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RÉSUMÉ 

Alors que les activités anthropiques font basculer de nombreux écosystèmes vers des 

régimes fonctionnels différents, la résilience des systèmes socio-écologiques devient un 

problème pressant. Des acteurs locaux, impliqués dans une grande diversité de groupes — 

allant d’initiatives locales et indépendantes à de grandes institutions formelles — peuvent 

agir sur ces questions en collaborant au développement, à la promotion ou à l’implanta-

tion de pratiques plus en accord avec ce que l’environnement peut supporter sur le temps 

long. De ces collaborations répétées émergent des réseaux complexes, et il a été montré 

que la topologie de ces réseaux peut améliorer la résilience des systèmes socio-écologiques 

(SSÉ) auxquels ils participent. 

La topologie des réseaux d’acteurs favorisant la résilience de leur SSÉ est caractérisée 

par une combinaison de plusieurs facteurs : la structure doit être modulaire afin d’aider 

les différents groupes à développer et proposer des solutions à la fois plus innovantes (en 

réduisant l’homogénéisation du réseau), et plus proches de leurs intérêts propres ; elle doit 

être bien connectée et facilement synchronisable afin de faciliter les consensus, d’augmen-

ter le capital social, ainsi que la capacité d’apprentissage ; enfin, elle doit être robuste, afin 

d’éviter que les deux premières caractéristiques ne souffrent du retrait volontaire ou de la 

mise à l’écart de certains acteurs. 

Ces caractéristiques, qui sont relativement intuitives à la fois conceptuellement et dans 

leur application mathématique, sont souvent employées séparément pour analyser les qua-

lités structurales de réseaux d’acteurs empiriques. Cependant, certaines sont, par nature, 

incompatibles entre elles. Par exemple, le degré de modularité d’un réseau ne peut pas 

augmenter au même rythme que la connectivité de ce réseau, et cette dernière ne peut pas 

être améliorée tout en améliorant sa robustesse. Cet obstacle rend difficile la création 

d’une mesure globale, car le niveau auquel le réseau des acteurs contribue à améliorer la 

résilience du SSÉ ne peut pas être la simple addition des caractéristiques citées, mais plu-

tôt le résultat d’un compromis subtil entre celles-ci. Le travail présenté ici a pour objectifs 
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(1), d’explorer les compromis entre ces caractéristiques ; (2) de proposer une mesure du 

degré auquel un réseau empirique d’acteurs contribue à la résilience de son SSÉ ; et (3) 

d’analyser un réseau empirique à la lumière, entre autres, de ces qualités structurales. 

Cette thèse s’articule autour d’une introduction et de quatre chapitres numérotés de 2 à 

5. Le chapitre 2 est une revue de la littérature sur la résilience des SSÉ. Il identifie une 

série de caractéristiques structurales (ainsi que les mesures de réseaux qui leur corres-

pondent) liées à l’amélioration de la résilience dans les SSÉ. Le chapitre 3 est une étude 

de cas sur la péninsule d’Eyre, une région rurale d’Australie-Méridionale où l’occupation 

du sol, ainsi que les changements climatiques, contribuent à l’érosion de la biodiversité. 

Pour cette étude de cas, des travaux de terrain ont été effectués en 2010 et 2011 durant 

lesquels une série d’entrevues a permis de créer une liste des acteurs de la cogestion de la 

biodiversité sur la péninsule. Les données collectées ont été utilisées pour le développe-

ment d’un questionnaire en ligne permettant de documenter les interactions entre ces ac-

teurs. Ces deux étapes ont permis la reconstitution d’un réseau pondéré et dirigé de 129 

acteurs individuels et 1180 relations. Le chapitre 4 décrit une méthodologie pour mesurer 

le degré auquel un réseau d’acteurs participe à la résilience du SSÉ dans lequel il est in-

clus. La méthode s’articule en deux étapes : premièrement, un algorithme d’optimisation 

(recuit simulé) est utilisé pour fabriquer un archétype semi-aléatoire correspondant à un 

compromis entre des niveaux élevés de modularité, de connectivité et de robustesse. 

Deuxièmement, un réseau empirique (comme celui de la péninsule d’Eyre) est comparé au 

réseau archétypique par le biais d’une mesure de distance structurelle. Plus la distance est 

courte, et plus le réseau empirique est proche de sa configuration optimale. La cinquième 

et dernier chapitre est une amélioration de l’algorithme de recuit simulé utilisé dans le 

chapitre 4. Comme il est d’usage pour ce genre d’algorithmes, le recuit simulé utilisé proje-

tait les dimensions du problème multiobjectifs dans une seule dimension (sous la forme 

d’une moyenne pondérée). Si cette technique donne de très bons résultats ponctuellement, 

elle n’autorise la production que d’une seule solution parmi la multitude de compromis 

possibles entre les différents objectifs. Afin de mieux explorer ces compromis, nous propo-

sons un algorithme de recuit simulé multiobjectifs qui, plutôt que d’optimiser une seule 

solution, optimise une surface multidimensionnelle de solutions.  
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Cette étude, qui se concentre sur la partie sociale des systèmes socio-écologiques, amé-

liore notre compréhension des structures actorielles qui contribuent à la résilience des 

SSÉ. Elle montre que si certaines caractéristiques profitables à la résilience sont incompa-

tibles (modularité et connectivité, ou — dans une moindre mesure — connectivité et ro-

bustesse), d’autres sont plus facilement conciliables (connectivité et synchronisabilité, ou 

— dans une moindre mesure — modularité et robustesse). Elle fournit également une mé-

thode intuitive pour mesurer quantitativement des réseaux d’acteurs empiriques, et ouvre 

ainsi la voie vers, par exemple, des comparaisons d’études de cas, ou des suivis — dans le 

temps — de réseaux d’acteurs. De plus, cette thèse inclut une étude de cas qui fait la lu-

mière sur l’importance de certains groupes institutionnels pour la coordination des colla-

borations et des échanges de connaissances entre des acteurs aux intérêts potentiellement 

divergents. 

Mots clés: 

Systèmes socio-écologiques, marginalisation de groupes d’acteurs, capacité de liaisons en-

tre groups d’acteurs, cogestion de ressources naturelles, Eyre Peninsula, Réseaux sociaux, 

Réseaux d’acteurs, Résilience, Optimisation, recuit simulé multiobjectif.  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ABSTRACT 

As anthropic activities are slowly pushing many ecosystems towards their functional 

tipping points, social-ecological resilience has become a pressing concern. Local stakehol-

ders, acting within a diversity of groups — from grassroots organizations to higher-scale 

institutional structures — may act on these issues and collaborate to develop, promote, 

and implement more sustainable practices. From these repeated collaborations emerge 

complex networks, the topologies of which have been shown to either enhance or hinder 

social-ecological systems’ (SES) resilience. 

The main topological characteristics of a stakeholder network enhancing SES’s resi-

lience include a combination of: a highly modular community structure, which helps 

groups of stakeholders develop and propose solutions both more innovative (by reducing 

knowledge homogeneity in the network), and close to their interest and values; high 

connectivity and synchronizability, in order to improve consensus building, social capital 

and learning capacity; and high robustness so as to prevent the first two characteristics 

from sharply decreasing if some stakeholders were to leave the network. 

These characteristics are straight-forward both in concept and in their mathematical 

implementation, and have often been used separately to discuss the structural qualities of 

stakeholder networks in case studies. However, some of these topological features inhe-

rently contradict each other. For example, modularity is in direct conflict with connectivity, 

which is in conflict with a network’s robustness. This issue makes the creation of a more 

global measure difficult, as the level to which stakeholders contribute to enhancing SES’s 

resilience cannot simply be a summation of these features, but instead needs to be the 

outcome of a delicate trade-off between them. The present study aims to: (1) explore the 

trade-offs at work between these structural features; (2) produce a measure of how well-

suited empirical stakeholder networks are to enhancing the resilience of their SES; and (3) 

thoroughly analyze an empirical stakeholder network in the context, among other things, 

of its resilience-enhancing qualities. 
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This dissertation is organized in four parts. The first part (Chapter 2) is a review of the 

literature on SES resilience. It identifies a series of structural features (as well as their cor-

responding network metrics) associated with resilience-enhancement in SES. The second 

part (Chapter 3) is a case study on the Eyre Peninsula (EP), a rural region of South Aus-

tralia where land-use, as well as climate change, contribute to biodiversity erosion. For 

this case study, field work was conducted in 2010 and 2011, during which time a series of 

face-to-face interviews was conducted to populate a list of individuals — and groups of 

individuals — holding a stake in biodiversity conservation on the EP. The data was thereaf-

ter used to develop an online questionnaire documenting interactions between these sta-

keholders. The two steps led to produce a weighted, directed network of 129 stakeholders 

interacting through 1180 collaboration links. The third part (Chapter 4) describes a me-

thodology to measure the level to which stakeholder networks contribute to resilience-

building in SES. The method is articulated in two steps: (i) an optimization algorithm (si-

mulated annealing — SA —) is used to craft a semi-random archetypal network which 

scores high in one compromise of modularity, connectivity, synchronizability, and robust-

ness, and (ii) an empirical stakeholder networks (such as our EP network) is compared to 

the archetypal network through a measure of structural distance. The shorter the distance, 

the closer the empirical network is to its ideal configuration. The fourth and last part of 

the dissertation research (Chapter 5) is an improvement on the simulated annealing used 

in Chapter 4. As is frequently done for this kind of optimization technique, the SA used in 

Chapter 4 projected the four dimensions of the multi-objective problem into one (as a 

weighted average). While performing well, this only resolves one of the possible trade-offs 

between the objectives. To better explore the trade-offs at work in this optimization pro-

blem, a true multi-objective simulated annealing (MOSA) is proposed where, instead of 

optimizing one solution, the algorithm optimizes a multidimensional surface of solutions 

scoring better than the others in a least one of the objectives. 

This study, which focuses on the social part of SESs, improves our understanding of the 

stakeholder collaboration structures which, theoretically, best contribute to resilient SESs. 

It shows that while some resilience-enhancing topological characteristics are in conflict 

(modularity vs. connectivity, and connectivity vs. robustness to a lesser extent) others can 
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be easily reconciled (connectivity vs. synchronizability, and, less-so, modularity vs. robust-

ness). It also provides an intuitive method to quantitatively assess empirical stakeholder 

networks, which opens the way to comparisons between case studies, or monitoring of 

stakeholder network evolution through time. Additionally, this thesis provides a case study 

which highlights the importance of a key institutional group in coordinating collaborations 

and information exchanges among other stakeholders of potentially diverging interests 

and values. 

Keywords: 

Social-ecological systems, Stakeholder group marginalization, Bridging capacity, Natural 

resources co-management, Eyre Peninsula, Social networks, Stakeholder network, Re-

silience, Optimization, Multi-objective simulated annealing.  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1. INTRODUCTION  1

1.1. CONTEXTE ET MOTIVATIONS DE LA THÈSE 

Les paysages que nous habitons sont le résultat d’une longue coévolution socio-

écologique. Les activités humaines liées à l’agriculture, au déboisement, à l’extraction de 

matières premières, à l’aménagement d’habitations, de chemins, de routes et de canaux, 

ont lentement modelé l’environnement naturel tel que nous le connaissons aujourd’hui. 

Toutefois, depuis le XIXe siècle et le début de la révolution industrielle, la planète serait 

entrée dans une époque nouvelle, l’anthropocène (Crutzen 2002), où l’Humain est désor-

mais le principal moteur des changements environnementaux. De par cet impact continu 

et profond sur l’environnement, la durabilité des relations socio-écologiques est mise à 

mal. 

Aux échelles locales ou régionales, les conséquences sont souvent sévères lorsque, cé-

dant sous la pression, les écosystèmes changent de régime et ne fournissent plus les ser-

vices matériels et culturels sur lesquels les populations locales dépendent pour leur bien-

être. Afin d’anticiper et d’éviter ces effondrements écosystémiques, des efforts sont entre-

pris pour imaginer, négocier et développer des règles et des pratiques permettant des rela-

tions socio-écologiques plus durables. Pour de nombreux chercheurs, l’étude de la durabil-

ité des systèmes socio-écologiques (SSÉ) doit passer par une vision complexe des relations 

entre humains et écosystèmes (Ostrom 2007). D’autre part, il est généralement accepté 

qu’une gestion durable des ressources est plus facilement applicable aux échelles locales 

qu’à des échelles nationales ou supranationales, car si ces dernières fournissent un cadre 

et imposent des contraintes législatives ou financières, c’est principalement à l’échelle du 

paysage que peuvent émerger — par la motivation, l’intérêt, et les connaissances spéci-

fiques des acteurs — des règles et des pratiques d’utilisation plus durables des ressources 

(Ostrom, Walker et al. 1992, Bowler 2001, Bryant 2001, Olsson and Folke 2001, Doyon 

2009).  

 Ce chapitre sera bref car une revue complète de la littérature est disponible dans le chapitre 2.1
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Un nombre conséquent d’études de cas à travers le monde montrent par ailleurs que la 

durabilité des systèmes socio-écologiques (SSÉ) est souvent dépendante de la capacité de 

la structure du système de gouvernance à inclure divers groupes, notamment ceux qui  

s’avèrent parfois marginalisés, ainsi qu’à favoriser les coopérations et les échanges de con-

naissances entre tous (Ostrom, Walker et al. 1992, Olsson, Folke et al. 2004, Tyler 2006). 

C’est ainsi que des structures en cogestion, où des acteurs de différents milieux participent 

activement à la prise de décision, sont souvent préconisées. Entre les acteurs, au fil des 

collaborations qui se font et se défont, des réseaux parfois denses et aux structures com-

plexes, émergent. Ceux-ci peuvent être étudiés de manière qualitative (Marsden, Murdoch 

et al. 1983, Law 1986, Law 1992, Murdoch 1994, Bryant 2001, Doyon 2009) ou quantita-

tive par des mesures issues de la théorie des réseaux (Berkes, Hughes et al. 2006, Bodin 

and Crona 2009, Crona and Bodin 2010, Marín and Berkes 2010, Matouš and Todo 2015). 

L’approche structurale quantitative, celle qui nous intéresse ici, a notamment mené à iden-

tifier une série de caractéristiques structurales favorisant la résilience et la durabilité des 

SSÉ (chapitre 2). 

Certaines de ces caractéristiques sont toutefois contradictoires par nature et la projec-

tion d’une topologie de coopérations idéale, incluant ces mesures favorisant la résilience et 

la durabilité des SSÉ, est donc particulièrement floue. À ma connaissance, aucune étude 

ne s’est encore penchée sur l’ampleur des contradictions entre ces mesures dans le cadre 

de réseaux d’acteurs, ni sur l’identification formelle des compromis structurellement possi-

bles entre elles. Par conséquent, aucune mesure quantifiant la qualité globale des réseaux 

de cogestion n’a encore été proposée. C’est ce manque qui constitue la motivation de cette 

thèse. 

1.2. OBJECTIFS ET PLAN DE LA THÈSE 

L’objectif général de cette thèse est de créer une mesure quantitative du niveau auquel 

un réseau d’acteurs contribue, de par la topologie des collaborations en son sein, à la rési-

lience du SSÉ dans lequel il s’inscrit. Cet objectif est rempli à travers quatre chapitres nu-

mérotés de 2 à 5. Dans le chapitre 2, nous présentons (j’utiliserai la première personne du 
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pluriel lorsque je me référerai aux chapitres, car ils ont été rédigés en collaboration avec 

ma directrice Lael Parrott) une revue de la littérature à partir de laquelle nous identifions 

une série de mesures structurales favorisant la résilience des SSÉ. 

Dans le chapitre 3, nous nous penchons sur l’analyse d’un réseau empirique mesuré 

spécifiquement pour cette thèse en 2012 sur la Péninsule d’Eyre en Australie-Méridionale. 

La fonction du réseau d’acteurs est de favoriser et promouvoir la conservation de la biodi-

versité sur la péninsule. Il comprend 129 individus organisés dans 24 groupes à travers 18 

municipalités. Nous y analysons les liens éventuels entre géographie et topologie à l’inté-

rieur du réseau, la capacité relative des groupes à relier d’autres groupes potentiellement 

marginalisés, et proposons une méthode pour projeter — à partir du réseau existant — des 

topologies alternatives favorisant la résilience du système. 

Dans le chapitre 4, nous construisons, à l’aise d’un algorithme d’optimisation de type 

recuit simulé (simulated annealing), un réseau d’acteurs théorique dont la topologie cor-

respond à un des compromis possibles entre quatre mesures favorisant la résilience des 

SSÉ. Cet archétype de réseau d’acteurs est utilisé comme étalon avec lequel d’autres ré-

seaux, dont notre réseau empirique étudié au chapitre précédent, sont comparés. La dis-

tance structurelle entre ces réseaux et notre archétype constitue une mesure globale du 

niveau auquel un réseau contribue à la résilience de son SSÉ. 

Dans le cinquième et dernier chapitre, nous prolongeons la recherche du chapitre pré-

cédent en améliorant significativement l’algorithme de recuit simulé. Alors que l’algo-

rithme proposé au chapitre 4 n’optimisait qu’un des multiples compromis possibles entre 

les quatre mesures utilisées, nous proposons ici une méthode permettant d’explorer de 

manière formelle l’espace multidimensionnel des objectifs.  

Tous les chapitres ont été écrits sous la forme d’articles publié, soumis ou en prépara-

tion pour une soumission prochaine. Je suis le premier auteur et ma directrice de re-

cherche Lael Parrott est la deuxième auteure pour l’ensemble des articles. Mon codirecteur 

de recherche Wayne Meyer est troisième auteur pour le chapitre 3. 
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PARAGRAPHE D’INTRODUCTION AU CHAPITRE 2 

L’article présenté dans le chapitre qui suit est une revue de la littérature sur la théorie 

des réseaux utilisée pour l’analyse de la résilience dans les SSÉ. Il a été réalisé en collabo-

ration avec Lael Parrott. J’ai effectué la recherche bibliographique et rédigé le manuscrit 

dans son entièreté. L. Parrott a agi à titre de superviseure en m’apportant idées et recom-

mandations tout au long du travail de recherche. Elle a également amélioré le manuscrit 

par ses ajouts, conseils et corrections.  

Ce chapitre est publié sous forme d’article dans Geography Compass: 

Gonzalès, R., and Parrott, L. (2012). Network Theory in the Assessment of the Sustainabi-
lity of Social–Ecological Systems. Geography Compass, 6(2), 76-88. 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2. NETWORK THEORY IN THE ASSESSMENT OF THE 
SUSTAINABILITY OF SOCIAL-ECOLOGICAL SYSTEMS 

R. Gonzalès and L. Parrott 

2.1. ABSTRACT  

As human activities increasingly threaten the ecosystems on which they depend, one of 

the main questions our societies are facing is related to the resilience – seen as a necessary 

element of sustainability – of social–ecological systems (SES). SES are composed of many 

heterogeneous elements including human actors such as institutions and resource users, 

and natural components such as land patches or animal species. The numerous relation-

ships between these different entities shape complex, dynamic networks of social–ecologi-

cal interdependencies. Once described as networks, SES can be analyzed using a variety of 

network metrics, which may potentially help to better quantify and evaluate the resilience 

of SES to external or internal perturbations. In this paper, we provide a broad overview of 

the latest progress in network theory as applied to SES and discuss how network metrics 

may be used to assess the sustainability of an SES. 

2.2. INTRODUCTION 

Due to increasing pressure on the Earth’s ecosystems by human activities, the sustain-

able management of natural resources is an important focus of concern for scientists and 

local populations in most parts of the world today. Sustainable resource management has 

been an important research subject for a long time (i.e. indices like ‘maximum sustainable 

yield’ in fisheries have been studied actively since the 1930s). However, most studies have 

been specific to particular aspects of the system, missing important connections within 

these complex systems (Levin 2008). In order to tackle sustainability questions in a more 

comprehensive way, other conceptual frameworks, acknowledging the interconnectedness 

of humans and their environment, have been developed more recently. Social–ecological 

systems (SES) (Ostrom 2007, Becker 2012) or coupled human and natural systems (Liu, 
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Dietz et al. 2007, Stevenson 2011) serve as a starting point for these frameworks (Ostrom 

2007). They effectively step back from strictly reductionist approaches and embrace holis-

tic, complex approaches to better describe the dynamics of human communities interact-

ing with their environment (Waltner-Toews, Kay et al. 2008). 

Many approaches, either qualitative or quantitative, have been used to assess SES sus-

tainability (Bell and Morse 2008). Recently, a structural approach based on describing the 

interactions of human and natural elements has been proposed (Janssen, Bodin et al. 

2006, Cumming, Bodin et al. 2010); as SES usually include discrete, heterogeneous ele-

ments involved in local interactions, they can be effectively represented as networks. In 

these networks, human and biogeophysical elements of interest are connected to each 

other through a selection of links to form a structure whose properties can then be an-

alysed quantitatively. An increasing number of scientists from many fields are now focus-

ing their efforts towards assessing SES’ sustainability in this manner, using the broad set of 

metrics from network theory. 

In this paper, we review general methods used to study SES from a network perspec-

tive. We start by defining concepts such as SES, social–ecological networks (SEN), and re-

silience within the context of social–ecological sustainability. We then present some of the 

most popular methods used in studying the resilience of SES within a network analysis 

framework. Finally, we underline some of the important limitations and challenges of this 

approach. 

2.3. RESILIENCE IN THE CONTEXT OF SEN 

2.3.1. DEFINITIONS 

What is a SES? 

A SES is a system composed of human elements and natural elements interacting with 

each other in different ways through temporal, spatial and organizational scales. A SES 

often describes a setting where a human community is in interaction with its natural envi-

ronment through the exploitation of one or several natural resources. It can therefore fo-
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cus on a variety of settings, such as traditional or industrial fisheries, wood extraction and 

forest management, mining, agriculture and water management, or parks and tourism. In 

any case, it is the interactions among and between the human and ecological elements 

that make it a system. These interactions may be relative to money or information ex-

change between human actors, to energy transfer between species belonging to the same 

food web, or to resource extraction from the natural world to human subsystems. Real-

world SES are typically complex adaptive systems: they are dynamic (in that the amounts 

of matter, information or energy flowing through SES varies in time), self-organizing and 

adaptive to the system’s environment. As a consequence, their dynamics are non-linear 

and difficult to predict.  

What is a Network? 

Focusing on local interactions, networks are simplified representations of relationships 

among discrete elements. They are composed of two simple elements: nodes (or vertices) 

representing discrete entities, and edges (or ties, links) representing the interactions be-

tween the nodes. These nodes can have a set of characteristics distinguishing one from 

another; they can have a weight in the network to reflect their relative importance. Edges 

can also be weighted to indicate the relative strength of the relationship they represent, 

and be directional if the relationships are not equal in both directions. Networks can be 

composed of a single, or multiple, kinds of nodes. They can also display only one kind of 

relationship or on the contrary be multiplexed and allow for the representation of differ-

ent linkages.  

Network analysis is based on several decades of research and is rich with many power-

ful and versatile tools, each crafted to describe and quantify a particular aspect of a net-

work (Scott and Carrington 2011). Networks were first studied in the social sciences, 

where researchers were trying, among other things, to understand the structure of com-

munities emerging from local relationships between individuals (Borgatti, Mehra et al. 

2009) or to study social structures related to resource management (Crona 2006, Ernst-

son, Barthel et al. 2010). The same tools have, however, also been used for decades in the 

 9



natural sciences to explore, to cite only two examples, food webs (Tylianakis, Tscharntke 

et al. 2007, Berlow, Dunne et al. 2009) and habitat fragmentation (Bodin, Tengö et al. 

2006, Baranyi, Saura et al. 2011) [for an overview of the last 10 years in network re-

search, please refer to Barabási (2009)]. Within the natural and social sciences, ap-

plications in geography are also numerous (Barthélemy 2011, Cumming 2011). However, 

if network analysis has been widely used for both social and ecological systems, it has only 

recently been applied to SES (Cumming, Bodin et al. 2010). 

2.3.2. SOCIAL-ECOLOGICAL SYSTEMS MODELLED AS SOCIAL-ECOLOGICAL 
NETWORKS 

It is now commonly accepted that network theory may contribute a wide range of tools 

and concepts to the study of sustainability in SES (Bodin 2006, Janssen, Bodin et al. 2006, 

Cumming, Bodin et al. 2010). Local interactions are central to the emergence of global 

patterns and properties of robust complex and adaptive systems (Levin 1998). Therefore, 

network analysis, which focuses explicitly on the structure of interactions between the sys-

tem’s components, can provide a valuable angle to understand and better assess the per-

formance of the system (Janssen, Bodin et al. 2006, Webb and Bodin 2008), help identify 

structures favouring sustainable natural resource management (Bodin 2006) and provide 

a framework to compare SES’ structures despite the large differences between systems 

(Janssen, Bodin et al. 2006). 

To represent a SES as a network, human or ecological components of the system (such 

as resource users, regulating institutions, fragmented land patches, animal species, to 

name but a few) might become nodes, and edges may explicitly show selected linkage be-

tween these nodes (such as energy transfer between species, information and knowledge 

sharing between human components). This approach raises a lot of questions, conceptual 

concerns and challenges, as discussed below. 
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Network Simplification and Boundary Setting 

A SEN is a representation of a chosen SES laid out in such a manner that it can be use-

ful to explore a set of questions regarding a system. It is a model that uses concepts from 

mathematical graph theory to effectively map the interactions between a selected set of a 

SES’s most important elements. As for any model, a SEN is a simplification of reality. It is 

nonetheless a simplification that must be meaningful to the researchers’ questions of inter-

est. 

The choices regarding the boundaries of the network, i.e. how far to go in spreading the 

network in its periphery? (Reed, Graves et al. 2009), the inclusion or exclusion of poten-

tial nodes and edges, the level of aggregation of the elements, and the temporal and spa-

tial scales to consider must therefore be clearly defined. As it is practically impossible to 

include all elements directly or indirectly connected to each other in an SES, nodes need 

to be carefully selected among a potentially large number of candidates. The selection can 

be partially, and for the human sub-network only, motivated by a stakeholder analysis. 

This kind of analysis can help clarify the list of human actors involved in an SES, evaluate 

their power and level of interest (Prell, Hubacek et al. 2009), as well as help decide if ac-

tors should be implemented as individuals or aggregated as groups of common interests 

and power. The characteristics of the nodes also need to be simplified as to only include 

the elements that are the most relevant to explain the dynamic of the system. Similarly, 

links between nodes must be selected carefully: choosing to implement a currency of flux 

over another would lead to the study of a system from radically different angles. These 

steps are of the utmost importance as an SEN must be complete enough to be useful in 

helping to explore relevant scientific questions, and not too complicated as to prevent a 

clear explanation of results. 
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2.4. NETWORK THEORY METRICS TO HELP ASSESS THE RESILIENCE OF SEN  

2.4.1. WHAT IS A RESILIENT SEN? 

Social–ecological system collapses around the world are often seen as the result of so-

cial–ecological unsustainability, or as a lack of resilience of these systems. The concept of 

sustainability holds many definitions, but is most often seen as 

“(…) the challenge of servicing current system demands without eroding the poten-
tial to meet future needs” (Walker and Salt 2012). 

In its simplest terms, however, a part of what sustainability represents is the capacity of 

a system to persist in time (Costanza and Patten 1995). This last definition is very close to 

the one of resilience: according to (Holling 1973) who, at that time, focused primarily on 

ecosystems alone, resilience refers to how a function persists within a system [please refer 

to Folke (2006) for a short review on the roots of the resilience concept]. Specifically, it 

measures the amount of disturbance that would shift an ecological system out of its do-

main of stability and affect one of its functions in a significant way. In a more recent un-

derstanding of the concept, resilience is also related to a system’s capacity to learn and re-

organize in a changing socio-economical or environmental setting (Carpenter, Walker et al. 

2001, Folke, Carpenter et al. 2002, Carpenter and Brock 2008). 

As such, the concept of resilience can be difficult to apply in empirical studies. There 

are, in a single SES, many possible applications of resilience depending on which of the 

system’s functions is at stake, the potential threats to this important function, and the time 

scale of interest (Ludwig, Walker et al. 1997, Carpenter, Walker et al. 2001). Additionally, 

this concept is often difficult to translate into clear, measurable, system variables. Given 

these challenges, in cases where an SES can be effectively represented as a network, net-

work analysis may provide tools to measure certain structural characteristics relevant to 

the system’s resilience. 
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Finding a Network-Compatible Proxy to Assess SES’ Resilience 

If resilience is a useful concept in the study of SES’ dynamics, it cannot easily be direct-

ly measured in SEN. However, the definition of resilience proposed above highlights a se-

ries of characteristics that the network-compatible concept of ‘robustness’ could come 

close to. 

Robustness takes into account the “organizational architecture of the system of interest, 

[the] interplay between organization and dynamics, [the] relation to evolvability in the 

past and future, […] [its] ability […] to switch among multiple functionalities […] (Jen 

2003)”, which relates to the capacity of a resilient system to adapt to new situations. Also, 

robustness is: 

“[…] a measure of feature persistence in systems where the perturbations to be con-
sidered are not fluctuations in external inputs or internal system parameters, but in-
stead represent changes in system composition, system topology, or in the fundamen-
tal assumptions regarding the environment in which the system operates.” (Jen 
2003) 

which relates to the capacity of a resilient system to maintain its identity despite per-

turbations. 

In the field of network analysis, the robustness of a network is related to its persistence 

in terms of maintaining its defining functions and its ability to withstand fragmentation as 

a number of its components are removed (Brandes and Erlebach 2005, Webb and Bodin 

2008). This is close to both the definition of resilience and of system robustness. 

2.4.2. LINKING ROBUSTNESS TO NETWORK THEORY METRICS 

While there is not a unique formula for measuring robustness in an SES, some impor-

tant particularities of a robust system have been identified in the literature (Carpenter, 

Walker et al. 2001, Perrings 2006). Most particularly, Webb and Bodin (2008) provide a 

detailed review of some of the methods used to assess robustness in SES through network 

analysis. We will, in this section, focus on a few of them, namely: diversity, redundancy, 
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connectivity, centrality, modular structure and control of flow. However, it is important to 

note that most of the research connecting the topology of SES to their outcomes in terms 

of resilience is based on theoretical work only. As such, these relationships have not yet 

been formally tested empirically, and should be considered as strong assumptions at this 

point. 

2.4.2.1. Diversity and Redundancy 

It is commonly admitted that a high diversity of components within a system helps 

build robustness (Ehrlich and Walker 1998, Webb and Bodin 2008, Norberg and Cumming 

2013). Generally, the more components filling similar functions in the system, the higher 

are the chances that these components will have different responses to disturbance. In-

deed, the probability for the system to keep functioning despite the elimination of some of 

its components is higher when diversity of components meets redundancy in function. 

This has been noted for both the ecological and social parts of SES (Walker 1995, Carpen-

ter, Walker et al. 2001, Scheffer, Carpenter et al. 2001, Folke, Carpenter et al. 2002, 

Janssen, Bodin et al. 2006). 

The combination of 1) diversity of a system’s components (in terms of their potential 

vulnerability), and 2) their redundancy (in terms of their function in the system), is close-

ly related to the network’s robustness. Diversity and redundancy can mean different things 

though, and to illustrate what they mean in our context, let us consider an imaginary SES 

where four human groups are closely related to the management of a fishery (Figure 1). 

Nodes 1, 2 and 4 are three different institutions interacting with each other and with node 

3, which represents the fishing industry. Nodes a, b, c, d and f represent an ecosystem in 

which a and b are two species of fish that are harvested by node 3. Let us assume that all 

these nodes (1, 2, 3, 4, a, b, c, d, e) are different in terms of vulnerability to the perturba-

tion that interests us, but have different functions in the system (functions are noted α, β, 

γ, δ, ε, ζ and θ). We can say that the human subsystem and the ecological subsystem are 

equally diverse (each node is different from the other in terms of vulnerability). Although 

they are not equal in terms of redundancy of functions: indeed, if the human subsystem 
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has a rather high redundancy (nodes 1, 2 and 4 fulfil a similar function), the ecological 

subsystem has a very low redundancy with each species fulfilling a different function. Ro-

bustness would therefore be higher in the social subsystem than in the ecological subsys-

tem it interacts with. Let us now assume that nodes a and c are over-harvested due to a 

misevaluation of (or a lack of regulation related to) the maximum sustainable yield of the 

fish populations, the functions α and γ fulfilled by a and c cannot be replaced and the sys-

tem is likely to endure severe structural damage. 

 

Figure 2.1 —  Imaginary fishery-oriented integrated SEN where a human subsystem is in in-
teraction with an ecological sub-system. Nodes 1, 2, 3 and 4 represent four human groups 
(three institutions and one industry represented by node 3). Nodes a, b, c, d and f represent an 
ecosystem in which a and b are two species of fish that are harvested by node 3. In this 
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example, we assume each node has a different response to external or internal perturbations. 
The Greek letters represent their functions in the system, which are or are not different from 
one node to another. 

These two characteristics (diverse while redundant) seem difficult to measure at the 

same time. The problem can be avoided by focusing alternatively on each of the two char-

acteristics (‘diversity of vulnerabilities’ and ‘redundancy of functions’). 

There are many metrics of diversity available, and each method has its advantages and 

disadvantages. Magurran (2013) provides an extensive review of each of these measures. 

In ecology, two indices are commonly employed: the Simpson index (Simpson 1949) and 

the Shannon index (Magurran 2013). These methods are not specifically network metrics, 

they are statistics mostly used to quantify diversity of species in ecosystems (i.e. biodiversi-

ty), but are applicable for any situation where the total number of components is known 

and where each class of components can be enumerated. This is the case for SEN built on 

enough empirical data, and, although more research needs to be done in order to formally 

understand the limitations of using such metrics in a network context, the methods may 

be sufficient for describing the diversity and redundancy of components in a network. 

Here, we show how they could be used to measure the diversity of vulnerability or of func-

tionality in an SEN. 

Simpson’s Diversity Index 

Simpson’s diversity index can be calculated with Equation 2.1: 

 

Equation 2.1 — Simpson diversity index. 

Where D is Simpson’s index of diversity, S is the total number of categories of compo-

nents in the system, and pi is the proportion of components belonging to the ith category. 

D = 1�
SX

n=1

p2i
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This index calculates the probability for two randomly picked nodes to belong to differ-

ent categories. To measure the diversity of vulnerability or the functional diversity in an 

SEN, categories could correspond to nodes that would respond to perturbations in differ-

ent ways or nodes that perform different functions in the system. A perfectly homogenous 

population would have a score of zero, while a perfectly heterogeneous population would 

have a score of one. 

Shannon’s Diversity Index 

Shannon’s index can be calculated with Equation 2.2. 

    

Equation 2.2 — Shannon’s diversity index. 

Where H is Shannon’s diversity index, S is the total number of categories (or species 

richness) in the system, and pi is the proportion of components that belong to the ith cate-

gory. 

This index increases in value when either the number of categories or the category 

evenness increases. Therefore, a lower H-value means less diversity, while a higher value 

means more diversity (Equation 2.2 as presented here is not normalized, but could easily 

be constrained between 0 and 1). Again, categories could be selected to group nodes ac-

cording to their vulnerability to perturbation or according to their functional roles. 

Redundancy 

Redundancy can be seen as the inverse function of diversity. Measuring it would involve 

repeating the diversity metrics, but taking into account the ‘functional diversity’ of the sys-

tem’s nodes as opposed to their ‘vulnerability diversity’. Functional redundancy can then 

be defined as the inverse of the functions described above. 

H = �
SX

n=1

pi ln(pi)
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2.4.2.1. Evaluating Connectivity and Centrality 

Connectivity can be defined as the extent to which nodes are more or less connected to 

each other. Centrality measures how a node is, by being more connected to other nodes 

than average, more ‘central’ at the local or global scale (Scott and Carrington 2011). As 

Webb and Levin (2005) point out, a higher system complexity (which is a consequence of 

self-organization within a system) leads to robustness at higher levels of organization. 

(Janssen, Bodin et al. 2006) further note that scale-free networks, a structure seen in 

many natural and social self-organized networks, is characterized by high centrality. They 

also suggest that a higher connectivity increases the capacity for a flux to travel efficiently 

through the network. 

Connectivity 

Connectivity can have very different effects in an SEN. It is a positive characteristic as 

an efficient network must be able to carry its flow through many different nodes to be ro-

bust. Indeed, in a highly connected network, a perturbation that would remove edges be-

tween nodes could be quickly attenuated by the use of alternative routes. For instance, in 

an ecological network focusing on habitat connectivity, a highly connected landscape can 

often improve chances for a species to survive landscape fragmentation (Baranyi, Saura et 

al. 2011). On the other hand, in social networks related to resource management, an ex-

cess of connectivity can lead to a more homogenized knowledge and refrain the emer-

gence of new ideas, hence limiting the capacity of the system to solve natural management 

issues (Bodin and Norberg 2005). 

There are different ways to calculate connectivity. The most straightforward and intu-

itive one is the ‘density’ metric, which can be seen as the degree of ‘completeness’ of the 

network, and can be calculated as the proportion of links within all the possible links of 

the network: 

 
d =

e
n(n�1)

2
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Where d is the density of the network, e is the actual number of links in the network, 

and n is the total number of possible links. A network where no node is connected to any 

other node would score 0, while a clique (a network or sub-network where every node is 

connected to every other node) would score 1. 

Another way to measure connectivity is through the “reachability” concept, which is 

“the extent to which all nodes in the network are accessible to each other” (Janssen, Bodin 

et al. 2006). It can be measured through its “network diameter”, which is the number of 

links needed to reach the two most separated nodes of the network, and “minimum tree 

span”, which is the smallest tree connecting all the nodes of the network (Scott 2012). 

Janssen et al. (2006) warn about an essential point related to network connectivity. If, 

on the one hand, a highly connected network provides a robust structure by making avail-

able a set of potential alternative routes for the flow to keep transiting despite the distur-

bance, it also, on the other hand, provides a structure highly adapted for a quick disper-

sion of pollutants, or diseases. 

Centrality 

Centrality measures the degree of connectedness of any given node of the network. It is 

often viewed as a position of power, or influence, within a social network when focusing 

on knowledge or information sharing linkage (as it can be a position of control of informa-

tion, for instance) (Ernstson, Sörlin et al. 2008, McAllister, Cheers et al. 2008, Bodin and 

Crona 2009, Prell, Hubacek et al. 2009, Reed, Graves et al. 2009, Crona and Bodin 2010, 

Marín and Berkes 2010, Newig, Günther et al. 2010). In ecosystems, a highly central 

species or vegetation patch may be important in terms of robustness as well, as the re-

moval of such a node could fragment the network (Estrada and Bodin 2008, Zetterberg 

2009, Cinner and Bodin 2010, Baranyi, Saura et al. 2011). Centrality can be either local 

and calculated through metrics of ‘betweenness’ and ‘degree’, which count all the adjacent 

connections of any node, or global and can be measured via the ‘closeness’ measure, which 
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computes the distance of a node to any other node. A node with a high degree of closeness 

will therefore be located close to many other nodes (Scott and Carrington 2011). 

2.4.2.1. Evaluating the Modularity of the Structure and the Control of the Flow 

Webb and Levin (2005) identify a set of mechanisms characterizing robust SES when 

considered more particularly through the lens of network analysis: control of flow and 

modular structure. These two characteristics are central to robustness in SES because a 

controlled flow of matter, energy or information within the system by a limited number of 

nodes acting as ‘brokers’, when combined with the structural modularity of the system 

(the extent to which the system is composed of more or less separated sub-networks), 

helps reduce the spread of a disturbance in a system while making sure that the flow is 

efficient. 

As opposed to diversity and redundancy, which measure two characteristics related to 

the components of a network (without taking into account their relations to each other), 

the modular structure of, and the control of flow in, the network focuses on the whole sys-

tem’s structure. According to (Webb and Bodin 2008), these two criteria are essential for 

reducing the impact of disturbance within the system. On one hand, a highly modular 

network composed of completely separated modules, or clusters of nodes (Figure 2.2.a) 

would make for a more robust system: a perturbation would not spread beyond the cluster 

in which it happened. On the other hand, the robustness of the system also depends on its 

capacity to efficiently carry the flow of information, energy, or matter through the entire 

network. These two characteristics are opposite and, according to Webb and Bodin (2008), 

a balance, within the structure of the network, between a high modularity and an effective 

sub-group connectivity should be a characteristic of robust systems. This is, in other 

words, a state of intermediate modularity, where effective bridges connect groups of 

strongly interconnected nodes (Figures 2.2.b and 2.2.d are simple examples of systems 

with this kind of trade off). 
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Figure 2.2 — Three examples of networks. A) Modular structure consisting of distinct mo-
dules or clusters. In B), the two clusters are connected to each other. We can describe four dif-
ferent noticeable nodes in B): nodes 1 and 3 could be considered as “peaks” of the system 
(they are connected to more nodes than other nodes are), and node 2 is a “bridge” as it 
connects two peaks (or two clusters, like in this example). This figure also shows how edges 
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can be represented as being uni or bi-directional and weighted according to the strength of the 
flux. Examples of C) low modularity and D) overlapping groups. 

Modular Structure 

The modular character of the structure can be measured with different network modu-

larity metrics. Once again, there is no universal measure upon which all scientists agree, 

and much research is still on-going to develop fast and general algorithms. Most methods 

fall into two main categories called “agglomerative” and “divisive” (Scott 2012), and in-

volve measures of clustering, often done through a hierarchical clustering procedure, or 

dendrogram (Scott 2012), “clique” and “blockmodeling”. For a detailed review of these 

methods, see Scott (Scott 2012). The goal of these metrics is to measure the degree of 

network partitioning. That is, to quantify to what extent a network is built up from small-

er, separated subsystems. 

Figure 2.2.a is an example of a modular structure, where two separated modules exist 

by themselves. It is easy to understand that if a perturbation were to happen in module A, 

it would only affect this module, and leave module B intact. However, for the SES to work 

properly, the different subsystems must ‘communicate’ efficiently. In robust systems, this 

exchange is carried through intermediary nodes that control the flow through the SES. 

Control of Flow 

The control of flow helps explain how a perturbation spreads within a network, as well 

as how information, matter or energy transits efficiently through a network. This control 

of flow can be quantified by the measure of betweenness centrality, which quantifies the 

extent to which a given node links other nodes that would otherwise not be linked (Scott 

2012). Nodes with a high level of betweenness centrality act as intermediaries within the 

system, and therefore hold a very important role in the network (Scott 2000). As such, 

they often manifest themselves as “bridges” (node 2 in Figure 2.2.b) or as nodes belong-

ing to two or more overlapping groups at the same time (nodes 1 and 2 in Figure 2.2.d). 

Betweenness centrality can be complicated to quantify; (Scott 2012) provides a descrip-
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tion of the methodology. Furthermore, the control of the flow must be measured according 

to the direction of the flow. An actor functioning as a bridge who transmits information 

from a group A to a group B only [while (s)he does not transmit any information back] 

will not act as the same kind of flow controller as an actor transmitting both ways. 

While weak ties (like bridges linking modules, cliques and clusters) are, as we saw, im-

portant to the topology of a robust network, such a structure has downsides worth men-

tioning. According to Janssen et al. (2006), although centrality is important to control the 

network flow, it also builds networks where only a limited number of nodes are in charge 

of distributing the flux, and therefore distribute similar content to a large number of other 

nodes, which limits creativity. It also makes the network vulnerable to directed, selective 

attacks: if a few of these nodes (like node 2, or even nodes 1 and 3 in Figure 2.2.b) are 

removed, the whole structure would be separated into different modules and its function 

would likely be destroyed. 

2.5. DISCUSSION 

2.5.1. COUPLING SOCIAL AND ECOLOGICAL NETWORKS 

As SEN are typically built from edges and nodes that are potentially heterogeneous, 

coupling the social and ecological parts of an SEN is challenged by issues related to the 

incompatibility of elements. We saw that according to the kind of system one wants to 

study, nodes can represent many different sorts of individuals, institutions, pieces of land, 

or animal species at the same time, while edges can represent, in the same network, a va-

riety of exchanges of linkage. With such heterogeneity, can the concept of robustness be 

considered consistent from one subsystem to another? In other words, can we quantita-

tively study the robustness of a whole SES without falling into the trap of subsystems non-

comparability, or should we couple social and ecological networks in a less integrative 

way? Webb and Bodin (2008) also point out that while a lot of research is being done to-

wards understanding robustness of individually considered SEN, the robustness of SEN is 

still not well understood. More recently, Cumming et al. (2010) identified several kinds of 

couplings, including (i) analysing each sub-network independently and (ii) integrating the 
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two sub-networks as one SEN. The first approach avoids most compatibility issues by let-

ting researchers synthesise each subnetwork’s features to make conclusions about the 

whole system’s qualities. The latter directly examines SEN structural qualities and usually 

avoids compatibility issues by using a common currency transiting from one node to an-

other, no matter its social or environmental nature (Cumming, Bodin et al. 2010). 

2.5.2. SOCIAL-ECOLOGICAL NETWORKS CHANGE OVER TIME 

Another important characteristic of robust SES is their capacity to change and adapt 

over time. This is one of the fundamental characteristics of the adaptive cycle in system 

resilience (Gunderson 2001). Although all the metrics presented here are static, and can 

provide valuable snapshot assessments of the robustness of a system at a given time, they 

also leave aside its important dynamic features. For instance, Janssen et al. (2006) note 

that an essential common feature of robust systems is to be able to activate ‘sleeping’ 

nodes or edges in dire situations, which are hard to identify with static measures. They 

also suggest that within the adaptive cycle (ibid.), each phase (exploitation, conservation, 

release and reorganization) should display a different set of structural characteristics, the 

resilience of the system should therefore be assessed in light of the history of the structure. 

Research is active in this domain with valuable contributions in both theoretical and ap-

plied network analysis top(Leskovec, Kleinberg et al. 2005, Palla, Barabási et al. 2007, 

McCulloh and Carley 2008, Top 2009, Mucha, Richardson et al. 2010, Szell, Lambiotte et 

al. 2010). 

2.6. CONCLUSION 

In this paper, we have explored how some characteristics of SES’ sustainability could be 

quantitatively assessed in SES through network analysis metrics. This has been done by 

first focusing on the concept of resilience, which, as Folke (2006) puts it, is an essential 

component ‘for the sustainability discourse’. A proxy to resilience that would be general 

enough to encompass the main characteristics of SES, while being well enough defined to 

be quantitatively measured was then sought. A review of the most recent literature on the 

subject led to the choice of robustness. From there, a series of some the most cited charac-
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teristics of ‘robust’ SES were defined, and some of these characteristics were linked to 

quantitative network analysis metrics. 

Despite its advantages, a network approach to analyzing the sustainability of SES faces 

many challenges, including properly modelling the SES (during this process, coupling or 

embedding natural and social sub-networks is a particularly sensitive task) and gathering 

quality datasets from empirical studies, which is especially difficult for the social system 

(Marsden 1990). 

The use of network theory as a framework to study SES is still in the early stages of de-

velopment. Despite certain limitations, which requires more theoretical work (e.g. dynam-

ic integrated SEN), and more empirical case studies (e.g. to validate models with more 

certainty), research seems to be progressing rapidly on this promising path and we are op-

timistic that such tools may eventually provide practical insights into the management and 

creation of sustainable SES. 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PARAGRAPHE DE LIAISON A 

Le chapitre 3 s’articule autour de trois axes. Le premier décrit la construction d’un 

réseau d’acteurs impliqués dans divers projets de conservation de la biodiversité sur la 

péninsule d’Eyre, en Australie-Méridionale. J’ai conduit les travaux de terrain entre 2011 

et 2012 par une série d’entrevues et de questionnaires en ligne. Le second est une analyse 

de la structure de ce réseau utilisant le formalisme de la théorie des réseaux. Le troisième, 

partiellement fondé sur les mesures décrites dans le chapitre précédent, propose une 

méthode permettant de projeter le réseau empirique dans des états alternatifs où certains 

aspects de leur structure, liés à la résilience de leur SSÉ, sont optimisés. Ce chapitre pro-

pose également deux nouvelles mesures permettant de quantifier le degré global de mar-

ginalisation des groupes composant le réseau, ainsi que le niveau auquel chaque acteur 

contribue à établir des liens entre d’autres acteurs appartenant à des groupes différents. 

Contributions personnelles  

Ce chapitre est en préparation pour soumission, sous forme d’article, à Ecology and So-

ciety. La recherche dont il rend compte a été réalisée en collaboration avec Lael Parrott et 

Wayne Meyer. J’ai effectué la recherche et rédigé le manuscrit dans sa majorité. Lael Par-

rott et Wayne Meyer ont agi à titre de superviseurs en m’apportant idées et recommanda-

tions tout au long du travail de terrain et de recherche. Lael Parrott a également amélioré 

le manuscrit par ses nombreux ajouts, conseils et corrections.  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3. RURAL LANDSCAPES, STAKEHOLDER NETWORKS AND 
BIODIVERSITY CONSERVATION: A STRUCTURAL ANALYSIS 
ON THE EYRE PENINSULA IN SOUTHERN AUSTRALIA 

R. Gonzalès, L. Parrott and W. Meyer 

3.1. ABSTRACT 

Studying the ways in which natural resource management (NRM) stakeholders interact 

with each other is essential to fully understand NRM outcomes. Network theory, by provid-

ing a framework to quantify patterns of interactions has become a popular tool to analyse 

the topologies of collaborating stakeholders. This article uses the framework provided by 

network theory to analyse a stakeholder network in rural Southern Australia, where hu-

man-driven transformations of the region’s landscapes, as well as climate changes, are 

eroding biodiversity. This article is divided in three parts. First, we explain how we recon-

structed the network of interactions between stakeholders in the study area. Then, we de-

scribe the patterns through which stakeholders organize and collaborate to improve biodi-

versity in their region. Finally. we use an optimisation algorithm to project alternate states 

in which new collaborations could improve topological features related to resilience-build-

ing in SES. For the purpose of our analysis and optimizations, we also propose two new 

network metrics which can be used in other analyses: one designed to measure the level to 

which groups are marginalized at the network level, and the other to measures the capaci-

ty of an individual to serve as a bridge, or broker, between otherwise separated stakehold-

ers. While our results are focused on a specific case study, the methods and approach de-

scribed in this article are easily generalizable to many similar natural resource manage-

ment systems. 

3.2. INTRODUCTION 

Natural resource management, and most particularly in co-management settings, in-

volves a variety of stakeholders from different horizons (Bouwen and Taillieu 2004, Reed, 
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Graves et al. 2009). As in any human system, these interacting stakeholders form a com-

plex adaptive system (CAS) (Buckley 2008). CAS are composed of heterogeneous ele-

ments in interaction, from which higher scale patterns emerge (Sawyer 2005, Parrott, 

Chion et al. 2012) which, in turn, influence the way individuals interact through feedback 

loops. Local interactions are therefore central to understanding emergent human dynam-

ics, as well as their outcomes in terms of how the human system interacts with the natural 

resource and the environment upon which both depend. 

In many cases, lower hierarchical levels in CAS can appropriately be formalized as 

graphs, or networks (Wasserman and Faust 1994), in which individual elements are mod-

elled as vertices (or nodes, as we will call them thereafter), and where interactions be-

tween pairs of nodes are represented by edges. Patterns of connections (or lack thereof) in 

networks can be identified and measured with the wealth of metrics developed in network 

theory (Scott and Carrington 2011). Not only can these measures shed light on a system’s 

fundamental structural properties, but they can also help elaborate relationships between 

network topologies and network functions (Newman 2003). As collaborations and infor-

mation-sharing between stakeholders are central to the success of natural resource co-

management (Armitage, Plummer et al. 2008), network theory offers an opportunity to 

look at these interactions from a quantitative, structural point of view. As a framework, it 

has become a valuable tool in assessing the qualities of NRM co-management (Bodin, 

Crona et al. 2006, Bodin and Crona 2009, Ernstson, Barthel et al. 2010). Furthermore, it is 

widely argued (see Chapters 2 and 4 for a review) that the topology of these networks 

(that is, the patterns with which nodes connect with each other) are related to resilience-

building in social-ecological systems (SES). 

In this manuscript, we analyse the structural properties of a stakeholder network dedi-

cated to conserving and improving biodiversity in a rural region of Southern Australia. It is 

divided into three parts. In the first part, we describe how the stakeholder network was 

reconstructed from field and online surveys. Secondly, we employ network theoretic tools 

to describe the patterns through which stakeholders organize and collaborate, focusing 

more particularly on the capacity of stakeholders, and of the groups they belong to, to 
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serve as bridges in the network. Thirdly, we project, using an optimization algorithm, new 

collaboration opportunities that improve topological features related to resilience-building 

in SES. In the process, we develop two novel network metrics. The first measures a group’s 

level of marginalization in a stakeholder network, while the second measures the capacity 

of an individual to serve as a bridge, or broker between otherwise distant stakeholders. 

3.2.1. CASE STUDY EYRE PENINSULA 

The case study is set on the Eyre Peninsula (EP) (Figure 3.1), a region in South Aus-

tralia located 250 km, as the crow flies, west of the State Capital city of Adelaide. The 

large triangle-shaped peninsula is bordered to the south, east, and west by the Southern 

Ocean. The climate of the EP varies greatly, according to a south–north gradient, from a 

Mediterranean-type climate in the southern tip to a semi-arid climate in the north (where 

rainfall is highly variable at around 250 mm/year). The economy of the region is primarily 

based on agriculture, mainly grain and grazing, and the landscape is therefore largely rur-

al. Apart from fields and pasture, around 12% of the peninsula was still covered with na-

tive vegetation in 2001. This percentage was divided between 729,000 ha on public land 

and 230,000 ha on privately owned land (Matthews, Oppermann et al. 2001). 

As in many agricultural systems across the world, the environment of the peninsula is 

subject to anthropogenic pressures. The EP counts several threatened, endangered, or vul-

nerable native plant and animal species (Matthews, Oppermann et al. 2001). These 

species are affected by a variety of factors (ibid), including the fragmentation of their habi-

tats, which is related to land-cover change on privately owned land (clearance of native 

vegetation for agriculture, as well as over grazing, plays a large part in these perturba-

tions) (Figure 3.2). This issue is even more sensitive in a context of climate change on the 

EP (Thomas, Cameron et al. 2004, Heller and Zavaleta 2009, Shoo, O’Mara et al. 2014) 

for which models project decreased and more variable rainfall (Hughes 2003), which will 

put further pressure on already stressed ecosystems. 

In order to preserve the natural environment and the ecological services it produces, a 

Natural Resources Management Act was passed in 2004 by the South Australian govern-
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ment. This piece of legislation, which included a wide set of social-ecological targets and 

goals for the following 20 years, served as a base, and led the way to the creation of re-

gional natural resources management (NRM) boards across South Australia, as well as 

plans to address environmental management and conservation in a fashion that would in-

tegrate human and environmental factors. Among the priorities identified by the NRM 

boards, biodiversity is a strong focus of concern on the EP.  

Conserving and augmenting biodiversity in the region may provide increased ecological 

resilience in the landscape and increase the capacity of ecological systems on the peninsu-

la to adapt to environmental changes. Biodiversity on the EP partly depends on the protec-

tion and improvement of the many and scattered native vegetation patches on privately 

owned land (Meyer 2013) (Figure 3.2). However, farmers and other landowners on the EP 

have somewhat contrasting views of the importance of biodiversity (Ward and MacDonald 

2009), which means that biodiversity conservation on the EP is not without challenges. 

Natural resource managers, working in collaboration with a broad range of different ac-

tors and stakeholders, must therefore develop innovative programs that take into account 

both environmental and socioeconomic constraints (Parrott and Meyer 2012). 
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Figure 3.1 — Map of the Eyre Peninsula in relation to Australia (credit: Marc Girard). 
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As part of the regional NRM plan to restore native species habitats, a variety of conser-

vation efforts have been put into place on the EP. These initiatives, designed and promoted 

by natural resource management entities, NGO and grassroots initiatives alike, are diverse 

in nature. They include workshops aimed at promoting better land management planning 

among farmers, direct seeding of native vegetation, fencing remnant vegetation bushes to 

protect against over grazing, and problem animal poisoning campaigns. A large number of 

individuals, acting under a variety of formal institutions or community initiatives, have 

taken part in these initiatives. They have been sharing their time, energy and knowledge 

to work toward a set of common biodiversity-related goals. Over the years, from these 

many interactions, a dense and complex stakeholder network has been shaped.  

The objective of our study was to describe and explore how the structure of this stake-

holder network contributes to the sharing and co-production of knowledge about biodiver-

sity conservation initiatives on the EP. We hypothesized that a well-connected and appro-

priately structured stakeholder network may enhance the social-ecological resilience of the 

natural resource and conservation management system on the EP. We thus assessed the 

degree to which the topology of the EP stakeholder network exhibited properties known to 

enhance resilience in social-ecological systems, and sought to make recommendations on 

how the structure of the EP network could be modified through the addition of new col-

laborations to increase overall system resilience. 
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Figure 3.2 — Satellite imagery from Cleve district Council on the Eyre Peninsula. While the 
distribution of remnant vegetation on the Peninsula varies greatly along a South-North gra-
dient, this image illustrates the sparse distribution of remnant vegetation used as habitat by 
many species in agricultural areas (credit: Spot Image 2015). 

3.3. METHODS 

3.3.1. CONSTRUCTION OF THE STAKEHOLDER NETWORK 

In order to analyse the patterns of connection between stakeholders, we constructed a 

network of EP-centered, biodiversity-related collaborations. This was achieved in 2012 in 

two main steps: first by identifying the system’s key stakeholders through a stakeholder 

analysis, then by documenting how each of these individuals interact with each other us-

ing a survey approach. We describe these two steps separately in the following sections .  2

 Each of these steps were conducted according to University of Montreal's ethics committee approval 2

number CERFAS- 2011-12-146-A
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3.3.1.1. Stakeholder Analysis: Setting the Units, Types of Relations and Network 

Boundaries 

Network analysis usually starts with the sensitive step of clearly defining the relevant 

units and types of connections that will be taken into account (Prell, Hubacek et al. 2009, 

Reed, Graves et al. 2009). In our case, we decided to focus on any stakeholders (i.e. any-

one having an interest in biodiversity conservation on the EP and actively acting on this 

interest), as individuals working within groups of governmental or non-governmental or-

ganizations, that either: 

• Promote conservation programs (e.g.. governmental agencies, some non-governmental 
organizations), or 

• Implement conservation programs (e.g. farmers, local associations, NGOs). 

This list of stakeholders was produced by conducting a stakeholder analysis (Grimble 

and Wellard 1997, Prell, Hubacek et al. 2009, Reed, Graves et al. 2009, Lienert, Schnetzer 

et al. 2013). It involved contacting a list of six key individuals from the EP, and building 

with them a list of potential stakeholders. The six interviewees were asked to rate each of 

the stakeholders in the list along three axes (Annex 1): 1. their level of interest in biodi-

versity conservation (from “Very high: biodiversity-related issues are a matter of livelihood 

to this stakeholder” to “Very low: this stakeholder has only a remote or unclear interest in 

this matter), 2. their strength of influence in comparison to other stakeholders when it 

comes to decision-making related to biodiversity conservation on the EP (from “Among the 

most influential” to “Among the least influential”), and, 3. the number of times a specific 

stakeholder was mentioned by our interviewees. In order to avoid circumscribing our de-

scription of the system to particular geographic or expertise areas, the key individuals se-

lected to participate in the analysis worked in different places around the EP, and  repre-

sented expertise in specific domains related to the subject. These individuals were: 

• Eyre Peninsula Natural Resources Management’s (EP NRM) general manager in EP’s 

main city Port Lincoln; 

• A project manager at EP NRM in Elliston (about 170 km North of Port Lincoln); 
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• An employee of Rural Solutions SA in Adelaide, South Australia’s Capital city; 

• A program manager for aboriginal programs at EP NRM in Port Lincoln; 

• A grain farmer outside of Port Penny (about 70 km North of Elliston on the EP); 

• An EP NRM board member in Streaky Bay, on the Northwest coast of the EP. 

The analysis identifies 24 groups and organizations, which are aggregated in Table 1 

and visualized in Figure 3.3. This figure displays groups of stakeholders along the two 

axes (interest vs. influence), hence defining the institutional boundaries of the network. 

The size of characters, representing the number of times the group was mentioned by an 

interviewee, is of the upmost importance in this figure: while SARDI and EP NRM both 

appear less influential than LEADA according to the axes, the latter was only mentioned 

once, and its influence might have been involuntary exaggerated. However, despite the 

qualitative nature of the ratings, both Table 1 and Figure 3.3 constitute a sound base upon 

which to start documenting the relationships between stakeholders. 
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Figure 3.3 — Stakeholder groups’ influence and interest on subjects related to biodiversity 
conservation on the EP. Colours represent the broad category the stakeholder group was given. 
The size of the text gives an indication of the number of times it was mentioned by intervie-
wees. 

Table 3.1 — List of groups working in biodiversity conservation on the Eyre Peninsula, SA, and 
their corresponding categories and functions regarding biodiversity conservation. 

Group name Acronym Category Function

Aboriginal community members & 
focus group 

Local initiatives Promote & 
implement

Ag Excellence Alliance Industry Implement

Ag. Bureau Industry Implement

Australian Wildlife Conservancy Environmental NGO Promote

Commonwealth Scientific and 
Industrial Research Organisation

CSIRO Australian 
government agency 
or program

Research

Conservation Council SA Environmental NGO Promote

Department for Environment and 
Natural Resources

DENR State governmental 
agency or program

Coordinate

Eyre Peninsula Natural Resource 
Management

EP NRM State governmental 
agency or program

Promote, implement 
& coordinate

Friends of Parks Environmental NGO Promote

Future Farming Industries CRC Industry Implement

Greening Australia Environmental NGO Promote & 
implement

Landcare • State governmen-
tal agency or pro-
gram 

• Local initiatives

Promote & 
implement

Local governments Local initiatives Promote & 
implement

Lower Eyre Agriculture 
Development Association

LEADA • Local initiatives 
• Industry

Promote

Lower Eyre Pest Management Group 
Member

Industry Implement
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3.3.1.2. Quantifying Stakeholder Interactions: Network Survey 

To build the stakeholder network, we developed and conducted a structured survey 

based on Table 3.1. The survey (Annex 2) was divided into two main parts. The first part 

focused on nodes (the surveyees), from whom we asked factual information, including the 

full list of groups and organizations to which the surveyee belonged, as well as the types 

of projects in which they were involved and the geographical locations of these projects. 

The second part focused on listing edges connecting this particular node to others. It is 

itself divided by groups, and consisted of the following name-generator question: 

 “On the issue of biodiversity conservation on the Eyre Peninsula, who do you share 
information or otherwise collaborate with?” 

For each of the identified individuals, surveyees were asked to choose the kinds of in-

teractions (or edges) that tied them to the new node, as well as the direction of the edges. 

Nature Conservation Society of 
South Australia

Environmental NGO Promote

Other Australian Government 
agencies

Governmental 
agency or program

Promote & 
implement

Private Consultant Industry Promote

Progress Associations Local initiatives Promote & 
implement

Rural Solutions SA (Primary 
Industry & Regions South Australia)

PIRSA • Governmental 
agency or program 

• Industry

Promote & 
implement

SA Farmer Federation Industry Implement

South Australia Research & 
Development Institute (Primary 
Industry & Regions South Australia)

SARDI • Governmental 
agency or program 

• Industry

Promote & 
implement

The Wilderness Society Environmental NGO Promote

University of Adelaide Academia Promote

University of South Australia Academia Promote

Group name Acronym Category Function
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The choices were a) “I provide information to this person”, b) “I gain information from 

this person”, c) “We collaborate on program promotion”, and/or d) “We collaborate on on-

the-ground implementation”. Additionally, the weight of the edge was inferred by asking 

the frequency of any given interactions. The choices were a) “Daily”, b) “Weekly”, c) 

“Fortnightly”, d) “Monthly”, e) “Yearly”. A final question documented in which of the 11 

district councils the interactions were happening (see Table 2 for survey questions and 

drop-down options). 

The survey was first filled out in person with 16 stakeholders in order to identify and 

fix clarity issues. We then sent the survey by email as an online questionnaire (https://

www.surveymonkey.com/r/?sm=nEyXq0r65A4Dx6b%2fO4WNF5XJU2jwumP4MxyS

%2fIz6gaE%3d) to all identified stakeholders, with an introductory video that explained 

the objectives of the research, as well as providing a clear tutorial on how to fill out the 

survey (https://www.youtube.com/watch?v=eVorfxqDq2k). We obtained a response rate 

of 48% after filtering (see next section). Interestingly, while surveyees had the choice to 

specify if interactions were directed or undirected, only 5% of interactions were reported 

as directed. 

Setting weights for edges in the network was a matter of converting a frequency of in-

teractions into a number which we could work with for our analysis. We chose to weight 

each edge as a fraction of daily interactions (Equation 3.1 and Table 3.3). 

Table 3.2 — Survey questions and drop-down options. 

Survey questions Drop-down options

Stakeholder Stakeholder’s name and group 

Information and knowledge sharing on biodiversity-related 
issues 

• I provide information/knowledge 
• I gain information/knowledge 
• All of the above

Collaboration on biodiversity-related programs • We collaborate on program pro-
motion 

• We collaborate on on-ground 
implementation 

• All of the above
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Table 3.3 — Conversion table between raw survey data related to frequency of interactions, 
and edge weights in the network. 

 

Equation 3.1 — Conversion between frequency (f) of interactions in days and edge weight 
(w). 

On average over the last 3 years, how often do you collabo-
rate with this person? 

• Daily 
• Weekly 
• Fortnightly 
• Monthly 
• Every 4 to 6 months 
• Every 7 to 9 months 
• Once a year or more

Which District Council are the projects situated in? • None in particular 
• Ceduna 
• Cleve 
• Others (11 councils in all) 

Survey questions Drop-down options

Frequencies of interactions Nbr. days Weights

Daily 1 1

Weekly 7 0.14

Fortnightly 14 0.07

Monthly 30 0.03

Every 4 to 6 months 152 0.006

Every 7 to 9 months 244 0.004

Once a year or more 365 0.003

w =
1

f
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3.3.1.1. Filtering the Network 

While more than 230 stakeholders were initially identified through the survey, some of 

the collected information was found to be inconsistent between surveyees. To cope with 

this problem, we set up an index of “fuzziness”, or “relationship uncertainty”. Setting the 

index at zero for each relationship, we checked for discrepancies in the raw data, and in-

cremented the index according to a set of rules: discrepancy on the fact that a relationship 

was directed vs. undirected incremented the index by one; for directed edges, a discrepan-

cy on the direction of the interaction added another increment to the index; a relationship 

between two stakeholders mentioned by one surveyee while unmentioned by the other 

added yet another increment. Additionally, a relationship we weren’t able to confirm by 

one of the pair added two to the index. At the end of this assessment, edges scoring 3 or 

higher were removed. Lone nodes which were mentioned by only one surveyee and whom 

we were unable to reach for confirmation were also removed. 129 names were kept, as 

well as 1180 weighted and directional edges of any type. 

The resulting network, represented using a force-directed layout (Kobourov 2012) 

(Figure 3.4 with its corresponding legend in Table 4), shows weighted collaborations (in-

formation and knowledge exchange) between all 129 stakeholders retained for further 

analysis. While a quantitative analysis will give a more accurate assessment of the struc-

ture, a few elements may already be noted from the visualisation shown in Figure 3.4. 

First, the density of the network is rather high (a large number of all possible connections 

between nodes seems to be realized), indicating potential low average path length (Gu-

lyás, Horváth et al. 2011). Secondly, we observe that stronger ties seem to occur within 

nodes belonging to similar groups (nodes of the same colour, see Figure 3.4 - details). This 

could indicate that the network is somewhat modular, and that the formation of communi-

ties could be correlated to group membership. Looking at centrality at the node scale, we 

notice a few nodes showing large betweenness centrality, which measures “the frequency 

with which a point falls between pairs of other points on the shortest or geodesic paths 

connecting them” (Freeman 1979). This indicates that a limited number of nodes are very 

central to the network’s topology and contribute to a large extent to the connectivity of the 
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whole network. This is an important structural feature since if these nodes were to disap-

pear, the network’s connectivity would most likely be greatly diminished. A few nodes (the 

ones represented with the largest circles) hold particularly important positions in the net-

work, for at least two reasons: 1) they are topologically very central nodes (Freeman 

1979), meaning that they greatly contribute to the overall connectivity of the network. 

Removing these nodes from the network would contribute more to reducing the connectiv-

ity than removing any other node in this network (Iyer, Killingback et al. 2013), and 2) 

although the density of connections makes visualizing the network structure difficult, 

these more topologically central nodes seem to be connecting several groups (EP NRM, 

SARDI, academics, members of farming industry), hence serving as bridges between 

groups in the network. These observations provide points of departure for further investi-

gation of the network structure. 
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!  
Figure 3.4 — EP stakeholder network. Each node is a stakeholder and edges represent undi-
rected interactions between stakeholders. Node sizes are relative to their betweenness centrali-
ty, and colours represent the stakeholder group to which the node belongs. Edges are weighted 
according to interaction frequencies, indicated by line thickness. See Table 3.4 for colour co-
ding.  
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Figure 3.4 (details) — Details of the EP stakeholder network focusing on a selection of group 
clusters. Top: Cluster of individuals from SARDI (orange) showing strong links among them-
selves and with an EP NRM individual (grey). Middle: Very strong and dense interactions 
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among EP NRM individuals (grey), making this group particularly densely connected. Bottom: 
A state government agency (red) and a federal government agency (blue) interacting among 
themselves and with an EP NRM individual (grey). 

Table 3.4 — Colour coding for Figure 3.4 

3.3.2. NETWORK ANALYSIS 

A number of structural analyses were performed on the stakeholder network to identify 

how network typology contributes to facilitating or impeding communication and informa-

tion exchange about biodiversity conservation initiatives on the EP.  

Geography vs. Topology 

While modern technologies provide opportunities to communicate in a way that should 

transcend geographic distances, a number of studies show that distance still very much 

matters in explaining human interactions (Goldenberg and Levy 2009, Onnela, Arbesman 

et al. 2011, Illenberger, Nagel et al. 2013). We used the stakeholder network to explore 

how physical distance relates to the frequency of interactions. For this, each stakeholder 

was given a set of geographic coordinates corresponding to his or her primary workplace. 

We then calculated the orthodromic (as the crow flies) length of each edge in the network, 

and looked at the distribution of weighted frequencies of edge lengths. In order to test if 

Stakeholder categories Colour shades

Farming-related groups Orange

environmental groups Green

local government (and initiatives) Purple

federal government agencies Blue

Academics Yellow

State government agencies Red

EP NRM Grey
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geographically-driven communities emerge from the collaborations, we also reconstructed 

the network by gathering nodes working from the same place into a single node. Next, we 

tested for a relationship between geographical and topological centralities in the network. 

For this, we looked for a correlation between nodes’ geographic distance from Port Lincoln 

(EP’s administrative regional centre) and their topological (betweenness) centrality in the 

network. 

Assessment of Groups’ Topological Centrality and Reaching Capacity 

Stakeholders may have different roles within the network (Ostrom 2007). While some 

groups focus on implementing projects on site, others, often government agencies, coordi-

nate programs. The latter can often serve as bridges between communities. They are 

boundary spanners, as they can reach far across the network topology to spread informa-

tion and help connect potentially marginalized groups. However, bridges can also be in de 

facto privileged positions of control. In some circumstances, this can lead to negative out-

comes in adaptive NRM co-management (Crona and Bodin 2010). We used two different 

metrics to assess nodes’ bridging capacity: 

• Betweenness centrality, which measures (at the node level) the topological cen-

trality (as the frequency of a given node to fall on shortest paths between pairs of 

other nodes) (Equation 3.2); 

• Group betweenness (GB) centrality, which measures the capacity of a node to 

connect different groups (more precisely, it is the frequency that a given node falls on 

shortest paths between pairs of other nodes belonging to different groups, see Equa-

tion 3.3). We propose GB as a measure of the relative capacity of a network’s nodes 

to connect stakeholders with potentially different values, opinions and knowledge. A 

node’s GB should only depart from its betweenness if its bridging capacity is mainly 

effective among nodes belonging to the same groups. It is to be seen as a comple-

ment to betweenness centrality. 
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Equation 3.2 — Betweenness centrality as defined in (Freeman 1979). V is the ensemble of 
nodes in the network, v is the node for which we measure the centrality, s and t are two nodes 

from the network,   is the number of shortest paths on which v can be found, while   is 
the total number of shortest paths between s and t.  

  

Equation 3.3 — Group betweenness as a modified betweenness centrality. V is the ensemble of 
nodes in the network, v is the node for which we measure the group betweenness, s and t are 

two nodes from the network, Gs and Gt are the groups to which s and t belong,  is the 
number of shortest paths on which v can be found, while   is the total number of shortest 
paths between s and t. 

3.3.3. IMPROVING RESILIENCE-BUILDING WITH NETWORK OPTIMIZATIONS 

Edge rewiring (the action of removing an edge and adding a new one) is commonly 

used to manipulate random networks in order to improve their topology according to a 

criterion of interest (Watts and Strogatz 1998, Beygelzimer, Grinstein et al. 2005, Rad, 

Jalili et al. 2008, Zeng and Liu 2012, Sydney, Scoglio et al. 2013). In this section, we will 

explore how a sequence of rewiring can improve the topology of our empirical network. 

The improvements will be done according to several metrics known to improve, when 

measured on stakeholder networks, resilience-building in SES. 

Metrics 

Among the many network metrics, a number have been identified as favourable to re-

silience in SES (Bodin and Crona 2009). In this section, we measure the EP stakeholder 

network’s average path length (APL) (Scott and Carrington 2011), its synchronizability 
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(Kelly and Gottwald 2011), and its modularity (Newman and Girvan 2004). The value of 

using these metrics in the context of resilience in SES is described in Chapter 4, and sum-

marized in Table 3.5. 

To these three metrics, we propose a fourth, which we call the “group marginalization 

index” (GMI). While a network can be highly modular and synchronizable, as well as hav-

ing a short average path length, it can also display a highly asymmetrical structure in 

terms of group involvement. This can lead to marginalization of stakeholder groups, and 

make for a system prone to unfair, or unbalanced, co-management (Tompkins and Adger 

2004). GMI is the spread of node degrees calculated for each of the network’s groups 

(Figure 3.5), and is meant to quantify the level of asymmetry of interactions at the group-

level. This involves a two step process. The first step consists in creating a new, aggregated 

network merging all nodes belonging to the same group into a single node. This new net-

work has a number of nodes equal to the total number of groups in the stakeholder net-

work. The edges of this new, “stakeholder groups” network are weighted as the sum of all 

edges’ weights existing between individuals of different groups. The second step is to 

compute the spread of the weighted degree distribution in the aggregated network. This 

spread is calculated as the inter-quartile range of weighted degrees divided by the median 

(a non-parametric analog to the coefficient of variance) (Equation 3.4). 

We will use these metrics to successively optimize our EP network. 

  

Equation 3.4 — Calculation of the Group Marginalization Index (GMI) as a group-level degree 
spread. GMI is the ratio of inter-quartile range (Q3-Q1) and median ( ) of all weighted de-
grees measured on the network at group level (Figure 3.5). 

GMI =
Q3 �Q1

d̃

d̃
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Figure 3.5 — Schematic representation of a level of node aggregation. The individual level re-
presents the 129 nodes of the empirically constructed stakeholder network. The group level is 
an aggregated version of the same network, where all individuals belonging to the same group 
(as listed in Table 3.3) are contracted into one node. In this aggregated network, edges exist if 
at least one edge exists between two nodes of different groups at the individual level. Their 
weights (represented as width in this figure) is the sum of all edges’ weights between nodes at 
the individual level. 

Table 3.5: Network metrics favouring resilience building in SES 

Metric Description How it connects to resilience-building

Robustness Counts the number of nodes that 
need to be removed (according 
to a removal strategy) before the 
network splits in two 
unconnected subnetworks. The 
removal strategies are: randomly, 
by descending order of degrees.

Test the capacity of the network to 
withstand stakeholder disinvolvement.
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Simulated Annealing 

The chain of successive edge rewiring (edge removal, addition, and edge weight alter-

ation, as shown in Equation 3.5) best improving the set of metrics relevant to resilience 

building (Table 3.5) in the EP is found with a simulated annealing optimization algorithm 

(Kirkpatrick 1984). 

  

Equation 3.5 — Chain of graph edits (p) providing a path between the original and optimized 
version of the EP network. The optimized graph-edit chain is encoded as a series of 100 steps 
(i.e., d is one step), each containing three actions: a) remove an edge between two nodes, b) 
add an edge between two other nodes, and give it a weight (c). 

Average path 
length (APL)

The average number of nodes 
separating every pair of nodes in 
the network.

Low APL helps achieve quick and effi-
cient transmission of information and 
ideas through the network, and pro-
motes social capital, trust, and better 
cooperation.

Synchronizability The speed to which the 
network’s nodes (modelled as 
originally asynchronous 
oscillators whose phases are 
influenced by neighbouring 
nodes) converge to a common 
phase.

Relates to the capacity of a social net-
work to reach consensus despite origi-
nally diverging values.

Modularity Quantifies the level to which 
members of a group are relative-
ly more strongly connected wi-
thin their groups than with 
members of other groups.

High modularity ensures that groups of 
special interests and specialized know-
ledge can efficiently develop solutions 
close to their own stakes and values. 
High modularity helps promote the 
emergence of novel ideas, which is parti-
cularly important to cope with social or 
environmental uncertainty.

Group 
marginalization 
index (GMI)

The group-level degree spread. Measures the marginalization of 
stakeholders groups within the network.

Metric Description How it connects to resilience-building
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Simulated annealing (SA) is a type of algorithm designed to explore large solution spa-

ces in order to find the lowest scoring candidate (SA traditionally tries to lower a candi-

date solution’s score). Practically, our SA (described in Figure 3.6) is initialized with a 

randomly generated rewiring chain (described in Equation 3.5). The EP stakeholder net-

work is rewired according to the chain, and an initial score (Equation 3.6) is computed. 

The score is a composite of resilience-enhancing network metrics described in Table 3. 

From this initial state, the simulation enters an iterative process of 6000 small chain re-

arrangements (one chain link —noted “d” in eq. 3.5— is removed, and replaced by a new, 

randomly generated one) and a new score is calculated. If the new score is better (lower) 

than the previous step’s score, it is accepted as the new best solution. If, on the other 

hand, it scores higher (worse), it is either accepted or rejected according to a probability 

which decreases exponentially as the SA’s iterations progress. At the end of the 600,000 

iterations, a chain of edits best improving the EP stakeholder network (within the number 

of iterations set) is found. 

We replicated the simulations five times for improved modularity, APL, synchronizabili-

ty, and GMI (we successively set Equation 3.6’s weights to 0 or 1 in order to optimize par-

ticular metrics). The average of the five runs was calculated and used for subsequent 

analyses. 

 53



 

Figure 3.6 — Simulated annealing flowchart. 
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Equation 3.6 — Score composite (s) used in the simulated annealing. Each new solution is 
evaluated as a weighted (w1 to w6) average of normalized metrics, namely modularity (m), 
average path length (d), normalized over the longest path in the network (dM), robustness to 
highest degree-targeted node removal (r), normalized over the total number of nodes in the 
network (N), synchronizability (λ2), Group Marginalization Index (gmi). 

3.4. RESULTS AND DISCUSSION 

3.4.1. EP Stakeholder Network Analysis 

Is there a Typical Distance Between Interacting Stakeholders? 

We used each stakeholder’s main work address to plot a weighted histogram of geo-

graphic distances separating stakeholders (edge orthodromic length in kilometres) in the 

network (Figure 3.7). A clear tendency for very local interactions emerges from the net-

work as 53% of all weighted interactions take place between stakeholders working in the 

same locality (or within 10 km of each other). Another peak emerges at around 250 km, 

which incidentally is the average distance between stakeholder’s locations on the EP (with 

a standard deviation of 90 km). It is interesting to note that at a time of inexpensive and 

fast long distance communications, very short physical distances remains a strong structur-

ing driver for stakeholder interactions in our case study. 

Figure 3.9 gives a different perspective of how geography may drive collaborations be-

yond immediately local interactions. The figure represents an agglomerated version of the 

EP network where individual nodes are contracted as per their cities or towns of resi-

dence. Node colours indicate community membership calculated with a community detec-

tion algorithm (Blondel, Guillaume et al. 2008), where nodes belong to the same commu-

nities if they are more connected among each other than they are with nodes belonging to 

s =
w1 ⇥m+ w2 ⇥

�d

dM
+ w3 ⇥

r

N
+ w4 ⇥ �2 + w5 ⇥ gmi

w1 + w2 + w3 + w4 + w5 + w6
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other communities. Three communities were found by the algorithm (albeit with the rela-

tively small modularity score of 0.13, see the Modularity section in Chapter 4 for more in-

formation about this algorithm): the first one, represented in orange, gathers nodes that 

are, all but one (Brisbane), situated on the upper West coast of the peninsula, which can 

be explained by the existence of important conservation projects (such as Chain of Bays: 

http://www.chainofbays.com.au). The second community, in blue, covers most of the cen-

tral and eastern part of the EP. While this group is somewhat spatially linked to the East 

coast of the Peninsula, it also includes towns from the center of the EP, as well as Adelaide. 

It is therefor difficult to draw any firm conclusions about this group. The last one, in 

green, draws a line from the Western, northern part to the center of the EP. These three 

groups of towns and cities indicate that while most of the collaborations (green communi-

ty) aren’t conclusively geography-driven, at least some others (the orange community in 

particular) most likely are. 
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Figure 3.7 — Weighted distribution of edges vs. orthodromic edges length (as the crow flies) 
for the EP stakeholder network. This distribution, weighted according to edge weights, shows 
that a large majority of interactions between stakeholders happen when individuals are geo-
graphically very close to each other. 

Is Port Lincoln a Topological Centre as well as an Administrative One? 

Port Lincoln is EP’s main city. It is the place, on the peninsula, where the main State 

government offices are. This central situation should therefore be seen in our data. In Fig-

ure 3.9, node sizes demonstrate the diversity of topological betweenness centralities 

among cities. It shows that while Port Lincoln is in fact the network’s most central city, it is 

closely followed by two others: Adelaide and, to a slightly lesser extent, Streaky Bay. This 

pattern is also noticeable in Figures 3.8.a and 3.8.b, where these three cities form a strong 

axis across the EP. This can be explained by the fact that two of these cities are strong ad-

ministrative hubs, while the third, Streaky Bay, hosts a variety of stakeholders (from DENR 

and EP NRM, as well as from environmental NGOs). This diversity of stakeholders most 

likely increases the chances of more intense interactions far across the network. 

Returning to node-level centrality, Figure 3.10 scatters the nodes of the stakeholder 

network along two axes: the orthodromic distance (as the crow flies) from Port Lincoln, 

and the nodes’ betweenness centrality. The figure shows that the proximity of stakeholders 

to Port Lincoln constitutes a strong geographical driver of the structure of the network: 1) 

while 27% of all stakeholders work from Port Lincoln, 43% of the weighted interactions 

happen in this city, 2) all topologically very central outliers work in Port Lincoln, and 3) 

the betweenness centrality slowly decreases as the distance from Port Lincoln increases. 

This goes to show that the city of Port Lincoln, while geographically off-centred, effectively 

acts as a strong knowledge-sharing hub on the peninsula. 
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Figure 3.8.a — Geographical visualization of the stakeholder network. Orthodromic lines re-
present interactions between stakeholders. The width of the line represents the cumulative 
strength of all connections from one place to another. 
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Figure 3.8.b — Ibid (detail). 
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Figure 3.9 — Representation of the EP stakeholder network where all nodes belonging to the 
same place are contracted into the same node (top). Edge size represents the summation of all 
edges connecting nodes belonging to each place. Node size represents the level of betweenness 
centrality in this newly created network. Node colours were attributed using a community de-
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tection algorithm. Spatial distribution of the communities (detected according to stakeholders 
interactions) (bottom). 

 

Figure 3.10 — Scatter plot of node’s betweenness centrality vs. orthodromic distance from Port 
Lincoln. This plot shows that all the highly central stakeholders (topologically speaking) work 
in Port Lincoln. 

3.4.2. COORDINATION IN THE NETWORK 

Topological Centrality and Reaching Capacity 

The betweenness centrality of nodes, that is, their capacity to reach far across the net-

work, and act as bridges between other stakeholders, is visualized at the group level in 

Figure 3.11 and summarized in Figures 3.12.a and 3.12.b. Figure 3.12.a shows that two 

groups account for a large share of the total betweenness centrality: South Australia Re-

search & Development Institute (SARDI), which is a State governmental agency (Primary 
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Industry & Regions South Australia) conducting agricultural research as well as running 

an experimental farm, and Eyre Peninsula Natural Resource Management (EP NRM). This 

in confirmed by Figure 3.12.b, which shows that State government agencies dominate be-

tweenness centralities in the network. 

SARDI is an interesting case as it is located in Minnipa (250 km by roads north of Port 

Lincoln, very close to EP’s northern marginal agricultural lands), far from the geographical 

centre described above. However, being as much a research centre as a farm, SARDI is 

topologically close to both farming and state agency circles, which places it at a central, 

bridging position in the network. We note also that, while our survey only accounted for 

quantitative relationships, the stakeholders we interviewed face to face on the EP were 

eloquent about SARDI, and unanimously seemed to hold this group in high esteem. This 

qualitative observation is supported by our quantitative assessment of influence based on 

betweenness centrality as well as on GB.  

EP NRM ranks first in median of GB and second in betweenness centrality. This group 

also hosts the network’s most central individuals (see outliers and upper inner whiskers in 

Figures 3.12.a and 3.13.a). EP NRM’s structurally very central position is in accordance 

with its institutional role of coordinating and implementing NRM programs and projects in 

the region (Spekkink and Boons 2015). On a structural point of view, EP NRM not only 

managed to reach far in the network (high betweenness centrality), but also to reach and 

connect stakeholders belonging to different groups (high GB). This fundamental quality to 

fulfill a role of coordination is well illustrated by Figure 3.11. The figure shows how 

groups connect with each other in the network, with node size corresponding to between-

ness centrality, and colours showing communities as detected by the same algorithm used 

for Figure 3.9. The figure clearly demonstrates EP NRM’s central position between two 

large groups composed mainly of environmental NGOs (in green) on one side, and of in-

dustry/academia/research groups (orange) on the other. The wide spread of betweenness 

scores among members of EP NRM can be explained by the fact that this group includes 

administrators, project managers, and board members, who have very different roles with-
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in the organization. Lastly, Figures 3.12.b and 3.13.b show that state government agencies 

rank the highest for their bridging capacity. This confirms this group’s function as a broker. 

Farming groups are very heterogeneous in terms of betweenness centrality, but some 

groups such as the “Agricultural Bureau” and “Consultants” perform fairly well in this re-

gard. In terms of GB, the farming industry ranks high. Once again, this is mainly due to 

consultants (private or from Rural Solutions SA), who succeed in connecting not only with 

the industry as their function suggests, but also with academic and environmental groups. 

 Academia and research have a relatively low centrality. It can be argued that universi-

ties’, and research centres such as CSIRO’s, way to communicate is mainly, while not ex-

clusively, done through academic articles and reports, which are useful to local projects 

and long-term programs, but difficult to account for in our network. 

The Department of Environment and Natural Resources (DENR), while ranking rather 

high in betweenness centrality (Figure 3.12.a), ranks much lower in GB, which suggests 

that most of its betweenness score accounted for connections among members of the same 

groups. Additionally, while some environmental groups like Greening Australia rank very 

high in both GB and betweenness centrality (hence taking an important coordination 

role), others like Friends of Parks rank lower in GB than in betweenness centrality. This is 

consistent with Friends of Parks’ focus on local projects. 
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Figure 3.11 — Representation of the stakeholder network where all nodes belonging to the 
same group are contracted into the same node. Edge size represents the summation of all 
edges connecting nodes belonging to each group. Node size represents the level of between-
ness centrality in this newly created network. Node colours were attributed using a community 
detection algorithm (Blondel, Guillaume et al. 2008), except for EP NRM which, while detec-
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ted as belonging to the orange community, was forced to blue for illustration purposes in order 
to highlight its bridging position. 

 
Figure 3.12.a — Betweenness centrality of stakeholder groups in the EP network. Groups are 
ordered on the abscissa by decreasing median betweenness centrality. The whiskers are set at 
1.5 interquartile. 
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Figure 3.12.b — Betweenness centrality of stakeholder categories in the EP network. 
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Figure 3.13.a — Group Betweenness (GB) of stakeholder groups in the EP network. Groups 
are ordered on the abscissa by decreasing median of group betweenness. The inner whiskers 
are set at 1.5 interquartile. 

 67



 

Figure 3.13.b — Group Betweenness (GB) of stakeholder categories in the EP network. 

3.4.3. OPTIMIZED REWIRING FOR IMPROVED RESILIENCE-BUILDING 

We altered our empirical EP’s stakeholder network according to an optimized sequence 

of 100 rewirings. Our optimization algorithm was set to improve, at the end of these 100 

alterations, four network metrics related to resilience-building in SES: modularity, average 

path length (APL), synchronizability and the group marginalization index (GMI). While 
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such an exercise is purely hypothetical, and would be difficult to impose on the real-world 

network, it can provide insight into the types of new collaborations that should be nur-

tured so as to promote system resilience and social adaptive capacity through increased 

coordination and information sharing between stakeholders. Such insight could be used by 

umbrella organizations such as the EP NRM board, for example, to prioritize programs 

that would contribute to building and strengthening such links. The 100 steps are summa-

rized, for each metric separately, in Figures 3.14.a/b to 3.17.a/b. Each “a” Figure only 

shows edges added during rewiring in order to help focus on the collaborations that 

should be promoted. “B” Figures show, at the category level, which inter-category interac-

tions should be promoted to improve the network (see Annex 3 for more detailed group-

level matrices). Negative scores indicate a negative balance between edge creation and 

deletion, while positive scores indicate a positive balance. 

Figure 3.14.a and b show that favouring intra-category collaborations (nodes of the 

same colour shade in “a”, and the matrix’s diagonal in “b”) is the most efficient way to im-

prove modularity in the network (purple in Figure 3.14.a). There are two exceptions how-

ever: the network’s modularity would gain from stronger collaborations between environ-

mental NGOs and local initiatives ( such as local governments, aboriginal communities, 

and progress associations), as well as collaborations between farming groups and acade-

mia. 

As opposed to modularity-optimization, APL and synchronizability aren’t improved by 

intensifying short, local interactions, but by the addition of farther-reaching edges con-

necting remote stakeholders across the network. This is in accordance with the literature 

on small-world networks (Watts and Strogatz 1998). However, while APL and synchroniz-

ability are correlated, their optimization requires sightly different modifications to our EP 

network: 

• Improving APL comes down to increasing collaborations between environmental NGOs 
and three other categories of stakeholders (farming groups, State government agen-
cies, and Australian government agencies); 

• Increasing synchronizability requires more collaborations between farmer groups and 
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local initiatives, environmental NGOs and state government agencies. For both APL 
and synchronizability, NGOs and the farming industry are important categories to fo-
cus on. 

Improving GMI in the network produces a similar chain of rewiring as improving syn-

chronizability. This means improving synchronizability also reduces group marginalization 

in the EP stakeholder network. Intuitively, the two measures may indeed be correlated in 

some types of topologies, but this need to be further investigated. 

Altogether, the four optimized chains of rewiring do not lead to strong, definitive rec-

ommendations, likely due to the complexity of the optimization problem (i.e., attempting 

to find solutions that reconcile trade-offs between four different metrics in a high dimen-

sional space). However, they do provide some directions on first steps to take in order to 

build better conditions for more effective and fairer co-management of biodiversity on the 

EP. For instance, all network figures show that very few EP NRM nodes (in grey) are newly 

connected, which can be explained by the predominance of this stakeholder in the original 

network, and by the necessity to focus on other stakeholders. Instead, the need for more 

collaborations involving two categories of stakeholders stand out: 

• Farming industry (farmer groups, consultants) and environmental NGOs for better 
APL/synchronizability/GMI, and 

• Intra-category cooperations for better modularity. 
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!  

Figure 3.14.a — Edges added to the EP stakeholder network during the modularity-optimized 
rewiring sequence. The width of edges corresponds to the strength of the relationship. See 
Table 3.3 for colour coding. 
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!  
Figure 3.14.b — Balance of edge additions and deletions between stakeholder categories in 
the EP network as optimized for best modularity with the simulated annealing (average of five 
runs). Each cell contains the balance of node creations and node deletions during rewiring. 
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!  

Figure 3.15.a — Edges added during the average path length-optimized rewiring sequence.  
The width of edges corresponds to the strength of the relationship. See Table 3.3 for colour 
coding. 
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!  

Figure 3.15.b — Balance of edge additions and deletions between stakeholder categories in 
the EP network as optimized for best average path length (average of five runs). 
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!  

Figure 3.16.a — Edges added during the synchronizability-optimized rewiring sequence. The 
width of edges corresponds to the strength of the relationship. See Table 3.3 for colour coding. 
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!  

Figure 3.16.b — Balance of edge additions and deletions between stakeholder categories in 
the EP network as optimized for best synchronizability (average of five runs). 
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Figure 3.17.a — Edges added during the optimization for best group marginalization index 
(GMI). The width of edges corresponds to the strength of the relationship. See Table 3.3 for 
colour coding. 

 77



!  

Figure 3.17.b — Balance of edge additions and deletions between stakeholder categories in 
the EP network as optimized for best group marginalization index (GMI) (average of five 
runs). 

3.5. LIMITATIONS 

Selecting the nodes to include is a very sensitive step of any network analysis. In our 

case, stakeholders’ dynamics are often shaped by either clear or underlying power dynam-

ics, and while some interests, often from recurrently marginalized populations, may be 

involuntary omitted, others may be overrepresented. The misrepresentation of just a few 

bridging nodes can lead to very different structures, and caution must therefore be used 
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when finding the network boundaries and sampling the interactions. In this study, we par-

tially addressed this issue by filtering the network according to an ad-hoc index of fuzzi-

ness which allowed us to discard nodes or edges we suspected could be inaccurate. How-

ever, we have no ways to account for nodes we may have missed during the survey. Addi-

tionally, this means that nodes that weren’t interviewed could still be included in the net-

work (their presence being inferred from interviews with several people mentioning their 

names). This raises some important limitations: firstly, people who weren’t interviewed 

but had been included in the network have their number of connections potentially under-

estimated; secondly, these individuals couldn’t participate in the snowball sampling, which 

could have artificially limited the boundary of the network; thirdly, their presence is less 

legitimate than the one that were interviewed. However, our knowledge of the system 

made us confident in the fact that these individuals were indeed stakeholders in the sys-

tem, and that not including them could biais the structure towards already strong players. 

This “fuzziness” in the data should be taken into consideration with regards to any conclu-

sions or recommendations drawn from the network analyses. 

In section 3.3.3, we are employing a set of measures which have been identified as fa-

vorable to improving resilience in SES. An important limitation of this part of the work is 

that while these metrics are strongly believed to improve resilience, very little empirical 

evidence has been published at this point. These metrics do however remain highly valu-

able as our best indication of the connection between stakeholder collaboration structures 

and positive outcomes in ecosystems. 

In section 3.8, we show matrices of graph edits (edge removals and edge creations be-

tween categories of stakeholders). While edge removals are indeed relevant to improving 

the network (more interactions does not necessarily mean better outcomes) (Borgatti and 

Foster 2003), practical and ethical considerations led us to decide that we cannot suggest 

that some collaborations should be deliberately refrained. We addressed this issue by not 

focusing on which interactions should be discarded, and by proposing instead that the bal-

ance of edge creations and removals should indicate a level of priority in promoting col-

laborations between the corresponding categories. 
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3.6. CONCLUSION 

In this article, we explored the structural properties of an empirical stakeholder net-

work related to biodiversity conservation on the Eyre Peninsula, in Southern Australia. We 

proceeded in three main parts. 

In the first part, we described how we reconstructed, through a stakeholder analysis 

and a series of face-to-face and online surveys, a stakeholder network of 129 individuals 

acting through 24 groups across 18 towns and cities. We also show how the network was 

filtered as to exclude some potential inaccurate data. In a second part, we focused on the 

topological qualities of the network. We showed the extent to which geography drives col-

laborations in the network, with larger cities like Port Lincoln and Adelaide acting as 

strong centres around which other interactions articulate themselves. We also identified 

how some groups of stakeholders act as bridges between other groups which focus on 

more local collaborations. In this part, we introduced group-betweenness centrality, a 

node-level metric specifically designed to measures the capacity of a stakeholder to act as 

a bridge between stakeholder belonging to different groups. In a third and last part, we 

explored how a sequence of edge rewiring optimized with a simulated annealing algo-

rithm could improve metrics related to resilience-building in the network. For this, we in-

troduced another novel metric which quantifies group marginalization at the network 

scale. We showed, for instance,  that increased collaborations between the grain and graz-

ing industry and environmental NGOs could help foster a more efficient and collaborative 

network. 

Among all of the stakeholder groups identified in the study, the state-run Eyre Peninsula 

Natural Resources Management (EP NRM) board was shown to be greatly influential in 

coordinating and communicating information about biodiversity conservation efforts on 

the Peninsula. Regional NRM boards were created by the state of South Australia as part 

of legislation passed in 2004 within the Natural Resources Management Act. This initiative 

resulted from an effort to remove silos between government agencies representing differ-

ent environmental resource sectors on the landscape (e.g., agriculture, biodiversity, fresh-

water, marine) so as to better coordinate and manage land and water resources. The cre-
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ation of the NRM boards is in accordance with frequent recommendations in the scientific 

literature calling for coordinated planning of multiple resources on the landscape. The re-

sults of the analyses performed as part of the present study underline the success of this 

initiative, clearly identifying the important and central role played by the EP NRM, and 

supporting continued efforts to integrate resource management by government agencies in 

Australia and elsewhere. 

Extensive analyses of case studies from around the world show that effective and sus-

tainable natural resource management and conservation is dependent upon a well-struc-

tured governance system that promotes information sharing and collaboration amongst 

stakeholders (Ostrom, Walker et al. 1992, Olsson, Folke et al. 2004, Ostrom 2007). Our 

study provides a concrete example of how a multi-institutional stakeholder network can be 

analyzed to assess 1) the degree to which it meets the structural requirements necessary 

for effective information sharing and collaboration and 2) to determine what changes 

might be made to improve the structure. Being able to assess and improve the structure of 

stakeholder networks ultimately leads to increased resilience and adaptive capacity within 

the social-ecological system in which they are embedded and is key to the sustainable 

management and governance of natural resources. The methods and approach described 

here, while focused on a specific case study, are generalizable to many similar natural re-

source management systems and can be used as a basis to make recommendations for how 

the structure of those networks could be modified to improve communication and adap-

tive capacity within the system. 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PARAGRAPHE DE LIAISON B 

Le chapitre 4 poursuit l’analyse du réseau d’acteurs de la péninsule d’Eyre et propose 

une méthode quantitative permettant de mesurer le niveau auquel un réseau d’acteurs 

contribue, par la structure même des collaborations en son sein, à la résilience d’un SSÉ. 

La méthode utilisée est articulée autour de deux axes : d’une part la création, par recuit 

simulé (simulated annealing), d’un réseau archétypique dont la structure représente un 

compromis entre quatre caractéristiques (parfois conflictuelles) favorisant la résilience des 

SSÉ (décrite dans le chapitre 2), et d’autre part sur une mesure de similarité entre les 

représentations spectrales des réseaux (la densité des valeurs propres des matrices laplaci-

ennes normalisées). La plupart des méthodes actuelles pour estimer la résilience des SSÉ 

est fondée sur l’analyse de mesures individuelles, et donc partielles. La méthode décrite 

dans ce chapitre permet au contraire une quantification globale, car fondée sur un com-

promis entre des caractéristiques conflictuelles, des qualités structurales d’un réseau d’ac-

teurs pour augmenter la résilience du SSÉ dans lequel il s’inscrit. 

Contributions personnelles  

Ce chapitre a été soumis, et est actuellement en révision pour publication sous forme 

d’article dans Plos One. Il a été réalisé en collaboration avec Lael Parrott. J’ai effectué la 

recherche et rédigé le manuscrit dans sa majorité. Lael Parrott a agi à titre de superviseure 

en m’apportant idées et recommandations tout au long du travail de recherche. Elle a 

également rédigé certains paragraphes et a, d’une manière générale, largement amélioré 

le manuscrit par ses ajouts, conseils et corrections.  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4. A QUANTITATIVE APPROACH TO ASSESS THE 
CONTRIBUTION OF STAKEHOLDER NETWORKS TO THE 
RESILIENCE OF SOCIAL-ECOLOGICAL SYSTEMS 

R. Gonzalès and L. Parrott 

4.1. ABSTRACT 

The structure of interactions between stakeholders (human actors and institutions) 

governing a natural resource can greatly affect the resilience of the social-ecological sys-

tem in which they are embedded, however, few methods exist to quantify this relationship. 

We present a robust quantitative approach that can be used to assess the structure of a 

stakeholder interaction network against an ideal, resilience-enhancing archetype. Our 

method is two-fold: first, we craft a class of archetypal networks whose structure demon-

strates a compromise on a set of features known to enhance innovation, learning and 

adaption, and therefore resilience, within stakeholder networks. Secondly, we demonstrate 

how to measure the structural differences between these archetypal networks and empiri-

cal stakeholder networks. This approach provides a rigorous quantitative method to assess 

how the network of interactions between stakeholders should be structured to enhance 

system resilience and sustainability, thus responding to a key challenge faced in many con-

temporary studies of social-ecological systems.  

4.2. INTRODUCTION 

In a context of increasing human pressures on natural environments, many ecosystems 

around the world are degraded to the point of becoming unable to provide the services 

needed for the livelihood and well-being of local human communities (Berkes, Folke et al. 

2000, Olsson, Folke et al. 2004, Diamond 2005). As natural resource management (NRM) 

governance systems struggle to achieve resilience and sustainability to avoid reaching 

these critical ecological thresholds, local stakeholders may organize, either formally or in-

formally, to produce knowledge about the problems they are facing, find suitable solu-
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tions, and ultimately build more resilient social-ecological systems (SES). These repeated 

collaborations between stakeholders eventually shape networks, where nodes represent 

either individuals holding a stake in the sustainability of a resource of interest, and where 

edges represent one or several interactions between stakeholders (e.g. information ex-

change, collaborations on projects, or other resource transfers). Network theory is there-

fore becoming a popular tool to model and describe interactions between resource users 

and other stakeholders in SES. Many contributions, both empirical and theoretical, em-

phasize resilience building in the system as a means to achieve better sustainability (Adger 

2000, Gallopín 2006, Bottom, Jones et al. 2009, Turner 2010), and employ the abundance 

of network metrics to both assess the extent to which the NRM stakeholder networks con-

tribute to resilience (Bodin and Crona 2009, Prell, Hubacek et al. 2009, Reed, Graves et al. 

2009, Gonzalès and Parrott 2012), and to better understand the relationships between 

stakeholder network structures and their functions in the broader SES context (Janssen, 

Bodin et al. 2006, Matous and Todo 2015). However, while it is generally accepted that a 

well-connected stakeholder network is key to building trust and reaching consensus 

(Provan and Kenis 2008, Carpenter 2014), it has also been shown that networks of high 

connectivity may lead to uniformity and hinder innovation in natural resource manage-

ment (Borgatti and Foster 2003). There is thus a delicate balance to be found between a 

network structure that fosters communication, information sharing, and innovation, and a 

structure that is over-connected, leading to a lack of diversity and possibly reduced adap-

tive capacity (Gonzalès and Parrott 2012). While this relationship between network struc-

ture and function is recognized in the literature, there exists no general model describing 

what the ideal structure of a stakeholder network should be so as to promote resilient and 

sustainable NRM.  

In this paper we  propose an optimization method to produce archetypal networks hav-

ing an idealized structure that promotes resilience in SES. We then show how these ar-

chetypal networks can be used as a basis for comparison with empirical stakeholder net-

works. By assessing the degree to which empirical networks achieve this idealized struc-

ture, our methods provide a rigorous approach to quantifying the contribution of stake-

holder networks to the resilience of natural resource management systems. 
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4.3. METHODS 

Our methods involve first identifying the most important structural features of net-

works that, for a group of stakeholders, would be linked to the ability of the group to col-

laborate, share information, adapt, innovate and learn. We hypothesize that promoting 

these features in a stakeholder network would contribute to enhancing the resilience of 

the social-ecological system in which the stakeholders are embedded. Next, we seek the 

optimal combination of structural features in a resilience-enhancing stakeholder (RES) 

network, and develop an archetypal model of RES networks. Lastly, we compare the prop-

erties of our RES network model with an empirical stakeholder network and several well-

known theoretical network models, and quantify the structural distances between these 

networks. 

4.3.1. STRUCTURAL FEATURES OF RESILIENCE-ENHANCING STAKEHOLDER 
NETWORKS 

Resilience is a broad concept holding many definitions depending on the field in which 

it is used (Bruneau, Chang et al. 2003, Folke 2006). Broadly, it can be defined as “the 

magnitude of disturbance that can be absorbed [by a system] before [it] changes to a radi-

cally different state, as well as the capacity to self-organize and the capacity for adaptation 

to emerging circumstances” (Adger 2006). The main qualities of a resilient SES thus reside 

in withstanding different kinds of disturbances (such as environmental changes, market 

fluctuations, pest outbreaks or resource scarcities, to name but a few), partly through cor-

rective measures and adaptation on the part of its NRM governance system (Olsson, Folke 

et al. 2004, Folke, Hahn et al. 2005). The latter’s capacity to promote learning and innova-

tion in a robust social environment is therefore central to the resilience of a SES. Re-

silience of a SES is thus closely linked to human agency, and to the ability of stakeholders 

to learn, re-organize, and adapt in response to change (Magis 2010, Berkes and Ross 

2013). It is increasingly understood that effective learning and capacity for adaptation and 

innovation at the regional scale is highly dependent on the structure of the stakeholder 

interaction network (Benz and Fürst 2002, Bristow and Healy 2014). In this work, we fo-
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cus our attention on this particular aspect of social-ecological resilience. We study how, 

and through which topological structures, a set of interacting stakeholders of different 

governance levels, views, and motivations can best collaborate, develop knowledge and 

innovate in the face of unforeseen disturbances in order to better contribute to their SES’s 

resilience. 

The literature in network theory applied to natural resource management suggests a 

number of structural properties of networks which should promote resilience in SES, 

namely: robustness, average path length, and modularity. As these structural properties 

are difficult to test empirically, they remain assumptions, albeit strong and well-accepted. 

Robustness 

The robustness of the network, that is, its capacity to stay connected as one component 

under node failures or targeted node removals, is an important feature of stakeholder 

networks. It ensures that if some nodes were to fail or be deliberately removed from the 

network, the whole structure would hold its integrity, provide alternative routes for infor-

mation to flow across, and keep all groups of stakeholders in the collaboration loops. The 

robustness of a graph can be measured by counting how many nodes need be removed for 

the structure to split into at least two separate networks. In the present work, we measure 

the robustness of networks first to random node removal by counting how many nodes are 

removed until the network fragments, then by targeting nodes according to their number 

of direct neighbours (which corresponds to their degree centrality), in descending order, 

where degree centrality is re-computed at each removal step (Holme, Kim et al. 2002). 

The theoretically least robust network would need only one node removal to fragment the 

structure into at least two parts, while the most robust would need close to 100% of all 

nodes to be removed. Additionally, the evolution (the rate of increase or decrease) of other 

structural characteristics favouring resilience, as nodes are removed from the network, is 

explored; the slower the rate, the more robust the network. 
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Average Path Length 

A second important characteristic of a resilient network is its efficiency of information 

flow, which can be measured with the average path length (APL). APL is the average num-

ber of nodes (or steps) that separate every pair of nodes in the network. A short APL pro-

motes social capital, trust, and better cooperation (Bailón 2006) as it helps achieve quick 

and efficient transmission of information and ideas through the network. Additionally, 

crossing few intermediaries keeps information deterioration to a minimum, while poten-

tially reducing the chances of information retention in the network. APL is a common and 

relatively easily computable metric (Scott and Carrington 2011). APL isn’t bounded; in the 

best case scenario (a completely connected network) the APL would be 1 (only one step is 

needed to reach any other node of the network), while the largest possible value depends 

on the network’s size. 
Moreover, APL is often correlated to the synchronizability of the network (Kelly and 

Gottwald 2011). A highly synchronizable network provides a structure where nodes 

(therein modelled as oscillators, with a phase of their own) quickly converge to a state 

where all nodes’ phases become, and stay, synchronized (Watts and Strogatz 1998, Ko-

carev 2013). This characteristic has been used to measure the capacity of a social network 

to reach consensus despite originally divergent values (Pluchino, Latora et al. 2005) or to 

quickly and collectively find solutions to different problems (Mason, Jones et al. 2008). 

Synchronizability is not easily measurable via network metrics. However, it has been 

shown to be correlated to the Laplacian spectrum of the network (the distribution of ei-

genvalues computed on the network’s Laplacian matrix) through its first non-trivial value, 

λ2, also referred to as the algebraic connectivity (Holroyd and Kincaid 2006, Yang, Jia et 

al. 2013). As the Laplacian spectrum is bounded between 0 and 2, so is the algebraic con-

nectivity. More precisely, λ2 is most often found to be in a range slightly above 0, where 

synchronizability is very poor, and below 1 where synchronizability is very good.  
However, a highly efficient flow (i.e., a short average path length), as well as a high syn-

chronizability, can lead to homogeneity in the network (Borgatti and Foster 2003), hence 

potentially hindering innovation and the emergence of original solutions to unpredictable 
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social or environmental stressors. A stakeholder network promoting resilient SESs should 

therefore also promote diversity of interest and expertise. 

Modularity  

In this regard, the modularity of the stakeholder network, that is, the level to which a 

network is structured around smaller communities of relatively more strongly connected 

nodes, is also central to improving resilience in SES. A high modularity is thought to better 

promote the emergence of novel ideas in contexts of social or environmental uncertainty. 

The rationale is that original solutions to complex social or environmental problems are 

most likely to emerge from independently, potentially more specialized, working groups. A 

modular structure also ensures a more polycentric governance, where groups of special 

interests can develop solutions close to their own stakes and values (Ghimire, McKey et al. 

2004, Bodin, Crona et al. 2006, Schlüter, Biggs et al. 2015). 
Modularity is more a concept than a precise measure, and many methods in network 

analysis attempt to encapsulate it (Fortunato 2010). We chose to use the Louvain commu-

nity detection algorithm (Blondel, Guillaume et al. 2008), a method well suited for fast 

computations. All modularity measures with the Louvain community detection method fall 

between 0 and 1, where a complete network would score 0 and a perfectly modular net-

work would score close to 1. 

While a stakeholder network promoting better SES resilience should display a structure 

in which the above-described characteristics coexist, some of these features are contradic-

tory by definition. For instance, networks cannot be all at once very connected and display 

a strongly modular structure. We thus need to find the vicinity, between best modularity, 

best robustness and best APL, where this compromise would sit. 

4.3.2. FINDING A TRADE-OFF BETWEEN CONFLICTING NETWORK FEATURES 

We produced, using a simulated annealing optimization method described in the next 

section, a large number of networks with modularity ranging from 0.30 to 0.70 (with in-

crements of 0.02) and APL ranging from 1.90 and 2.40 (with increments of 0.05). 10 
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replicates of each of these networks were produced, corresponding to a total of 2310 net-

works. This matrix of networks with different values of modularity and APL was in turn 

optimized for best robustness to targeted node removal as described below. Considering 

the high number of possible combinations of networks, as well as the time required to op-

timize each one of them, the fourth metric, synchronizability, was not considered during 

this optimization phase, although it was assessed for the resulting networks at the end. We 

instead focused on the trade-offs in network structure along the three dimensions of APL, 

modularity, and robustness. 

Figure 4.1 shows a heat map plot of the trade-offs involved in the multi-objective opti-

mization of resilience-enhancing networks. In this 3-dimensional space, we are seeking the 

best compromise between small APL, high modularity and high robustness to targeted 

node removal. A front (marked by a dotted line on Figure 4.1) clearly separates two 

zones: Zone A, where the robustness is high, and Zone B, where it is low. An ideal com-

promise would then sit on this front, as high as possible on the X (modularity) axis, and as 

low as possible on the Y (APL) axis. 
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Figure 4.1 — Representation of the trade-offs between high modularity, low average path 
length (APL) and high robustness to targeted attacks (targeted by node degree) optimized in 
networks. Each cell represents the average robustness of 10 optimized networks. A front 
(white dotted line, added for clarity) emerges from this plot. We chose our ideal compromise 
on this line. 

The strategy is to find the best spot along this front that satisfies both the constraints of 

low APL and high modularity. For demonstration purposes, we decided to work with opti-

mized networks located near the middle point of the front, having a modularity of 0.52. 

This value of modularity was chosen for being sensibly higher than our comparison mod-

els described below, yet not so high as to negatively impact the trade-off with APL and ro-

bustness.  

4.3.3. GENERATION OF OPTIMIZED STAKEHOLDER NETWORKS 

Here we describe the method used to generate archetypal networks having topologies 

that are optimized to achieve trade-offs between APL, modularity, robustness and syn-

chronisabilty. A number of existing models permit the generation of networks having spe-

cific topologies. Some produce random, statistically uniform networks given a probability 

of connection between each node, such as the random attachment model (Erdős and 

Rényi 1961), while others generate complex topologies aimed at better representing the 

structure of real-world networks. From the latter category, the most well known are the 

preferential attachment model (Barabási and Albert 1999) producing semi-random net-

works displaying scale-free topologies (where the distribution of node degrees follows a 

power law), and the small-world model (Watts and Strogatz 1998) reproducing the so-

called small-world effect, where local clustering and short average path length occur in 

conjunction. Other models, such as Klemm and Eguiluz’s (2002) aim at reproducing sev-

eral traits in conjunction. 

These models can each produce networks that approximate some of the structural fea-

tures often seen in empirical networks. However, they cannot specifically reproduce the 

particular set of features needed to better promote resilience in SES, i.e., networks that are 
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highly modular, have a short average path length, are robust to node removal and display 

high synchronisability. We thus implemented an algorithm to generate idealized networks 

fulfilling this combination of characteristics by searching for suitable networks within the 

space of all possible networks of a set number of nodes and edges. This space is very large. 

For example, for networks with 100 nodes and a density of 12% (approximately 1200 

edges; this is the network size we are working with in this article), the number of possible, 

non-isomorphic networks to choose from is approximately . A systematic combi-

natory search is therefore unmanageable, and we choose to tackle this problem with an 

optimization method called simulated annealing (SA) (Kirkpatrick 1984). SA is an algo-

rithm inspired by the metallurgy process of the same name, which aims at improving the 

structural properties of metals through heating and slow, carefully controlled, cooling. A 

simulated annealing algorithm builds on this analogy and attempts to crystallize a prob-

lem’s solution into its best possible configuration, by progressively decreasing the “tem-

perature” (that is, the probability of the process to tolerate worse solutions) of the simula-

tion as the space of solutions is searched. 

Practically, our simulated annealing is initialized with a random network (using Erdös-

Rényi’s random attachment model) consisting of 100 nodes, with a density of 12%. From 

this initial state, the simulation enters an iterative process of 1.6 million steps of exponen-

tially decreasing temperature (Equation 4.1). At each step, a new candidate network is 

produced as a slightly altered version of the previous iteration’s candidate network (one 

random edge permutations is performed). The new candidate is evaluated and given a 

score which is an addition of modularity (distance from a target value; here set to 0.52 

based on the analysis of trade-offs shown in Figure 4.1), normalized APL (minimized), 

synchronisability, and normalized robustness towards targeted node removal (by descend-

ing order of degree) (Equation 4.2). What constitutes an appropriate score for multi-objec-

tive optimization with a simulated annealing algorithm is an ongoing research problem. 

While true Pareto-based multi-objective implementations are possible (Smith 2006), sim-

pler weighted composite functions also show good results (ibid). We tested both ap-

proaches in this study, and our best and faster-converging results were found with a 

weighted energy score. 

2⇥ 10700
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Candidates with better scores are accepted as the new reference for the next iteration, 

while candidates with worse scores are either rejected or accepted according to a probabil-

ity related to how poor the score is, and how high the temperature of the simulation is 

(Equation 4.3). High temperatures are tolerant to worse solutions in order to avoid trap-

ping the optimization at a local minimum too early. As the temperature decays, a propor-

tionally decreasing number of worse solutions are accepted, which allows the algorithm to 

progressively focus on optimizing the current best solution (see annex 1 for the Python 

code used). We applied this method 100 times to produce 100 resilience-enhancing stake-

holder networks (RES networks). All networks were then ranked from best (1) to worse 

(100, the total number of networks to rank) independently for each of their four metrics. 

This gave each network a vector of 4 ranks, which were averaged to make an overall rank. 

The 50 best scoring networks were selected (refer to annex 2 for the Python code used to 

rank networks). An example of one of these networks is shown in Figure 2. 

 

Equation 4.1 — Calculation of current annealing temperature (T). At each step, a new tempe-
rature is calculated according to the current step of the optimization process. TM is the tempe-
rature at the beginning of the annealing process,  Tm is the final temperature of the annealing 
process, i is the current step of the simulation, and iM is the total number of iterations planed 
for the SA 

 

Equation 4.2 — Calculation of a conditional, weighted composite score (s) for a candidate so-
lution. Each new solution is evaluated as a conditional weighted (w1 to w4) and normalized 
average of metrics, namely modularity (m), average path length (d), normalized over the lon-
gest path in the network (dM), robustness to highest degree-targeted node removal (r), nor-
malized over the total number of nodes in the network (N), and synchronizability (λ2). As long 

T = TM ⇥ e� ln(
TM
Tm

)⇥ i
iM

8
>>>><

>>>>:

s = �
w1 ⇤m+ w2 ⇤ �d

dM
+ w3 ⇤ r

N + w4 ⇤ �2

w1 + w2 + w3 + w4
when m � t

s = �
w1 ⇤m+ 5 ⇤ w2 ⇤ �d

dM
+ w3 ⇤ r

N + w4 ⇤ �2

w1 + w2 + w3 + w4
when m < t
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as the simulated annealing hasn’t found a candidate scoring a minimum threshold (t) in mo-
dularity, the score is biased towards improving this metric. For this study we used t = 0.52. 

 

Equation 4.3 — Probability of accepting worse solutions. The score of the current candidate 
network is noted si+1 while the last accepted network is noted si. T is the current annealing 
temperature. 

4.3.4. MEASURING DIFFERENCES BETWEEN NETWORKS 

Quantifying differences between networks is a difficult task in most situations. It is of-

ten performed by algorithms searching for the so-called “graph edit distance” between two 

networks (Sanfeliu and Fu 1983, Gao, Xiao et al. 2010). These algorithms find the mini-

mum number of alterations (node/edge insertion or node/edge removal, node re-labeling) 

one of the networks must undergo for the two networks to become isomorphic. The com-

puting complexity is high and best suited for much smaller networks than the ones we are 

using here. However, an accurate proxy to proper edit distance can by employed using 

normalized Laplacian spectra (Wilson and Zhu 2008). 

The spectrum of a network is the distribution of all eigenvalues calculated on its nor-

malized Laplacian matrix. The normalized Laplacian matrix has been shown to provide 

valuable information on the global structure of a network. Importantly, it provides, in all 

practicalities, a unique signature for individual networks (de Lange, de Reus et al. 2013). 

Wilson and Zhu (2008) show that past the size of 11 nodes, two non-isomorphic networks 

have a very low chance of having the same normalized Laplacian spectra, and that the edit 

distance between two graphs can be approximated by the Euclidian distance between the 

two eigenvalue vectors representing the spectra. Additionally, the Laplacian spectrum 

holds important advantages for comparing networks’ structures. For instance, no matter 

the structure or the size of a network, Laplacian matrices’ eigenvalues always fall between 

0 and 2 (this is not the case for non-normalized Laplacian, or for the adjacency matrices), 

p = e
�(si+1�si)

T
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which makes the spectrum well suited for comparison between networks of different sizes. 

Moreover, the shape of a spectrum is not dependent on node labeling: two identically-

structured networks will therefore show similar eigenvalue distributions regardless of how 

nodes are named or numbered. This approach thus provides a quantitative measure by 

which to compare structural differences between networks, and will here be used to assess 

the distance between our class of optimized stakeholder networks and a set of three 

benchmark networks. 

4.3.5. NETWORKS USED FOR COMPARISON 

Empirical Network 

Our empirical network is a natural resource management stakeholder network related 

to biodiversity conservation on the Eyre Peninsula (EP), a 48,000 square kilometre region 

in the state of South Australia, Australia. While tourism is on the rise, the economy of the 

EP is still primarily based on dryland agriculture (grain and grazing), which relies on rain-

fall alone. The landscape, therefore largely rural, is home to several native threatened, en-

dangered or vulnerable plant and animal species (Matthews, Oppermann et al. 2001). 

These species are affected by a variety of factors (ibid, p. 139), including the connectivity 

of their habitats, which is related to land-cover change on privately owned land. A variety 

of conservation initiatives are being carried out on the peninsula. They aim at restoring 

native species’ habitats through programs promoting more biodiversity-friendly practices 

on the part of farmers, including fencing of remnant vegetation to protect from grazing by 

livestock, revegetation through planting native trees as windbreaks, and using perennial 

bush for grazing. The network we are studying represents individuals working, through 

government agencies, private companies or NGO, on improving biodiversity. The links be-

tween these individuals represent exchanges in knowledge or direct collaborations on bio-

diversity-enhancing programs. The data were collected in 2011 and 2012 through ques-

tionnaires that asked stakeholders to identify the frequency with which they exchanged 

information on biodiversity conservation programs with other stakeholders in the network. 

It features 136 nodes, has a density of 16%, is directed, and weighted according to the 
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frequency of information exchange in the network. For the present purposes of this re-

search, and due to computational time constraints, a minimum threshold on the edge 

weights was set to reduce the number of connected nodes to 100 (density thereby falling 

to 12%). Weights and directions have also been discarded in order to only focus on the 

most basic, underlying structural features of the network. 

Theoretical Network Models 

In addition to the empirical network, three well documented models are used as struc-

tural benchmarks: 1) Erdös-Rényi’s random attachment model (Erdős and Rényi 1961), 

where each pair of nodes is connected according to a probability of 0.12 (density of 12%); 

2) Barabási-Albert’s scale-free model (Barabási and Albert 1999), which reproduces the 

commonly observed phenomenon of scale invariance in natural and social networks. We 

used iGraph’s “Barabasi game” algorithm (Csardi and Nepusz 2006) to generate the net-

works, adding 7 new edges at each time-step of the growing process. The final scale-free 

networks reach a density of 12%; and 3) Watts-Strogatz’s small-world model (Watts and 

Strogatz 1998) which reproduces another commonly observed phenomenon in natural 

and social networks: the “small-world” effect where few nodes have long-reaching edges 

connecting parts of the network previously far apart. iGraph’s small-world algorithm was 

parameterized with a rewiring probability of 5% and a neighbourhood of 6, leading to a 

network density close to 12% (while several sets of parameters were used, this set provid-

ed the best results in our studied metrics). 

All generated networks have 100 nodes and have a density close to 12% as per the em-

pirical and RES network. For each of these models, a series of 50 networks was produced. 
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4.4. RESULTS 

4.4.1. NETWORK COMPARISONS: METRICS ASSOCIATED WITH RESILIENCE IN 
SES  

Figure 3 shows the average path length (APL; the average distance between two ran-

domly chosen nodes in the network), the modularity (calculated using the Louvain algo-

rithm, value ranges between 0 and 1, where 1 is high), the synchronizability (value be-

tween 0 and 1) and the robustness (percent of nodes removed before the network frag-

ments into two connected components), computed for the 5 classes of networks (random, 

scale-free, small-world, RES network and the empirical case study from the Eyre Peninsu-

la). Results demonstrate that while the RES network performs well, yet not best, in APL 

(lowest is best), and synchronizability (highest is best), it largely out-performs all others in 

modularity (highest is best) and robustness to targeted node removal (highest is best). 

Compared to the other network models, the RES network has a structure that appears to 

have the best compromise between these competing features. 

 99



!  

Figure 4.2 — Force-based layout (Kobourov 2012) of one of the 50 resilience-enhancing sta-
keholder (RES) networks produced by our simulated annealing algorithm. The size of nodes 
represents their degree (or number of direct connections). A visual examination hints at high 
modularity with quite distinct highly connected communities, short average path length with 
many links reaching far across the structure, and a decentralized structure where the distribu-
tion of degrees is somewhat even across the network. 
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Figure 4.3 — Values of structural measures for the 5 classes of networks studied. Lower APL, 
higher modularity, higher synchronizability, and higher robustness are best. While the RES 
network performs well, but not best, in APL and synchronizability, it largely out-performs all 
others on modularity and robustness to targeted node removal. Values provided are averaged 
over 50 networks for each network class, except for the empirical EP network (only one ins-
tance exists). The colour indicates how good a given model performs, per column, compared 
to all other models (darker is better). 

Moreover, we find that the RES network’s degree distribution (Figure 4) is very 

different from scale-free models, which are known to accurately represent the degree 

distribution of many empirical networks (Ravasz and Barabási 2003). Degree central-

ity, that is, the number of direct connections a node has, is one of many centrality 
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measures available, and is often used to identify potentially influential and powerful 

individuals in a network. While scale-free networks show a power-law distribution of 

degrees, where few nodes hold the most “powerful” positions in the network, and 

where the vast majority of nodes reside in less favorable positions, our RES networks 

distribute degrees more evenly, as a small-world network would, allowing most 

nodes to reside close to the network’s average degree. Degree distribution was not 

taken into account while optimizing network structure, and this characteristic most 

likely emerged as a corollary to what a resilience-enhancing stakeholder network 

should be. Most particularly, the optimization of the network’s robustness to targeted 

node removals, which hindered the creation of hubs within the network, could ac-

count in a large part for this structure. This is a welcomed characteristic as it can be 

argued, especially in co-management settings, that a structure displaying a more 

equal share of potential power, where possible abuse of dominant positions within 

the network is kept minimal, could favour more democratic solutions to social-eco-

logical issues. 
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Figure 4.4 — Degree distribution of four network models. The RES network shows a degree 
distribution where, while few nodes hold positions of relatively higher degree (around 20), 
most nodes are averagely connected. This demonstrates a more equitable power distribution 
than scale-free structures which are often observed in natural and social networks, where most 
nodes are poorly connected while a few nodes share the majority of the network’s total 
connections. 
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4.4.1. NETWORK COMPARISONS: ROBUSTNESS TO NODE REMOVAL 

Focusing on the evolution of our selected metrics as nodes are removed from the net-

works, Figure 5 shows, as expected, that the scale-free network is quite robust against er-

ror (random node removal) as it takes on average about 90% of node removal to break 

the network into at least two separate networks (Figure 3). In addition, the APL is almost 

unchanged as nodes are randomly removed. On the other hand, the scale-free model is 

very weak against targeted attacks (when nodes are removed in descending order of de-

gree), as only about 10% of high degree nodes need be removed for the network to be-

come disconnected. This can be explained by the inherent formation of relatively few, 

highly connected hubs in scale-free structures. These features are shared by the Eyre 

Peninsula empirical network, which is also robust to random node removal but highly vul-

nerable to targeted node removal. The random and small-world models respond similarly 

to node removals. In both cases, targeted attacks fragment the networks faster than ran-

dom attacks, as about 60% of higher degree nodes need to be removed to fragment the 

network compared to about 80% of randomly selected nodes. In comparison, our RES 

networks, while highly modular (hence potentially prone to contain hubs) are almost as 

robust against targeted attacks as they are against random node removal (80% of higher 

degree nodes need to be removed compared to about 84% of randomly selected nodes). 

Additionally, the increasing or decreasing rates of change of APL, modularity and synchro-

nizability as nodes are removed, are either comparable or slower than for the other net-

works (Figure 5). Our RES networks thus maintain their key resilience-enhancing struc-

tures even as nodes are removed. Through their combination of a modular structure with 

short average path lengths, our networks are thus the most robust of all network models 

overall, resisting well to both targeted and random attacks. 
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Figure 4.5 — Robustness of five network models. This figure shows the robustness of three 
network metrics seen as important for resilience-enhancement in SES, namely the average 
path length and modularity, on three network models (Random, Scale-free, and small-world), 
our RES network, and one empirical network. The length of smoothed lines shows how many 
node-removals each network can withstand on average before breaking into at least two mo-
dules. The blue line represents node-removal in random order, while the red line represents 
node-removal in order of best degree centrality. All networks show a sensibly equivalent ave-
rage path length before node removal begins. However, modularity is very different from one 
model to another (RES networks showing the best modularity at 0.52 while small-world, the 
second best, has 0.40, see Figure 3). Similarly, our optimized networks display a strong capaci-
ty to withstand node removal in both random and targeted situations, a characteristic lacking 
from other networks. 

4.4.2. LAPLACIAN SPECTRA AND DISTANCE BETWEEN NETWORKS 

As described earlier, the Euclidian distance between each vector of eigenvalues repre-

senting the Laplacian spectrum is used as a proxy to graph edit distance. Figure 4.6 shows 

the Laplacian spectrum of each network studied. The random network displays its typical 

half-circle shape around eigenvalue 1. The scale-free network also displays a symmetrical 

shape, but elongated at eigenvalue 1. The small-world network displays a skewed shape 

towards higher eigenvalues, as well as an increased density around eigenvalue 0.4, a 

characteristic of modular structures. In general, density of all of these networks increases 

around eigenvalue 1 (hinting at a structure where duplication of motifs plays a large role). 

The RES network displays a significantly different, “M” shape, where density decreases 

around eigenvalues 1 and where a sharp peak appears around eigenvalue 0.35, suggesting 

a quite different structural topology which is not investigated at this point. 
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Figure 4.6 — Laplacian spectra of three network models, the RES network, and an empirical 
stakeholder network from the Eyre Peninsula. The normalized Laplacian spectra are averaged 
over 50 iterations of each of the network models, except for the EP network, which is unique. 
They are calculated as densities. Additionally, the plotted spectra have been filtered by convo-
lution through a Gaussian kernel (with a width of 1) to decrease noise. 

In Table 4.1, we compute this distance between all considered networks, and find that 

all networks are unequally distant from each other. They can be ranked, from closest to 

most remote, to the RES network: 1) random, 2) small-world, 3) scale-free, 4) Eyre Penin-

sula empirical network. A random network in first position may seem counter intuitive, 

however, this distance does not formally provide a «  resilience-enhancing  » rank, but 

rather an insight into how much a network needs to be altered (via edge edits) to become 

isomorphic to our idealized structure. We can also note that the empirical network from 

the Eyre Peninsula is, in accordance to the literature on scale-free networks (Barabási and 

Albert 1999), more similar to a scale-free structure than any other network we compared 
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it to. It is also the most dissimilar to our optimized networks. These two points confirm 

our qualitative comprehension of the EP network, where a few stakeholders hold hub posi-

tions (as a scale-free network would) which puts them in situations of de facto informa-

tion control, and makes the network prone to fragmentation (Meyer 2013). It also stresses 

that changes to the structure of collaborations between stakeholders should be promoted 

in order to decrease its distance to the optimized network. 

Table 4.1 — Distance matrix between all 5 network models considered. Matrix of distances 
between graphs as measured using the Euclidian distance between each pair of eigenvalues’ 
vectors. 

4.5. DISCUSSION AND CONCLUSION 

It is increasingly recognized that the resilience of social-ecological systems, communi-

ties, and regions is determined by the structure of their governance systems, and the abili-

ty of these systems to learn, innovate, and adapt. This adaptive notion of resilience re-

quires that social actors and institutions (stakeholders) involved in regional governance or 

natural resource management collaborate and interact, so as to innovate and learn in re-

sponse to change. Understanding how this stakeholder network should be structured to 

best contribute to innovation and learning, and therefore system resilience, is an open 

question in the study of social-ecological systems, and is ultimately linked to the sustain-

ability of regions.  

Scale-free Random Small world RES network Eyre Peninsula

Scale-free 0.00

Random 3.30 0.00

Small world 3.38 1.39 0.00

RES network 4.25 2.50 2.65 0.00

Eyre Peninsula 2.65 4.83 4.49 5.72 0.00
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In this article, we address this question by proposing an archetypal class of networks 

that are built to optimize a set of key structural properties (modularity, average path 

length, synchronizability and robustness) known to critically influence how effectively a 

governance or stakeholder network can adapt, innovate, and learn. These resilience-en-

hancing stakeholder (RES) networks, while only caricatures of real networks, can provide 

us with a rigorous quantitative method to assess the level to which an empirical stake-

holder network contributes to the resilience of a SES. We demonstrate how this can be 

done by quantifying the differences between this new class of networks and an empirical 

stakeholder network built from a survey conducted on the Eyre Peninsula in the State of 

South Australia. 

We also demonstrate that existing models used to represent complex systems do not 

adequately encapsulate all of the key features known to be important to system resilience. 

Compared to the well-known scale-free and small-world network models, our RES net-

work model performs particularly well in terms of robustness towards not only random 

loss of components but also to targeted node removal (targeted by descending order of 

degree). The RES network model also performs much better than any of the other studied 

models in terms of modularity, a feature important in promoting diversity and innovation 

in stakeholder networks. Modularity is a particularly sensitive feature to optimize as, in-

herently producing cliques and bottlenecks, it hinders other structural features such as ro-

bustness and APL. The high modularity in the RES network models, however, contributed 

to the overall structural quality of these networks. 

Limitations must be stated. Firstly, we optimized our networks to score best in four dif-

ferent metrics. Resilience being such a complex concept, with potential different meanings 

depending on the particularities of each case study, other measures could have been in-

cluded. Moreover, particular political contexts or cultural differences could surely lead to 

adjustments in what is possible or desirable to achieve in term of idealized collaboration 

structures. However, our method is designed to be flexible enough to address such contex-

tual adjustments through a redefinition of the nature of some metrics, or in their weight-

ing during the optimization phase. 
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Finding the edit distance (i.e. the number of alterations needed for one network to be 

isomorphic with the other) between large networks is almost always an issue in terms of 

computer’s CPU time. Choosing to use a proxy (the Euclidean distance between graph 

spectra, which involves the eigenvalue distribution of normalized Laplacian matrices of the 

networks) instead of graph-edit distance may be somewhat problematic. The explicative 

capacity of distances between the Laplacian spectra could be blurred by a tendency of 

these spectra to keep, in their shapes, parts of their evolutionary history, such as motif du-

plication (Banerjee 2012). Our method of producing optimized resilient networks being 

very different to how both real networks evolve into their current states, and how algo-

rithms grow scale-free and small-world networks, a certain amount of noise is to be ex-

pected in the resulting distances. Despite possible inaccuracies in the estimates of edit dis-

tances, the method provides a reliable assessment of the relative distance between net-

works, and is useful for the comparison of several networks to a selected archetype. 

Additionally, SES evolve in time, and their resilience is tightly linked to their capacity to 

bounce back from perturbation, and quickly re-organize after disturbance or stress events 

(Bruneau, Chang et al. 2003, Folke 2006). Our method, while capturing the important 

structural features of a stakeholder network that facilitate this re-organization, lacks this 

temporal dimension, and is therefore, for instance, unable to assess resilience in the con-

text of a SES’s trajectory on the adaptive cycle. We note, however, that most empirical 

studies of social networks are based on data extracted from questionnaires that aim at re-

constructing networks as a snapshot of their state as they evolve in time. Our method, 

used within the boundaries of this important limitation, can therefore safely be used to 

assess, at a point in time only, where an empirical network stands compared to its ideal 

version. 

These limitations stated, our methodology remains both intuitive and rigorous in as-

sessing the structure of stakeholder interaction networks in the context of SES’s resilience. 

Our resilience-enhancing network model can serve as a benchmark against which to com-

pare different real-world stakeholder networks (and thus compare the vulnerability of dif-

ferent regions). It can also allow for a quantitative assessment of the degree to which dif-
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ferent community-building initiatives or government programs, for example, might in-

crease the resilience, of an SES. Social agency and human interactions are likely one of the 

strongest contributors to the resilience of communities whose livelihoods are dependent 

on natural resources; the methods proposed here are a step towards better understanding 

how to structure those interactions to enhance community resilience to change, and, ulti-

mately, to ensure the sustainability of the entire SES. 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PARAGRAPHE DE LIAISON C  

L’archétype proposé dans le chapitre 4 est produit par un algorithme d’optimisation 

fondé sur un score aggloméré de quatre mesures. Ce score projette ainsi quatre objectifs à 

l’intérieur d’un seul. S’il s’avère performant pour produire une des nombreuses solutions 

possibles, il ne permet pas une exploration formelle des compromis qui sous-tendent la 

plupart des problèmes d’optimisation multiobjectif (la frontière formée par le sous-ensem-

ble des solutions dites “non-dominées”). Dans le chapitre suivant, je propose une adapta-

tion simple et intuitive de l’algorithme de recuit simulé présenté dans le chapitre 4. Cet 

algorithme modifié permet l’utilisation d’un score réellement multiobjectif, et fournit l’en-

semble des solutions non-dominées trouvées lors du processus d’optimisation. Ainsi, il 

permet, en tenant compte de certaines limitations liées à la puissance des ordinateurs util-

isés, un emploi plus souple de la méthode présentée dans le chapitre 4. 

Contributions personnelles  

Ce chapitre est actuellement en préparation afin d’être proposé pour publication dans 

un journal à comité de lecture. Il a été réalisé en collaboration avec Lael Parrott. J’ai ef-

fectué la recherche et rédigé le manuscrit dans sa majorité. Lael Parrott a agi à titre de su-

perviseure en m’apportant idées et recommandations tout au long du travail de recherche. 

Elle a également amélioré le manuscrit par ses ajouts, conseils et corrections.  

 113



 114



5. DOMINANCE-BASED SIMULATED ANNEALING TO OPTIMIZE 
NETWORKS’ TOPOLOGIES ALONG MULTIPLE OBJECTIVES 

R. Gonzalès and L. Parrott 

5.1. ABSTRACT 

Optimizing network topology is almost always a matter of searching a space of solu-

tions so vast that a systematic search is infeasible, and the use of stochastic optimization 

algorithms is instead required. Among all the available methods, simulated annealing al-

gorithms are often preferred for optimizing network topology. However, they usually only 

allow for the optimization of either one objective at a time, or a composite of several 

scores, which makes searching for topologies representing trade-offs difficult. To solve this 

problem, we developed a modified simulated annealing algorithm designed to search solu-

tion spaces for optimized networks whose structure meets several objectives simultaneous-

ly. We first describe how we constructed a score for solutions based on dominance, which 

reflects the multi-dimensional nature of the optimization problem. We then optimize three 

random networks of 50 nodes to make them fit desired topological characteristics, and 

discuss the trade-offs at work within these networks. This article demonstrates that domi-

nance-based, multi-objective simulated annealing can be easily and intuitively implement-

ed. However, the time required for optimization greatly increases with the number of ob-

jectives optimized, thus optimization approaches based on composite scores may still be 

preferred in some cases. 

5.2. INTRODUCTION 

A number of algorithms exists to create networks having specific known topologies 

(e.g., Erdos-Renyi’s random attachment model, Watts and Strogatz’s small-world, Barabási 

and Albert’s scale-free model), but constructing a network whose topology simultaneously 

meets multiple criteria cannot be achieve by such straightforward methods. The problem 

is complicated by the fact that these criteria are often competing with each other, and can-
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not all be fully satisfied at once in a single structure. For example, in the study of social 

networks, the ideal topology to promote innovation and transfer of knowledge involves 

both high connectivity and high modularity; two competing characteristics. In our re-

search, we are interested in networks of stakeholders managing natural resources. These 

networks also must meet specific structural requirements in order to enhance resilience 

and sustainability. They need to be all at once modular, well connected, provide a struc-

ture favouring synchronizability, and be robust to targeted node removal (Chapter 4). This 

constitutes a multiple-objective optimization problem for a very vast solution space. 

This category of problems can be addressed with a variety of methods, including evolu-

tionary algorithms such as genetic algorithms (Reeves, 2003), swarm intelligence algo-

rithms such as ant colony optimization and particle swarm optimization (Beni and Wang 

1993, Ashlock 2006), and other meta-heuristics such as simulated annealing (Kirkpatrick 

1984, Černý 1985). While some are preferred to others for specific applications (Ross 

2005), the literature on network optimization suggests that simulated annealing (SA) is 

often preferred for network topology optimizations (Donetti, Hurtado et al. 2005, Rad, 

Jalili et al. 2008, Guang-Yu, Li et al. 2012, Pal, Ray et al. 2012). 

A simulated annealing (SA) algorithm searches for a problem's close-to-optimal solution 

by iterating through a few simple steps. It first produces a random solution, copies it and 

randomly modifies the copied solution. It then compares the two copies (pre and post-

modification) by attributing a score to each of the two. The algorithm then decides to keep 

one or the other for the next iteration according to the following rules: if the new, modi-

fied solution 1) scores better, or 2) passes a probabilistic test, it is used as the new best so-

lution. The modified copy is otherwise discarded. The probability test takes two parame-

ters into account: 1) the step the simulation is at (early steps are more tolerant to worse 

solutions) through a variable called “temperature” by convention (referring to the ther-

modynamic inspiration of SA) which exponentially decreases as the simulation progresses, 

and 2) how much worse the modified solution is compared to its previous version (Equa-

tion 5.1). This is SA’s strength, as it allows for a wide search of the solution space at the 

early stage of the simulation (hence avoiding early local optima traps), and focuses on im-
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proving the best-found optimum later in the simulation (see Figure 3.6 “Simulated anneal-

ing flow chart” in chapter 3). If a solution has been accepted, it is used as the current best 

solution and tested against a new modified copy of itself in the next iteration. The SA 

stops at the end of a set number of iterations, and returns the best found solution. 

 

Equation 5.1 — Probability p to accept a worse score (S) according to the current temperature 
(T) of the simulated annealing. 

Unlike genetic algorithms however (Deb, Agrawal et al. 2000), SA have a major draw-

back regarding multi-objective optimization problems. The score used to discriminate solu-

tions is a single scalar, as opposed to a vector of scores which would better reflect the mul-

ti-objective nature of the problem. This limitation can be addressed by building a compos-

ite score, which often is a weighted average of the scores for each objective towards which 

the solution is to be improved. This works well in many cases (Smith 2006, Gonzalès and 

Parrott 2015), albeit with some important drawbacks: 1) some objectives, if correlated 

with each-other, tend to bias the score towards the structural characteristic the objectives 

are correlated to (like synchronizability, average path length and efficiency, for instance, 

which —despite subtile and important particularities— all assess a level of network con-

nectivity). While this can be addressed through further weighting adjustments in the com-

posite score, it often requires time-consuming trial and error; 2) only one solution is pro-

duced (the one best improving the composite score), leaving aside all other non-dominat-

ed solutions (NDS). 

NDS are all the solutions which are not dominated by any other found solutions. A so-

lution dominates the other if it is strictly better in at least one of the objectives, while be-

ing at least as good in all objectives. In an ideal situation, the non-dominated set ap-

proaches the Pareto frontier (which is, in essence, the analytical representation of the 

trade-offs in a multi-objective problem). As there is no objective way to decide which non-

p = e�
�S
T
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dominated solution is preferable to any other, a multi-objective optimization should not 

only result in one optimized solution, but in the full set of NDS. 

In this article, we implement a modified SA designed to address this problem and per-

form true multi-objective simulated annealing (MOSA). While other solutions have been 

proposed (Czyzżak and Jaszkiewicz 1998, Smith 2006), we aimed at simplicity and effi-

ciency for the particular case of network topology optimization. We will present the prin-

ciples behind our MOSA, and show results for three optimization problems of increasing 

objective dimensions. We will discuss the trade-offs at work during optimization, as well as 

the advantages and limitations of this method compared to the composite score-based SA 

used in previous work (e.g, Chapter 4). 

5.3. METHOD 

We optimized random networks (Erdős and Rényi 1961) of 50 nodes and around 146 

edges (density close 12%, although each run of the algorithm producing the original ran-

dom network provides a slightly different density), so that their topologies are improved 

on two, three, or four topological characteristics: modularity (the level to which a network 

is organized around communities of more densely connected nodes) (Newman and Girvan 

2004, Blondel, Guillaume et al. 2008); efficiency, which is a measure of how efficient the 

flow of information —or whatever the network is modelled to convey— is in the network 

(Latora and Marchiori 2001). Efficiency is strongly correlated to the average path length 

of a network (the average shortest number of edges separating all pairs of nodes in a net-

work), but unlike it, it is normalized between 0 and 1. We also use synchronizability, 

which measures the capacity of a network’s topology to foster fast and stable convergence 

towards synchrony of dynamic nodes originally oscillating at different frequencies (Pecora 

and Carroll 1990, Watts and Strogatz 1998, Kocarev 2013). Synchronizability is measured 

through the algebraic connectivity (λ2), which is the lowest non-trivial eigenvalue calcu-

lated on the network’s Laplacian matrix. Finally, we measure the robustness of a network, 

which we define as the number of nodes (and connected edges) that need to be removed 

in descending order of degree (a nodes’ number of connected edges) before the network 
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splits into at least two parts (Albert, Jeong et al. 2000). The motivation behind using these 

metrics is related to assessing resilience in social-ecological systems. Their characteristics 

are further discussed in section 4.3.1. 

Starting with the general concept of SA, we focus on finding a method of calculating a 

network’s score that better reflects the multidimensional nature of the problem. Instead of 

calculating scores as scalars (a composite of network metrics in our case), that the algo-

rithm would try to lower, we calculate each potential solution as coordinates in the n-di-

mensional objective space (n being the number of objectives to optimize). We then mea-

sure the distance between this solution and the surface shaped by the NDS found so far 

(Box A in Figure 5.2). The score of a given solution is thus a dynamically changing value 

that is dependant upon the evolving set of NDS. 

Figure 5.1 demonstrates a simplification in two dimensions of this score calculation. A 

and A’ are two solutions that need to be compared. d1 and d2 are the shortest distances 

measured between a candidate solution and the closest segments from the non-dominated 

solutions. In this case, d2 is shorter than d1 since A’ is closer than A from the NDS. A’ is 

therefore accepted as the next iteration's current solution. If A’ were farther than A from 

the NDS, it would be either accepted or discarded according to Equation 5.1, where 

. Solution B illustrates the case where a modified copy of the solution is un-

dominated by any other solution found yet, and is therefore located beyond the current 

NDS. In this case, the algorithm does not compute the distance but instead automatically 

accepts it as part of the new NDS. In other words, respective distances to the surface 

shaped by NDS are used as a proxy to score calculations. 

�S = d1 � d2
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Figure 5.1 — Two-dimensional distance to a non-dominated set. Dark points are part of the 
non-dominated set. The dotted line is the theoretical Pareto front. A is the system’s current so-
lution while A’ is a slightly modified version of A. d1 and d2 are the distances, measured per-
pendicularly, to the non-dominated solution set's closest line segment. B is yet another solu-
tion, but unlike A and A’, it is undominated and resides outside of the non-dominated set. 

This score is intrinsically based on dynamically changing list of current NDS. The list is 

empty at the beginning of the simulation. The initial solution, as well as its first modified 

copy (second iteration) are automatically added to the list, forming a first NDS segment 

from which the distance to the second mutated clone will be calculated. Between the third 

and last iterations every non-dominated solution is added to the NDS (Box C in Figure 

5.2). 

Additionally, the algorithm keeps a count of the number of consecutive solutions it dis-

cards (Box B in Figure 5.2). If the count raises above a specified threshold (which would 

mean the current solution does not manage to improve its distance to NDS in its neigh-

bourhood, and that the simulation may be trapped in a meta-stable state), the algorithm 

replaces the current solution by a non-dominated solution randomly selected from the 

NDS. This allows the algorithm to further explore the boundary of non-dominated solu-

tions, and potentially push it further towards the Pareto front. 
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Figure 5.2 — Multi-objective simulated annealing flow chart. The darker boxes represent our 
addition to regular SA that allows for multi-objective optimization. 
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5.4. RESULTS 

5.4.1. TWO-OBJECTIVE OPTIMIZATION 

Starting with a randomly wired network, we ran our optimization for 20,000 iterations. 

Figure 5.3 shows locations of solutions optimized by our MOSA for modularity and effi-

ciency in the two-dimensional objective space. Each non-dominated solution found during 

the simulation is recorded by the script and marked as a dot. The colours provide insight 

on how the algorithm works: blue shades, indicating NDS found earlier in the simulation, 

are —as expected— clustered and located away from the boundary, while red shaded solu-

tions are spread along a curve: the frontier of non-dominated solutions (NDS). The NDS 

shapes a Pareto-like frontier, which represents the best compromises found by the algo-

rithm. It provides a clear visual representation of the conflict between the optimization of 

each objective: one cannot improve modularity without hindering efficiency, and vice-ver-

sa. 

Figure 5.4 shows three points out of the 148 found by the MOSA as part of the final set 

of NDS. Network “a” was sampled at the top-left of the front (low in modularity but high 

in efficiency). It shows the algorithm found a star-like topology, where one highly central 

node serves to dispatch the flow to other nodes. Network “c”, sampled at the other end of 

the NDS, is high in modularity and low in efficiency. The algorithm found a structure 

where five communities of highly connected nodes weakly connect with each other. In be-

tween these two extreme topologies, sits network “b”. It constitutes one compromise be-

tween the two objectives, where quite distinct communities of nodes strongly connect with 

each other. 
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Figure 5.3 — Visualization of the evolution of one run of a MOSA optimizing two objectives: 
modularity, and efficiency (in both cases, higher is better). Each coloured dot is a non-domina-
ted (accepted) solution (NDS) found during the 20,000 iterations (dominated solutions are 
not shown in this figure). The colour indicates when the solutions were found (blue indicates 
early-found solutions, while red indicates most recent, and best, solutions). The dotted line 
was added in order to highlight the front of all NDS found during the simulation. The letters 
correspond to sampled points used in the making of Figure 5.4. 
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Figure 5.4 — Force-based layout representation of networks sampled among the non-domina-
ted set (NDS) at points a, b and c in Figure 5.3. 

5.4.1. THREE-OBJECTIVE OPTIMIZATION 

In order to test our MOSA for three-objective optimization, we ran two simulations: the 

first one optimizing modularity, efficiency and synchronizablity of networks (Figure 5.5), 

and the second one optimizing modularity, efficiency and robustness of networks (Figure 

5.7). As increasing the number of dimensions increases computation time non-linearly, we 

settle for only 10,000 iterations, for this case. While this number of iterations is certainly 

not enough to fully explore the space of solutions (hence the generally weaker scores 

found while optimizing three objectives instead of two), this number suffices for demon-

stration purposes. The MOSA could easily be run for more iterations for specific ap-

plications requiring highly optimized outcomes.  

Modularity, Efficiency and Synchronizability 

Figure 5.5 shows the three-dimensional objective space as a series of two-dimensional 

projections: one for each of the combinations. As for Figure 5.3, modularity and efficiency 

are in conflict. A very similar NDS front also emerges between modularity and synchroniz-

ability, which can be explained by the fact that efficiency and synchronizability are highly 

correlated. This correlation is, again, clearly shown in the bottom subplot of Figure 5.5, 

where the optimization of efficiency and synchronizability converge into a very short 
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front. While synchronizability and efficiency are different in concept, such a short front 

could makes these two objectives easily reconcilable for some applications. 

  

Figure 5.5 — Visualization of the evolution of one run of a MOSA optimizing three objectives 
(modularity, efficiency and synchronizability). Each subplot shows a projection (or “slice") in 
two dimensions of the three-dimensional space, providing all combination of the three metrics 
optimized: modularity, synchronizability, and efficiency (in all cases, higher is better). Each 
coloured dot is a non-dominated (accepted) solution found during the 10,000 iterations (do-
minated solutions are not recorded). The colour indicates when the solution was found (blue 
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indicates early-found solutions, while red indicates most recent, and best, solutions). The dot-
ted line was added to highlight the front of all NDS found during the simulation. 

Modularity, Efficiency and Robustness 

Figure 5.6, visualizing the trade-offs between modularity, efficiency and robustness in 

the solution space for optimized networks, effectively recreates Figure 4.1 from Chapter 4. 

If, as expected, increasing modularity does hinder robustness, the front is much shorter 

than between modularity and efficiency, and between efficiency and robustness. A com-

promise could hence be found without gravely hindering either modularity or robustness 

(as Chapter 4 demonstrated using a different method). However, the optimization of effi-

ciency and robustness is indeed more conflictual and shapes a wide front. The topological 

difference is visually demonstrated for sample network solutions in Figures 5.4.a/5.7.a 

(both showing a topology of high efficiency) when compared with Figure 5.7.b (which 

shows high robustness). In the latter case, the “star-like” topology is avoided as to not 

make the structure weak to the removal of any particularly central nodes. Instead, the 

highly robust structure shares node degrees more evenly. Figure 5.7.d shows a compro-

mise between the three objectives: while some communities seems to emerge, the connec-

tivity between them is strong, which improves efficiency without generating highly central 

nodes (as in the star-like topology). 
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Figure 5.6 — Visualization of the evolution of one run of a MOSA optimizing three objectives 
(modularity, efficiency and robustness). Each subplot shows a projection (or “slice") in two 
dimensions of the three-dimensional space, providing all combinations of the three metrics 
optimized (in all cases, higher is better). Each coloured dot is a non-dominated solution found 
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during the 10,000 iterations (dominated solutions are not recorded). The colour indicates the 
step at which the solution was found (blue indicates early-found solutions, while red indicates 
most recent, and best, solutions). 

  

Figure 5.7 — Force-based layout representations of four networks sampled among the 358 
present in the final non-dominated set when optimizing for three objectives (see points a, b, c 
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and d in Figure 5.6). The middle network noted d demonstrates one of the possible trade-offs 
between modularity, efficiency and robustness. 

5.5. LIMITATIONS AND RECOMMENDATIONS 

While our MOSA provided satisfying results, a number of limitations need be stated. 

First, each of our runs produced a unique NDS, which indicates that an Pareto-optimal set 

of solutions was not found using this algorithm (and given the number of iterations). 

While this is expected considering the large number of possible non-isometric networks 

which can be built from 50 nodes and 146 edges (estimated 7×10131 combinations), and 

the relatively short optimization time, it is important to keep this limitation in mind while 

planing optimization times. On the subject of optimization time (arguably one of the most 

sensitive points for any optimization method), our MOSA’s main drawback is that the fil-

tering of the NDS, which needs to be made at each iteration, becomes very time consum-

ing as its size augments. While optimizing for two objectives produce a NDS list of around 

25 entries, three objectives provides around 600 solutions and four objective above 900. 

This makes for a sizeable time difference between simulations depending on their objec-

tive dimensions. 

As for any simulated annealing optimization, performance is tightly connected to para-

meters choices. In our case, we found that starting and ending temperatures should 1) be 

close to each other, and 2) be relatively low, making for a rather greedy optimization 

(Cormen 2009). We also found that smaller amounts of random rewiring at each step 

shapes NDS fronts more quickly than by performing larger numbers of random rewirings. 

However, too few rewirings hinder the capacity of the algorithm to fully explore solution 

spaces, instead causing the algorithm to randomly find a topology scoring high in one of 

the parameters, and then only slightly modifying this topology to rather poorly improve on 

the other objectives. Our experiments showed that rewiring 1 to 2% of the total number of 

edges in the network provided satisfying results. As for the MOSA’s total number of itera-

tions, higher is always better. However, as stated above, NDS filtering is very time consum-

ing. It is therefore advised to aim for a large number of iterations, while programming the 
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algorithm to regularly export —as the MOSA keeps running— the ensemble of networks 

included in the NDS. 

Table 5.1 — Multiple-objective simulated annealing, parameter recommendations. 

5.6. DISCUSSION AND CONCLUSION 

While using a composite score of weighted objectives can provide solutions performing 

better, for each objectives, than the ones produced here (see for example the large net-

work optimized in Chapter 4), the multi-objective method is arguably advantageous for 

several reasons. Firstly, instead of providing one output solution (as a SA using a compos-

ite score would), a MOSA make all non-dominated solutions available. Our algorithm ex-

plores multi-objective spaces (we experimented with two, three and four objectives —the 

latter is provided in Annex 7 as it is largely redundant from the results already described 

here) from which clear non-dominated fronts emerge. As there is no formal way to dis-

criminate between solutions residing on these fronts, it is important to keep them for later 

analysis on which compromises are required for a given application. Secondly, our MOSA 

permits a much better understanding of the system’s tradeoffs. In Chapter 4, we had to 

resort to optimizing robustness for all combinations of modularity and average path length 

is order to obtain the necessary insights about the trade-offs at work between our objec-

tives. The method presented here inherently deals with these trade-offs. Thirdly, potential 

problems related to objectives being correlated with each other do not bias results with a 

MOSA as a composite score would. For instance, for a three-objective optimization for 

Recommended setting Effect

Starting temperature Low so as to reject a large portion of worse 
solutions Makes for a rather 

“greedy” algorithm.
End temperature Very low so as to reject a large portion of 

worse solutions

Extent of the random 
rewiring 1 to 2% of all edges

Makes sure the algorithm 
does explore truly 
different topologies.

Number of steps At least 20,000
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which two of the three objectives are perfectly correlated, our MOSA would simply pro-

duce a NDS shaped as a curved line instead of a surface. 

The approach presented here provides a true, simple and intuitive multi-objective opti-

mization applied to network structure using simulated annealing. The MOSA approach 

provides an elegant method to explore the space of solutions when seeking to generate 

networks whose topology meets desired criteria, and is especially applicable to cases for 

which there are competing objectives that impose trade-offs in network structure. The ap-

proach allows us to explore the range of non-dominated solutions in the multi-dimension-

al objective space, and provides a multi-dimensional front against which empirical or sim-

ulated networks may be compared. The approach thus also contributes to advancing the 

field of network analysis, by creating a well-defined theoretically optimal surface in objec-

tive space for a desired network structure, the distance from which can be quantified for a 

network under study. We are optimistic that this demonstration of MOSA for network 

topology will be further developed and may be widely applicable to a variety of practical 

applications. 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6. CONCLUSION GÉNÉRALE 

6.1. CONTRIBUTIONS 

Cette thèse compte quatre contributions notables pour la recherche sur la résilience 

dans les systèmes socio-écologiques. 

Exploration formelle des compromis structuraux permettant l’amélioration de la 
résilience des SSÉ 

Les structures actorielles favorisant la résilience des SSÉ sont complexes et constituent 

un compromis entre plusieurs topologies parfois contradictoires. Cette thèse identifie 

quatre mesures réputées favoriser la résilience des SSÉ, et explore leurs contradictions. La 

Figure 4.1 d’une part, mais surtout les Figures 5.3, 5.5, 5.6 et Annexe 7, montrent que 

ces contradictions sont contrastées. On y voit que si le degré de modularité d’un réseau 

est, de par la longueur et la pente du front des solutions non-dominées (SND), très claire-

ment en conflit avec sa connectivité (volets supérieurs des Figures 5.3, 5.5, 5.6), ce n’est 

pas le cas entre la connectivité et la synchronisabilité, ni entre la modularité et la robus-

tesse, qui convergent vers un front très court. Ceci ne signifie pas que ces mesures à 

« court front » de SND sont équivalentes, mais qu’il est possible de trouver une structure 

les satisfaisant en même temps, ou presque. Il s’agit toutefois de demeurer vigilant. Par 

exemple, si le front entre connectivité (par average path length ou efficiency) et synchroni-

sabilité (par λ2) est court, ses extrêmes peuvent déboucher sur des structures tout à fait 

différentes, où d’un côté la distribution des degrés dans le réseau est proche d’une loi de 

puissance (faisant émerger une hiérarchie à l’intérieur du réseau), et de l’autre quasi nor-

male et plus égalitaire en termes de distribution de pouvoirs (Figure 4.4). Toutefois, le 

plus important compromis réside entre deux topologies  : d’un côté une topologie forte-

ment modulaire, qui favorise le développement de solutions originales et innovantes face à 

des défis écosystémiques complexes (et donc souvent imprévisibles), et une topologie for-

tement connectée qui facilite le partage d’informations (donc la capacité d’apprentissage) 

et la confiance entre tous les acteurs d’un réseau. La question de quelle mesure doit être 
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favorisée pour mesurer la résilience de réseaux empiriques relève certainement du 

contexte politique, géographique, social et historique de chaque étude de cas.  
Cette thèse constitue la première étude quantitative complète sur les compromis com-

plexes qui contribuent à améliorer la résilience des système humain-nature couplés. 

Développement de deux nouvelles mesures de réseau. 

Les recherches de cette thèse ont mené à la création de deux nouvelles mesures de ré-

seau. La première, le Group Marginalization Index (GMI) est une mesure de l’équilibre 

entre les relations inter-groupes (équation 3.4). Elle permet de mesurer le degré auquel 

un réseau marginalise certains groupes au profit d’autres entre lesquels les relations se-

raient plus denses. La seconde est la group-betweenness centrality (équation 3.3), qui me-

sure la capacité d’un nœud à servir de pont entre d’autres nœuds appartenant à des 

groupes différents. Ces deux mesures sont facilement et directement utilisables dans 

d’autres études de cas, et augmentent la boite d’outils disponibles pour l’analyse des rela-

tions de pouvoir au sein de réseaux sociaux. 

Développement d’une mesure structurale du degré auquel un réseau d’acteurs 
contribue à la résilience de son SSÉ 

La mesure proposée utilise le concept de similitude structurale (distance euclidienne 

entre les spectres laplaciens) entre un réseau empirique et un réseau archétypique repré-

sentant le compromis idéal entre plusieurs topologies contradictoires (réseau RES). Plus la 

distance résultante est faible, plus le réseau empirique ressemble, structurellement, à un 

réseau idéal. Deux méthodes sensiblement différentes sont utilisées dans cette thèse afin 

de créer ces réseaux RES  : la première, proposée dans le chapitre 4, est un algorithme 

d’optimisation de type « recuit simulé » fondé sur un score aggloméré qui représente les 

quatre objectifs à la fois (modularité, connectivité, synchronisabilité et robustesse) (équa-

tion 4.2). S’il s’avère performant en termes de vitesse d’optimisation (y compris pour des 

réseaux denses et de taille relativement grande), il ne fournit qu’un seul résultat et ne 

permet donc pas une exploration formelle des compromis discutés plus haut. La seconde 
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méthode, proposée dans le chapitre  5 est une adaptation simple et intuitive de l’algo-

rithme de recuit simulé précédent. Dans cette méthode, le score unique aggloméré est 

remplacé par la distance entre une solution et la surface multidimensionnelle des SND 

(Figure 5.1). Ce score réellement multiobjectif fournit l’ensemble des solutions non-domi-

nées trouvées lors du processus d’optimisation. Il permet, en tenant compte de certaines 

limitations liées à la puissance de l’ordinateur utilisé (augmenter le nombre d’objectifs 

augmente également les temps de calcul), un emploi moins rigide de notre mesure.  
Toutefois, la mesure de « similitude spectrale » proposée n’est pas normalisée, il est donc 

difficile de l’utiliser sans ordre de comparaison. Elle se révèle néanmoins véritablement 

utile lorsqu’il s’agit de comparer des réseaux empiriques entre eux (par leurs distances 

respectives par rapport au réseau RES), de suivre l’évolution dans le temps d’un réseau 

d’acteurs, ou de tenter de projeter ses états alternatifs souhaitables.  
Il est désormais possible d’analyser une étude de cas à la lumière des deux premiers 

points. Nous avons choisi un réseau d’acteurs impliqués dans divers projets de conserva-

tion de la biodiversité sur la péninsule d’Eyre (EP), en Australie-Méridionale. Si le cas par-

ticulier de la biodiversité est sans doute un peu restrictif, il est probable que d’autres pro-

blématiques activent les mêmes relations, et que des réseaux similaires en émergent 

(même si cela n’est pas vérifié dans le cadre de cette étude). Le chapitre 4 quantifie la 

contribution de ce réseau empirique à la résilience du SSÉ, et compare le score obtenu à 

d’autres topologies largement étudiées dans la littérature (Tableau 4.1).  
Le réseau RES constitue le premier exemple publié de topologie représentant un compro-

mis entre plusieurs caractéristiques reconnues pour améliorer la résilience des SSÉ. 

Comme décrit, l’utilisation de ce réseau archétypique, en combinaison avec la mesure de 

distance spectrale, fourni une méthode quantitative pour des études sur la résilience des 

SSÉ. Un seul réseau empirique a été étudié dans cette thèse, la méthode demeure cepen-

dant identique pour un grand nombre d’autres réseaux d’acteurs, et ouvre ainsi la voie à 

d’autres études sur le sujet. 
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Démonstration de l’importance de groupes construisant des ponts collaboratifs 
dans un réseau d’acteurs empirique 

Le chapitre 3 est consacré à une analyse générale du réseau EP, et permet une compré-

hension plus profonde des éléments contextuels de l’étude de cas. L’analyse met en lumière 

plusieurs points  : le contexte institutionnel d’une part, et géographique de l’autre, sont 

des éléments profondément structurants de l’organisation des acteurs. Les Figures  3.7, 

3.8, 3.9 et 3.10 montrent clairement l’impact de la géographie sur les relations. Elles sont 

de trois ordres : 1) les relations sont très largement locales, et de plus rares relations de 

longues distances permettent d’élargir la portée spatiale du réseau des acteurs 

(Figure 3.7) ; 2) le réseau montre une agglomération spatiale forte sur la côte ouest de la 

péninsule alors que les relations entre les autres acteurs sont moins géographiquement 

marquées (Figure 3.9) ; 3) deux villes rassemblent les acteurs possédant les plus fortes 

betweenness centralities et group-betweenness centralities : Adélaïde et Port Lincoln. Ce ré-

sultat n’est pas une véritable surprise, car ce sont des centres administratifs importants où 

résident les groupes institutionnels dominants du réseau, il confirme toutefois l’importance 

des grands centres administratifs dans les structures de communication. Les Figures 3.11, 

3.12, et 3.13 mettent en lumière le caractère structurant de ces institutions. On y voit se 

démarquer EP-NRM (institution relativement jeune issue d’une volonté politique de décloi-

sonner les relations entre les acteurs traditionnels) comme un puissant outil institutionnel 

de mise en relation des acteurs, quel que soit leur groupe d’origine (forte group-between-

ness). Ces deux points démontrent une nouvelle fois l’importance du contexte politique et 

géographique dans la compréhension des dynamiques d’acteurs. 

6.1. OUVERTURE DE RECHERCHE 

Le travail présenté dans cette thèse se concentre sur la partie humaine des SSÉ. En pro-

posant une mesure quantitative reliée à la résilience, il constitue un pas important vers 

d’autres mesures plus globales et holistiques. Des telles mesures doivent cependant s’af-

franchir de plusieurs obstacles. Ceux-ci constituent la suite logique des recherches de cette 

thèse. 
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Preuves empiriques des théories avancées 

Si les mesures de réseaux utilisées dans ce manuscript sont issues de travaux largement 

acceptés, elles demeurent toutefois seulement théoriques pour le moment. Il n’existe pas, 

ou très peu, de preuves empiriques que ces mesures, et à forcerie un compromis entre ces 

mesures, aident effectivement à augmenter sensiblement la résilience des SSÉ. Un des obs-

tacles majeurs à une application pratique de ces recherches réside dans ce manque qui 

pourrait être comblé par des recherches pluri-disciplinaires sur une plus longue période de 

temps. Période durant laquelle des séries temporelles (dans les sous-systèmes sociaux et 

écologiques) pourront être collectées et analysées. 

Contexte des SSÉ 

Le concept de résilience est large et parfois flou. Dans la multitude des SSÉ à travers le 

monde, il existe une grande diversité de contextes, de perturbations internes ou externes, 

de services écosystémiques en jeu, et de solutions d’adaptations acceptables (culturelle-

ment et économiquement). Tous ces éléments doivent être pris en compte lorsque l’on 

tente de mesurer la résilience dans les SSÉ, ou de comparer différents réseaux d’acteurs 

entre eux. Ces différences impliquent que certaines topologies d’interactions peuvent 

contribuer différemment à la résilience d’un système en fonction dans son contexte. La 

mesure présentée ici est souple et facilement adaptable à d’autres objectifs que la modula-

rité, la connectivité, la synchronisabilité et la robustesse. Toutefois, comparer deux études 

de cas où chacun des scores serait calculé selon des objectifs différents pourrait être 

conceptuellement problématique. Une clarification des limites liées à cette diversité de 

contextes constituerait une contribution importante. 

La dimension temporelle 

Les SSÉ évoluent dans le temps, passent par des cycles, et voient certains liens 

s’éteindre puis se réactiver en cas de besoin. L’étude de la résilience dans les SSÉ tirerait 

bénéficie de l’ajout de la dimension temporelle (avec, par exemple, une approche utilisant 

des diagrammes de récurrence). Cet ajout permettrait également de prendre formellement 
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en compte la phase, dans le cycle d’adaptation (Gunderson 2001), dans laquelle l’étude 

de cas se situe, et permettant ainsi d’ajuster les objectifs structurels en fonction d’elle (par 

exemple, chaque phase implique un niveau différent de connectivité). En plus des travaux 

de terrain de type sociométriques tels que je les ai conduits pour ce travail, l’inclusion de 

la dimension temporelle demande une recherche historique poussée, ce qui pourrait com-

pliquer la collecte de données. 

Divergences graves d’intérêts 

Les types de relations inclus dans ce travail sont uniquement positifs. Toutefois, certains 

acteurs, dans leur diversité d’intérêts, de valeurs et de motivations, peuvent être hostiles 

au but fixé pour l’étude de cas. Ces acteurs peuvent s’organiser en réseaux et agir de leur 

côté à des objectifs différents, voire opposés. Comment ces divergences d’intérêts et de 

pouvoir affectent-elles la résilience des SSÉ ? Comment collecter ces données de la ma-

nière la moins biaisée possible, et comment les inclure dans une mesure globale ? 

Intégration des sous-systèmes humains et naturels au sein d’un même réseau. 

Finalement, est-il possible, pour analyser les SSÉ de manière holistique, d’intégrer sim-

plement et intuitivement les réseaux écosystémiques liés aux réseaux sociaux ? Certains 

obstacles se posent, parmi lesquels i) la définition de ce qui doit transiter dans le RSÉ mo-

délisé (quels types de flux sont adaptés à la fois aux relations sociales et aux relations éco-

systémiques ?), et ii) l’asynchronie entre processus humains et processus bio-physiques. 

Ces quelques ouvertures de recherche mèneraient vers une compréhension plus pro-

fonde des relations socio-écologiques, de leurs dynamiques à travers le temps, et des ré-

troactions entre les sous-systèmes humains et naturels. À une époque où les conséquences 

des activités anthropiques se font durablement et profondément sentir dans les paysages 

et parmi les individus qui les habitent, ces éléments de compréhension fondamentaux 

constituent certainement une des clés vers des relations socio-écologiques plus équilibrées.  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ANNEXE 1 — Tableau utilisé pour l’analyse des acteurs 

This spreadsheet is meant to identify a comprehensive list of actors (groups and indi-

viduals) influencing decision making regarding biodiversity conservation on the Eyre 

Peninsula. This list is divided in two main parts. 

1) The first part is the “stakeholders as groups” section, which lists stakeholders groups 

that, you consider, are affecting or being affected by matters related to biodiversity con-

servation on the EP. These stakeholders can be, without being limited to, government 

agencies, NGO's, and consultancy enterprises (even one-man enterprises). 

2) The second part, “Individual actors involved within this stakeholder group” lists in-

dividual actors working under the corresponding stakeholder group. As an example, we 

started filling the table with stakeholder groups and individuals working on the WildEyre 

project. We see that a row is dedicated to each individual, working on this particular 

project, listed on the right side of the table. When there is more than one individual asso-

ciated with a stakeholder group, insert a new row and just fill in the individual details on 

the right side of the table - the stakeholder group detail only needs to be entered once . 

To help develop a comprehensive understanding of who is affected, who is influencing 

and who is deciding, it is important that we get this listing as complete as possible. Please 

fill the table to the best of your knowledge, adding as many stakeholder groups and actors' 

names as you think are relevant. 

We greatly appreciate your help. Please contact us if you have any concerns or ques-

tions. ***  Please note that any information you provide and its source will be treated con-

fidentially. Material which may be published from this study will be modified to protect 

confidentiality of source and individual identity.  

Note: 1). there are comments associated with the column headings - hovering over the 

cell will bring this information up. 2). A number of the columns e.g. Category have an 

imbedded list of options that will help describe the stakeholder or strength of influence for 

example. To activate the pop up list, highlight the cell, click on the arrow on the right 
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hand side of the highlighted cell and the list will appear - then click on the best descrip-

tion. If the list does not have the description you think is appropriate you can type in an 

alternative. 

This table was set up with drop-down choice on some cell. For “category”, choices in-

cluded: “Aboriginal groups”, “Industry (farming)”, “Local governments”, “NGO and local 

initiatives” and “Private agronomist”. Choices for “Level of interest in biodiversity issues on 

the Eyre Peninsula”: “Very high (these issues are a matter of livelihood to this 

stakeholder)”, “High”, “Moderate”, “Low”, “Very low (this stakeholder has only remote or 

unclear interest in this matter)”. Choices for “Strength of influence in comparison to most 

other” were: “Among the most influential”, “Higher than average”, “Average”, “Lower than 

average”, “Among the least influential”. 

Groups of stakeholders Stakeholders as individuals

Name Category Level of 
interest in 
biodiversity 
issues

Strength of 
influence in 
comparison 
to most other

Name Specific 
involvement 
regarding 
biodiversity 
issues

Geographic 
location of this 
individual's 
involvement

Contact
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ANNEXE 2 — Tableau utilisé pour la collecte des données de 
réseau 
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ANNEXE 3 — Matrices D’optimisation à l'échelle du groupe 

Modularity optimization
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Average Path Length optimization 
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Group marginalization index optimization
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Group synchronizability index optimization 
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ANNEXE 4 — Script Python 
“RES_Network_Simulated_annealing.py” 

"""Python code for the simulated annealing algorithm producing archetypal, resilience-en-
hancing, stakeholder networks""" 
from igraph import * #Csardi G, Nepusz T: The igraph software package for complex network 
research, InterJournal, Complex Systems 1695. 2006. http://igraph.org 
from random import * 
import numpy as np # Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The NumPy 
Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering, 
13, 22-30 (2011), DOI:10.1109/MCSE.2011.37 
import copy 
from igraph import * 
from random import * 
import numpy as np 
import copy 

def Deg_Node_Cut(G): 
    g = G.as_undirected() 
    n = 0 
    while g.is_connected() == True and len(g.vs) > 2: 
        degree = g.vs.degree() 
        degreeDict = {} 
        vc = 0 
        for v in degree: 
            degreeDict[vc] = degree[vc] 
            vc += 1 
        degree = sorted(degreeDict.iteritems(), 
                        key=operator.itemgetter(1), reverse=True) 
        strongestNode = degree[0][0] 
        g.delete_vertices(g.vs(strongestNode)) 
        n = n + 1 
    return n 
def energy(g): 
    """Computes the energy score the SA aims at minimizing""" 
    if isinstance(g, list): 
        g = edgelist2graph(g) 

    modu = g.modularity(g.community_multilevel( 
        return_levels=False), weights=None) 
    mnc = float(Deg_Node_Cut(g)) / nbr_nodes 
    apl = 1 - (g.average_path_length() / g.diameter()) 
    fiedler = sorted(np.linalg.eigvals( 
        g.laplacian(normalized=True)).tolist())[1] 
    if g.is_connected() == False: 
        e = 0 
    if modu <= .52: 
        fModu = 5 
    else: 
        fModu = 1 

    return -(fModu * modu + mnc + apl + fiedler) 

def move(g, T): 
    """Randomly swaps two edges""" 
    r = g.get_edgelist()[randrange(len(g.get_edgelist()))] 
    g.delete_edges(r) 

    v1, v2 = randint(0, nbr_nodes - 1), randint(0, nbr_nodes - 1) 
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    while g.are_connected(v1, v2): 
        v1, v2 = randint(0, nbr_nodes - 1), randint(0, nbr_nodes - 1) 
    g.add_edge(v1, v2) 
    return r, (v1, v2) 

def annealing(): 
    """original, random, state of the network""" 
    state = Graph.Erdos_Renyi(nbr_nodes, dens, directed=False, loops=False) 

    print 
state.modularity(state.community_multilevel(return_levels=False),weights=None),Deg_Node_-
Cut(state),state.average_path_length(),sorted(np.linalg.eigvals( 
                    state.laplacian(normalized=True)).tolist())[1] 

    for step in range(1, steps): 
        T = Tmax * math.exp(Tfactor * step / steps) 
        prev_state = copy.deepcopy(state) 
        prev_energy = energy(prev_state) 
        move(state, T) 
        new_energy = energy(state) 
        dE = new_energy - prev_energy 
        if dE < 0 or (dE >= 0 and math.exp(-dE / T) > random()): 
            if dE >= 0: 
                print step, "Accepted (uphill)" 
            else: 
                print step, "Accepted (downhill)" 
        else: 
            state = copy.deepcopy(prev_state) 
             
    return state 

if __name__ == '__main__': 
    nbr_nodes, dens = 50, .12 

    """annealing schedule""" 
    steps = 1600000 
    Tmax = 2.5 
    Tmin = 2.2e-07 
    Tfactor = -math.log(Tmax / Tmin) 
    optimized_network = annealing() 
    print optimized_network.modularity(optimized_network.community_multilevel(re-
turn_levels=False),weights=None),Deg_Node_Cut(optimized_network),optimized_network.aver-
age_path_length(),sorted(np.linalg.eigvals( 
                optimized_network.laplacian(normalized=True)).tolist())[1] 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ANNEXE 5 — Script Python “Best_archetypes_selection.py” 

"""Python code for selecting the best archetype produced with simulated annealing """ 

from igraph import * # Csardi G, Nepusz T: The igraph software package for complex network 
research, InterJournal, Complex Systems 1695. 2006. http://igraph.org 
import csv 
from operator import itemgetter 
import numpy as np # Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The NumPy 
Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering, 
13, 22-30 (2011), DOI:10.1109/MCSE.2011.37 
from itertools import groupby 
import math 
import datetime 
from collections import Counter 

dens = .12 
weights = [1, 1, 1, 1] 

def Deg_Node_Cut(G): 
    g = G.as_undirected() 
    n = 0 
    while g.is_connected() == True and len(g.vs) > 2: 
        degree = g.vs.degree() 
        degreeDict = {} 
        vc = 0 
        for v in degree: 
            degreeDict[vc] = degree[vc] 
            vc += 1 
        degree = sorted(degreeDict.iteritems(), 
                        key=operator.itemgetter(1), reverse=True) 
        strongestNode = degree[0][0] 
        g.delete_vertices(g.vs(strongestNode)) 
        n = n + 1 
    return n 
     
path = '/' 

for i in os.listdir(path): 
    # find all network gml files starting with name 'Arch_network_' 
    if os.path.isfile(os.path.join(path, i)) and 'Arch_network_' in i: 
        files.append(i) 
data = [] 
c = 0 

for file in files: 
    c += 1 
    G = read(path + file) 
    try: 
        ac = sorted(np.linalg.eigvals( 
            G.laplacian(normalized=True)).tolist())[1] 
    except: 
        ac = 0.000001 
    data.append([ 
        file, 
        round(G.density(), 2), 
        round(G.modularity(G.community_multilevel( 
            return_levels=False), weights=None), 2), 
        round(ac, 2), 
        round(-G.average_path_length(), 2), 
        Deg_Node_Cut(G)]) 
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for p in range(4): 
    sorted_data = sorted(data,  key=itemgetter(p + 2), reverse=True) 
    rank = 0 
    for _, grp in groupby(sorted_data, key=lambda xs: xs[p + 2]): 
        r = rank + 1 
        for x in grp: 
            x.append(r) 
            rank += 1 
for i in data: 
    i[4] = -i[4] 
    i.append((float(i[6]) * weights[0] + float(i[7]) * weights[1] + float(i[8]) * weights[ 
             2] + float(i[9]) * weights[3]) / (weights[0] + weights[1] + weights[2] + 
weights[3])) 
df = [] 

for i in data: 
    df.append([i[0], i[2], i[3], i[4], i[5], i[6], i[7], i[8], i[9]]) 

sorted_data = sorted(data,  key=itemgetter(6), reverse=False) 

print "best modu:", sorted_data[0][2], "(", sorted_data[0][0], ")", ", worse modu", sort-
ed_data[len(sorted_data) - 1][2], "(", sorted_data[len(sorted_data) - 1][0], ")" 
file = path + str(sorted_data[0][0]) + ".gml" 

sorted_data = sorted(data,  key=itemgetter(7), reverse=False) 
print "best mec:", sorted_data[0][3], "(", sorted_data[0][0], ")", ", worse mec", sorted_-
data[len(sorted_data) - 1][3], "(", sorted_data[len(sorted_data) - 1][0], ")" 

sorted_data = sorted(data,  key=itemgetter(8), reverse=False) 
print "best apl:", sorted_data[0][4], "(", sorted_data[0][0], ")", ", worse apl", sorted_-
data[len(sorted_data) - 1][4], "(", sorted_data[len(sorted_data) - 1][0], ")" 

sorted_data = sorted(data,  key=itemgetter(9), reverse=False) 
print "best deg_mc:", sorted_data[0][5], "(", sorted_data[0][0], ")", ", worse deg_mc", 
sorted_data[len(sorted_data) - 1][5], "(", sorted_data[len(sorted_data) - 1][0], ")" 

sorted_data = sorted(data,  key=itemgetter(10), reverse=False) 
print "best score:", sorted_data[0] 
sorted_data = sorted(data,  key=itemgetter(10), reverse=False) 
print "second best score:", sorted_data[1] 
sorted_data = sorted(data,  key=itemgetter(10), reverse=False) 
print "third best score:", sorted_data[2] 
sorted_data = sorted(data,  key=itemgetter(10), reverse=False) 
print "worse score:", sorted_data[len(data) - 1] 
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ANNEXE 6 — Script Python “RES_Network_Multi-Objective-
Simulated_annealing.py” 

# -*- coding: utf-8 -*- 

"""Python code for multiple objective simulated annealing (MOSA) """ 

from igraph import * # Csardi G, Nepusz T: The igraph software package for complex network 
research, InterJournal, Complex Systems 1695. 2006. http://igraph.org 
from random import * 
import copy 
import numpy as np 
from multiprocessing import Pool 
import csv 
import numpy as np # Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The NumPy 
Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering, 
13, 22-30 (2011), DOI:10.1109/MCSE.2011.37 
from pickle import dumps, loads 
import cPickle 
import shapely.geometry as geom 
import itertools 
import operator 

""" NDS calculations """ 
def select_dominated(a,b): 
    ge = all(map(operator.ge, a[0], b[0])) 
    le = all(map(operator.le, a[0], b[0])) 
    return b if ge else a if le else 'indifferent' 

def dominate(a,b): 
    ge = all(map(operator.ge, a, b)) 
    le = all(map(operator.le, a, b)) 
    return True if ge else False if le else 'indifferent' 

def dominate_all(a,NDS): 
    c = 0 
    for b in NDS: 
        if dominate(a,b) == True or dominate(a,b) == 'indifferent': 
            c += 1 
    if c == len(NDS): 
        return True 
    else: 
        return False 
         
def NDSFront(a): 
    b = copy.deepcopy(a) 
    if len(a) > 1: 
        for i in range(len(a)): 
            for j in range(i,len(a)): 
                if i != j: 
                    try: 
                        b.remove(select_dominated(a[i],a[j])) 
                    except: 
                        "" 
    return b 

""" start util """                     
def column(matrix, i): 
    return [row[i] for row in matrix] 
""" end util """ 
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def dist2NDS2(NDS,candidate): 
    if len(NDS) >= 2: 
        line = [] 
        for p in NDS: 
            if len(p) == 3: 
                line.append((p[0],p[1],p[2])) 
            else: 
                line.append((p[0],p[1])) 
        line = geom.LineString(line) 
        point = geom.Point(candidate[0], candidate[1]) 
        return point.distance(line) 
    else: 
        return 0 

""" Efficiency calculation """ 
def efficiency(G): 
    avg = 0.0 
    n = len(G.vs) 
    for node in G.vs: 
        path_length = G.shortest_paths(node) 
        avg += sum(1.0/v for v in path_length[0] if v !=0) 
    avg *= 1.0/(n*(n-1)) 
    return avg 

""" Robustness to targeted node removal calculation """     
def Deg_Node_Cut(G): 
    g = G.as_undirected() 
    n = 0 
    while g.is_connected() == True and len(g.vs) > 2: 
        degree = g.vs.degree() 
        degreeDict = {} 
        vc = 0 
        for v in degree: 
            degreeDict[vc] = degree[vc] 
            vc += 1 
        degree = sorted(degreeDict.iteritems(), key=operator.itemgetter(1),reverse=True) 
        strongestNode = degree[0][0] 
        g.delete_vertices(g.vs(strongestNode)) 
        n = n + 1 
    return n 

"""Calculates metrics""" 
def energy(g): 
     
    modu = g.modularity(g.community_multilevel(return_levels=False),weights=None) 
    mnc = Deg_Node_Cut(g) 
    eff = efficiency(g) 
    try: 
        sync = sorted(np.linalg.eigvals(g.laplacian(normalized=True)).tolist())[1] 
    except: 
        sync = float(0) 
    if sync == 0: 
        return [0,0,0] 
    else: 
        return [modu,eff,mnc] 

"""Rewire N times""" 
def move(g,N): 
    nbrEs = len(g.es()) 
    for i in range(N):         
        c = 0 
        while c == 0 or g.is_connected() == False: 
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            c += 1 
            r = g.get_edgelist()[randrange(len(g.get_edgelist()))] 
            s1 = r[0] 
            g.delete_edges(r)             
            v1, v2 = randint(0,nbr_nodes-1),randint(0,nbr_nodes-1) 
            while g.are_connected(v1, v2): 
                v1, v2 = randint(0,nbr_nodes-1),randint(0,nbr_nodes-1) 
            g.add_edge(v1, v2) 
    return r,(s1,v2)  

def MOSA(nbr_nodes,dens,steps,Tmin,Tmax,Tfactor,jumpThresh,jumpThresh2,saveStep): 

    """ create a random, seed network """ 
    state = Graph.Erdos_Renyi(nbr_nodes, dens, directed=False, loops=False) 
    state.simplify(multiple = True,loops = True) 
     
    """ Set empty lists and variables """ 
    NDS = [] 
    NDSF = [] 
    NDS2 = [] 
    NDS2Export = [] 
    NDSF2 = [] 
    NDSF2Export = [] 
    accepted = 0 
    acceptedD = 0 
    refused = 0 
    refusedUD = 0 
    save = 0 
    fileName = "NDS.p" 

    """ start simulaiton """ 
    for step in range(1,steps): 
         
        T = Tmax * math.exp(Tfactor * step / steps) 
         
        prev_state = copy.deepcopy(state) 
        prev_energy = energy(prev_state) 
         
        N = choice([2,3,4])         
        move(state,N) 
         
        new_energy = energy(state) 
         
        if new_energy != [0,0,0]: 
            NDS.append([new_energy,dumps(state)]) 
         
        NDS = NDSFront(copy.deepcopy(NDS)) 

        d1 = dist2NDS2(column(NDS, 0),new_energy) 
        d2 = dist2NDS2(column(NDS, 0),prev_energy) 
         
        if dominate_all(new_energy,column(NDS, 0)) or d1 < d2: 
            dE = -1 
            refused = 0 
        else: 
            dE = d2 - d1 
            refused += 1 
         
        if dE < 0 or (dE >= 0 and math.exp(-dE / T) > random()): 
            if dE >= 0: 
                accepted += 1 
            else: 
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                acceptedD += 1 
        else: 
            state = copy.deepcopy(prev_state) 
            refusedUD += 1         

        if refused > jumpThresh: 
            N = int(random()*100) 
        if refused > jumpThresh2: 
            state = loads(choice(NDS)[1]) 
             
        save += 1 
         
        if save == saveStep: 
            print int((float(step)/steps)*100),"%,","Non dominated set:",len(NDS) 

            save = 0 
            accepted = 0 
            acceptedD = 0 
            refusedUD = 0 
            Nmoy = 0 
            cPickle.dump(NDS, open(fileName, "wb")) 
                    
    cPickle.dump(NDS, open(fileName, "wb")) 
     

if __name__ == '__main__': 
     
    """ Set parameters """   
    nbr_nodes, dens = 50, .09 

    steps = 2000000 

    Tmin = 1e-10 
    Tmax = .001 
    Tfactor = -math.log(Tmax / Tmin) 
     
jumpThresh = 100 
    jumpThresh2 = 1000 

    saveStep = 100 

    MOSA(nbr_nodes,dens,steps,Tmin,Tmax,Tfactor,jumpThresh,jumpThresh2,saveStep) 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ANNEXE 7 — Optimisation d’un réseau par recuit simulé pour 
quatre objectifs 
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