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RÉSUMÉ

Ce mémoire de maîtrise traite de la théorie de la ruine, et plus spécialement des
modèles actuariels avec surplus dans lesquels sont versés des dividendes. Nous
étudions en détail un modèle appelé modèle γ − ω, qui permet de jouer sur les
moments de paiement de dividendes ainsi que sur une ruine non-standard de la
compagnie. Plusieurs extensions de la littérature sont faites, motivées par des
considérations liées à la solvabilité. La première consiste à adapter des résultats
d’un article de 2011 à un nouveau modèle modifié grâce à l’ajout d’une contrainte
de solvabilité. La seconde, plus conséquente, consiste à démontrer l’optimalité
d’une stratégie de barrière pour le paiement des dividendes dans le modèle γ−ω.
La troisième concerne l’adaptation d’un théorème de 2003 sur l’optimalité des
barrières en cas de contrainte de solvabilité, qui n’était pas démontré dans le cas
des dividendes périodiques. Nous donnons aussi les résultats analogues à l’article
de 2011 en cas de barrière sous la contrainte de solvabilité. Enfin, la dernière
concerne deux différentes approches à adopter en cas de passage sous le seuil de
ruine. Une liquidation forcée du surplus est mise en place dans un premier cas,
en parallèle d’une liquidation à la première opportunité en cas de mauvaises pré-
visions de dividendes. Un processus d’injection de capital est expérimenté dans
le deuxième cas. Nous étudions l’impact de ces solutions sur le montant des divi-
dendes espérés. Des illustrations numériques sont proposées pour chaque section,
lorsque cela s’avère pertinent.

Mots-clés : Dividendes périodiques, optimalité, équation de Hamilton-Jacobi-
Bellman, liquidation, injections de capital, ruine oméga, lemme de vérification
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ABSTRACT

This master thesis is concerned with risk theory, and more specifically with actua-
rial surplus models with dividends. We focus on an important model, called γ−ω
model, which is built to enable the study of both periodic dividend distributions
and a non-standard type of ruin. We make several new extensions to this model,
which are motivated by solvency considerations. The first one consists in adapting
results from a 2011 paper to a new model built on the assumption of a solvency
constraint. The second one, more elaborate, consists in proving the optimality
of a barrier strategy to pay dividends in the γ − ω model. The third one deals
with the adaptation of a 2003 theorem on the optimality of barrier strategies in
the case of solvency constraints, which was not proved right in the periodic divi-
dend framework. We also give analogous results to the 2011 paper in case of an
optimal barrier under the solvency constraint. Finally, the last one is concerned
with two non-traditional ways of dealing with a ruin event. We first implement a
forced liquidation of the surplus in parallel with a possibility of liquidation at first
opportunity in case of bad prospects for the dividends. Secondly, we deal with
injections of capital into the company reserve, and monitor their implications to
the amount of expected dividends. Numerical illustrations are provided in each
section, when relevant.

Key-words : Periodic dividends, optimality, Hamilton-Jacobi-Bellman equation,
liquidation, capital injections, omega ruin, verification lemma
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INTRODUCTION

In this thesis, we aim at discussing several issues about solvency of insurance
companies. We develop three chapters, related to three different situations. Each
chapter has its own original contribution. The framework is the following.

In risk theory, we aim at studying ruin for companies that hold a stochas-
tic capital. We use a simple model for the capital (we try to develop a model
accurate enough to provide good insights about the real behaviour of an actual
company) and monitor it as a function of time. Ruin plays a crucial role as it is
the first parameter we have to define in this model. We use a special type of ruin
to distinguish simple ruin from bankruptcy. This comes from the fact that some
companies keep doing business although technically ruined (state-owned compa-
nies for example, but not only). This special type of ruin is called ω−ruin.

The danger zone, which is the area between the threshold of simple ruin and
the bankruptcy value, begins below a deterministic horizontal threshold that we
denote by a1, and which is called a solvency constraint. In the framework of insu-
rance companies, it can be seen as the liquidation value and reprensents the price
to pay to tranfert the portfolio to another company when the business closes. The
threshold of bankruptcy is set at 0, and the area between 0 and a1 is then the
danger zone, where the risk of bankruptcy is non-negligeable.

When the capital of the company hits a1 and enters this danger zone, we say
that the company goes through an ω−event because we add an ω function to this
area, where the ω function is positive and increases with ruin, which represents
the probability of going bankrupt. One of the main goals of this thesis is to study
two possible solvency outcomes for the business in case of an ω−event. The sha-
reholders are expected to make a major move : either they are forced to liquidate
the business, or they are forced to inject capital into it, because a capital under
a1 means that the company does not hold enough money to keep doing business
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as usual.

The priority of this work is to discuss dividends in this context. They will
be assumed periodic, which means that they can only be paid at some discrete
decision times. Here the decision times are random, because determined by inter-
exponential distributions. A parameter γ > 0 is associated to the exponential
decision times (and the mean is then 1/γ). A lot of situations have already been
studied in the case where dividends are paid continuously, but periodic dividends
are more realistic and also more recent. An exponential distribution is a first step
towards Erlang distributions, which provide even more realistic decision times
because they can lead to computing deterministic intervals of decisions. The di-
vidends can only be paid if the capital is above a determined amount of cash we
call b. There are a few possibilities for where b is set. The simplest case would
be to set it above a1, so it creates three different areas in the model. This will
be discussed in Chapter 2. Dividend distribution is allowed at decision times,
provided that the capital is above b and also above a1. No dividend can be paid
below a1. Besides [0, a1) and [b,+∞), b > a1 creates a third area : [a1, b). This is
considered as the middle part and has nothing special. Dividend payment is not
allowed because it is below b and the ω coefficient is 0 because it is above a1. It
then looks like this :

Figure 0.1. Provided b > a1, this figure illustrates the γ − ω model.

We are also interested in what happens for example when b ∈ [0, a1). The
parameter b is not chosen arbitrarily. We can find an optimal b, denoted b∗ that
maximizes the aggregate amount of dividends function paid until ruin and we
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explain in details how to obtain it in Chapter 3. We compute the function for any
b, then look at the maximal one, called value function, under b∗.

This thesis is concerned with the different decisions that the shareholders can
make, which happen in case of a surplus going below a1. In Chapter 4, We study
two cases. The first one is concerned with a forced liquidation outcome : the sha-
reholders are forced to close the company by an external regulator as soon as the
capital reaches a1. The second one is another option for the shareholders : they
are forced to inject capital up to a1 in the business to make the difference, with a
penalty κ proportional to the amount of capital injected. In that case, we assume
that because the shareholders are forced to inject capital, then the business can
never close. This case is the last one we study and is an opening towards further
models because this is not an ω model since bankruptcy cannot happen anymore.

Both considerations have a liquidation at first opportunity outcome. Indeed,
when confronted to the possibility of a forced liquidation of their business, the
shareholders can take the lead and liquidate the remaining surplus at the first
decision time they get. We study this possibility in case of bad dividend prospects
for the company. In that case, if liquidation at first opportunity is triggered, the
shareholders share the difference between the surplus and a1 as a final dividend,
then the business is closed by the regulator because the surplus is brought back
to a1, which triggers bankruptcy, hence the term “liquidation”. In the second case
with capital injections, in case of bad prospects, the shareholders can also make
the surplus go to a1 thanks to a final dividend or a final injection and close the
business.

Main contributions
This thesis provides extensions to [Albrecher, Gerber, and Shiu, 2011]. In this

paper, the ω ruin is introduced for the first time, according to the assumption of
a company that keeps doing business as usual although ruined. In this paper, [Al-
brecher et al., 2011] start by providing the equations of the surplus, then obtain
the explicit solutions to these equations, and finally provide the optimal dividend
barrier in the γ periodic dividend framework.

The work of Avanzi, Tu, and Wong [2014] does not involve this alternative
definition of ruin but focuses on a periodic dividend framework to provide ge-
neral answers to the question of optimality of strategy in such models. Like in
[Albrecher et al., 2011], the equations of the model are solved (in a case of a jump
/ diffusion instead of a pure diffusion). A powerful theorem is then developed
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to ensure a barrier strategy is optimal. Liquidation at first opportunity is also
discussed.

One of our goals is to link these two papers together by implementing the ω
monioring parameter of [Albrecher et al., 2011] into the work of [Avanzi et al.,
2014], for the pure diffusion case.

The former paper already has an extension, published in 2012. In this one, [?]
study the impact of ω as a parameter that determines an ultimate penalty at time
of bankruptcy, as well as the distribution in the “red”. The penalty component
will not be discussed in this thesis and, consequently, we do not provide other
references on that penalty framework.

To the best of my knowledge, monitoring a dual event liquidation / capital
injections has never been done in the field of periodic dividends. Also, the idea
of monitoring such model using the ω−ruin is new. This type of ruin has been
described in 2011 and 2012 in two papers, including one about a final penalty,
but none of them involve liquidation at first opportunity, forced liquidation and
/or capital injections. The verification lemma developed in the optimality section
for periodic dividends has been explored in 2014 but never including the ω−ruin
parameter. This thesis is concerned with adapting it in the case of ω−ruin. In
fact, the ω−ruin has not been the matter of a lot of papers despite its sufficient
accuracy to describe a basic regulator, because of the complication it brings to the
model. However, it brings a lot more realism to the model. Each time the barrier
or the capital is below the constraint, a lot of different cases happen that need to
be dealt with (and are in this thesis) and that creates unecessary dichotomy for
papers that are not primarily focused on this particular issue. Last but not least,
a barrier strategy in a simple γ − ω model had never been proven optimal before
this thesis. We aim at filling important gaps, that some papers take for granted
whereas it is not obvious that it is the case.



Chapitre 1

LITERATURE REVIEW

The literature on dividend-related problems in actuarial research is vast. We
focus on the area that deals with our issues. In the framework of dividend dis-
tribution, a review has been done by [Avanzi, 2009] and another review more
focused on optimality-related issues is [Albrecher and Thonhauser, 2009]. At the
time, the research stream about periodic dividends didn’t exist, so we need to
review a lot of other references.

1.1. The surplus and first definitions of dividends
Our goal is to model the capital of insurance companies or any company whose

capital variations fit the following description

U(t) = u+ µt+ σWt. (1.1.1)

U(t) is called the stochastic surplus of the company, u is the initial cash reserve
held by the company at time t = 0, µ represents the deterministic income the
company earns each unit time t and Wt is a Wiener process, or Brownian motion
of mean 0 and variance σ2, and σ is the volatility parameter. Wt plays the role
of random gains and losses This model is a classic example of surplus we can
find in the literature and known as pure diffusion model. Brownian motions are
a standard option to model Cramér-Lundberg surplus (which contain jump pro-
cesses). A good reference on how to approximate those gain/loss jump processes
by Browinan motions is [Schmidli, 2008].
Note that pure diffusion processes are not new and have been studied since the
second part of the twentieth century in [Gerber, 1972] for example. We consider
that this surplus is adapted to a complete probability space (Ω,F , {Ft},P), and
we have µ = E[U(t+ 1)− U(t)].
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From that surplus, we consider a leakage function, called aggregate amount
of dividend, defined as a function of time and we denote it D(t). The process
{D(t)} is the amount of cash paid to the shareholders, deducted from U(t). After
this is done, the surplus has a new modified value, denoted :

X(t) = U(t)−D(t), t ≥ 0. (1.1.2)

Some preliminaries remarks about the process {D(t)} : first, D(t) is the cumu-
lative value of dividends paid from the beginning (t = 0). It is assumed càdlàg
(continu à droite, limite à gauche) with D(0) = 0. The process is non-decreasing
and active until ultimate ruin of the company which happens at time t = τ so
that :

τ = inf{t | X(t) ≤ 0}. (1.1.3)

The idea of distributing dividend is not a recent concept. It was first proposed by
[de Finetti, 1957] as a criticism of the idea that it was unrealistic for a company
to let grow its surplus to infinity because they wanted to minimize the probability
of ruin. First because a company cannot keep all of its funds, and also (as reite-
rated in [Avanzi, 2009]) why should an older company hold more surplus than a
younger one bearing similar risks, only because it is older ?

The potential amount of dividend distributed until bankruptcy is usually mea-
sured by the mathematical expectation known as the expected value of dividends
until ruin, which is :

E
[∫ τ

0
e−δtdD(t)

]
(1.1.4)

where δ is the force of interest parameter. But there is a major issue with that
concept : allowing the company to distribute its money leads to a probability of
ultimate ruin of 1.
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1.2. The dividend / stability dilemma and barrier stra-
tegies

The fact that distributing dividends yields a certain bankruptcy leads to a
dilemma : how can a company get some stability and distribute dividends ? A
solution was proposed by [Gerber, 1974]. The idea is to pay dividends at a rate
that will not induce bankruptcy in a short term (reasonable enough to get sta-
bility). The behaviour of the surplus in the long term will then be considered as
not relevant. This leads us to define the notion of strategy. A dividend strategy is
giving an answer to both questions “when” and “how much” dividends should be
paid. The strategy proposed by [Gerber, 1974] was called a barrier and consisted
in choosing a positive value, denoted b which would separate the capital in two
areas : [0, b) and [b,+∞). Each time the surplus should hit b and should go above
this value, the corresponding difference between the surplus and b would be paid
as dividends. Mathematically, the dividend D paid around the barrier is :

D =

 0 if X(t) ∈ [0, b)
X(t)− b if X(t) ∈ [b,+∞).

This type of strategy is nowadays really common and it is the one we use in
this thesis. We are interested in two things : the optimal level of b, which maxi-
mizes the the expected value of dividends, and the optimality of strategy, whose
goal is to ensure that the barrier strategy is the unique strategy that maximizes
the dividends. For the first time in the literature, that second type of optimality
is proven for the γ − ω model in this thesis

Barrier is only a generic name for a lot of strategies. They can be fixed hori-
zontal barriers, or they can be moving with time (generally increasing) but they
all describe strategies that release some part of the capital after a value of the
surplus is reached. In that case, if the dividends are paid continuously, the surplus
never goes above b and does not grow to infinity. We are focused on this type
of strategy, but it is not always the case that they are optimal. Other common
strategies found in the literature and developped in [Avanzi, 2009] are threshold
strategies (where the surplus over the threshold is not completely paid as divi-
dend) or (multi)layer strategies.
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1.3. Types of ruin and solvency sonstraint
Ruin is the most relevant and crucial parameter to determine in the model.

We have several choices to do that. We know from section 1.1 that τ is the first
time where the modified surplus becomes negative.
We know, from [Avanzi et al., 2014] (lemma 3.3 page 213) that under a barrier
strategy, ultimate ruin is certain, that is, P [τ <∞] = 1. We then need to define
the criteria of ruin, and ruin itself.

We could define it as the lowest level of capital, denoted cruin, from which
the company is in debt and cannot distribute dividends. Ultimate ruin (or ban-
kruptcy) is the lowest level cbankruptcy from which the company is forced by the
regulator to shut down even though the shareholders would like to continue. The
first type of ruin, and the simplest, is standard ruin. In that case, cruin = cbankruptcy

(and usually both are equal to 0).

From that, we can develop any other type of ruin. The ruin we chose to use
in this thesis is a ruin where cruin > cbankruptcy. Both values are not the same
and the company can be ruined but can continue doing business until ultimate
ruin. This ruin has first been described in [Albrecher et al., 2011] as the ω−ruin,
because between cruin and cbankruptcy, they define a function of the initial capital
ω(u), which satisfies three conditions :

(1) ω(u) is a non-increasing function.

(2) ω(u) ≥ 0 if u < cruin.

(3) ω(u)dt is the probability of ultimate ruin within dt time units.

[Albrecher et al., 2011] use the following values in their paper :

cruin = 0 and cbankruptcy = −∞ (1.3.1)

and justify that choice by the fact that companies can hold a negative surplus and
continue doing business as usual without cash reserve limit, for example state-
owned companies. Building on this model, we keep the notion of ω−ruin, but we
define new values for cruin and cbankruptcy which are now

cruin = a1 > 0 and cbankruptcy = 0. (1.3.2)
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In 2013, [Albrecher and Lautscham, 2013] provide a more precise definition of
ω with interpretation : a suitable locally bounded function ω(·) depending on the
size of the negative surplus is defined on (−∞, 0] (resp. we adapt it to (0, a1]).
Given some negative (resp. below a1) surplus u and no prior bankruptcy event,
the probability of bankruptcy on [s, s + dt) is ω(u)dt. We assume that ω(·) > 0
and ω(x) ≥ ω(y) for |x| ≥ |y| to reflect that the likelihood of bankruptcy does
not decrease as the surplus becomes more negative (resp. plummets below a1). In
general, the idea is that whenever the surplus level becomes negative, there may
still be a chance to survive, and it is modelled that survival is less likely the lower
such a negative surplus level is. Conceptually, the replacement of the ruin concept
by bankruptcy first of all removes the binary feature of the classical framework
where the surplus process survives at u = 0, but is killed for arbitrarily small
negative surplus levels u = 0− (in the non solvency constrained case). From a
practical viewpoint, this is underpinned by the fact that in many jurisdictions
the regulator would take control as an insurer’s financial situation deteriorates,
and measures would be undertaken during a rehabilitation period with the aim
of curing the insurer’s financial issues.

We justify that choice by the following arguments. We choose to set a ruin
level at a1 > 0 (which is called a solvency constraint) because we deal with in-
surance companies, and these companies need to hold a positive reserve of cash
in case they need to close and transfer the portfolio to another company. In this
case, each insurance policy will be sold for a higher price than its value, because
insurance policies are risky business and another company that would agree to
acquire them needs to be sure they will not be ruined by a too high amount of
claims. In the end, if all the policies combined are worth a first expectation of
claims, the buyer will estimate they are worth a higher expectation of claims and
the difference between the two expectations is exactly a1. In this particular case,
this solvency constraint is called the liquidation value.

In this thesis, we restrict the ω function to a constant or a piecewise constant,
that is ω(u) ≡ ω, ∀u ∈ [0, a1). This is because we choose not to focus on the
ruin function itself but on its implications. This ruin function, that measures the
probability of going bankrupt can be more generally related to the Parisian ruin
framework, where the company is allowed to spend some time below the ruin
level before declaring bankruptcy. Such framework can be found for example in
[Landriault, Renaud, and Zhou, 2011]. The idea of allowing a company to spend
some time in a state of pre-bankruptcy before ultimate ruin occurs is useful to
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model the fact that some big companies cannot know their exact value over time
exactly at time t. A delay before decalring bankruptcy is then necessary to ensure
consistency with what happens in reality. When the ruin function ω is a constant,
their is an intersection with the Parisian literature.

What is also interesting is that Parisian delays can also model periodic di-
vidends in some way. Indeed, the time spent above b before dividend decision
happens with intensity γ is also a delay that can be part of this literature. Perio-
dic dividends versus continuous dividends can also alternatively be explained by
the fact that the company does not exactly know its exact instantaneous surplus
and has to spend some time above the barrier b to declare dividend distribution.

The consideration between the going concern liability and liquidation value
liability, which leads to a1, and its optimality in this context is part of the main
contribution and was not part of the literature.

However, more generally, solvency constraints have been part of the literature
for some time, but not many papers choose to implement it because it brings
more issues and cases to any considered model, so when the article is not focused
direclty on solvency constraints, they usually choose not to include one to sim-
plify the calculations. A good reference on optimality of barrier strategies under
solvency constraints is [Paulsen, 2003]. We extend one of his main theorems in
chapter 3.

It is however a great improvement for any model to consider solvency constraints
because although it creates dichotomies, the realism we gain is non negligeable,
and new to the literature. We are the first to shed light on a model which includes
both a solvency constraint and an ω−ruin function, and consider the optimality
of a barrier strategy in that case. But implementing a fixed value a1 to the model
make some questions arise. The most relevant one is what happens to the areas
created by the model, [0, b) and [b,+∞), and how to include a1. If b > a1, it
results three areas, [0, a1), [a1, b) and [b,+∞), but if b < a1 the answer is not that
obvious. Can a company afford to pay dividends in that case ? We provide some
answers to these questions in the main development.
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1.4. Periodic dividends and periodic strategies
For the moment we did not make assumptions about when dividends should

be paid. We only proposed that some leakage could be distributed according to a
barrier strategy, when the surplus reaches the barrier b, but this is not satisfying
because in that case, we have not chosen a way to distribute dividends regardless
of the barrier. A part of the dividend distribution is bound to the model itself :
dividends can be released continuously or periodically. Continuous dividends have
been modelled for a long time in the literature. In fact, it is the most simple case
of distribution. As soon as the surplus reaches the criterion of distribution, the
leakage happens and money flows from to surplus to the aggregate amount of
dividends. This model is quite convenient but has major weaknesses.

First of all, in the case of a pure diffusion, unpleasant behaviour may oc-
cur around the barrier we have set for dividends. Because of the nature of the
Brownian motion, the surplus can cross the barrier many times up and down and
produce small dividend amounts that are not particularly interesting.

Secondly, the shareholders can never be sure when a dividend is paid : conti-
nuous leakage could mean two dividends in two days then nothing for three weeks,
and so on. It is more interesting to get dividends paid at a steady rate to consider
it as a reliable source of income.

Those two main issues can be resolved (or partially resolved) switching to per-
iodic dividends. This time, dividends are not paid continuously when the surplus
goes above b, but are only paid at discrete points of time, called decision times.
A comprehensive paper on periodic dividends that describes this type of decision
times is [Avanzi et al., 2014]. They can be seen as a sequence of times T such
that

T = {T1, T2, T3, . . . , Tk, . . . } (1.4.1)

with Tk < τ for all k ∈ N \ {0} and where each Tk is determined thanks to {Nγ},
a {Ft}−adapted Poisson process. Decisions times occurs when the process has
jumps.
The quantity Tk+1 − Tk for all k ≥ 0 is an inter-dividend-decision time and can
be assumed to be exponentially distributed with mean 1/γ.
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This simply means that at any time, the probability that a dividend can be
paid within dt time units is γdt. We are interested in the memoryless property of
the exponential distribution. This addresses the first issue, and the second one is
partially resolved. Of course, the decision times are random but it gives a probabi-
lity of decision thanks to the parameter γ. For the purpose of realism, and because
accuracy is a criterion of choice for a model, we adopt the periodic dividends and
the inter-exponential decision times. We now need a strategy that will work effi-
ciently with this model. This is a first step towards more realism, the second one
being the use of a method called “Erlangization” that considers inter-decision
times are governed by multi-dimentional Erlang distributions (see for example
[Avanzi, Cheung, Wong, and Woo, 2013]). This provides deterministic intervals
of decisions, instead of producting random ones with a simple exponential model.
This will not be considered in this thesis, but could be a crucial improvement for
a further extension in this framework.

We have seen that a strategy was an answer to both questions when and
how much should be paid. The above paragraphs answer the first question : the
dividends are paid according to T , but we still need to determine how much should
be paid. For the moment, we provide a theoretical answer to this question : at
each decision time Tk we associate a dividend ϑk, and similarly to the construction
of T , we can create a new sequence of dividend payouts Θ such that

Θ = {ϑT1 , ϑT2 , ϑT3 , . . . , ϑTk , . . .}. (1.4.2)

We define Θ as a periodic strategy. Of course, Θ is not unique : any other admis-
sible sequence is considered as an admissible periodic strategy. According to what
has been done in [Avanzi et al., 2014], we denote D the set of admissible periodic
strategies. To be admissible, a strategy Θ needs to have an associate aggregate
dividend process {D(t)} that is a non-decreasing and {Ft}−adapted with càdlàg
sample paths and initial value D(0) = 0.
The dividend payout at decision time Tk is ϑTk for k = 1, 2, ... which is measurable
with respect to {Ft}, and then :

0 ≤ D(Tk)−D(tk−) = ϑTk (1.4.3)

and the process {D(t)} can be written as
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D(t) =
∫ t

0
ϑsdNγ(s). (1.4.4)

The modified surplus X(t) can be written :

X(t) = u+ µt+ σWt −
∞∑
k=1

I{Tk≤t}ϑTk (1.4.5)

where I{A} = 1 if the event A is true, and 0 otherwise.

The theoretical Expected Present Value of Dividends (EPVD) paid until ruin
associated with a strategy Θ is defined as :

J(u,Θ) = Eu
[ ∞∑
k=1

e−δTkϑTkI{Tk≤τ}

]
, u ≥ 0. (1.4.6)

This formula is the periodic analogous of equation (1.1.4), and we note that τ
does not need to be in T because bankruptcy happens as soon as the surplus
becomes null. This is called “continuous monotoring” of solvency.

1.5. Results for the Expected Present Value of Divi-
dends in the γ − ω model

The Expected Present Value of Dividends, or EPVD, is the heart of the matter
of this thesis. It is the dividend expectation we obtain and we want to maximize.
This function needs to be continuous and at least twice differentiable (except at
countably many points)to be a candidate solution function, and is a function of
the initial surplus u. It also needs to be concave and increasing to be solution.
Verifiction of concavity and variation is done for each section of the thesis, when
we find potential solutions, to ensure that the verification theorem applies to the
candidate functions. The interpretation of these conditions for the value function
is that the expected dividends increase with initial capital of the company, and
there cannot have jump in the function, unlike in the aggregate amount of divi-
dends collected over time. It states that a crucial assumption on expected present
value of dividends is that for any u1 < u2 initial capital level of cash held by the
company, V (u2)−V (u1)→ 0 when u1 → u2. (In the first part of the development,
we aim at calculating the new EPVD resulting from the changes that have been
made to [Albrecher et al., 2011]. In this paper, which is our main data source
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that we are trying to improve, the ω−ruin function plays a role in getting the
solutions of the equations for the surplus over each of the areas [−∞, 0), [0, b)
and [b,+∞). Recall that the level of ruin is 0 and the level of bankruptcy is −∞
in their case. From the following expression, that we explain in the next section

G(u) + {γ[l +G(u− l]−G(u)] + (Ω− δ)G(u)}h+ o(h) (1.5.1)

where Ω is the infinitesimal operator

Ωf = σ2

2 f
′′ + µf ′ − ωf (1.5.2)

and G(u) is a notation to clarify that it is potentially different from V (u) because
V (u) is the optimal function and at this point we don’t know yet if G(u) = V (u),
we get the the three equations for each part of the surplus, which are

σ2

2 G
′′(u, b) + µG′(u, b)− (ω(u) + δ)G(u, b) = 0, u ∈ [−∞, 0) (1.5.3)

σ2

2 G
′′(u, b) + µG′(u, b)− δG(u, b) = 0, u ∈ [0, b) (1.5.4)

σ2

2 G
′′(u, b) + µG′(u, b)− δG(u, b)

= −γ[u− b−G(u, b) +G(b, b)] = 0, u ∈ [b,+∞). (1.5.5)

We show each step to obtain these functions in the development, at the beginning
of next chapter. When they obtain the functions that govern the three areas, [Al-
brecher et al., 2011] solve them to get the explicit EPVD, which is the piecewise
function G(u, b).

The middle equation is the easiest to solve for G(u, b) and the solution is

G(u, b) = Aeru +Besu (1.5.6)

where A and B are constants to be determined and where r and s are the positive
and negative roots of the characteristic equation

σ2

2 ξ
2 + µξ − δ = 0. (1.5.7)
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The next equation solved for G(u, b) is the upper equation, and its solution ac-
cording to [Albrecher et al., 2011] is

G(u, b) =
(

δ

δ + γ
G(b, b)− µγ

(δ + γ)2

)
eγ(u−b)

+ γ

δ + γ
[u− b+G(b, b)] + µγ

(δ + γ)2 (1.5.8)

where sγ is the negative root of the associated characteristic equation.
Because a lot of calculations we have to do are similar to the ones in [Albrecher
et al., 2011], we develop them in the next chapter.

This part is used to find the optimal barrier b∗ which is

b∗ = 1
r − s

ln
[
−Bs2(rγ − r)
Ar2(rγ − s)

]
, (1.5.9)

where, A and B are two constants and r and rγ the positive roots of the middle
and upper associated characteristic equations. In that case, the classic result at
b∗ is

G′(b∗, b∗) = 1. (1.5.10)

Finally, for the lower part, [Albrecher et al., 2011] find

G(u, b) = erωu (1.5.11)

and this part is a lot different from our work because of the new ruin condition
and the solvency constraint we impose.

This thesis begins with the analogous of that work, using the new solvency
conditions 0 and a1 instead of −∞ and 0. Because the EPVD is the main tool we
use to compare the different outcomes developed in this thesis, we start the work
by adapting their paper to obtain the new EPVD we need. This will lead to our
new proof that a barrier strategy is the optimal strategy in the γ−ω model with
solvency constraint and strengthen the work of [Albrecher et al., 2011] because a
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barrier may rightfully be used as the optimal strategy.

A lot of expected present value of dividends presented in this thesis have their
numerical illustration (see list of figures). These graphs represent the amount of
dividends paid until ruin with respect to the initial surplus of the company, u.
That is why only increasing functions are to be found (the more the company
holds money, the more dividends are to be paid).

1.6. Optimality of strategy, optimality of barrier and
the Hamilton-Jacobi-Bellman equation

This optimality section is one of the main concerns of this thesis, because all
the new results we find are based on existing results we improve. We can distin-
guish two kinds of optimalities, from the general-to-specific. The first one is the
optimality of strategy. In that case, a strategy must be proven optimal amongst
all admissible strategies. In the periodic case, it is equivalent to find which Θ ∈ D
is the best (ie the one that maximizes the expected present value of dividends).
In case of periodic (gamma) dividends, [Avanzi et al., 2014] are the firsts to prove
that a barrier strategy is optimal. Once a strategy is assumed to be the best one,
it needs to pass a process called verification lemma to prove its uniqueness. That
is why we only discuss barrier strategies in the thesis, they are the ones optimal
here.
The second type of optimality is the optimality of barrier. Once a barrier stra-
tegy is proven optimal to maximize the expected present value of dividends, the
second task consists in finding its optimal level, donoted b∗. Both optimalities can
be done separately but usually, the second one is easier to obtain.

Let’s consider the main paper [Albrecher et al., 2011] as our starting point.
In this article which deals with the γ − ω case, they only find the optimal level
for b∗ but they do not know whether a barrier is optimal or not, this is only
an assumption they make. To improve it, it would be useful to know whether a
barrier strategy is optimal or not in the γ−ω model. We prove the optimality of
such a strategy in Chapter 2. We add a solvency constraint to the model to make
it look even more realistic and its optimality is discussed throughout chapters 2
and 3.

The second type of optimality is a consequence of the first one. In the section
of the literature review dedicated to barrier strategies, we already stated that if
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b is above a1, it creates three areas : [0, a1), [a1, b) and [b,+∞). At the beginning
of the article, [Albrecher et al., 2011] automatically assume it is the case : b is
always above their a1 (which is 0) and they give three equations for the expec-
ted present value of dividends, each one related to an area, and whose solutions
make a continuous function of the initial surplus u. With a solvency constraint
a1, we create more possible outcomes. For example, b can be below a1, this case
is legitimate because it is proven that the optimal b∗ is a logarithm of a quotient.
To be exhaustive, we need to deal with this case. A convenient optimality result
in that case comes from [Paulsen, 2003], whose goal is to determine and prove
optimal the barrier b in case of a solvency constraint a1, particularly when b < a1.
To maximize the expected present value of dividends, theorem 2.2 of [Paulsen,
2003] states that the optimal strategy is to use a barrier at b = a1 if b∗ < a1. We
cannot use this theorem in its 2003 version because it was not proven right in the
case of periodic dividends. One of the main goals of chapter 3 is to prove it right
in the periodic case.

Let’s focus on the first type of optimality because we need to improve the exis-
ting results. Recall the expected present value of dividends J(u,Θ) from section
1.4. Our goal is to maximize this function because it is our criterion. We need to
find the optimal payouts, that is, the sequence Θ = {ϑT1 , . . . , } which maximize J
for all Θ ∈ D, the set of all admissible periodic strategies. This special sequence
is denoted

Θ∗ = {ϑ∗T1 , ϑ
∗
T2 , ϑ

∗
T3 , . . . , ϑ

∗
Tk
, . . .} (1.6.1)

so that, mathematically

J(u,Θ∗) = sup
Θ∈D

J(u,Θ). (1.6.2)

J(u,Θ∗) is denoted V (u) thereafter. We will qualify a strategy with dividend
payments Θ∗ to be optimal if

V (u) = J(u,Θ∗) = Eu
[ ∞∑
k=1

e−δTkϑ∗TkI{Tk≤τ}

]
, u ≥ 0. (1.6.3)

The methodology to obtain optimality of strategy like in [Avanzi et al., 2014]
is first to understand what happens to the surplus over a small time interval h
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in terms of dividend expectation for the optimal expected present value of divi-
dends. A dividend is usually denoted l ≥ 0. We then need to apply the law of total
probabily to determine all possible events. Because we focus on small intervals,
Taylor expansions are accurate enough and the force of interest parameter e−δh

can be rewritten 1− δh+ o(h).

Once we know which events happen with probability γh and which happen
with probability 1− γh, using Taylor expansions yields to a result of the form :

V (u) + {γ[l + V (u− l]− V (u)] + (A− δ)V (u)}h+ o(h) (1.6.4)

with initial condition V (0) = 0 for the function V (u) obtained in [Avanzi et al.,
2014], because bankruptcy happens at 0, and where A is some infinitesimal opera-
tor not crucial here. Thereafter, this leads to the construction of a mathematical
tool called the Hamilton-Jacobi-Bellman equation (or HJB equation) whose role
is to maximize the function V , and which comes directly from (1.6.4). The HJB
in that case for V is then

max
0≤l≤u

{γ[l + V (u− l]− V (u)]}+ (A− δ)V (u) = 0. (1.6.5)

This equation is crucial in the verification lemma we use to check optimality of
strategy. We will need to find the HJB that comes from our model, and the same
methodology will be used. Thanks to this lemma, [Avanzi et al., 2014] prove a
barrier strategy to be optimal in that case, with

l =

 0 if u ∈ [0, b)
u− b if u ∈ [b,+∞).

Formally, using the previous notation, the periodic barrier is written

ϑTk = max {X(Tk)− b, 0} (1.6.6)

They give another useful lemma, called lemma 3.1 in [Avanzi et al., 2014] page
212 that states : if V (u) ∈ C2 is an increasing and concave function, with a point
b > 0 such that V ′(b) = 1, then

max
0≤l≤u

{l + V (u− l)} (1.6.7)
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is achieved at the above level l. Our goal is to prove a barrier strategy is also
optimal in the γ − ω case.

1.7. Two ways of dealing with a ruin event : liquidation
(forced or voluntary) and capital injections

Once the main model is set up, we would like to consider some alternative
policies for the area [0, a1]. In chapter 3 and 4, we focus on trouble experienced
by risky businesses such as insurance companies.

For example, [Avanzi et al., 2014] has a criterion related to γ, the intensity of
the dividend payout Poisson process. When prospects are not sufficient to ensure
stability for the company, that is, when γ is too low (under a certain value γ0),
this triggers a “destructive” strategy called liquidation at first opportunity where
the whole surplus is distributed as a final dividend, and then the company goes
bankrupt and shuts down. Typically, this is because under γ0, the probability
of decision time is too low, which leads to a barrier b∗ < 0 and the company
is not sustainable for dividend payments. The shareholders can only get that fi-
nal dividend at the first decision time, T1, and not before. Hence the name “at
first opportunity”. To get the whole surplus, the negative optimal barrier should
be set at b∗ = 0. Considerations between dividend strategies and liquidations of
type “take the money and run” have been studied for some different models, for
example in [Loeffen and Renaud, 2010].

In chapter 3, we study the implications that γ < γ0 yield for our model. In
that case, the barrier is set at a1 (and not at 0 because capital up to a1 does not
belong to the shareholders in our case) and it affects the EPVD. We assume that
the danger zone [0, a1] is still an area when the surplus can go, but this would
be a limit case : a barrier at a1 means no buffer zone [a1, b) and a strange event
occurs : two areas instead of three where the company instantly switches from
being ruined to distributing dividends, which is not a really realistic situation.

In chapter 4, to address this specific issue of realism, we resort to solvency
considerations based, for the first ones, on different types of liquidations. This
type of ending strategies is really useful, and that is why we have chosen to im-
plement them in our γ − ω model.
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Regardless of barrier level, we first consider a case of forced liquidation which
happens when the surplus hits a1, that is, in case of ω−event. In that case, an
external regulator forces the shareholders to close the business and there is no
final dividend. This is like a simple ruin but where the level of bankruptcy would
be a1. The initial surplus could not be below a1 because it wiuld trigger an imme-
diate liquidation (because the monitoring of solvency is continuous). In that case,
[0, a1] is a no-go zone. As soon as the surplus reaches it, liquidation is forced. It is
like there is no more ω−ruin, or more precisely, ω(u) = +∞ so ω(u)dt, which is
the probability of ultimate ruin when the surplus is in the omega zone is equal to
1 for u ∈ [0, a1]. It is indeed a change of scale for a simple ruin, where bankruptcy
occurs at the time of ruin.

To prevent this bad event of forced liquidation, the shareholders are allowed
to liquidate at first opportunity in case of bad prospects. For example, if γ is too
low and γ < γ0, the barrier is set at a1 and the shareholders decide to liquidate
at first opportunity, that is, at the first decision time Tα where the surplus is
above a1 (usually T1 provided that the surplus has not undergone an ω−event
in the meantime). This is an anlogous work to what is done in [Avanzi et al., 2014].

The second section of chapter 4 is dedicated to implement forced capital injec-
tions in case of a surplus below a1 or bankruptcy. Instead of killing the business
each time the surplus goes below a1, or that a bankruptcy should happen, we
adopt the perspective of [Avanzi, Shen, and Wong, 2011] and start injecting ca-
pital into the business. To be more accurate, we consider the case where the
shareholders are forced to inject capital. In this paper, [Avanzi et al., 2011] do
not know how much they should inject and create an injection strategy, similar to
a sequence Θ but this time this is a sequence of discrete injections, not dividend
payouts. Their goal is to find the best sequence of dividend payouts and injec-
tions so that the expected present value of dividends is maximized. Injections
of cash are not free, they are sanctioned by a penalty κ, traditionally worth the
initial slope of the value function at time 0. Examples of this penalty are given
in [Avanzi et al., 2011]. It is important to notice the penalty is proportional to
the capital injected. Last but not least, if capital injections are forced in case
of bankruptcy, they prevent it. In that case, because injections are immediate,
there is no stopping time τ . We chose to deal with that case anyway because it
is part of the periodic dividend framework. Optimality of strategies under such
models where ruin does not play a role has also been studied in [Avanzi et al., 2011]
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We decide to solve the issue of how much we should inject by removing the
non-fixed level of injections and decide that the injections should be done up to
a1. Another aticle, [Jin and Yin, 2013] implements delays in capital injections up
to a lower boundary (because usually, injecting capital takes time and is not done
instantly), and verify its optimality but does not consider the periodic framework
of the model. The difference is major because the lower part [0, a1) is where all
changes happen.

From the optimality perspective, a capital injection is treated as a negative
dividend payment : money is injected into the surplus instead of being removed.
As a result of this fact, when applying the law of total probability over a small
time interval h to find the equations that govern the expected present value of
dividends, capital is injected at rate c ≥ 0 with cost κ. Which leads to new terms
in the equations, that we find in [Avanzi et al., 2011].

In this thesis we consider both behaviours, liquidations and capital injections
as part of the solvency requirements to a1. In the first case, the shareholders are
forced to liquidate in case of ω−event and in the second one they are forced to
inject capital.
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1.8. Summary of the different steps and contributions
We build on many papers to get our new contributions and results. This

section is intended to be a summary of the following chapters, why we develop
them and the papers they are built on. We try to develop the steps in an order
that makes each one the logical continuation of the previous one.

(1) In chapter 2, building on [Albrecher et al., 2011], we compute the new
EPVD in the γ − ω model with a solvency constraint a1 > 0 and a ban-
kruptcy level 0, instead of 0 and −∞. We keep the assumption of the
article, which is to consider the barrier only above the solvency constraint.

(2) Still in chapter 2, on the model of [Avanzi et al., 2014], we show that a
barrier is optimal in the γ−ω model, by proving each step of the associated
verification lemma.

(3) In chapter 3, we develop the calculations of [Albrecher et al., 2011], to
show the structure of the optimal barrier, and observe that it is possible
to have b∗ < a1

(4) Still in chapter 3, because of (3), we consider an extension of (1) and (2).
We build on an adapted theorem from [Paulsen, 2003] that we first need
to prove right in the periodic case to obtain the new EPVD of [Albrecher
et al., 2011] in the case of b∗ = a1. We complete the adapted works of
[Avanzi et al., 2014] we started in chapter 2 to prove this strategy optimal.

(5) We observe that the EPVD obtained in (4) is a limit case so we would
like to consider more realistic assumption for the area [0, a1]. Wich leads
to two solvency considerations developed in chapter 4.

(6) In chapter 4, we first consider that [0, a1] is a no-go zone, where liquidation
happens instantly in case of ω−event. The shareholders are allowed to
liquidate at first opportunity, on the example of [Avanzi et al., 2014] but
with an additional solvency constraint. We compute the new EPVD in the
case where b > a1 (the business works normally until ruin) and b < a1

(b = a1 so the shareholders take the lead and liquidate at first opportunity
if they can). We refer to this “no-go zone case” as Case 1.

(7) Still in chapter 4, we develop another solvency consideration, based on
[Avanzi et al., 2011]. [0, a1] is not a no-go zone and in case surplus below
a1 or bankruptcy, the shareholders are forced to inject capital up to a1.
Ultimate ruin can never happen unless volontarily triggered. We obtain
the new EPVD for this model in both cases b > a1 and b = a1.



Chapitre 2

EPVD IN THE NEW γ − ω SURPLUS MODEL
AND OPTIMALITY OF A BARRIER

STRATEGY

In this chapter we study the γ − ω model with a periodic barrier strategy
under an additional solvency constraint. By extending the works of [Albrecher
et al., 2011], we first derive the value function for an arbitrary periodic barrier
strategy above a1 under the γ−ω model with solvency constraint. This represents
our first main contribution. Subsequently, we also study the global optimality of
this strategy via the establishment of an associated verification lemma.
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2.1. EPVD and the three new equations in our γ−ω mo-
del

2.1.1. The model and definitions of the terms we use

The model we consider is the pure diffusion one, that is, we study the process

U(t) = u+ µt+ σWt (2.1.1)

where these are defined at the beginning of literature review. A solvency constraint
a1 is implemented and is a deterministic horizontal threshold below which there
is danger of ruin.
If the surplus goes below a1 at a time t, this is called an ω−event, because the
area below a1 is subject to an ω coefficient that measures the risk of ultimate
ruin.
Dividends are paid according to a periodic barrier strategy (that we proove opti-
mal in this chapter). The periodic barrier works as the following : each time there
is a jump in the process {Nγ(t)}, if the surplus is below b, no dividend is paid.
If the surplus is above b, the difference between the surplus and b is paid at the
decision time. In this chapter we consider some events for the surplus :

We first use a model where it is allowed to go below a1, to adapt the works
of [Albrecher et al., 2011] to the new solvency constraint, because they consider
a model where the surplus can be negative, and we do not want such a thing. In
that case, there are three separate surplus areas because in the original paper, b
is always considered positive. The following section is only an extension of the
works of [Albrecher et al., 2011] and we ignore the issue of b being below a1 on
purpose for the moment. This issue has its own chapter (Chapter 3 of the thesis).
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2.1.2. The application of the law of total probability to the surplus

We aim at finding the equation for the surplus, from which follow the three
equations that govern the three areas [0, a1), [a1, b) and [b,+∞) introduced in [Al-
brecher et al., 2011]. We need to apply the law of total probability over a small
time interval [0, h) to analyse all the possible outcomes for the surplus within h.
The argument used to build the HJB equation is then a heuristic one.

We follow the steps developed in [Avanzi et al., 2014]. Let’s consider a small
amount of time [0, h). Over such a time interval, from the dividend decision
perspective, two things can happen. Either a dividend decision is made, with pro-
bability γh, or nothing happens at all to the surplus.

If a dividend decision is made with intensity γ, and then probability γh, we
denote l ≥ 0 the amount of cash that has been released. Here l can be considered
as the dividend. The variation of the model over h is thus u + µt + σW (h) − l
(the stochastic surplus minus dividend). The discount factor δ plays a role under
its exponential form e−δh (actualized value of money). We recall that for h � 1
we can use the Taylor expansion :

e−δh = 1− δh+ o(h). (2.1.2)

Then
γh(1− δh)V (u+ µh+ σWh) + o(h)

is the quantity that decribes the event of a dividend decision.
Taking the expectation, this can be rewritten :

γh(1− δh){l + E[V (u+ µh+ σW (h)− l)]}+ o(h). (2.1.3)

Where o(h) includes the rest of (2.1.2). On the other hand, we assume that no-
thing happens. In this case, it means that no dividend decision has been taken
AND the company did not undergo bankruptcy.

Because the probability of decision time is γh, the probability of no decision
is 1−γh. Moreover, the probability of bankruptcy is ω(u). We then give the total
probability when nothing happens :
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1− γh− ω(u)h. (2.1.4)

. Keeping the same expression for the force of interest parameter and taking the
expectation of the unchanged surplus u+µh+σW (h), we obtain the second part
of the law of total probability :

(1− γh− ω(u)h)(1− δh)E[V (u+ µh+ σW (h))] + o(h). (2.1.5)

When we add both we obtain the following as a result (which is everything that
can happen over [0, h) :

γh(1− δh){l + E[V (u+ µh+ σW (h)− l)]}

+ (1− γh− ω(u)h)(1− δh)E[V (u+ µh+ σW (h))] + o(h).

This is the total factorized quantity we are looking for and that we will study.
Unfortunately, it is right now under its probabilistic form. Since we are working
over a small time interval, we can assume that the quantities at stake are small
enough to obtain good approximations using Taylor expansions.

The previous sentence motivates

V (u+ µh+ σW (h))

= V (u) + V ′(u)(µh+ σW (h)) + V ′′(u)(µh+ σW (h))2

2 + ... (2.1.6)

and the mathematical expectation of the above is :

E[V (u+ µh+ σW (h))] = V (u) + µhV ′(u) + σ2

2 hV
′′(u) + o(h), (2.1.7)

because E[W (h)] = 0. Furthermore, we only include terms in h in the quantity.
All terms in hk, k ≥ 2 are included in the new o(h).
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The same Taylor expansions can be used to expand the case with dividends.
In that case, we consider V ((u− l) + µh+ σW (h)) and expand around u− l.

Introducing (2.1.7) in (2.1.6), we get :

γh(1− δh)(l + V (u− l) + µhV ′(u− l) + σ2

2 hV
′′(u− l))

+ (1− γh− ω(u)h)(1− δh)(V (u) + µhV ′(u) + σ2

2 hV
′′(u)),

which is the same quantity as previously, only expanded thanks to Taylor.
We expand, and are interested in the terms in h. We neglect all terms with

a hk, k ≥ 2 factor and include them in the new o(h) instead. Then we factorize
upon h to obtain the final form of the quantity we are interested in estimating :

V (u) + {γ[l + V (u− l)− V (u)]

+ σ2

2 V
′′(u) + µV ′(u)− (ω(u) + δ)V (u)}h+ o(h). (2.1.8)

This will be useful to obtain the HJB equation in the optimality section.

2.1.3. The three equations in the case of b > a1

The structure of (2.1.8) motivates us to think that the optimal strategy is a
periodic dividend barrier (See section 1.6 of literature review). Optimality of such
a strategy is proved in section 2.2. In this section we are concerned with extending
the works of [Albrecher et al., 2011] by adding a solvency constraint to the model.

We first notice that the expected present value of dividend function is a pie-
cewise function, because each area of the model is governed by its own equation,
with its own solution. However, we know that the global function needs to be
continuous and at least twice differentiable (see paragraph 5 of literature review).
Let’s call G(u, b) this function, where b is for the barrier, and u is the initial
surplus.

We note that here, b is assumed to be higher than a1, explaining why the func-
tion has three parts. The other case b < a1 has its own development in chapter 3.
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We write :

G(u, b) =


GL(u, b) if u ∈ [0, a1)
GM(u, b) if u ∈ [a1, b)
GU(u, b) if u ∈ [b,+∞).

According to the works of [Albrecher et al., 2011], for u ∈ [0, a1), GL satisfies
the equation :

σ2

2 G
′′
L(u; b) + µG′L(u; b)− [δ + ω(u)]GL(u; b) = 0 (2.1.9)

because it is the area where ω−ruin occurs.

Between a1 and b, in the middle area, equation (2.1.8) yields the equation :

σ2

2 G
′′
M(u; b) + µG′M(u; b)− δGM(u; b) = 0 (2.1.10)

because no dividend payment occurs if the surplus is here. When the decision
time happens, no surplus is distributed. This area is also above a1, so this is es-
sentially a buffer zone, between the ruin area and the dividend area.

Finally, above b, the equation satisfied by GU(u, b) is

σ2

2 G
′′
U(u; b) +µG′U(u; b)− δGU(u; b) + γ[u− b−GU(u; b) +GU(b; b)] = 0 (2.1.11)

because dividend payments occur here.

These are the three equations that we must solve to find the expected present
value of dividends. We give them right away because they are the starting point
of [Albrecher et al., 2011], but they follow direclty from equation (2.1.8). In that
equation, all parts are mixed together, but if we recall that our model orders
γ = 0 if u < a1 and ω(u) = 0 if u > a1, we can identify three distinct equations.

2.1.4. Initial conditions

In this subsection, we aim at explaining the initial conditions that match
the previous three equations, in order to solve them. The easiest one to solve in
the second one. Indeed, this equation is a simple order 2 homogeneous differential
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equation, and the theory to solve this type of equation is well known. It is possible
to find adequate solutions thanks to the two initial conditions that are adapted
from [Albrecher et al., 2011].

Firstly :

GL(0, b) = 0, (2.1.12)

which makes sense because bankruptcy occurs when u = 0, so the expected
present value of dividends cannot have any other value than 0 at this point. Se-
condly we assume that GU(u, b) is linearly bounded when u→ +∞.

This condition can be explained quite easily. In [Avanzi et al., 2014], it comes
from the fact that GU(u, b) behaves like a linear function for an extremely large
u, because in such case, the hypothesis of ruin is irrelevant (if the company holds
u → +∞, then the probability of ultimate ruin is null, and the amount of divi-
dends paid is close to u itself, plus a constant term corresponding to GU(b, b)).
That explains why we can think of GU(u, b) as a linear function in such case.

Finally, the last hypothesis is that G(u, b), G′(u, b) and G′′(u, b) are continuous
functions in u.

2.1.5. The Middle equation

We are interested in solving :

σ2

2 G
′′
M(u; b) + µG′M(u; b)− δGM(u; b) = 0. (2.1.13)

This equation is a homogeneous differential equation of order two. Its associated
characteristic equation is :

σ2

2 ξ
2 + µξ − δ = 0. (2.1.14)

The roots of this equations are

ξ1,2 =
−µ±

√
µ2 + 4δ σ2

2
σ2 . (2.1.15)
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We notice that µ2 + 4δσ
2

2 > 0, we can then call these solutions r and s where r
is the positive solution and s is the negative one.

Then, the solution of this equation is

GM(u, b) = Aeru +Besu. (2.1.16)

In the original paper by [Albrecher et al., 2011], they give a A and B that work
in their case, that is :

A = G′(0, b)− sG(0, b)
(r − s) B = rG(0, b)−G′(0, b)

(r − s) . (2.1.17)

We cannot use them because the model has changed and we have to calculate the
new appropriate A and B between a1 and b instead of 0 and b.

G′M(u, b) = Areru +Bsesu. (2.1.18)

At the continuity point a1 we have

GM(a1, b) = Aera1 +Besa1 and G′M(a1, b) = Arera1 +Bsesa1 . (2.1.19)

Now all we have to do is solve for A and B Aera1 +Besa1 = GM(a1, b)
Arera1 +Bsesa1 = G′M(a1, b)

 A = GM(a1, b)e−ra1 −Be(s−r)a1

G′M(a1, b) =
(
GM(a1, b)e−ra1 −Be(s−r)a1

)
rera1 +Bsesa1

We obtain the following new constants :

A = G′(a1, b)− sG(a1, b)
era1(r − s) B = rG(a1, b)−G′(a1, b)

esa1(r − s) (2.1.20)

because of the continuity condition that ensures GL(a−1 , b) = GM(a+
1 , b).
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2.1.6. The Upper equation

The upper part is not different. Indeed this time we have :

σ2

2 G
′′
U(u; b) +µG′U(u; b)− δGU(u; b) + γ[u− b−GU(u; b) +GU(b; b)] = 0 (2.1.21)

which can can rewritten as :

σ2

2 G
′′
U(u; b) + µG′U(u; b)− (δ + γ)GU(u; b) = −γ[u− b+GU(b; b)]. (2.1.22)

The solution of this equation is then the general solution of the homogeneous
equation

σ2

2 G
′′
U(u; b) + µG′U(u; b)− (δ + γ)GU(u; b) = 0, (2.1.23)

and a particular solution of the equation with second member. Fortunately, [Al-
brecher et al., 2011] already provide a particular solution, which is :

p(u) = γ

δ + γ
[u− b+GU(b, b)] + µγ

(δ + γ)2 . (2.1.24)

A general solution of the homogeneous equation (2.1.23) is

C3e
sγ(u−b) + C4e

rγ(u−b), (2.1.25)

where sγ (resp. rγ) is the negative (resp. positive) solution of the associated
characteristic equation :

σ2

2 ξ
2 + µξ − (δ + γ) = 0. (2.1.26)

A global solution of the upper part is :

GU(u, b) = C3e
sγ(u−b) + C4e

rγ(u−b) + p(u). (2.1.27)

The proof is done by differentiating this function twice and replace it into (2.1.22).



34

However, the condition “GU(u, b) is linearly bounded when u→ +∞” restricts
the homogeneous part. We have rγ > 0⇒ rγ(u− b)→ +∞ when u→ +∞. The
only solution we have to prevent an exponential explosion for the homogenous
part is to impose C4 = 0.

C3 is still to be determined. We consider u = b in (2.1.27) to obtain :

C3 = GU(b, b)− p(b)

= δ

δ + γ
GU(b, b) + µγ

(δ + γ)2

. (2.1.28)

Finally, the upper part solution is :

GU(u, b) =
(

δ

δ + γ
GU(b, b) + µγ

(δ + γ)2

)
esγ(u−b)

+ γ

δ + γ
[u− b+GU(b, b)] + µγ

(δ + γ)2 (2.1.29)

We now have two out of three parts of the piecewise function. In the next sub-
section, our goal is to determine the third and last part.

2.1.7. The Lower equation

This part is really interesting because it is where the ω−ruin appears. We can-
not give a general solution of the equation if we do not define ω in this context.
Indeed until now, all calculations were given for an arbitrary ruin function ω(u),
but we need to restrict the ruin coefficient to constant and piecewise constant
functions to avoid having to solve differential equation with non-constant coeffi-
cients, which would be harder to solve.

In this subsection, we first solve the equation for GL(u, b) in the case of
ω(u) = ω constant and then we describe what happens if ω(u) becomes a piece-
wise constant function.

We recall that in this part, u ∈ [0, a1) and GL(0, b) = 0.

The equation satisfied by GL(u, b) when the ruin function is a constant is

σ2

2 G
′′
L(u; b) + µG′L(u; b)− [δ + ω]GL(u; b) = 0. (2.1.30)
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This case is the simplest we can imagine for ω. We notice that it might not be
the most efficient ruin indicator because if ω is a constant, it means that the ruin
level of the company is not relevant. This model does not allow to distinguish bet-
ween a small omega-event (the surplus reaches a1 and goes a little below) from a
critical near-bankruptcy event. For example, it describes an insurance company
where a surplus below a1 indicates that they will not be able to cover the next
claim and go bankrupt when this happens. In that case, ωdt is the probability of
such claim within dt unit time.

The characteristic equation associated with the previous differential equation
is :

σ2

2 ξ
2 + µξ − [δ + ω] = 0. (2.1.31)

Once again, let’s call rω and sω the positive and negative root of the characteristic
equation.

Because the equation is homogeneous, the general solution is :

GL(u, b) = Aωe
rωu +Bωe

sωu. (2.1.32)

Condition GL(0, b) = 0 yields :

Aωe
0 +Bωe

0 = 0 ⇐⇒ Bω = −Aω (2.1.33)

and

GL(u, b) = Aω (erωu − esωu) . (2.1.34)

This is where the determination of Aω and Bω differs from the paper. Indeed,
[Albrecher et al., 2011] consider that simple ruin occurs between −∞ and 0,
the condition GL(−∞, b) = 0 holds Bω = 0. In this case sω < 0 and u < 0
thus, sωu > 0 and esωu → +∞ when u → −∞. This is not possible given that
GL(−∞, b) = 0 so the only solution is Bω = 0. And Aω can be 1 because of this
condition too. Indeed if GL(u, b) = Aωe

rωu, then rω > 0 implies erωu → 0 when
u→ −∞.
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However, in our case the asymptotic value is not part of the function interval
and both Aω and Bω play a role. We may set Aω = 1 (and so Bω = −1) to obtain :

GL(u, b) = erωu − esωu (2.1.35)

and we can see that

GL(0, b) = erω0 − esω0 = 1− 1 = 0. (2.1.36)

The candidate solution matches the boundary condition, which is a first step
towards the actual solution.

A and B can be now explicitly determined, based on what is done in [Albre-
cher et al., 2011]. We must be careful comparing both solutions (ours and the one
provided in the paper) because the ruin area contains most of the modifications.

[Albrecher et al., 2011] obtain GL(u, b) = erωu so GL(0, b) = erω0 = 1 and
G′L(0, b) = rωe

rω0 = rω. We refer to equations (2.1.17) to provide A and B when
cruin = 0 and cbankruptcy = −∞, that is

A = rω − s
r − s

and B = −rω − r
r − s

. (2.1.37)

Now this has to be adpated. Recall once again equations (2.1.20). Considering
our solution GL(u, b) = erωu − esωu, we have then

G′L(u, b) = rωe
rωu − sωesωu. (2.1.38)

The major difference is due to the continuity at a1, which yields GL(a1, b) =
erωa1 − esωa1 and G′L(a1, b) = rωe

rωa1 − sωesωa1 .

Implementing this in (2.1.20) yields :

A = (rω − s)erωa1 + (s− sω)esωa1

era1(r − s) , (2.1.39)

also written as the sum

A = rω − s
r − s

e(rω−r)a1 + s− sω
r − s

e(sω−r)a1 . (2.1.40)
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Notice that in the above solution, if 0 is set instead of a1, the first term of the
sum is what [Albrecher et al., 2011] find as a solution. The second term is the
consequence of the non-asymptotic hypothesis (the business stops at 0 instead of
−∞) so none of the exponentials vanish.

We determine the second constant B :

B = (r − rω)erωa1 + (sω − r)esωa1

esa1(r − s) , (2.1.41)

which yields :
B = r − rω

r − s
e(rω−s)a1 + sω − r

r − s
e(sω−s)a1 . (2.1.42)

In case of a constant ruin function, we have found the exhaustive expected present
value of dividends becauseGL(u, b),GM(u, b) andGU(u, b) are now explicitly com-
puted as functions of u.

The second type of ω−ruin that follows from the first one is a piecewise
constant function, that is : ω(u) = ωk, k ∈ [1, n].

In this case, the interval [0, a1) is divided into n sub-intervals

[0 = u0, u1), [u1, u2), ..., [uk, uk+1), ..., [un−1, un = a1) (2.1.43)

and each sub-interval is bound to its ω value. For example, a surplus between 0
and u1, is bound to ω(u) = ω1.

In that case ωk > ωk+1 because the more the debt increases, the more the
probability of ruin increases too. This model seems more efficient than the pre-
vious one to describe different situations of ruin or different ω−events.

This definition of ω(u) leads to the n differential equations :

σ2

2 G
′′
L(u; b) + µG′L(u; b)− [δ + ωk]GL(u; b) = 0, k ∈ [1, n]. (2.1.44)

Their n associated characteritic equations are thus
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σ2

2 ξ
2 + µξ − [δ + ωk] = 0, k ∈ [1, n]. (2.1.45)

Because each equation has two distinct roots, the general solutions are :

GL(u, b) = Ake
rku +Bke

sku, k ∈ [1, n], u ∈ [uk−1, uk), (2.1.46)

where Ak and Bk are 2n constants to determine and rk and sk are the n positive
and n negative solutions of the associated characteristic equations.

To determine Ak and Bk for k ∈ [1, n], we use a recursive method. First we
know that for k ∈ [1, n− 1], rk+1 < rk and sk+1 > sk. And then, from (2.1.35) we
have the initial condition A = 1 and B = −1.

We know the solutions of the equations must satisfy at least two continuity
conditions for the function and its derivative, which yields the following results :

Ak+1e
rk+1uk +Bk+1e

sk+1uk = Ake
rkuk +Bke

skuk (2.1.47)

Ak+1rk+1e
rk+1uk +Bk+1sk+1e

sk+1uk = Akrke
rkuk +Bkske

skuk . (2.1.48)

When those continuity conditions are respected, we have then

Ak+1(rk+1 − sk+1)erk+1uk = Ak(rk − sk+1)erkuk +Bk(sk − sk+1)eskuk (2.1.49)

Bk+1(sk+1 − rk+1)esk+1uk = Ak(rk − rk+1)erkuk +Bk(sk − rk+1)eskuk . (2.1.50)

For each of these values, we need to compute the ratio ρ = −B
A

where A = An

and B = Bn. We aim at using a recursion for ρk = −Bk

Ak
. From (2.1.49) and

(2.1.50), we have :

ρk+1 = e(rk+1−sk+1)uk (rk − rk+1)erkuk + ρk(rk+1 − sk)eskuk
(rk − sk+1)erkuk + ρk(sk+1 − sk)eskuk

, k ∈ [1, n− 1],

(2.1.51)

with starting value ρ1 = 1. Indeed, in the article B = 0 and A = 1, and here
B = −1 and A = 1, which explains the slight modification.
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Finally, contrary to what is done in [Albrecher et al., 2011] we will not dis-
cuss other ω functions. The previous part was about discrete ruin functions but
continuous functions are good candidates for ω(u) but they are not a crucial part
of the main development because of two main reasons :

(1) The first one is related to the solutions of the diffential equation (2.1.35)
because in the case where the coefficient ω(u) isn’t a constant, the equation
can’t be solved using the characteristic equation method, and the solutions
might be impossible to give explicitly, depending on the form of ω(u). In
some cases, we could use Airy functions or Bessel functions to solve theo-
retically, but we are more focused on the implications of the ω−ruin for
the model than on the type of ω itself.

(2) The second reason is because continuous functions can be approximated
by piecewise constant functions provided the interval [0, a1) is divided into
enough sub-intervals. We can use this method to then find the coefficients
A and B thanks to the above ratio.

For example, if we want to approximate a linear continuous ω(u), then we
can divide the interval [0, a1) into n sub-interval of length a1

n
and assign to

each of the uk =
[
(k − 1)a1

n
, k

a1

n

)
the ruin intensity ω(uk) = n− (k− 1),

for k ∈ [1, n], then we could numerically look what happens for n −→ +∞.
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2.1.8. Numerical Illustrations for the EPVD

In this section we aim at illustrating the theorical results we have obtained.
We choose to use MatLab code. The codes are available in Annexe A, at the
end of the thesis.

We create the piecewise function epvd for expected present value of dividends.
The x-axe is the initial surplus of the company, the y-axe is the EPVD obtained
for each value of initial surplus u.

If we compare them to the EPVD obtained in [Albrecher et al., 2011], the
changes happen in the definition interval, we begin with a capital of 0, not −∞.

We choose classical parameters : a1 = 2, b = 4, µ = 0.5, δ = 0.05 and try to
focus on how the volatility σ, the dividend payment rate γ and the omega-ruin ω
modify the graph.

Here is the expected present value of dividends for different volatilities σ. We
impose γ = 1000 and ω = 1.

Figure 2.1. EPVD function between 0 and 6 for different σ

The graph shows that the EPVD is inversely proportional to σ.
We now observe the influence of ω on the graph. The parameters are γ = 1000

and σ = 1.
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Figure 2.2. EPVD function between 0 and 6 for different values of ω.

We may also observe that with ω increasing, the EPVD becomes more and
more concave.

Finally, the last parameter that is relevant to observe is γ. We set it to 1000
because it is a standard value but we can test with 105 and 1. We still set σ = 1
and ω = 1.

Figure 2.3. EPVD function between 0 and 6 for γ = 105.
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(a) EPVD function between 0 and 6 for γ = 1. We notice that in this case, γ is too small for the
model and the value function seems decreasing, which indicates that the model does not return correct
results when γ tends to 0.

Figure 2.4. EPVD flawed because of γ too weak

Remark : Figure 2.3 does not look different from the one we obtain with the
same parameters and γ = 1000. The continuous case happens for γ → ∞ The
second one however (Figure 2.4), seems a bit strange because the EPVD function
is decreasing at the barrier. It seems to mean that a γ parameter too weak is not
suitable for this type of strategy. This is discussed in chapter 3.
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2.2. Optimal periodic strategy and Verification Lemma
2.2.1. Theoretical Expected Present Value of Dividends in the per-

iodic framework

In this section, we recall the important steps to get the theoretical periodic
expected present value of dividends. This function was first described in the per-
iodic case as the following mathematical expectation, conditionaly to u, the initial
level of capital held by the company :

J(u, θ) = Eu
[ +∞∑
k=0

e−δTkϑTkI{Tk<τ}

]
. (2.2.1)

It is quite simple to understand this formula. Its main part is the sum

+∞∑
k=1

e−δTkϑTkI{Tk<τ} (2.2.2)

= e−δT1ϑT1I{T1<τ} + e−δT2ϑT2I{T2<τ} + ... (2.2.3)

where e−δTk is the parameter related to the force of interest δ at decision time
Tk. This coefficient plays the role of a “corrective term” that simply regulates the
payouts at times Tk.

The dividend payouts are denoted by ϑTk in this sum. They are the dividends
that are paid (or not, depends on the strategy) at decision times Tk.

Finally I{Tk<τ} is the characteristic function :

I{Tk<τ} =

 1 if Tk < τ

0 if Tk > τ.

According to section 1.6 of literature review, their sequence represents the
dividend strategy Θ.

Θ = {ϑT1 , ϑT2 , ..., ϑTi , ...}. (2.2.4)

We are interested in the optimal sequence Θ ∈ D (the set of all admissible
periodic strategies), denoted by Θ∗.
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Under Θ∗, the EPVD is maximized and written

J(u,Θ∗) = Eu
[ +∞∑
k=0

e−δTkϑ∗TkI{Tk<τ}

]
. (2.2.5)

We recall that the value function is defined as

V (u) = sup
Θ∈D

J(u,Θ) = J(u,Θ∗). (2.2.6)

Existence of Θ∗ is not that obvious. To prove that an optimal barrier exists
we must show that there is at least one set of parameters for which b∗ > 0.
Essentially, since the structure of b∗ is a logarithm, we need to show that the
log argument is greater than 1. This can easily be verified numerically that such
a model parameters set exists. In Matlab for example we have strictly positive
values of b∗ for standard parameters, however, given the general form of the log
argument, it is very hard to show it analytically.

We need to model the periodic component of dividend payment. To do so, we
introduce a mathematical tool. It is a Poisson process {Nγ(t)} with parameter γ.
We also recall that the aggregate amount of dividends D(t) was a càdlàg process
(continu a droite, limite a gauche). In this context, we can express D(t) as :

D(t) =
∫ t

0
ϑsdNγ(s), (2.2.7)

where {Nγ(t)} is {Ft}-adapted.

Dividend decisions can only occur when the process {Nγ(t)} has jumps. This
set of decision times is T = {T1, T2, ...} and the quantities Tk+1 − Tk ≥ 0 are the
inter-dividend-decision times. In this thesis, these are assumed to be expentially
distributed with mean 1/γ. This is the same as in [Albrecher et al., 2011] and
[Avanzi et al., 2014].

2.2.2. The Hamilton-Jacobi-Bellman equation

In this section, we aim at showing that a barrier strategy is the optimal stra-
tegy in the γ − ω model, which has never been done before. The methodology
we use is the standard one. We assume a barrier is optimal then we test this
assumption thanks to the Verification lemma, which is the main part of the test.
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The last part of this section is another verification to show the uniqueness of the
optimal strategy.

The first step is to determine the Hamilton-Jacobi-Bellman equation associa-
ted with our surplus. In that case, it is very easy to find thanks to the law of total
probability we applied in the previous section.
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From the part

V (u) + {γ[l + V (u− l)− V (u)]

+ σ2

2 V
′′(u) + µV ′(u)− (ω(u) + δ)V (u)}h+ o(h),

which is line (2.1.8), we build the appropriate HJB equation on the model of
[Avanzi et al., 2014]. The optimal dividend strategy is the l such that the ex-
pression in curly braces is maximized, which leads to the HJB equation we are
looking for. Finally, we require V (0) = 0 in the first case because ultimate ruin
(bankruptcy) occurs when the surplus is zero. This yields

max
0≤l≤u

{γ[l + V (u− l)− V (u)]}+ (Ω− δ)V (u) = 0 with V (0) = 0, (2.2.8)

where the operator Ω is the infinitesimal generator :

Ωf = σ2

2 f
′′ + µf ′ − ω(u)f. (2.2.9)

According to the structure of this HJB, as well as in [Avanzi et al., 2014], we use
the following lemma (Lemma 3.1) to assume the optimal periodic strategy is a
pariodic barrier (the structure l+ V (u− l) is similar in both cases and motivates
the assumption).

Lemma 3.1 of [Avanzi et al., 2014] If V (u) ∈ C2 is an increasing and
concave function, with a point b > 0 such that V ′(u) = 1, then
max
0≤l≤u

{[l + V (u− l)]} is achieved at

l =

 0 if u ∈ [0, b)
u− b if u ∈ [b,+∞).

This lemma applies here because V is concave and a hypothesis about it is
V ′(b) = 1.

Proof We first differentiate l + V (u− l) with respect to l and obtain
d

dl
(l + V (u− l)) = 1− V ′(u− l). (2.2.10)
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We know that V is concave so V ′ is a decreasing function. Since b is the point
such that V ′(b) = 1, this means that

V ′(u) > 1 u ∈ [0, b) (2.2.11)

V ′(u) < 1 u ∈ [b,+∞). (2.2.12)

When u ∈ [0, b), we observe that for all possible values 0 ≤ l ≤ u, we have
1 − V ′(u − l) < 0 and hence l + V (u − l) is a strictly decreasing function of l.
Since l + V (u− l) is continuous, the maximum must occur at l = 0.

If we consider the other case, that is u ∈ [b,+∞), we observe that

1− V ′(u) < 0 l ∈ [0, u− b), (2.2.13)

1− V ′(u) ≥ 0 l ∈ [u− b, u]. (2.2.14)

This implies that the function l+V(u-l) has a stationnary point at l = u − b,
which is a maximum because

d2

dl2
(l + V (u− l)) = V ′′(u− l) < 0. (2.2.15)

In view of this theorem, the structure of the HJB equation suggests that the op-
timal periodic strategy is likely to be a periodic barrier strategy as defined below.

Definition [Periodic barrier dividend strategy, definition 3.2 of Avanzi et al.
[2014]] Under a periodic barrier b, dividends payments are :

ϑTi = max (XTi − b, 0), (2.2.16)

at all dividend decision times Ti before bankruptcy.

It means that in order to pay dividends, each time that a decision time Ti
happens, if the surplus is above b, then XTi − b is paid, and 0 if the surplus is
below b.
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2.2.3. Verification lemma

In order to show that a strategy is optimal and unique, it has to pass some
verification steps. These can be found in papers where optimality is the first
goal, as in [Avanzi et al., 2014] or [Jeanblanc-Picqué and Shiryaev, 1995] (an old
but standard reference). There are some major differences between our case and
[Avanzi et al., 2014]. First, we don’t need the Poisson Process part, and then we
have a solvency constraint. The solvency constraint behaviour is described in the
next chapter.

This lemma is built on advanced stochastic calculus like Ito’s formula and
martingales. We provide all the theorems and formulas used here in Annexe B

Theorem (Verification lemma) : Assume that we follow a periodic di-
vidend strategy Θ = {ϑT1 , ϑT2 , ϑT3 , ...}, where T = {T1, T2, T3, ...} is the set of
dividend decision times. For a non-negative function H(u) ∈ C1(R+) that is twice
continuously differentiable except at countably many points, satisfying

(1) γmax0≤l≤u{l +H(u− l)−H(u)}+ (Ω− δ)H(u) ≤ 0,

(2) 0 ≤ H ′(u) <∞, u ≥ 0,

(3) H ′′(u) ≤ 0, u ≥ 0,

(4) lim
u→∞

H ′(u) < 1, bounded (above) a linear function with slope less than 1

in which the integro-differential operator is defined by (2.2.9), then we have

H(u) ≥ V (u), u ≥ 0, (2.2.17)

where the function V (u) is defined as the optimal function (value function).
Furthermore, if there exists a point b∗ ≥ 0 such thatH(u) ∈ C1(R+)∩C2(R+\{b∗})
satisfying

γ max
0≤l≤u

{l +H(u− l)−H(u)}+ (Ω− δ)H(u) = 0, (2.2.18)

which is equivalent to

(5) (Ω− δ)H(u) = 0, H ′(u) ≥ 1, for u ∈ [a1, b
∗],

(6) (Ω− δ)H(u) < 0, H ′(u) < 1, for u ∈ (b∗,∞),

then
H(u) = V (u), u ≥ 0, (2.2.19)

and the optimal strategy is a periodic barrier strategy of level b∗.
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Remark : We follow the steps presented in [Avanzi et al., 2014]. In fact we will
make our first goal here to highlight the differences between this paper and our
case.

Proof of Verification lemma : Firstly, we need Ito’s formula for jump dif-
fusion processes because D(t) is a pure jump-diffusion process. Indeed, it depends
on {Nγ(t)} which is a Poisson process.

The proof starts with a slight modification in the application of the law of
total probability

γh(1− δh){l + E[V (u+ µh+ σW (h)− l)]}

+ (1− γh− ωh)(1− δh)E[V (u+ µh+ σW (h))] + o(h).

We notice that in the second part, (1− γh−ωh)(1− δh) is the Taylor expansion
of e−γh−ωhe−δh which is equivalent to

e−γh−ωh−δh (2.2.20)

e−δh−ωhe−γh (2.2.21)

which can be expanded according to Taylor :

(1− δh− ωh)(1− γh), (2.2.22)

which could be interpreted from the dividend payments perspective : either divi-
dends are paid with probability γh, or not, with probability 1−γh. The previous
equation becomes thus :

γh(1− δh){l + E[V (u+ µh+ σW (h)− l)]}

+ (1− δh− ωh)(1− γh)E[V (u+ µh+ σW (h))] + o(h).
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Then according to the hypothesis of the lemma, the function we are going to
develop using Ito’s Formula is, for all t ≥ 0,

e−(δ+ω)(t∧τ)H(X(t ∧ τ))

= H(u)−
∫ t∧τ

0
(δ + ω)e−(δ+ω)sH(X(s))ds

+
∫ t∧τ

0
e−(δ+ω)sH ′(X(s))dX(µ)(s)

+ σ2

2

∫ t∧τ

0
e−(δ+ω)sH ′′(X(s))ds

+
∑

s∈T ,s≤t∧τ
e−(δ+ω)s[H(X(s−) + ∆X(s))−H(X(s−))], (2.2.23)

where X(µ)(s) is the continuous component of X(s). Note that we have X(s) −
X(s−) 6= 0 in the sum of (2.2.23) and X(s) − X(s−) = 0 in the integrals of
(2.2.23). In addition, since D(t) is a pure jump process, we have

dX(µ)(s) = µds+ σdW (s). (2.2.24)

The first significant difference here is that we have no S(t) process (which would
be another compound Poisson process). We don’t have to separate the sum part
into two components because of this reason. It simplifies the proof.

The sum can be expressed using an integral. This is because a dividend de-
cision time is made when a jump occurs in the compound Poisson process {Nγ(t)}.

Note that, if there is a jump in the process {Nγ(t)} (i.e., ∆Nγ(t) = 1), then
a dividend decision is made (∆X(t) = −ϑt). Therefore, we can rewrite the sum
introduced in the previous equation as follows,∑

s∈T ,s≤t∧τ
e−(δ+ω)s[H(X(s−) + ∆X(s))−H(X(s−))]

=
∑
s≤t∧τ

e−(δ+ω)s[H(X(s−)− ϑs)−H(X(s−))]∆Nγ(s)

=
∑
s≤t∧τ

e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]∆Nγ(s)

−
∑
s≤t∧τ

e−(δ+ω)sϑs∆Nγ(s). (2.2.25)
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Equation (2.2.25) can be expressed as the difference of two integrals, i.e.,∑
s∈T ,s≤t∧τ

e−(δ+ω)s[H(X(s−)−∆X(s))−H(X(s−))]

=
∫ t∧τ

0
e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]dNγ(s)

−
∫ t∧τ

0
e−(δ+ω)sϑsdNγ(s). (2.2.26)

Now that we have turned our sum into integrals we can use some stochastic cal-
culus theorems to prove what we want :

Firstly, acknowledging that we expand the integral with respect to dX(µ)(s)
we can now write the Ito’s formula as the following :

e−(δ+ω)(t∧τ)H(X(t ∧ τ))

= H(u)−
∫ t∧τ

0
(δ + ω)e−(δ+ω)sH(X(s))ds+

∫ t∧τ

0
σe−(δ+ω)sH ′(X(s))dW (s)

+
∫ t∧τ

0
e−(δ+ω)sµH ′(X(s))ds+ σ2

2

∫ t∧τ

0
e−(δ+ω)sH ′′(X(s))ds

+
∫ t∧τ

0
e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]dNγ(s)

−
∫ t∧τ

0
e−(δ+ω)sϑsdNγ(s). (2.2.27)

Now we would like to find the operator Ω previously defined amongst the com-
ponents of (2.2.27) to prove the first inequality.

Using the previous development we can write the formula again :

e−(δ+ω)(t∧τ)H(X(t ∧ τ))

= H(u) +
∫ t∧τ

0
(Ω− δ)e−(δ+ω)sH(X(s−))ds

+
∫ t∧τ

0
σe−(δ+ω)sH ′(X(s))dW (s)

+
∫ t∧τ

0
e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]dNγ(s)

−
∫ t∧τ

0
e−(δ+ω)sϑsdNγ(s). (2.2.28)
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Where in the formula, ΩH(X(s)) = σ2

2 H(X(s)) + µH(X(s))− ωH(X(s)).

Now we can notice that we can simplify the dividend-related term in the
formula. We have :

∫ t∧τ

0
e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]dNγ(s)

=
∫ t∧τ

0
e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]d(Nγ(s)− γs)

+
∫ t∧τ

0
e−(δ+ω)sγ[ϑs +H(X(s−)− ϑs)−H(X(s−))]ds. (2.2.29)

For convient reasons we can denote :
Mt∧τ =

∫ t∧τ
0 σe−(δ+ω)sH ′(X(s))dW (s)

Zt∧τ =
∫ t∧τ
0 e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]d(Nγ(s)− γs).

This is because we need to show that Mt∧τ and Zt∧τ are martingales. To do
so, we can use the work of [Avanzi et al., 2014].

We first show that Mt∧τ is a martingale. Note that Mt is the Itō’s integral of
the process {σe−(δ+ω)sH ′(X(s))}. In order to show that Mt is a square integrable
martingale, we need to show that (Theorem 8.27 in [Klebaner, 2005])

sup
t≥0

Eu〈M,M〉(t) = sup
t≥0

Eu
[∫ t

0
[σe−(δ+ω)sH ′(X(s))]2d〈W,W 〉(s)

]
<∞. (2.2.30)

Since we know that d〈W,W 〉(s) = ds, hence it suffices to verify that

sup
t≥0

Eu
[∫ t

0
[σe−(δ+ω)sH ′(X(s))]2ds

]
<∞. (2.2.31)

Now because H is a concave function (around the payement area)(from condition
3), so H ′(X(s)) ≤ H ′(a1) for all s ≥ 0. Therefore we have

sup
t≥0

Eu
[∫ t

0
[σe−(δ+ω)sH ′(X(s))]2ds

]
≤ sup

t≥0
Eu
[∫ t

0
[σe−(δ+ω)sH ′(a1)]2ds

]

= sup
t≥0

∫ t

0
[σe−(δ+ω)sH ′(a1)]2ds

= sup
t≥0

σ2H ′(a1)2(1− e−2(δ+ω)t)
2(δ + ω)

= σ2H ′(a1)2

2(δ + ω) <∞, (2.2.32)
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which is true becauseH ′ is finite from condition 2. HenceMt is a square integrable
martingale. Now we can use Itō’s isometry on Mt (Theorem 8.32 in [Klebaner,
2005]),

sup
t≥0

Eu[M2
t ] = sup

t≥0
Eu
[∫ t

0
σe−(δ+ω)sH ′(X(s))dW (s)

]2

= sup
t≥0

Eu
[∫ t

0
[σe−(δ+ω)sH ′(X(s))]2d〈W,W 〉(s)

]

= sup
t≥0

Eu
[∫ t

0
[σe−(δ+ω)sH ′(X(s))]2ds

]
<∞. (2.2.33)

Hence Mt is a uniformly integrable martingale (see Corollary 7.8 in [Klebaner,
2005]). Since τ is a stopping time, Mt∧τ is also a uniformly integrable martingale
(see Theorem 7.14 in [Klebaner, 2005]).

Now we have to show that Zt∧τ is a martingale.
We will first prove that Zt is a uniformly integrable martingale. Note that Zt

is a stochastic integral with respect to a compensated Poisson process Ñγ(s) =
Nγ(s)− γs, i.e.

Zt =
∫ t

0
e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]dÑγ(s). (2.2.34)

In order to show that Zt is a square integrable martingale, we need to verify the
following (Theorem 8.27 in [Klebaner, 2005])

sup
t≥0

Eu〈Z,Z〉(t)

= sup
t≥0

Eu
[∫ t

0
e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]2d〈Ñγ, Ñγ〉(s)

]
<∞.

(2.2.35)

We show d〈Ñγ, Ñγ〉(s) = γds in (B.5.3). Hence, to show that Zt is a square
integrable martingale, it suffices to verify

sup
t≥0

Eu〈Z,Z〉(t)

= sup
t≥0

Eu
[∫ t

0
(e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))])2γds

]
<∞. (2.2.36)

Next, we show a following useful identity which is used to complete the proof.
For l ∈ [0, u− a1] and u ≥ a1, we have

l +H(u− l)−H(u) ≤ u. (2.2.37)
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The identity (2.2.37) can be easily verified. Since H is an increasing function that
is defined on R+, then H(u− l)−H(u) ≤ 0 and therefore l+H(u− l)−H(u) ≤
l ≤ u.

Now using (2.2.37), (2.2.36) becomes

sup
t≥0

Eu〈Z,Z〉(t) = sup
t≥0

Eu
[∫ t

0
(e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))])2γds

]

≤ sup
t≥0

Eu
[∫ t

0
γ(e−(δ+ω)sX(s))2ds

]
(2.2.38)

Note that we can interchange of expectation and integral in (2.2.38) since the
process {e−(δ+ω)sX(s)} has regular sample paths (left continuous with right limit),
then using Fubini’s theorem (Theorem 2.39 from [Klebaner, 2005]), we have

Eu
[∫ t

0
γe−2(δ+ω)sX(s)2ds

]
=
∫ t

0
Eu|γe−2(δ+ω)sX(s)2|ds =

∫ t

0
γe−2(δ+ω)sEu(X(s)2)ds.

(2.2.39)
The Moment Generating Function (MGF) of X(s) is

MX(s)(t) = e(u−cs)tMσW (s)(t)MD(s)(t)

= e(u−cs)tMσW (s)(t)MNγ(s)(logMθs(t))

= e(u−cs)te
1
2σ

2st2eγs(Mθs (t)−1). (2.2.40)

Then the second moment of X(s) can be derived using the second derivative of
MX(s)(t) evaluated at t = 0, i.e.

E[X(s)2] = M ′′
X(s)(t)

∣∣∣∣
t=0

= MX(s)(t)(σ2s+ γsM ′′
θs(t))

∣∣∣∣
t=0

= σ2s+ γsM ′′
θs(0)

= (σ2 + γE[θ2
s ])s. (2.2.41)

Since 0 ≤ θs ≤ X(s) ≤ U(s) when X(s) ≥ 0 and θs = 0 when X(s) < 0, then
E[θ2

s ] ≤ E[U(s)2] for all s ≥ 0. Hence using the result derived above, we have

E[X(s)2] ≤ (σ2 + γE[U(s)2])s

= σ2(s+ γs2). (2.2.42)

As a result, (2.2.38) becomes

=γσ2 supt≥0

[∫ t
0(s+ γs2)e−2(δ+ω)sds

]
=γσ2 supt≥0

[
1−e−2(δ+ω)t−2(δ+ω)te−2(δ+ω)t

4(δ+ω)2 + γ 1−e−2(δ+ω)t−2(δ+ω)2t2e−2(δ+ω)t−2(δ+ω)te−2(δ+ω)t

4(δ+ω)3

]
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=γσ2
[
δ+ω+γ
4(δ+ω)3

]
<∞.

Hence Zt is a square integrable martingale (Theorem 8.27 in [Klebaner, 2005]).
Furthermore, since supt≥0 Eu[Z2

t ] = supt≥0 Eu〈Z,Z〉(t) < ∞ (Corollary 7.8 of
[Klebaner, 2005]), then Zt is a uniformly integrable martingale. Since τ is a stop-
ping time, Zt∧τ is also a uniformly integrable martingale (Theorem 7.14 in [Kle-
baner, 2005]).

Lastly for Zt∧τ , we first note that, if there is a jump in the process {Nγ(t)}
(i.e., ∆Nγ(t) = 1), then a dividend decision is made (∆X(t) = ϑt), which has the
following impact on the process {ϑs +H(X(s−)− ϑs)−H(X(s−))},

ϑs +H(X(s−)− ϑs)−H(X(s−)) = 0 ∆Nγ(s) = 0; (2.2.44)

ϑs +H(X(s−)− ϑs)−H(X(s−)) ≥ 0 ∆Nγ(s) = 1. (2.2.45)

Equation (2.2.44) holds because when it is not a dividend decision time, no divi-
dend will be issued, i.e. ϑs = 0 when ∆Nγ(s) = 0. When a dividend decision time
arrives, dividends will be distributed when ϑs+H(X(s−)−ϑs)−H(X(s−)) > 0.
Otherwise no dividends are to be paid and ϑs+H(X(s−)−ϑs)−H(X(s−)) = 0.

Now since Zt is stochastic integral with respect to a compensated Poisson
process, then by the properties of stochastic integral with respect to martingales
[see page 216, property 1 in Klebaner, 2005], Zt is a local martingale. In addition,
since (2.2.44) and (2.2.45) establish that Zt is also a non-negative local martin-
gale. Then by Theorem 7.23 in Klebaner [2005], Zt is a supermartingale, which
makes the stopped process {Zt∧τ} also a supermartingale [see page 9 point 17 in
Borodin and Salminen, 2002].

Now since Zt is uniformly bounded below by a uniformly integrable martin-
gale, therefore, Zt is a supermartingale, which makes the stopped process {Zt∧τ}
also a supermartingale [see page 9 point 17 in Borodin and Salminen, 2002].

In addition, since H is an increasing function, we have

ϑs +H(X(s−)− ϑs)−H(X(s−)) ≤ ϑs ≤ X(s). (2.2.46)

For Zt∧τn , since X(t) is bounded by n and we compute the following integral∫ t∧τn

0
|e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]|ds
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=
∫ t∧τn

0
e−(δ+ω)s|[ϑs +H(X(s−)− ϑs)−H(X(s−))]|ds

≤
∫ t∧τn

0
e−(δ+ω)s|X(s)|ds <∞. (2.2.47)

Hence by the martingale property of a compensated Poisson integral, Zt∧τ is a
martingale.

Now that we have Eu[Mt∧τ ] = 0 and Eu[Zt∧τ ] = 0, and from condition 1, we
know that

γ[ϑs +H(X(s−)− ϑs)−H(X(s−))] + (Ω− δ)H(X(s)) ≤ 0. (2.2.48)

Hence, taking expectation yields

H(u) ≥ Eu[e−(δ+ω)(t∧τ)H(X(t ∧ τ))] + Eu
[∫ t∧τ

0
e−(δ+ω)sϑsdNγ(s)

]
. (2.2.49)

For the first term of the right hand side of (2.2.49), using Fatou’s lemma
(Theorem 2.17 in [Klebaner, 2005]) and taking t→∞, we have

lim inf
t→∞

Eu[e−(δ+ω)(t∧τ)H(X(t∧τ))] ≥ Eu[lim inf
t→∞

e−(δ+ω)(t∧τ)H(X(t∧τ))]. (2.2.50)

By conditioning on the value of τ , we have

lim inf
t→∞

e−(δ+ω)(t∧τ)H(X(t ∧ τ))

= lim inf
t→∞

e−(δ+ω)(t∧τ)H(X(t ∧ τ))1{τ<∞} + lim inf
t→∞

e−(δ+ω)(t∧τ)H(X(t ∧ τ))1{τ=∞}

=e−(δ+ω)(τ)H(X(τ))1{τ<∞} + lim inf
t→∞

e−(δ+ω)(t∧τ)H(X(t ∧ τ))1{τ=∞}

≥e−(δ+ω)(τ)H(X(τ))1{τ<∞}
=e−(δ+ω)(τ)H(0)1{τ<∞} ≥ 0. (2.2.51)

Therefore, we have

lim inf
t→∞

Eu[e−(δ+ω)(t∧τ)H(X(t ∧ τ))] ≥ 0. (2.2.52)

For the second term on the right hand side of (2.2.49), we first observe that it is
monotonely increasing as t increases. In addition, since dNγ(s) and ϑs are both
non-negative, by the monotone convergence theorem (Theorem 2.16 in [Klebaner,
2005]) and conditioning on the value of τ we have

lim
t→∞

Eu
[∫ t∧τ

0
e−(δ+ω)sϑsdNγ(s)

]
= lim

t→∞
Eu
[∫ t∧τ

0
e−(δ+ω)s1{τ<∞}ϑsdNγ(s)

]
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+ lim
t→∞

Eu
[∫ t∧τ

0
e−(δ+ω)sϑs1{τ=∞}dNγ(s)

]
≥ Eu

[∫ τ

0
e−(δ+ω)sϑs1{τ<∞}dNγ(s)

]
. (2.2.53)

Therefore, combining (2.2.52) and (2.2.53), we find that

H(u) ≥ Eu
[∫ τ

0
e−(δ+ω)sϑs1{τ<∞}dNγ(s)

]
= J(u;Θ). (2.2.54)

Since Θ is arbitrary, we have H(u) ≥ J(u,Θ∗).

We now complete the proof by showing that H(u) ≤ J(u,Θ∗). When an
optimal strategy Θ∗ is applied, condition 5 first implies that the integrals with
respect to ds in Ito’s formula is zero, i.e.,∫ t∧τ

0
e−(δ+ω)s(Ω− δ)H(X(s))ds

+
∫ t∧τ

0
e−(δ+ω)sγ[ϑ∗s +H(X(s−)− ϑ∗s)−H(X(s−))]ds = 0. (2.2.55)

Secondly from Lemma 3.1, we know that the maximum of condition 4 is attai-
ned when the dividend strategy is of a barrier type. In addition, Lemma 3.3 (see
section 1.3 of literature review) also shows that probability of ruin is one for a
periodic barrier strategy. Therefore ruin is certain when Θ∗ is applied.

Now observe that since H is an increasing function, we have

Zt∧τ =
∫ t∧τ

0
e−(δ+ω)s[ϑ∗s +H(X(s−)− ϑ∗s)−H(X(s−))]d(Nγ(s)− γs)

≤
∫ t∧τ

0
e−(δ+ω)s[ϑ∗s +H(X(s−)− ϑ∗s)−H(X(s−))]dNγ(s)

≤
∫ t∧τ

0
e−(δ+ω)sϑ∗sdNγ(s)

≤
∫ τ

0
e−(δ+ω)sϑ∗s1{τ<∞}dNγ(s), (2.2.56)

which has finite expectation. Since Zt∧τ is a supermartingale that is bounded
above by a random variable Y with

Eu[Y ] = Eu
[∫ τ

0
e−(δ+ω)sϑ∗s1{τ<∞}dNγ(s)

]
<∞. (2.2.57)

Then Zt∧τ is a martingale with Eu[Zt∧τ ] = 0.
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After taking expectation with optimal strategy Θ∗ applied, we arrive at

H(u) = Eu[e−(δ+ω)(t∧τ)H(X(t ∧ τ))] + Eu
[∫ t∧τ

0
e−(δ+ω)sϑ∗sdNγ(s)

]
. (2.2.58)

Now for the first term on the right hand side of (2.2.58), we need to show the
following

lim
t→∞

Eu[e−(δ+ω)(t∧τ)H(X(t ∧ τ))] = 0, (2.2.59)

which can be proven by using the dominated convergence theorem. We need to
show that there is a random variable Y such that e−(δ+ω)(t∧τ)H(X(t ∧ τ)) < Y

and E[Y ] < ∞, then by the dominated convergence theorem (Theorem 2.18 in
[Klebaner, 2005]), we have shown that (2.2.59) is true.

Firstly, since ruin is certain (from lemma 3.3),then ruin time is finite, i.e.
τ <∞. Then by considering all possible values of t compared to τ , we have

e−(δ+ω)(t∧τ)H(X(t ∧ τ)) = e−(δ+ω)(t∧τ)H(X(t ∧ τ))1{t < τ}

+ e−(δ+ω)(t∧τ)H(X(t ∧ τ))1{t ≥ τ}

= e−(δ+ω)tH(X(t))1{t < τ}+ e−(δ+ω)τH(X(τ))1{t ≥ τ}

= e−(δ+ω)tH(X(t))1{t < τ}. (2.2.60)

Since H is linearly bounded from condition 4, there exists two constants a and b
such that

e−(δ+ω)(t∧τ)H(X(t ∧ τ)) = e−(δ+ω)tH(X(t))1{t < τ}

≤ ae−(δ+ω)tX(t)1{t < τ}+ be−(δ+ω)t1{t < τ}

≤ aX(t)1{t < τ}+ b. (2.2.61)

Therefore now it suffices to show that X(t)1{t < τ} is bounded by an integrable
random variable to show (2.2.59). Firstly, since ruin is certain (lemma 3.1 of
[Avanzi et al., 2014]), therefore ruin time is finite, i.e. τ <∞. Then by considering
possible values of t compared to τ , we have

e−(δ+ω)(t∧τ)H(X(t ∧ τ)) = e−(δ+ω)(t∧τ)H(X(t ∧ τ))1{t < τ}

+ e−(δ+ω)(t∧τ)H(X(t ∧ τ))1{t ≥ τ}

= e−(δ+ω)tH(X(t))1{t < τ}+ e−(δ+ω)τH(X(τ))1{t ≥ τ}

= e−(δ+ω)tH(X(t))1{t < τ}. (2.2.62)
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Since H is linearly bounded, then there exists two constants a and b such that

e−(δ+ω)(t∧τ)H(X(t ∧ τ)) = e−(δ+ω)tH(X(t))1{t < τ}

≤ ae−(δ+ω)tX(t)1{t < τ}+ be−(δ+ω)t1{t < τ}

≤ aX(t)1{t < τ}+ b. (2.2.63)

Therefore it suffices to show that X(t)1{t < τ} is bounded by an integrable ran-
dom variable to show (2.2.59).

We make the following observation first. Since τ is finite almost surely, then
there are finitely many dividend decisions made before ruin. Without loss of
generality, we consider an event that n dividend decisions are made prior to ruin
and occur at time T = {T1, T2, ..., Tn}, the finite ruin time implies n is also finite.
Also since τ is necessarily less than the potential n+ 1th dividend decision time,
therefore we have

X(t)1{t < τ} ≤ sup
t∈[0,τ ]

X(t) ≤ sup
t∈[0,Tn+1]

X(t). (2.2.64)

In addition, the nature of a periodic barrier strategy implies that the modified
surplus process X(t) is bounded by b at every dividend decision time, i.e.,

0 ≤ X(Tk) ≤ b for k = 1, 2, ..., n, n+ 1. (2.2.65)

Furthermore, the modified surplus process X(t) is the original surplus process
U(t) in-between all dividend decision times before ruin, then it suffices to look
at the process U(t), for t ∈ [0, T1) ∪ [T1, T2) ∪ ... ∪ [Tn−1, Tn) ∪ [Tn, Tn+1). Also
since at each dividend decision time, X(t) takes a maximum value of b, thus the
original surplus process U(t) resets at most to level b at each dividend decision
time T = {T1, T2, ..., Tn}. As a result, we have

sup
t∈[0,Tn+1]

X(t) ≤ sup
t∈[0,Tn+1]

Un(t), (2.2.66)

where Un(t) is defined as follows,

Un(t) = U(t)1{t ∈ [0, T1)}|U(0) = u

+
n∑
k=1

U(t)1{t ∈ [Tk, Tk+1)}|U(Tk) = b. (2.2.67)
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When taking the supremum of the first term in (2.2.67), we make the following
decomposition,

sup
t∈(0,T1)

{U(t)|U(0) = u} = sup
t∈(0,T1)

{u+ µt+ σW (t)}

≤ sup
t∈(0,T1)

{u+ µt}+ σ sup
t∈(0,T1)

{W (t)}

= u+ µT1 + σ sup
t∈(0,T1)

{W (t)}. (2.2.68)

So when taking expectation of (2.2.68), we have E[u+ µT1] = u+ µT1. Further-
more, we know that from Equation 1.1.1 of [Borodin and Salminen, 2002], we
have

E

[
exp(t sup

0≤s≤T1

W (s))
]

=
√

2γ√
2γ − t , (2.2.69)

which give

E

[
sup

0≤s≤T1

W (s)
]

= d

dt
E

[
exp(t sup

0≤s≤T1

W (s))
] ∣∣∣∣

t=0
= d

dt

√
2γ√

2γ − t

∣∣∣∣
t=0

= 1√
2γ .

(2.2.70)

Hence substituting (2.2.70) and (2.2.68) into (2.2.68) yields

E

[
sup

t∈(0,T1)
U(t)|U(0) = u

]
≤ u+ µT1 + σ√

2γ . (2.2.71)

For the second term in (2.2.67), the exponential arrival time and its Markovian
structure of the surplus process, we have, for k = 1, 2, 3, ..., n,

E

[
sup

t∈(Tk,Tk+1)
U(t)|U(Tk, ) = b

]
= E

[
sup

t∈(0,T1)
U(t)|U(0) = b

]
≤ b+ σ√

2γ . (2.2.72)

Hence taking expectation of the supremum of (2.2.67), and using (2.2.71) and
(2.2.72) , we have

E

[
sup

t∈(0,Tn+1)
Un(t)

]
≤ (u+ b+ µTn+1) + (n+ 1) σ√

2γ . (2.2.73)

Therefore we have

X(t)1{t < τ} ≤ sup
t∈[0,Tn+1]

Un(t), with E

[
sup

t∈(0,Tn+1)
Un(t)

]
<∞. (2.2.74)
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Hence by letting Y = supt∈(0,Tn+1){aUn(t)+b|U(0) = u}, we identify an integrable
random variable such that the process {e−(δ+ω)(t∧τ)H(X(t∧ τ))} is dominated by
Y and E[Y ] <∞. The proof of (2.2.59) is complete.

For the second term on the right hand side of (2.2.58), observe that it is
a monotonely increasing t increases. In addition, dNγ(s) and ϑ∗s are both non-
negative. Hence when taking t → ∞, by the monotone convergence theorem, it
suffices to only consider the case when τ <∞, i.e.,

lim
t→∞

Eu
[∫ t∧τ

0
e−(δ+ω)sϑ∗sdNγ(s)

]
= lim

t→∞
Eu
[∫ t∧τ

0
e−(δ+ω)sϑ∗s1{τ<∞}dNγ(s)

]
= Eu

[∫ τ

0
e−(δ+ω)sϑ∗s1{τ<∞}dNγ(s)

]
. (2.2.75)

Hence, combining (2.2.59) and (2.2.75), we have for (2.2.58),

H(u) ≤ J(u;Θ∗). (2.2.76)

2.2.4. Verification of optimality

We have shown that a barrier strategy is optimal in the case of periodic di-
vidends with ω−ruin. Now, a final verification needs to be done. The optimal
barrier b∗ is given in the literature review at equation (1.5.9). We want to find
out whether our candidate solution G(u, b∗) is the one optimal or not. To do so,
we show that the candidate function G(u, b∗) satisfies the HJB equation, and is
increasing, concave and linear bounded (above). That is, for u ≥ 0

(1) max
0≤l≤u

{γ[l +G(u− l, b∗)−G(u, b∗)]}+ (Ω− δ)G(u, b∗) = 0

(2) 0 < G′(u, b∗) <∞

(3) G′′(u, b∗) < 0

(4) limu→∞G
′′(u, b∗) = 0

The proof is the following :
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Proof

(1) By construction, the value function G(u, b∗) is a solution the three differen-
tial equations. Therefore G(u, b∗) satisfies the HJB equation and attains
maximum.

(2) G′L(u, b∗) = rωe
rωu−sωesωu. By construction, sω is the negative root of the

characteritic equation so −sω > 0 and G′L(u, b∗) > 0.

G′M(u, b∗) = rAeru + sBesu where A and B are :

A = (rω − s)erωa1 + (s− sω)esωa1

era1(r − s) and B = (r − rω)erωa1 + (sω − r)esωa1

esa1(r − s) .

We have rω > r and sω < s. From which we deduce that A is positive
and B is negative. Then, rA > 0 and sB > 0 because s < 0 too. Finally,
G′M(u, b∗) > 0.

Lastly, GU(u, b∗) =
(

δ

δ + γ
GU(b∗, b∗) + µγ

(δ + γ)2

)
esγ(u−b∗)

+ γ

δ + γ
[u− b∗ +GU(b∗, b∗)] + µγ

(δ + γ)2 .

When u = b∗, then esγ(u−b∗) = 1 andG′U(u, b∗) > 0. Then, when u −→ +∞,
esγ(u−b∗) −→ 0 because sγ < 0. G′U(u, b∗) solely depends on the term in
[u− b∗ +GU(u, b∗)] which is increasing so GU(u, b∗) is a striclty increasing
function of u and G′U(u, b∗) > 0

(3) The function GL(u, b∗) isn’t concave but convex. It dosen’t matter because
the only interesting part are around the barrier, so the verification needs
to be done for GM(u, b∗) and GU(u, b∗).

We first show that G′M(u; b∗) is strictly decreasing. We already know that
G′M(u; b∗) > 0. This function is monotonic (because it is a sum of expo-
nentials over a positive interval). Because we know the function is mo-
notonic, we simply have to show that for two points u1 < u2, we have
G′M(u2, b

∗) − G′M(u1, b
∗) < 0. We chose the points a1 and b∗ because

G′M(b∗, b∗) = 1 (see classic result (1.5.10) in the literature review).
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G′M(b∗, b∗)−G′M(a1, b
∗) = 1− (rωerωa1 − sωesωa1) (2.2.77)

and rωerωa1 − sωesωa1 > 1 so G′M(u, b∗) is stricty decreasing, which is equi-
valent to say G′′M(u, b∗) < 0, and the function is concave.

Then, lim
u→+∞

GU(u, b∗) = γ

δ + γ
< 1 and G′U(b∗, b∗) = 1 so, because it is

monotonic it suffices that

lim
u→+∞

GU(u, b∗)−G′U(b∗, b∗) < 0 (2.2.78)

and G′′U(u, b∗) is concave.
Finally, because G(u, b∗) is twice continuously diffentiable, there is no issue
at u = b∗ and the global function is concave around b∗.

(4) This part is about G′′U(u, b∗) = s2
γ

(
δ

δ + γ
GU(b∗, b∗) + µγ

(δ + γ)2

)
esγ(u−b∗).

Immediately, when u −→ +∞, esγ(u−b∗) −→ 0.





Chapitre 3

THE OPTIMAL PERIODIC BARRIER
STRATEGY AND A NEW OPTIMALITY

THEOREM WITH SOLVENCY
CONSTRAINT

In this chapter, we aim at extending the works of [Albrecher et al., 2011].
They only consider the barrier above a1 (or in their case, above 0) but we build
on their works to show that it is possible, according to the structure of b∗, that
b∗ < a1. We now show how to deal with such a situation, by adapting an important
theorem from [Paulsen, 2003] to our case. This theorem has to be adapted for
periodic dividends and shows that the optimal strategy in the case b∗ < a1 to
maximize the EPVD is to use a barrier strategy at b∗ = a1. This represents a new
contribution, because this theorem have never been proved correct in the periodic
framework or γ − ω framework. We then aim at obtaining the new equations for
the surplus described in [Albrecher et al., 2011] in the case where the barrier is
now equal to the solvency contraint.
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3.1. Optimal periodic barrier strategy
In this section, we aim at finding b∗, the optimal periodic dividend barrier.

mathematically, the problem is similar to the study of a function and the deter-
mination of its stationary point(s). All we need to do is differentiate the EPVD
function on [b,+∞) because it is the part of the function where b plays a role.

This section is similar to the one in [Albrecher et al., 2011] because GU(u, b)
is the same function defined over the same interval of existence in both cases, but
it is not useless to mention how it is found.

3.1.1. Finding the optimal barrier b∗

We recall the expression of the EPVD for u ∈ [b,+∞)

GU(u, b) =
(

δ

δ + γ
GU(b, b) + µγ

(δ + γ)2

)
esγ(u−b)

+ γ

δ + γ
[u− b+GU(b, b)] + µγ

(δ + γ)2 . (3.1.1)

We now differentiate this function :

dGU(u, b)
du

= sγ

(
δ

δ + γ
GU(b, b)− µγ

(δ + γ)2

)
esγ(u−b) + γ

δ + γ
. (3.1.2)

The continuity condition of the EPVD function at u = b yields

dGU(u, b)
du

∣∣∣∣∣
u=b

= G′U(b, b) = sγ

(
δ

δ + γ
GU(b, b)− µγ

(δ + γ)2

)
+ γ

δ + γ
, (3.1.3)

then rearranging the terms yields the expected equation :

G′U(b, b)− sγ
δ

δ + γ
GU(b, b) = −sγ

µγ

(δ + γ)2 + δγ + γ2

(δ + γ)2 . (3.1.4)

To obtain another solvable equation, we can differentiate each side once more,
and then b∗ is the value of b that satisfies :

G′′U(b∗, b∗)− sγ
δ

δ + γ
G′U(b∗, b∗) = 0. (3.1.5)
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We recall that we know explicit expressions for G′U(b∗, b∗) and G′′U(b∗, b∗). Indeed,
solving both the Middle and the Lower equation in the previous section yields
explicit new values for A and B. We have :

G′U(b∗, b∗) = Arerb
∗ +Bsesb

∗ (3.1.6)

G′′U(b∗, b∗) = Ar2erb
∗ +Bs2esb

∗
. (3.1.7)

These results are the consequence of the continuity condition at u = b and in
particular u = b∗ and we can then use the (known) value of GM to find them.

Using (3.1.6) and (3.1.7) in (3.1.5) yields :

Ar2erb
∗ +Bs2esb

∗ − sγ
δ

δ + γ
Arerb

∗ − sγ
δ

δ + γ
Bs2esb

∗
. (3.1.8)

That is, after rearranging the terms and simplifying with the natural logarithm :

rb∗ + ln
(
Ar2 − sγ

δ

δ + γ
Ar

)
= ln

(
−Bs2 + sγ

δ

δ + γ
Bs

)
+ sb∗ (3.1.9)

which finally yields

b∗ = 1
r − s

ln


B

(
−s2 + sγ

δ

δ + γ
s

)

A

(
r2 − sγ

δ

δ + γ
r

)
 . (3.1.10)

Following the example of [Albrecher et al., 2011], for both associated characte-
ritic equations to the upper and middle parts, we can use the relation roots /
coefficients (also known as Vieta’s formulas) to obtain :

δ

δ + γ
= rs

rγsγ
. (3.1.11)

The barrier b∗ can thus be written

b∗ = 1
r − s

ln
[
−Bs2(rγ − r)
Ar2(rγ − s)

]
. (3.1.12)
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Because of the logarithm properties, we can as well write this expression as a
sum :

b∗ = 1
r − s

ln
[
s2

r2

]
+ 1
r − s

ln
[−B
A

]
+ 1
r − s

ln
[
rγ − r
rγ − s

]
. (3.1.13)

Remark : All the expressions for b∗ are the same as these given in [Albrecher
et al., 2011]. However, the value of these expressions is very different from the
one in the article because A and B are modified in our case, explaining why the
value of b∗ is completely different despite an unmodified formula.

3.1.2. Results for the value function and its derivative at b∗

Now that we have determined b∗, our goal is to give some results for the value
function under such barrier.

The first result is that

G′M(b∗, b∗) = G′U(b∗, b∗) = 1. (3.1.14)

This result comes from the fact that equation :

max
0≤l≤u

{γ[l +G(u− l)−G(u)]}+ (Ω− δ)G(u) = 0 with G(0) = 0 (3.1.15)

is maximized when G′ is equal to 1. This is proved by Lemma 3.1 in [Avanzi et al.,
2014] (see section 1.6 of literature review)

Another expected result is the explicit value of G(b∗, b∗). We recall equation

σ2

2 G
′′
M(u; b) + µG′M(u; b)− δGM(u; b) = 0, (3.1.16)

which is also valid at b∗ :

σ2

2 G
′′
M(b∗; b∗) + µG′M(b∗; b∗)− δGM(b∗; b∗) = 0. (3.1.17)

In the above equation, we replace G′M(b∗; b∗) with its value 1. We also had, for b∗

(equation (3.1.5))
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G′′U(b∗, b∗)− sγ
δ

δ + γ
G′U(b∗, b∗) = 0, (3.1.18)

which is now

G′′U(b∗, b∗) = sγ
δ

δ + γ
. (3.1.19)

All these simplifications lead to the expected result :

G(b∗, b∗) = σ2

2 sγ
1

δ + γ
+ µ

δ
. (3.1.20)

The last step is to aknowledge that sγ is a solution of the characteristic equation
for this upper part, that is :

σ2

2 s
2
γ = −µsγ + (δ + γ). (3.1.21)

Upon subsitution in the previous equation, we get the expected result under its
final form :

G(b∗, b∗) = µ

δ
− µ

δ + γ
+ 1
sγ
. (3.1.22)

Remark : An important thing to observe is that the expected present value of
dividends at b∗ under the optimal barrier strategy does not depend on the omega-
ruin function ω(u) whereas b∗ depends on it.

We can interpret the result based upon its different parameters as it follows

Arccording to the different papers on the topic, the classical result in case of
a continuous dividend payment rate (γ → +∞) is :

G(b∗, b∗) = µ

δ
. (3.1.23)

What is observed theoretically confirms the numerical results : if γ is too low,
then we have some issues because the second term is too close to the first one
and since sγ depends on γ, G might become negative which is not allowed by the
model.
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3.1.3. Numerical issues for b∗

The following part is not in [Albrecher et al., 2011]. In the previous section,
we have determined the optimal value for b∗, which is :

b∗ = 1
r − s

ln
[
−Bs2(rγ − r)
Ar2(rγ − s)

]
, (3.1.24)

where A and B are known constants. The logarithm function is positive on the
interval [1,+∞) but negative on (0, 1), so it is possible that b∗ becomes negative.
The issue is more precisely located in the numerator of the log function.

Recall that rγ is the positive solution of the characteristic equation

σ2

2 ξ
2 + µξ − (δ + γ) = 0 (3.1.25)

and r is the positive solution of

σ2

2 ξ
2 + µξ − δ = 0. (3.1.26)

If γ −→ 0, then the former equation turns into the latter and the consequence is
that rγ −→ r, which leads to rγ − r = 0 in the log numerator . In that case, and
because Ar2(rγ − s) 6= 0, we have successively b∗ < a1 then b∗ < 0. Even worse,
b∗ −→ −∞.

It is quite obvious that a company cannot expect sustainability for its divi-
dends outcomes when b∗ = 0. This level is quite significant, but not too important
in term of impact on the model because the threshold that matters the most is
the a1 threshold. Because the log function is continuous on (0,+∞), and stricly
increasing, there exists exactly one γ, denoted γ0 for which b∗ = a1.

Remark : In the case where γ −→ 0, equation (3.1.22) becomes

G(b∗, b∗) = 1
sγ

= 1
s
. (3.1.27)

We now understand that the case b∗ > a1, analog to the one discussed in [Albre-
cher et al., 2011] is valid for γ > γ0. The next section describes the process when
γ < γ0.
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3.2. The case b∗ < a1

3.2.1. The new optimal result from Paulsen in the case of periodic
dividends when the barrier is a1

Consequently to the last result, we assume that γ < γ0, that is b∗ < a1. The
γ − ω model areas are now [0, b∗), [b∗, a1) and [a1,+∞). The first problem that
arises is that dividend distribution is not allowed below a1, so the [b∗, a1) part is
not clear. Fortunately, this issue is addressed by an optimality result from [Paul-
sen, 2003]

Theorem [Theorem 2.2 from Paulsen (2003)]
In the case where b < +∞, if a1 > b then the optimal policy is to use a barrier

strategy at a1.

However, we cannot use this theorem in its 2003 version because :
— It does not consider the ω−ruin.
— It does not consider periodic dividends, only continuous dividends.
The proof needs to be adapted. It is based upon the previous verification

lemma. This is an extension of the previous verification lemma where we consider
any b,

Theorem : Periodic version of [Paulsen, 2003]

(1) if the periodic barrier is so that b > a1, the optimal strategy is a barrier of
level b

(2) in the case b < a1, the EPVD is maximized using a periodic barrier strategy
at a1

Proof : (1) is the previous verification lemma. (2) Let’s develop Ito’s formula
for Ha1(X(t)), the candidate for optimality under a barrier at a1.

The new HJB equation, and the new condition 1 of verification lemma would
be in such case :

γ max
0≤l≤u

{l +Ha1(u− l)−Ha1(u)}+ (Ω− δ)Ha1(u) ≤ 0, (3.2.1)

with l = 0 below a1 and l = u− a1 above a1
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e−(δ+ω)(t∧τ)Ha1(X(t ∧ τ)) = Ha1(u)

+
∫ t∧τ

0
e−(δ+ω)s

[
σ2

2 H
′′
a1(X(s)) + µH ′a1(X(s))− (δ + ω)Ha1(X(s))

]
ds

+
∫ t∧τ

0
e−(δ+ω)sσH ′a1(X(s))dWs

+
∫ t∧τ

0
e−(δ+ω)s[ϑs +H(X(s−)− ϑs)−H(X(s−))]dNγ(s)−

∫ t∧τ

0
e−(δ+ω)sϑsdNγ(s).

(3.2.2)

These terms are the same we used in the first verification lemma, so the conse-
quence is quite straightforward here :

Because we proved that

Eu
[∫ t∧τ

0
e−(δ+ω)sσH ′a1(X(s))dWs

]
= 0 (3.2.3)

and also that condition 1 of verification lemma yields

γ[ϑs +Ha1(X(s−)− ϑs)−Ha1(X(s−))] + (Ω− δ) ≤ 0. (3.2.4)

Taking expectation leads to

Ha1(u) ≥ Eu[e−δ+ωHa1(X(t ∧ τ))] + Eu
[∫ t∧τ

0
e−(δ+ω)sϑsdNγ(s)

]
. (3.2.5)

Then, using t −→ +∞ and using the same Fatou’s lemma we use in the previous
chapter, we obtain

Ha1(u) ≥ Eu
[∫ τ

0
e−(δ+ω)sϑs1{τ<+∞}dNγ(s)

]
, (3.2.6)

from which the result follows since the ϑ in the strategy are arbirary.
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3.2.2. The new equation for the surplus when the barrier is set at
a1

The direct consequence is that only two areas of the γ − ω model are gene-
rated by γ < γ0, [0, a1) and [a1,+∞) because we use b∗ = a1. This is a limit
case from the dividend perspective. Indeed, this means that either the company
is ruined, with probability of ultimate bankruptcy ωdt, or they pay dividends
immediately above a1. We recall that maximizing the expected present value of
dividend using a barrier strategy yields a probability of ultimate ruin of 1 (see for
reference Lemma 3.3. in [Avanzi et al., 2014]) (so this policy is not inconsistent
with the dividend criterion)

Thanks to the update that now b = a1, the equations (2.1.9), (2.1.10) and
(2.1.11) are combined into :

σ2

2 G
′′
L(u; a1) + µG′L(u; a1)− [δ + ω(u)]GL(u; a1) = 0, u ∈ [0, a1) (3.2.7)

σ2

2 G
′′
U(u; a1) + µG′U(u; a1)− δGU(u; a1)

+ γ[u− a1 −GU(u; a1) +GU(a1; a1)] = 0, u ∈ [a1,+∞). (3.2.8)

The continuity condition for G and G′ at a1 yields

GL(a−1 , a1) = GU(a+
1 , a1) (3.2.9)

G′L(a−1 , a1) = G′U(a+
1 , a1). (3.2.10)

The lower part solution is the same as the one we found last chapter, and the
upper one is slighlty modified, because b is replaced by a1. The solution is now :

GU(u, a1) =
(

δ

δ + γ
GU(a1, a1) + µγ

(δ + γ)2

)
esγ(u−a1)

+ γ

δ + γ
[u− a1 +GU(a1, a1)] + µγ

(δ + γ)2 . (3.2.11)
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3.2.3. Numerical illustration

The Matlab code is provided in Annexe A.

Figure 3.1. EPVD is the case of b = a1

remark : We notice that the graph is similar to the first EPVD but without
the middle part : as it is a limit case, the middle part vanishes and we find the
previous lower and upper parts direclty connected to each other at a1.
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3.2.4. Verification of optimality

Now that we have found a solution that works, according to the adaptation
of [Paulsen, 2003], we need to test the optimality thanks to the last step of the
verification lemma. Those steps are :

(1) max
0≤l≤u

{γ[l +G(u− l, a1)−G(u, a1)]}+ (Ω− δ)G(u, a1) = 0

(2) 0 < G′(u, a1) <∞

(3) G′′(u, a1) < 0

(4) limu→∞G
′′(u, a1) = 0.

We verify them all :

(1) By construction, the function G(u, a1) is solution of the two differential
equations. Therefore G(u, a1) satisfies the modified HJB equation (1) and
attains maximum.

(2) There are only two parts instead of three in the definition of the new
G(u; a1). We still need to show that 0 < G′(u, a1) <∞.

G′L(u, a1) = rωe
rωu−sωesωu. Because this part isn’t affected by the change,

the previous argument of positivity is still valid. Also,
GU(u, a1) = Eesγ + γ

δ + γ
[u − a1 + GU(u, a1)] + µγ

(δ + γ)2 has the sames
properties as the upper function in the previous section.The positivity ar-
gument is still valid.

(3) We have the following consideration : the function is quasiconcave but not
concave. (Concavity around the barrier) The lower part is first concave,
then convex.

(4) When appling the same argument we have used at (4) in the previous
paragraph, the argument is still valid and limu−→∞G

′′(u, a1) = 0.
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3.2.5. Interpretation of the case b∗ = a1

This transition chapter was intended to be a follow-up to the works of [Al-
brecher et al., 2011] regarding the surplus equations. In their model, the surplus
can go freely in the ruin area [0, a1], ((−∞, 0] in their case). We observe that
considering the case where the barrier is equal to the solvency constraint leads to
a limit case, which is not really meant to happen to a company. Either they are
ruined with probability ωdt, or they immediately pay dividends with probability
γdt. This γ − ω model does not seem really credible, in a sense that it would be
a very risk-taking model for the company.

To address the issue b∗ = a1, we need to impose some solvency considerations
on the area [0, a1] because the problem is not well-defined otherwise.

That is why next (and last) chapter is concerned with two potential solvency
considerations which give meaning to a γ − ω model where the barrier can be
above a1 and a1 itself, and allow alternative strategies such as liquidations.



Chapitre 4

ON PERIODIC BARRIER STRATEGY
UNDER TWO SOLVENCY

CONSIDERATIONS : FORCED
LIQUIDATION AND ω−CAPITAL

INJECTIONS

In this chapter, we study two solvency considerations. We focus on the [0, a1]
area. The surplus we use is the same one as previously, but this time we consider
two successive hypothesis for the danger zone below a1.

In the first section, we define [0, a1] as a no-go zone. If the surplus hits a1,
then the shareholders are forced to liquidate the company. For example, an exter-
nal regulator forces the company to close. We develop the new EPVD equations
in that case. Because there is a risk of forced liquidation, the shareholders can
choose to take the lead and liquidate at first opportunity, that is, at the first
decision time where the surplus is above a1, denoted Tα, if prospects are bad.
The shareholders decide to share the surplus X(Tα)− a1 as a final dividend. We
use the term “liquidation at first opportunity” strategy or “take the money and
run” strategy because distributing the whole surplus above a1 at that decision
time brings the surplus back to a1 and the regulator instantly closes the business
(because monitoring of solvency is continuous).

In the second section, we explore another approach of the γ − ω model. The
area [0, a1] is not a no-go zone. The surplus can go below a1 without leading to
bankruptcy. In this case, each time there is an ω−event, or a bankrputcy, the
shareholders are forced to inject capital up to a1, with cost κ.
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An ω−event is the analogous of a γ−event, that is, a random decision time
for capital injection, since our injection process mimics the dividend one, leading
to a symmetry of injections / dividends.

This is a study case where bankruptcy cannot happen, and the first conse-
quence is that τ , the time of bankruptcy is equal to +∞. There cannot be ban-
kruptcy in this model, and the business goes on forever. In that case, the share-
holders cannot consider any kind of liquidation because it would not make sense :
if they decided to liquidate and distribute either the surplus above a1 or the whole
surplus, the regulator would force them to inject capital up to a1 and continue.

This dual monitoring of the danger area [0, a1] have never been considered in
the literature before. We aim at giving key for the studying of solvency areas.
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4.1. Forced liquidation and liquidation at first oppor-
tunity

4.1.1. Forced liquidation

In this section we study a first type of liquidation. It is forced, for example,
by an external regulator. The model is the following :

Each time the surplus hits a1, the company cannot afford to keep doing bu-
siness and is forced to close. a1 represents the liquidation value and needs to be
paid to cover the transfer penalty to another company.

Because solvency is monitored continuously, the company is closed as soon as
the surplus reaches a1.

Mathematically, this liquidation is quite simple : despite a stricly positive
surplus, because a1 doesn’t belong to the shareholders, no final dividend is paid
when the surplus reaches a1 and the company closes. In that case, there is no
ω−ruin, and

cruin = cliquidation = a1. (4.1.1)

It is only a change of scale from a non-omega diffusion with simple ruin, because
in that case we define the new time of ruin :

τa1 = inf{t | X(t) ≤ a1} (4.1.2)

instead of τ .

Two things can then be deduced from the previous paragraph. First, because
the monitoring of solvency is continuous, u < a1 is impossible. Indeed, an initial
surplus below closing level does not make sense, because it would trigger a liqui-
dation at time t = 0. Second, in that case only two areas remain for the surplus,
[a1, b) and [b,+∞). Let’s denote by H the expected present value of dividends in
that case, and HM and HU its two parts. Between a1 and b the first equation is :

σ2

2 H
′′
M(u, b) + µH ′M(u, b)− δHM(u, b) = 0 (4.1.3)
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whereas the upper area admits the following equation

σ2

2 H
′′
U(u, b) + µH ′U(u, b)− δHU(u, b)

= −γ[u− b−HU(u, b) +HU(b, b)]. (4.1.4)

A solution of the first equation is still

HM(u, b) = Aeru +Besu, (4.1.5)

where r and s are the positive and negative roots of the associated characteristic
equation.

Liquidation happens at a1 so from the dividend value perspective, we can fix
H(a1) = 0. From that we have

H(a1) = Aera1 +Besa1 = 0 (4.1.6)

then this yields

B = −Ae(r−s)a1 (4.1.7)

and if we set A = 1 we find both constants

A = 1 and B = −e(r−s)a1 . (4.1.8)

The upper part solution has a structure that is similar to the first upper solution.
The initial condition of linear bound for u→ +∞ yields

HU(u, b) = C5e
sγ(u−b) + γ

δ + γ
[u− b+HU(b, b)] + µγ

(δ + γ)2 (4.1.9)

and C5 can be determined using the continuity condition at u = b. In that case
we find
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C5 = HU(b, b)− p(b)

= δ

δ + γ
HU(b, b) + µγ

(δ + γ)2 ,
(4.1.10)

where p(b) is a particular solution of the non-homogeneous upper equation. The
complete solution is then :

HU(u, b) =
(

δ

δ + γ
HU(b, b) + µγ

(δ + γ)2

)
esγ(u−b)

+ γ

δ + γ
[u− b+HU(b, b)] + µγ

(δ + γ)2 . (4.1.11)

4.1.2. Numerical illustration

We provide an illustration of the EPVD in case of forced liquidation by a
regulator. Standard parameters are chosen, that is : µ = 0.5, σ = 0.5, δ = 0.05,
γ = 1000. We choose a1 = 2 and b = 4.

The code is provided in Annexe A

Figure 4.1. Forced liquidation with b > a1 = 2 between 2 and 6
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4.1.3. Liquidation at first opportunity at a1 when the barrier is at
b = a1

We consider the case where prospects are not good, and b∗ < a1. We saw in
the previous chapter that it was possible for b∗ to be found below a1 because of
the structure of the equation for b∗, which was a logarithm. According to [Paul-
sen, 2003] and his (now) adapted theorem in the case of periodic dividends, we
apply the optimal policy to set b∗ = a1.

In that case, when the shareholders see that the optimal barrier is equal to
the liquidation value, they know that prospects are bad, and it would be better
to close the buisness to get a final dividend (the difference between the surplus
at the liquidation time and a1) instead of waiting for the regulator to close it
without a final dividend when the surplus reaches a1.

Liquidation is forced when the surplus hits a1, which creates only one ad-
missible area for the surplus, the area [a1,+∞) (because a1 = b, no other area
is created, recall that [0, a1] is a no-go zone in this case). This type of case has
been studied in [Avanzi et al., 2014], but with b = 0, because there was no partial
solvency issue. The shareholders liquidate at the first opportunity they get, which
is Tα. Usually, Tα = T1, provided the surplus has not undergone an ω−event in
the meantime.

The expected present value of dividends in such case is theoretically :

F (u) = Eu
[
e−δTα(X(Tα)− a1)I{Tk<τa1}

]
. (4.1.12)

Distributing the whole surplus above a1 leads the new surplus to be equal to a1

and then killed by the regulator. We develop the law of total probability that
creates the new equation.

We can expect several changes from [Avanzi et al., 2014] in the following
equations. The first one is that this time, the final dividend is not l = u− 0 but
l = u− a1, because of the solvency constraint. We have :

F (u) = γh(1− δh){u− a1 + E[F (u+ µh+ σW (h)− (u− a1))]}

+ (1− γh− ω(u)h)(1− δh)E[F (u+ µh+ σW (h))] + o(h), (4.1.13)
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which can be simplified :

F (u) = γh(1− δh){u− a1 + E[F (a1 + µh+ σW (h))]}

+ (1− γh− ω(u)h)(1− δh)E[F (u+ µh+ σW (h))] + o(h). (4.1.14)

Using once again Taylor series expansion on E[F (u + µh + σW (h))] and on
E[F (a1 + µh+ σW (h))], we have :

E[F (u+ µh+ σW (h))] = F (u) + µhF ′(u) + σ2

2 hF
′′(u) + o(h). (4.1.15)

Factorizing terms in h yields :

F (u) =
{
γ[u− a1 + F (a1)− F (u)] + σ2

2 F
′′(u)− µF ′(u)− (ω(u) + δ)F (u)

}
h

+ F (u) + o(h).

Because of the continuous monitoring of solvency, stopping time happens at τa1

and the business has to shut down. Also, the new condition is F (a1) = 0 because
it is where the liquidation takes place.

In that case, there is only one equation that governs the surplus between a1

and +∞, that is :

σ2

2 F
′′(u) + µF ′(u)− (δ + γ)F (u) = −γ[u− a1 − F (u) + 0], (4.1.16)

because we know that F (a1) = 0. A solution is :

F (u) = C6e
sγ(u−a1) + γ

δ + γ
[u− a1] + µγ

(δ + γ)2 . (4.1.17)

C6 can be determined using the initial condition at u = a1. In that case we find
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C6 = F (a1)− p(a1)

= 0− p(a1) = − µγ

(δ + ω)2 ,
(4.1.18)

where p is the usual particular solution.

The complete solution is then

F (u) = µγ

(δ + γ)2 [1− esγ(u−a1)] + γ

δ + γ
[u− a1], (4.1.19)

which is analogous to the result of [Avanzi et al., 2014]. Replacing a1 with 0 (their
case) leads to the same solution.

4.1.4. Numerical illustration

The code is provided in Annexe A. This EPVD is the one found in case of
b = a1 when liquidation is chosen by the shareholders at first opportunity τa1 .

We choose the parameters σ = µ = 0.5, δ = 0.05, γ = 0.01 (if b < a1 it is
because γ is too weak). Finally, a1 = 2.

Figure 4.2. EPVD for liquidation at first opportunity when b =
a1 = 2 between 2 and 6
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4.2. A model of periodic capital injections to carry out
the solvency requirement

4.2.1. Construction of the new equations for the surplus

We consider a standard ruin model with a solvency constraint a1, where ca-
pital injection below a1 are allowed up to a1. We first decribe the new three
equations in the case of capital injected in case of ω−event or bankruptcy, then
we study the influence of the barrier on the EPVD, with the usual two cases :
b > a1 and b = a1. The latter case holds a liquidation at first opportunity strategy.

In the former case, we first assume that prospects are good and b > a1. In
order to obtain the new three equations that govern the areas [0, a1), [a1, b) and
[b,+∞), we need to apply once more the law of total probability to the surplus,
to know what outcomes can happen. The heuristic argument needs to be updated
with another event : capital injection in case of an ω−event.

Mathematically, we consider capital injections as negative dividends. Instead
of paying dividends, the company adds money. These injections are not free, and
a penalty κ is paid, proportionally to the amount of capital injected. It represents
the cost of injecting 1$ into the surplus. The force of interest δ is discounted at
a rate e−δh = 1− δh+ o(h) We then have three things to consider over the small
time interval [0, h) to apply the law of total probability. Once again, we use the
notation V for the value function, to assure overall consistency with Chapter 2.
Note that the quantity c represents for the moment any capital injection, but we
only describe the case where c = a1 − u > 0 (capital is injected up to a1 in case
of an ω-event) thereafter.

To mimic the negative dividend process, we require that the injections hap-
pen at a rate ω that works exactly like γ for the dividend process. ωdt is the
probability of capital injection within dt time units. Exception occurs at capital
0 where this probability equals 1 so bankruptcy never happens.

For this to work, we require that the monitoring of solvency below a1 is not
continuous, because if it was, then the shareholders would be forced to inject ca-
pital continuously when the surplus should go below a1, and that is not the type
of injections we are dealing with. The exception is at bankruptcy, where capital
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is injected immediately up to a1 to prevent it.

The three possible outcomes are :

(1) A dividend is paid at rate l ≥ 0 with probability γh. This can be quantified
γh(1− δh) {l + E[V (u+ µh+ σW (h)− l)]}.

(2) A capital injection happens at rate c ≥ 0 with probability ωh, that is
ωh(1 − δh) {−κc+ E[V (u+ µh+ σW (h) + c)]}. The term κ ∈ [1,+∞)
comes from the aditional cost required to inject capital into the surplus
(penalty). To inject c into the surplus, the shareholders need in fact to pay
κc.

(3) Nothing happens with probability 1− γh− ωh, leading to
(1− γh− ωh)(1− δh)E[V (u+ µh+ σW (h))] + o(h).

The sum of all four probabilities yields the quantity we need.
Using Taylor expansions on V , that is :

V (u+ µh+ σW (h))

= V (u) + V ′(u)(µh+ σW (h)) + V ′′(u)(µh+ σW (h))2

2 + o(h), (4.2.1)

then,

E[V (u+ µh+ σW (h))] = V (u) + µhV ′(u) + σ2

2 hV
′′(u) + o(h). (4.2.2)

After basic algebra we find that the EPVD can be reduced to

V (u) + {γ[l + V (u− l)− V (u)] + ω[−κc+ V (u+ c)− V (u)]

+ µV ′(u) + σ2

2 V
′′(u)− δV (u)}h+ o(h). (4.2.3)

This previous expression yields the new equations we need for the EPVD, but
we could be interested in getting the HJB : dividing by h and considering the
expression between brackets, we have the HJB equation
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max
l≥0,c≥0

{γ[l + V (u− l)− V (u)] + ω[−κc+ V (u+ c)− V (u)]}

+AV (u) = 0, (4.2.4)

withAf = σ2

2 f
′′+µf ′−δf as infinitesimal operator, and with the initial condition

V (0) = 0.

4.2.2. The three equations in the case of b > a1

The structure of the HJB equations motivates us to think that the optimal
strategy is a periodic dividend barrier. In this section, we adopt the same struc-
ture as Chapter 2, that is, we aim at finding the new three equations for the
three areas [0, a1), [a1, b) and [b,+∞). Indeed, because ω = 0 above a1, and γ = 0
below a1, we find again three equations.

We introduce the new piecewise EPVD. Let’s call the full function G(u, b),
where b symbolizes the barrier.

We consider :

G(u, b) =


GL(u, b) if u ∈ [0, a1)
GM(u, b) if u ∈ [a1, b)
GU(u, b) if u ∈ [b,+∞).

According to the works of [Albrecher et al., 2011] we adapt in case of capital
injection, for u ∈ [0, a1), GL satisfies the equation :

σ2

2 G
′′
L(u; b) + µG′L(u; b)− δGL(u; b)

= −ω[−κc+GL(u+ c)−GL(u)], (4.2.5)

because it is the area where ω−ruin occurs.

The quantity c that we chose to inject to the surplus corresponds to the
difference between the surplus (below a1) and a1. Because this quantity needs to
be positive, we define

c = a1 − u. (4.2.6)
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The first EPVD equation becomes :

σ2

2 G
′′
L(u; b) + µG′L(u; b)− δGL(u; b)

= −ω[κ(u− a1) +GL(u+ a1 − u)−GL(u)]. (4.2.7)

Between a1 and b, in the middle area, the HJB gives the equation :

σ2

2 G
′′
M(u; b) + µG′M(u; b)− δGM(u; b) = 0, (4.2.8)

because no dividend payment occurs if the surplus is here. When the decision
time happens, no surplus is distributed.

Finally, above b, the equation satisfied by GU(u, b) is

σ2

2 G
′′
U(u; b) + µG′U(u; b)− δGU(u; b)

+ γ[u− b−GU(u; b) +GU(b; b)] = 0, (4.2.9)

because dividend payment occurs here.

4.2.3. The middle and upper parts

In this section, there are no changes to make because these two parts are not
affected by capital injections. Indeed, only an omega-event or a bankruptcy can
trigger a capital injection.

The previous solutions still hold. The solution to

σ2

2 G
′′
M(u; b) + µG′M(u; b)− δGM(u; b) = 0 (4.2.10)

is
GM(u) = Aeru +Besu, (4.2.11)

with r and s the postive and negative root of the associate characteristic equation,
and
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A = G′(a1, b)− sG(a1)
era1(r − s) B = rG(a1, b)−G′(a1, b)

esa1(r − s) (4.2.12)

have already been determined in the previous section.

About the upper part : a solution of

σ2

2 G
′′
U(u; b) + µG′U(u; b)− δGU(u; b) = −γ[u− b−GU(u; b) +GU(b; b)] (4.2.13)

is

GU(u, b) =
(

δ

δ + γ
GU(b, b) + µγ

(δ + γ)2

)
esγ(u−b)

+ γ

δ + γ
[u− b+GU(b, b)] + µγ

(δ + γ)2 . (4.2.14)

This was also in chapter 2 and is still valid. Changes happen in the next section.

4.2.4. The lower part

The lower part of G(u, b) on (0, a1) is

σ2

2 G
′′
L(u; b) + µG′L(u; b)− (δ + ω)GL(u; b)

= −ω[κ(u− a1) +GL(a1)], (4.2.15)

with the requirement (immediate injection at the time of bankruptcy)

G(0) = −κa1 +G(a1). (4.2.16)

Firstly, we solve the homogeneous associate equation to find the first part of the
soution. If we consider the homogeneous part, we find a lower equation not very
different of the previous one :

Hom(u) = Aωe
rωu +Bωe

sωu. (4.2.17)
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Now we have to find a particular solution. We build it on the model of the
upper one, that is

ω

δ + ω
[−κ(a1 − u) +G(a1)] + µκω

(δ + ω)2 . (4.2.18)

The last step to get the complete solution is to determine the constants Aω and
Bω. They can be determined thanks to the initial condition

G′(0) = κ = rωAω + sωBω + ω

δ + ω
[−κa1 +G(a1)] + µκω

(δ + ω)2 . (4.2.19)

From that we deduce, if we set Aω = 1 :

Bω = 1
sω

[
κ− rω −

ωκ

δ + ω

]
. (4.2.20)

The solution is complete.

Now because we have the lower part solution, as in the first case in the first
chapter, we can get the complete A and B for the middle part. We have then
found explicit values for G(a1, b) and G′(a1, b). They are :

G(a1, b) = erωa1 +Bωe
sωa1 + ω

δ + ω
G(a1) + µωκ

(δ + ω)2 . (4.2.21)

We also evaluate G′(a1, b) knowing the value of G(a1, b) and Bω :

G′(a1, b) = rωe
rωa1 + sωBωe

sωa1 + ωκ

δ + ω
. (4.2.22)

The last step in injecting those values in

A = G′(a1, b)− sG(a1, b)
era1(r − s) B = rG(a1, b)−G′(a1, b)

esa1(r − s) . (4.2.23)
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4.2.5. Numerical illustration

We provide an illustration of this capital injection case for standard parame-
ters. As well as in Case 1, the function might not be concave on all of its domain
but is always concave around the barrier.
We provide the code in Annexe A

This figure is obtained with parameters σ = 5, π = 1, γ = 1000, µ = 0.2,
δ = 0.05, a1 = 2, b = 4 and κ = 1.2.

Figure 4.3. EPVD when capital is injected up to a1 if the surplus
goes below a1 and an injection is triggered

4.2.6. The case b = a1

We know that b∗ can be found between 0 and a1, but we cannot use [Paulsen,
2003] recommendation because capital injections are not at stake in his theory.
Recall that it is forbidden to distribute dividends below a1. The highest barrier
we can have is a1 itself, but this time under capital injections, we lose money to
inject capital, so we make the assuption that in that case, a barrier strategy at
a1 should not be optimal.

Instead, we look at a liquidation at first opportunity strategy, since the money
loss discourages holding the business for too long in case of bad dividend pros-
pects.
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The model is quite simple : depending on where the surplus is, either there
is a final injection or a final dividend, and we stop at a1 with G(a1) = 0. The
equations coming from the law of total probability are slightly modified because
this time G(a1) = 0, but their structure remains unchanged.

There is no middle part and the lower equation is

σ2

2 G
′′(u) + µG′(u)− (δ + ω)G(u) = −ω[−κ(a1 − u)] (4.2.24)

if u ∈ (0, a1). This equation has solution

G(u) = Aωe
rωu +Bωe

sωu + ω

δ + ω
[−κ(a1 − u)] + κωµ

(δ + ω)2 , (4.2.25)

with

G(0) = −κa1. (4.2.26)

This upper equation is the same as usual (see liquidation at first opportunity in
previous section), and admits for solution

G(u) = + γµ

(δ + γ)2 [1− esγ(u−a1)] + γ

δ + γ
[u− a1]. (4.2.27)

The last step is to find both lower constant to ensure continuity at a1. Setting
Aω = 1, we know that

G(a1) = 0 = erωa1 +Bωe
sωa1 + µκω

(δ + ω)2 , (4.2.28)

leading to

Bω = 1
esωa1

[
− µκω

(δ + ω)2 − e
rωa1

]
. (4.2.29)
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4.2.7. Numerical illustration

We illustrate the liquidation at first opportunity with a numerical application.
Recall that γ has to be chosen low because the barrier is below a1. We chose
γ = 0.1, which yields a concave function

Figure 4.4. EPVD for a liquidation at first opportunity with res-
pect to the initial surplus

.





CONCLUSION

In actuarial sciences, the field of dividends is really wide. We had to focus
only on what seemed interesting to develop throughout this one year work. The
ω−ruin allows more realism in the modelling of surplus and we have seen that
the introduction of a simple solvency constraint leads to multiple questions and
issues. Some issues that could seem obvious in the case of continuous dividends
might mathematically be not that easy to deal with and the field of periodic di-
vidends in still to be extended. We believe that the forced liquidation and capital
injections are important, and had to be part of the solvency considerations we
studied in this model.

We tried to provide answers to these concerns by making some contributions,
and tried to do it in the order that was the most meaningful, each step after the
other. In Chapter 2, we started by making a small contribution, by adapting the
works of [Albrecher et al., 2011] in the case of a solvency constraint. This had to
be done to model the surplus of companies whose surplus cannot become negative.
Then we made another deeper contribution with the proof of a barrier strategy
being optimal in the γ − ω model. In chapter 3, we considered that the works of
[Albrecher et al., 2011] were not complete because of the nature of the equation
for b∗ that could be found below a1. We then made a contribution adapting the
equations to the case b∗ = a1. This could not have been done without adapting
the crucial theorem from [Paulsen, 2003] to the case of periodic dividends, that
is now proven in the periodic framework thanks to this thesis. Finally, we wanted
to know where the danger zone [0, a1] could lead, because that area, specific to
[Albrecher et al., 2011] had not been studied in detail before this thesis. We also
saw that studying the case b∗ < a1 in the framework of [Albrecher et al., 2011]
without modifications lead to an inconclusive γ−ω model. To address this issue,
we proposed to focus on the study of the danger zone. The first idea considered
a1 as the threshold of liquidation, where the company had to be closed in case
of ω−event. To escape that fate, the shareholders were allowed to liquidate at
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first opportunity in case of bad prospects. The second case considered the field
of capital injections inside the γ − ω model but in the periodic dividend frame-
work, motivated by the works of [Avanzi et al., 2011]. This dual monitoring of two
completely different outcomes in the ruin area represents also a new contribution.

But this thesis might only be the first step towards more realism. Indeed,
there are a lot of improvements we could add to our model.
The first one to come in mind is to add an instant loss component, that is, a
compound Poisson process which would model downward jumps. This would be
very intersting because in that case, there would be a lot of things at stake : the
size of jumps compared to the size of the danger area for example, and it would
completely change the liquidation issues.
The second crucial improvement that could be done is studying others inter-
decision times ; In this thesis, only inter-exponential decision times with para-
meter γ were considered. But to improve realism, we could consider Erlang dis-
tributions. That would enable us to obtain deterministic decision-time intervals
and would lead to more accuracy in the insights that the models provide us. (Of
course, in such case we would need to find another name for the “γ”−ω model).
The third and last key improvement we could consider is the possibility of a pe-
nalty at the time of ruin. This penalty could be according the time spent in the
ω−ruin zone, or according to the total amount of capital that have been below
the danger zone or maybe both.

The γ − ω model is really promising and will lead to even more surprising
results in the future. This is why it was really important to study these first steps
in this thesis.
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Annexe A

MATLAB CODES

In this chapter, we give the codes that are used to obtain each figure.

This is the code for Subsection 2.1.8 :

function value=epvd(u,a1,b,mu,delta,sigma,gamma,omega)

r = (-mu+sqrt(mu*mu+4*delta*((sigma*sigma)/2)))/(sigma*sigma);
s = (-mu-sqrt(mu*mu+4*delta*((sigma*sigma)/2)))/(sigma*sigma);
rom = (-mu+sqrt(mu*mu+4*(delta+omega)*((sigma*sigma)/2)))/(sigma*sigma);
som = (-mu-sqrt(mu*mu+4*(delta+omega)*((sigma*sigma)/2)))/(sigma*sigma);
sgam = (-mu-sqrt(mu*mu+4*(delta+gamma)*((sigma*sigma)/2)))/(sigma*sigma);

if ((u>=0)&&(u<a1))
value = exp(rom*u)-exp(som*u);

end
if ((u>=a1)&&(u<b))

value = (((rom-s)/(r-s))*exp((rom-r)*a1)
+((s-som)/(r-s))*exp((som-r)*a1))*exp(r*u)
+(((r-rom)/(r-s))*exp((rom-s)*a1)
+((som-r)/(r-s))*exp((som-s)*a1))*exp(s*u);

end
if (u>=b)

value = ((delta/(delta+gamma))
*epvd(b-0.001,a1,b,mu,delta,sigma,gamma,omega)
+(mu*gamma/((delta+gamma)*(delta+gamma))))*exp(sgam*(u-b))
+ (gamma/(delta+gamma))
*(u-b+epvd(b-0.001,a1,b,mu,delta,sigma,gamma,omega))
+ (mu*gamma/((delta+gamma)*(delta+gamma)));

end
end



A-ii

This is the code for Subsection 3.2.3 :

function valuebelowa1 = epvdbelowa1(u,a1,mu,delta,sigma,gamma,omega)

rom = (-mu+sqrt(mu*mu+4*(delta+omega)*((sigma*sigma)/2)))/(sigma*sigma);
som = (-mu-sqrt(mu*mu+4*(delta+omega)*((sigma*sigma)/2)))/(sigma*sigma);
rgam = (-mu+sqrt(mu*mu+4*(delta+gamma)*((sigma*sigma)/2)))/(sigma*sigma);
sgam = (-mu-sqrt(mu*mu+4*(delta+gamma)*((sigma*sigma)/2)))/(sigma*sigma);
Fa1 = exp(rom*a1)-exp(som*a1);
E = ((delta/(delta+gamma))*Ga1 - (mu*gamma)
/((delta+gamma)*(delta+gamma)))/exp(sgam*a1);

if ((u>=0)&&(u<a1))
valuelbelowa1 = (exp(rom*u)-exp(som*u));

end

if (u>=a1)
valuebelowa1 = E*exp(sgam*u)+((gamma)/(gamma+delta))
*(u-a1+Fa1)+(mu*gamma)/((delta+gamma)*(delta+gamma));

end
end



A-iii

This is the code for Subsection 4.1.2 :

function valueforcedliq=forcedliq(u,a1,b,mu,delta,sigma,gamma)

r = (-mu+sqrt(mu*mu+4*delta*((sigma*sigma)/2)))/(sigma*sigma);
s = (-mu-sqrt(mu*mu+4*delta*((sigma*sigma)/2)))/(sigma*sigma);
sgam = (-mu-sqrt(mu*mu+4*(delta+gamma)*((sigma*sigma)/2)))/(sigma*sigma);

A=10; # "10" factor chosen to fix issues of scale
B=-10*exp((r-s)*a1);

if ((u>=a1)&&(u<b))
valueforce = A*exp(r*u)+B*exp(s*u);

end

if (u>=b)
valueforcedliq = ((delta/(delta+gamma))
*forcedliq(b-0.000001,a1,b,mu,delta,sigma,gamma)
+((mu*gamma)/((delta+gamma)*(delta+gamma))))*exp(sgam*(u-b))
+ (gamma/(delta+gamma))
*(u-b+forcedliq(b-0.000001,a1,b,mu,delta,sigma,gamma))
+ (mu*gamma/((delta+gamma)*(delta+gamma)));

end
end

This is the code for Subsection 4.1.4 :

function valuefirstopp=firstopp(u,a1,mu,delta,sigma,gamma)

sgam = (-mu-sqrt(mu*mu+4*(delta+gamma)*((sigma*sigma)/2)))/(sigma*sigma);

if (u>=a1)
valuefirstopp = ((mu*gamma)/((gamma+delta)^2))*(1-exp(sgam*(u-a1)))
+ (gamma/(delta+gamma))*(u-a1);

end
end



A-iv

This is the code for Section 4.2.5 :

function value=epvdinject1(u,a1,b,mu,delta,sigma,gamma,omega,kappa)

r = (-mu+sqrt(mu*mu+4*delta*((sigma*sigma)/2)))/(sigma*sigma);
s = (-mu-sqrt(mu*mu+4*delta*((sigma*sigma)/2)))/(sigma*sigma);
rom = (-mu+sqrt(mu*mu+4*(delta+omega)*((sigma*sigma)/2)))/(sigma*sigma);
som = (-mu-sqrt(mu*mu+4*(delta+omega)*((sigma*sigma)/2)))/(sigma*sigma);
sgam = (-mu-sqrt(mu*mu+4*(delta+gamma)*((sigma*sigma)/2)))/(sigma*sigma);
rgam = (-mu+sqrt(mu*mu+4*(delta+gamma)*((sigma*sigma)/2)))/(sigma*sigma);

dGa1 = rom*exp(rom*a1)+(kappa-rom-(omega*kappa)/(delta+omega))*exp(som*a1)
+ (omega*kappa)/(delta+omega);

Bom = (kappa-rom-(omega*kappa)/(delta+omega))*(1/som);
Ga1 = (exp(rom*a1) + Bom*exp(som*a1)
+ (mu*kappa*omega)/((delta+omega)^2))*((delta+omega)/delta) ;

A = (dGa1 - s*Ga1)/((exp(r*a1))*(r-s));
B = (r*Ga1 - dGa1)/((exp(s*a1))*(r-s));

if (u==0)
value = -kappa*a1 + Ga1 ;

end
if ((u>0)&&(u<a1))

value = exp(rom*a1) + Bom*exp(som*a1)
+ (omega/(delta+omega))*(-kappa*(a1-u) + Ga1)
+ (mu*omega*kappa/((delta+omega)^2));

end
if ((u>=a1)&&(u<b))

value = A*exp(r*u)+B*exp(s*u) ;
end

if (u>=b)
value = ((delta/(delta+gamma))
*epvdinject1(b-0.001,a1,b,mu,delta,sigma,gamma,omega,kappa)
+(mu*gamma/((delta+gamma)*(delta+gamma))))*exp(sgam*(u-b))
+ (gamma/(delta+gamma))
*(u-b+epvdinject1(b-0.001,a1,b,mu,delta,sigma,gamma,omega,kappa))
+ (mu*gamma/((delta+gamma)*(delta+gamma)));

end
end



A-v

This is the code for Subsection 4.2.7 :

function value=epvdinjectlafo(u,a1,mu,delta,sigma,gamma,omega,kappa)

rom = (-mu+sqrt(mu*mu+4*(delta+omega)*((sigma*sigma)/2)))/(sigma*sigma);
som = (-mu-sqrt(mu*mu+4*(delta+omega)*((sigma*sigma)/2)))/(sigma*sigma);
sgam = (-mu-sqrt(mu*mu+4*(delta+gamma)*((sigma*sigma)/2)))/(sigma*sigma);
rgam = (-mu+sqrt(mu*mu+4*(delta+gamma)*((sigma*sigma)/2)))/(sigma*sigma);

Bom = (-exp(rom*a1) - (mu*omega*kappa/((delta+omega)^2)))*(1/exp(som*a1)) ;

if (u==0)
value = -kappa*a1 ;

end

if ((u>=0)&&(u<a1))
value = exp(rom*u)+Bom*exp(som*u)
+ (omega/(delta+omega))*(-kappa*(a1-u))
+ (mu*omega*kappa/((delta+omega)^2));

end

if (u>=a1)
value = (mu*gamma)/((delta+gamma)^2)*(1-exp(sgam*(a1-u)))
+ (gamma/(delta+gamma))*(u-a1);

end
end





Annexe B

STOCHASTIC CALCULUS AND
MARTINGALES THEORY

B.1. Uniform/Square Integrable Martingales
From Klebaner [2005]
Corollary 7.8

If X(t) is square integrable, that is, suptEX2(t) < ∞, then it is uniformly inte-
grable.

Theorem 18 : Let X be a uniformly integrable continuous martingale and
let τ be a stopping time. Then Xτ = (Xt∧τ )0≤t≤∞ is also uniformly integrable
right continuous martingale.

B.2. Supermartingale argument
From Klebaner [2005], Chapter 7.5,
Local Martingale Definition An adapted process M(t) is called a local mar-

tingale if there exits a sequence of stopping times τn, such that τn →∞ and for
each n the stopped processes M(t∧ τn) is a uniformly integrable martingale in t.

Theorem 7.21
Let M(t), 0 ≤ t > ∞, be a local martingale such that |M(t)| ≤ Y , with

EY <∞. Then M is a uniformly integrable martingale.

Corollary 7.22
LetM(t), 0 ≤ t >∞, be a local martingale such that for all t, E(sups≤t |M(s)|) <

∞. Then it is a martingale, and as such it is uniformly integrable on any finite
interval [0, T ]. If in addition E(supt≥0 |M(t)|) <∞, thenM(t), t ≥ 0, is uniformly
integrable on [0,∞).
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B.3. Stopped Martingale
Theorem 7.14 If M(t) is a martingale and τ is a stopping time, then the

stopped process M(τ ∧ t) is a martingale. Moreover,

EM(τ ∧ t) = EM(0). (B.3.1)

Also
IfM(t) is a sub- or supermartingale and τ is a stopping time, then the stopped

process M(τ ∧ t) is also a sub- or supermartingale. In particular,

EM(τ ∧ t) ≤ EM(0) EM(τ ∧ t) ≥ EM(0). (B.3.2)

B.4. Fubini’s Theorem
Theorem 2.39

Let X(t) be a stochatic process 0 ≤ t ≤ T (for all t, X(t) is a random variable),
with regular sample parths (for all ω at any point t,X(t) has left and right limits).
Then ∫ T

0
E|X(t)|dt = E

(∫ T

0
|X(t)|dt

)
. (B.4.1)

Furthermore if this quantity is finite, then

E

(∫ T

0
X(t)dt

)
=
∫ T

0
E(X(t))dt. (B.4.2)

B.5. Sharp Bracket
From Theorem 8.24 in Klebaner [2005],

Théorème B.5.1. Let M be a square integrable martingale. Then the sharp
bracket process 〈M,M〉(t) is the unique predictable increasing process for with
M2(t)− 〈M,M〉(t) is a martingale.

We are interested in the following quantity first

d〈Ñγ, Ñγ〉(s), (B.5.1)

where {Ñγ(t), t ≥ 0} is a compensated Poisson process with Ñγ(t) = Nγ(t) −
γt, then we can find the sharp bracket 〈Ñγ, Ñγ〉(t). We make use the fact that
Ñ2
γ (t)− 〈Ñγ, Ñγ〉(t) is a martingale (from Theorem 8.24), then

〈Ñγ, Ñγ〉(t) = γt. (B.5.2)

This is verified in Example 8.16 of Klebaner [2005]. Therefore

d〈Ñγ, Ñγ〉(s) = γds. (B.5.3)
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B.6. Itō’s formula for diffusion with jumps
From Cont and Tankov [2004], Section 8.3.2
Consider now a jump-diffusion process

Xt = σWt + µt = Xµ(t), (B.6.1)

where Xc is the continuous part of X. Define Yt = f(Xt) where f ∈ C2(R), the
total change in Yt can be written as

f(Xt)−f(X0) =
∫ t

0
f ′(Xs)dXc

s+
∫ t

0

σ2

2 f
′′(Xs)ds+

∆Xs 6=0∑
0≤s≤t

[f(Xs− +∆Xs)−f(Xs−)].

(B.6.2)
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