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RÉSUMÉ

Une approche classique pour traiter les problèmes d’optimisation avec incertitude à

deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de

certaines données du problème est modélisée par vecteurs aléatoires avec des supports

finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En uti-

lisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes)

du problème original. Comme technique de décomposition par scénario, l’algorithme de

recouvrement progressif est une des méthodes les plus populaires pour résoudre les pro-

blèmes de programmation stochastique multi-étapes. Malgré la décomposition complète

par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à cer-

tains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation

du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix

du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires,

et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus

de l’algorithme. Des expériences numériques sur des exemples de problèmes stochas-

tiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent

présenter une convergence prématurée à une solution sous-optimale ou converger vers la

solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît

robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a

été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme

quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée

de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste en-

core à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés

numériques et théoriques de la méthode de recouvrement progressif.

Mots clés: programmation stochastique, programmation multi-étapes, lagran-

gien augmenté, méthodes proximales, paramètre de pénalisation, terme quadra-

tique, programmation élastique.



ABSTRACT

In the literature of optimization problems under uncertainty a common approach of

dealing with two- and multi-stage problems is to use scenario analysis. To do so, the

uncertainty of some data in the problem is modeled by stage specific random vectors

with finite supports. Each realization is called a scenario. By using scenarios, it is pos-

sible to study smaller versions (subproblems) of the underlying problem. As a scenario

decomposition technique, the progressive hedging algorithm is one of the most popular

methods in multi-stage stochastic programming problems. In spite of full decomposi-

tion over scenarios, progressive hedging efficiency is greatly sensitive to some practical

aspects, such as the choice of the penalty parameter and handling the quadratic term in

the augmented Lagrangian objective function. For the choice of the penalty parame-

ter, we review some of the popular methods, and design a novel adaptive strategy that

aims to better follow the algorithm process. Numerical experiments on linear multi-

stage stochastic test problems suggest that most of the existing techniques may exhibit

premature convergence to a sub-optimal solution or converge to the optimal solution,

but at a very slow rate. In contrast, the new strategy appears to be robust and efficient,

converging to optimality in all our experiments and being the fastest in most of them.

For the question of handling the quadratic term, we review some existing techniques and

we suggest to replace the quadratic term with a linear one. Although this method has

yet to be tested, we have the intuition that it will reduce some numerical and theoretical

difficulties of progressive hedging in linear problems.

Keywords: stochastic programming, multi-stage programming, scenario analy-

sis, augmented Lagrangian, proximal methods, penalty parameter, quadratic term,

elastic programming.
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CHAPTER 1

INTRODUCTION

Stochastic programming (SP) appeared in early 1950’s [16], following fundamen-

tal achievements in linear and nonlinear programming. After it was realized that the

presence of uncertainty in optimization models creates a need for new problem formu-

lations, many years passed until the formulation and analysis of basic SP models [18].

Optimization problems involving stochastic models occur in almost all areas of science

and engineering, from telecommunication and medicine to finance. This stimulates in-

terest of formulating, analyzing and solving such problems. Today, SP offers a variety

of models to address the presence of random data in optimization problems: for ex-

ample, two- and multi-stage models, chance-constrained models, models involving risk

measures (see e.g. [4, 35, 54]).

The most widely applied and studied SP models are two-stage linear programs. Here

the decision maker takes some action in the first stage, after which a random event oc-

curs affecting the outcome of the first-stage decision. A recourse decision can then be

made in the second stage that compensates for the effects that might have been experi-

enced as a result of the first-stage decision. One natural generalization of the two-stage

model extends it to more stages (multi-stage). In multi-stage problems each stage con-

sists of a decision followed by a set of observations of the uncertain parameters which

are gradually revealed over time (in this thesis, we will focus on two- and multi-stage

problems.)

Although two- and multi-stage stochastic programs are often regarded as the clas-

sical SP modeling paradigm, the discipline of SP has grown and broadened to cover a

wide range of models and solution approaches. An alternative modeling approach uses

so-called chance-constraints. Chance-constrained approach does not require that our de-

cisions are feasible for (almost) every outcome of the random parameters, but requires

feasibility with at least some specified probability. Despite the usefulness of such tech-

niques, we will not consider them in our work, but will focus on recourse formulations.



A way of modeling the uncertain data is to consider some discrete realizations from a

given probability space over time for those data. By using such a method, called scenario

analysis, it is possible to solve and analyze two- and multi-stage SP problems. Due to

the very large size and specific structure of the resulting problems, it is often advisable

to employ decomposition techniques. The main idea is to break large problems into

manageable pieces corresponding to individual scenarios (a scenario is a sequence of

random variables’ realizations), solve them and then come up with a good combined

solution to the underlying large problem. One such method proposed by Rockafellar

and Wets [51] is the progressive hedging algorithm (PHA) which is a proximal point

based algorithm with splitting ability. This method relaxes the nonanticipativity (NA)

constraints by introducing a quadratic penalty term with a nonnegative parameter in

an augmented Lagrangian function. The NA constraints express that at each stage the

decision should depend only on information available at the time of decision making and

not on future information.

While 25 years old, PHA has been widely used in stochastic optimization problems

(see e.g. [14, 26, 29, 42, 61]). Although PHA achieves a full separation of the scenario

problems at each iteration, some practical issues, such as how to handle the quadratic

term numerically/theoretically and also the choice of the penalty parameter, have always

been major challenges for PHA users. In our research, we focus on these issues and try

to suggest some solutions for them. We also aim to modify a stochastic open source

interface, Stochastic Modeling Interface (SMI), in order to have access to the existing

stochastic test problems in a special format (called SMPS format [21]). This way we can

study the effect of our contributions to PHA on those test problems and create a stochas-

tic benchmark tool for scenario decomposition techniques (for further details refer to

Appendix I).

This thesis is organized as follows. We provide a literature review on two- and multi-

stage SP problems, scenario analysis, scenario decomposition with an introduction to

PHA and its theoretical and numerical history in Chapter 2. In this chapter, we also

discuss our research motivations related to the choice of the penalty parameter and the

introduction of a different penalty term. In Chapter 3, we introduce a novel adaptive

2



approach [67]. Finally, we end the thesis with a conclusion and some suggestions for

further research in Chapter 4.
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CHAPTER 2

LITERATURE REVIEW AND RESEARCH MOTIVATIONS

In this chapter, we introduce SP problems as well as two- and multi-stage formula-

tions of such problems. We then present the concept of scenario analysis for modeling

the uncertain data in stochastic problems. Following this, progressive hedging algorithm

as a scenario analysis technique is explained in details. Finally, we discuss motivations

and directions to be taken in this research in the last section of this chapter.

2.1 Mathematical programming

A mathematical program is an optimization problem aiming to maximize or min-

imize an objective function possibly subject to some constraints. Unconstrained opti-

mization problems can be introduced by the following standard form:

min
x∈Rn

f(x),

where f : Rn → R is the objective function. On the other hand, a constrained optimiza-

tion problem can be written as

min
x∈X

f(x) (2.1)

s.t. gi(x) = 0, i ∈ E (2.2)

gi(x) ≤ 0, i ∈ I (2.3)

where gi : Rn → R (i ∈ I ∪ E), I and E are (disjoint) index sets for inequality and

equality constraints, respectively. In addition, X is a subset of Rn and belongs to the

domain of the functions f and gi (i ∈ I ∪ E). X is usually a subset of Rn
+ or Rn. The

relations gi(x) = 0 (i ∈ E) and gi(x) ≤ 0 (i ∈ I) are called equality and inequality

constraints, respectively.



2.2 Stochastic problems

In many optimization problems, there are some data that may be considered uncer-

tain. We here assume that data uncertainty can be represented as a random vector ξ

which is defined on a probability space (Ξ,Ω, Pξ). Here, Ξ is the support of ξ, Ω is a

σ-field 1 of subsets of Ξ, and Pξ is the associated probability distribution/measure.

Considering the general mathematical program (2.1)–(2.3), the functions f and gi,

for i = 1, . . . ,m with m = |E ∪ I| where |E ∪ I| represents the cardinality of E ∪ I, are

not known very accurately, therefore we have

“ min
x∈X

”f(x, ξ) (2.4)

s.t. gi(x, ξ) = 0, i ∈ E , (2.5)

gi(x, ξ) ≤ 0, i ∈ I. (2.6)

If a vector ξ = ξ(ω) is the random vector realization known after the random experiment,

with the vectors ω in Ω, then the above problem can be reformulated as

“ min
x∈X

”f(x, ξ(ω)) (2.7)

s.t. gi(x, ξ(ω)) = 0, i ∈ E , (2.8)

gi(x, ξ(ω)) ≤ 0, i ∈ I. (2.9)

where X ⊆ Rn. An accurate probabilistic description of the random variables should

be available, under the form of probability distributions, densities or, more generally,

probability measures. Here, we assume that the probability distribution/measure P is

given and independent of x, and for all x, f(x, .) : Ξ → R and gi(x, .) : Ξ → R (i =

1, . . . ,m) are random variables too.

Ideally, we look for some x that is feasible while minimizing the objective for all

or for almost all possible values of ω in Ω. So the definition of feasibility depends on

1. A σ-algebra or σ-field over a set X is a nonempty collection Ẋ of subsets of X (including X itself)
that is closed under the complement and countable unions of its members.

5



the problem at hand, in particular whether or not we are able to obtain some informa-

tion about the value of ξ(ω), before choosing x. Similarly, optimality depends on the

uncertainty involved and also on the performance of the objective in (almost) all cases.

Therefore, we cannot solve (2.7)–(2.9) by finding the optimal solution for every possible

value of ω in Ω and we should clarify the meanings of “min” as well as of the constraints

[2, 5].

One possibility is to consider the expectation of the objective function [5], such that

(2.7)–(2.9) can be reformulated as:

min
x∈X

Eξ[f(x, ξ)] (2.10)

s.t. gi(x, ξ) = 0, a.s., i ∈ E , (2.11)

gi(x, ξ) ≤ 0, a.s., i ∈ I. (2.12)

where constraints are satisfied for almost all values of ξ. In probability theory, an event is

said to happen almost surely (a.s.), if it happens with probability one, i.e. if (Ξ,F , P ) is a

probability space, one can say that an event B in F happens almost surely, if P (B) = 1.

2.2.1 Two-stage stochastic program with recourse

One important problem class in SP consists of recourse programs. In this section, we

introduce the two-stage recourse problems, for which the set of decisions is divided into

two groups:

1. A number of decisions that have to be taken before the experiment. All these

decisions are called first-stage decisions and the period when these decisions are

taken is called the first stage.

2. A number of decisions that can be taken after the experiment. They are called

second-stage decisions. The corresponding period is called second stage.

First-stage decisions are represented by vector x1, while second-stage decisions are rep-

resented by vector x2(ξ) or x2(ξ, x1). Then the sequence of events and decisions can be

6



summarized as

x1 → ξ → x2 or x2(ξ, x1)

Therefore, the two-stage problem will be

min
x1∈X

f1(x1) +Q(x1)

s.t. g1,i(x1) = 0, i = 1, . . . ,m1,

g1,i(x1) ≤ 0, i = m1 + 1, . . . ,m1,

(2.13)

with the recourse Q(x1) = Eξ[Q(x1, ξ)] and

Q(x1, ξ) = min
x2

f2(ξ, x2(ξ))

s.t. g2,i(ξ, x1, x2(ξ)) = 0, i = 1, . . . ,m2,

g2,i(ξ, x1, x2(ξ)) ≤ 0, i = m2 + 1, . . . ,m2,

(2.14)

where mt is the number of equality constraints at stage t and mt is the total number of

constraints at stage t.

2.2.2 Multi-stage stochastic programming

Two-stage SP is a special case of a more general SP formulation, called multi-stage

programming. In multi-stage setting, the uncertain data ξ1, ξ2, . . . , ξT is revealed grad-

ually overtime, in T periods (it is usually assumed that the data in first stage is determin-

istic, i.e., ξ1 = ξ1). The decision process can be shown as:

decision(x1)→ observation (ξ2)→ decision (x2)→
· · · → observation (ξT )→ decision(xT ).

To introduce the program, consider the random parameter as a data process:

ξ = (ξ1, ξ2, . . . , ξT ).

7



Then we define

ξ̄t = {ξ1, ξ2, . . . , ξt},

as the history of the random process up to and including stage t, for t = 1, . . . , T . By

ξ̄t = {ξ1, . . . , ξt}.

we present the history of realization for ξ̄t up to and including stage t. ξt is the realization

of random data ξt at stage t. If xt is the decision at stage t, then the decision history up

to and including stage t can be shown as

xt = {x1, . . . , xt}.

for t = 1, . . . , T . At stage t, we know ξ̄t as well as xt−1. So the multi-stage program can

be expressed as follows:

min
x1

f1(x1) + Eξ2 [min
x2

f2(ξ2, x1, x2(ξ1)) + Eξ3|ξ2 [min
x3

f3(ξ3, x2, x3(ξ3)) + · · ·+

EξT |ξ2,...,ξT−1
[min
xT

fT (ξT , xT−1, xT (ξT ))]]] (2.15)

such that

g1,i(x1) = 0, i = 1, . . . ,m1,

g1,i(x1) ≤ 0, i = m1 + 1, . . . ,m1,

gt,i(ξ̄t, x̄t−1(ξ̄t−1), xt(ξt)) = 0, a.s., i = 1, . . . ,mt, t = 2, . . . , T,

gt,i(ξ̄t, x̄t−1(ξ̄t−1), xt(ξt)) ≤ 0, a.s., i = mt + 1, . . . ,mt, t = 2, . . . , T,

xt(ξt) ∈ Xt, t = 1, . . . , T.

(2.16)

where x1(ξ1) = x1, and Xt ⊆ Rnt such that X = {X1, . . . , XT} and n1 + · · ·+nT = n.

8



We rewrite (2.15)–(2.16) as

min
x1∈X1

f1(x1) +
T∑
t=2

Eξ2,...,ξt [Qt(ξt, xt−1, xt(ξt))], (2.17)

where

X1 = {g1,i(x1) = 0, i = 1, . . . ,m1, and g1,i(x1) ≤ 0, i = m1 + 1, . . . ,m1, and x1 ∈ X1},

(2.18)

and

Qt(ξt, xt−1, xt(ξt)) = inf
xt(ξt)∈Xt

{ft(ξ̄t, x̄t−1, xt(ξt)) | gt,i(ξ̄t, x̄t−1, xt(ξt)) = 0,

i = 1, . . . ,mt, and gt,i(ξ̄t, x̄t−1, xt(ξt)) ≤ 0, i = mt + 1, . . . ,mt}. (2.19)

fro t = 2, . . . , T (for more details, we refer to [55]).

2.3 A scenario decomposition technique

In this section, we introduce the concept of scenario analysis as well as all the details

of a scenario decomposition technique – the progressive hedging algorithm – and we

then present all the structures, including uncertainty, forming the basis of this approach.

2.3.1 Scenario analysis

To control or analyze the systems involving some level of uncertainty, scenario

analysis is one of the common practical approaches. In scenario analysis, the uncer-

tainty of parameters or components of the system is modeled by a small number of

subproblems derived from an underlying optimization problem. These subproblems cor-

respond to different “scenarios” [51]. Mathematically speaking, a scenario s is sequence

of outcomes ξt, t = 1, . . . , T , denoted by

s =
(
ξ
(s)
1 , ξ

(s)
2 , . . . , ξ

(s)
T

)
9



associated to a probability Pξ[ξ = s] = ps. Assume that the support set Ξ is finite, then

S = {1, . . . , S} is the set of scenarios.

A tree of scenarios represents the possible outcomes. It has nodes organized in levels

which correspond to stages 1, . . . , T . At level t = 1, there is only the root of the tree,

denoted by Root and it corresponds to the first-stage decisions, made before any realiza-

tion of the random parameters. Each realization of ξt+1, conditional to ξt, is associated

with a node (see for instance [2, 55]).

Figure 2.1 shows a tree which has three stages with Root at the first stage. Then from

stage one to stage two, there are three realizations which generate nodes 2, 3 and 4. At

the last stage, the number of possible realizations depends on the ancestor nodes, and

is 3, 1 and 2 respectively, leading to a total of six nodes. These six nodes correspond

to six scenarios where each is a path from the Root to a leaf. For example, Scenario 1

= {ξ11 , ξ22 , ξ53} is a path containing nodes {1, 2, 5}, Scenario 2 = {ξ11 , ξ22 , ξ63} is a path

containing nodes {1, 2, 6}, . . . , and Scenario 6 = {ξ11 , ξ42 , ξ103 } is a path containing nodes

{1, 4, 10}. Here, we show the realization of the random variables at a specific node nd,

for nd = 1, . . . , 10, of stage t by ξndt .

Using the concept of scenarios, we can reformulate the two-stage stochastic problem

(2.13)-(2.14) as the following:

min
(x

(1)
1 ,...,x

(S)
1 )

S∑
s=1

ps(f1(x
(s)
1 ) + f2(s, x

(s)
1 , x

(s)
2 )) (2.20)

subject to

g1,i(x
(s)
1 ) = 0, i = 1, . . . ,m1, s = 1, . . . , S, (2.21)

g1,i(x
(s)
1 ) ≤ 0, i = m1 + 1, . . . ,m1, s = 1, . . . , S, (2.22)

g2,i(s, x
(s)
1 , x

(s)
2 ) = 0, i = 1, . . . ,m2, s = 1, . . . , S, (2.23)

g2,i(s, x
(s)
1 , x

(s)
2 ) ≤ 0, i = m2 + 1, . . . ,m2, s = 1, . . . , S, (2.24)

x
(s)
t ∈ Xt, t = 1, 2, s = 1, . . . , S, (2.25)

x
(s)
1 is nonanticipative, s = 1, . . . , S. (2.26)

10



Figure 2.1 – Scenario tree with three stages and six scenarios
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Constraints (2.26) are the NA constraints which link the scenarios together. To introduce

the NA concept more precisely, we say that as long as two scenarios share a common

history we should make the same decisions. Therefore, in Figure 2.1 nodes and arcs can

be replicated to show NA. The new graph, shown in Figure 2.2, has the same number of

stages and scenarios as in the scenario tree, but more nodes in the first and the second

stages. This way we emphasize the fact that the scenarios sharing information at each

stage should produce the same decisions. So Figure 2.2 basically shows that:

x
(1)
1 = x

(2)
1 = x

(3)
1 = x

(4)
1 = x

(5)
1 = x

(6)
1 ,

x
(1)
2 = x

(2)
2 = x

(3)
2 , x

(5)
2 = x

(6)
2 .

(2.27)

To introduce a general form of the NA constraints, let τ (s), s = 1, . . . , S−1, be the stage

up to which scenarios s and s + 1 share the same story. Therefore, the NA constraints

can be presented by [2, 55]

x
(s)
t = x

(s+1)
t , t = 1, . . . , τ (s), s = 1, . . . , S − 1. (2.28)

The constraints (2.28) can be rewritten in a compact form of

Nx = 0,

where N is the NA matrix, full-row rank and defined by
I(1) 0 −I(1) 0

I(2) 0 −I(2) 0
. . . . . .

I(S−1) 0 −I(S−1) 0


where I is the identity matrix and

x = (x
(1)
1 , . . . , x

(1)
T , x

(2)
1 , . . . , x

(2)
T , . . . , x

(S)
1 , . . . , x

(S)
T ).

12



Figure 2.2 – Nonaticipativity graph which shows a structure of the scenario tree includ-
ing the NA constraints. At each stage thick lines show the links created among the
scenarios because of the NA constraints; thin lines show the scenario paths; red squares
show the scenarios which share information (nodes); and circles show the nodes. The
number of nodes, at each stage, is multiplied by the number of scenarios that share a
node in the scenario tree. At stage one, there are six nodes, because all 6 scenarios share
the root. At stage two, there are three nodes connecting scenarios 1, 2, and 3, one dis-
connected node for scenario 4, and two nodes connecting scenarios 5 and 6. At the last
stage, all the nodes are disconnected because the scenarios do not share information.

In the next section, we explain a way of formulating the NA constraints which was

introduced by Rockafellar and Wets [51].

Before ending this section, we present a scenario format of the multi-stage prob-

lem (2.17), (2.18) and (2.19). We denote by ξ
(s)

t = {ξ(s)1 , ξ
(s)
2 , . . . , ξ

(s)
t } the vector of

realizations in successive stages, x(s) = (x
(s)
1 , x

(s)
2 , . . . , x

(s)
T ) the vector of decisions in

successive stages and x(s)t = {x(s)1 , x
(s)
2 , . . . , x

(s)
t } the vector of decisions up to and in-

13



cluding stage t, associated to the scenario s for s = 1, . . . , S. Then we have:

min
(x(1),...,x(S))

S∑
s=1

ps

(
f1(x

(s)
1 ) +

T∑
t=2

ft(s, x
(s)
t−1, x

(s)
t )

)
(2.29)

subject to

g1,i(x
(s)
1 ) = 0, i = 1, . . . ,m1, s = 1, . . . , S, (2.30)

g1,i(x
(s)
1 ) ≤ 0, i = m1 + 1, . . . ,m1, s = 1, . . . , S, (2.31)

gt,i

(
s, x

(s)
t−1, x

(s)
t

)
= 0, i = 1, . . . ,mt, t = 2, . . . , T, s = 1, . . . , S, (2.32)

gt,i

(
s, x

(s)
t−1, x

(s)
t

)
≤ 0, i = mt + 1, . . . ,mt, t = 2, . . . , T, s = 1, . . . , S, (2.33)

x
(s)
t ∈ Xt, t = 1, . . . , T, s = 1, . . . , S, (2.34)

x
(s)
t is nonanticipative, t = 1, . . . , T, s = 1, . . . , S. (2.35)

2.3.2 Scenario and solution aggregation

In (2.29), let us define f (s)(x(s)) = f1(x
(s)
1 ) +

∑T
t=2 ft(s, x

(s)
t−1, x

(s)
t ) and X (s) =

{x(s) ∈ Rn | satisfying (2.30) − (2.34)}, s = 1, . . . , S, then we can reformulate the

subproblem associated to scenario s as

(Ps) min
x(s)∈X (s)

f (s)(x(s))

s.t. x(s)t is nonanticipative, t = 1, . . . , T.

According to Rockafellar and Wets [51], one way of expressing the NA constraints is

to use the concept of scenario bundling, i.e. to partition the scenario set S into finitely

many disjoint subsets at each time stage t. A bundle consists of scenarios that are indis-

tinguishable at time t, i.e. S(s)
t =

{
ṡ
∣∣ ξ̄(s)t = ξ̄

(ṡ)
t

}
. If we consider Figure 2.2, then at

first stage we have one single bundle (shown by square 1) which is shared between all

scenarios and also contains all scenarios, i.e.

S(s)
1 = {(1), (2), (3), (4), (5), (6)}, for s = 1, . . . , 6.

14



At the second stage, there are three bundles (shown by squares 2, 3, 4) where each

contains different scenarios as follows:

S(s)
2 = {(1), (2), (3)}, for s = 1, 2, 3,

S(s)
2 = {(4)}, for s = 4,

S(s)
2 = {(5), (6)}, for s = 5, 6.

Finally, stage three contains six bundles (shown by squares 5, 6, 7, 8, 9, 10):

S(s)
3 = {(1)}, for s = 1,

S(s)
3 = {(2)}, for s = 2,

S(s)
3 = {(3)}, for s = 3,

S(s)
3 = {(4)}, for s = 4,

S(s)
3 = {(5)}, for s = 5,

S(s)
3 = {(6)}, for s = 6.

Back to the discussion about the modeling of the NA conditions, we can say that if ṡ

and s̈ are two indistinguishable scenarios from S(s)
t at time t, then x(ṡ)t = x

(s̈)
t . In other

words, x(ṡ)t must be constant for all ṡ ∈ S(s)
t .

Thus from the space of all mappings x : S → Rn, (denoted by D), with components

xt : S → Rnt , n1 + · · ·+ nT = n, a subspace

N = {x ∈ D | xt is constant on each bundle for t = 1, . . . , T},

can be defined by specifying the solutions that meet the NA constraints. Solutions x

belonging to N are called implementable solutions. We should note that there is a dis-

tinction between implementable solutions and admissible solutions, which belong to the

set

L = {x ∈ D | x(s)t ∈ X (s) for all s ∈ S t = 1, . . . , T}.

Now consider the collection of scenario subproblems (Ps) and assume that we can mod-

ify their objectives and generate various solutions x ∈ D. These solutions are called
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contingent, because they are obtained by solving perturbed versions of the scenario sub-

problems. The goal of modifying the objective functions in subproblems is to find an

implementable solution for the underlying stochastic optimization problem.

A contingent solution is at least always admissible: x ∈ L. A solution which is both

admissible and implementable is what it is wished for, i.e. a feasible solution. According

to Rockafellar and Wets [51], a way of finding a feasible solution is to model the NA

constraints first. To do so, they set the value of x(s)t equal to the conditional expectation

over its corresponding bundle at each stage t. In other words,

x
(s)
t = E

[
x
(ṡ)
t

∣∣ ṡ ∈ S(s)
t

]
. (2.36)

The conditional expectation in (2.36) is a “weighted average” of all solutions x(ṡ)t for

scenarios in the bundle S(s)
t , i.e.

E
[
x
(ṡ)
t

∣∣ ṡ ∈ S(s)
t

]
=

∑
ṡ∈S(s)t

pṡx
(ṡ)
t∑

ṡ∈S(s)t
pṡ

= x̂
(s)
t , (2.37)

where we denote the weighted average by x̂(s)t , for t = 1, . . . , T . For example in Figure

2.2, we can define x̂(s)1 as

x̂
(s)
1 =

p1x
(1)
1 + p2x

(2)
1 + p3x

(3)
1 + p4x

(4)
1 + p5x

(5)
1 + p6x

(6)
1

p1 + p2 + p3 + p4 + p5 + p6
,

for s = 1, . . . , 6; x̂(s)2 as

x̂
(s)
2 =

p1x
(1)
2 + p2x

(2)
2 + p3x

(3)
2

p1 + p2 + p3
, s = 1, 2, 3,

x̂
(s)
2 =

p4x
(4)
2

p4
, s = 4,

x̂
(s)
2 =

p5x
(5)
2 + p6x

(6)
2

p5 + p6
, s = 5, 6,
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and x̂(s)3 as

x̂
(s)
3 =

p1x
(1)
3

p1
, s = 1,

x̂
(s)
3 =

p2x
(2)
3

p2
, s = 2,

x̂
(s)
3 =

p3x
(3)
3

p3
, s = 3,

x̂
(s)
3 =

p4x
(4)
3

p4
, s = 4,

x̂
(s)
3 =

p5x
(5)
3

p5
, s = 5,

x̂
(s)
6 =

p6x
(6)
3

p6
, s = 6.

Considering (2.36) and (2.37), the NA constraints can be reformulated as

x
(s)
t = x̂

(s)
t , t = 1, . . . , T. (2.38)

Clearly x̂ is implementable as it satisfies the NA constraints, i.e. x̂ ∈ N . In order to

explain more the logic behind this definition of NA, Rockafellar and Wets [51] intro-

duced two transformations (operators) which we discuss briefly here. The first one is a

transformation

J : x→ x̂ defined by (2.36)− (2.37),

which is linear and satisfies J2 = J (see [51]). J is a projection from D (recall from

page 14 that D is the space of all the solutions defined on the scenario set S) onto N
which depends on the information structure (scenario tree) and weights ps. This operator

is called aggregation operator or conditional expectation operator.

The second operator is

K = I − J, such that for x ∈ D, Kx = x− x̂, (2.39)

which is an orthogonal projection on the subspace of D complementary to N . The new
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subspace can be denoted byM:

M = N⊥ = {λ ∈ D | Jλ = 0} (2.40)

= {λ ∈ D | E
[
λ
(s)
t |S

(s)
t

]
= 0, t = 1, . . . , T}.

Therefore, the NA constraints can be represented by the linear constraint Kx = 0 and

the subspace N as

N = {x ∈ D | Kx = 0} = {x ∈ D | x = x̂}. (2.41)

Now through these notations and definitions, if we rewrite the objective function in

(2.29) as

F (x) =
∑
s∈S

psf
(s)(x(s)), (2.42)

then the problem (2.29)–(2.35) is equivalent to finding a solution to the problem

minF (x) over all x ∈ L ∩N . (2.43)

If the functional F in (2.42) is written as

F (x) = E[f (s)(x(s))], (2.44)

then the problem to be solved has the form

(P) min
x
E[f (s)(x(s))] subject to x ∈ L, Kx = 0. (2.45)

As said before, it is possible to decompose and solve problem (P), if there are no the NA

constraints (Kx = 0). To get rid of the NA constraints, Rockafellar and Wets [51] first

used a Lagrangian method on problem (P). If y ∈ D stands for Lagrange multipliers,
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then the Lagrangian of objective function in (2.45) will look like

F (x) + 〈Kx, y〉D for x ∈ L, y ∈ D, (2.46)

where 〈, 〉D is an inner product on D and defined by

〈x, y〉D := E{〈x(s) · y(s)〉} =
∑
s∈S

p(s)〈x(s) · y(s)〉,

and 〈·〉 is the scalar product on Rn. However, since K is an orthogonal projection then

〈Kx, y〉D = 〈x,Ky〉D = 〈Kx,Ky〉D.

If in (2.46), we replace 〈Kx, y〉D with 〈x,Ky〉D and then denote Ky ∈ M by λ, then

the Lagrangian can be written as

L(x, λ) = F (x) + 〈x, λ〉D for x ∈ L, λ ∈M. (2.47)

The multipliers λ are called information price system. Due to the numerical limitations

of Lagrangian method, Rockafellar and Wets introduced an augmented Lagrangian, with

respect to the NA constraints, to the ordinary Lagrangian (2.47) as

LA(x, λ, ρ) = F (x) + 〈x, λ〉D +
1

2
ρ‖Kx‖2D, for x ∈ L, λ ∈M, ρ > 0, (2.48)

where the norm is defined as ‖x‖D = [E{‖x(s)‖2}]1/2, with ‖ · ‖ being the ordinary

Euclidean norm on Rn, and ρ being a penalty parameter. Therefore, problem (P) to be

solved becomes

min
x
LA(x, λ, ρ) subject to x ∈ L. (2.49)

We note that the augmented Lagrangian function (2.48) cannot be useful directly, be-

cause the presence of the term ‖Kx‖2D makes it impossible to decompose (P) into sub-

problems. However, Rockafellar and Wets [51] suggested to replace Kx by x − x̂ in
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(2.48), and then by fixing x̂, repeatedly solve the program by updating the Lagrange

multipliers vector and the value of x̂ between consecutive solutions. The resulting algo-

rithm is known as progressive hedging algorithm (PHA) and is summarized in the next

section.

2.3.3 Progressive hedging algorithm

By rewriting the objective function in (2.49) as

LA(x, λ, ρ) = E

[
f (s)(x(s)) +

T∑
t=1

(
λ
(s)
t

′
x
(s)
t +

ρ

2

∥∥∥x(s)t − x̂(s)t ∥∥∥2)
]
,

it is possible to decompose LA(x, λ, ρ) into objective functions per scenario. This way

we can present PHA as following.

Step 0. Set x̂(s),0 =
(
x̂
(s),0
1 , . . . , x̂

(s),0
T

)
and k = 0. Choose λ(s),0 = 0, ρ0 > 0.

Step 1. Compute x(s),k+1 = (xs,k+1
1 , . . . , xs,k+1

T ), s = 1, . . . , S, by solving each scenario

subproblem

min
x(s)

f (s)(x(s)) +
T∑
t=1

(
λ
(s)
t

′
x
(s)
t +

ρk

2

∥∥∥x(s)t − x̂(s),kt

∥∥∥2)
s.t. x(s) ∈ X (s).

(2.50)

Step 2. For s = 1, . . . , S, t = 1, . . . , T , set

x̂
(s),k+1
t =

∑
ṡ∈S(s)t

pṡx
(ṡ),k+1
t∑

ṡ∈S(s)t
pṡ

.

Step 3. Set ρk+1 and

λ
(s),k+1
t = λ

(s),k
t + ρk

(
x
(s),k+1
t − x̂(s),k+1

t

)
, t = 1, . . . , T, s ∈ S.

Step 4. Stop if convergence is achieved. Otherwise, set k ← k+ 1 and return to Step 1.
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Several practical issues arise. A first question is the choice of the stopping criteria in

Step 4. Rockafellar and Wets [51] proposed to stop if√∑
s∈S

ps‖x(s),k+1 − x̂(s),k+1‖2 +
∑
s∈S

ps‖x̂(s),k+1 − x̂(s),k‖2 ≤ ε,

or equivalently if √∑
s∈S

ps‖x(s),k+1 − x̂(s),k‖2 ≤ ε, (2.51)

as it can be easily proved (see Appendix II.1) that

∑
s∈S

ps‖x(s),k+1 − x̂(s),k‖2 =
∑
s∈S

ps‖x(s),k+1 − x̂(s),k+1‖2 +
∑
s∈S

ps‖x̂(s),k+1 − x̂(s),k‖2.

(2.52)

A second question concerns the initialization of the primal variables. As discussed

in Chiche [11], Chapter 6, various strategies have been considered but the most popular

is to set x(s),0, s = 1, . . . , S as the solution of the subproblem associated to s, without

the NA constraints:
min
x(s)

f (s)(x(s))

s.t. x(s) ∈ X (s),

and x̂(s),0 is computed using (2.37). dos Santos et al. [59] compared this procedure to

other initializations, but did not find significant improvements.

2.4 Theoretical and numerical history of the progressive hedging algorithm

PHA was first developed for convex stochastic problems with continuous variables.

Rockafellar and Wets [51] provided a proof of convergence to an optimal solution in

convex case, no matter if the subproblems are solved exactly or approximately. They

showed that an optimal solution is reached after a finite number of iterations, or an in-

finite sequence of iterations is produced and all limit points are solutions of the original

problem. They also proved the linear rate of convergence to a global solution in the case

of linear-quadratic stochastic problems. In the nonconvex case, they proved that under
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mild conditions, if the algorithm converges, the limit solution is a locally optimal solu-

tion of the original problem. Later, in the case of stochastic mixed integer programming

(MIP) problems, Løkketangen and Woodruff [42] introduced a new convergence crite-

rion: integer convergence. By this new concept, if the integer components of a solution

are found, they will be fixed and the rest of components are calculated by solving a de-

terministic equivalent problem (DEP) of the stochastic problem. However they did not

provide any proof of convergence. Following the structure of Chiche’s PhD thesis [11],

there are studies which focused on solving the scenario subproblems approximately, such

as the works of Barro and Canestreli [1], Helgason and Wallace [27]. Other studies such

as the works of Fan and Liu [19], dos Santos et al. [59] introduced some strategies to

initialize the primal variables, i.e. x̂. The effect of increasing the number of scenarios

on the number of iterations was studied in different applications by Berland and Haugen

[3], Chun and Robinson [12], Mulvey and Vladimirou [45]. These researchers argued

about the effect of going from linear to nonlinear subproblems on the number of itera-

tions. Mulvey and Vladimirou [45] suggested to set the dual variables, i.e. λ, to a value

other than zero in their specific problem. In order to accelerate the convergence of PHA

in MIP applications, Watson et al. [62] introduced some fixing techniques for integer

variables. In order to decrease the running time of PHA, Carpentier et al. [9], Crainic

et al. [15] proposed some scenario clustering techniques. Because of the special char-

acteristic of PHA, which is solving the subproblems independently at each iteration, it

is possible to use parallelization techniques to speed up the algorithm. Somervell [56]

suggested six ways of parallelizing PHA. Wets [64] discussed the effect of changing the

probabilities of scenarios on the solution returned by PHA. In stochastic MIP problems

there is a risk of non-convergence while using PHA. To deal with this issue, Watson et al.

[62] suggested some heuristics to detect the cyclic behavior and enforce the convergence.

By looking at the literature on PHA, we can see that it has been used as a decompo-

sition technique in a wide range of applications for which we provide a list in Table 2.I.

However, the list is not exhaustive.

Many of these studies have also focused on different aspects of PHA, such as: choices

of the penalty parameter; handling the NA constraints and quadratic term in the objec-
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Application References
Energy production/operation
planning

Carpentier et al. [8], Chiche [11], Gonçalves et al. [23, 24],
Helseth [28], Parriani et al. [48], Reis et al. [50], Ryan et al.
[52], dos Santos et al. [53], Takriti et al. [58], dos Santos
et al. [59], Wu et al. [65], Zéphyr et al. [68]

Logistics and transportation
planning/management

Fan and Liu [19], Hvattum and Løkketangen [29], Listes
and Dekker [40], Perboli et al. [49], Watson et al. [62]

Networks planning Carvalho et al. [10], Crainic et al. [14], Jönsson et al.
[31], Mulvey and Vladimirou [43, 44, 45, 46], Watson
and Woodruff [61]

Production/Operation plan-
ning

Gul [25], Haugen et al. [26], Jonsbråten [30], Jörnsten and
Bjorndal [32], Jörnsten and Leisten [33], Klimeš et al. [37],
Lamghari and Dimitrakopoulos [38], Veliz et al. [60], Zan-
jani et al. [66]

Financial planning Barro and Canestreli [1], Fulga [20]

Table 2.I – Applications of progressive hedging algorithm

tive function; solving subproblems approximately; initialization of primal and dual vari-

ables, i.e. x̂ and λ respectively; handling integer variables by variable fixing techniques;

regrouping/clustering scenarios; parallelization of scenario subproblems; change of sce-

narios’ probabilities; detecting cycles; etc. In addition, most of these researches have

suggested enhancements which are usually problem-dependent.

In this research, we focus on the choice of the penalty parameter and handling the

quadratic term in PHA objective function, thus we provide a comprehensive literature

review on those points. For the rest of challenges associated with PHA, we refer the

interested readers to Chiche [11]. In her PhD thesis, she applied PHA to a large-scale

energy production problem and for that she provided a broad review on almost all the

aspects of PHA.

2.5 Research motivations

In this section, we present the directions of this research as well as our motivations.
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2.5.1 Penalty parameter choices in progressive hedging algorithm

Rockafellar and Wets [51] analyzed PHA and established its convergence with a

constant penalty parameter over the iterations. However, many authors have observed

that in practice, the choice of penalty parameter value will greatly impact the numerical

behavior of the algorithm. Considering the stopping criterion (2.51), Helgason and Wal-

lace [27] commented that the penalty parameter should be as small as possible but large

enough to guarantee the convergence, more specifically to produce a monotone decrease

in the criteria. Mulvey and Vladimirou [44, 45] showed that the overall convergence rate

of PHA is particularly sensitive to the choice of ρ. Small values of the penalty parameter

tend to produce a fast initial progress in primal sequence {x̂k} with a slower progress in

dual space, i.e. the sequence {λk}, while large values lead to an opposite behavior. They

first suggested to consider a larger penalty parameter when the NA constraints are more

restrictive, and introduced the idea to dynamically update the parameter, increasing the

value over PHA iterations. However, they also noticed that a sudden increase in penalty

parameter can drive the algorithm toward ill-conditioning or a suboptimal solution, sug-

gesting to increase the penalty parameter smoothly. They also proposed to implement a

sudden reduction to improve the convergence in primal space, if the dual convergence is

already achieved. Chun and Robinson [12] used two predefined values: they initialized

the parameter with a large value and then changed it to a small value, if there was enough

improvement in the dual sequence. Jonsbråten [30] decided to maintain the penalty pa-

rameter to zero, and defined a dynamically updated step size to compute the Lagrange

multipliers. Some authors considered the possibility to use different penalty parameters,

depending on the affected variables. In particular, Somervell [56] suggested to use pre-

defined fixed bundle-stage wise values, while Watson et al. [62] proposed to set penalty

parameters proportionally to the cost coefficient in the objective function, when dealing

with linear functions. Fan and Liu [19], inspired by Chun and Robinson [12] and Watson

et al. [62], explored the use of two fixed values and cost-proportional values.

Following the idea of dynamic update, Reis et al. [50] decreased the penalty over

the iterations, while other authors, as Carpentier et al. [8], Crainic et al. [14], chose

24



to increase the penalty parameter. Hvattum and Løkketangen [29] suggested a con-

trolling approach based on criteria (2.51) for updating the penalty parameter. They

reduced ρ if
∑

s∈S ps‖x̂(s),k+1 − x̂(s),k‖2 does not decrease, and they increased ρ if∑
s∈S ps‖x(s),k+1 − x̂(s),k+1‖2 does not decrease. They also considered a node-cost

proportional update. Inspired by them, Gul [25] suggested to dynamically update the

penalty parameter, increasing the parameter if no progress is observed for the dual vari-

ables, and decreasing it if no progress is observed for the primal variables. Gonçalves

et al. [23] used an increase factor proportional to the NA violation. They also insisted

that the initial penalty parameter should be chosen small enough, for instance with a

value of 10−4. Zéphyr et al. [68] dynamically updated the penalty parameter using coef-

ficients based on the optimality and NA indicators, allowing to increase or decrease the

parameter.

Many strategies for updating the penalty parameter have been considered, highlight-

ing the sensitivity of PHA to its value, but no clear consensus exists to date. We sum-

marize the main approaches in Table 2.II. More recently, Chiche [11] highlighted that

a dynamic update strategy can even lead to a complete failure of PHA. She provided an

example where an apparently genuine choice of the penalty parameter results in a cyclic

behavior of PHA between two solutions, none of them satisfying the NA constraints. In

her example, the penalty parameter oscillates between two inverse values. Therefore,

while the use of a fixed penalty parameter is usually associated with a slow convergence,

care must be exercised when designing a dynamic update strategy if we want to improve

PHA performance. We propose a novel approach that aims to learn from the algorithm

process, while remaining simple and independent of the application. The idea and its

numerical results are presented in Chapter 3.

2.5.2 Handling the quadratic penalty term in progressive hedging algorithm

Another big challenge in using PHA is how to handle the quadratic penalty term

in the objective function. Depending on the application in which PHA has been used,

different researchers suggested different strategies. We present some of these methods in

two major categories based on the nature of the applications: applications with convex
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Strategy Penalty parameter update
Fixed value [51] ρ = a1 > 0

Dynamic increase with possi-
bly a sudden reduction [45]

ρk+1 = (τρρ
k)µ, τρ ≥ 1, 0 < µ ≤ 1,

ρk+1 = ρε, ρε > 0, small
Fixed to two predefined posi-
tive values with reduction [12]

ρ = a2 > 0, if the convergence in dual space is not
achieved, otherwise ρ = a3 > 0, with a3 < a2

Bundle-stage wise value [56] ρ
(ṡ)
t , for ṡ ∈ S(s)t and t = 1, · · · , T

Cost-proportional value [62] ρ(i) = c(i)

maxs{x(s),0−mins x(s),0+1} or

ρ(i) = c(i)

max{
∑

s ps|x(s),0−x̂0|,1}
Decreasing values [50] ρk = 1

a4+a5k
, a4, a5 ∈ (0, 1)

Increasing values [14] ρk+1 = τρρ
k, τρ ≥ 1

Dynamic update, convergence-
and cost-proportional node-
wise values [29]

ρv = cvδ(v)ρ
k+1 for node v ∈ V , where ρk+1 = τincρ

k

with τinc > 1, if the progress toward dual convergence is
negative,
ρk+1 = τdecρ

k with 1 > τdec > 0, if the progress toward
primal convergence is negative, for some discount factor
δ(v)

Dynamic update, convergence-
proportional values by prede-
fined multipliers [25]

ρk+1 = a6ρk, if the progress toward dual convergence is
negative,
ρk+1 = 1

a6
ρk, if the progress toward primal convergence is

negative, with a6 > 1

Increasing values, with a NA-
proportional multiplier [23]

ρk+1 = ρk
{
a7E

[∑
t

(
‖x(s),kt −x̂k‖2

x
(s),k
t,max−x

(s),k
t,min+1

)]
+ 1

}
, a7 > 1,

Dynamic update, bounded val-
ues based on the optimality and
NA indicators [68]

ρk+1 = max{0.01,min{100, qk+1ρk}}, where

qk+1 =
(
max{lk+1, hk+1}

) 1
1+0.01(k−1) , where lk+1 and

hk+1 are the optimality and NA indicators, respectively

Table 2.II – Penalty parameter updates
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stochastic models and applications with nonconvex stochastic models. Then we suggest

a new technique to deal with the quadratic term.

2.5.2.1 Current methods for convex stochastic programming problems

Instead of using PHA, Chun and Robinson [12] decided to relax the NA constraints

with standard Lagrangian relaxation in linear multi-stage stochastic military force plan-

ing and production planing problems that are loosely coupled. To solve the new problem,

they used a bundle/trust-region method. To solve a linear multi-stage mid-term operation

problem in hydrothermal systems, Gonçalves et al. [23] used PHA. However, in order to

reduce the size of the problem, they defined the NA constraints on the variables which

define the rest of variables. Therefore, they dropped the quadratic term on the dependent

variables. In another study, Helseth [28] applied PHA to a linear multi-stage stochastic

energy production scheduling problem and to get rid of the quadratic penalty term, they

approximated the quadratic term with a dynamic piece-wise linearization, iteratively.

To solve a nonlinear multi-stage stochastic problem, Liu et al. [41] used the PHA

objective function with an extra penalty term. In other words, after relaxing the NA

constraints as in PHA, they also relaxed other constraints with a logarithmic barrier

function. This way they have an unconstrained problem which is solved approximately

with Newton direction method. In fact, the original idea of using a log-barrier penalty

function was first introduced by Zhao [69] who suggested to relax the NA constraints

with a Lagrangian relaxation and then to use a logarithmic barrier on other constraints.

2.5.2.2 Current methods for mixed-integer stochastic programming problems

Mixed-integer problems having a quadratic term in the objective function can be

quite troublesome. For example, Jørnsten [34] used the logic of scenario aggregation

to a mixed integer {0, 1} investment problem in oil and gas industry. However, they

relaxed the NA constraints by a Lagrangian relaxation and solved subproblems with

a subgradient method. In a similar setting, Jönsson et al. [31] dealt with a two-stage

stochastic inventory allocation problem with integer variables in both stages. They also
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followed the idea of scenario aggregation with Lagrangian relaxation of a perturbed rep-

resentation of the NA constraints. Later, Jörnsten and Bjorndal [32] applied PHA to a

multi-stage stochastic dynamic location problem where there are continuous and binary

variables. To construct the PHA objective function, they included NA on continuous

variables and dropped it on the binary ones, because the binary variables are dependent

on continuous variables in their problem. The logic of PHA is used in a mixed integer

multi-stage stochastic unit commitment problem but without a quadratic penalty term.

In this way, Takriti et al. [58] relaxed the NA constraints with a Lagrangian relaxation

and decompose each scenario subproblem to single-generator subproblems. The single-

generator subproblems are solved by dynamic programming. In the context of mixed

integer binary stochastic problems, Løkketangen and Woodruff [42] introduced a new

convergence criteria: integer convergence. With this new concept, if the integer com-

ponents of a solution are found, they will be fixed and the rest of the components are

calculated by solving a DEP. Løkketangen and Woodruff solved the subproblems with

a tabu search method. For another example in oil industry, Jonsbråten [30] restricted

the quadratic penalty term only to continuous variables of a mixed integer multi-stage

stochastic problem. However, the quadratic term in PHA is also dropped and the inter-

action between continuous and integer variables is taken into account for the Lagrangian

steps. In another example, a multi-stage stochastic energy unit commitment problem

with both continuous and binary variables is studied by Takriti and Birge [57]. They use

PHA to relax the NA constraints involving binary variables. However, in the computa-

tions they drop the quadratic penalty term. After the introduction of integer convergence,

Haugen et al. [26] applied PHA to a mixed integer multi-stage stochastic lot-sizing prob-

lem and used a dynamic programming algorithm to solve the subproblems. Then after

achieving the integer convergence, they followed the fixation strategy, as in [42]. In

a mixed integer two-stage stochastic fleet-composition problem with integer variables

at first stage and integer and binary variables at second stage, Listes and Dekker [40]

applied PHA to a linear relaxation of the stochastic program and executed a rounding

procedure to get integer values for the first stage variables involved in NA. For a two-

stage stochastic network design problem with mixed integer binary variables, Crainic
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et al. [14] took advantage of having the first stage variables with binary values. They re-

duced the original objective function of PHA to an equivalent linear function and solved

the subproblems by tabu search, as in [42]. In a Python tool for multi-stage stochas-

tic problems (PySP), Watson et al. [63] linearized the quadratic term of PHA statically.

Their idea was an inspiration for Helseth [28] who decided to dynamically linearize the

quadratic term in the PHA objective function. In an energy production problem, Parriani

et al. [48] also dealt with a two-stage stochastic unit commitment problem, but with in-

teger variables in both stages. To get rid of the quadratic term, they replaced it with the

L1-norm of the NA constraints in the PHA objective function.

2.5.2.3 New method: an elastic progressive hedging algorithm

As this research focuses on linear stochastic problems, we look for a way to keep

the objective function linear. We propose to make the NA constraints elastic and add

a linear penalty on the violation of constraints in the original objective function. To

be more precise, by adding the quadratic penalty function over the NA constraints at

iteration k, the linearity in subproblem

min
x(s)

c(s)
′
x(s)

s.t. x(s) ∈ X (s),

x(s) − x̂(s),k−1 = 0,

(2.53)

is destroyed. Recall from Section 2.3 that c(s) represents the cost coefficients, X (s) is

the set of scenario-dependent constraints, x̂(s),k−1 represents the average solution from

iteration k − 1, and x(s) is the solution to be found for each scenario s. To keep the

problem linear while forcing NA, we got inspired by the idea of elastic programming

[7] in the history of linear programming. In elastic programming, the constraints are

modified by adding some artificial nonnegative variables such that the violation of each

constraint is allowed at some cost. So the constraints become goals and the question of

if or how much the constraints are to be violated can be answered by the model. Such

models are called elastic models. In MINOS software, Murtagh and Saunders [47] used
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a composite objective function of the original objective plus a penalty term on constraints

violations. The SNOPT software [22] follows the same idea than MINOS. Gill et al. [22]

applied the idea of elastic programming to a sequential quadratic programming (SQP)

method for nonlinear problems. In SNOPT, they elasticize the nonlinear constraints and

add an L1-norm on the constraints violation to the objective function.

Considering these remarks, our idea is to let the NA constraints be elastic as well

and at the same time penalize the violation in the objective function, for each scenario

subproblem. This way, we believe that we can still use the scenario aggregation logic

behind PHA and also create a linear objective function instead of the quadratic function.

To adopt this technique, we propose to add two nonnegative artificial variables vs and

ws to the NA constraints (for further details on how to elasticize equality and inequality

constraints, we refer to [6]) and we penalize this violation of constraints. Therefore, we

have
min

x(s),v(s),w(s)
c(s)
′
x(s) + Θe′(v(s) + w(s))

s.t. x(s) ∈ X (s),

x(s) − x̂(s),k−1 + v(s) − w(s) = 0,

v(s) ≥ 0,

w(s) ≥ 0.

(2.54)

where Θ > 0 is a fixed scalar and is called the elastic penalty parameter. For the proof of

convergence, Boman [6] suggests to force the L1-norm of the elastic term to be bounded

in the subproblem:

min
x(s),v(s),w(s)

c(s)
′
x(s) + Θe′(v(s) + w(s))

s.t. xs ∈ X (s),

x(s) − x̂(s),k−1 + v(s) − w(s) = 0,

‖v(s) − w(s)‖1 ≤ ∆

v(s) ≥ 0,

w(s) ≥ 0.

(2.55)
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where ∆ ≥ 0 is the required bound, called the elasticity bound. This idea still needs to

be tested numerically and the proof of convergence should be provided. Some further

questions should be answered as well, such as whether we consider a trust-region [13]

context (like what has been done in [39] as a decomposition algorithm for stochastic

programming) for this new elastic PHA subproblem and how to choose the values of Θ

and ∆.
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CHAPTER 3

PENALTY PARAMETER UPDATE STRATEGIES IN THE PROGRESSIVE

HEDGING ALGORITHM

In this chapter we introduce our new penalty parameter update as well as its numeri-

cal analysis.

3.1 Adaptive penalty parameter update

As pointed out by Takriti and Birge [57], PHA is a proximal point method producing

the contraction of a sequence of primal-dual pairs {(x̂(s),k, λ(s),k)} around an optimal

saddle point. The primal convergence can be monitored by considering the expectation

of the changes between consecutive NA solutions
∑

s∈S ps‖x̂(s),k+1 − x̂(s),k‖, from Step

3 of PHA presented in Chapter 2, while
∑

s∈S ps‖x(s),k+1 − x̂(s),k+1‖ gives the order of

the changes in dual variables. Recall that from (2.52),

∑
s∈S

ps‖x(s),k+1 − x̂(s),k‖2 =
∑
s∈S

ps‖x̂(s),k+1 − x̂(s),k‖2 +
∑
s∈S

ps‖x(s),k+1 − x̂(s),k+1‖2,

i.e. PHA aggregates the primal and dual changes. In contrast to many papers that monitor

the values of
∑

s∈S p
s‖x(s),k+1 − x̂(s),k+1‖2 to decide to increase or decrease the penalty

parameter ρ, we first check the changes in {x̂k}, i.e.
∑

s∈S p
s‖x̂(s),k+1 − x̂(s),k‖2. The

main motivation is to avoid to enforce the NA constraints when we have not yet identified

the correct NA solution, or in other terms, when the approximation of NA is not accurate

enough. If we enforce the NA constraints when they are not approximated accurately,

we could converge to a suboptimal solution, as also noticed by Chun and Robinson

[12]. Therefore, if the primal variables significantly change, we avoid to increase the

penalty parameter. Simultaneously, we aim to keep a balance between the Lagrangian

function and the quadratic penalty. If the NA solution seems to stabilize, but we observe

larger the NA constraints violation, we slightly increase the penalty parameter if the new



violations are significantly more important. Otherwise, we keep the penalty parameter

fixed. We do not expect this case to often happen, but if it occurs, we try to stabilize

the process. Finally, if none of the previous situations occur, we deduce that we have

achieved convergence in the primal space, so we force convergence in the dual space by

increasing the penalty parameter value. The procedure is presented in more detail below.

Step 0. Set γ1, γ2, γ3 ∈ (0, 1), α, ν, σ ∈ (0, 1), 1 < θ < β < η.

Step 1. If the change in {x̂k} is large enough, i.e. if

E
[∥∥x̂(s),k+1 − x̂(s),k

∥∥2]
max

{
E
[
‖x̂(s),k+1‖2

]
, E
[
‖x̂(s),k‖2

]} ≥ γ1,

or if the quadratic penalty term is important compared to the Lagrangian function,

i.e. if

ρkE
[∥∥x(s),k+1 − x̂(s),k+1

∥∥2]
≥ σE

[∣∣∣f (s)(x(s),k+1) + λ(s),k
′ (
x(s),k+1 − x̂(s),k

)∣∣∣] ,
then

a) if the change in {x̂k} is dominating the change in {λk} such that

E
[∥∥x̂(s),k+1 − x̂(s),k

∥∥2]− E [∥∥x(s),k+1 − x̂(s),k+1
∥∥2]

max
{

1, E
[
‖x(s),k+1 − x̂(s),k+1‖2

]} > γ2,

then decrease the penalty parameter by setting ρk+1 = αρk,

b) else if the change in {λk} is dominating the change in {x̂k} such that

E
[∥∥x(s),k+1 − x̂(s),k+1

∥∥2]− E [∥∥x̂(s),k+1 − x̂(s),k
∥∥2]

max
{

1, E
[
‖x̂(s),k+1 − x̂(s),k‖2

]} > γ3,

then increase the penalty parameter by setting ρk+1 = θρk,
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c) otherwise, keep the penalty parameter fixed by setting ρk+1 = ρk,

otherwise go to Step 2.

Step 2. If there is no significant change in {x̂k} but the change in the dual sequence

{λk} is getting larger, i.e. the NA violation increases over the iterations:

E
[∥∥x(s),k+1 − x̂(s),k+1

∥∥2] > E
[∥∥x(s),k − x̂(s),k∥∥2] ,

then

a) if the increase is large, i.e.

E
[∥∥x(s),k+1 − x̂(s),k+1

∥∥2]− E [∥∥x(s),k − x̂(s),k∥∥2]
E
[
‖x(s),k − x̂(s),k‖2

] > ν,

then increase the penalty parameter by setting ρk+1 = βρk,

b) else keep the penalty parameter fixed by setting ρk+1 = ρk.

Otherwise, go to Step 3.

Step 3. Increase the penalty parameter by setting ρk+1 = ηρk.

A last point to discuss is the choice of the initial penalty parameter ρ0. As the La-

grange multipliers vector λ0 is set to zero, the initial augmented Lagrangian is

E
[
f (s)(x(s),0)

]
+
ρ0

2
E
[∥∥x(s),0 − x̂(s),0∥∥2] .

This suggests to balance the two terms, leading to

ρ0 =
max

{
1, 2ζ

∣∣E [f (s)(x(s),0)
]∣∣}

max {1, E [‖x(s),0 − x̂(s),0‖2]}
, (3.1)

with ζ > 0.

34



3.2 Computational study

In order to numerically validate our approach, we compare it with some of the

propositions identified in the literature. We first consider fixed values, dynamic up-

date with/without dropping from Mulvey and Vladimirou [44], a simplified version of

convergence-proportional update by Hvattum and Løkketangen [29], excluding problem-

dependent aspects, and optimality- and NA-proportional update by Zéphyr et al. [68].

We do not examine cost-proportional penalties as some of the test problems have many

variables with null costs.

We also limit ourselves to linear problems of the form

min
x

∑
s∈S

ps

(
T∑
t=1

c
(s)
t

′
x
(s)
t

)
s.t. H(s)

1 x
(s)
1 = b

(s)
1 ,∑

j<t

G
(s)
j x

(s)
j +H

(s)
t x

(s)
t = b

(s)
t , t = 2, . . . , T, s ∈ S,

x
(s)
t ≥ 0, t = 1, . . . , T, s ∈ S,

x
(s)
t is nonanticipative, t = 1, . . . , T, s ∈ S.

The problems were collected from SMI (http://www.coin-or.org/projects/

Smi.xml) and SPLIB collection proposed by V. Zverovich (https://github.com/

vitaut/splib). We also created a modified version of the problem KW3R by adding

randomness in the constraints matrix and we denote this version by KW3Rb. The charac-

teristics of the problems are summarized in Table 3.I. We used SMI to parse the SMPS

files describing them and we solved their deterministic equivalent formulations using

CPLEX 12.5 in order to have reference optimal values. We implemented PHA in C++

and the scenario subproblems are solved with CPLEX. The numerical tests were per-

formed on a cluster of computers with 2.40 GHZ Intel(R) Xeon(R) E5620 CPU (quad-

core) with 2 threads each and 98 GB of RAM.

We compare the use of a fixed penalty parameter (referred as Fixed) with several of

the identified strategies, namely the dynamic update proposed by Mulvey and Vladimirou
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Problem #stages #scenarios Optimal value
KW3R 3 9 2613
KW3Rb 3 9 3204
app0110R 3 9 41.96
SGPF3Y3 3 25 -2967.91
Asset Mgt 4 8 -164.74
SGPF5Y4 4 125 -4031.3
wat10I16 10 16 -2158.75
wat10C32 10 32 -2611.92

Table 3.I – Problems

[45] with reduction (referred as M&VR) and without reduction (referred as M&V),

the controlled dynamic update designed by Hvattum and Løkketangen [29] (referred

as H&L), the learning update developed by Zéphyr et al. [68] (referred as Z&L&L) and

the adaptive update (referred as Adaptive). The initial penalty parameter ρ0 is set as in

(3.1), or by using the recommended values in the original papers, and we compute x(s)0 ,

s = 1, . . . , S, by solving the scenario subproblems without the NA constraints. We tried

three different settings corresponding to different values of ζ , as the smaller the value of

ζ , the less we enforce the initial NA solution. We test the method with ζ = 0.01 (small),

ζ = 0.10 (medium), and ζ = 0.50 (large). Moreover, the parameters associated with

each approach are chosen as described below.

For the M&V update, we set ρk+1 = (τρρ
k)µ, and consider two settings recom-

mended by Mulvey and Vladimirou [45] referring to them by a and b, respectively. In

setting a, we have τρ = 1.1, µ = 0.80, ρ0 = 0.02, and ρmin = 0.05, while in setting b, we

have τρ = 1.25, µ = 0.95, ρ0 = 0.05, and ρmin = 0.05. To drop the penalty parameter as

they suggested, we check if
∑

s∈S ps‖x(s),k+1 − x̂(s),k+1‖2 ≤ εd, with εd = 10−5, is sat-

isfied. For H&L, we set ρk+1 = δρk, if the progress toward dual convergence is negative,

and ρk+1 = 1
δ
ρk, if the progress toward primal convergence is negative, with δ = 1.8 and

ρ0 = 0.3, We follow Zéphyr et al. [68] recommendations for the implementation of their

strategy. Finally, the adaptive strategy parameters are chosen as γ1 = 10−5, γ2 = 0.01,

γ3 = 0.25, σ = 10−5, α = 0.95, θ = 1.09, ν = 0.1, β = 1.1, and η = 1.25.
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The stopping criteria is a normalized version of (2.51). We stop if√∑
s∈S ps‖x(s),k+1 − x̂(s),k‖2

max
{

1,
∑

s∈S ps‖x̂(s),k‖2
} ≤ ε, (3.2)

with ε = 10−5, and set the iteration limit to 500 and the time limit to 36000 seconds

(or 10 hours). We declare convergence if the difference with the optimal value is less

than 0.1% within the time and iteration limits. A summary of our main results is given

in Tables 3.II–3.IV, where the methods are compared when the same initial penalty

parameter is used, while we present detailed results in Appendix II, problem by problem.

When we reach the time or iterations limit, we indicate “Limit” if the final solution is

within a 0.1% optimality gap, otherwise we mention “Wrong” if the final solution has an

optimality gap greater than 0.1%, and “Infeasible” if the NA constraints are not satisfied.

If (3.2) is satisfied within the defined limits, we report the number of PHA iterations and

the optimality gap in brackets in case we have converged to a suboptimal solution, i.e.

the optimality gap is greater than 0.1%.

We also graphically compare the methods by means of the performance profiles [17].

In the figures, P designates the percentage of problems which are solved within a fac-

tor τ of the best solver, using the number of iterations as our performance metric. We

first compare the methods for a given ζ , and then compare the choices of ζ for fixed and

adaptive strategies. Figures 3.1, 3.2, and 3.3 show that existing strategies have difficulties

to converge towards the optimal solution, a fixed parameter strategy being surprisingly

more efficient when the initial penalty parameter is not chosen small enough. For a small

initial penalty parameter (ζ = 0.01), the approach designed by Mulvey and Vladimirou

[45] has a slight advantage over the other methods, but it disappears when increasing the

initial penalty parameter value. Overall, none of the existing approaches has been found

to significantly outperforms the other ones. The adaptive strategy proved to be quite

efficient, as it is the fastest approach for most of the problems, whatever the choice of

ρ0, and it is the only one to always deliver the correct solution. It is therefore interesting

to explore the influence of the initial penalty parameter value. We draw the performance

profile of the fixed and adaptive strategies in Figure 3.4. We again see that the adap-
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Method KW3R KW3Rb app0110R SGPF3Y3
Fixed 30 Infs. Infs. 9
M&VRa 43 Limit Wrong 12(1.1%)
M&VRb 48 Limit Limit 13(0.3%)
M&Va 27 346 105 12(1.1%)
M&Vb 23 244 92 13(0.3%)
H&L 115 Infs. Infs. 9
Z&L&L 27 261 109 18(1.9%)
Adaptive 25 139 108 10
Method Asset-Mgt SGPF5Y4 wat10I16 wat10C32
Fixed 6 Limit 342 Limit
M&VRa 8 20(7.9%) 43 Infs.
M&VRb 8 18(4.4%) 275 44
M&Va Wrong 20(7.9%) Wrong Wrong
M&Vb 55(0.11%) 18(4.4%) 44(2.6%) 46(2%)
H&L 8 Infs. Infs. Infs.
Z&L&L Wrong 32(11.2%) Wrong Wrong
Adaptive 6 46 48 73

Table 3.II – Number of PHA iterations with ζ = 0.01
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Method KW3R KW3Rb app0110R SGPF3Y3
Fixed 28 373 215 95
M&VRa 28 Limit Limit 11(1.1%)
M&VRb 36 Limit Limit 11(0.4%)
M&Va 28 299 102 11(1.08%)
M&Vb 25 234 86 11(0.4%)
H&L 83 Infs. Infs. 49
Z&L&L 59 265 118 17(1.4%)
Adaptive 24 155 83 62
Method Asset-Mgt SGPF5Y4 wat10I16 wat10C32
Fixed 19 109 Limit 144
M&VRa 23 20(7.9%) Limit 185
M&VRb 21 17(5%) Limit 203
M&Va Wrong 20(7.9%) Wrong Wrong
M&Vb 60(1.2%) 17(5%) 46(4.5%) 45(3.3%)
H&L Wrong Limit 286 95
Z&L&L 179 31(9.7%) Wrong Wrong
Adaptive 16 32 41 62

Table 3.III – Number of PHA iterations with ζ = 0.1
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Method KW3R KW3Rb app0110R SGPF3Y3
Fixed 44 324 109 467
M&VRa 29 234 126 11(1.2%)
M&VRb 60 Limit Limit 11(0.8%)
M&Va 35 290 99 11(1.2%)
M&Vb 49 267 82 11(0.8%)
H&L 105 Limit Infs. 45(0.4%)
Z&L&L 82 421 137 17(1.34%)
Adaptive 39 189 67 88
Method Asset-Mgt SGPF5Y4 wat10I16 wat10C32
Fixed 90 38 Limit Limit
M&VRa 92 19(7.7%) Limit Limit
M&VRb 92 16(6.6%) Limit Limit
M&Va Wrong 19(7.7%) Wrong Wrong
M&Vb 58(1.5%) 16(6.6%) 50(8.1%) 51(6.8%)
H&L 39(0.39%) Limit 38(0.6%) 359(0.83%)
Z&L&L Wrong 31(9.2%) Wrong Wrong
Adaptive 38 24 56 95

Table 3.IV – Number of PHA iterations with ζ = 0.5
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tive strategy is more efficient than keeping the penalty parameter fixed, and there is a

slight advantage to start with a small initial value for the penalty parameter. The fixed

approach is more sensitive to the choice of the initial penalty, a medium penalty being

the best compromise in our experiments. The problems set being limited, we have to

remain careful before we can derive strong conclusions, but the numerical results are

nevertheless encouraging.
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Figure 3.1 – Performance profile with ζ = 0.01

3.3 Summary

PHA remains a popular scenarios decomposition method, but practical issues are

still often observed. In particular, the choice of the penalty parameter value significantly

influences the speed of convergence. A low value can produce a very slow convergence,

while a large value will allow faster convergence, but the returned solution can be subop-

timal. In order to circumvent these problems, many researchers have proposed heuristics

to update the penalty parameters, but the study of their efficiency and robustness is of-
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ten limited, and valid for the application under consideration only. In this chapter, we

have reviewed several approaches proposed in the literature, and observed that even for

simple problems, we can face convergence issues. We then proposed a dynamic update

that allows to increase or decrease the penalty parameter value, aiming to enforce the

NA constraints only when they are correctly identified. While the proposed approach

is still heuristic, we have observed a large improvement over the other strategies for the

test problems, the method being fast and robust.
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CHAPTER 4

CONCLUSION AND FUTURE WORKS

In this research, we focused on one of the decomposition techniques which uses

the concept of scenario analysis to solve stochastic programming problems. PHA is

such a method and it relaxes the NA constraints by using the principles of augmented

Lagrangian method and proximal methods. Although PHA has been used in a vast range

of stochastic programming problems, it still faces some practical issues. Many of these

issues have been circumvented according to the nature the application in which PHA is

involved.

One of the challenges is the choice of the penalty parameter which affects the perfor-

mance of PHA significantly. As part of this research, we reviewed some major sugges-

tions in the literature related to the choice of this parameter. We also proposed a dynamic

update which provides an increment or decrement to the penalty parameter, depending

if the NA constrains are correctly enforced or not. We increase the parameter if the NA

constraints are correctly enforced or none of the variables’ change is dominant. In re-

verse, we decrease the penalty parameter to prevent enforcing NA, while we are still far

from the optimal solution. We keep the current value of the parameter, if PHA is already

enforcing enough NA. Our new update rule performed robustly and fast over the other

techniques. However, the proof of convergence is yet to be studied as a future work.

Another obstacle for the researchers using PHA is how to handle the quadratic term

in the objective function. Although the augmented penalty term is powerful in forcing

the relaxed constraints, it is still numerically difficult to solve such objective function.

Specially in some applications (like MIP problems) having some nonconvexity, handling

the quadratic term can be quite troublesome. Since again, there are some case dependent

suggestions in the literature, we decided to work on this matter as future research. One

idea is to make the NA constraints elastic and add a linear penalty on the violation of

constraints to the original objective function. This idea has yet to be numerically tested.

However, we believe that the proof of convergence is possible. The empirical test and



the proof convergence are to be done as future works.

As we worked on linear multi-stage stochastic test problems, another possible next

step would be to test the new dynamic update and elastic PHA on a set of nonlinear

stochastic test problems.
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Appendix I

Data sets preparations

In this appendix, we explain our major data sets as well as how we managed to have

the information for scenario subproblems by modifying an open source interface. First

we introduce this interface briefly and then discuss our modifications.

I.1 Stochastic Modeling Interface

The Computational Infrastructure for Operation Research (COIN-OR) (http://

www.coin-or.org) is a collection of open-source projects developing software for

the operations research (OR) community. There are two software projects for stochas-

tic optimization programs available from COIN-OR): COmmon Optimization Python

Repository (Cooper) and SMI. Cooper software project integrates a variety of Python

optimization-related packages [36], while SMI is an interface for stochastic program-

ming models developed in C++. As we aim to study the performance of our sug-

gested strategy update for PHA on linear problems with C++ programming language,

we use SMI (http://www.coin-or.org/projects/Smi.xml) to provide our

required data sets. Here are the main features of SMI:

— it constructs a scenario tree structure for multi period stochastic data,

— it is a stochastic MPS 1 (SMPS) reader,

— it is an interface for generating scenario trees from paths and from discrete random

variables,

— it generates an open source interface (OSI) object with the deterministic equivalent

problem,

— it is a parser of the solutions by stage and scenario.

1. Mathematical Programming System (MPS) is a file format for presenting and archiving linear pro-
gramming (LP) and MIP problems.



Since almost all stochastic test problems from the literature exist in SMPS format, we

should introduce this data format.

The SMPS format is available to describe stochastic linear programs, as proposed

by Gassmann and Kristjánsson [21]. SMPS makes use of three text files with an MPS

record layout. The role of each file is briefly explained in the following:

— the core file gives a list of all the deterministic information of the problem. The

information include the name and type of each constraint, the names of rows and

columns, matrix of coefficients in a column-order, right hand-side of constraints

and bounds on the variables. It also gives the locations of the stochastic elements,

— the time file describes the dynamic structure of the problem and breaks the data

into stages. If the core file is given in time-ordered fashion, then this is a simple

matter of recording the first row and column of each stage, otherwise a full list

of rows and columns must be given along with the stage to which each of them

belongs,

— the stoch file gives the stochastic data. There are several ways to present the in-

formation. The purpose of stoch file is to generate an event tree. However there

are other features considered for stoch file, such as linear and quadratic penalties

for violating a stochastic constraint, probabilistic constraints and objectives and

integrated chance constraints.

For more details about SMPS, we refer to [21].

I.2 Modified Stochastic Modeling Interface: A stochastic benchmark tool for scenario

decomposition techniques

According to our requirements in PHA, none of the original features of SMI could

exactly be used to construct each scenario subproblem and solve it separately. In or-

der to achieve our goal we decided to make some modifications in SMI. The original

version of SMI either can get the data from SMPS files by a solver or directly from a

user and then give the access only to the solution. In both methods, SMI creates a de-

terministic equivalent of the stochastic problem which is not accessible to us. So we
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made changes such that it is now possible to have access to the information per scenario

and save them as well as to solve each scenario subproblem separately. Through the

modification process, we found out that there was a modeling bug while SMI was trying

to construct the whole scenario tree. At each stage, instead of copying the information

from a parent node to its child nodes, it copied the information from the root node in the

scenario tree. We managed to have this issue solved through personal contacts with SMI

project manager, Dr. Alan King, whom we are grateful for his collaboration. Now we

can say that with the new changes we created a stochastic benchmark tool for scenario

decomposition techniques. The modified codes of SMI are available upon request.
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Appendix II

Supplement to Chapter 3

II.1 Proof of equality (2.52)

In this section, we develop the proof of the equality (2.52)

∑
s∈S

ps‖xs,k+1 − x̂s,k‖2 =
∑
s∈S

ps‖xs,k+1 − x̂s,k+1‖2 +
∑
s∈S

ps‖x̂s,k+1 − x̂s,k‖2.

To prove the equality (2.52), we work on each term separately. For that we use the

notations and definitions introduced in Chapter 2.

To start, we first have

∑
s∈S

ps‖x(s),k+1− x̂(s),k‖2 = ‖xk+1− x̂k‖2D = ‖xk+1‖2D−2〈xk+1, x̂k〉D+‖x̂k‖2D. (II.1)

Similarly,

∑
s∈S

ps‖x̂(s),k+1− x̂(s),k‖2 = ‖x̂k+1− x̂k‖2D = ‖x̂k+1‖2D−2〈x̂k+1, x̂k〉D+‖x̂k‖2D, (II.2)

Moreover, we have∑
s∈S

ps‖x(s),k+1 − x̂(s),k+1‖2 =
∑
t

∑
S(s)t

∑
s′∈S(s)t

ps′‖x(s
′),k+1

t − x̂(s
′),k+1

t ‖2

=
∑
t

∑
S(s)t

∑
s′∈S(s)t

ps′
(
‖x(s

′),k+1
t ‖2 − ‖x̂(s

′),k+1
t ‖2

)
= ‖xk+1‖2D − ‖x̂k+1‖2D,

(II.3)

Combining (II.2) and (II.3), we have

∑
s∈S

ps‖x(s),k+1−x̂(s),k+1‖2+
∑
s∈S

ps‖x̂(s),k+1−x̂(s),k‖2 = ‖xk+1‖2D−2〈x̂k+1, x̂k〉D+‖x̂k‖2D,



that corresponds to (II.1) as

〈xk+1 − x̂k+1, x̂k〉D = 〈Kxk+1, Jxk〉D = 〈xk+1, KJxk〉D = 0,

since K is an orthogonal projection operator. This concludes the proof.

II.2 Detailed numerical results

We provide in Tables II.I–II.VIII the detailed results of our numerical experimenta-

tions over the eight test problems. For each problem, we compare thirty penalty parame-

ter update strategies, and provide the final objective value along with the gap to optimal

value in brackets. We also report the number of iterations and the computation time.

In case we reach the iteration or time limit before declaring convergence, we mention

“Limit” in the corresponding cell.

xix



Update Objective value Iterations Time (s)
Fixed-Sml 2613 (0) 30 3.53
Fixed-Med 2613 (0) 28 3.14
Fixed-Big 2613 (0) 44 4.77
M&VRa 2613 (0) Limit 122.22
M&VRa-Small 2613 (0) 43 5.11
M&VRa-Medium 2613 (0) 28 3.18
M&VRa-Large 2613 (0) 29 3.32
M&VRb 2613 (0) 64 8.1
M&VRb-Small 2613 (0) 48 5.7
M&VRb-Medium 2613 (0) 36 4.07
M&VRb-Large 2613 (0) 60 6.94
M&Va 2613 (0) 29 3.56
M&Va-Small 2613 (0) 27 3.1
M&Va-Medium 2613 (0) 28 3.24
M&Va-Large 2613 (0) 35 3.97
M&Vb 2613 (0) 25 2.88
M&Vb-Small 2613 (0) 23 2.6
M&Vb-Medium 2613 (0) 25 2.97
M&Vb-Large 2613 (0) 49 5.77
H&L 2613 (0) 118 17.6
H&L-Small 2613 (0) 115 16.53
H&L-Medium 2613 (0) 83 11.85
H&L-Large 2613 (0) 105 15.3
Z&L&L 2613 (0) 28 2.53
Z&L&L-Small 2613 (0) 27 3.15
Z&L&L-Medium 2613 (0) 59 7.14
Z&L&L-Large 2613 (0) 82 10.99
Adaptive-Small 2613 (0) 25 2.87
Adaptive-Medium 2613 (0) 24 2.65
Adaptive-Large 2613 (0) 39 4.36

Table II.I – KW3R problem
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Update Objective value Iterations Time (s)
Fixed-Sml 3197.34 (-0.21) Limit 123.92
Fixed-Med 3204 (0) 373 74.8
Fixed-Big 3204 (0) 324 60.67
M&VRa 3204.25 (0.008) Limit 124.33
M&VRa-Small 3204.93 (0.03) Limit 124.31
M&VRa-Medium 3204.05 (0.001) Limit 123.91
M&VRa-Large 3204 (0) 234 39.58
M&VRb 3204 (0) Limit 122.23
M&VRb-Small 3204.16 (0.005) Limit 121.3
M&VRb-Medium 3204 (0) Limit 120.62
M&VRb-Large 3204.26 (0.008) Limit 118.19
M&Va 3204 (0) 348 69.29
M&Va-Small 3204 (0) 346 69.81
M&Va-Medium 3204 (0) 299 56.12
M&Va-Large 3204 (0) 290 52.48
M&Vb 3204 (0) 244 41.04
M&Vb-Small 3204 (0) 244 40.6
M&Vb-Medium 3204 (0) 234 39
M&Vb-Large 3204 (0) 267 46.39
H&L 3193 (-0.3) Limit 123.75
H&L-Small 3151.08 (-2) Limit 125.7
H&L-Medium 3154.16 (-1) Limit 124.58
H&L-Large 3204 (0) Limit 122.29
Z&L&L 3204 (0) 266 41.92
Z&L&L-Small 3204 (0) 261 44.38
Z&L&L-Medium 3204 (0) 265 44.85
Z&L&L-Large 3204 (0) 421 91.72
Adaptive-Small 3204 (0) 139 20.98
Adaptive-Medium 3204 (0) 155 23.55
Adaptive-Large 3204 (0) 189 29.91

Table II.II – Modified KW3R problem
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Update Objective value Iterations Time (s)
Fixed-Sml 39.4 (-6) Limit 424.77
Fixed-Med 41.96 (0) 215 91.35
Fixed-Big 41.96 (0) 109 30.75
M&VRa 41.96 (0) Limit 421.14
M&VRa-Small 42.01 (0.12) Limit 423.34
M&VRa-Medium 41.96 (0) Limit 422.51
M&VRa-Large 41.96 (0) 126 38.72
M&VRb 41.963 (0.007) Limit 407.18
M&VRb-Small 41.96 (0) Limit 430.5
M&VRb-Medium 42 (0.09) Limit 422.19
M&VRb-Large 41.96 (0) Limit 422.97
M&Va 41.96 (0) 105 29.34
M&Va-Small 41.96 (0) 105 29.13
M&Va-Medium 41.96 (0) 102 28.42
M&Va-Large 41.96 (0) 99 25.79
M&Vb 41.96 (0) 88 21.89
M&Vb-Small 41.96 (0) 92 23.03
M&Vb-Medium 41.96 (0) 86 21.41
M&Vb-Large 41.96 (0) 82 20.1
H&L 34.83 (-17) Limit 423.63
H&L-Small 19.25 (-54) Limit 424.79
H&L-Medium 31.47 (-25) Limit 421.84
H&L-Large 37.81 (-9.9) Limit 422.05
Z&L&L 41.96 (0) 125 35.75
Z&L&L-Small 41.96 (0) 109 29.15
Z&L&L-Medium 41.96 (0) 118 34.58
Z&L&L-Large 41.96 (0) 137 43.91
Adaptive-Small 41.96 (0) 108 29.04
Adaptive-Medium 41.96 (0) 83 20.53
Adaptive-Large 41.96 (0) 67 14.48

Table II.III – app0110R problem
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Update Objective value Iterations Time (s)
Fixed-Sml -2967.90 (0.0003) 9 6.93
Fixed-Med -2967.90 (0.0003) 95 385.7
Fixed-Big -2967.90 (0.0003) 467 8475.53
M&VRa -2927.3 (1.4) 14 13.64
M&VRa-Small -2935.81 (1.1) 12 11.09
M&VRa-Medium -2935.86 (1.1) 11 9.66
M&VRa-Large -2931.62 (1.22) 11 9.5
M&VRb -2879.93 (3) 15 15.21
M&VRb-Small -2958.85 (0.3) 13 12.3
M&VRb-Medium -2954.63 (0.4) 11 9.93
M&VRb-Large -2943.71 (0.8) 11 9.61
M&Va -2927.30 (1.37) 14 13.52
M&Va-Small -2935.81 (1.08) 12 10.82
M&Va-Medium -2935.86 (1.08) 11 9.83
M&Va-Large -2931.62 (1.22) 11 9.82
M&Vb -2879.93 (3) 15 15.34
M&Vb-Small -2958.85 (0.3) 13 12.38
M&Vb-Medium -2954.63 (0.4) 11 9.64
M&Vb-Large -2943.71 (0.8) 11 9.55
H&L -2895.27 (2.4) 19 21.98
H&L-Small -2967.90 (0.0003) 9 6.81
H&L-Medium -2967.83 (0.003) 49 113.37
H&L-Large -2957.07 (0.4) 45 98.7
Z&L&L -2917.65 (1.7) 17 17.66
Z&L&L-Small -2912.12 (1.9) 18 20.34
Z&L&L-Medium -2926.65 (1.4) 17 18.79
Z&L&L-Large -2928.06 (1.34) 17 18.95
Adaptive-Small -2967.90 (0.0003) 10 8.07
Adaptive-Medium -2967.84 (0.002) 62 176.83
Adaptive-Large -2967.83 (0.003) 88 324.23

Table II.IV – SGPF3Y3 problem
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Update Objective value Iterations Time (s)
Fixed-Sml -164.74 (0) 6 0.52
Fixed-Med -164.74 (0) 19 1.63
Fixed-Big -164.74 (0) 90 9.93
M&VRa -164.74 (0) 173 25.05
M&VRa-Small -164.74 (0) 8 0.7
M&VRa-Medium -164.74 (0) 23 2.76
M&VRa-Large -164.74 (0) 92 11.35
M&VRb -164.74 (0) 175 20.86
M&VRb-Small -164.74 (0) 8 0.68
M&VRb-Medium -164.74 (0) 21 1.86
M&VRb-Large -164.74 (0) 92 10.12
M&Va -162.57 (1.3) Limit 92.28
M&Va-Small -163.18 (1.0) Limit 94.27
M&Va-Medium -162.84 (1.2) Limit 94.61
M&Va-Large -162.55 (1.3) Limit 93.6
M&Vb -162.12 (1.6) 57 6.21
M&Vb-Small -164.55 (0.1) 55 5.42
M&Vb-Medium -162.72 (1.2) 60 5.67
M&Vb-Large -162.19 (1.5) 58 5.39
H&L -162.09 (1.6) 29 2.25
H&L-Small -164.74 (0) 8 0.68
H&L-Medium -164.16 (0.4) Limit 90.85
H&L-Large -164.17 (0.3) 39 4.4
Z&L&L -164.73 (0.006) Limit 95.71
Z&L&L-Small -164.44 (0.2) Limit 89.82
Z&L&L-Medium -164.74 (0) 179 24.1
Z&L&L-Large -163.09 (1) Limit 84.82
Adaptive-Small -164.74 (0) 6 0.51
Adaptive-Medium -164.74 (0) 16 1.36
Adaptive-Large -164.74 (0) 38 3.43

Table II.V – Asset problem
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Update Objective value Iterations Time (s)
Fixed-Sml -4031.30 (0) 134 Limit
Fixed-Med -4031.30 (0) 109 24542.4
Fixed-Big -4031.30 (0) 38 3132.49
M&VRa -3573.08 (11.4) 26 1553.29
M&VRa-Small -3711.83 (7.9) 20 897
M&VRa-Medium -3711.38 (7.9) 20 898.47
M&VRa-Large -3722.37 (7.7) 19 818.35
M&VRb -3372.32 (16.3) 25 1447.19
M&VRb-Small -3853.78 (4.4) 18 744.29
M&VRb-Medium -3829.95 (5) 17 661.26
M&VRb-Large -3764.81 (6.6) 16 605.09
M&Va -3573.08 (11.4) 26 1588.28
M&Va-Small -3711.83 (7.9) 20 897.03
M&Va-Medium -3711.38 (7.9) 20 895.65
M&Va-Large -3722.37 (7.7) 19 821.27
M&Vb -3372.32 (16.3) 25 1440.74
M&Vb-Small -3853.78 (4.4) 18 735.41
M&Vb-Medium -3829.95 (5) 17 668.51
M&Vb-Large -3764.81 (6.6) 16 603.77
H&L -3575.56 (11.3) 111 25407.78
H&L-Small -4138.81 (-2.7) 134 Limit
H&L-Medium -4031.30 (0) 134 Limit
H&L-Large -4029.73 (0.04) 134 Limit
Z&L&L -3638.27 (9.8) 32 2318.17
Z&L&L-Small -3578 (11.2) 32 2310.63
Z&L&L-Medium -3640.91 (9.7) 31 2191.27
Z&L&L-Large -3660.43 (9.2) 31 2169.85
Adaptive-Small -4031.30 (0) 46 4551.63
Adaptive-Medium -4031.30 (0) 32 2317.18
Adaptive-Large -4031.30 (0) 24 1318.47

Table II.VI – SGPF5Y4 problem
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Update Objective value Iterations Time (s)
Fixed-Sml -2158.75 (0) 342 3800.11
Fixed-Med -2158.74 (0.0005) Limit 8003.73
Fixed-Big -2158.74 (0.0005) Limit 8061.06
M&VRa -2134.91 (1.1) Limit 8108.3
M&VRa-Small -2158.74 (0.0005) 43 78.45
M&VRa-Medium -2158.74 (0.0005) Limit 7921.8
M&VRa-Large -2158.74 (0.0005) Limit 7940.46
M&VRb -2148.12 (0.5) Limit 7789.87
M&VRb-Small -2158.75 (0) 275 2476.09
M&VRb-Medium -2158.74 (0.0005) Limit 8026.43
M&VRb-Large -2158.74 (0.0005) Limit 8070.88
M&Va -1931.3 (10.5) Limit 8067.18
M&Va-Small -2013.88 (6.7) Limit 8078.32
M&Va-Medium -2001.70 (7.3) Limit 8094.26
M&Va-Large -1975.13 (8.5) Limit 8086.62
M&Vb -1790.44 (17.1) Limit 7962.29
M&Vb-Small -2102.07 (2.6) 44 80.36
M&Vb-Medium -2061.52 (4.5) 46 86.18
M&Vb-Large -1983.14 (8.1) 50 100.94
H&L -1728.57 (20) 67 172.87
H&L-Small -2251.52 (-4.3) Limit 7983.85
H&L-Medium -2158.75 (0) 286 2687.91
H&L-Large -2145.81 (0.6) 38 62.14
Z&L&L -2100.79 (2.68) Limit 8052.37
Z&L&L-Small -2076.36 (3.8) Limit 8092.45
Z&L&L-Medium -2088 (3.3) Limit 7864.39
Z&L&L-Large -2110.99 (2.2) Limit 8037.98
Adaptive-Small -2158.74 (0.0005) 48 94.54
Adaptive-Medium -2158.71 (0.002) 41 65.97
Adaptive-Large -2158.71 (0.002) 56 121.74

Table II.VII – wat10I16 problem
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Update Objective value Iterations Time (s)
Fixed-Sml -2611.92 (0) Limit 33954.18
Fixed-Med -2611.92 (0) 144 2930.41
Fixed-Big -2611.87 (0.002) Limit 33785.49
M&VRa -2572.14 (1.5) Limit 34108.57
M&VRa-Small -2612.96 (-0.04) Limit 34040.47
M&VRa-Medium -2611.01 (0.03) 185 4960.15
M&VRa-Large -2610.72 (0.04) Limit 34069.22
M&VRb -2585.06 (1) Limit 34029.37
M&VRb-Small -2611.21 (0.03) 44 289.91
M&VRb-Medium -2611.84 (0.003) 203 5944.1
M&VRb-Large -2611.77 (0.006) Limit 34000.12
M&Va -2377.84 (9) Limit 34112.42
M&Va-Small -2464.55 (5.6) Limit 33858.15
M&Va-Medium -2457.85 (5.9) Limit 33813.32
M&Va-Large -2428.80 (7) Limit 33953.17
M&Vb 2260.01 (13.5) 72 777.52
M&Vb-Small -2558.96 b 46 338.36
M&Vb-Medium -2525.67 (3.3) 45 309.53
M&Vb-Large -2434.35 (6.8) 51 406.14
H&L -2216.59 (15.1) 35 203.9
H&L-Small -2809.08 (-7.5) Limit 34057
H&L-Medium -2611.92 (0) 95 1353.35
H&L-Large -2590.12 (0.83) 359 18151.14
Z&L&L -2564.12 (1.83) Limit 33928.35
Z&L&L-Small -2530.93 (3.1) Limit 33985.33
Z&L&L-Medium -2551.90 (2.3) Limit 34031.9
Z&L&L-Large -2571.58 (1.5) Limit 34090.2
Adaptive-Small -2611.92 (0) 73 795.2
Adaptive-Medium -2611.92 (0) 62 587.24
Adaptive-Large -2611.87 (0.002) 95 1380.99

Table II.VIII – wat10C32 problem
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