67.4 <0.001 1 <0.001 <0.001 0.04  3.52 0.4 0.24 

Anterior 
deltoid 19.11 <0.001 0.99 0.001 <0.001 0.7  64.35 <0.001 1 <0.001 <0.001 0.04  5.37 0.2 0.36 

Middle 
deltoid 20.27 <0.001 1 0.04 <0.001 0.04  77.4 <0.001 1 <0.001 <0.001 0.002  4.78 0.3 0.32 

Posterior 
deltoid 63.62 <0.001 1 <0.001 <0.001 0.02  56.29 <0.001 1 0.001 <0.001 0.15  5.91 0.2 0.39 

Upper 
trapezius 3.83 0.14 0.66     44.007 <0.001 0.99 <0.001 <0.001 0.04  10.93 0.02 0.69 

Middle 
trapezius 31.73 <0.001 1 0.01 <0.001 0.002  45.91 <0.001 0.99 <0.001 <0.001 0.25  5.74 0.2 0.38 

Lower 
trapezius 0.76 0.68 0.15     40.18 <0.001 0.99 <0.001 <0.001 0.007  1.46 0.8 0.12 

Biceps 7.87 0.01 0.97     61.98 <0.001 1 <0.001 <0.001 0.002  2.05 0.7 0.15 

Triceps 42.24 <0.001 1 <0.001 <0.001 0.128  41.33 <0.001 0.99 0.005 <0.001 0.14  3.06 0.5 0.21 

Serratus 
anterior 4.09 0.13 0.74     57.107 <0.001 1 <0.001 <0.001 0.003  5.81 0.2 0.38 

Pectoral 
major 17.52 <0.001 0.99 0.91 <0.001 0.001  23.75 <0.001 0.99 0.05 <0.001 0.09  3.47 0.4 0.23 

Latissimus 
dorsi 7.81 0.02 0.99 n.a. n.a. n.a.  78.106 <0.001 1 <0.001 <0.001 <0.001  8.37 0.07 0.55 

Note. ABD = Abduction, SCAP = Scaption, FLEX = Flexion, Arc 1 = 0-20°, Arc 2 = 20-40°, Arc 3 = 40-60°, p < 0.003 for mixed 
linear model, p < 0.05 for post hoc comparison, Bold values indicate significant main effects.  
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Figure 1: Average and standard error (SE) of muscle activation according to the glenohumeral elevation angle during abduction, 

scaption, and flexion for each muscle. 
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4 Discussion 

The purpose of this study was to assess the effects of plane and arc of elevation on the shoulder 

muscle electromyography in patients with full thickness rotator cuff tears during maximum 

abduction, scaption, and flexion. The main findings are that in this group of patients, the activity 

of the supraspinatus muscle was significantly higher during abduction than scaption and flexion, 

while infraspinatus had similar activity pattern in the three planes of elevation. Moreover, the 

activity of supraspinatus did not significantly increase after 40° of glenohumeral elevation, 

while the activity of infraspinatus continuously increased throughout the range of elevation.  

To the best of our knowledge, only Reed et al.(22) have directly compared the effect of elevation 

plane on shoulder muscles activities and found main significant effect only for supraspinatus, 

middle deltoid and upper trapezius. However, their experiment involved healthy participants 

with intact cuff, who might have different muscle activity pattern than the patients with cuff 

tear. In addition, their subjects held 50% of their maximum abduction load during arm elevation; 

this task may not be applicable to patients with rotator cuff tears in pre or postoperative periods 

due to increasing pain or risk of re-tear respectively. Although methodological differences limit 

the comparison, we highlighted additional statistically significant effects which emphasizes that 

more investigations on rotator cuff patients are needed. For supraspinatus, Reed et al.(22) did 

not observe any significant difference in the muscle activity between scaption, abduction, and 

scapular +30° planes, which is different from our findings in patients with cuff tear.  Similarly, 

we found no effect of elevation plane on infraspinatus activity.  

Rotator cuff tear is associated with disruption of normal glenohumeral kinematics,(26) that may 

cause higher supraspinatus activity, especially during abduction, to center the humeral head into 

the glenoid. It has been shown that supraspinatus has higher moment arm and greater elevation 

torque during abduction than scaption,(46) but this issue has not yet been verified in patients 

with torn tendon. Maybe supraspinatus generates more force during abduction to compensate 

the tendon defect. Other biomechanical study has also suggested that supraspinatus is more 

effective in smaller arcs because its moment arm decreases with higher elevation angles,(47) 

and EMG studies have confirmed higher activity level of supraspinatus in the lower arcs of 

motion.(14, 20) It is not clear how the moment arm can be affected by rotator cuff tear, however, 

unlike the aforementioned observations, the activity of supraspinatus in our patient population 

was steadily increasing with the elevation arcs, but this increase was not statistically significant 
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during the last arc of elevation. It means that in patients with rotator cuff tear, the increasing 

trend in supraspinatus activity was more gradual after 40° of glenohumeral elevation.    

Along with supraspinatus, middle deltoid as one of the main abductors (48) was significantly 

more active in abduction than in scaption and flexion which is in agreement with Reed et al.(22) 

The same pattern was also observed for the posterior deltoid and triceps. Several studies (49-

51) have suggested that disruptions in the normal function of some rotator cuff muscles may 

place a higher demand on deltoid to elevate the arm. Our study showed that this demand is 

significantly higher during abduction than scaption with greater involvement of middle and 

posterior deltoid in patient population. Adductor muscles (pectoralis major and latissimus dorsi) 

as the most effective humeral head depressors,(46) are contributing in shoulder stability, 

considering that marked decrease in their activities has been reported in patients with anterior 

shoulder instability,(52) and patients with massive cuff tears showed higher activity of adductor 

muscles than normal subjects.(53) However, while latissimus dorsi, in our patient population 

had the same pattern of activation in all planes of elevation, pectoralis major was significantly 

more active during flexion than abduction and scaption. This finding might be attributed to the 

flexor activity of some parts of pectoralis major.(54)  

The above findings have two main applications. Firstly, while scaption in full can position has 

been suggested as the optimal testing position for supraspinatus isolation,(55, 56) our results 

showed that arm abduction produced significantly higher supraspinatus activation than scaption. 

This observation suggests that the optimal muscle testing position for supraspinatus in patients 

with cuff tear may be abduction instead of scaption. Secondly, it is usually advised to avoid the 

movements that create high activity of rotator cuff muscles in the early phases of rehabilitation 

post rotator cuff repair.(9) The differences in shoulder muscles activation pattern in pre and 

post-rotator cuff repair have not been highly studied, but recently de Witte et al. (57) reported 

that the compensatory increased deltoid activation in patients with cuff tear has partially reduced 

one year after surgical repair. However, the differences in activation ratio in pre and post repair 

were small and statistically non-significant. Therefore, it can be assumed that patient’s muscle 

activity pattern might not dramatically change in the early post-op phases. Conclusively, in any 

rehabilitation approach, if less activation of supraspinatus is desired, we suggest that active 

elevation exercises being started in flexion plane with gradual progress to scaption and 

abduction. In addition, after a certain level of arm elevation (40° of glenohumeral angle), the 
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activity of supraspinatus might not significantly differ while for infraspinatus, increasing the 

elevation arcs causes higher activation of the muscle. Therefore, based on the affected tendon/s, 

the plane and angle of elevation can be adjusted. We acknowledge that muscle activity is not 

the only indicator of stress on repaired tendon. However, as there is at least a qualitative 

relationship between muscle force and muscle activity (9), it can be assumed that when muscle 

is more active, it may generate more force that may increase the possibility of stressing the 

repaired tendon. Indeed, rehabilitation studies are looking for this possibility and this concept 

has been the basis of many rehabilitation regimens.      

In the present study, a personalized kinematic model (34, 58) was used to obtain accurate 

shoulder kinematics data. Patients with rotator cuff pathology usually use different 

compensatory mechanisms for arm elevation such as increasing posterior scapular tilt(59) or 

greater scapular elevation,(60) that may change the orientation of their glenohumeral joints.(34) 

Therefore, two patients with the same maximal thoracohumeral arm elevation may have 

different glenohumeral contribution. For example, Patient 3 and 6 only had 5° differences in 

maximum thoracohumeral abduction, but 27° in glenohumeral elevation. The latter difference 

means that Patient 6 was using more compensatory mechanisms for arm elevation. This may be 

attributed to the larger tear size in Patient 6, however, there is  evidence suggesting that the 

severity of symptoms does not correlate with the severity of rotator cuff disease.(61) For 

instance, Patient 7 and Patient 8, despite having different tear characteristics, similarly had very 

limited maximal arm elevation. Conventional methods for measuring elevation angles such as 

goniometer or 2D kinematics, usually measure thoracohumeral angles without considering the 

glenohumeral contribution. As rotator cuff mainly acts on glenohumeral joint, for the kinematic 

studies that rotator cuff is of interest, a 3D motion analysis may be a better choice to dynamically 

calculate the glenohumeral contribution during arm elevation. Although this method has limited 

clinical applicability, it is more reliable in patients with altered shoulder kinematics and is more 

useful for further comparisons. However, to facilitate the clinical usage, the maximal 

thoracohumeral elevation angles have also been reported in this study.  

The main limitation of this study was the small sample size. To overcome this limitation, we 

used a statistical analysis adapted to small samples (45) and we obtained high powers for all the 

significant effects. However, considering the low power of some non-significant findings such 

as the interaction effect of planes and arcs of elevation, those results should be interpreted with 
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caution. It should be noticed that pre-repair situation may not represent the post-repair condition, 

however, due to high risk of re-tear after surgery, such experiments in early post-op period may 

not be feasible. We did not also compare the shoulder muscle activity of the patients with normal 

population, because the main question of this study was the muscle activity pattern in patients 

with rotator cuff tears, no matter what the normal pattern is. We acknowledge that the different 

protocol used by Reed et al. (22) would also limit this comparison.  

 

5 Conclusion 

Both the plane and the arc of arm elevation affect shoulder muscle activity in patients with 

rotator cuff tears. The supraspinatus with torn tendon was significantly more active during 

abduction than scaption and flexion. We suggest that in any rehabilitation protocol if less 

activity of supraspinatus is desired, active arm elevation should be directed toward flexion and 

scaption rather than abduction. The plane of elevation does not change the activity pattern of 

infraspinatus but its activity increases significantly in accordance with the elevation angles. 

Therefore, according to the affected tendon/s and the rehabilitation goals, the plane and angle 

of elevation can be adjusted. The results of this study may help clinicians to choose more 

precisely the rehabilitation movements for their patients. 
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4 GENERAL DISCUSSION 
           The main objective of this thesis was to evaluate the EMG activity of shoulder 

musculature during different exercises and tasks that are theoretically suitable for the early 

rehabilitation phases after rotator cuff repair. The specific objective of this thesis was to 

introduce a semi-immobilization concept for the period of early rehabilitation after rotator cuff 

surgery and suggest some exercises that can be safely performed during that period. Success in 

surgical treatment of rotator cuff tear is highly dependent on a good post-surgical rehabilitation 

protocol beside the good surgical technique. All rehabilitation regimens aim to implement a 

series of exercises that restore optimal function, while protecting the anatomic integrity of the 

injured or repaired tissues. Based on animal studies, the process of tendon healing may take 12-

16 weeks.232 Therefore, the first 3 months after rotator cuff repair is a critical time period for 

completing the healing process.  The progression of exercise intensity is within the healing 

tissue’s capabilities. In this respect, more conservative approach is warranted for this time 

period, and heavier exercises are postponed to few months after surgery when the healing tissue 

has enough strength to deal with external forces.  

           Four to five phases of rehabilitation after rotator cuff surgery have been introduced.233,234 

Protection of the repaired tissue is the focus of the initial phase of rehabilitation. In this phase, 

the primary post-surgical goal is to minimize stiffness and muscle atrophy while allowing 

healing of the repaired tendon. The integrity of the repaired tissues is preserved by immobilizing 

the operated shoulder to impose as less stress as possible on the newly repaired tissues. The first 

objective of this dissertation was to challenge the immobilization method and introduce a semi-

immobilization concept. We intended to show that immobilization could be limited to shoulder 

joint and mobility of the other parts of upper limb might not highly activate the cuff muscles. 

 Usually during immobilization period, passive range of motion exercises are prescribed to 

minimize stiffness and muscle atrophy. The other objective of this dissertation was to introduce 

some exercises and daily living tasks that do not highly activate the rotator cuff muscles and 

could be added to the rehabilitation regimen. Our first article evaluated these two objectives.  

            At the end of the first phase of rehabilitation or in the beginning of the second phase, 

when a desirable passive ROM is achieved, patient is ready to start active assisted or active 

movements. Active movement can apply certain forces that aid in orienting the fibers within the 
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collagen matrix and enhancing the tensile strength of the repair.125 We intended to evaluate the 

sequences of active arm elevation exercises in respect to plane and arc of elevation. We wanted 

to show how changes in plane or arc of elevation can affect the EMG pattern of shoulder 

musculature.  This issue was evaluated by using the kinematic analysis in accompanying with 

EMG and   presented in our third article.  

           When the patients demonstrate adequate passive and active glenohumeral range of 

motion, strengthening of rotator cuff muscles begins. Rotator cuff strengthening are usually 

prescribed after 3 months of operation, but all the other resistance trainings are also postponed 

until this phase of rehabilitation. The other objective of this thesis was to evaluate the activity 

of rotator cuff muscles during some light strength training exercises,  assuming that these 

exercises could be started earlier during the immobilization period without creating high force 

within the cuff muscles. These strength training exercises should ideally target the other upper 

limb muscles rather than rotator cuff and may prevent muscle atrophy and strength lose. This 

idea has been discussed in our second article.  

             Phase four and five of rehabilitation consist some advanced strengthening exercises and 

restoration of functional activities which are beyond the scope of this thesis. 

As it was deliberated before, the rehabilitation protocols are progressing from a maximum 

protection phase to a minimum protection phase. To translate the above concept in an EMG 

language, it can be said that based on activation of rotator cuff muscles, the patient experiences 

a gradual progression of rotator cuff loading within each phase. Exercises resulting in minimal 

EMG activity of rotator cuff muscles begin in the earlier phases when repair integrity and 

avoidance of imposing stress on the repair is critical; whereas strengthening exercises that create 

higher EMG activity in rotator cuff muscles begin in the later phases.235 It is supposed that this 

gradual progression of increasing EMG activity facilitates protection of the repaired tissue 

during the first phases of healing. This concept has been followed in the studies presented in 

this dissertation.    

             Although the understanding of healing process and muscle activity behavior has guided 

many rehabilitation regimens, in real world, rehabilitation protocols vary widely with respect to 

timing of progression and appropriate exercises. This diversity is because most rehabilitation 

protocols are based on clinical experiences and experts’ opinions, rather than scientific 

evidence. This issue is even more significant for the early phases of rehabilitation post rotator 
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cuff repair. Indeed, current literature is mostly concentrated on subacute recovery phases in 

which resistive exercises are incorporated and limited research is available to provide guidance 

in the early phases of rehabilitation (see Table 5, section 2.4.5). In this respect, this thesis has 

targeted an area that still needs a lot of work. We introduced some exercises and activities that 

caused low activation of rotator cuff muscles while the repair site was almost protected by 

shoulder immobilization. Theoretically, these activities can be added to the first two phases of 

post-surgical rehabilitation protocols. These findings can also provide a basis for manufacturing 

more dynamic and functional shoulder orthoses. In the next sub-sections the main findings of 

our studies are discussed. 

4.1 In the first phase of rehabilitation, immobilization can be 

limited to shoulder joint.  

            Almost all rehabilitation protocols agree with a period of shoulder immobilization 

following rotator cuff repair. This agreement is mostly based on animal studies that indicate 

postoperative immobilization can minimize the tension on rotator cuff repairs and may lead to 

improved collagen orientation and visco-elastic properties, (see Table 1, part B).  In addition, 

excessive early activity raises concern for re-tearing or detachment of the rotator cuff repair. 

Despite general acceptance of shoulder immobilization for repair protection, there is still 

controversy regarding the optimal duration of immobilization, optimal positioning and the 

extent of upper limb immobilization. The latter issue was investigated for the first time in our 

study which was presented in article 1. Actually in both methods of shoulder immobilization, 

either by an arm sling or by an abduction orthosis, the elbow and wrist joints are also 

immobilized. Immobilization period varies between 4 to 8 weeks and according to the patient’s 

situation, the rehabilitation protocol is selected and customized.  Passive ROM exercises for 

shoulder joint may be started the day after operation (moderate protocol) or 2 to 4 weeks after 

operation (conservative protocol),233 to prevent joint adhesions and stiffness. During the 

immobilization period, patients are encouraged to follow a home exercise program that consists 

active ROM of neck, elbow and wrist,233 however, restriction of elbow and wrist movements 

while wearing orthosis, limits the functionality of patient’s upper limb. Yue et al. (1997) 22 

showed that 4 week immobilization of elbow joint could significantly reduce the cross-sectional 
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area of the elbow flexor muscles and decrease their MVC forces. Immobilization of elbow and 

wrist joints is a traditional method which has not been supported by scientific evidence. Our 

results showed that the rotator cuff activity level is always below 20% MVC during elbow 

movements and always below 10% MVC with wrist movements. Most studies concerning the 

first phase of rehabilitation protocols reported that rotator cuff muscle activity of less than 20% 

of maximal isometric or dynamic voluntary contractions can be considered safe. For example, 

McCann et al. (1993) 7 studied EMG activity of shoulder  muscles during the three phases of 

shoulder rehabilitation and considered <20% of maximal dynamic contraction as the minimum 

applicable activity in the first phase. Dockery et al. (1998) 236 studied different types of passive 

exercises commonly used in post-op period and showed that all passive exercises could activate 

supraspinatus muscle for less than 20% MVC, however, the level of muscle activity using pulley 

system was higher than CPM or self-assisted bar raise. Hintermeister et al. (1998) 219 studied 

EMG activity during shoulder rehabilitation exercises with elastic resistance and considered 

<20% MVC as the minimal muscle activity which can be considered safe in post-op period. 

Smith et al. (2006) 13 while studying shoulder muscle activity in immobilized shoulder during 

scapulothoracic exercises, have continued to advocate early low-level (<20% MVC) 

reactivation of the scapular stabilizers during shoulder rehabilitation. Finally, Uhl et al. (2010)230 

suggested that many exercises used during the early phase of rehabilitation to regain active 

elevation do not exceed 20% MVC. In this thesis we intended to show that movement of elbow, 

wrist and fingers could not activate the shoulder muscles higher than what is assumed to be safe 

in the first phase of rehabilitation protocols. It should be reminded that our subjects’ shoulders 

were immobilized and no external forces were imposed on the shoulder muscles during the tests.  

We also noticed that by increasing the speed of movements, the activity of rotator cuff muscles 

would increase. This observation is in accordance with previous findings that showed increasing 

in load and speed could increase muscle activity.237 Therefore, theoretically slow movement of 

elbow and wrist can be assumed safe in the first phase of rehabilitation period. This issue can 

be considered in designing dynamic shoulder orthoses in order to provide more comfort for 

patients during immobilization period. In this design, the immobilization is limited to the 

shoulder joint and elbow and wrist joints can be mobilized. Fortunately at the time of writing 

this thesis, such orthosis has been produced and introduced for clinical application. 
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4.2 Some daily living tasks that involve elbow, wrist and fingers 

can be performed in the first phase of rehabilitation. 

Although there are some reports of shoulder muscles EMG during rehabilitation 

exercises, such studies on activities of daily living (ADLs) are scarce. When applying a 

rehabilitation protocol, it is important to begin by matching the patient’s needs with his or her 

movement limitations and goals. Patients are usually interested in returning to activities of daily 

living as soon as possible after surgery. Although patients are asked to limit active use of the 

operative extremity immediately after surgery, they may still perform light activities, believing 

that their shoulder is protected in the sling or orthosis. Clinicians are sometimes being asked 

about the restrictions and activity level during immobilization period. Patients may ask if they 

are allowed to work with their computers or carry a light weight or write a note, etc. Little is 

known about muscle activation in the rotator cuff muscles when simple ADLs are performed. 

Actually, several ergonomic studies have measured the EMG signal amplitude in some of 

shoulder muscles during certain ADLs such as typing, however, few studies look at the EMG 

data for rotor cuff muscles.238-240 Our results suggest that when shoulder is immobilized and 

protected, the activities such as typing, writing, clicking a computer mouse or holding a light 

bag do not highly activate the rotator cuff muscles. This finding is in accordance with Long et 

al.231 who reported that supraspinatus activity during typing while wearing a sling is less than 

15%MVIC. Therefore, those patients who wish to return to activities such as typing or writing 

in the early phase after rotator cuff repair may be able to do that without placing excessive strain 

on their repair sites. 

           Restoring a full range of motion is usually the main goal of rehabilitation in the first two 

phases of rehabilitation. However, Lovren et al. (2010) 241 in their kinematic study reported that 

most demanding daily living tasks required less than 80% of the glenohumeral ROM in scaption 

plane. In other kinematic studies,242,243 it was noticed that large elbow flexions are needed for 

many daily living tasks such as combing hair or eating with a spoon. It implies that most of daily 

living tasks do not need a full ROM of shoulder joint and having a certain level of shoulder 

abduction with a normal elbow and wrist motion may be enough for performing many of daily 

activities. In this respect, immobilizing the elbow and wrist joints would only restrict patients 
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to perform some of their routine activities without helping the integrity of their repairs. Our 

findings provide a scientific basis for some daily activities which are applicable while wearing 

orthosis.  

4.3 Resistance exercises can be started in the first phase of 

rehabilitation while the shoulder is immobilized. 

            In most rehabilitation protocols, resistance exercises for shoulder begin when the patient 

demonstrates adequate passive and active range of motion, and their scapula-thoracic kinematics 

and compensatory patterns have been improved .233 Typically, it begins around 12 weeks after 

surgery compatible with the third phase of rehabilitation. At this point, it is supposed that 

tendon-to-bone healing can endure the initiation of strengthening exercises.233 The main target 

of strengthening exercises are rotator cuff and scapular stabilizing muscles and this type of 

exercises are performed with elastic bands or weights.244 However, resistance training for arm 

and forearm muscles is also postponed to the third phase of rehabilitation. The effect of biceps 

curl on rotator cuff activity has not been studied before. From previous EMG studies we know 

that both head of biceps are active during arm elevation and long head of biceps is more 

mechanically involved in humeral head stabilization.245 In addition, in both healthy and cuff 

subjects the activity of biceps was little (less than 5% MVC) during shoulder motion when 

elbow was fixed by a brace.246 But what if shoulder is fixed and arm and forearm muscles 

generate force? Could it harm the repaired cuff tendon? Traditionally patients are discouraged 

to apply any force to elbow and wrist joints after their rotator cuff operation. How much force 

can be detrimental to repair in patients is not known. Cadaveric studies have given some idea 

about the amount of force to failure for the repaired tendon. The force to failure of the cuff repair 

has been reported between 201 and 302 N247,248 and this load is compatible with a sudden single 

pull load caused by a maximal contraction of the repaired cuff (such as MVC). The studies 

which have shown the failure result following cyclic loading of the repaired tendon have 

imposed more than 50% of the above mentioned maximal force.249,250 However, in those studies, 

the number of repetition to failure changed with the cadavers’ age, the suture types and the force 

direction. Bicknell et al. (2010)251 reported 50% loss of repair after 206 ± 88 cycles of loading 

at 44 ± 15 N. Considering this report, Long et al. (2010)231 modeled the supraspinatus muscle 
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force as the product of MVIC fraction, muscle CSA, specific tension and cosine of the fiber 

pennation angle and estimated that 15% of MVIC for supraspinatus corresponds to 31 N force. 

As cyclic loading of this amount may be detrimental to the repaired tendon, they advocated that 

any activity beyond 15% MVC may impose non-safe amount of force to supraspinatus.  

             From all these details, I want to conclude that measuring the safe amount of load or 

force for repaired tendon is not clinically feasible but EMG studies may help us to have an 

estimation of the safe load. Our findings showed that resistance training of elbow and wrist 

joints with low loads (2, 4 lbs) would not highly activate the rotator cuff muscles (less than 15% 

MVC) but create moderate activity level for some other muscles including biceps. It should be 

noted that such type of exercises might not be applicable in all cases after rotator cuff repair. 

Some patients with rotator cuff tears may have spontaneous rupture of the long head of biceps36  

and some surgeons prefer to do biceps tenotomy along with rotator cuff tendon repair.252 In this 

situation, high activation of the biceps may deteriorate surgical outcomes. Patients with only 

cuff repair may benefit from resistance exercises of elbow and wrist joints to increase the 

functionality of their upper limbs and overcome the harmful effect of immobilization. As 

mentioned before, 4-6 weeks of elbow immobilization could significantly reduce the strength 

of forearm flexors,22 and triceps brachii.253 To reduce these harmful effects, some suggested that 

even strength training of the non-immobilized limb could be beneficial for the immobilized limb 

in respect to muscle size and strength.224,225 We suggest that resistance training for biceps, 

triceps and forearm muscles in selected cases can be applicable in the first phase after cuff repair.  

4.4 Hand gripping with maximal force, may not be safe after 

rotator cuff repair. 

Alternative hand gripping is usually included in early rehabilitation protocols.156 

Forceful gripping usually follows with progression of rehabilitation. A previous study254 has 

shown that hand gripping with 30% and 50% MVC would increase supraspinatus activity by 

nearly 10% maximal voluntary exertion. Other study255 showed that biceps brachii plays a 

significant role when gripping. In that study performing shoulder exertions simultaneously with 

a hand load versus the same load plus a grip resulted in a differential distribution of shoulder 
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muscle activity. A simultaneous static shoulder exertion and 30% MVC hand grip reduced both 

anterior and middle deltoid activity by 2% MVC and increased posterior deltoid, infraspinatus 

and trapezius activity by about the same value. These findings suggest that hand gripping may 

increase the activity of rotator cuff muscles. However, when the gripping transducer was fixed 

and the subjects did not need to stabilize the arm, reduction in EMG activity of some shoulder 

muscles such as trapezius has been observed.255,256 In addition, elbow position can affect the 

redistribution of shoulder muscle activity when gripping.255  Our subjects’ shoulders were 

immobilized and their elbows were extended during gripping exercises. In this position, the 

activity of rotator cuff muscles during alternative gripping exercise with low force (making a 

fist) was below 5% MVC. So, our study confirms the clinical application of alternative low force 

gripping during the first phase of rehabilitation. However, when the subjects were asked to do 

maximal static gripping test, the activity of rotator cuff muscles significantly increased and in 

some cases overpassed 20%MVC. Therefore, maximal gripping is better to be avoided during 

the early phases of rehabilitation. Future studies may reveal which force ranges for sub-maximal 

alternative gripping exercises is applicable in the first phase of rehabilitation. 

4.5 Active shoulder adduction exercises with low force do not 

highly activate the rotator cuff muscles  

Abduction immobilizers are widely used for arm immobilization after rotator cuff repair. 

There is evidence suggesting that vascularization is improved and tension on the repaired 

tendon(s) is minimized in this position,44,158 (see also part 2.3.1). In the period of immobilization 

which may last 4 to 8 weeks, the patient may come out of the immobilizer only for supervised 

passive motion exercises and active assisted range of motion.233 Our study suggests that at the 

end of the first phase of rehabilitation when the active assisted exercises are commenced, 

patients may be allowed to start arm adduction exercises. In fact, by replacing the abduction 

hard wedge with a low density foam, the patient can do some type of supported active exercises 

while wearing the immobilizer. The results indicate that aside from subscapularis, the EMG 

activities of other rotator cuff muscles were under 20% MVC during adduction exercises with 

low density foams. In addition, these exercises could highly activate the pectoralis major, 

latissimus dorsi and triceps muscles. Subscapularis rupture is not very common 11 and is mostly 
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seen in massive cuff tears 54 where more conservative rehabilitation is desirable. For cases with 

intact subscapularis, active arm exercises may begin earlier with active adduction and passive 

abduction in certain ranges of motion. Decreased EMG activity of subscapularis muscle has 

been reported in patients with impingement 257 and anterior shoulder instability.258 Restoring 

activity of subscapularis muscle may help improving shoulder dysfunction.  Most resistance 

exercises for subscapularis strengthening such as dynamic hug, diagonal or push up activate 

both subscapularis and supraspinatus muscles in moderate to high level 259 and therefore, are 

not appropriate in the early phases of rehabilitation.  The selection of an appropriate exercise 

would safely activate all the desired muscles via light resistance while maintaining low muscle 

activation levels for the muscles with repaired tendon. The adduction exercises that have been 

introduced may help patient’s upper limb return faster to its normal function. However, we 

acknowledge that generation of passive tension on the repaired site should be taken into 

consideration while prescribing such kind of exercises. This issue has been evaluated in our lab 

by Hearing et al. (2015)260  through a simulation-based study and they revealed that passive 

glenohumeral elevations below 25° or above 75° may exceed the safety zones. So, if the 

adduction exercises can be kept in this glenohumeral ranges, they may impose low tensile stress 

on the repaired tendon. Therefore, in specific situation such as repair of an isolated supraspinatus 

tear or when minimal tension has been imposed to re-attaching the tendon, such active arm 

adduction exercises can be added to a dynamic rehabilitation protocol. 

4.6 Active arm abduction imposes more stress on supraspinatus 

than active scaption and flexion 

Active shoulder ROM exercises usually begin near the end of the second phase of 

rehabilitation. It was reported that full forward elevation is restored by 3 months for small tears 

vs 6 months for medium and large tears.261 Therefore, performing this type of exercises may last 

a couple of weeks before achieving the full ROM. Active arm elevation exercises are usually 

prescribed in different planes and angles, but the sequences of elevation in respect to plane and 

arc of elevation has not been identified. Most studies on plane of elevation have been performed 

by kinematic analysis and no electromyographyic study has comprehensively examined   

shoulder musculature during arm elevation in cuff patients to determine if the plane of elevation 
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influences shoulder muscle activity pattern. Our last study which was presented in the third 

article, to the best of our knowledge is the first study on a patient population with cuff tear that 

concomitantly analysed both EMG activity of shoulder musculature and kinematics of arm 

elevations in different planes. According to our results, supraspinatus activity is considerably 

higher in abduction position than scaption and flexion respectively.  This might indicate that 

active ROM exercises in abduction plane might impose more stress on repaired supraspinatus 

tendon. The present finding is different from what has been reported before on normal 

population in that supraspinatus had a similar activity level during abduction, scaption and 

flexion.262 Biomechanical studies have shown that kinematics of clavicular, scapular and 

humeral motions during arm elevation are different in abduction and scaption62 and 

supraspinatus has greater elevation moment during abduction than scaption.263 Therefore, our 

EMG results may reflect these biomechanical findings, although we cannot explain how the 

moment arm might be affected by tendon tear.  

It should be mentioned that there is still controversy regarding the proper timing of active 

ROM after rotator cuff repair. Active arm elevation can be customized early (3-4 weeks after 

repair) or delayed (6 weeks after repair) based on the rehabilitation protocol. At 16 weeks after 

rotator cuff repair, Duzgun et al. (2011)143 found that patients with early active ROM had less 

pain during activity and better functional outcomes compared with those who received delayed 

active ROM exercises. Klintberg et al. (2009)141had also reported better pain control in the early 

AROM group, 2 years after surgery. However, Kluczynski et al. (2015)153  in their meta-analysis 

compared rotator cuff healing rates in patients with early versus delayed active ROM regimens 

and found higher risk for structural defect in early AROM groups. Our results suggest that 

irrespective to the early or delayed approaches, active arm elevation is better to begin in flexion 

plane and gradually progress to scaption and abduction planes to provide safer level of stress on 

the repaired tendon of the supraspinatus.  



 

151 

 

4.7 LIMITATIONS AND CHALLENGES 

 Kinematic studies in patients with rotator cuff pathology 

           Elevation angle in clinical setting is usually measured by goniometer and the angle 

between arm and thorax is calculated. Although this method is very practical for clinical 

purposes, it lacks enough precision for biomechanical studies. Arm elevation is the result of 

interaction between sternoclavicular, acromioclavicular and glenohumeral joints and the 

scapulothoracic pseudo-joint. Conventional methods usually calculate thoracohumeral angle 

without considering scapular movement that directly affects the glenohumeral joint 

orientation.264  Patients with rotator cuff pathology have altered shoulder kinematics in an 

attempt to avoid pain or impingement of the cuff tendon. Arm elevation in this patient population 

is often affected by dysfunction of the shoulder musculature and scapular dyskinesia.265 For 

example, in patients with rotator cuff pathology, posterior scapular tilt increased during arm 

elevation,266 or symptomatic patients with full rotator cuff tears exhibited a greater scapular 

elevation even with a simple elevation movement.267  Actually scapula may be elevated or 

rotated to a greater degree to reduce the requirement for elevation at the glenohumeral joint. 

Therefore, comparing two cuff patients according to their thoracohumeral angles may be 

misleading because two patients with similar thoracohumeral elevation angles may have 

different glenohumeral contributions.  As rotator cuff acts mainly on glenohumeral joint, the 

ranges of glenohumeral angle should be more influenced by rotator cuff pathology. By using 

three-dimensional motion analysis, researchers can measure different orientation of the joints 

such as thoracohumeral, glenohumeral, and scapulothoracic as well as the sternoclavicular and 

acromioclavicular. A three-dimensional motion analysis can dynamically calculate 

glenohumeral contribution during arm elevation and provide more accurate measurements 

especially in patients with rotator cuff pathology and altered shoulder kinematics. However, this 

type of measurement is difficult to perform and needs special technologies which may not be 

applicable in clinical setting. Reporting the arm kinematics according to glenohumeral angles 

provides the advantage of more accurate computation, but it gives less meaningful information 

regarding the position of the arm. So, in most kinematic studies in patient population there is a 

challenge between practical application and precision.  We decided to use a 3D measurement 
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system to present more precise data in our third study. However, we presented both maximal 

thoracohumeral and glenohumeral elevation angles to help clinicians estimate the position of 

arm in relative to the trunk for each patient.  

 Normal subjects may not represent patient population 

The main limitation of the researches presented in this dissertation is that most of our 

findings which were presented in the two first articles have been revealed from normal healthy 

subjects who may not represent the patients with rotator cuff tears. However, it should be noticed 

that most of the persisting data in the field of rehabilitation is derived from studies on healthy 

subjects. (see Table 5, page 67) EMG studies on patients with rotator cuff pathology face with 

some limitations. First, pain by itself can influence the EMG activity of the affected muscles. 

For example it was observed that when the subjects with neck pain did the high force 

contraction, the increase in non-normalized, root mean squared EMG of trapezius muscle was 

lower in the painful side.268 Second, the factors such as muscle damage, fat infiltration, muscle 

atrophy and muscle contractibility may change the characteristics of the EMG data in this patient 

group, so larger variability may result. Third, symptomatic patients may be unable to generate 

maximal voluntary contractions; or maximal contraction may not be safe for patients with 

rotator cuff tear or after rotator cuff repair. Therefore, quantifying the EMG data in patient 

population is challenging, and although some EMG studies on cuff patients have used MVIC 

for normalization of their data, the accuracy of their EMG interpretation is under question. For 

example, Reddy et al.(2000)257 reported that the activity of middle deltoid and rotator cuff 

muscles in subjects with subacromial impingement was most notably decreased in the first arc 

of motion. In this study, the EMG data has been normalized by the values derived from maximal 

manual tests. However, the researchers reported that they had to modify the test position for the 

patient group to avoid pain provocation. Did modifying the test position affect the MVC values? 

This question has not been answered in this study. In another study conducted by Kelly at al. 

(2005),269 the EMG data of 12 patients with two tendon cuff tears has also normalized by MVIC. 

All subjects which were half symptomatic and half non-symptomatic did the same manual 

testing to produce maximal contraction. For example, according to the authors, supraspinatus 

activity was tested by resisted arm elevation at 90° in scapular plane, 45° internal rotation and 

elbow extension. Whether a symptomatic patient with low functional score can do the maximal 
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contraction in this position is under question. These limitations led some researchers to use the 

other methods of normalization especially for patients with massive rotator cuff tear. For 

example, to evaluate the shoulder muscle coordination in patients with massive cuff tear, 

Steenbrink et al. (2006) 217 normalized the EMG by peak values while Hawkes et al. (2012)270 

used mean values for normalization. Normalisation by either the peak or mean values 

considerably reduces the variation of the activity pattern; however, information about the 

absolute signal may be sacrificed.193 Considering all the challenges for studying on patients with 

rotator cuff tear, most researchers prefer to test the rehabilitation exercises on young healthy 

subjects.  

 Pre-op patients may not represent post-op patients 

Our third study has been performed on a group of patients with rotator cuff tears who 

were in the waiting list for rotator cuff surgery. We evaluated the EMG of shoulder musculature 

in those patients to see how elevation tasks in different planes and arcs would recruit muscle 

activation. However, whether the pre-op muscle activity pattern can be applied to post-op 

shoulder muscle activity, is not known. De Witte et al. (2014) 271 tried to reply to this question. 

They quantified the contribution of the rotator cuff to arm abduction in cuff tear patients before 

and one year after surgical cuff repair. They assessed the changes in deltoid activation in 

response to variations in arm abduction moment loading, assuming that rotator cuff repair will 

decrease the compensatory deltoid activation. After surgery, the average deltoid activity in 

patients slightly decreased but no statistically significant differences with pre-operative 

measurement was observed. From this observation they concluded that the rotator cuff activity 

will restore partially – but not completely, one year after repair. Although in this study the EMG 

activity of rotator cuff has not been directly measured, the assumption of authors regarding the 

compensatory higher activity of deltoid in cuff patients has been well documented. In fact, the 

complementary role of supraspinatus and deltoid during arm elevation has been studied by nerve 

blocking,272 in cadaver,273 computer models274 and in patients with rotator cuff tears,217 all have 

suggested that disruptions in the normal function of some rotator cuff muscles would place a 

higher demand on deltoid and result in an increase in deltoid activity. Persistence of 

compensatory mechanisms one year after repair may indicate that amelioration of compensatory 

mechanisms is a gradual phenomenon. Using this concept, it is assumed that the muscle activity 
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pattern of the patients in our study would not dramatically change after 4 to 6 weeks of operation. 

Although direct measurement of rotator cuff activity pre and post-surgery would certainly 

provide more precise information, EMG study of rotator cuff muscles in early post-op period 

may not be feasible. The invasive technique of electrode insertion may ethically and technically 

limit EMG studies in this period. Moreover, it is more reasonable to assume that muscle activity 

pattern in patients shortly after rotator cuff repair is more similar to patients with rotator cuff 

tears than normal subjects. However, proving this assumption needs additional studies. 

 There is not a unified definition for ‘safe exercise’ after cuff repair 

One of the major challenges in rehabilitation studies is the definition of ‘safe exercise’. 

Actually the definition of safety is not clear in the rehabilitation literature. In the clinical settings, 

any exercise that does not endanger the repair and does not provoke the patient’s symptoms can 

be considered safe. But in scientific world, how can we quantify the stress level and determine 

the threshold for safety? Many authors assumed exercises that minimally activate the rotator 

cuff muscles co be considered safe post-operatively (see section 4.1.1) High and low muscle 

activities in EMG studies have been arbitrarily classified according to the percentage of MIVC. 

In this classification, any EMG record of less than 20% MVIC is considered low activity for the 

muscle. Although this classification lacks precision, it can help in quantifying muscle activity 

and comparing different rehabilitation exercises. As described before, this classification may 

not be applicable for patients with rotator cuff pathology, before or after rotator cuff surgery. In 

addition, EMG amplitude indicates the state of activation of the contractile element, which may 

be different from the tension recorded at the tendon. Actually, besides muscle activation, other 

factors such as tendon lengthening during full ROM may increase tendon stress.260 However, 

despite all limitations of this method, it is widely used in clinical studies and has provided 

scientific basis for many rehabilitation regimens. 

The other method for evaluation the safety of an exercise is to check the repair integrity 

by ultrasound or MRI after applying an exercise regimen.12,60,145,147 Although evaluating the 

anatomical integrity of the repair  seems a more accurate method, its usability is limited. First, 

MRI studies are very expensive and ultrasound studies are highly user- dependent. Second, some 

symptoms such as pain and functional score may not be directly related to the anatomical 
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integrity of the repair. This issue has been shown by Flurin et al. (2007) 60 in their study on 576 

cases after arthroscopic rotator cuff repair whose Constant score were dramatically improved 

one year after surgery despite incomplete tendon healing in imaging studies. Galatz et al.(2004) 
12 have also observed good functional scores in 72% of patients with recurrent defect at a 

minimum follow-up of one year. So, if an exercise would not provoke patient’s symptoms or 

deteriorate their functionality but cause a gap in the repair, should it be considered non-safe? In 

real world, the clinicians do not follow the repair integrity by MRI or US until the patient is 

symptomatic. This contradiction, limit the applicability of imaging as a useful tool for 

determining the safety of a rehabilitation exercise. In addition, detecting a defect does not 

indicate the causing factor. In fact, besides the rehabilitation regimen, many other factors such 

as age, diabetes, smoking habit, the chronicity of the tear, technique of repair, tear size, fat 

infiltration and so on can influence on repair integrity.  

Different biomechanical models163,275 have also been created to help determining the 

safety of a special positioning or exercise.  Generally, two different methods are widely used to 

estimate muscle stress and force in musculoskeletal shoulder models: Stress-based methods and 

EMG-based methods. The stress-based method is using a constrained optimisation algorithm 

related to a stress-based cost function. In these optimization-based inverse-dynamics 

musculoskeletal models, force is estimated indirectly from the moments produced by an entire 

group of muscles. EMG-based methods use the experimentally measured electric muscle 

activation to estimate muscle forces through EMG data tracking. Both methods can somehow 

estimate the stress levels, but stress- based methods are more commonly used. Actually, despite 

introducing some good shoulder models using EMG-based methods,276,277 the complicated 

mathematical measurements limit their clinical application.278 Stress-based method has also 

some limitations; for example, they may overestimate the problem of glenohumeral stability.278 

How exactly these models can simulate the real situation, needs also further studies.  

In vivo measurement of force for an isolated muscle such as supraspinatus is one of the 

biggest challenges in biomechanics. In fact, multiple muscles span shoulder joint and the joint 

moment can be the result of different muscle excitation strategies. The possibilities to measure 

muscle forces in vivo are limited, because the invasive methods can be performed just in 

operating rooms and non-invasive methods can only provide information on the forces exerted 
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by groups of muscles not the individual muscle. So, we do not know how much force or stress 

could an individual exercise impose on the repaired tendon, and in what level, this force can be 

detrimental. Cadaveric studies95,249,251 have provided valuable information to determine the level 

of force to failure. But it may not represent the situation in an alive human body. Animal studies 

have been also the basis of many rehabilitation protocols in respect of safety, (see section 2.2.2). 

Although animal studies provided valuable information about the healing timing and process 

and the effect of general mobilization on healing, they are limited in case of specific exercises 

that are applicable only on human bodies. 

In summary, safety for a rehabilitative exercise has not been clearly defined and this 

limits the interpretation of many research data in term of clinical applicability. So, if I am asked 

whether the exercises that are presented in this dissertation are really safe, my response cannot 

be frankly positive or negative. We introduced some movements that could minimally activate 

the rotator cuff muscles (less than 20% MVIC). Our findings are based on the assumption that 

higher activity of rotator cuff muscle may produce more force within the muscle that may cause 

more stress on the related tendon. This assumption has been the basis of many rehabilitation 

exercises but it can be confirmed only by the well-designed clinical trials. Until reaching to a 

consensus on the definition of safety, the methods such as EMG, imaging, simulation models, 

cadaveric and animal models can provide useful information for clinicians to estimate with 

higher precision the safety level of the rehabilitation exercises.   

 

4.8 DIRECTION FOR FUTURE RESEARCHES 

 Comparing immobilization and semi-immobilization in patients. 

In articles 1 and 2 we suggested that the patient’s upper limb can be semi-immobilized 

in a special type of orthosis after rotator cuff repair and some ROM exercises as well as light 

resistance exercises may be applicable in this semi-immobilization period. These suggestions 

are based in our studies on normal population. Additional research is needed to see if the 

suggested modifications of abduction shoulder orthoses is applicable in real life for patient 

population. Future studies should determine if movement of elbow and wrist joints can affect 
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the healing process, patients’ symptoms and restoration of their normal function. In addition, 

the level of comfort for this type of orthoses should be investigated. 

 Determining the safe load and fatigability of shoulder muscles in 

patients 

Although in the second article we suggested that 2-4 lbs load may be applicable for 

resistance training during semi-immobilization period, we could not determine if this range of 

loading is really safe for the patients after cuff repair. Future studies should work on the proper 

load and the number of set for resistance training in patient population to determine the safe 

quantity, timing and repetition of resistance exercises in this patient group. In addition, we found 

that maximally squeezing of medicine ball produced high activity of rotator cuff muscles but 

low force repetitive gripping was not highly provocative for cuff muscles. The effect of sub-

maximal gripping force on the activity of rotator cuff muscles should be studied in the future.  

Muscle fatigue in post-op patients is also important to be studied specially after 

resistance training and the ADLs that created low rotator cuff activity. EMG is a good tool to 

investigate muscle fatigue and the median frequency slope can be used as a fatigue index. 

Greater fatigue was observed in the deltoid and rotator cuff muscles in healthy subjects  during 

isometric arm elevation tasks.279,280 Hawkes et al. (2015)281 studied the fatigability of shoulder 

musculature in patients with massive cuff tears and observed greater fatigue in anterior and 

middle deltoid but interestingly no significant fatigue in the rotator cuff muscles. Perhaps rotator 

cuff muscles – while contracted against a torn tendon – could not develop appreciable force. But 

what if the tendon is repaired? How long a light resistance training or a light daily activity can 

be continued without fatigue, and in which muscles or muscle groups in post-op patients we 

expect to see more fatigue? Hopefully future studies will answer these questions.  

 The shape and texture of wedges for adduction exercises 

The idea of positioning a wedge shaped foam under the arm that we introduced in this 

dissertation was preliminary. More works needed to be done to identify the best angle of 

abduction and the proper ranges for adduction exercises. In addition, it might be useful to 

compare the adduction exercises with and without foams in respect of muscle activity, patients’ 
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comforts and functional outcomes. Besides, future studies should evaluate the tensile stresses 

on the repaired tendon during adduction exercises. We acknowledge that while adduction 

exercises may be potentially safe from a loading perspective, they may not be safe in terms of 

generation of passive tension. However, as mentioned before, the range of 25° -75° of 

glenohumeral elevation may be considered safe in respect of tensile stress.260 

 Consensus on normalization method for EMG studies in patient 

population 

As deliberated before, one of the main concerns in rehabilitation studies is how to 

compare the EMG studies of rotator cuff patients. Presently it is challenging for two following 

reasons. First, many of studies on patient population are lacking the precise definition of 

underlying pathology. Patients with shoulder pain may have different diagnoses. Shoulder 

impingement syndrome consists a variety of pathologies including, bursitis, tendinitis or tendon 

tear.  In this respect, our third study which has been done on a small group of patients with full 

thickness rotator cuff tears is well harmonized. But better harmonization could be achieved if 

the other important factors such as muscle quality and tear chronicity could be taken into 

consideration. In addition, the compensatory mechanism may differ in different patients and 

therefore, high variation in muscle activity patterns have been reported in EMG studies of 

patients. Second issue is the variation in normalization method for interpreting the EMG data. 

As it was explained before, although MVIC is the most popular method for normalization and 

quantifying of EMG data in normal population, it is not applicable in symptomatic patients or 

for studies in patients after rotator cuff surgery. Using different normalization methods made a 

barrier for comparing between studies performed on patients. This issue needs to be addressed 

in future consensus meetings of international biomechanics/ EMG or rehabilitation 

organizations.  
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5 CONCLUSIONS 

Torn rotator cuff tendon is surgically repaired to decrease patient’s pain and increase 

their ROM and functionality. Post-operative rehabilitation after rotator cuff repair plays a 

significant role for the ultimate outcome. Post-surgical care should balance between the 

restrictions applied for tissue healing and the exercises prescribed for restoring range of motion 

and muscle strength. Quiet number of surgeons discourage early active mobilization of shoulder 

joint, in fearing of deleterious effect of early mobilization on tendon repair. Due to this concern, 

most rehabilitation protocols include a period of shoulder immobilization during which only 

passive range of motion is allowed to be performed. The exercises are gradually progressed to 

active range of motion until the full range of motion is achieved around 12 weeks post-operation.  

This dissertation introduced some exercises that could be applicable in this period of 

rehabilitation before initiation of resistance training exercises for rotator cuff muscles.  

From the persisting data, it may be concluded that highly conservative rehabilitation 

approach may lead to shoulder stiffness, muscular weakness and prolonged rehabilitation that 

postpone the patient’s upper arm functionality. The relationship between repair and patient’ 

symptoms is complex.  Despite adequate repair, some patients may still have pain and 

stiffness282 and pain improvement has been reported in patients even with some percentage of 

gap in their repair.60 Understanding the pathophysiology of rotator cuff tears may help to realize 

how to balance the repair safety with symptoms improvement. Arthroscopic rotator cuff repair 

with less muscle damage and improvement of repair techniques provided an opportunity for 

more aggressive rehabilitation approach. Rehabilitation after cuff repair based on several 

factors, such as patient’s age, tear size, tissue quality, and surgical technics. I believe that in 

certain cases (such as smaller tear, better tissue quality, and younger ages) some modifications 

in routine rehabilitation regimen can be applied to decrease the risk of stiffness and increase the 

functionality of the patient’s upper limb. A summary of our suggestions has been presented in 

Table 6. These modifications include: 

 Active mobilization of elbow and wrist joints while shoulder joint is immobilized.  

We showed that active mobilization of elbow and wrist joints can minimally activate the rotator 

cuff muscles. Specific shoulder orthoses can be designed to adjust the immobility of shoulder  
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with mobility of elbow and wrist joints. Fortunately, at the time of writing this thesis, few 

dynamic shoulder orthoses have been introduced in the market and our findings could provide 

a scientific basis for the modifications applied. Hopefully future studies will clarify the efficacy 

of this type of orthoses. We suggest that during the shoulder immobilization period, elbow and 

wrist joints can be mobilized without stressing the repaired tendon.  

 Performing some daily living activities while wearing shoulder orthosis 

We showed that some daily activities such as working with a computer would minimally activate 

the rotator cuff muscles. Therefore, clinicians may advise their patients regarding the 

appropriate daily activities that probably impose low stress on their repaired tendon. The 

activities such as typing, writing, clicking and holding light weights may be safe to be performed 

while wearing shoulder orthosis, however, how long or how many cycles a patient can continue 

these types of activities before reaching to fatigue state needs further investigation.  

 Light resistance training for elbow and wrist joints while shoulder is immobilized 
Although strength training for rotator cuff muscles should be postponed until the repaired tendon 

achieves enough strength to cope with the loading, resistance training of elbow and wrist joints 

does not impose high stress on the repaired tendon. We suggest that some resistance training 

may be applicable in the early phases of rehabilitation without highly involving rotator cuff 

muscles. Such exercises include isotonic contractions of arm and forearm muscles with 2-4 lbs 

loads, wrist flexion/ extension exercises with 2-6 lbs load and alternative forceless or low force 

hand gripping.  However, safe load cycling of such resistance exercises should be determined 

by future studies. 

 Shoulder adduction exercises with soft wedges while wearing shoulder orthosis 

Adduction exercises can be introduced to some selected patients with intact biceps and 

subscapularis when active assisted range of motion exercises are planned. Low resistance foams 

facilitate contraction of adductor muscles as well as subscapularis, while supraspinatus and 

infraspinatus are less active. In fact adduction exercises can isolate subscapularis activation 

without imposing more stress on supra and infraspinatus muscles.  In this form of exercise, arm 

abduction is followed passively, with minimum activity of cuff muscles. Identifying the best 
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angle ranges for adduction exercises and the safe tensile load that can be imposed on the repaired 

tendon needs further investigation. 

 Sequencing and progressing the active arm elevation exercises from flexion plane 

to scaption and abduction planes respectively. 

We showed that in patients with cuff tears, activation of supraspinatus significantly differ in the 

three planes of abduction, scaption and flexion. In the late second phase of rehabilitation, when 

patients begin AROM, plane of elevation can be chosen wisely in order to gradually increase 

the activity of cuff muscles. Our suggestion is a progressive sequence of flexion, scaption and 

abduction exercises after supraspinatus repair. However, for isolated infraspinatus repair, the 

sequencing of arm elevation according to the elevation plane may not be necessary.  
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Table 6: Suggested modifications to the early phases of rehabilitation 

Rehab 
Phase 

Conventional method Suggested Modifications 

  
Pr

ot
ec

tio
n 

 

Complete Upper Limb  Immobilization 
 

 
 
- Passive ROM + Pendulum Exercises + Periodic 
mobilization of elbow/wrist 
- No Resistance Training 
 

Semi-Immobilization of the Upper Limb: 

 No immobilization for Elbow, Wrist, Fingers 
 Loaded mobilization of elbow/wrist ( up to 4 Ibs) 
 Grip exercises with low force 
 Performing some daily living activities 
 Shoulder adduction exercises in certain cases  

 

  
R

es
to

ri
ng

 R
O

M
  

  

 
ROM Exercises without any specific order 
 

 
 

Order for Elevation Exercises 
 
For supraspinatus (SS) tear: 

 Sequencing the elevation exercises: Flexion, Scaption, 
Abduction  

For infraspinatus tear:  

 No plane effect 
 Slow progression in elevation arc 
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  Clinicians expect to see a good progression in the first 12 weeks after rotator cuff repair in 

term of controlling the pain, stiffness and active range of motion to prepare their patients for 

more advanced phases of specific strengthening and functional exercises. We believe that our 

findings that deliberately discussed in this dissertation can help clinicians to design more 

efficient rehabilitation programs for their patients’ preparation. In addition, we hope that the 

functional rehabilitation approach that we suggested here, can help the patients to have better 

quality of life and self-imaging during the recovery period.  

                                                                                                                        

                                                                                                                         The End 

                                                                                                                          Nov 2015 
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7 APPENDICES   

Appendix 1:  Classifications of rotator cuff tears 

A: Tear Classification 

Bateman, 1963:283 length of the greatest diameter of the tear  

Small: less than 1 cm 

Medium: 1-3 cm 

Large: 3-5 cm  

Massive: more than 5 cm 

 

Neer, 1983: 36 pathology of the lesion 

Stage I:  edema and hemorrhage of the tendon and bursa, occurs in < 25 years  

Stage II: tendinitis and fibrosis of the rotator cuff,  in 25- to 40-year-olds 

Stage III: tearing of the rotator cuff (partial or full-thickness) in those > 40 years 

 

Patte, 1990:284  topography of the rotator cuff tear in MRI, and the level of cuff retraction.  

Grade 1: full-thickness tears with little tendon retraction, tendon between the greater 

tuberosity and apex humeri  

Grade 2: retraction of tendon to level of humeral head, tendon between apex humeri and 

glenoid  

Grade 3: retraction of tendon to level of glenoid, tendon medial to glenoid 

 

Ellman, 1990:285 location, depth, and area measured arthroscopically   

Partial thickness tears: 

Grade I: tears had a depth of less 3mm  

Grade II:  Tears with depth of 3 to 6 mm 

Grade III: tears with depth more than 6 mm 

A: articular surface, B: Bursal surface, C: interstitial 



 

ii 

 

 

Full thickness tears: 

Grade Size Description 

I Less than 2 cm Small  

II 2-4 cm Large 

III More than 4 cm Massive 

IV  Cuff arthropathy 

A: Supraspinatus,  B: Infraspinatus,  C: Teres minor  D: Subscapularis 

The tear size is estimated in sagittal plane. 

 

Harryman et al. 1991:89 location and no. of tendon torn  

Type 0: intact cuff  

Type IA: partial tear  

Type IB: full thickness supraspinatus tear  

Type II: full thickness supraspinatus and infraspinatus tear  

Type III: full thickness supraspinatus, infraspinatus and subscapularis tear 

 

Snyder, 1991:80   location and severity of the lesion  

A: Partial articular side, B: partial bursal side, C: complete 

Partial tears 

0: normal cuff with smooth coverings of synovia and bursa  

I: minimal superficial bursal or synovial irritation or slight capsular tear in a small 

localized area, usually < 1cm 

II: Actually fraying and failure of some rotator cuff fibers in addition to synovial, 

capsular or bursal injury usually < 2cm 

III: More sever rotator cuff injury, including fraying or fragmentation of tendon fibers. 

Often involving the whole surface of a cuff tendon. Most often the supraspinatus; usually 

< 3cm 

IV: Very severe partial rotator cuff tear that usually contains, in addition to fraying and 

fragmentation of tendon tissue, a sizable flap tear and often encompasses more than a 

single tendon. 



 

iii 

 

Complete tears 

C/0: partial articular and bursal tear 

C/1: Full thickness tear less than 1 cm 

C/2: Full thickness tear, 2-3 cm, only involve supraspinatus, minimal retraction 

C/3: Tear involving the supraspinatus and part of infraspinatus tendon 

C/4: Massive tear involving at least two tendons 

 

Masten et al, 2008:69 extent of the lesion and the structures involved 

Stage I: full thickness supraspinatus tear (=< 2cm) 

Stage II: full thickness supraspinatus and partial infraspinatus tear (2-4 cm) 

Stage III: full thickness supraspinatus, infraspinatus and subscapularis (5cm) 

Stage IV: cuff tear arthropathy 

 

Davidson & Burkhart, 2010:286 arthroscopic identification of the shape of the lesions 

Crescent shaped:  usually do not retract medially, are quite mobile in the medial to lateral 

direction, and can be repaired directly to bone with minimal tension. 

U Shape:  Similar shape to crescent but extend further medially with apex adjacent or medial 

to the rim of the glenoid. Must be repaired side-to-side using margin convergence first to 

avoid overwhelming tensile stress in the middle of the rotator cuff repair margin. 

L or reverse L shape: Similar to U shape except one of the leaves is more mobile than the 

other. Use margin convergence in repair. 

Massive, Immobile:  May be u-shaped or longitudinal. Difficult to repair and often requires 

and interval slide. 

 

 

 

 

 

 

 

 



 

iv 

 

 

B: Side effects 

Goutallier, 1991:16 Classification of fatty infiltration based on the presence of fatty streaks 

within the muscle belly using CT imaging, and later on applied to MRI too. 

0: Normal 

1: Some fatty streaks 

2: More muscle than fat 

3: Equal amounts fat and muscle 

4: More fat than muscle 

 

Warner et al. 2001:287 Grading scale for muscle atrophy based on the oblique sagittal-plane of 

MRI. According to the relation of the muscle to a straight line connecting either the coracoid to 

the scapular spine (assessing the supraspinatus) or the coracoid to the tip of the scapula 

(assessing the infraspinatus).  
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Appendix 2: Fine wire electrode insertion techniques for rotator 

cuff muscles 

The information in this part has been derived from the instructions in Standard 

Operating Procedure prepared by Rebecca Brookham from Waterloo University.  

For evaluating the activity of rotator cuff muscles, single-use hypodermic needles is inserted 

through the skin in each of the four rotator cuff muscles. All skin in the area surrounding the 

insertion sites should be cleansed with isopropyl alcohol or betadine, and the researcher should 

wear sterile glove at all time during insertion procedure. 

Insertion placement for supraspinatus:  

Subject’s position: prone, arm at the side 

Point of insertion: Localize medial one third of scapular spine. Insert needle 2 cm above this 

point. Needle should be inserted parallel to skin toward your finger that overlays the scapula 

spine, into the suprascapular fossa. Be sure that the scapular bone is beneath insertion side to 

avoid the risk of pneumothorax. Needle will pass through middle trapezius before inserting in 

supraspinatus. 

Test: ask the subject to abduct the arm against resistance. Check EMG signals. 
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Insertion placement for infraspinatus 

Subject’s position: Prone with arm at the side 

Point of insertion: Landmark scapular spine, medial and lateral borders and find centre of 

infraspinatus fossa. Insert needle into centre of infraspinatus fossa (halfway between scapular 

spine and inferior angle, midway between lateral and medial borders). The needle should pass 

middle trapezius before reaching to infraspinatus. Try to capture the inferior border of scapula 

with your thumb and index fingers of the non-dominant hand to find easily the center of 

infraspinatus fossa. 

Test: with resisted external rotation, you expect to see good signals. Ask the subject to perform 

scapular retraction, if you doubt that your electrodes are in mid trapezius.  
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Insertion placement for subscapularis 

For electrode insertion into the subscapularis, three notes should be considered. First, electrodes 

can be inserted either through lateral border (axilla) or medial border. We preferred medial 

border insertion technique for our subjects.  Second, the subject can be in prone position or in a 

sitting position.  Third, as innervations of upper and lower subscapularis muscle are different, 

some researchers prefer to use two needles to evaluate the activity of both upper subscapularis 

and lower subscapularis. In our studies, we checked only the activity of lower subscapularis. 

The method that we used in our lab is as following.   

Subject’s position: prone, hand behind the back (approximately level of L5), causing scapula 

to wing. 
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Point of insertion: Localize inferior border of scapula, follow the medial border of scapula 

approximately 3 finger breadth. Insert the needle horizontally toward the subscapularis fossa 

(anterior of scapula) for about 10 mm and then steer the needle in the opposite direction away 

from ribcage and toward the scapular bone. Needle will pass through middle trapezius, 

rhomboids and possibly serratus anterior before reaching to subscapularis.  

Test: resisted internal rotation causes good signals, you should observe low activation during 

scapular retraction. 

 

Insertion placement for teres minor 

Subject’s position: prone, arm relaxed at side 

Insertion point: on lateral border of scapula, find the midpoint between acromion and inferior 

angle of the scapula. Try to palpate the lateral border with your fingers and insert the needle 

immediately lateral to this border at that midpoint. Insert the needle at the similar height as 

infraspinatus insertion. 

Test: resisted external rotation causes large EMG activation.  
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