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Résumé 

Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète.  Elles 

permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes 

qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont 

beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. 

L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de 

certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique 

adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des 

notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et 

automatique pour résoudre des problèmes. 

L’optimisation globale des complexes miniers vise à établir les mouvements des 

matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du 

système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la 

présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de 

résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie.  Par conséquent, 

les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers.  Ce 

mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos 

(2016) pour l’optimisation stochastique des complexes miniers stochastiques.  La méthode 

développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci 

est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions.  

Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer 

la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de 

la valeur de la fonction économique. 

Mots-clés : recuit simulé, métaheuristiques adaptatifs, optimisation des mines, incertitude 

métallique 
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Abstract 

Metaheuristics are a useful tool within the field of discrete optimization that allow for 

large, complex, and difficult optimization problems to achieve a solution with a good quality in 

a reasonable amount of time.  Often metaheuristics have many parameters that require a user to 

manually define and tune for a given problem.  An adaptive metaheuristic aims to remove some 

parameters from being tuned or defined by the end user by allowing the method to specify and/or 

adapt a parameter or set of parameters based on the problem.  The adaptive metaheuristic, using 

advancements in understanding of the problem being solved, machine learning, and related 

fields, aims to provide this more generalized and automatic toolkit for solving problems.   

Global optimization of mining complexes aims to schedule material movement in mines 

and processing streams to maximize the economic value of the system.  Often due to the large 

number of integer variables within the model, complicated constraints, and non-linear 

constraints, it becomes prohibitive to solve these models using commercially available 

optimizers.  Therefore, metaheuristics are often employed in solving mining complexes. This 

thesis builds upon a simulated annealing method developed by Goodfellow & Dimitrakopoulos 

(2016) to optimize the stochastic global mining complex. The method outlined by the authors 

requires many parameters to be defined to operate.  One of these is how the simulated annealing 

algorithm searches the local neighborhood of solutions.  This thesis illustrates and implements 

an adaptive way of searching the neighborhood for increasing the quality of a solution.  

Numerical results show up to a 10% increase in objective function value.   

Keywords: Simulated Annealing, Adaptive Metaheuristics, Mine Optimization, Metal 

Uncertainty 
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All spiritual growth comes from reading and reflection. By reading we learn what we did not 
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concerned to carry out what he has read than merely to acquire knowledge of it. In reading we 

aim at knowing, but we must put into practice what we have learned in our course of study. 
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1 Introduction 

Mining and related industries is one of the largest and riskiest sectors of the Canadian 

economy.  In 2015, mining and related industries was the third largest industry in Canada after 

real estate and manufacturing, representing about 8% of the economy, and accounting for 28% 

of all goods producing industries.  In the province of Québec, metallic mineral production 

represents 26% of the nation’s mineral production (by dollars) and is second only to Ontario 

(Natural Resources Canada, 2016; Énergie et Ressources Naturelles Québec, 2016; Statistics 

Canada, 2016).  Proper planning procedures and interpretations can mitigate the risk associated 

with developing and operating mines and mining complexes around the world.  In the latter half 

of the 20th century, new ways of modelling mining complexes and interpreting what is in the 

ground have been developed.  Furthermore, mathematical models, such as integer programs 

(IP), have been developed and implemented to schedule the production in mining complexes.  

As mathematical formulations grew to be more detailed representations of mining complexes, 

metaheuristics have been developed to efficiently solve them.  One such metaheuristic is 

simulated annealing (SA).  SA is used by Goodfellow & Dimitrakopoulos (2016) to optimize 

their updated model formulation for mining complexes. Their model specifically introduces the 

ability to account for the “inherent non-linearity related to the blending and stockpiling of 

materials” (Goodfellow & Dimitrakopoulos, 2016). Their work is based on and updates work 

of several authors such as Ramazan & Dimitrakopoulos (2013), Jewbali (2006), and Benndorf 

& Dimitrakopoulos (2004).  The SA based optimization method outlined by the authors takes 

static search parameters for neighbor solution selection.  While the authors are able to find a 

good solution in a reasonable amount of time, this thesis takes progress made in adaptive 

metaheuristics and related fields, such as from Pisinger & Ropke (2007) and Lamghari & 

Dimitrakopoulos (2015), to improve the optimization method used by Goodfellow & 

Dimitrakopoulos (2016).  This update to the solver should produce better solutions.   

1.1 Overview of Open Pit Mining 

Most often, it is companies (not, for example, the government) that partake in mining 

operations around the world.  A company is said to be in the mining industry if they specialize 
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in extracting naturally occurring and nonrenewable resources.  This can be, but is not limited to: 

gold, copper, potash, uranium, or the oil sands. In addition, mining includes operations that 

occur after extraction. Examples of these downstream operations include refineries, smelters, 

and transportation, which transform the extracted material to something more useful 

(Government of Canada, 2016).  We use “more useful” here colloquially.  Material is deemed 

to have been “transformed into something more useful” if the material is transformed, typically 

called processed, into another material which is closer to something that can be used by a 

consumer or another industry. Examples are oil into gasoline for a car or insitu copper ore into 

a copper block to be used by a pipe company.  Mining companies operate in areas where they 

have identified a deposit of material.  For this thesis, a deposit is where the companies have 

deemed there exists material which is economically feasible to be extracted and sold.  That is, 

they can operate a mining complex at a profit.  A mining complex is the system by which material 

is moved from the earth, transformed if possible, and then sold (Blechynden, Gardener, & 

Mossop, 2012; Government of Canada, 2016; Newman, et al., 2010). 

Before a mining complex is established, the deposit must be located. Locating and 

gaining information about a deposit is known as exploration. There are many different 

techniques to locate a deposit. Once a company has found a potential area for a mining complex, 

they must begin a technique known as core hole drilling. Core hole drilling is when machines 

drill long vertical holes into the earth and retrieve long solid pieces of rock. These long pieces 

of rock are known as core holes. In the region the company desires to extract material, hundreds 

to thousands of these core holes will be extracted in a regular grid.  These core holes can be 

viewed as conditioning data for geologists to interpret what is within the earth (Blechynden, 

Gardener, & Mossop, 2012; Buro, 2013; Newman, et al., 2010). Geologist interpretations are 

commonly known as orebody models which are ultimately used in planning mine complexes.   

In the mine planning, scheduling, and optimizing process, the orebody models are 

typically discretized into regular sized blocks.  This modified model is often referred to as a 

block model.  For each block in a block model, a geologist will assign an attribute which 

represents the amount of a specific material as a proportion by weight. This attribute is known 

as the grade of the block.  Often, the grade is a percentage.  For example, a block that weighs 

1000 tonnes and has 15% copper grade will have 150 tonnes of copper.  However, some metals, 



 

3 

such as gold or platinum, have small amounts of the metal present in a given block.  These 

metals are typically recorded in grams per tonne.  Detailed block models and multi-element 

deposits will have many attributes in each block.  For example, due to molecular similarities, 

gold deposits will often have economical amounts of silver or copper in addition to gold.  

Deleterious, or waste, elements are also present.  Often copper or gold deposits will have 

amounts of sulfides, a common deleterious element, present in each block (Buro, 2013; 

Newman, et al., 2010).   

Once a geologist provides a block model interpretation, mine planners must decide how 

to extract the valuable material at a profit for the company.  The first decision a mine planner 

must make is what kind of mine to establish.  There are two basic types of mines: open pit and 

underground mines. Open pit mines are developed in places where valuable material is close to 

the surface of the earth. They proceed with extracting material at the surface of the earth and 

continue to work their way deeper until all the valuable material has been extracted. With open 

pit mining, large amounts of waste material must be removed to gain access to valuable material.  

In underground mining, on the other hand, is where valuable materials typically extracted 

through tunnels or shafts. This allows access to valuable material deeper in the earth and reduces 

the amount of waste material required to be removed if open pit mining techniques were used 

(Blechynden, Gardener, & Mossop, 2012; Newman, et al., 2010). This thesis will focus on open 

pit mining.  Open pit mining accounts for the largest number of mines in the world and the 

industry partners we are working with have offered their deposit data, all of which is set up as 

an open pit mining operation.   

The next decision the mine planner must make is how to move the material through the 

mining complex.  In open pit mining, a mining complex typically has four main locations. The 

first main location is the physical mine itself. The mine is where the material (blocks) is being 

extracted from the earth.  Once extracted, the blocks are transported to one of three destination 

locations: a waste dump, a processor, or a stockpile.  The decision on where to send each block 

is based largely on the grade of the block.  Blocks sent to the waste dump typically lack sufficient 

quantities of valuable material to be processed and sold at any kind of advantage for the 

company. Once it arrives at the waste dump, block typically will never be rehandled, or moved, 

again.  The second destination is a processor. This destination processes, or transforms, the 
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material to something more useful. The output of a processor typically has the ability to be sold 

at a market or to a contracted firm. In a copper or gold mine, there are two types of processors. 

The first processor type is a plant.  A plant will attempt to grind ore material into a fine powder 

and use a separation technique, such as flotation, to separate waste material from the valuable 

material.  The flotation happens in a modified water solution where the properties of the water 

are chemically adjusted in such a way where valuable material will stick to air bubbles and float 

to the top of a flotation cell while waste will settle to the bottom.  The second processor type is 

a leach pad where acid is used to “leach” away valuable material from waste material.  The third 

possible destination for extracted material is a stockpile.  Stockpiles are areas that companies 

set aside to store material until there is an opportunity to process it.  Stockpiling material is due 

to limitations in the amount of material that can be processed or a desire to blend material at a 

processor to increase the advantage to a company.  Blending material is processing two units of 

different material at the same time to get the average of the material’s properties.  An outline of 

the basic mining complex and the main destinations can be seen in Figure 1 below (Blechynden, 

Gardener, & Mossop, 2012).   

 

Figure 1: An example of a mining complex 

As mentioned above, a processor attempts to separate the waste material from the 

valuable material.  This separation is not perfect.  For each processor, there is an associated 

value called the recovery, which represents a percentage that is the amount of valuable material 

that is saved, or recovered, from each block.  For example, if a plant has a 90% recovery, a block 

with 150 tonnes of copper will yield 135 tonnes of the copper out of the plant.  The other 15 

tonnes will be discarded.  Compare this with a leach pad that has a 50% recovery; that same 

block will yield 75 tonnes of copper if processed at the leach pad.  A processor’s recovery is 
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typically a function of the amount of material and/or the grade of the material sent to the 

processor.  Therefore, the recovery of a processor is often non-linear and can vary on a variety 

of factors (Blechynden, Gardener, & Mossop, 2012).   

There are two main constraints in an open pit mining complex.  The first are the capacity 

constraints.  Equipment, safety, and other limitations exist which restrict the amount of material 

that can be moved or processed at each part of the complex in a given period. A period is a unit 

of time, typically a year, that a mine complex is operated.  Capacity constraints take a few forms.  

Mining capacity is the amount of material that can be extracted from the mine in a period.  

Processing capacity is the amount of material that can be sent to a specific processor in a period.  

Stockpiling capacity is the amount of material that can be stored in a stockpile.  While mining 

and processing capacities are calculated on a per period basis, the stockpile capacity is the upper 

limit on the amount of material that can be stored there at any given time. The sum of all the 

material is carried over period to period until it is rehandled, or moved again – in this case from 

the stockpile to the processor (Newman, et al., 2010).   

In addition to capacity constraints, precedence constraints exist in open pit mining 

complexes, sometimes called slope constraints in the literature.  In open pit mining when 

scheduling with a block model, for a given block, the block directly above and blocks adjacent 

to the directly above block must be extracted before the given block can be.  An example of this 

can be seen in Figure 2 below.   

 

Figure 2: A 2D schematic of blocks that must be removed to access block 𝑏 

As can be seen in Figure 2, the blocks identified as the Overlying blocks set 𝕆𝑏 (blocks 

highlighted in dark grey) must be extracted in the same period or in an earlier period before 
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Block 𝑏 (the block highlighted in light grey) can be extracted.  Note that we will use slopes of 

45° in the examples in this thesis.  However, slopes may take a variety of angles for geotechnical 

or other safety reasons. It is these precedence constraints which often make optimizing mining 

complexes quite long and complicated (Newman, et al., 2010).   

1.2 Mining Complex Economic Evaluation 

After core holes have been extracted and before a company decides to establish a mining 

complex, the company will conduct a feasibility study to determine the economic value of the 

deposit and complex.  One part of the feasibility study is to schedule material movement in the 

mining complex, which is what the formulation and the solution method in this thesis can be 

applied to.  Planners will attempt to maximize this economic value over the course of the life of 

mine (LOM).  The LOM is the number of periods from the beginning of development of the 

project until there remains no more material in the deposit or stockpiles that can be processed at 

an advantage for the company.  Note that the LOM and economic evaluation of a mine will 

typically not include the exploration and core hole drilling costs and procedures. However, the 

economic evaluation will often include other capital expenditures such as the construction of 

plants and the purchase of equipment.  The exception to including capital expenditures is if a 

new mine is being developed in the vicinity of an already established mining complex where 

equipment can simply be moved or be used in multiple complexes (Albach, 1967; Blechynden, 

Gardener, & Mossop, 2012; Gentry, 1988).   

Most mining projects calculate the economic advantage with a criterion known as net 

present value (NPV).  Broadly speaking, the NPV is the value of a project.  An NPV with a 

positive value indicates that the projected earnings generated by a project or an investment 

exceed the anticipated costs when taking the value of money over time into consideration.  The 

NPV of a mining project is calculated as follows: 

1) Calculate the cash flow (CF) of each period for the entire LOM.  The CF of a period is 

typically the value of the material sold, minus the costs incurred to process and transport 

the material. 
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2) Determine the discount rate of the project.  This discount rate is a percentage that is 

associated with a project which encompasses the risk of a project and the rate of return 

from other possible investments.  It is typically determined from other similar projects 

and the state of the economy.   

3) For each period, determine the present value (PV) of the CF for each period.  The PV is 

calculated by dividing the CF of the period by one plus the discount rate raised to the 

number of periods from the first period.  I.e.  PVt = CFt (1 + discount rate)
t⁄ .  This can 

be viewed as the CF at time 𝑡 has a value of PVt today.   

4) Sum all the PV’s for each period to get the NPV of the project: i.e. NPV =  ∑ PV𝑡𝑡∈𝕋  

Other evaluation methods can be used, but NPV is the most common and widely understood in 

the industry (Gitman & Joehnk, 1999; Investopedia, 2016; Whittle, 2014).   

The factors that go into determining the value of a CF in a period are the costs associated 

with extracting, moving, and processing material from a mine to the three destinations and the 

value of the material sold on the market.  Recall we are operating an open pit mine and there are 

precedence constrains associated with extracting a block.  Looking back to Figure 2 on page 5, 

imagine if block 𝑏 was the only block that had valuable material in it and all the overlying blocks 

in the set 𝕆𝑏 were waste material.  We must extract and incur the cost associated with removing 

the 8 blocks in the overlying block 𝕆𝑏 set in addition to the cost of extracting, processing, and 

subsequently selling block 𝑏.  We only see revenue in the period after block 𝑏 is processed and 

then sold.   

Mining projects are quite a high risk investment.  These projects typically have a few 

unique attributes compared to other investment opportunities.  They are:  

 Capital intensive projects – they have a high initial starting cost. 

 Non-renewable resource – Once the material is extracted, it is gone from the Earth.  Any 

infrastructure built is typically abandoned or sold at a significant loss if the mine is in a 

remote location. 
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 Long pre-production periods – it may take several periods for unwanted material to be 

extracted to get to valuable material.  In addition, infrastructure, such as roads and plants, 

may need to be built to handle the material.   

 The indestructibility of the material – gold mined in Quebec will be essentially the same 

as gold from Nevada or Ghana.  Therefore, one can seek either cheaper deposits 

elsewhere or look in low risk locations.   

The combination of these factors makes mining a high risk environment for investors.  

Therefore, proper planning and evaluation is critical for investors and companies to make 

informed decisions about mining projects (Gentry, 1988; The Northern Miner, 1990; Whittle, 

2014).   

1.3 Optimization of Open Pit Mining Complexes 

Traditionally, mining complexes were scheduled both locally and iteratively.  We say 

locally because each location and element in the mining complex was independently scheduled.  

This is akin to a greedy heuristic and can lead to a sub-optimal global solution. Recall we are 

attempting to maximize NPV.  An example of the local scheduling technique can be to maximize 

recovery of a processor.  Maximizing the recovery of a processor ensures the most amount of 

valuable material is sent to the market (least amount of valuable material is wasted).  However, 

this greedy local decision to maximize recovery may lead to a sub-optimal decision. Typically, 

a higher recovery reduces the rate at which material can be processed in the plant (i.e. the 

processor operator must lower processing capacity), but increasing the processing capacity of 

the processor and lowering recovery, may increase the overall NPV.  A mining complex is 

considered to be scheduled iteratively because a small change in one part of the mining complex 

can affect the value of the complex as a whole.  Using an example as an illustration, let there be 

a plant engineer who decided to plan for the processing capacity to be 𝑃𝐶1.  If we change the 

processing capacity from 𝑃𝐶1 to a lower value 𝑃𝐶2, the engineers who manage extraction 

scheduling must adjust the amount of material they send to the processor; by sending some 

material as waste, by opening a stockpile to store excess material, by reducing the mining 

capacity, or by changing which blocks are mined in each period.  Once the schedule is updated, 
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planners may then decide to make another small adjustment to the mining complex parameters 

and then the process repeats (Gentry, 1988; The Northern Miner, 1990; Whittle, 2014).   

Because of this local and iterative process for determining a schedule to extract material 

over the life of mine, we desire a global way to optimize these complexes.  That is, we desire a 

way to simultaneously optimize production scheduling.  This led to the development of linear 

and integer programs to represent the production schedule.  These mathematical formulations 

have the ability to choose the best extraction scheduling decisions.  These methods were first 

explored in the 1960’s (Albach, 1967; Gershon, 1983; Gholamnejad & Osanloo, 2007; 

Bienstock & Zuckerberg, 2010; Busnach, Mehrez, & Sinuany-Stern, 1985).  Due to the wide 

range of mines in the world and how basic concepts are applicable across many deposits and 

complexes, mine complex optimization is a well-studied field (Newman, et al., 2010).  Some of 

the most modern methods do incorporate what is known as metal uncertainty.      

1.4 Metal Uncertainty and the Simulation of Orebody Models 

Because mining complexes are developed based on the information obtained from core 

hole drilling, the interpretation of what is in the deposit can have a significant impact on the 

valuation of a mining complex.  Traditionally, mining complexes were optimized using a 

singular orebody model.  This model was developed using an interpolation method, such as 

kriging (Krige, 1951), between the known data points, the core holes. These traditional methods 

smooth the transition of grades between the core holes.  This incorrect estimation will lead to 

an inaccurate and high-risk evaluation of a deposit (Ravenscroft, 1992; Godoy M. , 2003; 

Dimitrakopoulos, 2015; Consuegra & Dimitrakopoulos, 2009; Dimitrakopoulos, Farrelly, & 

Godoy, 2002; Osterholt, 2005).   

Geostatistical or stochastic conditional simulation is an estimation tool which generate 

models of a deposit based on the same core hole data used in traditional methods.  When one 

generates multiple simulated orebody models, they take on two properties (Dimitrakopoulos, 

2015): 
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1. Simulations reproduce the available information of the core holes.  That is, the 

simulations will reproduce similar information that is already represented by the core 

holes.   

2. Each simulation is an equiprobable representations of the deposit.   

Examples of simulation methods that are used are direct block simulation, Gaussian simulation 

methods, and high order simulation methods (Benndorf & Dimitrakopoulos, 2004; Godoy & 

Dimitrakopoulos, 2004).  Authors who optimize using simulated orebody models typically find 

a higher NPV and a lower risk schedule when compared to using a single orebody model.  For 

example, Goodfellow & Dimitrakopoulos (2016) use a stochastic integer program (SIP) to 

represent the mining complex.  This model was able to achieve an NPV 6.6% higher than the 

deterministic model.  In addition, less risk is associated with the amount of material sent to 

various destinations.  Another example is by Dimitrakopoulos, Farrelly, and Godoy (2002) who 

perform a risk analysis on a mine.  Their analysis shows that when using simulated orebodies, 

the deterministically scheduled mine has only 15% chance of reaching the original NPV. 

Additionally, the authors conclude that the expected NPV of the schedule is 25% below what is 

originally projected using the deterministic model. A third case study is where Godoy (2003) 

completes a risk analysis for a mine in Australia. Results of using simulated orebodies yields a 

28% increase in NPV compared to the deterministic solution and a 3% chance of the stochastic 

schedule failing to meet yearly production targets, as opposed to the 13% for the deterministic 

schedule. The author notes that the increase in NPV is due to the optimizer’s ability to extract 

more valuable material earlier in the life of mine. 

This thesis will utilize simulated orebody models in the optimization process.   

1.5 Objectives of the Research 

In this thesis, we refer to a recent and more general mathematical formulation 

representing a mining complex – the act of moving raw material from the earth to selling refined 

material on the market – presented by Goodfellow & Dimitrakopoulos (2016). In order to solve 

this problem, we also refer to their simulated annealing approach using several neighborhoods 

to determine a schedule of events through the life of the project. In their implementation, the 
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neighborhood used at each iteration is selected among a set of different neighborhoods 

according to a distribution specified a priori. The main contribution in this thesis is to improve 

this solution approach by using the adaptive principles introduced in Pisinger & Ropke (2007) 

and in Lamghari & Dimitrakopoulos (2015) to select the neighborhood. The motivation for this 

contribution is twofold.  Indeed, it allows for a different mining complex to be resolved without 

having a user to determine a priori the distribution for selecting the neighborhood, and also for 

a mine planner who may not be familiar with metaheuristic principles, to use this method to 

develop a schedule for their mining complex. The numerical results show an average increase 

of 1 to 2% of the objective function value for a single element deposits.  For a larger copper-

gold deposit, we observe an average increase of 10% for the objective function value and a 

reduction of about 40% of the solution time. 

The remainder of this thesis is organized as follows. The simulated annealing approach 

and the principles of adaptive metaheuristics are summarized in Chapter 2. Chapter 3 includes 

the general mathematical formulation of the model introduced in Goodfellow & 

Dimitrakopoulos (2016). It also includes their implementation of the simulated annealing and 

the details of the adaptive selection of the neighborhood. The numerical results are summarized 

in Chapter 4. Two single element deposit problems including copper and gold, respectively, and 

a larger problem including a copper-gold deposit are solved in order to illustrate the advantage 

of using the adaptive approach. Chapter 5 includes conclusions.  
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2 Review of Metaheuristics and Adaptive Metaheuristics 

“Metaheuristics are solution methods that orchestrate an interaction between local 

improvement procedures and higher level strategies to create a process capable of escaping from 

local optima and performing a robust search of a solution space” (Gendreau & Potvin, 2010).  

That is, metaheuristics are a set of algorithms which allow for broad search of solutions, even 

solutions that are non-improving, to discover high quality solutions.  Metaheuristics are a useful 

tool within the field of discrete optimization that allow for large, complex, and difficult 

optimization problems, such as the one addressed in this thesis, to be solved in a reasonable 

amount of time.  Solving discrete optimization problems in an exact way may take orders of 

magnitude longer to solve than using a metaheuristic to reach a good or acceptable solution to 

the problem.  Adaptive metaheuristics aim to increase the generalization of a metaheuristic 

method for a given problem.  This may allow for a user who is untrained in the implementation 

of a metaheuristic to use the method to find a solution to the problem.   

This section outlines the metaheuristics used by Goodfellow & Dimitrakopoulos (2016), 

specifically simulated annealing (SA).  In the solution approach of Goodfellow & 

Dimitrakopoulos (2016), they use a strategy to optimize downstream (processor) variables after 

SA.  This strategy relies on the population based procedures differential evolution (DE) and 

particle swarm optimization (PSO).  Since we are not modifying these strategies in this thesis, 

we will not describe their implementation further except for a brief comment on their use in the 

solving method outlined by Goodfellow & Dimitrakopoulos (2016) in section 3.2.   

2.1 Simulated Annealing 

Simulated annealing (SA) is a local neighborhood search metaheuristic allowing to 

modify the current solution even with one deteriorating the objective the objective function 

value in order to move away from a local optimal solution.  Kirkpatrick, et al. (1994) and Cerny 

(1985) were the first to propose solving combinatorial problems with this approach used in 

thermodynamics to search for an equilibrium.  To ease this presentation, suppose that we are 

solving the following problem of maximizing a function 𝑓(𝑥) over a feasible domain 𝑋 ∈ ℝ𝑛.  

At each iteration, a new solution 𝑥′ is randomly selected in the neighborhood of the current 
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solution 𝑥.  A neighbor solution 𝑥′ is typically similar to the current solution, with a few simple 

modifications to the current solution 𝑥.  The SA algorithm then allows to compare the quality 

of the selected solution against the quality of the current solution.  If the selected solution is 

better (i.e. 𝑓(𝑥′) > 𝑓(𝑥)), then it becomes the current solution.  Otherwise (if the selected 

solution 𝑥′ is worse), 𝑥′ can replace the current solution 𝑥 even if Δ𝑓 = 𝑓(𝑥′) − 𝑓(𝑥) ≤ 0 

according to a function which calculates the probability as a function of Δ𝑓 and the number of 

iterations already completed; i.e. 𝑥′ replaces 𝑥 with the acceptance probability function 𝑒Δ𝑓 τ⁄  

where 𝜏 (the temperature parameter) decreases with the number of iterations completed.   

In this variant, we complete several iterations 𝑛𝑖𝑡𝑒𝑟 with the same temperature 𝜏.  Note 

that a special case is to modify the temperature at each iteration (i.e. 𝑛𝑖𝑡𝑒𝑟 ← 1).  The 

temperature 𝜏 is modified with the parameter 𝜀 (i.e. at 𝜏 ← 𝜏 ∙ 𝜀), where 0 < 𝜀 < 1.  Two 

stopping criteria are used.  The first one is specified in terms of the number of iterations the SA 

is ran (𝑖𝑡𝑒𝑟𝑀𝑎𝑥).  The second is one is specified in by counting the number of global best updates 

(𝑖𝑙𝑖𝑚𝑖𝑡
𝑔𝑏𝑢

), that is, the number of times a new global best solution is found.  A variant of the 

procedure can be summarized in Algorithm 1.    

Algorithm 1: Simulated Annealing 

Initialization: 
 Select an initial solution 𝑥0 ∈ 𝑋 and an initial temperature 𝜏0 
 Let 𝑖𝑡𝑒𝑟 ← 0; 𝜏 ← 𝜏0 
 Let 𝑥 ← 𝑥0; 𝑥∗ ← 𝑥0 
While stopping criteria is not met 
 𝑖𝑔𝑏𝑢 ← 0 
 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 
 Repeat 𝑛𝑖𝑡𝑒𝑟 times with the same temperature 𝜏 
  Generate randomly 𝑥′ ∈ 𝑁(𝑥) 
  Δ𝑓 = 𝑓(𝑥′) − 𝑓(𝑥) 
  If Δ𝑓 >  0  
   𝑥 ← 𝑥′ 
  Else generate a random number 𝑟 ∈ [0,1] 

   If 𝑟 < 𝑒Δ𝑓 𝜏⁄  
    𝑥 ← 𝑥′ 
  If 𝑓(𝑥′) > 𝑓(𝑥∗) 
   𝑥∗ ← 𝑥′ ; 𝑖𝑔𝑏𝑢 ← 𝑖𝑔𝑏𝑢 + 1 
 𝜏 ← 𝜀 ∙ 𝜏 

 If 𝑖𝑡𝑒𝑟 > 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 or 𝑖
𝑔𝑏𝑢 > 𝑖𝑙𝑖𝑚𝑖𝑡

𝑔𝑏𝑢
 

  Return 𝑥∗ 
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In order to improve the quality of the solution generated with any local neighborhood 

search procedure, it should be combined with a diversification strategy to search more 

extensively the feasible domain of the problem.  Many such strategies exist, and they are most 

of the time specific to the problem.   

2.2 Adaptive Neighborhood Search Techniques 

One of the difficulties in using metaheuristics in optimization is that often the methods 

require parameter tuning by the user to increase the quality of the final solution.  One promising 

area of research is utilizing adaptive neighborhood search (ANS) to help guide the search of the 

solution space.  ANS is especially useful when using a metaheuristic which has a local search 

framework, such as in the case of SA.   

In this section, we analyze the step “generate randomly 𝑥′ ∈ 𝑁(𝑥)” in the SA procedure 

in Algorithm 1.  Moreover, consider the case where 𝑁(𝑥) is specified using a set of 

neighborhoods {𝑛1, 𝑛2, … , 𝑛|ℕ|}.  Note that in the SA implementation of Goodfellow & 

Dimitrakopoulos (2016), the number of neighborhoods |ℕ| is equal to three.  Before generating 

𝑥′, we first select randomly the neighborhood to be used.  In Goodfellow & Dimitrakopoulos 

(2016), this section is made by a probability distribution specified a priori and manually tuned 

by the authors.  In the proposed contribution in this thesis, this probability distribution is made 

adaptive.  The probability of selecting neighborhood 𝑛𝑖 is proportional to its efficiency in the 

solving process.  This approach follows the adaptive large neighborhood search (ALNS) 

approach outline by Pisinger & Ropke (2007).   

The selection process is summarized as follows:  At each iteration to generate a neighbor 

solution 𝑥′, first a neighborhood 𝑛𝑖 must be selected.  𝑛𝑖 is selected by an associated probability 

𝑝𝑖 for all the 𝑖 ∈ ℕ.  The same values of the probabilities 𝑝𝑖, ∀𝑖 ∈ ℕ should be used for the same 

number of (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iterations in the local search method.  At each 

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iteration, the probabilities 𝑝𝑖 should be updated based on a score parameter 

𝑠𝑖 for each neighborhood 𝑛𝑖.  The scores should be proportional to the efficiency of the 
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neighborhood.  Therefore, larger scores will represent neighborhoods that have a better impact 

on the quality of the solution.   

To update the scores after (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iterations, there is a scalar 𝜅𝑖 indicating 

the number of times neighborhood 𝑛𝑖 is selected.  In addition, the value of 𝜋(𝑛𝑖) represents the 

efficiency of neighborhood 𝑛𝑖.  The values are updated each time neighborhood 𝑛𝑖 is selected 

as follows:  

𝜅𝑖 ← 𝜅𝑖 + 1 (1) 

𝜋(𝑛𝑖) ← 𝜋(𝑛𝑖) + 𝜎 (2) 

where 𝜎 represents the value of the efficiency of 𝑛𝑖.  We will calculate the efficiency 𝜎 as a 

function of the change in the objective function value.  After completing (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 

iterations, the scores 𝑠𝑖 are updated as follows: 

 𝑠𝑖 ← {
(1 − 𝛼)𝑠𝑖  + 𝛼 (

𝜋(𝑛𝑖)

𝜅𝑖
) If 𝜅𝑖 > 0

𝑠𝑖 Otherwise
 (3) 

and the probabilities 𝑝𝑖 become  

𝑝𝑖 ←
𝑠𝑖

∑ 𝑠𝑘𝑘∈ℕ
 ∀𝑖 ∈ ℕ (4) 

Take note that in (3), if a neighborhood is not called, the score remains the same for the 

next  (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iterations. There is also the introduction of a parameter 𝛼 ∈ [0,1] 

which controls the emphasis on historical scores versus new scores.  That is, if the parameter 𝛼 

is set close to 1, more emphasis is placed on newer information versus an 𝛼 closer to 0 which 

places emphasis on historical information.   

In the following chapter, we introduce the model proposed in Goodfellow & 

Dimitrakopoulos (2016) for an open pit mining complex and their specific implementation of 

SA the authors use to solve it.  Then, this thesis introduces a more sophisticated implementation 

of the adaptive approach for selecting the neighborhood at each iteration based on the notation 

in Lamghari & Dimitrakopoulos (2016) to specify the value of 𝜎.  
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An outline of the method described above can be seen here in Algorithm 2.   

Algorithm 2: Basic adaptive framework as posed by Pisinger & Ropke (2007) 

GENERATE 𝑥  # Initial Solution 𝑥 
SET 𝑥∗ ← 𝑥  # Best Solution 𝑥∗ 
𝑖 ← 0  
WHILE Stopping criteria is not met 
 𝑖 ← 1 + 1 
 If 𝑖 mod (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 = 0 

Update the probabilities 𝑝𝑖 based on scores 𝑠𝑖 
Set 𝑠𝑖 ← 0∀𝑖 ∈ ℕ  

 Choose a neighborhood 𝑛𝑖 probabilities 𝑝𝑖 
 GENERATE x′ from 𝑥 using the neighborhood 𝑛𝑖 
 IF 𝑥′ is accepted 
  𝑥 ← 𝑥′ 
  UPDATE 𝜋(𝑛𝑖) based on success 
 ELSE 
  UPDATE 𝜋(𝑛𝑖) based on failure 
 IF 𝑥 is a better solution than 𝑥∗ 
  𝑥∗ ← 𝑥 
RETURN 𝑥∗ 
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3 Implementation of Adaptive Neighborhood Choice in 

Simulated Annealing to Optimize the Stochastic Mining 

Complex 

This section introduces an overview of the model (section 3.1) and the solver (section 

3.2) presented by Goodfellow & Dimitrakopoulos (2016).  The third part of the section goes 

over the contribution to include an adaptive neighborhood search in the solving method (section 

3.3).  This adaptive neighborhood search used in this contribution is based on the work of 

Lamghari & Dimitrakopoulos (2015).   

Recall that a naïve way of scheduling a mining complex is to discretize a deposit into a 

collection of blocks and to assign a dollar value to each block; this value is calculated by the 

grade of the block, the recovery value of the processor, costs incurred in processing, and the 

market value of the metal.  This approach to valuing a complex is inaccurate when applying it 

to a mine in practice.  For example, recall the basic mining complex from section 1.1.  Each 

processor has a different recovery and this difference in recovery will result in a different value 

of the block being mined.  Therefore, we must use a model to analyze the value of a mining 

complex referring to its outputs rather than to each block value.   

3.1 Stochastic Integer Model of an Open Pit Mining Complex 

Goodfellow & Dimitrakopoulos (2016) utilize a two-stage stochastic optimization 

model. The formulation, replicated here, is written to be more holistic than models that appear 

elsewhere in the literature, such as those explored in section 1.3. That is, they aim the model to 

be able to be applied to a wide variety of deposits with more production constraints.  In addition, 

the model is better at valuing the output of the processor outputs each period rather than the 

value of each block sent through a processor.   

Goodfellow & Dimitrakopoulos (2016) view the mining complex as a directed graph 

𝒢(𝒩,𝒜) to keep track of the flow of material through the mining complex.  The nodes 𝒩 are 

classified into three sub-groups: 

1. 𝒞: Clusters of mined material, i.e. blocks, that have similar attributes. 
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2. 𝒮: Nodes associated with stockpiles. 

3. 𝒫: Nodes associated with processors.   

Note that using this notation, a waste dump can also be viewed as a processor that has a recovery 

of zero, i.e. no value is gained from a “waste dump processor.”  Moreover, a cluster 𝒞 is used 

to group together similar blocks of material in the mine.  The authors group material into clusters 

using a k means++ clustering algorithm.  K means++ was used because it generally produces 

stable clusters relative to regular k means clustering algorithm and a much more diverse cluster 

sets due to the weighting in the algorithm (Arthur & Vassilvitskii, 2007).  The authors operate 

under the assumption that if two distinct blocks in separate parts of the mine have similar 

attributes (such as grade of the material or the amount of deleterious elements in a block), the 

two distinct blocks will have the same destination in 𝒮 or 𝒫.  For example, if two blocks have a 

grade of zero then both blocks will potentially be sent to the same destination – the waste dump.  

Therefore, we will be making the decision for extracting a block referring to the blocks and its 

destination is made by referring to its cluster. 

In the following notation, material will flow from node 𝑖 ∈ 𝒩 to 𝑗 ∈ 𝒩 (material flows 

from node 𝑖 to node 𝑗).  𝒪(𝑖) represents the set of nodes that can receive materials from node 𝑖.  

ℐ(𝑗) is the set of nodes that can send material to node 𝑗.   

Indices and sets of the model are: 

 𝑚 ∈ 𝕄 is a set of mines within a complex. 

 𝑏 ∈ 𝔹𝑚 is the set of blocks within a mine 𝑚 ∈ 𝕄. 

 𝑡 ∈ 𝕋 is a set of time periods, typically years, where |𝕋| represens the life of mine 

of the complex. 

 𝑢 ∈ 𝕆𝑏 is the set of blocks overlaying block 𝑏 ∈ 𝔹𝑚. 

 𝑠 ∈ 𝕊 is a set of scenarios that represent a realization (simulation) of all sources 

of uncertainty.  Specifically, for this model it is the uncertainty of the metal grade 

in a block that is accounted for (metal uncertainty).  When using simulated 

orebody models, each scenario is equiprobable (Dimitrakopoulos, 2015). 
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 𝑝 ∈ ℙ represent primary attributes, fundamental variables of interest sent through 

the model (such as metal content, tonnage).  These attributes are typically linked 

directly with the attributes of the simulation and are always linearly transferred 

between parts of the mining complex.  The value of primary attribute 𝑝 from 𝑖 at 

time 𝑡 under period 𝑠 is denoted as 𝑣𝑝,𝑖,𝑡,𝑠.  These attributes often originate at 

mines 𝑚 ∈ 𝕄 and may flow through the mining complex to the final products.  

The value of the attribute recovered after treatment is denoted by 𝑟𝑝,𝑖,𝑡,𝑠. 

 ℎ ∈ ℍ represents hereditary attributes.  These attributes may be described as 

linear and non-linear functions of primary attributes, 𝑓ℎ,𝑖(𝑣𝑝,𝑖,𝑡,𝑠), of the primary 

attributes.  The value of the hereditary attribute ℎ at location 𝑖 at time 𝑡 under 

scenario 𝑠 is denoted as 𝑣ℎ,𝑖,𝑡,𝑠. 

The parameters of the model are defined as follows: 

 𝜑ℎ,𝑖,𝑡 ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋 represents the discounted revenue or expense 

associated with hereditary attribute ℎ at a given node 𝑖 in time 𝑡.  Typically, with 

a given economic discount rate 𝑑𝑒, 𝜑ℎ,𝑖,𝑡 =
𝜑ℎ,𝑖,1

(1+𝑑𝑒)𝑡
. 

 𝑈ℎ,𝑖,𝑡 and 𝐿ℎ,𝑖,𝑡 ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋 represent the upper and lower 

limits, or target, of attribute ℎ at destination 𝑖 in period 𝑡.  For example, this 

could be a processor target.   

 𝑐ℎ,𝑖,𝑡
+  and 𝑐ℎ,𝑖,𝑡

−  ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋 represent the cost (penalty) of deviation 

from a target (above and below the upper and lower targets respectively) for 

hereditary attribute ℎ, at destination 𝑖, in period 𝑡.  Here, the authors use a 

separate discount rate, called the risk discount rate 𝑑𝑟, to calculate the value of 

𝑐ℎ,𝑖,𝑡
+  and 𝑐ℎ,𝑖,𝑡

− .  That is, 𝑐ℎ,𝑖,𝑡
+ =

𝑐ℎ,𝑖,1
+

(1+𝑑𝑟)𝑡
 and 𝑐ℎ,𝑖,𝑡

− =
𝑐ℎ,𝑖,1
−

(1+𝑑𝑟)𝑡
. 

 𝛽𝑝,𝑏,𝑠  ∀𝑝 ∈ ℙ, 𝑠 ∈ 𝕊, 𝑏 ∈ 𝔹𝑚 represents the amount of primary attribute 𝑝 is in 

block 𝑏 under scenario 𝑠.   

 𝜃𝑏,𝑐,𝑠 ∀𝑏 ∈ 𝔹𝑚, 𝑚 ∈ 𝕄, 𝑐 ∈ 𝒞, 𝑠 ∈ 𝕊 is a pre-processed parameter to place a 

block into a cluster.  For a given cluster 𝑐, if simulation 𝑠 of block 𝑏 is 
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determined to be a member of cluster 𝑐, 𝜃𝑏,𝑐,𝑠 = 1, otherwise 𝜃𝑏,𝑐,𝑠 = 0.  It is 

understood that ∑ 𝜃𝑏,𝑐,𝑠𝑐∈𝒞 = 1 ∀𝑏 ∈ 𝔹𝑚, 𝑚 ∈ 𝕄, 𝑠 ∈ 𝕊 

In addition to the a priori parameters defined above, there is also a transformation 

function:  

 𝑓ℎ,𝑖(∗) ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫  is a function for the hereditary attribute.  This 

function is defined a priori.  What this function does is take a value of a primary 

attribute 𝑣𝑝,𝑖,𝑡,𝑠 and convert it into a hereditary attribute 𝑣ℎ,𝑖,𝑡,𝑠.  An example is 

recovery of metal from a processor.   

Goodfellow & Dimitrakopoulos (2016) define three main decision variables in their 

solution vector.  The solution vector is Φ = {𝒙, 𝒚, 𝒛} where 𝒙, 𝒚, 𝒛 represent the decision 

variables in the stochastic integer program.  The variables are defined as follows: 

1. Extraction sequence decision variables (𝒙 ∈ Φ): 𝑥𝑏,𝑡 is the extraction sequence 

decision variable where 1 represents mining block 𝑏 in period 𝑡, 0 otherwise.   

2. Destination policy decision variables (𝒛 ∈ Φ): 𝑧𝑐,𝑗,𝑡 is a binary variable where 

blocks in cluster 𝑐 are sent to destination 𝑗 in period 𝑡 

3. Processing stream decision variables (𝒚 ∈ Φ): 𝑦𝑖,𝑗,𝑡,𝑠 is a continuous variable 

between 0 and 1 indicating the proportion of material sent from node 𝑖 to 

destination node 𝑗 in period 𝑡 under scenario (realization) 𝑠 

Goodfellow & Dimitrakopoulos (2016) also define the following as variables whose values 

depend on both the realization of the metal content and the values of the three variables above.   

 𝑣𝑝,𝑖,𝑡,𝑠 ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 represent the value of the primary 

attribute 𝑝 at a given node 𝑖 in time 𝑡 under scenario 𝑠. 

 𝑣ℎ,𝑖,𝑡,𝑠 ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 represents the value of the hereditary 

attribute ℎ at a given node 𝑖 in time 𝑡 under scenario 𝑠. 

 𝜑𝑝,𝑐,𝑡,𝑠∀𝑝 ∈ ℙ, 𝑐 ∈ 𝒞, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 is the quantity of the value attribute 𝑝 in 

cluster 𝑐 at time 𝑡 under scenario 𝑠. 
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 𝑑ℎ,𝑖,𝑡,𝑠
+  and 𝑑ℎ,𝑖,𝑡,𝑠

−  ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 represent the value of 

deviation from a target (above and below the upper and lower targets 

respectively) for hereditary attribute ℎ, at destination 𝑖, in period 𝑡, when 

scenario 𝑠 occurs.   

 𝑟𝑝,𝑖,𝑡,𝑠 ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒮, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 is a variable to mass balance primary 

attributes in the mining sequence.  This can be viewed as the percent of recovery.   

The model is defined as follows: 

𝑔(Φ) = max {
1

|𝕊|
∑ ∑∑∑𝜑ℎ,𝑖,𝑡 ∙ 𝑣ℎ,𝑖,𝑡,𝑠

𝑠∈𝕊ℎ∈ℍ𝑡∈𝕋𝑖∈𝒮∪𝒫∪𝕄

−
1

|𝕊|
∑ ∑∑∑(𝑐ℎ,𝑖,𝑡

+ ∙ 𝑑ℎ,𝑖,𝑡,𝑠
+ + 𝑐ℎ,𝑖,𝑡

− ∙ 𝑑ℎ,𝑖,𝑡,𝑠
− )

𝑠∈𝕊ℎ∈ℍ𝑡∈𝕋𝑖∈𝒮∪𝒫∪𝕄

} 

(5) 

∑𝑥𝑏,𝑡 ≤ 1      ∀𝑏 ∈ 𝔹

𝑡∈𝕋

 (6) 

𝑥𝑏,𝑡 ≤ ∑ 𝑥𝑢,𝑡′

𝑡

𝑡′=1

     ∀𝑏 ∈ 𝔹𝑚, 𝑢 ∈ 𝕆𝑏 , 𝑡 ∈ 𝕋 (7) 

𝑣𝑝,𝑚,𝑡,𝑠 = ∑ 𝛽𝑝,𝑏,𝑠 ∙ 𝑥𝑏,𝑡
𝑏∈𝔹𝑚

     ∀𝑚 ∈ 𝕄, 𝑝 ∈ ℙ, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (8) 

𝛾𝑝,𝑐,𝑡,𝑠 = ∑ 𝜃𝑏,𝑐,𝑠 ∙ 𝛽𝑝,𝑏,𝑠 ∙ 𝑥𝑏,𝑡
𝑏∈𝔹𝑚

     ∀𝑚 ∈ 𝕄, 𝑝 ∈ ℙ, 𝑐 ∈ 𝒞, 𝑠 ∈ 𝕊 (9) 

∑ 𝑧𝑐,𝑗,𝑡
𝑗∈𝒪(𝑐)

= 1     ∀𝑐 ∈ 𝒞, 𝑡 ∈ 𝕋 (10) 

𝑟𝑝,𝑖,𝑡,𝑠 = 1     ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒮, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (11) 

𝑟𝑝,𝑖,𝑡,𝑠 = 𝑓ℎ,𝑖(𝑣𝑝,𝑖,𝑡,𝑠)     ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (12) 
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∑ 𝑦𝑖,𝑗,𝑡,𝑠 ≤ 1     ∀𝑖 ∈ 𝒮, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊

𝑗∈𝒪(𝑖)

 (13) 

∑ 𝑦𝑖,𝑗,𝑡,𝑠 = 1     ∀𝑖 ∈ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊

𝑗∈𝒪(𝑖)

 (14) 

𝑣𝑝,𝑗,(𝑡+1),𝑠 = ∑ 𝑟𝑝,𝑖,𝑡,𝑠 ∙ 𝑣𝑝,𝑖,𝑡,𝑠 ∙ 𝑦𝑖,𝑗,𝑡,𝑠
𝑖∈(ℐ(𝑗)\𝒞)

+ ∑ 𝜑𝑝,𝑐,(𝑡+1),𝑠 ∙ 𝑧𝑐,𝑗,(𝑡+1)
𝑖∈(ℐ(𝑗)∩𝒞)

+ (𝑣𝑝,𝑗,𝑡,𝑠 ∙ (1 − ∑ 𝑦𝑗,𝑘,𝑡,𝑠
𝑘∈𝒪(𝑗)

))     ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 

(15) 

𝑣ℎ,𝑖,𝑡,𝑠 = 𝑣𝑝,𝑖,𝑡,𝑠 ∙ (1 − ∑ 𝑦𝑖,𝑗,𝑡,𝑠
𝑗∈𝒪(𝑖)

)    ∀𝑖 ∈ 𝒮, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (16) 

𝑣ℎ,𝑖,𝑡,𝑠 = 𝑓ℎ,𝑖(𝑣𝑝,𝑖,𝑡,𝑠)     ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (17) 

𝑣ℎ,𝑖,𝑡,𝑠 − 𝑑ℎ,𝑖,𝑡,𝑠
+ ≤ 𝑈ℎ,𝑖,𝑡     ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (18) 

𝑣ℎ,𝑖,𝑡,𝑠 + 𝑑ℎ,𝑖,𝑡,𝑠
− ≥ 𝐿ℎ,𝑖,𝑡     ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (19) 

𝑥𝑏,𝑡 ∈ {0,1}     ∀𝑏 ∈ 𝔹𝑚, 𝑚 ∈ 𝕄, 𝑡 ∈ 𝕋 (20) 

𝑧𝑐,𝑗,𝑡 ∈ {0,1}     ∀𝑐 ∈ 𝒞, 𝑗 ∈ 𝒪(𝑐), 𝑡 ∈ 𝕋 (21) 

𝑦𝑖,𝑗,𝑡,𝑠 ∈ [0,1]     ∀𝑖 ∈ 𝒮 ∪ 𝒫, 𝑗 ∈ 𝒪(𝑖), 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (22) 

𝜑𝑝,𝑐,𝑡,𝑠 ≥ 0     ∀𝑝 ∈ ℙ, 𝑐 ∈ 𝒞, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊    (23) 

𝑟𝑝,𝑖,𝑡,𝑠 ∈ [0,1]     ∀𝑝 ∈ 𝔹𝑚, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (24) 

𝑣𝑝,𝑖,𝑡,𝑠 ≥ 0     ∀𝑝 ∈ ℙ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (25) 

𝑣ℎ,𝑖,𝑡,𝑠 ∈ ℝ     ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫 ∪𝕄, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (26) 

𝑑ℎ,𝑖,𝑡,𝑠
+ , 𝑑ℎ,𝑖,𝑡,𝑠

− ≥ 0     ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (27) 
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The first function is the objective function of the model, defined in (5).  The first part of 

the objective function represents the discounted revenues and costs associated with the mining 

complex operation.  The second part of the objective function represent the risk discounted 

penalties for deviations from production targets.  Recall that the scenarios all have an equal 

probability of occurring.     

The following three constraints are the mine extraction constraints.  Constraints (6) 

represent the reserve constraint; i.e., a single block 𝑏 can only be mined in one period 𝑡.  

Constraints (7) are called the block access constraints.  Recall from Figure 2 in section 1.1 that 

the blocks in the overlying set 𝕆𝑏 must be removed before or including the period 𝑡 which we 

desire to extract block 𝑏.  Constraints (8) convert the values of the primary attribute of blocks 

extracted in period 𝑡 into the variable 𝑣𝑝,𝑚,𝑡,𝑠 using 𝛽𝑝,𝑏,𝑠.   

Constraints (9) and (10) are destination policy constraints.  Constraints (9) are similar to 

the mine extraction constraints (8) as they determine the quantity of the material in a specific 

cluster and scenario.  Constraints (10) ensures that a given cluster is sent to only one destination 

in a given period.   

Constrains (11) to (17) are processing flow stream constraints.  Constraints (11) 

represent the recovery of material at stockpile nodes in the mining complex.  We typically 

assume that the recovery from a stockpile is always 100%.  Constraints (12) represents the 

recovery of material from a processor node 𝑖.  Recall from Section 1.1 that a processor’s grade-

recovery curve  𝑓ℎ,𝑖(∗) can be non-linear.  Constraints (13) and (14) are similar to the mining 

reserve constraint.  Constraints (13) ensure that the proportion material sent from stockpile 

nodes are appropriately balanced.  Constraints (14) ensure that the proportion of material sent 

from processing nodes are appropriately balanced.  Constraints (15) represent the mass-

balancing of material from mines to stockpiles and/or processors.  Constraints (16) are used to 

calculate and represent the amount of material left in the stockpiles at end of the year. Finally, 

constraints (17) represent the amount of a primary attribute after applying some kind of 

transformation, such as those at a processor.   

Constraints (18) and (19) represent the capacity constraints of the material at a given 

node 𝑖.  Constraints (18) represent the upper bound of the equipment’s ability to handle 
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material ℎ at location 𝑖 in period 𝑡 and allow the deviation 𝑑ℎ,𝑖,𝑡,𝑠
+  if the amount is exceeded.  

Conversely, constraint (19) represents a lower bound of the value (amount) of the attribute ℎ 

the equipment is to handle at location 𝑖 in period 𝑡 and allow the deviation 𝑑ℎ,𝑖,𝑡,𝑠
−  if the 

amount is less than the limit. 

Finally, (20) to (27) represent variable definitions of the model.  Constraints (20) and 

(21) are the binary decisions of the mining decision and destination decision, respectively.  

Constraint  (22) is the continuous decision of the processing stream decision.   

3.2 Solution Method  

Optimizing the open pit mining complexes with metal uncertainty can be challenging to 

solve using exact methods. Often metaheuristics are used to optimize these mining complexes.  

Viewing a more simplified model, Lamghari & Dimitrakopoulos (2012) note the open pit 

mining problems can be seen as Precedence-Constrained Knapsack Problem (PCKP).  The 

authors note the model is NP-Hard.  Often, as mentioned by Lamghari & Dimitrakopoulos 

(2012) and in Goodfellow & Dimitrakopoulos (2016), metaheuristic methods employed to attain 

good solutions in a reasonable amount of time.  Goodfellow & Dimitrakopoulos (2016) selected 

simulated annealing (SA) as the base method to optimize their new formulation. This method is 

selected because of previous success using SA to optimize extraction sequences of mining 

complexes.  Referring to the SA specified in Algorithm 1, the neighborhood 𝑁(Φ), where the 

neighbor solution is selected, is partitioned into three neighborhoods 𝑛𝑥, 𝑛𝑦, or 𝑛𝑧 is obtained 

by modifying a variable 𝑥𝑏,𝑡 ∈ 𝒙, 𝑦𝑖,𝑗,𝑡,𝑠 ∈ 𝒚, or 𝑧𝑐,𝑗,𝑡 ∈ 𝒛, respectively. At each iteration, one of 

the neighborhoods is selected randomly according to a probability distribution specified a priori 

by the user.  The neighbor solution is obtained by modifying the current solution using a 

perturbation specific to the neighborhood.   The perturbations are formally defined as follows: 

1. Extraction sequence perturbations (𝒙 ∈ Φ): a block 𝑏 ∈ 𝔹𝑚 is randomly selected.  

A different period of extraction is then selected randomly for extracting 𝑏.  There is 

a probability of changing the period to “not mining” block 𝑏.  Moreover, some 

predecessor or successor blocks’ periods, if block 𝑏 is moved to an earlier or later 

period, respectively, may be adjusted to satisfy the slope constraint, constraints (7).  
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For example, if a block is moved from period 3 to period 2 and all the predecessor 

blocks are mined in period 1, the predecessor blocks will not change.  However, if 

all the predecessor blocks are in period 3, then all the predecessor blocks would have 

to be adjusted to maintain slope constraints.  Also bear in mind this will subsequently 

effect destination and processing stream decisions.   

2. Destination policy perturbations (𝒛 ∈ Φ): a cluster’s destination decision variable is 

randomly selected and sent to a different destination, if possible.  A random variable 

𝑧𝑐,𝑗,𝑡 is selected from the sub-vector 𝒛 ∈ Φ and then a new 𝑗 ∈ 𝒪(𝑐) is selected.   

3. Processing stream perturbations (𝒚 ∈ Φ): a processing stream variable 𝑦𝑖,𝑗,𝑡,𝑠 is 

randomly selected and its value is modified using a random normal number; i.e. 

𝑦𝑖,𝑗,𝑡,𝑠 ← 𝑁 (𝑦𝑖,𝑗,𝑡,𝑠, 0.1) + 𝑦𝑖,𝑗,𝑡,𝑠. The authors note that the variance of the normal 

distribution is sufficiently small to allow both local and global exploration.  After the 

selection and modification of the selected 𝑦𝑖,𝑗,𝑡,𝑠 variable, the associated 𝑦𝑖,𝑗′,𝑡,𝑠 ∀𝑗
′ ∈

𝒪(𝑗) are normalized based on equation (13) or (14).   

Once the neighborhood is selected and the current solution Φ is modified to Φ′ and the 

probability of accepting a neighbor solution Φ′ is defined as follows: 

𝑃(𝑔(Φ), 𝑔(Φ′), 𝛿𝑖) = {
1 If Φ′is an improving solution

𝑒
𝑔(Φ′)−𝑔(Φ)

𝛿𝑖 Otherwise
 (28) 

Where 𝑔(Φ) and 𝑔(Φ′) are the objective function values before and after the perturbation, 

respectively, and 𝛿𝑖 is the annealing temperature for a neighborhood 𝑖. In Goodfellow & 

Dimitrakopoulos (2016), rather than use a single value 𝜏 in the SA method (where the singular 

temperature for all neighborhoods and is cooled over time), the method will have three 

temperature values, one for each neighborhood.  Some neighborhoods will have a much larger 

impact on the objective function value when selected.  Therefore, having a constant temperature 

for all the neighborhoods could cause those neighborhoods with a smaller impact to be almost 

always accepted while the greater impact neighborhoods will only accept neighbor solutions 

which improve the current solution.  So, the authors introduce a starting acceptance probability 

𝜌 instead of a starting temperature.  The value 𝜌 can be thought of as a “target probability of 
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acceptance” for a given set of iterations.  The value 𝜌 is identical for all neighborhoods and 𝜌 

(where 0 < 𝜌 ≤ 1) is cooled by a parameter 𝜀 (where 0 < 𝜀 < 1) every 𝑛𝑖𝑡𝑒𝑟 iterations. The 

temperature 𝛿𝑖 is calibrated using the reduction in objective function over the past 𝑛𝑖𝑡𝑒𝑟 

iterations (that is, we only consider worsening solutions).  The temperature 𝛿𝑖 is updated for 

each neighborhood is updated such as in (29).   

𝛿𝑖 ←
|Δ𝑔|̅̅ ̅̅ ̅̅

ln(𝜌)
 (29) 

where |Δ𝑔|̅̅ ̅̅ ̅̅  is the average reduction in objective function over the past iterations and ln(𝜌) is 

the natural logarithm for 𝜌.  The authors note that this better reflects the current search space 

rather than the search space when the SA algorithm began. 

The stopping criteria for the SA is either when the global best update counter, 𝑘𝑔𝑏𝑢, 

reaches a specified count or the number of iterations of the SA, 𝑘,  reaches a specified number, 

whichever comes first.  After the simulated annealing is complete, the method checks to see if 

the method found a new global best solution.  If no new best solution was found, the method 

terminates and returns the global best solution.  However, if a new global best solution is found, 

then the SA method is reset and executed again with Φ𝑔 as an initial solution.  Each time a SA 

is executed to diversify the solution, we call this a global iteration (GI).   

In Goodfellow & Dimitrakopoulos (2016), the authors develop three variations of their 

solver to optimize their model.  The first method is the basic SA that was outlined in this section.  

It uses SA to optimize over all three variable sets.  The other two variations to the solver use SA 

before applying a second metaheuristic to optimize the values of both the 𝒚 and 𝒛 variables, 

known collectively as downstream variables.  These variations incorporate either differential 

evolution (DE) or particle swarm optimization (PSO) after each SA is executed. Recall that DE 

and PSO are better suited for continuous variables and also recall that 𝒚 is a continuous variable.  

Note that in these two variations, the DE and PSO do not modify the extraction sequence 

variables, i.e. the variables in 𝑥. 

Most population based metaheuristics have been problematic in mining problems 

because of decisions which have to be made surrounding repair operators in the precedence 
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constraints.  Goodfellow & Dimitrakopoulos (2016) use DE and PSO only for downstream 

variables as to avoid such problems.  The authors also note that as such, PSO and DE are 

sensitive to the initial sequences and destination policies generated for the population.     

When Goodfellow & Dimitrakopoulos utilize DE (Storn & Price, 1997) in their 

algorithm, they see an approximate increase of 2.57% in the NPV of the resulting solution.  The 

authors also note that while we gain 2.57% on the NPV, it takes approximately 2.9 times as long 

to complete the algorithm using the same criteria then just executing SA alone.   

When Goodfellow & Dimitrakopoulos (2016) utilize particle swarm optimization (PSO) 

in their optimization process.  PSO is another population based metaheuristic outlined in Khan 

& Niemann-Delius (2014).  While PSO does achieve an increase in objective function value 

(1.91% when compared to SA alone), it does take on average 2.4 times as long to achieve the 

same stopping criteria. 

The diversification method used in Goodfellow & Dimitrakopoulos (2016) is to re-run 

the selected variation (SA Only, SA+DE, or SA+PSO) of the method beginning from the global 

best solution found in the previous iteration.  That is, the method takes the global best result 𝑥∗ 

and re-initializes SA (with or without either PSO or DE) from the initial parameters, resetting 

the temperature and stopping criteria, using the previous found 𝑥∗ as an initial solution in 

Algorithm 1.  Here, we refer to each time the SA is reset and run again as a global iteration GI.  

An example of this can be seen in Algorithm 3.   

Algorithm 3: Iterating Simulated Annealing many times 

Initialization: 
 Select an initial solution 𝑥0 ∈ 𝑋 
 Let 𝑥 ← 𝑥0; 𝑥∗ ← 𝑥0 
While stopping criteria is not met 
 𝑥 ← 𝑥∗ 
 𝑁𝑒𝑤𝐺𝐵𝑆 ← False 
 While stopping criteria is not met from Algorithm 1 
  Execute SA Similar to Algorithm 1 
  If a new global best solution (GBS) is found in Algorithm 1 
   𝑁𝑒𝑤𝐺𝐵𝑆 ←True 
 If not (𝑁𝑒𝑤𝐺𝐵𝑆) 
  Return 𝑥∗ 
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This method of diversification allows for the stopping criteria being the number of global 

best updates to be an acceptable choice because the individual SAs start with the global best 

solution. if further intensification is possible then it can be picked up on the next global iteration. 

otherwise, it allows for the method to work away from a local maximum every 𝑖𝑔𝑏𝑢 iterations. 

A general algorithm can be seen in Algorithm 4: 

Algorithm 4: Simulated annealing as developed by Goodfellow & Dimitrakopoulos (2016) 

Build Φ ← {𝒙, 𝒚, 𝒛} ∀ 𝑖 ∈  𝑁, generate an initial solution 
Set Φ𝑔 ← Φ where Φ𝑔 is the global best solution 
While True 
 Φ ← Φ𝑔  
 𝑁𝑒𝑤𝐺𝐵𝑆 ← False, keeps track of a new global best solution (GBS) 
 𝑘, 𝑘𝑔𝑏𝑢 ← 0, keeps track of iterations 𝑖 and number of times there is 
   A new GBS 𝑖𝑔𝑏𝑢 
 Print “Beginning SA”, we begin a global iteration here (GI) 
 While Stopping Criteria is not Met 
  Select a neighborhood 𝒙, 𝒚, or 𝒛 with a fixed probability 
  Select a variable in the selected neighborhood to modify 
  Store the modified solution as Φ′ 
  If 𝑔(Φ′) ≥ 𝑔(Φ) 
   Φ ← Φ′ 
   If 𝑔(Φ′) ≥ 𝑔(Φ𝑔) 

    Φ𝑔 ← Φ′, 𝑁𝑒𝑤𝐺𝐵𝑆 ← True, 𝑘𝑔𝑏𝑢 ← 𝑘𝑔𝑏𝑢 + 1 

  Else If 𝑃(𝑔(Φ), 𝑔(Φ′), 𝛿𝑖) ≥ 𝑈{0,1}, Accepted by APF  
   Φ ← Φ′ 
  If needed, cool the temperature 𝜌 and 𝛿𝑖 
  𝑘 ← 𝑘 + 1 
 If 𝑈𝑠𝑒𝐷𝐸 
  Execute DE on downstream variables 
 Else If 𝑈𝑠𝑒𝑃𝑆𝑂 
  Execute PSO on downstream variables  
 If Not(𝑁𝑒𝑤𝐺𝐵𝑆) 
  Return Φ𝑔 

3.3 Implementing an Adaptive Neighborhood Selection Procedure 

into the Mine Complex Optimization Procedure 

This section will introduce an adaptive procedure for selecting neighborhoods.  This 

section uses the method outlined by Lamghari & Dimitrakopoulos (2015) and is an expansion 

on the method introduced in section 2.2.  More explicitly, we will expand on the assignment of 
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the value of 𝜎 from Algorithm 2 on page 16   The value assigned to the measure is a function of 

the change of the objective function value (Δ𝑔 = 𝑔(Φ′) − 𝑔(Φ)).  We will modify the scores 

differently depending on the result of the SA; accept outright, conditionally accept, or reject.  

Using these scores, we will apply a roulette-style selection method for selecting the 

neighborhood to search.   

Lamghari & Dimitrakopoulos (2015) use a method to adaptivey select heurstics in their 

method for solving mining complexes.  In addition, they draw from methods outlined by Burke, 

et al. (2013) and Drake, et al. (2012).  They update the scores of the neighborhoods as follows.  

As initially discussed in section 2.2, the neighborhoods are grouped together in such a way 

where a small perturbation, or called a low-level heuristic here, is applied to a current solution 

to get a neighbor solution.  The authors denote the low-level heuristic by ℎ𝑗 .  The notation 

Δ𝑔(ℎ𝑗) is the difference in the value of the current solution and the neighbor generated using 

ℎ𝑗 .  The authors also use the time as part of their measures, where 𝑇(ℎ𝑗) as the time (in seconds) 

it takes for a low-level heuristic to be applied.  Note that it may take a while for some low-level 

heuristics to apply and repair a solution.  The authors also introduce two unique measures to 

keep track of the low-level heuristics, 𝜋1(ℎ𝑗) and 𝜋2(ℎ𝑗).  Both measures are set initially to 

zero.  The authors update the measures based on whether the neighbor solution is an improving 

solution or not.  Therefore, they have two cases, which are as follows: Suppose that if a heuristic 

creates a neighbor solution with an improving objective function, we then increase 𝜋1(ℎ𝑗) by 

Δ𝑔(ℎ𝑗  ) 𝑇(ℎ𝑗)⁄  .  Conversely, suppose that if a heuristic creates a neighbor solution with a non-

improving objective function, we then increase 𝜋2(ℎ𝑗) by 1 |Δ𝑔(ℎ𝑗)|𝑇(ℎ𝑗)⁄ .   

Measure incriment
cases

{
 
 

 
 𝜋1(ℎ𝑗) ← 𝜋1(ℎ𝑗) +

Δ𝑔(ℎ𝑗)

𝑇(ℎ𝑗)
If Δ𝑔(ℎ𝑗) ≥ 0

𝜋2(ℎ𝑗) ← 𝜋2(ℎ𝑗) +
1

|Δ𝑔(ℎ𝑗)|𝑇(ℎ𝑗) 
Otherwise

 (30) 

If we analyze both cases in (30) for incrementing the measure, the first one (i.e. if Δ𝑔(ℎ𝑗) > 0) 

is straightforward.  The better the increase in objective function value and the less time it takes 

to find an update, the greater the measure.  The second case (i.e. “otherwise”) emphasizes 
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minimal deterioration to the objective function value.  That is, the smaller the reduction in the 

objective function, and the shorter the time to find a solution, the greater the measure.   

In this thesis, we modify (30) to better match the cases in SA and remove the time value 

from the measures.  The decision to remove this was based on the fact the neighbor solution 

creation time was inconsistent even within a neighborhood.  The following notation also 

redefines the “low-level heuristic ℎ𝑗” as neighborhood 𝑛𝑖.  Recall that in SA, there are three 

cases that can occur when deciding to accept the neighbor solution: improving, worse solution 

but accepting, and rejecting the neighbor solution.  Therefore, we have added a third case into 

(30) to reflect the three outcomes of SA.  That is, the measure increment cases are defined as 

follows: 

Measure incriment
cases for ANS in SA

{
 
 

 
 
𝜋1(𝑛𝑖) ← 𝜋1(𝑛𝑖) + Δ𝑔(𝑛𝑖) if Δ𝑔(𝑛𝑖) ≥ 0 

𝜋1(𝑛𝑖) ← 𝜋1(𝑛𝑖) +
1

|Δ𝑔(𝑛𝑖)| 
if Δ𝑔(𝑛𝑖) < 0 and accepted

𝜋2(𝑛𝑖) ← 𝜋2(𝑛𝑖) +
1

|Δ𝑔(𝑛𝑖)| 
Otherwise

 (31) 

In both Lamghari & Dimitrakopoulos (2015) and this thesis, the values of the score 

modification 𝜋1(𝑛𝑖) and 𝜋2(𝑛𝑖) (associated with the success and failure of using 𝑛𝑖, 

respectively) are specified as follows: at the beginning of the period of (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 

iterations, the value of 𝜋1(𝑛𝑖) and 𝜋2(𝑛𝑖) are initialized to zero.  In this thesis specifically, each 

time a neighbor solution in neighborhood 𝑛𝑖 is selected, in addition to incrementing 𝜅(𝑛𝑖), one 

of three cases will happen: 

1. Suppose that using neighborhood 𝑛𝑖 leads to an improvement of the current 

solution.  That is, we outright accept the neighbor solution.  Then 𝜋1(𝑛𝑖) is 

increased by |𝛥𝑔|. 

2. Suppose that using neighborhood 𝑛𝑖 leads to a non-improving solution, Δ𝑔 < 0, 

but the SA method accepts the neighbor solution to be the current solution based 

on the APF, then 𝜋1(𝑛𝑖) is increased by 1/|Δ𝑔|. 
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3. Finally suppose that using neighborhood 𝑛𝑖 leads to a non-improving solution, 

Δ𝑔 < 0, and keeps the current solution (rejects the neighbor solution due to the 

APF), then 𝜋2(𝑛𝑖) is increased by 1/|Δ𝑔|. 

At each (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, the modification of score 𝑠𝑖 associated with each 

neighborhood 𝑛𝑖 , ∀𝑖 ∈ ℕ (where ℕ is the set of neighborhoods allowed) is similar to the process 

implemented in Lamghari & Dimitrakopoulos (2015).  To be more explicit, assume that the 

scores are updated after each period of (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations of SA.  Let 𝜅(𝑛𝑖) the 

number of times that 𝑛𝑖 is selected during the (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations. The term to modify 

the score 𝑠𝑖 is specified in equation (32) here. 

𝑠𝑖 ← {
(1 − 𝛼)𝑠𝑖  + 𝛼 (

 𝛽 𝜋1(𝑛𝑖)  + (1 − 𝛽)𝜋2(𝑛𝑖)

𝜅(𝑛𝑖)
) If 𝜅(𝑛𝑖) > 0

𝑠𝑖 Otherwise

 (32) 

In equation (32), 𝛼 ∈ [0,1] is a static parameter that the user can define to specify how 

much emphasis to place on newer information (that is 𝛼 being closer to 1) versus on historical 

information (that is 𝛼 being closer to 0).  The variable 𝜅(𝑛𝑖) is the number of times a 

neighborhood 𝑛𝑖 is called.  If 𝜅(𝑛𝑖) = 0, then 𝑠𝑖 ← 𝑠𝑖.  After (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, the 

score 𝑠𝑖 of neighborhood 𝑛𝑖 is updated according to equation (32).   The self-adjusted parameter 

𝛽 ∈ [0,1] is the impact of the successful versus unsuccessful neighborhoods.  The 𝛼 remains 

static in the method and 𝛽 changes based on the last update to the local best solution.  If: 

1. A new local best is found in the last (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, 𝛽 is set to 1. 

2. No new local best solution is found in the (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, 𝛽 is 

reduced by 0.1 until it reaches zero.  That is 𝛽 ← max[𝛽 − 0.1,0.0].   

The count is reset to zero each time the scores 𝑠𝑖 are updated.  Keeping in mind that 𝜋1(𝑛𝑖) 

represents a heuristic’s “success” score and  𝜋2(𝑛𝑖) represents a heuristic’s “failure” score, let 

us look at this sub-part of the equation (32) above: 

𝛽 𝜋1(𝑛𝑖)  + (1 − 𝛽)𝜋2(𝑛𝑖) (33) 
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We can see in (33) above that when 𝛽 is closer to 1, more weight is placed on the successful 

heuristics.  That is, we can view this as more emphasis is placed on intensifying the search of 

neighborhoods using recently successful heuristics.  As 𝛽 is reduced and ultimately reaches 

zero, more weight is placed on searching neighborhoods of the unsuccessful heuristics.  

However, these heuristics are the ones which would have not reduced the overall objective 

function value by a large amount if the neighbor solutions were accepted (that is, unsuccessful 

heuristic closer to zero).  This emphasis placed on better quality but failing heuristics can be 

viewed as a diversification method.   

After the value of 𝛽 has been updated, the method then updates the scores for each 

neighborhood by equation (32).   If the count 𝜅(𝑛𝑖) is equal to zero, i.e. 𝑛𝑖 was not called in the 

last (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, then the score remains unchanged.  Once the scores have 

been updated, the method updates the probabilities 𝑝𝑗 for the next  (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 

iterations using a roulette-style method, such as in (34).    

𝑝𝑗 ←
𝑠𝑗

∑ 𝑠𝑘𝑘∈ℕ
 ∀𝑗 ∈ ℕ (34) 

The ANS in SA then proceeds as follows: at the beginning of each global iteration, the 

initial probabilities in scores are set to be equally probable. Here, this means the initial 

probability for all the neighborhoods is set to 33% each. After each perturbation in the SA, we 

will modify either 𝜋1(𝑛𝑖) or 𝜋2(𝑛𝑖) for the selected neighborhood as depicted above. After 

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, the score will be updated as equation (32) depicts and the 

probabilities will be updated similarly to (34).  Continue solving the SA until the stopping 

criteria is met; this stopping criteria remains identical to the previous method.  After SA is 

finished, DE or PSO can be executed if desired.  As with Goodfellow & Dimitrakopoulos 

(2016), we will continue to diversify until no further global best solution can be found.  While 

a detailed pseudocode is outlined in the Appendix B, placing the ANS method into Algorithm 

4 gives us Algorithm 5.  Lines in bold were added to Algorithm 4 to highlight the differences.   
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Algorithm 5: Simulated annealing with an adaptive neighborhood search method for 

optimizing stochastic mining complexes 

Build Φ ← {𝒙, 𝒚, 𝒛} ∀ 𝑖 ∈  𝑁, generate an initial solution 
Set Φ𝑔 ← Φ where Φ𝑔 is the global best solution 
While True 
 𝑁𝑒𝑤𝐺𝐵𝑆 ← False, keeps track of a new global best solution (GBS) 
 𝑘, 𝑘𝑔𝑏𝑢 ← 0, keeps track of iterations 𝑖 and number of times there is 
   A new GBS 𝑖𝑔𝑏𝑢 
 𝑹𝒆𝒔𝒆𝒕𝑩𝒆𝒕𝒂 ← False, keeps track if we need to set beta to 1.0 

 𝒑𝟏, 𝒑𝟐, 𝒑𝟑 ← (𝟏 𝟑⁄ ), 𝜷 ← 𝟎. 𝟓, 𝜶 ← 𝟎. 𝟕 

 Print “Beginning SA”, we begin a global iteration here (GI) 
 While Stopping Criteria is not Met 
  If 𝒊 mod (𝑺𝒄𝒐𝒓𝒆𝑼𝒑𝒅𝒂𝒕𝒆)𝒔𝒌𝒊𝒑 = 0 

   If 𝑹𝒆𝒔𝒆𝒕𝑩𝒆𝒕𝒂 
    𝜷 ← 𝟏. 𝟎, 𝑹𝒆𝒔𝒆𝒕𝑩𝒆𝒕𝒂 ← False 
   Else  
    𝜷 ← 𝐦𝐚𝐱[𝟎. 𝟎, 𝜷 − 𝟎. 𝟏] 
   Update the scores of all the neighborhoods by Eq (32) 
   𝝅𝟏(𝒏𝒊), 𝝅𝟐(𝒏𝒊), 𝜿(𝒏𝒊) ← 𝟎 for all the neighborhoods 
   Update probabilities 𝒑𝒊 for the neighborhoods by Eq (34) 
  Select a neighborhood 𝒙, 𝒚, or 𝒛 with adapted probabilities 𝒑𝒊 
  Select a variable in the selected neighborhood 𝑛𝑖 to modify 
  Store the modified solution as Φ′ 
  If 𝑔(Φ′) ≥ 𝑔(Φ) 
   Φ ← Φ′ 
   𝝅𝟏(𝒏𝒊) ← 𝝅𝟏(𝒏𝒊) + 𝚫𝒈  
   𝑹𝒆𝒔𝒆𝒕𝑩𝒆𝒕𝒂 ← True 
   If 𝑔(Φ′) ≥ 𝑔(Φ𝑔) 
    Φ𝑔 ← Φ′, 𝑁𝑒𝑤𝐺𝐵𝑆, 𝑘𝑔𝑏𝑢 ← 𝑘𝑔𝑏𝑢 + 1 
  Else If 𝑃(𝑔(Φ), 𝑔(Φ′), 𝛿𝑖) ≥ 𝑈{0,1}, Accepted by APF  
   Φ ← Φ′ 

   𝝅𝟏(𝒏𝒊) ← 𝝅𝟏(𝒏𝒊) +
𝟏
|𝚫𝒈|⁄  

  Else 

   𝝅𝟐(𝒏𝒊) ← 𝝅𝟐(𝒏𝒊) +
𝟏
|𝚫𝒈|⁄  

  If needed, cool the temperatures 𝜌 and 𝛿𝑖 
  𝑘 ← 𝑘 + 1 
 If 𝑈𝑠𝑒𝐷𝐸 
  Execute DE on downstream variables 
 Else If 𝑈𝑠𝑒𝑃𝑆𝑂 
  Execute PSO on downstream variables  
 If Not(𝑁𝑒𝑤𝐺𝐵𝑆) 
  Return Φ𝑔 ← Φ 
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4  Numerical Results 

To test the method outlined in this thesis, we ran the method on three deposits.  There 

were two single element deposits, one copper and one gold, and one multi-element deposit, a 

copper-gold deposit.  The copper-gold deposit is the same deposit used by Goodfellow & 

Dimitrakopoulos (2016) to test their model and method.   

4.1 Copper-Gold Deposit  

The following figures and tables represent the copper-gold deposit.  Figure 3 summarizes 

the mine complex materials and the processing options.  In short, there are two elements in the 

deposit, copper (Cu) and gold (Au).  There are four processing options (one mill and three leach 

pads), two waste dump options, and a stockpile to feed only one processor.  The mine contains 

three material groups: sulfides, transition, and oxides. They are separated into these groups 

because of the chemistry constraints on the materials in the mine.  In order to respect the 

chemistry requirements at the sulfide heap leach (processor), the sulfide and transition material 

groups are both separated into two different material types based on being above or below 0.2% 

copper. The oxide materials are classified as ore or waste based on chemistry.  

With the exception of the waste dumps, all processors have variable grade-recovery 

curves that are based on the average grade of the incoming material in a period.  In general, the 

higher the grade of the material into the processor, the higher the recovery of the processor.   

All cost-related parameters in Table 1 and Table 2 are expressed relative to the mining 

cost for confidentiality purposes. Table 2 summarizes the constraints and penalty costs used in 

the models. A risk discount rate of 10% is used to penalize the deviations from the production 

capacities, and ensures that riskier material is deferred to later periods when more information 

is available (such as economic, geological, processing, etc.). The mine model contains 34,057 

blocks that may be scheduled over 22 years.  Also, 25 simulated orebody models (scenarios) 

were used in the SIP, similar to what has been done in Goodfellow & Dimitrakopoulos (2016).  

The simulations were provided by the industry partners and were generated using a sequential 

conditional simulation method.  Note that 25 realizations are sufficient to capture metal 

uncertainty as previous studies, such as that of Consuegra & Dimitrakopoulos (2009), show that 
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after about 15 realizations, stochastic schedules converge to a stable final physical schedule and 

stable production forecasts.  Finally, a slope angle of 45◦ is used. 

Unless otherwise noted, the copper-gold deposit uses a “starter schedule.” It was 

developed using a deterministic scheduler.  The “starter schedule” is an initial extraction 

sequence.  That is, it is a file which denotes a period each block is extracted thus giving an initial 

solution to the 𝑥𝑏,𝑡 variables.   

 

Figure 3: Definition of material types at the copper-gold mine, along with the various 

destinations (Goodfellow & Dimitrakopoulos, 2016) 

Table 1: Economic Parameters of the Model 

Economic Parameters Value 

Mining Cost* $1.00/t 

Sulfide Mill* $11.30/t 

Sulfide Heap Leach* $2.98/t 

Transition heap leach* $2.15/t 

Oxide heap leach* $2.06/t 

Gold Price $1480/oz. 

Copper Price $2.88/lb. 

                                                 

* For confidentiality, this parameter is normalized to the mining cost 
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Economic discount rate 7% 

Risk discount rate 10% 

Table 2: Lower and upper bound on constraints (18) and (19) and associated penalties 

Constraint 𝐿ℎ,𝑖,𝑡 (× 10
6) 𝑈ℎ,𝑖,𝑡 (× 10

6) 𝑐ℎ,𝑖,1
−  ($/tonne) 𝑐ℎ,𝑖,1

+  ($/tonne) 

Mine Capacity  25.0  10 

Stockpile Capacity  1.0  20 

Sulfide Mill 

Capacity 

2.8 3.0 50 50 

Sulfide Heap Leach 

Capacity 

7.8 8.0 10 25 

4.2 Single Element Deposits 

This section outlines the single element copper and single element gold deposit used in 

this thesis. Both deposits are very similar to each other, varying only in the financial parameters 

and the grade of the material.   

These deposits have a very simple chemistry as compared to the copper-gold deposit. 

Figure 4 summarizes the mine complex’s processing options. Both deposits will have the same 

processing stream decisions and parameters.   

There is one mine, two processor options each with a stockpile, and a waste dump.  Each 

stockpile sends material to a unique processor.  In both complex problems, the processors have 

a fixed recovery with the Plant at 90% and the Leach Pad at 55%.   

 

Figure 4: Illustration of the complexes associated with the single element deposits 



 

37 

All cost-related parameters in Table 3 (Copper) and Table 5 (Gold) are expressed relative 

to their mining cost for confidentiality purposes. The elements of Table 4 (Copper) and Table 6 

(Gold) summarize the constraints and penalty costs used in the models. The copper mine model 

contains 28,154 blocks, the LOM is 16 years, and a slope angle of 45° is used.  The gold mine 

model contains 48,821 blocks, the LOM is 14 years, and a slope angle of 45° is used.   

For both deposits, there are 20 orebody simulations (scenarios) which were used in the 

solution method.  The full 20 realizations were utilized as they are what was provided by the 

industry partners.  There was no initial extraction schedule used for these deposits.  That is, the 

extraction sequence was decided completely in the method by setting the initial 𝒙 variables to 

“not mined.” 

Table 3: Economic Parameters of the Model (Copper) 

Economic Parameters Value (Copper) 

Mining Cost† $1.00/t 

Leach Pad† $3.21/t 

Plant† $12.86/t 

Mine to Processor (any) † $0.43/t 

Mine to Stockpile (any) † $0.43/t 

Stockpile to Processor† $0.64/t 

Processor to Market† $944.83/t 

Metal Price $2.00/lb. 

Economic discount rate 10% 

Risk discount rate 10% 

                                                 

† For confidentiality, this parameter is normalized to the mining cost 
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Table 4: Lower and upper bound on constraints (18) and (19) and penalties (Copper) 

Constraint 𝐿ℎ,𝑖,𝑡 (× 10
6) 𝑈ℎ,𝑖,𝑡 (× 10

6) 𝑐ℎ,𝑖,1
−  ($/tonne) 𝑐ℎ,𝑖,1

+  ($/tonne) 

Mine Capacity  20.9  10 

Stockpile 1 Capacity  1,139.1  10 

Stockpile 2 Capacity  629.1  10 

Leach Pad Capacity  2.0  10 

Plant Capacity  3.6  10 

Table 5: Economic Parameters of the Model (Gold) 

Economic Parameters Value (Gold) 

Mining Cost‡ $1.00/t 

Leach Pad† $8.57/t 

Plant† $21.43/t 

Mine to Processor (any) † $0.43/t 

Mine to Stockpile (any) † $0.36/t 

Stockpile to Processor† $0.64/t 

Processor to Market† $0.29/g 

Metal Price $42.86/g 

Economic discount rate 10% 

Risk discount rate 10% 

                                                 

‡ For confidentiality, this parameter is normalized to the mining cost 
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Table 6: Lower and upper bound on constraints (18) and (19) and penalties (Gold) 

Constraint 𝐿ℎ,𝑖,𝑡 (× 10
6) 𝑈ℎ,𝑖,𝑡 (× 10

6) 𝑐ℎ,𝑖,1
−  ($/tonne) 𝑐ℎ,𝑖,1

+  ($/tonne) 

Mine Capacity  21.6  10 

Stockpile 1 Capacity  69.8  10 

Stockpile 2 Capacity  936.3  10 

Leach Pad Capacity  0.2  10 

Plant Capacity  3.3  10 

4.3 Implementation and Parameters 

All the methods were developed in C++ using Visual Studio 2015 Community edition.  

The computer used was a commercially available Dell Inspiron 24 7000 Series All-in-One.  The 

specifications are as follows: 

Table 7: Computer Used 

Processor Intel® Core™ i7-4710MQ CPU @ 2.50GHz 

Processor Cores 4 Cores 

RAM 12.0 GB 

Operating System Windows 8.1 Enterprise (x64) 
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The parameters for the metaheuristics are as follows: 

Table 8: Simulated Annealing Parameters 

Initial annealing acceptance probability (𝜌) 0.40§; 0.30 

Cooling Factor (𝜀) 0.99 

Cooling iterations (𝑛𝑖𝑡𝑒𝑟) 600 

Perturbation probability - extraction sequence (𝑝𝑟𝑜𝑏𝑠𝑒𝑞)** 0.30§; 0.50 

Perturbation probability - destination policy (𝑝𝑟𝑜𝑏𝑑𝑒𝑠𝑡)†† 0.60§; 0.40 

Annealing global best updates before diversification (𝑖𝑔𝑏𝑢) 2,000;  

Total annealing iterations before diversification (𝑖𝑡𝑜𝑡𝑎𝑙) 500,000 

In the implementation from Goodfellow & Dimitrakopoulos (2016), the SA algorithm is 

executed multiple times to diversify the solution. Recall that after each SA that is executed, if a 

new global best solution is uncovered, the SA program is reset and then run again. The initial 

acceptance probability and the probabilities to select the neighborhood in the first execution of 

SA differs from the ones used in the subsequent executions. The probabilities of the first run of 

SA are marked with § in Table 9. It is clear that the authors recognize the use of a single set of 

parameters for their method is improved by having multiple sets of parameters for different 

global iterations.  I.e., they are manually adapting their parameters to improve their method.  Of 

course, this thesis takes the adaptive concept further by adjusting the parameters “on the fly,” 

that is, altering the parameters during execution.   

Table 9: Adaptive Neighborhood Search Parameters 

New information Smoothing (𝛼) 0.70 

Initial intensification/diversification decision (𝛽) 0.5 

Iterations between score updates (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 See sensitivity analysis 

                                                 

§ Goodfellow & Dimitrakopoulos (2016) use a different set of parameters for the first run of SA to compensate for 

the large number of blocks to be moved in the extraction sequence.   

** Does not exist in ANS versions 

†† Does not exist in ANS versions 
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The values from Table 9 were taking from the work of Lamghari & Dimitrakopoulos (2015).  

Using these values, specifically the value of 𝛼, produced better results than the standard version 

outlined by Goodfellow & Dimitrakopoulos (2016).  The value of 𝛽 is less sensitive to its initial 

value because it is a self-adjusted parameter.  Furthermore, the method usually found a new 

global best solution in the first (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iterations of the SA.  Therefore, one can 

view the de facto initial value of 𝛽 to be 1.  Recall that 𝛽 is set to 1 if there is a new global best 

solution found in the last (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑆𝑘𝑖𝑝 iterations.   

4.4 Results 

The following section is broken down into three tests; Basic Implementation – Simulated 

Annealing Only, Using Differential Evolution, and Using a Random Initial Probability.  All the 

tests use the copper-gold deposit outlined in section 4.1.  The single element gold and single 

element copper deposit were only tested in the Basic Implementation – Simulated Annealing 

Only tests.   

4.4.1 Basic Implementation – Simulated Annealing Only 

The basic implementation tests were simply executing the SA method posed by 

Goodfellow & Dimitrakopoulos (2016) (see Algorithm 4 in section 3.2) and then the SA method 

with ANS posed in this thesis (see Algorithm 5 in section 3.3).  In the following tables uses 

several ANS trials with a sensitivity over different values of (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝.  The values 

used were 10, 33, 100, 333, and 1000.  The ANS begins with each neighborhood having an 

equiprobable start.  In this case, each neighborhood has a 1/3 chance of being selected.  The first 

row uses the notation GD SA to indicate the standard SA method outlined by Goodfellow & 

Dimitrakopoulos (2016) with the static neighborhood probability parameters from Table 8.  

Static refers to the fact the method does not update the probabilities in a single SA.  GI stands 

for global iteration, or the number of times simulated annealing is reset to diversify the global 

best solution.  ObjFn refers to the objective function value, with the column marked Avg is the 

numerical average and Max is the maximum value found over the trials.  For each method, 25 

trials were run.  The best values in each column are in bold, which is the maximum value for 
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ObjFn (Avg) and ObjFn (Max) columns and the minimum value for GI and Time (s) columns.  

All the tables are normalized to the GD SA method for confidentiality purposes.   

Table 10: Copper-Gold deposit results 

Run Type  ObjFn (Avg)  ObjFn (Max)  GI   Time (s)  

GD SA 1.0000  1.0181 2.20  4961  

ANS 10 1.0209  1.0699 2.72  364  

ANS 33 1.0808  1.1074 2.64  564  

ANS 100 1.0956  1.1269 2.60  868  

ANS 333 1.1010  1.1205 2.60  955  

ANS 1000 1.0987  1.1179 2.76  938  

  Table 11: Copper deposit results 

Run Type  ObjFn (Avg)  ObjFn (Max)  GI   Time (s)  

GD SA 1.0000 1.0276 2.58 71 

ANS 10 0.8911 1.0564 2.36 144 

ANS 33 0.7831 1.0480 2.32 207 

ANS 100 0.8830 1.0682 2.44 156 

ANS 333 0.9762 1.0643 2.34 95 

ANS 1000 1.0149 1.0743 2.40 93 

Table 12: Gold deposit results 

Run Type  ObjFn (Avg)  ObjFn (Max)  GI   Time (s)  

GD SA 1.0000 1.0087 2.40 1504 

ANS 10 0.6635 1.0193 2.00 1700 

ANS 33 0.7630 1.0180 2.16 2163 

ANS 100 0.8870 1.0165 2.20 2486 

ANS 333 1.0122 1.0182 2.12 2328 

ANS 1000 1.0071 1.0171 2.20 2092 
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Table 13: Copper-Gold deposit results with no starter schedule 

Run Type  ObjFn (Avg)  ObjFn (Max)  GI   Time (s)  

GD SA 0.8643 0.8996 2.08 1166 

ANS 10 0.0036 0.0640 2.32 340 

ANS 33 0.3636 0.9008 2.40 713 

ANS 100 0.8148 0.9214 2.32 1963 

ANS 333 0.8713 0.9246 2.24 1722 

ANS 1000 0.8547 0.8913 2.12 1302 

Starting with the copper-gold deposit (Table 10), irrespective of the  

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value used by the ANS, there is an increase in the objective function value.  

We can also see, on average, about a 10% increase in objective function value when a 

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value of 333 is used.  The average execution time was 955 seconds (about 

16 minutes) versus 4,961 seconds (about 1.38 hours) for a static search.  Recall that the stopping 

criteria for a single SA iteration (a single GI) is the number of global best updates found, 

Therefore, it can take a while for the SA to finish in the GD SA.  With a reduction of 80% in the 

time to execute the method, we can run about five SA with ANS 333 before a single GD SA is 

run.  With executing these five, we can then choose the schedule with the maximum value.  This 

thought process leads us to show the maximum objective function value of each method.  We 

continue to see about a 10% increase in objective function value when comparing to the 

maximum value of the static SA, over a 12% increase when comparing to the average value of 

the static SA.   

To test the replicability of the method, the single element copper and the single element 

gold deposits were tested (Table 11 and Table 12, respectively).  In the copper deposit (Table 

11), we see about a 1% increase, on average, of the objective function using (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 

value of 1000.  In those runs, we see an increase in time to solve the method (about a 28% 

increase, on average).  If we look at the maximum objective function results, we see a 3% to 5% 

increase in objective function value across all values of the (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 with the best 

coming at a (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value of 1000. In the gold deposit (Table 12), we again see 

about a 1% increase, on average, of the objective function using a (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value of 
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333.  In those runs, we see an increase in time to solve the method (about a 55% increase, on 

average).  If we look at the maximum objective function results, we see a 1% increase in 

objective function value across all values of the (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 with the best coming at a 

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value of 10.   

Looking at the results from the copper-gold deposit and the single element deposits, we 

see a 10% increase with the former, however, only about a 1% increase with the latter.  One of 

the differences between the deposits is the use of a starter schedule, with the other differences 

being size and the number of downstream decisions.  To attempt to account for this, we re-ran 

the copper-gold deposit without a starter schedule and posted the results in Table 13.  Here we 

see under a 1% increase in objective function value with an increase in solving time.  If we look 

at the schedules with the maximum value, we see an increase of about 2% over the maximum 

static schedule.  Note that in this test, when (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 is set to a value of 10 and 1000, 

there is a reduction in quality with the value of 10 producing a very poor quality schedule.   

The source of discrepancy between the use of the starter schedule and not having to use 

the starter schedule can be associated with the solver being hampered with having to establish 

an initial extraction sequence.  That is, decisions around processing streams have little impact 

until an initial extraction sequence is discovered.  If the method were to apply a change to a 

downstream variable, there will be no change in the value of the complex if the associated block 

has not been extracted.  In addition to the use of a starter schedule, an additional source of the 

discrepancy in objective function value improvements between simple single element deposits 

and the complicated copper-gold deposit can be associated with how the simple mine will have 

significantly less decision variables to manage.  Therefore, the methods will begin to converge 

on similar solutions 

4.4.2 Using Differential Evolution 

Due to the success seen in Goodfellow & Dimitrakopoulos (2016) using differential 

evolution (DE) to assist in both diversification and solving the downstream variables (𝒚 and 𝒙), 

we also implemented differential evolution into the ANS solution method.  Recall, after 

executing a SA algorithm to its completion, DE is then executed.  Each method was executed 

10 times.  GD SA /w DE is the SA method outlined by Goodfellow & Dimitrakopoulos (2016) 
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with DE.  ANS 100 /w DE is the SA method outline in this thesis with ANS and a  

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 value of 100.  After each SA with ANS, a DE is then executed.  The copper-

gold deposit used a starter schedule for both trials.  The results in Table 14 are normalized to 

the objective function value from Table 10’s GD Default SA’s average.  This can give us a quick 

way to inspect and compare methods.   

  Table 14: Copper-Gold Deposit with Differential Evolution 

Run Type  ObjFn (Avg)  ObjFn (Max)  GI   Time (h)  

GD SA /w DE 1.0614 1.0781 18.90 26.23 

ANS 100 /w DE 1.1541 1.1651 18.10 24.39 

When using DE, ANS on average yields about an 8% increase in objective function value 

over the GD SA method and has a reduction of 7% in solving time.  When looking back to the 

non-DE methods, take note that the increase in objective function value does come at a high 

cost in the solving time. As Goodfellow & Dimitrakopoulos (2016) stated, implementing the 

population-based DE to solve the mine scheduling problem does increase the computational 

time. DE does provide a better method for solving continuous variables, such as the processing 

stream (𝒚) variables in the model. This ability to solve the downstream variables to, quite often, 

a better solution enables the solution method to find a new global best solution in each global 

iteration.  Because of finding this new solution there are many more global iterations (GI) that 

are executed and as a result, a longer time is required.   

Recall the results from Table 10; Here we can see about a 5% increase in objective 

function value from the method without DE to using DE, but it takes much longer to find this 

increase.  Recall that the copper-gold mine is stated to be a real-world mine.  The objective 

function has a value in the order of 1010, or a deposit with a valuation of a billion dollars.  From 

a practical, real world perspective, this increase is well “worth it.”  That is, the extra time in 

whole numbers (about a day to find a solution) is very tolerable for this increase in objective 

function.  Even if we operate with the procedure of executing several methods and pick the 

greatest, we can spend a few weeks to uncover the best solution the method can find.   
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4.4.3 Using a Random Initial Probability  

To test the ability of ANS to work out of poor starting situations, tests were executed 

which had a random initial probability, noted as RS (Random Start).  That is, instead of each 

neighborhood beginning with an equiprobable chance of being selected, for the first 

(𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 iterations, each neighborhood was given a random probability.  This is 

noted as ANS 100 /w RS and ANS 1000 /w RS in Table 15.  To compare, 25 trials were executed 

and averaged for ANS 100 /w RS and ANS 1000 /w RS.  To give it a basis for comparison, ANS 

100 and ANS 1000 were copied from Table 10.  Once again, the results in Table 15 are 

normalized to the objective function value from Table 10’s GD SA’s average.   

Table 15: Copper-Gold Deposit with Random Start 

Run Type  ObjFn (Avg)  ObjFn (Max)  GI   Time (s)  

ANS 100 1.0956 1.1269 2.60 868 

ANS 100 /w RS 1.0638 1.1019 2.60 870 

ANS 1000 1.0987 1.1179 2.76 938 

ANS 1000 /w RS 0.9952 1.0725 2.24 1642 

We see a much better result using equiprobable initial neighborhoods versus random 

initial neighborhoods.  However, this was anticipated as we would expect the solver to take a 

few score updates of the probability to stabilize and find the best combination of scores and 

probabilities.  Please take note, we still see an increase in the in the objective function over the 

base method outlined by Goodfellow & Dimitrakopoulos (2016) when using the random start 

for ANS 100 /w RS and an increase for the maximum for both random start methods.  Therefore, 

even though the quality of random start solutions is not as good as the equiprobable start, the 

power of the ANS is able to work through many negative starts.   
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5 Conclusion 

This thesis aimed to implement an adaptive neighborhood search based on the work of 

Lamghari & Dimitrakopoulos (2015) into a simulated annealing optimization method developed 

and implemented by Goodfellow & Dimitrakopoulos (2016).  The implementation was 

successful in that we found better objective function values often irrespective of the value of the 

number of iterations between each score update – (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝.  That is, very frequently 

we found an improved solution over the static parameters and method outlined by Goodfellow 

& Dimitrakopoulos (2016).  It was found that the higher values of the (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 

produced the best results in the tests (when (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 was 333 or 1000).  This 

indicates that the method prefers to have significantly more information before updating the set 

of probabilities.   We also illustrated that the use of differential evolution in the optimization of 

the downstream variables (in addition to SA optimizing all the variables) yields a better result 

over both using the static parameters with differential evolution and using simulated annealing 

with adaptive neighborhood search without differential evolution.  To test the robustness of the 

solver, there was the exploration of initializing the test with random neighborhood probabilities, 

that is, an unequally probable start.  Although, in general the objective function value did not 

achieve the same value result versus the adaptive neighborhood search with an equiprobable 

start, the adaptive neighborhood search with random initial neighborhood probabilities 

outperforms the static methods.   

Future reach should look deeper into adapting the stopping criteria in the simulated 

annealing method as a function of the size of the problem, rather than manually adjusting the 

criteria for the given problem.  In addition, implementing, even a rudimentary heuristic, to 

establish an initial mining schedule could prove a valuable addition to the solver.   
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Appendix A: Updated Pseudocode with Adaptive Search 

Procedures 

Algorithm 6: Initialization and Generation 

GENERATE 
 Build 𝑋 ← {𝑛1, 𝑛2, . . . , 𝑛𝑖} ∀ 𝑖 ∈  𝑁 # i.e. generate an initial solution 
 𝑁 is a set of neighborhoods within a solution that can be perturbed 
 𝑧 =  𝑓(𝑋) # We will maximize z 
 
INITIALIZE 
 SET 𝑋∗, 𝑋𝐺𝐵𝑆 ←  𝑋 # Where 𝑋 is the current solution, 𝑋∗ is a local best 
 solution, 𝑋′ is a perturbed solution, and 𝑋𝐺𝐵𝑆 is a global best 
 solution 
 SET 𝛼 ←  0.7; 𝛽 ←  0.5; # Linear combination factorsg 
 𝑁𝑒𝑤𝐵𝑒𝑠𝑡 ←  𝐹𝐴𝐿𝑆𝐸  # tracker for updated solution 
 GET (𝑖𝑡𝑒𝑟)𝑚𝑎𝑥, (𝑖𝑡𝑒𝑟)𝑠𝑘𝑖𝑝, 𝑈𝑆𝐸𝐷𝐸 

 
EXECUTE ANS_SGOPM(𝑋, 𝑋∗, 𝑋𝐺𝐵𝑆, 𝛼, 𝛽, (𝑖𝑡𝑒𝑟)𝑚𝑎𝑥, (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝, 𝑈𝑆𝐸𝐷𝐸) 

  

Algorithm 7: Simulated Annealing with Adaptive Neighborhood Search to solve the two-

stage stochastic open pit mining problem 

FUNCTION ANS_SGOPM(𝑋, 𝑋∗, 𝑋𝐺𝐵𝑆, 𝛼, 𝛽, (𝑖𝑡𝑒𝑟)𝑚𝑎𝑥, (𝑖𝑡𝑒𝑟)𝑠𝑘𝑖𝑝, 𝑈𝑆𝐸𝐷𝐸) 

 WHILE 𝑓(𝑋𝐺𝐵𝑆) ≤  𝑓(𝑋∗) # Executing a global iteration 
  𝑋𝐺𝐵𝑆 ← 𝑋∗ 
  EXECUTE SAIteration() 
  IF 𝑈𝑆𝐸𝐷𝐸 THEN EXECUTE DE() # See execution in Annex C.   

 

                                                 

g Values taken from Lamghari & Dimitrakopoulos (2015) 
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Algorithm 8: A singular execution of a simulated annealing metaheuristic 

FUNCTION SAIteration() 
 SET 𝑖𝑡𝑒𝑟 ←  0 
 EXECUTE SetInitialScores() 
 WHILE 𝑖𝑡𝑒𝑟 <  (𝑖𝑡𝑒𝑟)𝑚𝑎𝑥 
  𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 
  IF 𝑖𝑡𝑒𝑟 mod (𝑆𝑐𝑜𝑟𝑒𝑈𝑝𝑑𝑎𝑡𝑒)𝑠𝑘𝑖𝑝 = 0 
   EXECUTE ComputeProbabilities() 
  EXECUTE SingleIteration() 

 

Algorithm 9: Setting the initial scores and probabilities for the search neighborhood 

FUNCTION SetInitialScores() 
 FOR EACH 𝑖, ∀ 𝑖 ∈  𝑁  
  SET 𝜋1(𝑛𝑖), 𝜋2(𝑛𝑖), 𝜅(𝑛𝑖) ←  0 
  SET 𝑠𝑖 ←  1 # Score of neighborhood 𝑖 

  SET 𝑝𝑖  =  (
1

|𝑁|
) # Probability of neighborhood 𝑖h 

 

Algorithm 10: Computing the probabilities using scores gained from the simulated annealing 

iterations 

FUNCTION ComputeProbabilities() 
 FOR EACH 𝑠𝑖, ∀ 𝑖 ∈  𝑁 
  IF 𝜅(𝑛𝑖) > 0 

   𝑠𝑖  =  (1 − 𝛼)𝑠𝑖  + 𝛼 (
 𝛽 𝜋1(𝑛𝑖) + (1−𝛽)𝜋2(𝑛𝑖)

𝜅(𝑛𝑖)
) 

 FOR EACH 𝑖, ∀ 𝑖 ∈  𝑁 

  𝑝𝑖  =
𝑠𝑖

∑ 𝑠𝑗𝑗∈𝑁
 

  SET 𝜋1(𝑛𝑖), 𝜋2(𝑛𝑖), 𝜅(𝑛𝑖) ←  0 
 IF 𝑁𝑒𝑤𝐵𝑒𝑠𝑡 
  SET 𝛽 ←  1.0 
 ELSE 
  SET 𝛽 ← max(𝛽 − 0.1, 0.0)   
 SET 𝑁𝑒𝑤𝐵𝑒𝑠𝑡 ←  𝐹𝐴𝐿𝑆𝐸 

 

                                                 

h In “Random Start” the 𝑝𝑖  will take a random value where ∑ 𝑝𝑖∀𝑖∈𝑁 = 1 
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Algorithm 11: Executing a single iteration of the simulated annealing algorithm   

FUNCTION SingleIteration() 
 EXECUTE GeneratePertubation(𝑁, 𝑋, 𝑋′) to get neighborhood 𝑖 and 
  perturbed solution 𝑋′ 
 𝜅(𝑛𝑖) ← 𝜅(𝑛𝑖) + 1 
 # recall here we are maximizing the objective function 
 IF 𝑓(𝑋′) ≥  𝑓(𝑋) # accepted outright 
  𝑋 ← 𝑋′ 
  SET 𝑁𝑒𝑤𝐵𝑒𝑠𝑡 ←  𝑇𝑅𝑈𝐸 
  SET 𝜋1(𝑛𝑖) ← 𝜋1(𝑛𝑖) + |Δ𝑓|  
 ELSE IF 𝑋′ accepted under other criteria # e.g. temperature 
  𝑋 ← 𝑋′ 

  SET 𝜋1(𝑛𝑖) ← 𝜋1(𝑛𝑖) +
1

|Δ 𝑓|
  

 ELSE # Rejection of solution 

  SET 𝜋2(𝑛𝑖) ← 𝜋2(𝑛𝑖) +
1

|Δ𝑓|
 

 

Algorithm 12: An algorithm that chooses a neighborhood which to perturb the solution and 

yield a neighborhood solution.   

FUNCTION GeneratePertubation(𝑁, 𝑋, 𝑋′) 
 SET 𝑟 ←  𝑈{0,1} # r is a uniform random number 
 Using 𝑟 and 𝑝𝑖∀𝑖 ∈ 𝑁 choose a neighborhood 𝑛𝑖 to perturb the solution 
 GENERATE a perturbation 𝑃 from 𝑛𝑖  
 SET 𝑋′ ←  𝑋 ⊕  𝑃 
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Appendix B: Pseudocode from Goodfellow & 

Dimitrakopoulos (2016) 

Algorithm 13: Global optimization of mining complexes 

Require: 
 Φ = {𝑥, 𝑦, 𝑧} 
 𝑢𝑠𝑒𝑃𝑆𝑂 
 𝑢𝑠𝑒𝐷𝐸 
FUNCTION GlobalOptimization(Φ, 𝑢𝑠𝑒𝑃𝑆𝑂, 𝑢𝑠𝑒𝐷𝐸) 
 Φ𝑔 ← Φ 
 𝑖𝑔𝑜𝑝𝑡 ← 0 
 WHILE true DO 
  𝑖𝑔𝑜𝑝𝑡 ← 𝑖𝑔𝑜𝑝𝑡 + 1 
  Φ ← Φ𝑔 
  Φ𝑔 ←SimulatedAnnealing(Φ𝑔) 
  if 𝑢𝑠𝑒𝑃𝑆𝑂 = 𝑡𝑟𝑢𝑒 or 𝑢𝑠𝑒𝐷𝐸 = 𝑡𝑟𝑢𝑒 
    Φ𝑔 ←DownstreamOptimization(Φ𝑔) 
  if 𝑔(Φ𝑔) = 𝑔(Φ) then  
   break 
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Algorithm 14: Simulated Annealing for open pit mining complexes 

Require: 

 𝜌, 𝑘, 𝑛𝑖𝑡𝑒𝑟 
 𝑝𝑟𝑜𝑏𝑠𝑒𝑞 , 𝑝𝑟𝑜𝑏𝑑𝑒𝑠𝑡 
 𝑖𝑔𝑏𝑢 
 𝑖𝑡𝑜𝑡𝑎𝑙 
 𝑐𝑑𝑓𝑠𝑒𝑞 , 𝑐𝑑𝑓𝑑𝑒𝑠𝑡, 𝑐𝑑𝑓𝑝𝑟𝑜𝑐  

FUNCTION SimulatedAnnealing(Φ𝑔): 
 Φ,Φ′ ← Φ𝑔 
 𝑖, 𝑖𝑢 ← 0 
 𝛿 ← 0 
 WHILE true DO 
  𝑖 ← 𝑖 + 1 
  if 𝑖 𝑚𝑜𝑑 𝑛𝑖𝑡𝑒𝑟 = 0 then  
   𝜌 ← 𝜌 ∙ 𝑘 
  Φ′, 𝛿 ←PerturbSolution(Φ, 𝜌) 
  𝑟 ← 𝑈[0,1] 
  if 𝑃(𝑔(Φ), 𝑔(Φ′), 𝛿) ≥ 𝑟 then 
   Φ ← Φ′ 
  if 𝑔(Φ) > 𝑔(Φ′) then 
   Update 𝑐𝑑𝑓𝑠𝑒𝑞 , 𝑐𝑑𝑓𝑑𝑒𝑠𝑡or 𝑐𝑑𝑓𝑝𝑟𝑜𝑐 with |𝑔(Φ) − 𝑔(Φ

′)| 

  if 𝑔(Φ) ≤ 𝑔(Φ′) 
   Φg ← Φ′ 
   𝑖𝑢 ← 𝑖𝑢 + 1 
  if 𝑖 = 𝑖𝑡𝑜𝑡𝑎𝑙 or 𝑖𝑢 = 𝑖𝑔𝑏𝑢 then  
   break 
 RETURN Φ𝑔 
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Algorithm 15: Solution perturbation 

FUNCTION PerturbSolution(Φ, 𝜌) 
 𝑟 ← 𝑈[0,1] 
 𝛿 ← 0 
 If 𝑟 < 𝑝𝑟𝑜𝑏𝑠𝑒𝑞 
  Randomly select an 𝑥𝑏,𝑡 from 𝑥 ∈ Φ 
  Find the set of blocks 𝑥𝑏(𝑡

′)that must be extracted in 𝑡′ to 
   satisfy Eq. (7) 
  Φ′ ← [𝑥⨁𝑥𝑏(𝑡

′), 𝑧, 𝑦] 
  𝛿 ← 𝑐𝑑𝑓𝑠𝑒𝑞

−1(𝜌) 

 Else if 𝑟 < (𝑝𝑟𝑜𝑏𝑠𝑒𝑞 + 𝑝𝑟𝑜𝑏𝑑𝑒𝑠𝑡) then 

  Randomly select 𝑧𝑐,𝑡 an encoded variable from 𝑧 ∈ Φ 
  𝑧𝑐,𝑡

′ ← 𝑈[0, |𝒪(𝑐)|] 

  Φ′ ← [𝑥, 𝑧⨁𝑧𝑐,𝑡
′ , 𝑦] 

  𝛿 ← 𝑐𝑑𝑓𝑑𝑒𝑠𝑡
−1 (𝜌)  

 Else  
  Randomly select a 𝑦𝑖,𝑗,𝑡,𝑠 from 𝑦 ∈ Φ 

  𝑦𝑖,𝑗,𝑡,𝑠
′ ← 𝑦𝑖,𝑗,𝑡,𝑠 +𝑁(𝑦𝑖,𝑗,𝑡,𝑠, 0.1) 

  Φ′ ← [𝑥, 𝑧, 𝑦⨁𝑦𝑖,𝑗,𝑡,𝑠
′ ] 

  Normalize 𝑦 ∈ Φ𝑎 to obey Eq. (13) and Eq. (14) 
  𝛿 ← 𝑐𝑑𝑓𝑝𝑟𝑜𝑐

−1 (𝜌) 

Return Φ′, 𝛿 

 

Algorithm 16: downstream optimization using PSO or DE 

REQUIRE: 
 𝑁𝑃 
 𝑁𝑃𝑙𝑜𝑐𝑎𝑙 
 𝑐1, 𝑐2, 𝑐3 
 𝐶𝑅, 𝐹 
 𝑝𝑐𝑐 
 𝑖𝑡𝑜𝑡𝑎𝑙 
FUNCTION DownstreamOptimization(Φ𝑔, 𝑢𝑠𝑒𝑃𝑆𝑂, 𝑢𝑠𝑒𝐷𝐸): 
 For all 𝑞 ∈ {1,…𝑁𝑃} do 
  Randomize Φ𝑞 (PSO, DE) and velocity 𝑉𝑞 (PSO) 

  (𝑥 ∈ Φ𝑞) ← (𝑥 ∈ Φ𝑔) 

  Normalize 𝑦 ∈ Φ𝑞 to obey Eq. (13) and Eq. (14) 

  Φ𝑞
𝐵𝑒𝑠𝑡 ← Φ𝑞 

 Φ𝑁𝑃
𝑏𝑒𝑠𝑡 ← Φ𝑔 

 WHILE true DO 
  𝑖 ← 𝑖 + 1 
  For all 𝑞 ∈ {1,…𝑁𝑃} DO 
   IF 𝑢𝑠𝑒𝑃𝑆𝑂 DO 
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    Get Φ𝐼𝑏𝑒𝑠𝑡
𝑏𝑒𝑠𝑡 , the member within 𝑞 ± 𝑁𝑃𝑙𝑜𝑐𝑎𝑙 with the 

     best objective function 

    Φ𝑞 ←PSOUpdate(𝑉𝑞 , Φ𝑞 , Φ𝑞
𝑏𝑒𝑠𝑡 , Φ𝐼𝑏𝑒𝑠𝑡

𝑏𝑒𝑠𝑡 ) 

   ELSE IF 𝑢𝑠𝑒𝐷𝐸 DO 
    Randomly select 𝑎, 𝑏, and c where 𝑎, 𝑏, 𝑐, ∉ 𝑞 

    Φ𝑞 ←DECrossover(Φ𝑞
𝑏𝑒𝑠𝑡 , Φ𝑎

𝑏𝑒𝑠𝑡 , Φ𝑏
𝑏𝑒𝑠𝑡 , Φ𝑐

𝑏𝑒𝑠𝑡) 

    Correct 𝑧 ∈ Φ𝑞 to obey eq. (10) 

    Correct 𝑦 ∈ Φ𝑞 to obey Eq. (13) and (14) 

   IF 𝑔(Φ𝑞) ≥ 𝑔(Φ𝑞
𝑏𝑒𝑠𝑡) THEN 

    Φ𝑔 ← Φ𝑞 

   𝑎𝑣𝑔 ←
1

𝑁𝑃
∑ 𝑔(Φ𝑞

𝑏𝑒𝑡𝑠)𝑁𝑃 
𝑞=𝑖  

   IF 𝑖 = 𝑖𝑡𝑜𝑡𝑎𝑙or 
𝑔(Φ𝑞

𝑏𝑒𝑠𝑡)−𝑎𝑣𝑔 

𝑎𝑣𝑔
< 𝑝𝑐𝑐 ∀𝑞 = {1,…𝑁𝑃} THEN  

    Break 
 RETURN Φ𝑔 

 

Algorithm 17: PSO update for particle q 

FUNCTION PSOUpdate(𝑉𝑞 , Φ𝑞 , Φ𝑞
𝑏𝑒𝑠𝑡 , Φ𝐼𝑏𝑒𝑠𝑡

𝑏𝑒𝑠𝑡 ) 

 Let 𝑉𝑞
𝑧, 𝑉𝑞

𝑦
∈ 𝑉𝑞 represent the velocities of the downstream variables 

 Let Φ𝑞
𝑧, Φ𝑞

𝑦
∈ Φ𝑞 represent the values of the downstream variables 

 𝑟1, 𝑟2 ← 𝑈[0,1] 
 𝑟3, 𝑟4 ← 𝑈[0,1] 

 𝑉𝑞
𝑧 ← 𝑐1 ∙ 𝑉𝑞

𝑧 + 𝑐2 ∙ 𝑟1 ∙ (𝑧𝑞
𝑏𝑒𝑠𝑡 − 𝑧𝑞) + 𝑐3 ∙ 𝑟2 ∙ (𝑧𝑞

𝑏𝑒𝑠𝑡 − 𝑧𝑞) 

 𝑉𝑞
𝑦
← 𝑐1 ∙ 𝑉𝑞

𝑦
+ 𝑐2 ∙ 𝑟3 ∙ (𝑦𝑞

𝑏𝑒𝑠𝑡 − 𝑦𝑞) + 𝑐3 ∙ 𝑟4 ∙ (𝑦𝑞
𝑏𝑒𝑠𝑡 − 𝑦𝑞) 

 𝑧𝑞 ← 𝑧𝑞 + 𝑉𝑞
𝑧 

 𝑦𝑞 ← 𝑦𝑞 + 𝑉𝑞
𝑦
 

 RETURN Φ𝑞 

 

Algorithm 18: DE for agent q 

FUNCTION DECrossover(Φ𝑞
𝑏𝑒𝑠𝑡 , Φ𝑎

𝑏𝑒𝑠𝑡 , Φ𝑏
𝑏𝑒𝑠𝑡 , Φ𝑐

𝑏𝑒𝑠𝑡) 

 Φ𝑞 ← Φ𝑞
𝑏𝑒𝑠𝑡 

 For all 𝑧𝜖,𝑡
𝑞
∈ 𝑧𝑞 do 

  𝑟 ← 𝑈[0,1] 
  If 𝑟 ≤ 𝐶𝑅  Then  

   𝑧𝜖,𝑡
𝑞
← 𝑧𝜖,𝑡

𝑎,𝑏𝑒𝑠𝑡 + 𝐹 ∙ (𝑧𝜖,𝑡
𝑏,𝑏𝑒𝑠𝑡 − 𝑧𝜖,𝑡

𝑐,𝑏𝑒𝑠𝑡 ) 

 For all 𝑦𝑖,𝑗,𝑡,𝑠
𝑞

∈ 𝑦𝑞 do  

  𝑟 ← 𝑈[0,1] 
  If 𝑟 ≤ 𝐶𝑅 then  
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   𝑦𝑖,𝑗,𝑡,𝑠
𝑞

← 𝑦𝑖,𝑗,𝑡,𝑠
𝑎,𝑏𝑒𝑠𝑡 + 𝐹 ∙ (𝑦𝑖,𝑗,𝑡,𝑠

𝑏,𝑏𝑒𝑠𝑡 − 𝑦𝑖,𝑗,𝑡,𝑠
𝑐,𝑏𝑒𝑠𝑡 ) 

 RETURN Φ𝑞 
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Appendix C: Hyper-heuristic from Lamghari & 

Dimitrakopoulos (2015) 

Algorithm 19: Hyper-heuristic outlined Lamghari & Dimitrakopoulos (2015) 

INITIALIZE 
 Generate initial solution 𝑋 
 SET 𝑋∗ ← 𝑋 
 SET 𝛼 ← 0.7, 𝛽 ← 0.5 
STAGE I: Generate initial scores 
 Add all heuristics to a list 𝐻  
 WHILE length(𝐻) > 0 
  Choose a heuristic ℎ𝑗, ∀𝑗 ∈  𝐻 at random 

  GENERATE a new solution 𝑋′ from 𝑋 using ℎ𝑗 

  IF 𝑋′ is better than 𝑋∗ then 
   SET 𝑋∗ ← 𝑋′  
   SET 𝑛𝑒𝑤𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 ←  𝑇𝑅𝑈𝐸 
  END IF 
  Calculate score of ℎ𝑗 

  SET 𝑋 ← 𝑋′  
  REMOVE ℎ𝑗 from 𝐻 

 END WHILE 
Stage II: Selecting heuristics based on their score and tabu status 
 𝑖𝑡𝑒𝑟 ←  1 
 FOR each heuristic ℎ𝑗 do 

  SET 𝜋1(ℎ𝑗) ←  0, 𝜋1(ℎ𝑗) ←  0, 𝑎𝑛𝑑 𝜂(ℎ𝑗) ←  0 

 END FOR 
 WHILE stopping criterion not met DO 
 IF all heuristics are tabu THEN 
  Revoke the tabu status of all heuristics 
 END IF 
 Choose, among the heuristics that are not tabu, a heuristic ℎ𝑗   

  using roulette-wheel selection based on scores 

 Set 𝜂(ℎ𝑗) ← 𝜂(ℎ𝑗)  +  1 

 Generate a new solution 𝑋′ from 𝑋 using ℎ𝑗 

 IF 𝑋′ is better than 𝑋∗ then 
  SET 𝑋∗ ← 𝑋′ 
  SET 𝑛𝑒𝑤𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 ←  𝑇𝑅𝑈𝐸 
 END IF 
 IF 𝑋′ is better than 𝑋 then  

  Update 𝜋1(ℎ𝑗)  

 ELSE 

  Update 𝜋2(ℎ𝑗)  

  Generate a random number 𝜔 in [Ωmin ; Ωmax ] 



 

x 

 

  Make ℎ𝑗 tabu for 𝜔 iterations 

 END IF 
 IF 𝑖𝑡𝑒𝑟 < 𝜅 then 
  SET 𝑖𝑡𝑒𝑟 ←  𝑖𝑡𝑒𝑟 +  1 
 ELSE 
  IF 𝑛𝑒𝑤𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 =  𝑇𝑅𝑈𝐸 then 
   Set 𝛽 ←  1 
  ELSE 
   Set 𝛽 ← max(𝛽 −  0.1 , 0)   
  END IF 
  Update the score of all heuristics using  
  Revoke the tabu status of all heuristics 
  FOR each heuristic ℎ𝑗 do 

   SET 𝜋1(ℎ𝑗) ←  0, 𝜋1(ℎ𝑗) ←  0, 𝑎𝑛𝑑 𝜂(ℎ𝑗) ←  0 

  END FOR 
  Set 𝑖𝑡𝑒𝑟 ←  1 
  Set 𝑛𝑒𝑤𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 =  𝐹𝐴𝐿𝑆𝐸 
 END IF 
 SET 𝑋 ← 𝑋′ 
END WHILE 
RETURN 𝑋∗ 

 


