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Résumé 

 

Des interventions ciblant l’amélioration cognitive sont de plus en plus à l’intérêt 

dans nombreux domaines, y compris la neuropsychologie. Bien qu'il existe de nombreuses 

méthodes pour maximiser le potentiel cognitif de quelqu’un, ils sont rarement appuyé par 

la recherche scientifique. D’abord, ce mémoire examine brièvement l'état des 

interventions d'amélioration cognitives. Il décrit premièrement les faiblesses observées 

dans ces pratiques et par conséquent il établit un modèle standard contre lequel on 

pourrait et devrait évaluer les diverses techniques ciblant l'amélioration cognitive. Une 

étude de recherche est ensuite présenté qui considère un nouvel outil de l'amélioration 

cognitive, une tâche d’entrainement perceptivo-cognitive : 3-dimensional multiple object 

tracking (3D-MOT). Il examine les preuves actuelles pour le 3D-MOT auprès du modèle 

standard proposé. Les résultats de ce projet démontrent de l’augmentation dans les 

capacités d’attention, de mémoire de travail visuel et de vitesse de traitement 

d’information. Cette étude représente la première étape dans la démarche vers 

l’établissement du 3D-MOT comme un outil d’amélioration cognitive. 

 

 

 

Mots clés : Amélioration cognitive, 3D-MOT, entrainement perceptivo-cognitive, 

entrainements cérébrales 

 

 

 

 

 

  



 ii 

Abstract 

 

Cognitive enhancement is a domain of burgeoning interest in many domains 

including neuropsychology. While there are different methods that exist in order to 

achieve cognitive enhancement, there are few that are supported by research. The current 

work examines the state of cognitive enhancement interventions. It first outlines the 

weaknesses observed in these practices and then proposes a standard template for 

assessing cognitive enhancement tools. A research study is then presented that examines 

a novel cognitive enhancement tool, 3-dimensional multiple object tracking (3D-MOT), 

and weighs the current evidence for 3D-MOT against the proposed standard template. 

The results of the current work demonstrate that 3D-MOT is effective in enhancing 

attention, working memory and visual information processing speed, and represent a first 

step toward establishing 3D-MOT as a cognitive enhancement tool.  

 

 

 

Key Words: Cognitive Enhancement, 3D-MOT, perceptual-cognitive training, brain 

training 
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Introduction 

 

The greatest minds of our time are just that: minds. Religious figures, 

philosophers, writers, neuroscientists, and almost anyone lying in bed unable to sleep at 

night have contemplated the elusive and yet undeniable existence of consciousness. The 

mind is all we really know of existence; some of best known works involve the mind and 

its importance in the experience of life, including Rene Descartes’s “cogito ergo sum” or 

translated: “I think, therefore I am”.1 Thoughts then, according to him, are the essence of 

existence. It is a sentiment echoed by centuries of philosophical exploration2, and even 

nowadays in modern neuroscience.3 And yet, by today’s more rigorous scientific 

standards, Descartes is but one among many who fail to adequately define what think 

actually means. Thoughts have origin in the mind, but what are they? 

 

The notion of thought seems so ingrained in our experience of existence that 

understanding or defining it is at once almost redundant, and yet a hugely daunting task. 

Suffice it to say that even for the greatest minds of our time, to think about thinking 

seems to open up a Pandora’s box. While some argue that a comprehensive definition of 

the mind will forever elude us4, some would argue that the mind is nothing but a 

dynamic flow of perception and memory.5 To say nothing but those things is a little 

gratuitous. It is a magnificent thing to be able to experience sensory information and 

remember experiences as if we were actually living them in the present.  

 

This holy grail of philosophical thought is now being sought out by modern 

neuroscience. Researchers are attempting to define the mind, develop a comprehensive 

theory of consciousness, find where in the brain the mind and thoughts are rooted, and 

discover the mind’s neuroelectric and neurochemical signature. It is too daunting a task 

for a master’s memoir to achieve this, but this paper will nonetheless discuss another 

pursuit of burgeoning interest: maximizing the potential of the mind, or said another 

way: enhancing cognition.  
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Modern neuroscience has finally shed the antiquated, static brain dogma of the 

past. We now readily acknowledge that the brain is plastic, and can and does reorganize 

itself on a daily basis based on experience.6 This change in paradigm has led to many 

explorations into the arena of enhancing and maximizing the efficiency of the brain and 

thus unlocking the potential of the mind. In turn, these explorations have led to the 

development of a number of brain training programs, exercises geared toward improving 

a person’s cognitive abilities. As exciting as this pursuit is, the majority lack sufficient 

research to support their use7, but that has not impacted their profitability in the 

marketplace; in 2012 revenues in this market surpassed the 1 billion U.S. dollar mark and 

forecasts predict that in 2020 this figure will grow to 6.2 billion USD.8   

 

While there is a massive influx of money primarily from the private sector, 

adequate research to back up the purported claims of these training programs is grossly 

lacking7,9,10. The following work has two aims: first, to prescribe a standard by which 

cognitive enhancers can be assessed, and second, to examine one of these brain training 

programs in particular, 3-dimensional multiple object tracking (3D-MOT), against the 

proposed standard.  

 

Following an extended introduction and methods sections, an upcoming research 

article to be published in Clinical EEG and Neuroscience is presented. Some of the 

information contained in the article may be slightly redundant to this memoir; the 

memoir contains a more thorough examination of the efforts of the author. All attempts 

were made to repeat as little information as possible, while still allowing for an adequate 

and logical flow. Following the presentation of the article, an extended discussion 

examines the work completed, its potential influence on the current state of affairs in the 

domain of cognitive enhancement, and avenues for further research and exploration.  
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Cognitive Enhancers 

 

Before discussing 3D-MOT as a cognitive enhancer, it is important to examine the 

types of cognitive enhancers that currently exist. Many different types of cognitive 

enhancers have been proposed and a brief overview is provided below.  

 

First, pencil and paper tasks (e.g., crossword puzzles, Sudoku) are one of the 

simplest types of cognitive enhancers in that they require few resources in order to train.7 

Some studies have found that crosswords may slow the cognitive decline observed in 

those who later develop dementia11, but other studies have found no effect.12 Sudoku 

puzzles are another example of this, with research having established a link between 

performance on Sudoku puzzles with working memory13 and others finding positive 

results of training related to cognitive decline14. Still, arguments exist as to whether this is 

due to actual cognitive enhancement, or if it is more related to cognitive maintenance – 

following the principal of use it or lose it – meaning that rather than actually enhancing 

cognition, those performing these tasks are simply maintaining their current abilities.15 

Evidence that these activities actually enhance a person’s cognitive abilities rather than 

simply provide maintenance is still lacking.13, 15 

 

Computer-based training programs (e.g., Lumosity16, Cogmed QM17, Captain’s 

Log18) range from the digital equivalent of pencil-and-paper type tasks, to more complex 

tasks requiring attention, memory and problem-solving skills.7 Studies in normative 

populations have reported positive results using these types of programs, noting 

enhancements in memory19,20,21,22, attention21, and working memory23, while others 

demonstrated no evidence of cognitive enhancement24, or significant degradation of 

gains over relatively short periods of time (one month)22.  

 

Video games have also made the foray into the cognitive enhancement domain, 

older games like Tetris®25 and newer ones like Brain Age26 are both examples of games 
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touted to enhance cognition. Some studies report findings of increased speed27,28, 

working memory29 and executive function28,30,31. Here as well conflicting reports exist, as 

other studies report no significant differences following training32,33.  

 

For both computer-based interventions and video games, a large number of 

criticisms are raised even for the studies that demonstrate improvement. These include 

small sample sizes, lack of randomization, inadequate control groups, conflicts of interest 

(e.g., financial incentives due to commercial interests), unclear and variable transfer 

effects7, limited amount of practise time, inadequate cognitive batteries utilised to 

measure transfer34 and the absence of longitudinal follow-up.35  

 

Neurofeedback training involves the use of a brain-computer interface and relies 

on conditioning to normalize or enhance a person’s brain activity.36 Traditionally, this is 

done using an electroencephalogram (EEG) but can also be done using various brain 

imaging techniques such as functional magnetic resonance imaging (fMRI).37 Numerous 

studies have demonstrated the beneficial effects for attention-deficit population (see Arns 

et al.38 for a review), autistic spectrum disorders (see Coben et al.39 for a review) as well as 

many others including learning disabilities40, epilepsy41, anxiety and depression42, 

traumatic brain injuries43. With regard to healthy populations, research has demonstrated 

improvement in general cognitive and memory enhancement44,45, sporting 

performance46, musical47 and acting performance.48 Critics of neurofeedback cite 

methodological issues including difficulties in active control groups, difficulty 

maintaining the researcher’s blindness as to subject condition38 and a general failure to 

elicit unambiguous changes in baseline brain activity37 and lack of long-term follow-up.38 

 

Pharmacological interventions are the first-line treatment of choice for cognitive 

disorders.49 Healthy populations may also stand to benefit from pharmacological and 

nutritional supplements, and this is a domain of burgeoning interest.49 To that end, the 

Academy of Medical Sciences have published a report49 on the research evaluating the use 
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of pharmaceutical and nutritional supplements to enhance cognition. The report offers 

little to support the use of all evaluated substances in cognitively healthy populations 

(they acknowledge the benefit of use in clinical populations) and is a little dated (2008), 

however it stresses the need for more research and highlights the political and ethical 

issues surrounding the use of these substances.49 Some reviews of more recent research 

demonstrate promising trends toward finding drugs capable of enhancing cognition50, 

however all are unanimous in echoing the views of the Academy of Medical Sciences 

report: more research is needed.50,51,52  

 

Another way of enhancing cognition is though exercise. A rather simple 

intervention, aerobic exercise has been shown to have a beneficial impact on cognitive 

functions (e.g. memory53), has been shown to counteract the mental decline associated 

with age54 and facilitate recovery following a brain injury.55 Exercise is also touted to have 

anti-depressant, anti-anxiety and other beneficial effects on mood.56 With regard to 

exercise, there are few who question the benefits of exercise and physical health on 

cognition although researchers stress caution when interpreting the data.53,55,56  

 

3-Dimensional Multiple Object Tracking: 3D-MOT 

 

Multiple object tracking (MOT) was initially developed as a research tool in order 

to test a theory of visual indexing, and can be dated back to Plyshyn and Storm.57 The 

theory, referred to as the FINST Indexing Theory, hypothesized that there was a cognitive 

mechanism responsible for indexing visual objects or features for subsequent cognitive 

processes.57 The MOT tool was initially developed to examine theories of visual indexing: 

whether there was one single locus of attention that acts as a beam that shifts from 

location to location, or whether attention could be divided across multiple targets.57 

Generally speaking, an MOT paradigm involves the identification and tracking of a target 

stimulus, amidst identical distractors as they move about through a delimited space over 
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a fixed period of time.57 In the first part of the task, the objects (i.e., targets and 

distractors) appear for a pre-defined duration. Next, the target stimuli are identified; this 

can be done through movement, color change, flashing, or other salient variations to 

break the homogeneity of the target from the distractor stimuli. After homogeneity is 

restored, the objects move and tracking begins. After a period of time, the movement 

ceases; the participant must identify the target stimuli.  

 

Using the MOT paradigm, researchers have discovered a number of properties of 

tracking and attention. For instance, targets can be tracked even if occlusion occurs58 and 

in certain cases even when all objects disappear from view (e.g., during a blink).59,60 

Tracking also appears to be an on-line process, meaning that new information it is 

refreshed often and old information essentially deleted. This is exemplified by data 

demonstrating that when objects are correctly tracked their initial positions or identifying 

labels are poorly recalled when compared to typical tracking performance.61 Tracking is 

also possible when targets change direction or location when occluded; although as the 

degree of change increases tracking accuracy decreases.62 The inhibition of non-targets 

appears to be distinct from the allocation of attention to targets and inhibition seems 

numerically less-limited resource than attention however from a functional standpoint it 

is more limited.63 As speed decreases MOT capacity increases64, however research has 

also demonstrated that speed may not be a limiting factor in MOT performance.65 

Experience playing a videogame also increases MOT performance.66 Tracking can be 

carried out independently in each cortical hemisphere67 and object tracking can occur 

into the visual periphery.68 

 

Subsequent manipulations of the initial MOT paradigm where then implemented 

by researchers, including varying the number, shape, colour and size of targets and 

distractors can vary64, as can their speed65, location67, direction62 and duration of 

movement.69 Researchers has established that for the vast majority of MOT paradigms 

four or five targets are the most that the average person can track57, however other 
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research has discovered contexts in which tracking more targets is possible.64 Further 

examinations of MOT in research settings led to the discovery that over time, individuals 

improve in task performance for both repeated trajectories70 as well as novel ones.71 In 

aging populations, improvements in 3D-MOT have demonstrated transfer to perception 

of biological motion.72 Athlete populations are also said to benefit from training, as sports 

involve complex scene dynamics and heavily tax perceptual abilities, including biological 

motion perception.73 In a limited sense, with regard to aging populations and athletes the 

idea that MOT could serve as a cognitive enhancer was thus born. Since MOT is a task 

that is founded on a number of cognitive functions including attention, working memory 

and visual information processing57,58, research examining the possible transfer to these 

domains is the next logical step.   

 

Another type of cognitive enhancement intervention, video games, has 

demonstrated a direct link to MOT ability. Research has shown that those who regularly 

play video games are able to track approximately two more items in an MOT task than 

non-gamers74, those trained on certain types of video games (involving abilities similar to 

MOT) demonstrated improved abilities in an MOT task75, and expert gamers 

demonstrate faster information processing speed abilities in an MOT paradigm than non-

gamers.76 Interestingly, these studies used MOT to demonstrate transfer following video-

game training but did not address the possibility that MOT itself could be a cognitive 

enhancer, although one research team noted that the MOT task resembled one of the 

training paradigms which led to cognitive enhancement75, and another study noted that 

with repeated MOT testing abilities in the task also improved, however this did not 

appear to be the factor underlying the cognitive enhancement in that study.76  

 

What is it then, about 3D-MOT that makes it a candidate as a cognitive enhancer? 

The characteristics of the MOT program examined herein are distinct and warrant 

examination. There are four specific and defining characteristics that distinguish the 

current paradigm from the other cognitive enhancers, and even other forms of MOT.  
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The 3D-MOT paradigm under investigation differs in four ways from the above-

mentioned cognitive enhancers, which will be discussed below. These characteristics of 

3D-MOT contribute to two important factors that cognitive enhancers must address: 

learning77 and ecological validity.78 Learning is essential to any cognitive enhancer; it is 

essentially the effect underlying improvement that one hopes to achieve using a given 

intervention.77 Ecological validity is what gives a cognitive training tool the ability to 

relate to and have an impact on everyday life.78 

 

First, in order to put the following explanation in context, consider that one 3D-

MOT trial consists of five phases: presentation, identification, movement, response and 

feedback. First, the targets and distractors are presented in the 3D environment. Next, the 

targets are identified. Once homogeneity is restored, the targets begin to move about 

along a linear path in 3D-space. Following movement, trainees must attempt to identify 

the targets. Finally, feedback is given as the targets are revealed. In the research article 

found below, Table 3 describes these phases while Figure 1 offers a visual representation 

of these phases. All full examination of the 3D-MOT paradigm can be found in the 

Method section below.  

 

The first element is that the task is first and foremost a multiple object tracking 

(MOT) task. In this version of the task, there are four targets and four distractors. With 

regard to ecological validity, having multiple objects to track is important because there 

are often multiple points of focus in everyday situations.79 Multiple object tracking is also 

dynamic in nature, and the utilisation of a dynamic environment versus a static 

environment also contributes to ecological validity.80 

 

Second, the task utilizes a large visual field. While the majority of a person’s visual 

acuity is relatively quite small – a circle called the fovea – pertinent information often 

occurs beyond this tiny range. Both the fovea and the larger field of visual attention can 
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vary widely based on the task81, what is important with regard to 3D-MOT is that it 

utilizes a much larger visual field than other cognitive enhancers (e.g., pencil-and-paper 

type tasks computer-based interventions, video games, and neurofeedback). Since we 

must often attend to information beyond the fovea79, utilizing a large visual field ensures 

ecological validity in the task.  

 

Third, this version of the task is in a stereoscopic 3-dimensional environment, hence 

3D-MOT. As in the case of MOT and large field of view, the use of 3D stereoscopy ensures 

ecological validity. A 3D environment is not subject to the same spatial limitations as a 2D 

one, for example it allows one to distinguish between collision and occlusion.73 As a 

result, previous research has shown superior tracking in a 3D environment versus a 2D 

environment.82 Since the locus of attention in the real world occurs over all three 

dimensional plains, in order to maximize the ecological validity and efficacy of the task it 

is essential that the training occur in all dimensions.  

 

Fourth, the speed of movement is modulated based on performance following an 

adaptive staircase. In this paradigm, this is referred to as speed thresholds. If a given trial 

is correctly answered (all of the targets are correctly identified), the speed of the 

subsequent trial slightly increases. If a given trial is incorrectly answered, the speed of the 

subsequent trial slightly decreases. As will be discussed further below, this ensures that 

the trainee is always active at a level which is equal to, or slightly greater than, their 

current ability. Due to the design, the success rate for a series of trials is consequently 

around 50-60%; but the task is never too hard or too easy, it is in a range (or zone) 

virtually always at the highest achievable level or slightly above it. This proverbial sweet 

spot is often referred to in learning paradigms as the zone of optimal development, and it 

is said to lead to the greatest amount of learning.83 The reason for this is because research 

has shown that more learning occurs when the level of difficulty is near and above to the 

learner’s current level of ability rather than far.  
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This design inherently draws on multiple cognitive functions, which are discussed 

at length in the sections below, as well as in the research article. First and foremost, the 

task places demands on attentional processes.57 In order to succeed at the task, one must 

be able to maintain attention on targets, while inhibiting the perception of the 

distractors. Second, the task draws on memory processes; the correct targets must be 

remembered in short-term visual memory.84 A transformation of the items stored is also 

required as the targets move through space, and so visual working memory is also 

involved.84 Since this occurs at a speed at or slightly above the current ability level of the 

trainee, information processing speed is heavily implicated.85 

 

Dr. Jocelyn Faubert of the University of Montreal developed the version of the task 

under investigation; further methodological specifics for the task can be found in Faubert 

and Sidebottom73 who examine its application in an athletic context. 

 

The research article within this memoir examines the application of 3D-MOT to a 

healthy population in order to examine its potential as a cognitive enhancer, including 

assessment using neuropsychological tests and a functional brain scan. This is the first in-

depth study of this kind involving 3D-MOT. The primary research goal was to determine 

whether or not 3D-MOT is an appropriate cognitive enhancement tool for a normative 

population. The ultimate goal is to determine the appropriateness of applying 3D-MOT to 

various healthy and clinical populations at large, and this effort represents a first step 

toward that goal.  

 

A secondary goal is an attempt to set a precedent for research into cognitive 

enhancement. Current research into cognitive enhancement tools is sorely lacking: 

studies lack of consistency in measurements, methodologies and standards.7 This study 

thus seeks to establish a standard by which all cognitive enhancers can and should be 

evaluated. Although this is a secondary goal, because the development of the study 

follows these guidelines, it is presented first.  
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Designing a standard for cognitive enhancement 

 

In order to address the creation of a flawless methodology, one must examine the 

weaknesses of studies that have been performed. The research article below outlines 

these issues as follows:  “Generally speaking, the complaints against these interventions 

are: transfer effects are not consistently observed, the effects observed do not persist in 

time, the methods are invasive and include risk of significant side-effects, a significant 

monetary and time investment is required, and there are the ethical issues associated 

with the use of these interventions.” 86 

 

The article then proposes a theoretical framework for a “standard” cognitive 

enhancers: “With these limitations in mind, the standard in cognitive enhancement 

would thus be an intervention that shows (1) robust effects with transfer, (2) no side 

effects or risk of toxicity, (3) minimal time and monetary investment, (4) lasting effects, 

(5) no ethical issues and (6) can be used in combination with others. This intervention 

should (7) apply to virtually any population.” 86 

 

 It is impossible to achieve the standard defined above with one simple research 

project, however this memoir will nonetheless examine the research presented herein 

against this standard in order to identify avenues for future research. Future studies can 

then address the issues not sufficiently addressed here, and other independent groups 

should confirm research findings.  

 

1. Robust transfer effects 

 

First and foremost, in order for a cognitive enhancer to be valuable, the gains 

derived from the task must generalize to different contexts. This is called a transfer 
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effect.9 If training at a task only improved one’s ability in a very specific and closed 

context (e.g., performance on the test itself), then the value of the intervention is quite 

limited. This is called near transfer.7 An example of this is when a person is repeatedly 

trained on a task very similar to the test that is being used to assess the ability supposedly 

being trained; when this occurs the person may score better on the test but it is only in 

the closed context of the task and test, it does not apply to other contexts.7 By contrast, 

far transfer means the transfer effect is broad and applies across various contexts.7 For 

example, training attention in a specific context would also lead to positive changes in 

attention across a wide variety of contexts.7 To that end, the more far transfer occurs, the 

more valuable the intervention.9 

 

There are a number of ways to examine far transfer effects. The first is using 

standardized tests, such as neuropsychological evaluations. These tests have been 

designed and validated to measure global cognitive functions; if a test shows a strong 

score the ability in question is said to be strong across virtually all contexts.87 For 

example, continuous performance test are often used to measure attention; if a person 

scores below a normal level, it is understood that their attentional abilities across all 

similar contexts (e.g., school) is subpar.88 A second manner of acquiring information on 

far transfer is to gather information from the person’s daily life. This can include, but is 

not limited to administering questionnaires87, and analyzing work89, or academic 

performance.90 Questionnaires are interesting because they can be administered to the 

trainee, but also to friends, family and those in a supervisory role. The weakness of 

questionnaires is that they are subjective, and are prone to bias.87 Analyzing data from 

work or academic performance is also valuable from a research standpoint as it can be 

used as a measure far transfer to real-world scenarios; however it is extremely difficult to 

account for all the possible confounding variables.89,90  

 

Finally, functional and structural neuroimaging may also be used to measure the 

degree of the observed effects and of transfer. An already large and still-growing body of 
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research demonstrates the link between brain function and task performance, especially 

in the case of attention.91 In the case of attention, there are various networks said to be at 

play, and utilizing non-invasive imaging techniques it is possible to assess the neural 

correlates of attention and changes in attention.38,91 These measurements cannot be due 

to compliance effects; it is difficult to near impossible to falsify brain function.91  

  

It is one thing to observe an effect, and another to evaluate the size of the observed 

effect. Aiming for a robust effects means that the gains observed are relatively large and 

consistent rather than small and inconsistent. This means that a large percentage of 

individuals should experience relatively large benefits, versus a small percentage of 

individuals experiencing relatively limited benefit. A cognitive enhancement tool should 

aim for robust effects, represented by a large magnitude. The magnitude of effects effects 

can be statistically measured using effect size.92  

 

 

2. No Risk of Toxicity or Side Effects 

 

An ideal cognitive enhancement intervention should not present any health risk. 

Risks of toxicity or overdose are significant factors and, because of their nature, plague 

almost exclusively nutritional and pharmacological interventions.93  

 

In terms of side effects, while many side effects are tolerable (e.g., slight fatigue, 

mild transient headache), they nonetheless cast a cloud over the intervention, which may 

lead individuals to avoid the intervention, or not complete the full intervention protocol. 

As soon as side effects are possible, a cost-benefit analysis becomes a very pertinent part 

of the valuation of a cognitive enhancer. In other words, an individual would be faced 

with a question of: is the benefit derived from this intervention worth the cost? A 

standard cognitive enhancer should thus have a cost of zero or near zero in this regard. In 

the case that side effects are present, they should ideally be weak rather and strong, 
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transient and not persistent, and should occur in a small number of individuals instead of 

universally.  

 

The assessment of a cognitive enhancement tool should include a thorough 

analysis of the side effects, and risks associated with the intervention. This should be 

extended to clinical as well as normative populations. In the case that side effects or other 

health risks are observed, a cost-benefit analysis should be performed.   

 

3. Minimal time and monetary investment 

 

The notion of a cost-benefit analysis is once again appropriate when examining the 

investment required enhancing one’s cognitive abilities. An ideal intervention should take 

little time to perform, and performance gains should be seen as early as possible after the 

intervention is initiated. A tool that requires a person to dedicate a significant amount of 

time is of limited applicability, as long-term adherence becomes an issue. When 

evaluating and comparing multiple types of cognitive intervention, a cost-benefit analysis 

involving the amount of temporal and financial investment required also becomes 

appropriate. The lower the cost and the more accessible the intervention is, the better.94  

 

4. Lasting effects 

 

The longevity of observed effects is an issue not often addressed by studies 

examining cognitive enhancement.7 Many of the interventions currently used either do 

not measure longevity or demonstrate no lasting effects.12,22,24,32,33,35,38 Planned follow-up 

studies should examine the extent to which effects endure over time. In the case that 

degradation or extinction does occur, studies should examine and report on how much 

maintenance is required.  
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5. No ethical issues 

 

The ethical issues surrounding cognitive enhancement are mostly cultural and 

societal in nature.95 These cultural and social ethic issues are related to pharmacological 

interventions and concern three primary domains: medical safety, coercion and fairness 

(for a comprehensive review, see Schelle and colleagues96).  

 

In terms of medical safety, this is classically viewed as a cost-benefit analysis, or as 

Schelle and colleagues discuss, a focus on the “potential trade-offs between benefits and 

risks”.96 This is a very complex issue because this calculation must be done on a case-by-

base basis, and it is possible that not all risks are known.96  

 

Coercion is related to autonomy and freedom, and is another very complex issue. 

Coercion can be direct, (e.g., an employer or government order), or indirect (e.g., in a 

competitive environment, if all of one’s competitors are using there is a pressure on the 

individual to use as well).96 That said, there are those who argue that the use of a 

cognitive enhancer allowing a person to have heightened cognitive abilities would in turn 

give them a heightened capacity for autonomy.97  

 

In terms of fairness, Schelle and colleagues discuss equality of opportunity, 

honesty and authenticity.96 Equality of opportunity is a two-fold and fairly self-

explanatory concept; first: a cognitive enhancer should be available to all and not only to 

a select few, and second: a cognitive enhancer could create significant societal 

inequality.96 Honesty, in turn, is the referred to as competitive fairness98 and cheating.99 

Much of this argument is based on the goal behind use; if the reason for using a cognitive 

enhancer is to acquire more knowledge it is seen as legitimate, however if the purpose is 

to perform better at a competition (e.g., university admission exam) this is seen as 

cheating.99 Finally, authenticity considers the effort one puts into a task and the value or 

meaningfulness of this effort.96 There appears to be a society-judged difference between 
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the willingness to use a cognitive enhancer for functions related to performance and 

outcome (e.g., memory, attention) when compared to emotional and social functions 

(e.g., mood, social comfort).100 

 

When designing and assessing a cognitive enhancement intervention, these ethical 

factors should be included. As society advances and we continue to develop our 

technological and biological abilities with regard to cognitive enhancement, it must be 

accompanied by research into moral and ethical enhancement.94 

 

6. Can be used in combination with others 

 

While the pinnacle of cognitive enhancement would be to find a single technique 

that universally and globally enhances all cognitive functions, it is unlikely that it exists. 

Cognitive functions are vast and the types of interventions currently in practice have a 

specific and narrow scope.7 At least with regard to the current state of affairs, there is no 

one universal intervention; the specific nature of these interventions essentially 

predicates that fact. Above, we refer to the idea that a cognitive enhancer must isolate a 

specific or limited set of cognitive functions in order to then overload that or those 

functions (to ask slightly more of them than they are currently capable of), which is what 

brings about change.83 Multiple cognitive enhancement tools would thus need to be used 

to cover the spectrum of cognitive functions. An ideal cognitive enhancer, then, should 

not be mutually exclusive, as a given intervention that can only be used in isolation of 

others is of limited value. Thus, an ideal cognitive enhancer should be able to be used in 

combination with other types of intervention in order to maximize effects.  

 

Medication and nutritional supplements are those most susceptible to mutual 

exclusivity because interactions can often occur on the physiological or neurological 

level.101 Not to be neglected are the fatigue effects of other types of interventions, since a 

persons cognitive load is a limited resource (e.g., working memory) repeatedly taxing a 
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resource would not lend itself to increased learning.102 If a given intervention is 

demanding in the temporal and frequency domains, then the effects of cumulative fatigue 

may also lead to limits in combining types of interventions.103,104   

 

7. Can be applied to any population 

 

The more widely applicable a given cognitive enhancer is, the more valuable it is 

because more people are able to benefit from it. A cognitive enhancer designed to 

enhance attention, for example, should be applicable to a variety of populations. First, 

populations who exhibit deficits in attention (e.g., attention deficit/hyperactivity 

disorder, autistic spectrum disorders, learning disabilities) should all be able to see 

clinically significant benefits with a given intervention. Additionally, individuals who do 

not display any deficit in attentional capacities should observe some enhancement of 

their cognitive abilities. It is unlikely for every individual to develop supra-normal 

attention; however relatively speaking gains in these capacities should still be notable and 

have real-world benefits. If there are strict limiting factors to a given intervention, it 

limits the applicability of this intervention. In order to ensure a wide-applicability of an 

intervention, it should ideally rely on low-level abilities and not require complex skills 

(e.g., reading, problem-solving).7 

 

Methodological logic dictates that research begins in informed, consenting, 

healthy, normative populations. Once the effects (e.g., side-effects, benefits or lack 

thereof) are substantiated and more about limitations, and other potential causes for 

concern are known, exploration into the clinical domain should begin. It is important to 

note, however, that normative populations may not demonstrate a significant benefit 

from a cognitive enhancer while a clinical population could and the opposite is also true. 

To that end insignificant results regarding the benefit to a healthy population should not 

spell disaster for all potential applications. In order to assess potential applications, the 
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age of participants, gender, degree of abilities and deficits, and other population-specific 

demographic measures should all be included in a comprehensive analysis.   
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Study Design & Hypotheses 

 

With all of these factors of the standard in mind, design began for a preliminary 

study into 3D-MOT as cognitive enhancer. The general objective of this limited study was 

to examine which and to what extent different cognitive functions play a role and benefit 

from training in healthy individuals and in an immediate context.  

 

While an attempt was made to adhere as much as possible to the standard, in the 

context of a Master’s thesis with limited time and funding available, it was not possible to 

pursue and resolve every issue that would have allowed for the standard to be attained in 

this research project. In fact, inherent to the standard is that it is virtually impossible to 

achieve the standard in a sole project, since it implies for example: exploration into effects 

and side effects in a normative population before the application to a clinical population, 

testing in isolation from and then conjunctively with other cognitive enhancers, follow-up 

testing over an extended period of time and replication. The specific issues addressed 

below are those that were possible to address in a limited study.  

 

1. Robust transfer effects 

 

The current study set about examining the hypothesis that 3D-MOT is a cognitive 

enhancer. The task appears to draw on multiple cognitive abilities – namely attention, 

memory and information processing speed – and we hypothesize that training at the task 

should enhance these abilities.  

 

Learning 

 

As discussed above, in tradition MOT paradigms learning is observed for both 

repeated70 and variable trajectories.71 The first hypothesis relates to the learning within 



 20 

the task itself, as this is a precursor to transfer. If there were no learning within the task, 

then it would be highly unlikely that a transfer effect would be observed. In order to show 

improvement in cognitive abilities, there should be an improvement at the task itself.  

 

Hypothesis 1: Learning 

 

 Individuals trained on 3D-MOT will see an increase in their speed thresholds. That 

is, they will be capable of accurately tracking the targets at higher speeds than controls.  

 

 

Attention 

 

Attention appears to be at the core of the 3D-MOT task.57 When discussing 

attention, it is important to distinguish the different types of attention. While various 

models of attention exist, for the purpose of the research at hand we are primarily 

concerned with three types of attention: selective attention, sustained attention, and 

inhibition of attention.  

 

Selective attention is defined as the ability to focus or direct one’s conscious 

perception on a given stimuli (i.e., a piece or pieces of information).105 With regard to the 

3D-MOT task, this translates to allocating attention to (focusing on), or selectively 

attending to, the target spheres.  

 

Once a target is selected by attention, then an individual can maintain selective 

attention over a given period of time, which is termed sustained attention.105 Early studies 

into vigilance and sustained attention demonstrated that on a simple, non-stimulating 

task performance drops off as a function of the length of time a person has been doing the 

task, and that after a period of approximately 30 minutes a significant decline in 

performance can be observed.106 Typically sustained attention tasks require that attention 
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be maintained over a period of approximately 20 minutes.105 In the 3D-MOT task, it is not 

initially obvious why sustained attention would be at work. Attention must only be 

consistently sustained during the tracking, which occurs during the movement phase 

lasting only 8 seconds. In spite of this, there are two reasons why sustained attention is at 

work. First, attention must be maintained over the full 8 seconds without the slightest 

lapse. During a trial there are a great number of interactions between targets and 

distractors. If the attentional focus drops off during the target tracking and a target is lost, 

then the target is quickly intermixed with other targets and distractors. If a target is lost, 

it is impossible to reacquire a lost target. Second, because of the large number of trials 

completed, the actual time required to complete a training session is approximately 30 

minutes. As a result, attention was regularly taxed over a prolonged period.  

 

Inhibition is connected to selective attention. While selective attention is the 

“positive” application of attention to a stimulus, inhibition is the “negative” application. 

This means that inhibition is the ability to block focus or directed conscious perception 

toward a given stimuli or stimulus.105 With regard to the 3D-MOT task, it is essential to 

inhibit the distractor spheres so that they are not confounded with the target stimulus as 

previous research in traditional MOT suggests.61,63 

 

There are two other components of the 3D-MOT task worthy of discussion in 

relation to attention. First, the task demands that individuals spread their attention 

across four target stimuli. In the literature, this is often referred to as divided attention or 

multifocal attention.107 In this case, trainees must divide their attention on four focal 

points: each one of the targets.  

 

The second component of the 3D-MOT task concerns the dynamic element to the 

task. As a general rule, each target is not allocated the same amount of attention. We will 

refer to the amount of attention given to each item as attentional load.108 For example, a 

target that is alone in a corner of the cube requires less attention that a target in an 
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opposite corner but surrounded by two or three distractors. A heavier attentional load is 

associated to this latter target in order to maintain focus on it and inhibit the distractors. 

Targets and distractors are in constant movement and interaction, thus constantly 

changing the attentional load associated with each target. If a trainee is unable shift the 

load to follow the flow of targets amidst the distractors, their performance in the MOT 

task will suffer. The ability to shift the attentional load fluidly will be referred to as 

dynamic attention, and it also lies at the core of 3D-MOT.64 This ability is additionally 

taxed as movement speed increases since there are more interactions between targets and 

distractors as a result. It has a strong value in terms of everyday situations, as an 

individual’s locus of attention is rarely static.79  

 

Measuring attention 

 

Computerized continuous performance tasks are commonly used to measure 

attentional capacities in both healthy and clinical populations.109 For the research study 

in question, the test selected was the Integrated Visual and Auditory Continuous 

Performance Test (IVA+Plus®).110 The reason for this selection was because the IVA+Plus® 

tests attention across both visual and auditory modalities, and measuring attention in a 

modality other than the one being trained is another means by which one can assess 

transfer. Reliability studies have demonstrated that repeated testing, even over a short 

period of time (1 to 4 weeks) does not significantly affect the reliability of the results.111 

Other studies have found similar results, indicating that the IVA+Plus® achieved a 

sensitivity of 94% and a specificity of 91% in accurately identifying attentional 

capacities.112 Although the 3D-MOT occurs solely in the visual domain, certain models of 

attention posit shared resources for these modalities113, and researchers have shown that 

common neural substrates exists between aspects of visual and auditory attention.114 The 

IVA+Plus® also subdivides attention into different measures, including two global 

categories of response control and attention, and further into subscales defined as: 

prudence, consistency, stamina, vigilance, focus and speed, allowing for additional 
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decomposition of the various elements of attention. An additional strength of the 

IVA+Plus® is that it also allows for comparisons of both raw values and normalized scores 

based on age. A limitation of this test, like many other continuous performance tests, is 

that it can be prone to ceiling effects in high-performing populations.88 

 

In order to attempt to overcome this limitation, another type of attention test, the 

d2 test of attention was added to the battery.115 The d2 attention test is a pencil-and-paper 

type test that is much less subject to ceiling effects; however it is purely a visual 

assessment. Like the IVA+Plus®, the d2 also yields both raw and normalized scores.115 

While the IVA+Plus® has subscales that allow for the examination of the different 

subtypes of attention, the d2 gives a global attentional measure and number or error of 

omission (inattention) and commission (impulsivity).115  

 

Finally, the color-word interference subtest of the Delis-Kaplan Executive Function 

System test (D-KEFS) includes a measure of inhibition and a measure of divided 

attention. It is largely because the D-KEFS provides these specific measures of attention 

that it was included in this study.116 These tests are all described at length in the Method 

section.  

 

Hypothesis 2: attention 

 

 Individuals who train on 3D-MOT will show enhanced attentional abilities 

following training.  

 

As discussed above, since attention is the cognitive ability that lies at the forefront 

of the 3D-MOT task, it is expected that individuals trained on 3D-MOT will demonstrate 

significant improvements in attention. Since many of the neural substrates of attention 

share their resources across modalities and these resources are in play specifically in the 

case of 3D-MOT113, both visual and auditory attention are expected to benefit from 
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training in spite of the fact that the training paradigm occurs solely in the visual domain. 

Visual gains are nonetheless expected to be relatively larger.  

 

Short-term memory 

 

Short-term memory is defined as the ability to retain information over a short 

period of time.105 Short-term memory is a requisite to even the lowest level of 

performance in 3D-MOT. Specifically, if a person cannot recall which items were targets 

and which were distractors, the task becomes extremely difficult. That said, because all 

participants in the current study were confirmed to have an intact capacity for short-term 

memory, and since short-term memory is not subject to overload in this paradigm 3D-

MOT, short-term memory is not likely to show any improvement. This paradigm could be 

modified to include short-term memory, for instance by extending the amount of time in 

the pause interval (between the identification and movement phases) short-term memory 

would be taxed. However, this was not done here.  

 

There is another type of memory involved in 3D-MOT. Since the targets move 

about in space there is a transformation of the information stored in short-term memory, 

and thus this task requires working memory.117  

 

Working memory 

 

Working memory is the ability to manipulate information stored in short-term 

memory.105 It is considered a higher-order cognitive ability, in that it draws upon a lower-

order ability, in this case: short-term memory.118 As mentioned above, the hypothesis is 

that while short-term memory is required to retain the targets, working memory is more 

significantly implicated because of the dynamic nature of the retention involved. Prior 

research has shown that when working memory is simultaneously taxed using secondary 
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tasks, individuals perform poorly on MOT tasks, thus confirming working memory’s role 

in MOT.119  

 

In this regard, it appears as though the working memory component is intertwined 

with the dynamic attention component. Researchers have observed interaction between 

visual attention and visual working memory in an MOT paradigm120 and as such it is 

important to isolate the ability of each as much as possible.  As research suggests, the two 

could possibly share a neural substrate.121  

 

Measuring short-term and working memory 

 

In order to examine the effects of 3D-MOT training on short-term and working 

memory, selected subtests of the Weschler Adult Intelligence Scale 3rd edition (WAIS-III) 

were used.122 The WAIS-III was selected because of the large body of research that has 

been developed on its tests; it is reportedly “the most widely used measure of adult 

intelligence”.123 Notably, the number sequence task and letter number sequence task were 

used to measure short-term and working memory respectively, in the auditory domain. 

The spatial span task was used to measure working memory in the visual domain. These 

tasks are fully explained in the Method section.  

 

Hypothesis 3: memory 

 

Working memory will improve following training, while short term memory will 

remain relatively unchanged.  

 

As discussed above, because the task demands a manipulation of the information 

stored in memory, this heavily implicates working memory. With regard to short-term 

memory, since a relatively small amount of visual information (i.e., four items) must be 

retained, and since participants have intact short-term memory, gains are not expected.  
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Information processing speed 

 

Information processing speed is defined as the speed at which one is able to 

incorporate information into the stream of consciousness.105 Information processing 

speed is thus inherent to the 3D-MOT task57; since the task utilizes an adaptive staircase; 

the speed at which the trainee can incorporate information is consistently pushed slightly 

beyond the current level of ability and is thus subject to overload, keeping the task in the 

zone of proximal development in order to lead to a significant amount of learning.83  

 

Measuring information processing speed 

 

There are many tests used to measure information processing speed, and some of 

the tests mentioned above also have speed components involved. Various subtests of the 

WAIS involve information-processing speed and were selected for that purpose. They 

include Symbol Search, Code, and Block Design.122 The IVA+Plus® test also includes a 

speed subscale111, and the global score of the d2 test of attention is greatly influenced by 

information processing speed.115 The first two components of the D-KEFS color-word 

interference test, color naming and word reading, are essentially measures of information 

processing speed.116 Each of these tests is described in the Method section.  

 

Hypothesis 4: information processing speed 

 

The speed at which trainees will be able to process information will be greater 

following 3D-MOT training.  
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Overloading the level of information processing speed is another built-in 

component to 3D-MOT. Using an adaptive staircase to modulate speed thresholds 

ensures that individuals are consistently forced to attempt trials slightly beyond their 

current level of ability and as discussed above this should lead to strong gains in 

information processing speed.  

 

Structural and functional brain imaging 

 

Instead of simply measuring changes in capacities and behaviour, researchers are 

now going to the source: the brain.124 Brain imaging is another manner in which one can 

assess transfer. Many studies have established correlations between cognitive functions 

and structural and functional brain imaging.124 Changes in the brain are colloquially 

referred to as neuroplasticity. All learning is a result of neuroplasticity; it is necessarily the 

result of changes in the brain.6 Complex learning, for example mastering a new language, 

brings about significant change in the brain, however even learning a single word in a 

new language is predicated on a neuroplastic change.125 The important factor then, is the 

degree of change. Current non-invasive neuroimaging techniques are not sensitive 

enough to detect the miniscule changes associated with learning a single new word, for 

example, but can identify significant – especially clinically significant – changes in brain 

structure and function.6  

 

Since 3D-MOT purportedly enhances attention, working memory, and information 

processing speed, there should be quantifiable differences in brain function following 

training in the areas corresponding to these functions. Within the framework of MOT 

paradigms, previous research has linked attention to the posterior parietal areas 

(including the intraparietal sulcus and the superior parietal lobule)126, visual memory to 

the posterior parietal and superior occipital cortex127 and information processing speed 

the intraparietal sulcus as well as frontal cortical areas.128  
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Measuring structural and functional changes in the brain 

 

The current research project used a functional brain measure referred to as 

quantitative electroencephalography or qEEG. QEEG is a relatively older measure of brain 

function and lacks the spatial sensitivity of newer methods (e.g., functional magnetic 

resonance imaging).37 That said, electroencephalography (EEG) has high temporal 

precision, and adding a quantitative element (i.e., multiple electrodes at different 

measurement sites) has been shown to enhance the spatial resolution.129 As such, qEEG 

can be used as a measure of cortical activity and this analysis can yield important results 

about attention.91 Newer techniques such as sLORETA130 and eLORETA131 have provided 

theoretical solutions to the inverse problem of EEG (i.e., the inability to measure 

subcortical brain activity) and qEEG data will be subject to this type of analysis at a later 

date. Due to the relatively low cost in comparison to fMRI, ease of use, and formidable 

body of research, qEEG was the tool selected for the current research study. A resting 

state 32-channel qEEG was performed at the time of initial and final testing for both the 

active and control group. The training group also underwent a 2-channel EEG (to be 

analyzed for a later project) from choice sites during training in order to analyse 

attentional processes during 3D-MOT. More details regarding the qEEG and 2-channel 

EEG recordings can be found in the Method section below.  

 

The EEG can be interpreted in a number of ways (e.g., quantitatively, evoked 

potentials, slow cortical potentials).37 When considering qEEG, readings are often filtered 

and transformed using a fast Fourier transform into different frequency bands for analysis 

(e.g., delta, theta, alpha, beta, gamma).37 Each of the frequency bands is said to define a 

different cognitive state.37 Each frequency band and the corresponding cognitive state will 

be reviewed shortly, however it is important to note two things when discussing 

frequency bands and their definition.  
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First, there is no absolute cut-off when referring to frequency band definitions. 

Traditionally, Delta brainwaves are referred to as the frequencies that fall between 0.5Hz 

to 4Hz, while Theta brainwaves are from 4 to 8Hz. Having no absolute cut-off means 

that, for example at 4Hz, delta brainwaves do not simply stop being delta and at 4.1Hz 

become theta. The age of the individual, the origin of the oscillation, the morphology, the 

amplitude and the concurrent oscillations are all factors in determining one type of wave 

from another and studies typically set frequency band cut-offs based on the person or 

population under investigation.37 The most important factor in defining a frequency band 

remains the type of cognitive activity it represents. The frequency bands and their 

standard definitions for adult populations as set below are generally observed in most 

people at most times and are utilized for this study, but exceptions are possible.132  

 

The amplitude of a frequency band corresponds to the amount of that activity 

present at a given electrode site.37 The second factor to retain with regard to EEG 

frequency band analysis is that there in each individual, a given amplitude of each type of 

brainwave that at each site at any given time is normal.132 This means that even if delta 

activity is dominant (i.e., has the largest amplitude), there will simultaneously be beta 

present as well, although at a smaller amplitude. That said, there is no ideal amount of 

each to have per se; when a clinical analysis is conducted, a person’s neuroelectric activity 

is compared to a normative database. This normative database is a group of normal, 

symptom free individuals whose brainwave activity has been collected and compiled into 

an averaged register. While there is no perfect brain with ideal levels of each type of 

activity, anything far enough outside of a certain range, typically defined as two standard 

deviations from the norm, is typically considered anomalous.133 Following that notion, 

both significant excesses and absences of any type of brainwave can indicate dysfunction. 

The absolute power (i.e., amplitude of activity in microvolts) and the relative power (i.e., 

the percentage amount of each frequency as compared to all other frequencies) are both 

considered since their interactions with one another are important.132   
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The first frequency band to be discussed is Delta. Delta brainwaves (0.5-4Hz) are 

the slowest brainwaves observable using conventional EEG instrumentation. Seemingly 

originating in layer V of the cerebral cortex, they are seen primarily during REM sleep, 

but can also be seen in learning disabled children or people who have experienced 

significant physical brain trauma.132 Eye blinks and movements can produce EEG activity 

mimicking delta waves.132  

 

Theta brainwaves (4-8Hz) appear to originate primarily from the thalamus and 

limbic system.132 In adults, a dominance of theta waves may indicate being drowsy or 

inattentive, and also normally occurs during the transition from waking to sleep 

(hypnagogia).132 Other rises in theta may occur from visualization (especially at 7Hz), 

memory retrieval, or cognitive processing of information (especially 6 to 8Hz).132  

 

Alpha brainwaves (8-13Hz) are sinusoidal waves that dominate an adult’s EEG with 

eyes closed. Low alpha (8-10Hz) is typically associated with dissociative states, and 

cortical rest or idling.132 High alpha (11-13Hz) is concomitant with a state of external open 

awareness, linked with fast and accurate responses.132 The source of alpha rhythms is 

debated, although most believe they originate from the thalamus and surrounding 

thalamic structures.132  

 

Beta brainwaves (13Hz and above) are produced in the brain stem and in the 

cortex.132 Local beta typically indicates functioning in the underlying cortical area 

revealed by the EEG.132 Beta is often broken down into different sub-bands by frequency, 

the speeds of which roughly correspond to the level of arousal of the cortex. This can 

range from idling (for instance, the sensory-motor rhythm, 12-15Hz, observed over the 

sensory motor-strip), to hyper-vigilance and anxious states (24-36Hz).132  

 

Gamma brainwaves (various definitions above 30Hz) are relatively new to EEG 

analysis. However, more recent research evidence has shed light on the importance of 
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these fast brainwaves. Recent reports on the gamma rhythm reveal that gamma indeed 

has impacts on a great diversity of cognitive processes including attention, short-term 

memory, motor control, and visual integration.134 Further, the gamma band has been 

associated with neuroplasticity and learning.135   

 

Hypothesis 5: changes in qEEG 

 

Individuals trained on 3D-MOT will show differences in resting state qEEG activity 

corresponding to the changes in cognitive abilities following training.  

 

This hypothesis is twofold: first, it states that changes should be observed, but it 

also necessarily demands that the changes seen are directly related to the cognitive 

changes observed; the changes in brain function should not be random or haphazard. 

Each expected change is outlined below.  

 

Two aspects regarding qEEG analysis and interpretation were discussed above. A 

third factor worth mentioning is with regard to clinical populations: different disorders 

present different types of anomalies in the brain as measured by qEEG. Although there is 

no absolute rule regarding disorders and their presentation as observed from qEEG, there 

are patterns or phenotypes that emerge. One of the patterns of interest to the current 

study regards attention deficit/hyperactivity disorder (AD/HD). In AD/HD, the 

predominant qEEG phenotype shows excesses of theta brainwaves and relative deficits in 

beta brainwaves.38 The majority of interventions targeting AD/HD symptoms, for 

example psychostimulant medications or neurofeedback, have the effect of normalizing 

this pattern, thus increasing beta brainwaves and decreasing theta brainwaves.132, 136  

 

The first change that was expected is with regard to slower brainwaves: delta, theta 

and alpha. As mentioned, slower brainwaves are associated with less cognitive activity 

than relatively faster brainwaves. These slower brainwaves are often associated with 
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inattention and, lack of focus136, slower response times, and dissociative states.132 3D-MOT 

training purportedly enhances attention and focus, these brainwaves should be less 

present following training.  

 

The second expected change is intimately tied with this first; increased beta 

brainwaves. Beta, contrary to the slower brainwaves, is fast and is associated with 

cognitive activity and cortical activation.132 For the same reason that slower brainwaves 

should be less present, faster brainwaves should be relatively more predominant.  

 

A third anticipated change involves the higher frequency brainwaves: gamma. The 

gamma band has been associated with neuroplastic changes as well as rhythmic binding 

and cortical synchronicity.135 Thus, any areas involved in the changes in cognitive 

functions undergoing neuroplastic change should display more gamma band activity. 

These regions are the frontal lobes, which are responsible for attentional control and 

executive functions like working memory, and the occipital lobes, which are responsible 

for visual processing.137  

 

The location of these changes is expected to be the same regions that have been 

demonstrated by previous research to be involved in MOT; the posterior parietal 

areas126,127,128, the superior occipital cortex127, and the frontal cortex.128 

 

2. No Side Effects or Risk of Toxicity 

 

Previous research has not documented any side effects or risks of toxicity; however 

researchers did not address these questions directly.72,73,138,139 

 

Measuring side-effects and toxicity 
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In order to address side effects, questionnaires are used at the beginning of each 

session, and participants are encouraged to report any side effects during or after 

training. Any reports were to be brought to the attention of the lead researcher 

immediately. Due to the absence of side-effects form previous research, no long-term 

follow-up examining this aspect is planned.  

 

Hypothesis 6: Side effects 

 

No significant short-term side effects or risk of toxicity are expected. Future 

studies must examine this issue in greater depth, especially with regard to long-term 

follow-up and vulnerable, at-risk populations (e.g., older individuals and clinical 

populations).  

 

3. Minimal time and monetary investment 

 

Participation in the training portion of the study required approximately 45 

minutes, twice a week. Sessions could be shortened to 30 minutes by removing the EEG 

montage, however real-time EEG data was also collected for later analysis and the 

installation of this equipment lengthened sessions by approximately 15 minutes. The time 

required for a training session is thus considered to be 30 minutes.  

 

No monetary investment was required, however CogniSens Athletics Inc., the 

company who produces the commercial version of the 3D-MOT paradigm utilised in this 

study does charge for the purchase and use of the software.140 The financial cost is not 

assessed in the present study. Further research should take this into consideration.  

 

Measuring temporal and financial investment 
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Because sessions have a predetermined length, the calculation of how much time 

is necessary to invest is relatively simple. As mentioned, no financial impact assessment 

was included in this study and needs to be addressed in the future.  

 

Hypothesis 7: temporal investment 

 

Ten 30-minute sessions, twice a week for a period of five weeks is sufficient to 

demonstrate significant effects of training.  

 

More training may show more substantial improvement. Less training may still 

lead to significant improvement. However, for the purpose of this study, the number of 

training sessions will remain constant and thus no hypothesis regarding either of these 

statements is possible. Once again future research will be needed to examine these 

possibilities. Future studies should also factor in the financial variables surrounding the 

use of 3D-MOT.  

 

4. Lasting effects 

 

Participants were tested once in the week prior to training and final testing 

occurred in the week following the final training session. While this offers very little data 

regarding longevity, it was necessary to first demonstrate that a short-term change 

occurred before answering the question of how long the effects endure. Future research 

should follow-up participants at regular intervals following training.  

 

No hypothesis can be made regarding long-term effects.  

 

5. No ethical issues 
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In terms of ethical issues, the project was assessed by the Comité d’éthique de la 

recherché en santé (CERES) of the Université de Montreal, and no problems were noted. 

Further assessing the ethical implications of a cognitive enhancer would require 

examining the general public opinion using polls, focus groups and interviews.96  

 

As preliminary research into the domain, this was not of great importance to the 

goals of the present study. As mentioned in the section above, and from a strictly 

scientific standpoint, it must first be shown that 3D-MOT works before any ethical issues 

regarding public opinion are addressed. Philosophical, political and religious doctrines 

may disagree with this retrospective approach, however from a scientific standpoint it is 

of little interest to first answer the question of whether or not any of these issues will 

arise for something that is not of value to begin with.  

 

Hypothesis 8: ethical implications 

 

No ethical issues are expected. 

 

All of that said, because this type of intervention has been previously used in 

numerous other research studies without any indication to the contrary72,73, 138,139, and 

since the project was approved by an ethics committee, Future studies should not neglect 

the factors beyond ethics board approval, as Persson and Savulescu94 note, "if research 

into cognitive enhancement continues, as it is likely to, it must be accompanied by 

research into moral enhancement. 

 

6. Can be used in combination with others 

 

Once again, this is a preliminary exploration into the question of whether 3D-

MOT is a cognitive enhancer; it is premature to attempt to address the efficacy of 
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combining it with other interventions. Following the currently established research, no 

contraindications were expected.  Future research should assess possible 

contraindications that would consequently limit involving other types of cognitive 

enhancement tools in a larger training scheme, and then symbiotic combinations should 

be tested.  

 

7. Can be applied to any population 

 

The first step for any cognitive enhancement tool should be to examine the effects 

on a healthy population. Once the benefit of training is established, relevant clinical 

populations can then be targeted. Of course, most research does not follow this logical 

sequence, and this for a number of reasons. The first is that there is little clinical benefit 

from enhancing cognition in an otherwise “healthy” person, so efforts often delve into 

clinical populations directly. Second, non-public funding often drives research and 

decides the population that will undergo the intervention; for example if funding comes 

from a foundation that deals with an attention deficit population, the research will most 

likely be targeted to that population to expedite the overall process.  

 

3D-MOT, in this sense, is no exception. Previous research has shown the benefits 

for older individuals in biological motion perception from 3D-MOT training.72 Athletic 

populations took a vested interest following these findings, since many athletic contexts 

involve highly dynamic and complex visual scenes.73 Research has shown that 

professional have greater-than-average abilities at the task, more so that even amateur 

athletes whom also show better results than a university student population.141  

 

The current research study was designed to show the foundational changes that 

result in these findings, but also to then be able to better target suitable clinical 

populations for further investigation. Built on the idea that that 3D-MOT training 

enhances attention, working memory and visual information processing speed, the 
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hypothesis that follows is that populations that are deficient in these functions could 

benefit from training. These include those with attention deficit/hyperactivity disorder, 

learning disabilities, autistic spectrum disorders, executive dysfunctions, as well as a 

preventative tool to help maintain cognitive functions and combat the changes that occur 

with normal aging.  

 

Future research will have to address this issue and training in these populations.  
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Method 

 

Prior to beginning the research project, all aspects of the study were approved by 

the ethics board (Comité d’éthique de la recherché en santé; CERES) of the Université de 

Montréal.  

 

Subject recruitment 

 

Participants for the study were university-aged students from the city of Montreal 

area. A total of 20 participants were included in the project. Ten subjects were recruited 

for the training portion of this project, while ten were recruited to participate in the 

control group. The number of subjects was low as this project was designed as a 

preliminary study of the effects of 3D-MOT on cognitive functions. No discrimination was 

made regarding gender, however the age-range was restricted to 18-30 years in order to 

control for differential capacities through the lifespan.138 Exclusion criteria included any 

self-reported marked deficits in vision that could not be appropriately corrected with 

eyewear. In these instances participants were asked to wear their corrective eyewear. 

Further, any individual who had knowingly been diagnosed with a clinical disorder (for 

example attention deficit/hyperactivity disorder, epilepsy, or depression) whether or not 

they were medicated were offered training, but were excluded from final analysis. None of 

the participants declared any such condition.  

 

Consent, Compensation and Benefits to Participation 

 

Interested candidates were asked to communicate with the lead researcher either 

by phone or e-mail, at which time they were sent a consent form for review. During the 

initial testing session, participants first signed the consent form, and were then 
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administered an initial questionnaire to ensure eligibility, and were given a series of 

guidelines for participation.  

 

As a compensation for participation, subjects were paid $10 per hour they were 

present for the study. Initial testing was roughly two hours while training took 45 minutes 

per session for a total of 7.5 hours, and final testing was also two hours. Those in the 

training group thus received a total of $115 for 11.5 hours of total participation while 

control subjects received $40 for four hours of participation.  

 

Participants in the training group were generally aware of the hypothesis regarding 

3D-MOT training (i.e., they knew it was a training program designed to enhance 

cognitive capacities) and were told that their participation was to establish 3D-MOT as a 

cognitive enhancer, however the individual cognitive functions at play were not 

specifically discussed. Participants in the control group were told that their participation 

was important to measure the improvements seen from simply repeating the measures 

over a short period of time. The control group was a non-active control, and was included 

to account for test-retest effects.  

 

In terms of expected adverse effects, participants were made aware of the 

possibilities: sore eyes, headache, fatigue, and mild-nausea induced by the 3D. They were 

encouraged to report any of these or other symptoms to any member of the research 

team, and team members routinely asked participants how they were feeling. At any 

point participants were free to discontinue their involvement simply by notifying a 

member of the research team.  

 

Initial assessment 

 

The first meeting between a participant and researcher was an initial testing 

session. In this session, two types of assessment tools were used in order to evaluate the 
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effects of 3D-MOT. First, standardized neuropsychological tests were used to measure 

attention, short-term and working memory, and information processing speed. Second, a 

functional measure of brain activity – quantitative electroencephalography – was used to 

assess resting state brain function. Finally, a baseline 3D-MOT session was also 

performed.  

 

Resting state qEEG 

 

The first step of the assessment was to measure resting-state neuroelectric brain 

function. This was done first in order to ensure that no cognitive fatigue resulting from 

performing neuropsychological tests or 3D-MOT training was observed. QEEG data was 

acquired using a 32-channel system (Model 202, Mitsar Medical.142) This qEEG system 

allows for the simultaneous recording of EEG activity from 32-different channels; 31 active 

electrodes placed on the head with one reference pair (A1/A2; linked ears) and one 

ground (AFz). Active electrodes were placed according to an augmented 10-20 system143, 

shown in figure 1-1.   
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Figure 1-1: Augmented 10-20 System 

 
 

 

All methods used and described below are standard procedure for qEEG 

measurement. For detailed information, the authors suggest the reviewing the standards 

proposed by Nuwer and colleages.144 

 

An Electro Cap145 was placed on subject’s heads for the recording of qEEG. To 

ensure proper impedance, subject’s ears and forehead were first prepared with a skin-

cleaning agent, NuPrep.146 Following this, Electro-Gel (Electro-Cap International, Inc.145) 

was injected using a blunted syringe into the electrodes (designed with holes for this 

purpose) in the cap. To ensure proper impedance (i.e., below 5kOhms), the blunted 

syringe was also used to gently rub the scalp, parting any hair and softly removing any 

dead skin and grease that might interfere with proper measurement.  
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Subjects were seated and given a fixation point straight ahead and slightly below 

eye-level in order to minimize ocular artifacts. To obtain the baseline EEG activity for 

each subject, five minutes of continuous EEG data were recorded with eyes open, and 

another five minutes with eyes closed. From this data, one minute of artifact-free EEG 

was manually selected and retained for analysis. The recordings were coded by a co-

author so that the analyzer was blind with regard to the participant and condition (pre- 

or post-training) of the scan. The recording was then analyzed using Neuroguide (version 

2.7, Applied Neuroscience, Inc.), a qEEG software platform with a normative database and 

statistical data analysis tools.147  

 

Baseline neuropsychological evaluation 

 

The tests selected for this research project were based on the a priori hypotheses 

regarding the functions involved, elaborated above. The tests are grouped below 

according to the function of interest they measure.   

 

Attention 

Integrated Visual and Auditory Continuous Performance Task 

 

The Integrated Visual and Auditory Continuous Performance Task (IVA+Plus®) is a 

computerized test of the different types of attention across visual and auditory 

modalities.110 The test lasts approximately 20 minutes, and involves a motor response (via 

clicking a mouse button) when presented with visual and audio stimuli (the number ‘1’), 

and inhibiting the motor response when presented with an alternate stimulus (the 

number ‘2’). Although typically used to aid in the diagnosis of attention deficit disorders 

(with or without hyperactivity), its use in research concerning factors of attention is well 

documented.111 The test yields data on both visual and auditory attention. The subscales 

given are associated with different functions, and these are described in the research 
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article. The validity of the IVA+Plus® in measuring attention is comparable to other 

commonly-used measures of attention, with a sensitivity or 92% and specificity of 90%, 

and test-retest reliability over a 4 week period for the Full Scale Response Control 

reporting correlations ranging from .37 to .41 and for the Full Scale Attention Quotient 

ranging from .66 to .75.112  

 

The d2 Test of Attention 

 

The d2 test of attention is used to measure attention and information processing 

speed. In this task, subjects are shown three examples: a lower case ‘d’ with two dashes 

above, a lower case ‘d’ with two dashes below, and a lower case ‘d’ with one dash above 

and one dash below; each possible combination of a ‘d’ with two dashes. They are then 

shown a series of sequences in which the targets – the three examples mentioned above – 

are randomly placed amidst distractors. Distractors are lower-case letters ‘d’ and ‘p’ with 

one to two dashes placed above and below the letter, for a maximum of four dashes for 

any given distractor. Subjects are asked to cross out targets and ignore distractors over a 

series of 14 sequences, each containing 47 items. There is a 20-second time limit for each 

sequence.115 In terms of validity and reliability, the d2 measures used for this project fall 

within the norms for neuropsychological tests (see Bates & Lemay148 for a breakdown of 

all scores). 

 

For the purposes of this study, the score used was the Total minus Errors score. 

This score is a measure of global attention calculated based on the total number of items 

coded (all items counted up until the final identified item), minus the number of errors of 

omission and commission.115  
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Short-term and Working Memory 

Digit Span (WAIS-III) 

 

The Digit Span task is used to measure short-term memory and working memory 

in the auditory domain. The administration of this task is straightforward: subjects are 

read a series of numbers and are asked to repeat them in the same order (initial trials) 

and in reverse order (later trials). Each trial contains a new number sequence, and after 

every second trial, sequences increase in length; i.e.: trials 1 & 2 are two digits long, 3 & 4 

are three digits long, etc. Points are awarded based on the successful completion of each 

trial.149  

 

Letter-Number Sequencing (WAIS-III) 

 

The Letter Number Sequencing Task is used to measure auditory working 

memory. A sequence of letters and numbers are read to the subjects and they are asked to 

retain, rearrange and subsequently read aloud the string of items in a specific sequence; 

numbers first and in ascending order, followed by the letters in alphabetical order. As 

with the digit span task, sequences get longer as trials progress, with an addition of one 

character (a letter or a number) at each third trial. Points are awarded based on the 

successful completion of each trial.149 

 

Spatial Span (WAIS-III) 

 

The Spatial Span is an adaptation of a test of visuo-spatial working memory, 

initially developed by Corsi.150 It is very much like the digit span task, except that 

sequences are shown in the visual modality, using a board on which is mounted a series 

of 10 cubes.  
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Subjects are shown a sequence of blocks, demonstrated by the examiner. The test 

consists of two parts: forward and reverse. In the first, they must repeat the sequence in 

the same order in which it was demonstrated to them. In the second half subjects must 

repeat the patter in reverse order. A trial is correct when the subject is able to correctly 

repeat the pattern in its entirety. After every second trial, an additional cube is added; i.e.: 

trials 1 & 2 are two cubes long, 3 & 4 are three cubes long, etc. Each half of testing ends 

when subjects fail both trials within one level. Subjects are scored on the number of items 

(visual span) they can answer correctly.150 

 

Information Processing Speed 

 

Block Design 

 

The Block Design task is primarily used to measure spatial perception, visual 

abstract processing and problem solving. Subjects are awarded more points when trials 

are completed quickly, and in this case it is especially the speed at which this task is 

completed that was under scrutiny. In this task, the subject is given a series of blocks – for 

the first trials 4, the latter trials 9 – and is asked to recreate a model displayed in the 

WAIS-III stimulus booklet. These blocks are identical and have two entirely red sides, two 

white sides, and two half-white, half-red sides (dissected on the diagonal). A subject must 

correctly select the side of each block and arrange them accordingly to properly recreate 

the model. For each trial there is a maximum time limit, and points are awarded based on 

successful completion and the time taken for each trial.149  

 

Symbol Search 

 

The Symbol Search is used to measure visual information processing speed. Each 

trial is comprised of a sequence of symbols: two targets and a series of five distractors. 
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The goal of the exercise is to determine whether either of the two target symbols is 

present within the sequence of distractors. The subject must answer by checking a box 

that says Yes or No. Each trial must be completed in sequence, within a time limit (120 

seconds). Points are awarded for each correct trial, minus each incorrect trial.149  

 

Coding 

 

The Coding task is another measure of visual information processing speed. 

Subjects are shown a diagram in which each digit from 1-9 has been paired with a symbol. 

On the same page is a grid, with each digit presented in a random sequence. Below each 

digit is an empty box in which the subject must fill in the appropriately paired symbol, 

one after another, in sequence, within a given time limit (120 seconds). Points are 

awarded based on the number of correct symbols coded during the time limit.149  

 

The full-scale reliability of the WAIS-III is high (.96) and the various individual subtests 

range from .7 to slightly above .9 while validity studies report that correlations are regularly above 

.8 when compared with other indices.151 

 

Delis-Kaplan Executive Function System (D-KEFS) Color-Word Interference Test 

 

The Delis-Kaplan Executive Function System (D-KEFS) Color-Word Interference 

Test is used to measure selective visual attention, inhibition, cognitive flexibility, and 

information processing speed. This test is a variant of the Stroop task, in which subjects 

must inhibit a more automatic response (reading) and instead respond to the dissonant 

colour in which the word is written. The D-KEFS is a standardized test in which subjects 

are scored on their ability to complete this task quickly, and based on the number of 

errors (corrected or uncorrected) that they commit. Contrast measures, the comparisons 
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between scoring on each sub-task can also be used for analysis.116 The speed at which each 

subtest was completed was retained for analysis in this project.  

 

There are four sub-tasks within the test: (1) Color Naming, (2) Word Reading, (3) 

Inhibition, and (4) Inhibition/Switching. For all subtests, three colours are used: blue, 

green and red. In Color Naming, subjects are simply asked to name the colours of a series 

of coloured squares. In Word Reading, subjects must simply read the word (the three 

colours) written in black ink. In the Inhibition task, subjects must say the colour of the 

ink the word (the three colours) are written in, and not read the word that is written. For 

example, the word ‘green’ may be written in red ink, in which case the participant must 

say ‘red’. In the Inhibition/Switching task, participants must say the colour of the ink, as 

in the Inhibition task, unless the stimulus presented is in a box – in which case they must 

read the word written.116 With regard to the D-KEFS, the reliability and validity measures 

on subtests are also well within the norms for neuropsychological tests152,153,154 and the 

individual scores can be found in the technical manual.155 

 

For the purpose of the research at hand, Color Naming and Word Reading were 

used as measures of information processing speed, Inhibition was used as a measure of 

Inhibition, and Inhibition/Switching was used as a measure of divided attention.  

 

3D-MOT session 

 

The 3D-MOT sessions were performed in the C.A.V.E. (Cave Automatic Virtual 

Environment).156 The C.A.V.E is an 10 foot by 10 foot by 10 foot enclosure onto which is 

projected the 3D-MOT task. The MOT environment consists of a large cube measuring 

approximately 1.5 meters in length, width, and height. The trainee is then seated at a 

distance of 1.5 meters from the screen and is given a fixation point located in the center fo 

the cube. Consequently, the 3D-MOT task utilises a visual field of approximately 45 

degrees. The use of a cube as the environment allows for the amount of horizontal and 
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vertical movement to remain unbiased. The 3-D aspect of the MOT task is achieved using 

stereoscopic projection and active shutter lenses synchronized to 120Hz. 

 

 Each trial of 3D-MOT consists of the five phases outlined below. Each series of 3D-

MOT consists of 20 trials and yields a threshold score. Each session consisted of three 

series of 20 trials, yielding three threshold scores that were then averaged to give the 

session score. Subjects in the training group as well as the control group performed a 3D-

MOT session during initial and final testing.  

 

There are five phases to each trial:  

 

1. Presentation: all eight spheres appear, coloured homogeneously in yellow. This 

phase lasts two seconds.  

 

2. Indexation: the four target spheres turn red, with a surrounding white halo. This 

lasts two seconds. The four target spheres return to their original colour and 

restore homogeneity. This lasts one second. 

 

3. Movement: all eight targets move along a linear path in the virtual 3-D cube. If a 

sphere comes in contact with another sphere or a wall of the cube, it bounces off 

and resumes its trajectory. This phase lasts eight seconds. During tracking the 

trainees eyes must remain focused on a neutral fixation point; in this case a red dot 

located in the middle of the virtual cube; the tracking element occurs primarily in 

the periphery. 

 

4. Stoppage and identification: all eight spheres cease movement and are labeled with 

numbers (1 to 8). Subjects verbally state their responses. The answers are input by 

a trainer using a keyboard, and the selected targets are identified with a halo. The 

verbal response ensures that subjects are not encumbered and so they do not need 



 49 

to move their focus from off the screen. The subjects also have a video-game 

controller that allows them to rotate the cube and make the foreground spheres 

transparent in order to reveal any spheres that might be hidden behind another 

sphere in the 3-D virtual space. This phase ends when the subject validates their 

response by pressing a button on the controller.  

 

5. Feedback: the target spheres are revealed, and feedback (number of target spheres 

correctly identified) is given. This phase lasts two seconds.  

 

If a subject correctly identifies all four target spheres, the speed of movement 

increases for the subsequent trial. If all four target spheres are not identified, the speed of 

movement decreases for the subsequent trial. The changes in speed were variable and 

follow an adaptive staircase. The design of the adaptive staircase was such that larger 

variations (up to 100%) occurred in initial trials (to more quickly reach the appropriate 

speed) and smaller variations (as low as 10%) in later trials (to maintain the zone of 

optimal development). For each trial, the speed and number of correct targets identified 

is recorded. At the end of 20 trials, a threshold speed score is displayed for subjects and 

recorded in a database.  

 

Training 

 

 This section details the intervention applied to the training group only. The 

control group was a non-active control and were only seen for initial and final testing.  

 

Each training session consisted of three series of 20 trials as described above. The 

amount of time spent training in each session was approximately 30 minutes, however 

there was an extra 15 minutes allotted for the installation of EEG equipment. Sessions 

were performed twice a week between 9am and 5pm on non-consecutive days. Ten total 

sessions were completed over a period of five weeks.  
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 At the outset of each training session, participants were asked to complete a short 

questionnaire about how they were feeling, the amount of sleep they had, and any 

psychoactive substances they may have recently ingested (for example coffee or alcohol). 

This data was not included in final analysis and served only to gather anecdotal data 

about any observed side effects and to control for confounding variables such as the 

ingestion of significant amounts of caffeine, alcohol or other substances that may have 

affected results.  

 

Real-time EEG measurement 

 

 EEG data was recorded and retained for future analysis. EEG data was recorded 

during 3D-MOT training from sites Pz and Fz according to the 10-20 international 

classification system.157 The active electrodes were referenced to linked ears and 

grounded at Cz. 

 

Thought Technology Limited158 manufactured the equipment used to acquire the 

2-channel EEG data. Application of electrodes followed the standard procedure and was 

done by first lightly abrading the skin using a gel designed for that purpose, NuPrep, then 

sticking the electrode to the ear or scalp using Ten20 conductive paste. Subsequent 

analysis will evaluate the activity of these brain areas during 3D-MOT training.  

 

Electrode location Pz is over the medial parietal cortex. This site is said to measure 

activity corresponding to Brodmann areas 7 (the somatosensory association 

cortex/precuneus), 23 and 31 (posterior cingulate cortex).159 These areas are associated 

with a convergence between vision and proprioception, visuo-motor coordination, 

working memory, visuospatial processing, and directing attention in space.132 This site 

was chosen for these functional reasons, and also because of its central location. The 

MOT task involves complex visual processing requiring multiple cortical areas in both 
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hemispheres of the brain, and this cortical connectivity and inter-hemispheric 

communication becomes vital.160  

 

Electrode location Fz is over the medial frontal cortex. This site measures activity 

corresponding to Brodmann areas 8 (the frontal eye fields), 9 (a subdivision of the 

dorsolateral prefrontal cortex) and 24, 32 and 33 (the anterior cingulate cortex). These 

brain regions are functionally associated with the control of eye movements and the 

planning of complex movements (BA8); the management of uncertainty, planning, 

organization and regulation of motor systems, integration of sensory information and 

working memory (BA9); motor learning, imagination, decision making, attention 

(especially target detection and action observation), working memory and rational 

thought processes (BA24, 32, 33).132,159 These cortical areas act in a “top-down” manner to 

influence the sensory processing stream that occurs parietally/occipitally, toward Pz.132  

 

 

Final assessment 

 

The final assessment was identical to the initial assessment and occurred 

approximately six weeks after initial testing for both training and control groups.  

 

Statistical analysis 

 

 The statistical analysis used for this research follows similar studies in cognitive 

enhancement.9,161 This includes a repeated measure ANOVA in order to establish main 

effects and interactions, as well as pre- and post-training t-tests of behavioural (transfer) 

measures in order to establish significance with respect to the a priori hypotheses. These 

results are presented in the research article below. Essentially, the t-tests demonstrate 
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that a significant change has occurred. In the extended discussion section, the magnitude 

of the change will be examined using measures of effect size.  
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Research article 

 

 Clinical EEG and Neuroscience accepted this manuscript for publication on 

November 17th, 2014 and has since been published online under the following citation:  

 

Parsons, B., Magill, T., Boucher, A., Zhang, M., Zogbo, K., Bérubé, S., Scheffer, O., 

Beauregard, M., & Faubert, J. (2014). Enhancing Cognitive Function Using Perceptual-

Cognitive Training. Clinical EEG and neuroscience, 1550059414563746. 
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Abstract 

 

3D-MOT is a perceptual-cognitive training system based on multiple object 

tracking (MOT) in a 3-dimensional (3D) virtual environment. This is the first study to 

examine the effects of 3D-MOT training on attention, working memory, and visual 

information processing speed as well as using functional brain imaging on a normative 

population. Twenty university-aged students were recruited and divided into a training 

(NT) and non-active control (CON) group. Cognitive functions were assessed using 

neuropsychological tests, and correlates of brain functions were assessed using 

quantitative electroencephalography (qEEG). Results indicate that 10 sessions of 3D-MOT 

training can enhance attention, visual information processing speed and working 

memory, and also leads to quantifiable changes in resting-state neuroelectric brain 

function.  

 

 

Keywords: MOT, Cognitive enhancement, Brain training, Attention, qEEG 
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Introduction 

 

Cognitive enhancement is a domain of burgeoning interest, spanning the 

remediation of clinical disorders (eg, attention deficit/hyperactivity disorder), to 

enhancing the performance of healthy individuals, professional athletes, and CEOs, to 

combatting the deleterious effects of time on the growing aging populace. In 2012, despite 

a significant lack of credible evidence to support their use, the market revenues of 

computer-based training programs alone were more than 1 billion dollars.1 

 

Many different kinds of interventions have been proposed, including rudimentary 

pencil-and-paper type tasks (eg, sudoku puzzles, crosswords), more advanced 

computer/video-game type programs (eg, Lumosity), brain-computer interfaces (eg, 

neurofeedback), nutritional supplements (eg, omega-3 fatty acids, caffeine), and even 

pharmacological drugs such as stimulants and cognitive enhancers/nootropics (eg, 

Ritalin, Nuvigil). Less invasive methods for enhancing cognition include adopting 

appropriate lifestyle habits related to nutrition, exercise, and sleep. 

 

Arguments in favor or against each type of intervention are vast; suffice it to say 

significant issues plague each of these types of interventions. For a review, the authors 

suggest reading Dresler et al,2 Jak et al,3 the special report prepared by the Academy of 

Medical Sciences,4 and Gruzelier.5 Generally speaking, the complaints against these 

interventions are the following: Transfer effects are not consistently observed, the 

effects observed do not persist in time, the methods are invasive and include risk of 

significant side-effects, a significant monetary and time investment is required, and 

there are the ethical issues associated with the use of these interventions. While a 

thorough analysis of each individual cognitive enhancement tool is beyond the scope 

of this article, shown in Table 1 is a general assessment of each specific intervention 

type. As can be seen, little research has been conducted to support the widespread use 
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of the majority of these methods, and much more is needed before definitive 

conclusions can be reached. 

 

 With these limitations in mind, the gold standard in cognitive enhancement would 

thus be an intervention that shows (a) robust effects with transfer, (b) no side effects or 

risk of toxicity, (c) minimal time and monetary investment, (d) lasting effects, (e) no 

ethical issues, and (f) can be used in combination with others. In addition, this 

intervention should (g) apply to virtually any population. The current study aims at 

providing preliminary evidence for such gold-standard achievement using an intervention 

of perceptual-cognitive training: 3D-MOT. 

 

Table 1: General assessment of various methods of cognitive interventions 

 

Pencil & paper 
Computer 

games 

Brain-

computer 

interface 

Nutritional 

supplements 

Stimulants & 

nootropics 

(1) Robust 

Effects with 

Transfer 

Inconsistent3 Inconsistent2,3 Yes5 Yes2 Inconsistent2,4 

(2) Side 

Effects/Toxicity 
None reported Insignificant3 Insignificant5 Signifcant2,4 Significant2,4 

(3) Investment Continuous3 20+ hours3 
10+ hours5;  

30-40 hours6 
Continuous2,4 Continous2,4 

(4) Lasting 

Effects 
Not reported Unknown3 Yes5,6 

No2; 

Tolerance2 
No2,4 

(5) Ethical 

Issues 
None reported None reported None reported None reported Yes2,4 

(6) Mutually 

Exclusive 

No reported 

contra-

indications 

No reported 

contra-

indications 

No reported 

contra-

indications 

Some contra-

indications4 

Some contra-

indications4 

(7) Potential 

Populations 
Healthy aging3 Various Various5,6 Various4 Various2,4 
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3D-MOT 

Three-dimensional multiple object tracking (3D-MOT) is a perceptual-cognitive 

training program adapted by Dr Jocelyn Faubert of the University of Montreal.7 Initially 

devised by Pylyshyn and Storm8 as a research tool, the multiple object tracking (MOT) 

task has since been adapted as a training tool called NeuroTracker.7 So far, this tool has 

been used in aging populations to improve biological motion perception10,11 and linking 

athletic performance levels and learning capacity on this task.7,9 

 

As a cognitive enhancer, 3D-MOT has 4 defining characteristics essential to 

achieving the gold standard. First, the training uses (a) MOT, (b) a large visual field, and 

(c) binocular 3D. All these contribute to the ecological validity of the training. Daily, we 

must attend to multiple pertinent sources of information while inhibiting nonrelevant 

information (MOT) across our entire 3D perceptive field (large visual field and binocular 

3D). By using speed thresholds, the training is adaptive and consistently maintains the 

difficulty level within the zone of proximal development. 

 

The task also follows 2 principles fundamental to training cognitive abilities (for a 

comprehensive review, see Faubert and Sidebottom7). First, it is rudimentary and does 

not require a complex strategy but instead requires low-level cognitive systems. Second, it 

consistently asks the trainee to perform at and above their current level of functioning. 

The principles behind 3D-MOT training are thus to isolate and overload. 

 

Isolation in this sense means that a number of functions solicited for the task 

should be limited and consistent. A training task should not draw on a random and 

inconsistent combination of cognitive functions to complete. If isolation does not occur, 

training effects are reduced. 

 

Overloading a function means soliciting it beyond its current ability. To properly 

train any function, overloading must occur so that adaptation (in the brain: 
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neuroplasticity) can take place. It is important to note that in any learning paradigm, 

overloading should be maintained within a range to ensure it falls within the zone of 

proximal development.12 Speed thresholds ensure an appropriate level of overload. 

 

Cognitive Functions 

 The cognitive functions engaged in 3D-MOT are theorized to be (a) attention, (b) 

working memory, and (c) visual information processing speed. The reason will become 

apparent in the description of the task in the methods section, and will be further 

explained in the discussion. The working definitions of each function are described in 

Table 2. 

 

Table 2: The cognitive functions involved in 3D-MOT 

Cognitive Function Definition 

Attention Sustained The ability to maintain selective attention over time  

Selective The ability to attend to/focus on/cognitively process a given 

thing 

Divided The ability to selectively attend to multiple loci at once 

(multifocal) 

Inhibition The ability to not attend/focus on/cognitively process a 

given thing 

Short-term Memory The ability to retain information over a short time span (20-

30 seconds) 

Working Memory The ability to retain and transform information over a short 

time span 

Information Processing 

Speed 

The time needed to consciously integrate perceptual stimuli 

Source: adapted from Banich & Compton13 
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We hypothesize that the cognitive functions described above will demonstrate 

significant improvement following 10 sessions of 3D-MOT training. Quantitative changes 

in brain function should also be observed fitting the established patterns of these 

cognitive functions; namely we expect increased beta relative to slower brainwave 

frequencies, and increased gamma over the occipital cortex. 

 

Methods 

 

Twenty university-aged students were recruited from the greater Montreal area 

and assigned randomly to either the 3D-MOT training (NT; n = 10) group or control 

(CON; n = 10) group. Both groups had an equivalent number of years of postsecondary 

education (NT = 4.40 ± 1.35), CON = 4.40 ± 1.17) and were similar in age (NT = 23.54 ± 2.56 

years, CON = 23.02 ± 2.78 years). No individuals taking psychoactive medication, nor with 

a known diagnosis of a cognitive disorder were included in the study. The project was 

approved by the Université de Montréal ethics committee (CERES; Comité d’éthique de la 

recherche en santé). No high-level athletes were included in the sample because of their 

enhanced learning ability in this task.9 

  

Evaluation 

All subjects underwent identical initial and final testing. The testing sessions 

lasted between 2 and 2.5 hours. Testing consisted of a quantitative electroencephalogram 

(qEEG), a battery of neuropsychological tests, and a 3D-MOT session. Neuropsychological 

measures included the Integrated Visual and Auditory Continuous Performance Test 

(IVA+Plus CPT; www.braintrain.com), selected subtests from the Wechsler Adult 

Intelligence Scale (WAIS-III),14 including symbol search, code, block design, number 

sequence, letter-number sequence and spatial span, the d2 attention test,15,16 and the 

Delis-Kaplan Executive Functions System Color-Word Interference Test (D-KEFS).17 The 

3D-MOT portion of the evaluation was identical to the training sessions described below. 
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The IVA+Plus is a computerized continuous performance task designed to measure 

attention. In this task, subjects are asked to identify target stimuli—the number “1” 

presented visually and auditorily—by clicking the left button on a mouse. Amid these 

target stimuli, are distracting stimuli—the number “2” presented both visually and 

auditorily—and subjects are asked not to respond to these stimuli. The task lasts 

approximately 20 minutes. 

 

The WAIS-III symbol search is visual information processing speed test. A pencil-

and-paper task, subjects are shown 2 target symbols followed by a string of 5 symbols. 

They are asked to answer either “Yes” or “No.” A “Yes” answer means they have identified 

that 1 of the 2 target symbols is present in the string of 5 symbols. 

 

The WAIS-III code task is also a pencil-and-paper task designed to measure visual 

information processing speed. In the code task, each digit from 1 to 9 has an associated 

symbol at the top of the page. Below this, the numbers 1 to 9 are displayed in random 

order in a grid with an empty space underneath. Subjects are asked to fill in the symbol 

paired with each digit in the space below each, provided for that purpose. 

 

The WAIS-III block design is a visuospatial abilities task in which subjects are 

asked to recreate images displayed to them with the use of blocks. Each block has 2 fully 

red sides, 2 fully white sides and 2 half-white, half-red sides. For each item, the subject is 

shown the image and must recreate it as quickly as possible. The first 5 items require the 

use of 4 blocks; the final 5 items require the use of 9 blocks. 

 

In the WAIS-III number sequence, a test to measure auditory short-term 

memory and working memory, subjects are read aloud a string of digits and are then 

asked to repeat them back. This is first done with subjects repeating the items in the 

same order in which they are given, and then they are asked to repeat the task using 
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new items while giving the string back in reverse order. Items are grouped into levels 

of difficulty, with each level adding a digit to the length of the item. 

 

The WAIS-III letter-number sequence is an auditory working memory task similar 

to the number sequence, with the addition of letters to the strings given for each item. 

Additionally, the subjects are asked to reorganize the digits and letters given as follows: 

letters first, in alphabetical order, followed by numbers, in ascending order. 

 

The WAIS-III spatial span is a visual short-term memory and working memory 

task. It uses a rectangular board on which are 10 identical cubes. The cubes are numbered 

so that only the tester may identify them by number, while the subject must only rely on 

their location. The subject must repeat a sequence demonstrated by the tester by tapping 

on the correct blocks in the proper order. As in the number sequence task, items are 

grouped by 2 into levels, with each subsequent level adding one block to the string.  

 

The d2 attention test is a pencil-and-paper type test, in which subjects are looking 

to cross out target stimuli amongst distractors. Targets are the lowercase letter “d” with 2 

vertical dashes on top, 2 vertical dashes on bottom, or 1 vertical dash on top and another 

on bottom. Distractors consist of lowercase “d”s and “p”s with 1 to 4 vertical dashes above 

or below the letter, with a maximum of 2 dashes on either side. 

 

The D-KEFS color-word interference test is a visual inhibition test composed of 4 

different subtests. Each subtest is timed and the number of uncorrected and corrected 

errors is noted. The subtests consist of identifying 1 of 3 colors: red, blue, and green. For 

each subtest, the stimuli are presented listwise, and subjects proceed down the page from 

left to right, top to bottom. There are 2 lines of 5 items that serve as examples, followed 

by 5 lines of 10 items, which consist of the timed test. The first subtest is color naming: 

subjects must simply identify the colored squares. The next is word reading: subjects 

must read the colors printed in black ink. The next is inhibition: subjects must identify 
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each item based on the ink color and not read the word that is written. The final subtest 

is inhibition/switching: subjects must identify each item based on the ink color and not 

read the word that is written, unless the item is in a box and in that case they must read 

the word that is written. 

 

It should be noted that some of the tests used are typically not readministered 

in quick succession because of the possibility of test–retest effects, notably learning or 

practice. Considering the time frame of the current study, the tests most prone to 

test–retest effects include the WAIS-III and all included subtests,14 and the D-KEFS 

Color-Word Interference Test.17 The utilization of a control group should adequately 

control for these effects. 

 

The qEEG data were acquired using a Mitsar 202 system (www.mitsar-

medical.com) at 500 Hz using an augmented 10-20 system; however, only the data from 

the standard 10-20 electrode placement system18 were retained for this analysis. The data 

were recorded using WinEEG (www.mitsar-medical.com) and were analyzed using the 

NeuroGuide qEEG normative database.19 

Training 

For the NT group, each training session was identical. For each trial, the speed and 

correct number of targets identified was recorded. Each session lasted between 45 

minutes and 1 hour. Sessions were performed between 9 AM and 5 PM twice per week over 

a period of 5 weeks. The CON group was a nonactive control. 

 

A training session consists of 3 series of 20 trials in which the trainee tracks 4 

spherical targets among 4 identical distractors that move linearly through a virtual 3D 

cube. The cube was projected onto a square projector screen measuring 8 × 8 feet; each 

side of the cube measured 1.5 m while targets measure 10 cm diameter. The speed for each 

trial is measured in meters per second and initial start speed of each series is 0.3. All other 

methodological specifics can be found in Faubert and Sidebottom.7 
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During the first phase of each trial, all 8 spheres appear in yellow and are 

stationary. Next, the 4 target spheres that the trainee must track appear in red for 2 

seconds, before switching back to yellow. The spheres begin movement and tracking then 

occurs over a period of 8 seconds. All 8 spheres move along a linear path through the 

cube; should any sphere encounter an obstacle it bounces off that obstacle and continues 

along its new path. At the end of this phase, each sphere is identified with a number and 

the trainee is asked to verbally state their responses. Table 3 outlines each phase of a 3D-

MOT trial and a visual representation can be seen in Figure 1. 

 

Table 3: 3D-MOT Trial 

Phase Description Duration 

Presentation 

(a) 

Eight spheres appear, coloured homogeneously in 

yellow.  

2 seconds 

Indexation (b) Four target spheres turn red with a surrounding white 

halo.  

2 seconds 

Pause Targets turn back to yellow, restoring homogeneity.  2 seconds 

Movement (c) All spheres move along a linear path in the 3D cube. If 

a sphere contacts another sphere or a wall of a cube it 

bounces off and continues along its new trajectory.  

8 seconds 

Identification 

(d) 

All eight spheres cease movement and are labeled 

with numbers (1 to 8). Subjects verbally state their 

responses.  

User 

determined 

Feedback (e) The target spheres are revealed, and feedback 

(number of target spheres correctly identified) is 

given. 

2 seconds 

See Figure 1 for a visual representation of each phase.  
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Figure 2-1: The Phases of a 3D-MOT Trial 

 

 

If all 4 targets are correctly identified the speed of the subsequent trial increases. If 

an incorrect response is given, the speed of the subsequent trial decreases. The speed 

changes are based on an adaptive staircase: Initial speeds vary more widely than later 

trials to ensure that the optimal zone for training is quickly attained. Ideally, in order to 

maintain a zone of proximal development, the majority of trials should be at and slightly 

above the trainee’s current level of ability. An adaptive staircase9,10 ensures this while 

adjusting for endurance and fatigue. At the end of a series of 20 trials, a final speed 

threshold score is given. A subject’s session score comprises the average threshold score 

of the 3 series of 20 trials. Four targets are used as research has shown that most people 

can generally track four elements in such a context.20 

 

Data Analysis 

All the neuropsychological tests were scored and EEGs analyzed by the first 

author. One minute of artifact-free data from the pre- and post-qEEGs were selected by 

the author respecting a blind design using the NeuroGuide Normative Database (version 

2.7.9, 2013). Test-retest and split-half reliability measures were kept higher than .90. 
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Results 

 

3D-MOT 

As expected, 3D-MOT session scores showed significant improvement (P < .01) from 

initial to final testing for the NT group. Interestingly, the CON group also showed a strong 

improvement (P = .016) from their initial to final testing session. The 2 groups differed 

significantly in their final session score (P < .01). Session scores for both groups along with log 

trend line for NT group are shown in Figure 2. 

 

Figure 2-2: 3D-MOT session scores for NT & CON groups; GEO Mean with Standard 

Error 

 

The final session score for the CON group is statistically similar to the 1st training session 

of the NT group. Initial session scores were 0.36 for the NT group and 0.35 for the CON 

group. Standard errors were 0.03 and 0.04 respectively. The NT group’s first session was 

0.40 with a standard error of 0.03, while the CON group’s final session was 0.41 with a 

standard error of 0.05.  

 

Cognitive Functions 

A Levene test yielded no significant differences in homogeneity between groups (P 

> .01; only WAIS letter-number sequence was significant at P < .05) between groups prior 

to training. An analysis of variance of initial results demonstrated that there was no 
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significant difference between groups on neuropsychological tests prior to testing. A 

repeated-measures analysis of variance was also performed with training condition 

(training or control) as the between-subject factor. A main effect of training was found (F 

= 36.232; P < .01), as was an interaction for training × group (F = 13.201; P < .01). As a 

consequence of the a priori hypotheses regarding cognitive functions, planned follow-up t 

tests were used to compare neuropsychological measures pre- and posttraining. Because 

of the exploratory nature of the research at hand and the accordingly lenient nature of 

the statistical tests used, a more stringent alpha of P < .01 was required to achieve 

significance. The mean pre- and posttraining, the degree of change, and results of the 

planned t tests can be seen in Table 4. 

 

Table 4: Neuropsychological test results: pre-post within group t-tests 

 NT Group (n=10)  CON Group (n=10) 

Measure Pre Post Change Sig. Pre Post Change Sig. 

IVA+Plus® Auditory 93.40 101.58 8.18* .007 97.30 98.98 1.68  

IVA+Plus® Visual 97.57 104.60 7.03+ .071 97.80 97.92 1.12  

WAIS-Symbol Search 43.40 48.40 5.00* .004 45.50 49.40 2.90  

WAIS-Code 91.40 101.10 9.70* .000 88.00 95.50 7.50+ .015 

WAIS-Block Design 51.20 59.20 8.00* .000 56.10 58.60 2.50+ .024 

WAIS-Number Sequence 20.00 19.90 -0.10  19.60 19.70 0.10  

WAIS-Letter-Number S. 13.90 15.70 1.80* .008 12.20 13.30 1.10  

WAIS-Spatial Span 19.40 22.20 2.80+ .021 19.00 20.60 1.60  

d2 Test of Attention 437.70 498.10 60.40* .000 465.10 509.30 44.20+ .017 

D-KEFS Color Naming 27.30 23.60 -3.70* .006 24.90 24.40 -0.50  

D-KEFS Word Reading 20.00 18.10 -1.90  19.10 19.30 0.20  

D-KEFS Inhibition 43.80 38.40 -5.40* .004 44.10 40.20 -3.90+ .020 

D-KEFS Inhibition/Switching 49.50 42.80 -6.70* .004 50.80 45.60 -5.20* .009 

* significant at p<.01; + trend toward significance p<.1 
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The NT group demonstrated significantly higher scores with regard to the 

IVA+Plus Auditory, WAIS Symbol Search, WAIS Code, WAIS Block Design, WAIS Letter-

Number Sequence, d2 Test of Attention, and D-KEFS Color Naming, Inhibition and 

Inhibition/Switching subtests (P < .01). The NT group also displayed a couple of trends 

toward significance, including IVA+Plus Visual and WAIS Spatial Span (P < .1). With 

regard to the individual IVA+Plus subscales, there were significant improvements in 

Visual Consistency (P < .01), and Auditory Speed (P < .01). Auditory Stamina (P < .05), 

Auditory Focus (P < .05), and Visual Speed (P = .068) also showed a trend toward 

significance. 

 

Table 5: Improvements in cognitive functions as measured by neuropsychological 

tests following 3D-MOT training 

Cognitive Function Measure 

Attention Selective IVA+Plus® (Consistency & Focus+), WAIS (Symbol Search), 

d2 

Sustained IVA+Plus® (Stamina+, Consistency, Focus & Sustained 

Quotient), d2 

Divided d2 test of attention, D-KEFS (Inhibition/Switching) 

Inhibition D-KEFS (Inhibition & Inhibition/Switching*) 

Short-term Memory N/A 

Working Memory WAIS (Spatial Span+ & Letter-Number Sequencing) 

Information Processing 

Speed 

IVA+Plus® (Speed+) WAIS (Symbol Search, Code, Block 

Design), d2, D-KEFS (Colour Naming & Word Reading) 

* Note that the CON group also demonstrated significant improvement in D-KEFS 

Inhibition/Switching 
+ Indicates a trend toward significance 
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With regard to the CON group, only the D-KEFS Inhibition/Switching subtest 

attained significance, while WAIS Code, WAIS Block Design, d2 Test of Attention and D-

KEFS Inhibition subtest demonstrated trends (P < .1). 

 

Initial IVA+Plus testing demonstrated higher scores in the visual domain (97.57) 

contributing to a ceiling effect that is observed to a lesser extent in the auditory domain 

(93.40). This is likely the reason why visual attention comparisons do not attain 

significance but do trend toward significance; visual attention scores remained higher in 

posttraining measures (104.60 vs 101.58 for auditory). 

 

Table 5 shows which tests demonstrate significant improvement, where relevant, 

related to each of the cognitive functions being assessed. This is discussed at length in the 

Discussion section. 

 

QEEG 

In considering the changes hypothesized with regard to cognitive functions, 

specific changes in qEEG were expected to occur. The figures below demonstrate 

significant differences in qEEG analysis following training for the NT group. The left 

figure shows the results of the planned paired 2-tailed t test while the figure on the right 

shows the direction of the change in percent differences in pre–post EEG power. The left 

figure shows the degree of significance of changes; white indicates no significant change, 

blue is a change at P < .05 and red P < .001. The color in the right image shows the 

direction of the change; blue indicates decrease and yellow-red indicates increase. 

 

Since no consensus on the exact definition of frequency bands exists, the authors 

discuss specific individual frequencies. For the sake of conformity, the authors refer to the 

frequency bands as defined in the NeuroGuide database. These are delta (1-4 Hz), theta 

(4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (30-50 Hz). 
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Decreased Delta, Theta & Alpha 

 As hypothesized, the NT group demonstrated significant absolute power decreases 

in the theta and alpha frequency bands. The delta band also showed some lesser but still 

significant reduction. Specifically, decreases were observed across 2 to 11 Hz with eyes 

closed and 2, 5 to 6, 10 to 11 Hz with eyes open. The changes were noted primarily in the 

frontal lobes (electrodes FP1, Fp2, F7, F3, Fz, F4, F8, C3, Cz, and C4) while the changes in 

theta could also be observed over the parietal cortex, most dominantly in the left 

hemisphere (P3, Pz). These changes can be observed in Figure 3. The CON group did not 

demonstrate this trend. 

 

Figure 2-3: Pre-Post changes in Delta, Theta and Alpha Amplitude  
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Note: bandwidth segments cut to show significant changes only. Full qEEG maps are 

available in supplemental figures.  
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Increased Beta  

 Following the hypothesis of decreased slow-wave power, it was expected that the 

faster beta frequencies would show a more dominant presence. As expected, the NT group 

demonstrated significant relative power increases in various frequencies within the beta 

bandwidth, specifically 14, 16 to 18, 22 to 40 Hz with eyes closed and 20 to 23, 28, 34, 37 to 39 

Hz with eyes open. These changes were observed across frontal regions (Fp1, Fp2, F7, F3, Fz, 

F4, F8, C3, Cz, and C4), and are shown in Figure 4. As these changes were limited to the 

relative power spectrum (there were no significant changes in corresponding frequencies in 

absolute power) these increases must be interpreted with caution as they may be the result of 

decreases in other frequencies. Once again, the CON group did not demonstrate this change. 

 

Figure 2-4: Pre-Post changes in Beta Amplitude 
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Note: bandwidth segments cut to show significant changes only. Full qEEG maps are 

available in supplemental figures. 

 

Increased Gamma  

The final hypothesis put forth was that the NT group would demonstrate 

significant increases in Gamma band frequencies, especially at occipital sites. This was the 

case with eyes open; as shown in Figure 5, the 40-50Hz bandwidth saw significant gains in 

occipital and parietal sites (O1, O2, Pz, and P4). Interestingly, and also shown in Figure 4, 

an unexpected trend occurred with eyes closed: the same bandwidth saw significant 

increases across frontal sites (Fp1, Fp2, F3, Fz, F4, and Cz). The CON group actually 
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showed the opposite effect decreased gamma power at O1 and O2 with eyes open, and no 

significant difference with eyes closed. 

 

Figure 2-5: NT group Pre-Post changes in Gamma Amplitude  
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Note: bandwidth segments cut to show significant changes only. Full qEEG maps are 

available in supplemental figures. 
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Other significant changes 

No other significant changes fitting any attentional theory were observed. Full 

qEEG maps for each testing condition are available in supplemental figures (available at 

http://eeg.sagepub.com/content/by/supplemental-data). 

 

Discussion 

3D-MOT 

As expected, the NT group improved over time at the task and even the final 

session scores continued to show improvement. While the current study does not assess 

longevity, results suggest that the benefits observed may persist in time. This is 

demonstrated in the improvement in 3D-MOT scores of the initial and final testing 

sessions for CON group. The CON group significantly improved over 7 weeks and their 

session scores resemble the first 2 sessions of the NT group. It appears that the CON 

group is able to consolidate and maintain an effect from the first testing session despite a 

7-week delay between sessions. 

 

Cognitive Functions 

Attention 

The 3D-MOT task most heavily solicits attentional resources, and results indicate 

that sustained, selective and divided attention as well as inhibition can be enhanced with 

10 sessions of training. Attention is essentially the gateway of perception into 

consciousness, it is what “decides” what we see, hear, feel, taste, and smell. Attention 

modulates our ability to learn and communicate with others, and is a fundamental 

component of the human mind and consciousness.21,22 

 

Since 3D-MOT is purely visual, it begs the question: Why are gains observed in the 

auditory domain? As described by Wickens,23 attentional capacities across different 
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modalities are limited by a common resource pool. For example, when performing a 

complex visual procedure (eg, a complex driving scenario), auditory tasks (eg, 

maintaining a conversation) become more difficult.24 It stands to reason that when the 

substrates of this shared pool are improved all implied modalities would show gains. 

 

Sustained Attention 

Traditionally, sustained attention tasks require that attention be maintained over a 

relatively long period of time. The 3D-MOT task taxes this as a session is approximately 

30 minutes. More, sustained attention tasks must also be sensitive to slight variations on 

the scale of fractions of a second. The movement phase of a 3D-MOT lasts only 8 seconds 

per trial; however, the trainee must consistently maintain attention on all 4 targets. If a 

target is lost, it cannot be reobtained; Even the slightest lapses in attention result in the 

failure of the trial. 

 

Selective Attention 

A trainee must also selectively focus on targets and not on distractors. As the 

speed of trials increases there are more interactions between targets and distractors. The 

distribution of attentional resources must remain fluid; a target close to a distractor 

demands more attention than a target in relative isolation. 

 

Inhibition 

Inhibition, in contrast to selective attention, is the ability to not focus on 

nonpertinent information. They are complementary processes although are considered 

different constructs.25 In 3D-MOT, inhibition is regularly called upon: Targets and 

distractors interact often during the movement phase and one must inhibit focus from 

distractors. 
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Divided Attention 

In MOT, divided (multifocal) attention plays an important role.26 The 3D-MOT 

trains an ability to dynamically shift attention along multiple loci, a fundamental 

principle of divided attention.27 

 

Short Term & Working Memory 

Short-term memory is the ability to temporarily retain a limited amount of 

information in consciousness.28 Working memory is the ability to manipulate information 

stored in a temporary bank to suit the task at hand.29 Previous research has shown a 

strong link between short-term memory and working memory, the former often posited 

as being a limiting factor of the latter.28 Working memory is a higher order task, often 

being considered a necessary precursor to executive function.30 Attention is strongly 

implied in working memory, as is seen in the deficits in working memory in attention 

deficit populations.31 

 

In 3D-MOT, targets must be retained in temporary memory stores (short-term 

memory) while the targets’ movement is internally processed (working memory). The 

task may affect working memory by improving attention or may directly improve working 

memory. Once again it appears that shared resources are at play as auditory working 

memory shows gains similar to those seen in the visual modality; the research of Saults 

and Cowan32 supports a shared resource pool. 

 

Visual Information Processing Speed 

Perceptual stimulus first enters through sensory organs before being transferred to 

primary processing areas and then through higher order processing or “association” areas. 

The speed at which this “bottom-up” transfer occurs is referred to as information 

processing speed, and can impact decision making and reaction time.33 

 



 75 

The speed thresholds directly evoke visual information processing speed 

capacities. Previous work9 has demonstrated that as individuals progress through training 

their speed threshold scores increase. 

 

Quantitative EEG 

Theta/Beta & Attention 

 In examining attention using qEEG, studies observe high amplitudes of slow wave 

activity (2-11 Hz) and relative deficits in faster beta activity (12-20 Hz) in those with 

attention deficits.6,34 Psychostimulant pharmacological and neurofeedback interventions 

for attention deficits have a normalizing effect on the EEG in that they decrease excessive 

slow waves and increase deficient beta and note resulting improvements in attention.6,34,35 

These findings are concurrent with those observed in this study: improvements in 

attention in the NT group corresponded with decreases in 2 to 11 Hz slow-wave activity 

and relative increases in beta. 

 

Gamma, Binding & Neuroplasticity 

 The gamma band is relatively new to the family of EEG analysis.36 The gamma 

band is traditionally seen as the “binding rhythm” in the brain responsible for the 

coordination and mobilization of cognitive resources for the task at hand.37 It is said to 

reflect underlying large-scale cortical cooperation and phase synchrony triggered by 

thalamic pacemakers, playing a large role in attention and memory, and a critical role in 

synaptic plasticity.37 

 

The changes observed here in the gamma band are focused on the occipital cortex, 

the region of the brain responsible for visual processing.38 The parallel improvements in 

visual attention, visual working memory, and visual information processing speed are 

thus reflected in these gamma band increases. 
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Limitations of the Study and Suggestions Further Research 

This study employed a relatively small sample size; however, considering the 

promising results of the current study, the authors suggest replication with a higher 

number of subjects. Different neuropsychological tests and brain imaging techniques as 

well as questionnaires regarding observed changes in day-to-day life could be used to 

verify transfer as well as control for test–retest effects. A greater number of sessions, 

longer training periods, and longer test–retest intervals could yield information on the 

ideal frequency and duration of training as well as shed light on longevity. The use of an 

active control group could ensure that observed changes were indeed due to 3D-MOT 

and not due to nonspecific factors. These changes would ensure stronger statistical 

significance, and further understanding of the cognitive functions and neural substrates 

at play in 3D-MOT. 

 

Conclusion 

 

 This preliminary study demonstrated that 3D-MOT improves cognitive functions 

in a healthy population and corresponding changes in brain function were observed. The 

current study is a first step toward establishing 3D-MOT as a gold-standard cognitive 

enhancer. Training 5 weeks with 3D-MOT demonstrated robust effects on attention, 

working memory, and visual information processing speed as measured by 

neuropsychological tests while corresponding changes measured by qEEG were also 

observed. Together, these findings suggest that transfer to daily life should be observed; 

however, further research could include real-world variables for verification. No side 

effects were noted other than anecdotal reports of mild fatigue immediately following 

training, and dissipating within 20 to 30 minutes following a session. In terms of time 

investment, 1 hour per week is sufficient; however, more research is needed to determine 

the optimal frequency and duration of training. It is currently unknown whether or not 

the effects of training persist over extended periods of time. No negative ethical issues 
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were observed with regard to 3D-MOT training. Combining 3D-MOT with another type 

of cognitive intervention could yield superior results; further research is needed. No 

contraindications for 3D-MOT were observed. Finally, in terms of appropriate 

populations, this study further solidifies findings of transfer in healthy populations. 

Clinical populations exhibiting deficiencies in cognitive functions associated with those 

shown to improve following training would be good candidates for further research. 3D-

MOT training could be beneficial for populations suffering from deficits in attention, 

working memory, and/or visual information processing speed, for example those with 

attention deficit disorder39,40 or autistic spectrum disorder.41 Table 6 resumes the findings 

of this study to that end. 

 

 

Table 6: 3D-MOT as a gold-standard cognitive enhancer 

Standard Status Details 

(1) Robust 

Effects with 

Transfer 

Yes Attention, working memory, visual information 

processing speed; corresponding changes in brain 

function 

(2) Side 

Effects/Toxicity 

Insignificant Occasional mild fatigue immediately following training, 

dissipating within 20-30 minutes 

(3) Investment 5 hours Optimal training frequency and duration is unknown; 1 

hour per week is sufficient. 

(4) Lasting 

Effects 

Unknown  

(5) Ethical 

Issues 

None  

(6) Mutually 

Exclusive 

Unknown Further research to examine training in combination; no 

contraindications were observed.  

(7) Potential 

Populations 

Known: 

Unknown: 

Healthy, healthy aging, athletes.  

Clinical domains.  
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Discussion 

 

This section is presented in addition to the discussion in the research article above.  

 

3D-MOT: the strength is in the design 

 

What makes the 3D-MOT a tool appropriate to use for cognitive enhancement?  

 

As discussed in the methods section, there are four characteristics of this paradigm 

that explain why it works. They are multiple object tracking, large visual fields, 

stereoscopic 3D, and speed thresholds. The task is designed to be ecologically valid 

(multiple object tracking, large visual fields and stereoscopic 3D) while also keeping the 

trainee in the zone of optimal development (adaptive staircase speed thresholds).  

 

Fundamentally speaking, there is no strategy to 3D-MOT training. The training 

relies on basal cognitive functions, thus isolating them from any possible strategy. This 

isolation implies that other cognitive functions cannot be relied upon (or used to cheat) 

in the task. Once a cognitive function is properly isolated, it can be overloaded.  

 

Overloading is a fairly simple concept: it means demanding more of a cognitive 

function than it is normally capable of performing. If this is done haphazardly, the 

demands are likely to be too far beyond the current level of ability that no adaptation can 

occur. When this is done within the zone of optimal development, adaptation and 

learning occur. The thinking is that over time, the learning is consolidated, the 

underlying functions improve, and this in turn leads to generalized enhanced cognitive 

functioning.  
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Up against the standard 

 

The current research is a first step toward establishing 3D-MOT as a cognitive 

enhancer. The following sections discuss the current state of 3D-MOT to that end. As 

quickly becomes apparent, while the work is a first step toward that goal, it is impossible 

to achieve the standard with one small-scale research project like the one discussed 

herein. The limitations of the study are discussed where appropriate, as are suggestions 

for future research.  

 

1. Robust transfer effects 

 

First and foremost, the very first hypothesis is confirmed: the training group were 

able to increase their abilities within the 3D-MOT task. Further, with regard to 

hypotheses 2, 3 and 4, the current research study demonstrated significant gains in 

attention, working memory and visual information processing speed. As an addition to 

table 4 above, the results including average change, t-test p value, and effect size (r) are 

below in table 7. Note that p values corresponding effect sizes are only listed where p<.1.  

 

As discussed in the article, a main effect of training was found F(13,6) = 36.232, p = 

.000, eta squared = .987; as was an interaction for training × group F(13,6) = 13.201; p = 

.002, eta squared = .966.  
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 Table 7: Neuropsychological test results: extended table 

 NT Group (n=10)  CON Group (n=10) 

Measure Change Lower 

CI 95% 

Upper 

CI 95% 

Sig. ES Change Lower 

CI 95% 

Upper 

CI 95% 

Sig. ES 

IVA+Plus® Auditory 8.18* 2.81 13.55 .007 .30 1.68     

IVA+Plus® Visual 7.03+ -.75 14.82 .071 .24 1.12     

WAIS-Symbol Search 5.00* 2.04 7.96 .004 .36 2.90     

WAIS-Code 9.70* 6.80 12.60 .000 .35 7.50+ 1.87 13.14 .015 .23 

WAIS-Block Design 8.00* 5.06 10.94 .000 .44 2.50+ .414 4.59 .024 .19 

WAIS-Number Sequence -0.10     0.10     

WAIS-Letter-Number S. 1.80* .59 3.01 .008 .24 1.10     

WAIS-Spatial Span 2.80+ .54 5.06 .021 .43 1.60     

d2 Test of Attention 60.40* 40.27 80.54 .000 .38 44.20+ 10.06 78.34 .017 .24 

D-KEFS Color Naming -3.70* -6.01 -1.39 .006 .43 -0.50     

D-KEFS Word Reading -1.90     0.20     

D-KEFS Inhibition -5.40* -8.59 -2.22 .004 .28 -3.90+ -7.02 -.78 .020 .26 

D-KEFS Inhibition/Switch. -6.70* -10.58 -2.83 .004 .40 -5.20* -8.78 -1.62 .009 .37 

 * significant at p<.01; + trend toward significance p<.1 

 

 

Regarding attention, there were a few interesting things to note. First, although 

the task is purely visual, gains were seen in the auditory domain as well. It appears as 

though the mechanisms underlying the gains in attention are subject to a pool of shared-

resources.113 As a matter of fact, the stronger gains in terms of modality were in the 

auditory domain (r = .30); however this is likely due to ceiling effects observed in visual 

results. As briefly discussed in the article, the visual t-test yielded only a P value of .071, 

which indicates a trend toward significance, however a small effect was nonetheless noted 

(r = .24). The d2 test of attention, not prone to ceiling effects did demonstrate a 

substantial and significant improvement for the training group with a medium effect 

noted (r = .38). While that does support the theory that visual attention is fundamentally 

at play, performance in the d2 is also reliant on information processing speed. More data 
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is needed. Further research targeting normative populations should attempt to use 

another type of continuous performance test less prone to ceiling effects. 

 

Working memory also appears to benefit from 3D-MOT training, and once again 

these gains are cross modal. Gains were notably larger in the visual domain (r = .43) than 

in the auditory modality (r = .24). There is, however, a weakness is in the tools utilised to 

measure working memory. It is difficult to appropriately isolate working memory from 

other cognitive functions since it is a higher order function that relies on lower order 

systems. It is possible that the gains seen in working memory are actually due to gains 

seen in other cognitive functions, for example attention.121 Future research should utilize 

stricter statistical tests and attempt to further isolate working memory from other 

cognitive functions to better evaluate this change. That said, from a clinical standpoint, 

the source of the change isn’t relevant for the well being of the person. Working memory 

skills are enhanced, and if a person is able to benefit from those enhancements in their 

daily life, the underlying source of the change is not inherently important to them.  

 

Information processing speed was only measured in the visual domain, other than 

the one auditory speed subscale in the IVA+Plus® which did not demonstrate significance. 

The effect on information processing speed ranged from small to large (r = .28-.44). 

Information processing speed is an important component in the ever-evolving 

technological world. In today’s information age, stimuli are delivered at an 

unprecedented speed, and faster capabilities in treating this information become 

important. There are equally many clinical populations that suffer from information 

processing speed deficits, and these impacts have real-world consequences that can 

impair cognitive functioning.162  

 

Globally speaking, further research should examine the transfer effects using 

different validated measures not subject to the same ceiling effects observed here. By 

using real-world variables including academic or work performance, as well as subjective 
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questionnaires assessing perceived change, valuable insight into the benefits of 3D-MOT 

training could be gathered. Using a greater number of subjects could also yield superior 

statistical analysis, including a correlational analysis to examine if there are any 

fundamental cognitive functions for 3D-MOT. At the moment, it is unknown what factors 

are responsible for initial differences in 3D-MOT performance.  

 

Now that it has been established that 3D-MOT training enhances attention, 

working memory and information processing speed, these results need to be replicated in 

clinical populations. The first clinical populations worth examining are those who 

demonstrate deficits in these capacities, for example attention deficit/hyperactivity 

disorder, autistic spectrum disorder, and in cases of learning disabilities. More, other 

cognitive functions should be included as they may also demonstrate benefit from 3D-

MOT training. Some higher-order functions, for instance reading, are likely candidates.162  

 

Hypothesis 5 posited that there would be observable changes in qEEG that would 

reflect these enhancements. The research article above substantiates this claim, and thus 

this hypothesis is upheld. Future analysis will use the data obtained, but not yet analysed. 

This work will first examine the 2-channel EEG data acquired during training. This insight 

into what brain activity occurs during a 3D-MOT session will be valuable in order to 

better understand the changes seen following training. Next, the full 32-channels of EEG 

data will also be useful to analyse using other qEEG methods, for example standardized 

and exact Low Resolution Electromagnetic Tomography (sLORETA and eLORETA). 

These methods utilise algorithms to solve the inverse problem in EEG and thus 

extrapolate the origins of electrical activity in the brain.130,131 

 

Further research could utilize different neuroimaging techniques in order to add 

to these findings. Magnetic resonance imaging (MRI) could provide data about structural 

changes, while functional magnetic resonance imaging (fMRI) during the task in real-
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time could yield more spatially precise information about which neural substrates are at 

play in 3D-MOT.  

 

2. No Side Effects or Risk of Toxicity 

 

As hypothesized, no notable adverse effects of 3D-MOT training were noted; 

hypothesis 6 is tenuously upheld. A few participants mentioned fatigue following the 

initial training sessions, but this subsided over the course of training.  One subject 

complained of a mild headache in two instances, and in both instances the headache 

disappeared within an hour following the session.  

 

In the future, researchers should examine these aspects more thoroughly. It is 

possible that different populations respond to training differently, and thus side effects 

may occur that are not observed in healthy populations.  

 

3. Minimal time and monetary investment 

 

Once again an initial hypothesis (hypothesis 7) proved true: 10 sessions of 3D-MOT 

training was sufficient to enhance cognitive functions and have a measurable effect on 

brain function. Further research should examine whether less training is needed in order 

to document changes, and if training over a longer period leads to further enhancement.  

 

4. Lasting effects 

 

Unfortunately, the current study offers very little information with regard to the 

longevity of the effects observed. No follow up testing was performed, and thus no 

hypothesis regarding long-term effects was presented. That said there is an interesting 

trend that suggests that gains may persist in time, at least with regard to the task itself.  
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 In considering the initial and final assessment, the control group demonstrate 

significant improvement in the 3D-MOT task. Their final session, although it occurred six 

weeks after their initial testing session, is statistically equivalent to the very first training 

session of the training group, which occurred only days later. This suggests that the same 

learning and consolidation that occurred for the training group over the period of a few 

days was also maintained over six weeks in the case of the control group. This suggests 

that even with minimal exposure, learning occurs and can perhaps persist over long 

periods of time.  

 

While this matter is far from established, it is an encouraging finding that warrants 

further examination. Studies that perform follow-up investigations at intervals spanning 

months and years are needed.  

 

5. No ethical issues 

 

While this current study did not at all attempt to address this issue, anecdotal data 

can be assessed in a general sense. First, the ease with which participants were recruited 

goes to the idea that there are not likely any ethical issues of great concern. Second, the 

inexistent dropout rate demonstrates that no new issues came up during the course of 

training. While it can be argued that individuals who might have issues would not have 

volunteered for participation, candidates had no knowledge of the task in question before 

receiving the consent form shortly before their initial session. This suggests that there 

were indeed no ethical issues at play, and hypothesis 8 is cautiously confirmed.  

 

6. Can be used in combination 

 

The current study examined 3D-MOT alone and thus cannot directly speak to the 

possibility of using it in conjunction with other interventions. That said, no 
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contraindications were observed. The only possible note to that end is with regard to 

fatigue; because 3D-MOT demands a significant effort, there were some reports of fatigue 

following training. Other types of intervention that are prone to or would suffer from the 

effects of fatigue may not be appropriate when applied in quick succession with 3D-MOT.  

 

7. Can be applied to any population 

 

Much more research is needed before claims can be made regarding the 

applicability of 3D-MOT to clinical populations. Previous research has shown the benefit 

for aging populations, and this study suggests that there are a great number of other 

candidate populations. Healthy populations benefit from gains in cognitive functions 

following 3D-MOT training, and the degree of benefit appears to be small to medium. 

The day-to-day significance of these gains has yet to be established and, as discussed 

above, future studies could make use of real-world variables to that end.  
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Conclusion 

 

The market for cognitive enhancement tools is growing, and although they are the 

driving force behind a now billion-dollar market, these tools are rarely the subjects of 

intense scrutiny. The paradigm under which these tools are assessed is inconsistent at 

best, and it is thus very difficult for even someone well versed in the matter to adequately 

judge each and every intervention.  

 

After examining much of the research into these interventions and the rebuttals of 

critics, it was possible to establish a standard for cognitive enhancement tools. These 

tools should be strong in their main and transfer effects, have little or no risk of side 

effects or toxicity, involve little time and monetary investment, not raise ethical issues, be 

feasible to combine with other interventions, and should finally have a wide range of 

application.  

 

To that end, 3D-MOT demonstrated significant effects with consequent transfer to 

measures of attention, working memory and information processing speed. Functional 

changes in the brain were also observed. There were no significant side effects associated 

with training. A relatively small investment was needed, only 5 hours over 5 weeks. No 

ethical issues were noted, and no contraindications that might show that 3D-MOT and 

other types of interventions are mutually exclusive. Finally, the current study yields data 

on healthy individuals, and suggests future populations for study including those with 

attention deficit/hyperactivity disorder, learning disabilities, autistic spectrum disorders, 

executive dysfunctions and in aging.  

 

While much work is still needed, this project was a first step toward establishing 

3D-MOT as a cognitive enhancement intervention. The research into 3D-MOT is 

promising and warrants further work. More, the establishment of the standard criteria set 

a barometer against which all cognitive enhancement tools can be measured.  
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