

Université de Montréal

Algorithme de recherche à voisinage adaptatif pour

l'optimisation stochastique des complexes miniers

An adaptive neighborhood search algorithm for optimizing

stochastic mining complexes

par Sean Grogan

Département d’Informatique et Recherche Opérationnelle

Faculté de Arts et Sciences

Mémoire présenté

en vue de l’obtention du grade de Maîtrise

en Informatique

8 août 2016

© Sean Grogan, 2016

ii

Résumé

Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles

permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes

qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont

beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné.

L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de

certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique

adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des

notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et

automatique pour résoudre des problèmes.

L’optimisation globale des complexes miniers vise à établir les mouvements des

matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du

système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la

présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de

résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent,

les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce

mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos

(2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode

développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci

est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions.

Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer

la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de

la valeur de la fonction économique.

Mots-clés : recuit simulé, métaheuristiques adaptatifs, optimisation des mines, incertitude

métallique

iii

Abstract

Metaheuristics are a useful tool within the field of discrete optimization that allow for

large, complex, and difficult optimization problems to achieve a solution with a good quality in

a reasonable amount of time. Often metaheuristics have many parameters that require a user to

manually define and tune for a given problem. An adaptive metaheuristic aims to remove some

parameters from being tuned or defined by the end user by allowing the method to specify and/or

adapt a parameter or set of parameters based on the problem. The adaptive metaheuristic, using

advancements in understanding of the problem being solved, machine learning, and related

fields, aims to provide this more generalized and automatic toolkit for solving problems.

Global optimization of mining complexes aims to schedule material movement in mines

and processing streams to maximize the economic value of the system. Often due to the large

number of integer variables within the model, complicated constraints, and non-linear

constraints, it becomes prohibitive to solve these models using commercially available

optimizers. Therefore, metaheuristics are often employed in solving mining complexes. This

thesis builds upon a simulated annealing method developed by Goodfellow & Dimitrakopoulos

(2016) to optimize the stochastic global mining complex. The method outlined by the authors

requires many parameters to be defined to operate. One of these is how the simulated annealing

algorithm searches the local neighborhood of solutions. This thesis illustrates and implements

an adaptive way of searching the neighborhood for increasing the quality of a solution.

Numerical results show up to a 10% increase in objective function value.

Keywords: Simulated Annealing, Adaptive Metaheuristics, Mine Optimization, Metal

Uncertainty

iv

Table of Contents

Résumé .. ii

Abstract .. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures ... vii

List of Algorithms .. viii

List of Acronyms ... ix

Remerciements ... xi

1 Introduction ... 1

1.1 Overview of Open Pit Mining... 1

1.2 Mining Complex Economic Evaluation.. 6

1.3 Optimization of Open Pit Mining Complexes .. 8

1.4 Metal Uncertainty and the Simulation of Orebody Models .. 9

1.5 Objectives of the Research .. 10

2 Review of Metaheuristics and Adaptive Metaheuristics .. 12

2.1 Simulated Annealing ... 12

2.2 Adaptive Neighborhood Search Techniques .. 14

3 Implementation of Adaptive Neighborhood Choice in Simulated Annealing to Optimize

the Stochastic Mining Complex .. 17

3.1 Stochastic Integer Model of an Open Pit Mining Complex 17

3.2 Solution Method.. 24

3.3 Implementing an Adaptive Neighborhood Selection Procedure into the Mine

Complex Optimization Procedure... 28

4 Numerical Results ... 34

4.1 Copper-Gold Deposit .. 34

4.2 Single Element Deposits ... 36

v

4.3 Implementation and Parameters .. 39

4.4 Results ... 41

4.4.1 Basic Implementation – Simulated Annealing Only .. 41

4.4.2 Using Differential Evolution... 44

4.4.3 Using a Random Initial Probability .. 46

5 Conclusion .. 47

6 Bibliography ... 48

Appendix A: Updated Pseudocode with Adaptive Search Procedures .. i

Appendix B: Pseudocode from Goodfellow & Dimitrakopoulos (2016) iv

Appendix C: Hyper-heuristic from Lamghari & Dimitrakopoulos (2015) ix

vi

List of Tables

Table 1: Economic Parameters of the Model .. 35

Table 2: Lower and upper bound on constraints (18) and (19) and associated penalties 36

Table 3: Economic Parameters of the Model (Copper) .. 37

Table 4: Lower and upper bound on constraints (18) and (19) and penalties (Copper) 38

Table 5: Economic Parameters of the Model (Gold) .. 38

Table 6: Lower and upper bound on constraints (18) and (19) and penalties (Gold) 39

Table 7: Computer Used ... 39

Table 8: Simulated Annealing Parameters .. 40

Table 9: Adaptive Neighborhood Search Parameters ... 40

Table 10: Copper-Gold deposit results ... 42

Table 11: Copper deposit results... 42

Table 12: Gold deposit results .. 42

Table 13: Copper-Gold deposit results with no starter schedule .. 43

Table 14: Copper-Gold Deposit with Differential Evolution ... 45

Table 15: Copper-Gold Deposit with Random Start ... 46

vii

List of Figures

Figure 1: An example of a mining complex ... 4

Figure 2: A 2D schematic of blocks that must be removed to access block 𝑏 5

Figure 3: Definition of material types at the copper-gold mine, along with the various

destinations (Goodfellow & Dimitrakopoulos, 2016) .. 35

Figure 4: Illustration of the complexes associated with the single element deposits 36

viii

List of Algorithms

Algorithm 1: Simulated Annealing ... 13

Algorithm 2: Basic adaptive framework as posed by Pisinger & Ropke (2007) 16

Algorithm 3: Iterating Simulated Annealing many times ... 27

Algorithm 4: Simulated annealing as developed by Goodfellow & Dimitrakopoulos (2016) . 28

Algorithm 5: Simulated annealing with an adaptive neighborhood search method for optimizing

stochastic mining complexes .. 33

Algorithm 6: Initialization and Generation .. i

Algorithm 7: Simulated Annealing with Adaptive Neighborhood Search to solve the two-stage

stochastic open pit mining problem ... i

Algorithm 8: A singular execution of a simulated annealing metaheuristic ii

Algorithm 9: Setting the initial scores and probabilities for the search neighborhood ii

Algorithm 10: Computing the probabilities using scores gained from the simulated annealing

iterations .. ii

Algorithm 11: Executing a single iteration of the simulated annealing algorithm iii

Algorithm 12: An algorithm that chooses a neighborhood which to perturb the solution and yield

a neighborhood solution. .. iii

Algorithm 13: Global optimization of mining complexes ... iv

Algorithm 14: Simulated Annealing for open pit mining complexes ... v

Algorithm 15: Solution perturbation .. vi

Algorithm 16: downstream optimization using PSO or DE .. vi

Algorithm 17: PSO update for particle q .. vii

Algorithm 18: DE for agent q ... vii

Algorithm 19: Hyper-heuristic outlined Lamghari & Dimitrakopoulos (2015) ix

ix

List of Acronyms

ANS: Adaptive Neighborhood Solution

APF: Acceptance Probability Function

Ag: Silver

Au: Gold

CF: Cash Flow

Cu: Copper

DE: Differential Evolution

GI: Global Iteration

IP: Integer Program

LOM: Life of Mine

LP: Linear Program

NPV: Net Present Value

ObjFn: Objective Function

PSO: Particle Swarm Optimization

GD: Goodfellow & Dimitrakopoulos (2016)

RS: Random Start

SA: Simulated Annealing

SIP: Stochastic Integer Program

x

All spiritual growth comes from reading and reflection. By reading we learn what we did not

know; by reflection we retain what we have learned. The conscientious reader will be more

concerned to carry out what he has read than merely to acquire knowledge of it. In reading we

aim at knowing, but we must put into practice what we have learned in our course of study.

Isidore de Seville

xi

Remerciements

I would first like to thank Prof. Jacques Ferland for the opportunity to study here at the

Université de Montréal and for his guidance in the creation of this thesis. Next, I would like to

thank Amina Lamghari for her help also in writing and creating the new method established in

this thesis. Furthermore, thanks to Professor Roussos Dimitrakopoulos for opening up this field

to me and presenting me with the chance in my Undergrad to be exposed to more advanced

ideas in the mining industry.

In addition, I would like to thank a few of my colleagues and mentors from over the

years: Ryan Goodfellow, Luis Montiel Petro, Maria Fernanda Del Castillo, Chotipong Somrit,

Alessandro Navarra, Hani Mitri, John Mossop, Ryan Lechner, Linda Muratore, Michael

O’Boyle, and Mercedes Brand. You guys served as great role models and teachers. You all

were generous in sharing your expertise over the years.

Most importantly, I wish to thank my family members: My Mom, Dad, sister Maura,

grandmothers Alice and Synnie, and grandpa William. Without your support over the last

twenty-six years I would have never been able to get to where I am today. Thank you!

Finally, I would finally like to thank my friends – my extended family in COSMO and

Challenge; you have kept me grounded, sane, on track, and fed through the past two years.

Many of you have been excellent confidants and mentors, done little things to improve my

quality of life, and even directly aided me with this thesis. Thanks to all of you!

1

1 Introduction

Mining and related industries is one of the largest and riskiest sectors of the Canadian

economy. In 2015, mining and related industries was the third largest industry in Canada after

real estate and manufacturing, representing about 8% of the economy, and accounting for 28%

of all goods producing industries. In the province of Québec, metallic mineral production

represents 26% of the nation’s mineral production (by dollars) and is second only to Ontario

(Natural Resources Canada, 2016; Énergie et Ressources Naturelles Québec, 2016; Statistics

Canada, 2016). Proper planning procedures and interpretations can mitigate the risk associated

with developing and operating mines and mining complexes around the world. In the latter half

of the 20th century, new ways of modelling mining complexes and interpreting what is in the

ground have been developed. Furthermore, mathematical models, such as integer programs

(IP), have been developed and implemented to schedule the production in mining complexes.

As mathematical formulations grew to be more detailed representations of mining complexes,

metaheuristics have been developed to efficiently solve them. One such metaheuristic is

simulated annealing (SA). SA is used by Goodfellow & Dimitrakopoulos (2016) to optimize

their updated model formulation for mining complexes. Their model specifically introduces the

ability to account for the “inherent non-linearity related to the blending and stockpiling of

materials” (Goodfellow & Dimitrakopoulos, 2016). Their work is based on and updates work

of several authors such as Ramazan & Dimitrakopoulos (2013), Jewbali (2006), and Benndorf

& Dimitrakopoulos (2004). The SA based optimization method outlined by the authors takes

static search parameters for neighbor solution selection. While the authors are able to find a

good solution in a reasonable amount of time, this thesis takes progress made in adaptive

metaheuristics and related fields, such as from Pisinger & Ropke (2007) and Lamghari &

Dimitrakopoulos (2015), to improve the optimization method used by Goodfellow &

Dimitrakopoulos (2016). This update to the solver should produce better solutions.

1.1 Overview of Open Pit Mining

Most often, it is companies (not, for example, the government) that partake in mining

operations around the world. A company is said to be in the mining industry if they specialize

2

in extracting naturally occurring and nonrenewable resources. This can be, but is not limited to:

gold, copper, potash, uranium, or the oil sands. In addition, mining includes operations that

occur after extraction. Examples of these downstream operations include refineries, smelters,

and transportation, which transform the extracted material to something more useful

(Government of Canada, 2016). We use “more useful” here colloquially. Material is deemed

to have been “transformed into something more useful” if the material is transformed, typically

called processed, into another material which is closer to something that can be used by a

consumer or another industry. Examples are oil into gasoline for a car or insitu copper ore into

a copper block to be used by a pipe company. Mining companies operate in areas where they

have identified a deposit of material. For this thesis, a deposit is where the companies have

deemed there exists material which is economically feasible to be extracted and sold. That is,

they can operate a mining complex at a profit. A mining complex is the system by which material

is moved from the earth, transformed if possible, and then sold (Blechynden, Gardener, &

Mossop, 2012; Government of Canada, 2016; Newman, et al., 2010).

Before a mining complex is established, the deposit must be located. Locating and

gaining information about a deposit is known as exploration. There are many different

techniques to locate a deposit. Once a company has found a potential area for a mining complex,

they must begin a technique known as core hole drilling. Core hole drilling is when machines

drill long vertical holes into the earth and retrieve long solid pieces of rock. These long pieces

of rock are known as core holes. In the region the company desires to extract material, hundreds

to thousands of these core holes will be extracted in a regular grid. These core holes can be

viewed as conditioning data for geologists to interpret what is within the earth (Blechynden,

Gardener, & Mossop, 2012; Buro, 2013; Newman, et al., 2010). Geologist interpretations are

commonly known as orebody models which are ultimately used in planning mine complexes.

In the mine planning, scheduling, and optimizing process, the orebody models are

typically discretized into regular sized blocks. This modified model is often referred to as a

block model. For each block in a block model, a geologist will assign an attribute which

represents the amount of a specific material as a proportion by weight. This attribute is known

as the grade of the block. Often, the grade is a percentage. For example, a block that weighs

1000 tonnes and has 15% copper grade will have 150 tonnes of copper. However, some metals,

3

such as gold or platinum, have small amounts of the metal present in a given block. These

metals are typically recorded in grams per tonne. Detailed block models and multi-element

deposits will have many attributes in each block. For example, due to molecular similarities,

gold deposits will often have economical amounts of silver or copper in addition to gold.

Deleterious, or waste, elements are also present. Often copper or gold deposits will have

amounts of sulfides, a common deleterious element, present in each block (Buro, 2013;

Newman, et al., 2010).

Once a geologist provides a block model interpretation, mine planners must decide how

to extract the valuable material at a profit for the company. The first decision a mine planner

must make is what kind of mine to establish. There are two basic types of mines: open pit and

underground mines. Open pit mines are developed in places where valuable material is close to

the surface of the earth. They proceed with extracting material at the surface of the earth and

continue to work their way deeper until all the valuable material has been extracted. With open

pit mining, large amounts of waste material must be removed to gain access to valuable material.

In underground mining, on the other hand, is where valuable materials typically extracted

through tunnels or shafts. This allows access to valuable material deeper in the earth and reduces

the amount of waste material required to be removed if open pit mining techniques were used

(Blechynden, Gardener, & Mossop, 2012; Newman, et al., 2010). This thesis will focus on open

pit mining. Open pit mining accounts for the largest number of mines in the world and the

industry partners we are working with have offered their deposit data, all of which is set up as

an open pit mining operation.

The next decision the mine planner must make is how to move the material through the

mining complex. In open pit mining, a mining complex typically has four main locations. The

first main location is the physical mine itself. The mine is where the material (blocks) is being

extracted from the earth. Once extracted, the blocks are transported to one of three destination

locations: a waste dump, a processor, or a stockpile. The decision on where to send each block

is based largely on the grade of the block. Blocks sent to the waste dump typically lack sufficient

quantities of valuable material to be processed and sold at any kind of advantage for the

company. Once it arrives at the waste dump, block typically will never be rehandled, or moved,

again. The second destination is a processor. This destination processes, or transforms, the

4

material to something more useful. The output of a processor typically has the ability to be sold

at a market or to a contracted firm. In a copper or gold mine, there are two types of processors.

The first processor type is a plant. A plant will attempt to grind ore material into a fine powder

and use a separation technique, such as flotation, to separate waste material from the valuable

material. The flotation happens in a modified water solution where the properties of the water

are chemically adjusted in such a way where valuable material will stick to air bubbles and float

to the top of a flotation cell while waste will settle to the bottom. The second processor type is

a leach pad where acid is used to “leach” away valuable material from waste material. The third

possible destination for extracted material is a stockpile. Stockpiles are areas that companies

set aside to store material until there is an opportunity to process it. Stockpiling material is due

to limitations in the amount of material that can be processed or a desire to blend material at a

processor to increase the advantage to a company. Blending material is processing two units of

different material at the same time to get the average of the material’s properties. An outline of

the basic mining complex and the main destinations can be seen in Figure 1 below (Blechynden,

Gardener, & Mossop, 2012).

Figure 1: An example of a mining complex

As mentioned above, a processor attempts to separate the waste material from the

valuable material. This separation is not perfect. For each processor, there is an associated

value called the recovery, which represents a percentage that is the amount of valuable material

that is saved, or recovered, from each block. For example, if a plant has a 90% recovery, a block

with 150 tonnes of copper will yield 135 tonnes of the copper out of the plant. The other 15

tonnes will be discarded. Compare this with a leach pad that has a 50% recovery; that same

block will yield 75 tonnes of copper if processed at the leach pad. A processor’s recovery is

5

typically a function of the amount of material and/or the grade of the material sent to the

processor. Therefore, the recovery of a processor is often non-linear and can vary on a variety

of factors (Blechynden, Gardener, & Mossop, 2012).

There are two main constraints in an open pit mining complex. The first are the capacity

constraints. Equipment, safety, and other limitations exist which restrict the amount of material

that can be moved or processed at each part of the complex in a given period. A period is a unit

of time, typically a year, that a mine complex is operated. Capacity constraints take a few forms.

Mining capacity is the amount of material that can be extracted from the mine in a period.

Processing capacity is the amount of material that can be sent to a specific processor in a period.

Stockpiling capacity is the amount of material that can be stored in a stockpile. While mining

and processing capacities are calculated on a per period basis, the stockpile capacity is the upper

limit on the amount of material that can be stored there at any given time. The sum of all the

material is carried over period to period until it is rehandled, or moved again – in this case from

the stockpile to the processor (Newman, et al., 2010).

In addition to capacity constraints, precedence constraints exist in open pit mining

complexes, sometimes called slope constraints in the literature. In open pit mining when

scheduling with a block model, for a given block, the block directly above and blocks adjacent

to the directly above block must be extracted before the given block can be. An example of this

can be seen in Figure 2 below.

Figure 2: A 2D schematic of blocks that must be removed to access block 𝑏

As can be seen in Figure 2, the blocks identified as the Overlying blocks set 𝕆𝑏 (blocks

highlighted in dark grey) must be extracted in the same period or in an earlier period before

6

Block 𝑏 (the block highlighted in light grey) can be extracted. Note that we will use slopes of

45° in the examples in this thesis. However, slopes may take a variety of angles for geotechnical

or other safety reasons. It is these precedence constraints which often make optimizing mining

complexes quite long and complicated (Newman, et al., 2010).

1.2 Mining Complex Economic Evaluation

After core holes have been extracted and before a company decides to establish a mining

complex, the company will conduct a feasibility study to determine the economic value of the

deposit and complex. One part of the feasibility study is to schedule material movement in the

mining complex, which is what the formulation and the solution method in this thesis can be

applied to. Planners will attempt to maximize this economic value over the course of the life of

mine (LOM). The LOM is the number of periods from the beginning of development of the

project until there remains no more material in the deposit or stockpiles that can be processed at

an advantage for the company. Note that the LOM and economic evaluation of a mine will

typically not include the exploration and core hole drilling costs and procedures. However, the

economic evaluation will often include other capital expenditures such as the construction of

plants and the purchase of equipment. The exception to including capital expenditures is if a

new mine is being developed in the vicinity of an already established mining complex where

equipment can simply be moved or be used in multiple complexes (Albach, 1967; Blechynden,

Gardener, & Mossop, 2012; Gentry, 1988).

Most mining projects calculate the economic advantage with a criterion known as net

present value (NPV). Broadly speaking, the NPV is the value of a project. An NPV with a

positive value indicates that the projected earnings generated by a project or an investment

exceed the anticipated costs when taking the value of money over time into consideration. The

NPV of a mining project is calculated as follows:

1) Calculate the cash flow (CF) of each period for the entire LOM. The CF of a period is

typically the value of the material sold, minus the costs incurred to process and transport

the material.

7

2) Determine the discount rate of the project. This discount rate is a percentage that is

associated with a project which encompasses the risk of a project and the rate of return

from other possible investments. It is typically determined from other similar projects

and the state of the economy.

3) For each period, determine the present value (PV) of the CF for each period. The PV is

calculated by dividing the CF of the period by one plus the discount rate raised to the

number of periods from the first period. I.e. PVt = CFt (1 + discount rate)
t⁄ . This can

be viewed as the CF at time 𝑡 has a value of PVt today.

4) Sum all the PV’s for each period to get the NPV of the project: i.e. NPV = ∑ PV𝑡𝑡∈𝕋

Other evaluation methods can be used, but NPV is the most common and widely understood in

the industry (Gitman & Joehnk, 1999; Investopedia, 2016; Whittle, 2014).

The factors that go into determining the value of a CF in a period are the costs associated

with extracting, moving, and processing material from a mine to the three destinations and the

value of the material sold on the market. Recall we are operating an open pit mine and there are

precedence constrains associated with extracting a block. Looking back to Figure 2 on page 5,

imagine if block 𝑏 was the only block that had valuable material in it and all the overlying blocks

in the set 𝕆𝑏 were waste material. We must extract and incur the cost associated with removing

the 8 blocks in the overlying block 𝕆𝑏 set in addition to the cost of extracting, processing, and

subsequently selling block 𝑏. We only see revenue in the period after block 𝑏 is processed and

then sold.

Mining projects are quite a high risk investment. These projects typically have a few

unique attributes compared to other investment opportunities. They are:

 Capital intensive projects – they have a high initial starting cost.

 Non-renewable resource – Once the material is extracted, it is gone from the Earth. Any

infrastructure built is typically abandoned or sold at a significant loss if the mine is in a

remote location.

8

 Long pre-production periods – it may take several periods for unwanted material to be

extracted to get to valuable material. In addition, infrastructure, such as roads and plants,

may need to be built to handle the material.

 The indestructibility of the material – gold mined in Quebec will be essentially the same

as gold from Nevada or Ghana. Therefore, one can seek either cheaper deposits

elsewhere or look in low risk locations.

The combination of these factors makes mining a high risk environment for investors.

Therefore, proper planning and evaluation is critical for investors and companies to make

informed decisions about mining projects (Gentry, 1988; The Northern Miner, 1990; Whittle,

2014).

1.3 Optimization of Open Pit Mining Complexes

Traditionally, mining complexes were scheduled both locally and iteratively. We say

locally because each location and element in the mining complex was independently scheduled.

This is akin to a greedy heuristic and can lead to a sub-optimal global solution. Recall we are

attempting to maximize NPV. An example of the local scheduling technique can be to maximize

recovery of a processor. Maximizing the recovery of a processor ensures the most amount of

valuable material is sent to the market (least amount of valuable material is wasted). However,

this greedy local decision to maximize recovery may lead to a sub-optimal decision. Typically,

a higher recovery reduces the rate at which material can be processed in the plant (i.e. the

processor operator must lower processing capacity), but increasing the processing capacity of

the processor and lowering recovery, may increase the overall NPV. A mining complex is

considered to be scheduled iteratively because a small change in one part of the mining complex

can affect the value of the complex as a whole. Using an example as an illustration, let there be

a plant engineer who decided to plan for the processing capacity to be 𝑃𝐶1. If we change the

processing capacity from 𝑃𝐶1 to a lower value 𝑃𝐶2, the engineers who manage extraction

scheduling must adjust the amount of material they send to the processor; by sending some

material as waste, by opening a stockpile to store excess material, by reducing the mining

capacity, or by changing which blocks are mined in each period. Once the schedule is updated,

9

planners may then decide to make another small adjustment to the mining complex parameters

and then the process repeats (Gentry, 1988; The Northern Miner, 1990; Whittle, 2014).

Because of this local and iterative process for determining a schedule to extract material

over the life of mine, we desire a global way to optimize these complexes. That is, we desire a

way to simultaneously optimize production scheduling. This led to the development of linear

and integer programs to represent the production schedule. These mathematical formulations

have the ability to choose the best extraction scheduling decisions. These methods were first

explored in the 1960’s (Albach, 1967; Gershon, 1983; Gholamnejad & Osanloo, 2007;

Bienstock & Zuckerberg, 2010; Busnach, Mehrez, & Sinuany-Stern, 1985). Due to the wide

range of mines in the world and how basic concepts are applicable across many deposits and

complexes, mine complex optimization is a well-studied field (Newman, et al., 2010). Some of

the most modern methods do incorporate what is known as metal uncertainty.

1.4 Metal Uncertainty and the Simulation of Orebody Models

Because mining complexes are developed based on the information obtained from core

hole drilling, the interpretation of what is in the deposit can have a significant impact on the

valuation of a mining complex. Traditionally, mining complexes were optimized using a

singular orebody model. This model was developed using an interpolation method, such as

kriging (Krige, 1951), between the known data points, the core holes. These traditional methods

smooth the transition of grades between the core holes. This incorrect estimation will lead to

an inaccurate and high-risk evaluation of a deposit (Ravenscroft, 1992; Godoy M. , 2003;

Dimitrakopoulos, 2015; Consuegra & Dimitrakopoulos, 2009; Dimitrakopoulos, Farrelly, &

Godoy, 2002; Osterholt, 2005).

Geostatistical or stochastic conditional simulation is an estimation tool which generate

models of a deposit based on the same core hole data used in traditional methods. When one

generates multiple simulated orebody models, they take on two properties (Dimitrakopoulos,

2015):

10

1. Simulations reproduce the available information of the core holes. That is, the

simulations will reproduce similar information that is already represented by the core

holes.

2. Each simulation is an equiprobable representations of the deposit.

Examples of simulation methods that are used are direct block simulation, Gaussian simulation

methods, and high order simulation methods (Benndorf & Dimitrakopoulos, 2004; Godoy &

Dimitrakopoulos, 2004). Authors who optimize using simulated orebody models typically find

a higher NPV and a lower risk schedule when compared to using a single orebody model. For

example, Goodfellow & Dimitrakopoulos (2016) use a stochastic integer program (SIP) to

represent the mining complex. This model was able to achieve an NPV 6.6% higher than the

deterministic model. In addition, less risk is associated with the amount of material sent to

various destinations. Another example is by Dimitrakopoulos, Farrelly, and Godoy (2002) who

perform a risk analysis on a mine. Their analysis shows that when using simulated orebodies,

the deterministically scheduled mine has only 15% chance of reaching the original NPV.

Additionally, the authors conclude that the expected NPV of the schedule is 25% below what is

originally projected using the deterministic model. A third case study is where Godoy (2003)

completes a risk analysis for a mine in Australia. Results of using simulated orebodies yields a

28% increase in NPV compared to the deterministic solution and a 3% chance of the stochastic

schedule failing to meet yearly production targets, as opposed to the 13% for the deterministic

schedule. The author notes that the increase in NPV is due to the optimizer’s ability to extract

more valuable material earlier in the life of mine.

This thesis will utilize simulated orebody models in the optimization process.

1.5 Objectives of the Research

In this thesis, we refer to a recent and more general mathematical formulation

representing a mining complex – the act of moving raw material from the earth to selling refined

material on the market – presented by Goodfellow & Dimitrakopoulos (2016). In order to solve

this problem, we also refer to their simulated annealing approach using several neighborhoods

to determine a schedule of events through the life of the project. In their implementation, the

11

neighborhood used at each iteration is selected among a set of different neighborhoods

according to a distribution specified a priori. The main contribution in this thesis is to improve

this solution approach by using the adaptive principles introduced in Pisinger & Ropke (2007)

and in Lamghari & Dimitrakopoulos (2015) to select the neighborhood. The motivation for this

contribution is twofold. Indeed, it allows for a different mining complex to be resolved without

having a user to determine a priori the distribution for selecting the neighborhood, and also for

a mine planner who may not be familiar with metaheuristic principles, to use this method to

develop a schedule for their mining complex. The numerical results show an average increase

of 1 to 2% of the objective function value for a single element deposits. For a larger copper-

gold deposit, we observe an average increase of 10% for the objective function value and a

reduction of about 40% of the solution time.

The remainder of this thesis is organized as follows. The simulated annealing approach

and the principles of adaptive metaheuristics are summarized in Chapter 2. Chapter 3 includes

the general mathematical formulation of the model introduced in Goodfellow &

Dimitrakopoulos (2016). It also includes their implementation of the simulated annealing and

the details of the adaptive selection of the neighborhood. The numerical results are summarized

in Chapter 4. Two single element deposit problems including copper and gold, respectively, and

a larger problem including a copper-gold deposit are solved in order to illustrate the advantage

of using the adaptive approach. Chapter 5 includes conclusions.

12

2 Review of Metaheuristics and Adaptive Metaheuristics

“Metaheuristics are solution methods that orchestrate an interaction between local

improvement procedures and higher level strategies to create a process capable of escaping from

local optima and performing a robust search of a solution space” (Gendreau & Potvin, 2010).

That is, metaheuristics are a set of algorithms which allow for broad search of solutions, even

solutions that are non-improving, to discover high quality solutions. Metaheuristics are a useful

tool within the field of discrete optimization that allow for large, complex, and difficult

optimization problems, such as the one addressed in this thesis, to be solved in a reasonable

amount of time. Solving discrete optimization problems in an exact way may take orders of

magnitude longer to solve than using a metaheuristic to reach a good or acceptable solution to

the problem. Adaptive metaheuristics aim to increase the generalization of a metaheuristic

method for a given problem. This may allow for a user who is untrained in the implementation

of a metaheuristic to use the method to find a solution to the problem.

This section outlines the metaheuristics used by Goodfellow & Dimitrakopoulos (2016),

specifically simulated annealing (SA). In the solution approach of Goodfellow &

Dimitrakopoulos (2016), they use a strategy to optimize downstream (processor) variables after

SA. This strategy relies on the population based procedures differential evolution (DE) and

particle swarm optimization (PSO). Since we are not modifying these strategies in this thesis,

we will not describe their implementation further except for a brief comment on their use in the

solving method outlined by Goodfellow & Dimitrakopoulos (2016) in section 3.2.

2.1 Simulated Annealing

Simulated annealing (SA) is a local neighborhood search metaheuristic allowing to

modify the current solution even with one deteriorating the objective the objective function

value in order to move away from a local optimal solution. Kirkpatrick, et al. (1994) and Cerny

(1985) were the first to propose solving combinatorial problems with this approach used in

thermodynamics to search for an equilibrium. To ease this presentation, suppose that we are

solving the following problem of maximizing a function 𝑓(𝑥) over a feasible domain 𝑋 ∈ ℝ𝑛.

At each iteration, a new solution 𝑥′ is randomly selected in the neighborhood of the current

13

solution 𝑥. A neighbor solution 𝑥′ is typically similar to the current solution, with a few simple

modifications to the current solution 𝑥. The SA algorithm then allows to compare the quality

of the selected solution against the quality of the current solution. If the selected solution is

better (i.e. 𝑓(𝑥′) > 𝑓(𝑥)), then it becomes the current solution. Otherwise (if the selected

solution 𝑥′ is worse), 𝑥′ can replace the current solution 𝑥 even if Δ𝑓 = 𝑓(𝑥′) − 𝑓(𝑥) ≤ 0

according to a function which calculates the probability as a function of Δ𝑓 and the number of

iterations already completed; i.e. 𝑥′ replaces 𝑥 with the acceptance probability function 𝑒Δ𝑓 τ⁄

where 𝜏 (the temperature parameter) decreases with the number of iterations completed.

In this variant, we complete several iterations 𝑛𝑖𝑡𝑒𝑟 with the same temperature 𝜏. Note

that a special case is to modify the temperature at each iteration (i.e. 𝑛𝑖𝑡𝑒𝑟 ← 1). The

temperature 𝜏 is modified with the parameter 𝜀 (i.e. at 𝜏 ← 𝜏 ∙ 𝜀), where 0 < 𝜀 < 1. Two

stopping criteria are used. The first one is specified in terms of the number of iterations the SA

is ran (𝑖𝑡𝑒𝑟𝑀𝑎𝑥). The second is one is specified in by counting the number of global best updates

(𝑖𝑙𝑖𝑚𝑖𝑡
𝑔𝑏𝑢

), that is, the number of times a new global best solution is found. A variant of the

procedure can be summarized in Algorithm 1.

Algorithm 1: Simulated Annealing

Initialization:
 Select an initial solution 𝑥0 ∈ 𝑋 and an initial temperature 𝜏0
 Let 𝑖𝑡𝑒𝑟 ← 0; 𝜏 ← 𝜏0
 Let 𝑥 ← 𝑥0; 𝑥∗ ← 𝑥0
While stopping criteria is not met
 𝑖𝑔𝑏𝑢 ← 0
 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
 Repeat 𝑛𝑖𝑡𝑒𝑟 times with the same temperature 𝜏
 Generate randomly 𝑥′ ∈ 𝑁(𝑥)
 Δ𝑓 = 𝑓(𝑥′) − 𝑓(𝑥)
 If Δ𝑓 > 0
 𝑥 ← 𝑥′
 Else generate a random number 𝑟 ∈ [0,1]

 If 𝑟 < 𝑒Δ𝑓 𝜏⁄
 𝑥 ← 𝑥′
 If 𝑓(𝑥′) > 𝑓(𝑥∗)
 𝑥∗ ← 𝑥′ ; 𝑖𝑔𝑏𝑢 ← 𝑖𝑔𝑏𝑢 + 1
 𝜏 ← 𝜀 ∙ 𝜏

 If 𝑖𝑡𝑒𝑟 > 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 or 𝑖
𝑔𝑏𝑢 > 𝑖𝑙𝑖𝑚𝑖𝑡

𝑔𝑏𝑢

 Return 𝑥∗

14

In order to improve the quality of the solution generated with any local neighborhood

search procedure, it should be combined with a diversification strategy to search more

extensively the feasible domain of the problem. Many such strategies exist, and they are most

of the time specific to the problem.

2.2 Adaptive Neighborhood Search Techniques

One of the difficulties in using metaheuristics in optimization is that often the methods

require parameter tuning by the user to increase the quality of the final solution. One promising

area of research is utilizing adaptive neighborhood search (ANS) to help guide the search of the

solution space. ANS is especially useful when using a metaheuristic which has a local search

framework, such as in the case of SA.

In this section, we analyze the step “generate randomly 𝑥′ ∈ 𝑁(𝑥)” in the SA procedure

in Algorithm 1. Moreover, consider the case where 𝑁(𝑥) is specified using a set of

neighborhoods {𝑛1, 𝑛2, … , 𝑛|ℕ|}. Note that in the SA implementation of Goodfellow &

Dimitrakopoulos (2016), the number of neighborhoods |ℕ| is equal to three. Before generating

𝑥′, we first select randomly the neighborhood to be used. In Goodfellow & Dimitrakopoulos

(2016), this section is made by a probability distribution specified a priori and manually tuned

by the authors. In the proposed contribution in this thesis, this probability distribution is made

adaptive. The probability of selecting neighborhood 𝑛𝑖 is proportional to its efficiency in the

solving process. This approach follows the adaptive large neighborhood search (ALNS)

approach outline by Pisinger & Ropke (2007).

The selection process is summarized as follows: At each iteration to generate a neighbor

solution 𝑥′, first a neighborhood 𝑛𝑖 must be selected. 𝑛𝑖 is selected by an associated probability

𝑝𝑖 for all the 𝑖 ∈ ℕ. The same values of the probabilities 𝑝𝑖, ∀𝑖 ∈ ℕ should be used for the same

number of (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iterations in the local search method. At each

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iteration, the probabilities 𝑝𝑖 should be updated based on a score parameter

𝑠𝑖 for each neighborhood 𝑛𝑖. The scores should be proportional to the efficiency of the

15

neighborhood. Therefore, larger scores will represent neighborhoods that have a better impact

on the quality of the solution.

To update the scores after (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iterations, there is a scalar 𝜅𝑖 indicating

the number of times neighborhood 𝑛𝑖 is selected. In addition, the value of 𝜋(𝑛𝑖) represents the

efficiency of neighborhood 𝑛𝑖. The values are updated each time neighborhood 𝑛𝑖 is selected

as follows:

𝜅𝑖 ← 𝜅𝑖 + 1 (1)

𝜋(𝑛𝑖) ← 𝜋(𝑛𝑖) + 𝜎 (2)

where 𝜎 represents the value of the efficiency of 𝑛𝑖. We will calculate the efficiency 𝜎 as a

function of the change in the objective function value. After completing (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝

iterations, the scores 𝑠𝑖 are updated as follows:

 𝑠𝑖 ← {
(1 − 𝛼)𝑠𝑖 + 𝛼 (

𝜋(𝑛𝑖)

𝜅𝑖
) If 𝜅𝑖 > 0

𝑠𝑖 Otherwise
 (3)

and the probabilities 𝑝𝑖 become

𝑝𝑖 ←
𝑠𝑖

∑ 𝑠𝑘𝑘∈ℕ
 ∀𝑖 ∈ ℕ (4)

Take note that in (3), if a neighborhood is not called, the score remains the same for the

next (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iterations. There is also the introduction of a parameter 𝛼 ∈ [0,1]

which controls the emphasis on historical scores versus new scores. That is, if the parameter 𝛼

is set close to 1, more emphasis is placed on newer information versus an 𝛼 closer to 0 which

places emphasis on historical information.

In the following chapter, we introduce the model proposed in Goodfellow &

Dimitrakopoulos (2016) for an open pit mining complex and their specific implementation of

SA the authors use to solve it. Then, this thesis introduces a more sophisticated implementation

of the adaptive approach for selecting the neighborhood at each iteration based on the notation

in Lamghari & Dimitrakopoulos (2016) to specify the value of 𝜎.

16

An outline of the method described above can be seen here in Algorithm 2.

Algorithm 2: Basic adaptive framework as posed by Pisinger & Ropke (2007)

GENERATE 𝑥 # Initial Solution 𝑥
SET 𝑥∗ ← 𝑥 # Best Solution 𝑥∗
𝑖 ← 0
WHILE Stopping criteria is not met
 𝑖 ← 1 + 1
 If 𝑖 mod (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 = 0

Update the probabilities 𝑝𝑖 based on scores 𝑠𝑖
Set 𝑠𝑖 ← 0∀𝑖 ∈ ℕ

 Choose a neighborhood 𝑛𝑖 probabilities 𝑝𝑖
 GENERATE x′ from 𝑥 using the neighborhood 𝑛𝑖
 IF 𝑥′ is accepted
 𝑥 ← 𝑥′
 UPDATE 𝜋(𝑛𝑖) based on success
 ELSE
 UPDATE 𝜋(𝑛𝑖) based on failure
 IF 𝑥 is a better solution than 𝑥∗
 𝑥∗ ← 𝑥
RETURN 𝑥∗

17

3 Implementation of Adaptive Neighborhood Choice in

Simulated Annealing to Optimize the Stochastic Mining

Complex

This section introduces an overview of the model (section 3.1) and the solver (section

3.2) presented by Goodfellow & Dimitrakopoulos (2016). The third part of the section goes

over the contribution to include an adaptive neighborhood search in the solving method (section

3.3). This adaptive neighborhood search used in this contribution is based on the work of

Lamghari & Dimitrakopoulos (2015).

Recall that a naïve way of scheduling a mining complex is to discretize a deposit into a

collection of blocks and to assign a dollar value to each block; this value is calculated by the

grade of the block, the recovery value of the processor, costs incurred in processing, and the

market value of the metal. This approach to valuing a complex is inaccurate when applying it

to a mine in practice. For example, recall the basic mining complex from section 1.1. Each

processor has a different recovery and this difference in recovery will result in a different value

of the block being mined. Therefore, we must use a model to analyze the value of a mining

complex referring to its outputs rather than to each block value.

3.1 Stochastic Integer Model of an Open Pit Mining Complex

Goodfellow & Dimitrakopoulos (2016) utilize a two-stage stochastic optimization

model. The formulation, replicated here, is written to be more holistic than models that appear

elsewhere in the literature, such as those explored in section 1.3. That is, they aim the model to

be able to be applied to a wide variety of deposits with more production constraints. In addition,

the model is better at valuing the output of the processor outputs each period rather than the

value of each block sent through a processor.

Goodfellow & Dimitrakopoulos (2016) view the mining complex as a directed graph

𝒢(𝒩,𝒜) to keep track of the flow of material through the mining complex. The nodes 𝒩 are

classified into three sub-groups:

1. 𝒞: Clusters of mined material, i.e. blocks, that have similar attributes.

18

2. 𝒮: Nodes associated with stockpiles.

3. 𝒫: Nodes associated with processors.

Note that using this notation, a waste dump can also be viewed as a processor that has a recovery

of zero, i.e. no value is gained from a “waste dump processor.” Moreover, a cluster 𝒞 is used

to group together similar blocks of material in the mine. The authors group material into clusters

using a k means++ clustering algorithm. K means++ was used because it generally produces

stable clusters relative to regular k means clustering algorithm and a much more diverse cluster

sets due to the weighting in the algorithm (Arthur & Vassilvitskii, 2007). The authors operate

under the assumption that if two distinct blocks in separate parts of the mine have similar

attributes (such as grade of the material or the amount of deleterious elements in a block), the

two distinct blocks will have the same destination in 𝒮 or 𝒫. For example, if two blocks have a

grade of zero then both blocks will potentially be sent to the same destination – the waste dump.

Therefore, we will be making the decision for extracting a block referring to the blocks and its

destination is made by referring to its cluster.

In the following notation, material will flow from node 𝑖 ∈ 𝒩 to 𝑗 ∈ 𝒩 (material flows

from node 𝑖 to node 𝑗). 𝒪(𝑖) represents the set of nodes that can receive materials from node 𝑖.

ℐ(𝑗) is the set of nodes that can send material to node 𝑗.

Indices and sets of the model are:

 𝑚 ∈ 𝕄 is a set of mines within a complex.

 𝑏 ∈ 𝔹𝑚 is the set of blocks within a mine 𝑚 ∈ 𝕄.

 𝑡 ∈ 𝕋 is a set of time periods, typically years, where |𝕋| represens the life of mine

of the complex.

 𝑢 ∈ 𝕆𝑏 is the set of blocks overlaying block 𝑏 ∈ 𝔹𝑚.

 𝑠 ∈ 𝕊 is a set of scenarios that represent a realization (simulation) of all sources

of uncertainty. Specifically, for this model it is the uncertainty of the metal grade

in a block that is accounted for (metal uncertainty). When using simulated

orebody models, each scenario is equiprobable (Dimitrakopoulos, 2015).

19

 𝑝 ∈ ℙ represent primary attributes, fundamental variables of interest sent through

the model (such as metal content, tonnage). These attributes are typically linked

directly with the attributes of the simulation and are always linearly transferred

between parts of the mining complex. The value of primary attribute 𝑝 from 𝑖 at

time 𝑡 under period 𝑠 is denoted as 𝑣𝑝,𝑖,𝑡,𝑠. These attributes often originate at

mines 𝑚 ∈ 𝕄 and may flow through the mining complex to the final products.

The value of the attribute recovered after treatment is denoted by 𝑟𝑝,𝑖,𝑡,𝑠.

 ℎ ∈ ℍ represents hereditary attributes. These attributes may be described as

linear and non-linear functions of primary attributes, 𝑓ℎ,𝑖(𝑣𝑝,𝑖,𝑡,𝑠), of the primary

attributes. The value of the hereditary attribute ℎ at location 𝑖 at time 𝑡 under

scenario 𝑠 is denoted as 𝑣ℎ,𝑖,𝑡,𝑠.

The parameters of the model are defined as follows:

 𝜑ℎ,𝑖,𝑡 ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋 represents the discounted revenue or expense

associated with hereditary attribute ℎ at a given node 𝑖 in time 𝑡. Typically, with

a given economic discount rate 𝑑𝑒, 𝜑ℎ,𝑖,𝑡 =
𝜑ℎ,𝑖,1

(1+𝑑𝑒)𝑡
.

 𝑈ℎ,𝑖,𝑡 and 𝐿ℎ,𝑖,𝑡 ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋 represent the upper and lower

limits, or target, of attribute ℎ at destination 𝑖 in period 𝑡. For example, this

could be a processor target.

 𝑐ℎ,𝑖,𝑡
+ and 𝑐ℎ,𝑖,𝑡

− ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋 represent the cost (penalty) of deviation

from a target (above and below the upper and lower targets respectively) for

hereditary attribute ℎ, at destination 𝑖, in period 𝑡. Here, the authors use a

separate discount rate, called the risk discount rate 𝑑𝑟, to calculate the value of

𝑐ℎ,𝑖,𝑡
+ and 𝑐ℎ,𝑖,𝑡

− . That is, 𝑐ℎ,𝑖,𝑡
+ =

𝑐ℎ,𝑖,1
+

(1+𝑑𝑟)𝑡
 and 𝑐ℎ,𝑖,𝑡

− =
𝑐ℎ,𝑖,1
−

(1+𝑑𝑟)𝑡
.

 𝛽𝑝,𝑏,𝑠 ∀𝑝 ∈ ℙ, 𝑠 ∈ 𝕊, 𝑏 ∈ 𝔹𝑚 represents the amount of primary attribute 𝑝 is in

block 𝑏 under scenario 𝑠.

 𝜃𝑏,𝑐,𝑠 ∀𝑏 ∈ 𝔹𝑚, 𝑚 ∈ 𝕄, 𝑐 ∈ 𝒞, 𝑠 ∈ 𝕊 is a pre-processed parameter to place a

block into a cluster. For a given cluster 𝑐, if simulation 𝑠 of block 𝑏 is

20

determined to be a member of cluster 𝑐, 𝜃𝑏,𝑐,𝑠 = 1, otherwise 𝜃𝑏,𝑐,𝑠 = 0. It is

understood that ∑ 𝜃𝑏,𝑐,𝑠𝑐∈𝒞 = 1 ∀𝑏 ∈ 𝔹𝑚, 𝑚 ∈ 𝕄, 𝑠 ∈ 𝕊

In addition to the a priori parameters defined above, there is also a transformation

function:

 𝑓ℎ,𝑖(∗) ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 is a function for the hereditary attribute. This

function is defined a priori. What this function does is take a value of a primary

attribute 𝑣𝑝,𝑖,𝑡,𝑠 and convert it into a hereditary attribute 𝑣ℎ,𝑖,𝑡,𝑠. An example is

recovery of metal from a processor.

Goodfellow & Dimitrakopoulos (2016) define three main decision variables in their

solution vector. The solution vector is Φ = {𝒙, 𝒚, 𝒛} where 𝒙, 𝒚, 𝒛 represent the decision

variables in the stochastic integer program. The variables are defined as follows:

1. Extraction sequence decision variables (𝒙 ∈ Φ): 𝑥𝑏,𝑡 is the extraction sequence

decision variable where 1 represents mining block 𝑏 in period 𝑡, 0 otherwise.

2. Destination policy decision variables (𝒛 ∈ Φ): 𝑧𝑐,𝑗,𝑡 is a binary variable where

blocks in cluster 𝑐 are sent to destination 𝑗 in period 𝑡

3. Processing stream decision variables (𝒚 ∈ Φ): 𝑦𝑖,𝑗,𝑡,𝑠 is a continuous variable

between 0 and 1 indicating the proportion of material sent from node 𝑖 to

destination node 𝑗 in period 𝑡 under scenario (realization) 𝑠

Goodfellow & Dimitrakopoulos (2016) also define the following as variables whose values

depend on both the realization of the metal content and the values of the three variables above.

 𝑣𝑝,𝑖,𝑡,𝑠 ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 represent the value of the primary

attribute 𝑝 at a given node 𝑖 in time 𝑡 under scenario 𝑠.

 𝑣ℎ,𝑖,𝑡,𝑠 ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 represents the value of the hereditary

attribute ℎ at a given node 𝑖 in time 𝑡 under scenario 𝑠.

 𝜑𝑝,𝑐,𝑡,𝑠∀𝑝 ∈ ℙ, 𝑐 ∈ 𝒞, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 is the quantity of the value attribute 𝑝 in

cluster 𝑐 at time 𝑡 under scenario 𝑠.

21

 𝑑ℎ,𝑖,𝑡,𝑠
+ and 𝑑ℎ,𝑖,𝑡,𝑠

− ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 represent the value of

deviation from a target (above and below the upper and lower targets

respectively) for hereditary attribute ℎ, at destination 𝑖, in period 𝑡, when

scenario 𝑠 occurs.

 𝑟𝑝,𝑖,𝑡,𝑠 ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒮, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 is a variable to mass balance primary

attributes in the mining sequence. This can be viewed as the percent of recovery.

The model is defined as follows:

𝑔(Φ) = max {
1

|𝕊|
∑ ∑∑∑𝜑ℎ,𝑖,𝑡 ∙ 𝑣ℎ,𝑖,𝑡,𝑠

𝑠∈𝕊ℎ∈ℍ𝑡∈𝕋𝑖∈𝒮∪𝒫∪𝕄

−
1

|𝕊|
∑ ∑∑∑(𝑐ℎ,𝑖,𝑡

+ ∙ 𝑑ℎ,𝑖,𝑡,𝑠
+ + 𝑐ℎ,𝑖,𝑡

− ∙ 𝑑ℎ,𝑖,𝑡,𝑠
−)

𝑠∈𝕊ℎ∈ℍ𝑡∈𝕋𝑖∈𝒮∪𝒫∪𝕄

}

(5)

∑𝑥𝑏,𝑡 ≤ 1 ∀𝑏 ∈ 𝔹

𝑡∈𝕋

 (6)

𝑥𝑏,𝑡 ≤ ∑ 𝑥𝑢,𝑡′

𝑡

𝑡′=1

 ∀𝑏 ∈ 𝔹𝑚, 𝑢 ∈ 𝕆𝑏 , 𝑡 ∈ 𝕋 (7)

𝑣𝑝,𝑚,𝑡,𝑠 = ∑ 𝛽𝑝,𝑏,𝑠 ∙ 𝑥𝑏,𝑡
𝑏∈𝔹𝑚

 ∀𝑚 ∈ 𝕄, 𝑝 ∈ ℙ, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (8)

𝛾𝑝,𝑐,𝑡,𝑠 = ∑ 𝜃𝑏,𝑐,𝑠 ∙ 𝛽𝑝,𝑏,𝑠 ∙ 𝑥𝑏,𝑡
𝑏∈𝔹𝑚

 ∀𝑚 ∈ 𝕄, 𝑝 ∈ ℙ, 𝑐 ∈ 𝒞, 𝑠 ∈ 𝕊 (9)

∑ 𝑧𝑐,𝑗,𝑡
𝑗∈𝒪(𝑐)

= 1 ∀𝑐 ∈ 𝒞, 𝑡 ∈ 𝕋 (10)

𝑟𝑝,𝑖,𝑡,𝑠 = 1 ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒮, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (11)

𝑟𝑝,𝑖,𝑡,𝑠 = 𝑓ℎ,𝑖(𝑣𝑝,𝑖,𝑡,𝑠) ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (12)

22

∑ 𝑦𝑖,𝑗,𝑡,𝑠 ≤ 1 ∀𝑖 ∈ 𝒮, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊

𝑗∈𝒪(𝑖)

 (13)

∑ 𝑦𝑖,𝑗,𝑡,𝑠 = 1 ∀𝑖 ∈ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊

𝑗∈𝒪(𝑖)

 (14)

𝑣𝑝,𝑗,(𝑡+1),𝑠 = ∑ 𝑟𝑝,𝑖,𝑡,𝑠 ∙ 𝑣𝑝,𝑖,𝑡,𝑠 ∙ 𝑦𝑖,𝑗,𝑡,𝑠
𝑖∈(ℐ(𝑗)\𝒞)

+ ∑ 𝜑𝑝,𝑐,(𝑡+1),𝑠 ∙ 𝑧𝑐,𝑗,(𝑡+1)
𝑖∈(ℐ(𝑗)∩𝒞)

+ (𝑣𝑝,𝑗,𝑡,𝑠 ∙ (1 − ∑ 𝑦𝑗,𝑘,𝑡,𝑠
𝑘∈𝒪(𝑗)

)) ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊

(15)

𝑣ℎ,𝑖,𝑡,𝑠 = 𝑣𝑝,𝑖,𝑡,𝑠 ∙ (1 − ∑ 𝑦𝑖,𝑗,𝑡,𝑠
𝑗∈𝒪(𝑖)

) ∀𝑖 ∈ 𝒮, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (16)

𝑣ℎ,𝑖,𝑡,𝑠 = 𝑓ℎ,𝑖(𝑣𝑝,𝑖,𝑡,𝑠) ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (17)

𝑣ℎ,𝑖,𝑡,𝑠 − 𝑑ℎ,𝑖,𝑡,𝑠
+ ≤ 𝑈ℎ,𝑖,𝑡 ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (18)

𝑣ℎ,𝑖,𝑡,𝑠 + 𝑑ℎ,𝑖,𝑡,𝑠
− ≥ 𝐿ℎ,𝑖,𝑡 ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (19)

𝑥𝑏,𝑡 ∈ {0,1} ∀𝑏 ∈ 𝔹𝑚, 𝑚 ∈ 𝕄, 𝑡 ∈ 𝕋 (20)

𝑧𝑐,𝑗,𝑡 ∈ {0,1} ∀𝑐 ∈ 𝒞, 𝑗 ∈ 𝒪(𝑐), 𝑡 ∈ 𝕋 (21)

𝑦𝑖,𝑗,𝑡,𝑠 ∈ [0,1] ∀𝑖 ∈ 𝒮 ∪ 𝒫, 𝑗 ∈ 𝒪(𝑖), 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (22)

𝜑𝑝,𝑐,𝑡,𝑠 ≥ 0 ∀𝑝 ∈ ℙ, 𝑐 ∈ 𝒞, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (23)

𝑟𝑝,𝑖,𝑡,𝑠 ∈ [0,1] ∀𝑝 ∈ 𝔹𝑚, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (24)

𝑣𝑝,𝑖,𝑡,𝑠 ≥ 0 ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (25)

𝑣ℎ,𝑖,𝑡,𝑠 ∈ ℝ ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (26)

𝑑ℎ,𝑖,𝑡,𝑠
+ , 𝑑ℎ,𝑖,𝑡,𝑠

− ≥ 0 ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (27)

23

The first function is the objective function of the model, defined in (5). The first part of

the objective function represents the discounted revenues and costs associated with the mining

complex operation. The second part of the objective function represent the risk discounted

penalties for deviations from production targets. Recall that the scenarios all have an equal

probability of occurring.

The following three constraints are the mine extraction constraints. Constraints (6)

represent the reserve constraint; i.e., a single block 𝑏 can only be mined in one period 𝑡.

Constraints (7) are called the block access constraints. Recall from Figure 2 in section 1.1 that

the blocks in the overlying set 𝕆𝑏 must be removed before or including the period 𝑡 which we

desire to extract block 𝑏. Constraints (8) convert the values of the primary attribute of blocks

extracted in period 𝑡 into the variable 𝑣𝑝,𝑚,𝑡,𝑠 using 𝛽𝑝,𝑏,𝑠.

Constraints (9) and (10) are destination policy constraints. Constraints (9) are similar to

the mine extraction constraints (8) as they determine the quantity of the material in a specific

cluster and scenario. Constraints (10) ensures that a given cluster is sent to only one destination

in a given period.

Constrains (11) to (17) are processing flow stream constraints. Constraints (11)

represent the recovery of material at stockpile nodes in the mining complex. We typically

assume that the recovery from a stockpile is always 100%. Constraints (12) represents the

recovery of material from a processor node 𝑖. Recall from Section 1.1 that a processor’s grade-

recovery curve 𝑓ℎ,𝑖(∗) can be non-linear. Constraints (13) and (14) are similar to the mining

reserve constraint. Constraints (13) ensure that the proportion material sent from stockpile

nodes are appropriately balanced. Constraints (14) ensure that the proportion of material sent

from processing nodes are appropriately balanced. Constraints (15) represent the mass-

balancing of material from mines to stockpiles and/or processors. Constraints (16) are used to

calculate and represent the amount of material left in the stockpiles at end of the year. Finally,

constraints (17) represent the amount of a primary attribute after applying some kind of

transformation, such as those at a processor.

Constraints (18) and (19) represent the capacity constraints of the material at a given

node 𝑖. Constraints (18) represent the upper bound of the equipment’s ability to handle

24

material ℎ at location 𝑖 in period 𝑡 and allow the deviation 𝑑ℎ,𝑖,𝑡,𝑠
+ if the amount is exceeded.

Conversely, constraint (19) represents a lower bound of the value (amount) of the attribute ℎ

the equipment is to handle at location 𝑖 in period 𝑡 and allow the deviation 𝑑ℎ,𝑖,𝑡,𝑠
− if the

amount is less than the limit.

Finally, (20) to (27) represent variable definitions of the model. Constraints (20) and

(21) are the binary decisions of the mining decision and destination decision, respectively.

Constraint (22) is the continuous decision of the processing stream decision.

3.2 Solution Method

Optimizing the open pit mining complexes with metal uncertainty can be challenging to

solve using exact methods. Often metaheuristics are used to optimize these mining complexes.

Viewing a more simplified model, Lamghari & Dimitrakopoulos (2012) note the open pit

mining problems can be seen as Precedence-Constrained Knapsack Problem (PCKP). The

authors note the model is NP-Hard. Often, as mentioned by Lamghari & Dimitrakopoulos

(2012) and in Goodfellow & Dimitrakopoulos (2016), metaheuristic methods employed to attain

good solutions in a reasonable amount of time. Goodfellow & Dimitrakopoulos (2016) selected

simulated annealing (SA) as the base method to optimize their new formulation. This method is

selected because of previous success using SA to optimize extraction sequences of mining

complexes. Referring to the SA specified in Algorithm 1, the neighborhood 𝑁(Φ), where the

neighbor solution is selected, is partitioned into three neighborhoods 𝑛𝑥, 𝑛𝑦, or 𝑛𝑧 is obtained

by modifying a variable 𝑥𝑏,𝑡 ∈ 𝒙, 𝑦𝑖,𝑗,𝑡,𝑠 ∈ 𝒚, or 𝑧𝑐,𝑗,𝑡 ∈ 𝒛, respectively. At each iteration, one of

the neighborhoods is selected randomly according to a probability distribution specified a priori

by the user. The neighbor solution is obtained by modifying the current solution using a

perturbation specific to the neighborhood. The perturbations are formally defined as follows:

1. Extraction sequence perturbations (𝒙 ∈ Φ): a block 𝑏 ∈ 𝔹𝑚 is randomly selected.

A different period of extraction is then selected randomly for extracting 𝑏. There is

a probability of changing the period to “not mining” block 𝑏. Moreover, some

predecessor or successor blocks’ periods, if block 𝑏 is moved to an earlier or later

period, respectively, may be adjusted to satisfy the slope constraint, constraints (7).

25

For example, if a block is moved from period 3 to period 2 and all the predecessor

blocks are mined in period 1, the predecessor blocks will not change. However, if

all the predecessor blocks are in period 3, then all the predecessor blocks would have

to be adjusted to maintain slope constraints. Also bear in mind this will subsequently

effect destination and processing stream decisions.

2. Destination policy perturbations (𝒛 ∈ Φ): a cluster’s destination decision variable is

randomly selected and sent to a different destination, if possible. A random variable

𝑧𝑐,𝑗,𝑡 is selected from the sub-vector 𝒛 ∈ Φ and then a new 𝑗 ∈ 𝒪(𝑐) is selected.

3. Processing stream perturbations (𝒚 ∈ Φ): a processing stream variable 𝑦𝑖,𝑗,𝑡,𝑠 is

randomly selected and its value is modified using a random normal number; i.e.

𝑦𝑖,𝑗,𝑡,𝑠 ← 𝑁 (𝑦𝑖,𝑗,𝑡,𝑠, 0.1) + 𝑦𝑖,𝑗,𝑡,𝑠. The authors note that the variance of the normal

distribution is sufficiently small to allow both local and global exploration. After the

selection and modification of the selected 𝑦𝑖,𝑗,𝑡,𝑠 variable, the associated 𝑦𝑖,𝑗′,𝑡,𝑠 ∀𝑗
′ ∈

𝒪(𝑗) are normalized based on equation (13) or (14).

Once the neighborhood is selected and the current solution Φ is modified to Φ′ and the

probability of accepting a neighbor solution Φ′ is defined as follows:

𝑃(𝑔(Φ), 𝑔(Φ′), 𝛿𝑖) = {
1 If Φ′is an improving solution

𝑒
𝑔(Φ′)−𝑔(Φ)

𝛿𝑖 Otherwise
 (28)

Where 𝑔(Φ) and 𝑔(Φ′) are the objective function values before and after the perturbation,

respectively, and 𝛿𝑖 is the annealing temperature for a neighborhood 𝑖. In Goodfellow &

Dimitrakopoulos (2016), rather than use a single value 𝜏 in the SA method (where the singular

temperature for all neighborhoods and is cooled over time), the method will have three

temperature values, one for each neighborhood. Some neighborhoods will have a much larger

impact on the objective function value when selected. Therefore, having a constant temperature

for all the neighborhoods could cause those neighborhoods with a smaller impact to be almost

always accepted while the greater impact neighborhoods will only accept neighbor solutions

which improve the current solution. So, the authors introduce a starting acceptance probability

𝜌 instead of a starting temperature. The value 𝜌 can be thought of as a “target probability of

26

acceptance” for a given set of iterations. The value 𝜌 is identical for all neighborhoods and 𝜌

(where 0 < 𝜌 ≤ 1) is cooled by a parameter 𝜀 (where 0 < 𝜀 < 1) every 𝑛𝑖𝑡𝑒𝑟 iterations. The

temperature 𝛿𝑖 is calibrated using the reduction in objective function over the past 𝑛𝑖𝑡𝑒𝑟

iterations (that is, we only consider worsening solutions). The temperature 𝛿𝑖 is updated for

each neighborhood is updated such as in (29).

𝛿𝑖 ←
|Δ𝑔|̅̅ ̅̅ ̅̅

ln(𝜌)
 (29)

where |Δ𝑔|̅̅ ̅̅ ̅̅ is the average reduction in objective function over the past iterations and ln(𝜌) is

the natural logarithm for 𝜌. The authors note that this better reflects the current search space

rather than the search space when the SA algorithm began.

The stopping criteria for the SA is either when the global best update counter, 𝑘𝑔𝑏𝑢,

reaches a specified count or the number of iterations of the SA, 𝑘, reaches a specified number,

whichever comes first. After the simulated annealing is complete, the method checks to see if

the method found a new global best solution. If no new best solution was found, the method

terminates and returns the global best solution. However, if a new global best solution is found,

then the SA method is reset and executed again with Φ𝑔 as an initial solution. Each time a SA

is executed to diversify the solution, we call this a global iteration (GI).

In Goodfellow & Dimitrakopoulos (2016), the authors develop three variations of their

solver to optimize their model. The first method is the basic SA that was outlined in this section.

It uses SA to optimize over all three variable sets. The other two variations to the solver use SA

before applying a second metaheuristic to optimize the values of both the 𝒚 and 𝒛 variables,

known collectively as downstream variables. These variations incorporate either differential

evolution (DE) or particle swarm optimization (PSO) after each SA is executed. Recall that DE

and PSO are better suited for continuous variables and also recall that 𝒚 is a continuous variable.

Note that in these two variations, the DE and PSO do not modify the extraction sequence

variables, i.e. the variables in 𝑥.

Most population based metaheuristics have been problematic in mining problems

because of decisions which have to be made surrounding repair operators in the precedence

27

constraints. Goodfellow & Dimitrakopoulos (2016) use DE and PSO only for downstream

variables as to avoid such problems. The authors also note that as such, PSO and DE are

sensitive to the initial sequences and destination policies generated for the population.

When Goodfellow & Dimitrakopoulos utilize DE (Storn & Price, 1997) in their

algorithm, they see an approximate increase of 2.57% in the NPV of the resulting solution. The

authors also note that while we gain 2.57% on the NPV, it takes approximately 2.9 times as long

to complete the algorithm using the same criteria then just executing SA alone.

When Goodfellow & Dimitrakopoulos (2016) utilize particle swarm optimization (PSO)

in their optimization process. PSO is another population based metaheuristic outlined in Khan

& Niemann-Delius (2014). While PSO does achieve an increase in objective function value

(1.91% when compared to SA alone), it does take on average 2.4 times as long to achieve the

same stopping criteria.

The diversification method used in Goodfellow & Dimitrakopoulos (2016) is to re-run

the selected variation (SA Only, SA+DE, or SA+PSO) of the method beginning from the global

best solution found in the previous iteration. That is, the method takes the global best result 𝑥∗

and re-initializes SA (with or without either PSO or DE) from the initial parameters, resetting

the temperature and stopping criteria, using the previous found 𝑥∗ as an initial solution in

Algorithm 1. Here, we refer to each time the SA is reset and run again as a global iteration GI.

An example of this can be seen in Algorithm 3.

Algorithm 3: Iterating Simulated Annealing many times

Initialization:
 Select an initial solution 𝑥0 ∈ 𝑋
 Let 𝑥 ← 𝑥0; 𝑥∗ ← 𝑥0
While stopping criteria is not met
 𝑥 ← 𝑥∗
 𝑁𝑒𝑤𝐺𝐵𝑆 ← False
 While stopping criteria is not met from Algorithm 1
 Execute SA Similar to Algorithm 1
 If a new global best solution (GBS) is found in Algorithm 1
 𝑁𝑒𝑤𝐺𝐵𝑆 ←True
 If not (𝑁𝑒𝑤𝐺𝐵𝑆)
 Return 𝑥∗

28

This method of diversification allows for the stopping criteria being the number of global

best updates to be an acceptable choice because the individual SAs start with the global best

solution. if further intensification is possible then it can be picked up on the next global iteration.

otherwise, it allows for the method to work away from a local maximum every 𝑖𝑔𝑏𝑢 iterations.

A general algorithm can be seen in Algorithm 4:

Algorithm 4: Simulated annealing as developed by Goodfellow & Dimitrakopoulos (2016)

Build Φ ← {𝒙, 𝒚, 𝒛} ∀ 𝑖 ∈ 𝑁, generate an initial solution
Set Φ𝑔 ← Φ where Φ𝑔 is the global best solution
While True
 Φ ← Φ𝑔
 𝑁𝑒𝑤𝐺𝐵𝑆 ← False, keeps track of a new global best solution (GBS)
 𝑘, 𝑘𝑔𝑏𝑢 ← 0, keeps track of iterations 𝑖 and number of times there is
 A new GBS 𝑖𝑔𝑏𝑢
 Print “Beginning SA”, we begin a global iteration here (GI)
 While Stopping Criteria is not Met
 Select a neighborhood 𝒙, 𝒚, or 𝒛 with a fixed probability
 Select a variable in the selected neighborhood to modify
 Store the modified solution as Φ′
 If 𝑔(Φ′) ≥ 𝑔(Φ)
 Φ ← Φ′
 If 𝑔(Φ′) ≥ 𝑔(Φ𝑔)

 Φ𝑔 ← Φ′, 𝑁𝑒𝑤𝐺𝐵𝑆 ← True, 𝑘𝑔𝑏𝑢 ← 𝑘𝑔𝑏𝑢 + 1

 Else If 𝑃(𝑔(Φ), 𝑔(Φ′), 𝛿𝑖) ≥ 𝑈{0,1}, Accepted by APF
 Φ ← Φ′
 If needed, cool the temperature 𝜌 and 𝛿𝑖
 𝑘 ← 𝑘 + 1
 If 𝑈𝑠𝑒𝐷𝐸
 Execute DE on downstream variables
 Else If 𝑈𝑠𝑒𝑃𝑆𝑂
 Execute PSO on downstream variables
 If Not(𝑁𝑒𝑤𝐺𝐵𝑆)
 Return Φ𝑔

3.3 Implementing an Adaptive Neighborhood Selection Procedure

into the Mine Complex Optimization Procedure

This section will introduce an adaptive procedure for selecting neighborhoods. This

section uses the method outlined by Lamghari & Dimitrakopoulos (2015) and is an expansion

on the method introduced in section 2.2. More explicitly, we will expand on the assignment of

29

the value of 𝜎 from Algorithm 2 on page 16 The value assigned to the measure is a function of

the change of the objective function value (Δ𝑔 = 𝑔(Φ′) − 𝑔(Φ)). We will modify the scores

differently depending on the result of the SA; accept outright, conditionally accept, or reject.

Using these scores, we will apply a roulette-style selection method for selecting the

neighborhood to search.

Lamghari & Dimitrakopoulos (2015) use a method to adaptivey select heurstics in their

method for solving mining complexes. In addition, they draw from methods outlined by Burke,

et al. (2013) and Drake, et al. (2012). They update the scores of the neighborhoods as follows.

As initially discussed in section 2.2, the neighborhoods are grouped together in such a way

where a small perturbation, or called a low-level heuristic here, is applied to a current solution

to get a neighbor solution. The authors denote the low-level heuristic by ℎ𝑗 . The notation

Δ𝑔(ℎ𝑗) is the difference in the value of the current solution and the neighbor generated using

ℎ𝑗 . The authors also use the time as part of their measures, where 𝑇(ℎ𝑗) as the time (in seconds)

it takes for a low-level heuristic to be applied. Note that it may take a while for some low-level

heuristics to apply and repair a solution. The authors also introduce two unique measures to

keep track of the low-level heuristics, 𝜋1(ℎ𝑗) and 𝜋2(ℎ𝑗). Both measures are set initially to

zero. The authors update the measures based on whether the neighbor solution is an improving

solution or not. Therefore, they have two cases, which are as follows: Suppose that if a heuristic

creates a neighbor solution with an improving objective function, we then increase 𝜋1(ℎ𝑗) by

Δ𝑔(ℎ𝑗) 𝑇(ℎ𝑗)⁄ . Conversely, suppose that if a heuristic creates a neighbor solution with a non-

improving objective function, we then increase 𝜋2(ℎ𝑗) by 1 |Δ𝑔(ℎ𝑗)|𝑇(ℎ𝑗)⁄ .

Measure incriment
cases

{

 𝜋1(ℎ𝑗) ← 𝜋1(ℎ𝑗) +

Δ𝑔(ℎ𝑗)

𝑇(ℎ𝑗)
If Δ𝑔(ℎ𝑗) ≥ 0

𝜋2(ℎ𝑗) ← 𝜋2(ℎ𝑗) +
1

|Δ𝑔(ℎ𝑗)|𝑇(ℎ𝑗)
Otherwise

 (30)

If we analyze both cases in (30) for incrementing the measure, the first one (i.e. if Δ𝑔(ℎ𝑗) > 0)

is straightforward. The better the increase in objective function value and the less time it takes

to find an update, the greater the measure. The second case (i.e. “otherwise”) emphasizes

30

minimal deterioration to the objective function value. That is, the smaller the reduction in the

objective function, and the shorter the time to find a solution, the greater the measure.

In this thesis, we modify (30) to better match the cases in SA and remove the time value

from the measures. The decision to remove this was based on the fact the neighbor solution

creation time was inconsistent even within a neighborhood. The following notation also

redefines the “low-level heuristic ℎ𝑗” as neighborhood 𝑛𝑖. Recall that in SA, there are three

cases that can occur when deciding to accept the neighbor solution: improving, worse solution

but accepting, and rejecting the neighbor solution. Therefore, we have added a third case into

(30) to reflect the three outcomes of SA. That is, the measure increment cases are defined as

follows:

Measure incriment
cases for ANS in SA

{

𝜋1(𝑛𝑖) ← 𝜋1(𝑛𝑖) + Δ𝑔(𝑛𝑖) if Δ𝑔(𝑛𝑖) ≥ 0

𝜋1(𝑛𝑖) ← 𝜋1(𝑛𝑖) +
1

|Δ𝑔(𝑛𝑖)|
if Δ𝑔(𝑛𝑖) < 0 and accepted

𝜋2(𝑛𝑖) ← 𝜋2(𝑛𝑖) +
1

|Δ𝑔(𝑛𝑖)|
Otherwise

 (31)

In both Lamghari & Dimitrakopoulos (2015) and this thesis, the values of the score

modification 𝜋1(𝑛𝑖) and 𝜋2(𝑛𝑖) (associated with the success and failure of using 𝑛𝑖,

respectively) are specified as follows: at the beginning of the period of (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝

iterations, the value of 𝜋1(𝑛𝑖) and 𝜋2(𝑛𝑖) are initialized to zero. In this thesis specifically, each

time a neighbor solution in neighborhood 𝑛𝑖 is selected, in addition to incrementing 𝜅(𝑛𝑖), one

of three cases will happen:

1. Suppose that using neighborhood 𝑛𝑖 leads to an improvement of the current

solution. That is, we outright accept the neighbor solution. Then 𝜋1(𝑛𝑖) is

increased by |𝛥𝑔|.

2. Suppose that using neighborhood 𝑛𝑖 leads to a non-improving solution, Δ𝑔 < 0,

but the SA method accepts the neighbor solution to be the current solution based

on the APF, then 𝜋1(𝑛𝑖) is increased by 1/|Δ𝑔|.

31

3. Finally suppose that using neighborhood 𝑛𝑖 leads to a non-improving solution,

Δ𝑔 < 0, and keeps the current solution (rejects the neighbor solution due to the

APF), then 𝜋2(𝑛𝑖) is increased by 1/|Δ𝑔|.

At each (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, the modification of score 𝑠𝑖 associated with each

neighborhood 𝑛𝑖 , ∀𝑖 ∈ ℕ (where ℕ is the set of neighborhoods allowed) is similar to the process

implemented in Lamghari & Dimitrakopoulos (2015). To be more explicit, assume that the

scores are updated after each period of (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations of SA. Let 𝜅(𝑛𝑖) the

number of times that 𝑛𝑖 is selected during the (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations. The term to modify

the score 𝑠𝑖 is specified in equation (32) here.

𝑠𝑖 ← {
(1 − 𝛼)𝑠𝑖 + 𝛼 (

 𝛽 𝜋1(𝑛𝑖) + (1 − 𝛽)𝜋2(𝑛𝑖)

𝜅(𝑛𝑖)
) If 𝜅(𝑛𝑖) > 0

𝑠𝑖 Otherwise

 (32)

In equation (32), 𝛼 ∈ [0,1] is a static parameter that the user can define to specify how

much emphasis to place on newer information (that is 𝛼 being closer to 1) versus on historical

information (that is 𝛼 being closer to 0). The variable 𝜅(𝑛𝑖) is the number of times a

neighborhood 𝑛𝑖 is called. If 𝜅(𝑛𝑖) = 0, then 𝑠𝑖 ← 𝑠𝑖. After (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, the

score 𝑠𝑖 of neighborhood 𝑛𝑖 is updated according to equation (32). The self-adjusted parameter

𝛽 ∈ [0,1] is the impact of the successful versus unsuccessful neighborhoods. The 𝛼 remains

static in the method and 𝛽 changes based on the last update to the local best solution. If:

1. A new local best is found in the last (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, 𝛽 is set to 1.

2. No new local best solution is found in the (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, 𝛽 is

reduced by 0.1 until it reaches zero. That is 𝛽 ← max[𝛽 − 0.1,0.0].

The count is reset to zero each time the scores 𝑠𝑖 are updated. Keeping in mind that 𝜋1(𝑛𝑖)

represents a heuristic’s “success” score and 𝜋2(𝑛𝑖) represents a heuristic’s “failure” score, let

us look at this sub-part of the equation (32) above:

𝛽 𝜋1(𝑛𝑖) + (1 − 𝛽)𝜋2(𝑛𝑖) (33)

32

We can see in (33) above that when 𝛽 is closer to 1, more weight is placed on the successful

heuristics. That is, we can view this as more emphasis is placed on intensifying the search of

neighborhoods using recently successful heuristics. As 𝛽 is reduced and ultimately reaches

zero, more weight is placed on searching neighborhoods of the unsuccessful heuristics.

However, these heuristics are the ones which would have not reduced the overall objective

function value by a large amount if the neighbor solutions were accepted (that is, unsuccessful

heuristic closer to zero). This emphasis placed on better quality but failing heuristics can be

viewed as a diversification method.

After the value of 𝛽 has been updated, the method then updates the scores for each

neighborhood by equation (32). If the count 𝜅(𝑛𝑖) is equal to zero, i.e. 𝑛𝑖 was not called in the

last (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, then the score remains unchanged. Once the scores have

been updated, the method updates the probabilities 𝑝𝑗 for the next (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝

iterations using a roulette-style method, such as in (34).

𝑝𝑗 ←
𝑠𝑗

∑ 𝑠𝑘𝑘∈ℕ
 ∀𝑗 ∈ ℕ (34)

The ANS in SA then proceeds as follows: at the beginning of each global iteration, the

initial probabilities in scores are set to be equally probable. Here, this means the initial

probability for all the neighborhoods is set to 33% each. After each perturbation in the SA, we

will modify either 𝜋1(𝑛𝑖) or 𝜋2(𝑛𝑖) for the selected neighborhood as depicted above. After

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, the score will be updated as equation (32) depicts and the

probabilities will be updated similarly to (34). Continue solving the SA until the stopping

criteria is met; this stopping criteria remains identical to the previous method. After SA is

finished, DE or PSO can be executed if desired. As with Goodfellow & Dimitrakopoulos

(2016), we will continue to diversify until no further global best solution can be found. While

a detailed pseudocode is outlined in the Appendix B, placing the ANS method into Algorithm

4 gives us Algorithm 5. Lines in bold were added to Algorithm 4 to highlight the differences.

33

Algorithm 5: Simulated annealing with an adaptive neighborhood search method for

optimizing stochastic mining complexes

Build Φ ← {𝒙, 𝒚, 𝒛} ∀ 𝑖 ∈ 𝑁, generate an initial solution
Set Φ𝑔 ← Φ where Φ𝑔 is the global best solution
While True
 𝑁𝑒𝑤𝐺𝐵𝑆 ← False, keeps track of a new global best solution (GBS)
 𝑘, 𝑘𝑔𝑏𝑢 ← 0, keeps track of iterations 𝑖 and number of times there is
 A new GBS 𝑖𝑔𝑏𝑢
 𝑹𝒆𝒔𝒆𝒕𝑩𝒆𝒕𝒂 ← False, keeps track if we need to set beta to 1.0

 𝒑𝟏, 𝒑𝟐, 𝒑𝟑 ← (𝟏 𝟑⁄), 𝜷 ← 𝟎. 𝟓, 𝜶 ← 𝟎. 𝟕

 Print “Beginning SA”, we begin a global iteration here (GI)
 While Stopping Criteria is not Met
 If 𝒊 mod (𝑺𝒄𝒐𝒓𝒆𝑼𝒑𝒅𝒂𝒕𝒆)𝒔𝒌𝒊𝒑 = 0

 If 𝑹𝒆𝒔𝒆𝒕𝑩𝒆𝒕𝒂
 𝜷 ← 𝟏. 𝟎, 𝑹𝒆𝒔𝒆𝒕𝑩𝒆𝒕𝒂 ← False
 Else
 𝜷 ← 𝐦𝐚𝐱[𝟎. 𝟎, 𝜷 − 𝟎. 𝟏]
 Update the scores of all the neighborhoods by Eq (32)
 𝝅𝟏(𝒏𝒊), 𝝅𝟐(𝒏𝒊), 𝜿(𝒏𝒊) ← 𝟎 for all the neighborhoods
 Update probabilities 𝒑𝒊 for the neighborhoods by Eq (34)
 Select a neighborhood 𝒙, 𝒚, or 𝒛 with adapted probabilities 𝒑𝒊
 Select a variable in the selected neighborhood 𝑛𝑖 to modify
 Store the modified solution as Φ′
 If 𝑔(Φ′) ≥ 𝑔(Φ)
 Φ ← Φ′
 𝝅𝟏(𝒏𝒊) ← 𝝅𝟏(𝒏𝒊) + 𝚫𝒈
 𝑹𝒆𝒔𝒆𝒕𝑩𝒆𝒕𝒂 ← True
 If 𝑔(Φ′) ≥ 𝑔(Φ𝑔)
 Φ𝑔 ← Φ′, 𝑁𝑒𝑤𝐺𝐵𝑆, 𝑘𝑔𝑏𝑢 ← 𝑘𝑔𝑏𝑢 + 1
 Else If 𝑃(𝑔(Φ), 𝑔(Φ′), 𝛿𝑖) ≥ 𝑈{0,1}, Accepted by APF
 Φ ← Φ′

 𝝅𝟏(𝒏𝒊) ← 𝝅𝟏(𝒏𝒊) +
𝟏
|𝚫𝒈|⁄

 Else

 𝝅𝟐(𝒏𝒊) ← 𝝅𝟐(𝒏𝒊) +
𝟏
|𝚫𝒈|⁄

 If needed, cool the temperatures 𝜌 and 𝛿𝑖
 𝑘 ← 𝑘 + 1
 If 𝑈𝑠𝑒𝐷𝐸
 Execute DE on downstream variables
 Else If 𝑈𝑠𝑒𝑃𝑆𝑂
 Execute PSO on downstream variables
 If Not(𝑁𝑒𝑤𝐺𝐵𝑆)
 Return Φ𝑔 ← Φ

34

4 Numerical Results

To test the method outlined in this thesis, we ran the method on three deposits. There

were two single element deposits, one copper and one gold, and one multi-element deposit, a

copper-gold deposit. The copper-gold deposit is the same deposit used by Goodfellow &

Dimitrakopoulos (2016) to test their model and method.

4.1 Copper-Gold Deposit

The following figures and tables represent the copper-gold deposit. Figure 3 summarizes

the mine complex materials and the processing options. In short, there are two elements in the

deposit, copper (Cu) and gold (Au). There are four processing options (one mill and three leach

pads), two waste dump options, and a stockpile to feed only one processor. The mine contains

three material groups: sulfides, transition, and oxides. They are separated into these groups

because of the chemistry constraints on the materials in the mine. In order to respect the

chemistry requirements at the sulfide heap leach (processor), the sulfide and transition material

groups are both separated into two different material types based on being above or below 0.2%

copper. The oxide materials are classified as ore or waste based on chemistry.

With the exception of the waste dumps, all processors have variable grade-recovery

curves that are based on the average grade of the incoming material in a period. In general, the

higher the grade of the material into the processor, the higher the recovery of the processor.

All cost-related parameters in Table 1 and Table 2 are expressed relative to the mining

cost for confidentiality purposes. Table 2 summarizes the constraints and penalty costs used in

the models. A risk discount rate of 10% is used to penalize the deviations from the production

capacities, and ensures that riskier material is deferred to later periods when more information

is available (such as economic, geological, processing, etc.). The mine model contains 34,057

blocks that may be scheduled over 22 years. Also, 25 simulated orebody models (scenarios)

were used in the SIP, similar to what has been done in Goodfellow & Dimitrakopoulos (2016).

The simulations were provided by the industry partners and were generated using a sequential

conditional simulation method. Note that 25 realizations are sufficient to capture metal

uncertainty as previous studies, such as that of Consuegra & Dimitrakopoulos (2009), show that

35

after about 15 realizations, stochastic schedules converge to a stable final physical schedule and

stable production forecasts. Finally, a slope angle of 45◦ is used.

Unless otherwise noted, the copper-gold deposit uses a “starter schedule.” It was

developed using a deterministic scheduler. The “starter schedule” is an initial extraction

sequence. That is, it is a file which denotes a period each block is extracted thus giving an initial

solution to the 𝑥𝑏,𝑡 variables.

Figure 3: Definition of material types at the copper-gold mine, along with the various

destinations (Goodfellow & Dimitrakopoulos, 2016)

Table 1: Economic Parameters of the Model

Economic Parameters Value

Mining Cost* $1.00/t

Sulfide Mill* $11.30/t

Sulfide Heap Leach* $2.98/t

Transition heap leach* $2.15/t

Oxide heap leach* $2.06/t

Gold Price $1480/oz.

Copper Price $2.88/lb.

* For confidentiality, this parameter is normalized to the mining cost

36

Economic discount rate 7%

Risk discount rate 10%

Table 2: Lower and upper bound on constraints (18) and (19) and associated penalties

Constraint 𝐿ℎ,𝑖,𝑡 (× 10
6) 𝑈ℎ,𝑖,𝑡 (× 10

6) 𝑐ℎ,𝑖,1
− ($/tonne) 𝑐ℎ,𝑖,1

+ ($/tonne)

Mine Capacity 25.0 10

Stockpile Capacity 1.0 20

Sulfide Mill

Capacity

2.8 3.0 50 50

Sulfide Heap Leach

Capacity

7.8 8.0 10 25

4.2 Single Element Deposits

This section outlines the single element copper and single element gold deposit used in

this thesis. Both deposits are very similar to each other, varying only in the financial parameters

and the grade of the material.

These deposits have a very simple chemistry as compared to the copper-gold deposit.

Figure 4 summarizes the mine complex’s processing options. Both deposits will have the same

processing stream decisions and parameters.

There is one mine, two processor options each with a stockpile, and a waste dump. Each

stockpile sends material to a unique processor. In both complex problems, the processors have

a fixed recovery with the Plant at 90% and the Leach Pad at 55%.

Figure 4: Illustration of the complexes associated with the single element deposits

37

All cost-related parameters in Table 3 (Copper) and Table 5 (Gold) are expressed relative

to their mining cost for confidentiality purposes. The elements of Table 4 (Copper) and Table 6

(Gold) summarize the constraints and penalty costs used in the models. The copper mine model

contains 28,154 blocks, the LOM is 16 years, and a slope angle of 45° is used. The gold mine

model contains 48,821 blocks, the LOM is 14 years, and a slope angle of 45° is used.

For both deposits, there are 20 orebody simulations (scenarios) which were used in the

solution method. The full 20 realizations were utilized as they are what was provided by the

industry partners. There was no initial extraction schedule used for these deposits. That is, the

extraction sequence was decided completely in the method by setting the initial 𝒙 variables to

“not mined.”

Table 3: Economic Parameters of the Model (Copper)

Economic Parameters Value (Copper)

Mining Cost† $1.00/t

Leach Pad† $3.21/t

Plant† $12.86/t

Mine to Processor (any) † $0.43/t

Mine to Stockpile (any) † $0.43/t

Stockpile to Processor† $0.64/t

Processor to Market† $944.83/t

Metal Price $2.00/lb.

Economic discount rate 10%

Risk discount rate 10%

† For confidentiality, this parameter is normalized to the mining cost

38

Table 4: Lower and upper bound on constraints (18) and (19) and penalties (Copper)

Constraint 𝐿ℎ,𝑖,𝑡 (× 10
6) 𝑈ℎ,𝑖,𝑡 (× 10

6) 𝑐ℎ,𝑖,1
− ($/tonne) 𝑐ℎ,𝑖,1

+ ($/tonne)

Mine Capacity 20.9 10

Stockpile 1 Capacity 1,139.1 10

Stockpile 2 Capacity 629.1 10

Leach Pad Capacity 2.0 10

Plant Capacity 3.6 10

Table 5: Economic Parameters of the Model (Gold)

Economic Parameters Value (Gold)

Mining Cost‡ $1.00/t

Leach Pad† $8.57/t

Plant† $21.43/t

Mine to Processor (any) † $0.43/t

Mine to Stockpile (any) † $0.36/t

Stockpile to Processor† $0.64/t

Processor to Market† $0.29/g

Metal Price $42.86/g

Economic discount rate 10%

Risk discount rate 10%

‡ For confidentiality, this parameter is normalized to the mining cost

39

Table 6: Lower and upper bound on constraints (18) and (19) and penalties (Gold)

Constraint 𝐿ℎ,𝑖,𝑡 (× 10
6) 𝑈ℎ,𝑖,𝑡 (× 10

6) 𝑐ℎ,𝑖,1
− ($/tonne) 𝑐ℎ,𝑖,1

+ ($/tonne)

Mine Capacity 21.6 10

Stockpile 1 Capacity 69.8 10

Stockpile 2 Capacity 936.3 10

Leach Pad Capacity 0.2 10

Plant Capacity 3.3 10

4.3 Implementation and Parameters

All the methods were developed in C++ using Visual Studio 2015 Community edition.

The computer used was a commercially available Dell Inspiron 24 7000 Series All-in-One. The

specifications are as follows:

Table 7: Computer Used

Processor Intel® Core™ i7-4710MQ CPU @ 2.50GHz

Processor Cores 4 Cores

RAM 12.0 GB

Operating System Windows 8.1 Enterprise (x64)

40

The parameters for the metaheuristics are as follows:

Table 8: Simulated Annealing Parameters

Initial annealing acceptance probability (𝜌) 0.40§; 0.30

Cooling Factor (𝜀) 0.99

Cooling iterations (𝑛𝑖𝑡𝑒𝑟) 600

Perturbation probability - extraction sequence (𝑝𝑟𝑜𝑏𝑠𝑒𝑞)** 0.30§; 0.50

Perturbation probability - destination policy (𝑝𝑟𝑜𝑏𝑑𝑒𝑠𝑡)†† 0.60§; 0.40

Annealing global best updates before diversification (𝑖𝑔𝑏𝑢) 2,000;

Total annealing iterations before diversification (𝑖𝑡𝑜𝑡𝑎𝑙) 500,000

In the implementation from Goodfellow & Dimitrakopoulos (2016), the SA algorithm is

executed multiple times to diversify the solution. Recall that after each SA that is executed, if a

new global best solution is uncovered, the SA program is reset and then run again. The initial

acceptance probability and the probabilities to select the neighborhood in the first execution of

SA differs from the ones used in the subsequent executions. The probabilities of the first run of

SA are marked with § in Table 9. It is clear that the authors recognize the use of a single set of

parameters for their method is improved by having multiple sets of parameters for different

global iterations. I.e., they are manually adapting their parameters to improve their method. Of

course, this thesis takes the adaptive concept further by adjusting the parameters “on the fly,”

that is, altering the parameters during execution.

Table 9: Adaptive Neighborhood Search Parameters

New information Smoothing (𝛼) 0.70

Initial intensification/diversification decision (𝛽) 0.5

Iterations between score updates (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 See sensitivity analysis

§ Goodfellow & Dimitrakopoulos (2016) use a different set of parameters for the first run of SA to compensate for

the large number of blocks to be moved in the extraction sequence.

** Does not exist in ANS versions

†† Does not exist in ANS versions

41

The values from Table 9 were taking from the work of Lamghari & Dimitrakopoulos (2015).

Using these values, specifically the value of 𝛼, produced better results than the standard version

outlined by Goodfellow & Dimitrakopoulos (2016). The value of 𝛽 is less sensitive to its initial

value because it is a self-adjusted parameter. Furthermore, the method usually found a new

global best solution in the first (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iterations of the SA. Therefore, one can

view the de facto initial value of 𝛽 to be 1. Recall that 𝛽 is set to 1 if there is a new global best

solution found in the last (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iterations.

4.4 Results

The following section is broken down into three tests; Basic Implementation – Simulated

Annealing Only, Using Differential Evolution, and Using a Random Initial Probability. All the

tests use the copper-gold deposit outlined in section 4.1. The single element gold and single

element copper deposit were only tested in the Basic Implementation – Simulated Annealing

Only tests.

4.4.1 Basic Implementation – Simulated Annealing Only

The basic implementation tests were simply executing the SA method posed by

Goodfellow & Dimitrakopoulos (2016) (see Algorithm 4 in section 3.2) and then the SA method

with ANS posed in this thesis (see Algorithm 5 in section 3.3). In the following tables uses

several ANS trials with a sensitivity over different values of (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝. The values

used were 10, 33, 100, 333, and 1000. The ANS begins with each neighborhood having an

equiprobable start. In this case, each neighborhood has a 1/3 chance of being selected. The first

row uses the notation GD SA to indicate the standard SA method outlined by Goodfellow &

Dimitrakopoulos (2016) with the static neighborhood probability parameters from Table 8.

Static refers to the fact the method does not update the probabilities in a single SA. GI stands

for global iteration, or the number of times simulated annealing is reset to diversify the global

best solution. ObjFn refers to the objective function value, with the column marked Avg is the

numerical average and Max is the maximum value found over the trials. For each method, 25

trials were run. The best values in each column are in bold, which is the maximum value for

42

ObjFn (Avg) and ObjFn (Max) columns and the minimum value for GI and Time (s) columns.

All the tables are normalized to the GD SA method for confidentiality purposes.

Table 10: Copper-Gold deposit results

Run Type ObjFn (Avg) ObjFn (Max) GI Time (s)

GD SA 1.0000 1.0181 2.20 4961

ANS 10 1.0209 1.0699 2.72 364

ANS 33 1.0808 1.1074 2.64 564

ANS 100 1.0956 1.1269 2.60 868

ANS 333 1.1010 1.1205 2.60 955

ANS 1000 1.0987 1.1179 2.76 938

 Table 11: Copper deposit results

Run Type ObjFn (Avg) ObjFn (Max) GI Time (s)

GD SA 1.0000 1.0276 2.58 71

ANS 10 0.8911 1.0564 2.36 144

ANS 33 0.7831 1.0480 2.32 207

ANS 100 0.8830 1.0682 2.44 156

ANS 333 0.9762 1.0643 2.34 95

ANS 1000 1.0149 1.0743 2.40 93

Table 12: Gold deposit results

Run Type ObjFn (Avg) ObjFn (Max) GI Time (s)

GD SA 1.0000 1.0087 2.40 1504

ANS 10 0.6635 1.0193 2.00 1700

ANS 33 0.7630 1.0180 2.16 2163

ANS 100 0.8870 1.0165 2.20 2486

ANS 333 1.0122 1.0182 2.12 2328

ANS 1000 1.0071 1.0171 2.20 2092

43

Table 13: Copper-Gold deposit results with no starter schedule

Run Type ObjFn (Avg) ObjFn (Max) GI Time (s)

GD SA 0.8643 0.8996 2.08 1166

ANS 10 0.0036 0.0640 2.32 340

ANS 33 0.3636 0.9008 2.40 713

ANS 100 0.8148 0.9214 2.32 1963

ANS 333 0.8713 0.9246 2.24 1722

ANS 1000 0.8547 0.8913 2.12 1302

Starting with the copper-gold deposit (Table 10), irrespective of the

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value used by the ANS, there is an increase in the objective function value.

We can also see, on average, about a 10% increase in objective function value when a

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value of 333 is used. The average execution time was 955 seconds (about

16 minutes) versus 4,961 seconds (about 1.38 hours) for a static search. Recall that the stopping

criteria for a single SA iteration (a single GI) is the number of global best updates found,

Therefore, it can take a while for the SA to finish in the GD SA. With a reduction of 80% in the

time to execute the method, we can run about five SA with ANS 333 before a single GD SA is

run. With executing these five, we can then choose the schedule with the maximum value. This

thought process leads us to show the maximum objective function value of each method. We

continue to see about a 10% increase in objective function value when comparing to the

maximum value of the static SA, over a 12% increase when comparing to the average value of

the static SA.

To test the replicability of the method, the single element copper and the single element

gold deposits were tested (Table 11 and Table 12, respectively). In the copper deposit (Table

11), we see about a 1% increase, on average, of the objective function using (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝

value of 1000. In those runs, we see an increase in time to solve the method (about a 28%

increase, on average). If we look at the maximum objective function results, we see a 3% to 5%

increase in objective function value across all values of the (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 with the best

coming at a (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value of 1000. In the gold deposit (Table 12), we again see

about a 1% increase, on average, of the objective function using a (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value of

44

333. In those runs, we see an increase in time to solve the method (about a 55% increase, on

average). If we look at the maximum objective function results, we see a 1% increase in

objective function value across all values of the (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 with the best coming at a

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value of 10.

Looking at the results from the copper-gold deposit and the single element deposits, we

see a 10% increase with the former, however, only about a 1% increase with the latter. One of

the differences between the deposits is the use of a starter schedule, with the other differences

being size and the number of downstream decisions. To attempt to account for this, we re-ran

the copper-gold deposit without a starter schedule and posted the results in Table 13. Here we

see under a 1% increase in objective function value with an increase in solving time. If we look

at the schedules with the maximum value, we see an increase of about 2% over the maximum

static schedule. Note that in this test, when (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 is set to a value of 10 and 1000,

there is a reduction in quality with the value of 10 producing a very poor quality schedule.

The source of discrepancy between the use of the starter schedule and not having to use

the starter schedule can be associated with the solver being hampered with having to establish

an initial extraction sequence. That is, decisions around processing streams have little impact

until an initial extraction sequence is discovered. If the method were to apply a change to a

downstream variable, there will be no change in the value of the complex if the associated block

has not been extracted. In addition to the use of a starter schedule, an additional source of the

discrepancy in objective function value improvements between simple single element deposits

and the complicated copper-gold deposit can be associated with how the simple mine will have

significantly less decision variables to manage. Therefore, the methods will begin to converge

on similar solutions

4.4.2 Using Differential Evolution

Due to the success seen in Goodfellow & Dimitrakopoulos (2016) using differential

evolution (DE) to assist in both diversification and solving the downstream variables (𝒚 and 𝒙),

we also implemented differential evolution into the ANS solution method. Recall, after

executing a SA algorithm to its completion, DE is then executed. Each method was executed

10 times. GD SA /w DE is the SA method outlined by Goodfellow & Dimitrakopoulos (2016)

45

with DE. ANS 100 /w DE is the SA method outline in this thesis with ANS and a

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value of 100. After each SA with ANS, a DE is then executed. The copper-

gold deposit used a starter schedule for both trials. The results in Table 14 are normalized to

the objective function value from Table 10’s GD Default SA’s average. This can give us a quick

way to inspect and compare methods.

 Table 14: Copper-Gold Deposit with Differential Evolution

Run Type ObjFn (Avg) ObjFn (Max) GI Time (h)

GD SA /w DE 1.0614 1.0781 18.90 26.23

ANS 100 /w DE 1.1541 1.1651 18.10 24.39

When using DE, ANS on average yields about an 8% increase in objective function value

over the GD SA method and has a reduction of 7% in solving time. When looking back to the

non-DE methods, take note that the increase in objective function value does come at a high

cost in the solving time. As Goodfellow & Dimitrakopoulos (2016) stated, implementing the

population-based DE to solve the mine scheduling problem does increase the computational

time. DE does provide a better method for solving continuous variables, such as the processing

stream (𝒚) variables in the model. This ability to solve the downstream variables to, quite often,

a better solution enables the solution method to find a new global best solution in each global

iteration. Because of finding this new solution there are many more global iterations (GI) that

are executed and as a result, a longer time is required.

Recall the results from Table 10; Here we can see about a 5% increase in objective

function value from the method without DE to using DE, but it takes much longer to find this

increase. Recall that the copper-gold mine is stated to be a real-world mine. The objective

function has a value in the order of 1010, or a deposit with a valuation of a billion dollars. From

a practical, real world perspective, this increase is well “worth it.” That is, the extra time in

whole numbers (about a day to find a solution) is very tolerable for this increase in objective

function. Even if we operate with the procedure of executing several methods and pick the

greatest, we can spend a few weeks to uncover the best solution the method can find.

46

4.4.3 Using a Random Initial Probability

To test the ability of ANS to work out of poor starting situations, tests were executed

which had a random initial probability, noted as RS (Random Start). That is, instead of each

neighborhood beginning with an equiprobable chance of being selected, for the first

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, each neighborhood was given a random probability. This is

noted as ANS 100 /w RS and ANS 1000 /w RS in Table 15. To compare, 25 trials were executed

and averaged for ANS 100 /w RS and ANS 1000 /w RS. To give it a basis for comparison, ANS

100 and ANS 1000 were copied from Table 10. Once again, the results in Table 15 are

normalized to the objective function value from Table 10’s GD SA’s average.

Table 15: Copper-Gold Deposit with Random Start

Run Type ObjFn (Avg) ObjFn (Max) GI Time (s)

ANS 100 1.0956 1.1269 2.60 868

ANS 100 /w RS 1.0638 1.1019 2.60 870

ANS 1000 1.0987 1.1179 2.76 938

ANS 1000 /w RS 0.9952 1.0725 2.24 1642

We see a much better result using equiprobable initial neighborhoods versus random

initial neighborhoods. However, this was anticipated as we would expect the solver to take a

few score updates of the probability to stabilize and find the best combination of scores and

probabilities. Please take note, we still see an increase in the in the objective function over the

base method outlined by Goodfellow & Dimitrakopoulos (2016) when using the random start

for ANS 100 /w RS and an increase for the maximum for both random start methods. Therefore,

even though the quality of random start solutions is not as good as the equiprobable start, the

power of the ANS is able to work through many negative starts.

47

5 Conclusion

This thesis aimed to implement an adaptive neighborhood search based on the work of

Lamghari & Dimitrakopoulos (2015) into a simulated annealing optimization method developed

and implemented by Goodfellow & Dimitrakopoulos (2016). The implementation was

successful in that we found better objective function values often irrespective of the value of the

number of iterations between each score update – (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝. That is, very frequently

we found an improved solution over the static parameters and method outlined by Goodfellow

& Dimitrakopoulos (2016). It was found that the higher values of the (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝

produced the best results in the tests (when (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 was 333 or 1000). This

indicates that the method prefers to have significantly more information before updating the set

of probabilities. We also illustrated that the use of differential evolution in the optimization of

the downstream variables (in addition to SA optimizing all the variables) yields a better result

over both using the static parameters with differential evolution and using simulated annealing

with adaptive neighborhood search without differential evolution. To test the robustness of the

solver, there was the exploration of initializing the test with random neighborhood probabilities,

that is, an unequally probable start. Although, in general the objective function value did not

achieve the same value result versus the adaptive neighborhood search with an equiprobable

start, the adaptive neighborhood search with random initial neighborhood probabilities

outperforms the static methods.

Future reach should look deeper into adapting the stopping criteria in the simulated

annealing method as a function of the size of the problem, rather than manually adjusting the

criteria for the given problem. In addition, implementing, even a rudimentary heuristic, to

establish an initial mining schedule could prove a valuable addition to the solver.

48

6 Bibliography

Albach, H. (1967). Long Range Planning in Open-Pit Mining. Management Science, 13(10), B-

549-B-568.

Arthur, D., & Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. Eighteenth

Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1027-1035). New Orleans:

SIAM.

Benndorf, J., & Dimitrakopoulos, R. (2004). New efficient methods for conditional simulation

of large orebodies. Orebody Modelling and Strategic Mine Planning -- Uncertainty and

Risk Management International Symposium 2004 (pp. 103-109). Perth: The Australasian

Institute of Mining and Metallurgy.

Bienstock, D., & Zuckerberg, M. (2010). Solving LP Relaxations of large scale precedence

constrained problems. In F. Eisenbrand, & F. B. Shepherd, Integer Programming and

Combinatorial Optimization, 14th International Conference, IPCO 2010, Lausanne (pp.

1-14). Berlin: Springer Berlin Heidelberg.

Blechynden, D., Gardener, N., & Mossop, J. (2012). Surface Mining. MIME 419 - Surface

Mining. Montreal: Department of Mining And Materials Enginnering, McGill

University.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., & Qu, R. (2013).

Hyper-heuristics: a survey of the state of the art. Journal of the Operations Research

Society, 64(12), 1695-1724.

Buro, Y. A. (2013). Mining Geology. Course Notes from MIME 524 - Mining Geology.

Montreal: Department of Mining and Materials Engineering, McGill University.

Busnach, E., Mehrez, A., & Sinuany-Stern. (1985). A production problem in phosphate mining.

Journal of the Operations Research Society, 36(4), 285-288.

Cerny, V. (1985). Thermodynamical Approach to the Traveling Salesman Problem : an Efficient

Simulation Algorithm. Journal of Optimization Theory and Applications, 45(1985), 41-

51.

Consuegra, F. R., & Dimitrakopoulos, R. (2009). Stochastic mine design optimization based on

simulated annealing: pit limits, production schedules, multiple orebody scenarios and

sensitivity analysis. Mining Technology, 118(2), 79-90.

49

Dimitrakopoulos, R. (2015). Ore Reserve Risk and Mine Planning Optimization: Stochastic

Models and Optimization with Applications. Montreal: McGill COSMO Stochastic Mine

Planning Laboratory.

Dimitrakopoulos, R., Farrelly, C. T., & Godoy, M. (2002). Moving forward from traditional

optimization : grade uncertainty and risk effects in open-pit design. Mining

Technology(111), A82-A88.

Drake, J., Ozcan, E., & Burke, E. (2012). An improved choice function heuristic selection for

cross domain heuristic search. Lecture Notes in Computer Science 7492, 307–316.

Énergie et Ressources Naturelles Québec. (2016, April 18). Statistiques Minières. Retrieved

from Énergie et Ressources Naturelles Québec:

https://www.mern.gouv.qc.ca/mines/statistiques/index.jsp

Gendreau, M., & Potvin, J.-Y. (Eds.). (2010). Handbook of Metaheuristics (Vol. 146). New

York: Pisinger.

Gentry, D. (1988). Minerals project evaluation - an overview. Conference on Applied Rock

Engineering (pp. A25-A35). Tyne, England: University of Newcastle.

Gershon, M. E. (1983). Optimal mine production scheduling: evaluation of large scale

mathematical programming approaches. International Journal of Mining Engineering,

1(4), 315-329.

Gholamnejad, J., & Osanloo, M. (2007). Using chance constrained binary integer programming

in optimizing long term production scheduling for open pit mine design. Transactions

of the Institution of Mining and Metallurgy, Section A: Mining Technology, 116(2), 58-

66.

Gitman, L. J., & Joehnk, M. D. (1999). Fundamentals of Investing (7th ed.). Reading, MA:

Addison-Wesley.

Godoy, M. (2003). The effective management of geological risk in long-term production

scheduling of open pit mines. Unpublished Thesis: The University of Queensland.

Godoy, M., & Dimitrakopoulos, R. (2004). New Efficient Methods for Conditional Simulation

of Large Orebodies. Transactions, 316, 43-50.

Goodfellow, R. C., & Dimitrakopoulos, R. (2016, March). Global Optimization of Open Pit

Mining Complexes with Uncertainty. Applied Soft Computing(40), 292-304.

50

Goodfellow, R., Consuegra, F., Dimitrakopoulos, R., & Lloyd, T. (2012). Quantifying multi-

element and volumetric uncertainty, Coleman McCreedy deposit, Ontario, Canada.

Computers & Geosciences, 42, 71–78.

Government of Canada. (2016, April 18). Mining, Quarrying, and Oil and Gas Extraction

(NAICS 21): Definition - Canadian Industry Statistics - Industries and Business -

Industry Canada. Retrieved from Innovation, Science and Economic Development

Canada: https://www.ic.gc.ca/app/scr/sbms/sbb/cis/definition.html?code=21

Investopedia. (2016, April 18). Investopedia Dictionary. Retrieved from Investopedia:

http://www.investopedia.com/dictionary/

Jewbali, A. (2006). Modelling geological uncertanity for stochastic short term production

scheduling in open pit metal mines. University of Queensland. Brisbane: PhD Thesis.

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. IEEE International

Conference on Neural Networks (pp. 1942–1948). IEEE Press.

Khan, A., & Niemann-Delius, C. (2014). Production Scheduling of Open Pit Mines Using

Particle Swarm Optimization Algorithm. Advances in Operations Research, 2014, 1-9.

Kirkpatrick, S., Gelatt Jr, C., & Vecchi, M. (1983). Optimization by Simulated Annealing.

Science, 220(1983), 671-680.

Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the

Witwatersrand. Journal of the Chemecal, Metallurgy, and Mining Society of South

Africa , 52(6), 119–139.

Lamghari, A., & Dimitrakopoulos, R. (2012). A diversified Tabu search approach for the open-

pit mine production scheduling problem with metal uncertainty. European Journal of

Operational Research, 222, 642-652.

Lamghari, A., & Dimitrakopoulos, R. (2015). Hyper-heuristic approaches for solving stochastic

optimization formulations of mineral value chains. Elsevier (Pre-print submitted), 40.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E., & . (1953).

Equation of State Calculations by Fast Computing Machines. The Journal of Chemical

Physics, 21(6), 1087-1092.

Natural Resources Canada. (2016, April 18). Preliminary estimate of the mineral production of

Canada, by province, 2015. Retrieved from Natural Resources Canada:

http://sead.nrcan.gc.ca/prod-prod/ann-data-en.aspx?FileT=2015&Lang=en

51

Newman, A. M., Rubio, E., Caro, R., Wienraub, A., Eurek, K., & . (2010). A Review of

Operations Research in Mine Planning. Interfaces, 40(3), 222-245.

Nikolaev, A. G., & Jacobson, S. H. (2010). Simulated Annealing. In M. Gendreau, & J.-Y.

Potvin, Handbook of Metaheurstics, 2nd Edition (pp. 1-40). New York: Springer.

Osterholt, V. (2005). A Multistage Stochastic Programming Approach to Open Pit Mine

Production Scheduling with Uncertain Geology. Thesis, The University of Queensland,

126.

Pisinger, D., & Ropke, S. (2007, August). A general heuristic for vehicle routing problems.

Computers and Operations research, 34(8), 2403-2435. doi:10.1016/j.cor.2005.09.012

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle Swarm Optimization. Swarm Intell, 1(1),

33-57.

Ramazan, S., & Dimitrakopoulos, R. (2013). Production scheduling with uncertain supply: a

new solution to the open pit mining problem. Optimization Engineering, 14(2), 361-380.

Ravenscroft, P. (1992). Risk Analysis for Mine Scheduling by Conditional Simulations. Mining

Technology, 104-108.

Statistics Canada. (2016, April 18). Gross domestic product (GDP) at basic prices, by North

American Industry Classification System (NAICS). Retrieved from Statistics Canada:

http://www5.statcan.gc.ca/cansim/a26

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces. Journal of Global Optimization, 4(11),

341-359.

The Northern Miner. (1990). Mining Explained: A guide to prospecting and mining. (P.

Whiteway, Ed.) Toronto, Ontario: John S. Cooke.

Whittle, G. (2014). Money Mining & Sustainability. Money Mining & Sustainability. Toronto:

Whittle Consulting.

i

Appendix A: Updated Pseudocode with Adaptive Search

Procedures

Algorithm 6: Initialization and Generation

GENERATE
 Build 𝑋 ← {𝑛1, 𝑛2, . . . , 𝑛𝑖} ∀ 𝑖 ∈ 𝑁 # i.e. generate an initial solution
 𝑁 is a set of neighborhoods within a solution that can be perturbed
 𝑧 = 𝑓(𝑋) # We will maximize z

INITIALIZE
 SET 𝑋∗, 𝑋𝐺𝐵𝑆 ← 𝑋 # Where 𝑋 is the current solution, 𝑋∗ is a local best
 solution, 𝑋′ is a perturbed solution, and 𝑋𝐺𝐵𝑆 is a global best
 solution
 SET 𝛼 ← 0.7; 𝛽 ← 0.5; # Linear combination factorsg
 𝑁𝑒𝑤𝐵𝑒𝑠𝑡 ← 𝐹𝐴𝐿𝑆𝐸 # tracker for updated solution
 GET (𝑖𝑡𝑒𝑟)𝑚𝑎𝑥, (𝑖𝑡𝑒𝑟)𝑠𝑘𝑖𝑝, 𝑈𝑆𝐸𝐷𝐸

EXECUTE ANS_SGOPM(𝑋, 𝑋∗, 𝑋𝐺𝐵𝑆, 𝛼, 𝛽, (𝑖𝑡𝑒𝑟)𝑚𝑎𝑥, (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝, 𝑈𝑆𝐸𝐷𝐸)

Algorithm 7: Simulated Annealing with Adaptive Neighborhood Search to solve the two-

stage stochastic open pit mining problem

FUNCTION ANS_SGOPM(𝑋, 𝑋∗, 𝑋𝐺𝐵𝑆, 𝛼, 𝛽, (𝑖𝑡𝑒𝑟)𝑚𝑎𝑥, (𝑖𝑡𝑒𝑟)𝑠𝑘𝑖𝑝, 𝑈𝑆𝐸𝐷𝐸)

 WHILE 𝑓(𝑋𝐺𝐵𝑆) ≤ 𝑓(𝑋∗) # Executing a global iteration
 𝑋𝐺𝐵𝑆 ← 𝑋∗
 EXECUTE SAIteration()
 IF 𝑈𝑆𝐸𝐷𝐸 THEN EXECUTE DE() # See execution in Annex C.

g Values taken from Lamghari & Dimitrakopoulos (2015)

ii

Algorithm 8: A singular execution of a simulated annealing metaheuristic

FUNCTION SAIteration()
 SET 𝑖𝑡𝑒𝑟 ← 0
 EXECUTE SetInitialScores()
 WHILE 𝑖𝑡𝑒𝑟 < (𝑖𝑡𝑒𝑟)𝑚𝑎𝑥
 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
 IF 𝑖𝑡𝑒𝑟 mod (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 = 0
 EXECUTE ComputeProbabilities()
 EXECUTE SingleIteration()

Algorithm 9: Setting the initial scores and probabilities for the search neighborhood

FUNCTION SetInitialScores()
 FOR EACH 𝑖, ∀ 𝑖 ∈ 𝑁
 SET 𝜋1(𝑛𝑖), 𝜋2(𝑛𝑖), 𝜅(𝑛𝑖) ← 0
 SET 𝑠𝑖 ← 1 # Score of neighborhood 𝑖

 SET 𝑝𝑖 = (
1

|𝑁|
) # Probability of neighborhood 𝑖h

Algorithm 10: Computing the probabilities using scores gained from the simulated annealing

iterations

FUNCTION ComputeProbabilities()
 FOR EACH 𝑠𝑖, ∀ 𝑖 ∈ 𝑁
 IF 𝜅(𝑛𝑖) > 0

 𝑠𝑖 = (1 − 𝛼)𝑠𝑖 + 𝛼 (
 𝛽 𝜋1(𝑛𝑖) + (1−𝛽)𝜋2(𝑛𝑖)

𝜅(𝑛𝑖)
)

 FOR EACH 𝑖, ∀ 𝑖 ∈ 𝑁

 𝑝𝑖 =
𝑠𝑖

∑ 𝑠𝑗𝑗∈𝑁

 SET 𝜋1(𝑛𝑖), 𝜋2(𝑛𝑖), 𝜅(𝑛𝑖) ← 0
 IF 𝑁𝑒𝑤𝐵𝑒𝑠𝑡
 SET 𝛽 ← 1.0
 ELSE
 SET 𝛽 ← max(𝛽 − 0.1, 0.0)
 SET 𝑁𝑒𝑤𝐵𝑒𝑠𝑡 ← 𝐹𝐴𝐿𝑆𝐸

h In “Random Start” the 𝑝𝑖 will take a random value where ∑ 𝑝𝑖∀𝑖∈𝑁 = 1

iii

Algorithm 11: Executing a single iteration of the simulated annealing algorithm

FUNCTION SingleIteration()
 EXECUTE GeneratePertubation(𝑁, 𝑋, 𝑋′) to get neighborhood 𝑖 and
 perturbed solution 𝑋′
 𝜅(𝑛𝑖) ← 𝜅(𝑛𝑖) + 1
 # recall here we are maximizing the objective function
 IF 𝑓(𝑋′) ≥ 𝑓(𝑋) # accepted outright
 𝑋 ← 𝑋′
 SET 𝑁𝑒𝑤𝐵𝑒𝑠𝑡 ← 𝑇𝑅𝑈𝐸
 SET 𝜋1(𝑛𝑖) ← 𝜋1(𝑛𝑖) + |Δ𝑓|
 ELSE IF 𝑋′ accepted under other criteria # e.g. temperature
 𝑋 ← 𝑋′

 SET 𝜋1(𝑛𝑖) ← 𝜋1(𝑛𝑖) +
1

|Δ 𝑓|

 ELSE # Rejection of solution

 SET 𝜋2(𝑛𝑖) ← 𝜋2(𝑛𝑖) +
1

|Δ𝑓|

Algorithm 12: An algorithm that chooses a neighborhood which to perturb the solution and

yield a neighborhood solution.

FUNCTION GeneratePertubation(𝑁, 𝑋, 𝑋′)
 SET 𝑟 ← 𝑈{0,1} # r is a uniform random number
 Using 𝑟 and 𝑝𝑖∀𝑖 ∈ 𝑁 choose a neighborhood 𝑛𝑖 to perturb the solution
 GENERATE a perturbation 𝑃 from 𝑛𝑖
 SET 𝑋′ ← 𝑋 ⊕ 𝑃

iv

Appendix B: Pseudocode from Goodfellow &

Dimitrakopoulos (2016)

Algorithm 13: Global optimization of mining complexes

Require:
 Φ = {𝑥, 𝑦, 𝑧}
 𝑢𝑠𝑒𝑃𝑆𝑂
 𝑢𝑠𝑒𝐷𝐸
FUNCTION GlobalOptimization(Φ, 𝑢𝑠𝑒𝑃𝑆𝑂, 𝑢𝑠𝑒𝐷𝐸)
 Φ𝑔 ← Φ
 𝑖𝑔𝑜𝑝𝑡 ← 0
 WHILE true DO
 𝑖𝑔𝑜𝑝𝑡 ← 𝑖𝑔𝑜𝑝𝑡 + 1
 Φ ← Φ𝑔
 Φ𝑔 ←SimulatedAnnealing(Φ𝑔)
 if 𝑢𝑠𝑒𝑃𝑆𝑂 = 𝑡𝑟𝑢𝑒 or 𝑢𝑠𝑒𝐷𝐸 = 𝑡𝑟𝑢𝑒
 Φ𝑔 ←DownstreamOptimization(Φ𝑔)
 if 𝑔(Φ𝑔) = 𝑔(Φ) then
 break

v

Algorithm 14: Simulated Annealing for open pit mining complexes

Require:

 𝜌, 𝑘, 𝑛𝑖𝑡𝑒𝑟
 𝑝𝑟𝑜𝑏𝑠𝑒𝑞 , 𝑝𝑟𝑜𝑏𝑑𝑒𝑠𝑡
 𝑖𝑔𝑏𝑢
 𝑖𝑡𝑜𝑡𝑎𝑙
 𝑐𝑑𝑓𝑠𝑒𝑞 , 𝑐𝑑𝑓𝑑𝑒𝑠𝑡, 𝑐𝑑𝑓𝑝𝑟𝑜𝑐

FUNCTION SimulatedAnnealing(Φ𝑔):
 Φ,Φ′ ← Φ𝑔
 𝑖, 𝑖𝑢 ← 0
 𝛿 ← 0
 WHILE true DO
 𝑖 ← 𝑖 + 1
 if 𝑖 𝑚𝑜𝑑 𝑛𝑖𝑡𝑒𝑟 = 0 then
 𝜌 ← 𝜌 ∙ 𝑘
 Φ′, 𝛿 ←PerturbSolution(Φ, 𝜌)
 𝑟 ← 𝑈[0,1]
 if 𝑃(𝑔(Φ), 𝑔(Φ′), 𝛿) ≥ 𝑟 then
 Φ ← Φ′
 if 𝑔(Φ) > 𝑔(Φ′) then
 Update 𝑐𝑑𝑓𝑠𝑒𝑞 , 𝑐𝑑𝑓𝑑𝑒𝑠𝑡or 𝑐𝑑𝑓𝑝𝑟𝑜𝑐 with |𝑔(Φ) − 𝑔(Φ

′)|

 if 𝑔(Φ) ≤ 𝑔(Φ′)
 Φg ← Φ′
 𝑖𝑢 ← 𝑖𝑢 + 1
 if 𝑖 = 𝑖𝑡𝑜𝑡𝑎𝑙 or 𝑖𝑢 = 𝑖𝑔𝑏𝑢 then
 break
 RETURN Φ𝑔

vi

Algorithm 15: Solution perturbation

FUNCTION PerturbSolution(Φ, 𝜌)
 𝑟 ← 𝑈[0,1]
 𝛿 ← 0
 If 𝑟 < 𝑝𝑟𝑜𝑏𝑠𝑒𝑞
 Randomly select an 𝑥𝑏,𝑡 from 𝑥 ∈ Φ
 Find the set of blocks 𝑥𝑏(𝑡

′)that must be extracted in 𝑡′ to
 satisfy Eq. (7)
 Φ′ ← [𝑥⨁𝑥𝑏(𝑡

′), 𝑧, 𝑦]
 𝛿 ← 𝑐𝑑𝑓𝑠𝑒𝑞

−1(𝜌)

 Else if 𝑟 < (𝑝𝑟𝑜𝑏𝑠𝑒𝑞 + 𝑝𝑟𝑜𝑏𝑑𝑒𝑠𝑡) then

 Randomly select 𝑧𝑐,𝑡 an encoded variable from 𝑧 ∈ Φ
 𝑧𝑐,𝑡

′ ← 𝑈[0, |𝒪(𝑐)|]

 Φ′ ← [𝑥, 𝑧⨁𝑧𝑐,𝑡
′ , 𝑦]

 𝛿 ← 𝑐𝑑𝑓𝑑𝑒𝑠𝑡
−1 (𝜌)

 Else
 Randomly select a 𝑦𝑖,𝑗,𝑡,𝑠 from 𝑦 ∈ Φ

 𝑦𝑖,𝑗,𝑡,𝑠
′ ← 𝑦𝑖,𝑗,𝑡,𝑠 +𝑁(𝑦𝑖,𝑗,𝑡,𝑠, 0.1)

 Φ′ ← [𝑥, 𝑧, 𝑦⨁𝑦𝑖,𝑗,𝑡,𝑠
′]

 Normalize 𝑦 ∈ Φ𝑎 to obey Eq. (13) and Eq. (14)
 𝛿 ← 𝑐𝑑𝑓𝑝𝑟𝑜𝑐

−1 (𝜌)

Return Φ′, 𝛿

Algorithm 16: downstream optimization using PSO or DE

REQUIRE:
 𝑁𝑃
 𝑁𝑃𝑙𝑜𝑐𝑎𝑙
 𝑐1, 𝑐2, 𝑐3
 𝐶𝑅, 𝐹
 𝑝𝑐𝑐
 𝑖𝑡𝑜𝑡𝑎𝑙
FUNCTION DownstreamOptimization(Φ𝑔, 𝑢𝑠𝑒𝑃𝑆𝑂, 𝑢𝑠𝑒𝐷𝐸):
 For all 𝑞 ∈ {1,…𝑁𝑃} do
 Randomize Φ𝑞 (PSO, DE) and velocity 𝑉𝑞 (PSO)

 (𝑥 ∈ Φ𝑞) ← (𝑥 ∈ Φ𝑔)

 Normalize 𝑦 ∈ Φ𝑞 to obey Eq. (13) and Eq. (14)

 Φ𝑞
𝐵𝑒𝑠𝑡 ← Φ𝑞

 Φ𝑁𝑃
𝑏𝑒𝑠𝑡 ← Φ𝑔

 WHILE true DO
 𝑖 ← 𝑖 + 1
 For all 𝑞 ∈ {1,…𝑁𝑃} DO
 IF 𝑢𝑠𝑒𝑃𝑆𝑂 DO

vii

 Get Φ𝐼𝑏𝑒𝑠𝑡
𝑏𝑒𝑠𝑡 , the member within 𝑞 ± 𝑁𝑃𝑙𝑜𝑐𝑎𝑙 with the

 best objective function

 Φ𝑞 ←PSOUpdate(𝑉𝑞 , Φ𝑞 , Φ𝑞
𝑏𝑒𝑠𝑡 , Φ𝐼𝑏𝑒𝑠𝑡

𝑏𝑒𝑠𝑡)

 ELSE IF 𝑢𝑠𝑒𝐷𝐸 DO
 Randomly select 𝑎, 𝑏, and c where 𝑎, 𝑏, 𝑐, ∉ 𝑞

 Φ𝑞 ←DECrossover(Φ𝑞
𝑏𝑒𝑠𝑡 , Φ𝑎

𝑏𝑒𝑠𝑡 , Φ𝑏
𝑏𝑒𝑠𝑡 , Φ𝑐

𝑏𝑒𝑠𝑡)

 Correct 𝑧 ∈ Φ𝑞 to obey eq. (10)

 Correct 𝑦 ∈ Φ𝑞 to obey Eq. (13) and (14)

 IF 𝑔(Φ𝑞) ≥ 𝑔(Φ𝑞
𝑏𝑒𝑠𝑡) THEN

 Φ𝑔 ← Φ𝑞

 𝑎𝑣𝑔 ←
1

𝑁𝑃
∑ 𝑔(Φ𝑞

𝑏𝑒𝑡𝑠)𝑁𝑃
𝑞=𝑖

 IF 𝑖 = 𝑖𝑡𝑜𝑡𝑎𝑙or
𝑔(Φ𝑞

𝑏𝑒𝑠𝑡)−𝑎𝑣𝑔

𝑎𝑣𝑔
< 𝑝𝑐𝑐 ∀𝑞 = {1,…𝑁𝑃} THEN

 Break
 RETURN Φ𝑔

Algorithm 17: PSO update for particle q

FUNCTION PSOUpdate(𝑉𝑞 , Φ𝑞 , Φ𝑞
𝑏𝑒𝑠𝑡 , Φ𝐼𝑏𝑒𝑠𝑡

𝑏𝑒𝑠𝑡)

 Let 𝑉𝑞
𝑧, 𝑉𝑞

𝑦
∈ 𝑉𝑞 represent the velocities of the downstream variables

 Let Φ𝑞
𝑧, Φ𝑞

𝑦
∈ Φ𝑞 represent the values of the downstream variables

 𝑟1, 𝑟2 ← 𝑈[0,1]
 𝑟3, 𝑟4 ← 𝑈[0,1]

 𝑉𝑞
𝑧 ← 𝑐1 ∙ 𝑉𝑞

𝑧 + 𝑐2 ∙ 𝑟1 ∙ (𝑧𝑞
𝑏𝑒𝑠𝑡 − 𝑧𝑞) + 𝑐3 ∙ 𝑟2 ∙ (𝑧𝑞

𝑏𝑒𝑠𝑡 − 𝑧𝑞)

 𝑉𝑞
𝑦
← 𝑐1 ∙ 𝑉𝑞

𝑦
+ 𝑐2 ∙ 𝑟3 ∙ (𝑦𝑞

𝑏𝑒𝑠𝑡 − 𝑦𝑞) + 𝑐3 ∙ 𝑟4 ∙ (𝑦𝑞
𝑏𝑒𝑠𝑡 − 𝑦𝑞)

 𝑧𝑞 ← 𝑧𝑞 + 𝑉𝑞
𝑧

 𝑦𝑞 ← 𝑦𝑞 + 𝑉𝑞
𝑦

 RETURN Φ𝑞

Algorithm 18: DE for agent q

FUNCTION DECrossover(Φ𝑞
𝑏𝑒𝑠𝑡 , Φ𝑎

𝑏𝑒𝑠𝑡 , Φ𝑏
𝑏𝑒𝑠𝑡 , Φ𝑐

𝑏𝑒𝑠𝑡)

 Φ𝑞 ← Φ𝑞
𝑏𝑒𝑠𝑡

 For all 𝑧𝜖,𝑡
𝑞
∈ 𝑧𝑞 do

 𝑟 ← 𝑈[0,1]
 If 𝑟 ≤ 𝐶𝑅 Then

 𝑧𝜖,𝑡
𝑞
← 𝑧𝜖,𝑡

𝑎,𝑏𝑒𝑠𝑡 + 𝐹 ∙ (𝑧𝜖,𝑡
𝑏,𝑏𝑒𝑠𝑡 − 𝑧𝜖,𝑡

𝑐,𝑏𝑒𝑠𝑡)

 For all 𝑦𝑖,𝑗,𝑡,𝑠
𝑞

∈ 𝑦𝑞 do

 𝑟 ← 𝑈[0,1]
 If 𝑟 ≤ 𝐶𝑅 then

viii

 𝑦𝑖,𝑗,𝑡,𝑠
𝑞

← 𝑦𝑖,𝑗,𝑡,𝑠
𝑎,𝑏𝑒𝑠𝑡 + 𝐹 ∙ (𝑦𝑖,𝑗,𝑡,𝑠

𝑏,𝑏𝑒𝑠𝑡 − 𝑦𝑖,𝑗,𝑡,𝑠
𝑐,𝑏𝑒𝑠𝑡)

 RETURN Φ𝑞

ix

Appendix C: Hyper-heuristic from Lamghari &

Dimitrakopoulos (2015)

Algorithm 19: Hyper-heuristic outlined Lamghari & Dimitrakopoulos (2015)

INITIALIZE
 Generate initial solution 𝑋
 SET 𝑋∗ ← 𝑋
 SET 𝛼 ← 0.7, 𝛽 ← 0.5
STAGE I: Generate initial scores
 Add all heuristics to a list 𝐻
 WHILE length(𝐻) > 0
 Choose a heuristic ℎ𝑗, ∀𝑗 ∈ 𝐻 at random

 GENERATE a new solution 𝑋′ from 𝑋 using ℎ𝑗

 IF 𝑋′ is better than 𝑋∗ then
 SET 𝑋∗ ← 𝑋′
 SET 𝑛𝑒𝑤𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 ← 𝑇𝑅𝑈𝐸
 END IF
 Calculate score of ℎ𝑗

 SET 𝑋 ← 𝑋′
 REMOVE ℎ𝑗 from 𝐻

 END WHILE
Stage II: Selecting heuristics based on their score and tabu status
 𝑖𝑡𝑒𝑟 ← 1
 FOR each heuristic ℎ𝑗 do

 SET 𝜋1(ℎ𝑗) ← 0, 𝜋1(ℎ𝑗) ← 0, 𝑎𝑛𝑑 𝜂(ℎ𝑗) ← 0

 END FOR
 WHILE stopping criterion not met DO
 IF all heuristics are tabu THEN
 Revoke the tabu status of all heuristics
 END IF
 Choose, among the heuristics that are not tabu, a heuristic ℎ𝑗

 using roulette-wheel selection based on scores

 Set 𝜂(ℎ𝑗) ← 𝜂(ℎ𝑗) + 1

 Generate a new solution 𝑋′ from 𝑋 using ℎ𝑗

 IF 𝑋′ is better than 𝑋∗ then
 SET 𝑋∗ ← 𝑋′
 SET 𝑛𝑒𝑤𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 ← 𝑇𝑅𝑈𝐸
 END IF
 IF 𝑋′ is better than 𝑋 then

 Update 𝜋1(ℎ𝑗)

 ELSE

 Update 𝜋2(ℎ𝑗)

 Generate a random number 𝜔 in [Ωmin ; Ωmax]

x

 Make ℎ𝑗 tabu for 𝜔 iterations

 END IF
 IF 𝑖𝑡𝑒𝑟 < 𝜅 then
 SET 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
 ELSE
 IF 𝑛𝑒𝑤𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 = 𝑇𝑅𝑈𝐸 then
 Set 𝛽 ← 1
 ELSE
 Set 𝛽 ← max(𝛽 − 0.1 , 0)
 END IF
 Update the score of all heuristics using
 Revoke the tabu status of all heuristics
 FOR each heuristic ℎ𝑗 do

 SET 𝜋1(ℎ𝑗) ← 0, 𝜋1(ℎ𝑗) ← 0, 𝑎𝑛𝑑 𝜂(ℎ𝑗) ← 0

 END FOR
 Set 𝑖𝑡𝑒𝑟 ← 1
 Set 𝑛𝑒𝑤𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 = 𝐹𝐴𝐿𝑆𝐸
 END IF
 SET 𝑋 ← 𝑋′
END WHILE
RETURN 𝑋∗

