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Résumé 
Ce projet illustre cinq études, mettant l'emphase sur le développement d'une nouvelle 

approche diagnostique cardiovasculaire afin d'évaluer le niveau d’oxygène contenu dans le 

myocarde ainsi que sa fonction microvasculaire.  En combinant une séquence de résonance 

magnétique cardiovasculaire (RMC) pouvant détecter le niveau d’oxygène (OS), des 

manœuvres respiratoires ainsi que des analyses de gaz artériels peuvent être utilisés comme 

procédure non invasive destinée à induire une réponse vasoactive afin d’évaluer la réserve 

d'oxygénation, une mesure clé de la fonction vasculaire. 

Le nombre de tests diagnostiques cardiaques prescrits ainsi que les interventions, sont 

en pleine expansion1. L'imagerie et tests non invasifs sont souvent effectués avant l’utilisation 

de procédures invasives. L'imagerie cardiaque permet d’évaluer la présence ou absence de 

sténoses coronaires, un important facteur économique dans notre système de soins de santé 2. 

Les techniques d'imagerie non invasives fournissent de l’information précise afin d’identifier 

la présence et l’emplacement du déficit de perfusion chez les patients présentant des 

symptômes d'ischémie myocardique. Néanmoins, plusieurs techniques actuelles requièrent la 

nécessité de radiation, d’agents de contraste ou traceurs, sans oublier des protocoles de stress 

pharmacologiques ou physiques. L’imagerie RMC peut identifier une sténose coronaire 

significative sans radiation.  De nouvelles tendances d’utilisation de RMC visent à développer 

des techniques diagnostiques qui ne requièrent aucun facteur de stress pharmacologiques ou 

d’agents de contraste. 

L'objectif principal de ce projet était de développer et tester une nouvelle technique 

diagnostique afin d’évaluer la fonction vasculaire coronarienne en utilisant l' OS-RMC, en 

combinaison avec des manœuvres respiratoires comme stimulus vasoactif. Ensuite, les 

objectifs, secondaires étaient d’utilisés l’OS-RMC pour évaluer l'oxygénation du myocarde et 

la réponse coronaire en présence de gaz artériels altérés. Suite aux manœuvres respiratoires la 

réponse vasculaire a été validée chez un modèle animal pour ensuite être utilisé chez deux 

volontaires sains et finalement dans une population de patients atteints de maladies 

cardiovasculaires. 

Chez le modèle animal, les manœuvres respiratoires ont pu induire un changement significatif, 

mesuré intrusivement par débit sanguin coronaire. Il a été démontré qu’en présence d'une 
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sténose coronarienne hémodynamiquement significative, l’OS-RMC pouvait détecter un 

déficit en oxygène du myocarde. Chez l’homme sain, l'application de cette technique en 

comparaison avec l'adénosine (l’agent standard) pour induire une vasodilatation coronarienne 

et les manœuvres respiratoires ont pu induire une réponse plus significative en oxygénation 

dans un myocarde sain. Finalement, nous avons utilisé les manœuvres respiratoires parmi un 

groupe de patients atteint de maladies coronariennes. Leurs myocardes étant altérées par une 

sténose coronaire, en conséquence  modifiant ainsi leur réponse en oxygénation. Par la suite 

nous avons évalué les effets des gaz artériels sanguins sur l'oxygénation du myocarde. Ils 

démontrent que la réponse coronarienne est atténuée au cours de l’hyperoxie, suite à un 

stimuli d’apnée. Ce phénomène provoque une réduction globale du débit sanguin coronaire et 

un déficit d'oxygénation dans le modèle animal ayant une sténose lorsqu’un supplément en 

oxygène est donné. 

 

En conclusion, ce travail a permis d'améliorer notre compréhension des nouvelles techniques 

diagnostiques en imagerie cardiovasculaire. Par ailleurs, nous avons démontré que la 

combinaison de manœuvres respiratoires et l’imagerie OS-RMC peut fournir une méthode 

non-invasive et rentable pour évaluer la fonction vasculaire coronarienne régionale et globale. 
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Abstract  
This project encompasses five studies, which focus on developing a new 

cardiovascular diagnostic approach for assessing myocardial oxygenation and microvascular 

function. In combination with oxygenation-sensitive cardiovascular magnetic resonance (OS-

CMR) imaging, breathing maneuvers and altered arterial blood gases can be used as a non-

invasive method for inducing a vasoactive response to test the oxygenation reserve, a key 

measurement in vascular function.  

The number of prescribed cardiac diagnostic tests and interventions is rapidly 

growing1. In particular, imaging and other non-invasive tests are frequently performed prior to 

invasive procedures. One of the most common uses of cardiac imaging is for the diagnosis of 

significant coronary artery stenosis, a critical cost factor in today’s health care system2.  Non-

invasive imaging techniques provide the most reliable information for the presence and 

location of perfusion or oxygenation deficits in patients with symptoms suggestive of 

myocardial ischemia, yet many current techniques suffer from the need for radiation, contrast 

agents or tracers, and pharmacological or physical stress protocols. CMR imaging can identify 

significant coronary artery stenosis without radiation and new trends in CMR research aim to 

develop diagnostic techniques that do not require any pharmacological stressors or contrast 

agents.  

For this project, the primary aim was to develop and test a new diagnostic technique to 

assess coronary vascular function using OS-CMR in combination with breathing maneuvers as 

the vasoactive stimulus. Secondary aims then used OS-CMR to assess myocardial oxygenation 

and the coronary response in the presence of altered arterial blood gases.  

An animal model was used to validate the vascular response to breathing maneuvers 

before translating the technique to human subjects into both healthy volunteers, and a patient 

population with cardiac disease.   

 

In the animal models, breathing maneuvers could induce a significant change in 

invasively measured coronary blood flow and it was demonstrated that in the presence of a 
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haemodynamically significant coronary stenosis, OS-CMR could detect a myocardial oxygen 

deficit. This technique was then applied in a human model, with healthy participants. In a 

direct comparison to the infusion of the coronary vasodilator adenosine, which is considered a 

standard agent for inducing vasodilation in cardiac imaging, breathing maneuvers induced a 

stronger response in oxygenation of healthy myocardium. The final study then implemented 

the breathing maneuvers in a patient population with coronary artery disease; in which 

myocardium compromised by a coronary stenosis had a compromised oxygenation response. 

Furthermore, the observed effects of arterial blood gases on myocardial oxygenation were 

assessed.  This demonstrated that the coronary response to breath-hold stimuli is attenuated 

during hyperoxia, and this causes an overall reduction in coronary blood flow, and 

consequently an oxygenation deficit in a coronary stenosis animal model when supplemental 

oxygen is provided.  

In conclusion, this work has improved our understanding of potential new diagnostic 

techniques for cardiovascular imaging. In particular, it demonstrated that combining breathing 

maneuvers with oxygenation-sensitive CMR can provide a non-invasive and cost-effective 

method for assessing global and regional coronary vascular function.  
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Objectives 
Overall Objective: Investigate the utility of breathing maneuvers as a technique to assess 

coronary vascular function and myocardial oxygenation in combination with cardiovascular 

magnetic resonance.  

 

This project has been organized into three parts: 

Part 1: Animal Model 

Chapter 1: Validate if breathing maneuvers can identify myocardial oxygenation 

deficits in the presence of a haemodynamically significant coronary artery 

stenosis, in relationship to coronary blood flow and blood gas 

measurements 

Chapter 2: Evaluate the breath-hold stimulus on coronary flow in the presence of 

altered arterial blood gases 

Chapter 3:  Assess the effects of hyperoxia on myocardial oxygenation 

 

Part 2: Translation to Healthy Humans 

Chapter 4: Test the effect of breathing maneuvers on myocardial oxygenation in 

comparison to a standard pharmacological vasodilation protocol 

 

Part 3: Validation in a Cardiac Patient Population 

Chapter 5: Assessing the feasibility of using breathing maneuvers to detect ischemia in 

coronary artery disease 
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0 Introduction 

In Canada, cardiovascular diseases account for more than 30% of deaths, with coronary 

artery disease (CAD) accounting for more than half of them3. This trend is not unique for 

Canada, as European nations report that more than 40% of deaths are due to cardiovascular 

diseases, in particular due to coronary artery disease4. As a result, most cardiac exams look for 

the presence of coronary artery disease. Coronary artery disease is often diagnosed through 

anatomical or functional assessment in the setting of an invasive coronary angiography. 

Quantitative coronary angiography (QCA) visually assesses the anatomical appearance of 

coronary arteries and quantifies the degree of luminal narrowing, while fractional flow reserve 

(FFR) assesses the haemodynamic impact of a given stenosis. FFR determines the effect of a 

stenosis on the coronary flow by assessing the pressure difference distal and proximal to the 

stenosis, independent of the degree of the blockage. FFR is currently considered the gold 

standard for assessing the severity of coronary disease and its suitability for mechanical 

revascularisation. However, both these exams only address the patency of coronary epicardial 

vessels, and do not allow for assessing the impact on the actual oxygenation status of the 

myocardial tissue. Thus imaging modalities such as cardiovascular magnetic resonance 

(CMR), positron emission tomography (PET), and single photon emission computed 

tomography (SPECT) have developed techniques to look at coronary vascular function in 

relation to the myocardial tissue. A recent cost analysis in the United Kingdom reported the 

most cost-efficient method was to perform contrast enhanced CMR prior to any 

revascularization5. It is essential to keep developing this pathway to better understand 

ischemic cardiomyopathies, and to improve diagnostic testing. 

 

0.1 Introduction to CMR 

Magnetic resonance for clinical application in the heart was introduced in the early 

1980’s6. While initially, CMR was used to visualize anatomical features, advances of the 

modality have resulted in many ways to assess myocardial tissue characteristics, flow, and 

contractile function. Multiple clinical issues can be addressed in one exam, reducing the need 
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for multiple testing. These images are obtained using specific software settings defining the 

precise execution of the MR during a scan. These are MRI sequences, with specific settings 

called parameters.  

 

The Basics of the MRI Signal 

The source of the MR signals that eventually form the images, stems from the 

magnetic properties of protons and their movements in the strong external magnetic field.  

Because the hydrogen protons (1H) are very abundant in the human body, 1H is typically used 

for in vivo MR imaging. Due to its unpaired proton, the hydrogen nucleus behaves as a tiny 

spinning magnet, producing its own magnetic field, called spins. At equilibrium, these spins 

are in random direction, but when exposed to the magnetic field of the scanner, the spins align 

in parallel and anti-parallel formation in the direction to the field (z-axis, Figure 1B). While 

aligned, the protons precess like a spinning top around the longitudinal axis of the main 

magnetic field. The rotation of each proton is in phase with each other, and with a frequency 

proportional to the magnetic field strength (Larmor Frequency; 128MHz at 3T). A slight 

imbalance between the numbers of protons aligning in each direction results in a local net 

magnetization (Figure 1). This alignment occurs by entering the static magnetic field of the 

MRI.  

To acquire specific images, MR scanner systems will generate a secondary magnetic field, 

using magnetic field gradients and radiofrequency (RF) electromagnetic pulses matching the 

Larmor Frequency of the proton spins so a tissue volume can be selectively excited. These 

processes work together to alter the local magnetization. The gradient systems induce small 

variations of the magnetic field and hence the frequency, which allows for localizing the 

signal in the large field. When exposed to the RF pulses, and the net magnetization is tipped in 

a different angle away from the direction of the primary magnetic field away from z-axis 

(Figure 1C) and the atoms exhibit a resonant behaviour. After these pulses are turned off, the 

MRI signal is then acquired from the release of energy or the rate of relaxation as the protons 

move out of phase with one another and come back to equilibrium. This relaxation can be 

separated into two major relaxation components, the longitudinal relaxation time, T1 (Figure 
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1E, along the z-axis), and transverse relaxation time, T2 (Figure 1D, x-y direction). The 

transverse relaxation is also highly dependent on local inhomogeneities. The resulting time is 

called T2*. The combination of these three processes (T1, T2 and T2*) forms the basis of the 

majority of CMR sequences, and MR protocols can be fine-tuned to exploit the differences of 

relaxation properties in tissue.  

 

 

Figure 1: Quick guide to the MRI signal for the non-engineers/physicists 
 In this example, vector diagrams help to show the process of the MRI signal (large arrow), and 
the dephasing of the spins (dotted arrows). Protons (hydrogen nuclei) are excited in a magnetic 
field and as they relax to equilibrium, energy is released, as described in the text, Section 0.1, for 
both a T2-weighted image (D), and a T1-weighted image (E).  
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  Figure 1D is an example of T2 relaxation, and tissues with higher proton or water 

content, for example fat or edematous tissue, will have a longer relaxation time, and 

consequently a greater T2 signal than normal myocardial tissue. Furthermore, T2* relaxation 

can be measured from this process as well, reflecting the local inhomogeneities that disturb the 

local magnetic field, such as iron and deoxyhaemoglobin, (described in more detail in section 

0.3). Standard T1-weighted imaging is different from T2-weighted imaging, in that tissues 

with faster T1 relaxation times will appear brighter.  As fat has the fastest T1 relaxation time, 

it appears brighter in the images, while edematous tissue and blood will be darker (Figure 1E), 

Thus the signal acquired in images is affected by the type and angle of pulse given, the amount 

of protons in the imaging plane, the molecular environment of the protons, and other factors 

that may accelerate or decelerate the proton relaxation.  

 

Common Imaging Planes 

CMR images are thin (typically 6 to 10mm) slices of a defined spatial angulation. The 

most common orientations for cardiac imaging are long-axis (LAX) views which are para-

coronal and parasagittal views oriented to the anatomical axis of the heart (Figure 2A), and 

short axis (SAX) views orientated parallel to the axial plane of the heart and perpendicular to 

the LAX (Figure 2B). In the presented studies, the LAX view is primarily used to help localize 

the short axis slices and to visualize any morphological abnormalities, for example, abnormal 

valve function or chamber size.  

The majority of analysis presented in this thesis is performed from the SAX views. They 

are advantageous as there are often large amounts of tissue in the imaging plane for analysis, 

and most anatomical regions of the myocardium can be visualized in a perpendicular or near-

perpendicular relationship to the plane. This reduces so-called partial volume effects, where 

the visualised region contains for example blood and myocardium. Furthermore, a single slice 

cutting through the left ventricle (LV) contains tissue perfused by each of the three coronary 

arteries, starting at the basal slices closest to the valves down to the apical slices. With SAX 

views, the analysis can be designated for well-defined regions, also referred to as segments. 
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Specifically, when analyzing coronary artery diseases, regional deficits can point to a problem 

with the feeding coronary artery (Figure 2C).  

 

 

Figure 2: CMR imaging slices 
A. A four-chamber view can be made of a long-axis (LAX) image displaying the left and right ventricle and the 
atria. B. Short-axis (SAX) views can be localized off the LAX, and displayed from the top to bottom are the basal, 
mid-ventricular and apical slice, with the contours marking the left-ventricular wall. C. The left ventricle of each 
SAX slice can be segmented following the AHA model (Outer ring; basal slice, middle ring; mid slice, inner ring; 
apical slice) showing the perfusion of the three coronary arteries, the left-anterior descending artery (LAD, blue), 
the left circumflex artery (LCx, green), and the right coronary artery (RCA, purple). Depending on the anatomy, 
two coronary arteries can supply blood to the same segments leading to a mixed perfusion bed. Adapted from the 
Mayo Clinic Guide to Cardiac Magnetic Resonance, Donato et al 2012, and Cerquiera et al, 20027–9. 

 

 

0.2 CMR Sequences 

CMR is a rapidly evolving, versatile imaging modality, which uses numerous 

sequences and several contrast mechanisms for various research and clinical applications.  

This project incorporates both clinically used sequences that measure ventricular function, and 

edema for standard data measurements, as well as newly developed sequences for measuring 

changes of myocardial oxygenation. These oxygenation-sensitive sequences are the focus of 

the research studies presented in this thesis, using an MRI with a magnetic field strength of 3 

Tesla (T).  Because of the strong magnetic field, some patients may be contraindicated for 

exams if they have non-MR-compatible metallic implants in their body.  
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Function Imaging 

CMR is widely accepted as the gold standard for visualizing the heart and for 

quantitative assessment of morphology, flow, contractile function and tissue characteristics. 

For function and morphology imaging, cine sequences are used. These sequences acquire 

multiple images over a few heartbeats, with data obtained within just tens of milliseconds. 

Such images are obtained during different phases of the cardiac contraction and relaxation and 

then assembled to make a dynamic series, essentially reconstructing a video of the entire 

cardiac cycle. The sequence, as can be seen in Figure 3, can display the anatomical features of 

the heart, with a clear delineation between tissue, blood and fat. Cine function imaging is 

incorporated into almost all clinical CMR scans as one of the pillars of clinical diagnosis10. It 

is also incorporated as a measurement into each chapter that includes CMR imaging (chapter 

1, 3, 4 and 5).  New analysis software can supply even additional information beyond the 

standard measurements from the same set of images.  Very recently, a novel technique became 

available, allowing for analyzing myocardial strain and strain rate from regular cine CMR 

images11. Furthermore, these cine sequences also form the base for the oxygenation-sensitive 

imaging (Section 0.3). Consequently, a variety of data can be extracted from this single 

acquisition.  

 

 

Figure 3: Function cine 
By taking cine images of multiple slices throughout the heart, the overall function and morphology of the heart can be 
both visualized and quantified from a single set of images, which are obtained in about 5 minutes. CMR is the gold 
standard for morphological assessment, as the ventricle walls (green arrow), valves (yellow arrow), and pericardial 
fat (blue arrow, white layer) can be easily observed. In this patient example, a thin wall caused by a myocardial 
infarction can be seen in the basal slices of the left ventricle (green arrow) in the SAX images, which corresponds to 
poor regional wall motion, quantified by CMR analysis software (red arrow), and shown as a 3D-model (top right).  
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Edema Imaging 

Myocardial edema is a marker for acute injury, and is included as a criterion when 

diagnosing acute cardiac diseases, such as myocardial infarction, severe ischemia, and 

myocarditis12. Edema imaging does not require an external contrast agent. Sequences that are 

T2-weighted are effective in assessing myocardial edema because protons bound to free water 

have a longer T2 relaxation time, thus lead to a higher signal intensity in areas with an 

increased content of free water. The current clinical standard sequence used for cardiac edema 

imaging is a T2-weighted triple-inversion recovery spin echo sequence (Short Tau Inversion 

Recovery, STIR). When the myocardial signal is normalized to skeletal muscle, both regional 

and global edema can be quantified, while suppressing the signal from fat that would 

otherwise be high in a T2-image to reduce misinterpretation with possible edema (Figure 4). 

Newer sequences now involve the use of myocardial mapping. Most signal intensity 

measurements are on an arbitrary scale and can only be used as relative measurements in 

comparison to other measurements. Mapping sequences use a colourful display to show the 

absolute relaxation times, without the need for a normalizing muscle. Thus absolute 

quantification can be performed, which is useful for assessing diffuse edema, and for 

comparing to other exams. Besides T2 maps, T1 maps can also be used for measuring edema 

as free water also prolongs T1, visualized as a brighter signal13. Similar to the STIR, T1-maps 

will also null the signal from fat tissue.  

 

 

Figure 4: Common CMR methods of measuring edema 
Inflammation can be both visualized (arrows) and quantified by the amount of hyper-enhancement in different 
CMR images (each technique is of a different patient). T2-STIR (left) represents the established semi-quantitative 
technique commonly used in clinical exams that demonstrate relative edema, while new developments have led to 
mapping techniques that provide colourful displays of edema with absolute measurements.  
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Contrast Enhanced MRI exams  

Contrast agents are mainly used to identify structures which otherwise cannot be 

specified in non-contrast (native) MR images. Clinically used contrast agents alter proton 

relaxation properties and thus allow for selectively highlighting regions with increased 

contrast agent accumulation. This commonly occurs in tissue with increased relative volume 

of blood vessels, or in regions with increased interstitial volume of distribution, which delays 

the washout from these regions. Early CMR studies used ionized substances such as 

manganese14 yet nowadays, gadolinium-based compounds are the primary contrast agent in 

imaging exams15. Gadolinium agents create a contrast because they markedly reduce T1 time. 

This translates into a regional signal variation that can display areas with increased 

extracellular space such as fibrosis, because gadolinium compounds typically show a fast 

distribution into interstitial space16. As irreversible tissue injuries such as necrosis or fibrotic 

scar or infiltration from amyloid or sarcoid lead to a marked proportional increase of the 

interstitial space, gadolinium-enhanced images may be used to identify and quantify the 

pathological tissue characteristics, which can be associated with specific diagnoses or 

expected left ventricular remodelling17,18. Contrast agents however add cost, require a 

physician to be available due to the risk for allergic reactions, and cannot be used in patients 

with acute or severe renal failure, as poor renal clearance can increase the possibility of side-

effects from gadolinium accumulation and may lead to the rare yet serious nephrogenic 

systemic fibrosis19. This presents a limitation for cardiac patients, as renal failure is a common 

ailment presenting with cardiac disease. In particular with coronary artery disease, the 

prevalence of kidney failure (glomerular filtration rate, GFR<60ml/min/1.73m2) has been 

reported to be more than 12% in a Canadian study20 and as high as 22% in a large international 

trial including more than 22,000 patients21. Consequently, these patients may not be able to 

undergo contrast-enhanced MR imaging, and without viable alternatives, there may not be all 

the information available to make a proper diagnosis. In addition, recent evidence indicated 

that gadolinium may accumulate in brain tissue even in the absence of kidney failure22. 

Despite the fact that contrast-enhanced CMR is routinely performed, myocardial imaging is 

not an official indication for gadolinium contrast agents, meaning its use is considered off-

label.  
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Thus it is desirable to be able to image cardiac tissue pathology using the native MRI 

signal only, without exogenous contrast agents. As a novel approach, oxygenation-sensitive 

(OS)-CMR may offer a non-pharmacological method to measure myocardial vascular 

function.  

 

0.3 Oxygenation-Sensitive CMR 

Oxygenation-sensitive (OS)-CMR is a technique that non-invasively measures changes 

in myocardial tissue oxygenation without using pharmacologic contrast agents. The majority 

of myocardial functional imaging is performed to detect inducible ischemia or vascular 

dysfunction, with a relative or absolute oxygen deficit in the myocardium caused by a 

mismatch of blood supply and demand. Oxygenation-sensitive imaging is a more direct 

marker for assessing ischemia or regional dysfunction because it goes beyond the standard 

perfusion techniques that just focus on blood supply, but it also adds the secondary component 

of assessing oxygenation. This is important as it gives a clearer picture if myocardial 

oxygenation is compromised or not, independent of changes in blood supply. OS imaging, also 

known as Blood Oxygen Level-Dependent (BOLD) MRI, has been used in brain imaging prior 

to its first application for cardiac imaging about 15 years ago.  

 

History of Oxygenation-Sensitive or BOLD Imaging 

BOLD-MRI was introduced in functional brain imaging studies in the early 1990’s, 

when it was used for mapping neuronal activity23,24. Assessing pixel-wise changes in signal, 

the activation of certain brain areas could be visualized through small SI changes in BOLD-

sensitive MR images caused by the minute decrease of de-oxygenated hemoglobin, induced by 

vasodilation. This led to direct mapping of cerebral blood flow. The latter feature is more 

related to what cardiac OS imaging tries to achieve. Subsequently, brain-imaging studies used 

BOLD as a measure of cerebrovascular reactivity. This had been used to assess cerebral 

lesions, and it was shown that in post-stroke patients BOLD responses were regionally 

attenuated despite intact anatomy25, suggesting limited cerebral perfusion to these regions. 

Additionally, another study used BOLD imaging to demonstrate that cerebrovascular 
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reactivity was reduced in the presence of an intracranial stenosis, but showed improvement 

after extra-intra cranial bypass surgery26. While cerebrovascular lesions may be the brain’s 

counterpart to coronary artery lesions, BOLD-fMRI has also been used to show abnormalities 

in cerebrovascular reactivity that occur without significant lesions, such as in 

neurodegeneration like Alzheimer’s, and with brain injury studies where abnormal BOLD 

responses were found in sports-related post-concussion syndrome27. Because BOLD fMRI has 

been utilized for more than 25 years, many clinical studies have assessed its utility in a wide 

range of neural disorders, with plenty of reviews describing the clinical applications28.  

OS/BOLD imaging is not strictly limited to the heart and brain, but has also been used 

in the kidneys29. However, it should be noted that while all these sequences used for different 

parts of the body rely on the same principles of the BOLD effect, the sequences are 

significantly different in order target the imaging requirements of the specific organ. BOLD 

fMRI in the brain is often voxel-based analysis, so this means signal is obtained from a very 

small area. In cardiac imaging, the spatial resolution is not as high, and often analysis is 

performed across a greater area including a wide mix of vascular and muscular components.  

OS-CMR studies lagged about a decade behind the brain studies. A primary reason for 

the delay was developing a sequence that can obtain images very rapidly in order to deal with 

the movement of a beating heart, while still producing decent image quality and useful results. 

The first applications of OS-CMR started to be published in the late 1990’s, with data in 

cardiovascular patients occurring at the beginning of the millennium30–34. Using 

pharmacological stress agents, myocardial oxygenation deficits were detected in patients with 

coronary artery disease (CAD) who had also undergone coronary angiography31,34. More than 

half of the current OS-CMR publications use CAD patient groups. This is likely because CAD 

is one of the most common causes of myocardial ischemia, and significant coronary lesions 

can be detected visually by angiography and fractional flow reserve35–38. Furthermore, the 

myocardial oxygenation responses during pharmacological stimuli have been compared to 

perfusion deficits assessed by established cardiac imaging modalities such as SPECT, PET 

and first pass perfusion CMR34,39–41. These papers have shown there is a relationship with 

these validated imaging modalities, yet this relationship is not entirely linear. These other 

modalities measure just the blood supply, but not the oxygenation of the heart. These are two 
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related but different mechanisms, which result in a non-linear relationship. Newer publications 

are assessing other cardiovascular diseases as well that lead to ischemia in the absence of 

coronary artery lesions, such as hypertrophic cardiomyopathy, obstructive sleep apnea 

syndrome, syndrome X, type 2 diabetes, and patients with renal disease33,42–46. This will be 

described in more depth in section 0.7, but these studies used OS-CMR to detect 

microvascular dysfunction, which can cause ischemia despite normal coronary arteries.  

As MRI rapidly advances, so do the sequences, thus even within a group, the OS 

sequence may be different between publications a few years apart. Consequently, the results 

obtained in one centre, cannot be directly compared to other publications, nor is there 

currently a global cut-off value, which determines healthy from abnormal myocardium. To 

highlight this point Table 1, shows that in using the same magnetic field (3T), and same 

hyperaemic stress (adenosine infusion at 140 µg/kg/min), the results are not completely 

relatable to each other. Additionally, all 5 publications were published within a period of 4 

years and thus should not have been too significantly affected by advances in sequence 

technology.  

 
 

 OS-CMR Tesla Sequence FA / TR  Voxel Size (mm) 

Arnold 2012  2.3% 3 T2-prep ECG gated bSSFP 44° / 2.86 ms 8mm (matrix:168z192) 

Fischer 2014  3.9% 3 T2-prep ECG gated bSSFP 35°/ 3.4ms 2.0x2.0x10.0 

Karamitsos 2010 7.0% 3 T2-prep ECG gated bSSFP 44° / 2.86 ms 8mm (matrix:168z192) 

Jahnke 2010 7.1% 3 T2-prep GRE, free breathing 30° / 5.0 ms 1.3x1.3x8.0 

*Manka 2010 16.1% (+5ms) 3 T2* GRE 35° / 13ms 1.2x1.2.8,0 

Table 1: OS-CMR during adenosine hyperaemic stress 
Average OS-CMR response at 3T in healthy volunteers or healthy segments for the Arnold paper 
during pharmacological hyperaemic stress (Adenosine 140ug/kg/min). *Manka et al reported an 
absolute difference in T2* time.  FA: flip angle, TR: repetition time35,39,40,47,48. 

 

In conclusion, OS-CMR has been validated by multiple studies in patients, healthy 

volunteers and animals. The goal of this thesis is to develop the application of breathing 

maneuvers as a non-pharmacological method of assessing myocardial oxygenation to use in 

combination with oxygenation-sensitive imaging. 
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Foundation of the OS Signal 

This field of imaging started off using standard T2*-weighted sequences, and then 

developed to also incorporate T2 effects, resulting in a sequence dependent on both 

processes30,32,34,49. OS sequences exploit the dephasing of the MRI signal (Figure 1), relying 

on changes to the T2* signal decay rate by local inhomogeneities and to the T2 component 

that is affected by changes in proton count (Figure 5). In myocardial tissue, these 

inhomogeneities are primarily caused by the magnetic properties of the ferrous iron 

component of haemoglobin (Hb), found in the blood. Hb has paramagnetic properties when 

deoxygenated, and influences the phase evolution of water protons in the tissue leading to a 

loss in magnetic field homogeneity. This accelerates the relaxation of the signal, causing an 

MR signal decrease24. Otherwise, oxygenated haemoglobin has diamagnetic properties, which 

has a small stabilizing effect on the surrounding water proton relaxation times24. Subsequently, 

the basis of the endogenous contrast is due to the field distortion related to deoxyhaemoglobin 

(dHb), and OS signal response can be an inverse reflection of changes in the dHb fraction in 

the imaging plane50. Additionally, because OS sequences are also T2-weighted, a greater 

localized blood volume could theoretically increase the signal. However, this effect is fairly 

negligible as the majority of the signal increase is believed to be due to the effect of increased 

blood supply improving oxygenation and the “washing-out” of dHb51. 

A similar molecule to Hb is myoglobin in the cardiac muscle cells, which when 

deoxygenated can also have paramagnetic effects, yet no BOLD/OS study has assessed this 

the impact of this molecule. How myoglobin changes may affect OS-CMR is unknown, but 

the involvement of myoglobin oxygen delivery in the heart is still controversial52. This is 

because the partial pressure of oxygen (P50) of myoglobin at which 50% of the myoglobin 

molecules are saturated is very low (2.7mmHg). Therefore, myoglobin is only desaturated at 

extremely low oxygen levels, thus likely providing a stable background signal. While it has 

been suggested, that myoglobin may take part in oxygen delivery to the heart at very high 

cardiac workloads, this has only been shown in a theoretic model based on Krogh cylinder-

like distributions of capillaries. A myoglobin deficient mouse model showed that mice lacking 

myoglobin had adapted to maintain sufficient normal myocardial oxygen consumption, even 

during physical stress53. Reviewing the available published data, the impact of myoglobin on 
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changes of tissue oxygenation and thus SI during non-critical states is likely negligible in 

comparison to the oxygen delivery by Hb, and is not factored into other OS-CMR 

publications54,55.  

 

 

Figure 5: Factors of the OS signal 
Oxygenation-Sensitive (OS) signal is based on a balance of proton density and the deoxyhaemoglobin fraction. 
Inhomogeneities such as deoxyhaemoglobin (dHb) accelerate the relaxation of the T2 signal (A).  Thus tissues 
with greater deoxyhaemoglobin fractions such as ischemic tissue will have a lower signal. On the other hand, 
tissues that have an increase in blood volume have a greater number of protons present and start with a higher 
signal. Thus factors that affect the balance of oxygen demand and oxygen supply influence a change in 
oxygenation signal (B). 

 

 

The absolute value of the signal intensity in OS-CMR images also is subject to 

confounders such as distance of the assessed tissue to the surface coil, other magnetic field 

homogeneities, field strength and other factors. Therefore, current methods are more suited for 

measuring changes of the signal intensity during dynamic conditions, such as during induced 

variations of blood flow. As a result, these static factors will be cancelled out and the OS 

measurement will just reflect the factors that changed during the stimulus.  

 

Confounders for the Signal Intensity in OS-CMR 

The average dimensions of the voxels in OS-CMR range from a diameter of about 0.9-

2.0mm with a depth of 10mm (Figure 6).  Furthermore, during image analysis, the reader will 

define large regions in which the signals of multiple voxels are averaged, often based on 
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perfusion territories. Thus for the measurements, one single value will incorporate effects from 

across a large area of the heart, and mixes the vascular and tissue components together into 

one value. One voxel can be composed of thousands of microvessels. Capillaries constitute the 

majority of the microvasculature, as the capillary density is reported to be about 2000 

capillaries per mm2, with about 8 arterioles/mm256,57.  

 

 

 
Figure 6: Dimensions and components of an OS-CMR voxel 

This representation shows that with CMR analysis, a region of interest (yellow) is made averaging the 
values of many voxels (green square), which themselves average the effects of many myocardial 
components including thousands of microvessels (capillaries are blue, arterioles are red, and 
cardiomyocytes are white, picture is not to scale, nor does it include many other structures found in the 
myocardium). 

 

 

 Specifically, as the majority of the T2* component of the OS signal comes from the 

capillaries, the density and dHb content in these vessels will have a significant effect32. As 

stated in section 0.6, the arterioles control the majority of the blood supply which will end up 

controlling oxygenation and the washout of the dHb. Thus, territories that have greater density 

of these vessels will have greater OS changes. However, the density of the microvessels is not 

similar throughout the heart, especially between the subepicardium and subendocardium. 

Regions with greater density of these functioning vessels will have a greater OS response. In 

healthy human hearts, the subepicardial capillary density is 21% greater than the endocardial 

capillary density and this will have a greater effect on the OS signal56. The subendocardial 

tissue is more prone to ischemia especially downstream to a coronary stenosis because it has a 

higher metabolic demand and the regional vasodilatory reserve is closer to capacity58,59, 

whereas at rest the subepicardium has a higher availability of arterioles ready to increase 
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perfusion, leading to redirection in blood flow away from the subendocardium in certain 

situations60. Furthermore, the subendocardium is most vulnerable to increased extravascular 

pressure and wall stress, which will increase the vascular resistance of the microvessels as 

well.  

On the other hand, this distribution and function can be affected by myocardial injury. 

For example, patients with cardiovascular disease can have greater volumes of fibrosis in the 

subendocardial myocardium61, and in these areas there is an even lower capillary density57, 

which would cause lesser OS changes. In summary, the spatial resolution of OS-CMR is 

insufficient to separate effects on vasculature and other tissue components. This is consistent 

with other validated modalities such as cerebral near infrared spectroscopy, which is an 

accepted tool for detecting changes in the cerebral oxygenation balance based on hemoglobin 

oxygen saturation. This technique is also affected by the strong venous component and a weak 

arterial influence, yet is a valid technique for monitoring cerebral oxygenation during surgery 

or intensive care62. Thus, the OS response is generally accepted as a measure of the general 

status of oxygenation reserve during a stimulus, incorporating the overall effects of the oxygen 

supply and demand balance,  

 

 

OS Signal and the Balance Between Oxygen Supply and Demand 

Changes in the dHb fraction occur when the balance between oxygen supply and 

demand shifts, resulting in a relative change of myocardial oxygenation (Figure 5). 

Myocardial OS signal rises also by increasing Hb oxygenation through decoupling oxygen 

supply from demand, by either reducing the oxygen demand of the heart while maintaining the 

blood supply, or increasing myocardial blood flow without a matching increase in demand30,63. 

A reduction in signal occurs when the oxygen consumption is increased to a level greater than 

the oxygenation supply, such as during periods of high cardiac workload or restricted blood 

supply.  

The heart already has a high oxygen extraction at resting/baseline conditions, and 

because of this narrow extraction reserve, it cannot increase oxygen extraction as much as 

other tissues such as the skeletal muscle. Consequently, the increased oxygen requirement of 

the myocardium is primarily met by increasing the blood flow rather than significantly 
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increasing the extraction of the current blood volume. During strenuous exercise however, 

humans can increase myocardial oxygen extraction64, and in a dog model this could be 

increased by nearly a factor of 265. The oxygen extraction reserve for swine is not available, 

but this animal model does have a higher basal rate than humans66.  Nevertheless, in healthy 

vasculature, any increase in oxygen extraction should be compensated for by a blood supply 

increase, and this would either maintain the balance between oxygen demand and supply, or 

shift it towards higher oxygen supply because of an overcompensating increase in perfusion. 

In CAD patients, this balance cannot be maintained during vasoactive stress, such as during 

exercise or diagnostic testing. This balance could be affected by an increased myocardial 

oxygen demand and a higher extraction but with no reciprocating increase in blood supply, 

possibly in the cases where the coronary vasculature is chronically vasodilated to maintain 

blood supply even at rest situations, thus without vasodilatory capacity. Or this balance can be 

compromised even with unchanged demand, but reduced blood supply, which can occur 

during coronary steal where healthy vessels have less resistance and end up directing more 

blood away from the affected regions. Although oxygen extraction is one of the significant 

cofactors that affect OS signal, the signal is not specifically a measure of oxygen extraction, as 

described above. 

This concept of uncoupling the oxygen demand versus oxygen supply is the basis for 

applying OS-CMR to investigate vascular function and myocardial ischemia.  

 

Application of OS-CMR to Assess Vascular Function 

The “oxygenation response” is the physiologic endpoint and marker for the 

responsiveness of the coronary vasculature to vasoactive stimuli. In the presence of a 

vasodilating stimulus, healthy vessels will react with an increase of their diameter and a 

subsequent rise in blood flow, thus increasing the OS signal. However, the OS signal response 

will be attenuated if a dysfunctional vessel cannot respond to a vasodilatory stimulus or 

increased myocardial demands, which may result in overt tissue ischemia.  

In the presence of severe coronary artery stenosis and inadequate blood flow, the 

vessels may be already maximally dilated to maximize blood flow, even during resting 
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conditions. Thus even during a vasodilatory stimulus, throughput of the blood cannot be 

increased further. This could be due to a lack of additional vasodilation, or to pooling of the 

blood caused by blockages elsewhere. To compound this effect, in the presence of a stenosis, 

downstream vessels may still have the capacity to dilate, or there may be a greater amount of 

capillary recruitment, resulting in more blood volume distal to the blockage30. Because of the 

bottleneck effect caused by the stenosis, the majority of blood distal to this stenosis will be 

deoxygenated, as fresh oxygenated blood is not being replenished. Subsequently, with the 

downstream vasodilation, there will be a greater volume of dHb resulting in a decrease in 

signal, which is opposite of the effect seen in healthy vessels30. Thus, OS-CMR imaging in the 

presence of a vasoactive stimulus can be used to differentiate healthy versus dysfunctional 

vessels. By measuring the response of the myocardium rather than specific vessels, OS-CMR 

can be a measure of the responsiveness of the entire vascular tree, including the epicardial 

coronary artery and the microvascular system (Section 0.7). 

 

Standard Pharmacological Techniques 

In the last 15 years the majority of OS-CMR studies have used pharmacological agents 

as a vasodilating stimulus30,34,35,37–40,48,67. Besides dipyridamole and regadenosone, adenosine 

infusion is commonly used for pharmacological vasodilation. Under regular circumstances, 

adenosine does not significantly affect cardiac output but increases blood flow through 

coronary vasodilation. Typical protocols in cardiac imaging induce hyperaemia by a systemic 

infusion of adenosine at a rate of >140µg/kg/min for less than 5 minutes. The impact of such 

hyperaemia can be monitored by OS-CMR, as the myocardial oxygenation response has been 

positively correlated with blood flow68. However, there are significant drawbacks to using 

adenosine. First, adenosine increases the cost of a CMR exam, as in Canada the product alone 

costs more than $100 per patient, and because of possible arrhythmia or bronchospasm, 

requires a specifically trained physician to be present for the administration. More importantly, 

in some cases adenosine can cause patient discomfort and health risks including dyspnea, 

flushing, chest pain, palpitations, light-headedness, sweating, nausea, headache and anxiety 69. 

This prompted a 2013 federal drug authority warning about the use of adenosine and 

regadenosone in cardiac imaging 70. Consequently, alternative techniques that remove the need 
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for adenosine would improve patient comfort, safety and the cost burden of myocardial 

ischemia imaging.  

0.4 Breathing Maneuvers  

Rather than relying on external agents, methods that use intrinsic factors to manipulate 

vascular function have been investigated. Our studies have looked into using breathing 

maneuvers as a vasoactive stimulus. Breathing maneuvers involve any participant initiated 

methods of paced breathing and breath-holds. 

 

History and Summary of Breathing Maneuvers  

As blood-oxygen-level-dependent (BOLD) imaging originated in functional MRI of 

the brain, the use of breathing protocols and inhalation of gas mixtures have already been used 

to manipulate cerebral blood flow. Breath-holding and other choreographed breathing 

protocols had been employed as a simple technique for causing short epochs of mild 

hypercapnia71–74. Additionally, brain imaging studies have looked at having participants inhale 

gas mixtures with different levels of carbon dioxide and oxygen in order to systemically alter 

the arterial blood gas partial pressures75–78. While mostly studied in younger healthy 

volunteers, this field has also looked into the BOLD signal responses during breathing 

maneuvers of children and aging populations as well as different neurological disorders such 

as brain tumours, intracranial stenosis, cerebral infarcts and progressive disorders like 

Alzheimer’s Disease26,79–81. Additionally, these studies may use different techniques, for 

example using long and repetitively paced breathing blocks in which breathing patterns are 

repeated over a period of minutes, or combining breathing protocols with other tasks 

simultaneously. Brain imaging studies have more options available than CMR when it comes 

to breathing maneuver protocols, as the majority of CMR imaging requires images to be 

obtained during a breath-hold anyway, in order to reduce chest motion whereas brain imaging 

can occur during free-breathing. Thus CMR protocols must be short. Our groups in Calgary 

had performed pilot studies in animals and healthy volunteers to assess the use of simple 

breathing maneuvers that could be performed with CMR. This involved a breath-hold or 
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hyperventilation performed independently to manipulate myocardial oxygenation in swine and 

a small cohort of healthy volunteers 82,83. 

 

Introduction to the Suggested Breathing Maneuvers. 

In this project we mostly focus on a combined maneuver of hyperventilation followed 

by a breath-hold. In our pilot study and other publications, it is suggested that the average 

breath-hold following a normal breathing pattern is about 30s in healthy volunteers83,84. 

However, it is unlikely that patients can maintain a breath-hold as long. Furthermore, while a 

breath-hold would likely increase blood flow, hyperventilation precedes hypocapnia, which is 

known to reduce blood flow. A hyperventilation-induced relative vasoconstriction followed by 

a voluntary apnea with its vasodilatory impact would therefore exploit a greater range of 

vascular function. Thus, we suggested using a combined maneuver in which participants 

would hyperventilate by breathing deeply at a rapid pace for some time and then perform an 

end-expiratory breath-hold. With CO2 being the strongest breathing stimulus, preceding a 

breath-hold with hyperventilation can not only extend the breath-hold duration by reducing the 

CO2 content and thus shifting the starting level farther from the threshold at which the 

breakpoint of a breath-hold occurs85,86, but also increases the total range of observable 

changes. With the extended breath-hold, the participant undergoes a greater range in CO2 and 

coronary vasomotion. The other maneuver investigated is a standard maximal breath-hold 

from a normal breathing rate that assessed just the vasodilatory stimulus.  

 

Breathing Maneuver Protocol 

For this project, the breathing maneuver technique has been refined for efficiency and 

reproducibility. Prior to the imaging exam, all participants undergo a brief training on how to 

conduct the breathing maneuvers. This includes reading an information pamphlet, watching an 

instruction video, and practicing the maneuver with a study nurse, research team member or 

MRI technician. The detailed protocol for MRI technicians including both breathing maneuver 

and scanning instructions is included as appendix 1. In these presented studies, the breath-

holds are performed at end-expiration. The primary reason for this is for image quality 
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purposes, and this is standard for most cardiac imaging. The actual variability of the thorax 

position is reduced by using an expiratory breath-hold and thus the heart will remain in a very 

similar position between different image acquisitions. Additionally, during an inspiratory 

breath-hold, study participants tend to slowly exhale throughout the breath-hold, impairing 

image quality. Finally, an end-expiration breath-hold reduces lung volume differences 

between participants, in comparison to an inhalation breath-hold.  

 

Combined Hyperventilation Breath-Hold Maneuver (HVBH) 

The primary breathing maneuver investigates is the combined hyperventilation breath-

hold maneuver (HVBH). Prior to performing any breathing maneuvers, a single baseline 

image has been obtained (Figure 7). The participant breathes at a normal rate, and for the 

image makes an end-expiration breath-hold of 3-10s, depending on the number of slices 

required. Afterwards the participant hyperventilates for 60s, breathing at a deep and rapid 

pace. To ensure a reproducible breathing pattern, we implemented a metronome with a click 

rate of 60 beats/min, instructing the patient to breathe in and breathe out in sync with two 

consecutive click sounds. Thus, participants following these instructions breathed at 30 

breaths/min. The breathing motion can be tracked using a breathing monitor belt, although the 

precise depth of the breath can’t be measured in the MRI. Moreover, there is a camera that 

displays the participant’s chest movements to the staff in the control room. The technicians 

can instruct the participant to change their breathing pattern if it does not appear sufficient. At 

60s into the hyperventilation, the participant is guided by the technician to take one breath, 

after which they conduct an end-expiration breath-hold that is maintained for as long as 

comfortable. CMR images are acquired continuously throughout the breath-hold. Once the 

participant needs to breathe, s/he indicates to the technician that they ended the breath-hold 

using an indicator ball. Furthermore, the technician can observe the MRI images and the 

patients’ chest movement to visually note the end of the breath-hold.  
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Figure 7: The combined Hyperventilation Breath-Hold (HVBH) Maneuver 
The acquisition of a CMR measurement is represented by the grey boxes, and 
breath-holds are indicated by a flat line. For the analysis, hyperventilation is always 
compared between the baseline image and first image of the breath-hold, while for 
the breath-hold, any image is compared to the first acquisition. 

 

For the analysis of the maneuver, the effect of hyperventilation is determined by a two-

point assessment only, similar to adenosine. The response is calculated by the percent change 

in signal between the baseline image prior to hyperventilation, and the first image of the 

breath-hold. Because the breath-hold can be continuously imaged, the response throughout the 

maneuver can be assessed by comparing the signal of any time-point to the first image.  

 

Long Breath-Hold (LBH) 

The other maneuver investigated in this project is the long breath-hold (Figure 8), 

which is a maximal breath-hold conducted following normal breathing, without a preceding 

hyperventilation. This maneuver is performed in a similar method to the second part of the 

HVBH, where a patient holds an end-expiration breath-hold for as long as comfortable. The 

intent of this maneuver is to observe just the vasodilation effects of a breath-hold, and if the 

response is different when the vasodilatory stimuli does not follow the vasoconstriction of 

hyperventilation. 
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Figure 8: The Long Breath-Hold (LBH) maneuver 
Similar to the HVBH (Figure 7), the acquisition of a CMR measurement is 
represented by the grey boxes. For analysis of the breath-hold, any image 
during the acquisition is compared to the first acquisition. 

 

 

Standardization, limitations and safety aspects of breathing maneuvers 

Compared to other vasodilatory triggers, breath-holding has many advantages; the 

greatest being that no specialized equipment is needed. Breathing exercise tests however 

require subject compliance which may affect interindividual reproducibility87. As described 

above, we aimed to standardize hyperventilation between participants by using a metronome 

to control the breathing pace, and controlled for the breathing depth by visual observation. 

However, hyperventilation is still reliant on subject compliance and capability, and some 

patients may not be able to conduct the breathing tests as efficiently. A period of 60s was 

chosen because a pilot study in healthy volunteers showed that it still induced a change in 

myocardial oxygenation that matched the effects of 120s of hyperventilation, but had less side 

effects83. Currently, acquisition of good images requires a breath-hold, thus the effects 

throughout the hyperventilation period cannot be assessed. However, future research is aiming 

to develop navigator based imaging, which account for chest motion and allows for image 

acquisition during breathing.   

The breath-holds can be monitored more easily. All breath-holds are performed at end-

expiration and the main variability between participants comes from the individual breath-hold 

breakpoints, when the participant feels the need to breathe. The duration of a voluntary breath-
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hold may be influenced by many factors such as initial gas content, lung volume, 

chemoreceptor sensitivity, secondary diseases, tolerance, and patient compliance86. While the 

animal and volunteer studies analyze the entire breath-hold, in patient studies analysis has 

been refined to the first 30s. This is because following proper hyperventilation, more than 90% 

of patients assessed so far could reach that time-point (Table 2).  
 

 Failed  
Hyperventilation 

Breath-Hold Time 
0 – 14s 15 – 29s ≥30s  

Healthy 0 0 3 89 

Coronary Artery 
Disease 

0 0 1 6 

Heart Failure 0 0 1 5 

Heart Transplant 0 0 0 28 

Obstructive Sleep 
Apnea Syndrome 

0 0 5 24 

TOTAL 0 0 10 152 

Table 2: Success of the Hyperventilation Breath-hold maneuver 
All human participants of the published and ongoing studies47,88–90 as of January 2016, were able to 
hyperventilate successfully and maintain a breath-hold for at least 15s at rest conditions (ie. without 
supplemental oxygen, or haemodilution). Patients are grouped by their primary diagnosis of the study 
they participated in, and may have had co-presenting cardiac disorders. Of note, participants were 
allowed to repeat the breathing maneuver if they experienced a problem.  

 

0.5 Arterial blood gas manipulation 

In a related subject, this study also looks at the effect of stable arterial blood gases on 

coronary flow and myocardial oxygenation. This differs slightly from breathing maneuvers, 

which induce an acute and intermediate change in arterial blood gases. In particular, the 

impact of targeted arterial tension of oxygen (paO2), and carbon dioxide (paCO2) were 

assessed, with a focus on how blood gas levels themselves alter the baseline and how they 

affect the coronary response to a breathing maneuver.  

 

Impact of Oxygen 

In response to the myocardial demand for oxygen, it has been known for decades that 

both arterial and tissue hypoxia will increase the coronary blood supply to compensate for the 
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lower oxygen content. In 1957, it was shown the inhalation of a hypoxic mixture (10% 

oxygen) led to a doubling in coronary flow as the coronary arterial oxygen content was 

reduced91, and this effect is still shown true with advanced flow measurement technologies92. 

Additionally, previous publications by our group showed that despite arterial hypoxaemia, 

myocardial oxygenation could be maintained in an anaesthetized swine model, demonstrating 

a regulatory mechanism. This was likely due to an increase in blood supply to counteract the 

low blood oxygenation, but this was not specifically measured in that study93.  

Parts of this project also look at the effect of supra-normal oxygen tensions. Despite 

the general belief that supplemental oxygen is beneficial for cardiac patients, hyperoxia is 

known to decrease coronary blood flow94, and can lead to worse prognosis in the case of 

survival after sudden cardiac arrests a well as during ST-segment elevation myocardial 

infarctions95,96.  Thus Chapter 3 looked at the impact of hyperoxia on myocardial oxygenation 

in animals with experimentally induced coronary stenosis. 

 

Impact of Carbon Dioxide 

A systemic increase in CO2 tension leads to an increase of cerebral and myocardial 

blood flow7-9. Independent from local metabolic demand, an increase in systemic paCO2 

modulates tissue blood flow and will consequently lead to an excess perfusion similar to 

pharmacologic vasodilators. Non-metabolic increases in CO2 can be modulated through 

breathing maneuvers, such as breath-holds or paced breathing patterns82,83, and through the 

inhalation of CO2 rich gas mixtures99,100.  Low tension of CO2 has an opposing effect, 

triggering vasoconstriction and a subsequent reduction in perfusion. This state of hypocapnia 

can be induced by hyperventilation. Furthermore, there is an interaction between CO2 and O2 

as the vasodilatory effects of hypercapnia are potentiated by hypoxia101. Chapter 2 investigates 

these combinations by targeting the specific arterial blood gas levels, but a mild form of this 

combination can also occur with the breathing exercises at the end of a long breath-hold. 
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Impact of Arterial Blood Gases on the Response to Vasoactive Stimuli 

Since abnormal arterial blood gas levels may occur in various clinical situations, it is 

important to assess how they may affect responses to vasoactive stimuli. Cardiac diagnostic 

tests using vasoactive stimuli could be confounded by blood gas levels and breathing patterns. 

While a poor response is considered evidence for coronary artery stenosis or a microvascular 

perfusion abnormality, other factors that may attenuate or falsely augment the signal could 

lead to false conclusions. In particular, with cardiac patients, the oxygen content of the blood 

can be abnormal as some cardiac patients can experience chronic hypoxaemia, while others 

may receive supplemental oxygen during exams creating a state of hyperoxia, all affecting the 

baseline of such procedures for assessing vascular function. Therefore, in the experiments 

described in chapter 2, we measured how paO2 and paCO2 levels affect the coronary flow 

response to a short breath-hold stimulus.  

 

0.6 Vascular Function 

Functioning vasomotor reaction is essential for maintaining and tightly regulating 

blood and oxygen supply to the myocardium, responding to changing tissue demands. During 

the evolution of atherosclerosis, microvascular function may be altered long before overt 

morphological changes develop such as coronary artery stenosis. A healthy coronary vascular 

system can markedly increase blood flow, also known as the coronary flow reserve. If this 

function is compromised, the adaptation to changes of workflow or blood oxygenation is 

impaired, and, in more severe cases, myocardial ischemia can result. Consequently, the 

majority of diagnostic techniques that assess vascular function specifically target the 

vasodilatory reserve.  

The vascular response is based on the ability to modify vascular resistance, which is 

the primary determinant of myocardial blood supply. This resistance is regulated mostly by the 

coronary anatomy and the ability of the vessels to dilate through vascular smooth muscle 

contraction. The coronary artery bed is composed of two major zones: the “conduit vessels”, 

which includes the coronary arteries and pre-arterioles, and the microvasculature, composed of 
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arterioles and capillaries102. Many techniques such as the fractional flow reserve (FFR), look 

specifically at the response of the large coronary arteries. In a healthy anatomy however, these 

vessels are not major components of actual coronary resistance. Rather it is the 

microvasculature that is considered responsible for matching coronary blood flow to 

myocardial oxygen demand103. Thus, to induce the greatest change in coronary flow, 

vasodilators will target the microvasculature, specifically the endogenous vasodilators. 

 

Mechanisms of Vasomotion 

Vascular resistance is regulated by multiple mechanisms that are still not fully 

understood. Current theories about coronary vascular function control focus on neural, 

endothelial, metabolic and myogenic regulation, which can act on cardiac myocytes, 

endothelial cells, or smooth muscle cells. The goal of diagnostic vasodilators is to induce a 

short-acting but maximal effect. This project focuses on a comparative analysis of the impact 

of adenosine and breathing maneuvers, and partial pressures of CO2 and O2 in the blood.  

 

Metabolic Control 

The arterioles maintain a controlled balance between myocardial oxygen supply and 

demand. As the consumption of oxygen is often correlated with cardiac workload, many 

metabolic products associated with cardiac workload have vasodilative properties to 

transiently increase blood supply. Thus, increased adenosine production, high pCO2, low pO2 

and acidosis are all positively correlated with coronary blood flow, with the strongest effect on 

microvessels of less than 200µm in diameter104. Adenosine is also an endogenous metabolite 

of cardiac myocytes that is assumed to be released when myocardial pO2 drops105. However, 

for the purpose of clinical imaging, a much higher dose is required than can be produced 

naturally, thus an intravenous dose of pharmaceutically isolated adenosine is needed so a 

sufficiently large dose can be administered. Adenosine has many actions, but the most 

important in the case of coronary dilation is its role in smooth muscle relaxation, blocking the 

calcium-channels that would normally induce smooth muscle constriction106.  
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Independent of adenosine effects, coronary arterial pO2 and pCO2 have been known for 

decades to be correlated with coronary vascular resistance 107,108. There is a profound 

synergistic effect on coronary blood flow when low pO2 is combined with high pCO2. Vice 

versa, high O2 tensions and low CO2 tensions can attenuate dilation and even have 

vasoconstrictive properties94,109,110. The effects of pCO2 and pO2 are attributed to induce 30-

40% of the coronary flow response101, yet this is only a portion of the response, supporting the 

idea of multiple regulating mechanisms. Both brain and heart imaging studies have 

investigated administering these gases through inhalation75,78,93,100, and altering the local 

amounts endogenously through the breathing maneuvers 71,72,111,112. The exact role of 

metabolites on the coronary vasomotor response is not fully known. Especially with the blood 

gases pCO2 and pO2, metabolites can also impact the microvasculature through vagal-

mediated pathways activated by both peripheral and central chemoreceptors. Despite different 

sensory pathways, stimulation of both responses, either hypercapnia or hypoxemia, will cause 

vagal cholinergic coronary vasodilation113. For example, arterial chemoreceptors detect both 

hypoxemia and hypercapnia, and redirect more flow to the heart through sympathetic 

activation in order to compensate for the drop in perfusion pressure caused when the coronary 

vessels dilate through direct effects114. Thus, vasodilation requires the cooperation of both 

direct and vagal regulation by metabolites.   

On the other hand, high O2 tensions can lead to vasoconstriction, with multiple 

mechanisms suggested. This can be mediated by endothelium dependent mechanisms, leading 

to inhibition of KATP channels115. Other studies have shown that high oxygen tensions are 

related to the production of reactive oxygen species116, which are directly involved in the 

destruction of nitric oxide released from the endothelium94. The vasoconstriction has also been 

shown to be both dependent and independent of the autonomic nervous control117,118. Despite 

the uncertainty about the specific mechanism, it is known that hyperoxia leads to a decrease in 

coronary artery blood flow94,119, however studies in the last 25 years have not used modern 

techniques to assess the impact on the microvasculature.  
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 Stimulus Vaso- Suggested Causes and Mechanisms Location 

Metabolic  âO2 
áCO2   
âH+ 

dilator Can be induced by hypoxia, altitude, exercise, breath-holds/poor 
ventilation, ++ 

Unclear mechanisms, can include activation of peripheral and central 
chemoreceptors, adenosine release 

Micro-
vasculature 

 Adenosine dilator Naturally released during hypoxia 
Injected pharmacological dose 

Suggested mechanisms is by blocking calcium channels and blocking 
smooth muscle contraction 

 NO dilator Can be triggered by many mechanisms, and is a by-product of other 
vasomotor pathways 

 áO2 constrictor Induced by supplemental oxygen 
Inhibit KATP channels, produce reactive oxygen species, endothelium 

dependent and independent, autonomic control 

 âCO2 constrictor Induced by hyperventilation, altitude 

 Endothelins constrictor Can be released by cardiovascular diseases, diabetes, changes in 
blood pressure , ++ 

Causes smooth muscle contraction – strongest physiological 
vasoconstrictor in humans 

Hormonal Atrial Natiuretic 
peptie  

dilator Minimal effect with physiological concentrations 

 Angiotensin II 
Antidiuretic H 
Epinephrine 

Nor-epinephrine 

constrictor Work to maintain higher blood pressure 
Angiotensin II leads to endothelin release* 

Nervous Sympathetic  
tone 

dilator β-adrenergic receptors are activated, and stimulates metabolic 
production* 

More predominant in subendocardium 

 
constrictor	 α-adrenergic – can restrict metabolic dilation, can help protect 

against coronary steal 
More predominant in epicardium 

Parasympathet
ic tone 

dilator Minor and weak effects 
Can be induced by cold pressor tests, acetylcholine 

Myogenic áCoronary 
blood pressure 

dilator Designed to maintain perfusion 
Dependent on the coronary autoregulation response 

Can activate stretch receptors (Ca+) leading to muscle contraction 
(Bayliss effect) and lead to metabolite production*  

Coronary  
tree  âCoronary 

blood pressure 
constrictor 

Endothelial Pressure / 
Flow 

dilator Caused by shear stress on the vessel wall 
Can lead to NO release* 

   Pre- 
arterioles 

 

Table 3: Examples of coronary control 
While the mechanisms of coronary vasomotion are still not well understood, this table highlights some 
of the primary pathways for controlling vasodilation and vasoconstriction. Specifically, the 
mechanisms of metabolites, oxygen and carbon dioxide, that are key factors during the breathing 
maneuvers. This table does not discuss the use of pharmacological agents. *Non-metabolic processes 
can still trigger metabolite production and the subsequent pathways of vasomotor control102,120–122.  
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Non-metabolic Control of the Coronary System 

While CO2 and O2 are considered to be a significant factor in the control of coronary 

flow, the full effects of breathing maneuvers are unknown. In chapter 2, the impacts of short 

breath-holds that are not long enough to induce a change in blood gases on coronary blood 

flow are assessed. In conscious humans, Sasse et al. showed that changes of paO2 and paCO2 

occur only after 10s of breath-holding, although the time needed for blood distribution to the 

artery measured may account for this delay, and a similarly there would be a delay in blood 

distribution to the myocardium as well from the lungs84. Thus, activation of other responses 

that manipulate the coronary flow may occur early in the breath-hold before arterial blood 

gases change. Pulmonary stretch receptors and redirection of blood flow to the heart by 

sympathetically activated peripheral vasoconstriction have been suggested as other 

mechanisms of coronary flow change, not specifically related to the blood gases123–125.  

 

0.7 Coronary Artery Disease Versus Microvascular Disease 

Although coronary artery disease is traditionally thought of as a disease with 

significant stenoses in the epicardial coronary arteries, more than a third of patients who have 

chest pain and suspected CAD do not have detectable culprit lesions in their coronary 

angiogram 126.  As such symptoms reflect a mismatch between oxygen demand and supply due 

to inadequate regulation of blood flow, microvascular dysfunction has become an important 

diagnostic target, especially in women127. 

 

Coronary Microvascular Disease (CMVD) 

CMVD can correspond with a limited vasodilatory capacity or an increased 

vasoconstrictor response. Both of these aspects can be assessed with the combined breathing 

maneuver, HVBH, which uses hyperventilation as a vasoconstrictor, and a long breath-hold, to 

trigger a vasodilatory response. As described in section 0.6, the microvasculature controls the 

blood supply to the heart, and thus even in the absence of coronary artery stenosis, 

microvascular dysfunction can cause myocardial ischemia (Figure 10B).  
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Isolated CMVD has also been called cardiac syndrome X, defined by the presence of 

chest pain without associated significant coronary stenosis128. In a long-term follow-up study, 

these patients still showed a significantly increased mortality and serious cardiac events129. 

Traditionally, a pitfall of diagnosing microvascular disease was the lack of methods able to 

directly assess the microvascular component. Rather, CMVD was often diagnosed if a patient 

had cardiac symptoms with no other observable reasons for these symptoms. Modern imaging 

modalities are now able to assess microvascular dysfunction, although standard strategies 

often use nuclear cardiology techniques and require an injection of pharmacological agents. 

Research using such technologies has provided evidence that CMVD can present alone as 

primary coronary microvascular dysfunction58, but is commonly found along with CAD, 

diabetes, hypertension, and cardiac transplants. Due to the heterogeneity of CMVD, 5 major 

classifications were proposed (Table 4,102). Although CMVD is still not well understood due 

to the diversity of the disease and previous inability to measure microvascular function, newer 

imaging modalities are rapidly advancing the knowledge of the disease. By being able to 

detect and classify CMVD, treatment strategies can be better targeted, creating the potential 

for more cost-effective and successful treatments.   

 

 
 

 CMVD Type Causes Specific Diseases 
1 In the absence of 

obstructive CAD and 
myocardial diseases 

Caused by traditional risk factors, smoking, 
diabetes, hypertension, etc.,  
Partly reversible 

Microvascular angina,  

2 In the presence of 
myocardial diseases 

Adverse remodelling of intramural coronary 
arterioles 
 

Found in genetic and secondary 
cardiomyopathies  
Hypertrophic cardiomyopathy, congestive 
cardiomyopathy, myocarditis, aortic stenosis 

3 In the presence of 
CAD 

In CAD and acute coronary syndrome 
 

Coronary syndrome, stable angina,  

4 Iatrogeneic  After recanalization, caused by 
vasoconstriction or distal embolization, 

Percutaneous coronary intervention 
Coronary aortic bypass graft 

    
5 Post-heart transplant Alterations in autonomic tone, inflammation 

and immune mechanisms 
Specific to Heart Transplant 

Table 4: Clinical classifications of CMVD, 
Adapted from Camici, 2007102. 
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Coronary Artery Disease in the Absence of CMVD 

On the other hand, it is also possible that even obstructive CAD can be non-

symptomatic because of a preserved microvascular function (Figure 10C)130. Thus even in the 

presence of a pathologic FFR or QCA result, tissue assessment of perfusion or oxygenation 

can show normal results. Consequently, there is debate on whether stenosed vessels should 

always be revascularized, or if patients who are stable with a clean microvascular function 

should avoid the procedure, highlighting the clinical importance of assessing coronary 

vascular function130,131.  

 

Imaging Coronary Microvasculature 

The ability to image microvascular disease has not always been feasible, and thus 

diagnosis of CMVD relied on the more traditional methods for imaging ischemia (Figure 9). 

In addition to symptoms and electrocardiography, imaging modalities focused on the 

epicardial arteries and the microvascular function was indirectly predicted from these results. 

While the primary intent of angiography is to visualize the size and location of coronary 

lesions, some aspects of microvascular function can be observed by the tracking the passage of 

the contrast agent through the heart (TIMI frame count/myocardial perfusion grade)132. Other 

methods assess the haemodynamic function of the coronary arteries, as these large vessels 

could are fairly easy to access with intracoronary measurement tools. Fractional flow reserve 

(FFR) is the primary technique used to assess the functional relevance of a stenosis and if 

blood supply is significantly hindered during hyperaemia. From this response an indirect 

assessment of the microvascular resistance during hyperaemia (HMR) can be calculated133. 

Similarly, coronary thermodilution also involves the placement of a measurement device in 

the coronary arteries. Based on the diffusion time of contrast agent, thermodilution can be 

used to assess coronary flow and calculate the index of microcirculatory resistance (IMR) 

based on the measurements in the coronary arteries133. These calculations about the 

microvasculature are based on the theory that epicardial coronary flow reserve is ultimately 

affected by the microvascular resistance (section 0.6). Yet, these tests require invasive 
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measurements to place devices inside the heart, and they are not a functional assessment on 

the effects to the myocardium nor do they directly assess ischemia.  

 

 

Figure 9: Common imaging methods for direct and indirect assessment of microvascular function 
Multiple imaging modalities now exist to assess the coronary microvasculature function, and with 
myocardial oxygenation measurements being a more direct marker of myocardial ischemia. *is an 
indirect calculation of microvascular resistance, I=invasive technique requiring more than an 
intravenous access, R=involves radiation, C=requires contrast agents or tracers, V=requires a 
vasoactive stimulus.  

 

As stated above, microvascular dysfunction can occur in the presence or absence of 

coronary lesions. While the microvasculature can’t be directly measured in vivo, non-invasive 

measurements can reflect the microvascular function by measuring the myocardial response. 

MRI and nuclear imaging both developed methods to assess the perfusion of the myocardium 

during a vasoactive stimulus, using the surrogate markers for blood supply (mainly cumulative 

tracer uptake or first-pass contrast agent inflow) as a marker of microvascular function. 

However, first-pass perfusion CMR requires contrast agents and vasodilators (section 0.6), 

while nuclear imaging (PET, SPECT) requires vasodilators, specialized tracers, and involves 

exposure to radioactivity.  

While ischemia is caused by inadequate blood supply, the actual direct marker would 

be tissue oxygenation as the cellular mismatch is the direct effector on cellular function and 

injury. Thus new techniques such as oxygen based PET imaging and oxygenation-sensitive 
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CMR are the most direct measurement of myocardial vascular dysfunction or ischemia. And 

with the development of vasoactive breathing maneuvers instead of infused pharmacological 

vasodilators, OS-CMR has the potential to be a fully non-invasive as well as stress- and 

radiation-free technique to assess for regional microvascular function or inducible ischemia.  

 

Territorial Assessments 

In CAD with significant proximal stenosis (which are also the most important for 

interventional therapy), oxygenation deficits typically show a rather uniform regional 

distribution within a coronary territory38,39. On the other hand, with microvascular disease, it 

can be more difficult to localize and classify ischemia, as the deficits are often more diffuse 

and dysfunctional arterioles are more globally distributed103. In addition to different 

distribution patterns, the inner myocardial layer consumes more oxygen, and is exposed to a 

lower perfusion pressure (competing with the intraventricular pressure) and thus more likely to 

develop ischemia103. It is therefore important to have sensitive techniques to detect minor 

changes in oxygenation of the tissue, as well as detect small regional abnormalities.  

 

 

Figure 10: Balance between epicardial and microvessel function on myocardial ischemia 
Perfusion of the myocardium relies on both the function of the micro- and conduit vessels (i.e. coronary arteries), 
with healthy shown as white, and dysfunction as dark. In the presence of healthy coronary arteries (left), healthy 
microvasculature will result in normally perfused tissue (A), whereas dysfunctional microvessels may cause a diffuse 
ischemia (B). On the right, microvascular dysfunction can be both present and absent in the presence of a coronary 
stenosis. Fully functioning microvasculature may actually compensate for the coronary stenosis, and there may be 
little damage to the tissue (C.). Common presentation is for some microvascular dysfunction, in with there is a 
defined region of ischemia due to the stenosis (D), or a combination of both can lead to an overall ischemia (E). 
Adapted from Lanza 2010, and Crea 201458,130. 
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In this project, coronary artery stenosis is assessed both in the presence and absence of 

microvascular dysfunction. Part 1 (chapters 1-3) involves a controlled animal model, in which 

a severe coronary artery stenosis was created in an otherwise healthy animal, resulting in a 

simulated acute coronary stenosis without any microvascular dysfunction (Figure 10C). Part 3 

(chapter 5) assesses a clinical scenario, where cardiac patients have verified coronary artery 

stenosis with a possibility of with microvascular dysfunction.  
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Part 1: Assessing breathing maneuvers and the effect of 
arterial blood gases in an experimental animal model 

 

Foreword 

Part 1 describes the three articles that have been produced from the single animal study 

“Cardiovascular Response of Oxygenation during Swine Breathing (CROSB)”, performed at 

the Montreal Heart Institute. 

Chapter 1 and 2 pertain to the primary objective of the project, which is to investigate 

the use of breathing maneuvers as a vasoactive stimulus, and how this can be used to assess 

myocardial oxygenation deficits. With the animal model, invasive measurements such as 

coronary sinus blood gases and coronary flow of the LAD coronary artery can be reliably 

performed in a very controlled experimental; environment and compared with OS-CMR 

results. As a result, we can more precisely define how the OS-CMR results relate to the 

physiological changes in the heart. 

Chapter 3 has a more clinical intent. OS-CMR is used as a measurement to evaluate 

myocardial oxygenation in the presence of coronary artery stenosis, and how oxygenation is 

compromised when supplemental oxygen is administered.     

Funding was provided by the Montreal Heart Institute Foundation, the Canadian 

Foundation for Innovation, and the Fonds de Recherche Santé Québec.  
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1 Chapter 1 - Breathing Manoeuvres as a Vasoactive 

Stimulus for Detecting Inducible Myocardial Ischemia – 

an Experimental Cardiovascular Magnetic Resonance 

Study 

  

Foreword 

This study provides the foundation of the experimental assessment of the utility of 

breathing maneuver. In an animal model we could directly compare the results from the CMR 

images to invasively measured parameters such as blood flow of the coronary artery, and 

blood gas levels of both the arterial blood and in the coronary sinus to determine which 

parameters are affecting the myocardial oxygenation during the breathing maneuvers. 

Additionally, this study compares multiple breathing maneuvers directly to the current clinical 

standard of pharmacological-induced vasodilation, to help determine the best breathing 

maneuver protocol for subsequent studies. This is the first project to show that in the presence 

of significant coronary stenosis, there is an abnormal oxygenation response during the 

vasoactive breathing maneuver.  

 

Data from this chapter was presented at the 2014 European Society of Cardiovascular 

Magnetic Resonance (EuroCMR) congress in Vienna, Austria, and was the best oral 

presentation of the congress.  
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1.1 Abstract 

Background: Breathing maneuvers can elicit a similar vascular response as 

vasodilatory agents like adenosine; yet, their potential diagnostic utility in the presence of 

coronary artery stenosis is unknown.  We hypothesized that breathing maneuvers can non-

invasively detect inducible ischemia when combined with oxygenation-sensitive 

cardiovascular magnetic resonance (OS-CMR). 

Methods and Results: In 11 swine with experimentally induced significant stenosis 

(fractional flow reserve <0.75) of the left anterior descending coronary artery (LAD) and 9 

control animals, OS-CMR at 3T was performed during two different breathing maneuvers, a 

long breath-hold; and a long breath-hold following 60s hyperventilation.  The resulting change 

of coronary blood flow and myocardial oxygenation was compared to that induced by iv 

adenosine infusion.  In control animals, hyperventilation decreased coronary blood flow (-

34±23%), while flow increased with adenosine infusion (15±16%), a long breath-hold 

(97±88%), and with a long breath-hold following hyperventilation (346±327%). In animals 

with stenosis, breathing maneuvers attenuated the flow response significantly more than 

adenosine. Breath-holds following hyperventilation consistently yielded a significant 

difference in the observed oxygenation response between the perfusion territory of the 

stenosed LAD and remote myocardium (-3.9±5.3% vs. +2.5±4.2% by end of breath-hold, 

P=0.001), while this response was uniform in control.    

Conclusion: The myocardial oxygenation response to hyperventilation with 

subsequent breath-holding is blunted in myocardium subtended by a severely stenotic 

coronary artery.  Breathing maneuvers may be useful for diagnostic testing in patients with 

suspected coronary artery disease.   

 

Keywords: Magnetic Resonance Imaging ▪ Oxygen ▪ Myocardial Ischemia ▪ Breathing 

Exercises ▪ Adenosine ▪ Experimental Model 
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1.2 Translational Prospective 

We present here the first findings of using oxygenation-sensitive cardiovascular 

magnetic resonance (OS-CMR) imaging and breathing maneuvers to detect 

haemodynamically relevant coronary artery stenosis. Recent studies have verified that 

breathing maneuvers induce a myocardial oxygenation response in healthy humans, providing 

a possible alternative to pharmacological agents such as intravenous adenosine. Our study 

provides invasive findings of coronary blood flow and blood gases confirming the effects on 

the cardiac system during breathing maneuvers, and how these data relate to the detection of 

myocardial oxygenation deficits with CMR. This study is of importance in regard to both the 

clinical translation of OS-CMR for the assessment of suspected myocardial ischemia in 

patients. This technique may allow for a physiologic stress test for microvascular and 

microvascular disease without using any stress agents or contrast media. 

 

1.3 Introduction 

The numbers for prescribed cardiac diagnostic tests and interventions are rapidly 

growing1. Notably, imaging for inducible myocardial ischemia or coronary artery stenosis has 

become on of the of the most critical cost factors in today’s health care systems 2.  While 

imaging techniques such as stress echocardiography and nuclear cardiology are generally very 

useful for identifying ischemia-producing coronary artery stenosis, they require 

pharmacological or physical stress protocols. Nuclear techniques are also limited by 

radioactivity of tracers. Cardiovascular magnetic resonance imaging (CMR) can identify 

significant coronary artery stenosis without radiation, commonly using either dobutamine 

stress or first-pass perfusion protocols134,135. Yet again, infusion of pharmacological stress 

agents is required. 

As a newer technique, oxygenation-sensitive CMR (OS-CMR) imaging allows for 

monitoring changes of myocardial oxygenation, based on the so-called blood oxygen level-

dependent (BOLD) effect: A reduction of tissue oxygenation leads to a relative decrease of 

oxyhaemoglobin and a relative increase of deoxyhaemoglobin, which in turn causes a signal 
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intensity (SI) drop in CMR images sensitive to this effect23. In the presence of a stenosis, this 

effect can be augmented further by post-stenotic capillary recruitment31. OS-CMR differs from 

perfusion imaging techniques in that it directly reflects the oxygenation status of the tissue 

instead of using surrogate markers such as perfusion or blood flow.    

In functional MRI studies of the brain and, more recently, the heart, alterations of 

blood gases by breathing maneuvers or inhalation of gas mixtures were identified as an 

alternative to pharmacologic vasodilation71,100,112. In particular, a combination of 

hyperventilation and breath-holds with OS-CMR yielded promising results in monitoring 

changes of myocardial oxygenation induced by vasoactivity82,83,111, yet its clinical potential to 

identify myocardium exposed to a severely stenotic coronary artery has not been explored. As 

the vascular response to breathing maneuvers is also dependent on the presence of a patent 

coronary artery, OS-CMR with breathing maneuvers appears to have a very strong potential to 

identify severe coronary artery stenosis. We therefore hypothesized that breathing maneuvers, 

especially a long breath-hold following hyperventilation, lead to a blunted oxygenation 

response in myocardium exposed to severe coronary artery stenosis in comparison to normally 

perfused tissue. 

 

1.4 Methods 

Animal Preparation 

This study was conducted in accordance with the Guide to the Care and Use of 

Experimental Animals by the Canadian Council on Animal Care and approved by the local 

Animal Care and Use Board.  Twenty healthy swine (33±1kg, Yorkshire-Landrace) were 

included. Another study performed in the same animals group was recently published136.  The 

swine were pre-medicated by intramuscular injection of 4ml Telazol (200mg tiletamine, 

200mg zolazepam) and 0.8mg atropine.  Anaesthesia was induced with propofol (2-4mg/kg, 

i.v.) prior to intubation, and maintained with continuous propofol (4-36 mg/kg/hr, i.v.) and 

remifentanil (0-3.5µg/kg/min, i.v.) infusion as required. Amiodarone (75mg i.v.) was infused, 

and serum electrolytes were corrected to normal values to prevent arrhythmia137. The femoral 
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vein was cannulated for drug and fluid administration, while the femoral artery was used for 

haemodynamic monitoring and arterial blood gas analyses.  A right jugular vein sheath was 

placed to provide access to the coronary sinus for venous blood gas analyses.  A left-sided 

thoracotomy was performed for the placement of an MR-compatible perivascular flow probe 

on the proximal left anterior descending (LAD) coronary artery (Transonic Systems, Ithica, 

NY, USA).  Nine animals served as controls, while eleven animals were allocated to undergo a 

LAD stenosis protocol. After instrumentation, a bolus of 5000U Heparin was administered to 

prevent clotting. 

 

Stenosis Protocol 

A perivascular hydraulic occluder (In Vivo Metric, CA, USA) was used to constrict the 

LAD adjacent to the flow probe (Figure 11).  Vasodilation was induced with 140µg/kg/min 

adenosine administered through a central vein. FFR was measured with a coronary pressure 

guidewire (St. Jude Medical, MN, USA).  Concurrently, the occluder was inflated to constrict 

the vessel until a stable FFR reading of <0.75 was reached.  This occlusion was maintained 

throughout the study.  Control animals were considered to have an FFR of 1.0.  

 

 

Figure 11: Experimental Set-up.  
A. Fluoroscopy image of the left anterior descending (LAD) coronary artery with the perivascular 
occluder the flow probe in place.  B. Example of OS-CMR image with AHA automatic segmentation.  
C. Assignment of segments to LAD territory (blue) and remote myocardium (green), excluding the 
segments with possible mixed perfusion.  
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Quantitative Coronary Angiography 

Quantitative coronary angiography (QCA) was performed prior to CMR imaging using 

a standard protocol138. Minimal LAD diameters were measured in the occluder-obstructed 

area, for the stenosis group, or distal to the flow probe for the control animals using the online 

single-plane view imaging system (model 1.2.3; Electromed International, QC, Canada).  

 

Experimental Protocol 

Animals were transferred to an MRI suite and were continuously monitored for 

invasive blood pressure, heart rate, peripheral saturation (SpO2) and end-tidal carbon dioxide 

(EtCO2).  Unless specified, arterial blood gases were maintained at a baseline normoxic 

(paO2=100mmHg) and normocapnic (paCO2=40mmHg) levels, targeted through ventilation 

adjustments.  CMR images were acquired with a clinical 3T MRI system (MAGNETOM 

Skyra 3T; Siemens Healthcare, Erlangen, Germany) using an 18-channel cardiac phased array 

coil.  All images were obtained during breath-holds, created by a pause in ventilation at end-

expiration, after a passive exhalation.  Left ventricular (LV) function was imaged with 

standard balanced steady-state free precession (SSFP) cine in a short-axis stack.  Then, OS-

CMR imaging was performed for two short axis slices, mid-ventricular and mid-apical distal 

to the blood flow probe, using a previously published ECG triggered SSFP sequence47 with 

each of the three maneuvers conducted in random order:   

• HV/HVBH: a combined hyperventilation and breath-hold.  After baseline OS-CMR 

images were obtained, animals were manually hyperventilated (HV) for 60s, at a rate 

of 30-40 breaths/min with a ventilator bag and an additional supplement of 2-4L/min 

of oxygen to maintain normoxia.  This was immediately followed with a 60-90s 

breath-hold (HVBH). Images were acquired continuously during breath-holds. 

• LBH: long breath-hold.  A breath-hold of 60s was performed from the baseline level 

and imaged continuously. 



 

44 

• Adenosine: A measurement was obtained before and after 3 minutes of adenosine 

infusion (140µg/kg/min).  These images served as reference for maximal 

pharmacological vasodilatation.  

 

 

Figure 12: Chapter 1 breathing maneuver protocol and invasive measurements 
For the combined hyperventilation breath-hold (HVBH) maneuver, a single rest image was obtained in 
a short breath-hold (A). The animal was then manually hyperventilated for 60s (B) followed 
immediately by a long breath-hold (C) that was imaged throughout, with a repeating OS sequence. 
Hyperventilation analysis was always compared between rest and the start of the breath-hold (red), 
while the breath-hold could be analyzed at multiple time points with comparison to data obtained at 
the beginning of the breath-hold (purple). The long breath-hold (LBH) followed step C, starting after a 
normal ventilation pattern.  

 

At the beginning and end of each maneuver, the following invasive measurements 

were recorded: coronary blood flow, arterial blood gases, coronary sinus blood gases, heart-

rate, invasive blood pressure and SpO2.  The myocardial oxygen extraction ratio (O2er) was 

calculated from the oxygen content of the arterial (CaO2) and coronary sinus blood (CcsO2),  

[O2er=(CaO2-CcsO2) / CaO2].  

 

Image Analysis 

All CMR images were de-identified prior to analysis. For the OS-CMR images, the 

myocardial oxygenation response from the end-systolic images was expressed as the %-

change in signal intensity (ΔSI[%]) from the maneuver to baseline (cvi42, Circle 

Cardiovascular Imaging, Calgary, AB, Canada).  For each group, ΔSI[%] of the LAD territory, 
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defined as the anteroseptal and anterior segments in mid-ventricular and mid-apical slices was 

averaged, and the remote region was obtained from the inferior and inferolateral wall (Figure 

11).  The segments from the inferoseptal and the anterolateral wall were not included in the 

direct comparisons due to a known possible mixed perfusion pattern8. Segments were entirely 

excluded if more than 33% of the segment area was removed during analysis due to artifact. 

 

Statistical Analysis 

Data is expressed as mean±SD.  Continuous variables were assessed for normal 

distribution with the D’Agostino-Pearson test.  Paired t-tests were used to compare the 

changes in variables from baseline within an animal, while independent t-tests compared data 

between groups. If both analyses were needed, a two-way mixed ANOVA with multiple 

comparisons analysis was performed. Specifically, for the OS-CMR data, the ∆SI[%] response 

of the LAD region in stenotic animals was compared to the remote tissue to determine a 

regional abnormality, and to the control animals at the same time point using a mixed two-way 

model. Associations between ∆SI[%] of the LAD region of all animals and FFR, O2er, SaO2, 

and coronary flow were assessed with Pearson’s correlation.  The breath-holds were further 

visualized by plotting the ΔSI[%] over time, fitted by a least-squares non-linear regression.  

For assessing inter-observer reliability, 54 randomly selected OS-images from 10 animals 

were read by an independent second reader and assessed with a two-way mixed intraclass-

correlation test.  Tests were performed with GraphPad Prism version 6.0 for mac (GraphPad 

Software, La Jolla California USA) and SPSS version 21 (SPSS IBM, New York, USA).  

Results were considered statistically significant with a two-tailed P<0.05. 

 

1.5 Results 

Eight control animals successfully completed all maneuvers; one death occurred during 

surgery.  In the stenosis group, one death occurred during the creation of the stenosis, and a 

second prior to the adenosine infusion.  Thus this group had 10 animals for the breathing 

maneuvers, and 9 for the adenosine analysis.  Anaesthetics were adjusted per animal to 
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provide sufficient anaesthesia depth.  After surgery, a higher average dose and range of 

remifentanil was required for control animals than the stenosed animals (0.26±0.42 (0 to 1.28) 

vs. 0.07±0.17 (0 to 0.55) µg/kg/min, P=0.009), with an equal dose of propofol (19.4±4.7 (15.5 

to 33.0) vs. 16.5±4.3 (9.5 to 22.0) mg/kg/hr, P=0.198).  

 

 
Parameter Control (n=8) Stenosed (n=10) P 
O2er (%) 47±8 67±13 0.001 
EF (%) 54±11 48±10 0.262  
CO (L/min) 2.8±0.8 2.1±0.5 0.041 
HR (beats/min) 93±14 84±18 0.282 
Coronary artery stenosis     

QCA, %-Diameter 7±7 63±11 <0.001 
QCA, %-Surface Area 11±8 85±6 <0.001 
FFR N/A 0.63±0.05  

Table 5: Baseline function and angiography 
Mean±SD values of the baseline myocardial oxygen extraction ratio (O2er), ejection 
fraction (EF), cardiac output (CO), heart rate (HR) as well as the %-decrease in diameter 
and surface area of the LAD obtained from quantitative coronary angiography (QCA), and 
the fractional flow reserve value (FFR=Distal Pressure / Proximal Pressure to the stenosis).   

 

Fractional Flow Reserve, Quantitative Angiography and Coronary Flow  

All induced coronary artery stenoses were severe, based on QCA measurements (Table 

5) and haemodynamically significant, with a mean FFR of 0.63±0.05 (range 0.54-0.74). The 

control animals had insignificant LAD diameter reductions (7±7%).  

In control animals, all breathing maneuvers had a statistically significant impact on 

coronary blood flow (Figure 13).  While hyperventilation decreased coronary blood flow by 

34±23% (P<0.001), the other maneuvers had vasodilating properties. Interestingly, breath-

holds had a significantly stronger effect with LBH having a more than 6-fold increase 

(97±88%, P=0.005 vs baseline), and the HVBH having a 23-fold stronger response than 

adenosine (346±327%, P=0.001 vs baseline).  For the stenosis group, the two breathing 

maneuvers of HV (-12±6%, P=0.032 vs baseline) and HVBH (+82±110%, P=0.278 vs 

baseline) were the only methods to show an attenuated flow response on comparison to the 

control (Table 7). For the LBH the change in flow for stenosed arteries (40±60%) was not 



 

47 

different from that in control animals. Adenosine did not yield any significant changes for 

control or stenotic animals (15±16%, 13±27%, P=0.204).   

 

 

Figure 13:  Changes of coronary blood flow during breathing maneuvers.  
Mean (min to max) %-change of coronary blood flow (ml/min) induced by adenosine and 
breathing maneuvers in control (green) and stenosis (blue) animals. All maneuvers 
significantly changed flow from baseline (*P<0.05, Table 7) for control animals.  Both HV 
and HVBH demonstrated a significant decreased flow response in the stenosed animals 
(†P<0.05, circles are outliers).  

 

Ventricular Function 

The stenosis group had a lower cardiac output, while there was no significant 

difference of the left ejection fraction, (Table 5). Baseline heart rate was not significantly 

different between the groups. 

 

Blood Gases and Oxygen Extraction Ratio 

Breathing maneuvers significantly affected arterial and coronary sinus blood gas values 

(Table 7). While hyperventilation decreased pCO2 and increased pO2, an opposite effect was 

induced by the breath-holds, HVBH and LBH.  Most changes did not statistically differ 

between groups. In animals with coronary artery stenosis however, there was a 22±11% 
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greater drop in SaO2 than control (P=0.014) during HVBH and a 25±11% greater drop during 

the LBH (P=0.005).  Adenosine infusion in the stenosed group was the only maneuver that 

induced a change in O2er (-5±4%, P =0.014, Table 7). Furthermore, while baseline O2er was 

significantly higher in the stenosed than in control animals (47±8% vs. 67±13%, P <0.001) 

changes in O2er during each maneuver from these baselines did not significantly differ 

between groups.   

 

OS-CMR Image Quality 

Image quality was good and only 4.2% of segments had to be excluded from the 

analysis (2.7% and 5.7% of mid and mid-apical slice of segments, respectively).  Agreement 

between the readers was acceptable (ICC: 0.80, 95%CI: 0.66-0.89).  

 

  
Figure 14: Segmental changes of myocardial oxygenation during the HVBH.   

Subtraction images (smoothed using a 6mm Gaussian filter) demonstrate that at the 30s time-point, 
myocardial SI increased homogenously in the control animal (A) from the beginning of the breath-
hold, while a decrease was observed in the territory of the LAD stenosis (B). Mean myocardial 
response (ΔSI[%]) for each segment from all animals similarly shows that in control animals (top row, 
n=8), ΔSI[%] increases consistently for all segments, whereas for the LAD stenosis animals (bottom 
row, n=10) in the LAD regions a significant decrease is already observed at 30s, and this continues 
throughout the breath-hold. (*P<0.05 between LAD and remote territory within the group, †P<0.05, 
<0.05‡P<0.01 for the difference in LAD response between groups).   
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Myocardial Oxygenation  

Adenosine infusion had a negligible effect on myocardial oxygenation, which did not 

achieve statistical significance for either the control (LAD: 0.8±3.2%, remote: 0.4±2.0%) or 

stenosed groups (LAD: 0.3±3.5%, remote: 0.5±4.1%). On the other hand, a consistent 

significant reduction was observed in the LAD region with the HVBH in stenosed animals 

(Figure 14). _Hyperventilation alone did not induce any significant changes in the ΔSI[%], 

(control LAD: -0.2±2.6%, remote; -2.3±4.4%, and stenosed LAD: -0.7±2.6%, remote; -

2.8±6.1%). The following breath-hold (HVBH) showed that by 30s into the breath-hold after 

hyperventilation the SI of the LAD region had already dropped by 2.4±3.8% in the presence of 

a stenosis (Figure 15).  The response in this region was significantly lower (P=0.001) than in 

remote myocardium, and showed a trend towards a lower values than control animals 

(P=0.090).  In remote myocardium, SI increased by 1.4±3.6%, consistent with observations in 

both regions of control animals (LAD: +0.6±1.6%, remote: +2.6±2.3%).  The LAD signal of 

the stenosed animals continued to decrease throughout the breath-hold ending at -3.9±5.3 

below baseline, while all other regions remained above baseline (P=0.001).  

 

 

Figure 15: Mean myocardial oxygenation response curve during the HVBH.   
Signal intensity increases globally during the HVBH in control animals (A), yet the animals 
with a stenosis (B) show a significant decrease in the LAD territory (blue), while the remote 
region (green) remains above baseline with a similar characteristic of the control animals.  
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For the other breath-hold, the LBH, at 30s the LAD segments of the stenosed animals 

(-1.9±1.0%) were non-significantly lower than the control LAD region (0.5±2.1%, P=0.100), 

but this difference disappeared was not observed by the end of the maneuver (-2.9±2.9% vs -

0.7±6.0%). Furthermore in this maneuver, regional abnormalities were not observed, although 

the LBH caused SI in the remote territories to drop below baseline for both the stenosed (30s: 

-1.0±3.1%, end: -1.0±3.6) and control groups (30s: -0.3±3.2%, end: -2.8±3.2%), resulting in 

an overall decrease. 

 
Dependent Variable  
∆SI-LAD  

Independent 
Variables 

Correlation 
Coefficient P Value 

Adenosine  FFR 0.173 0.508 

 Flow 0.163 0.545 

 O2er 
 

-0.170 0.529 

HV FFR 0.056 0.826 

 Flow -0.153 0.543 

 O2er -0.107 0.120 

HVBH     
30s FFR 0.461 0.040 
55s FFR 0.478 0.043 
End FFR 0.604 0.009 

 Flow 0.465 0.040 
 O2er 0.237 0.360 
 
 

SaO2 0.388 0.171 

LBH     
30s FFR 0.655 0.003 
End FFR 0.145 0.288 

 Flow 0.045 0.864 
 O2er -0.012 0.964 
 SaO2 0.127 0.616 

Table 6: Correlation of the regional oxygenation response with measurements 
Pearson’s correlation (n=18) was performed for all breathing maneuvers with the oxygenation 
response (∆SI%) of the LAD perfused territory as the dependent variable.  All time points were 
compared to FFR, and to changes in LAD flow, oxygen extraction ratio (O2er), arterial 
saturation (SaO2). 

 

Relation to Other Measurements 

The ∆SI[%] in the LAD region of the HVBH was well correlated with the FFR at all 

time-points in the breath-hold (Table 6).  Furthermore, HVBH was the only maneuver that was 

closely related to the change in coronary blood flow.  During the LBH, only the SI response at 

the early time point, 30s, was correlated to FFR.  No significant relationships were observed 

with oxygenation responses from adenosine or hyperventilation.  
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1.6 Discussion 

Our results indicate that the oxygenation response to a combined breathing maneuver 

of hyperventilation followed by apnea is significantly altered in the presence of an acute yet 

severe coronary artery stenosis.  This breathing maneuver may therefore have potential for 

diagnostic purposes as an alternative to pharmacological vasodilators. 

Currently, the administration of pharmacologic agents such as adenosine is considered 

the standard procedure for assessing vascular function by inducing vasodilatation.  We could 

recently show that in healthy humans, the HVBH maneuver may yield greater changes in 

myocardial oxygenation than standard peripheral iv infusion of adenosine47, which is expected 

to induce near-maximal coronary vasodilatation139. In this experimental animal study, we 

found that the combination of OS-CMR with a combined breathing maneuver (HVBH) 

consistently revealed regional myocardial oxygenation abnormalities caused by significant 

coronary artery stenosis.   

The data are consistent with and extend the current understanding of coronary vascular 

physiology. An altered change of regional myocardial oxygenation due to a blunted coronary 

vascular response to pharmacological vasodilation has been reported67. Breathing maneuvers 

appear suitable to assess vascular reactivity because of their impact on blood gas levels: Apnea 

leads to hypercapnia and hypoxia, which triggers vasodilation, while hyperventilation with 

associated hypocapnia and hyperoxia induce vasoconstriction101,110. By using a combined 

breathing maneuver, mild hypocapnia can be induced by hyperventilation, allowing for a 

greater range of CO2 changes to be tolerated during a subsequent breath-hold85,86. Thus greater 

changes in coronary blood flow and subsequently oxygenation are expected to occur. The 

specific value of observing the vasoconstrictive response in combination with a subsequent 

vasodilatation in patients needs to be further assessed; yet it may increase the diagnostic yield. 

 

Impact on Coronary Blood Flow and Myocardial Oxygenation  

During adenosine infusion, blood gases and oxygen saturation did not change between 

baseline and vasodilatation; thus, changes in OS-CMR during adenosine infusion may be more 
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likely due to pure pharmacological vasodilation and the resulting increase in coronary blood 

flow, without a confounding effect of blood gases.  However, the response to adenosine was 

weaker than expected, suggesting that our anaesthetic model may attenuate adenosine effects.  

In the LAD territory, breathing maneuvers induced a much stronger response of coronary 

blood flow.  In addition, a clear distinction in the coronary flow response between control and 

stenosed animals was observed with the breathing maneuvers.  This was paralleled by marked 

regional differences of myocardial oxygenation during the HVBH maneuver between 

hypoperfused and remote myocardium.  

 

Comparison Between Breathing Maneuvers and Adenosine  

Standard adenosine protocols provide binary snapshots during baseline with 

vasodilatation.  Breathing maneuvers on the other hand also allows for data acquisition over 

time and thus may provide additional information with respect to the duration, slope and 

overall dynamic of the vascular response.  As a potential disadvantage, changes of the 

saturation of incoming blood and of the cardiac workload during the maneuvers could be 

confounders.  Of note, breathing patterns may also affect other current myocardial perfusion 

techniques, for example with varying durations of breath-holds during CMR or CT scans or 

hyperventilation in anxious patients during nuclear cardiology tests.  

Different from previous human studies47,83, hyperventilation did not induce a 

significant change in myocardial oxygenation, yet there was a significant decrease in coronary 

blood flow, and increase in blood oxygen content in both groups.  Probably related to the 

preceding hyperventilation with vasoconstriction, there was a more pronounced response 

during a subsequent breath-hold (HVBH) when compared with a long breath-hold (LBH) 

alone.  Consequently, HVBH data were also more consistent than LBH results with respect to 

identifying regional abnormalities caused by coronary artery stenosis, revealing a regionally 

blunted absolute blood flow and oxygenation response at most time points. The marked 

decrease in SI in the territory subtended by the stenotic coronary artery could be explained by 

a delayed recovery from the vasoconstrictive stimulus of hyperventilation, in combination 

with a coronary steal phenomenon caused by the competing vasodilation in remote 
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myocardium 34,140, and post-stenotic capillary recruitment31. Thus the HVBH maneuver may 

exploit two mechanisms associated with an abnormal vascular response in a hypoperfused 

coronary territory. In a previous human study of healthy participants, the HVBH had a much 

stronger effect on the oxygenation response than the LBH as well47. 

Breathing maneuvers also have a significant impact on blood oxygenation, which is a 

key determinant in the OS-CMR signal. It is likely that during the HVBH maneuver, blood 

oxygenation is higher during the subsequent breath-hold because of the preceding 

hyperventilation, which would explain the early SI increase in the breath-hold observed in 

healthy animals.  Only with continued apnea, net blood oxygenation and subsequently tissue 

oxygenation drops84. In the presence of coronary artery stenosis however, the combination of 

hypoxemia and hypercapnia may actually induce or worsen myocardial ischemia in the 

jeopardized territory. In fact, we observed that in the presence of severe coronary artery 

stenosis, the lack of a proper compensatory increase in myocardial blood flow allows an 

immediate decrease in tissue oxygenation in the tissue subtended to the stenosis, in contrast to 

a SI increase in both, remote tissue and in control animals (Figure 15).  This pattern was 

correlated with both, the functional severity of the stenosis (FFR) and with the observed 

change in coronary blood flow.  

For control animals, the relatively small and insignificant difference between the LAD 

and remote territories may also reflect physiologic variations between coronary territories. 

Other studies have demonstrated that in healthy subjects, the anterior wall often had a more 

pronounced perfusion or oxygenation response than other territories8,39,141.  

 

Limitations and Future Directions 

In the present animal study we observed a weaker response to adenosine and 

hyperventilation, including a smaller change of SI and heart rate in comparison with previous 

reports in humans.  This may be caused by the anaesthesia, with its known cardiodepressant 

effects and suppression of vegetative reflexes. Recently, it has been suggested that 

remifentanil can crosstalk with adenosine receptors142. This interference could theoretically 

attenuate the vascular response to adenosine.  
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In this study, the breath-holds were maintained while more extreme blood gases levels 

materialized, exceeding levels tolerated by conscious human subjects143. Healthy human 

participants were able to comfortably undergo similar length of breathing maneuvers yet, 

without the extreme blood gas changes observed in our animal study83. Cardiac patients may 

not tolerate long breath-hold times, yet with both volunteers and the current animal model, 

significant results were observed within the first 30s of the breathing maneuvers, allowing for 

clinically feasible protocols47.  In fact, we have already successfully applied the HVBH 

maneuver in a pilot study in patients with sleep apnea, who all tolerated the procedure well, 

with the majority maintaining a breath-hold after hyperventilation of more than 30s88. Our 

animals did not have chronic coronary atherosclerosis, but an experimentally induced acute 

regional stenosis with otherwise healthy microvasculature. Differences in compensatory 

mechanisms may alter the vascular response and it remains to be studied whether the exact 

values we obtained can be directly translated to humans. Additionally, coronary flow 

measurements do not precisely measure coronary flow reserves as tissue perfusion is regulated 

primarily by microvascular resistance, and not by the large conduit vessels102. 

Future studies will also help establish normal values for the myocardial response to 

standardized breathing maneuvers. This would also allow for detecting an abnormal response 

in patients with multi-vessel disease and “balanced” ischemia as well as assessing the global 

coronary vascular response, equivalent to the coronary flow reserve, which is an important 

prognostic marker144.  

1.7 Conclusion 

Breathing maneuvers have a profound effect on coronary blood flow and myocardial 

oxygenation.  Specifically, hyperventilation with subsequent breath-holding leads to a 

significant vasoactive response, which is markedly compromised in myocardium subtended by 

a significantly stenotic coronary artery.  The proposed combination of oxygenation-sensitive 

CMR with breathing maneuvers appears to be useful for diagnostic testing in patients with 

suspected coronary artery stenosis, especially when contrast agents or stress protocols are not 

suitable.  Further studies are now warranted to investigate its clinical utility in patients with 

suspected myocardial ischemia.   
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1.8  Supplemental Tables 

 

Parameter Control Stenosed P 
 %-change  Flow     

HV -34 ± 23* -12 ± 6* <0.001 
HVBH 346 ± 327* 82 ±110 0.004 

LBH 97 ± 88* 40 ± 60 0.066 
Adenosine 15 ± 16* 13 ± 27 0.950 

ΔpaCO2  (mmHg)    
HV -15 ± 5* -15 ± 3* 0.887 

HVBH 27± 9* 20 ± 8* 0.046 
LBH 15 ± 5* 12 ± 5* 0.250 

Adenosine 1 ± 3 1 ± 1 0.893 
ΔpcsCO2 (mmHg)    

HV -3 ± 2* -8 ± 5* <0.001 
HVBH 6 ± 6* 10 ± 3* 0.094 

LBH 10 ± 7* 9 ± 5* 0.842 
Adenosine 1 ± 5 3 ± 5 0.478 

ΔpaO2 (mmHg)    
HV 73 ± 71* 70 ± 30* 0.975 

HVBH -117 ± 48* -135 ± 30* 0.315 
LBH -73 ± 9* -80 ± 12* 0.104 

Adenosine -1 ± 25 -1± 7 0.999 
ΔpcsO2 (mmHg)    

HV -7 ± 17 1 ± 2 0.072 
HVBH -12 ± 7* -13 ± 7* 0.961 

LBH -13 ± 7* -15 ± 7* 0.802 
Adenosine 2 ± 2 2 ± 3 0.999 

ΔSaO2 (%)    
HV 0 ± 0 0 ± 0 - 

HVBH -30 ± 23* -52 ± 24* 0.014 
LBH -36 ± 30* -61 ± 15* 0.005 

Adenosine 0 ± 1 0 ± 0 0.406 
ΔO2er  (%)†    

HV -2 ± 6 -4 ± 7  0.639 
HVBH 20 ± 20* 2 ± 28 0.091 

LBH 16 ± 24  10 ± 16  0.678 
Adenosine -5± 5* -1 ± 8 0.138 

ΔHR (bpm)    
HV 3 ± 11 0 ± 8 0.798 

HVBH 3 ± 14 2± 12 0.996 
LBH 8 ± 20 -1 ± 14 0.208 

Adenosine -4 ± 4* -4 ± 5* 0.990 
ΔRPP (mmHg*bpm)    

HV -2311±2141* -712±2006 0.055 
HVBH -560±1285 -1459±5580 0.106 

LBH -4617±3292* -2961±2835* 0.216 
Adenosine -281±762 -233±1193 0.997 

Table 7: Invasive Measurements 
Mean±SD change in values during the breathing maneuvers and adenosine (* denotes significance 
(p<0.05) from baseline value).  † O2er baseline values were systematically higher in the stenosed 
animals. Arterial partial pressure of carbon dioxide (paCO2); coronary sinus partial pressure of carbon 
dioxide (pcsCO2); arterial partial pressure of oxygen (paO2); coronary sinus partial pressure of oxygen 
(pcsO2); arterial saturation (SaO2); oxygen extraction ratio (O2er); heart rate (HR); and rate pressure 
product (RPP).   
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2 Chapter 2 – The Coronary Blood Flow Response to 

Breath-Holds is Blunted by Hyperoxia 

 

 

Foreword 

The majority of our studies focus on maximal breath-holds. Yet, for a patient 

population who are unlikely to make long breath-holds, it was important to assess the impact 

of short feasible breath-holds.  

In this chapter, the response of coronary artery blood flow to shorter breath-hold 

stimuli are assessed in anaesthetized swine. In particular, this study focuses on short breath-

holds of less than 30s, which may not have a very strong impact on CO2 and O2. Furthermore, 

the stimuli are assessed at different arterial oxygen and carbon dioxide baselines. Proof that 

even short breath-holds have a significantly impact coronary flow, supports the proposal to use 

breathing maneuvers in clinical practice. This study does not involve MRI, but rather aims to 

assess how short breath-holds can affect the coronary artery blood flow response, which is 

often a target of cardiovascular imaging exams. Further, the altered responsiveness during 

certain baseline blood gas levels can be of particular importance as a fair portion of patients 

undergoing exams can have chronic hypoxemia, or be given supplemental oxygen resulting in 

blood hyperoxia.  

Data from this study was presented at the 2015 Canadian Cardiovascular Congress in 

Toronto, Canada.  
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2.1 Abstract 

 

Background: Pharmacologic vasodilators and more recently vasoactive breathing 

maneuvers are utilized in diagnostic testing to assess coronary vascular reactivity. Carbon 

dioxide and oxygen however, are strong modulators of coronary blood flow and could 

confound the vascular response, and results of such tests may be misleading. Thus the impact 

of these arterial blood gases on the coronary flow response was assessed in an invasive animal 

model. 

Methods: In 17 anaesthetized and intubated swine, 11 animals had the left descending 

coronary artery (LAD) partially occluded, while 6 animals serves as control. Apnea times of 3 

to 30s were induced, and coronary blood flow was measured with an invasive ultrasound 

probe surgically placed on the LAD. These breath-hold stimuli were induced at 9 different 

arterial blood gas baselines, with a combination of mild hypoxemia (70mmHg), normoxemia 

(100mmHg), and hyperoxia (300mmHg) with hypocapnia (30mmHg), normocapnia 

(40mmHg), and hypercapnia (50 mmHg).  

Results: Breath-holds consistently induced an increase of coronary blood flow at 

normal blood gases, which was linearly correlated to the duration of the breath-hold for both 

control and, in an overall reduced manner, stenosed animals. Whereas mild hypoxemia 

augmented the blood flow response, a minimal response only was observed during hyperoxia 

in all animals. A reduced vasodilatory capacity caused by coronary artery stenosis could be 

differentiated from normal blood flow only at normal blood gas levels and hypoxemic 

hypocapnia, but not during hyperoxia.  

Conclusion: Arterial hyperoxia blunts coronary vascular reactivity and may reduce the 

sensitivity of tests involving vasodilatory stimuli, specifically a breath-hold stimulus.   

 

Key Words: Experimental Model ▪ Coronary Flow Response ▪ Breath-hold ▪ Hyperoxia ▪ 
Hypoxemia 
 
  



 

61 

2.2 Introduction 

In developed countries, testing for coronary artery disease is one of the most frequently 

performed diagnostic procedures. A large portion of such testing involves pharmacologic 

vasodilation using substrates such as intravenous adenosine, dipyridamole, regadenoson, and, 

more recently, by non-pharmacological means of hypercapnic gas mixtures and breath-

holds38,47,92,100.  The vasodilatory capacity is considered a key measure for the detection of 

significant coronary stenosis, overall microvascular function, or for endothelial dysfunction 

when using specific agents such as acetylcholine145,146. However, these tests assume that the 

stimulus produces a maximal hyperaemic response, with no attenuating factors other than the 

vessel dysfunction. It is however well known that arterial blood gas levels have a profound 

effect on coronary blood flow.  Hypercapnia and hypoxia increase myocardial blood flow, 

while hypocapnia and hyperoxia decrease it91,94,101,107,109,147. Hypoxemia can be present in 

cardiac diseases, while other patients may have arterial hyperoxia because of the common use 

of supplemental oxygen in various clinical scenarios. Interestingly however, data are scarce on 

how arterial blood gas levels may confound the coronary vascular response to vasoactive 

stimuli92. Specifically this study investigates the use of short breath-holds as non-

pharmacological stimuli. Published reports indicate that in neuro and cardiac imaging, breath-

holds as short as 10s lead to a detectible hyperemic response47,71,74,82.  

In this experimental study, we assessed the impact of blood gas levels on the 

vasodilatory response induced by breath-holds. 

 
 

2.3 Methods 

Animal Preparation 

Seventeen healthy swine (32±2kg, Yorkshire-Landrace) were included in the study. 

The surgical protocol and other data from these animals were published elsewhere136. All 

animals were intubated after pre-medication with Telazol (200mg tiletamine, 200mg 

zolazepam. i.m.) and atropine (0.8mg).  Propofol was used for induction (2-4mg/kg, i.v.) and 

maintenance (4-36 mg/kg/hr, i.v.) of anaesthesia, while analgesia was provided by 
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remifentanil (0-3.5µg/kg/min, i.v.). For preventing arrhythmia, 75mg of amiodarone i.v. was 

administered and if necessary serum magnesium and potassium levels were corrected137. 

Access for arterial blood gas sampling was placed in the femoral artery. For analysis of 

coronary blood flow, an ultrasound flow probe was surgically implanted on the proximal left 

anterior descending (LAD) coronary artery (Transonic Systems, Ithica, NY, USA), requiring a 

left-sided thoracotomy (Figure 16). 

Six animals served as controls, while in eleven animals, a hemodynamically relevant 

stenosis was induced using a perivascular hydraulic occluder (In Vivo Metric, CA, USA). The 

severity of the stenosis was visually verified with coronary angiography but also by an FFR 

catheter in place (St. Jude Medical, MN, USA) during inflation of the occluder. An FFR of 

less than 0.75 was considered reflective of clinically significant coronary artery stenosis. 

 

 

Figure 16: Surgical methods 
An explanted pig heart shows the surgical placement of the perivascular occluder 
(A.) and the blood flow probe (B) on the left anterior descending coronary artery 
(LAD), as verified with fluoroscopy imaging. 

 

Experimental Protocol 

Arterial blood gas levels were targeted to nine levels for the combination of paO2 and 

paCO2: paO2 of 70, 100 or >300mmHg (hypoxemia, normoxemia, hyperoxia) and a paCO2 of 

30, 40 or 50 mmHg (hypocapnia, normocapnia, hypercapnia). The control level of 

normoxemic normocapnia (paO2=100, paCO2=40mmHg) was targeted twice, once at the 

beginning and with the second performed in random order with the other levels to assess if 
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normal vasomotion changed during the duration of the protocol. After the arterial blood gas 

levels were stabilized, up to 6 breath-hold stimuli were induced at each baseline using an end-

expiration pause in ventilation. The breath-holds ranged from 3-30s in duration. Coronary 

flow was measured in ml/min, both before and after each stimulus and expressed as a percent-

change (Δ-%). This blood flow response was assessed for its correlation with the breath-hold 

duration, for differences between gas levels and for the impact of the presence of coronary 

artery stenosis.  

 

Statistical Analysis 

Data are expressed as mean±SD. Univariate analysis was done to investigate the linear 

response the change in coronary flow, in response to duration of the breath-hold. A within 

subjects Pearson’s correlation was performed comparing the flow response (%) to the breath-

hold durations, accounting for both repeated measurements within each animal, and different 

animal intercepts to assess if the coronary flow response changed with the breath-hold 

duration (Table 8). To examine the differences between groups and blood gas levels, a two-

way mixed effect model was performed with an unstructured covariance and restricted 

maximum likelihood estimation. The model used the duration of the breath-hold as the 

covariate, and allowed for random intercepts of each animal. The magnitude of the flow 

response that occurred at the mean breath-hold time was assessed at each blood gas level 

between the control and stenosed groups. This was also done to compare each blood gas level 

to the baseline (100/40), using the Bonferroni method accounting for multiple comparisons. 

Because a range of breath-hold durations were used, an adjusted mean is reported for what the 

flow response would be at 13s for each level, which was the mean breath-hold time (Table 9).  

Tests were performed with GraphPad Prism version 6.0 for mac (GraphPad Software, 

La Jolla California USA) and SPSS version 23 (SPSS IBM, New York, USA).  Results were 

considered statistically significant with a two-tailed P<0.05. 

This study was conducted in accordance with the Guide to the Care and Use of 

Experimental Animals by the Canadian Council on Animal Care and approved by the local 

Animal Care and Use Board.   



 

64 

2.4 Results 

In six control animals, 279 breath-holds were recorded, as one control animal died 

during the experiment. In the stenosed group, one animal died during the coronary 

intervention, resulting in ten stenosed animals and 432 breath-holds. Mean FFR was 0.63±0.05 

(range 0.54-0.74). Quantitative coronary angiography showed a mean diameter reduction of 

63±11% in these animals.  

 

Breath-hold Stimulus at Normoxemia Blood Gases 

The normal gas level (100/40), was targeted twice during the experiment to check for 

consistency, and there was no difference in the coronary flow response recordings between the 

two sets of measurements (p=0.614), thus these were combined for further analysis.  As shown 

in Figure 17, shorter breath-holds were able to significantly and transiently increase the 

coronary blood flow. In both groups, controls (r=0.533, p=0.006) and stenosed animals 

(r=0.566, p<0.001), the flow response was correlated with the breath-hold duration. The mixed 

model showed that, accounting for the breath-hold duration, the flow response was 

significantly lower in the stenosed group (p=0.002). Similar to the normal blood gas level, all 

the other normoxic levels with different paCO2 responded linearly to the stimuli as well (Table 

8, Figure 17). In both groups hypocapnia augmented the flow response, while hypercapnia had 

an attenuating effect in control animals only. 

 

Figure 17: Coronary blood flow read-out 
The coronary flow read-out shows that in a healthy test animal at normal blood 
gases (paO2=100mmHg, paCO2=40mmHg), end-expiratory breath-holds of 8-
10s (black markers) nearly doubled the coronary blood flow before returning 
back to baseline (1 measurement/s, small grid; 10s, large grid; 60s).  
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Effect of Hypoxemia 

During mild hypoxemia (paO2=70mmHg), in both groups all levels augmented the 

flow response from the normal gas level (p<0.05), with the exception of hypoxemic 

hypercapnia (70/50) in control animals. Interestingly, only stenosed animals showed a 

dependence on breath-hold time. In control animals there was still a significant flow increase, 

but this data was more scattered and not linearly related to the breath-hold duration. 

 

 

Figure 18: Coronary blood flow response to breath-hold stimuli 
A Pearson’s within subject correlation was performed, accounting for multiple measurements obtained 
per animal (table 1), and results reported on the graph (p-value) from a mixed model, showed that only 
at 100/40 and 70/30, could a significant difference (p<0.05) be observed between the groups, control 
animals (green) and stenosed animals (blue).  
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Effect of Hyperoxia 

Hyperoxia blunted any response to the breath-hold duration by at least 20%, 

independent of the paCO2 level (Table 9).  No relationship was observed for any of the 

hyperoxic levels and no difference of coronary blood flow between healthy and stenosed 

animals.  

 Healthy Stenosed 
FLOW-% n r p n r p 

100/30 29 0.533 0.006 42 0.631 <0.001 
100/40        52 0.522 <0.001 59 0.566 <0.001 
100/50 37 0.656 <0.001 52 0.616 <0.001 
       
70/30 22 0.432 0.073 53 0.721 <0.001 
70/40 20 0.164 0.529 51 0.692 <0.001 
70/50 26 0.117 0.604 57 0.358 0.013 
       
300/30 19 0.706 0.003 45 0.230 0.171 
300/40 37 0.168 0.358 39 0.239 0.198 
300/50 35 0.094 0.620 34 0.017 0.938 
Table 8: Coronary flow response (%) to breath-hold duration 

Pearson’s within subject correlation was performed at each level (mmHg, 
paO2/paCO2) accounting for multiple measurements obtained per animal. For both 
groups, at normoxemia the coronary flow increases with the breath-hold duration, 
whereas there is no response during hyperoxia. Only the stenosed animals have a 
linear relationship at hypoxemia.  

 

 
 Healthy Stenosed 
FLOW-% n Adjusted 

difference  
p n Adjusted 

difference 
p 

100/30 29 14±4 0.009 42 22±4 <0.001 
100/50 37 -11.6±4 0.003 52 -6±4 1.000 
       
70/30 22 20±7 0.019 53 35±4 <0.001 
70/40 20 38±5 <0.001 51 36±4 <0.001 
70/50 26 6±5 1.000 57 18±4 <0.001 
       
300/30 19 -33±5 <0.001 45 -20±4 <0.001 
300/40 37 -38±4 <0.001 39 -25±4 <0.001 
300/50 35 -39 ±4 <0.001 34 -24±4 <0.001 
Table 9: Within group comparison of arterial blood gas levels 

A mixed effects model was used at each level (mmHg, paO2/paCO2) to determine if 
the magnitude in the coronary flow response (%) was significantly different from 
the normal blood gas value within the control or stenosis group. The adjusted 
difference is reported as the change from the baseline gas level, using the flow 
response that occurred at a time of 13s (the mean breath-hold duration). 

 

Comparison between Control and Stenosis 

While the above comparisons showed that within the group, arterial blood gases could 

significantly affect the coronary response from the normal gas level, it was also assessed 
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whether the coronary flow response could still be used to distinguish a healthy versus a 

significantly stenosed coronary artery in an environment of altered arterial blood gas levels. 

Only at normal blood gases (100/40), and hypoxemic hypocapnia (70/30), could an attenuated 

flow response be observed for the stenosed animals in comparison to controls, while there was 

a non-significant trend for hypoxic normocapnia (70/40, p=0.077). In all other comparisons, 

the arterial blood gas levels impacted the coronary flow response so the stenosed animals 

could not be distinguished from the control.  

 

2.5 Discussion 

The results demonstrate that in normal arterial blood gas conditions, a breath-hold 

stimulus is effective in transiently increasing coronary blood flow, and the magnitude of the 

response is proportionate to the duration of the breath-hold. In other arterial oxygen states 

however, this response is altered. Arterial hypoxemia augments the coronary flow response, 

even in the presence of a significant coronary stenosis, while hyperoxia attenuates the 

coronary vascular response, independent of the presence or absence of severe coronary artery 

stenosis.  

The attenuation during hyperoxia to stimuli could also have implications for coronary 

stress testing in which supplemental oxygen is administered. For example in clinical FFR 

exams, especially in the setting of an acute myocardial infarction, the use of supplemental 

oxygen may impair the response to the pharmacological stimulus and lead to underestimation 

of the FFR. This can be in addition to any alterations that hyperoxia may have on the baseline 

image136. However, stimuli induced by other procedures or pharmacological agents may affect 

the coronary flow response differently than the breath-hold stimulus used in this study, thus 

our results may not be valid for these techniques. Other publications have also observed 

confounding effects of hyperoxia on other stimuli. A Doppler assessment of coronary flow in 

5 CAD patients, showed that hyperoxia (paO2>250mmHg) did not affect the coronary 

response to adenosine, yet the dilator response of acetylcholine was blunted 94. Additionally, 

because hyperoxia itself already reduces coronary blood flow94,136,148, blocking the 
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vasodilatory ability can further compromise the tissue oxygenation if a higher oxygen demand 

is required.  

Opposite to the effects of hyperoxia, we observed that a strong response to coronary 

stimuli occurs when arterial blood gases are at a mild stage of hypoxemia (paO2=70mmHg), in 

both control animals and those with a significant stenosis. This can represent the response 

mechanisms of the heart to ensure an adequate oxygen supply, by further increasing blood 

flow during lower oxygen saturation. In a high-altitude-simulation PET study, Wyss et al 

found that when healthy participants breathed in hypoxic gas mixtures, hypoxemia increased 

the myocardial blood response to exercise-induced stimulation by 38%. While in CAD 

patients, hypoxemia increased baseline coronary flow, but was associated with a reduced 

blood supply during exercise, likely due to an exhausted vasodilatory reserve or possibly a 

coronary steal phenomenon. In both groups hypoxemia did not significantly affect the 

response to adenosine92. Yet, in a different study looking at vascular systems of sheep 

foetuses, hypoxemia augmented the adenosine response when compared to normoxaemia149. 

Under these conditions, a stenotic vessel could give a flow response that would be 

quantitatively considered healthy under normal situations, possibly masking the vessel 

dysfunction. It should also be noted, that our current study focused on mild arterial 

hypoxemia, and not tissue hypoxia, which could have a different impact on the coronary flow 

response. 

While the arterial oxygenation status had a significant impact on the coronary flow 

response, minimal effects were observed with the difference in paCO2 levels. Changing CO2 is 

known to have a strong impact to change the coronary blood flow itself101, but in this study, 

stable states of hypocapnia and hypercapnia did not confound the response to the breath-hold 

stimuli as strongly as the oxygen levels. At hypercapnia in healthy animals, there is still a 

linear relationship to the breath-hold stimulus, yet the coronary flow did not increase to the 

same extent as normocapnia and hypocapnia. This may suggest that at this point, there 

vasodilatory capacity may have been reached due to the baseline vasodilating effects of 

hypercapnic itself, whereas the lower baseline allows for a larger apparent vasodilatory 

capacity during hypocapnia.  
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Our study also sheds light on the use of short breath-holds and their interaction with 

blood gases and the coronary vascular response. The vasodilatory effects of the breath-hold 

are believed to be mediated by multiple mechanisms, which focus on a combined function of 

the respiratory, cardiac parasympathetic and vasomotor centre150–152. While longer breath-

holds have the potential to alter the partial pressure of O2 and CO2 in the blood, we applied 

short breath-holds, which typically are not long enough to significantly alter blood gas 

composition. Sasse et al demonstrated in conscious humans, blood gases, O2 and CO2, would 

not change for about 10s after an end-expiration breath-hold84. Yet we observed that at normal 

blood gases, a breath-hold shorter than 10s can still increase the coronary blood flow by more 

than 30%. Similarly, a brain functional magnetic resonance study observed hyperemic effects 

with a short 10s breath-hold as well74. While the observed effect may in part be related to the 

fact that we used end-expiratory breath-holds, which appear to cause a more rapid change in 

pCO2-mediated cerebral hyperemia than an inspiratory breath-hold71, it seems more likely that 

early in a breath-hold, activation of other responses that manipulate the coronary flow, occur 

before arterial blood gases change. Suggested mechanisms have been the activation of 

pulmonary stretch receptors and redirection of blood flow to the heart by sympathetically 

activated peripheral vasoconstriction123–125.  

 

Rationale for Selected Arterial Blood Gas Levels 

Arterial blood oxygenation was targeted based on oxygen tension (paO2) and not 

hemoglobin saturation (SaO2), and all three levels of blood oxygen were chosen based on what 

could realistically be seen in a clinical setting. While a paO2 of 70mmHg was considered 

mildly hypoxemic, this value is quite common in both cardiovascular and elderly populations. 

Additionally, this oxygen tension often results in an arterial saturation greater than 90%. In 

fact for relatively healthy persons over the age of 70 years without any pulmonary or 

respiratory diseases, the mean paO2 for men was reported as 77mmHg, and 73mmHg for 

females, with the lower acceptable limits as low as 60mmHg153. This can be explained by the 

impact of age on oxygen uptake into the pulmonary capillaries from the alveoli154. While age 

does not have a significant impact on alveolar pO2 (pAO2), it does strongly affect the 

ventilation-perfusion mismatch and thus has an impact on the fraction of oxygen that will be 
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taken up from ventilated and perfused alveoli. This can be shown by the calculations for the 

approximate pAO2 (equation 1) in which age is not a factor and the expected alveolo-arterial 

O2 (A-a) gradient (equation 2), which demonstrates that elderly persons will have a bigger 

gradient.  

 

(1) !"#$%"&' !"! =  !"!! × ! − !!!! −  !"#!!!"  
 

(2)  A-a gradient   =  !"#! + 4 

 
Where FiO2 is the inspired oxygen concentration (21%), P the atmospheric 
pressure (760mmHg), PH2O the pressure of water vapour (47mmHg), paCO2 the 
arterial partial pressure of CO2 (~40mmHg) and Rq the respiratory quotient 
(0.8) depending on physical activity and nourishment154.  

 

The expected paO2 using the formula to calculate the A-a-gradient from a pAO2 of 

100mg would be 88.5mmHg in a 30 year-old, whereas the paO2 is expected to be 

approximately 76mmHg for an 80 year-old. In both settings, the saturation will be higher than 

90%.  Thus, we label a paO2 of 70mmHg as mildly hypoxemic. This mean decreases further 

with smoking or cardiovascular disease or any condition that will alter the 

ventilation/perfusion ratio. Similarly, hyperoxia can be achieved quite easily and just 7 

minutes of breathing oxygen through a facemask with a reservoir bag could increase 

paO2>400mmHg in healthy participants and CAD patients155. This can be further aggravated 

with a positive pressure ventilation and/or the addition of a positive end-expiratory pressure. 

Furthermore, Kilgannon et al. found that in more than 6000 patients arriving at the ICU after 

cardiac arrest, 18% had hyperoxic blood (paO2>300 mmHg)95. 

Similar to the oxygen choices, the targeted CO2 levels are considered abnormal, but are 

present in clinical situations, while a normal paCO2 would be about 38-40mmHg153. For 

example, a recent study found that in acute heart failure patients 34% were hypercapnic 

(paCO2>45mmHg), while another 33% (paCO2<35mmHg) were hypocapnic at the time of 

admission156. Additionally, as described in the intro, CO2 can reach these levels also by 

alterations in breathing patterns84,157. In summary, all targeted levels in this chapter do have 

clinical relevance and patients with these abnormal blood gases could be referred for a 

cardiovascular exam.  
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Limitations and Future Directions 

As we only assess stimuli induced by breath-holds, our results may not address any 

confounding effects associated with pharmaceutical stimuli. Additionally, an anesthetised 

animal model is not fully translational to what may be seen in a clinical setting. Anesthetics 

can be a cardio-depressant and attenuate the coronary vascular response. The model is limited 

in that we assess an essentially healthy coronary artery with a single, acute blockage, not 

accounting for the many mechanisms occurring with the development of coronary artery 

disease, including dysfunctions of the endothelial and smooth muscle cells. Additionally, 

longer breath-holds were not obtained at hypoxemic levels, yet we observed a strong response 

still with the breath-holds of under 20s. Our sample size and endpoints did not allow for 

assessing further associations of the coronary vascular response with the coronary artery 

stenosis, so observed trends such as encountered for example at hypoxic normocapnia (70/40) 

and normoxemic hypercapnia (100/50), may reflect true correlations. The breath-holds 

assessed in this chapter are more similar to the long breath-hold (LBH) maneuver assessed in 

chapters 1 and 4 and not the HVBH, as breath-holds were not performed after 

hyperventilation. Although ventilation rate would have been reduced to reach hypercapnic 

levels, and increased to target hypocapnia, these breathing rates were not the same as what is 

required for an efficient hyperventilation. Thus, following the trends of chapter 1, short breath-

holds after hyperventilation may have a different response than seen in these results. 

 

2.6 Conclusion 

Short breath-holds at physiologic blood gas conditions induce an observable coronary 

flow response that can differentiate a healthy coronary territory from one with significant 

coronary stenosis. However, baseline arterial blood gas levels have a significant effect on this 

response. Arterial hypoxemia augments the response, while hyperoxia attenuates it, both 

effects reducing the ability to detect a compromised response associated with coronary 

stenosis. This study highlights that arterial oxygen content may be a significant confounder 

cardiac exams which rely on assessing the coronary perfusion reserve as a measure of vascular 

function, which could lead to incorrect assessments and misdiagnosis.   
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3 Chapter 3 – Hyperoxia exacerbates Myocardial 

ischemia in the Presence of acute Coronary Artery 

Stenosis in Swine 

 

Foreword 

In this chapter, we apply OS- CMR to measure the change in myocardial oxygenation 

when swine in an acute coronary artery stenosis model are ventilated with 100% oxygen. 

While many studies recently are reporting poorer morbidity and mortality with the 

administration of oxygen to human coronary heart disease patients96, this is one of the first 

studies to assess the impact on myocardial oxygenation and cardiac function. This manuscript 

is also the first one published from this animal study. 

 

My role in the study 

This article is a parallel project of my animal study, of which I am a second author of 

the manuscript. My role included organizing the project, conducting data and statistical 

analysis and helping with the preparation of the manuscript. I also personally presented this 

data at the congress for the European Association of Cardiothoracic Anaesthesiologists 

(EACTA, 2014, Florence Italy).  

Furthermore, data from this chapter was also presented at the European Society of 

Cardiology (ESC 2014, Barcelona, Spain) and at the Swiss Society of Anaesthesiology and 

Resuscitation (SGAR 2015, Schweizerische Gesellschaft für Anästhesiologie und 

Reanimation, St. Gallen, Switzerland) by Dr. Guensch.  
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3.1 Abstract 

Background: Current guidelines limit the use of high oxygen tension after return of 

spontaneous circulation following cardiac arrest, focusing on neurological outcome and 

mortality. Little is known about the impact of hyperoxia on the ischemic heart. Oxygen is 

frequently administered and is generally expected to be beneficial. This study seeks to assess 

the effects of hyperoxia on myocardia oxygenation in the presence of severe coronary artery 

stenosis in swine.   

Methods and Results: In 22 healthy pigs, we surgically attached an MRI compatible 

flow probe to the left descending coronary artery (LAD). In 11 pigs a hydraulic occluder was 

inflated distal to the flow probe. After increasing paO2 to more than 300mmHg, LAD flow 

decreased in all animals. In 8 stenosed animals with a mean fractional flow reserve of 

0.64±0.02, hyperoxia resulted in a significant decrease of myocardial signal intensity (SI) in 

oxygenation-sensitive CMR images of the mid-apical segments of the LAD territory. This was 

not seen in remote myocardium or in the other 8 healthy animals. The decreased SI was 

accompanied by a decrease in circumferential strain in the same segments. Further, ejection 

fraction, cardiac output, and oxygen extraction ratio declined in these animals. Changing 

paCO2 levels did not have a significant effect on any of the parameters, however hypercapnia 

seemed to non-significantly attenuate the hyperoxia induced changes. 

Conclusion: Ventilation-induced hyperoxia may decrease myocardial oxygenation and 

lead to ischemia in myocardium subject to severe coronary artery stenosis. 

 
Keywords: Oxygen ▪ Ischemia ▪ Imaging   
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3.2 Introduction 

Exogenous oxygen administration, resulting in high arterial oxygen tension, is 

frequently applied in medical care158. Importantly, oxygen and carbon dioxide both have 

vasoactive properties. While increased CO2 levels have vasodilative properties in cerebral and 

coronary arteries82,93, high oxygen tension may have vasoconstricting effects on coronary 

arteries94. If such vasoconstriction would result in a net reduction of blood flow in the territory 

of a severely stenotic coronary artery, tissue oxygenation may drop. Little however is known 

on whether hyperoxia can exacerbate or induce myocardial ischemia in myocardium exposed 

to severe coronary artery stenosis. The current ACC/AHA resuscitation guidelines limit the 

use of excessively high inspiratory oxygen concentrations in post-cardiac arrest care (Class I, 

Level of Effort (LOE) C) after return of spontaneous circulation (ROSC)159. Yet, these 

recommendations are mainly based on animal studies focusing on neurologic pathophysiology 

and outcome160,161. Similar studies have not been published related to myocardial ischemia; 

yet large retrospective multicenter trials have suggested that hyperoxia may increase patient 

mortality after cardiac arrest with ROSC95.  

Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) imaging detects 

myocardial oxygenation changes by exploiting the paramagnetic properties of 

deoxyhaemoglobin. Reduced haemoglobin saturation, reduced myocardial blood flow, and 

increased oxygen extraction of the myocardium, result in a higher deoxyhaemoglobin fraction 

in the tissue, which will reduce signal intensity in oxygenation-sensitive sequences162. Thus, 

OS-CMR is a method that can detect myocardial ischemia on a tissue level in-vivo. It has been 

shown that it can detect changes in myocardial oxygenation triggered by systemic changes of 

blood gases i.e. oxygen and carbon dioxide83,112. 

The purpose of this study was to investigate the effect of hyperoxia on myocardial 

oxygenation and myocardial function parameters in animals with a significant stenosis of the 

left descending coronary artery (LAD) in comparison to control animals. We additionally 

investigated the effects of paCO2 changes on myocardial oxygenation during hyperoxia in this 

model. 
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Study Implications 

What is Known: 

• Patients with hyperoxia after ROSC have a higher mortality. 

• Current resuscitation recommendations after ROSC focus on mortality and 

neurologic outcome. 

• Hyperoxia leads to coronary vasoconstriction. 

 

What the Study Adds: 

• Hyperoxia does not compensate for coronary vasoconstriction in swine with 

acute significant coronary artery stenosis. 

• Hyperoxia results in a decrease in myocardial oxygenation and regional 

function in acute stenosis in swine. 

 

3.3 Methods 

Animal Preparation 

Twenty-two healthy swine pigs (33±1 kg, Yorkshire-Landrace) were used in this study. 

All animals received 82.5mg Aspirin PO the evening prior to the experiments. The pigs were 

anesthetized with 2-4mg/kg Propofol IV after premedication with 4ml Telazol IM (200mg 

Tiletamine, 200mg Zolazepam). Anesthesia was maintained with Propofol (4-36 mg/kg/h IV) 

and Remifentanil (0-3.5µg/kg/min IV) as required for sufficient anesthesia depth. 

Percutaneous cannulations of the femoral artery and vein were performed for drug and fluid 

administration, as well for obtaining blood gases and invasive blood pressure measurements. 

To prevent arrhythmia, serum levels of potassium (4.4-6.5 mM) and magnesium (0.9-1.4 mM) 

were corrected to normal values for swine if required, and 75mg of amiodarone were 

administered over 30min. An 11F sheath was placed in the right jugular vein with an 

indwelling catheter, which was inserted into the coronary sinus under x-ray guidance for blood 

gas analysis. A left-sided thoracotomy was performed and after pericardiotomy a perivascular 

MR-compatible flow probe (Transonic Systems, Ithica, NY, USA) was placed around the 

proximal left anterior descending artery (LAD).  
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FFR-guided Stenosis of the LAD 

All animals received a bolus of 5,000 U heparin IV. Eleven animals served as controls, 

while in 11 animals a perivascular hydraulic occluder (In Vivo Metric, CA, USA) was 

mounted around the LAD distal to the flow probe. Hyperemia was induced with 140µg/kg/min 

adenosine IV and Fractional Flow Reserve (FFR) was measured with a pressure guide wire 

(St. Jude Medical, MN, USA). The occluder was then inflated to yield an FFR value <0.75 

during maximal hyperemia. An FFR of 1.0 was assigned to the control animals. In all animals 

a quantitative coronary angiography (QCA) was performed after the preparation in a single 

plane view to confirm normal coronaries in the control animals and the degree of stenosis in 

the stenosis group. 

 

CMR Protocol 

The animals were transferred to the MRI suite and placed in recumbent position. After 

baseline scans the FiO2 was set to 1.0 and ventilation rate was adjusted to target paCO2 levels 

of 30, 40 and 50mmHg, respectively. At each level, arterial and coronary sinus blood gases, 

heart rate, arterial blood pressure, SpO2, changes in LAD blood flow, left ventricular function 

parameters and oxygenation-sensitive (OS)-CMR images were recorded. The myocardial 

oxygen extraction ratio (O2er) was calculated from the oxygen content of the arterial (CaO2) 

and coronary sinus (CcsO2) blood: O2er = [CaO2-CcsO2] / CaO2. All parameters were 

compared to the baseline of paO2=100mmHg and paCO2=40mmHg. Blood gas levels were set 

in random order. 

Images were acquired with a clinical 3T MRI system (MAGNETOM Skyra 3T; 

Siemens Healthcare, Erlangen, Germany) using an 18-channel cardiac phased array coil. LV 

function was imaged using an ECG-gated balanced steady-state free precession (SSFP) 

sequence (echo time (TE) 1.43ms, repetition time (TR) 3.3ms, flip angle 65°; voxel 

dimensions 1.6x1.6x6.0mm; bandwidth 962Hz), covering the entire left ventricle with a short 

axis stack. OS-CMR images were acquired in two short axis slices (mid ventricular, mid-

apical) using an ECG triggered SSFP sequence (TE/TR 1.70ms/3.4ms; flip angle 35°; voxel 

dimensions 2.0x2.0x10.0mm; bandwidth 1302Hz).  
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Image Analysis 

All images were anonymized before analysis with clinically validated software (cvi42, 

Circle Cardiovascular Imaging, Calgary, AB, Canada). Analysis of left ventricular function 

parameters and peak circumferential strain was performed automatically after tracing endo- 

and epicardial contours in the short axis stack. Myocardial oxygenation was assessed by 

tracing myocardial borders in end-systolic frames. Changes in myocardial oxygenation for 

each level were expressed as %change in SI (%SI) from the baseline level for the LAD region 

(AHA segments 1, 2) and the remote myocardium (Segments 4, 5). Further, the %change in SI 

was compared between the LAD territory and the remote myocardium for the control and the 

stenosis group. Segments with possible mixed perfusion beds (AHA 3 and 6) were excluded 

from analysis. 

 

Statistical Analysis  

Data is expressed as mean ± SEM.  Continuous variables were assessed for normal 

distribution with the D’Agostino-Pearson test. Paired t-tests or repeated measures ANOVA 

were used to compare data from baseline, and independent t-tests compared data between 

groups. In the case of multiple analyses, repeated measures ANOVA’s or two-way mixed 

effects models were used to compare results both within and between groups, with following 

post-hoc tests.  If the data was not normally distributed a Mann Whitney or a Wilcoxon 

matched-pairs signed rank test was performed. Associations between ∆SI, FFR, O2er, and 

coronary flow were assessed with Pearson’s correlation. Tests were performed with GraphPad 

Prism version 6.0 for Mac (GraphPad Software, La Jolla California USA) and SPSS version 

21 (SPSS IBM, New York, USA).  Results were considered statistically significant if the p-

value <0.05.  

This study was conducted in accordance with the ‘‘Guide to the Care and Use of 

Experimental Animals’’ by the Canadian Council on Animal Care and approved by the local 

Animal Care and Use Board. 
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3.4 Results 

In the group of healthy pigs three animals had to be excluded: One died after surgical 

complications, while two animals died later during the MRI scans due to refractory 

cardiovascular instability. Three animals died by stenosis-induced ischemia, resulting in eight 

animals in both groups. 

 

Severity of Stenosis 

The inflation of the perivascular occluder around the LAD resulted in a mean FFR of 

0.64±0.02 during maximal hyperemia and a reduction in vessel diameter of 62.9±4.9% versus 

7.1±2.7% (p<0.001) in the control animals. 

 

Myocardial Blood Flow 

There was no significant difference in baseline LAD flow between the stenosis and 

control animals. Induced hyperoxia however resulted in a significant decrease in LAD blood 

flow in the stenosis animals by -24.0±4.5%, -14.8±2.0% and -13.1±5.1% for hypo-, normo- 

and hypercapnic hyperoxia, respectively (p<0.05). In control animals, hyperoxia only 

decreased flow under hypocapnia (-13.3±5.0%, p<0.05) and normocapnia (-12.7±2.3%, 

p<0.01), while hypercapnia neutralized this effect (+2.20±5.5%, n.s.). Although increasing 

paCO2 levels seemed to attenuate the hyperoxia-mediated decrease in blood flow, there was no 

significant difference in the LAD flow changes between the different paCO2 levels.  

 

Myocardial Oxygen Extraction Ratio 

Prior to the experimental procedure in the MRI, baseline myocardial oxygen extraction 

ratio was higher in the ischemic animals (59±4%) vs. healthy animals(47±3%, p<0.05) at 

physiologic blood gas levels (paO2=100mmHg, paCO2=40mmHg). In the stenosis group, 

myocardial oxygen extraction ratio was decreased during normocapnic hyperoxia (-6.7±1.1%, 
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p<0.05) and hypercapnic hyperoxia (-10.6±2.3%, p<0.01) compared to baseline, while there 

was no change in the control animals. 

 

OS-CMR 

9.7% of all myocardial segments had to be excluded due to predefined exclusion 

criteria, mostly due to susceptibility artefacts in the inferolateral wall (5.5% segments of 

healthy and 14.0% of stenosis animals). Inducing blood gas changes yielded no global signal 

intensity differences in myocardial oxygenation in either slice. 

Changes in the LAD perfusion territory in the mid-apical SAX slice are shown in Table 

10. Figure 21 shows the change in SI after induction of hyperoxia from baseline in a healthy 

and a stenosed animal, accompanied with the changes in myocardial strain. While increased 

supra-normal oxygen tension resulted in increased SI in healthy animals, hyperoxia resulted in 

a SI decrease during hypocapnia and normocapnia (Table 10, Figure 19). The SI increases 

were attenuated in stenosis animals compared to the control group during hypercapnic 

hyperoxia. There was no difference in myocardial SI in the LAD territories in the mid-

ventricular slice.  

 

 

Figure 19: Mean changes in myocardial oxygenation in all hyperoxic blood gas levels. 
Difference in myocardial signal intensity (SI) in the mid-ventricular and mid-apical slice during 
hypocapnic (300/30), normocapnic (300/40) and hypercapnic (300/50) hyperoxia. Changes in 
myocardial SI were only different in the more distal slice to the occluder. While hypo- and 
normocapnic hyperoxia decreased myocardial oxygenation (p<0.05, Table 1), hypercapnia still 
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showed an attenuated decrease compared to the normal controls (p<0.05). Levels expressed as 
paO2[mmHg]/paCO2[mmHg]. 

 
Mid-ventricular slice 

Level Control Stenosis p 
300/30 -2.0±2.0 0.1±1.1 0.31 
300/40 2.2±2.0 -0.3±1.4 0.35 
300/50 0.7±1.3 0.1±1.6 0.76 

Mid-apical slice 
Level Control Stenosis p 
300/30 1.9±1.7% -2.8±0.9% <0.05* 
300/40 2.6±1.3% -2.0±1.0% <0.05* 
300/50 4.0±1.2% +0.2±0.7% <0.05* 

Table 10: Changes in myocardial signal intensity from baseline 
Changes in myocardial signal intensity [%]from baseline 
(paO2=100mmHg, paCO2=40mmHg) in the mid- ventricular and mid-
apical slice in the LAD-territory. Changes in signal intensity between 
control and stenosis animal for all hyperoxic levels are different 
(p<0.05), while none of the changes are different in the mid-ventricular 
slice. Levels depicted as paO2[mmHg]/paCO2[mmHg], Mean±SEM 

 

Ejection Fraction 
Level  Control  Stenosis P-value 
100/40 54±4% 48±3% 0.26 
300/30 56±4% 41±5% <0.05* 
300/40 56±3% 42±4% <0.05* 
300/50 49±7% 41±6% 0.43 

Cardiac Output 
Level  Control  Stenosis P-value 
100/40 2813±294 2073±171 <0.05* 
300/30 3246±303 2175±180 <0.05* 
300/40 3217±308 2275±147 <0.05* 
300/50 3111±406 2125±287 0.06 

Table 11: Function Parameters 
Differences between control and stenosis animals in ejection fraction 
(EF) and cardiac output (CO). We find differences in EF and CO 
between control and stenosis animals during hyperoxia.  
Mean±SEM, p<0.05 is significant. Levels reported as 
paO2[mmHg]/paCO2[mmHg]. 

 

Function Parameters 

In stenosis animals, left ventricular ejection fraction (EF) did not differ at baseline, but 

was significantly reduced after induction of hypo- and normocapnic hyperoxia (Table 11, 

p<0.05) when compared to healthy animals. Cardiac output in ischemic animals was initially 

lower at baseline, and decreased further during hyperoxic hypo- and normocapnia (p<0.05). 

Circumferential strain was significantly attenuated from baseline values in the LAD 

territory of the ischemic animals (Figure 20) at a paO2 of 300mmHg for 30mmHg paCO2 (-

21.35±10.52, p<0.05) and 40mmHg paCO2 (-18.24±9.72, p<0.05), while a paCO2 of 50mmHg 
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further enforced a trend for a reduction in strain (-18.43±9.66, p=0.055). Furthermore, global 

strain was -16.60±7.70% reduced during hypocapnic hyperoxia. No change in myocardial 

strain was seen for the remote myocardium or the LAD perfusion territory in healthy animals 

during any hyperoxic level. 

 

 

Figure 20: Peak circumferential strain during hyperoxia  
Peak myocardial strain during hypo- (300/30), normo- (300/40) and hypercapnic hyperoxia (300/50) 
in healthy (Hea.) and animals with a significant LAD stenosis (Sten.). In the animals with a significant 
coronary artery stenosis, peak myocardial strain was found to be reduced in the LAD region compared 
to baseline strain (p<0.05) There was no change in strain in the LAD territory of healthy animals or 
remote myocardium. However, hypocapnic hyperoxia resulted in a drop on global circumferential 
strain in the healthy animals. Levels expressed as paO2[mmHg]/paCO2[mmHg], Mean±96% 
confidence intervals, *p<0.05. 

 
 

Relationship to Oxygenation Changes 

The changes in myocardial SI in the LAD territory of the mid-apical slice showed a 

strong association with the measured FFR of the coronary artery stenosis for all blood gas 

levels (hypocapnic hyperoxia: R=0.53; normocapnic hyperoxia: R=0.58; hypercapnic 

hyperoxia: R=0.60, p<0.05). Additionally, changes in flow at hypercapnic hyperoxia were also 

correlated with changes in OS-SI in the LAD territory (R=0.5, p<0.05). Otherwise, no 

significant correlations were observed with O2er or flow to other levels. 

These correlations were not seen in the mid-ventricular slice, more proximal to the 

stenosis.  
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Figure 21: Changes in myocardial oxygenation and strain in a healthy and an ischemic animal 
during hyperoxia.  

Changes in myocardial oxygenation after induction of normocapnic hyperoxia from baseline in a 
healthy (A) and a stenosed animal (E). A decrease in the segments perfused by the left anterior 
descending coronary artery (LAD) is visible in the stenosed animal. Baseline myocardial strain was 
similar in healthy (B) and the stenosed (F) pigs. However, when paO2 was increased to 300mmHg the 
stenosed animals showed a decrease in peak circumferential strain in the LAD territory (G: mid-
ventricular slice, H: AHA segmentation), which was not seen in the healthy animals (C, D). The area 
of reduced strain matched the region with decreased oxygenation. Levels expressed as 
paO2[mmHg]/paCO2[mmHg]. 

 

3.5 Discussion 

Our study provides evidence that hyperoxia may worsen myocardial ischemia in severe 

coronary artery stenosis, accompanied by ventricular dysfunction. 

Before the 2010 revision of the ACC/AHA guidelines supplementation of oxygen for 

patients with acute coronary syndrome was considered beneficial, based on previous findings 

that supplemental oxygen may decrease myocardial injury163,164. The studies, dating from the 

1970’s however were not standardized, randomized or controlled. In 1976, Rawles and 

Kenmure performed a randomized double-blinded controlled study and showed that oxygen 

therapy was associated with higher Aspartate Aminotransferase levels post infarct, indicating 
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more severe myocardial injury, and found no benefit with respect to mortality165. Although not 

significant, the data even suggested that mortality may be higher in the oxygen than in the 

control group (13.3% vs. 3.9%). In 1971, Loeb and colleagues observed in a clinical study in 

31 patients with acute non-complicated myocardial infarction, that treatment with 6L/min 

oxygen was associated with a higher mean arterial pressure, a lower cardiac index and, in 7 

patients, an increase in LV end diastolic pressure. 166 Nevertheless, the authors suggested, that 

oxygen should be administered in these patients due to a high incidence of concurrent 

hypoxemia.  

Literature shows that oxygen is still administered in 80% of cases with acute 

myocardial infarction and more than 50% of health professionals consider it to reduce 

mortality167,168167,168. McNulty et al. showed that breathing supplemental oxygen for 15 min 

with a mask increases coronary vascular resistance by 40% and decreases Doppler flow 

velocity by 20% and coronary blood flow by 30% in patients undergoing cardiac 

catheterization94.  

Potential mechanisms that lead to hyperoxic coronary vasoconstriction have been 

outlined by Moradkhan and Sinoway158. Nitric Oxide (NO), which relaxes smooth muscle 

cells in the arterioles act as a scavenger for reactive oxygen species during hyperoxia. This 

results in a reduced bioavailability of NO and to vasoconstriction169,170. An animal study also 

suggested the presence L-type Calcium channels on vascular smooth muscle cells, which 

contribute to blood flow control in an oxygen-sensitive manner171. Metabolic demands are also 

controlled by adenosine triphosphate (ATP)-gated potassium channels. Hypoxia leads to a 

drop in ATP levels in the cells. These potassium channels open if the ATP concentration falls, 

resulting in increased tissue perfusion172. Hyperoxia however was found to reverse that effect, 

down-regulating flow in the coronary arteries115. Further, isolated cardiomyocytes were found 

to convert angiotensin I to angiotensin II during a hyperoxic stimulus, which could potentially 

release the vasoconstrictor endothelin-1 levels. 

The mounting evidence of reduction of coronary blood flow during hyperoxia led to 

concern about the safety of oxygen173. A meta-analysis of 6 studies in 665 patients by Caldeira 

et al. showed that oxygen therapy for acute myocardial infarction may increase the risk of 

death by 16%174. Moradkhan and Sinoway stated that hyperoxia is not perceived to be 
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detrimental by medical staff, due to conflicting data and a lack of randomized, blinded and 

controlled studies158. The current AHA resuscitation 2010 guidelines do not limit the use of 

oxygen during cardiac arrest but in patients with ROSC (Class I, LOE C)159. These 

recommendations are based on neurologic studies where hyperoxia as a part of the 

ischemia/reperfusion injury exacerbated neurologic outcome,175,176 while normoxic ventilation 

seems to attenuate that effect160,161.  

A retrospective multicenter cohort study in the United States included 6,326 ICU 

patients with ROSC in 3 groups: hypoxia (<60mmHg paO2), normoxia (60-300mmHg) and 

hyperoxia (>300mmHg)95. The group found that hyperoxia (63% mortality, vs. 45% in 

normoxia and 57% in the hypoxia group) was independently associated with increased in-

hospital mortality, with an odds-ratio for hyperoxia of 1.8. In a subgroup with paO2 

>400mmHg, mortality was even higher (69%). In addition, they found that hyperoxia was 

associated with a lower likelihood of independent functional status at hospital discharge than 

with normoxia. Other studies confirm these findings177,178 

A study by Meyhoff and colleagues even reported a long-term mortality in patients 

receiving abdominal surgery179. 23% of the patients died in the group ventilated with a FiO2 of 

0.8 versus 18.3% in the group with a FiO2 of only 0.3 in this randomized trial follow-up. 

Most of the referenced studies assessed changes in neurologic outcome after ROSC or 

death. However, it is not clear how many of these deaths were due to a hyperoxia-induced 

aggravation of myocardial ischemia. There is also invasive data on changes of coronary 

resistance and myocardial blood flow94, however these studies cannot assess the impact on the 

myocardium on a tissue level as the increase in arterial oxygen content (CaO2) can 

counterbalance the reduction in myocardial blood flow.  

OS-CMR can detect the changes in myocardial oxygenation in-vivo using the 

paramagnetic properties of deoxygenated haemoglobin as an inherent contrast162. Changes in 

delivery or myocardial oxygen demand such as myocardial blood flow, haemoglobin 

saturation, myocardial workload and oxygen extraction all factor in into changes in OS-SI. 

Myocardial oxygenation depends on the balance of oxygen delivery and demand. Delivery is 

determined by vascular density, blood flow, haemoglobin concentration, and haemoglobin 
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oxygenation, while demand is reflected by the myocardial workload. If oxygen delivery does 

not meet the metabolic requirements, the relative concentration of deoxygenated haemoglobin 

in post-capillary venules increases, while that of oxyhaemoglobin decreases. The increase in 

deoxyhaemoglobin leads to a decrease of SI in oxygenation-sensitive MR images. Thus, the 

drop in SI we observed in myocardium exposed to a stenotic coronary artery reflects a decline 

in myocardial oxygenation due to vasoconstriction caused by hyperoxia. Several recent studies 

have used OS-CMR to monitor changes of myocardial oxygenation after changing blood gas 

levels, especially O2 and CO2
47,82,83,112. Those studies showed that OS-CMR is a reliable tool 

to assess the impact of hyperoxia on myocardial oxygenation 135. 

Coronary artery stenosis in our animals was verified by an FFR of <0.75180. Consistent 

with other studies, we used a paO2 of >300mmHg for hyperoxia95,177,178 compared to a 

physiologic level of 100mmHg. Our model allowed for a tightly controlled setting, which is 

difficult to achieve in patient studies. Confirming the observations of McNulty et al., we found 

a substantial decrease in blood flow in the LAD during hyperoxia94. Adding further 

vasodilating (hypercapnia) and vasoconstricting (hypocapnia) stimuli we also wanted to 

investigate if the hyperoxic vasoconstriction could be further aggravated or attenuated. 

Although not significant, we found a relationship between the paCO2 levels and the decrease 

in LAD blood flow in both groups. 

The decrease in myocardial oxygen extraction during hyperoxia somewhat contradicts 

the underlying pathophysiology: with reduced oxygen delivery due to coronary 

vasoconstriction a higher oxygen extraction is to be expected, especially in the already 

ischemic animals. However, this decrease in myocardial oxygen consumption is well in-line 

with literature181–183. High oxygen tensions seem to decrease capillary density with a 

consecutive reduction of oxygen diffusion and thus extraction. Increasing CO2 levels seem to 

attenuate this effect.  

Interestingly, looking at peak circumferential myocardial strain after inducing 

hyperoxia we saw a reduction in myocardial strain in the LAD perfusion territory that was 

absent in the remote myocardium and in the LAD territory of the healthy animals, supporting 

the concept that the myocardial hyperoxia-aggravated ischemia was severe enough to result in 

a local myocardial dysfunction. The reduction in global myocardial strain during hyperoxic 
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hypocapnia can be explained by the combination of two vasoconstrictive stimuli. The fact that 

only the mid-apical slice showed significant differences in myocardial SI in OS-CMR images 

can be explained by the fact that the mid-ventricular slice may have been placed too close to 

the occluder. The proximal slice may be perfused mainly by vessel proximal to the stenosis, 

while in the lower slice the stenosis has a full effect. 

Our data are in line with findings of previous studies and extend the concept further by 

directly demonstrating an exacerbation of myocardial ischemia by hyperoxia. The results of 

this pilot study now warrants for larger clinical studies with follow up to investigate the role of 

hyperoxia in myocardial ischemia and also the cause of in-hospital deaths after ROSC. We 

also expect our findings to provide further evidence supporting caution in the use of oxygen in 

anesthesia, especially in known coronary artery disease. If confirmed, current guidelines on 

the use of oxygen in cardiac patients may have to be revised. 

 

Limitations: 

This study is limited by the small sample size. Also anesthesia itself is a confounding 

factor altering vital parameters, potentially inducing ischemia and also reducing tissue oxygen 

demand. In our study the animals also had an acute stenosis, with a pathophysiology different 

from chronic coronary artery disease. In this study only female pigs have been used. This may 

be a confounder as hyperoxia and its subsequent mechanisms could vary as a function of sex. 

While no animal model can perfectly resemble human physiology, coronary anatomy and 

collateral blood flow in swine is considered very similar to humans184.  

 

3.6  Conclusion: 

In the presence of severe coronary artery stenosis, hyperoxia induced by oxygen 

administration not only reduces coronary blood flow, but also leads to a regional decrease in 

myocardial oxygenation and myocardial function. Thus, the administration of excess oxygen 

in patients with severe coronary artery stenosis may exacerbate ischemia. Further research is 

required and current clinical practice may have to be revisited.  
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3.8 Applicability of Animal to Human Studies 

Part 1 of this project used a large animal model for the foundation of the techniques 

that was applied to humans in part 2 & 3. An advantage of animal studies is the ability to 

perform invasive measurements and procedures not suitable or feasible for human studies. 

With respect to OS-CMR, the animal studies are the key for understanding the impact of 

coronary flow and blood gases on myocardial oxygenation signal, especially during breathing 

maneuvers. While animal studies can provide vital information for research topics, the results 

cannot be directly applied to clinical studies without considering confounding effects.  

 

 

Figure 22: Comparison of the short-axis between swine and human.  
Short-axis view of the myocardium in the mid-ventricle between a juvenile swine 
(4-6 months, 30kg) used in chapters 1-3 and a healthy human volunteer from 
chapter 4 (Female, 20 years, 65kg). The myocardium of the left ventricles have 
similar areas, and thus the same approximate number of voxels are analyzed. 

 

Application of Sequence Parameters 

An advantage of using large animals is that imaging can be performed in the same 

clinical MRI system, using the same magnetic field strength and imaging sequences that are 

applied to humans. Swine have been specifically chosen for the experimental model in the 

project due to significant similarity of the cardiac and coronary anatomy to humans185, 

including myocardial thickness. As shown in Figure 9, the myocardium has the same muscle 

diameter at end-systole as a healthy human. Thus allowing us to maintain the same parameters 

that are vital to the OS signal such as voxel size, field of view, and spatial resolution. Another 

major factor is the heart rate. Landrace-yorkshire swine of about 4-6 months old (20-40kg) 

will have heart rates ranging from about 70-120 beats/min. This is higher than in a typical 
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patient, and as the R-R interval decreases, temporal resolution of the sequence will change for 

single shot and retrospectively gated sequences. However, the majority of our imaging, 

specifically the OS-CMR sequence, is a prospectively gated sequence, and thus the temporal 

resolution does not change, rather less phases are obtained in the cardiac cycle, reducing the 

impact of the high heart rate.  

 

Factors Affecting the Applicability of the Animal Model to Human Studies 

The animal model in chapters 1-3, simulates an acute coronary stenosis, and is 

otherwise a healthy animal with fully patent microvasculature (Figure 10, situation C). The 

model is not necessarily representative of the many pathomechanisms occurring with the 

development of coronary disease, including dysfunctions of the endothelial and smooth 

muscle cells, stenosis and thickening of epicardial and microvascular arteries, ventricular 

remodelling, fibrosis and more. Specifically, the occluder only creates an intermediate stenosis 

in a small portion of the LAD. This would likely leave the area more prone to coronary steal 

as the other coronary arteries are fully functioning and because of their larger vasodilatory 

reserve they can have a lower vascular resistance and end up redirecting flow. However as 

described later in the section “Translation of invasive measurements to human participants”, 

the blood flow in the other coronary arteries could not be directly measured in this study to 

support this theory.  

Furthermore, the animal model is just an acute stenosis, in which there was no build-up 

up cardiovascular risk factors or mechanism leading to coronary disease such as inflammation. 

This model is unlike the pathophysiology of acute coronary syndromes in humans, which are 

commonly caused by an acute intraluminal coronary thrombus formation, often from the 

disruption of atherosclerotic plaques186. Rather the animal model is just a manual blocking of 

the exterior of the vessel, and the inner lining of the vessel remains intact. Additionally, tas he 

animals are juvenile, there should not be any vessel disease or atherosclerotic build-ups. This 

can be an advantage of the model, as it is assumed that the subjects have not had any previous 

cardiac events, such as an infarct that would cause any pre-existing injury or any ischemic 

preconditioning.  
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A stepwise intermediate occlusion was created. The animals never underwent a full 

coronary occlusion, nor was there reperfusion, which can cause its own myocardial injury. The 

occlusion was made to partially block the vessel, and it was maintained until euthanasia. 

Twelve hours after acute ischemia, necrosis factors can start to appear187, but this is not 

relevant in this study, as all procedures were performed in this time frame. The mean time 

between the closing up the chest wall for transfer to the MRI (shortly after the occlusion for 

the stenosed animal) to the HVBH maneuver did not differ between the two groups. However, 

the experiment could be affected by acute injuries and some LV dysfunction was observed in 

the stenosed animals. 

The coronary anatomy of swine has been proven to be suitably similar to humans185, a 

key difference being that swine have a lack of collateral perfusion, which is a fundamental 

feature in compensation for coronary disease in humans.  Consequently, coronary artery 

stenosis in swine could create a more defined regional oxygen deficit, while in human cardiac 

disease this deficit may be more diffuse because of partial compensation by the perfusion beds 

from the other coronary arteries, as well as the possibility of more widespread vascular 

dysfunction. 

 

Impact of Surgical Procedures 

All animal subjects in Part 1 had undergone major cardiac surgery the day of the CMR 

exam. The chest was opened with a thoracotomy for the placement of a flow-measuring device 

on the coronary artery, and for the placement of the occluder in animals allocated to undergo a 

coronary blockage. The thoracotomy was necessary for all subjects because of the perivascular 

flow probe. This type of probe was the only commercially available and MRI-compatible 

device for measuring coronary flow. This probe could only be used for acute purposes, thus a 

significant surgery had to be performed on the day of the experiment. However, all animals 

underwent this operation, so there should be minimal difference between the groups.  Only 

minor additional procedures were required for the placement of the occluder, as the LAD was 

already prepared for the flow probe. In the future, MRI compatible flow wires that are placed 

percutaneously, similar to FFR measurements, could enhance these measurements and thus 
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painful surgical procedures and heavy analgesic doses would not be required. However, these 

are still in development, and were not readily available at the time of the study188.  

 

Possible Confounding Effects of Anaesthesia on OS-CMR Results 

In order to perform the required procedures, and to follow the animal care guidelines, 

the animal studies required the use of anaesthetics the entire duration of the experiment.  

However, this does pose a major confounder to any results from the animal model, especially 

those data points relying on vascular reactivity. Anaesthetics may act as cardiac depressants, 

and reduce inotropy, but also myocardial oxygen consumption189. The two primary drugs used 

in this study were propofol, and the opioid remifentanil for analgesic effects. These common 

intravenous agents can reduce the coronary response, perfusion pressure and cardiac output, 

and adjust baseline myocardial blood flow190.  

Intravenous agents were used instead of inhalation anaesthesia. One significant reason 

was because of the limitations posed by the magnetic field of the MRI. All ferromagnetic 

materials like the ventilator, remained outside of the MRI suite with long tubing (>10m) run 

through specific wave guides to the animal. Because of the significant length and dead space 

created in the tubing, it would have been more difficult to control the concentration of 

anaesthetic gases reaching the animal. Especially, the minimum alveolar concentration of 

anaesthetics in the lungs can be affected when the ventilation pace and volume is altered for 

the breathing maneuvers (chapter 1) or to reach altered arterial blood gas levels (chapter 2 & 

3). Additionally, swine can be susceptible to malignant hyperthermia with volatile 

anaesthetics, so intravenous anaesthesia was chosen as the preferred method. An MRI 

compatible infusion pump was available for the intravenous drugs, and these doses would not 

be affected by the breathing maneuvers and ventilation rate. Furthermore, since a thoracotomy 

is a significant surgical procedure, a potent analgesic (remifentanil) was required along with 

the propofol used to maintain anaesthesia, thus creating a balanced anaesthesia that does not 

rely on the mechanisms of a single drug.  Remifentanil is an extremely short acting opioid 

with the shortest half-live of the opioid family before it is metabolized, and it does not 

accumulate during prolonged infusion191. Similarly, propofol also has a fast onset, allowing 



 

97 

for quick control of anaesthesia. Yet, propofol can accumulate especially in the adipose tissue 

after longer periods of infusion though, and could create a reservoir for propofol if the infusion 

was lowered192. Many anaesthetics are known to have a pre-conditional affect and can help 

reduce ischemic areas at risk by increasing basal blood flow or reducing myocardial workload, 

and this has been shown for both remifentanil and propofol193. Any adjustments to the basal 

flow would affect the perfusion and oxygenation reserve observed during the vasoactive 

methods. Remifentanil has been shown to reduce the hypoxic and hypercapnic respiratory 

drive. Although that publication did not assess the coronary response, this may explain why 

especially in healthy control animals the myocardial oxygenation response is diminished 

during the breath-holds in comparison to the human chapters. Nevertheless, anaesthesia levels 

are adjusted to the needs of each individual subject, and this will cause further variability 

within a study. This study was run by a clinically trained anaesthesiologist with a high level of 

experience in porcine models, and the doses given were appropriate at that specific time as 

judged by continuous monitoring of the animal. Overall, the exact mechanisms of these drugs, 

like almost all anaesthetics, are not very well known, and this anaesthesia protocol was 

deemed to be the most suitable for the studies, although there are some limitations and likely 

unknown interactions.  

Because OS-CMR relies on the myocardial oxygenation response to changes in 

myocardial oxygen consumption and coronary blood flow, any studies performed under 

anaesthesia will have an altered response compared to techniques performed in conscious 

subjects.   

 

Translation of Invasive Measurements to Human Participants  

The animal studies provide interesting information about the cardiovascular system 

during the techniques, as invasive measurements can be obtained during the experiment, 

which not would be ethical in human studies. The invasive measurements however provide 

information for certain regions only, and not of the entire heart. Thus the results help to predict 

the response, but do not give a complete picture. Part 1 uses an ultrasound-based measurement 

of blood flow of just the LAD coronary artery. This however, does not give a reading of how 

the other coronary arteries respond, especially in the case of an LAD stenosis, and there could 
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be possible coronary steal effects creating different blood flow changes in the other arteries. 

Yet, due to feasibility, only one probe was installed in the LAD, which was also the easiest to 

surgically access due to its anterior positioning, reducing the amount of surgical stress for the 

animal. As stated in section 0.6 the majority of coronary blood flow is actually controlled by 

the microvessels, and not the large epicardial vessels. Thus, it is recognized that the 

measurements assessed in part one do not provide the entire picture of the coronary blood flow 

response, but rather use the LAD blood flow measurements as an example.  

Due to the size of the animal, each had its own baseline blood flow. Under these 

circumstances, we reported the %-change in coronary flow rather than raw measurements 

(ml/min), similar to what has been done by other studies using the same device. Similarly, the 

coronary sinus measurements do not solely measure the blood from the LAD territories either. 

Rather it collects blood from the majority of the swine’s left ventricle (95%)66, and the remote 

regions influence the capillary sinus values and oxygen extraction measurements as well. 

However the LAD contributes to the majority of the blood collection, so the coronary sinus is 

subsequently one of the best available measurements that can also be accessed with a larger 

cannula, which is needed for rapid blood acquisition.  

 

As previously addressed in the limitations of chapter 1, the anaesthetized animals 

undergo a much more extreme change in blood gases during apnea then have been published 

for human studies83,84. This alone would result in different OS-CMR responses between 

animals and humans. For example, some animals ended up having an arterial saturation as low 

as 35%, and even 10% for the coronary sinus, all with breath-hold less than 90s long. As will 

be seen in the upcoming chapters, both healthy participants and even patients with CAD can 

maintain breath-holds this long. Thus these significant changes in oxygenation are not likely 

due to the breath-hold duration. Breath-holds were prematurely ended if blood pressure did 

start to drop below a mean arterial blood pressure of about 50mmHg, but this was not the case 

until near the end of the breath-hold, and thus perfusion pressure should not have significantly 

changed either. In a separate animal study from Bern, Switzerland currently being prepared for 

publication, coronary blood flow and myocardial oxygenation was maintained by the coronary 

autoregulation range until the MAP fell below this threshold194. One suggested mechanism for 

this extreme blood gas drop is that as shown in Table 7, controls animals increased myocardial 
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extraction during the HVBH by a difference of 20%, and non-significantly by 16% during the 

LBH. As described in the introduction (section 0.3), humans do not have a large oxygenation 

extraction reserve, and this may also account for differences between the two models. With 

this extreme desaturation, the incoming blood to the myocardium will already have a lower 

oxygen content and will not be able oxygenate the tissue as well, even if there is a greater 

overall blood supply, and this could explain why the overall oxygenation response is lesser in 

the animals. Again, this is not expected to occur in humans, as they should feel the need to 

breathe once the hypoxic and hypercapnic drives kick in, and this voluntary resumption of 

breathing was obviously not a factor in the ventilation controlled animals. Furthermore, with 

anaesthesia itself, the blood gases are abnormal even at baseline, specifically coronary sinus 

saturation (control: 41±19, stenosed: 36±14%). Although this would be high for conscious 

humans, these values are consistent for what has been reported for humans under anaesthesia 

prior to surgical procedures (40%, and 48%), because anaesthetics are cardio-depressant and 

oxygen extraction will decline195,196. To possibly correct for arterial saturation changes during 

breath-holds, our group is looking into using the oxygenation signal of the blood in the left 

ventricular blood pool112. Because any tissue effects do not directly affect the blood pool 

signal, it is representative of arterial saturation. In future studies, myocardial oxygenation 

changes could be corrected to the blood pool signal, similar to what is done with some contrast 

agent techniques that correlate the contrast concentration in the tissue to the contrast in the 

blood. However, this analysis is still in progress and the current results are just using the pure, 

unadjusted myocardial signal.  

 

Finally, as seen in most large animal studies, only small samples were assessed due to 

feasibility, and so that only the minimum amount of animals were needed, due to ethical 

reason. Small sample size and the factors described above do lead to a bigger standard 

deviation in the observed results. While the results are still significant, the variation can lead 

to questioning whether the technique is consistent. As described, this model has many 

confounding factors. The results from the animal models should be more cautiously 

interpreted as a demonstration of the general trends of the OS response during breathing 

maneuvers, but not specifically the same situation that is expected in humans. As will be seen 

in the forthcoming chapters, the reported values during the breathing maneuvers are greater 



 

100 

with conscious humans, and are similar between different studies and institutions using the 

same sequence and technique. The future goal is to expand the study into a much larger trial 

with more than 100 subjects, and this is best done with human studies, rather than surgical 

animal models, as this would allow for true assessment of reproducibility and accuracy.  

 

  Animal models are useful as models for human cardiac diseases while allowing for 

invasive procedures that may otherwise not be acquired in human studies. Further, isolated 

pathologies can be examined. For example, investigating the stenosis of an epicardial vessel as 

opposed to complex networks, such as in coronary artery disease, where vascular lesions of 

the conduit vessels are often accompanied by microvascular dysfunction and inflammatory 

processes. While animal models are necessary for the assessment of these invasive 

measurements however, the issues described above limit the direct translation of the results to 

a clinical scenario. Consequently, the next steps are translating the techniques to human 

studies.  
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Part 2: Translation into a healthy volunteer population 
 

4 Chapter 4 - Response of myocardial oxygenation to 

breathing manoeuvres and adenosine infusion 

 

Foreword 

In this chapter, the first direct comparison of breathing maneuvers on myocardial 

oxygenation in a human population is assessed against the gold standard of pharmacologic 

vasodilation, intravenous adenosine. This work represents evidence that, for assessing 

coronary vascular function, breathing maneuvers may be a safe and efficient alternative to 

intravenous injections of vasodilatory agents. This refers to one of the most expensive factors 

in medicine, thus the clinical and societal implications may be substantial. These volunteers 

also serve as a control for two ongoing studies investigating the myocardial oxygenation 

response in participants with obstructive sleep apnea44, and patients with cardiac 

transplantation. This data was presented at the Society of Cardiovascular Magnetic Resonance 

congress in New Orleans (SCMR 2014).  
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4.1 Abstract 

Background: Testing for inducible myocardial ischemia is one of the most important 

diagnostic procedures and has a strong impact on clinical decision-making. Current standard 

protocols are typically limited by the required infusion of vasodilatory substances. Recent 

data indicate that changes of myocardial oxygenation induced by hyperventilation and breath-

holds can be monitored by oxygenation-sensitive (OS)-CMR and may be useful for 

assessing coronary vascular function.  As tests using breathing manoeuvres may be safer, 

easier and more comfortable than vasodilator stress agent infusion, we compared its impact on 

myocardial oxygenation to that of a standard adenosine infusion protocol.  

Methods: In twenty healthy volunteers, we assessed changes of myocardial 

oxygenation using OS-CMR at 3T during adenosine infusion (140µg/kg/min iv) and during 

voluntary breathing manoeuvres: a maximal breath-hold following normal breathing, and a 

maximal breath-hold following 60s of hyperventilation.  

Results: The study was successfully completed in 19 subjects.  There was a 

significantly stronger myocardial response for hyperventilation (decrease of -10.6 ± 7.8%) and 

the following breath-hold (increase of 14.8 ± 6.6%) than adenosine (3.9±6.5%), while a simple 

maximal voluntary breath-hold yielded a similar signal intensity increase (3.1±3.9%). 

Subjective side effects occurred significantly more often with adenosine, especially in 

females. 

Conclusions: Hyperventilation combined with a subsequent long breath-hold and 

hyperventilation alone both have a greater impact on myocardial oxygenation changes than an 

intravenous administration of a standard dose of adenosine, as assessed by oxygenation-

sensitive CMR.  Breathing manoeuvres may be more efficient, safer, and more comfortable 

than adenosine for the assessment of the coronary vasomotor response.  

 

Key Words:  Oxygenation-Sensitive ▪ CMR ▪ BOLD (blood oxygen level-dependent) 

▪ adenosine ▪ vasodilation ▪ vasoconstriction 
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4.2 Introduction 

Ischemic heart disease is the most frequent cause of death in developed countries and 

imaging for inducible myocardial perfusion defects is one of the most frequent diagnostic 

procedures performed.  Typically, a vasodilator agent is injected to trigger a response in the 

coronary perfusion beds, which, when compared to a baseline scan may identify areas of 

impaired perfusion.  Vasodilator agents commonly used in clinical settings include non-

selective (adenosine and dipyridamole) and selective adenosine agonists (regadenoson and 

others).197 With respect to their clinical utility for diagnostic purposes however, adenosine and 

its agonists have limitations: While generally considered safe, more than 90% of patients 

report side effects,69 including chest pain, palpitations, dyspnea, light-headedness, flushing, 

sweating, nausea, headache and anxiety, and recently the US food and drug administration 

released a warning due to adenosine as a rare, but serious risk of heart attack and death.70  

Adenosine infusion can cause arrhythmia, especially SA- and AV block and thus the presence 

of a trained health professional during infusion is required.  It is contraindicated in patients 

with second or third degree AV block and sinus node disease, and should also be avoided in 

patients with known bronchoconstrictive disease.  Furthermore, the short half-life and variable 

response to adenosine may make it difficult to verify that an adequate level of adenosine is 

reached in the coronary vasculature, especially in patients with low cardiac output where the 

long transit time between the peripheral injection site and the myocardium may lead to its 

inactivation.  Importantly, adenosine and regadenoson also add significant costs to the 

diagnostic procedure.  

It is known that breathing manoeuvres, i.e. hyperventilation and long breath-holds 

elicit significant changes of cerebral and coronary perfusion,83,110,198 largely induced by the 

vasodilatory effects of blood carbon dioxide, which increases with apnea and decreases with 

hyperventilation.  While most imaging methods do not have sufficient temporal or spatial 

resolution to monitor these changes, oxygenation-sensitive cardiovascular magnetic resonance 

(OS-CMR) allows for monitoring changes of myocardial oxygenation, including those 

induced by adenosine infusion.7-14  In both an animal model and healthy volunteers, it has 

recently been shown that OS-CMR can also track changes of myocardial oxygenation during 

breathing manoeuvres82,83 which could be very well induced by long breath-holds and 
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hyperventilation.  It is however unknown how the response to these breathing manoeuvres on 

myocardial perfusion/oxygenation compares to that of standard adenosine infusion.  If such 

impact would be similar or even stronger, breathing manoeuvres may be considered an 

alternative to vasodilator infusion in patients with suspected inducible myocardial ischemia. 

We hypothesized that breathing manoeuvres, specifically long breath-holds and 

hyperventilation as well as a combination thereof, lead to myocardial oxygenation changes at 

least as significant as those induced by intravenous adenosine. 

 

4.3 Methods 

Participants 

We studied 20 healthy subjects without a history of smoking, cardiovascular or 

respiratory disease, and aged 18 years or older.  All participants were newly recruited for this 

study through public advertisements. Participants were required to provide informed written 

consent, and were interviewed to rule out general MRI contraindications.  Furthermore, they 

were asked to refrain from the consumption of adenosine antagonizing agents such as caffeine 

for at least 12h prior to the MRI exam.  

 

Protocol 

Before image acquisition, resting non-invasive blood pressure and heart rate were 

obtained in a supine position.  An alarm ball was provided and heart rate, peripheral 

hemoglobin saturation (SpO2), respiratory rate and blood pressure were monitored during the 

scan. 

 

CMR 

Imaging was performed in a clinical 3T scanner (MAGNETOM Skyra 3T; Siemens, 

Erlangen, Germany) using an 18-channel cardiac coil.  Images were obtained during breath-

holds at comfortable end-expiration.  LV function was assessed using an ECG gated balanced 
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steady-state free precession (bSSFP) sequence (TE/TR 1.43ms/3.3ms, flip angle 65°, voxel 

size 1.6x1.6x6.0mm, matrix 192x120, bandwidth 962Hz/Px) in six long axis slices with LV-

centered radial positioning and three short axis views.  OS-CMR images were acquired in one 

mid-ventricular short axis slice using an ECG triggered bSSFP sequence (TE/TR 

1.70ms/3.4ms, flip angle 35°, voxel size 2.0x2.0x10.0mm, matrix 192x120, bandwidth 

1302Hz/Px, acquisition time/measurement 4 heartbeats). Shimming was always performed 

along with frequency scouts if required 

 

The OS-CMR protocol (Figure 23) included:  

1. Combined hyperventilation/breath-hold (HVBH): Hyperventilation for 60s aiming 

for a rate of 35-40 breaths per minute, followed by a maximal voluntary breath-hold 

with a single measurement acquired prior to hyperventilation and continuously during 

the entire breath-hold after hyperventilation.  When participants announced their need 

for inspiration by using the alarm ball, scanning was stopped. 

2. Maximal voluntary breath-hold (LBH) from normal respiration with continuous 

imaging; as for the previous maximal breath-hold, participants were asked to indicate 

their need for inspiration. 

3. Adenosine infusion (140µg/kg/min) with single image acquisitions before and 3.5 

minutes into the drug infusion.  

  

Imaging during adenosine infusion was randomly performed either before or after 

imaging during breathing manoeuvres.  There was a break of at least 3min between each series 

to allow for the patient to recover.  After the MRI exam, the participants completed a 

questionnaire on the difficulty of each manoeuvres, using a scale of increasing difficulty of 1 

to 5, and were also asked to identify the incidence of any adverse effects for each manoeuvres. 
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Figure 23: Representation of scanning protocol.  

OS images (grey) are obtained during a breath-hold.  Extended breath-holds are imaged 
continuously with repeating measurements, while baseline and adenosine images with a 
single measurement.  HVBH: hyperventilation (HV) followed by a maximal breath-hold 
(BH), LBH: maximal breath-hold from normal respiration.   

 

Image Analysis 

Analysis of left-ventricular function was performed from epicardial and endocardial 

contours in diastolic and systolic images of the six long axis views using certified software 

(cvi42, Circle Cardiovascular Imaging, Calgary, AB, Canada).  For OS-CMR images the end-

systolic image from each measurement was chosen for analysis.  Images were first visually 

graded on image quality scale from 1 to 4 with decreasing image quality83.  Individual 

segments were entirely excluded if >33% of the segment area was removed due to artefact.  

The mean myocardial signal intensity (SI) in the OS-CMR images was automatically 

calculated after manual tracing of endocardial and epicardial contours and further segmented 

based on current recommendations.9  A blood pool contour was drawn in the middle of the 

left-ventricular cavity (SIBP[%]).  SI was expressed as the %-change (∆SI[%]) between two 

images.  Both hyperventilation and adenosine were compared to their respective baseline 

images obtained prior to the manoeuvres, while for the HVBH and LBH the first measurement 

of the breath-hold was used as the reference.  SI changes were specifically assessed for: 1) SI 
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at 15s into the breath-hold; 2) SI at 30s into the breath-hold; 3) the maximum SI reached 

during the breath-hold; and 4) SI at the end of the breath-hold.  

 

Statistical Analysis 

Data is expressed as mean ± SD.  Continuous variables were assessed for normal 

distribution with the D’Agostino-Pearson test.  A paired student t-test was used to compare 

signal intensities within a subject, and comparisons of variation between groups were assessed 

with an F-test.  Associations among groups were assessed with analysis of variance and 

multiple comparison tests.  To account for excluded segments, a linear mixed effects analysis 

was performed to assess the within-subjects relationship between the change in signal intensity 

and the myocardial segment using a compound symmetry covariance structure and segment 

identification as a fixed factor.  The breath-holds were further analyzed by plotting the SI over 

time fitted by non-linear regression.  The questionnaire and image quality results were 

analyzed with the Friedman’s non-parametric test.  For assessing inter-observer reliability, 66 

randomly selected images were read by an independent second reader and assessed with a one-

way mixed intraclass-correlation test.  Tests were performed with GraphPad Prism version 6.0 

for mac (GraphPad Software, La Jolla California USA) and SPSS version 21 (SPSS IBM, 

New York, USA).  Results were considered statistically significant if the p-value was less than 

0.05.  

The local scientific and ethics committees at the Montreal Heart Institute approved the 

study.  

 

4.4 Results 

Participant Characteristics 

Nineteen participants completed all manoeuvres of the protocol.  One participant 

withdrew from the study due to claustrophobia.  Data from the left-ventricular function 

analysis is shown in Table 12. 
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Measurement  
Age (years) 43 ± 14 
Gender 8F / 11M 
BMI (kg/m2) 24.0 ± 3.0 
Resting BP (mmHg) 128±17 / 81±13 
Resting HR (bpm) 62 ± 6 
EF (%) 67 ± 6 
CO (L/min/m2) 3.4 ± 1.0 
LV mass index (g/m2) 69 ± 20 

Table 12: Volunteer characteristics and function analysis 
Mean ± SD age, gender, body mass index (BMI), resting systolic / diastolic blood 
pressure (BP, mmHg), Resting heart rate (HR, beats/min), ejection fraction (EF, %),  
Cardiac output index (CO, L/min/m2) and myocardial mass (g/m2) indexed to body 
surface area. 

 

Image Quality 

Overall image quality was good (1.8±0.6) and did not differ between the manoeuvres.  

No complete image set was excluded due to poor image quality.  In the segment-based 

analysis, 38/684 (5.8%) data points were excluded, primarily in the anterior wall, based on 

pre-defined criteria for severe artefacts.  There was an excellent inter-observer reliability 

between the two readers with an intraclass-correlation of 0.94 (CI: 0.90-0.96; *p<0.01). 

 

Myocardial Signal Intensity Changes in OS-CMR Images 

Compared with the baseline, all manoeuvres induced a significant SI change (Figure 

24b and Table 13).  Of note, this was the case even only 15 seconds into the breath-hold 

following hyperventilation (HVBH; SI increase 7.6±5.7%; p<0.05), which was statistically not 

different from the response to adenosine (3.9±6.5%; p=0.07).  An even stronger effect was 

observed by 30s (11.7±6.4) with the maximal effect of 14.8±6.6 observed at an average time 

of 40s, all greater than the adenosine change (*p<0.05).  On the other hand, during the 

maximal breath-hold from normal respiration (LBH), only the maximum peak differed 

significantly from baseline, while other time points did not.  The maximal signal intensities in 

both, HVBH and LBH, were significantly greater than at the end of the breath-hold and were 

the values used for subsequent calculations.  There was a significant change in the ∆SIBP[%] at 

the end of the maximal breath-holds (-2.6±4.9%; p<0.05) for the HVBH as well as for the 

LBH (-3.2±5.4%; p<0.05) but not at the maximal myocardial ∆SI[%].  
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After hyperventilation participants were able to hold their breath for 28±23s longer 

than after regular ventilation (p<0.05).  In addition, the maximum SI occurred 14±19s later 

with HVBH than with LBH (p<0.05).  In HVBH experiments, the variation of the time to 

maximal SI time was significantly less than the variation of the time to the end of the breath-

hold, which was not the case in LBH.  

 

 

Figure 24: Oxygenation signal intensity  
A) The fitted curve demonstrates the increase in myocardial (black) signal intensity (∆SI[%]), while 
bloodpool ∆SI[%] simultaneously decreased (dashed grey).  B) OS-SI global myocardial results.  All 
manoeuvres (mean ± SD) significantly changed signal intensity from baseline (*p<0.05), including just 
15s into the HVBH.  Additionally, the oxygenation responses from hyperventilation and time points 
from 30s and later in the HVBH were significantly different than that of adenosine (‡p<0.05, n=19).  

 

 
 n ∆ SI (%) Time (s) ∆HR 
Adenosine 19 3.9 ± 6.5*  17.8 ± 14.4* 
Hyperventilation 19 -10.6 ± 7.8* ‡ 60 25.2 ± 14.0*‡ 
HVBH     

15s 18 7.6 ± 5.7* 15.1 ± 1.2  
30s 18 11.7 ± 6.4*‡ 29.7 ± 1.1  
Maximum 19 14.8 ± 6.6*‡ 40.3 ± 16.1  
End 19 10.3 ± 7.7* ‡ 73.6 ± 28.6 -15.0 ± 18.7*‡ 

LBH     
15s 19 -0.6 ± 2.9‡ 15.0 ± 1.0  
30s 16 -1.3 ± 4.8 30.0 ± 1.6  
Maximum 19 3.1 ± 3.9* 25.9 ± 19.5  
End 19 1.4 ± 5.5 ‡ 45.3 ± 20.9 2.8 ± 10.4‡ 

Table 13: Manoeuvres and related changes of heart rate and myocardial oxygenation 
Mean ± SD values from each manoeuvres including the actual time points of data acquisition (s) and 
change in heart rate (HR, beats/min).  Both the ∆SI[%] at the maximum and the end of the breath-hold 
are shown for the LBH and HVBH.  SI, signal intensity; HVBH, hyperventilation breath-hold; LBH, 
long breath-hold from normal breathing. 
*: Significantly different from baseline (p < 0.05). 
‡: Significantly different from the adenosine manoeuvres (p < 0.05) 
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Segmental Analysis 
There were no differences in SI changes between segments with hyperventilation 

(Figure 3b).  Yet, with HVBH, the anterior and anterolateral segments had significantly higher 

∆SI[%] than the inferior and inferoseptal segments, while similarly with adenosine, the 

anterior segment also had the greatest increase of ∆SI[%], greater than the lateral segments 

(p<0.05).  

 

 

Figure 25: Oxygenation signal intensity changes images.   
OS image at end-systole (A).  A subtraction image displays the absolute difference in SI from baseline for 
adenosine (B), hyperventilation (C) and the maximum point of SI in the breath-hold following 
hyperventilation (neurolens.org) from one participant.  The bottom row (E-G) displays the ∆SI[%] averaged 
from all subjects, per segment of the mid-ventricular slice.   

 

 

Relationship to Gender and Heart Rate 

Only gender was a factor for the adenosine protocol, in which the females had a larger 

∆SI[%].  There was an increase in heart rate of 25.2±14.0 beats/min after hyperventilation 

(Table 13), yet the increase of heart rate was not significantly correlated with ∆SI[%] (r=-0.41, 

p=0.10, n=18). Heart rate was not a statistically relevant factor for the other manoeuvres. 
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Subjective Difficulty and Side Effects 

The difficulty score was the same for all manoeuvres (1.8±1.0, p=n.s.).  Side effects 

were not noted with the LBH test.  The HVBH led to mild side effects in 5 (26%) of the 

participants, most notably tingling in the fingers during hyperventilation (n=3), dizziness 

(n=1) and dry mouth (n=1) which disappeared after the manoeuvres and normal breathing 

recommenced in all cases.  With adenosine, 13 (68%) of the participants noted side effects, 

most commonly chest tightness (n=6), flushing (n=4), breathing difficulties (n=4), and 

dizziness (n=3).  When asked about the duration of side effects from adenosine, two of these 

participants responded that they still felt the adverse effects more than 60s after the drug 

infusion had stopped.  Of note, all females experienced side effects during adenosine.  

 

4.5 Discussion 

Our head-to-head comparison data provide evidence that in healthy participants, 

breathing manoeuvres, specifically hyperventilation alone and in combination with a maximal 

voluntary breath-hold have an impact on myocardial oxygenation at least as strong as an 

intravenous administration of a standard dose of adenosine.  This has potentially strong 

clinical implications, as the combination of breathing manoeuvres with oxygen-sensitive CMR 

would allow for assessing coronary vascular function without the need for contrast agents or 

vasodilating drugs.  Moreover, the test directly reflects tissue oxygenation in contrast to 

currently used surrogate markers such as tracer accumulation, first-pass perfusion inflow 

characteristics or fractional flow reserve. 

The concept combines the validated technique of oxygenation-sensitive CMR with 

relatively simple physiologic manoeuvres.  Multiple studies have used OS-CMR to assess this 

response in cardiac disease using adenosine or dipyridamole and validated this technique 

against quantitative coronary angiography35, first pass perfusion,40 positron emission 

tomography36 and fractional flow reserve.37 Breathing manoeuvres can significantly alter 

systemic O2 and CO2 tensions within a relatively short time.84,85 Both, adenosine and the 

primary metabolites, O2 and CO2, have a direct impact on the arterioles,201,202 which keep 
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approximately 40% of the coronary resistance at rest.  When dilated, these vessels are 

responsible for the large decrease in vascular resistance and the strong increase in coronary 

blood flow.203,204  The arteriolar response is blunted in diseases related to atherosclerosis such 

as hypercholesterolemia, diabetes, and hypertension, as well as in coronary artery disease.102  

In the presence of significant coronary artery stenosis, these arterioles are already dilated at 

rest in order to maintain adequate myocardial perfusion and thus show a blunted response to a 

vasodilator stimulus.  

As with previous studies,205 we found that hyperventilation is associated with minor 

side effects.  Our data however indicate that breathing manoeuvres may be better tolerated 

than adenosine infusion, especially by women.  The interesting observation that female 

participants are more prone to discomfort during adenosine infusion is in agreement with 

previous reports.206 Even if side effects occurred during breathing manoeuvres, they appear to 

be of shorter duration.  Another advantage of breathing manoeuvres is that patients have full 

control over their breathing and thus can resume normal breathing if they feel uncomfortable, 

without requiring immediate action by medical staff.  This on the other hand requires 

compliance to yield meaningful results, similar to physical stress tests.  We did not assess 

patients and thus cannot infer that long breath-holds with or without hyperventilation are as 

easily tolerated by subjects with heart disease.  Thus, results may be different in patients.  Yet, 

the fact that none of the participants reported the test to be difficult or inconvenient indicates, 

that also patients would likely tolerate breathing manoeuvres better than vasodilator infusions. 

The duration of a voluntary breath-hold may be influenced by many factors such as 

initial gas content, lung volume, chemoreceptor sensitivity, secondary diseases, tolerance, and 

patient compliance.86  

Interestingly, we observed that the maximal change, independent from the duration of 

the breath-hold was rather consistent among individuals, suggesting that this parameter may 

be less reliant on patient compliance than the overall change and could more accurately 

distinguish the vascular response with minimal influence of breath-holding ability.  As we 

could show, preceding hyperventilation facilitates long breath-holds and participants were able 

to hold their breath on average for >60 seconds, while the maximum SI was reached after 

about 40 seconds. Yet, even as early as 15s into the breath-hold after hyperventilation, we 
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observed significant changes.  In addition to its apparently better feasibility, the HVBH 

protocol demonstrated stronger and more consistent results than the breath-hold without 

hyperventilation (LBH).  With CO2 being the strongest breathing stimulus, previous 

hyperventilation extends the breath-hold duration by reducing the CO2 content and thus 

shifting the starting level farther from the thresh-hold at which the breakpoint of a breath-hold 

occurs.85,86  With the extended breath-hold, the participant undergoes a greater range in CO2 

and coronary vasomotion.  On the other hand, hyperventilation has a vasoconstrictive effect, 

which may not be tolerated as well in patients, and the relationship between hyperventilation-

induced vasoconstriction and the severity of coronary artery stenosis deserves more research.  

Furthermore, the significant increase of heart rate we have observed may increase oxygen 

demand and thus hyperventilation-related changes may be more pronounced in patients.  

The evaluation and interpretation of oxygenation-sensitive CMR images during 

voluntary breathing manoeuvres in patients’ needs to be further elucidated. While this study 

demonstrates that changes myocardial oxygenation can be induced with breathing 

manoeuvres, we are unable to assess the ability of the technique to detect myocardial ischemia 

until a patient population is investigated.   While SI changes may be simple, this approach can 

be compared with parameters such as area under the curve, maximal slope or specific time-

points.  Furthermore, several potential confounders for the signal intensity in OS-CMR images 

have to be considered, such as the total amount of dHb as well as the ratio of dHb to free 

tissue water.24,207,208  

Of note, our observation that breathing manoeuvres have a strong effect on the 

myocardial oxygenation also indicates that breathing patterns during standard imaging 

protocols with pharmacological agents may be important confounders.   

 

Limitations 

As discussed before, the utility of breathing manoeuvres may be subject to participant 

compliance. Hyperventilation may induce coronary vasospasms, yet such reports however 

related to hyperventilation periods longer than 5 minutes110,205 and thus, the risk of a 60s 

period likely is smaller.  We only acquired data on a single slice in order to achieve the 
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temporal resolution for monitoring oxygenation changes.  In clinical settings, the experiment 

may have to be repeated for more coverage.  Yet as the entire data acquisition time per slice 

mounts to less than 5 minutes, this may not be a truly limiting factor. 

As the expected risk is very small, our sample size did not allow us to assess safety. 

 

 

4.6 Conclusion 

Our data provide evidence that breathing manoeuvres, specifically hyperventilation 

with or without a subsequent long breath-hold, may have a stronger impact on myocardial 

oxygenation than intravenous administration of a standard dose of adenosine.  Both the 

vasoconstrictive and vasodilative response of the coronary vasculature can be observed by 

oxygenation-sensitive CMR during the same manoeuvres.  Breathing manoeuvres may serve 

as a safer, more comfortable and more efficient alternative to intravenous vasodilators for 

diagnostic procedures and future development for this technique would be to assess if 

breathing manoeuvress can detect inducible myocardial ischemia in clinical settings.  
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4.8 Translation from healthy participants to patients 

Limitations of a Younger Control Group 

The mean ages of the healthy volunteers for both chapter 4 (43 years) and for the 

upcoming chapter 5 (28 years), and these are both significantly younger than typical 

cardiovascular patients. This can pose a limitation, as attenuated responses in the patient 

groups in comparison to these young controls could be due to both cardiovascular disease and 

increased age. If the data from the healthy volunteers of both chapters are combined, currently 

there is not a linear relationship to the age of the participant (Figure 26), although this analysis 

is just from a fairly small study population. Thus, the current data cannot answer about the 

impact of age on the oxygenation response to breathing maneuvers.  

 

 

Figure 26: Effect of age on the healthy control OS-CMR response 
Combined data from chapter 4 (circle) and chapter 5 (triangle) show that with the age range assessed, 
there is no relationship between the signal response at 30s into the HVBH and the age of the 
participant. Both chapters used the same sequence, MRI scanner, and breathing maneuver protocol. 
From the data in the graph, the lower limit of 1 standard deviation of the mean was 4.6%, which most 
healthy participants exceeded, the three low data points all had poor image quality (graded 3/4).  

 

The rationale, for younger participants in chapter 5 will be discussed further in the 

chapter discussion, but in summary for the upcoming chapter it was decided to obtain a young 

healthy participant group that would have a minimal likelihood of microvascular dysfunction. 

While not specifically reported for OS-CMR imaging, perfusion imaging studies have shown 

that after the age of 70, perfusion is significantly diminished in relatively healthy but elderly 
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participants, while up until the age of 60 the response appears stable209,210. Consequently, a 

patient could have a diminished response due to age as well as to cardiovascular disease. 

Nevertheless, as the oldest age of healthy participants in this thesis was only 63, the effect of 

advanced age cannot really be assessed with this data. A larger scale trial currently being 

prepared will recruit larger samples of volunteers to better assess this factor.  

 

Preparing the Protocol for Clinical Studies 

In chapter 4, three vasomotor response tests were assessed with OS-CMR: adenosine, 

the combined hyperventilation breath-hold (HVBH) and a normal long breath-hold (LBH) 

from baseline breathing. Specifically, between the two breath-holds, chapter 1 and 4 showed 

that the HVBH was the more consistent maneuver and induced a greater change in SI than the 

LBH. Additionally, as shown in chapter 4 and described in the introduction as well, 

hyperventilation pre-conditions a person to make a longer breath-hold, which in healthy 

volunteers could be maintained for almost an additional 30s. This is due to the fact that even 

just 60s of hyperventilation induces hypocapnia83,211, and a greater range of CO2 can be 

assessed before the participant gets hypercapnic and needs to breathe. This is important as for 

the next chapter, the coverage for the OS imaging will be increased from one slice to 2 slices. 

This will allow for more data across the heart.  However, this will also decrease the data 

obtained within a specific time period by half, as the MRI will now alternate the acquisition of 

the two slices in each measurement. Subsequently, a longer breath-hold is preferred to ensure 

enough data points are acquired, and commonly cardiovascular patients coming for CMR 

exams do not hold their breath for much longer than 15s if they do not hyperventilate first. 

Furthermore, a key goal in CMR exams is to make new techniques as fast and simple as 

possible, and refining the breathing maneuver protocol to just one method should require less 

than 5 minutes to set up and perform. And finally, although most vascular exams rely on the 

response to a vasodilating stimulus, the vasoconstrictive mechanism of hyperventilation may 

provide useful information as well. Consequently, the HVBH has been chosen to be the 

optimum breathing maneuver to progress into clinical studies. 



 

 

Part 3: Assessment in a Cardiac Patient Population 
 

5 Chapter 5 - Revealing the impact of breathing 

maneuvers on myocardial oxygenation in multi-vessel 

coronary artery disease: an interim analysis 

Foreword 

This chapter presents an interim analysis of a study in progress at the Bern University 

Hospital (Inselspital), Switzerland. All participants are recruited from Europe and thus 

represent a different population from the Canadian healthy controls reported in chapter 4. This 

interim report includes data from 6 healthy volunteers, and the first 7 CAD patients recruited 

into the study. Eventually the full sample size will include 10 healthy volunteers and 26 CAD 

patients. This study continues from chapter 4 and applies the breathing maneuvers as a 

technique to assess if there are myocardial oxygenation abnormalities in CAD patients that can 

be detected by OS-CMR. For this study, I spent one year in Switzerland helping to prepare the 

study, conduct some of the MRI exams, performing the primary MR image and statistical 

analysis, as well as composing the manuscript. Funding was provided locally by the 

Department of Anaesthesia and Pain Medicine at the Inselspital. This data is also used for a 

scientific presentation at the congress for the European Society of Cardiothoracic Anaesthesia 

(EACTA 2016) in Basel, Switzerland. 
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5.1  Abstract 

Background: The use of a breathing maneuver combining hyperventilation and a 

subsequent breath-hold has been successfully used as a non-pharmacological vasoactive 

stimulus to induce changes in myocardial oxygenation in healthy volunteers and animal 

models. This study was undertaken to assess if this maneuver is feasible in CAD patients with 

multi-vessel disease, and effective at detecting haemodynamically relevant coronary artery 

stenosis.  

Methods & Results: An interim analysis was performed from a study that will 

eventually incorporate 26 patients and 10 healthy controls.  Six healthy controls, and seven 

patients with angiographically verified coronary artery stenosis underwent a contrast-free 

cardiovascular magnetic resonance (CMR) exam involving function imaging, T1 mapping for 

edema, and oxygenation-sensitive CMR (OS-CMR) imaging. During OS-CMR, patients 

performed a controlled hyperventilation for 60s and immediately thereafter held their breath as 

long as they felt comfortable. All CAD patients were able to complete the breathing 

maneuvers including an extended breath-hold after hyperventilation (69±25s). While function 

and edema analysis did not significantly differ between groups, CAD patients had a 

significantly attenuated global myocardial oxygenation response in comparison to the healthy 

controls during both the hyperventilation (-1.8±3.8 vs -11.0±6.6%, p=0.003) and breath-hold 

(1.4±2.5 vs 10.7±8.4%, p=0.010) components. Furthermore, in CAD patients the regions 

subtended by a stenotic vessel differed in their response to the breath-hold technique from the 

remote territories.  

Conclusion: Breathing maneuvers in combination with oxygenation-sensitive 

cardiovascular magnetic resonance, are clinically feasible and may detect myocardial 

oxygenation abnormalities related to coronary artery stenosis in patients with CAD, without 

the use of any pharmacological vasodilators or contrast agents. These results come from a 

small sample size, and analysis of the complete study will provide a greater understanding of 

the technique.  

 

Keywords: Coronary Artery Disease ▪ Oxygenation-Sensitive Cardiovascular Magnetic 

Resonance ▪ Breathing Maneuvers ▪ Quantitative Coronary Angiography 
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5.2 Introduction 

The current imaging recommendations for assessing the impact of coronary artery 

disease (CAD) on myocardial vascular function involve using a stressor or vasodilator with a 

functional imaging modality such as myocardial perfusion scintigraphy (MPS), cardiovascular 

magnetic resonance imaging (CMR) or echocardiography212. CMR first-pass perfusion 

combines the iv administration of a contrast agent with a pharmacological vasodilator. This 

approach however only observes the contrast agent inflow into the myocardium and not 

myocardial oxygenation, which would precisely reflect the balance of both perfusion-

dependent oxygen delivery and myocardial oxygen demand. Furthermore, this sequence 

requires the injection of a contrast agent, commonly gadolinium agents, which may have 

short-term and long-term side effects and are also contraindicated in patients with renal failure 

or known gadolinium allergy. This presents a significant problem, as the prevalence of kidney 

failure at any stage (glomerular filtration rate, GFR<60ml/min/1.73m2) in stable CAD has 

been reported to be as high as 22% in a large international trial including more than 22,000 

patients21. Thus these patients may not undergo important imaging exams due to risks posed 

by the contrast agent. Furthermore, recent evidence indicates that gadolinium may accumulate 

in brain tissue of healthy individuals22. Recently, oxygenation-sensitive (OS)-CMR has been 

proposed for assessing myocardial oxygenation. These CMR sequences do not rely on 

pharmacological contrast agents, and thus can be performed when contrast agents are 

contraindicated. OS-CMR instead is based on the signal attenuating effects of the local 

deoxyhaemoglobin fraction, which were first described by blood oxygen level-dependent 

(BOLD) studies in brain MRI24. In the presence of a short-term vasoactive stimulus, the tissue 

oxygenation response can be derived from the signal intensity changes in OS-CMR images, 

due to respective changes in the local deoxyhaemoglobin fraction. In healthy vasculature, 

vasoactive stimuli will increase blood supply without an accompanying increase in oxygen 

demand, and thus an increase in myocardial oxygenation will be observed. However, in the 

presence of a fixed coronary stenosis or microvascular dysfunction, the blood vessels cannot 

respond as effectively, or the more peripheral vessels are already at a chronic maximum 

dilation. Consequently, myocardial oxygenation will not increase to the same extent as in 

healthy myocardium, or even a decrease may be recorded as signal deficit, due to effects such 
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as coronary steal, increased oxygen demand without a compensatory increase in blood flow, or 

post-stenotic capillary recruitment, i.e., when vessels down-stream of a stenosis dilate with 

deoxygenated blood31. In combination with pharmacological vasodilation, OS-CMR has been 

successfully used to detect myocardial oxygenation abnormalities in CAD34,35,38. Recently, we 

have investigated the use of breathing maneuvers as an endogenous non-pharmacological and 

less expensive vasomotor stimulus. In healthy volunteers, breathing maneuvers had a 

significantly stronger impact on myocardial oxygenation than the gold-standard of 

adenosine47, and in an animal model, breathing maneuvers combined with OS-CMR could 

detect myocardial oxygenation deficits in the presence of an induced coronary stenosis 

(chapter 1).  

In this study, we focus on hyperventilation combined with a breath-hold (HVBH). It is 

known that hyperventilation induces myocardial and cerebral vasoconstriction110,157, but 

hyperventilation with its state of hypocapnia not only allows for a longer breath-hold 

immediately thereafter86, but also for monitoring a greater range of vasoreactivity, going from 

vasoconstriction to vasodilation. So far, such breathing maneuvers in combination with OS-

CMR have not been tested as a diagnostic technique in a human population with CAD. This 

study implements this technique to assess myocardial oxygenation in CAD patients, by 

comparing it in a known stenosis-dependent territory with remote territories of the same 

patient, as well as in healthy volunteers. 

 

5.3  Methods 

Interim Analysis 

Sample size calculated prior to enrolment called for the inclusion of 10 healthy 

volunteers and 26 CAD patients. This interim analysis includes data from 6 healthy 

volunteers, and 7 CAD patients.  
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Participants 

Healthy participants were recruited by public notification, and were required to be non-

smokers for the last six months, free of any medication that would affect the cardiac or 

circulatory system, and with a medical history free of cardiac or pulmonary disorders, or 

disorders which are known to affect the microvasculature such as diabetes and previous 

chemotherapy. Eligible patients for the CAD group were identified from catheterization 

laboratory schedules for staged percutaneous coronary intervention (PCI) procedures, and 

were included if their first quantitative angiographic analysis showed at least one untreated 

major vessel with a diameter stenosis of >50%. All participants must have been older than 18 

years, capable of providing consent and not be pregnant or have any MRI contraindications, 

including MRI non-compatible metallic objects such as pacemakers and defibrillator leads. 

Patients with acute myocardial infarction, coronary bypass grafts, or severe pulmonary 

diseases were also excluded. 

 

Quantitative Coronary Angiography (QCA) 

QCA of all vessels was performed for research purposes post-angiography by a trained 

cardiologist independent from the MR analysis (QangioXA version 7.3, Medis Medical 

Imaging Systems, Leiden, the Netherlands).  This reader then coded each AHA segment as 

either 1, remote, perfused by a healthy coronary artery; or 2, affected by a significant stenosis; 

or 3, perfused by a stented vessel; or 4, undetermined.  

 

CMR Protocol  

The CMR exam was performed between the two angiographic visits of the staged PCI, 

allowing for quantification in myocardium subtended by untreated vessels in non-acute 

patients. Prior to the CMR exam, participants were asked to refrain from consuming caffeine 

or taking any medication with calcium antagonists or nitrates within 12h prior to the exam. 

As shown in Figure 27, for the CMR exam, localisation, cardiac function, T1 maps and 

oxygenation-sensitive images were acquired. All images were obtained at an end-expiratory 
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breath-hold. OS-CMR was imaged during breathing maneuvers as vasoactive stimuli47. This 

breathing maneuver protocol involved a baseline image, followed by 60s of voluntary 

hyperventilation at a rate of 30 breaths/min paced by a metronome. Immediately after 

hyperventilation, the participant performed a long breath-hold during which the heart was 

imaged continuously with the OS-CMR sequence. The breath-hold was sustained until the 

participant indicated the need to breathe. Blood pressure, heart rate and SpO2 (transcutaneous 

pulse-oximetric arterial oxygen saturation) were monitored continuously and were recorded 

prior to hyperventilation, post-hyperventilation, and at the end of the breath-hold. The patients 

reported any adverse effects to the study nurse immediately after the breathing maneuvers.  

 

 
Figure 27: Schematic of protocol 

The imaging exam was performed between the two visits of a staged PCI, so that the degree of a 
stenosis was verified by quantitative coronary analysis (QCA) prior to the CMR exam. Localizers, 
Function imaging, T1-mapping were acquired according to normal protocol, and OS-CMR was 
performed during a breathing maneuver of hyperventilation and subsequent breath-hold.  

 

CMR Parameters 

All imaging took place in a clinical 3T MRI system (MAGNETOM Skyra 3T; Siemens 

Healthcare, Erlangen, Germany). Function images were obtained covering the ventricles with 

7 to 10 short-axis (SAX) slices using a standard ECG-gated balanced steady-state free 

precession (bSSFP) cine sequence (temporal resolution/echo-time (TR/TE) 1.43ms/3.3ms, flip 

angle 65°, voxel size 1.6x1.6x6.0mm, matrix 192x120, bandwidth 962Hz/Px). T1 maps were 

imaged in the basal and mid-ventricular SAX slices to assess edema with a 5(3)3-modified 

Look-Locker sequence (MOLLI: TR/TE 281ms/1.12ms, flip angle 35°, voxel size 

1.4x1.4x8.0mm, bandwidth 1085Hz/Px). OS-CMR images were obtained in the same two 

slices with an ECG gated bSSFP sequence that acquired a measurement every 4 heartbeats 

(TR/TE 1.70ms/3.4ms, flip angle 35°, voxel size 2.0x2.0x10.0mm, matrix 192x120, 

bandwidth 1302Hz/Px).  
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CMR Image Blinding & Analysis 

The MR exam of each participant was re-coded so the CMR reader was blinded to the 

identity of the participant, allocation to group, and any angiography results. All CMR analysis 

was performed using cvi42 (Circle CVI, Calgary, Canada). Standard function parameters were 

calculated including ejection fraction (EF), stroke volume (SV), cardiac output (CO), and 

myocardial mass indexed to the body surface area (BSA). From the same function images, 

circumferential strain was calculated for the left ventricle from the apex to the base, excluding 

slices that included the outflow tract. T1 and OS-CMR images were analyzed using manually 

defined epicardial and endocardial contours. The analysis software further segmented the 

myocardium automatically following the AHA definitions, and reported an individual value 

for each segment in addition to a global value for the entire slice. After image analysis, the 

results of the group and angiography were un-blinded, and the segmental MR values were 

grouped based on the QCA categorization, as defined above (Figure 28). 

 

 

Figure 28: Analysis of Angiography and CMR Images 
Quantitative coronary angiography was performed to verify the degree of the stenosis (a), and based 
off these results, (b) the reader classified what regions of the left ventricle would be affected by a 
significant lesion >50% (black), affected by a recently stented coronary artery (grey), or as unaffected 
remote territory (green). CMR analysis was performed blinded to the angiography results, and values 
were obtained per segment (c), after which the angiographic results were unblended and MR values 
per segment were averaged based on the QCA classification (d).  

 

 

Thus, for the CAD patients, measurements were obtained for the global myocardium, 

as well as for the affected and remote segments. Only global values were measured for the 

myocardium of the healthy volunteers. Relative OS signal intensity (SI) was reported as a %-
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change from the baseline image for the hyperventilation analysis, while for the breath-hold 

analysis a %-change was calculated for each measurement compared to the initial image of the 

breath-hold period: the measurement at a breath-hold duration of 30s was used for statistical 

analysis.   

 

Statistical Analysis 

All values are reported as mean±SD. Demographics and function analysis was 

compared between the two groups with independent t-tests. A univariate ANOVA with 

Bonferroni correction for multiple comparisons was used to compare the global and regional 

CMR results from CAD patients to the healthy controls; additional within-group analysis 

compared affected regions to remote myocardium. Paired t-tests for the breathing maneuvers 

assessed if the SI and haemodynamic measurements changed from baseline. Tests were 

performed with GraphPad Prism version 6.0 (GraphPad Software, La Jolla California USA) 

and SPSS version 23 (SPSS IBM, New York, USA).  Results were considered statistically 

significant at a two-tailed P<0.05.  
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5.4 Results 

Participant Characteristics 

All six of the reported healthy participants were aged 35 years or younger, had a BMI 

below 28 kg/m2, and did not report any cardiovascular related medical history or medication. 

The CAD patient group was significantly older and in its majority on chronic medication 

(Table 14).  

 Healthy CAD 
Demographics   

n 6 7 
Age (years) 

range 
28 ± 4 

(23 – 35) 
65 ± 15 
(47 - 84) 

BMI (kg/m2) 
range 

24.4 ± 2.7 
(19.9 – 28.0) 

 27.8 ± 3.7 
(23.4 – 34.0) 

sex 4M / 2F 7M / 0F 
 
Comorbidities 

  

Dyslipidemia - 5 (71) 
Hypertension	 -	 4 (57)	

Diabetes - 2 (28) 
Smoker - 2 (28) 

OSAS - 1 (14) 
 
Medications 

  

Aspirin - 7 (100) 
Anti-Platelet - 7 (100) 

Statins - 7 (100) 
Beta-Blockers - 6 (86) 

ACE-Inhibitors - 4 (57) 
AT2R-antagonist - 2 (28) 
Calcium channel 

blocker 
- 1 (14) 

Other - 4 (57) 
Table 14: Participant Characteristics 

Demographics are reported as mean±SD, or as patient count 
and prevalence (n; %) of known diseases and medications, as 
reported by the volunteer or on file in patients´ hospital 
records. BMI: body mass index, OSAS: obstructive sleep 
apnea syndrome, ACE: angiotensin-converting-enzyme, 
AT2R: angiotensin-II receptor.  

 

Function, Strain and T1 

Between the two groups, there were only minor and statistically insignificant  

differences in functional parameters or abnormalities (Table 16). In CAD patients there were 

non-significant trends of a lower stroke volume index and cardiac index (0.10>p>0.05). All 

participants, including the CAD patients, had a normal ejection fraction above 50%. When 

compared to the healthy myocardium of volunteer participants, CAD segments affected by a 
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significant stenosis showed a non-significant trend to abnormal peak circumferential strain 

(CAD, -19.0±2.4%, vs. healthy volunteer, -21.6±1.1%; p=0.145). This however did not 

amount to a significant global strain abnormality in CAD patients (Figure 29). Myocardial T1 

as a marker for edema did not differ between groups. 
 

 

Figure 29: Global and regional CMR results 
Mean (Min-Max) results of peak global circumferential strain, T1 mapping, and %-change in SI from the OS-
CMR during hyperventilation and at the 30s time-point in the breath-hold. CAD patients (black) were 
assessed for the global myocardium, as well as for regional analysis of segments affected by a significant 
stenosis, and the remote territory, whereas data for the healthy volunteers is reported as a global value 
(green). In CAD patients, both the affected segments and global myocardium mounted only a significantly 
attenuated response to the breathing maneuvers, when compared to healthy controls (#p<0.05). Healthy 
volunteers had a significant decrease in myocardial SI after hyperventilation, and a significant increase after 
30s into the breath-hold (*p<0.05 for difference to baseline). 

 
 

Breathing Maneuvers 

All participants completed the breathing maneuvers, with only one healthy volunteer 

(t=28s) and one patient (t=19s) not maintaining the breath-hold for 30s. However, the OS 

response of both participants fit well within the mean±1SD for their respective groups, despite 

the abbreviated breath-hold.  
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In healthy controls, hyperventilation had the strongest effect upon the rate pressure 

product. Here, blood pressure increased by a mean of 8 mmHg and heart rate rose by a mean 

of 59 bpm, which normalized during breath-hold (Table 15). The CAD patients experienced 

no comparable rate pressure product response, most likely since the majority (6/7) were 

treated with a beta-blocker. Participants only reported three types of adverse effects during the 

breathing maneuvers: tingling in the extremities (Healthy: n=2, CAD: n=2), temporary 

headache (Healthy: n=1) and dizziness (Healthy: n=1), while 3 healthy participants and 5 

CAD patients reported no side effects.  

 

 Hyperventilation  Breath-Hold 

 Healthy  CAD   Healthy   CAD 
Δ Blood Pressure 

 (SYS/DIA, mmHg) 8±7/8±4* -1±6/-2±7  4±5/5±6 6±9/0±5 

Δ Heart Rate 
(bpm) 59 ± 23* 2  ± 4  - 44 ± 24* 6 ± 11 

Δ SpO2 
(%) 3 ± 2* 1 ± 2  -11 ± 8* -7 ± 12 

Duration  
(Range; s) - -  63 ± 25 

(28 – 98) 
69 ±37 

(19 – 141) 

Table 15: Measurements during breathing maneuvers 
Mean±SD changes in haemodynamics and oxygenation during the hyperventilation and breath-
hold maneuvers (*p<0.05 difference between end and start of maneuver). SYS, systolic; DIA, 
diastolic; bpm, beats per minute; SpO2, transcutaneous pulse-oximetric arterial oxygen saturation. 

 
 

OS-CMR 

During hyperventilation, healthy volunteers responded with a significant reduction in SI 

(-11.0 ±6.6%; p<0.001 vs baseline), whereas the global myocardial response of the CAD 

patients was attenuated in comparison to the healthy response (-1.8±3.8%; p=0.003 vs. 

healthy), and did not significantly differ from baseline. No difference was observed with this 

maneuver between segments subtended by a significant coronary artery stenosis and remote 

territory (Figure 30); however, during the subsequent breath-hold the two types of segments 

responded differently (affected, -1.1±2.9; vs remote, 2.9±4.7, p=0.041, Figure 30). Globally, 

healthy volunteers were able to increase their myocardial oxygenation during this vasodilating 

stimulus (10.7±8.4%; p=0.026 vs baseline), whereas CAD patients (global; 1.4±2.5%, 

p=0.010) responded significantly less than the control (p=0.010 vs control). 
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5.5  Discussion 

Without the use of any pharmacological vasodilators or contrast agents, the 

combination of oxygenation-sensitive CMR and a combined hyperventilation/breath-hold 

breathing maneuver appears to allow for the detection of an attenuated myocardial 

oxygenation response in patients with stenotic coronary artery disease. When combining a 

vasoconstrictive phase with a vasodilating-breathing maneuver, a wide range of vasomotion 

can be assessed. It should be noted that the reported results are just from an interim analysis 

with a small sample size. Nevertheless, these preliminary results are promising, since even in 

this limited dataset there are clear oxygenation abnormalities detected by the technique.  

 
Figure 30: Myocardial oxygenation in coronary artery disease 

In a healthy participant, subtraction images of the mid-ventricle slice display the difference in signal intensity (SI) 
per voxel between two images (neurolens.org) and demonstrate that in a healthy participant hyperventilation causes 
a uniform decrease in myocardial oxygenation (A), whereas an increase is observed during the breath-hold (B). For 
the CAD patient presented, angiography showed un-treated stenosis in the left anterior descending coronary artery 
(LAD), with the right coronary artery (RCA) recently stented, while the patent left circumflex artery (LCx), 
responsible for blood supply of the lateral wall, was relatively normal according to the QCA (C). During 
hyperventilation (D, G), the remote territory responded similarly to the healthy volunteer, whereas an abnormal 
response was seen in the affected territory with an increase in SI. Similarly during the breath-hold, the remote 
territory responded with a normal increase in SI, but the affected regions had an oxygenation decrease. Bulls-eye 
plots of the %-SI change in this patient (G, H) show that the effect is more pronounced in the mid-slice, than in the 
basal slice. A coronary stent in the RCA caused artifacts in the inferior wall of the MR images for the CAD patient.  
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CAD 

The patients included in this study had multi-vessel coronary artery disease, in which 

vascular dysfunction has very likely developed over time, rather than as an acute vessel 

obstruction. The regional differences observed in our sequences varied between patients. 

Some patients had clear differences in MRI results between affected and remote territory, 

whereas other patients had a more consistent global abnormality. Furthermore, as seen in 

Figure 29, values obtained from the affected regions were fairly consistent, whereas remote 

regions showed large variation. For example, 3 of the 7 patients showed a regional difference 

with at least a 4% difference between the two territories, in which the remote territory showed 

an increase in signal (Figure 31B). On the other hand, 2 other participants showed an 

oxygenation abnormality in the regions subtended to a significant stenosis, and the remaining 

myocardium was affected as well, resulting in a global deficit (Figure 31C).  This is likely due 

to a widely variable pattern of microvascular dysfunction in multi-vessel disease, which may 

also affect vasomotion of remote myocardium. Furthermore, variability in collateralization and 

coronary steal can also produce variable results in the remote territories34,140.  

 

 

Figure 31: Patterns of oxygenation during the HVBH 
As described in the introduction (section 0.7, Figure 10), there were three patterns of oxygenation 
observed in the CAD group. The most common pattern (n=3/7) was the regional abnormalities (b), where 
there was an oxygenation abnormality in the affected regions, but the remote regions had a normal or mild 
abnormal response. On the other hand, 2 participants, showed a global abnormality (C), in which the 
majority of the myocardium showed an oxygenation deficit. One participant, showed only a mild OS 
abnormality despite significant lesions (a), while the remaining participant had results in between B and C. 
The affected territory, perfused by an artery with an untreated lesion is shown in white.  
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For example, in the presented case study (Figure 30), during the vasodilatory breath-

hold, the decreased resistance in the healthy vessels may redirect blood flow away from the 

affected regions, which are unable to dilate as effectively (steal effect). The opposite effect 

may occur during hyperventilation when healthy vasculature is able to constrict and thereby 

increase its coronary resistance (reverse steal or Robin Hood effect). Thus more blood flow 

may be redirected to affected segments with dysfunctional vasculature that may not have been 

able to constrict as well. In Figure 30, hyperventilation actually decreased myocardial 

oxygenation less in affected segments, compared to the marked OS-CMR decrements seen in 

healthy myocardium. Similar to the animal results in chapter 1, during the breath-hold the OS 

imaging can significantly detect abnormal regional myocardial oxygenation in territories 

subtended to a coronary lesion. This chapter however also shows that the hyperventilation 

maneuver has a significant effect on signal, and there is a much stronger oxygenation response 

is observed in humans. This leads to greater differences between abnormal and healthy 

myocardium (mean 11.8%) in the human analysis, which could allow for a greater confidence 

when determining if a patient has an oxygenation abnormality.  

 

This interim analysis did not assess specifically myocardial regions subtended by 

vessels that had just been treated in the primary angiography, other than their inclusion in the 

global myocardial analysis. As seen in the CAD patient presented in Figure 30, such regions 

may still react similarly to the affected regions. This presents an interesting aspect that can be 

assessed when the study has recruited the full sample size.  

 

Furthermore, we did not rule out the presence of scar tissue, which is a common 

finding in coronary artery disease and can affect perfusion or oxygenation results owing to the 

loss of vessels and viable tissue in the affected region. While native T1 values (i.e. without 

contrast agent) have been shown to be associated with myocardial edema213, recent reports 

suggest that myocardial fibrosis can be interpreted from these values as well214. Mildly 

increased T1 values may signal fibrosis, whereas higher T1 can be a result of myocardial 
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edema215. At the current stage, however, no significant T1 findings were observed in this small 

sample of CAD patients. 

 

Feasibility of the Protocol 

A possible concern about the breathing maneuver protocol is its clinical feasibility; 

including the ability or willingness of patients to perform the breathing maneuvers and 

maintain a breath-hold for 30s, which is the primary analysis point. However, we now 

demonstrated that in our typically elderly patient group with multi-vessel CAD, the mean 

breath-hold time was still around a minute (69±37s) and matched the healthy volunteer group. 

All participants completed the breathing maneuvers, and only minor adverse effects were 

reported, for instance tingling in the extremities or temporary dizziness from hyperventilation.  

 

Limitations 

In the present study, severe coronary stenosis is determined by QCA measurements, 

rather than with fractional flow reserve (FFR), which is considered the gold standard for 

verifying a clinically significant coronary artery stenosis. Whereas QCA provides a visual 

assessment of the stenosis, FFR can determine its haemodynamic severity and clinical 

relevance with respect to the need for revascularization. In the case of multi-vessel disease, the 

FAME trial showed that only 46% of the angiographically defined multi-vessel disease cases 

were considered a functional multi-vessel disease when accounting for FFR measurements216. 

In our study a degree of stenosis, angiographically quantified at >50%, may not have a 

significant impact on the blood supply to the myocardium. Another study using OS-CMR with 

adenosine as the vasodilator had shown that the changes in SI were also correlated to the 

degree of stenosis assessed by QCA, albeit weaker than with FFR in the same study38.  

 

Rationale for Healthy Group 

In this study, younger participants in good general health were recruited since they 

most likely have minimal microvascular or other cardiovascular dysfunction, which in turn 
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may cause an abnormal oxygenation response. Thus we clearly recognize that differences in 

CMR results between the CAD group and the healthy volunteers could also be caused or 

influenced by numerous other factors such as age, BMI, and use of medications. Yet, The 

oxygenation response of these volunteers was similar to the results of chapter 4, which 

recruited an older healthy population47. As discussed in section 4.8, the perfusion reserve is 

known to decrease with age, especially once participants are older than 70 years old. Often 

there is greater variation in data with increasing age, as there is a more diversity in the degree 

of microvascular dysfunction that could have built up in a lifetime. Yet this is information that 

cannot be accurately assessed in a small sample of healthy participants. The impact of age on 

the myocardial oxygenation reserve during breathing maneuvers will have to be assessed in a 

larger scale study that will recruit larger numbers of elderly yet healthy participants. 

 

5.6  Conclusion 

A combined respiratory maneuver of hyperventilation and subsequent breath-holding is 

a feasible and effective method for inducing a coronary vasomotor response. In combination 

with oxygenation-sensitive CMR, it may allow for detecting myocardial oxygenation 

abnormalities associated with significant coronary artery stenosis in patients with multi-vessel 

CAD. Completion of the study will help to further evaluate diagnostic accuracy of the 

technique and to define its applicability in assessing regional myocardial oxygenation 

abnormalities in multi-vessel coronary artery disease.    
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5.7  Supplemental Information 

 

 Healthy   CAD  P 
Ejection Fraction  

(%) 
72 ± 3 

(range: 68-76) 
65 ± 10 

(range: 52-77) 0.109 

EDV/BSA  
(ml/m2) 91 ± 15 82 ± 10 0.264 

ESV/BSA  
(ml/m2) 25 ± 5 29 ± 10 0.378 

SV/BSA  
(ml/m2) 65 ± 12 53 ± 10 0.069 

Mass/BSA 
(g/m2) 65 ±17 65 ± 13 0.957 

Cardiac Index 
(L/min/m2) 4.5 ± 0.9 3.4 ± 1.1 0.067 

Blood Pressure 
(SYS/DIA, mmHg) 122±14/60±11 135±15/78±10  

Table 16: Supplemental - cardiac function parameters 
Mean±SD of the functional measurements, and resting non-invasive blood 
pressure obtained at the beginning of the CMR exam. EF, ejection fraction; 
EDV/BSA, end-diastolic volume indexed to body surface area; ESV/BSA, 
end systolic volume indexed to body surface area; SV/BSA, stroke volume 
indexed to body surface area, and mass indexed to body surface area. *p<0.05 
for differences observed between groups. 

 
 
 

 
 

Supplemental Video 1: Dynamic oxygenation response 
The dynamic response of the myocardial oxygenation response over the breath-
hold following hyperventilation (HVBH) is shown for the data in figure 30. A 
healthy participant (top), demonstrates OS increases homogenously in the first 30s 
and then plateaus. For the patient with an LAD stenosis and RCA stent, the 
anterior and septal walls show an oxygenation deficit that decreases during the 
breath-hold, while the remote territory in the lateral wall shows a healthy 
response. The graph shows the mean response of all healthy participants, and the 
data of the mid-apical slice of the individual patient. 

  

Video is included in submission 
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6 Summary and Conclusion 
The work presented in this manuscript describes the development of a novel technique for 

assessing the capacity of the coronary vascular system to increase myocardial oxygenation in 

response to breathing maneuvers as a vasodilatory stimulus. Specifically, our data show, that a 

breathing maneuver combining hyperventilation with a breath-hold consistently induces a 

significant change in myocardial oxygenation, which is impaired in the presence of coronary 

stenosis. The oxygenation response can be reliably measured by oxygenation-sensitive 

cardiovascular magnetic resonance (OS-CMR).  

The breathing maneuver combines the vasoconstrictive effect of hyperventilation with the 

strong vasodilating stimulus from the breath-hold. This allows for assessing both, constrictive 

and dilative function and thus a broad range of coronary vascular reactivity. 

 

Validation in an animal model demonstrated that breath-holds (induced by a pause in 

ventilation) had an even stronger impact on coronary blood flow than adenosine, which is 

currently considered the standard agent for inducing vasodilation. Moreover, breath-holds of 

even very short duration had a significant impact on invasively measured coronary blood flow, 

while hyperventilation significantly reduced blood flow. The strong vasomotor tone induced 

by the breathing maneuvers also resulted in significant changes to myocardial oxygenation. 

While hyperventilation resulted in an OS signal decrease, there was a strong signal increase 

during the breath-hold. Again, this led to a stronger increase of the OS signal than observed 

with adenosine. The clinical feasibility of breathing maneuvers for diagnostic purposes was 

demonstrated in chapters 4 & 5, as human participants could always perform the maneuvers 

and reported minimal side-effects, even in an aging cardiac disease patient group.  

 

 Our experiments in animals with experimentally induced coronary artery stenosis and in 

a small patient population with multi-vessel coronary artery disease have shown that this 

technique appears feasible for diagnostic testing in patients with suspected myocardial 

ischemia. Now further studies are warranted to better understand the clinical utility and 

diagnostic performance of breathing maneuvers in combination with OS-CMR. This may be 

particularly useful when contrast agents, or pharmacological vasodilators are contraindicated 
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but also for avoiding associated side effects and cost. The studies may provide an important 

step toward a comprehensive diagnostic test, without radiation, invasive measures, physical 

stress, pharmaceutical agents, or complicated (re-)breathing circuits. 

 

Furthermore, the experiments described in chapters 2 and 3 also looked at the impact of 

steady adjustments of arterial carbon dioxide and oxygen levels on coronary blood flow and 

myocardial oxygenation. In the animal model, hyperoxia, induced by supplemental oxygen, 

blunted the coronary response to breath-holds and CO2 stimuli, and decreased blood supply to 

the myocardium, further reducing oxygen supply in the presence of a coronary stenosis. This 

suggests that high levels of oxygen could be detrimental in the care of patients with 

myocardial ischemia, and that the use of oxygen during diagnostic exams that rely on a 

vasodilatory response could be a significant confounder. Thus the data also demonstrates the 

importance of breathing patterns of patients as a result of exam-related stress, and 

acknowledge their strong vasoactive effects as a confounder for diagnostic tests using 

vasoactive stimuli. 

 

Continuing with the Hyperventilation Breath-Hold (HVBH) Maneuver 

Overall, the combined breathing maneuver of hyperventilation and breath-holding appears 

to be the best breathing maneuver for inducing consistent and strong myocardial oxygenation 

responses. Already described in more detail in section 4.8, the preceding period of 

hyperventilation allows a sufficient breath-hold to be more feasible (Table 2), and secondly 

the vasoconstrictive stimulus lowers the blood flow and oxygenation baseline, so that when a 

breath-hold is applied a greater range in both vasomotor response and subsequently 

myocardial oxygenation can be measured. As seen in chapter 5, the hyperventilation effect 

may also be useful in detecting oxygenation abnormalities, based on vasoconstrictive stimuli 

alone, yet this will need to be investigated further. This combined technique of 

hyperventilation and breath-holding will be the primary breathing maneuver moving forward. 

 

Limitations of Small Samples and the Impact on Final Conclusions 

The presented data demonstrate that the technique is feasible and effective for inducing a 

different myocardial oxygenation response between healthy controls and coronary artery 
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disease patients, and more specifically, for inducing a different response within the same 

myocardium between healthy and dysfunctional territories in the same myocardium. However, 

as these chapters have only assessed small populations, especially in the human studies, we 

can only assess the general function of the technique. These samples are not complete enough 

to calculate the accuracy and reliability of the data. Assessment in larger sample sizes would 

allow for testing to evaluate if the method is truly consistent and diagnostic by calculating 

reference values, and determining specificity and sensitivity of the technique. Because the 

thesis has demonstrated there is promise with the breathing maneuver method, a larger multi-

center trial is now underway to recruit hundreds of patients and investigate these points listed 

above. When these results will be available, a more in depth assessment of the technique can 

be made. Additionally, this future study can look at the relationship of the OS-CMR to the 

angiographic results, fractional flow reserve, and in most cases nuclear perfusion imaging as 

well. Yet, as described in the introduction, myocardial oxygenation is not equal to myocardial 

perfusion. The OS sequences incorporate blood supply yet the final measurement is one step 

further, based on the oxygenation balance of the tissue, a factor that is not measured with 

perfusion alone. Also, the microvascular dysfunction is not solely dependent on the coronary 

anatomy and presence of significant lesions. However, it is still useful to compare the 

techniques.   

 

The majority of myocardial vascular function imaging is performed to detect inducible 

ischemia, occuring when there is a net lack of oxygen in the myocardium often caused by a 

mismatch of blood supply to the metabolic demands. Oxygenation-sensitive imaging is a 

better measurement for assessing ischemia because it goes beyond the standard perfusion 

techniques that just focus on blood supply, and adds the secondary component of assessing the 

oxygenation. Therefore, OS-CMR is a more direct marker for tissue deoxygenation and thus 

microvascular dysfunction or ischemia, unlike other imaging modalities, which only use 

perfusion, pressure gradients or coronary anatomy as surrogate markers.  

 

The work presented demonstrates that breathing maneuvers and arterial blood gases have 

a significant impact on the coronary vasculature, which in turn affects blood supply to the 

heart and ultimately myocardial oxygenation. By harnessing these mechanisms, breathing 
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maneuvers can be used as a technique to induce a vascular response, and thus, when combined 

with diagnostic imaging, can be useful for identifying inducible myocardial ischemia or 

assessing the oxygenation reserve without the need for pharmaceutical vasodilators, stress 

agents, radiation, contrast agents or physical stress.   

 

7 Future Implications 

The projects laid out in this thesis have resulted in the development of a breathing 

maneuver protocol that is now being tested in several clinical trials, assessing myocardial 

oxygenation in healthy controls and cardiovascular patient groups such as heart failure, 

obstructive sleep apnea, single-vessel coronary artery disease and heart transplants. The next 

phase in progressing this technique for clinical application would then be to assess the impact 

of how other confounders may affect the results and how to reduce these impacts to increase 

the reproducibility of the results. In particular, the most pressing confounders to investigate 

would include heart rate changes, patient positioning, and the impact of co-morbidities, 

especially other significant cardiopulmonary disorders. 

 Future developments would include simplification or automatization of the analysis 

for better integration into the diagnostic report, such as including colour maps, which allow for 

a quick visual analysis of myocardial oxygenation abnormalities. Because of the promising 

data shown in this thesis, this step is already currently underway as of 2016, in which an OS 

(BOLD) analysis module is being prepared by a software company (cvi42, Circle 

Cardiovascular Imaging, Calgary, AB, Canada) and tested by our group. The prototype 

already significantly reduces post-processing time by automatically creating contours on the 

images, calculating the %-change across the breath-hold and visually displaying it in a bull’s-

eye plot. This is still under development to also automatically create visual colour maps 

superimposed right on the image, as demonstrated in the images throughout the thesis (for 

example Figure 29). Because there is a high importance to make this technique implementable 

into a diagnostic routine, our research group will take on the task of making information 

materials and guides so that the post-processing can be as simple and efficient as possible.  
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Figure 32: Example of the new analysis prototype 
A screenshot of the new prototype for analysis shows that the %-change in signal is automatically 
calculated by the software and displayed as a bulls-eye plot. This is of the same patient who is shown 
in Figure 30, in which the lateral wall was healthy territory (high response in this image shown as red), 
where as the anterior and inferior wall were affected by a stenosis or recent stent (blue and purple).  

 

As non-invasive imaging becomes more frequent in cardiovascular care, health-care 

organizations and patients prefer diagnostic techniques that are as non-invasive as possible and 

simple to both perform and analyze. The use of CMR with breathing maneuvers present a safe, 

simple, and cost-effective alternative that does not require any injections and gives control to 

the participant thus presenting a possible improvement to the patient experience. Future 

implementation of the technique will most likely depend on the ability of technologists to 

consistently perform the protocol and on the tools for a fast, accurate and reliable data analysis 

of the data.  

These breathing maneuvers are also not just limited to oxygenation-sensitive CMR, but 

also have the potential to be used as a vasoactive stimulus for any procedure. As recently 

published by our group, the same combined breathing maneuver of hyperventilation and 

breath-holding could significantly induce a perfusion response as assessed by first pass 

perfusion CMR, another well-established sequence that often relies on adenosine as a 

vasodilator217. Furthermore, as shown in chapter 2, the breathing maneuvers induce significant 

blood flow changes in the coronary arteries, and future studies could look into investigating 

this technique for use in fractional flow reserve exams as well. 

The approach has the potential to revolutionize the diagnostic approaches to heart 

disease. Further testing will be needed to verify its clinical utility. 
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9 Appendix 1: Scanning protocol for HVBH 

 

 


