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Résumé 

La division cellulaire asymétrique est un processus crucial dans le développement des 

organismes multicellulaires puisqu’elle permet la génération de la diversité cellulaire. Les 

cellules qui se divisent de façon asymétrique doivent tout d’abord se polariser et correctement 

orienter leur fuseau mitotique pour ségréger des déterminants cellulaires en deux entités 

distinctes. L’embryon du nématode C. elegans est un modèle robuste et largement utilisé pour 

étudier la division cellulaire asymétrique. Dans cet embryon, le point d'entrée du 

spermatozoïde détermine l'axe de polarité antéro-postérieur. Suite à la fécondation, le cortex 

embryonnaire est uniformément contractile et un complexe conservé formé des protéines 

PAR-3, PAR-6 et PKC-3 (nommé complexe PAR-3 ci-dessous) est localisé sur l'ensemble du 

cortex. La complétion de la méiose maternelle induit une relaxation corticale au postétieur et 

un flux cortical vers l’antérieur de l’embryon. Ces contractions corticales asymétriques mènent 

à la formation d'un domaine antérieur contenant le complexe PAR-3, tandis que le cortex 

postérieur, dont le complexe PAR-3 s’est délocalisé, est enrichi avec les protéines PAR-2 et 

PAR-1. Par conséquent, les domaines formés par les protéines PAR définissent un pôle 

antérieur et un pôle postérieur dans l'embryon suite au remodelage du cytosquelette. Les 

protéines PAR-4 et PAR-5 restent localisées de façon uniforme dans l'embryon. Curieusement, 

les protéines PAR exercent une régulation par rétroaction sur la contractilité corticale. Il a été 

montré qu’une des protéines PAR récemment identifiée, PAR-5, est orthologue à la protéine 

adaptatrice 14-3-3 et joue un rôle important dans la contractilité corticale. En dépit de son rôle 

central dans la contractilité corticale et le processus de polarisation cellulaire, le mécanisme 

par lequel PAR-5 régule la contractilité corticale n’est pas bien compris. Le but de ce projet 

est de mieux comprendre comment PAR-5 et ses interacteurs contrôlent la régulation des 

contractions corticales et, de ce fait, la polarité cellulaire. Dans un essai de capture de la 

protéine GST (GST pull-down), nous avons identifié plusieurs nouveaux interacteurs de PAR-

5. Parmi ceux-ci, nous avons trouvé CAP-2 (protéine de coiffage de l'actine), qui a été 

identifiée dans des éxpériences de capture de 14-3-3 dans trois systèmes modèles différents. 

CAP-2 est un hétérodimère des protéines CAP, qui sont impliquées dans la régulation de 

l'actine. Nous avons trouvé que la déplétion des protéines CAP par interférence à l’ARN dans 
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des vers de type sauvage mène à une augmentation létalité embryonnaire, ce qui suggère que 

ces protéines jouent un rôle important dans le développement embryonnaire. L'imagerie en 

temps réel d'embryons déplétés pour les protéines CAP montre qu’ils ont une diminution des 

contractions corticales avec un sillon de pseudoclivage mois stable, suggérant un défaut dans 

la régulation du cytosquelette d'actine-myosine. Ceci a également été confirmé par la 

diminution de la vitesse et du nombre de foci de NMY-2::GFP. En outre, ces embryons 

montrent une légère diminution de la taille du croissant cortical de PAR-2 lors de la phase 

d’établissement de la polarité. Les embryons déplétés en CAP-2 montrent également un retard 

dans la progression du cycle cellulaire, mais le lien entre ce phénotype et la régulation des 

contractions corticales reste à être précisé. La caractérisation des protéines CAP, des 

régulateurs du remodelage du cytosquelette, permettra d'améliorer notre compréhension des 

mécanismes qui sous-tendent l'établissement et le maintien de la polarité cellulaire, et donc la 

division cellulaire asymétrique. 

Mots-clés: C. elegans, PAR- 5, la polarisation, protéine de coiffage de l'actine. 
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Abstract 
Asymmetric cell division is a crucial step in organism development, as it allows the generation 

of cellular diversity. In order to achieve asymmetric division cells need to polarize their cell 

fate determinants and properly orient their mitotic spindle before division. The C. elegans 

embryo is a powerful and widely used model to study asymmetric cell division. In the embryo 

the sperm entry site determines the anterior-posterior axis of polarity. In the newly fertilized 

embryo, shortly after meiosis, the cortex is uniformly contractile and the conserved PAR-

3/PAR-6/PKC-3 complex (hereafter referred to as the PAR-3 complex) is localised on the 

entire cortex. Entry of the sperm triggers posterior smoothening and anterior-directed cortical 

flows. Asymmetric cortical contractions result in the formation of an anterior domain 

containing the PAR-3 complex, while the posterior-pole cortex, depleted of the PAR-3 

complex, is enriched in PAR-2 and PAR-1 proteins. Therefore PAR domains define an 

anterior and a posterior pole of the embryo in response to cytoskeleton remodelling. The PAR-

4 and PAR-5 proteins remain localized uniformly throughout the embryo. Intriguingly, the 

PAR proteins exert a feedback regulation on cortical contractility. PAR-5, one of the lately 

identified PAR proteins, was shown to be an ortholog of the adaptor protein 14-3-3 and to play 

an important role in cortical contractility. Despite its central role in cortical contractility and 

henceforth the polarization process, little is known on how PAR-5 regulates cortical 

contractility. The aim of this project is to better understand the regulation of cortical 

contractions via the PAR-5 protein and its interactors, and how they control cell polarity. In a 

GST pull down assay we identified several new interactors of PAR-5. Among these we found 

CAP-2 (actin capping protein), which was also pulled down with 14-3-3 in three different 

model systems. CAP-2 has been implicated in actin regulation. Interestingly we found that 

depletion of CAP proteins by RNA interference in wild type worms results in increased 

embryonic lethality, suggesting an important role in embryonic development. Live imaging of 

embryos depleted of CAP proteins shows that these embryos have decreased cortical 

contractions with a less stable pseudo cleavage furrow, indicating a defect in the regulation of 

the actin-myosin cytoskeleton. This was further confirmed by the decreased velocity and the 

number of NMY-2::GFP foci in CAP depleted embryos. Furthermore, these embryos show 

mild decrease in PAR-2 domain size during the polarity establishment phase. cap-2(RNAi) 
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embryos also show a delay in cell cycle progression, however the role of the cell cycle delay 

in the regulation of cortical contractions has to be determined. The characterization of CAP 

proteins, which are cytoskeleton-remodeling regulators, will improve our understanding of the 

mechanisms underling the establishment and maintenance of cell polarity, and thereby 

asymmetric cell division. 

Key words: C. elegans, PAR-5, polarization, actin-capping protein. 
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1. Introduction 

1.1 Asymmetric cell division 

The different cell types, carrying different function are formed from the single cell, or zygote 

as a result of the asymmetric cell division. Intrinsic and extrinsic cell fate determination is 

responsible for the cellular diversity. Cells using an extrinsic mechanism divide symmetrically 

to give rise to two identical daughter cells. In these systems, the different fate is then 

determined by the environment signal, which is received differently in one daughter cell 

compared to its sister. Using the intrisic mechanism, the cells establish asymmetry prior to 

division and divide according to this asymmetry. Cells undergoing asymmetric cell division 

segregate fate determinants according to the set polarity axis, which is further defined by the 

set of conserved proteins; the PAR proteins. The asymmetric inheritance of these determinants 

dictates the different cell fates of the two daughter cells (Betschinger and Knoblich 2004).   

1.2 C. elegans  

The free-living, soil nematode C. elegans is an excellent model organism for the genetic 

analysis of cell cycle regulation during embryonic development. These nematodes are about 1 

mm in length and transparent, which make it easily accessible for light microscopy. The 

worms develop from eggs to fertile adults in about three days. The short reproductive life 

cycle of C. elegans makes it a powerful model organism (Wood, 1988). The worms have two 

sexes, hermaphrodites and males, consisting of a fixed number of somatic cells, 959 or 1031, 

respectively. Hermaphrodites reproduce by either mating or self-fertilization and lay about 

approximately 300 eggs during the reproductive life cycle. Males spontaneously arise by X-

chromosome nondisjunction at meiosis at a low frequency. Most of the embryonic 

development occurs outside of the uterus. The first division of the early embryo is highly 

reproducible and takes about 30 minutes to complete after fertilization. The embryos are 

relatively large (about 50 µm), and therefore, embryonic development can be easily followed 

by time-lapse differential interference contrast microscopy.   
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Figure 1: Image representing the life cycle of C. elegans.  

Adapted from www.wormatlas.org 

 

The effectiveness of RNA interference, as a tool to deplete cellular protein levels in C. elegans 

(Fire et al., 1998) has revolutionized the easiness to assess gene function (Fraser et al., 2000; 

Gonczy et al., 2000; Sonnichsen et al., 2005). In the past, many groups have performed a 

series of large-scale functional genomics analyses using RNAi to test additional genes 

required for early embryogenesis (Sonnichsen et al., 2005; Zipperlen et al., 2001). The 

phenotypic changes in the embryo are simple to follow, which provides an advantage for 

studying the polarization process in C. elegans: the nuclei and the centrosomes appear as 

cytoplasmic clearings within the mass of yolk granules in the embryo, which helps to 

determine the cell cycle stage. Changes in cortical activity, or ruffling, are easily observed and 

provide a marker of cortical polarity. Furthermore, tracking the movement of yolk granules 

allows an analysis of polarized cytoplasmic flows, a manifestation of polarity establishment. 

Advancements in the microscopic techniques such as time-lapse microscopy of fluorescent-

tagged proteins allow the analysis of the role of proteins of interest in different processes 

within the embryo.  

1.3 The role of PAR proteins in cell polarity 

The first cell division of the C. elegans embryo is asymmetric, producing a larger anterior cell 

and a smaller posterior cell (Begasse and Hyman, 2011; Cowan and Hyman, 2004a; Munro 
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and Bowerman, 2009). A primary requirement of an asymmetric cell division to take place is 

the polarization of the parent cell. Polarization is the process by which cellular components are 

unequally distributed throughout the cell creating domains, which are biochemically, distinct. 

Depending on the cell type, polarization can define anterior/posterior, apical/basal, 

dorsal/ventral and other types of distinct regions. The C. elegans zygote undergoes 

anterior/posterior polarization. Establishment of polarized domains enables a cell to move in a 

certain direction, divide asymmetrically for further differentiation, and perform other 

important biological functions. The two critical requirements of successful asymmetric cell 

division in the C. elegans zygote are to make two cells with different volumes and to properly 

segregate cell fate determinants into one or the other half of the cell before the first division. 

The anterior cell will give rise to purely somatic tissue; while the posterior cell will reiterate 

asymmetric divisions to eventually give rise to somatic lineages and the germline of the adult 

organism. To develop into the germline, the posterior cell has to inherit germ cell factors, 

which are initially distributed throughout the oocyte during the first division.  

 

The critical molecules for cell polarization are known as PAR (partitioning-defective) 

proteins, which were first identified in a genetic screen for maternal-effect mutations affecting 

asymmetric cell division (Kemphues et al., 1988). The proper segregation of PAR proteins at 

the anterior and posterior domains initiates asymmetry. Mutations in those genes produce 

many overlapping phenotypes, characterized by defects in membrane cleavage, cell cycle 

timing, and failure to properly segregate cell fate determinants. The homologs of PARs have 

been shown to perform similar roles in Drosophila and mammals, suggesting its universal 

requirement for the polarization process.  

1.3.1 The PAR protein family 

PAR proteins are required for two basic features of cell polarity: The asymmetric positioning 

of the mitotic spindle, which allows asymmetric cell division, and the asymmetric distribution 

of proteins and RNA for the specification of cell fates. Overall six genes encoding PAR 

proteins have been identified until now in C. elegans. PAR-1 and PAR-4 are serine-threonine 

kinases. PAR-5 is a member of the 14-3-3 family, and binds to phosphorylated serines and 

threonines. PAR-2 contains a RING finger domain. PAR-3 and PAR-6 contain PDZ domains, 
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and, therefore, are suggested to act as scaffold proteins. The asymmetric distribution of these 

proteins in an embryo is critical for controlling cell polarity.  

 

 
Figure 2: Image represents the localization of the PAR proteins after the establishment phase. 

Left side is an anterior pole of an embryo while the right side represents the posterior pole. 

PAR-4 and PAR-5 are found to be present throughout the cortex and the cytoplasm.  

1.3.2 Polarity establishment in C. elegans 

Polarization is subdivided into two distinct phases: establishment and maintenance. The C. 

elegans oocyte does not have a predetermined polarity.  The C. elegans germ line is syncytial 

with germcell maturing along the distal to the proximal axis of the gonad (Hubbard et al., 

2007). In the distal-most part, termed the proliferative zone, somatic DTC provides the stem 

cell like niche to maintain population of the mitotic cells while the cells towards the proximal 

region enter into meiosis (Joshi et al., 2010). The oocyte is ovulated from the proximal gonad. 

The development of an embryo starts when mature oocyte arrested in prophase of meiosis I 

gets fertilized as they pass through spermatheca to the uterus. This arrangement leads to the 

entry of sperm on the proximal side of the mature oocyte and the distal displacement of the 

oocyte pronucleus. Following fertilization the maternal genome is segregated by two rounds of 

meiosis and the maternally produced polar bodies are extruded opposite to the sperm entry 

position. Before the establishment of polarity, anterior PAR proteins occupy the whole cortex, 

while posterior PAR proteins are mostly in the cytoplasm. The sperm provides a microtubule-

organizing center (MTOC) and a male pronucleus to the existing egg and the position of the 

sperm pronucleus determines the posterior pole in the one-cell embryo (Goldstein and Hird, 

1996). At fertilization, the sperm MTOC provides a cue that excludes anterior PAR proteins 

from the cortex of the posterior pole; as a result, posterior PAR proteins accumulate at the 
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posterior, thus initiating polarity establishment in the embryo. The nature of the initiating 

stimulus provided by the sperm MTOC is not completely understood, however, the weakening 

of actomyosin contractility at the posterior cortex is proposed to be a mechanism to initiate 

polarity. The break triggers a large-scale movement of the contractile actomyosin cortex, 

generating cortical flows towards the anterior, which further results in regression of the 

anterior PAR proteins toward the anterior side and concomitantly, the appearance of the 

posterior PAR proteins at the posterior cortex (Cowan and Hyman, 2004b; Cuenca et al., 

2003; Munro et al., 2004).  

 

 
 

Figure 3: Image representing the different stages of polarity establishment.  

(A) Before fertilization, the embryo exhibits uniform cortical ruffling. (B) Centrosomal cue 

bought by sperm causes destabilization of the actomyosin network at the posterior pole and 

results in the smoothening of the posterior end. (C) It generates the actomyosin flows towards 

anterior and the actomyosin network recedes from the posterior along with the anterior PAR 

proteins, PAR-3 and PAR-6 (D) The maternal pronucleus starts migrating towards posterior 

pole and the PAR-2 domain expands at posterior, which in turn recruits PAR-1 (E) Pseudo 

cleavage relaxes, pronuclei meet, and (F) move to the center of the embryo while microtubules 

form extensive cortical contacts. (G) Anaphase and (H) first asymmetrical cell division. Figure 

is adapted from the home page of the Wang lab, 

http://wanglab.lassp.cornell.edu/?page_id=210. 

 

The anterior PAR-3, PAR-6 and aPKC proteins are positioned by a flow of actomyosin from 

the posterior (Cuenca et al., 2003; Etemad-Moghadam et al., 1995; Hung and Kemphues, 

1999; Tabuse et al., 1998; Watts et al., 1996) whereas PAR-1 and PAR-2 localize to the 

posterior pole (Figure 2) ((Boyd et al., 1996; Cuenca et al., 2003; Guo and Kemphues, 1996). 
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Both sets of proteins are then associated with the cortex, a thin contractile layer under the cell 

membrane composed of actin polymers crosslinked by the contractile protein myosin. 

However PAR-4 and PAR-5 are uniformly present at the cortex and in the cytoplasm (Figure 

2) (Morton et al., 2002; Watts et al., 2000). Mutations in PAR genes disrupt their own 

asymmetry as well as many of the other developmental features mentioned above.  

 

Recent studies have suggested another mechanism of polarity establishment, which relies on 

the initial enhancement of PAR-2, rather than depletion of anterior PAR proteins from the 

posterior cortex. According to these studies, partial depletion of ect-2 or mlc-4 eliminated 

cortical contractility and cortical flows but still PAR polarity was established, which was 

mediated by PAR-2. PAR-2-mediated partially redundant pathway exists to initiate polarity 

when the actomyosin network is compromised (Zonies et al., 2010). In this mechanism, PAR-

2 binds to microtubules, and a high microtubule density near the cortex protects PAR-2 from 

phosphorylation by aPKC. This results in the initial recruitment of a few PAR-2 molecules to 

the cortex, and then additional recruitment facilitated by some positive feedback. PAR-2 then 

recruits PAR-1, which phosphorylates PAR-3. Phosphorylation results in the exclusion of 

PAR-3/aPKC complex from the cortex and expanding of PAR-1/PAR-2 domain. Late cortical 

flow displaces anterior PAR proteins from the posterior. Mutations in PAR-2 that affects 

microtubule-binding region delay PAR-2 loading by 30 s, presumably the time required for 

cortical flows to remove PKC-3. It is suggested that the primary function of the PAR-2 

feedback loop is to maintain sufficient PAR-1 on the posterior cortex to ensure permanent 

exclusion of anterior PARs. PAR-2 dependent pathway might not be essential under normal 

circumstances where the cortical levels of anterior PAR proteins are already biased by the 

flows, which provides rapid and efficient response, further suggesting that PAR-2 and 

microtubules provides secondary mechanism to ensure polarization of the embryo (Cowan and 

Hyman, 2004b; Tsai and Ahringer, 2007; Sonneville and Gonczy, 2004). Once established, the 

anterior PAR proteins prevent the posterior PAR proteins from localizing anteriorly, and vice 

versa, which is termed as a maintenance phase. The maintenance phase is characterized by 

maintaining polarity due to mutual inhibition of anterior and posterior PAR proteins. The main 

component that is reported to play a role in this phase is PAR-2. PAR-2 on posterior pole 

restricts the PAR-6 to the anterior cortex by mutual exclusion. This is further been validated 
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by the fact that in par-2 mutant embryos, cortical PAR-6 can occupy the entire circumference 

of an embryo (Munro et al., 2004). CDC-42, a small G protein has been shown to be an 

important component as well. Cdc-42 is shown to interact with PAR-6 in the yeast two-hybrid 

assay and it has been theorized that CDC-42 may modulate the actomyosin network during the 

maintenance phase by preventing the flow of NMY-2 towards the posterior (reviewed in 

Munro and Bowerman, 2009; Willis et al., 2006; Marston and Goldstein, 2006). However, the 

precise mechanism by which this mutual exclusion is established and maintained is not fully 

understood.   

 

Figure 4: Image represents the schematic model proposed for the PAR-2 dependent 

microtubule-dependent polarization process for the establishment of the polarity.  

Adapted from the paper (Motegi et al., 2011). 

1.4 The role of actin during cell polarization 

Extracellular or endogenous signals induce reorganization of the actin cytoskeleton, which 

leads to polarized cell morphology, and polarized distribution of downstream molecules. The 

actin cytoskeleton is a highly dynamic meshwork that provides mechanical support (Pollard 

and Borisy, 2003) and facilitates movement of molecules and organelles within the cell. 

Bundling of parallel actin filaments into cables stabilized by tropomyosins serves as tracks for 

myosin-V-mediated transport of vesicles, an essential process for cell polarization (Bretscher, 

2003). The assembly of actin filaments and myosin into contractile filaments provides the 

force for cortical contraction and hence any change in the acto-myosin network could change 

the contractile properties of the cortex. The modulation of contractility is crucial in polarity 

establishment in C. elegans embryos. Cell polarization relies on the cue of the symmetry-

breaking event to induce a reorganization of the actin cytoskeleton, leading to polarized 
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cellular domains and an asymmetric distribution of cytoskeletal function. Prior to polarization, 

the entire cortex undergoes uniform contractions. After polarization, half the cortex is 

contractile and the other half is noncontractile, which involves the change in its structural 

properties. Initial observations suggesting that the actin cytoskeleton is involved in 

establishing or maintaining asymmetry in the one-cell embryo were based on observations that 

the usage of F-actin inhibitors such as Latrunculin A and cytochalasin D leads to loss of 

polarity (Velarde et al., 2007). Other supporting evidence were that many other actin binding 

genes nmy-2, mlc-4 and pfn-1 also disrupt polarity (Velarde et al., 2007).  

1.4.1 Contractile polarity 

Another manifestation of anterior-posterior polarity is the establishment of “contractile 

polarity”. At the end of meiosis, small transient cortical ruffles can be seen over the entire 

cortex. (Figure 3 A&B). Imaging studies using non-muscle myosin II heavy chain (NMY-2) 

fused to GFP revealed that initially a uniform contractile meshwork is formed. The ruffling 

ceases in the area where the centrosome became juxtaposed to the posterior cortex (Cheeks et 

al., 2004; Cowan and Hyman, 2004b; Cuenca et al., 2003; Munro et al., 2004) which is 

evident from the disassembly of the contractile meshwork in close vicinity to the posterior 

nucleus/centrosome complex (Munro et al., 2004). This depends on the regulated activity of 

the small GTPase Rho (RHO-1) (Motegi and Sugimoto, 2006; Schonegg and Hyman, 2006). 

RHO-1 is activated by the activator guanine nucleotide exchange factor (GEF), ECT-2, and 

inactivated by the GTPase-activating protein (GAPs), RGA-3 and RGA-4 (Schonegg and 

Hyman, 2006). The asymmetry in contractile polarity is initiated by removing ECT-2 from the 

site of polarity establishment (Motegi and Sugimoto, 2006). RGA-3 and RGA-4 localises to 

the small cortical region in proximity to the pronucleus–centrosome complex (Jenkins et al., 

2006), which results in the easing of contractions. The smooth cortical domain expands 

towards the anterior until approximately half the embryo is occupied: RHO-1 and ECT-2 

follow the boundary of the shrinking contractile domain (Motegi and Sugimoto, 2006). This 

causes local weakening of the cortex and generation of the flow of the cytoplasm away from 

regions of low tension thus creating a tension gradient that propagates through the domain. 

The acto-myosin network, contractility, and the anterior PAR complex proceed to shrink in a 

coordinated manner until they occupy half of the embryo. A constriction called the 
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pseudocleavage furrow separates the smooth posterior domain from the anterior domain, 

which remains contractile (Figure 3D) (Hirsh and Vanderslice, 1976; Strome, 1986). At this 

time, the maternal pronucleus migrates toward the paternal pronucleus. The pseudocleavage 

furrow relaxes as the pronuclei meet in the posterior half of the embryo.  

  
 

Figure 5: Schematic representation suggesting the movement of cortical acto-myosin flows 

away from the sperm MTOC towards anterior during the establishment of asymmetries.  

The right panel shows the significant change in the structure of acto-myosin cytoskeleton 

during the establishment phase. The figure is adapted from the paper (Munro et al., 2004).  

1.4.2 Cytoplasmic flows 

Coincident with the establishment of contractile polarity, large cytoplasmic rearrangements 

are observed. A flow of cortical yolk granules begins at the posterior pole and moves along the 

cortex to the pseudocleavage furrow. Cytoplasmic flow directed to the posterior pole 

replenishes the yolk material that had moved away along the cortex previously (Cheeks et al., 

2004; Golden, 2000; Hird and White, 1993). It helps with the distribution of cell fate 

determinants as well as organelles. Cytoplasmic flow is absent in embryos with abolished 

cortical contractions (Cuenca et al., 2003; Guo and Kemphues, 1996; Hird and White, 1993; 

Rappleye et al., 1999; Severson et al., 2002), indicating that acto-myosin contractility is 

implicated in generating cytoplasmic flows. The PAR proteins were shown to influence 
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cytoplasmic flows (Cheeks et al., 2004; Munro et al., 2004). In all par mutants, except par-2, 

the flows were abolished. However, how the PAR proteins achieve this mechanistically is not 

clear. 

1.4.3 Asymmetric cell division 

The pronuclei after meeting move together toward the middle and undergo rotation, such that 

the centrosomes orient themselves along the antero-posterior polarity axis (Figure 3F). In 

metaphase, the spindle is displaced towards the posterior of the embryo, giving rise to two 

daughter cells of different size called asymmetric cell division (Figure 3G&H) (McNally et al., 

2010). Each AB and P1 decendents have distinct fates giving rise to different parts of the adult 

worm. During the second round of mitosis, AB and P1 divide at a different time, with the 

larger anterior AB cell dividing before the smaller posterior P1 cell, and their division axes are 

perpendicular to each other. 

1.4.4 Relationship between contractile polarity and PAR polarity 

The establishment of the contractile and the PAR domains correlates temporally and spatially. 

Various studies in the past (Cuenca et al., 2003; Munro et al., 2004) (Figure 3B), have 

suggested that one of the major mechanisms that exists for the establishment of PAR polarity 

depends on cortical actomyosin. Indeed, disruption of the acto-myosin cytoskeleton resulted in 

the loss of cortical contractility and mislocalization of the PAR proteins (Cuenca et al., 2003; 

Guo and Kemphues, 1996; Hill and Strome, 1990; Severson and Bowerman, 2003; Shelton et 

al., 1999). Depletion of myosin regulatory light chain (MLC-4) reduced the movement of both 

proteins and the flow of yolk granules to a similar extent and suggested that the anterior PAR 

proteins are transported somehow by the acto-myosin cytoskeleton to the anterior (Munro et 

al., 2004). However, the anteriorly-directed movements of NMY-2::GFP are nearly abolished 

in embryos lacking par-3, par-4, par-5 or par-6 function. 

1.5 PAR-5 and polarity 

As mentioned above, among the PAR proteins, PAR-3–PAR-6–aPKC complex localizes to the 

anterior embryonic cortex while PAR-1 and PAR-2 occupy the posterior part. The two 

domains do not intermix and are mutually exclusive. PAR-4 and PAR-5 remain symmetrically 
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localized throughout the first embryonic division and are both cortical and cytoplasmic. One 

of the less well-understood PAR proteins is PAR-5. PAR-5 is a 14-3-3 protein and thus a 

member of a protein family that is known to regulate numerous cellular processes. 14-3-3 

proteins are an evolutionarily conserved family implicated in diverse cellular processes, such 

as apoptosis or cell cycle regulation, and are associated with pathologies such as cancer (Fig. 

1A) (Porter et al., 2006; Tzivion et al., 2006). They bind mainly to serine phosphorylated 

motifs of other proteins and regulate their subcellular localizations, stability or activity. In 

mammals, there are seven 14-3-3 proteins corresponding to the isoforms encoded by 

individual genes (designated β, γ, ε, η, σ, τ or ζ). This redundancy has hindered the study of 

their cellular functions, and there is still little knowledge about the consequences of 14-3-3 

misfunction at the organism level (Porter et al., 2006). C. elegans has two genes encoding 14-

3-3 proteins, PAR-5 (also named FTT-1) and FTT-2. Both these proteins share 86% of the 

amino acid sequence identity. Despite this high identity, the expression pattern is distinct 

because only PAR-5 is expressed in the germline and one cell embryo (Wang and Shakes, 

1997; Morton et al., 2002).  

14-3-3

Metabolism

Cell Cycle

Apoptosis

Intracellular Trafficking Signal Transduction

 
 

Figure 6: The schematics represent the different mode of action of 14-3-3 proteins and its 

known role in different biological processes.  

 

In C. elegans, PAR-5 is associated with cell cycle control, DNA damage response, 

chromosome stability, nuclear export, and endocytosis. However, the role of PAR-5 in polarity 

is still not very clear. PAR-5 is required for the asymmetric localization of all the PAR 

proteins (except PAR-4). This has placed PAR-5 upstream of all other par genes. Animals 

homozygous for hypomorphic mutations in the 14-3-3 isoform encoded by par-5 are viable 

but give rise to progeny with highly penetrant defects in the polarization of the A-P axis 
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(Morton et al., 2002). The mutants of par-5 show an overlapping of PAR-3 and PAR-2 

cortical domains, suggesting its role in maintaining the distinct domains (Morton et al., 2002) 

(Cuenca et al., 2003). Though the exact mechanism of mutual exclusion mediated by PAR-5 is 

not clear, some mechanistic details could be extrapolated from studies in Drosophila, which 

suggest phosphorylation-mediated exclusion by PAR-5. In this system, the phosphorylation of 

PAR-1 by aPKC permits binding of 14-3-3, which both inhibits the PAR-1 kinase activity and 

blocks membrane binding (Hurov et al., 2004). Conversely, PAR-1 present at the lateral cortex 

of neuroblasts can phosphorylate any PAR-3 protein that diffuses down into its region. The 

phosphorylated PAR-3 binds PAR-5 and is released from the cell cortex, thereby preventing 

the spread of PAR-3 into the lateral domain occupied by PAR-1.  

 

 
 

Figure 7: Schematic representing the role of C. elegans 14-3-3/PAR-5 in the various 

developmental process of a one cell embryo. 

 

PAR-5 is also believed to be a negative regulator of contractile polarity. In par-5 mutant 

embryos, the cortical flows are compromised and they show hypercontractility, a phenotype 

that is not common among other polarity-defective mutants; therefore, the hypercontractility 

cannot be a consequence of the polarity defect. Depletion of PAR-5/14-3-3 by RNAi results in 

multiple furrows and increased contractility during both pseudocleavage and cytokinesis in 

one-cell C. elegans embryos (Morton et al., 2002). Its role in contractile polarity and PAR 

polarity has placed PAR-5 upstream of other PAR proteins.  

 

We began our work by characterizing the targets of PAR-5 important for contractile polarity, 

to understand the mechanistic detail by which PAR-5 regulates polarity. To identify the 
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interactors, we performed glutathione S-transferase pull-down assays with a PAR-5 fusion 

protein followed by LC-MS/MS (Figure 8). This approach allowed the identification of 535 

unique C. elegans PAR-5 protein interactors. We compared these with the proteins that were 

pulled down as 14-3-3 interactors in Drosophila and human cells and found 20 proteins 

common to all three systems. To functionally validate the interactors, we performed an RNAi-

based screen to determine if any of the identified interactors could modulate the change in 

acto-myosin contractility, by acquiring time-lapse movies of pseudocleavage in wild-type and 

par-5(RNAi) embryos. By assessing the stability and persistence of the pseudocleavage 

furrow (Result section-6.1), we found that knockdown of the actin binding proteins CAP-1 

and CAP-2 (a protein found in our pull down) resulted in embryos that exhibited decreased 

cortical contractility and produced a less stable pseudocleavage furrow in otherwise 

hypercontractile par-5 mutants. As the actin cytoskeleton typically mediates the cortical 

organization of PAR proteins, we hypothesized that CAP may control C. elegans embryonic 

polarity through its role in modulating actin cytoskeleton, in a PAR-5 dependent or 

independent manner. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Schematic representing the protocol used for the extraction of protein from the total 

population of the worms for the Mass spectrometry analysis along with the suitable negative 

control.  
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C.#elegans#gene Human#Ortholog Drosophila#ortholog GO:#Biological#Process
pas:7 PSMA3 #Prosalpha7 proteolysis
cap:2 CAPZB #cpb cellular#process;#cellular#component#organization
pyp:1 PPA2 #Nurf:38 polyphosphate#catabolic#process
eef:2 EEF2 Ef2b translation;regulation#of#translation
atp:2 ATP5B ATPsyn:beta respiratory#electron#transport#chain;#purine#nucleobase#metabolic#process;cation#transport
pbs:3 PSMB3 #Prosbeta3 proteolysis
tag:320 PDIA6 #CaBP1 protein#folding;cellular#protein#modification#process
pdi:2 P4HB prtp protein#folding;cellular#protein#modification#process
rpt:1 PSMC2 Rpt1 proteolysis
rpt:5 PSMC3 Rpt5 proteolysis
rpn:2 PSMD1 Rpn2 proteolysis;cell#cycle;regulation#of#catalytic#activity
pas:1 PSMA6 Prosalpha1 proteolysis
tsn:1 SND1 Tudor:SN transcription#from#RNA#polymerase#II#promoter
rack:1 GNB2L1 #Rack1 cellular#process;protein#targeting
ech:6 ECHS1 CG6543 coenzyme#metabolism;#vitamin#biosynthesis;#carbohydrate#metabolism;#fatty#acid#beta:oxidation
rpl:6 RPL6 RpL6 translation
rab:11.1 RAB11B #Rip11 protein#transport,#small#GTPase#mediated#signal#transduction
cdc:48.1 VCP TER94 ER:associated#misfolded#protein#catabolic#process,#embryogenesis
got:1.2 GOT1 Cat biosynthetic#process,#cellular#amino#acid#metabolic#process
eef:1B.1 EEF1D Ef1beta translation#elongation

 

Table 1: Table representing the 20 common interactors of 14-3-3 that were pulled down in the 

MS analysis of three different model organisms.  

1.6 Properties of actin cytoskeleton and its regulation by actin- 

binding proteins 

Actin is one of the most abundant and evolutionary conserved proteins in cells. It exists as a 

globular monomer called G-actin and as a filamentous helical polymer called F-actin, which is 

a linear chain of G-actin subunits (Unlu et al., 2014). The actin filament is a polar structure 

and is formed by head to tail polymerization of G-actin (Alberts et al., Molecular Biology of 

the cell, 4th edition). Dynamic microfilament reorganization is essential for various 

developmental stages of first cell C. elegans embryo (Ganguly et al., 2011). Actin filament 

length can be influenced by a number of actin-binding proteins that serve as nucleators, actin-

severing proteins or actin-capping proteins (Pollard and Borisy, 2003; Pollard and Cooper, 

2009). In mammalian cells, actin nucleators initiate new actin filaments (Firat-Karalar and 

Welch, 2011). Actin filament growth starts with the formation of an actin dimer, a step, which 

is extremely unfavorable (Pollard and Cooper, 1986; Pollard, 1986). The addition of a third 

actin monomer to form a trimer makes the complex more stable, and trimer formation allows 

subsequent binding of additional actin monomers leading to an elongating filament.  
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Regulation of the nucleation step is critical for controlling the initiation of actin 

polymerization and involves several regulators including the Arp2/3 complex and profilin 

(Cooper and Schafer, 2000). Each monomer binds an ATP molecule that is hydrolyzed 

following polymerization. This creates polarity in the actin filament. The “new” (barbed) end 

contains ATP-bound monomers, the neighboring part of the filament is composed of 

monomers containing ADP and unreleased phosphate (ADP-Pi) and the “old” end or pointed 

end contains ADP-bound monomers from which the phosphate has been released. Actin 

monomers assemble much more rapidly at the barbed end, compared to the pointed end. Many 

proteins bind to actin filaments and influence the dynamics or state. Various nucleation-

promoting factors, including junction-mediating and regulatory protein JMY (Sun et al., 

2011), N-WASP (Yi et al., 2011) and WAVE2 (Sun et al., 2011), activate the Arp2/3 complex 

and help to form new branched actin filaments (Pasic et al., 2008; Dominguez, 2009). In 

addition to actin nucleators, other actin-binding proteins cap, depolymerize, elongate and 

bundle actin filaments, and are therefore crucial for actin dynamics in various cell types 

(Pollard and Cooper, 2009). Capping proteins (e.g. CAPZ, gelsolin) for instance bind to the 

barbed end and prevent further elongation (Jo et al., 2015). Severing proteins (e.g. 

ADF/cofilin) cause fragmentation of actin filaments. Crosslinking proteins (e.g. α-actinin, 

fimbrin) and bundling proteins (e.g villin) organize actin filaments into parallel bundles or into 

branched networks, depending on the cellular context (Pollard et al., 2000; Revenu et al., 

2004). This indicates the importance of various actin-binding proteins in Arp2/3-mediated 

actin reorganization. 

1.6.1 Capping protein: a highly conserved heterodimer and regulator of the 

actin cytoskeleton 

One of the crucial regulators of the actin cytoskeleton behaviour is a heterodimeric CAP 

protein, composed of the α- subunit of 32–36 kDa and a β- subunit of 28–32 kDa (Eckert et 

al., 2012). CAP protein is found in nearly all eukaryotic organisms, where the structure and 

amino acid sequence of actin are evolutionary conserved. α- and β- subunits are extensively 

intertwined in a mushroom-shaped structure and the heterodimer acts as a single protein in 

terms of its physical properties (Cooper et al., 2008). In vitro, CAP binds to barbed ends of F-

actin with 1:1 stoichiometry, with an affinity in the subnanomolar range and thus stabilize the 
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filament by blocking the addition and loss of actin subunits. In the sarcomere of striated 

muscle cells, CAP is an essential component of the Z-disk (leading to its other name CapZ), 

where it caps the barbed ends of actin-based thin filaments (Edwards et al., 2014). In non-

muscle cells, CAP is important for the assembly of cortical actin and for cases of actin-based 

motility, such as the formation of membrane protrusions at the leading edge of migrating cells 

(Cossart el., 2000).   

Structural and biochemical studies have led to a capping model in which CAP interacts with 

the barbed end through two main surfaces (Kim et al., 2010). The top surface of the 

mushroom-shaped CAP heterodimer is proposed to interact at the interface between the two 

terminal actin subunits of the barbed end, while another surface comprised of the C-terminal 

of the β-subunit, known as the β-tentacle binds to the last actin subunit of the F-actin filament 

(Valladares et al., 2010; Cooper et al., 2008; Edwards et al., 2014).  

 

CAP is required for the ARP2/3 complex-mediated assembly of dendritic actin filament 

networks, as shown by in vitro and in vivo studies (Wear et al., 2004). According to this 

model, nucleator complex ARP2/3 first results in the generation of a branched filament by 

forming the new daughter filaments on the sides of mother filaments (Wear et al., 2004; 

Volkmann et al., 2014). The new filaments grow for a while before getting capped by CAP 

protein. This model points out that the main function of F- actin capping is to ensure that the 

contractile network consist of short filaments with a high density of branches, which in turn 

could provide the mechanical stiffness to the membrane (Edwards et al., 2014). Thus, CAP 

protein indirectly controls branch density (Edwards et al., 2014). Furthermore, another 

proposed role for capping is to prevent the growth of non-productive barbed ends and, in turn, 

maintain the available pool of actin subunits for filament elongation at productive locations 

(Dominguez et al., 2009; Edwards et al., 2014). 

 

Various biochemical and cellular experiments have shown that capping protein is essential for 

various actin-mediated processes such as cell shape and cell migration (Fan et al., 2011; 

Mejillano et al., 2004; Pappas et al., 2008). The knockdown of capping protein in hippocampal 

neurons impairs dendritic spine formation and alters the morphology of dendritic spines (Fan 



 

17 

et al., 2011). In Drosophila, CAP is important for development and morphogenesis, loss-of-

function mutations in the ß subunit are lethal at an early larval stage (Hopmann et al., 1996; 

Ogienko et al., 2013). Reducing the function of CAP function, in the Drosophila bristles, 

results in the disorganization of the actin bundles with the development of the bristles with an 

abnormal shape (Frank et al., 2006). In mammalian cells, CAP depletion leads to the explosive 

formation of filopodia, rather than lamellipodia (Mejillano et al., 2004). These results 

highlight the importance and varied functions of this protein in the formation of actin-based 

structures and in actin filament dynamics.  

 

 

Figure 9: Proposed mechanism of the actin-binding protein and their structural representation. 

A) The left side represents the schematics of the binding of CAP protein to the barbed end of 

the F-actin, which in turn prevents the addition and loss of actin monomers. Right side depicts 

the situation when the CAP protein is removed from the barbed end, which results in the 

further addition of G-actin to the filament. 

B) Structural representation of the interaction of CAP protein to the F-actin through two 

different surfaces. This figure is adapted from the paper of (Pollard and Cooper, 2009). 

 

Not many studies have been done regarding the role of CAP proteins in C. elegans. In C. 

elegans, capping protein is encoded by the genes cap-1 (α subunit) and cap-2 (β subunit). In 

A                                                                                       B 
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the germline, partial depletion of CAP proteins dramatically increased the apparent level of F-

actin in wild-type animals, where the F-actin lining the rachis of the gonad was thickened and 

ruffled. In addition to its role in the actin cytoskeleton, CAP-1 and CAP-2 were found to be 

the homologs of two dynactin complex components in C. elegans, where dynactin is a multi-

subunit complex required for dynein function and enhancement of dynein processivity along 

microtubules. CAP-2 was shown to have a role in pronuclear migration (Le Bot et al., 2003). 

Recently it had been shown that actin capping protein is a novel regulator of MT stability that 

functions by antagonizing formin mDIa1 activity toward actin filaments, which in turn 

enhances its activity towards MT in NIH3T3 cells (Bartolini et al., 2012). Another study in 

developing axons suggested that β subunit of CAP protein could interact with microtubules 

and regulate growth cone morphology and neurite outgrowth (Davis et al., 2009). Since it was 

shown earlier that in C. elegans, CAP-2 has a role in a number of microtubule dependent 

events (Le Bot et al., 2003), there might be a possibility that CAP-2 could be mediating the 

cross talk between actin and the microtubule cytoskeleton in the C. elegans embryos. As 

mentioned previously, microtubules can stimulate the self-organization of PAR proteins that is 

independent of actin dynamics, there is an interesting possibility that CAP proteins could be 

mediating the cross talk between two pathways to ensure the polarization process to be robust.   

1.7 Hypothesis 

We hypothesize that Capping proteins are involved in regulating the acto-myosin contractility 

in C. elegans 

1.8 Aim 

In order to understand polarity establishment in the C. elegans embryo, it is important to 

understand the interplay between the acto-myosin cytoskeleton and the polarity markers, the 

PAR proteins. We started this work with an aim to identify novel genes with an essential role 

in the first cell cycle of the C. elegans embryo. From a large amount of data generated in GST 

pull down assays, candidate genes were selected for a detailed analysis based using functional 

assay. We identified CAP-2 with a potential role in contractile polarity in the C. elegans 

embryo. We decided to pursue our work further with the CAP proteins, since the regulation of 
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actin filaments is particularly important for its dynamic assembly that could control acto-

myosin contractility. For that, actin needs to be accurately incorporated with proper 

orientations and uniform lengths. Actin filament dynamics must be differentially controlled to 

support rapid actin reorganization and turnover during polarization process by an actin-

regulatory system. The idea is that the termination of actin elongation by capping protein 

could be playing an essential role in Arp2/3-driven actin dynamics during polarization 

process. However, the role of capping protein in the asymmetrical division and more 

specifically into the polarization process of C. elegans embryos is not known. Thus, the 

detailed understanding of the actin regulatory proteins, such as CAP could be important in 

investigating the basic mechanism of contractile polarity.  

 

The objective of this thesis was to address several questions concerning the biological role of 

the CAP proteins in the early C. elegans embryo, and more specifically which process is 

disturbed by RNAi depletion of CAP-1 and CAP-2. What are the molecular functions of CAP 

protein at the one-cell stage? Does CAP protein modulate microtubule dependent events, as 

would be predicted from the published data available with the studies in other model systems? 

And furthermore, if their function is linked to controlling the acto-myosin and microtubule 

networks in the embryo, how can they be integrated into the known regulatory network 

governing polarity and asymmetric cell division? 
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2. Materials and Methods 

2.1 Worm strains and Growth 

C. elegans strains were maintained on Nematode Growth Medium (NGM) agar plates and 

grown on a lawn of E. coli strain OP50 as a food source as described (Brenner, 1974). NGM 

agar was prepared by autoclaving 3% (w/v) NaCl, 2.5% (w/v) peptone, 1.7% (w/v) agar and 5 

µg/ml cholesterol in 390 ml H2O, along with CaCl2 and MgSO4 to a final concentration of 1 

mM and potassium phosphate buffer (KPO4, pH 6.0) to a final concentration of 25 mM. NGM 

agar was seeded with 0.1 ml OP50 liquid culture and incubated overnight at the room 

temperature to allow growth and the plates were then stored at 4°C NGM agar plates. Every 

alternative day, 3 to 5 adult hermaphrodites are transferred to a new feeding plate for its 

maintenance. All the experiments are performed at 20°C. 

 

The following strains were used for the experiments: N2 [wild-type, Bristol]; TH120 

(mCherry–PAR-6 and GFP–PAR-2); JJ1473 (NMY-2–GFP; (Nance et al., 2003)). N2 was 

maintained at 20°C and GFP and m-Cherry transgenic strains were maintained at 25°C to 

optimize transgene expression. 

2.1.1 Freezing and recovery of C. elegans stocks 

A plate containing freshly starved animals, with lots of L1 and L2 larvae was washed off with 

0.1 M NaCl in a small volume and transferred to a freezing vial with 85% glycerol and NaCl 

in an equal volume. The vial was placed in -80°C freezer for its storage (Brenner, 1974). For 

the recovery of frozen worms, one vial of the frozen worm stock was removed from the 

freezing vial and placed on a fresh feeding plate on room temperature, until it gets dried and 

then were stocked at the respective temperature, suitable for its growth. After 2 to 5 days, 

thawed worms were recovered and transferred to a fresh feeding plate.  
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2.2 RNA-mediated interference (RNAi) by feeding 

Feeding double stranded RNA expressing bacteria to C. elegans is a commonly used method 

to induce RNAi: A fragment corresponding to the gene of interest is inserted into the feeding 

vector (L4440) via TA cloning between two T7 promoters in an inverted orientation. The 

vector is transformed into E. coli strain (HT115(DE3)), having IPTG based inducible 

expression of T7 polymerase (Kamath and Ahringer, 2003) (Timmons and Fire, 1998). 

Bacterial strains that we have used in our experiments to inactivate the gene of interest were 

obtained from the library designed by the Ahringer lab (Fraser et al., 2000). Bacteria 

containing a plasmid with DNA from the candidate gene were streaked out on LB plates with 

50µg/ml ampicillin. A single colony was inoculated into 5 ml LB media with 50µg/ml 

ampicillin and was allowed to grow overnight on shaking condition. The plasmid was 

extracted, following day and the sequence of the insert was validated by sequencing using the 

L4440 seq primer at our genomics platform at IRIC. 

 

For preparation of the plates, RNAi feeding bacteria were inoculated in an over night culture 

(1 ml LB + 50µg/ml ampicillin) at 37°C with shaking overnight. These cultures were diluted 

1:100 in 1 mL LB/amp and were grown for three hours before being seeded onto nematode 

growth plates supplemented with carbenicillin and IPTG for induction to produce double-

stranded RNA (Kamath et al., 2001). The plates were then allowed to dry room temperature 

over night. The plates were then seeded with L4-stage hermaphrodites and incubated at 20°C, 

depending on the experiment for 24 hours (Arur et al., 2009). The L4440 RNAi vector alone 

was used as a control. 

2.3 Microscopy  

DIC or fluorescence microscopy was performed using established protocols (Sulston et al., 

1983). Gravid hermaphrodites were transferred to a drop of egg buffer on a depression slide 

and dissected by a surgical blade to release the embryos. Embryos were collected by the 

pasteur pipette bulb coupled to the capillary and were then added to freshly made 2% agarose 

pads on slides. The slide was then covered with the coverslip along with a drop of egg buffer 
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to prevent the slides from drying out during imaging, and the coverslip was sealed with liquid 

Vaseline.  

 

Alternatively, for experiments with NMY-2::GFP strain, the coverslip was coated with 20 µl 

of 0.01% poly-L-lysine solution. Worms were dissected in 10 µl of egg buffer and embryos 

were pressed gently onto the sticky poly-L-lysine coat using an eyelash glued to a toothpick. 

On a glass slide, the coverslip was inverted to create an imaging chamber. 

2.3.1 Image acquisition 

Intensity measurement of the cortical NMY-2::GFP and the velocity of the flows were 

measured using Swept Confocal microsocopy. Images were acquired on a Nikon SFC 

microscope (Nikon and Prairie Technologies, Madison, WI, USA) using the 45 µm pinhole 

setting. Samples were illuminated with 488 nm, 10–30% power and fluorescent light was 

collected by a 100×/1.4 NA Plan-Apochromat objective to acquire 16 confocal sections 

(separated by 0.5 µm) at 10 second intervals. Time-lapse Differential Interference Contrast 

(DIC) microscopy was done using Zeiss Axioimager microscope, using 63×/1.4 oil Plan 

Apochromat objective. For time-lapse experiments, to answer the questions about the 

pseudocleavage furrow stability, images were captured at 5 second intervals. To look at the 

localization of PAR proteins, the time lapse movies were taken at the interval of 10 seconds. 

The establishment and maintenance phase measurements were taken during the stable period 

between the end of nuclear envelope breakdown and anaphase onset. All images were taken at 

the embryo midplane defined as the focal plane with a maximum cross-sectional area. Image 

analysis was performed using ImageJ software.  

2.4 Image analysis 

2.4.1  Calculation of pseudocleavage furrow position 

 The position of pseudocleavage furrow was measured as a distance along the long axis of the 

embryo. The distance was standardized to the total length of the embryo and was expressed as 

a percentage of embryo length. 0% indicates posterior pole. 
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2.4.2 Counting of NMY-2::GFP foci  and its velocity 

To count the cortical NMY-2::GFP foci, we have used the method described by Xiong et al., 

2011. The cytoplasmic background fluorescence was removed from the images using the 

ImageJ plug-in ‘Subtract Background’ (with a ‘Rolling ball radius’ at 50.0 pixels for 

NMY::GFP) before converting the processed images into binary images. Subsequently the 

binary images were used for counting of the cortical NMY-2::GFP foci using the ImageJ plug-

in ‘Analyze Particles’ (Figure 12A). 

 

To measure the velocity of the NMY-2 foci, Image J software was used. Three kymographs 

were generated using a line tool for each embryo. The line was drawn from the anterior to the 

posterior pole of the embryos and the line was positioned on each side and one in the center of 

the embryo (Figure 11A). Ten most posterior foci present in these kymographs were used for 

quantitation. The velocity of flows was calculated by reporting the distance traveled by these 

foci over time. 

2.4.3 Quantifying the size of PAR-2 and PAR-6 cortical domains 

To measure the PAR-2 and PAR-6 domain, during establishment and maintenance phase, 

ImageJ software was used with a method already established in the lab (Chartier et al., 2011). 

A 10 pixel-thick line was drawn on the whole perimeter of the embryos, using free line tool 

and the corresponding mean fluorescence intensity profiles were plotted. The mean 

fluorescence intensity values were interpolated as the percentage of the total perimeter for 

each embryo. In all cases 0% = anterior pole and 100% = posterior pole. Intensities were 

represented as the percentage of maximum intensity along the perimeter. The length of 

domains was calculated as the length of embryo perimeter with intensity values superior to a 

70% threshold.  

2.4.4 Calculation of male pronuclear migration distance 

Male pronuclear migration distance was measured at pronuclear meeting and when their 

adjacent membranes form a straight line, using the line tool in Image J. To calculate the 
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distance, we divided the distance travelled by male pronucleus from the adjacent membrane to 

the tip of the pronuclear membrane divided by the total length of an embryo.
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3. Results 

3.1 CAP proteins regulates the stability of the pseudocleavage 

furrow ingression 

In wild-type one-celled embryos a constriction of the cortex named the pseudocleavage begins 

approximately 200 seconds before pronuclear meeting and recedes by the time of pronuclear 

meeting. In the embryos, depleted of CAP by RNAi, the pseudocleavage relaxed much earlier 

compared to the control embryos (Figure 10A). In embryos depleted of CAP-1, 

pseudocleavage relaxed 40 seconds earlier, while in CAP-2 depleted embryos, pseudocleavage 

relaxed approximately 45 seconds earlier as measured as the duration between pronuclear 

meeting to the pseudocleavage relaxation, compared to WT (Figure 10A and Table 2). We 

even measured the depth of the pseudocleavage ingression, where we found that in wild-type 

embryos, the average size of the maximal ingression was approximately 40% of the total 

embryo width, while in the mutants the depth of the pseudocleavage furrow ingression was 

reduced, with cap-1 (RNAi) showed the maximal constriction of 20% and cap-2 (RNAi) 

showed the maximal constriction of 22% respectively (Figure 10B).  Together these results 

suggested that the depletion of CAP proteins affected the stability of the furrow in the one-

celled embryos.  

%furrow ingression= a-b/a*100 % 

A                                                                                                                  B 
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Figure 10: CAP is required for the stability of pseudeocleavage furrow and the postion of the 

pseudocleavage furrow.  

A) A representative image suggesting that the cap-2 (RNAi) embryos have less stable 

pseudocleavage furrow compared to the controls. The image is taken at the time of maximal 

pseudocleavage constriction.  

B) Graph representing the average pseudo-cleavage width relative to the average width of the 

one-cell embryo in control and cap-1 (RNAi) and cap-2 (RNAi) embryos. In all panels error 

bars represent SD with significance of p < 0.05. 

The placement of the PSCF was affected, where in control embryos, PSCF were placed at 

placed at 49 ± 2% (n=8) of embryo length away from the posterior pole. However in cap-1 

(RNAi) embryos, PSCF moves 43 ± 1.7% (n=10) and in cap-2 (RNAi) embryos, PCSF moved 

44 ± 1.9% of embryo length away from the posterior pole (Table 2).  

 

 

Table 2: Table representing the quantification of phenotypes after cap-1 and cap-2 (RNAi) on 

various aspect of the pseudocleavage furrow.  

3.2 CAP-2 may regulate the acto-myosin cytoskeleton during 

polarity establishment. 

To investigate in more detail the requirement of CAP protein in cortical contractility, a 

transgenic strain expressing NMY-2::GFP was used to monitor the organization and dynamics 

of myosin by time-lapse microscopy. In early control embryos, NMY-2::GFP forms first a 

dynamic network throughout the entire cortex consisting of foci clusters interconnected by 

small filaments (Figure 5 and Figure 11A). As mentioned before, in close vicinity to the 

posterior cortex and from the cue delivered by the male pronuclei, the NMY-2::GFP network 

begins to disassemble and coincidently segregates towards the anterior half (Munro et al., 
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2004). During this process, the NMY-2::GFP foci clusters become concentrated into an 

anterior cap, while the posterior half becomes devoid of detectable NMY-2::GFP foci. 

   
 

Figure 11: Velocity of the acto-myosin flows are reduced in the CAP-2 depleted embryos.  

A) Kymographs were generated by drawing the line from anterior to posterior axis to measure 

the velocity of the flows.  

B) Quantification of the velocities ± SD of NMY-2::GFP foci calculated from kymographs at 

the posterior of wild-type (5.2 ± 1.6 µm/min, n = 8), cap-1 (RNAi) (4.8 ± 06 µm/min, n = 7, 

N.S), and cap-2 (RNAi) (4.2 ± 1.6 µm/min, n = 7, P<0.05) embryos. Ten individual foci were 

quantified per embryo. 

C) Representative epifluorescent images along the anteroposterior axis. 

 

We observed that reducing the function of CAP-2 by RNAi altered the NMY-2::GFP 

organization, where the number of foci in the early embryos were fewer compared to WT (as 

evident from the representative image, Figure 11C) as well as the NMY-2::GFP foci appeared 

smaller in cap-2 (RNAi) (not quantified) (Figure 11C). CAP-2 had an average of 29 foci 

A                                                          B 

C 
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compared to 45 in wildtype (Figure 12B). Moreover on measuring the velocity of the NMY-

2::GFP flows, we observed that these foci segregated to the anterior pole at a slower rate 

(average velocity 4.2 µm/min, n=7) in a cap-2 (RNAi) embryo compated to WT (5.2 µm/min, 

n=8) (Figure 11B). However no significant defect was observed in the velocity or an  

organization of NMY-2, on depletion of CAP-1 protein.  

 

 

 

 

 

 

 

Figure 12:  Number of acto-myosin focis are reduced in CAP-2 depleted embyros. 

A) Schematic representation of the method used to count the foci using Image J software by 

applying an appropriate threshold.  

B) Quantification of the number of NMY-2 GFP foci calculated using Image J, with wild type 

embryos had an average of 45 foci, cap-1 (RNAi) (39 foci, NS) while cap-2 (RNAi) (29 foci, 

P=0.05). 

 

Together with the changed number of large NMY-2::GFP puncta, and the slower dynamics of 

anterior movement of NMY-2::GFP to the anterior, these results suggest that CAP-2 may 

regulate the acto-myosin cytoskeleton during polarity establishment. 

3.3 Depletion of CAP-2 mildly affects the size of PAR-2 domain 

The movement of NMY-2 to the anterior pole recruits the anterior PAR proteins towards 

anterior (Munro et al., 2004). Therefore, changes in NMY-2 and actin dynamics could alter the 

establishment of anterior/posterior polarity through the PARs. Upon recruitment by NMY-2, 

PAR-6 becomes enriched at the cortex in the anterior half of the embryo and disappears from 

A                                                                                   B 
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the posterior half by the time of pronuclear meeting. To investigate whether the reduced 

contractile activity affects PAR localization in cap-1 and cap-2 (RNAi) embryos, time-lapse 

images of GFP::PAR-2 and mcherry::PAR-6 were made, with measurements taken at the 

establishment phase and maintenance phase (Figure 13A).  

Embryos depleted of both CAP-1 and CAP-2 by RNAi exhibited mildly smaller PAR-2 

posterior domain of approximately 42% embryo length, n=5 compared to the wildtype with 

the 49% of embryo length during the establishment phase (Figure 13B, right panel). The PAR-

2 domain size was found to be further corrected and repositioned to wild type animals to 

match the site of cell division during the maintenance phase (Figure 13B, right panel). 

However we have not measured the rate at which PAR-2 expanded during division, or if the 

smaller size of the PAR-2 domain during establishment phase corresponds with the decreased 

velocity of NMY-2. Neverthless the analysis of cap (RNAi) embryos suggests that both CAP-

1 and CAP-2 is required in some way to establish the boundary between the posterior and the 

anterior PAR domains. We show that CAP-1 behaved similarly to CAP-2 with respect to its 

effect on the domain size, but only CAP-2 has the effect on the flows. It is possible that both 

CAP-1 and CAP-2 could be involved in the mechanism of polarity establishment, which is 

independent to its role in the cortical flows. 

 

 

A 



 

30 

 
 

Figure 13: Size of PAR-2 domain is mildly decreased by the depletion of CAP proteins. 

A) Schematic representation of the method used to quantify the PAR-2 and PAR-6 domains 

and the right panels shows the time at when the quantifications were made. 

B) Quantification of the mean percentage ± SD of cortical perimeter occupied by 70% of the 

maximal PAR-2::GFP and PAR-6::mcherry intensity. ‘E’ and ‘M’ represents establishement 

and Maintenance phase respectively. *p < 0.05 (Student's t test).  

 

Moreover, when maternal expression of CAP-1 and CAP-2 was inhibited by the feeding RNAi 

method, the 40% and 70% of embryos did not hatch respectively, indicating that these genes 

are essential for embryonic development.  

3.4 Events in the zygote thought to depend on microtubules are 

delayed by the loss of CAP-2 protein. 

We found a couple of papers in the literature suggesting that CAP-2 could influence the 

microtubule cytoskeleton as it has been shown in the flies and in mice (Bartolini et al., 2012; 

Davis et al., 2009). To further validate that, we looked at the early zygotic events which are 

thought to be dependent on microtubules.  

 

As mentioned previously, in the one cell embryos of the wild-type animals, the male 

pronucleus localizes to the posterior end, whereas the female pronucleus from the opposite 

side migrates toward the male pronucleus (Fig. 3D, E). The male pronucleus simultaneously 

begins a migration towards the anterior pole to meet the female pronucleus. It has been 
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previously demonstrated that the movements of the nucleus depend on the length of astral 

microtubules (Tsai and Ahringer, 2007). Any defect in the distance traveled by the male 

pronucleus, relative to the posterior membrane would suggest microtubule defects. In control 

embryos, the male and female pronuclei meet at the posterior, at approximately 70% of the 

emrbyo length (Figure 14A&B). In cap-2 (RNAi) embryos, the migration of the female 

pronucleus occurred normally towards posterior pole (Figure 14A&B). However, the male 

pronucleus showed a varied change in the distance of migration from the posterior cortex 

towards anterior. This was observed in approximately 30% of the cap-2 (RNAi) embryos and 

the effect was not fully penetrant. Such defects have been reported before for mutants in genes 

such as dynein, which is the minus-end directed microtubule motor, where the migrations of 

both the pronuclei were affected (O'Connell et al., 2000;  Schmidt et al., 2005). 

 

 

 

 

 

 

  

Figure 14: Migration of the male pronuclei is affected in CAP-2 depleted embryos. 

A) DIC images of one-cell embryos for control and cap-2 (RNAi) are shown at the stage of 

the pronuclear meeting. The female and male pronuclei are marked by f and m, respectively. 

Blue bar indicates the total distance between anterior and posterior pole while the red bars 

indicate the distance of male pronuclear migration away from the posterior pole.  

B) Graph representing the quantification of the male pronuclear migration distance relative to 

the total length of the one-cell embryo at the pronuclear meeting. Error bars indicate SD; 

P=0.01.  

 

Male and female pronuclei from posterior pole, then travel together to the center of the one-

cell embryo, in a process known as centration. Simultaneously, the pronuclei undergo a 

rotation along the anterior-posterior axis that permits the first cell division to be asymmetrical  

A                                                                                         B 
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(White and Strome, 1996). These events of centration and rotation have been demonstrated 

before to be dependent on the astral microtubules, that extends from the centrosome and 

interact with motors at the cortex (Cowan and Hyman, 2004b) along with GOA-1/GPA-1 

function and NMY-2 (Goulding et al., 2007). Any change in the length and the stability of 

microtubules could affect the nuclear centrosomal rotation.  

 

To further analyze the function of CAP-2 in the nuclear centrosomal rotation, we investigated 

the phenotypes of cap-2 (RNAi) embryos using DIC microscopy. In wild-type embryos, 

during the pronuclear centrosomal rotation, both the pronuclei rotated and aligned to 90 

degrees along the anteroposterior axis, in a way that the first division is asymmetrical in nature 

(Figure 15, left panel). However in the CAP-2 depleted embryos, the pronuclei moved to the 

center of the embryo but had significant defects in the angle of rotation (Fig.15 A and B). Four 

out of six embryos, failed to fully rotate during the time of centration and in those embryos, 

the rotation was delayed and occurred simultaneously with nuclear envelope breakdown. 

 

After NEBD, we even observed a significant defect in the assembly of the bipolar spindle in 

one cell embryo, where a few of the CAP depleted embryos showed smaller and misaligned 

spindle (Figure 16A). Few had a defect in the oscillatory properties of the spindle (data not 

shown). In addition, 2/10 cap-2 (RNAi) embryos often had multiple female pronuclei 

indicating defects of meiotic divisions.  

 

 

Figure 15: Pronuclear centration/rotation is affected in CAP-2 depleted embryos. 

A) DIC images of one-cell embryos are shown at the stage of pronuclear centration/rotation.  

B) In wild-type embryos, during the pronuclear centration, pronuclei rotated and aligned to 90 

degrees for the anterior posterior placement of the spindle. In contrast, the pronuclear rotation 

A                                                                                      B 



 

33 

was found to be unsynchronised with pronuclear centration in cap-2 (RNAi) embryos. The 

arrowmark represents the angle alignment of pronuclear midplane relative to the A/P axis. 

 

We even observed the significant delay in the cell cycle of CAP-2 depleted embryos compared 

to wild type. In the wild type embryos, centration occurs by 140 s after pronuclear meeting 

and the nuclear-centrosomal rotation began as soon as the both pronuclei met, while in CAP-2 

depleted  embryos centration occurs on average 400s later and the nuclear-centrosomal 

rotation often occurred after centration (Figure 16B). In wild type embryos, Nuclear envelope 

breakdown (NEBD), usually occurs within 110 seconds of centration. However in CAP-2 

depleted embryos, the nucelar-centrosomal rotation was accompanied by NEBD (Figure 16B). 

The time taken for the first furrow cleavage to take place was delayed by apporximately 110 

seconds in CAP-2 depleted embryos compared to WT. We observed the symmetrical 

placement of the cleavage in 1/6 of the observed CAP-2 depleted embryos.  

 

 
 

Figure 16: Defect in the size of the bipolar spindles and the developmental timing were 

observed in CAP-2 depleted embryos compared to wild type.  

A) DIC image of the one cell embryo representing the size of the bipolar spindle.  

B) The average time lapse between the developmental events is indicated in seconds. The 

timing of the following developmental events was determined at 22 °C: from pronuclear 

meeting (PNM) to nuclear-centrosomal rotation onto the anterior/posterior axis (NC Rotation), 

from PNM to pronuclear centration, from centration to nuclear envelope breakdown (NEBD) 

and from NEBD to completion of cytokinesis of the one-cell embryo. 
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These observed phenotypes which are defects in the pronuclear migration, delayed centration 

and nuclear-centrosomal rotation, defects in the oscillatory features and the size of the bipolar 

spindles and the defect in oocyte meiosis give the preliminary hint that CAP-2 is required for 

microtubule-mediated events.  However, these phenotypes do not necessarily separate it from 

its link to the actin cytoskeleton and thus future direct experiments will be needed to answer if 

the CAP-2 regulates microtubule cytoskeleton, independently of its well-established role in F- 

actin stabilization. 

 

S 

 

 

 

 

 

 

B 



 

35 

4. Discussion 
In this study, we have used the C. elegans one cell embryos to understand the role of CAP 

proteins in C. elegans polarization process. We found that CAP-2 plays a role in the various 

early developmental processes of an embryo, namely cortical contractility, polarity 

establishment, nuclear migrations and cell cycle progression. These findings are compatible 

with a role for CAP-2 in the regulation of both the actin and microtubule cytoskeletons. 

4.1 CAP-2 and contractility 

Here we report that CAP-2 depleted embryos showed decreased stability of the 

pseudocleavage furrow. Moreover, there is a significant delay in the clearing of the 

actomyosin contractility from the posterior zone suggesting that CAP-2 contributes to the 

dynamics of actomyosin contractility. However CAP-1, another CAP protein though had an 

effect on the stabilization of the pseudocleavage furrow but had no significant effect on the 

velocity of the flows. This observation could be explained by two possibilities: 1) Since, in all 

our experiments, we have used RNAi feeding method to deplete the protein, it is possible that 

the depletion of CAP-1 by RNAi was not efficient to produce the phenotype as we have not 

measured the amount of protein depleted in our worms after the knockdown. This possibility 

could be addressed by measuring the amount of protein by blotting against anti-CAP-1 after 

the knockdown procedure. 2) Another intriguing possibility is that even though CAP-1 and 

CAP-2 are obligate heterodimers (Pollard and Cooper, 2009), CAP-2 has a role independent of 

CAP-1 in regulating acto-myosin contractility. This theory could be supported by various 

facts, such as only knockdown of CAP-2 is lethal in fly embryos and not CAP-1 and we had 

only found CAP-2 in our screen. However, this possibility could be addressed by depleting 

both proteins by injecting double stranded RNA in mothers. Any additional effect imparted by 

CAP-1 can be addressed by looking at the additional modulation of the phenotypes associated 

with the various events. This will even help to address the fact that we have observed mild 

defects using feeding method. Many people in the past have reported that capping proteins 

bind and stabilize the barbed plus end of actin finalemts, regulating the rate of assembly and 

disassembly and this depends on the critical concentration of G-actin at any given time (Gil-

Krzewska et al., 2010). According to this mechanism, when the concentration of G-actin 
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levels are low, depletion or removal of CAP protein should result in the reduction of F-actin 

levels and when G-actin levels are high, depletion of CAP protein is expected to increase F-

actin levels (Gil-Krzewska et al., 2010). In this paper, when CAP proteins were depleted using 

RNAi, animals show severe ruffling and thickening of the rachis in the C. elegans gonad, 

which suggests increased contractility. However many studies in the past using different 

model organisms have given a hint about decreased contractility on the loss of CAP proteins. 

Since CAP proteins were proposed to play a dual role, one intriguing possibility is that the 

critical concentration of G actin is low in the one cell embryo and hence depleting the CAP 

proteins is resulting in the severing of the F-actin filaments in C. elegans, which in turn 

reduces contractility by reducing the stiffness of the membrane. This hypothesis could be 

addressed by measuring the concentration of G/F actin in the one-celled embryos.  

4.2 CAP-2 and polarity establishment 

We report the mild decrease in the size of the PAR-2 domain upon depletion of CAP proteins 

at establishment phase, which was corrected during maintenance phase. This correction could 

be dependent on CDC-42 mediated late flows, as have been reported previously in the 

literature or it is because of the activation of the PAR-2 mediated symmetry breaking 

mechanism that is dependent on the microtubules. According to (Motegi et al., 2011), the 

strain in which cortical flows are abolished, ect-2 (ax751), could still establish polarity, 

through the microtubule organizing center (MTOC) and the establishment of polarity through 

contractility independent pathway is delayed relatively compared to the wild type. We have 

not yet measured if the delayed expansion of the PAR boundaries coincides with the decreased 

velocity of the cortical flows. The later experiment could address a very interesting question 

and the second hypothesis of our project, whether CAP proteins regulate the polarity 

establishment which is dependent on microtubules and PAR-2.  However, only a very mild 

effect on the size of the domain might be possible due to the fact that the depletion of CAP 

protein is not sufficient enough to see the effect. This experiment will have to be repeated after 

injecting the mothers with the double stranded RNA and by taking the movies from the 

beginning of the flows to the end of the establishment phase. 
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4.3 CAP-2 and microtubule cytoskeleton 

Many events that have been reported previously to be dependent on the microtubules are 

affected by the loss of CAP-2. However, it often becomes difficult to separate the role of both 

actin and microtubule cytoskeletons due to their remarkable connections in various events. It 

has been shown before that the migration distance of male pronuclei from the posterior 

membrane is solely dependent on the microtubules, which were affected by the loss of CAP-2 

(Tsai and Ahringer, 2007). We have performed the simultaneous experiment with the small 

number of CAP-1 depleted embryos (results not shown), but we did not find any significant 

effect of CAP-1 on these events. This might suggest that CAP-2 only has role on microtubule 

cytoskeleton and not CAP-1. This is further supported by two papers available in the 

literature : (Bartolini et al., 2012) have reported that capping protein promote stability of 

microtubules by antagonizing the function of mDIa1 in flies, while (Davis et al., 2009) 

showed that ß-tubulin binds to Capzb2 and this decreases the rate and extent of tubulin 

polymerization in vivo. However further direct experiments will be needed to validate our 

hypothesis if CAP-2 has a role in the microtubule dependent polarization pathway in the C. 

elegans embryo. One intriguing possibility is that this is the conserved property of other actin 

binding proteins as well, as it has been shown before that Arp-2/3, an actin nucleator that has a 

role in nuclear migrations (Xiong et al., 2011). We know that microtubule dependent 

machinery for the polarity establishment is the redundant mechanism available in the embryos. 

Modulating the activity of the conserved actin binding proteins might be responsible for the 

activation of the redundant mechanism for the polarity establishment. It will be interesting to 

see if the mechanism remains conserved in other organisms such as flies and humans for 

polarity establishment, considering the fact that polarity establishment mechanism is highly 

conserved and so are the actin binding proteins such as CAP-2. 

4.4 CAP-2 and PAR-5 

We had found CAP-2 protein as an interactor of PAR-5/14-3-3 in our pull down. This 

interaction was found to be common in three different model systems including flies and 

HEK-293 cells. However, we have not yet validated this interaction using other means such as 

immuno precipitation experiments. A 14-3-3 binding motif was found to be present on the 
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CAP-2 protein at a low stringency using scansite. Does PAR-5 regulate CAP-2, and, in turn, 

cross-talk between actin and the microtubule cytoskeleton  for the establishment of the 

polarity is a very interesting question? Though the role of PAR-5 in regulating the acto-

myosin cortex is already established but this could explore the possible role of PAR-5 in 

regulating microtubule cytoskeleton. Keeping in consideration that 3 out of 6 PAR proteins are 

kinases, it is a question worthwhile to explore. It will be even interesting to address the 

upstream regulators of this pathway as well.  
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Conclusions and Future perspectives 
We conclude that CAP-2 plays a role in the acto-myosin contractility in the one cell embryo of 

C. elegans, as evident from its effect on pseudocleavage relaxation and the reduced velocity of 

the myosin flows during the polarization phase. We have picked up the hint that CAP-2 could 

be playing a role in the establishment of polarity in the one-celled embryos. These 

observations in C. elegans coincide with the known role of CAP in regulating the acto-myosin 

contractility in other organisms. However to the best of our knowledge, we are the first to 

show the role of CAP proteins in the polarity establishment of C. elegans embryos. Another 

interesting possibility that we have touched upon is the role of CAP-2 in regulating the 

microtubule cytoskeleton. We have got this preliminary hint from the fact that some of the 

events that are presumed to be dependent on the microtubules are affected by the depletion of 

CAP-2 along with the cell cycle. Our results confirm the role of CAP-2 in the regulation of 

actin cytoskeleton and the possible role of CAP-2 in the regulation of microtubule 

cytoskeleton.   

 

In the future, to address if CAP-2 has role in the microtubule polymerization and/or 

stabilization, independent of its role in F- actin stabilization, we would like to perform more 

direct assays. One of the ways would be to use the GFP::ß-tubulin strain and to check whether 

depletion of CAP-2 has any effect on the centrosomal microtubule density and their 

organization in cap-2 RNAi embryos compared to WT. This would be measured by 

quantifying the size of the area of high MT accumulation around the centrosomes by taking Z-

stacks at the time of the pronuclear meeting.  

 

To answer if CAP-2 regulates the redundant mechanism for symmetry breaking, which is 

dependent on microtubules and PAR-2, we would deplete CAP-2 in mCherry::PAR-6; 

GFP::PAR-2; ect-2(ax751) strain. This strain has been shown before to have no acto-myosin 

flows (Motegi et al., 2011), where the polarization is established by an expansion of PAR-2 

domain, a mechanism dependent on its interaction with microtubules. To answer this question, 

we would observe if the loading of PAR-2 is modulated in this strain on depletion of CAP-2 

compared to controls. We will look at the dynamics of PAR-2 loading at the microtubule-
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dense core of the MTOC and whether PAR-2 domain correlates with the site of MTOC/cortex 

contact. If CAP-2 depletion would interfere with microtubule nucleation, than we could expect 

the zygotes with variation in the size of PAR-2 domain along with the variation in the 

dynamics of loading in the mCherry::PAR-6; GFP::PAR-2; ect-2(ax751) strain compared to 

controls. Another question that we would like to address is if CAP-2 directly interacts with 

microtubules. To answer that we would use the more direct approach such as microtubules 

sedimentation assay. 

 

To understand the mechanism of CAP-2 in regulating the acto-myosin contractility in the one-

celled embryos, we would like to perform laser ablation experiment in WT and CAP-2 

depleted embryos and we will observe the rate of addition of actin monomers to the filament. 

This would give us approximate idea of the critical concentration of G-actin and henceforth 

mechanism of CAP proteins in regulating the acto-myosin contractility. 

 

In our screen, we have identified more than 500 proteins, as interactors of PAR-5. It would be 

worthwhile to perform functional assays for their additional role in the polarization process.  
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